JOHN W. COBURN J.D. HERDLICK

TRIGONOMETRY

SECOND EDITION

TRIGONOMETRY

TRIGONOMETRY

 SECOND EDITION
JOHN W. COBURN

St. Louis Community College at Florissant Valley
J.D. HERDLICK

St. Louis Community College at Meramec

TRIGONOMETRY, SECOND EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Previous edition © 2008. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1234567890 DOW/DOW 109876543210

ISBN 978-0-07-351948-7
MHID 0-07-351948-0

ISBN 978-0-07-728272-1 (Annotated Instructor's Edition)
MHID 0-07-728272-8

Vice President \& Editor-in-Chief: Marty Lange
Vice President, EDP: Kimberly Meriwether-David Director of Development: Kristine Tibbetts Editorial Director: Stewart K. Mattson Sponsoring Editor: John R. Osgood Developmental Editor: Christina A. Lane Marketing Manager: Kevin M. Ernzen Senior Project Manager: Vicki Krug Senior Production Supervisor: Sherry L. Kane

Senior Media Project Manager: Sandra M. Schnee Senior Designer: Laurie B. Janssen (USE) Cover Image: ©Jeff Hunter/Gettyimages Senior Photo Research Coordinator: John C. Leland Supplement Producer: Mary Jane Lampe Compositor: Aptara, Inc. Typeface: 10.5/12 Times Roman Printer: R. R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.
Chapter 1 Opener: © Royalty-Free/CORBIS; p. 16: © Royalty-Free/CORBIS; p. 18/top: © Jeremy Woodhouse/ Getty Images/RF; p. 18/bottom: Courtesy NASA/Dryden Flight Researcher Center; p. 41: © Brand X Pictures/ PunchStock/RF. Chapter 2 Opener: © Digital Vision/RF; p. 59: © Royalty-Free/CORBIS; p. 84: NASA . Chapter 3 Opener: © Royalty Free/CORBIS; p. 96: © Karl Weatherly/Getty Images/RF; p. 100: © Jules Frazier/ Getty Images/RF; p. 102: © The McGraw-Hill Companies, Inc./Jill Braaten, photographer; p. 104: © Karl Weatherly/Getty Images/RF; p. 105: © Michael Fay/Getty Images/RF. Chapter 4 Opener: Courtesy of National Oceanic and Atmospheric Administration for Tsunami Research; p. 148: © Royalty-Free/CORBIS; p. 184: © Digital Vision/PunchStock; p. 192: © Royalty-Free/CORBIS; p. 204: © Steve Cole/Getty Images/RF. Chapter 5 Opener: © Digital Vision/Getty Images/RF. Chapter 6 Opener: NPS Photo by William S. Keller; p. 304: © John Wong/Getty Images/RF. Chapter 7 Opener : © Royalty-Free/CORBIS. Chapter 8 Opener: © Mark Downey/Getty Images/RF; p. 441: © PhotoLink/Getty Images/RF. Appendix p. A-11/left: © Geostock/Getty Images/RF; p. A-11/right: © Lawrence M. Sawyer/Getty Images/RF; p. A-20: Photography by G.K. Gilbert, courtesy U.S. Geological Survey; p. A-21: © Lars Niki/RF; p. A-25: © Mediaimages/Superstock/RF; p. A-42: © StockTrek/Getty Images/RF; p. A-61: Courtesy Simon Thomas.

Library of Congress Cataloging-in-Publication Data

Coburn, John W.
Trigonometry / John Coburn, John D. Herdlick.- 2nd ed. p. cm. - (Coburn's precalculus series)

Includes index
ISBN 978-0-07-351948-7 - ISBN 0-07-351948-0 (hard copy : alk. paper) 1. Trigonometry-
Textbooks. I. Herdlick, John D. II. Title.
QA531.C63 2011
516.24—dc22
Preface vii
Index of Applications xxxii
chapter 1 Introduction to Trigonometry 1
CHAPTER 2 Right Triangles and Static Trigonometry 45
chapter 3 Radian Measure and Dynamic Trigonometry 89
CHAPTER 4 Trigonometric Graphs and Models 133
chapter 5 Trigonometric Identities 211
сhapter 6 Inverse Functions and Trigonometric Equations 253
CHAPTER Applications of Trigonometry 315
CHAPTER 8 Trigonometric Connections to Algebra 383
Appendix I Exponential and Logarithmic Functions A-1
Appendix II Transformations of a Basic Graph A-65
Appendix III Solving Equations Graphically A-72
Appendix IV Regression and Calculator Use A-74
Appendix V Miscellaneous Algebra Review A-80
Appendix VI Selected Proofs A-84
Appendix VII Families of Polar Curves A-86
Student Answer Appendix (SE only) SA-1
Instructor Answer Appendix (AIE only) IA-1
Index I-1

Gbout the feuthors

John Coburn
John Coburn grew up in the Hawaiian Islands, the seventh of sixteen children. He received his associate of arts degree in 1977 from Windward Community College, where he graduated with honors. In 1979, he received a bachelor's degree in education from the University of Hawaii. After being lured into the business world for five years, he returned to his first love, accepting a teaching position in high school mathematics, where he was recognized as Teacher of the Year in 1987. Soon afterward, the decision was made to seek a master's degree, which he received two years later from the University of Oklahoma. For the last nineteen years, he has been teaching mathematics at the Florissant Valley campus of St. Louis Community College, where he is now a full professor. During his tenure there, he has received numerous nominations as an outstanding teacher by the local chapter of Phi Theta Kappa, two nominations to Who's Who Among America's Teachers, and was recognized as Teacher of the Year in 2004 by the Mathematics Educators of Greater St. Louis (MEGSL). He has made numerous presentations at local, state, and national conferences on a wide variety of topics. His other loves include his family, music, athletics, games, and all things beautiful. He hopes this love of life comes through in his writing, and serves to make the learning experience an interesting and engaging one for all students.
J.D. Herdlick
J.D. Herdlick was born and raised in St. Louis, Missouri, very near the Mississippi river. In 1992, he received his bachelor's degree in mathematics from Santa Clara University (Santa Clara, California). After completing his master's in mathematics at Washington University (St. Louis, Missouri) in 1994, he felt called to serve as both a campus minister and an aid worker for a number of years in the United States and Honduras. He later returned to education and spent one year teaching high school mathematics, followed by an appointment at Washington University as visiting lecturer, a position he held until 2006. Simultaneously teaching as an adjunct professor at the Meramec campus of St. Louis Community College, he eventually joined the department full time in 2001. While at Santa Clara University, he became a member of the honorary societies Phi Beta Kappa, Pi Mu Epsilon, and Sigma Xi under the tutelage of David Logothetti, Gerald Alexanderson, and Paul Halmos. In addition to the Dean's Award for Teaching Excellence at Washington University, J.D. has received numerous awards and accolades for his teaching at St. Louis Community College. Outside of the office and classroom, he is likely to be found in the water, on the water, and sometimes above the water, as a passionate wakeboarder and kiteboarder. It is here, in the water and wind, that he finds his inspiration for writing. J.D. and his family currently split their time between the United States and Argentina.

Dedication

With boundless gratitude, we dedicate this work to the special people in our lives. To our children, whom we hope were joyfully oblivious to the time, sacrifice, and perseverance required; and to our wives, who were well acquainted with every minute of it.

Ahout the CoDer

Most coral reefs in the world are 7000-9000 years old,

but new reefs can fully develop in as few as 20 years. In addition to being home to over 4000 species of tropical or reef fish, coral reefs are immensely beneficial to humans and must be carefully preserved. They buffer coastal regions from strong waves and storms, provide millions of people with food and jobs, and prompt advances in modern medicine.

Similar to the ancient reefs, a course in trigonometry is based on thousands of years of mathematical curiosity, insight, and wisdom. In this one short course, we unravel the celestial mysteries that inspired the study of angles so long ago, as well as develop a more modern vision of periodic phenomena, both of which remain tremendously important. Just as the variety of fish in the sea rely on the coral reefs to survive, students in a trigonometry course rely on mastery of this bedrock of concepts to successfully pursue more advanced courses, as well as their career goals.

From the Authors

This textbook, while intended for a relatively short course, contains some of humanity's most important discoveries. Within these pages lie the condensed, concentrated, and illuminated collective works of generations of scholars and intellectuals. In reflecting on the works of the ancient astronomers and mathematicians that serve as the foundation for this course, we see an analogy in the great coral reefs, where thousands of years of growth provide the underlying structure for a vibrant, living community. Similarly, trigonometry is a subject that, while ancient, is still teeming with life-colorful, beautiful, and often mysterious.

Long before we began writing a text for this course, our teaching experience left a nagging sense that most texts on the market lacked the ability to connect with so diverse an audience. In addition, they appeared to offer too scant a framework to build concepts, too terse a development to make connections, and insufficient support in their exercise sets to develop longterm retention or foster a love of mathematics. In particular, the applications seemed to lack a sense of realism, curious interest, andlor connections to a student's everyday experience.
with all of this in mind and a strong desire to write a better text, We set about the task of creating what we hoped would become a more engaging tool for students, and a more supportive tool for instructors. We believe drawing on the diversity of our own educational experience and exposure to different cultures, views, and perspectives, has contributed to the text's unique and engaging style, and we hope in the end, to more and better connections with our diverse audience. Having feedback from more than 400 people, including manuscript reviewers, focus group participants, and contributors, was invaluable to helping us hone the connections in this book. As a collateral outgrowth of this experience, there was also a desire to interest and engage ourselves, the instructors-to remind us again and again, why we fell in love with mathematics in the first place. -John Coburn and J.D. Herdlick

Trigonometry tends to be a challenging course for many students. They may not see the connections that trigonometry has to their life or why it is so critical that they take and pass this course. Others may enter into this course underprepared or improperly placed and with very little motivation.

Instructors are faced with several challenges as well. They are given the task of improving pass rates and student retention while ensuring the students are adequately prepared for more advanced courses. Furthermore, it can be difficult to distinguish between students who are likely to succeed and students who may struggle until after the first test is given.

The goal of this textbook series is to provide both students and instructors with tools to address these challenges, so that both can experience greater success in trigonometry. For instance, the comprehensive exercise sets have a range of difficulty that provides very strong support for weaker students, while advanced students are challenged to reach even further. The rest of this preface further explains the tools that John Coburn, J.D. Herdlick, and McGraw-Hill have developed and how they can be used to connect students to trigonometry and connect instructors to their students.

The Coburn/Herdlick Trigonometry Series provides you with strong tools to achieve better outcomes in your Trigonometry course as follows:

Better Student Preparedness

- Increased Student Engagement

Solid Skill Development
Strong Connections

Better Student Preparedness

No two students have the same strengths and weaknesses in mathematics. Typically students will enter any math course with different preparedness levels. For most students who have trouble retaining or recalling concepts learned in past courses, basic review is simply not enough to sustain them successfully throughout the course. Moreover, instructors whose main focus is to prepare students for the next course do not have adequate time in or out of class to individually help each student with review material.

ALEKS Prep uniquely assesses each student to determine their individual strengths and weaknesses and informs the student of their capabilities using a personalized pie chart. From there, students begin learning through ALEKS via a personalized learning path uniquely designed for each student. ALEKS Prep interacts with students like a private tutor and provides a safe learning environment to remediate their individual knowledge gaps of the course prerequisite material outside of class.

ALEKS Prep is the only learning tool that empowers students by giving them an opportunity to remediate individual knowledge gaps and improve their chances for success. ALEKS Prep is especially effective when used in conjunction with ALEKS Placement and ALEKS 3.0 course-based software.

Increased Student Engagement

What make John Coburn and J.D. Herdlick's applications unique is that they are constantly thinking mathematically. Their applications are spawned during a trip to Chicago, a phone call with a brother or sister, or even while wakeboarding. They literally take notes on things seen in everyday life and connect these situations to math. This truly makes for relevant applications that are born from reallife experiences as opposed to applications that can seem too fictitious or contrived.

- Solid Skill Development

The Coburn/Herdlick series intentionally relates the examples to the exercise sets so there is a strong connection between what students are learning while working through the examples in each section and the homework exercises that they complete. In turn, students who attempt to work the exercises first can surely rely on the examples to offer support as needed. Because of how well the examples and exercises are connected, key concepts are easily understood and students have plenty of help when using the book outside of class.

There is also an abundance of exercise types to choose from to ensure that homework challenges a wide variety of skills. Furthermore, John and J.D. reconnect students to earlier chapter material with Mid-Chapter Checks; students have praised these exercises for helping them understand what key concepts require additional practice.

- Strong Connections

John Coburn and J.D. Herdlick's experience in the classroom and their strong connections to how students comprehend the material are evident in their writing style. This is demonstrated by the way they provide a tight weave from topic to topic and foster an environment that doesn't just focus on procedures but illustrates the big picture, which is something that so often is sacrificed in this course. Moreover, they employ a clear and supportive writing style, providing the students with a tool they can depend on when the teacher is not available, when they miss a day of class, or simply when working on their own.

Better Student Prenaredness

Experience Student Success!

ALEKS* ALEKS is a unique online math tool that uses adaptive questioning and artificial intelligence to correctly place, prepare, and remediate students . . . all in one product! Institutional case studies have shown that ALEKS has improved pass rates by over $\mathbf{2 0 \%}$ versus traditional online homework and by over 30% compared to using a text alone.

By offering each student an individualized learning path, ALEKS directs students to work on the math topics that they are ready to learn. Also, to help students keep pace in their course, instructors can correlate ALEKS to their textbook or syllabus in seconds.

To learn more about how ALEKS can be used to boost student performance, please visit www.aleks.com/highered/math or contact your McGraw-Hill representative.

ALEKS Pie

Each student is given their own individualized learning path.

Easy Graphing Utility!

Students can answer graphing problems with ease!

1

New ALEKS Instructor Module

Enhanced Functionality and Streamlined Interface Help to Save Instructor Time ALEKS

The new ALEKS Instructor Module features enhanced functionality and streamlined interface based on research with ALEKS instructors and homework management instructors. Paired with powerful assignment driven features, textbook integration, and extensive content flexibility, the new ALEKS Instructor Module simplifies administrative tasks and makes ALEKS more powerful than ever.

Select topics for each assignment

TnoreasediStudent Enomorment

Through Meaningful Applications

Making mathematics meaningful requires that students experience the connection between mathematics and its impact on the world they live in. This text is also the result of a powerful commitment to provide applications of the highest quality, having close ties to the examples, and with carefully monitored levels of difficulty.

Many of these examples were born of our own diverse life experiences, others came from a curious, lucid, and even visionary folly that allows one to seize upon the every day events of life, and see the significant or meaningful mathematics in the background. Our ever-present notebooks were used a thousand times to capture that casual observation, or that sudden burst of inspiration that is the genesis for outstanding applications. These were supported at home by a substantial library of reference and research books, an eye toward both history and current events, and of course our modern marvel of a research tool-the Internet. After a (sometimes long) period of thought, reflection, and research, followed by a wording and a rewording of the exercise so that it would resonate with students while filling the need, a significant and meaningful application was born. - JCIJD
$>$ Chapter Openers highlight Chapter Connections, an interesting application exercise from the chapter, and provide a list of other real-world connections to give context for students who wonder how math relates to them.

6 6 | especially like the depth and variety of applications in this textbook. Other Precalculus texts the department considered did not share this strength. In particular, there is a clear effort on the part of the author to include realistic examples showing how such math can be utilized in the real world. ${ }^{\boldsymbol{5}}$-George Alexander, Madison Area Technical College

Examples throughout the text feature word problems, providing students with a starting point for how to solve these types of problems in their exercise sets.
${ }^{6} 6$ One of this text's strongest features is the wide range of applications exercises. As an instructor, I can choose which exercises fit my teaching style as well as the student interest level. ${ }^{5}$
-Stephen Toner, Victor Valley College

Application Exercises at the end of each section are the hallmark of the Coburn series. Never contrived, always creative, and born out of the author's life and experiences, each application tells a story and appeals to a variety of teaching styles, disciplines, backgrounds, and interests.

${ }^{66}$ [The application problems] answered the question, 'When are we ever going to use this?' ${ }^{\prime}$
-Student class tester at Metropolitan Community College-Longview

Math in Action Applets, located online, enable students to work collaboratively as they manipulate applets that apply mathematical concepts in real-world contexts.

Through Timely Examples

In mathematics, it would be difficult to overstate the importance of examples that set the stage for learning. Not a few educational experiences have faltered due to an example that was too difficult, a poor fit, out of sequence, or had a distracting result. In this series, a careful and deliberate effort was made to select examples that were timely and clear, with a direct focus on the concept or skill at hand. Everywhere possible, they were further designed to link previous concepts to current ideas, and to lay the groundwork for concepts to come. As a trained educator knows, the best time to answer a question is often before it's ever asked, and a timely sequence of carefully constructed examples can go a long way in this regard, making each new idea simply the next logical, even anticipated step. When successful, the mathematical maturity of a student grows in unnoticed increments, as though it was just supposed to be that way. -JC/JD

Titles have been added to Examples in this edition to highlight relevant learning objectives and reinforce the importance of speaking mathematically using vocabulary.
$>$ Annotations located to the right of the solution sequence help the student recognize which property or procedure is being applied.

66 The author does a great job in describing the examples and how they are to be written. In the examples, the author shows step by step ways to do just one problem . . . this makes for a better understanding of what is being done."
-Michael Gordon, student class tester at Navarro College

- "Now Try" boxes immediately following Examples guide students to specific matched exercises at the end of the section, helping them identify exactly which homework problems coincide with each discussed concept.
$>$ Graphical Support Boxes, located after selected examples, visually reinforce algebraic concepts with a corresponding graphing calculator example.

6. 1 thought the author did a good job of explaining the content by using examples, because there was an example of every kind of problem.
-Brittney Pruitt, student class tester at Metropolitan Community College-Longview

GRAPHICAL SUPPORT

The analysis of $y=2.5 \sin \left[\frac{\pi}{4}(t+3)\right]+6$ from Example 4 can be verified on a graphing calculator. Enter the function as Y_{1} on the $Y=$ screen and set an appropriate window size using the information gathered. Press the TRACE key and -3 ENTER and the calculator gives the average value $y=6$ as output. Repeating this for $x=5$ shows one complete cycle has been completed.

and we see the triangle is actually a $30-60-90$ right triangle.

${ }^{6} 6$ I particularly like the 'Now Try exercises . . .' after each group of examples. I have not seen this in other texts and it is a really nice addition. I usually tell my students which examples correspond to which exercises, so this will save time and effort on my part."
-Scott Berthiaume, Edison State College

66 The incorporation of technology and graphing calculator usage . . . is excellent. For the faculty that do not use the technology it is easily skipped. It is very detailed for the students or faculty that [do] use technology. ${ }^{51}$
-Rita Marie O'Brien, Navarro College

Solid SkillDevelomment

Through Exercises

We have included a wealth of exercises in support of each section's main ideas. We constructed each set with great care, in an effort to provide strong support for weaker students, while challenging advanced students to reach even further. We also designed the various exercises to support instructors in their teaching endeavors-the quantity and quality of the exercises allow for numerous opportunities to guide students through difficult calculations, and to illustrate important problem-solving techniques.- JCIJD

Mid-Chapter Checks

Mid-Chapter Checks provide students with a good stopping place to assess their knowledge before moving on to the second half of the chapter.

End-of-Section Exercise Sets

Concepts and Vocabulary exercises to help students
recall and retain important terms.

Developing Your Skills exercises to provide practice of relevant concepts just learned with increasing levels of difficulty.

66 Some of our instructors would mainly assign the developing your skills and working with formula problems, however, I would focus on the writing, research and decision making [in] extending the concept. The flexibility is one of the things I like about the Coburn/Herdlick text.
-Sherry Meier, Illinois State University

Working with Formulas exercises to demonstrate contextual applications of well-known formulas.

Extending the Concept exercises that require communication of topics, synthesis of related concepts, and the use of higher-order thinking skills.

Maintaining Your Skills exercises that address skills from previous sections to help students retain previously learning knowledge.
${ }^{6}$ (He not only has exercises for skill development, but also problems for 'extending the concept' and 'maintaining your skills,' which our current text does not have. I also like the mid-chapter checks provided. All these give Coburn/Herdlick an advantage in my view.
-Randy Ross, Morehead State University
Verify that the following equations are identities.

1. $\cos ^{2} x-\cot ^{2} x=-\cos ^{2} x \cot ^{2} x$ 1. $\cos ^{2} x-\cot ^{2} x=-\cos ^{2} x \cot ^{2} x$
2. $1-\sin ^{4} t=\left(1+\sin ^{2} t\right) \cos ^{2} x$
3. $\sin \left(\frac{\pi}{4} t\right) \cos \left(\frac{\pi}{3} t\right)+\cos \left(\frac{\pi}{4} t\right) \sin \left(\frac{\pi}{3} t\right)$ 2. $1-\sin ^{4} t=\left(1+\sin ^{2} t\right) \cos ^{2} t$
Given α and β are acute angles with $\cos \alpha=\frac{3}{5}$ and 3. $\frac{2 \sin x}{\sec x}-\frac{\cos x}{\csc x}=\cos x \sin x$ $\cot \beta=\frac{5}{12}$, find
4. $\frac{1-\cos t}{\cos t}+\frac{\sec t-1}{\sec t}=\sec t-\cos t$
$\begin{array}{ll}\text { a. } \sin (\alpha+\beta) & \text { b. } \cos (\alpha-\beta)\end{array}$

66 The strongest feature seems to be the wide variety of exercises included at the end of each section. There are plenty of drill problems along with good applications." - Jason Pallett, Metropolitan Community College-Longview

End-of-Chapter Review Material

Exercises located at the end of the chapter provide students with the tools they need to prepare for a quiz or test. Each chapter features the following:

- Chapter Summary and Concept Reviews that present key concepts with corresponding exercises by section in a format easily used by students.
- Mixed Reviews that offer more practice on topics from the entire chapter, arranged in random order requiring students to identify problem types and solution strategies on their own.
- Practice Tests that give students the opportunity to check their knowledge and prepare for classroom quizzes, tests, and other assessments.

> G We always did reviews and a quiz before the actual test; it helped a lot."
> - Melissa Cowan, student class tester Metropolitan Community College-Longview

- Cumulative Reviews that are presented at the end of each chapter help students retain previously learned skills and concepts by revisiting important ideas from earlier chapters (starting with Chapter 2).

66 The cumulative review is very good and is considerably better than some of the books I have reviewed/used. I have found these to be wonderful practice for the final exam.ית
-Sarah Clifton, Southeastern Louisiana University

Graphing Calculator icons appear next to exercises where important concepts can be supported by the use of graphing technology.

Homework Selection Guide

A list of suggested homework exercises has been provided for each section of the text (Annotated Instructor's Edition only). This feature may prove especially useful for departments that encourage consistency among many sections, or those having a large adjunct population. The feature was also designed as a convenience to instructors, enabling them to develop an inventory of exercises that is more in tune with the course as they like to teach it. The guide provides prescreened and preselected assignments at four different levels: Core, Standard, Extended, and In Depth.

- Core: These assignments go right to the heart of the material, offering a minimal selection of exercises that cover the primary concepts and solution strategies of the section, along with a small selection of the best applications.
- Standard: The assignments at this level include the Core

66 The summary and concept review was very helpful because it breaks down each section. That is what helps me the most. יפ

-Brittany Pratt, student class tester at Baton Rouge Community College

 exercises, while providing for additional practice without excessive drill. A wider assortment of the possible variations on a theme are included, as well as a greater variety of applications.

- Extended: Assignments from the Extended category expand on the Standard exercises to include more applications, as well as some conceptual or theory-based questions. Exercises may include selected items from the Concepts and Vocabulary, Working with Formulas, and the Extending the Concept categories of the exercise sets.
- In Depth: The In Depth assignments represent a more comprehensive look at the material from each section, while attempting to keep the assignment manageable for students. These include a selection of the most popular and highest-quality exercises from each category of the exercise set, with an additional emphasis on Maintaining Your Skills.

Strong Gonnections

Through a Conversational Writing Style

While examples and applications are arguably the most prominent features of a mathematics text, it's the writing style and readability that binds them together. It may be true that some students don't read the text, and that others open the text only when looking for an example similar to the exercise they're currently working. But when they do and for those students who do (read the text), it's important they have a text that "speaks to them," relating concepts in a form and at a level they understand and can relate to. Ideally this text will draw students in and keep their interest, becoming a positive experience and bringing them back a second and third time, until it becomes habitual. At this point, students might begin to see the true value of their text las more than just a source of problems-pun intended), and it becomes a resource for learning on equal footing with any other form of supplemental instruction. -JC/JD

Conversational Writing Style

John and J.D.'s experience in the classroom and their strong connections to how students comprehend the material are evident in their writing style. They use a conversational and supportive writing style, providing the students with a tool they can depend on when the teacher is not available, when they miss a day of class, or simply when working on their own. The effort they have put into the writing is representative of John Coburn's unofficial mantra: "If you want more students to reach the top, you gotta put a few more rungs on the ladder."

66 The author does a fine job with his narrative. His explanations are very clear and concise. I really like his explanations better than in my current text."ग
-Tammy Potter, Gadsden State College
${ }_{66}$ The author does an excellent job of engagement and it is easily seen that he is conscious of student learning styles."
-Conrad Krueger, San Antonio College

Through Student Involvement

How do you design a student-friendly textbook? We decided to get students involved by hosting two separate focus groups. During these sessions we asked students to advise us on how they use their books,
 what pedagogical elements are useful, which elements are distracting and not useful, as well as general feedback on page layout. During this process there were times when we thought, "Now why hasn't anyone ever thought of that before?" Clearly these student focus groups were invaluable. Taking direct student feedback and incorporating what is feasible and doesn't detract from instructor use of the text is the best way to design a truly student-friendly text. The next two pages will highlight what we learned from students so you can see for yourself how their feedback played an important role in the development of the Coburn/Herdlick series.

Students said that Learning Objectives should clearly define the goals of each section.

Students asked for Check Points

 throughout each section to alert them when a specific learning objective has been covered and to reinforce the use of correct mathematical terms.
7.1 Oblique Triangles and the Law of Sines

I Learning Objectives In Section 7.1 you will learn how to:

A. Develop the law of sines and use it to solve ASA and AAS triangles
B. Bolve SSA triangles (the ambiguous case) using the law of sines

- C. Use the law of sines to solve applications

Many applications of trigonometry involve oblique triangles, or triangles that do not have a 90° angle. For example, suppose a trolley carries passengers from ground level up to a mountain chateau, as shown in what is its approximate length? Cand be held taut, what is its approximate length? Can we also determine like these, we'll develop techniques that enable us to solve acute and obtuse triangles using fundamental gles using fundamental trigonometric relationships.
A. The Law of Sines and Unique Solutions Consider the oblique triangle $A B C$ pictured in Figure 7.2. Since it is not a right triangle, it seems he trigonometric ratios studied earlier cannot be applied. But if we draw the altitude h (from vertex B), two right triangles are formed that share a common side. By applying the sine ratio to angles
A and C, we can develop a relationship that will help
\qquad 2000 m

Described by students as one of the most useful features in a math text, Caution Boxes signal a student to stop and take note in order to avoid mistakes in problem solving.

Students told us that the color red should only be used for things that are really important. Also, anything significant should be included in the body of the text; marginal readings imply optional.

To 10 decimal places, $\cos 75^{\circ}=0.2588190451$.
Now try Exercises 7 through 12

Examples are called out in the margins so they are easy for students to spot.

Examples are "boxed" so students can clearly see where they begin and end.

Students told us they liked when the examples were linked to the exercises.

Students told us that directions should be in bold so they are easily distinguishable from the problems.

Because students spend a lot of time in the exercise section of a text, they said that a white background is hard on their eyes...so we used a soft, off-white color for the background.

Students said having a lot of icons was confusing. The graphing calculator is the only icon used in the exercise sets; no unnecessary icons are used.

