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CHAPTER 1

Introduction

The purpose of this lecture series was to introduce the audience to the literature
on complex dynamics in higher dimension. This CBMS lecture series was held in
Albany, New York, june 1994. Some of the lectures were up-dated versions of earlier
lectures given in Montreal 1993, jointly with Nessim Sibony ([FS8]). The Montreal
lectures were more based on pluripotential theory, while the present lectures avoided
pluripotential theory completely. We hope to give an alternative expansion of the
Montreal lectures, basing complex dynamics in higher dimension systematically on
pluripotential theory.

What we are trying to do with these notes is to provide an easy to read in-
troduction to the field, an introduction which motivates the topics. Moreover, the
monograph should point the reader towards the technically more advanced litera-
ture. It is my feeling that mathematicians can read arbitrarily complicated material
once they are motivated.

We will start our introduction by choosing a basic problem which everybody
has seen before. The investigation of this problem will lead us naturally to studying
Complex Dynamics in Higher Dimension. In order to understand the problem bet-
ter, we are naturally lead to some dynamical questions. These dynamical questions
are the ones which have been studied in the literature.

Our basic problem is to find roots of equations. This is not just a peda-
gogical trick because this was already a motivating problem for complex dynamics
in the last century. A main tool for finding roots of equations is Newton's method.
The idea of Newton's method is to guess a root and use this guess to find a better
guess.

The first one to study complex dynamics was Schri der, 1870, 1871. Although
Newton's method can, in its simplest form, be traced back to the Babylonians, he
was the first to apply it to study complex roots of holomorphic polynomials of
one complex variable. (See ([Sc1]) and ([Sc2]).) We take as our starting point
the problem to describe those initial guesses which lead to a root.

To study this problem, let us introduce some notation. We can work in any
dimension, but for simplicity we will mostly restrict our discussions to two complex
variables. Moreover, we will restrict our discussion to roots of polynomial equations.

1



2 1. INTRODUCTION

FIGURE 1.1. Newton's Method

Suppose we are given two polynomials of two complex variables. We are interested
in their common roots.

A(z,w) = 0
1 B(z,w) = 0

Then the pair of polynomials can be considered as a map R : C2 ,-+ C2, R=
(A, B). The well known Newton's method then consists of guessing a root p1 close
to an actual root and getting hopefully an even closer point p2 to the root from the
formula

p2 = p1 - (R'(pl))`R(pi)
See figure 1.1. Hence we should obtain a root of R = 0 after infinitely many

iterations of the map

We get a sequence {pn},
F(p) = p - [(R')-'RI (p)

pn+1 = F(p,,)
For some initial values p1 the sequence {p,,} does not converge to any root. So we
come back to our initial problem again; find the set of points pi for which {p,,}
converges to some root.

As an example, we consider the equations:

J A(z,w) = 2'z- 2w - Zz1 = 0
B(z,w) = 2w- 2z = 0

Obviously (0, 0) is a common root. We will see how Newton's method works for
this case. To simplify, one can first replace R' in the formula for Newton's method
by the constant matrix
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A=[0 12

if we assume that s is small. We see that

Ol
2

F(:, w) = (z, w) - A-' R = (z2 + ew, ez)
Such maps are usually called complex Henon maps. Newton's map F has

a fixed point at the root, (0, 0). This point is an attracting fixed point of F. This
means that the eigenvalues of the 2 x 2 matrix F'(0, 0) are smaller than one, which
implies that all points p, in a small neighborhood of (0, 0) are attracted to (0, 0),
F" (p,) -. (0, 0). The largest such set is an open subset of C2 and is called the
basin of attraction of (0, 0). This set consists of all initial guesses giving that
root.

In this case the basin of attraction is quite large, holomorphically equivalent
to the whole space C2, nevertheless it is also quite small. So both the set of initial
guesses giving the root and initial guesses not giving the root are quite large. A
more precise description of these sets was only obtained in the last few years. See
figure 1.2. Nevertheless, this kind of sets was studied already in the 20's and 30's by
Fatou ( [Fal]) and Bieberbach ([Bi]). They are called Fatou-Bieberbach domains.
See Rosay and Rudin, [RR], for many results on Fatou- Bieberbach domains and
see Stensones, [S], for a Fatou- Bieberbach domain with C" boundary.

In the case of Henon maps R, the iterates {F"} of Newton's method is a nor-
mal family on the basin of attraction of (0, 0). In general, when we have a map
F, we call the largest open set where {F"} is a normal family the Fatou set.
Moreover, we call the complement of the Fatou set the Julia set. So the Julia set
is always closed.

In order to understand Newton's method, a main problem then is to describe
the Fatou set and the Julia set of a map F. Since points on the Julia set are never
roots of F, we would like to know whether the Julia set is small. In addition, some
components of the Fatou set might not consist of initial guesses of any root. Hence
we are led to ask whether the Julia set has zero volume. Also we are led
to ask what are the possible kinds of Fatou components.

Next let us discuss the behaviour of Newton's Method on the Julia set of F. It
is known that polynomial maps on C are always chaotic on their Julia sets. Hence
we are led to ask whether F is chaotic on its Julia set as well.

A continuous map F : K - K on a compact metric space (K, d) is chaotic
([De]) if
is F is sensitive to initial conditions. This means that there exists a positive
6 so that for any x E K and any positive e, there is a point y E K closer to x than
e and an integer n > 1 so that d(F"(x), F"(y)) > 6. See Figure 1.3.
ii.- F is topologically transitive. This means that whenever x, y E K and 6 is
a positive number, then there is a point z E K and an integer n > 1 so that both
d(x, z) and d(F"(z), y) are smaller than 6. See figure 1.4.
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FIGURE 1.2. Fatou-Bieberbach Domain

iii.- The periodic orbits of F are dense in K.
It turns out that in dimensions above 1, the map F is not chaotic on the whole

Julia set. For this reason it is more natural to study the nonwandering part of
the Julia set. Suppose that F is a continuous self-map of some manifold M. Then
a point p E M is nonwandering if given any neighborhood U of p E M, there is an
integer n > 1 so that f"(U) f1 U 54 0. If not, p is wandering. See figure 1.5.
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C

FIGURE 1.3. Sensitivity to initial conditions

x

b

z
Fn (z)

FIGURE 1.4. Topological transitivity

FIGURE 1.5. Nonwandering points

5

Another concept similar to chaotic is ergodicity. Suppose F is a measurable
self-map of a compact topological space K. A Borel measure a on K is said to
be invariant if u(F-1(E)) = µ(E) for all Borel sets E C K. Suppose that µ is an
invariant probability measure on K. We say that µ is ergodic if whenever E is an
invariant Borel set, i.e. F(E) = F-1(E) = E, then µ(E) = 0 or 1.

Fixed points play a special role in dynamics. Roots p of R = 0 are fixed
points for the map F from Newton's method. Suppose that F is a holomorphic
self-map of a complex manifold M. Suppose that p E M is a fixed point of F.
If all the eigenvalues of F'(p) are strictly less than one, then p is an attracting
fixed point and there is an open set, the attracting basin of p, consisting of points
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FIGURE 1.6. Stable and unstable manifolds

z for which F"(z) -* p, as we have seen above. If all the eigenvalues are strictly
larger than one, the point p is said to be repelling. In this case there is an open
neighborhood U of p such that if q E U \ {p}, then there exists an integer n > 1 so
that Fn(q) V U.

Another important case in higher dimensional dynamics which does not occur
in dimension 1 is when some eigenvalues {A,' }i_1, but not all, are strictly less than
one and all the others, {."},1=1 are strictly larger than one. Such points are called
saddle points. Then, there is a neighborhood U(p) of p containing repelling and
attracting complex submanifolds W((P); the local stable and unstable
manifolds of complex dimension k and I respectively.

The local stable manifold WL
(P)

consists of the points q E UP so that F" (q) -' p
and {F"(q)}n 1 C U(p). The local unstable manifold W,IPI consists of the points
q E U(p) with a sequence {q"}n=1 C U(p), q,, -' p, F(q,,+1) = q,,, q, = q. See
figure 1.6.

The global stable set, WP', of p consists of all points q E M so that F" (q) -+ p.
The points considered above, attracting fixes points, repellings points, and sad-

dle points are hyperbolic fixed points. In addition there are fixed points where
some eigenvalue of the derivative is on the unit circle. The dynamics near these
points is much more difficult to describe.

The same terminology applies to periodic orbit, {zk}k=e,zk+I = F(zk),zI =
zo. They are hyperbolic if (F1)'(zo) has no eigenvalue of modulus 1.

The local dynamics near hyperbolic points is stable, i.e. maps close to F also
have hyperbolic periodic points close to p.

The concept of hyperbolicity generalizes to compact subsets, not only single
points or periodic orbits, ([Ru)). Let F be a holomorphic self-map on a complex
manifold M and let K be a compact subset of M. Assume that. K is surjectively
forward invariant, i.e. F(K) = K. We don't assume that F is a homeomorphism,
so a point may have several preimages. The set of inverse orbits, k C KN, k

;F(p,,) = p"+1}, is compact in the product topology. We define the
tangent bundle, TK, of k as the set of (p,.) where p = {p,, } E K and where

E T v (p_ 1) is a tangent vector. Then F lifts to a homeomorphism F : K -. K,
given by
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x2+x=1=0-.x= -12'

x6+x+1=0-*x=??

x3+xy2+5=0 and
y3-x2y+1=0-'x,y=??

I

Newton's Method:

(X., Y-) -'(x,y)

in C2 or P2

FIGURE 1.7. Roots of equations

F({....P-2,P-I}) = ({... ,P-2,p-I, F(P-I)})
Similarly, F' lifts to a map F' on TK.

We say that F is hyperbolic on K if there exists a continuous splitting E° (D E'
of the tangent bundle of k such that the subbundles E", E' are preserved by F',
and for some constants C, c > 0, A > 1, ,a < 1,

I(F")'(f)I > ca"IEI, E E",
E E',

n=1,2,....
One of the main open questions for rational maps on P' is whether the maps

which are hyperbolic on their Julia set are dense in the rational maps.
A weaker property than hyperbolicity is that of stability. A family A of maps

IF) PEA is stable at F0 if there exists an open neighborhood U of F0 such that all
maps G E U are topologically conjugate to Fo, i.e. there exists a homeomor-
phismh:M -+Mso thatGoh=hoFo.

It is known that the space of rational maps on P' is stable on an open dense set
([MSS]) when restricted to the Julia set, with the obvious definition of topological
conjugacy.

