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Editorial Introduction
This volume contains the proceedings of the International Workshop on Operator
Theory and Applications (IWOTA) which was held at the University of Connecti-
cut, Storrs, USA, July 24–27, 2005. This was the sixteenth IWOTA; in fact, the
workshop was held biannually since 1981, and annually in recent years (starting
in 2002) rotating among ten countries on three continents. Here is the list of the
fifteen workshops:

IWOTA’1981: Santa Monica, California, USA (J.W. Helton, Chair)
IWOTA’1983: Rehovot, Israel (H. Dym, Chair)
IWOTA’1985: Amsterdam, The Netherlands (M.A. Kaashoek, Chair)
IWOTA’1987: Mesa, Arizona, USA (L. Rodman, Chair)
IWOTA’1989: Rotterdam, The Netherlands (H. Bart, Chair)
IWOTA’1991: Sapporo, Hokkaido, Japan (T. Ando, Chair)
IWOTA’1993: Vienna, Austria (H. Langer, Chair)
IWOTA’1995: Regensburg, Germany (R. Mennicken, Chair)
IWOTA’1996: Bloomington, Indiana, USA (H. Bercovici, C. Foias, Co-chairs)
IWOTA’1998: Groningen, The Netherlands (A. Dijksma, Chair)
IWOTA’2000: Faro, Portugal (A.F. dos Santos, Chair)
IWOTA’2002: Blacksburg, Virginia, USA (J. Ball, Chair)
IWOTA’2003: Cagliari, Italy (S. Seatzu, C. van der Mee, Co-Chairs)
IWOTA’2004: Newcastle upon Tyne, UK (M.A. Dritschel, Chair)
IWOTA’2005: Storrs, Connecticut, USA (V. Olshevsky, Chair)

The aim of the 2005 IWOTA was to review recent advances in operator theory
and its applications to several areas including mathematical systems theory and
control theory.

Among the main topics of the workshop was the study of structured matrices,
their applications, and their role in the design of fast and numerically reliable algo-
rithms. This topic had already received a considerable attention at IWOTA’2002
and IWOTA’2003 when the main focus was mostly on the structures of Toeplitz,
Hankel and Pick types. In the year 2005 the interest shifted towards matrices with
quasiseparable structure.

The IWOTA’2005 was made possible through the generous financial support
of National Science Foundation (award : 0536873) as well as thanks to the funds of
the College of Arts and Sciences and of the Research Foundation of the University
of Connecticut. All this support is acknowledged with a gratitude.

Joseph Ball, Yuli Eidelman, William Helton,
Vadim Olshevsky, and James Rovnyak (Editors)
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Inverse Problems for First-Order Discrete
Systems

Daniel Alpay and Israel Gohberg

Abstract. We study inverse problems associated to first-order discrete systems
in the rational case. We show in particular that every rational function strictly
positive on the unit circle is the spectral function of such a system. Formulas
for the coefficients of the system are given in terms of realizations of the
spectral function or in terms of a realization of a spectral factor. The inverse
problems associated to the scattering function and to the reflection coefficient
function are also studied. An important role in the arguments is played by
the state space method. We obtain formulas which are very similar to the
formulas we have obtained earlier in the continuous case in our study of
inverse problems associated to canonical differential expressions.

Mathematics Subject Classification (2000). Primary: 34A55, 49N45, 70G30;
Secondary: 93B15, 47B35.

Keywords. Inverse problems, spectral function, scattering function, Schur pa-
rameters, state space method.

1. Introduction

Here we continue to study first-order discrete systems. We defined the character-
istic spectral functions associated to a first-order discrete in [7] and studied the
corresponding inverse problems in [8] for scalar systems. In the matrix-valued case,
see [3], a system of equations of the form

Xn(z) =
(

Ip αn

βn Ip

)∗(
zIp 0
0 Ip

)
Xn−1(z), n = 1, 2, . . . , (1.1)

is called a canonical discrete first-order one-sided system. The sequence of matrices
(αn, βn) is not arbitrary, but has the following property: there exists a sequence ∆

Daniel Alpay wishes to thank the Earl Katz family for endowing the chair which supported his
research.



2 D. Alpay and I. Gohberg

of strictly positive block diagonal matrices in C2p×2p such that(
Ip αn

βn Ip

)
J∆n

(
Ip αn

βn Ip

)∗
= J∆n−1, n = 1, 2, . . . , (1.2)

where

J =
(

Ip 0
0 −Ip

)
.

The sequence is then called ∆-admissible. In the scalar case (that is, when p = 1)
condition (1.2) forces αn = β∗

n (see [3]). Still for p = 1 these systems arise as the
discretization of the telegrapher equation; see [7] for a discussion and references.
An a posteriori motivation for the study of such systems is the fact that we obtain
formulas very close to the ones we proved in the continuous case in our study
of inverse problems associated to canonical differential expressions. To be more
precise we need to present our setting in greater details. We first gather the main
results from [3] needed in the sequel. Let

Z =
(

zIp 0
0 Ip

)
and Fn =

(
0 β∗

n

α∗
n 0

)
, n = 1, 2, . . ..

Under the hypothesis
∞∑

n=1

(‖αn‖+ ‖βn‖) <∞, (1.3)

the infinite product

Y (z) =

⎛⎝ �∞∏
n=1

(I2p + Z−nFnZn)

⎞⎠ (1.4)

converges absolutely and uniformly on the unit circle, and the functions

Xn(z) = Zn
(
(I2p + Z−nFnZn) · · · (I2p + Z−1F1Z)

)
Y (z)−1, n = 1, 2, . . . ,

define the unique C2p×2p-valued solution to the system (1.1) with the property
that

lim
n→∞

(
z−nIp 0

0 Ip

)
Xn(z) = I2p, |z| = 1. (1.5)

See [3, Section 2.1]. This solution is called the fundamental solution of the first-
order discrete system (1.1). The function Y (z)−1 is called the asymptotic equiva-
lence matrix function; see [3, Section 2.2]. Under the supplementary hypothesis

lim
n−→∞∆n > 0 (1.6)

the function Y (z) allows to define the characteristic spectral functions of the sys-
tem (1.1). We note that when (1.6) is not in force the situation seems to be much
more involved, and leads to degenerate cases. Furthermore, conditions such as
(1.2) and (1.6) seem to be specific of the discrete case; no counterpart of these
conditions is needed in the continuous case.
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Let

lim
n→∞∆n =

(
δ1 0
0 δ2

)
. (1.7)

The function
W (z) = ((Y21 + Y22)(1/z))−1

δ−1
2 ((Y21 + Y22)(1/z))−∗

= ((Y11 + Y12)(1/z))−1
δ−1
1 ((Y11 + Y12)(1/z))−∗

is called the spectral function. The Weyl function is the uniquely defined function
N(z) analytic in the closed unit disk such that N(0) = iIp and

W (z) = Im N(z), |z| = 1.

Associated to N is the reproducing kernel space of functions with reproducing ker-
nel N(z)−N(w)∗

z−w∗ and denoted by L(N). The function W (z) is the spectral function
of the unitary operator U defined in L(N) by

(U − αI)−1f(z) =
f(z)− f(α)

z − α
, |α| �= 1.

See [11].

From (1.5) follows that there exists a C2p×p-valued solution Bn(z) to (1.1) with
the following properties:
(a)

(
Ip −Ip

)
B0(z) = 0, and

(b)
(
0 Ip

)
Bn(z) = Ip + o(n), |z| = 1.

It then holds that (
Ip 0

)
Bn(z) = znS(z) + o(n)

where
S(z) = (Y11(z) + Y12(z))(Y21(z) + Y22(z))−1. (1.8)

The function (1.8) is called the scattering matrix function associated to the discrete
system. The scattering matrix function has the following properties: it is in the
Wiener algebra Wp×p (see the end of the section for the definition), admits a
Wiener–Hopf factorization and is such that

S(z)∗δ1S(z) = δ2, |z| = 1. (1.9)

See [3, Section 2.3]. The inverse scattering problem considered in this paper is
defined as follows: given a function S(z) which admits a Wiener–Hopf factorization
and satisfies moreover the condition (1.9) for some matrices δ1 and δ2, is S(z) the
scattering function of a first-order discrete system?

Some preliminary notation and remarks are needed to define the reflection coeffi-
cient function. First, for

M =
(

M11 M12

M21 M22

)
∈ C2p×2p and X ∈ Cp×p

we define the linear fractional transformation TM (X):

TM (X) = (M11X + M12)(M21X + M22)−1.
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Recall that the semi-group property

TΘ1Θ2(X) = TΘ1(TΘ2(X))

holds when the three matrices TΘ2(X), TΘ1(TΘ2)(X) and TΘ1Θ2(X) are well de-
fined. Next, it follows from (1.2) that the matrices

Cn = ∆1/2
n

(
Ip αn

βn Ip

)∗
∆−1/2

n−1 (1.10)

are J-unitary: C∗
nJCn = J . Moreover, for every n ∈ N the solution Ψn(z) of the

system

Ψn(z) = Ψn−1(z)C∗
n

(
zIp 0
0 Ip

)
, n = 1, 2, . . . and Ψ0(z) = I2p (1.11)

is a matrix-valued function whose entries are polynomials of degree at most n and
which is J-inner:

J −Θ(z)JΘ(z)∗
{
≤ 0, |z| < 1,

= 0, |z| = 1.
(1.12)

The reflection coefficient function is defined to be

R(z) = lim
n→∞TΨn(z)(0).

We proved in [3, Section 2.4] that R(z) belongs to the Wiener algebra Wp×p
+ and

takes strictly contractive values on the unit circle. We also proved in [3, Section
2.4] that

R(z) =
1
z
Y21(z)∗(Y22(z))−∗ =

1
z
(Y11(1/z))−1Y12(1/z), |z| = 1,

and that the reflection coefficient function and the Weyl function are related by
the formula

N(z) = i(Ip − zR(z))(Ip + zR(z))−1. (1.13)

This paper presents the solution of the inverse spectral problem in the rational case.
We also briefly discuss how to recover the system using the scattering function or
the reflection coefficient function. In the paper [8], where we considered the scalar
case, a key role was played by the description of the solutions of an underlying
Nehari problem which are unitary and admit a Wiener–Hopf factorization. The
point of view in the present paper is different. A key tool is a certain uniqueness
result in the factorization of J-inner polynomial functions (see Theorem 2.4).

We would like to mention that the formulas we obtain in Theorems 4.2 and 4.3
(that is, when one is given a minimal realization of the spectral function or a min-
imal realization of a spectral factor, respectively) are very similar to the formulas
which we obtained earlier in the continuous case, in our study of inverse problems
associated to canonical differential expressions with rational spectral data; see in
particular formulas (4.7) and (4.12), which are the counterparts of [6, (3.1) p. 9]
and [6, Theorem 3.5 p. 9], respectively.
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The paper consists of five sections besides the introduction and its outline is as
follows. In the second section we review part of the theory of certain finite di-
mensional reproducing kernel Hilbert spaces (called H(Θ) spaces) which will be
needed in the sequel. The inverse spectral problem is studied in Section 3 and the
inverse scattering problem in Section 4. In the fifth and last section we consider
the inverse problem associated to the reflection coefficient function.

We note that another kind of discrete systems have been studied in [18].

We will denote by D the open unit disk and by T the unit circle. The Wiener
algebra of Fourier series

∑
� z�w� with absolutely summable coefficients:∑

�

|w�| < ∞

will be denoted by W . By W+ (resp. W−) we denote the sub-algebra of elements
of W for which w� = 0 for � < 0 (resp. � > 0). We denote by Wp×p (resp. Wp×p

+ ,
resp.Wp×p

− ) the algebra of matrices with entries in W (resp. in W+, resp. in W−).

Finally, we denote by CJ the space C2p endowed with the indefinite inner product

〈f, g〉CJ = g∗Jf, f, g ∈ C2p. (1.14)

2. Reproducing kernel Hilbert spaces

First recall that a Hilbert space H of Ck-valued functions defined on a set Ω is
called a reproducing kernel Hilbert space if there is a Ck×k-valued function K(z, w)
defined on Ω× Ω and with the following properties:

(i) For every w ∈ Ω and every c ∈ Ck the function z �→ K(z, w)c belongs to H.
(ii) It holds that

〈f(z), K(z, w)c〉H = c∗f(w).
The function K(z, w) is called the reproducing kernel of the space; it is positive
in the sense that for every � ∈ N∗ and every w1, . . . , w� ∈ Ω the block matrix
with ij block entry K(wi, wj) is non-negative. Conversely, to any positive function
corresponds a uniquely defined reproducing kernel Hilbert space with reproducing
kernel the given positive function; see [9], [19], [1].

Finite dimensional reproducing kernel spaces with reproducing kernel of the form

KΘ(z, w) =
J −Θ(z)JΘ(w)∗

1− zw∗

have been studied in [2] and [4]. They correspond to rational functions which are
J-unitary on the unit circle (but they may have singularities on the unit circle). In
this work, a special role is played by the class P (J) of C2p×2p-valued polynomial
functions Θ which are J-inner (see (1.12) for the definition).

For Θ ∈ P (J) the function KΘ(z, w) defined above is positive (in the sense of
reproducing kernels) in C. We denote by H(Θ) the associated reproducing kernel
Hilbert space and gather in the next theorem the main features of these spaces
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which will be used in the sequel. In the statement, deg Θ denotes the McMillan
degree of Θ and H2,J denotes the Krĕın space of pairs of functions

(
f(z)
g(z)

)
with f

and g in the Hardy space Hp
2 and indefinite inner product[(

f(z)
g(z)

)
,

(
f(z)
g(z)

)]
H2,J

=
〈(

f(z)
g(z)

)
, J

(
f(z)
g(z)

)〉
H2p

2

.

Furthermore, R0 denotes the backward shift operator

R0f(z) =
f(z)− f(0)

z
.

Theorem 2.1. Let Θ ∈ P (J).
(i) We have that R0H(Θ) ⊂ H(Θ).
(ii) dim H(Θ) = deg Θ.

(iii) det Θ(z) = cΘzdegΘ for some cΘ ∈ T.

(iv) The space H(Θ) is spanned by the columns of the matrix functions

R�
0Θ(z), � = 1, 2, . . . ,

and in particular the elements of H(Θ) are C2p-valued polynomials.
(v)

H(Θ) = H2,J �ΘH2,J . (2.1)
(vi) The product of any two elements in P (J) is always minimal, and for Θ1 and

Θ2 in P (J) it holds that

H(Θ1Θ2) = H(Θ1)⊕Θ1H(Θ2).

Proof. For the proofs of items (i), (ii) and (iv) and further references and infor-
mation we refer to the papers [2] and [4]. These papers deal with the more general
case of rational functions J-unitary on the unit circle (or the real line). To prove
(iii) we note (see [2]) that Θ is a minimal product of degree one factors in P (J)
and that each one of these elementary factors has determinant equal to z. To prove
(2.1) one checks that the space H2,J�ΘH2,J has reproducing kernel KΘ(z, w). By
uniqueness of the reproducing kernel we have the desired equality. Since (property
(iii))

det Θ1Θ2(z) = cΘ1Θ2z
deg Θ1Θ2

= (det Θ1)(det Θ2)

= cΘ1z
deg Θ1cΘ2z

deg Θ2

= cΘ1cΘ2z
deg Θ1+deg Θ2

we have that
deg Θ1Θ2 = deg Θ1 + deg Θ2.

Thus the product Θ1Θ2 is minimal. Finally from the equality

KΘ1Θ2(z, w) = KΘ1(z, w) + Θ1(z)KΘ2(z, w)Θ1(w)∗
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we see that
H(Θ1Θ2) = H(Θ1) + Θ1H(Θ2).

The sum is direct and orthogonal since the product Θ1Θ2 is minimal, and this
proves (vi). �

In the next theorem we precise the structure of H(Θ) spaces.

Theorem 2.2. Let Θ ∈ P (J). The space H(Θ) has a basis which consists of k ≤ p
chains of the form

f1(z) = u1,

f2(z) = zu1 + u2,

...

fm(z) = zmu1 + zm−1u2 + · · ·+ um,

(2.2)

where u1, . . . , um ∈ C2p.

Proof. The elements of H(Θ) are polynomials (see (iv) of Theorem 2.1) and there-
fore the only eigenvalue of R0 is 0, and the corresponding eigenvectors are vectors
in C2p. Let f1, . . . , fk be the linear independent elements of C2p inH(Θ). The space
spanned by the fj is a strictly positive subspace of H2,J . On constant vectors the
inner product of H2,J coincides with the inner product of CJ (see Definition (1.14))
and so k ≤ p. To conclude we note that each Jordan chain corresponding to an
eigenvector is of the form (2.2). �

In general we can only state that m ≤ deg Θ. Here we are in a more special
situation. The Ψn(z) defined by (1.11) have moreover the following property, which
is important here: deg Ψn = np and the entries of Ψn(z) are scalar polynomials of
degree less or equal to n. Therefore, by Theorem 2.1 the components of the elements
ofH(Ψn) are polynomials of degree less or equal to n−1 and the following theorem
shows that the space H(Ψn) is spanned by p chains of length n.

Theorem 2.3. There exist matrices S0, S1, . . . , Sn−1 such that a basis of H(Ψn) is
given by the columns of F0(z), . . . , , Fn−1(z) where

F0(z) =
(

Ip

S∗
0

)
,

F1(z) = z

(
Ip

S∗
0

)
+
(

0
S∗

1

)
,

...

Fn−1(z) = zn−1

(
Ip

S∗
0

)
+ zn−2

(
0
S∗

1

)
+ · · ·+

(
0

S∗
n−1

)
.

(2.3)
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Proof. By Theorem 2.2, a basis of H(Ψn) is made of k ≤ p chains of the form
(2.2). Since the components of the elements of H(Ψn) are polynomials of degree
less or equal to n− 1, these chains generate a space of dimension less or equal to
kn. On the other hand,

deg Ψn = np = dim H(Ψn).

Therefore, k = p and each chain has length n. The space H(Ψn) contains therefore
p linearly independent vectors f1, f2, . . . , fp ∈ C2p. Set

(
f1 f2 · · · fp

) def.=
(

X1

X2

)
where X1 and X2 are in Cp×p. Since the fj span a strictly positive subspace of
H2,J we have X∗

1X1 > X∗
2X2. Thus X1 is invertible, and we can chose:

F0(z) =
(

Ip

X2X
−1
1

)
∈ H(Ψn).

We set S∗
0 = X2X

−1
1 . The next p elements in a basis of H(Θ) form the columns of

a matrix-function of the form

zF0(z) + V = z

(
Ip

S∗
0

)
+ V, V ∈ C2p×p.

By subtracting a multiple of F0(z) to this function we obtain F1(z). The rest of
the argument is proved by induction in the same way: if we know at rank � that
F�(z) is of the asserted form, then the next p elements in a basis of H(Θ) form a
matrix-function of the form zF�(z) + V . Removing a multiple of F0(z) from this
function we obtain F�+1(z). �

The following uniqueness theorem will be used in the solution of the inverse spec-
tral problem; see the proof of Theorem 4.1:

Theorem 2.4. Let (αn, βn) and (α′
n, β′

n) be two admissible sequences with associated
sequences of diagonal matrices ∆n and ∆′

n respectively, normalized by ∆0 = ∆′
0 =

I2p. Let Cn be given by (1.10) and let C′
n be defined in a similar way, with (α′

n, β′
n)

and ∆′
n. Assume that

C∗
1

(
zIp 0
0 Ip

)
· · ·C∗

m

(
zIp 0
0 Ip

)
U = (C′

1)
∗
(

zIp 0
0 Ip

)
· · · (C′

m)∗
(

zIp 0
0 Ip

)
U ′

def.= Θ(z),

where U and U ′ are J-unitary constants. Then U = U ′ and C� = C′
� for � =

1, . . .m.
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Proof. We denote by the superscript ′ all the quantities related to the C′
n and we

set ∆n = diag (d1,n, d2,n). Equation (1.2) can be rewritten as:

d1,n − αnd2,nα∗
n = d1,n−1, (2.4)

d1,nβ∗
n = αnd2,n (2.5)

d2,n − βnd1,nβ∗
n = d2,n−1. (2.6)

We set

θn(z) = C∗
n

(
zIp 0
0 Ip

)
, (2.7)

so that Θ(z) = θ1(z) · · · θm(z).

By Theorem 2.1 (item (vi)) we have:

H(Θ) = H(θ1)⊕ θ1H(θ2)⊕ θ1θ2H(θ3)⊕ · · ·
= H(θ′1)⊕ θ′1H(θ′2)⊕ θ′1θ

′
2H(θ′3)⊕ · · · .

By Theorem 2.3, the constant functions of H(Θ) span both the spaces H(θ1) and
H(θ′1). Thus,

H(θ1) = H(θ′1).

These two spaces have the same reproducing kernel and we get

Kθ1(z, w) = Kθ′
1
(z, w).

Since

Kθ1(z, w) =
J − C∗

1

(
zw∗Ip 0

0 −Ip

)
C1

1− zw∗

=
J − C∗

1

(
(zw∗ − 1 + 1)Ip 0

0 −Ip

)
C1

1− zw∗

=
J − C∗

1JC1

1− zw∗ + C∗
1

(
Ip 0
0 0

)
C1

=
(

Ip

β1

)
d1,1

(
Ip β∗

1

)
,

(2.8)

we get (
Ip

β1

)
d1,1

(
Ip β∗

1

)
=
(

Ip

β′
1

)
d′1,1

(
Ip (β′

1)
∗) .

It follows that d1,1 = d′1,1 and β1 = β′
1. From the normalization ∆0 = ∆′

0 = I2p

and equations (2.4)–(2.6) it follows that d2,1 = d′2,1 and α1 = α′
1.

By induction we see that

H(θn) = H(θ′n), n = 2, 3, . . ..
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But, in a way similar to (2.8),

Kθn(z, w) =
J − C∗

n

(
zw∗Ip 0

0 −Ip

)
Cn

1− zw∗ = ∆−1/2
n−1

(
Ip

βn

)
d1,n

(
Ip β∗

n

)
∆−1/2

n−1 ,

and it follows from ∆n−1 = ∆′
n−1 (induction hypothesis at rank n−1) that βn = β′

n

and dn,1 = d′n,1. Equations (2.4)–(2.6) imply then that αn = α′
n and dn,2 = d′n,2,

and finally that U = U ′. �

Theorem 2.5. Let X(z) be analytic and contractive in the open unit disk and let
R(z) = lim

n→∞TΨn(z)(X(z)). Let R(z) = R0 + R1z + · · · be the Taylor expansion of

R(z) at the origin. Then, the space H(Ψn) is spanned by the functions (2.3) with
the coefficients R0, R1, . . . , Rn−1.

Proof. Let A0, A1, . . . be matrices such that H(Ψn) is spanned by the columns of
the functions

F0(z) =
(

Ip

A∗
0

)
,

F1(z) = z

(
Ip

A∗
0

)
+
(

0
A∗

1

)
,

...

Fn−1(z) = zn−1

(
Ip

A∗
0

)
+ zn−2

(
0

A∗
1

)
+ · · ·+

(
0

A∗
n−1

)
.

Since H(Ψn) = H2,J �ΨnH2,J (see Theorem 2.1) we have that(
Ip −A0

)
Ψn(0) = 0(

Ip −A0

)
Ψ′

n(0) +
(
0 −A1

)
Ψn(0) = 0

...

(2.9)

The first equation leads to TΨn(z)(0) = A0. Letting n→∞ we have

A0 = R(0) = R0.

The second equation will lead in a similar way to R′(0) = A1. More generally,
equations (2.9) lead to(

Ip −(A0 + A1 + · · ·+ An−1z
n−1)

)
Ψn(z) = O(zn). (2.10)

Set

Ψn(z) =
(

αn(z) βn(z)
γn(z) δn(z)

)
.

Equation (2.10) implies that

βn(z)− (A0 + A1 + · · ·+ An−1z
n−1)δn(z) = O(zn).
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From the J-innerness of Ψn(z) the matrix-function δn(z) is analytic and invertible
in D, with ‖δn(z)−1‖ ≤ 1; see [13]. Hence,

TΨn(z)(0) = (A0 + A1 + · · ·+ An−1z
n−1) + O(zn)

and hence the result. �

3. Realization theory

As is well known a rational function W (z) analytic at the origin can be written in
the form

W (z) = D + zC(I − zA)−1B

where D = W (0) and where A, B and C are matrices of appropriate sizes. The
realization is called minimal when the size of A is minimal; see [10]. Assume
moreover that W (z) is analytic on the unit circle. Then A has no spectrum on the
unit circle and the entries of W (z) are in the Wiener algebra W ; indeed, let P0

denote the Riesz projection corresponding to the spectrum of A outside the closed
unit disk:

P0 = I − 1
2πi

∫
T

(ζI −A)−1dζ.

Then,

W (z) = D + zC(I − zA)−1B

= D + zCP0(I − zA)−1P0B + zC(I − P0)(I − zA)−1(I − P0)B

= D − zCP0A
−1z−1(I − z−1A−1)−1P0B

+ zC(I − P0)(I − zA)−1(I − P0)B

= D −
∞∑

k=0

z−kCP0A
−k−1P0B

+
∞∑

k=0

zk+1C(I − P0)Ak(I − P0)B.

and thus the coefficients rk in the representation W (z) =
∑

Z
zkrk (with |z| = 1)

can be written as

rk =

{
CAk−1(I − P0)B, k > 0,

Dδk0 − CAk−1P0B, k ≤ 0,
(3.1)

so that ∑
Z

‖rk‖ <∞.

The hypotheses of analyticity at the origin and at infinity are restrictive. In fact
any rational function analytic on the unit circle belongs to the Wiener algebra.
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We now review the relevant theory and follow the analysis in [14]. First recall that
any rational function W (z) analytic on the unit circle can be represented as

W (z) = I + C(zG−A)−1B,

where zG − A is invertible on T; see [14, Theorem 3.1 p. 395]. The separating
projection is defined by

P =
1

2πi

∫
T

G(ζG −A)−1dζ. (3.2)

Next the right equivalence operator E and the associated operator Ω are defined
by

E =
1

2πi

∫
T

(1−ζ−1)(ζG−A)−1dζ and Ω =
1

2πi

∫
T

(ζ−ζ−1)(ζG−A)−1. (3.3)

See [14, Equations (2.2)–(2.4) p. 389]. Then, (see [14, p. 398])

rk =

⎧⎪⎨⎪⎩
−CEΩk(I − P )B, k = 1, 2, . . . ,

I − CE(I − P )B, k = 0,

CEΩ−k−1PB, k = −1,−2, . . . .

The block entries of T−1
n are now given as follows. Let A× = A− BC and define

P×, E× and Ω× in a way analog to P, E and Ω, that is:

P× =
1

2πi

∫
T

G(ζG −A×)−1dζ, (3.4)

E× =
1

2πi

∫
T

(1− ζ−1)(ζG−A×)−1dζ, (3.5)

and

Ω× =
1

2πi

∫
T

(ζ − ζ−1)(ζG −A×)−1. (3.6)

Define moreover

Q =
1

2πi

∫
T

(ζG −A)−1dζ, (3.7)

Vn = (I −Q)E×(I − P×)

+ (I −Q)E×(Ω×)n+1P× + QE×(Ω×)n+1(I − P×) + QE×P×,
(3.8)

and

r×k =

⎧⎪⎨⎪⎩
CE×(Ω×)k(I − P×)B, k = 1, 2, . . . , n,

I + CE×(I − P×)B, k = 0,

−CE×(Ω×)−kP×B, k = −1, . . . ,−n,

and

k
(n)
kj = CE×(Ω×)k+1(I − P×)V −1

n (I −Q)E×(Ω×)jP×B

− CE×(Ω×)n−kP×V −1
n QE×(Ω×)n−j(I − P×)B.
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Then, T−1
n =

(
γ

(n)
kj

)
k,j=1,...,n

with

γ
(n)
kj = r×k−j + k

(n)
kj . (3.9)

See [14, Theorem 8.2 p. 422].

4. Inverse spectral problem

We focus on the rational case and consider three cases:
1. The weight function is general: it is rational and strictly positive on T.
2. We assume that the weight function is analytic at the origin and at infinity.

Then we get concrete formulas.
3. We start from a spectral factor.

The uniqueness theorem (Theorem 2.4) is used in the proof of the following theo-
rem.

Theorem 4.1. Let W (z) be a rational function without poles on the unit circle and
which takes strictly positive values there, and which is normalized by

1
2π

∫ 2π

0

W (eit)dt = Ip. (4.1)

Then, W (z) is the spectral function of a uniquely determined first-order discrete
system normalized by ∆0 = I2p. The associated first-order discrete system is com-
puted as follows: let

W (z) = I + C(zG−A)−1B

be a realization of W (z) which is regular on T. Then,

αn = CE× {(Ω×)n(I − P×) + (Ω×)n+1(I − P×)V −1
n (I −Q)E×P×

−P×V −1
n QE×(Ω×)n(I − P×)

}
B

×
{
I + CE×(I − P×)B + CE×Ω×(I − P×)V −1

n E×P×P×B

−CE×(Ω×)nP×V −1
n QE×(Ω×)n(I − P×)B

}−1
,

βn = CE×
{
(Ω×)(n−1)P× + Ω×(I − P×)V −1

n (I −Q)(Ω×)nP×

−P×V −1
n QE×(I − P×)

}
B

×
{
I + CE×(I − P×)B

+ CE×(Ω×)(n+1)(I − P×)V −1
n (I −Q)(Ω×)nP×B

−CE×P×V −1
n QE×(I − P×)B

}−1
,

(4.2)

with associated sequence of diagonal matrices given by

∆n =
(

d1,n 0
0 d2,n

)
(4.3)
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where
d1,n = I + CE×(I − P×)B + CE×(Ω×)(n+1)(I − P×)V −1

n (I −Q)(Ω×)nP×B

− CE×P×V −1
n QE×(I − P×)B,

d2,n = I + CE×(I − P×)B + CE×Ω×(I − P×)V −1
n E×P×P×B

− CE×(Ω×)nP×V −1
n QE×(Ω×)n(I − P×)B

for n = 1, 2, . . .. In these expressions, the quantities P, E, Ω and Q are given by
(3.2), (3.3) and (3.7) respectively and P×, E×, Q× and Vn are given by (3.4), (3.5),
(3.6) and (3.8) respectively.

Proof. We first prove the uniqueness of the associated first-order discrete system.
Fix n > 0. For every q > 0 we have (recall that Ψn is defined by (1.11) and θn by
(2.7))

Ψn+q(z) = Ψn(z)θn+1(z) · · · θn+q(z),
and in particular

R(z) = lim
q→∞ TΨn(z)(Tθn+1(z)···θn+q(z)(0)).

By Montel’s theorem, the limit

Rn(z) = lim
q→∞ Tθn+1(z)···θn+q(z)(0)

exists (via maybe a subsequence). The limit is analytic and contractive in the open
unit disk. Thus

R(z) = TΨn(z)(Rn(z)).
By Theorem 2.5, the space H(Ψn) is built from the first n coefficients of the Taylor
expansion of R(z) at the origin.

Assume that there are two first-order discrete systems (normalized by ∆0 = I2p)
and with same spectral function W (z). By formula (1.13) these two systems have
the same reflection coefficient function R(z). Denoting by a superscript ′ the second
one, we get H(Ψn) = H(Ψ′

n) for every n ≥ 0. By Theorem 2.4 it follows that the
two systems are equal.

We now turn to the existence of such a system. The function W (z) is rational and
has no poles on the unit circle. It belongs therefore to the Wiener algebra Wp×p.
We set W (eit) =

∑
Z

rje
ijt (note that r0 = Ip in view of the normalization (4.1)).

The block matrices Tn are strictly positive and it follows from [12] that the pair

αn = γ
(n)
n0 (γ(n)

00 )−1 and βn = γ
(n)
0n (γ(n)

nn )−1, n = 1, 2, 3 . . . , (4.4)

form an admissible sequence, with associated sequence of diagonal matrices given
by

∆n =

(
γ

(n)
nn 0
0 γ

(n)
00

)
, n = 0, 1, 2, . . .. (4.5)

The normalization (4.1) implies that ∆0 = I2p. We now proceed in a number of
steps:
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STEP 1: The limits limn→∞ γ
(n)
00 and limn→∞ γ

(n)
nn exist and are strictly positive.

Set ∆n = diag (d1,n, d2,n). We have γ
(n)
00 = d1,n and γ

(n)
nn = d2,n. Formula (3.9)

implies that the limits exist. Formulas (2.4)–(2.6) imply that γ
(n)
00 and γ

(n)
nn are

non-decreasing sequences of positive matrices, and so their limits are invertible
since ∆0 > 0.

Alternatively, one can prove STEP 1 as follows: That the first limit exits follows
from the projection method (see [17]). The invertibility of limn→∞ γ

(n)
00 is proved

in [16, p. 123]. The second limit is reduced to the first one by considering W (1/z).
See the end of the proof of Theorem 1.8 in [3] for more information.

Thus (1.6) is in force. From (1.7) we have

lim
n→∞ γ

(n)
00 = δ1 and lim

n→∞ γ(n)
nn = δ2.

STEP 2: Condition (1.3) is in force.

This follows from the explicit formulas (3.9) for γ
(n)
0n and γ

(n)
nn .

As proved in [3] it follows from STEP 2 that the first-order discrete system (1.1)
has a unique solution Xn(z) such that (1.5) holds:

lim
n→∞

(
z−nIp 0

o Ip

)
Xn(z) =

(
Ip 0
0 Ip

)
, |z| = 1.

We set (see [12, p. 80])

An(z) =
n∑

�=0

z�γ
(n)
�0 , Cn(z) =

n∑
�=0

z�γ
(n)
�n ,

A◦
n(z) = 2Ip −

n∑
�=0

p�(z)γ(n)
�0 , C◦

n(z) =
n∑

�=0

p�(z)γ(n)
�n ,

where p�(z) = z�r0 + 2
∑�

s=1 z�−sr∗s .

STEP 3: It holds that
lim

n→∞An(z)∗ = δ2(Y21(z) + Y22(z)),

lim
n→∞ z−nCn(z)∗ = δ1(Y11(z) + Y12(z)), |z| = 1.

(4.6)

Indeed, set

Θn(z) =
(

zCn(z) An(z)
zC◦

n(z) −A◦
n(z)

)
.

We have (see [12, Theorem 13.2 p. 127])

Θn(z)∆−1
n = Θn−1(z)∆−1

n−1

(
Ip αn

βn Ip

)(
zIp 0
0 Ip

)
, n = 1, 2, . . ..
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It follows that the matrix-functions

Xn(z) = ∆−1
n

(
z−1Ip 0

0 Ip

)
Θn(z)∗ = ∆−1

n

(
Cn(z)∗ C◦

n(z)∗

An(z)∗ −A◦
n(z)∗

)
satisfy the recursion

Xn(z) =
(

Ip αn

βn Ip

)∗(
zIp 0
0 Ip

)
Xn−1(z), n = 1, 2, . . ..

Since, as already noticed, ∆0 = I2p, we have:

∆−1
n

(
Cn(z)∗ C◦

n(z)∗

An(z)∗ −A◦
n(z)∗

)(
Ip Ip

Ip −Ip

)
1
2

= Mn(z),

where we recall that Mn(z) is the solution of (1.1) subject to the initial condition
M0(z) = I2p. Hence, with Y (z) defined by (1.4),

Mn(z) = Xn(z)Y (z) = ∆−1
n

(
Cn(z)∗ C◦

n(z)∗

An(z) −A◦
n(z)∗

)(
Ip Ip

Ip −Ip

)
1
2
,

where Xn(z) is the solution to (1.1) subject to the asymptotic (1.5). Recalling
(1.7) we obtain:

lim
n→∞

(
z−nIp 0

0 Ip

)
Xn(z)Y (z)

=
(

δ−1
1 0
0 δ−1

2

)( lim
n→∞ z−nCn(z)∗ lim

n→∞ z−nC◦
n(z)∗

lim
n→∞An(z) − lim

n→∞A◦
n(z)∗

)(
Ip Ip

Ip −Ip

)
1
2
.

Hence,(
δ1 0
0 δ2

)
Y (z)

(
Ip Ip

Ip −Ip

)
=

(
lim

n→∞ z−nCn(z)∗ lim
n→∞ z−nC◦

n(z)∗

lim
n→∞An(z) − lim

n→∞A◦
n(z)∗

)
.

In particular we have (4.6).

STEP 4: W (z) is the spectral function of the first-order discrete system associated
to the pair (4.7).

By [12, Theorem 10.4 p. 116], we have for |z| = 1

W (z) = lim
n→∞An(z)−∗γ(n)

00 An(z)−1

= lim
n→∞Cn(z)−∗γ(n)

nn Cn(z)−1.

and thus, still on the unit circle

W (1/z) = lim
n→∞An(z)−∗γ(n)

00 An(z)−1

= lim
n→∞Cn(z)−∗γ(n)

nn Cn(z)−1.
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Hence, by the preceding two steps,

W (1/z) = (Y21(z) + Y22(z))−1δ−1
1 δ1δ

−1
1 (Y21(z) + Y22(z))−∗

= (Y21(z) + Y22(z))−1δ−1
1 (Y21(z) + Y22(z))−∗

= (Y11(z) + Y12(z))−1δ−1
2 δ2δ

−1
2 (Y11(z) + Y12(z))−∗

= (Y11(z) + Y12(z))−1δ−1
2 (Y11(z) + Y12(z))−∗

and hence the result. �

In [3] we called admissible sequences of the form (4.4)–(4.5) Szegö admissible
sequences.

In the next theorem we assume that the weight function is analytic at the origin
and at infinity. This allows us to use formulas from [15].

Theorem 4.2. Let W (z) be a rational function analytic at infinity and at the origin,
and without poles on the unit circle. Assume that W (eit) > 0 for t ∈ [0, 2π] and
that the normalization (4.1) is in force. Then, W (z) is the spectral function of a
uniquely determined first-order system. The corresponding associated sequence is
obtained as follows: let

W (z) = D + zC(I − zA)−1B

be a minimal realization of W . Then αn and βn are given by

αn = (D − CA−1B)−1CA−1
(
(I − P0)(A×)−n

∣∣
ker P0

)−1

(I − P0)B,

βn = −D−1C
(
P0(A×)n

∣∣
Im P0

)−1

P0A
−1B,

(4.7)

and the associated sequence of diagonals is given by ∆n = diag(d1,n, d2,n) with

d1,n = D−1 + D−1C(A×)nW−1
n+1P0A

−1BD−1,

d2,n = D−1 + D−1CW−1
n+1P0A

−(n+1)(A×)nBD−1,

where P0 denotes the Riesz projection corresponding to the spectrum of A outside
the closed unit disk,

P0 = I − 1
2πi

∫
T

(zI −A)−1dz, (4.8)

and where Wn is given by

Wn(I − P0 + P0A)−n(I − P0 + P0A
×n). (4.9)

The proof is a special case of the previous theorem. Formulas (4.7) have been
proved in our previous paper [3], and are the discrete analogue of [6, (3.1) p. 9],
where the potential associated to a canonical differential expression was computed
in terms of a minimal realization of the spectral function.

We now turn to the third case, where we start from a spectral factor.
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Theorem 4.3. Let g+(z) be a Cp×p-valued rational function analytic and invertible
in the closed unit disk, and at infinity. Let

W (z) = g+(z)g+(1/z∗)∗,

and assume that the normalization (4.1) is in force. Then W (z) is the spectral
function of a first-order discrete system of type (1.1). Let g+(z) = d+zc(I−za)−1b
be a minimal realization of g+(z) and let X and Y be the solutions of the Stein
equations

X − aXa∗ = bb∗ (4.10)
and

Y − a×∗Y a× = (d−1c)∗(d−1c). (4.11)

Assume that a is invertible (that is, W (z) is analytic at the origin and at infinity).
Then the following formulas hold:

αn = (d− ca−1b)d∗ca−1(a×)n(I + X(Y − (a×)∗nY (a×)n))−1(bd∗ + aXc∗),

βn = (d(d∗−b∗a−∗c∗))−1(cX+db∗a−∗)
(
I+(Y −(a×∗)nY (a×)n)X

)−1 (a×∗)nc∗.
(4.12)

The associated sequence of diagonals is given by ∆n = diag (d1,n, d2,n) where

d1,n = (d(d∗ − c∗a−∗b∗))−1

×
(
I + (−c(a×)n(I + X(Y − (a×)∗nY (a×)n))−1X(a×)∗(n+1)

−d∗a−∗c∗(a×)∗(I + (Y − (a×)∗nY (a×)n)X)

×(I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)(n+1)a−∗c∗(d(d∗ − b∗a−∗c∗)−1
)
,

d2,n = (d(d∗ − c∗a−∗b∗))−1

×
(
I − (cX + d∗b∗a−∗)

×(I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)∗

×
(
b(d∗ − b∗a−∗c∗) + ((a×)∗nY (a×)n − Y )a−∗c∗

)
(d(d∗ − c∗a−∗b∗))−1

)
.

Proof. The fact that W (z) is the spectral function of a system (1.1) stems from
Theorem 4.1. We now prove formulas (4.12). In the arguments to obtain a formula
for the Schur coefficients αn and βn in terms of a minimal realization of g+(z) we
make much use of computations from our previous paper [5].

Let g+(z) = d + zc(I − za)−1b be a minimal realization of g+(z). By hypothesis
the matrix a is invertible. Hence, a minimal realization of g+(1/z∗)∗ is given by

g+(1/z∗)∗ = d∗ + b∗(zI − a∗)−1c∗

= d∗ − b∗a−∗c∗ + b∗
(
(zI − a∗)−1 + a−∗) c∗

= d∗ − b∗a−∗c∗ − zb∗(I − a−∗)−1c∗

= d∗ − b∗a−∗c∗ − zb∗a−∗(I − za−∗)−1a−∗c∗,
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and hence the matrices

A =
(

a −bb∗a−∗

0 a−∗

)
, B =

(
b(d∗ − b∗a−∗c∗)

a−∗c∗

)
, C =

(
c −db∗a−∗) , (4.13)

and
D = d(d∗ − b∗a−∗c∗) (4.14)

define a minimal realization W (z) = D+zC(I−zA)−1B of W (z). See [5, Theorem
3.3 p. 155]). Furthermore, the Riesz projection (4.8) is given by

P0 =
(

0 −X
0 I

)
,

where X is the solution of the Stein equation (4.10). We have (see [5, Equation
(3.21) p. 156])

(A×)n =
(

(a×)n 0
Y (a×)n − (a×∗)−nY (a×∗)−n

)
, (4.15)

where Y is the solution to the Stein equation (4.11). Therefore

P0(A×)nP0 =
(

0 X(Y a×n − (a×∗)−nY )X −X(a×∗)−n

0 −(Y a×n − (a×∗)−nY )X + (a×∗)−n

)
,

and hence

(P0(A×)n
∣∣
ImP0

)−1 = (a×∗)n
(
I + (Y − (a×∗)nY a×n)X

)−1
.

We remark that the matrix I + (Y − (a×∗)nY a×n)X is indeed invertible since
X > 0 and since, for every n ≥ 0,

Y − (a×∗)nY a×n ≥ 0.

The formula for βn follows.

To prove the formula for αn we first note that (using (4.15))

(I − P0)(A×)−n(I − P0) =
(

I X
0 0

)(
(a×)−n 0

Y (a×)−n − a×nY (a×)∗n

)(
I X
0 0

)
=
(

(I + X(Y − (a×)∗nY (a×)n)(a×)−n (I + X(Y − (a×)∗nY (a×)n)(a×)−nX
0 0

)
.

Moreover,

D − CA−1B = W (∞) = (d− ca−1b)d∗,

CA−1(I − P0) =
(
ca−1 ca−1X

)
,

and (using the Stein equation (4.10))

(I − P0)B =
(

b(d∗ − b∗a−∗c∗) + Xa−∗c∗

0

)
=
(

bd∗ + aXc∗

0

)
.

The formula for αn follows.
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We now compute d1,n = γ
(n)
nn . Using [15, p. p. 36] we have

γ(n)
nn = D−1(I + C(A×)nW−1

n+1P0A
−(n+1)BD−1),

where A, B, C and D are given by (4.13)–(4.14) and where Wn is defined by (4.9).
In [5, (4.8) p. 164] we proved that

Wn+1P0A
−(n+1) =

(
0 an+1

0 bn+1

)
(4.16)

where

an+1 = −X(I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)∗(n+1),

bn+1 = (I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)∗(n+1).

Using (4.15) we have

(A×)nWn+1P0A
−(n+1) =

(
0 (a×)nan+1

0 hn

)
where

hn = (Y (a×)n − (a×)−∗nY )an+1 + (a×)−∗nbn+1

= (a×)−∗n
{
−((a×)∗nY (a×)n − Y )(I + X(Y − (a×)∗(n+1)Y (a×)(n+1)))−1

×X(a×)∗(n+1)

+ (I + (Y − (a×)∗(n+1)Y (a×)(n+1)X)−1(a×)∗(n+1)
}

= (a×)−∗n
{

(Y − (a×)∗nY (a×)n)(I + X(Y − (a×)∗(n+1)Y (a×)(n+1)))−1X

+(I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1
}

(a×)∗(n+1)

= (a×)−∗

× (I + (Y − (a×)∗nY (a×)n)X)(I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)∗(n+1).

Since
C(A×)nWn+1P0A

−(n+1)B = (c(a×)nan+1 − d∗a−∗c∗hna−∗c∗,

we get the formula for d1,n.

Finally, we compute the formula for d2,n = γ
(n)
00 . By the formula in [15, p. 36] we

now have
γ

(n)
00 = D−1

{
I + CWn+1P0A

−(n+1)(A×)nBD−1
}

.

By (4.16) and [15, p. 36] we have

CWn+1P0A
−(n+1)

=
(
0 −(cX + db∗a−∗)(I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)∗(n+1)

)
.
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Hence, using (4.15) we obtain

CWn+1P0A
−(n+1)(A×)B = −(cX + d∗b∗a−∗)

× (I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)∗

×
(
b(d∗ − b∗a−∗c∗) + ((a×)∗nY (a×)n − Y )a−∗c∗

)
and the formula for γ

(n)
00 follows. �

These formulas are the discrete analogs of the formula given in [6, Theorem 3.5 p.9],
where we computed the potential associated to a canonical differential expression
in terms of a minimal realization of a spectral factor of the spectral function.
Connections with the formulas for Nehari admissible sequences given in [3, Section
1.3] will be explored in a separate publication.

5. Connection with the scattering function

The connection between the scattering function and the spectral function allows to
reconstruct the discrete system from the scattering function by building first the
associated spectral function. We are given two strictly positive matrices δ1 and δ2

in Cp×p, and consider a Cp×p-valued rational function S(z) which admits a spectral
factorization S(z) = S−(z)S+(z) and satisfies the following two conditions:

S(z)∗δ1S(z) = δ2, |z| = 1, (5.1)

and
1
2π

∫ 2π

0

S−(eit)δ−1
1 S−(eit)∗dt = Ip. (5.2)

We also assume that the factors S+(z) and S−(z) are normalized by S+(0) =
S−(∞) = Ip. Note that for a given pair (δ1, δ2) there need not exist associated
functions S(z) with the required properties. For instance, in the scalar case we
necessarily have δ1 = δ2 (see [3]) and then S(z) is unitary on the unit circle.

Using (5.1) we define

S−(1/z)δ−1
1 S−(1/z)−∗ = S+(1/z)δ−1

2 S+(1/z)∗ def.= W (z). (5.3)

By Theorem (4.1) the function W (z) is the spectral function of a uniquely defined
first-order discrete system of the form (1.1) with Szegö admissible sequence defined
by (4.4)–(4.5). We know from the proof of Step 1 of Theorem 4.1 that the limits

lim
n→∞ γ

(n)
00 and lim

n→∞ γ(n)
nn

exist and are strictly positive. For the moment being we denote these limits by k1

and k2. Let Y (z) be defined by (1.4). Then (see Section 1)

W (z) = (Y21 + Y22)(1/z)k−1
2 (Y21 + Y22(1/z))−∗

= (Y11 + Y12)(1/z)k−1
1 (Y11 + Y12(1/z))−∗.

(5.4)
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By uniqueness of the spectral factorizations and comparing (5.3) and (5.4) we have

δ1 = k1,

δ2 = k2,

S−(1/z) = (Y11 + Y12)(1/z),

S+(1/z) = ((Y21 + Y22)(1/z))−1.

Hence, the associated scattering function is equal to

(Y11(z) + Y12(z))(Y21(z) + Y22(z))−1 = S−(z)S+(z) = S(z).

This way, we can reconstruct the system associated to the scattering function using
the spectral function.

Theorem 5.1. Let S(z) be a rational matrix-function which admits a spectral fac-
torization and satisfies conditions (5.1) and (5.2) for some pair of strictly positive
matrices δ1 and δ2. Then S(z) is the scattering function of the first-order discrete
system with spectral function

S−(1/z)δ−1
1 S−(1/z)−∗ = S+(1/z)δ−1

2 S+(1/z)∗.

6. Connection with the reflection coefficient function

Let R ∈ Wp×p
+ be a rational function which is strictly contractive in the closed

unit disk. The function

W (z) = (Ip − zR(z))−1(Ip −R(z)R(z)∗)(Ip − zR(z))−∗, |z| = 1, (6.1)

is strictly positive on the unit circle and is the restriction there of the rational
function

W (z) =
1
2i

(N(z)−N(1/z∗)∗) with N(z) = i(Ip − zR(z))(Ip + zR(z))−1.

Hence W (z) is the spectral function of a first-order discrete system. Since R(z)
defined uniquely W (z) we have:

Theorem 6.1. Let R ∈ Wp×p
+ be a rational function which is strictly contractive in

the closed unit disk. Then it is the reflection coefficient function of the first-order
canonical discrete system (1.1) with associated spectral function (6.1).

Indeed, by Theorem 4.1 the function

W (z) =
1
2i

(N(z)−N(1/z∗)∗), |z| = 1,

is the spectral function of a uniquely defined first-order discrete system and R(z)
is uniquely determined by W (z).
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pages 79–135. Birkhäuser, Basel, 1988.

[13] H. Dym. J–contractive matrix functions, reproducing kernel Hilbert spaces and inter-
polation. Published for the Conference Board of the Mathematical Sciences, Wash-
ington, DC, 1989.

[14] I. Gohberg and M.A. Kaashoek. Block Toeplitz operators with rational symbols. In
I. Gohberg, J.W. Helton, and L. Rodman, editors, Contributions to operator theory



24 D. Alpay and I. Gohberg

and its applications (Mesa, AZ, 1987), volume 35 of Oper. Theory Adv. Appl., pages
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Stability of Dynamical Systems via Semidefinite
Programming

Mihály Bakonyi and Kazumi N. Stovall

Abstract. In this paper, we study stability of nonlinear dynamical systems by

searching for Lyapunov functions of the form Λ(x) =
m∑

i=1

αixi+
1
2

m∑
i=1

λix
2
1, λi >

0, i = 1, . . . , m, respectively xT Ax, where A is a positive definite real matrix.
Our search for Lyapunov functions is based on interior point algorithms for
solving certain positive definite programming problems and is applicable for
non-polynomial systems not considered by similar methods earlier.

Mathematics Subject Classification (2000). 34D20, 34D45, 90C22.

Keywords. Lyapunov function, attractor, semidefinite programming.

1. Introduction

The aim of the paper is to use semidefinite programming methods in the study
of stability of dynamical systems. It is well known that for linear systems x′ =
Bx, a matrix A > 0 such that AB + BT A < 0 defines the Lyapunov function
Λ(x) = xT Ax which implies the stability of the system. A new efficient algorithm
was introduced in [12] to search for Lyapunov functions that are sums of squares.
This method was generalized in [10] and [11]. We claim in this paper a method
which can be applied to even more general systems.

For definitions in the area of dynamical systems we mention [16] as a classical
reference. A compact region Ω in Rn is called an attractor region for a dynamical
system if any trajectory for the system starting outside Ω enters Ω after a finite
time interval T , determined by the initial distance to Ω, and no trajectory starting
in Ω leaves Ω. The existence of an attractor region gives precise information about
the asymptotic behavior of the system. Even if an attractor region exists, it is not
always possible to determine its shape. Research has shown that chaotic behavior
and fractal attractors are common. The study of chaos and fractals are currently
booming research areas, however, we do not want to enter into details here since
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it is not the aim of the present work. Our goal is to study the existence of an
attractor region within a hyperellipsoidal region, possibly of minimal diameter.
That is equivalent to the existence of such a region Ω, such that for each solution
x(t) of the system there exists T > 0 which depends only on ‖x(0)‖ such that
x(t) ∈ Ω for t > T .

We say 0 is the attractor trajectory for a system if for each ε > 0 there exists
T > 0 such that for each solution x(t), ‖x(t)‖ < ε for t > T . T must depend only
on ε and ‖x(0)‖.

In [6], Lyapunov functions of the form

Λ(x) =
m∑

i=1

αixi +
1
2

m∑
i=1

λix
2
1, (1)

λi > 0, i = 1, . . . , m, were considered and it was shown that if λ = (λ1, . . . , λn)T is
a null-vector of a certain matrix determined by a dynamical system of a particular
form, then there exists an attractor region for the system within a hyperellipsoidal
region. Conditions on the sign-pattern of this matrix which guarantee the existence
of an entry-wise positive null-vector were established in [7]. Based on an algorithm
in Section 2, we can decide in polynomial time whether there exists a choice of
Lyapunov function of type (1) which implies the existence of an attractor region.

We also consider Lyapunov functions of the form Λ(x) = xT Ax, where A is a
real n×n positive definite matrix. For a class of dynamical systems, 0 is the attrac-
tor trajectory for the system when tr(ABr) = 0, where Br, r = 1, . . . , m, are some
symmetric matrices determined by the system. The existence of such A is decided
by an algorithm in Section 2. Interior-point methods were previously used (see
[14], [4], and [2]) for finding Lyapunov functions for linear time-variant dynamical
systems, by solving a set of linear inequalities BT

k A + ABk < 0, k = 1, . . . , L, for
A > 0. In [12], a polynomial-time algorithm was developed for polynomial systems
for finding Lyapunov functions that can be represented as sums of squares of poly-
nomials. This method was extended in [10] for certain non-polynomial systems
which can be transformed to equivalent polynomial ones. A review of the latter
results can be found in [11]. The algorithm in this paper can be applied to systems
not covered by [10]. Its implementation is also simpler.

2. Positive Definite Optimization Problems

In this section we present an interior point algorithm derived from an algorithm
in [3]. It will be used in Section 3 for finding Lyapunov functions. For sake of
completeness, we include here the details. We refer the reader to [15] for a survey
on semidefinite programming.
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Let A0, A1, . . . , Am be n × n symmetric matrices. Assume A0 > 0 and that

there is no positive semidefinite matrix of the form
m∑

i=1

xiAi. Consider the set

S= {Q = A0 +
m∑

i=1

xiAi : Q > 0}, which is nonempty and bounded.

Let φ : S → R be defined by φ(Q) = log detQ. It is known ([5], Theorem
7.6.7) that φ is a concave function, and since near the boundary of S, φ approaches
−∞, φ takes on a maximum value at a unique point P0 ∈ S. It is well-known that
P0 is the only element of S which verifies tr(AiP0) = 0 for i = 1, . . . , m (see, e.g.,
[1]). A method for approximating P0 can be found in Section 1.2 of [9] (see also
Section 3.4 of [3] and [1]).

For our applications, we are interested in solving the following feasibility
problem.

Problem 1. “Given the matrices Ai = AT
i ∈ Rn×n, i = 1, . . . , m, determine whether

there exists a positive definite matrix of the form
m∑

i=1

xiAi.”

Problem 1 can be solved adapting an algorithm in [3] to solve:⎧⎪⎪⎨⎪⎪⎩
Minimize µ

µI +
m∑

i=1

xiAi > 0

|xi| < 1.

(2)

If µopt < 0, then there exist |xi| < 1 such that
m∑

i=1

xiAi > −µoptI, thus there

exists a positive definite matrix of the form
m∑

i=1

xiAi. It is easy to see that µopt < 0

is also a necessary condition for the existence of a positive definite matrix of the

form
m∑

i=1

xiAi.

The algorithm to solve the problem works as follows. Initialize with µ(0) = 1
and x(0) = 0 ∈ Rm. Let

µ(k+1) =
1
2
µ(k) − 1

2
λmin(

m∑
i=1

xiAi)

x(k+1) = x∗(µ(k+1))

Here λmin(
m∑

i=1

xiAi) denotes the smallest eigenvalue of
m∑

i=1

xiAi, and x∗(µ(k+1)) is

the vector in Rm which maximizes log det(µ(k+1)I +
m∑

i=1

xiAi) +
m∑

i=1

log(1 − x2
i )

subject to µ(k+1)I +
m∑

i=1

xiAi > 0 and |xi| < 1. For approximating x∗(µ(k+1)) one

can use the algorithm mentioned at the beginning of this section.
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As shown in [3], we have that µ(k) −→ µopt at least geometrically, and
µopt < 0 or µopt = 0 decides whether there is a positive definite matrix of the

form
m∑

i=1

xiAi or not.

The following is the dual of Problem 1.

Problem 2. “Given BT
i = Bi ∈ Rn×n, i = 1, . . . , r, find whether there exists

A ∈ Rn×n, A > 0, such that tr(ABi) = 0, for i = 1, . . . , r.”

Indeed, let AT
i = Ai ∈ Rn×n, i = 1, . . . , m, be a linear basis for {Q = QT ∈

Rn×n : tr(QBi) = 0, i = 1, . . . , r}. Then Problem 2 is equivalent to the existence

of A > 0 of the form A =
m∑

i=1

xiAi.

A particular case of Problem 1 is to determine whether there exists an entry-
wise positive vector that is a linear combination of some given vectors v1, . . . , vm ∈
Rn. The latter is equivalent to the existence of an entry-wise positive vector in
the null-space of a given matrix. As suggested to us by Florian Potra, the latter
problem can be solved in polynomial-time by applying Algorithm 2.1 in [13].

3. Stability of Nonlinear Dynamical Systems

Consider the dynamical system

x′
i(t) = −εixi(t) + gi(x) (3)

where εi > 0, i = 1, . . . , n. Such systems are most commonly studied. We assume
here the existence of a linearly independent set of functions {fl(x)}m

l=1 which span
the set {gi(x)}n

i=1 as well as {xkgi(x) : i, k = 1, . . . , n}. A typical situation for
this is when each gi(x) is a polynomial in x1, x2, . . . , xn. We can thus assume the
system (3) is of the form

x′
i(t) = −εixi(t) +

m∑
l=1

klifl(x) (4)

for i = 1, . . . , n. We are searching in this case for a Lyapunov function (see [6]) of
the form

Λ(x) =
n∑

i=1

αixi +
1
2

n∑
i=1

λix
2
i (5)

where αi and λi > 0 are unknown for i = 1, . . . , n. The level sets of Λ(x) are
hyperellipsoids centered at (−α1

λ1
, . . . ,−αn

λn
). Then (by denoting Λ′(x) = dΛ(x(t))

dt )

Λ′(x) =
n∑

i=1

αix
′
i +

n∑
i=1

λixix
′
i = −

n∑
i=1

εiαixi −
n∑

i=1

εiλix
2
i

+
m∑

l=1

(
n∑

i=1

αikli)fl(x) +
m∑

l=1

(
n∑

i=1

λiklixifl(x)) (6)
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By our assumption we have that

xifl(x) =
m∑

j=1

α
(il)
j fj(x).

Then
m∑

l=1

n∑
i=1

λiklixifl(x) =
m∑

j=1

n∑
i=1

(
m∑

l=1

kliα
(il)
j )λifj(x) =

m∑
j=1

(
n∑

i=1

βjiλi)fj(x),

where βji =
m∑

l=1

kliα
(il)
j for i = 1, . . . , n and j = 1, . . . , m.

We try to find αi and λi > 0 which reduce the last two terms of (6) to 0.
This means that we want to make the coefficient of each fj(x), j = 1, . . . , m, to

vanish, namely that
n∑

i=1

kjiαi +
n∑

i=1

βjiλi = 0 for j = 1, . . . , m.

Let A = [{kji}n,m
i=1,j=1, {βji}n,m

i=1,j=1], which is an m× (2n) matrix and has
(α1, . . . , αn, λ1, . . . , λn)T as a null-vector. Let {v1, . . . , vr} be a linear basis for
kerA and let for t = 1, . . . , r, wt be the vector in Rn which represents the last
n entries of vt. Since we want λi > 0, our problem reduces in finding a vector

λ = (λ1, . . . , λn)T with λi > 0 of the form
r∑

t=1
xtwt, which can be solved using

a particular case of one of the algorithms described in Section 2. If the problem
admits a solution, then we have

Λ′(x) = −
n∑

i=1

εiαixi −
n∑

i=1

εiλix
2
i ,

and Λ′(x) < 0 outside the hyperellipsoid of the equation Λ′(x) = 0. At points
where Λ′(x) < 0, Λ(x) decreases, thus the trajectory gets closer to the point
(−α1

λ1
, . . . ,−αn

λn
). Let c ∈ R be such that Ω = {x ∈ Rn : Λ(x) < c} properly

contains {x ∈ Rn : Λ′(x) ≥ 0}. Then Ω contains an attractor region for the
dynamical system (4).

The best known example of a dynamical system of type (3) which admits an
attractor region is the following one by Lorenz ([8]). This example triggered the
research on attractor regions of the type considered in the present work, which are
also called Lorenz attractors.

Example 1. ⎧⎨⎩ x′
1 = −10x1 + 10x2

x′
2 = −x2 + 28x1 − x1x3

x′
3 = − 8

3x3 + x1x2.
(7)

The simplest solution for which λ1, λ2, λ2 > 0 is α1 = α2 = 0, α3 = −38, λ1 =
λ2 = λ3 = 1. So we can consider

Λ(x) = −38x3 +
1
2
x2

1 +
1
2
x2

2 +
1
2
x2

3,
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for which

Λ′(x) = −10x2
1 − x2

2 −
8
3
(x3 − 19)2 +

2888
3

.

Then Λ′(x) < 0 outside an ellipsoid centered at (0, 0, 19). Let c ∈ R be such that
Ω = {x ∈ R3 : Λ(x) < c} properly contains {x ∈ R3 : Λ′(x) ≥ 0}. Then Ω contains
a Lorenz attractor for the dynamical system (7).

Let Φl, l = 1, . . . , M , be monomials in the variables x1, . . . , xn. Consider the
dynamical system

x′
i(t) = −εixi +

M∑
l=1

kli
∂Φl

∂xi
,

where εi > 0 for i = 1, . . . , n, and {kli} is an M ×n real matrix. These systems are
a slight generalization of the problem considered in [7]. We try to find a Lyapunov

function of type Λ(x) = 1
2

n∑
i=1

λix
2
i , λi > 0, i = 1, . . . , n. Let xi

∂Φl

∂xi
= nliφl (nli is

the power of xi in Φl), and then

Λ′(x) =
n∑

i=1

λixix
′
i = −

n∑
i=1

εiλix
2
i +

n∑
i=1

M∑
l=1

λiklinliΦl(x)

= −
n∑

i=1

εiλix
2
i +

M∑
l=1

(
n∑

i=1

klinliλi)Φl(x).

If A = {klinli}M,n
l=1,i=1, we can search for a null-vector (λ1, . . . , λn)T , λi > 0,

i = 1, . . . , n, of A, using one of the algorithms mentioned in Section 2. For such

a choice of λi, we have Λ′(x) = −
n∑

i=1

εiλix
2
i < 0, implying that 0 is an attractor

trajectory for the system.
For a system of type (4), we consider next the existence of Lyapunov functions

of type

Λ(x) = xT Ax =
n∑

i,j=1

aijxixj ,

where A = {aij}n
i,j=1 is a positive definite real matrix. Then

Λ′(x) =
n∑

i,j=1

aijx
′
ixj +

n∑
i,j=1

aijxix
′
j

=
n∑

i,j=1

aijxj(−εixi +
m∑

l=1

klifl(x)) +
n∑

i,j=1

aijxi(−εjxj +
m∑

l=1

kljfl(x)).
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By our assumption we have that xifl(x) =
m∑

j=1

α
(il)
j fj(x), thus

Λ′(x) = −
n∑

i,j=1

aij(εi + εj)xixj +
n∑

i,j=1

aij

m∑
l=1

kli

m∑
r=1

α(jl)
r fr(x)

+
n∑

i,j=1

aij

m∑
l=1

klj

m∑
r=1

α(il)
r fr(x)

= −
n∑

i,j=1

aij(εi + εj)xixj +
m∑

r=1

(
n∑

i,j=1

aij

m∑
l=1

kliα
(jl)
r )fr(x)

+
m∑

r=1

(
n∑

i,j=1

aij

m∑
l=1

kljα
(il)
r )fr(x).

Let us denote µ
(r)
ij =

m∑
l=1

kliα
(jl)
r and E = diag(ε1, ε2, . . . , εn). Then AE =

{aijεj}n
i,j=1, EA = {εiaij}n

i,j=1. So

Λ′(x) = −xT (AE + EA)x +
m∑

r=1

[
n∑

i,j=1

aij(µ
(r)
ij + µ

(r)
ji )]fr(x).

For r = 1, . . . , m, let Br denote the symmetric matrix {µ(r)
ij + µ

(r)
ji }n

i,j=1, so
n∑

i,j=1

aij(µ
(r)
ij + µ

(r)
ji ) = tr(ABr).

We try to find a matrix A > 0 such that AE + EA > 0 and tr(ABr) = 0 for
r = 1, . . . , m. This would then imply Λ(x) > 0 and Λ′(x) = −xT (AE + EA)x < 0
for x �= 0. As a consequence, 0 is an attractor trajectory for the system (4).

Consider the linear subspace M = {X = XT : tr(AX) = 0} and find a basis
C1, C2, . . . , Cs for M. Let

Fi =
[

Ci 0
0 ECi + CiE

]
,

i = 1, . . . , s. Then our problem is equivalent to the existence of a positive definite
matrix [

A 0
0 B

]
of the form

s∑
i=1

xiFi. If such a matrix exists, it is of the form[
A 0
0 EA + AE

]
,

where A > 0 and EA+AE > 0, and A =
s∑

i=1

xiCi, so tr(ABr) = 0 for r = 1, . . . , m.
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The existence of A can be determined by the algorithm in Section 2 to solve
Problem 1. This represents a new way for finding in polynomial time a sufficient
condition which guarantees 0 is an attractor trajectory for a system of type (4).

Example 2. Consider the dynamical system:⎧⎨⎩ x′
1 = −x1 + x1x2 + 6x2x3 + x1x3

x′
2 = −x2 + x1x2 − 2x2x3 − 3x1x3

x′
3 = −x3 − 3x1x2 − 2x2x3 + x1x3.

By considering a Lyapunov function of the type

Λ(x) = λ1x
2
1 + λ2x

2
2 + λ3x

2
3 + α1x1 + α2x2 + α3x3

we cannot cancel in Λ′(x) all monomials of degree 3 for any λ1, λ2, λ3 > 0.
Consider next Λ(x) = xT Ax, with A > 0. Since E = I, A > 0 automatically

implies AE + EA > 0. The conditions that all monomials of degree three in Λ′(x)
cancel can be written as equations of the form tr(ABr) = 0. By the method in
Section 2 we find

A =

⎡⎣ 2 1 1
1 2 1
1 1 2

⎤⎦ > 0,

for which Λ′(x) = −2xT Ax, implying 0 is an attractor trajectory for the dynamical
system.

Example 3. Consider the dynamical system{
x′ = −x− 1

2y + (x− 2y) sin x
y′ = − 1

2x− y + (2x− y) sinx.

Let B =
[
−1 − 1

2
− 1

2 −1

]
. We search for a Lyapunov function of the form Λ(x, y) =

a11x
2 + 2a12xy + a22y

2, with A =
[

a11 a12

a12 a22

]
> 0. In the expression of Λ′(x, y),

we want all terms containing sinx to cancel, condition equivalent to a11 +2a12 = 0
and a22 + 2a12 = 0. In this case, Λ′(x, y) = xT (AB + BT A)x, and the Lyapunov
condition AB + BT A < 0 is sufficient for the stability of the system. It is clear

that A =
[

2 −1
−1 2

]
, is a proper choice for A for implying that 0 is an attractor

trajectory for the system.

The purpose of Example 3 is to illustrate the method; the matrix A could be
easily determined. For similar systems in more variables, for finding the existence
of a proper matrix A one needs the use of the algorithm in Section 2.
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Ranks of Hadamard Matrices and
Equivalence of Sylvester–Hadamard and
Pseudo-Noise Matrices

Tom Bella, Vadim Olshevsky and Lev Sakhnovich

Abstract. In this paper we obtain several results on the rank properties of
Hadamard matrices (including Sylvester–Hadamard matrices) as well as gen-
eralized Hadamard matrices. These results are used to show that the classes of
(generalized) Sylvester–Hadamard matrices and of (generalized) pseudo-noise
matrices are equivalent, i.e., they can be obtained from each other by means
of row/column permutations.

Mathematics Subject Classification (2000). Primary 15A57, 15A23; Secondary
05B15, 05B20 .

Keywords. Hadamard matrices, generalized Hadamard matrices, pseudo-ran-
dom sequences, pseudo-noise sequences, pseudo-random matrices, pseudo-
noise matrices, rank, equivalence.

1. Ranks of certain matrices related to classical Hadamard
matrices

1.1. Hadamard and exponent Hadamard matrices

The classical n× n Hadamard matrices H(2, n) are defined as those composed of
±1’s and satisfying

H(2, n)H(2, n)T = nIn, (1.1)

that is, their distinct rows are orthogonal. Hadamard matrices are widely used
in communication systems, data compression, error control coding, cryptography,
linear filtering and spectral analysis, see, e.g., [5], [7], and the references therein.
This popularity of Hadamard matrices is explained, among other reasons, by their
simplicity and efficiency in a variety of concrete practical applications. For exam-
ple, one simple way to construct a Hadamard matrix of the order n = 2m is due
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to Sylvester. The method starts with defining a 1× 1 matrix via H(2, 1) = 1, and
proceeds recursively:

H(2, 2n) =
[

H(2, n) H(2, n)
H(2, n) −H(2, n)

]
. (1.2)

It is immediate to see that H(2, 2n) of (1.2) satisfies (1.1). Matrices generated
in this fashion are referred to as Sylvester–Hadamard matrices. In addition to
the Sylvester construction (1.2), there are alternate ways to construct Hadamard
matrices, one of them is due to Paley, see, e.g., [5] and the references therein.

In many applications it is useful to consider matrices over GF (2), so one
typically changes −1’s to 0’s, e.g.,

H(2, 2) =
[

1 1
1 −1

]
−→ H̃(2, 2) =

[
1 1
1 0

]
, (1.3)

or, alternatively, one replaces −1’s by 1’s and 1’s by 0’s, e.g.,

H(2, 2) =
[

1 1
1 −1

]
−→ Ĥ(2, 2) =

[
0 0
0 1

]
. (1.4)

We suggest to refer to matrices Ĥ(2, 2n) and H̃(2, 2n) obtained in this fashion as
exponent Hadamard matrices and complimentary exponent Hadamard matrices,
respectively. (The justification for the above nomenclatures is in that using the
entries of Ĥ(2, 2n) as exponents for −1 one obtains the entries of H(2, n).)

In what follows we will adopt similar notations for any matrix A composed
of ±1’s, and denote by Ã the matrix obtained from A by changing −1’s to 0’s, and
denote by Â the matrix obtained from A by replacing −1’s by 1’s, and 1’s by 0’s.

1.2. General Hadamard matrices and ranks

In order to study the ranks of arbitrary Hadamard matrices we need to establish
the following auxiliary result that applies to row/column scaled H(2, n).

Lemma 1.1. Let

H(2, n) =
[

1 e
eT Hn−1

]
(1.5)

be a Hadamard matrix whose first column and top row contain only 1’s, i.e.,

e =
[

1 · · · 1
]︸ ︷︷ ︸

n−1

.

Let H̃n−1 denote the complimentary exponent matrix of Hn−1 defined in Subsection
1.1. Then

H̃n−1H̃
T
n−1 = tIn−1 + (t− 1)Jn−1, where t =

n

4
, and Jn−1 = eeT . (1.6)

Proof. It follows from (1.5) and the definition (1.1) that

e + eHT
n−1 = 0, Jn−1 + Hn−1H

T
n−1 = nIn−1. (1.7)
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Consider an auxiliary matrix

Bn−1 = Hn−1 + Jn−1, (1.8)

and observe, before proceeding further, that

H̃n−1 =
1
2
Bn−1. (1.9)

In view of (1.7) and (1.8) we have

Bn−1B
T
n−1 = Hn−1H

T
n−1 + Jn−1H

T
n−1 + Hn−1Jn−1 + Jn−1Jn−1

= (nIn−1 − Jn−1)− Jn−1 − Jn−1 + (n− 1)Jn−1 = nIn−1 + (n− 4)Jn−1.
(1.10)

Finally, (1.6) follows from (1.9) and (1.10). �

We are now ready to prove the following result.

Theorem 1.2. Let us partition H(2, n) by singling out its top row and first column:

H(2, n) =
[

h11 r1

c1 Hn−1

]
.

Here h11 is a scalar, and Hn−1 is an (n− 1)× (n− 1) submatrix of H(2, n). Let
H̃n−1 denote the complimentary exponent matrix of Hn−1 defined in Section 1.1.

If 8 divides n, then

rankH̃n−1(mod 2) ≤ n

2
. (1.11)

If 8 does not divide n, then

rankH̃n−1(mod 2) = n− 1. (1.12)

Proof. Without loss of generality we may assume that H(2, n) has the form shown
in (1.5) and that the result in (1.6) holds. Let us consider two cases.

• If 8 divides n, then t = n
4 is even, and (1.6) implies

H̃n−1H̃
T
n−1 = Jn−1(mod 2). (1.13)

If we denote by k = rank H̃n−1(mod 2), then (1.13) implies

(n− 1)− k ≥ k − 1

and (1.11) follows.
• If 8 does not divide n, then t = n

4 is odd, and (1.6) implies

H̃n−1H̃
T
n−1 = tIn−1(mod 2), (1.14)

so that (1.12) follows. �
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1.3. Sylvester–Hadamard matrices, ranks and factorizations

In the previous subsection the result applied to arbitrary Hadamard matrices. Here
we consider special Sylvester–Hadamard matrices. Here is the main result of this
subsection.

Theorem 1.3. Let H(2, 2m) be a Sylvester–Hadamard matrix, i.e., one constructed
via the recipe (1.2). Then

rank Ĥ(2, 2m) = m(mod 2), (1.15)

where Ĥ(2, 2m) denotes the exponent matrix of H(2, 2m) defined in Section 1.1.

The result (1.15) follows from the following lemma.

Lemma 1.4. The Sylvester–Hadamard matrix H(2, 2m) admits the decomposition

Ĥ(2, 2m) = LmLT
m(mod 2), (1.16)

where the rows of the 2m ×m matrix

Lm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0
0 · · · 0 0 1
0 · · · 0 1 0
0 · · · 0 1 1
0 · · · 1 0 0
... · · ·

...
...

...
1 · · · 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
contain all possible binary m-tuples ordered naturally.

Proof. It is easy to see that for m = 1 we have

Ĥ(2, 2) =
[

0 0
0 1

]
=
[

0
1

] [
0 1

]
.

By applying an inductive argument we obtain

Ĥ(2, 2m+1) =

[
Ĥ(2, 2m) Ĥ(2, 2m)
Ĥ(2, 2m) H̃(2, 2m)

]
=

[ −→
0 Lm−→
1 Lm

][ −→
0 T −→

1 T

LT
m LT

m

]
(1.17)

with

−→
0 =

⎡⎢⎢⎢⎣
0
0
...
0

⎤⎥⎥⎥⎦ ,
−→
1 =

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦ .

The relations (1.17) and (1.16) coincide which completes the proof of the lemma.
�
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2. Pseudo-noise matrices

2.1. Linear recurrence relations and shift registers

Let m be a fixed positive integer, and h0, h1, . . . , hm−1 ∈ GF (2). Consider a linear
m-term recurrence relation

ai = ai−1hm−1 + ai−2hm−2 + · · ·+ ai−m+1h1 + ai−mh0 for i ≥ m (2.1)

over GF (2). Observe that the above recurrence relation can be written in a matrix
form:⎡⎢⎢⎢⎢⎢⎢⎢⎣

ai−(m+1)

ai−(m+2)

ai−(m+3)

...
ai−1

ai

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . . 0
0 0 1 0 . . . 0

0 0 0 1
. . .

...
...

...
...

. . . . . . 0
0 0 0 . . . 0 1
h0 h1 h2 . . . hm−2 hm−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ai−(m)

ai−(m+1)

ai−(m+2)

...
ai−2

ai−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.2)

The m-tuple
{ai−m, . . . , ai−2, ai−1, }

is called the state vector corresponding to the time moment i−m. The semi-infinite
sequence

a0, a1, a2, a3, a4, a5, . . . (2.3)

is called an (mth order) linear recurring sequence corresponding to (2.1). Clearly,
the latter is fully determined by the initial state vector {a0, a1, . . . , am−2, am−1}
and the coefficients h0, h1, . . . , hm−1 of (2.1).

In order to define the concept of a pseudo-noise sequence it is useful to asso-
ciate (2.1) with a shift register. As an example, consider a special case of (2.1), a
4-term linear recurrence relation with h0 = 1, h1 = 0, h2 = 0, h3 = 1, and visualize

ai = ai−1 + ai−4 (2.4)

with the help of the following figure:

� � �� � �PN sequence

�

�
�

��

a3 a2 a1 a0

Figure 1. Shift register for (2.4). Time moment “zero”.
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The above figure corresponds to the time moment “zero”, i.e., it is characterized
by the initial state vector

{a0, a1, a2, a3}. (2.5)
The next figure corresponds to the time moment “one”,

� � �� � �PN sequence

�

�
�

��

a4 a3 a2 a1

Figure 2. Shift register for (2.4). Time moment “one”.

and its state vector
{a1, a2, a3, a4} (2.6)

is obtained from the one in (2.5) by shifting entries to the left (a0 disappears),
and computing a4 via (2.4). Figures 1 and 2 graphically express both the shift and
computing a4. That is, a4 of Figure 2 is computed as a3 + a0 of Figure 1.

2.2. Pseudo-noise sequences and matrices

Recall that the semi-infinite sequence in (2.3) is fully determined by the initial
state vector {a0, a1, . . . , am−2, am−1} and the coefficients h0, h1, . . . , hm−1 of (2.1).
Indeed, the rule (2.1) maps the state vectors to the next ones, i.e.,⎡⎢⎢⎢⎢⎢⎢⎢⎣

am−1

am−2

...
a2

a1

a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

am

am−1

...
a3

a2

a1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

am+1

am

...
a4

a3

a2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−→

Since all the elements {ai} belong to GF (2), none of the recurrence relations of
the form (2.1) can generate more than 2m − 1 different state vectors (we exclude
the trivial zero initial state vector). It follows that the sequence in (2.3) has to
be periodic with the period not exceeding 2m − 1 (of course, there are coefficients
h0, h1, . . . , hm−1 of (2.1) for which any sequence will have a period smaller that
2m − 1).

If the sequence (2.3) has the maximal possible period 2m−1, then it is called a
pseudo-noise sequence, see, e.g., [7]. Pseudo-noise sequences are useful in a number
of applications, see, e.g., [4], [3].
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A pseudo-noise matrix T (2, n) with n = 2m is defined (see, e.g., [7]) as an
n× n matrix of the form

T (2, n) =

⎡⎢⎢⎢⎣
0 0 . . . 0
0
... Ť
0

⎤⎥⎥⎥⎦ (2.7)

where Ť is a circulant Hankel matrix whose top row is a 1 × (2m − 1) array that
is a period of the pseudo-noise sequence, and whose first m entries coincide with
the initial state.

Example. Let us again consider the 4-term recurrent relations (2.4) with with
h0 = 1, h1 = 0, h2 = 0, h3 = 1 and the initial state[

a0 a1 a2 a3

]
=
[

1 0 0 0
]
.

This choice gives rise to the pseudo-noise sequence

100011110101100︸ ︷︷ ︸
period 15 = 23 − 1

100011110101100︸ ︷︷ ︸
period 15

100011110101100︸ ︷︷ ︸
period 15

. . . . . .

and the 15× 15 matrix Ť of (2.7) is given by

Ť =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100011110101100
000111101011001
001111010110010
011110101100100
111101011001000
111010110010001
110101100100011
101011001000111
010110010001111
101100100011110
011001000111101
110010001111010
100100011110101
001000111101011
010001111010110

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2.3. Equivalence of pseudo-noise and Sylvester–Hadamard exponent matrices

In order to establish the equivalence of the two classes of matrices we will need
the following counterpart of Theorem 1.3.

Lemma 2.1. For n = 2m, the rank of any n× n pseudo-noise matrix T is m.
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Proof. This follows from the immediate observation that the rows of the matrix

Ť =

⎡⎢⎢⎢⎣
a0

a1

...
a2m−2

⎤⎥⎥⎥⎦
satisfy the m-term recurrence relations

ai = ai−1hm−1 + ai−2hm−2 + · · ·+ ai−m+1h1 + ai−mh0 (2.8)

(of the form (2.1)), and hence they are linearly dependent. �

The following theorem implies that the Sylvester–Hadamard matrices and
Pseudo-noise matrices are equivalent, i.e., they can be obtained from each other
via row/column permutations.

Theorem 2.2. Let H(2, 2m) be the Sylvester–Hadamard matrix, and let T (2, 2m)
be a 2m × 2m pseudo-noise matrix. Then H(2, 2m) is equivalent to T (2, 2m); i.e.,
there exist permutation matrices P1 and P2 such that H(2, 2m) = P1T (2, 2m)P2.

Proof. Recall that the matrix H(2, 2m) admits a factorization (1.16) into the prod-
uct of a 2m ×m matrix Lm and a m× 2m matrix LT

m, each of which contains all
possible binary m-tuples as rows/columns.

Secondly, by Lemma 2.1, T (2, 2m) also has a similar factorization T = MR
where M is a 2m×m matrix, and R is an m× 2m matrix. Further, the rows of M
are all distinct and hence they must contain all possible binary m-tuples, and the
same is true of the columns of R.

Hence these factorizations of H(2, 2m) and of T (2, 2m) differ only by the
order in which the rows/columns appear, and this completes the proof. �

Theorem 2.2 was numerically checked to be valid for n = 8 and n = 16 in [6].

3. Generalized Hadamard matrices, ranks and factorizations

An n×n matrix H(q, n) is called a generalized Hadamard matrix [1] if its elements
coincide with one of the numbers

εk = exp
(

2πi

q
k

)
, 0 ≤ k ≤ q − 1, (3.1)

and it satisfies
H(q, n)H(q, n)∗ = nIn, (3.2)

where ∗ denotes the complex conjugate transposed. Clearly, in the case q = 2, the
generalized Hadamard matrices H(2, n) reduce to the classic Hadamard matrices
H(2, n).

Often we will be concerned with a matrix that contains not the entries εk of
H(q, n), but the values k from (3.1) corresponding to each entry. Specifically (as
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in Section 1.1), for a generalized Hadamard matrix H(q, n) = [hij ] we define its
exponent generalized Hadamard matrix Ĥ(q, n) = [ĥij ] such that hij = εĥij .

We will call a matrix H(q, n) normalized if all the elements of the first row
and first column are ε0 = 1. Without loss of generality, we will assume that all
matrices henceforth are normalized.

The Sylvester method can be generalized to the generalized Hadamard ma-
trices with a FFT-like construction:

Proposition 3.1. Let H(q, n) be a generalized Hadamard matrix. Then the matrix
given by

H(q, qn) =

⎡⎢⎢⎢⎢⎢⎣
H(q, n) H(q, n) H(q, n) . . . H(q, n)
H(q, n) εH(q, n) ε2H(q, n) . . . εq−1H(q, n)
H(q, n) ε2H(q, n) ε4H(q, n) . . . ε2(q−1)H(q, n)

...
...

...
. . .

...
H(q, n) εq−1H(q, n) ε2(q−1)H(q, n) . . . ε(q−1)2H(q, n)

⎤⎥⎥⎥⎥⎥⎦
(3.3)

is also a generalized Hadamard matrix.

As with the Sylvester method for classical Hadamard matrices, the previous
proposition as well as the initial generalized Hadamard matrix (which is just the
DFT matrix)

H(q, q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 . . . 1
1 ε ε2 ε3 . . . εq−1

1 ε2 ε4 ε6 . . . ε2(q−1)

1 ε3 ε6 ε9 . . . ε3(q−1)

...
...

...
...

. . .
...

1 εq−1 ε2(q−1) ε2(q−1) . . . ε(q−1)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.4)

allows one to construct special generalized Hadamard matrices H(q, qm), which
we will call generalized Sylvester–Hadamard matrices.

The following result is a generalization of Theorem 1.3.

Theorem 3.2. Let H(q, qm) be a generalized Sylvester–Hadamard matrix. The rank
of its exponent matrix Ĥ(q, qm) is m(mod q).

This theorem follows from the following factorization result.

Theorem 3.3. Let Ĥ(q, qm) be the exponent matrix corresponding to the generalized
Sylvester–Hadamard matrix H(q, qm). Then Ĥ(q, qm) admits the decomposition

Ĥ(q, qm) = LmLT
m (mod q) (3.5)

where Lm is a qm × q matrix with elements from {0, 1, . . . , q − 1}. Further, the
rows of Lm contain all possible q-ary m-tuples ordered naturally.
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Proof. The proof is by induction on m. Letting m = 1, we have

Ĥ(q, q) = L1L
T
1 (mod q) (3.6)

with
LT

1 =
[

0 1 2 . . . q − 1
]

(3.7)

which by construction contains all q-ary numbers as columns.
Proceeding inductively we see that

Ĥ(q, qm) = LmLT
m(mod q)

implies

Ĥ(q, qm+1) =

⎡⎢⎢⎢⎣
0m Lm

1m Lm

...
...

(q − 1)m Lm

⎤⎥⎥⎥⎦
[

0T
m 1T

m . . . (q − 1)T
m

LT
m LT

m . . . LT
m

]
(3.8)

modulo q, where we note that

rT
m =

[
r r . . . r

]
(3.9)

which are of size 1×m.
The fact that Lm+1 contains all possible q-ary (m + 1)-tuples as columns is

clear from the fact that all possible q-ary m-tuples are present in the columns of
Lm by hypothesis, and Lm appears once beneath each of 0m, 1m, . . . , (q − 1)m.
This completes the proof. �

4. Generalized pseudo-noise matrices

In this section we generalize the results of Section 2 from GF (2) to GF (q).
Again, for a positive integer m, and h0, h1, . . . , hm−1 ∈ GF (q) we define an

(mth order) linear recurring sequence

a0, a1, a2, . . .

via

ai = ai−1hm−1 + ai−2hm−2 + · · ·+ ai−m+1h1 + ai−mh0 for i ≥ m. (4.1)

As in Section 2, it is easy to see that every mth order linear recurring sequence
is periodic with period at least r ≤ qm−1. A pseudo-noise sequence is an mth order
linear recurring sequence with the maximal possible period qm − 1. Furthermore,
a pseudo-noise matrix T (q, qm) is an qm × qm matrix of the form

T (q, qm) =

⎡⎢⎢⎢⎣
0 0 . . . 0
0
... Ť
0

⎤⎥⎥⎥⎦ (4.2)
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where Ť is a circulant Hankel matrix with top row a pseudo-noise sequence[
a0 a1 · · · a2m−2

]
.

The following result is a generalization of Lemma 2.1.

Lemma 4.1. The rank of any qm × qm pseudo-noise matrix T (q, qm) is m.

Proof. This follows from the immediate observation that the rows of the matrix

Ť =

⎡⎢⎢⎢⎣
a0

a1

...
a2m−2

⎤⎥⎥⎥⎦
satisfy the m-term recurrence relations

ai = ai−1hm−1 + ai−2hm−2 + · · ·+ ai−m+1h1 + ai−mh0

(of the form (4.1)), and hence they are linearly dependent. �

The above lemma implies the following result.

