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Preface to the Second
Edition

Computer science abounds with applications of discrete mathematics, yet stu-
dents of computer science often study discrete mathematics in the context of
purely mathematical applications. They have to figure out for themselves how
to apply the ideas of discrete mathematics to computing problems. It is not
easy. Most students fail to experience broad success in this enterprise, which
is not surprising, since many of the most important advances in science and
engineering have been, precisely, applications of mathematics to specific science
and engineering problems.

To be sure, most discrete math textbooks incorporate some aspects applying
discrete math to computing, but it usually takes the form of asking students
to write programs to compute the number of three-ball combinations there
are in a set of ten balls or, at best, to implement a graph algorithm. Few
texts ask students to use mathematical logic to analyze properties of digital
circuits or computer programs or to apply the set theoretic model of functions
to understand higher-order operations. A major aim of this text is to integrate,
tightly, the study of discrete mathematics with the study of central problems
of computer science.

Concepts in discrete mathematics are illustrated through the solution of
problems that arise in software development, hardware design, and other fun-
damental domains of computer science. The text introduces discrete math
concepts and immediately applies them to computing problems. Applications
of mathematical logic in design and analysis of hardware and software is an
especially strong theme. The goal in this part of the material is to prepare stu-
dents for a world that places a high value on the correct operation of computing
systems in safety-critical, security-sensitive, and embedded systems and recog-
nizes that formal methods based in mathematical logic are the primary tools
for ensuring that computing systems function properly in such environments.

The emphasis, here, is on preparation. In commercial applications, mecha-
nized logic engines are essential to the enterprise of applying logic to the design
and implementation of computing hardware and software. This text introduces
students to mechanized logic in the form of propositional proof checking, and,
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viii Preface

through numerous paper-and-pencil exercises in applying logic to mathematical
verification of hardware and software artifacts, gives students experience with
the fundamental notions used by engineers who apply mechanized logic engines
to the design of commercial computing systems. We believe these skills will be
of increasing value in computer and software engineering, and our experience
suggests that such skills contribute positively, even in the short run, to the
ability of students to successfully design and implement software.

The text is organized in four parts: reasoning with equations, formal logic,
set theory, and applications. The principle of induction is introduced early,
for reasoning with equations, and applied to problems throughout the text.
Reasoning with equations covers examples in several domains, including natural
numbers of course, but also including sequences and sets. The logic portion of
the text discusses two frameworks for formal reasoning: the natural deduction
format of Gentzen and another syntax-based reasoning system based in Boolean
algebra. Propositional logic is introduced first, then predicate logic, both in
a natural deduction and Boolean algebra setting. Set theory discusses the
usual basics, and illustrates many of the concepts by applying induction to
define the integers. The set theoretic definitions of relations and functions
are discussed, along with the usual properties that categorize them and allow
them to be combined and manipulated. The applications portion of the text
covers two extended examples, one concerning the design of a circuit for n-bit,
ripple-carry addition, the other on the implementation of AVL tree operations.
These augment the many, smaller examples that occur throughout the text
and, together, help students understand how discrete mathematics contributes
to the solution of difficult and important problems in computing.

A website for the text contains a collection of tools for experimenting with
most of the concepts introduced. Included among these is a proof-checking
system for propositional calculus. Students can use this system to make sure
their proofs are correct and, more importantly, to experience the notion that
proofs can be entirely formal and, therefore, useful in verifying the correctness
of software and digital circuits. Other tools allow experimentation with set
operations, Boolean formulas, and the notions of predicate calculus. These
tools are expressed in Haskell, and the various operations for experimentation,
including proofs, are expressed using Haskell syntax. In addition, Haskell is
used to express the software and hardware designs that illustrate practical uses
of logic and other aspects of discrete mathematics in computer science.

We feel that Haskell is an ideal notational choice for these examples be-
cause of its close affinity with customary algebraic notation. The compactness
of software and hardware artifacts expressed in Haskell is another important
advantage. Haskell serves both as a formal, mathematical notation, and as a
practical and powerful programming language. This helps to strengthen the
tight connection between mathematics and applications. Thus Haskell is used
in the text on an equal footing with other mathematical notations. Students see
Haskell in its role as a programming language, as well as a hardware description
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language, and the emphasis in this book is on reasoning about programs and
circuits, not just programming.

We hope that students will find the experience of learning about logic, sets,
mathematical induction, and other concepts of discrete mathematics and its
applications to computing problems interesting and enjoyable, and that they
will be able to use these ideas in subsequent studies and professional work in
computer science.

Software Tools for Discrete Mathematics

A central part of this book is the use of the computer to help learn the discrete
mathematics. The software (which is free; see below) provides many facilities
that aid the student in learning the material:

• Logic and set theory have many operators that are used to build mathe-
matical expressions. The software allows the user to type in such expres-
sions interactively and experiment with them.

• Predicate logic expressions with quantifiers can be expanded into propo-
sitional logic expressions, as long as the universe is finite and reasonably
small. This makes the meaning of the quantifiers more concrete and helps
the development of intuition.

• Students frequently misuse expressions in logic and set theory; a typical
error that arises frequently is to write an expression that treats A ⊆ B
as a set rather than a Boolean value. The software tools will immedi-
ately flag such mistakes as type errors. Teaching experience shows that
many students will have long-lasting misconceptions about basic nota-
tions without immediate feedback.

• A formal proof checker for natural deduction is provided. This allows
students to find errors in their proofs before handing in exercises, and
it also provides a quick and effective way for the instructor to check the
validity of large numbers of proofs. Furthermore, the automated proof
checker underscores the nature of formal proof; vague or ill-formed proofs
are not acceptable.

• Using a proof checker gives a deeper appreciation of the relationship be-
tween discrete mathematics and computer science. The experience of
debugging a proof is much like debugging a computer program; the proof
checker is itself a computer program (which the students can read if they
wish to); proof checking software makes formal proof feasible for larger
scale problems.

• The techniques of recursion and induction are applied directly and for-
mally to function definitions that the student can execute.
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The version of Haskell used in the book is Haskell98. This is a standard
pure functional language with excellent support. Several implementations are
freely available and they are supported on most major computers and oper-
ating systems. Students can install the software on their own machines, and
universities can, of course, install it on laboratory computers.

The Software Tools for Discrete Mathematics package is a library of defini-
tions that are loaded into Haskell. This package is available on the book web
page (see Appendix B).

Haskell is an ideal language for teaching discrete mathematics. It offers a
powerful and concise expression language; many problems that would require
writing a complete program of 10 to 100 lines of code in a language such as
Pascal, C++, or Java can be written as a simple expression in Haskell, which
is only a few lines long. This makes it possible to use Haskell interactively to
experiment with the mathematical expressions of propositional logic, predicate
logic, set theory, and relations. Such lightweight interactive exploration is
infeasible in traditional imperative or object-oriented languages. Haskell is
also well suited for complex applications, such as the proof checker used in
Chapters 6 and 7, and the hardware description language used in Chapter 13.

It is assumed that the reader of the book has no knowledge in advance
about Haskell or functional programming; everything that is needed is covered
here. Because it is self-contained, this book can be used in any curriculum,
regardless of what programming languages happen to be in use.

To the Student

It’s best to read this book actively with pencil and paper at hand. As you
read, try out the examples yourself. It is especially important to try some of
the exercises, and solutions to many of them appear in Appendix C. Don’t just
read the exercise and then the solution—the benefit comes from trying to solve
an exercise yourself, even if you don’t get it right. When you find your own
solution, or if you get stuck, then compare your solution with the one in the
book.

The web page for this book has additional information that will be useful
as you study discrete mathematics:

http://www.dcs.gla.ac.uk/
˜jtod/discrete-mathematics/

Many of the exercises require the use of a computer with Haskell installed.
The software is free, and it’s straightforward to download it and install on your
own machine. See the book web page for information on obtaining the software.

A good way to improve your understanding of the material is to read about
it at a more advanced level and also to learn about its application to real
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problems. The Bibliography near the end of the book lists many good sources
of information, and each chapter ends with some suggestions for further reading.

We wish you success with your studies in mathematics and computer sci-
ence!

To the Instructor

This book is primarily intended for students of computer science, and appli-
cations of the mathematics to computing are stressed. No specific topics in
computing are prerequisites, but some familiarity with elementary computer
programming is assumed. The level is appropriate for courses in the first or
second year of study. The contents of this book can be covered in a course of
one semester.

The Instructor’s Guide gives suggestions for organising the course, solu-
tions to the exercises, additional problems with solutions and other teaching
resources. It is available online:

http://www.dcs.gla.ac.uk/˜jtod
/discrete-mathematics/instructors-guide/

Because the four parts of the text are largely independent of one another,
topics may be introduced in the order that best suits the needs of particular
instructors and students. The only serious restriction on ordering is that Part
I (reasoning with equations and induction), Part II (logic), and Part III (Sets)
must be covered before Part IV (applications). Reasoning with equations, logic,
and set theory may be covered in any order. Chapter 1 describes Haskell, which
is used as a mathematical notation at many points in the text. Readers may
need to refer to Chapter 1 as they read other portions of the text, but it
is probably better to discuss that material on as as-needed basis instead of
spending a block of time on it in the beginning. The following graph shows the
dependencies in more detail.

Chapters 2−5

Reasoning with
equations

Chapters 6−7
Logic

Chapters 8−11
Sets

Applications

Chapters 12−13
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A website accessible to instructors includes lesson plans, slides for lectures,
homework problems, and exam questions for a course based on the text. Al-
together, the website contains over 100 homework problems (with solutions),
about 350 lecture slides, and more than 300 exam questions (with solutions).
These materials are accessible on the web:

http://www.dcs.gla.ac.uk/˜jtod
/discrete-mathematics/instructors-guide/

Notation

Standard mathematical notation is used in this book when discussing mathe-
matics: A ⊆ B. A typewriter font is used for notations that are intended to be
input to a computer: a ‘subset‘ b. For example, a general discussion in En-
glish might say that a theorem is true; that theorem might make a statement
about the proposition True, and a Haskell program would use the constant
True. The end of a proof is marked by a square box �.

Acknowledgements

We would like to thank the following colleagues for their helpful feedback and
encouragement during the process of writing this book: Tony Davie, Bill Find-
lay, Joy Goodman, Mark Harman, Greg Michaelson, Genesio Gomes da Cruz
Neto, Thomas Rauber, Richard Reid, Gudula Rünger, and Noel Winstanley.
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Chapter 1

Introduction to Haskell

The topic of this book is discrete mathematics with an emphasis on its connec-
tions with computers:

• The computer can help you to learn and understand mathematics. As
various mathematical objects are defined, software tools will enable you
to perform calculations with those objects. Exploring and experimenting
with mathematical ideas gives a practical intuition.

• The mathematics has widespread applications in computing. We will focus
on the topics of discrete mathematics that are most important in modern
computing and will look at many examples.

• Software tools make it possible to use the mathematics more effectively.
Mathematical structures are frequently large and complex, and computers
are often necessary to bring out their full potential.

In order to achieve these goals, it won’t be enough to provide the occasional
pseudo-code program. We need to work with real programs throughout the
book. The programming language that will be used is Haskell, which is a
modern standard functional programming language.

It is not assumed that you know anything about Haskell or about functional
programming. Everything you need to know about it is covered in this book.
You will need only a small part of the language for this book, and that part
is introduced in this chapter. If you would like to learn more about Haskell
or functional programming, Section 1.11 recommends a number of sources for
further reading.

Why use a functional language, and why Haskell in particular? Because:

• Haskell allows you to compute directly with the fundamental objects of
discrete mathematics.

• It is a powerful language, allowing programs that would be long and
complicated in other languages to be expressed simply and concisely.

3
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• You can reason mathematically about Haskell programs in the same way
you do in elementary algebra.

• The language provides a strong type system that allows the compiler to
catch a large fraction of errors; it is rare for a Haskell program to crash.

• Haskell is an excellent language for rapid prototyping (i.e., implementing
a program quickly and with minimal effort in order to experiment with
it).

• There is a stable, standard, and well-documented definition of Haskell.

• A variety of implementations are available that are free and run on most
computers and operating systems.

• Haskell can be used interactively, like a calculator; you don’t need a
heavyweight compiler.

1.1 Obtaining and Running Haskell

Appendix A gives a pointer to the web page for this book. On that page you
can find pointers to the most up-to-date implementations of Haskell as well as
the software tools used in this book. There is an active Haskell development
community, and new tools are constantly emerging, so you should check the
book web page for current information. The book web page also contains
additional documentation for the software.

We will use the computer interactively, like a desk calculator. Haskell itself
provides a powerful set of built-in operations, but others that you will need
are defined in the Software Tools for Discrete Mathematics file stdm.hs, which
you can download from the book web page.

To give an idea of what it’s like to use the computer with this book, here
is a typical interactive session, using the stdm file and an interactive Haskell
implementation, such as ghci, Hugs, or nhc.

First we start the Haskell system, and it will give an introductory screen
followed by a prompt ‘>’. Haskell is now acting like an interactive calculator;
you enter an expression after the > prompt, and it will evaluate the expression,
print it, and give another prompt:

... the introductory message from Haskell system ...
Type :? for help
> 1 + 2
3
> 3*4
12
>
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You have just typed in an expression, and it was evaluated. An expression
is a combination of operators and values that are defined by the programming
language. For example, 1 + 2 * x is an expression in Haskell. We write 1+2
⇒ 3, meaning that when the expression 1+2 is evaluated, the result is 3.

Now you should load the software tools file, which defines the programs
used in the examples and exercises in this book:

> :load stdm

Notice the colon in the :load stdm. If the first character after a prompt
is : then the rest of the line is a command to the interpreter, rather than an
expression. One good command to remember is :?, which prints a help screen
listing all the other commands you can enter.

At this point, you are ready to start writing and testing definitions. These
should be saved in a file, so that you don’t have to enter them in again and
again. To do this, create a file with a name like mydefs.hs. The extension .hs
stands for Haskell script. Store the following two lines in your file:

y = x+1
x = 2*3

The syntax of Haskell is designed to look similar to normal mathematical
notation, and to be easy to read. Programs should be properly indented,
and Haskell will use the indentation of the code in your script file in order
to determine its structure. For example, if have an equation that is too long
to fit on one line, you need to indent the subsequent lines. Here is one way to
do it:

x = a + b + c
+ d + e

y = 2 * x

Notice that you don’t need to write any extra punctuation, semicolons, braces,
begin/end, etc. The indentation makes it clear (both to the Haskell system and
to human readers) that the second line is a continuation of an equation. Rather
than learning the precise details of indentation in Haskell, we recommend that
you just follow the indentation style used in this book. One advantage of
Haskell’s approach is that the programmer specifies the structure of the pro-
gram just once (through the indentation), rather than twice (through braces
and semicolons, and again through indentation).

A double minus sign indicates that the rest of the line is a comment. You
can also indicate that a portion of text is a comment by enclosing it in {- and
-}. This convention can be used to turn a part of a line into a comment, or a
group of several lines.

x = 2 + 2 -- the result should be 4
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Now enter the command :load mydefs, which tells the Haskell system to
read your file. The effect of this is to define all the names that appear on the
left-hand sides of the equations in the file. From now on, the expressions you
enter interactively can make use of the variables x and y:

:load mydefs
> :load mydefs
Reading file "mydefs.hs":
mydefs.hs
> x
6
> y
7
> x*y
42
>

You can always edit the file and save it, and then reload the file into Haskell.
This will replace all the old definitions with the ones in the edited file. For
example, if you modify the file so that it says x = 4*5 and reload it, then x
⇒ 20 and y ⇒ 21.

When you would like to leave Haskell, you can enter the quit command
:quit, and with some operating systems you can also quit by entering control
D.

1.2 Expressions

You can do a lot just by writing simple expressions in Haskell—far more than
just basic arithmetic (although that can be interesting, too). In the following
sections, we will show some of the most useful kinds of expression, organised
according to the type of value.

As you will see later, types are of fundamental importance, both in Haskell
and in discrete mathematics. For now, however, you can just think of a type
as being something like Integer, Float, Char, etc. The essential point is that
an operator is defined for a specific type. For example, the + operator specifies
addition, which makes sense only for number types, while the length operation
gives the length of a list, but makes no sense for types that are not lists.

1.2.1 Integer and Int

Integer constants are written as a sequence of digits. For example, 2, 0, 12345,
and -72 are all integer constants.

Like most programming languages, Haskell provides operators for addition
(+), subtraction (-), and multiplication (*). There is also an exponentiation
operator ˆ; for example, 2ˆ3 means ‘2 raised to the power 3’, or 23.
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For the time being, don’t use / for division; instead, write x ‘div‘ y in
order to divide x by y. This is an integer division, and any remainder is thrown
away. For example, 5 ‘div‘ 2 ⇒ 2, 17 ‘div‘ 3 ⇒5 and -100 ‘div‘ 20 ⇒
-5. You can get the remainder or modulus with the ‘mod‘ operator: 8 ‘mod‘
3 ⇒ 2.

Notice how ‘div‘ and ‘mod‘ are operators (an operator is written in be-
tween its two arguments), but these operators are names made up of letters.
Haskell has many named operators like this, and they are always enclosed in
back-quote characters: ‘opname‘.

There are functions that find the larger and smaller of two numbers: max 3
8 ⇒ 8, and min 3 8 ⇒ 3. There is a further discussion about operators like
‘div‘ and functions like max in Section 1.4.3.

Computers store numbers in words, and the word size of modern processors
is 64 bits long. Whatever the word size on your computer, however, there is a
limit to how large an integer it will hold. Fortunately, Haskell does not limit
you to numbers that fit into a word. It provides two distinct integer types:

• Int is the type of integers that fit into a word on the computer (naturally
this will vary from one computer to another);

• Integer is the type of mathematical integers.

Since there are two different integer types, we need a way of saying which
type we want an expression to have. The :: operator (read it as has type) is
used in Haskell to specify what type an expression has. Thus 2::Int says ‘2 has
type Int’, and its representation in the computer is different from 2::Integer.

Here is an example that will illustrate the difference between Int and
Integer. First, evaluate 2ˆ2, which means 2 squared and gives 4:

> 2ˆ2
4

Now, 2ˆ20 presents no problem to most computers, as the word size will be
well above 20:

> 2ˆ20
1048576

However, most computers have a word size much less than 200 bits, and the
expression 2ˆ200 will not give the right answer if it’s evaluated with the default
Int type:

> 2ˆ200
0

Therefore we say explicitly that we want the unlimited Integer type to be
used instead; now we are guaranteed to get the right answer:
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> (2ˆ200)::Integer
1606938044258990275541962092341162602522202993782792835301376

One might wonder just how large an Integer number can be. When it
performs arithmetic on these numbers, Haskell allocates enough memory dy-
namically in order to store the result. There is of course a limit to the size of
number that can be stored, but a modern machine with a large memory can
easily accommodate numbers that contain millions of digits.

Besides actually needing large numbers, there is a theoretical benefit from
using Integer: the arithmetic operations on this type satisfy the algebraic
laws. For example, we know from algebra that (x + y) − y = x, but this is not
always true in a computer if the arithmetic is performed with the Int type, or
in a language that offers only fixed-word arithmetic. It might happen that x
and y fit in a machine word, but the intermediate result x + y does not. In
contrast, if the arithmetic is performed on the Integer type then the computer
program will definitely satisfy the mathematical law.

1.2.2 Rational and Floating Point Numbers

Single-precision floating point numbers have type Float, and double-precision
numbers have type Double. Besides the operators +, - and *, you can divide
floating point numbers with the / operator. The floating point exponentiation
operation is **. For example, 2**0.5 ⇒ 1.41421.

There are also a number of functions that can be applied to floating point
numbers. A function application in Haskell requires no parentheses; you just
write the name of the function, followed by a space, followed by the argument.
For example, the square root function is sqrt, and a typical application is sqrt
9 ⇒ 3.0.

Floating point representations are approximations, and they are not guar-
anteed to satisfy the algebraic laws as Integer numbers do. Try evaluating
the following expressions on your computer:

0.11 - 0.10
2.11 - 2.10

If the arithmetic were performed exactly, these would both give the same
result, but they do not on some computers. This is a property of floating
point representation, not Haskell. It is possible to round the numbers so that
they look the same when printed, but the internal representations will still
be different. It is important to remember that when you use mathematics to
reason about real numbers, the results may not apply exactly to a program that
uses floating point. It is particularly important to be careful when comparing
floating point numbers: the right way to compare them is to determine whether
the absolute value of their difference falls within an acceptable error tolerance.



1.2. EXPRESSIONS 9

Haskell supports exact arithmetic on rational numbers, allowing you to
work with fractions as well as with their decimal equivalents (approxima-
tions). Ratio Integer is the type of rational numbers; these are numbers in
the form of a fraction, where the numerator and denominator are represented
with the Integer type. A rational constant is written in the form numera-
tor%denominator. You can divide two integers using the / operator, and the
result is an exact rational number. Haskell automatically reduces fractions; for
example:

2/3 ⇒ 0.66667 :: Double
2/3 :: Ratio Integer ⇒ 2%3 :: Ratio Integer
2%3 + 1%6 ⇒ 5%6 :: Ratio Int
(1/3 + 1/4) :: Ratio Integer ⇒ 7%12

1.2.3 Booleans

The Bool type is used to represent the result of comparisons, and similar op-
erations, where the result must be either True or False. These are the only
two values with type Bool.

The following operators can be used to compare two numbers, and they
produce a result of type Bool:

== -- equality
/= -- not equal
< -- less than
<= -- less than or equal
> -- greater than
>= -- greater than or equal

For example, 9>3 ⇒True, and 5<=5 ⇒True.
There are also some operators that take arguments of type Bool, again

returning a Bool result:

&& -- Boolean and
|| -- Boolean or
not -- Boolean not

The expression x&&y evaluates to True if both x and y are True; x||y evaluates
to True if either of the arguments is True. Finally, not x is True if x is False,
and vice versa.

Exercise 1. Evaluate these expressions, and check with the computer:

True && False
True || False
not False
3 <= 5 && 5 <= 10
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3 <= 20 && 20 <= 10
False == True
1 == 1
1 /= 2
1 /= 1

1.2.4 Characters

A character has type Char, and a constant is written as the character sur-
rounded by single-quote characters; for example, ’a’ and ’*’. Recall that the
back-quote character is used for operators, not for characters. Thus ’?’ is a
character and ‘div‘ is an operator.

The :type command will tell you the type of an expression. As you exper-
iment with the language by evaluating expressions, it is also a good idea to use
:type to be sure that they have the same type you think they should. Often
you will see a type with => in it; the meaning of this is explained in Section
1.10. This book (but not Haskell) also uses =⇒ to indicate evaluation of an
expression to a specified value.

The comparison operators can be used on characters. Two useful built-in
functions are toUpper and toLower, which take a character and convert it from
one case to another. For example:

’c’ < ’Z’
toUpper ’w’ => ’W’
toLower ’Q’ => ’q’

There is a special character called newline which causes a line break when
it is printed. This character is written ’\n’.

1.2.5 Strings

A String is a sequence of zero or more characters. A string constant is written
inside double-quote marks. For example, "tree"::String.

There is a difference between ’a’::Char and "a"::String. The first is the
character a, while the second is a string that contains the character a. A string
can have any length, unlike a character.

The length function can be used to determine how many characters are
in a string. For example, length "dog" ⇒ 3, and length "a" ⇒ 1. You
cannot apply length to a character.

Two strings can be concatenated together with the operator ++ to form
a larger string: "abc" ++ "defg" ⇒ "abcdefg". A common example is to
place a newline character at the end of a line: "Here is a line" ++ "\n".

The length function and ++ operator are actually more general than de-
scribed here; this will be discussed later.
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1.3 Basic Data Structures: Tuples and Lists

The most commonly used data structures in Haskell are tuples and lists. Both
of them are used to gather several data values together into one data structure.

1.3.1 Tuples

Tuples package up several values into one. They are written as a sequence of
data values, separated by commas, inside parentheses. For example, (2,"dog")
is a tuple with two components; the first is 2 and the second is "dog". Its type
is written (Int,"dog"). In general, if x::A and y::B, then (x,y)::(A,B). For
example:

("dog","cat") :: (String,String)
(True, 5) :: (Bool,Int)
(’a’,"b") :: (Char,String)
("bat",(3.14,False)) :: (String,(Double,Bool))

The usual way to extract the components from a tuple is pattern matching,
which will be covered later. For tuples with 2 components, the function fst
returns the first component and snd returns the second. These functions have
the following types:

fst :: (a,b) -> a
snd :: (a,b) -> b

This says that fst is a function; its argument has a tuple type of the form
(a,b), and the result it returns has type a.

A tuple can have any number of components. If it contains n components, it
is called an n-tuple, but 2-tuples are often just called pairs. You can even have
a 0-tuple, which contains nothing, written (); this is often used as a dummy
value. (But you cannot have a 1-tuple, as that would conflict with the use of
parentheses to control precedence of operators.)

Tuples have two important characteristics. First, a tuple has a fixed number
of components. If you have a 3-tuple (a,b,c), and you add an extra data value
to obtain (a,b,c,d), the new tuple has a different type from the old one.
Second, there is no restriction on the type of any component: it is common for
a tuple to contain data values with different types.

1.3.2 Lists

Lists are the most commonly used data structure in functional languages. A
list is written as a sequence of elements, separated by commas, surrounded by
square brackets: for example, [1,2,3] is a list of integers.

A list may contain any number of elements, but all of the elements must
have the same type. The type of a list is written [A], where A is the element
type. For example:
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[13,9,-2,100] :: [Int]
["cat","dog"] :: [String]
[[1,2],[3,7,1],[],[900]] :: [[Int]]

Expressions can appear in a list expression; all the elements of a list are
evaluated. If your script file contains an equation defining x to be 10, then
[13,2+2,5*x] evaluates to the list [13,4,50].

A String is actually just a list of characters. The constant "abc" is exactly
equivalent to writing [’a’,’b’,’c’].

You can easily specify a list that is a sequence of numbers. For example, the
Haskell notation [1..10] means the list [1,2,3,4,5,6,7,8,9,10], and the ..
is filled in with the missing numbers. Normally the numbers are incremented
by 1, but if you give two numbers before the .. any increment can be used. For
example, [1,3..10] counts up by 2, and its value is [1,3,5,7,9]. Sequences
of characters can be created in the same way. Here are some examples:

[’a’..’z’] => "abcdefghijklmnopqrstuvwxyz" :: String
[’0’..’9’] => "0123456789" :: String
[0..9] => [0,1,2,3,4,5,6,7,8,9] :: [Int]
[10,9..0] => [10,9,8,7,6,5,4,3,2,1,0] :: [Int]

Haskell has a large number of features to make lists easy to use. Some of
these are presented in Section 1.8.

1.3.3 List Notation and (:)

A new element can be added to the front of a list using the operator (:), which
is usually pronounced ‘cons’ (because it constructs a list). This function takes
a value and a list and inserts the value at the front of the list:

(:) :: a -> [a] -> [a]

1:[2,3] => [1,2,3]
1:[] => [1]

Every list is built up with the (:) operator, starting from the empty list
[]. Thus 1:[] is a list containing one element, the number 1. This list can be
written just as [1]; in fact, the usual notation for lists is merely a nicer syntax
for an expression that builds the list. This notational convention allows the
following equations to be written:

[1,2,3,4] = 1 : (2 : (3 : (4 : [])))
"abc" = ’a’ : (’b’ : (’c’ : []))

The parentheses can be omitted, because the (:) operator associates to the
right. This enables you to write the equations more simply:

[1,2,3,4] = 1 : 2 : 3 : 4 : []
"abc" = ’a’ : ’b’ : ’c’ : []
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1.3.4 List Comprehensions

The list structure has been so useful and influential in functional languages that
Haskell offers a variety of features to make them convenient to use. The list
comprehension is a simple but powerful syntax that lets you define many lists
directly, without needing to write a program to build them. List comprehen-
sions are based on the standard set comprehension notation in mathematics.
For example, the set comprehension {x2 | x ∈ S} describes the set of squares
of elements of another set S.

The basic form of list comprehension is a list in which an expression appears
first, followed by a vertical bar (read ‘such that’), followed by a generator:

[expression | generator]

The generator specifies a sequence of values that a variable takes on; this
is written in the form var <- list, and it means that the variable var will
take on each of the values in list, one by one. For each of those values, the
expression to the left of the bar is evaluated, and the result goes into the list.
For example, the following list comprehension says that x should take on the
values 1, 2, and 3; for each of these the value of 10*x goes into the result list,
which is [10,20,30]:

[10*x | x <- [1,2,3]]
=> [10,20,30]

Often a sequence with the .. notation is used to define the list from which
the variable draws its values. For example:

[xˆ2 | x <- [1..5]]
=> [1,4,9,16,25]

[y ‘mod‘ 3 | y <- [1..6]]
=> [1,2,0,1,2,0]

[toLower c | c <- "Too Many CAPITALs"]
=> "too many capitals"

If the list to the right of the <- is actually a list of tuples, then the variable
can be replaced by a tuple of variables. In the following example, the tuple
(a,b) takes on the values (1,2), (10,20), and (6,6). For each of these list
elements, the expression a*b multiplies the components of the tuple:

[a*b | (a,b) <- [(1,2), (10,20), (6,6)]]
=> [2,200,36]

List comprehensions can have more than one generator. For each value of
the first generator taken by the first variable, the second variable gets all of
the values in its generator. This is similar to a nested loop, where the first
generator is the outer loop and the second generator is the inner one. For
example,
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[(x,y) | x <- [1,2,3], y <- [’a’,’b’]]
=> [(1,’a’),(1,’b’),(2,’a’),(2,’b’),(3,’a’),(3,’b’)]

In the examples so far, all of the elements of the generator list cause a
corresponding value to appear in the result. Sometimes we want to throw out
some of the elements of the generator. This is performed by using a filter.
A filter is an expression of type Bool, which (normally) uses the generator
variable. After the variable takes on a value of the generator, the filter is
evaluated, and if it is False then the value is thrown out. For example, the
following list comprehension makes a list of all the integers from 0 to 100 that
are multiples of both 2 and 7:

[x | x <- [0..100], x ‘mod‘ 2 == 0 && x ‘mod‘ 7 == 0]
=> [0,14,28,42,56,70,84,98]

The next comprehension produces a list of all of the factors of 12. It works
by considering all combinations of x and y between 1 and 12; the value of x is
retained if the product is exactly 12. If you replace 12 with any other number,
it will make a list of the factors of that number:

[x | x <- [1..12], y <- [1..12], 12 == x*y]
=> [1,2,3,4,6,12]

List comprehensions provide an easy way to implement database queries.
For example, db is a database represented as a list of tuples. Each tuple contains
a person’s name, their street address, age, and annual income:

db = [("Ann Smith", "29 Byres Road", 30, 48000),
("Alan Jones", "36 High Street", 25, 17000),
...

]

Now we can use a list comprehension to make a mailing label for every
employee under 30 who is making at least £15000 per year:

[name ++ "\n" ++ addr ++ "\n"
| (name,addr,age,sal) <- db, age<30, sal>=15000]

Exercise 2. Work out the values of the following list comprehensions; then
check your results by evaluating them with the computer:

[x | x <- [1,2,3], False]

[not (x && y) | x <- [False, True],
y <- [False, True]]

[x || y | x <- [False, True],
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y <- [False, True],
x /= y]

[[x,y,z] | x <- [1..50], y <- [1..50], z <- [1..50],
x ** 2 + y ** 2 == z ** 2]

1.4 Functions

Functions are, unsurprisingly, central to functional programming languages like
Haskell. We have already seen a few brief examples. Now we take a closer look
at functions: how to use them, their types, and how to define them.

1.4.1 Function Application

An expression using a function to perform a computation is called a function
application, and we say that a function is applied to its arguments. For example,
we might apply the function sqrt to the argument 9, obtaining the result 3.0.

The notation for a function application consists of the function name, fol-
lowed by a space, followed by the function argument(s). If there are several
arguments, they should be separated by spaces. Unlike some other languages,
you do not put parentheses around the arguments of a function.

sqrt 9.0
3.4 + sqrt 25 * 100
2 * sqrt (pi * 5 * 5) + 10

1.4.2 Function Types

Just as data values have types, so do functions. Function types are important
because they say what type of argument a function requires and what type of
result it will return.

A function that takes an argument of type a and returns a result of type
b has a function type which is written a → b (read a arrow b). To say that f
has this type, we write f :: a → b. In Haskell, the → symbol is written as ->.
For example, some of the Haskell functions that we have already seen have the
following types:

sqrt :: Double -> Double
max :: Integer -> Integer -> Integer
not :: Bool -> Bool
toUpper :: Char -> Char

(You can use max with the type given above, but Haskell actually gives it
a more general type, allowing max to be used with all the integer types. This
involves type classes, discussed in Section 1.10.)
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1.4.3 Operators and Functions

An operator is a function in Haskell, but an operator must take exactly two
arguments, and it is written between the arguments. For example, the + oper-
ator takes two numbers and adds them, and is written between the numbers:
2+3. Since an operator is a function, it has a function type. When you use
the operator by itself, for example to state its type, it must be enclosed in
parentheses:

(+) :: Integer -> Integer -> Integer
(&&) :: Bool -> Bool -> Bool

An operator is just a function, so you can do everything with an operator
that you can do with a function, but it must be enclosed in parentheses if it does
not appear between its arguments. For example, an alternative way to write
2+3 is (+) 2 3, which says that the (+) function is applied to two arguments,
2 and 3. Later in this book you will see a number of examples where it is useful
to do this.

Just as you can treat an operator as a function by putting parentheses
around it, you can treat a function as an operator by putting single-back-quote
characters around it. For example, the function max can be applied to two
arguments in a function application: max 4 7. If you prefer, you can use it as
an operator, like this: 4 ‘max‘ 7.

1.4.4 Function Definitions

You can define new functions by giving the type declaration followed by the
defining equation. The type declaration has the form:

function name :: argType1 → argType2 → . . . → argTypen → resultType

The arrows are written as → in mathematical notation, and they are written
as -> in Haskell programs. The defining equation has the form:

function name arg1 arg2 . . . argn = expression that can use the arguments

The function definition should be inserted in a Haskell script file. When you
load the file, you will then be able to use your functions. For example, suppose
we want a function square that takes an Integer and squares it. Here is the
function definition:

square :: Integer -> Integer
square x = x*x

When a function is applied to an argument, the value of the argument is
available to the expression on the right-hand side of the function’s defining
equation. For example, if we evaluate square 5, then x is temporarily defined
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to be 5, and the right-hand side x*x is evaluated, producing the result 25. The
scope of the argument (that is, the part of the program where it is ’visible’ and
can be used) is just the right-hand side of the defining equation. If you just
evaluate the expression x at the top level, Haskell will give an error message
because x is not defined:

> x
ERROR: Undefined variable "x"

1.4.5 Pattern Matching

As we have seen, the left-hand side of the defining equation has the form of an
application. If the argument in that application is a name (for example, x in the
defining equation square x = x*x), then when an application is evaluated, the
name will take on the argument value, and the right-hand side of the function
is evaluated.

There is another option: if the argument on the left-hand side is a constant,
then the right-hand side will be used only if the function is applied to that value.
This makes it possible for a function definition to consist of several defining
equations. For example, here is a definition of f with three defining equations,
each with a constant argument:

f :: Integer -> String
f 1 = "one"
f 2 = "two"
f 3 = "three"

When the application f 2 is evaluated, the computer begins by checking
the first defining equation, and it discovers that the application f 2 does not
match the left-hand side of the first line, f 1. Therefore the next equation is
tried; this one does match, so the corresponding right-hand side is evaluated
and returned. If f is applied to an argument like 4, which does not match
any of the defining equations, an error message is printed and the program is
terminated.

The following function tests its value, returning True if the value is a 3 and
False otherwise. It has two defining equations. If the argument pattern 3 in
the first defining equation matches the argument, then that equation is used.
If the argument is not 3, then the second equation is checked; the argument x
will match any argument, so the corresponding value False is returned.

is_three :: Int -> Bool
is_three 3 = True
is_three x = False

For example, given the application is three (1+1), the argument is eval-
uated to 2; since this does not match 3, the second defining equation is used.
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A function may have more than one argument. If this is the case, then
each argument in a given defining equation is checked, from left to right. For
example, here is the nor function, which returns True if and only if both of the
arguments are False:

nor :: Bool -> Bool -> Bool
nor False False = True
nor a b = False

Consider the evaluation of the application nor False True. The first defin-
ing equation is checked from left to right at runtime. The first pattern matches,
so the second argument on that line is also checked. It does not match, so the
second defining equation is checked; its left-hand side matches both arguments.

Pattern matching is commonly used when the argument to a function is a
tuple. For example, suppose we want a function fst that takes a pair and re-
turns its first element, and a similar function snd to return the second element.
These functions are easily defined with pattern matching:

fst :: (a,b) -> a
fst (x,y) = x

snd :: (a,b) -> b
snd (x,y) = y

When fst (5,6) is evaluated, the argument value (5,6) is matched against
the argument pattern (x,y) in the defining equation; this causes x to be defined
as 5 and y as 6. Then the right-hand side x is returned, giving the result 5.
The fst and snd functions are very useful, so they are already defined in the
standard Haskell library.

An argument pattern may also be a list. Since a list is either [] or else it
is constructed with the cons operator :, the patterns take the forms [] and
x:xs. For example, the following function determines whether a list is empty:

isEmpty :: [a] -> Bool
isEmpty [] = True
isEmpty (x:xs) = False

The parentheses around the pattern x:xs in the left-hand side are required
because otherwise the compiler would parse it incorrectly.

When isEmpty [] is evaluated, the argument matches the pattern in the
first defining equation, so True is returned. However, when the application
isEmpty (1:2:3:[]) is evaluated, the argument fails to match [] and the sec-
ond equation is tried. Here the match succeeds, with x defined as 1 and xs
defined as 2:3:[], and False is returned. It makes no difference if the argu-
ment is written with the simpler syntax [1,2,3]; this is merely an abbreviation
for 1:2:3:[], so the evaluation is identical.
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The following functions, which are defined in the standard Haskell libraries,
can be used to return the first element of a list (the head), or everything except
the first element (the tail):

head :: [a] -> a
head (x:xs) = x

tail :: [a] -> [a]
tail (x:xs) = xs

Exercise 3. Write a function that takes a character and returns True if the
character is ’a’ and False otherwise.

Exercise 4. Write a function that takes a string and returns True if the string
is "hello" and False otherwise. This can be done by specifying each
element of the string in the list pattern (e.g. ’h’:’i’:[]).

Exercise 5. Write a function that takes a string and removes a leading space
if it exists.

1.4.6 Higher Order Functions

Functions in Haskell are ‘first class objects’; that is, you can store them in
data structures, pass them as arguments to functions, and create new ones.
A function is called first order if its arguments and results are ordinary data
values, and it is called higher order if it takes another function as an argument,
or if it returns a function as its result. Higher order functions make possible a
variety of powerful programming techniques.

The twice function takes another function f as its first argument, and it
applies f two times to its second argument x:

twice :: (a->a) -> a -> a
twice f x = f (f x)

We can work out an application using equational reasoning. For example,
twice sqrt 81 is evaluated as follows:

twice sqrt 81
= sqrt (sqrt 81)
= sqrt 9
= 3

Let’s examine the type of twice in detail. Assuming the second argument
has type a, then the argument function has to accept an argument of type a and
also return a value of the same type (because the result of the inner application
becomes the argument to the outer application). Hence the argument function
must have type a->a.
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In Haskell, functions receive their arguments one at a time. That is, if
a function takes two arguments but you apply it to just one argument, the
evaluation gives a new function which is ready to take the second argument
and finish the computation. For example, the following function takes two
arguments and returns their product:

prod :: Integer -> Integer -> Integer
prod x y = x*y

A full application is an expression giving prod all of its arguments: for
example, prod 4 5 ⇒ 20. However, the partial application prod 4 supplies
just one argument, and the result of this is a new function that takes a number
and multiplies it by 4. For example, suppose the following equations are defined
in the script file:

g = prod 4
p = g 6
q = twice g 3

Then p ⇒ 24, and q ⇒ 48.

1.5 Conditional Expressions

A conditional expression uses a Bool value to make a choice. Its general form
is:

if Boolean expression then exp1 else exp2.

The Boolean expression is first evaluated; if it is True then the entire conditional
expression has the value of exp1 ; if it is False the whole expression has the
value of exp2.

A conditional expression must always have both a then expression and an
else expression. Both of these expressions must have the same type, which is
the type of the entire conditional expression. For example,

if 2<3 then "bird" else "fish"

has type String and its value is "bird". However, the following expressions
are incorrect:

if 2<3 then 10 -- no else expression
if 2+2 then 1 else 2 -- must be Bool after if
if True then "bird" else 7 -- different types

The abs function returns the absolute value of its argument, and it uses a
conditional expression because the result depends on the sign of the argument:

abs :: Integer -> Integer
abs x = if x<0 then -x else x
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1.6 Local Variables: let Expressions

There are many times when we need to use computed values more than once.
Instead of repeating the expression several times, it is better to give it a local
name that can be reused. This can be done with a let expression. The general
form is:

let equation
equation

...
equation

in expression

This entire construct is just one big expression, and it can be used anywhere
an expression would be valid. When it is evaluated, the local equations give
temporary values to the variables in their left-hand sides; the final expression
after in is the value of the entire let expression. Each of the local definitions
can refer to the others.

For example, consider the following function definition which defines the
two real solutions (x1, x2) of the quadratic formula a × x2 + b × x + c = 0:

quadratic :: Double -> Double -> Double -> (Double,Double)
quadratic a b c
= let d = sqrt (bˆ2 - 4*a*c)

x1 = (-b + d) / (2*a)
x2 = (-b - d) / (2*a)
in (x1,x2)

The let expression gives the three variables d, x1, and x2 values that can
be used locally. For example, the value of d is used in the equations for x1 and
x2. Outside of this let expression, the names d, x1, and x2 are not defined by
these equations (although they might be defined by equations in some enclosing
let expression).

Let expressions are expressions! For example, this is not a block of state-
ments that gets executed; it is an expression that uses a local definition:

2 + let x = sqrt 9 in (x+1)*(x-1)
=> 10.0

1.7 Type Variables

Recall the functions fst and snd, which return the first and second component
of a pair. There is actually an infinite number of different types these functions
could be applied to, including:
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(Integer,Float)
([Char], [Integer])
(Double, (Int,Char))

It would not be good to give fst a restrictive type, like (Integer,Float)
-> Integer; this would work for the first example above, but not the others.
We really want to say that fst takes a pair whose components may have any
type, and its result has the same type as the first component. This is done by
using type variables:

fst :: (a,b) -> a
snd :: (a,b) -> b

Type variables must begin with a lower case letter, and it is a common
convention to use a, b, and so on.

A function with a type variable in its type signature is said to be polymor-
phic, because its type can take many forms. Many important Haskell functions
are polymorphic, enabling them to be used in a wide variety of circumstances.
Polymorphism is a very important invention because it makes it easier to reuse
programs.

1.8 Common Functions on Lists

Haskell provides a number of operations on lists. A few of the most important
ones are presented in this section. We will have more to say about these
functions later in the book, where we will use them in a variety of practical
applications, show how they are implemented, and prove theorems stating some
of their mathematical properties.

The length Function

The length function returns the number of elements in a list:

length :: [a] -> Int

length [2,8,1] => 3
length [] => 0
length "hello" => 5
length [1..n] => n
length [1..] => <infinite loop>

The !! (index) Operator

The (!!) operator lets you access a list element by its index. Indices start
from 0.
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(!!) :: [a] -> Int -> a

[1,2,3] !! 0 => 1
"abcde" !! 2 => ’c’

The take Function

This function takes the first n elements from a list:

take :: Int -> [a] -> [a]

take 2 [1,2,3] => [1,2]
take 0 [1,2,3] => []
take 4 [1,2,3] => [1,2,3]

The drop Function

The drop function drops the first n elements from a list; it removes exactly the
same elements that take would return:

drop :: Int -> [a] -> [a]

drop 2 [1,2,3] => [3]
drop 0 [1,2,3] => [1,2,3]
drop 4 [1,2,3] => []

The ++ (append) Operator

Two lists can be joined together using the append (also called concatenation)
(++) operation. All of the elements in the resulting list must have the same
type, so the two lists must also have the same type.

(++) :: [a] -> [a] -> [a]

[1,2] ++ [3,4,5] => [1,2,3,4,5]
[] ++ "abc" => "abc"

The map Function

Often, we want to apply a function to each element in a list. For example, we
may have a string of lower case letters and want them to be upper case letters.
To do this, we use map, which takes a function of one argument and a list. It
applies the function to each element of the list.

map :: (a -> b) -> [a] -> [b]

map toUpper "the cat and dog" => "THE CAT AND DOG"
map (* 10) [1,2,3] => [10,20,30]
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The map function is often used in functional programming to solve problems
where you would use a for loop in an imperative language. When you need to
perform some computation on all the elements of a list xs, define a function f
to do the computation, and write map f xs.

Exercise 6. Suppose a program has read in a list of numbers of type Int.
Each number is intended to represent a Boolean value, where 0 means
False, 1 means True, and any other number constitutes invalid input.
Write a function convert :: [Int] -> [Bool] that converts a list of
numbers to the corresponding Booleans.

Exercise 7. Write a function member0 :: String -> Bool that takes a list
of Char values (i.e., a String), and returns True if at least one of the
characters is ’0’ and False otherwise. Hint: use map and the function
or, which takes a list of Boolean values and returns True if at least one
of them is True; otherwise it returns False. Thus or [False, True,
False] => True, but or [False, False, False] => True.

The zip Function

The function zip pairs up the elements of two lists.

zip :: [a] -> [b] -> [(a,b)]

zip [1,2,3] "abc" => [(1,’a’),(2,’b’),(3,’c’)]
zip [1,2,3] "ab" => [(1,’a’),(2,’b’)]
zip [1,2] "abc" => [(1,’a’),(2,’b’)]

If the lists are not of the same length, then the longer one’s extra elements
do not appear in the result.

The zipWith Function

The function zipWith is a function like map except that it takes two lists. Like
zip, the longer list’s extra elements are ignored.

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith (+) [2,4..10] [1,3..10] => [3,7,11,15,19]
zipWith (*) [1,2,3] [1,2,3] => [1,4,9]

The foldr and foldl Functions

As noted above, you can think of map as an iteration over a list, producing a
list of results. Another kind of iteration produces a single result, by combining
all the elements of the list with some operator like (+). For example, you
could compute the sum of a list by iterating over it, using (+) to combine the
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elements. This kind of iteration is called a fold. Since you could iterate over
the list either direction, there are two versions: foldr is the “fold from the
right” function, and foldl is the “fold from the left” version.

The fold functions take three arguments. The first argument is the operator
to be used to combine the elements of the list. The second argument is a default
or starting value, which is needed so that the fold can produce a result even if
the list is empty. For example, we use this default value to ensure that the sum
of an empty list is 0. The third argument is the list over which the iteration
takes place.

The meaning of the functions can be illustrated by a couple of examples,
where we use the (+) operator, a default value of a, and a list [p,q,r,s].

foldl (+) a [p,q,r,s]
= (((a+p) + q) + r) + s

foldr (+) a [p,q,r,s]
= p + (q + (r + (s+a)))

Note that in both cases, the result is a single value, not a list, and it is
computed by a sequence of calculations using the (+) operator. There are two
key differences. First, the parentheses are grouped to the right in foldr but
they are grouped to the left in foldl. Second, the default value a comes in at
the left for foldl and at the right for foldr.

Since the definitions of foldl and foldr require recursion, the subject of
Chapter 3, we will not give those here. As you can imagine, however, the
folds are implemented by iterations over the list, with a “running value” or
“accumulator” that gives the current intermediate result.

Let’s look at an accumulator more closely. Suppose that we apply (+) to
the elements of the list [1,2,3] in this way:

(+) 1
((+) 2

((+) 3 0))

On the third line, there is an expression that forms the second argument of the
function application that appears on the second line. That application in turn
forms the second argument of the application appearing on the first line. In
each case, the second argument of the (+) function is the result of a previous
computation, handed on to the next application. This second argument is an
accumulator.

The order in which the list elements are used is from right to left. First
the 3 is added to 0, then the result of that addition is added to 2, the second
element of the list. Finally 1, the first element of the list, is added to the result
of the previous addition.

The foldr function does something very similar. It takes a function of
two arguments, and the second argument is an accumulator. Initially, the
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accumulator has to have a value, so foldr receives an initial value as well. Its
last argument is a list of values, and it returns the accumulated value. If we
were to use foldr to implement the example above, we would write:

foldr (+) 0 [1,2,3]

The type of foldr is complex. Its function argument takes two values and
returns the accumulator, so the type of this argument is a -> b -> b. The
first value of the accumulator is the initial value, so its type is b. The type of
the list argument is [a], and the result type is b, the final accumulator value.

foldr :: (a -> b -> b) -> b -> [a] -> b

The accumulator makes it possible to do a surprising variety of things with
foldr. For example, the sum function sums the numbers in its list argument.
We can implement sum with foldr like this:

foldr (+) 0 [1,2,3,4,5]
=> (+) 1 ((+) 2 ((+) 3 ((+) 4 ((+) 5 0))))
=> 15

We can also implement (++) with foldr:

foldr (:) [3,4,5] [1,2]
=> (:) 1 ((:) 2 [3,4,5])
=> [1,2,3,4,5]

Other functions such as and, which returns True if its list argument contains
only True values, and or (which is similar) can also be implemented using
foldr:

foldr (&&) True [True, False, True] => False

foldr (||) False [True, False, True] => True

The foldl function also uses an accumulator, but it processes the list ele-
ments from left to right. We look again at applying (+) to the elements of the
list [1,2,3]:

(+) 3
((+) 2)

((+) 0 1)

As you can see, the first argument is the accumulator, and the first element of
the list, not the last, is given to the accumulator initially.

In many cases, this makes no difference, and foldl returns the same result
as foldr. For example, the following two expressions produce the same result
because the multiplication operation is associative, and 1 is an identity for
multiplication:
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foldl (*) 1 [1,2,-3]
foldr (*) 1 [1,2,-3]

However, these expressions do not give the same result because subtraction is
not associative:

foldl (-) 0 [1,2,3,4]

foldr (-) 0 [1,2,3,4]

It can be challenging to write applications of foldr and foldl. The best
way to do this effectively is to do an example by hand until you get used to writ-
ing applications that work. This process is called ‘expanding’ an application.
Here are some examples of expanding applications of foldr and foldl:

foldr (++) [] [[1],[2],[3]]
=> (++) [1] ((++) [2] ((++) [3] []))
=> (++) [1] ((++) [2] [3])
=> (++) [1] [2,3]
=> [1,2,3]

foldr (&&) False [True,False]
=> (&&) True ((&&) False False)
=> (&&) True False
=> False

foldl (-) 0 [1,2,3]
=> (-) ((-) ((-) 0 1) 2) 3
=> (-) ((-) -1 2) 3
=> (-) -3 3
=> -6

foldl max 0 [1,2,3]
=> max (max (max 0 1) 2) 3
=> max (max 1 2) 3
=> max 2 3
=> 3

Exercise 8. Expand the following application:

foldr max 0 [1,5,3]

The . (composition) Operator

Now let’s take a look for just a moment at some more notation. The composition
operator (.) allows us to create a pipeline of function applications, each of
which is waiting for an argument. For example,
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(toUpper.toLower) ’A’ => ’A’

(toLower.toUpper) ’Z’ => ’z’

In each case, the first (rightmost) function receives its argument, then gives
its result to the function on the left. That function returns the final result of
the application.

This notation also allows us to form function applications like this:

((:).toUpper) ’a’ "bc" => "Abc"

Again, the first function receives the ’a’ and returns ’A’. Then the cons
function receives the ’A’ and the string, and creates a new string.

With this in mind, new possibilities for using foldr become available. We
can use it as an alternative to map, which we discussed earlier, as well as elem,
a function that returns True if its first argument occurs within its second (list)
argument:

map toUpper "abc"
= foldr ((:).toUpper) [] "abc"
=> "ABC"

elem 3 [1,2,3,4,5]
= foldr ((||).(== 3)) False [1,2,3,4,5]
=> True

1.9 Data Type Definitions

Tuples and lists are very useful, but there comes a point when you would
like to define the shape of your data so that it fits the problem being solved.
Haskell is particularly good at doing this because it supports algebraic data
types, a flexible form of user-defined data structure. Furthermore, pattern
matching, which we have already used for tuples and lists, can be used with
the algebraic data types. Together, these allow you to define and use made-to-
order structures.

Suppose that you wanted to specify an enumerated type in Haskell. For
example, you would like a type that enumerates colours:

data Colour = Red | Orange | Yellow
| Green | Blue | Violet

This declaration states that the Colour type contains each of the values
Red, Orange, and so on. If these appeared in a list, as in [Red, Yellow,
Green], the type of the list would be [Colour]. Each of these values is a
constructor, and constructors are the only Haskell values that start with an
upper case letter.
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The Bool type that we have been using throughout is not actually a built-in
type; it is defined as follows in the standard library:

data Bool = False | True

Now suppose that you would like values that contain fields, because infor-
mation of some kind must be associated with each of the values. We might
define an Animal type in which each value indicates an animal species and
some additional information about a particular animal, such as its breed. The
type would contain entries for dogs and cats, and a string for each of these
which could be used to store their breed, but our entry for rats would not need
a string for the breed because we are not particularly interested in rat breeding.

data Animal = Cat String | Dog String | Rat

Here are some values with type Animals:

Cat "Siamese"
Cat "Tabby"
Dog "Spaniel"
Dog "big and hungry"
Rat

As you can see, there is a field next to the Cat constructor, which can be
accessed by a function defined on the type, using pattern matching.

Sometimes a more flexible approach is needed. Instead of storing a string
with each cat or dog, we might want to store some arbitrary information. This
can be accommodated by letting Animal take two type variables, a and b, which
can stand for any data type:

data Animal a b
= Cat a | Dog b | Rat

Type variables must start with lowercase letters. It is a common convention,
but not required, to use a, b, and so on for type variables. Type variables allow
Animal to be used with arbitrary annotations, for example:

data BreedOfCat = Siamese | Persian | Moggie

Cat Siamese :: Animal BreedOfCat b
Cat Persian :: Animal BreedOfCat b
Cat "moggie" :: Animal String b
Dog 15 :: Animal a Integer
Rat :: Animal a b

Data types with type variables can be very useful. Suppose that you are
writing a function that may succeed in computing its result, which has type
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a, but may also fail to get a result. A common example is a search function,
which is looking for a value in a table, and which might fail. Instead of letting
the program crash, it is better to return a value that says either ‘I succeeded,
and the result is x’ or else ‘I failed to get a result’. The Maybe type is just what
we need:

data Maybe a = Nothing | Just a

Suppose we are writing a function to look up someone’s telephone number,
using a database represented as a list of pairs. The first component of each
pair is a person’s name, and the second component is their telephone number
(an integer). It isn’t a good idea to have this function simply return an integer;
a search might be made for a person not in the database. The solution is to
use Maybe:

phone_lookup :: [(String,Integer)] -> String -> Maybe Integer

Now the lookup function can be defined so that it always returns something
sensible.

You may have tried some examples by this time and noticed that Haskell
will not print values of your new type. This is because it uses a function called
show to convert a data value to a string that can be printed, and you have not
constructed a version of show that it can use.

Fortunately, you do not have to define show yourself. Haskell will do it
automatically for you when you end a data type definition with the words
deriving Show, as in:

data Colour = Red | Orange | Yellow
| Green | Blue | Violet
deriving Show

Pattern matching can take place over values of any types, including alge-
braic data types defined by the user. For example, let’s define a function that
takes the result of a phone number search and produces a comprehensible string
to be printed.

phone_message :: Maybe Integer -> String
phone_message Nothing = "Telephone number not found"
phone_message (Just x) = "The number is " ++ show x

Exercise 9. Write a function that takes two lists of type [Maybe Int] and
examines the pair of list heads before looking at the rest of the lists. It
returns a list in which the Ints of each pair have been added if both are of
the form Just n, preserving any Just n value otherwise. For example,

addJust [Just 2, Nothing, Just 3]
[Nothing, Nothing, Just 5]

=> [Just 2, Nothing, Just 8]
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Exercise 10. Define a data type that represents six different metals and au-
tomatically creates versions of (==) and show.

Exercise 11. Suppose that you have some coins that have been sorted into
piles, each of which contains only one kind of coin. Define a data type
that can be used to represent the piles of coins.

Exercise 12. A universal type is one in which any type can be represented.
Each different type is identified by its own constructor, which serves as a
distinguishing tag. For example, here is a universal type that represents
three different types of number:

data Number = INT Int | INTEGER Integer | FLOAT Float
deriving (Eq, Show)

Define a universal type that contains Booleans, characters, and integers
(Ints).

Exercise 13. Define a type that contains tuples of up to four elements.

Exercise 14. The quadratic equation a ·x2 + b ·x+ c = 0 has two roots, given
by the formula

x =
−b ± √

b2 − 4 · a · c

2 · a
,

as long as the discriminant (the expression under the square root sign)
is non-negative. If the discriminant is negative the roots are complex.
Define a function that finds the real solutions of the quadratic equation,
and reports failure if they don’t exist.

1.10 Type Classes and Overloading

There are some operations that can be used on several different types, but
not on all types. For example, the (+) function can be applied to integers or
floating point numbers (as well as several other kinds of number). This means
that there are two completely different implementations of this function, one
for integers and another for floating point. And that raises a question: what is
the type of (+)? It would be too restrictive to specify

(+) :: Integer -> Integer -> Integer

because then it would be illegal to write 3.14+2.7. On the other hand, it
would be too general to specify

(+) :: a -> a -> a

because this says that any type can be added, allowing nonsensical expressions
like True+False and "cat"+"mouse". What we need to say is that (+) can be
used to add two values of any type, provided that type is numeric. The (+)
function actually has the following type:
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(+) :: Num a => a -> a -> a

Num is the name of a type class, a set of types sharing a property. The
members of the set Num include Int, Integer, Float, Double, and many others,
and their essential property is that arithmetic makes sense on these types.
However, types like Bool and String, where addition is meaningless, are not
members of the class Num. In the type of (+), the notation Num a => is called
a class constraint or a context, and it means that (+) can only be applied to
arguments with types that belong to the Num set.

Haskell allows you to define new type classes and to specify that a type is a
member of a class. This is a powerful corner of the language, but we will not go
into it in detail; see the references in Section 1.11 for a complete explanation.

To read this book, you don’t need to be able to define new type classes or
instances, but error messages sometimes mention type class constraints, so it
is helpful to know what they mean.

There are a few commonly used type classes that are ubiquitous in Haskell;
the most important are Num, Show, and Eq. Show is the class of types that can
be converted in a meaningful way into a character string. Most ordinary data
values are in Show, but functions are not. Eq is the class of types that can be
compared for equality.

When you are faced with a type error in a program, it is good to realise
that values (with their class constraints) can migrate from a long way away.
For example, if we have the definition

fun a b c = if a then b == c else False

then the type of fun has to reflect the fact that b and c have to be in the Eq
class. This means that the fun function also has a type constrained by the Eq
class, so the definition should be written as:

fun :: Eq b => a -> b -> b -> Bool
fun a b c = if a then b == c else False

If you forget to include the class constraint Eq b => in the type signature,
the Haskell compiler will give an error message. The context on the type of fun
declares that whatever calls fun and supplies it with arguments must ensure
that there is a meaningful way to compare them.

You will inevitably come up against functions that have contexts in their
types. The common sense rule is: if your function definition uses an overloaded
operator (one with a type that has a context), then its type must contain that
context as well. If your function has more than one such operator and the
operator types have different contexts, then each new context must appear in
the type of the function.

For example, suppose you want to write a function that checks whether a
value appears in a list and returns a corresponding message. Here’s a definition:
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detect :: (Eq a, Show a) => a -> [a] -> String
detect v list =
if elem v list

then "List contains " ++ show v
else "List does not contain" ++ show v

The function elem has a type that contains the context Eq a because it uses
the overloaded operator ==. The type of detect now has to have this context
as well, because it uses elem and it also needs the Show a context, because it
uses the overloaded function show.

1.11 Suggestions for Further Reading

A good source of information on the web about Haskell, and functional pro-
gramming in general, is the Haskell Home Page: www.haskell.org. This con-
tains pointers to a variety of relevant books and papers, as well as the language
reference manuals.

Several good textbooks on Haskell are available. A book covering the basics
of Haskell, Two Dozen Short Lessons in Haskell, by Rex Page, can be down-
loaded from the web. Books covering advanced programming techniques in-
clude Introduction to Functional Programming using Haskell, by Richard Bird
[4]; An Introduction to Functional Programming Systems Using Haskell, by
Tony Davie [8]; and Haskell: The Craft of Functional Programming, by Simon
Thompson [32]. The Haskell School of Expression: Learning Functional Pro-
gramming through Multimedia, by Paul Hudak [18], shows how to use Haskell
through a series of applications to graphics, animations, and music.

The use of equations rather than assignments gives functional programming
a very different style from imperative programming. Purely Functional Data
Structures [24], by Okasaki, explores this topic in depth, and is an excellent
intermediate level text on functional programming.

1.12 Review Exercises

Exercise 15. Define a function

showMaybe :: Show a => Maybe a -> String

that takes a Maybe value and prints it.

Exercise 16. A Bit is an integer that is either 0 or 1. A Word is a list of bits
that represents a binary number. Here are some binary values that can
be represented by Words:

[1,0] => 2
[1,0,0,1] => 9
[1,1,1] => 7
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We can define functions that are the Bit equivalent of or and and as
follows:

bitOr :: Int -> Int -> Int
bitOr 0 0 = 0
bitOr x y = 1

bitAnd :: Int -> Int -> Int
bitAnd 1 1 = 1
bitAnd x y = 0

Now it is possible to take the ’bitwise’ and of two words as follows:

bitwiseAnd [1,0,0] [1,0,1]
=> [bitAnd 1 1, bitAnd 0 0, bitAnd 0 1]
=> [1,0,0]

bitwiseAnd [0,0,0] [1,1,0]
=> [0,0,0]

Write a function bitwiseAnd that takes two Words and creates a third
Word that is the bitwise and of the two Words.

Exercise 17. Each of the following expressions has a type error. Change the
expression so that the type error no longer occurs.

[1, False] ’2’ ++ ’a’
[(3,True), (False,9)] 2 == False
’a’ > "b" [[1],[2],[[3]]]

Exercise 18. What caused the type error in this definition and application?

f :: Num a => (a,a) -> a
f (x,y) = x + y

f (True,4)

Exercise 19. Why does this definition produce an error when used?

f :: Maybe a -> [a]
f Nothing = []

f (Just 3)

Exercise 20. Write a list comprehension that takes a list of Maybe values and
returns a list of the Just constructor arguments. For example,

[Just 3, Nothing, Just 4] => [3,4]
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Exercise 21. Using a list comprehension, write a function that takes a list of
Int values and an Int value n and returns those elements in the list that
are greater than n.

Exercise 22. Write a function

f :: [Int] -> Int -> [Int]

that takes a list of Int values and an Int and returns a list of indexes at
which that Int appears.

Exercise 23. Write a list comprehension that produces a list giving all of the
positive integers that are not squares in the range 1 to 20.

Exercise 24. Write a function that uses foldr to count the number of times
a letter occurs in a string.

Exercise 25. Write a function using foldr that takes a list and removes each
instance of a given letter.

Exercise 26. Using foldl, write a function

rev :: [a] -> [a]

that reverses its list argument.

Exercise 27. Using foldl, write a function

maybeLast :: [a] -> Maybe a

that takes a list and returns the last element in it if there is one, otherwise
it returns Nothing.



Chapter 2

Equational Reasoning

There are many different formal methods used in computer science, and several
of them will be introduced throughout this book. This chapter discusses one of
the most powerful and yet simplest of the formal methods: equational reasoning.

You don’t need to learn any fancy new mathematics to use equational rea-
soning; it is just like simple school algebra. Despite (or perhaps because of)
this simplicity, equational reasoning is an effective tool for solving extremely
complicated problems. Much of the most advanced current research on formal
methods is based on equational reasoning, and we will use it often through the
rest of this book.

2.1 Equations and Substitutions

An equation x = y says that x and y have the same value; any time you see
one of them you can replace it by the other. Such a replacement is called a
substitution. For example, suppose we are given the following definitions, which
are written as equations:

x = 8
y = 4

These equations are going to be cited as justifications for reasoning steps, so it
helps to have a standard way to name equations. The notation { x } means
“the equation that defines x”. Now, suppose the problem is to evaluate 2 ∗
x + x/y. We do this by writing a chain of expressions, each one equal to the
previous, beginning with the original problem and ending with the final result.
Each step is justified by a reason given in braces { . . . }.

2*x + x/y
= 2*8 + 8/y { x }
= 2*8 + 8/4 { y }

37
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= 16 + 2 { arithmetic }
= 18 { arithmetic }

Sometimes the justification is an explicit reference to an equation; thus the
justification { x } means “the equation defining x allows this step to be taken”.
In other cases, where we don’t want to give a formal justification because it is
too trivial and tedious, an informal reason is given, for example { arithmetic
}.

The format for writing a chain of equational reasoning is not rigidly speci-
fied. The reasoning above was written with each step on a separate line, with
the justifications aligned to the right. This format is commonly used; it is
compact and readable for many cases.

Sometimes the expressions or the justifications in a chain of reasoning be-
come very long, and the format used above becomes unreadable. In such cases,
a common approach is to place the = sign on a separate line, followed by the
justification. Here is the same chain of reasoning written in the alternative
notation:

2*x + x/y
= { x }

2*8 + 8/y
= { y }

2*8 + 8/4
= { multiplication, division }

16 + 2
= { addition }

18

This style takes twice as many lines, and it may seem harder to read, but expe-
rience has shown that it scales up better to very large cases. As we said before,
equational reasoning is a practical tool used for large-scale proofs about real-
istic programs, and the expressions sometimes become quite big. The second
style is becoming standard for research papers. In doing your own proofs, you
may use whichever style you prefer, although it’s important to be able to read
both styles.

The example above is just elementary mathematics, but exactly the same
technique can be used to reason about Haskell programs, because equations in
Haskell are true mathematical equations—they are not assignment statements.

2.2 Equational Reasoning as Hand-execution

An important skill for all programmers is hand execution: taking a program and
its data, and working out by hand what the result should be. Hand execution
tells you what you think the values being computed should be, so you can
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locate errors by comparing the hand execution with the results of an actual
execution by the computer.

For imperative programming languages, hand execution involves simulating
the actions of the computer as it obeys the commands in the program. For a
pure functional language, like Haskell, hand execution is done by equational
reasoning instead. Thus it is not just a tool for theoreticians trying to prove
theorems about software—equational reasoning is essential for all functional
programmers.

For example, suppose we have the following script file:

f :: Integer -> Integer -> Integer
f x y = (2+x) * g y

g :: Integer -> Integer
g z = 8-z

Now the expression f 3 4 can be evaluated (or “hand-executed”) by equational
reasoning.

f 3 4
= (2+3) * g 4 { f }
= (2+3) * (8-4) { g }
= 20 { arithmetic }

There is an important point to notice about that example: sometimes you
need to introduce parentheses to prevent different terms from getting mixed
up. In the second line, we had two subexpressions being multiplied together
(the first subexpression, 2+3, is enclosed in parentheses, whereas the second
needs no parentheses as function application has the highest precedence). Now,
suppose that somebody just blindly replaces g 4 by 8-4, resulting in (2+3)
* 8-4. Now the 8-4 is really an expression on its own, yet the precedence
conventions of mathematics would cause this to be interpreted as ((2+3)*8)
- 4. Notice that we prevented this error by introducing explicit parentheses,
(8-4), in the third line.

There is nothing really difficult going on here; you just have to be careful
to introduce parentheses whenever there is a danger of confusion. An alterna-
tive approach would simply be to use fully parenthesized expressions, without
relying on precedence rules at all. If you find that helpful, by all means do it!
However, as you gain more experience you will probably prefer to omit most
of the redundant parentheses, for the sake of improved readability.

Another issue you need to be careful with is variable names. Again, there
is nothing difficult about names, but careless reasoning can lead to mistakes.
The problem is that a set of equations may use the same name for different
purposes. For example, consider the following equations:
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f x = x+1
g x = x*5

Now the name x is used locally as the parameter name for both f and g, but
there should be no confusion between them. When the function is applied to
an argument, the argument is substituted for the parameter:

f 8 * g 9
= (8+1) * (9*5) { f, g }
= 405 { arithmetic }

In the second line, we used x twice, once with the value 8 and once with the
value 9.

The best way to think of this is to consider every function as having its own
local parameters. The parameters of f and g are completely different, they just
happen both to be called x. The situation is just like real life: there may be
(and actually are) several people named John Smith. The fact that the names
are the same does not mean that the people are the same!

You can define names within a scope in Haskell, just as with other pro-
gramming languages. A scope can be introduced implicitly: for example, the
f and g defined above shouldn’t be confused with unrelated functions defined
in another chapter. A let expression or a where clause introduces a scope
explicitly. Consider the following nested let expression:

let a = 1
b = 2
f x = x + b -- b=2

in
let b = 5

c = 6
g x = [x,a,b,c] -- a=1, b=5, c=6

The scope of a is the entire piece of code—it is available for use everywhere.
However, the b defined in b = 2 is hidden inside the inner let because the b
= 5 is visible instead. The c is in scope only inside the inner let expression;
you could not use it in the right hand side of f.

Many function definitions contain several equations. When you use one
of these equations to justify a step of equational reasoning, it’s necessary to
specify which equation is being used, not just the name of the function. For
example, suppose we have the following definition:

f :: Bool -> Int
f True = 5
f False = 6
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If you simply give a justification { f }, it may not be clear to the reader which
equation you are using. (At least, with large and complicated definitions that
can happen, although it should be clear here!) There are two styles for writing
justifications using such definitions. One way to do it is to imagine all the
equations in the definition as being numbered 1, 2, 3, and so on. Then the
justification { f.2 } means “equation 2 of the definition of f”. Another way
to do it is to specify the pattern used on the left hand side of the equation,
for example { f.False }. Either style is perfectly acceptable, and we will use
both from time to time in this book.

2.2.1 Conditionals

A conditional expression satisfies the following equations:

if True then e2 else e3 = e2 { if True }
if False then e2 else e3 = e3 { if False }

These equations are used for reasoning about programs that contain if ex-
pressions. For example, suppose f is defined as follows:

f :: Double -> Double
f x =
if x >= 0
then sqrt x
else 0

In order to calculate the value of an application of the function, we need to
use one of the if-equations.

f (-3)
= if (-3) >= 0 then sqrt (-3) else 0 { f }
= if False then sqrt (-3) else 0 { arithmetic }
= 0 { if False }

This example raises an interesting issue. When you are using equational
reasoning, there will always be an enormous number of valid steps that could
be taken. Here is another piece of equational reasoning:

f (-3)
= if (-3) >= 0 then sqrt (-3) else 0 { f }
= if (-3) >= 0 then ERROR else 0 { sqrt }
= if False then ERROR else 0 { arithmetic }
= 0 { if False }

The ERROR denotes a value representing a failed computation (because the
square root of a negative number is undefined). In most imperative languages,
the calculation of an ERROR will abort the program. Haskell will also throw
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an exception if it encounters an ERROR. However, Haskell also is smart about
its equational reasoning: when evaluating if e1 then e2 else e3, it won’t
attempt to evaluate either e2 or e3 until it knows which one is needed. There-
fore Haskell begins by evaluating the conditional; then it evaluates whichever
expression is required. It is perfectly acceptable to write equations that some-
times define error conditions, as long as these error values aren’t actually used
by the program.

2.3 Equational Reasoning with Lists

So far, the examples we have given of equational reasoning have been quite
simple. To give a more realistic impression of how equational reasoning is
actually used, we will give the proofs of a few simple but important theorems.
First, however, we will state a few theorems without proof; those theorems will
be proved in the chapter on induction, but for now we will assume their validity
and use them as justifications in some simple proofs of further theorems.

The following theorem states the obvious result that the length of a con-
catenation is the sum of the lengths of the pieces that were concatenated. This
theorem can be proved using list induction (see Chapter 4). We can use the
theorem directly to justify equational reasoning steps, and an example is given
below.

Theorem 1 (length (++)). Let xs, ys :: [a] be arbitrary lists. Then
length (xs ++ ys) = length xs + length ys.

The next theorem says that if you map a function over a list, the list of
results is the same size as the list of arguments.

Theorem 2 (length map). Let xs :: [a] be an arbitrary list, and f :: a
-> b an arbitrary function. Then length (map f xs) = length xs.

We also need the following result, which says that if you map a function over
a concatenation of two lists, the result could also be obtained by concatenating
separate maps over the original lists. This theorem is frequently used in parallel
functional programming, because it shows how to decompose a large problem
into two smaller ones than can be solved independently.

Theorem 3 (map (++)). Let xs, ys :: [a] be arbitrary lists, and let f
:: a -> b be an arbitrary function. Then map f (xs ++ ys) = map f xs
++ map f ys.

To illustrate how a theorem can be proved using direct equational reasoning,
we will give a proof for this theorem:

Theorem 4. For arbitrary lists xs, ys :: [a], and arbitrary f :: a ->
b, the following equation holds: length (map f (xs ++ ys)) = length xs
+ length ys.
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Proof. We prove the theorem by equational reasoning, starting with the left
hand side of the equation and transforming it into the right hand side.

length (map f (xs ++ ys))
= length (map f xs ++ map f ys) { map (++) }
= length (map f xs) + length (map f ys) { length (++) }
= length xs + length ys { length map }

There are usually many ways to prove a theorem; here is an alternative version:

length (map f (xs ++ ys))
= length (xs ++ ys) { length map }
= length xs + length ys { length (++) }

Either proof is fine, and you don’t need to give more than one! It is a matter
of taste and opinion as to which proof is better. Sometimes a shorter proof
seems preferable to a longer one, but issues of clarity and elegance may also
affect your choice.

2.4 The Role of the Language

By this time, you may be wondering why you haven’t been using equational
reasoning for years, as it is so simple and powerful.

The reason is that equational reasoning requires equations, which say that
two things are equal. Imperative programming languages simply don’t contain
any equations. Consider the following code, which might appear in a C or Java
program:

n = n+1

That might look like an equation, but it isn’t! It is an assignment. The
meaning of the statement is a command: “fetch the value of n, then add 1 to it,
then store it in the memory location called n, discarding the previous value”.
This is not a claim that n has the same value as n+1. Because of this, many
imperative programming languages use a distinctive notation for assignments.
For example, Algol and its descendants use the := operator:

n := n+1

What is different about pure functional programming languages like Haskell
is that x = y really is an equation, stating that x and y have the same value.
Furthermore, Haskell has a property called referential transparency. This
means that if you have an equation x = y, you can replace any occurrence
of x by y, and you can replace any occurrence of y by x. (This is, of course,
subject to various restrictions—you have to be careful about names and scopes,
and grouping with parentheses, etc.)
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The imperative assignment statement n := n+1 increases the value of n,
whereas the Haskell equation n = n+1 defines n to be the solution to the math-
ematical equation. This equation has no solution, so the result is that n is
undefined. If the program ever uses an undefined value like n, the computer
will either give an error message or go into an infinite loop.

Assignments have to be understood in the context of time passing as a
program executes. To understand the n := n+1 assignment, you need to talk
about the old value of the variable, and its new value. In contrast, equations
are timeless, as there is no notion of changing the value of a variable.

Indeed, there is something peculiar about the word “variable”. In mathe-
matics and also in functional programming, a variable does not vary at all! To
vary means to change over time, and this simply does not happen. A math-
ematical equation like x = 23 means that x has the value 8, and it will still
have that value tomorrow. If the next chapter says x = 2 + 2, then this is
a completely different variable being defined, which just happens to have the
same name; it doesn’t mean that 8 shrank over the course of a few pages. A
variable in mathematics means “a name that stands for some value”, while a
variable in an imperative programming language means “a memory location
whose value is modified by certain instructions”.

As one would expect, there is a price to be paid for the enormous bene-
fits of equational reasoning. Pure functional languages like Haskell, as well as
mathematics itself, are demanding in that they require you to think through a
problem deeply in order to express its solution with equations. It’s always pos-
sible to hack an imperative program by sticking an assignment in it somewhere
in order to patch up a problem, but you cannot do that in a functional program.
On the other hand, if our goal is to build correct and reliable software—and
this should be our goal!—then the discipline of careful thought will be repaid
in higher quality software.

2.5 Rigor and Formality in Proofs

A computer program written in a programming language like Haskell is either
syntactically correct, or it is incorrect. Any violation of the syntax of the
language—no matter how trivial it may seem—renders the program invalid.
The reason we are so picky about the rules of the language is that software
(compilers, etc.) will process programs, and software is unable to cope with
the ambiguities introduced by sloppy input.

Indeed, there were attempts in the 1970s to make compilers that could figure
out what the programmer meant when syntax errors were present. The com-
piler would go ahead and translate what the programmer obviously intended
into machine language, saving the programmer from the bother of getting the
program right. This worked in many cases, and yet the whole approach has
fallen out of favor. The difficulty is that occasionally the compiler would get
confused and the “obvious” meaning of the program was not at all what the
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programmer meant. The program would then go ahead and execute, produc-
ing bugs that could not possibly be found by comparing the output with the
program text. And the more intelligent and accurate the compiler becomes,
the worse the final result: when translation errors are rare, the programmer is
less likely to find the ones that do occur.

Are mathematical proofs as precisely defined as computer programs? It
is tempting to say that they are even more precise and picky, since they are
claiming to establish fundamental mathematical truths. The reality, however,
is more subtle, for two reasons: proofs may be intended for humans or for
computers to read, or both; and proofs may be small (where all details can be
included) or enormous (where most details must be omitted).

Consider the following equational reasoning, which was given earlier in the
chapter:

...
= (8+1) * (9*5) { f, g }
= 405 { arithmetic }

Although this is highly detailed, a number of details are left to the reader. The
step taken here requires an addition and two multiplications, yet it was taken
in one step rather than three, and the vague justification { arithmetic } was
given. This proof should be convincing to a human, but it is not completely
formal. We never even proved that 8+1=9.

Mathematicians make a distinction between rigorous proofs and formal
proofs.

A rigorous proof is thought through clearly and carefully, and does not con-
tain sloppy shortcuts, but it may omit trivial details that the readers should
be able to work out for themselves. The point about a rigorous proof is that it
includes the essential details, and skips the inessential ones. Normally, profes-
sional mathematicians will agree about the steps that can be omitted. Nonethe-
less, it has happened on occasion that a mathematical proof has been published
and generally accepted to be valid, only for an error to be discovered years later.

A formal proof consists of solid reasoning based on a clearly specified set
of axioms. Since no details are omitted and no sloppiness is allowed, computer
software can be used to check the validity of a formal proof.

The degree of rigor or formality that is needed in a proof depends on the
purpose for which it is intended. It is unrealistic to say that all proofs should
be formal, and inadequate to say that rigor is always adequate.

Sometimes it is reasonable to give an equational reasoning proof in a semi-
formal style, where details are omitted in order to shorten the reasoning. It
is common to perform several substitutions in one step (as in the example
above). Sometimes a generic justification like “arithmetic” or “calculation” is
appropriate.

Strictly speaking, justifications should always be given in equational rea-
soning. In some cases, however, the justifications may be omitted entirely.
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Sometimes this is done where the justifications should be obvious and don’t re-
ally make the proof more convincing. Sometimes the justifications are omitted
because they would require a lot of additional machinery (definitions, theorems,
proofs) and the author feels that this would detract from the main point.

Many more examples of equational reasoning appear in this book. An ex-
cellent textbook with a focus on functional programming with equational rea-
soning is by Bird [4]. Equational reasoning is central to modern programming
language theory, and you can see it in action in many papers appearing in Jour-
nal of Functional Programming and other leading publications in theoretical
computer science.



Chapter 3

Recursion

Recursion is a self referential style of definition commonly used in both math-
ematics and computer science. It is a fundamental programming tool, partic-
ularly important for manipulating data structures.

This book looks at recursion from several points of view. This chapter
introduces the idea by showing how to write recursive functions in computer
programs. Chapter 4 introduces induction, the mathematical technique for
proving properties about recursive definitions, allowing you to use mathematics
to prove the correctness of computer software. Chapter 5 extends induction to
handle recursion over trees. Chapter 9 applies the same ideas to mathematics,
where recursion is used to define sets inductively. You will find examples of
recursion and induction throughout many branches of computer science. In
addition to the examples given through these three chapters, we will study a
larger case study in Chapter 13, where recursion and induction are applied to
the problem of digital circuit design.

The idea in recursion is to break a problem down into two cases: if the
problem is ‘easy’ a direct solution is specified, but if it is ‘hard’ we proceed
through several steps: first the problem is redefined in terms of an easier prob-
lem; then we set aside the current problem temporarily and go solve the easier
problem; and finally we use the solution to the easier problem to calculate the
final result. The idea of splitting a hard problem into easier ones is called the
divide and conquer strategy, and it is frequently useful in algorithm design.

The factorial function provides a good illustration of the process. Often the
factorial function is defined using the clear but informal ‘. . .’ notation:

n! = 1 × 2 × · · · × n

This definition is fine, but the ‘· · · ’ notation relies on the reader’s understanding
to see what it means. An informal definition like this isn’t well suited for
proving theorems, and it isn’t an executable program in most programming
languages1. A more precise recursive definition of factorial consists of the

1Haskell is a very high level programming language, and it actually allows this style:
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following pair of equations:

0 ! = 1
(n + 1) ! = (n + 1) × n !

In Haskell, this would be written as:

factorial :: Int -> Int
factorial 0 = 1
factorial (n+1) = (n+1) * factorial n

The first equation specifies the easy case, where the argument is 0 and the
answer 1 can be supplied directly. The second equation handles the hard case,
where the argument is of the form n + 1. First the function chooses a slightly
easier problem to solve, which is of size n; then it solves for n! by evaluating
factorial n, and it multiplies the value of n! by n + 1 to get the final result.

Recursive definitions consist of a collection of equations that state proper-
ties of the function being defined. There are a number of algebraic properties
of the factorial function, and one of them is used as the second equation of
the recursive definition. In fact, the definition doesn’t consist of a set of com-
mands to be obeyed; it consists of a set of true equations describing the salient
properties of the function being defined.

Programming languages that allow this style of definition are often called
declarative languages, because a program consists of a set of declarations of
properties. The programmer must find a suitable set of properties to declare,
usually via recursive equations, and the programming language implementation
then finds a way to solve the equations. The opposite of a declarative language
is an imperative language, where you give a sequence of commands that, when
obeyed, will result in the computation of the result.

3.1 Recursion Over Lists

For recursive functions on lists, the ‘easy’ case is the empty list [] and the
‘hard’ case is a non-empty list, which can be written in the form (x:xs). A
recursive function over lists has the following general form:

f :: [a] -> type of result
f [] = result for empty list
f (x:xs) = result defined using (f xs) and x

A simple example is the length function, which counts the elements in a
list; for example, length [1,2,3] is 3.

in Haskell you can define factorial n = product [1..n]. Most programming languages,
however, do not allow this, and even Haskell treats the [1..n] notation as a high level
abbreviation that is executed internally using recursion.
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length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

An empty list contains no elements, so length [] returns 0. When the
list contains at least one element, the function calculates the length of the
rest of the list by evaluating length xs and then adds one to get the length
of the full list. We can work out the evaluation of length [1,2,3] using
equational reasoning. This process is similar to solving an algebra problem,
and the Haskell program performs essentially the same calculation when it
executes. Simplifying an expression by equational reasoning is the right way to
‘hand-execute’ a functional program. In working through this example, recall
that [1,2,3] is a shorthand notation for 1:(2:(3:[])).

length [1,2,3]
= 1 + length [2,3]
= 1 + (1 + length [3])
= 1 + (1 + (1 + length []))
= 1 + (1 + (1 + 0))
= 3

It is better to think of recursion as a systematic calculation, as above, than
to try to imagine low-level subroutine operations inside the computer. Text-
books on imperative programming languages sometimes explain recursion by
resorting to the underlying machine language implementation. In a functional
language, recursion should be viewed at a high level, as an equational technique,
and the low-level details should be left to the compiler.

The function sum provides a similar example of recursion. This function
adds up the elements of its list; for example, sum [1,2,3] returns 1+2+3 = 6.
The type of sum reflects the fact that the elements of a list must be numbers if
you want to add them up. The type context ‘Num a =>’ says that a can stand
for any type provided that the numeric operations are defined. Thus sum could
be applied to a list of 32-bit integers, or a list of unbounded integers, or a list
of floating point numbers, or a list of complex numbers, and so on.

The definition has the same form as the previous example. We define the
sum of an empty list to be 0; this is required to make the recursion work, and it
makes sense anyway. It is common to define the base case of functions so that
recursions work properly. This also usually gives good algebraic properties to
the function. (This is the reason that 0 ! is defined to be 1.) For the recursive
case, we add the head of the list x to the sum of the rest of the elements,
computed by the recursive call sum xs.

sum :: Num a => [a] -> a
sum [] = 0
sum (x:xs) = x + sum xs
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The value of sum [1,2,3] can be calculated using equational reasoning:

sum [1,2,3]
= 1 + sum [2,3]
= 1 + (2 + sum [3])
= 1 + (2 + (3 + sum []))
= 1 + (2 + (3 + 0))
= 6

So far, the functions we have written receive a list and return a number.
Now we consider functions that return lists. A typical example is the (++)
function (its name is often pronounced either as ‘append’ or as ‘plus plus’).
This function takes two lists and appends them together into one bigger list.
For example, [1,2,3] ++ [9,8,7,6] returns [1,2,3,9,8,7,6].

Notice that this function has two list arguments. The definition uses recur-
sion over the first argument. It’s easy to figure out the value of [] ++ [a,b,c];
the first list contributes nothing, so the result is simply [a,b,c]. This obser-
vation provides a base case, which is essential to make recursion work: we can
define [] ++ ys = ys. For the recursive case we have to consider an expres-
sion of the form (x:xs) ++ ys. The first element of the result must be the
value x. Then comes a list consisting of all the elements of xs, followed by
all the elements of ys; that list is simply xs++ys. This suggests the following
definition:

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

Working out an example is a good way to check your understanding of the
definition:

[1,2,3] ++ [9,8,7,6]
= 1 : ([2,3] ++ [9,8,7,6])
= 1 : (2 : ([3] ++ [9,8,7,6]))
= 1 : (2 : (3 : ([] ++ [9,8,7,6])))
= 1 : (2 : (3 : [9,8,7,6]))
= 1 : (2 : [3,9,8,7,6])
= 1 : [2,3,9,8,7,6]
= [1,2,3,9,8,7,6]

Once we know the structure of the definition—a recursion over xs—it is
straightforward to work out the equations. The trickiest aspect of writing the
definition of (++) is deciding over which list to perform the recursion. No-
tice that the definition just treats ys as an ordinary value, and never checks
whether it is empty or non-empty. But you can’t always assume that if there
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are several list arguments, the recursion will go over the first one. Some func-
tions perform recursion over the second argument but not the first, and some
functions perform a recursion simultaneously over several list arguments.

The zip function is an example of a function that takes two list arguments
and performs a recursion simultaneously over both of them. This function
takes two lists, and returns a list of pairs of elements. Within a pair, the first
value comes from the first list, and the second value comes from the second
list. For example, zip [1,2,3,4] [’A’, ’*’, ’q’, ’x’] returns [(1,’A’),
(2,’*’), (3,’q’), (4,’x’)]. There is a special point to watch out for: the
two argument lists might have different lengths. In this case, the result will
have the same length as the shorter argument. For example, zip [1,2,3,4]
[’A’, ’*’, ’q’] returns just [(1,’A’), (2,’*’), (3,’q’)] because there
isn’t anything to pair up with the 4.