See figures 1.7, 1.8 for an outline of these notes. As is seen from the figures,
we do not discuss work on Local Dynamics around one point, Fatou, [Fa2], Hakim,
[H], Ueda, [U3] and Weickert, [W].



0 1. INTRODUCTION

COMPLEX DYNAMICS

Discussed here

Lectures 2-6

Not dicussed

Local dynamics
around one point.

Consequences of
Pluripotential Theory

C.n

Lectures 7-10 Ergodicity

FIGURE 1.8. Outline of Monograph



CHAPTER 2

Kobayashi Hyperbolicity

As mentioned in the introduction, some Fatou components arising in Newtons
method are initial guesses leading to roots, but others might not be. Hence, a
main goal is to characterize the nature of the Fatou components. One
of the basic tools in one complex dimension is the Montel Theorem, that is, that
the space of holomorphic maps from the unit disc into Pl = C U {oo} minus three
points is a normal family. Once this tool was discovered, one dimensional complex
dynamics got a big push forward because people were then able to prove global
results. Before, the theory was mostly local. In several variables, the Kobayashi
metric serves this purpose. In this section we first give some basic properties of
the Kobayashi metric and then show where the Kobayashi hyperbolicity enters in
investigations of iterations of maps.

Let M be a complex manifold; we will mainly deal with open subsets of C"
and P". Pick a point p E M and a tangent vector to M at p. Let A denote the
unit disc in the complex plane.

Pick any holomorphic disc through p tangential to , i.e a holomorphic map
f : A -. M, f (0) = p, f; (t/8x) = cc. The infinitesimal Kobayashi pseudo-metric
is obtained by maximizing the discs, inff{j }. See figure 2.1.
As an example, if M = C' or F", c can be arbitrarily large, so ds = 0 in either
case. Also, if M = 0, ds is the Poincare metric.

We say that M is Kobayashi hyperbolic if ds > cK I f l for some CK > 0, for
any compact subset K E M.

Brody ([Lal) proved a very interesting fact about hyperbolicity on compact
complex manifolds.

M

FIGURE 2.1. The Kobayashi metric

0
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THEOREM 2.1. (Brody) Let M be a compact complex manifold. Suppose
that M is not Kobayashi hyperbolic. Then there exists a non constant holomorphic
map f : C'-* M.

Pick a smooth Hermitian metric ds on M. Suppose that M is not Kobayashi
hyperbolic. Then there exists a sequence of holomorphic maps {fn}; 1, fn : 0 F-+
M, f. (0) =pn,If,, (0)I :=ds(pn,fn.(a/Oz))'- oo.

We may assume that fn is holomorphic in a slightly larger disc.
Define H,, : A'-+ R+, H"(z) = Ifn(z)I(1-Iz2I). Then there exists z E A, Hn(zn) _
max, H. Let gn : A .-+ M, gn = fn o 0n (w) where 0n (w) = w+z Then

ign(w)I(1- Iw2I) = Ifn(z)I10n(w)I(1- Iw2I) = Ifn(=)I(1-- Iz2I)

(the last equality follows by a short computation).

So now, Rescale the disc: Let R. := Ig,,(0)I (note that
Ign(0)I'-' oo, n i- oo) and define kin : 0(0, Rn) - M, kn(z) = gn(z/Rn). Then

Ik;.(z)I =
Ign,(z/Rn)I < Ig,n(o)I 1

< 2Rn 1 - Iz/RnI2 -

say on 0(0, Rn/2). Also Ik,(0)I = 1, so using a normal families argument we can
find a holomorphic map f : C'-+ M such that If'(0)I = 1, hence f is non constant.

Next we mention a few facts which follow directly from the definition of the
Kobayashi metric.

THEOREM 2.2. Holomorphic maps are distance decreasing, i.e., if F : M -+
N is a holomorphic map, then

ds(F(p), P. (l:)) < ds(p, f).

Hence invertible maps are isometries. Covering maps are also isometries. Bounded
open set in C' are Kobayashi hyperbolic

Developing the technique used in the proof of Brody's Theorem, we obtain
higher dimensional generalizations of the fact that P' \ three points is Kobayashi
hyperbolic, which is another way to state Montel's Theorem.

Green ([Gr1j) and ([Gr2]) proved the following theorem.

THEOREM 2.3. Let X ,, .., X,,, be compact complex hypersurfaces in P". Then
P" \ (Ui Xj) is Kobayashi hyperbolic if

(i) there is no non-constant holomorphic map from C to P' \ (Ui Xi),
(ii) there is no non-constant holomorphic map from C to (Xi, n . . . n X,,,) \

(X3, U... UXi,) for any {i,,...,ik,jl,..., j1} = {1,...,m}.
Assume that the image of a holomorphic map f : C - Pk does not intersect any
of k + 2 different complex hypersurfaces. Then f (C) is already contained in some
compact complex hypersurface.

A holomorphic maps f on Pk can always be lifted to a homogeneous holomor-
phic polynomial F on Ck+I,
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F
Ck+1 Ck+1

I-
Pk f I-

Pk

where 7r : Ck+' - Pk is the canonical projection. This F has the impor-
tant property that it only vanishes at the origin. This fact distinguishes
holomorphic maps from rational maps. Conversely, it is clear that any ho-
mogeneous F which vanishes only at the origin gives rise to a holomorphic map on
Pk

In the investigation of dynamics, one always needs a way to count such things
as the number of fixed points. For this, the Bezout Theorem is a useful tool.

THEOREM 2.4. Suppose that PI(zl,...z"+,),...,
P (zl , ... , are homogeneous holomorphic polynomials of degree
dl, ... , d respectively. Their zero sets determine complex hypersurfaces
X, , ... , X. in P". If X, nX2 n.. n X is finite, then the number of points, counted
with multiplicity, is d, d2... d".

As a consequence, we obtain:

THEOREM 2.5. Let F : Pk _ Pk be a holomorphic map of degree d at least
two. Then F has (dk+' - 1)/(d - 1) fixed points counted with multiplicity.

We show next that hyperbolicity occurs generically. Let 7{d denote the holo-
morphic maps on P2 of degree d.

THEOREM 2.6. [FS3] Fix an integer d > 2. Then theme exists a dense open
set fl' C fld with the following properties. If f E and C denotes it's critical set.
Then
i) No point of P2 lies in fn(C) for three different n, 0 < n <_ 4.
ii) P2\ (u =0 fn(C)) is Kobayashi hyperbolic.

The proof of the theorem uses analyticity and a calculation near a simple ex-
plicit map. The calculation is used to prove the following Lemma.

LEMMA 2.7. Let f = [zd : tvd : td] . There exists an arbitrarily small pertur-
bation g of f such that the five (reducible) varieties g"(C). n = 0, , 4 have no
triple intersections.

The theorem follows from the Lemma using Greene's Theorem 2.3.
The next result shows that periodic orbits of holomorphic self maps of Pk are

non attracting in the complement of the critical orbits under the hypothesis of
Kobayashi hyperbolicity. We say that an open set Il C P2 is hyperbolically em-
bedded if 1 is Kobayashi hyperbolic and if in addition the Kobayashi pseudometric
of SZ is bounded below by a constant multiple of a smooth metric on P2.

THEOREM 2.8. Let f : Pk _ Pk be a holomorphic map with critical set C.
Let C be the closure of U,`_o f? (C). Assume that Pk\C is Kobayashi hyperbolic and
hyperbolically embedded. If p is a periodic point for f, f' (p) = p, with eigenvalues
1 \ 1 ,

I A, Ak J> 1 or f is an automorphism of the component of Pk\C containing p.
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The key idea in the proof is that coverings are isometries in the Kobayashi
metric and inclusions are distance decreasing.

DEFINITION 2.9. We say that a Fatou component f2 C Pk is a Siegel domain
if there exists a subsequence f converging to the identity map on SZ.

Using normal families arguments we obtain:

PROPOSITION 2.10. JFS31 Let C denote the critical set of a holomorphic
map f : pk _ pk of degree at least 2. Assume that the complement of the closure
of U'% f -"(C) is hyperbolically embedded. Then

J c n U f-"(C) J(C).
N>O n>N

Hence all periodic points with one eigenvalue of modulus strictly larger than I are
in J(C).

THEOREM 2.11. [FS3J Under the assumptions of Theorem 2.8 we
have : If there is a component U of the Fatou set off such that f'(U) does not
converge uniformly on compact sets to C, then U is preperiodic to a Siegel domain
S2 with Oft C C.



CHAPTER 3

Some Examples

In this lecture we will give some examples of dynamics in higher dimensions. We
first recall a few facts from one variable. There are three types of Fatou components
in one dimension;

i.- Attracting basins
ii.- Parabolic basins
iii.- Siegel discs or Herman rings

These have analogues in higher dimension. Let M be a complex manifold and
let F be a holomorphic self-map. We have already seen attracting basins.

A fixed point zo (or periodic orbit) is called parabolic if at least one eigenvalue
has norm one. In this situation, there might be some nonempty open set U, the
parabolic basin of zo , on which Fkn zo.

We recall that a Fatou component is a Siegel Domain if there is a subsequence
of iterates converging to the identity map. In one dimension, there are two types of
such domains, Siegel discs, on which F is conjugate to a rotation, z -' e'0z on the
unit disc, and Herman rings, on which F is conjugate to z - e'Bz on an annulus.

In one variable, these are all the Fatou components, except the preperiodic
ones, for which some forward orbit is one of the three above types.

Rational maps F of degree d on P1 can have at most 2d - 2 attracting orbits. (See
[CG, page 58].) This is because there must be at least one critical point in each
attracting basin in one variable. Gavosto ([Gal) has shown recently that there are
holomorphic maps on P2 with infinitely many attracting periodic points.

Ueda ([Ul]) has devised a method to obtain examples of different kinds of
Fatou components on P2.
The map 4 : P1 x P1 -- P2,

C[zl : z21, [wl : w2]) = [z1w1 : z2w2 : Z1 W2 + z2w1]

is a 2-1 holomorphic map whose fibers are of the form {(z, w), (w, z)}. One can
push down holomorphic maps on P1 to holomorphic maps on P2 using the following
commutative diagram:

13
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FIGURE 3.1. Critical Orbits

P' X P1
(f(z),f(w))

P' X P'

F

For example, this can be used to find a holomorphic map F on P2 with a
Siegel domain which is of the form of an annulus cross an annulus: Pick a rational
map f on P' with two Herman rings S21 and r12. Then F has a Siegel domain
ftl X 522. As another example, one can also use this to find a holomorphic map
on P2 with a dense set of repelling periodic points by picking an f whose Julia set
is all of P'. In particular, this gives an example of a map whose Julia set is all of P2.