Use the formula for arc length to find the value of the Use the formula for arc le
unknown quantity: $s=r \boldsymbol{r}$
7. $\theta=3.5 ; r=280 \mathrm{~m}$
8. $\theta=2.3 ; r=129 \mathrm{~cm}$
9. $s=2007 \mathrm{mi} ; r=2676 \mathrm{mi}$
10. $s=4435.2 \mathrm{~km} ; r=12,320 \mathrm{~km}$
11. $\theta=\frac{3 \pi}{4} ; s=4146.9 \mathrm{yd}$
12. $\theta=\frac{11 \pi}{6} ; s=28.8$ nautical miles
13. $\theta=\frac{4 \pi}{3} ; r=2 \mathrm{mi}$
14. $\theta=\frac{3 \pi}{2} ; r=424 \mathrm{in}$.
15. $s=252.35 \mathrm{ft} ; r=980 \mathrm{ft}$
16. $s=942.3 \mathrm{~mm} ; r=1800 \mathrm{~mm}$
17. $\theta=320^{\circ} ; s=52.5 \mathrm{~km}$
18. $\theta=220.5^{\circ} ; s=7627 \mathrm{~m}$

Point P passes through a central angle θ in time t as it travels around a circle. Find its exact angular velocity in radians per unit time.
19. $\theta=360^{\circ} ; t=8$ sec 20. $\theta=540^{\circ} ; t=9 \mathrm{yr}$
21. $\theta=450^{\circ} ; t=10 \mathrm{hr} \quad$ 22. $\theta=270^{\circ} ; t=12 \mathrm{~min}$
23. $\theta=210^{\circ} ; t=7$ days 24. $\theta=690^{\circ} \cdot t=5 \mathrm{sec}$
25. $\theta=420^{\circ} ; t=4 \min$ 26. $\theta=300^{\circ} ; t=5 \mathrm{hr}$

Point P travels around a circle of radius r as described. Find its linear velocity, rounded to the nearest hundredth as necessary.
27. $\omega=5 \mathrm{rad} / \mathrm{sec} ; r=8 \mathrm{in}$.
28. $\omega=12 \mathrm{rad} / \mathrm{min} ; r=15 \mathrm{ft}$
29. $\omega=14 \pi \mathrm{rad} / \mathrm{hr} ; r=3.2 \mathrm{mi}$
30. $\omega=2312 \pi \mathrm{rad} / \mathrm{hr} ; r=0.01 \mathrm{~km}$
31. $\theta=168^{\circ} ; t=0.28 \mathrm{sec} ; r=3 \mathrm{~mm}$
32. $\theta=282^{\circ} ; t=4.1 \mathrm{~min} ; r=1.2 \mathrm{yd}$
33. $\theta=30 ; t=6 \mathrm{hr} ; r=1.2 \mathrm{~km}$
34. $\theta=45 ; t=3 \mathrm{hr} ; \quad r=2 \mathrm{mi}$

Use the formula for area of a circular sector to find the value of the unknown quantity: $\mathcal{A}=\frac{1}{2} r^{2} \theta$.
35. $\theta=5 ; r=6.8 \mathrm{~km}$
36. $\theta=3 ; r=45 \mathrm{mi}$
37. $\mathcal{A}=1080 \mathrm{mi}^{2} ; r=60 \mathrm{mi}$
38. $\mathcal{A}=437.5 \mathrm{~cm}^{2} ; r=12.5 \mathrm{~cm}$
39. $\theta=\frac{7 \pi}{6} ; \mathcal{A}=16.5 \mathrm{~m}^{2}$
40. $\theta=\frac{19 \pi}{12} ; \mathcal{A}=753 \mathrm{~cm}^{2}$

As our study of trigonometry progresses, we will learn to find the measure of an angle based on its trig function values (first studied in Section 2.2). Here we practice finding these trig function values.
83. Billiards: In Carolina's attempt to end a pool game by sinking the eight ball, she "scratches," accidentally sending the cue ball into the corner pocket located 60 in . to the west and 40 in . to the
north of where it contacted the eight ball. Find $\tan \theta$ for the angle θ shown. For convenience, a $\tan \theta$, for the angle θ shown. For convenience, contact at the origin.

84. Ice hockey: Wydonyu Yustrig takes a low slap shot from the blue line, as shown in the figure

Unfortunately, the puck strikes the skate of a teammate and from there goes to the "boards," 45 ft south and 30 ft west. Find $\tan \theta$, where θ is the angle shown. For convenience a coordinate system is shown with the point of deflection at the origin

For Exercises 85 through 88, find the indicated value by drawing sketches similar to those used in Exercises 83 and 84. Carefully choose the location of the origin so the angle θ will be in standard position.
85. Oil painting: An aspiring artist begins her latest masterpiece by raising her $10^{\prime \prime}$ Filbert paintbrush to horizontal. Keeping her hand steady, she then the tip of the brush $3^{\prime \prime}$. Find $\sin \theta$, where θ is the angle she inclined the brush.
86. Violin: When Lucy is practicing her violin, the bow makes contact with both the D and A strings when held horizontally (parallel to the ground). By
raising the end of the bow in her hand 13 cm (with the far end resting on the strings) she prepares to make contact with the G string Given that her bow is 65 cm long find $\sin \theta$ where θ is the angle she inclined the bow. inclined the bow.
87. Baseball: After a baseball is struck by a bat, it travels 70 ft through the air, at which time it is directly above the pitcher, 60 ft from the point of contact. Find $\cos \theta$, where θ is the acute angle formed line.
88. Golf: The eighteenth hole at Pebble Beach is a 543 -yd, par 5 beauty. A slow-motion review of Kevin's tee shot showed that the ball traveled 9.5 yd through the air as it moved 7.6 yd toward the pin. Find $\cos \theta$, where θ is the acute angle formed by the path of the ball and a horizontal
line.

- WORKING WITH FORMULAS

85. Supersonic speeds, the sound barrier, and Mach numbers: $\mathcal{M}=\csc \left(\frac{\boldsymbol{\theta}}{2}\right)$
The speed of sound varies with temperature and altitude. At $32^{\circ} \mathrm{F}$, sound travels about $742 \mathrm{mi} / \mathrm{hr}$ at sea level. A jet-plane flying faster than the speed of sound (called supersonic speed) has "broken the sound barrier." The plane projects threedimensional sound waves about the nose of the craft hat form the shape of a cone. The cone intersects the Earth along a hyperbolic path, with a sonic boom being heard by anyone along this path. The ratio of the plane's speed to the speed of sound is
called its Mach number \mathcal{M}, meaning a plane flying at $\mathcal{M}=3.2$ is traveling 3.2 times the speed of sound. This Mach number can be determined using of the cone described. For the following exercises, use the formula to find \mathcal{M} or θ as required. For parts (a) and (b), answer in exact form (using a half-angle identity) and approximate form.
, $\theta=30^{\circ} \quad$ b $\theta=45^{\circ} \quad$ c. M $=2$
86. Malus's law: $I=I_{\theta} \cos ^{2} \theta$

When a beam of plane-polarized light with intensity I_{0} hits an analyzer, the intensity I of the transmitted beam of light can be found using the

Through New and Updated Content

New to the Second Edition

- An extensive reworking of the narrative and refining of advanced concepts enhance the clarity of the exposition and improve the student's experience in the text.
- A reordering of the table of contents highlights the different approaches to trigonometry and their respective applications, and helps instructors create a more balanced assessment schedule.
- A modified interior design based on student and instructor feedback from focus groups features increased font size, improved exercise and example layout, more white space on the page, and the careful use of color to enhance the presentation of pedagogy.
- Chapter Openers based on applications bring awareness to students of the relevance of concepts presented in each chapter.
- Checkpoints throughout each section alert students when a specific learning objective has been covered and reinforce the use of correct mathematical terms.
- The Homework Selection Guide, appearing in each exercise section in the Annotated Instructor's Edition, provides instructors with suggestions for developing core, standard, extended, and in-depth homework assignments without much prep work.
- The Modeling With Technology feature after Chapter 4 provides students a detailed exposure to real-world applications of trigonometry, using both critical-point model construction as well as data regression.

Chapter-by-Chapter Changes

CHAPTER 1 Introduction to Trigonometry

- Section 1.1 includes improved DMS to decimal degrees conversion coverage and improved introduction to the standard 45-45-90 and 30-60-90 triangles.
- Section 1.2 classifies triangles by both side length and angle size and contains a more extensive treatment of triangle properties and similar triangles.
- The trigonometric functions are first presented using their coordinate plane definitions in Section 1.3, along with an algebraic analysis of the angle's terminal side.
- Section 1.3 also includes enhanced coverage of the signs of the trigonometric functions and quadrantal angles.
- Section 1.4 offers an introductory exposure to what an identity is (the definition of an identity), as well as an additional example of quadrant and sign analysis.

CHAPTER 2 Right Triangles and Static Trigonometry

- Section 2.1 connects the right triangle definition of the trigonometric functions with their coordinate plane counterparts and contains improved coverage of cofunction relationships.
- Section 2.2 isolates and highlights the critical skill of solving right triangles.
- Section 2.3 has better illustrations for angles of elevation and depression, and new applications involving angles of rotation.
- Section 2.4 covers reference angles in greater detail and uses them to extend right triangle trigonometry beyond acute angles.

CHAPTER 3 Radian Measure and Dynamic Trigonometry

- Section 3.1 has expanded coverage of finding the radian measure of standard angles and their multiples.
- Section 3.2 includes better illustrations of longitude and latitude applications, and enhanced coverage of angular and linear velocity.
- Section 3.3 offers a dedicated treatment of the unit circle, emphasizing its importance to trigonometry.
- Section 3.4 has a streamlined and improved presentation of the trigonometry of real numbers.

CHAPTER 4 Trigonometric Graphs and Models

- Section 4.1 has dedicated and improved coverage of sine and cosine graphs.
- Section 4.2 has improved coverage of secant and cosecant graphs and a strengthened connection between $y=\tan x$ and $y=(\sin x) /(\cos x)$.
- Section 4.3 has an improved introduction to transformations, and a clearer distinction between phase angle and phase shift.
- New and improved applications of trigonometric models have been consolidated in Section 4.4.

CHAPTER
 Trigonometric Identities

- Section 5.1 has a better introduction to clarify goals, as well as an improved format for verifying identities.
- Section 5.2 has improved coverage of the cofunction identities, as well as extended coverage of the sum and difference identities.
- The double-angle and half-angle identities in Section 5.3 have been separated from the product-to-sum and sum-to-product identities in Section 5.4 to help students organize and differentiate between these two families.

CHAPTER 6 Inverse Functions and Trigonometric Equations

- Section 6.1 includes examples of finding inverses of rational functions, as well as better coverage of restricting the domain to find the inverse.
- Section 6.2 has a strengthened connection between inverse trig functions and drawn diagrams, improved coverage on evaluating the inverse trig functions, and more real-world applications of inverse trig functions.
- Parametric equations have been moved to Chapter 8 for an improved flow of topics.

CHAPTER Applications of Trigonometry

- Section 7.1 has a consolidated coverage of the ambiguous case.
- Section 7.2 has expanded coverage of computing areas using trig, as well as six new contextual applications of triangular area using trig.
- Section 7.3 has improved discussion, coverage, and illustrations of vector subtraction, and stronger connections between solutions using components, and solutions using the law of cosines.
- Complex numbers, DeMoivre's theorem, and the theorem on nth roots have been moved to Chapter 8 for improved flow and a more "connected" arrangement of topics.

CHAPTER 8 Trigonometric Connections to Algebra

- Section 8.1 contains improved coverage and additional examples of rewriting imaginary numbers of the form $\sqrt{-k}$.
- Section 8.2 has additional real-world applications of complex numbers (AC circuits).
- The examples for the theorem on nth roots in Section 8.3 have been resequenced.
- Additional examples of converting equations between rectangular and polar form have been added to Section 8.4.

Making
 Connections

Through 360° Development

McGraw-Hill's 360° Development Process is an ongoing, never-ending, market-oriented approach to building accurate and innovative print and digital products. It is dedicated to continual large-scale and incremental improvement driven by multiple customer feedback loops and checkpoints. This process is initiated during the early planning stages of our new products, intensifies during the development and production stages, and then begins again on publication, in anticipation of the next edition.

A key principle in the development of any mathematics text is its ability to adapt to teaching specifications in a universal way. The only way to do so is by contacting those
universal voices-and learning from their suggestions. We are confident that our book has the most current content the industry has to offer, thus pushing our desire for accuracy to the highest standard possible. In order to accomplish this, we have moved through an arduous road to production. Extensive and open-minded advice is critical in the production of a superior text.

We engaged over 400 instructors and students to provide us guidance in the development of the second edition. By investing in this extensive endeavor, McGraw-Hill delivers to you a product suite that has been created, refined, tested, and validated to be a successful tool in your course.

Rebecca Muller, Southeastern Louisiana University Rita Marie O'Brien, Navarro College
Jason Pallett, Metropolitan Community College-Longview Kevin Ratliff, Blue Ridge Community College Stephen Toner, Victor Valley College

Student Focus Groups

Two student focus groups were held at Illinois State University and Southeastern Louisiana University to engage students in the development process and provide feedback as to how the design of a textbook impacts homework and study habits in the College Algebra, Precalculus, and Trigonometry course areas.

Francisco Arceo, Illinois State University Candace Banos, Southeastern Louisiana University Dave Cepko, Illinois State University Andrea Connell, Illinois State University Nicholas Curtis, Southeastern Louisiana University M. D. "Boots" Feltenberger, Southeastern Louisiana University
Regina Foreman, Southeastern Louisiana University Ashley Lae, Southeastern Louisiana University Brian Lau, Illinois State University Daniel Nathan Mielneczek, Illinois State University Mingaile Orakauskaite, Illinois State University Todd Michael Rapnikas, Illinois State University Bethany Rollet, Illinois State University

Teddy Schrishuhn, Illinois State University Josh Schultz, Illinois State University Jessica Smith, Southeastern Louisiana University Andy Thurman, Illinois State University Ashley Youngblood, Southeastern Louisiana University

Special Thanks

Sherry Meier, Illinois State University
Rebecca Muller, Southeastern Louisiana University
Anne Schmidt, Illinois State University

Instructor Focus Groups

Focus groups held at Baton Rouge Community College and ORMATYC provided feedback on the new Connections to Calculus feature in Precalculus, and shed light on the coverage of review material in this course. User focus groups at Southeastern Louisiana University and Madison Area Technical College confirmed the organizational changes planned for the second edition, provided feedback on the interior design, and helped us enhance and refine the strengths of the first edition.

Virginia Adelmann, Southeastern Louisiana University George Alexander, Madison Area Technical College Kenneth R. Anderson, Chemeketa Community College Wayne G. Barber, Chemeketa Community College Thomas Dick, Oregon State University Vickie Flanders, Baton Rouge Community College Bill Forrest, Baton Rouge Community College Susan B. Guidroz, Southeastern Louisiana University Christopher Guillory, Baton Rouge Community College Cynthia Harrison, Baton Rouge Community College Judy Jones, Madison Area Technical College Lucyna Kabza, Southeastern Louisiana University Ann Kirkpatrick, Southeastern Louisiana University Sunmi Ku, Bellevue Community College

Pamela Larson, Madison Area Technical College Jennifer Laveglia, Bellevue Community College DeShea Miller, Southeastern Louisiana University Elizabeth Miller, Southeastern Louisiana University Rebecca Muller, Southeastern Louisiana University Donna W. Newman, Baton Rouge Community College Scott L. Peterson, Oregon State University
Ronald Posey, Baton Rouge Community College Ronni Settoon, Southeastern Louisiana University Jeganathan Sriskandarajah, Madison Area Technical College
Martha Stevens, Bellevue Community College Mark J. Stigge, Baton Rouge Community College Nataliya Svyeshnikova, Southeastern Louisiana University

John N. C. Szeto, Southeastern Louisiana University Christina C. Terranova, Southeastern Louisiana University Amy S. VanWey, Clackamas Community College Andria Villines, Bellevue Community College

Jeff Weaver, Baton Rouge Community College Ana Wills, Southeastern Louisiana University Randall G. Wills, Southeastern Louisiana University Xuezheng Wu, Madison Area Technical College

Developmental Symposia

McGraw-Hill conducted two symposia directly related to the development of the Coburn/Herdlick text. These events were an opportunity for editors from McGraw-Hill to gather information about the needs and challenges of instructors teaching these courses and confirm the direction of the second edition.

Rohan Dalpatadu, University of Nevada-Las Vegas
Franco Fedele, University of West Florida
Bill Forrest, Baton Rouge Community College
Marc Grether, University of North Texas
Sharon Hamsa, Metropolitan Community College-Longview
Derek Hein, Southern Utah University
Rebecca Heiskell, Mountain View College
Terry Hobbs, Metropolitan Community College-
Maple Woods
Klay Kruczek, Western Oregon University
Nancy Matthews, University of Oklahoma
Sherry Meier, Illinois State University
Mary Ann (Molly) Misko, Gadsden State Community College

Rita Marie O'Brien, Navarro College
Jason Pallett, Metropolitan Community College-
Longview
Christopher Parks, Indiana University-Bloomington Vicki Partin, Bluegrass Community College Philip Pina, Florida Atlantic University-Boca Raton Nancy Ressler, Oakton Community College,

Des Plaines Campus
Vicki Schell, Pensacola Junior College
Kenan Shahla, Antelope Valley College
Linda Tansil, Southeast Missouri State University
Stephen Toner, Victor Valley College
Christine Walker, Utah Valley State College

Diary Reviews and Class Tests

Users of the first edition, Said Ngobi and Stephen Toner of Victor Valley College, provided chapter-by chapter feedback in diary form based on their experience using the text. Board of Advisors members facilitated class tests of the manuscript for a given topic. Both instructors and students returned questionnaires detailing their thoughts on the effectiveness of the text's features.

Class Tests

Instructors

Bill Forrest, Baton Rouge Community College Marc Grether, University of North Texas Sharon Hamsa, Metropolitan Community College-Longview Barbara Kurt, St. Louis Community College-Meramec Rita Marie O'Brien, Navarro College

Students

Cynthia Aguilar, Navarro College
Michalann Amoroso, Baton Rouge Community College
Chelsea Asbill, Navarro College
Sandra Atkins, University of North Texas
Robert Basom, University of North Texas
Cynthia Beasley, Navarro College
Michael Bermingham, University of North Texas
Jennifer Bickham, Metropolitan Community College-Longview
Rachel Brokmeier, Baton Rouge Community College Amy Brugg, University of North Texas

Zach Burke, University of North Texas
Shaina Canlas, University of North Texas
Kristin Chambers, University of North Texas
Brad Chatelain, Baton Rouge Community College
Yu Yi Chen, Baton Rouge Community College
Jasmyn Clark, Baton Rouge Community College Belinda Copsey, Navarro College
Melissa Cowan, Metropolitan Community College-Longview
Katlin Crooks, Baton Rouge Community College
Rachele Dudley, University of North Texas
Kevin Ekstrom, University of North Texas
Jade Fernberg, University of North Texas
Joseph Louis Fino, Jr., Baton Rouge Community College
Shannon M. Fleming, University of North Texas
Travis Flowers, University of North Texas
Teresa Foxx, University of North Texas
Michael Giulietti, University of North Texas
Michael Gordon, Navarro College

Hayley Hentzen, University of North Texas
Courtney Hodge, University of North Texas
Janice Hollaway, Navarro College
Weslon Hull, Baton Rouge Community College
Sarah James, Baton Rouge Community College
Georlin Johnson, Baton Rouge Community College
Michael Jones, Navarro College
Robert Koon, Metropolitan Community College-Longview
Ben Lenfant, Baton Rouge Community College
Colin Luke, Baton Rouge Community College
Lester Maloney, Baton Rouge Community College
Ana Mariscal, Navarro College
Tracy Ann Nguyen, Baton Rouge Community College Alexandra Ortiz, University of North Texas
Robert T. R. Paine, Baton Rouge Community College
Kade Parent, Baton Rouge Community College
Brittany Louise Pratt, Baton Rouge Community College

Brittney Pruitt, Metropolitan Community College-Longview Paul Rachal, Baton Rouge Community College Matt Rawls, Baton Rouge Community College Adam Reichert, Metropolitan Community College-Longview Ryan Rodney, Baton Rouge Community College Cody Scallan, Baton Rouge Community College Laura Shafer, University of North Texas Natina Simpson, Navarro College Stephanie Sims, Metropolitan Community College-Longview Cassie Snow, University of North Texas
Justin Stewart, Metropolitan Community College-Longview Marjorie Tulana, Navarro College Ashleigh Variest, Baton Rouge Community College James A. Wann, Navarro College
Amber Wendleton, Metropolitan Community College-Longview Eric Williams, Metropolitan Community College-Longview Katy Wood, Metropolitan Community College-Longview

Developmental Editing

The manuscript has been impacted by numerous developmental reviewers who edited for clarity and consistency. Efforts resulted in cutting length from the manuscript, while retaining a conversational and casual narrative style. Editorial work also ensured the positive visual impact of art and photo placement.

First Edition Chapter Reviews and Manuscript Reviews

Over 200 instructors participated in postpublication single chapter reviews of the first edition and helped the team build the revision plan for the second edition. Over 100 teachers and academics from across the country reviewed the current edition text, the proposed second edition table of contents, and first-draft second edition manuscript to give feedback on reworked narrative, design changes, pedagogical enhancements, and organizational changes.
This feedback was summarized by the book team and used to guide the direction of the second-draft manuscript.

Scott Adamson, Chandler-Gilbert Community College Teresa Adsit, University of Wisconsin-Green Bay Ebrahim Ahmadizadeh, Northampton Community College George M. Alexander, Madison Area Technical College Frances Alvarado, University of Texas-Pan American Deb Anderson, Antelope Valley College
Jeff Anderson, Winona State University
Michael Anderson, West Virginia State University
Philip Anderson, South Plains College
Robin Anderson, Southwestern Illinois College
Raul Aparicio, Blinn College
Judith Barclay, Cuesta College
Laurie Battle, Georgia College and State University David Bell, Florida Community College_Jacksonville

Annette Benbow, Tarrant County College-Northwest
Amy Benvie, Florida Gulf Coast University
Sandra Berry, Hinds Community College
Scott Berthiaume, Edison State College
Wes Black, Illinois Valley Community College
Leonard Blackburn, Parkland College
Arlene Blasius, SUNY College of Old Westbury
Caroline Maher Boulis, Lee University
Amin Boumenir, University of West Georgia
Terence Brenner, Hostos Community College
Gail Brooks, McLennan Community College
Nick Bykov, San Joaquin Delta College
G. Robert Carlson, Victor Valley College

Hope Carr, East Mississippi Community College
Denise Chellsen, Cuesta College
Kim Christensen, Metropolitan Community CollegeMaple Woods
Lisa Christman, University of Central Arkansas
John Church, Metropolitan Community College-Longview
Sarah Clifton, Southeastern Louisiana University
David Collins, Southwestern Illinois College
Sarah V. Cook, Washburn University
Rhonda Creech, Southeast Kentucky Community and
Technical College
Raymond L. Crownover, Gateway College of Evangelism Marc Cullison, Connors State College

Steven Cunningham, San Antonio College Callie Daniels, St. Charles Community College John Denney, Northeast Texas Community College Donna Densmore, Bossier Parish Community College Alok Dhital, University of New Mexico-Gallup James Michael Dubrowsky, Wayne Community College Brad Dyer, Hazzard Community \& Technical College Sally Edwards, Johnson County Community College John Elliott, St. Louis Community College-Meramec Gay Ellis, Missouri State University Barbara Elzey, Bluegrass Community College Dennis Evans, Concordia University Wisconsin Samantha Fay, University of Central Arkansas Victoria Fischer, California State University-Monterey Bay Dorothy French, Community College of Philadelphia Jennifer Friedenreich, Diablo Valley College Eric Garcia, South Texas College Laurice Garrett, Edison College Ramona Gartman, Gadsden State Community CollegeAyers Campus
Scott Gaulke, University of Wisconsin-Eau Claire Scott Gordon, University of West Georgia Teri Graville, Southern Illinois University Edwardsville Marc Grether, University of North Texas Shane Griffith, Lee University Barry Griffiths, University of Central Florida Gary Grohs, Elgin Community College Peter Haberman, Portland Community College Todd Hammond, Truman State University Joseph Harris, Gulf Coast Community College Margret Hathaway, Kansas City Community College Tom Hayes, Montana State University Bill Heider, Hibbling Community College Max Hibbs, Blinn College Terry Hobbs, Metropolitan Community College-Maple Woods Michelle Hollis, Bowling Green CC of WKU Sharon Holmes, Tarrant County College-Southeast Jamie Holtin, Freed-Hardeman University Brian Hons, San Antonio College Kevin Hopkins, Southwest Baptist University Teresa Houston, East Mississippi Community College Keith Hubbard, Stephen F. Austin State University Sharon Hudson, Gulf Coast Community College Jeffrey Hughes, Hinds Community College-Raymond Matthew Isom, Arizona State University Dwayne Jennings, Union University Judy Jones, Madison Area Technical College Lucyna Kabza, Southeastern Louisiana University Aida Kadic-Galeb, University of Tampa

Cheryl Kane, University of Nebraska Rahim Karimpour, Southern Illinois University Edwardsville Ryan Kasha, Valencia Community College David Kay, Moorpark College Katrina Keating, Diablo Valley College Raja Khoury, Collin County Community College Jong Kim, Long Beach City College Lynette King, Gadsden State Community College William Kirby, Gadsden State Community College Carolyn Kistner, St. Petersburg College Barbara Kniepkamp, Southern Illinois University Edwardsville Susan Knights, Boise State University Louis Kolitsch, University of Tennessee at Martin Stephanie Kolitsch, University of Tennessee at Martin Larry Kropp, Rich Mountain Community College Karl Kruczek, Northeastern State University Conrad Krueger, San Antonio College Marcia Lambert, Pitt Community College Rebecca Lanier, Bluegrass Community College Marie Larsen, Cuesta College Pam Larson, Madison Area Technical College Jennifer Lawhon, Valencia Community College Rebecca Leefers, Michigan State University John Levko, University of Scranton Mitchel Levy, Broward Community College Runchang Lin, Texas A\&M International University John Lofberg, South Dakota School of Mines and Technology Mitzi Logan, Pitt Community College Sandra Maldonado, Florida Gulf Coast University Robin C. Manker, Illinois College Manoug Manougian, University of South Florida Nancy Matthews, University of Oklahoma Roger McCoach, County College of Morris James McKinney, California Polytechnic State UniversityPomona

Jennifer McNeilly, University of Illinois Urbana Champaign Kathleen Miranda, SUNY College at Old Westbury Mary Ann (Molly) Misko, Gadsden State Community College Marianne Morea, SUNY College of Old Westbury Michael Nasab, Long Beach City College Said Ngobi, Victor Valley College
Tonie Niblett, Northeast Alabama Community College Gary Nonnemacher, Bowling Green State University Elaine Nye, Alfred State College Rhoda Oden, Gadsden State Community College Jeannette O'Rourke, Middlesex County College
Darla Ottman, Elizabethtown Community \& Technical College
Jason Pallett, Metropolitan Community College-Longview

Priti Patel, Tarrant County College-Southeast Judy Pennington-Price, Midway College Susan Pfeifer, Butler County Community College Margaret Poitevint, North Georgia College \& State University Tammy Potter, Gadsden State Community College Debra Prescott, Central Texas College Elise Price, Tarrant County College
Kevin Ratliff, Blue Ridge Community College Bruce Reid, Howard Community College Edgar Reyes, Southeastern Louisiana University Jolene Rhodes, Valencia Community College Dale Rohm, University of Wisconsin-Stevens Point Karen Rollins, University of West Georgia Randy Ross, Morehead State University Michael Sawyer, Houston Community College Dan Schapiro, Yakima Valley Community College Richard Schnackenberg, Florida Gulf Coast University Bethany Seto, Horry-Georgetown Technical College Delphy Shaulis, University of Colorado-Boulder Jennifer Simonton, Southwestern Illinois College David Slay, McNeese State University David Snyder, Texas State University at San Marcos Larry L. Southard, Florida Gulf Coast University Lee Ann Spahr, Durham Technical Community College Jeganathan Sriskandarajah, Madison Area Technical College Adam Stinchcombe, Eastern Arizona College

Pam Stogsdill, Bossier Parish Community College
Eleanor Storey, Front Range Community College
Kathy Stover, College of Southern Idaho
Mary Teel, University of North Texas
Carlie Thompson, Southeast Kentucky Community \& Technical College
Bob Tilidetzke, Charleston Southern University
Stephen Toner, Victor Valley College
Thomas Tunnell, Illinois Valley Community College
Carol Ulsafer, University of Montana
K. Vajravelu, University of Central Florida

John Van Eps, California Polytechnic State University-San Luis Obispo
Andrea Vorwark, Metropolitan Community College-Maple Woods
Jim Voss, Front Range Community College
Jennifer Walsh, Daytona State College
Jiantian Wang, Kean University
Sheryl Webb, Tennessee Technological University
Bill Weber, Fort Hays State University
John Weglarz, Kirkwood Community College
Tressa White, Arkansas State University-Newport
Cheryl Winter, Metropolitan Community College-Blue River
Kenneth Word, Central Texas College
Paul Wright, Austin Community College
Laurie Yourk, Dickinson State University

Acknowledgments

We first want to express a deep appreciation for the guidance, comments, and suggestions offered by all reviewers of the manuscript. We have once again found their collegial exchange of ideas and experience very refreshing and instructive, and always helping to create a better learning tool for our students.

Vicki Krug has continued to display an uncanny ability to bring innumerable pieces from all directions into a unified whole, in addition to providing spiritual support during some extremely trying times; Patricia Steele's skill as a copy editor is as sharp as ever, and her attention to detail continues to pay great dividends; which helps pay the debt we owe Katie White, Michelle Flomenhoft, and Christina Lane for their useful suggestions, infinite patience, tireless efforts, and art-counting eyes, which helped in bringing the manuscript to completion. We must also thank John Osgood for his ready wit, creative energies, and ability to step into the flow without missing a beat; Laurie Janssen and our magnificent design team, and Dawn Bercier whose influence on this project remains strong although she
has moved on, as it was her indefatigable spirit that kept the ship on course through trial and tempest, and her ski-jumper's vision that brought J.D. on board. In truth, our hats are off to all the fine people at McGraw-Hill for their continuing support and belief in this series. A final word of thanks must go to Rick Armstrong, whose depth of knowledge, experience, and mathematical connections seems endless; Anne Marie Mosher for her contributions to various features of the text, Mitch Levy for his consultation on the exercise sets, Stephen Toner for his work on the videos, Rosemary Karr and Brianna Killian for their meticulous work on the solutions manuals, Donna Gerker for her work on the preformatted tests, Jon Booze and his team for their work on the test bank, Carrie Green for her invaluable ability to catch what everyone else misses; and to Rick Pescarino, Kelly Ballard, John Elliot, Jim Frost, Barb Kurt, Lillian Seese, Nate Wilson, and all of our colleagues at St. Louis Community College, whose friendship, encouragement, and love of mathematics makes going to work each day a joy.

Through Supplements

*All online supplements are available through the book's website: www.mhhe.com/coburn.

Instructor Supplements

- Computerized Test Bank Online: Utilizing Brownstone Diploma ${ }^{\circledR}$ algorithm-based testing software enables users to create customized exams quickly.
- Instructor's Solutions Manual: Provides comprehensive, workedout solutions to all exercises in the text.
- Annotated Instructor's Edition: Contains all answers to exercises in the text, which are printed in a second color, adjacent to corresponding exercises, for ease of use by the instructor.