The definition of zip must do a recursion over both of the argument lists,
because the two lists have to stay synchronised with each other. There are two
base cases, because it’s possible for either of the argument lists to be empty.
There is no need to write a third base case zip [] [] = [], since the first
base case will handle that situation as well.

zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

Here is a calculation of the example above. The recursion terminates when the
second list becomes empty; the second base case equation defines the result of
zip [4] [] to be [] even though the first argument is non-empty.

zip [1,2,3,4] [’A’, ’*’, ’q’]
= (1,’A’) : zip [2,3,4] [’*’, ’q’]
= (1,’A’) : ((2,’*’) : zip [3,4] [’q’])
= (1,’A’) : ((2,’*’) : ((3,’q’) : zip [4] []))
= (1,’A’) : ((2,’*’) : ((3,’q’) : []))
= (1,’A’) : ((2,’*’) : [(3,’q’)])
= (1,’A’) : [(2,’*’), (3,’q’)]
= [(1,’A’), (2,’*’), (3,’q’)]

The concat function takes a list of lists and flattens it into a list of elements.
For example, concat [[1], [2,3], [4,5,6]] returns one list consisting of all
the elements in the argument lists; thus the result is [1,2,3,4,5,6].

concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss

In working out the example calculation, we just simplify all the applications
of ++ directly. Of course each of those applications entails another recursion,
which is similar to the examples of (++) given above.
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concat [[1], [2,3], [4,5,6]]
= [1] ++ concat [[2,3], [4,5,6]]
= [1] ++ ([2,3] ++ concat [[4,5,6]])
= [1] ++ ([2,3] ++ [4,5,6])
= [1] ++ [2,3,4,5,6]
= [1,2,3,4,5,6]

The base case for a function that builds a list must return a list, and this
is often simply []. The recursive case builds a list by attaching a value onto
the result returned by the recursive call.

In defining a recursive function f, it is important for the recursion to work
on a list that is shorter than the original argument to f. For example, in the
application sum [1,2,3], the recursion calculates sum [2,3], whose argument
is one element shorter than the original argument [1,2,3]. If a function were
defined incorrectly, with a recursion that is bigger than the original problem,
then it could just go into an infinite loop.

All of the examples we have seen so far perform a recursion on a list that is
one element shorter than the argument. However, provided that the recursion
is solving a smaller problem than the original one, the recursive case can be
anything—it doesn’t necessarily have to work on the tail of the original list.
Often a good approach is to try to cut the problem size in half, rather than
reducing it by one. This organisation often leads to highly efficient algorithms,
so it appears frequently in books on the design and analysis of algorithms. We
will look at the quicksort function, a good example of this technique.

Quicksort is a fast recursive sorting algorithm. The base case is simple:
quicksort [] = []. For a non-empty list of the form (x:xs), we will first
pick one element called the splitter. For convenience that will be x, the first
element in the list. We will then take all the elements of the rest of the list,
xs, which are less than or equal to the splitter. We will call this list the small
elements and define it as a list comprehension [y | y <- xs, y<splitter].
In a similar way we define the list of large elements, which are greater than
the splitter, as [y | y <- xs, y>=splitter]. Now the complete sorted list
consists first of the small elements (in sorted order), followed by the splitter,
followed by the large elements (in sorted order).

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (splitter:xs) =
quicksort [y | y <- xs, y<splitter]
++ [splitter]
++ quicksort [y | y <- xs, y>=splitter]

It is interesting to compare this definition with a conventional one in an
imperative language; see any standard book on algorithms.

Exercise 1. Write a recursive function copy :: [a] -> [a] that copies its
list argument. For example, copy [2] ⇒[2].
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Exercise 2. Write a function inverse that takes a list of pairs and swaps the
pair elements. For example,

inverse [(1,2),(3,4)] ==> [(2,1),(4,3)]

Exercise 3. Write a function

merge :: Ord a => [a] -> [a] -> [a]

which takes two sorted lists and returns a sorted list containing the ele-
ments of each.

Exercise 4. Write (!!), a function that takes a natural number n and a list
and selects the nth element of the list. List elements are indexed from
0, not 1, and since the type of the incoming number does not prevent it
from being out of range, the result should be a Maybe type. For example,

[1,2,3]!!0 ==> Just 1
[1,2,3]!!2 ==> Just 3
[1,2,3]!!5 ==> Nothing

Exercise 5. Write a function lookup that takes a value and a list of pairs,
and returns the second element of the pair that has the value as its first
element. Use a Maybe type to indicate whether the lookup succeeded.
For example,

lookup 5 [(1,2),(5,3)] ==> Just 3
lookup 6 [(1,2),(5,3)] ==> Nothing

Exercise 6. Write a function that counts the number of times an element
appears in a list.

Exercise 7. Write a function that takes a value e and a list of values xs and
removes all occurrences of e from xs.

Exercise 8. Write a function

f :: [a] -> [a]

that removes alternating elements of its list argument, starting with the
first one. For examples, f [1,2,3,4,5,6,7] returns [2,4,6].

Exercise 9. Write a function extract :: [Maybe a] -> [a] that takes a
list of Maybe values and returns the elements they contain. For example,
extract [Just 3, Nothing, Just 7] = [3, 7].

Exercise 10. Write a function

f :: String -> String -> Maybe Int

that takes two strings. If the second string appears within the first, it
returns the index identifying where it starts. Indexes start from 0. For
example,

f "abcde" "bc" ==> Just 1
f "abcde" "fg" ==> Nothing
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3.2 Higher Order Recursive Functions

Many of the recursive definitions from the previous section are quite similar to
each other. An elegant idea is to write a function that expresses the general
computation pattern once and for all. This general function could then be
reused to define a large number of more specific functions, without needing
to write out the complete recursive definitions. In order to allow the general
function to know exactly what computation to perform, we need to supply it
with an extra argument which is itself a function. Such a general function is
called a higher order function or a combinator.

Several of the functions defined in the previous section take a list argument,
and return a list result, where each element of the result is computed from the
corresponding element of the input. We can write a general function, called
map, which expresses all particular functions of that form. The first argument
to map is another function, of type a->b, which takes a single value of type
a and returns a single result of type b. The purpose of map is to apply that
auxiliary function to all the elements of the list argument.

map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Here is an example of the use of map. Suppose the function we define is
to multiply every list element by 5. We could write a special function to do
just that, using recursion. A simpler method is to specify the ‘multiply by 5’
function (*5) as an argument to map. Here is an example:

map (*5) [1,2,3]
= 1*5 : map (*5) [2,3]
= 1*5 : (2*5 : map (*5) [3])
= 1*5 : (2*5 : (3*5 : map (*5) []))
= 1*5 : (2*5 : (3*5 : []))
= 5 : (10 : (15 : []))
= [5,10,15]

The map function takes an auxiliary function requiring one argument, and
one list argument. Sometimes we have an auxiliary function that takes two
arguments, and we want to apply it to all the corresponding elements of two
lists. If the argument lists are of different sizes, the result will have the length
of the shorter one, This is performed by the zipWith function, which performs
a recursion simultaneously over both list arguments:

zipWith :: (a->b->c) -> [a] -> [b] -> [c]
zipWith f [] ys = []
zipWith f xs [] = []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
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Some of the recursive functions from the previous section, such as length
and sum, have a structure that is slightly different from that of map. These
functions take a list but return a singleton result which is calculated by com-
bining elements from the list. A general function for this is foldr, which is
defined as follows:

foldr :: (a->b->b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Here is an example where foldr is used to add up the elements of a list.
The singleton argument z can be thought of as an initial value for the sum, so
we specify 0 for its value.

foldr (+) 0 [1,2,3]
= 1 + foldr (+) 0 [2,3]
= 1 + (2 + foldr (+) 0 [3])
= 1 + (2 + (3 + foldr (+) 0 []))
= 1 + (2 + (3 + 0))
= 6

The function’s name suggests that a list is folded into a singleton value.
The recursion produces a sequence of applications of the f function, starting
from the right end of the list (hence the name, which stands for fold from the
right). The singleton argument z serves to initialise the accumulator, and it
also provides a result in case the entire list argument is empty.

Now we can define all the functions that follow this general pattern with a
single equation; there is no need to keep writing out separate recursive defini-
tions. Here is a collection of useful functions, all definable with foldr:

sum xs = foldr (+) 0 xs
product xs = foldr (*) 1 xs
and xs = foldr (&&) True xs
or xs = foldr (||) False xs
factorial n = foldr (*) 1 [1..n]

We now have two definitions of sum, a recursive one and one using foldr.
These two definitions ought to produce the same result, and it is interesting to
consider in more detail how this comes about. The recursive definition, which
we saw in the previous section, is

sum [] = 0
sum (x:xs) = x + sum xs

The definition using foldr is

sum xs = foldr (+) 0 xs



56 CHAPTER 3. RECURSION

First, consider sum []. The recursive definition says directly that this has
the value 0. We can calculate what the foldr definition says:

sum []
= foldr (+) 0 []
= 0

The two definitions give the same result for the base case, as they should. Now
consider the recursive case, where the argument has the structure (x:xs). The
recursive definition returns x + sum xs. The result produced by the definition
with foldr is calculated:

sum (x:xs)
= foldr (+) 0 (x:xs)
= x + foldr (+) 0 xs
= x + sum xs

We have just proved that the two definitions of sum always produce the same
result, because every list must either be [] or have the form (x:xs).

Often there is a choice between using a recursive definition or using one of
the existing higher order functions like map, foldr, etc. For example, consider
the problem of writing a function firsts, which should take a list of pairs and
returns a list of the first elements. For example,

firsts [(1,3),(2,4)] ==> [1,2]

Here is a recursive definition:

firsts :: [(a,b)] -> [a]
firsts [] = []
firsts ((a,b):ps) = a : firsts ps

And here is an alternative definition using map:

firsts :: [(a,b)] -> [a]
firsts xs = map fst xs

The definition using map is generally considered better style. It is shorter
and more readable, but its real advantage is modularity: the definition of map
expresses a specific form of recursion, and the definition of firsts with map
makes it explicitly clear that this form of recursion is being used.

Exercise 11. Write foldrWith, a function that behaves like foldr except
that it takes a function of three arguments and two lists.

Exercise 12. Using foldr, write a function mappend such that

mappend f xs = concat (map f xs)

Exercise 13. Write removeDuplicates, a function that takes a list and re-
moves all of its duplicate elements.

Exercise 14. Write a recursive function that takes a value and a list of values
and returns True if the value is in the list and False otherwise.
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3.3 Peano Arithmetic

We turn now to the implementation of arithmetic operations over a simple data
structure representing the natural numbers. The reason for working with this
representation is that it provides a good introduction to recursion over general
algebraic data types.

data Peano = Zero | Succ Peano deriving Show

For example,

1 = Succ Zero
3 = Succ (Succ (Succ Zero))

As you can see, the Peano data type is recursive. In this case, the recursion
builds up a series of constructor applications, somewhat like the list data type:

data List a = Empty | Cons a (List a)

[1] = Cons 1 Empty
[1,2,3] = Cons 1 (Cons 2 (Cons 3 Empty))

The simplest Peano function is decrement, which removes a Succ construc-
tor if possible, returning Zero otherwise:

decrement :: Peano -> Peano
decrement Zero = Zero
decrement (Succ a) = a

The definition of add is

add :: Peano -> Peano -> Peano
add Zero b = b
add (Succ a) b = Succ (add a b)

This definition looks a lot like that of (++)!
However, the definition of subtraction is more complex. If the second argu-

ment is Zero, then sub returns the first argument. Negative numbers cannot
be represented in this scheme, so they are approximated by Zero. Otherwise
sub must decrement both numbers, as follows:

sub :: Peano -> Peano -> Peano
sub a Zero = a
sub Zero b = Zero
sub (Succ a) (Succ b) = sub a b

We can do more with recursion and Peano numbers. Here are two predi-
cates, equals and lt:
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equals :: Peano -> Peano -> Bool
equals Zero Zero = True
equals Zero b = False
equals a Zero = False
equals (Succ a) (Succ b) = equals a b

lt :: Peano -> Peano -> Bool
lt a Zero = False
lt Zero (Succ b) = True
lt (Succ a) (Succ b) = lt a b

3.4 Data Recursion

So far we have used recursion as a technique for defining functions. Recursive
functions are useful in nearly all programming languages, and they are espe-
cially important for programming with data structures like trees and graphs.
Another important programming technique uses recursion to define data struc-
tures; this is called data recursion.

The idea is to define circular data structures. Here is one way to define an
infinitely long list where every element is 1:

f :: a -> [a]
f x = x : f x
ones = f 1

Each time the recursive function f is applied, it uses (:) to construct a new
list element containing x. As a result, there is no bound on how much computer
memory will be required to represent ones; this depends on how much of the
computation is actually demanded by the rest of the program.

However, it’s possible to represent ones very compactly with a circular list,
defined with recursion in the data rather than in a function:

twos = 2 : twos

Figure 3.1 shows the internal representations of ones and twos. Mathemat-
ically, the value of both is a list that is infinitely long. However, the circular
definition requires far less memory.

A data structure consisting of nodes connected by links is called a graph.
Graphs can be constructed by defining each node with an equation in a let
expression; this means that each node can be referred to by any other node
(including even itself). For example, the following Haskell definition creates a
circular data structure, where the internal names a, b, and c are used to set
up the links:

object = let a = 1:b
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1 ...ones 1 1

twos 2

Figure 3.1: Circular and Non-circular Infinite Lists

b = 2:c
c = [3] ++ a

in a

Data recursion does not work in all programming languages. If you were
to try defining twos in C, for example, the program would go into an infinite
loop. Haskell, however, is careful to delay the evaluation of an expression until
it is actually needed. This technique is called lazy evaluation, and it makes
possible a number of useful programming techniques including data recursion.
Lazy evaluation also plays a role in making it easier to use mathematics to
reason formally about Haskell programs.

3.5 Suggestions for Further Reading

Most programming languages have a variety of control constructs for looping,
but recursion is general enough to encompass all of them. Textbooks on Haskell
give many examples, and Abelson and Sussman [2] use recursion to provide a
variety of control abstractions in the programming language Scheme.

Systems with self-reference, including especially recursion, are one of the
major themes of Hofstadter’s book Gödel, Escher, Bach [17].

Recursion is central to the theory of computation; one of the main theoreti-
cal subjects in computer science is called recursive function theory. This is one
of the standard topics in computer science, and many textbooks are available.

3.6 Review Exercises

Exercise 15. Write a function that takes two lists, and returns a list of values
that appear in both lists. The function should have type intersection
:: Eq a => [a] -> [a] -> [a]. (This is one way to implement the
intersection operation on sets; see Chapter 8.)

Exercise 16. Write a function that takes two lists, and returns True if all the
elements of the first list also occur in the other. The function should have
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type isSubset :: Eq a => [a] -> [a] -> Bool. (This is one way to
determine whether one set is a subset of another; see Chapter 8.)

Exercise 17. Write a recursive function that determines whether a list is
sorted.

Exercise 18. Show that the definition of factorial using foldr always pro-
duces the same result as the recursive definition given in the previous
section.

Exercise 19. Using recursion, define last, a function that takes a list and
returns a Maybe type that is Nothing if the list is empty.

Exercise 20. Using recursion, write two functions that expect a string con-
taining a number that contains a decimal point (for example, 23.455).
The first function returns the whole part of the number (i.e., the part to
the left of the decimal point). The second function returns the fractional
part (the part to the right of the decimal point).



Chapter 4

Induction

A common type of problem is to prove that an object x has some property
P . The mathematical notation for this is P (x), where P stands for predicate
(or property). For example, if x is 6 and P (x) is the predicate ‘x is an even
number’, then we could express the statement ‘6 is an even number’ with the
shorthand mathematical statement P (6).

Many computer science applications require us to prove that all the ele-
ments of a set S have a certain property P . The statement ‘for any element x
in the set S the predicate P holds for x’ can be written as

∀x ∈ S . P (x).

Statements like this can be used to assert properties of data: for example, we
could state that every item in a database has a certain property. They can also
be used to describe the behaviour of computer programs. For example, P (n)
might be a statement that a loop computes the correct result if it terminates
after n iterations, and the statement ∀n ∈ N . P (n) says that the loop is correct
if it terminates after any number of iterations. N denotes the set of natural
numbers, so n ∈ N just says that n is a natural number, and the complete
expression ∀n ∈ N . P (n) says that for any natural number n, the predicate
P (n) holds.

One approach to proving an assertion about all the elements of a set is to
write out a separate direct proof for each element of the set. That would be
all right if the set were small. For example, to prove that all the elements of
the set {4, 6} are even, you could just prove that 4 is even and also that 6 is
even. However, this direct approach quickly becomes tedious for large sets: to
prove that all the elements of {2, 4, 6, . . . , 1000} are even, you would need 500
separate proofs! Even worse, the brute-force method doesn’t work at all—even
in principle—for infinite sets, because proofs are always required to be finitely
long.

Induction is a powerful method for proving that every element of a set has
a certain property. Induction is a valuable technique, because it is not tedious
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even if the set is large, and it works even for countably infinite sets. Induction is
used frequently in computer science applications. This chapter shows you how
inductive proofs work and gives many examples, including both mathematical
and computing applications. We will use two forms of induction: mathemat-
ical induction for proving properties about natural numbers, and structural
induction for proving properties about lists.

4.1 The Principle of Mathematical Induction

Induction is used to prove that a property P (x) holds for every element of a set
S. In this section, we will restrict the set S to be the set N of natural numbers;
later we will generalise induction to handle more general sets. Instead of proving
P (x) separately for every x, induction relies on a systematic procedure: you
just have to prove a few facts about the property P , and then a theorem called
the Principle of Mathematical Induction allows you to conclude ∀x ∈ N . P (x).

The basic idea is to define a systematic procedure for proving that P holds
for an arbitrary element. To do this, we must prove two statements:

1. The base case P (0) says that the property P holds for the base element
0.

2. The inductive case P (i) → P (i + 1) says that if P holds for an arbitrary
element i of the set, then it must also hold for the successor element i+1.
The symbol → is read as implies.

Because every element of the set of natural numbers can be reached by start-
ing with 0 and repeatedly adding 1, you can establish that P holds for any
particular element using a finite sequence of steps. Given that P (0) holds (the
base case) and that P (0) → P (1) (an instance of the inductive case), we can
conclude that P (1) also holds. This is a simple example of logical inference,
which will be studied in more detail in the chapters on logic. The same pro-
cedure can be used sytematically to prove P (i) for any element of the natural
numbers. For example, P (4) can be proved using the following steps (where
the ∧ symbol denotes and):

Conclusion Justification
P (0) the base case
P (1) P (0) → P (1) ∧ P (0)
P (2) P (1) → P (2) ∧ P (1)
P (3) P (2) → P (3) ∧ P (2)
P (4) P (3) → P (4) ∧ P (3)

Given any element k of N , you can prove P (k) using this strategy, and the
proof will be k+1 lines long. We have not yet used the Principle of Mathemat-
ical Induction; we have just used ordinary logical reasoning. However, proving
P (k) for an arbitrary k is not the same as proving ∀k ∈ N . P (k), because
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there are an infinite number of values of k, so the proof would be infinitely
long. The size of a proof must always be finite.

What the Principle of Mathematical Induction allows us to conclude is that
P holds for all the elements of N , even if there is an infinite number of them.
Thus it introduces something new—it isn’t just a macro that expands out into
a long proof.

Theorem 5 (Principle of Mathematical Induction). Let P (x) be a predicate
that is either true or false for every element of the set N of natural numbers.
If P (0) is true and P (n) → P (n + 1) holds for all n ≥ 0, then ∀x ∈ N . P (x)
is true.

This theorem can be proved using axiomatic set theory, which is beyond the
scope of this book. For most applications in computer science, it is sufficient
to have an intuitive understanding of what the theorem says and to have a
working understanding of how to use it in proving other theorems.

The proof of the base case will usually turn out to be a straightforward
calculation.

The expression P (n) → P (n + 1) means that ‘if P (n) is true then so is
P (n + 1)’. We can establish this by temporarily assuming P (n), and then—
in the context of this assumption—proving P (n + 1). The assumption P (n) is
called the induction hypothesis. It is important to understand that assuming the
induction hypothesis does not actually mean that it is true! All that matters is
that if the assumption P (n) enables us to prove P (n+1), then the implication
P (n) → P (n + 1) holds. We will study logical inference in more detail in
Chapter 6.

4.2 Examples of Induction on Natural Numbers

There is a traditional story about Gauss, one of the greatest mathematicians
in history. In school one day the teacher told the class to work out the sum
1+2+ · · ·+100. After a short time thinking, Gauss gave the correct answer—
5050—long before it would have been possible to work out all the additions.
He had noticed that the sum can be arranged into pairs of numbers, like this:

(1 + 100) + (2 + 99) + (3 + 98) + · · · + (50 + 51)

The total of each pair is 101, and there are 50 of the pairs, so the result is
50 × 101 = 5050.

Methods like this can often be used to save time in computing, so it is
worthwhile to find a solution to the general case of this problem, which is the
sum

n∑
i=1

i = 1 + 2 + · · · + n.
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Figure 4.1: Geometric Interpretation of Sum

If n is even, then we get n
2 pairs that all total to n+1, so the result is n

2 ×(n+1) =
n×(n+1)

2 . If n is odd, we can start from 0 instead of 1; for example,

7∑
i=0

i = (0 + 7) + (1 + 6) + (2 + 5) + (3 + 4).

In this case there are n+1
2 pairs each of which totals to n, so the result is again

n×(n+1)
2 . For any natural number n, we end up with the result

n∑
i=0

i =
n × (n + 1)

2
.

This formula is useful because it reduces the computation time required. For
example, if n is 1000 then it would take 999 additions to work out the sum-
mation by brute force, but the formula always requires just one addition, one
multiplication, and one division.

Figure 4.1 shows another way to understand the formula. The rectangle is
covered half by dots and half by stars. The number of stars is 1+2+3+4, and
the area of the rectangle is 4 × (4 + 1), so the total number of stars is 4×(4+1)

2 .
So far we have only guessed the general formula for

∑n
i=0 i, and we have

considered two ways of understanding it. The next step is to prove that this
formula always gives the right answer, and induction provides a way to do it.

Theorem 6.

∀n ∈ N .

n∑
i=0

i =
n × (n + 1)

2

Proof. Define the property P as follows:

P (n) =

(
n∑

i=0

i =
n × (n + 1)

2

)

Thus the aim is to prove that

∀n ∈ N . P (n)

and we proceed by induction on n.
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Base case. We need to prove P (0).

0∑
i=0

i = 0

=
0 × (0 + 1)

2

Thus we have established the property P (0).

Induction case. The aim is to prove that P (n) → P (n + 1), and we will prove
this implication by assuming P (n) (this is called the induction hypothesis) and
then using that assumption to prove P (n + 1). We start by writing out in
full detail the assumption and the aim of the proof. Assume for an arbitrary
natural number n that

n∑
i=0

i =
n × (n + 1)

2
.

The aim is to show (for this particular value of n) that

n+1∑
i=0

i =
(n + 1) × (n + 2)

2
.

We do this by starting with the left-hand side of the equation and using algebra
to transform it into the right-hand side. The first step uses the assumption
given above. This is called the induction hypothesis.

n+1∑
i=0

i =
n∑

i=0

i + (n + 1)

=
n × (n + 1)

2
+ (n + 1)

=
n × (n + 1)

2
+

2 × (n + 1)
2

=
n × (n + 1) + 2 × (n + 1)

2

=
(n + 1) × (n + 2)

2

Now we have established that(
n∑

i=0

i =
n × (n + 1)

2

)
→

(
n+1∑
i=0

i =
(n + 1) × (n + 2)

2

)
.

That is,
P (n) → P (n + 1).
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Use the principle of induction. To summarise, we have proved the base case
P (0), and we have proved the induction case P (n) → P (n + 1). Therefore the
principle of induction allows us to conclude that the theorem ∀n ∈ N.P (n) is
true.

Exercise 1. Let a be an arbitrary real number. Prove, for all natural numbers
m and n, that am×n = (am)n.

Exercise 2. Prove that the sum of the first n odd positive numbers is n2.

Exercise 3. Prove that
∑n

i=1 ai = (an+1 − 1)/(a − 1), where a is a real
number and a �= 1.

4.3 Induction and Recursion

Induction is a common method for proving properties of recursively defined
functions. The factorial function, which is defined recursively, provides a good
example of an induction proof.

factorial :: Natural → Natural
factorial 0 = 1
factorial (n + 1) = (n + 1) ∗ factorial n

A common problem in computer science is to prove that a program com-
putes the correct answer. Such a theorem requires an abstract mathematical
specification of the problem, and it has to show that for all inputs, the pro-
gram produces the same result that is defined by the specification. The value
of n! (factorial of n) is defined as the product of all the natural numbers from
1 through n; the standard notation for this is

∏n
i=1 i. The following theorem

says that the factorial function as defined above actually computes the value
of n!.

Theorem 7. For all natural numbers n, factorial n =
∏n

i=1 i.

Proof. Induction on n. The base case is

factorial 0
= 1 { factorial.1 }
=

∏0
1 i { def. of

∏ }

For the induction case, it is necessary to prove that(
factorial n =

n∏
i=1

i

)
→

(
factorial (n + 1) =

n+1∏
i=1

i

)
.
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This is done by assuming the left side as the inductive hypothesis: for a par-
ticular n, the hypothesis is factorial n =

∏n
i=1 i. Given this assumption, we

must prove that factorial (n + 1) =
∏n+1

i=1 i.

factorial (n + 1)
= (n + 1) × factorial n { factorial.2 }
= (n + 1) × ∏n

i=1 i { hypothesis }
=

∏n+1
i=1 i { def.

∏ }

Exercise 4. (This problem is from [12], where you can find many more.) The
nth Fibonacci number is defined as follows:

fib :: Integer -> Integer
fib 0 = 0
fib 1 = 1
fib (n+2) = fib n + fib (n+1)

The first few numbers in this famous sequence are 0, 1, 1, 2, 3, 5, . . . . Prove
the following:

n∑
i=1

fib i = fib (n + 2) − 1

4.4 Induction on Peano Naturals

The Peano representation of natural numbers is a rich source of examples for
induction. Actually, it’s hard to do anything at all in Peano arithmetic without
induction. For example, how do we even know that a natural number is equal
to itself? The following theorem says so, and its proof requires induction.

Theorem 8 (Self equality). ∀x :: Nat. equals x x = True

Proof. Base case:

equals Zero Zero
= True { equals.1 }

For the inductive case, assume that equals x x = True. We must prove that
equals (Succ x) (Succ x) = True.

equals (Succ x) (Succ x)
= equals x x { equals.2 }
= True { hypothesis }
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This proof illustrates a subtle issue. When we are using the languages of
English and mathematics to talk about natural numbers, we can assume that
anything is equal to itself. We don’t normally prove theorems like x = x.
However, that is not what we have just proved: the theorem above says that
x is the same as itself according to equals, which is defined inside the Peano
system. Therefore the proof also needs to work inside the Peano system; hence
the induction.

We’ll look at a few more typical Peano arithmetic theorems, both to see how
the Peano natural numbers work and to get more practice with induction. The
following theorem says, in effect, that (x + y) − x = y. In elementary algebra,
we would prove this by calculating (x + y) − x = (x − x) + y = 0 + y = y. The
point here, however, is that the addition and subtraction are being performed
by the recursive add and sub functions, and we need to prove the theorem in
terms of these functions.

Theorem 9. sub (add x y) x = y

Proof. Induction over x. The base case is

sub (add Zero y) Zero
= sub y Zero { add.1 }
= y { sub.1 }

For the inductive case, assume sub (add x y) x = y; the aim is to prove
sub (add (Succ x) y) (Succ x) = y.

sub (add (Succ x) y) (Succ x)
= sub (Succ (add x y)) (Succ x) { add.2 }
= sub (add x y) x { sub.3 }
= y { hypothesis }

The proof above happens to go through directly and easily, but many simple
theorems do not. For example, it is considerably harder to prove (x+y)−y = x
than to prove (x + y) − x = y. Even worse, there is no end to such theorems.
Instead of continuing to choose theorems based on their ease of proof, it is better
to proceed systematically by developing the standard properties of natural
numbers, such as associativity and commutativity. The attractive feature of
the Peano definitions is that all these laws are theorems; the only definitions
we need are the basic ones given already. It is straightforward to prove that
addition is associative, so we begin with that property.

Theorem 10 (add is associative). add x (add y z) = add (add x y) z

Proof. Induction over x. The Base case is
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add Zero (add y z)
= add y z { add.1 }
= add (add Zero y) z { add.1 }

Inductive case. Assume add x (add y z) = add (add x y) z. Then

add (Succ x) (add y z)
= Succ (add x (add y z)) { add.2 }
= Succ (add (add x y) z) { hypothesis }
= add (Succ (add x y)) z { add.2 }
= add (add (Succ x) y) z { add.2 }

Next, it would be good to prove that addition is commutative: x + y =
y + x. To prove this, however, a sequence of simpler theorems is needed—each
providing yet another example of induction.

First we need to be able to simplify additions where the second argument is
Zero. We know already that add Zero x = x; in fact, this is one of the Peano
axioms. It is not an axiom that add x Zero = x; that is a theorem requiring
proof.

Theorem 11. add x Zero = x

Proof. Induction over x. The base case is

add Zero Zero
= Zero { add.1 }

For the inductive case, we assume add x Zero = x. Then

add (Succ x) Zero
= Succ (add x Zero) { add.2 }
= Succ x { hypothesis }

The next theorem allows us to move a Succ from one argument of an addi-
tion to the other. It says, in effect, that (x + 1) + y = x + (y + 1). That may
not sound very dramatic, but many proofs require the ability to take a little
off one argument and add it onto the other.

Theorem 12. add (Succ x) y = add x (Succ y)

Proof. Induction over x. Base case:

add (Succ Zero) y
= Succ (add Zero y) { add.2 }
= Succ y { add.1 }
= add Zero (Succ y) { add.1 }
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Inductive case:

add (Succ (Succ x)) y
= Succ (add (Succ x) y) { add.2 }
= Succ (add x (Succ y)) { hypothesis }
= add (Succ x) (Succ y) { add.2 }

Now we can prove that Peano addition is commutative.

Theorem 13 (add is commutative). add x y = add y x

Proof. Induction over x. Base case:

add Zero y
= y { add.1 }
= add y Zero { Theorem 11 }

Inductive case: assume that add x y = add y x. Then

add (Succ x) y
= Succ (add x y) { add.2 }
= Succ (add y x) { hypothesis }
= add (Succ y) x { add.2 }
= add y (Succ x) { Theorem 12 }

4.5 Induction on Lists

Lists are one of the most commonly used data structures in computing, and
there is a large family of functions to manipulate them. These functions are
typically defined recursively, with a base case for empty lists [ ] and a recursive
case for non-empty lists, i.e. lists of the form (x : xs). List induction is the
most common method for proving properties of such functions.

Before going on, we discuss some practical techniques that help in coping
with theorems. If you aren’t familiar with them, mathematical statements
sometimes look confusing, and it is easy to develop a bad habit of skipping
over the mathematics when reading a book. Here is some advice on better
approaches; we will try to illustrate the advice in a concrete way in this section,
but these methods will pay off throughout your work in computer science, not
just in the section you’re reading right now.

• When you are faced with a new theorem, try to understand what it means
before trying to prove it. Restate the main idea in English.
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• Think about what applications the theorem might have. If it says that
two expressions are the same, can you think of situations where there
might be a practical advantage in replacing the left-hand side by the
right-hand side, or vice versa? (A common situation is that one side of
the equation is more natural to write, and the other side is more efficient.)

• Try out the theorem on some small examples. Theorems are often stated
as equations; make up some suitable input data and evaluate both sides
of the equation to see that they are the same.

• Check what happens in boundary cases. If the equation says something
about lists, what happens if the list is empty? What happens if the list
is infinite?

• Does the theorem seem related to other ones? Small theorems about
functions—the kind that are usually proved by induction—tend to fit
together in families. Noticing these relationships helps in understanding,
remembering, and applying the results.

The principle of list induction states a technique for proving properties
about lists. It is similar to the principle of mathematical induction; the main
difference is that the base case is the empty list (rather than 0) and the induc-
tion case uses a list with one additional element (x:xs) rather than n+1. List
induction is a special case of a more general technique called strutural induc-
tion. Induction over lists is used to prove that a proposition P (xs) holds for
every list xs.

Theorem 14 (Principle of list induction). Suppose P (xs) is a predicate on
lists of type [a], for some type a. Suppose that P ([ ]) is true (this is the base
case). Further, suppose that if P (xs) holds for arbitrary xs :: [a], then P (x : xs)
also holds for arbitrary x :: a. Then P (xs) holds for every list xs that has finite
length.

Thus the base case is to prove that the predicate holds for the empty list,
and the inductive case is to prove that if P holds for a list xs, then it must
also hold for any list of the form x : xs. When the base and inductive case
are established, then the principle of induction allows us to conclude that the
predicate holds for all finite lists.

Notice that the principle of list induction cannot be used to prove theorems
about infinite lists. This point is discussed in Section 4.8.

We will now work through a series of examples where induction is used to
prove theorems about the properties of recursive functions over lists.

The sum function takes a list of numbers and adds them up. It defines the
sum of an empty list to be 0, and the sum of a non-empty list is computed by
adding the first number onto the sum of all the rest.

sum :: Num a => [a] -> a
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sum [] = 0
sum (x:xs) = x + sum xs

The following theorem states a useful fact about the relationship between
two functions: sum and ++. It says that if you have two lists, say xs and
ys, then there are two different ways to compute the combined total of all the
elements. You can either append the lists together with ++, and then apply
sum, or you can apply sum independently to the two lists, and add the two
resulting numbers.

Theorems of this sort are often useful for transforming programs to make
them more efficient. For example, suppose that you have a very long list to
sum up, and two computers are available. We could use parallelism to cut the
execution time almost in half. The idea is to split up the long list into two
shorter ones, which can be summed in parallel. One quick addition will then
suffice to get the final result. This technique is an example of the divide and
conquer strategy for improving the efficiency of algorithms. Obviously there
is more to parallel computing and program optimisation than we have covered
in this paragraph, but theorems like the one we are considering really do have
practical applications.

Theorem 15. sum (xs++ys) = sum xs + sum ys

The proof of this theorem is a typical induction over lists, and it provides a
good model to follow for future problems. The justifications used in the proof
steps are written in braces {. . .}. Many of the justifications cite the definition
of a function, along with the number of the equation in the definition; thus
{ (++).1 } means ‘this step is justified by the first equation in the definition of
++’. The most crucial step in an induction proof is the one where the induction
hypothesis is used; the justification cited for that step is { hypothesis }.

Proof. Induction over xs. The base case is

sum ([ ] ++ ys)
= sum ys { (++).1 }
= 0 + sum ys { 0 + x = x }
= sum [ ] + sum ys { sum.1 }

The inductive case is

sum ((x : xs)++ys)
= sum (x : (xs++ys)) { (++).2 }
= x + sum (xs++ys) { sum.2 }
= x + (sum xs + sum ys) { hypothesis }
= (x + sum xs) + sum ys { +. is associative }
= sum (x : xs) + sum ys { sum.2 }
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Many theorems describe a relationship between two functions; the previous
one is about the combination of sum and (++), while this one combines length
with (++). Its proof is left as an exercise.

Theorem 16. length (xs++ys) = length xs + length ys

We now consider several theorems that state crucial properties of the map
function. These theorems are important in their own right, and they are com-
monly used in program transformation and compiler implementation. They
are also frequently used to justify steps in proofs of more complex theorems.

The following theorem says that map is ‘length preserving’: when you apply
map to a list, the result has the same length as the input list.

Theorem 17. length (map f xs) = length xs

Proof. Induction over xs. The base case is

length (map f [ ])
= length [ ] { map.1 }

For the inductive case, assume length (map f xs) = length xs. Then

length (map f (x : xs))
= length (f x : map f xs) { map.2 }
= 1 + length (map f xs) { length.2 }
= 1 + length xs { hypothesis }
= length (x : xs) { length.2 }

The next theorem is reminiscent of Theorem 15; it says you can get the
same result by either of two methods: (1) mapping a function over two lists
and then appending the results together, and (2) appending the input lists and
then performing one longer map over the result. Its proof is yet another good
example of induction, and is left as an exercise.

Theorem 18. map f (xs++ys) = map f xs ++ map f ys

One of the most important properties of map is expressed precisely by the
following theorem. Suppose that you have two computations to perform on
all the elements of a list. First you want to apply g to an element, getting
an intermediate result to which you want to apply f . There are two methods
for doing the computation. The first method uses two separate loops, one to
perform g on every element and the second loop to perform f on the list of
intermediate results. The second method is to use just one loop, and each
iteration performs the g and f applications in sequence. This theorem is used
commonly by optimising compilers, program transformations (both manual and
automatic), and it’s also vitally important in parallel programming. Again, we
leave the proof as an exercise.
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Theorem 19. (map f . map g) xs = map (f.g) xs

For a change of pace, we now consider an intriguing theorem. Once you
understand what it says, however, it becomes perfectly intuitive. (The notation
(1+) denotes a function that adds 1 to a number.)

Theorem 20. sum (map (1+) xs) = length xs + sum xs

Proof. Induction over xs. The base case is

sum (map (1+) [ ])
= sum [ ] { map.1 }
= 0 + sum [ ] { 0 + x = x }
= length [ ] + sum [ ] { length.1 }

For the inductive case, assume sum (map (1+) xs) = length xs + sum xs.
Then

sum (map (1+) (x : xs))
= sum ((1 + x) : map (1+) xs) { map.2 }
= (1 + x) + sum (map (1+) xs) { sum.2 }
= (1 + x) + (length xs + sum xs) { hypothesis }
= (1 + length xs) + (x + sum xs) { (+).algebra }
= length (x : xs) + sum (x : xs) { length.2, sum.2 }

The foldr function is important because it expresses a basic looping pattern.
There are many important properties of foldr and related functions. Here is
one of them:

Theorem 21. foldr (:) [ ] xs = xs

Some of the earlier theorems may be easy to understand at a glance, but
that is unlikely to be true for this one! Recall that the foldr function takes
apart a list and combines its elements using an operator. For example,

foldr (+) 0 [1, 2, 3] = 1 + (2 + (3 + 0))

Now, what happens if we combine the elements of the list using the cons oper-
ator (:) instead of addition, and if we use [ ] as the initial value for the recursion
instead of 0? The previous equation then becomes

foldr (:) [ ] [1, 2, 3] = 1 : (2 : (3 : [ ]))
= [1, 2, 3].

We ended up with the same list we started out with, and the theorem says this
will always happen, not just with the example [1, 2, 3] used here.

Proof. Induction over xs. The base case is
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foldr (:) [ ] [ ]
= [ ] { foldr.1 }

Now assume that foldr (:) [ ] xs = xs; then the inductive case is

foldr (:) [ ] (x : xs)
= x : foldr (:) [ ] xs { foldr.2 }
= x : xs { hypothesis }

Suppose you have a list of lists, of the form xss = [xs0, xs1, . . . , xsn]. All
of the lists xsi must have the same type [a], and the type of xss is [[a]]. We
might want to apply a function f :: a → b to all the elements of all the lists,
and build up a list of all the results. There are two different ways to organise
this computation:

• Use the concat function to make a single flat list of type [a] containing
all the values, and then apply map f to produce the result with type [b].

• Apply map f separately to each xsi, by computing map (map f) xss,
producing a list of type [[b]]. Then use concat to flatten them into a
single list of type [b].

The following theorem guarantees that both approaches produce the same re-
sult. This is significant because there are many practical situations where it
is more convenient to write an algorithm using one approach, yet the other is
more efficient.

Theorem 22. map f (concat xss) = concat (map (map f) xss)

Proof. Proof by induction over xss. The base case is

map f (concat [ ])
= map f [ ] { concat.1 }
= [ ] { map.1 }
= concat [ ] { concat.1 }
= concat (map (map f) [ ]) { map.1 }

Assume that map f (concat xss) = concat (map (map f) xss). The inductive
case is

map f (concat (xs : xss))
= map f (xs ++ concat xss) { concat.2 }
= map f xs ++ map f (concat xss) { Theorem 18 }
= map f xs ++ concat (map (map f) xss) { hypothesis }
= concat (map f xs : map (map f) xss) { concat.2 }
= concat (map (map f) (xs : xss)) { map.2 }



76 CHAPTER 4. INDUCTION

Sometimes you don’t need to perform an induction, because a simpler proof
technique is already available. Here is a typical example:

Theorem 23. length (xs++(y : ys)) = 1 + length xs + length ys

This theorem could certainly be proved by induction (and that might be
good practice for you!) but we already have a similar theorem which says that
length (xs++ys) = length xs + length ys. Instead of starting a new induction
completely afresh, it’s more elegant to carry out a few steps that enable us to
apply the existing theorem. Just as reuse of software is a good idea, reuse of
theorems is good style in theoretical computer science.

length (xs ++ (y : ys))
= length xs + length (y : ys)
= length xs + (1 + length ys)
= 1 + length xs + length ys

Exercise 5. Prove Theorem 16.

Exercise 6. Prove Theorem 18.

Exercise 7. Prove Theorem 19.

Exercise 8. Recall Theorem 20, which says

sum (map (1+) xs) = length xs + sum xs.

Explain in English what this theorem says. Using the definitions of the
functions involved (sum, length and map), calculate the values of the left
and right-hand sides of the equation using xs = [1, 2, 3, 4].

Exercise 9. Invent a new theorem similar to Theorem 20, where (1+) is re-
placed by (k+). Test it on one or two small examples. Then prove your
theorem.

4.6 Functional Equality

Many theorems used in computer science (including most of the ones in this
chapter) say that two different algorithms are always guaranteed to produce
the same result. The algorithms are defined as functions, and the theorem says
that when you apply two different functions to the same argument, they give
the same result.

It is simpler and more direct simply to say that the two functions are equal.
However, this raises an interesting question: what does it mean to say f = g
when f and g are functions? (This issue will be revisited in Chapter 11.) There
are at least two standard notions of functional equality that are completely
different from each other, so it pays to be careful!
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• Intensional equality. Two functions f and g are intensionally equal if
their definitions are identical. This means, of course, that the functions
are not equal if their types are different. If they are computer programs,
testing for intensional equality involves comparing the source programs,
character by character. The functions are intensionally equal if their
definitions look the same.

• Extensional equality. Two functions f and g are extensionally equal if
they have the same type a → b and f x = g x for all well typed arguments
x :: a. More precisely, f = g if and only if

∀x :: a . f x = g x.

The functions are extensionally equal if they deliver the same results
when given the same inputs.

In computer science we are almost always interested in extensional equality.
A typical situation is that we have an algorithm, expressed as a function f ,
and the aim is to replace it by a more efficient function g. This will not affect
the correctness of the program as long as f and g are extensionally equal, but
they are obviously not intensionally equal.

Some of the theorems given in the previous section can be stated in a simpler
fashion using extensional equality. For example, recall Theorem 17, which says
that map doesn’t change the length of its argument:

length (map f xs) = length xs

A more direct way to state the same fact is to omit the irrelevant argument xs,
and just say that these two functions are equal:

length . (map f) = length

To prove such a theorem of the form f = g, we need only prove that
∀x :: a. f x = g x, and this can be achieved by choosing an arbitrary x :: a,
and proving the equation f x = g x.

Theorem 24. foldr (:) [ ] = id

Proof. The equation states that two functions are equal: the right-hand side, id,
is a function, and the left-hand side is a partial application (foldr takes three
arguments, but it has been applied to only two), so that is also a function.
Therefore we use the definition of extensional equality of functions; thus we
choose an arbitrary list xs, and we must prove that foldr (:) [ ] xs = id xs = xs.
Now the right-hand side is just xs, by the definition of id, so the equation is
proved by Theorem 21.

Theorem 25. map f . concat = concat (map (map f)).
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Exercise 10. Prove Theorem 25.

Exercise 11. Prove that the ++ operator is associative.

Exercise 12. Prove sum . map length = length . concat.

4.7 Pitfalls and Common Mistakes

After a bit of practice, induction can come to seem almost too easy. You just
set up the base and inductive cases, crank the handle, and out comes a proof.

There are many kinds of bad inductive proofs. Their flaws are often due to
suspicious base cases, although there are a variety of dubious ways in which to
prove the induction cases too. Here is an interesting example.

4.7.1 A Horse of Another Colour

The following theorem is a famous classic.

Theorem 26. All horses are the same colour.

Proof. Define P (n) to mean ‘in any set containing n horses, all of them have
the same colour’. We proceed by induction over n.

Base case. Every horse has the same colour as itself, so P (1) is true.

Inductive case. Assume P (n), and consider a set containing n + 1 horses;
call them h1, h2, . . . , hn+1. We can define two subsets A = h1, . . . , hn and
B = h2, . . . hn+1. Both sets A and B contain n horses, so all the horses in A
are the same colour (call it CA), and all the horses in B are the same colour (call
it CB). Pick one of the horses that is an element of both A and B. Clearly this
horse has the same colour as itself; call it Ch. Thus CA = Ch = CB . Therefore
all the horses h1, . . . , hn+1 have the same colour.

Now we have proved P (n) → P (n + 1), so it follows by mathematical
induction that ∀n ∈ Nat . P (n). Thus all horses are the same colour.

Exercise 13. What is the flaw in the proof given above? (Please try to work
this out yourself, and then check the answer in the Appendix.)

4.8 Limitations of Induction

Induction can be used to prove that every element of a set satisfies a certain
property. The set may be finite or infinite. When the theorem states a prop-
erty of an arbitrary natural number, or an arbitrary list, the inductive proof
establishes that an infinite number of values satisfy the theorem.

Nevertheless, there are some limits on what can be proved using mathemat-
ical induction. One such limit is that if the set is infinite, it must be countable
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(that is, it must be possible to enumerate its elements, so that each one is asso-
ciated with a unique natural number). Another limitation, which is particularly
important for computing applications, is that ordinary induction cannot prove
properties of infinite objects; it just proves properties of an infinite number of
finite objects, which is not the same thing at all!

An example will clarify this issue. Suppose we define a function

reverse :: [a] → [a]

which takes a list and returns a new list with the same elements, but in reverse
order. For example, reverse [1, 2, 3] = [3, 2, 1]. Now, we want to state a
theorem which says that if we reverse a list twice, we get the same list back.
The following equation is one attempt to say that:

reverse (reverse xs) = xs

Alternatively, we might use extensional equality of functions, and just write

reverse . reverse = id.

It is straightforward to prove the first equation using induction, and the sec-
ond equation follows immediately using the extensional definition of functional
equality.

Theorem 27. reverse . reverse = id

Unfortunately, this theorem is untrue!
To see the problem, let’s consider a concrete example. We will choose xs

to be [1..], which is the Haskell notation for the infinite list [1, 2, 3, . . .]. Now
consider the following two expressions:

• head (reverse (reverse [1 . .]))

• head [1 . .]

Now the first of these expressions will go into an infinite loop, because the
second (outermost) application of reverse needs to find the last element of
its argument before it can return anything, and it will never find the last
element of an infinite list. The second expression, however, does not go into an
infinite loop; it returns the result 1 immediately. Yet, according to the dubious
equations stated above, we should be able to replace reverse (reverse [1 . .]) by
[1 . .] without changing the value! What has gone wrong?

The problem is that mathematical induction only establishes that the theo-
rem is valid for every element of the set that is connected to the base case by a
finite number of steps. It does not establish that the theorem is true for infinite
lists, which are not reachable from the base case in a finite number of steps.
This means that all of our theorems over lists that were proved using induction
have actually been proved only for finite lists. Note that there are an infinite
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number of lists of finite length; thus the induction is proving that a property
holds for an infinite number of values, but it does not establish whether the
property holds for values that are infinite in size.

There is a related point about natural numbers that sometimes confuses
people. When we use induction over natural numbers, using 0 as the base
case and P (n) → P (n + 1) for the inductive case, we have established that
the theorem holds for every natural number, and there is an infinite number
of naturals. However, this does not prove that the theorem holds for infinity
itself. There is an infinite number of naturals, but infinity is not itself a natural
number.

Exercise 14. State the requirements on finite length that the proof of P im-
poses on the arguments of concat, where P is defined as

P (n) ≡ concat xss = foldr (++) [] xss

Exercise 15. Check that Theorem 27 holds for the argument [1, 2, 3].

Exercise 16. Prove the following theorem, using induction:

reverse (xs++ys) = reverse ys++reverse xs

Then decide whether this theorem happens to be true for infinite lists like
[1 . .]. Try to give a good argument for your conclusion, but you don’t
have to prove it.

Exercise 17. Use induction to prove Theorem 27. reverse (reverse xs) = xs.

Exercise 18. Explain why Theorem 27 does not hold for infinite lists.

4.9 Suggestions for Further Reading

Concrete Mathematics, by Graham, Knuth, and Patashnik [15] covers the more
advanced mathematical techniques used in the analysis of algorithms. They
include a number of problems on induction and also cover in depth the related
topic of recurrences.

Many mathematics books contain more advanced examples of induction
proofs. An entire chapter is devoted to induction in Engel’s book, Problem-
Solving Strategies [12], which is a good general source book for mathematical
problems.

The textbooks on Haskell cited in Chapter 1 give examples of inductive
proofs about recursive programs. The Bird-Meertens calculus [5] develops an
extensive theory of programming, including many good applications of induc-
tion.
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4.10 Review Exercises

Exercise 19. Assume that xss is a finite list of type [[a]], that it is of length
n, and that xs is a finite list and an arbitrary element of xss. Prove that
length (concat xss) = sum (map length xss).

Exercise 20. Prove that or defined over an argument that has an arbitrary
number of elements delivers the value True if True occurs as one of the
elements of its argument.

Exercise 21. Prove that and defined over an argument that has an arbitrary
number of elements delivers the value True if all of the elements in its
argument are True.

Exercise 22. Assume there is a function called max that delivers the larger of
its two arguments.
max x y = x if x >= y
and
max x y = y if y >= x

Write a function maximum that, given a non-empty sequence of values
whose sizes can be compared (that is, values from a type of class Ord),
delivers the largest value in the sequence.

Exercise 23. Assume that the list xs is of type Ord a => [a], and that x is
an arbitrary element of xs.
Given the definition of maximum, defined as

maximum :: [Ord] -> Ord

maximum xs = foldr (max) y ys
where xs = y:ys

prove that maximum has the following property:

(maximum xs) >= x

Exercise 24. Write a function that, given a sequence containing only non-
empty sequences, delivers the sequence made up of the first elements of
each of those non-empty sequences.

Exercise 25. Prove the equation concat = foldr (++) []. Assume that the
lists are finite, so that list induction can be used.

Exercise 26. Define an and operator using && and foldr.

Exercise 27. Given a list xs of type Bool, prove that

and ([False] ++ xs) = False.



Chapter 5

Trees

One of the most important data structures used in practical programming
is the tree. Trees can be used to represent information with a hierarchical
structure, they can be processed by recursive functions with a simple structure,
and they are well suited for mathematical proofs. The study of trees illustrates
connections between several of the main themes of this book, and offers many
opportunities for exploiting formal mathematics in practical programming.

People use the idea of hierarchy for many purposes. For example, books are
often organized as a sequence of chapters, each of which is a sequence of sec-
tions, which may have subsections, and so on. Corporations may be organized
as collections of business units, each of which may have several departments.
Departments, in turn, may have multiple sections, and so on. Biological taxon-
omy divides living organisms into kingdoms (plant, animal, etc.), then divides
these categories into phylums (animals are vertebrate or invertebrate), divides
phylums into classes (mammals, for example), and so on down through more
and more narrow categories (order, family, genus, species, and subspecies).
Software is organized as a collection of modules, any of which may be made up
of several submodules, down to whatever level of refinement the designers find
appropriate. At some level, modules are expressed in basic units such as ob-
jects, methods, or procedures. In other words, hierarchies provide an effective
way to organize information.

Trees provide a model expressing the idea of hierarchy. Because they are
formal, mathematical objects, trees provide a basis for precise reasoning about
hierarchies.

5.1 Components of a Tree

Informally, trees are described in terms of a diagrammatic representation. In
this sense, a tree is a collection of nodes connected by lines in a pattern that
has no loops in it. That is, the pattern of connecting-lines does not admit a
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path along the lines that gets back to its starting point without retracing any
steps.

There is not just one kind of tree; as we will see in the next section, there
are many variations in the details of a tree structure. For now, we will discuss
a semiformal definition of one particular kind of tree.

Definition 1. A tree is either an empty tree or it is a node together with a
sequence of trees.

The definition is inductive because the term being defined, “tree”, is used
in its own definition. The starting point for the inductive definition is the
empty tree. The definition does not say what an empty tree is; this is left
as an undefined term, and the existence of the empty tree is accepted as an
axiom. The term “node” is not defined, either, and the existence of nodes for
building trees is also taken as an axiom. Later, when we use trees to represent
specific mathematical entities, we will say exactly what entities comprise the
set of nodes from which the trees are constructed.

Definition 2. The node portion of a non-empty tree is the root of the tree.
The sequence-of-trees portion of a non-empty tree is called the children of the
tree (and each individual member of the sequence is called a child of the tree).

Definition 3. A non-empty tree whose associated sequence of trees is empty
is called a leaf.

A leaf, by itself, is the simplest kind of non-empty tree. In such a tree, the
root is a leaf. In a more complicated tree (i.e., one consisting of a node with
children) the root is not a leaf.

Figure 5.1 displays a tree as a diagram. The tree in this diagram is a node,
together with two trees, one on the left and one on the right. These are, of
course, subtrees of the complete tree represented by the diagram. Working our
way down, we see that the left subtree consists of a node, together with two
trees (one of which is a leaf). We see that the right subtree consists of a node,
together with three trees, one on the left, one in the middle, and one on the
right. The one on the left is a leaf, and the one on the right is a leaf. The one
in the middle is not a leaf, but its subtrees are leaves. The tree, as a whole,
has seven leaves and five interior nodes, one of which is the root.

Definition 4. A tree s is said to be a subtree of a tree t if either s is the same
as t, or if t is non-empty and s is a subtree of one of the children of t.

The definition of the term “subtree” is also inductive. It is defined with
respect to a given tree, and the basis of the inductive definition is the case
when the given tree and the subtree are the same. The inductive case permits
the subtree to be either one of the “immediate” constituents of the given tree
or a subtree of one of those immediate constituents.

Definition 5. A tree s is said to be a leaf of a tree t if s is a subtree of t and
s is a leaf.



5.1. COMPONENTS OF A TREE 85

branch

node

root

leaf

Figure 5.1: A tree diagram

Definition 6. A node n is said to occur in a tree t, written n ∈ t, if t consists
of a node m together with a sequence of trees [s1, s2, . . .] and either n is the
same as m or n occurs in one of the children of t.

The definition of the term “occurs in” is inductive because the term “occurs
in” is used in its own definition. The basis of this inductive definition is the
case in which the node occurs at the root. In the inductive case, the node
occurs in one of the subtrees. The definition of “occurs in” makes it clear that
no nodes occur in an empty tree because the tree in which a node occurs must
consist of a node together with a sequence of trees.

Definition 7. A node n is said to be an interior node in the tree t if n occurs in
t and there is a sequence of trees [s1, s2, . . .] such that n together with [s1, s2, . . .]
is a subtree of t.

Trees usually contain additional data attached to the nodes and leaves.
The tree structure (comprising the nodes and leaves) provides an organisation
for the data values, making the information easier to use than if it were just
kept in an array or list. Sometimes tree diagrams are drawn showing just
the data values attached to nodes, but omitting the nodes themselves. For
example, consider a tree used to represent linguistic constructs, such as the
structure of a sentence in English or a statement in a programming language.
Figure 5.2 shows the diagram of a tree representing the arithmetic expression
(3 ∗ 4) + ((5 ∗ 6)/8). The root of the tree is the + operation, and the subtrees
denote expressions describing the arguments to be added. The leaves of the
tree are the numbers appearing in the expression. The value of the expression
can be calculated by working from the leaves up to the root, calculating the
intermediate values corresponding to each operator.

Most programming language interpreters and compilers use trees to repre-
sent the structure of the entire program. The tree representation makes explicit
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Figure 5.2: Tree diagram of a propositional formula

the essential structure of the data, while discarding irrelevant details. For ex-
ample, the tree structure in Figure 5.2 shows the operands for each operator,
and the parentheses used in a textual expression are not needed.

5.2 Representing Trees in Haskell

In traditional programming languages, you need to use low level programming
with pointers or classes in order to process a tree. Haskell allows you to de-
fine tree structures directly and offers good support for writing programs that
manipulate trees. This is especially important as there is not just one kind
of tree; it is common to define new tree types that are tailored specifically for
a particular application. Specifying trees formally in Haskell ensures that the
data structures are expressed precisely, and it also makes algorithms on trees
executable on a computer.

The special case of a tree type where every node must have exactly two
children is called a binary tree. As stated earlier, in general a tree node may
have any number of children. Binary trees are commonly used in practical
computing applications.

To illustrate how to define tree structures in Haskell, we will define a binary
tree type that has an integer data value attached to each node. Each kind of
data structure defined in Haskell must have a unique data type; since we are
considering a binary tree with integer data in each node, this new type will be
called BinTreeInt.

The Haskell definition is based closely on the informal inductive defini-
tion of trees given in the previous section. The definition begins with data
BinTreeInt, saying that a new datatype is being defined. There are are two
kinds of BinTreeInt: empty ones (i.e., leaves) and nonempty ones (i.e., nodes
with attached data). A leaf of the tree is denoted by the constructor Leaf,
which takes no operands. A node of the tree is constructed by applying the
constructor Node to the data value (of type Integer) and to two trees (which
must have the same type, BinTreeInt).

data BinTreeInt
= Leaf
| Node Integer BinTreeInt BinTreeInt
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Figure 5.3: Tree diagram corresponding to the definition tree3

We can define values of the tree type using the constructors, which act
just like functions. The following definitions declare that tree1 has type
BinTreeInt and consists just of a leaf:

tree1 :: BinTreeInt
tree1 = Leaf

To build a tree with some nodes and data, just apply Node to an integer
and to expressions denoting the subtree, for example:

tree2 :: BinTreeInt
tree2 = Node 23 Leaf Leaf

Larger trees can also be defined straightforwardly. In the following example,
the subtree operands are themselves expressions, so they need to be enclosed in
parentheses. It is also a good idea to use indentation to make the tree structure
clearer. Figure 5.3 shows the diagram corresponding to tree3.

tree3 :: BinTreeInt
tree3 =
Node 4
(Node 2
(Node 1 Leaf Leaf)
(Node 3 Leaf Leaf))

(Node 7
(Node 5
Leaf
(Node 6 Leaf Leaf))

(Node 8 Leaf Leaf))

One limitation of the BinTreeInt type is that it requires the data attached
to a node to be an integer. In practice, you are likely to have other types of
data to be attached to nodes. Haskell allows you to define a polymorphic tree
type, where the data attached to the nodes has some type a. The resulting
tree has type BinTree a, which can be read as “binary tree with values of type
a”. Another useful refinement is the last line of the definition, deriving Show,
which tells the compiler to generate code to print the tree automatically.
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data BinTree a
= BinLeaf
| BinNode a (BinTree a) (BinTree a)
deriving Show

The point of including a in the tree type is that it allows any type a to
be used for the data attached to nodes, but it also requires that all the nodes
have attached data of the same type. Here are some examples of correct tree
definitions:

tree4 :: BinTree String
tree4 = BinNode "cat" BinLeaf (BinNode "dog" BinLeaf BinLeaf)

tree5 :: BinTree (Integer,Bool)
tree5 = BinNode (23,False)

BinLeaf
(BinNode (49,True) BinLeaf BinLeaf)

tree6 :: BinTree Int
tree6 = BinNode 4

(BinNode 2
(BinNode 1 BinLeaf BinLeaf)
(BinNode 3 BinLeaf BinLeaf))

(BinNode 6
(BinNode 5 BinLeaf BinLeaf)
(BinNode 7 BinLeaf BinLeaf))

The following definition produces a type error, because the nodes have
attached data values of different types. The compiler will give an error message
saying that Char, the type of one of the nodes, doesn’t match Bool, the type
of the other nodes.

treeBad = BinNode ’c’
(BinNode True BinLeaf BinLeaf)
(BinNode False BinLeaf BinLeaf)

Exercise 1. Define a Haskell datatype Tree1 for a tree that contains a char-
acter and an integer in each node, along with exactly three subtrees.

Exercise 2. Define a Haskell datatype Tree2 for a tree that contains an integer
in each node, and that allows each node to have any number of subtrees.

5.3 Processing Trees with Recursion

Just as a for-loop is the natural programming technique for processing an array,
recursion is the natural programming technique for processing trees. Recursion
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fits well with trees, because each subtree is a complete tree in its own right,
so subtrees can be handled by recursive function applications. This section
presents several typical algorithms on trees and shows how to implement them
with recursive functions.

5.3.1 Tree Traversal

A natural task is to visit each node in the tree in order to process the data in
that node, building a list of the results. An algorithm that works through a
tree in this fashion is called a tree traversal. A traversal needs to decide what
order to visit the nodes, and there are three specific traversal orders for binary
trees that are commonly used in algorithms:

• Preorder traversal: first visit the root, then traverse the left subtree, then
traverse the right subtree. A preorder traversal of the tree in Figure 5.3
produces [4, 2, 1, 3, 7, 5, 6, 8].

• Inorder traversal: first visit the left subtree, then the root, then the
right subtree. An inorder traversal of the tree in Figure 5.3 produces
[1, 2, 3, 4, 5, 6, 7, 8].

• Postorder traversal: Traverse the left subtree, then the right subtree,
and finally visit the root. A postorder traversal of the tree in Figure 5.3
produces [1, 3, 2, 6, 5, 8, 7, 4].

Functions can be defined to perform each of the traversals using recursion.
The traversal functions take an argument which is a tree of type BinTree a,
and they produce a flat list with type [a] consisting of the data values found
attached to the nodes. All three of the traversal functions will produce a list
containing all the data values in a tree; the only difference among them is the
order of items in the list. The definitions of these functions are similar to the
informal definitions of the traversal algorithms.

inorder :: BinTree a -> [a]
inorder BinLeaf = []
inorder (BinNode x t1 t2) = inorder t1 ++ [x] ++ inorder t2

preorder :: BinTree a -> [a]
preorder BinLeaf = []
preorder (BinNode x t1 t2) = [x] ++ preorder t1 ++ preorder t2

postorder :: BinTree a -> [a]
postorder BinLeaf = []
postorder (BinNode x t1 t2) =
postorder t1 ++ postorder t2 ++ [x]
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The traversal functions produce an empty list for an empty tree, and they
use the ++ operator to construct lists for nonempty trees. The subtrees are
handled by recursion, and the data value x attached to the current node is
also placed in the result list. The best way to understand the recursion is by
equational reasoning. (Some books approach recursion by considering stacks,
return addresses, and other low level details, but those topics just confuse the
issue and are appropriate only for compiler writers.) Here, for example, is the
inorder traversal of of a small tree:

inorder (BinNode 4 (BinNode 8 BinLeaf BinLeaf) BinLeaf)
= inorder (BinNode 8 BinLeaf BinLeaf) ++ [4] ++ inorder BinLeaf
= (inorder BinLeaf ++ [8] ++ inorder BinLeaf) ++ [4] ++ []
= ([] ++ [8] ++ []) ++ [4] ++ []
= [8, 4]

All of these traversal functions convert a tree to a list containing the data
attached to the tree’s nodes. The inorder traversal produces a list with the
data in the same order that would appear if you read the tree from left to right.
In many applications this is the most natural way to represent the tree’s data
as a list. Because of this, the inorder function is often named flatten.

Exercise 3. Calculate the inorder traversal of tree3.

Exercise 4. Suppose that a tree has type BinTree a, and we have a function f
:: a -> b. Write a new traversal function inorderf :: (a->b) ->
BinTree a -> [b] that traverses the tree using inorder, but it applies f
to the data value in each node before placing the result in the list. For
example, inorder tree6 produces [1, 2, 3, 4, 5, 6, 7], but inorderf (2*)
tree6 produces [2, 4, 6, 8, 10, 12, 14].

5.3.2 Processing Tree Structure

There are several functions that measure the size of a tree, or affect its shape.
This section introduces some of the basic ones; more advanced operations are
described in Chapter 12, which discusses AVL trees.

The reflect function takes a binary tree and returns its mirror image,
where everything is reversed left-to-right.

reflect :: BinTree a -> BinTree a
reflect BinLeaf = BinLeaf
reflect (BinNode n l r) = BinNode n (reflect r) (reflect l)

Some of the most important properties of trees are concerned with the
numbers of nodes in the two branches and with the heights of trees and subtrees.
The time required by many algorithms depends on the heights of trees, so the
science of algorithmics is often concerned with these properties.
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The height of a tree is the distance between its root and its deepest leaf. An
empty tree, consisting only of a leaf, has height 0. The height of a nonempty
tree is the height of its taller subtree, plus one to account for the root node.
Thus the height satisfies the following equations:

height :: BinTree a -> Integer
height BinLeaf = 0
height (BinNode x t1 t2) = 1 + max (height t1) (height t2)

The size of a tree is the number of nodes that it contains. This is measured
simply by adding up the sizes of the subtrees, plus one for the root node.

size :: BinTreeInt -> Int
size Leaf = 0
size (Node x t1 t2) = 1 + size t1 + size t2

The size of a tree of type BinTree a tells you how many data values of type
a are represented in the tree, and it is also related to the amount of computer
memory required to represent the tree. The height of a tree is related to the
tree’s shape. At one extreme, a tree like tree1 below, where all the left nodes
are leaves, has a height that is the same as its size. At the other extreme, a
tree like tree2, where the data is distributed evenly throughout the tree, will
have a smaller height given the same amount of data. Such a tree is said to be
balanced.

tree7, tree8 :: BinTree Integer

tree7 = BinNode 1
BinLeaf
(BinNode 2

BinLeaf
(BinNode 3 BinLeaf BinLeaf))

tree8 = BinNode 1
(BinNode 2 BinLeaf BinLeaf)
(BinNode 3 BinLeaf BinLeaf)

We can give a formal definition of balanced trees by writing down the fol-
lowing equations, which also define an executable function. The function appli-
cation balanced t returns True if the tree t is perfectly balanced, and False
otherwise.

balanced :: BinTree a -> Bool
balanced BinLeaf = True
balanced (BinNode x t1 t2) =
balanced t1 && balanced t2 && (height t1 == height t2)
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Exercise 5. Define two trees of size seven, one with the largest possible height
and the other with the smallest possible height.

Exercise 6. Suppose that the last equation of the function balanced were
changed to the following: balanced (BinNode x t1 t2) = balanced
t1 && balanced t2. Give an example showing that the modified func-
tion returns True for an unbalanced tree.

Exercise 7. Suppose that the last equation of the function balanced were
changed to the following: balanced (BinNode x t1 t2) = height t1
== height t2. Give an example showing that the modified function
returns True for an unbalanced tree.

5.3.3 Evaluating Expression Trees

Software that is working with text written in some language often uses trees
to represent documents in the language. Trees express the essential structure
of the tex while omitting unimportant details. Examples include programs
that manipulate natural language, as well as compilers and interpreters for
programming languages.

Consider a simple expression language, consisting of integer constants, ad-
ditions, and multiplications. A document in the language can be expressed
with a tree type:

data Exp
= Const Integer
| Add Exp Exp
| Mult Exp Exp

A simple programming language interpreter can now be written as a tree
traversal. The function takes an expression tree and returns the value that it
denotes.

eval :: Exp -> Integer
eval (Const n) = n
eval (Add e1 e2) = eval e1 + eval e2
eval (Mult e1 e2) = eval e1 * eval e2

5.3.4 Binary Search Trees

Suppose you have a large set of pairs of keys (with some type a) and corre-
sponding values (with some type b). For example, a key might be a person’s
name and the value their age. A crucial problem in computing with databases
is to find the value corresponding to a given key.

A straightforward approach, called a linear search, is to store the data as
a list of pairs, so that the database has type [(a,b)]. The search algorithm,
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linSearch, is given a key of type a and a database, and it works through the
list sequentially until the right pair is found. The key type a must be in the
equality class (i.e., it has to be a type that can be compared with ==) because
we have to be able to compare two keys to determine whether they are the
same. It is possible that the key might not appear in the database, so we
return the result as a Maybe type. Thus a failed search returns Nothing and a
successful search returns Just y.

linSearch :: Eq a => a -> [(a,b)] -> Maybe b
linSearch k [] = Nothing
linSearch k ((x,y):xs) =
if k==x
then Just y
else linSearch k xs

The linear search is simple; its only problem is efficiency. Since databases
may contain millions of key-value pairs, it is important to perform the search
quickly. For random data, it is reasonable to assume that an average linear
search will find the pair at the middle of the list—half of the searches will
find the data sooner, half will find it later. Therefore the time required for
the search is proportional to the length of the list. If a bank with a million
customers were to use a linear search, the average search time would be half a
million iterations.

A much faster approach is the binary search algorithm, and a particularly
good way to implement this is with a binary search tree. The idea is to store
the data in such a way that a particular key-value pair can be found quickly,
without examining half of the database.

A binary search tree is a tree of type BinTree (a, b), where a is the
key type and b is the value type. A binary search tree must also satisfy an
additional property: if the key in a node has the value k, then all keys in the
left subtree must be less than k, and all the keys in the right subtree must be
greater than k. This property must hold throughout the entire tree, not just
for the top node. If a tree of type BinTree (a, b) lacks this property, then it
is still a perfectly good tree, but it is not a binary search tree. Since we need
to compare keys for ordering, not just equality, the key type a must be in the
Ord class (ensuring that < and > can be used).

The bstSearch algorithm first compares the key it is searching for with
the key x of the root node. If there is a match, then the search has finished
successfully. Otherwise, if key < x then it is guaranteed that the answer will be
found in the left subtree, or not at all. Therefore the algorithm just continues
with a recursive search down the left subtree. However, if key > x then the
search continues down the right subtree.

bstSearch :: Ord a => a -> BinTree (a,b) -> Maybe b
bstSearch key BinLeaf = Nothing



94 CHAPTER 5. TREES

bstSearch key (BinNode (x,y) t1 t2) =
if key == x
then Just y
else if key < x

then bstSearch key t1
else bstSearch key t2

The average time required for a search is proportional to the height of the
tree. With good luck, the database tree will be reasonably balanced, so that
about half the data is in the left subtree and half in the right subtree. In this
case, every step of the search algorithm discards half of the remaining data, so
that the average search time for a database of size n is about log n, compared
with about n/2 for the linear search. For a large database, the difference is huge:
with one million items, the average linSearch time is 500,000 while the average
bstSearch time is 20. For a database containing a billion items, the number
of steps in the search increases by only fifty percent, to 30 steps, even though
the size of the database has increased by a factor of a thousand. The search
time gets better and better, relatively speaking, as the size of the database
increases. This property is crucial for large scale practical applications.

In practical applications, we start with an empty binary search tree (i.e.,
BinLeaf), and construct the database by inserting the key-value pairs one by
one. The insert function takes a new pair, and an existing binary search tree,
and it returns a new tree that contains the additional data. The function is
defined carefully so that it creates a valid binary search tree (provided that its
argument is valid). The function definition has a recursive structure similar to
that of the search.

insert :: Ord a => (a,b) -> BinTree (a,b) -> BinTree (a,b)
insert (key,d) BinLeaf = BinNode (key,d) BinLeaf BinLeaf
insert (key,d) (BinNode (x,y) t1 t2) =
if key == x
then BinNode (key,d) t1 t2
else if key < x

then BinNode (x,y) (insert (key,d) t1) t2
else BinNode (x,y) t1 (insert (key,d) t2)

There is an interesting point to notice about binary search trees. Sometimes
the properties that a data structure must satisfy are specified completely by its
type. For example, a linear search algorithm can be applied to list of key-value
pairs as long as the list has the right type, [(a,b)]. In contrast, the binary
search tree must be of the right type, but it must also satisfy the ordering
constraint. Many data structures are like this, with some additional properties
required beyond just the type.

The distinction is important, because the type of the data structure can
be checked by the compiler, whereas the additional properties cannot. The
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type system of a programming language provides a way to describe required
properties that can be checked at compile time; if the type checking indicates
no problem, then it is guaranteed that the program will never generate any
data that lacks the necessary properties. For example, we said above that the
linear search algorithm requires its database to have a certain type. When
the compiler checks the type of the program and finds no type errors, this
constitutes a formal proof that the program will never generate a database for
the linear search which is in the wrong form, and could thus cause a runtime
error. The type system is unable, however, to prove that a binary search tree
built using the insert function satisfies the required properties. Therefore the
programmer needs to do the proof manually.

There is much more to say about the execution times of these algorithms.
Books on the analysis of algorithms give a detailed discussion, but we will make
just a few comments. In the first place, the times for individual searches will
vary. Consider the linear search: with good luck, the desired data will be found
at the very beginning of the list, and with bad luck it will appear at the end.
It is not the case that every search takes n/2 time, for a database of size n.
Instead, the average time over a large number of searches can be expected to be
n/2. The correct way to calculate the average execution time of an algorithm is
to add up the times required by every possible case, weighted by the probability
of that case occurring.

The efficiency of the bstSearch algorithm is extremely sensitive to the
shape of the tree. If the tree is perfectly balanced, the search time is log n,
but it is possible for the tree to be completely unbalanced. This causes the
bstSearch to behave much like a linear search, requiring linear time.

In large scale practical applications, it isn’t good enough to hope that the
tree will be balanced through good fortune. A better approach is to change
the insert function so that it guarantees a reasonably balanced result. This
leads to a tradeoff: we can make the search faster at the cost of a slower
insertion. Ideally, we would like algorithms that give good results for searches
and insertions, regardless of the data values. These issues are considered in
more depth in Chapter 12.

Exercise 8. Define a function mapTree that takes a function and applies it to
every node in the tree, returning a new tree of results. The type should
be mapTree :: (a->b) -> BinTree a -> BinTree b. This function
is analogous to map, which operates over lists.

Exercise 9. Write concatTree, a function that takes a tree of lists and con-
catenates the lists in order from left to right. For example,

concatTree (Node [2] (Node [3,4] Tip Tip)
(Node [5] Tip Tip))

==> [3,4,2,5]

Exercise 10. Write zipTree, a function that takes two trees and pairs each of
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the corresponding elements in a list. Your function should return Nothing
if the two trees do not have the same shape. For example,

zipTree (Node 2 (Node 1 Tip Tip) (Node 3 Tip Tip))
(Node 5 (Node 4 Tip Tip) (Node 6 Tip Tip))

==> Just [(1,4),(2,5),(3,6)]

Exercise 11. Write zipWithTree, a function that is like zipWith except that
it takes trees instead of lists. The first argument is a function of type
a->b->c, the second argument is a tree with elements of type a,and the
third argument is a tree with elements of type b. The function returns a
list with type [c].

5.4 Induction on Trees

There are many useful theorems about the properties of trees, and the be-
haviour of functions on trees. To prove them, we can use induction, but the
principle of induction needs to be made slightly more general for tree structures.

The general idea behind tree induction is similar to list induction. The
base case is used for empty trees (or leaves), and the induction case is used for
nodes. The principle of tree induction is stated below for binary trees, but it
can be generalised to other types of tree as well.

Theorem 28 (Principle of induction on binary trees). Let BinTree a be a
binary tree type as defined above, and let P (t) be a proposition on trees.
Suppose the following two requirements hold:

• Base case: P (BinLeaf)

• Induction case: For all t1 and t2 of type BinTree a, and all x :: a,
suppose that the proposition holds for a tree consisting of a node, the
value a, and the subtrees t1 and t2, provided that the proposition holds
for t1 and t2. Using the notation of the chapter on propositional logic,
this can be written formally as P (t1) ∧ P (t2) → P (BinNode x t1 t2).

Then ∀t :: BinTree a . P (t); thus the proposition holds for all trees of finite
size.

Carrying out a proof using tree induction is generally no harder than list
induction. A number of examples are given below. In all cases, we will use
trees of type BinTree a, for an arbitrary type a.

5.4.1 Repeated Reflection Theorem

Recall the reflect function, which reverses the order of the data in a binary
tree. The following theorem says that if you reflect a tree twice, you get the
same tree back.
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Theorem 29. Let t :: BinTree a. Then reflect (reflect t) = t.

Proof. The proposition P (t) that we need to prove says reflect (reflect t)
= t. The theorem is proved by induction over t. The base case is BinLeaf:

reflect (reflect BinLeaf)
= reflect BinLeaf { reflect.1 }
= BinLeaf { reflect.1 }

For the inductive case, let t1, t2 :: BinTree a be trees, and assume P (t1)
and P (t2). These are the inductive hypotheses. The aim is to prove that the
proposition holds for a larger tree P (Node x t1 t2).

reflect (reflect (Node x t1 t2))
= reflect (Node x (reflect t1) (reflect t2)) { reflect.2 }
= Node x (reflect (reflect t1)) { reflect.2 }

(reflect (reflect t2))
= Node x t1 t2 { hypothesis }

Now we have proved the base case, and we have proved the logical implication
required for the induction case—that is, if the proposition holds for t1 and
t2, then it must also hold for Node x t1 t2. Thus, by the principle of tree
induction, the theorem holds for all finite trees.

5.4.2 Reflection and Reversing

Reflecting a tree changes the order of data values, in a similar way to the
reversal of a list. It seems that reflect and reverse are somehow doing the
same thing, but these functions are definitely not equal.

Whenever we find functions that seem intuitively to be doing related things,
it’s useful to state this relationship precisely as an equation, rather than just a
vague phrase in English. The resulting theorem gives a deeper understanding,
and it may also be useful in practice. A powerful problem solving technique is
to notice that a problem you have can be translated into a related notation for
which you already have a solution.

To state precisely the relationship between reflecting a tree and reversing a
list, we need to use an explicit translation between trees and lists. The inorder
function is exactly what we need.

Theorem 30. Let t :: BinTree a be an arbitrary binary tree of finite size.
Then inorder (reflect t) = reverse (inorder t).

The proof requires two lemmas that describe properties of reverse and
(++). We leave the proofs of the lemmas as an exercise.

reverse xs ++ [x] = reverse ([x] ++ xs)
reverse (xs++ys) = reverse ys ++ reverse xs

Proof. Base case.
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inorder (reflect BinLeaf)
= inorder BinLeaf { reflect.1 }
= [] { inorder.1 }
= reverse [] { reverse.1 }
= reverse (inorder BinLeaf) { inorder.1 }

Induction case. Let t1, t2 :: BinTree a be arbitrary trees, and let x ::
a be an arbitrary data value. Assume the inductive hypotheses:

inorder (reflect t1) = reverse (inorder t1)
inorder (reflect t2) = reverse (inorder t2)

Then

inorder (reflect (BinNode x t1 t2))
= { reflect.2 }

inorder (BinNode x (reflect t2) (reflect t1))
= { inorder.2 }

inorder (reflect t2) ++ [x] ++ inorder (reflect t1)
= { hypotheses }

reverse (inorder t2) ++ [x] ++ reverse (inorder t1)
= { reverse lemma 1 }

reverse ([x] ++ inorder t2) ++ reverse (inorder t1)
= { reverse lemma 2 }

reverse (inorder t1 ++ [x] ++ inorder t2)
= { inorder.2 }

reverse (inorder (BinNode x t1 t2))

With the base case and induction cases proved, the theorem holds by tree
induction.

5.4.3 The Height of a Balanced Tree

If a binary tree is balanced then its shape is determined, and the number of
nodes is determined by the height. The following theorem states this relation-
ship precisely.

Theorem 31. Let h = height t. If balanced t, then size t = 2h − 1.

Proof. The proposition we want to prove is balanced t → size t = 2h − 1.
The proof is an induction over the tree structure. For the base case, we need
to prove that the theorem holds for a leaf.

balanced BinLeaf = True
h = height BinLeaf = 0
size BinLeaf = 0
2h − 1 = 0



5.4. INDUCTION ON TREES 99

For the inductive case, let t = Node x l r, and let hl = height l and hr =
height r. Assume P (l) and P (r); the aim is to prove P (t). There are two
cases to consider. If t is not balanced, then the implication balanced t → P (t)
is vacuously true. If t is balanced, however, then the implication is true if and
only if P (t) is true. Therefore we need to prove P (t) given the following three
assumptions: (1) P (l) (inductive hypothesis), (2) P (r) (inductive hypothesis),
and balanced t (premise of implication to be proved).

h = height (Node x l r)
= 1 + max (height l) (height r) { height.2 }
= 1 + height l { assumption }
= 1 + hl { def hl }

size t
= size (Node x l r) { def t }
= 1 + size l + size r { size.2 }
= 1 + 2hl − 1 + 2hr − 1 { hypothesis }
= 2hl + 2hr − 1 { arithmetic }
= 2hl + 2hl − 1 { hl = hr }
= 2 × 2hl − 1 { algebra }
= 2hl+1 − 1 { algebra }
= 2h − 1 { def h }

The base and inductive cases have been proved, so the theorem holds by the
principle of tree induction.

5.4.4 Length of a Flattened Tree

The following theorem says that if you flatten a tree, then the length of the
resulting list is the same as the number of nodes in the tree.

Theorem 32. Let t :: BinTree a be any finite binary tree. Then length
(inorder t) = size t.

Proof. The proof is a tree induction over t.
Base case.

length (inorder BinLeaf)
= length []
= 0
= size BinLeaf

Induction case. Assume the induction hypotheses:

length (inorder t1) = size t1
length (inorder t2) = size t2

Then
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length (inorder (BinNode x t1 2t))
= length (inorder t1 ++ [x] ++ inorder t2)
= length (inorder t1) + length [x] + length (inorder t2)
= size t1 + 1 + size t2
= size (Node x t1 t2)

Therefore the theorem holds by tree induction.

5.5 Improving Execution Time

A function definition consists of a type, along with a set of equations. These
equations serve two purposes:

• They give a mathematical specification of required properties. Since they
are mathematical equations (not assignment statements), they can be
used for formal proofs using equational reasoning.

• They serve as an executable computer program. The computer executes
the program by a sequence of substitutions and simplifications. In effect,
the Haskell compiler translates a set of equations into a machine lan-
guage program that simplifies expressions using automated equational
reasoning.

In general, inductive equations specifying properties of a function can be
successfully interpreted to compute the value of the function, given a particu-
lar argument, provided the equations have three essential characteristics. The
equations must be (1) consistent with properties of the function being defined,
(2) cover all relevant cases, and (3) supply simpler arguments to invocations
of the function that appear on the right-hand side than were supplied on the
left-hand side. What we mean by “simpler” is not easy to say in fully gen-
eral terms. However, it amounts to making sure the amount of computation
involved in each invocation of the function on the right-hand side of the equa-
tion is significantly smaller than the amount of computation required by the
invocation on the left-hand side of the equation.

Consider, for example, the equations that define inorder:

inorder :: BinTree a -> [a]
inorder BinLeaf = []
inorder (BinNode x t1 t2) = inorder t1 ++ [x] ++ inorder t2

The trees supplied as arguments in the invocations of inorder on the right-
hand side of equation {inorder.2} have heights that are at least one smaller
than the height of the tree supplied as an argument. Because the height of a
tree must be at least zero, and the height is reduced by at least one in each
level of recursion, it eventually gets down to zero. Therefore the application
inorder t will terminate, provided that the tree is finite.



5.5. IMPROVING EXECUTION TIME 101

It makes sense to ask questions about the resources required for the specified
computation. For example, we might ask how much time it would take to
compute inorder t for some tree t.

It is a delightful fact that we can derive equations to answer this question
about time directly from the equations specifying properties of the function—
that is, the equations that our computational interpretation uses to carry out
the work. Let time e denote the number of steps in the computation repre-
sented by the formula e. Our aim is to learn something about time (inorder
t) for an arbitrary finite tree t. We will just estimate the time, by counting
the number of basic operations, but will not seek an exact and precise analysis.

Assume that time (inorder BinLeaf) is zero. This is a harmless simpli-
fying assumption; if the argument to inorder is a leaf, the machine will take
a small amount of time to notice that fact and return. In practice, using a
modern Haskell compiler, only a few machine instructions are needed. Since
the time is so small, we ignore it.

Executing the second equation of inorder requires two recursive appli-
cations, and a concatenation (++). Some time is also needed to set up the
equation (noticing that the argument is a node, doing the recursive calls, and
returning); this requires time 1 (where the exact measurement unit is unspec-
ified; it depends on how efficient the compiler is, how fast your computer is,
etc.)

A minor optimisation to the function is to replace [x] ++ inorder t2
by x : inorder t2. This is just a single equational reasoning step, and the
compiler might even do this for us automatically. The time for the (:) operation
is small (just a few machine instructions) and we will include that time in the
one unit for the equation.

Before continuing, we need to know how many steps are involved in concate-
nation operations. This can be worked out from the equations in the definition
of concatenation, using an analysis method like the one we are now using to
work out the timing for inorder. For present purposes, we are going to skip
that analysis and just state the result, which is this:

time (xs ++ ys) = length xs { time (++) }

That is, the time to perform a concatenation is proportional to the length of
the first argument, and completely independent of the second. To understand
why, consider that the equations defining (++) never look inside ys, but they
perform a linear traversal over xs.

Armed with this information, we can continue with the time analysis of
inorder t, for an arbitrary tree t.

time BinLeaf = 0
time (inorder (BinNode x t1 t2))
= 1 + time (inorder t1 ++ [x] ++ inorder t2)
= 1 + time (inorder t1) + time (inorder t2)
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+ length (inorder t1)
= 1 + time (inorder t1) + time (inorder t2) + size t1

This result is not a simple formula that gives the execution time directly. In-
stead, it is a set of recursive equations. Such equations are commonly obtained
in the performance analysis of algorithms, and they are known as recurrence
equations. A recurrence equation is simply an inductive equation in which the
values being equated are numbers.

There are many mathematical tricks that make it possible to solve various
kinds of recurrence equations. To solve recurrence equations is to reduce them
to equations that do not involve a recurrence; that is, equations in which none
of the terms on the right-hand side refer to the function being defined on the
left-hand side. Books on the analysis of algorithms often follow a systematic
procedure: first, the algorithm is studied in order to derive a set of recurrence
equations that describe its performance, and then a variety of mathematical
techniques are used to solve the recurrence equation.

The study of solution methods for recurrence equations is a big topic, and
we are not going to delve into it here. Instead, we will glean information from
recurrence equations in ways that depend on circumstances. That is, we will
rely on ad hoc analysis to derive information from recurrence equations.

In this case, it is the (size t1) term on the right-hand side of the re-
currence equation that we want to focus on. Suppose that the tree is badly
unbalanced in the sense that its left subtree contains all the nodes and its right
subtree is empty. Furthermore, suppose this badly unbalanced condition per-
sists all the way down to the leaves. That is, all the right subtrees are empty.
In this case, the recurrence equations for time, height, and size specialize to
the following form.

time (inorder (BinNode x t1 BinLeaf))
= 1 + time (inorder t1) + time (inorder BinLeaf) + size t1
= 1 + time (inorder t1) + 0 + size t1
= 1 + time (inorder t1) + size t1

height (BinNode x t1 BinLeaf)
= 1 + max (height t1) (height t2)
= 1 + max (height t1) 0
= 1 + height t1

size (BinNode x t1 BinLeaf)
= 1 + size t1 + size BinLeaf
= 1 + size t1

The equations for the height and size are identical, so we can conclude
that, in the case where all the right-hand subtrees are empty, the height of a
tree is the same as the number of nodes in the tree. Therefore, the number
of recurrence steps for time needed to reach the empty tree case is just the
number of nodes in the tree being flattened. At each deeper level, the size term
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is one less than it was at the previous level. So, working down to the empty
tree level amounts to adding all the integers starting with n = size t1 and
ending with zero, plus the number of levels (since the number 1 is added at
each level). Thus the result is

n + (n − 1) + . . . + 0.

As we proved already in Chapter 4,
∑n

i=0 i = n(n + 1)/2. From these obser-
vations, we deduce the following formula for the time required to flatten a tree
in which all the right-hand subtrees are empty:

time(inorder (BinNode x t1 BinLeaf)) = n(n+1)/2 + n,
where n = size t1

This result is not good. It means that the number of steps needed to flatten
a tree is proportional to the square of the number of nodes in the tree. That is
too much time. One might hope that the number of computational steps needed
to flatten a tree would be proportional to the number of nodes in the tree. Of
course, this is a very special case, because all of the right-hand subtrees are
empty. But, the formulas suggest that whenever the tree tends to have most of
its nodes in its left subtrees instead of its right subtrees, flattening is going to
take a long time. In the next section, we will consider another set of inductive
equations for the flattening function that lead to a flattening time proportional
to the number of nodes in the tree.

5.6 Flattening Trees in Linear Time

The reason that the inorder function is so slow is that it recopies lists repeat-
edly as it concatenates the partial results together. The trick for reducing the
time required to flatten a tree is to accumulate the result-list in a collection of
partial computations that permit pasting the results together directly, avoiding
the expensive concatenations.