We will next give another, more two dimensional, construction of a map whose
Julia set is all of P2. First let us recall a few facts from the theory of one variable.

The quadratic family {PP(z)} := {z2 + c} consists of degree two polynomials,
parametrized by a complex number c. We denote by the Mandelbrot set, M, the
set in the parameter plane C(c) defined by M := {c; JJ is connected}, where J, is
the Julia set of Pa(z) = z2 + c.

It is known that the dynamics is stable on the Julia sets on each interior com-
ponent of the Mandelbrot set. It is also known that the dynamics on many interior
components is hyperbolic. Each such component contains a unique map with a
particularly nice dynamics, a so called critically finite map, that is a map for which
the critical point has a periodic orbit. The simplest examples are:

1: c=0, 0-0
2: c= -I : z2-1.0-.-1_ 0

We give a more general definition, valid in two complex dimensions. The defi-
nition may be generalized further to arbitrary dimensions.

Let F : P2 - P2 be a holomorphic map. Let C be the critical set, C =
{detR' = 0) with irreducible components {C,}. Then, R is critically finite if
each C, is periodic or preperiodic. See figure 3.1.
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FIGURE 3.2. Critically Finite Map

is

Furthermore, we say that R is strictly critically finite if in addition the 1
dimensional maps R"' : R'4 (C,) - Ti" (C;) on periodic orbits, are also critically
finite maps, i.e. if all their critical points are periodic of preperiodic.

The quadratic maps Pa(z) for which the critical point, 0, is preperiodic, are
said to be Misiurewicz points. (See [CG, page 133]).)

If one considers polynomials as rational maps on P', then one obtains that oo
is another critical point and it is fixed.

If all critical points of a rational map in one dimension are preperi-
odic, then the Julia set is all of P' ([Mil).

Our next example ([FS2]) shows that there are such maps in two dimension,
and that the Julia set is all of P2.

Let F : P2 - P2, F([z : w : t]) = [(z-2w)2 : (z-2t)2 : z2]. This is the rational
map F : C2 C2, F(z, w) ( Z = W 2 , s = 2 2 L) written in homogeneous coordinates.

It is easy to compute the critical set, C = {z = 2w}U (z = 2t) U {z = 0}, and to
show that the forward orbit of each component of the critical set ends on the same
periodic cycle of three complex lines, {z = t} -+ {w = t} -. {z = w} '-+ {z = t}.
We see that F3 is a critically finite map on each of these lines. See figure 3.2. All
critical points on these lines are strictly preperiodic. Hence by one dimensional the-
ory, the Julia set of F contains these three lines and therefore all their preimages,
hence the critical orbit.

The next step is to show that the complement of the critical orbit V is Kobayashi
hyperbolic. We see this easily, because it contains a copy of (C - (0,1))2. The map
F : P2 \ F-'(V) - P2 \V is a covering map, so is an isometry in the Kobayashi
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metrics for the respective domains. Since P2 \ F-' (V) is a proper subset of p2 \ V,
one can show that the metric is strictly expanding in at least one direction. With
this it is possible to show that any Fatou component must converge under itera-
tion to the critical orbit. But this, one can show, leads to a contradiction to the
expansiveness of F3 in the above three lines.

For a rational map on P1, a finite set E is exceptional if f(E) = E.

The only exceptional maps on P' are {z"), with E = 0, oo.

DEFINITION 3.1. Let f : P2 -+ P2 be in Na and V a compact subvariety in
P2. Then V is exceptional if f -(V) = V.

We discuss next the exceptional maps in P2, and give some examples.

PROPOSITION 3.2. [FS3] Let V be the exceptional variety off : P2 -. P2.
Then the degree of V is at most 3.

To prove the proposition, we write V = {h = 0} and show by degree counting
that the Bottcher functional equation h o f = f hd holds.

One has the following theorem which describes many examples of exceptional
maps.

THEOREM 3.3. [FS3] 1. If the map f E Nd has an exceptional variety con-
taining one complex line, then (we can assume after conjugation with a linear au-
tomorphism that) f = [fo([z : w : t]) : f, ([z : w : t]) : td] where the functions
fo(z, w, 0) and f 1 (z, w, 0) have nondegenerate degree d -terms.
2. If the map f E 7{d has an exceptional variety containing two complex lines, then
we can assume that f has the form [fo([z : w : t]) : wd : td] where the function
fo(z, 0, 0) = zd.
3. If the map f E ltd has an exceptional variety which is a union of three lines,
then f has the form [zd : wd : td].

In addition to the examples in the theorem, the only possible others are if V
is a nonsingular quadratic curve (zw - t2 = 0) and f has odd degree. But no such
examples are actually known.



CHAPTER 4

Applications of Kobayashi Hyperbolicity

We investigate Kobayashi hyperbolicity of Fatou components. Our aim is to give
further examples of how Kobayashi hyperbolicity can be used to give dynamical
results.

At first we discuss some elementary properties of a Green function associated
to a holomorphic map.

Let f = ]fo : : fk] be a holomorphic map of degree d in pk written in
homogeneous coordinates, with lifting F : Ck+' . Ck+i

We define the function

G(z) =1im,,-,,log]IF"(z)II/d".
This was first introduced by Hubbard in several variables. Brolin ([Br]) had

introduced it earlier in one complex variable.
See also Hubbard- Papadopol, [HP].

THEOREM 4.1. [FS3] G is continuous and plurisubharmonic (except that
G(O) = -oo).

Since F vanishes only at 0 we have for some constant M

1/MIIzdJI <- IIF(z)II < MIIzIId

and hence

Consequently

1/MIIF"(z)IId < IIFn+'(z)II <_ MIIF"(z)IId.

I11dn+'logllF"+'(z)II -1/d"logjjF"(z)II1=
1/dn+'IIogIIFn+']I/IIF"I]dI <_ 1/d"+'logM.

Consequently G is a continuous (to the extended real line,) plurisubharmonic
function in Ck+t

set.
LEMMA 4.2. G is pluriharmonic precisely on the inverse image of the Fatou

Suppose at first that G is pluriharmonic on some open set it-' (w). So write
G(z) = 8?H(z) for some holomorphic function H such that
1/d"log]IF"II i-. RH. Recall that

I1/d"+1 logIIF"+'II - 1/d" logIIF'III <logM/d"
so

Hence
I3tH - 1/d" log IIF'"III < C/d".

-C < log]IF"e-d"HII < C

17
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V"

J

FIGURE 4.1. Kobayashi hyperbolicity of Fatou components

so

1/C' < IIFne__d"1111 < C",

hence the iterates are in a normal family.
Next suppose that w belongs to the Fatou set. So for some subsequence nk,
,- q(z). Hence shrinking w if necessary, we may assume that we can lift to a

sequence F". * A,, (z) 4i(z). But then

1/d"logl[F"II + 0.

Since the second factor is always pluriharmonic, it follows that C is pluriharmonic.
We prove that Fatou components of holomorphic maps on P2 are

Kobayashi hyperbolic. Note that this rules out that some Fatou component is
biholomorphic to C2 as can be the case for Hbnon maps on C2.

THEOREM 4.3. [Ul] Suppose that F : Pk _ pk is a holomorphic map of
degree d > 2. Then each Fatou component of F is Kobayashi hyperbolic.

We lift F to a homogeneous polynomial map F : Ck+1 _ Ck+1 Then there is
a constant C so that , IIzlI' <_ IIF(z)II <_ CIlzI[d.

Let G denote the Green function. By homogeneity,

G(Az) = G(z) + logl.l (*)
It follows that U = {z : G(z) < 0} is the basin of attraction of {0} for the map

P and that the boundary is {G = 0}. Clearly, U is a bounded set.
We next lift a given Fatou component V to bU. We do this at first locally. Pick

a point p E V and some q E Ck+1 \ {0}, rr(q) = p. Then in some small neighborhood
of q, the function G is pluriharmonic and is therefore the real part of a holomorphic
function H. Define 4P = err. Then by (*), it follows that 4'(cz) = IcI4i(z). Since one
of the coordinates of q is non-zero, we can assume say that q = (Q1 i ..., qk, 1) and that
we have a set V' = {(q1, ..., qk,1)} in this neighborhood, covering a neighborhood
of p. Hence, V' is a local lifting of this neighborhood of p.

We choose another lifting V" which is in the boundary of U by the formula
1

{ (ql, ...qk, 1)
}(91, ...qk, 1)

We obtain that this lifting is in the boundary of U because 1411 - 1, hence
G - 0 there. See Figure 4.1.



4. APPLICATIONS OF KORAYASHI HYPERROLICITY 19

Any other local lifting V"' to bU is obtained by multiplying with e'B, but these
are the only liftings to W. Hence local liftings patch together. Therefore, there is
a complex submanifold V in bU which is a covering of V. But U is bounded set, so
V and hence V, is Kobayashi hyperbolic.

Next, we give an example how it is easier to work on pk using homogeneous
coordinates. Also the theory in Ck is a special case.
We will study normality of inverses of iterates of holomorphic maps f : P2 i-. P2
of degree at least two.

Let us first recall the situation in one complex variable.

THEOREM 4.4. Suppose that f : P1 * P' is a holomorphic map of degree
d > 2. Assume there exists an open set W C P' on which some subsequence f).
has well defined inverses g := h,, : W " UJ _: W,,. Then the family of maps g
is a normal family.

Note that no W. can contain a critical point c of f. Moreover, if j > k, W.
cannot contain any element of f -k(c) either. So if Uj >fl f -l (C) contains at least
three points, where C is the set of all critical points, then we are done by Montels
Theorem (or the fact that P' \ [0, 1, oc] is Kobayashi hyperbolic). The only case
missing is the case of an exceptional map, i. e. a map of the form f = z' for some
non-zero integer n. But for these maps, the result follows by inspection.

This proof generalizes to some cases in higher dimension. Namely, one needs
to know that for some intger k, the complement of Uo<j<kf-'(C) is Kobayashi
hyperbolic. This is true for a generic family of holomorphic maps, but not for all.
And one doesn't have a complete classification of those maps for which this fails
in order to handle these maps by inspection. So a better proof is needed to handle
the general case. Ueda ([U2]) has a proof which generalizes.