Student Supplements

- Student Solutions Manual provides comprehensive, worked-out solutions to all of the odd-numbered exercises.
- Videos
- Interactive video lectures are provided for each section in the text, which explain to the students how to do key problem types, as well as highlighting common mistakes to avoid.
- Exercise videos provide step-by-step instruction for the key exercises which students will most wish to see worked out.
- Graphing calculator videos help students master the most essential calculator skills used in the college algebra course.
- The videos are closed-captioned for the hearing impaired, subtitled in Spanish, and meet the Americans with Disabilities Act Standards for Accessible Design.

MathZone $\frac{9}{\text { F. }}$ www.mhhe.com/coburn

McGraw-Hill's MathZone ${ }^{\mathrm{TM}}$ is a complete online homework system for mathematics and statistics. Instructors can assign textbook-specific
 of feedback students receive, including the ability to have students show their work for any given exercise. Assignable content includes an array of videos and other multimedia along with algorithmic exercises, providing study tools for students with many different learning styles.

MathZone also helps ensure consistent assignment delivery across several sections through a course administration function and makes sharing courses with other instructors easy.

In addition, instructors can take advantage of a virtual whiteboard by setting up a Live Classroom for online office hours or a review session with students.

For more information, visit the book's website (www.mhhe.com/ coburn) or contact your local McGraw-Hill sales representative (www.mhhe.com/rep).

ALEKS' www.ales.com

ALEKS (Assessment and LEarning in Knowledge Spaces) is a dynamic online learning system for mathematics education, available over the Web 24/7. ALEKS assesses students, accurately determines their knowledge, and then guides them to the material that they are most ready to learn. With a variety of reports, Textbook Integration Plus, quizzes, and homework assignment capabilities, ALEKS offers flexibility and ease of use for instructors.

- ALEKS uses artificial intelligence to determine exactly what each student knows and is ready to learn. ALEKS remediates student gaps and provides highly efficient learning and improved learning outcomes
- ALEKS is a comprehensive curriculum that aligns with syllabi or specified textbooks. Used in conjunction with McGraw-Hill texts, students also receive links to text-specific videos, multimedia tutorials, and textbook pages.
- ALEKS offers a dynamic classroom management system that enables instructors to monitor and direct student progress toward mastery of course objectives.

ALEKS Prep/Remediation:

- Helps instructors meet the challenge of remediating underprepared or improperly placed students.
- Assesses students on their prerequisite knowledge needed for the course they are entering (i.e., Calculus students are tested on Precalculus knowledge) and prescribes a unique and efficient learning path specifically to address their strengths and weaknesses.
- Students can address prerequisite knowledge gaps outside of class freeing the instructor to use class time pursuing course outcomes.

TEGRITY—http://tegritycampus.mhhe.com

McGraw-Hill Tegrity Campus ${ }^{\text {TM }}$ is a service that makes class time available all the time by automatically capturing every lecture in a searchable format for students to review when they study and complete assignments. With a simple one-click start and stop process, you capture all computer screens and corresponding audio. Students replay any part of any class with easy-to-use browser-based viewing on a PC or Mac.

Educators know that the more students can see, hear, and experience class resources, the better they learn. With Tegrity, students quickly recall key moments by using Tegrity's unique search feature. This search helps students efficiently find what they need, when they need it across an entire semester of class recordings. Help turn all your students' study time into learning moments immediately supported by your lecture.

To learn more about Tegrity watch a 2-minute Flash demo at http://tegritycampus.mhhe.com.
Electronic Textbook: CourseSmart is a new way for faculty to find and review eTextbooks. It's also a great option for students who are interested in accessing their course materials digitally and saving money. CourseSmart offers thousands of the most commonly adopted textbooks across hundreds of courses from a wide variety of higher education publishers. It is the only place for faculty to review and compare the full text of a textbook online, providing immediate access without the environmental impact of requesting a print exam copy. At CourseSmart, students can save up to 50% off the cost of a print book, reduce their impact on the environment, and gain access to powerful web tools for learning including full text search, notes and highlighting, and email tools for sharing notes between classmates. www.CourseSmart.com

Primis: You can customize this text with McGraw-Hill/Primis Online. A digital database offers you the flexibility to customize your course including material from the largest online collection of textbooks, readings, and cases. Visit www.primisonline.com to learn more.

Preface vii
 Index of Applications xxxii
 C H A P TER 1 Introduction to Trigonometry 1

1.1 Angle Measure and Special Triangles 2
1.2 Properties of Triangles; Similar Triangles 10

Mid-Chapter Check 19
Reinforcing Basic Concepts: More on Special Triangles 20
1.3 Trigonometry: A View from the Coordinate Plane 22
1.4 Fundamental Identities and Families of Identities 31

Summary and Concept Review 38
Mixed Review 40
Practice Test 41
Calculator Exploration and Discovery: The Range of Sine θ and Cosine $\theta 42$
Strengthening Core Skills: Creating New Identities 43

C H A P ER 2 Right Triangles and Static Trigonometry 45

2.1 A Right Triangle View of Trigonometry 46
2.2 Solving Right Triangles 54

Mid-Chapter Check 60
Reinforcing Basic Concepts: The Area of a Triangle 61
2.3 Applications of Static Trigonometry 63
2.4 Extending Beyond Acute Angles 71

Summary and Concept Review 78
Mixed Review 81
Practice Test 82
Calculator Exploration and Discovery: Finding the Distance from the Earth to the Sun 84
Strengthening Core Skills: Standard Angles, Reference Angles, and the Trig Functions 85
Cumulative Review: Chapters 1-2 86
chapter 3 Radian Measure and Dynamic Trigonometry 89

3.1 Angle Measure in Radians 90
3.2 Arc Length, Velocity, and the Area of a Circular Sector 97

Mid-Chapter Check 106
Reinforcing Basic Concepts: More on Radians 107
3.3 The Unit Circle 108
3.4 The Trigonometry of Real Numbers 117

Summary and Concept Review 125
Mixed Review 127
Practice Test 128
Calculator Exploration and Discovery: Signs, Quadrants, and Reference Arcs 129

```
Strengthening Core Skills: Trigonometry of the Real Numbers andthe Wrapping Function131
```

Cumulative Review: Chapters 1-3 131
chapter 4 Trigonometric Graphs and Models 133

4.1 Graphs of the Sine and Cosine Functions 134
4.2 Graphs of the Cosecant, Secant, Tangent, and Cotangent Functions 150
Mid-Chapter Check 165
Reinforcing Basic Concepts: Trigonometric Potpourri 166
4.3 Transformations of Trigonometric Graphs 168
4.4 Trigonometric Applications and Models 180
Summary and Concept Review 190
Mixed Review 194
Practice Test 195
Calculator Exploration and Discovery: Variable Amplitudes andModeling the Tides196
Strengthening Core Skills: Transformations via Composition 197
Cumulative Review: Chapters 1-4 198
Modeling With Technology: Trigonometric Equation Models 201
CHAPTER 5 Trigonometric Identities 211

5.1 More on Verifying Identities 212
5.2 The Sum and Difference Identities 220
Mid-Chapter Check 230
Reinforcing Basic Concepts: Understanding Identities 230
5.3 The Double-Angle and Half-Angle Identities 231
5.4 The Product-to-Sum and Sum-to-Product Identities 239
Summary and Concept Review 246
Mixed Review 248
Practice Test 249
Calculator Exploration and Discovery: Seeing the Beats as the Beats Go On 250
Strengthening Core Skills: Identities—Connections and Relationships 250
Cumulative Review: Chapters 1-5 252
снарter 6 Inverse Functions and Trigonometric Equations 253

6.1 One-to-One and Inverse Functions 254
6.2 The Inverse Trig Functions and Their Applications 266
Mid-Chapter Check 282
Reinforcing Basic Concepts: The Domains of Inverse Trig Functions 283
6.3 Solving Basic Trig Equations 284
6.4 Solving General Trig Equations and Applications 295
Summary and Concept Review 306
Mixed Review 309
Practice Test 310
Calculator Exploration and Discovery: Solving Equations Graphically Using a Graphing Calculator 311
Strengthening Core Skills: Trigonometric Equations and Inequalities 312
Cumulative Review: Chapters 1-6 313
CHAPTER 7 Applications of Trigonometry 315

7.1 Oblique Triangles and the Law of Sines 316
7.2 The Law of Cosines; the Area of a Triangle 329
Mid-Chapter Check 342
Reinforcing Basic Concepts: Scaled Drawings and the Laws of Sine and Cosine 343
7.3 Vectors and Vector Diagrams 344
7.4 Vector Applications and the Dot Product 359
Summary and Concept Review 373
Mixed Review 376
Practice Test 377
Calculator Exploration and Discovery: Investigating Projectile Motion 379
Strengthening Core Skills: Vectors and Static Equilibrium 380
Cumulative Review: Chapters 1-7 381
chapter 8 Trigonometric Connections to Algebra 383

8.1 Complex Numbers 384
8.2 Complex Numbers in Trigonometric Form 394
8.3 De Moivre's Theorem and the Theorem on nth Roots 406
Mid-Chapter Check 414
Reinforcing Basic Concepts: More on the Imaginary Unit 415
8.4 Polar Coordinates, Equations, and Graphs 416
8.5 Parametric Equations and Graphs 432
Summary and Concept Review 444
Mixed Review 446
Practice Test 448
Calculator Exploration and Discovery: Parametric Equations and Dependent Systems 448
Strengthening Core Skills: Complex Numbers, Sum and Difference Identities, and Euler's Formula 449
Cumulative Review: Chapters 1-8 451
Appendix I Exponential and Logarithmic Functions A-1
Appendix II Transformations of a Basic Graph A-65
Appendix III Solving Equations Graphically A-72
Appendix IV Regression and Calculator Use A-74
Appendix V Miscellaneous Algebra Review A-80
Appendix VI Selected Proofs A-84
Appendix VII Families of Polar Curves A-86

College Algebra, Second Edition

Review \bullet Equations and Inequalities \bullet Relations, Functions, and Graphs • Polynomial and Rational Functions \bullet Exponential and Logarithmic Functions \bullet Systems of Equations and Inequalities \bullet Matrices \bullet Geometry and Conic Sections * Additional Topics in Algebra
MHID 0-07-351941-3, ISBN 978-0-07-351941-8

College Algebra Essentials, Second Edition

Review •Equations and Inequalities •Relations, Functions, and Graphs • Polynomial and Rational Functions \bullet Exponential and Logarithmic Functions \bullet Systems of Equations and Inequalities
MHID 0-07-351968-5, ISBN 978-0-07-351968-5

Algebra and Trigonometry, Second Edition

Review •Equations and Inequalities •Relations, Functions, and Graphs • Polynomial and Rational Functions • Exponential and Logarithmic Functions * Trigonometric Functions * Trigonometric Identities, Inverses, and Equations * Applications of Trigonometry \bullet Systems of Equations and Inequalities \bullet Matrices \bullet Geometry and Conic Sections * Additional Topics in Algebra
MHID 0-07-351952-9, ISBN 978-0-07-351952-4

Precalculus, Second Edition

Equations and Inequalities •Relations, Functions, and Graphs • Polynomial and Rational Functions * Exponential and Logarithmic Functions * Trigonometric Functions * Trigonometric Identities, Inverses, and Equations * Applications of Trigonometry \bullet Systems of Equations and Inequalities \bullet Matrices \bullet Geometry and Conic Sections \bullet Additional Topics in Algebra \bullet Limits
MHID 0-07-351942-1, ISBN 978-0-07-351942-5

Trigonometry, Second Edition

Introduction to Trigonometry \bullet Right Triangles and Static Trigonometry \bullet Radian Measure and Dynamic Trigonometry * Trigonometric Graphs and Models

- Trigonometric Identities • Inverse Functions and Trigonometric Equations
- Applications of Trigonometry * Trigonometric Connections to Algebra MHID 0-07-351948-0, ISBN 978-0-07-351948-7

ARCHITECTURE

Area of Gateway Arch
Cross-sections, 17
Boat Storage Structure Height, 16
Building Height, 17, 54, 60, 68-69
Burj Dubai Height, 178
Distance Between Doors, 81
Fortress Height, 327
Freedom Statue on Capitol Building, 82 Golden Ratio, 164
Great Pyramid of Giza, 374
Indoor Waterfall Height, 86
Pantheon, 96
Petronas Towers, 313
Sears Tower, 306
Taj Majal Height, 18
Temple Height, 16
Tower Height, 219
Washington Monument
Height, 18, 78, 343
Window Height, 66

ART/FINE ARTS/THEATER

Art and Mathematics, 228
Billboard Design, 341
Company Logo Design, 294, 447
Large Painting and Door Width, 81
Mosaic Design, 116
Mount Rushmore Height, 192
Oil Painting, 30
Photographs of Dance Troupe, 128
Sculpture Rings, A-61
Statue Height, 31
Stress of Painting Hanging on Wall, 52
Viewing Angle for Art Show, 281
Violin Practicing, 30

BIOLOGY/ZOOLOGY

Animal Population Fluctuation, 183, 188, 203
Animal Sinusoidal Movement, 148
Animal Territories, 430
Area for Tethered Dog to Roam, 265
Bird Flight Path, 426
Butterfly Velocity, 199
Flight of Manx Shearwater, 41
Fruit Fly Population Growth, A-50
Hamster Wheel Velocity, 129
Motion Detection of Animals, 326, 452
Observing Wildlife, 70, 82
Prairie Dog Population Growth, A-60
Stocking a Lake, A-41
Tree Height, 42, 86, 373

Weight of Puppy, A-62
Wolf Population Growth, A-56

BUSINESS/ECONOMICS

Advertising Budgets, A-20, A-37, A-61
Annual Salary, A-75
Annuities, A-48, A-54, A-55
Coffee Sales, 305
Depreciation, A-8, A-11, A-42, A-61
Doubling Time of Investment, A-23, A-45, A-62
Emissions Testing, 117
Employee Performance, A-77
Ice Cream Cone Size, 41
Inflation, A-12
Inheritance Taxes, A-56
Interest
compound, A-46, A-47, A-53, A-54, A-60, A-61
rate and time, A-25
simple, A-44, A-53
Investment Growth, A-54
Learning Curve of New Employee, A-43
Marketing Budgets, A-25
Marketing Strategies, A-21, A-22
Mortgages, A-55
New Books Published Yearly, A-78, A-79
Overdue Fines for Library Books, 307
Pricing for Undeveloped Lots, 341
Prop Manufacturing, 430
Revenue Growth, A-12
Sales Increase, A-41
Savings Account, A-55
Seasonal Revenue, 195, 199, 300-301, 304, 309, 311, 314
Shopping Complex and Building Code, 65
Sinking Funds, A-49
Viewing Angle for Advertising, 281

COMMUNICATION

Blu-ray Disk Velocity, 128
Cell Phone Tower Height, 82
Compact Disk Circumference, 124
Highway Sign Height, 342
Radio Tower Cables, 228
Sign at Home Office, 40-41
Touch-tone Phones, 149, 245, 249
Walkie-Talkies, 378

CONSTRUCTION

Bridge Length, 38, 229
Height of Ladder, 8, 198
Heron's Formula, 336, 341

Home Ventilation, A-25
Length of Warehouse Ramp, 8
Pane of Glass, 31
Roadbed Construction, 252
Runway Length, 19, 339
Tunnel Length, 340
Utility Pole Reinforcement, 53
Vertical Support for Ramp, 79
Wheelchair Ramp Length, 61

CRIMINAL JUSTICE/LEGAL STUDIES

Speeding Fines, 265
Surveillance Camera, 341

DEMOGRAPHICS

Population Growth, A-41, A-57
Visitor Attendance, 305

ENGINEERING

Electrical
alternating circuit, 402
alternating current, 59, 149, 228, 400-401, 404
voltage calculations, 405
wiring, 124
Mechanical
elevator speed, 71
jointed arms, 378
machine gears, 238
piston in cylinder, 207
velocity, 100-101, 104-105, 106, 252, 282, 313, 443, 452
volume of equipoise cylinder, 260-261
wind-powered energy, 6, 265

ENVIRONMENTAL STUDIES

Center-pivot Irrigation, 105
Coral Triangle Area, 379
Motion Detection of Animals, 326
Shadow Length, 184-185, 189, 194
Waste Produced by Manufacturing, 314
Weather and Mood, 210
Wind-powered Energy, 6, 265

GENERAL INTEREST

Boxes for Shipping, 125, 357
Bread Sliced Diagonally, 79
Distance Between Doors, 81
Flagpole Height, 13, 150, 376
Flat Tire, 129
Flyswatter Speed, 8-9
Height of Mark on Wall, 20
Home Value Growth, A-26

Lawn Mower Distance from House, 81
Lawn Mower Speed, 87
Laying Sod, 123
Lengths of Sides of Triangular Amulet, 20
Origami, 238
Per Capita Debt, A-74
pH Level, A-23, A-25
Plot Survey of Home, 87
Salad Spinner Velocity, 127
Snowcone Dimensions, 280
Tile Pattern on Wall, 40
Time Required for Food to Cool, A-26, A-75
Windshield Wiper Cleaning Area, 125

GEOGRAPHY/GEOLOGY

Avalanches, 280
Bermuda Triangle, 378
Canyon Width, 328
Cliff Height, 16, 41, 63
Contour Maps, 9-10, 59, 81-82
Depth of Canyon, 452
Discharge Rate of River, 209, 299, 304
Distance and Apparent Height, 208
Distance Between Cities, 84, 104, 128, 219, 252, 313, 326, 339, 343, 359, 377
Distance to Equator, 106, 149
Distance to Fire, 328, 377
Earthquake Intensity, A-19, A-20, A-24, A-26, A-61
Elastic Rebound Theory, 208
Height of Mountain, 328, 451
Height of Mount Fuji, 265
Height of Mount McKinley, 313
Height of Mount Shasta, A-20
Height of Mount Tortolas, 359
Map Distance, 41, 327-328
Nile River Delta, 341
Platinum Mining, A-62
Seasonal Ice Thickness, 304
Tidal Motion, 148, 196-197
Tidal Waves, 147-148
Tree Height, 42, 86, 373
Trip Planning, 340
Volcano Width, 332
Waterfall Height, 86
Width of Africa at Equator, 104
Yukon Territory, 341

MATHEMATICS

Angle of Depression, 64, 69, 71, 80
Angle of Elevation, 63, 69-70, 80, 163, 179, 190, 198, 313, 329, 451

Angle of Intersection, 37
Angles of Rotation, 64-66, 69
Area of Circular Segment, 102, 190, 294
Area of Lune, 165
Area of Polygon, 147, 164
Art and Mathematics, 228
Circumscribed Polygons, 163
Circumscribed Triangles, 328
Clock Angles, 77, 102, 128, 238, 310, 313
Diagonal of a Cube, 53, 60
Diagonal of a Rectangular
Parallalepiped, 53, 60, 305
Involute of Circle, 77
Nonacute Angles, 77-78
Perimeter of Hexagon, 341
Perimeter of Pentagon, 341
Perimeter of Polygon, 164
Perimeter of Trapezoid, 294
Pythagorean Theorem, 86, 218
Ratios of Sides of Triangles, 10
Regression Models, 209
Regressions and Parameters, 442
Spiral of Archimedes, 77, 431
Tangent Functions, 208
Tangent Lines, 164
Volume of Cone, 265, 304
Volume of Cylinder, 304

MEDICINE/NURSING/ NUTRITION/DIETETICS/ HEALTH

Bacterial Growth, A-11, A-56
Biorhythm Theory, 210
Circadian Body Temperature, 207
Drug Absorption, A-42
Estimating Time of Death, A-41
Lights in Dentist's Office, 358
Memory Retention, A-25
Pressure on Eardrum, 228
Range of Motion, 9
Weather and Mood, 210

METEOROLOGY

Altitude and Atmospheric Pressure, A-24, A-25, A-38, A-59
Altitude and Temperature, 264, A-42
Height of Rainbow, 59
Hours of Daylight, 178-179, 188, 210, 252, 381
Monthly Rainfall, 193-195, 206, 210
Record Monthly Temperatures, 207, 209
River Current Speed, 105
River Discharge Rate, 209, 299, 304

Temperature and Atmospheric Pressure, A-24
Temperature Fluctuation, 168, 178, 182, 187-188, 199, 205, 239, 304
Tornado Height, 81
Weather and Mood, 210

PHYSICS/ASTRONOMY/ PLANETARY STUDIES

Acceleration, 293
Brewster's Law of Reflection, 228
Brightness of Stars, A-24
Capillary Tube, 147
Carbon-14 Dating, A-56
Daylight Hours, 178-179, 188, 210, 252, 381
Electron Motion, 442
Fluid Mechanics, 228
Force and Equilibrium, 228, 361-362, 370, 375-380, 382, 406
Force and Work Measurement, 96, 123, $279,345,352,355,357,362-363$, 371, 376, 379, 381
Friction, 163-164
Global Positioning System, 9
Gravity Effects, 265, 293
Half-life, A-12, A-43, A-51, A-56, A-59
Harmonic Motion, 180, 187, 195
Heat Flow, 280
Hydrostatics, 147
Illumination of a Surface, 59, 164
Illumination of the Moon, 209, 313
Index of Refraction, 294
Intensity of Sound, A-24
Light Beam Distance, 183-184, 189
Light Intensity, 219
Magnetic North on Mars, 70-71
Newton's Law of Cooling, A-7, A-11, A-42
Noise-canceling Headphones, 249
Orion Crew Vehicle Height, 178
Particle Motion, 442
Photochromatic Sunglasses, A-12
Planets
distance between, 85, 124, 321-322, 326
kinetic energy, 148
orbits, 96-97, 179, 186, 252, 438
polar ice caps, 202, 207
velocity, 105
Projectile
components, 357, 380
motion, 368, 372
range, 245, 293, 371, 376

Radioactive Decay, A-12, A-43, A-51, A-56, A-59
Range-finding Scope, 18
Satellite Orbit, 281
Shadow Length, 204
Snell's Law, 293
Sound Waves, 180-182, 187, 241, 249
Spaceship Velocity, A-42
Surface Tension, 147
Telephone Tones, 149
Visible Light, 149
Wave Height, 178
Wave Motion, 148, 228

SPORTS/LEISURE

Amusement Park Rides, 96
Archery, 441
Balloon Anchor Line Angle, 61
Barrell Races, 124
Baseball, 30, 372
Billiards, 30
Bowling, 126, 355
Carnival Games, 77
Carnival Rides, 105
Circus Acts, 60, 377
Circus Cannon Shots, 239, 282, 372, 437
Climbing Height, 70
Distance to Target, 326-327
Distance to Top of Movie Screen, 218
Dodgeball, 53
Elevator Speed, 71
Exercise Routine, 305
Ferris Wheel, 150, 295, 329
Fishing Boat Distance from Shore, 80
Fishing Hook Depth, 68
Football Halftime Entertainment, 83
Football Throwing Competition, 441

Football Velocity, 441-442, 447
Game Shows, 9
Geoboard, 340
Geocaching, 9
Golf, 30
Golf Distance to Hole, 81, 150, 280
Golf Swing, 293
Gymnastics, 77
Helium Balloon Height and Speed, 84
High Dives, 77
Ice Hockey, 30
Jogging, 68
Jumping Rope, 129
Kayak Distance from Glacier, 64
Kiteboarding, 198
Lacrosse, 378
Movie Screen Viewing Angle, 219, 275-276
Movie Screen Viewing Distance, 219
Nightfishing Distance from Lighthouse, 83
Orienteering, 374
Park Attendance, 305
Piñatas, 53
Pitcher's Mound Decay, A-11
Race Track Area, 96, 106
Racing Bicycle Velocity, 100-101
Rock Climbing, 53
Rocket Slide Length, 39
Roller Coaster Design, 294
Round-a-bout Velocity, 104
Seasonal Merchandise Revenue, 195, 199, 300-301, 304
Shooting Angles in Soccer, 281
Skateboarding, 199
Ski Jumps, 280, 282
Soccer, 199, 378, 448
Sports Promotions, A-25

Stranded Hikers, 430
Swim Racing, 375
Tent Stake Distance From Tent, 165
Tethered Airplane, 374
Tethered Weights, 377
Trail Length, 378
Tug-of-War, 370
Velocity of Child on Slide, 52
Volleyball, 53
Wakeboarding, 9
Water Slide, 431
Yoga, 83

TRANSPORTATION

Aerial Distance, 10, 69, 84, 105, 340
Airplane Speed, 353, 358, 377, 382, 394
Automobile Testing, 96
Automotive Design, 18
City Planning, 53
Crop Duster's Speed, 70
Experimental Aircraft Design, 18
Height of Blimp, 328
Helicopter altitude, 16
Helicopter course, 378
Helicopter descending speed, 80
Line Segment Distance, 10
Nautical Distance, 10, 19, 340, 406
Nautical Speed, 443
Radar Detection, 65-66, 75, 322, 326
Runway Takeoff Distance, A-25
Sail Length, 20
Ship Speed, 355
Spaceship Velocity, A-42
Submarine Design, 96
Train Speed, 70
Trip Planning, 340
UFO Speed, 329

TRIGONOMETRY

CHAPTER CONNECTIONS

Introduction to Trigonometry

CHAPTER OUTLINE

1.1 Angle Measure and Special Triangles 2

1.2 Properties of Triangles; Similar Triangles 10

1.3 Trigonometry: A View from the Coordinate Plane
 22

1.4 Fundamental Identities and Families of Identities 31

From the Egyptian pyramids to the Eiffel Tower, a building's significance has often been tied to its height. Many cities, such as St. Louis, Missouri, Washington, D.C., and others, are trying to preserve the significance of certain buildings by enforcing building codes that effectively prevent new construction from surpassing the height of their national landmarks. In the case of Washington, D.C., the Washington Monument is the tallest building in the greater D.C. area. Since its completion in 1884, the monument's exact height has been found using many different methods, including metal chains, GPS receivers, and of course-trigonometry. One additional method involves using similar triangles and the monument's reflection.

- This application appears as Exercise 69 in Section 1.2

1.1 Angle Measure and Special Triangles

Learning Objectives

In Section 1.1 you will learn how to:
A. Use the vocabulary associated with a study of angles and triangles
B. Find and recognize coterminal angles
C. Find fixed ratios of the sides of special triangles

Figure 1.2

Trigonometry, like her sister science geometry, has its origins deeply rooted in the practical use of measurement and proportion. In this section, we'll look at the fundamental concepts on which trigonometry is based, which we hope will lead to a better understanding and a greater appreciation of the wonderful study that trigonometry has become.

A. Angle Measure in Degrees

Beginning with the common notion of a straight line, a ray is a half line, or all points extending from a single point, in a single direction. An angle is the joining of two rays at a common endpoint called the vertex. Arrowheads are used to indicate the half lines continue forever and can be extended if necessary. Angles can be named using a single letter at the vertex, the letters from the rays forming the sides, or by a single Greek letter, with the favorites being alpha α, beta β, gamma γ, and theta θ. The symbol \angle is often used to des-

Figure 1.1
 ignate an angle (see Figure 1.1).

Euclid (325-265 B.C.), often thought of as the father of geometry, described an angle as "the inclination of one to another of two lines which meet in a plane." This amount of inclination gives rise to the common notion of angle measure in degrees, often measured with a semicircular protractor like the one shown in Figure 1.2. The notation for degrees is the ${ }^{\circ}$ symbol. By definition 1° is $\frac{1}{360}$ of a full rotation, so this protractor can be used to measure any angle from 0° (where the two rays are coincident), to 180° (where they form a straight line). An angle measuring 180° is called a straight angle, while an angle that measures 90° is called a right angle. Two angles that sum to 90° are said to be complementary, while two that sum to 180° are supplementary angles. Recall the " 7 " symbol represents a 90° angle.

θ and γ are supplementary
or
θ and γ are supplements

EXAMPLE 1 Finding the Complement and Supplement of an Angle

Determine the measure of each angle described.
a. the complement of a 57° angle
b. the supplement of a 132° angle
c. the measure of angle θ shown in the figure

Solution a. The complement of 57° is 33° since $90^{\circ}-57^{\circ}=33^{\circ} \Rightarrow 33^{\circ}+57^{\circ}=90^{\circ}$.
b. The supplement of 132° is 48° since $180^{\circ}-132^{\circ}=48^{\circ} \Rightarrow 48^{\circ}+132^{\circ}=180^{\circ}$.
c. Since θ and 39° are complements, $\theta=90^{\circ}-39^{\circ}=51^{\circ}$.

In the study of trigonometry, it helps to further classify the various angles we encounter. An angle greater than 0° but less than 90° is called an acute angle. An angle greater than 90° but less than 180° is called an obtuse angle. For very fine measurements, each degree is divided into 60 smaller parts called minutes, and each minute into 60 smaller parts called seconds. This means that a minute is $\frac{1}{60}$ of a degree, while a second is $\frac{1}{3600}$ of a degree. The angle whose measure is "sixty-one degrees, eighteen minutes, and forty-five seconds" is written as $61^{\circ} 18^{\prime} 45^{\prime \prime}$. The degrees-minutes-seconds (DMS) method of measuring angles is commonly used in aviation and navigation, while in other areas decimal degrees such as 61.3125° are preferred. You will sometimes be asked to convert between the two.