Without knowing the exact definition of the improved function, we can still
write some equations that express properties it should have. The unknown
function—call it g—will be similar to inorder, except it will take an extra
argument ks of data values to be concatenated to the end of its result. That is,
g will not simply return its result; it will return the concatenation of its result
to a further list provided by some other source. This extra list is called the
continuation.

g :: BinTree a -> [a] -> [a]
g BinLeaf ks = ks
g (BinNode x t1 t2) ks = g t1 (x : g t2 ks)

These equations surely do not express the first properties of a flattening
function that a person would think of. However, they do express properties
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that a person would expect a flattening function to have, and they avoid use of
concatenation. Moreover, they have the three characteristics required to turn
inductive equations into full specifications for a function (consistency, coverage
of cases, and reduced computation on right-hand sides).

The question is, how long would it take a computing system interpreting
these equations to produce a flattened version of a tree? We can use the
equations defining g as a starting point to derive its execution time, just as we
did for inorder in the preceding section.

Our hope is that the number of computation steps required to flatten a tree
is on the order of the number of nodes in the tree. It turns out we can verify
this conjecture using the principle of induction for trees. To be precise, we are
trying to prove the validity of the following equation:

time (g t ks) = size tr

Now that we have guessed the equations for g, we need to verify that it
actually works correctly. We conjecture the following theorem.

Theorem 33. Let t :: BinTree a be an arbitrary finite tree. Then g t ks
= inorder t ++ ks.

Proof. Base case.

g BinLeaf ks
= ks
= [] ++ ks
= inorder BinLeaf ++ ks

Induction case. Assume that

g t1 ks1 = inorder t1 ++ ks1
g t2 ks2 = inorder t2 ++ ks2

Then

g (BinNode x t1 t2) ks
= { g.2 }

g t1 (x : g t2 ks)
= { hypothesis.2 }

g t1 (x : inorder t2 ++ ks)
= { (++).2 }

g (t1 ([x] ++ inorder t2 ++ ks))
= { hypothesis.1 }

inorder t1 ++ ([x] ++ inorder t2 ++ ks)
= { (++) associative }

(inorder t1 ++ [x] ++ inorder t2) ++ ks

By tree induction, the theorem holds.
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To summarise the situation: we haven’t done a conventional optimisation
of an inefficient program. Instead, we have conjectured that there should exist
an efficient program, and we have guessed the form it should have. Finally,
we proved that the more efficient program does indeed compute the correct
answer.

Functions like g, which use a continuation, are common in practical appli-
cations. However, it is not exactly equivalent to inorder—its type is different!
If this is a concern, we can always define a new function that hides the contin-
uation:

inorderEfficient :: BinTree a -> [a]
inorderEfficient t = g t []

Now that the new function has been shown to be correct, we should also try
to verify our guess that it is efficient. Our aim now is to prove the following.

Theorem 34. Let t :: BinTree a be an arbitrary finite tree. Then time
(g t ks) = size t.

Proof. Induction over the tree.
Base case.

time(g BinLeaf ks)
= 0 { a reasonable assumption }
= size BinLeaf { size.1 }

Inductive case. Assume

time (g t1 ks1) = size t1
time (g t2 ks2) = size t2

According to the assumption, time (g t1 ks1) = time (g t1 []); that is,
the time depends only on the tree argument, but not the continuation. (This
point is crucial, and is the fundamental reason why this algorithm is efficient.)
Then

time (g (BinNode x t1 t2) ks)
= time (g t1 (x : g t2 ks))
= time (g t1 []) + 1 + time (g t2 [])
= size t1 + 1 + size t2
= size (BinNode x t1 t2)

So the theorem holds by the principle of tree induction.

In summary, we have verified that g is mathematically equivalent to inorder:
it computes the same result, given an empty continuation. Furthermore, it re-
quires time proportional to the number of nodes in the tree. Thus g can be
used as a faster replacement for inorder.
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Programmers who use equations to specify software, rather than imperative
procedures, must pay considerable attention to the form of the properties they
specify for the functions they want their software to compute. Different prop-
erties of the equations lead to different computations, some of which are more
efficient than others. We have been mostly concerned with correctness prop-
erties of functions, rather than resource utilization, but the same framework
for reasoning can be used to analyze both correctness and resources. Serious
software designers have to pay attention to both aspects of the programs they
write.

Exercise 12. Write appendTree, a function that takes a binary tree and a
list, and appends the contents of the tree (traversed from left to right) to
the front of the list. For example,

appendTree (BinNode 2 (BinNode 1 BinLeaf BinLeaf)
(BinNode 3 BinLeaf BinLeaf))

[4,5]

evaluates to [1,2,3,4,5]. Try to find an efficient solution that minimises
recopying.



Chapter 6

Propositional Logic

Logic provides a powerful tool for reasoning correctly about mathematics, al-
gorithms, and computers. It is used extensively throughout computer science,
and you need to understand its basic concepts in order to study many of the
more advanced subjects in computing. Here are just a few examples, spanning
the entire range of computing applications, from practical commercial software
to esoteric theory:

• In software engineering, it is good practice to specify what a system
should do before starting to code it. Logic is frequently used for software
specifications.

• In safety-critical applications, it is essential to establish that a program is
correct. Conventional debugging isn’t enough—what we want is a proof
of correctness. Formal logic is the foundation of program correctness
proofs.

• In information retrieval, including Web search engines, logical proposi-
tions are used to specify the properties that should (or should not) be
present in a piece of information in order for it to be considered relevant.

• In artificial intelligence, formal logic is sometimes used to simulate intel-
ligent thought processes. People don’t do their ordinary reasoning using
mathematical logic, but logic is a convenient tool for implementing cer-
tain forms of reasoning.

• In digital circuit design and computer architecture, logic is the language
used to describe the signal values that are produced by components. A
common problem is that a first-draft circuit design written by an engineer
is too slow, so it has to be transformed into an equivalent circuit that is
more efficient. This process is often quite tricky, and logic provides the
framework for doing it.

109
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• In database systems, complex queries are built up from simpler compo-
nents. It’s essential to have a clear, precise way to express such queries,
so that users of the database can be sure they’re getting the right infor-
mation. Logic is the key to expressing such queries.

• In compiler construction, the typechecking phase must determine whether
the program being translated uses any variables or functions inconsis-
tently. It turns out that the method for doing this is similar to the
method for performing logical inference. As a result, algorithms that
were designed originally to perform calculations in mathematical logic
are now embedded in modern compilers.

• In programming language design, one of the most commonly used meth-
ods for specifying the meaning of a computer program is the lambda
calculus, which is actually a formal logical system originally invented by
a mathematician for purely theoretical research.

• In computability theory, logic is used both to specify abstract machine
models and to reason about their capabilities. There has been an ex-
tremely close interaction between mathematical logicians and theoretical
computer scientists in developing a variety of machine models.

In this chapter, we discuss the difficulties with informal logical reasoning in
English, and we show how to avoid those difficulties with formal logic. There
are several different kinds of formal logic, and for now we will consider just the
simplest one, called propositional logic. After looking at the language of propo-
sitional logic, we will consider in detail three completely different mathematical
systems for reasoning formally about propositions: truth tables, natural deduc-
tion, and Boolean algebra.

Truth tables define the meanings of the logical operators, and they can be
used to calculate the values of expressions and prove that two propositions are
logically equivalent. As truth tables directly express the underlying meaning
of propositions, they are a semantic technique. Truth tables are easy to under-
stand for small problems, but they become impossibly large for most realistic
problems.

Natural deduction is a formalisation of the basic principles of reasoning. It
provides a set of inference rules that specify exactly what new facts you are
allowed to deduce from some given facts. There is no notion of the ‘value’ of
propositions; everything in this system is encapsulated in the inference rules.
Since the rules are based on the forms of propositions, and we don’t work
with truth values, inference is a purely syntactic approach to logic. Many
recently developed techniques in programming language theory are based on
more advanced logical systems that are related to natural deduction.

Boolean algebra is another syntactic formalisation of logic, using a set of
equations—the laws of Boolean algebra—to specify that certain propositions
are equal to each other. Boolean algebra is an axiomatic approach, similar
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to elementary algebra and geometry. It provides an effective set of laws for
manipulating propositions, and is an essential tool for digital circuit design.

6.1 The Need for Formalism

Formal logic was first developed by the ancient Greeks, who wanted to be able
to reason carefully about statements in natural language. They were fascinated
by the idea of statements that are known to be true with absolutely no doubt
whatsoever. However, they quickly realised that logical reasoning is difficult
and unreliable when using a natural language like Greek (or English!). All sorts
of ambiguities arise, and it’s hard to keep sight of the main line of reasoning
without getting confused. We will begin by looking at some of these difficulties
and how to get around them using propositional variables.

Suppose a friend says ‘The sun is shining and I feel happy’. At first sight
the meaning is obvious, but when you think about the sentence more carefully
it isn’t so clear. Perhaps your friend likes sunny days and feels happy because
the sun is shining. It sounds like there is some connection between the two
parts of the sentence, so in this context and means and therefore. But this
reasoning depends on our experience with bright weather and happiness, and
it has nothing to do with the logical structure of the sentence. Now consider
another example: ‘Cats are furry and elephants are heavy’. This has exactly
the same structure as the preceding example, but nobody would assume that
elephants are heavy because of the furriness of cats. In this case, and means
and also. The word and has several subtly different meanings, and we choose
the appropriate meaning using our knowledge of the world. Unfortunately, this
means we can’t even rely on a simple word like and while reasoning in English.

Furthermore, there are many other problems in working out the precise
meanings of English sentences. For example, ‘The sun is shining’ is true some
days and false other days. The meaning of ‘That cloud looks like a motor
bike’ depends on who says it and which cloud they are pointing at. The list of
such problems seems to be endless, and you can read about them in books on
linguistics and philosophy.

There is no way to solve all the ambiguities of English. Who would want
to do that anyway? The subtle nuances in natural language are not necessarily
bad: they lead to much of the richness and expressiveness of literature. Yet
they certainly can get in the way of logical thinking.

Instead of attempting the impossible—totally reliable reasoning in natural
language—we need to separate the logical structure of an argument from all
the connotations of the English. We do this using propositions.

A proposition is just a symbolic variable whose value must be either True
or Falseand which stands for an English statement that could be either true or
false. The crucial point here is that a proposition must be either True or False;
there is no room for shades of meaning or interpretation. Usually we’ll use A,
B, C, D, etc. as propositional variables, but any variable name would do. For
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example, we can define some propositional variables to stand for the following
English statements:

A = The sun is shining.
B = I feel happy.
C = Cats are furry.
D = Elephants are heavy.

The next step is to translate a complete English sentence into a mathemat-
ical statement that contains nothing but propositional variables (A, B etc.)
and logical operators (and, or, not, implies).

The sun is shining and I feel happy. =⇒ A and B
Cats are furry and elephants are heavy. =⇒ C and D

The translation step is absolutely crucial, because it removes all the am-
biguities of English and all our knowledge and experience of the world (like
sunlight bringing happiness), and it leaves us with nothing but propositional
variables and logical operators.

Sometimes it isn’t clear how to translate an English statement into propo-
sitional logic. What about the sentence, ‘It is raining but Jim is happy’—does
this mean the same thing as ‘It is raining and Jim is happy’ or does the use
of but indicate a different meaning? Such questions fall outside the realm of
mathematics, and you just have to figure out what the English means or ask
for a clarification. At least there is only one time when we need to worry about
the subtleties of natural language—during the translation process—and we can
forget about it thereafter.

A proposition must be either true or false; it cannot be ‘maybe’ or ‘some-
times’ or ‘yes, but. . .’. If you translate an opinion like ‘Cats are better than
dogs because they purr’ into a propositional variable P , then within the math-
ematics you’ll just have to accept P as being true or false, and you won’t be
able to get at anything inside P , such as the reason that cats are better than
dogs (indeed, you can’t even get inside P to find out that it is about cats and
dogs, not about turtles and rabbits).

There are many statements that cannot be represented by propositions
because they require context in order to make their meaning clear. For example,
if we define A to represent ‘That cloud looks like a motor bike’, then it must be
clearly established in the English which cloud looks like a motor bike, and who
thinks that. There are more complex logical systems that incorporate time,
but propositional logic doesn’t do that.

6.2 The Basic Logical Operators

Logical operators correspond to English words like and, or, not, and therefore,
providing a way to build complex propositions from simpler ones. This section
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defines the exact meaning of the logical operators and shows how to translate
between English statements and mathematical propositions.

6.2.1 Logical And (∧)

The logical and operator corresponds to the English conjunction ‘and’: it is
used to claim that two statements are both true. Sometimes it is called ‘logical
conjunction’, and its mathematical symbol is ∧.

The proposition A ∧ B is simply a statement that A is True and also B is
True. It doesn’t have any subtle connotations; in particular, it doesn’t mean
that there is any connection between A and B.

It’s vitally important to remember that people can say things that are
untrue! If someone tells you ‘A∧B’, you have to bear in mind two possibilities:

• Their statement was correct.

• They lied to you.

If their statement was true, then both A and B are indeed true. However, if
they lied to you1 then you don’t actually know about the truth of A or B.

Because we can’t simply accept every statement as being true, we need a
way to calculate whether a statement is true based on its constituent parts. For
example if you already know that A is true and B is true, then the statement
‘A and B’ is certainly true. But if you know that A is false (or that B is false),
then you know that the statement ‘A ∧ B’ is false.

The mathematical symbol for logical and is ∧. This symbol is shorter than
‘and ’, and it is clearly a mathematical operator—there is no danger of confusing
∧ with the various vague meanings of the English word ‘and’.2

Think of and as an operator over logical propositions, just as + is an oper-
ator over numbers. We can define the meaning of and by considering whether
‘A ∧ B’ is true for all possible values of A and all possible values of B. Such a
listing is called a truth table, and here is the definition of logical and :

A B A ∧ B
False False False
False True False
True False False
True True True

1A Los Angeles car salesman famous for his flamboyant television advertisements once ran
a commercial claiming, ‘We lose money on every car we sell, but we make it up on volume.’

2In the elderly (but still popular!) programming language Cobol, you do arithmetic with
statements like Add a to b giving x instead of the more usual x := a+b. The designers of
Cobol believed that + is mathematical, and therefore difficult, while ‘Add . . . giving . . .’ is
English, and therefore easy. The Cobol notation is at least partly readable by nonprogram-
mers, which may be valuable in commercial applications, but it becomes unwieldy for large
scale calculations. Once you get used to it, mathematical notation is easier than English!
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Each time False is an argument value, ∧ returns False. Only when both argu-
ments are True does it return True.

Various notations are used for the two truth values. Here we have used the
full names True and False, but those become tedious to write when there are a
lot of entries in the table. Another common notation is to use T and F. The
usual notation in digital circuit design is to use 1 for True and 0 for False. Apart
from being concise, this has the great advantage that 0 and 1 are more easily
distinguishable than T and F, making the truth tables more readable. You
may use any of these notations. However, if you use 0 and 1 as your notation
for the truth values, be sure to remember that these are not numbers. For the
sake of comparison, here is how the preceding truth table looks like with the
0, 1 notation.

A B A ∧ B
0 0 0
0 1 0
1 0 0
1 1 1

Given any two propositions, you can build a bigger one by connecting them
with ∧. For example, from the propositional variables A, B and C we can build
an endless list of more complex propositions, including the following:

A ∧ B
A ∧ (B ∧ B)
(A ∧ B) ∧ C
(A ∧ B) ∧ (B ∧ C)

6.2.2 Inclusive Logical Or (∨)

The logical or operator corresponds to the most common usage of the English
word or. It takes two arguments and returns True if either argument (or both)
is True; otherwise it returns False. Other commonly used names for this oper-
ation are logical disjunction and inclusive or, and the symbol for the operation
is ∨. Here is the truth table defining ∨:

P Q P ∨ Q
False False False
False True True
True False True
True True True

The English word ‘or’ has several different meanings. The inclusive or
function corresponds to the simplest of these: if A ∨ B is true, then perhaps
A is true, perhaps B is true, perhaps both are true, but you know they can’t
both be false. However, this is all that A ∨ B means. It does not indicate any
connection between A and B.
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6.2.3 Exclusive Logical Or (⊗)

In English, we often think of ‘A or B’ as meaning ‘either A or B—one or the
other, but not both’, excluding the possibility that A is true at the same time
as B. A typical example is ‘It will be bright and sunny at the picnic, or I will
go home.’ This meaning of the word ‘or’ is called exclusive or because if one
of the alternatives is true, this excludes the possibility that the other is also
true. Often the ‘either . . . or’ construction indicates that the exclusive or is
intended; for example: ‘Either you pay me, or I will sue you.’ However, you
can’t always rely on the presence of ‘either’. The symbol for exclusive or is ⊗.
Its truth table differs from the ∨ truth table only in the last line.

P Q P ⊗ Q
False False False
False True True
True False True
True True False

The English word ‘or’ sometimes means inclusive or and sometimes exclusive
or, so you have to be particularly careful when translating English sentences
containing ‘or’ into propositions.

In many applications of mathematical logic, inclusive or plays a central role
while exclusive or isn’t too important. In many books and papers, the word
‘or’ is taken to mean inclusive or, and the exclusive variety isn’t mentioned at
all. When logic is applied to digital circuit design, both kinds of or are used
heavily.

6.2.4 Logical Not (¬)

The English word ‘not’ is used to assert that a statement is false. It corresponds
to the logical not (also called logical negation) operator, whose symbol is ¬. It
takes one argument and returns the opposite truth value:

A ¬A
False True
True False

6.2.5 Logical Implication (→)

The logical implication operator → corresponds to conditional phrases in En-
glish. For example, an English sentence in the form ‘If A is true, then B is
true.’ would be translated into the proposition A → B. Logical implication
is also closely related to the if . . . then . . . then construct in programming
languages. As usual, the precise definition is given by a truth table:
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A B A → B
False False True
False True True
True False False
True True True

Suppose you know that a proposition A → B is true. This says that if
A is true, then B must also be true. But that’s all it means—in particular,
it doesn’t tell you whether A is actually true. A common pitfall in informal
English debate is to jump to the conclusion that A is true, when the speaker
has merely said ‘if A is true, then B is also true.’ In the following example,
A → B does not tell you what the weather will be like today!

A It is sunny today.
B There will be a picnic.
A → B If it is sunny today, then there will be a picnic.

There is a subtle but crucial difference between → and the corresponding
English sentences. The last English sentence in the example above suggests a
cause-and-effect relationship between the weather and the picnic: the picnic
might be cancelled because of the rain. In contrast, A → B says nothing at all
about any connection between A and B; it means nothing more than what the
truth table says. Consider the following example:

A The moon orbits the earth.
B The sun is hot.
A → B If the moon orbits the earth, then the sun is hot.

These statements are all true! Logically, this is identical to the previous ex-
ample. Since A and B are both true, the definition of → says that A → B
is also true. However, the English translation sounds strange: it is true that
the moon orbits the earth, and the sun is surely hot, but the reason the sun is
hot has nothing to do with the moon. The English sentence is misleading, and
you wouldn’t want to use it in a debate, but there isn’t anything wrong with
the logical proposition. Logical implication says nothing about cause-and-effect
relationships.

Another point about implication sometimes causes confusion: many people
find the first line of the implication truth table surprising. If A is false, then
why should A → B be true, when B is actually untrue? Let’s see how this
might translate into English, picking an example where A and B are both false:

A The sun is cold.
B The moon is made of green cheese.
A → B If the sun is cold, then the moon is made of green cheese.

Here, A and B are both false, but the definition says that A → B is true. Yet
why should the English translation of A → B be true?
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Even though it may seem strange to you to define False → False to be True,
you probably already understand the idea underlying the definition: it reflects
a colourful way to express skepticism. Suppose, for example, that your friend
claims ‘Fifty people came to my party last night’, but you’re sure there were
only twenty. You might retort, ‘If fifty people went to your party, then I’m the
king of China’. Your reply has the form A → False, where A means fifty people
went to the party, because you aren’t the king of China. Furthermore, the
statement you are making is true. Thus you are asserting A → False = True,
and a quick study of the truth table for → shows that A must be False.

English sentences contain all sorts of connotations, but logical propositions
mean nothing more than what the defining truth tables say. The truth table for
→ is just a definition. It is meaningless to argue about whether the definition
given above is ‘correct’; definitions aren’t either right or wrong, they are just
definitions.

The pertinent question to ask is why is it convenient to define → so that
False → False is true? Perhaps the most honest answer is just to say that
logicians have been refining their definitions for hundreds of years, and based
on their experience, they feel this is the best way to define →. However, here’s
a more computer-oriented way to think about it: consider the programming
language statement if A then B. If A turns out to be true, then the statement
B will be executed, but if A is false, then the machine won’t even look at B.
It makes no difference at all what B says. The definition of → captures this
indifference to B in the cases where A is false.

6.2.6 Logical Equivalence (↔)

The logical equivalence operator ↔ is used to claim that two propositions have
the same value—either both are true, or both are false. The proposition A ↔ B
might be translated into an English sentence like ‘saying A is just the same as
saying B.’ The definition of ↔ is

A B A ↔ B
False False True
False True False
True False False
True True True

The statement A ↔ B could also be expressed by writing (A → B) ∧ (B →
A). Sometimes ↔ is simply considered to be an abbreviation for conjunction
of two ordinary implications, rather than a fundamental logical operator.

There are two distinct mathematical ways to claim that the propositions A
and B have the same value. One way is to write the equation A = B, and the
other way is to claim that the proposition A ↔ B has the value True. Logical
equivalence is similar to but not the same as ordinary equality. The difference
between them is important, and we’ll say more about it later.
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6.3 The Language of Propositional Logic

Before spending a lot of effort arguing about a statement somebody claims to
be true, it’s prudent to make sure the statement actually makes sense and to
check that all the participants in the debate agree about what it means. It
might be fun to discuss ‘International trade creates jobs’, but there’s no point
wasting time on ‘Quickly raspberries running green’. That one isn’t either true
or false—it’s just gibberish.

A big advantage of using logic rather than English is that we can define the
language of propositional logic formally, precisely, and unambiguously. This
allows us to check that a proposition makes sense before expending any further
work deciding whether it’s true. Because there is no formal definition of natural
languages, it’s fundamentally impossible to do that for English. It isn’t even
possible in all cases to decide definitively whether a statement in a natural
language is grammatical: English has no formal grammar.

A proposition that ‘makes sense’ is called a well-formed formula, which is
often abbreviated WFF (pronounced ‘woof’). Every WFF has a well-defined
meaning, and you can work out whether it’s true or false given the values of
the propositional variables. For example, (A → (B ∧ (¬A))) is a well-formed
formula, so we can calculate what it means, and it’s worth spending a little
time to decide whether there are any possible values of A and B for which it’s
true. (It’s True if A is False.) On the other hand, what about ∨AB¬C? This
isn’t a WFF. It’s just nonsense, so it has no truth value.

Many programming languages (including Fortran, Pascal, Ada, Haskell, and
many others) provide a Boolean data type3 for use with control statements such
as if statements, while loops, and so on. A variable of type Boolean has just
two values, True and False, so it corresponds exactly to a propositional variable.
These programming languages also provide some or all of the ∧, ∨, ¬, →, and
↔ operators. Saying that a logical proposition is well-formed is just like saying
that a Boolean expression in a programming language is syntactically valid.

There are also many programming languages (C, for example) that lack a
Boolean type, using numbers instead. This is a loose approach to syntax, quite
different from the precise rules for WFFs in logic. It is sometimes convenient,
but it also leads to problematical definitions about whether expressions like√

sinx are true or false, and it prevents the compiler from producing helpful
type error messages if you accidentally use a non-Boolean expression where
only a Boolean would make sense.

6.3.1 The Syntax of Well-Formed Formulas

A term in propositional logic is sometimes called a formula, and a term that
is constructed correctly, following all the syntax rules, is called a well-formed
formula, abbreviated WFF.

3Different languages use different names for the Boolean type; common choices include
Bool, Boolean, and Logical.
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Soon we will study in detail how to reason about the meanings of WFFs.
However, we will never consider the meaning of ill-formed formulas; these are
simply considered to be meaningless. For example, the formula (P ∧ (¬P )) is
well-formed; this means that we can go on to consider its meaning (this WFF
happens to be False). However, the formula P∨ → Q violates the syntax rules
of the language, so we refuse to be drawn into debates about whether it is True
or False. The situation is similar to that of programming languages: we can
talk about the behaviour of a program that is syntactically correct (and the
behaviour might be correct or incorrect), but we never talk about the behaviour
of a program with syntax errors—the compiler would refuse to translate the
program, so there is no run-time behaviour.

The set of well-formed formulas (WFFs) is defined by saying precisely how
you can construct them.

• The constants False and True are WFFs.
The only examples are: False, True.

• Any propositional variable is a WFF.
Examples: P , Q, R.

• If a is a WFF, then (¬a) is a WFF.
Examples: (¬P ), (¬Q), (¬(¬P )).

• If a and b are WFFs, then (a ∧ b) is a WFF.
Examples: (P ∧ Q), ((¬P ) ∧ (P ∧ Q)).

• If a and b are WFFs, then (a ∨ b) is a WFF.
Examples: (P ∨ Q), ((P ∧ Q) ∨ (¬Q)).

• If a and b are WFFs, then (a → b) is a WFF.
Examples: (P → Q), ((P ∧ Q) → (P ∨ Q)).

• If a and b are WFFs, then (a ↔ b) is a WFF.
Examples: (P ↔ Q), ((P ∧ Q) ↔ (Q ∧ P )).

• Any formula that cannot be constructed using these rules is not a WFF.
Examples: (P ∨ ∧Q), P → ¬.

The rules may be used repeatedly to build nested formulas. This process is
called recursion and is the subject of Chapters 3, 4, and 9. For example, here
is a demonstration, using recursion, that (P → (Q ∧ R)) is a WFF:

1. P , Q and R are propositional variables, so they are all WFFs.

2. Because Q and R are WFFs, (Q ∧ R) is also a WFF.

3. Because P and (Q ∧ R) are both WFFs, so is (P → (Q ∧ R)).
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6.3.2 Precedence of Logical Operators

Well-formed formulas are fully parenthesised, so there is no ambiguity in their
interpretation. Often, however, it’s more convenient to omit some of the paren-
theses for the sake of readability. For example, we would prefer to write
P → ¬Q ∧ R rather than (P → ((¬Q) ∧ R)).

The syntax rules given below define what an expression means when some
of the parentheses are omitted. These conventions are analogous to those of
elementary algebra, as well as most programming languages, where there is a
precedence rule that says a + b × c means a + (b × c) rather than (a + b) × c.
The syntax rules for propositional logic are straightforward:

1. The most tightly binding operator is ¬. For example, ¬P ∧ Q means
(¬P ) ∧ Q. Furthermore, ¬¬P means ¬(¬P ).

2. The second highest precedence is the ∧ operator. In expressions combin-
ing ∧ and ∨, the ∧ operations come first. For example, P ∨ Q ∧ R means
P ∨ (Q∧R). If there are several ∧ operations in a sequence, they are per-
formed left to right; for example, P ∧Q∧R∧S means (((P ∧Q)∧R)∧S).
This property is described by saying ‘∧ associates to the left.’

3. The ∨ operator has the next level of precedence, and it associates to the
left. For example, P ∧Q∨R∨U ∧V means (((P ∧Q)∨R)∨(U ∧V )). This
example would be more readable if a few of the parentheses are removed:
(P ∧ Q) ∨ R ∨ (U ∧ V ).

4. The → operator has the next lower level of precedence. For example,
P ∧ Q → P ∨ Q means (P ∧ Q) → (P ∨ Q). The → operator associates
to the right; thus P → Q → R → S means (P → (Q → (R → S))).

5. The ↔ operator has the lowest level of precedence, and it associates to
the right, but we recommend that you use parentheses rather than relying
on the associativity.

In general it’s a good idea to omit parentheses that are clearly redundant
but to include parentheses that improve readability. Too much reliance on
these syntax conventions leads to inscrutable expressions.

6.3.3 Object Language and Meta-Language

Propositional logic is a precisely defined language of well-formed formulas. We
need another richer language to use when we are reasoning about well-formed
formulas. This means we will be working simultaneously with two distinct
languages that must be kept separate. The WFFs of propositional logic will
be called the object language because the objects we will be talking about are
sentences in propositional logic. The algebraic language of equations, substitu-
tions, and justifications is essentially just ordinary mathematics; we will call it
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the meta-language because it ‘surrounds’ the object language and can be used
to talk about propositions.

This distinction between object language and meta language is common in
computer science. For example, there are many programming languages, and
we need both to write programs in them and also to make statements about
them.

We have already seen all the operators in the propositional logic object
language; these are ¬, ∧, ∨, → and ↔. Later we will use several operators
that belong to the meta-language; these are |= (which will be used in Section
6.4 on truth tables); � (which will be used in Section 6.5 on natural deduction);
and = (which will be used in Section 6.7 on Boolean algebra). After studying
each of those three major systems, we will look briefly at some of the meta-
logical properties of |=, �, and = in Section 6.9 on meta-logic.

6.3.4 Computing with Boolean Expressions

It’s quicker and more reliable to compute large logical expressions with a com-
puter than doing it by hand. In Haskell, logical variables have type Bool, and
there are two constants of type Bool, namely True and False. Haskell con-
tains built-in operators for a few of the logical operations, and the software
tools provided with this book define the rest:

• ¬x is written in Haskell as not x;

• a ∧ b is written either as a && b or as a /\ b;

• a ∨ b is written either as a ‖ b or as a \/ b;

• a → b is written as a ==> b;

• a ↔ b is written as a <=> b.

Exercise 1. Imagine that you are visiting Hitech City, where all the buses
are driverless (because they are fully automated) and at every bus stop
there is a computer that understands spoken English. The computer can
respond to yes-or-no questions and knows the routes of all buses. You are
trying to get to the airport and have arrived at a bus stop shortly before
a bus waiting there is ready to leave. You know that either this bus or
the next one is going to the airport, but not both. You only have time to
ask the computer one question before the bus leaves, and you must take
this bus or the next to avoid missing your flight.
Unfortunately, some of the computers in Hitech City have a flaw in their
design. They understand spoken English and can answer yes-or-know
questions, but something in their circuitry causes them to answer “no”
when a properly functioning computer would have answered “yes” and,
vice versa, to answer “yes” when a properly functioning computer would
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have answered “no”. You do not know whether the computer at this bus
stop functions properly or contains a twisted-logic circuit.
All the computers have names, and no two of those names are the same.
The computer at your bus stop is named “Bob”. Devise a question that
you could ask Bob and, based on Bob’s yes-or-no answer, decide correctly
whether to take this bus or the next one to make your flight. Remember,
you are allowed only one question, the question must be phrased in a
way that requires a yes-or-no answer, and you will get only one answer,
which will be either “yes” or “no”. The answer will be the correct answer
to your question if Bob is a properly functioning computer, and it will
be the wrong answer to your question if Bob contains the twisted-logic
circuit, but you have no way to tell which kind of computer Bob is.

Exercise 2. Check your understanding of or, and, and not by deciding what
value each of these expressions has and then evaluating it with the com-
puter (you will need to import the Stdm module provided on the web
page for this book):

(a) False /\ True

(b) True \/ (not True)

(c) not (False \/ True)

(d) (not (False /\ True)) \/ False

(e) (not True) ==> True

(f) True \/ False ==> True

(g) True ==> (True /\ False)

(h) False ==> False

(i) (not False) <=> True

(j) True <=> (False ==> False)

(k) False <=> (True /\ (False ==> True))

(l) (not (True \/ False)) <=> False /\ True

6.4 Truth Tables: Semantic Reasoning

Truth tables provide an easy method for reasoning about propositions (as long
as they don’t contain too many variables). The truth table approach treats
propositions as expressions to be evaluated. All the expressions have type
Bool, the constants are True and False, and the variables A, B, . . . stand for
unknowns that must be either True or False.

When you write out truth tables by hand, it’s really too tedious to keep
writing True and False. We recommend abbreviating True as 1 and False as 0;
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as pointed out earlier, T and F are also common abbreviations but are harder
to read. However, it should be stressed that 0 and 1 are just abbreviations for
the logical constants, whose type is Bool. Truth tables don’t contain numbers.
Only a few truth tables will appear below, so we will forgo the abbreviations,
and stick safely with True and False. (However, when truth tables are used for
reasoning about digital circuits, it is standard practice to use 0 and 1.)

6.4.1 Truth Table Calculations and Proofs

We have already been using truth tables to define the logical operators, so the
format should be clear by now. Nothing could be simpler than using a truth
table to evaluate a propositional expression: you just calculate the proposition
for all possible values of the variables, write down the results in a table, and
see what happens. Generally, it’s useful to give several of the intermediate
results in the truth table, not just the final value of the entire proposition.
For example, let’s consider the proposition ((A → B) ∧ ¬B) → ¬A and find
out when it’s true. On the left side of the table we list all the possible values
of A and B, on the right side we give the value of the full proposition, and
in the middle (separated by double vertical lines) we give the values of the
subexpressions.

A B A → B ¬B (A → B) ¬A ((A → B) ∧ ¬B)
∧ ¬B → ¬A

False False True True True True True
False True True False False True True
True False False True False False True
True True True False False False True

Many propositions may be either True or False, depending on the values of
their variables; all of the propositions between the double vertical lines in the
table above are like that. Special names are given to propositions where this is
not the case:

Definition 8. A tautology is a proposition that is always True, regardless of
the values of its variables.

Definition 9. A contradiction is a proposition that is always False, regardless
of the values of its variables.

You can find out whether a proposition is a tautology or a contradiction
(or neither) by writing down its truth table. If a column contains nothing
but True the proposition is a tautology; if there is nothing but False it’s a
contradiction, and if there is a mixture of True and False the proposition is
neither. For example, P ∨ ¬P is a tautology, but P ∧ ¬P is a contradiction,
and the following truth table proves it:
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P ¬P P ∨ ¬P P ∧ ¬P
False True True False
True False True False

There is a special notation for expressing statements about propositions.
As it’s used to make statements about propositions, this notation belongs to
the meta-language, and it uses the meta-operator |=, which is often pronounced
‘double-turnstile’ (to distinguish it from �, which you’ll see later, and which is
pronounced ‘turnstile’).

Definition 10. The notation P1, P2, . . . , Pn |= Q means that if all of the
propositions P1, P2, . . . , Pn are true, then the proposition Q is also true.

The |= meta-operator makes a statement about the actual meanings of
the propositions; it’s concerned with which propositions are True and which
are False. Truth tables can be used to prove statements containing |=. The
meaning of a proposition is called its semantics. The set of basic truth values
(True and False), along with a method for calculating the meaning of any well-
formed formula, is called a model of the logical system.

There may be any number n of propositions P1, P2, . . . , Pn in the list of
assumptions. If n = 1 then the statement looks like P |= Q. A particularly
important case is when n = 0, so there are no assumptions at all, and the
statement becomes simply |= Q. This means that Q is always true, regardless
of the values of the propositional variables inside it; in other words, Q is a
tautology.

6.4.2 Limitations of Truth Tables

The truth table method is straightforward to use; it just requires some brute-
force calculation. You don’t need any insight into why the proposition you’re
working on is true (or false, or sometimes true). This is both a strength and a
weakness of the method. It’s comforting to know that you can reliably crank
out a proof, given enough time. However, a big advantage of the other two
logical systems we will study, natural deduction and Boolean algebra, is that
they give much better insight into why a theorem is true.

The truth table method requires one line for each combination of variable
values. If there are k variables, this means there are 2k lines in the table.
For one variable, you get 21 = 2 lines (for example, the truth table for the ¬
operator). For two variables, there are 22 = 4 lines (like the definitions of ∨, ∧,
→ and ↔). For three variables there are 23 = 8 lines, which is about as much
as anybody can handle.

Since the number of lines in the table grows exponentially in the number
of variables, the truth table method becomes unwieldy for most interesting
problems. In Chapter 13 we will prove a theorem whose truth table has 2129

lines. That number is larger than the number of atoms in the known universe,
so you’ll be relieved to know that we will skip the truth table and use more
powerful methods.
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6.4.3 Computing Truth Tables

The software tools for this book contain functions that make it easy to compute
truth tables automatically; see the online documentation.

Exercise 3. Use the truth table functions to determine which of the following
formulas are tautologies.
(a) (True ∧ P ) ∨ Q

(b) (P ∨ Q) → (P ∧ Q)

(c) (P ∧ Q) → (P ∨ Q)

(d) (P ∨ Q) → (Q ∨ P )

(e) ((P ∨ Q) ∧ (P ∨ R)) ↔ (P ∧ (Q ∨ R))

Exercise 4. In this exercise, and several more that follow it, you are given
an expression. Verify that the expression is a WFF by analyzing its
constituents at all levels down to the atomic primitives. Build a truth
table for the formula with one column for the formula itself (this should
be the rightmost column), and one column for each constituent of the
formula (at any level in the analysis).
Each row in the table will correspond to a distinct combination of values
of the atomic primitives in the formula, and the rows will exhaust all
possible such combinations. Each column will begin with a heading,
which is a WFF (the full WFF or one of its constituents), and will be
filled with the value of the WFF that corresponds to the combination of
values of the primitives represented by a particular row.
A WFF is said to be satisfiable if it is True for some values of its propo-
sitional variables. All WFFs fall into exactly one of three categories:
tautology, contradiction, or satisfiable but not tautology. Based on the
results in the truth table, place the WFF in one of these categories.

(True ∧ P ) ∨ Q

Exercise 5.
(P ∨ Q) ∧ (P ∨ R) ↔ P ∧ (Q ∨ R)

Exercise 6.
((P ∧ ¬Q) ∨ (Q ∧ ¬P )) → ¬(P ↔ Q)

Exercise 7.
(P → Q) ∧ (P → ¬Q)

Exercise 8.
(P → Q) ∧ (¬P → Q)

Exercise 9.
(P → Q) ↔ (¬Q → ¬P )
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6.5 Natural Deduction: Inference Reasoning

Natural deduction is a formal logical system that allows you to reason directly
with logical propositions using inference, without having to substitute truth
values for variables or evaluate expressions. Natural deduction provides a solid
theoretical foundation for logic, and it helps focus attention on why logical
propositions are true or false. Furthermore, natural deduction is well suited
for automatic proof checking by computer, and it has (along with some closely
related systems) a variety of applications in computer science.

In normal English usage, the verb infer means to reason about some state-
ments in order to reach a conclusion. This is an informal process, and it can run
into problems due to the ambiguities of English, but the intent is to establish
that the conclusion is definitely true.

Logical inference means reasoning formally about a set of statements in
order to decide, beyond all shadow of doubt, what is true. In order to make
the reasoning absolutely clear cut, we need to do several things:

• The set of statements we’re reasoning about must be defined. This is
called the object language, and a typical choice would be propositional
expressions.

• The methods for inferring new facts from given information must be
specified precisely. These are called the inference rules.

• The form of argument must be defined precisely, so that if anybody claims
to have an argument that proves a fact, we can determine whether it
actually is a valid argument. This defines a meta-language in which
proofs of statements in the object language can be written. Every step
in the reasoning must be justified by an inference rule.

There are several standard ways to write down formal proofs. In this book
we’ll use the form which is most commonly used in computer science.

Definition 11. The notation P1, P2, . . . , Pn � Q is called a sequent, and it
means that if all of the propositions P1, P2, . . . , Pn are known, then the propo-
sition Q can be inferred formally using the inference rules of natural deduction.

We have seen two similar notations: with truth tables, we had meta-logical
statements with the |= operator, like P |= Q → P . This statement means that
if P is True, then the proposition Q → P is also True. It says nothing about
how we know that to be the case. In contrast, the notation P � Q → P , which
will be used in this section, means there is a proof of Q → P , and the proof
assumes P . Both |= and � are used to state theorems; the distinction is that |=
is concerned with the ultimate truth of the propositions, while � is concerned
with whether we have a proof. We will return to the relationship between |=
and � in Section 6.9.
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In formal logic, you can’t just make intuitive arguments and hope they are
convincing. Every step of reasoning you make has to be backed up by an in-
ference rule. Intuitively, an inference rule says, ‘If you know that Statement1
and Statement2 are established (either assumed or proven), then you may infer
Statement3,’ and furthermore, the inference constitutes a proof. Statement1
and Statement2 are called the assumptions of the inference rule, and State-
ment3 is called the conclusion. (There may be any number of assumptions—
there don’t have to be just two of them.) Here’s an example of an inference
rule about the ∧ operator, written informally in English:

If you know some proposition a, and also the proposition b, then
you are allowed to infer the proposition a ∧ b.

In this example, there are two assumptions—a and b—and the conclusion is
a ∧ b. Note that we have expressed this inference using meta-variables a and
b. These meta-variables could stand for any WFF; thus a might be P , Q → R,
etc. The variables P , Q etc, are propositional variables, belonging to the
object language, and their values are True or False. We will adopt the following
convention:

• Meta-Variables belong to the meta-language and are written as lower-
case letters a, b, c, . . .. The value of a meta-variable is a WFF. For example
a might have the value P ∧ Q.

• Propositional variables belong to the object language and are written
as upper-case letters A, B, . . . , P, Q, R, . . .. The value of a propositional
variable is either True or False.

Formally, an inference rule is expressed by writing down the assumptions
above a horizontal line, and writing the conclusion below the line:

Statement1 Statement2

Statement3

This says that if you can somehow establish the truth of Statement1 and State-
ment2, then Statement3 is guaranteed (by the inference rule) to be true. The
inference about ∧ would be written formally as

a b

a ∧ b .

An inference rule works in only one direction—for example, if you have
established a∧b, you cannot use the rule above to infer a. A different inference
rule, which we will see later, would be needed.

Figure 6.1 summarises all the inference rules of propositional logic. In the
next several sections we will work systematically through them all. It would
be a good idea to refer back frequently to Figure 6.1.
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a b
{∧I}

a ∧ b

a ∧ b
{∧EL}

a

a ∧ b
{∧ER}

b

a
{∨IL}

a ∨ b

b
{∨IR}

a ∨ b

a ∨ b a � c b � c
{∨E}

c

a � b
{→I}

a → b

a a → b
{→E}

b

a
{ID}

a

False
{CTR}

a

¬a � False
{RAA}

a

Figure 6.1: Inference Rules of Propositional Logic

Many of the rules fall into two categories. The introduction rules have a
conclusion into which a new logical operator has been introduced; they serve
to build up more complex expressions from simpler ones. In contrast, the elim-
ination rules require an assumption that contains a logical operator which is
eliminated from the conclusion; these are used to break down complex expres-
sions into simpler ones. Introduction rules tell you what you need to know in
order to introduce a logical operator; elimination rules tell you what you can
infer from a proposition containing a particular operator.

6.5.1 Definitions of True, ¬, and ↔
Natural deduction works with a very minimal set of basic operators. In fact, the
only primitive built-in objects are the constant False, and the three operators
∧, ∨ and →. Everything else is an abbreviation! It’s particularly intriguing
that False is the only primitive logic value in the natural deduction system.

Definition 12. The constant True and the operators ¬ and ↔ are abbrevia-
tions defined as follows:

True = False → False

¬a = a → False

a ↔ b = (a → b) ∧ (b → a)

You can check all of these definitions semantically, using truth tables. In
natural deduction, however, we will manipulate them only using the inference
rules, and it will gradually become clear that the abbreviations work perfectly
with the inference rules. The definition of ↔ should be clear, but let’s look at
¬ and True more closely.
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Notice that ¬False is defined to be False → False, which happens to be the
definition of True. In other words, ¬False = True. Going the other direction,
¬True becomes True → False when the ¬ abbreviation is expanded out, and
that becomes (False → False) → False when the True is expanded out. Later
we will see an inference rule (called Reductio ad Absurdum) which will allow
us to infer False from (False → False) → False. The result is that ¬True = False
and ¬False = True.

We will write propositions with True, ¬ and ↔ just as usual, but sometimes
to make a proof go through it will be necessary to expand out the abbreviations
and work just with the primitives.

6.5.2 And Introduction {∧I}
The And Introduction inference rule says that if you know that some proposi-
tion a is true, and you also know that b is true, then you may infer that the
proposition a ∧ b is true. As the name ‘And Introduction’ suggests, the rule
specifies what you have to know in order to infer a proposition with a new
occurrence of ∧.

When we write an inference, the horizontal line will be annotated with the
name of the inference rule that was used. The abbreviation {∧I} stands for
‘And Introduction’, so the rule is written as follows:

a b
{∧I}

a ∧ b

We will now work through several examples, starting with a theorem saying
that the conclusion P ∧ Q can be inferred from the assumptions P and Q.

Theorem 35. P, Q � P ∧ Q

Proof. The theorem is proved by just one application of the {∧I} inference;
it’s the simplest possible example of how to use the {∧I} inference rule.

P Q
{∧I}

P ∧ Q

Notice that the theorem above involves two specific propositional variables,
P and Q. The {∧I} rule does not require any particular propositions. It uses
the meta-variables a and b, which can stand for any well-formed formula. For
example, the following theorem has the same structure as the previous one,
and is also proved with just one application of the {∧I} rule, but this time the
meta-variable a stands for R → S and b stands for ¬P .

Theorem 36. (R → S),¬P � (R → S) ∧ ¬P
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Proof.
(R → S) ¬P

{∧I}
(R → S) ∧ ¬P

Usually you need several steps to prove a theorem, and each step requires
explicit use of an inference rule. You can build up a proof in one diagram.
When a subproof results in a conclusion that serves as an assumption for a
larger proof, the entire subproof diagram appears above the line for the main
inference in the large proof. Here is an example:

Theorem 37. P, Q, R � (P ∧ Q) ∧ R

Proof. The main inference here has two assumptions: P ∧ Q and R. However,
the first assumption P ∧Q is not one of the assumptions of the entire theorem;
it is the conclusion of another {∧I} inference with assumptions P and Q. The
entire proof is written in a single diagram. Notice how the conclusion P ∧ Q
of the first inference is sitting in exactly the right place above the longer line
(the line belonging to the main inference).

P Q
{∧I}

P ∧ Q R
{∧I}

(P ∧ Q) ∧ R

Inference proofs have a natural tree structure: assumptions of the theorem
are like the leaves of a tree, and subproofs are like the nodes (forks) of a tree.
The method we are using here for writing proofs makes this tree structure
explicit.

There is an alternative format for writing logical inference proofs, where
each inference is written on a numbered line. When the conclusion of one
inference is required as an assumption to another one, this is indicated by
explicit references to the line numbers. This format looks like a flat list of
statements (much like an assembly language program), while the tree format
we are using has a nested structure (much like a program in a block structured
language).

Logical inference has many important applications in computer science. The
tree format is normally used for computing applications, so we will use that
notation in this book in order to help prepare you for more advanced studies.
A clear exposition of the line-number format, which won’t appear in this book,
appears in Lemmon’s book Beginning Logic [21].

Exercise 10. Prove P, Q, R � P ∧ (Q ∧ R).
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Exercise 11. Consider the following two propositions:

x = A ∧ (B ∧ (C ∧ D))
y = (A ∧ B) ∧ (C ∧ D)

Describe the shapes of the proofs for x and y, Assuming A, B, C, and
D. Suppose each proposition has 2n propositional variables. What then
would be the heights of the proof trees?

6.5.3 And Elimination {∧EL}, {∧ER}
There are two inference rules that allow the elimination of an And operation.
These rules say that if a ∧ b is known to be true, then a must be true, and
also b must be true. The ‘And Elimination Left’ {∧EL} rule retains the left
argument of a ∧ b in the result, while the ‘And Elimination Right’ {∧ER} rule
retains the right argument.

a ∧ b
{∧EL}

a

a ∧ b
{∧ER}

b

Here is a simple example using And Elimination:

Theorem 38. P, Q ∧ R � P ∧ Q

Proof. Two inferences are required. First the ‘Left’ form of the And Elimi-
nation rule {∧EL} is used to obtain the intermediate result Q, and the And
Introduction rule is then used to combine this with P to obtain the result P ∧Q.

P

Q ∧ R
{∧EL}

Q
{∧I}

P ∧ Q

The next example contains several applications of And Elimination, includ-
ing both the Left and Right forms of the rule. As these two examples show,
the three rules {∧I}, {∧EL} and {∧ER} can be used systematically to deduce
consequences of logical conjunctions.

Theorem 39. (P ∧ Q) ∧ R � R ∧ Q

Proof.

(P ∧ Q) ∧ R
{∧ER}

R

(P ∧ Q) ∧ R
{∧EL}

P ∧ Q
{∧ER}

Q
{∧I}

R ∧ Q
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One of the most fundamental properties of the ∧ operator is that it is
commutative: the proposition P ∧ Q is equivalent to Q ∧ P . The following
theorem establishes this.

Theorem 40. P ∧ Q � Q ∧ P

Proof. The idea behind this proof is to infer Q and P—in that order, with Q
to the left of P—above the main line, so {∧I} can be used to infer Q∧P . The
intermediate results Q and P are obtained by And Elimination.

P ∧ Q
{∧ER}

Q

P ∧ Q
{∧EL}

P
{∧I}

Q ∧ P

Inference proof trees can become quite large, but you can always work
through them systematically, one inference at a time, until you see how all the
parts of the proof fit together. You can check the individual inferences in any
order you like, either top-down or bottom-up or any other order you like. We
will give one more example of a theorem proved with the And Introduction and
Elimination rules, with a larger proof.

Theorem 41. For any well formed propositions a, b and c,

a ∧ (b ∧ c) � (a ∧ b) ∧ c

Proof.

a ∧ (b ∧ c)
{∧EL}

a

a ∧ (b ∧ c)
{∧ER}

b ∧ c
{∧EL}

b
{∧I}

a ∧ b

a ∧ (b ∧ c)
{∧ER}

b ∧ c
{∧ER}

c
{∧I}

(a ∧ b) ∧ c

Exercise 12. Prove (P ∧ Q) ∧ R � P ∧ (Q ∧ R).

6.5.4 Imply Elimination {→ E}
As we work through the inference rules, you should refer back frequently to
Figure 6.1. This will help build up a coherent picture of the complete system
of natural deduction. Although the rules relating to ∨ come next in the figure,
we will first study the rules for →, which are slightly simpler.

The Imply Elimination rule {→ E} says that if you know a is true, and also
that a implies b, then you can infer b. The traditional Latin name for the rule
is Modus Ponens.
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a a → b
{→E}

b

The following theorem provides a simple example of the application of
{→ E}.

Theorem 42. Q ∧ P, P ∧ Q → R � R.

Proof.

Q ∧ P
{∧ER}

P

Q ∧ P
{∧EL}

Q
{∧I}

P ∧ Q P ∧ Q → R
{→E}

R

Often we have chains of implication of the form a → b, b → c and so on.
The following theorem says that given a and these linked implications, you can
infer c.

Theorem 43. For all propositions a, b and c, a, a → b, b → c � c.

Proof.
a a → b

{→E}
b b → c

{→E}
c

Exercise 13. Prove P, P → Q, (P ∧ Q) → (R ∧ S) � S.

Exercise 14. Prove P → Q, R → S, P ∧ R � S ∧ R.

6.5.5 Imply Introduction {→ I}
The Imply Introduction rule {→ I} says that, in order to infer the logical
implication a → b, you must have a proof of b using a as an assumption.

a � b
{→I}

a → b

We will first give a simple example of Imply Introduction and then discuss
the important issue of keeping track of the assumptions that have been made.
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Theorem 44. � (P ∧ Q) → Q.

Proof. First consider the sequent P ∧Q � Q, which is proved by the following
And Elimination inference:

P ∧ Q
{∧ER}

Q

Now we can use the sequent (that is, the theorem established by the inference)
and the {→ I} rule:

P ∧ Q � Q
{→I}

P ∧ Q → Q

It is crucially important to be careful about what we are assuming. In fact,
the reason for having the sequent notation with the � operator is to write down
the assumptions of a theorem just as precisely as the conclusion.

In the {∧ER} inference we assumed P ∧ Q; without that assumption we
could not have inferred Q. Therefore this assumption appears in the sequent to
the left of the �. However, the entire sequent P ∧Q � Q does not rely on any
further assumptions; it is independently true. Therefore we can put it above
the line of the {→ I} rule ‘for free,’ without actually making any assumptions.
Since nothing at all needed to be assumed to support the application of the
{→ I} rule, we end up with a theorem that doesn’t require any assumptions.
The sequent that expresses the theorem, � P ∧ Q → Q, has nothing to the left
of the � operator.

It is customary to write the entire proof as a single tree, where a complete
proof tree appears above the line of the {→ I} rule. That allows us to prove
� P ∧ Q → Q with just one diagram:

P ∧ Q
{∧ER}

Q
{→I}

P ∧ Q → Q

From this diagram, it looks like there is an assumption P ∧ Q. However,
that was a temporary, local assumption whose only purpose was to establish
P ∧ Q � Q. Once that result is obtained the assumption P ∧ Q can be thrown
away. An assumption that is made temporarily only in order to establish a
sequent, and which is then thrown away, is said to be discharged. A discharged
assumption does not need to appear to the left of the � of the main theorem. In
our example, the proposition P ∧ Q → Q is always true, and it doesn’t matter
whether P ∧ Q is true or false.

In big proof trees it may be tricky to keep track of which assumptions
have been discharged and which have not. We will indicate the discharged
assumptions by putting a box around them. (A more common notation is to
draw a line through the discharged assumption, but for certain propositions
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that leads to a highly unreadable result.) Following this convention, the proof
becomes:

P ∧ Q
{∧ER}

Q
{→I}

P ∧ Q → Q

Recall the proof of Theorem 43, which used the chain of implications a → b
and b → c to infer c, given also that a is true. A more satisfactory theorem
would just focus on the chain of implications, without relying on a actually
being true. The following theorem gives this purified chain property: it says
that if a → b and b → c, then a → c.

Theorem 45 (Implication chain rule). For all propositions a, b and c,

a → b, b → c � a → c

Proof. Because we are proving an implication a → c, we need to use the {→ I}
rule—there is no other way to introduce the → operator! That rule requires a
proof of c given the assumption a, which is essentially the same proof tree used
before in Theorem 43. The important point, however, is that the assumption
a is discharged when we apply {→ I}. The other two assumptions, (a → b and
b → c), are not discharged. Consequently a doesn’t appear to the left of the �
in the theorem; instead it appears to the left of the → in the conclusion of the
theorem.

a a → b
{→E}

b b → c
{→E}

c
{→I}

a → c

Sometimes in large proofs it can be confusing to see just where an assump-
tion has been discharged. You may have an assumption P with a box around
it, but there could be all sorts of implications P → · · · which came from some-
where else. In such cases it’s probably clearer to build up the proof in stages,
with several separate proof tree diagrams.

A corollary of this implication chain rule is the following theorem, which
says that if a → b but you know that b is false, than a must also be false. This
is an important theorem which is widely used to prove other theorems, and its
traditional Latin name is Modus Tollens.

Theorem 46 (Modus Tollens). For all propositions a and b,

a → b, ¬b � ¬a
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Proof. First we need to expand out the abbreviations, using the definition
that ¬a means a → False. This results in the following sequent to be proved:
a → b, b → False � a → False. This is an instance of Theorem 45.

Exercise 15. Prove P � Q → P ∧ Q.

Exercise 16. Prove � P ∧ Q → Q ∧ P .

6.5.6 Or Introduction {∨IL}, {∨IR}
Like all the introduction rules, Or Introduction specifies what you have to
establish in order to infer a proposition containing a new ∨ operator. If the
proposition a is true, then both a ∨ b and b ∨ a must also be true (you can see
this by checking the truth table definition of ∨). Or Introduction comes in two
forms, Left and Right.

a
{∨IL}

a ∨ b

b
{∨IR}

a ∨ b

Theorem 47. P ∧ Q � P ∨ Q

Proof. The proof requires the use of Or Introduction. There are two equally
valid ways to organise the proof. One method begins by establishing P and
then uses {∨IL} to put the P to the left of ∨:

P ∧ Q
{∧EL}

P
{∨IL}

P ∨ Q

An alternative proof first establishes Q and then uses {∨IR} to put the Q to
the right of ∨:

P ∧ Q
{∧ER}

Q
{∨IR}

P ∨ Q

Normally, of course, you would choose one of these proofs randomly; there is
no reason to give both.

Exercise 17. Prove P → False ∨ P .

Exercise 18. Prove P, Q � (P ∧ Q) ∨ (Q ∨ R).
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6.5.7 Or Elimination {∨E}
The Or Elimination rule specifies what you can conclude if you know that a
proposition of the form a ∨ b is true. We can’t conclude anything about either
a or b, because either of those might be false even if a ∨ b is true. However,
suppose we know a∨ b is true, and also suppose there is some conclusion c that
can be inferred from a and can also be inferred from b. Then c must also be
true.

a ∨ b a � c b � c
{∨E}

c

Or Elimination is a formal version of proof by case analysis. It amounts to
the following argument: ‘There are two cases: (1) if a is true, then c holds; (2)
if b is true then c holds. Therefore c is true’. Here is an example:

Theorem 48. (P ∧ Q) ∨ (P ∧ R) � P

Proof. There are two proofs above the line. The first proof assumes P ∧ Q in
order to infer P . However, that inference is all that we need; P ∧Q is discharged
and is not an assumption of the main theorem. For the same reason, P ∧ R is
also discharged. The only undischarged assumption is (P ∧Q)∨ (P ∨R), which
therefore must appear to the left of the � in the main theorem.

(P ∧ Q) ∨ (P ∧ R)

P ∧ Q
{∧EL}

P

P ∧ R
{∧EL}

P
{∨E}

P

Finally, here is a slightly more complex example:

Theorem 49. (a ∧ b) ∨ (a ∧ c) � b ∨ c

Proof.

(a ∧ b) ∨ (a ∧ c)

a ∧ b
{∧ER}

b
{∨IL}

b ∨ c

a ∧ c
{∧ER}

c
{∨IR}

b ∨ c
{∨E}

b ∨ c
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6.5.8 Identity {ID}
The Identity rule {ID} says, rather obviously, that if you know a is true, then
you know a is true.

a
{ID}

a

Although the Identity rule seems trivial, it is also necessary. Without it,
for example, there would be no way to prove the following theorem, which we
would certainly want to be true.

Theorem 50. P � P

Proof.
P

{ID}
P

An interesting consequence of the Identity rule is that True is true, as the
following theorem states.

Theorem 51. � True

Proof. Recall that True is an abbreviation for False → False. We need to infer
this implication using the {→ I} rule, and that in turn requires a proof of False
given the assumption False. This can be done with the {ID} rule; it could also
be done with the Contradiction rule, which we’ll study shortly.

False
{ID}

False
{→I}

False → False

Notice that we had to assume False in order to prove this theorem, but fortu-
nately that assumption was discharged when we inferred False → False. The
assumption of False was just temporary, and it doesn’t appear as an assump-
tion of the theorem. That’s a relief; it would never do if we had to assume that
False is true in order to prove that True is true!

6.5.9 Contradiction {CTR}
The Contradiction rule says that you can infer anything at all given the as-
sumption that False is true.
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False
{CTR}

a

In effect, this rule says that False is untrue, and it expresses that fact purely
through the mechanism of logical inference. It would be disappointing if we
had to describe the fundamental falseness of False by making a meaningless
statement outside the system, such as ‘False is wrong.’ After all, the whole point
of natural deduction is to describe the process of logical reasoning formally,
using a small set of clearly specified inference rules. It would also be a bad
idea to try to define False as equal to ¬True. Since True is already defined to
be ¬False, that would be a meaningless and useless circular definition.

The Contradiction rule describes the untruthfulness of False indirectly, by
saying that everything would become provable if False is ever assumed or in-
ferred.

Theorem 52. P, ¬P � Q

Proof. Recall that ¬P is just an abbreviation for P → False. That means we
can use the {→ E} rule to infer False, and once that happens we can use {CTR}
to support any conclusion we feel like—even Q, which isn’t even mentioned in
the theorem’s assumptions!

P P → False
{→E}

False
{CTR}

Q

The Identity and Contradiction rules often turn up in larger proofs. A
typical example occurs in the following theorem, which states an important
property of the logical Or operator ∨. This theorem says that if a ∨ b is true,
but a is false, then b has to be true. It should be intuitively obvious, but the
proof is subtle and merits careful study.

Theorem 53. For all propositions a and b,

a ∨ b, ¬a � b

Proof. As usual, the ¬a abbreviation should be expanded to a → False. Be-
cause we’re given a∨b, the basic structure will be an Or Elimination, and there
will be two smaller proof trees corresponding to the two cases for a ∨ b. In the
first case, when a is assumed temporarily, we obtain a contradiction with the
theorem’s assumption of ¬a: False is inferred, from which we can infer anything
else (and here we want b). In the second case, when b is assumed temporarily,
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the desired result of b is an immediate consequence of the {ID} rule.

a ∨ b

a a → False
{→E}

False
{CTR}

b

b
{ID}

b
{∨E}

b

Note that there are two undischarged assumptions, a ∨ b and a → False, and
there are two temporary assumptions that are discharged by the {∨E} rule.

6.5.10 Reductio ad Absurdum {RAA}
The Reductio ad Absurdum (reduce to absurdity) rule says that if you can
infer False from an assumption ¬a, then a must be true. This rule underpins
the proof by contradiction strategy: if you want to prove a, first assume the
contradiction ¬a and infer False; the {RAA} rule then allows you to infer a.

¬a � False
{RAA}

a

Theorem 54 (Double negation). ¬¬a � a

Proof. Our strategy is to use a proof by contradiction. That is, if we can
assume ¬a and infer False, the {RAA} rule would then yield the inference a.
Because we are given ¬¬a, the contradiction will have the following general
form:

¬a ¬¬a

False

To make this go through, we need to replace the abbreviations by their
full defined values. Recall that ¬a is an abbreviation for a → False, so ¬¬a
actually means (a → False) → False. Once we expand out these definitions, the
inference becomes much clearer: it is just a simple application of {→ E}:

a → False (a → False) → False
{→E}

False
{RAA}

a

Both requirements for the {RAA} rule have now been provided, and the
{RAA} gives the final result a.
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6.5.11 Inferring the Operator Truth Tables

The inference rules of natural deduction are intended to serve as a formal
foundation for logical reasoning. This raises two fundamental questions: Are
the inference rules actually powerful enough? Will they ever allow us to make
mistakes? These are profound and difficult questions. Modern research in
mathematical logic addresses such questions and has led to some astonishing
results. In this section we start with an easy version of the first question: Are
the inference rules powerful enough to calculate the truth tables of the logical
operators?

Answering this question will provide some good practice in using the in-
ference rules. A deeper point is that it’s philosophically satisfying to know
that the inference rules provide a complete foundation for propositional logic.
Nothing else is required: the truth tables given earlier in the chapter are the
most intuitive place to start learning logic, and we treated them like defini-
tions at the beginning of the chapter, but it isn’t necessary to accept them as
the fundamental definitions of the operators. If we take instead the inference
rules as the foundation of mathematical logic, then truth tables are no longer
definitions; they merely summarise a lot of calculations using the rules.

To illustrate the idea, let’s use the inference rules to calculate the value of
True∧False. To answer this fully, we need to prove that True∧False is logically
equivalent to False, and also that it is not logically equivalent to True. Recall
that False is a primitive constant, but True is defined as False → False. First,
here is a proof of the sequent � True ∧ False → False:

(False → False) ∧ False
{∧ER}

False
{→I}

((False → False) ∧ False) → False

Next, we prove the sequent � False → ((False → False) ∧ False):

False
{CTR}

(False → False) ∧ False
{→I}

False → ((False → False) ∧ False)

Putting these results together, and reintroducing the abbreviations, we get

True ∧ False ↔ False

We have thereby calculated one of the lines of the truth table definition of ∧.
The complete truth tables for all the logical operators can be inferred using
similar calculations.

Exercise 19. Use the inference rules to calculate the value of True ∧ True.

Exercise 20. Use the inference rules to calculate the value of True ∨ False.
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Exercise 21. Notice that in the proof of � True∧False → False we used {∧ER}
to obtain False from (False → False) ∧ False, and everything worked fine.
However, we could have used {∧EL} instead to infer False → False, which
is True. What would happen if that choice is made? Would it result in
calculating the wrong value of True ∧ False? Is it possible to show that
True ∧ False is not logically equivalent to True?

6.6 Proof Checking by Computer

One of the great benefits of formal logic is the possibility of using computer
software to check proofs automatically. Informal arguments in English are full
of imprecision and ambiguity, so there is no hope of writing a computer program
to determine whether one is valid. People don’t always agree as to whether an
argument holds water! Formal proofs, however, are totally precise and unam-
biguous. Formal arguments may become long and involved, but computers are
good at long and involved calculations.

Formal proofs are intended to provide the utmost confidence that a theorem
is correct. The language of propositional logic, along with the natural deduc-
tion inference system, are solid foundations for accurate reasoning. However,
everyone makes mistakes, and even a tiny error would make a large proof com-
pletely untrustworthy. To get the full benefit of formal logic, we need computers
to help with the proofs.

A proof checker is a computer program that reads in a theorem and a proof,
and determines whether the proof is valid and actually establishes the theorem.
A theorem prover is a computer program that reads in a theorem and attempts
to generate a proof from scratch. The generic term proof tools refers to any
computer software that helps with formal proofs, including proof checkers and
theorem provers.

The advantage of a theorem prover is that it can sometimes save the user
a lot of work. However, theorem provers don’t always succeed, since there
are plenty of true theorems whose proofs are too difficult for them to find. A
theorem prover may stop with the message ‘I cannot prove it’, or it may go into
an infinite loop and never stop at all. The main advantage of a proof checker
is that it can always determine whether a purported proof is valid or invalid.
Proof checkers are also suitable when you want to write a proof by hand, and
you also want to be sure it’s correct.

Proof tools are the subject of active current research, but they are not lim-
ited to research: they are also becoming practical for real applications. There
are a number of ‘industrial-strength’ proof tools for various logical systems (see
Section 6.10 for references). Proof tools have already been applied successfully
to some very difficult and important real-world problems. One example is
the proof that the floating point hardware in the Intel Pentium Pro processor
is correct [25]. As proof checkers become more widely used, it will become
increasingly important for computing professionals to have a good working un-
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Theorem 55. � Q → ((P ∧ R) → (R ∧ Q))

example_theorem :: Theorem
example_theorem =
Theorem
[]
(Imp Q (Imp (And P R) (And R Q)))

Figure 6.2: Theorem 55 and Its Haskell Representation

derstanding of logic.
We’ll now look at a simple proof checking system implemented in Haskell,

which is part of the software that accompanies this book. You can obtain the
software and its documentation from this book’s web page; see the Preface for
the web address.

Studying the proof checker will introduce you to a technology that is likely
to become increasingly important in the near future. You can also use the
software to check your own proofs; it’s nice to be sure your exercises are correct
before handing them in! Furthermore, you may find it interesting to study the
implementation of the checker.

Documentation of the proof checker is available on the book web page.
The program is written in Haskell. Although it uses some advanced features
of Haskell that aren’t covered in Chapter 1, most of it isn’t too difficult to
understand. Haskell is well suited for writing proof checkers; indeed, most of
the industrial strength proof tools are implemented in functional programming
languages, .

6.6.1 Example of Proof Checking

Before getting into picky details, let’s start by checking a real theorem:

Theorem 55. � Q → ((P ∧ R) → (R ∧ Q))

Proof. See Figure 6.3.

In order to process this theorem with a Haskell program, we have to repre-
sent it in a form that can be typed into a file. Figure 6.2 gives the theorem in
both forms, with the mathematical notation and the proof checker’s notation
shown side by side. The value named example theorem has type Theorem, and
it consists of three parts: (1) a constructor Theorem that starts the data struc-
ture; (2) a list of assumptions (i.e., propositions to the left of the �), which
is [] for this example; and (3) the proposition to be proved. As you can see,
the computer-readable proposition is expressed with prefix operators; the name
And represents ∧, while the name Imp represents →.
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Figure 6.3 shows the proof of Theorem 55. The conventional mathematical
notation is given alongside the Haskell representation, so you can compare them
easily. The Haskell representation of the proof is a value named proof1, and its
type is Proof. Notice that the mathematical notation has a tree structure, and
the proof is also represented as a tree structure in Haskell. The only difference is
that the mathematical notation uses lines and positioning on the page to show
the structure, while the Haskell notation uses punctuation. The computer
representation uses prefix operators to indicate inferences; for example, the
name AndI indicates the beginning of an And-Introduction {∧I} inference.
The proof is a value named proof1, and it has type Proof.

The proof checker is a Haskell function named check proof which takes two
arguments: a Theorem and a Proof. The function checks to see whether the
proof is valid, and also whether it serves to establish the truth of the theorem.
You might expect the checker to return a result of type Bool, where True means
the proof is valid and False means the proof is incorrect. However, it’s much
better for the checker to give a detailed explanation if something is wrong with
the proof, and to do that it needs to perform some Input/Output. Because
of this, the function returns a Haskell value of type IO () instead of a simple
Bool. You do not need to know how the Input/Output works. The function’s
type signature is:

check_proof :: Theorem -> Proof -> IO ()

The proof given in Figure 6.3 is valid: all of the inferences are sound; the
conclusion of the main inference matches the result to the right of the � in the
theorem, and there are no undischarged assumptions that fail to appear to the
left of the � in the statement of the theorem.

To check the proof, we must first start an interactive session with Haskell
and load the software tools (see the Appendix for instructions on how to do
this). Here is the output produced by running the proof checker on the example:

> check_proof example_theorem proof1
The proof is valid

In order to see what happens when something goes wrong with a proof,
let’s introduce a small mistake into the previous example. Figure 6.4 gives the
modified proof, along with its Haskell representation. The error is that the
two subproofs above the line of the And Introduction step now appear in the
wrong order: on the left is the assumption Q, and on the right is the proof of
R. Because of this, the {∧I} rule infers the proposition Q∧R, but we still have
R ∧ Q below the line. Here is the result of running the incorrect proof through
the proof checker:

> check_proof example_theorem proof2
Invalid And-Introduction: the conclusion

And R Q
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P ∧ R
{∧ER}

R Q
{∧I}

R ∧ Q
{→I}

(P ∧ R) → (R ∧ Q)
{→I}

Q → ((P ∧ R) → (R ∧ Q))

proof1 :: Proof
proof1 =
ImpI
(ImpI

(AndI
((AndER

(Assume (And P R))
R),

Assume Q)
(And R Q))

(Imp (And P R) (And R Q)))
(Imp Q (Imp (And P R) (And R Q)))

Figure 6.3: A Valid Proof of Theorem 55 and Its Haskell Representation

must be the logical And of the assumption
Q

with the assumption
R

The proof is invalid

To use the proof checker on your own, you will need to know how to repre-
sent propositions (WFFs) and how to represent proofs. The following sections
describe these issues briefly, but you should also read the online documentation
on the book’s web page.

Exercise 22. Suppose we simply replace R ∧ Q below the {∧I} line with
Q∧R. This fixes the Invalid And-Introduction error, but it introduces
another error into the proof.

(a) Edit proof2 to reflect this change; call the result proof3.

(b) Decide exactly what is wrong with proof3.

(c) Run the proof checker on proof3, and see whether it reports the
same error that you predicted.
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Q

P ∧ R
{∧ER}

R
{∧I} ←− Wrong!

R ∧ Q
{→I}

(P ∧ R) → (R ∧ Q)
{→I}

Q → ((P ∧ R) → (R ∧ Q))

proof2 :: Proof
proof2 =
ImpI
(ImpI

(AndI
(Assume Q,
(AndER

(Assume (And P R))
R))

(And R Q))
(Imp (And P R) (And R Q)))

(Imp Q (Imp (And P R) (And R Q)))

Figure 6.4: An Invalid Proof of Theorem 55 and Its Haskell Representation

6.6.2 Representation of WFFs

The well-formed formulas of propositional logic can be represented in Haskell
as an algebraic data type. This representation allows us to use the compiler
to check that a formula is indeed well-formed, and it also provides a way to
express terms that appear in logical proofs—later in this chapter we will exploit
that in order to support a program that checks logical proofs for correctness.

The Boolean constants are represented by FALSE and TRUE. Intuitively, these
correspond in meaning to the familiar Boolean constants False and True. Use
False (or True) when you want to write Boolean expressions to be evaluated;
use FALSE (or TRUE) when you want to write a WFF and reason about it. We
will come back to this subtle but important distinction at the end of the section.

The traditional names used for propositional variables are upper-case letters
P, Q, R . . .. We allow every upper-case letter to be used as a propositional
variable, except that F and T are disallowed because someone reading the code
might wonder whether these are supposed to be variables or the constants false
and true. In addition, you can make any string into a propositional variable
by writing Pvar "name".

The logical expression P ∧Q is written And P Q. If the arguments to the And
are themselves logical expressions, they should be surrounded by parentheses,
for example: And (And P Q) R. In a similar way, P ∨ Q is written Or P Q,
and P → Q is written Imp P Q, and the negation ¬P is written Not P. In
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all cases, arguments that are not simple logical variables should be enclosed in
parentheses.

WFFs are defined directly as a Haskell data type Prop. It is common in
mathematics to define structures recursively, as WFFs were defined in the pre-
vious section. Haskell’s algebraic data types allow such standard mathematical
definitions to be turned directly into a computer program. The definition is

data Prop
= FALSE
| TRUE
| A | B | C | D | E | G | H | I | J | K | L | M
| N | O | P | Q | R | S | U | V | W | X | Y | Z
| Pvar String
| And Prop Prop
| Or Prop Prop
| Not Prop
| Imp Prop Prop
| Equ Prop Prop
deriving (Eq,Show)

Exercise 23. Define each of the following well-formed formulas as a Haskell
value of type Prop.

(a) P

(b) Q ∨ False

(c) Q → (P → (P ∧ Q))

(d) P ∧ (¬Q)

(e) ¬P → Q

(f) (P ∧ ¬Q) ∨ (¬P ∧ Q) → (P ∨ Q)

Exercise 24. Translate each of the following Haskell expressions into the con-
ventional mathematical notation.

(a) And P Q

(b) Imply (Not P) (Or R S)

(c) Equ (Imply P Q) (Or (Not P) Q)

6.6.3 Representing Proofs

A proof is represented by another Haskell algebraic data type. Technically,
a proof is a data structure that contains a proposition along with a formal
argument for the truth of the proposition. There is a separate constructor for
every kind of proof:
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• Assume Prop. The simplest way to establish that a proposition is true is
to assume it. No further justification is necessary, and any proposition
at all may be assumed. See proof1 above for an example. Note that
assumptions may be discharged by the Imply Introduction rule {→ I},
so there is a limited and well-defined scope for all assumptions. Unfortu-
nately, however, it isn’t easy to see what the scope of an assumption is
just by looking at it; you need to study what it means to discharge.

• AndI (Proof,Proof) Prop. The And Introduction inference rule {∧I}
requires two separate proofs above the line, as well as the claimed con-
clusion (which is a proposition).

• AndEL Proof Prop. The And Elimination Left inference rule {∧EL} has
just one proof above the line; like all the inference rules, it has exactly
one conclusion, which is a proposition.

• AndER Proof Prop. The And Elimination Right rule {∧ER}. This is the
Right version of And Elimination {∧ER}

• OrIL Proof Prop. The Or Introduction Left rule {∨IL};

• OrIR Proof Prop. The Or Introduction Right rule {∨IR};

• OrE (Proof,Proof,Proof) Prop. The Or Elimination rule {∨E} re-
quires three proofs above the line. The first one is a proof whose conclu-
sion has the form a∨b, the second is a proof of some conclusion c given a,
and the third is a proof of the same conclusion c given b. The conclusion
of the rule must be the proposition c.

• ImpI Proof Prop. The Imply Introduction rule {→ I}.

• ImpE (Proof,Proof) Prop. The Imply Elimination rule {→ E}.

• ID Proof Prop. The Identity rule {ID}.

• CTR Proof Prop. The Contradiction rule {CTR}.

• RAA Proof Prop. The Reductio ad Absurdum rule {RAA}.

The best way to understand how to represent proofs is to look at some
examples, and then try your own. Start by studying proof1 and proof2 above.

The representation of a theorem is very simple: it just contains a list of
assumptions of type [Prop] and a single conclusion of type Prop.

data Theorem = Theorem [Prop] Prop

To represent a theorem of the form

a1, a2, a3 � c,

you would write
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Theorem [a1, a2, a3] c.

The proof checker function takes two arguments: a theorem of type Theorem
and a proof of type Proof. The easiest way to use it is to give a name to
the theorem and the proof, write a defining equation for each, and save the
definitions in a file. Don’t try to type in proofs interactively! Follow the
defining equations above for example theorem and proof1 as a model.

There are many things that can go wrong with a proof. The proof checker
tries to give the best messages possible, but sometimes it is hard to debug a
proof. Actually, proof debugging has much in common with program debug-
ging. See the book’s web page for hints on debugging proofs.

6.7 Boolean Algebra: Equational Reasoning

We have already looked at two major approaches to propositional logic: the
semantic approach with truth tables, and the syntactic approach with the
inference rules of natural deduction. We now look at the third major system,
Boolean algebra, which is an axiomatic approach to logic.

The earliest attempts to develop a formal logic system were based on in-
ference. The most famous of these was Aristotle’s Theory of Syllogisms, which
profoundly affected the entire development of logic and philosophy for more
than two thousand years.

During the past several centuries, however, a completely different style of
mathematical reasoning appeared: algebra. Algebraic techniques were enor-
mously successful for reasoning about numbers, polynomials, and functions.
One of the most appealing benefits of algebra is that many problems can be
expressed as an equation involving an unknown quantity x that you would
like to determine; you can then use algebraic laws to manipulate the equation
systematically in order to solve for x.

A natural question is: can the power of algebraic techniques be applied
to other areas of mathematics? Perhaps the most famous such application is
Descartes’ analytical geometry. George Boole, a nineteenth century British
mathematician, saw that algebraic methods might also be applied to make
formal logical reasoning easier, and he attempted to create such a system. A
successful modern algebraic approach to logic has been developed and is named
in his honour.

Boolean algebra is a form of equational reasoning. There are two crucial
ideas: (1) you show that two values are the same by building up chains of
equalities, and (2) you can substitute equals for equals in order to add a new
link to the chain.

A chain of equalities relies on the fact that if you know a = b and also b = c,
then you can deduce formally that a = c. For example, the following chain of
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equations allows us to conclude that a = e:

a = b

= c

= d

= e

Substituting equals for equals means that if you know x = y, and if you
have a big expression that contains x, then you can replace x by y without
changing the value of the big expression. For example, suppose you’re given
that x = 2 + p and y = 5 × x + 3. Then you replace x by 2 + p, resulting in
y = 5 × (2 + p) + 3.

There is a minor but important point to observe in the example above: you
have to use parentheses properly to ensure that the value you substitute into
the expression sticks together as one value. In this example, we had to put
parentheses around the value 2 + p, because otherwise we would have written
the incorrect equation y = 5 × 2 + p + 3, which has a quite different meaning.

When we build a chain of equations using Boolean algebra, it’s good practice
to give a justification for each step in the chain. The justifications help a reader
to understand the proof, and they also make it easier to check that the proof
is actually valid. A standard way to write chains of equations is to start each
line (except the first) with an = sign, followed by the next expression in our
chain, followed by the justification which explains how we obtained it from the
previous expression. You’ll see plenty of examples as we work through the laws
of Boolean algebra.

6.7.1 The Laws of Boolean Algebra

Modern Boolean algebra is based on a set of equations that describe the basic
algebraic properties of propositions. These equations are called laws; a law is
a proposition that is always true, for every possible assignment of truth values
to the logical variables.

The laws of Boolean Algebra are analogous to ordinary algebraic laws. For
example, elementary algebra has commutative equations for addition and mul-
tiplication, x+ y = y +x and x× y = y ×x. There are analogous commutative
laws for ∨ and ∧, saying that x ∨ y = y ∨ x and x ∧ y = y ∧ x. It can be
enlightening to compare the laws of Boolean algebra with those of elementary
algebra, but don’t get carried away: there are differences as well as similarities.

There is one particularly dangerous trap. In many ways, logical And (∧)
behaves like multiplication (×) while logical Or (∨) behaves like addition (+).
In fact, these similarities have tempted many people to use the + symbol for
Or and the × symbol (or ·) for And. George Boole carried similar analogies
very far—much too far—in his original work.

However, ∧ does not behave like × in all respects, and ∨ does not behave
like + in all respects (see, for example, Section 6.7.4). Reading too much sig-
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nificance into the similarities between laws on numeric and Boolean operations
can lead you astray.

The essence of algebra is not that there are fundamental addition and mul-
tiplication operators that appear everywhere. The essential idea is that we can
use equations to state axioms on a set of operators, and then use equational
reasoning to explore the properties of the resulting system. Some algebraic sys-
tems have addition and multiplication operators, and some algebraic systems
don’t. Boolean algebra doesn’t.

Table 6.1 summarises the laws of Boolean Algebra, and we’ll discuss them
in more detail in the following sections. If we were mainly concerned with
the foundations of algebra, our aim would be to take the smallest possible set
of equations as axioms and to derive other ones as theorems. However, we
are more concerned here with the practical application of Boolean algebra in
computer science, so Table 6.1 gives a richer set of laws that are easier to use
for practical calculation than a minimal set of axioms would be.

6.7.2 Operations with Constants

These simple laws describe how ∧ and ∨ interact with the Boolean constants
True and False.

a ∧ False = False {∧ null}
a ∨ True = True {∨ null}
a ∧ True = a {∧ identity}
a ∨ False = a {∨ identity}

Often it’s possible to simplify Boolean expressions with equational reasoning
using the constant laws. If you already know what the final simplified result will
be, then the equational reasoning serves as a proof of the equation. Here, for
example, is a simplification of the expression (P ∧ True) ∨ False. Alternatively,
the following reasoning is a proof of the equation (P ∧ True) ∨ False = P .

(P ∧ True) ∨ False
= P ∧ True {∨ identity}
= P {∧ identity}

Note the form of the proof. We are trying to prove an equation, and the
proof consists of a chain of equations. The chain begins with the left-hand side
of the theorem and ends with the right-hand side of the theorem. Each step of
the chain is justified by one of the laws of Boolean algebra, and the name of
the law is written to the right.

Exercise 25. Simplify (P ∧ False) ∨ (Q ∧ True).

Exercise 26. Prove the equation (P ∧ False) ∧ True = False.
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Table 6.1: Laws of Boolean Algebra

a ∧ False = False {∧ null}
a ∨ True = True {∨ null}
a ∧ True = a {∧ identity}
a ∨ False = a {∨ identity}

a → a ∨ b {disjunctive implication}
a ∧ b → a {conjunctive implication}
a ∧ a = a {∧ idempotent}
a ∨ a = a {∨ idempotent}
a ∧ b = b ∧ a {∧ commutative}
a ∨ b = b ∨ a {∨ commutative}

(a ∧ b) ∧ c = a ∧ (b ∧ c) {∧ associative}
(a ∨ b) ∨ c = a ∨ (b ∨ c) {∨ associative}

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) {∧ distributes over ∨}
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) {∨ distributes over ∧}

¬(a ∧ b) = ¬a ∨ ¬b {DeMorgan’s law}
¬(a ∨ b) = ¬a ∧ ¬b {DeMorgan’s law}

¬True = False {negate True}
¬False = True {negate False}
a ∧ ¬a = False {∧ complement}
a ∨ ¬a = True {∨ complement}
¬(¬a) = a {double negation}

a ∧ (a → b) → b {Modus Ponens}
(a → b) ∧ ¬b → ¬a {Modus Tollens}
(a ∨ b) ∧ ¬a → b {disjunctive syllogism}

(a → b) ∧ (b → c) → a → c {implication chain}
(a → b) ∧ (c → d) → (a ∧ c) → (b ∧ d) {implication combination}

(a ∧ b) → c = a → (b → c) {Currying}
a → b = ¬a ∨ b {implication}
a → b = ¬b → ¬a {contrapositive}

(a → b) ∧ (a → ¬b) = ¬a {absurdity}

a ↔ b = (a → b) ∧ (b → a) {equivalence}
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6.7.3 Basic Properties of ∧ and ∨
The following laws describe the basic properties of the ∧ and ∨ operators. An
idempotent property allows you to collapse expressions like a∧a∧a down to just
a. Commutativity means that the order of the operands can be reversed, and
associativity means that the grouping of parentheses can be changed without
affecting the meaning.

a → a ∨ b {disjunctive implication}
a ∧ b → a {conjunctive implication}
a ∧ a = a {∧ idempotent}
a ∨ a = a {∨ idempotent}
a ∧ b = b ∧ a {∧ commutative}
a ∨ b = b ∨ a {∨ commutative}

(a ∧ b) ∧ c = a ∧ (b ∧ c) {∧ associative}
(a ∨ b) ∨ c = a ∨ (b ∨ c) {∨ associative}

Commutative operators take two operands, but the order doesn’t matter.
The commutative properties are often needed to put an expression into a form
where you can use another of the identities. Although we don’t have a law
saying that False∧a = False, the commutativity of ∧ can be applied to rearrange
an expression so that the law we do have, a ∧ False = False, becomes usable.
As an example, here is a proof of the equation (False ∧ P ) ∨ Q = Q:

(False ∧ P ) ∨ Q
= (P ∧ False) ∨ Q {∧ commutative}
= False ∨ Q {∧ null}
= Q ∨ False {∨ commutative}
= Q {∨ identity}

An associative operator gives the same result regardless of grouping. For
example, ordinary addition is associative, so 2 + (3 + 4) = (2 + 3) + 4. In a
similar way, ∧ and ∨ are both associative.

Since the parentheses don’t actually affect the result in an expression where
an associative operator is repeated, you can safely omit them. For example,
we commonly write expressions like 2 + x + y, without insisting on 2 + (x + y)
or (2 + x) + y. The same thing happens in Boolean algebra: the propositions
P ∧Q∧R and A∨B∨C ∨D are unambigous because the ∧ and ∨ operators are
associative, and it makes no difference what order the operations are performed.
When you mix different operators, however, parentheses are important: P ∧
(Q ∨ R) is not the same thing as (P ∧ Q) ∨ R.

Exercise 27. Prove (P ∧ ((Q ∨ R) ∨ Q)) ∧ S = S ∧ ((R ∨ Q) ∧ P ).

Exercise 28. Prove P ∧ (Q ∧ (R ∧ S)) = ((P ∧ Q) ∧ R) ∧ S.
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6.7.4 Distributive and DeMorgan’s Laws

The laws in this section describe some important properties of expressions that
contain both the ∨ and ∧ operators.

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) {∧ distributes over ∨}
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) {∨ distributes over ∧}

¬(a ∧ b) = ¬a ∨ ¬b {DeMorgan’s law}
¬(a ∨ b) = ¬a ∧ ¬b {DeMorgan’s law}

The distributive laws are analogous to the way multiplication distributes
over addition in elementary algebra: a×(b+c) = (a×b)+(a×c). However, it is
not the case that addition distributes over multiplication, because a+(b×c) �=
(a + b) × (a + c). Here is a significant reason that you should not think of ∨
and ∧ as being addition and multiplication.

There is an intuitive reading for both of DeMorgan’s laws. The proposition
¬(a∧ b) says ‘a and b aren’t both true’. An equivalent way to say this is ‘either
a or b must be false,’ which corresponds to ¬a ∨ ¬b.

Exercise 29. Give an intuitive explanation of the second DeMorgan’s law.

6.7.5 Laws on Negation

The following laws state some simple properties of logical negation (¬). We’ll
see some more subtle properties in the following section, where negation is
mixed with implication.

¬True = False {negate True}
¬False = True {negate False}
a ∧ ¬a = False {∧ complement}
a ∨ ¬a = True {∨ complement}
¬(¬a) = a {double negation}

The following example shows how equational reasoning can be used to sim-
plify P ∧ ¬(Q ∨ P ):

P ∧ ¬(Q ∨ P )
= P ∧ (¬Q ∧ ¬P ) {DeMorgan’s law}
= P ∧ (¬P ∧ ¬Q) {∧ commutative}
= (P ∧ ¬P ) ∧ ¬Q {∧ associative}
= False ∧ ¬Q {∧ complement}
= ¬Q ∧ False {∧ commutative}
= False {∧ null}
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6.7.6 Laws on Implication

The laws on implication are frequently useful for solving problems, and they are
also subtle enough to warrant careful study—especially the ones that combine
the → and ¬ operators. Note that some of these laws are implications, and
others are equations. A good way to understand an implication law is to find
a counterexample demonstrating that it would not be valid as an equation.
For example, the conjunctive implication law says that the conjunction a ∧ b
implies a. However, it is not valid to write the implication in the other direction:
a → (a ∧ b) is False when a = True and b = False.

a ∧ (a → b) → b {Modus Ponens}
(a → b) ∧ ¬b → ¬a {Modus Tollens}
(a ∨ b) ∧ ¬a → b {disjunctive syllogism}

(a → b) ∧ (b → c) → a → c {implication chain}
(a → b) ∧ (c → d) → (a ∧ c) → (b ∧ d) {implication combination}

(a ∧ b) → c = a → (b → c) {Currying}
a → b = ¬a ∨ b {implication}
a → b = ¬b → ¬a {contrapositive}

(a → b) ∧ (a → ¬b) = ¬a {absurdity}

Consider the Currying law, which is a logical form of Curried function
arguments (which will be covered in Chapter 11). Suppose two conditions a
and b are sufficient to ensure that c must be true. The Currying law says, in
effect, that there are two equivalent ways to establish that a and b both hold:
either we can require that a ∧ b is true, or we can require that an implication
on a is satisfied and also an implication on b. If either a or b is false, then a∧ b
will be false, so the implication (a ∧ b) → c is vacuous. Furthermore at least
one of the implications in a → (b → c) will also be vacuous.