[Ueda's Construction for Theorem 4.4:] The map f can be lifted to a holo-
morphic map F : C2 -' C2 given by homogeneous holomorphic polynomials of
degree d. Note that F only vanishes at the origin, so we have the estimates that
II(z,w)IId/C < IIF(z,w)[I 5 IICII(z,w)IId for some fixed constant C. Hence it fol-
lows that there is some constants 0 < r < R < oo such that if II(z,w)II < r, then
I1F-'(z,w)II > 211(z,w)[[ and if II(z,w)II > R, then IF_'(z,w)[I < II(z.w)[[/2. See
figure 4.2. In other words for any point p 54 0 in C2, and any choice of preimages
F-k(p), the sequence satisfies r < j[F-k(p)II < R for all k large enough.

To prove normality of the map, notice that the map F sends complex lines
through zero to complex lines through zero and the map on each line is of the form
t i- ctd. Hence the map on each line is unbranched with d possible preimages. If
we shrink W, we can find a lifting of f -' to F-' defined on a section of C2 so that
the diagram commutes. f-'

UI

F-'
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FIGURE 4.2. Normality of Inverse Maps

We can repeat this process to define always inverses F-" on a section of W so
that rr o F-" = f -" o 7r. But since the images of the F-"s converge to the bounded
set r < II(z,w)II < R, the maps F-" constitute a normal family. Hence the maps
g" is also a normal family.

Ueda ((U2]) proved the same result in general:

THEOREM 4.5. Suppose that f : pk pk is a holomorphic map of degree
d > 2. Assume there exists an open set W c Pk on which some subsequence fJ' ,
has well defined inverses g" := hi..: W '-- Uj, =: W. Then the family of maps g"
is a normal family.

The proof is the same in general as in the one dimensional case.

Recall that a Fatou component f2 of a holomorphic map f : P" P" is said
to be a Siegel Domain if for some sequence of iterates, f") we have that f 19 -- Id.

In one complex dimension it is known that the boundary of a Siegel disc is
contained in the closure of the critical orbit. We will see that as an application of
Ueda's result we have the same property in P.

THEOREM 4.6. [U2) Let f : P" - P" be a holomorphic map of degree
at least two and suppose that ft is a Siegel Domain. Then the boundary of H is
contained in UJ>o f (C).

REMARK 4.7. One can sharpen the result and show that the boundary is con-
tained in the smaller set nk>oU,>k f ' (C).

Fix a point p in the boundary of a Siegel Domain and assume there is a neigh-
borhood Y W of p which does not intersect the critical orbit. We can assume that W
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-- g"(W )

FIGURE 4.3. Siegel Domain

21

is a ball. Hence we can define for each n a large number of holomorphic inverses of
f". Pick a nonempty open set U C Wf1S2. Then there is a unique inverse g" for each
n so that g"(U) C Q. See figure 4.3. For some subsequence {m;}, fm' converges
to the identity on U. By the previous Theorem, gm, converges to the identity on
W. Hence f'', converges to the identity on W. The Theorem now follows from the
next Lemma.

Now we use the following Lemma:

LEMMA 4.8. Suppose f : pk pk is a holomorphic map. If some subse-
quence f"i converges on an open set V, then V belongs to the Fatou set.

Lift f to F : Ck+' . Ck+1 and consider the sequence of plurisubharmonic
functions G" := log IIFn+"jl/d". Then this sequence converges uniformly to G.
Moreover, the function G is pluriharmonic exactly over the Fatou set. But it
follows from the hypothesis that G",, converges to a pluriharmonic function. Hence
V belongs to the Fatou set.





CHAPTER 5

Recurrent Fatou Components

Fix a holomorphic map f : P2 )-4 P2 of degree d > 2. We will classify certain
periodic Fatou components 0 for f. We can assume that f(I2) = fl replacing f by
an iterate if necessary.

We say that a Fatou component H is recurrent if for some po E I1 the w- limit
set of po intersects I1, i. e. f (po) is relatively compact in Il for some subsequence
n,.

The following theorem has been proved in more generality by Abate under the
more restrictive hypothesis that the domains are taut.

THEOREM 5.1. [FS5] Suppose that f is a holomorphic self-map of P2 of
degree d > 2. Suppose that n a fixed, recurrent Fatou component. Then, either :
i) I2 is an attracting basin of some fixed point in I2, or
ii) there exists a one dimensional closed complex submanifold E of I2 and f"(K) '-+
E for any compact set K in 11. The Riemann surface E is biholomorphic to a disc,
a punctured disc or an annulus and f IE is conjugate to an irrational rotation or
iii) the domain I2 is a Siegel domain.

Since fl is recurrent, there exists po E ci and n; such that f"-(po) is relatively
compact in fl. In this case we prove that we are in one of the situations described
in i), ii), iii).

Assume f'-(po) p, n,+1 - n, -. oc. Taking a subsequence {i = i(j)}
and recalling that we are in the Fatou set, we can suppose that the sequence
{ f".(,)+, -"-% converges uniformly on compact sets in I1 to a holomorphic map
h : fl -+ SE. Let p, = f',(Po) Then fn---n-)(p.) = f' ,)+) (Po) = P+ Hence
f".(,)+`-"",)(p) = Pqj)+) +o(1 P,(j) -p 1) so converges top. Therefore, necessarily
h(p) = p.

Let Fix(h) denote the collection of fixed points of h. Since ho f=limf".),)}1-".(,)o
f = f olimf +'-"-) = f oh, h commutes with f. It follows that f maps Fix(h)
to itself since if h(q) = q, then h(f (q)) = f (h(q)) = f (q).

If, for some h the rank of h = 0, then h(i) = p, so p = h(f (p)) = f (h(p)) _
f (p), hence p is also a fixed point for f. Also both eigenvalues of f' at p must have
modulus strictly less than one since some iterates of f converge to the constant
map. Hence this leads to case i).

Assume for some h the maximal rank of h is two. Write h = lim f k, on Q. Pick
q E fl where h is locally biholomorphic. Say h maps U(q) to V biholomorphically.
After shrinking U and choosing i large it follows that f k (f1) J V. Hence V C Cl.
Then, for large i, we have on V that f+'' = fk,+, o (fk,) -1 is approxmately
h o h-1 = Id. Hence I2 is a Siegel domain. We are then in case (iii).

23
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52

FIGURE 5.1. Recurrent Domains

We now assume that for all h, the maximal rank of h is one. Fix an h and let
E := h(52). Then E C Q. We show first that f is a surjective self map of E. Note
that E is an abstract Riemann surface.

If x E E then x = h(y) for some y E 52 and f (x) = f (h(y)) = h(f (y)) E E. So
f (E) C E. We show next that the restriction of f to E is surjective on E.

Let x = h(y), y E Q. Choose y_ E 52 such that f (y_) = y. Define x_ = h(y_ ).
Then x_ E E and f (x_) = f (h(y_ )) = hf (y_) = h(y) = x.

Define E° := E fl Q. Since f (52) C 52, then f (E°) C E°. Since f is an open map
([FS 1]), f maps the boundary of 52 to itself and hence f (E°) = E°.

After more work, ([FS5]), we obtain that E is a disc A, A' or an annulus and
f acts as rotation z r--+ eiez. The last step of the proof is to show that E C Q. If 52
was taut, this would have been automatic by definition. (A Kobayashi hyperbolic
complex manifold M is taut if the family of holomorphic maps from the unit disc
to M is a normal family.) But we don't know whether D is taut.

To illustrate the idea suppose we have an annulus contained in E which in local
coordinates is in a complex line {(z,0)} C C2. See figure 5.1

Suppose moreover that (1 -e < Izi < 1) C 52 and that {1 < 1zi < 1+e} c on.
Then f has the form

f (z, w) = (e1 ez + wg1(z, w), wal (z) + w2k1(z, w))

and

f"(z,w) = (einez +O(w),wl"_oai(eijez) +O(w2)
For each radius r let A(r) denote the average of logja1(z)I over the circle of

radius r. Similarly let A, (r) denote the average of Then A, (r) and A(r)
have the same sign always. Also note that the rotation by 0 on the circle is ergodic.
Hence it follows that A(r) in L2 on the circle I z 1= r.

Choose r, such that a, does not vanish on the circle I z 1= r, and hence on a
ring r1 <I z I< r2. Then the functions are equicontinuous so they converge
uniformly to A(r) there.
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In particular it follows that if A(r) < 0, then the circle with radius r is in
the Fatou component. Since A(I z 1) is subharmonic, A(r) > 0 on the side which
belongs to the boundary. But then it follows from ergodicity that for large n,
I a,(z) I> 1 uniformly, on circles I z 1= r. But this implies that these points repell
points from Q. Hence there can be no points in 11 converging to them.

If f : F1 -' P1 is a rational map, there are finitely many recurrent Fatou
components. These are either attracting basins, Siegel discs or Herman rings.

There exist on the contrary holomorphic maps on P2 with infinitely many
attracting basins, hence recurrent. ([Ga]). This is obtained by using a suitable
adaptation to P2 of the Newhouse phenomenon which produces infinitely many
attracting orbits of real diffeomorphisms of compact real two dimensional surfaces.





CHAPTER 6

Rational Maps

In this section we investigate rational self maps in P2. The main point is to build
a skeleton of a theory. So there are mainly definitions in this section, and many
obvious research questions.

Notice that if R = [A : B : C] are homogeneous polynomials of degree d, we
may assume they have at most finitely many common zeroes (lines of common ze-
roes in C3). If not, they have a common factor which can be divided out. The
remaining points p if any in P2 are called points of indeterminacy.

We have that dim {A = 0} = 2 if A is not equivalent to 0 so gives a com-
plex curve in P2. Also dim{A = B = 01 > 1 so gives a point in P2. So usually
{A = B = C = 0} contains the orgin in C3 only, hence corresponds to the empty
set in P2. Hence most maps R are holomorphic. Being rational is exceptional.

With the degree d of any homogeneous map R = [A : B : C] we mean the
degrees of A, B or C, which are equal, after cancellation of all common irreducible
factors. So we assume that d > 2. Let I = I(R) = {qk} denote the (finite)
indeterminacy set consisting of the points qk in P2 where A = B = C = 0.

For each qk, the image is a compact Riemann surface Sk, which we call the
blow- up of qk. More precisely, Sk = nf>oR(B(gk,e)) \ qk where B(qk,e) denotes
the ball centered at qk of radius a in some arbitrary metric.