EXAMPLE 2

Converting Between Decimal Degrees and Degrees/Minutes/Seconds
Convert as indicated.
a. $61^{\circ} 18^{\prime} 45^{\prime \prime}$ to decimal degrees
b. 142.2075° to DMS

Solution \downarrow a. Since $1^{\prime}=\frac{1}{60}$ of a degree and $1^{\prime \prime}=\frac{1}{3600}$ of a degree, we have

$$
\begin{aligned}
61^{\circ} 18^{\prime} 45^{\prime \prime} & =\left[61+18\left(\frac{1}{60}\right)+45\left(\frac{1}{3600}\right)\right]^{\circ} \\
& =61.3125^{\circ}
\end{aligned}
$$

b. For the conversion to DMS we write the fractional part separate from the whole number part to compute the number of degrees and minutes represented, then repeat the process to find the number of degrees, minutes, and seconds:

$$
\begin{aligned}
142.2075^{\circ} & =142^{\circ}+0.2075^{\circ} & & \text { separate fractional part from the whole } \\
& =142^{\circ}+0.2075(60)^{\prime} & & 0.2075^{\circ}=0.2075 \cdot 1^{\circ} ; \text { substitute } 60^{\prime} \text { for } 1^{\circ} \\
& =142^{\circ} 12.45^{\prime} & & \text { result in degrees and minutes } \\
& =142^{\circ} 12^{\prime}+0.45^{\prime} & & \text { separate fractional part from the whole } \\
& =142^{\circ} 12^{\prime}+0.45(60)^{\prime \prime} & & 0.45^{\prime}=0.45 \cdot 1^{\prime} ; \text { substitute } 60^{\prime \prime} \text { for } 1^{\prime} \\
& =142^{\circ} 12^{\prime} 27^{\prime \prime} & & \text { result in degrees, minutes, and seconds }
\end{aligned}
$$

Now try Exercises 11 through 26
Figure 1.3

B. Coterminal Angles

As an alternative to viewing angles as "the amount of inclination" between two rays, angle measure can also be considered as the amount of rotation from a fixed ray called the initial side, to a rotated ray called the terminal side. This allows for positive or negative angles, depending on the direction of rotation. Angles formed by a counterclockwise rotation are considered positive angles, and angles formed by a clockwise rotation are negative angles (see Figure 1.3). We can then name an angle of any size, including those greater than 360° where the amount of rotation exceeds one revolution. See Figures 1.4 through 1.8.

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.9

Note in Figure 1.9 that angle $\theta=330^{\circ}$ and angle $\alpha=-30^{\circ}$ share the same initial and terminal sides and are called coterminal angles. Coterminal angles will always differ by multiples of 360°, meaning that for any integer k, angles θ and $\theta+360^{\circ} k$ will be coterminal.

EXAMPLE 3

Solution
\square B. You've just learned how to find and recognize coterminal angles

WORTHY OF NOTE

Recall that the Pythagorean theorem states that for any right triangle, the sum of the squares of the two legs, is equal to the square of the hypotenuse: $a^{2}+b^{2}=c^{2}$.

Finding Coterminal Angles
Find two positive angles and two negative angles that are coterminal with 60°.
For $k=-2,60^{\circ}+360^{\circ}(-2)=-660^{\circ}$.
For $k=-1,60^{\circ}+360^{\circ}(-1)=-300^{\circ}$.
For $k=1,60^{\circ}+360^{\circ}(1)=420^{\circ}$.
For $k=2,60^{\circ}+360^{\circ}(2)=780^{\circ}$.
Note that many other answers are possible.
Now try Exercises 35 through 44

C. Special Triangles

Recall that a triangle is a closed plane figure with three straight sides and three angles. If two of the sides meet at a 90° angle, a right triangle is formed. The longest side (opposite the 90° angle) is called the hypotenuse, while the other two sides are simply referred to as the legs of the triangle. In this section, we investigate two "special" right triangles. These two triangles, and the proportional relationships between their angles and sides, will appear frequently throughout this
course of study, and in the courses that follow. Students are strongly urged to commit these relationships to memory.

These triangles, commonly called 45-45-90 and 30-60-90 triangles, are special because no estimation or interpolation is needed to find the relationships between their sides. For the first, consider a right triangle with two equal sides and two 45° angles

Figure 1.10
 (Figure 1.10). After naming the equal sides x and the hypotenuse h, we can apply the Pythagorean theorem to find a relationship between the sides and the hypotenuse in terms of x.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} & & \text { Pythagorean theorem } \\
h^{2} & =x^{2}+x^{2} & & \text { substitute } x \text { for } a, x \text { for } b, \text { and } h \text { for } c \\
& =2 x^{2} & & \text { combine like terms } \\
h & =\sqrt{2} x & & \text { solve for } h(h>0)
\end{aligned}
$$

This important result is summarized in the following box.

45-45-90 Triangles

Given a 45-45-90 triangle with one side of length x, the relationship between corresponding sides is:

$$
1 x: 1 x: \sqrt{2} x
$$

(1) The two legs are equal
(2) The hypotenuse is $\sqrt{2}$ times the length of either leg:

$$
a=b \quad c=\sqrt{2} a \quad c=\sqrt{2} b
$$

The proportional relationship for a 30-60-90 triangle is developed in Exercise 76, and the result is stated here.

30-60-90 Triangles

Given a 30-60-90 triangle with the shortest side of length x, the relationship between corresponding sides is:

$$
1 x: \sqrt{3} x: 2 x
$$

(1) The longer leg is $\sqrt{3}$ times the length of the shorter leg
(2) The hypotenuse is 2 times the length of the shorter leg:

$$
b=\sqrt{3} a \quad c=2 a
$$

EXAMPLE $4-$ Finding Exact Lengths of the Unknown Sides of Special Triangles

Find the unknown side lengths of the following 30-60-90 triangles. Check the results for part a using the Pythagorean theorem.
a. The hypotenuse measures 10 m .
b. The longer leg measures $4 \sqrt{3}$ in.

Solution a. In this first triangle, the hypotenuse measures 10 m .

$$
\begin{aligned}
c & =2 a & & 30-60-90 \text { triangle property (2) } \\
10 & =2 a & & \text { substitute } 10 \text { for } c \\
5 & =a & & \text { solve for a }
\end{aligned}
$$

The shorter leg measures 5 m .

$$
\begin{aligned}
b & =\sqrt{3} a & & 30-60-90 \text { triangle property (1) } \\
& =\sqrt{3} \cdot 5 & & \text { substitute } 5 \text { for } a \\
& =5 \sqrt{3} & & \text { rewrite factors }
\end{aligned}
$$

The longer leg measures $5 \sqrt{3} \mathrm{~m}$.
Check:

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean theorem } \\
5^{2}+(5 \sqrt{3})^{2} & =10^{2} & & \text { substitute } 5 \text { for } a, 5 \sqrt{ } \\
25+75 & =100 & & \text { square } \\
100 & =100 \checkmark & & \text { result checks }
\end{aligned}
$$

b. In this triangle, the length b of the longer leg measures $4 \sqrt{3}$ in.

$$
\begin{aligned}
b & =\sqrt{3} a & & 30-60-90 \text { triangle property (1) } \\
4 \sqrt{3} & =\sqrt{3} a & & \text { substitute } 4 \sqrt{3} \text { for } b \\
4 & =a & & \text { solve for } a
\end{aligned}
$$

The shorter leg measures 4 in.

$$
\begin{aligned}
c & =2 a & & 30-60-90 \text { triangle property (2) } \\
& =2(4) & & \text { substitute } 4 \text { for } a \\
& =8 & & \text { multiply }
\end{aligned}
$$

The hypotenuse measures 8 in.
Now try Exercises 45 through 58

EXAMPLE $5>$ Applications of 45-45-90 Triangles: The Height of a Kite
Seeking to reduce energy consumption and carbon emissions, many shipping companies are harnessing wind power using specialized kites. If such a kite is flying at a 45° angle, and 216 m of cable has been let out, what is the height h of the kite's bridle point B (see illustration)?

V C. You've just learned how to find fixed ratios of the sides of special triangles

In the 45-45-90 triangle, the hypotenuse is formed by the cable: $c=216 \mathrm{~m}$. The height of the kite will be the length of one of the legs.

$$
\begin{array}{rlrl}
c & =\sqrt{2} a & & 45-45-90 \text { triangle property (2) } \\
216 & =\sqrt{2} a & & \text { substitute } 216 \text { for } c \\
\frac{216}{\sqrt{2}} & =a & & \text { solve for } a \\
a & =\frac{216 \sqrt{2}}{2} & & \\
& & \text { rewrite equation and rationalize denominator } \\
& =108 \sqrt{2} & & \text { simplify: exact form } \\
& \approx 152.7 \mathrm{~m} & & \text { approximate form (rounded to tenths) }
\end{array}
$$

The bridle point of the kite is $108 \sqrt{2} \mathrm{~m}$ (about 152.7 m) higher than the deck of the ship.

1.1 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. \qquad angles sum to 90°. Supplementary angles sum to \qquad ${ }^{\circ}$.
2. Two angles that share the same initial and terminal sides are called \qquad angles. These angles always differ by multiples of \qquad -.
3. Discuss/Explain the difference between a positive angle and a negative angle. Can positive and negative angles be coterminal? Give a specific real-world example.
4. Acute angles are \qquad than 90°, obtuse angles are
\qquad than 90°, and \qquad angles are equal to 90°.
5. The \qquad of a 45-45-90 triangle is $\sqrt{2}$ times the length of either \qquad In a 30-60-90 triangle, the shorter leg is \qquad the length of the hypotenuse.
6. Discuss/Explain a strategy for remembering the relationship between corresponding sides of a 30-60-90 triangle.

DEVELOPING YOUR SKILLS

Determine the measure of the angle described.
7. a. The complement of a 12.5° angle
b. The supplement of a 149.2° angle
8. a. The complement of a 62.4° angle
b. The supplement of a 74.7° angle
9. The measure of angle α

10. The measure of angle β

Convert from DMS (degree/minute/seconds) notation to decimal degrees.
11. $42^{\circ} 30^{\prime}$
12. $125^{\circ} 45^{\prime}$
13. $67^{\circ} 33^{\prime} 18^{\prime \prime}$
14. $9^{\circ} 15^{\prime} 36^{\prime \prime}$
15. $285^{\circ} 00^{\prime} 09^{\prime \prime}$
16. $312^{\circ} 00^{\prime} 54^{\prime \prime}$
17. $45^{\circ} 45^{\prime} 45^{\prime \prime}$
18. $30^{\circ} 30^{\prime} 27^{\prime \prime}$

Convert the angles from decimal degrees to DMS (degree/minute/sec) notation.
19. 20.25°
20. 40.75°
21. 67.307°
22. 83.516°
23. 275.33°
24. 330.45°
25. 5.4525°
26. 12.3275°

Find the supplements of the following angles.
27. $102^{\circ} 45^{\prime}$
28. $116^{\circ} 30^{\prime}$
29. $89^{\circ} 10^{\prime} 24^{\prime \prime}$
30. $77^{\circ} 20^{\prime} 39^{\prime \prime}$
31. $179^{\circ} 03^{\prime} 52^{\prime \prime}$
32. $179^{\circ} 59^{\prime} 03^{\prime \prime}$
33. $132^{\circ} 0^{\prime} 01^{\prime \prime}$
34. $62^{\circ} 0^{\prime} 59^{\prime \prime}$

Find two positive angles and two negative angles that are coterminal with the angle given. Answers may vary.
35. $\theta=75^{\circ}$
36. $\theta=225^{\circ}$
37. $\theta=-45^{\circ}$
38. $\theta=-60^{\circ}$

Find the coterminal angle whose measure is between -180° and 180°.
39. $\theta=425^{\circ}$
40. $\theta=495^{\circ}$
41. $\theta=590^{\circ}$
42. $\theta=645^{\circ}$
43. $\theta=800^{\circ}$
44. $\theta=1140^{\circ}$

Given a 45-45-90 triangle with the stated measure(s), find the length of the unknown side(s) in exact form.
45. The legs measure 5 cm .
46. The legs measure 3 m .
47. The hypotenuse measures $6 \sqrt{2} \mathrm{ft}$.
48. The hypotenuse measures $7 \sqrt{2}$ in.
49. The legs measure $5 \sqrt{2} \mathrm{~mm}$.
50. The legs measure $3 \sqrt{2}$ in.
51. The hypotenuse measures 8 yd.
52. The hypotenuse measures 4 cm .

Given a 30-60-90 triangle with the stated

 measure(s), find the length of the unknown sides.53. The shorter leg measures 3 mm .
54. The shorter leg measures 9 ft .
55. The hypotenuse measures 7 in .
56. The hypotenuse measures 5 m .
57. The longer leg measures 6 cm .
58. The longer leg measures 9 mi .

Solve using special triangles. Answer in both exact and approximate form.
59. Special triangles: A
ladder-truck arrives at a high-rise apartment complex where a fire has broken out. If the maximum length the ladder extends is 82 ft and the angle of inclination is 45°, how high up the side
 of the building does the ladder reach? Assume the ladder is mounted atop a 10 ft high truck.
60. Special triangles: A heavy-duty ramp is used to winch heavy appliances from street level up to a warehouse loading
 dock. If the ramp is 7.5 ft high and the incline is 15 ft long, (a) what angle α does the dock make with the street? (b) How long is the base of the ramp?

WORKING WITH FORMULAS

61. Converting from DMS to decimal degrees:
$\theta=\frac{3600 D+60 M+S}{3600}$
Convert $67^{\circ} 33^{\prime} 18^{\prime \prime}$ to decimal degrees using the formula shown. Compare your result to Exercise 13.
62. The unique coterminal angle in $\left[0^{\circ}, 360^{\circ}\right)$:
$\alpha=\mathbf{3 6 0}\left[\frac{\beta}{\mathbf{3 6 0}}-\operatorname{int}\left(\frac{\beta}{\mathbf{3 6 0}}\right)\right]$
For any positive angle β, the formula shown gives the unique coterminal angle $\alpha \in\left[0^{\circ}, 360^{\circ}\right.$), where $\operatorname{int}\left(\frac{\beta}{360}\right)$ is the integer part of $\frac{\beta}{360}$. Use the formula to find the angle in $\left[0^{\circ}, 360^{\circ}\right.$) that is coterminal with 1140°. Compare your result to Exercise 44.
63. Area of $30-60-90$ triangle: $A=\frac{\sqrt{3} s^{2}}{2}$

The area of a 30-60-90 triangle can be found using only s, the length of the shorter leg. Compute the area of a 30-60-90 triangle given its hypotenuse measures 10 cm . Verify your result using the familiar formula $A=\frac{1}{2} \times$ base \times height.
64. Area of 45-45-90 triangle: $A=\frac{h^{2}}{4}$

The area of a 45-45-90 triangle can be found using only h, the length of the hypotenuse. Compute the area of a 45-45-90 triangle given its hypotenuse measures 10 cm . Verify your result using the familiar formula $A=\frac{1}{2} \times$ base \times height.

APPLICATIONS

65. Fly-swatting: A Musca domestica (common housefly) has been annoying Paula all afternoon and finally landed atop a table. Carefully, she raised her flyswatter and inclined it 34° from vertical, toward the pest (see figure).
a. How many degrees must the flyswatter pass through before it is horizontal?
b. If she covers 8° of the remaining angle in 0.1 sec , how long will it take for the swatter to strike the table? (The pesky fly escaped!)
66. Orthopedic surgery: A physical therapist uses a goniometer to measure the range of motion in Javier's knee after an anterior cruciate ligament (ACL) reconstruction. Javi can bend his knee through 132°, but his therapist wants him to acquire a full 180° range of motion.
a. How many degrees of motion does Javi have to recover?
b. If Javi can recover 4° per week, how long will the rehabilitation take?
67. Global positioning system: A handheld GPS receiver deciphers information from the U.S. Air Force 50th Space Wing's Navstar system of satellites. The GPS device uses software to convert latitude and longitude readings from decimal notation to DMS notation, which it then displays. Convert the coordinates $35.5575^{\circ} \mathrm{S}, 58.055^{\circ} \mathrm{W}$ to DMS form.
68. Geocaching: Handheld GPS recievers are used in the outdoor "treasure"-hunting game of geocaching. After Donovan inputs a geocache's coordinates in DMS form, software converts them to decimal form. Convert the coordinates $38^{\circ} 37^{\prime} 25^{\prime \prime} \mathrm{N}, 90^{\circ} 11^{\prime} 38^{\prime \prime} \mathrm{W}$ to decimal form. Round to four decimal places.
69. Wakeboarding: In 1999, Parks Bonifay became the first wakeboarder to land a documented 1080° spin in the air. In 2006, Danny Harf collected a $\$ 1080$ reward when he became the second to do so. In 2008, Harf went bigger when he landed a documented 1260°. Were the angles of Harf's two spins coterminal? Find the two smallest, positive spins (angles) coterminal to Harf's 1260°.
70. Game shows: Many game shows use large segmented wheels that contestants must spin during play. All require the wheel to make one complete revolution for the spin to be valid. If the segment for a trip to Hawaii occurs -135° of the prize indicator, find two positive spins (angles) that will send a contestant to the Aloha state. Answers may vary.

On topographical maps, each closed figure represents a fixed elevation (a vertical change) according to a given contour interval. The measured distance on the map from point A to point B indicates the horizontal distance or the horizontal change between point A and a location directly beneath point B, according to a given scale of distances.

Exercise 71 and 72

71. Special triangles: In the figure shown, the contour interval is 1:250 (each figure indicates a change of 250 m in elevation) and the scale of distances is $1 \mathrm{~cm}=625 \mathrm{~m}$. (a) Find the change of elevation from A to B; (b) use a proportion to find the horizontal distance between points A and B if the measured distance on the map is 1.6 cm ; and

Exercise 71
 (c) Draw the corresponding right triangle and use a special triangle relationship to find the length of the trail up the mountain side that connects A and B.
72. Special triangles:

As part of park maintenance, the 2 by 4 handrail alongside a mountain trail leading to the summit of Mount Marilyn must be replaced. In the figure, the contour interval is 1:200

Exercise 72

(each figure
indicates a change of 200 m in elevation) and the scale of distances is $1 \mathrm{~cm}=400 \mathrm{~m}$. (a) Find the change of elevation from A to B; (b) use a proportion to find the horizontal distance between A and B if the measured distance on the map is 4.33 cm ; and (c) draw the corresponding right triangle and use a special triangle relationship to find the length needed to replace the handrail (recall that $\sqrt{3} \approx 1.732$).
73. Special triangles: Two light planes are flying in formation at 100 mph , doing some reconnaissance work. At a designated instant, one pilot breaks to the left at an angle of 90° to the other plane. Assuming they keep the same altitude and continue to fly at 100 mph , use a special triangle to find the distance between them after 0.5 hr .
74. Special triangles: Two ships are cruising together on the open ocean at 10 nautical miles per hour. One of them turns to make a 90° angle with the first and increases speed, heading for port. Assuming the first ship continues traveling at 10 knots, use a special triangle to find the speed of the other ship if they are 20 mi apart after 1 hr .

EXTENDING THE CONCEPT

75. The figure shown is made up of three 30-60-90 triangles. Use your knowledge of this special triangle and the Pythagorean theorem to find the exact distance from B to E.
76. Ancient geometers knew that a hexagon (six sides) could be inscribed in a circle by laying out six

consecutive chords equal in length to the radius ($r=10 \mathrm{~cm}$ for illustration). After connecting the diagonals of the hexagon, six equilateral triangles are formed with sides of 10 cm . Use the diagram given to
 develop the fixed ratios for the sides of a 30-60-90 triangle. (Hint: Use a perpendicular bisector.)

1.2 Properties of Triangles; Similar Triangles

Learning Objectives

In Section 1.2 you will learn how to:

A. Recognize and classify different types of triangles
B. Analyze triangles using their common propertiesC. Solve applications using similar triangles

During the period 2000-1600 B.C., the ancient Mesopotamians developed much of the algebra and geometry we take for granted today. In addition, there is a great deal of evidence they understood right triangles and the Pythagorean theorem more than a thousand years before the birth of Pythagoras. In this section, we extend our study of triangles by including additional properties used to identify and classify other triangles. We will also introduce some of the fundamental triangle relationships used to solve applications.

A. Triangle Classifications

In Section 1.1, we defined three types of angles: right, acute, and obtuse. These same classifications can be applied to triangles as well. We have already been introduced to two special triangles, the 45-45-90 and 30-60-90 right triangles (so called because of the 90° angle). Similarly, an acute triangle contains three acute angles [Figure 1.11(a)], while an obtuse triangle will have exactly one obtuse angle [Figure 1.11(b)].

Figure 1.11

In addition to classifying triangles based on angle size, we can classify them based on their side length. A triangle with three sides of equal length is an equilateral triangle. In Figure 1.12(a), a single mark through each side indicates all three sides have equal length. An isosceles triangle has two sides of equal length [Figure 1.12(b)], while no two sides of a scalene triangle are of the same length [Figure 1.12(c)].

Figure 1.12

Using these classifications, we note the triangle in Figure 1.12(d) is both right and isosceles, while the triangle in Figure 1.12(b) is both isosceles and acute. In Exercise 76, you will be asked to show that any equilateral triangle must have three equal acute angles.

EXAMPLE 1 Classifying Triangles Based on Angles and Sides

Match each of the triangles shown to its correct description below. Note there are more descriptions than triangles.
a.

b.

i. acute and scalene
ii. acute and isosceles
iv. right and scalene
v. right and isosceles
vii. obtuse and isosceles
c.

iii. acute and equilateral

Solution a. The triangle is a right triangle, determined by the " \urcorner " symbol. Since no two sides have equal length, the correct description is iv, right and scalene.
b. By inspection, the top angle of the triangle is obtuse. The single mark through two sides indicates they have equal length, so the correct description is vii, obtuse and isosceles.
(A. You've just learned how to recognize and classify different types of triangles
c. By careful observation, all three angles are acute. The side marks indicate all three sides are of unequal length, and the correct description of this triangle is i, acute and scalene.

Now try Exercises 7 through 14

B. Analytical Properties of Triangles

As mentioned previously, a triangle is a closed plane figure with three straight sides and three angles. It is customary to name each angle using a capital letter and the side opposite the angle using the corresponding lowercase letter. Regardless of their size or orientation, triangles have the following properties.

Properties of Triangles

Given triangle $A B C$ with sides a, b, and c, respectively,
I. The sum of the angles is 180° :
$A+B+C=180^{\circ}$
II. The combined length of any two sides exceeds that of the third side:
$a+b>c, a+c>b$, and $b+c>a$.

III. Larger angles are opposite larger sides:

If $C>B$, then $c>b$.

EXAMPLE 2 Finding the Unknown Angle Measures of a Triangle

Use the analytical properties of a triangle to find the measure of each angle shown.

Solution From Property I, we know the three angles must sum to 180°, and we work as follows:

$$
\begin{array}{rlrl}
A+B+C & =180^{\circ} & \text { by Property I } \\
2 \alpha+6 \alpha+4 \alpha & =180^{\circ} & & \text { substitute } 2 \alpha \text { for } A, 6 \alpha \text { for } B \text {, and } 4 \alpha \text { for } C \\
12 \alpha & =180^{\circ} & & \text { combine terms } \\
\alpha & =15^{\circ} & & \text { divide by } 12
\end{array}
$$

Using $\alpha=15^{\circ}$, back-substitution shows

$$
\begin{aligned}
A & =2 \alpha & B & =6 \alpha \\
& =2\left(15^{\circ}\right) & & =6\left(15^{\circ}\right) \\
& =30^{\circ} & & =90^{\circ}
\end{aligned}
$$

and we see the triangle is actually a 30-60-90 right triangle.

Now try Exercises 15 through 34

EXAMPLE 3 Using Side/Angle Relationships

The three sides of a given triangle are $a=156 \mathrm{~cm}, b=131 \mathrm{~cm}$, and $c=147 \mathrm{~cm}$. Two of the angles measure 51° and 61°.
a. Find the measure of the third angle.
b. Name each angle using the correct corresponding capital letter.

Solution a. As in Example 2, the sum of the angles must be 180°.

$$
\begin{aligned}
\angle 1+\angle 2+\angle 3 & =180^{\circ} & & \text { by Property I } \\
\angle 3 & =180^{\circ}-\angle 1-\angle 2 & & \text { subtract } \angle 1 \text { and } \angle 2 \\
& =180^{\circ}-51^{\circ}-61^{\circ} & & \text { substitute } 51^{\circ} \text { for } \angle 1,61^{\circ} \text { for } \angle 2 \\
& =68^{\circ} & & \text { simplify }
\end{aligned}
$$

The third angle measures 68°.
b. Property III states that larger angles are opposite larger sides. This implies the largest angle will be opposite the largest side, the smallest angle will be opposite the smallest side, and so on.
B. You've just learned how to analyze triangles using their common properties

$$
\begin{array}{ll}
A=68^{\circ} & \text { largest side is } a=156 \mathrm{~cm} \text {; largest angle is } 68^{\circ} \\
B=51^{\circ} & \text { smallest side is } b=131 \mathrm{~cm} \text {; smallest angle is } 51^{\circ} \\
C=61^{\circ} & \text { remaining angle }
\end{array}
$$

C. Similar Triangles

Two triangles are similar triangles if corresponding angles are equal, meaning for $\triangle A B C$ and $\triangle D E F, A=D, B=E$, and $C=F$. Since antiquity it's been known that if two triangles are similar, corresponding sides are proportional (corresponding sides are those opposite the equal angles from each triangle). This relationship, used extensively by the engineers of virtually all ancient civilizations, is very important to our study of trigonometry. Example 4 illustrates how proportions and similar triangles are often used.

EXAMPLE $4>$ Using Similar Triangles to Find Heights

To estimate the height of a flagpole, Carrie reasons that $\triangle A B C$ formed by her height and shadow must be similar to $\triangle D E F$ formed by the flagpole. She is 5 ft 6 in . tall and casts an 8 - ft shadow, while the shadow of the flagpole measures 44 ft . How tall is the pole?

Solution $>$ Let H represent the height of the flagpole.

$$
\begin{aligned}
\frac{\text { Height }}{\text { Shadow Length }}: \frac{5.5}{8} & =\frac{H}{44} & & \text { original proport } \\
8 H & =242 & & \text { cross multiply } \\
H & =30.25 & & \text { result }
\end{aligned}
$$

The flagpole is $30 \frac{1}{4} \mathrm{ft}$ tall (30 ft 3 in .).
Now try Exercises 49 through 52

In Example 4, Carrie reasoned that the triangles formed by her shadow and the shadow of the flagpole were similar (assuming the ground was horizontal), and both she and the flagpole were perfectly vertical. As here, many applications use similar triangles that naturally have the same orientation. However, having the same orientation is not a requirement for similarity, only that the three corresponding angles are equal. Consider Example 5.

EXAMPLE $5>$ Finding Unknown Sides of Similar Triangles

Use properties of similar triangles to find the lengths of all three sides of the smaller triangle.

Solution - Since both have a 90° angle and the same angle θ, the third angle in both must be $90^{\circ}-\theta$ and the triangles are similar. While both triangles have a side of length 6 , we note 6 is the hypotenuse of the smaller triangle but a leg of the larger, and the triangles are oriented differently. This means we must take great care in setting up the proportion.
\square
C. You've just learned how to solve applications using similar triangles

$$
\begin{aligned}
\frac{\text { Side Opposite } \theta}{\text { Hypotenuse }}: \frac{x+1}{6} & =\frac{6}{3 x} & & \text { proportion due to similarity } \\
3 x(x+1) & =6(6) & & \text { cross multiply } \\
3 x^{2}+3 x & =36 & & \text { distribute } \\
3 x^{2}+3 x-36 & =0 & & \text { subtract } 36 \\
3\left(x^{2}+x-12\right) & =0 & & \text { factor GCF }=3 \\
3(x-3)(x+4) & =0 & & \text { factor trinomial } \\
x=3 \text { or } x & =-4 & & \text { zero factor property }
\end{aligned}
$$

We discard $x=-4$ as a possibility, since this value would yield negative lengths in both triangles. For $x=3$, we find the hypotenuse of the larger triangle measures $3(3)=9 \mathrm{~m}$, while one of the legs of the smaller triangle measures $3+1=4 \mathrm{~m}$. We can now use the Pythagorean theorem to find the length of the remaining leg of the smaller triangle.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean theorem } \\
4^{2}+b^{2} & =6^{2} & & \text { substitute } 4 \text { for } a, 6 \text { for } c \\
b^{2} & =36-16 & & \text { subtract } 4^{2}=16 \\
& =20 & & \text { simplify } \\
b & =\sqrt{20} & & \text { solve for } b(b>0) \\
& =2 \sqrt{5} & & \text { simplify }
\end{aligned}
$$

Now try Exercises 53 through 64

1.2 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. Triangles can be classified based on their angles or
\qquad , . T , and \qquad
2. The classifications of triangles based on side lengths are \qquad , \qquad , and \qquad An equilateral triangle is always \qquad —.
3. When labeling triangles, we usually name angles with \qquad letters and \qquad sides with corresponding \qquad letters.
4. The combined length of any \qquad of a triangle must exceed the length of the \qquad side.
5. Discuss/Explain why Property III of triangles implies that the middle-sized angle must be opposite the middle-sized side. Give a specific example.
6. Discuss/Explain how Section 1.1's treatment of the 45-45-90 and 30-60-90 triangles laid the foundation for a discussion of similar triangles.

DEVELOPING YOUR SKILLS

For Exercises 7-14, match each description with the appropriate choice a-h.
7. acute and scalene
8. right and scalene
9. obtuse and isosceles
10. acute and equilateral
11. obtuse and scalene
12. acute and isosceles
13. right and isosceles

14. obtuse and equilateral
b.

c.

d.

e.

f.

g.

h. Not possible
18. $\angle B$

Find the measure of angle C, for each triangle $A B C$ as described.
19. $A=67^{\circ}, B=88^{\circ}$
20. $A=13^{\circ}, B=59^{\circ}$
21. $A=23.1^{\circ}, B=91.4^{\circ}$
22. $A=37.3^{\circ}, B=55.8^{\circ}$
23. $A=98^{\circ} 35^{\prime}, B=43^{\circ} 15^{\prime}$
24. $A=9^{\circ} 36^{\prime}, B=68^{\circ} 21^{\prime}$
25. $A=44^{\circ} 32^{\prime} 18^{\prime \prime}, B=92^{\circ} 5^{\prime} 51^{\prime \prime}$
26. $A=71^{\circ} 35^{\prime} 44^{\prime \prime}, B=57^{\circ} 41^{\prime} 10^{\prime \prime}$

Use properties of triangles to find the actual measure of each angle in triangle $A B C$.
27. $A=(3 x-3)^{\circ}, B=93^{\circ}, C=6 x^{\circ}$
28. $A=3 x^{\circ}, B=(5 x-3)^{\circ}, C=47^{\circ}$
29. $A=51 y^{\circ}, B=7 y^{\circ}, C=32 y^{\circ}$
30. $A=3 y^{\circ}, B=4 y^{\circ}, C=(9 y+4)^{\circ}$

Use the figure shown and information given to find the measure of all three angles in $\triangle A B C$ for the relationships given.