Theorem 4.2. The qm×qm pseudo-noise matrix T (q, qm) admits the decomposition

T (q, qm) = MR, (4.3)

where M is a qm ×m matrix, and R is an m × qm matrix. Further, the rows of
M are all distinct and contain all possible q-ary m-tuples, and the same is true of
the columns of R.

Proof. The factorization (4.3) exists by Lemma 4.1. By the definition, the rows of
T (q, qm) are distinct, and therefore so are the rows of M . Since M is over GF (q)
with size qm×m, we conclude that M must contain all possible q-ary m-tuples as
rows.

Similarly, the columns of R are also distinct, and since R is also over GF (q),
we have that R contains all possible m-tuples as columns, which completes the
proof. �

The following theorem implies that the generalized Sylvester–Hadamard ma-
trices and generalized pseudo-noise matrices are equivalent, i.e., they can be ob-
tained from each other via row/column permutations.

Theorem 4.3. Let H(q, qm) be a qm× qm generalized Sylvester–Hadamard matrix,
and let T (q, qm) be a qm × qm pseudo-noise matrix where q is prime. Then the
exponent matrix Ĥ(q, qm) is equivalent to T (q, qm); i.e., there exist permutation
matrices P1 and P2 such that Ĥ(q, qm) = P1T (q, qm)P2.

Proof. By Theorem 3.3, the exponent matrix Ĥ(q, qm) has a factorization into
the product of a qm ×m matrix and an m × qm matrix, each of which contains
all possible q-ary m-tuples as rows/columns. By Theorem 4.2, T (q, qm) also has
a factorization into the product of a qm ×m matrix and a m× qm matrix which
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contain all possible q-ary m-tuples as rows/columns. Thus the factorizations differ
only by the order in which the rows/columns appear, and this completes the proof.

�
Theorem 4.3 was announced in [2].

5. Conclusion

Several results for the ranks of generalized Hadamard matrices, Sylvester–Ha-
damard matrices, their exponent matrices and their generalizations were estab-
lished. These rank properties were used to demonstrate that the two classes of
matrices, those built from generalized pseudo-noise sequences, and the generalized
Hadamard matrices are equivalent up to permutations of the rows and columns.
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Image of a Jacobi Field

Yurij M. Berezansky and Artem D. Pulemyotov

Abstract. Consider the two Hilbert spaces H− and T−. Let K+ : H− → T−
be a bounded operator. Consider a measure ρ on H−. Denote by ρK the
image of the measure ρ under K+. This paper aims to study the measure ρK

assuming ρ to be the spectral measure of a Jacobi field. We present a family
of operators whose spectral measure equals ρK . We state an analogue of the
Wiener-Itô decomposition for ρK . Finally, we illustrate our constructions by
offering a few examples and exploring a relatively transparent special case.

Mathematics Subject Classification (2000). 28C20, 60G20, 60H40, 47B36.

Keywords. Image measure; Jacobi field; spectral measure; Wiener-Itô decom-
position; Lévy noise measure.

1. Introduction

Consider a real separable Hilbert space H and a rigging

H− ⊃ H ⊃ H+

with the pairing 〈·, ·〉H . We assume the embedding H+ ↪→ H to be a Hilbert-
Schmidt operator. Consider another real separable Hilbert space T and a rigging

T− ⊃ T ⊃ T+

with the pairing 〈·, ·〉T . Given a bounded operator K : T+ → H+, define the
operator K+ : H− → T− via the formula

〈K+ξ, f〉T = 〈ξ, Kf〉H , ξ ∈ H−, f ∈ T+.

Let ρ be a Borel probability measure on the space H−. We denote by ρK

the image of the measure ρ under the mapping K+. This paper aims to study
the measure ρK assuming ρ to be the spectral measure of a Jacobi field J =
(J̃(φ))φ∈H+ . We base ourselves upon the papers [9] and [13] dedicated to the same
problem.
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By definition, a Jacobi field J = (J̃(φ))φ∈H+ is a family of commuting self-
adjoint three-diagonal operators J̃(φ) acting in the Fock space

F(H) =
∞⊕

n=0

Fn(H), Fn(H) = H⊗̂n
C

(we suppose H⊗̂0
C

= C). The operators J̃(φ) are assumed to depend on the indexing
parameter φ ∈ H+ linearly and continuously. In Section 2 of the present paper, we
adduce the definition and the basic spectral theory of a Jacobi field. More details
can be found in, e.g., [1], [2], [3], and [4]. Remark that the concept of a Jacobi field
is relatively new, therefore the definitions given in different papers may differ in
minor details.

Jacobi fields are actively used in non-Gaussian white noise analysis and theory
of stochastic processes, see [7], [22], [2], [4], [5], [19], [11], [8], [12], [23], [24], [25],
and [28]. In the case of a finite-dimensional H , the theory of Jacobi fields is closely
related to some results in [15], [16], and [14].

The most principal examples of spectral measures of Jacobi fields are the
Gaussian measure and the Poisson measure. The Jacobi field with the Gaussian
spectral measure is the classical free field in quantum field theory, see, e.g., [6], [7],
[22], [2], and [3]. The Jacobi field with the Poisson spectral measure is the so-called
Poisson field, see, e.g., [22], [2], [3], and [5]. De facto, it has been independently
discovered in [17] and [30]. Section 2 of the present paper contains the rigorous
definitions of the classical free field and the Poisson field.

For other examples of spectral measures of Jacobi fields, see [2] and [4].
In Section 3 of the present paper, for a given operator K and a given Jacobi

field J , we construct a Fock-type space

Fext(T+, K) =
∞⊕

n=0

Fext
n (T+, K)

and a family JK = (J̃K(f))f∈T+ of operators in Fext(T+, K) pursuing the three
following goals:

• To show that ρK is the spectral measure of the family JK .
• To show that the Fourier transform corresponding to the generalized joint

eigenvector expansion of JK coincides with the generalized Wiener-Itô-Segal
transform associated with ρK .

• To obtain an analogue of the Wiener-Itô orthogonal decomposition for ρK

employing the generalized Wiener-Itô-Segal transform associated with ρK .

A detailed description of the classical concept of the Wiener-Itô decomposition can
be found in, e.g., [6] or [18]. Once again we emphasize that the space Fext(T+, K)
depends on the Jacobi field J as well as on T+ and K. We use the shorter notation
Fext(T+, K) instead of Fext(T+, K, J) for the sake of simplicity.

The Wiener-Itô-Segal transform I corresponding to the Gaussian measure
γ on H− is a unitary operator acting from F(H) to L2(H−, dγ). It takes the
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orthogonal sum
⊕n

j=0 Fj(H) to the set P̃n of all ordinary polynomials on H−
with their degree less than or equal to n. The unitarity of I implies

L2(H−, dγ) =
∞⊕

n=0

(
P̃n � P̃n−1

)
=

∞⊕
n=0

I(Fn(H))

(we suppose P̃−1 = {0}). This formula constitutes the Wiener-Itô orthogonal de-
composition for the Gaussian measure. It is a powerful technical tool for carrying
out the calculations in the space L2(H−, dγ). Remark that analogous results are
possible to obtain considering the Poisson measure instead of the Gaussian mea-
sure γ.

The Fourier transform corresponding to the generalized joint eigenvector ex-
pansion of the classical free field coincides with the Wiener-Itô-Segal transform I.
An analogous result is possible to obtain for the Poisson field. These facts give
the basis for investigating the concept of the Wiener-Itô decomposition from the
viewpoint of spectral theory of Jacobi fields.

The operator I can be represented as a sum of operators of multiple stochas-
tic integration. An analogous result is possible to obtain considering the Poisson
measure instead of the Gaussian measure γ.

Our generalization of the classical picture is as follows. One may introduce
the generalized Wiener-Itô-Segal transform IK associated with the measure ρK

as an operator between F(T+) and L2(T−, dρK). It takes
⊕n

j=0 Fj(T+) to the
set Qn of all continuous polynomials on T− with their degree less than or equal
to n. We construct the space Fext(T+, K) so that IK could be extended to a
unitary operator acting from Fext(T+, K) to L2(T−, dρK). The orthogonal com-
ponent Fext

n (T+, K) has to be defined as the completion of Fn(T+) with respect
to a new scalar product (·, ·)Fext

n (T+,K). Basically, the problem of constructing the
space Fext(T+, K) consists in identifying this scalar product explicitly.

The unitarity of IK implies

L2(T−, dρK) =
∞⊕

n=0

(
Q̃n � Q̃n−1

)
=

∞⊕
n=0

IK(Fext
n (T+, K))

(the notation Q̃n stands for the closure of Qn and we suppose Q̃−1 = {0}). This
formula constitutes an analogue of the Wiener-Itô orthogonal decomposition for
the measure ρK . It discovers the Fock-type structure of the space L2(T−, dρK) and
enables one to carry out the calculations in L2(T−, dρK).

As mentioned above, the Wiener-Itô-Segal transform I can be represented as
a sum of operators of multiple stochastic integration. Presumably, an analogous
representation is possible to obtain for the generalized Wiener-Itô-Segal trans-
form IK . However, we do not concern ourselves with this problem in the present
paper.

We illustrate our abstract constructions with a few concrete examples. Among
others, we consider the case where K is the operator of multiplication by a function
of a new independent variable and J is the Poisson field. Then ρK appears to
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be a Lévy noise measure. Theorem 3.1 and Theorem 3.2 of the present paper
explain the Fock-type structure of L2(T−, dρK) in this case. Theorem 3.2 shows
that Fext(T+, K) is similar to the extended Fock space investigated in [23]. A
special form of this space has been introduced in [20] in the framework of Gamma
white noise analysis. Its further study has been carried out in [10], [19], [11],
and [12], see also [24] and [28].

A family of operators with a Lévy noise spectral measure has been con-
structed in [8], see also [23]. The case of the Gamma measure was studied in [19].
An analogue of the Wiener-Itô decomposition for a Lévy noise measure has been
obtained in [23], see also [21], [26], [29], and [31]. The case of the Gamma measure
was studied in [20], [11], and [12]. Remark that the works [26], [29], [23], and [31]
(respectively, [11] and [12]) represent the generalized Wiener-Itô-Segal transform
associated with a Lévy noise measure (respectively, the Gamma measure) as a sum
of operators of stochastic integration. Once again we emphasize that the present
paper does not attempt to obtain an analogous representation for the generalized
Wiener-Itô-Segal transform associated with the measure ρK in the general case.

Our abstract considerations become much more transparent when the range
of the operator K is dense in H+. We explore this situation in Section 4 of the
present paper providing the reduction of the general construction along with three
examples. In particular, we study a Gaussian measure with a non-trivial correlation
operator. Relevant results can be found in [9].

Remark that the riggings we consider in this paper are all quasinuclear. One
may consider nuclear riggings instead.

2. Commutative Jacobi Fields

This section contains the definition, the basic spectral theory, and two examples
of Jacobi fields.

Let H be a real separable Hilbert space. Denote by HC the complexification
of H . Let ⊗̂ stand for the symmetric tensor product. Consider the symmetric Fock
space

F(H) =
∞⊕

n=0

Fn(H), Fn(H) = H⊗̂n
C

(we suppose H⊗̂0
C

= C). This space consists of the sequences Φ = (Φn)∞n=0, Φn ∈
Fn(H). In what follows, we identify Φn ∈ Fn(H) with (0, . . . , 0, Φn, 0, 0, . . .) ∈
F(H) (Φn standing at the nth position).

The finite vectors Φ = (Φ1, . . . ,Φn, 0, 0, . . .) ∈ F(H) form a linear topological
space Ffin(H) ⊂ F(H). The convergence in Ffin(H) is equivalent to the uniform
finiteness and coordinatewise convergence. The vector Ω = (1, 0, 0, . . .) ∈ Ffin(H)
is called vacuum.
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Let

H− ⊃ H ⊃ H+ (2.1)

be a rigging of H with real separable Hilbert spaces H+ and H− = (H+)′ (here-
after, X ′ denotes the dual of the space X). We suppose the embedding H+ ↪→ H
to be a Hilbert-Schmidt operator. The pairing in (2.1) can be extended naturally
to a pairing between Fn(H+) and Fn(H−). The latter can be extended to a pairing
between Ffin(H+) and (Ffin(H+))′. In what follows, we use the notation 〈·, ·〉H for
all of these pairings. Note that (Ffin(H+))′ coincides with the direct product of
the spaces Fn(H−), n ∈ Z+.

Throughout the paper, PrX F denotes the projection of a vector F onto a
subspace X .

2.1. The definition and the spectral theory of a Jacobi field

In the Fock space F(H), consider a family J = (J (φ))φ∈H+ of operator-valued
Jacobi matrices

J (φ) =

⎛⎜⎜⎜⎝
b0(φ) a∗

0(φ) 0 0 0 · · ·
a0(φ) b1(φ) a∗

1(φ) 0 0 · · ·
0 a1(φ) b2(φ) a∗

2(φ) 0 · · ·
...

...
...

...
...

. . .

⎞⎟⎟⎟⎠
with the entries

an(φ) : Fn(H) → Fn+1(H),

bn(φ) = (bn(φ))∗ : Fn(H) → Fn(H),

a∗
n(φ) = (an(φ))∗ : Fn+1(H) → Fn(H),

φ ∈ H+, n ∈ Z+ = 0, 1, . . . .

Each matrix J (φ) gives rise to a Hermitian operator J(φ) in the space F(H) with
its domain Dom(J(φ)) = Ffin(H+).

Consider the following assumptions.
1. The operators an(φ) and bn(φ), φ ∈ H+, n ∈ Z+, are bounded and real (i.e.,

they take real vectors to real ones).
2. (Smoothness) The space Ffin(H+) is invariant with respect to an(φ), bn(φ),

and a∗
n(φ).

3. The operators J(φ), φ ∈ H+, are essentially selfadjoint and their closures
J̃(φ) are strongly commuting.

4. The dependence of the entries an(φ), bn(φ), and a∗
n(φ) on the parameter φ

is linear and weakly continuous.
5. (Regularity) The linear operators Vn : Fn(H+) →

⊕n
j=0 Fj(H+) defined by

the equalities

V0 = IdC, Vn(φ1 ⊗̂ · · · ⊗̂ φn) = J(φ1) . . . J(φn)Ω,

φ1, . . . , φn ∈ H+, n ∈ N,
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are continuous. Furthermore, the operators

Fn(H+) � Fn �→ Vn,nFn = PrFn(H+) VnFn ∈ Fn(H+), n ∈ Z+,

are invertible. Remark that Vn play an essential role in the constructions of
Section 3.

The family J = (J̃(φ))φ∈H+ is called a (commutative) Jacobi field if As-
sumptions 1–5 are satisfied (recall that J̃(φ) stands for the closure of the operator
J(φ)). For a more rigorous formulation of this definition, see, e.g., [4]. Once again
we should emphasize that the operators J̃(φ) act in the Fock space F(H).

One can apply the projection spectral theorem, (see [6] and [27]) to the field
J = (J̃(φ))φ∈H+ . We only adduce the result of such an application here. Proofs
can be found in [2].

Given n ∈ Z+, let Pn stand for the set of all continuous polynomials

H− � ξ �→
n∑

j=0

〈ξ⊗j , aj〉H ∈ C, aj ∈ Fj(H+)

(we suppose ξ⊗0 = 1). The set P =
⋃∞

n=0 Pn is a dense subset of L2(H−, dρ). The
closure of Pn in L2(H−, dρ) is the set of ordinary polynomials. It will be denoted
by P̃n.

Theorem 2.1. There exist a vector-valued function H− � ξ �→ P (ξ) ∈ (Ffin(H+))′

and a Borel probability measure ρ on the space H− (the spectral measure) such
that the following statements hold:

• For every ξ ∈ H−, the vector P (ξ) ∈ (Ffin(H+))′ is a generalized joint eigen-
vector of J with eigenvalue ξ, i.e.,

〈P (ξ), J̃(φ)Φ〉H = 〈ξ, φ〉H〈P (ξ), Φ〉H , φ ∈ H+, Φ ∈ Ffin(H+).

• The Fourier transform

Ffin(H+) � Φ �→ IΦ = 〈Φ, P (·)〉H ∈ L2(H−, dρ)

can be extended to a unitary operator acting from F(H) to L2(H−, dρ). We
preserve the notation I for this operator.

• The Fourier transform I satisfies the formula

IΦn = PrP̃n�P̃n−1
〈V −1

n,nΦn, ·⊗n〉H , Φn ∈ Fn(H+), n ∈ Z+,

(we suppose P−1 = {0}).

Corollary 2.1. The equality

L2(H−, dρ) =
∞⊕

n=0

(
P̃n � P̃n−1

)
=

∞⊕
n=0

I(Fn(H+))

holds true.
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Along with the spectral measure ρ and the Fourier transform I introduced in
Theorem 2.1, our further considerations will involve the characteristic functional

ρ̂(φ) =
∫

H−
ei〈ξ,φ〉H dρ(ξ), φ ∈ H+,

of the measure ρ.

2.2. Two principal examples of Jacobi fields

In this paper, we will mostly deal with the classical free field JCF = (J̃CF (φ))φ∈H+

and the Poisson field JP = (J̃P (φ))φ∈H+ .
Consider the classical creation and annihilation operators

J+(φ)Fn =
√

n + 1φ ⊗̂ Fn,

J−(φ) = (J+(φ))∗, φ ∈ H+, Fn ∈ Fn(H), n ∈ Z+,

in the space F(H). The classical free field is defined for an arbitrary rigging (2.1)
by the formula

JCF (φ) = J+(φ) + J−(φ), φ ∈ H+.

The corresponding spectral measure is the standard Gaussian measure γ on H−.
Its characteristic functional is given by the formula

γ̂(φ) = exp
(
−1

2
‖φ‖2H

)
, φ ∈ H+.

The definition of the Poisson field is slightly more complicated. Namely, de-
manding that the space H in (2.1) equal L2(Rd, dµ) for a σ-finite Borel measure
µ, we introduce the operators of the Poisson field as

JP (φ) = J+(φ) + J0(φ) + J−(φ), φ ∈ H+.

In order to define J0(φ), consider the operator b(φ) of multiplication by the function
φ ∈ H+ in the space HC. For an arbitrary Fn ∈ Fn(H), define

J0(φ)F0 = 0,

J0(φ)Fn = (b(φ)⊗ IdH ⊗ · · · ⊗ IdH)Fn

+ (IdH ⊗b(φ)⊗ IdH ⊗ · · · ⊗ IdH)Fn + · · ·
+ (IdH ⊗ · · · ⊗ IdH ⊗b(φ))Fn, φ ∈ H+, n ∈ N.

In other words, J0(φ) equals the second (differential) quantization of b(φ).
Of course, we choose the rigging (2.1) so that JP would satisfy the definition

of a Jacobi field. One can see that the Poisson field is nothing but a perturbation
of the classical free field by a family of neutral operators J0(φ).

The spectral measure of JP is the centered Poisson measure π on H− with
the intensity µ. Its characteristic functional is given by the formula

π̂(φ) = exp
(∫

Rd

(
eiφ(x) − 1− iφ(x)

)
dµ(x)

)
, φ ∈ H+.
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For both JCF and JP , the operator Vn,n satisfies the equality

Vn,n =
√

n! IdFn(H+), n ∈ Z+.

The Fourier transform I coincides with the Wiener-Itô-Segal transform associated
with the corresponding spectral measure. Corollary 2.1 constitutes the Wiener-Itô
decomposition.

3. Image of the Spectral Measure

This section aims to study the image of the measure ρ under a bounded operator.
Proofs of statements can be found in [13].

Consider a real separable Hilbert space T . Let

T− ⊃ T ⊃ T+ (3.1)

be a rigging of T with real separable Hilbert spaces T+ and T− = (T+)′. As in the
case of the rigging (2.1), the pairing in (3.1) can be extended to a pairing between
Fn(T+) and Fn(T−). The latter can be extended to a pairing between Ffin(T+)
and (Ffin(T+))′. We use the notation 〈·, ·〉T for all of these pairings.

Consider a bounded operator K : T+ → H+ such that Ker(K) = {0}. We
preserve the notation K for the extension of this operator to the complexified
space (T+)C.

The adjoint of K with respect to (2.1) and (3.1) is a bounded operator K+ :
H− → T− defined by the equality

〈K+ξ, f〉T = 〈ξ, Kf〉H , ξ ∈ H−, f ∈ T+.

One can prove that Ran(K+) is dense in T−.
We denote by ρK the image of the measure ρ under the mapping K+. By

definition, ρK is a probability measure on the σ-algebra

C = {∆ ⊂ T−|(K+)−1(∆) is a Borel subset of H−}

((K+)−1(∆) denoting the preimage of the set ∆).

Remark 3.1. The characteristic functional

ρ̂K(f) =
∫

T−
ei〈ω,f〉T dρK(ω), f ∈ T+,

of the measure ρK satisfies the equality

ρ̂K(f) = ρ̂(Kf), f ∈ T+.

Remark 3.2. The assumption Ker(K) = {0} is not essential. Indeed, the measure
ρK proves to be lumped on the set of functionals which equal zero on Ker(K).
This set can be naturally identified with (Ker(K)⊥)′. Thus we can always replace
T+ with Ker(K)⊥ ⊂ T+.
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3.1. The space Fext(T+, K) and the family JK

Before constructing the space Fext(T+, K), we have to introduce an auxiliary no-
tation. Given n ∈ Z+, let Vn stand for the subspace of F(H) generated by the
vectors

VjK
⊗jFj , Fj ∈ Fj(T+), j = 0, . . . , n

(we suppose K⊗0 = IdC). Roughly speaking, Vn is a “prototype” in F(H) for the
set Q̃n of ordinary polynomials on T− with their degree not greater than n. The
corresponding set of continuous polynomials will be denoted by Qn.

Introduce the mapping A : Ffin(T+)→ F(H) via the formula

Fn(T+) � Fn �→ AFn =
1√
n!

PrVn�Vn−1 VnK⊗nFn ∈ F(H), n ∈ Z+

(we suppose V−1 = {0}). It is easy to see that Ker(A) = {0}. Let Fext
n (T+, K)

denote the completion of Fn(T+) with respect to the scalar product

(Fn, Gn)Fext
n (T+,K) = (AFn, AGn)F(H), Fn, Gn ∈ Fn(T+), n ∈ Z+.

Define

Fext(T+, K) =
∞⊕

n=0

Fext
n (T+, K).

Obviously, the mapping A can be extended to an isometric operator acting from
Fext(T+, K) to F(H). The notation A is preserved for this operator.

The structure of A will imply the unitarity of the map IK mentioned in
Section 1. The rigorous definition of this map will be given in Theorem 3.1. We
emphasize that IK is simultaneously the generalized Wiener-Itô-Segal transform
for ρK and the Fourier transform for the family JK that we are about to construct.

Now we have to describe a natural rigging for the space Fext(T+, K). Consider
a linear topological space

Fext
+ (T+, K) = A−1(Ffin(H+) ∩ Ran(A)).

The sequence (Fn)∞n=0 converges to F in Fext
+ (T+, K) if and only if the sequence

(AFn)∞n=0 converges to AF in Ffin(H+). One can show that the space Fext
+ (T+, K)

is a dense subset of Fext(T+, K). This gives us the rigging

(Fext
+ (T+, K))′ ⊃ Fext(T+, K) ⊃ Fext

+ (T+, K).

Denote the corresponding pairing by 〈·, ·〉A.
Let us construct the family JK . The set Ffin(H+)∩Ran(A) is invariant with

respect to every J(Kf), f ∈ T+. This allows us to introduce the operators

JK(f) = A−1J(Kf)A, Dom(JK(f)) = Fext
+ (T+, K), f ∈ T+.

in the space Fext(T+, K). Evidently, they are essentially selfadjoint and their
closures J̃K(f) are strong commuting. Define JK = (J̃K(f))f∈T+ . Remark that
Fext

+ (T+, K) is invariant with respect to J̃K(f), f ∈ T+.
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We now state an analogue of Theorem 2.1 for JK . In particular, this would
yield an analogue of the Wiener-Itô decomposition for the measure ρK .

Theorem 3.1. Assume Q =
⋃∞

n=0Qn to be a dense subset of L2(T−, dρK). There
exists a vector-valued function T− � ω �→ Q(ω) ∈ (Fext

+ (T+, K))′ such that the
following statements hold:
• For ρK-almost all ω ∈ T−, the vector Q(ω) ∈ (Fext

+ (T+, K))′ is a generalized
joint eigenvector of the family JK with the eigenvalue ω, i.e.,

〈Q(ω), J̃K(f)F 〉A = 〈ω, f〉T 〈Q(ω), F 〉A, F ∈ Fext
+ (T+, K).

• The Fourier transform

Fext
+ (T+, K) � F �→ IKF = 〈F, Q(·)〉A ∈ L2(T−, dρK)

can be extended to a unitary operator acting from Fext(T+, K) to
L2(T−, dρK). We preserve the notation IK for this operator.

• The Fourier transform IK satisfies the equality

IKFn =
1√
n!

PrQ̃n�Q̃n−1
〈Fn, ·⊗n〉T , Fn ∈ Fn(T+), n ∈ Z+

(we suppose Q−1 = {0} and ω⊗0 = 1 for any ω ∈ T−).

Corollary 3.1. If Q =
⋃∞

n=0Qn is a dense subset of L2(T−, dρK), then the equality

L2(T−, dρK) =
∞⊕

n=0

(
Q̃n � Q̃n−1

)
=

∞⊕
n=0

IK(Fext
n (T+, K)).

holds true.

Corollary 3.1 constitutes an analogue of the Wiener-Itô decomposition for
the measure ρK .

3.2. A Lévy noise measure

We will now illustrate the preceding abstract constructions with some explicit
calculations. Namely, we will obtain an explicit formula for the operator A and the
scalar product (·, ·)Fext(T+,K) in the case where K is the operator of multiplication
by a function of a new independent variable and J equals JP . Then ρK appears
to be a Lévy noise measure. Remark that a slightly more complicated choice of K
leads to a fractional Lévy noise measure.

Consider a real separable Hilbert space S = L2(Rd1 , dσ). Let the space T
equal L2(Rd2 , dτ). We assume the Borel measures σ and τ to be finite on com-
pact sets. We also assume τ to be absolutely continuous with respect to the
Lebesgue measure. Let the space H equal S ⊗ T . Clearly, H can be identified
with L2(Rd1+d2 , d(σ ⊗ τ)). Suppose J to equal JP .

The spaces T+ and H+ may be chosen arbitrarily provided that JP satisfies
the definition of a Jacobi field. Typically, the role of T+ and H+ is played by
weighted Sobolev spaces.
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Define K via the formula

T+ � f(t) �→ (Kf)(s, t) = κ(s)f(t), s ∈ Rd1 , t ∈ Rd2 .

The function κ ∈ S has to be chosen so that K would be a bounded operator
acting from T+ to H+.

The operator K+ takes ρ to a probability measure ρK on T−. According to
Remark 3.1, the characteristic functional of ρK is now given by the formula

ρ̂K(f) = exp
(∫

Rd2

∫
Rd1

(
eiκ(s)f(t) − 1− iκ(s)f(t)

)
dσ(s)dτ(t)

)
, f ∈ T+.

Denote by σκ the image of σ under κ. The above formula implies that ρK is the
Lévy noise measure on T− with the Lévy measure σκ and the intensity measure τ .

Before identifying the operator A and the scalar product (·, ·)Fext(T+,K) ex-
plicitly, we have to carry out some preliminary constructions.

Given n ∈ N, define κn(s) = (κ(s))n, s ∈ Rd1 . The function κn belongs to
the space S for any n ∈ N. Applying the Schmidt orthogonalization procedure to
the sequence (κn)∞n=1, we obtain an orthogonal sequence (κn)∞n=0 in the space S.
Each κn is a polynomial of degree n with respect to κ. We normalize κn so that
the leading coefficient of this polynomial would equal 1.

A vector F ∈ T⊗n
C

, n ∈ N, can be treated as a complex-valued func-
tion F (t1, . . . , tn) depending on the variables t1, . . . , tn ∈ Rd2 . Analogously,
a vector Φ ∈ H⊗n

C
, n ∈ N, can be treated as a complex-valued func-

tion Φ(s1, . . . , sn, t1, . . . , tn) depending on the variables s1, . . . , sn ∈ Rd1 and
t1, . . . , tn ∈ Rd2 . Vectors from Fn(T ) and Fn(H) appear as symmetric functions.
We assume the set of all smooth compactly supported functions on Rd2n to be a
dense subset of (T+)⊗n

C
.

Consider an ordered partition ω = (ω1, . . . , ωk) of the set {1, . . . , n} into k
nonempty sets ω1, . . . , ωk. Let Ωk

n stand for the set of all such partitions and let
|ωk| stand for the cardinality of ωk. Introduce the mapping

Rd2k � (t1, . . . , tk) �→ πω(t1, . . . , tk) = (ti1 , . . . , tin) ∈ Rd2n

with ij = l for j ∈ ωl.
Given a smooth compactly supported symmetric function F ∈ Fn(T+), n ∈

N, denote DF = (0, D1
F , . . . , Dn

F , 0, 0, . . .) ∈ F(H) with

Dk
F (s1, . . . , sk, t1, . . . , tk)

=
∑

ω∈Ωk
n

1√
k!

(
κ|ω1|(s1) · · ·κ|ωk|(sk)

)
F (πω(t1, . . . , tk)), k = 1, . . . , n.
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Theorem 3.2. Under the assumptions of the present subsection, the operator A and
the scalar product (·, ·)Fext(T+,K) satisfy the equalities

AF =
1√
n!

DF ,

(F, G)Fext(T+,K) =
1
n!

n∑
k=1

∫
Rd2k

∫
Rd1k

Dk
F (s, t)Dk

G(s, t) dσ⊗k(s)dτ⊗k(t)

for any smooth compactly supported symmetric functions F, G ∈ Fn(T+), n ∈ N
(the overbar denoting the complex conjugacy).

Theorem 3.1 and Theorem 3.2 explain the Fock-type structure
of L2(T−, dρK). Theorem 3.2 shows that the space Fext(T+, K) coincides
with the extended Fock space investigated in [23] up to scalar weights at the
orthogonal components. Note that one can construct an embedding of Fext(T+, K)
into a weighted orthogonal sum of function spaces. Using the arguments from [10],
see also [19], [11], [12], [23], and [24], one can extend this embedding to a unitary
operator.

Since ρK is now a Lévy noise measure, the family JK is probably isomorphic
in a certain sense to the operator family from [8]. (In the corresponding special
case, this family is the Gamma field, see [19].) The measure ρK would then be the
spectral measure of this family. We do not concentrate on these questions in the
present paper.

4. The case of a dense range

If the range Ran(K) is dense in H+, then the abstract constructions of Section 3
take a much simpler form. Before explaining the principal simplification, we should
point out that several relevant results can be found in [9]. In particular, a statement
similar to Corollary 3.1 is obtained there by means of an approximation procedure.

So we assume the range Ran(K) to be dense in H+. Then Vn =
⊕n

j=0 Fj(H)
and

AFn =
1√
n!

Vn,nK⊗nFn, Fn ∈ Fn(T+), n ∈ Z+.

If, additionally, J is the classical free field or the Poisson field, then

AFn = K⊗nFn, Fn ∈ Fn(T+), n ∈ Z+,

and the scalar product (·, ·)Fext(T+,K) satisfies the equality

(Fn, Gn)Fext
n (T+,K) = (K⊗nFn, K⊗nGn)Fn(H),

Fn, Gn ∈ Fn(T+), n ∈ Z+.

This formula shows that Fext(T+, K) may now be identified with F(T0), the space
T0 being the completion of T+ with respect to the scalar product

(f, g)T0 = (Kf, Kg)H , f, g ∈ T+.
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We proceed with three examples.

4.1. A Gaussian measure

Choose an arbitrary rigging (2.1) and suppose the original field J to equal JCF .
The space T+ and the bounded operator K may be chosen arbitrarily. However, as
before, we assume Ran(K) to be dense in H+ and Ker(K) to equal {0}. According
to Remark 3.1, the characteristic functional of ρK is given by the formula

ρ̂K(f) = exp
(
−1

2
‖Kf‖2H

)
= exp

(
−1

2
〈K+Kf, f〉T

)
, f ∈ T+

(since H+ is a subset of H−, the operator K+K : T+ → T− is well defined). This
means ρK is the Gaussian measure on T− with the correlation operator K+K.

Notice that we can choose the neutral space T in the rigging (3.1) to equal
the space T0 defined above. Then the restriction K+ � Ran(K) : Ran(K) → T−
coincides with the mapping K−1 : Ran(K) → T+ ⊂ T− and the characteristic
functional of ρK may be written in the form

ρ̂K(f) = exp
(
−1

2
‖f‖2T

)
, f ∈ T+.

Clearly, this means ρK is the standard Gaussian measure on T−.
Theorem 3.1 produces a family JK whose spectral measure is ρK . Obviously,

this family coincides with the classical free field corresponding to the rigging (3.1)
with the neutral space T = T0. Originally, this fact has been pointed out by
E.W. Lytvynov.

4.2. An operator of multiplication

Let H be L2(R, dx) and let H+ and T+ be the Sobolev spaces W 1
2 (R, (1 + x2) dx)

and W 1
2 (R, dx), respectively. Suppose J to be the Poisson field JP and suppose

K : T+ → H+ to be the operator of multiplication by the function θ(x) = e−x2
.

One can easily verify that K is bounded and Ker(K) = {0}. The range Ran(K) is
dense in H+ because it contains all the smooth compactly supported functions. On
the other hand, Ran(K) �= H+ because, e.g., the function ψ(x) = (1+x2)−2 ∈ H+

does not belong to Ran(K).
Choose T− to be the dual of W 1

2 (R, dx) with respect to the neutral space
T0 = L2(R, e−2x2

dx). Evidently, one may realize T− as the dual of W 1
2 (R, dx)

with respect to the neutral space L2(R, dx), in which case T− is the usual negative
Sobolev space W−1

2 (R, dx). Applying Theorem 3.1 in this situation yields a family
JK whose spectral measure has the characteristic functional

ρ̂K(f(x)) = exp
(∫

R

(
eie−x2

f(x) − 1− ie−x2
f(x)

)
dx

)
, f ∈ T+.

The operator A is now an orthogonal sum of multiplication operators. The space
Fext(T+, K) where JK is defined appears as an orthogonal sum of L2-spaces, each
of them with respect to a weighted Lebesgue measure.
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4.3. A differential operator

As before, let H be L2(R, dx). Let H+ and T+ equal W 1
2

(
R, e

x2
2 dx

)
and

W 2
2

(
R, e

x2
2 dx

)
, respectively. Suppose J to be the Poisson field JP .

Define the operator K : T+ → H+ as the extension by continuity of the
mapping

C∞
0 (R) � p(x) �→ e−

x2
2

dp(x)
dx

∈ H+

(C∞
0 (R) stands for the set of all smooth compactly supported functions on R).

Evidently, K is bounded and Ker(K) = {0}. One can prove that the range Ran(K)
is dense in H+.

The space H− is the negative Sobolev space W−1
2

(
R, e

x2
2 dx

)
, while T− may

be realized as the dual of W 2
2 (R, e

x2
2 dx) with respect to the zero space L2(R, dx).

In this case, T− is the usual negative Sobolev space W−2
2 (R, e

x2
2 dx). Applying

Theorem 3.1 yields a family JK whose spectral measure has the characteristic
functional

ρ̂K(f(x)) = exp
(∫

R

(
exp

(
ie−

x2
2

df(x)
dx

)
− 1− ie−

x2
2

df(x)
dx

)
dx

)
, f ∈ T+.

The operator A is an orthogonal sum of differential operators. The structure of the
space Fext(T+, K) is now slightly more complicated than it was in the previous
example.
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The Higher Order Carathéodory–Julia
Theorem and Related Boundary
Interpolation Problems

Vladimir Bolotnikov and Alexander Kheifets

Abstract. The higher order analogue of the classical Carathéodory-Julia the-
orem on boundary angular derivatives has been obtained in [7]. Here we
study boundary interpolation problems for Schur class functions (analytic
and bounded by one in the open unit disk) motivated by that result.
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1. Introduction

We denote by S the Schur class of analytic functions mapping the open unit disk
D into its closure. A well known property of Schur functions w is that the kernel

Kw(z, ζ) =
1− w(z)w(ζ)

1− zζ̄
(1.1)

is positive on D× D and therefore, that the matrix

Pw
n (z) :=

[
1

i!j!
∂i+j

∂zi∂z̄j

1− |w(z)|2
1− |z|2

]n

i,j=0

(1.2)

which will be referred to as to a Schwarz-Pick matrix, is positive semidefinite for
every n ≥ 0 and z ∈ D. We extend this notion to boundary points as follows: given
a point t0 ∈ T, the boundary Schwarz-Pick matrix is

Pw
n (t0) = lim

z→t0
Pw

n (z), (1.3)

provided the limit in (1.3) exists. It is clear that once the boundary Schwarz-Pick
matrix Pw

n (t0) exists for w ∈ S, it is positive semidefinite. In (1.3) and in what
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follows, all the limits are nontangential, i.e., z ∈ D tends to a boundary point
nontangentially. Let us assume that w ∈ S possesses nontangential boundary
limits

wj(t0) := lim
z→t0

w(j)(z)
j!

for j = 0, . . . , 2n + 1 (1.4)

and let

Pw
n (t0) :=

⎡⎢⎣ w1(t0) · · · wn+1(t0)
...

...
wn+1(t0) · · · w2n+1(t0)

⎤⎥⎦Ψn(t0)

⎡⎢⎣ w0(t0)∗ . . . wn(t0)∗

. . .
...

0 w0(t0)∗

⎤⎥⎦ ,

(1.5)
where the first factor is a Hankel matrix, the third factor is an upper triangular
Toeplitz matrix and where Ψn(t0) = [Ψj�]

n
j,�=0 is the upper triangular matrix

Ψn(t0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0 −t20 t30 · · · (−1)n
(

n
0

)
tn+1
0

0 −t30 2t40 · · · (−1)n
(

n
1

)
tn+2
0

... t50 · · · (−1)n
(

n
2

)
tn+3
0

...
. . .

...
0 · · · · · · 0 (−1)n

(
n
n

)
t2n+1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1.6)

with entries

Ψj� = (−1)�

(
�
j

)
t�+j+1
0 , 0 ≤ j ≤ � ≤ n. (1.7)

For notational convenience, in (1.5) and in what follows we use the symbol a∗ for
the complex conjugate of a ∈ C.

We denote the lower diagonal entry in the Schwarz-Pick matrix Pw
n (z) by

dw,n(z) :=
1

(n!)2
∂2n

∂zn∂z̄n

1− |w(z)|2
1− |z|2 . (1.8)

The following theorem was obtained in [7].

Theorem 1.1. For w ∈ S, t0 ∈ T and n ∈ Z+, the following are equivalent:

1. The following limit inferior is finite:

lim inf
z→t0

dw,n(z) <∞ (1.9)

where z ∈ D approaches t0 unrestrictedly.
2. The following nontangential boundary limit exists and is finite:

dw,n(t0) := lim
z→t0

dw,n(z) <∞. (1.10)

3. The boundary Schwarz-Pick matrix Pw
n (t0) defined via the nontangential

boundary limit (1.3) exists.
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4. The nontangential boundary limits (1.4) exist and satisfy

|w0(t0)| = 1 and Pw
n (t0) ≥ 0, (1.11)

where Pw
n (t0) is the matrix defined in (1.5).

Moreover, when these conditions hold, then

Pw
n (t0) = Pw

n (t0). (1.12)

In the case n = 0, Theorem 1.1 reduces to the classical Carathéodory-Julia
theorem [9, 10]; this has been discussed in detail in [7]. The relation

dw,n(t0) =
[

wn+1(t0) · · · w2n+1(t0)
]
Ψn(t0)

⎡⎢⎣ wn(t0)∗
...

w0(t0)∗

⎤⎥⎦
expresses equality of the lower diagonal entries in (1.12); upon separating the term
containing w2n+1 it can be written as

dw,n(t0) =
n−1∑
i=0

n∑
j=0

wn+i+1(t0)Ψij(t0)wn−j(t0)∗ + (−1)nt2n+1
0 w2n+1(t0)w0(t0)∗.

(1.13)
Theorem 1.1 motivates the following interpolation problem:

Problem 1.2. Given points t1, . . . , tk ∈ T, given integers n1, . . . , nk ≥ 0 and given
numbers ci,j (j = 0, . . . , 2ni +1; i = 1, . . . , k), find all Schur functions w such that

lim inf
z→ti

dw,ni(z) <∞ (i = 1, . . . , k) (1.14)

and

wj(ti) := lim
z→ti

w(j)(z)
j!

= ci,j (i = 1, . . . , k; j = 0, . . . , 2ni + 1). (1.15)

The problem makes sense since conditions (1.14) guarantee the existence of
the nontangential limits (1.15); upon preassigning the values wj(ti) for i = 1, . . . , k
and j = 0, . . . , 2ni+1 , we come up with interpolation Problem 1.2. It is convenient
to reformulate Problem 1.2 in the following form:

Problem 1.3. Given points t1, . . . , tk ∈ T, given integers n1, . . . , nk ≥ 0 and given
numbers

ci,j and γi (j = 0, . . . , 2ni; i = 1, . . . , k),

find all Schur functions w such that

dw,ni(ti) :=
1

(ni!)2
lim
z→ti

∂2ni

∂zni∂z̄ni

1− |w(z)|2
1− |z|2 = γi (1.16)

and
wj(ti) = ci,j (i = 1, . . . , k; j = 0, . . . , 2ni). (1.17)
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If w is a solution to Problem 1.2, then conditions (1.14) guarantee the exis-
tence of the nontangential limits (1.16) and by a virtue of (1.13),

dw,ni(ti) =
ni−1∑
�=0

ni∑
j=0

wni+�+1(ti)Ψ�j(t0)wni−j(ti)∗

+(−1)nit2ni+1
i w2ni+1(ti)w0(ti)∗. (1.18)

Thus, for every Schur function w, satisfying (1.14) and (1.15), conditions (1.16)
hold with

γi =
n−1∑
�=0

ni∑
j=0

ci,ni+�+1Ψ�j(t0)c∗i,ni−j + (−1)nit2ni+1
i ci,2ni+1c

∗
i,0. (1.19)

Conversely, if w is a solution of Problem 1.3, then it clearly satisfies (1.14) and
by Theorem 1.1, all the limits in (1.15) exist and satisfy relation (1.18). Since
w0(ti) is unimodular, the equation (1.18) can be solved for w2ni+1(ti); on account
of interpolation conditions (1.17), we have

w2ni+1(ti) = (−1)nt
2ni+1

i

⎛⎝dw,ni(ti)−
ni−1∑
�=0

ni∑
j=0

ci,ni+�+1Ψ�j(ti)c∗i,ni−j

⎞⎠ ci,0.

(1.20)
It is readily seen now that w is a solution of Problem 1.2 with the data ci,2ni+1

chosen by

ci,2ni+1 = (−1)nt
2ni+1

i

⎛⎝γi −
ni−1∑
�=0

ni∑
j=0

ci,ni+�+1Ψ�j(ti)c∗i,ni−j

⎞⎠ ci,0. (1.21)

It is known that boundary interpolation problems become more tractable if they
involve inequalities. Such a relaxed problem is formulated below; besides of certain
independent interest it will serve as an important intermediate step in solving
Problem 1.2.

Problem 1.4. Given points t1, . . . , tk ∈ T, given integers n1, . . . , nk ≥ 0 and given
numbers ci,j and γi (j = 0, . . . , 2ni; i = 1, . . . , k), find all Schur functions w such
that

dw,ni(ti) ≤ γi, (1.22)

wj(ti) = ci,j (i = 1, . . . , k; j = 0, . . . , 2ni). (1.23)

By Theorem 1.1, for every solution w of Problem 1.3 there exists the limit

w2ni+1(ti) := lim
z→ti

w(2ni+1)(z)
(2ni + 1)!

which satisfies (1.20). Let ci,2ni+1 be defined as in

(1.21). Then it follows from (1.20), (1.21) and (1.22) that

0 ≤ γi − dw,ni(ti) = (−1)nit2ni+1
i (ci,2ni+1 − w2ni+1(ti)) c∗i,0. (1.24)

It is convenient to reformulate Problem 1.4 in the following equivalent form.
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Problem 1.5. Given the data

ti ∈ T and ci,j ∈ C (j = 0, . . . , 2ni + 1; i = 1, . . . , k), (1.25)

find all Schur functions w such that

dw,ni(ti) ≤ γi , (1.26)

wj(ti) = ci,j (i = 1, . . . , k; j = 0, . . . , 2ni) (1.27)
and

(−1)nit2ni+1
i (ci,2ni+1 − w2ni+1(ti)) c∗i,0 ≥ 0 (i = 1, . . . , k), (1.28)

where the γi’s are defined by (1.19).

In Section 3 we will construct the Pick matrix P in terms of the interpolation
data (1.25) (see formulas (3.1)–(3.2) below). Then we will show that Problem 1.5
has a solution if and only if |ci,0| = 1 for i = 1, . . . , k and P ≥ 0. In case P is
singular, Problem 1.5 has a unique solution w which is a finite Blaschke product
of degree r ≤ rankP . This unique w may or may not be a solution of Problem 1.2.
The case when P is positive definite is more interesting.

Theorem 1.6. Let |ci,0| = 1 for i = 1, . . . , k and P > 0. Then
1. Problem 1.5 has infinitely many solutions which are parametrized by the linear

fractional transformation

w(z) = s0(z) + s2(z) (1− E(z)s(z))−1 E(z)s1(z) (1.29)

where E is a free parameter running over the Schur class S and where the
coefficient matrix

S(z) =
[

s0(z) s2(z)
s1(z) s(z)

]
(1.30)

is rational and inner in D.
2. A function w of the form (1.29) is a solution of Problem 1.2 if and only if

either

lim inf
z→ti

1− |E(z)|2
1− |z|2 = ∞ or lim

z→ti

E(z) �= s(ti)
∗ (1.31)

for i = 1, . . . , k, where the latter limit is understood as nontangential, and s
is the right bottom entry of the coefficient matrix S(z).

Boundary interpolation problems for Schur class functions closely related
to Problem 1.5 were studied previously in [3]–[6], [16]. Interpolation conditions
(1.27) and (1.28) there were accompanied by various additional restrictions that
in fact are equivalent to our conditions (1.26). Establishing these equivalences is
a special issue which is discussed in [8]. A version of Problem 1.2 (with certain
assumptions on the data that guarantee (1.14) to be in force) was studied in
[4] for rational matrix-valued Schur functions. In this case, the parameters E in
the parametrization formula (1.29) are also rational and therefore, the situation
expressed by the first relation in (1.31) does not come into play. A similar matrix-
valued problem was considered in [6] where the solvability criteria were established
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rather than the description of all solutions. Problem 1.3 was considered in [21] in
the case n1 = . . . = nk = 0; the second part in Theorem 1.6 can be considered as
a higher order generalization of some results in [21].

The paper is organized as follows. In Section 2 we recall some needed results
from [7] and present some consequences of conditions (1.26) holding for a Schur
class function. In Section 3 we introduce the Pick matrix P in terms of the inter-
polation data and establish the Stein equality this matrix satisfies. In Section 4 we
imbed Problem 1.5 in the general scheme of the Abstract Interpolation Problem
(AIP) developed in [11, 14, 15]. In Section 5 we recall some needed results on AIP
and then prove the first part of Theorem 1.6 in Section 6. Explicit formulas for
the coefficients in the parametrization formula (1.29) are derived in Theorem 6.3.
An explicit formula for the unique solution of Problem 1.5 in case P is singular
is given in Theorem 6.2. In Section 6 we also prove certain properties of the coef-
ficient matrix (1.30) which enable us to prove the second part of Theorem 1.6 in
Section 7.

2. Preliminaries

The proof of Theorem 1.1 presented in [7] relies on the de Branges-Rovnyak spaces
Lw and Hw associated to a Schur function w. In this section we recall some needed
definitions and results. We use the standard notation L2 for the Lebesgue space of
square integrable functions on the unit circle T; the symbols H+

2 and H−
2 stand for

the Hardy spaces of functions with vanishing negative (respectively, nonnegative)
Fourier coefficients. The elements in H+

2 and H−
2 will be identified with their

unique analytic (resp., conjugate-analytic) continuations inside the unit disk, and
consequently H+

2 and H−
2 will be identified with the Hardy spaces of the unit disk.

Let w be a Schur function. The nontangential boundary limits w(t) exist and
are bounded by one at a.e. t ∈ T and the matrix-valued function

[
1 w(t)

w(t)∗ 1

]
is defined and positive semidefinite almost everywhere on T. The space Lw is the

range space
[

1 w
w∗ 1

]1/2

(L2 ⊕ L2) endowed with the range norm. The set of

functions
[

1 w
w∗ 1

]
f where f ∈ L2 ⊕ L2 is dense in Lw and∥∥∥∥[ 1 w
w∗ 1

]
f

∥∥∥∥2

Lw

=
〈[

1 w
w∗ 1

]
f, f

〉
L2⊕L2

. (2.1)

Definition 2.1. A function f =
[

f+
f−

]
is said to belong to the de Branges–Rovnyak

space Hw if it belongs to Lw and if f+ ∈ H+
2 and f− ∈ H−

2 .

As it was shown in [7], the vector-valued functions

K(j)
z (t) =

1
j!

∂j

∂z̄j

([
1 w(t)

w(t)∗ 1

] [
1

−w(z)∗

]
· 1

1− tz̄

)
(2.2)
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defined for z ∈ D, t ∈ T and j ∈ Z+, belong to the space Hw and furthermore, for

every z ∈ D and every f =
[

f+

f−

]
∈ Hw,

〈
f, K(j)

z

〉
Hw

=
1
j!

∂j

∂zj
f+(z). (2.3)

Setting f = K
(i)
ζ in (2.3), we get

〈
K

(i)
ζ , K(j)

z

〉
Hw

=
1

j!i!
∂j+i

∂zj∂ζ̄i

(
1− w(z)w(ζ)

1− zζ̄

)
. (2.4)

Upon differentiating in (2.2) and taking into account that |t| = 1, we come to the
following explicit formulas for K

(j)
z :

K(j)
z (t) =

[
1 w(t)

w(t)∗ 1

]⎡⎢⎣ tj(1− tz̄)−j−1

−
j∑

�=0

w�(z)∗tj−�(1− tz̄)�−j−1

⎤⎥⎦ , (2.5)

where w�(z) are the Taylor coefficients from the expansion

w(ζ) =
∞∑

�=0

w�(z)(ζ − z)�, w�(z) =
w(�)(z)

�!
.

The two next theorems (also proved in [7]) explain the role of condition (1.9).

Theorem 2.2. Let w ∈ S, t0 ∈ T, n ∈ Z+ and let

lim inf
z→t0

dw,n(z) < ∞. (2.6)

Then the nontangential boundary limits

wj(t0) := lim
z→t0

w(j)(z)
j!

exist for j = 0, . . . , n (2.7)

and the functions

K
(j)
t0 (t) =

[
1 w(t)

w(t)∗ 1

]⎡⎢⎣ tj(1− tt̄0)−j−1

−
j∑

�=0

w�(t0)∗tj−�(1 − tt̄0)�−j−1

⎤⎥⎦ (2.8)

belong to the space Hw for j = 0, . . . , n. Moreover, the kernels K
(j)
z defined in

(2.5) converge to K
(j)
t0 for j = 1, . . . , n in norm of Hw as z ∈ D approaches t0

nontangentially:

K(j)
z

Hw

−→ K
(j)
t0 for j = 1, . . . , n as z → t0.



70 V. Bolotnikov and A. Kheifets

Theorem 2.3. Let w ∈ S, t0 ∈ T, n ∈ Z+. If the numbers c0, . . . , cn are such that
the function

F (t) =
[

1 w(t)
w(t)∗ 1

]⎡⎢⎣ tn(1− tt̄0)−n−1

−
n∑

�=0

c∗� t
n−�(1− tt̄0)�−n−1

⎤⎥⎦
belongs to Hw, then condition (2.6) holds, the limits (2.7) exist, and wj(t0) = cj

for j = 0, . . . , n; consequently, F coincides with K
(n)
t0 .

Now the preceding analysis can be easily extended to a multi-point setting.
Given a Schur function w and k-tuples z = (z1, . . . , zk) of points in D and n =
(n1, . . . , nk) of nonnegative integers, define the generalized Schwarz-Pick matrix

Pw
n (z) :=

⎡⎢⎢⎢⎣
⎡⎢⎣ 1

�!r!
∂�+r

∂z�∂ζ̄r

(
1− w(z)w(ζ)

1− zζ̄

)∣∣∣∣∣ z = zi,
ζ = zj

⎤⎥⎦
� = 0, . . . , ni

r = 0, . . . , nj

⎤⎥⎥⎥⎦
k

i,j=1

. (2.9)

Given a tuple t = (t1, . . . , tk) of distinct points ti ∈ T, define the boundary
generalized Schwarz-Pick matrix

Pw
n (t) := lim

z→t
Pw

n (z) (2.10)

provided the latter limit exists, where z → t means that zi ∈ D approaches ti for
i = 1, . . . , k nontangentially. It is readily seen that conditions

lim inf
z→ti

dw,ni(z) <∞ for i = 1, . . . , k, (2.11)

(where dw,ni is defined via formula (1.8)) are necessary for the limit (2.10) to exist.
They are also sufficient as the next theorem shows.

Theorem 2.4. Let t = (t1, . . . , tk) be a tuple of distinct points ti ∈ T, let n =
(n1, . . . , nk) ∈ Zk

+ and let w be a Schur function satisfying conditions (2.11).
Then:

1. The following nontangential boundary limits exist:

wj(ti) := lim
z→ti

w(j)(z)
j!

(j = 0, . . . , 2ni + 1; i = 1, . . . , k). (2.12)

2. The functions

K
(j)
ti

(t) =
[

1 w(t)
w(t)∗ 1

]⎡⎢⎣ tj(1− tt̄i)−j−1

−
j∑

�=0

w�(ti)∗tj−�(1− tt̄i)�−j−1

⎤⎥⎦ (2.13)

belong to the space Hw for j = 0, . . . , ni and i = 1, . . . , k.
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3. The boundary generalized Schwarz-Pick matrix Pw
n (t) defined via the non-

tangential limit (2.10) exists and is equal to the Gram matrix of the set
{K(j)

ti
: j = 0, . . . , ni; i = 1, . . . , k}:

Pw
n (t) :=

[[〈
K

(r)
tj

, K
(�)
ti

〉
Hw

]
� = 0, . . . , ni

r = 0, . . . , nj

]k

i,j=1

. (2.14)

4. The matrix Pw
n (t) can be expressed in terms of the nontangential limits (2.12)

as follows:
Pw

n (t) =
[
Pw

ij

]k
i,j=1

(2.15)

where Pw
ij is the (ni + 1)× (nj + 1) matrix defined by

Pw
ij = HijΨnj (tj)W

∗
j , (2.16)

where Ψnj (tj) is defined as in (1.6), Wj is the lower triangular Toeplitz
matrix given by

Wj =

⎡⎢⎢⎢⎢⎣
w0(tj) 0 . . . 0

w1(tj) w0(ti)
. . .

...
...

. . . . . . 0
wnj (tj) . . . w1(tj) w0(tj)

⎤⎥⎥⎥⎥⎦ , (2.17)

and where Hij is the matrix with the entries

[Hij ]r,s =
r∑

�=0

(−1)r−�

(
s + r − �

s

)
w�(ti)

(ti − tj)s+r−�+1

−
s∑

�=0

(−1)r

(
s + r − �

r

)
w�(tj)

(ti − tj)s+r−�+1
. (2.18)

if i �= j, and it is the Hankel matrix

Hjj =

⎡⎢⎢⎢⎣
w1(tj) w2(tj) · · · wnj+1(tj)
w2(tj) w3(tj) · · · wn+2(tj)

...
...

...
wnj+1(tj) wnj+2(ti) · · · w2nj+1(tj)

⎤⎥⎥⎥⎦ (2.19)

otherwise.

Proof. The two first statements follow by Theorems 1.1 and 2.2. Due to relation
(2.4), the matrix in (2.9) can be written as

Pw
n (z) :=

[[〈
K(r)

zj
, K(�)

zi

〉
Hw

]
� = 0, . . . , ni

r = 0, . . . , nj

]k

i,j=1

. (2.20)

By Statement 3 in Theorem 2.2,

K(j)
zi

Hw

−→ K
(j)
ti

for j = 1, . . . , ni; i = 1, . . . , k,
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as zi approaches ti nontangentially. Passing to the limit in (2.20) we get the ex-
istence of the boundary generalized Schwarz-Pick matrix Pw

n (t) and obtain its
representation (2.14). Let us consider the block partitioning

Pw
n (z) =

[
Pw

ij(zi, zj)
]k
i,j=1

conformal with that in (2.15) so that

Pw
ij(zi, zj) :=

⎡⎢⎣ 1
�!r!

∂�+r

∂z�∂ζ̄r

(
1− w(z)w(ζ)

1− zζ̄

)∣∣∣∣∣ z = zi,
ζ = zj

⎤⎥⎦
� = 0, . . . , ni

r = 0, . . . , nj

. (2.21)

The direct differentiation in (2.21) gives

[
Pw

ij(zi, zj)
]
�,r

=
min{�,r}∑

s=0

(� + r − s)!
(�− s)!(r − s)!

zr−s
i z̄�−s

j

(1− ziz̄j)�+r−s+1

−
�∑

α=0

r∑
β=0

min{α,β}∑
s=0

(α + β − s)!
(α− s)!(β − s)!

zβ−s
i z̄α−s

j w�−α(zi)wr−β(zj)∗

(1− ziz̄j)α+β−s+1
.

For i �= j, we pass to the limit in the latter equality as zi → ti and zj → tj and
take into account (2.12):

[
Pw

ij

]
�,r

=
min{�,r}∑

s=0

(� + r − s)!
(�− s)!(r − s)!

tr−s
i t̄�−s

j

(1− ti t̄j)�+r−s+1

−
�∑

α=0

r∑
β=0

min{α,β}∑
s=0

(α + β − s)!
(α− s)!(β − s)!

tβ−s
i t̄α−s

j w�−α(ti)wr−β(tj)∗

(1− ti t̄j)α+β−s+1
.

Verification of the fact that the product on the right hand side of (2.15) gives
the matrix with the same entries, is straightforward and will be omitted. Finally,
it is readily seen from (2.21) and (1.2) that the j-th diagonal block Pw

jj(zj , zj)
coincides with the Schwarz-Pick matrix Pw

nj
(zj). Therefore, by Theorem 1.1 and

formula (1.5), its nontangential boundary limit equals

Pw
jj = Pw

nj
(tj) (2.22)

=

⎡⎢⎣ w1(tj) · · · wnj+1(tj)
...

...
wnj+1(tj) · · · w2nj+1(tj)

⎤⎥⎦Ψnj (tj)

⎡⎢⎣ w0(tj)∗ . . . wnj (tj)∗
. . .

...
0 w0(tj)∗

⎤⎥⎦ ,

which coincides with (2.16) for j = i. �

3. The Pick matrix and the Stein identity

The Pick matrix P defined and studied in this section is important for formulating
a solvability criterion for Problem 1.5 and for parametrizing its solution set. The



The Higher Order Carathéodory–Julia Theorem 73

definition of the Pick matrix is motivated by the formulas for the matrix Pw
n (t)

discussed in the previous section. Namely,

P = [Pij ]
k
i,j=1 ∈ CN×N where N =

k∑
i=1

(ni + 1), (3.1)

and the block entries Pij ∈ C(ni+1)×(nj+1) are defined by

Pij = Hij ·Ψnj (tj) ·W ∗
j , (3.2)

where Ψnj (tj) is defined as in (1.6), where

Wi =

⎡⎢⎢⎢⎣
ci,0 0 . . . 0
ci,1 ci,0 . . . 0
...

. . . . . .
...

ci,ni . . . ci,1 ci,0

⎤⎥⎥⎥⎦ , (3.3)

Hii =

⎡⎢⎢⎢⎣
ci,1 ci,2 · · · ci,ni+1

ci,2 ci,3 · · · ci,n+2

...
...

...
ci,ni+1 ci,ni+2 · · · ci,2ni+1

⎤⎥⎥⎥⎦ (3.4)

for i = 1, . . . , k and where the matrices Hij (for i �= j) are defined entrywise by

[Hij ]r,s =
r∑

�=0

(−1)r−�

(
s + r − �

s

)
ci,�

(ti − tj)s+r−�+1

−
s∑

�=0

(−1)r

(
s + r − �

r

)
cj,�

(ti − tj)s+r−�+1
(3.5)

for r = 0, . . . , ni and s = 0, . . . , nj . The latter formulas define P exclusively in
terms of the interpolation data of (1.25). We also associate with the same data
the following matrices:

T =

⎡⎢⎣ T1 0
. . .

0 Tk

⎤⎥⎦ , where Ti =

⎡⎢⎢⎢⎢⎣
t̄i 1 . . . 0

0 t̄i
...

...
. . . . . . 1

0 . . . 0 t̄i

⎤⎥⎥⎥⎥⎦ , (3.6)

E =
[

E1 . . . Ek

]
, where Ei =

[
1 0 . . . 0

]
, (3.7)

M =
[

M1 . . . Mk

]
, where Mi =

[
c∗i,0 . . . c∗i,ni

]
. (3.8)

Note that Ti ∈ C(ni+1)×(ni+1) and Ei, Mi ∈ C1×(ni+1). The main result of this
section is:

Theorem 3.1. Let |ci,0| = 1 for i = 1, . . . , k and let us assume that the diagonal
blocks Pii of the matrix P defined in (3.1)–(3.5) are Hermitian for i = 1, . . . , k.
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Then the matrix P is Hermitian and satisfies the Stein identity

P − T ∗PT = E∗E −M∗M, (3.9)

where the matrices T , E and M are defined in (3.6)–(3.8).

In view of (3.6)–(3.8), verifying (3.9) is equivalent to verifying

Pij − T ∗
i PijTj = E∗

i Ej −M∗
i Mj (i, j = 1, . . . , k). (3.10)

An identity like that is not totally surprising due to a special (Hankel and Toeplitz)
structure of the factors Hij and Wj in (3.2). Indeed, the identity verified in the
next lemma (though, not exactly of the form (3.10)) follows from the structure of
Pij only (without any symmetry assumptions). Note that the right-hand side in
(3.9) as well as the one in (3.10) is of rank 2 .

Lemma 3.2. Let Pij be defined as in (3.2). Then

Pij − T ∗
i PijTj = E∗

i M jΨnj (tj)W
∗
j Tj −M∗

i Mj (3.11)

where, according to (3.8),

M j =
[

cj,0 cj,1 . . . cj,nj

]
= EjW


j .

Proof. We shall make use of the equalities

W ∗
j Tj = TjW

∗
j , T jΨnj (tj)Tj = Ψnj (tj), EjΨnj (tj)Tj = Ej . (3.12)

The first equality follows by the Toeplitz triangular structure of W ∗
j and Tj. The

matrix T jΨnj (tj)Tj is upper triangular as the product of upper triangular matri-
ces, and due to (1.7) and (3.6), its s�-th entry (for � ≥ s) equals[

T jΨnj (tj)Tj

]
s,�

= Ψs,� + tjΨs,�−1 + t̄jΨs+1,� + Ψs+1,�−1

= (−1)�ts+�+1
j

[(
�
s

)
−
(

�− 1
s

)
+
(

�
s + 1

)
−
(

�− 1
s + 1

)]
= (−1)�ts+�+1

j

(
�
s

)
= Ψs,�.

This completes the verification of the second equality in (3.12). The last relation
in (3.12) follows by (1.7) and (3.6) and (3.7):

EjΨnj (tj)Tj =
[

tj −t2j . . . (−1)nj t
nj+1
j

]
Tj =

[
1 0 . . . 0

]
= Ej .

We will also use the identity

HijT j − T ∗
i Hij = E∗

i M j −M∗
i Ej (3.13)

which holds for every i, j = 1, . . . , k and is verified by straightforward calculations
(separately for the cases i = j and i �= j). We have

Pij − T ∗
i PijTj = HijΨnj (tj)W

∗
i − T ∗

i HijΨnj (tj)TjW
∗
j

=
(
HijT j − T ∗

j Hij

)
Ψnj (tj)TjW

∗
j

=
(
E∗

i M j −M∗
i Ej

)
Ψnj (tj)TjW

∗
j , (3.14)
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where the first equality follows by (3.2) and the first relation in (3.12), the second
equality relies on the second relation in (3.12) and the last equality is a consequence
of (3.13). Combining the third relation in (3.12) with formulas (3.3) and (3.8) we
get

EjΨni(ti)TjW
∗
j = EjW

∗
j = Mj

which being substituted into (3.14) leads us to (3.11). �

Proof of Theorem 3.1. By Lemma 3.2 the structure of P implies (3.11). First we
consider the case when j = i. Since, by assumption, matrices Pii (i = 1, . . . , k) are
Hermitian, the left-hand sides in (3.11) are Hermitian, and hence the right-hand
sides in (3.11) must be Hermitian. In other words,

E∗
i M iΨni(ti)W

∗
i Ti = (M iΨni(ti)W

∗
i Ti)∗Ei for i = 1, . . . , k.

Multiplying the latter relation by Ei from the left and taking into account that

EiE
∗
i = 1 and Ei(M iΨni(ti)W

∗
i Ti)∗ = (ci,0tic

∗
i,0ti)

∗ = 1,

we get
M iΨni(ti)W

∗
i Ti = Ei for i = 1, . . . , k.

Therefore, relations (3.11) turn into (3.10), which is equivalent to (3.9). Further-
more, for i �= j, the Stein equation

X − T ∗
i XTj = E∗

i Ej −M∗
i Mj

has a unique solution X . Taking adjoint of both sides in (3.10) we conclude that
the matrix P ∗

ij satisfies the same Stein equation as Pji does and then, by the above
uniqueness, P ∗

ij = Pji for i �= j. It follows now that P is Hermitian. �

Theorem 3.3. Let t1, . . . , tk ∈ T, n1, . . . , nk ∈ Z+, N =
∑k

i=1(n1 + 1) and let us
assume that a Schur function w satisfies conditions (2.11). Then the matrix Pw

n (t)
defined via the limit (2.10) (that exists by Theorem 3.1) satisfies the Stein identity

Pw
n (t)− T ∗Pw

n (t)T = E∗E − (Mw)∗Mw, (3.15)

where the matrices T and E are defined in (3.6), (3.7) and

Mw =
[

M1 . . . Mk

]
, where Mw

i =
[

w0(ti)∗ . . . wni(ti)∗
]
. (3.16)

Proof. By Theorem 2.2, the matrix Pw
n (t) admits the representation (2.15)–(2.18),

that has the same structure as the Pick matrix P constructed in (3.1)–(3.5) but
with parameters cij replaced by wj(ti). Furthermore, it is positive semidefinite
(and therefore, its diagonal blocks are Hermitian) due to representation (2.14),
whereas |w0(ti)| = 1 for i = 1, . . . , k, by Theorem 1.1. Upon applying Theorem
3.1 we conclude that Pw

n (t) satisfies the same Stein identity as P but with Mw

instead of M , i.e., the Stein identity (3.15). �
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4. Reformulation of Problem 1.5

The formula (2.14) for Pw
n (t) motivates us to introduce the matrix function

F̃w(t) =
[

F̃w
1 (t) . . . F̃w

k (t)
]
, (4.1)

where

F̃w
i (t) :=

[
K

(0)
ti

(t) K
(1)
ti

(t) . . . K
(ni)
ti

(t)
]

(i = 1, . . . , k), (4.2)

and K
(j)
ti

(t) (j = 0, . . . , ni) are the functions defined in (2.13).

Theorem 4.1. Let t1, . . . , tk ∈ T, n1, . . . , nk ∈ Z+ and let us assume that a Schur
function w satisfies conditions (2.11). Then for F̃w defined in (4.2), (4.3) we have:

1. The function F̃wx belongs to the de Branges-Rovnyak space Hw for every
vector x ∈ CN and

‖F̃wx‖2Hw = x∗Pw
n (t)x (4.3)

where Pw
n (t) is the boundary generalized Schwarz-Pick matrix (that exists due

to conditions (2.11)) and N :=
∑k

i=1(ni + 1).
2. F̃w admits the representation

F̃w(t) =
[

1 w(t)
w(t)∗ 1

] [
E
−Mw

]
(I− tT )−1 , (4.4)

where the matrices T , E and Mw are defined in (3.6), (3.7) and (3.16), respec-
tively.

Proof. By Theorem 1.1, conditions (1.26) guarantee that the functions K
(j)
ti

de-
fined in (2.13) belong to Hw and the boundary Schwarz-Pick matrix Pw

n (t) exists
and admits a representation (2.14). Now it follows from (4.1) and (4.2) that for
every x ∈ Cn, the function Fwx belongs to Hw as a linear combination of the
kernels K

(j)
ti
∈ Hw, while relation (4.3) is an immediate consequence of (2.14).

Furthermore, by definitions (3.6), (3.7) and (3.16) of Ti, Ei and Mw
i ,

[
Ei

−Mw
i

]
(I− tTi)

−1 =

⎡⎢⎢⎣
1

1− tt̄i
. . .

tni

(1− tt̄i)ni+1

−w0(ti)∗

1− tt̄i
. . . −

ni∑
�=0

w�(ti)∗tni−�

(1− tt̄i)ni+1−�

⎤⎥⎥⎦ . (4.5)

Multiplying both sides of (4.5) by the matrix
[

1 w(t)
w(t)∗ 1

]
on the left and

taking into account (2.13) and (4.2) we get[
1 w(t)

w(t)∗ 1

] [
E
−Mw

]
(I− tT )−1 =

[
K

(0)
ti

(t) K
(1)
ti

(t) . . . K
(ni)
ti

(t)
]

=: F̃w
i (t) (i = 1, . . . , k). (4.6)

Now representation formula (4.4) follows by definitions (block partitionings) (4.1),
(3.6), (3.7) and (3.16) of F̃w, T , E and Mw. �
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Now we modify F̃w replacing Mw by M in (4.4): we introduce the function

Fw(t) :=
[

1 w(t)
w(t)∗ 1

] [
E
−M

]
(I− tT )−1 (4.7)

with T , E and M defined in (3.6)–(3.8). The two next theorems show that Problem
1.5 can be reformulated in terms of this function and of the Pick matrix P .

Theorem 4.2. Assume that w solves Problem 1.5 (i.e., w ∈ S and satisfies inter-
polation conditions (1.26)–(1.28)) and let Fw be defined as in (4.7). Then

1. The function Fwx belongs to Hw for every vector x ∈ CN and

‖Fwx‖2Hw ≤ x∗Px (4.8)

where P is the Pick matrix defined in (3.1)–(3.5).
2. The numbers ci,0 are unimodular for i = 1, . . . , k and the matrix P is positive

semidefinite,

|ci,0| = 1 (i = 1, . . . , k) and P ≥ 0. (4.9)

3. P satisfies the Stein identity (3.9).
Furthermore, if w is a solution of Problem 1.2, then

‖Fwx‖2Hw = x∗Px for every x ∈ CN . (4.10)

Proof. Conditions (1.26) guarantee (by Theorem 1.1) that the limits w0(ti) are
unimodular for i = 1, . . . , k; since w0(ti) = ci,0 (according to (1.27)), the first
condition in (4.9) follows.

Conditions (1.26) also guarantee (by Theorem 4.1), that for every x ∈ CN ,
the function F̃wx belongs to Hw for every vector x ∈ CN , and equality (4.3)
holds, where F̃w is defined by the representation formula (4.4). On account of
interpolation conditions (1.27) (only for j = 0, . . . , ni and for every i = 1, . . . , k)
and by definitions (3.8) and (3.16), it follows that M = Mw. Then the formulas
(4.4) and (4.7) show that Fw ≡ F̃w, so that equality (4.3) holds with Fw instead
of F̃w:

‖Fwx‖2Hw = x∗Pw
n (t)x. (4.11)

Thus, to prove (4.8), it suffices to show that Pw
n (t) ≤ P . We will use formulas

(2.15)–(2.19) defining Pw
n (t) in terms of the boundary limits wj(ti). In view of

these formulas and due to interpolation conditions (1.27), Pw
n (t) can be expressed

in terms of the interpolation data (1.25). Indeed, comparing (3.2)–(3.5) and (2.15)–
(2.18) we conclude that

Pw
ij = Pij (i �= j) (4.12)

and that formula (2.22) for the diagonal blocks of Pw turns into

Pw
ii =

⎡⎢⎢⎢⎣
ci,1 · · · ci,ni+1

ci,2 · · · ci,ni+2

...
...

ci,ni+1 · · · w2ni+1(ti)

⎤⎥⎥⎥⎦Ψni(ti)

⎡⎢⎢⎢⎣
c∗i,0 c∗i,1 . . . c∗i,ni

0 c∗i,0 . . . c∗i,ni−1
...

. . . . . .
...

0 . . . 0 c∗i,0

⎤⎥⎥⎥⎦ . (4.13)
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Taking into account the upper triangular structure of Ψni(ti), we conclude from
(3.2), (3.3) and (4.13) that all the corresponding entries in Pii and Pw

ii are equal
except for the rightmost bottom entries that are equal to γi and to dw,ni(ti),
respectively. Thus, by condition (1.26),

Pii −Pw
ii =

⎡⎢⎣ 0 . . . 0
...

. . .
...

0 . . . γi − dw,ni(ti)

⎤⎥⎦ ≥ 0, (4.14)

for i = 1, . . . , k which together with (4.12) imply P ≥ Pw and therefore, relation
(4.8). If w is a solution of Problem 1.2 (or equivalently, of Problem 1.3), then
γi− dw,ni(ti) = 0 for i = 1, . . . , k in (4.14) which proves the final statement in the
theorem. Since Pw ≥ 0, we conclude from the inequality P ≥ Pw that P ≥ 0 which
completes the proof of the second statement of the theorem. The third statement
follows from (4.9) by Theorem 3.1. �

The next theorem is the converse to Theorem 4.2.

Theorem 4.3. Let P , T , E and M be the matrices given by (3.1)–(3.8). Let |ci,0| = 1
and P ≥ 0. Let w be a Schur function such that

Fwx :=
[

1 w(t)
w(t)∗ 1

] [
E

−M

]
(I− tT )−1

x belongs to Hw (4.15)

for every x ∈ CN and satisfies (4.8). Then w is a solution of Problem 1.5. If
moreover, (4.10) holds, then w is a solution of Problem 1.2.

Proof. By the definitions (3.6)–(3.8) of T , E and M , the columns of the 2 × N
matrix Fw defined in (4.7), are of the form

[
1 w(t)

w(t)∗ 1

]⎡⎢⎣ tj(1 − tt̄i)−j−1

−
j∑

�=0

c∗i,�t
j−�(1− tt̄i)�−j−1

⎤⎥⎦
for j = 1, . . . , ni and i = 1, . . . , k, and all of them belong to Hw by the assumption
(4.15) of the theorem. In particular, the functions

Fi(t) =
[

1 w(t)
w(t)∗ 1

]⎡⎢⎣ tni(1− tt̄i)−ni−1

−
ni∑

�=0

c∗i,�t
ni−�(1− tt̄i)�−ni−1

⎤⎥⎦
belong to Hw, which implies, by Theorems 3.2 and 2.4, that

lim inf
z→ti

dw,ni(z) <∞ for i = 1, . . . , k, (4.16)

and that the nontangential limits (2.12) exist and satisfy

wj(ti) = cij for j = 1, . . . , ni and i = 1, . . . , k. (4.17)
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Therefore, w meets conditions (1.27) for i = 1, . . . , k and �i = 0, . . . , ni. By Theo-
rem 4.1, conditions (4.16) guarantee that the boundary generalized Schwarz-Pick
matrix Pw

n (t) exists and that

‖F̃wx‖2Hw = x∗Pw
n (t)x for every x ∈ CN , (4.18)

where F̃w is the 2 × N matrix function defined in (4.4). By Theorem 2.4, Pw
n (t)

is represented in terms of the boundary limits (2.12) by formulas (2.15)–(2.18).
Equalities (4.17) along with definitions (3.8) and (3.16) of M and Mw show that
the two latter matrices are equal and thus Fw ≡ F̃w, by (4.4) and (4.7). Now
combining (4.18) and (4.15) gives Pw

n (t) ≤ P which implies inequalities for the
diagonal blocks

Pw
ii ≤ Pii (i = 1, . . . , k). (4.19)

Since dw,ni(ti) and γi are (the lower) diagonal entries in Pw
ii and Pii, respectively,

the latter inequality implies (1.28).
By Theorems 3.1 and 3.3, the matrices P and Pw

n (t) possess the Stein iden-
tities (3.9) and (3.15), respectively; since M = Mw, the matrix P̃ := P − Pw

n (t)
satisfies the homogeneous Stein identity

P̃ − T ∗P̃T = 0.

By the diagonal structure (3.6) of T and in view of (4.19) we have for the diagonal
blocks P̃ii of P̃ ,

P̃ii − T ∗
i P̃iiTi = 0 and P̃ii ≥ 0 (i = 1, . . . , k). (4.20)

By the Jordan structure (3.6) of Ti, it follows from (4.20) that P̃ii is necessarily
of the form

P̃ii = Pii −Pw
ii =

⎡⎢⎣ 0 . . . 0
...

. . .
...

0 . . . δi

⎤⎥⎦ with δi ≥ 0 (4.21)

(for a simple proof see, e.g., [6, Corollary 10.7]). On the other hand, by the repre-
sentations (2.16) and (3.2),

Pw
ii = HiiΨni(ti)W

∗
i and Pii = HiiΨni(ti)W

∗
i

and since by (4.17), Wi = Wi (which is readily seen from the definitions (2.17)
and (3.3)), we conclude that

Pii −Pw
ii = (Hii −Hii)Ψni(ti)W

∗
i .

Combining the last equality with (4.22) gives

Hii −Hii =

⎡⎢⎣ 0 . . . 0
...

. . .
...

0 . . . δi

⎤⎥⎦ (Ψni(ti)W
∗
i )−1

. (4.22)
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Since |ci,0| = 1, it is seen from definitions (1.6) and (3.3) that the matrix Ψni(ti)W
∗
i

is upper triangular and invertible and that its lower diagonal entry equals

gi := (−1)nit2ni+1
i c∗i,0. (4.23)

Therefore, the inverse matrix (Ψni(ti)W ∗
i )−1 is upper triangular with the lower

diagonal entry equal g−1
i so that the matrix on the right-hand side in (4.22) has all

the entries equal to zero except the lower diagonal entry which is equal to δig
−1
i .

Taking into account the definitions (2.19) and (3.4) we write (4.22) more explicitly
as

[ci,j+k+1 − wj+k+1(ti)]
ni

j,k=0 =

⎡⎢⎣ 0 . . . 0
...

. . .
...

0 . . . δig
−1
i

⎤⎥⎦ .

Upon equating the corresponding entries in the latter equality we arrive at

wj(ti) = ci,j (j = 1, . . . , 2ni)

and
ci,2ni+1 − w2ni+1(ti) = δig

−1
i .

The first line (together with (4.17)) proves (1.27). The second one can be written
as

(ci,2ni+1 − w2ni+1(ti)) gi = δi ≥ 0,

which implies (1.28), due to (4.23). In the case when equality (4.10) holds, we get
from (4.21) that δi = 0 for i = 1, . . . , k and, therefore, that w is a solution of
Problem 1.3 (or equivalently, of Problem 1.2). �

We recall now briefly the setting of the Abstract Interpolation Problem AIP
(in a generality we need) for the Schur class S(E , E∗) of functions analytic on D
whose values are contractive operators mapping a Hilbert space E into another
Hilbert space E∗. The data of the problem consists of Hilbert spaces E , E∗ and X ,
a positive semidefinite linear operator P on X , an operator T on X such that the
operator (I − zT ) has a bounded inverse at every point z ∈ D except for a finitely
many points, and two linear operators M : X → E and E : X → E∗ satisfying
the identity

P − T ∗PT = E∗E −M∗M. (4.24)

Definition 4.4. A function w ∈ S(E , E∗) is said to be a solution of the AIP with
the data

{P, T, E, M} (4.25)
subject to above assumptions, if the function

(Fwx)(t) :=
[

IE∗ w(t)
w(t)∗ IE

] [
E

−M

]
(I− tT )−1

x (4.26)

belongs to the space Hw and

‖Fwx‖Hw ≤ ‖P
1
2 x‖X for every x ∈ X.



The Higher Order Carathéodory–Julia Theorem 81

The main conclusion of this section is that Problem 1.5 can be included into
the AIP upon specifying the data in (4.24) in terms of the data (1.25) of Problem
1.5. Let X = CN and E = E∗ = C and let us identify the matrices P , T , E and
M defined in (3.1)–(3.8) with operators acting between the corresponding finite
dimensional spaces. For T of the form (3.6), the operator (I− tT )−1 is well defined
on X for all t ∈ T \ {t1, . . . , tk}. Also we note that when X = CN ,

‖P 1
2 x‖2X = x∗Px.

Now Theorems 4.2 and 4.3 lead us to the following result.

Theorem 4.5. Let the matrices P , T , E and M be given by (3.1)–(3.8) and let
conditions (4.9) be satisfied. Then a Schur function w is a solution of Problem 1.5
if and only if it is a solution of the AIP with the data (4.25).

Corollary 4.6. Conditions P ≥ 0 and |ci,0| = 1 for i = 1, . . . , k are necessary and
sufficient for Problem 1.5 to have a solution.

Proof. Necessity of the conditions was proved in Theorem 4.2. Sufficiency follows
from Theorem 4.5 and from a general result [11] stating that AIP always has a
solution. �

5. On the Abstract Interpolation Problem (AIP)

In this section we recall some results on the AIP formulated in Definition 4.4.
Then in the next section we will specify these results for the setting of Problem
1.5, when X = CN , E = E∗ = C and operators T , E, M and P ≥ 0 are just
matrices defined in terms of the data of Problem 1.5 via formulas (3.1)–(3.8). In
this section they are assumed to be operators satisfying the Stein identity (4.24)
for every x ∈ X . This identity means that the formula

V :
[

P
1
2 x

Mx

]
→
[

P
1
2 Tx
Ex

]
, x ∈ X, (5.1)

defines a linear map that can be extended by continuity to an isometry V acting
from

DV = Clos
{[

P
1
2 x

Mx

]
, x ∈ X

}
⊆ [X ]⊕ E (5.2)

onto

RV = Clos
{[

P
1
2 Tx
Ex

]
, x ∈ X

}
⊆ [X ]⊕ E∗, (5.3)

where [X ] = Clos{P
1
2 X}. One of the main results concerning the AIP is the

characterization of the set of all solutions in terms of minimal unitary extensions
of V: let H be a Hilbert spaces containing [X ] and let

U : H⊕ E → H⊕ E∗ (H ⊃ X) (5.4)
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be a unitary operator such that U|DV = V and having no nonzero reducing
subspaces in H� [X ]. Then the characteristic function of U defined as

w(z) = PE∗U (I − zPHU)−1 |E (z ∈ D) (5.5)

is a solution of the AIP and all the solutions to the AIP can be obtained in this
way.

A parametrization of all the solutions can be obtained as follows: introduce
the defect spaces

∆ :=
[

[X ]
E

]
�DV and ∆∗ :=

[
[X ]
E∗

]
�RV (5.6)

and let ∆̃ and ∆̃∗ be isomorphic copies of ∆ and ∆∗, respectively, with unitary
identification maps

i : ∆→ ∆̃ and i∗ : ∆∗ → ∆̃∗.

Define a unitary operator U0 from DV ⊕∆⊕ ∆̃∗ onto RV ⊕∆∗ ⊕ ∆̃ by the rule

U0|DV = V, U0|∆ = i, U0|∆̃∗ = i−1
∗ . (5.7)

This operator is called the universal unitary colligation associated to the Stein
identity (4.24). Since DV ⊕ ∆ = [X ] ⊕ E and RV ⊕ ∆∗ = [X ] ⊕ E∗, we can
decompose U0 defined by (5.7) as

U0 =

⎡⎣ U11 U12 U13

U21 U22 U23

U31 U32 0

⎤⎦ :

⎡⎣ [X ]
E

∆̃∗

⎤⎦→
⎡⎣ [X ]
E∗
∆̃

⎤⎦ . (5.8)

Note that U33 = 0, since (by definition (5.7)) for every δ̃∗ ∈ ∆̃∗, the vector U0δ∗
belongs to ∆∗, which is a subspace of [X ]⊕ E∗ and therefore is orthogonal to ∆̃.
The characteristic function of U0 is defined as

S(z) = PE∗⊕∆̃U0

(
I − zP[X]U0

)−1 |E⊕∆̃∗ (z ∈ D), (5.9)

where PE∗⊕∆̃ and P[X] are the orthogonal projections of the space [X ] ⊕ E∗ ⊕ ∆̃
onto E∗ ⊕ ∆̃ and [X ], respectively. Upon substituting (5.8) into (5.9) we get a
representation of the function S in terms of the block entries of U0:

S(z) =
[

s0(z) s2(z)
s1(z) s(z)

]
(5.10)

=
[

U22 U23

U32 0

]
+ z

[
U21

U31

]
(In − zU11)

−1 [ U12 U13

]
.

The next theorem was proved in [11].

Theorem 5.1. Let S be the characteristic function of the universal unitary colliga-
tion partitioned as in (5.10). Then all the solutions w of the AIP are parametrized
by the formula

w(z) = s0(z) + s2(z) (1− E(z)s(z))−1 E(z)s1(z), (5.11)
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where E runs over the Schur class S(∆̃, ∆̃∗).

Since S is the characteristic function of a unitary colligation, it belongs to the
Schur class S(E ⊕ ∆̃∗, E∗ ⊕ ∆̃) (see [18], [1], [2]) and therefore one can introduce
the corresponding de Branges–Rovnyak space HS as it was explained in Section 2.
The next result about realization of a unitary colligation in a function model space
goes back to M. Livsits, B. Sz.-Nagy, C. Foias, L. de Branges and J. Rovnyak. In
its present formulation it appears in [11]–[15].

Theorem 5.2. Let U0 be a unitary colligation of the form (5.8) and let S be its
characteristic function defined in (5.9). Then the transformation FU0 defined as

(FU0 [x]) (z) =
[ (
F+

U0
[x]
)
(z)(

F−
U0

[x]
)
(z)

]
:=

[
PE∗⊕∆̃U0

(
I − zP[X]U0

)−1 [x]
z̄PE⊕∆̃∗U

∗
0

(
I − z̄P[X]U∗

0

)−1 [x]

]
(5.12)

maps [X ] onto the de Branges–Rovnyak space HS and is a partial isometry.

The transformation FU0 is called the Fourier representation of the space
[X ] associated with the unitary colligation U0. Note that the last theorem does
not assume any special structure for U0. However, if U0 is the universal unitary
colligation (5.7) associated to the partially defined isometry V given in (5.1), then
FU0 can be expressed in terms of P , T , E and M . The formulation of the following
theorem can be found (in a more general setting) in [12], [15]; the proof is contained
in [13]. We reproduce it here since the source is hardly available.

Theorem 5.3. Let U0 be the universal unitary colligation (5.7) associated to the
isometry V given by (5.1) and let S be its characteristic function given by (5.9).
Then

(
FU0P

1
2 x
)

(t) =
[

IE∗⊕∆̃ S(t)
S(t)∗ IE⊕∆̃∗

]⎡⎢⎢⎣
E(I − tT )−1

0
−M(I − tT )−1

0

⎤⎥⎥⎦x (5.13)

for almost every point t ∈ T and for every x ∈ X.