A1No let V = UVj denote the finite union of irreducible compact complex curves
V, on each of which R has a constant value (at least outside I). Say R(V,) = p,
We call such curves, V,. R- constant

EXAMPLE 6.1. The Henon map

H(z, w) = z2 + c + aw, z)

extend as the map

H([z:w:t])=[z2+ct2+awt:zt:t2]
on P2. This map is rational, but not holomorphic. The point q = [0 : 1 : 01 is the
point of indeterminacy. The blow-up of q is the line at infinity, (t = 0). The line
at infinity is also the R - constant curve for H and its image is the fixed point
[0: 0: 1].

27
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PROPOSITION 6.2. If V is nonempty, then also I is nonempty. It can hap-
pen that V is empty while I is nonempty.

Suppose that V is nonempty. Then we may after a rotation assume that some
irreducible component V, = {h = 0) for some irreducible homogeneous polynomial
h and that R(V,) = 10 : 0 : 11. Hence h divides both A and B. But then the set
{C = 01 and {h = 01 must intersect and such an intersection point is a point of
indeterminacy.

For the converse, consider the example R = [zw : z2+wt : t2]. For this example,
there is one point of indeterminacy, [0:1:0), while the map is not constant on any
curve.

Let R be a rational map P2 . P2. Let I be the indeterminacy set. Given
a E P2 we want to discuss the number of preimages of a. Recall that Bezout's
Theorem asserts that if (PI, - - , Pk) are k homogeneous polynomials in pk with
discrete set of zeroes then the number of zeroes counted with multiplicities is equal
to the product of the degrees.

Holomorphic maps P2 P2 of degree d are d2 ' 1.

PROPOSITION 6.3. Let R : P2 . P2 be a rational map of degree d. Assume
ISO.
Assume R is of rank 2. Then for any a which is not one of the finitely many points
which is the image of an R- constant curve, R` (a)(a) = d' < d2. Here we count the
number of points with multiplicity.

Consider the forward orbit of the points p3. The R- constant variety Vj is
j) = R"(pj) E I.called degree lowering if for some (smallest) n = nj > 0, R"+I (V

When there is a degree lowering variety, all the components of the iterates of
R"' +I vanish on V, = {h = 0}. Hence one need to factor out a power of h in order
to describe the map properly. Hence the degree of the iterate will drop below d",+I
Hence for rational maps R, the degrees of the iterates R" can grow erratically. See
Medina Bonifant [MB) for results in this case.

Next we will study generic rational maps on P2, i.e. rational maps of maxi-
mal rank 2, which have degree at least 2 and which have no degree lowering curves.
We have first to define Fatou sets and Julia sets of R : P2 - P2.

n.

LEMMA 6.4. If I" denotes the indeterminacy set of R", then I. C I,,, dm >

The set I(R) should belong naturally to the Julia set because they are blown
up. So does UI,,. Hence the closure E := UI", the extended indeterminacy set,
belongs naturally to the Julia set as well.
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PROPOSITION 6.5. If p E P2\E and R"(p) E E, n > 1, then p is on an
R^ - constant curve.

If p is not on an R"- constant curve there are arbitrarily small neighborhoods
U(R"(p)), V(p) so that R' I V : V -p U is a finite, proper, surjective holomorphic
map. Moreover we may assume that V f1 E = 0. Since every such open set U
contains a point from some Ik, it follows that V contains a point from some I"+k.
Hence p E E, a contradiction.

DEFINITION 6.6. Let R : P2 _ P2 be a generic rational map. A point p E P2
is in the Fatou set if and only if there exists for every e > 0 some neighborhood
U(p) such that diam R"(U\I") < e for all n.

Note that if e is small this implies that I. fl U = 0. Note also that this implies
that p cannot belong to the extended indeterminacy set. We say that the Julia set
is the complement of the Fatou set.

DEFINITION 6.7. A point p E P2 has a nice orbit if there is an open neigh-
borhood U(p) and an open neighborhood V(I) so that R'(U) fl V = 0 for all
n>0.

So if p has a nice orbit, R" is well defined for all n on some fixed neighborhood of
p. The set of nice points is an open subset of P2\E.

DEFINITION 6.8. A generic rational map is said to be normal if N, the set of
nice points equals P2\UIn.

Let R be a generic rational map in P2. With an abuse of notation we will also
denote by R a lifting of R to C3. If II II is a norm on C3 we define the nth Green
function G on C3 by the formula G" := d Log II R" II . Here d is the common
degree of the components of R. Observe that if R is rational, G" has other poles in
C3 than just the origin (G" _ -oo on ir-L(I")). Let A denote the canonical map
C3 I {0} P2.

PROPOSITION 6.9. The functions G" converge u. c. c. to a function C on
the set ir- I (N) of points with nice orbits.

If p E N there exists U(p) and c > 0 such that on a' I (U(p))

II R"+1(z) II>- c p R"(z) Ild

On the other hand the reverse inequality

II R"+1(z) II<- C II R"(.) Ild

holds always. Hence the sequence to R^ converges u. c. c. on Tr-' (U(p)).
Because of the second inequality, the limit C always exists and is a plurisubhar-

monic function on C3, possibly = -oc, although we don't believe this can happen.
(You just need one periodic orbit to show that the limit is not identically -oo.)
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THEOREM 6.10. Let R be a generic rational map on P2.
(i) The function G is plurisubharmonic in C3 (or = -oo).
(ii) C is pluriharmonic on it-1(1) if S2 is a Fo' u component.
(iii) If N is the set of nice points of R then G is continuous on ?r-'(N) and if G
is pluriharmonic on s 1(w) where w is an open subset of N, then w is contained in
a Fatou component.

There are two particular cases of generic rational maps which have been previ-
ously studied, namely the complex Henon maps and the class of holomorphic maps
on P2, maps without points of indeterminacy.

We will define various subclasses of the rational maps. These classes are some-
times large enough to contain all holomorphic maps and all Henon maps.

DEFINITION 6.11. A generic rational map is said to belong to the class of
indeterminacy repellors - IR - if there exist arbitrarily small neighborhoods U CC V
of the indeterminacy set for which R( P2\U) C P2\V.

Both Henon maps and holomorphic maps belong to IR. Nevertheless the defi-
nition is rather strong. It implies that every point in P2\I has a nice orbit, which
also implies that the points in I have no preimages. So the extended indeterminacy
set E contains I only.

DEFINITION 6.12. We say that a generic rational map belongs to the class with
no R- constant blow ups, NRB, if there is no point of indeterminacy q for which
the blow up is R"- constant for some n > 1. The complement of this class is the
set RBwith R- constant blow-ups.

Henon maps are in RB. The map R = [zw : z2 + wt : t2) above is in NRB since
it has no R-constant variety.

DEFINITION 6.13. We say that a generic rational map R is a rational Henon
map, RH, if there exists a generic rational map S such that R o S = Id = S o R in
the complement of some hypersurface. We say that S is the inverse of R.

Jeffrey Diller (fDi]) has studied these maps and more generally rational maps
with rational inverses. He has proved continuity results of the Green's functions
both for the map and it's inverse.



CHAPTER 7

Holomorphic Dynamics in Cn

In the previous sections we have mainly been concerned with complex dynamics
on complex projective space P2. The maps we have studied can always be lifted
to homogeneous maps on C3. In the remaining lectures we will discuss iteration of
maps on C2.

We will introduce 5 natural classes of holomorphic maps on C". In addition we
will discuss flows of holomorphic vector fields. These give rise to mappings which
may or may not be everywhere defined. We will consider various natural classes of
vector fields as well.

Most of this lecture is used to introduce all these classes of maps and vector
fields. In subsequent lectures we will discuss some selected dynamical questions
about these. We will show that for dense sets of vector fields dense sets of points
explode in finite time (lecture 8). For dense sets of certain maps, orbits are dense
(lecture 9) and have dense sets of periodic points (lecture 10).

We let E denote the collection of holomorphic maps, endomorphisms, on C".
The set B C E consists of those maps in E with inverses in E. The group B has a
subgroup V of volume preserving maps. On the other hand, if the dimension n = 2k
is even, V has a subgroup S of symplectic biholomorphisms, i.e. maps which pre-
serve the symplectic form Sl = k, dz, Adw;. Another subclass of B consist of the
complex Henon maps 7{, ([BS11, [BS2], [BLS], [FS1], [Hay], [HOV], [P]).

In his thesis, Greg Buzzard ([BI]) addressed the question whether the dynam-
ics of biholomorphic maps on C2 is generically stable. This is one of the main open
questions in complex dimension 1. Newhouse ([N]) showed that dynamics on two
dimensional real surfaces is not generically stable. The key ingredient in his proof
was the fact that two sufficiently thich Cantor sets on the real line which intersect,
intersect even after small perturbations. This fact fails for Cantor sets in the plane.
Buzzard showed however that this stable intersection is still valid for certain Cantor
Julia sets. This stable intersection of Julia sets could then be used to produce stable
tangencies of stable and unstable foliations, which in turn led to instability of maps.

In the opposite direction, Buzzard ([B2]]) showed that for a dense set of maps
all periodic points are hyperbolic and all intersections of their stable and unstable
manifolds are transverse, i.e. no tangencies. See figure 7.1.

Next we discuss holomorphic vector fields X = (X1,...,X") where the X,s are
entire holomorphic functions on C". In this case, one has for each point zo E C" an
integral curve 7(t) defined for t in some interval 10, to) C R. This curve then has
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FIGURE 7.1. Dynamics in C"

the properties that y(0) = zo, and ry'(t) = X(y(t)).

There is a maximal number to, possibly oo for which ry is defined. Since the
vector field X is holomorphic, one can extend the definition into the complex re-
gion, and allow t to be complex. For each zo, there is a maximal open region R=0
for which y is defined. In general this maximal region will be a Riemann surface
over C. See figure 7.2

Notice that the collection of all curves y obtained in this way gives a holomor-
phic foliation of C" by complex curves except for points where X = 0. These are
called singular points.
We will in particular consider two kinds of holomorphic vector fields, Hamiltonian
vector fields associated to Holomorphic Hamiltonians and Holomorphic Reeb vector
fields associated to Complex Contact Structures.

Let us first discuss the Hamiltonian case: Let H be an entire holomorphic
function on C2k. Then we define the Hamiltonian vector field

k OH 8 8H e
XH - r̀

= 1
- 0 az; +
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FIGURE 7.2. Domain of Integral Curve

We will also consider the possibility that the Hamiltonian changes with time.
In this case the same formula gives rise to time dependent vector fields.

The flow of a holomorphic Hamiltonian vector field preserves Q. Hence the
Jacobian of the flow is identically 1 where defined.

REMARK 7.1. The flow of a Hamiltonian H is along level sets of H.