31. $\theta=129^{\circ}, B=(6 x-1)^{\circ}$ and $C=(8 x+4)^{\circ}$
32. $\theta=134^{\circ}, B=7 x^{\circ}$ and $C=(12 x+1)^{\circ}$
33. $\theta=(4 x+10)^{\circ}, B=(2 x+10)^{\circ}$ and $C=72^{\circ}$
34. $\theta=(3 x+8)^{\circ}, B=92^{\circ}$ and $C=(x+8)^{\circ}$

In Exercises 35-46, three sides and two angles are given. (a) Find the measure of the third angle, and (b) name each angle or side using the correct corresponding lowercase or uppercase letter.
35. sides: $a=182 \mathrm{mi}, b=206 \mathrm{mi}, c=122 \mathrm{mi}$ angles: 83° and 36°
36. sides: $a=391 \mathrm{~km}, b=268 \mathrm{~km}, c=373 \mathrm{~km}$ angles: 41° and 73°
37. sides: $a=3.2 \mathrm{ft}, b=4.8 \mathrm{ft}, c=3.2 \mathrm{ft}$ angles: 98° and 41°
38. sides: $a=1.9 \mathrm{~m}, b=1.6 \mathrm{~m}, c=1.6 \mathrm{~m}$ angles: 54° and 72°
39. sides: $a=2 \sqrt{3} \mathrm{~cm}, b=4 \mathrm{~cm}, c=2 \mathrm{~cm}$ angles: 30° and 60°
40. sides: $a=\sqrt{3}+1$ in., $b=\sqrt{3}-1$ in., $c=2 \sqrt{2} \mathrm{in}$.
angles: 15° and 90°
41. angles: $A=57^{\circ}, B=38^{\circ}, C=$ third angle sides: $121 \mathrm{dm}, 144 \mathrm{dm}, 89 \mathrm{dm}$
42. angles: $A=37^{\circ}, B=102^{\circ}, C=$ third angle sides: 265 yd, $178 \mathrm{yd}, 163 \mathrm{yd}$
43. angles: $A=104^{\circ}, B=38^{\circ}, C=$ third angle sides: $4.7 \mathrm{ft}, 7.4 \mathrm{ft}, 4.7 \mathrm{ft}$
44. angles: $A=38^{\circ}, B=71^{\circ}, C=$ third angle sides: $13.6 \mathrm{~km}, 13.6 \mathrm{~km}, 8.9 \mathrm{~km}$
45. angles: $A=90^{\circ}, B=75^{\circ}, C=$ third angle sides: $\sqrt{3}+1$ in., $2 \sqrt{2}$ in., $\sqrt{3}-1$ in.
46. angles: $A=30^{\circ}, B=90^{\circ}, C=$ third angle sides: $10 \mathrm{~mm}, 10 \sqrt{3} \mathrm{~mm}, 20 \mathrm{~mm}$
47. Is the triangle shown possible? Why/why not?

48. Is the triangle below possible? Why/why not?

49. Similar triangles: A helicopter is hovering over a crowd of people watching a police standoff in a parking garage across the street. Stewart notices the shadow of the helicopter is lagging approximately 50 m behind a point directly below the helicopter. If he is 2 m tall and casts a shadow of 1.6 m at this time, what is the altitude of the helicopter?
50. Similar triangles: Near Fort Macloud, Alberta (Canada), there is a famous cliff known as Head Smashed in Buffalo Jump. The area is now a Canadian National Park, but at one time the Native Americans hunted buffalo by steering a part of the herd over the cliff. While visiting the park late one afternoon, Denise notices that its shadow reaches 201 ft from the foot of the cliff, at the same time she is casting a shadow of $12^{\prime} 1^{\prime \prime}$. If Denise is $5^{\prime} 4^{\prime \prime}$ tall, what is the height of the cliff?
51. Similar triangles: On a recent trip, Jorgelina visited the Mayan ruins of Chichen Itza on the Yucatan Peninsula (Mexico). During the Spring Equinox, the Temple of Kukulkan casts a serpent-like shadow, which appears to slither down the northern staircase. After a few
 minutes of quiet appreciation, she observes that the pyramid casts a $40-\mathrm{m}$ shadow while her shadow measured 2.2 m . If Jorgelina is 1.65 m tall, what is the height of the temple?
52. Similar triangles: The Osage Beach Fire Department is engaged in a firefight at a local marina. The shadow of the burning boat storage structure is 25 m long. At the same moment, the 3-m-high engine cast a shadow that was 5 m long. Assuming the ground is level, how tall is the structure?

Use properties of similar triangles to find the length of the missing side.

53. $b=6 \mathrm{~m}, e=18 \mathrm{~m}, f=33 \mathrm{~m}, c=$?
54. $c=3 \mathrm{ft}, d=16 \mathrm{ft}, f=6 \mathrm{ft}, a=$?
55. $a=3$ in., $b=10$ in., $e=6$ in., $d=$?
56. $a=12 \mathrm{ft}, c=5 \mathrm{ft}, d=16 \mathrm{ft}, f=$?
57. $a=\frac{5}{3}$ in., $b=\frac{1}{5}$ in., $d=\frac{20}{3}$ in. $e=$?
58. $b=\frac{2}{7} \mathrm{~cm}, c=\frac{3}{4} \mathrm{~cm}, e=\frac{4}{35} \mathrm{~cm}, f=$?

Use properties of similar triangles to find the value of x and the length of the sides involving x. Note the figures are not to scale.

59. $a=x, c=18 \mathrm{~m}, f=2 \mathrm{~m}, g=x$
60. $b=x, c=15 \mathrm{yd}, e=\frac{20}{3} \mathrm{yd}, g=x$
61. $a=4 x, b=14 \mathrm{ft}, e=x+1, f=12 \mathrm{ft}$
62. $a=5$ in., $b=x+4, e=18$ in., $f=2 x$
63. $a=x-1, b=2 x, e=6 x, f=2 x-1$
64. $a=3 x, b=4 x-3, e=2 x-2, f=x+1$

WORKING WITH FORMULAS

65. Relationships in a right triangle:
$h=\frac{a b}{c}, m=\frac{b^{2}}{c}$, and $n=\frac{a^{2}}{c}$
Given $\angle C$ is a right angle, and h is the altitude of $\triangle A B C$, then h, m, and n can all be expressed directly in terms of a, b, and c by the
 relationships shown here. Compute the value of h, m, and n for a right triangle with sides of 8,15 , and 17 cm .
66. The height of an equilateral triangle: $H=\frac{\sqrt{3}}{2} S$

Given an equilateral triangle with sides of length S, the height of the triangle is given by the formula shown. Once the height is known the area of the triangle can easily be found (also see Exercise 65). The Gateway Arch in St. Louis, Missouri, is actually composed of stainless steel sections that are equilateral triangles. At the base of the arch the length of the sides is 54 ft . The smallest cross section at the top of the arch has sides of 17 ft . Find the area of these cross sections.

APPLICATIONS

67. Building height: An alternative method for measuring the height of a building is known as the stadia method. One version of this method relies on a special scope known as a stadimeter. At 100 m from the building, the surveyor adjusts the scope until a reference line appears exactly as tall as the building and the properties of similar triangles can be applied. If the reference line is 12 mm tall and 57 mm from the surveyor's eye, how tall is the building (to the nearest meter)?

Exercise 67

68. Tank warfare: In the early days of modern warfare, the stadia method was commonly applied, as similar triangles could be used to determine the distance to a target (for the artillery). Using a stadiametric range-finding scope, a $2.7-\mathrm{m}$-tall enemy tank appears to be 1.2 cm tall (see figure). If the length of the scope is 56 cm , what is the horizontal distance to the tank?

69. Washington Monument: The reflecting pool that lies between the Washington Monument and the Lincoln Memorial in Washington, D.C., is one of the most famous in the world. Kiaro is visiting the nation's capitol, and decides to use his handheld GPS receiver, the reflecting pool, and similar triangles to estimate the height of this obelisk. Using the diagram shown, help Kiaro determine this height (to the nearest foot).

70. Height of the Taj Majal: Another famous reflecting pool (see Exercise 69) lies in front of the Taj Majal in Agra, India. Gianni is visiting this famous mausoleum, and decides to use the pool and similar triangles to estimate the height of the central dome. Using the diagram shown, help Gianni determine this height (to the nearest meter).

71. Automotive design: Before a new car becomes reality, several scale models are built out of clay. On one particular model, a triangular tail light measures 5.3 cm wide by 5.9 cm tall. If the actual tail light is to measure 16.9 cm wide, how tall will it be (to the nearest tenth)?
72. Experimental aircraft: On November 16, 2004, the NASA experimental aircraft X-43A used scramjet technology to set a world speed record of Mach 9.6 (nearly 7000 mph). The aircraft is roughly triangular in shape and measures 144 in . long by 60 in . wide at its tail. If the next generation of scramjet-powered aircraft is a similar triangle based on this same design, but will measure 150 in . wide at the tail, how long will it be?

73. Navigation: The mysteries of the Bermuda Triangle are well known to ships and their crew. The vertices of the triangle are located near Miami (Florida), San Juan (Puerto Rico), and of course, the island of Bermuda. The captain of a salvage operation has this region marked on her navigational map. On this map, the measured distance from Miami to San Juan is 20.75 cm , and the distance from San Juan to Bermuda is 19.2 cm . If the actual distance from Miami to San Juan is 1037 mi, use similar triangles to determine the distance from San Juan to Bermuda (to the nearest mile).
74. Architecture: The construction of the world's first spaceport is currently planned for just outside of Dubai, in the United Arab Emirates. The American developer, Space Adventures, is considering a design that calls for a runway system and adjoining terminals that are similar triangles. Referring to the illustration, how long will the main runway be?

EXTENDING THE CONCEPT

75. Discuss why the other two angles of a right triangle must be acute.
76. The third property of triangles states that larger angles are opposite larger sides. As a result, we find equal length sides are opposite angles with equal measures. Use this relationship to show that all equilateral triangles are acute triangles.
77. Recall that a triangle is a closed plane figure with three sides. Using a ruler, try to draw a triangle that does not satisfy triangle Property II: the combined length of two sides must exceed the length of the third side. Begin by drawing the base of the triangle 6 cm long. On both sides of this base, carefully draw the two other sides, while attempting to keep their combined length at 6 cm or less. What do you notice?

MAINTAINING YOUR SKILLS

78. (1.1) Convert $35^{\circ} 15^{\prime} 36^{\prime \prime}$ from DMS notation to decimal degrees.
79. (1.1) Convert 84.275° from decimal degrees to DMS notation.
80. (1.1) Find the complement of $61^{\circ} 36^{\prime} 51^{\prime \prime}$.
81. (1.1) Find an angle in $\left[0^{\circ}, 360^{\circ}\right)$ that is coterminal with -433°.
82. (1.1) Given the longer leg of a 30-60-90 triangle measures 10 ft , find the length of the hypotenuse.
83. (1.1) The hypotenuse of a 45-45-90 triangle measures 5 cm . How long is each leg?

MID-CHAPTER CHECK

1. The city of Las Vegas, Nevada, is located at $36^{\circ} 06^{\prime} 36^{\prime \prime}$ north latitude, $115^{\circ} 04^{\prime} 48^{\prime \prime}$ west longitude. Convert both measures to decimal degrees.
2. Use a special triangle relationship to find the lengths of the remaining sides of the triangle shown.

Exercise 2

3. Name one positive angle and one negative angle that are coterminal with the angles given. Answers may vary.
a. 18°
b. -107°
4. Find the complement of the angles.
a. 39°
b. 73.7°
c. $54^{\circ} 15^{\prime} 39^{\prime \prime}$
d. x
5. A triangle has sides of $95 \mathrm{~mm}, 100 \mathrm{~mm}$, and 90 mm . Its angles (in random order) measure 65°, 55°, and 60°. If the sides are named a, b, and c, respectively, what are the measures of angles B and C ?
6. An absent-minded painter leaned her 6 -ft roller at a 45° angle against a freshly painted wall. Needless to say, it left a mark at the point of contact. How high above the floor was this mark?
7. In triangle $R S T, R=(4 x-7)^{\circ}, S=(15 x+6)^{\circ}$, and $T=(7 x-1)^{\circ}$. Find the measure of each angle.
8. A jeweler is making a triangular amulet out of three gold rods. If the first two rods measure 10 mm and

14 mm , what must be the minimum length (to the nearest 0.1 mm) of the third rod to ensure that a triangle is formed?
9. Use the properties of similar triangles to find the value of x from the diagram given.

Exercise 9

10. The headsail and mainsail of a new sloop are similar right triangles. The base of the mainsail measures 10.3 ft , and its height is 15.8 ft . If the height of the headsail is 13.2 ft , how long is its base (to the nearest tenth of a foot)?

REINFORCING BASIC CONCEPTS

More on Special Triangles

Many fine buildings and roadways have been constructed using a "carpenters' (right) triangle" with sides having a 3-4-5 ratio. In fact, any three numbers that satisfy the Pythagorean theorem (known as Pythagorean triples) also form a right triangle. Unfortunately, the acute angles in these triangles cannot be expressed in exact form (for a 3-4-5 triangle, the acute angles are approximately 36.87° and 53.13°), and perhaps we begin to appreciate just how "special" the 30-60-90 and 45-45-90 triangles are. It then seems natural to wonder whether there are any other special triangles, with angles and sides that can be expressed in exact form.

It turns out that there are many such triangles, but the expressions for the side lengths become somewhat complex. For now, we'll turn our attention to a 15-75-90 triangle, as this triangle can be constructed with a clever diagram involving both 30-60-90 and 45-45-90 triangles. We begin by drawing a 30-60-90 triangle with the right angle at the bottom, inclined 45° from the horizontal (Figure 1.13). For the sake of generality, we will use the side lengths without units of measure.

Next, inscribe this triangle in the smallest rectangle possible and note the angle measure of the three new triangles formed (Figure 1.14). The new triangles beneath the 30-60-90 triangle are 45-45-90 triangles while the triangle above is a 15-75-90 triangle. Now we carefully label the legs of the 45-45-90 triangles using the unknowns x and $y(x>y)$, noting that the longer leg of the 15-75-90 triangle

Figure 1.13

Figure 1.14

becomes $x+y$, with the shorter leg measuring $x-y$ (see Figure 1.15).

To find expressions for the sides of the 15-75-90 triangle, we must first determine the value of x and y. For the 45-45-90 triangles, we know the hypotenuse is $\sqrt{2}$ times the length of a side, giving

$$
\begin{aligned}
c & =\sqrt{2} a & & 45-45-90 \text { triangle property (3) } \\
\sqrt{3} & =\sqrt{2} x & & \text { substitute } \sqrt{3} \text { for } c, x \text { for } a \\
\frac{\sqrt{3}}{\sqrt{2}} & =x & & \text { solve for } x \\
x & =\frac{\sqrt{6}}{2} & & \text { simplify }
\end{aligned}
$$

We can likewise find the value of y :

$$
\begin{aligned}
c & =\sqrt{2} a & & 45-45-90 \text { triangle property (3) } \\
1 & =\sqrt{2} y & & \text { substitute } 1 \text { for } c, y \text { for } a \\
\frac{1}{\sqrt{2}} & =y & & \text { solve for } y \\
y & =\frac{\sqrt{2}}{2} & & \text { simplify }
\end{aligned}
$$

Figure 1.15

Figure 1.16
$\frac{\sqrt{6}+\sqrt{2}}{2}$

Now that we have exact values for x and y, we know the sides of the 15-75-90 triangle must be in the proportion $\frac{\sqrt{6}-\sqrt{2}}{2}: \frac{\sqrt{6}+\sqrt{2}}{2}: 2$ (Figure 1.16). Dividing each expression by 2 (to obtain a hypotenuse of length 1) yields the following result.

15-75-90 Triangles

Given a 15-75-90 triangle with hypotenuse of length x, the relationships between corresponding sides is

$$
\frac{\sqrt{6}-\sqrt{2}}{4} x: \frac{\sqrt{6}+\sqrt{2}}{4} x: 1 x
$$

(1) The shorter leg is $\frac{\sqrt{6}-\sqrt{2}}{4}$ times the length of the hypotenuse: $a=\frac{\sqrt{6}-\sqrt{2}}{4} c$;

(2) The longer leg is $\frac{\sqrt{6}+\sqrt{2}}{4}$ times the length of the hypotenuse: $b=\frac{\sqrt{6}+\sqrt{2}}{4} c$.

Find the length of the indicated side using the information given about the following 15-75-90 triangles.

Exercise 1: $c=8 \mathrm{~cm}, a=$?
Exercise 2: $c=12^{\prime \prime}, b=$?
Exercise 3: $b=5 \mathrm{ft}, c=$?
Exercise 4: $a=7 \mathrm{~m}, c=$?

Exercise 5: $c=\sqrt{6}-\sqrt{2} \mathrm{~mm}, b=$?
Exercise 6: $c=\sqrt{6}+\sqrt{2} \mathrm{yd}, a=$?

1.3 Trigonometry: A View from the Coordinate Plane

Learning Objectives

In Section 1.3 you will learn how to:

A. Define the six trigonometric functions using the coordinates of a point on the terminal side of an angleB. Analyze the signs of the trigonometric functions of an angle based on the quadrant of the terminal sideC. Evaluate the trigonometric functions of quadrantal angles

Figure 1.18

While definitely important and useful, applying properties of similar triangles requires two triangles and at least two side lengths from one of the triangles. Often these minimum requirements are not available and we are forced to search for alternative methods to apply triangle properties. With this goal in mind, we turn our attention to a more detailed study of angles and their properties.

A. Trigonometric Functions and the Point $P(x, y)$

In Section 1.1, our main focus was the measure of an angle. These angles consisted of a fixed ray called the initial side and a rotated ray called the terminal side, with the amount of rotation measured in degrees. In this section, we will graph these same angles in the rectangular coordinate system (Figure 1.17) and look at some new ideas and relationships that are then possible.

Figure 1.17

An angle is said to be in standard position if its vertex is at the origin and the initial side is along the positive x-axis. Both $\angle B A C$ in Figure 1.17 and $\angle D A E$ in Figure 1.18 measure 45°, but only $\angle D A E$ is in standard position.

For any angle in standard position, identifying the terminal side is done simply by naming a point on the terminal side. However, we also note that every such terminal side is coincident with a line that passes through the origin and could alternatively be identified by the equation of this line. The equation of the line must be of the form $y=m x$ and this is almost sufficient for our purpose, but here we need to know which half of this line is coincident with the terminal side.

EXAMPLE 1 Writing the Equation of the Coincident Line

Identify the terminal side of the angle α by writing an equation for the coincident half line.

Solution - Noting the terminal side passes through the point $(2,3)$, we begin by calculating the slope of the line through this point and the origin $(0,0)$.

$$
\begin{array}{rlr}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { slope formula } \\
& =\frac{3-0}{2-0} & \text { substitute }(0,0) \text { for }\left(x_{1}, y_{1}\right) \text { and }(2,3) \text { for }\left(x_{2}, y_{2}\right) \\
& =\frac{3}{2} & \text { simplify }
\end{array}
$$

Since the y-intercept is $(0,0)$, the equation of this line is $y=\frac{3}{2} x$ (from the slopeintercept formula $y=m x+b$). Since the terminal side lies in quadrant I , all the x-values must be nonnegative and the needed half of the coincident line is described by $y=\frac{3}{2} x ; x \in[0, \infty)$.

Now try Exercises 7 through 14

By placing the angle in a coordinate system as in Example 1, the similar triangle limitations mentioned at the beginning of this section can be overcome. To this end, one of the most important observations to be made involves ratios of the x - and y-coordinates of a point on the terminal side of the angle. Largely due to the fact that the slope of a line is constant, these ratios are also constant. See Example 2.

EXAMPLE 2 Evaluating Ratios of the Coordinates of Points

Consider the angle α and the line $y=\frac{3}{2} x$ from Exercise 1 .
a. Find two additional points (other than the origin) on the terminal side of α.
b. Compare the ratios $\frac{y}{x}$ and $\frac{x}{y}$ for both points.

Solution a. From Example 1, we know the point $(2,3)$ is on the terminal side of α. In addition, any point on the terminal side of α is on the line $y=\frac{3}{2} x ; x \in[0, \infty)$, so for ease of calculation, we choose a multiple of 2 for the x-coordinate. Here we chose $x=4$.

$$
\begin{aligned}
y & =\frac{3}{2} x & & \text { original equation } \\
& =\frac{3}{2}(4) & & \text { substitute } 4 \text { for } x \\
& =6 & & \text { simplify }
\end{aligned}
$$

The point $(4,6)$ is also on the terminal side of α.
b. First evaluate the ratio $\frac{y}{x}$:
at the point (2, 3);

$$
\text { at the point }(4,6)
$$

$$
\begin{aligned}
& \frac{y}{x}=\frac{3}{2} \\
& \begin{aligned}
\frac{y}{x} & =\frac{6}{4} \\
& =\frac{3}{2}
\end{aligned}
\end{aligned}
$$

WORTHY OF NOTE

Since the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ lie on the line $y=k x$, we can express them as $\left(x_{1}, k x_{1}\right)$ and $\left(x_{2}, k x_{2}\right)$. The proportion $\frac{y_{1}}{x_{1}}=\frac{y_{2}}{x_{2}}$ then becomes $\frac{k x_{1}}{x_{1}}=\frac{k x_{2}}{x_{2}}$, or simply $k=k$. Similarly, the other five proportions can be verified algebraically.

Note the points yield the same ratio. Now evaluate the ratio $\frac{x}{y}$:

$$
\begin{array}{lr}
\text { at the point }(2,3) ; \quad \text { at the point }(4,6) \\
\frac{x}{y}=\frac{2}{3} & \begin{aligned}
\frac{x}{y} & =\frac{4}{6} \\
& =\frac{2}{3}
\end{aligned}
\end{array}
$$

We find that although different points on the terminal side were chosen, both possible ratios of x and y were equivalent.

Now try Exercises 15 through 24

While the results from Exercise 2 may not be surprising, they are extremely important. Early mathematicians also realized these types of ratios remained constant, independent of the point chosen on the terminal side. By including the distance r from the origin to the point $P(x, y)$, they were able to consider four more ratios that yielded similar results: $\frac{x}{r}, \frac{r}{x}, \frac{y}{r}$, and $\frac{r}{y}$.

In general, assume θ is an arbitrary angle whose terminal side is coincident with the line $y=k x$. Now consider any two points (x_{1}, y_{1}) and (x_{2}, y_{2}) on the terminal side, at corresponding distances r_{1} and r_{2} from the origin (Figure 1.19). Note the distance r can be found using the Pythagorean theorem: $r=\sqrt{x^{2}+y^{2}}$. Because the triangles formed are similar, we have $\frac{y_{1}}{x_{1}}=\frac{y_{2}}{x_{2}}, \frac{x_{1}}{r_{1}}=\frac{x_{2}}{r_{2}}, \frac{y_{1}}{r_{1}}=\frac{y_{2}}{r_{2}}$, and so on, with the six distinct ratios formed remaining constant, regardless of the point chosen. To apply these ratios in context, it

Figure 1.19
 was helpful to give each one a special name. Since the point (x, y) is on the terminal side of angle θ, each ratio depends on θ and we name each ratio as follows:

$$
\text { sine } \theta=\frac{y}{r} \quad \text { cosine } \theta=\frac{x}{r} \quad \text { tangent } \theta=\frac{y}{x}
$$

The reciprocal ratios, for example, $\frac{r}{y}$ instead of $\frac{y}{r}$, also play a significant role in trigonometry, and are likewise given a name:

$$
\text { cosecant } \theta=\frac{r}{y} \quad \text { secant } \theta=\frac{r}{x} \quad \text { cotangent } \theta=\frac{x}{y}
$$

In actual use, each function name is written in abbreviated form as $\sin \theta, \cos \theta$, $\tan \theta, \csc \theta, \sec \theta$, and $\cot \theta$, respectively, and are collectively called the trigonometric functions (or simply the trig functions). Over the course of this study, you will see many connections between this view of trigonometry and the alternative approaches that follow. In summary, we have

Trigonometric Functions of Any Angle

Given $P(x, y)$ is any point on the terminal side of angle θ in standard position, with $r=\sqrt{x^{2}+y^{2}}(r>0)$ the distance from the origin to (x, y). The six trigonometric functions of θ are

$$
\begin{array}{ccc}
\sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} & \tan \theta=\frac{y}{x} \\
& & x \neq 0 \\
\csc \theta=\frac{r}{y} & \sec \theta=\frac{r}{x} & \cot \theta=\frac{x}{y} \\
y \neq 0 & x \neq 0 & y \neq 0
\end{array}
$$

EXAMPLE $3>$ Evaluating Trig Functions Given a Point P

Find the value of the six trigonometric functions given $P(-5,5)$ is on the terminal side of angle θ in standard position.
Solution $>$ For $P(-5,5)$ we have $x<0$ and $y>0$ so the terminal side is in QII. Solving for r yields $r=\sqrt{(-5)^{2}+(5)^{2}}=\sqrt{50}=5 \sqrt{2}$. For $x=-5, y=5$, and $r=5 \sqrt{2}$, we obtain

$$
\begin{aligned}
\sin \theta & =\frac{y}{r}=\frac{5}{5 \sqrt{2}} & \cos \theta & =\frac{x}{r}=\frac{-5}{5 \sqrt{2}}
\end{aligned} \quad \tan \theta=\frac{y}{x}=\frac{5}{-5}
$$

The remaining functions can be evaluated using reciprocals.

$$
\csc \theta=\frac{2}{\sqrt{2}}=\sqrt{2} \quad \sec \theta=-\frac{2}{\sqrt{2}}=-\sqrt{2} \quad \cot \theta=-1
$$

Now try Exercises 25 through 40

EXAMPLE $4>$ Evaluating Trig Functions Given the Terminal Side Is on $y=m x$
Given that $P(x, y)$ is a point on the terminal side of angle θ in standard position, find the value of $\sin \theta$ and $\cos \theta$, if
a. The terminal side is in QII and coincident with the line $y=-\frac{12}{5} x$,
b. The terminal side is in QIV and coincident with the line $y=-\frac{12}{5} x$.

Solution
a. Select any convenient point in QII that satisfies this equation. We select $x=-5$ since x is negative in QII, which gives $y=12$ and the point $(-5,12)$. Solving for r gives $r=\sqrt{(-5)^{2}+(12)^{2}}=13$. The ratios are

$$
\sin \theta=\frac{y}{r}=\frac{12}{13} \quad \cos \theta=\frac{x}{r}=\frac{-5}{13}
$$

b. In QIV we select $x=10$ since x is positive in QIV, giving $y=-24$ and the point $(10,-24)$. Solving for r gives $r=\sqrt{(10)^{2}+(-24)^{2}}=26$. The ratios are

$$
\begin{array}{rlrl}
\sin \theta & =\frac{y}{r}=\frac{-24}{26} & \cos \theta & =\frac{x}{r}=\frac{10}{26} \\
& =-\frac{12}{13} & =\frac{5}{13}
\end{array}
$$

In Example 2, note the ratios are the same in QII and QIV except for their sign. We will soon use this observation to great advantage.

B. The Signs of the Trig Functions

Finding the value of each trig function for a given angle depends heavily on the quadrant of the terminal side, since this will dictate the signs for x and y. Students are strongly encouraged to make quadrant and sign observations the first step in any solution process involving the trig functions.

The best way to remember the signs of the trig functions is to keep in mind that sine is associated with y, cosine with x, and tangent with both x and $y(r$ is always positive). In addition, there are several mnemonic devices (memory tools) to assist you. One is to use the first letter of the function that is positive in each quadrant and create a catchy acronym. For instance ASTC \rightarrow All Students Take Classes (see Figure 1.20). Note that a trig function and its reciprocal function will always have the same sign.

Figure 1.20

Quadrant II Sine is positive	All are positive
Tangent is positive	Cosine Quadrant III positive
Quadrant IV	

EXAMPLE 5 - Determining the Quadrant of the Terminal Side of an Angle

Determine the quadrant that contains the terminal side of an angle in standard position, given
a. $\sin \alpha>0$ and $\tan \alpha<0$
b. $\cos \beta<0$ and $\cot \beta>0$

Solution To begin, we recall that sine is associated with y, cosine with x, and tangent with both x and y (r is always positive).
a. (1) With $\sin \alpha>0$, we know $y>0$ and the terminal side of α must lie in QI or QII.
(2) Since $\tan \alpha<0, x$ and y must have opposite signs, indicating the terminal side must lie in QII or QIV.
Since both (1) and (2) must be true, the terminal side of α is in QII.
b. (1) For $\cos \beta<0$, the terminal side of β must lie in QII or QIII.
(2) As reciprocal functions, tangent and cotangent will share the same sign. This means that for $\cot \beta>0$, the terminal side lies in QI or QIII (as is true for $\tan \beta>0$).
As in part (a), both conditions (1) and (2) have to be met, so the terminal side of β must be in QIII.