Proof. We will verify (5.13) for “plus” and “minus” components separately, i.e.,
we will verify the relations(

F+
U0

P
1
2 x
)

(t) =
([

E
0

]
− S(t)

[
M
0

])
(I − tT )−1x,(

F−
U0

P
1
2 x
)

(t) =
(
S(t)∗

[
E
0

]
−
[

M
0

])
(I − tT )−1x,

which are equivalent (upon analytic and conjugate-analytic continuations inside
D, respectively) to(

F+
U0

P
1
2 x
)

(z) =
([

E
0

]
− S(z)

[
M
0

])
(I − zT )−1x, (5.14)(

F−
U0

P
1
2 x
)

(z) = z̄

(
S(z)∗

[
E
0

]
−
[

M
0

])
(z̄I − T )−1x. (5.15)
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To prove (5.14), we pick an arbitrary vector

v =

⎡⎣ y
e
δ∗

⎤⎦ ∈
⎡⎣ [X ]

E
∆̃∗

⎤⎦
and note that by definitions (5.9) and (5.12),

PE∗⊕∆̃U0

(
I − zP[X]U0

)−1

⎡⎣ y
e
δ∗

⎤⎦ =
(
F+

U0
y
)
(z) + S(z)

[
e
δ∗

]
. (5.16)

Introduce the vector

v′ =

⎡⎣ y′

e′

δ′∗

⎤⎦ :=
(
I − zP[X]U0

)−1

⎡⎣ y
e
δ∗

⎤⎦
so that

(
I − zP[X]U0

)
v′ = v. Comparing the corresponding components in the

latter equality we conclude that e = e′, δ∗ = δ′∗ and

y = y′ − zP[X]U0

⎡⎣ y′

e′

δ′∗

⎤⎦ = y′ − zP[X]U0

⎡⎣ y′

e
δ∗

⎤⎦ , (5.17)

so that

v′ =

⎡⎣ y′

e
δ∗

⎤⎦ =
(
I − zP[X]U0

)−1

⎡⎣ y
e
δ∗

⎤⎦ . (5.18)

Substituting (5.17) and (5.18), respectively into the right- and the left-hand side
expressions in (5.16) we arrive at

PE∗⊕∆̃U0

⎡⎣ y′

e
δ∗

⎤⎦ =
(
F+

U0
y′) (z)− z

⎛⎝F+
U0

P[X]U0

⎡⎣ y′

e
δ∗

⎤⎦⎞⎠ (z) + S(z)
[

e
δ∗

]
.

(5.19)
Since the vector v is arbitrary and I − zP[X]U0 is invertible, it follows by (5.17),
that v′ can be chosen arbitrarily in (5.19) . Fix a vector x ∈ X and take

v′ =

⎡⎣ y′

e
δ∗

⎤⎦ =

⎡⎣ P
1
2 x

Mx
0

⎤⎦ . (5.20)

Then, by definition (5.7) of U0 and definition (5.1) of V,

U0

⎡⎣ P
1
2 x

Mx
0

⎤⎦ =

⎡⎣ P
1
2 Tx
Ex
0

⎤⎦ (5.21)
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and thus,

P[X]U0

⎡⎣ P
1
2 x

Mx
0

⎤⎦ = P
1
2 Tx and PE∗⊕∆̃U0

⎡⎣ P
1
2 x

Mx
0

⎤⎦ =
[

Ex
0

]
.

Plugging the two last relations and (5.20) into (5.19) we get[
Ex
0

]
=
(
F+

U0
P

1
2 x
)

(z)− z
(
F+

U0
P

1
2 Tx

)
(z) + S(z)

[
Mx
0

]
.

By linearity of F+
U0

, we have[
Ex
0

]
=
(
F+

U0
P

1
2 (I − zT )x

)
(z) + S(z)

[
Mx
0

]
and, upon replacing x by (I − zT )x, we rewrite the last relation as[

E
0

]
(I − zT )−1x =

(
F+

U0
P

1
2 x
)

(z) + S(z)
[

M
0

]
(I − zT )−1x,

which is equivalent to (5.14). The proof of (5.15) is quite similar: we start with an
arbitrary vector

v =

⎡⎣ y
e∗
δ

⎤⎦ ∈
⎡⎣ [X ]
E∗
∆̃

⎤⎦
and note that by definitions (5.9) and (5.12),

z̄PE⊕∆̃∗U
∗
0

(
I − z̄P[X]U∗

0

)−1

⎡⎣ y
e∗
δ

⎤⎦ =
(
F−

U0
y
)
(z) + z̄S(z)∗

[
e∗
δ

]
. (5.22)

Then we introduce the vector

v′ :=

⎡⎣ y′

e′∗
δ′

⎤⎦ =
(
I − z̄P[X]U∗

0

)−1

⎡⎣ y
e∗
δ

⎤⎦ (5.23)

and check that

e′∗ = e∗, δ′ = δ, y = y′ − z̄P[X]U
∗
0

⎡⎣ y′

e∗
δ

⎤⎦ , (5.24)

which allows us to rewrite (5.22) as

z̄PE⊕∆̃∗U
∗
0

⎡⎣ y′

e∗
δ

⎤⎦ =
(
F−

U0
y′) (z)− z̄

⎛⎝F−
U0

P[X]U∗
0

⎡⎣ y′

e∗
δ

⎤⎦⎞⎠ (z)+ z̄S(z)∗
[

e∗
δ

]
.

(5.25)
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By the same arguments as above, v′ can be chosen arbitrarily in [X ]⊕E∗⊕ ∆̃ and
we let

v′ =

⎡⎣ y′

e
δ∗

⎤⎦ =

⎡⎣ P
1
2 Tx
Ex
0

⎤⎦ , x ∈ X. (5.26)

Since U0 is unitary, it follows from (5.21) that

U0
∗

⎡⎣ P
1
2 Tx
Ex
0

⎤⎦ =

⎡⎣ P
1
2 x

Mx
0

⎤⎦
and thus,

P[X]U∗
0

⎡⎣ P
1
2 Tx
Ex
0

⎤⎦ = P
1
2 x and PE⊕∆̃∗U

∗
0

⎡⎣ P
1
2 Tx
Ex
0

⎤⎦ =
[

Mx
0

]
.

Plugging the two last relations and (5.26) into (5.25) we get

z̄

[
Mx
0

]
=
(
F−

U0
P

1
2 Tx

)
(z)− z̄

(
F−

U0
P

1
2 x
)

(z) + z̄S(z)∗
[

Ex
0

]
.

By linearity of F−
U0

, we have

z̄

[
Mx
0

]
=
(
F−

U0
P

1
2 (T − z̄I)x

)
(z) + z̄S(z)∗

[
Ex
0

]
and, upon replacing x by (z̄I − T )−1x, we rewrite the latter relation as

z̄

[
M
0

]
(z̄I − T )−1 = −

(
F−

U0
P

1
2 x
)

(z) + z̄S(z)∗
[

E
0

]
(z̄I − T )−1,

which is equivalent to (5.15). �

6. Description of all solutions of Problem 1.5

Since Problem 1.5 is equivalent to the AIP with a specific choice of the data
(4.25), Theorem 5.1 gives, in fact, a parametrization of all solutions of Problem 1.5.
However, the fact that in the context of Problem 1.5, X = CN and E = E∗ = C,
and that the matrices P , T , E and M are of special structure (3.1)-(3.8), allow
us to rewrite the results from the previous section more transparently. We assume
that the necessary conditions (4.9) for Problem 1.5 to have a solution are in force.
Then P satisfies the Stein identity

P + M∗M = T ∗PT + E∗E (6.1)

(by Theorem 3.1) which in turn, gives raise to the isometry

V :
[

P
1
2 x

Mx

]
→
[

P
1
2 Tx
Ex

]
, x ∈ CN
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that maps

DV = Ran
[

P
1
2

M

]
⊆
[

[X ]
E

]
onto RV = Ran

[
P

1
2 T
E

]
⊆
[

[X ]
E∗

]
,

where [X ] = Ran P
1
2 . In the present context, the defect spaces (5.6)

∆ =
[

[X ]
E

]
�DV and ∆∗ =

[
[X ]
E∗

]
�RV

admit a simple characterization.

Lemma 6.1. If P is nonsingular, then

∆ = Span

[
−P

− 1
2 M∗

1

]
and ∆∗ = Span

[
−P

− 1
2 (T

−1
)∗E∗

1

]
. (6.2)

If P is singular, then ∆ = {0} and ∆∗ = {0}.

Proof. A vector
[

[x]
e

]
∈
[

[X ]
E

]
belongs to ∆ if and only if

< [x], P
1
2 y > + < e, My >= 0

for every y ∈ X, which is equivalent to

P
1
2 [x] + M∗e = 0. (6.3)

Equation (6.3) has a nonzero solution
[

[x]
e

]
if and only if the vector-column M∗

belongs to [X ]. If P is nonsingular, then [X ] = X , therefore M∗ ∈ [X ], and (6.3)
implies the first relation in (6.2). The second relation is proved quite similarly.

Let now P be singular. Then M∗ /∈ [X ]. Indeed assuming that M∗ ∈ Ran P
1
2

we get that Mx = 0 for every x ∈ KerP , which implies, in view of (6.1), that Tx ∈
KerP and Ex = 0 for every x ∈ KerP . In particular, KerP is T -invariant and
therefore, at least one eigenvector x0 of T belongs to KerP , and this vector must
satisfy Ex0 = 0. However, by definitions (3.6, (3.7) Ex0 �= 0 for every eigenvector
x0 of T . The contradiction means that M∗ /∈ [X ] and, therefore, equation (6.3) has
only zero solution, i.e., ∆ = {0} in case when P is singular. The result concerning
∆∗ is established in much the same way. �

Theorem 6.2. If P is singular, then Problem 1.5 has a unique solution

w0(z) = E
(
P̃ − zPT

)−1

M∗, (6.4)

(which is a finite Blaschke product of degree equal to rank P ), where

P̃ := P + M∗M = T ∗PT + E∗E. (6.5)

The inverse in (6.4) is well defined as an operator on X̃ = Ran P̃ .



88 V. Bolotnikov and A. Kheifets

Proof. By Lemma 6.1, if P is singular then DV = [X ] ⊕ E and RV = [X ] ⊕ E∗
where [X ] = RanP

1
2 . Therefore, the isometry V defined by (5.1), is already a

unitary operator from [X ]⊕E onto [X ]⊕E∗. Therefore, the solution is unique and
is given by the formula (5.5) with V and [X ] in place of U and H, respectively:

w0(z) = PE∗V
(
I − zP[X]V

)−1 |E (z ∈ D). (6.6)

Since dim[X ] < ∞, it follows that w0 is a finite Blaschke product of degree equal
to dim[X ] = rank P (see, e.g., [19]). It remains to derive the realization formula
(6.4) from (6.6).

Note that by definition of X̃, it is P̃ -invariant. Since P̃ is Hermitian, it is
invertible on its range X̃. In what follows, the symbol P̃−1 will be understood as
an operator on X̃ . We define the mappings

A =
[

P
1
2

M

]
: X̃ → [X ]⊕ E and B =

[
P

1
2 T
E

]
: X̃ → [X ]⊕ E∗.

Since
A∗A = B∗B = P̃ (6.7)

and since P̃ is invertible on X̃, both A and B are nonsingular on X̃. Since P is
singular, it follows (by the proof of Lemma 6.1) that M∗ /∈ [X ] and thus dim X̃ =
dim[X ] + 1. Therefore, A is a bijection from X̃ onto [X ]⊕ E and B is a bijection
from X̃ onto [X ]⊕E∗. Using (6.7), one can also write the formulas for the inverses

A−1 = P̃−1A∗ : [X ]⊕ E → X̃, B−1 = P̃−1B∗ : [X ]⊕ E∗ → X̃.

By definition (5.1), VA = B, which can be rephrased as V = BA−1 = BP̃−1A∗.
Plugging this in (6.6) we get (6.4):

w0(z) = PE∗ BP̃−1A∗
(
I − zP[X]BP̃−1A∗

)−1

|E

= PE∗ BP̃−1
(
I − zA∗P[X]BP̃−1

)−1

A∗|E

= PE∗ B
(
P̃ − zA∗P[X]B

)−1

A∗|E

= PE∗ B
(
P̃ − zPT

)−1

A∗|E

= E
(
P̃ − zPT

)−1

M∗.

All the inverses in the latter chain of equalities (except the first one) are understood
as operators on X̃. They exist, since the first inverse in this chain does, which, in
turn, is in effect since V is unitary. �

Theorem 6.3. If P is nonsingular, then the set of all solutions of Problem 1.5 is
parametrized by the formula

w(z) = s0(z) + s2(z) (1− E(z)s(z))−1 E(z)s1(z), (6.8)
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where the free parameter E runs over the Schur class S,

s0(z) = E(P̃ − zPT )−1M∗, (6.9)

s1(z) = α−1
(
1− zMT (P̃ − zPT )−1M∗

)
, (6.10)

s2(z) = β−1
(
1− zE(P̃ − zPT )−1(T−1)∗E∗

)
, (6.11)

s(z) = zα−1β−1MP−1P̃ (P̃ − zPT )−1(T−1)∗E∗, (6.12)

the matrix P̃ is given in (6.5) and α and β are positive numbers given by

α =
√

1 + MP−1M∗ and β =
√

1 + ET−1P−1(T−1)∗E∗. (6.13)

The matrix (P̃ − zPT ) is invertible for every z ∈ D in this case.

Proof. By Theorem 5.1, all the solutions of Problem 1.5 are parametrized by the
formula (6.8) where the coefficients s0, s1, s2 and s are the entries of the char-
acteristic function S of the universal unitary colligation U0. By Lemma 6.1, we
have dim ∆ = dim ∆∗ = 1. Since, by the very construction of the universal colli-
gation, ∆̃ and ∆̃∗ are isomorphic copies of ∆ and ∆∗, respectively, we have also
dim ∆̃ = dim ∆̃∗ = 1, and we will identify each of these two spaces with C. How-
ever, we will keep the notations ∆̃ and ∆̃∗ for the spaces so that not to mix them
up. Thus, in the present context, the characteristic function S of U0 is a 2 × 2
matrix-valued function and it remains to establish explicit formulas (6.9)–(6.12)
for its entries which are scalar-valued functions. First we will write relations (5.7)
defining the operator U0 : X ⊕ E ⊕ ∆̃∗ → X ⊕ E∗ ⊕ ∆̃ more explicitly. The first
relation in (5.7) can be written, by the definition (5.1) of V, as

U0

⎡⎣ P
1
2

M
0

⎤⎦ =

⎡⎣ P
1
2 T
E
0

⎤⎦ . (6.14)

By Lemma 6.1, the spaces ∆ and ∆∗ are spanned by the vectors

δ =

⎡⎣ −P
− 1

2 M∗

1
0

⎤⎦ ∈
⎡⎣ X
E

∆̃∗

⎤⎦ and δ∗ =

⎡⎣ −P
− 1

2 (T
−1

)∗E∗

1
0

⎤⎦ ∈
⎡⎣ X
E∗
∆̃

⎤⎦ ,

respectively. Note that

‖δ‖2 = 1 + MP−1M∗ and ‖δ∗‖2 = 1 + ET−1P−1(T−1)∗E∗. (6.15)

By the second relation in (5.7), the vector U0δ belongs to ∆̃ and therefore, it is
of the form

U0δ =

⎡⎣ 0
0
α

⎤⎦ (6.16)

where |α| = ‖δ‖, due to unitarity of U0. The latter equality and the first equality in
(6.15) imply that α �= 0. In fact, we can choose the identification map i : ∆→ ∆̃
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so that α will be as in (6.13). Equality (6.16) is an explicit form of the second
relation in (5.7). Similarly, the second identification map i∗ : ∆∗ → ∆̃∗ can be
chosen so that

U0

⎡⎣ 0
0
β

⎤⎦ = δ∗, (6.17)

where β is defined as in (6.13). Summarizing equalities (6.14), (6.16) and (6.17)
we conclude that U0 satisfies (and is uniquely determined by) the equation

U0A = B, (6.18)

where

A =

⎡⎣ P
1
2 −P− 1

2 M∗ 0
M 1 0
0 0 β

⎤⎦ and B =

⎡⎣ P
1
2 T 0 −P− 1

2 (T−1)∗E∗

E 0 1
0 α 0

⎤⎦
(6.19)

are operators from X ⊕ E ⊕ E∗ to X ⊕ E ⊕ ∆̃∗ and to X ⊕ E∗ ⊕ ∆̃, respectively.
Since U0 is unitary, it follows that A∗A = B∗B. We denote this matrix by P̂ and
a straightforward calculation shows that

P̂ := A∗A = B∗B =

⎡⎣ P̃ 0 0
0 |α|2 0
0 0 |β|2

⎤⎦ :

⎡⎣ X
E
E∗

⎤⎦→
⎡⎣ X
E
E∗

⎤⎦ . (6.20)

where P̃ is given in (6.5). Since P is nonsingular so is P̃ and since α �= 0 and
β �= 0, P̂ is nonsingular as well. Therefore, A and B are nonsingular. Now we
proceed as in the proof of Theorem 6.2: it follows from (6.18) and (6.20) that
U0 = BA−1 = BP̂−1A∗ which being substituted into (5.9) leads us (recall that
since P is nonsingular, [X ] = X = CN ) to

S(z) = PE∗⊕∆̃BP̂−1A∗
(
I − zPXBP̂−1A∗

)−1

|E⊕∆̃∗

=
[

0 I2

]
BP̂−1

(
I − zA∗PXBP̂−1

)−1

A∗
[

0
I2

]
(6.21)

=
[

E 0 1
0 α 0

](
P̂ − zA∗

[
IN 0
0 0

]
B

)−1
⎡⎣ M∗ 0

1 0
0 β

⎤⎦ ,

where I2 and IN are 2× 2 and N ×N unit matrices, respectively. The first inverse
in this chain of equalities exists for every z ∈ D since U0 is unitary, all the others
exist since the first one does. By (6.19) and (6.20),

P̂ − zA∗
[

IN 0
0 0

]
B =

⎡⎣ P̃ − zPT 0 z(T−1)∗E∗

zMT |α|2 −zMP−1(T−1)∗E∗

0 0 |β|2

⎤⎦ .
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Upon inverting the latter triangular matrix and plugging it into (6.21), we even-
tually get

S(z) =
[

s0(z) s2(z)
s1(z) s(z)

]

=

⎡⎣ ER(z)M∗ β−1
(
1− zER(z)(T−1)∗E∗)

α−1 (1− zMTR(z)M∗) zα−1β−1MP−1P̃R(z)(T−1)∗E∗

⎤⎦ ,

where R(z) =
(
P̃ − zPT

)−1

, which is equivalent to (6.9)–(6.12). �

In conclusion we will establish some important properties of the coefficient
matrix S constructed in Theorem 6.3.

Theorem 6.4. Let S =
[

s0 s2

s1 s

]
be the characteristic function of the universal

unitary colligation U0 defined in (6.19), (6.20). Then

1. The function s0 is a solution of Problem 1.2.
2. The function S(z) is a rational inner matrix-function of degree at most N .
3. The functions s1 and s2 have zeroes of multiplicity ni+1 at each interpolating

point ti and do not have other zeroes.

Proof. By Theorem 6.3, s0 is a solution of Problem 1.5 (corresponding to the
parameter E ≡ 0 in the parametrization formula (6.8)). Therefore, by Theorem 4.5,
Fs0x belongs to the space Hs0 for every x ∈ CN = X , where Hs0 is the de Branges–
Rovnyak space associated to the Schur function s0 and where

Fs0(t) :=
[

1 s0(t)
s0(t)∗ 1

] [
E

−M

]
(I− tT )−1

. (6.22)

Again, by Theorem 4.5, to show that s0 is a solution of Problem 1.2, it remains
to check that ‖Fs0x‖Hs0 = x∗Px. Letting for short

RT (t) := (I− tT )−1
, (6.23)

we note that by (6.22) and by definition of the norm in the de Branges-Rovnyak
space,

‖Fs0x‖2Hs0 =
〈[

1 s0

s∗0 1

] [
E

−M

]
RT x,

[
E

−M

]
RT x

〉
L2(C2)

. (6.24)
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By Theorems 5.2 and 5.3, the function

(
FU0P

1
2 x
)

(t) =
[

I2 S(t)
S(t)∗ I2

]⎡⎢⎢⎣
E
0

−M
0

⎤⎥⎥⎦RT (t)x (6.25)

=

⎡⎢⎢⎣
E − s0(t)M
−s1(t)M

s0(t)∗E −M
s2(t)∗E

⎤⎥⎥⎦ (I− tT )−1
x

belongs to HS for every vector x ∈ CN . Note that E (I− tT )−1
x �≡ 0, unless

x = 0. Indeed, letting

x =

⎡⎢⎣ x1

...
xk

⎤⎥⎦ , where xi =

⎡⎢⎣ xi,1

...
xi,ni

⎤⎥⎦ (i = 1, . . . , k), (6.26)

we get, on account of definitions (3.6) and (3.7) of T and E, that

E (I− tT )−1
x =

k∑
i=1

ni∑
j=0

tj

(1− tt̄i)j+1
xi,j �≡ 0 (6.27)

for every x �= 0, since the functions

tj

(1 − tt̄i)j+1
(i = 1, . . . , k; j = 0, . . . , ni)

are linearly independent (recall that all the points t1, . . . , tk are distinct).
Note also that s2 �≡ 0 (since s2(0) = β �= 0, by (6.11) and (6.13)) and

therefore,
s2(t)E (I− tT )−1

x �≡ 0
for every x ∈ X, x �= 0. It is seen from (6.25) that the latter function is the bottom
component of FU0P

1
2 x, which leads us to the conclusion that

FU0P
1
2 x �≡ 0 for every x �= 0.

The latter means that the linear map FU0 : [X ] → HS is a bijection. Since FU0

is a partial isometry (by Theorem 5.2), it now follows that this map is unitary,
i.e., that ∥∥∥FU0P

1
2 x
∥∥∥2

HS
=
∥∥∥P 1

2 x
∥∥∥2

X
= x∗Px. (6.28)

Furthermore,

∥∥∥FU0P
1
2 x
∥∥∥2

HS
=

〈[
I2 S
S∗ I2

]⎡⎢⎢⎣
E
0
−M

0

⎤⎥⎥⎦RT x,

⎡⎢⎢⎣
E
0
−M

0

⎤⎥⎥⎦RT x

〉
L2(C4)

,
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by (6.25) and virtue of formula (2.1) for the norm in HS. Upon taking advantage
of the zero entries in the last formula and the partition of the matrix S, we get

∥∥∥FU0P
1
2 x
∥∥∥2

HS
=

〈[
1 0 s0 s2

s∗0 s∗1 1 0

]⎡⎢⎢⎣
E
0
−M

0

⎤⎥⎥⎦RT x,

[
E
−M

]
RT x

〉
L2(C2)

=
〈[

1 s0

s∗0 1

] [
E

−M

]
RT x,

[
E

−M

]
RT x

〉
L2(C2)

. (6.29)

Comparing (6.24) and (6.29) and taking into account (6.28) we arrive at

‖Fs0x‖Hs0 =
∥∥∥FU0P

1
2 x
∥∥∥

HS
= x∗Px,

which proves the first assertion of the theorem. The second assertion follows since

dimX = N =
k∑

i=0

(ni + 1) <∞ (see, e.g., [19]).

To prove the last assertion, we use (6.25) for x in the form (6.26) with the
only nonzero entry xi,ni = 1. For this choice of x we have by definitions (3.6)–(3.8)
of T , E and N ,

E(I − tT )−1x =
tni

(1− tt̄i)ni+1
and M(I − tT )−1x =

ci(t)
(1 − tt̄i)ni+1

where

ci(t) =
ni∑

�=0

tni−�(1− tt̄i)�c∗i,�. (6.30)

Now we conclude from (6.25) that

s1(t)ci(t)
(1 − tt̄i)ni+1

∈ H+
2 and

tnis2(t)∗

(1 − tt̄i)ni+1
= t̄

s2(t)∗

(t̄− t̄i)ni+1
∈ H−

2 . (6.31)

By (6.30), ci(ti) = tni

i c∗i,0 �= 0 and thus, the first condition in (6.31) implies that
s1 has the zero of multiplicity at least ni + 1 at ti. The second condition in (6.31)
is equivalent to

s2(t)
(t− ti)ni+1

∈ H+
2

which implies that s2 has zero of multiplicity at least ni + 1 at ti. On the other

hand, since s1 and s2 are rational functions of degree at most N =
k∑

i=0

(ni + 1)

(the second assertion of this theorem) and since they do not vanish identically (by
the proof of the first assertion of this theorem), they can not have more than N
zeroes. Therefore, they have zeroes of multiplicities ni + 1 at ti for i = 1, . . . , k
and they do not have other zeroes. �

Some consequences of Theorem 6.4 needed in the next section are proved in
the following lemma.
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Lemma 6.5. Let S =
[

s0 s2

s1 s

]
be as in Theorem 6.4. Then |s(ti)| = 1,

s
(ni+1)
1 (ti)
(ni + 1)!

= lim
z→ti

s1(z)
(z − ti)ni+1

�= 0,
s
(ni+1)
2 (ti)
(ni + 1)!

= lim
z→ti

s2(z)
(z − ti)ni+1

�= 0,

(6.32)
and

s
(ni+1)
2 (ti)∗ = (−1)nit2ni+2

i s(ti)∗s
(ni+1)
1 (ti)ci,0

∗ . (6.33)

Proof. By the third assertion of Theorem 6.4, the rational functions s1 and s2

have zeros of multiplicity ni + 1 at ti. This implies (6.32). By the second assertion
of Theorem 6.4, the matrix-function S is inner and rational. In particular, it is
unitary at ti ∈ T and therefore, |s2(ti)|2 + |s(ti)|2 = 1 which implies |s(ti)| = 1,
since s2(ti) = 0. Furthermore, by the reflection principle, S(1/z̄)∗S(z) ≡ I2, or in
more detail, [

s0(1/z̄)∗ s1(1/z̄)∗

s2(1/z̄)∗ s(1/z̄)∗

] [
s0(z) s2(z)
s1(z) s(z)

]
=
[

1 0
0 1

]
.

In particular,

s2(1/z̄)∗s0(z) + s(1/z̄)∗s1(z) = 0. (6.34)

To verify (6.33), we note first that by the first relation in (6.32),

lim
z→ti

s(1/z̄)∗s1(z)
(z − ti)ni+1

=
s(ti)∗s

(ni+1)
1 (ti)

(ni + 1)!
. (6.35)

Since |ti| = 1, the second relation in (6.32) gives

s
(ni+1)
2 (ti)
(ni + 1)!

= lim
z→ti

s2(z̄−1)
(z̄−1 − ti)ni+1

,

which is equivalent, on account of z̄−1 − ti = − z̄−t̄i

z̄t̄i
, to

s
(ni+1)
2 (ti)
(ni + 1)!

= lim
z→ti

(−z̄t̄i)ni+1s2(z̄−1)
(z̄ − t̄i)ni+1

= (−1)ni+1t̄2ni+2
i lim

z→ti

s2(z̄−1)
(z̄ − t̄i)ni+1

.

Upon taking adjoints in the latter equality we get

lim
z→ti

s2(z̄−1)∗

(z − ti)ni+1
= (−1)ni+1 t̄2ni+2

i

s
(ni+1)
2 (ti)∗

(ni + 1)!

and, since s0(ti) = ci,0 (recall that s0 is a solution of Problem 1.2), we have also

lim
z→ti

s2(z̄−1)∗s0(z)
(z − ti)ni+1

= (−1)ni+1t̄2ni+2
i

s
(ni+1)
2 (ti)∗

(ni + 1)!
ci,0. (6.36)



The Higher Order Carathéodory–Julia Theorem 95

Now upon multiplying (6.34) by
(ni + 1)!

(z − ti)ni+1
and passing to limits as z → ti, we

arrive, on account of (6.35) and (6.36), at the equality

s(ti)∗s
(ni+1)
1 (ti) + (−1)ni+1 t̄2ni+2

i s
(ni+1)
2 (ti)∗ci,0 = 0,

which is equivalent to (6.33), since |ci,0| = |ti| = 1. �

7. Boundary interpolation problem with equality

In this section we establish a parametrization of all solutions of Problem 1.2. Recall
that all solutions w of Problem 1.5 are parametrized by the linear fractional formula
(6.8) with the free Schur class parameter E . Thus, for every function w of the form
(6.8), we have

δw,i := γi − dw,ni(ti) ≥ 0 (i = 1, . . . , k).

Theorem 7.4 below will present the explicit formula for the gaps δw,i in terms of the
parameter E leading to w via formula (6.8). As a consequence of this formula we
will get a characterization of all the parameters E , leading to functions w with zero
gaps, i.e., to solutions of Problem 1.2. We start with some needed preliminaries.
The proof of the first lemma can be found in [22] for the case when n = 0. For the
case n > 0 the proof was given in [6] using pretty much the same ideas.

Lemma 7.1. Let w be a function analytic in some nontangential neighborhood of a
point t0 ∈ T and let w0, . . . , w2n+1 be complex numbers. Then equality

lim
z→t0

w(z)− w0 − (z − t0)w1 − . . .− (z − t0)2nw2n

(z − t0)2n+1
= w2n+1

holds if and only if the nontangential limits lim
z→t0

w(j)(z)
j!

exist and equal wj for

j = 0, . . . , 2n + 1.

With every triple (ω, t0, b) consisting of a Schur function ω ∈ S, of a point
t0 ∈ T and a number b ∈ C, we associate the quantity

Dω,b(t0) :=
∫

T

1
|1− tt0|2

[
1 −b

] [ 1 ω(t)
ω(t)∗ 1

] [
1
−b∗

]
m(dt)

=
∫

T

( ∣∣∣∣1− ω(t)b
1− tt0

∣∣∣∣2 + |b|2 1− |ω(t)|2
|1− tt0|2

)
m(dt) (7.1)

=
∫

T

( ∣∣∣∣ω(t)− b

t− t0

∣∣∣∣2 +
1− |ω(t)|2
|t− t0|2

)
m(dt),

where m(dt) is the normalized Lebesgue measure on T. It follows from the very
definition that

0 ≤ Dω, b(t0) ≤ ∞.
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The next theorem (which is a variation of the classical Julia-Carathéodory The-
orem and can be mostly found in [22]) characterizes the cases when Dω,b(t0) is
zero, positive or infinite.

Theorem 7.2. Let ω ∈ S, t0 ∈ T, b ∈ C and let Dω, b(t0) be defined as in (7.1).
Then:

1. Dω,b(t0) <∞ if and only if

lim inf
z→t0

1− |ω(z)|2
1− |z|2 <∞ and lim

z→t0
ω(z) = b, (7.2)

where the second limit is understood as nontangential. In this case |b| = 1.
2. Dω,b(t0) =∞ if and only if either

lim inf
z→t0

1− |ω(z)|2
1− |z|2 = ∞,

or the function ω fails to have a nontangential limit b at t0.
3. Dω,b(t0) = 0 if and only if ω(z) ≡ b and |b| = 1.
4. If |b| ≤ 1, then the equality

lim
z→t0

1− ω(z)b∗

1− zt0
= Dω,b(t0) (7.3)

holds where the limit is understood as nontangential.

Proof. Let Hω be the de Branges-Rovnyak space associated to the Schur class
function ω and let us consider the function

Kt0,b(t) =
[

1 ω(t)
ω(t)∗ 1

] [
1
−b∗

]
1

1− tt0
=
[

Kt0,b,+(t)
Kt0,b,−(t)

]
(7.4)

where

Kt0,b,+(t) =
1− ω(t)b∗

1− tt0
and Kt0,b,−(t) = t

ω(t)− b∗

t− t0
. (7.5)

By formula (2.1),

‖Kt0,b‖2Hω =
〈[

1 ω(t)
ω(t)∗ 1

] [
1
−b∗

]
1

1− tt0
,

[
1
−b∗

]
1

1− tt0

〉
L2⊕L2

which is equal to the first integral in (7.1). Therefore, Dω,b(t0) < ∞ if and only if
Kt0,b belongs to Lω, and in this case,

Dω,b(t0) = ‖Kt0,b‖2Lω . (7.6)

On the other hand, if Dω, b(t0) < ∞, then it follows from the second form of
Dω,b(t0) in (7.1) that∫

T

∣∣∣∣1− ω(t)b∗

1− tt0

∣∣∣∣2 m(dt) <∞, i.e., that Kt0,b,+(t) =
1− ω(t)b∗

1− tt0
∈ L2.

Since 1− tt0 is an outer function, it follows, by Smirnov’s maximum principle [23],
that Kt0,b,+ ∈ H+

2 . Similarly, it follows from the third representation of Dω,b(t0) in
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(7.1) that Kt0,b,− ∈ H−
2 . Therefore, Kt0,b belongs to Hω by Definition 2.1. Thus,

we have shown that

Dω,b(t0) <∞ ⇐⇒ Kt0,b ∈ Lω ⇐⇒ Kt0,b ∈ Hω.

Now the first assertion of the lemma follows from Theorem 2.3 (the case when
n = 0): the function Kt0,b of the form (7.4) belongs to Hω if and only if conditions
in (7.2) are satisfied. In this case |b| = 1, since

1− |b|2 = lim
z→t0

(1− |ω(z)|2) = lim
z→t0

1− |ω(z)|2
1− |z|2 (1− |z|2) = 0.

The second assertion is simply the formal negation of the first one. To prove the
third assertion, we observe that Dω,b(t0) = 0 if and only if[

1 −b
] [ 1 ω(t)

ω(t)∗ 1

] [
1
−b∗

]
= 0

almost everywhere on T, which occurs if and only if[
1 −b

] [ 1 ω(t)
ω(t)∗ 1

]
= 0

almost everywhere on T. The latter equality collapses to ω(t)− b = 1− bω(t)∗ = 0
which implies the requisite.

The proof of the fourth assertion splits up into three cases.

Case 1: Let Dω, b(t0) < ∞. Then by the first statement, conditions (7.2) are
satisfied. Then by Theorem 2.2, the kernels

Kz(t) =
[

1 ω(t)
ω(t)∗ 1

] [
1

−ω(z)∗

]
1

1− tz

converge to Kt0, b in norm of Hω:

Kz
Hw

−→ Kt0, b, (7.7)

as z → t0 nontangentially. By the reproducing property (2.3) (for j = 0),

〈f, Kz〉Hω = f+(z) for every f =
[

f+

f−

]
∈ Hω. (7.8)

Then, upon making subsequent use of (7.6), (7.7), (7.8) and of the explicit formula
(7.5) for Kt0,b,+, we get (7.3):

Dω, b(t0) = ‖Kt0, b‖2Hω = lim
z→t0

〈Kt0, b, Kz〉Hω

= lim
z→t0

Kt0,b,+(z) = lim
z→t0

1− ω(z)b∗

1− zt0
. (7.9)

Case 2: Let Dω, b(t0) = ∞ and lim inf
z→t0

1− |ω(z)|2
1− |z|2 < ∞.
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The second assumption guarantees (by Theorem 2.3), that there exists the
nontangential limit ω(t0) = lim

z→t0
ω(z) and that the function Kt0,ω(t0) defined via

(7.4), belongs to Hω. Then by virtue of (7.9), we have

lim
z→t0

1− ω(z)ω(t0)∗

1− zt0
= Dω,ω(t0)(t0) = ‖Kt0,ω(t0)‖2Hω <∞.

Since Dω,b(t0) = ∞, it follows that b �= ω(t0). It remains to note that (7.3) again
holds since

lim
z→t0

1− ω(z)b∗

1− zt0
= lim

z→t0

1− ω(z)ω(t0)∗ + ω(z)(b∗ − ω(t0)∗)
1− zt0

= ∞.

Case 3: Let Dω, b(t0) = ∞ and lim inf
z→t0

1− |ω(z)|2
1− |z|2 = ∞. Since

2�(1− ω(z)b∗ = (1 − ω(z)b∗) + (1− bω(z)∗)
= |1− ω(z)b∗|2 + 1− |b|2|ω(z)|2 ≥ 1− |b|2|ω(z)|2,

it follows that if |b| ≤ 1, then

|1− ω(z)b∗| ≥ �(1− ω(z)b∗) ≥ 1
2
(1− |ω(z)|2). (7.10)

Furthermore, for every z in the following nontangential neighborhood

Γa(t0) = {z ∈ D : |t0 − z| < a(1− |z|)} , a > 1,

of t0, we have
1− |z|2
|1− zt̄0|

≥ 1− |z|
|1− zt̄0|

>
1
a

which together with (7.10) leads us to∣∣∣∣1− ω(z)b∗

1− zt0

∣∣∣∣ ≥ 1
2

1− |ω(z)|2
|1− zt̄0|

=
1
2

1− |ω(z)|2
1− |z|2 · 1− |z|2

|1− zt̄0|
>

1
2a

1− |ω(z)|2
1− |z|2 .

Therefore,

lim
z→t0

1− ω(z)b∗

1− zt0
=∞ = Dω,b(t0),

which completes the proof of the theorem. �

Corollary 7.3. If a Schur function ω is analytic in a neighborhood of t0 ∈ T and
|ω(t0)| = 1, then Dω, ω(t0)(t0) < ∞. In particular, Dω, ω(t0)(t0) < ∞ for every
rational ω ∈ S with |ω(t0)| = 1.

Proof. If w meets the assumed properties, then the limit

lim
z→t0

1− ω(z)ω(t0)
1− zt0

= lim
z→t0

(
ω(t0)− ω(z)

t0 − z

)
ω(t0)

t0
= ω′(t0)

ω(t0)
t0

is finite, then, by the fourth assertion in Lemma 7.2, Dω, ω(t0)(t0) < ∞. �
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The next theorem presents an explicit formula for the gap γi − dw,ni(ti) for
any solution w of Problem 1.5. Recall that by Theorem 6.3, all solutions of Problem
1.5 are parametrized by formula (6.8).

Theorem 7.4. Let w be a solution of Problem 1.5, i.e., a function of the form (6.8),

w(z) = s0(z) + s2(z) (1− E(z)s(z))−1 E(z)s1(z) (7.11)

with a parameter E ∈ S. Then for i = 1, . . . , k,

γi − dw,ni(ti) =
1

((ni + 1)!)2
· |s(ni+1)

2 (ti)|2
DE,s(ti)∗(ti) + Ds,s(ti)(ti)

, (7.12)

where DE,s(ti)∗(ti) and Ds,s(ti)(ti) are defined according to (7.1).

Proof. Since w is a solution of Problem 1.5 and therefore satisfies conditions (1.26)–
(1.28), it follows by Lemma 7.1 that

w2ni+1(ti) = lim
z→ti

w(z)− ci,0 − (z − ti)ci,1 − . . .− (z − ti)2nci,2ni

(z − ti)2ni+1

for i = 1, . . . , k. Since s0 is a solution of Problem 1.2 (by the first statement in
Theorem 6.4), we have (again by Lemma 7.1)

ci,2ni+1 = lim
z→ti

s0(z)− ci,0 − (z − ti)ci,1 − . . .− (z − ti)2nci,2ni

(z − ti)2ni+1
.

Now it follows from the two latter equalities that

ci,2ni+1 − w2ni+1(ti) = lim
z→ti

s0(z)− w(z)
(z − ti)2ni+1

,

which being substituted into (1.24), leads us to to

γi − dw,ni(ti) = (−1)nit2ni+1
i lim

z→ti

s0(z)− w(z)
(z − ti)2ni+1

ci,0
∗.

Substituting (7.11) into the latter equality gives

γi − dw,ni(ti) = −(−1)nit2ni+1
i lim

z→ti

s2(z)(1− E(z)s(z))−1E(z)s1(z)
(z − ti)2ni+1

c∗i,0. (7.13)

Taking into account relations (6.32) (i.e., the fact that ti is a zero of multiplicity
ni of s1 and s2), we rephrase (7.13) as

γi − dw,ni(ti) =
(−1)nit2ni+2

i

((ni + 1)!)2
s
(ni+1)
2 (ti) lim

z→ti

(1 − zt̄i)E(z)
1 − E(z)s(z)

s
(ni+1)
1 (ti)c∗i,0. (7.14)

Due to (6.33), the latter equality simplifies to

γi − dw,ni(ti) =
|s(ni+1)

2 (ti)|2
((ni + 1)!)2

lim
z→ti

E(z)s(ti)(1 − zt̄i)
1− E(z)s(z)

. (7.15)

Since |s(ti)| = 1 (by Lemma 6.5), we have
1− E(z)s(z)

1− zt̄i
=

1− s(z)s(ti)∗

1− zt̄i
+ s(z)

1− E(z)s(ti)
1− zt̄i

s(ti)∗. (7.16)
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By the fourth assertion of Lemma 7.2,

lim
z→ti

1− s(z)s(ti)∗

1− zt̄i
= Ds,s(ti)(ti), lim

z→ti

1− E(z)s(ti)
1− zt̄i

= DE,s(ti)∗(ti). (7.17)

Taking advantage of (7.17) we pass to limits in (7.16) as z → ti to get

lim
z→ti

1− E(z)s(z)
1− zt̄i

= Ds,s(ti)(ti) + DE,s(ti)∗(ti). (7.18)

Since s is rational and |s(ti)| = 1, it follows by Corollary 7.3 that Ds,s(ti)(ti) is
finite. Since, by Theorem 6.4, S(t) is unitary for t ∈ T and s1(z), s2(z) are not
identical zeros, then s(z) is not a unimodular constant. Therefore, Ds,s(ti)(ti) �= 0,
by the third assertion in Lemma 7.2. Thus,

0 < Ds,s(ti)(ti) <∞.

If the second limit in (7.17) is also finite, then

lim
z→ti

E(z) = s(ti)∗,

by the first assertion in Lemma 7.2. Therefore, (7.15) turns into (7.12) in this case.
If DE,s(ti)∗(ti) is infinite, then, in view of (7.18), the denominator in (7.15) tends
to ∞. Since the numerator E(z)s(ti) is bounded, the limit in (7.15) is 0. Thus,
(7.12) holds in this case also. Theorem follows. �

Proof of Statement 2 in Theorem 1.6. As it was already pointed out, w is a so-
lution of Problem 1.2 if and only if it is of the form (7.11) with some (uniquely
determined) parameter E ∈ S and satisfies

δw,i := γi − dw,ni(ti) = 0 (i = 1, . . . , k).

The formula for δw,i is given in (7.12) and it is easily seen that δw,i = 0 if and
only if

DE, s(ti)∗(ti) + Ds, s(ti)(ti) = ∞.

Since Ds, s(ti)(ti) <∞ (by Corollary 7.3), the latter is equivalent to DE, s(ti)∗(ti) =
∞ which happens, by the second assertion in Lemma 7.2, if and only if either

lim inf
z→ti

1− |E(z)|2
1− |z|2 = ∞,

or the function E fails to have the nontangential limit s(ti)∗ at ti. �

Note that vanishing of the gap at the point ti depends on the local behavior of
the parameter E at this point only. The number s(ti)∗ absorbs all the interpolation
data, though. Note also that the maximum value of the gap δw,i is assumed when
DE,s(ti)∗(ti) = 0, which happens if and only if E(z) ≡ s(ti)∗.
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Birkhäuser Verlag, Basel, 1990.

[5] J. A. Ball and J. W. Helton, Interpolation problems of Pick–Nevanlinna and Loewner
types for meromorphic matrix–functions: parametrization of the set of all solutions,
Integral Equations Operator Theory 9 (1986), 155–203.

[6] V. Bolotnikov and H. Dym, On boundary interpolation for matrix Schur functions,
Mem. Amer. Math. Soc. 181 (2006), no. 856.

[7] V. Bolotnikov and A. Kheifets, A higher multiplicity analogue of the Carathéodory–
Julia theorem, J. Funct. Anal. 237 no. 1 (2006), 350–371.

[8] V. Bolotnikov and A. Kheifets, Carathéodory–Julia type conditions and symmetries
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A Generalization to Ordered Groups
of a Krĕın Theorem

Ramón Bruzual and Marisela Domı́nguez

Abstract. We give an extension result for positive definite operator-valued
Toeplitz-Krĕın-Cotlar triplets defined on an interval of an ordered group.
When the triplet is positive definite and measurable we give a representa-
tion result.
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1. Introduction

Let a be such that 0 < a ≤ +∞ and let I = (−a, a). A kernel on I is a function
K : I × I → C. The kernel K is said to be positive definite if for any positive
integer n and any x1, . . . , xn in I, λ1, . . . , λn in C we have

n∑
i,j=1

K(xi, xj)λiλj ≥ 0,

and K is said to be a Toeplitz kernel if there exists a function k : I − I → C such
that K(x, y) = k(x− y) for all x , y in I.

M.G. Krĕın [10] proved that every continuous positive definite Toeplitz kernel
on I = (−a, a) can be extended to a continuous positive definite Toeplitz kernel
on the whole line.

The concept of positive definite kernel on I can be extended to a more
general context in the following natural way: Let H be a Hilbert space. A kernel
K : I × I → L(H) is said to be positive definite if∑

x,y∈I

〈K(x, y)h(x), h(y)〉H ≥ 0

for each function h : I → H of finite support.

Both authors were supported in part by the CDCH of the Univ. Central de Venezuela and by
FONACIT grant G-97000668.
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M.L. Gorbachuk [9] extended the result of Krĕın for operator-valued contin-
uous Toeplitz kernels defined on an interval I = (−a, a). By the Naimark dila-
tion theorem (see [13, Theorem 7.1]), we have that a continuous positive definite
Toeplitz kernel on an interval I is of the form

K(x) = τ∗Uxτ for all x ∈ I

where {Ux}x∈R is a strongly continuous unitary representation of R on a larger
Hilbert space G and τ : H → G is a bounded operator.

Several problems in analysis led Cotlar and Sadosky [6] to introduce the so-
called generalized Toeplitz kernels, as kernels defined in Z×Z or in R×R. These
kernels satisfy a condition more general than being Toeplitz in their domain. Also
generalized Toeplitz kernels with domain a product of intervals on the real line
have been considered.

An approach to continuous operator-valued generalized Toeplitz kernels with
domain a product of intervals on the real line was given in [3], where an extension
result was obtained.

In this paper we will consider a more general concept than the generalized
Toeplitz kernel on an interval of the real line; we will consider operator-valued
Toeplitz-Krĕın-Cotlar triplets defined on an interval of an ordered group. We ob-
tain an extension result, which extends Krĕın theorem, and a representation result
which extends a Crum result for this forms ([7], see also [4]).

2. Preliminaries

If Ω is an abelian group, Λ is a subset of Ω and L(H) stands for the space of the
bounded linear operators of a Hilbert space H, a function F : Λ → L(H) is said
to be positive definite if ∑

x,y∈Ω

〈F (x− y)h(x), h(y)〉H ≥ 0

for every function h : Ω → H with finite support, such that support(h)−support(h)
is contained in Λ.

Proposition 2.1. Suppose that F : Ω → L(H) is positive definite. Then
(a) If Ω is a topological group and F is weakly continuous on a neighborhood of

0, then F is weakly continuous on Ω.
(b) If Ω is a locally compact group and F is weakly measurable on a neighborhood

of 0, then F is weakly measurable on Ω.

Proof. For h ∈ H the scalar-valued function

ω �→ 〈F (ω)h, h〉
is positive definite.

From the corresponding results for scalar-valued functions (see [12, pages 24,
91]) and the polarization formula the result follows. �
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3. Toeplitz-Krĕın-Cotlar triplets on ordered groups

Let (Γ, +) be an abelian group with neutral element 0Γ. Γ is an ordered group if
there exists a set Γ+ ⊂ Γ such that:

Γ+ + Γ+ = Γ+, Γ+

⋂
(−Γ+) = {0Γ}, Γ+

⋃
(−Γ+) = Γ.

In this case if x, y ∈ Γ, we write x ≤ y if y− x ∈ Γ+, we also write x < y if x ≤ y
and x �= y, so Γ+ = {γ ∈ Γ : γ ≥ 0Γ}. If there is no possibility of confusion, we
will use 0 instead of 0Γ. When Γ is a topological group it is supposed that Γ+ is
closed.

If a, b ∈ Γ and a < b,
(a, b) = {x ∈ Γ : a < x < b}, [a, b] = {x ∈ Γ : a ≤ x ≤ b}, etc.

In the following Γ is an ordered group, H1, H2 are Hilbert spaces and
L(H1,H2) stands for the space of the continuous linear operators from H1 to
H2, and L(Hα) indicates the space of the continuous linear operators from Hα to
itself (for α = 1, 2).

For a ∈ Γ, a > 0 let Q1 = [0, a] and Q2 = [−a, 0].

Proposition 3.1. Let a ∈ Γ, a > 0, and let H be a Hilbert space. If the function
B : [−a, a]→ L(H) satisfies∑

x,y∈[0,a]

〈B(x − y)h(x), h(y)〉H ≥ 0

for all finite support function h : [0, a]→ H, then B is positive definite on [−a, a].

Proof. Let h : Γ → H with finite support such that support(h) − support(h) ⊂
[−a, a]. Suppose that support(h) = {γ1, . . . , γn}, where γ1 < γ2 < · · · < γn, then
γn − γ1 ≤ a.

Consider h′(γ) = h(γ + γ1); we have support(h′) ⊂ [0, a] and∑
x,y∈Γ

〈B(x − y)h(x), h(y)〉H =
∑

x,y∈[0,b]

〈B(x − y)h′(x), h′(y)〉H ≥ 0. �

Definition 3.2. Let a ∈ Γ, a > 0. A Toeplitz-Krĕın-Cotlar triplet, C, on
(Γ, [0, a],H1,H2) consists of three functions

Cαβ : Qα −Qβ → L(Hα,Hβ) α, β = 1, 2, α ≤ β.

If C is a Toeplitz-Krĕın-Cotlar triplet we define C21(γ) = C12(−γ)∗ for
γ ∈ Q2 −Q1.

Definition 3.3. We shall say that the Toeplitz-Krĕın-Cotlar triplet C on
(Γ, [0, a],H1,H2) is positive definite if

2∑
α,β=1

∑
(x,y)∈Qα×Qβ

〈Cαβ(x− y)hα(x), hβ(y)〉Hβ
≥ 0

for all pairs of functions hα : Γ → Hα with finite support, such that support(hα)−
support(hβ) is contained in Qα −Qβ , α, β = 1, 2.



106 R. Bruzual and M. Domı́nguez

Remark 3.4. A Toeplitz-Krĕın-Cotlar triplet is a particular case of a Toeplitz-
Krĕın-Cotlar form, according to the definition given in [1].

4. Extension results

Theorem 4.1. Let Γ be an abelian ordered group and let H1,H2 be a pair of
Hilbert spaces. If C = (Cαβ) is a positive definite Toeplitz-Krĕın-Cotlar triplet on
(Γ, [0, a],H1,H2), then there exist a Hilbert space G, a unitary representation
(Uγ)γ∈Γ of Γ on L(G) and two bounded operators τα : Hα → G such that
(a) Cαβ(γ) = τ∗

βUγτα for γ ∈ Qα −Qβ, α, β = 1, 2;
(b) G =

∨
{Uγτ1h1 : γ ∈ Γ, h1 ∈ H1} ∨

∨
{Uγτ2h2 : γ ∈ Γ, h2 ∈ H2};

(c) if Γ is topological and C is weakly continuous, then Uγ is strongly continuous;
(d) if Γ is locally compact and C is weakly measurable, then Uγ is weakly mea-

surable.

In order to prove this theorem we need the following result.

Proposition 4.2. Let C be a positive definite Toeplitz-Krĕın-Cotlar triplet on
(Γ, [0, a],H1,H2). Then the function B : [−a, a]→ L(H1 ⊕H2) defined by

B(γ) =
(

C11(γ) C21(γ − a)
C12(γ + a) C22(γ)

)
is positive definite on [−a, a].

Proof. Let h : [0, a] → H1 ⊕ H2 be a finite support function, thus h = h1 ⊕ h2,
where h1 : [0, a]→ H1 and h2 : [0, a]→ H2 are finite support functions. Then∑
x,y∈[0,a]

〈B(x − y)h(x), h(y)〉H

=
∑

x,y∈[0,a]

〈C11(x− y)h1(x), h1(y)〉H1 +
∑

x,y∈[0,a]

〈C21(x− y − a)h2(x), h1(y)〉H1

+
∑

x,y∈[0,a]

〈C12(x− y + a)h1(x), h2(y)〉H2 +
∑

x,y∈[0,a]

〈C22(x− y)h2(x), h2(y)〉H2

=
∑

x,y∈Γ

〈C11(x − y)h1(x), h1(y)〉H1 +
∑

x,y∈Γ

〈C21(x− y)h2(x + a), h1(y)〉H1

+
∑

x,y∈Γ

〈C12(x− y)h1(x), h2(y + a)〉H2 +
∑

x,y∈Γ

〈C22(x− y)h2(x + a), h2(y + a)〉H2 .

This sum is nonnegative because C is positive definite, support(h1) ⊂ [0, a] and
support(g2) ⊂ [−a, 0], where g2(x) = h2(x + a). �

Proof of Theorem 4.1. (a) Consider the function B : [−a, a]→ L(H1⊕H2) defined
by

B(γ) =
(

C11(γ) C21(γ − a)
C12(γ + a) C22(γ)

)
.
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From Proposition 4.2 it follows that B is positive definite on [−a, a] and from The-
orem 2.1 of [2] (with a natural modification in order to consider a closed interval) it
follows that B can be extended to a positive definite function
F : Γ → L(H1 ⊕H2).

If F = (Fαβ)αβ=1,2, then the function

F̃ (γ) =
(

F11(γ) F21(γ + a)
F12(γ − a) F22(γ)

)
is also positive definite on Γ. From Naimark’s theorem (see [13, Theorem 7.1]) it
follows that there exists a Hilbert space G, a unitary representation (Uγ) of Γ on
L(G) and a bounded operator R : H1 ⊕H2 → G such that

F̃ (γ) = R∗UγR.

Let iα : Hα → H1 ⊕ H2 be the canonical immersion (α = 1, 2) and let
γ ∈ [−a, a]. We have that

Cαα(γ) = i∗α R∗ Uγ R iα,

so if τα = R iα, then τα is a bounded operator and

Cαα(γ) = τ∗
α Uγ τα.

We also have that
C12(γ + a) = τ∗

2 Uγ+a τ1,

so
C12(σ) = τ∗

2 Uσ τ1,

for σ ∈ [0, 2a], in the same way the result is obtained for C21.

(b) In order to obtain the minimality condition it is enough to replace G by∨
{Uγτ1h1 : γ ∈ Γ, h1 ∈ H1} ∨

∨
{Uγτ2h2 : γ ∈ Γ, h2 ∈ H2}.

If C is weakly continuous, then B is weakly continuous and if C is weakly
measurable, then B is weakly measurable.

Since (−a, a) is a neighborhood of 0, from Proposition 2.1 and from the
general fact that the minimal Naimark dilation of a weakly continuous positive
definite function is is strongly continuous we obtain (c).

From the corresponding measurability result we obtain (d). �

5. Representation results

Theorem 5.1. Let Γ be a locally compact abelian ordered group and let H1,H2

be a pair of separable Hilbert spaces. If C = (Cαβ) is a weakly measurable posi-
tive definite Toeplitz-Krĕın-Cotlar triplet on (Γ, [0, a],H1,H2), then there exist two
Toeplitz-Krĕın-Cotlar triplets on (Γ, [0, a],H1,H2), Cc = (Cc

αβ) and C0 = (C0
αβ)

such that
(a) Cαβ = Cc

αβ + C0
αβ for α, β = 1, 2;
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(b) Cc = (Cc
αβ) is positive definite and weakly continuous;

(c) C0 = (C0
αβ) is positive definite and each C0

αβ is zero locally almost every-
where.

Proof. From Theorem 4.1 there exist a Hilbert space G, a weakly measurable uni-
tary representation (Uγ)γ∈Γ of Γ on L(G) and two bounded operators
τα : Hα → G such that Cαβ(γ) = τ∗

βUγτα for γ ∈ Qα −Qβ, α, β = 1, 2.

Let τ : H1 ⊕H2 → G defined by τ(h1 ⊕ h2) = τ1h1 + τ2h2; then the function
F : Γ → L(H1 ⊕H2) defined by

F (γ) = τ∗Uγτ =

⎛⎝τ∗
1 Uγτ1 τ∗

1 Uγτ2

τ∗
2 Uγτ1 τ∗

2 Uγτ2

⎞⎠ ,

is positive definite. Since (Uγ)γ∈Γ is weakly measurable, F is weakly measur-
able, so from the main result of [8] it follows that there exist two functions
F c : Γ → L(H1 ⊕H2) and F 0 : Γ → L(H1 ⊕H2) such that
(a) F = F c + F 0;
(b) F c is positive definite and weakly continuous;
(c) F 0 is positive definite and zero locally almost everywhere.

Considering Cc
αβ = τ∗

βF cτα and C0
αβ = τ∗

βF 0τα we obtain the result. �
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A Fast QR Algorithm for Companion Matrices

Shiv Chandrasekaran, Ming Gu, Jianlin Xia and Jiang Zhu

Abstract. It has been shown in [4, 5, 6, 31] that the Hessenberg iterates
of a companion matrix under the QR iterations have low off-diagonal rank
structures. Such invariant rank structures were exploited therein to design fast
QR iteration algorithms for finding eigenvalues of companion matrices. These
algorithms require only O(n) storage and run in O(n2) time where n is the
dimension of the matrix. In this paper, we propose a new O(n2) complexity
QR algorithm for real companion matrices by representing the matrices in the
iterations in their sequentially semi-separable (SSS) forms [9, 10]. The bulge
chasing is done on the SSS form QR factors of the Hessenberg iterates. Both
double shift and single shift versions are provided. Deflation and balancing
are also discussed. Numerical results are presented to illustrate both high
efficiency and numerical robustness of the new QR algorithm.

Mathematics Subject Classification (2000). 65F15, 65H17.

Keywords. Companion matrices, sequentially semi-separable matrices, struc-
tured QR iterations, structured bulge chasing, Givens rotation swaps.

1. Introduction

After nearly forty years since its introduction [18, 19], the QR algorithm is still the
method of choice for small or moderately large nonsymmetric eigenvalue problems
Ax = λx where A is an n× n matrix. At the moment of this writing, moderately
large eigenvalue problems refer to matrices of order 1, 000 or perhaps a bit higher.
The main reason for such a limitation in problem size is because the algorithm
runs in O(n3) time and uses O(n2) storage.

The success of the algorithm lies on doing QR iterations repeatedly, which
under mild conditions [29] leads to Schur form convergence. However, for a general
nonsymmetric dense matrix A, one QR decomposition itself already takes O(n3)
operations, so even if we are lucky enough to do only one iteration per eigenvalue,
the cost would still be O(n4). To make the algorithm practical, it is necessary to
first reduce A into an upper Hessenberg matrix H and then carry out QR iterations
on H accordingly. It is also important to incorporate a suitable shift strategy (since
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QR iteration is implicitly doing inverse iteration), which can dramatically reduce
the number of QR iterations needed for convergence.

The rationale for reducing A to H is that the Hessenberg form is invariant un-
der QR iterations. Such Hessenberg invariance structure enables us to implement
QR iterations implicitly and efficiently by means of structured bulge chasing. In
practice, with the use of shifts, convergence to the Schur form occurs in O(n) bulge
chasing passes, each pass consists of O(n) local orthogonal similarity transforma-
tions, and each local similarity transformation takes O(n) operations. Therefore
the total cost of the algorithm is O(n3) operations. This new algorithm has been
tested for many different types of examples and is stable in practice.

In this paper we consider the eigenvalue computation of a real companion
matrix of the form

C =

⎛⎜⎜⎜⎜⎜⎝
a1 a2 . . . an−1 an

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎠ ∈ Rn×n. (1)

Since the eigenvalues of C coincide with the zeros of a real univariate polynomial

p(x) = xn − a1x
n−1 − · · · − an−1x− an, (2)

algorithms for computing matrix eigenvalues can be used to approximate the zeros
of p(x). In fact, the Matlab function roots finds the zeros of p(x) by applying the
implicit shift QR algorithm to C0, a suitably balanced version of C by means
of a diagonal scaling (note that C0 is not necessarily a companion matrix). The
algorithm costs O(n3) operations as we mentioned.

The O(n3) cost and O(n2) storage are still expensive for a large n. In fact, it
is possible to improve the performance of QR iterations by exploiting additional
invariance structures of the Hessenberg iterates of C under QR iterations. It has
been shown independently in [4] and in [5, 6] that the Hessenberg iterates of a
companion matrix preserve an off-diagonal low-rank structure, called sequentially
semi-separable structure and semi-separable structure, respectively. This fact was
then exploited to design companion eigensolvers which require only O(n2) time
and O(n) storage.

In this paper, we present a new O(n2) QR variant algorithm for the real com-
panion matrix, with experiments showing numerical stability. We implement both
the single shift and double shift QR iterations with compact sequentially semi-
separable structures. Instead of working on the similarity transformations of C,
we work on the QR factors of these matrices. A swapping strategy for Givens rota-
tion matrices is used to efficiently conduct structured bulge chasing. To maintain
compact structured forms of those QR factors we introduce a structure recovery
technique. We also provide a structured balancing strategy.
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The paper is organized as follows. In Section 2, we describe the sequentially
semi-separable representation and some related operations including matrix addi-
tions and matrix-matrix multiplications. In Section 3, we adopt the approach in
[4] to prove why all Hessenberg iterates of C have off-diagonal blocks with ranks
never exceeding 3. Similar off-diagonal rank results can be easily extended to the
QR factors Q and R in the QR iterations. Thus Section 4 shows the representa-
tions of Q and R in compact SSS forms. In Section 5, we describe the deflation
technique and the convergence criterion of the new QR algorithm, and then by
using a concrete 5× 5 matrix example, we demonstrate how to implicitly do both
single and double shift QR iterations based on the compact representations of Q
and R. Balancing strategy, which preserves the semi-separable structure, is dis-
cussed in Section 6. In Section 7, we present numerical results to demonstrate the
performance. Finally, Section 8 draws some concluding remarks.

2. SSS representation

In this section we lay out some necessary background information about sequen-
tially semi-separable (SSS) representations [9, 10]. Closely related matrix struc-
tures include quasiseparable matrices (e.g., [14, 15]), hierarchically semi-separable
matrices [8], etc. Both the name “SSS” and “quasiseparable” refer to the same type
of matrices. Related matrix properties and operations are discussed in the above
references. Here we use SSS representations and some associated operations in
[9, 10]. Similar results also appear in [14]. They will be used in our fast structured
QR iterations.

2.1. SSS notations

We say that A ∈ Rn×n is in SSS form if it is represented as

A = (Aij), where Aij ∈ Rmi×mj , Aij =

⎧⎪⎨⎪⎩
Di if i = j,
UiWi+1 · · ·Wj−1VT

j if i < j,
PiRi−1 · · ·Rj+1QT

j if i > j.
(3)

Here the empty products are treated as the identity matrices, and the partitioning
sequence {mi}r

i=1 satisfies
∑r

i=1 mi = n, with r being the number of block rows
(or columns) of the partitioning scheme. The SSS generators {Di}r

i=1, {Ui}r−1
i=1 ,

{Vi}r
i=2, {Wi}r−1

i=2 , {Pi}r
i=2, {Qi}r−1

i=1 and {Ri}r−1
i=2 are real matrices with dimen-

sions specified in Table 2.1.

Di Ui Vi Wi Pi Qi Ri

mi × mi mi × ki mi × ki−1 ki−1 × ki mi × li mi × li+1 li+1 × li

Table 1. Dimensions of matrices in (3).

To illustrate the compactness of this SSS representation when the off-diagonal
blocks of A have small ranks, assume mi = ki = li = p � n, then we only need to
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store the SSS generators of A with about 7rp2(= 7pn) working precision numbers
instead of storing every entry of A with n2 numbers.

It should be noted that the SSS structure of a given matrix A depends on
the partitioning sequence {mi}r

i=1. Different sequences will lead to different rep-
resentations.

The power of SSS representation for matrices with low-rank off-diagonal
blocks has been shown in [9, 10, 11, 30], where fast and stable linear system
solvers based on SSS representation were designed with applications to many
relevant engineering problems. In [9, 10], algorithms for SSS matrix operations
have been systematically introduced, including constructions of the SSS represen-
tations, (LU-like) factorizations of SSS matrices, fast SSS matrix additions and
fast matrix-matrix multiplications, etc. For our purpose of designing a new QR
iteration method for companion matrices, we need to use two important SSS ma-
trix operations, SSS addition and SSS multiplication. We present the results from
[9, 10] without proofs.

2.2. SSS addition

Let A and B be two SSS matrices that are conformally partitioned, that is,
mi(A) = mi(B) for i = 1, . . . , r. Then their sum A + B is an SSS matrix with
representation given by the following SSS generators [9, 10]:

Di(A + B) = Di(A) +Di(B),

Ui(A + B) =
(
Ui(A) Ui(B)

)
, Vi(A + B) =

(
Vi(A) Vi(B)

)
,

Wi(A + B) =
(
Wi(A) 0

0 Wi(B)

)
,

Pi(A + B) =
(
Pi(A) Pi(B)

)
, Qi(A + B) =

(
Qi(A) Qi(B)

)
,

Ri(A + B) =
(
Ri(A) 0

0 Ri(B)

)
.

Remark 2.1. Note that the computed SSS representation of the sum might be
inefficient in the sense that the dimensions of the SSS generators are increasing
additively, whereas in some cases the real ranks of the off-diagonal blocks might
be far smaller. Ideally, these formulas should be followed by some sort of rank-
reduction or compression step [9, 10].

2.3. SSS multiplication

Let A and B be two SSS matrices that are conformally partitioned. Define forward
and backward recursions

S1 = 0, Si+1 = QT
i (A)Ui(B) +Ri(A)SiWi(B), for i = 1, 2, . . . , r − 1,

Tn = 0, Ti−1 = VT
i (A)Pi(B) +Wi(A)TiRi(B), for i = r, r − 1, . . . , 2.
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Then the SSS generators of the matrix A·B can be computed through the following
formulas [9, 10]:

Di(A · B) = Di(A)Di(B) + Pi(A)SiVT
i (B) + Ui(A)TiQT

i (B),

Ui(A · B) =
(
Di(A)Ui(B) + Pi(A)SiWi(B) Ui(A)

)
,

Vi(A · B) =
(
Vi(B) DT

i (B)Vi(A) +Qi(B)T T
i WT

i (A)
)
,

Wi(A · B) =
(

Wi(B) 0
VT

i (A)Ui(B) Wi(A)

)
,

Pi(A · B) =
(
Di(A)Pi(B) + Ui(A)TiRi(B) Pi(A)

)
,

Qi(A · B) =
(
Qi(B) DT

i (B)Qi(A) + Vi(B)ST
i RT

i (A)
)
,

Ri(A · B) =
(

Ri(B) 0
QT

i (A)Pi(B) Ri(A)

)
.

Remark 2.2. In the case where mi = ki = li = p, the total operation count of
this fast multiplication algorithm is at most 40p3n, contrasting with 2n3 flops for
doing ordinary matrix-matrix multiplication.

3. Invariant off-diagonal low-rank structure

The classical Hessenberg QR algorithm for finding eigenvalues computes a series
of Hessenberg matrices Hk which are orthogonally similar to C in (1):

H(0) = C,

H(k) = Q(k)R(k), H(k+1) = R(k)Q(k), k = 0, 1, 2, . . .

Generally, shifts are used in the iterations. It has been shown independently in
[4] and [5] that each such Hessenberg matrix Hk (real or complex) maintains off-
diagonal low-rank structures. More precisely, the following result holds.

Theorem 3.1. [4, 5] max1≤j<n rank(H(k)(1 : j, j + 1 : n)) ≤ 3.

In what follows, we concentrate on real companion matrices. The proof of
the theorem relies on the results in the following two lemmas [4].

Lemma 3.2. For any Hessenberg matrix H(k) in the Hessenberg QR iterations,
there exist an orthogonal matrix Z(k) ∈ Rn×n and two vectors x(k), y(k) ∈ Rn so
that

H(k) = Z(k) + x(k)y(k)T . (4)

(H(k) is an orthogonal-plus-rank-one structure.)

It suffices to establish the equation for H(0) since the structure of a low-
rank modification to an orthogonal matrix is preserved under orthogonal similarity
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transformations. For H(0) = C, we can write

C =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 ±1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
1
0
0
...
0

⎞⎟⎟⎟⎟⎟⎠
(

a1 a2 . . . an−1 an ∓ 1
)

≡ Z(0) + x(0)y(0)T .

For convenience, we choose the sign of the (1, n)-entry of Z(0) so that det(Z(0)) = 1.

Lemma 3.3. An orthogonal matrix Z is rank-symmetric [4], in the sense that for
any 2-by-2 block partitioning

Z =
(

Z11 Z12

Z21 Z22

)
,

where Z11 and Z22 are square, we have rank(Z12) = rank(Z21).

This is a direct outcome of the CS decomposition (see [17]). Actually not only
rank(Z12) = rank(Z21), Z12 and Z21 have the same singular values as well. There-
fore, we can expect that a slightly perturbed orthogonal matrix is still numerically
rank-symmetric.

Now let us prove Theorem 3.1. For simplicity of the notation, we drop the
superscript (k) from (4) in the rest of this section.

Proof of Theorem 3.1. Write L = xyT . According to Lemma 3.2, we have H =
Z + L. Partition H as

H =
(

H11 H12

H21 H22

)
,

where H11 and H22 are square, and partition Z and L conformally. Then H21 has
rank at most 1, since there is only one possible nonzero in its upper right corner.
In addition,

|rank(H12)− rank(H21)| = |(rank(H12)− rank(Z12))− (rank(H21)− rank(Z12))|
≤ |rank(H12)− rank(Z12)|+ |rank(H21)− rank(Z21)|

(since Z is rank-symmetric)

≤ rank(L12) + rank(L21)

≤ 2 · rank(L) = 2.

Thus
rank(H12) ≤ rank(H21) + 2 ≤ 3. �

Theorem 3.1 indicates that all H in the QR iterations have low-rank off-
diagonal blocks. Such a low-rank structure admits a compact representation for
H .
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Bini, Eidelman, et al. [6] take advantage of this property and represent each
H in a quasiseparable form which can be represented by a linear number of pa-
rameters. Similarly, the new QR algorithm proposed by Bindel, Chandresekaran,
et al. in [4] exploits this structure by writing the Hessenberg iterate H in terms
of its SSS representation. Both type of schemes provide explicit formulas for QR
iterations with single shifts.

Because during the structured bulge chasing passes only linear memory space
and only local updating for the quasiseparable or SSS generators of H are required,
those new QR algorithms are able to achieve O(n2) complexity and O(n) storage.
To maintain the compact quasiseparable or SSS representations for H , the algo-
rithm in [6] involves some compression schemes, and the algorithm in [4] incurs
merging and splitting SSS representations repeatedly during each bulge chasing
pass.

In this paper we propose a different approach for QR iterations: instead of
working explicitly on the compact representations of H , we choose to work on
Q and R directly, and in the meantime, to maintain compact representations for
them, where Q and R are QR factors of H . This allows more flexibility in handling
the structured QR iterations. Partly because of this reason we are able to provide
both single shift and double shift QR iterations, whereas [4] and [6] only provide
single shift versions.

We use the following theorem to characterize the similar low-rank off-diagonal
structures of Q and R.

Theorem 3.4. Suppose that a nonsingular upper Hessenberg matrix H can be ex-
pressed as H = Z + xyT , with Z being orthogonal and x, y ∈ Rn, and suppose that
it has QR factorization: H = QR. Then

1. Q has the form: Q = Q1Q2 · · ·Qn−1, where each Qi is a Givens rotation;
2. R can be written as: R = Z̃ + x̃yH, with Z̃ being orthogonal. Furthermore, if

we partition R as

R =
(

R11 R12

0 R22

)
,

where R11 and R22 are square, then

rank(R12) ≤ 2.

Proof. For any Hessenberg matrix H , its QR decomposition can be obtained by
applying a sequence of Givens rotations {Qi}n−1

i=1 to zero out its subdiagonal entries
from the top to bottom. Specifically, we will have Q = Q1Q2 · · ·Qn−1 and

R = QT
n−1 · · ·QT

2 QT
1 ·H = QT (Z + xyT ) =: Z̃ + x̃yT

where Z̃ := QT Z and x̃ := QT x. We can then finish the proof by using inequalities
similar to those in the proof of Theorem 3.1. �
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4. Compact Representations of Q and R

Theorem 3.4 implies that it is possible to represent Q and R in compact forms. We
dedicate this section to the detailed description of such compact representations.

4.1. Compact representations of Q

Consider an orthogonal matrix Q which can be expressed in the form

Q = Q1Q2 · · ·Qn−1 (5)

where Qk is a Givens rotation matrix

Qk = diag
(

Ik−1,

(
ck sk

−sk ck

)
, In−k−1

)
, ck, sk ∈ R, c2

k + s2
k = 1. (6)

For convenience we call Qk the k-th Givens (rotation) matrix. Multiplying out
the product (5), it is straightforward to verify that Q takes the following form
(assuming c0 = cn = 1):

Q = Q1Q2 · · ·Qn−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c0c1 c0s1c2 c0s1s2c3 . . . . . . c0s1 · · · sn−1cn

−s1 c1c2 c1s2c3 . . . . . . c1s2 · · · sn−1cn

−s2 c2c3 . . . . . . c2s3 · · · sn−1cn

. . . . . .
...

...
−sn−2 cn−2cn−1 cn−2sn−1cn

−sn−1 cn−1cn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

It is evident that the maximum off-diagonal rank of Q is at most one. Hence an
SSS representation for Q will come in handy when we need to conduct SSS matrix-
matrix additions or multiplications. With the partitioning sequence {mi = 1}n

i=1,
the SSS generators of Q are given by Table 2.

Di(Q) Ui(Q) Vi(Q) Wi(Q) Pi(Q) Qi(Q) Ri(Q)

ci−1ci ci−1si ci si 1 −si 0

Table 2. SSS generators of Q.

4.2. Compact representations of R

The off-diagonal low-rank structure of R in Theorem 3.4 admits a compact SSS
representation. Using the partitioning sequence {mi = 1}n

i=1 and taking into ac-
count that R is upper triangular, we have

R = (Rij)N×N , where Rij =

⎧⎪⎨⎪⎩
di, if i = j,

uiwi+1 · · ·wj−1v
T
j , if i < j,

0, if i > j.
(7)

Again, the empty products above are treated as identity matrices. The dimensions
of the (nonzero) SSS generators of R are specified in Table 3.



A Fast QR Algorithm for Companion Matrices 119

Generator Di(R) Ui(R) Vi(R) Wi(R)
matrix di ui vi wi

Size 1× 1 1× p 1× p p× p

Table 3. Dimensions of the SSS generators of R.

According to Theorem 3.4, a compact SSS representation of R will have p
not exceeding 2. During our new QR algorithm, however, we will allow not-so-
compact (redundant) intermediate SSS generators of R but will compress them
back to compact representations at the end of each QR iteration step.

Remark 4.1. As the SSS generators can be simply represented by a small number
of vectors or parameters, later in most places of this paper for convenience we
directly provide those vectors or parameters instead of writing the SSS forms.

5. A new QR algorithm for C

Consider the n× n companion matrix (1). Let

Z =

⎛⎜⎜⎜⎝
0 · · · 0 ±1
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

⎞⎟⎟⎟⎠ , e1 =

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠ , and y =

⎛⎜⎜⎜⎝
a1

a2

...
an ∓ 1

⎞⎟⎟⎟⎠ ,

and choose the sign of the (1, n)-entry of Z so that det(Z) = 1. Clearly,

C = Z + e1y
T .

Instead of updating the Hessenberg iterates H in the standard QR algorithm, our
new algorithm will carry out the implicit shift QR iterations based on the compact
representations of Q and R mentioned in the previous section. The structured
representations of Q and R will lead to a more delicate deflation scheme and a
more convenient bulge chasing procedure, which are to be discussed in detail in
the following subsections.

5.1. Swapping real Givens matrices

Before presenting the detailed QR iterations we first consider an important tech-
nique which swaps two or three Givens matrices and will be used in the structured
bulge chasing. The notion of “swap” will become evident in a moment. Similar
techniques can also be found in other places (e.g., [28]).

First consider the product Qi · Qj, 1 ≤ i, j < n, where Qi and Qj are two
real Givens matrices as specified in (6).
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• If i = j, then multiplying the product out we get Q̂i ≡ Qi · Qj, which is
another Givens matrix, and(

ĉi ŝi

−ŝi ĉi

)
, ĉi = cicj − sisj , ŝi = cisj + sicj. (8)

• If |i− j| ≥ 2, then
Qi ·Qj = Qj ·Qi, (9)

which is literally swapping the two Givens matrices.
Next consider the product of the form: QiQi+1Gi, where Qi and Gi are two

i-th Givens matrices and Qi+1 is the (i + 1)-st Givens matrix, with 1 ≤ i ≤ n− 2.
Without loss of generality, we use Q1Q2G1 as an example. Given the three Givens
matrices in R3×3

Q1 =

⎛⎝ c1 s1

−s1 c1

1

⎞⎠ , Q2 =

⎛⎝ 1
c2 s2

−s2 c2

⎞⎠ , G1 =

⎛⎝ α1 β1

−β1 α1

1

⎞⎠ ,

(10)
we want to find another three Givens matrices in R3×3

Ĝ2 =

⎛⎝ 1
α̂2 β̂2

−β̂2 α̂2

⎞⎠ , Q̂1 =

⎛⎝ ĉ1 ŝ1

−ŝ1 ĉ1

1

⎞⎠ , Q̂2 =

⎛⎝ 1
ĉ2 ŝ2

−ŝ2 ĉ2

⎞⎠ ,

(11)
so that

Q1Q2G1 = Ĝ2Q̂1Q̂2. (12)

We present Algorithm 1 (next page) for the computation of Ĝ2, Q̂1 and Q̂2.
Note that both approaches in the third step of Algorithm 1 for computing

Q̂1 and Q̂2 (in exact arithmetic) yield Q1Q2G1 = Ĝ2Q̂1Q̂2. In a similar fashion,
given three Givens matrices G2, Q1 and Q2 ∈ R3×3, we can compute another three
Givens matrices Q̂1, Q̂2 and Ĝ1 ∈ R3×3 so that

G2Q1Q2 = Q̂1Q̂2Ĝ1, (13)

where G2 has a similar form as Ĝ2 in (11) but without the hats in the notations,
and the same situation holds for Ĝ1 and G1.

For the convenience of future reference, we call (12) a backward Givens swap,
and (13) a forward Givens swap, according to the direction of G1 (or G2) being
pushed. It is not hard to prove the backward stability of such swapping formulas.

Lastly, consider a special case of a backward Givens swap: Qn−1QnGn−1 with
Qn = diag [In−1,−1]. We want to find another Givens matrix Q̂n−1 so that

Qn−1QnGn−1 = Q̂n−1Qn. (14)

This boils down to inspect the products of their trailing 2× 2 blocks:(
cn−1 sn−1

−sn−1 cn−1

)(
1
−1

)(
αn−1 βn−1

−βn−1 αn−1

)
=
(

ĉn−1 ŝn−1

−ŝn−1 ĉn−1

)(
1
−1

)
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Algorithm 1 Givens swap of type I

(1) Compute

A := Q1Q2G1 =

⎛⎝ c1α1 − s1c2β1 c1β1 + s1c2α1 s1s2

−s1α1 − c1c2β1 −s1β1 + c1c2α1 c1s2

−s2β1 −s2α1 c2

⎞⎠ =

⎛⎝× × ×
× × ×
× × ×

⎞⎠ .

(2) Compute a Givens matrix Ĝ2 so that

A1 := ĜT
2 A =

⎛⎝ × × ×
× × ×

× ×

⎞⎠ .

(3) We have two different approaches to get Q̂1 and Q̂2.
• Either, let{

ĉ1 = A1(1, 1),
ŝ1 = −A1(2, 1), and

{
ĉ2 = A1(3, 3),
ŝ2 = −A1(3, 2),

since if there holds A1 = Q̂1Q̂2, A1 must also have the form

A1 =

⎛⎝ ĉ1 ŝ1ĉ2 ŝ1ŝ2

−ŝ1 ĉ1ĉ2 ĉ1ŝ2

−ŝ2 ĉ2

⎞⎠ .

• Or, continue to find Q̂1 so that

A2 := Q̂T
1 A1 =

⎛⎝ × × ×
× ×
× ×

⎞⎠ ;

and then find Q̂2 so that

A3 := Q̂T
2 A2 =

⎛⎝ × × ×
× ×

×

⎞⎠ .

Since A3 is triangular and orthogonal, it must be an identity matrix.

which leads to {
ĉn−1 = cn−1αn−1 + sn−1βn−1,
ŝn−1 = − cn−1βn−1 + sn−1αn−1.

(15)

5.2. Initial QR factorization of C

We start the new QR algorithm by first finding the initial QR factorization of
C ≡ C(0). This can be easily done by applying a sequence of (transposes of)
Givens rotations

{
QT

i

}n−1

i=1
to C from the left side to zero out its subdiagonal

entries (which are 1’s) from top to bottom. The process can be expressed as

QT
n−1(Q

T
n−2(· · · (QT

2 (QT
1 C)) · · · )) =⇒ R(0), (16)
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where R is an upper triangular matrix and Qk is the k-th Givens rotation matrix
of the form (6).

Thus from equation (16), we can write

C = Q1Q2 · · ·Qn−1 ·R(0).

Let Q(0) ≡ Q1Q2 . . . Qn−1. Then Q(0) is completely represented in terms of its
cosine and sine parameters: {ci, si}n

i=1 (with the assumptions cn = 1 and sn = 0).
As for R(0), it is straightforward to check that in terms of {ci, si}n

i=1 and {ai}n
i=1

we have:

R(0) = (R(0)
ij ), where R

(0)
ij =

⎧⎪⎨⎪⎩
cisi−1 · · · s1ai − si if i = j,
cisi−1 · · · s1aj if i < j,
0 if i > j.

Or equivalently, we can use the following SSS generators to completely describe
R(0): ⎧⎪⎪⎨⎪⎪⎩

D(R(0)) ≡ di = cisi−1 · · · s1ai − si, if 1 ≤ i ≤ n,
U(R(0)) ≡ ui = cisi−1 · · · s1, if 1 ≤ i ≤ n− 1,
V(R(0)) ≡ vi = ai, if 2 ≤ i ≤ n,
W(R(0)) ≡ wi = 1, if 2 ≤ i ≤ n− 1.

Note that for now, p, the common column dimension of SSS generators, is 1.

5.3. Structured QR iteration: single shift case

In this section, by using a concrete 5 × 5 example, we describe in detail how to
implement the following implicit single shift QR iteration on an H as in Theorem
3.4, where σ ∈ R is a shift.

H − σI = QR,

Ĥ = RQ + σI = QT HQ.

Contrasting with the standard QR algorithm, where we chase a bulge along the
second subdiagonal of the Hessenberg iterate H , in our new QR algorithm, we
create and chase a bulge along the subdiagonal of R.

Before we start, we make two notations clear:

Ḡk : the Givens rotation used to generate a bulge at R(k + 1, k),
G̃k : the Givens rotation used to eliminate the bulge at R(k + 1, k),

where R(i, j) denotes the (i, j) entry of R.
Suppose that at the beginning of the QR iteration, we have

H = Q1Q2Q3Q4 · R = Z + xyT ,

where Z is orthogonal but not explicitly stored.
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(1) Initiate bulge chasing. Let H0 = H . Choose a Givens rotation Ḡ1 of the form

Ḡ1 = diag
((

c̄1 s̄1

−s̄1 c̄1

)
, I3

)
, where c̄2

1 + s̄2
1 = 1,

so that the first column of Ḡ1, that is, the vector
(

c̄1 −s̄1 0 0 0
)T , is

proportional to,
(

h11 − σ h21 0 0 0
)T , the first column of H0 − σI.

Let
H1 ≡ ḠT

1 H0Ḡ1 = (ḠT
1 Q1)Q2Q3Q4 · RḠ1.

Then a bulge is created at the (2, 1) entry of RḠ1. In fact, if we formed RḠ1

explicitly, we should expect

RḠ1 =

⎛⎜⎜⎜⎜⎝
× × × × ×
+ × × × ×

× × ×
× ×

×

⎞⎟⎟⎟⎟⎠ ,

where the bulge is indicted by a plus sign. Next choose

G̃1 = diag
((

c̃1 s̃1

−s̃1 c̃1

)
, I3

)
, where c̃2

1 + s̃2
1 = 1

so that R1 ≡ G̃T
1 (RḠ1) is upper triangular again. Let Q̄1 = ḠT

1 Q1, then

H1 = (ḠT
1 Q1)Q2Q3Q4G̃1 · G̃T

1 R0Ḡ1

= Q̄1Q2Q3Q4G̃1 · R1

= (Q̄1Q2G̃1)Q3Q4 ·R1 (G̃1 pushed forward)

= (Ḡ2Q̂1Q̄2)Q3Q4 ·R1 (backward Givens swap)

= Ḡ2 · Q̂1Q̄2Q3Q4 · R1.

(2) Second chasing. Let

H2 ≡ ḠT
2 H1Ḡ2 = Q̂1Q2Q3Q4 ·R1Ḡ2,

where if explicitly formed,

R1Ḡ2 =

⎛⎜⎜⎜⎜⎝
× × × × ×

× × × ×
+ × × ×

× ×
×

⎞⎟⎟⎟⎟⎠ .

Thus the bulge has been “chased” from the (2, 1) position to the (3, 2)
position. To eliminate this bulge, we choose a Givens rotation G̃2 so that
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R2 ≡ G̃T
2 (R1Ḡ2) becomes upper triangular again. Thus

H2 = Q̂1Q̄2Q3Q4G̃2 · G̃T
2 R1Ḡ2

= Q̂1(Q̄2Q3G̃2)Q4 ·R2 (G̃2 pushed forward)

= Q̂1(Ḡ3Q̂2Q̄3)Q4 ·R2 (backward Givens swap)

= Ḡ3 · Q̂1Q̂2Q̄3Q4 · R2. (Ḡ3 pushed forward).

(3) Third chasing. Similarly, let

H3 ≡ ḠT
3 H2Ḡ3 = Q̂1Q̂2Q̄3Q4 ·R2Ḡ3,

where if explicitly formed,

R2Ḡ3 =

⎛⎜⎜⎜⎜⎝
× × × × ×

× × × ×
× × ×
+ × ×

×

⎞⎟⎟⎟⎟⎠ .

Thus the bulge has been chased from the (3, 2) position to the (4, 3) po-
sition. To eliminate this bulge, we choose a Givens rotation G̃3 so that
R3 ≡ G̃T

3 (R2Ḡ2) becomes upper triangular again. Thus

H3 = Q̂1Q̂2(Q̄3Q4G̃3) · G̃T
3 R2Ḡ3

= Q̂1Q̂2(Ḡ4Q̂3Q̄4) ·R3 (backward Givens swap)

= Ḡ4 · Q̂1Q̂2Q̂3Q̄4 · R3. (G̃4 pushed forward).

(4) Final chasing. Let

H4 ≡ ḠT
4 H3Ḡ4 = Q̂1Q̂2Q̂3Q̄4 ·R3Ḡ4,

where if explicitly formed,

R3Ḡ4 =

⎛⎜⎜⎜⎜⎝
× × × × ×

× × × ×
× × ×

× ×
+ ×

⎞⎟⎟⎟⎟⎠ .

Thus the bulge has been chased from (4, 3) to (5, 4). This leads us to choose
a Givens rotation G̃4 such that R4 ≡ G̃T

4 (R3Ḡ4) becomes upper triangular
again. Let Q̂4 ≡ Q̄4G̃4, then

H4 = Q̂1Q̂2Q̂3(Q̄4G̃4) · (G̃T
4 R3Ḡ4).

= Q̂1Q̂2Q̂3Q̂4 ·R4.

Let Ĥ = H4. A cycle of QR iteration with single shift is then completed.
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Write Ḡ ≡ Ḡ1Ḡ2Ḡ3Ḡ4, G̃ ≡ G̃1G̃2G̃3G̃4 and Q̂ = Q̂1Q̂2Q̂3Q̂4. Then the
structured single shift bulge chasing procedure presented above tells us

H4 = ḠT
4 ḠT

3 ḠT
2 ḠT

1 ·H0 · Ḡ1Ḡ2Ḡ3Ḡ4 = ḠT ·H0 · Ḡ,

R4 = G̃T
4 G̃T

3 G̃T
2 G̃T

1 ·R0 · Ḡ1Ḡ2Ḡ3Ḡ4 = G̃T ·R0 · Ḡ, (17)

H4 = Q̂ · R4.