The second law, a → b = ¬a ∨ b, often provides the easiest way to prove
implications in Boolean algebra. Notice that one side of the equation contains
the → operator and the other doesn’t; therefore you can use this equation to
introduce a → where none was present before. Boolean algebra doesn’t have
any notion of inference, so you can’t prove a proposition containing a → with
an introduction rule.

The contrapositive law lets you turn around an implication. Suppose you
know that a → b; then if b is false it can’t be the case that a is true.

The absurdity law is quite powerful, because it allows us to deduce the
value of a just from implications on a. This is worth thinking about: you
might expect that an implication a → b tells you something about b if you
know a, but it can’t tell you whether a is true. Suppose, however, we know
both a → b and also a → ¬b. Then a can’t be true because b ∧ ¬b can’t be
true.
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6.7.7 Equivalence

Strictly speaking, we don’t need the logical equivalence operator ↔ at all. The
proposition a ↔ b is simply an abbreviation for (a → b) ∧ (b → a), as stated
by the following equation.

a ↔ b = (a → b) ∧ (b → a) {equivalence}

Logical equivalence is essentially similar to equality, but there is a subtle
distinction. The well-formed formula P ∧P ↔ P is a single proposition, which
happens to have the value True. In contrast, the equation P ∧ P = P is not
a proposition. It is an equation, whose left and right-hand sides are proposi-
tions. The equation is a statement in the meta-language about propositions
that are expressed in the object language. You can say that two propositions
have the same value in either language; if you’re in the meta-language, talking
about propositions, use =, but if you’re in the object language, trying to write
propositions that express properties of other propositions, use ↔.

Exercise 30. Prove the following statements using equational reasoning with
the laws of Boolean algebra:

(A ∨ B) ∧ B ↔ B

[∧ absorption]

Exercise 31.

((¬A ∧ B) ∨ (A ∧ ¬B)) ↔ (A ∨ B) ∧ (¬(A ∧ B))

[half adder]

Exercise 32.
¬(A ∧ B) ↔ ¬A ∨ ¬B

[Restriction: This is DeMorgan’s first law. Do not use that law in the
proof. You may use DeMorgan’s other law.]

Exercise 33.

(A ∨ B) ∧ (¬A ∨ C) ∧ (B ∨ C) ↔ (A ∨ B) ∧ (¬A ∨ C)

6.8 Logic in Computer Science

Logic and computer science are strongly connected subjects. Each one has a
major influence on the other. The proof checking software described in Section
6.6 is a typical example of the application of computing to logic. In this section,
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we’re concerned with the other direction: the benefits of logic to computing.
There are far too many applications of logic to computing to mention them all
here. This section describes just a few examples in order to help put the topics
in this chapter into perspective. Section 6.10 gives references that will tell you
more about these topics.

Formal correctness of software. Many large programming projects have
been devastated by ineradicable bugs. There has been much discussion of
the ‘Software Crisis’: how can we write software that works correctly? One
approach to this problem is to use mathematics to specify what the software is
supposed to do and to prove its correctness. There are many different methods
for doing this, but ultimately they are all based on formal logical reasoning.

In general, it doesn’t work very well to take a poorly-written program and
try to prove it correct. Even if the program contains no bugs, the sloppy
structure will make the logical correctness proof impossibly difficult. However,
there has been considerable success in using the formal logical reasoning to help
derive the software from a mathematical specification.

The Curry-Howard Isomorphism and type systems. Many modern
programming languages—especially functional languages like Haskell—have
powerful and expressive type systems. We need effective methods to help deal
with type systems: to help programmers understand them, to help compiler
writers implement them, and to help language designers to specify them.

There is a remarkable connection between the inference rules of logic and
the typing rules of programming languages; in fact, they are essentially the
same! This connection was observed in the 1950s by the logicians Curry and
Howard, and has ultimately resulted in great improvements in programming
languages.

Linear logic and access control. Often in computing, we are concerned
with controlling the access to some resource. One example arises in functional
programming, where array operations can be implemented more efficiently if
the compiler can guarantee that the program observes certain constraints on
the way the array is accessed.

There is a logical system, called linear logic, which keeps track of where each
intermediate result in an inference proof is used. The inference rules of linear
logic are careful to discharge every assumption exactly once, and intermediate
results must also be discharged. The system is able to express certain kinds
of resource utilisation through the inference rules. There is significant current
research on the application of linear logic to language design and compilers.

Digital hardware design. Computers are built out of digital hardware.
These circuits are very complex, containing enormous numbers of components.
Discrete mathematics is an essential tool for designing digital circuits. Using
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the mathematics makes the design process easier and also makes it possible to
prove that a circuit is correct. In Chapter 13 we will return to this application
in more detail.

6.9 Meta-Logic

Meta-Logic is concerned with stepping outside the language of logic, so that
we can make general statements about the properties of the logical system
itself. Meta-logic enables us to talk about logic rather than just saying things
in logic. Within the logical system, the only elements of our vocabulary are the
propositional variables and logical operators; we can say things like A ∧ B →
A ∨ B but that’s all. The purpose of meta-logic is to enable us to think about
deeper questions.

At this point, we have covered three quite different methods for reasoning
about propositions: truth tables, logical inference, and Boolean algebra. These
methods have completely different styles:

• Truth tables enable us to calculate the values (or meanings) of proposi-
tions, given the values of their variables. The basic technique is calcu-
lation, and it results in a logical value (True or False). The meaning of
an expression is called its semantics, so calculation with truth tables is a
form of semantic reasoning.

• Inference rules enable us to prove theorems. The basic technique involves
matching the structures of propositions with the structure of the formulas
in the inference rules. The structure of an expression is called its syntax,
so logical inference is a form of syntactic reasoning.

• Boolean algebra allows the use of equational reasoning to prove the equal-
ity of two expressions, or to calculate the values of expressions. It applies
the power of algebra to the subject of logic.

Just as propositional logic needs a vocabulary for talking about truth values
(∧, ∨ etc.), meta-logic needs a vocabulary for talking about logical reasoning
itself. There are two fundamental operator symbols in meta-logic, |= and �,
which correspond to semantic and syntactic reasoning respectively. We have
already defined these operators. Recall that:

• P1, P2, . . . , Pn � Q means that there is a proof which infers the conclu-
sion Q from the assumptions P1, . . . , Pn using the formal inference rules
of natural deduction;

• P1, P2, . . . , Pn |= Q means that Q must be True if P1, . . . , Pn are all
True, but it says nothing about whether we have a proof, or indeed even
whether a proof is possible.
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The |= and the � operators are describing two different notions of truth,
and it’s important to know whether they are in fact equivalent. Is it possible
to prove a theorem that is false? Is there a true theorem for which no proof
exists?

Definition 13. A formal system is consistent if the following statement is true
for all well-formed formulas a and b:

If a � b then a |= b.

In other words, the system is consistent if each proposition provable using
the inference rules is actually true.

Definition 14. A formal system is complete if the following statement is true
for all well formed formulas a and b:

If a |= b then a � b.

In other words, the system is complete if the inference rules are powerful
enough to prove every proposition which is true.

Fortunately, it turns out that propositional logic is both consistent and
complete. This means that you can’t prove false theorems and if a theorem is
true it has a proof.

Theorem 56. Propositional logic is consistent and complete.

You can find the proof of Theorem 56 in some of the books suggested in
the next section. It is interesting to note, however, that this is a (meta-logical)
theorem that is proved mathematically; it isn’t just an assumption.

There are many logical systems, and some of them are much richer and
more expressive than propositional logic. In the next chapter we will look at
a more powerful logical system called predicate logic, which is also consistent
and complete.

It turns out that any logical system that is powerful enough to express
ordinary arithmetic must be either inconsistent or incomplete. This means it’s
impossible to capture all of mathematics in a safe logical system. This result,
the famous Gödel’s Theorem, has had a profound impact on the philosophy of
mathematics and is also relevant to theoretical computer science.

6.10 Suggestions for Further Reading

Logic plays an increasingly important role in computer science, and there are
many books and papers where you can learn more about the connections be-
tween these two subjects. There is a regular international conference, Logic in
Computer Science (LICS), devoted to current research. A number of recom-
mendations for further reading are given below; the complete citations appear
in the Bibliography.
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• Forever Undecided: A Puzzle Guide to Gödel, by Raymond Smullyan
[28]. This is a collection of puzzles set on an island of Knights and
Knaves. Knights are always truthful, and knaves always lie. The tricky
problem is that you can’t tell whether someone is a knight or a knave
simply by looking at them. A typical problem is to think of a question to
ask someone that will enable you to figure out what you want to know,
regardless of whether the person you ask happens to be a knight or a
knave. Smullyan manages to capture the essence of several meta-logical
problems, including the famous Incompleteness Theorem of Gödel, and to
express deep problems in terms of entertaining and relatively elementary
puzzles. This book is a classic of logic and philosophy. Don’t miss it!

• Gödel, Escher, Bach: An Eternal Golden Braid, by Douglas R. Hofstadter
[17] is ‘A metaphorical fugue on minds and machines in the spirit of Lewis
Carroll.’ The themes of the book are drawn from mathematics, art, music,
cognitive science, and computer science. Another unmissable classic.

• How To Prove It: A Structured Approach, by Daniel J. Velleman [33], is
a systematic presentation of the standard methods for logical reasoning
in carrying out proofs. This is a good source for hints on technique, and
it contains lots of examples.

• Computer-Aided Reasoning: An Approach, by M. Kaufmann, P. Mano-
lios, and J. Strother Moore [1], describes ACL2, a combination program-
ming language and theorem prover that is used in commercial applica-
tions, including avionics and verification of VLSI circuits.

• Introduction to HOL: A theorem proving environment for higher order
logic, by M. Gordon and T. Melham, describes a logical system that is
more general than the one presented in this chapter, and also documents
a software tool that helps to develop and check proofs. HOL has been
used in many practical applications.

• Logic for Mathematics and Computer Science, by Stanley N. Burris [6], is
a more advanced coverage of mathematical logic. It gives detailed presen-
tations of some important proof techniques that are useful for automated
systems. There is also a good explanation of some interesting historical
topics, including syllogisms and Boole’s original attempt to apply algebra
to logic.

• A Mathematical Introduction to Logic, by Herbert B. Enderton [10], gives
a standard presentation of logic from a mathematical perspective, includ-
ing advanced topics such as models, soundness and completeness, and
undecidability.

• Type Theory and Functional Programming, by Simon Thompson [31],
gives a detailed development of the relationship between the inference
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rules of natural deduction and the rules used to define type systems for
programming languages.

• Logic and Declarative Language, by Michael Downward [9], covers the
relationship between logic and declarative languages, especially logic pro-
gramming languages like Prolog.

• Proofs and Types, by Girard, Lafont and Taylor [13], presents the rela-
tionship between inference proofs and type systems at a research level.

6.11 Review Exercises

Exercise 34. Prove the following using inference rules; natural deduction and
proof-checker notation:

A ∧ ¬A � False

Exercise 35.
A � ¬(¬A)

Exercise 36.
A, A → B,B → C, C → D � D

[Note: Extension of Implication Chain Rule, Theorem 11]

Exercise 37.
A → B � ¬B → ¬A

[Note: This conclusion is called the contrapositive of the premise]

Exercise 38. For the following problems, omit the proof checker code.

A → B,A → ¬B � ¬A

Exercise 39.
¬A � (A → B) ∧ (A → ¬B)

Exercise 40.
A ∨ (B ∨ C) � (A ∨ B) ∨ C

Exercise 41. Prove P, Q, R, S � (P ∧ Q) ∧ (R ∧ S).

Exercise 42. Prove P → R � P ∧ Q → R.

Exercise 43. Use the inference rules to calculate the value of True ∨ True.
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Exercise 44. Use the inference rules to calculate the value of False → True.
Many people find the truth table definition False → True = True to be
highly counterintuitive. Back in Section 6.4, this was just an arbitrary
definition. Now, however, you can see the real reason behind the truth
table definition of →: it’s necessary in order to make the semantic truth
table definition behave consistently with the formal inference rules of
propositional logic.

Exercise 45. Suppose that you were given the following code:

logicExpr1 :: Bool -> Bool -> Bool
logicExpr1 a b = a /\ b \/ a <=> a

logicExpr2 :: Bool -> Bool -> Bool
logicExpr2 a b = (a \/ b) /\ b <=> a /\ b

Each of these functions specifies a Boolean expression. What are the truth
values of these expressions? How would you write a list comprehension
that can calculate the values for you to check your work?

Exercise 46. Work out the values of these expressions, then check with a list
comprehension:

logicExpr3 :: Bool -> Bool -> Bool -> Bool
logicExpr3 a b c
= (a /\ b) \/ (a /\ c) ==> a \/ b

logicExpr4 :: Bool -> Bool -> Bool -> Bool
logicExpr4 a b c
= (a /\ (b \/ c)) \/ (a \/ c) ==> a \/ c

Exercise 47. Using the Logic data type defined below, define a function
distribute that rewrites an expression using the distributive law, and a
function deMorgan that does the same for DeMorgan’s law.

data Logic = A | B | C
| And Logic Logic
| Or Logic Logic
| Not Logic
| Imply Logic Logic
| Equiv Logic Logic
deriving (Eq, Show)

Exercise 48. Use equational reasoning (Boolean algebra) to prove that

(C ∧ A ∧ B) ∨ C = C ∧ (C ∨ (A ∧ B)).

Exercise 49. Prove that

C ∨ (A ∧ (B ∨ C)) = ((C ∨ A) ∧ C) ∨ A ∧ B.



Chapter 7

Predicate Logic

It is frequently necessary to reason logically about statements of the form ev-
erything has the property p or something has the property p. One of the oldest
and most famous pieces of logical reasoning, which was known to the ancient
Greeks, is an example:

All men are mortal. Socrates is a man. Therefore Socrates is mortal.

In general, propositional logic is not expressive enough to support such reason-
ing. We could define a proposition P to mean ‘all men are mortal’, but P is
an atomic symbol—it has no internal structure—so we cannot do any formal
reasoning that makes use of the meaning of ‘all’.

Predicate logic, also called first order logic, is an extension to propositional
logic that adds two quantifiers that allow statements like the examples above
to be expressed. Everything in propositional logic is also in predicate logic: all
the definitions, inference rules, theorems, algebraic laws, etc., still hold.

7.1 The Language of Predicate Logic

The formal language of predicate logic consists of propositional logic, aug-
mented with variables, predicates, and quantifiers.

7.1.1 Predicates

A predicate is a statement that an object x has a certain property. Such
statements may be either true or false. For example, the statement ‘x > 5’
is a predicate, and its truth depends on the value of x. A predicate can be
extended to several variables; for example, ‘x > y’ is a predicate about x and
y.

The conditional expressions used to control execution of computer programs
are predicates. For example, the Haskell expression if x<0 then -x else x
uses the predicate x<0 to make a decision.

163
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In predicate logic, it is traditional to write predicates concisely in the form
F (x), where F is the predicate and x is the variable it is applied to. A predicate
containing two variables could be written G(x, y). A predicate is essentially a
function that returns a Boolean result. Often in this book, we will use Haskell
notation for function applications, which does not require parentheses: for
example, f x is the application of f to x. For predicate logic, we will use the
traditional notation with parentheses, F (x).

Definition 15. Any term in the form F (x), where F is a predicate name and
x is a variable name, is a well-formed formula. Similarly, F (x1, x2, . . . , xk) is a
well-formed formula; this is a predicate containing k variables.

When predicate logic is used to solve a reasoning problem, the first step is to
translate from English (or mathematics) into the formal language of predicate
logic. This means the predicates are defined; for example we might define:

F (x) ≡ x > 0
G(x, y) ≡ x > y

The universe of discourse, often simply called the universe or abbreviated
U , is the set of possible values that the variables can have. Usually the universe
is specified just once, at the beginning of a piece of logical reasoning, but this
specification cannot be omitted. For example, consider the statement ‘For
every x there exists a y such that x = 2 × y’. If the universe is the set of even
integers, or the set of real numbers, then the statement is true. However, if
the universe is the set of natural numbers then the statement is false (let x
be any odd number). If the universe doesn’t contain numbers at all, then the
statement is not true or false; it is meaningless.

Several notational conventions are very common in predicate logic, although
some authors do not follow them. These standard notations will, however, be
used in this book. The universe is called U , and its constants are written as
lower-case letters, typically c and p (to suggest a constant value, or a particular
value). Variables are also lower-case letters, typically x, y, z. Predicates are
upper-case letters F , G, H, . . .. For example, F (x) is a valid expression in the
language of predicate logic, and its intuitive meaning is ‘the variable x has the
property F ’. Generic expressions are written with a lower-case predicate; for
example f(x) could stand for any predicate f applied to a variable x.

7.1.2 Quantifiers

There are two quantifiers in predicate logic; these are the special symbols ∀
and ∃.

Definition 16. If F (x) is a well-formed formula containing the variable x,
then ∀x. F (x) is a well-formed formula called a universal quantification. This
is a statement that everything in the universe has a certain property: ‘For all



7.1. THE LANGUAGE OF PREDICATE LOGIC 165

x in the universe, the predicate F (x) holds’. An alternative reading is ‘Every
x has the property F ’.

Universal quantifications are often used to state required properties. For
example, if you want to say formally that a computer program will give the
correct output for all inputs, you would use ∀. The upside-down A symbol is
intended to remind you of All.

Example 1. Let U be the set of even numbers. Let E(x) mean x is even.
Then ∀x. E(x) is a well-formed formula, and its value is true.

Example 2. Let U be the set of natural numbers. Let E(x) mean x is even.
Then ∀x. E(x) is a well-formed formula, and its value is false.

Definition 17. If F (x) is a well-formed formula containing the variable x, then
∃x. F (x) is a well-formed formula called an existential quantification. This is a
statement that something in the universe has a certain property: ‘There exists
an x in the universe for which the predicate F (x) holds’. An alternative reading
is ‘Some x has the property F ’.

Existential quantifications are used to state properties that must occur at
least once. For example, we might want to state that a database contains
a record for a certain person; this would be done with ∃. The backwards E
symbol is reminiscent of Exists.

Example 3. Let U be the set of natural numbers. Let F (x, y) be defined as
2 × x = y. Then ∃x.F (x, 6) is a well-formed formula; it says that there is a
natural number x which gives 6 when doubled; 3 satisfies the predicate, so the
formula is true. However, ∃x. F (x, 7) is false.

Quantified expressions can be nested. Let the universe be the set of inte-
gers, and define F (x) = ∃y. x < y; thus F (x) means ‘There is some number
larger than x’. Now we can say that every integer has this property by stating
∀x.F (x). An equivalent way to write this is ∀x. (∃y. x < y). The parentheses
are not required, since there is no ambiguity in writing ∀x. ∃y. x < y. All the
quantified variables must be members of the universe.

In the example above, both x and y are integers. However, it is often useful
to have several variables that are members of different sets. For example,
suppose we are reasoning about people who live in cities, and want to make
statements like ‘There is at least one person living in every city’. It is natural
to define L(x, y) to mean ‘The person x lives in the city y’, and the expression
∀x.∃y.L(y, x) then means ‘Every city has somebody living in it’. But what is
the universe?

The way to handle this problem is to define a separate set of possible values
for each variable. For example, let C = {London,Paris,Los Angeles,München}
be the set of cities, and let P = {Smith, Jones, · · · } be the set of persons.
Now we can let the universe contain all the possible variable values: U =
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C∪P . Quantified expressions need to restrict each variable to the set of relevant
values, as it is no longer intended that a variable x could be any element of U .
This is expressed by writing ∀x ∈ S. F (x) or ∃x ∈ S. F (x), which say that x
must be an element of S (and therefore also a member of the universe). Now
the statement ‘There is at least one person living in every city’ is written

∀x ∈ C. ∃y ∈ P. L(y, x).

Universal quantification over an empty set is vacuously true, and existential
quantification over an empty set is vacuously false. Often we require that the
universe is non-empty, so quantifications over the universe are not automati-
cally true or false.

7.1.3 Expanding Quantified Expressions

If the universe is finite (or if the variables are restricted to a finite set), ex-
pressions with quantifiers can be interpreted as ordinary terms in propositional
logic. Suppose U = {c1, c2, . . . , cn}, where the size of the universe is n. Then
quantified expressions can be expanded as follows:

∀x. F (x) = F (c1) ∧ F (c2) ∧ · · · ∧ F (cn) (7.1)
∃x. F (x) = F (c1) ∨ F (c2) ∨ · · · ∨ F (cn) (7.2)

With a finite universe, therefore, the quantifiers are just syntactic abbrevi-
ations. With a small universe it is perfectly feasible to reason directly with the
expanded expressions. In many computing applications the universe is finite
but may contain millions of elements; in this case the quantifiers are needed to
make logical reasoning practical, although they are not needed in principle.

If the variables are not restricted to a finite set, it is impossible even in
principle to expand a quantified expression. It may be intuitively clear to write
F (c1) ∧ F (c2) ∧ F (c3) ∧ · · · , but this is not a well-formed formula. Every well-
formed formula has a finite size, although there is no bound on how large a
formula may be. This means that in the presence of an infinite universe, quan-
tifiers make the language of predicate logic more expressive than propositional
logic.

The expansion formulas, Equations 7.1 and 7.2, are useful for computing
with predicates.

Example 4. Let the universe U = {1, 2, 3}, and define the predicates even
and odd as follows:

even x ≡ (x mod 2 = 0)
odd x ≡ (x mod 2 = 1)
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Two quantified expressions will be expanded and evaluated using these defini-
tions:

∀x.
(
even x → ¬(odd x)

)
= (even 1 → ¬(odd 1)) ∧ (even 2 → ¬(odd 2)) ∧ (even 3 → ¬(odd 3))
= (False → ¬True) ∧ (True → ¬False) ∧ (False → ¬True)
= True ∧ True ∧ True
= True

∃x. (even x ∧ odd x)
= (even 1 ∧ odd 1) ∨ (even 2 ∧ odd 2) ∨ (even 3 ∧ odd 3)
= (False ∧ True) ∨ (True ∧ False) ∨ (False ∧ True)
= False ∨ False ∨ False
= False

Example 5. Let S = {0, 2, 4, 6} and R = {0, 1, 2, 3}. Then we can state that
every element of S is twice some element of R as follows:

∀x ∈ S. ∃y ∈ R. x = 2 × y

This can be expanded into a quantifier-free expression in two steps. The first
step is to expand the outer quantifier:

(∃y ∈ R. 0 = 2 × y)
∧ (∃y ∈ R. 2 = 2 × y)
∧ (∃y ∈ R. 4 = 2 × y)
∧ (∃y ∈ R. 6 = 2 × y)

The second step is to expand all four of the remaining quantifiers:(
(0 = 2 × 0) ∨ (0 = 2 × 1) ∨ (0 = 2 × 2) ∨ (0 = 2 × 3)

)
∧ (

(2 = 2 × 0) ∨ (2 = 2 × 1) ∨ (2 = 2 × 2) ∨ (2 = 2 × 3)
)

∧ (
(4 = 2 × 0) ∨ (4 = 2 × 1) ∨ (4 = 2 × 2) ∨ (4 = 2 × 3)

)
∧ (

(6 = 2 × 0) ∨ (6 = 2 × 1) ∨ (6 = 2 × 2) ∨ (6 = 2 × 3)
)

Two short cuts have been taken in the notation here. (1) Since every quantified
variable is restricted to a set, the universe was not stated explicitly; however
we can define U = S ∪ R. (2) Instead of defining F (x, y) to mean x = 2 × y
and writing ∀x ∈ S. ∃y ∈ R. F (x, y), we simply wrote the expression x = 2 × y
inside the expression. Both short cuts are frequently used in practice.

Exercise 1. Let the universe U = {1, 2, 3}. Expand the following expressions
into propositional term (i.e., remove the quantifiers):

(a) ∀x. F (x)

(b) ∃x. F (x)

(c) ∃x. ∀y. G(x, y)

Exercise 2. Let the universe be the set of integers. Expand the following
expression: ∀x ∈ {1, 2, 3, 4}. ∃y ∈ {5, 6}. F (x, y)
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7.1.4 The Scope of Variable Bindings

Quantifiers bind variables by assigning them values from a universe. A dangling
expression without explicit quantification, such as x+2, has no explicit variable
binding. If such an expression appears, x is assumed implicitly to be an element
of the universe, and the author should have told you explicitly somewhere what
the universe is.

The extent of a variable binding is called its scope. For example, the scope
of x in the expression ∃x. F (x) is the subexpression F (x). For ∀x ∈ S. ∃y ∈
R. F (x, y), the scope of x is ∃y ∈ R. F (x, y), and the scope of y is F (x, y).

It is good practice to use parentheses to make expressions clear and readable.
The expression

∀x. p(x) ∨ q(x)

is not clear: it can be read in two different ways. It could mean either

∀x. (p(x) ∨ q(x))

or
(∀x. p(x)) ∨ q(x).

It is probably best to use parentheses in case of doubt, but there is a conven-
tion that resolves unclear expressions: the quantifier extends over the smallest
subexpression possible unless parentheses indicate otherwise. In other words,
the scope of a variable binding is the smallest possible. So, in the assertion
given above, the variable x in q(x) is not bound by the ∀, so it must have been
bound at some outer level (i.e., this expression has to be embedded inside a
bigger one).

Often the same quantifier is used several times in a row to define several
variables:

∀x. ∀y. F (x, y)

It is common to write this in an abbreviated form, with just one use of the ∀
operator followed by several variables separated by commas. For example, the
previous expression would be abbreviated as follows:

∀x, y. F (x, y)

This abbreviation may be used for any number of variables, and it can also be
used if the variables are restricted to be in a set, as long as they all have the
same restriction. For example, the abbreviated expression

∀x, y, z ∈ S. F (x, y, z)

is equivalent to the full expression

∀x ∈ S. ∀y ∈ S. ∀z ∈ S. F (x, y, z).
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7.1.5 Translating Between English and Logic

Sometimes it is straightforward to translate an English statement into logic. If
an English statement has no internal structure that is relevant to the reasoning,
it can be represented by an ordinary propositional variable:

A ≡ Elephants are big.
B ≡ Cats are furry.
C ≡ Cats are good pets.

An English statement built up with words like and, or, not, therefore, and so
on, where the meaning corresponds to the logical operators, can be represented
by a propositional expression.

¬A ≡ Elephants are small.
A ∧ B ≡ Elephants are big and cats are furry.
B → C ≡ If cats are furry then they make good pets.

Notice in the examples above that no use has been made of the internal
structure of the English statements. (The sentence ‘elephants are small’ may
appear to violate this, but it could just as easily have been written ‘it is untrue
that elephants are big’, which corresponds exactly to ¬A.)

When general statements are made about classes of objects, then predicates
and quantifiers are needed in order to draw conclusions. For example, suppose
we try these definitions in propositional logic, without using predicates:

A ≡ Small animals are good pets.
C ≡ Cats are animals.
S ≡ Cats are small.

In ordinary conversation, it would be natural to conclude that cats are good
pets, but this cannot be concluded with propositional logic. All we have are
three propositions: A, C, and S are known, but nothing else, and the only
conclusions that can be drawn are uninteresting ones like A∧C, S ∨A, and the
like. The substantive conclusion, that cats are good pets, requires reasoning
about the internal structure of the English statements. The solution is to use
predicates to give a more refined translation of the sentences:

A(x) ≡ x is an animal.
C(x) ≡ x is a cat.
S(x) ≡ x is small.
GP (x) ≡ x is a good pet.

Now a much richer kind of English sentence can be translated into predicate
logic:

∀x. C(x) → A(x) ≡ Cats are animals.
∀x. C(x) → S(x) ≡ Cats are small.
∀x. C(x) → S(x) ∧ A(x) ≡ Cats are small animals.
∀x. S(x) ∧ A(x) → GP (x) ≡ Small animals are good pets.
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It is generally straightforward to translate from formal predicate logic into
English, since you can just turn each logical operator directly into an English
word or phrase. For example,

∀x. S(x) ∧ A(x) → GP (x)

could be translated into English literally:

(1) For every thing, if that thing is small and that thing is an animal,
then that thing is a good pet.

This is graceless English, but at least it’s comprehensible and correct. The
style can be improved:

(2) Everything which is small and which is an animal is a good pet.

Even better would be:

(3) Small animals make good pets.

Such stylistic improvements in the English are optional. It is important to be
sure that the effort to improve the literary style doesn’t affect the meaning,
but this is a question of proper usage of natural language, not of formal logic.

It is sometimes trickier to translate from English into formal logic, precisely
because the English usually does not correspond obviously to the logical quan-
tifiers and operators. Sentence (1) above can be translated straightforwardly
into logic, sentence (3) is harder. The difficulty is not really in the logic; it is
in figuring out exactly what the English sentence says.

Often the real difficulty in translating English into logic is in figuring out
what the English says, or what the speaker meant to say. For example, many
people make statements like ‘All people are not rich’. What this statement
actually says is

∀x.¬R(x),

where the universe is the set of people and R(x) means ‘x is rich’. What is
usually meant, however, by such a statement is

¬∀x. R(x),

that is, it is not true that all people are rich (alternatively, not all people are
rich). The intended meaning is equivalent to

∃x. ¬R(x).

Such problems of ambiguity or incorrect grammar in English cannot be solved
mathematically, but they do illustrate one of the benefits of mathematics: sim-
ply translating a problem from English into formal logic may expose confusion
or misunderstanding.
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Example 6. Consider the translation of the sentence ‘Some birds can fly’ into
logic. Let the universe be a set that contains all birds (it is all right if it contains
other things too, such as frogs and other animals). Let B(x) mean ‘x is a bird’
and F (x) mean ‘x can fly’. Then ‘Some birds can fly’ is translated as

∃x. B(x) ∧ F (x)

Warning! A common pitfall is to translate ‘Some birds can fly’ as

∃x. B(x) → F (x) Wrong translation!

To see why this is wrong, let p be a frog that somehow got into the universe.
Now B(p) is false, so B(p) → F (p) is true (remember False → False = True).
This is just saying ‘If that frog were a bird then it would be able to fly’, which
is true; it doesn’t mean the frog actually is a bird, or that it actually can
fly. However, we have now found a value of x—namely the frog p—for which
B(x) → F (x) is true, and that is enough to satisfy ∃x. B(x) → F (x), even if
all the birds in the universe happen to be penguins (which cannot fly).

Exercise 3. Express the following statements formally, using the universe
of natural numbers, and the predicates E(x) ≡ x is even and O(x) ≡
x is odd.

• There is an even number.

• Every number is either even or odd.

• No number is both even and odd.

• The sum of two odd numbers is even.

• The sum of an odd number and an even number is odd.

Exercise 4. Let the universe be the set of all animals, and define the following
predicates:

B(x) ≡ x is a bird.
D(x) ≡ x is a dove.
C(x) ≡ x is a chicken.
P (x) ≡ x is a pig.
F (x) ≡ x can fly.
W (x) ≡ x has wings.
M(x, y) ≡ x has more feathers than y does.

Translate the following sentences into logic. There are generally several
correct answers. Some of the English sentences are fairly close to logic,
while others require more interpretation before they can be rendered in
logic.

• Chickens are birds.

• Some doves can fly.
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• Pigs are not birds.

• Some birds can fly, and some can’t.

• An animal needs wings in order to fly.

• If a chicken can fly, then pigs have wings.

• Chickens have more feathers than pigs do.

• An animal with more feathers than any chicken can fly.

Exercise 5. Translate the following into English.

• ∀x. (∃ y. wantsToDanceWith (x, y))

• ∃x. (∀ y. wantsToPhone (y, x))

• ∃x. (tired (x) ∧ ∀ y. helpsMoveHouse (x, y))

7.2 Computing with Quantifiers

As long as the universe is finite, a computer is useful for evaluating logical ex-
pressions with quantifiers. This provides a good way to check your understand-
ing of expressions in predicate logic. Even more importantly, many software
applications are expressed in terms of finite sets of data that are manipulated
using predicate logic expressions.

The software tools file provides several Haskell functions that are helpful for
computing with predicate logic, and this section explains how to use them. To
keep things simple, we assume that the universe is a set of numbers represented
as a list. In programming terminology, a predicate is a function that returns a
Boolean value; this is the same meaning that predicate has in logic.

The function forall takes the universe, represented as a list of numbers,
and a predicate. It applies the predicate to each value in the universe and
returns the conjunction of the results:

forall :: [Int] -> (Int -> Bool) -> Bool

For example, forall [1,2] (>5) means ∀x. x > 5 where the universe U =
{1, 2}. The implementation of forall simply expands the quantified expres-
sion, using Equation 7.1, and then evaluates it. The expansion uses the Haskell
function and :: [Bool] -> Bool; thus F (c1) ∧ F (c2) ∧ F (c3) would be ex-
pressed in Haskell as and [f c1, f c2, f c3].

Exercise 6. Write the predicate logic expressions corresponding to the follow-
ing Haskell expressions. Then decide whether the value is True or False,
and evaluate using the computer. Note that (== 2) is a function that
takes a number and compares it with 2, while (< 4) is a function that
takes a number and returns True if it is less than 4.

forall [1,2,3] (== 2)
forall [1,2,3] (< 4)
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Like forall, the function exists applies its second argument to all of the
elements in its first argument:

exists :: [Int] -> (Int -> Bool) -> Bool

However, exists forms the disjunction of the result, using the Haskell function
or :: [Bool] -> Bool.

Exercise 7. Again, rewrite the following in predicate logic, work out the values
by hand and evaluate on the computer:

exists [0,1,2] (== 2)
exists [1,2,3] (> 5)

The functions exists and forall can be nested in the same way as quanti-
fiers can be nested in predicate logic. It’s convenient to express inner quantified
formulas as separate functions.

Example 7. ∀x ∈ {1, 2}. (∃y ∈ {1, 2}. x = y) has an inner assertion that can
be implemented as follows:

inner_fun :: Int -> Bool
inner_fun x = exists [1,2] (== x)

Now consider the evaluation of:

forall [1,2] inner_fun

The evaluation can be calculated step by step. The function and takes a list of
Boolean values and combines them all using the ∧ operation:

forall [1,2] inner_fun
= and [inner_fun 1, inner_fun 2]
= and [exists [1,2] (== 1),

exists [1,2] (== 2)]
= and [or [1==1, 2==1],

or [1==2, 2==2]]
= and [True, True]
= True

Example 8. Define:

inner_fun x = exists [1,2,3] (== x+2)
exists [1,2,3] inner_fun

Here is the evaluation:
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exists [1,2,3] inner_fun
= or [inner_fun 1, inner_fun 2, inner_fun 3]
= or [exists [1,2,3] (== 1+2),

exists [1,2,3] (== 2+2),
exists [1,2,3] (== 3+2)]

= or [or [1 == 1+2, 2 == 1+2, 3 == 1+2],
or [1 == 2+2, 2 == 2+2, 3 == 2+2],
or [1 == 3+2, 2 == 3+2, 3 == 3+2]]

= or [or [False, False, True],
or [False, False, False],
or [False, False, False]]

= or [True, False, False]
= True

An important distinction between mathematical quantification and the Has-
kell functions exists and forall is that quantification is defined over both
finite and infinite universes, whereas these Haskell functions do not always
terminate when applied to infinite universes.

Exercise 8. Define the predicate p x y to mean x = y+1, and let the universe
be {1, 2}. Calculate the value of each of the following expressions, and
then check your solution using Haskell.

(a) ∀x. (∃ y. p(x, y))

(b) ∃x, y. p(x, y)

(c) ∃x. (∀ y. p(x, y))

(d) ∀x, y. p(x, y)

7.3 Logical Inference with Predicates

The inference rules for propositional logic can be extended to handle predicate
logic as well. Four additional rules are required (Figure 7.1): an introduction
rule and an elimination rule for both of the quantifiers ∀ and ∃.

A good way to understand the inference rules of predicate logic is to view
them as generalisations of the corresponding rules of propositional logic. For
example, there is a similarity between inferring F (P ) ∧ F (Q) in propositional
logic, and inferring ∀x.F (x) in predicate logic. If the universe is finite, then the
predicate logic is not, in principle, even necessary. We could express ∀x.F (x)
by F (p1) ∧ F (p2) ∧ . . . ∧ F (pn), where n is the size of the universe. If the
universe is infinite, however, then the inference rules of predicate logic allow
deductions that would be impossible using just the propositional logic rules.

We will always assume that the universe is non-empty. This is especially
important with the rule for forall elimination, which is invalid when the universe
of discourse is empty. Also, in the rule for exists elimination, the conclusion of
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F (x) {x arbitrary}
{∀I}∀x.F (x)

∀x.F (x)
{∀E}

F (p)

F (p)
{∃I}∃x.F (x)

∃x.F (x) F (x) � A {x not free in A}
{∃E}

A

Figure 7.1: Inference Rules of Predicate Logic. In these rules, p must be an
element of the universe.

the rule (which is also the conclusion of the sequent in the hypothesis of the
rule) must be a proposition that does not depend in any way on the parameter
of the universe of discourse. That is, the proposition A in the statement of the
rule must not be a predicate that depends on x.

7.3.1 Universal Introduction {∀I}
A standard proof technique, which is used frequently in mathematics and com-
puter science, is to state and prove a property about an arbitrary value x,
which is an element of the universe, and then to interpret this as a statement
about all elements of the universe. A typical example is the following simple
theorem about Haskell lists, which says that there are two equivalent methods
for attaching a singleton x in front of a list xs. The definition of (++) is

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

Theorem 57. Let x :: a and xs :: [a]. Then x : xs = [x]++xs.

It is important to realise that this theorem is stating a property about
arbitrary x and xs. It really means that the property holds for all values of the
variables, and this could be stated more formally with an explicit quantifier:

Theorem 58. ∀x :: a. ∀xs :: [a]. x : xs = [x]++xs

These two theorems have exactly the same meaning; the only difference is
the style1 in which they are expressed: the first is a little more like English,
and the second is a little more formal. Both styles are common. For a theorem
in the first style, the use of arbitrary variables means an implicit ∀ is meant.
Now, consider the proof of this theorem; the following proof could be used for
either the formal or the informal statement of the theorem:

1For a discussion about good style in mathematics, see the pointer to Mathematical Writ-
ing in Section 7.5.
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Proof.
[x]++xs

= (x : [ ])++xs def. of notation
= x : ([ ]++xs) (++).2
= x : xs (++).1

Again, there is a significant point about this proof: it consists of formal
reasoning about one value x and one value xs, but these values are arbitrary,
and the conclusion we reach at the end of the proof is that the theorem is true
for all values of the variables. In other words, if we can prove a theorem for an
arbitrary variable, then we infer that the theorem is true for all possible values
of that variable.

These ideas are expressed formally by the following inference rule, which
says that if the expression a (which may contain a variable x) can be proved for
arbitrary x, then we may infer the proposition ∀x. a. Since this rule specifies
what we need to know in order to infer an expression containing ∀, its name is
{∀I}.

F (x) {x arbitrary}
{∀I}∀x.F (x)

To clarify exactly what this rule means, we will compare two examples: one
where it can be used, and one where it cannot. Let the universe be the set of
natural numbers N , and let E(x) be the proposition ‘x is even’. First, consider
the following theorem:

Theorem 59. � ∀x. E(x) → (
E(x) ∨ ¬E(x)

)
The proof uses the ∀ introduction rule. The important point is that this

inference does not depend on the particular value of p; thus the value of p is
arbitrary, and the {∀I} rule allows us to infer ∀x.F (x) ∨ ¬F (x).

Proof.
E(p)

{∨IL}
E(p) ∨ ¬E(p)

{→I}
E(p) → E(p) ∨ ¬E(p)

{∀I}∀x. E(x) → E(x) ∨ ¬E(x)

Now consider the following incorrect proof, which purports to show that all
natural numbers are even:
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E(2)
{∀I} Wrong!∀x.E(x)

The theorem E(2) is established for a particular value, 2. However, 2 is not
arbitrary : the proof that 2 is even relies on its value, and we could not substitute
3 without invalidating it. Because we have not proved E(x) for an arbitrary
value, the requirements of the {∀I} inference rule are not satisfied, and we
cannot conclude ∀x.E(x).

The notion of an arbitrary variable is commonly used in semi-formal treat-
ments of mathematical logic. In a completely formal presentation of logic—for
example, in proof-checking software—the requirement that variables be arbi-
trary is replaced by a purely syntactic constraint.

The problem with talking about arbitrary variables is that arbitrary is an
adjective, like blue or green. How can you look at a variable and decide whether
it is or is not “arbitrary”? In short, you cannot, because arbitrariness is a
property of the context in which the variable appears, and not the variable
itself.

The syntactic constraint on the {∀I} rule is that that the variable x is not
allowed to appear “free” (that is, unbound by a quantifier) in any undischarged
hypothesis that was used to infer F (x). For example, here is another wrong
inference:

x = 2

E(x)
{∀I} Wrong!∀x.E(x)

In this case, we have assumed x = 2 and then inferred E(x) (this would
actually require several inference steps, or recourse to an auxiliary theorem, but
it is shown here as a single inference). Now, we have E(x) above the line, so it
looks like we can use the {∀I} rule to infer ∀x.E(x). However, the proof above
the line of E(x) was based on the assumption x = 2, and x appears free in that
assumption. Furthermore, the assumption was not discharged. Consequently,
the syntactic requirement for the {∀I} rule has not been satisfied, and the
inference is not valid.

The syntactic constraint is really just a more formal way to state the same
thing as the “arbitrary variable” requirement. You can explore these issues in
more detail in the proof checker software (see the web page for this book).

7.3.2 Universal Elimination {∀E}
The universal elimination rule says that if you have established ∀x.F (x), and
p is a particular element of the universe, then you can infer F (p).
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∀x.F (x)
{∀E}

F (p)

The following theorem allows you to apply a universal implication, in the
form ∀x.F (x) → G(x), to a particular proposition F (p), and its proof illustrates
the {∀E} inference rule.

Theorem 60. F (p),∀x.F (x) → G(x) � G(p)

Proof.

F (p)

∀x.F (x) → G(x)
{∀E}

F (p) → G(p)
{→E}

G(p)

In Chapter 6 the implication chain theorem was proved; this says that from
a → b and b → c you can infer a → c. The {∀I} inference rule can be used to
prove the corresponding theorem on universal implications: from ∀x.F (x) →
G(x) and ∀x.G(x) → H(x), you can infer ∀x.F (x) → H(x). However, in order
to use {∀I} we have to establish first, for an arbitrary p in the universe, that
F (p) → H(p), and the proof of that proposition requires using the {∀E} rule
twice to prove the particular propositions F (p) → G(p) and G(p) → H(p).

Theorem 61. ∀x.F (x) → G(x),∀x.G(x) → H(x) � ∀x.F (x) → H(x)

Proof.

∀x.F (x) → G(x)
{∀E}

F (p) → G(p)

∀x.G(x) → H(x)
{∀E}

G(p) → H(p)
Th. Imp Chain

F (p) → H(p)
{∀I}∀x.F (x) → H(x)

The following theorem says that you can change the order in which the
variables are bound in ∀x. ∀y. F (x, y). This theorem is simple but extremely
important.

Theorem 62. ∀x. ∀y. F (x, y) � ∀y. ∀x. F (x, y)

Proof.
∀x. ∀y. F (x, y)

{∀E}∀y. F (p, y)
{∀E}

F (p, q)
{∀I}∀x. F (x, q)

{∀I}∀y. ∀x. F (x, y)
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This theorem says that if, for all x, a proposition P implies f(x), then P
implies ∀x.f(x). This allows you to pull a proposition P , which does not use
x, out of an implication bound by ∀.

Theorem 63. ∀x. P → f(x) � P → ∀x. f(x)

Proof.

P

∀x. P → f(x)
{∀E}

P → f(c) (c arbitrary)
{→E}

f(c)
{∀I}∀x. f(x)

{→I}
P → ∀x. f(x)

Exercise 9. Prove ∀x.F (x),∀x.F (x) → G(x) � ∀x.G(x).

7.3.3 Existential Introduction {∃I}
The {∃I} rule says that if f(p) has been established for a particular p, then
you can infer ∃x.f(x).

f(p)
{∃I}∃x.f(x)

The following theorem says that if F (x) holds for all elements of the uni-
verse, then it must hold for one of them. Recall that we require the universe
of discourse to be non-empty; otherwise this theorem would not hold.

Theorem 64. ∀x.F (x) � ∃x.F (x)

Proof.

∀x.F (x)
{∀E}

F (p)
{∃I}∃x.F (x)
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7.3.4 Existential Elimination {∃E}
Recall the {∨E} inference rule of propositional logic; this says that if you know
a ∨ b, and also that c follows from a and c follows from b, then you can infer c.

If the universe is finite, then ∃x.F (x) can be expressed in the form F (p1) ∨
. . .∨F (pn), where the universe is {p1, . . . , pn}. We could extend the {∨E} rule
so that if we know that F (pi) holds for some i, and furthermore that A must
hold if F (x) holds for arbitrary x, then A can be inferred.

The existential elimination rule {∃E} captures this idea, and it provides a
much more convenient tool for reasoning than repeated applications of {∨E}.
Its fundamental importance, however, is that {∃E} may also be used if the
universe is infinite. This means it is more powerful than {∨E}, as that can be
used only for an ∨ expression with a finite number of terms. (Recall that a
proof must have a finite length.)

∃x.F (x) F (x) � A {x arbitrary}
{∃E}

A

The following theorem gives an example of {∃E}. It says that if P (x) always
implies Q(x), and also that P (x) holds for some x, then Q(x) also holds for
some x.

Theorem 65. ∃x . P (x), ∀x . P (x) → Q(x) � ∃x . Q(x)

Proof.

∃x . P (x)

P (c)

∀x . P (x) → Q(x)
{∀E}

P (c) → Q(c)
{→E}

Q(c)
{∃E}

Q(c)
{∃I}∃x . Q(x)

The following theorem says that a ∀ directly inside an ∃ can be brought
outside the ∃.

Theorem 66. ∃x. ∀y. F (x, y) � ∀y. ∃x. F (x, y)

Proof.

∃x. ∀y. F (x, y)

∀y. F (p, y)
{∀E}

F (p, q)
{∃I}∃x. F (x, q)

{∀I}∀y. ∃x. F (x, y)
{∃E}∀y. ∃x. F (x, y)
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Table 7.1: Algebraic Laws of Predicate Logic

∀x. f(x) → f(c) (7.3)
f(c) → ∃x. f(x) (7.4)

∀x.¬ f(x) = ¬∃x. f(x) (7.5)
∃x.¬ f(x) = ¬∀x. f(x) (7.6)

Provided that x does not occur free in q:
(∀x. f(x)) ∧ q = ∀x. (f(x) ∧ q) (7.7)
(∀x. f(x)) ∨ q = ∀x. (f(x) ∨ q) (7.8)
(∃x. f(x)) ∧ q = ∃x. (f(x) ∧ q) (7.9)
(∃x. f(x)) ∨ q = ∃x. (f(x) ∨ q) (7.10)

(∀x. f(x)) ∧ (∀x. g(x)) = ∀x. (f(x) ∧ g(x)) (7.11)
(∀x. f(x)) ∨ (∀x. g(x)) → ∀x. (f(x) ∨ g(x)) (7.12)

∃x. (f(x) ∧ g(x)) → (∃x. f(x)) ∧ (∃x. g(x)) (7.13)
(∃x. f(x)) ∨ (∃x. g(x)) = ∃x. (f(x) ∨ g(x)) (7.14)

Exercise 10. Prove ∃x. ∃y. F (x, y) � ∃y. ∃x. F (x, y).

Exercise 11. The converse of Theorem 66 is the following:

∀y. ∃x. F (x, y) � ∃x. ∀y. F (x, y) Wrong!

Give a counterexample that demonstrates that this statement is not valid.

Exercise 12. Prove ∀x.(F (x) ∧ G(x)) � (∀x.F (x)) ∧ (∀x.G(x)).

7.4 Algebraic Laws of Predicate Logic

The previous section presented predicate logic as a natural deduction inference
system. An alternative style of reasoning is based on a set of algebraic laws
about propositions with predicates, listed in Table 7.1.

This is not the minimal possible set of laws; some of them correspond to
inference rules, and others are provable as theorems. The focus in this section,
however, is on practical calculations using the laws, rather than on theoretical
foundations.

The following two laws express, in algebraic form, the {∀E} and {∃I} in-
ference rules. As they correspond to inference rules, these laws are logical
implications, not equations.
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∀x. f(x) → f(c) (7.3)
f(c) → ∃x. f(x) (7.4)

In both of these laws, x is bound by the quantifier, and it may be any
element of the universe. The element c is any fixed element of the universe.
Thus the first law says that if the predicate f holds for all elements of the
universe, it must hold for a particular one c, and the second law says that if f
holds for an arbitrarily chosen element c, then it must hold for all elements of
the universe.

The following theorem combines these two laws and is often useful in proving
other theorems. Its proof uses the line-by-line style, which is standard when
reasoning about predicate logic with algebraic laws.

Theorem 67. ∀x. f(x) → ∃x. f(x)

Proof.
∀x. f(x)

→ f(c) {7.3}
→ ∃x. f(x) {7.4}

The next two laws state how the quantifiers combine with logical negation.
The first one says that if f(x) is always false, then it is never true; the second
says that if f(x) is ever untrue, then it is not always true.

∀x.¬ f(x) = ¬∃x. f(x) (7.5)
∃x.¬ f(x) = ¬∀x. f(x) (7.6)

The following four laws show how a predicate f(x) combines with a propo-
sition q that does not contain x. These are useful for bringing constant terms
into or out of quantified expressions.

(∀x. f(x)) ∧ q = ∀x. (f(x) ∧ q) (7.7)
(∀x. f(x)) ∨ q = ∀x. (f(x) ∨ q) (7.8)
(∃x. f(x)) ∧ q = ∃x. (f(x) ∧ q) (7.9)
(∃x. f(x)) ∨ q = ∃x. (f(x) ∨ q) (7.10)

The final group of laws concerns the combination of quantifiers with ∧
and ∨. It is important to note that two of them are equations (or double
implications), whereas the other two are implications. Therefore they can be
used in only one direction, and they must be used at the top level, not on
subexpressions.
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∀x. f(x) ∧ ∀x. g(x) = ∀x. (f(x) ∧ g(x)) (7.11)
∀x. f(x) ∨ ∀x. g(x) → ∀x. (f(x) ∨ g(x)) (7.12)

∃x. (f(x) ∧ g(x)) → ∃x. f(x) ∧ ∃x. g(x) (7.13)
∃x. f(x) ∨ ∃x. g(x) = ∃x. (f(x) ∨ g(x)) (7.14)

Example 9. The following equation can be proved algebraically:

∀x. (f(x) ∧ ¬g(x)) = ∀x.f(x) ∧ ¬∃x. g(x)

This is established through a sequence of steps. Each step should be justified
by one of the algebraic laws, or by another equation that has already been
proved. When the purpose is actually to prove a theorem, the justifications
should be written explicitly. Often this kind of reasoning is used informally,
like a straightforward algebraic calculation, and the formal justifications are
sometimes omitted.

∀x. (f(x) ∧ ¬g(x))
= ∀x. f(x) ∧ ∀x. ¬g(x) {7.11}
= ∀x.f(x) ∧ ¬∃x. g(x) {7.5}

Example 10. The following equation says that if f(x) sometimes implies g(x),
and f(x) is always true, then g(x) is sometimes true.

∃x. (f(x) → g(x)) ∧ (∀x. f(x)) → ∃x. g(x)

The first step of the proof replaces the local variable x by y in the ∀ expression.
This is not actually necessary, but it may help to avoid confusion; whenever
the same variable is playing different roles in different expressions, and there
seems to be a danger of getting them mixed up, it is safest just to change the
local variable. In the next step, the ∀ expression is brought inside the ∃; in the
following step it is now possible to pick a particular value for y: namely, the x
bound by ∃.

∃x. (f(x) → g(x)) ∧ (∀x. f(x))
=

(∃x. (f(x) → g(x))
) ∧ (∀y. f(y)

)
change of variable

= ∃x.
(
(f(x) → g(x)) ∧ (∀y. f(y))

) {7.9}
= ∃x.

(
(f(x) → g(x)) ∧ f(x)

) {7.3}
→ ∃x. g(x) {Modus Ponens}

7.5 Suggestions for Further Reading

The books on logic recommended at the end of Chapter 6 also cover predicate
logic. Those citations are not repeated here; instead, two excellent books on
style and elegance in mathematical proofs are suggested.
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Mathematical Writing, by Knuth, Larrabee and Roberts [20], is filled with
good advice about how to write mathematics in a style which is clear, rigorous
and lively. This short book is based on a course on mathematical writing given
by the authors at Stanford.

A rigorous proof is careful, and it covers scrupulously all the relevant aspects
of the problem. Routine, straightforward issues may be treated lightly in a
rigorous proof, but they really must be sound. In contrast, a formal proof takes
no short cuts at all; it does everything using the rules of some formal system,
such as the logical inference rules. Formal proofs are good for machine checking
and generally fit well with computing applications. Proofs that are informal
but rigorous should be written in a clear, elegant style that is convincing to a
knowledgeable reader.

Proofs from THE BOOK, by Aigner and Ziegler [3], is an outstanding col-
lection of elegant and rigorous proofs written in normal (but particularly good)
mathematical style. It is worth looking at for its beauty, although some of its
contents are rather advanced. The book was inspired by an idea of Paul Erdős,
one of the leading mathematicians of the twentieth century. Erdős imagined
The Book, which contains the most elegant proofs of the most interesting the-
orems. The Book doesn’t actually exist; it is an ideal to which real people can
only aspire, but it is nevertheless inspiring to mathematicians to find the best
approximation to it that they can. Proofs from THE BOOK is such an effort,
and it is likely to become a mathematical classic.

7.6 Review Exercises

Exercise 13. Suppose the universe contains 10 elements. How many times
will F occur when ∀x. ∃y.∀z. F (x, y, z) is expanded into quantifier-free
form? How large in general are expanded expressions?

Exercise 14. Prove (∃x. f(x)) ∨ (∃x. g(x)) � ∃x. (f(x) ∨ g(x)).

Exercise 15. Prove (∀x. f(x)) ∨ (∀x. g(x)) � ∀x. (f(x) ∨ g(x)).

Exercise 16. Prove the converse of Theorem 63.

Exercise 17. Find counterexamples that show that Laws 7.12 and 7.13, which
are implications, would not be valid as equations.

Exercise 18. Prove the following implication:(∀x. f(x) → h(x) ∧ ∀x. g(x) → h(x)
)

→ ∀x. (f(x) ∨ g(x) → h(x))

Exercise 19. Define a predicate (with the natural numbers 0, 1, 2, . . . as its
universe) that expresses the notion that all of the elements that occur
in either of the sequences supplied as operands to the append operator
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(++) also occur as elements of the sequence it delivers. That is, the
predicate states that under certain constraints on the number of elements
in the sequence xs, any element that occurs in either the sequence xs
or the sequence ys also occurs in the sequence xs ++ ys. Hint: Take
’x occurs in xs’ to mean ∃y.∃ys.(xs = (y : ys)∧(x = y)∨(x occurs in ys)).
That is, the proposition ’x occurs in xs’ always has the same value as the
proposition ∃y.∃ys.(xs = (y : ys) ∧ (x = y) ∨ (x occurs in ys)). Denote
the predicate ’x occurs in xs’ by the formula ’x ∈ xs’ (overloading the
’∈’ symbol used to denote set membership).



Chapter 8

Set Theory

Set theory is one of the most fundamental branches of mathematics. Many
profound advances in mathematics over the past century have taken place in
set theory, and there is a deep connection between set theory and logic. More
importantly for computer science, it has turned out that the notation and ter-
minology of elementary set theory is extremely useful for describing algorithms,
and nearly every branch of computing uses sets from time to time.

This chapter introduces the concepts from set theory that you will need for
computer science. Section 8.1 begins by describing what sets are and giving
several notations for describing them. There are many useful operations that
can be performed on sets, and these are presented in Section 8.2. In Section
8.3, we consider a particular kind of set that is well suited for computing
applications: the finite sets with equality. Next, in Section 8.4 we study a
variety of mathematical laws that describe properties of sets that are useful in
computing. The chapter concludes with a summary of the notations and the
main theorems of set theory.

8.1 Notations for Describing Sets

We will not define formally what a set is. The reason for this is that set
theory was intended originally to serve as the foundation for all of mathematics:
everything else in mathematics is to be defined—at least in principle—in terms
of sets. As sets are the lowest level concept, there is nothing more primitive
that could be used to define them formally.

Informally, a set is just a collection of objects called members or elements.
You can think of a set as a group of members, or a collection, or a class,
etc. However, these words are just synonyms—they don’t constitute a precise
definition of a set. One way to describe a set is to write down all its members
inside braces { }. Here are some examples:

189
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A = {dog, cat,horse}
B = {canary, eagle}
C = {0, 1, 2, 3, 4}
D = {0, 1, . . . , 100}
E = { }
N = {0, 1, 2, 3, . . .}
Z = {3, {dog, 7}, horse}

Any particular thing can appear only once in a set; this means that it makes
sense to ask whether x is a member of a set S—the answer must be yes or no—
but it doesn’t make sense to ask how many times x occurs in S. It is bad
notation to write a set with some element appearing several times, because the
extra occurrences of the element are meaningless, and they might be confusing.
You can always remove the redundant copies of an element without changing
the set.

A set can have any number of elements. For example, A has three elements,
E has zero elements, and N has an infinite number of elements.

It is common to use lower-case letters (a, b, . . .) to refer to members of a set
and to use upper-case letters (A, B, . . .) as names for sets themselves. This is
just a convention, not an ironclad rule, and of course it breaks down when one
set is a member of another set.

An important special case is the empty set { }. Often the special symbol ∅

is used to denote the empty set.
Suppose we are given some value x and a set S, and we want to know

whether x is a member of S. There is a notation for this question: the expres-
sion x ∈ S is true if x is a member of S and otherwise false. The expression
x ∈ S is pronounced as ‘x is a member of S’, or ‘x is an element of S’, or simply
as ‘x is in S’. For example:

dog ∈ A = True
bat ∈ A = False

Another useful notation is x �∈ S, which is True if and only if x ∈ S is False:

dog �∈ A = False
bat �∈ A = True

When a set has a few elements, you can just write them out inside braces.
This is how the sets A, B, and C were defined above. However, when a set has
many elements this becomes tedious, and if the set has an infinite number of
elements it is impossible. The set D has 101 elements, but it is more readable
to use the . . . notation and omit most of them. Set N , the natural numbers,
has an infinite number of elements, and we cannot write them all inside braces.
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There is an interesting point about the . . . notation. One of the reasons we
use mathematics in computing is to be precise and formal, to be absolutely sure
there is no ambiguity in what we are defining. The . . . notation is informal, and
it relies on the intuition of the reader to understand and fill in the dots. It is
easy to construct cases where different people might interpret a set defined with
. . . differently. For example, does {2, 3, . . . , 7} mean the set of numbers from 2
through 7, {2, 3, 4, 5, 6, 7}, or does it mean the set of prime numbers {2, 3, 5, 7}?
If you are aware of such a problem when describing a set, you can overcome it,
but how can you ever be sure that your set is really well-defined—that there
is one way, and only one way, to interpret it? The problem is not so serious
for finite sets, because you could—in principle—write out all the elements, and
for large sets you could provide an algorithm that produces all of them. The
problem is more fundamental for infinite sets.

Another standard way to define sets is the set comprehension. In its simplest
form, a set comprehension is written as

{x | p x},

where p x is simply an expression containing x which is either true or false;
such an expression is called a predicate. The expression is pronounced ‘the set
of x such that p x’, and it means that the set consists of exactly those objects
x of which p x is true. For example, we could define the set of even numbers
as

{x | x ∈ N ∧ even x}.

The predicate here is
p x = x ∈ N ∧ even x,

and it is true if and only if x is a natural number that is even. In English, we
would call this ‘the set of all x such that x is a natural number and x is even’,
or simply ‘the set of even natural numbers’.

A more general form of the set comprehension is

{f x | p x}.

In this case, the set consists not of the values x that satisfy the predicate, but
of the results of applying the function f to those values. This form of the set
comprehension is sometimes easier to use than the simpler form. For example

{√
x | x ∈ {1, 2, 3, 4}}

defines the set {1.0, 1.41, 1.73, 2.0}.
It is important to state the set from which a variable derives its value. If

this set is not stated explicitly, then we assume that it is U, the universe of
discourse.
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8.2 Basic Operations on Sets

There is a large number of operations that can be performed on sets, in order
to compare them, define new sets, and so on. This section defines the basic set
operations. In the next section, we will see how to implement these operations
on a computer.

8.2.1 Subsets and Set Equality

There are several important relationships between two sets that are determined
by the elements they share. The first of these is the subset relation. The
expression A ⊆ B, pronounced ‘A is a subset of B’, is true if each element of A
also appears in B. This idea is expressed formally by the following definition.

Definition 18 (Subset). Let A and B be sets. Then A ⊆ B if and only if

∀x.x ∈ A → x ∈ B.

Two sets are equal if they contain exactly the same elements. We can define
this formally using the subset relation, because if A and B contain exactly the
same elements, then everything in A is also in B and vice versa. This leads to
the definition of set equality.

Definition 19 (Set equality). Let A and B be sets. Then A = B if and only
if A ⊆ B and B ⊆ A.

If A is a subset of B but A �= B, then all the elements of A are in B but
there must be some element of B that is not in A. In this case, we say that A is
a proper subset of B, which is written as A ⊂ B. The notations are designed to
help you remember them. Think of A ⊂ B as saying that the set A is contained
within B, and it is smaller than B, while A ⊆ B means that possibly A = B;
the symbols ⊂ and ⊆ are reminiscent of < and ≤.

Definition 20 (Proper subset). Let A and B be sets. Then A ⊂ B if and only
if A ⊆ B and A �= B.

8.2.2 Union, Intersection, and Difference

There are several operators that take two sets and return a set as a result; the
most important of these are union, intersection, and difference.

• The union of two sets A and B, written A ∪ B, is the set that contains
all the elements that are in either A or B (or both). Every element of
A ∪ B must be in A or B (or both).

• The intersection of A and B, written A ∩ B, is the set consisting of all
the elements that are in both A and B.
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• The difference of A and B, written A − B, is the set of all the elements
that are in A but not in B.

Definition 21. Let A and B be sets. Then

A ∪ B = {x | x ∈ A ∨ x ∈ B}, (8.1)
A ∩ B = {x | x ∈ A ∧ x ∈ B}, (8.2)
A − B = {x | x ∈ A ∧ x �∈ B}. (8.3)

Example 11. Let A = {1, 2, 3}, B = {3, 4, 5} and C = {4, 5, 6}. Then

A ∪ B = {1, 2, 3, 4, 5},

A ∩ B = {3},

A − B = {1, 2}.

A ∪ C = {1, 2, 3, 4, 5, 6},

A ∩ C = ∅,

A − C = {1, 2, 3}.

Example 12. Let

I = {. . . ,−2,−1, 0, 1, 2, . . .},

N = {0, 1, 2, . . .},

H = {−215, . . . ,−2,−1, 0, 1, 2, . . . , 215 − 1},

W = {−231, . . . ,−2,−1, 0, 1, 2, . . . , 231 − 1}.

Thus I is the set of integers, N is the set of natural numbers, H is the set
of integers that are representable on a computer with a 16-bit word using
2’s complement number representation, and W is the set of integers that are
representable in a 32-bit word. We can use these definitions to create new sets.
For example, I − W is the set of integers that are not representable in a word.

We can calculate the union of several sets using the ∪ operator. For exam-
ple, the union of three sets A, B, and C can be written as

A ∪ B ∪ C,

and it contains all the elements that appear in one or more of the sets A, B and
C. This expression is unambiguous because the ∪ operator is associative (see
Section 8.4), which means that it makes no difference whether you interpret
A∪B ∪C as (A∪B)∪C or as A∪ (B ∪C). In the same way, we can calculate
the intersection of four sets with the expression

A ∩ B ∩ C ∩ D.
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Sometimes it is necessary to compute the union (or intersection) of several
sets in a more general way, using operators that give the union (or intersection)
of an arbitrary number of sets, rather than just two of them. These operations
are often called big union and big intersection, because their operators,

⋃
and⋂

, are larger versions of the ordinary ∪ and ∩ operators.

Definition 22. Let C be a non-empty collection (set) of subsets of the universe
U. Let I be a non-empty set, and for each i ∈ I let Ai ⊆ C. Then⋃

i∈I

Ai = {x | ∃i ∈ I . x ∈ Ai},

⋂
i∈I

Ai = {x | ∀i ∈ I . x ∈ Ai}.

Another way to say this is that if C is a set containing some sets, then the
set of all elements of the sets in C is

⋃
A∈C A and the set of elements that these

sets in C have in common is
⋂

A∈C A.

⋃
A∈C

A = {x | ∃A ∈ C . x ∈ A}
⋂

A∈C

A = {x | ∀A ∈ C . x ∈ A}

Two sets are disjoint if they have no elements in common.

Definition 23. For any two sets A and B, if A ∩ B = ∅ then A and B are
disjoint sets.

Exercise 1. Given the sets A = {1, 2, 3, 4, 5} and B = {2, 4, 6}, calculate the
following sets:

(a) A ∪ (B ∩ A)

(b) (A ∩ B) ∪ B

(c) A − B

(d) (B − A) ∩ B

(e) A ∪ (B − A)

8.2.3 Complement and Power

In many applications, there is a universe of all the objects that might possibly
appear in any of our sets. For example, we might be working with various sets
of numbers, but none of the sets will contain anything that is not a number.
In this kind of situation, it is often convenient to define the universe explicitly
as a set U , which can then be used in set expressions.
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The universe is needed to define the complement of a set. The intuitive
idea is that the complement of a set A is the set of everything that is not
in A. However, what does ‘everything’ mean? There are both practical and
theoretical problems if we don’t define ‘everything’. A practical problem is
that we could get nonsensical results; for example, if we are talking about
sets of people, then the complement of the set of tall people should be the set
that includes short people—but not numbers, cars, and toasters, all of which
appear in the set of ‘everything’. The solution to these problems is to define the
universe U to consist of the elements we are interested in, and then to define
the complement of A to consist of the elements of U that are not in A.

Definition 24. Let U be the universe of discourse and A be a set. The
complement of A, written A′, is the set U − A.

If you see a set complement defined in a book or paper, look back several
pages and you should find the definition of U . When you’re using sets, be sure
to define the universe explicitly if you are going to use complements.

Example 13. Given the universe of alphanumeric characters, the complement
of the set of digits is the set of letters.

Example 14. If the universe is {1, 2, 3, 4, 5}, then {1, 2}′ = {3, 4, 5}.

A set that contains lots of elements will have an even larger number of
subsets. These subsets are themselves objects, and it is often useful to define a
new set containing all of them. The set of all subsets of A is called the powerset
of A. (In contrast, the set of all elements of A is just A itself.)

Definition 25. Let A be a set. The powerset of A, written P (A), is the set
of all subsets of A:

P (A) = {S | S ⊆ A}

Example 15. (Powersets)

• P ({ }) = {∅} = {{ }}

• P ({a}) = {∅, {a}}

• P ({a, b}) = {∅, {a}, {b}, {a, b}}

• P ({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

Notice that if A contains n elements, then its powerset P (A) contains 2n

elements. If A is the empty set ∅, then there is one element of P (A)—namely
∅—and the number of elements of P (A) is indeed 1 = 20. The example above
shows that sets with 0, 1, 2, and 3 elements have powersets respectively con-
taining 1, 2, 4, and 8 elements.
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8.3 Finite Sets with Equality

A class of sets that is particularly important for computing are the finite sets
with equality—that is, sets with a finite number of elements, and where we have
an equality function that can be used to determine whether any two elements
of the universe are the same.

It is possible to perform some computations with infinite sets, but there is
ample opportunity for a program to go into an infinite loop. Usually we want
to ensure that our programs will terminate, and this is more straightforward
with finite sets.

We will use lists to represent sets; thus a set whose elements are of type a
will be represented by a list of type [a]. A finite set will be represented by a
finite list. There are several differences between lists and sets that will require
care: (1) lists may have duplicate elements, (2) there is a fixed order of the
elements of a list, and (3) all the elements of a list must have the same type.

In order to do any practical computing with sets, we need to be able to
determine whether a given value is an element of a set. This requires, in turn,
the ability to determine whether two values x and y are the same. Therefore
we need an operator == so that x == y will give either True or False, for any
values of x and y. This is a strong requirement, because there are some values
where equality is not computable. For all the elementary data types, such as
integers, Booleans, characters, and so on, there is no problem with determining
equality. However, functions are also values that can be included in sets, and
it is in general impossible to compare two functions to determine whether they
are equal.

There is a special notation in Haskell to express the fact that it must be
possible to compare two set elements for equality. If we say simply that a set
is represented by a list of type [a], it might turn out that a is one of those
types whose values cannot be compared. What is needed is a way to restrict
the element type a. This is done by saying that a list has type

Eq a ⇒ [a].

This denotes the type ‘For every type a which can be compared for Equality,
the type [a]’. In practice, we will also usually want the element type a to be
printable. To ensure this as well, we will often use the type (Eq ,Show) ⇒ [a].
For example, this would allow Int to be used as the set element type, because
integers can be compared for equality and they can be printed, but it would
not allow functions to be used as the set element type, as functions cannot be
compared or printed.

A set A will be represented by a list containing all the elements of A. We
need to be careful in computing with such lists because of two factors: the
possibility of duplicate elements and the ordering of the elements.

A set contains just one instance of each of its elements; thus the sets {1, 2, 3}
and {1, 2, 1, 3} are identical (and the second way of writing it is bad notation
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because 1 appears only once in the set; it should appear only once in the
notation). However, the lists [1, 2, 3] and [1, 2, 1, 3] are different. The first one
has three elements and the second has four elements. We will assume that a
list represents the set of distinct values that appear in the list: for example,
the list [1, 2, 1, 3] represents the set {1, 2, 3}. However, the normal form for a
list representing a set will contain each element only once. The operations on
set-representing-lists will all produce their result in normal form. This makes
some of the operations easier to implement, and also makes them more efficient.

There is no concept of ordering of the elements of a set. Thus {1, 2, 3}
and {3, 2, 1} are the same set. If you print a set, there is no particular order
in which the elements will appear. Lists, however, have a specific ordering of
their elements; thus [1, 2, 3] and [3, 2, 1] are different lists and their elements
will be printed in different orders. This does not cause any difficulties for
implementing the set operations. In a computer program, however, it may be
a good idea to define an ordering on the elements of a set in order to make the
output more readable. This can be achieved by sorting the elements of the list
that represents the set. However, sorting a list requires more than the ability
to compare two elements for equality: we must also be able to compare them
for ordering (<,=, >). If a program uses sorted lists to represent sets, then a
stronger type constraint is needed:

Ord a ⇒ [a].

This says that there must be an ordering on the element type a, which can be
used to determine the relations <,≤,=, �=, >,≥.

The methods for defining lists can also be used to define sets. Three methods
are especially common: enumerated sets, sequences, and comprehensions. We
will look at each of these methods in turn, and the following section defines
functions corresponding to the set operators we have already covered.

An enumerated set (or list) is defined just by giving its elements, like
{1, 2, 3} and [1, 2, 3].

A sequence is used when it would be too tedious to write an enumerated set
or list. For example, the set of natural numbers up to 5 is {0, 1, 2, 3, 4, 5}, but it
would be painful to write the set of natural numbers up to 1,000. Instead, the
‘. . .’ notation is used in mathematics: {0, 1, 2, . . . , 1000}. We can use a similar
notation to define the corresponding list: [0, 1..1000].

Sets are often described in mathematics using set comprehensions, expres-
sions like

{x2 | x ∈ {0, 1, . . . , n}},

which is the set of numbers of the form x2 where x is a natural number between
0 and n. Haskell provides an almost identical notation, the list comprehension.
A list comprehension that expresses the set just given is

[xˆ2 | x <- [0..n]]

Here are some other examples:
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[ x | x <- [0..n], x ‘mod‘ 2 == 0]
[ x + 3 | x <- [0..n], x < 10]

8.3.1 Computing with Sets

This section describes a collection of functions and operators that you can use
on finite sets with equality. Each of these functions will accept a representation
with duplicated elements, but they always return results in normal form; that
is, they remove any duplicated elements from their result.

We begin by defining the type of set representations.

type Set a = [a]

The function normalForm determines whether there are any duplicate ele-
ments within its argument, while normalizeSet takes a list and removes any
duplicate elements.

normalForm :: (Eq a, Show a) => [a] -> Bool
normalizeSet :: Eq a => Set a -> Set a

Example 16. normalForm [1,2,3] is True, but normalForm [1,2,1,3] is
False because there is a repeated element, and normalizeSet [1,2,1,3] re-
moves the repeated element, returning [1,2,3].

We define symbolic operators for the set operations that take two argu-
ments:

A+++B = A ∪ B (union)
A***B = A ∩ B (intersection)

A∼∼∼B = A − B (difference)

The types of these operators are

(+++) :: (Eq a, Show a) => Set a -> Set a -> Set a
(***) :: (Eq a, Show a) => Set a -> Set a -> Set a
(˜˜˜) :: (Eq a, Show a) => Set a -> Set a -> Set a

The function subset takes two sets A and B, and returns True if A ⊆ B,
while properSubset A B returns True if A is a proper subset of B; that is, it
returns the value of A ⊂ B. Their type signatures are:

subset, properSubset ::
(Eq a, Show a) => Set a -> Set a -> Bool

A special function setEq is needed to determine whether two sets are the
same. The built-in Haskell operator == should not be used for this purpose, as
two lists may be different even though they represent the same set.
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setEq :: (Eq a, Show a) => Set a -> Set a -> Bool

The complement of a set is defined with respect to the universe of discourse.
It is convenient to define a global variable universe to be the universe of
discourse; then we can define the set complement function as follows:

complement s = universe ˜˜˜ s

Exercise 2. Work out the values of the following set expressions, and then
check your answer using the Haskell expression that follows.

(a) [1,2,3] +++ [3]

(b) [4,2] +++ [2,4]

(c) [1,2,3] *** [3]

(d) [] *** [1,3,5]

(e) [1,2,3] ˜˜˜ [3]

(f) [2,3] ˜˜˜ [1,2,3]

(g) [1,2,3] *** [1,2]

(h) [1,2,3] +++ [4,5,6]

(i) ([4,3] ˜˜˜ [5,4]) *** [1,2]

(j) ([3,2,4] +++ [4,2]) ˜˜˜ [2,3]

(k) subset [3,4] [4,5,6]

(l) subset [1,3] [4,1,3,6]

(m) subset [] [1,2,3]

(n) setEq [1,2] [2,1]

(o) setEq [3,4,6] [2,3,5]

(p) [1,2,3] ˜˜˜ [1]

(q) [] ˜˜˜ [1,2]

Exercise 3. The function

powerset :: (Eq a, Show a) => Set a -> Set (Set a)

takes a set and returns its power set. Work out the values of the following
expressions:

powerset [3,2,4]
powerset [2]
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Exercise 4. The cross product of two sets A and B is defined as
A × B = {(a, b) | a ∈ A, b ∈ B}
The function

crossproduct :: (Eq a, Show a, Eq b, Show b) =>
Set a -> Set b -> Set (a,b)

takes two sets and returns their cross product. Evaluate these expressions:

crossproduct [1,2,3] [’a’,’b’]
crossproduct [1] [’a’,’b’]

Exercise 5. In the following exercise, let u be [1,2,3,4,5,6,7,8,9,10], a
be [2,3,4], b be [5,6,7] and c be [1,2]. Give the elements of each set:

a +++ b
u˜˜˜a *** (b +++ c)
c ˜˜˜ b
(a +++ b) +++ c
u˜˜˜a
u˜˜˜(b *** c)

Exercise 6. What are the elements of the set {x+y |x ∈ {1, 2, 3}∧y ∈ {4, 5}}?

Exercise 7. Write and evaluate a list comprehension that expresses the set
{x |x ∈ {1, 2, 3, 4, 5} ∧ x < 0}

Exercise 8. Write and evaluate a list comprehension that expresses the set
{x + y |x ∈ {1, 2, 3} ∧ y ∈ {4, 5}}

Exercise 9. Write and evaluate a list comprehension that expresses the set
{x |x ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ∧ even x}

Exercise 10. What is the value of each of the following expressions?

subset [1,3,4] [4,3]
subset [] [2,3,4]

setEq [2,3] [4,5,6]
setEq [1,2] [1,2,3]

8.4 Set Laws

The operations on sets that we have been covering are often used for describing
properties of algorithms, so we often need to be able to understand and calculate
with expressions that contain several such operations. Fortunately, the set
operations satisfy a number of simple laws that greatly simplify their use, just
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as the basic properties of ordinary addition, multiplication, etc., are helpful
in ordinary algebra. In this section, we state and prove some of the most
useful laws about set operations. The proofs have a standard form in which an
assertion appears, followed by its justification, which may depend on previous
lines in the proof. As justifications take many forms in practice, these will be
more terse than those in previous proofs.

The following law says that the ⊆ operation is transitive:

Theorem 68. Let A, B, and C be sets. If A ⊆ B and B ⊆ C, then A ⊆ C.

Proof. Let x be any element of the universe of discourse.

1. A ⊆ B { Premise }
2. x ∈ A → x ∈ B { Def. ⊆ }
3. B ⊆ C { Premise }
4. x ∈ B → x ∈ C { Def. ⊆ }
5. x ∈ A → x ∈ C { Hypothetical syllogism (chain rule), (2), (4) }
6. ∀x. (x ∈ A → x ∈ C) { ∀ introduction }
7. A ⊆ C { Def. ⊆ }

Exercise 11. Let A, B, and C be sets. Prove that if A ⊂ B and B ⊂ C, then
A ⊂ C.

Exercise 12. Consider the following two claims. For each one, if it is true
give a proof, but if it is false give a counterexample.

(a) If A ⊆ B and B ⊆ C, then A ⊂ C.

(b) If A ⊂ B and B ⊂ C, then A ⊆ C.

8.4.1 Associative and Commutative Set Operations

The set union and intersection operators are commutative and associative.

Theorem 69. For all sets A, B, and C,

1. A ∪ B = B ∪ A

2. A ∩ B = B ∩ A

3. A ∪ (B ∪ C) = (A ∪ B) ∪ C

4. A ∩ (B ∩ C) = (A ∩ B) ∩ C

5. A − B = A ∩ B′

Proof. We prove the second equation. Let x be any element of U. Then each
line in the proof below is logically equivalent (↔) to the following line.
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1. x ∈ A ∩ B { Premise }
2. x ∈ A ∧ x ∈ B { Def. ∩ }
3. x ∈ B ∧ x ∈ A { Comm. ∧ }
4. x ∈ B ∩ A { Def. ∩ }
5. ∀x ∈ U.

x ∈ A ∩ B ↔ x ∈ B ∩ A { {∀I} }
6. A ∩ B = B ∩ A. { Def. set equality }

The proofs of the other equations are similar.

8.4.2 Distributive Laws

The following theorem states that the union and intersection operators dis-
tribute over each other.

Theorem 70. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Proof. Let x be an arbitrary element of the universe U . Then the following
expressions are equivalent (↔):

1. x ∈ A ∩ (B ∪ C) { Premise }
2. x ∈ A ∧ (x ∈ B ∪ C) { Def. ∩ }
3. x ∈ A ∧ (x ∈ B ∨ x ∈ C) { Def. ∪ }
4. (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C) { Distr. ∧ over ∨ }
5. (x ∈ A ∩ B) ∨ (x ∈ A ∩ C) { Def. ∩ }
6. x ∈ (A ∩ B) ∪ (A ∩ C) { Def. ∪ }
7. ∀x ∈ U.

x ∈ A ∩ (B ∪ C) ↔ x ∈ (A ∩ B) ∪ (A ∩ C) { {∀I} }
8. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). { Def. set equality }

Theorem 71. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Proof. Exercise for the reader.

8.4.3 DeMorgan’s Laws for Sets

Theorem 72. Let A and B be arbitrary sets. Then

(A ∪ B)′ = A′ ∩ B′

and
(A ∩ B)′ = A′ ∪ B′.

Proof. We prove that (A ∪ B)′ = A′ ∩ B′. Let x be any element of U. Then
the following lines are equivalent:
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Table 8.1: Summary of Set Notation

Elements a, b, c, . . .
Sets A, B, C, . . .
Empty set { }, φ
Enumerated set {e1, e2, . . .}
Set comprehension {x | · · · }
Cardinality | A |
Member x ∈ A
Not member x �∈ A
Subset A ⊆ B
Not subset A �⊆ B
Proper subset A ⊂ B
Not proper subset A �⊂ B
Union A ∪ B
Intersection A ∩ B
Set difference A − B
Cross product A × B

1. x ∈ (A ∪ B)′ { Premise }
2. x ∈ U ∧ ¬(x ∈ A ∪ B) { Def. comp }
3. x ∈ U ∧ ¬(x ∈ A ∨ x ∈ B) { Def. ∪ }
4. x ∈ U ∧ (¬(x ∈ A) ∧ ¬(x ∈ B)) { DeMorgan }
5. x ∈ U ∧ x ∈ U ∧ (¬(x ∈ A) ∧ ¬(x ∈ B)) { Idemp. of ∧ }
6. (x ∈ U ∧ ¬(x ∈ A)) ∧ (x ∈ U ∧ ¬(x ∈ B)) { Comm. of ∧ }
7. x ∈ U − A ∧ x ∈ U − B { Def. of diff. }
8. x ∈ (U − A) ∩ (U − B) { Def. ∪ }
9. (x ∈ A′ ∩ B′) { Def. of comp. }
10. ∀x. x ∈ (A ∪ B)′ ↔ x ∈ (A′ ∩ B′) { ∀ introduction }
11. (A ∪ B)′ = A′ ∩ B′

8.5 Summary

The notations used in set theory are listed in Table 8.1, and the laws for
reasoning about sets are given in Table 8.2.
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Table 8.2: Set Laws

Idempotent
A = A ∪ A
A = A ∩ A

Domination
A ∪ U = U
A ∩ ∅ = ∅

Identity
A ∪ ∅ = A
A ∩ U = A

Double complement
A = A′′

DeMorgan’s laws
(A ∪ B)′ = A′ ∩ B′

(A ∩ B)′ = A′ ∪ B′

Commutative laws
A ∪ B = B ∪ A
A ∩ B = B ∩ A

Associative laws
(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Distributive laws
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Absorption laws
A ∪ (A ∩ B) = A
A ∩ (A ∪ B) = A
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8.6 Suggestions for Further Reading

Mathematics from the Birth of Numbers, by Gullberg [16], is an interesting
general survey of mathematics. It covers many of the topics in this book,
including an excellent survey of elementary set theory.

Classic Set Theory [14], by Derek Goldrei, is a self-study textbook telling
the full story of set theory, including construction of the real numbers, the
Axiom of Choice, cardinal and ordinal numbers, and more. This book is chal-
lenging, but it conveys the sense of excitement that surrounded set theory as
it was developed.

8.7 Review Exercises

Exercise 13. For the following questions, give a proof using set laws, or find
a counterexample.

(a) (A′ ∪ B)′ ∩ C ′ = A ∩ (B ∪ C)′

(b) A − (B ∪ C)′ = A ∩ (B ∪ C)

(c) (A ∩ B) ∪ (A ∩ B′) = A

(d) A ∪ (B − A) = A ∪ B

(e) A − B = B′ − A′

(f) A ∩ (B − C) = (A ∩ B) − (A ∩ C)

(g) A − (B ∪ C) = (A − B) ∩ (A − C)

(h) A ∩ (A′ ∪ B) = A ∩ B

(i) (A − B′) ∪ (A − C ′) = A ∩ (B ∩ C)

Exercise 14. The function

smaller :: Ord a => a -> [a] -> Bool

takes a value and a list of values and returns True if the value is smaller
than the first element in the list. Using this function, write a function
that takes a set and returns its powerset. Use foldr.

Exercise 15. Prove that (A ∪ B)′ = ((A ∪ A′) ∩ A′) ∩ ((B ∪ B′) ∩ B′).

Exercise 16. Using a list comprehension, write a function that takes two sets
and returns True if the first is a subset of the other.

Exercise 17. What is wrong with this definition of diff, a function that takes
two sets and returns their difference?

diff :: Eq a => [a] -> [a] -> [a]
diff set1 set2 = [e | e <- set2, not (elem e set1)]
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Exercise 18. What is wrong with this definition of intersection, a function
that takes two sets and returns their intersection?

intersection :: [a] -> [a] -> [a]
intersection set1 set2 = [e | e <- set1, e <- set2]

Exercise 19. Write a function using a list comprehension that takes two sets
and returns their union.

Exercise 20. Is it ever the case that A ∪ (B − C) = B?

Exercise 21. Give an example in which (A ∪ C) ∩ (B ∪ C) = ∅.

Exercise 22. Prove the commutative law of set-intersection, A ∩ B = B ∩ A.

Exercise 23. Express the commutative law of set-intersection in terms of the
set operations and Boolean operations defined in the Stdm module.

Exercise 24. Prove the associative law of set-union, (A∪B)∪C = A∪(B∪C).

Exercise 25. Prove that the difference between two sets is the intersection of
one with the complement of the other, which can be written as
A − B = A ∩ B′.

Exercise 26. Prove that union distributes over intersection,

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Exercise 27. Prove DeMorgan’s law for set intersection, (A ∩ B)′ = A′ ∪ B′.



Chapter 9

Inductively Defined Sets

In this chapter, we explore the construction of sets using induction. To un-
derstand why induction is useful, consider the problem of defining a set. The
simplest method is to define a set by naming each of its elements, one by one.
This is called enumeration. It works only for finite sets and is impractical for
large sets. Another approach is to use ellipses (‘. . .’) to indicate that the set
continues, but this is imprecise, and so can be ambiguous. For example, what
is meant by {1, 2, 3, . . .}? Is the next element 4 or 5? Even if you think the
answer is obvious, how do you know everyone else will consider the same thing
to be obvious? If we are enumerating the positive integers, the next element is
4, but if we are adding the two previous numbers in the series, it is 5.

9.1 The Idea Behind Induction

Induction is rather like a mathematical ‘program’ that calculates a proof when
needed. The proof asserts that an element is a member of the set defined by
induction. For example, here are two propositions:

0 ∈ S
n ∈ S → n + 1 ∈ S

Together, they let us show that any natural number is in set S. To see how
they do this, consider an example: we show that 2 is an element of set S. Using
the propositions above, we can construct a chain that looks like this:

0 ∈ S
0 ∈ S → 1 ∈ S
1 ∈ S → 2 ∈ S

We then use the first assertion and Modus Ponens to deduce that 1 is in set
S, and from that, using Modus Ponens, we deduce that 2 is in set S. In fact,

207
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we can use the two propositions to build a chain that is as long as needed to
reach any natural number.

Of course, if any of the links in the chain were missing, for example the
proposition 0 ∈ S → 1 ∈ S, then we could not reach the number required.
This is because we could not use Modus Ponens to get to the next link.

When we use an inductive definition to show that a set contains a given
value v, we enumerate, or count, the values that must first be shown to be
in the set before v. These values form a sequence, which is a set with an
ordering. Computers can enumerate elements of sets in the order in which
they are generated from a description of the set. We can use a computer to
calculate a sequence that represents an infinite set, although we will only see a
finite prefix of the entire sequence.