Now try Exercises 45 through 54 -

EXAMPLE 6 Finding Function Values Using a Quadrant and Sign Analysis

Given $\sin \theta=\frac{5}{13}$ and $\cos \theta<0$, find the value of the other ratios.
Solution - Always begin with a quadrant and sign analysis: $\sin \theta$ is positive in QI and QII, while $\cos \theta$ is negative in QII and QIII. Both conditions are satisfied in QII only. For $r=13$ and $y=5$, the Pythagorean theorem shows $x= \pm \sqrt{13^{2}-5^{2}}= \pm \sqrt{144}= \pm 12$. With θ in QII, $x=-12$ and this gives $\cos \theta=\frac{-12}{13}$ and $\tan \theta=\frac{5}{-12}$. The reciprocal values are $\csc \theta=\frac{13}{5}, \sec \theta=\frac{13}{-12}$, and $\cot \theta=\frac{-12}{5}$.

Figure 1.21

C. Quadrantal Angles

Now that we've defined the trig functions in terms of ratios involving x, y, and r, the question arises as to their value when x or y equals 0 . In standard position, the terminal sides of the $90^{\circ}, 180^{\circ}, 270^{\circ}$, and 360° angles coincide with one of the axes and are called quadrantal angles. For 90° and 270°, any point on the terminal side of the angle has an x-value of zero, meaning $\tan 90^{\circ}, \sec 90^{\circ}, \tan 270^{\circ}$, and $\sec 270^{\circ}$ are all undefined since $x=0$ is in the denominator. Similarly, at 180° and 360°, the y-value of any point on the terminal side is zero, so $\cot 180^{\circ}, \csc 180^{\circ}, \cot 360^{\circ}$, and $\csc 360^{\circ}$ are likewise undefined (see Figure 1.21).

EXAMPLE $7>$ Evaluating the Trig Functions for $\boldsymbol{\theta}=90^{\circ} k, k$ an Integer

Evaluate the six trig functions for $\theta=270^{\circ}$.
Solution Here, θ is the quadrantal angle whose terminal side separates QIII and QIV. Since the evaluation is independent of the point chosen on this side, we choose $(0,-1)$ for convenience, giving $r=1$. For $x=0, y=-1$, and $r=1$ we obtain

$$
\sin \theta=\frac{-1}{1}=-1 \quad \cos \theta=\frac{0}{-1}=0 \quad \tan \theta=\frac{-1}{0} \text { (undefined) }
$$

The remaining ratios can be evaluated using reciprocals.

$$
\csc \theta=-1 \quad \sec \theta=\frac{-1}{0}(\text { undefined }) \quad \cot \theta=\frac{0}{-1}=0
$$

Now try Exercises 63 through 72

Results for the quadrantal angles are summarized in Table 1.1.
Table 1.1

$\boldsymbol{\theta}$	$\sin \boldsymbol{\theta}=\frac{\boldsymbol{y}}{\boldsymbol{r}}$	$\cos \boldsymbol{\theta}=\frac{\boldsymbol{x}}{\boldsymbol{r}}$	$\tan \boldsymbol{\theta}=\frac{\boldsymbol{y}}{\boldsymbol{x}}$	$\csc \boldsymbol{\theta}=\frac{\boldsymbol{r}}{\boldsymbol{y}}$	$\sec \boldsymbol{\theta}=\frac{\boldsymbol{r}}{\boldsymbol{x}}$	$\cot \boldsymbol{\theta}=\frac{\boldsymbol{x}}{\boldsymbol{y}}$
$0^{\circ} / 360^{\circ} \rightarrow(1,0)$	0	1	0	undefined	1	undefined
$90^{\circ} \rightarrow(0,1)$	1	0	undefined	1	undefined	0
$180^{\circ} \rightarrow(-1,0)$	0	-1	0	undefined	-1	undefined
$270^{\circ} \rightarrow(0,-1)$	-1	0	undefined	-1	undefined	0

C. You've just learned how to evaluate the trigonometric functions of quadrantal angles

TEOHNOLOCY HHCHRICHT

x, y, r, and Functions of any Angle

Graphing calculators offer a number of features that can assist a study of the trig functions of any angle. On the TI-84 Plus, the keystrokes 2nd APPS (ANGLE) will bring up the menu shown in Figure 1.22. Options 1 through 4 are basically used for angle conversions (DMS degrees to decimal degrees, degrees to radians, and so on). Of interest to us here are options 5 and 6 , which can be used to determine the radius r (option 5) or the angle θ (option 6) related to a given point (x, y). For $(-12,35)$, CLEAR the home screen and press 2nd APPS

Figure 1.22

(ANGLE) 5:R>Pr(, which will place the option on the home screen. This feature supplies the left parenthesis of the ordered pair, and you simply complete it: 5: $\mathrm{R}>\operatorname{Pr}(-12,35)$. As shown in Figure 1.23, the calculator returns 37 , and $(-12)^{2}+(35)^{2}=(37)^{2} \Omega$. To find the related angle, it is assumed that θ is in standard position and (x, y) is on the terminal side. Pressing 2nd APPS (ANGLE) 6:R $\triangleright \mathbf{P} \boldsymbol{\theta}$ (and completing the ordered pair as before, shows the corresponding angle is approximately 108.9° (Figure 1.23). Note this is a QII angle as expected, since $x<0$ and $y>0$. Use these features to complete the following exercises.

Figure 1.23

Exercise 1: Find the radius corresponding to the point $(-5,5 \sqrt{3})$.
Exercise 2: Find the angle corresponding to $(-28,-45)$, then use a calculator to evaluate $\sin \theta, \cos \theta$, and $\tan \theta$ for this angle. Compare each result to the values given by $\sin \theta=\frac{y}{r}, \cos \theta=\frac{x}{r}$ and $\tan \theta=\frac{y}{x}$.

1.3 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. An angle is in standard position if its vertex is at the \qquad and the initial side is along the
\qquad _.
2. $A(n)$ \qquad angle is one where the \qquad side is coincident with one of the coordinate axes.
3. Given angle θ is in standard position with point $P(x, y)$ on its terminal side, the six trig ratios are
\qquad $=\frac{x}{r}$, \qquad $=\frac{y}{r}$, \qquad $=\frac{y}{x}$,
$\sec \theta=$ \qquad , $\csc \theta=$ \qquad , and
$\cot \theta=$ \qquad .

DEVELOPING YOUR SKILLS

Write the equation of the line coincident with the terminal side of a nonquadrantal angle containing the point $P(x, y)$. Include the domain restriction and quadrant of the terminal side.
7. $(12,15)$
8. $(8,-20)$
9. $(-2,-2 \sqrt{3})$
10. $(-3 \sqrt{2}, 6)$
11. $(6.3,-10.5)$
12. $(-9.8,-4.2)$
13. $\left(-\frac{5}{8}, \frac{3}{4}\right)$
14. $\left(\frac{6}{21}, \frac{12}{7}\right)$
4. If the terminal side of an angle in standard position lies in the third quadrant, \qquad and \qquad are the only two trig functions that are positive. The other four are \qquad .
5. Discuss/Explain what is needed to establish the quadrant in which the terminal side of an angle lies. Why are the signs of any two of the three trig functions cosine, sine, and tangent sufficient?
6. Discuss/Explain why there are two possible angles θ in $\left[0,360^{\circ}\right)$ such that $\sin \theta=\frac{2}{5}$. Is this true for $\sin \theta=1$? Explain why or why not.
21. $y=\frac{4}{3} x$; QIII
22. $y=-\frac{3}{5} x$: QIV
23. $2 x+7 y=0$; QIV
24. $4 x-5 y=0$; QIII

Find the value of the six trigonometric functions given $P(x, y)$ is on the terminal side of angle θ, with θ in standard position.
25. $(8,15)$
26. $(7,24)$
27. $(-20,21)$
28. $(-3,-1)$
29. $(7.5,-7.5)$
30. $(9,-9)$
31. $(4 \sqrt{3}, 4)$
32. $(-6,6 \sqrt{3})$
33. $(2,8)$
34. $(6,-15)$
35. $(-3.75,-2.5)$
36. $(6.75,9)$
37. $\left(-\frac{5}{9}, \frac{2}{3}\right)$
38. $\left(\frac{3}{4},-\frac{7}{16}\right)$
39. $\left(\frac{1}{4},-\frac{\sqrt{5}}{2}\right)$
40. $\left(-\frac{\sqrt{3}}{5}, \frac{22}{25}\right)$

Graph each linear equation and state the quadrants it traverses. Then pick one point on the line from each quadrant and evaluate the functions $\sin \theta, \cos \theta$, and $\tan \theta$ using these points.
41. $y=\frac{3}{4} x$
42. $y=\frac{5}{12} x$
43. $y=-\frac{\sqrt{3}}{3} x$
44. $y=-\frac{\sqrt{3}}{2} x$

State the quadrant of the terminal side of θ, using the information given.
45. $\sin \theta>0, \cos \theta<0$
46. $\cos \theta<0, \tan \theta<0$
47. $\tan \theta<0, \sin \theta>0$
48. $\sec \theta>0, \tan \theta>0$

Find the sign of the following expressions, given the terminal side of $\boldsymbol{\theta}$ lies in the quadrant indicated.
49. $\sin \theta \cos \theta$; QIII
50. $\tan \theta \sec \theta ; \mathrm{QII}$
51. $\frac{\cot \theta}{\cos \theta} ;$ QIV
52. $\frac{\csc \theta}{\cot \theta}$; QI
53. $\cos \theta \cdot \frac{\tan \theta}{\sec \theta}$; QII
54. $\sin \theta \cdot \frac{\sec \theta}{\cot \theta}$; QIV

For the information given, find the values of x, y, and r. Clearly indicate the quadrant of the terminal side of θ, then state the values of the six trig functions of $\boldsymbol{\theta}$.
55. $\cos \theta=\frac{4}{5}$ and $\sin \theta<0$
56. $\tan \theta=-\frac{12}{5}$ and $\cos \theta>0$
57. $\csc \theta=-\frac{37}{35}$ and $\tan \theta>0$
58. $\sin \theta=-\frac{20}{29}$ and $\cot \theta<0$
59. $\csc \theta=3$ and $\cos \theta>0$
60. $\csc \theta=-2$ and $\cos \theta>0$
61. $\sin \theta=-\frac{7}{8}$ and $\sec \theta<0$
62. $\cos \theta=\frac{5}{12}$ and $\sin \theta<0$
63. Evaluate the six trig functions in terms of x, y, and r for $\theta=90^{\circ}$.
64. Evaluate the six trig functions in terms of x, y, and r for $\theta=180^{\circ}$.

Without using a calculator or referring to the table on $p .27$, find the value of $\beta \in\left[0^{\circ}, 360^{\circ}\right)$ using the information given.
65. $\cos \beta=0, \sin \beta=1$
66. $\sin \beta=0, \cos \beta=-1$
67. $\tan \beta$ is undefined, $\csc \beta=-1$
68. $\cot \beta=0, \csc \beta=1$
69. $\tan \beta=0, \sec \beta=1$
70. $\sec \beta$ is undefined, $\sin \beta=-1$
71. $\csc \beta$ is undefined, $\cos \beta=-1$
72. $\cot \beta$ is undefined, $\sec \beta=1$

For each exercise, state the quadrant of the terminal side and the sign of the function in that quadrant.
73. $\sin 719^{\circ}$
74. $\cos 528^{\circ}$
75. $\tan -419^{\circ}$
76. $\sec -621^{\circ}$
77. $\csc 681^{\circ}$
78. $\tan 995^{\circ}$
79. $\cos 805^{\circ}$
80. $\sin 772^{\circ}$

WORKING WITH FORMULAS

81. Cosine θ in terms of x and $y: \cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}}$ Using $r=\sqrt{x^{2}+y^{2}}$, the cosine of θ can be written as shown. (a) Use the formula to find $\cos \theta$ given $(3,4)$ is on the terminal side. (b) Use the formula to find $\cos \theta$ given $(3,0)$ is on the terminal side. (c) Use this definition to explain why $\cos \theta$ can never be greater than 1.
82. Cosine of an angle not in standard position:
$\cos \theta=\frac{x_{1} x_{2}+y_{1} y_{2}}{\sqrt{\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)}}$
The cosine of an angle whose vertex is at the origin (but not necessarily in standard position) can be found using the formula shown, where $P\left(x_{1}, y_{1}\right)$ is any point on the initial side and $Q\left(x_{2}, y_{2}\right)$ is any point on the terminal side. (a) Find $\cos \theta$ given $(3,4)$ is on the initial side and $(-12,5)$ is on the terminal side. (b) Verify this formula also applies for an angle in standard position.

APPLICATIONS

As our study of trigonometry progresses, we will learn to find the measure of an angle based on its trig function values (first studied in Section 2.2). Here we practice finding these trig function values.
83. Billiards: In Carolina's attempt to end a pool game by sinking the eight ball, she "scratches," accidentally sending the cue ball into the corner pocket located 60 in. to the west and 40 in. to the north of where it contacted the eight ball. Find $\tan \theta$, for the angle θ shown. For convenience, a coordinate system is shown with the point of contact at the origin.

84. Ice hockey: Wydonyu Yustrig takes a low slap shot from the blue line, as shown in the figure.

Unfortunately, the puck strikes the skate of a teammate and from there goes to the "boards," 45 ft south and 30 ft west. Find $\tan \theta$, where θ is the angle shown. For convenience, a coordinate system is shown with the point of deflection at the origin.

For Exercises 85 through 88, find the indicated value by drawing sketches similar to those used in Exercises 83 and 84. Carefully choose the location of the origin so the angle θ will be in standard position.
85. Oil painting: An aspiring artist begins her latest masterpiece by raising her $10^{\prime \prime}$ Filbert paintbrush to horizontal. Keeping her hand steady, she then raises the the tip of the brush $3^{\prime \prime}$. Find $\sin \theta$, where θ is the angle she inclined the brush.
86. Violin: When Lucy is practicing her violin, the bow makes contact with both the D and A strings when held horizontally (parallel to the ground). By raising the end of the bow in her hand 13 cm (with the far end resting on the strings), she prepares to make contact with the G string. Given that her bow is 65 cm long, find $\sin \theta$, where θ is the angle she inclined the bow.
87. Baseball: After a baseball is struck by a bat, it travels 70 ft through the air, at which time it is directly above the pitcher, 60 ft from the point of contact. Find $\cos \theta$, where θ is the acute angle formed by the path of the ball and a horizontal line.
88. Golf: The eighteenth hole at Pebble Beach is a $543-y d$, par 5 beauty. A slow-motion review of Kevin's tee shot showed that the ball traveled 9.5 yd through the air as it moved 7.6 yd toward the pin. Find $\cos \theta$, where θ is the acute angle formed by the path of the ball and a horizontal line.

EXTENDING THE CONCEPT

89. Find the values of the other five trig functions of α given $\cos \alpha=\frac{a}{b}$ and the terminal side of α lies in QI.
90. Find the values of the other five trig functions of β given $\sin \beta=x$ and the terminal side of β lies in QII.
91. The cosine of an angle θ whose vertex is at the origin, initial side passes through the point $P\left(x_{1}, y_{1}\right)$ in QI , and terminal side passes through the point, $Q\left(x_{2}, y_{2}\right)$ in QII is $\cos \theta=\frac{x_{1} x_{2}+y_{1} y_{2}}{r_{1} r_{2}}$ (see Exercise 82). Find an expression for $\sin \theta$, paying attention to signs.

MAINTAINING YOUR SKILLS

92. (1.1) Convert from DMS to decimal degrees $-183^{\circ} 24^{\prime} 18^{\prime \prime}$.
93. (1.1) Find the supplement of the following angles.
a. 117.26°
b. $85^{\circ} 59^{\prime} 37^{\prime \prime}$
94. (1.2) A pane of glass must be ordered for a window. The window is an isosceles triangle whose base angles measure 48°. What is the measure of the third angle?
95. (1.2) In $\triangle A B C, A=(3 x-8)^{\circ}, B=3 x^{\circ}$, and $C=(5 x+1)^{\circ}$. Solve for x and state the measures of A, B, and C.
96. (1.2) In Bemidji, Minnesota, there are two giant statues of Paul Bunyan and his blue ox, Babe. Babe casts a shadow that is 16 ft long while Paul's shadow is 24 ft long. If Babe is 24 ft tall, how tall is Paul?
97. (1.1) Find two positive and two negative angles that are coterminal with -93°. Answers may vary.

1.4 Fundamental Identities and Families of Identities

Learning Objectives

In Section 1.4 you will learn how to:
A. Use fundamental identities to help understand and recognize identity "families"
B. Verify other identities using the fundamental identities and basic algebra skills
C. Use fundamental identities to express a given trig function in terms of the other five

In this section, we begin laying the foundation necessary to work with identities successfully. The cornerstone of this effort is a healthy respect for the fundamental identities and vital role they play. Students are strongly encouraged to do more than memorize them-they should be internalized, meaning they must become a natural and instinctive part of your core mathematical knowledge.

A. Fundamental Identities and Identity Families

An identity is an equation that is true for all elements in the domain. In trigonometry, some identities result directly from the way the trig functions are defined. For instance, since $\sin \theta=\frac{y}{r}$ and $\csc \theta=\frac{r}{y}, \frac{1}{\csc \theta}=\frac{y}{r}$, and the identity $\sin \theta=\frac{1}{\csc \theta}$ immediately follows. We call identities of this type fundamental identities. Successfully working with other identities will depend a great deal on your mastery of these fundamental types. For convenience, the definition of the trig functions are reviewed here, followed by the fundamental identities that result.

Given point $P(x, y)$ is on the terminal side of angle θ in standard position, with $r=\sqrt{x^{2}+y^{2}}$ the distance from the origin to (x, y), we have

$$
\begin{array}{lll}
\cos \theta=\frac{x}{r} & \sin \theta=\frac{y}{r} & \tan \theta=\frac{y}{x} ; x \neq 0 \\
\sec \theta=\frac{r}{x} ; x \neq 0 & \csc \theta=\frac{r}{y} ; y \neq 0 & \cot \theta=\frac{x}{y} ; y \neq 0
\end{array}
$$

For use in the Pythagorean identities that follow and elsewhere in the text, note the expression $\sin ^{2} \theta$ is simply a more convenient way of writing $(\sin \theta)^{2}$.

WORTHY OF NOTE

The word fundamental itself means, "a basis or foundation supporting an essential structure or function" (Merriam Webster).

Fundamental Trigonometric Identities

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Reciprocal } \\
\text { identities }
\end{array} & \begin{array}{c}
\text { Ratio } \\
\text { identities }
\end{array} & \begin{array}{c}
\text { Pythagorean } \\
\text { identities }
\end{array} \\
\sin \theta=\frac{1}{\csc \theta} & \tan \theta=\frac{\sin \theta}{\cos \theta} & \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{\sec \theta}{\csc \theta} & \tan ^{2} \theta+1=\sec ^{2} \theta \\
\tan \theta=\frac{1}{\cot \theta} & \cot \theta=\frac{\cos \theta}{\sin \theta} & 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{array}
$$

These identities seem to naturally separate themselves into the three groups or families listed, with each group having additional relationships that can be inferred from the definitions. For instance, since $\sin \theta$ is the reciprocal of $\csc \theta, \csc \theta$ must be the reciprocal of $\sin \theta$. Similar statements can be made regarding $\cos \theta$ and $\sec \theta$ as well as $\tan \theta$ and $\cot \theta$. Recognizing these additional "family members" enlarges the number of identities you can work with, and will help you use them more effectively. In particular, since they are reciprocals: $\sin \theta \csc \theta=1, \cos \theta \sec \theta=1$, and $\tan \theta \cot \theta=1$. See Exercises 7 and 8 .

EXAMPLE 1 Identifying Families of Identities

Use algebra to write four additional identities that belong to the Pythagorean family.
Solution $>$ Starting with $\sin ^{2} \theta+\cos ^{2} \theta=1$,

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1 & & \text { original identity } \\
\bullet \sin ^{2} \theta & =1-\cos ^{2} \theta & & \text { subtract } \cos ^{2} \theta \\
\bullet \sin \theta & = \pm \sqrt{1-\cos ^{2} \theta} & & \text { take square root } \\
\sin ^{2} \theta+\cos ^{2} \theta & =1 & & \text { original identity } \\
\bullet \cos ^{2} \theta & =1-\sin ^{2} \theta & & \text { subtract } \sin ^{2} \theta \\
\text { - } \cos \theta & = \pm \sqrt{1-\sin ^{2} \theta} & & \text { take square root }
\end{aligned}
$$

For the identities involving a radical, the choice of sign will depend on the quadrant of the terminal side.

Now try Exercises 9 and 10 -

The four additional Pythagorean identities are marked with a " \bullet " in Example 1. The fact that each of them represents an equality gives us more options when attempting to verify or prove more complex identities. For instance, since $\cos ^{2} \theta=1-\sin ^{2} \theta$, we can replace $\cos ^{2} \theta$ with $1-\sin ^{2} \theta$, or replace $1-\sin ^{2} \theta$ with $\cos ^{2} \theta$, any time they occur in an expression. Note there are many other members of this family, since similar steps can be performed on the other Pythagorean identities. In fact, each of the fundamental identities can be similarly rewritten and there are a variety of exercises at the end of this section for practice.

B. Verifying an Identity Using Algebra

Note that we cannot prove an equation is an identity by repeatedly substituting input values and obtaining a true equation. This would be an infinite exercise and we might easily miss a value or even a range of values for which the equation is false. Instead we attempt to rewrite one side of the equation until we obtain a match with the other side, so there can be no doubt. As hinted at earlier, this is done using basic algebra skills combined with the fundamental identities and the substitution principle. For now we'll
focus on verifying identities by using algebra. In Section 5.1 we'll introduce some guidelines and ideas that will help you verify a wider range of identities.

EXAMPLE 2 Using Algebra to Help Verify an Identity

Use the distributive property to verify that $\sin \theta(\csc \theta-\sin \theta)=\cos ^{2} \theta$ is an identity.
Solution Use the distributive property to simplify the left-hand side.

$$
\begin{aligned}
\sin \theta(\csc \theta-\sin \theta) & =\sin \theta \csc \theta-\sin ^{2} \theta & & \text { distribute } \\
& =1-\sin ^{2} \theta & & \text { substitute } 1 \text { for } \sin \theta \csc \theta \\
& =\cos ^{2} \theta & & 1-\sin ^{2} \theta=\cos ^{2} \theta
\end{aligned}
$$

Since we were able to transform the left-hand side into a duplicate of the right, there can be no doubt the original equation is an identity.

Now try Exercises 11 through 20 -
Often we must factor an expression, rather than multiply, to begin the verification process.

EXAMPLE 3 Using Algebra to Help Verify an Identity

Verify that $\mathbb{1}=\cot ^{2} \alpha \sec ^{2} \alpha-\cot ^{2} \alpha$ is an identity.
Solution The left side is as simple as it gets. The terms on the right side have a common factor and we begin there.

$$
\begin{aligned}
\cot ^{2} \alpha \sec ^{2} \alpha-\cot ^{2} \alpha & =\cot ^{2} \alpha\left(\sec ^{2} \alpha-1\right) & & \text { factor out } \cot ^{2} \alpha \\
& =\cot ^{2} \alpha \tan ^{2} \alpha & & \text { substitute } \tan ^{2} \alpha \text { for } \sec ^{2} \alpha-1 \\
& =(\cot \alpha \tan \alpha)^{2} & & \text { power property of exponents } \\
& =1^{2}=\mathbb{1} & & \text { cot } \alpha \tan \alpha=1
\end{aligned}
$$

Now try Exercises 21 through 28

Examples 2 and 3 show you can begin the verification process on either the left or right side of the equation, whichever seems more convenient. Example 4 shows how the special products $(A+B)(A-B)=A^{2}-B^{2}$ and/or $(A \pm B)^{2}=A^{2} \pm 2 A B+B^{2}$ can be used in the verification process.

EXAMPLE $4>$ Using a Special Product to Help Verify an Identity

Use a special product and fundamental identities to verify that

Solution
(B. You've just learned how to verify other identities using the fundamental identities and basic algebra skills
$(\sin \beta-\cos \beta)^{2}=1-2 \sin \beta \cos \beta$ is an identity.
$(\sin \beta-\cos \beta)^{2}=1-2 \sin \beta \cos \beta$ is an identity.
Begin by squaring the left-hand side, in hopes of using a Pythagorean identity.

$$
\begin{aligned}
(\sin \beta-\cos \beta)^{2} & =\sin ^{2} \beta-2 \sin \beta \cos \beta+\cos ^{2} \beta & & \text { binomial square } \\
& =\sin ^{2} \beta+\cos ^{2} \beta-2 \sin \beta \cos \beta & & \text { rewrite terms } \\
& =\mathbb{1}-2 \sin \beta \cos \beta & & \text { substitute } 1 \text { for } \sin ^{2} \beta+\cos ^{2} \beta
\end{aligned}
$$

Now try Exercises 29 through 34
Another common method used to verify identities is simplification by combining terms, using the model $\frac{A}{B} \pm \frac{C}{D}=\frac{A D \pm B C}{B D}$. For $\sec \theta=\frac{\sin ^{2} \theta}{\cos \theta}+\cos \theta$, the righthand side immediately becomes $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta}$, which gives $\frac{1}{\cos \theta}=\sec \theta$. See Exercises 35 through 40.

C. Writing One Function in Terms of Another

Any one of the six trigonometric functions can be written in terms of any of the other functions using fundamental identities. The process involved offers practice in working with identities, highlights how each function is related to the other, and has practical applications in verifying more complex identities.

EXAMPLE $5>$ Writing One Trig Function in Terms of Another

WORTHY OF NOTE

Although identities are valid where both expressions are defined, this does not preclude a difference in the domains of each function. For example, the result of Example 5 is indeed an identity, even though the left side is defined at $\frac{\pi}{2}$ while the right side is not.

Solution Begin by noting these functions share "common ground" via sec θ, since $\sec ^{2} \theta=1+\tan ^{2} \theta$ and $\cos \theta=\frac{1}{\sec \theta}$. Starting with $\sec ^{2} \theta$,

$$
\begin{array}{ll}
\sec ^{2} \theta=1+\tan ^{2} \theta & \\
\text { Pythagorean identity } \\
\sec \theta= \pm \sqrt{1+\tan ^{2} \theta} & \\
\text { square roots }
\end{array}
$$

Write the function $\cos \theta$ in terms of the tangent function.

We can now substitute $\pm \sqrt{1+\tan ^{2} \theta}$ for $\sec \theta$ in $\cos \theta=\frac{1}{\sec \theta}$.

$$
\cos \theta=\frac{1}{ \pm \sqrt{1+\tan ^{2} \theta}} \quad \text { substitute } \pm \sqrt{1+\tan ^{2} \theta} \text { for } \sec \theta
$$

Now try Exercises 41 through 46

Example 5 also reminds us of a very important point-the sign we choose for the final answer is dependent on the terminal side of the angle. If the terminal side is in QI or QIV we chose the positive sign since $\cos \theta>0$ in those quadrants. If the angle terminates in QII or QIII, the final answer is negative since $\cos \theta<0$ in those quadrants.

Similar to our work in Section 1.3, given the value of $\cot \theta$ and the quadrant of θ, the fundamental identities enable us to find the value of the other five functions at θ. In fact, this is generally true for any given trig function and angle θ.

EXAMPLE $6>$ Using a Known Value and Quadrant Analysis to Find Other Function Values
Given $\cot \alpha=\frac{-9}{40}$ with the terminal side of α in QIV, find the value of the other five functions of α.
Solution \downarrow The function value $\tan \alpha=-\frac{40}{9}$ follows immediately, since cotangent and tangent are reciprocals. The value of $\sec \alpha$ can be found using $\sec ^{2} \alpha=1+\tan ^{2} \alpha$.

$$
\begin{aligned}
\sec ^{2} \alpha & =1+\tan ^{2} \alpha & & \text { Pythagorean identity } \\
& =1+\left(-\frac{40}{9}\right)^{2} & & \text { substitute }-\frac{40}{9} \text { for } \tan \alpha \\
& =\frac{81}{81}+\frac{1600}{81} & & \text { square }-\frac{40}{9}, \text { substitute } \frac{81}{81} \text { for } 1 \\
& =\frac{1681}{81} & & \text { combine terms } \\
\sec \alpha & = \pm \frac{41}{9} & & \text { take square roots }
\end{aligned}
$$

Y C. You've just learned how to use fundamental identities to express a given trig function in terms of the other five

Since $\sec \alpha$ is positive when the terminal side is in QIV, we have $\sec \alpha=\frac{41}{9}$. This automatically gives $\cos \alpha=\frac{9}{41}$ (reciprocal identities), and we find $\sin \alpha=-\frac{40}{41}$ using $\sin ^{2} \alpha=1-\cos ^{2} \alpha$ or the ratio identity $\tan \alpha=\frac{\sin \alpha}{\cos \alpha}$ (verify).

Now try Exercises 47 through 56

1.4 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. Three fundamental ratio identities are $\tan \theta=\frac{?}{\cos \theta}, \tan \theta=\frac{?}{\csc \theta}$, and $\cot \theta=\frac{?}{\sin \theta}$.
2. The three fundamental reciprocal identities are $\sin \theta=1 /$ \qquad , $\cos \theta=1 /$ \qquad , and $\tan \theta=1 /$ \qquad . From these, we can infer three additional reciprocal relationships: $\csc \theta=1 /$
\qquad , $\sec \theta=1 /$ \qquad , and $\cot \theta=1 /$ \qquad -.
3. Starting with the Pythagorean identity
$\sin ^{2} \theta+\cos ^{2} \theta=1$, the identity $\tan ^{2} \theta+1=\sec ^{2} \theta$ can be derived by dividing both sides by \qquad -.
Alternatively, dividing both sides of this equation by $\sin ^{2} \theta$, we obtain the identity \qquad —.
4. An \qquad is an equation that is true for all elements in the \qquad To show an equation is an identity, we employ basic algebra skills combined with the identities and the substitution principle.
5. Use the pattern $\frac{A}{B} \pm \frac{C}{D}=\frac{A D \pm B C}{B D}$ to add the following terms, and comment on this process versus "finding a common denominator."
$\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\sec \theta}$
6. Name at least four algebraic skills that are used with the fundamental identities in order to rewrite a trigonometric expression. Use algebra to quickly rewrite $(\sin \theta+\cos \theta)^{2}$.