Remark 5.1. Since the first column of Ḡ is proportional to that of H0 − σI,
according to the well known implicit Q theorem, Ḡ will be the same (up to sign
differences in each column) as the Q-factor of the QR decomposition of H0 − σI.

Next we discuss the computation and elimination of the bulges in terms of
the structured representations. Note that none of the Rk’s are formed explicitly
except certain entries. The explanation is as follows. Rk is represented via its
SSS generators, {di, ui, vi, wi}. Not all these generators are updated during the
intermediate steps of a bulge chasing cycle. We need to form explicitly the main
diagonal vector (di generators) and the first superdiagonal vector of Rk in order
to compute the bulges. To simplify the notations we temporarily write Rk as R,
in a general SSS form:

R =

⎛⎜⎜⎜⎜⎜⎜⎝

. . . · · ·
...

di uiv
T
i+1 uiwi+1v

T
i+2 · · · uiwi+1 · · ·wn−1v

T
n

di+1 ui+1v
T
i+2 · · · ui+1wi+2 · · ·wn−1v

T
n

di+2 · · · ui+2wi+3 · · ·wn−1v
T
n

. . .
...

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the i-th through (i+2)-nd rows are shown. Let h be the first superdiagonal
vector. That is, hi ≡ Ri,i+1 = uiv

T
i+1. During the bulge chasing, a bulge bi is

created by right multiplying a Givens matrix Ḡj =
(

ci −si

si ci

)
to a 2-by-2

upper triangular diagonal block:(
d̂i ĥi

bi d̂i+1

)
=
(

di hi

0 di+1

)(
ci −si

si ci

)
. (18)

A new Givens matrix G̃j =
(

c̃i −s̃i

s̃i c̃i

)
is now computed based on

(
d̂i

bi

)
so

as to eliminate the bulge bi:(
d̃i h̃i

0 d̃i+1

)
=
(

c̃i −s̃i

s̃i c̃i

)(
d̂i ĥi

bi d̂i+1

)
. (19)
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Then the i-th and (i+1)-st rows of R should be updated, which is done as follows:

(
c̃i −s̃i

s̃i c̃i

)(
d̂i ĥi uiwi+1v

T
i+2 · · · uiwi+1 · · ·wn−1v

T
n

bi d̂i+1 ui+1v
T
i+2 · · · ui+1wi+2 · · ·wn−1v

T
n

)

=

((
d̃i h̃i

0 d̃i+1

) (
c̃i −s̃i

s̃i c̃i

)(
uiwi+1

ui+1

)(
vT

i+2 wi+2v
T
i+2 · · · wi+2 · · ·wn−1v

T
n

))

=
((

d̃i h̃i

0 d̃i+1

) (
ûi

ûi+1

)(
vT

i+2 wi+2v
T
i+2 · · · wi+2 · · ·wn−1v

T
n

))
=

(
d̃i h̃i ûiv

T
i+2 · · · ûiwi+2 · · ·wn−1v

T
n

0 d̃i+1 ûi+1v
T
i+2 · · · ûi+1wi+2 · · ·wn−1v

T
n

)
. (20)

That is, we only need to find the updated d̃i, d̃i+1, h̃i, ûi, and ûi+1. After this
step, the new superdiagonal entry hi+1 = ûi+1v

T
i+1 is formed. The next bulge will

be generated with another Givens matrix applied on the right to the next 2-by-2
diagonal block (

d̃i+1 hi+1

0 di+2

)
,

and the above process repeats. Therefore, during the bulge chasing cycle, {di, ui}
are updated, and {hi} are formed. Clearly, we use each hi once a time and do not
need to store the entire h.

Equation (20) is sufficient for deriving hi+1 and thus further computing and
eliminating the bulges. However, the ûi it provides may not be an SSS generator of
the final R. As an example, the updated value of Ri,i+1 is h̃i, which is generally not
ûiv

T
i+1. Therefore, to get a final updated SSS form for R, we update all {ui, vi, wi}

at the end of the bulge chasing cycle. For example, in the process (17) above, the
SSS generators of R4 are obtained by multiplying three SSS matrices G̃T , R0, and
Ḡ using the fast SSS matrix-matrix multiplication formulas in Subsection 2.3.

Remark 5.2. An outcome of using those multiplication formulas is that the column
dimensions of R4’s SSS generators will grow additively by 2 (in case of single shift
bulge chasing), since both Ḡ and G̃ have the maximum off-diagonal rank 1. In
Subsection 5.5 we will show how to recover a compact representation for R4.

5.4. Structured QR iteration: double shift case

This section describes how to maintain real arithmetic by employing two shifts
σ and σ̄ at the same time, where σ̄ is the complex conjugate of σ (although in
this paper notations with bars do not necessarily mean complex conjugates). The
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process of shifting σ and σ̄ successively is like

H − σI = Q(1)R(1),

H(1) = R(1)Q(1) + σI =
(
Q(1)

)T

H
(
Q(1)

)
,

H(1) − σ̄I = Q(2)R(2),

Ĥ = H(2) = R(2)Q(2) + σ̄I =
(
Q(1)Q(2)

)T

H
(
Q(1)Q(2)

)
,

which leads to

M ≡
(
Q(1)Q(2)

)(
R(2)R(1)

)
= (H − σI)(H − σ̄I) = H2 − sH + tI, (21)

with s = 2 Re(σ), t = |σ|2. Thus
(
Q(1)Q(2)

) (
R(2)R(1)

)
is the QR decomposition

of the real matrix M , and therefore Q(1)Q(2), as well as R(2)R(1), can be chosen
real, which means that Ĥ =

(
Q(1)Q(2)

)T
H
(
Q(1)Q(2)

)
is also real.

While the rationale for maintaining real arithmetic is exactly the same, the
difference of our new algorithm from the standard one lies in the use of the com-
pact representations for Q and R. Contrasting with the standard implicit double
shift QR algorithm where a 2-by-2 bulge is chased along the subdiagonal of the
Hessenberg iterate H , in our new algorithm the 2-by-2 bulge is chased along the
subdiagonal of R. Before we start, we make the following notations clear

F̄k+1 : the 1st Givens used to generate a nonzero at R(k + 2, k),
Ḡk : the 2nd Givens used to generate nonzeros at R(k + 1 : k + 2, k),
F̃k+1 : the 1st Givens used to eliminate the nonzero at R(k + 2, k),
G̃k : the 2nd Givens used to eliminate the nonzero at R(k + 1, k).

Let us use the same 5-by-5 example from the last subsection. Suppose that
at the beginning of the QR iteration, we have

H0 ≡ H = Q1Q2Q3Q4 ·R = Z + xyT ,

where Z is orthogonal but not explicitly stored.
(1) Initiate bulge chasing. Given a pair of complex conjugate shifts σ and σ̄, we

compute the first column of M in (21):

Me1 = (H2 − sH + tI)e1 =
(

x1 x2 x3 0 · · · 0
)T

,

where ⎧⎨⎩ x1 = h2
11 + h12h21 − sh11 + t,

x2 = h21(h11 + h22 − s),
x3 = h21h32.

(22)

Then find two Givens rotations Ḡ1 and F̄2 such that

(
Ḡ1

)T (
F̄2

)T

⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎝ ×
0
0

⎞⎠ .
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In other words, the first column of
(
F̄2Ḡ1

)
should be made proportional to

Me1. Let

H1 ≡
(
F̄2Ḡ1

)T ·H0 ·
(
F̄2Ḡ1

)
=
(
Ḡ1

)T ·
(
(F̄2)T Q1Q2

)
Q3Q4 · R0F̄2Ḡ1

=
(
Ḡ1

)T ·
(
Q̄1Q̄2F̃1

)
Q3Q4 · R0F̄2Ḡ1 (forward Givens swap)

=
((

Ḡ1

)T
Q̄1

)
Q̄2Q3Q4 ·

(
F̃1R0

)
F̄2Ḡ1

= Q̂1Q̄2Q3Q4 · R̃0F̄2Ḡ1,

where Q̂1 ≡ (Ḡ1)T Q̄1, R̃0 ≡ F̃1R0, and if formed explicitly,

R̃0F̄2Ḡ1 =

⎛⎜⎜⎜⎜⎝
× × × × ×
+ × × × ×
+ + × × ×

× ×
×

⎞⎟⎟⎟⎟⎠ .

We see that there is a 2-by-2 bulge, indicted by plus signs. Next choose two
Givens rotations F̃2 and G̃1 to zero out entries (3, 1) and (2, 1) of R̃0F̄2Ḡ1 in

order. Let R̃1 ≡
(
G̃1

)T (
F̃2

)T

·
(
R̃0F̄2Ḡ1

)
, then we may write

H1 = Q̂1Q̄2Q3Q4

(
F̃2G̃1

)
· R̃1

= Q̂1

(
Q̄2Q3F̃2

)
Q4G̃1 · R̃1 (F̃2 pushed forward)

= Q̂1

(
F̄3Q̃2Q̄3

)
Q4G̃1 · R̃1 (backward Givens swap)

= F̄3

(
Q̂1Q̃2G̃1

)
Q̄3Q4 · R̃1 (F̄3 and G̃1 pushed forward.)

= F̄3

(
Ḡ2

̂̂
Q1Q̂2

)
Q̄3Q4 · R̃1 (backward Givens swap)

= F̄3Ḡ2 · ̂̂Q1Q̂2Q̄3Q4 · R̃1.

(2) Second chasing. Let

H2 ≡
(
F̄3Ḡ2

)T ·H1 ·
(
F̄3Ḡ2

)
= ̂̂

Q1Q̂2Q̄3Q4 ·
(
R̃1F̄3Ḡ2

)
,

where if explicitly formed,

R̃1F̄3Ḡ2 =

⎛⎜⎜⎜⎜⎝
× × × × ×

× × × ×
+ × × ×
+ + × ×

×

⎞⎟⎟⎟⎟⎠ .
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Thus compared with R̃0F̄2Ḡ1, the 2-by-2 bulge has been chased to the right
for one column. Next choose two Givens rotations F̃3 and G̃2 to zero out

(4, 2) and (3, 2) entries in order. Let R̃2 ≡
(
G̃2

)T (
F̃3

)T

·
(
R̃1F̄3Ḡ2

)
, then

we may write

H2 = ̂̂
Q1Q̂2Q̄3Q4

(
F̃3G̃2

)
· R̃2

= ̂̂
Q1Q̂2

(
Q̄3Q4F̃3

)
G̃2 · R̃2

= ̂̂
Q1Q̂2

(
F̄4Q̃3Q̄4

)
G̃2 · R̃2 (backward Givens swap)

= F̄4
̂̂
Q1

(
Q̂2Q̃3G̃2

)
Q̄4 · R̃2 (F̄4 and G̃2 pushed forward)

= F̄4
̂̂
Q1

(
Ḡ3

̂̂
Q2Q̂3

)
Q̄4 · R̃2 (backward Givens swap)

= F̄4Ḡ3 · ̂̂Q1
̂̂
Q2Q̂3Q̄4 · R̃2. (Ḡ3 pushed forward).

(3) Final two steps of bulge chasing. Let

H3 ≡
(
F̄4Ḡ3

)T ·H2 ·
(
F̄4Ḡ3

)
= ̂̂

Q1
̂̂
Q2Q̂3Q̄4 ·

(
R̃2F̄4Ḡ3

)
,

where if explicitly formed,

R̃2F̄4Ḡ3 =

⎛⎜⎜⎜⎜⎝
× × × × ×

× × × ×
× × ×
+ × ×
+ + ×

⎞⎟⎟⎟⎟⎠ .

Thus compared with R̃1F̄3Ḡ2, the 2-by-2 bulge has been chased by one col-
umn to the lower right. Next choose two Givens rotations F̃4 and G̃3 to zero

out the (5, 3) and (4, 3) entries in order. Let R̃3 ≡
(
G̃3

)T (
F̃4

)T

·
(
R̃2F̄4Ḡ3

)
,

then we may write

H3 = ̂̂
Q1

̂̂
Q2Q̂3Q̄4

(
F̃4G̃3

)
· R̃3

= ̂̂
Q1

̂̂
Q2

(
Q̂3Q̃4G̃3

)
· R̃3 (Q̃4 ≡ Q̄4F̃4)

= ̂̂
Q1

̂̂
Q2

(
Ḡ4

̂̂
Q3Q̂4

)
· R̃3 (backward Givens swap)

= Ḡ4 · ̂̂Q1
̂̂
Q2

̂̂
Q3Q̂4 · R̃3. (Ḡ4 pushed forward).

Lastly, let

H4 ≡
(
Ḡ4

)T ·H3 ·
(
Ḡ4

)
= ̂̂

Q1
̂̂
Q2

̂̂
Q3Q̂4 ·

(
R̃3Ḡ4

)
,
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where if explicitly formed,

R̃3Ḡ4 =

⎛⎜⎜⎜⎜⎝
× × × × ×

× × × ×
× × ×

× ×
+ ×

⎞⎟⎟⎟⎟⎠ .

Next choose a Givens rotation G̃4 to zero out the (5, 4) entry above to get

an upper triangular matrix R4 ≡
(
G̃4

)T

· R̃3Ḡ4. Now we may write

H4 = ̂̂
Q1

̂̂
Q2

̂̂
Q3Q̂4G̃4 ·R4

= ̂̂
Q1

̂̂
Q2

̂̂
Q3

̂̂
Q4 · R4. ( ̂̂Q4 ≡ Q̂4G̃4).

Let Ĥ = H4. A cycle of QR iteration with a pair of complex conjugate shifts

{σ, σ̄} is then completed. Define Q̂ ≡ ̂̂
Q1

̂̂
Q2

̂̂
Q3

̂̂
Q4, and

W̄ ≡ F̄2Ḡ1F̄3Ḡ2F̄4Ḡ3Ḡ4

=
(
F̄2F̄3F̄4

)
·
(
Ḡ1Ḡ2Ḡ3Ḡ4

)
≡ F̄ · Ḡ,

W̃ ≡ F̃1F̃2G̃1F̃3G̃2F̃4G̃3G̃4

=
(
F̃1F̃2F̃3F̃4

)
·
(
G̃1G̃2G̃3G̃4

)
≡ F̃ · G̃.

We can then summarize the structured double shift bulge chasing procedure as:

H4 = W̄T ·H0 · W̄ = (F̄ Ḡ) ·H0 · (F̄ Ḡ),

R4 = W̃T ·R0 · W̄ = (F̃ G̃) ·H0 · (F̄ Ḡ),

H4 = Q̂ · R4.

Remark 5.3. Since the first column of W̄ is proportional to that of H2 − sH + tI
(with s = 2 Re(σ), t = |σ|2), according to the well known implicit Q theorem, W̄
will be the same (up to sign differences in each column) as the Q-factor of the QR
decomposition of H2 − sH + tI.

Remark 5.4. Similar to the single shift case, none of the Rk’s are formed explicitly,
except few diagonal vectors which are needed for computing the bulges. The SSS
generators {di, ui} of Rk are updated during the process. At the end of a bulge
chasing cycle, {vi, wi}, are updated (also {ui}, in fact), and this can be done effi-
ciently by applying the fast SSS matrix-matrix multiplication formulas. However,
an outcome of using those multiplication formulas is that the column dimensions
of R’s SSS generators will grow by 4 in case of double shift bulge chasing, since
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both W̄ and W̃ have the maximum off-diagonal rank to be 2. In the next subsec-
tion, we will show how to recover a compact representation for R4, or in general
Rn−1.

5.5. Recovery of the compact SSS representation of R

In both single and double shift cases, we computed the SSS representation of Rn−1

(n = 5 for the 5-by-5 example we considered) through the formula

Rn−1 = G̃T · R0 · Ḡ,

where for simplicity of notation, we have written in case of double shift iteration:
W̃ = F̃ G̃ as G̃, W̄ = F̄ Ḡ as Ḡ. As pointed out in Remarks 5.2 and 5.4, the
column dimensions of the SSS generators of Rn−1 increase by 2 and 4 in single
and double shift cases, respectively. However, the mathematical ranks of the off-
diagonal blocks of Rn−1 do not increase starting from n = 2. The reason is that
given H0 = Z + xyT , where Z is orthogonal but never explicitly stored, we can
represent Rn−1 as a rank-one modification to an orthogonal matrix:

Rn−1 = Q̂T Hn−1 = Q̂T ḠT H0Ḡ =
(
Q̂T ḠT ZḠ

)
+
(
Q̂T ḠT x

)
·
(
ḠT y

)T
.

According to Theorem 3.4, rank(R12) ≤ 2 for any 2-by-2 blocking partitioning.
To recover a compact representation of Rn−1, we do the following.

(1) Compute x̂ = Q̂T ḠT x and ŷ = ḠT y. As just shown, the computed Rn−1

in a redundant SSS form can be viewed as a rank-one perturbation to an
orthogonal matrix, that is,

Rn−1 − x̂ŷT is an orthogonal matrix.

(2) Find a sequence of Givens rotations {X1, X2, . . . , Xn−1}, and let

X ≡ X1X2 · · ·Xn−1,

so that
Xx̂ = e1.

Apply X to Rn−1− x̂ŷT from the left-hand side. Now XRn−1−e1ŷ
T remains

orthogonal. On the other hand, since Rn−1 is upper triangular and X is upper
Hessenberg, XRn−1 − e1ŷ

T is also upper Hessenberg.
(3) Thus we can find another sequence of Givens rotations {Yn−1, Yn−2, . . . , Y1},

let Y ≡ Y1Y2 · · ·Yn−1, so that(
XRn−1 − e1ŷ

T
)
Y T = I.

(4) The last equation provides an alternative way to express Rn−1, that is,

Rn−1 = XT Y + XT e1ŷ
T = XT Y + x̂ŷT .

Both X are Y have orthogonal upper Hessenberg matrices with similar struc-
ture as that of Q, so that they can be written as SSS matrices with the maxi-
mum off-diagonal rank to be 1. The rank-one matrix x̂ŷT can also be written
in SSS form with off-diagonal rank to be 1. By applying the fast SSS matrix-
matrix multiplication in Subsection 2.3 to XT Y we obtain an SSS form for
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XT Y with generator sizes bounded by 2 (the sizes increase additively). Then
another fast SSS addition (Subsection 2.2) makes Rn−1 = (XT Y ) + (x̂ŷT ) a
new SSS matrix with generator sizes bounded by 3. That means, we get a
new compact representation for Rn−1. Here although theoretically, according
to Theorem 3.4 it is possible to further make the generator sizes no larger
than 2, it does not make a significant difference in practice. We allow the
sizes to be 3 for the sake of convenience in the programming. The above re-
covery process also applies to all subsequent QR iterations and it guarantees
the generators sizes to be bounded by 3. Another implication of the equation
above is that in exact arithmetics, XT Y + x̂ŷT is an upper triangular matrix.

5.6. Deflation and Convergence Criterion

After showing the details of the fast structured bulge chasing schemes we provide
the deflation technique and the convergence criterion in terms of SSS representa-
tions.

Deflation is an important concept in the practical implementation of the
QR iteration method. It amounts to setting small subdiagonal elements of the
Hessenberg matrix to zero. After deflation, it splits the Hessenberg matrix into two
smaller subproblems which may be independently refined further. Theoretically,
assume that deflation occurs to an intermediate Hessenberg matrix

H = Q1 · · ·Qn−1 · R,

and a subdiagonal entry hi,i−1 of H becomes 0. This corresponds to the fact that
the Givens matrix Qi−1 in the Q-factor sequence of H becomes an identity matrix:

H = (Q1 · · ·Qi−2) ·Qi−1 · (Qi · · ·Qn−1) · R
= (Q1 · · ·Qi−2) · I · (Qi · · ·Qn−1) ·R. (23)

In traditional deflation schemes H will be treated as two subproblems individually.
That means here we have to look for a new orthogonal-plus-rank-one representa-
tion such as (4) for each subproblem. It is not obvious so far how we can quickly
get those representations based on the original orthogonal-plus-rank-one represen-
tation. However, instead of seeking new representations, we will keep the original
orthogonal-plus-rank-one representation, reuse the original Q- and R-factors, and
in the meantime, keep track of the identity matrices such as Qi−1. The identity
matrix Qi−1 in (23) splits the Qj factors into two subgroups (corresponding to the
two subproblems in traditional deflation schemes). In later bulge chasing steps,
operations will be done within each subgroup. That is, we maintain global repre-
sentations for Q- and R-factors, but keep the actual structured operations locally
within subgroups.

We also need to take care of deflation criteria based on the low-rank struc-
tures. In traditional computations there are various deflation criteria, such as the
one proposed by Wilkinson which is used in LAPACK [2] and a new one proposed
by Ahues and Tisseur [1]. For our new QR algorithm, we can adopt similar criteria.
The difference is that since the Hessenberg iterate H is not explicitly formed, we
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need to compute relevant elements of H on the fly through compact representa-
tions of Q and R. For example, Wilkinson’s deflation criterion will set hi,i−1 to
zero if

|hi,i−1| ≤ τ · (|hi−1,i−1|+ |hi,i|), (24)
where τ is a given tolerance. In terms of the elements of Q and R we have(

hi−1,i−1 ×
hi,i−1 hi,i

)
=
(
−si−2 ci−2ci−1 ×

−si−1 ci−1ci

)⎛⎝ ui−2v
T
i−1 ×

di−1 ui−1v
T
i

di

⎞⎠ ,

where × denotes certain element in the corresponding matrix. This gives us⎧⎨⎩
hi,i−1 = −si−1di−1,

hi−1,i−1 = −si−2(ui−2v
T
i−1) + ci−2ci−1di−1,

hi,i = −si−1(ui−1v
T
i ) + ci−1cidi.

When the criterion (24) is satisfied, we want to set hi,i−1 to zero. However, since
H is not explicitly stored, we choose to do this by making si−1 zero. There are
two possible scenarios:

1. If |si−1| ≤ O(ε), with ε being the machine precision, it’s straightforward: we
will just set si−1 ≡ 0 and ci−1 ≡ sign(ci−1) without changing anything else.

2. If |si−1| > O(ε), things become tricky. We first multiply (Qi−1Qi · · ·Qn−1) to
R to get H(i−1 : n, i−1 : n) in its SSS form. We then find another sequence
of Givens rotation matrices (Q̂i−1Q̂i · · · Q̂n−1), whose transpose applied to
the left side of H(i− 1 : n, i− 1 : n) will yield a new upper triangular matrix
R̂. Note that:
(a) Q̂i−1 is automatically an identity matrix, since hi,i−1 is small enough

to be ignored;
(b) all matrix-matrix multiplications are done quickly by updating SSS gen-

erators.
In the standard QR algorithm, we say that the algorithm converges if the

Hessenberg iterate Hk eventually becomes a real quasi triangular matrix (called
the Schur form). In our new QR algorithm for real companion matrices, we say
that the algorithm converges if the Q-factor in its trigonometric parametrization
form Q = Q1Q2 · · ·Qn−1 satisfies the following convergence criterion: for any two
consecutive Givens rotations {Qk, Qk+1} (k = 1, 2, . . . , n − 2), one of them must
be an identity matrix.

5.7. Summary of the new QR algorithm for C

The gist of our new QR algorithm for companion matrices is the usage of compact
representations for Q (as a product of a sequence of Givens rotations) and for R
(in terms of its SSS form) during the QR iteration process. The feasibility of such
compact representations for Q and R is guaranteed by the fact that the Hessenberg
iterates of the companion matrix during QR iteration process have low-rank off-
diagonal blocks (the maximum off diagonal rank of H never exceeds 3). Similar
low-rank properties extend to the Q- and R-factors of H .
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In terms of compact representations of Q and R, rather than explicitly form-
ing and updating structured matrices for the Hessenberg iterates H as done in [4]
and [6], we may summarize our new QR iteration method in Algorithm 2.

6. Balancing Strategy

We also briefly mention the balancing strategy. Before QR iterations for the eigen-
values of a matrix A we usually apply a diagonal similarity transformation to A for
the purpose of better accuracy and efficiency. That is, we compute the eigenvalues
of DAD−1 where D is a diagonal matrix. The matrix D is often chosen such that
the norms of each row and the corresponding column of DAD−1 are close.

A similar balancing strategy as in [4] can be used. In our new fast eigensolver
for the companion matrix C, we have exploited the fact that the Hessenberg it-
erates under the QR iteration have low-rank off-diagonal blocks, so we are able
to use compact representations for the Q- and and R-factors. However, after bal-
ancing these rank structures for the iterates of DCD−1 may be destroyed, where
D = diag(d1, . . . , dn). That is, The Hessenberg iterates for DCD−1 may no longer
have low-rank off-diagonal blocks. However, notice

DCD−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
a1

d1
d2

a2 . . . d1
dn−1

an−1
d1
dn

an

d2
d1

0 . . . 0 0
0 d3

d2
. . . 0 0

...
...

. . .
...

...
0 0 . . . dn

dn−1
0

⎞⎟⎟⎟⎟⎟⎟⎠ . (25)

If we can select D such that
d2

d1
=

d3

d2
= · · · = dn

dn−1
≡ α

for certain α, then DCD−1 becomes the multiple of a new companion matrix:

DCD−1 = α ·

⎛⎜⎜⎜⎜⎜⎝
a1
α

a2
α2 . . . an−1

αn−1
an

αn

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎠ ≡ α · Ĉ,

where Ĉ is the companion matrix corresponding to the polynomial p(αx)/αn, with
p(x) being the polynomial (2) corresponding to the original companion matrix C.
This means that we can choose a geometric scaling (di = αi), and apply the fast
QR iterations to Ĉ so as to preserve the low-rank structures. After the eigenvalues
of the new companion matrix Ĉ are obtained we can multiply them by α to get
those of C.

Some efficient balancing algorithms for a given matrix A based on the ap-
proximation of Perron vectors of |A| are developed in [12]. It was also shown
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Algorithm 2 New structured QR algorithm for a real companion matrix C

Input: the first row of C:
(

a1 a2 . . . an−1 an

)
Output: Q: in terms of {c(Q), s(Q)};

R: in terms of {d(R), u(R), v(R), w(R)}.
(1) Initialization

(a) Compute QR factorization of C: C = Q1Q2 . . . Qn−1 · R.
(b) Find x and y such that C = Z + xyT . [Note that only {ci(Q), si(Q)},

{di(R), ui(R), vi(R), wi(R)}, x and y are explicitly stored.]
(2) Repeat

(a) Modified Bulge Chasing with shift(s)
(i) Determine what shift to use (Francis single or double shift or ex-

ceptional shift).
(ii) For i = 1, find Ḡi to create a bulge on subdiagonal of R and then

find G̃i to eliminate it.
(iii) For i = 2, . . . , n− 1:
(iv) Update Q by Givens swaps: Qi−1QjG̃i−1⇒ḠiQ̂i−1Q̂i. Store Ḡi.
(v) Update R by bulge elimination: find G̃i to eliminate the bulge

in RḠi. For example, for single shift:
Update di(R), di+1(R), form the bulge bi in RḠi, and update

hi, as in (18).
Compute G̃i and update di(R), di+1(R) as in (19).
Update ui(R), ui+1(R) as in (20).

(vi) Endfor
(vii) Merge G̃n−1 into Qn−1: Q̂n−1 := Qn−1G̃n−1. Each Q̂i becomes the

new Qi.
(viii) Get updated SSS representation for R by two SSS matrix multi-

plications (see, e.g. (17)).
(b) Deflation:

(i) If Hi+1,i is small enough to be thrown away and if Qi is not an
identity matrix, update Qi, . . . , Qn−1 and the corresponding parts
of SSS generators of R̂.

(c) Restore Compact Representation of R

(i) Q̂ and Ḡ are available through the parametric representations of Q̂i

and Ḡi, respectively. Let x̂ := Q̂T ḠT x, ŷ = ḠT y, then R̂ satisfies:
R̂ = Ẑ + x̂ŷT for some orthogonal Ẑ.

(ii) Find X so Xx̂ = e1 =⇒ XR̂ − e1ŷ
T is orthogonal and upper

Hessenberg.
(iii) Find Y so that (XR̂− e1ŷ

T )Y T = I.
(iv) Compute SSS generators {di(R), ui(R), vi(R), wi(R)} of R :=

XT Y + x̂ŷT : first use SSS multiplications to obtain an SSS form
for XT Y with generator sizes no larger than 2. Then use SSS ad-
ditions to obtain an SSS form for R with generator sizes no larger
than 3.

Until convergent
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that if A is irreducible and x and y are the right and left Perron vectors of
|A|, respectively, then D = diag(1/x1, . . . , 1/xn) minimizes ‖DAD−1‖∞, and
D = diag(

√
y1/x1, . . . ,

√
yn/xn) minimizes ‖DAD−1‖2. Here C is a compan-

ion matrix, and so is |C|. The matrix C has a right Perron vector with entries
xi = αn−i, where α is the maximum positive eigenvalue of |C|, or equivalently the
largest positive root of xn− |a1|xn−1− · · ·− |an−1|x− |an|. Therefore, a geometric
scaling with such an α minimizes the infinity-norm of DCD−1. In our algorithm,
however, only orthogonal transformations are applied. Ideally, we should look for
a geometric scaling strategy such that ‖DCD−1‖2 is minimized. Empirically, we
find the following criterion for choosing α to be useful: choosing α to make

Range{|ĉ1|, |ĉ2|, . . . , |ĉn|, 1} ≡
max{|ĉ1|, . . . , |ĉn|, 1}
min{|ĉ1|, . . . , |ĉn|, 1}

as small as possible, where ĉi = ai

αi .
In practice, α is often selected to be a power of the machine radix so as to

avoid errors in computing DCD−1. In our numerical experiments we have tried
different powers of 2 as α (see the next section), although more work needs to be
done on a systematic way of choosing α.

7. Numerical Experiments

We have tested our new structured QR algorithm on many different examples and
it is stable in practice, although it is still an open problem to show whether the
new algorithm is stable or not. We implemented the new QR-iteration method
in FORTRAN 90 for computing the eigenvalues of real companion matrices. The
codes are available online.1 Numerical experiments are run on a laptop with an
Intel Pentium M 1.7GHz CPU and 512MB RAM. Results are summarized in the
following two subsections to illustrate both the performance, i.e., O(n2) complexity
and the stability in practice.

We first point out that among all our numerical tests, the program runs stably
and we did not observe any significant failure or corruption of the orthogonal-plus-
rank-one structures by using the compact SSS QR factors. The low-rank Hessen-
berg structures are well preserved in the experiments.

7.1. O(n2) complexity Tests

We use real polynomials with uniformly random coefficients as test polynomials.
The degree of the polynomials doubles from 25 up to 102, 400. We also show the
relative backward error

‖ḠT · C0 · Ḡ−Q(m)R(m)‖∞
‖C0‖∞

,

where C0 denotes the initial companion matrix, m is the number of iterations
needed for convergence, Q(m) and R(m) are explicitly formed Q- and R-factors

1http://www.math.ucla.edu/˜jxia/work/companion/
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n (size) DGEEV(sec) New SSS(sec) iter. # rel. BkErr
25 0.01 0.01 83 1× 10−15

50 0.03 0.03 161 2× 10−15

100 0.12 0.09 309 3× 10−15

200 0.33 0.22 584 7× 10−15

400 1.70 0.51 1200 2× 10−14

800 12.33 1.98 2165 3× 10−14

1,600 95.82 7.43 4170 1× 10−13

3,200 865.22 56.11 8125
6,400 - 296.21 15569
12,800 - 1,302.22 30551
25,600 - 5,465.76 62080
51,200 - 21,080.34 116708
102,400 - 83,583.64 252822

Table 4. Numerical results on new O(n2) companion eigensolver.

of the final convergent Schur form of C0, and Ḡ is the accumulated orthogonal
similarity transformation.

Remark 7.1. The break-even size of the current new companion eigensolver imple-
mentation versus LAPACK is about n = 50. For the test problem of size 102, 400,
it took the new companion eigensolver about 23 hours to converge all the roots;
on the other hand, the LAPACK routine DGEEV can’t even run for problems of size
about 8, 000 since it uses O(n2) storage; even if the memory was not an issue, it
would take DGEEV more than 300 days to converge on the same machine since it’s
an O(n3) method.

Remark 7.2. From Table 4 and Figure 1, we clearly see the quadratic (i.e. O(n2))
complexity of the new QR iteration Algorithm 1, see Figure 1 (a). The average
iteration number needed per eigenvalue is less than 3, see Figure 1 (b). In the
mean time, we observe nearly linear growth in both backward and forward errors.

Note that Figure 1 (a) reports the ratio between the running time for matrices
of sizes n = 25 × 2k and n = 25 × 2k−1. Since the new companion eigensolver is
an O(n2) algorithm, we expect the ratio to be close to 4 for large n.

7.2. Backward Stability Tests

If the new QR algorithm for companion matrix is backward stable in eigenproblem
sense, then according to error analysis by Van Dooren and Dewilde [13], and further
by Edelman and Murakami [16], the new algorithm is also backward stable in
polynomial sense, more precisely, the “calculus” definition holds: “the first order
perturbations of the matrix lead to first order perturbations of the coefficients”,
see [16] for details.
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Figure 1. New companion eigensolver, with test matrices of size
25× 2n−1, 1 ≤ n ≤ 13.

Following Toh and Trefethen [27] and Edelman and Murakami [16], we explore
the following degree 20 monic real coefficient polynomials:

(1) “Wilkinson polynomial”: zeros 1, 2, 3, . . . , 20.
(2) the monic polynomial with zeros [−2.1 : 0.2 : 1.7].
(3) p(z) = (20!)

∑20
k=0 zk/k!.

(4) the Bernoulli polynomial of degree 20.
(5) the polynomial z20 + z19 + z18 + · · ·+ z + 1.
(6) the univariate polynomial with zeros 2−10, 2−9, 2−8, . . . , 29.
(7) the Chebyshev polynomial of degree 20.

In addition, we tested some random polynomials of degree 100, 200, . . . , 1600:

(8) random coefficients with uniform distribution.

Like what Edelman and Murakami did in their paper [16], for each example
above, we first computed the coefficients either exactly or with ultra-high preci-
sion using MPFUN90 (Multiple Precision package by David Bailey, [3]). Then we
rounded these numbers to double precision (in F90). And we took the rounded
polynomials stored in F90 to be our official test cases.
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For all test cases, we computed two sets of relative backward errors. One is
the norm-wise matrix relative backward error:

‖E‖∞
‖Ĉ‖∞

≡ ‖ḠT · Ĉ · Ḡ−Q(m)R(m)‖∞
‖Ĉ‖∞

,

where Ĉ denotes the scaled companion matrix after balancing in (25), Ḡ is the
accumulated orthogonal similarity transformation, and Q(m)R(m) converges to the
Schur form of Ĉ. The other is the component-wise coefficient relative backward
error:

|δ ĉi|
|ĉi|

≡ |c̃i − ĉi|
|ĉi|

,

where ĉ corresponds to the coefficient of the characteristic polynomial of Ĉ, and
c̃i is the ith coefficient of the polynomial recovered from the computed zeros by
using ultra-high precision, e.g. MPFUN90.

Test (1) (2) (3) (4) (5) (6) (7)
α 8 1 8 2 1 1/4 1/2

‖Ĉ‖∞ 7 3 4 2 2 22 4
rel bkerr 10−15 10−15 10−16 10−15 10−15 10−16 10−15

Table 5. Test (1–7): matrix norm-wise backward errors.

7.2.1. Test (1-7), degree 20.

Remark 7.3. 1. The last two rows of Table 6 show (1) xmax: the maximum
positive root of pb(x) = xn − |c1|xn−1 − · · · − |cn−1|x1 − |cn|, and (2) α: the
particular scaling factor chosen so that the maximum coefficient backward
error is minimized. As we can see, such α usually doesn’t agree well with
xmax. Although using xmax as scaling factor will minimize ‖DCD−1‖∞, the
magnitudes of the coefficients of the new polynomial under such scaling could
vary wildly.

2. The empty entries for Test 4 and 7 correspond to zero coefficients.

7.2.2. Test(8), random polynomials, degree 100, 200, . . .1600.

Remark 7.4. 1. From Table 7, we can see that the new companion eigensolver
has small backward error in matrix-norm sense, it also finds roots with small
(coefficient) backward errors. In our random polynomial experiments, we
choose α = 1. When the size of polynomial gets bigger, to balance the corre-
sponding companion matrix with geometric scaling limits our option.

2. Where the “average abs bkerr” (average absolute backward error) is com-
puted as average of {log10 |ci|} , and the “average rel bkerr” (average rela-
tive backward error) is computed as average of

{
log10

|δci|
|ci|

}
.
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index/Test (1) (2) (3) (4) (5) (6) (7)
1 10−15 10−14 10−14 10−14 10−14 10−14 -
2 10−15 10−14 10−14 10−14 10−13 10−14 10−15

3 10−14 10−15 10−14 - 10−13 10−13 -
4 10−14 10−12 10−14 10−14 10−14 10−13 10−15

5 10−14 10−14 10−14 - 10−14 10−13 -
6 10−14 10−13 10−14 10−14 10−13 10−13 10−15

7 10−14 10−14 10−14 - 10−13 10−13 -
8 10−14 10−14 10−14 10−14 10−13 10−13 10−15

9 10−14 10−14 10−14 - 10−13 10−13 -
10 10−14 10−15 10−14 10−14 10−13 10−13 10−14

11 10−14 10−13 10−14 - 10−13 10−13 -
12 10−14 10−14 10−14 10−14 10−13 10−13 10−14

13 10−13 10−13 10−14 - 10−13 10−13 -
14 10−13 10−14 10−14 10−14 10−13 10−13 10−14

15 10−13 10−13 10−14 - 10−13 10−13 -
16 10−13 10−13 10−14 10−14 10−13 10−13 10−14

17 10−13 10−14 10−14 - 10−14 10−13 -
18 10−13 10−13 10−14 10−13 10−14 10−13 10−14

19 10−13 10−12 10−14 - 10−14 10−12 -
20 10−13 10−13 10−14 10−14 10−14 10−12 10−14

max bkerr 10−13 10−12 10−14 10−13 10−13 10−12 10−14

xmax 296.2 6.1 38.2 12.6 2.0 1319.8 2.6
α 8 1 8 2 1 1/4 1/2

Table 6. Test (1–7): coefficient-wise backward errors with appro-
priate α.

size matrix-wise polynomial coeff.-wise
‖Ĉ‖∞ rel bkerr average abs fwderr average abs fwderr

100 5× 101 3× 10−15 10−14 10−13

200 9× 101 7× 10−15 10−13 10−13

400 2× 102 2× 10−14 10−12 10−12

800 4× 102 3× 10−14 10−12 10−11

1600 8× 102 1× 10−13 10−11 10−11

Table 7. Test (8): backward errors in matrix and polynomial coefficients.

8. Conclusions

In this paper we presented a new fast QR algorithm for computing the eigenvalues
of a real companion matrix. The algorithm is backward stable in practice. The
success of the new method relies on (i) compact (SSS) representations for Q and
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R, (ii) a new technique called Givens rotation swaps to update Q in an efficient
fashion, and (iii) exploring the special rank structure of R for the purpose of
efficient compression. The overall complexity is O(n2), though we have not yet
derived the counts in detail. Our suspect is that the counts are similar to those in
[6].

We also expect to propose a modified version with stability proof in the near
future.
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The Numerical Range of a Class of
Self-adjoint Operator Functions

Nurhan Çolakoğlu

Abstract. The structure of the numerical range and root zones of a class of
operator functions, arising from one or two parameter polynomial operator
pencils of waveguide type is studied. We construct a general model of such
kind of operator pencils. In frame of this model theorems on distribution of
roots and eigenvalues in some parts of root zones are proved. It is shown
that, in general the numerical range and root zones are not connected but
some connected parts of root zones are determined. It is proved that root
zones, under some natural additional conditions which are satisfied for most
of waveguide type multi-parameter spectral problems, are non-separated, i.e.,
they overlap.
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1. Introduction

The purpose of this paper is to study the numerical range and the structure of root
zones for a class of self-adjoint operator functions, arising from one or two param-
eter polynomial operator pencils of waveguide type (w.g.t.). These are questions
mainly from the variational theory of the spectrum of operator pencils of w.g.t.
The main difficulties in the variational theory of the spectrum of multi-parameter
operator pencils are based on the fact that their root zones overlap, i.e., they
are non-overdamped pencils. For this reason, we construct a general model of self-
adjoint operator pencils which contains not only operator pencils of w.g.t., but also
a wide class of non-overdamped pencils. Throughout, we study these problems in
the frame of this model (see conditions (I)–(IV)).

The study of waveguiding systems of an arbitrary order often leads to the
spectral theory of two parameter polynomial operator pencils, so-called pencils of
w.g.t. (see [1], [2] and [9], see also for definition Examples 3.1, 3.2 and 3.3), in the
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form

L(k, w) := A +
n∑

s=1

k2sCs−1 +
n−1∑
s=0

k2s+1Bs + iwD − w2I,

where A, D, Bs and Cs, s = 0, 1, . . . , n − 1, are symmetric operators in a Hilbert
space H and all but Cn−1 may be unbounded.

Such kind of operator pencils arise from a dynamical model of regular wave-
guiding system constructed by A. S. Silbergleit and Yu. I. Kopilevich in [7], [8] and
[9]. These works are devoted to general spectral problems for quadratic operator
pencils of w.g.t. It seems that [2] is the first paper devoted to the spectral theory
(mainly variational theory of the spectrum) of two parameter polynomial operator
pencils of w.g.t. Although variational principles for definite type eigenvalues for
quadratic operator pencils of w.g.t. were studied in detail in [1], this paper also
contains some new results (see Theorem 2.2) about the numerical range and root
zones in this case.

In the spectral theory, especially in the variational theory of the spectrum
of one or two parameter operator pencils of w.g.t., we often deal with operator
functions whose root zones overlap in an interval [a, b] (see [1], [2], [4], [5]). Namely
we have an operator function L and the equation (L(λ)x, x) = 0 has only two roots
p−(x) and p+(x) in [a, b] for some x from a cone G′ in a Hilbert space H . We recall
that a real root λ of the equation (L(λ)x, x) = 0 is said to be of the first kind, of
the second kind, and neutral if the number (L′(λ)x, x) is greater than zero, less
than zero, and equal to zero, respectively. We define also the cone

G = {x ∈ G′ | p−(x) �= p+(x)}
and the bounds of the ranges of functionals p±(x) on G and G′:

δ− = inf
G

p+(x), δ+ = sup
G

p−(x),

k− = inf
G

p−(x), k+ = sup
G

p+(x),

k′
− = inf

G′
p−(x), k′

+ = sup
G′

p+(x).

In the spectral theory of one or two parameter operator pencils of w.g.t., in
general, we have two different models for distribution of roots and curves (L(λ)x, x)
(see Figures 1 and 2).

k�’ k� ∆� ∆� k� k�’

Figure 1. Model A

k�’ k� ∆� ∆� k� k�’

Figure 2. Model B
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Especially in the solutions of variational problems, distribution of roots as in
model B (Figure 2) and connectedness of the parts of root zones in the intervals
[k−, δ−) and (δ+, k+] are very important.

In this paper we aim to give conditions under which such distribution of roots
(Figure 2) occurs. This is considered in Section 2.

In addition, examples of one and two parameter operator functions satisfying
these conditions are given in Section 3.

2. On the structure of root zones

Let A be a bounded linear operator on the Hilbert space H . The set of all numbers
of the form (Ax, x), where ‖x‖ = 1, is called the numerical domain of A and
denoted by W (A). It is obvious that W (A) is a nonempty subset of C. This set
is not closed in general. If Ax = λx (‖x‖ = 1), then (Ax, x) = λ, i.e., all the
eigenvalues of A are in W (A). The spectrum of A need not be contained in W (A)
but is necessarily in W (A). We know also that W (A) is a convex set.

Let A(λ) be an operator function whose values are bounded operators. The set
of all roots of all possible functions (A(λ)x, x) (x �= 0) is called the numerical range
of the operator function A(λ) and denoted by R(A). In other words, λ0 ∈ R(A) if
there exits a vector x0 such that ‖x0‖ = 1 and (A(λ0)x0, x0) = 0. Obviously, each
eigenvalue of A(λ) is in the numerical range.

Note. In some resources the notion of ‘numerical domain’ for an operator, defined
above, is called ‘numerical range’. That is, the term ‘numerical range’ is used both
for operators and operator functions (see [3]). But in order to differantiate between
this two notions for operators and operator functions, we prefer to use both terms.

The numerical range of the operator function A − λI coincides with the
numerical domain of the operator A, so the concept of the numerical range of
an operator function is a natural generalization of the concept of the numerical
domain of an operator.

The relation between numerical domain and spectrum of an operator can be
generalized to operator functions. If A(λ) is an operator function holomorphic in
a domain U and there exists a number z0 ∈ U such that 0 /∈ W (A(z0)), then
σ(A) ⊂ R(A) (see [6, p. 139]).

In contrast to the numerical domain of an operator, the numerical range of
an operator function is nonconvex and even disconnected in general.

In the finite dimensional case, the following theorem exhibits a close relation-
ship between the eigenvalues and numerical range of a monic self-adjoint matrix
polynomial, namely, that every real boundary point of R(L) is an eigenvalue of
L(λ).

Theorem 2.1 ([3, Theorem 10.15]). Let L(λ) be a monic self-adjoint matrix poly-
nomial, and let λ0 ∈ R(L) ∩ (R \R(L)). Then λ0 is an eigenvalue of L(λ).
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As mentioned above we are mainly interested in problems about the structure
of root zones, which we encounter in the variational theory of operator pencils of
w.g.t. in the nonoverdamped case. For this reason we prefer to deal, not with
conditions on the coefficients, but with conditions that derive from them and are
easier to apply in our case. So we construct a general model given by the conditions
(I) L(k) : [a, b] → S(H), L ∈ C1[a, b] and for all x �= 0 from a cone G′ in a

Hilbert space H the equation (L(k)x, x) = 0 has only two roots p−(x), p+(x)
in [a, b] (multiplicities taken into account and p−(x) ≤ p+(x)) and has no
roots in [a, b] for other x ∈ H \ {0}. Here S(H) denotes the set of bounded
self-adjoint operators in H .

(II) If x ∈ G, then (L′(p−(x))x, x) < 0 and (L′(p+(x))x, x) > 0, where

G = {x ∈ G′ | p−(x) �= p+(x)} .

(III) There exist a number k ∈ [a, b] such that (L(k)x, x) < 0 if and only if x ∈ G.
(IV) If {xn} ⊂ G′ weakly convergent to x ∈ G′, then

lim inf p−(xn) ≥ p−(x), lim sup p+(xn) ≤ p+(x).

Operator pencils of w.g.t. (see Examples 3.1, 3.3 and 3.2), as well as a wide
class of nonoverdamped operator pencils, form a subclass of this model, i.e., they
satisfy the conditions (I)–(IV).

We set
W ′

p± := {p±(x) | x ∈ G′}
and

Wp± := {p±(x) | x ∈ G}
which are called root zones of the pencil L.

Lemma 2.1. The functionals p± are continuous on G′.

Proof. Let xn, x ∈ G′ and xn → x. We want to show that p+(xn) → p+(x). Let
βn = p+(xn). Since βn ∈ [a, b] it is bounded, it has a convergent subsequence. Let
us denote it again by βn and let βn → β. Now we must show that β = p+(x).
Since

0 = (L(βn)xn, xn)→ (L(β)x, x) = 0
it follows that β = p+(x) or β = p−(x). If we consider the condition (II), then

0 ≤ (L′(βn)xn, xn)→ (L′(β)x, x) ≥ 0.

Now there are two cases. If (L′(β)x, x) > 0, then β = p+(x). If (L′(β)x, x) = 0,
then β = p+(x) = p−(x). Consequently p+(xn)→ p+(x). �

The following theorem particularly shows that for operator pencils of w.g.t.
we have distribution of roots as in Figure 2.

Theorem 2.2. Let L be an operator function satisfying the conditions (I)–(IV).
Then we have the following properties:

(i) k± ∈ σR(L) := σ(L) ∩ R,



A Class of Self-adjoint Operator Functions 149

(ii) If k+ (k−) is not a limit point of σ(L), every k ∈ W ′
p+
∩ (δ+, k+]

(
k ∈

W ′
p− ∩ [k−, δ−)

)
is a root of the first kind (second kind). Particularly, all

eigenvalues in (δ+, k+] ([k−, δ−)) are eigenvalues of first (second) kind.

Proof. First we prove the property (i) for k+. We select a sequence {xn} with the
properties

xn ∈ G, ‖xn‖ = 1, p+(xn) → k+, xn
w−→ x. (1)

Since
|(L(k+)xn, xn)| ≤ ‖L(k+)− L(p+(xn))‖,

we have
lim

n→∞(L(k+)xn, xn) = 0.

From the conditions (II)–(III) and the definition of k+ follows that L(k+) ≥ 0.
Consequently we have

lim
n→∞L(k+)xn = 0, L(k+)x = 0. (2)

From the existence of a sequence satisfying (1) and (2) it follows that k+ ∈ σR(L).
In a similar way one shows that k− ∈ σR(L).

We now prove (ii). We show that roots in W ′
p+
∩ (δ+, k+] are of the first kind.

First we establish that k+ is an eigenvalue and has an eigenvector of the first kind.
We select a sequence having the properties (1) and (2). Since k+ is not a limit
point of σ(L), the vector x cannot be zero, so from (2) it follows that k+, x is an
eigenpair. From the condition (IV) we have

p+(x)− p−(x) ≥ lim sup p+(xn)− lim inf p−(xn).

Since p+(xn)→ k+, choosing a subsequence we can write

p+(x)− p−(x) ≥ lim
n→∞ p+(xn)− lim

n→∞ p−(xn).

We show that the right side of the inequality is strictly positive. Assume that

lim
n→∞ p+(xn)− lim

n→∞ p−(xn) = 0,

then
k+ = lim

n→∞ p+(xn) = lim
n→∞ p−(xn) ≤ δ+.

So we obtain a contradiction to the fact that δ+ < k+. So p−(x) < p+(x) and
x ∈ G. Since k+ ≤ p+(x) by the condition (IV), we have k+ = p+(x) and the pair
k+, x is of the first kind by the condition (II).

Now we show that k+ is an eigenvalue of the first kind. Let z be an arbitrary
(nonzero) eigenvector corresponding to k+. If it is of the second kind, we have a
contradiction with the fact that k+ is the upper bound of p+ on G. We show that
z cannot be neutral. Assuming that (L′(k+)z, z) = 0 we set zt = tx + (1 − t)z,
t ∈ [0, 1] where x is the previously found eigenvector of the first kind for k+. Since
L(k+)zt = 0, we have zt ∈ G′ and p+(zt) = k+ for t ∈ [0, 1]. Let K = {zt |
t ∈ [0, 1]}, then K ⊂ G′ is a pathwise connected set. Note that the functional
p− is continuous on G′, p−(z0) = p−(z) = k+ and p−(z1) = p−(x) ≤ δ+. Since
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p−(K) is connected, for every k ∈ (p−(x), p−(z)) there exist a zt∗ ∈ K such that
p−(zt∗) = k. If we choose k such that δ+ < k < k+ we have p−(zt∗) = k < k+,
p+(zt∗) = k+ and zt∗ ∈ G. Since p−(zt∗) = k > δ+ this leads to a contradiction
with the fact that δ+ is the upper bound of p− on G. We conclude that z cannot
be neutral and k+ is an eigenvalue of the first kind.

Now let us prove that if (L(k+)z, z) = 0, then (L′(k+)z, z) > 0. Since L(k+) ≥
0 we can write

‖L(k+)z‖2 ≤ ‖L(k+)‖(L(k+)z, z)

so z, k+ is an eigenpair and it is of the first kind.
Let δ+ < k < k+ and z be a corresponding vector such that (L(k)z, z) = 0.

The vector z cannot be of second kind since from the condition (L′(k)z, z) < 0
follows that z ∈ G and k = p−(z), contradicting the fact that δ+ < k. Assume
that (L′(k)z, z) = 0, therefore k = p±(z). We consider an eigenvector x of the first
kind corresponding to the eigenvalue k+ and we set zα = z + αx. Replacing x by
−x, we can assume that Re (L(k)z, x) ≤ 0. We note that since δ+ < k < k+, we
have (L(k)x, x) < 0 and therefore

(L(k)zα, zα) = (L(k)z, z) + 2α Re (L(k)z, x) + α2(L(k)x, x) < 0,

if α > 0. By the condition (III) we have zα ∈ G, α > 0 and we obtain the
contradiction

δ+ ≥ lim
α→0+

p−(zα) = p−(z) = k

with the fact that δ+ < k. The case of W ′
p− ∩ [k−, δ−) is analyzed in an analogous

manner. �

Theorem 2.3. Let L be an operator function satisfying the conditions (I)–(IV). If
k ∈W ′

p+
∩ (k+, k′

+] ( k ∈W ′
p− ∩ [k′

−, k−)), then k is a neutral eigenvalue.

Proof. If k ∈ W ′
p+
∩ (k+, k′

+], then there exist x ∈ G′ such that (L(k)x, x) = 0.
Since k > k+ we have L(k) ≥ 0. Using the inequality

‖L(k)x‖2 ≤ ‖L(k)‖ (L(k)x, x)

we see that L(k)x = 0 and k, x is an eigenpair, since x ∈ G′ \ G it is a neutral
eigenpair. �

As the example below shows the sets Wp± are not necessarily connected for
every operator function L satisfying (I)–(IV).

Example. Let M(k) = A+ kB + k2C be a one parameter operator pencil, H = C2

and

A =
(

1 0
0 2

)
, B =

(
1 4
4 0

)
, C =

(
1 0
0 1

)
.

The operator pencil M satisfies (I)–(IV) and the graphs of sets Wp− and Wp+ (see
Figure 3), obtained by computational methods, are disconnected.
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Figure 3. Graphics of Wp− and Wp+

Now we show that some parts of Wp± are connected. For this purpose we
define the sets

G+ = {x ∈ G | p+(x) > δ+}
G− = {x ∈ G | p−(x) < δ−} .

If G+ (G−) is nonempty then some part of Wp± turns out to be connected, as we
can see in Figure 3.

We set J± = p±(G±). If the set G+ (G−) is empty, then we consider J+ (J−)
is empty. In the case G± �= ∅ we have

J+ = Wp+ ∩ (δ+, k+]
J− = Wp− ∩ [k−, δ−).

Theorem 2.4. Let L be an operator function satisfying (I)–(IV). If H is a complex
Hilbert space, then the sets G± are pathwise connected and J± are connected.

Proof. Since the functionals p± are continuous on G, the connectedness of J± fol-
lows from pathwise connectedness of G±. We show that G+ is pathwise connected.
Let x, y ∈ G+, then p+(x), p+(y) > δ+ and p−(x), p−(y) ≤ δ+. We select ε > 0
such that p+(x), p+(y) > δ+ + ε and we set k = δ+ + ε. Then

k ∈ (p−(x), p+(x)) ∩ (p−(y), p+(y)). (3)

We select λ = 1 or −1 so that Re [λ (L(k)x, y)] is nonpositive, and we set x̃ = λx,
zα = αx̃ + (1− α)y, α ∈ [0, 1]. Then

(L(k)zα, zα) = α2(L(k)x, x) + 2α(1 − α) Re [λ(L(k)x, y)] + (1− α)2(L(k)y, y).

Note that if x ∈ G from (II) and (III),

(L(t)x, x) < 0 ⇐⇒ t ∈ (p−(x), p+(x)).

Taking t = k from (3) we obtain that both (L(k)x, x) and (L(k)y, y) are negative.
Therefore (L(k)zα, zα) is negative for α ∈ [0, 1]. From this follows that zα ∈ G and
k < p+(zα). Since k > δ+ we have zα ∈ G+ for α ∈ [0, 1]. Thus, x̃ can be joined
with y in G+ by a segment. Since H is a complex space, in the case λ = −1 the
vectors x an −x in G can be joined by xeiϕ, (0 ≤ ϕ ≤ π). For G− the proof is
similar. �
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Now we show that the root zones, under some additional conditions, are not
separated. An example was given above (see Figure 3). First we prove the following:

Lemma 2.2. The set G is open and G = G′.

Proof. First we show that Gc is closed. Let {xn} ⊂ Gc and xn → x. Then for
every α ∈ [a, b] we have

0 ≤ (L(α)xn, xn) → (L(α)x, x) ≥ 0,

so x ∈ Gc and Gc is closed.
Now let {xn} ⊂ G and xn → x. Then to every xn corresponds an αn ∈ [a, b]

such that (L(αn)xn, xn) < 0. Since {αn} ⊂ [a, b] is bounded, it has a convergent
subsequence. Let us rename it again as {αn} and let αn → α. Since

0 > (L(αn)xn, xn)→ (L(α)x, x) ≤ 0,

it follows that x ∈ G′ and G = G′. �

Theorem 2.5. Let L be an operator function satisfying the conditions (I)–(IV). If
G �= ∅ and G �= H \ {0}, then δ− ≤ δ+.

Proof. By the condition G �= ∅ there exists x1 ∈ G. On the other hand it follows
from G �= H \ {0} that there exists x2 /∈ G. Define a path from x1 to x2 by
zt = (1− t)x1 + tx2, 0 ≤ t ≤ 1. Since x1 ∈ G, x2 /∈ G and G is open, there exists
a number t∗ ∈ (0, 1] such that zt ∈ G for all t ∈ [0, t∗). From G = G′ follows that
zt∗ ∈ G′. Now we can write

δ− = inf
z∈G

p+(z) ≤ lim
t→t∗−0

p+(zt) = p+(zt∗)

= p−(zt∗) = lim
t→t∗−0

p−(zt) ≤ sup
z∈G

p−(z) = δ+.
�

3. Examples

Now we give some examples of classes of operator functions satisfying the condi-
tions (I)–(IV). Here, in the first two examples, we aim to show where our problem
comes from. Note that, even if these two classes are studied extensively, some of
the results (see Theorem 2.2) are new for these classes as well.

3.1. One parameter pencils of waveguide type

Definition 3.1 ([1, pp. 1278–1279]). An operator pencil of the form L(k) = k2C +
kB+A, where A, B and C are bounded and symmetric operators in a Hilbert space
H is said to be an operator pencil of waveguide type if the following conditions
are satisfied.
(A1) C > 0;
(A2) A = A1 −A2, A1 � 0, A2 ∈ S∞;
(A3) B and C are compact operators;
(A4) G �= ∅, G �= H \ {0};
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(A5) −∞ < k′
−, k′

+ <∞.

We set d(x) = (Bx, x)2 − 4(Cx, x)(Ax, x). The sets G and G′ are defined as

G′ = {x | d(x) ≥ 0},
G = {x | d(x) > 0},

and the functionals p±(x) have the form

p±(x) =
−(Bx, x) +

√
d(x)

2(Cx, x)
, x ∈ G′.

Now we choose [a, b] = [k′
−, k′

+] and the conditions (I)–(IV) follow from the
conditions (A1)–(A3) [1, p. 1281].

3.2. Two parameter quadratic pencils of waveguide type

Definition 3.2 ([4, Definition 2.1]). An operator pencil of the form L(k, w) = A +
kB + k2C − w2I is called weak two parameter pencil of waveguide type if the
following conditions are satisfied:

(B1) The operator A is nonnegative and (A + I)−1 ∈ S∞, where S∞ is the set of
compact operator.

(B2) C is a bounded and positive definite operator.
(B3) B is symmetric and (A + I)−1/2B(A + I)−1/2 ∈ S∞.

Additionally, if the following condition:

(B4) ∃ε satisfying 0 < ε < 1 such that (Au, u) + k(Bu, u) + ε2k2(Cu, u) ≥ 0,
∀k ∈ R, u ∈ D

(
(A + I)1/2

)
– the domain of the operator (A + I)1/2 – called

the energy stability condition is satisfied then we say that we have a weak
operator pencil with the energy stability condition.

Here the coefficients A and B may be unbounded. We can transform the
pencil L(k, w) to the pencil L̃(k, w) := (A + I)−1/2L(k, w)(A + I)−1/2 which has
bounded coefficients. Note that σ(L̃) = σ(L). If we write

L̃(k, w) = k2C̃ + kB̃ + Ã(w),

then

Ã(w) = I − (1 + w2)(A + I)−1, C̃ = (A + I)−1/2C (A + I)−1/2,

B̃ = (A + I)−1/2C (A + I)−1/2.

Now, for fixed w ∈ R, let us check the conditions (A1)–(A3) and (A5).

(A1) By the condition (B2), C̃ > 0.
(A2) Ã(w) = I − (1 + w2)(A + I)−1. Ã1 = I � 0, Ã2 = (1 + w2)(A + I)−1 ∈ S∞

by (B1).
(A3) It follows from the conditions (B1)–(B3) that B̃ and C̃ are compact.
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(A5) It follows from the conditions (B2) and (B4) that there exists a number c0 > 0
such that for all k ∈ R and for all u ∈ D

(
(A + I)1/2

)
,

(Au, u) + k(Bu, u) + k2(Cu, u) ≥ c2
0k

2(u, u).

For v ∈ H , v �= 0 let u = (A + I)−1/2v, then we have

([I − (A + I)−1]v, v) + k(B̃v, v) + k2(C̃v, v) ≥ c2
0k

2((A + I)−1v, v)

and
(L̃(k, w)v, v) ≥ (c2

0k
2 − w2)((A + I)−1v, v).

If k is a root of the equation (L̃(k, w)v, v) = 0, i.e, k = p−(v) or k = p+(v),
then

0 ≥ (c2
0k

2 − w2)((A + I)−1v, v) = (c2
0k

2 − w2)
∥∥∥(A + I)−1/2v

∥∥∥2

.

Consequently, we have c2
0k

2 ≤ w2, hence −∞ < k′
−, k′

+ < ∞.

Now the conditions (I)-(IV) follow from Example 3.1.

3.3. Polynomial operator pencils of waveguide type

Definition 3.3. The two parameter operator pencil

L(k, w) := A +
n∑

s=1

k2sCs−1 +
n−1∑
s=0

k2s+1Bs + iwD − w2I

is said to be an operator pencil of waveguide type iff

(C1) A is a self-adjoint nonnegative operator satisfying (A + I)−1 ∈ S∞ and D is
a symmetric operator which satisfies D(A + I)−1/2 ∈ S∞, where S∞ is the
set of compact operators,

(C2) Cn−1 is a bounded and positive definite operator:

c1(u, u) ≤ (Cn−1u, u) ≤ c2(u, u), u ∈ H and 0 < c1 ≤ c2.

(C3) The operators Bs, s = 0, 1, . . . , n−1 and Cs, s = 0, 1, . . . , n−2 are symmetric
and (A + I)−1/2Bs(A + I)−1/2 ∈ S∞ and (A + I)−1/2Cs(A + I)−1/2 ∈ S∞.
Particularly, these conditions mean D((A+I)1/2) ⊂ D(Bs), s = 0, 1, . . . , n−
1, and D((A + I)1/2) ⊂ D(Cs), s = 0, 1, . . . , n− 1.

(C4) There exists a number µ ≥ 0 such that for all k ∈ R and u ∈ D((A + I)1/2)
the following inequality holds:

(Au, u) +
n∑

s=1

k2s(Cs−1u, u) +
n−1∑
s=0

k2s+1(Bsu, u) ≥ µ2(u, u).

In addition we say that a two parameter pencil of w.g.t. satisfies the energetic
stability condition if the following condition is fulfilled:
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(C5) There exist real numbers ζ ≥ 0 and c0 > 0 such that for all k ∈ R and all
u ∈ D((A + I)1/2),

(Au, u) +
n∑

s=1

k2s(Cs−1u, u) +
n−1∑
s=0

k2s+1(Bsu, u) ≥ (c0
2nk2n + ζ)(u, u).

For this class, in the case D = 0, the conditions (I)–(IV) are fulfilled on some
parts of the root domain.
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Abstract. It is known that any symmetric matrix can be transformed by an
explicitly computable orthogonal transformation into diagonal-plus-semisepa-
rable form, with prescribed diagonal term. In this paper, we present perturba-
tion bounds for such transformations, under the condition that the diagonal
term is close to (part of) the spectrum of the given matrix. As an applica-
tion, we provide new iterative schemes for the simultaneous refinement of the
eigenvalues of a symmetric matrix, having quadratic convergence.
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1. Introduction

In this paper, a symmetric semiseparable matrix is a real, symmetric n×n matrix
S whose entries depend bilinearly on a set of 2n parameters, as follows:

S =

⎛⎜⎜⎜⎜⎝
u1v1 u2v1 · · · unv1

u2v1 u2v2
. . . unv2

...
. . . . . .

...
unv1 unv2 · · · unvn

⎞⎟⎟⎟⎟⎠ . (1.1)

The numbers ui, vj are arbitrary, and are called the generators of the matrix S.
Actually, the above definition is referred to in the modern literature as genera-
tor representable semiseparable matrix [14], since the most general definition of a
semiseparable matrix is given in terms of ranks of nondiagonal submatrices [3, 7].

Moreover, we call diagonal-plus-semiseparable matrix [4, 5, 8] (dpss, for short),
any real, symmetric matrix A admitting a decomposition in the form A = D + S,

This work was partially supported by MIUR, grant number 2004015437 (PRIN 2004 fundings).
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where S is as in (1.1) and D = Diag(d1, . . . , dn) is any real, diagonal matrix. Al-
though all the forthcoming discussions go almost unchanged in the complex Her-
mitian case, we prefer to stick with real symmetric matrices, just for notational
simplicity.

Diagonal-plus-semiseparable matrices own interesting structural and compu-
tational properties, that make them a convenient tool for numerical linear algebra
problems:

• numerically stable representations in O(n) parameters [2, 14];
• fast algorithms for the solution of associated linear systems [5, 6, 7], compu-

tation of the characteristic polynomial [9], eigendecomposition [10], and basic
factorizations (QR, LU) [3, 4, 12];

• structural invariance under (shifted) QR steps [8];
• relationships with orthogonal rational functions and rational Lanczos meth-

ods [8, 11];
• implicit-Q theorems and inverse eigenvalue problems [8, 9].

Many of the above-mentioned results admit certain generalizations to wider
matrix classes, known as rank structures, recently found by authors including Bini,
Chandrasekaran, Eidelman, Fiedler, Gemignani, Gohberg, Gu, Koltracht, Mas-
tronardi, Olshevsky, Van Barel, Vandebril, Tyrtyshnikov (among others). The in-
terested reader may consult the recent overview paper by Vandebril, Van Barel,
Golub, Mastronardi [13], which contains a commented bibliography on 134 papers
on the topic of semiseparable and rank-structured matrices.

Recently, Van Barel and co-authors found an O(n3) algorithm to reduce a
generic symmetric matrix into dpss form via orthogonal transformations, QT AQ =
D + S, where the diagonal term D can be prescribed in advance [15]. Extensive
numerical experiments with that algorithm show that, if D is close to the exact
spectrum of A, then S vanishes. Moreover, if D approximates only part of the
spectrum of A, say,

|λi − di| � |λi − dj |, i = 1, . . . , k, j �= i,

where λ1, . . . , λn are the eigenvalues of A, then S has an almost block diagonal
structure:

S =
(

S11 ST
21

S21 S22

)
} k
}n− k,

where the submatrix S21 has a considerably small norm. This paper is basically
motivated by these observations. Indeed, our aim is to give a rigorous explanation
of these facts, on the basis of a perturbative analysis of the similarity reduction of
a generic symmetric matrix into dpss form. After setting some basic notation and
results, in Section 3 we develop a perturbative analysis of the matrices Q and S
occurring in this reduction, under the condition that the diagonal term D approx-
imates (part of) the spectrum of A. As an application of the forthcoming results,
in Section 4 we devise a new numerical method for the simultaneous refinement of
“good” initial approximations of the eigenvalues of A.
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2. Notation and basic results

We will use the following notation: Let In denote the identity matrix of order n.
Let λ1, . . . , λn be the eigenvalues of the real symmetric n × n matrix A, and let
d1, . . . , dn be pairwise distinct real numbers, such that all matrices A − diIn are
nonsingular. Let D = Diag(d1, . . . , dn), and let v ∈ Rn be arbitrary. Under these
assumptions, the rational Krylov matrix

K(A, v, D) = [ (d1In −A)−1v, . . . , (dnIn −A)−1v ]

is well defined. We recall from [8] the following result, establishing necessary and
sufficient conditions for nonsingularity of the rational Krylov matrix:

Lemma 2.1. Let A = UΛUT be the spectral decomposition of the symmetric matrix
A, where Λ = diag(λ1, . . . , λn), and let UT v = w = (w1, . . . , wn)T . Under the pre-
viously mentioned hypothesis on d1, . . . , dn, the matrix K(A, v, D) is nonsingular
if and only if λi �= λj for i �= j and all entries of w are nonzero.

Proof. See [8, Lemma 1]. �

We will denote by Q(A, v, D) the orthogonal factor of the QR factorization
of K(A, v, D), under a suitable condition ensuring continuity of K with respect to
D (see later). This orthogonal factor is the key to define the orthogonal transfor-
mation of A into dpss form:

Theorem 2.2. If the matrix K(A, v, D) is nonsingular, and Q(A, v, D) = Q, then
QT AQ is a symmetric dpss matrix, QT AQ = D + S, with the diagonal matrix
D = diag(d1, . . . , dn).

Proof. See [8, Thm. 1]. �

Remark 2.3. By construction, the first column of Q(A, v, D) is parallel to the one
of K(A, v, D), whence

Q(A, v, D)e1 =
q

‖q‖ , q = (d1I −A)−1v.

Moreover, we have also the following theorem of “Implicit-Q” type, stat-
ing that, under minor assumptions, there is a one-to-one correspondence between
transformation into dpss form and the first column of Q(A, v, D), whence the
vector v, by virtue of the previous remark:

Theorem 2.4. Suppose that Q1 and Q2 are orthogonal matrices such that QT
1 AQ1 =

M1 and QT
2 AQ2 = M2 are symmetric dpss matrices having the same diagonal

term, that is, M1 = D + S1 and M2 = D + S2, with S1 and S2 semiseparable.
Furthermore, suppose that Q1e1 = Q2e1. Then there exists a diagonal matrix
∆ = Diag(±1, . . . ,±1) such that Q2 = Q1∆ and M1 = ∆M2∆.

Proof. See [8, Thm. 2]. �
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As a consequence, we can introduce another matrix-valued operator, whose
value is the semiseparable part of the dpss form of A defined by the diagonal
matrix D and the vector v, as in Theorem 2.2:

S(A, v, D) = Q(A, v, D)T AQ(A, v, D)−D. (2.1)

Remark 2.5. The above-defined operators own the following invariance properties,
whose proof is elementary:

1. K(UAUT , Uv, D) = UK(A, v, D)
2. Q(UAUT , Uv, D) = UQ(A, v, D)
3. S(UAUT , Uv, D) = S(A, v, D).

On the basis of the previous remark, in the analysis of these operators we
can restrict ourselves to the case where A = Λ is diagonal. In this way, we can
identify the vector v appearing in the definition ofK, Q, S, with the vector w in the
hypotheses of Lemma 2.1. From here on, we assume existence and uniqueness of
all preceding matrices (i.e., the operators K, Q, S, are well defined). In particular,
the matrix K(Λ, w, D) is assumed nonsingular. Necessary and sufficient conditions
ensuring this are those given in Lemma 2.1.

We close this section by recalling a perturbation bound for the orthogonal
factor in the QR decomposition; here and in what follows, ‖ · ‖F denotes the
Frobenius matrix norm.

Theorem 2.6. Let A = QR and Ã = Q̃R̃. Then, up to first order,

‖Q− Q̃‖F �
√

2‖A−1‖ ‖A− Ã‖F .

Proof. See [1, Thm. 4.2]. �

3. New Results

This section contains the main results of this paper. Assuming that the diagonal
matrix D is “close” to the spectrum of A, in the following two subsections we
consider individually the perturbative analysis of the matrices Q and S occurring
in the transformation of A into dpss form. In the last subsection, we address the
case where D approximates only part of the spectrum of A.

3.1. Perturbative analysis of Q

Theorem 3.1. Under the previous notation and hypotheses, let Qε =Q(Λ, w, Λ+ε∆),
with ∆ = Diag(δ1, . . . , δn), and let E ≡ (eij) where

eij =

{
wi

wj

δj

λj−λi
i �= j

0 i = j.

Up to first order terms in ε,

‖Qε − In‖F �
√

2|ε|‖E‖F .

In particular, limε→0 Qε = In, independently on w.
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Proof. By definition, Qε is the orthogonal factor of the rational Krylov matrix
Kε = [(d1In − Λ)−1w, . . . , (dnIn − Λ)−1w], where di = λi + εδi. Introduce the
matrix Z = Diag(εδ1/w1, . . . , εδn/wn). For the (i, j)-th entry of the matrix KεZ
we obtain

(KεZ)i,j =
wi

wj

εδj

(λj + εδj − λi)
=

{
1 i = j,
wi

wj

εδj

λj−λi
+ O(ε2) i �= j.

Hence, we have the following expansion in powers of ε:

KεZ = In + εE + O(ε2).

The effect of the matrix Z is to scale the columns of Kε, hence it does not affect
its orthogonal factor. In other words, Qε is the orthogonal factor of the matrix
In + εE + O(ε2). In order to complete the proof, it is sufficient to apply Theorem
2.6 with A = In and Ã = In + εE + O(ε2). �

Owing to the formulas for the entries of the matrix E, we can supplement
the foregoing theorem with the (rather crude) bound

‖Qε − In‖F � maxi |wi|
mini |wi|

√
2(n− 1)

mini�=j |λi − λj |
‖ε∆‖F .

One obvious extension of the preceding result is the following: If there exists a per-
mutation π of the integers 1, . . . , n such that |di−λπ(i)| = O(ε) then limε→0 Qε =
P , where P is the matrix representation of π. A neater statement is the following:

Corollary 3.2. Let P ∈ Rn×n be a permutation matrix, and let

Qε = Q(Λ, w, PT ΛP + ε∆).

Then, limε→0 Qε = P , independently on ∆.

Proof. Let Λ̃ = PT ΛP , w̃ = PT w, and Q̃ε = Q(Λ̃, w̃, Λ̃ + ε∆). Then, by the
property of the operatorQmentioned in Remark 2.5, we have Qε = PQ̃ε. Theorem
3.1 gives us ‖Q̃ε − In‖F = O(ε), and the claim follows. �
3.2. Perturbative analysis of S

Let Sε = S(Λ, w, Λ + ε∆). Using Theorem 3.1, for ε→ 0 we have Qε → In. Hence
from (2.1) we obtain

ε → 0 =⇒ Sε = QT
ε ΛQε − (Λ + ε∆) → O. (3.1)

More precisely, we can prove the following result:

Theorem 3.3. Under the previous notation and hypotheses, we have

S(Λ, w, Λ + ε∆) = εŜ + O(ε2),

where Ŝ is the semiseparable matrix given by

Ŝ =

⎛⎜⎝ u1v1 · · · unv1

...
. . .

...
unv1 · · · unvn

⎞⎟⎠ , ui = −wi, vj =
δj

wj
.
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Proof. For ε �= 0, the matrix ε−1S(Λ, w, Λ + ε∆) is semiseparable. It is known
that the closure (in any norm-induced metric) of the set of semiseparable ma-
trices is made of all block diagonal matrices with semiseparable blocks, see [14].
Nevertheless, we set

Ŝ = lim
ε→0

1
ε
S(Λ, w, Λ + ε∆)

and we look for an expression of Ŝ having the form (1.1). Having found it, the
claim will follow by uniqueness of the limit.

Under our assumptions, QR factors are differentiable [1], whence

Qε = In + εX + O(ε2), (3.2)

where X = −XT . In fact, the Lie algebra of the Lie group of orthogonal matrices
is the set of real skewsymmetric matrices [1]. Hence, neglecting O(ε2) terms, for
the diagonal entries of Sε we have:

eT
i Sεei = eT

i

(
QT

ε ΛQε − (Λ + ε∆)
)
ei

≈ eT
i (In − εX) Λ (In + εX) ei − (λi + εδi)

≈ eT
i Λei + εeT

i (ΛX −XΛ) ei − (λi + εδi)
= −εδi.

As a consequence, uivi = Ŝi,i = −δi, for i = 1, . . . , n. In order to complete the
description of Ŝ, it is sufficient to compute its first column.

By Theorem 2.4, Qεe1 characterizes Qε = Q(Λ, w, Λ+ε∆). Owing to Remark
2.3, Qεe1 is proportional to Kεe1, and the latter is proportional to⎛⎜⎜⎜⎝

1
0
...
0

⎞⎟⎟⎟⎠+ ε

⎛⎜⎜⎜⎝
0

w2
w1

δ1
λ1−λ2
...

wn

w1

δ1
λ1−λn

⎞⎟⎟⎟⎠+ O(ε2).

By (3.2), this gives us the first column of X :

Xe1 =
(

0,
w2

w1

δ1

λ1 − λ2
, . . . ,

wn

w1

δ1

λ1 − λn

)T

.

Using the preceding equation, the task of characterizing the first column of Ŝ is
accomplished as follows:

Ŝe1 = lim
ε→0

1
ε

[
QT

ε ΛQε − (Λ + ε∆)
]
e1

= (ΛX −XΛ) e1 −∆e1

= (Λ− λ1In)Xe1 − δ1e1

= −
(

δ1, δ1
w2

w1
, . . . , δ1

wn

w1

)T

= − δ1

w1
w.
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Thus in (1.1) we have uiv1 = uiviwi/w1, for i = 1, . . . , n. Recall that all entries of
w are different from zero, by hypothesis. Letting ui = −wi and vi = δi/wi all the
preceding equalities are fulfilled, and the proof is over. �

Corollary 3.4. Let w+ = (1/w1, . . . , 1/wn) denote the Moore-Penrose inverse of
the vector w = (w1, . . . , wn)T . For the matrix Ŝ in Theorem 3.3 we have

‖Ŝ‖F ≤
√

2‖w‖‖w+‖ max
1≤i≤n

|δi|.

Proof. Consider the rank-1 matrix M = −ww+∆. The lower triangular part of Ŝ

coincides with that of M , hence it is not difficult to realize that ‖Ŝ‖F ≤
√

2‖M‖F .
The proof is completed by the inequality ‖M‖F = ‖w‖‖w+∆‖ ≤ ‖w‖‖w+‖‖∆‖.

�

A straightforward consequence of Theorem 3.3 is the following:

Corollary 3.5. For the diagonal part of the matrix S(Λ, w, Λ + ε∆) we have

Diag (S(Λ, w, Λ + ε∆)) = −ε∆ + O(ε2),

independently of w.

3.3. Partial spectral approximation

Now we consider the case where D, Λ are partitioned consistently as

D =
(

D1 O
O D2

)
, Λ =

(
Λ1 O
O Λ2

)
, (3.3)

where D1, Λ1 are k × k, and ∆1 = D1 − Λ1 has “small” norm. Thus, we are
considering here the case where D approximates only part of the entries of Λ. In
this case, usually the matrix S(Λ, w, D) shows a small norm submatrix in its lower
left corner, see [15]. In this subsection we will provide an explanation of this fact.

Let us define

K = K(Λ, w, D)Z, Q = Q(Λ, w, D), S = S(Λ, w, D),

with the diagonal matrix Z = Diag(z1, . . . , zn),

zi =
{

di−λi

wi
1 ≤ i ≤ k

1 k + 1 ≤ i ≤ n,

being chosen so that the first k diagonal entries of K are all ones:

K =
(

Ik K12

O K22

)
+
(

E1 O
E2 O

)
= K0 + E.

Actually, the scaling operated by Z is analogous to the one exploited in the proof
of Theorem 3.1. In fact, letting E1 ≡ (e(1)

ij ) and E2 ≡ (e(2)
ij ), we have the following

formulas:

e
(1)
ij =

{
wi

wj

dj−λj

dj−λi
i �= j

0 i = j,
e
(2)
�j =

wk+�

wj

dj − λj

dj − λk+�
, (3.4)
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for i, j = 1, . . . , k and � = 1, . . . , n − k. We partition the above matrices as K ≡
(Kij)i,j=1,2 and so on, consistently with (3.3). Remark that K, Q, S are actually
functions of ∆1. For simplicity of notation, we refrain from indicating explicitly
this dependence. By the way, the column scaling of K, which is irrelevant to Q
and S, is introduced in order to obtain by continuity the equations

lim
∆1→0

K = K0, lim
∆1→0

Q =
(

Ik O

O Q̂22

)
, lim

∆1→0
S =

(
O O

O Ŝ22

)
, (3.5)

with Q̂22 = Q(Λ2, (wk+1, . . . , wn)T , D2) and Ŝ22 = S(Λ2, (wk+1, . . . , wn)T , D2).
Consider the rectangular QR factorization of the first k columns of K:(

Ik + E1

E2

)
=
(

Q11

Q21

)
R̃ =

[(
Ik

O

)
+
(

X1

X2

)]
(Ik + Y ),

where Y is upper triangular. Neglecting higher order terms, we can write(
Q11

Q21

)
R̃ ≈

[(
Ik

O

)
+
(

X1 + Y
X2

)]
,

whence Q21 = X2 ≈ E2.
Now, consider the first k columns of the equation Q(D + S) = ΛQ, see (2.1).

We have: (
Q11 Q12

Q21 Q22

)[(
D1

O

)
+
(

S11

S21

)]
=
(

Λ1Q11

Λ2Q21

)
. (3.6)

Due to the limiting relations (3.5), we can rewrite the last n − k rows of the
left-hand side of (3.6) up to first-order terms in ‖E‖F as

Q21(D1 + S11) + Q22S21 ≈ Q21D1 + Q̂22S21.

By equating the last expression with the corresponding term of the right-hand side
of (3.6), we obtain

Q̂22S21 ≈ Λ2E2 − E2D1.

Since Q̂22 is orthogonal, we have ‖Q̂22S21‖F = ‖S21‖F . On the other hand, from
the expression of the entries of E2 found in (3.4) we see that

Λ2E2 − E2D1 ≡
(

wk+i

wj
(λj − dj)

)
1≤i≤n−k, 1≤j≤k

is a rank-1 matrix:
Λ2E2 − E2D1 = wLw+

H(D1 − Λ1),

where wL = (wk+1, . . . , wn)T and w+
H = (1/w1, . . . , 1/wk) is the Moore-Penrose

inverse of wH = (w1, . . . , wk)T . The Frobenius norm of a rank-1 matrix is exactly
the product of the norms of its defining vectors. Hence, we arrive at the following
result:



Perturbative Analysis of Diagonal-plus-semiseparable Form 165

Theorem 3.6. Let S = S(Λ, w, D). Under the hypotheses stated at the beginning of
this section, we have:

‖S21‖F ≈ ‖wL‖‖w+
H(D1 − Λ1)‖ ≤ ‖wL‖‖w+

H‖ max
1≤i≤k

|di − λi|,

where wL = (wk+1, . . . , wn)T and w+
H = (1/w1, . . . , 1/wk).

4. Simultaneous eigenvalue refinement

The results in the previous sections allow us to devise a possible numerical scheme
to compute the eigenvalues of a symmetric matrix, starting from the knowledge of
good initial approximations. Let A be a symmetric matrix, and let D be a diagonal
matrix whose diagonal entries are “close” to the exact eigenvalues of A. Recall that
the expression S(A, v, D) + D stands for the dpss matrix that is similar to A, has
D as diagonal term, and whose transforming orthogonal matrix is the one whose
first column is given in Remark 2.3.

We adopt the shortcut S∗(A, D) to denote any particular matrix S(A, v, D),
under the sole hypotheses that v = v(A, D) fulfills the hypotheses of Lemma
2.1 and the resulting map (A, D) �→ S∗(A, D) = S(A, v(A, D), D) is sufficiently
smooth. One such matrix can be computed in O(n3) operations by means of the
previously mentioned algorithm in [15]. Indeed, for this algorithm, one obtains from
[15, Thm. 6] that there exists a suitable polynomial π(λ), whose coefficients depend
polynomially on the entries of D, such that v(A, D) = π(A)en. Furthermore, the
resulting semiseparable matrix S(A, v(A, D), D) is unreduced exactly when the
hypotheses of Lemma 2.1 are met, see [15, Sect. 3.1] (when they are not met,
S(A, v(A, D), D) splits into the direct sum of smaller semiseparable matrices, and
one can deflate the eigenvalue problem for A into smaller subproblems). Finally,
the smoothness of (A, D) �→ S(A, v(A, D), D) follows by the ones of the maps
(A, D) �→ K(A, v(A, D), D) and (A, D) �→ Q(A, v(A, D), D).

Theorem 4.1. Assume that the map (A, D) �→ S∗(A, D) fulfills the previously men-
tioned well-posedness and smoothness hypotheses. Let A0 = A, and let D0 be an
arbitrary diagonal matrix. Consider the sequence {Di} of diagonal matrices gen-
erated by the iteration Di = Diag(Ai), where Ai is defined according to one of the
two following equations:

Ai = S∗(A0, Di−1) + Di−1, or (4.1)
Ai = S∗(Ai−1, Di−1) + Di−1. (4.2)

Then, the sequence {Di} locally converges to the diagonal matrix Λ of eigenvalues
of A. Moreover, this convergence is quadratic.

Proof. Firstly, observe that for i > 0 all matrices Ai are dpss and similar to A.
Denote by Dn the set of all n × n diagonal matrices. The computation of the
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eigenvalues of A can be accomplished by the solution of the fixed point problem
Λ = Φ(Λ) in the unknown Λ ∈ Dn, where

Φ : Dn �→ Dn, Φ(Λ) = Diag(S∗(A, Λ)) + Λ.

In fact, as shown in Equation (3.1), if Λ is a diagonal matrix containing the eigen-
values of A, then S∗(A, Λ) = O, hence Λ is a fixed point of Φ.

By the assumed smoothness of the map (A, D) �→ S∗(A, D) we have that
also Φ is sufficiently smooth. Moreover, the Fréchet derivative Φ′(Λ) is the zero
operator. Indeed, consider an arbitrary ∆ ∈ Dn. From Corollary 3.5 and the third
part of Remark 2.5 we have:

Φ′(Λ)∆ = lim
ε→0

1
ε

(
Φ(Λ + ε∆)− Φ(Λ)

)
= lim

ε→0

1
ε

(
Diag(S∗(A, Λ + ε∆))−Diag(S∗(A, Λ)) + ε∆

)
= lim

ε→0

1
ε

(
− ε∆ + ε∆ + O(ε2)

)
= O.

Hence Φ′(Λ) vanishes. Now, equation (4.1) can be restated as Di = Φ(Di−1). Thus,
there exists a constant C such that

‖Di − Λ‖ = ‖Φ(Di−1)− Φ(Λ)‖ ≤ C‖Di−1 − Λ‖2 + o(‖Di−1 − Λ‖2),
and we have the claim. Iteration (4.2) can be restated in a suitable product space
as (

Ai

Di

)
= Φ̂

(
Ai−1

Di−1

)
=
(

S∗(Ai−1, Di−1) + Di−1

Diag(S∗(Ai−1, Di−1)) + Di−1

)
,

and the corresponding claim follows by analogous arguments. �

A numerical method based on the previous theorem could work as follows:
After reducing the starting matrix to dpss form, using the initial eigenvalue ap-
proximations as diagonal term, the method constructs a sequence of dpss matrices,
each step using the diagonal part of the previous step as diagonal term. The it-
eration proceeds possibly using a deflation technique based on Theorem 3.6, until
all eigenvalues are resolved to a prescribed accuracy.