EXAMPLE 7.2. A shear is a biholomorphism of the following type:
(z, w) -* (z + h(w), w) where h is an entire function. Note that shears are given by
Hamiltonian flows:
Let P(w) be an entire function. Then the Hamiltonian vector field is (-P., 0)
and the time 1 map is (z, w) .. (z - P,,. (w), w). So we can let P = - f h. A
similar remark applies to holomorphic functions Q(z). We obtain shear (z, w)
(z,w+Q2(z)) as time -1 maps.

The following proposition is well known.

PROPOSITION 7.3. Let 0 E S. Then there exists a C'° /unction
H(z, w, t) :

C2k * R C with period 1 in t such that HI (z, w) := H(z, w, t) is
holomorphic for each t. Moreover 0 is the time 1- map of the time dependent
holomorphic Hamiltonian vectorfield (XI)j1.

Let E denote the class of entire holomorphic function.-. We can identify these
with the space of time independent pluriharmonic Hamiltonians, if we identify
entire holomorphic functions differing by a constant.

We recall the concept of a real contact structure in R3 seen as modelled on the
restrictions of a Hamiltonian vector field and a symplectic form on R4 to a level
set of the Hamiltonian. After this we show how the same situation in Rs leads to
complex contact structures on C3 C C4 = Rs.

If we consider the case of a 4-dimensional phase space R4(pl, p2, qi, q2), one
can discuss Hamiltonian vector fields, namely, given a Hamiltonian
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H(PI,p2,gI,g2) we consider the Hamiltonian vector field X = J * VH where
J * 8/8p, = 8/8q, and J * 8/8q, = -8/8p,. This gives a vector field X which
is tangent to the level sets of H.

Hence we are led to studying vector fields X inside 3 dimensional manifolds S.
We can recover the direction up to sign intrinsically from the equation < w, X A
Y >= 0 for all tangential vector fileds Y where w is the symplectic form on R'.

Note that dAIS = wIS, where A = > p,dq,, and one way to determine a length
of X is to set < A, X >= 1 (or -1 if we want to reverse the vector field).

For the question whether orbits are singular, that is, unbounded, what is
relevant is the direction of X and not its size. If S = {H = 0} and we replace H
by gH, we exchange X by gX. Hence intrinsically we need a way to fix a length of X.

However if we are interested in whether orbits explode in finite time or not,
i. e. the orbits are unbounded on a finite interval, it is more appropriate to use an
equation of the form < A, X >_n h for a (possibly) variable function. This method
breaks down if ASS is zero at some point or if X points in the null space of A.

To be able to work intrinsically in 3 dimensional surfaces S we start with some
1- form A on S such that A A dA $ 0 and some nonvanishing h. Then (A, h) is
said to be a contact structure and the associated Reeb vector field X is uniquely
determined by the equations < A, X >= h, < dA, X A Y >_- 0 for all Y.

Next we will introduce complex odd dimensional contact structures. So these
are real even dimensional. Contact structures are usually real odd dimensional.
The main point is, however, that for holomorphic Hamiltonians the flow is within
complex hypersurfaces rather than real hypersurfaces.
Define

ZI =XI +iyl =PI +ip2, z2 =x2+iy2 =ps+ip.1,

wI = ul + iv1 = q, - iq2, w2 = u2 + iv2 = q:I - iq,I.

Let A = zldw1 + z2dw2 and f2 = dzl A dwl + dz2 A dw2. Then a Hamilton-
ian H has a holomorphic Hamiltonian vector field if and only if H is plurihar-
monic. In this case, H = RF, F holomorphic and the Hanliltonian vector field is
X = (-8F/Bw,,-8F/8w2,8F/8zI,8F/8z2).

So the flow is within the level sets of F. Next we fix a level set E of F, say F = 0
and assume VF 54 0. Note that multiplying F by any (invertible) holomorphic
function g multiplies the Hamiltonian vector field by g. So we want to recover the
direction of X modulo multiplication by complex numbers intrinsically.

LEMMA 7.4. The Hamiltonian vector field X is the unique solution up to
complex multiplication, to the equation < Cl, X A Y >- 0 for all holomorphic vector
fields Y tangent to the level set F = 0.
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A complex contact form on C3 is a one form A = E A,dz, where the A,(z) are
holomorphic functions and where A A dA # 0.

LEMMA 7.5. Given A and a holomorphic function f, f 36 0, there is a unique
holomorphic vectorfield X = X f = (a,, a2i a3), a; holomorphic, so that < dA, X A
Y>w0 for all Y and<A,X >__ f.

The vector field RX is said to be a holomorphic Reeb vector field.

We need to see if there is an abundance of complex contact forms A. Take any
locally injective holomorphic map

4 :C3-C3, D=<Z,W,r>.
Then let A = dZ + Wdr.

One has Darboux coordinates locally.

LEMMA 7.6. Given any complex contact form A. Then A can be written lo-
cally as dZ+Wdl' for a local injective holomorphic map (Z, w, r). The Reeb vector
field becomes X = (f, 0, 0).

Let X be the Reeb vectorfield, near p = 0 E C:'(z', w', y') say, f = 1. We can
assume X = 8/8z' at zero. Choose new coordinates (z, w,'y) by mapping (z, w, y)
to the point (z', w', y') which is obtained by integrating X to the (complex) time z
starting at (0, w, y). In these coordinates X becomes 8/8z. Then A has the form

dz+Adw+Bdy
and dA = A=dz A dw + BLdz A dy + (B,,, - A., )dw A dy. For Y = a8/8z + b8/8w +
c8/8y, < dA, X A Y >= A: b + Bzc = 0 Va, b, c. So A. = B, = 0.

It follows that both A and B are independant of z. So A = > a,, 0-y'. Let

Z' = z + E a,,,w'+Y/(i + 1), w,, = w, r' = y
Then

dz + Adw + Bdy = dZ' - E a,., w'yJdw-

ai,+jw'+Iy3-I/(i+1)dy+Adw+Bdy=dZ'+B'dr'
Necessarily 8B'/8w # 0, so use B' as W'- coordinate. Then p = (0, Wo, 0).

Finally, write dZ' + W'dr' = d(Z' + Wor') + (W' - Wo)dr' and write Z = Z' +
Wor, W = W' - Wo and I' = r. Then the contact form becomes dZ + WdI'
near p = (0, 0, 0).

We finish this lecture by mentioning a result in holomorphic Symplectic Geom-
etry obtained by Franc Forstneric ([F]).

The main question is whether a given object can be transformed into another
object via a symplectomorphism.
As an example, consider the case of two bounded regions U, V E R2 bounded by
counterclockwise smooth curves 'y,, 12- We ask whether there exists a symplectic
diffeomorphism F : R2 ' -. R2 which maps U onto V. So F preserves the symplectic
form dx A dy.
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An obvious necessary condition is that U and V have the same area. By Green's
Theorem this is equivalent to the condition that

(*) xdy.f xdy = f
It turns out that (*) is also a sufficient condition for the existence of a sym-

plectomorphism which maps U onto V and hence 71 to 72.

We will discuss a generalization of this result to the complex case due to
Forstneric. First we will give some definitions. Let y be a simple real analytic
smooth closed curve in Cep.

Let A :_ EI<,<p zjdw, and let f1 := dA = E dz., Adw, be the syrnplectic form.

DEFINITION 7.7. We call the integral f7 A =: A(y) the action integral of y.

Note that if yl and y2 are two such curves and if there exists a symplectomor-
phism fi on Cep which maps 'YI to 72, then their action integrals are equal. Namely,
write 71 as the boundary of a two dimesional surface S1 and define S2 := t(SI).
Then

A(71)=1 A=J 1 =J F'11= r 51= r A., s, s, J s, J
Forstneric ([F]) proved a version of the reverse.

THEOREM 7.8. Let 71, y2 be real analytic smooth simple closed curves in
C2y. Assume that A(71) = A(72). Then there exist neighborhoods U, of 7;, i = 1, 2
and a symplectomorphism ' : U1 H U2 such that 4Y(yi) = 72.

REMARK 7.9. These maps are not defined globally on Cep. To get a global
result one has to introduce extra hypotheses and weaken the statement.
Namely, if one assumes that the curves are polynomially convex, then one can
approximate $ by a global symplectomorphism 4) : Cep '-+ C2y. In this case the
image of yI will be a curve which is close to IN, but in general one cannot obtain
that the image is exactly equal as in the real case.

REMARK 7.10. The condition that the curves are polynomially convex is au-
tomatically fulfilled in the case when the action is non zero. In fact it is a gen-
eral result by Wermer ([We]) that if there exists some holomorphic one form
or := E1jp Adz, + Bdwj with entire holomorhic coefficients A, B, and the inte-
gral f, a 96 0, for a simple closed curve -y, then the curve is polynomially convex.

The proof of the theorem goes by finding a time dependent Holomorphic Hamil-
tonian vector field so that the time 1 map sends yI to 72.
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Exploding Orbits

In this section we will consider the complex contact structure case in C`. The
integral curves of holomorphic Reeb vector fields lie in Riemann surfaces in C3 that
are not a priori closed.

THEOREM 8.1. (FG] For any complex contact form A on C3, 3A C C, C
the space of non vanishing entire functions, A a dense G6 - set, so that, for every
f C A, the interior of K1, the set of points with bounded orbits, is empty.

Rather than discussing the proof, we will talk about a refinement of these
results. Instead of asking whether orbits are unbounded as time ' -+ oo, we will ask
whether orbits explode, i.e. are unbounded on finite time intervals. See figure 8.1.

Let E denote again the space of entire holomorphic functions on C2(z, w) with
the topology of uniform convergence on compact sets. To each F E E we associate
a holomorphic Hamiltonian vector field X = (-8F/8w,8F/8z).

We have the following two results.

THEOREM 8.2. [FG] There is a dense family G C E such that every F E G
has a dense set of points with exploding orbits.

THEOREM 8.3. [FG] Assume that A is a fixed complex contact form on C''.
Then there exists a dense family G C C so that for every F E G, the contact
structure (A, F) has a dense set of exploding orbits.

We discuss at first the proof of Theorem 8.2. Suppose F E G and that F is
close to F and has n > 0 exploding orbits. Pick a point p E C2. We want to find

F with n + I exploding orbits. We obtain an element F E G close
to F by letting F = lim F,,. See figure 8.2.