DEVELOPING YOUR SKILLS

Starting with the ratio identity given, use substitution and fundamental identities to write four new identities belonging to the ratio family. Answers may vary.

$$
\text { 7. } \tan \theta=\frac{\sin \theta}{\cos \theta} \quad \text { 8. } \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Starting with the Pythagorean identity given, use algebra to write four additional identities belonging to the Pythagorean family. Answers may vary.
9. $1+\tan ^{2} \theta=\sec ^{2} \theta$
10. $1+\cot ^{2} \theta=\csc ^{2} \theta$

Verify the equation is an identity using multiplication and fundamental identities.
11. $\sin \theta \cot \theta=\cos \theta$
12. $\cos \theta \tan \theta=\sin \theta$
13. $\sec ^{2} \theta \cot ^{2} \theta=\csc ^{2} \theta$
14. $\csc ^{2} \theta \tan ^{2} \theta=\sec ^{2} \theta$
15. $\cos \theta(\sec \theta-\cos \theta)=\sin ^{2} \theta$
16. $\tan \theta(\cot \theta+\tan \theta)=\sec ^{2} \theta$
17. $\sin \theta(\csc \theta-\sin \theta)=\cos ^{2} \theta$
18. $\cot \theta(\tan \theta+\cot \theta)=\csc ^{2} \theta$
19. $\tan \theta(\csc \theta+\cot \theta)=\sec \theta+1$
20. $\cot \theta(\sec \theta+\tan \theta)=\csc \theta+1$

Verify the equation is an identity using factoring and fundamental identities.
21. $\tan ^{2} \theta \csc ^{2} \theta-\tan ^{2} \theta=1$
22. $\sin ^{2} \theta \cot ^{2} \theta+\sin ^{2} \theta=1$
23. $\frac{\sin \theta \cos \theta+\sin \theta}{\cos \theta+\cos ^{2} \theta}=\tan \theta$
24. $\frac{\sin \theta \cos \theta+\cos \theta}{\sin \theta+\sin ^{2} \theta}=\cot \theta$
25. $\frac{1+\sin \theta}{\cos \theta+\cos \theta \sin \theta}=\sec \theta$
26. $\frac{1+\cos \theta}{\sin \theta+\cos \theta \sin \theta}=\csc \theta$
27. $\frac{\sin \theta \tan \theta+\sin \theta}{\tan \theta+\tan ^{2} \theta}=\cos \theta$
28. $\frac{\cos \theta \cot \theta+\cos \theta}{\cot \theta+\cot ^{2} \theta}=\sin \theta$

Verify the equation is an identity using special products and fundamental identities.
29. $\frac{(\sin \theta+\cos \theta)^{2}}{\cos \theta}=\sec \theta+2 \sin \theta$
30. $\frac{(1+\tan \theta)^{2}}{\sec \theta}=\sec \theta+2 \sin \theta$
31. $(1+\sin \theta)(1-\sin \theta)=\cos ^{2} \theta$
32. $(\sec \theta+1)(\sec \theta-1)=\tan ^{2} \theta$
33. $\frac{(\csc \theta-\cot \theta)(\csc \theta+\cot \theta)}{\tan \theta}=\cot \theta$
34. $\frac{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}{\csc \theta}=\sin \theta$

Verify the equation is an identity using fundamental identities and $\frac{A}{B} \pm \frac{C}{D}=\frac{A D \pm B C}{B D}$ to combine terms.
35. $\frac{\cos ^{2} \theta}{\sin \theta}+\frac{\sin \theta}{1}=\csc \theta$
36. $\frac{\sec \alpha}{1}-\frac{\tan ^{2} \alpha}{\sec \alpha}=\cos \alpha$
37. $\frac{\tan \theta}{\csc \theta}-\frac{\sin \theta}{\cos \theta}=\frac{\sin \theta-1}{\cot \theta}$

WORKING WITH FORMULAS

57. The versine function: $\boldsymbol{V}=\mathbf{2} \sin ^{2} \theta$

For centuries, the haversine formula has been used in navigation to calculate the nautical distance between any two points on the surface of the Earth. One part of the formula requires the calculation of V, where θ is half the difference of latitudes between the two points. Use a fundamental identity to express V in terms of cosine.
38. $\frac{\cot \theta}{\sec \theta}-\frac{\cos \theta}{\sin \theta}=\frac{\cos \theta-1}{\tan \theta}$
39. $\frac{\sec \theta}{\sin \theta}-\frac{\csc \theta}{\sec \theta}=\tan \theta \quad$ 40. $\frac{\csc \theta}{\cos \theta}-\frac{\sec \theta}{\csc \theta}=\cot \theta$

Write the given function entirely in terms of the second function indicated.
41. $\tan \theta$ in terms of $\sin \theta$
42. $\tan \theta$ in terms of $\sec \theta$
43. $\sec \theta$ in terms of $\cot \theta$
44. sec θ in terms of $\sin \theta$
45. $\cot \theta$ in terms of $\sin \theta$
46. $\cot \theta$ in terms of $\csc \theta$

For the function $f(\theta)$ and the quadrant in which θ terminates, state the value of the other five trig functions.
47. $\cos \theta=-\frac{20}{29}$ with θ in QII
48. $\sin \theta=\frac{12}{37}$ with θ in QII
49. $\tan \theta=\frac{15}{8}$ with θ in QIII
50. $\sec \theta=\frac{45}{27}$ with θ in QIV
51. $\cot \theta=\frac{x}{5}$ with θ in QI
52. $\csc \theta=\frac{7}{x}$ with θ in QII
53. $\sin \theta=-\frac{7}{13}$ with θ in QIII
54. $\cos \theta=\frac{23}{25}$ with θ in QIV
55. $\sec \theta=-\frac{9}{7}$ with θ in QII
56. $\cot \theta=-\frac{11}{2}$ with θ in QIV

APPLICATIONS

Writing a given expression in an alternative form is an idea used at all levels of mathematics. In future classes, it is often helpful to decompose a power into smaller powers (as in writing A^{3} as $A \cdot A^{2}$) or to rewrite an expression using known identities so that it can be factored.
59. Show that $\cos ^{3} \theta$ can be written as $\cos \theta\left(1-\sin ^{2} \theta\right)$.
60. Show that $\tan ^{3} \theta$ can be written as $\tan \theta\left(\sec ^{2} \theta-1\right)$.
61. Show that $\tan \theta+\tan ^{3} \theta$ can be written as $\tan \theta\left(\sec ^{2} \theta\right)$.
62. Show that $\cot ^{3} \theta$ can be written as $\cot \theta\left(\csc ^{2} \theta-1\right)$.
63. Show $\tan ^{2} \theta \sec \theta-4 \tan ^{2} \theta$ can be factored into $(\sec \theta-4)(\sec \theta-1)(\sec \theta+1)$.
64. Show $2 \sin ^{2} \theta \cos \theta-\sqrt{3} \sin ^{2} \theta$ can be factored into $(1-\cos \theta)(1+\cos \theta)(2 \cos \theta-\sqrt{3})$.
65. Show $\cos ^{2} \theta \sin \theta-\cos ^{2} \theta$ can be factored into $-1(1+\sin \theta)(1-\sin \theta)^{2}$.
66. Show $2 \cot ^{2} \theta \csc \theta+2 \sqrt{2} \cot ^{2} \theta$ can be factored into $2(\csc \theta+\sqrt{2})(\csc \theta-1)(\csc \theta+1)$.
67. Angle of intersection: At their point of intersection, the angle θ between any two nonparallel lines satisfies the relationship $\left(m_{2}-m_{1}\right) \cos \theta=$ $\sin \theta+m_{1} m_{2} \sin \theta$, where m_{1} and m_{2} represent the slopes of the two lines. Rewrite the equation in terms of a single trig function.
68. Angle of intersection: Use the result of Exercise 67 to find the tangent of the angle between the lines
$Y_{1}=\frac{2}{5} x-3$ and $Y_{2}=\frac{7}{3} x+1$.
69. Angle of intersection: Use the result of Exercise 67 to find the tangent of the angle between the lines $Y_{1}=3 x-1$ and $Y_{2}=-2 x+7$.

EXTENDING THE CONCEPT

70. The word tangent literally means "to touch," which in mathematics we take to mean touches in only and exactly one point. In the figure, the circle has a radius of 1 and the vertical line is "tangent" to the circle at the x-axis. The figure can be used to verify the Pythagorean identity for sine and cosine, as well as the ratio identity for tangent. Discuss/Explain how.
71. Simplify $-2 \sin ^{4} \theta+\sqrt{3} \sin ^{3} \theta+2 \sin ^{2} \theta-\sqrt{3} \sin \theta$ using factoring and fundamental identities.

MAINTAINING YOUR SKILLS

72. (1.1) Find the exact lengths of the unknown sides of a 30-60-90 triangle whose hypotenuse measures 7 in.
73. (1.1) Find the exact lengths of the unknown sides of a 45-45-90 triangle whose hypotenuse measures 7 in.
74. (1.3) Find $\tan -270^{\circ}$.
75. (1.2) Is the triangle shown possible? Why/why not?

76. (1.3) Given $\cos \beta=-\frac{12}{13}$ and $\sin \beta<0$, find the value of the other trig functions.
77. (1.2) Classify the triangle shown by angle and side measure.

SUMMARY AND CONCEPT REVIEW

SECTION 1.1 Angle Measure and Special Triangles

KEY CONCEPTS

- An angle can be defined as the joining of two rays at a common endpoint called the vertex.
- Angle measure can be viewed as the amount of rotation from a fixed (initial) side to a terminal side.
- A counterclockwise rotation gives a positive angle, a clockwise rotation gives a negative angle.
- One degree $\left(1^{\circ}\right)$ is defined to be $\frac{1}{360}$ of a full revolution.
- Straight angles measure 180°; right angles measure 90°.
- Degrees can be divided into smaller units called minutes: $1^{\circ}=60^{\prime}$; minutes can be divided into smaller units called seconds: $1^{\prime}=60^{\prime \prime}$. This implies $1^{\circ}=3600^{\prime \prime}$.
- Two angles are complementary if they sum to 90° and supplementary if they sum to 180°.
- Angles that share the same initial and terminal sides are coterminal angles. Their measures will always differ by integer multiples of 360°.
- If $\triangle A B C$ is a right triangle with hypotenuse c, then $a^{2}+b^{2}=c^{2}$ (Pythagorean theorem). For $\triangle A B C$ with longest side c, if $a^{2}+b^{2}=c^{2}$, then $\triangle A B C$ is a right triangle (converse of Pythagorean theorem).
- In a 45-45-90 triangle, the sides are in the proportion $1 x: 1 x: \sqrt{2} x$.
- In a 30-60-90 triangle, the sides are in the proportion $1 x: \sqrt{3} x: 2 x$.

EXERCISES

1. Find the complement of $47^{\circ} 03^{\prime} 49^{\prime \prime}$.
2. Find the supplement of $59^{\circ} 0^{\prime} 17^{\prime \prime}$.
3. Convert $147^{\circ} 36^{\prime} 48^{\prime \prime}$ to decimal degrees.
4. Convert 32.87° to degrees, minutes, and seconds.
5. Find two positive angles and two negative angles that are coterminal with $\theta=207^{\circ}$.
6. Find three negative angles that are coterminal with 444°. Answers may vary.
7. Use special triangles to find the length of the bridge needed to cross the lake shown in the figure.
8. If the hypotenuse of a 45-45-90 triangle measures 14 cm , find the length of the legs.

SECTION 1.2 Properties of Triangles; Similar Triangles

KEY CONCEPTS

- Triangles can be classified (a) by their angles as acute, right, or obtuse or (b) by their side lengths as scalene, isosceles, or equilateral.
- Properties of triangles: (I) the sum of the angles is 180°; (II) the combined length of any two sides must exceed that of the third side and; (III) larger angles are opposite larger sides.
- Given two triangles, if all three corresponding angles are equal, the triangles are said to be similar. If two triangles are similar, then corresponding sides are in proportion.

EXERCISES

9. Classify the triangle shown by angle and side measures.

10. Which of the following types of triangles are not possible?
i. Right and equilateral
ii. Obtuse and scalene
iii. Isosceles and scalene
iv. Acute and equilateral

Exercise 13

11. Determine the measure of angle A in $\triangle A B C$ given $B=32^{\circ}$ and $C=87^{\circ}$.
12. Given $A=2 x^{\circ}, B=(4 x-9)^{\circ}$, and $C=\left(x^{2}+2 x+9\right)^{\circ}$, find the measures of the angles in $\triangle A B C$.
13. All of the right triangles shown are similar. Find the dimensions of the largest triangle.
14. The original 42 - ft tall rocket slide at Sutton Park is dwarfed by the new Titan slide. If the shadow of the original slide is 28 ft long when Titan's shadow is 38 ft long, how tall is the Titan slide?
15. Use properties of similar triangles to find the length of the side involving x in both triangles. Note the figures are not to scale.

Exercise 15

SECTION 1.3 Trigonometry: A View from the Coordinate Plane

KEY CONCEPTS

- An angle is in standard position when its vertex is at the origin and its initial side is along the positive x-axis.
- Two angles in standard position are coterminal if they have the same terminal side.
- The terminal side of any angle in standard position is coincident with a line $y=m x$ for some constant m.
- Given $P(x, y)$ is any point on the terminal side of an angle θ in standard position, $r=\sqrt{x^{2}+y^{2}}$ is its distance from the origin $(0,0)$.
- The six trigonometric functions of θ are defined as

$$
\begin{array}{rlrlrl}
\sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} & \tan \theta & =\frac{y}{x} & \csc \theta & =\frac{r}{y} \\
& \sec \theta & =\frac{r}{x} & \cot \theta & =\frac{x}{y} \\
x & \neq 0 & y & \neq 0 & x & \neq 0
\end{array} \quad y \neq 0
$$

- For a given angle θ, the signs of the trig functions can be determined by noting that cosine is associated with x, sine with y, and tangent with both x and y.
- In standard position, the terminal sides of the $0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}$, and 360° angles coincide with one of the axes and are called quadrantal angles.

EXERCISES

16. Write the equation of the line coincident with the terminal side of an angle containing the point (5, 3), and state its quadrant.
17. Given the terminal side of θ is in QIII and coincident with $y=3 x$, state the values of the six trig functions of θ.
18. Find the value of the six trigonometric functions, given $P(x, y)$ is on the terminal side of angle θ in standard position.
a. $(-12,35)$
b. $(12,-18)$
19. Find the value of x, y, and r using the information given, and state the quadrant of the terminal side of θ. Then state the values of the six trig functions of θ.
a. $\cos \theta=\frac{4}{5}, \sin \theta<0$
b. $\tan \theta=-\frac{12}{5}, \cos \theta>0$
20. Find the sign of the following expressions, given the indicated quadrant of the terminal side of θ.
a. $\frac{\csc \theta \cos \theta}{\tan \theta}$; QII
b. $\frac{\cot \theta}{\sin \theta \sec \theta}$; QIII
21. Determine the following:
a. $\sec 90^{\circ}$
b. $\tan 180^{\circ}$
c. $\cot 270^{\circ}$
d. $\csc 360^{\circ}$

SECTION 1.4 Fundamental Identities and Families of Identities

KEY CONCEPTS

- The fundamental identities include the reciprocal, ratio, and Pythagorean identities.
- A given identity can algebraically be rewritten to obtain other identities in an identity "family."
- Standard algebraic skills like distribution, factoring, combining terms, and special products play an important role in working with identities.
- The pattern $\frac{A}{B} \pm \frac{C}{D}=\frac{A D \pm B C}{B D}$ gives an efficient method for combining rational terms.
- Using fundamental identities, a given trig function can be expressed in terms of any other trig function.
- Once the value of a given trig function is known, the value of the other five can be uniquely determined using fundamental identities, if the quadrant of the terminal side is known.

EXERCISES

Verify using the method specified and fundamental identities.
22. multiplication

$$
\sin \theta(\csc \theta-\sin \theta)=\cos ^{2} \theta
$$

24. special products
$\frac{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{\csc \theta}=\sin \theta$
25. factoring

$$
\frac{\tan ^{2} \theta \csc \theta+\csc \theta}{\sec ^{2} \theta}=\csc \theta
$$

25. combine terms using
$\frac{A}{B} \pm \frac{C}{D}=\frac{A D \pm B C}{B D}$
$\frac{\sec ^{2} \theta}{\csc \theta}-\sin \theta=\frac{\tan ^{2} \theta}{\csc \theta}$

Find the value of all six trigonometric functions using the information given.
26. $\cos \theta=-\frac{12}{37} ; \theta$ in QIII
27. $\sec \theta=\frac{25}{23} ; \theta$ in QIV

MIXED REVIEW

1. The shortest leg of a 30-60-90 triangle has a length of $5 \sqrt{3} \mathrm{~cm}$. (a) What is the length of the longer leg? (b) What is the length of the hypotenuse?
2. Classify $\triangle A B C$ by angle and side measures if $A=27^{\circ}, B=126^{\circ}, C=27^{\circ}, a=7.8$ in., $b=13.9$ in., and $c=7.8 \mathrm{in}$.
3. The terminal side of angle β in standard position is coincident with $y=-\frac{7}{8} x ; x \in(-\infty, 0]$. Identify two points on the terminal side. Answers may vary.
4. Given $\sin \theta=\frac{8}{\sqrt{185}}$ with θ in QII, state the value of the other five trig functions.
5. Convert to DMS form: $220.813 \overline{8}^{\circ}$.
6. Find two negative angles and two positive angles that are coterminal with (a) 57° and (b) 135°.
7. To finish the top row of the tile pattern on our bathroom wall, $12^{\prime \prime}$ by $12^{\prime \prime}$ tiles must be cut diagonally. Use a standard triangle to find the length of each cut and the width of the wall covered by tiles.
8. Given $\triangle A B C$, determine the measure of angles A and C given $A=2 x^{\circ}, B=73^{\circ}$, and

Exercise 7

 $C=(3 x-8)^{\circ}$.
9. State the quadrant of the terminal side of θ, using the information given.
a. $\sin \theta>0, \cos \theta>0$
b. $\tan \theta<0, \sec \theta>0$
c. $\cot \theta>0, \csc \theta<0$
d. $\sec \theta<0, \csc \theta>0$
10. The sign in front of the home offices of Schwa Inc. contains two similar right triangles. If the longer triangle is $30^{\prime \prime}$ tall by $56^{\prime \prime}$ long, how tall is the $21^{\prime \prime}$ long smaller triangle?
11. Convert from DMS to decimal degrees: $86^{\circ} 54^{\prime} 54^{\prime \prime}$.
12. Find the angle θ, given $\csc \theta=-1$ and $\tan \theta$ is undefined.
13. Find the value of all six trig functions of θ, given the point $(15,-8)$ is on the terminal side.

Verify that each equation is an identity.

14. $\sec \theta=\tan \theta \csc \theta$
15. $\csc \theta \tan \theta-\cos \theta=\frac{\sin ^{2} \theta}{\cos \theta}$
16. $\frac{(\cos \theta+\sin \theta)^{2}}{\tan \theta}=\cot \theta+2 \cos ^{2} \theta$
17. Find the value of all six trig functions given $\csc \theta=\frac{\sqrt{117}}{6} ; \theta$ in QII.
18. In 2002, a retrapped Manx Shearwater was estimated to have flown five million miles during its $50+$ years. A GPS tracking ring attached to one of these birds reports a feeding flight that went due north 12 mi , due east 16 mi , and then directly home for 34 mi . How does the ornithologist know the tracking ring is malfunctioning?
19. Write $\tan \theta$ entirely in terms of the cosine function.
20. On his honeymoon in Acapulco, Mexico, Fred observed the famous "La Quebrada" cliff cast a 60-ft-long shadow, just crossing the narrow inlet below. If a 6-ft-tall Fred casts a 2.4-ft-long shadow, how tall is the cliff?

PRACTICE TEST

1. State the complement and supplement of 35°.
2. The hypotenuse of a 45-45-90 triangle measures 17 cm . What is the length of the legs?
3. Find two negative angles and two positive angles that are coterminal with $\theta=30^{\circ}$. Many solutions are possible.
4. Convert from DMS to decimal degrees or decimal degrees to DMS as indicated.
a. $100^{\circ} 45^{\prime} 18^{\prime \prime}$ to decimal degrees
b. 48.2125° to DMS
5. Four Corners USA is the point at which Utah, Colorado, Arizona, and New Mexico meet. The southern border of Colorado, the western border of Kansas, and the point P where Colorado, Nebraska, and Kansas meet, very nearly approximates a 30-60-90 triangle. If the western border of Kansas is 215 mi

Exercise 5

long, (a) what is the distance from Four Corners USA to point P ? (b) How long is Colorado's southern border?
6. Find the measure of angle C and classify each triangle $A B C$ described.
a. $A=37^{\circ}, B=53^{\circ}$
b. $A=19^{\circ}, B=69^{\circ}$
7. The cross section of an ice cream cone is an isosceles triangle, as shown. If the cone manufacturer increases the size of the vertex angle by a factor of $\frac{3}{2}$, what will the measure of the upper angles be?
8. Given $a=32 \mathrm{~mm}$ and

Exercise 7

$b=64 \mathrm{~mm}$ in triangle $A B C$, (a) express the possible lengths of c using interval notation. (b) To the nearest tenth, what length of c will make $B=90^{\circ}$ and $A=30^{\circ}$?
9. In triangles $A B C$ and $D E F, \angle A=\angle D$ and $\angle B=\angle E$. If $a=3 x, c=2 x+2, d=2 x$, and $f=8 \mathrm{yd}$, find the lengths of sides a, c, and d.
10. Steve is hiking in California's Redwood National Park, and sees the reflection of a Sequoia in a calm pond. Use similar triangles and the diagram shown to help Steve determine the height of this tree (to the nearest meter). Note figure is not to scale.

Exercise 10

11. Given angle β is in standard position, and its terminal side passes through the point $(-7,9)$, (a) write the equation of the line coincident with the terminal side of β and (b) find another point on the terminal side.
12. Find the value of the six trig functions of the angle β from Exercise 11.
13. Given $\cos \theta=\frac{2}{5}$ and $\tan \theta<0$, find the value of the other five trig functions of θ.
14. Complete the following table. If a function is undefined, so state.

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
0°						
90°						
180°						
270°						

15. Find the sign of the following expressions, given the indicated quadrant of the terminal side of θ.
a. $\sin \theta \cos \theta \tan \theta$; QIV
b. $\csc \theta \cot ^{3} \theta$; QII
c. $\frac{\sin \theta \sec \theta}{\csc \theta} ; \mathrm{QI}$
d. $\frac{1}{\cot \theta \cos \theta} ;$ QIII

Verify each identity using fundamental identities and the method specified.

16. Multiplication: $\csc \theta(\tan \theta+\sin \theta)=\sec \theta+1$
17. Special products:

$$
\frac{(\csc \theta-\cot \theta)(\csc \theta+\cot \theta)}{\sec \theta}=\cos \theta
$$

18. Factoring: $\frac{\sin ^{3} \theta-\cos ^{3} \theta}{1+\cos \theta \sin \theta}=\sin \theta-\cos \theta$
19. Find the value of all six trigonometric functions given $\cos \theta=\frac{48}{73} ; \theta$ in QIV.
20. Write $\cot \theta$ in terms of secant.

CALCULATOR EXPLORATION AND DISCOVERY

The Range of Sine $\boldsymbol{\theta}$ and Cosine $\boldsymbol{\theta}$

In Section 1.3, we defined the trig functions in terms of the (x, y) coordinates of a point on the terminal side of an angle θ. In particular, $\sin \theta=\frac{y}{r}$ and $\cos \theta=\frac{x}{r}$, where $r=\sqrt{x^{2}+y^{2}}$. We also found that $\sin \theta$ can be expressed in terms of x and y alone by substituting $\sqrt{x^{2}+y^{2}}$ for $r: \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}$. We also learned to express the terminal side of an angle using the line $y=m x$. For example, the terminal side of $\angle D A E$ shown in Figure 1.24 can be expressed as $y=1 x$ for $x \geq 0$. Investigating the effect of different values for m on the trig functions seems a natural next step, and the graphing calculator lends itself quite well to such an exploration.

On the $\mathbf{Y}=$ screen, enter the terminal sides of three angles θ_{1}, θ_{2}, and θ_{3} as $\mathrm{Y}_{1}=1 x$, $\mathrm{Y}_{2}=2 x$, and $\mathrm{Y}_{3}=3 x$, respectively (note that larger angles produce larger slope values). Pressing ZOOM 6 gives a standard viewing window of $[-10,10]$ for x, and $[-10,10]$ for y, where we focus our attention on the first quadrant. To find the coordinates of points on these lines, we can use the 2nd TRACE (CALC) 1:value feature of the calculator while choosing any convenient x-value ($x>0$ for QI). Pressing 3 ENTER sets $\mathrm{X}=3$ and produces
the screen shown in Figure 1.25. Substituting the coordinates shown $(X=3$ and $Y=3)$ into the formula $\sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}$ gives us $\sin \theta_{1}=\frac{3}{\sqrt{3^{2}+3^{2}}} \approx 0.707$. If we press the ∇ key, the cursor jumps to the graph of Y_{2} while maintaining $X=3$, and gives us the coordinates of the new point $(3,6)$. Pressing the \square key once more takes the cursor to the point $(3,9)$ on the graph of Y_{3}. Using the $x-y$ formula for sine at these two points yields $\sin \theta_{2} \approx 0.894$ and $\sin \theta_{3} \approx 0.949$ (verify this), and we note $\sin \theta$ is becoming very close to 1 .

While this might be enough to convince us that $\sin \theta$ approaches 1 as θ approaches 90° (and m becomes infinitely large), we can use another feature of the calculator to provide more evidence. Using the keystrokes STAT 1 , enter the List Editor of the calculator. If L1, L2, or L3 have any data in them, clear them out using the up arrow key to highlight the list name, and the keystrokes CLEAR ENTER . Once the lists are empty, fill L1 with the integers 1 through 20. These will be the slopes of the terminal sides of 20 different QI angles. In L2, we will automatically calculate the y-value of a point on each of these terminal sides using our initial choice for $x(x=3)$. We first highlight the name L2, then define $\mathrm{L} 2=\mathrm{L} 1 \times 3$ by pressing 2 nd 1×3. Since the slopes m are stored in L1, the equation is the equivalent of $y=m x$ for $x=3$. After pressing ENTER, the y-values are now stored in L2. We can likewise store the sine of each angle in L3. Highlight L3 and enter $\mathrm{L} 3=\frac{\mathrm{L}_{2}}{\sqrt{3^{2}+\mathrm{L}_{2}^{2}}}$ as the equivalent of $\sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}$ (Figure 1.26). Pressing ENTER yields the result shown in Figure 1.27, where we recognize the first three entries from before. Scrolling down through all 20 values of $\sin \theta$ strongly supports what we suspected earlier: namely, $\sin \theta$ approaches a maximum of 1 as θ approaches 90°.
Exercise 1: Make any necessary adjustments and repeat this procedure to find the sine of angles approaching -90°. What do you notice? What appears to be the range of $y=\sin \theta$?
Exercise 2: Repeat the procedure to find the cosine of angles approaching 0° [the slopes need to approach 0 (i.e., $1,0.95$, 0.90 , etc.)]. What do you notice?

Exercise 3: Adjust and repeat the procedure to find the cosine of angles approaching 180°. What do you notice? What appears to be the range of $y=\cos \theta$?

STRENGTHENING CORE SKILLS

Creating New Identities

In Example 2 of Section 1.4, we showed $\sin \theta(\csc \theta-\sin \theta)=\cos ^{2} \theta$ was an identity by transforming the left-hand side into $\cos ^{2} \theta$. There, the instructions were very specific: "Use the distributive property to . . ." When verifying identities, one of the biggest issues students face is that the directions are deliberately vague - because there is no single, failproof approach for verifying an identity. This sometimes leaves students feeling they don't know where to start, or what to do first. To help overcome this discomfort, we'll first create an identity by substituting fundamental identities into a given expression, then reverse these steps to get back the original expression. This return to the original illustrates the essence of verifying identities, namely, if two things are equal, one can be substituted for the other at any time. The process may seem arbitrary (actually-it $i s$), and the steps could vary. But try to keep the underlying message in mind, rather than any specific steps. When working with identities, there is actually no right place to start, and the process begins by using the substitution principle to create an equivalent expression as you work toward the expression you're trying to match.