Let’s implement what we have seen using Haskell. A set of numbers can
be represented by a list; for example, the set with the numbers 1,2, and 3 is
[1,2,3], and the empty set is [].

How do we implement the implications? An implication of the form 1 ∈
s → 2 ∈ s can be implemented as a function that takes 1 and returns the next
element, 2. If it is applied to anything other than 1, then an error message is
returned:

imp1 :: Integer -> Integer
imp1 1 = 2
imp1 other = error "premise does not match"

We can implement a chain using function application. The argument of the
function imp1 is an element of s. If that element matches the pattern of imp1,
then imp1 can be applied to it and produce a new element of s. This is just
like what we do when deciding whether we can use Modus Ponens: we match
the premise of the implication with elements of the set; if there is a match,
then we can use Modus Ponens, otherwise the match fails and we cannot. For
example, consider the following assertions:

1 ∈ S
1 ∈ S → 2 ∈ S
2 ∈ S → 3 ∈ S

This can be implemented by the following Haskell definitions:

imp1 :: Integer -> Integer
imp1 1 = 2
imp1 x = error "premise does not match"

imp2 :: Integer -> Integer
imp2 2 = 3
imp2 x = error "premise does not match"
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s :: [Integer]
s = [1, imp1 (s !! 0), imp2 (s !! 1)]

The function application s!!0 returns the first element of s, indexing from
0; the result is 1. The function impl1 is applied to this. Since the argument
matches the pattern, the application succeeds, adding 2 to s. Then the function
impl2 is applied to 2. The argument matches the pattern, so the application
succeeds, adding 3 to s. The value of s is [1,2,3].

There is a difference between matching the premise of the implication with
all of the elements of the set and applying imp1 to the most recently added
member of s. However, in the form of induction that we are studying, it doesn’t
matter. The only value that could possibly match the premise is the one
generated by the previous implication. But consider now this set of assertions:

1 ∈ S
2 ∈ S → 3 ∈ S

This is implemented as:

imp1 :: Integer -> Integer
imp1 2 = 3
imp1 x = error "premise does not match"

s :: [Integer]
s = [1, imp1 (s !! 0)]

In this case, we cannot use Modus Ponens to conclude that 3 is in the list,
because nothing states that 2 is in it.

Exercise 1. Is the following a chain? You can test your conclusions by eval-
uating s in each case.

imp1 :: Integer -> Integer
imp1 1 = 2
imp1 x = error "imp1: premise does not apply"

imp2 :: Integer -> Integer
imp2 2 = 3
imp2 x = error "imp2: premise does not apply"

imp3 :: Integer -> Integer
imp3 3 = 4
imp3 x = error "imp3: premise does not apply"
s :: [Integer]
s = [1, imp1 (s !! 0), imp2 (s !! 1), imp3 (s !! 2)]

Exercise 2. Is the following a chain?
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imp1 :: Integer -> Integer
imp1 1 = 2
imp1 x = error "imp1: premise does not apply"

imp2 :: Integer -> Integer
imp2 3 = 4
imp2 x = error "imp2: premise does not apply"

s :: [Integer]
s = [0, imp1 (s !! 0), imp2 (s !! 1)]

Exercise 3. Is the following a chain?

imp1 :: Integer -> Integer
imp1 0 = 1
imp1 x = error "imp1: premise does not apply"

imp2 :: Integer -> Integer
imp2 3 = 4
imp2 x = error "imp2: premise does not apply"

s :: [Integer]
s = [0, imp1 (s !! 0), imp2 (s !! 1)]

Exercise 4. Is the following a chain?

imp1 :: Integer -> Integer
imp1 0 = 1
imp1 x = error "imp1: premise does not apply"

imp2 :: Integer -> Integer
imp2 1 = 2
imp2 x = error "imp2: premise does not apply"

s :: [Integer]
s = [0, imp1 (s !! 1), imp2 (s !! 0)]

9.1.1 The Induction Rule

Recall the two propositions we used in the first section:

0 ∈ S
n ∈ S → n + 1 ∈ S

The first one is called the base case, and the second is called the induction
case, or the induction rule. It is the induction case that generates the links of
the chain which will allow us to reach any number in the set being defined.
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So far, the induction has had a fixed form because we were defining a
particular set. However, we could have a rule

n ∈ S → n + 2 ∈ S.

Together with the base case 1 ∈ S, this would define the odd natural numbers.
Alternatively, our induction rule might be

n ∈ S → n ∗ 5 ∈ S.

Together with the base case, this would define the set of powers of 5.
As we will see, it can sometimes be hard to construct the correct rule, and

it is necessary to debug rules to get them right.
Suppose we have a set defined by the following assertions:

0 ∈ s
x ∈ s → x + 1 ∈ s

First, we want to find out whether 2 is in the set, and will use the computer
to help. (Of course, we could solve this by hand, but if the induction rule is
complicated, or if we want to find out whether 1,000,000 is in the set, software
tools are invaluable.) We can implement the induction rule as the increment
function:

increment :: Integer -> Integer
increment x = x + 1

s :: [Integer]
s = [0, increment (s !! 0), increment (s !! 1)]

We can load this definition and evaluate s; the last element of s is 2.
Now suppose that we want to know whether 50 is in the set. It would

be very tedious to write out each element as we have been doing. The same
function is applied to each element of s, so we can have the following definition
of s instead:

s :: [Integer]
s = 0 : map increment s

This style of programming is known as data recursion. The function map pro-
ceeds down s, creating each value it needs and then using it. We can then get
at the fiftieth element by typing s!!50.

Now we have a new format for implementing inductive definitions. We first
specify the induction rule, then recursively define a list in which the base case
appears first, and then the rule is mapped down the list.

Exercise 5. Given the base case 0 ∈ n and the induction rule x ∈ n → x+1 ∈
n, fix the following calculation so that 3 is in set n:
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fun :: Integer -> Integer
fun x = x - 1

n :: [Integer]
n = 0 : map fun n

Exercise 6. Use the following definitions, determine whether 4 is in set s,
given 1 ∈ s and the induction rule x ∈ s → x + 2 ∈ s.

fun :: Integer -> Integer
fun x = x + 2

s :: [Integer]
s = 1 : map fun s

Exercise 7. Fix this calculation of the positive integers:

fun :: Integer -> Integer
fun x = 0

p :: [Integer]
p = 0 : map fun p

Exercise 8. Fix this calculation of the positive multiples of 3:

fun :: Integer -> Integer
fun x = x * 3

p :: [Integer]
p = map fun p

9.2 How to Define a Set Using Induction

We have seen that an inductive set definition has a base case and an induction
rule (or induction case). There is one more clause that needs to be specified
in an inductive set definition. Suppose that we have defined a set S by saying
that the numbers 1, 2, and 3 are in S. How do we know that something else
isn’t also in S? If we don’t say explicitly that nothing else is in S, then the
specification could be satisfied by lots of different sets. It could be the set
{1, 2, 4.5,−78, 3}, for example.

We want to exclude all elements that aren’t introduced by the base case, or
instantiations of the induction case, so we include a clause (called the extremal
clause) in a set definition that states Nothing is an element of the set unless it
can be constructed by a finite number of uses of the first two clauses.

To summarise, an inductive definition of a set consists of three parts: a base
case, an induction case, and an extremal clause:
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• The base case is a simple statement of some mathematical fact, such as
1 ∈ S;

• The induction case is an implication in a general form, such as the propo-
sition that

∀x ∈ U, x ∈ S → x + 1 ∈ S.

• The extremal clause says that nothing is in the set being defined unless
it got there by a finite number of uses of the first two cases.

9.2.1 Inductive Definition of the Set of Natural Numbers

We will illustrate the method by writing an inductive definition of the natural
numbers.

Definition 26. The set N of natural numbers is defined as follows:

• Base case: 0 ∈ N

• Induction case: x ∈ N → x + 1 ∈ N

• Extremal clause: nothing is an element of the set N unless it can be
constructed with a finite number of uses of the base and induction cases.

Now we can use the base and induction cases to show formally that an
arbitrary number above and including 0 is a natural number. Let’s choose the
number 2.

1. 0 ∈ N Base case
2. 0 ∈ N → 1 ∈ N instantiation rule, induction case
3. 1 ∈ N 1, 2, Modus Ponens
4. 1 ∈ N → 2 ∈ N instantiation rule, induction case
5. 2 ∈ N 3, 4, Modus Ponens

Exercise 9. Here is a Haskell equation that defines the set s inductively. Is
82 an element of s?

s :: [Integer]
s = 0 : map ((+) 2) s

Exercise 10. What set is defined by the following?

s :: [Integer]
s = 1 : map ((*) 3) s
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9.2.2 The Set of Binary Machine Words

Now we define a set BinWords, each of which is a machine word represented in
binary notation. In general, a machine word can be of any length.

The base case says that the elements of another set (the set of binary digits)
are also elements of BinWords. The induction case uses concatenation to create
a new value from one already in the set. We represent the concatenation of a
character to a string by placing them one after the other: e.g., ‘1’ ‘01’ is the
string ‘101’.

Definition 27. Let BinDigit be the set {0, 1}. The set BinWords of machine
words in binary is defined as follows:

• Base case:
x ∈ BinDigit → x ∈ BinWords

• Induction case: if x is a binary digit and y is a binary word, then their
concatenation xy is also a binary word:

(x ∈ BinDigit ∧ y ∈ BinWords) → xy ∈ BinWords

• Extremal clause: nothing is an element of BinWords unless it can be
constructed with a finite number of uses of the base and induction cases.

A set based on another set S in this way is given the name S+, indicating
that it is the set of all possible non-empty strings over S. The expression S∗

is the same as S+ except that S∗ also includes the empty string. Thus our set
BinWords could be written BinDigit+.

We can write a Haskell function to calculate the set of binary words, using
the inductive definition just presented. The induction function takes a binary
word. It creates a new one from that number and each binary digit in turn.
For example, if it is given [1,0], it returns [0,1,0] and [1,1,0].

The induction rule takes a binary word and creates two new ones, so we
define the function newBinaryWords to do just that:

newBinaryWords :: [Integer] -> [[Integer]]
newBinaryWords ys = [0 : ys, 1 : ys]

Finally, we define the set of binary words as follows:

mappend :: (a -> [b]) -> [a] -> [b]
mappend f [] = []
mappend f (x:xs) = f x ++ mappend f xs

binWords = [0] : [1] :
(mappend newBinaryWords binWords)

Exercise 11. Alter the definition of newBinaryWords and binWords so that
they produce all of the octal numbers. An octal number is one that
contains only the digits 0 through 7.
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9.3 Defining the Set of Integers

Now we come to a more subtle problem: defining the set I of integers. Instead
of just giving the final answer, we will think through the problem the way you
might in real life. Each time we have a trial solution, we will examine it to see
if it works and whether it can be improved.

The sets we have been defining are well-founded; that is, they are infinite
only in one direction, and they have a least element. The set N of natural
numbers is a good example of a well-founded set.

A countable set is one that can be counted using the natural numbers (see
Chapter 11). Are the integers countable? They don’t have a least element, and
they are infinite in two directions, so they aren’t well-founded. But we could
use a trick: start from 0 and count first n then −n. If we think of the integers
as a measuring tape that is infinitely long in two directions, we could still count
the inches (or centimetres) on the tape by thinking of the tape as being folded
at 0. Now the positive numbers touch the negative numbers, and each element
i of the naturals counts both the positive and the negative numbers; that is, i
counts (i,−i).

We have just devised a way of enumerating the integers so that every el-
ement is eventually counted. This forms an excellent basis for an inductive
definition of the integers. We will now work through several attempts to define
the integers using induction. Some of these have problems, and we discuss how
to debug them.

9.3.1 First Attempt

Attempt 1. The set I is defined as follows:

• Base case: 0 ∈ I

• Induction case: x ∈ I → −x ∈ I

• Extremal clause: nothing is in I unless its presence is justified by a finite
number of uses of the base and induction cases.

We will now define some functions that will make our inductive definitions
easier to understand and also make it possible to use the computer to help
carry out experiments with the definition. Each of these is designed to take
the base and induction cases as arguments and construct the data recursion
automatically. The first uses map and the second uses mappend.

build :: a -> (a -> a) -> Set a
build a f = set

where set = a : map f set

builds :: a -> (a -> [a]) -> Set a
builds a f = set
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where set = a : mappend f set

Here is an implementation of the first definition:

nextInteger1 :: Integer -> Integer
nextInteger1 x = -x

integers1 :: [Integer]
integers1 = build 0 nextInteger1

Exercise 12. Use take 10 integers1 to evaluate the first 10 integers accord-
ing to this definition. Describe the set that is actually defined by Attempt
1.

9.3.2 Second Attempt

Attempt 1 doesn’t work. It was based on our intuitive method making the
integers countable. The problem is that according to this definition, only 0 is a
member of I. When the natural numbers were defined, there was a mechanism
for including new numbers by adding 1 to the integer in the premise. Something
similar is needed here to include the other integers.

Attempt 2. The set I is defined as follows:

• Base case: 0 ∈ I

• Induction case: x ∈ I → (x + 1 ∈ I ∧ x − 1 ∈ I)

• Extremal clause: Nothing is in I unless its presence is justified by a finite
number of uses of the base and induction cases.

Here is an implementation of Attempt 2:

nextIntegers2 :: Integer -> [Integer]
nextIntegers2 x = [x + 1, x - 1]

integers2 :: [Integer]
integers2 = builds 0 nextIntegers2

Exercise 13. Use take 20 integers2 to evaluate the first 20 integers accord-
ing to this definition. Describe the set that is actually defined by Attempt
2.

9.3.3 Third Attempt

The previous attempt gave a correct inductive definition of the integers, but
there is still a problem with it, as can be seen by a simple example. Consider
proving that -2 is in I:
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1. 0 ∈ I base case
2. 0 ∈ I → (1 ∈ I ∧ −1 ∈ I) instantiation, induction case
3. 1 ∈ I ∧ −1 ∈ I 1,2, Modus Ponens
4. −1 ∈ I → (0 ∈ I ∧ −2 ∈ I) instantiation, induction case
5. 0 ∈ I ∧ −2 ∈ I 3,4, Modus Ponens

We can be sure that this definition is correct because the induction step
brings both the positive and negative numbers into I. Each element of I is
incremented, guaranteeing that the naturals will be included as 1 and its suc-
cessors are added. Each element of I is also decremented, ensuring that all of
the negative numbers will be included as -1 and its predecessors are added.

A drawback, however, is that there are two ways for 0 to become a member
of I. The base case puts it there, and step 5 does it again. In fact, the real
defects of this definition are graphically illustrated by the fact that

take 20 integers2
= [0,1,-1,2,0,0,-2,3,1,1,-1,1,-1,-1,-3,4,2,2,0,2]

It is more elegant if the definition introduces each element only once. Fur-
thermore, practical software based in an inductively defined set would be inef-
ficient (and possibly even incorrect) if the elements were introduced more than
once. Here is one way to try to fix the problem:

Attempt 3. The set I is defined as follows:

• Base case: 0 ∈ I

• Induction case: x ∈ I → (x + 1 ∈ I ∧ −(x + 1) ∈ I)

• Extremal clause: nothing is in I unless its presence is justified by a finite
number of uses of the base and induction cases.

Here is an implementation of the third definition:

nextIntegers3 :: Integer -> [Integer]
nextIntegers3 x = [x + 1, -(x + 1)]

integers3 :: [Integer]
integers3 = builds 0 nextIntegers3

Exercise 14. Use the computer to examine the first 10 integers generated by
this definition, and describe the set that is defined.
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9.3.4 Fourth Attempt

This third attempt is a correct definition of the set of integers, and it is much
closer to our intuition. What we want to do is say that if x is in I, then −x is
also in I. However, we also have to increment and decrement x somehow, so
that all the integers can be included. Consider what happens when we attempt
to show that -2 is in I:

1. 0 ∈ I base case
2. 0 ∈ I → (1 ∈ I ∧ −1 ∈ I) instantiation, induction case
3. 1 ∈ I ∧ −1 ∈ I 1,2, Modus Ponens
4. 1 ∈ I → (2 ∈ I ∧ −2 ∈ I) instantiation, induction case
5. 2 ∈ I ∧ −2 ∈ I 3,4, and, Modus Ponens

This is almost what we want, except that when the induction rule is instan-
tiated with -1 it places 0 in I again. And,

take 10 integers3 =
[0,1,-1,2,-2,0,0,3,-3,-1].

Therefore Attempt 3 doesn’t introduce each element precisely once.

Attempt 4. The set I of integers is defined as follows:

• Base case: 0 ∈ I

• Induction case:

1. (x ∈ I ∧ x ≥ 0) → x + 1 ∈ I

2. (x ∈ I ∧ x < 0) → x − 1 ∈ I

• Extremal clause: nothing is in I unless its presence is justified by a finite
number of uses of the base and induction cases.

Here is an implementation of the fourth definition:

nextInteger4 :: Integer -> Integer
nextInteger4 x = if x < 0 then x - 1 else x + 1

integers4 :: [Integer]
integers4 = build 0 nextInteger4

Exercise 15. Use the computer to generate some elements of the set defined
by Attempt 4, and describe the result.
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9.3.5 Fifth Attempt

Attempt 4 does not work, because the numbers generated from 0 must al-
ways be positive. It is necessary to go back to Attempt 4 and improve that.
Furthermore, it would be better to have only one inductive case, if possible.

Attempt 5. The set I of integers is defined as follows:

• Base case: 0 ∈ I

• Induction case: (x ∈ I ∧ x ≥ 0) → x + 1 ∈ I ∧ −(x + 1) ∈ I

• Extremal clause: nothing is in I unless its presence is justified by a finite
number of uses of the base and induction cases.

This definition is exactly what the original method of counting the integers
suggested. It is implemented by the following Haskell program:

nextIntegers5 :: Integer -> [Integer]
nextIntegers5 x
= if x > 0 \/ x == 0

then [x + 1, -(x + 1)]
else []

integers5 :: [Integer]
integers5 = builds 0 nextIntegers5

Exercise 16. Use the computer to evaluate the first 10 elements of the set,
and describe the result.

9.4 Suggestions for Further Reading

Many of the references on set theory cited in Chapter 8 also deal with inductive
definitions of sets. Elements of Set Theory, by Enderton [11], gives some good
examples of inductively defined sets. A more advanced treatment appears in
Axiomatic Set Theory, by Suppes [30].

9.5 Review Exercises

Exercise 17. Does ints, using the following definition, enumerate the inte-
gers? If it does, then you should be able to pick any integer and see it
eventually in the output produced by ints. Will you ever see the value
-1?

nats :: [Integer]
nats = build 0 (1 +)
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negs :: [Integer]
negs = build (-1) (1 -)

ints :: [Integer]
ints = nats ++ negs

Exercise 18. Does twos enumerate the set of even natural numbers?

twos :: [Integer]
twos = build 0 (2 *)

Exercise 19. What is wrong with the following definition of the stream of
natural numbers?

nats = map (+ 1) nats ++ [0]

Exercise 20. What is the problem with the following definition of the natu-
rals?

naturals :: [Integer] -> [Integer]
naturals (i:acc) = naturals (i + 1:i:acc)

nats :: [Integer]
nats = naturals [0]

Exercise 21. Can we write a function that will take a stream of the naturals
(appearing in any order) and give the index of a particular number?

Exercise 22. Using induction, define the set of roots of a given number n.

Exercise 23. Given the following definition, prove that n3 is in set P of powers
of n.

Definition 28. Given a number n, the set P of powers of n is defined
as follows:

• n0 ∈ P

• nm ∈ P → nm+1 ∈ P

• Nothing else is in P unless it can be shown to be in P by a finite
number of uses of the base and induction rules.

Exercise 24. When is 0 in the set defined below?

Definition 29. Given a number n, the set N is defined as follows:

• n ∈ N

• m ∈ N → m − 2 ∈ N

• Nothing is in N unless it can be shown to be in N by a finite number
of uses of the previous rules.
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Exercise 25. What set is defined by the following definition?

Definition 30. The set S is defined as follows:

• 1 ∈ S

• n ∈ S ∧ n mod 2 = 0 → n + 1 ∈ S

• n ∈ S ∧ n mod 2 = 1 → n + 2 ∈ S

• Nothing else is in S unless it can be shown to be in S by a finite
number of uses of the previous rules.

Exercise 26. Prove that 4 is in the set defined as follows:

Definition 31. The set S is defined as follows:

1. 0 ∈ S

2. n ∈ S ∧ n mod 2 = 0 → n + 2 ∈ S

3. n ∈ S ∧ n mod 2 = 1 → n + 1 ∈ S

4. Nothing is in S unless it can be shown to be in S by a finite number
of uses of the previous rules.

Exercise 27. Given the following definition, prove that the string ‘yyyy’ is in
YYS.

Definition 32. The set YYS of strings containing pairs of the letter ’y’
is defined as follows:

1. ""∈ Y Y S

2. s ∈ Y Y S → "yy"++ s ∈ Y Y S

3. Nothing else is in YYS unless it can be shown to be in YYS by a
finite number of uses of rules (1) and (2).

Exercise 28. Using data recursion, define the set of strings containing the
letter ‘z’.

Exercise 29. Using induction, define the set of strings of spaces of length less
than or equal to some positive integer n.

Exercise 30. Using recursion, define the set of strings of spaces of length less
than or equal to length n, where n is a positive integer.

Exercise 31. We could have a set that consists of all the natural numbers
except for 2; you can write this as N − {2}. Similarly, for every natural
number x, there is a set that contains all the natural numbers except
for x. Now, we could make a set SSN of all of these results. Write an
inductive definition of SSN.
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Exercise 32. Given the following definition, show that the set I − {−3} ∈
SSI−.
The set of sets of integers SSI, each of which is missing a distinct negative
integer, is defined inductively as follows:

1. I − {−1} ∈ SSI−
2. I − {n} → I − {n − 1} ∈ SSI−
3. Nothing else is in SSI- unless it can be shown to be in SSI- by a

finite number of uses of rules (1) and (2).

Exercise 33. Given the following definition, prove that -7 is in ONI. The set
ONI of odd negative integers is defined as follows:

1. −1 ∈ ONI

2. n ∈ ONI → n − 2 ∈ ONI

3. Nothing is in ONI unless it can be shown to be in ONI by a finite
number of uses of the previous rules.

Exercise 34. Using data recursion, define the set ni of negative integers.

Exercise 35. If you print the elements of

[(a,b) | a <- [0..], b <- [0..]]

will you ever see the element (1,2)?

Exercise 36. What set is given by the following definition?

Definition 33. The set S is defined as follows:

1. 1 ∈ S

2. n ∈ S → n − n ∈ S

3. Nothing is in S unless it can be shown to be in S by a finite number
of uses of the previous rules.



Chapter 10

Relations

There are many kinds of relationship that occur in everyday life. Some of these
describe how the members of a family are related to each other: parent, child,
brother, sister, sibling. We could also have a relation called is in for cities and
countries: for example, London is in Great Britain, and Paris is in France. Or
we could have a relation that describes which make of car is produced by which
manufacturer. Relations are used in mathematics to describe how two numbers
are related to each other; for example expressions like x < y and p ≥ q use the
relations < and ≥.

Similar examples abound in computing, and many branches of computer
science use the terminology of relations to describe concepts precisely. Relations
are naturally at the heart of relational databases; they are used heavily in the
description of programming language syntax; they provide a good notation for
representing the internal information required for web search engines, and so
on.

Since relations are ubiquitous and important, it is useful to define them
as mathematical objects and to describe their properties. In this chapter, we
will see how to define relations using set theory and how to perform various
calculations with them.

10.1 Binary Relations

A binary relation is used to describe the relationship between two objects.
The word binary here means simply that there are two objects involved; it
has nothing at all to do with binary number representations or binary files.
General relationships among any number n of objects are called n-ary relations,
but binary relations are the most important in computing, and we will restrict
ourselves to those for the time being.

Definition 34. A binary relation R with type R :: A×B is a subset of A×B,
where A is the domain and B is the codomain of R. For x ∈ A and y ∈ B, the
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notation x R y means (x, y) ∈ R.

Example 17. Let P be the set of people {Bill,Sue,Pat}, and let A be the
set of animals {dog, cat}. The relation has :: P × A describes which person has
which kind of animal. Suppose that Bill and Sue both have a dog, and Sue and
Pat have a cat. We would represent this information by writing the following
relational expressions:

Bill has dog Sue has dog
Sue has cat Pat has cat

but the statement ‘Bill has cat’ is false. Written out in full, the relation is

has =
{
(Bill, dog), (Sue, dog), (Sue, cat), (Pat, cat)

}
.

Example 18. Let R be the set of real numbers. Then (<) ⊂ (R × R) is the
‘less than’ relation and consists of the set of all ordered pairs (x, y) such that
x < y. Because (<) has an infinite number of elements, we can write it out
only partially; for example,

(<) =
{

. . . , (−35.2,−12.1), (−1, 2.7), . . .
}
.

Example 19. Many databases use relations to represent the data, as this is
a good way to associate different pieces of information with each other. For
example, a relation can be used to specify that a person’s name is related to
that person’s address. These are called relational databases.

Suppose that you are building a relational database that maintains ge-
nealogical data about the families in a town. One of the relations in your
database might be the IsFatherOf relation. If John is the father of Mary
and Peter, then two pairs in the relation have John as their first component:
{(John,Mary), (John,Peter)}. This relation states two facts: John IsFatherOf
Mary and John IsFatherOf Peter.

We could also represent the relationship between John and his children
using a single tuple: {(John,Mary,Peter)}. This is not a binary relation; it is
a more general form of relation called an n-ary relation (where n = 3 in this
case).

Example 20. What would have happened if the pairs had been written as
(Mary, John) and (Peter, John)? Then they would have had an entirely dif-
ferent meaning, asserting Mary IsFatherOf John and Peter IsFatherOf John,
which is not what was intended. It is important to remember that the pairs
in a relation are ordered pairs. The pairs (1,2) and (2,1) are not equal to each
other, nor are the pairs (1,2) and (1,3).

Example 21. Let’s consider two sets, Children and Adults. The set Children
includes Joe, Anne, and Susan, and the set Adults includes Ray, John, and
Dinah. We would like to create a relation SmallFamilies that pairs each child
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Jacqui

Peter
Mary

John

Figure 10.1: The Digraph of the IsFatherOf Relation

with every possible adult. This is done by taking each child in the first set and
pairing it in turn with each adult in the second set; that is, we are taking the
cross product of the two sets, denoted Children × Adults:

SmallFamilies =
{(Joe,Ray), (Joe, John), (Joe,Dinah),
(Anne,Ray), (Anne, John), (Anne,Dinah),
(Susan,Ray), (Susan, John), (Susan,Dinah)}

10.2 Representing Relations with Digraphs

Sometimes a diagram provides a good way to visualise a relation. There is
a representation of binary relations called a digraph which is convenient for
computing, and which also is well suited for diagrams. Every element of the
domain and codomain in a digraph diagram is represented by a labelled dot
(called an element or node) in the graph, and every pair (x, y) in the relation
is represented by an arrow going from x to y (which may be called an arrow
or arc).

Example 22. Figure 10.1 shows a graph illustrating the IsFatherOf relation.
There is a node for each of John, Mary, Peter, and Jacqui. There are two
arrows, from John to Mary and John to Peter.

Many graphs contain some nodes that have no arrows: for example, the
node Jacqui in Figure 10.1. This means that we need to specify the graph by
giving both the set of nodes and the set of arcs.

Some relations have the same set as their domain and codomain, so the
relation has a type of the form R :: A × A. In such cases, you draw the graph
by writing (and labelling) a dot for every element of A and then draw in the
arrows. Sometimes the domain and codomain are disjoint, which means that
no element appears in both the domain and codomain. When this happens, it is
helpful to keep the dots representing the domain together in the graph diagram,
and separate from the dots representing the codomain. Figure 10.2 shows the
graph for the relation R :: A × A =

{
(1, 4), (2, 6)

}
where A = {1, 2, 4, 6}.
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4

1 2

6

Figure 10.2: The Digraph ({1,2,4,6},{(1,4),(2,6)})

It is important to remember that a relation is more than just a set of ordered
pairs; the domain and codomain must be specified, too. In drawing the graph
of a relation, you should either draw a dot (or node) for every element of the
domain and codomain, and use the layout to indicate exactly what these sets
are, or you should specify them explicitly.

Definition 35. Let A be a set, and let R be a binary relation R :: A×A. The
digraph D of R is the ordered pair D = (A, R).

Example 23. The digraph of the relation R :: A×A, where R = {(1, 2), (2, 3)}
and A = {1, 2, 3}, is

({1, 2, 3}, {(1, 2), (2, 3)})
.

Example 24. The digraph of the relation R :: A×A, where R = {(1, 2), (2, 3)}
and A = {1, 2, 3, 4, 5, 6}, is

({1, 2, 3, 4, 5, 6}, {(1, 2), (2, 3)})
. Note that this is a

different relation than in the previous example, although the set of ordered pairs
is identical. The digraph representation records the domain and codomain,
giving a precise and complete description of the relation.

This has some interesting implications. For example, two graphs may show
an empty relation that contains no arrows (no ordered pairs), but the relations
are not equivalent unless their domains and codomains are equal.

Many relations have arcs that are connected to each other in a special way.
For example, a set of arcs connected in a sequence is called a (directed) path.

Definition 36. A directed path is a set of arcs that can be arranged in a
sequence, so that the end point of one arc in the sequence is the start point of
the next.

Example 25. The sets {(1, 2), (2, 3), (3, 4)} and {(1, 3), (3, 1)} are both paths,
but the set {(1, 2), (5, 6)} is not.

10.3 Computing with Binary Relations

It is common to compute directly with relations. Throughout this chapter, we
will use the computer as a calculator for expressions on relations; this is a good
way to become accustomed to all the operations on relations since they are
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used to specify computations formally in many specialised areas of computer
science.

A relation R :: A × B, with domain A and codomain B, can be represented
as a list of type [(A,B)]. Each element of the list has type (A,B), and is a pair
of the form (x,y) where x::A is in the domain and y::B is in the codomain.

Often we impose two restrictions on a relation in order to make it easier to
compute with it: (1) there is a finite number of elements in the relation, and
(2) the types of the domain and codomain must be in the classes Eq and Show,
so that we can compare and print elements of the relation.

Example 26. The relation of colour complements can be represented as fol-
lows:

data Colour = Red | Blue | Green | Orange | Yellow | Violet
deriving (Eq, Show)

colourComplement :: Digraph Colour
colourComplement =
([Red,Blue,Green,Orange,Yellow,Violet],
[(Red,Green), (Green,Red),
(Blue,Orange), (Orange,Blue),
(Yellow,Violet), (Violet,Yellow)])

To say ‘the colour complement of red is green’, we would write either of the
following:

Red colourComplement Green
(Red,Green) ∈ colourComplement

In the example above, we must include both (Red, Green) and (Green,
Red) in colourComplement. If we omitted either one of these, we would have a
different relation.

The function domain takes a relation and returns its domain:

domain ::
(Eq a, Show a, Eq b, Show b) => Set (a,b) -> Set a

For example, domain colourComplement returns the set of colours in the do-
main of the relation, which is

{Red,Green,Blue,Orange,Yellow,Violet}.

The set is represented as a list, but there is no significance to the order of
elements in the list.

The codomain function is similar:

codomain ::
(Eq a, Show a, Eq b, Show b) => Set (a,b) -> Set b
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Many of the operations and functions on sets that we defined in Chapter 8
are useful for working on relations, including crossproduct and setEq.

Exercise 1. Work out the values of the following expressions, and then check
your answer by evaluating the expressions with the computer.

domain [(1,100),(2,200),(3,300)]
codomain [(1,100),(2,200),(3,300)]
crossproduct [1,2,3] [4]

Exercise 2. The following list comprehensions define a list of ordered pairs.
What relations are represented by these lists? Give the domain and the
codomain, as well as the pairs themselves.

(a) [(a,b) | a <- [1,2],
b <- [3,4]]

(b) [ (a,b) | a <- [1,2,3],
b <- [1,2,3],
a == b]

(c) [ (a,b) | a <- [1,2,3],
b <- [1,2,3],
a < b]

10.4 Properties of Relations

Many relations share interesting and useful properties. For example, we know
that if person a is a sibling of person b and b is a sibling of c, then a is also
a sibling of c. In a similar way, if x, y and z are numbers, and we know that
x < y and y < z, then it must also be the case that x < z. These two examples
show that the sibling relation and the (<) relation have essentially the same
property (which is called ‘transitivity’). In this section we define a variety of
such relational properties.

10.4.1 Reflexive Relations

In a reflexive relation, every element of the domain is related to itself.

Definition 37. A binary relation R over A is reflexive if xRx for every element
x of the domain A.

When a reflexive relation is shown in a graph diagram, there must be an
arrow from every dot in the domain back to itself.

Example 27. The relation R :: A × A, where A = {1, 2} and

R = {(1, 1), (1, 2), (2, 2)},

is reflexive.
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Example 28. Let R :: A × A be a relation, where A = {1, 2, 3} and R =
{(1, 1), (2, 2)}. R is not reflexive, but if we added (3, 3) to R then it would be
reflexive.

Example 29. A relation SameFamily, such that xSameFamily y for any two
people x and y who are in the same family, is reflexive (because you are in the
same family as yourself).

Example 30. The following relations on numbers are reflexive: equality (=),
greater than or equal (≥), and less than or equal (≤).

Example 31. The following relations on numbers are not reflexive: inequality
(�=), less than (<), and greater than (>).

The Haskell software tools include many functions that test relations for
their properties. The function isReflexive returns a Boolean that is True if
the relation is reflexive:

isReflexive ::
(Eq a, Show a) => Digraph a -> Bool

Example 32. Consider the following digraphs:

a = [1,2,3]
digraph1 = (a,[(1,1), (1,2), (2,2), (2,3), (3,3)])
digraph2 = (a,[(1,2), (2,3), (3,1)])
digraph3 = (a,[(1,1), (1,2), (2,2), (2,3)])

The first one, in digraph1, is reflexive, because a contains 1, 2, and 3, and
all the pairs (1, 1), (2, 2), and (3, 3) appear in digraph1. However, digraph2
is not reflexive because (1, 1) doesn’t appear in its set of ordered pairs. (An
equally good argument is that (2, 2) doesn’t appear, or (3, 3) doesn’t appear—
all you have to do to show that a relation is not reflexive is to show that there is
some element x of the domain where (x, x) doesn’t appear in the set of ordered
pairs.) Finally, digraph3 is also not reflexive, because (3, 3) is not in the set
of ordered pairs.

10.4.2 Irreflexive Relations

A relation is irreflexive if no element of its domain is related to itself.

Definition 38. A binary relation R over A is irreflexive if, for every x ∈ A, it
is not the case that xRx.

Example 33. The greater than (<) and less than (>) relations over numbers
are irreflexive because x < x and x > x are always false.
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Museum HouseOfFamousWriter

OldMarketPlaceCathedral

Figure 10.3: The ByBus Relation

As long as the domain A of a relation R :: A × A is non-empty, then it
is impossible for R to be both reflexive and irreflexive. To see this, consider
some element x of the domain (such an x must exist, because the domain is not
empty). If R is reflexive then (x, x) ∈ R, but if R is irreflexive then (x, x) �∈ R,
and both cannot be true.

Example 34. The empty relation R :: ∅ × ∅ is reflexive and also irreflexive.
In both cases the conditions are met vacuously.

Example 35. Many relations among people are irreflexive. For example, the
relations IsMarriedTo and IsChildOf are irreflexive relations, because no one
can marry themself or be their own child.

It often happens that a relation is not reflexive and it is also not irreflexive.
For example, let A = {1, 2, 3, 4, 5} be the domain and codomain of the relation
R = {(1, 3), (2, 4), (3, 3), (3, 5)}. Then R is not reflexive (for example, (1, 1) is
not in R) but it is also not irreflexive (because (3, 3) is in R).

Suppose that we are visiting a city in France and want to see several build-
ings by bus. We can get a bus schedule and look at it, note down the buildings
and draw an arrow between each pair of nodes that the bus will visit (Figure
10.3).

{(Cathedral, Museum),(Museum, HouseOfFamousWriter),
(HouseOfFamousWriter, OldMarketPlace),
(OldMarketPlace, Cathedral)}

The bus is travelling in a cycle, a path that starts and stops at the same
node. However, the ByBus relation is not reflexive: the bus isn’t going to waste
time cycling around one place and returning to it without going anywhere else.
The ByBus relation is irreflexive.

The following Haskell function determines whether a binary relation is ir-
reflexive:
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isIrreflexive ::
(Eq a, Show a) => Digraph a -> Bool

Exercise 3. For each of the following Digraph representations of a relation,
draw a graph of the relation, work out whether it is reflexive and whether
it is irreflexive, and then check your conclusion using the isReflexive
and isIrreflexive functions:

([1,2,3],[(1,2)])
([1,2],[(1,2),(2,2),(1,1)])
([1,2],[(2,1)])
([1,2,3],[(1,2),(1,1)])

Exercise 4. Determine whether each of the following relations on real numbers
is reflexive and whether it is irreflexive. Justify your conclusions.

(a) less than (<)

(b) less than or equal to (≤)

(c) greater than (>)

(d) greater than or equal to (≥)

(e) equal (=)

(f) not equal (�=)

We can’t use the isReflexive and isIrreflexive functions on relations
with an infinite domain. However, if we restrict the domain to the nat-
ural numbers from 0 through 100, it’s possible to represent the relations
completely and check them with the software tools. The following binary
relation representations, with domain N100 = {0, . . . , 100}, are defined
in the software tools:

lessThan_N100, lessThanOrEq_N100,
greaterThan_N100, greaterThanOrEq_N100,
equals_N100, notEq_N100
:: Digraph Int

Using these finite relations, use the computer to check your results. Note
that a partial check like this does not prove anything about the infinite
relations, but it is guaranteed to give the correct result for a finite relation
on the first hundred natural numbers.

10.4.3 Symmetric Relations

Some relations have the property that the order of two related objects does not
matter; that is, if xRy it must also be true that yRx. Such a relation is called
a symmetric relation.
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Amanda

John Harry

Ginger

Figure 10.4: The IsSiblingOf Relation

Definition 39. Let R :: A × A be a binary relation. Then R is symmetric if
∀x, y ∈ A. xRy → yRx.

Example 36. Equality on real numbers (=) is symmetric, because if x = y
then also y = x. The equality relation is commonly defined for sets, and it is
always symmetric; in fact, one of the essential properties of an abstract equality
relation is that it must be symmetric.

Example 37. The family relation IsSiblingOf is symmetric.

Example 38. The family relations IsBrotherOf and IsSisterOf are not sym-
metric: for example, the term ‘Robert IsBrotherOf Mary’ is true, but ‘Mary
IsBrotherOf Robert’ is false.

When you draw the graph diagram for a symmetric relation, every arc from
a to b will have a matching arc from b back to a. The notation can be simplified
by putting an arrowhead on both sides of every arc.

Example 39. Here is a possible definition of the IsSiblingOf relation, shown
in Figure 10.4:

{(John, Harry), (Harry, John),
(Amanda, Ginger), (Ginger, Amanda)}

Example 40. The relation R = {(1, 2), (2, 1), (2, 3), (3, 2)} is symmetric.

Example 41. The relation R = {(1, 2), (1, 3), (3, 1)} is not symmetric, because
(1, 2) ∈ R but (2, 1) �∈ R.

Exercise 5. Is the family relation IsChildOf symmetric?

Exercise 6. Suppose we have a relation R :: A × A, where A is non-empty
and reflexive, but it has only the arcs required in order to be reflexive.
Is R symmetric?

Exercise 7. In the definition of a symmetric relation, can the variables x and
y can be instantiated by a single node?
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Sam Anna

Joan Jeanne

Figure 10.5: The IsChildOf Relation

10.4.4 Antisymmetric Relations

An antisymmetric relation is one where for all distinct values a and b, it is
never the case that both aRb and bRa.

Example 42. The less-than relation (<) is antisymmetric, because it cannot
be true that x < y and also y < x.

Example 43. The family relation IsChildOf is antisymmetric; if x is a child
of y, than y must be the parent—not the child—of x. For example, suppose
the IsChildOf relation contains the following ordered pairs (Figure 10.5):

{(Joan, Sam), (Jeanne, Sam), (Joan, Anna), (Jeanne, Anna)}

Notice that this relation never has both a pair (x, y) and also a pair (y, x).

The antisymmetric property is defined formally as follows:

Definition 40. A binary relation R :: A × A is antisymmetric if

∀x, y ∈ A. xRy ∧ yRx → x = y.

The graph of an antisymmetric relation may contain some cycles; for ex-
ample the relation R = {(1, 2), (2, 3), (3, 1)} has a cycle from 1 to 2 to 3 and
back to 1, and the relation R2 = {(1, 1)} has a trivial cycle containing just 1.
However, if an antisymmetric relation does have a cycle, then the length of the
cycle cannot be 2, although it may be 1, or greater than 2. In other words,
this graph will have no cycles of length 2, but it can have cycles of any other
length.

Example 44. Given the set A = {1, 2, 3}, the relation

R :: A × A = {(1, 2), (2, 1), (2, 3), (3, 1)}

is not anti-symmetric because both (1, 2) and (2, 1) appear in the set of ordered
pairs.
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Example 45. Given the set A = {1, 2, 3}, the relation

R :: A × A = {(1, 1), (1, 2), (2, 3), (3, 1)}
is anti-symmetric.

Example 46. Given the set A = {1, 2, 3, 4}, and R1, R2, R3 :: A × A, the
relations

R1 = {(1, 2), (2, 3), (4, 1)}
and

R2 = {(1, 1), (2, 2)}
are both antisymmetric, but

R3 = {(1, 3), (3, 1), (2, 3), (3, 2)}
is not antisymmetric.

If a relation R :: A × A is antisymmetric, both of the following statements
must be true:

∀x, y ∈ A. x �= y → ¬(xRy ∧ yRx)
∀x, y ∈ A. x �= y → ¬xRy ∨ ¬yRx

Both propositions say that for two distinct elements of the domain, the graph
diagram of R contains at most one arrow connecting them.

Example 47. Suppose that we were misanthropic and thought people didn’t
treat each other well in general. When told that a Helps b and b Helps a, we
might retort that a and b must therefore be the same person! We could express
this gloomy view of the world as

∀x, y ∈ WorldPopulation. x Helps y ∧ y Helps x → x = y.

The software tools define the following functions, which determine whether
a finite binary relation is symmetric or antisymmetric:

isSymmetric, isAntisymmetric ::
(Eq a, Show a) => Digraph a -> Bool

Exercise 8. First work out whether the relations in the following expressions
are symmetric and whether they are antisymmetric, and then check your
conclusions by evaluating the expressions with Haskell:

isSymmetric ([1,2,3],[(1,2),(2,3)])
isSymmetric ([1,2],[(2,2),(1,1)])
isAntisymmetric ([1,2,3],[(2,1),(1,2)])
isAntisymmetric ([1,2,3],[(1,2),(2,3),(3,1)])
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Exercise 9. Which of the following relations are symmetric? Antisymmet-
ric?

(a) The empty binary relation over a set with four nodes;

(b) The = relation;

(c) The ≤ relation;

(d) The < relation.

10.4.5 Transitive Relations

If x, y, and z are three people, and you know that x is a sister of y and y is a
sister of z, then x must also be a sister of z. Similarly, if you know that x < y
and also that y < z, it must also be the case that x < z. Relations that have
this property are called transitive relations.

Definition 41. A binary relation R :: A × B is transitive if

∀x, y, z ∈ A. xRy ∧ yRz → xRz.

Example 48. The relation R = {(1, 2), (2, 3), (1, 3)} is transitive because it
contains (1, 3), which is required by the presence of (1, 2) and (2, 3).

Example 49. The relation R = {(1, 2), (2, 3)} is not transitive because there
are pairs (1, 2) and (2, 3) but there is no pair (1, 3).

The (=) relation is transitive, as is the IsAncestorOf relation.

Example 50. The IsMarriedTo relation is not transitive. It is certainly sym-
metric, because if x IsMarriedTo y then it must also be the case that y IsMarriedTox.
Suppose, however, that x and y are two married people. Then (x, y) and (y, x)
are both in the relation, so, if it were transitive, then (x, x) would also need to
be in the relation. Nobody is married to themself, so this cannot be, and the
relation is not transitive.

Example 51. Suppose we are flying from one city to another. The relation
FlightTo describes the point-to-point flights that are available: for example,
(London,Paris) ∈ FlightTo because there is a direct flight from London to
Paris. This relation is not transitive, because there are flights from many
small cities to London, but those small cities don’t have direct flights to Paris.
However, the ReachableByAir relation is transitive. In effect, the airlines define
the FlightTo relation, and the travel agents extend this to the more general
ReachableByAir relation, which may involve several connecting flights.

As the previous example suggests, a binary relation R can be extended
to make a new binary relation RT , such that R ⊆ RT and RT is transitive.
This often entails adding several new ordered pairs. For example, suppose we
have a relation CityMap that defines direct street connections, so that (x, y) ∈
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Cathedral Museum

AirportMarket

Figure 10.6: The CityMap Relation

AirportMarket

MuseumCathedral

Figure 10.7: The Transitive CityMap Relation

CityMap if there is a street connecting x directly with y (Figure 10.6). The
relation could be defined (for a small city) as

{(Cathedral,Museum), (Museum,Market), (Market,Airport)}.

The CityMap relation is not transitive, because there is a street path from
Cathedral to Market, but no street connects them directly. Just adding the
pair (Cathedral,Market) is not enough to make the relation transitive; a total
of three ordered pairs must be added. These are shown as dashed arrows in
Figure 10.7. The new pairs that we added to the relation are

{(Cathedral,Market), (Cathedral,Airport), (Museum,Airport)}.

A transitive relation provides a short cut for every path of length 2 or more.
To make a relation transitive, we must continue adding new pairs until the new
relation is transitive. This process is called taking the transitive closure of the
relation.

The software tools contain a definition of the following function, which
determines whether a finite binary relation is transitive:

isTransitive ::
(Eq a, Show a) => Digraph a -> Bool
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Exercise 10. Determine by hand whether the following relations are transi-
tive, and then check your conclusion using the computer:

isTransitive ([1,2],[(1,2),(2,1),(2,2)])
isTransitive ([1,2,3],[(1,2)])

Exercise 11. Determine which of the following relations on real numbers are
transitive: (=), (�=), (<), (≤), (>), (≥).

Exercise 12. Which of the following relations are transitive?

(a) The empty relation;

(b) The IsSiblingOf relation;

(c) An irreflexive relation;

(d) The IsAncestorOf relation.

10.5 Relational Composition

We can think of a relation R :: A × B as taking us from a point x ∈ A to a
point y ∈ B, assuming that (x, y) ∈ R. Now suppose there is another relation
S :: B × C, and suppose that (y, z) ∈ S, where z ∈ C. Using first R and then
S, we get from x to z, via the intermediate point y.

We could define a new relation that describes the effect of doing first R and
then S. This is called the composition of R and S, and the notation for it is
R;S.

Example 52. Suppose that we have a relation Flight over the set City, where
(a, b) ∈ Flight if there is an airline flight from a to b. There is also a relation
BusTrip over City, and (c, d) ∈ BusTrip if there is a bus connection from c
to d. Now, we are interested in a relation that describes where we can go,
starting from a city with an airport. The relation Flight ; BusTrip consists of
the set of pairs (x, y) such that you can get from x to y by flying first to some
intermediate city y, and then taking the bus from y on to z.

The use of a semicolon (;) as the operator for relational composition is com-
mon, but not completely standard. Many older mathematics books omit the
relational composition operator, using RS to mean the relational composition
of R and S. Computer scientists often prefer to make all operators explicit.
The use of a semicolon is intended to suggest sequencing: just as statement1 ;
statement2 in an imperative programming language means ‘First execute state-
ment1 and then execute statement2 ’, the relational composition R;S means
‘First apply the relation R and then apply the relation S’.

Relational composition is defined formally as follows.
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Paris Birmingham

London

Figure 10.8: The Route1; Route1 Relation

Definition 42. Let R1 :: A × B be a relation from set A to set B, and
R2 :: B × C be a relation from set B to set C. Their relational composition is
defined as follows:

R1;R2 :: A × C

R1;R2 = {(a, c) | a ∈ A ∧ c ∈ C ∧ (∃b ∈ B. (a, b) ∈ R1 ∧ (b, c) ∈ R2)}

The definition just says formally that R1;R2 consists of all the pairs (a, c),
such that there is an intermediate connecting point b. This means that (a, b) ∈
R1 and (b, c) ∈ R2.

Example 53. When we compose two relations, any two links between a and b
in the first relation and b and c in the second produce a new link between a and
c. Suppose we have a relation Route1 linking Paris and London and Route2
linking London and Birmingham. The composition of Route1 and Route2
yields a new route relation which shows that it is possible to travel taking
first Route1 and then Route2, starting from Paris and ending at Birmingham
(Figure 10.8). In our diagram, the arcs are of three different patterns because
they belong to three separate relations.

Sometimes it is useful to compose a relation with itself. A common situa-
tion is to start with a relation like Flight, which represents trips consisting of
just one flight, starting from one city and ending in another one. The compo-
sition Flight;Flight describes all the trips that can be made using exactly two
connecting flights.

Another example arises in databases, where queries often cause the database
to derive new information from the facts already available. If the system can
predict the requirements of some common queries, then some of this new in-
formation can be represented as facts, represented as a new relation, speeding
up the execution of future queries.

Suppose that we need to know whether a, who died of a hereditary disease,
was a blood relative of b. This could mean calculating all of the descendants
of a, then checking to see whether b is among them. It might be better to save
some of the work done (space permitting) in calculating the descendants of a,



10.5. RELATIONAL COMPOSITION 239
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Figure 10.9: The R1;R1 Relation

so that when we need to know whether a was a blood relative of c, some of the
work need not be repeated.

As an example, when determining whether Joseph and Jane are blood re-
lations, we discover that Joseph IsBloodRelationOf Sarah, Sarah IsBloodRela-
tionOf Jane, and Jane IsBloodRelationOf Joel. During this process, we add the
newly discovered fact to the database: Joseph IsBloodRelationOf Jane. Now,
when we have a query asking whether Joseph is a blood relation of Joel, the
new link represents the two links between Joseph and Jane. This reduces the
number of links to be traversed.

In creating the composition of two relations, we look for arcs in the first
relation that have terminal nodes matching the starting nodes of arcs in the
second relation. This operation requires that we systematically check all arcs
in R1 against all arcs in R2.

Example 54. Let’s calculate a relational composition by hand. Let

R1 = {(1, 2), (2, 3), (3, 4)}.

The composition R1;R1 is worked out by deducing all the ordered pairs that
correspond to an application of R1 followed by an application of R1.

First we find all the ordered pairs of the form (1, x). R1 has only one ordered
pair starting with 1; this is (1, 2). This means the first application of R1 goes
from 1 to 2, and the (2, 3) pair means that the second application goes to 3.
Therefore the composition R1;R1 should contain a pair (1, 3). Next, consider
what happens starting with 2: the (2, 3) pair goes from 2 to 3, and looking at
all the available pairs {(1, 2), (2, 3), (3, 4)} shows that 3 then goes to 4. Finally,
we see what happens when we start with 3: the first application of R1 goes
from 3 to 4, but there is no pair of the form (4, x). This means that there
cannot be any pair of the form (3, x) in the composition R1;R1. The result of
all these comparisons is R1;R1 = {(1, 3), (2, 4)} (Figure 10.9). In our diagram,
the new relation is indicated by arrows with dashes.

The calculation in Example 54 is straightforward and tedious—well suited
for computers. The software tools define a function relationalComposition
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that implements this calculation: it defines a new relation giving two existing
ones, by working out all the ordered pairs in their relational composition.

relationalComposition ::
(Eq a, Show a, Eq b, Show b, Eq c, Show c) =>
Set (a,b) -> Set (b,c) -> Set (a,c)

Exercise 13. First work out by hand the ordered pairs in the following rela-
tional compositions, and then check your results using the computer:

relationalComposition [(1,2),(2,3)] [(3,4)]
relationalComposition [(1,2)] [(1,3)]

Exercise 14. (a) Find the composition of the following relations:

{(Alice, Bernard), (Carol,Daniel)} and {(Bernard,Carol)}.

(b) {(a, b), (aa, bb)} and {(b, c), (cc, bb)}
(c) R;R, where the relation R is defined as

R = {(1, 2), (2, 3), (3, 4), (4, 1)}.

(d) {(1, 2)} and {(3, 4)}
(e) The empty set and any other relation.

10.6 Powers of Relations

As we saw in the previous section, the composition Flight;Flight defines the
relation describing all possible trips that consist of two connected flights. More
generally, we might want to define a relation defining all possible trips that
consist of n connected flights, where n is a natural number. This is called the
nth power of the relation. For a relation R, the nth power is the composition
R;R; · · · ;R, where R appears n times, and its notation is Rn. Notice in par-
ticular that R2 = R;R, and R1 = R. It is also convenient to define R0 to be
the identity relation.

When a relation R is composed with itself n times, producing Rn, a path
of length n in R from a to b causes there to be a single link (a, b) in the power
relation Rn.

Suppose that we have to calculate the relationships between several people
in our database, and that the original facts are these (Figure 10.10):

Andrew IsParentOf Beth
Beth IsParentOf Ian
Beth IsParentOf Joanna
Ian IsParentOf William

William IsParentOf Tina



10.6. POWERS OF RELATIONS 241

Tina
William

Ian

Andrew

Joanna

Beth

Figure 10.10: The IsParentOf Relation
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Figure 10.11: The Relation IsParentOf 2

Now, we will calculate the powers of this relation. The 0th power is just
the identity relation, and the first power IsParentOf 1 is simply the IsParentOf
relation. The higher powers will tell us the grandparents, great grandparents,
and great great grandparents. You should expect to see that each of the new
relations IsParentOf 2, IsParentOf 3, and IsParentOf 4 connect up the starting
and ending points of a path 2, 3, and 4 arcs long within the original IsParentOf
relation. In the following diagrams, the arrows with dashes indicate relations
defined as a power, while all other arrows belong to the IsParentOf relation.

If we compose the IsParentOf relation with itself (i.e., IsParentOf 2), we
have the grandparent relation (Figure 10.11):

Andrew IsGrandParentOf Ian
Andrew IsGrandParentOf Joanna

Beth IsGrandParentOf William
Ian IsGrandParentOf Tina
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Figure 10.12: The IsParentOf 3 Relation

Tina
William

Joanna

Beth Ian

Andrew

Figure 10.13: The IsParentOf 4 Relation

Now if we compose the IsGrandParentOf relation with the original relation,
we obtain the great grand parent relation (Figure 10.12):

Andrew IsGreatGrandParentOf William
Beth IsGreatGrandParentOf Tina

Figure 10.13 shows the composition of the IsGreatGrandParentOf relation
with IsParentOf ; thus we have just calculated the fourth power of the IsPar-
entOf relation.

Andrew IsGreatGreatGrandParentOf Tina

We will now give the formal definition of relational powers. The definition is
recursive, because we have to define the meaning of Rn for all n. The base case
of the recursion will be R0, which is just the identity relation (it’s like taking
zero flights from a city, which leaves you where you started). The recursive
case defines Rn+1 using the value of Rn.
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Definition 43. Let A be a set and let R :: A × A be a relation defined over
A. The nth power of R, denoted Rn, is defined as follows:

R0 = {(a, a) | a ∈ A}
Rn+1 = Rn;R

Example 55. Using the formal definition, we calculate R4, where

R = {(2, 3), (3, 2), (3, 3)}.

R0 is just the identity (equality) relation, which contains a reflexive loop
for every node. By the definition, R1 = R0;R = R, because the identity
relation composed with R just gives R. The first nontrivial calculation is to
find R2 = R1;R = R;R. We have to take each pair (a, b) in R, and see whether
there is a pair (b, c); if so, we need to put the pair (a, c) into R2. The result of
this calculation is R2 = {(2, 2), (2, 3), (3, 2), (3, 3)}.

Now we have to calculate R3 = R2;R. We compose

{(2, 2), (2, 3), (3, 2), (3, 3)}

with
{(2, 3), (3, 2), (3, 3)},

which yields
{(2, 2), (2, 3), (3, 2), (3, 3)}.

At this point, it’s helpful to notice that R3 = R2. In other words, composing
R2 with R just gives R2 back, and we can do this any number of times. This
means that any further powers will be the same as R2—so we have found R4

without needing to do lots of calculations with ordered pairs.

Relational composition is associative. This causes the powers of a relation
to follow algebraic laws that are similar to the corresponding laws for powers
on numbers. For example, R(a+b) = Ra;Rb.

A relation whose domain is {x0, . . . , xn−1} is cyclic if it contains a cycle
of ordered pairs of the form (x0, x1), (x1, x2), (x2, x3), (x3, x4), . . . , (xn−1, x0).
That is, the relation is cyclic if there is a cycle comprising all the elements of
its domain.

Consider what happens to a cyclic relation as we calculate its powers. The
relation is defined as

R = {(a, b), (b, c), (c, a)}.

The first power R1 is just R. The second power R2 is calculated by working
out the ordered pairs in R;R; the result is

R2 = {(a, b), (b, c), (c, a)}; {(a, b), (b, c), (c, a)}
= {(a, c), (b, a), (c, b)}.
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Figure 10.14: Four Powers of a Cyclic Relation

This contains only paths between the start and end points of all the paths of
length two in the original relation. Now the third power is

R3 = {(a, c), (b, a), (c, b)}; {(a, b), (b, c), (c, a)}
= {(a, a), (b, b), (c, c)}.

This result contains only arcs connecting the origin and destination points of
paths of length three in the original relation. What will happen next?

R4 = {(a, a), (b, b), (c, c)}; {(a, b), (b, c), (c, a)}
= {(a, b), (b, c), (c, a)}

Just what we might have expected: each of these arcs represents a path of
length 4, so we have started round the cycle again. What can we now say
about the powers of this relation? They repeat in a cycle. R4 = R1, R5 = R2

and in general Rn+3 = Rn (Figure 10.14).
The software tools file defines the following function, which takes a set and

returns the equality relation on that set.

equalityRelation ::
(Eq a, Show a) => Set a -> Relation a

There is also a function that calculates the power of a relation:

relationalPower ::
(Eq a, Show a) => Digraph a -> Int -> Relation a

Exercise 15. Work out the values of these expressions, and then evaluate
them using the computer:
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equalityRelation [1,2,3]
equalityRelation ([]::[Int])

Exercise 16. Calculate the following relational powers by hand, and then eval-
uate them using the computer.

relationalPower ([1,2,3,4],[(1,2),(2,3),(3,4)]) 1
relationalPower ([1,2,3,4],[(1,2),(2,3),(3,4)]) 2
relationalPower ([1,2,3,4],[(1,2),(2,3),(3,4)]) 3
relationalPower ([1,2,3,4],[(1,2),(2,3),(3,4)]) 4

Exercise 17. Why do we not need to check the ordered pairs in R while
calculating R0;R ?

Exercise 18. Why can we stop calculating powers after finding that two suc-
cessive powers are the same relation?

Exercise 19. What is R4 where R is {(2, 2), (4, 4)}?

Exercise 20. What is the relationship between adding new ordered pairs to
make a relation transitive and taking the power of a relation?

Exercise 21. Suppose a set A contains n elements. How many possible rela-
tions with type R :: A × A are there?

Exercise 22. Given the relation {(a, b), (b, c), (c, d), (d, e)}, how many times
would we have to compose this relation with itself before the empty re-
lation is produced?

Exercise 23. Given the set A = {1, 2, 3} and the relation R :: A × A where
R = {(3, 1), (1, 2), (2, 3)}, what is the value of R2? R3?

10.7 Closure Properties of Relations

In computing applications, we normally want to keep the specification of a rela-
tion as small and readable as possible, so that it can be defined and maintained
accurately. On the other hand, some computations may require the relation
to have some special properties (for example, symmetric or transitive). These
special properties would require adding a large number of ordered pairs to the
relation, making it harder to maintain. There is a standard technique used in
such situations—we define two relations:

1. A basic relation, containing just the essential information, is specified;

2. A larger relation is derived from the basic one by adding the ordered pairs
required to give it the special properties that are needed.
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When circumstances change, only the basic relation is edited by hand. The
derived relation is recalculated using a computer.

Example 56. An airline keeps a set of all the flights they offer. This is
represented by a relation Flight, where (a, b) ∈ Flight if the airline has a di-
rect flight from a to b. However, when a customer asks a question like ‘Do
you fly from Glasgow to Seattle?’, the airline needs a transitive relation: if
(Glasgow,New York) ∈ Flight and also (New York,Seattle) ∈ Flight, the an-
swer should be yes. Thus the airline’s flight-planning staff define the basic
relation Flight, but the sales staff work with a derived relation that is similar
to Flight, but which is transitive.

A relation derived in this way is called the closure of the basic relation:

Definition 44. The closure of a relation R with respect to a given property
is the smallest possible relation that contains R and has that property.

Closure is suitable for adding properties that require the presence of certain
ordered pairs. For example, you can take the symmetric closure of a relation by
checking every existing pair (x, y), and adding the pair (y, x) if it isn’t already
present. However, closure is not suitable for properties that require the absence
of certain ordered pairs. For example, the relation R = {(1, 1), (1, 2), (2, 3)}
does not have an irreflexive closure, as that would need to contain (1, 1) (be-
cause the closure must contain the basic relation), yet it must not contain (1, 1)
(in order to be irreflexive).

You can give a relation a property such as reflexivity, or transitivity, by cre-
ating its reflexive or transitive closure. Notice, however, that the new relation
may no longer have all of the properties of the original relation. For example,
suppose that a relation is irreflexive, as in {(1, 2), (2, 1)}. The smallest possible
transitive relation containing this one also has the arcs (1,1) and (2,2), which
means that it is no longer irreflexive.

10.7.1 Reflexive Closure

The reflexive closure of a relation contains all of the arcs in the relation together
with an arc from each node to itself. For example, consider the set

{Red,Orange,Yellow,Green,Blue,Violet}.

The relation ContainsPrimaryColour is given in Figure 10.15 by the solid arcs.
It is not reflexive, because the colours that are not primary colours do not
contain reflexive arcs. However, the relation ContainsColour is reflexive (given
by all the arcs in Figure 10.15), and is in fact the reflexive closure of Contains-
PrimaryColour.

The formal definition that follows defines the reflexive closure of a relation
R as the smallest reflexive relation containing the arcs of R.
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Figure 10.15: The ContainsColour and ContainsPrimaryColour Relations

Definition 45. Let A be a set, and let R :: A×A be a binary relation over A.
The reflexive closure of R is the relation R′ such that R′ is reflexive, R′ is a
superset of R, and for any reflexive relation R′′, if R′′ is a superset of R, then
R′′ is a superset of R′. The notation r(R) denotes the reflexive closure of R.

Example 57. The reflexive closure of the relation {(1, 2), (2, 3)} over the set
{1, 2, 3} is {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)}.

Example 58. The relation {(1, 1), (1, 2), (3, 3), (2, 3)} is not the reflexive clo-
sure of {(1, 2), (2, 3)}, because it is missing the reflexive arc (2, 2).

The following theorem provides a straightforward method for calculating
the reflexive closure of a relation:

Theorem 73. Let A be a set, let E be the equality relation on A, and let R
be a binary relation defined over A. Then r(R) = R ∪ E.

All we have to do to calculate the reflexive closure R :: A × A is to add
self-loops (x, x) for all of the nodes x in the set A over which the relation R is
defined.

The software tools file provides the following function, which automates the
calculation of reflexive closures:

reflexiveClosure ::
(Eq a, Show a) => Digraph a -> Digraph a

Exercise 24. Work out the following reflexive closures by hand, and then
check your results using the computer:

reflexiveClosure ([1,2,3],[(1,2),(2,3)])
reflexiveClosure ([1,2],[(1,2),(2,1)])

Exercise 25. What is the reflexive closure of the relation R;R, where R is
defined as {(1, 2), (2, 1)}?
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10.7.2 Symmetric Closure

In maintaining a genealogical database, we might enter an ordered pair (a, b)
stating that person a IsMarriedTo person b, but we don’t want to enter another
pair saying explicitly that person b IsMarriedTo person a, in order to save time
typing. However, the IsMarriedTo relation should certainly be symmetric. In
order to derive this information, the database must calculate the symmetric
closure of the basic relation that was typed in. It does this by adding only
those arcs that are needed to make the relation symmetric.

The formal definition of symmetric closure is similar1 to the definition of
reflexive closure.

Definition 46. Let A be a set, and let R :: A×A be a binary relation over A.
The symmetric closure of R is the relation R′ such that R′ is symmetric, R′ is
a superset of R, and for any symmetric relation R′′, if R′′ is a superset of R,
then R′′ is a superset of R′. The notation s(R) denotes the symmetric closure
of R.

Sometimes it is useful to turn around a relation and use its ordered pairs
in reverse. This is called the converse of the relation:

Definition 47. Let A and B be sets, and let R :: A × B be a binary relation
from A to B. The converse of R, written Rc, is the binary relation from B to
A defined as follows:

Rc = {(b, a)|(a, b) ∈ R}.

This definition says that if you reverse the order of the components in a
relation’s arcs, you create its converse. The symmetric closure of a relation is
the union of the relation and its converse.

The converse operation provides an alternative way to calculate the sym-
metric closure of a relation. The idea is that we take the original relation R,
and add to it the set of reversed ordered pairs, which is Rc. The following
theorem states this formally:

Theorem 74. Let A be a set and let R :: A × A be a binary relation over A.
Then the symmetric closure s(R) = R ∪ Rc.

Example 59. Suppose that we had a relation {(1, 1), (2, 2)} and wanted to
create its symmetric closure. How many arcs would need to be added? None,
because the relation is already symmetric.

Example 60. On the other hand, suppose that we had the relation {(1, 2)}.
It is not symmetric, so when creating its symmetric closure, we add the arc
(2, 1) (Figure 10.16).

The following Haskell function calculates the symmetric closure of a binary
relation:

1A useful tip for learning to read mathematics: many definitions follow standard forms,
and this makes it easier to read and understand new ones.
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1 2

Figure 10.16: The Symmetric Closure of {(1, 2)}

symmetricClosure ::
(Eq a, Show a) => Digraph a -> Digraph a

Exercise 26. Work out the following symmetric closures by hand, and then
calculate them using the computer window:

symmetricClosure ([1,2],[(1,1),(1,2)])
symmetricClosure ([1,2,3],[(1,2),(2,3)])

Exercise 27. What is the symmetric reflexive closure of the relation

{(a, b), (b, c)}?

Hint: take the reflexive closure first, followed by the symmetric closure
of the result.

Exercise 28. Find the reflexive symmetric closure of the relation {(a, c)}.

10.7.3 Transitive Closure

The transitive closure is one of the most important operations on relations.
You can define a relation that describes one step; the transitive closure of the
relation then describes the effect of taking n steps, for any n.

Example 61. Suppose that Flight is the relation where (a, b) ∈ Flight if there
is a direct flight from city a to city b. Then the transitive closure of Flight is
the relation consisting of pairs (a, b) where b is reachable by air from a.

Consider now how to calculate the transitive closure of a relation. As an
example, suppose that you need to define the IsDescendantOf relation in a
database of people. The database contains records for Zoe, Bruce, Gina,
Annabel, Dirk, Kay, and Don. We start with the IsChildOf relation, defined
as follows:

{(Zoe,Bruce), (Gina,Zoe),
(Bruce,Annabel), (Dirk ,Kay),
(Kay ,Don), (Annabel ,Kay)}

Observe that the relation IsDescendantOf should have all these arcs, and
many more. For example, Gina is a descendant of Bruce.
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Figure 10.17: The IsDescendantOf Relation

How many more arcs need to be added? There should be an arc between the
origin and destination points of each path of length 2 or more in the IsChildOf
relation. In other words, we need the transitive closure of IsChildOf.

The powers of the IsChildOf relation are as follows:

Is Child Of 2 = {(Zoe, Annabel), (Gina, Bruce),
(Bruce, Kay), (Dirk, Don), (Annabel, Don)}

Is Child Of 3 = {(Zoe, Kay), (Gina, Annabel), (Bruce, Don)}
Is Child Of 4 = {(Zoe, Don), (Gina, Kay)}
Is Child Of 5 = {(Gina, Don)}

The IsDescendantOf relation contains the union of all of these powers (Fig-
ure 10.17):

IsDescendantOf =
{(Zoe,Bruce), (Gina,Zoe), (Bruce,Annabel), (Dirk,Kay),
(Kay,Don), (Annabel,Kay), (Zoe,Annabel), (Gina,Bruce),
(Bruce,Kay), (Dirk,Don), (Annabel,Don), (Zoe,Kay),
(Gina,Annabel), (Bruce,Don), (Zoe,Don), (Gina,Kay),
(Gina,Don)}

The calculations we have just gone through suggest an algorithm for calcu-
lating the transitive closure of any relation: calculate all the powers R1, R2,
and so on, up to Rn, and take their union. There are n nodes in the digraph, so
the longest possible path (ignoring cycles) must be no more than n−1 elements
long. The transitive closure must provide a short cut for each path, which is
why we must include a power of the relation for each possible path length. This
leads also to a way to define the transitive closure formally:
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Definition 48. Let A be a set of n elements, and let R :: A × A be a binary
relation over A. The transitive closure of R is defined as

t(R) =
n⋃

i=1

Ri.

For example, if a set A has four elements, then the transitive closure of a
relation R :: A × A would be

R1 ∪ R2 ∪ R3 ∪ R4.

The IsDescendantOf relation is the union of as many powers of the IsChildOf
relation as there are people in the IsChildOf relation’s domain.

Example 62. Using the definition, we calculate the transitive closure of R =
{(1, 2), (2, 3), (3, 2), (3, 4), (4, 4)}. There are four elements in the set over which
the relation is defined (we haven’t specified otherwise), so we shall need to
calculate the union of the relations R, R2, R3, and R4 (Figure 10.18). First,
we calculate:

R2 = {(1, 3), (2, 2), (2, 4), (3, 3), (3, 4), (4, 4)}
R3 = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 2), (3, 4), (4, 4)}
R4 = {(1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (3, 4), (4, 4)}

The union of all of these relations is the transitive closure of R:

{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 4)}
The following function calculates the transitive closure of a relation, using

the definition:

transitiveClosure ::
(Eq a, Show a) => Digraph a -> Digraph a

Exercise 29. Work out the following transitive closures by hand, and then
evaluate them using the computer:

transitiveClosure ([1,2,3],[(1,2),(2,3)])
transitiveClosure ([1,2,3],[(1,2),(2,1)])

Exercise 30. Given a digraph ({1, 2, 3, 4}, {(1, 2)}), what can we do to speed
up the transitive closure algorithm, which requires that we take as many
powers of this relation as there are nodes in the digraph?

Exercise 31. Find the transitive symmetric closure and the symmetric tran-
sitive closure of the following relations:
(a) {(a, b), (a, c)}
(b) {(a, b)}
(c) {(1, 1), (1, 2), (1, 3), (2, 3)}
(d) {(1, 2), (2, 1), (1, 3)}
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Figure 10.18: The Powers of {(1, 2), (2, 3), (3, 2), (3, 4), (4, 4)}

10.8 Order Relations

An order relation specifies an ordering that can be used to create a sequence
from the elements of its domain. Order relations are extremely important
in computing, because data values often need to be placed in a well-defined
sequence for processing. The standard mathematical relations less-than (<)
and less-than-or-equal (≤) are examples of order relations, but there are many
more.

One of the most fundamental properties of an order relation is transitivity:
if a precedes b in the ordering, and b precedes c, then we surely want a also to
precede c. However, some of the other properties of relations may be present or
absent, so there are several different kinds of order relation. We will examine
these in turn, starting with partial orders.

10.8.1 Partial Order

A partial order puts at least some of the elements in its domain into sequence,
but not necessarily all of them. There could also be several sequences within
a partial order, without any ordering between elements belonging to different
subsequences.

Example 63. Suppose that a database of people contains records that specify
the breed of dog owned—for those people who have a dog. The records of
dog owners could be ordered alphabetically using the breed name, producing a
sequence of dog owners. However, this ordering would not include the people
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Figure 10.19: The IsYoungerOrSameAgeAs Partial Order

who don’t have dogs, so it is only a partial order. Of course, it might happen
that everyone (or no one) owns a dog, in which case we would still technically
have a partial order. That is, it is possible that the entire partial order is sorted
using some ordering; the point is just that this is not required.

Example 64. Consider the problem of ordering all the records in the database
by people’s names. Some names are common, so there might be more than one
record per name. Therefore this is a partial order.

Example 65. We are programming with a data structure that contains ordered
pairs (x, y), and we define an ordering such that the pair (x1, y1) precedes the
pair (x2, y2) if x1 ≤ x2 ∧ y1 ≤ y2. This is a partial order, because it doesn’t
specify the ordering between (1, 4) and (2, 3).

The formal definition of partial orders is stated using the properties of
relations that we have already defined:

Definition 49. A binary relation R over a set A is a partial order if it is
reflexive, antisymmetric, and transitive.

Example 66. Suppose that we used age to order our database records. Our
IsYoungerOrSameAgeAs relation is reflexive, antisymmetric, and transitive, so
it is a partial order. Figure 10.19 gives its digraph.

Poset diagrams

The purpose of drawing the graph diagram for a relation is to make it easier
to understand. It often defeats the purpose to include all of the relation’s arcs
in the diagram, as there are so many of them. For a partial order, there is no
point in drawing the reflexive and transitive arcs, because we know they must
be there anyway and they clutter the diagram and make it hard to see the
important arcs that tell us about the ordering.



254 CHAPTER 10. RELATIONS

Martha

Sam

Anne

Bill
Patrick

Edward

Harry

Figure 10.20: A Poset Diagram of the IsYoungerOrSameAgeAs Relation

A poset (partially ordered set) diagram is a relation diagram for partial
orders, where the distracting transitive and reflexive arcs are omitted. It is
important to state explicitly that the diagram shows a partial order (or a
poset); without knowing this fact, a reader would not know that the relation
also contains the reflexive and transitive arcs.

When drawing a poset diagram, we position it so that all of the arcs point
upwards. All of the arcs of the partial order that are not implied by the reflexive
or transitive properties must be drawn explicitly. We remove the reflexive and
transitive arcs and the arrowheads of the remaining arcs.

If there is a directed path between two nodes in a poset diagram, then those
nodes are comparable. An element of a partial order may be comparable to
some of the elements but not to the others.

Example 67. We redraw Figure 10.19 so that it is a poset diagram (Figure
10.20). Now, it is easy to see the record ordering.

Weakest and Greatest Elements of a Poset

The following definitions give the standard terminology used to describe how
two elements of a partial order are related to each other:

Definition 50. If there is a directed path from x to y in a partial order (i.e., if
x precedes y in the partial order), then x is weaker than y. The mathematical
notation for this x � y. If x � y is false, then we write x �� y.

Definition 51. Two nodes x and y in a partial order are incomparable if
x �� y ∧ y �� x. That is, x and y are incomparable if there is no directed path
from x to y, and there is also no directed path from y to x.

In a finite set of numbers, there must be a unique smallest element and a
unique greatest element. However, a poset might have several least elements.
For example, if x and y are incomparable, but they are both weaker than all
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Figure 10.21: A Poset Diagram

the other elements of the poset, then both are least elements. Similarly, there
may be several greatest elements. The following definitions define the sets of
least and greatest elements formally:

Definition 52. The set of least elements of a poset P is

{x ∈ P | ∀y ∈ P. (x � y ∨ (x �� y ∧ y �� x))}.

That is, the least elements of P are the elements that are either incomparable
to or weaker than any other element.

Definition 53. The set of greatest elements of a poset P is

{x ∈ P | ∀y ∈ P. (y � x ∨ (x �� y ∧ y �� x))}.

That is, the greatest elements of P are the elements that are either incompa-
rable to or greater than any other element.

Example 68. Suppose that a family in our database has the following children:
Ray, aged 17, Tom, aged 6, and the twins Belle and Eunice, aged 5. We can
define a partial order (�) based on age, such that x � y if x is younger than
or the same age as y. Even though there are twins, there are no incomparable
elements of this poset, since Belle � Eunice and also Eunice � Belle. However,
both of the twins satisfy the requirements for the least element. The set of
greatest nodes is {Ray} and the set of weakest nodes is {Belle,Eunice}.

Example 69. Figure 10.21 shows a poset where the set of weakest elements
is {c}, and the set of greatest elements is {a, f, e}.

The following Haskell function, defined in the software tools file, takes a
digraph and returns True if the digraph represents a partial order and False
otherwise.

isPartialOrder ::
(Eq a, Show a) => Digraph a -> Bool
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The following two functions each take a relation and an element. The first
one returns True if the second argument is a least element in the relation, and
False otherwise. The second function returns True if the element is a greatest
element in the relation and False otherwise.

isWeakest, isGreatest ::
(Eq a, Show a) => Relation a -> a -> Bool

These functions each take a digraph; the first function returns the set of
weakest elements while the second function returns the set of greatest elements:

weakestSet :: (Eq a, Show a) => Digraph a -> Set a
greatestSet :: (Eq a, Show a) => Digraph a -> Set a

Exercise 32. Work out by hand whether the following digraphs are partial
orders, and then check your results using the computer:

isPartialOrder ([1,2,3], [(1,2),(2,3)])
isPartialOrder
([1,2,3], [(1,2),(2,3),(1,3),(1,1),(2,2),(3,3)])

Exercise 33. Calculate the following by hand, and then evaluate using the
computer:

isWeakest [(1,2),(2,3),(1,3),(1,1),(2,2),(3,3)] 2
isWeakest [(1,2),(1,3),(1,1),(2,2),(3,3)] 3

isGreatest [(1,2),(2,3),(1,3),(1,1),(2,2),(3,3)] 3
isGreatest [(1,2),(1,3),(1,1),(2,2),(3,3)] 1

Exercise 34. Calculate the following by hand, and then evaluate using the
computer:

weakestSet ([1,2,3,4],
[(1,4),(1,3),(1,2),(1,1),
(2,3),(2,4),(2,2),(3,4),
(3,3),(4,4)])

weakestSet ([1,2,3,4],
[(1,4),(1,2),(1,1),(2,4),
(2,2),(3,4),(3,3),(4,4)])

greatestSet ([1,2,3,4],
[(1,2),(3,4),(1,1),(2,2),(3,3),(4,4)])

greatestSet ([1,2,3,4],
[(2,3),(3,4),(2,4),(1,1),(2,2),(3,3),(4,4)])

Exercise 35. What are the greatest and weakest elements in a poset diagram
that contains the following arcs:
(a) {(a, b), (a, c)}
(b) {(a, b), (c, d)}
(c) {(a, b), (a, d), (b, c)}
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Figure 10.22: A Quasi Order

10.8.2 Quasi Order

A quasi order is similar to a partial order, except that it is irreflexive:

Definition 54. A binary relation R over a set A is a quasi order if it is
irreflexive and transitive.

Example 70. The relation (<) on numbers is a quasi order, but (≤) is not.

Notice that the definition of a quasi order doesn’t mention symmetry. Can
a quasi order be symmetric? Suppose there are two elements x and y, such that
x � y. If the quasi order were symmetric, then we would also have y � x, and
since it is also transitive, we then have x � x, which violates the requirement
that a quasi order be irreflexive. This argument would not apply, of course, in
a trivial quasi order where no two elements are related by �, but non-trivial
quasi orders cannot be symmetric.

We should also inquire whether a quasi order can be (or must be) antisym-
metric. By definition, it is antisymmetric if x � y ∧ y � x → x = y for any two
elements x and y. Now, if we choose x and y to be the same, then x � y∧y � x
is false, because the quasi order is irreflexive. This means the logical implica-
tion is vacuously true. If we choose x and y to be different, then x � y ∧ y � x
is again false (as we have just shown while discussing symmetry). In all cases,
therefore, the definition of antisymmetry is satisfied, but vacuously.

The conclusion is that quasi orders may be symmetric, but only if they
are trivial, and they are always antisymmetric, but only because they satisfy
the definition vacuously. The properties of symmetry and antisymmetry are
uninteresting for quasi orders.

Example 71. Figure 10.22 gives the graph diagram for the quasi order (<)
on the set {1, 2, 3, 4}.

The following function takes a digraph and returns True if the relation it
represents is a quasi order, and False otherwise:

isQuasiOrder ::
(Eq a, Show a) => Digraph a -> Bool
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Figure 10.23: A Chain of the Rainbow Colours

Exercise 36. Work out the following expressions, and evaluate them with the
computer:

isQuasiOrder ([1,2,3,4],[(1,2),(2,3),(3,4)])
isQuasiOrder ([1,2,3,4],[(1,2)])

10.8.3 Linear Order

A linear order or total order is like a partial order, except that it requires that
all of the relation’s elements must be related to each other.

Example 72. The (≤) and (≥) relations on real numbers are total orders: any
two numbers x and y can be compared with each other, and it is guaranteed
that either x ≤ y or y ≤ x will be true (and both are true if x = y).

Definition 55. A linear order is a partial order defined over a set A in which
for each element a and b in A, either a � b or b � a.

Example 73. Suppose that the database recorded the exact time at which each
child was born. We could then use a form of ≤ to order the children within
the families. This information could be useful in a study of the influence of
primogeniture on the medical history of an aristocracy.

The elements of a linear order can be said to form a chain. When we
draw the graph diagram for a chain, we omit the arcs that are implied by
transitivity and reflexivity. Without these extra arcs, and because no element
can be incomparable to the others, the diagram looks like a real chain. For
example, the colours of the rainbow are often given as a chain starting with Red
and ending with Violet. As Red light has the longest wavelength and Violet the
shortest, the relation that imposes this chain ordering on the set of six colours
is the ≤ relation on the wave frequency (Figure 10.23).

The isLinearOrder function takes a digraph and returns True if it represents
a linear order, and False otherwise.

isLinearOrder :: Eq a => Digraph a -> Bool
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Exercise 37. Evaluate the following expressions, by hand and using the com-
puter:

isLinearOrder
([1,2,3],[(1,2),(2,3),(1,3),(1,1),(2,2),(3,3)])

isLinearOrder
([1,2,3],[(1,2),(1,3),(1,1),(2,2),(3,3)])

10.8.4 Well Order

A well order is a total (or linear) order that has a least element; furthermore,
every subset of a well order must have a least element.

The existence of a least element is significant because it provides a base
case for recursive functions and for inductive proofs. Note that any total order
that has a finite number of elements must have a least element. Some total
orders with an infinite number of elements have a least element, and others do
not.

Example 74. The (≤) relation on the set N = {0, 1, 2, . . .} of natural numbers
is a total order. Furthermore, N has a least element, because ∀x ∈ N. 0 ≤ x.
Therefore (≤) on N is a well order.

Example 75. The (≤) relation on the set Z = {. . . ,−2,−1, 0, 1, 2, . . .} of
integers is a total order. However, Z does not have a least element, because

∀x ∈ Z.∃y ∈ Z.(y ≤ x ∧ y �= x).

Therefore (≤) on Z is only a total order, and not a well order.

Definition 56. Given a set S and a binary relation R over S, R is a well order
if R is a linear order and every subset of S that is not empty contains a least
element.

Well orders are important because they support induction, and they are
countable. Informally, a countable set is a set in which an arbitrary item can
eventually be processed by a computer. The set could be infinite: for example,
the set of natural numbers is infinite, but every element of that set would
eventually be reached if we just work on 0, 1, 2, . . . in sequence. For example,
if a computer started printing the natural numbers, we would eventually see the
number 4058000023. However, if it started printing an uncountable set such as
the irrational numbers, then it might get stuck printing an infinite number of
irrationals without reaching the number we are interested in.

Example 76. In our database, each record is given a numeric key that is
unique. As there are a finite number of keys in the database, the ≤ relation
over these keys is a well order.

Exercise 38. We have been watching a computer terminal. Is the order in
which people come and use the terminal a total order?
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Exercise 39. Is it always possible to count the elements of a linear order?

Exercise 40. Can a set that is not a well order be countable?

10.8.5 Topological Sort

Computers are good at doing one task at a time, in sequence. When an algo-
rithm is working on a data structure, it needs to know which element of the
data structure to work on next. Often there is an order relation that must
be followed (for example, we might want to output the items in a database in
alphabetical order). If we have a total order on the elements of the data struc-
ture, the algorithm can use that to find the next piece of work. If, however,
we have only a partial order on the data items, then there are several possible
orders in which items could be processed while still respecting the order rela-
tion. Often we don’t care which order is used—we just want the algorithm to
find one and proceed with the work.

The process of taking a partial order and putting its elements into a total
order is called topological sorting.

Example 77. Some compilers analyse the order in which procedures call each
other. Such a compiler could construct a ‘dependency graph’ for the program
it is translating, where each node corresponds to a procedure, and arcs in the
graph correspond to procedure calls. The dependency graph is a partial order.
Now, suppose the compiler generates object code for the procedures in the
order of their appearance in the call graph, so that the lowest-level procedures
are processed first and the highest level ones are done last, in order to make as
many procedure calls as possible into forward references. The compiler uses a
topological sort to produce the total order in which it prints the information.
The first name in the total order will be a procedure that doesn’t call any other
procedure, while the last is the top-level procedure with which the program
starts execution.

There is a simple and general algorithm for topological sorting. Choose x,
one of the elements that is greatest in the set A, and make it the first in the
sequence. Now do the same for the set A−{x}, and continue until A is empty.

Example 78. Suppose that we have a relation that expresses the call graph:

{(’A’,’B’),(’B’,’B’),(’B’,’C’),(’B’,’D’),(’C’,’D’)}

What would the topological sort of this graph be? First, the functions that
call no other function would appear, followed by the functions that call them,
followed by the functions calling them, etc. The result would be ’D’, ’C’,
’B’, ’A’ (Figure 10.24).

Example 79. What is the topological sort of {(1, 2), (1, 3)} given the nodes
1,2,3? The sequence 3, 2, 1 or 2, 3, 1.
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The following function takes a digraph and returns a topological sort of its
relation.

topsort ::
(Eq a, Show a) => Digraph a -> Set a

Exercise 41. Check to see that the following partial orders are not, in fact, to-
tal orders. Use the computer to generate a total order, using a topological
sort.

topsort ([1,2,3,4],[(1,2),(1,3),(2,3),(1,4),(2,4),
(1,1),(2,2),(3,3),(4,4)])

topsort ([1,2,3],[(1,2),(1,3),(1,4),(1,1),(2,2),(3,3)])

10.9 Equivalence Relations

Some relations can be used to break a set up into several categories or ‘parti-
tions’, where each element of the set belongs to just one of the categories. Such
a relation is called an equivalence relation.

Example 80. In organising a personal telephone list, it is convenient to or-
ganise the set S of people’s names into 26 sets corresponding to the first letter
in the name. In other words, we are making a section of the telephone list for
each letter of the alphabet.

Example 81. Given a genealogy database, we would expect to see many
queries about membership in families. We might assume that persons a and b
are in the same family if they have the same last name, or there might be some
other way to define what a family is (but it needs to have the property that
every person belongs to exactly one family). One common query might be ‘Is
a in the same family as b?’. Once the InSameFamilyAs relation is defined, it
provides all the information needed to organise all people into families.
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These examples suggest that a relation we are using in this way needs to
be reflexive (everything belongs in the same category as itself), symmetric (if
a is in the same category as b, then obviously b must be in the same as a), and
transitive (if a and b are in the same category, and so are b and c, then a and
c must also be in the same category). These observations lead to the formal
definition of an equivalence relation:

Definition 57. A binary relation R over a set A is an equivalence relation if
it is reflexive, symmetric, and transitive.

Example 82. Suppose that everyone in the database lives in a real location
somewhere in the world. We can represent the world as a map, and then
partition the map into small areas by using a LivesIn SameLocationAs relation.

The equivalence classes of a non-empty equivalence relation can be thought
of as a partition of the set into disjoint subsets. Now we define this term
formally:

Definition 58. A partition P of a non-empty set A is a set of non-empty
subsets of A such that

• For each subset S1 and S2 of P , either S1 = S2 or S1 ∩ S2 = ∅;

• A =
⋃

S∈P S.

Example 83. For example, let’s consider the set of people’s last names and
the relation HasNameStartingWithSameLetterAs. This relation divides the set
into 26 subsets. There can be no overlaps between the subsets, and the set of
names is the union of the subsets.

Example 84. Computer keyboards can generate several characters from most
of the keys, depending on whether the Control, Shift, or Meta keys are already
down. We could define a relation IsOnSameKeyAs, which would partition the
set of ASCII characters into equivalence classes, one for each key.