By the way, the resulting algorithm would not be competitive with the ex-
isting techniques for solving symmetric eigenvalue problems, because of the cubic
cost of each iteration, if the algorithm in [15] is used as computational core. Never-
theless, iteration (4.2) requires only dpss matrices, hence in principle one can argue
that fast algorithms could be devised for such task, acting only on generators. This
remark prompts the following open question:

Is it possible to compute S∗(A, D) in O(n2) operations, when A is dpss but
having a diagonal term different from D?
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The Eigenstructure of Complex Symmetric
Operators

Stephan Ramon Garcia

Abstract. We discuss several algebraic and analytic aspects of the eigenstruc-
ture (i.e., eigenvalues, eigenvectors, and generalized eigenvectors) of complex
symmetric operators. In particular, we examine the relationship between the
bilinear form [x, y] = 〈x,Cy〉 induced by a conjugation C on a complex Hilbert
space H and the eigenstructure of a bounded linear operator T : H → H which
is C-symmetric (T = CT ∗C).
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Keywords. Complex symmetric operator, bilinear form, Toeplitz matrix, Han-
kel operator, Riesz idempotent, Riesz basis, generalized eigenvectors.

1. Introduction

In this note, we discuss several algebraic and analytic aspects of the eigenstructure
(i.e., eigenvalues, eigenvectors, and generalized eigenvectors) of complex symmetric
operators, a particular class of Hilbert space operators discussed in [3, 5, 6, 7].
Before proceeding, let us recall a few definitions.

A conjugation on a complex Hilbert spaceH is an antilinear operator C : H →
H that is involutive (C2 = I) and isometric, meaning that 〈x, y〉 = 〈Cy, Cx〉 for all
x, y in H (we assume that H is separable and that our operators are bounded, un-
less otherwise stated). We say that a linear operator T : H → H is C-symmetric if
T = CT ∗C and complex symmetric if it is C-symmetric with respect to some con-
jugation C. For a fixed conjugation C, there exists an orthonormal basis (en)dimH

n=1

of H such that Cen = en for all n [6, Lem. 1]. We refer to such a basis as a C-real
orthonormal basis and note that the matrix representation of a C-symmetric op-
erator with respect to such a basis is symmetric (see [6, Prop. 2] or [5, Sect. 2.4]).
In particular, an operator T is complex symmetric if and only if it is unitarily

Work partially supported by National Science Foundation Grant DMS-0638789.
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equivalent to a symmetric matrix with complex entries, considered as an operator
on an l2 space of the appropriate dimension.

The class of complex symmetric operators includes all normal operators, op-
erators defined by (finite or infinite) Hankel matrices, compressed Toeplitz oper-
ators (including the compressed shift), and the Volterra integration operator (see
[3, 5, 6, 7]). Since we are more concerned here with eigenvectors and generalized
eigenvectors of operators rather than with the operators which produce them,
we could certainly consider unbounded complex symmetric operators as well (see
[6, 7, 10] for details and references).

When dealing with C-symmetric operators, it turns out that the bilinear form

[x, y] = 〈x, Cy〉 (1)

induced by C is almost as important as the standard sesquilinear form 〈 · , · 〉.
We will say that two vectors x and y are C-orthogonal if [x, y] = 0 (denoted by
x ⊥C y). We shall also say that two subspaces E1 and E2 are C-orthogonal (denoted
E1 ⊥C E2) if [x1, x2] = 0 for every x1 in E1 and x2 in E2. It is not hard to see that
the bilinear form (1) is nondegenerate, in the sense that [x, y] = 0 for all y in H if
and only if x = 0. Unlike the sesquilinear form 〈 · , · 〉, however, the bilinear form
[ · , · ] is not positive since [eiθ/2x, eiθ/2x] = eiθ[x, x] for any θ.

With respect to [ · , · ], C-symmetric operators somewhat resemble selfadjoint
operators. For instance, an operator T is C-symmetric if and only if [Tx, y] =
[x, T y] for all x, y in H. As another example, the eigenvectors of a C-symmetric
operator corresponding to distinct eigenvalues are orthogonal with respect to
[ · , · ], even though they are not necessarily orthogonal with respect to the original
sesquilinear form 〈 · , · 〉.

Lemma 1. The eigenvectors of a C-symmetric operator T corresponding to distinct
eigenvalues are orthogonal with respect to the bilinear form [ · , · ].

Proof. The proof is essentially identical to the corresponding proof for selfadjoint
operators. If λ1 �= λ2, Tx1 = λ1x1, and Tx2 = λ2x2, then

λ1[x1, x2] = [λ1x1, x2] = [Tx1, x2] = [x1, Tx2] = [x1, λ2x2] = λ2[x1, x2].

Since λ1 �= λ2, it follows that [x1, x2] = 0. �
There are some obvious differences between selfadjoint and complex sym-

metric operators. For instance, a complex symmetric matrix can have any possible
Jordan canonical form (see [5, 6] and the references therein) while a selfadjoint
matrix must be unitarily diagonalizable. Nevertheless, we will see in Section 2
that the generalized eigenspaces of an arbitrary C-symmetric operator are always
C-orthogonal.

Another somewhat superficial resemblance between complex symmetric and
selfadjoint operators concerns the relationship between the kernel and range. If T is
a C-symmetric operator, then the subspaces ker T and cl(ranT ) are C-orthogonal
subspaces. Indeed, this follows immediately from the definition of C-symmetry and
the fact that kerT = (ranT ∗)⊥. In this respect, C-symmetric operators resemble
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selfadjoint operators since the kernel and range of a selfadjoint operator are always
orthogonal to each other. On the other hand, it turns out that kerT ∩ cl(ranT )
may be nontrivial for arbitrary complex symmetric operators. The vectors x in
this intersection are isotropic, meaning that [x, x] = 0. The simplest example of
this phenomenon occurs in two dimensions:

Example 1. If T : C2 → C2 denotes the operator induced by a nilpotent 2 × 2
Jordan block, then T is C-symmetric with respect to C(z1, z2) = (z2, z1) (see
[5, 6]). It is clear that kerT = ranT = span{

(
1
0

)
} and that [

(
1
0

)
,
(
1
0

)
] = 0.

As we will see in Section 4, isotropic eigenvectors of complex symmetric oper-
ators play an important role. To be specific, the existence of isotropic eigenvectors
is directly related to the multiplicity of the corresponding eigenvalue.

Diagonalizable complex symmetric operators are naturally quite tractable
objects of study. We discuss several aspects of the diagonalization of complex
symmetric operators in Section 5. We conclude this note with a few basic remarks
on Riesz bases of eigenvectors in Section 6.
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2. Generalized eigenspaces

In this section, we show that the generalized eigenspaces of a complex symmetric
operator (when they exist) are always mutually C-orthogonal. Thus although we
do not necessarily have orthogonality with respect to the original hermitian form
〈 · , · 〉, we are able to separate the generalized eigenspaces via the bilinear form
[ · , · ]. Our first proof is purely algebraic. A somewhat less general, but slicker and
more sophisticated approach based on the Riesz functional calculus (which suffices
for most cases of interest) is discussed later.

Theorem 1. If T is a C-symmetric operator and λ1 �= λ2, then

ker(T − λ1I)m1 ⊥C ker(T − λ2I)m2

for all m1, m2 ≥ 0. In particular, generalized eigenspaces of a C-symmetric oper-
ator corresponding to distinct eigenvalues are mutually C-orthogonal.

Proof. Note that the case m1 = m2 = 1 is handled via Lemma 1. By subtracting
a multiple of the identity from T , we may assume that λ1 = 0 and that λ2 = λ is
nonzero. Moreover, it suffices to show that any two subspaces of the form

E1 = span{x, Tx, T 2x, . . . , T m1x}
E2 = span{y, (T − λI)y, (T − λI)2y, . . . , (T − λI)m2y},
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where T m1x �= 0, (T − λI)m2y �= 0, and T m1+1x = (T − λI)m2+1y = 0, are
mutually C-orthogonal.

Step 1: We first prove that the eigenvector (T −λI)m2y is C-orthogonal to E1 by
showing that [T jx, (T − λI)m2y] = 0 for 0 ≤ j ≤ m1. Indeed, we have

λm1+1−j [T jx, (T − λI)m2y] = [T jx, λm1+1−j(T − λI)m2y]

= [T jx, T m1+1−j(T − λI)m2y]
= [T m1+1x, (T − λI)m2y]
= 0.

Since λ �= 0, it follows that [T jx, (T − λI)m2y] = 0 for all 0 ≤ j ≤ m1 as claimed.

Step 2: Suppose now that we have proved [T jx, (T − λI)m2−kg] = 0 for all 0 ≤
j ≤ m1 and some 0 ≤ k ≤ m2 − 1. Under this assumption we have:

λ[T jx, (T − λI)m2−k−1y] = [T jx, λ(T − λI)m2−k−1y + (T − λI)m2−ky]

= [T jx, (λI + (T − λI))(T − λI)m2−k−1y]

= [T jx, T (T − λI)m2−k−1y]

= [T j+1x, (T − λI)m2−k−1y].

Iteration ultimately yields

λm1+1−j [T jx, (T − λI)m2−k−1y] = [T m1+1x, (T − λI)m2−k−1y] = 0

whence [T jx, (T−λI)m2−k−1y] = 0 for all 0 ≤ j ≤ m1. Thus the theorem is proved
by induction. �

A slight modification of this argument shows that generalized eigenspaces
can be separated from the “quasinilpotent vectors” as well (see Section 3).

Example 2. If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are generalized eigen-
vectors which correspond to distinct eigenvalues of a complex symmetric matrix
acting on Cn, then

∑n
i=1 xiyi = [x,y] = 0.

Example 3. If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are generalized eigen-
vectors which correspond to distinct eigenvalues of an n×n Toeplitz matrix, then
[x,y] =

∑n
i=1 xiyn−i = 0 (see [5, 6] for details).

One of the classical techniques of spectral theory for dealing with generalized
eigenspaces is the use of contour integrals involving the resolvent. Recall that the
resolvent set ρ(T ) of a bounded linear operator T is the set of complex numbers z
for which the resolvent R(z, T ) = (zI − T )−1 exists as a bounded operator. The
spectrum σ(T ) of T is simply the complement of ρ(T ) in C and the resolvent is
an analytic operator valued function on the open set ρ(T ).

If T is a bounded linear operator and f is a holomorphic function on a (not
necessarily connected) neighborhood Ω of σ(T ), then the Riesz functional calculus
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allows us to define an operator f(T ) via the Cauchy-type integral formula

f(T ) =
1

2πi

∫
Γ

f(z)R(z, T ) dz (2)

where Γ denotes a finite system of rectifiable Jordan curves, oriented in the positive
sense, lying in Ω [4, p. 568]. The integral in (2) is to be interpreted in the sense of
Riemann and hence f(T ) is approximable by Riemann sums involving the operator
R(z, T ).

For each clopen (relatively open and closed) subset ∆ of σ(T ), there exists a
natural idempotent P (∆) defined by the formula

P (∆) =
1

2πi

∫
Γ

R(z, T ) dz (3)

where Γ is any rectifiable Jordan curve such that ∆ is contained in the interior
int(Γ) of Γ and σ(T )\∆ does not intersect int(Γ). We refer to this idempotent as
the Riesz idempotent corresponding to ∆.

If the spectrum of an operator T decomposes as the disjoint union of two
clopen sets, then the corresponding Riesz idempotents are usually neither self-
adjoint (i.e., they are not necessarily orthogonal projections), nor are their ranges
necessarily orthogonal to each other. Indeed, any diagonalizable but non-normal
operator on C2 shows that this is not the case. Nevertheless, the Riesz idempotents
that arise from complex symmetric operators have some nice features.

Theorem 2. Let T be a C-symmetric operator. If σ(T ) decomposes as the disjoint
union σ(T ) = ∆1∪∆2 of two clopen sets, then the corresponding Riesz idempotents
P1 = P (∆1) and P2 = P (∆2) (defined by (3)) are

(i) C-symmetric: Pi = CP ∗
i C for i = 1, 2,

(ii) C-orthogonal, in the sense that ranP1 ⊥C ranP2 (i.e., P1P2 = P2P1 = 0).

Proof. For each z in ρ(T ), it is easy to see that the resolvent R(z, T ) = (zI−T )−1

of T is also C-symmetric. Indeed, it can be uniformly approximated by polynomials
in T and such polynomials are clearly C-symmetric. Since the Riesz idempotents
P1 and P2 corresponding to ∆1 and ∆2, respectively, are approximated by Rie-
mann sums, it follows that P1 and P2 are C-symmetric. In particular, the Riesz
idempotents P1 and P2 are C-symmetric and satisfy P1P2 = P2P1 = 0, whence
their ranges are C-orthogonal. �

We will refer to a C-symmetric idempotent as a C-projection. In other words,
a bounded linear operator P is a C-projection if and only if P = CP ∗C and
P 2 = P . It is not hard to see that if P is a C-projection, then ‖P ‖ ≥ 1 and ranP
is closed. Moreover, for any C-projection, we have kerP ∩ ranP = {0}. This is not
true for all C-symmetric operators, as Example 1 shows.

Example 4. If u is a nonisotropic vector, normalized so that [u, u] = 1, then
Pux = [x, u]u is the C-projection onto span{u}. On the other hand, if u is isotropic,
then there can be no C-projection onto the subspace spanned by u. Indeed, such
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an operator would have to be of the form Px = 〈x, v〉u for some v. If P = CP ∗C,
then it would follow that u and Cv are multiples of each other and hence Pu = 0,
a contradiction.

If P is a C-projection, then kerP and ranP are disjoint C-orthogonal sub-
spaces and hence I = P + (I − P ) gives a C-orthogonal decomposition of H (the
C-orthogonality of kerP and ranP follows from Lemma 1).

A classical theorem of spectral theory [4, p. 579] states that if T is a com-
pact operator, then every nonzero point λ in σ(T ) is an eigenvalue of finite order
m = m(λ). For each such λ, the corresponding Riesz idempotent has a nonzero
finite dimensional range given by ranPλ = ker(T − λI)m. In particular, the
nonzero elements of the spectrum of a compact operator correspond to generalized
eigenspaces. Using Riesz idempotents, it is possible to give a much shorter proof
of Theorem 1 if the complex symmetric operator T is assumed to be compact.

Theorem 3. The generalized eigenspaces of a compact C-symmetric operator are
C-orthogonal.

Proof. It follows immediately from Theorem 2 and the preceding remarks that
the generalized eigenspaces corresponding to nonzero eigenvalues of a compact
C-symmetric operator T are mutually C-orthogonal. Since 0 is the only possible
accumulation point of the eigenvalues of T , it follows that a generalized eigenvector
corresponding to a nonzero eigenvalue is C-orthogonal to any vector in the range
of

Pε =
1

2πi

∫
|z|=ε

R(z, T ) dz

if ε > 0 is taken sufficiently small. In particular, ranPε contains the generalized
eigenvectors for the eigenvalue 0 (if any exist). �

3. Quasinilpotent Vectors

Recall that a bounded linear operator T : H → H is called quasinilpotent if

lim
n→∞ ‖T n ‖ 1

n = 0.

In particular, any nilpotent operator is quasinilpotent and the spectral radius
formula implies that a bounded operator is quasinilpotent if and only if σ(T ) = 0.

There are many examples of quasinilpotent complex symmetric operators. For
instance, quasinilpotent Hankel operators can be constructed using certain symbols
with lacunary Fourier series [9, Section 10.3, p. 443–449]. A familiar example of
a quasinilpotent complex symmetric operator is the Volterra integration operator
[6, 7]. Moreover, the Fredholm alternative indicates that any Volterra operator is
quasinilpotent [8, Pr. 187] and hence quasinilpotent complex symmetric operators
are quite easy to produce.

We say that a vector q in H is a quasinilpotent vector (for T ) if

lim
n→∞ ‖T nq ‖ 1

n = 0.
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If T is compact, then it is not hard to show that the set Q of quasinilpotent
vectors coincides with the orthogonal complement of the span of the generalized
eigenspaces of T ∗.

Theorem 4. Q ⊥C ker(T − λI)m for all m ≥ 0 and λ �= 0. In other words,
every quasinilpotent vector is C-orthogonal to the generalized eigenspaces of T
corresponding to nonzero eigenvalues.

Proof. We proceed by induction on m. The case m = 0 is trivial. Now suppose
that we have shown that Q ⊥C ker(T−λI)m for some m. Let q denote an arbitrary
quasinilpotent vector for T and let x be a unit vector in ker(T −λI)m+1. It follows
that the vector y = (T − λI)x belongs to ker(T − λI)m and hence

λ[q, x] = [q, λx] = [q, Tx]− [q, y] = [Tq, x]

by the inductive hypothesis. Iteration of the preceding yields λn[q, x] = [T nq, x]
from which it follows that

|λ|n|[q, x]| = |[q, λnx]| = |[q, T nx]| = |[T nq, x]| ≤ ‖T nq ‖
holds for every n ≥ 0. Taking nth roots shows that |λ||[q, x]| 1n ≤ ‖T nq ‖ 1

n , which
tends to 0. Since λ �= 0, it follows that [q, x] = 0 and hence q is C-orthogonal to
ker(T − λI). �

4. Isotropic eigenvectors and multiplicity

We say that a vector x is isotropic if [x, x] = 0. Although 0 is clearly an isotropic
vector, it turns out that nonzero isotropic vectors are nearly unavoidable (see
Lemma 2 below). However, isotropic eigenvectors are not mere algebraic incon-
veniences, for they often have meaningful interpretations. For example, isotropic
eigenvectors of complex symmetric matrices are considered in [12] in the context
of elastic wave propagation. In that theory, isotropic eigenvectors correspond to
circularly polarized waves.

The following simple lemma implies that any subspace of dimension ≥ 2 con-
tains isotropic vectors (see [2, Lem. 2]). In particular, this suggests the relationship
between isotropy and multiplicity that we will explore in this section.

Lemma 2. If C is a conjugation on a complex Hilbert space H, then every subspace
of dimension ≥ 2 contains isotropic vectors for the bilinear form [x, y] = 〈x, Cy〉.

Proof. Let dimH ≥ 2 and consider the span of two linearly independent vectors
x1 and x2. If either x1 or x2 is isotropic, then we are done. If neither x1 nor x2

is isotropic, then we easily obtain C-orthogonal vectors y1 and y2 with the same
span as x1 and x2:

y1 = x1, y2 = x2 −
[x2, x1]
[x1, x1]

x1.

In this case, either y2 is isotropic (and hence we are done) or neither y1 nor y2 is
isotropic. If this happens, then we may assume that y1 and y2 are normalized so
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that [y1, y1] = [y2, y2] = 1. It is then easily verified that the vectors y1 ± iy2 are
both isotropic. �

The following lemma shows that the existence of an isotropic eigenvector for
an isolated eigenvalue is completely determined by the multiplicity of the corre-
sponding eigenvalue.

Theorem 5. If T is a C-symmetric operator, then an isolated eigenvalue λ of T is
simple if and only if T has no isotropic eigenvectors for λ.

Proof. If λ is an isolated eigenvalue of T , then the Riesz idempotent P corre-
sponding to λ is a C-projection. If λ is a simple eigenvalue, then the eigenspace
corresponding to λ is spanned by a single unit vector x. If x is isotropic, then it
is C-orthogonal to all of H since x is C-orthogonal to the range of the comple-
mentary C-projection I − P . This would imply that x is C-orthogonal to all of H
and hence x = 0, a contradiction. Conversely, if λ is not a simple eigenvalue, then
there are two cases to consider:
Case 1: If dimker(T−λI) > 1, then by Lemma 2, ker(T−λI) contains an isotropic
vector. Thus T has an isotropic eigenvector corresponding to the eigenvalue λ.
Case 2: If dimker(T − λI) = 1, then ker(T − λI) = span{x} for some x �= 0 and
dim ker(T − λI)2 > 1 since λ is not a simple eigenvalue. We can therefore find a
nonzero generalized eigenvector y for λ such that x = (T − λI)y. Thus

[x, x] = [x, (T − λI)y] = [(T − λI)x, y] = 0

and hence x is an isotropic eigenvector. �
We remark that the hypothesis that the eigenvalue λ is isolated is crucial.

Indeed, S⊕S∗ (where S is the unilateral shift on l2) is complex symmetric (see [7])
and has each point in the open unit disk as a simple eigenvalue. The corresponding
eigenvectors are all isotropic.

Example 5. If λ is an isolated eigenvalue of multiplicity ≥ 2 for a Hankel matrix
(possibly infinite), then there exists an eigenvector x corresponding to λ so that∑dimH

i=1 x2
i = [x,x] = 0. Here xi denotes the ith entry of the vector x.

Example 6. If λ is an eigenvalue of multiplicity ≥ 2 for an n× n Toeplitz matrix,
then there exists an eigenvector x = (x1, x2, . . . , xn) corresponding to λ so that∑n

i=1 xixn−i = [x,x] = 0.

Example 7. Let H2 denote the Hardy space of the open unit disk and let ϕ denote
a nonconstant inner function. If λ is an eigenvalue of multiplicity ≥ 2 for the
compression of a Toeplitz operator to H2�ϕH2, then there exists an eigenfunction
f in H2 � ϕH2 so that

1
2πi

∫
∂D

f2(z)
ϕ(z)

dz = 0,

where ∂D denotes the unit circle (oriented in the counter-clockwise sense). See
[3, 5, 6, 7] for further details and various special cases.
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Having seen that isotropic eigenvectors are related to the multiplicity of eigen-
values, we can go a bit further into the decomposition of generalized eigenspaces:

Theorem 6. If T is a C-symmetric operator, then for each complex number λ there
exists an increasing sequence of subspaces K(λ)

n such that

ker(T − λI)n = [ker(T − λI)n ∩ cl(ran(T − λI)n)]⊕K(λ)
n

is both an orthogonal and C-orthogonal direct sum. Furthermore, the subspaces
ker(T − λI)n ∩ cl(ran(T − λI)n) consist entirely of isotropic vectors.

Proof. It suffices to consider the case λ = 0. For each n, there exists a subspace
Kn = K(0)

n of kerT n (possibly the zero subspace) such that

kerT n = [kerT n ∩ cl(ranT n)]⊕Kn, (4)

where ⊕ denotes the usual orthogonal direct sum. Since ker T n is C-orthogonal
to cl(ranT n) and Kn ⊆ kerT n, it follows that (4) is also a C-orthogonal de-
composition. In particular, every vector in kerT n ∩ cl(ranT n) is isotropic. That
the sequence Kn is increasing is clear from the fact that ker T n ⊆ kerT n+1 and
ranT n+1 ⊆ ranT n. �
Example 8. Consider the operator T : C5 → C5 induced by a 5 × 5 nilpotent
Jordan block and let {e1, e2, e3, e4, e5} denote the standard orthonormal basis for
C5. The relevant subspaces K(0)

n of the preceding theorem are readily exhibited:

n kerT n ranT n kerT n ∩ ranT n K(0)
n

0 {0} C5 {0} C5

1 span{e1} span{e1, e2, e3, e4} span{e1} {0}
2 span{e1, e2} span{e1, e2, e3} span{e1, e2} {0}
3 span{e1, e2, e3} span{e1, e2} span{e1, e2} {e3}
4 span{e1, e2, e3, e4} span{e1} span{e1} {e2, e3, e4}
5 C5 {0} {0} C5

5. Diagonalization of complex symmetric operators

Suppose that T is a complex symmetric operator which has a complete system of
(nonzero) eigenvectors (un)∞n=1. By complete, we mean that the closed linear span
of the un is all of H. Implicitly, we will assume that dimH = ∞ since the finite
dimensional case is somewhat trivial in comparison.

If the corresponding eigenvalues λn are distinct, then Lemma 1 tells us that
the (un)∞n=1 are mutually C-orthogonal. We may therefore assume that the system
(un)∞n=1 is C-orthonormal : [uj, uk] = δjk, where δjk denotes the Kronecker δ-
function. Indeed, if [un, un] = 0 for some n, then [un, x] = 0 would hold for all x
since the system (un)∞n=1 is complete, whence un = 0.

We consider here the linear extension of the map un �→ Cun. Since the un

are not necessarily orthonormal with respect to the usual hermitian inner prod-
uct 〈 · , · 〉, this map does not immediately extend (as a bounded linear operator)
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further than the dense linear submanifold spanned by finite linear combinations
of the un. To be specific, we say that a vector f in H is finitely supported if
it is a finite linear combination of the un and we denote the linear manifold of
finitely supported vectors by F . Due to the C-orthonormality of the un, it follows
immediately that each such f can be recovered via the skew Fourier expansion

f =
∞∑

n=1

[f, un]un, (5)

where all but finitely many of the skew Fourier coefficients [f, un] are nonzero.
We will let A0 : F → H denote the linear extension of the map A0un = Cun to
F . Since F is a dense linear submanifold of H, it follows that if A0 : F → H is
bounded on F , then A0 has a unique bounded extension (which we denote by A)
to all of H.

It turns out that the presence of the conjugation C ensures that the exten-
sion A will have several desirable algebraic properties. In particular, the following
lemma shows that if A is bounded, then it is C-orthogonal. Specifically, we say that
an operator U : H → H is C-orthogonal if CU∗CU = I. The terminology comes
from the fact that, when represented with respect to a C-real orthonormal basis,
the corresponding matrix will be complex orthogonal (i.e., U tU = I as matrices).

The importance of C-orthogonal operators lies in the fact that they preserve
the bilinear form induced by C. To be specific, U is a C-orthogonal operator if and
only if [Ux, Uy] = [x, y] for all x, y in H. Unlike unitary operators, C-orthogonal
operators can have arbitrarily large norms. In fact, unbounded C-orthogonal op-
erators are considered in [11], where they are called J-unitary operators.

Lemma 3. If A0 is bounded, then its extension A : H → H is positive and C-
orthogonal. If this is the case, then A is invertible with A−1 = CAC ≥ 0 and the
operator B =

√
A is also C-orthogonal.

Proof. By (5), it follows that 〈A0f, f〉 =
∑∞

n=1 |[f, un]|2 ≥ 0 for all f in F . If A0

is bounded, then it follows by continuity that A will be positive. The fact that
A is C-orthogonal (hence invertible) follows from the fact that (CA∗C)Aun =
(CA)2un = un for all n. Since (CBC)(CBC) = CAC = A−1 and CBC ≥ 0,
it follows that CBC is a positive square root of A−1. By the uniqueness of the
positive square root of a positive operator, we see that CBC = B−1 and hence B
is also C-orthogonal. �

We remark that Lemma 3 shows that if the map un �→ Cun is bounded,
then its linear extension A : H → H is necessarily invertible. This property dis-
tinguishes C-orthonormal systems (un)∞n=1 and their duals (Cun)∞n=1 from general
biorthogonal systems (which do not necessarily arise from conjugations on H).
Among other things, Lemma 3 also shows that if A0 is bounded, then the skew
conjugation J (

∑∞
n=1 cnun) =

∑∞
n=1 cnun (defined initially on F) is given by

J = CA = CBB = B−1CB.
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In other words, the skew conjugation J is similar to our original conjugation C
via the operator B =

√
A. Another consequence of the boundedness of A0 is the

existence of a natural orthonormal basis for H:

Lemma 4. If A0 is bounded, then the vectors (sn)∞n=1 defined by sn = Bun (where
B =

√
A) satisfy the following:

(i) (sn)∞n=1 is orthonormal: 〈sj , sk〉 = δjk for all j, k,

(ii) (sn)∞n=1 is C-orthonormal: [sj , sk] = δjk for all j, k,

(iii) Csn = sn for all n.
Furthermore, (sn)∞n=1 is an orthonormal basis for H.

Proof. Conditions (i), (ii), and (iii) follow from direct computations:

〈sj , sk〉 = 〈Buj , Buk〉 = 〈uj , Auk〉 = 〈uj , Cuk〉 = [uj, uk] = δjk,

[sj , sk] = 〈sj , Csk〉 = 〈Buj , CBuk〉 = 〈Buj , B
−1Cuk〉 = 〈uj , Cuk〉 = δjk,

Csj = CBuj = B−1Cuj = B−1B2uj = Buj = sj .

We now show that the system (sn)∞n=1 is complete. If f is orthogonal to each sj ,
then 〈Bf, uj〉 = 〈f, Buj〉 = 〈f, sj〉 = 0 for all j. Since B is invertible, it follows
that f = 0 since (un)∞n=1 is complete. �

If the operator A0 is bounded, then its extension A is a positive, invertible
operator whose spectrum is bounded away from zero. Thus Θ = −i logA can
be defined using the functional calculus for A and the principal branch of the
logarithm. Since A is self-adjoint and the principal branch of the logarithm is real
on (0,∞), it follows that Θ is skew-Hermitian: Θ∗ = −Θ. Moreover, since A is
a C-orthogonal operator, it follows that Θ is a C-real operator: Θ = Θ, where
Θ = CΘC.

Returning to our original C-symmetric operator T , we see that if A0 is
bounded, then T is similar to the diagonal operator D : H → H defined by
Dsn = λnsn since T = B−1DB. Writing this in terms of the exponential repre-
sentation A = exp(iΘ) and inserting a parameter t ∈ [0, 1], we obtain a family of
operators

Tt = e−
it
2 ΘDe

it
2 Θ

which satisfies T0 = D and T1 = T . This provides a continuous deformation of
T to its diagonal model D. We also remark that the fact that Θ is C-real and
skew-Hermitian implies that the operators exp(± it

2 Θ) are C-orthogonal for all t.
From here, it is easy to show that each intermediate operator Tt is C-symmetric
and that the path t �→ Tt from [0, 1] to B(H) is norm continuous.

In particular, this framework applies to complex symmetric matrices (e.g.,
Hankel matrices) or to finite Toeplitz matrices. Moreover, the compressed shift
corresponding to an interpolating Blaschke product produces exactly such a sys-
tem (un)∞n=1 (consisting of certain scalar multiples of reproducing kernels, see [6]
for details and references). The boundedness of A0 is guaranteed by Carleson’s
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interpolation theorem. It would be interesting to concretely identify the operators
A, B, and Θ in such an example.

6. Riesz bases of eigenvectors

Recall that an arbitrary sequence of vectors (un)∞n=1 is called a Bessel sequence if
there exists a constant M > 0 (called a Bessel bound) such that

∞∑
n=1

|〈x, un〉|2 ≤M‖ x ‖2

for all x in H. Also recall that a sequence (un)∞n=1 is called a Riesz basis if it is the
image of an orthonormal basis of H under a bounded, invertible linear operator
R. It is well known (see [1, Prop. 3.6.4]) that (un)∞n=1 is a Riesz basis if and only
if there exist there exist constants M1, M2 > 0 such that

M2
1 ‖ x ‖2 ≤

∞∑
n=1

|〈x, un〉|2 ≤ M2
2‖ x ‖2.

Furthermore, the optimal constants are M1 = ‖R−1 ‖−1 and M2 = ‖R ‖2.
Our final theorem consists of a number of equivalent statements concerning

C-orthonormal systems. Our interest in such systems stems from the fact that
they often arise as eigenvectors of C-symmetric operators.

Theorem 7. If (un)∞n=1 is a complete C-orthonormal system in H, then the follow-
ing are equivalent:

(i) (un)∞n=1 is a Bessel sequence with Bessel bound M .

(ii) (un)∞n=1 is a Riesz basis with lower and upper bounds M−1 and M .

(iii) The assignment A0un = Cun extends to a bounded linear operator A : H → H
satisfying ‖A ‖ ≤ M .

(iv) There exists M > 0 satisfying

‖
m∑

n=1

cnun ‖ ≤ M‖
m∑

n=1

cnun ‖ (6)

for every finite sequence c1, c2, . . . , cm.

(v) The Gram matrix (〈uj , uk〉)∞j,k=1, acting on finitely supported sequences, dom-
inates its transpose:(

M2〈uj, uk〉 − 〈uk, uj〉
)∞
j,k=1

≥ 0 (7)

for some M > 0.

(vi) The Gram matrix G = (〈uj, uk〉)∞j,k=1 is bounded on l2(N). Furthermore,
‖G ‖ ≤ M and G is orthogonal (GtG = I as matrices).
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(vii) For each f in H, the skew Fourier expansion
∑∞

n=1 [f, un]un converges to f
in norm and

1
M
‖ f ‖2 ≤

∞∑
n=1

|[f, un]|2 ≤ M‖ f ‖2. (8)

In all cases, the infimum over all such M equals the norm of A0.

Proof. The proof consists of a number of parts. We first prove the implications
(i) ⇒ (iii) ⇒ (ii) ⇒ (i) and then establish the equivalences (iii) ⇔ (iv) ⇔ (v),
(iii) ⇔ (vi), and (ii)⇔ (vii).

(i) ⇒ (iii) If (un)∞n=1 is a Bessel sequence with Bessel bound M , then
∞∑

n=1

|[f, un]|2 =
∞∑

n=1

|〈Cf, un〉|2 ≤ M‖Cf ‖2 = M‖ f ‖2

holds for all f . It follows that the coordinate map Lf = ([f, un])∞n=1 is a bounded
linear operator fromH into l2(N) whose norm satisfies ‖L ‖ ≤

√
M . Since [f, un] =

〈f, Cun〉, it is not hard to see that L∗Lun = Cun = A0un and thus L∗L agrees
with A0 on the dense submanifold F . This implies that A0 extends to a bounded
linear operator A satisfying ‖A ‖ = ‖L∗L ‖ ≤ M .

(iii) ⇒ (ii) (un)∞n=1 is the image of the orthonormal basis (sn)∞n=1 under the
bounded, bijective operator B−1 (see the preceding section for terminology). The
bounds follow from [1, Prop. 3.6.4].

(ii) ⇒ (i) This follows from the well-known fact that a Riesz basis is always a
Bessel sequence (see [1, Prop. 3.6.4]).

(iii) ⇔ (iv) This follows directly from the fact that the antilinear operator J =
CA0 fixes each un. Since A0 = CJ on F and C is isometric, the desired result
follows.

(iv) ⇔ (v) Upon squaring both sides of (6) and simplifying, one sees that (6) holds
if and only if (7) holds (with the same M).

(iii) ⇔ (vi) If A0 is bounded, then A0 extends to a bounded, invertible oper-
ator A : H → H. Indeed, A−1 = CAC since these two operators agree on
the complete system (Cun)∞n=1. The entries in the Gram matrix G are given by
〈uj , uk〉 = 〈B−1sj, B

−1sk〉 = 〈A−1sj , sk〉. Hence G is simply the matrix represen-
tation for the bounded operator A−1 with respect to the C-real basis (sn)∞n=1.
In particular, this implies that G is bounded as an operator on l2(N). Since
〈Asj , sk〉 = 〈Bsj , Bsk〉 = 〈Cuj , Cuk〉 = 〈uk, uj〉 for all j, k, it follows that Gt

is simply the matrix representation for A and hence GtG = I. Conversely, if G is
bounded, then a straightforward computation shows that A0 is bounded.

(ii) ⇔ (vii) Condition (ii) holds if and only if

1
M
‖ f ‖2 ≤

∞∑
n=1

|〈f, un〉|2 ≤ M‖ f ‖2
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for every f in H. Upon substituting Cf for f and noting that [f, un] = 〈f, Cun〉 =
〈Cf, un〉, these inequalities assume the form required by (vii). Once (8) is estab-
lished, it is clear that each f in H can be represented as a norm-convergent skew
Fourier series. �

We conclude this article with a simple, but illustrative, example:

Example 9. Let w = α+ iβ where α and β are real constants and consider L2[0, 1],
endowed with the conjugation [Cf ](x) = f(1− x). A short computation shows
that if w is not an integer multiple of 2π, then the vectors

un(x) = exp[i(w + 2πn)(x − 1
2 )], n ∈ Z,

are eigenfunctions of the C-symmetric operator

[Tf ](x) = eiw/2

∫ x

0

f(y) dy + e−iw/2

∫ 1

x

f(y) dy

(i.e., T = eiw/2V +e−iw/2V ∗ where V denotes the Volterra operator) and that the
system (un)∞n=1 is complete and C-orthonormal. One the other hand, one might
also say that the un are eigenfunctions of the derivative operator with boundary
condition f(1) = eiwf(0).

We also see that the map un �→ Cun extends to a bounded operator on all
of L2[0, 1]. Indeed, this extension is simply the multiplication operator [Af ](x) =
e2β(x−1/2)f(x) whence B =

√
A is given by

[Bf ](x) = eβ(x−1/2)f(x).

As expected, the positive operators A and B are both C-orthogonal and the system
(un)∞n=1 forms a Riesz basis for L2[0, 1]. In fact, (un)∞n=1 is the image of the C-
real orthonormal basis (sn)∞n=1, defined by sn = Bun, under the bounded and
invertible operator B−1. The sn are given by

sn(x) = exp[i(α + 2πn)(x− 1
2 )]

and they are easily seen to be both orthonormal and C-real (see [5, Lem. 4.3]).
Such bases and their relationship to the C-symmetric properties of the Volterra
operator and the “compressed shift” corresponding to the atomic inner function
ϕ(z) = exp[(z + 1)/(z − 1)] are discussed in [5].
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Higher Order Asymptotic Formulas
for Traces of Toeplitz Matrices with
Symbols in Hölder-Zygmund Spaces
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Abstract. We prove a higher order asymptotic formula for traces of finite block
Toeplitz matrices with symbols belonging to Hölder-Zygmund spaces. The
remainder in this formula goes to zero very rapidly for very smooth symbols.
This formula refines previous asymptotic trace formulas by Szegő and Widom
and complement higher order asymptotic formulas for determinants of finite
block Toeplitz matrices due to Böttcher and Silbermann.
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theorem, decomposing algebra, canonical Wiener-Hopf factorization, Hölder-
Zygmund space.

1. Introduction and main result

1.1. Finite block Toeplitz matrices

Let Z, N, Z+, and C be the sets of integers, positive integers, nonnegative integers,
and all complex numbers, respectively. Suppose N ∈ N. For a Banach space X , let
XN and XN×N be the spaces of vectors and matrices with entries in X . Let T be
the unit circle. For 1 ≤ p ≤ ∞, let Lp := Lp(T) and Hp := Hp(T) be the standard
Lebesgue and Hardy spaces of the unit circle. For a ∈ L1

N×N one can define

ak =
1
2π

∫ 2π

0

a(eiθ)e−ikθdθ (k ∈ Z),

the sequence of the Fourier coefficients of a. Let I be the identity operator, P be
the Riesz projection of L2 onto H2, Q := I − P , and define I, P , and Q on L2

N

This work is supported by Centro de Matemática da Universidade do Minho (Portugal) and by
the Portuguese Foundation of Science and Technology through the research program POCTI.
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elementwise. For a ∈ L∞
N×N and t ∈ T, put ã(t) := a(1/t) and (Ja)(t) := t−1ã(t).

Define Toeplitz operators

T (a) := PaP |ImP, T (ã) := JQaQJ |ImP

and Hankel operators

H(a) := PaQJ |ImP, H(ã) := JQaP |ImP.

The function a is called the symbol of T (a), T (ã), H(a), H(ã). We are interested
in the asymptotic behavior of finite block Toeplitz matrices Tn(a) = [aj−k]nj,k=0

generated by (the Fourier coefficients of) the symbol a as n →∞. Many results in
this direction are contained in the books by Grenander and Szegő [10], Böttcher
and Silbermann [3, 4, 5], Simon [18], and Böttcher and Grudsky [1].

1.2. Szegő-Widom limit theorems

Let us formulate precisely the most relevant results. Let K2
N×N be the Krein

algebra [12] of matrix functions a in L∞
N×N satisfying

∞∑
k=−∞

‖ak‖2(|k|+ 1) < ∞,

where ‖ · ‖ is any matrix norm on CN×N . The following beautiful theorem about
the asymptotics of finite block Toeplitz matrices was proved by Widom [21].

Theorem 1.1. (see [21, Theorem 6.1]). If a ∈ K2
N×N and the Toeplitz operators

T (a) and T (ã) are invertible on H2
N , then T (a)T (a−1) − I is of trace class and,

with appropriate branches of the logarithm,

log det Tn(a) = (n + 1) log G(a) + log detT (a)T (a−1) + o(1) as n →∞, (1)

where

G(a) := lim
r→1−0

exp
(

1
2π

∫ 2π

0

log det âr(eiθ)dθ

)
, âr(eiθ) :=

∞∑
n=−∞

anr|n|einθ. (2)

In formula (1), detT (a)T (a−1) refers to the determinant defined for opera-
tors on Hilbert space differing from the identity by an operator of trace class [9,
Chap. 4].

The proof of the above result in a more general form is contained in [3,
Theorem 6.11] and [5, Theorem 10.30] (in this connection see also [8]).

Let λ
(n)
1 , . . . , λ

(n)
(n+1)N denote the eigenvalues of Tn(a) repeated according to

their algebraic multiplicity. Let sp A denote the spectrum of a bounded linear
operator A and trM denote the trace of a matrix M . Theorem 1.1 is equivalent
to the assertion∑

i

log λ
(n)
i = tr log Tn(a) = (n + 1) log G(a) + log detT (a)T (a−1) + o(1).

Widom [21] noticed that Theorem 1.1 yields even a description of the asymptotic
behavior of tr f(Tn(a)) if one replaces f(λ) = log λ by an arbitrary function f
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analytic in an open neighborhood of the union spT (a) ∪ spT (ã) (we henceforth
call such f simply analytic on spT (a) ∪ sp T (ã)).

Theorem 1.2. (see [21, Theorem 6.2]). If a ∈ K2
N×N and if f is analytic on

sp T (a) ∪ sp T (ã), then

tr f(Tn(a)) = (n + 1)Gf (a) + Ef (a) + o(1) as n →∞, (3)

where

Gf (a) :=
1
2π

∫ 2π

0

(tr f(a))(eiθ)dθ,

Ef (a) :=
1

2πi

∫
∂Ω

f(λ)
d

dλ
log detT [a− λ]T [(a− λ)−1]dλ,

and Ω is any bounded open set containing sp T (a)∪sp T (ã) on the closure of which
f is analytic.

The proof of Theorem 1.2 for continuous symbols a is also given in [5, Section
10.90]. In the scalar case (N = 1) Theorems 1.1 and 1.2 go back to Gabor Szegő
(see [10] and historical remarks in [3, 4, 5, 18]).

1.3. Hölder-Zygmund spaces

Suppose g is a bounded function on T. The modulus of continuity of g is defined
for s ≥ 0 by

ω1(g, s) := sup
{
|g(ei(x+h))− g(eix)| : x, h ∈ R, |h| ≤ s

}
.

By the modulus of smoothness (of order 2) of g is meant the function (see, e.g.,
[19, Section 3.3]) defined for s ≥ 0 by

ω2(g, s) := sup
{
|g(ei(x+h))− 2g(eix) + g(ei(x−h))| : x, h ∈ R, |h| ≤ s

}
.

Let C = C(T) be the set of all continuous functions on T. Given γ > 0, write
γ = m+ δ, where m ∈ Z+ and δ ∈ (0, 1]. The Hölder-Zygmund space Cγ = Cγ(T)
is defined (see, e.g., [16, Section 3.5.4]) by

Cγ :=
{
f ∈ C : f (j) ∈ C, 1 ≤ j ≤ m, [f (m)]δ < ∞

}
with the norm

‖f‖γ :=
m∑

j=0

‖f (j)‖∞ + [f (m)]δ,

where f (j) is the derivative of order j of f , ‖ · ‖∞ is the norm in L∞, and

[g]δ := sup
s>0

ω2(g, s)
sδ

, 0 < δ ≤ 1.

Notice that if γ > 0 is not integer, then [g]δ can be replaced by

[g]∗δ := sup
s>0

ω1(g, s)
sδ

, 0 < δ < 1

in the above definition.
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1.4. Böttcher-Silbermann higher order asymptotic formulas for determinants

Following [21] and [5, Sections 7.5–7.6], for n ∈ Z+ and a ∈ L∞
N×N define the

operators Pn and Qn on H2
N by

Pn :
∞∑

k=0

aktk �→
n∑

k=0

aktk, Qn := I − Pn.

The operator PnT (a)Pn : PnH2
N → PnH2

N may be identified with the finite block
Toeplitz matrix Tn(a) := [aj−k]nj,k=0. For a unital Banach algebra A we will denote
by GA the group of all invertible elements of A. For 1 ≤ p ≤ ∞, put

Hp
± :=

{
a ∈ Lp : a∓n = 0 for n ∈ N

}
.

Böttcher and Silbermann [2] proved among other things the following result.

Theorem 1.3. Let p ∈ N and α, β > 0 satisfy α + β > 1/p. Suppose a = u−u+,
where u+ ∈ G(Cα ∩ H∞

+ )N×N and u− ∈ G(Cβ ∩ H∞− )N×N , and the Toeplitz
operator T (ã) is invertible on H2

N . Then
(a) there exist v− ∈ G(H∞− )N×N and v+ ∈ G(H∞

+ )N×N such that a = v+v−;
(b) there exists a constant Ẽ(a) �= 0 such that

log detTn(a) = (n + 1) log G(a) + log Ẽ(a)

+tr

⎡⎣ n∑
�=1

p−1∑
j=1

1
j

(
p−j−1∑

k=0

G�,k(b, c)

)j
⎤⎦

+O(1/n(α+β)p−1)

as n →∞, where the correcting terms G�,k(b, c) are given by

G�,k(b, c) := P0T (c)Q�

(
Q�H(b)H(c̃)Q�

)k
Q�T (b)P0 (�, k ∈ Z+) (4)

and the functions b, c are given by b := v−u−1
+ and c := u−1

− v+.
If, in addition, p = 1, then
(c) the operator T (a)T (a−1)− I is of trace class and

log detTn(a) = (n + 1) log G(a) + log detT (a)T (a−1) + O(1/nα+β−1) (5)

as n →∞.

The sketch of the proof of parts (a) and (b) is contained in [3, Sections 6.18(ii)]
and in [5, Theorem 10.35(ii)]. Part (c) is explicitly stated in [3, Section 6.18(ii)] or
immediately follows from [5, Theorems 10.35(ii) and 10.37(ii)].

1.5. Our main result

Our main result is the following refinement of Theorem 1.2.

Theorem 1.4. Let γ > 1/2. If a ∈ Cγ
N×N and if f is analytic on sp T (a)∪ sp T (ã),

then (3) is true with o(1) replaced by O(1/n2γ−1).
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Clearly, this result is predicted by Theorem 1.3(c) with γ = α = β. The key
point in the Widom’s proof of Theorem 1.2 is that (1) is valid for a − λ in place
of a, uniformly with respect to λ in a neighborhood of ∂Ω. We will show that the
same remains true for the higher order asymptotic formula (5) with γ = α = β.
In Section 2 we collect necessary information about right and left Wiener-Hopf
factorizations in decomposing algebras and mention that a nonsingular matrix
function belonging to a Hölder-Zygmund space Cγ

N×N (γ > 0) admits right and
left Wiener-Hopf factorizations in Cγ

N×N . In Section 3 we give the proof of The-
orem 1.4 using an idea of Böttcher and Silbermann [2] of a decomposition of
tr log{I −

∑∞
k=0 Gn,k(b, c)}. We show that this decomposition can be made for

a − λ uniform with respect to λ in a neighborhood of ∂Ω. This actually implies
that (5) is valid with γ = α = β and a replaced by a − λ uniformly with respect
to λ in a neighborhood of ∂Ω. Thus, Widom’s arguments apply.

1.6. Higher order asymptotic trace formulas for Toeplitz matrices with symbols
from other smoothness classes

Let us mention two other classes of symbols for which higher order asymptotic
formulas for tr f(Tn(a)) are available.

Theorem 1.5. Suppose a is a continuous N ×N matrix function on the unit circle
and f is analytic on sp T (a) ∪ sp T (ã). Let ‖ · ‖ be any matrix norm on CN×N .
(a) (see [20]). If γ > 1 and

∞∑
k=−∞

‖ak‖+
∞∑

k=−∞
‖ak‖2|k|γ < ∞,

then (3) is true with o(1) replaced by o(1/nγ−1).
(b) (see [11, Corollary 1.6]). If α, β > 0, α + β > 1, and

∞∑
k=1

‖a−k‖kα +
∞∑

k=1

‖ak‖kβ < ∞,

then (3) is true with o(1) replaced by o(1/nα+β−1).

2. Wiener-Hopf factorization in decomposing algebras of
continuous functions

2.1. Definitions and general theorems

Let D be the open unit disk. Let R− (resp. R+) denote the set of all rational
functions with poles only in D (resp. in (C∪{∞})\(D∪T)). Let C± be the closure
of R± with respect to the norm of C. Suppose A is a Banach algebra of continuous
functions on T that contains R+ ∪ R− and has the following property: if a ∈ A
and a(t) �= 0 for all t ∈ T, then a−1 ∈ A. The sets A± := A ∩ C± are subalgebras
of A. The algebra A is said to be decomposing if every function a ∈ A can be
represented in the form a = a− + a+ where a± ∈ A±.
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Let A be a decomposing algebra. A matrix function a ∈ AN×N is said to
admit a right (resp. left) Wiener-Hopf (WH) factorization in AN×N if it can be
represented in the form a = a−da+ (resp. a = a+da−), where

a± ∈ G(A±)N×N , d(t) = diag{tκ1 , . . . , tκN}, κi ∈ Z, κ1 ≤ · · · ≤ κN .

The integers κi are usually called the right (resp. left) partial indices of a; they
can be shown to be uniquely determined by a. If κ1 = · · · = κN = 0, then the
respective WH factorization is said to be canonical.

The following result was obtained by Budjanu and Gohberg [6, Theorem 4.3]
and it is contained in [7, Chap. II, Corollary 5.1] and in [13, Theorem 5.7′].

Theorem 2.1. Suppose the following two conditions hold for the algebra A:
(a) the Cauchy singular integral operator

(Sϕ)(t) :=
1
πi

v.p.

∫
T

ϕ(τ)
τ − t

dτ (t ∈ T)

is bounded on A;
(b) for any function a ∈ A, the operator aS − SaI is compact on A.

Then every matrix function a ∈ AN×N such that det a(t) �= 0 for all t ∈ T admits a
right and left WH factorization in AN×N (in general, with different sets of partial
indices).

Notice that (a) holds if and only if A is a decomposing algebra.
The following theorem follows from a more general result due to Shubin [17].

Its proof can be found in [13, Theorem 6.15].

Theorem 2.2. Let A be a decomposing algebra and let ‖ ·‖ be a norm in the algebra
AN×N . Suppose a, c ∈ AN×N admit canonical right and left WH factorizations
in the algebra AN×N . Then for every ε > 0 there exists a δ > 0 such that if
‖a− c‖ < δ, then for every canonical right WH factorization a = a

(r)
− a

(r)
+ and for

every canonical left WH factorization a = a
(l)
+ a

(l)
− one can choose a canonical right

WH factorization c = c
(r)
− c

(r)
+ and a canonical left WH factorization c = c

(l)
+ c

(l)
−

such that
‖a(r)

± − c
(r)
± ‖ < ε, ‖[a(r)

± ]−1 − [c(r)
± ]−1‖ < ε,

‖a(l)
± − c

(l)
± ‖ < ε, ‖[a(l)

± ]−1 − [c(l)
± ]−1‖ < ε.

2.2. Wiener-Hopf factorization in Hölder-Zygmund spaces

Theorem 2.3. (see [15, Section 6.25]). Suppose γ > 0. Then

(a) Cγ is a Banach algebra;
(b) a ∈ Cγ is invertible in Cγ if and only if a(t) �= 0 for all t ∈ T;
(c) S is bounded on Cγ ;
(d) for a ∈ Cγ , the operator aI is bounded on Cγ and the operator aS − SaI is

compact on Cγ .
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For γ /∈ Z+, parts (c) and (d) are proved in [6, Section 7] (see also [7,
Chap. II, Section 6.2]). Note that a statement similar to (d) is proved in [14,
Chap. 7, Theorem 4.3].

Theorem 2.4. Let γ > 0 and Σ be a compact set in the complex plane. Suppose
a : Σ → Cγ

N×N is a continuous function and the Toeplitz operators T (a(λ)) and
T ([a(λ)]˜ ) are invertible on H2

N for all λ ∈ Σ. Then for every λ ∈ Σ the function
a(λ) : T → C admits canonical right and left WH factorizations

a(λ) = u−(λ)u+(λ) = v+(λ)v−(λ)

in Cγ
N×N . These factorizations can be chosen so that u±, v±, u−1

± , v−1
± : Σ → Cγ

N×N

are continuous.

Proof. Fix λ ∈ Σ and put a := a(λ). If T (a) is invertible on H2
N , then det a(t) �= 0

for all t ∈ T (see, e.g., [7, Chap. VII, Proposition 2.1]). Then, by [7, Chap. VII,
Theorem 3.2], the matrix function a admits a canonical right generalized factor-
ization in L2

N , that is, a = a−a+, where a±1
− ∈ (H2

−)N×N , a±1
+ ∈ (H2

+)N×N (and,
moreover, the operator a−Pa−1

− I is bounded on L2
N ).

On the other hand, from Theorems 2.1 and 2.3 it follows that a ∈ Cγ
N×N

admits a right WH factorization a = u−du+ in Cγ
N×N . Then

u± ∈ (Cγ
±)N×N ⊂ (H2

±)N×N , u−1
± ∈ (Cγ

±)N×N ⊂ (H2
±)N×N .

By the uniqueness of the partial indices in a right generalized factorization in L2
N

(see, e.g., [13, Corollary 2.1]), d = 1.
Let us prove that a admits also a canonical left WH factorization in the alge-

bra Cγ
N×N . In view of Theorem 2.3(b), a−1 ∈ Cγ

N×N . By [5, Proposition 7.19(b)],
the invertibility of T (ã) on H2

N is equivalent to the invertibility of T (a−1) on H2
N .

By what has just been proved, there exist f± ∈ G(Cγ
±)N×N such that a−1 = f−f+.

Put v± := f−1
± . Then v± ∈ G(Cγ

±)N×N and a = v+v− is a canonical left WH fac-
torization in Cγ

N×N .
We have proved that for each λ ∈ Σ the matrix function a(λ) : T → C

admits canonical right and left WH factorizations in Cγ
N×N . By Theorem 2.2,

these factorizations can be chosen so that the factors u±, v± and their inverses
u−1
± , v−1

± are continuous functions from Σ to Cγ
N×N . �

3. Proof of the main result

3.1. The Böttcher-Silbermann decomposition

The following result from [3, Section 6.16], [5, Section 10.34] is the basis for our
asymptotic analysis.

Lemma 3.1. Suppose a ∈ L∞
N×N satisfies the following hypotheses:

(i) there are two factorizations a = u−u+ = v+v−, where u+, v+ ∈ G(H∞
+ )N×N

and u−, v− ∈ G(H∞
− )N×N ;

(ii) u− ∈ CN×N or u+ ∈ CN×N .



192 A.Yu. Karlovich

Define the functions b, c by b := v−u−1
+ , c := u−1

− v+ and the matrices Gn,k(b, c) by
(4). Suppose for all sufficiently large n (say, n ≥ N0) there exists a decomposition

tr log

{
I −

∞∑
k=0

Gn,k(b, c)

}
= −tr Hn + sn (6)

where {Hn}∞n=N0
is a sequence of N × N matrices and {sn}∞n=N0

is a sequence
of complex numbers. If

∑∞
n=N0

|sn| < ∞, then there exist a constant Ẽ(a) �= 0
depending on {Hn}∞n=N0

and arbitrarily chosen N × N matrices H1, . . . , HN0−1

such that for all n ≥ N0,

log det Tn(a) = (n + 1) log G(a) + tr (H1 + · · ·+ Hn) + log Ẽ(a) +
∞∑

k=n+1

sk,

where the constant G(a) is given by (2).

3.2. The best uniform approximation

Let Pn be the set of all Laurent polynomials of the form

p(t) =
n∑

j=−n

αjt
j , αj ∈ C, t ∈ T.

By the Chebyshev theorem (see, e.g., [19, Section 2.2.1]), for f ∈ C and n ∈ N,
there is a Laurent polynomial pn(f) ∈ Pn such that

‖f − pn(f)‖∞ = inf
p∈Pn

‖f − p‖∞. (7)

This polynomial pn(f) is called a polynomial of best uniform approximation.
By the Jackson-Ahiezer-Stechkin theorem (see, e.g., [19, Section 5.1.4]), if f

has a bounded derivative f (m) of order m on T, then for n ∈ N,

inf
p∈Pn

‖f − p‖∞ ≤ Cm

(n + 1)m
ω2

(
f (m),

1
n + 1

)
, (8)

where the constant Cm depends only on m.
From (7) and (8) it follows that if f ∈ Cγ and n ∈ N, where γ = m + δ with

m ∈ Z+ and δ ∈ (0, 1], then there is a pn(f) ∈ Pn such that

‖f − pn(f)‖∞ ≤ Cm

(n + 1)m
ω2

(
f (m),

1
n + 1

)
≤ Cm[f (m)]δ

(n + 1)m+δ
≤ Cm

‖f‖γ

nγ
. (9)

3.3. Norms of truncations of Toeplitz and Hankel operators

Let X be a Banach space. For the definiteness, let the norm of a = [aij ]Ni,j=1 in
XN×N is given by ‖a‖XN×N = max

1≤i,j≤N
‖aij‖X . We will simply write ‖a‖∞ and

‖a‖γ instead of ‖a‖L∞
N×N

and ‖a‖Cγ
N×N

, respectively. Denote by ‖A‖ the norm of
a bounded linear operator A on H2

N .
A slightly less precise version of the following statement was used in the proof

of [5, Theorem 10.35(ii)].
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Proposition 3.2. Let α, β > 0. Suppose b = v−u−1
+ and c = u−1

− v+, where

u+ ∈ G(Cα ∩H∞
+ )N×N , u− ∈ G(Cβ ∩H∞

− )N×N , v± ∈ G(H∞
± )N×N .

Then there exist positive constants Mα and Mβ depending only on N and α and
β, respectively, such that for all n ∈ N,

‖QnT (b)P0‖ ≤
Mα

nα
‖v−‖∞‖u−1

+ ‖α, ‖QnH(b)‖ ≤ Mα

nα
‖v−‖∞‖u−1

+ ‖α,

‖P0T (c)Qn‖ ≤
Mβ

nβ
‖v+‖∞‖u−1

− ‖β, ‖H(c̃)Qn‖ ≤
Mβ

nβ
‖v+‖∞‖u−1

− ‖β.

Proof. Since b = v−u−1
+ , c = u−1

− v+ and v±, u± ∈ G(H∞
± )N×N , one has

QnT (b)P0 = QnT (v−)QnT (u−1
+ )P0, (10)

QnH(b) = QnT (v−)QnH(u−1
+ ), (11)

P0T (c)Qn = P0T (u−1
− )QnT (v+)Qn, (12)

H(c̃)Qn = H(ũ−1
− )QnT (v+)Qn. (13)

Let pn(u−1
+ ) and pn(u−1

− ) be the polynomials in Pn
N×N of best uniform approxi-

mation of u−1
+ and u−1

− , respectively. Obviously,

QnT [pn(u−1
+ )]P0 = 0, QnH [pn(u−1

+ )] = 0,

P0T [pn(u−1
− )]Qn = 0, H [(pn(u−1

− ))˜]Qn = 0.

Then from (9) it follows that

‖QnT (u−1
+ )P0‖ = ‖QnT [u−1

+ − pn(u−1
+ )]P0‖

≤ ‖P‖ ‖u−1
+ − pn(u−1

+ )‖∞ ≤ Mα

nα
‖u−1

+ ‖α (14)

and similarly

‖QnH(u−1
+ )‖ ≤ Mα

nα
‖u−1

+ ‖α, (15)

‖P0T (u−1
− )Qn‖ ≤

Mβ

nβ
‖u−1

− ‖β, (16)

‖H(ũ−1
− )Qn‖ ≤

Mβ

nβ
‖u−1

− ‖β, (17)

where Mα and Mβ depend only on α, β and N . Combining (10) and (14), we get

‖QnT (b)P0‖ ≤ ‖T (v−)‖ ‖QnT (u−1
− )P0‖ ≤

Mα

nα
‖v−‖∞‖u−1

+ ‖α.

All other assertions follow from (11)–(13) and (15)–(17). �
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3.4. The key estimate

The following proposition shows that a decomposition of Lemma 3.1 exists.

Proposition 3.3. Suppose the conditions of Proposition 3.2 are fulfilled. If p ∈ N,
then there exists a constant Cp ∈ (0,∞) depending only on p such that∣∣∣∣∣∣ tr log

{
I −

∞∑
k=0

Gn,k(b, c)

}
+ tr

⎡⎣p−1∑
j=1

1
j

(
p−j−1∑

k=0

Gn,k(b, c)

)j
⎤⎦∣∣∣∣∣∣

≤ Cp

(
MαMβ

nα+β
‖u−1

+ ‖α‖u−1
− ‖β‖v−‖∞‖v+‖∞

)p

for all n >
(
MαMβ‖u−1

+ ‖α‖u−1
− ‖β‖v−‖∞‖v+‖∞

)1/(α+β).

Proof. From Proposition 3.2 it follows that

‖Gn,k(b, c)‖ ≤
[
MαMβ

nα+β
‖u−1

+ ‖α‖u−1
− ‖β‖v−‖∞‖v+‖∞

]k+1

for all k ∈ Z+ and n ∈ N. If n >
(
MαMβ‖u−1

+ ‖α‖u−1
− ‖β‖v−‖∞‖v+‖∞

)1/(α+β),
then the expression in the brackets is less than 1. In view of these observations the
proof can be developed as in [11, Proposition 3.3]. �

Theorem 1.3 (b) follows from the above statement and Lemma 3.1. In the
next section we will use the partial case p = 1 of Proposition 3.3 as the key
ingredient of the proof of our main result.

3.5. Proof of Theorem 1.4

Suppose γ > 1/2 and λ /∈ sp T (a) ∪ sp T (ã). Then

T (a)− λI = T (a− λ), T (ã)− λI = T ([a− λ]˜ )

are invertible on H2
N . Since a−λ is continuous with respect to λ as a function from

a closed neighborhood Σ of ∂Ω to Cγ
N×N , in view of Theorem 2.4, for each λ ∈ Σ,

the function a − λ : T → C admits canonical right and left WH factorizations
a − λ = u−(λ)u+(λ) = v+(λ)v−(λ) in Cγ

N×N and these factorizations can be
chosen so that the factors u±, v± and their inverses u−1

± , v−1
± are continuous from

Σ to Cγ
N×N . Then

AΣ := max
λ∈Σ

(
‖u−1

+ (λ)‖γ‖u−1
− (λ)‖γ‖v−(λ)‖γ‖v+(λ)‖γ

)
<∞.
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Put b = v−u−1
+ and c = u−1

− v+. From Proposition 3.3 with p = 1 it follows that
there exists C1 ∈ (0,∞) such that∣∣∣∣∣ tr log

{
I −

∞∑
k=0

Gn,k(b(λ), c(λ))

}∣∣∣∣∣
≤

C1M
2
γ

n2γ
‖u−1

+ (λ)‖γ‖u−1
− (λ)‖γ‖v−(λ)‖∞‖v+(λ)‖∞

≤
C1M

2
γAΣ

n2γ
(18)

for all n > (M2
γAΣ)1/(2γ) and all λ ∈ Σ. Obviously

∞∑
k=n+1

1
k2γ

= O(1/n2γ−1). (19)

From Lemma 3.1 and (18)–(19) it follows that there is a function Ẽ(a, ·) : Σ →
C \ {0} such that

log det Tn(a− λ) = (n + 1) log G(a− λ) + log Ẽ(a, λ) + O(1/n2γ−1) (20)

as n →∞ and this holds uniformly with respect to λ ∈ Σ. Theorem 1.3 (c) implies
that T (a− λ)T ([a− λ]−1)− I is of trace class and

Ẽ(a, λ) = detT (a− λ)T ([a− λ]−1) (21)

for all λ ∈ Σ. Combining (20) and (21), we deduce that

log detTn(a−λ) = (n+1) logG(a−λ)+logdetT (a−λ)T ([a−λ]−1)+O(1/n2γ−1)

as n → ∞ uniformly with respect to λ ∈ Σ. Hence, one can differentiate both
sides of the last formula with respect to λ, multiply by f(λ), and integrate over
∂Ω. The proof is finished by a literal repetition of Widom’s proof of Theorem 1.2
(see [21, p. 21] or [5, Section 10.90]) with o(1) replaced by O(1/n2γ−1). �
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On an Eigenvalue Problem for Some Nonlinear
Transformations of Multi-dimensional Arrays
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Abstract. It is shown that certain transformations of multi-dimensional arrays
posses unique positive solutions. These transformations are composed of lin-
ear components defined in terms of Stieltjes matrices, and semi-linear compo-
nents similar to u → ku3. In particular, the analysis of the linear components
extends some results of the Perron-Frobenius theory to multi-dimensional ar-
rays.
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Keywords. Nonlinear transformation, finite difference method, monotone op-
erator, Perron-Frobenius theory, Kronecker product.

1. Introduction

In this paper we extend to multi-dimensional arrays, results for one-dimensional
arrays presented in paper [2]. In the case of two-dimensional arrays we consider
the following nonlinear eigenvalue problem for an n× n unknown matrix U ,

AU + UB + F (U) = λU, (1.1)

where A and B are n×n symmetric positive definite, irreducible M-matrices. Such
matrices are called Stieltjes matrices, and all entries of their inverses are strictly
positive. It follows from the Perron-Frobenius theory that the smallest positive
eigenvalue µ of a Stieltjes matrix has multiplicity 1 and that the corresponding
eigenvector p has strictly positive entries. The function F (U) is assumed to be
“diagonal”,

F (U) =

⎡⎢⎣f11(u11) f12(u12) . . . f1n(u1n)
...

...
...

fn1(un1) fn2(un2) . . . fnn(unn)

⎤⎥⎦ ,

with the property that fij(uij) > 0 if uij > 0 and F (0) = 0.
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Our objective is to characterize all (component-wise) positive solutions U =
[uij ] of (1.1).

For the linear part of the operator in (1.1) we use the notation

T (U) = AU + UB.

It is well known (see e.g. [7] ) that eigenvalues of T are all possible sums of
eigenvalues of A and B, and that the corresponding eigen-matrices are the outer
products of corresponding eigenvectors of A and B, that is, if Apk = µkpk and
Bqk = νkqk, then T (pk(qk)t) = (µk + νk)pk(qk)t. In particular, if µ and ν are
the smallest eigenvalues of A and B respectively then µ + ν > 0 is the smallest
eigenvalue of T , it is simple and the corresponding eigen-matrix is pqt. It is not
hard to see that λ > µ + ν is a necessary condition for (1) to have a non-negative
eigenmatrix U . Indeed, given an U ≥ 0, U �= 0, multiply (1.1) by pt on the left and
by q on the right to get

ptAUq + ptUBq +
n∑

i=1

n∑
j=1

fij(xij)piqj = λptUq.

Since

ptAUq + ptUBq = (µ + ν)ptUq > 0 and
n∑

i=1

n∑
j=1

fij(uij)piqj > 0,

it follows that (µ + ν) < λ.
We give sufficient conditions on F under which the following result holds:

For any λ > (µ+ν), there exists a unique positive solution U(λ) of equation (1.1).
Moreover, if (µ + ν) < λ1 < λ2, then U(λ1) < U(λ2), component-wise, which
means that each entry of U(λ1) is less than the corresponding entry of U(λ2).

Partial motivation for this extension comes from a discretization of the Gross-
Pitaevskii partial differential equation which models a certain aspect of the Bose-
Einstein condensation of matter at near absolute zero temperatures, (see [4] for
more details and references). In the case of two spatial variables the Gross-Pitaevs-
kii equation has the form

−∆u + V (x, y)u + ku3 = λu, k > 0, u > 0, (1.2)

lim
|(x,y)|→∞

u = 0,

∫ ∞

−∞

∫ ∞

−∞
u(x, y)2dxdy = 1,

where u = u(x, y) is a function to be found together with λ s.t. the above nor-
malization condition holds, and ∆u = uxx + uyy denotes the two-dimensional
Laplacian. For some λ the solution may not exist. Here we are interested in λ
for which there exists a unique positive solution (which corresponds to the stable
state of the Bose-Einstein condensate, briefly BEC). The positive constant k of
non-linearity is proportional to the number of atoms in the condensate and can be
very large. Denoting the linear differential operator −∆ + V also by T ,

Tu = −∆u(x, y) + V (x, y)u(x, y),
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we can write (1.2) as
Tu + ku3 = λu.

We further assume that the potential V (x, y) is separable,

V (x, y) = V1(x) + V2(y),

where V1 and V2 are non-negative functions of one variable. This assumption is
there for BEC applications, where

V (x, y) = ax2 + by2, a > 0, b > 0,

is the harmonic potential used to create a magnetic trap for BEC by experimenta-
tors. Given that u(x, y) converges to zero at infinity, we restrict our equation to a
finite domain [−L, L]× [−L, L]. The discretization of second derivatives at points,
x1, . . . , xn and y1, . . . , yn, leads to the matrix equation

DxU + UDy + kU3 = λU,

where U is n×n matrix and U3 is an n×n matrix whose entries are third powers
of entries of U , and xi = yi = ih, h = L

n+1 , i = 1, . . . , n, and where

Dx =
1
h2

⎛⎜⎜⎜⎜⎜⎜⎝
2 + h2V1(x1) −1 0

−1 2 + h2V1(x2) −1

−1
. . . . . .
. . . 2 + h2V1(xn−1) −1

0 −1 2 + h2V1(xn)

⎞⎟⎟⎟⎟⎟⎟⎠
corresponds to the discretized negative second derivative in x plus the potential
V1(x), and similarly Dy. The matrix Dx is clearly a positive definite irreducible
M -matrix.

In this paper we consider a somewhat more general equation

AxU + UAy + F (U) = λU, k > 0,

where Ax and Ay are Stieltjes matrices, or equivalently,

T (U) + F (U) = λU.

The three-dimensional analog can be described as

Ax(U) + Ay(U) + Az(U) + F (U) = λU (1.3)

where U is a triple array,
U = {uijk}n

i,j,k=1,

and the linear transformation Ax is defined as follows: for a given (j, k), j, k =
1, . . . , n,

{[Ax(U)]i,j,k}n
i=1 =

⎡⎢⎣Ax(U)1,j,k

...
Ax(U)n,j,k

⎤⎥⎦ = A

⎡⎢⎣u1,j,k

...
un,j,k

⎤⎥⎦ =

⎡⎢⎣ũ1,j,k

...
ũn,j,k

⎤⎥⎦ .
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Thus Ax(U) is the triple array composed of the entries ũi,j,k, i, j, k = 1, . . . n.
Ay(U) and Az(U) are defined similarly. Equation (1.3) includes a discretized ver-
sion of the Gross-Pitaevskii equation in three spatial variables:

−∆u + V (x, y, z)u + ku3 = λu, u > 0, lim
|(x,y,z)|→∞

u = 0,∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
u(x, y, z)2dxdydz = 1.

Here u = u(x, y, z), ∆u = uxx +uyy +uzz is the three-dimensional Laplacian and
V (x, y, z) = ax2 + by2 + cz2.

We also comment on a similar case for more than three variables,

T (U) + F (U) = λU, (1.4)

where U is an N -dimensional array and T (U) = A(1)(U)+A(2)(U)+. . .+A(N)(U),
and A(i)(U) are defined similar to Ax(U). We observe that T is monotone:

If T (U) = P, T (V ) = Q and P < Q (in the componentwise sense), then
U < V .

Moreover, eigenvalues of T , are all possible sums of eigenvalues of A(1), A(2),
A(3), . . . , A(N) and for λ >

∑N
i=1 µi, where for i = 1, . . . , N, µi are the smallest

eigenvalues of A(i), (1.4) has a unique positive solution.
We first consider Equation (1.4) in R2, where the matrix operations “Vec”

and “⊗” are used to extend proofs from [2]. In Section 3 we consider the case
of RN , N > 2, with most emphasis on N = 3. We extend the three-dimensional
array into a vector, and the Kronecker product for three matrices is used (see
[5] for the discussion of relevance of Kroneker products to the discretization of a
Laplacian in three variables). The conversion of a three-dimensional array into an
n3-vector is not unique, and we give a definition of ‘Vec’ in three dimensions which
allows extension of results for one and two-dimensional arrays to three-dimensional
arrays. This definition can be extended to higher-dimensional arrays as well.

Finally we remark that not all discretization techniques lead to a Stieltjes
matrix A. In particular, the collocation method based on interpolation at Legendre
points gives an A whose inverse has entries with mixed signs. However, numerical
experiments for N = 3 (see [3]) suggest that also in this case, for λ > (µx+µy+µz),
Equation (1.4) has a unique positive solution.

2. Two Variable Case

Claim 2.1. Let A and B be Stieltjes matrices and T (U) = AU + UB. Then T is
monotone, that is, if T (U) = P, T (V ) = Q and P < Q, then U < V .

Proof. Consider the Vec-function associated with the matrix AU + UB (see [7, p.
409])

Vec(AU + UB) = [(In ⊗A) + (B ⊗ In)]Vec(U)



Eigenvalue Problem for Some Nonlinear Transformations 201

where In ⊗A = diag[A, A, . . . , A] and

B ⊗ In =

⎡⎢⎣b11In b12In . . . b1nIn

...
...

...
bn1In bn2In . . . bnnIn

⎤⎥⎦ .

Eigenvalues of D = (In ⊗ A) + (B ⊗ In) are all possible sums of eigenvalues of A
and B (see [7, p. 412]). Since A and B are symmetric positive definite it follows
that D is also positive definite. Indeed it is symmetric by construction, and all its
eigenvalues are positive.

Since sign pattern of A and B is preserved in D, it follows that D is an M-
matrix itself, and hence monotone. Therefore T (U) > 0 ⇒ Vec(U) > 0 and hence
U > 0. �

The proof of the existence is based on a certain reformulation of (1.1) as a
fixed point problem, and on the fundamental result of L.V. Kantorovich, ( see [8],
[9] or [11] and references therein). Here we present for completeness the statement
of the theorem by Kantorovich. By [y, z] we denote the interval y ≤ x ≤ z where
the inequality is component-wise.

Theorem 2.2. Let Z be a K-space (Rn in our case) and V : Z → Z be defined on
[y, z] which satisfies the following conditions:

(i) y < V (y) < z.
(ii) y < V (z) < z.
(iii) y ≤ x1 < x2 ≤ z implies y < V (x1) ≤ V (x2) < z.
(iv) If y ≤ x1 ≤ . . . ≤ xk ≤ . . . ≤ z and xk ↑ x, then V (xk) ↑ V (x).

Then

(a) the fixed point iteration xk = V (xk−1) with x0 = y converges: xk → x∗,
V (x∗) = x∗, y < x∗ < z;

(b) the fixed point iteration xk = V (xk−1) with x0 = z converges: xk → x∗,
V (x∗) = x∗, y < x∗ < z;

(c) if x is a fixed point of V in [y, z], then x∗ < x < x∗;
(d) V has a unique fixed point in [y, z] if and only if x∗ = x∗.

(The arrow ↑ means that xk monotonically increases and converges to x.)

Theorem 2.3. Let (µ + ν) be the smallest positive eigenvalue of T (U) = AU + UB
and pqt be the corresponding eigen-matrix, here A and B are Stieltjes matri-
ces, µ and ν are the smallest positive eigenvalues and p = [p1, . . . , pn]t and q =
[q1, . . . , qn]t are the corresponding positive eigenvectors of A and B, respectively.
Let λ > (µ + ν) and

F (U) =

⎡⎢⎣f11(u11) f12(u12) . . . f1n(u1n)
...

...
...

fn1(un1) fn2(un2) . . . fnn(unn)

⎤⎥⎦ ,
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where, for i, j = 1, . . . , n, fij : (0,∞) → (0,∞) are C1 functions satisfying the
conditions

lim
t→0

fij(t)
t

= 0, lim
t→∞

fij(t)
t

= ∞. (2.1)

Then AU + UB + F (U) = λU has a positive solution. If in addition for i, j =
1, . . . , n,

fij(s)
s

<
fij(t)

t
whenever 0 < s < t, (2.2)

then the positive solution is unique.

Proof. First take β1 small enough so that fij [(β1pqt)ij ] < (λ − (µ + ν))(β1pqt)ij ,
for i, j = 1, . . . , n and β2 > β1 large enough so that (λ − (µ + ν))(β2pqt)ij <
fij [(β2pqt)ij ] for i, j = 1, . . . , n. This is possible because of condition (2.1). Take
a positive number c > 0 s.t.

c > max
1≤i,j≤n

[ sup
(β1pqt)ij≤t≤(β2pqt)ij

|f ′
ij(t)|]− λ. (2.3)

Let T̃ (U) = (cI + A)U + UB. Since (cI + A)U + UB = (c + λ)U −F (U) and since
eigenvalues of T̃ are bounded from below by eigenvalues of T , it follows that T̃ is
invertible, and hence

U = T̃−1[(c + λ)U − F (U)], or U = S(U),

where by definition S(U) = T̃−1[(c + λ)U − F (U)]. To prove existence we show
that S satisfies the conditions of Theorem 2.2 with y = β1pqt and z = β2pqt.

For condition (i) of Theorem 2.2, note that T̃ (pqt) = (c + (µ + ν))pqt and
therefore pqt = T̃−1(c + (µ + ν))pqt.

Now T̃−1U > 0 whenever U > 0, therefore it is suffices to show that

(c + (µ + ν))β1pqt ≤ (c + λ)β1pqt − F (β1pqt)

or equivalently that

(c + (µ + ν))(β1pqt)ij ≤ (c + λ)(β1pqt)ij − fij((β1pqt)ij),

or
fij((β1pqt)ij) < (λ− (µ + ν))(β1pqt)ij , i, j = 1, . . . , n.

The last inequality follows immediately from the choice of β1.
In the same way one can show that for the above choice of β2 one has

S(β2pqt) ≤ β2pqt.
The conditions (iii) and (iv) can be verified in the similar way using condition

(2.3) on c and by continuity of (1.1) in U. Now suppose that the condition (2.2) is
satisfied. We show that in this case U∗ = U∗, where U∗ and U∗ are the solutions of
(1.1) obtained by the fixed point iteration starting at β1pqt and β2pqt, respectively.

We have AU∗+U∗B+F (U∗) = λU∗, and AU∗+U∗B+F (U∗) = λU∗. Indeed,

DVec(U∗) + Vec(F (U∗)) = λVec(U∗), (2.4)

similarly,
DVec(U∗) + Vec(F (U∗)) = λVec(U∗), (2.5)
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where D is defined in the proof of Claim 2.1. Since D is symmetric, pre-multipying
(2.4) and (2.5) by Vec(U∗)t and Vec(U∗)t, respectively and subtracting we get
Vec(U∗)tVec(F (U∗)) = Vec(U∗)tVec(F (U∗)), or equivalently that

n∑
i,j=1

[(u∗)ij(u∗)ij [
fij((u∗)ij)

(u∗)ij
− fij((u∗)ij)

(u∗)ij
]] = 0.

Since all the terms are nonnegative the sum is zero only when (u∗)ij = (u∗)ij for
all i, j = 1, . . . , n, implying that U∗ = U∗ �

Claim 2.4. Let (µ + ν) < λ1 < λ2 < ∞, and Sλi,c(U) = T̃−1[(c + λi)U − F (U)],
i = 1, 2, where U > 0. Then Sλ1,c(U) < Sλ2,c(U).

Proof. Since T̃−1U > 0 whenever U > 0, it is sufficient to show that

(c + λ1)U − F (U) < (c + λ2)U − F (U),

or (c + λ1)U < (c + λ2)U , which follows immediately from the fact that U > 0.
Thus Sλ1,c(U) < Sλ2,c(U). �

Theorem 2.5. Let conditions (2.1) and (2.2) of Theorem 2.3 be satisfied, and let
U(λ) denote the unique positive eigenmatrix corresponding to λε(µ + ν,∞). Then,
(1) U(λ1) < U(λ2) if (µ + ν) < λ1 < λ2;
(2) U(λ) is continuous on (µ + ν,∞);
(3) lim

λ→∞
Uij(λ) =∞, i, j = 1, . . . , n;

(4) lim
λ→(µ+ν)+

Uij(λ) = 0, i, j = 1, . . . , n.

Proof. (1) If c is sufficiently large and β
′

is sufficiently small so that β
′
pqt <

min (U(λ1), U(λ2)), one can start both iterations at the same β
′
pqt such that

U
(1)
1 = Sλ1,c(β

′
pqt) < Sλ2,c(β

′
pqt) = U

(2)
1 .

Since Sλ,c(U) satisfies the conditions of Kantorovich Theorem, it follows that
Sλ,c(U) is a monotone function of U , and so we have

U
(1)
2 = Sλ1,c(U

(1)
1 ) < Sλ2,c(U

(2)
1 ) = U

(2)
2

...

U (1)
n < U (2)

n ,

and, passing to the limits,
U(λ1) < U(λ2).

(2) To prove the left continuity let λ0 > (µ + ν) and {λk} be a monotone
increasing sequence converging to λ0. Since {U(λk)} is also monotone increasing
and bounded by U(λ0), the sequence has a limit.

Suppose limk→∞ U(λk) = W . Since Equation (1.1) is continuous in U and in
λ, it follows that the pair λ0 and W satisfies (1.1). So by uniqueness, W = U(λ0).
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Thus U(λ) is left continuous. In the same way we can prove the right continuity.
Therefore U(λ) is continuous in (µ + ν,∞).

(3) Let (i, j), 1 ≤ i, j ≤ n, be an ordered pair. Pre- and post-multiplying the
equation

AU(λ) + U(λ)B + F (U(λ)) = λU(λ)
by eT

i (i-th unit vector) and ej (j-th unit vector) and using the fact that A and
B are M -matrices, we obtain

(aii + bjj)uij(λ) +
n∑

k=1,k �=i

(aikukj(λ)) +
n∑

k=1,k �=j

(uik(λ)bkj) + fij(uij(λ)) = λxij(λ).

For λ → ∞, since uij(λ) is bounded from below for increasing λ, it follows that
the right-hand side increases to infinity and hence so does the left-hand side. Since
aikukj(λ) < 0 and uik(λ)bkj < 0, k �= i, k �= j, it follows that if uij(λ) is bounded
from above, then by continuity so is fij(uij(λ)), and therefore the left-hand side
would be bounded from above, leading to a contradiction. Thus uij(λ) →∞.

(4) Pre- and post-multiplying (1.1) by pt and q, we get ptAUq + ptUBq +
ptF (U)q = λptUq, or, ptF (U)q = (λ − (µ + ν))ptUq. Since p, q are fixed positive
vectors and U(λ) are bounded from above for λ approaching (µ+ν) from the right,
U(λ) > 0, and fij : (0,∞)→ (0,∞), it follows that

F (U(λ)) → 0 as λ→ (µ + ν).

Since F is continuous and U(λ) is monotone decreasing it implies that

U(λ) → 0. �

3. Three variable case

Claim 3.1. Let A = [aij ], B = [bij ] and C = [cij ] be n × n irreducible Stieltjes
matrices, let In denote the n× n identity matrix and let

M = A⊗ In ⊗ In + In ⊗B ⊗ In + In ⊗ In ⊗ C.

Then M is an n3 × n3 irreducible Stieltjes matrix.

Proof. A⊗ In ⊗ In = A⊗ [In ⊗ In] = A⊗ In2 =

⎡⎢⎣a11In2 a12In2 . . . a1nIn2

...
...

...
an1In2 an2In2 . . . annIn2

⎤⎥⎦
is an n3 × n3 symmetric matrix, as aij = aji.

In⊗B⊗In = In⊗[B⊗In] = In⊗B, where B =

⎡⎢⎣b11In b12In . . . b1nIn

...
...

...
bn1In bn2In . . . bnnIn

⎤⎥⎦ .

B is symmetric as bij = bji. Thus In⊗B⊗ In = diag(B, . . . B) is an n3×n3

symmetric matrix. Finally, In ⊗ In ⊗ C = diag(C, . . . C) is an n3 × n3 symmetric
matrix as C is symmetric.
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Since A⊗ In2 is symmetric and its eigenvalues are just eigenvalues of A with
increased multiplicity, it follows that A⊗In⊗In is positive definite as A is positive
definite. Similarly In ⊗B ⊗ In and In ⊗ In ⊗C are symmetric positive definite as
B and C positive definite. Hence M is a symmetric positive definite matrix.

Also the sign pattern of A and B and C is preserved in M = [mij ], mii > 0
and mij ≤ 0 for i �= j . Now it remains to show that M is irreducible. Writing

A⊗ In ⊗ In =

⎡⎢⎣A11 A12 . . . A1n

...
...

...
An1 An2 . . . Ann

⎤⎥⎦
where

Aij =

⎡⎢⎢⎢⎢⎣
aij

. . .
. . .

aij

⎤⎥⎥⎥⎥⎦ ,

we proceed by contradiction. Suppose A is reducible, then there exists a permuta-
tion matrix P such that

PT (A⊗ I ⊗ I)P =
[
B̃ C̃

0 D̃

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ã11 Ã12 . . . Ã1r

...
...

...
Ãr1 Ãr2 . . . Ãrr

Ã1r+1 . . . Ã1n

...
...

Ãrr+1 . . . Ãrn

Ãr+1,1 Ãr+1,2 . . . Ãr+1,r

...
...

...
Ãn,1 Ãn,2 . . . Ãn,r

Ãr+1r+1 . . . Ãr+1,n

...
...

Ãnr+1 Ãnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where B̃ is an r× r, D̃ is an n− r×n− r, C̃ is an r×n− r matrix, 0 is an n− r× r
zero matrix, and Ãij are the elements of (A⊗ I ⊗ I) after permutation.

It is clear that if (A⊗In⊗In) is reducible, then Ãij = 0 for i = r+1, . . . n and
j = 1 . . . r, which is a contradiction as Ãij are diagonal matrices whose diagonal
elements are the off diagonal elements aij of the matrix A which can not be equal
to zero as A is an irreducible matrix.

Thus A⊗ In⊗ In is irreducible. In⊗B⊗ In, and I⊗ I⊗C are block diagonal
matrices, where every block has positive main diagonal elements and non-positive
off diagonal elements, it follows that A ⊗ In ⊗ In + In ⊗ B ⊗ In + In ⊗ In ⊗ C is
irreducible as well. �

Claim 3.2. Let A, B and C be n×n irreducible Stieltjes matrices, T (U) = Ax(U)+
By(U) + Cz(U), where U is a triple array,

U = {uijk}n
i,j,k=1,
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and the linear transformation Ax is defined as follows: for a given (j, k), j, k =
1, . . . , n,

{[Ax(U)]i,j,k}n
i=1 =

⎡⎢⎣Ax(U)1,j,k

...
Ax(U)n,j,k

⎤⎥⎦ = A

⎡⎢⎣u1,j,k

...
un,j,k

⎤⎥⎦ =

⎡⎢⎣ũ1,j,k

...
ũn,j,k

⎤⎥⎦ ,

and By(U) and Cz(U) are defined similarly. Then T is monotone.

Proof. To prove the claim we expand the three-dimensional array into an n3-
vector in the following way. In U = {uijk}n

i,j,k=1 we first expand for index i, then
corresponding to each fixed i write the expansion for the index j, and then for
each fixed j expand for k. For example, for i, j, k = 1, 2,

Vec(U) = Vec([uijk]2ijk=1) =
[
u1jk

u2jk

]
=

⎡⎢⎢⎣
u11k

u12k

u21k

u22k

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u111

u112

u121

u122

u211

u212

u221

u222

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In general,

Vec(U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u111

...
u11n

...
u1n1

...
u1nn

u211

...
u2nn

...
unn1

...
unnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, to prove that T (U) is monotone, we first show that

Vec(Ax(U)+ By(U)+ Cz(U)) = (A⊗ In⊗ In + In⊗B⊗ In + In⊗ In⊗C)Vec(U).
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It is clear that Vec(U) defined above is linear, so it is sufficient to show that
Vec(Ax(U)) = (A ⊗ In ⊗ In)Vec(U), Vec(By(U)) = (In ⊗ B ⊗ In)Vec(U), and
Vec(Cz(U)) = (In ⊗ In ⊗ C)Vec(U).