First, let us remark that it is sufficient to show that, for any F E E and any
Q > 0, there exists F E E arbitrarily close to F on B(0, i3) which has a dense set
of points with exploding orbits. To construct F, we start with a function F E E

FIGURE 8.1. Exploding Orbits
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P

Pn

FIGURE 8.2. n + 1 exploding orbits

and a dense sequence {pn} C C2. We will make a sequence {Fn} of perturbations
of F, small on B(O,$), so that there exist {qk}k-1, IIgk -PkII < 1/k and the orbit
of qk explodes for Fn and {Fn} converges when n,- oo.

Once Fn is chosen, Fn+1 is chosen so that the orbits of {qk}k=I are all un-
changed.

We set F0 = F. Suppose Fn has been found. We will define Fn+1 = Fn +
gn 7 llk<n(Fn - Fn(gk))2 The final term will insure that Fn+1 agrees with Fn to
second order on the orbits of qk, k < n. We also choose gn so that I Fn+ 1 - Fn I < 1/2n
on B(O,,3n) for some sequence,3n ' oo.

We will also need to make gn arbitrarily small on B(0_3) to stay in a small
neighborhood of F.

If Pn+I is not in the Fatou set of Fn then we can find a small perturbation
of pn+I which is not on the level set of any qk, k < n, such that the orbit of qn+I is
unbounded or a point qn+1 in the Fatou set arbitrarily close so we are in the next
case.

If pn+1 is in the Fatou set, pick at first a small perturbation qn+1 on a level set
of Fn without critical points. Again assume the point is not on the same level set
as any qk,k < n.
By rotation one can make the orbit escape a large ball.

Therefore we can assume in all cases that the orbit of qn+l hits II=II = r out-
ward, transversally, r = max{,3,Q,}. Let E be the level set of qn+1 for Fn.

We can find a smooth continuation 7(r) of the orbit so that -y C E and
II-'(r)II = r everywhere, r > r. See figure 8.3

We will modify the orbit to continue in E very close to -y and with such a large
derivative that it reaches oo in finite time.

Choose inductively a sequence of positive numbers R,n, m E N satisfying

Ro = r + 1/5, R,n+1 > R. and R,n -' o0 as m - 00

and so that the projection of -y(r), R,,,_I < T < Rm+2, to the complex line Cry(R,n)
is strictly length-increasing. (Set R_1 = r say.)
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FIGURE 8.3. Changing Orbits
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We want to find g,, = K(F - where K is a holomorphic function
arbitrarily small on B(0, r) and such that the integral curve of some small pertur-
bation of qn+1 explodes.
We define K inductively by constructing holomorphic functions km, m > 0, arbi-
trarily small on B(0, Rm - 1/5) and on a tubular neighborhood of 'y[Rm -1/5, Rm+21
and such that the integral curve of some small perturbation of is close to the
integral curve of on B(0, Rm) and goes from B(0, Rm) to 8B(0, Rm+i) in
arbitrarily small time. Then we just need to continue this inductively to get an
exploding orbit.

Let m > 0. We first outline the steps needed to construct km. For simplicity,
we will denote km by k, Rm by R and assume Rm+1 and Rmt2 respectively equal
to R + 1 and R + 2. We may assume -y(r) is real analytic for R - 1 < r < R + 2
and is tangent to the integral curve of to at least fourth order at r = R.

The first step is to find k1 real-analytic on y(-r), R - 1 < r < R + 2, so that
k1 vanishes to at least fourth order at -y(R);
the Hamiltonian of F. + k, (& - F.,(q..+i)) lak<n(Ff - F,,(gk))2 is tangent to

'y(r),R-1<r<R+2, and
the corresponding integral curve travels from B(0, R) to 8B(0, R + 1) as fast

as we wish.

To obtain k from k,, we construct k on E, approximating k1 on y f1 {R <
I (z, w) 11 < R + 3/2}, and, then, we globalize it to C2. This will be done in steps

2 and 3. In step 2, we use an approximation lemma and in step 3, Hormander's
L2-estimates for a with weights.

Step 1
We want a real-analytic function k1 defined on a neighborhood of -y(r) in E,

R-1<r<R+2, so that
1- k1 vanishes to at least fourth order at y(R);
2- the Hamiltonian of F + k, (& - Hk<l(Ff - which is

equal on E to
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(1 + k1 H (F - F., (4k))2) (-,')
k<n

must be tangent to 7(r), R - 1 < r < R + 2, and
3- the corresponding integral curve travels from B(0, R) to 8B(0, R+ 1) as fast

as we wish.

Step 2

Now, we want to construct k. We prove an approximation lemma.
We can assume that the projection P(L) of L to the complex line C7(R) is

a tubular neighborhood ending by arcs of circles and the arc through P(-y(R)) is
tangent to the circle of radius R around zero with opposite concavity.

LEMMA 8.4. For any e > 0 there exists a holomorphic function kE on E so
that

Ilki - kellCI() + IIkelICI(-s(o,R)nr) + C.

In other words, kE is a good approximation of k2 in C'-norm.

Step 3

We want to extend k = kE (e small enough) in C2 by solving a 8-problem.

Next we discuss the case of complex contact structures.

Recall that a complex contact form on C3 is a one form A = E Adz, where
the Ai(z) are holomorphic functions and where A A dA 54 0.

Given F E C, we denote by 4
f

the flow associated to Xp.

LEMMA 8.5. Let A be a complex contact form and F E C. The volume form
A A dA

is invariant under the flow 11)f.

F

Define KF a s the set of points in C; with bounded orbits f o r the flow 4 .

Denote by K the set of (p, F) E C3 x C so that p E KF.
Define

U, = int I (p, F) E C3 x C; sup (p)II 5 c}
t>o

Then, by a category argument, U := U,>oUU is dense in intK.

THEOREM 8.6. For any complex contact form A, the interior of K is empty.
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Theorem 8.1 is a corollary of this result.
We discuss briefly the proof of Theorem 8.3.
The contact structure case differs from the symplectic case. One main differ-

ence is that after having constructed n exploding orbits in the symplectic case, one
can construct the n + 131 without perturbing the previous orbits. In the contact
case, any small perturbation of F is likely to destroy the previously constructed
exploding orbits. Hence one has to construct them simultaneously.

We start with a dense sequence of points {pn}nEN-, pn E B(O, n), and with a
function F E C. We are going to construct F E C arbitrarily close to F on B(0, p).
For simplicity, we will assume that 3 = 1.

We make an inductive construction. Namely, we construct a sequence F. E C
and a sequence of points {pn,k}I<k<n.nEN so that the following conditions are
satisfied:

1- for any 1 < k < n, Pn,k is close to pk and pn,k E B(0, k);

2- Fn+1 is close to Fn in C°-norm on B(0, n);

3- the orbits of {pn.k}1<k<n.nEN relative to Fn goes out of B(0,n)
transversally and the time it takes to go from B(0, k) to 8B(0, n) is at most
E k+1 z . Moreover, the orbit is strictly norm-increasing between B(0, k) and
OB(0, n).





CHAPTER 9

Unbounded Orbits

We will discuss two similar situations in R".

1. Symplectomorphisms F.

2. Hamiltonians F with Hamiltonian vector field XF and flow it.

In either case, we denote by KF those points in R" whose orbits are bounded.
The general question going back to Poincare is whether int KF is empty for most
F. This is open in general, but we will discuss some special cases. See figure 9.1.

THEOREM 9.1. [FS9] There exists a dense G6 set (S'), S' C S so that
intKF=0 for allFES'.

Roughly speaking, the Theorem says that most orbits go to infinity.

This Theorem confirms a conjecture by Herman

The Theorem isproved for biholomorphic symplectomorphisms on Cep,
p > 1. For simplicity we will discuss here only the C2 case.

R",(n > 2)

R2n

I-
C2n = R4n

Holomorphic
Hamiltonians

R6

C2n-1 = R4n-2

Complex Contact
Structures

FIGURE 9.1. Poincares problem
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The proof of the Theorem has 4 steps.

Step 1 : Interpret Symplectomorphisms as flows of time dependent holomorphic
Hamiltonian vector fields.

Step 2: Prove at first a version of the Theorem in the case of time indepen-
dent holomorphic Hamiltonian vector fields.

Step 3: Prove a version of the Theorem for the space of time dependent
holomorphic Hamiltonian vector fields.

Step 4: Prove the Theorem.

We discussed Step 1 in section 7.

Step 2

Let us put the topology of uniform convergence on compact sets on E, the
space of entire holomorphic function. For each F E E let KF denote the set of
points with bounded orbit.

For F E E, let

Up := ((z, w); 3 ft = fZ°r" (z, w) & C < oo;

sup II(z(t), w(t))II < C `d(z(O), w(0)) E I}.
t>o

Notice that by a category argument, Up is an open dense subset of
We call Up the Fatou set of F. This set consists of the largest open set W on

which the flow up to time t, 4it, is defined for all 0 < t < oo and for which {4it} is
locally bounded.

Fix a Fatou component U. Then U = Uc>oUc' where UU = {(z, w) E U;
351= SZ°i""(z,w);sup, >oI1(z(t),w(t)II < C V(z, w) E Il).

PROPOSITION 9.2. For each t > 0, 44t is an automorphism of Ur. All
limits of {fit}tE It are automorphisms of Uc . The same conclusion holds for U.

It is clear from the definition that 4 j maps each component of Uc into itself.
The surjectivity follows from the fact that 4tt preserves the volume.

Next, consider the orbits of points. There might be (locally) finitely many level
sets of the Hamiltonian F for which VF = 0. There 4>t = Id. In addition there
might be (locally) finitely many points where VF = 0. These are fixed points for
the flow.

We have the following result:
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FIGURE 9.2. Integral Curves
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THEOREM 9.3. There exists a dense Ga set E' of holomorphic Hamiltonians
such that intKF is empty for all F E E'.

We will need some preliminary results.

PROPOSITION 9.4. Let F be a non constant holomorphic Hamiltonian. Let
U be a non empty Fatou component. Then each irreducible component of the level
sets of F in U is unbounded, and as Riemann surfaces they are isomorphic to
A, A% Annulus, C, C. Moreover on each of them is conjugate to a rotation
with the same period.

To prove this one shows that the closure of {fit} is a T' so all orbits lie on
circles. These circles are real analytic and foliate level sets of F. If a level set com-
ponent is bounded one can extend this foliation to a larger set. See figure 9.2.

We need a lemma.

LEMMA 9.5. Let S be an open Riemann surface. Let X 0 0 be a holomorphic
vector field whose orbits are closed. Then for 0 < 0 < it or -rr < 0 < 0, the orbits
of all points, except fixed points, for the vector field e'BX spiral to infinity. See
figure 9.3

From the hypothesis on the orbits we know that S is isomorphic to A, A*, C, C'
or an annulus and that the flow is conjugate to the flow obtained by considering
the vector field Y on C given by Y(z) = icz where c is a real constant.