A good example of an equivalence relation, which is frequently used in com-
puting applications, comes from the mathematical modulus (mod) operation on
integers. The expression e mod k gives the remainder produced when dividing
e by k; and the value of e mod k is a number between 0 and k − 1. Now, every
number x which is a multiple of k will have the property that x mod k = 0,
and we can build a set of all these numbers. Similarly, there is a set of numbers
that have the same remainder when divided by 1, by 2, and so on when divided
by k. To do this, we define the congruence relation as follows:

Definition 59. Let k be a positive integer, and let a and b be integers. If
there is an integer n such that

(a − b) = n × k,
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Figure 10.25: A Congruence Equivalence Relation

then a is congruent to b (modulo k). The mathematical notation for this
statement is

a ≡ b (mod k).

It is necessary to ensure that k is a positive integer—positive means greater
than 0—in order to avoid dividing by 0. We can define a relation, called the
congruence relation, for all k:

Definition 60. The congruence relation Ck is defined for all natural k such
that k > 0, as follows: aCkb if and only if a ≡ b (mod k).

The congruence relation is useful because it is an equivalence relation:

Theorem 75. For all natural k > 0, the congruence relation Ck is an equiva-
lence relation.

Example 85. Consider partitioning the integers by congruence (C3) (see Fig-
ure 10.25). This gives rise to three sets: all the integers that are of the form
n × 3 (this is just the set of multiples of 3), the integers of the form n × 3 + 1,
and the integers of the form n × 3 + 2.

The following functions in the software tools module create the smallest
possible equivalence relation from a digraph and determine whether a given
relation is an equivalence relation. They do this by taking a digraph and
calculating its transitive symmetric reflexive closure.

equivalenceRelation ::
(Eq a, Show a) => Digraph a -> Digraph a
isEquivalenceRelation ::
(Eq a, Show a) => Digraph a -> Bool

Exercise 42. Evaluate the following expressions using the computer:

equivalenceRelation ([1,2],[(1,1),(2,2),(1,2),(2,1)])
equivalenceRelation ([1,2,3],[(1,1),(2,2)])

isEquivalenceRelation ([1,2],[(1,1),(2,2),(1,2),(2,1)])
isEquivalenceRelation ([1],[])
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Exercise 43. Does the topological sort require that the graph’s relation is a
partial order?

Exercise 44. Can the graph given to a topological sort have cycles?

10.10 Suggestions for Further Reading

Extensive discussions of relations can be found in Discrete Mathematics in
Computer Science, by Stanat and McAllister [29], and Discrete Mathematics,
by Ross and Wright [26].

Relations are a basic tool used for a wide variety of applications. Two good
examples are relational data bases [7] and circuit design [19].

10.11 Review Exercises

Exercise 45. Which of the following relations is an equivalence relation?

(a) InTheSameRoomAs

(b) IsARelativeOf

(c) IsBiggerThan

(d) The equality relation

Exercise 46. Given a non-empty antisymmetric relation, does its transitive
closure ever contain symmetric arcs?

Exercise 47. What relation is both a quasi order and an equivalence relation?

Exercise 48. Write a function that takes a relation and returns True if that
relation has a power that is the given relation.

Exercise 49. A quasi order is transitive and irreflexive. Can it have any
symmetric loops in it?

Exercise 50. Given an antisymmetric irreflexive relation, could its transitive
closure contain reflexive arcs?

Exercise 51. Write a function that takes a relation and returns True if all of
its powers have fewer arcs than it does.

Exercise 52. Write a function that takes a relation and returns True if the
relation is smaller than its symmetric closure.

Exercise 53. Given the partial order

{(A, B), (B,C), (A, D)},

which of the following is not a topological sort?
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[D,C,B,A]
[C,B,D,A]
[D,C,A,B]

Exercise 54. Is a reflexive and symmetric relation ever antisymmetric as well?

Exercise 55. Given a relation containing only a single path of length n, how
many arcs can be added by its symmetric transitive closure?

Exercise 56. Given a relation containing only a cycle of length n containing
all of the nodes in the domain, which power will be reflexive?

Exercise 57. Can we write a function that determines whether the equality
relation over the positive integers is reflexive?

Exercise 58. Why can’t partial orders have cycles of length greater than 1?

Exercise 59. Is the last power of a relation always the empty set?

Exercise 60. The following list comprehension gives the arcs of a poset dia-
gram. What kind of order relation does the diagram represent?

[(a,a+1) | a <- [1..]]

Exercise 61. Is the composition of a relation containing only a single cycle
with its converse the equality relation?

Exercise 62. Give examples of partial orders in which the set of greatest ele-
ments is the same as the set of weakest elements.



Chapter 11

Functions

A function is an abstract model of computation: you give it some input, and
it produces a result. The essential aspect is that the result is completely de-
termined by the input: if you repeatedly apply the same function to the same
argument, you will always obtain the same result. Examples of functions in-
clude:

• An inquiry to a telephone directory service: you supply a person’s name,
and the service provides the corresponding telephone number;

• The mathematical sin function: you give it an angle, and the function
returns the sin of that angle;

• An addition circuit in a computer’s processor; you give it a pair of binary
numbers, and it returns the binary representation of their sum.

In contrast, a weather prediction service would not be modelled as a function,
because the answer to ‘What will the weather be tomorrow?’ changes from day
to day.

Functions are an important tool, both in mathematics and in computing,
because they provide a mechanism for abstraction. A function is a ‘black box’:
to use it, you need to know the interface, but not the internal details about
how the function is defined.

There are many ways to formalise the function concept. This chapter looks
at the ones that are most important for computer science. We start with one of
the most common mathematical approaches, which treats a function as a special
kind of relation, and then we will consider a more algorithmic way of defining
functions. It is good to remember, however, that the concept of ‘function’ is
abstract, and there are many different formalisms that can be used to define
it.

267
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11.1 The Graph of a Function

In this section, we examine one of the most common mathematical techniques
for defining functions. This approach uses a set of ordered pairs, and it brings
out a close connection between functions and relations.

A function specifies, for any particular input value x, the value y of the
result. This can be represented as an ordered pair (x, y), and the entire function
is represented as a set of ordered pairs. This representation of a function
is called a function graph, and it is similar to the digraph used to represent
relations.

A function is a relation, but some additional properties are required. A
relation digraph is a set of ordered pairs, with no restrictions: thus, a relation
R might contain two ordered pairs (x, y1) and (x, y2), and we would write x R y1
and also x R y2. This would not be acceptable for a function, though, because
it would mean that given the argument x there are two possible results y1 and
y2. A function must return a unique result for any argument. Accordingly,
we define a function to be a relation with an extra requirement that only one
result may be specified for each argument:

Definition 61. Let A and B be sets. A function f with type A → B is a
relation with domain A and codomain B, such that

∀x ∈ A. ∀y1 ∈ B. ∀y2 ∈ B. ((x, y1) ∈ f ∧ (x, y2) ∈ f) → y1 = y2.

A is called the argument type and B is called the result type of the function.

The definition says that a function is a set of ordered pairs, just like a
relation. The set of ordered pairs is called the graph of the function. If an
ordered pair (x, y) is a member of the function, then x ∈ A and y ∈ B.
Furthermore, the definition states formally that if the result of applying a
function to an argument x could be y1 but it could alternatively be y2, then it
must be that y1 = y2. This is just a way of saying that there is a unique result
corresponding to each argument.

Example 86. The set {(1, 4), (1, 5)} cannot be the graph of a function, because
it contains two pairs with the same first element but different second elements:
(1, 4) and (1, 5) (Figure 11.1). A function must return just one result for any
argument; it can’t choose among several alternatives.

Example 87. The set of ordered pairs {(1, 2), (2, 2), (3, 4)} is the graph of a
function. It doesn’t matter that several arguments, 1 and 2, produce the same
result 2.

An expression denoting the result produced by a function when presented
with an input x is called a function application. For example, sin(2 × π) is an
application of the sin function to the argument 2 × π. The following definition
specifies the syntax, type, and value of a function application:
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Figure 11.1: A Relation That Is Not a Function

Definition 62. An application of the function f to the argument x, provided
that f :: A → B and x :: A, is written as either f x or as f(x), and its value is
y if the ordered pair (x, y) is in the graph of f ; otherwise the application of f
to x is undefined:

f x = y ↔ (x, y) ∈ f

A type can be thought of as the set of possible values that a variable might
have. Thus the statement ‘x :: A’, which is pronounced ‘x has type A’, is
equivalent to x ∈ A. The type of the function is written as A → B, which
suggests that the function takes an argument of type A and transforms it to a
result of type B. This notation is a clue to an important intuition: the function
is a black box (you can think of it as a machine) that turns arguments into
results.

If x ∈ A and there is a pair (x, y) ∈ f , then we say that ‘f x is defined to be
y’. However, if x ∈ A but there is no pair (x, y) ∈ f , we say ‘f x is undefined’.
A shorthand mathematical notation for saying ‘f x is undefined’ is ‘f x = ⊥’,
where the symbol ⊥ denotes an undefined value.

It often turns out that some of the elements of A and B don’t actually
appear in any of the ordered pairs belonging to a function graph. The subset
of A consisting of arguments for which the function is actually defined is called
the domain of the function. Similarly, the subset of B consisting just of the
results that actually can be returned by the function is called the image. These
sets are defined formally as follows:

Definition 63. The domain and the image of a function f are defined as:

domain f = {x | ∃y. (x, y) ∈ f}
image f = {y | ∃x. (x, y) ∈ f}

This definition says that the domain of a function is the set of all x such that
(x, y) appears in its graph, while its image is the set of all y such that (x, y)
appears. Thus a function must be defined for every element of its domain,
and it must be able to produce every element of its image (given the right
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argument). However, the argument type and the result type may contain extra
elements that do not appear in the function graph (Figure 11.2).

Unfortunately, the terminology for functions is not entirely standard. Many
authors use ‘codomain’ to refer to a function’s argument type, but others define
the codomain of a function differently. Many authors define the range of a
function to be its image; others define it to be the result type. Whenever you
are reading a document that uses any of these terms, you need to check the
definitions given in that document.

Example 88. The set {(1, 4), (2, 5), (3, 6)} is the graph of a function (Figure
11.3). The domain is {1, 2, 3} and the image is {4, 5, 6}. The function can have
any type of the form A → B, provided that {1, 2, 3} ⊆ A and {4, 5, 6} ⊆ B.

Example 89. Let function f :: Integer → Integer be defined as

f = {(0, 1), (1, 2), (2, 4), (3, 8)}.

The argument type of f is Integer = {. . . , −2,−1, 0, 1, 2, . . .}, and its domain is
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Figure 11.4: Two Relations and Two Functions

{0, 1, 2, 3}. The result type is Integer = {. . . ,−2,−1, 0, 1, 2, . . .}, and the image
is {1, 2, 4, 8}.

Example 90. Figure 11.4 shows the graph diagrams for two relations and two
functions.

11.2 Functions in Programming

The ‘function as a graph’ idea used to model a function mathematically is not
exactly the same as a function written in a programming language, although
both are realisations of the same idea. The difference is that a set of ordered
pairs specifies only what result should be produced for each input; there is no
concept of an algorithm that can be used to obtain the result. The function
graph approach ‘pulls the result out of a hat’. In contrast, a function in a pro-
gramming language is represented solely by the algorithm, and the only way to
determine the value of f x is to execute the algorithm on input x. A program-
ming language function is a method for computing results; a mathematical
function is a set of answers.

Besides providing a method for obtaining the result, a programming lan-
guage function has a behaviour: it consumes memory and time in order to
compute the result of an application. For example, we might write two sorting
functions, one that takes very little time to run on a given test sample and
one that takes a long time. We would regard them as different algorithms,
and would focus on that difference as being important. The graph model of a
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function lacks any notion of speed and would make no distinction between the
two algorithms as long as they always produce the same results.

There are several important classes of functions defined by algorithms,
which we will examine in the next few sections. The essential questions we
are interested in are the termination and execution speed of the function.

11.2.1 Inductively Defined Functions

As its name suggests, inductively defined functions use a computation structure
that is similar to induction, which can be used to prove properties of these
functions.

Definition 64. A function defined in the following form, where h is a non-
recursive function, is inductively defined :

f 0 = k

f n = h(f (n − 1))

When the argument is 0, the function returns a constant k, and when the
argument n is positive, it calls itself recursively on a smaller argument n − 1;
the function can then use h to perform further calculations with the result of
the recursive call.

As long as h always returns a result, an inductively defined function will
always produce a result when applied to any nonnegative argument.

Example 91. The function defined below the sum
∑n

i=0 i, counting backwards
from n down to 0. It is written in the form required for inductively defined
functions, letting k = 0 and h x = n + x.

f 0 = 0
f n = n + f (n-1)

Example 92. The add function, defined below, is inductively defined over the
second argument.

add :: Int -> Int -> Int
add n 0 = 0
add n k = n + add n (k - 1)

Example 93. The ‘91’ function is recursive, but is not inductively defined:
it calls itself recursively on a larger argument, and it performs yet another
recursion on the result (f91 (x+11)) of the first recursion. When applied to
n, this function returns 91 if 0 ≤ n ≤ 100, and otherwise it returns n − 10.

f91 :: Int -> Int
f91 x = if x > 100

then x - 10
else f91 (f91 (x + 11))
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11.2.2 Primitive Recursion

Computability theory is the branch of computer science that studies the prop-
erties of functions viewed as algorithms. One of the most important classes of
algorithm is the set of primitive recursive functions, which are defined with a
more flexible pattern than inductively defined functions. Primitive recursive
functions are essentially equivalent to algorithms that can be expressed with
looping structures, such as for loops, that are guaranteed to terminate.

Definition 65. A function f is primitive recursive if its definition has the
following form, where g and h are primitive recursive functions.

f 0 x = g x

f (k + 1) x = h (f k x) k x

This definition specifies the standard form for a primitive recursive function.
Any function that can be transformed into this form is primitive recursive, even
if its definition doesn’t obviously match the definition.

Example 94. The sqr function, which takes a natural number x and returns
x2, is primitive recursive, as shown by the following definition. This function
satisfies the requirements vacuously, as it does not actually use recursion. All
‘basic functions’ that do not require recursion can be handled the same way,
so they are all primitive recursive.

sqr x = f 0 x
where f 0 x = g x

g x = x*x

Example 95. The factorial function can be written in the standard primi-
tive recursive form:

factorial k = f k undefined
where f 0 x = 1

f (k+1) x = (k+1) * (f k x)

The function f performs a recursion over k, starting from the argument to
factorial and counting down to 0. Since factorial can be calculated simply
by multiplying together all the numbers in this countdown, the x argument is
not actually required, and f ignores the value of x. The definition of factorial
could pick any arbitrary value for x, and undefined = ⊥ is as good as any.
Since x is not used, factorial doesn’t make full use of the power of primitive
recursion. The following calculation shows how the application factorial 4
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can be reduced to 24 (notice that ⊥ is repeatedly copied but never used):

factorial 4
= f 4 ⊥
= 4 × f 3 ⊥
= 4 × (3 × f 2 ⊥)
= 4 × (3 × (2 × f 1 ⊥))
= 4 × (3 × (2 × (1 × f 0 ⊥)))
= 4 × (3 × (2 × (1 × 1)))
= 4 × (3 × (2 × 1))
= 4 × (3 × 2)
= 4 × 6
= 24

Example 96. The following function is not primitive recursive, because if
the argument is odd (except for 1) it calls itself recursively with the same
arguments. However, if the argument is a power of 2, then the recursion will
terminate with f 1, and the function will return the logarithm (base 2) of its
argument.

f 0 = 0
f 1 = 0
f x =
if even x
then 1 + f (x ‘div‘ 2)
else f x

11.2.3 Computational Complexity

The computational complexity of a function is a measure of how costly it is
to evaluate. The memory consumption and the time required are common
measures of the cost of a function.

Recursion can create some very expensive computations. A famous example
is Ackermann’s function:

Definition 66. Ackermann’s function is

ack 0 y = y+1
ack x 0 = ack (x-1) 1
ack x y = ack (x-1) (ack x (y-1))

The ack function is easy to evaluate for small arguments, but the time it takes
grows extremely quickly as x and y increase. Books on computability theory
and algorithmic complexity show why this happens, but it is interesting to
make a table for yourself of ack x y for small values of the arguments.
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11.2.4 State

A function always returns the same result, given the same argument. This kind
of repeatability is essential: if

√
4 = 2 today, then

√
4 = 2 also tomorrow. Some

computations do not have this property. For example, many programming
languages provide a ‘function’ that returns the current date and time of day,
and the result returned from such a query will definitely be different tomorrow.
The entire set of circumstances that can affect the result of a computation is
called the state.

Example 97. The state of a computer system includes the current date and
time of day, as well as the contents of the file system. Thus a ‘function’ that
queries the date, or the amount of free space on disk, will not return the
same result every time it is called. These are not true functions, although
some programming languages use the keyword function erroneously to refer
to them.

Example 98. As consumers, we expect to have to trade money for products.
The interface between us and those that sell these products is a functional one.
However, we also have to take into consideration things like depreciation over
time, or wear and tear, or product expiration dates. These issues concern the
state of the items for which we trade money.

Example 99. Some programming languages allow a ‘function’ to modify the
value of a global variable. Even if such a ‘function’ always returns the same
result for each argument value, its behaviour is not in principle describable by
a function graph. A ‘function’ in a program that modifies the global state is
not a mathematical function.

Notwithstanding these examples, it is possible to describe computations
with state using pure mathematical functions. The idea is to include the state
of the system as an extra argument to the function. For example, suppose we
need a function f that takes an integer and returns an integer, but the result
might also depend on the state of the computer system (perhaps the time of
day, or the contents of the file system). We can handle this by defining a new
type State that represents all the relevant aspects of the system state, and
then providing the current state to f:

f :: State -> Int -> Int

Now f can return a result that depends on the time of day, even though it is a
mathematical function. Given the same system state and the same argument,
it will always return the same result.

Programs that need to manipulate the state can be written as pure func-
tions, with the state made explicit and passed as an argument to each function
that uses it. When a program needs to use the state frequently, however, it be-
comes awkward to use explicit State arguments; this clutters up the program,
and errors in keeping track of the state can be hard to find.
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Imperative languages solve this problem by making the state implicit, and
allowing side effects to modify the state. This is a simple way to allow algo-
rithms to use the system state. The cost of this approach is that reasoning
about the program is more difficult. In mathematics, if you have an equation
of the form x = y, you can replace x by y, or vice versa. This is called sub-
stituting equals for equals or equational reasoning. Unfortunately, equational
reasoning doesn’t work in general in imperative languages. If a function f de-
pends on the system state, it is not even true that f x = f x. It is still possible
to reason formally about imperative programs, for example using the weakest
precondition method, but this is more complex than equational reasoning.

Haskell takes a different approach: it provides a mechanism allowing you
to define operations that use the state implicitly. The mechanism is called a
monad, and it is used with do expressions in Haskell. The technique is explained
in [32].

11.3 Higher Order Functions

A distinction is often made between data (numbers, characters, etc.) and
algorithms (code to be executed on a computer). For example, 23 and [1,2,3]
are data values, while the length function is code to be executed. Many
programming languages treat functions as code, and disallow their use as data.
This means that the arguments and result of a function application must be
data; functions themselves cannot be used as arguments or results.

In both mathematics and functional programming languages, this restric-
tion is removed: computer code—in the form of functions—can be used as
ordinary data values. This means, for example, that you can store functions
in data structures. You can also pass a function like length to some other
function, which might use it; you can also write a function that does some
computation, and then produces a brand new function which it returns. Func-
tions like this are called higher order functions.

Definition 67. A first order function has ordinary (non-function) arguments
and result. A higher order function is one that either takes a function as an
argument, or returns a function as its value, or both.

Example 100. The Haskell function map is a higher order function, because
its first argument is a function which map will apply to each element of the
second argument, which is a list. The type of map is

map :: (a->b) -> [a] -> [b]

This type reveals that the function is higher order, since the first argument has
a type that contains an arrow, indicating that this argument is a function.

Example 101. The length function is not higher order. As its type makes
plain, the argument is a list type and the result is an integer:
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length :: [a] -> Int

We will now look in detail at the various kinds of higher order functions:
functions that take other functions as arguments and functions that return
functions as results. We will also compare two methods for allowing a func-
tion to take several arguments: building a tuple so that all the arguments are
packaged in a data structure, and using higher order functions to take the
arguments one at a time.

11.3.1 Functions That Take Functions as Arguments

Any function that takes another function as an argument is higher order. This
kind of higher order function will have a type something like the following:

f :: (· · · → · · · ) → · · ·

We have already seen many examples of such functions in Haskell; map and
foldr are typical. Generally, this variety of higher order function will also take
a data argument, and it will apply its function argument to its data argument
in a special way.

Example 102. As we have already seen, the map function takes a data struc-
ture (which must be a list of data values) and applies its function argument to
each element of the list.

map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Example 103. The following function performs an operation twice on the data
argument x. The operation to be performed is specified by the first argument
f, which is a function.

twice :: (a -> a) -> a -> a
twice f x = f (f x)

Notice that the type of f is more restricted in twice than it is in map. The
reason for this is that nothing in map constrains either the argument type or
the result type of f, so the function can have the general function type a->b.
In twice, however, the result returned by f is used as the argument to another
application of f. This means that f must have the less general function type
a->a.

Higher order functions provide a flexible and powerful approach to user-
defined control structures. A control structure is a programming language
construct that specifies a sequence of computations. Examples of control struc-
tures in imperative programming languages include for loops, while loops, the
if statement, and the like.
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It is often possible to define a higher order function that implements a
control structure. For example, let ys be a list of length n. Then the Haskell
equation

ys = map f xs

is similar to the following for loop (written in a common imperative style):

for i = 1 to n
y[i] := f (x[i]);

Thus map describes an iteration that computes a list of values, where the ith
element of the result is computed from the ith element of the argument by
applying the function f. Similarly,

y = foldl f a xs

is similar to the following imperative loop:

y := a;
for i := 1 to n do
y := f y x[i]

11.3.2 Functions That Return Functions

Any function that returns another function as its result is higher order, and its
type will have the following form:

f :: · · · → (· · · → · · · )

To understand this kind of higher order function, it is helpful to study the
function graph in detail. First, we define some first order functions to be used
in the examples:

ident, double, triple, quadruple :: Int -> Int

ident 1 = 1
ident 2 = 2
ident 3 = 3

double 1 = 2
double 2 = 4
double 3 = 6

triple 1 = 3
triple 2 = 6
triple 3 = 9
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quadruple 1 = 4
quadruple 2 = 8
quadruple 3 = 12

These simple functions perform multiplication on small arguments. For
example, double takes a number x (which must be 1, 2 or 3) and it returns
2 × x. The graph of a first order function is a straightforward set of ordered
pairs; the functions just defined have the following graphs:

ident = {(1, 1), (2, 2), (3, 3)}
double = {(1, 2), (2, 4), (3, 6)}
triple = {(1, 3), (2, 6), (3, 9)}

quadruple = {(1, 4), (2, 8), (3, 12)}

Now we define a higher order function, multby, which takes one argument
of type Int and returns a function with type Int->Int:

multby :: Int -> (Int->Int)
multby 1 = ident
multby 2 = double
multby 3 = triple
multby 4 = quadruple

This function simply looks at its first argument x, an integer that must
be in {1, 2, 3, 4}, and it returns another function. Now consider the value of
multby 3 2. This is syntactically equivalent to (multby 3) 2, and we can
evaluate the expression using the function definitions. Notice that multby 3
returns a function that multiplies things by 3, so multby 3 2 evaluates to 6:

multby 3 2
= (multby 3) 2 syntax rule of Haskell
= triple 2 definition of multby (third equation)
= 6 definition of triple (second equation)

If a function returns another function as its result, then its graph will be
a set of ordered pairs (x, y) where x is the argument to the function and y is
another function graph. Figure 11.5 shows the graph of multby:

multby =
{
(1, {(1, 1), (2, 2), (3, 3)})
(2, {(1, 2), (2, 4), (3, 6)})
(3, {(1, 3), (2, 6), (3, 9)})
(4, {(1, 4), (2, 8), (3, 12)})

}
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Figure 11.5: Graph of the multby Higher Order Function

11.3.3 Multiple Arguments as Tuples

Technically, a function (in either mathematics or Haskell) takes exactly one
argument and returns exactly one result. There are two ways to get around
this restriction. One method is to package multiple arguments (or multiple
results) in a tuple. Suppose that a function needs two data values, x and y.
The caller of the function can build a pair (x, y) containing these values, and
that pair is now a single object which can be passed to the function.

Example 104. The following function takes two numbers and adds them to-
gether:

add :: (Integer,Integer) -> Integer
add (x,y) = x+y

The function is called using an application that builds a suitable tuple. Thus
f (3,4) applies add to the pair (3,4); when (x,y) is matched with (3,4),
the effect is to define x to be 3 and y to be 4 in the body of the function. The
graph of the function is an infinite set, as Integer is a type with an infinite
number of values. The graph has the following form:

add ={ · · · ,
. . . , ((0,−2),−2), ((0,−1),−1), ((0, 0), 0), ((0, 1), 1), . . .
. . . , ((1,−2),−1), ((1,−1), 0), ((1, 0), 1), ((1, 1), 2), . . .
. . . , ((2,−2), 0), ((2,−1),−1), (2, 0), 2), ((2, 1), 3), . . .
· · ·}
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11.3.4 Multiple Results as a Tuple

A function must return exactly one result, but sometimes in practice we want
one to return several pieces of information. In such cases, the multiple pieces
can be packaged into a tuple, and the function can return that as a single result.
This technique is analogous to passing several arguments as a tuple.

Example 105. The following Haskell function takes an integer x, and returns
two results x − 1 and x + 1 packaged in a pair (i.e., a 2-tuple):

addsub1 :: Integer -> (Integer,Integer)
addsub1 x = (x-1, x+1)

The function graph is

addsub1 ={ · · · ,
(−2, (−3,−1)), (−1, (−2, 0)), (0, (−1, 1)), (1, (0, 2)),
(2, (1, 3)), (3, (2, 4)), (4, (3, 5)), (5, (4, 6)),
· · ·}

11.3.5 Multiple Arguments with Higher Order Functions

Higher order functions provide another method for passing several arguments
to a function. Suppose that a function needs to receive two arguments, x :: a
and y :: b, and it will return a result of type c. The idea is to define the function
with type

f :: a → (b → c).

Thus f takes only one argument, which has type a, and it returns a function
with type b → c. The result function is ready to be applied to the second
argument, of type b, whereupon it will return the result with type c. This
method is called Currying, in honour of the logician Haskell B. Curry (for
whom the programming language Haskell is also named).

The graph of f is a set of ordered pairs; the first element of each pair is
a data value of type a, while the second element is the function graph for the
result function. That function graph contains, in effect, the information that
f obtained from the first argument.

Example 106. The following function, mult, is similar to add (see example
104); apart from using * rather than +, the only difference is that mult is higher
order, and takes its arguments one at a time:

mult :: Integer -> (Integer->Integer)
mult x y = x*y
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The graph of mult is a set of ordered pairs of the form (k, fk), where k is the
value of the first argument to mult, and fk is the graph of a function that takes
a number and multiplies it by k:

mult ={ · · · ,
(−1, {. . . , (−1, 1), (0, 0), (1,−1), (2,−2), . . .}),
(0, {. . . , (−1, 0), (0, 0), (1, 0), (2, 0), . . .}),
(1, {. . . , (−1,−1), (0, 0), (1, 1), (2, 2), . . .}),
(2, {. . . , (−1,−2), (0, 0), (1, 2), (2, 4), . . .}),
(3, {. . . , (−1,−3), (0, 0), (1, 3), (2, 6), . . .}),
· · ·}

11.4 Total and Partial Functions

Recall that the domain of a function f :: A → B is a subset of A consisting of
all the elements of A for which f is defined. There are two sets that can be
used to describe the possible arguments of f . The argument type A is generally
thought of as a constraint: if you apply f to x, then it is required that x ∈ A
(alternatively, x :: A). If this constraint is violated then the application f x
is meaningless. The domain of f is the set of arguments for which f will
produce a result. Naturally, domain f must be a subset of A. However, there
is an important distinction between functions where the domain is the same as
the argument type, and functions where the domain is a proper subset of the
argument type.

Definition 68. Let f :: A → B be a function. If domain f = A then f is a
total function. If domain f ⊂ A then f is a partial function.

If f is a partial function, and x ∈ domain f , then we say that f x is defined.
There are several standard ways to describe an application f y where y :: A
but y �∈ domain f . It is common, especially in mathematics, to write ‘f y is
undefined’. Another approach, frequently used in theoretical computer science,
is to introduce a special symbol ⊥ (pronounced bottom), which stands for an
undefined value. This allows us to write f y = ⊥.

Example 107. The following function has argument type Integer, but its
domain is {1, 2, 3}:

f :: Integer -> Char
f 1 = ’a’
f 2 = ’b’
f 3 = ’c’

The expression f 1 is defined, and its value is the character ’a’. The expression
f 4 is undefined, and it has no value. Another way to say this is that f 1 = ’a’
and f 4 = ⊥. The graph of f is {(1, ’a’), (2, ’b’), (3, ’c’)}.
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Partial functions are useful when describing the behaviour of programs.
Generally, the type of a function can be used for compile-time analysis by the
compiler, but the domain may be difficult or impossible to work out from the
function’s definition.

Example 108. The function sqrt :: Float->Float takes the square root of
its argument. The argument type is Float, and the compiler uses that constraint
to detect errors in the program. Thus if a program contains an application like
sqrt "cat" the compiler will produce an error message, because a character
string is not an element of the type Float. However, the compiler cannot
determine whether a numeric argument to sqrt will be positive or negative.

Example 109. The following function can be applied to any integer, but it is
defined only for 1:

justone :: Int -> Int
justone 1 = 3

If this function is applied to anything that isn’t an integer, the compiler will
produce a type error message, and the program cannot be executed. If it is
applied to 2, no error is detected at compile time but a runtime error message
will be produced, for example:

> justone 2

Program error: {justone 2}

Many programming languages have the property that some type errors are
not detectable by the compiler, and the application of a function to an argument
of the wrong type is likely to crash the program. The Haskell type system is
designed carefully so that the compiler guarantees that all type errors will be
detected at compile time; it is impossible for the program to crash at runtime
due to a type error. Unix programmers using C are accustomed to running
a program and getting the message segmentation fault; this is caused by a
type error (for example, if an integer value is used as an address). Such errors
are rare in Haskell; even though the compiler knows nothing about the domains
of functions, it is able to catch most errors just by checking their types.

If a function is applied to a value that has the right type, but that is not in
the function’s domain, then a runtime error occurs. Sometimes the program, or
the system, is able to detect this and produce an error message. For example, if
the sqrt function is applied to -2, an error message will be produced explaining
what happened.

Some runtime error messages are generated automatically, but Haskell also
allows you to implement such error messages yourself. The function error
takes a string argument, which is an error message; if an application of error
is evaluated, the string is printed and the program execution is terminated.
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Example 110. The argument type of the following function is Integer, but its
domain is the set of non-negative integers. Suppose that it would be a runtime
error to evaluate an application of f to a negative number, but suppose also
that we would like an informative error message if this happens. The error
function can be used to terminate the execution with a tailor-made message.
A common technique, illustrated here, is to construct the error message string,
including pertinent information about the argument. In this case, we simply
convert x to a string, with show x, and include that in the message.

f :: Integer -> Integer
f x =
if x >= 0
then 10*x
else error ("f was applied to a negative number "

++ show x ++ ". Don’t do it again!")

Here are the results of evaluating two applications of f. The argument is in
the domain of f in the first application, but not in the second.

> f (2+2)
40
> f (2-5)

Program error: f was applied to a negative
number -3. Don’t do it again!

Unfortunately, it is not possible to detect all errors at runtime, and when
an undetectable error occurs it is impossible to print a useful error message.
Sometimes a recursive function goes into an infinite loop, and there is simply
no output at all.

Example 111. The infinite loop function takes an argument and calls itself
with the same argument. Because it makes no progress toward a termination
condition, any application of this function will run forever. The user must
interrupt the execution, typically by typing CTRL-C or by clicking on Stop.

infinite_loop :: a -> a
infinite_loop x = infinite_loop x

An application of a total function will always terminate and produce a
result. There are three possible outcomes from evaluating an application of a
partial function to an argument: the application could terminate with a result;
it could produce a runtime error message; or it could go into an infinite loop.
For example, the following function will terminate if its argument is even, but
it will go into an infinite loop if the argument is odd:

haltIfEven x =
if even x
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then x
else infinite_loop x

If we try applying haltIfEven to some arguments, we might quickly dis-
cover that haltIfEven 6 ⇒ 6. However, when we attempt to evaluate the
expression haltIfEven 7 there will not be any output at all; the computation
will just go on and on. When a computer is running a program but not produc-
ing any output, it would be useful to know whether it just needs more time, or
whether it is stuck in an infinite loop. For this particular example it is obvious
when the function will terminate and when it will loop forever, but what about
more complicated functions where this is not obvious?

It would be extremely useful to have a function called wouldHalt that takes
an arbitrary function f and an argument value x, and that returns True if and
only if f would halt if we actually evaluate f x:

wouldHalt :: (Integer->Integer) -> Integer -> Bool

This is called the Halting Problem.
Obviously we cannot implement wouldHalt by actually evaluating f. Sup-

pose we write it something like this:

wouldHalt :: (Integer->Integer) -> Integer -> Bool
wouldHalt f x =
if f x == f x
then True
else False

The problem is that if f x goes into an infinite loop, then wouldHalt will never
get the opportunity to return False. It will always return True if the result
should be True, but it will go into an infinite loop if the result should be False.

Since wouldHalt cannot actually evaluate f x, it must instead analyse the
definition of f, somehow figure out how it works, and then decide whether f
x would halt. We could easily define a simplified wouldHalt that can handle
haltIfEven and similar functions. Could we extend it, with enough effort, so
that our function solves the Halting Problem? Unfortunately this is impossible:

Theorem 76. There does not exist a function wouldHalt such that for all f
and x,

wouldHalt f x =

{
True, if f x terminates
False, if f x does not terminate

Proof. Define the function paradox as follows:

paradox :: Integer -> Integer
paradox x =
if wouldHalt paradox x
then paradox x
else 1
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Now consider the expression paradox x. One of the following two cases must
hold:

• Suppose paradox x halts and produces a result. Then

wouldHalt paradox x ⇒ True;

therefore the definition reduces to paradox x = paradox x, so paradox
x does not halt. This is a contradiction; therefore it is impossible that
paradox x halts.

• Suppose paradox x does not halt. Then

wouldHalt paradox x ⇒ False.

The definition then simplifies to paradox x = 1, and it halts.

To summarise, if paradox x halts then it does not halt, and if it does not halt
then it halts! There is no possibility which avoids contradiction. Therefore the
function wouldHalt does not exist.

The proof that the Halting Problem is unsolvable was discovered in the
1930s by Alan Turing. This is one of the earliest and most important results
of computability theory. One of the commonest methods for proving that a
function does not exist is to show how it could be used to solve the Halting
Problem, which is unsolvable. This theorem also has major practical impli-
cations: it means that some software tools that would be very useful cannot
actually be implemented.

A consequence of the unsolvability of the Halting Problem is that it is
impossible to write a Haskell function that determines whether another Haskell
function is total or partial. However, we can introduce data structures to
represent the graphs of partial functions, with an explicit value that represents
⊥. The software tools file takes this approach, as described below.

The definition of a function requires that every element of the domain be
mapped to some element of the result type, which can be the undefined value.
This means that we need to use a new type to represent the result returned by
a function, called FunVals. This type has two kinds of element. The first is
Undefined, which means that the result value is ⊥. The other is called Value,
and takes an argument that is the actual value returned by the function.

Now we can define a predicate that returns True if its argument is a partial
function (in other words if some member of its result type is undefined), and
False otherwise:

isPartialFunction
:: (Eq a, Show a, Eq b, Show b)
=> Set a -> Set b -> Set (a,FunVals b) -> Bool
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There is also a function isFun that takes a relation, and determines whether
the relation is also a function:

isFun :: (Eq a, Show a, Eq b, Show b) =>
Set a -> Set b -> Set (a,FunVals b) -> Bool

Exercise 1. Decide whether the following functions are partial or total, and
then run the tests on the computer:

(a) isPartialFunction
[1,2,3] [2,3]
[(1,Value 2),(2,Value 3),(3,Undefined)]

(b) isPartialFunction
[1,2] [2,3]
[(1,Value 2),(2,Value 3)]

Exercise 2. Work out the following expressions, by hand and using the com-
puter:

isFun [1,2,3] [1,2] [(1,Value 2),(2,Value 2)]
isFun [1,2,3] [1,2] [(1,Value 2),(2,Value 2),

(3,Value 2),(3,Value 1)]
isFun [1,2,3] [1,2] [(1,Value 2),

(2,Value 2),(3,Value 2)]

Exercise 3. What is the value of mystery x where mystery is defined as:

mystery :: Int -> Int
mystery x = if mystery x == 2 then 1 else 3

Exercise 4. What is the value of mystery2 x where mystery2 is defined as:

mystery2 :: Int -> Int
mystery2 x = if x == 20 then 2 + mystery2 x else 3

11.5 Function Composition

It is often possible to structure a computation as a sequence of function ap-
plications organised as a pipeline: the output from one function becomes the
input to the next, and so on. In the simplest case, there are just two functions
in the pipeline: the input x goes into the first function, g, whose output goes
into the second function f (Figure 11.6).

Definition 69. Let g :: a → b and f :: b → c be functions. Then the composi-
tion of f with g, written f ◦ g, is a function such that:

(f ◦ g) :: a → c

(f ◦ g) x = f (g x)
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x g f y

Figure 11.6: Functional Composition (f ◦ g) x = f (g x)

When you think of composition as a pipeline, the input x goes into the first
function g; this produces an intermediate result g x, which is the input to the
second function f , and the final result is f (g x). Notice, however, that in
the notation f ◦ g, the functions are written in backwards order. This may be
unfortunate, but this is the standard definition of function composition, and
you need to be familiar with it. Just remember that f ◦ g means first apply g,
then f .

The ◦ symbol is an operator that takes two functions and produces a new
function, just as + is an operator that takes two numbers and produces a new
number. The first argument to ◦ is f :: b → c, and the second argument is
g :: a → b, and the entire composition takes an input x :: a and returns a result
(f (g x)) :: c. Therefore the ◦ operator has the following type:

(◦) :: (b → c) → (a → b) → (a → c)

Haskell has a built-in operator for function composition. Since ◦ is unfor-
tunately not an ASCII character, the full stop character ‘.’ is used instead to
denote function composition.

Definition 70. The Haskell function composition operator is

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f.g) x = f (g x)

Example 112. Suppose that you wish to increment the second elements of a
list of pairs called lstpairs. You could write this as

map increment (map snd lstpairs)

but it is often clearer to write it as

map (increment.snd) lstpairs

This helps the reader to see that several operations are going to be applied in
turn to each element of the list.

Composition is often used to define a processing pipeline, as shown in Figure
11.6, but we often need more than two functions in the pipeline. Figure 11.7
shows a typical example, where four functions are connected together using
◦. The following theorem states an extremely important property of the ◦
operator, which makes it easier to define such pipelines:
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Theorem 77. Functional composition (◦) is associative. That is, for all func-
tions h :: a → b, g :: b → c, f :: c → d,

f ◦ (g ◦ h) = (f ◦ g) ◦ h,

and both the left- and right-hand sides of the equation have type a → d.

Proof. We need to prove that the two functions f ◦ (g ◦ h) and (f ◦ g) ◦ h are
extensionally equal. To do this we need to choose an arbitrary x :: a, and show
that both functions give the same result when applied to x. That is, we need
to prove that the following equation holds:

(f ◦ (g ◦ h)) x = ((f ◦ g) ◦ h) x.

This is done by straightforward equational reasoning, repeatedly using the
definition of ◦:

((f ◦ g) ◦ h) x
= (f ◦ g) (h x)
= f (g (h x))
= f ((g ◦ h) x)
= (f ◦ (g ◦ h)) x

The significance of this theorem is that we can consider a complete pipeline
as a single black box; there is no need to structure it two functions at a time.
Similarly, you can omit the redundant parentheses in the mathematical nota-
tion. The following compositions are all identical:

(f1 ◦ f2) ◦ (f3 ◦ f4)
f1 ◦ (f2 ◦ (f3 ◦ f4))
((f1 ◦ f2) ◦ f3) ◦ f4
f1 ◦ ((f2 ◦ f3) ◦ f4)
(f1 ◦ (f2 ◦ f3)) ◦ f4

The parentheses in all of these expressions have no effect on the meaning of
the expression, and they make the notation harder to read, so it is customary
to omit them and write simply

f1 ◦ f2 ◦ f3 ◦ f4.

Notice, however, that you must put parentheses around an expression denoting
a function when you apply it to an argument. For example,

(f1 ◦ f2 ◦ f3 ◦ f4) x

is the correct way to apply the pipeline to the argument x. It would be incorrect
to omit the outer parentheses, as in

f1 ◦ f2 ◦ f3 ◦ f4 x,
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f1 f2 f3 f4

Figure 11.7: A Pipeline Defined via Functional Composition f4 ◦ f3 ◦ f2 ◦ f1

because function application takes precedence over all other operations, and
the meaning would be equivalent to

f1 ◦ f2 ◦ f3 ◦ (f4 x),

which is not what was intended. In functional programming it is common to
see a pipeline of functions connected with the ◦ operator (written as ‘.’ in
Haskell); if this expression is applied to an argument, then there is just one
pair of parentheses around the whole pipeline, but otherwise no parentheses
are needed. For example, here are two Haskell equations, defining a function g
and a data value y:

g = f1 . f2 . f3 . f4
y = (f1 . f2 . f3 . f4) x

The software tools contain an implementation of the following function; its
two arguments are functions represented as graphs, and it returns the compo-
sition, also represented as a graph.

functionalComposition
:: (Eq a, Show a, Eq b, Show b, Eq c, Show c)
=> Set (a,FunVals b) -> Set (b,FunVals c)

-> Set (a,FunVals c)

Exercise 5. Work out the values of the following expressions, and then check
your result by evaluating them with the computer:

map (increment.increment.increment) [1,2,3]
map ((+ 2).(* 2)) [1,2,3]

Exercise 6. Using the definitions below, work out the type and graph of f.g,
and check using the computer.

f : Int -> String
f 1 = "cat"
f 2 = "dog"
f 3 = "mouse"

g : Char -> Int
g ’a’ = 1
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g ’b’ = 2
g ’c’ = 2
g ’d’ = 3

Exercise 7. Functions are often composed with each other in order to form a
pipeline that processes some data. What does the following expression
do?

((map (+ 1)).(map snd)) xs

Exercise 8. Sometimes access to deeply nested constructor expressions is per-
formed by function composition. What is the value of this expression?

(fst.snd.fst) ((1,(2,3)),4).

11.6 Properties of Functions

We have used four sets to characterise a function: the argument type, the
domain, the result type, and the image. There are several useful properties
of functions that concern these four sets, and we will examine them in this
section.

11.6.1 Surjective Functions

A surjective function has an image that is the same as its result type (sometimes
called the range). Thus the function can, given suitable input, produce any of
the elements of the result type.

Definition 71. A function f :: A → B is surjective if

∀ b ∈ B. (∃ a ∈ A. f a = b).

Example 113. The function even :: Integer -> Bool has a result type
with only two elements, True and False. Both of these values are in the
function’s image, as demonstrated by the applications even 2 = True and
even 3 = False. Therefore every element of the result type is also an element
of the image, and even is surjective.

Example 114. The times two function takes an integer and doubles it:

times_two :: Int -> Int
times_two n = 2 * n

The image of the function is the set of even integers; this is a proper subset of
the result type, so times two is not surjective.
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Figure 11.8: Two Surjective Functions and Two That Are Not Surjective

Example 115. The increment function takes an integer argument and adds
1 to it. The result type is Integer, and the image is also Integer, because
every integer is 1 greater than its predecessor. Thus the image set is the same
as the result type, and the function is surjective.

Example 116. Let A = {1, 2, 3} and B = {4, 5}. Define f :: A → B as
{(1, 4), (2, 5), (3, 4)}. Then f is surjective, because there is an ordered pair
whose second component is 4, and the same is also true of 5.

Example 117. Figure 11.8 shows two surjective functions and two that are
not surjective. The domain and image of each function is circled.

If the result type of a function is larger than its domain, then the function
cannot be surjective.

Example 118. Let A = {2, 3} and B = {4, 5, 6}. If f :: A → B then it is not
surjective, since it is not possible for it to contain three ordered pairs (x1, 4),
(x2, 5) and (x3, 6) such that x1, x2 and x3 are all elements of A and are all
distinct.

Example 119. The following Haskell functions are surjective:

not :: Bool -> Bool
member v :: [Int] -> Bool
increment :: Int -> Int
id :: a -> a

All of these functions have result types that are no larger than their domain
types.
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Example 120. The following Haskell functions are not surjective. The length
function returns only zero or a positive integer, and abs returns the absolute
value of its argument, so both functions can never return a negative number.
The times two function may be applied to an odd or an even number, but it
always returns an even result.

length :: [a] -> Int
abs :: Int -> Int
times_two :: Int -> Int

The software tools file defines the following function, which takes a graph
representation of a function and determines whether it is surjective:

isSurjective
:: (Eq a, Show a, Eq b, Show b)
=> Set a -> Set b -> Set (a,FunVals b) -> Bool

Exercise 9. Decide whether the functions represented by the graphs in the
following examples are surjective, and then check using the computer:

isSurjective [1,2,3] [4,5]
[(1, Value 4), (2, Value 5), (3, Value 4)]

isSurjective [1,2,3] [4,5]
[(1, Value 4), (2, Value 4), (3, Value 4)]

Exercise 10. Which of the following functions are surjective?

(a) f :: A → B, where A = {1, 2}, B = {2, 3, 4} and f = {(1, 2), (2, 3)}.

(b) g :: C → D, where C = {1, 2, 3}, D = {1, 2} and
g = {(1, 1), (2, 1), (3, 2)}.

Exercise 11. Which of the following functions are not surjective, and why?

(a) map increment :: [Int] -> [Int]

(b) take 0 :: [a] -> [a]

(c) drop 0 :: [a] -> [a]

(d) (++) xs :: [a] -> [a]

11.6.2 Injective Functions

The essential requirement that a relation must satisfy in order to be a function
is that it maps each element of its domain to exactly one element of the image.
An injective function has a similar property: each element of the image is the
result of applying the function to exactly one element of the domain.
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Definition 72. The function f :: A → B is injective if

∀a, a′ ∈ A. a �= a′ → f a �= f a′

Example 121. Let A = {1, 2} and B = {3, 4, 5}. Define f :: A → B as
{(1, 3), (2, 5)}. Then f is injective, because 3 appears in only one ordered pair,
(1, 3), and 5 appears in only one ordered pair, (2, 5).

Example 122. Let A = {1, 2, 3} and B = {4, 5}. Define g :: A → B as
{(1, 4), (2, 5), (3, 5)}. Then g is not injective because it contains the ordered
pairs (2, 5) and (3, 5), which have different argument values but the same result
value.

Example 123. Figure 11.9 shows four functions, two of which are injective.

Example 124. The following Haskell functions are injective:

(/\) True :: Bool -> Bool
increment :: Int -> Int
id :: a -> a
times_two :: Int -> Int

Example 125. The following Haskell functions are not injective. The length
function is not injective, because it will map both [1,2,3] and [3,2,1] to
the same number, 3. There are infinitely many other examples that would
suffice to show that length is not injective, but you only have to give one. The
function take n is not injective because it will map both [a1, a2, . . . , an, x] and
[a1, a2, . . . , an, y] to the same result [a1, a2, . . . , an], even if x �= y.
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length :: [a] -> Int
take n :: [a] -> [a]

The software tools file defines the following function, which determines
whether a function (specified by its graph) is injective. The first argument
is the function’s domain, represented as a set; the second argument is its result
type, also represented as a set; and the third argument is its graph.

isInjective
:: (Eq a, Show a, Eq b, Show b)
=> Set a -> Set b -> Set (a, FunVals b) -> Bool

Example 126. Let A = {1, 2, 3} and B = {4, 5, 6}. Define three functions as
follows:

f1, f2, f3 :: A → B

f1 = {(1, 4), (2, 6), (3, 5)}
f2 = {(1, 4), (2, 4), (3, 5)}
f3 = {(1, 4), (3, 5)}

We can use the software tools to explore the properties of various compositions
of these functions. First we need to represent the function graphs in Haskell:

fun_domain = [1,2,3]
fun_codomain = [4,5,6]

fun1 = [(1, Value 4), (2, Value 6), (3, Value 5)]
fun2 = [(1, Value 4), (2, Value 4), (3, Value 5)]
fun3 = [(1, Value 4), (2, Undefined), (3, Value 5)]

Now we can try various experiments:

isInjective fun_domain fun_codomain
(functionalComposition fun1 fun2)

isInjective fun_domain fun_codomain
(functionalComposition fun1 fun3)

isInjective fun_domain fun_codomain
(functionalComposition fun2 fun3)

Exercise 12. Determine whether the functions in these examples are injective,
and check your conclusions using the computer:

(a) isInjective [1,2,3] [2,4]
[(1,Value 2),(2,Value 4),(3,Value 2)]

(b) isInjective [1,2,3] [2,3,4]
[(1,Value 2),(2,Value 4),(3,Undefined)]
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Exercise 13. Which of the following functions are injective?

(a) f :: A → B, where A = {1, 2}, B = {1, 2, 3} and f = {(1, 2), (2, 3)}.

(b) g :: C → D, where C = {1, 2, 3}, D = {1, 2} and g = {(1, 1), (2, 2)}.

Exercise 14. Suppose that f :: A → B and A has more elements than B.
Can f be injective?

11.6.3 The Pigeonhole Principle

The Pigeonhole Principle encapsulates a common sense form of reasoning about
the relationship between two finite sets. It says that if A and B are finite sets,
where |A| > |B| then no injection exists from A to B. In other words, since
each element of the domain must be assigned a pigeonhole in the image, and
the domain is bigger than the image, then there must be an element left over,
because at most one pigeon fits in a pigeonhole. This principle is frequently
used in set theory proofs, especially proofs of theorems about functions. There
are a variety of ways in which to state the pigeonhole principle formally.

Theorem 78 (Pigeonhole Principle). Let A and B be finite sets, such that
|A| > |B| and |A| > 1. Let f :: A → B. Then

∃ a1, a2 ∈ A. (a1 �= a2) ∧ (f a1 = f a2).

11.7 Bijective Functions

Definition 73. A function is bijective if it is both surjective and injective. An
alternative name for ‘bijective’ is one-to-one and onto. A bijective function is
sometimes called a one-to-one correspondence.

Example 127. Figure 11.10 shows some bijective functions and some that are
not bijective.

The domain and image of a bijective function must have the same number
of elements. This is stated formally in the following theorem:

Theorem 79. Let f :: A → B be a bijective function. Then |domain f | =
|image f |.
Proof. Suppose that the domain A is larger than the image B. Then f cannot
be injective, by the Pigeonhole Principle. Now suppose that B is larger than
A. Then not every element of B can be paired with an element of A: there are
too many of them, so f cannot be surjective. Thus a function is bijective only
when its domain and image are the same size.

A bijective function must have a domain and image that are the same
size, and it must also be surjective and injective. As before, we assume that
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Figure 11.10: Two Bijective Functions and Two That Are Not Bijective

these functions are finite. The following function, defined in the software tools
file, takes a domain, codomain, and a function, and it determines whether the
function is bijective.

isBijective
:: (Eq a, Show a, Eq b, Show b)
=> Set a -> Set b

-> Set (a,FunVals b) -> Bool

Exercise 15. Determine whether the following functions are bijective, and
check your conclusions using the computer:

isBijective [1,2] [3,4] [(1,Value 3),(2,Value 4)]
isBijective [1,2] [3,4] [(1,Value 3),(2,Value 3)]

11.7.1 Permutations

Definition 74. A permutation is a bijective function f :: A → A; i.e., it must
have the same domain and image.

Example 128. The identity function is a permutation.

The only thing a permutation function can do is to shuffle its input; it
cannot produce any results that do not appear in its input.

Example 129. Let A = {1, 2, 3} and let f :: A → A be defined by the graph
{(1, 2), (2, 3), (3, 1)}. Then f is a permutation.
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Example 130. Let X = [x1, x2, . . . , xn] be an array of values, and let Y =
[y1, y2, . . . , yn] be the result of sorting X into ascending order. Define A =
{1, 2, . . . , n} to be the set of indices of the arrays X and Y . We can define a
function f :: A → A that takes the index of a data value in X and returns the
location of that same data value in Y . Then f is a permutation.

Sometimes it is convenient to think of a permutation as a function that
reorders the elements of a list; this is often simpler and more direct than defining
a function on the indices. For example, it is natural to say that a sorting
function has type [a] → [a]. Technically, the function f used in Example 130 is
a permutation. The following definition provides a convenient way to represent
a permutation as a function that reorders the elements of a list:

Definition 75. A list permutation function is a function f :: [a] → [a] that
takes a list of values and rearranges them using a permutation g, such that

xs !! i = (f xs) !! (g i).

Example 131. The functions sort and reverse are list permutation func-
tions.

If you rearrange a list of values and then rearrange them again, you sim-
ply end up with a new rearrangement of the original list, and that could be
described directly as a permutation. This idea is stated formally as follows:

Theorem 80. Let f, g :: A → A be permutations. Then their composition
f ◦ g is also a permutation.

The following function, defined in the software tools file, determines whether
a function is a permutation. The first two arguments are the domain and result
type, which must be finite sets with equality, and the third argument is the
function graph.

isPermutation
:: (Eq a, Show a)
=> Set a -> Set a

-> Set (a,FunVals a) -> Bool

Exercise 16. Let A = {1, 2, 3} and f :: A → A, where
f = {(1, 3), (2, 1), (3, 2)}. Is f bijective? Is it a permutation?

Exercise 17. Determine whether the following functions are permutations,
and check using the computer:

isPermutation
[1,2,3] [1,2,3]
[(1,Value 2),(2, Value 3),(3, Undefined)]

isPermutation
[1,2,3] [1,2,3]
[(1,Value 2),(2, Value 3),(3, Value 1)]



11.8. CARDINALITY OF SETS 299

Exercise 18. Is f, defined below, a permutation?

f :: Integer -> Integer
f x = x+1

Exercise 19. Suppose we know that the composition f ◦ g of the functions f
and g is surjective. Show that f is surjective.

11.7.2 Inverse Functions

A function f :: A → B takes an argument x :: A and gives the result (f x) :: B.
The inverse of the function goes the opposite direction: given a result y :: B,
it produces the argument x :: A, which would cause f to yield the result y.

Not all functions have an inverse. For example, if both (1, 5) and (2, 5) are
in the graph of a function, then there is no unique argument that yields 5.
Therefore the definition of inverse requires the function to be a bijection.

Definition 76. Let f :: A → B be a bijection. Then the inverse of f , denoted
f−1, has type f−1 :: B → A, and its graph is{

(y, x) | ∃x, y. (x, y) ∈ f
}
.

Example 132. Let A = {1, 2, 3}, B = {4, 5, 6} and let f :: A → A have the
graph
{(1, 4), (2, 5), (3, 6)}. Then its inverse is f−1 = {(4, 1), (5, 2), (6, 3)}.

Example 133. The Haskell function decrement is the inverse of increment.
Similarly, increment is the inverse of decrement.

increment, decrement :: Integer -> Integer
increment x = x+1
decrement x = x-1

Exercise 20. Suppose that f :: A → A is a permutation. What can you say
about f−1?

11.8 Cardinality of Sets

One of the most fundamental properties of a set is its size, and this must
be defined carefully because of the subtleties of infinite sets. Bijections are a
crucial tool for reasoning about the sizes of sets.

A bijection is often called a one-to-one correspondence, which is a good
description: if there is a bijection f :: A → B, then it is possible to associate
each element of A with exactly one element of B, and vice versa. This is really
what you are doing when you count a set of objects: you associate 1 with
one of them, 2 with the second, and so on. When you have associated all the
objects with a number, then the number n associated with the last one is the
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number of objects. Thus the number of objects in S is n, if there is a bijection
f :: {1, 2, . . . , n} → S. This idea is used formally to define the size of a set,
which is called its cardinality :

Definition 77. A set S is finite if and only if there is a natural number n such
that there is a bijection mapping the natural numbers {0, 1, . . . , n − 1} to S.
The cardinality of S is n, and it is written as |S|.

In other words, if S is finite then it can be counted, and the result of the
count is its cardinality (i.e., the number of elements it contains).

We would also like to define what it means to say that a set is infinite.
It would be meaningless to say ‘a set is infinite if the number of elements is
infinity’, because infinity is not a natural number. We need to find a more
fundamental property that distinguishes infinite sets from finite ones.

A relevant observation is that we can make a one-to-one correspondence
between the set N of natural numbers and the set E of even numbers, and yet
there are natural numbers that are not even.

0 1 2 3 4 . . .
0 2 4 6 8 . . .

Now, we can calculate the ith element of the second row by applying f to the
ith element of the first row, where f :: N → E is defined by f x = 2 × x.
Furthermore, f is an injective function, and E is a proper subset of N . It would
certainly be impossible to find an f with these properties for a finite set. This
suggests a method for defining infinite sets:

Definition 78. A set A is infinite if there exists an injective function f :: A →
B such that B is a proper subset of A.

We can use the properties of a function over a finite domain A and result
type B to determine their relative cardinalities:

• If f is a surjection then |A| ≥ |B|.

• If f is an injection then |A| ≤ |B|.

• If f is a bijection then |A| = |B|.
Earlier we discussed counting the elements of a finite set, placing its ele-

ments in a one-to-one correspondence with the elements of {1, 2, . . . , n}. Even
though there is no natural number n which is the size of an infinite set, we can
use a similar idea to define what it means to say that two sets have the same
size, even if they are infinite:

Definition 79. Two sets A and B have the same cardinality if there is a
bijection f :: A → B.
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Example 134. Let A = {1, 2, 3} and B = {cat,mouse, rabbit}. Define f ::
A → B as

f = {(1, cat), (2,mouse), (3, rabbit)}.

Now f is surjective and injective (you should check this), so it is a bijection.
Hence the cardinality of B is

|B| = 3.

The previous example may look unduly complicated, but the point is that
exactly the same technique can be used to investigate the sizes of infinite sets.

Example 135. We can place the set I of integers into one-to-one correspon-
dence with the set N of natural numbers:

N = 0 1 2 3 4 5 6 . . .
I = 0 −1 1 −2 2 −3 3 . . .

This is done with the function f :: I → N , defined as:

fx =

{
2 × x, if x ≥ 0
−2 × x − 1, if x < 0

Now f is a bijection (you should check that it is), so I has the same cardinality
as N .

We have already established that the cardinality of the set of even numbers
is the same as the cardinality of N , so this is also the same as the cardinality
of I. The size of the set of integers is the same as the size of the set of integers
that are non-negative and even!

Definition 80. A set S is countable if and only if there is a bijection f :: N →
S.

A set is countable if it has the same cardinality as the set of natural num-
bers. In daily life, we use the word counting to describe the process of enumer-
ating a set with 1, 2, 3, . . . , so it is natural to call a set countable if it can be
enumerated—even if the set is infinite.

Exercise 21. Explain why there cannot be a finite set that satisfies Definition
78.

Exercise 22. Suppose that your manager gave you the task of writing a pro-
gram that determined whether an arbitrary set was finite or infinite.
Would you accept it? Explain why or why not.

Exercise 23. Suppose that your manager asked you to write a program that
decided whether a function was a bijection. How would you respond?
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11.8.1 The Rational Numbers Are Countable

It turns out that some infinite sets are countable and others are not, as we
will see shortly. In computer science applications, it is particularly important
to know whether an infinite set is countable, since a computer performs a
sequence of operations that is countable. It is often possible for a computer to
print out the elements of a countable set; it will never finish printing the entire
set, but any specific element will eventually be printed. However, if a set is
not countable, then the computer will not even be able to ensure that a given
element will eventually be printed.

A rational number is a fraction of the form x/y, where x and y are integers.
We can represent a ratio as a pair of integers, the first being the numerator
and the second the denominator.

Now suppose that we want to enumerate all of these ratios: we need to put
them into one-to-one correspondence with N . Our goal is to create a series
of columns, each of which has an index n indicating its place in the series. A
column gives all possible fractions with n as the numerator.

(1, 1)
(1, 2) (2, 1)
(1, 3) (2, 2) (3, 1)
(1, 4) (2, 3) (3, 2) (4, 1)
(1, 5) (2, 4) (3, 3) (4, 2) (5, 1)

...
...

...
...

...

Every line in this sequence is finite, so it can be printed completely before
the next line is started. Each time a line is printed, progress is made on all of
the columns and a new one is added. Every ratio will eventually appear in the
enumeration. Thus the set Q of rational numbers can be placed in one-to-one
correspondence with N , and Q is countable.

Exercise 24. The software tools file contains a definition of a list named
rationals, which uses the enumeration illustrated above. Try evalu-
ating the following expressions with the computer:

take 3 rationals
take 15 rationals

11.8.2 The Real Numbers Are Uncountable

Obviously, if A ⊆ B we cannot say that set B is larger than set A, since they
might be equal. Surprisingly, even if we know that A is a proper subset of B,
A ⊂ B, we still cannot say that B has more elements: as the previous section
demonstrated, it is possible that both are infinite but countable. For example,
the set of even numbers is a proper subset of the set of natural numbers, yet
both sets have the same cardinality!
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It turns out that some infinite sets are not countable. Such a set is so
much bigger than the set of natural numbers that there is no possible way to
make a one-to-one correspondence between it and the naturals. The set of real
numbers has this property. In this section we will explain why, and introduce
a technique called diagonalisation which is useful for showing that one infinite
set has a larger cardinality than another.

We will not give a formal definition of the set of real numbers, but will
simply consider a real number to be a string of digits. Consider just the real
numbers x such that 0 ≤ x < 1; these can be written in the form .d0d1d2d3 . . ..
There is no limit to the length of this string of digits.

Now, suppose that there is some clever way to place the set of real numbers
into a one-to-one correspondence with the set of natural numbers (that is,
suppose the set of reals is countable). Then we can make a table, where the ith
row contains the ith real number xi, and it contains the list of digits comprising
xi. Let us name the digits in that list di,0di,1di,2 . . .. Thus di,j means the jth
digit in the decimal representation of the ith real number xi. Here, then, is the
table which—it is alleged—contains a complete enumeration of the set of real
numbers:

.d00 d01 d02 d03 . . .

.d10 d11 d12 d13 . . .

.d20 d21 d22 d23 . . .

. . . . . . . . . . . . . . .

Now we are going to show that this list is incomplete by constructing a
new real number y which is definitely not in the list. This number y also has
a decimal representation, which we will call .dy0dy1dy2 . . .. Now we have to
ensure that y is different from x0, and it is sufficient to make the 0th digit of
y (i.e., dy0) different from the corresponding digit of x0 (i.e., d00). We can do
this by defining a function different :: Digit → Digit . There are many ways to
define this function; here is one:

different x =

{
0, if x �= 0
1, if x = 0

It doesn’t matter exactly how different is defined, as long as it returns a digit
that is different from its argument.

We need to ensure that y is different from xi for every i ∈ N , not just for
x0. This is straightforward: just make the ith digit of y different from the ith
digit of xi:

dyi = different xii.

Now we have defined a new number y; it is real, since it is defined by
a sequence of digits, and it is different from xi for any i. Furthermore, our
construction of y did not depend on knowing how the enumeration of xi worked:
for any alleged enumeration whatsoever of the real numbers, our construction
will give a new real number that is not in that list. The conclusion, therefore,
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is that it is impossible to set up a one-to-one correspondence between the set
R of reals and the set N of naturals. R is infinite and uncountable.

11.9 Suggestions for Further Reading

The books on set theory cited in Chapter 8 also explain the basic properties of
functions.

In Section 11.4, we proved that the Halting Problem is unsolvable. This
result has connections to undecidability (see the readings suggested for Chapter
6) and it is fundamental to computability theory, which is covered in many
standard textbooks.

An interesting class of function is cryptography algorithms. These range
from simple ciphers, which provide interesting applications of the basic prop-
erties of functions, all the way to modern public key systems. A history of the
subject is given by Singh [27].

11.10 Review Exercises

Exercise 25. A program contains the expression (f.g) x.

(a) Suppose that when this is evaluated, the g function goes into an
infinite loop. Does this mean that the entire expression is ⊥?

(b) Now, suppose that the application of f goes into an infinite loop.
Does this mean that the entire expression is ⊥?

Exercise 26. Each part of this exercise is a statement that might be correct
or incorrect. Write Haskell programs to help you experiment, so that you
can find the answer.

(a) Let f◦g be a function. If f and g are surjective then f◦g is surjective.

(b) Let f ◦g be a function. If f and g are injective then f ◦g is injective.

(c) If f ◦ g is bijective then f is surjective and g is injective.

(d) If f and g are bijective then f ◦ g is bijective.

Exercise 27. The argument and result types given here are sets, not expres-
sions or types in Haskell. Given the functions

f : {1,2,3} -> {4,5,6}
f 1 = 4
f 2 = 6
f 3 = 5

g : {4,5,6} -> {1,2,3}
g 4 = 1



11.10. REVIEW EXERCISES 305

g 5 = 1
g 6 = 2

what is

(g o f) 1
(g o f) 3
(f o g) 4
(f o g) 5

Exercise 28. State the properties of the following functions:

f : {3,4,5} -> {3,4,5}
f 3 = 4
f 4 = 5
f 5 = 3

g : {0,1,2} -> {0,1,2}
g 0 = 0
g 1 = 1
g 2 = 2

h : {3,4,5} -> {3,4,5}
h 4 = 3
h 5 = 4
h 3 = 5

Exercise 29. Given the functions

f : {x,y,z} -> {7,8,9,10}
f x = 8
f y = 10
f z = 7

g : {7,8,9,10} -> {x,y,z}
g 7 = x
g 8 = x
g 9 = x
g 10 = x

h : {7,8,9,10} -> {7,8,9,10}
h 7 = 10
h 8 = 7
h 9 = 8
h 10 = 9

describe the following functions:
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g o f
h o f
g o h

Exercise 30. Given the domain and codomain {1, 2, 3, 4, 5}, which of the fol-
lowing are functions?

f 1 = 2
f 2 = 3
f 3 = 3
f 3 = 4
f 4 = 4
f 5 = 5

g 1 = 2
g 2 = 1
g 3 = 4
g 4 = 4
g 5 = 3

h 1 = 2
h 2 = 3
h 3 = 4
h 4 = 1

Exercise 31. Determine which of the following definitions are partial func-
tions over the set {1, 2, 3}.

f 1 = undefined
f 2 = 1
f 3 = 2

g 1 = 3
g 2 = 2
g 3 = 1

h 1 = undefined
h 2 = undefined
h 3 = undefined

Exercise 32. The following functions are defined over the sets {1, 2, 3} and
{7, 8, 9, 10}.

f 1 = 7
f 2 = 8
f 3 = 9
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g 7 = 1
g 8 = 2
g 9 = 3
g 10 = 1

h 1 = 3
h 2 = 2
h 3 = 1

Which of the following are surjections?

h o h
f o g
g o f
h o f
g o h

Exercise 33. The functions f, g, and h are defined over the sets {1, 2, 3} and
{4, 5, 6}; which of them are injections?

f 1 = 4
f 2 = 5
f 3 = 5

g 4 = 1
g 5 = 2
g 6 = 3

h 4 = 1
h 5 = 1
h 6 = 1

Exercise 34. Consider the following functions defined over the sets {1, 2, 3}
and {6, 7, 8, 9}; which of them are bijections?

f 6 = 1
f 7 = 2
f 8 = 3
f 9 = 3

g 1 = 3
g 2 = 2
g 3 = 1

h 1 = 6
h 2 = 7
h 3 = 8
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g o g
h o f
f o h

Exercise 35. Which of these functions is a partial function?

function1 True = False
function1 False = function1 False

function2 True = True
function2 False = True

Exercise 36. Using normalForm and map, write a function that takes a list
of pairs and determines whether the list represents a function. You can
assume in this and the following questions that the domain is the set of
first elements of the pairs and the image is the set of second pair elements.

Exercise 37. Using normalForm and map, define a function isInjection so
that it returns True if the argument represents an injective function and
False otherwise.

Exercise 38. Is it possible to write a function that determines whether a list
of pairs represents a surjective function without passing in the codomain
of the function?

Exercise 39. How much information would you need to know about a Haskell
function in order to be able to tell that it is not the identity function?

Exercise 40. Write a function with type

compare
:: (Eq a, Eq b, Eq c, Show a, Show b, Show c)
=> (a -> b)

-> (b -> c) -> (a -> c) -> a -> Bool

that takes three functions f, g, and h and determines whether f o g = h
for some value of type a.

Exercise 41. Is this definition of isEven inductive?

isEven :: Int -> Bool
isEven 0 = True
isEven 1 = False
isEven n = isEven (n-2)

Exercise 42. Is this definition of isOdd inductive?
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isOdd 0 = False
isOdd 1 = True
isOdd n =
if (n < 0) then isOdd (n+2) else isOdd (n-2)

Exercise 43.

A = {1, 2, 3, 4, 5}
B = {6, 7, 8, 9, 10}
D = {7, 8, 9, 10}
C = {a, b, c, d , e}
f :: A → B, f = {(1, 7), (2, 6), (3, 9), (4, 7), (5, 10)}
g = {(6, b), (7, a), (6, d), (8, c), (10, b)}

1. Is f a function? Why or why not?

2. Is f injective (that is, one-to-one)? Why or why not?

3. Is f surjective (that is, onto)? Why or why not

4. Is g a function? Why or why not?

Exercise 44. Let A = 1, 2, . . . ,n. Suppose f :: A → P (A), where P (A) is the
power set of A.

1. Prove that f is not surjective.

2. Suppose g :: X → Y and the set (g .f )(A) is a subset of A (same A
and same f as before), where the dot operator (.) stands for function
composition. State the relationships among A, X , and Y .

3. Can g be injective? Why or why not?

4. Define f and g with the above domains and ranges such that (f .g)
is bijective (again, the dot operator (.) stands for function composi-
tion).



Chapter 12

The AVL Tree Miracle

12.1 How to Find a Folder

Suppose you have a bunch of file folders (physical ones, those manila-coloured
things, not folders on the computer system). Each folder contains some doc-
uments and is identified by a number on its filing tab. Every now and then
someone gives you an identifying number and asks you to retrieve the corre-
sponding folder. How much work is that going to be?

It depends on the number of file folders and the care you take in organizing
them. If you have only a few folders, it doesn’t matter much. You can just
scatter them around on the desktop, and when you’re asked to get one, look
around until you find it. It might be in the first folder you pick up, or the
second, and the worst that can happen is that you will have to look at all of
the folders before you find the one you want. Since there aren’t very many, it
won’t take long.

That’s fine when there are only a few folders, but what if there were hun-
dreds? Then, the frustration in finding the right folder might motivate you
to rethink the arrangement. Scattering the folders around the desktop would
be an unattractive way to keep track of them. You might go out and buy a
four-drawer filing cabinet and arrange the folders in the cabinet in order by
their identifying numbers. When somebody asks you for a particular folder,
you quickly locate the folder by relying on the numbering. Much better, eh?

How much better? Say you have 100 folders and you were using the old
desktop method. Sometimes you would find it on the first go, sometimes the
second, sometimes the 100th. Because the folders are scattered on the desktop
at random, no folder is more likely to be the one you’re looking for than any
other folder, so the average search time would be the average of the numbers
1, 2, . . . 100, which is about 50.

Now, how about the filing-cabinet method? The time it takes you here
depends on how much you take advantage of the numbering, but it turns out

313
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that, no matter how you do it (unless you’re extremely stupid about it), the
typical search time will be much improved over the desktop method.

To get down to specifics, let’s suppose you proceed by looking at the iden-
tifying number and comparing it to the number on the middle file in your
four-drawer cabinet. That would be the first file in the third drawer, assuming
all the drawers contain the same number of files. If the number you’re looking
for is bigger than the one on the middle file, then you know to look in the bot-
tom half of the folders. If it’s smaller, you look in the top half. That is, you’ve
narrowed down the search to half as many candidate folders as you started
with.

As you are no fool, you do the same thing again. That is, you compare
the number on the middle folder among the remaining candidates and, for the
next go, stick with the top half or the bottom half of the candidates, depending
on whether the number you’re looking for is smaller than or bigger than the
number on the middle candidate. At each stage, you eliminate half of the
folders. When you started, the folder you’re looking for might have been any
of the 100 folders. After the first step, you can limit your search to 50 folders.
After the second step, 25 folders. Then 12, 6, 3, and 1. Of course, you might
have found it somewhere along the way, but the worst that can happen is that
you don’t find it until you narrow it down to one folder. That takes six steps,
worst case, so the average case must be at least that good, which is more than
eight times better than the 50-step average required in the desktop method.

Good as that sounds, it gets even better. If you have 1,000 folders, instead
of just 100, the first go knocks it down to 500 folders, then 250, 125, 62, 31, 15,
7, 3, and 1. That is, nine steps, max, for the filing cabinet method, over fifty
times better than the 500-step average for the desktop method. If you have a
million folders, the improvement is even more dramatic. With a million folders,
the filing cabinet method has a twenty-five-thousand-fold advantage over the
desktop method. It gets better and better, the more folders you have.

12.2 The Filing Cabinet Advantage

Let’s work out a formula for the filing-cabinet advantage. If you have n folders,
the most steps you have to make in your search is the number of times you
have to successively halve n to get down to one. That number is the base-two
logarithm of n. Actually, it’s the integer portion of that number. You can
throw the fraction away. The notation �x� means the integer part of x; for
example �3.5� = 3.

Here are the formulas for the typical number of steps in the two methods:
desktop versus filing cabinet, as functions of the number of folders.

D(n) = �n/2� desktop method steps
C(n) = �log2 n� cabinet method steps
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The ratio D(n)/C(n) expresses the advantage of the filing-cabinet method
over the desktop method. As the examples indicated, it gets better and better
as n, the number of folders, gets larger. For a billion folders, there is more than
a ten-million-fold advantage, not to mention the fact that the desktop would
be long buried by that time, and the folders would be scattered all over the
office building.

12.3 The New-File Problem

The filing-cabinet method performs an algorithm known as a binary search.
It’s a simple idea, and probably one that almost anyone would think of, faced
with the problem of organizing a large number of folders for retrieval purposes.
It works amazingly well, as long as the number of folders remains fixed.

However, if, on occasion, a new folder needs to be added to the collection,
it can be a problem. The problem usually doesn’t come up on the first few new
folders. For those, there will be room to squeeze them into the drawers where
they belong. The problem comes up when the number of folders keeps growing.
Eventually, there is no room left in the drawer where a new folder belongs, so
some of the folders in that drawer have to be moved down to another drawer
to make room. What’s worse, the next drawer may also be full. The problem
can cascade further and further along. With a whole office building filled with
cabinets for billions of folders, putting in one new folder can take a lot of heavy
lifting.

In fact, with an office building filled with cabinets, it will be advantageous
to keep the folders in as few cabinets as possible. If they were scattered out,
and many cabinets were nearly empty, there could be a lot of walking involved
to find the appropriate cabinet.

In other words, to keep down the walking, folders must be kept in the
smallest number of drawers possible. This means that the drawers involved
are almost always full, and whenever a new folder comes in, a bunch of folders
have to be moved around to accommodate the new one.

How much moving around? As in the desktop method, it depends on where
the new folder goes. If it goes at the end, no problem. Just put it at the end of
the last non-empty drawer. But, if it goes at the beginning, all of the folders
must be moved down one slot to accommodate the new one. Bummer!

On the average, just as with finding folders using the desktop method, about
half of the folders must be moved to accommodate a new folder. Something
similar happens if a folder needs to be discarded. Again, on the average, about
half of the folders must be moved to keep the folders compressed into the
smallest number of drawers.
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12.4 The AVL Miracle

In a computer, the filing-cabinet method is normally implemented using an
array to store the folders. The identifying numbers on the folders are arranged
in order in the array, and to find a particular identifying number, the software
looks first at the middle element of the array, then at the middle element of the
narrowed ranged resulting from the first comparison of identifying numbers,
and so on – that is, a binary search is performed in the array.

When a new folder comes in for the array, it must be inserted in the place
required by its identifying number (so that the numbers remain in order), and
that means that all of the elements beyond that point must be moved down to
make room. This can be time-consuming if there are, say, billions of folders in
the array.

The same thing happens in deleting a folder from the array. All the folders
beyond the point of deletion must be moved up to eliminate the gap. In either
case, the number of array elements to be moved is, on the average, about half
of the number of folders stored in the array. That’s not good, but what can
be done about it? This is not an easy problem to fix. In fact, it can’t be fixed
with array-based methods.

It turns out that in the 1960s (ancient history in the computing business),
two Russian mathematicians, Adelson-Velski and Landis, figured out a way to
store folders in a tree structure so that finding a folder, adding a new folder,
and removing a folder all require only about log(n) steps, at most, where n is
the number of folders stored in the tree. The structure these mathematicians
invented, together with their insertion and deletion methods, is known as the
AVL tree.

The simple part of the Adelson-Velski/Landis solution is to store the folders
in a tree that facilitates binary search. Except for leaf-nodes, each node in the
tree stores a folder and has a left subtree and a right subtree. (Leaf nodes just
mark the boundaries of the tree. They don’t store folders, and they don’t have
subtrees.) All of the folders in the left subtree have identifying numbers that
are smaller than that of the folder in the node, itself, and all of the folders in
the right subtree have identifying numbers that are larger. To find a folder,
look at the root. If the folder stored at the root has the sought-for identifying
number, deliver that folder. If not, look at the left subtree if the sought-for
identifying number is smaller than the one in the root, and look in the right
subtree if it is larger.

If a folder with the sought-for identifying number is in the tree, it will be
found. If not, a leaf-node will be encountered, in which case deliver a signal
indicating that the required folder is missing.

That’s the simple part. The hard part has to do with insertion and deletion.
The number of steps in the search depends on where the folder occurs in the
tree, but at worst, the number of steps cannot exceed the number of levels
in the tree. Nodes in a tree have subtrees, and the roots of subtrees have
subtrees, and so on. Eventually, the desired folder is encountered, or a leaf is
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encountered, and the search cannot continue. The maximum number of stages
in this search, for all possible search paths in the tree, is known as the height
of the tree. AVL trees maintain a balance among the heights of subtrees, at
all levels, as nodes are inserted and deleted. By maintaining balance, the AVL
tree preserves a high ratio between number of folders it contains and the height
of the tree.

In fact, the height of an AVL tree is approximately the base-2 logarithm
of the number of folders it contains. That means every search will terminate
within log2 n steps, where n is the number of folders stored in the tree.

If you want to get a feeling for just how ingenious the AVL solution is, try
to find a way to insert and delete folders into a tree that maintains order (left
subtrees have folders with smaller identifying numbers, right subtrees larger)
and balance (left subtrees have about the same number of nodes as right sub-
trees, at all levels). To match the effectiveness of AVL trees, your method will
have to be able to insert or delete a folder in about log(n) steps, where n is the
number of folders stored in the tree. After a few hours work, you’ll see why we
call this method the “AVL miracle”.

12.5 Search Trees and Occurrence of Keys

It’s a long road from here to the complete AVL solution. As usual, the road
starts with formulas and equations that make the ideas amenable to math-
ematical reasoning. As a first step, we define a formal representation of a
tree. The AVL method will be described in terms of a Haskell data type called
SearchTree.

To avoid unnecessary details, the definition of the SearchTree represents
folder information generically. The folder contains any type of data, and there
is a different type of search tree for each possible type of folder. The identifying
number for a folder is an integer. Each node in the tree is either a leaf node
(constructed by Nub) or an interior node (constructed by Cel) containing an
identifying number, a folder, and two subtrees.

data SearchTree d = Nub |
Cel Integer d (SearchTree d) (SearchTree d)

Figure 12.1 shows a formula for a search tree in which the folders are strings.
The figure also displays a conventional diagram of the tree the formula repre-
sents. The formula is the formal representation of the tree, and the diagram
is an informal presentation. This chapter will rely extensively on diagrams to
illustrate ideas expressed formally in terms of formulas. To understand the
chapter, you will need to develop an ability to convert between diagrams and
formulas.

So far, most of the terminology has been cast in terms of the original moti-
vating example of identifying numbers and folders of information. In the usual
search tree terminology, the identifying number on which the search is based
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Cel 5120 "PDA Cam"

(Cel 9605 "Palm Pilot" Nub Nub)

(Cel 1143 "Ink Jet" Nub Nub)

5120

1143 9605

"PDA Cam"

"Ink Jet" "Palm Pilot"

Figure 12.1: Search Tree and Corresponding Diagram

is called the key, and the information associated with the key is called, simply,
the data. Most of the following discussion will describe trees in these more
commonly used terms.

Formal descriptions of properties of search trees and operations on them
depend on subtrees, proper subtrees, concepts of equality between trees, and the
occurrence of keys in trees. The following equations provide formal definitions
of these predicates. Because the concepts are similar to the ideas of subset and
being an element of a set, the usual symbols for those concepts are re-used here
in this new context.

The definition of search-tree equality may seem strange because it ignores
the data stored in the node. This is because the key is presumed to uniquely
identify the data, so if two keys are the same, the data associated with them
must be the same. There is no need to compare the data. This provides a
subtle advantage: the data may be of a kind for which the equality operator
is not defined. For example, it may be an aggregate including some functions,
for which the equality operator cannot be defined.

tree equality

(==) :: SearchTree d → SearchTree d → Bool
Nub == Nub = True {N == N}
(Cel k d lf rt) == Nub = False {C == N}
Nub == (Cel k d lf rt) = False {N == C}
(Cel x a xl xr) == (Cel y b yl yr)

= (x == y) ∧ (xl == yl) ∧ (xr == yr) {C == C}
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subtree

(⊆) :: SearchTree d → SearchTree d → Bool
Nub ⊆ s = True {N ⊆}
(Cel k d lf rt) ⊆ Nub = False {C ⊆ N}
(Cel x a xl xr) ⊆ (Cel y b yl yr)

= ((Cel x a xl xr) == (Cel y b yl yr)) ∨ {C ⊆ C}
((Cel x a xl xr) ⊆ yl) ∨ ((Cel x a xl xr) ⊆ yr)

proper subtree

(⊂) :: SearchTree d → SearchTree d → Bool
s ⊂ Nub = False {⊂ N}
s ⊂ (Cel k d lf rt) = (s ⊆ lf) ∨ (s ⊆ rt) {⊂ C}

key occurs in tree

(∈) :: Integer → SearchTree d → Bool
k ∈ Nub = False {∈ N}
k ∈ (Cel x a xl xr) = (k == x) ∨ (k ∈ xl) ∨ (k ∈ xr) {∈ C}

12.5.1 Ordered Search Trees and Tree Induction

A search tree is ordered if the key in each non-leaf node is greater than all the
keys that occur in the left subtree of the node and is less than all the keys that
occur in the right subtree. A leaf is ordered by default. That is, the predicate
ordered, on the domain of discourse consisting of all search trees, satisfies the
following equations.

ordered search tree

ordered (Nub) = True {ord N}
ordered (Cel k d lf rt)

= (∀x ∈ lf. x < k) ∧ (∀y ∈ rt. y > k) ∧ {ord C}
ordered (lf) ∧ ordered (rt)

From the definition of the predicate ordered, it’s not a big step to guess that
an ordered search tree cannot contain duplicate keys. However, saying exactly
what that means turns out to be tricky. One approach is to define a function
that extracts from a search tree a sequence containing all the data elements
in the tree that are associated with a given key, and then to prove that the
sequence contains exactly one element if the key occurs in an ordered tree. If
the key doesn’t occur in the tree, the sequence is empty.

sequence of matching keys
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dataElems :: SearchTree d -> Integer -> [d]
dataElems Nub x = [] {dataElems N}
dataElems (Cel k d lf rt) x {dataElems C}
= if k == x

then (dataElems lf x) ++ [d] ++ (dataElems rt x)
else (dataElems lf x) ++ (dataElems rt x)

Theorem 81. (unique keys, part 1).
∀s.(ordered (s) ∧ k ∈ s) → (length (dataElems s k) == 1)

Theorem 82. (unique keys, part 2).
∀s.(ordered (s) ∧ k �∈ s) → ((dataElems s k) == [])

We will prove Theorem 82 first, and we will use a new form of induction
that we will call tree induction.

Principle of Tree Induction.

(∀ t. (∀ s ⊂ t. P (s)) → P (t)) → (∀t. P (t))

Note: The domain of discourse of the for-alls is the set of all search trees.
The principle of induction derives from basic elements of set theory, and all

forms of inductive proof are equivalent when taken back to this basic frame-
work. In practice, the form of induction used in a particular proof depends on
the domain of discourse. Verifying the equivalence of various inductive forms
to ordinary, mathematical induction on the natural numbers would require a
major digression into details of set theory.

Using the principle of tree induction, we can prove that a predicate is true
for every search tree if we can prove a certain implication. The implication is
this: if the predicate is true for every proper subtree of a particular, chosen
tree, then it must also be true for the chosen tree. The implication must be
proved for an arbitrarily chosen tree, but once this implication is proved, the
principle of tree induction delivers the conclusion that the predicate is true for
every search tree.

The statement of the principle of tree induction is identical to the statement
of strong induction for the domain of natural numbers, except that where the
relation “less than” appears in the principle of strong induction, the relation
“proper subset” appears in the principle of tree induction. The two forms of
induction share the implicit requirement that the predicate must be proved
directly for the simplest element.

In the case of strong induction, the simplest element is zero. There are
no natural numbers smaller than zero. Therefore, when the chosen element is
zero, the universe of discourse for the for-all in the hypothesis of the implication
(∀ s < 0. P (s)) is empty. A for-all over an empty universe of discourse is true
by default, so for the case when the chosen element is zero, the implication to
be proved is (True → P (0)). The hypothesis in this implication can be of no
help in proving its conclusion.
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The same is true for tree induction. When the chosen element is a Nub,
the universe of discourse for the hypothesis of the implication to be proved
is empty. That is, we must prove ((∀ s ⊂ Nub. P (s)) → P (Nub)), which is
the same as (True → P (Nub)). The hypothesis of this implication (namely,
“true”) cannot help in arriving at its conclusion (namely, P (Nub)). We will use
tree induction to prove many properties of software that operates on search
trees, and a few properties of the search trees themselves. For starters, we use
tree induction to prove Theorem 82.

Proof. of Theorem 82
(unique keys, part 2):
∀s.(ordered (s) ∧ k �∈ s) → ((dataElems s k) == [])

Proof: by tree induction.

Base Case.

(ordered (Nub) ∧ k �∈ Nub) → ((dataElems Nub k) == [])
= {ord N, ∈ N}

(False ∧ False) → ((dataElems Nub k) == [])
= {∧ idem}

False → ((dataElems Nub k) == [])
= {False → any = True}

True

Inductive Case.

First, we work with just the hypothesis of the implication we’re trying to
prove.

(ordered (Cel x a lf rt) ∧ k �∈ (Cel x a lf rt))
= {∈ C}

(ordered (Cel x a lf rt) ∧ ¬(x = k ∨ k ∈ lf ∨ k ∈ rt))
= {DM}

(ordered (Cel x a lf rt) ∧ (x �= k) ∧ (k �∈ lf) ∨ (k �∈ rt))

We are trying to prove that when the above formula is true, the formula in
the conclusion of the theorem is also true. That is, we want to prove that the
dataElems function delivers an empty sequence in this case.

dataElems (Cel x a lf rt) k
= {dataElems C, x �= k}

(dataElems lf k) ++ (dataElems rt k)
= {ord C, k �∈ lf, induction hypothesis, applied twice}

[] ++ []
= {++ []}

[]
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The induction step in the proof occurred when we observed that with respect
to the formula (dataElems lf k), the hypotheses of the theorem are true. That
is, the tree lf is ordered (by the definition of ordered, since lf is a subtree of
an ordered tree) and the key k does not occur in that tree. As lf is a proper
subtree of the tree we started with, the principle of induction allows us to
assume that the theorem is true for the tree lf. (Remember, induction doesn’t
require a direct proof in the inductive case. It only requires that you prove
an implication whose hypothesis is that the theorem is true for every proper
subtree of the one you started with.) In this case, we apply the induction
hypothesis twice: once for the left subtree and again for the right subtree.