Here we show the above result for i, j, k = 1, 2, the general case can be proved
in a similar way. Let

A =
[

a11 −a12

−a12 a22

]
, aij > 0, i, j = 1, 2,

then

Ax(U) = ([Ax(U)]ijk)2ijk=1 =
([

(Ax(U))1jk

(Ax(U))2jk

])2

j,k=1

=
(

A

[
u1jk

u2jk

])2

j,k=1

=
([

a11u1jk − a12u2jk

−a12u1jk + a22u2jk

])2

j,k=1

=
([

û1jk

û2jk

])2

j,k=1

,

Vec(Ax(U)) = Vec
([

û1jk

û2jk

])2

j,k=1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11u111 − a12u211

a11u112 − a12u212

a11u121 − a12u221

a11u122 − a12u222

−a12u111 + a22u211

−a12u112 + a22u212

−a12u121 + a22u221

−a12u122 + a22u222

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11

. . .
. . .

a11

−a12

. . .
. . .

−a12

−a12

. . .
. . .

−a12

a22

. . .
. . .

a22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u111

u112

u121

u122

u211

u212

u221

u222

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (A⊗ In ⊗ In)Vec(U).

Let

B =
[

b11 −b12

−b12 b22

]
, bij > 0, i, j = 1, 2,

then

By(U) = ([By(U)]ijk)2ijk=1 =
([

(By(U))i1k

(By(U))i2k

])2

i,k=1

=
(

B

[
ui1k

ui2k

])2

i,k=1

=
([

b11ui1k − b12ui2k

−b12ui1k + b22ui2k

])2

i,k=1

,
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Vec(By(U)) = Vec
([

b11ui1k − b12ui2k

−b12ui1k + b22ui2k

])2

i,k=1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11u111 − b12u121

b11u112 − b12u122

−b12u111 + b22u121

−b12u112 + b22u122

b11u211 − b12u221

b11u212 − b12u222

−b12u211 + b22u221

−b12u212 + b22u222

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 0 −b12 0
0 b11 0 −b12

−b12 0 b22 0
0 −b12 0 b22

b11 0 −b12 0
0 b11 0 −b12

−b12 0 b22 0
0 −b12 0 b22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u111

u112

u121

u122

u211

u212

u221

u222

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (In ⊗B ⊗ In)Vec(U).

Similarly Cz(U)) = (In⊗In⊗C)Vec(U). LetM = A⊗I⊗I +I⊗B⊗I +I⊗I⊗C,
then Vec(T (U) = Vec(Ax(U) + By(U) + Cz(U)) =MVec(U). Now

T (U) > 0 ⇒MVec(U) > 0.

Since from claim (3.1) M is a Stieltjes matrix and hence monotone, it follows that
Vec(U) > 0 and hence U > 0. �

The proofs of Theorems 3.3 and 3.4 below are straightforward extensions,
without any significant changes, of the proofs of Theorems 2.3 and 2.5, and there-
fore are omitted here.

Theorem 3.3. Let (µ + ν + σ) be the smallest positive eigenvalue of T = Ax(U) +
By(U)+Cz(U) and V = [vijk] = [piqjrk] be the corresponding eigenarray; here A,
B and C are Stieltjes matrices, µ, ν and σ are the smallest positive eigenvalues and
p, q, and r are the corresponding positive eigenvectors of A, B and C, respectively.
Let λ > (µ + ν + σ) and

F (U) = [fijk(uijk)],

where for i, j, k = 1, . . . , n, fijk : (0,∞) → (0,∞) are C1 functions satisfying the
conditions

lim
t→0

fijk(t)
t

= 0, lim
t→∞

fijk(t)
t

= ∞. (3.1)

Then Ax(U)+By(U)+Cz(U)+F (U) = λU has a positive solution. If in addition
for i, j, k = 1, . . . , n,

fijk(s)
s

<
fijk(t)

t
whenever 0 < s < t, (3.2)

then the positive solution is unique.
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Theorem 3.4. Let conditions (3.1) and (3.2) of Theorem 3.3 be satisfied, and let
W (λ) denote the unique positive eigenvector corresponding to λε(µ + ν + σ,∞).
Then,
(1) W (λ1) < W (λ2) if (µ + ν + σ) < λ1 < λ2;
(2) W (λ) is continuous on (µ + ν + σ,∞);
(3) lim

λ→∞
wijk(λ) = ∞, i, j, k = 1, . . . , n;

(4) lim
λ→(µ+ν+σ)+

wijk(λ) = 0, i, j, k = 1, . . . , n.

N-variable case, N > 3

Analogous results can be obtained in a way similar to the case of N = 3. They are
not presented here due to the cumbersome book-keeping.

Acknowledgment

We would like to thank Prof. Y.S. Choi for useful suggestions.

References

[1] R.L. Burden, J. Faires and Douglas, Numerical Analysis, 8th edition, Thomson
Books, 2005.

[2] Y.S. Choi, I. Koltracht and P.J. McKenna, A Generalization of the Perron-Frobenius
theorem for non-linear perturbations of Stiltjes Matrices, Contemporary Mathematics
281, 2001.

[3] Y.S. Choi, J. Javanainen, I. Koltracht, M. Koštrum, P.J. McKenna and N. Savyt-
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On Embedding of the Bratteli Diagram
into a Surface

Igor V. Nikolaev

Abstract. We study C∗-algebras Oλ which arise in dynamics of the interval
exchange transformations and measured foliations on compact surfaces. Us-
ing Koebe-Morse coding of geodesic lines, we establish a bijection between
Bratteli diagrams of such algebras and measured foliations. This approach
allows us to apply K-theory of operator algebras to prove a strict ergodicity
criterion and Keane’s conjecture for the interval exchange transformations.
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Introduction

Let λ = (λ1, . . . , λn) be a partition of the unit interval into a disjoint union of
open subintervals. Let ϕ : [0, 1] → [0, 1] be an interval exchange transformation
(with flips). Consider a unital C∗-algebra Oλ generated by the unitary operator
u(ζ) = ζ ◦ ϕ−1 and characteristic operators χλ1 , . . . , χλn in the Hilbert space
L2([0, 1]). This (noncommutative) C∗-algebra has an amazingly rich geometry.

Oλ is Morita equivalent to a groupoid C∗-algebra corresponding to measured
foliations on a compact surface of genus greater than one. To this end, Oλ is
an extension of the irrational rotation algebra Aθ whose theory experienced an
extensive development in the last decades.

Oλ is closely related to simple C∗-algebras of minimal homeomorphisms on
a Cantor set. These C∗-algebras were in focus of a brilliant series of works of
I. F. Putnam starting with the papers [10], [11]. We refer the reader to our work
[9] for discussion of connections between Putnam’s algebras and Oλ.

The K-groups of Oλ are finitely generated and can be obtained from the
Pimsner-Voiculescu diagram for the crossed products. Namely, K0(Oλ) = Zn,
K1(Oλ) = Z, where n is the number of intervals in the partition of [0, 1]. The

The work was partially supported by the NSERC grant RT733895.
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dimension group (K0, K
+
0 , [1]) of Oλ was calculated in [9]. (The reader is referred

to the appendix for the details of this construction.) When ϕ is minimal, the
dimension group (K0, K

+
0 , [1]) is simple.

Recall that the state on dimension group is a positive homomorphism of
(K0, K

+
0 , [1]) to R which respects the order units [1] and 1 ∈ R. The state space

S• of (K0, K
+
0 , [1]) is a Choquet simplex of dimension ≤ n− 1. The dimension of

S• is equal to the number of linearly independent invariant ergodic measures of
ϕ. Each invariant measure corresponds to a 1-dimensional linear subspace of the
state space, and dim S• = 1 if and only if the interval exchange transformation ϕ
is strictly (uniquely) ergodic.

It might be one of the most intriguing problems of topological dynamics
since 25 years to indicate conditions of strict ergodicity of ϕ. Some results in this
direction are due to Veech and Boshernitzan. In 1975 Keane conjectured that
“typically” ϕ is strictly ergodic. Masur [6] and Veech [15] proved this conjecture in
positive using methods of complex analysis and topological dynamics, respectively.

This note is an attempt to study dynamics of ϕ using the ideas and methods
of operator algebras. A foundation to such an approach is given by the following
main theorem (to be proved in Section 2):

Theorem 0.1. Let n ≥ 2 be an integer. Let (P, P+, [u]) be a simple and totally
ordered 1 dimension group of order n ≥ 2. Then there exists an interval exchange
transformation ϕ = ϕ(λ, π, ε) of n intervals and a C∗-algebra Oλ with the group
(K0, K

+
0 , [1]) which is order-isomorphic to (P, P+, [u]). The transformation ϕ is

minimal.

The proof of the above theorem is based on the identification of the infinite
paths of Bratteli diagram with the symbolic geodesics on a compact surface (so-
called Koebe-Morse theory). This method has an independent interest since it
provides direct links between geometry of geodesics and K-theory of operator
algebras.

The paper is divided into five sections. In Section 1 we introduce notation and a
lemma on positive cones in K0(Oλ). In Section 2 we give the proof of main theorem.
In Sections 3 and 4 we apply Theorem 0.1 to establish a strict ergodicity criterion
and Keane’s Conjecture, respectively. Section 5 is an Appendix containing quick
review of dynamics of the interval exchanges, measured foliations, K-theory and
rotation numbers associated to the C∗-algebra Oλ. The reader is encouraged to
read the “Conclusions and open problems” section at the end of this paper.

1. Notation

Let A be a unital C∗-algebra and V (A) be the union (over n) of projections in the
n× n matrix C∗-algebra with entries in A. Projections p, q ∈ V (A) are equivalent

1The total ordering condition ensures that the Unimodular Conjecture is true, see Effros [2] and
Elliott [3]. The author believes the condition is technical, but cannot drop it at this point.
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if there exists a partial isometry u such that p = u∗u and q = uu∗. The equivalence
class of projection p is denoted by [p].

Equivalence classes of orthogonal projections can be made to a semigroup by
putting [p] + [q] = [p + q]. The Grothendieck completion of this semigroup to an
abelian group is called a K0-group of algebra A.

Functor A→ K0(A) maps a category of unital C∗-algebras into the category
of abelian groups so that projections in algebra A correspond to a “positive cone”
K+

0 ⊂ K0(A) and the unit element 1 ∈ A corresponds to an “order unit” [1] ∈
K0(A). The ordered abelian group (K0, K

+
0 , [1]) with an order unit is called a

dimension (Elliott) group of C∗-algebra A.
For the C∗-algebra Oλ one easily finds that K0(Oλ) = Zn, see the Appendix.

It is harder to figure out the positive cone K+
0 (Oλ). The rest of the section is

devoted to this specific question.

Let us fix the following notation:

H Lobachevsky complex half-plane {z = x + iy|y > 0}
endowed with the hyperbolic metric ds = |dz|/y;

∂H absolute, i.e., line y = 0 of the Lobachevsky half-plane;

G Fuchsian group of the first kind;

Mg,m orientable surface of genus g with m boundary components;

F measured foliation of Mn obtained as suspension over
interval exchange transformation ϕ = ϕ(λ, π, ε) with n intervals;

Λ geodesic lamination corresponding to F ;

γ geodesic “generating” Λ, i.e. γ̄ = Λ.

Thurston has shown that each measured foliation F can be represented by a “ge-
odesic lamination” Λ consisting of disjoint non-periodic geodesics, which lie in the
closure of any of them; cf. Thurston [13]. Denote by p : H → Mg,m a covering
mapping corresponding to the action of a discrete group G.

The geodesic lamination Λ is a product K×R ⊂ Mg,m, where K is a (linear)
Cantor set. The preimage p−1(Λ) ⊂ H is a collection of geodesic half-circles without
self-intersections except, possibly, at the absolute. The “footpoints” of these half-
circles is a subset of ∂H homeomorphic to K.

Fix a Riemann surface Mg,m = H/G of genus g together with a point p ∈
Mg,m. Let γ be a “generating” geodesic of the lamination Λ, i.e. such that closure
γ̄ = Λ. Consider the set

Sp (γ) = {γ0, γ1, γ2, . . . } (1)

of periodic geodesics γi based in p, which monotonically approximate γ in terms of
“length” and “direction”. The set Sp (γ) is known as spectrum of γ and is defined
uniquely upon γ.
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Let n=2g+m−1. Then the (relative) integral homology H1(Mg,m, ∂Mg,m; Z)
∼= Zn. Since each γi is a 1-cycle, there is an injective map f : Sp (γ) →
H1(Mg,m, ∂Mg,m; Z), which relates every closed geodesic its homology class. Note
that f(γi) = pi ∈ Zn is “prime” in the sense that it is not an integer multiple of
some other point of lattice Zn. Denote by Spf(γ) the image of Sp (γ) under the
mapping f . Finally, let SL(n, Z) be the group of n× n integral matrices of deter-
minant 1 and SL(n, Z+) its semigroup consisting of matrices with strictly positive
entries. It is not hard to show, that in an appropriate basis in H1(Mg,m, ∂Mg,m; Z)
the following is true:

(i) the coordinates of vectors pi are non-negative;
(ii) there exists a matrix Ai ∈ SL(n, Z+) such that pi = Ai(pi−1) for any pair of

vectors pi−1, pi in Spf (γ).

Definition 1.1. The ordered abelian group (Zn, (Zn)+, [1]) defined as inductive
limit of simplicially ordered groups:

Zn A1−→ Zn A2−→ Zn A3−→ . . . , (2)

is called associated to the geodesic γ.

(We have shown in [9] that the order structure on (Zn, (Zn)+, [1]) is indepen-
dent of the choice of Mg,m and γ.)

Lemma 1.2. The dimension group (K0, K
+
0 , [1]) of the C∗-algebra Oλ is order-

isomorphic to the associated group (Zn, (Zn)+, [1]) of Definition 1.1.

Proof. See [9]. �

2. Proof of Theorem 0.1

Let us outline main idea of the proof. To every dimension group (P, P+, [u]) with
P ' Zn one can relate a Bratteli diagram (V, E). The path space X of (V, E)
can be made a topological space by putting two paths “close” if and only if they
coincide at the initial steps. (X is called Bratteli-Cantor compactum.) X can be
embedded (as topological space) into the complex plane H by identification of each
x ∈ X with a geodesic in H via Morse coding of the geodesic lines. We show that
X = p−1(Λ), where Λ is Thurston’s geodesic lamination on the surface Mn = H/G;
cf. Thurston [13]. A concluding step is to recover F and ϕ from Λ.

Let (P, P+, [u]) be a simple totally ordered dimension group with P ' Zn.
Recall that a Bratteli diagram of (P, P+, [u]) consists of a vertex set V and edge
set E such that V is an infinite disjoint union V1 ( V2 ( . . . , where each Vi has
cardinality n. The latter condition follows from the total ordering of Zn. Any pair
Vi−1, Vi defines a non-empty set Ei ⊂ E of edges with a pair of range and source
functions r, s such that r(Ei) ⊆ Vi and s(Ei) ⊆ Vi−1.

An AF C∗-algebra whose dimension group is order-isomorphic to (P, P+, [u])
is an inductive limit of multi-matrix algebras

limMJ1(C)⊕ · · · ⊕MJn(C).
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We shall say that a Bratteli diagram (V, E) corresponds to the group (P, P+, [u])
if the range and source functions of (V, E) represent the embedding scheme of the
above multi-matrix algebras. (In other words, an AF -algebra defined by (V, E)
has Elliott group (P, P+, [u]).)

The equivalence class of Bratteli diagrams corresponding to a simple totally
ordered dimension group of form Zn has a representative (V, E) with no multiple
edges, since every positive integral matrix decomposes into a finite product of non-
negative matrices whose entries are zeros and ones. For the sake of simplicity, we
always assume this case of Bratteli diagrams.

By an infinite path on (V, E) we shall mean an infinite sequence of edges
(e0, e1, . . . ) such that e0 ∈ E0, e1 ∈ E1, etc. The set of all infinite paths on (V, E)
is denoted by X . Let us identify “coordinates” xi of x ∈ X with vector (e0, e1, . . . ).
Fix x, y ∈ X . This metric d(x, y) = 1/2k, where

k = max{l ∈ N | xi = yi for i < l},
turns X into an absolutely disconnected topological space which is called a Bratteli-
Cantor compactum. To construct an embedding X → H where each x ∈ X repre-
sents a geodesic, a portion of symbolic dynamics is needed.

Koebe-Morse coding of geodesics. Let Mg,m be a hyperbolic surface of genus g
with m totally geodesic boundary components v1, . . . , vm. We dissect Mg,m to a
simply connected surface as follows [7]. Let P be an arbitrary point of vm. One
draws geodesic segments h1, . . . , hm−1 from P to some arbitrarily chosen points of
v1, . . . , vm−1. (Thus, the hi have only P as common point.) Next one dissects the
handles of Mg,m by closed geodesics c1, . . . , c2g issued from point P . Clearly, the
resulting surface is simply connected and has the boundary

c1, . . . , c2g; h1, . . . , hm−1. (3)

Now given a geodesic half-circle S ⊂ H passing through the unique point
0 ∈ τ one relates an infinite sequence of symbols

σ1, σ2, σ3, . . . , (4)

which “take values” in the set σ. One prescribes σp, p = 1, . . . ,∞ a “value”
gi, 1 ≤ i ≤ n if and only if S has a transversal intersection point with the side
ai = bi of p-th image of Gσ ∈ τ . (In other words, code (4) “counts” points of
intersection of S with “sides” of tessellation τ .) A sequence of symbols (4) is
called a Koebe-Morse code of the geodesic S.

Morse showed that there is a bijective correspondence between sequences (4)
satisfying some admissibility requirements2 and the set of non-periodic geodesics
on surfaces of negative curvature; see the bibliography to Morse and Hedlund [8].

Lemma 2.1. Let S be a geodesic with the Koebe-Morse code (σ1, σ2, . . . ). Then any
congruent to S geodesic S′ will have the same Koebe-Morse code, except possibly
in a finite number of terms.

2Namely, there should be no words with the syllabi aibi or biai, where ai and bi are “dual”
symbols from the alphabet Gσ.
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Proof. This follows from the definition of coding and invariance of τ by the G-
actions. �

Let X be a Bratteli-Cantor compactum. Let Vi → σ be a bijection between
the vertices V = V1 ( V2 ( . . . of (V, E) and the set of symbols σ. This bijection
can be established by labeling each element of Vi from the left to the right by
symbols {g1, . . . , gn}. Thus, every x ∈ X is a “symbolic geodesic” (x1, x2, . . . )
whose “coordinates” take values in σ. Each sequence is admissible and by Morse’s
Theorem realized by a (class of congruent) geodesic whose Koebe-Morse code
coincides with (x1, x2, . . . ). Where there is no confusion, we refer to x ∈ X as a
geodesic line in the complex plane H.

Lemma 2.2. Let lx be an image of geodesic x ∈ X on the surface Mg,m under
projection H → H/G. If the Bratteli diagram (V, E) is simple, then ly ∈ Clos lx
for any y ∈ X.

Proof. The simplicity of (V, E) means that every infinite path x ∈ X is transitive,
i.e. any finite “block” of symbols {xn, xn+1, . . . , xn+k} occurs “infinitely many
times” in the sequence x = (x1, x2, . . . ). Indeed, simplicity of (V, E) means the
absence of non-trivial ideals in the corresponding AF C∗-algebra. Using Bratteli’s
dictionary [1] between ideals and connectedness properties of (V, E), it can be
easily shown that an arbitrary infinite path in (V, E) “visits” any given finite
sequence of vertices infinitely often.

Suppose that Bk is a block of symbols of length k ≥ 1. Let

x = (x1, . . . , xn−1, Bk, xn+k+1, . . . ), y = (y1, . . . , ym−1, Bk, ym+k+1, . . . )

be the first time Bk appears in sequences x, y ∈ X . By a congruent transformation,
the geodesics x, y ∈ H can be brought to the from

x′ = (Bk, xk+1, . . . ), y′ = (Bk, yk+1, . . . ).

This means that dist (x′, y′) ≤ 1/2k. Since Bk occurs in sequences x and y infinitely
often. The lemma follows. �

Lemma 2.3. The set Clos lx of Lemma 2.2 is a set Λ ⊂ Mg,m consisting of con-
tinuum of irrational geodesic lines.

Proof. This follows from the proof of Lemma 2.2. �

By Lemmas 2.2 and 2.3, Λ is homeomorphic to Thurston’s geodesic lami-
nation on a surface of genus g ≥ 2; cf. Thurston [13]. To finish the proof of the
theorem, one needs to “blow-down” Λ to a measured foliation F. The required
interval exchange transformation ϕ is the “mapping of first return” on a global
transversal to F. By the construction, ϕ is minimal and has n = 2g+m−1 intervals
of continuity.

Theorem 0.1 is proven. �
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3. Criterion of strict ergodicity for the interval exchange
transformations

In general, the group (K0, K
+
0 , [1]) may be not totally ordered. The total order

happens if and only if positive cone K+
0 is bounded by a unique “hyperplane” in

the “space” K0. There exists up to (n − 2) hyperplanes in a group K0 of rank n
which constitute a boundary of K+

0 ; cf Goodearl [4], p. 217.
A state is a homomorphism f from (K0, K

+
0 , [1]) to R such that f(K+

0 ) ⊂ R+

and f([1]) = 1. The space of states S• is dual to the linear space K+
0 . From this

point of view, “hyperplanes” correspond to linearly independent “vectors” of the
space S•. A total order is equivalent to the requirements dim S• = 1 and absence
of “infinitesimals”, cf. Effros [2] p. 26.

Let ϕ be an interval exchange transformation built upon (K0, K
+
0 , [1]). Invari-

ant measures of ϕ form a vector space w.r.t. sums and multiplication of measures
by positive reals. This vector space is isomorphic to S•. The requirement that ϕ be
strictly (uniquely) ergodic is equivalent to the claim that S• be one-dimensional.
Strict ergodicity of the interval exchange transformations has been a challenging
problem in the area for years. (Find a working criterion to determine whether
given ϕ is strictly ergodic.)

This saga started in 1975 when examples of interval exchange transformations
with two and three invariant ergodic measures became known due to Keynes and
Newton. Keane made an assumption that the “majority” of transformations ϕ
are strictly ergodic. This assumption was turned to a theorem independently by
Masur and Veech who used for this purpose the Teichmüller theory and topological
dynamics, respectively. The proof of Keane’s conjecture based on Theorem 0.1 is
given in Section 2.3.

In this section we establish strict ergodicity for a class of interval exchange
transformations which we call “stationary”. The name comes from theory of or-
dered abelian groups, because such transformations have stationary Bratteli dia-
grams; cf. Effros [2]. Foliations that correspond to such transformations are known
as pseudo-Anosov or foliations whose leaves are 1-dimensional basic sets of the
pseudo-Anosov homeomorphisms of a compact surface.

Definition 3.1. Let ϕ = ϕ(λ, π, ε) be an interval exchange transformation whose
Bratteli diagram is given by the infinite sequence of multiplicity matrices

{PY1 , PY2 , PY3 , . . . }. (5)

If the set (5) can be divided into the blocks Bk = {PYn , PYn+1 , . . . , PYn+k
} such that

PYnPYn+1 . . . PYn+k
= P , then ϕ is called stationary. In particular, ϕ is stationary

if PY1 = PY2 = PY3 = · · · = P .

Theorem 3.2. Every stationary interval exchange transformation ϕ is strictly er-
godic.
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Proof. The proof is based on the Perron-Frobenius Theorem. A dual (projective)
limit

(Rn)∗
PY1−→ (Rn)∗

PY2−→ (Rn)∗
PY3−→ . . . (6)

consists of operators PYi acting on the dual space (Rn)∗ to Zn ⊂ Rn. (In other
words, we identify the space of positive homomorphisms Zn → R and the space
of linear functionals Rn → R.) The diagram (6) converges to the state space S• of
dimension group (K0, K

+
0 , [1]). When PYi = P , where P is a matrix with strictly

positive entries, or can be reduced to this case, then there exists a maximal simple
eigenvalue λ > 0 of matrix P (Perron-Frobenius Theorem). The eigenvector xλ

defines a 1-dimensional P -invariant subspace of (Rn)∗ lying in the limit of diagram
(6) and which is identified with S•. Let us formalize this idea.

For 1 ≤ i ≤ n denote by ei and e∗i the vectors of canonical bases in the
vector space Rn and the dual space (Rn)∗. By (α1, . . . , αn) and (α∗

1, . . . , α
∗
n) we

denote vectors in Rn and (Rn)∗. (Rn)+ and (Rn)∗+ are collections of vectors
whose coordinates are αi ≥ 0 and α∗

i ≥ 0, respectively. The same notation (Zn)+

is reserved for the integer vectors of Rn. By ∆0 ⊂ (Rn)∗ we understand the n-
dimensional simplex spanned by the vectors 0, e∗1, . . . , e

∗
n. To each linear mapping

φ : Rn → Rn one associates a dual mapping φ∗ : (Rn)∗ → (Rn)∗.
Denote by P an dimension group corresponding to the limit

P ∼= lim
k→∞

Pk, (7)

where the Pk are ordered groups whose positive cone is defined to be an inverse
of k-th iteration of the set (Zn)+ under the automorphism φ:

P+
k = φ−k[(Zn)+]. (8)

The set ∆0 has been introduced earlier. For k = 1, . . . ,∞ we let

∆k = S•(Pk), (9)

which is a state space of the group Pk. Define ∆k to be a simplex spanned by the
vectors 0, J1(k), . . . , Jn(k), where

J1(k) =
X1(k)
||X1(k)|| , . . . , Jn(k) =

Xn(k)
||Xn(k)|| , (10)

and
X1(k) = φk(e∗1), . . . , Xn(k) = φk(e∗n). (11)

It is evident that
∆0 ⊇ ∆1 ⊇ ∆2 ⊇ · · · ⊇ ∆∞, (12)

where

∆∞ =
∞⋂

k=1

∆k. (13)
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A recurrent formula linking Xi(k − 1) and Xi(k) is given by the equation

Xi(k) =
n∑

j=1

pijXj(k − 1), (14)

where the pij are the entries of matrix of “partial multiplicities” Py.
Note that the simplex ∆∞ has dimension r ≤ n. The original problem of

calculating the state space S• is reduced to calculation of the asymptotic simplex
∆∞ whose spanning vectors are linked by equation (14). We shall see that ∆∞
can be completely calculated under the hypothesis of Theorem 3.2. The following
lemma is basic.

Lemma 3.3. (Perron-Frobenius) A strictly positive n× n matrix P = (pij) always
has a real and positive eigenvalue λ which is a simple root of the characteristic
equation and exceeds the moduli of all the other characteristic values. To this max-
imal eigenvalue λ there corresponds an eigenvector xλ = (x1

λ, . . . , xn
λ) with positive

coordinates xi
λ > 0, i = 1, . . . , n. 3

Proof. Let x = (x1, x2, . . . , xn) be a fixed vector. A function

rx = min
1≤i≤n

(Px)i

xi
(15)

is introduced. We have rx ≥ 0 since

(Px)i =
n∑

j=1

pijxj , (16)

3In fact, there exists a more general statement due to Frobenius which treats matrices with non-
negative entries. Because of exceptional importance of this statement in understanding why the
unique ergodicity may vanish, and also due to the clear connection of Frobenius theorem with
the root systems of Coxeter-Dynkin, we give the formulation of this theorem below.
Theorem (Frobenius) An irreducible non-negative n × n matrix P = (pij) always has a positive
eigenvalue λ that is a simple root of the characteristic equation. The moduli of all the other
eigenvalues do not exceed λ. To the maximal eigenvalue λ there corresponds an eigenvector with
positive coordinates.

Moreover, if P has r eigenvalues λ0 = λ, λ1, . . . , λr−1 of modulus λ, then these numbers
are all distinct and are roots of the equation

zr − λr = 0.

More generally: The whole spectrum λ0, λ1, . . . , λn−1 of P , regarded as a system of points in the
complex plane, is mapped into itself under a rotation of the plane by the angle 2π/r. If r > 1,
then P can be put into the cyclic normal form⎛⎜⎜⎜⎜⎜⎜⎝

O P12 O . . . O
O O P23 . . . O
.
..

.

..
O O O . . . Pr−1,r

Pr1 O O . . . O

⎞⎟⎟⎟⎟⎟⎟⎠
where Pij are non-zero square blocks along the main diagonal and O are zero square blocks

elsewhere.
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is a non-negative matrix. However, in the definition of minimum (15), the values of
i for which xi = 0 are excluded. The lemma follows from the variational principle
for the continuous function rx, which must assume a maximal value for some vector
x with non-negative coordinates. �

Now we can finish the proof of the main theorem. By strict positivity of matrix
P and Lemma 3.3, there is a positive maximal eigenvalue λ, whose eigenvector xλ

has positive coordinates. Notice that

φk(xλ) = (λ)kxλ, (17)

so that the iterations of φ leave invariant a 1-dimensional linear subspace {α}
spanned by xλ. All other vectors in (Rn)∗+ converge accordingly (14) to the sub-
space {α}. We conclude that

∆∞ = {α}, (18)

which is one-dimensional. Theorem 3.2 is proved. �

Remark 3.4. In the context of ordered abelian groups, Theorem 3.2 was known to
Effros [2] and Elliott [3]. The main ingredients of proof can be traced in the work
[14] of W. Veech.

4. Masur-Veech Theorem

The theorem of Masur and Veech is formulated in Section 5.2. There are two
known proofs of this theorem, due to Masur [6] who used complex analysis and
Teichmüller theory and Veech [15] who used methods of topological dynamics. In
this section we suggest an independent proof using Theorem 0.1 and a lemma of
Morse and Hedlund from symbolic dynamics; cf. Morse and Hedlund [8].

Parametrization of (K0, K
+
0 , [1]).4 Let H, τ and S be as in Definition 1.1 of Section

2. Without loss of generality we assume that S is a unit semi-circle in the complex
plane H. Consider a family St of the unit semi-circles parametrized by real numbers
equal to a “horizontal shift” of S in H. (In other words, t is equal to the x-
coordinate of the centre of unit circle St.) A family of dimension groups which
are defined by “positive cones” St, we shall denote by (P, P t

+, [u]). By results of
Sections 1–3 every dimension group of form Zn has a representative in (P, P t

+, [u])
and every measured foliation (with fixed singularity data) arises in this way.

Theorem 4.1. Denote by Ft a family of measured foliations corresponding to
(P, P t

+, [u]) and by t1 ∼ t2 an equivalence relation on R identifying topologically
equivalent foliations Ft1 and Ft2 . If X = R/ ∼ is a topological space, then for a
residual set of the second category in X foliation Ft is strictly ergodic.

4The idea of such a parametrization was communicated to the author by G. A. Elliott.
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Proof. The idea is to apply Koebe-Morse coding to each geodesic S ∈ St. In this
setting, X becomes a space of symbolic sequences with the topology described in
Section 2. It is not hard to see that strict ergodicity of an individual geodesic S
is equivalent to “uniform approximation” of S by periodic sequences of length N .
(Using the terminology of Morse and Hedlund, such approximation property of a
geodesic means that a transitivity index φ(N) tends to a covering index θ(N) of
the geodesic as N → ∞; cf. Morse and Hedlund [8].) The same authors proved
that limN→∞ inf φ(N)

θ(N) = 1 for a residual set of the second category in X . Let us
give the details of this construction.

Let S be a geodesic in the complex plane H and

σ1, σ2, σ3, . . . ,

the Koebe-Morse code of S which we shall call a ray; cf. Section 3. The ray R
is transitive if it contains a copy of each admissible block. (Block is shorthand
for a finite sequence of symbols.) A function φ : N → N of a transitive ray R is
called a transitivity index if the initial block of R of the length φ(N) contains all
admissible blocks of the length N and there are no shorter initial subblocks with
this property. Dropping the claim that block B ⊂ R is initial gives us function
θ : N → N which is called a covering index of the recurrent ray R. These functions
satisfy an obvious inequality:

φ(N) ≥ θ(N).

Lemma 4.2 (Morse-Hedlund). A set of rays whose transitivity index and covering
index satisfy the condition

lim
N→∞

inf
φ(N)
θ(N)

= 1,

is a residual set of the second category in the space X of all infinite rays endowed
with the topology described in Section 2.

Proof. For a complete proof see [8]. Denote by Y the set of rays satisfying the
condition of lemma. The following items will be proved consequently:

(i) Y is not empty;
(ii) Y is everywhere dense in X ;
(iii) The complement of Y is nowhere dense in X .

(i) Let H(n) be a block of minimum length containing all admissible blocks
of length n. For a growing sequence of integers r0, r1, . . . , rk−1 consider a block

H(r0)σ1H(r1)σ2 . . . σk−1H(rk−1)σk (19)

of length mk. Let us choose rk sufficiently large so that
θ(rk) + mk

θ(rk)
< 1 + δk,

where δk is a vanishing positive real. The transitivity index of (19) satisfies the
inequality

φ(rk) ≤ θ(rk) + mk.
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By the construction, mk

θ(rk) → 0 as k → ∞ so that (19) satisfies the condition of
the lemma.

(ii) Let A be an arbitrary admissible block of length k and R ∈ Y . For a
suitably chosen σ the ray

R′ = AσR

is admissible. We have the following inequalities for R and R′:

θ(N) ≤ φ′(N) ≤ φ(N) + k + 1,

where φ and φ′ are the transitivity indices of R and R′. The condition of the lemma
is satisfied and therefore R′ ∈ Y .

(iii) This item follows from (ii) and an accurate construction of closed sets
lying in the complement of Y ; cf [8] for the details. This argument finishes the
proof of the Morse-Hedlund lemma. �

Let R be a transitive ray and B1, . . . , Bk admissible blocks of length N . We
say that R is uniformly distributed relatively B1, . . . , Bk if

φ(N) = kN.

(In other words, each admissible block appears in the initial block of R with the
“probability” 1/k.) In the geometric terms this means that geodesic R is located
at the same distance from periodic geodesics

B1, B1, . . . ; B2, B2, . . . ; . . . ; Bk, Bk, . . . .

Lemma 4.3. Suppose that R is uniformly distributed relatively admissible blocks
B1, . . . , Bk for each integer N > 0. Then

lim
N→∞

inf
φ(N)
θ(N)

= 1.

Proof. This follows from the equality φ(N) = θ(N). �

To finish the proof of Theorem 4.1 it remains to notice that strict ergodicity
of R is equivalent to uniform distribution of periodic “blocks” in R and apply
Lemmas 4.2 and 4.3. �

5. Appendix

5.1. Interval exchange transformations

Let n ≥ 2 be a positive integer and let λ = (λ1, . . . , λn) be a vector with positive
components λi such that λ1 + · · ·+ λn = 1. One sets

β0 = 0, βi =
i∑

j=1

λj , vi = [βi−1, βi) ⊂ [0, 1].
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Let π be a permutation on the index set N = {1, . . . , n} and ε = (ε1, ..., εn) a
vector with coordinates εi = ±1, i ∈ N . An interval exchange transformation is a
mapping ϕ(λ, π, ε) : [0, 1]→ [0, 1] which acts by piecewise isometries

ϕ(x) = εix− βi−1 + βπ
π(i)−1, x ∈ vi,

where βπ is a vector corresponding to λπ = (λπ−1(1), λπ−1(2), . . . , λπ−1(n)). The
mapping ϕ preserves or reverses orientation of vi depending on the sign of εi. If
εi = 1 for all i ∈ N , then the interval exchange transformation is called oriented.
Otherwise, the interval exchange transformation is said to have flips.

An interval exchange transformation is said to be irreducible if π is an irre-
ducible permutation. An irreducible interval exchange transformation T is called
irrational if the only rational relation between numbers λ1, . . . , λn is given by the
equality λ1 + . . . + λn = 1. Recall that measure µ on [0, 1] is called invariant if
µ(ϕ(A)) = µ(A) for any measurable subset A ⊆ [0, 1]. The following theorem due
to M. Keane [5] estimates the number of invariant measures.

Finiteness Theorem. Let ϕ be an irrational interval exchange transformation of n
intervals. Then there are at most finitely many ergodic invariant measures whose
number cannot exceed n + 2.

In case of the interval exchange transformations without flips, there exists an
estimate of the number of invariant ergodic measures due to Veech [15].

Veech Theorem. Let ϕ be an irrational interval exchange transformation without
flips on n ≥ 2 intevals. Then the number of invariant ergodic measures of ϕ is less
or equal to [n

2 ], where [•] is integer part of the number.

5.2. Measured foliations

Measured foliations are suspensions over the interval exchange transformations
which preserve the ergodic measure on intervals and such that their singularity set
consists of p-prong saddles, p ≥ 3. Measured foliations can be defined via closed
1-forms which is more elegant way due to Hubbard, Masur and Thurston.

Definition 5.1 (Hubbard-Masur-Thurston). Let M be a compact C∞ surface of
genus g > 1, without boundary. A measured foliation F on M with singularities of
order k1, . . . , kn at points x1, . . . , xn is given by an open cover Ui of M\{x1, . . . , xn}
and non-vanishing C∞ real-valued closed 1-form φi on each Ui, such that

(i) φi = ±φj on Ui ∩ Uj ;
(ii) at each xi there is a local chart (u, v) : V → R2 such that for z = u + iv,

φi = Im (zki/2dz) on V ∩ Ui, for some branch of zki/2 in Ui ∩ V .
Pairs (Ui, φi) are called an atlas for F.

As it follows from the definition, apart from the singular points, measured
foliations look like a non singular volume preserving flows. In singularities, the
substitution z �→ reiψ brings φi, mentioned in (ii), to the form

φi = r
ki
2 [sin(

ki

2
+ 1)ψdr + r cos(

ki

2
+ 1)ψdψ].
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It can be readily established, that φi are closed differential 1-forms, that is dφi = 0
for all ki ≥ 1. To see which singularities are generated by the above formula, let
us consider a vector field vi, given by the system of differential equations

dr

dt
= −r cos(

ki

2
+ 1)ψ,

dψ

dt
= sin(

ki

2
+ 1)ψ.

Clearly, vi is tangent to a foliation given by the equation φi = 0. Our prior interest
is to study the behavior of trajectories of vi in a narrow stripe Π = {(r, ψ)| − ε ≤
r ≤ ε, 0 ≤ ψ ≤ 2π}. There are exactly ki + 2 equilibria pn ∈ Π, which have the
coordinates (0, 2πn

ki+2 ), where n ∈ N varies from 0 to ki +2. The linearization of the
vector field vi in these points yields

A(pn) =

⎛⎝(−1)n+1 0

0 (−1)n(ki

2 + 1)

⎞⎠ .

Therefore all pn are saddle points. One maps the half-stripe r ≥ 0 to the neigh-
bourhood of the singular point xi. Generally, a singular point xi of the order ki is
a (ki + 2)-prong saddle of a measured foliation F.

Let M be a compact surface and F a measured foliation on M . By measure
µ of F one understands a line element ||φ|| related with the point x ∈M , induced
in each x ∈ Ui by ||φi(x)||. It measures a ‘transversal length’ of F, since µ vanishes
in direction tangent to the leaves of F.

Take a cross-section of the measured foliation F. F induces an interval ex-
change transformation ϕ on this cross-section. Depending on the orientability of F,
ϕ may have flips. Flips are excluded if F is an orientable measured foliation (in this
case F is given by orbits of a measure-preserving flow). For orientable measured
foliations, an estimate of number of invariant ergodic measures is due to Sataev
[12].

Sataev Theorem. Let n and k be a pair of natural numbers, such that n ≥ k and let
M be a compact orientable surface of genus n. Then there exists a C∞ orientable
measured foliation F on M whose singularity set consists of 4-separatrix saddles
and which has exactly k invariant ergodic measures.

An important question arises when the measured foliation has a unique in-
variant measure. It was conjectured by M. Keane and proved by H. Masur and
W. Veech that ‘almost all’ measured foliations have a unique invariant measure,
which is a multiple of Lebesgue measure.

Masur-Veech Theorem. ([6], [15]) Suppose that a family Ft of measured foliations
is given by trajectories of a holomorphic quadratic differential eitφ on the surface
M . Then for ‘almost all’ values of t, the foliation Ft is strictly ergodic.

5.3. Oλ as a crossed product C∗-algebra

Lemma 5.2. Let ϕ = ϕ(λ, π, ε) be an interval exchange transformation and λ =
(λ1, . . . , λn). Then K0(Oλ) = Zn and K1(Oλ) = Z.
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Proof. Let p1, . . . , pn be the set of discontinuous points of the mapping ϕ. Denote
by Orb ϕ = {ϕm(pi) : 1 ≤ i ≤ n, n ∈ Z} a set of full orbits of these points. When
ϕ is irrational, the set Orb ϕ is a dense subset in [0, 1]. We replace every point
x ∈ Orb ϕ in the interior of [0, 1] by two points x− < x+ moving apart banks of
the cut. The obtained set is a Cantor set denoted by X .

A mapping ϕ : X → X is defined to coincide with the initial interval exchange
transformation on [0, 1]\Orb ϕ ⊂ X prolonged to a homeomorphism of X . The
mapping ϕ is a minimal homeomorphism of X , since there are no proper, closed, ϕ-
invariant subsets of X except the empty set. Thus, Oλ = C(X) �ϕ Z is a crossed
product C∗-algebra, where C(X) denotes a C∗-algebra of continuous complex-
valued functions on X . The following diagram of Pimsner and Voiculescu consists
of exact sequences:

�K0(C(X))

K1(C(X) �ϕ Z)

K0(C(X)) � K0(C(X) �ϕ Z)
id− ϕ∗ i∗

�

�

K1(C(X))� � K1(C(X))
i∗ id− ϕ∗

It was proved in [10] that K0(C(X)) ' Zn and K1(C(X)) ' 0. To obtain the
conclusion of Lemma 5.2 it remains to calculate all short exact sequences in the
diagram of Pimsner and Voiculescu. �

5.4. Rotation numbers

One of the striking invariants of the algebra Oλ are rotation numbers associated
to this algebra. In the dynamical context, rotation numbers are equal to “average
inclination” of leaves of measured foliation relatively a coordinate system on Mn.
(In fact, the original study of Oλ was motivated by the possibility to introduce
such numbers; cf. [9].) Rotation numbers for Oλ play the same role as real numbers
θ for the irrational rotation algebra Aθ.

Recall that the cone K+
0 ⊂ H is a limit of “rational” cones P+

k ⊂ H:

K+
0 = lim

k→∞
P+

k .

Each P+
k is represented by a periodic geodesic γk. Suppose that gk ∈ G is an

isometry which moves the geodesic γk−1 to the geodesic γk and let

gk =
(

ai bi

ci di

)
∈ PSL2(Z)
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be an integral matrix with non-negative entries and determinant±1, corresponding
to gk. The continued fraction

θλ =
a1

c1
− c−2

1

d1

c1
+

a2

c2
−

c−2
2

d2

c2
+

a3

c3
− . . .

converges to a real number θλ which is called a rotation number associated to the
algebra Oλ. The importance of rotation numbers is stipulated by the following
theorem.

Theorem. Let Oλ and O′
λ be two C∗-algebras whose rotation numbers are θλ and

θ′λ. Then Oλ is Morita equivalent to O′
λ if and only if θλ and θ′λ are modular

equivalent:

θ′λ =
aθλ + b

cθλ + d
, a, b, c, d ∈ Z, ad− bc = ±1.

Proof. This was proved in [9]. �

Corollary 5.3. Suppose that ϕ is a stationary interval exchange transformation
described in Section 3. Then the rotation number θλ is a quadratic surd (i.e.,
irrational root of a quadratic equation).

Proof. By the results of Section 3, the dimension group of Oλ is stationary and
must correspond to a periodic continued fraction (i.e., g1 = g2 = · · · = const).
These fractions generate a field of quadratic algebraic numbers. �

Conclusions and open problems

The criterion of strict ergodicity of Section 3 is highly constructive and can be used
in practice to check whether a given interval exchange transformation is strictly
ergodic or not. (This can find applications in the theory of billiards in the rational
polygons.) Of course, these conditions are only sufficient. The necessary conditions
seem to be an open problem so far.

Another open problem is to relate the arithmetic of rotation numbers θλ with
the number of invariant measures of the transformation ϕ. (In the case of strictly
ergodic ϕ the answer is given by Corollary 5.3.)
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Matrices Using Newton Iteration and
Tensor-Displacement Structure
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Abstract. A fast approximate inversion algorithm is proposed for two-level
Toeplitz matrices (block Toeplitz matrices with Toeplitz blocks). It applies to
matrices that can be sufficiently accurately approximated by matrices of low
Kronecker rank and involves a new class of tensor-displacement-rank struc-
tured (TDS) matrices. The complexity depends on the prescribed accuracy
and typically is o(n) for matrices of order n.
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1. Introduction

Dense matrices arise, for example, in numerical solution of multidimensional inte-
gral equations; their approximate inverses are often of interest either themselves
or as preconditioners in iterative methods, and the size of matrices occurs to be
about a few hundred of thousands or even millions. These cases are not very easy
to handle. The standard Gaussian elimination has the O(n3) complexity and is
unacceptable. Even a method with O(n2) complexity (an obvious lower bound) is
still too slow for matrices on this scale. Luckily, in many cases the matrices possess
some structure suggesting a way to make them tractable.

If A is a nonsingular Toeplitz matrix (aij = ai−j), then all the entries of A−1

can be computed in O(n2) operations [13]. It is even more important that A−1 can
be expressed by the Gohberg–Semencul formula [3] through some O(n) parameters
so that it can be multiplied by a vector in O(n log n) operations. A tremendous

E. Tyrtyshnikov supported by the Russian Fund of Basic Research (grant 05-01-00721) and a
Priority Research Grant of the Department of Mathematical Sciences of the Russian Academy
of Sciences.
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impact of this formula on the field of structured matrices and numerical algorithms
was systematically presented in the remarkable book by G. Heinig and K. Rost [5].
A direct but nontrivial generalization to block Toeplitz matrices is the Gohberg–
Heinig formula [2].

In this paper we consider two-level Toeplitz matrices, which are block Toeplitz
matrices with Toeplitz blocks. If p is simultaneously the block size and the size of
blocks, then n = p2 and such a matrix is defined by O(n) parameters. In this case
the Gohberg–Heinig formula contains as many as O(p3) = O(n3/2) parameters,
which is viewed as too many, when compared with O(n). A better approach can
be one that we outlined and started to develop in [9]. However, it applies only to
those two-level Toeplitz matrices that are of low tensor (Kronecker) rank. As a nice
consequence of this combination of Toeplitz and tensor structure, such matrices are
determined by O(

√
n) parameters, the same is expected from their approximate

inverse matrices and may (and does, as we show) result in the o(n) complexity.
Luckily again, this special subclass of two-level Toeplitz matrices seems to cover
all practically interesting matrices.

We will make use of the following iterative method attributed to Hotelling
[6] and Schulz [12]:

Xi = 2Xi−1 −Xi−1AXi−1, i = 0, 1, . . . , (1)

where X0 is some initial approximation to A−1. Since I−AXi = (I−AXi−1)2, the
iterations (1) converge quadratically, provided that ||I −AX0|| < 1. This method
is a special form of the Newton method for nonlinear equations and referred to
as Newton iteration. It has some nice properties such as numerical stability and
ease for parallel computations. All the same, each iteration requires two matrix
multiplications, which is expensive for general matrices.

In order to perform the Newton iteration in a fast way, we need the following
two ingredients:
• a fast matrix-by-matrix procedure;
• a method to preserve structure.

The first means that Xk and A must hold on some structure to facilitate the com-
putation of matrix products. However, if the Xk do not belong to a commutative
algebra (circulants, diagonal matrices etc), every next iterate Xk+1 might be “less
structured”. As a consequence, the matrix-by-matrix complexity grows with every
iteration. In order to slow down this growth, we should preserve the structure by
“brute force” — using a method to substitute computed iterates with some ap-
proximations by “better structured matrices”. We introduce a truncation operator
R(X) acting on n×n matrices as kind of a nonlinear projector. Then, the Newton
iteration with approximations (truncations) reads

Xi = R(2Xi−1 −Xi−1AXi−1). i = 0, 1, . . . . (2)

The Newton iteration was successfully applied to matrices with the displacement
structure [1, 11] and matrices represented as a sum of tensor (Kronecker) products
[10]. In the case of low-displacement-rank matrices, V. Pan [11] proved that the
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quadratic convergence is maintained even after truncations. Then, it was discov-
ered in [10] that the latter property holds true for many useful structures rather
than one considered in [11]. A pretty general formulation stemming from [10] is
given in [4].

Theorem 1.1. Suppose that ||(R(X)−A−1|| ≤ M ||X − A−1|| for all X. Then for
any initial guess X0 sufficiently close to A−1, the truncated Newton iterates (2)
converge quadratically:

||A−1 −Xk|| ≤ (1 + M) ||A||||A−1 −Xk−1||2, k = 1, 2, . . . .

Now, with this encouraging result, we are going to propose an algorithm for
computing an approximate inverse to a given two-level Toeplitz matrix. Our main
idea is to combine two efficient matrix representations using the low-Kronecker-
rank and low-displacement-rank properties. Thus, we introduce a new matrix for-
mat — the TDS format (tensor displacement structure), and therefore assume
that A and A−1 should be in the TDS format, at least approximately. A rigorous
theory behind this assumption is still lacking; however, all of our numerical exper-
iments on various matrices show that the complexity of the proposed algorithm is
O(
√

n log n).
The paper is organized as follows.
In Section 1 we define the TDS format and the transformation of a two-level

Toeplitz matrix into this format. In Section 2 we describe all the basic matrix
operations in the TDS format and propose a fast recompression procedure (in
other words, define the operator R).

In Section 3 we discuss the Newton iteration with approximations and its
modification which speeds up the computations dramatically. Also, we suggest a
method for efficient selection of the initial guess X0. In Section 4 we present some
numerical experiments.

2. The TDS format

Below we recall a general notation of multilevel matrices introduced in [14] and
the displacement rank constructions presented in [5] as a far-reaching development
of the definition introduced first in [7].

Definition 2.1. A matrix T is considered as two-level with the size-vector (n1, n2)
if it contains n1 × n1 blocks and each block is of size n2 × n2. Such a matrix is
called two-level Toeplitz matrix if

T = [a(i − j)], (3)

where i = (i1, i2) and j = (j1, j2) define the place of the element in the two-level
matrix: (i1, j1) specifies the block position and (i2, j2) does the element location
inside the block.
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Definition 2.2. The operator L is said to be of Sylvester type if

L(M) = ∇A,B(M) = AM −MB (4)

and of Stein type if
L(M) = +A,B(M) = M −AMB. (5)

The value α ≡ rank(L(M)) is called the displacement rank of M . Any n × α
matrices G and H from the skeleton decomposition

L(M) = GH

are called the generators of M . A matrix defined by its generators is referred to as
a displacement-structured matrix. By the very definition, displacement ranks and
generators of a matrix depend on the choice of the displacement operator L.

We will use the Stein type operators. The Toeplitz matrices can be associated
with the displacement operators Za, Z

b , where

Za = Z + ae0e

n−1, Zb = Z + be0e


n−1,

Z is a unit lower shift matrix and a, b are some scalars. Let +Za,Z�
b

(M) = GH

and G = [g1, . . . , gα], H = [h1, . . . , hα]. Then

(1 − ab)M =
α∑

j=1

Za(gj)Z
b (hj). (6)

Here, Za(g) and Zb(h) are defined as follows. Let c be a scalar and v a vector; then
Zc(v) is a Toeplitz matrix with the entries

(Zc(v))ij =
{

vi−j , i− j ≥ 0,
c vn+i−j , i− j < 0.

If M is nonsingular, then M−1 can be expressed by a formula of the same type
as (6), considered in this case as one of possible generalizations of the Gohberg–
Semencul formula to Toeplitz-like matrices. Both in the latter formula and in (6), a
matrix is the sum of special Toeplitz matrices belonging to some algebras; however,
the Gohberg–Semencul formula and (6) use different algebras. If M is a Toeplitz
matrix, then α ≤ 2.

Definition 2.3. A matrix A is said to be in the tensor format of the tensor rank r,
if

A =
r∑

k=1

A1
k ⊗A2

k. (7)

Given a two-level matrix A, we can try to approximate it by a low-tensor-rank
matrix. Let

Vn(A) = [b(i1,j1)(i2,j2)]
be a two-level matrix with the size-vectors (n1, n1) and (n2, n2), and define it by
the rule

b(i1,j1)(i2,j2) = a(i1,i2)(j1,j2).
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Then, as is readily seen, the tensor rank of A is equal to the rank of Vn(A).
Moreover,

||A−Ar||F = ||Vn(A)− Vn(Ar)||F ,

which reduces the problem of optimal tensor approximation to the problem of
optimal lower-rank approximation. The latter can be solved using the SVD or
the Lanzos bidiagonalization algorithm. However, in the case of two-level Toeplitz
matrices we can solve this problem much easier [8] (for more general constructions
see [9]).

Given T = [a(i− j)], we compose a smaller matrix

W (A) = [aµν ], 1− n1 ≤ µ ≤ n1 − 1, 1− n2 ≤ ν ≤ n2 − 1, (8)

construct an optimal rank-r approximation

W (A) ≈
r∑

k=1

ukvk ,

Uk = [uk
i1−j1 ], 0 ≤ i1, j1 ≤ n1 − 1,

V k = [vk
i2−j2 ], 0 ≤ i2, j2 ≤ n2 − 1,

and finish with the tensor approximation of the form

T ≈ Tr =
r∑

k=1

Uk ⊗ V k. (9)

It is proved that this is an optimal tensor-rank-r approximation to T in the Frobe-
nius norm. The computational cost is that of finding a low-rank approximation
to the matrix of size (2n1 − 1) × (2n2 − 1). Remarkably, the tensor factors are
themselves Toeplitz matrices. A crucial parameter defining the complexity is the
tensor rank r. It depends on the prescribed approximation accuracy and is di-
rectly related to the properties of the symbol (generating function) of T . Some
upper estimates on r were proposed in [9] for asymptotically smooth symbols.

It is proved in [9] that a two-level Toeplitz matrix with an approximately
separable symbol can be approximated by a sum of tensor products of Toeplitz
matrices. Now we embed this format into a more general one which suits better
to approximate the corresponding inverse matrices.

Definition 2.4. A two-level matrix A is said to be in the TDS (tensor-displacement
structure) format if it is in the tensor format (7) with each factor being a displace-
ment-structured matrix.

Let r be the tensor rank and s the maximal displacement rank of the factors.
Obviously, the TDS format requires a storage of O(

√
nrs) cells.
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3. Matrix arithmetic in the TDS format

3.1. Basic operations in the displacement format

Consider matrices A and B of Toeplitz displacement rank α and β. Then it is is
well known that
• a matrix-by-vector product Ax can be computed in O(αn log n) operations;
• a matrix-by-matrix product AB can be computed in O(αβn log n) operations,

with the displacement rank of AB increasing at most to α + β.

3.2. Basic operations in the tensor format

If two matrices M1 and M2 are in the tensor format

M1 =
r1∑

i=1

A1
i ⊗ B1

i , M2 =
r2∑

i=1

A2
i ⊗B2

i ,

then the product

M1M2 =
r1∑

i=1

r2∑
j=1

(A1
i A

2
j )⊗ (B1

i B2
j ) (10)

is already in the tensor format. However, it requires a larger storage as the tensor
ranks are to be multiplied. The sum of two matrices in the tensor format is also in
some tensor format (we even should not do anything — only merge two arrays).
But again, the tensor rank grows. Thus, we should find a way to approximate the
results of matrix operations by matrices of lower tensor rank. This task can be
accomplished very efficiently through an SVD-based procedure called recompres-
sion. Since the problem of finding a low-tensor-rank approximation to matrix A is
equivalent to the problem of finding a low-rank approximation to Vn(A), we can
expoit the following.

Given a low rank matrix B = UV , U, V ∈ Rn×r, we can find q ≤ r and
matrices Ũ , Ṽ  ∈ Rn×q approximating A with the desired accuracy ε:

||B − Ũ Ṽ ||F ≤ ε||B||F . (11)

All we need is to find the SVD of B. Since B is already in the low-rank format,
we proceed as follows:
(1) Find the QR-decomposion of U and V : U = QuRu, V = QvRv.
(2) Find the SVD of a r × r matrix RuR

v : RuR
v = U1ΣV 

1 .
Then, B = (QuU1)Σ(QvV1) is the SVD of B. Now, take the smallest possible q so
that

σ2
q+1 + · · ·+ σ2

r ≤ ε||B||F .

When r is small, the cost of this method is dominated by the QR-decomposition
complexity, which is O(nr2), and is linear in matrix size. But, recall that the
columns of U and V come from the reshaped tensor factors which are stored
in the displacement format (to be extracted from the generators). Does it help to
perform the recompression faster? The answer is yes, the algorithm being described
in the next subsection.



Superfast Inversion of Two-Level Toeplitz Matrices 235

3.3. The TDS recompression

Let us look more closely at the recompression steps. The QR-decomposition can be
implemented through the Gram–Schmidt orthogonalization algorithm applied to
the vectors u1, . . . , ur. The orthogonality is defined by the ordinary scalar product
(x, y) =

∑n
k=1 xiyi. Now, instead of working with vectors, we suggest to work

directly with their matrix prototypes. The scalar product for matrices is defined
as the Frobenius scalar product :

(A, B)F = tr(AB∗).

Other operations required in the Gram–Schmidt algorithm, which are multiplica-
tion by numbers and addition, can be performed directly with matrices. Moreover,
employing the displacement structure in these operations leads to the O(

√
n log n)

complexity. Thus, we should focus on fast calculation of the Frobenius scalar prod-
uct of two matrices given in the displacement formats.

Given p × p matrices A, B with displacement ranks α, β, we need to find
tr(AB∗). First, we calculate AB∗. As we know, that can be done in O((α+β)p log p)
operations and the displacement rank of the product does not exceed α + β. It
remains to calculate the trace of a Toeplitz-like matrix. Fortunately, this can be
done by a simple formula involving the generators.

Lemma 3.1. Let C be a p × p matrix and +Za,Z�
b

(C) = GHT , G = [g1, . . . , gα],
H = [h1, . . . , hα], where hi, gi ∈ Rp. Then

tr(C) =
1

1− ab

α∑
r=1

p−1∑
k=0

hr
kgr

k(p− k + abk). (12)

Proof. According to (6), the matrix C can be represented as

C =
1

1− ab

α∑
j=1

Za(gj)Z
b (hj).

Therefore,

tr(C) =
1

1− ab

α∑
j=1

tr(Za(gj)Z
b (hj)). (13)

Each term in the sum (13) is of the form

tr(Za(g)Z
b (h)) =

p−1∑
i=0

(Za(g)Z
b (h))ii =

p−1∑
i=0

p−1∑
k=0

Za(g)ikZb(h)ik

=
p−1∑
i=0

i∑
k=0

gi−khi−k + ab

p−1∑
i=0

p−1∑
k=i+1

gp+i−khp+i−k.

The first summand is transformed as
p−1∑
i=0

i∑
k=0

gi−khi−k =
p−1∑
i=0

i∑
k=0

gkhk =
p−1∑
k=0

hkgk(p− k),
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and, similarly, the second one is
p−1∑
i=0

p−1∑
k=i+1

gp+i−khp+i−k =
p−1∑
k=0

hkgkk. �

3.4. Truncation operator

The truncation operator R(X) can be defined by setting either some bounds on
the ranks or accuracy. Fixing the ranks, we find Rρ,s(X) through the following
steps:

(1) Find the best tensor-rank-ρ approximation Xρ to X using the fast recom-
pression algorithm.

(2) Approximate tensor factors by some displacement-rank-s matrices.

It can be verified that such an operator satisfies the conjectures of Theorem 1.1.
It follows that the Newton method with the truncation operator Rρ,s(X) retains
an important property of quadratic convergence.

However, in practice it is expedient to prescribe the accuracy and let the rank
vary. Denote the corresponding operator by Rε. Formally the steps are the same,
but the ranks are no longer constant. The first step ends with the best low-tensor
approximation to X satisfying ||X − Xr|| ≤ ε||X ||, the second step produces an
approximation with the preset accuracy and smallest possible displacement rank.

4. Newton iteration for approximate inversion of matrices

Let A be in the TDS format. If an initial approximation X0 to A−1 is in the
same format, then it can be fastly improved by the iteration (1). The residuals
Rk = I − AXk satisfy Rk+1 = R2

k, which proves the quadratic convergence of
the process provided that the spectral radius of R0 is less than 1. The initial
approximation can be always selected as

X0 = αA∗

with some α > 0. In this case the estimated number of the operations to achieve
accuracy ||A−1 −Xk||2/||A−1||2 ≤ ε is

log2 (c2 + 1) + log2 ln
1
ε
,

where c is the spectral condition number of matrix A. For ill-conditioned matrices,
the cost is dominated by log2 (c2 + 1).

4.1. Modified Newton iteration

On each step of the Newton method (2), we replace Xk with Rε(Xk), where ε
is the accuracy parameter. We can also use a modification [10] that works with
approximations much better. Indeed, a typical tensor rank of matrices in our ex-
amples is about 10÷ 15, so each Newton step involves about 200 multiplications
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of Toeplitz-like matrices with the displacement ranks being typically about 10.
Following [10], we consider the following modification of the Newton iteration:

Xk = Xk−1(2I −Xk−1), Yk = Yk−1(2I −Xk−1), k = 1, 2, . . . , (14)

where Y0 is an initial approximation to A−1 and X0 = AY0 is a nonsingular matrix
of which we require that the spectral radius of I − X0 is less than 1. The latter
implies

lim
k→∞

Xk = I,

and since it is easy to derive from (14) that

Yk+1X
−1
k+1 = YkX−1

k = · · · = Y0X
−1
0 = A−1,

we conclude that
lim

k→∞
Yk = A−1.

In case of general matrices, it is easy to see that (14) is just another way of writing
(1). However, in the approximate arithmetic the situation changes dramatically.
The modified Newton method with approximations now reads

Xk = Rε(Xk−1(2I−Xk−1)), Yk = Rε(Yk−1(2I −Xk−1)), k = 1, 2, . . . . (15)

A good argument in favour of this modification is the following. As long as Xk

converges to the identity matrix, its tensor rank decreases and, hence, the displace-
ment ranks of the factors become smaller and cause the complexity get down. (This
should supposedly hold for any class of structured matrices in which the identity
matrix is considered as one with “perfect” structure).

4.2. Selection of the initial approximation

Selection of the initial approximation X0 to A−1 is crucial, in particular for ill-
conditioned matrices. The common choice X0 = αA∗ with an appropriate α > 0 is
ever available, of course, but never good if we want a sufficiently accurate answer.
However, we can play with the accuracy parameter ε. In the case of structured
matrices it controls both the final accuracy and the truncation accuracy on iter-
ations. Thus, it accounts for the ranks after truncation, and thence the speed of
calculations. When the process is “far” from the fast convergence stage, we can
carry out the truncation with a much lower accuracy ε. Consequently, the matrix
operations become pretty fast in the beginning. On later stages ε must diminish
and in the end stay on the level of the desired final accuracy.

This idea was used in [10] for a two-level Toeplitz matrix arising after dis-
cretization of a hypersingular integral equation. It can be summarized in the fol-
lowing scheme:
(1) Set X0 = αA∗ and perform the Newton iteration with the truncation accu-

racy δ � ε. This results in a rough approximation M to the inverse, but the
advantage is that the δ-truncated Newton iterations are expected to have a
low complexity.

(2) Use the previous approximation M as a new guess to start the Newton iter-
ation with finer accuracy ε.
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Of course, this scheme can be extended to three or more steps with relative errors
δ1, δ2, and so on.

5. Numerical results

Here two model numerical examples are presented. For simplicity we assume n1 =
n2 =

√
n

First is the standard 5-point Laplacian. It is a two-level Toeplitz matrix
[ai−j], with free parameters aij defined as aij = 0, for −n1 + 1 ≤ i ≤ n1 − 1,
j = −n2 + 1 ≤ j ≤ n2 − 1, except for

a00 = 4, a0,±1 = −1, a±1,0 = −1.

Second is a dense two-level Toeplitz matrix with aij determined by formulas

aij = −f(i+0.5, j−0.5)+f(i−0.5, j−0.5)−f(i−0.5, j+0.5)+f(i+0.5, j+0.5),

where

f(x, y) =

√
x2 + y2

xy
.

This matrix comes from the discretization of the hypersingular integral equation
[10].

The results are given in Tables 1 and 2. We calculated tensor ranks for the
approximate inverse and mean displacement ranks of the factors. All computa-
tions were conducted with ε = 10−5 (this means that “tensor rank” and “mean
displacement rank” in these tables stand for ε-ranks).

n 642 1282 2562 5122

Running time 154 sec 333 sec 966 sec 2555 sec
Tensor rank of A−1 9 10 11 12

Mean displacement rank of A−1 13.5 13.5 16.8 18.6

Table 1. Numerical results for the case 1.

n 642 1282 2562 5122

Running time 270 sec 433 sec 817 sec 1710 sec
Tensor rank of A−1 13 13 12 11

Mean displacement rank of A−1 8.5 9.3 9.5 9.7

Table 2. Numerical results for the case 2.
At least for these two examples we can see that the running time obeys the

expected O(
√

nr2
mean) asymptotics (where rmean is a mean displacement rank; the

dependence from tensor rank is hard to observe in these examples). However, we
are not very satisfied with the absolute values: the constant seems to be quite large.
After examining the program code it was found that the main computational efforts
were spent while recompressing the results of the multiplication of two “large” (of
tensor rank 5–10, approximately) TDS matrices. The multiplication using formula
(10) was very fast. However, the recompression was much, much longer and it can
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be explained why. We have to compress the matrix of tensor rank approximately
50–100. This involves computation of many scalar products. We do not take into
account that the matrix is in fact of much lower tensor rank (say, 10). This surely
can be used in some kind of rank-revealing approximation of such a matrix. In
the current implementation we have to calculate, in fact, the Frobenius scalar
products between all the factor matrices and that is approximately 1002 scalar
products and that leads to serious slowdown. The rank-revealing version of the
structured recompression will be reported elsewhere.
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Abstract. It is shown that the result of Tso-Wu on the elliptical shape of the
numerical range of quadratic operators holds also for the essential numerical
range. The latter is described quantitatively, and based on that sufficient
conditions are established under which the c-numerical range also is an ellipse.
Several examples are considered, including singular integral operators with the
Cauchy kernel and composition operators.
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1. Introduction

Let A be a bounded linear operator acting on a complex Hilbert space H. Recall
that the numerical range W (A) of A is defined as

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}.

If c is a k-tuple of non-zero (in general, complex) numbers c1, . . . , ck, then the
c-numerical range of A is

Wc(A) =

⎧⎨⎩
k∑

j=1

cj〈Axj , xj〉 : {xj}k
j=1 is an orthonormal subset of H

⎫⎬⎭ .

Of course, if c consists of just one number c1 = 1, Wc(A) is nothing but the regular
numerical range of A. Also, for c1 = . . . = ck = 1, the c-numerical range Wc(A)

The research of both authors was partially supported by NSF grant DMS-0456625.
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turns into Wk(A) – the so-called k-numerical range1 introduced by Halmos; see
[17]. Finally, the essential numerical range introduced in [31] can be defined [12]
as

Wess(A) =
⋂

cl W (A + K), (1.1)

where the intersection is taken over all operators K that are compact onH, and the
symbol cl denotes the topological closure. Considering Wc(A) or Wess(A), we will
implicitly suppose that dimH ≥ k or that H is infinite dimensional, respectively.

There are several monographs devoted to the numerical range and its various
generalizations (including those mentioned above), see for example [5, 16]. We
mention here only the results which are of direct relevance to the subject of this
paper.

From the definitions it is clear that all three sets are unitarily invariant:

W (U∗AU) = W (A), Wc(U∗AU) = Wc(A), Wess(U∗AU) = Wess(A) (1.2)

for any unitary operator U on H. Also, they behave in a nice and predictable way
under affine transformations of A:

W (αA + βI) = αW (A) + β, Wess(αA + βI) = αWess(A) + β, (1.3)

and

Wc(αA + βI) = αWc(A) + β

k∑
j=1

cj (1.4)

for any α, β ∈ C.
It is a classical result (known as the Hausdorff-Toeplitz theorem) that the

set W (A) is convex. Clearly, Wess(A) is therefore convex as well. The c-numerical
range is convex if all cj lie on the same line passing through the origin but not in
general [34]. In what follows, we suppose that the cj satisfy the above mentioned
condition. Moreover, since

Wc(αA) = Wαc(A), α ∈ C,

we then may (and will) without loss of generality suppose that all cj are real. We
will also arrange them in non-increasing order:

c1 ≥ c2 . . . ≥ ck,

since permutations of the cj leave Wc(A) invariant.
When dimH = 2, the numerical range of A is the closed (as is always the

case in the finite dimensional setting) elliptical disc with the foci at the eigenval-

ues λ1, λ2 of A and the minor axis
√

tr(A∗A)− |λ1|2 − |λ2|2 (the elliptic range
theorem, see, e.g., [16, Section 1.1]). According to the Cayley-Hamilton theorem,
A in this setting satisfies the equation

A2 − 2µA− νI = 0 (1.5)

1We realize that there is a slight abuse of notation here, but both Wc(A) and Wk(A) are rather
standard, and the meaning is usually clear from the content.
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with
µ = (λ1 + λ2)/2, ν = −λ1λ2.

For arbitrary H, operators A satisfying (1.5) with some µ, ν ∈ C are called qua-
dratic operators.

Rather recently, Tso and Wu showed that W (A) is an elliptical disc (open or
closed) for any quadratic operator A, independent of the dimension of H [32].

In this paper, we continue considering the (generalized) numerical ranges of
quadratic operators. We start by stating Tso-Wu’s result and outlining its proof
(different from the one presented in [32]), in order to show how it can be modified to
prove ellipticity of the essential numerical ranges of quadratic operators. We then
use the combination of the two statements to derive some sufficient conditions
for the c-numerical range to also have an elliptical shape. This is all done in
Section 1. Section 2 is devoted to concrete implementations of the results obtained
in Section 1.

2. Main results

2.1. Classical numerical range

We begin with the Tso-Wu result.

Theorem 2.1. Let a non-scalar operator A satisfy equation (1.5). Then W (A) is
the elliptical disc with the foci λ1,2 = µ ±

√
µ2 + ν and the major/minor axis of

the length
s±

∣∣µ2 + ν
∣∣ s−1. (2.1)

Here s = ‖A− µI‖, and the set W (A) is closed when the norm ‖A− µI‖ is at-
tained and open otherwise.

Proof. As in [32, Theorem 1.1], observe first that (1.5) guarantees unitary simi-
larity of A to an operator of the form

λ1I ⊕ λ2I ⊕
[
λ1I 2X
0 λ2I

]
(2.2)

acting on H1⊕H2⊕ (H3⊕H3), where dimHj (≥ 0) is defined by A uniquely, and
X is a positive definite operator on H3. According to the first of properties (1.2),
we may suppose that A itself is of the form (2.2).

Using the first of formulas (1.3) we may further suppose that µ = 0 and
ν ≥ 0; in other words, that in (2.2)

λ1 = −λ2 := λ ≥ 0, λ2 = ν. (2.3)

The case H3 = {0} corresponds to the normal operator A when W (A) is the
closed line segment connecting λ1 and λ2. This is in agreement with formula (2.1)
when ν �= 0, since in this case s =

√
ν is attained, and s− νs−1 = 0.

In the non-trivial case dimH3 > 0 our argument is different from that in
[32]. Namely, we will make use of the fact that the (directed) distance from the
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origin to the support line �θ with the slope θ of W (A) is the maximal point ωθ of
the spectrum of Re(ie−iθA). Moreover, �θ actually contains points of W (A) if and
only if ωθ belongs to the point spectrum of Re(ie−iθA).

For A of the form (2.2) with λj as in (2.3),

Re(ie−iθA) = (λ sin θ)I ⊕ (−λ sin θ)I ⊕
[
(λ sin θ)I ie−iθX
−ieiθX (−λ sin θ)I

]
.

Thus,

Re(ie−iθA)− ωI

= (λ sin θ − ω)I ⊕ (−λ sin θ − ω)I ⊕
[
(λ sin θ − ω)I ie−iθX
−ieiθX −(λ sin θ + ω)I

]
. (2.4)

For any ω �= λ sin θ, the last direct summand in (2.4) can be rewritten as[
I 0
0 1

λ sin θ−ω I

] [
I 0

−ieiθX I

] [
(λ sin θ − ω)I ie−iθX

0 (ω2 − λ2 sin2 θ)I −X2

]
. (2.5)

Therefore, ωθ =
√

λ2 sin2 θ + ‖X‖2 is the rightmost point of the spectrum of
Re(ie−iθA). In other words, the support lines of W (A) are the same as those of
the numerical range of the 2× 2 matrix[

λ 2 ‖X‖
0 −λ

]
.

The description of W (A) as the elliptical disc with the foci and axes as given in
the statement of the theorem follows from here and the elliptic range theorem.

Moreover, ωθ is an eigenvalue of Re(ie−iθA) if and only if the norm of X
(or equivalently, of A itself) is attained, so that this either happens for all θ or
for none of them. In the former case, every support line of W (A) must contain at
least one of its points, and the elliptical disc W (A) is closed. In the latter case,
the support lines are disjoint with W (A), so that it is open. �

Remark. Formula (2.1) is formally different from the result of [32, Theorem 2.1],
where the lengths of the axes of W (A) are given in terms of ‖A− λ1I‖, not
‖A− µI‖. The two operators coincide when µ2 + ν = 0. If this is not the case, the
relation between their norms follows from the general property

‖P‖ =
1
2
(‖S‖+ ‖S‖−1)

of any projection P and associated with it involution S = 2P −I (see [29]) applied
to P = (A− λ1I)/(λ2 − λ1) and S = (A− µI)/

√
µ2 + ν.

As a matter of fact, the relation between A and involution operators shows
that A can be represented as a (rather simple) function of two orthogonal pro-
jections. This observation allows one to describe the spectra and norms of all
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operators involved in the proof of Theorem 2.1 straightforwardly, using the ma-
chinery developed in [30]. We chose an independent exposition, in the interests of
self-containment.

2.2. Essential numerical range

If A satisfies (1.5) and one of its eigenvalues (say λ1) has finite multiplicity, then in
representation (2.2) the spaces H1 and H3 are finite dimensional. Thus, A differs
from λ2I by a compact summand, and Wess(A) is a single point. Let us exclude
this trivial situation, that is, suppose that σess(A) = σ(A) = {λ1, λ2}.

From (1.1) it is clear that the support lines �ess
θ with the slope θ are at

the distance ωess
θ from the origin. Here ωess

θ is the maximal point of the essential
spectrum of Re(ie−iθA). This observation allows us to repeat the statement and
the proof of Theorem 2.1 almost literally, inserting the word “essential” where
appropriate (of course, the last paragraph of the proof becomes irrelevant since the
essential numerical range is always closed). We arrive at the following statement.

Theorem 2.2. Let the operator A satisfy equation (1.5), with both eigenvalues
λ1,2 = µ±

√
µ2 + ν having infinite multiplicity. Then Wess(A) is the closed ellipti-

cal disc with the foci λ1,2 and the major/minor axis of the length s0±
∣∣µ2 + ν

∣∣ s−1
0 ,

where s0 is the essential norm of A− µI.

In the trivial case s0 = 0 (when A differs from µI by a compact summand,
so that necessarily µ2 + ν = 0) we by convention set

∣∣µ2 + ν
∣∣ s−1

0 = 0. This agrees
with the fact that Wess(A) then degenerates into a singleton µ.

Corollary 2.3. Let the operator A satisfying (1.5) be such that

‖A− µI‖ > ‖A− µI‖ess . (2.6)

Then the elliptical disc W (A) is closed.

Proof. Indeed, (2.6) holds if and only if ‖X‖ess < ‖X‖ for X from (2.2). Being
positive definite, the operator X then has ‖X‖ as an eigenvalue. In other words,
the norm of X (and therefore of A− µI) is attained. It remains to invoke the last
statement of Theorem 2.1. �

2.3. c-numerical range

The behavior of Wc(A), even for quadratic operators, is more complicated; see [9]
for some observations on the k-numerical range. With no additional assumptions
on A, we give only a rather weak estimate. In what follows, it is convenient to use
the notation ‖c‖ =

∑k
j=1 |cj |.

Lemma 2.4. Let A be as in Theorem 2.2. Denote by s and s0 the norm and essential
norm of A− µI respectively, and by E and E0 two elliptical discs with the foci at
µ
∑k

j=1 cj ±
√

µ2 + ν ‖c‖,
• the first closed, with the axes (s±

∣∣µ2 + ν
∣∣ s−1) ‖c‖, and

• the second open, with the axes (s0 ±
∣∣µ2 + ν

∣∣ s−1
0 ) ‖c‖.
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Then Wc(A) contains E0 and is contained in E.

Proof. Using (1.4) we may assume without loss of generality that µ = 0, ν ≥ 0,
as in the proof of Theorem 2.1. Since all the sets E, E0 and Wc(A) are convex,
we need only to show that the support line to Wc(A) in any direction lies between
the respective support lines to E0 and E. In other words, the quantity

sup

⎧⎨⎩
k∑

j=1

cj Re〈ie−iθAxj , xj〉 : {xj}k
j=1 is orthonormal

⎫⎬⎭ (2.7)

must lie between

‖c‖
√

ν sin2 θ + ‖X‖2ess and ‖c‖
√

ν sin2 θ + ‖X‖2

with X given by (2.2). But this is indeed so, because (2.5) implies that the spectrum

and the essential spectrum of Re(ie−iθA) have the endpoints ±
√

ν sin2 θ + ‖X‖2

and ±
√

ν sin2 θ + ‖X‖2ess, respectively. �

An interesting situation occurs when the norm of A − µI coincides with
its essential norm (equivalently, ‖X‖ = ‖X‖ess for X from (2.2)), so that E is
simply the closure of E0. To state the explicit result, denote by m± the number
of positive/negative coefficients cj and let m = max{m+, m−}.
Theorem 2.5. Let A be as in Theorem 2.2, and on top of that

‖A− µI‖ = ‖A− µI‖ess . (2.8)

Define E and E0 as in Lemma 2.4. Then Wc(A) coincides with E if the norm
of A − µI is attained on a subspace of the dimension at least m, and with E0

otherwise.

Proof. Consider first a simpler case, when in (2.2) dimH3 < ∞. Then due to
(2.8), H3 = {0}, so that the operator A is normal. The norm

∣∣µ2 + ν
∣∣1/2 of A −

µI is attained on infinite dimensional subspaces H1 and H2, and Wc(A) is the
closed line segment connecting the points µ

∑k
j=1 cj+

√
µ2 + ν ‖c‖ and µ

∑k
j=1 cj−√

µ2 + ν ‖c‖. This segment apparently coincides with E.
Let now H3 be infinite dimensional. From Lemma 2.4 it follows that Wc(A)

lies between E and its interior E0, so that the only question is which points of
the boundary of E belong to Wc(A). It follows from (2.5) that the minimal and
maximal points of the spectrum of Re(ie−iθA) have the same multiplicity as its
eigenvalues; this multiplicity does not depend on θ and coincides in fact with the
dimension d (≥ 0) of the subspace on which the norm of X is attained. From
(2.2) under conditions (2.3) it follows that the norm of A − µI is attained on a
d-dimensional subspace as well.

On the other hand, the supremum in (2.7) is attained if and only if this
multiplicity is at least m. Thus, the boundary of E belongs to Wc(A) if d ≥ m
and is disjoint with Wc(A) otherwise. �
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3. Examples

We consider here several concrete examples illustrating the above-stated abstract
results. All the operators A involved happen to be involutions which corresponds
to the choice µ = 0, ν = 1 in (1.5). According to Theorems 2.1 and 2.2, the
major/minor axes of the elliptical discs W (A) and Wess(A) then have the lengths

‖A‖ ± ‖A‖−1 and ‖A‖ess ± ‖A‖
−1
ess , (3.1)

respectively.

3.1. Singular integral operators on closed curves

Let Γ be the union of finitely many simple Jordan rectifiable curves in the extended
complex plane Ċ = C ∪ {∞}. Suppose that Γ has only finitely many points of
self-intersection and that it partitions Ċ into two open disjoint (not necessarily
connected) sets D+ and D−. Moreover, we suppose that Γ is the common boundary
of D+ and D−, and that it is oriented in such a way that the points of D± lie to
the left/right of Γ.

The singular integral operator S with the Cauchy kernel is defined by

(Sφ)(t) =
1
πi

∮
Γ

φ(τ)
dτ

τ − t
. (3.2)

It acts as an involution [14] on the linear manifold of all rational functions with the
poles off Γ, dense in the Hilbert space H = L2(Γ), with respect to the Lebesque
measure on Γ. This operator is bounded in L2 norm, and can therefore be continued
to an involution acting on the whole L2(Γ), if and only if Γ is a so-called Carleson
curve. This result, along with the definition of Carleson curves, as well as detailed
proofs and the history of the subject, can be found in [6]. For our purposes it
suffices to know that S is a bounded involution when the curve Γ is piecewise
smooth, i.e., admits a piecewise continuously differentiable parametrization.

If Γ is a circle or a line, then S is in fact selfadjoint, and both its norm and
essential norm are equal to 1. This situation is trivial from our point of view, since
W (S) and Wess(S) then coincide with the closed interval [−1, 1] and Wc(S) is
[−‖c‖ , ‖c‖].

As it happens [19], circles and lines are the only simple closed curves in Ċ
for which S is selfadjoint. On the other hand, for all smooth simple closed curves
the essential norm of S is the same, that is, equal to 1 (see [14, Chapter 7] for
Lyapunov curves; the validity of the result for general smooth curves rests on
the compactness result from [15] and is well known within the singular integral
community). Thus, lines and circles are the only smooth closed curves in Ċ for
which the norm and the essential norm of S coincide. However, such a coincidence
is possible for other piecewise smooth (even simple) curves.

One such case occurs when Γ is a bundle of m lines passing through a common
point, or of m circles passing through two common points. According to [13], then

‖S‖ = ‖S‖ess ≥ cot
π

4m
,
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with the last inequality turning into equality for at least m = 1, 2, 3. Respectively,
for such curves Γ the sets W (S), Wess(S) are the ellipses with the foci at ±1,
coinciding up to the boundary, and with the major axes of the length at least
2 csc π

2m . This length equals 2 csc π
2m for m = 2, 3. The c-numerical range of S is

the same ellipse, only scaled by ‖c‖.
The equality ‖S‖ = ‖S‖ess also holds for Γ consisting of circular arcs (one

of which can degenerate into a line segment) connecting the same two points in
C [3, 4]; in order for an appropriate orientation on Γ to exist the number of these
arcs must be even. If, in particular, there are two of them (that is, the curve Γ is
simple), then

‖S‖ = ‖S‖ess = Dφ +
√

D2
φ + 1,

where

Dφ = sup
{

sinh(πφξ)
cosh(πξ)

: ξ ≥ 0
}

and π(1 − φ) is the angle between the arcs forming Γ [3]. The ellipses W (S),
Wess(S) therefore have the major axes of the length 2

√
D2

φ + 1.
For some particular values of φ the explicit value of Dφ can be easily com-

puted, see [3]. If, for instance, Γ consists of a half circle and its diameter, that is
φ = 1/2, then Dφ = 1/2

√
2. Respectively, the major axes of W (S) and Wess(S)

have the length 3/
√

2.
It would be interesting to describe all curves Γ for which the norm and the

essential norm of the operator (3.2) are the same.

3.2. Singular integral operators on weighted spaces on the circle

Let now Γ be the unit circle T. We again consider the involution (3.2), this time
with H being the weighted Lebesgue space L2

ρ. The norm on this space is defined
by

‖f‖L2
ρ

= ‖ρf‖L2 :=
1√
2π

(∫ 2π

0

|f(eiθ)|2(ρ(eiθ))2dθ

)1/2

,

where the weight ρ is an a.e. positive measurable and square integrable function
on T. In this setting, the operator S is closely related with the Toeplitz and Hankel
operators on Hardy spaces, weighted or not. All needed definitions and “named”
results used below and not supplied with explicit references can be conveniently
found in the exhaustive recent monograph [25].

3.2.1. The involution S is bounded on L2
ρ if and only if ρ2 satisfies the Helson-

Szegő condition, that is, can be represented as

exp(ξ + η) with ξ, η ∈ L∞(T) real valued and ‖η‖∞ < π/2 (3.3)

[25, p. 419]. This condition is equivalent to

‖Hω‖ < 1, (3.4)
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where
ω = ρ+/ρ+, (3.5)

ρ+ is the outer function such that |ρ+| = ρ a.e. on T, and Hω denotes the Hankel
operator Hω with the symbol ω acting from the (unweighted) Hardy space H2 to
its orthogonal complement in L2. It is also equivalent to the invertibility of the
Toeplitz operator Tω on H2. Moreover [11],

‖S‖L2
ρ

=

√
1 + ‖Hω‖
1− ‖Hω‖

,

and a similar relation holds for the essential norms of S and Hω. But

‖Hω‖ = dist(ω, H∞)

(Nehari theorem [25, p. 3]) and

‖Hω‖ess = dist(ω, H∞ + C)

(Adamyan-Arov-Krein theorem [25, Theorem 1.5.3]), where H∞ is the Hardy class
of functions that are bounded analytic in D, and its sum with the set C of contin-
uous on T functions is the Douglas algebra H∞ + C. Thus, the ellipses W (S) and
Wess(S) have the major axes

2/
√

1− dist(ω, H∞) and 2/
√

1− dist(ω, H∞ + C),

respectively.
The norm of S is attained only simultaneously with the norm of Hω. This

happens, in particular, if Hω is compact, that is, ω ∈ H∞+C. The latter condition
can be restated directly in terms of ρ [11] and means that log ρ ∈ V MO, where
V MO (the class of functions with vanishing mean oscillation) is the sum of C with
its harmonic conjugate C̃.

Thus, for all the weights ρ such that log ρ ∈ V MO the ellipse W (S) is closed,
while Wess(S) degenerates into the line interval [−1, 1].

A criterion for the norm of Hω to be attained also can be given, though in
less explicit form. Recall that the distance from ω to H∞ is always attained on
some g ∈ H∞ (this is part of Nehari’s theorem). This g in general is not unique,
and any f of the form ω − g is called a minifunction. By (another) theorem of
Adamyan-Arov-Krein [25, Theorem 1.1.4], the norm of Hω is attained if and only
if the minifunction is unique and can be represented in the form

f(z) = ‖Hω‖ zθh/h, (3.6)

where θ and h (∈ H2) are some inner and outer functions of z, respectively2.

2Formally speaking, Theorem 1.1.4 in [25] contains only the “only if” part. The “if” direction is
trivial, since the norm of Hω is attained on h from (3.6); see Theorem 2.1 of the original paper
[2].
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3.2.2. We now turn to possible realizations of the outlined possibilities. If f ad-
mits a representation (3.6) with θ of an infinite degree (that is, being an infinite
Blaschke product or containing a non-trivial singular factor), then ‖Hω‖ is an
s-number of Hω having infinite multiplicity. In particular,

‖Hω‖ = ‖Hω‖ess . (3.7)

According to Theorem 2.5, W (S) in this case coincides with the closed ellipse
Wess(S), all c-numerical ranges also are closed and differ from W (S) only by an
appropriate scaling.

Now let θ in (3.6) be a finite Blaschke product of degree b (≥ 0) while h is
invertible in H2. Suppose also that |h|2 does not satisfy Helson-Szegő condition,
that is, cannot be represented in the form (3.3) (such outer functions are easy to
construct – take for example h with |h|±1 ∈ L2 but |h| /∈ L2+ε for any ε > 0).
Then the Toeplitz operator Tf has (b+1)-dimensional kernel, dense (but not closed)
range [21, Corollary 3.1 and Theorem 3.16], and therefore is not left Fredholm. By
Douglas-Sarason theorem [25, Theorem 1.1.15],

dist(f, H∞ + C) = |f | = ‖Hω‖ = ‖Hf‖ .

We conclude that (3.7) holds again. So, the ellipse W (S) is closed and coincides
with Wess(S). According to Theorem 2.5, the c-numerical range of S is closed if
the number of coefficients cj of the same sign does not exceed b + 1, and open
otherwise.