Then e'BX is conjugate to the vector field e'BY which satisfies the conclusion.
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FIGURE 9.3. Rotation of a Hamiltonian Vector Field

[Proof of the Theorem] Let K = {(z, F); z E KF,}. We show that intK = 0.
Suppose not. Then 3C > 0 so that

Ke :_ {(z0, Fo); 3U(zo, Fo) such that z E UU V(z, F) E U(zo, Fo))

has nonempty interior.
Pick a polydisc 0(zo; r) and a neighborhood V (Fo) so that 0(zo; r) x V (FO) C

Kc,,. Then apply Lemma 9.5 to move an orbit outside B(0; C). Note that if X is
the Hamiltonian vector field of F, XF = (-F, F2), then eiBX is thee Hamiltonian
vector field of eiOF. Note also that the level sets of F and e'°F are the same. This
shows that intK = 0.

Next, pick a basis for the topology of C2, (A.). For each F E E there exists
an arbitrarily close F' so that some orbit from A. goes outside the ball of radius
n. Moreover this is an open condition for F.

Let S = {F; 3p E Nn so that the orbit of p goes outside B(0, n)}. Then S is
open and dense. We define S' := nSa. Then for each F E S', intKF = 0.

The space E is infinite dimensional. In the case of finite dimensional linear
vector sub-spaces of E one can replace G6 by full measure.

THEOREM 9.6. Let F E E be nonconstant. Then for almost all 9, Ke,eF.
has Lebesgue measure 0.
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Step 3
To discuss step 3, we will study the class of periodic Hamiltonian flows with pe-

riod 1, i. e. all smooth F(t, z, w) where Ft(z, w) := F(t, z, w), Ft E E Vt and Ft+l =
Ft. Call this space Et.

We put the topology of uniform convergence in any Ck topology on compact
sets on Et. Hence Et is a Frechet space.

Fix an F E Et. Let KF denote points (0, z, w) E R * C2 for which the orbit
(z(t), w(t)) is defined for all t > 0 and

sup II(z(n),w(n))II <oo.
-E14

This does not imply a priori that

sup I(z(t),w(t))I < oo.
t>0

Let UF := {(0, z, w) E intKF so that 3C < oo, II(z(n), w(n))II < C,
V(z(0), w(0)) close to (z, w) and all n > 0}.

We consider only time n maps since we are interested in iteration of symplectic
automorphisms.

Then UF is open and dense in intKF. The time 1- map 4' : C2 = (0) x C2
C2 = (1) X C2 is then well defined on Up. and D(UF) C UF. Also 4 is holomorphic
and volume preserving.

We have the following result:

THEOREM 9.7. Consider the product space H := C2 x E. The set K C H
consisting of (z, w, F) with bounded orbits of time I maps has empty interior.

The following Corollary is immediate.

COROLLARY 9.8. There is a dense C6 of functions F in Et for which KF
has empty interior.

We sketch the proof of the Theorem: Suppose K has nonempty interior. For
each C < oo let Kc = {(z, w, F) E intK; II4 ,(z, w) 11 < C do > 0} where 4'F is the
time 1 map of F.

Fix a (z0, w0, FO) E intK(,.. Let UF denote the connected component of f21 =F
{ (z, w); (z, w, F) E intK(,- } containing (zO, w0) if F is close to F0. Consider the con-
nected components of f2F with maximal volume. There can only be finitely many.
Then OF must permute these, so each is periodic. Continuing inductively one sees
this is true for all components, also UF.

We can assume that the period of OF is constant for F in a neighborhood of
F0. Let VF = Un' /.UF)

Then VF is an open bounded set with k' < no components and 4 . is an auto-
morphism. of VF.
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FIGURE 9.4. Periodic Orbit

C2

Define GI. = {4 }. Then CF = TI * A where A is a finite commutative group,
I = 0 or 1. One can exclude the case T2. The reason is that on a Reinhardt domain
in C2 the automorphisms (z, w) r-+ (eiOz, e`O w) only preserve the symplectic form
if t = -0. And one can reduce to this situation in local coordinates near a given
T2- orbit.

LEMMA 9.9. The case I = 0 is impossible.

If I = 0, all orbits are periodic with the same period k := #A. Let ry be the
closed orbit of some p, ry = ($ (p, r)) in C'; where r runs k times around the unit
circle. The projection -y on the unit circle Iri = 1 is k to 1. See figure 9.4.

We want to construct a smooth function P(z, w, r) holomorphic in (z, w) van-
ishing to second order on -y such that if FF = F + fP(z, w, r), f > 0, then p is a
hyperbolic periodic point for the flow 0' associated to F, .

Choose a tangent vector and follow it along -y. Then choose for each r,

pr (z, w) so that (-P., P;) moves in the direction of away from ry.
The orbit of p remains fixed, but the derivative > 1. So for nearby maps we can

not be in Up.. The reason is that the maps depend holomorphically on C. Hence
for given p, q close, 10" (p) - $t (4)I < CIp - 9I by Schwarz' Lemma.

One next has to rule out I = I which is more tricky.

The 4th and final step is to study as primary objects the space S of biholomor-
phic symplectomorphisms of C2, not their associated time dependent Hamiltonians.

We give S the topology of uniform convergence on compact sets. For f E S,
let Kf = {(z,w);{f"(z,w)} is bounded.}
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Note that S contains a dense set C, namely the set of finite compositions of
affine linear maps and shears.

The proof of the Theorem 9.1 is analogous to the time dependent case treated
before using the fact that symplectomorphisms are time 1- maps of time dependent
holomorphic Hamiltonian vector fields.





CHAPTER 10

Generic Density of Orbits

In this section we show that most volume preserving maps have dense orbits. This
has as a consequence that for most maps the Fatou set is empty.
At the end of the section we list some open problems.

We denote as before by V the set of volume preserving biholomorphic maps on
Ck, k > 2.

We prove a version of Theorem 9.1 for volume preserving biholomorphisms.

For f E V define as before

Kf :_ {z; (f "(z)) is bounded}

THEOREM 10.1. [FS10] There is a dense G6 set V1 of volume preserving
automorphisms so that if f E V1, Kf has empty interior.

We define the product set K C Ck*V of bounded orbits by

K = {(z, f),sup. If"'(z)I < oo}.

We are done if we show that K has empty interior. If U := int K and C > 0,
let Ur :_ {(z, f) E U, sup,,, If'n (z)I < C}. If K has nonempty interior, then for
some C, Ur has also a non empty interior, Uc.

Define iP : Ck * V Ck * V, >V(z, f) = (f (z), f ). Then 0(U() C U(,),. Since
on each slice with fixed f, the map is volume preserving on a bounded region, all
components of a slice are periodic.

We fix (zo, fo) E UCO. The Jacobian determinant, J, of the derivative of In has
modulus one. Composing with a rotation which is close to the identity, we can
asssume that the J is rational number.

Let Sz0 be the connected component of the slice Ck which contains zo. Let Il be
the orbit of f20i and let C be the group generated by fo. Since G is a commutative
compact Lie group, it is isomorphic to T' * A where A is a finite group and T' is
the torus of dimension 1, 1 < k, since the orbits must be totally real. If 1 = 0, all
points are periodic and we can change one of them into a saddle point by a small
volume preserving perturbation ([B2]).

We identify G with T' * A and let Go denote the Identity component.

Recall that if F is compact in Ck, the polynomially convex hull F of F is
defined by

P:= {z E Ck; IP(z)I 5 sup<EV'IP(()I V holomorphic polynomials P).
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We want to show that there is a q in the slice of Uc over fo such it's orbit Xq
is polynomially convex.

The point is that holomorphic functions on polynomially convex compact sets
can be approximated by global holomorphic functions.

LEMMA 10.2. Suppose qo E U9. and Xqo is not polynomially convex. Then
3 ql so that Xq, C Xqo \ Xqo. Hence theme is a point q E Kqo for which X, = Xq.
Moreover dimXq < k - 1.

Pick q1 E Xqo \ Xqo. Then the orbits Xq and Xq, are dijoint. Since Xqo is
closed under the group action, Xq, C Xqo. Using peak points ([W]), we obtain that
Xq, and X. are disjoint. The final two statements follow from Zorn's Lemma and
Serre ([Ho]) respectively.

If dimXq = 0, q is a periodic point and we can again perturb fo, ([B2]), to
create a saddle point q'. But then q' has an unstable manifold M", and by the
Schwarz' Lemma M° must be unbounded. This contradicts that q' is in the in-
terior of K. Hence we can assume that dim X. > 1. Since Xq is totally real and
real analytic it has a complexification Xq which is a complex manifold of dimension
1 < r < k - 1. The automorphisms in G (we still call the automorphisms on the
new slice G and call it still the fo- slice) preserve Xq. In fact, Xq is foliated by
orbits of G.

In order to arrive at a contradicition we are going to construct a volume pre-
serving vector field on a neighborhood of Xq pointing away from Xq. Let s be such
that fo E Go. Let (ft) be a one-parameter subgroup (ft) in Go with fo = fl.

The vector field := dt ft It =o is tangential to each orbit under Go.

Since we can assume that the Jacobians of all iterates of fo are rational and
since they generate Go, it follows that all elements in Go have Jacobian 1.

Observe that if q = E hj - with complex divergence > a = 0, then it's flow
has Jacobian 1. The reverse is also true, hence applies to { and if.

Hence the flow of i. has Jacobian 1 wherever defined.

Next we need to approximate k by a global divergence free vector field. This
can be done, using the polynomial convexity of Xq.

There exists hence a divergence free vector field q in Ck with polynomial coef-
ficients close to ie in the component of X, containing q and close to 0 on the other
component.

Then q can be written as a sum of complete divergence free polynomial vector
fields (Andersen) and therefore we can approximate the flow of q by a flow ?Pt
of volume preserving automorphisms of Ck.

For any t E C small enough, TGt o fo is close to fo.
Schwarz's Lemma implies that

IN't o fo)" - fo I <- CItI.
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This contradicts that >G, moves points away from Xq in a transverse direction.

COROLLARY 10.3. There is a dense C6 set V2 C V with dense orbits.

To prove the Corollary one can fix any two points p, q in Ck and any f E V.
After a small perturbation, the iterates of p, q both forward and backward, are
unbounded. Then one connects the orbits using a shear, to obtain that p and q are
on the same periodic orbit. Next one uses a category argument to produce dense
orbits.
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