Now, what about Theorem 81? Induction also provides the mechanism for
its proof.

Proof. of Theorem 81 (unique keys, part 1), by tree induction.

Base Case.

(ordered (Nub) ∧ k ∈ Nub) → (length (dataElems Nub k) == 1)
= {∈ N}

(ordered (Nub) ∧ False) → (length (dataElems Nub k) == 1)
= {∧ null}

False → (length (dataElems Nub k) == 1)
= {False → any = True}

True

Inductive Case.

First, we work with just the hypothesis of the implication we’re trying to
prove.

(ordered (Cel x a lf rt) ∧ k ∈ (Cel x a lf rt))
= {∈ C}

(ordered (Cel x a lf rt) ∧ (x = k ∨ k ∈ lf ∨ k ∈ rt))
= {∧ over ∨}

(ordered (Cel x a lf rt) ∧ (x = k)) ∨
(ordered (Cel x a lf rt) ∧ k ∈ lf) ∨
(ordered (Cel x a lf rt) ∧ k ∈ rt)

We are trying to prove that when the above formula is true, the formula
in the conclusion of the theorem is also true. That is, we want to prove
that the dataElems function delivers a sequence with exactly one element in
this case. The implication we are trying to verify has the following form:
(a ∨ b ∨ c) → d, where d is the conclusion of the theorem (that is,
d = (length (dataElems s k) == 1)), and a, b, and c are the terms in the
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above formula. For example, a = (ordered (Cel x a lf rt) ∧ (x = k)).
Using the Boolean algebra of propositions, one can verify that

((a ∨ b ∨ c) → d) = ((a → d) ∧ (b → d) ∧ (c → d))

That is, the formula ((a ∨ b ∨ c) → d) can be verified by proving that
each of the terms, (a → d), (b → d), and (c → d), is true.

Proof of (a → d):

(ordered (Cel x a lf rt) ∧ (x = k)) →

(length (dataElems (Cel x a lf rt) k) == 1)

Again, we work with the hypothesis of the implication first. Since the tree
(Cel x a lf rt) is ordered, x �∈ lf and x �∈ rt. (All the keys in the left subtree
must be smaller than x, and all those in the right subtree must be larger than
x. Because x = k, we conclude that k �∈ lf and k �∈ rt.) These observations
take us to the conclusion of the theorem by the following logic.

length (dataElems (Cel x a lf rt) k)
= {dataElems C, x = k}

length ((dataElems lf k) ++ [a] ++ (dataElems rt k))
= {Thm 82, k �∈ lf}

length ([] ++[a] ++ (dataElems rt k))
= {Thm 82, k �∈ rt}

length ([] ++ [a] ++ [])
= {++.1,++[]}

length ([a])
= {Thm len}

1

It turns out that the induction hypothesis was not needed for the proof of
(a → d). It will be needed for the other two proofs, however.

Proof of (b → d):

(ordered (Cel x a lf rt) ∧ k ∈ lf) →
(length (dataElems (Cel x a lf rt) k) == 1)

Again, we work with the hypothesis of the implication first.



324 CHAPTER 12. THE AVL TREE MIRACLE

(ordered (Cel x a lf rt) ∧ k ∈ lf)
→ {definition of ordered}

(ordered (Cel x a lf rt) ∧ k ∈ lf ∧ k < x)
→ {def ord , since k < x → k �∈ rt}

(ordered (Cel x a lf rt) ∧ k ∈ lf ∧ k < x ∧ k �∈ rt)
→ {dataElems C, k < x}

((dataElems (Cel x a lf rt) k) =
(dataElems lf k) ++ (dataElems rt k))

∧ (ordered (Cel x a lf rt) ∧ k ∈ lf ∧ k �∈ rt)
→ {Thm 82}

((dataElems (Cel x a lf rt) k) = (dataElems lf k) ++ [])
∧ (ordered (Cel x a lf rt) ∧ k ∈ lf ∧ k �∈ rt)

→ {++ []}
((dataElems (Cel x a lf rt) k) = (dataElems lf k))
∧ (ordered (Cel x a lf rt) ∧ k ∈ lf ∧ k �∈ rt)

Now, because lf is a subtree of (Cel x a lf rt), k ∈ lf, and lf is ordered,
the induction hypothesis leads to the desired conclusion.

length (dataElems (Cel x a lf rt) k)
= length (dataElems lf k)

= 1 {induction hypothesis}
The proof of (c → d) is similar to the proof of (b → d), except that the

induction goes down the right side of the tree instead of the left.

12.5.2 Retrieving Data from a Search Tree

According to Theorem 81, a key that occurs in an ordered search tree occurs
exactly once. It occurs as one of the parameters of a Cel constructor, and that
constructor will also have a data item as a parameter. Retrieving data from an
ordered search tree amounts to finding the Cel constructor where a specified
key occurs, then delivering the data item from that same Cel constructor.

The retrieval operation needs a way to signal whether or not the specified
key is present in the tree. In our implementation, this will be done using the
Maybe data type, which has two constructors: Just and Nothing. The Just
constructor will be used to deliver the data item associated with the given key
in the tree. For example, (Just d) delivers the data item d.

If the key is not present, the Nothing constructor will be used to signal that
it is missing. So, if the retrieval function delivers Nothing, the specified key is
not present in the tree.

getItem :: SearchTree d -> Integer -> Maybe d
getItem (Cel k d lf rt) x =
if x < k

then (getItem lf x)
else if x > k then (getItem rt x)



12.5. SEARCH TREES AND OCCURRENCE OF KEYS 325

else (Just d)
getItem Nub x = Nothing

We can conclude that getItem works properly if we can prove that whenever
the key specified in its second argument is present in the tree given in its first
argument, then getItem delivers the data item associated with that key and
that if the key is not present, getItem delivers Nothing. We will use tree
induction to prove both of these facts.

Theorem 83. ∀s.(ordered (s) ∧ k ∈ s) → ((getItem s k) = (Just d)),
where d is the data item parameter of the Cel constructor in s for which k is
the key parameter.

Proof.

(k ∈ s) → (s = (Cel x a lf rt)) ∧ ((k = x) ∨ k ∈ lf ∨ k ∈ rt) {∈ C}

Now we are in the same situation as in the proof of Theorem 81 (not sur-
prising, as the hypotheses of Theorem 83 are the same as those of Theorem 81).
We want to prove an implication whose hypothesis is a three-way disjunction.
We follow the same strategy: separate the implication into a conjunction of
three implications, and prove each of them separately.

1. Proof of

(ordered (Cel x a lf rt) ∧ k ∈ (Cel x a lf rt) ∧ (k = x)) →
((getItem (Cel x a lf rt) k) = (Just d))

where d is the data item parameter of the Cel constructor in the tree
(Cel x a lf rt) for which k is the key parameter.

(getItem (Cel x a lf rt) k
= {k = x}

(getItem (Cel k a lf rt) k
= {getItem C}

(Just a)

Since a is the data item parameter of the Cel constructor in the tree
(Cel x a lf rt) for which k = x is the key parameter, the desired
conclusion has been reached.

2. Proof of

(ordered (Cel x a lf rt) ∧ k ∈ (Cel x a lf rt) ∧ (k ∈ lf)) →
((getItem (Cel x a lf rt) k) = (Just d))

where d is the data item parameter of the Cel constructor in the tree
(Cel x a lf rt) for which k is the key parameter.



326 CHAPTER 12. THE AVL TREE MIRACLE

(ordered (Cel x a lf rt) ∧ k ∈ (Cel x a lf rt) ∧ (k ∈ lf))
= {def ordered}

(ordered (Cel x a lf rt) ∧ k ∈ (Cel x a lf rt) ∧ (k < x))
→ {getItem C}

((getItem (Cel x a lf rt) k) = (getItem lf k))
= {induction hypothesis}

((getItem (Cel x a lf rt) k) = (Just d))
where d is the data item parameter of the Cel constructor in the tree
(Cel x a lf rt) for which k is the key parameter.

3. The proof of the third implication required by the three-part disjunction
is like this last proof, except that the induction goes down the right-hand
side of the tree instead of the left.

12.5.3 Search Time in the Equational Model

We can use the equations for getItem as a prescription for computation. To
compute the value represented by a formula involving getItem, we simply
scan the formula for subformulas that match the left-hand side of one of the
equations. When we find a match, we replace the subformula by the right-hand
side of the equation (with appropriate substitutions for the parameters), and
we continue this procedure until no subformulas match the left-hand side of
either equation. This procedure of repeated substitution for subformulas is the
equational model of computation.

If we want to figure out how many computational steps the equational model
of computation requires to deliver the value of a formula, we count the process
of matching a formula with an equation as a single computational step. We
also count any use of an intrinsic operator, such as logical and (∧), if-then-else
selection, the Just and Nothing constructors, and the like, as computational
steps.

Consider the computation of the formula (getItem s k). At each step, the
equations either deliver the value directly, requiring only the computational
step of matching the formula with the second equation (this occurs if s is Nub),
or the formula is replaced by an if-then-else selection. In the latter case, the
process of matching the formula with the first equation counts as one compu-
tational step, and the if-then-else selection counts as another computational
step.

In the case in which the first equation is the one that matches, the tree s
must have the form (Cel x a lf rt), and the matching subformula is replaced
by the if-then-else selection on the right-hand side of the equation. Where the
computation goes after this substitution depends on the result of the test in the
if-then-else selection. If k, the key specified in (getItem s k), is less than x (the
key in (Cel x a lf rt), which constructs the tree s), the formula (getItem s k)
is replaced by (getItem lf k), and the computation proceeds from there by
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again figuring out whether that formula matches the first equation or the second
equation. So, the number of computational steps will be one for matching the
formula (getItem s k) to the first equation, plus one step for the if-then-else
selection, plus the number of steps it takes to compute (getItem lf k).

On the other hand, if the tree s has the form (Cel x a lf rt) and k is greater
than x, then the computation requires one step to match the first equation, plus
one step for the if-then-else selection that finds out that (k < x) is false, plus
one step for the if-then else selection that finds out that (k > x) is true, plus
the number of steps required to compute (getItem rt k).

Finally, if k is the same as x, then the computation requires one step to
match the first equation, plus one for the if-then-else selection that finds out
that (k < x) is false, plus one for the if-then else selection that finds out that
(k > x) is false, plus one to construct the result (Just a).

If we let the symbol gSteps (s, k) stand for the number of computational
steps required to compute the value represented by the formula (getItem s k),
the above reasoning leads us to the following numerical relationships:

gSteps (Nub, k) = 1 {gSteps N}
gSteps (Cel x a lf rt, k) ≤ {gSteps C}
max (gSteps (lf, k) + 2, gSteps (rt, k) + 3, 4)

The important point to notice is either the computation is complete in one
step (if the tree is Nub), or in four steps (if k == x), or in no more than three
more than the number of steps required to search for k in a proper subtree
of s. Since the proper subtree is “shorter” than the tree the search started
with, the number of steps remaining in the computation is reduced at each
stage. Therefore, the total number of steps will be a sum with one term for
each stage in the computation, and the number of stages in the computation
will not exceed the “height” of the tree.

To turn this informal idea into a sound mathematical analysis, we need to
say what we mean by the height of a tree. The idea is that the height of a tree
is the longest route from the root through the subtrees to a Nub. That means
that the height of a tree of the form (Cel k d lf rt) is one more than the
height of the taller of the two subtrees, lf and rt. Here are some equations
the height measurement satisfies:

height :: SearchTree d -> Integer
height Nub = 0 {height N}
height(Cel kd lf rt) =

1 + (max (height lf) (height rt)) {height C}

From these equations, it follows that the height of every tree is non-negative.
This fact can be guessed from the observation that height is computed by
adding non-negative numbers to zero and can be proved by tree induction.
In the same vein, it follows that gSteps (s) is non-negative. We are going to
imagine that we have carried out a proof of Theorem 84.
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Theorem 84. ∀s. height (s) ≥ 0
We reasoned informally that the number of computation steps required to

retrieve a data item from a tree is a sum whose number of terms is the height
of the tree. It turns out that each of the terms in that sum is about the same
size. Therefore, the number of steps in retrieval is proportional to the height
of the tree. Theorem 85 makes this notion precise. We will use tree induction
to prove it.

Theorem 85. ∀s. ∀k. gSteps (s, k) ≤ 4 ∗ (height (s) + 1)

Proof. By tree induction.
Base Case.

gSteps (Nub, k)
= {gSteps N}

1
≤ {arithmetic}

4 ∗ (0 + 1)
= {height N}

4 ∗ (height (Nub) + 1)

Inductive Case.

gSteps (Cel x a lf rt, k)
≤ {gSteps C}

max (2 + gSteps (lf, k), 3 + gSteps (rt, k), 4)
≤ {induction hypothesis, applied twice}

max (4 ∗ (height (lf) + 1) + 2, 4 ∗ (height (rt) + 1) + 3, 4)
≤ {arithmetic}

max (4 ∗ (height (lf) + 1) + 4, 4 ∗ (height (rt) + 1) + 4, 4)
≤ {Thm 84, arithmetic}

max (4 ∗ (height (lf) + 1) + 4, 4 ∗ (height (rt) + 1) + 4)
= {arithmetic}

4 ∗ max ((height (lf) + 1) + 1, (height (rt) + 1) + 1)
= {arithmetic}

4 ∗ ((max (height (lf), height (rt)) + 1) + 1)
= {arithmetic}

4 ∗ ((1 + max (height (lf), height (rt))) + 1)
= {height C}

4 ∗ (height (Cel x a lf rt) + 1)

Theorem 85 guarantees that retrieval time will be short, even for trees that
contain a very large number of data items, as long as the tree has a compact
shape (not too tall, compared to the number of data items in the tree). In
the most compact trees, the number of data items doubles every time the
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height increases by one. For example, a tree of height one must have the form
(Cel k d Nub Nub). This tree contains exactly one data item. We can add data
items to this tree by replacing its two subtrees by trees that contain a data
item. The new tree would have height two and contain three data items. It
would look like this:

(Cel k d (Cel x a Nub Nub) (Cel y b Nub Nub)).

Now the two subtrees, (Cel x a Nub Nub) and (Cel y b Nub Nub) can be
modified in the same way to build a tree of height three with seven data items.
It is possible to prove, by ordinary mathematical induction, that a tree of height
n constructed by this procedure contains 2n − 1 data items.

Trees containing a number of data items falling between the gaps in the
sequence 1, 3, 7, . . . 2n − 1, . . . can be constructed by leaving out some of the
data items on the most interior level.

Following this pattern, it is possible to put n data items in a tree of height
log2(n). For trees constructed in a shape like this, the retrieval time required
by the getItem function becomes relatively shorter (relative, that is, to the
number of data items in the tree) as the number of data items increases. It is
this fact that makes it possible for retrieval of data in trees to be way faster
than retrieval of unordered data from array-like structures, such as rows of
filing cabinets. For a million items in a compact tree, retrieval, according to
Theorem 85, takes no more than 4 ∗ (log2 1, 000, 000 + 1), which is about
80 steps. Compare this to about 500,000 steps, on the average, to retrieve an
item from an unordered array.

On the other hand, retrieval from data arranged in order in an array can be
as fast as retrieval from a compact tree. However, the number of steps required
to insert or delete an item from an ordered array is, on the average, proportional
to the number of items stored in the array. If there are a million items in
the array, arranged in increasing order, inserting a new one in the middle
will require, on the average, moving the half-a-million-or-so items beyond the
insertion point. There is room for lots of improvement in the average speed
of insertion. It turns out that insertion and deletion in a search tree can be
accomplished in an amount of time that increases at the same rate as the height
of the tree.

In other words, insertion and deletion in search trees can be done as ef-
ficiently as retrieval. It’s not easy to figure out how to do this. The rest of
this chapter is devoted to explaining the AVL method of efficient insertion and
deletion in search trees.

12.6 Balanced Trees

Retrieval, insertion, and deletion in a search tree can be done in an amount of
time proportional to the height of the tree. Therefore, it is important to keep
a lid on height as items are added or deleted from the tree. The height of a
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Figure 12.2: Diagram of Height Balanced Search Tree

search tree must grow at least as fast as the logarithm of the number of data
items in the tree (another fact that can be proved by induction). Height will
grow faster than the logarithm of the number of data items unless the two sides
of the tree, left and right, remain balanced as items are inserted.

When we discussed constructing a tree whose height was proportional to
the logarithm of the number of data items it contained, we were careful, at
each stage, to put the same number of items in the left-hand side of the tree
as in the right-hand side. This is known as node balancing. It is the most
straightforward way to maintain enough balance to keep a tight lid on height as
nodes are inserted, but it turns out to be expensive to maintain node-balancing
in trees as items are inserted.

Another form of balancing, known as height balancing, is cheaper to accom-
plish. Fortunately, height-balanced trees also have the property that height
grows at the same rate as the logarithm of the number of data items. This
makes it possible to carry out retrieval, insertion, and deletion efficiently. A
tree is height balanced if, at all levels, the height of the left subtree is either
the same as the height of the right subtree, or taller by one, or shorter by one.
This notion is made precise by the following definition.

balanced (s) = {bal}
∀ (Cel k d lf rt) ⊆ s. | height (lf) − height (rt) | ≤ 1

Figure 12.2 displays a height balanced tree, and Figure 12.3 displays a tree
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that is not height balanced. Neither tree is node balanced.
Our goal is to define an insertion operator that preserves order, balance,

and the items in the tree. That is, we want the insertion operator, for which
we use the symbol ( :̂), to satisfy the following properties.

∀s. ∀k. ∀d. ordered (s) → ordered ((k, d) :̂ s) { :̂ ord}
∀s. ∀k. ∀d. balanced (s) → balanced ((k, d) :̂ s) { :̂ bal}
∀s. ∀k. ∀d. ∀x. (x ∈ s) → (x ∈ ((k, d) :̂ s)) { :̂ old ∈}
∀s. ∀k. ∀d. k ∈ ((k, d) :̂ s) { :̂ new ∈}
∀s. ∀k. ∀d. ∀x. ((x �∈ s) ∧ (x �= k)) → (x �∈ ((k, d) :̂ s)) { :̂�∈}

Furthermore, the number of steps required to carry out an insertion must
grow in the same proportion as the height of the tree.

It is not difficult to find ways to insert new items into small search trees,
while maintaining order and balance. To preserve order, simply find the place
at the most interior part of the tree where the new key goes, moving left or right
down the tree according to whether the new key is smaller or larger than the key
being considered. When you arrive at a Nub, replace it with a Cel- constructed
tree containing the new key, its associated data, and two Nub subtrees. This
automatically preserves order. If you’re lucky, it may also preserve balance.
However, the replacement subtree has height 1, while the subtree it replaced
(a Nub tree) had height zero. If this happens to occur at a point where the tree
was already tall, this can make it too tall at that point. If this happens, you
need to figure out a way to rearrange the tree to get it back into balance.

The following example starts with a tree containing one item, then inserts
three new items, one at a time, producing a sequence of ordered and balanced
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trees, and, finally delivering an ordered and balanced tree with four items in it.
(It will aid your understanding of the insertion process if you draw diagrams
similar to Figure 12.2 for the trees denoted by the formulas in the example.
Notice that each tree is also height balanced is ordered with respect the numeric
key.)

(1143, "InkJet") ˆ: (Cel 7268 "ZipDrive" Nub Nub)

⇒
(4403, "HotSync") ˆ: (Cell 1143 "InkJet" Nub

(Cel 7268 "ZipDrive" Nub Nub))

⇒
(2088, "LaserJet") ˆ:

(4403 "HotSync" (Cel 1143 "InkJet" Nub Nub)
(Cel 7268 "ZipDrive" Nub Nub))

⇒
(Cel 2088 "LaserJet"

(Cel 1143 "InkJet" Nub Nub)
(Cel 4403 "HotSync" Nub (Cel 7268 "ZipDrive" Nub Nub)))

Although it is not difficult to find a way to rearrange a small tree to get
it back into balance when the insertion causes it to go out of balance, finding
a way to rebalance a large tree can be tricky. We are going to consider four
special cases of the general problem. Then, we are going to build a solution
to the full problem based on these four special cases. Two of the special cases
admit a straightforward solution to the rebalancing problem. The other two
require an ingenious insight. We’ll start with the easy cases.

12.6.1 Rebalancing in the Easy Cases

The first point to notice is that if we start with a tree that is ordered and
balanced, then insert a new key in such a way that order is preserved, the
worst that can happen with respect to balance is that the height of the subtree
where the insertion occurred is two greater than the height of the other subtree.

Let’s first consider the case where the left subtree is too tall. Since the
height of the left subtree is two more than the height of the right subtree, the
height of the left subtree must be at least two. Therefore, it cannot be the Nub
tree. It must be Cel-constructed.

That is, in this special case, the out-of-balance tree is Cel-constructed, its
right subtree is an ordered and balanced tree of height n, and its left subtree is
a Cel-constructed tree of height n + 2. Additionally, we assume that this left
subtree is ordered, that its left subtree is an ordered, balanced tree of height



12.6. BALANCED TREES 333

x

z

zR

n+1

n

xR

n+1

xL

x < keys < z
keys < x

keys > z

n
 
+
 
3

n

easy right
rotation

x

z

xL

n+1 xR
n

n+1

zR
n

keys < x

x < keys < z

keys > z

n
 
+
 
3

n
 
+
 
1

n
 
+
 
2

Cel z d (Cel x a xL xR) zR

Cel x a xL (Cel z d xR zR)
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n + 2, and that its right subtree is an ordered, balanced tree whose height is
either n or n + 1. We call a tree configured in this way “outside left-heavy”
because its tallest part is on the left side of the left subtree.

It turns out that a tree with these properties can be transformed into an
ordered, balanced tree by performing what we call an easy-right rotation. This
is accomplished by constructing a new tree whose root contains the key/data
pair from the left subtree of the tree we started with and whose right subtree
contains the key/data pair that was at the root.

Of course, we have to figure out what to do with the right subtree of the
original tree and also what to do with the left and right subtrees of the left
subtree of the original tree. These we place in the only slots that will preserve
order, and it just happens that this rearrangement restores balance. In other
words, we get lucky.

Figure 12.4 diagrams the easy-right rotation. In the diagram, triangles
represent ordered, balanced trees that remain unchanged in the rotated tree.
A label placed near the top of the triangle is simply used to identify the subtree.
Numeric formulas written near the bottom of the triangle are potential heights
of the subtree. For example, if the numeric formulas n and n + 1 appear near
the bottom of the triangle, the subtree may have height n, or it may have
height n + 1, but it cannot have any other height. Heights for portions of the
tree are also sketched in near the sides of the tree diagrams.

All keys in the tree represented by a triangle will be in the range indicated on
the diagram. The keys associated with particular Cel constructors are named
in circles. For example, if the name x appears in a circle in the diagram, it
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stands for the value of the key in the Cel constructor corresponding to the part
of the tree represented by that part of the diagram. The formula below each
tree diagram is the formal representation of the tree. Using the diagram as a
guide, we can write an equation that represents easy-right rotation in a formal
way. This will facilitate proving mathematically that the rotation preserves
order and restores balance.

easyR (Cel z d (Cel x a xL xR) zR) = (Cel x a xL (Cel z d xR zR))

We want to prove that if the original tree is ordered, then the rotated tree
is also ordered. We also want to prove that if the trees represented by the
triangles are balanced and if the original tree is outside left-heavy, then the
rotated tree is balanced. Finally, we want to prove that keys are conserved
in the process in the sense that the rotation neither adds new keys that were
not in the original tree nor loses any of the keys from the original tree. This
amounts to four theorems. Some of the proofs are similar to others, so we will
do two of them, then assume that we could succeed in carrying out the other
two proofs if we made the attempt.

Here is a formal definition of what it means to be outside left-heavy:
outLeft (Cel z d (Cel x a xL xR) zR) =

(height (xL) ≥ height (xR)) ∧ (height (xL) ≤ height (xR) + 1) ∧
(height (xR) ≥ height (zR)) ∧ (height (xL) = height (zR) + 1)

Theorem 86. (easyR preserves order)
∀z. ∀d. ∀x. ∀a. ∀xL. ∀xR. ∀zR.

ordered (Cel z d (Cel x a xL xR) zR) →
ordered (easyR (Cel z d (Cel x a xL xR) zR))

Theorem 87. (easyR restores balance to outside left-heavy trees)
∀z. ∀d. ∀x. ∀a. ∀xL. ∀xR. ∀zR.
(balanced (xL) ∧ balanced (xR) ∧ balanced (zR)

∧ outLeft (Cel z d (Cel x a xL xR) zR))
→ balanced (easyR (Cel z d (Cel x a xL xR) zR))

Proof. One way to prove that an implication formula is true is to prove that
its conclusion is true whenever its hypothesis is. Therefore, it will be sufficient
to prove that the formula

balanced (easyR (Cel z d (Cel x a xL xR) zR))

is true whenever the formulas

(balanced (xL) ∧ balanced (xR) ∧ balanced (zR))

and

outLeft (Cel z d (Cel x a xL xR) zR)
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are both true.

balanced (easyR (Cel z d (Cel x a xL xR) zR))
= {easyR}

balanced (Cel x a xL (Cel z d xR zR))
= {bal}

| height (xL) − height (Cel z d xR zR) | ≤ 1 ∧
balanced (Cel z d xR zR)
∧ balanced (xL) ∧ balanced (xR) ∧ balanced (zR)

The last three terms in this formula are part of the hypothesis. So, that
part is true. We now only need to verify that the other terms are also true.
Since we know that xR and zR are balanced, the term balanced (Cel z d xR zR)
is true if xR and zR differ in height by one or less.

This fact can be deduced from the outLeft (Cel z d (Cel x a xL xR) zR)
hypothesis because of the constraints it puts on the heights of the various
subtrees. In addition this same outLeft hypothesis implies that the following
equation is true:

max (height (xR), height (zR)) = height (xR) {∗}
Using this equation, we can derive another one as follows.

height (Cel z d xR zR)
= {height C}

1 + max (height (xR), height (zR))
= {∗}

1 + height (xR)

That is, the following equation is true.

height (Cel z d xR zR) = height (xR) + 1 {∗∗}
This equation allows us to complete the proof of Theorem 87 by verifying

that the first term in the formula is true.

| height (xL) − height (Cel z d xR zR) |
= {∗∗}

| height (xL) − (height (xR) + 1) |
≤ {outLeft (Cel z d (Cel x a xL xR) zR)}

1

Theorem 88. (easyR loses no keys)
∀k. ∀z. ∀d. ∀x. ∀a. ∀xL. ∀xR. ∀zR.
k ∈ (Cel z d (Cel x a xL xR) zR) → k ∈ easyR (Cel z d (Cel x a xL xR) zR)
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Proof.

k ∈ (Cel z d (Cel x a xL xR) zR)
= {∈ C}

(k = z) ∨ (k = x) ∨ (k ∈ xL) ∨ (k ∈ xR) ∨ (k ∈ zR)
= {∈ C}

k ∈ (Cel x a xL (Cel z d xR zR))
= {easyR}

k ∈ easyR (Cel z d (Cel x a xL xR) zR)

Theorem 89. (easyR adds no keys)
∀k. ∀z. ∀d. ∀x. ∀a. ∀xL. ∀xR. ∀zR.
k �∈ (Cel z d (Cel x a xL xR) zR) → k �∈ easyR (Cel z d (Cel x a xL xR) zR)

Theorems 86 through 89 confirm that the easy right rotation does the right
thing to outside left-heavy trees. The outside right-heavy case is so similar that
we are going to assume we could state and prove the corresponding theorems
for that case, and will use them as if we had done so. For the record, here is
the rotation function for outside right-heavy trees:

easyL (Cel z d zL (Cel y b yL yR)) = (Cel y b (Cel z d zL yL) yR)

12.6.2 Rebalancing in the Hard Cases

Since the easy cases occur when the tallest part of the tree is on the outside,
you can guess that the hard cases occur when the tallest part is on the inside.
The inside right-heavy case occurs when the height of the right subtree is two
more than the height of the left subtree, and it is the left subtree of that right
subtree where the tallest part of the tree resides.
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Because the easy cases (outside heavy trees) include the possibility that the
left and right subtrees of the tallest part have the same height, we can be more
explicit about subtree heights in the inside heavy cases. Figure 12.5 uses the
same conventions as our early tree diagrams to display an inside right-heavy
tree.

The tallest part of the tree in Figure 12.5 occurs at the yL subtree. It has
height n + 1, which is at least one. Therefore, it is not a Nub tree. Its Cel-
constructed structure can be further exposed as a key, x, with two subtrees, xL
and xR, as shown in Figure 12.6. At least one of the subtrees of yL must have
height n. Otherwise, the height of yL could not be n + 1. The other subtree
of yL could have either height n or height n − 1. The diagram indicates that
these subtrees can have either height.

The right subtree of an inside right-heavy is not out of balance, but the
height of its left subtree is greater (by one) than that of its right subtree.
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One might guess that there could be some benefit in applying an easy right
rotation to that subtree. And, it turns out that this interior rotation makes it
easier to complete the rebalancing of the tree. It comes back into balance when
we apply an easy left rotation to the whole tree (after performing the easy
right rotation on the right subtree). The diagram in Figure 12.6 illustrates the
process, and could serve as a guide to a proof that these rotations preserve
order and restore balance in the inside right-heavy case. We are not going to
carry out these proofs because they are similar to proofs we have already seen,
but we will cite the resulting theorems as if we had proved them.

12.6.3 Rebalancing Left-Heavy and Right-Heavy Trees

We now have the apparatus necessary to rebalance trees that are too tall by one
on one side or the other, assuming that the interior trees are balanced. We do
so by using easy left and easy right rotations in combinations that depend on
whether the imbalance is on the outside or the inside of the tree. The rotations
preserve order, and they also restore balance when applied in correctly chosen
combinations.

A left rotation, rotL, as specified in the following formula, restores balance
to a tree that has a right subtree whose height is two greater than the height
of its left subtree. Similarly, a right rotation, rotR, restores balance to a tree
that is one too tall on the left side.

rotR (Cel z d (Cel x a xL xR) zR) =
if (height xL) < (height xR)

then easyR (Cel z d (easyL (Cel x a xL xR)) zR)
else easyR (Cel z d (Cel x a xL xR) zR)

rotL (Cel z d zL (Cel y b yL yR)) =
if (height yR) < (height yL)

then easyL (Cel z d zL (easyR (Cel y b yL yR)))
else easyL (Cel z d zL (Cel y b yL yR))

The following theorems are straightforward consequences of theorems we
already know about the easy rotations.

Theorem 90. (rotations preserve order)
∀z. ∀d. ∀x. ∀a. ∀xL. ∀xR. ∀zR.
ordered (Cel z d (Cel x a xL xR) zR) →

ordered (rotR (Cel z d (Cel x a xL xR) zR))
∀z. ∀d. ∀x. ∀a. ∀xL. ∀xR. ∀zR.
ordered (Cel z d zL (Cel y b yL yR))

→ ordered (rotL (Cel z d zL (Cel y b yL yR)))
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Theorem 91. (rotations restore balance)
∀z. ∀d. ∀x. ∀a. ∀xL. ∀xR. ∀zR.
balanced (xL) ∧ balanced (xR) ∧ balanced (zR) ∧ height (Cel x a xL xR) >

height (zR) + 1 → balanced (rotR (Cel z d (Cel x a xL xR) zR))

∀z. ∀d. ∀y. ∀b. ∀zL. ∀yL. ∀yR.
balanced (zL) ∧ balanced (yL) ∧ balanced(yR) ∧ height (Cel y b yL yR) >

height (zL) + 1 → balanced (rotL (Cel z d zL (Cel y b yL yR)))

Theorem 92. (rotations conserve keys)
∀z. ∀d. ∀x. ∀a. ∀xL. ∀xR. ∀zR.
k ∈ (Cel z d (Cel x a xL xR) zR))
→ k ∈ rotR (Cel z d (Cel x a xL xR) zR)
and
∀z. ∀d. ∀x. ∀a. ∀xL. ∀xR. ∀zR.
k �∈ (Cel z d (Cel x a xL xR) zR)))
→ k �∈ rotR (Cel z d (Cel x a xL xR) zR))

We are going to assume that we could prove these theorems if someone
asked us to, and we will cite them as if we had constructed their proofs.

12.6.4 Inductive Equations for Insertion

Insertion of a new element in a tree is a matter of deciding which side of the
tree it goes in and inserting it on that side. If there is no room at the top level,
simply apply the same idea, inductively, to the subtree where the insertion is
to take place.

After the insertion, it may happen that the tree is out of balance. If so, the
height of the side where the insertion occurred will be exactly two more than
the height of the other side, and a rotation will restore balance.

In formal terms, the operation ( :̂) satisfies the following equations.

(k, d) ˆ: Nub = (Cel k d Nub Nub) {ˆ: N}
(k, d) ˆ: (Cel x a lf rt) = {ˆ: C}
if z < x then

if (height newL) > (height rt) + 1
then rotR (Cel k d newL rt)
else (Cel x a newL rt)

else if z > x then
if (height newR) > (height lf) + 1

then rotL (Cel x a lf newR)
else (Cel x a lf newR)

else (Cel x d lf rt)
where
newL = (k, d) ˆ: lf
newR = (k, d) ˆ: rt
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The “where” clause in the second equation names the tree delivered by
insertion into the subtree that preserves order. Only one of these insertions
will take place, of course. The new (key, data) pair goes into the left subtree
if the key is smaller than the key at the root. If it is greater, it goes into the
right subtree.

Otherwise, the key to be inserted must be the same as the key at the root.
There are many choices for things to do at this point. It might be considered
an error to attempt to insert a duplicate key into a tree, in which case it would
be best to deliver a value that could signal the problem. One choice of such a
value would be the Nub tree, since it could not be the result of inserting a new
key into a tree. On the other hand, it might be appropriate to simply associate
the new data with the key that matches the key that was to have been inserted.
We made the latter choice because it makes our theorems about conservation
of keys easier to state.

The insertion equations imply three important properties of the operation:
insertion preserves order, preserves balance, and conserves keys. That is, if
the right-hand operand of an insertion is an ordered and balanced tree, then
insertion will deliver a tree that is ordered and balanced. Furthermore, the
tree delivered by insertion will contain all the keys that occur in the right-hand
operand, plus the key in the left-hand operand, and it will contain only those
keys and no others.

Theorems 93, 94, and 95 state these properties. Tree induction can be used
to prove all of these theorems. We are going to carry out only one of them.
The pattern of the others is similar, and we will assume we could construct
those proofs if someone asked.

Theorem 93. (insertion preserves order).

∀s. ∀k. ∀d. ordered (s) → ordered ((k, d) :̂ s)

Theorem 94. (insertion preserves balance).

∀s. ∀k. ∀d. balanced (s) → balanced ((k, d) :̂ s)

Theorem 95. (insertion conserves keys)
∀s. ∀k. ∀d. k ∈ ((k, d) :̂ s)
∀s. ∀k. ∀d. ∀x. x ∈ s → x ∈ ((k, d) :̂ s)
∀s. ∀k. ∀d. ∀x. (x �∈ s ∧ x �= k) → x �∈ ((k, d) :̂ s)

Proof. of Theorem 94 (by tree induction)
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Base Case.

∀ k. ∀d. balanced (Nub) → balanced ((k, d) :̂ Nub)
= { :̂ N}

∀k. ∀d. balanced (Nub) → balanced (Cel k d Nub Nub)
= {bal N}

∀k. ∀d. True → balanced (Cel k d Nub Nub)
= {bal C}

∀k. ∀d. True → True
= {→}

True

Inductive Case.

In this part of the proof, we will apply the { :̂ C} equation, which takes
three forms, depending on the relationship between the key being inserted
and the key associated with the tree’s cell constructor (k < x) ∨ (k >
x) ∨ (k = x). To prove an implication with a disjunction in the hypothesis,
it is sufficient to prove the conclusion separately for each of the terms in the
disjunction. (We know this from the following equation of propositional logic:
((a ∨ b ∨ c) → d) = ((a → d) ∧ (b → d) ∧ (c → d))

The proof takes different forms for each of these separate parts, but the
reasoning is similar enough that we are going to carry out just one of the parts,
and leave the others to the imagination.

The part we are going to prove is when the key to be inserted is smaller
than the key associated with the Cel constructor for the tree. A proof strat-
egy for an implication is to start from the hypothesis and derive the conclu-
sion. The hypothesis of the implication, in the inductive case, is the formula
balanced (Cel x a lf rt). Since lf is a proper subtree of (Cel x a lf rt), the
induction hypothesis leads to the conclusion that the formula balanced ((k, d) :̂
lf) is true.

We are proving three implications, and in the first of these we assume that
the key, k, to be inserted is less than the key, x, associated with the Cel
constructor for the tree. To complete this part of the proof, we must verify
that the conclusion of the implication is true when the hypothesis is true and
k < x.

Here, there are two cases because the equation {ˆ : C} specifies that
(Cel x a ((k, d) ˆ : lf) rt) is the value of ((k, d) ˆ : (Cel x a lf rt))
when | height ((k, d) :̂ lf) − height (rt) | ≤ 1 and specifies rotR ((k, d) :̂
(Cel x a lf rt)) as the value when height ((k, d) :̂ lf) > height (rt) + 1.

We reason as follows:
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balanced ((k, d) :̂ (Cel x a lf rt))
= { :̂ C, k < x}

balanced (Cel x a ((k, d) :̂ lf) rt)
= {bal}

∀(Cel y a yL yR) ⊆ (Cel x a ((k, d) :̂ lf) rt).
| height (yL) − height (yR) | ≤ 1

This “forall” predicate can be partitioned into three logic formulas, all of
which must be true:

| height ((k, d) :̂ lf) − height (rt) | ≤ 1 {formula 1}
∀(Cel y a yL yR) ⊆ ((k, d) :̂ lf).

| height (yL) − height (yR) | ≤ 1 {formula 2}
∀(Cel y a yL yR) ⊆ rt.

| height (yL) − height(yR) | ≤ 1 {formula 3}
We have already verified, using the induction hypothesis, that ((k, d) :̂ lf)

is balanced. Therefore, formula 2 must be true. With regard to formula 3, the
hypothesis of the implication we are trying to prove is that (Cel x a lf rt)
is balanced. Therefore, all its subtrees are balanced, and since rt is one of
those, all of the non-empty subtrees of rt must have left and right subtrees
with heights that differ by one or less.

With regard to formula 1, we must consider two situations because the
equation { :̂ C} specifies (Cel x a ((k, d) :̂ lf) rt) as the value of ((k, d) :̂
(Cel x a lf rt)) when | height ((k, d) ˆ: lf) − height (rt) | ≤ 1 and
specifies rotR ((k, d) :̂ (Cel x a lf rt)) as the value when height ((k, d) :̂
lf) > height (rt) + 1. The first situation verifies formula 1 directly. In the
second situation, Theorem 91 (rotations restore balance) implies that formula
1 is true.

This completes the proof of the inductive case of Theorem 94 when k < x.
When k > x, the reasoning goes the same way, but down the right-hand side
of the tree instead of the left. When k = x, the insertion operation delivers
a tree identical to the input, except for the data item in the Cel constructor
for the tree. The input tree is balanced, and swapping the data item in its Cel
constructor for a different one cannot affect the balance of the tree. By this
route, the proof of the inductive case can be completed.

12.6.5 Insertion in Logarithmic Time

In the same way that we reasoned, by induction, that the number of com-
putational steps required for retrieval of a data item from a search tree is
proportional to the height, we can prove that the number of steps required for
insertion is also proportional to the height. The induction for insertion pro-
ceeds in the same way as the induction for retrieval, except that some additional
basic operations are encountered, such as the Cel and Nub constructors, the
rotation operators, and the height computation. If we can convince ourselves
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that each of these operations takes a fixed amount of time, regardless of what
their operands are, the outcome of the induction will be that the number of
steps required for insertion is proportional to tree height.

Nobody will have difficulty believing that the Nub constructor takes a fixed
amount of time, as it has no operands. The Cel constructor calls for more
careful reasoning because it involves building a tree from components, and we
want to argue that building the tree does not depend on the size of the compo-
nents. We can assume that the components have already been constructed, so
we just need to verify that if the computer is given a key k, data item d, and
two pre-constructed subtrees lf and rt, the number of computational steps
required for the computer to deliver the tree (Cel k d lf rt) does not depend
on the size of the key, data item, or subtrees.

Compilers for languages like Haskell refer to constructed entities by address.
For example, if the subtree lf, involved in the construction of (Cel k d lf rt),
has been previously constructed, then it has been recorded somewhere in the
computer’s memory. To construct the tree (Cel k d lf rt), the computer
simply places, into the structure delivered by the Cel constructor, the address
where lf has been recorded. Similarly, it puts the addresses for k, d, and rt
in the structure. Because addresses have a fixed size, all of this construction
is completed in a fixed amount of time, regardless of the values represented by
k, d, lf, and rt. As for the rotation operators, they simply combine a fixed
number of Cel and Nub constructions, so they also can be completed in a fixed
number of steps.

The height operator is another matter. The equations we have given for it,
when used according to the procedures of the equational model of computation,
produce a computation in which the number of steps is proportional to the
height of the tree. If we were to use a version of the height operator satisfying
equations {height N} and {height C}, we would fail to accomplish our goal
of producing an insertion operator that can be carried out in a number of steps
proportional to the height. Therefore, we need a different height operator.

The trick is to record the height directly in the tree, and insert in incre-
mentally, as the tree is being constructed. This requires a new definition for
search trees:

data SearchTree d = Nub |
Cel Integer Integer d

(SearchTree d) (SearchTree d)

This new definition has a extra Integer parameter for the Cel constructor,
and this parameter is used to record the height of the tree. To construct a tree,
its height must be specified, along with the key, data item, and two subtrees.
The construction (Cel h k d lf rt) denotes a tree of height h with the key k,
data item d, and left and right subtrees lf and rt. The new height operator
could be specified by the following equations.

height Nub = 0
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height (Cel h k d lf rt) = h

Delivering the height of a tree simply amounts to pulling it out of an existing
structure, an operation that requires a fixed amount of effort, regardless of the
size of the tree.

Of course, all of the Cel constructions that appear in equations must be
modified to include the height, but it turns out that this can be done because
the height to be recorded by a Cel construction can be computed from the
heights of the subtrees supplied for the construction. For example, the easyL
rotation

easyL(Cel hz z d zL (Cel hy y b yL yR)) =
(Cel hNewy y b (Cel hNewz z d zL yL) yR)

where
hNewy = max hNewz (height yR)
hNewz = max (height zL) (height yL)

Similar modifications to the other rotations and to the Cel constructions in
the insertion operator lead to an insertion operator that can be computed in
an amount of time proportional to the height of the tree in which the insertion
occurs.

Since the height of a balanced tree is proportional to the logarithm of the
number of data items in the tree (together with all subtrees contained in the
tree), insertion can be done in an amount of time proportional to the logarithm
of the number of data items in the tree. This is the insertion part of the AVL
miracle. The deletion part, which we are going to turn to now, is a little more
complicated, but not much.

12.6.6 Deletion

The process of deleting a key and its associated data item from a search tree,
while maintaining order and balance, depends on where the deleted item occurs
in the tree. Wherever it occurs, the Cel constructor at that point forms an
entire tree (a subtree of the one we started with). If we can find a way to
delete the item associated with a particular Cel constructor, we can build a
new subtree containing all the items of the original subtree except the one
associated with its Cel constructor. We can then replace the portion of the
original tree corresponding to that Cel constructor with the new subtree.

If the new subtree occurs as a proper subtree of the tree as a whole, we need
to make sure the resulting tree is balanced. (It will automatically be ordered
because all of the keys occurring in the subtree occurred in the original subtree,
so they must have stood in the proper relationship to other keys in the tree.)
We have deleted a node, so it may happen that the new subtree is shorter than
the old one, and this could disrupt the balance of the whole tree. Therefore,
we compare the height of the new subtree to the height of the other subtree
in the Cel constructor where the new subtree resides. If the heights differ by
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Figure 12.7: Deleting Root When Left Subtree Is Nub

more than one, we rotate right or left as necessary, then carry out a similar
check and possible rotation one level up in the tree. We continue this process
until we come to the Cel constructor for the tree as a whole.

That is the plan. The first step is to figure out how to delete an item
associated with the Cel constructor for a tree. That is, how to delete a key
that occurs at the root of a search tree. We break this into two cases. As usual,
one of the cases is easy to deal with, and the other one isn’t. We will take care
of the easy case first.

The easy case is when the left subtree is a Nub. Since the tree is balanced,
the height of the right subtree must be either zero or one. There are no items
in the left subtree to worry about, so all items (except the one to be deleted)
are retained if we deliver the right subtree as the result. Furthermore, the
right subtree is ordered and balanced. It has to be because it is a subtree
of the original tree, which was ordered and balanced. Figure 12.7 charts the
transformation. As in previous diagrams, a triangle represents an ordered and
balanced tree, and the numbers near the bottom of the triangle specify the
possibilities for the height of the tree represented by the triangle.

When the left subtree is not a Nub tree, the tree may have any height, and
there is more to do. Visualizing the tree transformations as diagrammed in
Figure 12.8 may make it easier to follow the deletion procedure in this case.
The idea is to march down the spine on the right side of the left subtree until we
come to a node whose right subtree is Nub. In keeping with the spine metaphor,
we call this node the sacrum. (That is the tailbone. You can look it up.) The
sacrum is the node with the key x in the leftmost tree shown in Figure 12.8, and
the spine consists of the Cel constructor of the left subtree, the Cel constructor
of its right subtree, the Cel constructor of the right subtree of that subtree,
and so on down to the sacrum.

The left subtree of the sacrum will have height zero or one (otherwise, the
tree would have been out of balance). We cache the key and data item of the
sacrum, replace it by its left subtree, and perform right rotations as needed for
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balance all the way back up the spine.
Right rotations are needed where the height of the left subtree is two more

than that of the right subtree. The left subtrees along the spine will always
have heights exceeding that of the corresponding right subtrees by no more than
two because the tree was originally balanced, which implies height differences
of one or less. When we replace the subtree rooted at the sacrum (a subtree
that has a Nub tree as its right subtree) by its left subtree, the height of the
new tree at the position of the sacrum may be one less than it was before. This
new tree is the right subtree of another subtree, so that subtree may be too
tall by one on the left. If it is, we know from Theorem 91 that a right rotation
will rebalance it. We also know, from Theorem 90, that a right rotation will
preserve order. Therefore, at each stage the subtree produced is ordered and
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balanced.
When we reach the top of the spine, we deliver a new tree with key, data

item, left subtree, and right subtree specified as follows: (1) use the key and
data item cached key from the sacrum, (2) for the left subtree, use the tree
we constructed as we rotated our way back up the spine, and (3) for the right
subtree, use the right subtree from the original tree.

Finally, we rotate the tree left, if necessary to get it back in balance. This
may be necessary because the height of the left subtree may now be one less
than it was originally, and this may have caused the tree to get out of balance
by one. Placing the cached key (the one that was in the sacrum) at the root
preserves order because it was the largest key in the left subtree, so all keys in
the left subtree will be smaller than it is, as they should be in an ordered search
tree. Also, it is smaller than any key in the original right subtree because it
was smaller than the key at the root, and the key at the root was larger than
any key in the original left subtree.

To make these informal ideas amenable to mathematical reasoning, we need
formal equations to specify the relationships among the trees and subtrees
involved. It will help to consider parts of the transformation separately.

12.6.7 Shrinking the Spine

One major component in the transformation is the shrinking of the spine when
the left subtree is not a Nub. In Figure 12.8, this is the part of the trans-
formation diagrammed in the top box of the figure. At the same time, we
cache the key and data item at the sacrum. So, this part of the transformation
needs to deliver a new left subtree, with a shrunken spine, together with the
key and data item from the sacrum. We will implement this delivery with a
three-tuple in which the first component is the key from the sacrum, the second
component is the data item from the sacrum, and the third component is the
new, shrunken, left subtree. With these conventions, the following equations
specify the relationships among the components that the diagram in Figure
12.8 displays.

shrink(Cel y b lf rt) = {shrink}
if rt == Nub then (y, b, lf)
else if (height lf) > (height shrunken) + 1

then (x, a, rotR (Cel y b lf shrunken))
else (x, a, Cel y b lf shrunken)
where
(x, a, shrunken) = shrink rt

The shrink operation preserves order and balance, and it delivers a key that
exceeds all the keys remaining in the shrunken tree. The following theorems,
all of which can be proved using tree induction, make these claims precise. We
will prove only one of them and, as usual, assume it is possible to construct
the other proofs.
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Theorem 96. (shrink preserves balance)
∀y. ∀b. ∀lf. ∀rt.
(balanced (Cel y b lf rt) ∧ ((x, a, sh) = shrink (Cel y b lf rt))) →

balanced (sh)

Theorem 97. (shrink loses no keys)
∀y. ∀b. ∀lf. ∀rt.
(ordered (Cel y b lf rt) ∧ ((x, a, sh) = shrink (Cel y b lf rt)) ∧ (k ∈

(Cel y b lf rt)) ∧ (k �= x)) → (k ∈ sh)

Theorem 98. (shrink adds no keys)
∀y. ∀b. ∀lf. ∀rt.
ordered (Cel y b lf rt) ∧ ((x, a, sh) = shrink (Cel y b lf rt)) ∧ (k �∈

(Cel y b lf rt)) → (k �∈ sh)

Theorem 99. (shrink preserves order)
∀y. ∀b. ∀lf. ∀rt.
ordered (Cel y b lf rt) ∧ ((x, a, sh) = shrink (Cel y b lf rt)) →

(ordered (sh) ∧ (∀k ∈ sh. x > k))

Proof. of Theorem 99 (by tree induction).
Base Case.

ordered (Cel y b lf Nub) → (ordered (lf) ∧ (∀k ∈ lf.y > k))

by the definition of ordered , and

((y, b, lf) = shrink (Cel y b lf Nub))

by the definition of shrink.

Therefore, as sh = lf and x = y,

(ordered (Cel y b lf Nub) ∧ ((x, a, sh) = shrink (Cel y b lf Nub)))
→ (ordered (sh) ∧ (∀k ∈ sh. x > k))

Inductive Case.

We are assuming, in the inductive case that (Cel y b lf (Cel k d kL kR)) is
ordered and that (x, a, sh) = shrink (Cel y b lf (Cel k d kL kR)). In this case
the else-branch will be the applicable formula in the {shrink} equation. There-
fore, sh will have one of the following two values: (Cel y b lf shrunken) or
rotR (Cel y b lf shrunken), where (x, a, shrunken) = shrink (Cel k d kL kR).
Also, we know from the conservation-of-keys theorems for rotR (Theorem 92)
and for shrink (Theorems 97 and 98) that in either case sh contains all the
keys of lf plus all the keys of (Cel k d kL kR) except x.
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From the induction hypothesis, we know that x exceeds all the keys of
shrunken. This means that x exceeds all the keys of (Cel k d kL kR) except x,
itself, and that x ∈ (Cel k d kL kR). Therefore, since (Cel y b lf (Cel k d kL kR))
is ordered, it must be true that x > y and that x exceeds all the keys in lf.

This accounts for all the keys in sh, so it must also be true that x ex-
ceeds all the keys in sh. Furthermore, if sh = (Cel y b lf shrunken),
then it must be ordered because lf is ordered (a consequence of the fact
that (Cel y b lf (Cel k d kL kR)) is ordered), shrunken is ordered (a con-
sequence of the induction hypothesis), and y exceeds all the elements in lf
and precedes all the elements in (Cel k d kL kR) (a consequence of the fact
that (Cel y b lf (Cel k d kL kR)) is ordered). Finally, if it turns out that
sh = rotR (Cel y b lf shrunken), then sh must be ordered because rotations
preserve order (Theorem 90).

12.6.8 Equations for Deleting Root

Figure 12.8 describes the deletion process, for the case when the left subtree
is not Nub, in two steps: (1) cache the sacrum and shrink the spine in the
left subtree and (2) form a new tree (with the cached key/data at the root,
the shrunken left subtree, and the right subtree that came with the original).
Finally, rotate left if the constructed tree is out of balance. The following
equation expresses these relationships in a formal way.

delRoot (Cel z d Nub zR) = zR {delRoot N}
delRoot (Cel z d (Cel y b lf rt) zR) = {delRoot C}
if (height zR) > (height shrunken) + 1

then rotL (Cel x a shrunken rt)
else (Cel x a shrunken rt)
where
(x, a, shrunken) = shrink (Cel y b lf rt)

These equations imply that delRoot preserves order and balance and con-
serves keys (except for the one at the root). The following theorems, which can
be proved using tree induction, state these facts.

Theorem 100. (delRoot preserves order)
∀y. ∀b. ∀lf. ∀rt.
order (Cel y b lf rt) → order (delRoot (Cel y b lf rt))

Theorem 101. (delRoot preserves balance)
∀y. ∀b. ∀lf. ∀rt.
balanced (Cel y b lf rt) → balanced (delRoot (Cel y b lf rt))

Theorem 102. (delRoot conserves keys)
∀y. ∀b. ∀lf. ∀rt.
(ordered (Cel y b lf rt) ∧ (k ∈ (Cel y b lf rt)) ∧ (k �= y)) →
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(k ∈ delRoot (Cel y b lf rt))
and
(ordered (Cel y b lf rt) ∧ (k ∈ delRoot (Cel y b lf rt))) →

(k ∈ (Cel y b lf rt))

12.6.9 Equations for Deletion

With equations for shrinking the spine and deleting the root in place, we are
now in a position to discuss the equations for deleting a key from a search tree.
The key to be deleted will be located in the root of a subtree of the tree from
which the deletion is to occur. Part of the process is to locate that subtree.
Since we are assuming the tree is ordered, these parts of the equations will be
similar to the equations for retrieval from search trees. Once we have located
the key at the root of a subtree, we apply delRoot to delete it and use the
tree it delivers in place of the subtree where the key was located. Of course,
the height of this tree may now be one less than it was before, and that might
unbalance the tree. If so, we apply a rotation to rebalance it.

We have been assuming that the key to be deleted occurs somewhere in the
tree. If it doesn’t, of course it can’t be deleted. In that case, we simply deliver
the tree we started with. Other alternatives for this case might be appropriate
for certain applications, but we have chosen this one because it makes the
theorems straightforward.

The following equations specify the relationships among search trees, keys,
and the results of deleting a key from a tree, following the outline we have been
discussing informally.

Nub ˆ- k = Nub {ˆ- N}

(Cel z d lf rt) ˆ- k = {ˆ- C}
if k = z then delRoot (Cel x a lf rt)
else if k < z && (height rt) > (height newL) + 1

then rotL (Cel z d newL rt)
else (Cel z d newL rt)

else if (height lf) > (height newR) + 1
then rotR (Cel z d lf newR)
else (Cel z d lf newR)

where
newL = lf ˆ- k
newR =rt ˆ- k

These equations imply that deletion satisfies order and balance preservation
laws and key conservation laws similar to those of insertion. The following
theorems, which are provable using tree induction, express these laws.

Theorem 103. (deletion preserves order).
∀s. ∀k. ordered (s) → ordered (s ˆ- k)



12.6. BALANCED TREES 351

Theorem 104. (deletion preserves balance).
∀s. ∀k. balanced (s) → balanced (s ˆ- k)

Theorem 105. (insertion conserves keys).
∀s. ∀k. ordered(s) → (k �∈ (s ˆ- k))
∀s. ∀k. ∀x. (ordered(s) ∧ (x �= k) ∧ (x ∈ s)) → (x ∈ (s ˆ- k))
∀s. ∀k. ∀x. (ordered(s) ∧ (x �∈ s)) → (x �∈ (s ˆ- k))

12.6.10 Deletion in Logarithmic Time

The theorems about retrieval (Theorem 83), insertion (Theorems 93-95), and
deletion (Theorems 103-105) confirm the properties that are important for
confirming the correctness of retrieval, insertion, and deletion operations. The
theorems are consequences of the assumption that these operations satisfy the
equations labeled {getItem N}, {getItem C}, { :̂ N}, { :̂ C}, {ˆ- N}, and
{ˆ- C}. No other assumptions are needed.

The number of computational steps required to delete a key and its associ-
ated data item from a search tree depends on how the equations are interpreted.
We assume that the interpretation follows the equational model of computa-
tion.

In this case, at each level in a tree from which a key is being deleted, from
the root to the point where the deletion occurs, the computation will require
at least the construction of a tree by a Cel constructor, and possibly also a
rotation. Each of these operations requires a fixed number of steps, independent
of the size of the tree. Because the height is the maximum number of levels
in the tree, the total number of steps required for this part of the deletion
operation is proportional, at worst, to the height of the tree.

In the subtree where the deletion actually takes place, the key to be deleted
occurs in the root, and the delRoot operation is applied. How many compu-
tational steps will this require? It will require a Cel construction at the root
level, and possibly a rotation. It also calls for shrinking the spine.

The rotation and Cel construction, together, are a fixed amount of compu-
tation, regardless of the size of the tree. The shrinking operation, on the other
hand, requires examining each level of the tree down the spine and performing
a Cel construction and possibly a rotation at each of those levels. Nevertheless,
the amount of computation at each level is independent of the size of the tree,
so the total number of steps will be proportional to the height of the tree to
which the delRoot operation is being applied. Since this height is no more than
the height of the tree, the total number of computational steps in a deletion
operation is proportional to the height of the tree.

This argument about the number of computational steps in deletion has
been an informal one, but it can be made precise through tree induction, along
the same lines as our proof that the number of computational steps in retrieval
and in insertion is proportional to tree height.
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As with insertion, the height operation will slow down the deletion process
significantly unless the height is imbedded in the tree structure and updated
incrementally. This means that everywhere in the equations for deletion that a
Cel construction occurs, the value of the height must be recorded. Rewriting
the equations to take care of this detail is straightforward. The following version
of the equation {ˆ- C} show how it can be done in one case. To complete the
process, the equations for deletion at the root and for shrinking the spine would
have to be similarly rewritten.

(Cel z d h lf rt) ˆ- k =
if k = z then delRoot (Cel h x a lf rt)
else if k < z && (height rt) > (height newL) + 1

then rotL (Cel ((max (height newL) (height rt)) + 1)
z d newL rt)

else (Cel ((max (height newL) (height rt)) + 1)
z d newL rt)

else if (height lf) > (height newR) + 1
then rotR (Cel ((max (height lf) (height newR)) + 1)

z d lf newR)
else (Cel z ((max (height lf) (height newR)) + 1)

d lf newR)
where
newL = lf ˆ- k
newR = rt ˆ- k

12.7 Things We Didn’t Tell You

It is not difficult to prove, using tree induction, that the height of a search tree
s is the next integer larger than the base-2 logarithm of the number of keys
that occur in the search tree if you assume that all of the subtrees of s have
about the same number of nodes in their left subtree as in their right. This is
a strict kind of balancing, but it is not the kind of balancing we have used in
writing equations for insertion and deletion.

The kind of balance we have used has to do with the heights of subtrees,
not the number of keys they contain. It is not so easy to verify that the height
of a search tree that is balanced in the sense of the equations {bal N} and
{bal C} is proportional to the logarithm of the number of keys in the tree. It
turns out that it is (in fact, the height of such a tree is at most 44% more than
the base-2 logarithm of the number of keys that occur in the search tree), but
we haven’t proved it. It wouldn’t be hard for you to track down a proof of this
fact if you wanted to, but this is one of the details we are going to skip in our
discussion.

A more troubling point is that we have left out the proofs of many theorems,
and we haven’t been entirely formal in most of the proofs we have taken the
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trouble to write down. Our proofs are probably right in broad outline, but it is
certain that if we tried to carry them down to the last detail, we would make
mistakes. People simply are not attentive enough and patient enough to work
out, correctly, all the details in the thousands of logic formulas that would be
required to complete these proofs in an entirely formal manner.

For such an undertaking, a mechanized logic is required. That is, running
a computer program that verifies that our proofs are correct in every detail is
the only practical way to be sure. We don’t know of such a program for Haskell
programs, but practical tools of this kind do exist for other notations based
on the same computation model. For example, ACL2 [1] is a mechanized logic
based in a programming language called Common Lisp.

ACL2 is able not only to verify that a proof is correct, but is actually able
to construct many inductive proofs on its own. The strategy one would use,
if the goal were to make sure a set equations implies a certain property of the
operators involved, would be to use a tool like ACL2 to derive a proof of the
property by stating a sequence of simple theorems that lead to the proof. The
proof of each of the simple theorems would cite, somewhere along the line, one
or more of the previous theorems in the sequence.

The tool would prove the simple theorems automatically, and the result
would be a fully verified proof. The hard part is stating just the right sequence
of theorems simple enough for the tool to prove automatically. This requires
the same kinds of skills as constructing proofs at the level of detail we have
been using in our discussion of AVL trees.

Proof assistants such as ACL2 have become, over the past few years, after
decades of effort by their developers, practical to use as a regular part of the
software development process. By attempting to do proofs of properties of
software without the use of such tools, students learn how to state relevant
theorems and how to build a proof of a theorem through a sequence of simpler
theorems. In other words, students learn what they need to know to make use
of proof assistants in the practice of software development.

It is our hope that by now you have gained enough experience with this sort
of proof to enable you to make use of well-established proof assistants. We also
hope that you will be motivated to do so by a certain level of confidence, born
of your experience in working through problems, that the phrase “defect-free
software” is not an oxymoron.



Chapter 13

Discrete Mathematics in
Circuit Design

The techniques of discrete mathematics that you have been studying in this
book are used throughout computer science. We have seen many small exam-
ples of the application of mathematics to computing, and we have also used
programming to help with the mathematics. The previous chapter has exam-
ined a sophisticated application, the design of AVL trees.

This chapter looks at another application of formal reasoning and a mathe-
matical approach to computer science: the use of discrete mathematics to help
with the process of designing digital circuits. Hardware design is not the real
subject here, so we will explain just enough about hardware to explain the
particular circuits involved in the discussion.

In addition to applying discrete mathematics, we will use Haskell to specify
and simulate circuits. The combination of discrete mathematics and Haskell
makes it possible to carry out several useful tasks: precise specification of
circuits, simulation, correctness proofs, and circuit derivations.

Digital circuit design is a vast subject area, and there is not space here to
cover all of it. Therefore we will consider only one class of digital circuits (com-
binational circuits, which don’t contain flip flops). However, that restriction
is made only to keep the chapter short; discrete mathematics is used heavily
throughout the entire subjects of digital circuit design and computer architec-
ture.

You do not need to have any prior knowledge about hardware in order to
read this chapter; everything you need to know is covered here. We will begin
by defining the basic hardware components, Boolean logic gates, and then will
look at how to specify and simulate simple circuits using Haskell. Then we
apply the methods of Propositional Logic to circuit design, including reasoning
with truth tables and algebraic reasoning about circuits.

One of the principal problems in designing circuits is ensuring that they

355
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a x

Figure 13.1: Symbol for the Inverter

are correct. It is extremely expensive to debug circuit designs by building
and testing them, so getting the design right in the first place is crucial. The
last sections in this chapter address this issue: we use mathematics to state
precisely what it means for an addition circuit to be correct. We use recursion
and higher order functions to design an adder, and we use induction to prove
that it works correctly.

13.1 Boolean Logic Gates

Digital circuits are constructed with primitive circuits called logic gates. There
are logic gates that implement the basic operations of propositional logic, ∧,
∨, ¬, as well as a few other similar operations.

The simplest logic gate is the inverter , which implements the logical not
(¬) operation. It takes one input and produces one output; Figure 13.1 shows
the standard symbol for the inverter with input a and output x. Instead of
using the ¬ symbol to specify an inverter, we will use the name inv ; thus inv a
means the output of an inverter whose input is a. The inverter’s truth table is
identical to the truth table for the logical not (¬) operator. Throughout this
chapter, we will frequently use 0 and 1 as shorthand notations for False and
True. This convention is frequently used in hardware design.

a inv a
0 1
1 0

Some of the most commonly used logic gates take two inputs. The logical
∧ operation is performed by the and2 gate, whose symbol is shown in Figure
13.2. This gate is named and2 because it takes two inputs; there are similar
gates and3, and4 that take 3 and 4 inputs, respectively. The inclusive logical
or operation ∨ is produced by the or2 gate (Figure 13.3), and the exclusive or
operation, which produces 1 if either argument is 1 but not both, is provided
by the xor gate (Figure 13.4). The following table defines the outputs of these
logic gates.
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Figure 13.3: Or Gate

a b and2 a b or2 a b xor a b
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

13.2 Functional Circuit Specification

Since a digital circuit produces outputs that depend on its inputs, a circuit
can be modelled by a mathematical function. Furthermore, we can implement
such functions directly with Haskell functions. This provides several valuable
benefits, including error checking, powerful specification techniques, and tools
for circuit simulation.

A circuit can be specified in two ways: using a Haskell function definition, or
using a schematic diagram. Most of the time we will use both forms, and later
in the chapter you will see some of the advantages of each kind of specification.
Meanwhile, we will look at how to write functional circuit specifications and
what the corresponding schematic diagrams look like.

A circuit’s function is applied to its inputs, and the result is the output.
For example, to specify that a and b should be connected to the inputs of an

a

b
x

Figure 13.4: Exclusive Or Gate



358 CHAPTER 13. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

a
b y

Figure 13.5: The Circuit y = inv (and2 a b)

and2 gate, and the output should be named x, we would write the Haskell
specification:

x = and2 a b

Function applications are also used to make connections between several
components. The following specification says that the output of the and2 gate
should be inverted, and the inverted output is named y. Figure 13.5 shows the
corresponding circuit diagram.

y = inv (and2 a b)

The type of a circuit indicates what its inputs and outputs are. The value
carried by a wire is called a signal , and there is a class Signal of Haskell types
that can be used to represent such a value. Obviously Bool is a member of the
Signal class, since we could use True and False to represent the values of logic
signals. There are other types as well that are useful in various circumstances.
The logic gates have the following types:

inv :: Signal a => a -> a
and2, or2, xor :: Signal a => a -> a -> a

For every type in the Signal class, there are constants zero and one that
represent the basic logic values; these correspond to False and True. In the
examples that follow, specialised constants False (for logical 0 or False) and
True (for logical 1 or True) will be used; the advantage of False and True is
that the system knows which signal type to use for them, so you can omit type
signatures when evaluating expressions.

13.2.1 Circuit Simulation

A circuit simulator is a computer program that predicts the behaviour of a cir-
cuit, without requiring that the circuit be constructed physically. The program
behaves just like the circuit would: it reads in a set of inputs to the circuit,
and it produces the same outputs that the real circuit would.

Simulation is important because it is much easier, cheaper, and faster to
test a design by simulating it with a computer than by constructing it. Just as
programs have to be debugged, complex circuit designs also contain errors and
must go through an extensive testing and debugging process. With a circuit
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simulator, it is possible to test the correctness of a design immediately; in
contrast, it may take days or weeks to fabricate a physical prototype circuit.

You can simulate any circuit by applying it to suitable signal inputs. For
example, we can simulate an and2 gate by applying and2 to each of the four
possible sets of input values. Compare the results of the following execution
with the truth table for and2:

> and2 False False
False
> and2 False True
False
> and2 True False
False
> and2 True True
True

A useful technique is to put a set of test cases in the circuit specification file,
right after the circuit itself. This serves as documentation, a set of examples to
help a reader to understand what is going on, and it’s also useful to check that
the circuit is still working when other parts of the system have been modified.

Here is a complete set of test cases for simulating the and2 gate. It is
organised just like a truth table: each line consists of a test for particular data
values of the inputs. On each line there is a -- symbol indicating that the rest
of the line is a comment, and after the -- we give the expected result.

and2 False False -- False
and2 False True -- False
and2 True False -- False
and2 True True -- True

A convenient way to execute the test cases is to put up two windows on the
screen: a text editor containing this file, and an interactive session with Haskell.
Use the mouse to copy and paste the first line of the test into the Haskell
window, and compare the actual result with the expected result. Repeat this
for each line in the test suite. The software tools module, Stdm.hs, contains
more powerful simulation tools; see the accompanying documentation.

13.2.2 Circuit Synthesis from Truth Tables

Hardware design is not a random process (at least, it shouldn’t be). There are
many systematic techniques for designing robust circuits. For small circuits, the
specification is commonly expressed in the form of a truth table, and you need
to design a circuit which implements that truth table. This section presents a
systematic method for solving this problem. It has two great advantages: the
method is simple, and it always works. Sometimes the method doesn’t produce



360 CHAPTER 13. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

the most efficient solution, but that may not be so important, and if it is, there
are also systematic methods for optimising circuits.

Every truth table can be written in a general form, where there is one
line for every possible combination of input values, and a variable p, q, r, s . . .
specifies the value of the result. For example, here is the general truth table
for a circuit f that takes two inputs:

x y f x y
0 0 p
0 1 q
1 0 r
1 1 s

A truth table with k input variables will have 2k lines. To illustrate how
to synthesise a logic function, let’s consider the following example with three
input variables:

a b c f a b c
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

The idea is simple: the output f a b c should be 1 whenever the inputs
correspond to any of the lines where the rightmost column contains 1. All we
need is a logical expression which is True for each such line and False for the
others; the value of f a b c is then just the logical or of all those expressions.

Because there happen to be four lines with a result of 1, we will need
four expressions, one for each of these lines: we don’t yet know what these
expressions are, so we just call them expr1, expr2, and so on. The required
expression has the form

f a b c = expr1 ∨ expr2 ∨ expr3 ∨ expr4.

The next step is to figure out what these four expressions are. The first one,
expr1, should be 1 if the inputs specify the first line of the table where the
output is 1. This happens when a = 0, b = 0 and c = 1; equivalently, it
happens when ¬a, ¬b and c are all true. Therefore the expression is simply
expr1 = ¬a∧¬b∧ c. This expression has the property we were looking for: it is
true when the inputs are a = 0, b = 0, c = 1, and it is false for all other inputs.
The other expressions are worked out the same way:
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a b c x expr
0 0 0 0
0 0 1 1 ¬a ∧ ¬b ∧ c
0 1 0 0
0 1 1 1 ¬a ∧ b ∧ c
1 0 0 1 a ∧ ¬b ∧ ¬c
1 0 1 0
1 1 0 1 a ∧ b ∧ ¬c
1 1 1 0

Now we just plug the expressions into the equation for f a b c:

f a b c = (¬a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (a ∧ b ∧ ¬c)

There are several useful refinements of this technique, but those are strictly
optional. The important point is that we have a simple method that can be used
to synthesise a logical expression—and hence a digital circuit—to implement
any truth table.

Often there is a straightforward but inefficient way to design a circuit; an
efficient implementation should be used in the final product, but this may
be difficult to design. Furthermore, debugging is quicker for easy designs.
Because of this, a useful approach is to begin by specifying the simple circuit
and then to transform it to a more efficient one. The transformation consists of
a logical proof that the two circuits have implement exactly the same function.
Boolean algebra is a powerful tool for circuit transformation; we can start with
a specification expressed as a logical expression and transform it through a
sequence of steps until a circuit with satisfactory performance is found.

Exercise 1. Design a circuit that implements the following truth table:

a b c f a b c
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Modern digital circuits can be very large and complex; current processor
chips contain hundreds of millions of components. Such circuits cannot be
designed as one giant diagram, with every component inserted individually.
The key to design is abstraction. The circuit is organised in a series of levels of
abstraction.

At the lowest level are the logic gates and other primitive components.
These are used to design the next level up, including circuits like multiplexors,
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Figure 13.6: Multiplexor

demultiplexors, half and full adders, etc. Such circuits contain around 5 to 10
lower level components, so their specifications are not too complicated. The
next level up of the design comprises basic circuits, not primitive logic gates:
a design containing 5 or 10 circuits at the level of a multiplexor, for example,
would actually contain on the order of 100 logic gates. The same process
continues for many levels of abstraction, but at all stages the design is kept
reasonably simple through the use of sufficiently high level building blocks.

This section shows just a few simple circuit designs, in order to give some
feeling for how abstraction is used. We will be concerned with just three lev-
els: the primitive logic gates; the simplest circuits, including multiplexors and
adders for individual bits, and the next level up where binary numbers are
added.

13.2.3 Multiplexors

A multiplexor is the hardware equivalent of a conditional (if—then—else) ex-
pression. It takes a control input a and two data inputs, x and y. There is one
output; if a is 0 then the output is x, but if a is 1 then the output is y. The
circuit is implemented using the standard logic gates (see Figure 13.6):

mux1 :: Signal a => a -> a -> a -> a
mux1 a x y = or2 (and2 (inv a) x) (and2 a y)

A demultiplexor is the opposite of a multiplexor. It has a single data input
x and a control input a. The circuit produces two outputs (z0, z1). The x
input is sent to whichever output is selected by a, and the other output is 0
regardless of the value of x. Figure 13.7 shows the circuit, which is specified as
follows:

demux1 :: Signal a => a -> a -> (a,a)
demux1 a x = (and2 (inv a) x, and2 a x)
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Figure 13.8: Half Adder Black Box

Exercise 2. Recall the informal description of the multiplexor: if a is 0 then
the output is x, but if a is 1 then the output is y. Write a truth table that
states this formally, and then use the procedure from Section 13.2.2 to
design a multiplexor circuit. Compare your solution with the definition
of mux1 given above.

13.2.4 Bit Arithmetic

It’s natural to use bits to represent Boolean values and to perform logical
calculations with them. An even more common application is to use bits to
represent numbers, for example using the binary number system. In fact, the
word ‘bit’ reflects this usage: it originated as an acronym for Binary Digit.
In this section, we will look at digital circuits for adding individual bits; the
following sections extend this to words representing binary numbers.

The most basic addition circuit is the half adder, which takes two bits a and
b to be added together, and produces a two-bit result (c, s) where c is the carry
and s is the sum. Figure 13.8 gives the black box diagram for a half adder, and
here is its truth table:

a b c s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

A circuit implementing the half adder could be synthesised using the method
given in Section 13.2.2, but we could also just observe that the carry output
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Figure 13.9: Half Adder Circuit

c has the same truth table as the standard and2 logic gate, while the sum
output s is the same as the exclusive or (xor). Therefore a half adder can be
implemented with just two logic gates (Figure 13.9).

halfAdd :: Signal a => a -> a -> (a,a)
halfAdd a b = (and2 a b, xor a b)

It is important to be sure that a circuit design is correct before actually
fabricating the hardware. One method for improving confidence in correctness
is to simulate the circuit. This approach works well for circuits that have a small
number of inputs (and no internal state), like halfAdd, because it’s possible to
check every possible combination of input values. Most real-world circuits are
too complex for exhaustive testing, and a good approach is to perform some
testing and also to carry out a correctness proof. This provides two independent
methods for checking the circuit, greatly reducing the likelihood that errors will
go unnoticed.

Although halfAdd is simple enough to allow complete testing on all possible
inputs, we will also consider how to prove its correctness. In order to do this,
it’s useful to define a bitValue function that converts a bit signal into an integer,
either 0 or 1. This function requires that the signal arguments be members of
the Static class, which ensures that they have fixed numeric values. (There
are non-static signals used in circuits with flip flops, but those details need not
concern us here.)

bitValue :: Static a => a -> Int
bitvalue x = if x==zero then 0 else 1

The following theorem says that the half adder circuit produces the correct
result; that is, if we interpret the output (c, s) as a binary number, then this is
actually the sum of the numeric values of the inputs.

Theorem 106. Let (c, s) = halfAdd a b. Then

2 × bitValue c + bitValue s = bitValue a + bitValue b.



13.2. FUNCTIONAL CIRCUIT SPECIFICATION 365

ba

Add
Full

s

c’ c

Figure 13.10: Full Adder Black Box

Proof. This theorem is easily proved by checking the equation for each of the
four possible combinations of input values. This is essentially the same as
using Haskell to simulate the circuit for all the input combinations; the only
difference is notational. The details of this proof are left to you to work out.
For larger circuits, correctness proofs are not at all like simulators. We will see
the difference later in this chapter.

In order to add words representing binary numbers, it will be necessary to
add three bits: one data bit from each of the words, and a carry input bit.
This function is provided by the full adder circuit (Figure 13.10); as with the
half adder, there is a two-bit result (c′, s), where c′ is the carry output and s
is the sum.

a b c c′ s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

There are many ways to implement the full adder circuit. The traditional
method, given below and in Figure 13.11, uses two half adders. This is an
example of the use of abstraction in circuit design: the specification of the full
adder is simplified by the use of the halfAdd circuit. In general, larger circuits
are implemented using a handful of somewhat-smaller circuits, and designers
don’t implement everything directly using logic gates.

fullAdd :: Signal a => (a,a) -> a -> (a,a)
fullAdd (a,b) c = (or2 w y, s)
where (w,x) = halfAdd a b

(y,s) = halfAdd x c
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Figure 13.11: Implementation of Full Adder

The following theorem says that the full adder produces the correct result;
it will be needed later to prove the correctness of adders for general binary
numbers.

Theorem 107 (Correctness of full adder). Let (c′, s) = fullAdd (a, b) c, so
that c′ is the carry output and s is the sum output. Then

bitValue c′ × 2 + bitValue s = bitValue a + bitValue b + bitValue c.

Exercise 3. Use Haskell to test the half adder on the following test cases,
and check that it produces the correct results. (You’ll need to load the
Stdm.hs file.)

Test cases for half adder, with predicted results
halfAdd False False -- 0 0
halfAdd False True -- 0 1
halfAdd True False -- 1 0
halfAdd True True -- 1 1

Exercise 4. Prove Theorem 106 using truth tables.

Exercise 5. Prove Theorem 107.

13.2.5 Binary Representation

Binary numbers consist of a sequence of bits called a word. This is represented
as a list. For example, if you have four individual signals named w, x, y,
and z, you can treat them as a word by writing [w, x, y, z], and its type is
Static a ⇒ [a].

There are, unfortunately, two traditional schemes for numbering the bits in
a word: [x0, x1, x2, x3] and [x3, x2, x1, x0]. We will use the first scheme, where
the leftmost bit of a word has index 0 and the rightmost has index k−1, where
k is the number of bits in the word. The binary value of the word [x0, x1, x2, x3]
is

x0 × 23 + x1 × 22 + x2 × 21 + x3 × 20.
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In general, the value of a k-bit word x = [x0, . . . , xk−1] is

k−1∑
i=0

xi × 2k−(i+1).

This value is calculated by the wordValue function:

wordValue :: Static a => [a] -> Integer
wordValue [] = 0
wordValue (x:xs) = 2ˆk * bitValue x + wordValue xs

where k = length xs

Notice that in the binary number system the smallest value that can be
represented in k bits is 0, and the largest value is 2k −1. Negative numbers are
not representable at all in the binary system. Most modern computers represent
integers using the two’s complement number system, which allows for negative
numbers. One nice property of two’s complement is that an ordinary binary
addition circuit can be used to perform addition on two’s complement numbers.
Consequently, we won’t worry about negative numbers here, but will proceed
to the addition of binary numbers.

Exercise 6. Work out the numeric value of the word [1, 0, 0, 1, 0]. Then check
your result by using the computer to evaluate:

wordValue [True,False,False,True,False]

13.3 Ripple Carry Addition

A ripple carry adder (Figure 13.12) is used to calculate the sum of two words.
When the word size is four bits, the binary arguments are words containing the
bits [x0, x1, x2, x3] and [y0, y1, y2, y3]. The most significant bits are x0 and y0,
and they appear on the left of the word; the least significant bits are x3 and
y3, and they appear at the right of the word. The ripple carry adder also takes
a carry input c (this makes it possible to add larger numbers by performing a
sequence of additions). The output produced by the circuit is a single carry
output bit, and a word of sum bits. We require that the two input words and
the sum word all contain the same number of bits.

The following specification (Figure 13.13) uses four full adders to construct
a 4-bit ripple carry adder. In bit position i, the data inputs are xi and yi, and
the carry input is ci+1. The sum produced by position i is si, and the carry
output ci will be sent to the bit position to the left (position i − 1).

add4 :: Signal a => a -> [(a,a)] -> (a,[a])
add4 c [(x0,y0),(x1,y1),(x2,y2),(x3,y3)] =

(c0, [s0,s1,s2,s3])
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Figure 13.13: 4-Bit Ripple Carry Adder

where (c0,s0) = fullAdd (x0,y0) c1
(c1,s1) = fullAdd (x1,y1) c2
(c2,s2) = fullAdd (x2,y2) c3
(c3,s3) = fullAdd (x3,y3) c

To use the adder, we must convert the input numbers into 4-bit binary
representations. For example, here is the addition of 3 + 8.

Example: addition of 3 + 8
3 + 8
= 0011 ( 2+1 = 3)
+ 1000 ( 8 = 8)

= 1011 (8+2+1 = 11)
Calculate this by evaluating

add4 False [(False,True),(False,False),
(True,False),(True,False)]

The expected result is
(False, [True,False,True,True])

Exercise 7. Use Haskell to evaluate the example above, and check that the
result matches the expected result.
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f

:: c

:: b

:: a :: a

Figure 13.14: Building Block Circuit for mscanr

13.3.1 Circuit Patterns

The add4 specification in the previous section is not too complicated, but it
would be awfully tedious to extend it to handle words containing 32 or 64 bits
(which are the sizes most commonly used with current generation processors).
The analogous specifications would contain 32 or 64 local equations, and there
would be a correspondingly large number of indexed names. Besides the sheer
size, such specifications would be highly error-prone. Furthermore, it would be
better to define the family of all ripple carry adders, rather than to keep on
defining new ones at various different word sizes.

A much better approach is to define the general k-bit ripple carry adder
once and for all, so that it works for arbitrary k. To do this, we can’t name the
individual bits explicitly, like x0, x1 and so on. Instead, we need to use a method
that works for any word size without referring explicitly to the individual bits.
The most intuitive description of the adder would say ‘each full adder has its
carry input connected to the carry output of its right neighbour,’ and this is
exactly the idea that needs to be formalised with a function.

A higher order function can be used to express the abstract structure of
circuits like add4. The idea is to write a function whose argument is a circuit
specification; the higher order function connects up as many copies as required
of the circuit it is given. Figure 13.14 shows the sort of building block needed
for the ripple carry adder; it matches the black box structure of the full adder.

The mscanr function takes a building-block circuit with an appropriate
type. It creates as many copies of the building block as are required and makes
all the internal connections that are needed. Figure 13.15 depicts the structure
of the resulting circuit, and Figure 13.16 shows the circuit defined by mscanr
as a black box.

mscanr :: (b->a->(a,c)) -> a -> [b] -> (a,[c])
mscanr f a [] = (a,[])
mscanr f a (x:xs) =
let (a’,ys) = mscanr f a xs

(a’’,y) = f x a’
in (a’’, y:ys)
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mscanr   f

:: [c]

:: [b]

:: a :: a

Figure 13.16: Black Box for mscanr Pattern

Exercise 8. Let f :: b → a → (a, c) be a black box circuit. Draw a diagram
showing the structure of the circuit specified by

mscanr f a [(x0, y0), (x1, y1), (x2, y2)].

13.3.2 The n-Bit Ripple Carry Adder

Now we can use the higher order function mscanr to define a general ripple
carry adder that works for any word size. The definition is much more intuitive
than brute-force definitions like add4, once you understand the idea of using
higher order functions to express regular circuit patterns.

The mscanr function expresses the pattern of the ripple carry adder. It
simply says that a ripple carry adder consists of a row of full adders, one for
every bit position. The carry input to each full adder is connected to the carry
output from the full adder to the right, and the carry input to the rightmost
(least significant) bit position is the carry input to the entire addition.

The first argument is a circuit specification with type b → a → (a, c). Recall
that a full adder has type

Signal a ⇒ (a, a) → a → (a, a).

This fits the mscanr pattern, and a ripple carry adder consists of a row of full



13.3. RIPPLE CARRY ADDITION 371

adders with the carry input of each connected to the carry output of its right
neighbour.

rippleAdd :: Signal a => a -> [(a,a)] -> (a, [a])
rippleAdd c zs = mscanr fullAdd c zs

This definition works for arbitrary word size. The size of a particular circuit
is determined by the size of the input data word. The definition itself doesn’t
get longer if the words become longer! It’s now easy to specify a 6-bit adder,
as the following test case demonstrates.

Example: addition of 23+11
23 + 11
= 010111 (16+4+2+1 = 23)
+ 001011 ( 8+2+1 = 11) with carry input = 0

= 100010 ( 32+2 = 34) with carry output = 0
Calculate with the circuit by evaluating

rippleAdd False [(False,False),(True,False),(False,True),
(True,False),(True,True),(True,True)]

The expected result is
(False, [True,False,False,False,True,False])

Exercise 9. Work out a test case using the ripple carry adder to calculate
13+41=54, using 6-bit words. Test it using the computer.

13.3.3 Correctness of the Ripple Carry Adder

Theorem 108. Let xs and ys be k-bit words, so xs, ys :: Signal a ⇒ [a]. Define
(c, sum) = rippleAdd zero (zip xs ys); thus c :: a is the carry output and ss :: [a]
is the sum word. Then

bitValue c × 2k + wordValue ss = wordValue xs + wordValue ys.

The left-hand side of the equation is the numeric value of the output of the
ripple carry adder circuit, and the right-hand side is the numeric value of its
inputs. Thus the equation says that the circuit produces the correct answer.

Proof. Induction over k. For the base case, k = 0, and xs = ys = []. First we
simplify:

(c, ss) = rippleAdd zero [ ]
= mscanr fullAdd zero [ ]
= (zero, [ ])
c = zero
ss = []
wordValue [ ] + wordValue [ ]

= 0 + 0



372 CHAPTER 13. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

= 0
bitValue c × 2k + wordValue ss

= 0 × 20 + 0
= 0 × 20 + wordValue [ ]

For the inductive case, let k = length xs = length ys, and assume

bitValue c × 2k + wordValue ss = wordValue xs + wordValue ys,

where (c, ss) = rippleAdd zero (zip xs ys). The aim is to prove that

bitValue c × 2k+1 + wordValue ss =
wordValue (x : xs) + wordValue (y : ys),

where (c, ss) = rippleAdd zero (zip (x : xs) (y : ys)).
First we simplify:

(c, ss) = mscanr fullAdd zero (zip (x : xs) (y : ys))
= mscanr fullAdd zero ((x, y) : zip xs ys)
= let (c′, ss) = mscanr fullAdd zero (zip xs ys)

= rippleAdd zero (zip xs ys)
(c′′, s) = fullAdd (x, y) c′

in (c′′, s : ss)

Now the left-hand side of the equation can be transformed into the right-hand
side, using equational reasoning:

lhs (numeric value of output from the adder)
= bitValue c × 2k+1 + wordValue ss
= bitValue c′′ × 2k+1 + wordValue (s : ss)
= bitValue c′′ × 2k+1 + bitValue s × 2k + wordValue ss
= (bitValue c′′ × 2 + bitValue s) × 2k + wordValue ss
= (bitValue x + bitValue y + bitValue c′) × 2k + wordValue ss
= (bitValue x + bitValue y) × 2k + (bitValue c′) × 2k + wordValue ss)
= (bitValue x + bitValue y) × 2k + wordValue xs + wordValue ys
= (bbitValue x × 2k + wordValue xs) + (bitValue y × 2k + wordValue ys)
= wordValue (x : xs) + wordValue (y : ys)
= rhs (numeric value of inputs to the adder)

13.3.4 Binary Comparison

Comparison of binary numbers is just as important as adding them. It is
particularly interesting to consider how to implement a comparison circuit,
since this problem has some strong similarities and also some strong differences
to the ripple carry adder.
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First, let’s consider the comparison of two bits. This is analogous to starting
out with a half adder. The problem is to design a circuit halfCmp that compares
two one-bit numbers x and y. The result of the comparison should be a triple
of bits of the form (lt, eq, gt), where lt is true if x < y, eq is true if x = y, and
gt is true if x > y. The problem is pretty simple, as x and y are both just one
bit! The type should be

halfCmp :: Signal a ⇒ (a, a) → (a, a, a),

where the input bits x and y are provided as a pair (x, y), and the result
triple consists of the result bits (lt, eq, gt) :: (a, a, a). Finding a solution is
straightforward:

halfCmp :: Signal a => (a,a) -> (a,a,a)
halfCmp (x,y) =
(and2 (inv x) y, -- x<y when x=0,y=1
inv (xor x y), -- x=y when x=0,y=0 or x=1,y=1
and2 x (inv y)) -- x>y when x=1,y=0

The next problem to consider is that of designing a ripple comparator that
takes two words representing binary numbers (the words must have the same
size), and returns a triple of three bits (lt, eq, gt) that indicate the result of
comparing x and y. The meanings of the output bits are just the same as
in the previous problem; the only difference is that now the inputs to the
comparator are words rather than bits.