Finally, if a unimodular function ω is such that the operator Tω is invertible,
(3.7) holds, but its minifunction is not constant a.e. in absolute value, then the
norm of Hω is not attained. Accordingly, all c-numerical ranges, W (S) in partic-
ular, in this case are open.

A concrete realization of the latter possibility is given in the next subsection.
All the other possibilities mentioned earlier also occur. To construct the respec-
tive weights ρ, the following procedure can be applied. Starting with any inner
function θ and outer function h ∈ H2, choose f as in (3.6) with ‖Hω‖ changed
to an arbitrary constant in (0, 1). Let ω be an 1-canonical function3 of the Nehari
problem corresponding to the Hankel operator Hf . As such, ω is unimodular, and
can be represented as ω = g/g, where g is an outer function in H2 [25, Theo-
rem 5.1.8]. Since ‖Hω‖ < 1, the Toeplitz operator Tω−1 is invertible [25, Theorem
5.1.10] (the last two cited theorems from [25] are again by Adamyan-Arov-Krein
[2]). The desired weight is given by ρ = |g|.

By Treil’s theorem [25, Theorem 12.8.1], any positive semi-definite nonin-
vertible operator with zero or infinite dimensional kernel is unitarily similar to the
modulus of a Hankel operator. Thus, the multiplicity of the norm of Hω as its
singular value can indeed assume any prescribed value, whether or not (3.7) holds.

3See [25, p. 156] for the definition.
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3.2.3. Consider the concrete case of power weights

ρ(t) =
∏
|t− tj|βj , tj ∈ T, βj ∈ R \ {0}. (3.8)

It is an old and well-known result that S is bounded on L2
ρ with ρ given by (3.8)

if and only if |βj | < 1/2. This fact, along with other results about such weights
cited and used below (and established by Krupnik-Verbitskii [33]) can be found in
the monograph [20, Section 5].

The essential norm of S does not depend on the distribution of the nodes tj
along T, and equals

‖S‖ess = cot
π(1 − 2β̃)

4
, where β̃ = max |βj | . (3.9)

In case of only one node (say t0, with the corresponding exponent β0), the
norm of S is the same as (3.9). The function ω constructed by this weight ρ
in accordance with (3.5) is simply ω(t) = tβ0 , having a discontinuity at t0. The
distance from ω to H∞ is the same as to H∞ + C, it equals sin(π |β0|) and is
attained on a constant � = cos(π |β0|)eiπβ0 . A corresponding minifunction f = ω−�
is not constant a.e. in absolute value; thus, it cannot admit representation (3.6).
Consequently, the norm of Hω is not attained. Accordingly, Wc(S) is open for all
c; the numerical range W (S) has the major axis of the length 2 sec(π |β0|). Other
c-numerical ranges are scaled by ‖c‖, as usual.

More generally, the norm of S coincides with (3.9) independently of the num-
ber of nodes, provided that one of the exponents (say β0) differs by its sign from
all others and at the same time exceeds or equals their sum by absolute value. The
size and the shape of all the ellipses W (S), Wess(S), Wc(S) is then the same as
for the weight with only one exponent β0.

In case of two nodes (t1 and t2), the condition above holds if the respective
exponents β1, β2 are of the opposite sign. If the signs are the same, the norm of
S actually depends on arg t1/t2. It takes its minimal value (for fixed βj) when
t1/t2 < 0. This value coincides with (3.9), thus making Theorem 2.5 applicable
again.

3.3. Composition operators

For an analytic mapping of the unit disc D into itself, the composition operator
Cφ is defined as

(Cφf)(z) = f(φ(z)).

3.3.1. We consider this operator first on the Hardy space H2. In this setting, the
operator Cφ is bounded and, if φ is an inner function,

‖Cφ‖ =

√
1 + |φ(0)|
1− |φ(0)| , (3.10)

see [24], also [10]. It is easily seen from the proof of (3.10) given there that the norm
of Cφ is not attained, unless φ(0) = 0. As was shown in [27, 28], the essential norm
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of Cφ for φ inner coincides with its norm; moreover, this property is characteristic
for inner functions.

The numerical ranges of composition operators Cφ with φ being conformal
automorphisms of D were treated in [8]. It was observed there, in particular, that
W (Cφ) is an elliptical disc with the foci at ±1 when Cφ is an involution, that is,

φ(z) =
p− z

1− pz
(3.11)

for some fixed p ∈ D. The major axis of this disc Ep was computed in [1], where

as a result of rather lengthy computations it was shown to equal 2/

√
1− |p|2. For

p = 0, Cφ is an involution of norm 1. Respectively, E0 degenerates into the closed
interval [−1, 1]. The question of openness or closedness of Ep for p �= 0 was not
discussed.

It follows from Theorem 2.1 that Ep is open (if p �= 0); moreover, the length
of its axes can be immediately seen from (3.1) and (3.10):√

1 + |p|
1− |p| +

√
1− |p|
1 + |p| = 2/

√
1− |p|2.

Furthermore, Theorem 2.2 implies that Wess(Cφ) is the closure of Ep. Finally, by
Theorem 2.5 the c-numerical range of Cφ is Ep dilated by ‖c‖.

3.3.2. These results, with some natural modifications, extend to the case of the
operator Cφ with φ given by (3.11) acting on weighted spaces H2

ρ . Namely, for a
non-negative function ρ ∈ L2(T) with log ρ ∈ L1 we define the outer function ρ+

as in (3.5). Then

H2
ρ = {f : ρ+f ∈ H2} and ‖f‖2H2

ρ
= ‖ρ+f‖H2 .

A change-of-variable argument, similar to that used in [24], shows the following
equality:

‖Cφf‖2H2
ρ

=
1
2π

∫ 2π

0

|f
(
φ(eiθ)

)
|2(ρ(eiθ))2dθ

=
1
2π

∫ 2π

0

|f(eiµ)|2
(
ρ
(
φ
(
eiµ
)))2 1− |p|2

|p− eiµ|2 dµ = ‖fχ‖2H2
ρ

, (3.12)

where

χ(t) :=

√
1− |p|2

|p− t|
ρ(φ(t))

ρ(t)
, t ∈ T.

The norm of a multiplication operator on weighted and unweighted Hardy spaces
is the same. According to (3.12) the operator Cφ is therefore bounded on H2

ρ if
and only if

sup
t∈T

ρ(φ(t))
ρ(t)

< ∞. (3.13)
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Observe that (3.13) is equivalent to

inf
t∈T

ρ(φ(t))
ρ(t)

> 0

because φ is an involution. Apparently, (3.13) holds if ρ ∈ L∞ is bounded below
from 0, but there are plenty of unbounded weights ρ satisfying (3.13) as well.

Under this condition, ‖Cφ‖H2
ρ

= M , where

M =
√

1− |p|2 sup
t∈T

ρ(φ(t))
|p− t| ρ(t)

. (3.14)

For any ε > 0, consider a function g ∈ H2
ρ with the norm 1 and such that

‖Cφg‖H2
ρ

> M − ε. Then ‖Cφgn‖H2
ρ

> M − ε for gn(z) = zng(z), n = 1, 2, . . ..

Since the sequence gn converges weakly to zero in H2
ρ , from here it follows that the

essential norm of Cφ also equals M . (We use here the well-known fact that com-
pact operators on Hilbert spaces map weakly convergent sequences into strongly
convergent sequences, see, for example, [26, Section 85].) Moreover, the norm of Cφ

is attained if and only if there exist non-zero functions in H2
ρ with absolute value

equal zero a.e. on the subset of T where |χ(t)| �= M . Due to uniqueness theorem
for analytic functions, a necessary and sufficient condition for this to happen is∣∣∣∣ ρ(φ(t))

(p− t)ρ(t)

∣∣∣∣ = const a.e. on T. (3.15)

If (3.15) holds, then the norm is attained in particular on all inner functions, so
that the respective subspace is infinitely dimensional. Consequently, Wess(Cφ) is
the closed ellipse with the foci at ±1 and the axes M ±M−1, and W (Cφ) is the
same ellipse when (3.15) holds or its interior when it does not. The c-numerical
range is simply ‖c‖W (Cφ).

Of course, for ρ(t) ≡ t condition (3.13) holds, formula (3.14) turns into (3.10),
and (3.15) is equivalent to p = 0. Thus, the results obtained match those already
known in the unweighted setting.

3.3.3. One can also consider composition operators Cφ on weighted Lebesgue
spaces L2

ρ. Formulas for the norm and the essential norm of Cφ remain exactly
the same, with no changes in their derivation4. The condition for the norm to be
attained is different: in place of (3.15) it is required that the supremum in its left-
hand side is attained on a set of positive measure. The respective changes in the
statement about the numerical ranges are evident, and we skip them. We note only
that for ρ(t) ≡ t the supremum in the right-hand side of (3.15) either is attained
everywhere (if p = 0) or just at one point (if p �= 0). Thus, all the sets W (Cφ),
Wess(Cφ) and Wc(Cφ) are exactly the same whether the composition operator Cφ

with the symbol (3.11) acts on H2 or L2.

4Moreover, condition log ρ ∈ L1 can be weakened simply to ρ being positive a.e. on T, as was
the case in Subsection 3.2.
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3.3.4. Finally, we consider the operator Cφ on the Dirichlet space D. Recall that
the latter is defined as the set of all analytic functions f on D such that

‖f‖2D := |f(0)|2 +
∫

D

|f ′(z)|2dA(z) < ∞,

where dA is the area measure.
It was shown in [22, Theorem 2] that for any univalent mapping φ of D onto

a subset of full measure,

‖Cφ‖D =

√
L + 2 +

√
L(4 + L)

2
,

where L = − log(1− |φ(0)|2). This simplifies to

‖Cφ‖D =
√

L +
√

4 + L

2
,

and is of course applicable when φ is given by (3.11). Consequently, the elliptical
disc W (Cφ) has the major axis√

4 + log
1

1− |p|2
.

Moreover, the operators considered in [22, Theorem 2] attain their norms, so that
W (Cφ) is closed.

It was further observed in [18, Proposition 2.4] that the essential norm of Cφ

on D does not exceed 1, for any univalent φ. For φ given by (3.11), the essential
norm of Cφ on D must be equal 1, since the essential norm of an involution on
an infinite dimensional space is at least one. Thus, Wess(Cφ) in this setting is the
closed interval [−1, 1].

Analogous remarks can be made in other contexts where the norms and
essential norms of composition operators are known.

Added in proof. To illustrate this point: in [7], the composition operator Cφ was
considered on Hardy spaces H2(BN ) and Bergman spaces A2(BN ), where BN is
the unit ball in the space CN of N complex variables. Among other things, the
length of the major axis of the ellipse EN = W (Cφ) was computed there, for φ
being the involutive linear-fractional transformation of BN . It also follows from
the results of [7] that, as in the setting of Subsection 3.3.1, the essential norm of
Cφ coincides with its norm and the latter is not attained unless φ(0) = 0. Thus,
for φ(0) �= 0 the ellipse EN is in fact open, Wess(Cφ) is its closure, and Wc(Cφ) is
EN dilated by ‖c‖.

As we learned from the referee, the openness of the ellipse Ep in the setting
of Subsection 3.3.1 was also shown in [23].
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Inverse Problems for Canonical Differential
Equations with Singularities

James Rovnyak and Lev A. Sakhnovich

Abstract. The inverse problem for canonical differential equations is investi-
gated for Hamiltonians with singularities. The usual notion of a spectral func-
tion is not adequate in this generality, and it is replaced by a more general
notion of spectral data. The method of operator identities is used to describe
a solution of the inverse problem in this setting. The solution is explicitly
computable in many cases, and a number of examples are constructed.
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1. Introduction

By a canonical differential equation we understand a system of the form
dY

dx
= izJH(x)Y, 0 ≤ x < �,

D2Y1(0, z) + D1Y2(0, z) = 0,

(1.1)

where H(x) = H(x)∗ has 2m× 2m matrix values and satisfies

H(x) ≥ 0 (1.2)

on [0, �). Here � is a finite positive number, z is a complex parameter,

J =
[

0 Im

Im 0

]
, Y (x, z) =

[
Y1(x, z)
Y2(x, z)

]
, (1.3)
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where Y1(x, z), Y2(x, z) have m×1 matrix values, and D1, D2 are m×m matrices
such that D1D

∗
2 + D2D

∗
1 = 0 and D1D

∗
1 + D2D

∗
2 = Im. Without loss of generality

(see [21, p. 52]), we can take

D1 = 0, D2 = Im. (1.4)

The fundamental solution is the 2m × 2m matrix-valued function W (x, z) such
that

dW

dx
= izJH(x)W, W (0, z) = I2m. (1.5)

With the aid of this function, we define a transform

V f = F,

F (z) =
∫ �

0

[
0 Im

]
W (x, z̄)∗ H(x)f(x) dx,

where f(x) is a 2m×1 matrix-valued function on [0, �) and F (z) is an m×1 matrix-
valued entire function. A nondecreasing m×m matrix-valued function τ(t) on the
real line is called a spectral function for (1.1) if∫ �

0

f(x)∗H(x)f(x) dx =
∫ ∞

−∞
F (t)∗ [dτ(t)] F (t) (1.6)

for any transform pair f(x), F (z). The direct problem of spectral theory is to find
all spectral functions τ(t) for a given system (1.1). The inverse problem is find a
system (1.1) having a given spectral function τ(t).

We recall how the inverse problem is solved in [18, 21] for systems (1.1)
having locally integrable Hamiltonians H(x). Let v(z) be an m×m matrix-valued
Nevanlinna function such that v(iy)/y → 0 as y →∞. Then

v(z) = C0 +
∫ ∞

−∞

[
1

t− z
− t

1 + t2

]
dτ(t), (1.7)

where τ(t) is a nondecreasing matrix-valued function such that
∫∞
−∞ dτ(t)/(1+ t2)

converges and C0 is a constant selfadjoint m ×m matrix. To construct a system
(1.1) which has τ(t) as a spectral function, we choose a Hilbert space H, a Volterra
operator A ∈ L(H), and an operator Φ2 ∈ L(G, H) where G = Cm in the Euclidean
metric. Define operators S = Sv in L(H) and Φ1 = Φ1,v in L(G, H) by

Sv =
∫ ∞

−∞
(I −At)−1Φ2 [dτ(t)] Φ∗

2(I −A∗t)−1, (1.8)

Φ1,v = −i

∫ ∞

−∞

[
A(I −At)−1 +

tI

t2 + 1

]
Φ2 [dτ(t)] + iΦ2C0. (1.9)

If the integral in (1.8) is weakly convergent, then so is the integral in (1.9). In this
case,

AS − SA∗ = i
[
Φ1Φ∗

2 + Φ2Φ∗
1

]
, (1.10)

and S ≥ 0. Let A∗ have an eigenchain of projections Px, 0 ≤ x ≤ �, with P0 = 0
and P� = I. Write Hx = PxH, and assume that the operators Sx = PxSPx|Hx are
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invertible. Then under conditions detailed in in [21, pp. 54–55, Theorems 2.1, 2.2],
the function

W (x, z) = I2m + izJ Π∗PxS−1
x Px(I − zA)−1Π, Π =

[
Φ1 Φ2

]
, (1.11)

has a continuous product representation

W (x, z) = lim exp
{∫ tn

tn−1

izJH(t) dt

}
· · · exp

{∫ t1

t0

izJH(t) dt

}

=

�∫ x

0

exp
{
izJH(t) dt

}
, (1.12)

where 0 = t0 < t1 < · · · < tn = x is a partition of the interval [0, x] and where
the limit is taken as the maximum length of the intervals in the partition tends to
zero. The function H(x) is extracted from this representation by the formula

H(x) =
d

dx
Π∗PxS−1

x PxΠ. (1.13)

Moreover, the function W (x, z) given by (1.11) is the fundamental solution of a
canonical differential system (1.1) with Hamiltonian (1.13), and τ(t) is a spectral
function for this system.

In this paper we generalize the preceding approach to the inverse problem.
We retain the assumption of positivity but allow the Hamiltonian H(x) to have
singularities 0 < x1 < x2 < · · · < � (that is, points where H(x) is not locally
integrable). Thus in place of (1.2) we have

H(x) ≥ 0, x �= x1, x2, . . . . (1.14)

Consider now a generalized Nevanlinna function v(z) satisfying v(iy)/y → 0 as
y → ∞. The representation (1.7) is replaced by the Krĕın-Langer integral repre-
sentation,

v(z) =
r∑

j=0

∫
∆j

[
1

t− z
− Sj(t, z)

]
dτ(t) + R(z). (1.15)

This representation depends on certain quantities

τ = {τ(t); ∆0, . . . ,∆r; α1, . . . , αr; ρ1, . . . , ρr; R(z)} (1.16)

that we call Krĕın-Langer data (see Theorem 2.1). A transform V is defined for
systems (1.1) as before. We say that (1.1) admits τ as spectral data if∫ �

0

f(x)∗H(x)f(x) dx = 〈F (z), F (z)〉τ (1.17)

for all transform pairs f(x) and F (z), where 〈·, ·〉τ is an inner product that gen-
eralizes the right side of (1.6).

To solve the inverse problem for systems with singularities, we use formulas
from [12] that generalize (1.8) and (1.9) to construct an operator identity (1.10).
Now we assume only that the operators Sx in the previous scheme are invertible
except at certain points 0 < x1 < x2 < · · · . Then (1.11) and (1.13) define the
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fundamental solution and Hamiltonian of a system (1.1) satisfying (1.2) but hav-
ing singularities at the points x1, x2, . . . . We emphasize that a system constructed
in this way satisfies (1.14). Hence by the Parseval relation (1.17), the inner prod-
uct 〈·, ·〉τ is positive on the range of the transform V . In what follows, precise
conditions will be given for the validity of the procedure just described.

It will be shown in examples that there are cases in which the calculations
can be carried out explicitly. The singularities which occur are of pole type. The
examples can be expanded to the complex domain, and in a number of cases it is
possible to construct the global solutions to (1.5) in an explicit form.

The study of systems (1.1) has a long history, and we only mention a part
of this development. Gohberg and Krĕın [6] considered such systems on a finite
interval, named them canonical differential equations, and introduced notions of
eigenvalue and eigenfunction. L. de Branges [4] has obtained deep results on in-
verse problems by an analysis of families of Hilbert spaces of entire functions. The
approach to inverse problems from the viewpoint of factorization problems and
operator identities is given by L.A. Sakhnovich [18, 21]. The properties of spectral
functions for canonical systems have also been investigated by A.L. Sakhnovich
[16]. In a series of papers including [1] and [2], Arov and Dym have made thorough
studies of inverse monodromy, inverse scattering, and inverse impedance problems
for canonical systems with an emphasis on the strongly regular case. An indefinite
theory is initiated in Krĕın and Langer [9] and developed in an interesting paper
by Langer and Winkler [11]. The indefinite case of canonical differential systems
presents new technical difficulties. The theory of de Branges has a successful gen-
eralization to Pontryagin spaces, due to Kaltenbäck and Woracek [7]. Indefinite
problems for canonical systems are studied in the simplest case of discrete sys-
tems by the authors [13], by the method of factorization and operator identities.
Continuous systems are added to this theory in [15] under some simplifying as-
sumptions. This list of references is not complete, and the sources cited here should
be consulted for additional references.

The purpose of this paper is to describe classes of inverse problems in which
the solution by means of operator identities produces examples of canonical differ-
ential systems (1.1) such that H(x) ≥ 0 and H(x) has singularities. We note how
this paper differs from [15]. In [15] we considered systems (4.1) such that B(x)
has at most simple discontinuities at isolated points in [0, �). Here we allow these
points to be singularities, that is, points where B(x) and H(x) = B′(x) may fail to
be locally integrable. Using the results of [12] and [14], we are also able to extend
the theory to the full class of generalized Nevanlinna functions: in this paper we
allow the points α1, . . . , αr in Theorem 2.1(1◦), whereas such points are excluded
in [15]. In [15] we also considered some problems with κ =∞, but such problems
are not considered here.

In Sections 2 and 3 we formulate results from [12] and [14] that are needed
for what follows. These concern the Krĕın-Langer integral representation and op-
erator identities associated with generalized Nevanlinna functions. In Section 4 we
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construct a system with a given operator identity. The main scheme to solve the
inverse problem is described in Section 5. Section 6 gives additional results for
integral operators. Concrete examples are constructed in Section 7.

Notation. Throughout H is a separable Hilbert space, m is a positive integer, and
G = Cm in the Euclidean metric. By L(H) and L(G, H) we mean the usual spaces
of bounded linear operators on H into itself and on G into H. Write C± for the
open upper and lower half-planes. The matrix J is as in (1.3). Let Nκ be the
generalized Nevanlinna class of m × m matrix-valued functions v(z) which are
meromorphic on C+ ∪C− such that v(z) = v(z̄)∗ and the kernel

v(z)− v(ζ)∗

z − ζ̄

has κ negative squares (κ a nonnegative integer). If S ∈ L(H) is a selfadjoint
operator on a Hilbert space, κS is the dimension of the spectral subspace for
the set (−∞, 0). Thus κS < ∞ if and only if the negative spectrum consists of
eigenvalues of finite total multiplicity.

2. The Krĕın-Langer integral representation

The Krĕın-Langer integral representation of a generalized Nevanlinna function
v(z) generalizes the integral formula (1.7) for classical Nevanlinna functions. The
functions which occur in our applications satisfy the additional condition

lim
y→∞

v(iy)
y

= 0, (2.1)

and we state the result for this case. For the general case, see [3, 10, 14].

Theorem 2.1. Every m × m matrix-valued function v(z) which belongs to some
class Nκ, κ ≥ 0, and satisfies (2.1) can be written as

v(z) =
r∑

j=0

∫
∆j

[
1

t− z
− Sj(t, z)

]
dτ(t) + R(z), (2.2)

where ∆1, . . . ,∆r are bounded open intervals having disjoint closures, ∆0 is the
complement of their union in the real line, and

(1◦) there are points α1, . . . , αr and positive integers ρ1, . . . , ρr such that αj ∈ ∆j,
j = 1, . . . , r, and

1
t− z

− Sj(t, z) =
1

t− z

(
t− αj

z − αj

)2ρj

on ∆j , j = 1, . . . , r ,

1
t− z

− S0(t, z) =
1 + tz

t− z

1
1 + t2

on ∆0 ;
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(2◦) τ(t) is an m ×m matrix-valued function which is nondecreasing on each of
the r + 1 open intervals determined by α1, . . . , αr such that the integral∫ ∞

−∞

(t− α1)2ρ1 · · · (t− αr)2ρr

(1 + t2)ρ1+···+ρr

dτ(t)
1 + t2

is convergent;
(3◦) R(z) is an m×m matrix-valued rational function which is analytic at infinity

and satisfies R(z) = R(z̄)∗.

Conversely, every function of the form (2.2) belongs to some class Nκ and satisfies
(2.1).

Proof. This follows from Theorems 2.1 and 4.1 in [14]. �

The function τ(t) in (2.2) is essentially unique and can be recovered from v(z)
by a Stieltjes inversion formula [14, Corollary 3.3]. However, the other quantities
in (2.2) are not unique.

We note that any function R(z) satisfying (3◦) can be written as

R(z) = C0 −
s∑

k=1

[
Rk

( 1
z − λk

)
+ Rk

( 1
z̄ − λk

)∗ ]
, (2.3)

where C0 is a constant selfadjoint m × m matrix, λ1, . . . , λs are distinct points
in the closed upper half-plane, and R1(z), . . . , Rs(z) are polynomials such that
R1(0) = · · · = Rs(0) = 0.

Definition 2.2. The quantities

τ = {τ(t); ∆0, ∆1, . . . ,∆r; α1, . . . , αr; ρ1, . . . , ρr; R(z)} (2.4)

appearing in a representation (2.2) are called Krĕın-Langer data for v(z).

3. Operator identities

Generalized Nevanlinna functions v(z) and their Krĕın-Langer integral represen-
tations (2.2) are used to construct operator identities

AS − SA∗ = i
[
Φ1Φ∗

2 + Φ2Φ∗
1

]
,

A, S ∈ L(H), Φ1, Φ2 ∈ L(G, H),
(3.1)

where H is a Hilbert space, G = Cm, and S = S∗. The method that we use here
follows [12] and generalizes the formulas (1.8) and (1.9) from the definite case
[20, 21]. In place of the inequality S ≥ 0 which is used in [20, 21], it is assumed
here and in [12] that κS < ∞. We do not require the full generality of [12], since
in the present applications A is a Volterra operator and v(z) satisfies (2.1). In this
section, we review background from [12] in the form needed in this paper.

By a Volterra operator A we mean a compact operator on a Hilbert space
such that σ(A) = {0}.
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Assumptions 3.1. Let A ∈ L(H) and Φ2 ∈ L(G, H) be given operators, and let v(z)
be an m×m matrix-valued generalized Nevanlinna function satisfying (2.1) which
is represented in the form (2.2) for associated Krĕın-Langer data (2.4). Assume

(i) A is a Volterra operator, and
(ii) the integral

∫
∆0

(I −At)−1Φ2 [dτ(t)] Φ∗
2(I −A∗t)−1 converges weakly.

When these conditions are met, then following [12] we define operators Sv ∈
L(H) and Φ1,v ∈ L(G, H) by

Sv =
r∑

j=0

∫
∆j

{
(I −At)−1Φ2[dτ(t)]Φ∗

2 (I −A∗t)−1 − dτj(t; A, Φ2)
}

− 1
2πi

∫
Γ

(I − λA)−1Φ2R(λ)Φ∗
2(I − λA∗)−1 dλ , (3.2)

i Φ1,v =
r∑

j=0

∫
∆j

{
A(I −At)−1 −Sj(t; A)

}
Φ2 [dτ(t)]

− 1
2πi

∫
Γ

A(I − λA)−1Φ2R(λ) dλ − Φ2C0. (3.3)

In (3.2) and (3.3), Γ is any closed contour that winds once counterclockwise
about each of the poles of R(λ), that is, about each of the points λ1, . . . , λs in a
representation (2.3). Explicit formulas for these contour integrals are given in [12,
Section 3]. The constant selfadjoint matrix C0 plays no role and can be chosen
arbitrarily. If C0 is chosen is as in (2.3), that is, C0 = R(∞), then (3.2) and (3.3)
reduce to (1.8) and (1.9) when κ = 0.

The convergence terms dτj(t; A, Φ2) and Sj(t; A) in (3.2) and (3.3) are de-
fined in this way. For j = 0, define

dτ0(t; A, Φ2) = 0, S0(t; A) = − tI

1 + t2
.

For j = 1, . . . , r, use the Taylor expansion of (I − tA)−1 about αj to write

(I − tA)−1Φ2[dτ(t)]Φ∗
2(I − tA∗)−1

=
∞∑

�=0

(t− αj)�
∑

p+q=�
p,q≥0

Ap(αj)Φ2[dτ(t)]Φ∗
2 Aq(αj)∗,

A(I − tA)−1 =
∞∑

p=0

(t− αj)pAp(αj)A,

where Ap(αj) = Ap(I − αjA)−p−1 for all p ≥ 0. Then take

dτj(t; A, Φ2) =
2ρj−1∑
�=0

(t− αj)�
∑

p+q=�
p,q≥0

Ap(αj)Φ2[dτ(t)]Φ∗
2 Aq(αj)∗,
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Sj(t; A) =
2ρj−1∑
p=0

(t− αj)pAp(αj)A.

With these definitions, the integrals in (3.2) and (3.3) converge weakly.
The formulas (3.2) and (3.3) that define Sv and Φ1,v agree with the corre-

sponding formulas in [12]. From Theorems 3.4 and 3.5 in [12], we obtain:

Theorem 3.2. Let A, Φ2, and v(z) satisfy Assumptions 3.1. Then

(i) the definitions of the operators Sv and Φ1,v are independent of the choice of
Krĕın-Langer representation (2.2) for v(z);

(ii) the operator Sv is selfadjoint, and κSv < ∞;
(iii) the operators A, Φ2, S = Sv, and Φ1 = Φ1,v satisfy

AS − SA∗ = i
[
Φ1Φ∗

2 + Φ2Φ∗
1

]
.

4. Systems associated with operator identities

The main result of this section, Theorem 4.1, shows how to construct a canonical
differential equation from an operator identity. We first pass to an integral form
of a system (1.1):

Y (x, z) = Y (0, z) + izJ

∫ x

0

[dB(t)] Y (t, z),

D2Y1(0, z)+D1Y2(0, z) = 0,

(4.1)

0 ≤ x < �. Here Y (x, z) and J are as in (1.3). As before, we take[
D1 D2

]
=
[
0 Im

]
.

In (4.1), we allow singularities at points 0 < x1 < x2 < · · · which have no
limit point in [0, �). Thus we assume that B(x) has selfadjoint 2m × 2m matrix
values and is continuous and nondecreasing on the intervals

[0, x1), (x1, x2), (x2, x3), . . . . (4.2)

For an interval (xn, xn+1) with n ≥ 1, we interpret (4.1) to mean that

Y (b, z)− Y (a, z) = izJ

∫ b

a

[dB(t)] Y (t, z) (4.3)

whenever [a, b] ⊆ (xn, xn+1). A similar meaning is attached to the equation

W (x, z) = I2m + izJ

∫ x

0

[dB(t)] W (t, z), (4.4)

where W (x, z) is a 2m × 2m matrix-valued function. On (xn, xn+1) with n ≥ 1,
we interpret (4.4) to mean that

W (b, z)−W (a, z) = izJ

∫ b

a

[dB(t)] W (t, z) (4.5)
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whenever [a, b] ⊆ (xn, xn+1). In particular, (4.3) and (4.5) hold in each of the
intervals (4.2). In the usual way, (4.1) reduces to (1.1) when B(x) is absolutely
continuous and H(x) = B′(x).

We call any solution W (x, z) of (4.4) a fundamental solution for the system
(4.1). The fundamental solution is not unique when singularities are present due to
the way in which we interpret (4.4) in the intervals between the points x1, x2, . . . .
A fundamental solution is continuous in x on the intervals (4.2) for fixed z, and
entire in z for each fixed x. In Theorem 5.3 we show that for systems associated
with operator identities, there is a distinguished choice of fundamental solution.

Theorem 4.1. Let A, S ∈ L(H) and Φ1, Φ2 ∈ L(G, H) satisfy (3.1) with A Volterra,
S selfadjoint, and κS < ∞. Let A∗ have a strongly continuous eigenchain of
projections Px, 0 ≤ x ≤ �, satisfying an inequality

‖(Px+∆x − Px)A(Px+∆x − Px)‖ ≤ M ∆x

whenever 0 ≤ x < x + ∆x ≤ � for some M > 0. Assume:

(i) there are points 0 < x1 < x2 < · · · having no limit point in [0, �) such
that the operator Sx = PxSPx|Hx is invertible on Hx = PxH for each x in
[0, �) \ {x1, x2, . . . };

(ii) S−1
x Px is a strongly continuous function of x on the intervals (4.2).

Then the 2m× 2m matrix-valued function

B(x) = Π∗PxS−1
x PxΠ, Π =

[
Φ1 Φ2

]
, (4.6)

is continuous and nondecreasing in each of the intervals (4.2), and

W (x, z) = I2m + izJ Π∗PxS−1
x Px(I − zA)−1Π (4.7)

is a fundamental solution for the system (4.1) with B(x) defined by (4.6).

In Theorem 4.1, we assume that the eigenchain is indexed so that P0 = 0
and P� = I.

Lemma 4.2. Under the assumptions in Theorem 5.3,

PξS
−1
ξ PξSPηS−1

η Pη = PζS
−1
ζ Pζ ,

where ζ = min{ξ, η} and ξ, η are any points in [0, �] such that the inverses exist.

Proof of Lemma 4.2. If ξ < η, then PξSPη|Hη = PξPηSPη|Hη = PξSη, and

PξS
−1
ξ PξSPηS−1

η Pη = PξS
−1
ξ PξSηS−1

η Pη = PξS
−1
ξ Pξ.

If ξ ≥ η, then PξSPη = PξSPξPη = SξPη, and

PξS
−1
ξ PξSPηS−1

η Pη = PξS
−1
ξ SξPηS−1

η Pη = PηS−1
η Pη,

as was to be shown. �
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Proof of Theorem 4.1. By (ii), B(x) is continuous in each of the intervals (4.2).
To show that it is nondecreasing in these intervals, it is sufficient to show that for
each u ∈ G×G, the function

β(x) = u∗B(x)u

is nondecreasing in the intervals. We assume that β(a) > β(b) for some compact
subinterval [a, b] of one of the intervals (4.2) and derive a contradiction. Since β(x)
is continuous on [a, b], by the intermediate value theorem, for any positive integer
r > κS we can find points a1 > b1 > a2 > b2 > · · · > ar > br in [a, b] such that

β(a1) > β(b1) > β(a2) > β(b2) > · · · > β(ar) > β(br).

For each j = 1, . . . , r, set

δj = β(bj)− β(aj),

fj = Pbj S
−1
bj

Pbj Πu− Paj S
−1
aj

Paj Πu.

By Lemma 4.2, if ξ, η ∈ [a, b],〈
SPηS−1

η PηΠu, PξS
−1
ξ PξΠu

〉
= u∗Π∗PζS

−1
ζ PζΠu = β(ζ),

where ζ = min{ξ, η}. It follows that

〈Sfj, fk〉 =

{
δj , j = k,

0, j �= k.

For when j = k,

〈Sfj, fj〉 = β(bj)− β(aj)− β(aj) + β(aj) = δj .

If j < k,
〈Sfj, fk〉 = β(bj)− β(bj)− β(aj) + β(aj) = 0,

and similarly if j > k. Since δj < 0 for each j, H contains an r-dimensional
subspace N which is the antispace of a Hilbert space in the inner product

〈Sf, g〉 , f, g ∈ N.

This is impossible since r > κS (because the projection of N into the spectral
subspace of S for the negative axis is one-to-one). It follows that B(x) is nonde-
creasing on each of the intervals (4.2). [In the case S ≥ 0, a different argument to
show that B(x) is nondecreasing is given in [21, p. 42].]

The proof that W (x, z) is a fundamental solution for the resulting system is
essentially identical to the first part of the argument in [12, Theorem 3.3]. An extra
condition is used in [15, Theorem 3.3], namely, that ‖S−1

x ‖ is bounded on [0, �]. In
our case, ‖S−1

x ‖ is locally bounded by (ii) and the uniform boundedness principle,
and this is all that is needed in the argument. �
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5. Spectral data and the inverse problem

Consider a system (4.1) with fundamental solution W (x, z). Define a transform

V f = F,

F (z) =
∫ �

0

[
0 Im

]
W (x, z̄)∗ [dB(t)] f(x),

(5.1)

where f(x) is a 2m × 1 matrix-valued function on [0, �). We assume that f(x) is
compactly supported, vanishes in an open interval about each point x1, x2, . . . ,
and is continuous except for a finite number of simple discontinuities. For each
such f(x), the corresponding F (z) is an m× 1 matrix-valued entire function.

Let v(z) be an m × m matrix-valued function in Nκ satisfying (2.1) with
Krĕın-Langer data τ given by (2.4). If F (z) and G(z) are m × 1 matrix-valued
entire functions such that the integrals∫

∆0

F (t)∗ [dτ(t)] F (t),
∫

∆0

G(t)∗ [dτ(t)] G(t) (5.2)

converge, we define

〈F (z), G(z)〉τ =
r∑

j=0

∫
∆j

{
G(t)∗ [dτ(t)] F (t) − dσj(t; F, G)

}
− 1

2πi

∫
Γ

G(λ̄)∗R(λ)F (λ) dλ. (5.3)

In the last term, Γ is any closed contour that winds once counterclockwise about
each of the poles of R(λ). In the first integral term, we take

dσ0(t; F, G) = 0.

Then the integral
∫
∆0

in (5.3) converges since the two integrals in (5.2) converge.
For j = 1, . . . , r, use the Taylor series F (t) =

∑∞
p=0 Fp(αj)(t − αj)p and G(t) =∑∞

q=0 Gq(αj)(t− αj)q to formally write

G(t)∗ [dτ(t)] F (t) =
∞∑

�=0

(t− αj)�
∑

p+q=�
p,q≥0

Gq(αj)∗ [dτ(t)] Fp(αj).

Then choose

dσj(t; F, G) =
2ρj−1∑
�=0

(t− αj)�
∑

p+q=�
p,q≥0

Gq(αj)∗ [dτ(t)] Fp(αj).

With this choice, the integral
∫
∆j

in (5.3) converges by the condition (2◦) in
Theorem 2.1.



268 J. Rovnyak and L.A. Sakhnovich

Lemma 5.1. Let τ be Krĕın-Langer data for a function v(z) ∈ Nκ which satis-
fies (2.1). Suppose F (z) = Φ∗

2(I − zA∗)−1f and G(z) = Φ∗
2(I − zA∗)−1g, f, g ∈ H,

where A ∈ L(H) and Φ2 ∈ L(G, H) satisfy the conditions in Assumptions 3.1 and
Sv is defined by (3.2). Then

〈F (z), G(z)〉τ = 〈Svf, g〉 .

Proof. If the integrals in (3.2) are interpreted in the weak sense, the inner product
〈Svf, g〉 reduces to (5.3) by the definition of Sv in Section 3. �

Definition 5.2. Consider a system (4.1) with fundamental solution W (x, z) and
transform V defined by (5.1). Let

τ = {τ(t); ∆0, ∆1, . . . ,∆r; α1, . . . , αr; ρ1, . . . , ρr; R(z)}

be Krĕın-Langer data for an m×m matrix-valued function in Nκ satisfying (2.1).
We call τ spectral data for the system (4.1) if the Parseval identity∫ �

0

g(t)∗ [dB(t)] f(t) = 〈F (z), G(z)〉τ (5.4)

holds for all transform pairs f(t), F (z) and g(t), G(z).

We now describe a solution to the inverse problem for systems (4.1).

Theorem 5.3. Let v(z) ∈ Nκ be an m×m matrix-valued function satisfying (2.1)
which has Krĕın-Langer data τ . Choose operators A ∈ L(H) and Φ2 ∈ L(G, H)
satisfying Assumptions 3.1, and define S = Sv and Φ1 = Φ1,v by (3.2) and (3.3).
Then S is selfadjoint, κS < ∞, and A, S, Φ1, Φ2 satisfy (3.1). Any system (4.1)
constructed from these operators by means of the formulas (4.6) and (4.7) in The-
orem 4.1 has spectral data τ .

Proof. The stated properties of A, S, Φ1, Φ2 follow from Theorem 3.2. Let γ, δ
of [0, �) be subintervals of [0, �) whose closures do not contain any of the points
x1, x2, . . . . We first prove the identity∫ �

0

gδ(t)∗ [dB(t)] fγ(t) = 〈Fγ(z), Gδ(z)〉τ (5.5)

for any transform pairs fγ(x), Fγ(z) and gδ(x), Gδ(z) such that

fγ(x) = χγ(x)u, gδ(x) = χδ(x)v, (5.6)

where u, v ∈ G. We allow the possibility that γ and δ are contained different
intervals in the list (4.2). Clearly,∫ �

0

gδ(t)∗ [dB(t)] fγ(t) =
∫

γ∩δ

v∗ [dB(t)] u. (5.7)
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If γ = [a, b], then by (4.5),

Fγ(z) =
∫ b

a

[
0 Im

]
W (t, z̄)∗ [dB(t)] u

=
[
0 Im

] W (b, z̄)∗J −W (a, z̄)∗J
−iz

u.

Hence by (4.7),

Fγ(z) =
[
0 Im

] {
Π∗(I − zA∗)−1PbS

−1
b PbΠu

−Π∗(I − zA∗)−1PaS−1
a PaΠu

}
= Φ∗

2(I − zA∗)−1(hb − ha),

where ha = PaS−1
a PaΠu and hb = PbS

−1
b PbΠu. Similarly, if δ = [c, d], then

Gδ(z) = Φ∗
2(I − zA∗)−1(kd − kc),

where kc = PcS
−1
c PcΠv and kd = PdS

−1
d PdΠv. Now set S = Sv, and apply Lemma

5.1 to get

〈Fγ(z), Gδ(z)〉τ = 〈S(hb − ha), kd − kc〉

=
〈
SPbS

−1
b PbΠu, PdS

−1
d PdΠv

〉
−
〈
SPbS

−1
b PbΠu, PcS

−1
c PcΠv

〉
−
〈
SPaS−1

a PaΠu, PdS
−1
d PdΠv

〉
+
〈
SPaS−1

a PaΠu, PcS
−1
c PcΠv

〉
. (5.8)

Case 1: γ ∩ δ = ∅. If a < b < c < d, then by (5.7), (5.8), and Lemma 4.2,

〈Fγ(z), Gδ(z)〉τ = v∗Π∗PbS
−1
b PbΠu− v∗Π∗PbS

−1
b PbΠu

− v∗Π∗PaS−1
a PaΠu + v∗Π∗PaS−1

a PaΠu = 0 =
∫ �

0

gδ(t)∗ [dB(t)] fγ(t).

Case 2: γ ∩ δ �= ∅. Here we can assume that a ≤ c ≤ b ≤ d. As above,

〈Fγ(z), Gδ(z)〉τ = v∗Π∗PbS
−1
b PbΠu− v∗Π∗PcS

−1
c PcΠu

− v∗Π∗PaS−1
a PaΠu + v∗Π∗PaS−1

a PaΠu

=
∫ b

c

gδ(t)∗ [dB(t)] fγ(t) =
∫ �

0

gδ(t)∗ [dB(t)] fγ(t).

The general case follows by linearity and approximation. �

Corollary 5.4. In the situation of Theorem 5.3, 〈F (z), G(z)〉τ is a strictly positive
inner product on the range of the transform (5.1).

Proof. The inner product is nonnegative by the Parseval formula (5.4) and the
fact, established in Theorem 4.1, that B(x) is nondecreasing in the intervals (4.2).
If 〈F (z), F (z)〉τ = 0 for some transform pair f(x), F (z), the same identity implies
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that
∫ �

0
f(t)∗ [dB(t)] f(t) = 0. Then F (z) ≡ 0 by (5.1) and the Cauchy-Schwarz

inequality. �

In many examples of Theorem 5.3, (4.1) is equivalent to a system

dY

dx
= izJH(x)Y, 0 ≤ x < �,

Y1(0, z) = 0,

(5.9)

where H(x) has the form (see Theorem 6.2)

H(x) =

[
h1(x)∗

h2(x)∗

] [
h1(x) h2(x)

]
. (5.10)

Then it is natural to consider an alternative form for the transform (5.1). In (5.1)
write

f(x) =
[
f1(x)
f2(x)

]
, W (x, z) =

[
W11(x, z) W12(x, z)
W21(x, z) W22(x, z)

]
and

g(x) = h1(x)f1(x) + h2(x)f2(x),

ψ(x, z) = W12(x, z̄)∗ h1(x)∗ + W22(x, z̄)∗ h2(x)∗.

Then (5.1) assumes the form

Ṽ g = G,

G(z) =
∫ �

0

ψ(x, z)g(x) dx.
(5.11)

The Parseval relation (5.4) becomes∫ �

0

g(t)∗g(t) dt = 〈G(z), G(z)〉τ (5.12)

in this case.
Paley-Wiener example. The simplest example of Theorem 5.3 yields the Paley-
Wiener transform. Consider the spectral data τ(t) = t/(2π) on ∆0 = (−∞,∞)
and associated Nevanlinna function v(z) = i/2, Im z > 0. We apply Theorem 5.3
with H = L2(0, �), G = C, and

(Af)(x) = i

∫ x

0

f(t) dt and (Φ2c)(x) = c

for all f ∈ L2(0, �) and c ∈ C. We find that Sv = I and (Φ1,vc)(x) = 1
2 c for all

c ∈ C. If Pξ is the projection onto L2(0, ξ), short calculations of the quantities
(4.6) and (4.7) yield

B(ξ) =

[
1
4

1
2

1
2 1

]
ξ, H(ξ) =

[
1
4

1
2

1
2 1

]
,
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W (ξ, z) =

[
1
2 −1

− 1
4

1
2

]
+ eizξ

[
1
2 1
1
4

1
2

]
.

The transform (5.11) and Parseval relation (5.12) are given by

G(z) =
∫ �

0

e−izxg(x) dx (5.13)

and ∫ �

0

|g(x)|2 dx =
1
2π

∫ ∞

−∞
|G(x)|2 dx. (5.14)

The associated canonical differential equation, of course, has no singularities. Ex-
amples with singularities are given in Section 7.

6. Integral operators

In Theorem 6.1 we identify a large class of operator identities (3.1) for which the
hypotheses of Theorem 4.1 are satisfied. Theorem 6.2 shows that in many cases a
2m × 2m matrix-valued Hamiltonian H(x) = B′(x) obtained from (4.6) satisfies
rankH(x) ≡ m except at the points of singularity. For difference-kernel operators,
the Hamiltonian has a special form, which is given in Theorem 6.3.

Let H = L2
m(0, �) and G = Cm for some positive integer m. Let Pξ be the

projection of H onto Hξ = L2
m(0, ξ), 0 ≤ ξ ≤ �. Assume that

(Af)(x) = i

∫ x

0

f(t) dt, f ∈ L2
m(0, �), (6.1)

and that Φ1 and Φ2 are operators on G into H given by

(Φ1g)(x) = ϕ1(x)g, (Φ2g)(x) = ϕ2(x)g, g ∈ Cm, (6.2)

where ϕ1(x) and ϕ2(x) are continuous m×m matrix-valued functions. Let

(Sf)(x) = f(x) +
∫ �

0

K(x, t)f(t) dt,

K(x, t) = K(t, x)∗, x, t ∈ (0, �),
(6.3)

where K(x, t) is a bounded continuous m×m matrix-valued function. We assume
that the identity

AS − SA∗ = i
[
Φ1Φ∗

2 + Φ2Φ∗
1

]
(6.4)

is satisfied.
When the operators A, S, Φ1, Φ2 are as in (6.1)–(6.4), the formula (4.6) for

the Hamiltonian takes the form

H(ξ) = B′(ξ) =
d

dξ

⎡⎣
〈
S−1

ξ ϕ1, ϕ1

〉
ξ

〈
S−1

ξ ϕ2, ϕ1

〉
ξ〈

S−1
ξ ϕ1, ϕ2

〉
ξ

〈
S−1

ξ ϕ2, ϕ2

〉
ξ

⎤⎦ , (6.5)
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where 〈·, ·〉ξ denotes the inner product in L2
m(0, ξ). In (6.5) and below, we under-

stand that operations on matrix-valued functions are performed as required on the
columns of the functions.

The next result gives a sufficient condition for the technical hypotheses of
Theorem 4.1 to be met.

Theorem 6.1. The hypotheses of Theorem 4.1 are satisfied if A, S, Φ1, Φ2 are as in
(6.1)–(6.4), and if K(x, t) has an extension to a function K(z, w̄) which is bounded
and analytic as functions of z and w in a region G such that G contains the interval
(0, �) and zt, z̄t ∈ G whenever z ∈ G and 0 < t ≤ 1.

Proof. It is clear from (6.3) that S is selfadjoint, and κS < ∞ since S is a compact
perturbation of the identity operator. The assumptions on A are verified in a rou-
tine way. The main problem is to check the conditions (i) and (ii) in Theorem 4.1.

(i) For small ξ, the operator

(Sξf)(x) = f(x) +
∫ ξ

0

K(x, t)f(t) dt

on L2
m(0, ξ) differs from the identity operator by an operator of norm less than

one. Therefore Sξ is invertible for 0 ≤ ξ < ε for some ε > 0; for ξ = 0, Sξ is the
identity operator on the zero space and hence invertible.

For each ξ in (0, �), define Uξ from L2
m(0, �) to L2

m(0, ξ) by

(Uξf)(x) =

√
�

ξ
f

(
�x

ξ

)
, 0 < x < ξ.

Then Uξ maps L2
m(0, �) isometrically onto L2

m(0, ξ), and

(U−1
ξ g)(x) =

√
ξ

�
g

(
ξx

�

)
, 0 < x < �.

Hence U−1
ξ SξUξ is a bounded operator on L2

m(0, �) given by

(U−1
ξ SξUξf)(x) = f(x) +

ξ

�

∫ �

0

K

(
ξx

�
,
ξt

�

)
f(t) dt.

Clearly Sξ is invertible if and only if U−1
ξ SξUξ is invertible. Write

U−1
ξ SξUξ = I + T (ξ). (6.6)

The assumptions on G allow us to define an operator T (z) on L2
m(0, �) by

(T (z)f)(x) =
z

�

∫ �

0

K

(
zx

�
,
z̄t

�

)
f(t) dt, z ∈ G.

The operator T (z) is compact and depends holomorphically on z, and T (z) agrees
with the operator T (ξ) defined by (6.6) when z = ξ is a point of (0, �). Since
I + T (ξ) is invertible for small positive ξ, I + T (z) is invertible except at isolated
points of G (see Kato [8], Theorem 1.9 on p. 370). In particular, (i) follows.
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(ii) In this condition, we interpret S−1
ξ as acting from L2

m(0, �) into itself.
Hence, for 0 < ξ < �,

S−1
ξ Pξ = EξUξF (ξ)U−1

ξ Pξ, (6.7)

where F (ξ) = [I + T (ξ)]−1 and Eξ is the natural embedding of L2
m(0, ξ) into

L2
m(0, �). In any interval that does not include singularities, all of the operators

on the right side of (6.7) are locally bounded. The function F (ξ) is continuous
in the operator norm, and one checks easily that U−1

ξ Pξ and EξUξ are strongly
continuous. It follows that S−1

ξ Pξ is strongly continuous at any point ξ in (0, �)
which is not one of the singularities x1, x2, . . . . The strong continuity of S−1

ξ Pξ

at the point ξ = 0 is clear because ‖S−1
ξ ‖ is bounded for small ξ by (6.7), and

‖Pξf‖ → 0 as ξ → 0 for every f in L2
m(0, �). �

Theorem 6.2. Let B(x) be constructed by (4.6) for operators A, S, Φ1, Φ2 as in
(6.1)–(6.4). Then B(x) is continuously differentiable in the intervals between sin-
gularities, and in these intervals

H(ξ) = B′(ξ) =
[
h1(ξ)∗

h2(ξ)∗

] [
h1(ξ) h2(ξ)

]
, (6.8)

where h1(ξ) and h2(ξ) are continuous m×m matrix-valued functions.

Proof. We use results from [6, Chapter IV, §7], which should be consulted for
additional details. For each ξ,

(Sξf)(x) = f(x) +
∫ ξ

0

K(x, t)f(t) dt, f ∈ L2
m(0, ξ).

Suppose that Sξ is invertible for x1 < ξ < x2. Then

(S−1
ξ f)(x) = f(x) +

∫ ξ

0

Γξ(x, t)f(t) dt, f ∈ L2
m(0, ξ),

where Γξ(x, t) is continuous in x and t and differentiable in ξ, and

∂

∂ξ
Γξ(x, t) = Γξ(x, ξ)Γξ(ξ, t). (6.9)

The last formula is (7–10) in [6, Chapter IV, §7]. We shall compute H(ξ) us-
ing (6.5). For any continuous functions f and g in L2

m(0, �),

〈
S−1

ξ Pξf, Pξg
〉

ξ
=
∫ ξ

0

g(x)∗
[
f(x) +

∫ ξ

0

Γξ(x, t)f(t) dt

]
dx.



274 J. Rovnyak and L.A. Sakhnovich

Differentiation yields

d

dξ

〈
S−1

ξ Pξf, Pξg
〉

ξ
= g(ξ)∗f(ξ) +

∫ ξ

0

g(ξ)∗Γξ(ξ, t)f(t) dt

+
∫ ξ

0

g(x)∗Γξ(x, ξ)f(ξ) dx

+
∫ ξ

0

∫ ξ

0

g(x)∗
∂

∂ξ
Γξ(x, t) f(t) dt dx .

By (6.9),

d

dξ

〈
S−1

ξ Pξf, Pξg
〉

ξ
= g(ξ)∗f(ξ) +

∫ ξ

0

g(ξ)∗Γξ(ξ, t)f(t) dt

+
∫ ξ

0

g(x)∗Γξ(x, ξ)f(ξ) dx

+
∫ ξ

0

∫ ξ

0

g(x)∗Γξ(x, ξ)Γξ(ξ, t)f(t) dt dx

=

[
g(ξ)∗ +

∫ ξ

0

g(x)∗Γξ(x, ξ) dx

]

·
[
f(ξ) +

∫ ξ

0

Γξ(ξ, t)f(t) dt

]
.

By (6.5), on choosing f = ϕj and g = ϕk, j, k = 1, 2, we obtain (6.8) with

h1(ξ) = ϕ1(ξ) +
∫ ξ

0

Γξ(ξ, t)ϕ1(t) dt,

h2(ξ) = ϕ2(ξ) +
∫ ξ

0

Γξ(ξ, t)ϕ2(t) dt,

which yields the result. �

We suppose next that the operator (6.2) has a difference kernel: K(x, t) =
k(x− t). That is, we assume that S is defined on L2

m(0, �) by

(Sf)(x) = f(x) +
∫ �

0

k(x− t)f(t) dt,

k(x) = k(−x)∗, x ∈ (−�, �),
(6.10)

where k(x) is a bounded continuous m×m matrix-valued function on (−�, �). By
writing

s(x) =

⎧⎪⎪⎨⎪⎪⎩
1
2Im +

∫ x

0

k(u) du, 0 < x < �,

− 1
2Im +

∫ x

0

k(u) du, −� < x < 0,

(6.11)
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we can bring (6.10) to the form (see [19]):

(Sf)(x) =
d

dx

∫ �

0

s(x− t)f(t) dt,

s(x) = −s(−x)∗, x ∈ (−�, �).
(6.12)

Define A, Φ1, and Φ2 by (6.1) and (6.2), with

ϕ1(x) = s(x), ϕ2(x) = Im, 0 < x < �. (6.13)

The condition (6.4) is easily checked by direct calculation.

Theorem 6.3. Let B(x) be constructed by (4.6) for operators A, S, Φ1, Φ2 as in
(6.10)–(6.13). Assume also that k(x) has selfadjoint values. Then in the intervals
between singularities,

H(x) =
1
2

[
Q(x) Im

Im Q(x)−1

]
, (6.14)

where Q(x) is a continuous m×m matrix-valued function whose values are non-
negative and invertible.

A similar result is obtained in [22, p. 507] under different assumptions,
namely, S ≥ 0 and S is factorable.

Lemma 6.4. Define an involution U on L2
m(0, �) by

(Uf)(x) = f(�− x), f ∈ L2
m(0, �).

Let S have the form (6.10), and assume also that k(x) = k(x)∗ on (−�, �). Then
USU = S.

Proof of Lemma 6.4. Write S in the form (6.12) with s(x) given by (6.11). The
assumptions on k(x) imply that s(x)∗ = s(x) = −s(−x)∗ on (−�, �). It is sufficient
to show that USUf = Sf whenever f is continuously differentiable on [0, �] and
f(0) = f(�) = 0. For such f , integration by parts yields

(Sf)(x) =
∫ �

0

s(x − t)f ′(t) dt.

Therefore

(USUf)(x) = −
∫ �

0

s(−x + t)f ′(t) dt =
∫ �

0

s(x− t)f ′(t) dt = (Sf)(x),

as was to be shown. �

Proof of Theorem 6.3. By Theorem 6.2, H(x) has the form (6.8). To deduce (6.14),
it is sufficient to show that h∗

2(ξ)h1(ξ) = 1
2 Im, that is,

d

dξ

〈
S−1

ξ ϕ1, ϕ2

〉
ξ

= 1
2 Im (6.15)
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for ξ in any interval between singularities. For such ξ,

(Sξf)(x) =
d

dx

∫ ξ

0

s(x− t)f(t) dt, f ∈ L2
m(0, ξ). (6.16)

Since s(x)∗ = s(x) = −s(−x)∗ on (−�, �),

SξIm =
d

dx

∫ ξ

0

s(x− t) dt =
d

dx

∫ x

x−ξ

s(u) du

= s(x)− s(x − ξ) = s(x) + s(ξ − x),

0 < x < ξ. Therefore by (6.13),

SξIm = ϕ1 + Uξϕ1,

where (Uξf)(x) = f(ξ−x) for all f ∈ L2
m(0, ξ). By Lemma 6.4, UξSξUξ = Sξ, and

so
Im = S−1

ξ ϕ1 + S−1
ξ Uξϕ1 = Im = S−1

ξ ϕ1 + UξS
−1
ξ ϕ1.

Writing S−1
ξ ϕ1 = f and integrating, we get

2
〈
S−1

ξ ϕ1, ϕ2

〉
ξ

= 2
∫ ξ

0

f(x) dx =
∫ ξ

0

[f(x) + f(ξ − x)] dx = ξIm.

This yields (6.15) and hence the result. �

7. Examples

The examples in this section illustrate Theorems 4.1 and 5.3 in a number of ways.
Each example features operators S, A, Φ1, Φ2 satisfying (3.1). We exhibit a corre-
sponding canonical differential system (1.1) and spectral data. The systems which
are constructed in the examples have Hamiltonians which are analytic except for
poles. The calculations are straightforward but sometimes lengthy, and we only
give the final results.

Let us first fix notation for the examples. In all cases, the underlying spaces
are H = L2

m(0, �) and G = Cm for some positive integer m. The operators A ∈ L(H)
and Φ2 ∈ L(G, H) are the same in all of the examples:

(Af)(x) = i

∫ x

0

f(t) dt and (Φ2c)(x) = ϕ2(x)c, ϕ2(x) ≡ Im. (7.1)

The operators S and Φ1 are special to each example. Since Φ1 ∈ L(G, H), we
always have

(Φ1c)(x) = ϕ1(x)c,

where ϕ1(x) is an m×m matrix-valued function. Let Pξ be the projection of H onto
Hξ = L2

m(0, ξ), 0 ≤ ξ ≤ �, and let Sξ = PξSPξ|Hξ
. Then according to Theorem 4.1,
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the system (4.1) associated with the operator identity (3.1) is obtained with

B(ξ) = Π∗PξS
−1
ξ PξΠ =

⎡⎢⎣
〈
S−1

ξ ϕ1, ϕ1

〉
ξ

〈
S−1

ξ ϕ2, ϕ1

〉
ξ〈

S−1
ξ ϕ1, ϕ2

〉
ξ

〈
S−1

ξ ϕ2, ϕ2

〉
ξ

⎤⎥⎦ . (7.2)

Here 〈·, ·〉ξ denotes an inner product in L2
m(0, ξ). In (7.2), we understand that ϕ1

and ϕ2 are first restricted to (0, ξ), and we interpret
〈
S−1

ξ ϕj , ϕk

〉
ξ

as an m ×m
matrix by viewing S−1

ξ as acting on the columns of the matrix-valued functions
ϕj and ϕk, j, k = 1, 2.

In the examples we are mainly concerned with the scalar case, m = 1. In
this case the underlying spaces are H = L2(0, �) and G = C, and we use standard
scalar notation.

Example 1. Assume the scalar case: H = L2(0, �) and G = C. Define A and Φ2 by
(7.1), and let

(Sf)(x) = f(x) + β

∫ �

0

f(t) dt,

(Φ1c)(x) = ϕ1(x)c, ϕ1(x) = 1
2 + βx,

where β is real and β < 0.

The operator identity (3.1) is satisfied, and S = Sv and Φ1 = Φ1,v, where
v(z) = 1

2 i − β/z for Im z > 0. The function v(z) belongs to N1 and has the
representation

v(z) =
∫ ∞

−∞

[
1

t− z
− t

1 + t2

]
dt

2π
− β

z
.

Thus v(z) has Krĕın-Langer data τ = {τ(t); ∆0; R(z)}, where τ(t) = t/(2π) on
∆0 = (−∞,∞) and R(z) = −β/z. We obtain

(Sξf)(x) = f(x) + β

∫ ξ

0

f(t) dt,

(S−1
ξ f)(x) = f(x)− β(1 + βξ)−1

∫ ξ

0

f(t) dt,

on L2(0, ξ). The function (4.6) in Theorem 4.1 is given by

B(ξ) =

[
(3ξ + 3βξ2 + β2ξ2)/12 1

2ξ

1
2ξ ξ/(1 + βξ)

]
.

The solution to the inverse problem in Theorem 5.3 is the system

dY

dx
= izJH(x)Y, Y1(0, z) = 0,
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H(x) = B′(x) = 1
2

⎡⎣(1 + βx)2/2 1

1 2/(1 + βx)2

⎤⎦ ,

0 ≤ x < �. The Hamiltonian has a singularity at x1 = −1/β if −1/β < �. The
transform (5.11) and Parseval relation (5.12) are given by

G(z) =
∫ �

0

(
e−izx − β

1 + βx

e−izx − 1
−iz

)
g(x) dx,∫ �

0

|g(t)|2dt =
1
2π

∫ ∞

−∞
|G(x)|2 dx + β |G(0)|2.

Thus we obtain a perturbation of the Paley-Wiener example (5.13)–(5.14).

Example 2. Assume the scalar case as in Example 1. The operator identity (3.1)
is satisfied with A and Φ2 given by (7.1), and

(Sf)(x) = f(x) + β

∫ �

0

[
eiλ(x−t) + e−iλ(x−t)

]
f(t) dt,

(Φ1c)(x) = ϕ1(x)c, ϕ1(x) = 1
2 + β

eiλx − e−iλx

iλ
,

where β and λ are real numbers such that β < 0 and λ > 0.
We have S = Sv and Φ1 = Φ1,v, where

v(z) = 1
2 i− β

z − λ
− β

z + λ
, Im z > 0.

This function belongs to N2 and has Krĕın-Langer data τ = {τ(t); ∆0; R(z)},
where τ(t) = t/(2π) on ∆0 = (−∞,∞) and R(z) = −β/(z − λ) − β/(z + λ). We
find

(Sξf)(x) = f(x) + β

∫ ξ

0

[
eiλ(x−t) + e−iλ(x−t)

]
f(t) dt,

(S−1
ξ f)(x) = f(x)−K(x)T (ξ)−1

∫ ξ

0

K(t)∗f(t) dt,

where K(x) =
[
eiλx e−iλx

]
, and

T (ξ) =

[
ξ + β−1 γ(ξ)

γ(ξ) ξ + β−1

]
, γ(ξ) =

e−2iλξ − 1
−2iλ

.

Using Theorem 5.3, we obtain a solution to the inverse problem given by
dY

dx
= izJH(x)Y, Y1(0, z) = 0,

H(x) =

[
h1(x)

h2(x)

] [
h1(x) h2(x)

]
,
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where

h1(x) = 1
2

x + β−1 + λ−1 sin(λx)
x + β−1 − λ−1 sin(λx)

,

h2(x) =
x + β−1 − λ−1 sin(λx)
x + β−1 + λ−1 sin(λx)

.

Singularities occur when det T (x) = (x + β−1)2 − λ−2 sin2(λx) = 0.

Example 3. Let H = L2
m(0, �) and G = Cm. Define A and Φ2 by (7.1), and let

(Sf)(x) = f(x) +
∫ �

0

r∑
j=1

βje
iλj(x−t) f(t) dt,

(Φ1c)(x) = ϕ1(x)c, ϕ1(x) = 1
2 +

r∑
j=1

βj
eiλjx − 1

iλj
,

where β1, . . . , βr are invertible selfadjoint m×m matrices and λ1, . . . , λr are dis-
tinct real numbers; in the formula for ϕ1(x), if λj = 0 for some j, the expression
[eiλjx − 1]/(iλj) is interpreted as

eiλjx − 1
iλj

∣∣∣∣
λj=0

= x.

The operator identity (3.1) is satisfied, and S = Sv and Φ1 = Φ1,v, where

v(z) = 1
2 i Im −

r∑
j=1

βj

z − λj
, Im z > 0.

This function has Krĕın-Langer data τ = {τ(t); ∆0; R(z)}, where τ(t) = t/(2π) on
∆0 = (−∞,∞) and R(z) = −

∑r
j=1 βj/(z − λj). We find

(Sξf)(x) = f(x) +
∫ ξ

0

K(x)CK(t)∗f(t) dt, (7.3)

(S−1
ξ f)(x) = f(x)−

∫ ξ

0

K(x)ρ(ξ)−1K(t)∗f(t) dt, (7.4)

where K(x) =
[
eiλ1x · · · eiλrx

]
, C = diag{β1, . . . , βr}, and

ρ(ξ) = C−1 +
∫ ξ

0

K(t)∗K(t) dt. (7.5)

The inverse operator S−1
ξ exists when det ρ(ξ) �= 0. Theorem 5.3 yields a solution

to the inverse problem given by

dY

dx
= izJH(x)Y, Y1(0, z) = 0, (7.6)
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H(x) =

[
h1(x)∗

h2(x)∗

] [
h1(x) h2(x)

]
, (7.7)

where

h1(x) = ϕ1(x) −K(x)ρ(x)−1

∫ x

0

K(t)∗ϕ1(t) dt, (7.8)

h2(x) = 1−K(x)ρ(x)−1

∫ x

0

K(t)∗ dt. (7.9)

These functions are computable in closed form, but the expressions are not simple
except in particular cases. We note that Examples 1 and 2 are special cases of this
example with m = 1.

Example 4. In Examples 1–3, v(z) is analytic for nonreal z. In this example, v(z)
has nonreal poles. Fix complex numbers λ �= λ̄ and β �= 0. Again with m = 1,
define A and Φ2 by (7.1), and let

(Sf)(x) = f(x) +
∫ �

0

[
β eiλ(x−t) + β̄ eiλ̄(x−t)

]
f(t) dt,

(Φ1c)(x) = ϕ1(x)c, ϕ1(x) = 1
2 + β

eiλx − 1
iλ

+ β̄
eiλ̄x − 1

iλ̄
.

The identity (3.1) is satisfied, and S = Sv and Φ1 = Φ1,v, where

v(z) = 1
2 i− β

z − λ
− β̄

z − λ̄
, Im z > 0.

This function belongs to N1 and has Krĕın-Langer data τ = {τ(t); ∆0; R(z)},
where τ(t) = t/(2π) on ∆0 = (−∞,∞) and R(z) = −β/(z − λ) − β̄/(z − λ̄). The
inverse problem is solved by Theorem 5.3 using the identical formulas (7.3)–(7.9)
from Example 3, but now taken with

K(x) =
[
eiλx eiλ̄x

]
, C =

[
0 β
β̄ 0

]
,

ϕ1(x) = 1
2 + β

eiλx − 1
iλ

+ β̄
eiλ̄x − 1

iλ̄
.

Example 5. Let H = L2(0, �) and G = C. Define A and Φ2 by (7.1), and let

(Sf)(x) = f(x) + ia

∫ x

0

f(t) dt− ia

∫ �

x

f(t) dt ,

(Φ1c)(x) = ϕ1(x)c, ϕ1(x) = 1
2 + iax,

where a �= 0 is a real number. The identity (3.1) is satisfied.
A priori we do not know a generalized Nevanlinna function v(z) such that

S = Sv and Φ1 = Φ1,v, but we shall determine such a function later. Nevertheless,
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we may apply Theorem 4.1 since S is a compact perturbation of the identity
operator and hence κS < ∞.

We find

(Sξf)(x) = f(x) + ia

∫ x

0

f(t) dt− ia

∫ ξ

x

f(t) dt ,

(S−1
ξ f)(x) = f(x)− 2ia

∫ x

0

e2ia(t−x)f(t) dt +
2ia

e2iaξ + 1

∫ ξ

0

e2ia(t−x)f(t) dt,

for all ξ such that e2iaξ +1 �= 0, that is, for all points ξ = (n− 1
2 )π/a, n = 1, 2, . . . ,

that lie in [0, �). The system constructed in Theorem 4.1 for the operator identity
(3.1) is

dY

dx
= izJH(x)Y, Y1(0, z) = 0,

H(x) =

[
h1(x)

h2(x)

] [
h1(x) h2(x)

]
,

where

h1(x) = 1
2 eiax + 1

2 i
ax

cos(ax)
, h2(x) =

1
cos(ax)

.

Next we determine v(z) belonging to some class Nκ such that S = Sv

and Φ1 = Φ1,v. This is an interpolation problem of a type first solved by A.L.
Sakhnovich [17]. Alternatively, we may use [12, Theorem 5.3]. Thus we may choose

v(z) = ia(z)/c(z), (7.10)

where [
a(z) b(z)
c(z) d(z)

]
= I2 − izΠ∗(I − zA∗)−1S−1ΠJ, (7.11)

Π =
[
Φ1 Φ2

]
. It can be shown that all of the conditions required in [12, Theorem

5.3] are met. We obtain S = Sv and Φ1 = Φ1,v, where

v(z) = −
(

1
2

+
a

z

)
cot

(z + 2a)�
2

.

We remark that this provides a nontrivial example of the interpolation result in
[12, Theorem 5.3].

Example 6. Let H = L2(0, �) and G = C, and let α, β be real numbers, αβ �= 0.
The operator identity (3.1) is satisfied with A and Φ2 defined by (7.1), and

(Sf)(x) = 2f(x) + β

∫ �

0

e−α|x−t|f(t) dt ,

(Φ1c)(x) = ϕ1(x)c, ϕ1(x) = 1 + β
e−αx − 1
−α

.
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The hypotheses of Theorem 4.1 are satisfied. By Theorem 6.3, the Hamiltonian
H(ξ) = B′(ξ) constructed from (4.6) has the form

H(ξ) =
1
2

[
Q(ξ) 1

1 Q(ξ)−1

]
,

where Q(ξ) is a positive continuous function in the intervals between singularities.
The location of singularities and form of Q(ξ) depend on cases.

Case 1: α2 + αβ > 0. Put ω2 = α2 + αβ, ω > 0. We obtain

Q(ξ) =

[
ω

α

(ω + α)e
1
2 ωξ − (ω − α)e−

1
2 ωξ

(ω + α)e
1
2 ωξ + (ω − α)e−

1
2 ωξ

]2

. (7.12)

There are no singularities if α > 0. If α < 0, there is one singularity at

ξ1 =
1
ω

log
∣∣∣∣ω − α

ω + α

∣∣∣∣
if this point is less than �. We have S = Sv and Φ1 = Φ1,v with

v(z) = i− β

z + iα
, Im z > 0.

For α > 0, v(z) belongs to N0, that is, it is a classical Nevanlinna function; its
Krĕın-Langer (Nevanlinna) representation is

v(z) =
∫ ∞

−∞

[
1

t− z
− t

1 + t2

]
dτ(t),

where

dτ(t) =
[

1
π

+
β

π

α

t2 + α2

]
dt. (7.13)

For α < 0, v(z) belongs to N1 and has Krĕın-Langer representation

v(z) =
∫ ∞

−∞

[
1

t− z
− t

1 + t2

]
dτ(t) − β

z + iα
− β

z − iα
,

where dτ(t) has the same form (7.13).

Case 2: α2 + αβ = 0. In this case, β = −α. We find that

Q(ξ) = (1 + 1
2αξ)−2.

There are no singularities if α > 0. If α < 0, there is one singularity at

ξ1 = − 2
α

if this point is less than �. We have S = Sv and Φ1 = Φ1,v for the same v(z) as in
Case 1 taken with β = −α.
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Case 3: α2 + αβ < 0. In this case,

Q(ξ) =
ω2

α2
cot2

(
1
2 ωξ + ρ

)
,

where ω2 = |α2 + αβ|, ω > 0, and tan ρ = ω/α. There are singularities at all of
the points

ξk =
1
ω

(kπ − 2ρ), k = 0,±1,±2, . . . ,

which lie in (0, �). An explicit choice of generalized Nevanlinna function v(z) such
that S = Sv and Φ1 = Φ1,v can be constructed as in Example 5 using the formulas
(7.10) and (7.11). We obtain

v(z) = i− β

z + iα
+

i

c(z)

[
1 +

βα−1z

z + iα
c(−iα)

]
,

where

c(z) = −iz

∫ �

0

e−izt

[
− α2

2ω2
+ σ−1 cos

(
ω(t− 1

2 �)
)]

dt

and σ = 2ω2[α cos(1
2ω�) − ω sin(1

2ω�)]/[α(α2 + ω2)]. The integral in the formula
for c(z) is easily computed in terms of elementary functions.

Example 7. This example uses a generalized Nevanlinna function v(z) whose Krĕın-
Langer representation (2.2) involves a nontrivial term with ∆1 = (−1, 1). Let
H = L2(0, �) and G = C, and let α, β be real numbers with α �= 0. The operator
identity (3.1) is satisfied with A and Φ2 defined by (7.1), and

Sf = f(x) +
∫ �

0

[
α|x− t|+ β

]
f(t) dt

=
d

dx

∫ �

0

s(x− t)f(t) dt,

Φ1g = ϕ1(x)g,

where

s(x) =

⎧⎨⎩
1
2 + βx + 1

2 αx2, 0 < x < �,

− 1
2 + βx− 1

2 αx2, −� < x < 0,

and ϕ1(x) = s(x) for 0 < x < �. Theorems 4.1 and 6.3 produce a system with
Hamiltonian H(ξ) = B′(ξ) of the form

H(ξ) =
1
2

[
Q(ξ) 1

1 Q(ξ)−1

]
,

where Q(ξ) is positive and continuous in the intervals between singularities.
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Case 1: α < 0. For sufficiently large � there is one singularity, and

Q(ξ) =
1
2

[
1 +

αξ + 2β√
2|α|

eξ
√

|α|/2 − e−ξ
√

|α|/2

eξ
√

|α|/2 + e−ξ
√

|α|/2

]2

=
1
2

[
1 +

αξ + 2β√
2|α|

tanh
(
ξ
√
|α|/2

)]2
.

In this case S = Sv and Φ1 = Φ1,v, where v(z) ∈ N1 is given by

v(z) = 1
2 i− iα

z2
− β

z
, y > 0.

This function has the Krĕın-Langer representation

v(z) =
∫ 1

−1

[
1

t− z
− S1(t, z)

]
dτ(t)

+
(∫ −1

−∞
+
∫ ∞

1

)[
1

t− z
− t

1 + t2

]
dτ(t) − C

z
,

where C = (πβ − 2|α| − 1)/π and

τ(t) =
1
2π

t− |α|
π

1
t
, t �= 0.

In the definition of S1(t, z), we take α1 = 0 and ρ1 = 1:

1
t− z

− S1(t, z) =
1

t− z

t2

z2
.

Case 2: α > 0. In this case,

Q(ξ) =
1
2

[
1 +

αξ + 2β√
2α

tan
(
ξ
√

α/2
) ]2

.

For large � there can be an arbitrarily large number of singularities. These occur
at the points in (0, �) where Q(ξ) is zero or undefined. To find v(z) in some class
Nκ such that S = Sv and Φ1 = Φ1,v, we again use the formulas (7.10) and (7.11)
as in Example 5. Setting α = 1

2ω2, we get

v(z) = 1
2 i− β

z
− iα

z2

−
(

A

z
+

B

z2

)
e

1
2 iz� z2 − ω2

z sin(1
2z�) cos(1

2ω�)− ω cos(1
2z�) sin(1

2ω�)
,

where

A = 1
2 cos(1

2ω�) +
(

1
2ω� +

2β

ω

)
sin(1

2ω�),

B = − iα

ω
sin(1

2ω�).
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Example 8. We return to Example 1 and show a connection with Bessel’s equation.
Write the system constructed in Example 1 as

dY

dx
= izJH(x)Y, Y1(0, z) = 0,

H(x) = 1
2

[
Q(x) 1

1 Q(x)−1

]
,

Q(x) = 1
2 (1 + βx)2.

(7.14)

Here β < 0. In the regular case, the form of Hamiltonian in (7.14) occurs in the
theory of dual systems [22]. We apply similar constructions and set

U(x, z) =
[
U1(x, z)
U2(x, z)

]
= Y (2x, z)e−ixz.

This leads to the system

dU

dx
= izJ

[
P (x) 0

0 P (x)−1

]
U, U1(0, z) = 0,

P (x) = Q(2x), 0 ≤ x < 1
2 �.

(7.15)

We refer to [5, 22] for the notion of dual equations. In our case, the dual equations
derived from (7.15) have the form

U ′′
1 +

P ′(x)
P (x)

U ′
1 + z2U1 = 0,

U ′′
2 −

P ′(x)
P (x)

U ′
2 + z2U2 = 0,

with appropriate boundary conditions that play no role here. Writing

x1 = − 1
β

,

we obtain Q(x) = 1
2 β2(x − x1)2 and P (x) = 2β2(x − 1

2 x1)2. The dual equations
become

U ′′
1 +

2
x− 1

2 x1

U ′
1 + z2U1 = 0,

U ′′
2 −

2
x− 1

2 x1

U ′
2 + z2U2 = 0.

On setting U1 = (x− 1
2 x1)−1y1 and U2 = (x − 1

2 x1)y2, we obtain

y′′
1 + z2y1 = 0,

y′′
2 +

(
z2 − 2

(x− 1
2 x1)2

)
y2 = 0,

which are forms of Bessel’s equation for the orders ν = 1
2 and ν = 3

2 (see Watson
[23, §4.3, p. 95]).
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8. Open problems

A number of open problems are suggested by our results, among them:

(1) Investigate the direct problem.
(2) Hamiltonians of the form

H(x) = 1
2

[
Q(x) 1

1 Q(x)−1

]
arise in Theorem 6.3. In the regular case such Hamiltonians give rise to a
pair of dual equations [5, 22]. An example of a dual pair for a system with
singularities is given in Example 8. The theory of dual equations should be
generalized to systems with singularities. This requires introducing a new
notion of spectral data for selfadjoint second order equations, and relating
such a notion to spectral data for the associated canonical differential system.

(3) According to Theorem 6.1, the hypotheses of Theorem 4.1 hold when an ana-
lyticity condition is met. The examples in Section 7 show that the hypotheses
of Theorem 4.1 also hold in situations which are not covered by Theorem 6.1.
It is likely that there are general criteria that cover such examples.

Errata. In [15], Section 3, citations to theorems and definitions are shifted by one
beginning with Theorem 3.2. For example, on p. 130, line 1, replace “conclusions
of Theorem 3.2” by “conclusions of Theorem 3.3”.
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1. Introduction

In the Hilbert space L2
m(a, b) we define the orthogonal projectors Pξf = f(x),

a ≤ x < ξ and Pξf = 0 , ξ < x ≤ b , where f(x) ∈ L2
m(a, b).

Definition 1.1. A bounded operator S− on L2
m(a, b) is called lower triangular if for

every ξ the relations
S−Qξ = QξS−Qξ, (1.1)

are true, where Qξ = I − Pξ.

Definition 1.2. A bounded operator S+ on L2
m(a, b) is called upper triangular if

for every ξ the relations
S+Pξ = PξS+Pξ (1.2)

are true.

Definition 1.3. A bounded, positive and invertible operator S on L2
m(a, b) is said

to admit the right triangular factorization if it can be represented in the form

S = S+S∗
+, (1.3)

where S+ and S−1
+ are upper triangular, bounded operators.
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Definition 1.4. A bounded, positive and invertible operator S on L2
m(a, b) is said

to admit the left triangular factorization if it can be represented in the form

S = S−S∗
−, (1.4)

where S− and S−1
− are lower triangular, bounded operators.

I. Gohberg and M.G. Krein [5] studied the problem of factorization under
the assumption

S − I ∈ γ∞, (1.5)
where γ∞ is the set of compact operators. The operators S− and S+ were assumed
to have the form S+ = I + X+, S− = I + X−; X+, X− ∈ γ∞. The factorization
method plays an important role in a number of analysis problems (for instance in-
tegral equations [17], spectral theory [18], nonlinear integrable equations). Giving
up condition (1.5) and considering more general triangular operators would essen-
tially widen the scope of the factorization method. D. Larson proved in his famous
work [9] the existence of positive non-factorable operators. In Section 2 we formu-
late the necessary and sufficient conditions under which the positive operator S
admits a triangular factorization. The factorizing operator V = S−1

− is constructed
in an explicit form. In Section 3 we consider the class of positive operators S which
satisfy the operator identity

AS − SA∗ = ΠJΠ∗. (1.6)

For operators of this class, the factorization conditions have a simpler form. The
general results of Sections 2 and 3 are applied to operators with difference kernels
(Section 4),

Sf =
d

dx

∫ a

0

f(t)s(x− t)dt, (1.7)

and to operators with sum-difference kernels (Section 5),

Sf =
d2

dx2

∫ b

0

[s1(x− t) + s2(x + t)]f(t)dt, (1.8)

where f(t) ∈ L2(0, b). In particular, we prove that the Dixon operator [4], [8], [19]

Sf = f(x)− λ

π

∫ 1

0

f(t)
x + t

dt = g(x), (1.9)

where f(x) ∈ L2(0, 1) and λ < 1, admits a left triangular factorization. We note
that the operators of the forms (1.7) and (1.8) play an important role in theoretical
and applied problems (inverse problems, stationary processes, prediction theory).
In Section 6 we investigate the case when

Af = i

∫ x

0

f(t)dt, rank(AS − SA∗) = 1. (1.10)

In this case the factorizing operator S− has the special form

S−f =
d

dx

∫ x

0

f(t)φ(x − t)dt. (1.11)
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In Section 7 we consider a class of operators of the form

SF = F (x)−
∫ 1

0

F (y)k(
y

x
)
1
x

dy = G(x), (1.12)

where F (x) ∈ L2(0, 1). The Dixon operator belongs to this class.

Remark 1.1. In our paper we consider triangular operators in the space L2
m(a, b)

with the special set of projectors Pξ. A general theory of triangular operators is
constructed in the works [2], [3], [7], [9]–[13].

2. Triangular factorization

Let S be a linear, bounded and invertible operator S on L2
m(a, b). We introduce

the notation

Sξ = PξSPξ, (f, g)ξ =
∫ ξ

a

g∗(x)f(x)dx, (2.1)

where f(x), g(x) ∈ L2
m(a, b).

Theorem 2.1. Let the bounded and invertible operator S on L2
m(a, b) be positive.

For the operator S to admit the left triangular factorization it is necessary and
sufficient that the following assertions are true.

1. There exists an m×m matrix function F0(x) such that

Tr

∫ b

a

F ∗
0 (x)F0(x)dx < ∞, (2.2)

that the m×m matrix function

M(ξ) = (F0(x), S−1
ξ F0(x))ξ (2.3)

is absolutely continuous, and almost everywhere

detM ′(ξ) �= 0. (2.4)

2. The vector functions ∫ x

a

v∗(x, t)f(t)dt (2.5)

are absolutely continuous. Here f(x) ∈ L2
m(a, b) and

v(ξ, t) = S−1
ξ PξF0(x), (2.6)

(In (2.3) the operator S−1
ξ transforms the matrix column of the original into

the corresponding column of the image.)
3. The operator

V f = [R∗(x)]−1 d

dx

∫ x

a

v∗(x, t)f(t)dt (2.7)
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is bounded, invertible and lower triangular with its inverse V −1. Here R(x)
is an m×m matrix function such that

R∗(x)R(x) = M ′(x). (2.8)

Proof. Necessity. We suppose that the operator S admits the left triangular fac-
torization (1.4). Let F0(x) ∈ L2

m(a, b) be a fixed m×m matrix function satisfying
relation (2.2). We introduce the m×m matrix function

R(x) = V F0(x), (2.9)

where V = S−1
− . We can choose F0(x) in such a way that almost everywhere the

inequality
detR(x) �= 0 (2.10)

is true. From relations (1.4), (2.3) and (2.9) we have

M(ξ) =
∫ ξ

a

R∗(x)R(x)dx. (2.11)

Hence the function M(ξ) is absolutely continuous and

M ′(x) = R∗(x)R(x). (2.12)

Now we use the equality

(f, S−1
ξ F0)ξ = (V f, V F0)ξ. (2.13)

Relations (2.9) and (2.13) imply that

d

dx

∫ x

a

v∗(x, t)f(t)dt = R∗(x)(V f). (2.14)

The necessity is proved.

Sufficiency. Let the conditions 1–3 of Theorem 2.1 be fulfilled. It follows from
(2.6)–(2.8) that

V F0 = R(x). (2.15)

From relations (2.6), (2.7) and (2.15) we deduce that (V f, V F0)ξ = (f, S−1
ξ PξF0)ξ,

i.e.,
V ∗PξV PξF0 = S−1

ξ PξF0. (2.16)

We define v(ξ, t) in the domain ξ ≤ t ≤ b by the equality v(ξ, t) = 0. It follows
from the triangular structure of the operators V and V −1 that

PξV
−1PξV Pξ = Pξ. (2.17)

Hence in view of (2.6) and (2.16) we have

PξV
−1[V ∗]−1v(ξ, t) = PξF0. (2.18)

It is easy to see that PξSv(ξ, t) = PξF0. Thus according to relations (2.17) and
(2.18), the equality

(V −1[V ∗]−1v(ξ, t), v(µ, t)) = (Sv(ξ, t), v(µ, t)) (2.19)
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is true. If there exists such a vector function f0(x) ∈ L2
m(a, b) that (f0, v(ξ, t)) = 0,

then due to (2.7) the relation
V f0 = 0 (2.20)

is valid. The operator V is invertible. Hence from (2.20) we deduce that f0 = 0.
This means that v(ξ, t) is a complete system in L2

m(a, b). Using this fact and
relation (2.19) we obtain the desired equality

S = V −1[V ∗]−1. (2.21)

The theorem is proved. �
Corollary 2.1. If the conditions of Theorem 2.1 are fulfilled, then the corresponding
operator S−1 can be represented in the form

S−1 = V ∗V. (2.22)

We introduce the notation

Cξ = QξSQξ, [f, g]ξ =
∫ b

ξ

g∗(x)f(x)dx. (2.23)

In the same way as Theorem 2.1 we deduce the following result.

Theorem 2.2. Let the bounded and invertible operator S on L2
m(a, b) be positive.

For the operator S to admit the right triangular factorization it is necessary and
sufficient that the following assertions are true.

1. There exists an m×m matrix function F0(x) such that

Tr

∫ b

a

F ∗
0 (x)F0(x)dx < ∞, (2.24)

that the m×m matrix function

N(ξ) = [F0(x), C−1
ξ F0(x)]ξ (2.25)

is absolutely continuous, and almost everywhere

detN ′(ξ) �= 0. (2.26)

2. The vector functions ∫ b

x

u∗(x, t)f(t)dt (2.27)

are absolutely continuous. Here f(x) ∈ L2(a, b) and

u(ξ, t) = C−1
ξ QξF0. (2.28)

3. The operator

Uf = −[Q∗(x)]−1 d

dx

∫ b

x

u∗(x, t)f(t)dt (2.29)

is bounded, upper triangular and invertible together with its inverse U−1.
Here

Q∗(x)Q(x) = −N ′(x). (2.30)
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Corollary 2.2. If the conditions of Theorem 2.2 are fulfilled, then the corresponding
operator S−1 can be represented in the form

S−1 = U∗U. (2.31)

Remark 2.1. Formulas (2.6), (2.7) and (2.28), (2.29) give the right and left factor-
ization of the operator T = S−1. It can be useful for solving operator equations of
the form Sf = g. Using the notation

T = S−1, Tξ = QξTQξ, w(ξ, t) = T−1
ξ QξTF0, (2.32)

we introduce the operator

Wf = −[R∗(x)]−1 d

dx

∫ b

x

w∗(x, t)f(t)dt. (2.33)

The connection between the operators V and W is given by the following assertion.

Proposition 2.1. Let the operator V defined by formula (2.7) be bounded. Then the
operator W defined by formula (2.33) is also bounded and

WT = V. (2.34)

Proof. It can be proved by linear algebra methods that (see [18], p. 41)

TQξT
−1
ξ QξT = T − S−1

ξ Pξ. (2.35)

From relations (2.6), (2.32) and (2.35) we have

Tw(ξ, t) = TF0 − v(ξ, t). (2.36)

Hence the equality

[Tf, w(ξ, t)]ξ = (Tf, F0)− (f, v(ξ, t))ξ (2.37)

is true. From formulas (2.7) , (2.33) and (2.37) we obtain relation (2.34). The
proposition is proved. �

Using Proposition 2.1 we deduce the following important assertion.

Proposition 2.2. Let S be a bounded, positive, invertible operator and let the oper-
ator V defined by formula (2.7) be bounded. If the relations

V F0 = R(x), (2.38)

and
V f �= 0, ||f || �= 0 (2.39)

are true, then the operator V is invertible, the operator V −1 is lower triangular,
and

T = V ∗V. (2.40)

(Thus the operator T admits the right triangular factorization.)
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Proof. It follows from the boundedness of the operator V and relation (2.34) that
the operator W is also bounded. Let us consider

(Wf, R) =
∫ b

a

w∗(a, t)f(t)dt = (f, F0), (2.41)

i.e.,
W ∗R = F0. (2.42)

Due to (2.38) and (2.42) we have

V W ∗R = R. (2.43)

From (2.34) we deduce that

WTW ∗ = V W ∗. (2.44)

Using (2.44) we see that the operator V W ∗ is selfadjoint and lower triangular. It
means that the operator V W ∗ has the form

V W ∗f = L(x)f, (2.45)

where L(x) is an m×m matrix function. Taking into account equality (2.43) we
have L(x) = Im, i.e.,

V W ∗ = I, WV ∗ = I. (2.46)

Let us introduce the notation H = W ∗L2
m(a, b). If for all h ∈ H the relation

(g, h) = 0 is true, then Wg = 0. Hence in view of relation (2.34) we obtain that

V f = 0 (f = T−1g). (2.47)

From condition (2.39) we deduce that g = 0. Then the equality

H = L2
m(a, b) (2.48)

is valid. Due to (2.46) and (2.48) the operator W ∗ maps L2
m(a, b) onto L2

m(a, b)
one-to-one. According to the classical Banach theorem [1] the operator W ∗ is
invertible. It follows from (2.46) that the operator V is also invertible and

V −1 = W ∗, (2.49)

and
V ∗W = I. (2.50)

From (2.34) and (2.50) we directly obtain that T = V ∗V . The proposition is
proved. �

Example 2.1. Let us consider the operator

Sf = f(x) +
i

π
V.P.

∫ b

a

f(t)
c(t)c(x)
x− t

dt, −∞ < a < b < ∞, (2.51)

where 0 < m < c(t) < 1. The operator (2.51) does not satisfy condition (1.5) but
admits the left triangular factorization (see [15]).
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3. Operator identity and factorization problems

We consider the operators A, S, Π and J satisfying the operator identity

AS − SA� = iΠJΠ∗. (3.1)

We suppose that the operators A and S act on the Hilbert space L2
m(0, b), the

operator Π maps G (dimG = n < ∞) into L2
m(0, b), the operator J acts on

G, and J = J∗, and J2 = In. We note that the operator Π has the form
Πg = [φ1(x), φ2(x), . . . , φn(x)]g, where φk(x) are m×1 vector functions, g =
col[g1, g2, . . . , gn], φk(x) ∈ L2

m(0, b). Relation (3.1) is fulfilled for the operators
S which play an important role in the spectral theory of the canonical differential
systems (see [18]). We shall use the following result ([18], Ch. 4).

Theorem 3.1. Let the following conditions be fulfilled.
1. The operator S is bounded, positive and invertible.
2. The relations

A�Pξ = PξA
�Pξ, 0 ≤ ξ ≤ b (3.2)

are true.
3. The spectrum of the operator A is concentrated at the origin and there is a

constant M > 0 such that

||(Pξ+∆ξ − Pξ)A(Pξ+∆ξ − Pξ)|| ≤ M |∆ξ|, 0 ≤ ξ ≤ b. (3.3)

Then the n×n matrix function

W (ξ, z) = In + izJΠ�S−1
ξ (I − zA)−1PξΠ (3.4)

satisfies the matrix integral equation

W (x, z) = In + izJ

∫ x

0

[dB(t)]W (t, z), (3.5)

where
B(ξ) = Π�S−1

ξ PξΠ. (3.6)

From relations (1.4) and (3.6) we obtain the necessary conditions for the
operator S to admit the left triangular factorization.

Proposition 3.1. Let the operator S satisfy the relation (3.1) and let the conditions
of Theorem 3.1 be fulfilled. If the operator S admits the left triangular factorization,
then the matrix function B(x) is absolutely continuous and

d

dx
B(x) = H(x) = β∗(x)β(x), (3.7)

where

β(x) = [h1(x), h2(x), . . . , hn(x)], hk(x) = V φk(x), V = S−1
− . (3.8)

Using relations (3.5) and (3.7) we obtain that
d

dx
W (x, z) = izJH(x)W (x, z). (3.9)
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Lemma 3.1. Let the conditions of Proposition 3.1 be fulfilled and let the m×1 vector
functions

Fj(x, z) = (I −Az)−1φj , 1 ≤ j ≤ n (3.10)
form a complete system in L2

m(a, b). Then we have the equality

mesE = 0, (3.11)

where the set E is defined by the relation

x ∈ E if H(x) = 0. (3.12)

Proof. We use the following relation (see [18], Ch. 4):

J −W ∗(ξ, µ)JW (ξ, λ)
i(µ− λ)

= Π∗(I − µA∗)−1S−1
ξ (I − λA−1PξΠ. (3.13)

Formula (3.13) implies that

(S−1
ξ Fj(x, λ), F�(x, µ))ξ =

i[Y ∗
� (ξ, µ)JYj(ξ, λ)− Y ∗

� (0, µ)JYj(0, λ)]
µ− λ

, (3.14)

where Yj(x, λ) = col[W1,j(x, λ), W2,j(x, λ), . . . , Wn,j(x, λ)]. Here Wi,j(x, λ) are en-
tries of W (x, λ). In view of (3.9) and (3.14) we have

d

dξ
(S−1

ξ Fj(x, λ), F�(x, µ))ξ = 0, ξ ∈ E. (3.15)

From (3.12) and (3.15) it follows that
d

dξ
(V Fj(x, λ), V F�(x, µ))ξ = 0, ξ ∈ E, (3.16)

i.e., the relation
[V Fj ](x, λ) = 0, x ∈ E, 1 ≤ j ≤ n, (3.17)

is true. As the operator V is invertible and the system of functions Fj(x, λ) is
complete in L2

m(0, b), the system of the functions V Fj(x, λ) is also complete in
L2

m(0, b). The assertion of the lemma follows from this fact and equality (3.17). �

Further we suppose that the n×n matrix function B(x) is absolutely contin-
uous and that relations (3.7), (3.8) are true. Let us introduce the m×m matrix
functions

R(x) = h1(x)α1 + h2(x)α2 + · · ·+ hn(x)αn, (3.18)
F0(x) = φ1(x)α1 + φ2(x)α2 + · · ·+ φn(x)αn, (3.19)

v(ξ, x) = S−1
ξ PξF0(x), (3.20)

where αk are constant 1×m matrices. From Proposition 3.1 we deduce:

Corollary 3.1. Let the conditions of Theorem 3.1 and Lemma 3.1 be fulfilled. If
m = 1, then there exist numbers α1, α2, . . . , αn such that almost everywhere we
have the inequality

R(x) �= 0. (3.21)

Now we can formulate the main result of this section.
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Theorem 3.2. Let the following conditions be fulfilled.
1. The operator S satisfies relation (3.1).
2. The conditions of Theorem 3.1 are valid.
3. The matrix function B(x) is absolutely continuous and formulas (3.7) and

(3.8) are true.
4. The vector functions Fj(x, λ) (1 ≤ j ≤ n) form a complete system in L2

m(a, b).
5. Almost everywhere the inequality

detR(x) �= 0 (3.22)

holds.
Then the operator T = S−1 admits the right triangular factorization

Proof. We introduce the operator

V f = [R∗(x)]−1 d

dx

∫ x

0

v∗(x, t)f(t)dt. (3.23)

From (3.4), (3.22) and (3.23) we deduce the equality

V Fj = [h1(x), . . . , hn(x)]Yj(x, z). (3.24)

Relation (3.24) implies that

(V Fj(x, λ), V F�(x, µ)) =
∫ b

0

Y ∗
� (x, µ)H(x)Yj(x, λ)dx. (3.25)

Using equality (3.24) and relation
d

dx
Yj(x, z) = izJH(x)Yj(x, z) (3.26)

we have

(V Fj(x, λ), V F�(x, µ)) =
i[Y ∗

� (b, µ)JYj(b, λ)− Y ∗
� (0, µ)JYj(0, λ)]

µ− λ
. (3.27)

Comparing formulas (3.14) and (3.27) we obtain the equality

T = V ∗V. (3.28)

This means that the introduced operator V is bounded, V f �= 0, and ||f || �= 0.
Taking into account (3.18), (3.19) and (3.24) when z = 0 we obtain the relation

V F0 = R. (3.29)

Thus all conditions of Proposition 2.2 are fulfilled. The assertion of the theorem
follows from Proposition 2.2. �
Proposition 3.2. Let the following conditions be fulfilled.

1. Conditions 1–3 of Theorem 3.2 are valid.
2. The m×m blocks b1,j(x) (1 ≤ j ≤ n) of the matrix B(x) are absolutely

continuous and
b1,j(x) = h∗

1(x)hj(x). (3.30)
3. All the entries of the matrices hj(x) belong to L2(a, b).
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4. Almost everywhere the inequality (3.22) holds. Here R(x) = h1(x).

Then the operator V defined by formula (3.23) and the equality

v(ξ, x) = S−1
ξ Pξφ1(x) (3.31)

are bounded.

Proof. We introduce the matrix H(x) = β∗(x)β(x), where β(x) = [h1(x), h2(x),
. . . , hn(x)]. Relations (3.23)–(3.25) remain true. We use the formula∫ b

0

Y ∗
� (x, µ)[dB(x)]Yj(x, λ)dx =

i[Y ∗
� (b, µ)JYj(b, λ)− Y ∗

� (0, µ)JYj(0, λ)]
µ− λ

(3.32)

and the inequality H(x)dx ≤ dB(x). From formulas (3.14), (3.25) and (3.32) we
deduce that

V ∗V ≤ T. (3.33)

The proposition is proved. �

4. Operators with difference kernels

Let us consider the bounded, positive and invertible operator S with the difference
kernel

Sf =
d

dx

∫ a

0

f(t)s(x− t)dt. (4.1)

Let us put

Af = i

∫ x

0

f(t)dt, f ∈ L2(0, a). (4.2)

Equality (3.1) is valid (see [17], Ch. 1), if

J =
[

0 1
1 0

]
, (4.3)

φ1(x) = M(x), φ2(x) = 1, (4.4)

where M(x) = s(x), 0 ≤ x ≤ a. In the case under consideration the matrix B(ξ)
has the form

B(ξ) =
[

(S−1
ξ M, M) (S−1

ξ 1, M)
(S−1

ξ M, 1) (S−1
ξ 1, 1)

]
. (4.5)

The corresponding function F (x, λ) has the form

F (x, λ) = eixλ. (4.6)

The operator A defined by formula (4.2) satisfies all the conditions of Theorem
3.1. The following fact is useful here.



300 L.A. Sakhnovich

Theorem 4.1. Let the operator S be bounded, positive, invertible and have the form
(4.1). If the matrix function B(x) is absolutely continuous and

B′(x) = β∗(x)β(x), β(x) = [h1(x), h2(x)], (4.7)

then the equality
h1(x)h2(x) + h2(x)h1(x) = 1 (4.8)

is true almost everywhere.

Proof. Let us consider the expression

iξ = (S−1
ξ PξM, 1) + (1, S−1

ξ PξM). (4.9)

Setting
N1(x, ξ) = S−1

ξ PξM, (4.10)

we rewrite formula (4.9) in the form iξ =
∫ ξ

0 [N1(x, ξ) + N1(x, ξ)dx , i.e.,

iξ =
∫ ξ

0

[N1(x, ξ) + N1(ξ − x, ξ)]dx. (4.11)

We use the relation (see [17], Ch. 1)

N1(x, ξ) + N1(ξ − x, ξ) = 1. (4.12)

In view of (4.11) and (4.12) we obtain the equality

iξ = ξ. (4.13)

Taking into consideration Equalities (2.1), (3.8), (4.1) and (4.9) we deduce that

iξ =
∫ ξ

0

[h1(x)h2(x) + h2(x)h1(x)]dx. (4.14)

Relation (4.8) follows from (4.13) and (4.14). The theorem is proved. �
From equality (4.8) we have

h2(x) �= 0, 0 ≤ x ≤ a. (4.15)

Remark 4.1. The operators of the form

Sf = f(x) +
∫ a

0

f(t)k(x− t)dt, (4.16)

where k(x) ∈ L(−a, a), belong to class (4.1). For this case inequality (4.15) was
deduced by M.G. Krein by another method (see [5], Ch. 4). The main result of this
section follows directly from Proposition 3.1, Theorem 3.2 and Inequality (4.15).

Theorem 4.2. Let the operator S be positive, invertible and have the form (4.1).
The operator S admits the left triangular factorization if and only if the matrix
B(x) is absolutely continuous and relation (4.7) is valid.

Remark 4.2. If a bounded operator S on L2(0, b) has the form (4.1) and admits
one of the factorizations (left or right) then it admits another factorization too
(see [15]).
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Example 4.1. Let us consider the operator Sβ of the form

Sβf = f +
iβ

π
V.P.

∫ b

0

f(t)
x− t

dt, (4.17)

where −1 < β < 1. This operator with a difference kernel is bounded, invertible
and positive (see [15]). The operator Sβ does not satisfy condition (1.4). Never-
theless Sβ admits the left triangular factorization Sβ = WαW ∗

α, where

Wαf =
xiα√

ch(πα)Γ(iα− 1)
d

dx

∫ x

0

f(t)(x− t)−iαdt. (4.18)

Here α = 1
π arcthβ, and Γ(z) is the gamma function.

5. Operators with sum–difference kernels

Let us consider the following class of bounded and positive operators which can
be represented in the form ((+,−)-class):

Sf =
d2

dx2

∫ b

0

[s1(x− t) + s2(x + t)]f(t)dt, (5.1)

where f(t) ∈ L2(0, b). We introduce the operator

Af =
∫ x

0

(t− x)f(t)dt. (5.2)

Then the operator identity (3.1) is valid. Here the 4×4 matrix J is defined by the
relation

J =
[

0 I2

I2 0

]
, (5.3)

and the operator Π has the form

Π = [Φ1, Φ2], (5.4)

the operators Φ1 and Φ2 are defined by the relations

Φ1g = −iM(x)g1 − iM0(x)g2, (5.5)

Φ2g = g1 + xg2, (5.6)
where

M(x) = −[s1(x) + s2(x)], M0(x) = s′1(x)− s′2(x), (5.7)
and a constant 2×1 vector g has the form g = col[g1, g2]. The main result of this
section follows directly from Proposition 3.1, Lemma 3.1 and Theorem 3.2.

Theorem 5.1. Let the operator S be positive, invertible and have the form (5.1).
The operator S admits the left triangular factorization if and only if the matrix
B(x) is absolutely continuous and

B′(x) = β∗(x)β(x), β(x) = [h1(x), h2(x), h3(x), h4(x)]. (5.8)
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Example 5.1. Let us consider the equation

Sf = f(x) +
iµ

π
V.P.

∫ 1

0

f(t)
x− t

dt− λ

π

∫ 1

0

f(t)
x + t

dt = g(x), (5.9)

where f(x) ∈ L2(0, 1), λ = λ, µ = µ, and |λ| + |µ| < 1. It is well known ([5],
Ch. 9) that the operator S is bounded, positive and invertible, i.e., the operator
S belongs to the (+,-) class . We introduce the functions

v(x, λ, µ) = S−11, α(λ, µ) =
∫ 1

0

v(x, λ, µ)dx = (S−11, 1) > 0. (5.10)

In view of (5.9) and (5.10) the relations

S−1
ξ Pξ1 = v(

x

ξ
, λ, µ), (S−1

ξ Pξ1, 1)ξ = ξα(λ, µ) (5.11)

are true. We introduce the operator

V f =
1√

α(λ, µ)
d

dx

∫ x

0

f(t)v(
t

x
, λ, µ)dt. (5.12)

Using Proposition 3.2 we deduce that the operator V is bounded and S−1 ≥ V ∗V .

Open problem 5.1 Prove that

V f �= 0, when ||f || �= 0. (5.13)

Remark 5.1. If relation (5.13) is true, then S−1 = V ∗V and the operator S admits
the left triangular factorization

S = V −1[V ∗]−1. (5.14)

Remark 5.2. Relation (5.13) is valid when λ = 0 (see Example 4.1). Now we
consider separately the case when µ = 0, i.e., the case of the Dixon equation [4],
[8], [19]:

Sf = f(x)− λ

π

∫ 1

0

f(t)
x + t

dt = g(x), (5.15)

where f(x) ∈ L2(0, 1), and λ < 1. M.G. Krein deduced the formula for the Dixon
equation resolvent (see [8], Ch. 4). This formula can be written in the following
way: S−1 = V ∗V . Thus we obtain:

Proposition 5.1. The Dixon operator S defined by (5.15) admits the left triangular
factorization S = V −1[V ∗]−1, where the operator V has the form (5.12).

6. Triangular factorization, Class R1

Let us consider the integral operators

Af = i

∫ x

0

f(t)dt, A∗f = −i

∫ b

x

f(t)dt, (6.1)

where f(x) ∈ L2(0, b).
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Definition 6.1. We say that the linear bounded operator S acting in the Hilbert
space L2(0, b) belongs to the class R1 (rank 1) if the following conditions are
fulfilled:

1)
m(f, f) ≤ (Sf, f) ≤ M(f, f), 0 < m < M <∞, (6.2)

2) rank(AS − SA∗) = 1, i.e.,

(AS − SA∗)f = i(f, φ)φ, φ(x) ∈ L2(0, b). (6.3)

We associate with the operator S the operator

S−f =
d

dx

∫ x

0

f(t)φ(x − t)dt. (6.4)

It is easy to see that
S−1 = φ. (6.5)

Lemma 6.1. Let the bounded operator S satisfy relation (6.3). If the corresponding
operator S− is bounded, then the representation

S = S−S∗
− (6.6)

is true.

Proof. We consider the operator

X = S−S∗
−. (6.7)

Using formula (6.3) and relation AS− = S−A we deduce the equality

AX −XA∗ = S−(A−A∗)S∗
− = AS − SA∗. (6.8)

The equation AX −XA∗ = F has no more than one solution X (see [17], Ch. 1).
Hence we deduce from (6.8) that S = X . The lemma is proved. �

Lemma 6.2. If the bounded operator S satisfies the relation (6.3), then this operator
can be represented in the form (6.6), where the operator S− is defined by formula
(6.4).

Proof. To prove that the operator S− is bounded we introduce the operator

X−f = AS−f = i

∫ x

0

f(t)φ(x− t)dt. (6.9)

We note that

X∗
−f = S∗

−A∗f = −i

∫ b

x

f(t)φ(t − x)dt (6.10)

where the operator S∗
− has the form

S∗
−f = − d

dx

∫ b

x

f(t)φ(t− x)dt. (6.11)

According to Lemma 6.1 we have

ASA∗ = X−X∗
−. (6.12)
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It follows from relations (6.9) and (6.12) that S = S−S∗
−. Hence the operator S−

is bounded. The lemma is proved. �
Now we shall deduce the main result of this section.

Theorem 6.1. If the operator S belongs to the class R1, then this operator admits
the left triangular factorization.

Proof. We suppose that for some f0(x) ∈ L2(0, b) the relation

S−f0 = 0 (||f0|| �= 0) (6.13)

is true. In view of the well-known Titchmarsh theorem (see [19], Ch. 11) and (6.13)
we have

φ(x) = 0, 0 ≤ x ≤ δ. (6.14)
Using (6.3) and (6.14) we deduce that

AδSδ − SδA
∗
δ = 0, (6.15)

where Aδf = i
∫ x

0 f(t)dt, 0 ≤ x ≤ δ, and Sδ = PδSPδ. Operator equation (6.15)
has only the trivial solution Sδ = 0 (see [17], Ch. 1). The last equality contradicts
relation (6.2). It means that equality (6.13) is impossible when ||f0|| �= 0. Hence
in view of (6.6) the operator S− maps L2(0, b) one-to-one onto L2(0, b). This fact
according to the classical Banach theorem [1] implies that the operator S− is
invertible. The operator S−1

− is defined by formula (see [17], Ch. 1)

S−1
− f =

d

dx

∫ x

0

f(t)N(x− t)dt, (6.16)

where N(x) = S−1
− 1. Thus the operators S− and S−1

− are bounded and lower
triangular. The assertion of the theorem now follows directly from Definition 1.4.

�
Example 6.1. We consider the case when

φ(x) = log(b− x). (6.17)

In this case we have

S−f =
d

dx

∫ x

0

f(t)log(b− x + t)dt = f(x)logb−
∫ x

0

f(t)
b− x + t

dt. (6.18)

Let us introduce the operator

Kf =
∫ x

0

f(t)
b− x + t

dt. (6.19)

It is well known (see [19], Ch. 11) that ||K|| ≤ π. Hence the operator S− defined
by (6.18) and the operator S−1

− are bounded, when log b > π. From Lemma 6.1 we
obtain the assertion.

Proposition 6.1. If log(b) > π, then the operator S defined by relations (6.3) and
(6.17) admits the left triangular factorization (6.6) where the operator S− has the
form (6.18).
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7. Homogeneous kernels of degree (–1)

In this section we consider operators of the form

SF = F (x)−
∫ 1

0

F (y)k(
y

x
)
1
x

dy = G(x), (7.1)

where F (x) ∈ L2(0, 1) and

k(
y

x
)
1
x

= k(
x

y
)
1
y
. (7.2)

We assume that

A = 2
∫ 1

0

|k(
1
x

)|x−3/2dx < ∞. (7.3)

It follows from condition (7.2) that the operator S is selfadjoint. From condition
(7.3) we deduce that the operator

KF =
∫ 1

0

F (y)k(
y

x
)
1
x

dy (7.4)

is bounded and (see [5], Ch. 9)
||K|| ≤ A. (7.5)

Theorem 7.1. Let conditions (7.2) and (7.3) be fulfilled and let the corresponding
operator S be positive and invertible, then the operator S admits the left triangular
factorization.

Proof. We introduce the change of variables x = e−u and y = e−v. Hence equation
(7.1) takes the form

Lf = f(u)−
∫ ∞

0

f(v)H(u− v)dv = g(u), (7.6)

where
f(u) = F (e−u)e−u/2, g(u) = G(e−u)e−u/2, (7.7)

H(u) = H(−u) = k(eu)eu/2, u ≥ 0. (7.8)
It follows from relation (7.3) that∫ ∞

−∞
|H(u)|du = A. (7.9)

We denote by γ(u) the solution of Equation (7.6) when g(u) = H(u). In the theory
of equations (7.6) the following function plays an important role (see [8], Ch. 2):

G+(λ) = 1 +
∫ ∞

0

γ(u)eitλdt, Imλ ≥ 0.

Let us consider the solution γξ(u) of equation (7.6) when g(u) = eiuξ and Im ξ ≥ 0.
We use the formula (see [8], Ch. 2)

γξ(u) = G+(−ξ)[1 +
∫ u

0

γ(r)e−irξdr]eiuξ . (7.10)
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Further we need the particular case of γξ(u) when ξ = i/2. In this case we have

γi/2(u) = β[1 +
∫ u

0

γ(r)er/2dr]e−u/2, (7.11)

where
β = G+(i/2). (7.12)

Let us introduce the function v(x), which satisfies Equation (7.1) when G(x) = 1.
It is easy to see that

v(e−u) = γi/2(u)eu/2. (7.13)
From (7.11) and (7.13) we deduce that

v′(x)x2 = −βγ(t)e−t/2, (7.14)

and
v(1) = β. (7.15)

Using relations (7.11) and (7.13) we can calculate the integral

α =
∫ 1

0

v(x)dx = β[1 +
∫ 1

0

∫ −logx

0

γ(r)er/2drdx].

Hence the equalities

α = β[1 +
∫ ∞

0

γ(r)e−r/2drdx] = ββ (7.16)

are true. The operator V in (7.1) has the form

V f =
1
β

d

dx

∫ x

0

f(t)v(
t

x
)dt. (7.17)

In view of (7.14) and (7.15) we can represent the operator V in the form

V f = f(x) +
∫ x

0

f(t)L(
t

x
)
1
t
dt, (7.18)

where
L(x) = γ(t)e−t/2. (7.19)

Now the assertion of the theorem follows from Proposition 2.2. �
Corollary 7.1. Let the conditions of Theorem 7.1 be fulfilled. Then we have the
equality

S−1 = V ∗V, (7.20)
where the operator V is defined by relations (7.18) and (7.19).

Example 7.1. We obtain an interesting example when

k(u) =
λ

|1− u|α(1 + u)β
, (7.21)

where λ = λ, α ≥ 0, β > 0, and α + β = 1. We note that k(u) satisfies conditions
(7.2) and (7.3). Equations (7.1) and (7.21) coincide with the Dixon equation when
α = 0.
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Solutions for the H∞(Dn) Corona Problem

Belonging to exp(L
1

2n−1)

Tavan T. Trent

Abstract. For a countable number of input functions in H∞(Dn), we find

explicit analytic solutions belonging to the Orlicz-type space, exp(L
1

2n−1 ).

Note that H∞(Dn) − BMO(Dn) � exp(L
1

2n−1 ) �
⋂∞

1 Hp(Dn).

Mathematics Subject Classification (2000). 30A38, 46J20.

Keywords. Corona theorem, polydisk.

We give a solution, for general corona data on the polydisk, which, although not
bounded or even in BMO, still belongs to a space better than

⋂∞
p=1 Hp(Dn);

namely the Orlicz-type space, exp(L
1

2n−1 ). Also, we establish the Hp-corona theo-
rem on the polydisk. This paper is closely related to Trent [19]. The main purpose
of the paper is to make explicit the algebraic requirements to represent solutions
on Dn.

For the case of two functions in the input data, Chang [6] showed that solu-
tions to the general corona problem for the bidisk can be found which belong to⋂∞

p=1 Hp(D2). Again for two functions on the bidisk, Amar [1] and Cegrell [5] have
found solutions to the general corona problem for the bidisk belonging to BMO.
For a finite number of input functions, the ∂-input data is more complicated and,
for this case, first Varopoulos [20] and then Lin [14] found solutions to the general
corona problem on the polydisk belonging to

⋂∞
p=1 Hp(Dn). [See Chang and R.

Fefferman [8] for a brief discussion of the difference (involving the Koszul complex)
between two and a general finite number of input functions.] However, even in this
case no relationship between the lower bound of the input data (denoted by ε) and
the size of the solutions was obtained. An estimate will be given in this paper.

For a finite number of input functions, Li [13] and, independently, Lin [14]
implicitly solved the Hp(Dn) corona theorem (1 ≤ p < ∞) based on the work of
Lin. Again, for a finite number of input functions, Boo [4] gave an explicit solution

Partially supported by NSF Grant DMS-0400307.
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to the Hp(Dn) corona theorem (1 ≤ p <∞), which was based on integral formulas.
For the case p = 2, we have already established the H2(Dn) corona theorem in the
vector-valued case; that is, with an infinite number of input functions. The current
paper will establish the Hp(Dn) corona theorem in the vector-valued case.

We note that for the unit ball or even strictly pseudoconvex domains in Cn,
there are more complete results known. See Andersson and Carlsson [2] for these
precise results and further references. Of course, when the dimension is greater
than 1, bounded analytic solutions have not been found in any of the above cases,
for general bounded analytic input data.

Our main technique is a linear algebra result, which enables us to exhibit
explicit solutions (in the smooth case) which have the appropriate estimates. This
is based on considering explicit mappings, arising from the Koszul complex. The
basic idea for the corona estimates involves iterating the one-variable Littlewood-
Paley results, motivated by T. Wolff’s proof of Carleson’s corona theorem on the
unit disk. (See Garnett [10].) However, to simplify the estimates we will appeal to
the remarkable H1(Dn) weak factorization theorem of Lacey-Terwilleger [12].

We will use the following notation:

D open unit disk in the complex plane, C
T unit circle, T = ∂ D

Dn polydisk, Dn = D × · · · ×D, n times
T n distinguished boundary of Dn, T n = T × · · · × T, n times

dσ normalized Lebesgue measure on [−π, π]

dσk denotes dσ1(t1) . . . dσk(tk)
dA area Lebesgue measure on D

dL measure on D defined by dL(z) = ln
1
|z|2

dA(z)
π

dLk denotes dL1(z1) . . . dLk(zk)

Hp(Dn) Hardy space of analytic functions on Dn, 1 ≤ p ≤ ∞
[We will also identify this space with

{f ∈ Lp(T n) | for {kj}n
j=1 ⊂ Z with at least one kj < 0,∫

T n

f(eit1 , . . . , eitn)e−ik1t1 . . . e−ikntn dσ(t1) . . . dσ(tn) = 0}]

Lp(T n) {f : T n → l2 | f is strongly measurable and

|||f|||pp
def=
∫

T n

‖f(eit1 , . . . , eitn)‖p
2 dσ(t1) . . . dσ(tn) <∞}

for 1 ≤ p <∞
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L∞(T n) {f : T n → l2 | f is strongly measurable and

|||f|||∞
def= ess sup

u1,...,un∈T
‖f(u1, . . . , un)‖2 < ∞}

Hp(Dn) {f : Dn → l2 | f is analytic, l2-valued on Dn and

|||f|||pp
def= sup

r↑1
(
∫

T n

‖f(r eit1 , . . . , r eitn)‖p
2 dσ(t1) . . . dσ(tn)) <∞}

for 1 ≤ p <∞
H∞(Dn) {f : Dn → l2 | f is analytic, l2-valued on Dn and

|||f|||∞ def= sup
z1,...,zn∈D

‖f(z1, . . . , zn)‖2 < ∞}

exp(L
1
k ) {f ∈ H2(Dn) :

∫
T n

e

( ‖f‖2
λ

) 1
k

dσ1 . . . dσn ≤ 2

for some λ > 0 (depending on f)}

|||f|||e,k the smallest λ so that
∫

T n

e

( ‖f‖2
λ

) 1
k

dσ1 . . . dσn ≤ 2

φ̂j(u) the jth Cauchy transform of a (possibly l2-valued)

C(1) function on D
n

φ̂j(u1, . . . ,
jth'
z

, . . . , un) = − 1
π

∫
D

φ(u1, . . . ,
jth
z , . . . , un)

w − z
dA(w)

TF Toeplitz operator with symbol F acting on Hp(Dn)
for any 1 ≤ p <∞

F the operator of pointwise multiplication by the matrix

[fjk(eit1 , . . . , eitn)]∞j,k=1 = F (eit1 , . . . , eitn) on Lp(T n)

F (z1, . . . , zn) the operator on l2 gotten by applying the matrix

F (z1, . . . , zn) = [fjk(z1, . . . , zn)]∞j,k=1

to the standard basis of l2.

We will prove the following two theorems:

Theorem A. Let F ∈ H∞(Dn) and assume that

0 < ε2 ≤ F (z)F (z)∗ ≤ 1

for all z ∈ Dn. Then there exists u ∈ exp(L
1

2n−1 ) satisfying

F u = 1 for |||u|||e,2n−1 ≤
C0

ε7
.
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Theorem B (Hp(Dn)-corona theorem). Let F ∈H∞(Dn) satisfy 0<ε2≤F (z)F (z)∗

≤ 1 for all z ∈ Dn. Then TF acting from Hp(Dn) to Hp(Dn) is onto for each
1 < p < ∞.

Observe that the general corona problem for Dn has the hypothesis of The-
orem A (or Theorem B), but the conclusion requires that a solution to F u = 1
belong to H∞(Dn). Both of these theorems follow trivially from a positive solution
to the general corona problem. In fact, the raison d’etre of Theorems A and B is
an attempt to understand some of the difficulties of the general corona problem
for the polydisk.

We will give a proof of Theorem A and show how to modify it to get Theorem
B. Several well-known lemmas will be required.

Lemma 1. Let φ (possibly vector-valued) be C(2) in a neighborhood of D. Then:

(a) φ(0) =
∫ π

−π

φ(eit) dσ(t)−
∫

D

+φ(z)
dL

4
(z),

(b) for z ∈ D, φ(z) =
1

2πi

∫
∂ D

φ(w)
w − z

dw − 1
π

∫
D

∂zφ(w)
w − z

dA(w),

and

(b′) for z ∈ D, φ(z) =
∫ π

−π

φ(eit)
1− z e−it

dσ(t) + (̂φ)z

1
(z),

φ(z) = (Pzφ) (z) + ∂̂z(φ)
1

(z).

See Koosis [11] for details. Notice that for smooth functions on Dn, (b′) says
that

(̂φ)zj

j
(eit1 , . . . , eitn) = (P⊥

j φ)(eit1 , . . . , eitn)

where Pj denotes the orthogonal projection of L2(dσ1, . . . , dσn) onto the subspace
of functions whose Fourier coefficients, ak1,...,kn are 0 if kj < 0. For several vari-
ables, the order of application of the Cauchy transforms is irrelevant, so we may
unambiguously write φ̂1,2,5, etc. to denote three applications of the Cauchy trans-
forms on the 1st, 2nd, and 5th variables in any order.

The next lemma seems to be due to Uchiyama. See Nikolski [15] for the simple
proof.

Lemma 2. Assume that a ∈ C(2)(D), ‖a‖∞,D < ∞, a ≥ 0 and + a ≥ 0 on D.
Then for p an analytic polynomial, we have∫

D

+ a |p| dL ≤ e ‖a‖∞
∫ π

−π

|p| dσ.

To write down explicit solutions (in the smooth case), we need Cauchy trans-
forms and the following representation theorem which appeared in Trent [18]. The
proof will be provided in the Appendix for convenience. We also note that the
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lemma is a purely linear algebra result, but we state it here in the context of
algebras of bounded analytic functions on the polydisk, Dn.

Lemma 3. Assume that F ∈ H∞(Dn). Then there exist operators Ql : Dn → B(l2)
such that for all z ∈ Dn and l = 0, 1, . . . ,

(a) Ql(z)Ql+1(z) = 0,

(b) (F (z)F (z)∗) Il2 = Q∗
l (z)Ql(z) + Ql+1(z)Q∗

l+1(z).

Moreover, the entries of Ql(z) are 0, or else, for some n, either fn(z) or −fn(z).

The pertinent observation is that under the hypothesis that 0 < ε2 ≤
F (z)F (z)∗ ≤ 1, for z ∈ Dn fixed; we have for l = 0, 1, . . . and Q0(z) = F (z):

(i)
Ql(z)Ql(z)∗

F (z)F (z)∗
is the orthogonal projection of l2 onto the kernel of

Ql−1(z). Thus, range Ql(z) = kernel Ql−1(z).

(ii) Ql(z)Ql(z)∗ ≤ (F (z)F (z)∗) Il2 ≤ Il2 .

(iii) Differentiating (b) with respect to zj and zj gives us that

∂zj Ql(z) (∂zj Ql(z))∗ ≤ ∂zj F (z) (∂zj F (z))∗ Il2 .

The proof can be found in the Appendix. By (iii),

‖∂jQj(z)‖op ≤ ‖∂jF (z)‖l2 ,

so all estimates involving (Ql)j are replaced by Fj .

We give an example illustrating the finite case when we have four functions
in H∞(Dn). Then

F = (f1, f2, f3, f4),

Q1 =

⎡⎢⎢⎢⎢⎢⎢⎣
f2 f3 f4 0 0 0

−f1 0 0 f3 f4 0

0 −f1 0 −f2 0 f4

0 0 −f1 0 −f2 −f3

⎤⎥⎥⎥⎥⎥⎥⎦
and

Q2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f3 f4 0 0

−f2 0 f4 0

0 −f2 −f3 0

f1 0 0 f4

0 f1 0 −f3

0 0 f1 f2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The lemma below can be found in Stein [16, pp. 450–451]. We state the
version we will require. For the proof when n = 2, see Trent [19].

Fix a p with 1 ≤ p ≤ ∞ and assume that T ∈ B(Lp(T n)). We wish to
define an operator J , on B(Lp(T n)) as follows: For H = (h1, h2, . . . ) ∈ Lp(T n),
we wish to define J H = (T h1, T h2, . . . ). The following lemma tells us that
J ∈ B(Lp(T n)) and ‖J ‖ = ‖T ‖.

Lemma 4. (a) Let T ∈ B(Lp(T n)). Then |||J H|||p ≤ ‖T ‖ |||H|||p for all H ∈ Lp(T n).
Thus, J ∈ B(Lp(T n)) with ‖J ‖ = ‖T ‖.

(b) The analogous result is true: T ∈ B(Hp(Dn)), then J ∈ B(Hp(Dn)) and
‖J ‖ = ‖T ‖.

For notational purposes, we will use “T ” to denote both the operator in
B(Lp(Dn)) and the operator in B(Lp(Dn)). Thus, for example, “Pj” may de-
note the projection operator from Lp(T n) onto those Lp(T n) functions whose
biharmonic extension into Dn is analytic in the jth variable or it may denote the
corresponding operator from Lp(T n). It should be clear from the context which
operator is meant. Also, we may not always refer explicitly to this lemma, but it is
clearly in the background for extending, for example, the usual Carleson measure
results to the vector-valued case.

Recall that dσk = dσ1 . . . dσk and dLk = dL1 . . . dLk. For an analytic func-
tion A(z) on Dn and i1, . . . , ik ⊂ {i1, . . . , n}, we will denote ∂i1 . . . ∂inA by
Ai1,...,in .

Lemma 5. Let F ∈ H∞(Dn) with ‖F‖∞ ≤ 1. Fix q ∈ H2(Dn) for 1 ≤ j ≤ n.
Then there exists C0 < ∞ such that∫

Dj

‖F1,...,j‖2 ‖q‖2 dLj ≤ C2
0

∫
T j

‖q‖2 dσj .

Proof. By induction, the case j = 1 is just the Paley-Littlewood estimate, Lemma
2. For 1 < j ≤ n,∫

Dj

‖F1,...,j‖22 ‖q‖22 dLj ≤ 2
∫

D

∫
Dj−1

‖F1,...,j−1‖22 ‖qj‖22 dLj−1dLj

+ 2
∫

Dj−1

∫
D

‖(F1,...,j−1 q)j ‖2 dLj dLj−1

≤ 4 C2
j−1

∫
T j

‖q‖2 dσn,

where Cj−1 is the constant for j terms. Let C0 = 2 Cj−1. �

Lemma 6. Let {1, . . . , n} = I1

·
∪ I2

·
∪ . . .

·
∪ Ik

·
∪ J

·
∪K. Then there exists C1 < ∞

so that for h, k ∈ H2(Dn) we have∫
Dn

‖F1‖2 . . . ‖Fn‖2 ‖FI1‖2 . . . ‖FIk
‖2 ‖hJ‖2 ‖kK‖2dLn ≤ C1‖h‖2 ‖k‖2.
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Proof. Let {1, . . . , n} = J
·
∪ J ′ = K

·
∪K ′.∫

Dn

‖F1‖2 . . . ‖Fn‖2 ‖FI1‖2 . . . ‖FIk
‖2 ‖hJ‖2 ‖kK‖2 dLn

≤

⎛⎝∫
Dn

∏
j /∈J

‖Fj‖2‖hJ‖22dLn

⎞⎠
1
2
⎛⎝∫

Dn

∏
j∈J

‖Fj‖2
k∏

j=1

‖FIj‖22‖kK‖2dLn

⎞⎠
1
2

≤
(

C
2|J′|
0

∫
T J′

∫
DJ

‖hJ‖22dLJdσJ′

)1
2

⎛⎝C
2|J|
0

∫
T J

∫
DJ′

k∏
j=1

‖FIj‖22‖kK‖2dLJ′dσJ

⎞⎠
1
2

≤
(

C
2|J′|
0

∫
T J′

∫
DJ

‖hJ‖22dLJdσJ′

)1
2

⎛⎝C
2|J|
0

∫
T J

∫
DJ′

k∏
j=1

‖FIj‖22‖kK‖2dLJ′dσJ

⎞⎠1
2

≤
(

C
2|J′|
0

∫
T n

‖h‖22dσn

) 1
2
(

C
2|K′|
0

∫
T K′

∫
DK

‖kK‖2dLK dσK′

) 1
2

≤ C
|J′|+|K′|
0 |||h|||2

by applying Lemmas 2 and 5. �

The next lemma is due to Chang [6].

Lemma 7. Let {1, . . . , n} = I1

·
∪ I2

·
∪ . . .

·
∪ Ik

·
∪ N . Then there exists C2 < ∞ so

that for H ∈ H1(Dn) we have∫
Dn

‖F1‖2 . . . ‖Fn‖2 ‖FI1‖2 . . . ‖FIk
‖2 ‖HN‖2 dLn ≤ C2 |||H|||1. (1)

Proof. By Lemma 4, we need only prove (1) for scalar H ∈ H1(Dn). In this case,
by the Lacey-Terwilleger weak factorization result [12], there exists an M <∞, so
that for each H ∈ H1(Dn) there exist {kj}∞j=1 and {lj}∞j=1 contained in H2(Dn),
satisfying H =

∑
kj lj in H1(Dn) (and pointwise in Dn); moreover,

‖H‖1 ≤
∞∑

j=1

‖kj‖2‖lj‖2 ≤ M ‖H‖1.

Now we apply Lemma 6 to ‖(kj)J‖2‖(lj)N−J‖2 for each j and each subset J ⊂ N ;
then add to get (1), where C2 = 2NC1M . �

The differential operators we need can be written in the following way. Fix
n, the dimension of Dn. We will consider all operators as matrices of differential
operators acting on vectors with entries in C∞(D

n
). Let ∂j = 1

2 (∂xj + i ∂yj) for
1 ≤ j ≤ n. Then

D0(n) := I,
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D1(n) :=

⎛⎜⎝∂1

...
∂n

⎞⎟⎠ ,

Dn(n) := (∂n,−∂n−1, . . . , (−1)n−1∂1),

and, inductively, for 1 < k < n,

Dk(n) :=

⎡⎣ D+
k−1(n− 1) (−1)k−1∂1 ⊗ I

0 D+
k (n− 1)

⎤⎦ .

Here D+
k (n − 1) is the operator Dk(n − 1), but with the n − 1 terms numbered

2, . . . , n instead of 1, 2, . . . , n − 1. Note that Dk(n) is an ( n
k ) × ( n

k−1 ) matrix for
1 ≤ k ≤ n.

For example,

D2(3) =

⎡⎣ D+
1 (2) (−1)∂1 ⊗ I

0 D+
2 (2)

⎤⎦ =

⎡⎢⎢⎢⎣
∂2 −∂1 0

∂3 0 −∂1

0 ∂3 −∂2

⎤⎥⎥⎥⎦ .

We wish to find integral operators Kl(n), so that

Dl(n)Kl(n) + Kl+1(n)Dl+1(n) = I for 0 ≤ l ≤ n.

For the polydisk, we can achieve this by setting

K0(n) = P1 . . . Pn

K1(n) = (P2 . . . PnΛ1, P3 . . . PnΛ2, . . . ,Λn),

Kn(n) =

⎛⎜⎜⎜⎝
Λn

0
...
0

⎞⎟⎟⎟⎠ , Km(n) = 0, m > n,

and, inductively, for 1 < k < n,

Kl(n) =

⎡⎣ K+
l−1(n− 1) 0

0 K+
l (n− 1)

⎤⎦ .

Note that Kl(n) is an ( n
l−1 )× ( n

l ) matrix for 1 ≤ l ≤ n.

For example,

K2(3) =

⎡⎣ K+
1 (2) 0

0 K+
2 (2)

⎤⎦ =

⎡⎢⎢⎢⎣
P3Λ2 Λ3 0

0 0 Λ3

0 0 0

⎤⎥⎥⎥⎦ .
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Lemma 8.

(a) Dl+1(n)Dl(n) = 0 for l = 0, 1, . . . , n

(b) Kl(n)Kl+1(n) = 0 for l = 0, 1, . . . , n

(c) Dl(n)Kl(n) + Kl+1(n)Dl+1(n) = I for l = 0, 1, . . . , n.

[Note that in (c) “I” denotes an ( n
l ) × ( n

l ) identity matrix acting on ( n
l )

copies of C∞(D
n
) and similarly for the “0” in (a) and (b).]

Proof. The proof is by induction on (n + l). Now n = 1, 2, . . . and 0 ≤ l ≤ n. For
n + l = 1, we have n = 1 and l = 0. In this case we have

D1(1)D0(1) = ∂1(I) = 0;

K0(1)K1(1) = P1Λ1 = 0;

D0(1)K0(1) + K1(1)D1(1) = I − P1 + Λ1∂1 = P1 + P⊥
1 = I.

Assume that (a), (b), and (c) hold for (n + l− 1) = j < 2n, where 0 ≤ l ≤ n− 1.

We show that (a), (b), and (c) hold for n + l. If l = 0, then

D1(n)D0(n) =

⎛⎜⎝∂1

...
∂n

⎞⎟⎠ I =

⎛⎜⎝0
...
0

⎞⎟⎠ = 0

K0(n)K1(n) = P1 . . . Pn(P2 . . . PnΛ1, P3 . . . PnΛ2, . . . ,Λn) = 0

since PjΛj = 0 for all 1 ≤ j ≤ n.

D0(n)K0(n) + K1(n)D1(n) = I · P1 . . . Pn +
n−1∑
j=1

Pj+1 . . . PnΛj∂j + Λn∂n

= P1 . . . Pn +
n−1∑
j=1

P⊥
j Pj+1 . . . Pn + P⊥

n

= P1 . . . Pn + P⊥
1 P2 . . . Pn

+
n−1∑
j=2

P⊥
j Pj+1 . . . Pn + P⊥

n

= P2 . . . Pn +
n−1∑
j=2

P⊥
j Pj+1 . . . Pn + P⊥

n

= · · · = Pn + P⊥
n = I.

Now we may assume that 1 ≤ l ≤ n. Then

Dl+1(n)Dl(n) =

⎡⎣ D+
l (n− 1) (−1)l∂1 ⊗ I

0 D+
l+1(n− 1)

⎤⎦⎡⎣ D+
l−1(n− 1) (−1)l−1∂1 ⊗ I

0 D+
l (n− 1)

⎤⎦
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=

⎡⎣ D+
l (n− 1)D+

l−1(n− 1) (−1)l−1D+
l (n− 1)∂1 + (−1)l∂1D

+
l (n− 1)

0 D+
l+1(n− 1)D+

l (n− 1)

⎤⎦
=
[
0 0
0 0

]
,

since the diagonal terms vanish by induction and ∂1⊗I commutes with D+
l (n−1),

so the off-diagonal term is 0. Similarly, Kl(n)Kl+1(n) = 0.

Finally,

Dl(n)Kl(n) + Kl+1(n)Dl+1(n)

=

⎡⎣ D+
l−1(n− 1) (−1)l−1∂1 ⊗ I

0 D+
l (n− 1)

⎤⎦⎡⎣ K+
l−1(n− 1) 0

0 K+
l (n− 1)

⎤⎦
+

⎡⎣ K+
l (n− 1) 0

0 K+
l+1(n− 1)

⎤⎦⎡⎣ D+
l (n− 1) (−1)l∂1 ⊗ I

0 D+
l+1(n− 1)

⎤⎦
=
[
I 0
0 I

]
.

This follows since, by induction, the diagonal terms equal I. Also, K+
l (n− 1) only

involves Pj and Λj for j = 2, . . . , n, so ∂1 ↔ K+
l (n − 1). Thus the off-diagonal

term is 0 and this completes the induction step. �

Suppose that we have formally:

Q0E0 = I and D1K1 + K2D2 = I

E0Q0 + Q1E1 = I
...

... Dn−1Kn−1 + KnDn = I

En−1Qn−1 + QnEn = I DnKn = I(Dn+1 = 0)
...

and QjQj+1 = Ej+1Ej = DjDj+1 = Qj+1Qj = 0.

We form words by concatenation assuming, in addition, that

DiQj = QjDi for all i = 1, . . . , n

j = 0, 1, . . .

and D1I = 0.

Then we have the following:
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Lemma 9. Let

u = E0 +
∞∑

j=1

(−1)jQ1K1 . . .QjKjEjDj . . . E1D1E0.

Then

D1u = 0.

Proof. Let

un : = EnDn . . . E1D1E0

un−1 : = En−1Dn−1 . . . E1D1E0 −QnKnun

...
u1 : = E1D1E0 −Q2K2u2

u0 : = E0 −Q1K1u1.

Then u = u0; so we must show that D1u0 = 0. Since Dn+1 ≡ 0, Dn+1un = 0.
Assume Dj+2uj+1 = 0. For 0 ≤ j ≤ n− 1, we show that Dj+1uj = 0 and this will
complete the proof.

Dj+1uj = Dj+1 [EjDj . . . E1D1E0 −Qj+1Kj+1uj+1]

= Dj+1EjDj . . . E1D1E0 −Qj+1(Dj+1Kj+1)uj+1

= Dj+1EjDj . . . E1D1E0 −Qj+1[I −Kj+2Dj+2]uj+1

= Dj+1EjDj . . . E1D1E0 −Qj+1uj+1

= Dj+1EjDj . . . E1D1E0 −Qj+1[Ej+1Dj+1 . . . E1D1E0 −Qj+2Kj+2uj+2]

= (I −Qj+1Ej+1)Dj+1EjDj . . . E1D1E0

= (EjQj)Dj+1EjDj . . . E1D1E0

= EjDj+1(QjEj)DjEj−1Dj−1 . . . E1D1E0

= EjDj+1(I − Ej−1Qj−1)DjEj−1Dj−1 . . . E1D1E0

= (−1)EjDj+1Ej−1Dj(Qj−1Ej−1)Dj−1 . . . E1D1E0

...

= (−1)jEjDj+1Ej−1Dj . . . D1(Q0E0)

= 0 since Q0E0 = I and D1(I) = 0. �

Up to an analytic perturbation, which will be specified later, we can now
write our solution. Let

E0(z) =
F (z)∗

F (z)F (z)∗
and El(z) =

Q∗
l (z)

F (z)F (z)∗
for l = 1, . . . , n.
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Suppressing the z ∈ Dn, we set

u0 = E0 +
n∑

j=1

(−1)jQ1K1 . . . QjKjEjDj . . . E1D1E0.

Clearly F u0 ≡ 1 in D
n
, since F Q1 ≡ 0 there. By Lemma 9, D1u0 ≡ 0 in D

n
. It

only remains to estimate the size of the solution u0.

Lemma 10. (a) There exist operators {Bπ}π∈Π(j), so that

Q1K1 . . . QjKj = [BπΛπ]π∈Π(j).

This is a 1 × ( n
j ) row vector with operators as entries. For π = (i1, . . . , ij),

Λπ denotes Λi1,...,ij . Here Bπ is a finite product of operators belonging to
{Ql, Pk, P⊥

k : 1 ≤ l ≤ j, 1 ≤ k ≤ n}.

(b) EjDj . . . E1D1E0 = [j!
Q∗

j

(FF ∗)j+1
∂ij Q

∗
j−1 . . . ∂i1F

∗] π∈Π(j)
π=(i1,...,ij)

. This is an

( n
j )× 1 column vector, whose entries are vectors of functions.

(c) Each Bπ appearing in (a) can be written as a finite sum of terms involving
no repetitions of the projections {Pj}n

j=1. Thus each term involves at most n
different projections.

Proof. Consider (a). For n = 1 analytic variable,

Q1K1(1) = Q1Λ1,

so we are done. For n > 1 and 1 ≤ j ≤ n,

Q1K1 . . .QjKj = [Q1P2 . . . PnΛ1, K
+
1 (n− 1)] Q2

[
K+

1 (n− 1) 0
0 K+

2 (n− 1)

]
. . . Qj

[
K+

j−1(n− 1) 0
0 K+

j−1(n− 1)

]
= [Q1P2 . . . PnΛ1(Q2K

+
1 (n− 1) . . .QjK

+
j−1(n− 1),

Q1K
+
1 (n− 1) . . .QjK

+
j (n− 1)].

By induction on the number of analytic variables,

Q1K
+
1 (n− 1) . . .QjK

+
j (n− 1) = [BπΛπ]π∈Π(j)

1/∈π

and Q2K
+
1 (n− 1) . . .QjK

+
j−1(n− 1) = [CσΛσ]σ∈Π(j−1)

1/∈σ

.

Here Bπ and Cσ denote operators formed from finite products of Ql’s, Pk’s, and
P⊥

k ’s for 1 ≤ l ≤ j and 2 ≤ k ≤ n.

But
Λ1CσΛσ = B1,σΛ1Λσ = BπΛπ,
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where π ∈ Π(j) and 1 ∈ π. To see this, first notice that neither expression
Q1K

+
1 (n − 1) . . .QjK

+
j (n − 1) or Q2K

+
1 (n − 1) . . . QjK

+
j−1(n − 1) involves the

projection P1 and Λ1Pk = PkΛ1 for 2 ≤ k ≤ n. Also, we have

X Λ1QlY = X P⊥
1 QlΛ1Y. (2)

Continuing this procedure with Λ1 commuting across the Pk’s and using (2) to
move Λ1 to the right of the Ql’s, (a) follows.

As for (b), first note that
Q∗

j

FF ∗Dj
Qj−1

FF ∗ . . .D1
F ∗

FF ∗ =
Q∗

j

(FF ∗)j+1
DjQ

∗
j−1 . . .D2Q

∗
1D1F

∗.

This follows since

X
Q∗

l

FF ∗Dl

Q∗
l−1

FF ∗ Y = X
Q∗

l

FF ∗ [Dl(
1

FF ∗ )Q∗
l−1Y +

1
FF ∗DlQ

∗
l−1Y ]

= X
Q∗

l

(FF ∗)2
DlQ

∗
l−1Y, using Q∗

l Q
∗
l−1 = 0.

Now DjQ
∗
j−1 . . . D1F

∗ = (DjQ
∗
j−1) . . . (D1F

∗) is formally (as in the Appendix)
the same as ⎛⎜⎝∂1Q

∗
j−1
...

∂nQ∗
j−1

⎞⎟⎠ ∧ · · · ∧
⎛⎜⎝∂1F

∗
...

∂nF ∗

⎞⎟⎠ (3)

=
∑

π∈Π(j)
π=(i1,...,ij)

⎡⎣ ∑
α∈P (π)

(−1)sgn α∂α(ij)Q
∗
j−1 . . . ∂α(i1)F

∗

⎤⎦ eπ

= j!
∑

π∈Π(j)

∂ij Q
∗
j−1 . . . ∂i1F

∗ eπ.

This last equality comes from the fact that

∂α(ij)Q
∗
j−1 . . . ∂α(i1)F

∗ = (∂α(ij)F
∗) ∧ · · · ∧ (∂α(i1)F

∗)

= (−1)sgn α ∂ij F
∗ ∧ · · · ∧ ∂i1F

∗

= (−1)sgn α ∂ij Q
∗
j−1 . . . ∂i1F

∗.

Thus
Q∗

j

FF ∗Dj

Q∗
j−1

FF ∗ . . . D1
F ∗

FF ∗ = [j!
Q∗

j

(FF ∗)j+1
∂ij Q

∗
j−1 . . . ∂i1F

∗] π∈Π(n)
π=(i1,...,in)

as an ( n
j )× 1 vector.

Consider elements from Bπ , which from (a) involves finite products using
only elements from {Ql}j

l=1, {Pk}n
k=1, and {P⊥

k }n
k=1. Replace any P⊥

k ’s by I − Pk

and write Bπ as a finite sum of terms containing no P⊥
k ’s. Consider a term in

Bπ of the form X PkS PkY . Then PkY is analytic in the kth variable. Since S
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involves Ql’s which are analytic and Pl’s, we have that S PkY is analytic in the
kth variable. Thus X PkS PkY = X S PkY . Using this procedure, we may assume
that in each term of Bπ at most one occurrence of Pk for 1 ≤ k ≤ n appears. Thus
(c) follows. �

Lemma 11. For each Q1K1 . . .QjKj from Lemma 10, there is an operator Aj such
that

(1) F Aj ≡ 0 in D
n
,

(2) Aj is analytic in D
n
,

(3) terms of Q1K1 . . . QjKj + Aj involve at most n− 1

of the projections {Pj}n
j=1.

Proof. By construction,

Q1K1 . . . QjKj = [Q1P2 . . . PnP⊥
1 (Q2K

+
1 (n− 1) . . . QjK

+
j−1(n− 1))Λ1,

Q1K
+
1 (n− 1) . . .QjK

+
j (n− 1)].

Let
Aj = [Q1P2 . . . PnP1(Q2K

+
1 (n− 1) . . . QjK

+
j−1(n− 1))Λ1, 0].

Then (1) and (2) are clear.

Q1K1 . . . QjKj + Aj = [Q1P2 . . . Pn(Q2K
+
1 (n− 1) . . .QjK

+
j−1(n− 1))Λ1,

Q1K
+
1 (n− 1) . . .QjK

+
j (n− 1)].

By Lemma 10,

Q1K
+
1 (n− 1) . . .QjK

+
j−1(n− 1) = {BπΛπ}π∈Π(j)

1/∈π

and
Q2K

+
1 (n− 1) . . . QjK

+
j−1(n− 1)Λ1 = {CσΛσΛ1}σ∈Π(j−1)

1/∈σ

.

Since Bπ and Cσ do not contain the projection P1 and thus Q1P2 . . . PnCσ does
not contain P1 either, we see that the terms of Q1K1 . . .QjKj +Aj do not involve
P1 and by Lemma 10 can thus be written as sums of terms involving at most
(n− 1) projections. �

We are now ready to complete our estimates.

Proof of Theorem A. Suppose that F ∈ H∞(Dn) and 0 < ε2 ≤ F (z)F (z)∗ ≤ 1
for all z ∈ Dn. We lose no generality (by considering Fr(z) = F (rz)) in assuming
that F ∈ H∞(Dn

1
r

), for some 1
r > 1. Then we must show that our estimates are

independent of r and apply a compactness argument to complete the proof.

Let

ur = u0 +
n∑

j=1

(−1)jAjEjDj . . . E1D1E0.
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We use the subscript “r” to remind us that all the terms are defined using Fr in
place of F . Suppose we show that |||ur|||p ≤ C0

ε3n+1 p2n−1 with C0 independent of r

and p ≥ 2. This suffices for ur to belong to exp(L
1

2n−1 ), since ur is analytic in D
n

by Lemma 9 and∫
T n

e(
‖ur‖2

λ )
1

2n−1
dσ1 . . . dσn =

∞∑
k=0

1

k! λ
k

2n−1
|||ur|||

k
2n−1

k
2n−1

≤
4n∑

k=0

1

k! λ
k

2n−1
|||ur|||

k
2n−1
2

+
∞∑

k=4n+1

1

k! λ
k

2n−1

(
C0

ε3n+1
(

k

2n− 1
)2n−1

) k
2n−1

≤
4n∑

k=0

1

k! λ
k

2n−1

(
C0

ε7
23

) k
2n−1

+
∞∑

k=4n+1

kk

k!

[
C0

ε3n+1(2n− 1)2n−1λ

] k
2n−1

. (4)

Thus (3) is finite for λ ≈ 1
ε3n+1 . So

|||ur|||e,2n−1 ≤
C0

ε3n+1
.

This estimate is independent of r, so a compactness argument gives us our analytic
u with Fu ≡ 1 in Dn, u ∈ exp(L

1
2n−1 ) and |||u|||e,2n−1 ≤ C0

ε3n+1 .

It remains to show that if

ur = u0 +
n∑

j=1

(−1)jAjEjDj . . . E1D1E0,

then there exists C0 < ∞, independent of r so that

|||ur|||p ≤
C0

ε3n+1
p2n−1, p ≥ 2.

Fix p ≥ 2. Now by Lemma 10

ur =
n∑

j=1

(−1)j
∑

π∈Π(j)
π=(i1,...,ij)

j! Bπ

[
Q∗

j

(FF ∗)j+1
∂ij Q

∗
j−1 . . . ∂i1F

∗
]Λπ

,

where Λπ = Λi1,...,ij . By Lemma 11, Bπ is a finite sum (of at most n! terms)
of finite products of contractions Ql and of at most (n − 1) projections among
{Pk}n

k=1. Now as an operator on Lp(T n), p ≥ 2, Pk has norm ‖Pk‖ ≤ C0p. [See
Garnett [10] for this fact on Lp(T ).] Thus

‖Bπ‖B(Lp(T n)) ≤ C0p
n−1,
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where C0 is independent of r and p (but depends on n).

Estimating, we get

|||ur|||p ≤

⎛⎜⎜⎝ n∑
j=1

∑
π∈Π(j)

π=(i1,...,ıj)

j! ‖[
Q∗

j

(FF ∗)j+1
∂ij Q

∗
j−1 . . . ∂i1F

∗]Λπ‖Lp(T n)

⎞⎟⎟⎠ C0p
n−1.

We estimate the worst term in growth rate; the others follow more easily.

Let

l =
[

Q∗
n

(FF ∗)n+1
∂nQ∗

n−1 . . . ∂1F
∗
]

.

We must show that

|||lΛ1,...,n|||p ≤
C0

ε3n+1
pn

to complete the proof.

By duality, since Lp(T n)∗ ≈ Lq(T n) for 1 ≤ p <∞ (see Edwards [9], p. 607)
and lΛ1,...,n = P⊥

1 . . . P⊥
n lΛ1,...,n, we have

|||lΛ1,...,n|||p = sup
k∈Lq(T n)
|||k|||q≤1

|〈lΛ1,...,n, k〉|

= sup
k∈Lq(T n)
|||k|||q≤1

|〈lΛ1,...,n, P⊥
1 . . . P⊥

n k〉|

≤ sup
H0∈z1...znHq(T n)

|||H0|||q≤C0pn

|〈lΛ1,...,n, H0〉|

≤ sup
H0∈z1...znH1(T n)

|||H0|||1≤C0pn

|〈lΛ1,...,n, H0〉|.

Applying Lemma 1 n times, we must estimate

〈lΛ1,...,n, H0〉 =
∫

Dn

∂1 . . . ∂n〈l, H0〉 dL1 . . . dLn

=
∫

Dn

∂1 . . . ∂n〈
Q∗

n

(FF ∗)n+1
∂nQ∗

n−1 . . . ∂1F
∗, H0〉 dLn (5)

for H0 ∈ z1 . . . znH1(T n) and |||H0|||1 ≤ C0p
n.

Since Q∗
n∂nQ∗

n−1 . . . ∂1F
∗ is coanalytic in Dn, all ∂1, . . . , ∂n derivatives in (4)

apply to either 1
(FF∗)n+1 or to H0. Let {1, . . . , n} = I

·
∪ J . If J = {j1, . . . , jp}, let

∂J denote ∂j1 . . . ∂jp and similarly for I.

Then we must estimate sums of terms of the form∣∣∣∣∫
Dn

〈∂I(
1

(FF ∗)n+1
)Q∗

n∂nQ∗
n−1 . . . ∂1F

∗, ∂JH0〉 dLn

∣∣∣∣
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≤
∫

Dn

‖∂I(
1

(FF ∗)n+1
)‖op‖Q∗

n‖op‖∂nQ∗
n−1‖op . . . ‖∂1F

∗‖2‖∂JH0‖2 dLn.

Recall that ‖∂kQ∗
j‖op ≤ ‖∂kF ∗‖2, k = 0, . . . , n and j = 1, . . . , n. The result now

follows from Lemma 7. This completes the proof of Theorem A. �

The above argument shows that lΛ1,...,n
r ∈ BMO(T n) ∩ H2(Dn) and with

BMO norm independent of 0 ≤ r < 1. Thus, in the case that n = 1, l̂r
1
∈ BMO A

and sup
0≤r<1

‖l̂r
1
‖BMO � C0 < ∞. So there exist ϕ(r) ∈ L∞(T ) and h(r) ∈ H2

0 (T )

so that P⊥
H2(ϕ(r)) = l̂r

1
, ϕ(r) = l̂r

1
+ h(r) and sup

0≤r<1
‖ϕ(r)‖∞ = C0 < ∞. Then

ur = F∗
r

FrF∗
r
−Qr[ϕ(r)] gives a corona solution with ‖ur‖∞ ≤ 1

ε +C0 for all 0 ≤ r < 1.

We will outline the modifications of Theorem A necessary to establish The-
orem B. To show that TF ∈ B(Hp(T n)) is onto, fix any G ∈ Hp(T n). Then for
0 < r < 1,

uGr =
n∑

j=1

(−1)j
∑

π∈Π(j)
π=(i1,...,ij)

j! Bπ[
Q∗

j

(FF ∗)j+1
∂j1Q

∗
j−1 . . . ∂i1F

∗Gr]Λπ

satisfies

TFr uGr = Gr ∈ Hp(T n)

and |||uGr|||p ≤ C0 |||Gr|||p, (6)

where C0 is independent of r.

To verify (5), we estimate |||uGr|||p as we did |||ur|||p in Theorem A. The proof
is completed with a compactness argument. More details for the case n = 2 and
the compactness argument can be found in Trent [19].

Appendix

We finish this paper by providing a proof of the linear algebra result, Lemma 3.
Certainly, the basic exterior algebra idea in Lemma 3 is classic. See, for example,
Birkhoff-MacLane [3, Problem 4, p. 566].

We will sketch the basic idea. Note that although our operators defined below
are (of course) “bases free”, it is only with respect to a particular fixed basis that
the entries of the corresponding matrices belong to the algebras in question; which
for us is H∞(DN ).

For our notation, l2(n) will denote the exterior product of l2 with itself n-
times, i.e., l2(n) = l2 ∧ · · · ∧ l2 (n times). For n = 0, l2(0) = C. Let {ej}∞j=1 denote
the standard basis in l2. If Π(n) denotes increasing n-tuples of positive integers
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and if (i1, . . . , in) ∈ Π(n), we let πn = {i1, . . . , in} and, abusing notation, we write
πn ∈ Π(n).

Define eπn = ei1 ∧ · · · ∧ ein . Then {eπn}πn∈Π(n) denotes the standard basis
for l2(n).

For f ∼ {fn}∞n=1 and fn ∈ H∞(DN ), we assume that ε2 ≤ F (z)F (z)∗ ≤ 1
for all z ∈ DN . Fix z ∈ DN . For n = 0, 1, . . . define

Q∗
n(z) : l2(n) → l2(n+1)

by
Q∗

n(z)(wn) = F (z) ∧ wn, where wn ∈ l2(n).

Now

Q∗
n(z)(eπn) =

∞∑
j=1

fj(z) ej ∧ eπn .

So with respect to the standard basis, then entries of Q∗
n(z) are 0 or else ±fn(z)

for some n. Thus Qn(·) has analytic entries with respect to the standard basis.
This is the only place where we are using the particular algebra H∞(DN ).

Proof. Fix z ∈ DN and let a = F (z) and Q∗
n = Q∗

n(z). Then Q∗
n(wn) = a ∧ wn.

Choose an orthonormal basis {un}∞n=1 of l2 with u1 = a
‖a‖ . (Note ‖a‖2 ≥ ε2.) Then

it follows that for πn ∈ Π(n) and uπn = ui1 ∧· · ·∧ uin , we have that {uπn}πn∈Π(n)

is an orthonormal basis for l2(n). Thus

Qn(wn+1) =
∑

πn∈Π(n)

〈Qn(wn+1), uπn〉uπn

=
∑

πn∈Π(n)

〈wn+1, a ∧ uπn〉uπn

= ‖a‖
∑

πn∈Π(n)

〈wn+1, u1 ∧ uπn〉uπn . (7)

We wish to show that for n = 0, 1, . . . ,

Q∗
nQn + Qn+1Q

∗
n+1 = ‖a‖2Il2(n+1)

. (8)

For n = 0, Q∗
0Q0

‖a‖2 is the rank one projection of l2 onto a. So given (7), Q1Q∗
1

‖a‖2 is

a projection. But then Q∗
1Q1

‖a‖2 must be a projection. Applying (7) again, we see

that Q2Q∗
2

‖a‖2 is a projection. Repeating this procedure, we conclude that QnQ∗
n

‖a‖2 is the
projection onto the range of Qn. Also, given (7), it follows that Ker Qn = ranQn+1.

To prove (7) it suffices to check that for wn+1 ∈ l2(n+1),

‖Qn(wn+1)‖2 + ‖Q∗
n+1(wn+1)‖2 = ‖a‖2‖wn+1‖2. (9)
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Denote wn+1 by w. Then from (6), we see that

‖Qn(w)‖2 = ‖a‖2
∑

πn∈Π(n)
1/∈πn

|〈w, u1,πn〉|2

= ‖a‖2
∑

πn+1∈Π(n+1)
1∈πn+1

|〈w, uπn+1〉|2.

Also, since

Q∗
n+1(w) = a ∧ w = ‖a‖ u1 ∧

∑
πn+1∈Π(n+1)

〈w, uπn+1〉uπn+1

= ‖a‖
∑

πn+1∈Π(n+1)
1/∈πn+1

〈w, uπn+1〉u1 ∧ uπn+1,

we compute that

‖Q∗
n+1(w)‖2 = ‖a‖2

∑
πn+1∈Π(n+1)

1/∈πn+1

|〈w, uπn+1〉|2.

So (8) holds. This completes the proof of Lemma 3. �
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A Matrix and its Inverse: Revisiting Minimal
Rank Completions

Hugo J. Woerdeman

Abstract. We revisit a formula that connects the minimal ranks of triangular
parts of a matrix and its inverse and relate the result to structured rank
matrices. We also address a generic minimal rank problem that was proposed
by David Ingerman and Gilbert Strang.
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1. Introduction

In this paper we revisit the following result from [22]:

Let [(Tij)n
i,j=1]

−1 = (Sij)n
i,j=1 be block matrices with sizes that are compatible for

multiplication. Other than the full matrix (which is of size N , say), none of the
blocks need to be square. Then

min rank

⎛⎜⎜⎜⎝
T11 ? · · · ?
T21 T22 · · · ?
...

. . .
...

Tn1 Tn2 · · · Tnn

⎞⎟⎟⎟⎠+ min rank

⎛⎜⎜⎜⎝
? ? · · · ?

S21 ? · · · ?
...

. . . . . .
...

Sn1 · · · Sn,n−1 ?

⎞⎟⎟⎟⎠ = N.

(1.1)
With the recent interest in numerical algorithms that make effective use of ma-
trices with certain rank structures (see, e.g., [4], [21], [18], [7], [9], and references
therein), it seems appropriate to revisit this formula that captures many of the
rank considerations that go into these algorithms. The nullity theorem due to [10]
is a particular case. The papers [17] and [20] show the recent interest in the nullity
theorem. It is our hope that this general formula (1.1) enhances the insight in rank
structured matrices.

Supported in part by National Science Foundation grant DMS-0500678.
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In addition, in Section 3 we will address the so-called “generic minimal rank
problem”. This problem was introduced by Gilbert Strang and David Ingerman.

2. Minimal ranks of matrices and their inverses

Let us recall the notion of partial matrices and their minimal rank. Let F be a
field and let n, m, ν1, . . . , νn, µ1, . . . , µm be nonnegative integers. The pattern of
specified entries in a partial matrix will be described by a set J ⊂

{
1, . . . , n

}
×{

1, . . . , m
}
. A pattern K that is a subset of J will be called a subpattern of J . Let

now Aij , (i, j) ∈ J , be given matrices with entries in F of size νi×µj . We will allow
νi and µj to equal 0. The collection of matrices A =

{
Aij ; (i, j) ∈ J

}
is called a

partial block matrix with the pattern J. When all the blocks are of size 1× 1 (i.e.,
νi = µj = 1 for all i and j), we will simply talk about a partial matrix. Clearly, any
block matrix as above may be viewed as a partial matrix of size N ×M as well,
where N = ν1 + . . . + νn, M = µ1 + . . . + µm. It will be convenient to represent
partial block matrices in matrix format. As usual a question mark will represent
an unknown block. For instance, A =

{
Aij : 1 ≤ j ≤ i ≤ n

}
will be represented as

A =

⎛⎜⎜⎜⎜⎝
A11 ? . . . ?
...

. . . . . .
...

...
. . . ?

An1 . . . . . . Ann

⎞⎟⎟⎟⎟⎠ .

Let a partial matrix A =
{

Aij ; (i, j) ∈ J
}

be given. A block matrix B =
(Bij)n

i=1,
m
j=1 with Bij ∈ Fνi×µj is called a completion of A if Bij = Aij , (i, j) ∈ J.

The minimal rank of A (notation: min rank(A)) is defined by

min rank(A) = min
{
rankB : B is a completion ofA

}
.

The formula that connects the minimal ranks of triangular parts of a matrix
and its inverse is the following. The result appeared originally in [22] (see also [24]
and Chapter 5 of [23]).

Theorem 2.1. [22] Let T = (Tij)n
i,j=1 be an invertible block matrix with Tij of

size νi × µj , where νi ≥ 0, µj ≥ 0 and N = νi + . . . + νn = µi + . . . + µn. Put
T−1 = (Sij)n

i,j=1 where Sij is of size µi × νj . Then

min rank

⎛⎜⎜⎜⎝
T11 ? · · · ?
T21 T22 · · · ?
...

. . .
...

Tn1 Tn2 · · · Tnn

⎞⎟⎟⎟⎠+ min rank

⎛⎜⎜⎜⎝
? ? · · · ?

S21 ? · · · ?
...

. . . . . .
...

Sn1 · · · Sn,n−1 ?

⎞⎟⎟⎟⎠ = N.

As we will see, one easily deduces from Theorem 2.1 that the inverse of a
lower Hessenberg matrix has the upper triangular part of a rank 1 matrix. The
strength of Theorem 2.1 lies in that one easily deduces a multitude of such results
from it.
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From the same paper [22] we would also like to recall the following result.

Theorem 2.2. [22] The partial matrix T =
{
Tij : 1 ≤ j ≤ i ≤ n

}
has minimal rank

min rankT =
n∑

i=1

rank

⎛⎜⎝Ti1 . . . Tii

...
...

Tn1 . . . Tni

⎞⎟⎠− n−1∑
i=1

rank

⎛⎜⎝Ti+1,1 . . . Ti+1,i

...
...

Tn1 . . . Tni

⎞⎟⎠ .

For the 2×2 case of Theorem 2.2 one needs to observe that the minimal rank
of (

T11 ?
T21 T22

)
will at least be the rank of

(
T11

T21

)
plus the minimal number of columns in T22

that together with the columns of T21 span the column space of
(
T21 T22

)
. Once

such a minimal set of columns in T22 has been identified, put any numbers on top
of these columns. Now any other columns in T22 can be completed to be a linear
combination of fully completed columns. Doing this leads to a completion of rank

rank
(

T11

T21

)
+ rank

(
T21 T22

)
− rankT21,

yielding the case n = 2 of Theorem 2.2. The general case now follows easily by
induction.

The proof of Theorem 2.1, which can be found in [22] is easily derived from
Theorem 2.2 and the nullity theorem, which we recall now.

Theorem 2.3. [10] Consider(
A B
C D

)−1

=
(

P Q
R S

)
.

Then dim kerC = dimkerR.

Proof. Since CP = −DR , P [kerR] ⊆ kerC. Likewise, since RA = −SC, we get
A[kerC] ⊆ kerR. Consequently,

AP [kerR] ⊆ A[kerC] ⊆ kerR.

Since AP + BR = I , AP [kerR] = kerR, thus

A[kerC] = kerR.

This yields dim kerC ≥ dim kerR. By reversing the roles of C and R one obtains
also that dimkerR ≥ dim kerC. This gives dimkerR = dimkerC, yielding the
lemma. �

The nullity theorem is in fact the case n = 2 of Theorem 2.1. Indeed, if

T−1 =
(

T11 T12

T21 T22

)−1

=
(

S11 S12

S21 S22

)
,
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we get from Theorem 2.1 that

rank
(

T11

T21

)
+ rank

(
T21 T22

)
− rankT21 + rankS21 = N. (2.1)

As T is invertible we have that
(

T11

T21

)
and

(
T21 T22

)
are full rank, so (2.1) gives

µ1 + ν2 − rankT21 + rankS21 = µ1 + µ2 = ν1 + ν2,

and thus
ν2 − rankT21 = µ2 − rankS21,

which is exactly Theorem 2.3.

To make the connection with some of the results in the literature we need
the following proposition.

Proposition 2.4. Let T =
{
tij : 1 ≤ j ≤ i ≤ n

}
be a scalar-valued partial matrix.

Then min rank (T ) = n if and only if tii �= 0, i = 1, . . . , n, and tij = 0 for i > j.

Proof. The “if” part is immediate. For the only if part write

min rankT = rank

⎛⎜⎝t11
...

tn1

⎞⎟⎠+
n∑

i=2

si, (2.2)

where

si = rank

⎛⎜⎝ ti1 . . . tii
...

...
tn1 . . . tni

⎞⎟⎠− rank

⎛⎜⎝ti1 . . . ti,i−1

...
tn1 . . . tn,i−1

⎞⎟⎠ .

All the terms in (2.2) are at most 1, and as there are exactly n terms they need
to all be equal to 1 for min rank(T ) = n to be satisfied. But then sn = 1 implies
tn1 = . . . = tn,n−1 = 0 and tnn �= 0. Inductively, one can then show that sk = 1
implies tk1 = . . . = tk,k−1 = 0 and tkk �= 0, k = n− 1, . . . , 2. Finally the first
column of T needs to have rank 1. As tij = 0, j = 2, . . . , n, was already established
we get that t11 �= 0. This proves the result. �

We now easily obtain the following corollary, due to Asplund [1].

Corollary 2.5. [1] Let p ≥ 0 and A = (aij)N
i,j=1 be an N × N scalar matrix with

inverse B = (bij)N
i,j=1. Then aij = 0 for all i and j with j > i + p, and aij �= 0,

j = i + p, if and only if there exist an N × p matrix F and a p×N matrix G so
that bij = (FG)ij , i < j + p. In particular, if p = 1 (so A is lower Hessenberg),
then bij = FiGj , 1 ≤ i ≤ j ≤ N , where F1, . . . , FN , G1, . . . , GN are scalars.

Proof. Let (Sij)
N−p+1
i,j=1 = A, where Si1 is of size 1× p, i = 1, . . . , n− p, SN−p+1,1

has size p× p, SN−p+1,j has size p× 1, j = 2, . . . , N − p + 1, and all the other Sij
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are 1 × 1. Let B = (Tij)
N−p+1
i,j=1 be partitioned accordingly. Then, it follows from

(1.1) that

min rank

⎛⎜⎜⎜⎝
? ? · · · ?

S21 ? · · · ?
...

. . . . . .
...

Sn1 · · · Sn,n−1 ?

⎞⎟⎟⎟⎠ = N − p

if and only if

min rank

⎛⎜⎜⎜⎝
T11 ? · · · ?
T21 T22 · · · ?
...

. . .
...

Tn1 Tn2 · · · Tnn

⎞⎟⎟⎟⎠ = p.

Using Proposition 2.4 the result now follows. �

Corollary 2.5 shows that Theorem 2.1 is useful in the contexts of semi-
separability and quasi-separability (see, e.g., [19] and [6] for an overview of these
notions). In a similar way it is easy to deduce results by [3], [13], [14], [15], [16]
and [8] from Theorem 2.1.

3. The generic minimal rank completion problem

Let r ∈ N. We will call a pattern J ⊆ {1, . . . , n} × {1, . . . , m} r-sparse if for every
K ⊂ {1, . . . , n} and every L ⊆ {1, . . . , m} with |K| = |L| ≥ r we have that

|J ∩ (K × L)| ≤ (2|K| − r)r.

Thus square submatrices of size N intersect the pattern in at most 2Nr − r2

positions. The number 2Nr − r2 comes from the situation where exactly r rows
and r columns in an N ×N submatrix are prescribed.

Recently D. Ingerman and G. Strang observed that a 1-sparse matrix with
nonzero entries has a completion of rank 1. We will give a proof of this fact below.
This observation led Ingerman and Strang to ask: Is it true that one can “generi-
cally” complete a r-sparse partial matrix to a matrix of rank ≤ r? Of course, to be
able to answer the question one needs to define “generically”. The 1-sparse case
suggests that it may suffice to require that all fully specified matrices are nonsin-
gular. The following example, however, shows that this is not the right formulation
of “generic”.

Example 3.1. Consider the matrix

A :=

⎛⎜⎜⎝
6 3 x 1
3 1 1 y
z 1 2 3
1 w 1 1

⎞⎟⎟⎠ ,
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where x, y, z and w are the unknowns. Note that this partial matrix has a pattern
that is 2-sparse. However there is no completion of rank 2. Indeed, suppose that
rankA = 2. Then we have that(

6 3
3 1

)
−
(

x 1
1 y

)(
2 3
1 1

)−1(
z 1
1 w

)
= 0,

and since the rank of the first term is 2, the second term must also have rank 2.
Thus, we have that xy �= 1 and zw �= 1. Next, we also have that(

z 1
1 w

)
−
(

2 3
1 1

)(
x 1
1 y

)−1(6 3
3 1

)
= 0.

Multiplying on both sides with xy− 1, the off-diagonal entries yield the equations

xy − 6y − 3x + 10 = 0, xy − 6y − 3x + 8 = 0.

These are not simultaneously solvable (as long as we are in a field where 8 �= 10).
It should be noted that this is a counterexample for any field in which 6 �= 9,
6 �= 1, 3 �= 1, 9 �= 1 (so that we have full rank-specified submatrices) and 8 �= 10.
As an aside, we note that for some of the small fields it may be impossible to fulfill
the nondegeneracy requirement on the data. E.g., when F = {0, 1}, a 2× 2 matrix
can only be nonsingular if zeroes are allowed in the matrix.

In order to formulate our results and conjectures it is useful to introduce
the bipartite graph associated with a pattern. Given a pattern J the corresponding
(undirected) bipartite graph G(J) has vertices {v1, . . . , vn, u1, . . . , um}, and (vi, uj)
is an edge in G(J) if and only if (i, j) ∈ J . A subset K ⊆ J is called a cycle in
G(J) if K is of the form

K = {(i1, j1), (i2, j1), (i2, j2), . . . , (ik, jk), (i1, jk)} (3.1)

for distinct i1, . . . , ik and distinct j1, . . . , jk, where k ≥ 2. In other words, G(K) is
a cycle in G(J). The length of the cycle K is its number of elements; so for K in
(3.1) we have that its length is 2k. Note that in a bipartite graph all cycles have
even length. When a pattern is 1-sparse, it cannot have any cycles as a cycle of
length k requires the corresponding partial matrix to have 2k specified entries in
a k× k submatrix. This observation makes it easy to apply a result in [5] to prove
the statement by Ingerman and Strang.

Proposition 3.2. [11] Any partial matrix whose pattern is 1-sparse and whose given
entries are nonzero, has a rank 1 completion.

Proof. Let J denote the pattern of specified entries of the matrix. By the ob-
servation before the proposition we have that G(J) does not contain any cycles.
Therefore by Lemma 6.2 in [5] it suffices to observe that the absence of zero speci-
fied entries implies trivially that the partial matrix “is singular with respect to all
three lines in G(J)” (the latter condition can be rephrased as saying that for all
2× 2 submatrices there is a rank one completion). �
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We say that the cycle K in (3.1) has a chord in J if for some 1 ≤ p, q ≤ k we
have that (ip, jq) ∈ J \K. One can think of a chord as a “shortcut” in the cycle.
The cycle K is called minimal in J if it does not have a chord in J . Notice that
a 4-cycle is a complete bipartite subgraph, and by definition it is automatically
minimal. Cycles of larger (necessarily even) length can be minimal or not. We say
that a bipartite graph is called chordal if it does not have minimal cycles of length
6 or larger.

Notice that the bipartite graph associated with the partial matrix in Example
3.1 is a minimal cycle of length 8, and therefore the graph is not chordal. Therefore
it could be that the obstruction of finding a solution in Example 3.1 lies in the
non-chordality of the underlying bipartite graph. As we have seen in [5, Theorem
3.1] it is also the non-chordality that prevents graphs from being so-called “rank
determined”. In addition, notice that in the case r = 1 the 1-sparse property
prevents the existence of minimal cycles of length 6 or more, and thus in that case
all patterns are automatically bipartite chordal. Thus we arrive at the following
conjecture.

Conjecture 3.3. Consider an r-sparse partial matrix A with a bipartite graph that
is chordal. If all fully specified submatrices have full rank, then A has a completion
of rank at most r.

We can prove the conjecture for the subclass of banded patterns. Recall (cf.
[25]) that a pattern J ⊂ {1, . . . , n} × {1, . . . , m} is called banded if there exist
permutations σ on {1, . . . , n} and τ on {1, . . . , m} so that

Jσ,τ := {(σ(i), τ(j)) ; (i, j) ∈ J}
satisfies

(i, j), (k, l) ∈ Jσ,τ , i ≤ k, j ≥ l ⇒ {i, . . . , k} × {l, . . . , j} ⊂ Jσ,τ .

Theorem 3.4. Let F be an infinite subfield of C. Consider a r-sparse partial matrix
with a banded pattern and suppose that all fully specified submatrices have full
rank. Then there exists a completion of rank at most r.

To prove this result we need the notion of triangular pattern: a pattern J is
called triangular if there exist permutations σ and τ so that Jσ,τ satisfies

(i, j) ∈ Jσ,τ ⇒ {i, . . . , n} × {1, . . . , j} ⊂ Jσ,τ .

Proof of Theorem 3.4. By Theorem 1.1 in [25] it suffices to show that for every
triangular subpattern (for the definition, see [25]) we have that the minimal rank
is ≤ r. But a triangular subpattern can always be embedded in a pattern that
corresponds to r rows and columns specified (due to the condition that in any
k × k submatrix at most (2k − r)r entries are specified). But then the result
follows. �

Observe that the proof shows that if the bipartite chordal minimal rank
conjecture (Conjecture 3.3 in [5]; see also Chapter 5 in [23]) is true, then Conjecture
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3.3 above is true as well. The techniques developed in [2] and/or [12] may be helpful
in proving this conjecture above.

While Example 3.1 shows that not every r-sparse partial matrix with full
rank-specified submatrices has a rank r completion, it should be noticed that if we
consider the example as one over an infinite subfield of C and we perturb the data
slightly, then there is a rank r completion. This observation leads to the following.

Let F be an infinite subfield of C, and let J be a pattern. Consider the set
PJ of partial matrices over F with pattern J . We can identify PJ with the set
F|J|, and we use this correspondence and the usual topology on F|J| to define a
topology on PJ . We can now formulate the following conjecture, which probably
best describes the conjecture that Ingerman and Strang had in mind.

Conjecture 3.5. Let J be an r-sparse pattern. Then there is a dense subset P ′ of
PJ , so that all partial matrices in P ′ have a completion of rank at most r.

Analyzing Example 3.1 it is not hard to convince oneself that Conjecture 3.5 is
true for the 2-sparse pattern J = {1, . . . , 4}×{1, . . . , 4}\{(1, 4), (2, 3), (3, 2), (4, 1)}.
Indeed, a desired set P ′ is described by all partial matrices for which the given
entries satisfy 4 nonequalities. These nonequalities are obtained by eliminating
three out of four unknowns, and requiring that the coefficient in front of the
highest power is not equal to 0; doing this for all possible choices of the remaining
unknown, we get 4 nonequalities. Also, by the results stated earlier, the conjecture
is true for r = 1, and for banded J .

One may perhaps prove Conjecture 3.5 in the following way. View the par-
tial matrices in PJ as a regular matrix where the unknowns are represented by
variables x1, . . . , xk, k = nm − |J |. Let I be the ideal generated by the determi-
nants p1, . . . , pN of (r + 1)× (r + 1) submatrices as polynomials in the unknowns
x1, . . . , xk. We now need to show that generically, the constant polynomial 1 is
not in I. Use of elimination theory may perhaps be used to now show that one
can only eliminate all variables when the coefficients satisfy certain equalities. Fi-
nally, observing that these equalities are generically not satisfied one may finish
the proof.
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[13] P. Rózsa, Band matrices and semiseparable matrices. In “Numerical methods”
(Miskolc, 1986), Colloq. Math. Soc. János Bolyai (North-Holland, Amsterdam) 50
(1988), 229–237.
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