Just as you compare two numbers by looking first at the most significant
digits, a binary comparison is performed by moving from left to right through
the word. Initially we assume the two words are equal; represent this by
(lt, eq, gt) = (0, 1, 0). If the next bit position has x = 1 and y = 0, then
we know that the final result must be (0, 0, 1) regardless of any bits to the
right; conversely if x = 0 and y = 1, then the final result must be (1, 0, 0)
regardless of the bit values to the right. However, if x and y have the same
value in this bit position, then as far as we know the result is still (0, 1, 0) but
that result might be changed later.

The calculation in each bit position requires the two local bits (that is, for
position i we need the ith bit of both of the input words). It also requires the
result of the comparison for all the bits to the left. The task is performed by a
full comparison circuit, which is analogous to the full adder.

fullCmp :: Signal a => (a,a,a) -> (a,a) -> (a,a,a)
fullCmp (lt,eq,gt) (x,y) =
(or2 lt (and3 eq (inv x) y), -- <
and2 eq (inv (xor x y)), -- =
or2 gt (and3 eq x (inv y))) -- >

Now we can define the ripple comparison circuit, which compares two binary
numbers. Its definition is similar to the ripple carry adder, but there are several
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differences in the circuit pattern required. In the first place, the information
flow is left to right for comparison, rather than the right to left order used in
addition. Another difference is that for comparison we are interested only in
the final horizontally moving value; this would be analogous to wanting the
carry output from an addition, but we do not need a result analogous to the
sum bits. The standard foldl higher order function specifies exactly the circuit
pattern needed here. A final difference is that the comparator just takes the
two numbers to be compared; it generates the initial horizontal value locally.
In contrast, the ripple carry adder takes a carry input. The reason for that is
that many applications of adders, such as the ALU of a computer’s processor,
use carry inputs to provide the ability to add long numbers comprising several
words.

rippleCmp :: Signal a => [(a,a)] -> (a,a,a)
rippleCmp z = foldl fullCmp (False,True,False) z

Exercise 10. Define a full set of test cases for the circuit halfCmp, which
compares two bits, and execute them using the computer.

Exercise 11. Define three test cases for the rippleCmp circuit, with a word
size of three bits, demonstrating each of the three possible results. Run
your test cases on the computer.

13.4 Suggestions for Further Reading

The application of discrete mathematics to digital circuit design is a large
subject. Most of the publications that address this area are aimed more at
researchers than students, so some of the references cited here may be difficult
to read, but it’s interesting to see real applications of discrete mathematics.

The ripple carry adder presented in this chapter takes time proportional
to the word size, which would make it too slow for practical use on modern
machines, where the word size is typically 64 bits. It is possible to design
faster adders, but their operation is much more subtle than that of the ripple
carry adder. The best way to understand how a fast adder works is to apply
mathematical and formal methods to its design [23].

Hydra [22] is a computer hardware description language based on Haskell.
The software, as well as a collection of papers on how to use Hydra for circuit
design and formal correctness proofs, can be downloaded from the web [22].

13.5 Review Exercises

Exercise 12. Show that the and4 logic gate, which takes four inputs a, b, c,
and d and outputs a ∧ b ∧ c ∧ d, can be implemented using only and2
gates.
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Exercise 13. Work out a complete set of test cases for the full adder, and
calculate the expected results. Then simulate the test cases and compare
with the predicted results.

Exercise 14. Suppose that a computer has 8 memory locations, with ad-
dresses 0, 1, 2, . . . 7. Notice that we can represent an address with 3 bits,
and the size of the memory is 23 locations. We name the address bits
a0a1a2, where a0 is the most significant bit and a2 is the least significant.
When a memory location is accessed, the hardware needs to send a signal
to each location, telling it whether it is the one selected by the address
a0a1a2. Thus there are 8 select signals, one for each location, named
s0, s1, . . . , s7. Design a circuit that takes as inputs the three address bits
a0, a1, a2, and outputs the select signals s0, s1, . . . , s7. Hint: use demul-
tiplexors, arranged in a tree-like structure. (Note: modern computers
have an address size from 32 to 64 bits, allowing for a large number of
locations, but a 3-bit address makes this exercise more tractable!)

Exercise 15. Does the definition of rippleAdd allow the word size to be 0? If
not, what prevents it? If so, what does it mean?

Exercise 16. Does the definition of rippleAdd allow the word size to be neg-
ative? If not, what prevents it? If so, what does it mean?

Exercise 17. Note that for the half adder and full adder, we did thorough
testing—we checked the output of the circuit for every possible input.
Note also that we did not do this for the ripple carry adder, where we just
tried out a few particular examples. The task: Explain why it is infeasible
to do thorough testing of a ripple carry adder circuit, and estimate how
long it would take to test all possible input values for the binary adder
in a modern processor where the words are 64 bits wide.

Exercise 18. Computer programs sometimes need to perform arithmetic, in-
cluding additions and comparisons, on big integers consisting of many
words. Most computer processor architectures provide hardware support
for this, and part of that hardware support consists of the ability to per-
form an addition where the carry input is supplied externally, and is not
assumed to be 0. Explain why the carry input to the rippleAdd circuit
helps to implement multiword addition, but we don’t need an analogous
horizontal input to rippleCmp for multiword comparisons.
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Software Tools

The Haskell programming language provides excellent support for mathemat-
ical computing in general. This book uses programs in Haskell 98, which is
standardised, stable, and well-supported. The book also requires a library of
definitions that give additional support for the topics of discrete mathematics.
The library is called Software Tools for Discrete Mathematics, and it consists
of a single file called Stdm.hs. You need, therefore, two pieces of software to
use a computer along with the book:

• An interactive implementation of Haskell;

• The file Stdm.hs.

Both items are free, and they run on most major computer platforms. All of
the software can be downloaded from the web. The web home page for this
book contains the stdm.hs file along with full documentation:

www.dcs.gla.ac.uk/ jtod/discrete-mathematics/

The web page also tells you how to download and use various implementations
of Haskell.

Many of the programming examples and exercises that appear in this book
rely on functions that are defined in Stdm.hs. To run the examples or exercise
solutions, you will need to import the Stdm module. You can do this by placing
the following line at the beginning of a Haskell sript file:

import Stdm

You can also import the software tools in most interactive versions of
Haskell; for example, with the ghci interpreter, enter the following command:

:load Stdm

The details of how to use the software tools may depend on which Haskell
implementation you are using, so check the web page for up-to-date instruc-
tions.
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Resources on the Web

Home page for Discrete Mathematics Using a Computer. The book’s
web page contains a variety of useful information, and is an integral part of the
book:

• You can download the Software Tools for Discrete Mathematics, along
with complete documentation;

• There are additional practice problems, solutions, and explanations;

• There are up-to-date pointers to many other relevant web pages.

http://www.dcs.gla.ac.uk/˜jtod/discrete-mathematics/

Instructor’s Guide for Discrete Mathematics Using a Computer.
The Instructor’s Guide is entirely online. A password is required to read it;
please contact the authors to obtain access. See the book home page for the
current contact address.

http://www.dcs.gla.ac.uk/˜jtod
/discrete-mathematics/instructors-guide/

Home page for Haskell. This page contains complete and current informa-
tion on the Haskell language, including free (and open source) compilers and
interpreters that you can download, up-to-date pointers to the home pages for
all the Haskell compilers and interpreters, the official Haskell language defini-
tion, the complete specification for the standard libraries, pointers to books
and articles on Haskell and functional programming, and more.

http://www.haskell.org/
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Appendix C

Solutions to Selected
Exercises

C.1 Introduction to Haskell

3.

isA :: Char -> Bool
isA ’a’ = True
isA c = False

4.

isHello :: String -> Bool
isHello (’h’:’e’:’l’:’l’:’o’:[]) = True
isHello str = False

5.

removeSpace :: String -> String
removeSpace [] = []
removeSpace (’ ’:xs) = xs
removeSpace xs = xs

6.

toBool :: Int -> Bool
toBool 1 = True
toBool 0 = False

convert :: [Int] -> [Bool]
convert xs = map toBool xs

381
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7.

member0 :: String -> Bool
member0 string = or (map (== ’0’) string)

8.

foldr max 0 [1,5,3]
= 1 ‘max‘ (5 ‘max‘ (3 ‘max‘ 0))
= 1 ‘max‘ (5 ‘max‘ 3)
= 1 ‘max‘ 5
= 5

9.

addJust :: Maybe Int -> Maybe Int -> Maybe Int
addJust (Just a) (Just b) = Just (a + b)
addJust (Just a) Nothing = Just a
addJust Nothing (Just a) = Just a
addJust Nothing Nothing = Nothing

addMaybe :: [Maybe Int] -> [Maybe Int] -> [Maybe Int]
addMaybe lst1 lst2 = zipWith addJust lst1 lst2

10.

data Metals = Copper | Silver | Gold
| Tin | Platinum | Bronze
deriving (Eq, Show)

11. The coins can be represented by a list containing one or more elements of
the following type:

data Coins = OneP Int | TwoP Int | FiveP Int
| TenP Int | TwentyP Int
| FiftyP Int | HundredP Int
deriving (Eq, Show)

12.

data Universal = BOOL Bool | INT Int | CHAR Char
deriving (Eq, Show)

13. A separate constructor is needed to indicate the number of elements that
are present, so we introduce five constructors Tuple0, etc. It would not be
correct to use a list type, for two reasons: the individual elements should be
allowed to have different types, and the number of elements must be limited to
four.
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data Tuples a b c d = Tuple0 | Tuple1 a | Tuple2 a b
| Tuple3 a b c | Tuple4 a b c d
deriving (Eq, Show)

15.

showMaybe :: Show a => Maybe a -> String
showMaybe Nothing = []
showMaybe (Just a) = show a

16.

bitwiseAnd :: [Int] -> [Int] -> [Int]
bitwiseAnd word1 word2 = zipWith bitAnd word1 word2

17.

[True, False] "2" ++ "a"
[(3,True), (9,False)] 2 == 3
’a’ > ’b’ [[1],[2],[3]]

18. The types of the two paired elements must be the same, according to the
type signature given. In addition, the type of the first component of the pair
was defined as being of the Num class, while the function f was applied to a
pair with a Boolean as its first element.
19. There are two possible constructors in the type, and the function definition
handles only one of them. If the other is used, an error occurs.
20.

[a | (Just a) <- xs]

21.

largerThanN :: [Int] -> Int -> [Int]
largerThanN lst n = [e | e <- lst, e > n]

22.

f :: [Int] -> Int -> [Int]
f lst v = [n | n <- [0..length lst - 1], lst!!n == v]

23.

[e | e <- [1..20],
[x | x <- [1..e], x * x == e] == []]

24. We define an auxiliary function that compares the current letter with the
one we are looking for, and increments the running count if it matches. The
main iteration over the string is performed by the foldr.
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count :: (Eq a, Num b) => a -> a -> b -> b
count letter x acc
= if letter == x then acc + 1 else acc

countLetters :: Char -> String -> Int
countLetters c lst = foldr (count c) 0 lst

25.

remove :: Char -> Char -> [Char] -> [Char]
remove ch x acc
= if x == ch then acc else x:acc

removeEachLetter :: Char -> [Char] -> [Char]
removeEachLetter ch lst
= foldr (remove ch) [] lst

26.

rearrange :: [a] -> a -> [a]
rearrange lst x = x:lst

rev :: [a] -> [a]
rev lst = foldl rearrange [] lst

27.

takeLast :: Maybe a -> a -> Maybe a
takeLast Nothing x = Just x
takeLast (Just y) x = Just x

maybeLast :: [a] -> Maybe a
maybeLast lst = foldl takeLast Nothing lst

C.3 Recursion

1.

copy :: [a] -> [a]
copy [] = []
copy (x:xs) = x : copy xs

2.

inverse :: [(a,b)] -> [(b,a)]
inverse [] = []
inverse ((a,b):xs) = (b,a) : inverse xs
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3.

merge :: Ord a => [a] -> [a] -> [a]
merge [] bs = bs
merge as [] = as
merge (a:as) (b:bs) =
if a < b
then a : merge as (b:bs)
else b : merge (a:as) bs

4.

(!!) :: Int -> [a] -> Maybe a
(!!) n [] = Nothing
(!!) 0 (x:xs) = Just x
(!!) n (x:xs) = (!!) (n-1) xs

5.

lookup :: Eq a => a -> [(a,b)] -> Maybe b
lookup a [] = Nothing
lookup a ((a’,b):ps)
= if a==a’ then Just b else lookup a ps

6.

countElts :: Eq a => a -> [a] -> Int
countElts e [] = 0
countElts e (x:xs) =
if e == x
then 1 + countElts e xs
else countElts e xs

7.

removeAll :: Eq a => a -> [a] -> [a]
removeAll e [] = []
removeAll e (x:xs) =
if e == x
then removeAll e xs
else x : removeAll e xs

8.

f :: [a] -> [a]
f [] = []
f (x:xs) = g xs

g :: [a] -> [a]
g [] = []
g (x:xs) = x:f xs
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9.

extract :: [Maybe a] -> [a]
extract [] = []
extract (Nothing:xs) = extract xs
extract (Just x:xs) = x : extract xs

10.

loop :: String -> String -> Int -> Maybe Int
loop [] s2 n = Nothing
loop (x:xs) s2 n
= if length s2 > length (x:xs)

then Nothing
else if take (length s2) (x:xs) == s2

then Just n
else loop xs s2 (n+1)

f :: String -> String -> Maybe Int
f str1 str2 = loop str1 str2 0

11.

foldrWith ::
(a -> b -> c -> c) -> c -> [a] -> [b] -> c

foldrWith f z [] bs = z
foldrWith f z as [] = z
foldrWith f z (a:as) (b:bs) =
f a b (foldrWith f z as bs)

12.

mappend :: (a -> [b]) -> [a] -> [b]
mappend f xs = foldr fun [] xs
where fun x acc = f x ++ acc

13.

removeDuplicates :: Eq a => [a] -> [a]
removeDuplicates [] = []
removeDuplicates (x:xs)
= if elem x xs

then removeDuplicates xs
else x : removeDuplicates xs

14.

member :: Eq a => a -> [a] -> Bool
member a [] = False
member a (x:xs) = a == x || member a xs
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15.

intersection :: Eq a => [a] -> [a] -> [a]
intersection [] set2 = []
intersection (x:set1) set2
= if (elem x set2)

then x : intersection set1 set2
else intersection set1 set2

16.

isSubset :: Eq a => [a] -> [a] -> Bool
isSubset [] set2 = True
isSubset (x:xs) set2 = elem x set2 /\ isSubset xs set2

17.

isSorted :: Ord a => [a] -> Bool
isSorted [] = True
isSorted (x:[]) = True
isSorted (x:y:xs) = x < y && isSorted (y:xs)

C.4 Induction

1. Let m be an arbitrary natural number, and we will prove that the theorem
holds for every natural number n by induction over n.

Base case: a0×n = a0 = 1 = (am)0.
Induction case: assume the hypothesis am×n = (am)n. The aim is to es-

tablish am×(n+1) = (am)n+1. Transform the left-hand side into the right-hand
side using algebra: am×(n+1) = a(m×n)+m = am×n ×am = (using the induction
hypothesis) (am)n × am = (am)n+1. Therefore am×n = (am)n → am×(n+1) =
(am)(n+1). So by mathematical induction, we have ∀n ∈ N.am×n = (am)n.

2. The sum of the first n odd numbers can be written as
∑n−1

i=0 (2i+1), and we
want to prove that this is equal to n2. It’s possible to prove this by induction,

This theorem can also be proved by reusing the theorem we already have,
along with some simple algebra, as follows:

∑n−1
i=0 (2i + 1) = 2

∑n−1
i=0 i +∑n−1

i=0 1 = 2 (n−1)n
2 + n = n2 − n + n = n2.

4. Proof by induction on n.
Base case.∑0

i=1 fib i
= 0
= 0 + 1 − 1
= fib 0 + fib (0 + 1) − 1
= fib (0 + 2) − 1
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Induction case. Assume the hypothesis
∑n

i=1 fib i = fib (n + 2) − 1.∑n+1
i=1 fib i
=

∑n
i=1 fib i + fib (n + 1)

= fib (n + 2) − 1 + fib (n + 1)
= fib (n + 1) + fib (n + 2) − 1
= fib (n + 3) − 1
= fib (n + 1 + 2) − 1

Thus we have proved that the theorem holds for n = 0, and that if it holds
for arbitrary n it also holds for n + 1. Therefore, by induction, the theorem
holds for all n in the set of natural numbers.
5.

Proof. Induction over xs. The base case is

length ([ ]++ys)
= length ys { (++).1 }
= 0 + length ys { 0 + x = x }
= length [ ] + length ys { length.1 }

Assume that length (xs++ys) = length xs + length ys. The inductive case is

length ((x : xs)++ys)
= length (x : (xs++ys)) { (++).2 }
= 1 + length (xs++ys) { length.2 }
= 1 + (length xs + length ys) { hypothesis }
= (1 + length xs) + length ys { (+) is associative }
= length (x : xs) + length ys { length.2 }

6.

Proof. Induction over xs. The base case is

map f ([ ] ++ ys)
= map f ys { (++).1 }
= [ ] ++ map f ys { (++).1 }
= map f [ ] ++ map f ys { map.1 }

For the inductive case, assume map f (xs++ys) = map f xs ++ map f ys. Then

map f ((x : xs) ++ ys)
= map f (x : (xs++ys)) { (++).2 }
= f x : map f (xs++ys) { map.2 }
= f x : (map f xs ++ map f ys) { hypothesis }
= (f x : map f xs) ++ map f ys { (++).2 }
= map f (x : xs) ++ map f ys { map.2 }
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7.

Proof. Using the definition of composition, we can rewrite the equation to be
proved as:

map f (map g xs) = map (f.g) xs

We prove this by induction over xs. The base case is

map f (map g [ ])
= map f [ ] { map.1 }
= [ ] { map.1 }
= map (f.g) [ ] { map.1 }

Assume that map f (map g xs) = map (f.g) xs. The inductive case is

map f (map g (x : xs))
= map f (g x : map g xs) { map.2 }
= f (g x) : map f (map g xs) { map.2 }
= f (g x) : map (f.g) xs { hypothesis }
= ((f.g) x) : map (f.g) xs { (.) }
= map (f.g) (x : xs) { map.2 }

11.

Theorem 109 (++ is associative). (xs++ys)++zs = xs++(ys++zs)

Proof. Induction over xs. The base case is

([ ]++ys)++zs
= ys++zs
= [ ]++(ys++zs)

Inductive case.

((x : xs)++ys)++zs
= (x : (xs++ys))++zs
= x : ((xs++ys)++zs)
= x : (xs++(ys++zs))
= (x : xs)++(ys++zs)
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13. The first line of the inductive case says ‘Assume P (n), and consider a set
containing n + 1 horses; call them h1, h2, . . . , hn+1.’ Consider what happens
when n = 1. Our set of n + 1 horses contains only two of them, h1 and h2.
Thus the two subsets turn out to be A = {h1} and B = {h2}. All the horses in
A have the same colour, and all the horses in B have the same colour. So far,
so good—but the next sentence says ‘Pick one of the horses that is an element
of both A and B,’ and it is impossible to do this because when n = 1, the sets
A and B are disjoint. The rest of the proof is invalid because it relies on this
non-existent horse.

There are two useful lessons to learn from this.

• Whenever a proof says to ‘pick an x such that . . . ’, it is essential to make
sure that such an x exists.

• It is helpful to work through the details using a concrete example.

By the way: the flaw explained above is the only error in this proof. If the proof
worked for the case n = 1—if all pairs of horses had the same colour—then it
would indeed be true that all horses are the same colour.

14.
The length of xss must be finite, otherwise the operation would never ter-

minate and this result would never be reached.

15.

reverse (reverse [1, 2, 3])
= reverse [3, 2, 1]
= [1, 2, 3]

16.

Proof. Induction over xs. The base case:

reverse([]++ys)
= reverse ys
= reverse ys++[ ]
= reverse ys++reverse [ ]

Inductive case:

reverse ((x : xs)++ys)
= reverse (x : (xs++ys))
= reverse (xs++ys)++[x]
= (reverse ys++reverse xs)++[x]
= reverse ys++(reverse xs++[x])
= reverse ys++(reverse(x : xs))
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So the theorem holds by list induction.

17.

Proof. Induction over xs. The base case is

reverse (reverse [ ])
= reverse [ ]
= [ ]

For the inductive case, assume for some xs that reverse (reverse xs) = xs. Then

reverse (reverse (x : xs))
= reverse (reverse xs++[x])
= reverse [x]++reverse (reverse xs)
= [x]++xs
= x : xs

18. Consider, for example, the infinite list nats = [0, 1, 2, 3, . . .]. This is easily
defined in Haskell, with the expression [0..]. Notice that nats is not an infinite
loop; a computation requiring only a finite portion of it will terminate. On the
other hand, any computation requiring all of nats will go into an infinite loop;
thus length nats will never terminate. This is expressed by saying length nats =
⊥, where the symbol ⊥ (pronounced ‘bottom’) denotes an undefined value
(either an infinite loop or an error).

Now consider the equation reverse (reverse nats) = nats. The left-hand
side of the equation is not just a vague, intuitive statement that might be
interpreted as leaving a list unchanged. It has a specific meaning that can (and
must) be determined by equational reasoning using the definition of reverse.

The outermost application of reverse must begin by determining which of
the two defining equations is relevant; it does this by performing a case analysis
on its argument (which is reverse nats) to decide whether this is the empty list
[] or a non-empty list in the form x:xs.

reverse (reverse (nats 0))
= case reverse (nats 0) of

[ ] → [ ]
x : xs → reverse xs++[x]

Now the computer must evaluate reverse (nats 0) far enough to decide
whether it is the empty list, or a cons expression. This evaluation proceeds as
follows:
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reverse (nats 0)
= reverse (0 : nats 1)
= reverse (nats 1)++[0]
= reverse (1 : nats 2)++[0]
= (reverse (nats 2)++[1])++[0]

This evaluation is never going to terminate. The computer will just keep gener-
ating larger and larger natural numbers, constructing ever bigger expressions,
but it will never actually figure out whether the original value reverse (nats 0)
is empty! Hence no information at all can be obtained from evaluating

reverse (reverse (nats 0)).

To summarise, we know that:

reverse (reverse (nats 0)) = ⊥
nats 0 �= ⊥

A consequence of this, which might be surprising, is that

reverse . reverse �= id.

19.
Base case:

length (concat xss)
= { xss = [] }

length (concat [])
= { (concat).[] }

length []
=

0

True,as the empty list has no elements, thus its length is 0

Inductive case:

length(concat xss)
= { xss = ys : yss }

length (concat (ys : yss))
= { (concat).(:) }

length (ys ++ concat yss)
= { (length).theorem }

length ys + length (concat yss)

True, as length ys delivers the length of the first element in xss, and under
the induction assumption P (n), length (concat yss) delivers the length of the
remaining elements in xss.
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20.
Assume that the list xs is of type [Bool], that it has n + 1 elements, and

that True is an element of xs.
We will prove that

P (n) ≡ or xs = True

Base case:

or xs
= { xs = [True] }

or [True]
= { (:) }

or (True: [])
= { definition of or }

foldr (||) False (True: [])
= { (foldr).(:) }

True || (foldr (||) False [])
= { || commutative }

(foldr (||) False []) || True
= { || null }

True

Inductive case:

or xs
= { definition of or }

foldr (||) False xs
= { xs = y : ys }

foldr (||) False (y : ys)
= { (foldr).(:) }

y || (foldr (||) False (ys))

There are two cases:

Case 1: y = True

True || (foldr (||) False (ys))
= { || commutative }

(foldr (||) False (ys)) || True
= { || null }

True

Case 2: True is in ys
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y || (foldr () False (ys))
= { induction assumption }

y || True
= { || null }

True

21.
Assume that the list xs is of type Bool, that it has n + 1 elements, and

that all elements of xs are True.
We will prove that

P (n) ≡ and xs = True

Base case:

and xs
= { definition of and }

foldr (&&) True xs
= { xs = [True] }

foldr (&&) True [True]
= { (:) }

foldr (&&) True (True: [])
= { (foldr).(:) }

True && (foldr (&&) True [])
= { (foldr).[] }

True && True
= { && identity }

True

Inductive case:

and xs
= { definition of and }

foldr (&&) True xs
= { xs = True: ys }

foldr (&&) True (True: ys)
= { (foldr).(:) }

True (&&) (foldr (&&) True ys)
= { inductive assumption }

True && True
= { && identity }

True

22.

maximum :: [Ord] -> Ord

maximum xs = foldr (max) y ys
where xs = y:ys
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23.
Base case:

maximum xs
= { xs = y : [] }

maximum (y : [])
= { definition of maximum }

foldr (max) y []
= { (foldr).[] }

y

True, as y >= y .

Inductive case:

maximum xs
= { xs = y1 : (y2 : ys) }

maximum (y1 : (y2 : ys))
= { definition of maximum }

foldr (max) y1 (y2 : ys)
= { (foldr).(:) }

y2 max (foldr (max) y1 ys)

Case 1: y2 is the largest element of xs.

y2 max (foldr (max) y1 ys)
= { definition of max }

y2

Case 2: y2 is not the largest element of xs.

y2 max (foldr (max) y1 ys)
= { definition of max }

foldr (max) y1 ys
= { definition of maximum }

maximum (y1 : ys)

In case 1, y2 is greater than or equal to any other element in xs by the case
1 assumption.

In case 2, the largest element in xs, maximum (y1 : ys), is greater than or
equal to all the other elements in y1 : ys by the induction assumption and
greater than or equal to y2 by the case 2 assumption.

24.

firstElement :: [a] -> a
firstElement (x:xs) = x

firstElements :: [[a]] -> [a]
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firstElements xs = map (firstElement) xs

25.
Assume that the finite list xss is of type [[a]] and that it has length n.
We prove that

P (n) ≡ concat xss = foldr (++) [] xss

Base case:

concat xss
= { xss = [] }

concat []
= { (concat).[] }

[]
= { (foldr).[] }

foldr (++) [] []
= { xss = [] }

foldr (++) [] xss

Inductive case:

concat xss
= { xss = ys : yss }

concat ys : yss
= { (concat).(:) }

ys ++ concat yss
= { induction assumption }

foldr (++) [] (ys : yss)
= { xss = ys : yss }

foldr (++) [] xss
26.

(&&)::Bool -> Bool -> Bool

and :: [Bool] -> Bool
and = foldr (&&) True

27.
and ([False] ++ xs)

= { ++.(:) }
and (False : xs)

= { and.(:) }
foldr (&&) True (False : xs)

= {foldr.(:)}
False && (foldr (&&) True xs)

= { && null }
False
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C.5 Trees

1.

data Tree1
= Tree1Leaf
| Tree1Node Char Integer Tree1 Tree1 Tree1

2.

data Tree2
= Tree2Leaf
| Tree2Node Integer [Tree2]

4.

inorderf :: (a->b) -> BinTree a -> [b]
inorderf f BinLeaf = []
inorderf f (BinNode x t1 t2) =

inorderf f t1 ++ [f x] ++ inorderf f t2

8.

mapTree :: (a->b) -> BinTree a -> BinTree b
mapTree f BinLeaf = BinLeaf
mapTree f (BinNode a t1 t2) =
BinNode (f a) (mapTree f t1) (mapTree f t2)

9.

concatTree :: Tree [a] -> [a]
concatTree Tip = []
concatTree (Node as t1 t2) =
concatTree t1 ++ as ++ concatTree t2

10.

zipTree :: Tree a -> Tree b -> Maybe [(a,b)]
zipTree Tip t2 = Nothing
zipTree t1 Tip = Nothing
zipTree (Node a t1 t2) (Node b t3 t4)
= case (zipTree t1 t3) of

Nothing -> Nothing
Just lst1 ->
case (zipTree t2 t4) of
Nothing -> Nothing
Just lst2 -> Just (lst1 ++ [(a,b)] ++ lst2)
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11. The function traverses the two trees together. If either tree (or both) is
empty, then the empty list is returned. If both trees are nonempty, then their
top elements a and b are combined by computing f a b, and the function
traverses the subtrees recursively.

zipWithTree ::
(a -> b -> c) -> Tree a -> Tree b -> [c]

zipWithTree f Tip t2 = []
zipWithTree f t1 Tip = []
zipWithTree f (Node a t1 t2) (Node b t3 t4)
= zipWithTree f t1 t3
++ [f a b]
++ zipWithTree f t2 t4

12. A straightforward approach just uses existing functions:

appendTree1 :: BinTree a -> [a] -> [a]
appendTree1 t ks = inorder t ++ ks

However, this solution builds a list of data from the tree and then recopies this
data during the concatenation. The solution can be made more efficient using
a continuation list:

appendTree2 :: BinTree a -> [a] -> [a]
appendTree2 BinLeaf ks = ks
appendTree2 (BinNode x t1 t2) ks =
appendTree2 t1 (x : appendTree2 t2 ks)

C.6 Propositional Logic

1. The answer is a question. If someone were to ask the computer named
“Bob” whether it would answer “yes” to the question “Does this bus go to the
airport?”, would the computer named “Bob” answer “yes”?

These are the cases to consider.

• Case PfAir : Suppose the computer named “Bob” is a properly function-
ing computer and the bus is going to the airport. Then the computer
would answer “yes” if it were asked the question posed within the ques-
tion the computer is asked. So, the correct answer to the question is
“yes”, and, since the computer functions properly, that is the answer it
gives.

• Case TwAir : Suppose the computer named “Bob” contains twisted logic
and the bus is going to the airport. Then the computer would answer
“no” if it were asked the question posed within the question the computer
is asked. So, the correct answer to the question is “no”, and, since the
computer is twisted, the answer it gives is “yes”. So far, so good. You
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get the answer “yes” if the bus is going to the airport, no matter which
kind of computer Bob is.

• Case PfAin: Suppose the computer named “Bob” is a properly function-
ing computer and the bus is not going to the airport. Then the computer
would answer “no” if it were asked the question posed within the question
the computer is asked. So, the correct answer to the question is “no”,
and, since the computer functions properly, that is the answer it gives.

• Case TwAin: Suppose the computer named “Bob” contains twisted logic
and the bus is not going to the airport. Then the computer would answer
“yes” if it were asked the question posed within the question the computer
is asked. So, the correct answer to the question is “yes”, and, since the
computer is twisted, the answer it gives is “no”.

So you get the answer “no” if the bus is not going to the airport and the answer
“yes” if it is going to the airport, regardless of whether Bob is a properly
functioning computer or a computer with twisted logic.

Another Solution. Would the computer named “Bob” give the answer “yes”
to one and only one of the following two questions?

• Q1. Does the computer named Bob have twisted logic?

• Q2. Is this bus going to the airport?

The first solution was based on the logical operation “implication”. This
solution is based on “exclusive or”.

• Case PfAirXor : Suppose the computer named “Bob” is a properly func-
tioning computer and the bus is going to the airport. Then the computer
would answer “yes” because that is the correct answer to the question
about the number of “yes” answers to the Q-questions (“no” for Q1 and
“yes” for Q2).

• Case TwAirXor : Suppose the computer named “Bob” contains twisted
logic and the bus is going to the airport. Then the computer would
answer “yes” because the computer named “Bob” would answer “no” to
Q1 (because the correct answer is “yes”) and “no” to Q2 (because the
correct answer is “yes”). Since the answer to neither Q1 nor Q2 is “yes”,
the correct answer to the question about the number of “yes” answers
to the Q-questions is “no”, which means the computer, which is twisted,
would answer “yes”. For the airport bus, the answer is “yes”, no matter
which type of computer Bob is.

• Case PfAinXor : Suppose the computer named “Bob” is a properly func-
tioning computer and the bus is not going to the airport. Then the
computer would answer “no” to Q1 and “no” to Q2, and since the an-
swer to neither question is “yes”, the properly functioning computer gives



400 APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

the answer “no” to the question about how many of the Q-questions have
the answer “yes”.

• Case TwAinXor : Suppose the computer named “Bob” contains twisted
logic and the bus is not going to the airport. Then the computer would
answer “no” to Q1 (since the correct answer is “yes”) and “yes” to Q2
(since the correct answer is “no”). That means the correct answer to the
question about the number of “yes” answers to the Q-questions is “yes”.
Bob, being twisted, answers “no”.

For the airport bus, the answer is “no’, no matter which type of computer
Bob is. Therefore, if the computer answers “yes”, the first bus is going
to the airport. If the computer answers “no”, the first bus is not going
to the airport, so wait for the second bus.

Both solutions require the computers to know all the bus schedules and their
own names. The solution based on exclusive or requires, additionally, the
computer named “Bob” to know whether it contains a twisted logic circuit.
Bob can get by without this bit of knowledge in the case of the solution based
on implication because it can simply feed the questions through its own circuits,
observe the answers internally, then run the answer to the larger question
through the normal output device.
4.

(True ∧ P ) ∨ Q

• True is a WFF.

• P is a WFF, therefore True ∧ P is a WFF.

• Q is a WFF. Since True ∧ P and Q are WFFs, True ∧ P ∨ Q is a WFF.

P Q True ∧ P (True ∧ P ) ∨ Q
True True True True
True False True True
False True False True
False False False False

The proposition is satisfiable but not a tautology.
5.

• P , Q, and R are WFFs.

• Since P , Q, and R are WFFs, P ∨ Q, P ∨ R, and Q ∨ R are WFFs.

• Since P and Q ∨ R are WFFs, P ∧ (Q ∨ R) is a WFF.
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• Since P ∨ Q and P ∨ R are WFFs, (P ∨ Q) ∧ (P ∨ R) is a WFF.

• Since (P ∨Q)∧ (P ∨R) and P ∧ (Q∨R) are WFFs, (P ∨Q)∧ (P ∨R) ↔
P ∧ (Q ∨ R) is a WFF.

P Q R P ∨ Q P ∨ R Q ∨ R (P ∨ Q) ∧ (P ∨ R)
True True True True True True True
True True False True True True True
True False True True True True True
True False False True True False True
False True True True True True True
False False True False True True False
False False False False False False False

P Q R P ∧ (Q ∨ R) (P ∨ Q) ∧ (P ∨ R) ↔ P ∧ (Q ∨ R)
True True True True True
True True False True True
True False True True True
True False False False False
False True True False False
False False True False True
False False False False True

The proposition is satisfiable but not a tautology.

6.

• P and Q are WFFs.

• Since P and Q are WFFs, ¬P and ¬Q are WFFs.

• Since P , Q, ¬P and ¬Q are WFFs, P ∧ ¬Q and Q ∧ ¬P are WFFs.

• Since P and Q are WFFs, P ↔ Q is a WFF.

• Since P ↔ Q is a WFF, ¬(P ↔ Q) is a WFF.

• Since P ∧ ¬Q and Q ∧ ¬P are WFFs, (P ∧ ¬Q) ∨ (Q ∧ ¬P ) is a WFF.

• Since (P ∧ ¬Q) ∨ (Q ∧ ¬P ) and ¬(P ↔ Q) are WFFs, ((P ∧ ¬Q) ∨
(Q ∧ ¬P )) → ¬(P ↔ Q) is a WFF.

P Q ¬P ¬Q P ∧ ¬Q Q ∧ ¬P
True True False False False False
True False False True True False
False True True False False True
False False True True False False
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P Q (P ∧ ¬Q) ∨ (Q ∧ ¬P ) P ↔ Q ¬(P ↔ Q)
True True False True False
True False True False True
False True True False True
False False False True False

P Q ((P ∧ ¬Q) ∨ (Q ∧ ¬P )) → ¬(P ↔ Q)
True True True
True False True
False True True
False False True

The proposition is a tautology.
7. (P → Q) ∧ (P → ¬Q)

• P and Q are WFFs.

• Since Q is a WFF, ¬Q is a WFF.

• Since P , Q, and ¬Q are WFFs, P → Q and P → ¬Q are WFFs.

• Since P → Q and P → ¬Q are WFFs, (P → Q) ∧ (P → ¬Q) is a WFF.

P Q ¬Q P → Q P → ¬Q (P → Q) ∧ (P → ¬Q)
True True False True False False
True False True False True False
False True False True True True
False False True True True True

The proposition is satisfiable but not a tautology.
8. (P → Q) ∧ (¬P → Q)

• P and Q are WFFs.

• Since P is a WFF, ¬P is a WFF.

• Since P , Q, and ¬P are WFFs, P → Q and ¬P → Q are WFFs.

• Since P → Q and ¬P → Q are WFFs, (P → Q) ∧ (¬P → Q) is a WFF.

P Q ¬P P → Q (¬P ) → Q (P → Q) ∧ (¬P → Q)
True True False True True True
True False False False True False
False True True True True True
False False True True False False

The proposition is satisfiable but not a tautology.
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9. (P → Q) ↔ (¬Q → ¬P )

• P and Q are WFFs.

• Since P and Q are WFFs, ¬P and ¬Q are WFFs.

• Since P , Q, ¬Q, and ¬P are WFFs, P → Q and ¬Q → ¬P are WFFs.

• Since P → Q and ¬Q → ¬P are WFFs, (P → Q) ↔ (¬Q → ¬P ) is a
WFF.

P Q ¬P ¬Q P → Q ¬Q → ¬P (P → Q) ↔ (¬Q → ¬P )
True True False False True True True
True False False True False False True
False True True False True True True
False False True True True True True

The proposition is a tautology.
10.

R

Q R
{∧I}

Q ∧ R
{∧I}

P ∧ (Q ∧ R)

11. The proof of y will have a symmetrical shape, but the proof of x will
appear triangular, with more inference on the right side than on the left. In
the general case, the proof of x with 2n variables will have height 2n, because
every extra variable will require one extra inference above everything else. In
contrast, the proof of y with 2n variables will have height n.
12.

(P ∧ Q) ∧ R
{∧EL}

P ∧ Q
{∧EL}

P

(P ∧ Q) ∧ R
{∧EL}

P ∧ Q
{∧ER}

Q

(P ∧ Q) ∧ R
{∧ER}

R
{∧I}

Q ∧ R
{∧I}

P ∧ (Q ∧ R)

13.

P

P P → Q
{→E}

Q
{∧I}

P ∧ Q P ∧ Q → R ∧ S
{→E}

R ∧ S
{∧ER}

S
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15.

Q

P Q
{∧I}

P ∧ Q
{→I}

Q → P ∧ Q

18.
P Q

{∧I}
P ∧ Q

{∨IL}
(P ∧ Q) ∨ (Q ∨ R)

19. We prove that True ∧ True → True and then that True → True ∧ True,
without translating True into False → False.

True ∧ True
{∧ER}

True
{→I}

True ∧ True → True

True True
{∧I}

True ∧ True
{→I}

True → True ∧ True

20. We prove that True ∨ False → True and then that True → False ∨ True.

True ∨ False

True
{ID}

True

False
{CTR}

True
{∨E}

True
{→I}

True ∨ False → True

True
{∨IL}

True ∨ False
{→I}

True → True ∨ False

23.

• P is represented by P

• Q ∨ FALSE is represented by Or Q FALSE
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• Q → (P → (P ∧ Q)) is represented by Imp Q (Imp P (And P Q))

25. Proof by equational reasonong.

(P ∧ False) ∨ (Q ∧ True)
= False ∨ (Q ∧ True) {∧ null}
= False ∨ Q {∧ identity}
= Q ∨ False {commutativity}
= Q {∨ identity}

27. Proof by equational reasoning.

(P ∧ ((Q ∨ R) ∨ Q)) ∧ S
= S ∧ (P ∧ ((Q ∨ R) ∨ Q)) {∧ commutative}
= S ∧ (((Q ∨ R) ∨ Q) ∧ P ) {∧ commutative}
= S ∧ ((Q ∨ (R ∨ Q)) ∧ P ) {∨ associative}
= S ∧ ((Q ∨ (Q ∨ R)) ∧ P ) {∨ commutative}
= S ∧ (((Q ∨ Q) ∨ R) ∧ P ) {∨ associative}
= S ∧ ((Q ∨ R) ∧ P ) {∨ idempotent}
= S ∧ ((R ∨ Q) ∧ P ) {∨ commutative}

30. Proof by equational reasoning.

(A ∨ B) ∧ B
= {∨ identity}

(A ∨ B) ∧ (B ∨ False)
= {∨ comm}

(B ∨ A) ∧ (B ∨ False)
= {∨ over ∧}

B ∨ (A ∧ False)
= {∧ null}

B ∨ False
= {∨ identity}

B

31. Solution by equational reasoning.
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(¬A ∧ B) ∨ (A ∧ ¬B)
= {∨ over ∧}

((¬A ∧ B) ∨ A) ∧ ((¬A ∧ B) ∨ ¬B)
= {∨ comm}

(A ∨ (¬A ∧ B)) ∧ (¬B ∨ (¬A ∧ B))
= {∨ over ∧}

((A ∨ ¬A) ∧ (A ∨ B)) ∧ ((¬B ∨ ¬A) ∧ (¬B ∨ B))
= {∨ comm}

((A ∨ ¬A) ∧ (A ∨ B)) ∧ ((¬B ∨ ¬A) ∧ (B ∨ ¬B))
= {∨ compl}

(True ∧ (A ∨ B)) ∧ ((¬B ∨ ¬A) ∧ True)
= {∧ comm}

((A ∨ B) ∧ True) ∧ ((¬B ∨ ¬A) ∧ True)
= {∧ identityappliedtwice}

(A ∨ B) ∧ (¬B ∨ ¬A)
= {DM }

(A ∨ B) ∧ ¬(B ∧ A)
= {∧ comm}

(A ∨ B) ∧ ¬(A ∧ B)

32. The problem is solved by equational reasoning:
¬(A ∧ B)

= {double negationappliedtwice}
¬(¬¬A ∧ ¬¬B)

= {DM }
¬(¬(¬A ∨ ¬B))

= {double negation}
¬A ∨ ¬B

33. Solution by equational reasoning.

(A ∨ B) ∧ (¬A ∨ C) ∧ (B ∨ C)
= {∨ identity}

(A ∨ B) ∧ (¬A ∨ C) ∧ ((B ∨ C) ∨ False)
= {∧ compl}

(A ∨ B) ∧ (¬A ∨ C) ∧ ((B ∨ C) ∨ (A ∧ ¬A))

= {∨ over ∧}
(A ∨ B) ∧ (¬A ∨ C) ∧ ((B ∨ C ∨ A) ∧ (B ∨ C ∨ ¬A))

= {∨ comm}
(A ∨ B) ∧ (¬A ∨ C) ∧ ((A ∨ B ∨ C) ∧ (¬A ∨ B ∨ C))

= {∧ comm}
(¬A ∨ C) ∧ (A ∨ B) ∧ ((A ∨ B ∨ C) ∧ (¬A ∨ B ∨ C))

= {∧ assoc}
(¬A ∨ C) ∧ ((A ∨ B) ∧ (A ∨ B ∨ C)) ∧ (¬A ∨ B ∨ C)
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= {∧ comm}
((A ∨ B) ∧ (A ∨ B ∨ C)) ∧ (¬A ∨ C) ∧ (¬A ∨ B ∨ C)

= {∧ assoc}
((A ∨ B) ∧ (A ∨ B ∨ C)) ∧ ((¬A ∨ C) ∧ (¬A ∨ B ∨ C))

= {∨ over ∧}
((A ∨ (B ∧ (B ∨ C))) ∧ (¬A ∨ (C ∧ (B ∨ C)))

= {∧ comm}
(A ∨ ((B ∨ C) ∧ B)) ∧ (¬A ∨ ((B ∨ C) ∧ C))

= {∨ comm}
(A ∨ ((C ∨ B) ∧ B)) ∧ (¬A ∨ ((B ∨ C) ∧ C))

= {absorbtion, appliedtwice}
(A ∨ B) ∧ (¬A ∨ C)

34. A solution in natural deduction style:
A ∧ ¬A

{∧EL}
A

A ∧ ¬A
{∧ER}¬A

{→E}
False

A solution in the proof-checker notation:

hwThm1 = Theorem [A ‘And‘ (Not A)] (FALSE)

proof_hwThm1 =
(Assume(A ‘And‘ (Not A))
{----------------------------} ‘AndEL‘

A,
Assume(A ‘And‘ (Not A))

{---------------------------------} ‘AndER‘
(Not A))

{------------------------------------------------------}‘ImpE‘
(FALSE)

35.

hwThm2 = Theorem [A] ((A ‘Imp‘ FALSE) ‘Imp‘ FALSE)

proof_hwThm2 =
(Assume A,

Assume(A ‘Imp‘ FALSE))
{---------------------------------------------------} ‘ImpE‘

FALSE
{-------------------------------------------------------} ‘ImpI‘

((A ‘Imp‘ FALSE) ‘Imp‘ FALSE)

A A → False
{→E}

False
{→I}

(A → False) → False
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36.

hwThm3 = Theorem [A, A ‘Imp‘ B, B ‘Imp‘ C, C ‘Imp‘ D] (D)

proof_hwThm3 =
(((Assume A, Assume(A ‘Imp‘ B))

{--------------------------} ‘ImpE‘
B, Assume(B ‘Imp‘ C))

{--------------------------------------} ‘ImpE‘
C, Assume(C ‘Imp‘ D))

{----------------------------------------------} ‘ImpE‘
D

A A → B
{→E}

B B → C
{→E}

C C → D
{→E}

D

37.

hwThm6 = Theorem [A ‘Imp‘ B] ((B ‘Imp‘ FALSE) ‘Imp‘ (A ‘Imp‘ FALSE))

proofThm6 =

(((Assume A, Assume(A ‘Imp‘ B))
{-----------------------------} ‘ImpE‘

B), Assume(B ‘Imp‘ FALSE))
{-------------------------------------------} ‘ImpE‘

FALSE
{-----------------------------------} ‘ImpI‘

(A ‘Imp‘ FALSE)
{-----------------------------------} ‘ImpI‘
((B ‘Imp‘ FALSE) ‘Imp‘ (A ‘Imp‘ FALSE))

A A → B
{→E}

B B → False
{→E}

False
{→I}

A → False
{→I}

(B → False) → (A → False)
38.
A A → B

{→E}
B

A A → ¬B
{→E}¬B

{→E}
False

{→I}
A → False
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39.
A A → False

{→E}
False

{CTR}
B

{→I}
A → B

A A → False
{→E}

False
{CTR}¬B

{→I}
A → ¬B

{∧I}
(A → B) ∧ (A → ¬B)

41.
P Q

{∧I}
P ∧ Q

R S
{∧I}

R ∧ S
{∧I}

(P ∧ Q) ∧ (R ∧ S)

42.
P ∧ Q

{∧EL}
P P → R

{→E}
R

{→I}
P ∧ Q → R

43. We prove that True ∨ True → True and then that True → True ∨ True.

True ∨ True

True
{ID}

True

True
{ID}

True
{∨E}

True
{→I}

True ∨ True → True

True
{∨IL}

True ∨ True
{→I}

True → True ∨ True

45. A list comprehension can generate a truth table for you.

logicExprValue1 = [((a,b),logicExpr1 a b) |
a <- [False,True],
b <- [False,True]
]

logicExprValue2 = [((a,b),logicExpr2 a b) |
a <- [False,True],
b <- [False,True]
]
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46.

logicExprValue3 = [((a,b,c),logicExpr3 a b c) |
a <- [False,True],
b <- [False,True],
c <- [False,True]
]

logicExprValue4 = [((a,b,c),logicExpr4 a b c) |
a <- [False,True],
b <- [False,True],
c <- [False,True]
]

47.

distribute :: Logic -> Logic
distribute (And a (Or b c)) = Or (And a b) (And a c)
distribute (Or a (And b c)) = And (Or a b) (Or a c)

deMorgan :: Logic -> Logic
deMorgan (Not (Or a b)) = And (Not a) (Not b)
deMorgan (Not (And a b)) = Or (Not a) (Not b)
deMorgan (And (Not a) (Not b)) = Not (Or a b)
deMorgan (Or (Not a) (Not b)) = Not (And a b)

48.

(C ∧ A ∧ B) ∨ C
= C ∨ (C ∧ A ∧ B) {∨ commutative}
= (C ∨ C) ∧ (C ∨ A) ∧ (C ∨ B) {∨ distributes over ∧}
= C ∧ (C ∨ A) ∧ (C ∨ B) {∨ idempotent}
= C ∧ ((C ∨ A) ∧ (C ∨ B)) {∧ associative}
= C ∧ (C ∨ (A ∧ B)) {∨ distributes over ∧}

49.

C ∨ (A ∧ (B ∨ C))
= C ∨ ((A ∧ B) ∨ (A ∧ C)) {∧ distributes over ∨}
= C ∨ ((A ∧ C) ∨ (A ∧ B)) {∨ commutative}
= (C ∨ (A ∧ C)) ∨ (A ∧ B) {∨ associative}
= ((C ∨ A) ∧ (C ∨ C)) ∨ (A ∧ B)) {∨ distributes over ∧}
= ((C ∨ A) ∧ C) ∨ (A ∧ B) {∨ idempotent}
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C.7 Predicate Logic

1.
(a) F (1) ∧ F (2) ∧ F (3)
(b) F (1) ∨ F (2) ∨ F (3)
(c)

(
G(1, 1) ∧ G(1, 2) ∧ G(1, 3)

)
∨ (

G(2, 1) ∧ G(2, 2) ∧ G(2, 3)
)

∨ (
G(3, 1) ∧ G(3, 2) ∧ G(3, 3)

)
2. (

F (1, 5) ∨ F (1, 6)
)

∧ (
F (2, 5) ∨ F (2, 6)

)
∧ (

F (3, 5) ∨ F (3, 6)
)

∧ (
F (4, 5) ∨ F (4, 6)

)
3.

• There is an even number.
∃x. E(x)

• Every number is either even or odd.
∀x. (E(x) ∨ O(x))

• No number is both even and odd.
∀x. ¬(E(x) ∧ O(x))

• The sum of two odd numbers is even.
∀x. ∀y.

(
O(x) ∧ O(y) → E(x + y)

)
• The sum of an odd number and an even number is odd.

∀x. ∀y.
(
E(x) ∧ O(y) → O(x + y)

)
4.

• Chickens are birds.
∀x. C(x) → B(x)

• Some doves can fly.
∃x. D(x) ∧ F (x)

• Pigs are not birds.
∀x. P (x) → ¬B(x)

• Some birds can fly, and some can’t.(∃x. B(x) ∧ F (x)
) ∧ (∃x. B(x) ∧ ¬F (x)

)
• An animal needs wings in order to fly.

∀x. (¬W (x) → ¬F (x))
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• If a chicken can fly, then pigs have wings.(∃x. C(x) ∧ F (x)
) → (∀x. P (x) → W (x)

)
• Chickens have more feathers than pigs do.

∀x. ∀y. (C(x) ∧ P (y)) → M(x, y)

• An animal with more feathers than any chicken can fly.
∀x.

((
A(x) ∧ (∀y. (C(y) ∧ M(x, y)))

) → F (x)
)

5.

• ∀x. (∃ y. wantsToDanceWith (x, y))
Everybody has someone they want to dance with.

• ∃x. (∀ y. wantsToPhone (y, x))
There is someone whom everybody wants to call.

• ∃x. (tired (x) ∧ ∀ y. helpsMoveHouse (x, y))
There is a person who is tired, and who helps everyone to move house.

6.

forall [1,2,3] (==2)

= 1==2 /\ 2==2 /\ 3==2

= False /\ True /\ False

= False

forall [1,2,3] (< 4)

= (1 < 4) /\ (2 < 4) /\ (3 < 4)

= True /\ True /\ True

= True

7.

exists [0,1,2] (==2)

= 0==2 \/ 1==2 \/ 2==2

= False \/ False \/ True

= True
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exists [1,2,3] (> 5)

= (1 > 5) \/ (2 > 5) \/ (3 > 5)

= False \/ False \/ False

= False

8.

1. ∀x.(∃y.p(x, y))

= ∀x. x = 1 + 1 ∨ x = 2 + 1

= (1 = 1 + 1 ∨ 1 = 2 + 1) ∧ (2 = 1 + 1 ∨ 2 = 2 + 1)

= (False ∨ False) ∧ (True ∨ False)

= False ∧ True

= False

2. ∃x.(∃y.p(x, y))

= ∃x.(x = 1 + 1) ∨ (x = 2 + 1)

= (1 = 1 + 1 ∨ 1 = 2 + 1) ∨ (2 = 1 + 1 ∨ 2 = 2 + 1)

= (False ∨ False) ∨ (True ∨ False)

= False ∨ True

= True

3. ∃x.(∀y.p(x, y))

= ∃x.(x = 1 + 1 ∧ x = 2 + 1)

= (1 = 1 + 1 ∧ 1 = 2 + 1) ∨ (2 = 1 + 1 ∧ 2 = 2 + 1)

= (False ∧ False) ∨ (True ∧ False)

= False ∨ False

= False

4. ∀x, y.p(x, y)

= ∀x.(x = 1 + 1 ∧ x = 2 + 1)

(1 = 1 + 1 ∧ 1 = 2 + 1) ∧ (2 = 1 + 1 ∧ 2 = 2 + 1)

= (False ∧ False) ∧ (True ∧ False)

= False ∧ False

= False
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9. The solution is based on showing that for any arbitrary value of x, say p,
we can infer G(p); hence we can infer ∀x.G(x).

Theorem 110. ∀x.F (x),∀x.F (x) → G(x) � ∀x.G(x)

Proof.
∀x.F (x)

{∀E}
F (p)

∀x.F (x) → G(x)
{∀E}

F (p) → G(p)
{→E}

G(p)
{∀I}∀x.G(x)

10.

∃x.∃y.F (x, y) � ∃y.∃x.F (x, y)

∃x.∃y.F (x, y)

∃y.F (p, y)

F (p, q)
{∃I}∃x.F (x, q)

{∃E}∃x.F (x, q)
{∃I}∃y.∃x.F (x, y)

{∃E}∃y.∃x.F (x, y)
11.

∀y.∃x.F (x, y) � ∃x.∀y.F (x, y)

WRONG!

Counterexample:

Let F (x, y) = x == y with U = {1, 2}

∀y.∃x.F (x, y)
= ∀y.(1 = y ∨ 2 = y)
= (1 = 1 ∨ 2 = 1) ∧ (1 = 2 ∨ 2 = 2)
= (True ∨ False) ∧ (False ∨ True)
= (True ∧ True)
= True

but on the other side:

∃x.∀y.F (x, y)
= ∃x.(x = 1 ∧ x = 2)
= (1 = 1 ∧ 1 = 2) ∨ (2 = 1 ∧ 2 = 2)
= (True ∧ False) ∨ (False ∧ True)
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= False ∨ False
= False
The equations do not return the same result, therefore the sequent is not

correct.
12.

Theorem 111. ∀x.(F (x) ∧ G(x)) � (∀x.F (x)) ∧ (∀x.G(x))

Proof.

∀x.F (x) ∧ G(x)
{∀E}

F (p) ∧ G(p)
{∧EL}

F (p)
{∀I}∀x.F (x)

∀x.F (x) ∧ G(x)
{∀E}

F (q) ∧ G(q)
{∧ER}

G(q)
{∀I}∀x.G(x)

{∧I}∀x.F (x) ∧ ∀x.G(x)

13. There will be 1000 terms containing F . In general, if the quantifiers are
nested k deep, and the universe contains n elements, then the innermost term
will occur nk times.
16.

P → ∀x.f(x) � ∀x.P → f(x)

P P → ∀x.f(x)
{→E}∀x.f(x)

{∀E}
f(c)

{→I}
P → f(c){c arbitrary}

{∀I}∀x.P → f(x)
17.

• ∀x.f(x) ∨ ∀x.g(x) � ∀x.f(x) ∨ g(x)

Counterexample:

Let f(x) = x == 1 and g(x) = x == 2 with U = {1, 2}

∀x.f(x) ∨ ∀x.g(x)

= (1 = 1 ∧ 2 = 1) ∨ (1 = 2 ∧ 2 = 2)

= (True ∧ False) ∨ (False ∧ True)

= False ∨ False
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= False

However, on the other side:

∀x.f(x) ∨ g(x)

(1 = 1 ∨ 1 = 2) ∧ (2 = 1 ∨ 2 = 2)

= (True ∨ False) ∧ (False ∨ True)

= True ∧ True

= True

Thus the law cannot be used as an equation.

• ∃x.f(x) ∧ g(x) � ∃x.f(x) ∧ ∃x.g(x)

Counterexample:

Let f(x) = x == 1 and g(x) = x == 2 with U = {1, 2}

∃x.f(x) ∧ g(x)

= (1 = 1 ∧ 1 = 2) ∨ (2 = 1 ∧ 2 = 2)

= (True ∧ False) ∨ (False ∧ True)

= False ∨ False

= False

On the other side:

∃x.f(x) ∧ ∃x.g(x)

= (1 = 1 ∨ 1 = 2) ∧ (1 = 2 ∨ 2 = 2)

= (True ∨ False) ∧ (False ∨ True)

= True ∧ True

= True

Thus the law cannot be used as an equation.

19.
Assume that lists xs and ys are finite lists of type [a] and that xs is of

length n.

P (n) ≡ (length xs = n) →
(∀ z.z ∈ xs ∨ z ∈ ys → z ∈ (xs ++ ys))
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C.8 Set Theory

13.

(A′ ∪ B)′ ∩ C ′

= A′′ ∩ B′ ∩ C ′

= A ∩ B′ ∩ C ′

= A ∩ (B ∪ C)′

A − (B ∪ C)′

= A ∩ (B ∪ C)′′

= A ∩ (B ∪ C)

(A ∩ B) ∪ (A ∩ B′)
= A ∩ (B ∪ B′)
= A ∩ U
= A

A ∪ (B − A)
= A ∪ (B ∩ A′)
= (A ∪ B) ∩ (A ∪ A′)
= (A ∪ B) ∩ U
= A ∪ B

A − B
= A ∩ B′

= B′ ∩ A
= B′ ∩ A′′

= B′ − A′

(A ∩ B) − (A ∩ C)
= (A ∩ B) ∩ (A ∩ C)′

= (A ∩ B) ∩ (A′ ∪ C ′)
= ((A ∩ B) ∩ A′) ∪ ((A ∩ B) ∩ C ′)
= (A ∩ B ∩ A′) ∪ (A ∩ B ∩ C ′)
= ∅ ∪ (A ∩ B ∩ C ′)
= A ∩ B ∩ C ′

= A ∩ (B − C)

A − (B ∪ C)
= A ∩ (B ∪ C)′

= A ∩ (B′ ∩ C ′)
= A ∩ A ∩ B′ ∩ C ′

= (A ∩ B′) ∩ (A ∩ C ′)
= (A − B) ∩ (A − C)
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A ∩ (A′ ∪ B)
= (A ∩ A′) ∪ (A ∩ B)
= ∅ ∪ (A ∩ B)
= A ∩ B

(A − B′) ∪ (A − C ′)
= (A ∩ B′′) ∪ (A ∩ C ′′)
= (A ∩ B) ∪ (A ∩ C)
= A ∩ (B ∪ C)

14.

smaller :: Ord a => a -> [a] -> Bool
smaller x [] = True
smaller x (y:xs) = x < y

powerSet :: (Ord a, Eq a) => [a] -> [[a]]
powerSet set = normalizeSet (foldr g [[]] set)
where g x acc =

[x:epset | epset <- acc,
not (elem x epset) && smaller x epset]

++ acc

15. (A ∪ B)′ = A′ ∩ B′

= (U − A) ∩ (U − B)
= ((A ∪ A′) − A) ∩ ((B ∪ B′) − B)
= ((A ∪ A′) ∩ A′) ∩ ((B ∪ B′) ∩ B′)

16.

isSubset :: Eq a => [a] -> [a] -> Bool
isSubset set1 set2 = null [e | e <- set1, not (elem e set2)]

17. The arguments are in the wrong order.
18. The second definition of e shadows the first, so the result is the second set.
One way to define it correctly is

intersection :: [a] -> [a] -> [a]
intersection set1 set2 = [e | e <- set1, e ‘elem‘ set2]

19.

union :: Eq a => [a] -> [a] -> [a]
union set1 set2
= set1 ++ [e | e <- set2, not (elem e set1)]

20. Yes, when A ⊆ B and C ⊆ A.
21. Both unions contain C, so C must be empty, and A and B must be disjoint.
For example, A = {1, 2, 3}, B = {4, 5, 6}, C = ∅.
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22.
A ∩ B

= { defn ∩ }
{x|x ∈ A ∧ x ∈ B}

= { ∧ commutative }
{x|x ∈ B ∧ x ∈ A}

= { defn ∩ }
B ∩ A

23.

A *** B = B *** A

24.
(A ∪ B) ∪ C

= { defn ∪ }
{x |(x ∈ A ∨ x ∈ B) ∨ x ∈ C}

= { ∨ associative }
{x|x ∈ A ∨ (x ∈ B ∨ x ∈ C)}

= { defn ∪ }
A ∪ (B ∪ C)

25.
A − B′′

= { double complement }
{x|x ∈ A ∧ x �∈ B′′}

= { defn. − }
{x|x ∈ A ∧ ¬(x ∈ U ∧ x �∈ B′)}

= { defn. complement }
{x|x ∈ A ∧ ¬(x ∈ U ∧ ¬(x ∈ B′))}

= { defn. �∈ }
{x|x ∈ A ∧ ¬(x ∈ U ∧ ¬(x ∈ U ∧ x �∈ B))}

= { defn. complement }
{x|x ∈ A ∧ ¬(x ∈ U ∧ ¬(x ∈ U ∧ ¬(x ∈ B)))}

= { defn. �∈ }
{x|x ∈ A ∧ ¬(x ∈ U ∧ (¬(x ∈ U) ∨ (x ∈ B)))}

= { DM , double negation }
{x|x ∈ A ∧ (¬(x ∈ U) ∨ ¬(¬(x ∈ U) ∨ (x ∈ B)))}

= { DM }
{x|x ∈ A ∧ (x �∈ U ∨ (¬¬(x ∈ U) ∧ ¬(x ∈ B)))}

= { DM }
{x|x ∈ A ∧ (x �∈ U ∨ (x ∈ U ∧ x �∈ B))}

= { double negation, defn. �∈ }
{x|x ∈ A ∧ (x ∈ U ∧ x �∈ B)}
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= { ∨ null , defn. �∈ }
{x|x ∈ A ∧ x ∈ U − B}

= { defn.− }
A ∩ B′

= { defn. complement ,∩ }
26.

A ∪ (B ∩ C)
= { defn ∩,∪ }

{x|x ∈ A ∨ (x ∈ B ∧ x ∈ C)}
= { ∨ over ∧ }

{x|(x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C)}
= { def . ∩, ∪ }

(A ∪ B) ∩ (A ∪ C)

27.
(A ∩ B)′

= { defn. complement }
{x|x ∈ U ∧ x �∈ (A ∩ B)}

= { defn. �∈,∩ }
{x|x ∈ U ∧ ¬(x ∈ A ∧ x ∈ B)}

= { DM }
{x|x ∈ U ∧ (¬(x ∈ A) ∨ ¬(x ∈ B))}

= { defn. �∈ }
{x|x ∈ U ∧ (x �∈ A ∨ x �∈ B)}

= { ∧ over ∨ }
{x|(x ∈ U ∧ x �∈ A) ∨ (x ∈ U ∧ x �∈ B)}

= { defn. − }
{x|(x ∈ U − A) ∨ (x ∈ U − B)}

= { defn. complement ,∪ }
A′ ∪ B′

C.9 Inductively Defined Sets

19. The base case appears at the end of the stream, so it cannot be used to
start the inductive process of calculating successive elements. So, the stream
does not have a printable value.

20. It will never terminate and return the accumulator in which the stream of
naturals is constructed.

21. No. The problem is that the stream may present an infinite number of
naturals before the one we are interested in can be reached. For example, in
[1,3..] ++ [2,4..] all the odd naturals appear before any even number.

22. Given a number n, the set R of roots of n is defined as follows:

• n1 ∈ R
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• n1/m ∈ R → n1/m+1 ∈ R

• Nothing is in R unless it can be shown to be in R by a finite number of
uses of the base and induction rules.

23.

1. n0 ∈ P by the base case

2. By the induction rule, n0 ∈ P → n1 ∈ P and so by Modus Ponens,
n1 ∈ P .

3. By the induction rule, n1 ∈ P → n2 ∈ P and so by Modus Ponens,
n2 ∈ P .

4. By the induction rule, n2 ∈ P → n3 ∈ P and so by Modus Ponens,
n3 ∈ P .

24. If n is a positive multiple of 2 then yes, otherwise no.
25. The odd positive integers.
26. By rule (1), 0 ∈ S
By rule (2) 0 ∈ S → 2 ∈ S and so by Modus Ponens 2 ∈ S.
By rule (2) 2 ∈ S → 4 ∈ S so 4 ∈ S.
27.

1. "" ∈ Y Y S

2. "" ∈ Y Y S → "yy" ∈ Y Y S and so by Modus Ponens, "yy" ∈ Y Y S.

3. "yy" ∈ Y Y S → "yyyy" ∈ Y Y S and so by Modus Ponens, "yyyy" ∈
Y Y S.

28.

zs = "" : map (’z’:) zs

29. The set SS of strings of spaces of length less than or equal to n is defined
as follows:

1. ”” ∈ SS

2. ss ∈ SS ∧ length ss < n → ’ ’: ss ∈ SS

3. Nothing is in SS unless it can be shown to be in SS by a finite number of
uses of rules (1) and (2).

30.

ss :: Integer -> [String]
ss 0 = []
ss n = take n (repeat ’ ’) : ss (n-1)
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31. The set of sets of naturals SSN, each of which is missing a distinct natural
number, is defined inductively as follows:

1. N − {0} ∈ SSN

2. (N − {n}) ∈ SSN → (N − {n + 1} ∈ SSN

3. Nothing is in SSN unless it can be shown to be in SSN by a finite number
of uses of rules (1) and (2).

32.

1. I − {−1} ∈ SSI−
2. I − {−1} → I − {−2} ∈ SSI−
3. I − {−2} → I − {−3} ∈ SSI−
4. By Modus Ponens, I − {−3} ∈ SSI−.

33.

1. −1 ∈ ONI

2. −1 ∈ ONI → −3 ∈ ONI so −3 ∈ ONI.

3. −3 ∈ ONI → −5 ∈ ONI so −5 ∈ ONI.

4. −5 ∈ ONI → −7 ∈ ONI so −7 ∈ ONI.

34.

decrement :: Integer -> Integer
decrement x = x - 1

ni = -1 : map decrement ni

35. No, because 0 will be paired first with every element in [0..], which is
infinitely long.
36. The set is {0, 1}.

C.10 Relations

45.

• (a) Yes.

• (b) This depends upon whether the relationship is defined by DNA, in
which case all of us are somewhat related to each other, or last name,
in which case some people named Smith are not actually closely related
physically. ’No’ seems a reasonable answer.
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• (c) No, because equivalence relations are reflexive, and you cannot be
bigger than yourself.

• (d) Yes.

46. Yes. Here is an example:

[(1,2),(2,3),(3,1)]

47. The empty relation.
48.

checkPowers :: (Eq a, Show a) => Digraph a -> Bool
checkPowers (set,relation)
= any (setEq relation)

[relationalPower (set,relation) n
| n <- [2..length (domain relation)]]

49. No. If it did, then the end of each loop would have to have a reflexive
loop, because the relation is transitive. Thus it would not be irreflexive.
50. Yes. For example

[(1,2),(2,3),(3,1)]

has a transitive closure that is reflexive and symmetric.
51.

fewerArcs :: (Eq a, Show a) => Digraph a -> Bool
fewerArcs (set,relation)
= all

(< (length relation))
[length (relationalPower (set,relation) n)

| n <- [2..length (domain relation)]]

52.

isSmaller :: (Ord a, Show a) => Digraph a -> Bool
isSmaller (set,relation)
= let (symset,symrelation) =

symmetricClosure (set,relation)
in length relation < length symrelation

53. The last is not a topological sort.
54. Yes, for example this is reflexive, symmetric, and antisymmetric:

[(1,1),(2,2),(3,3)]

55. The number of arcs the transitive closure will add is 1+2+ ...+n−1. The
symmetric closure will double each of these, so the total is 2(1+2+...+n−1).
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56. Power n.
57. No, because the function could not examine every arc in the relation.
58. Given a partial order, assume that it has a cycle of length n. Because it is
transitive, it also has cycles of lengths 1 to n − 1. But that means that it has
a cycle of length 2, which cannot be because a partial order is antisymmetric.
So it cannot both be a partial order and have cycles greater than 1.
59. No. Some have powers that repeat, such as the relation

[(1,2),(2,1)]

60. A linear order.
61. Yes. For example, the composition of these two relations

[(Red,Blue),(Blue,Green),(Green,Yellow),(Yellow,Red)]

[(Blue,Red),(Green,Blue),(Yellow,Green),(Red,Yellow)]

yields

[(Red,Red),(Blue,Blue),(Green,Green),(Yellow,Yellow)]

62. The empty relation and the equality relation.

C.11 Functions

26. The functions surjExp, injExp, and bijExp each take two domains and
images and test the corresponding hypothesis.

surjectiveExperiment :: (Eq a, Show a) =>
Set a -> Set a -> Set (a, FunVals a) ->
Set a -> Set a -> Set (a, FunVals a) -> Bool
surjectiveExperiment dom_f co_f f dom_g co_g g
= isSurjective dom_f co_f f /\
isSurjective dom_g co_g g
==>
isSurjective dom_g co_f
(functionalComposition f g)

surjExp :: Set Int -> Set Int ->
Set Int -> Set Int -> Bool

surjExp domain_f image_f domain_g image_g
= let f = [(x,Value y) | x <- domain_f, y <- image_f]

g = [(x,Value y) | x <- domain_g, y <- image_g]
in
surjectiveExperiment [1..10] [1..10] f

[1..10] [1..10] g
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injectiveExperiment :: (Eq a, Show a) =>
Set a -> Set a -> Set (a, FunVals a) ->
Set a -> Set a -> Set (a, FunVals a) -> Bool
injectiveExperiment dom_f co_f f dom_g co_g g
= isInjective dom_f co_f f /\
isInjective dom_g co_g g
==>
isInjective dom_g co_f
(functionalComposition f g)

injExp :: Set Int -> Set Int ->
Set Int -> Set Int -> Bool

injExp domain_f image_f domain_g image_g
= let f = [(x,Value y) | x <- domain_f, y <- image_f]

g = [(x,Value y) | x <- domain_g, y <- image_g]
in injectiveExperiment [1..10] [1..10] f

[1..10] [1..10] g

bijectiveExperiment :: (Eq a, Show a) =>
Set a -> Set a -> Set (a, FunVals a) ->
Set a -> Set a -> Set (a, FunVals a) -> Bool
bijectiveExperiment dom_f co_f f dom_g co_g g
= isBijective dom_g co_f

(functionalComposition f g)
==>
isSurjective dom_f co_f f /\
isInjective dom_g co_g g

bijExp :: Set Int -> Set Int ->
Set Int -> Set Int -> Bool

bijExp domain_f image_f domain_g image_g
= let f = [(x,Value y) | x <- domain_f, y <- image_f]

g = [(x,Value y) | x <- domain_g, y <- image_g]
in bijectiveExperiment [1..10] [1..10] f

[1..10] [1..10] g

27. 1,1,4,4
28. The function f is a permutation, g is an identity function, and h is the
inverse of f.
29. constant function, injection, constant function.
30. Only g is a function. f maps 3 to two values, and g does not map 5 to any
value.
31. g is a total function, and the other two are partial functions.
32. This can be solved by making a simple table for each function showing the
results it returns for all inputs, and then referring to the definition of surjection.



426 APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

h o h yes
f o g no
g o f yes
h o f domains don’t match
g o h domains don’t match

33.

f o g no
g o f yes
h o f no

34.

g o g yes
h o f no
f o h yes

35. The first function is partial, because it does not terminate when given
False, and so does not produce a result given that domain value. The second
function is total.

36.

isFun :: (Eq a, Show a) => Set (a,b) -> Bool
isFun ps = normalForm (map fst ps)

37.

isInjection :: (Eq a, Eq b, Show a, Show b)
=> Set (a,b) -> Bool

isInjection ps
= normalForm (map fst ps) /\ normalForm (map snd ps)

39. You only need to know its type. If the domain type is the same as that
of the codomain, then it might be the identity function, otherwise it certainly
isn’t. There are many properties of functions that can be deduced solely from
the function type.

40.

compare f g h = ((g.f) a) == (h a)

41. Yes, for natural numbers. If it receives a negative integer, it will loop
indefinitely.

42. Yes, for all integers.
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43.
For problems 2 and 3, we will use the bullet/target metaphor of functions.

In this metaphor, the domain of the function is regarded as the set of bullets.
The codomain (also known as the range) is regarded as the set of targets. When
x comes from the domain and y comes from the codomain and y = f (x ), the
target y is said to be hit by the bullet x .

Following this metaphor, we can define some of the terminology as follows:

• Function. A function is a subset of the Cartesian product of the set of
bullets with the set of targets that does not use the same bullet for more
than one target.

• Surjective. A function is surjective if it hits all of the targets.

• Injective. A function is injective if it hits no targets more than once.

1. Yes, f is a function because it is a subset of A × B with the property
that whenever both (a, b) and (a, c) are elements of f , it is the case that
b = c. That’s what it means to be a function of type A → B . Or, using
the metaphor, f is a function because no single bullet hits two or more
targets.

2. No, f is not injective because f (1) = 7 and f (4) = 7. So, f −1({7})
contains two elements (1 and 4), and inverse images of singleton sets
never have more than one element for injective functions. Or, using the
metaphor, f is not injective because it hits the target 7 with bullet 1 and
bullet 4.

3. No, f is not surjective because f (A) is {6, 7, 9, 10}, which is lacking an
element of B(8). The image of the domain is the entire range when a
function is surjective. Or, using the metaphor, f is not surjective because
it fails to hit the target 8.

4. No, g is not a function because it contains the pairs (6,b) and (6,d), and
functions are not allowed to contain two pairs with the same first element
and different second elements. Or, using the metaphor, g is not a function
because the bullet 6 hits two targets (b and d).

44.

1. The codomain of f is P (A), which contains 2n elements (where 2n stands
for 2 to the power n). That is, the function f has 2n targets. The domain
of f contains n elements. That is, the function f has n bullets. Since
a function must use at least one bullet per target, and since 2n always
exceeds n, f doesn’t have enough bullets to hit all the targets, so it can’t
be surjective.
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2. The composition g .f is defined when g is defined on the image f (A). So,
X is a subset of P (A). Furthermore, since (g .f )(A) is a subset of A,
and since (g .f )(A) = g(f (A)), Y , the codomain of g , must contain at
least those elements of A that are in (g .f )(A). That’s one way to look
at it. Here’s another way: The composition (g .f ) is defined when the
codomain of f is the domain of g . Taking this position, X = P (A) and
Y , the codomain of g contains at least g(f (A)), which, by hypothesis,
is a subset of A. Either position is ok. It depends on how the term
“composition” is defined. Because we were not precise about when to
consider the composition defined, either answer is ok.

3. Again, it depends on the details of the definition of composition. Taking
the first view, the domain of g must contain, at least, the set f (A). It
may contain only this set, in which case it can be injective because the
number of targets f can hit cannot exceed the number of bullets in A, so
g will not have more bullets than targets and can be defined to hit each
potential target at most once. On the other hand, if P (A) is considered
to be the domain of g , then g will have too many bullets for A. So, if g
is to be injective, its codomain must contain elements other than those
of A. The intersection of A and the codomain of g will contain, at least,
(g .f )(A).

4. Define g : f (A) → A as follows. For each s in f (A), let g(s) be one of
the elements in f −1(s). Any element will do. Just pick one, and let that
be g(s). There must be at least one such element because s is in f (A).
Then (f .g) : f (A) → f (A) will be bijective.

C.13 Discrete Mathematics in Circuit Design

1.

f a b c =
(¬a ∧ ¬b ∧ ¬c)

∨ (¬a ∧ ¬b ∧ c)
∨ (a ∧ ¬b ∧ c)
∨ (a ∧ b ∧ ¬c)
∨ (a ∧ b ∧ c)

4. The inputs are a and b. The outputs are the carry output, c, which comes
from the truth table for and2, and the sum output, s, which comes from the
truth table for xor2. The calculations show that for all inputs, the left-hand
and right-hand sides of the equation in the theorem have the same value.
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a b c s lhs rhs
0 0 0 0 0 0
0 1 0 1 1 1
1 0 0 1 1 1
1 1 1 0 2 2

9.

Example: addition of 13+41=54 using 6-bit words
13 = 001101
41 = 101001
sum = 110110 = 54, with carry out = 0
rippleAdd False [(False,True),(False,False),(True,True),

(True,False),(False,False),(True,True)]
The expected result is

(False, [True,True,False,True,True,False])

10.

Test cases for halfCmp
halfCmp (False,False) -- (False,True,False) since x=y
halfCmp (False,True) -- (True,False,False) since x<y
halfCmp (True,False) -- (False,False,True) since x>y
halfCmp (True,True) -- (False,True,False) since x=y

11.

Test cases for rippleCmp
rippleCmp [(False,False),(False,True),(True,False)]

-- (True,False,False) since x<y
rippleCmp [(False,False),(True,True),(False,False)]

-- (False,True,False) since x=y
rippleCmp [(False,False),(True,False),(False,True)]

-- (False,False,True) since x>y

12. Define

andfour a b c d = and2 (and2 a b) (and2 c d)

The output should be 1 if all of the inputs are 1; note that in this case, and2
a b gives 1, and so does and2 c d, so the circuit outputs 1 as it should. In all
other cases, either and2 a b will be 0, or and2 c d will be 0, or both, so the
andfour circuit produces 0, as it should.
13.

Test cases for the full adder, with expected results
fullAdd (False,False) False -- 0 0
fullAdd (False,True) False -- 0 1
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fullAdd (True,False) False -- 0 1
fullAdd (True,True) False -- 1 0
fullAdd (False,False) True -- 0 1
fullAdd (False,True) True -- 1 0
fullAdd (True,False) True -- 1 0
fullAdd (True,True) True -- 1 1

15. Yes. The rippleAdd circuit is defined using the higher order function
mscanr, which is defined even when the word input is empty. In this case,
the sum word is just [], and the carry output is the same as the carry input.
Notice that you can connect an m-bit adder with an n-bit adder and obtain an
(m + n)-bit adder, and this works for all natural numbers m and n.
16. No, because mscanr (and therefore rippleAdd) requires a list input, and
lists cannot have a negative length.
17. You can’t test an adder thoroughly because there is an exponential growth
in the size of the truth table as the word size grows. For an n-bit word, there
are 2 × 22n lines in the truth table. The exponent is 2n because there are two
bits for each position, and the initial factor of 2 accounts for the possibility
that the carry input is either 0 or 1. For a current generation processor, where
the word size is 64, the truth table would have 2129 lines, which is larger than
the size of the known universe (it hardly matters what unit of measurement
you choose!)
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case analysis, 137
cause and effect, 116
chain, 207, 210, 258

of equalities, 149
Char, 10
check proof, 144
circuit

design, 157
simulation, 357, 358

class, 31
closure, 245
codomain, 223
combinational circuit, 355
combinator, 54
commutative, 150, 153, 201
compiler, 110
complement, 154, 195, 199
complete, 159
complexity, 274
compose, 27, 73
composition, 237
comprehension, 13, 191
computability, 110
computational complexity, 274
computer architecture, 109
concat, 51, 75
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conclusion, 127
conditional expression, 20
conjunction, 113
cons, 12, 74
consistent, 159
constructor, 28
context, 32
contradiction, 123, 138
contrapositive, 155
control structure, 277
converse, 248
correctness, 157
countable, 259
counting, 300
Curry-Howard isomorphism, 157
Currying, 155, 281
cycle, 230

data, 28, 318
recursion, 58
type, 28

data recursion, 211
database, 110
declarative language, 48, 161
deduction, see inference
DeMorgan’s laws, 154, 202
deriving, 30
design methodology, 359
detect, 32
diagonalisation, 303
difference, 192
digital circuit, 157
digital circuit

design, 109
digraph, 226
directed path, 226
discharged assumption, 134
disjoint, 194
disjunction, 114
distributive, 154, 202
div, 7
divide and conquer, 47, 72
domain, 223
Double, 8
double negation, 140, 154

drop, 23

easy-right rotation, 333
element, 189, 190
elimination

existential, 180
universal, 177

ellipses, 207
empty set, 190
enumerated type, 28
enumeration, 207
Eq, 32, 196
equation, 37, 151, 156
equational model of computation, 326
equational reasoning, 37, 149
equivalence, 117, 156

relation, 261
error, 283
evaluation, 5
exclusive

or gate, 356
exclusive or, 115
existential

elimination, 180
introduction, 179

exists, 173
expression, 5

conditional, 20, 163
expansion, 166
let, 21
nested, 165
quantified, 165

extremal clause, 212
extremal clause, 212, 213

factorial, 47, 48, 55, 273
False, 9, 119, 122, 123, 138, 151
filter, 14
first order, 19
Float, 8
floating point, 8
foldl, 26, 278, 374
foldr, 25, 55, 74, 77
forall, 172
formal
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logic, 109
reasoning, 126

formula, 118
abbreviated, 168
expansion, 166
translation, 169, 170

fst, 18
full adder, 365, 367
function, 15, 267, 357

application, 268, 358
argument type, 268
bijective, 296
codomain, 268, 270
composition, 27, 287
domain, 268, 269
equality, 76
extensional equality, 76
first order, 19
functional argument, 277
functional result, 278
graph, 268
higher order, 19, 54, 276–278
image, 269
inductively defined, 272
injective, 293
intensional equality, 76
inverse, 299
multiple arguments, 280
partial, 282, 286
predicate, 164, 172
primitive recursive, 273
program, 271
range, 270
result type, 268
state, 275
surjective, 291
total, 282, 286
type, 15, 19, 269
undefined, 269, 282

functional
circuit specification, 357
language, 143
programming, 160

Gödel, 159, 160

generator, 13
graph, 268
greatest element, 254

half adder, 363, 373
half comparator, 373
halting problem, 285, 286
hardware design, 157
Haskell, 121
head, 19
height, 317, 327
hierarchy, 83
higher order, 19

function, 54, 369

id, 77
idempotent, 153
identity, 151
if, 115
Imp, 146
implication, 115, 155

chain rule, 135
imply, 112, 115, 116, 120, 155
inclusive or, 114
index (list), 22
induction, 62, 207, 212

and recursion, 66
base case, 62
case, 212, 213
inductive case, 62
infinite lists, 78
on lists, 70
on Peano naturals, 67
on trees, 96

induction case, 210
induction rule, 210
infer, 126
inference, 110, 126–149, 158

{∀E}, 177
{∀I}, 175, 176
{∧EL}, 131–132
{∧ER}, 131–132
{∧I}, 129–131
{CTR}, 138–140
{∃E}, 180
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{∃I}, 179
{ID}, 138
{→ E}, 132–133
{→ I}, 133–136
{∨E}, 137
{∨IL}, 136
{∨IR}, 136
{RAA}, 140
assumption, 127
conclusion, 127
elimination rule, 128
introduction rule, 128
predicate, 174
quantifier, 174
Reductio ad Absurdum, 129, 140
rule, 126, 127

infinite loop, 284
information retrieval, 109
integer, 215
intersection, 192
introduction

existential, 179
univeral, 175

inverter, 356
irreflexive, 229

Just, 30
justification, 150

key, 318

language
meta, 127
object, 127

law, 111, 150–156
identity, 151
null, 151

Leaf, 87
length, 22, 48, 55, 73, 76, 276
let, 21

expression, 21
linear

logic, 157
order, 258

list, 11

comprehension, 13, 197
construction, 12
notation, 12

logic gate, 356
logical

equivalence, 117
inference, see inference
negation, 115, 154

map, 23, 54, 73–75, 276, 277
Maybe, 30
meaning, 124, 158
member, 189, 190
meta-language, 121, 126, 127, 156
meta-logic, 141, 158–159
meta-variable, 127
mod, 7
model, 124
modulus, 262
Modus Ponens, 132
Modus Tollens, 135
mscanr, 369, 371

n-tuple, 11
natural

deduction, 110, 126–149
number, 213

Node, 87
node balancing, 330
nor, 18
normalForm, 198
normalizeSet, 198
not, 9, 112, 115, 121, 146, 169
Nothing, 30
null, 151

value, 11
Num, 31
number

natural, 63
Peano, 67

object language, 120, 126, 127, 156
one-to-one correspondence, 299
ones, 58
operator, 5, 120
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or, 55, 112, 114, 115, 146, 169
gate, 356

order relation, 252
ordered pair, 268
outside left-heavy, 333
outside right-heavy, 336
overload, 31

pair, 11
partial order, 252
partially ordered set, 253
pattern, 17, 369
permutation, 297
pi, 15
pigeonhole principle, 296
pipeline, 288
poset, 253

greatest element, 254
weakest element, 254

power (of relation), 240
powerset, 195
precedence, 120
preciate, 163
predicate, 61, 163, 172, 191
product, 55
programming language, 110
proof, 144, 158, 160

checker, 142–149
correctness, 66
representation, 147–149
tools, 142

proper subset, 192
properSubset, 198
proposition, 111, 158
propositional

expression, 126
logic, 110
variable, 111, 119, 122, 127

Pvar, 146

quadratic, 21
quantifier, 163, 164

computing, 172
existential, 165, 166
expansion, 166

expansion formula, 166
universal, 164, 166

quasi order, 257
quicksort, 52

Ratio, 9
rational number, 9
rational number, 302
real number, 302
reasoning, 37
rebalance, 338
recursion, 47, 66, 119

data, 58
primitive, 273

Reductio ad Absurdum, 129, 140, 148
reflect, 90
reflexive, 228

closure, 246
relation, 223–265

antisymmetric, 233
closure, 245
composition, 237
converse, 248
cycle, 230
equivalence, 261
function, 268
irreflexive, 229
linear order, 258
order, 252
partial order, 252
poset, 253
power, 240
quasi order, 257
reflexive, 228
reflexive closure, 246
symmetric, 231
symmetric closure, 248
transitive, 235
transitive closure, 249
well order, 259

relational database, 224
ripple carry, 367

adder, 367, 370
ripple comparator, 373
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safety-critical, 109
schematic diagram, 357
self reference, 47
semantics, 110, 124, 158
sequence, 12, 208
sequent, 126, 134
set, 189–206

associative, 201
big intersection, 194
big union, 194
cardinality, 299, 300
commutative, 201
complement, 195
comprehension, 13, 191
countable, 259, 301, 302
definition, 207, 212
DeMorgan’s laws, 202
difference, 192
distributive, 202
empty, 166
equality, 192, 196, 198
finite, 300
infinite, 61, 300
integers, 215
intersection, 192
natural number, 213
powerset, 195
subset, 192

proper, 192
uncountable, 302
union, 192

setEq, 198
show, 30
sigma, 55
signal, 358
snd, 18
software

crisis, 157
engineering, 109

some, 171
specification, 359
splitter, 52
sqrt, 15
square, 16

state, 275
String, 10
subscript, 22
subset, 192, 198
substitute equals for equals, 149
sum, 49, 55, 71, 72
syllogism, 149
symmetric, 231

closure, 248
syntax, 110, 158

tail, 19
take, 23
tautology, 123, 124
theorem, 143, 144, 158

prover, 142
therefore, 112, 115, 169
toLower, 10
topological sort, 260
toUpper, 10
transformation, 361
transitive, 235

closure, 249
tree, 83, 96

balanced, 91
tree induction, 320
triple, 11
True, 9, 119, 122, 123, 128, 151
truth table, 110, 122–125, 141, 158,

359
tuple, 11, 280
Turing, Alan, 286
turnstile, 124
twice, 19
twos, 58
type, 160, 269

class, 31
Eq, 32
Num, 31

context, 32
enumerated, 28
Maybe, 30
overloaded, 31

type system, 4, 157
typechecking, 110
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Undefined, 286
union, 192
universal

elimination, 177
universe, 164, 191, 194, 199

finite, 166, 172
infinite, 166
of discourse, 164

vacuous, 155
value, 5
variable, 122, 163

binding, 168
meta, 127
propositional, 127
scope, 168

weakest element, 254
well order, 259
well-formed formula, 118, 146–147, 164
WFF, 118, 120, 127, 146–147
word, 366

zip, 51
zipWith, 24, 54
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