Illustration $1 \triangleright$ Starting with the expression $\csc \theta+\cot \theta$, use fundamental identities to rewrite the expression and create a new identity. Then verify the identity by reversing the steps.
Solution $\csc \theta+\cot \theta \quad$ original expression

$$
\begin{aligned}
& =\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta} \\
& =\frac{1+\cos \theta}{\sin \theta} \quad \text { substitute reciprocal and ratio identities } \\
& \text { write as a single term }
\end{aligned}
$$

Resulting Identity $>\csc \theta+\cot \theta=\frac{1+\cos \theta}{\sin \theta}$
Verify Identity $>$ Working with the right-hand side, we reverse each step with a view toward the original expression.

$$
\begin{aligned}
\frac{1+\cos \theta}{\sin \theta} & =\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta} \quad \text { rewrite as individual terms } \\
& =\csc \theta+\cot \theta
\end{aligned} \quad \text { substitute reciiprocal and ratio identities }
$$

In actual practice, all you'll see is this instruction, "Verify the following is an identity: $\csc \theta+\cot \theta=\frac{1+\cos \theta}{\sin \theta}$,",
and it will be up to you to employ the algebra and fundamental identities needed.
Illustration $2 \triangleright$ Starting with the expression $2 \tan \theta \sec \theta$, use fundamental identities to rewrite the expression and create a new identity. Then verify the identity by reversing the steps.
Solution

$$
\begin{array}{ll}
2 \tan \theta \sec \theta & \\
=2 \cdot \frac{\text { original expression }}{\cos \theta} \cdot \frac{1}{\cos \theta} & \text { substitute ratio and reciprocal identities } \\
=\frac{2 \sin \theta}{\cos ^{2} \theta} & \text { multiply } \\
=\frac{2 \sin \theta}{1-\sin ^{2} \theta} & \\
\text { substitute } 1-\sin ^{2} \theta \text { for } \cos ^{2} \theta
\end{array}
$$

Resulting Identity $>2 \tan \theta \sec \theta=\frac{2 \sin \theta}{1-\sin ^{2} \theta}$ identity
Verify Identity $>$ Working with the right-hand side, we reverse each step with a view toward the original expression.

$$
\begin{aligned}
\frac{2 \sin \theta}{1-\sin ^{2} \theta} & =\frac{2 \sin \theta}{\cos ^{2} \theta} & & \text { substitute } \cos ^{2} \theta \text { for } 1-\sin ^{2} \theta \\
& =2 \cdot \frac{\sin \theta}{\cos \theta} \cdot \frac{1}{\cos \theta} & & \text { substitute } \cos \theta \cdot \cos \theta \text { for } \cos ^{2} \theta \\
& =2 \tan \theta \sec \theta & & \text { substitute ratio and reciprocal identities }
\end{aligned}
$$

Using algebra and the fundamental identities, rewrite each given expression to create a new identity relationship. Then verify your identity by reversing the steps. Answers will vary.

Exercise 1: $\sec \theta+\tan \theta$
Exercise 3: $\left(1-\sin ^{2} \theta\right) \sec \theta$
Exercise 5: $\frac{\sin \theta-\sin \theta \cos \theta}{\sin ^{2} \theta}$

Exercise 2: $(\cos \theta+\sin \theta)^{2}$
Exercise 4: $2 \cot \theta \csc \theta$
Exercise 6: $(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)$

Right Triangles and Static Trigonometry

CHAPTER OUTLINE

2.1 A Right Triangle View of Trigonometry 46

2.2 Solving Right Triangles 54
2.3 Applications of Static Trigonometry 63
2.4 Extending Beyond Acute Angles 71

While rainbows have been admired for centuries for their beauty and color, understanding the physics of rainbows is of fairly recent origin. Answers to questions regarding their seven-color constitution, the order the colors appear, the circular shape of the bow, and their relationship to moisture all have answers deeply rooted in mathematics. The relationship between light and color can be understood in terms of trigonometry, with questions regarding the apparent height of the rainbow, as well as the height of other natural and man-made phenomena, found using the trigonometry of right triangles.

- This application appears as

Exercise 55 in Section 2.2

2.1 A Right Triangle View of Trigonometry

Learning Objectives

In Section 2.1 you will learn how to:
A. Find values of the six trigonometric functions from their ratio definitionsB. Bridge the two definitions of the trigonometric functions by positioning a right triangle in the coordinate planeC. Use cofunctions and complements to write equivalent expressions

Over a long period of time, what began as a study of chord lengths by Hipparchus, Ptolemy, Aryabhata, and others became a systematic application of the ratios of the sides of a right triangle. In this section, we develop the sine, cosine, and tangent functions from a right triangle perspective, and explore certain relationships that exist between them. This view of the trig functions also leads to a number of significant applications.

A. Trigonometric Ratios and Their Values

In Section 1.1, we looked at applications involving 45-45-90 and 30-60-90 triangles, using the fixed ratios that exist between their sides. To apply this concept more generally using other right triangles, each side is given a specific name using its location relative to a specified angle. For the 30-60-90 triangle in Figure 2.1(a), the side opposite (opp) and the side adjacent (adj) are named with respect to the 30° angle, with the hypotenuse (hyp) always across from the right angle. Likewise for the 45-45-90 triangle in Figure 2.1(b).

Figure 2.1

Using these designations to define the various trig ratios, we can now develop a systematic method for applying them. Note that the x 's "cancel" in each ratio, reminding us the ratios are independent of the triangle's size (if two triangles are similar, the ratio of corresponding sides is constant).

Ancient mathematicians were able to find values for the ratios corresponding to any acute angle in a right triangle, and realized that naming each ratio would be helpful. These names are $\frac{\text { opp }}{\text { hyp }} \rightarrow$ sine, $\frac{\text { adj }}{\text { hyp }} \rightarrow$ cosine, and $\frac{\text { opp }}{\text { adj }} \rightarrow$ tangent. Since each ratio depends on the measure of an acute angle θ, they are often referred to as functions of an acute angle and written in function form.

$$
\text { sine } \theta=\frac{\text { opp }}{\text { hyp }} \quad \text { cosine } \theta=\frac{\text { adj }}{\text { hyp }} \quad \text { tangent } \theta=\frac{\text { opp }}{\text { adj }}
$$

The reciprocal of these ratios, for example, $\frac{\text { hyp }}{\text { opp }}$ instead of $\frac{\text { opp }}{\text { hyp }}$, also play a significant role in this view of trigonometry, and are likewise given names:

$$
\text { cosecant } \theta=\frac{\text { hyp }}{\text { opp }} \quad \text { secant } \theta=\frac{\text { hyp }}{\text { adj }} \quad \text { cotangent } \theta=\frac{\text { adj }}{\text { opp }}
$$

The definitions hold regardless of the triangle's orientation or which of the acute angles is used.

WORTHY OF NOTE

Over the years, a number of memory tools have been invented to help students recall these ratios correctly. One such tool is the acronym SOH CAH TOA, from the first letter of the function and the corresponding ratio. It is often recited as, "Sit On a Horse, Canter Away Hurriedly, To Other Adventures." Try making up a memory tool of your own.

In actual use, each function name is written in abbreviated form as $\sin \theta, \cos \theta$, $\tan \theta, \csc \theta, \sec \theta$, and $\cot \theta$ respectively. Note that based on these designations, we have the following reciprocal relationships:

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

In general:
Trigonometric Functions of an Acute Angle

$$
\begin{array}{lll}
\sin \alpha=\frac{a}{c} & \sin \beta=\frac{b}{c} \\
\cos \alpha=\frac{b}{c} & b & \cos \beta=\frac{a}{c} \\
\tan \alpha=\frac{a}{b} & b & \tan \beta=\frac{b}{a}
\end{array}
$$

You've likely noticed that these are the same functions we used in Chapter 1. Later in this chapter you will see a very close connection between the "ratio of coordinates" definition of these functions, and the "ratio of sides" definition. In any case, we now turn our attention to the acute angles of a right triangle.

EXAMPLE 1 - Finding Function Values Using a Right Triangle

Find the function values for the sine, cosine, and tangent of each angle, using the 30-60-90 triangle shown.
a. 30°
b. 60°

Solution
a. From the 30° angle: the side opposite measures

1 ft , the side adjacent measures $\sqrt{3} \mathrm{ft}$, and the hypotenuse measures 2 ft . Using the ratios from page 46 , we have:

$$
\sin 30^{\circ}=\frac{\text { opp }}{\text { hyp }}=\frac{1}{2} \quad \cos 30^{\circ}=\frac{\text { adj }}{\text { hyp }}=\frac{\sqrt{3}}{2} \quad \tan 30^{\circ}=\frac{\text { opp }}{\text { adj }}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}
$$

b. From the 60° angle, the perspective changes: the hypotenuse still measures 2 ft , but now the opposite side measures $\sqrt{3} \mathrm{ft}$, and the adjacent side measures 1 ft .

$$
\sin 60^{\circ}=\frac{\text { opp }}{\text { hyp }}=\frac{\sqrt{3}}{2} \quad \cos 60^{\circ}=\frac{\text { adj }}{\text { hyp }}=\frac{1}{2} \quad \tan 60^{\circ}=\frac{\text { opp }}{\text { adj }}=\frac{\sqrt{3}}{1}=\sqrt{3}
$$

Now try Exercises 7 through 14

Example 1 gave values of the sine, cosine, and tangent functions for 30° and 60°. Using the special triangles, we can state the value of all six trig functions for $30^{\circ}, 45^{\circ}$, and 60° based on the related ratio (see the figures given and Table 2.1). These values are used extensively in a study of trigonometry and must be committed to memory.

Table 2.1

$\boldsymbol{\theta}$	$\sin \boldsymbol{\theta}$	$\cos \boldsymbol{\theta}$	$\tan \boldsymbol{\theta}$	$\csc \boldsymbol{\theta}$	$\sec \boldsymbol{\theta}$	$\cot \boldsymbol{\theta}$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$	2	$\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$	2	$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

Expanding on this study of the special triangles, we can state values of all six functions given the ratio for any one of the functions.

EXAMPLE 2 Finding Function Values Using a Right Triangle

Given $\sin \theta=\frac{4}{7}$, find the values of the remaining trig functions.
Solution For $\sin \theta=\frac{4}{7}=\frac{\text { opp }}{\text { hyp }}$, we draw a triangle with a side of 4 units opposite a designated angle θ, and label a hypotenuse of 7 (see the figure). Using the Pythagorean theorem we find the length of the adjacent side: $a d j=\sqrt{7^{2}-4^{2}}=\sqrt{33}$. The ratios are

$$
\begin{array}{lll}
\sin \theta=\frac{4}{7} & \cos \theta=\frac{\sqrt{33}}{7} & \tan \theta=\frac{4}{\sqrt{33}} \\
\csc \theta=\frac{7}{4} & \sec \theta=\frac{7}{\sqrt{33}} & \cot \theta=\frac{\sqrt{33}}{4}
\end{array}
$$

Now try Exercises 15 through 24
A. You've just learned how to find values of the six trigonometric functions from their ratio definitions

WORTHY OF NOTE

This same 30-60-90 triangle could be drawn with the 60° angle in standard position. In so doing, the point $(5,5 \sqrt{3})$ marks the vertex of the 30° angle.

Note that due to the properties of similar triangles, identical results would be obtained using any ratio of sides that is equal to $\frac{4}{7}$. In other words, $\frac{2}{3.5}=\frac{4}{7}=\frac{8}{14}=\frac{16}{28}$ and so on, will all give the same value for $\sin \theta$.

B. Right Triangles and the Coordinate Plane

Regardless of where a right triangle is situated or how it is oriented, each trig function is defined as a given ratio of sides with respect to a given angle. In Section 1.3, we defined the trig functions in terms of the coordinates of a point on the terminal side of an angle in standard position. We can reconcile these two approaches by simply placing a right triangle in the coordinate plane. Consider a 30-60-90 triangle placed in the first quadrant with the 30° angle at the origin and the longer leg coincident with the x-axis. From our previous review of similar triangles, the trig ratios will have the same value regardless of the triangle's size so for convenience, we'll use a hypotenuse of 10 giving sides of $5,5 \sqrt{3}$ and 10 . From the diagram in Figure 2.2 we note the 30° angle is in standard position and the point (x, y) marking the vertex at the 60° angle has coordinates $(5 \sqrt{3}, 5)$. Further, the diagram shows $\sin 30^{\circ}, \cos 30^{\circ}$, and $\tan 30^{\circ}$ can all be expressed in terms of these coordinates or

Figure 2.2

triangle side lengths since $\frac{y}{r}=\frac{5}{10}=\frac{\text { opp }}{\text { hyp }}$ (sine), $\frac{x}{r}=\frac{5 \sqrt{3}}{10}=\frac{\text { adj }}{\text { hyp }}$ (cosine), and $\frac{y}{x}=\frac{5}{5 \sqrt{3}}=\frac{\mathrm{opp}}{\text { adj }}$ (tangent), where r is the distance from (x, y) to the origin. Each result reduces to the more familiar values seen earlier: $\sin 30^{\circ}=\frac{1}{2}, \cos 30^{\circ}=\frac{\sqrt{3}}{2}$, and $\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.

EXAMPLE $3-$ Positioning a Right Triangle in the First Quadrant

For the figure shown, evaluate $\sin B$ by
a. using a ratio of sides, and
b. placing the triangle on the coordinate plane with angle B in standard position [vertex at $(0,0)]$.
Solution
(B. You've just learned how to bridge the two definitions of the trig functions by positioning a right triangle in the coordinate plane

WORTHY OF NOTE

The word cosine is actually a shortened form of the words "complement of sine," a designation suggested by Edmund Gunter around 1620 since the sine of an angle is equal to the cosine of its complement $\left[\operatorname{sine}(\theta)=\operatorname{cosine}\left(90^{\circ}-\theta\right)\right]$.
a. From the ratios on page 46 , we have

$$
\sin B=\frac{\mathrm{opp}}{\text { hyp }}=\frac{4}{5} \text { ratio of sides definition }
$$

b. Begin by placing vertex B at the origin, with side $B C$ along the positive x-axis. This shows the point (x, y) at vertex A must be $(3,4)$, and that $(3,4)$ is a point on the terminal side of angle B. The distance formula verifies that $r=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5$, and from the "ratio of coordinates" definition, $\sin B=\frac{y}{r}=\frac{4}{5}$ as before.

Now try Exercises 25 through 34

In Section 2.4, we will extend the relationships explored here to all nonquadrantal angles.

C. Using Cofunctions and Complements to Write Equivalent Expressions

For the right triangle in Figure 2.3, $\angle \alpha$ and $\angle \beta$ must be complements since the sum of the three angles must be 180°. The complementary angles in a right triangle have a unique relationship that is often used. Specifically, since $\alpha+\beta=90^{\circ}$,
$\beta=90^{\circ}-\alpha$. Note that $\sin \alpha=\frac{a}{c}$ and $\cos \beta=\frac{a}{c}$. This means $\sin \alpha=\cos \beta$ or $\sin \alpha=\cos \left(90^{\circ}-\alpha\right)$ by substitution. In words, "The sine of an angle is equal to the cosine of its complement." For this reason sine and cosine are called cofunctions (hence the name cosine), as are secant/ cosecant, and tangent/cotangent. As a test, we check the statement $\sin 30^{\circ}=\cos \left(90^{\circ}-30^{\circ}\right)$

Figure 2.3

$$
\begin{aligned}
\sin 30^{\circ} & \stackrel{?}{=} \cos 60^{\circ} \\
\frac{1}{2} & =\frac{1}{2} \checkmark
\end{aligned}
$$

To verify the cofunction relationship for $\sec \theta$ and $\csc \theta$, recall their reciprocal relationship to cosine and sine, respectively.

$$
\begin{aligned}
\sec 30^{\circ} & \stackrel{?}{=} \csc 60^{\circ} \\
\frac{1}{\cos 30^{\circ}} & \stackrel{?}{=} \frac{1}{\sin 60^{\circ}} \\
\frac{1}{\frac{\sqrt{3}}{2}} & \stackrel{?}{=} \frac{1}{\frac{\sqrt{3}}{2}} \\
\frac{2}{\sqrt{3}} & =\frac{2}{\sqrt{3}}
\end{aligned}
$$

The cofunction relationship for $\tan \theta$ and $\cot \theta$ can similarly be verified.

Summary of Cofunctions

sine and cosine
$\sin \theta=\cos \left(90^{\circ}-\theta\right)$
$\cos \theta=\sin \left(90^{\circ}-\theta\right)$
tangent and cotangent
$\tan \theta=\cot \left(90^{\circ}-\theta\right)$
$\cot \theta=\tan \left(90^{\circ}-\theta\right)$

secant and cosecant

$\sec \theta=\csc \left(90^{\circ}-\theta\right)$ $\csc \theta=\sec \left(90^{\circ}-\theta\right)$

EXAMPLE $4>$ Applying the Cofunction Relationship

Given $\cot 75^{\circ}=2-\sqrt{3}$ in exact form, find the exact value of $\tan ^{2} 15^{\circ}$ using a cofunction.
Solution - Using $\cot 75^{\circ}=\tan \left(90^{\circ}-75^{\circ}\right)=\tan 15^{\circ}$ gives

$$
\begin{aligned}
\tan ^{2} 15^{\circ} & =\cot ^{2} 75^{\circ} & & \text { cofunctions } \\
& =(2-\sqrt{3})^{2} & & \text { substitute known value } \\
& =4-4 \sqrt{3}+3 & & \text { square as indicated } \\
& =7-4 \sqrt{3} & & \text { result }
\end{aligned}
$$

WORTHY OF NOTE

In Chapter 5, we will find the cofunction relationships hold true for any angle.

Now try Exercises 35 through 48

Since these cofunction relationships are true for all acute angles, they are often referred to as the cofunction identities and can be used in conjunction with the fundamental identities to verify many other relationships involving complementary angles.

EXAMPLE $5>$ Using Cofunction Relationships to Help Verify an Identity

Given α and β are complementary angles, verify that $\cos ^{2} \alpha=1-\cos ^{2} \beta$ is an identity.
Solution $>$ Since α and β are complementary, $\beta=90^{\circ}-\alpha$. Beginning with the right-hand side we have

$$
\begin{aligned}
1-\cos ^{2} \beta & =\sin ^{2} \beta & & \text { from the Pythagorean identity } \\
& =(\sin \beta)^{2} & & \text { rewrite expression } \\
& =\left[\sin \left(90^{\circ}-\alpha\right)\right]^{2} & & \text { substitute } 90^{\circ}-\alpha \text { for } \beta \\
& =(\cos \alpha)^{2} & & \text { substitute } \cos \alpha \text { for } \sin \left(90^{\circ}-\alpha\right) \text { (cofunctions) } \\
& =\cos ^{2} \alpha & & \text { result-identity verified }
\end{aligned}
$$

2.1 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. Every right triangle contains two \qquad angles. The word \qquad is actually a shortened form of "complement of tangent."
2. The sine of an angle is the ratio of the \qquad side to the \qquad -.
3. Discuss/Explain how the definition of the trig functions using the ratio of sides in a right triangle, and the ratio of the coordinates of a point on the terminal side of an angle in standard position, can be reconciled.
4. Given $\sin \theta=\frac{7}{24}, \csc \theta=$ \qquad because they are \qquad
5. The cosine of an angle is the ratio of the \qquad side to the \qquad -.
6. Discuss/Explain how the ratio of sides in a right triangle shows the value of $\sin \theta$ and $\cos \theta$ can never be greater than 1 .

DEVELOPING YOUR SKILLS

Given the following triangles, find the values of the indicated functions.

7. a. $\sec 30^{\circ}$
b. $\csc 30^{\circ}$
c. $\cot 30^{\circ}$
8. a. $\sec 60^{\circ}$
b. $\csc 60^{\circ}$
c. $\cot 60^{\circ}$
9. a. $\cos 45^{\circ}$
b. $\sin 45^{\circ}$
c. $\tan 45^{\circ}$
10. a. $\sec 45^{\circ}$
b. $\csc 45^{\circ}$
c. $\cot 45^{\circ}$
11. a. $\cos A$
b. $\sin A$
c. $\tan A$
12. a. $\cos B$
b. $\sin B$
c. $\tan B$
13. a. $\sec B$
b. $\csc B$
c. $\cot B$
14. a. $\sec A$
b. $\csc A$
c. $\cot A$

Use the function value given to determine the value of the other five trig functions of the acute angle θ. Answer in exact form (a diagram will help).
15. $\cos \theta=\frac{5}{13}$
16. $\sin \theta=\frac{20}{29}$
17. $\tan \theta=\frac{84}{13}$
18. $\sec \theta=\frac{53}{45}$
19. $\cot \theta=\frac{2}{11}$
20. $\cos \theta=\frac{2}{3}$
21. $\tan \theta=2$
22. $\csc \theta=3$
23. $\cot \theta=t$
24. $\sin \theta=t$

Use the given side lengths of the general triangle shown to identify the coordinates of a point on the terminal side of the indicated angle, when it is in standard position.

25. $a=20, b=21, c=29$; angle A
26. $a=20, b=21, c=29$; angle B
27. $a=2, b=\sqrt{5}, c=3$; angle A
28. $a=2, b=\sqrt{5}, c=3$; angle B
29. $a=6.5, b=7.2, c=9.7$; angle B
30. $a=6.5, b=7.2, c=9.7$; angle A
31. $a=a, b=b$; angle B
32. $a=a, b=b$; angle A
33. $a=48, c=73$; angle A
34. $a=48, c=73$; angle B

Fill in the blank so that the functions given are equal.
35. $\sin 47^{\circ}, \cos$ \qquad
36. \cos \qquad , $\sin 12^{\circ}$
37. $\cot 69^{\circ}, \tan$ \qquad
38. $\csc 17^{\circ}$, sec \qquad
Find the value of \boldsymbol{x} that makes the given functions equal.
39. $\sin (4 x)^{\circ}, \cos (5 x)^{\circ}$
40. $\cos (2 x)^{\circ}, \sin (3 x)^{\circ}$
41. $\cot (6 x-1)^{\circ}, \tan (5 x+3)^{\circ}$
42. $\csc (6 x-3)^{\circ}, \sec (2 x+5)^{\circ}$

Complete the following tables without referring to the text or using a calculator.
43. $\theta=30^{\circ}$

	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\sin \left(90^{\circ}-\theta\right)$
$\cos \left(90^{\circ}-\theta\right)$	$\tan \left(90^{\circ}-\theta\right)$	$\csc \theta$	$\sec \theta$	$\cot \theta$

44. $\theta=45^{\circ}$

	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\sin \left(90^{\circ}-\theta\right)$
$\cos \left(90^{\circ}-\theta\right)$	$\tan \left(90^{\circ}-\theta\right)$	$\csc \theta$	$\sec \theta$	$\cot \theta$

Evaluate the following expressions without a calculator, using the cofunction relationship and the following exact forms: $\sec 75^{\circ}=\sqrt{6}+\sqrt{2} ; \tan 75^{\circ}=2+\sqrt{3}$.
45. $\sqrt{6} \csc 15^{\circ}$
46. $\csc ^{2} 15^{\circ}$
47. $\cot ^{2} 15^{\circ}$
48. $\sqrt{3} \cot 15^{\circ}$

Given α and β are complementary angles, verify the following equations are identities.
49. $\frac{\sin \alpha}{\sin \beta}=\tan \alpha$
50. $\frac{\cos \beta}{\cos \alpha}=\tan \alpha$
51. $\sec ^{2} \alpha=\cot ^{2} \beta+1$
52. $\cot ^{2} \alpha=\sec ^{2} \beta-1$
53. $\tan ^{2} \alpha \sec ^{2} \beta-\cot ^{2} \beta=1$
54. $\sin ^{2} \alpha \tan ^{2} \beta-\cos ^{2} \beta=1$

WORKING WITH FORMULAS

55. Velocity of a child on a slide: $\boldsymbol{v}=\frac{\mathbf{3 2} \boldsymbol{k t}}{\cos \boldsymbol{\theta}}$

The velocity v (in $\mathrm{ft} / \mathrm{sec}$) of a child on a slide is given by the formula shown, where k is a value based on the friction between the child and the slide, t is how long the child has been sliding (in seconds), and θ is the acute angle the slide makes with the horizontal ground. How fast will Camila be going after $0.8 \sec$ if $k=0.2$ and $\theta=45^{\circ}$ for a particular slide? Round to the nearest tenth.
56. Average stress in a gypsum wall: $\sigma=\frac{9.8 m \sin \theta}{0.01 \pi r \sec \theta}$

The average stress σ [in kilopascals (kPa)] applied to the interior of a gypsum wall by hanging an object on a nail is given by the formula shown, where m is the mass of the object (in kilograms), r is the radius of the nail (in millimeters), and θ is the acute angle the nail makes with the wall (see illustration). If an average stress greater than 700 kPa will cause the nail to rip out, what is the heaviest painting that can be supported by a 1-mm-radius nail driven at a 30° angle? Round to the nearest tenth.

APPLICATIONS

57. Volleyball: Greg spikes the volleyball in such a way that it just clears the 8 - ft -high net and strikes his opponents' baseline, 30 ft back. Find $\tan \theta$, where θ is the angle shown in the figure.

58. Rock climbing: Laura and Daryl are rock climbing at the Garden of the Gods in Southern Illinois. Daryl is standing 6 ft from Laura at the base of a cliff when he says "on belay." If the anchor point of the rope is 36 ft directly above Laura, find $\cot \theta$, where θ is the angle the rope makes at the anchor point (see figure).

59. City planning: To get to the heart of Miramar, a car must travel 8 blocks along the coastal avenue, and then head inland (see figure). For pedestrian safety, the city is constructing a 12 -block-long diagonal street connecting the coastal avenue with the center of its downtown. Find $\sec \theta$, where θ is the angle shown in the figure.

60. Utility pole reinforcement: A utility pole consists of a vertical post and two horizontal cable support beams. Each end of the longer, lower beam needs to be supported by two 8 -ft-long reinforcing beams, as shown in the figure. If the reinforcing beam is attached to the vertical post 6 ft below the longer support beam, find $\csc \theta$, where θ is the angle shown in the figure.

61. Dodgeball: At the end of a grueling dodgeball match, an unarmed Andy is pinned against a long wall by Mandy and Sandy, who each have a ball. Mandy is 12 ft directly in front of Andy, with Sandy 9 ft to her left, parallel to the wall. Assuming their aim is true, find the cosine of the angle at which their two balls will strike Andy.
62. Piñatas: A piñata is attached to one end of a string that passes through a ceiling hook 10 ft above the floor. The other end of the string is anchored to the floor, 7.5 ft from a point directly below the hook. Find the sine of the angle the string makes with the floor.
63. Diagonal of a cube: A cubical box has sides measuring 10 cm long. (a) Find the length of the diagonal that passes through the center of the box and (b) the sine of the angle θ it makes at the lower corner of the box.

64. Diagonal of a rectangular parallelepiped: A rectangular box has a width of 25 cm , a length of 45 cm , and a height of 10 cm . Find (a) the length of the diagonal that passes through the center of the box and (b) the cosine of the angle θ it makes at the lower corner of the box.

EXTENDING THE CONCEPT

65. The formula $h=\frac{d}{\cot u-\cot v}$ can be used to calculate the height h of a building when distance x is unknown but distance d is known (see the diagram). Use the ratios for $\cot u$ and $\cot v$ to derive the
 formula (note x is "absent" from the formula).
66. Use the diagram given and the ratios for sine and tangent to show that $\cos \alpha=\frac{a}{d}$. Then use this result and the cofunction relationships to show $\cos \beta=\frac{\sqrt{d^{2}-a^{2}}}{d}$.

MAINTAINING YOUR SKILLS

67. (1.4) Verify $\frac{\sin \theta}{\tan ^{2} \theta}=\cot \theta \cos \theta$ is an identity.
68. (1.4) Verify $\cos \alpha+\tan \alpha \sin \alpha=\sec \alpha$ is an identity.
69. (1.2) Using the diagram from Exercise 66, find e if $a=7 \mathrm{~m}, b=9 \mathrm{~m}$, and $d=8.75 \mathrm{~m}$.
70. (1.3) Find the values of the five remaining trig functions of an angle θ given $\sin \theta=-\frac{2}{3}$ and $\cos \theta>0$.
71. (1.3) What is the value of the expression $\cos ^{2} \theta \tan ^{2} \theta$ given $(-2,-5)$ is on the terminal side of θ ?
72. (1.3) Find the value of $\cot [90(2 k+1)]^{\circ}$, where k is any integer.

2.2 Solving Right Triangles

Learning Objectives

In Section 2.2 you will learn how to:
A. Solve a right triangle given one angle and one sideB. Solve a right triangle given two sides

In this section, we begin to understand some of the power and utility of right triangle trigonometry. By combining an understanding of similar triangles with the right triangle, "ratio of sides" definition, we find that two triangles are no longer needed to solve many applications. In fact, all six parts of a right triangle (three angles and three sides) can be found, given just the right angle, one side, and one other part.

A. Solving Right Triangles Given One Angle and One Side

To solve a right triangle means to find the measure of all three angles and all three sides. This is accomplished using combinations of the Pythagorean theorem, the properties of triangles, and the trigonometric ratios. We will adopt the convention of naming each angle with a capital letter at the vertex or using a Greek letter on the interior. Each side is labeled using the related lowercase letter from the angle opposite. The complete solution should be organized in table form as in Example 1. Note the quantities shown in bold were given, and the remaining values were found using the techniques mentioned.

EXAMPLE 1 Solving a Right Triangle

Solve the triangle given.
Solution Applying the sine ratio (since the side opposite 30° is given), we have: $\sin 30^{\circ}=\frac{\mathrm{opp}}{\text { hyp }}$.

$$
\text { For side } \begin{array}{rlrl}
c: & \sin 30^{\circ} & =\frac{17.9}{c} & \\
\sin 30^{\circ}=\frac{\text { opposite }}{\text { hypotenuse }} \\
c \sin 30^{\circ} & =17.9 & & \text { multiply by } c \\
c & =\frac{17.9}{\sin 30^{\circ}} & & \text { divide by } \sin 30^{\circ}=\frac{1}{2} \\
& =35.8 & & \text { result }
\end{array}
$$

Using the Pythagorean theorem shows $b \approx 31$, and since $\angle A$ and $\angle B$ are complements, $B=60^{\circ}$. Note the results would have been identical if the special ratios from the 30-60-90 triangle were applied. The hypotenuse is twice the shorter side: $c=2(17.9)=35.8$,

Angles	Sides
$\boldsymbol{A}=\mathbf{3 0}^{\circ}$	$\boldsymbol{a}=\mathbf{1 7 . 9}$
$B=60^{\circ}$	$b \approx 31$
$\boldsymbol{C}=\mathbf{9 0}^{\circ}$	$c=35.8$

Now try Exercises 7 through
 10

Prior to the widespread availability of handheld calculators, a table of values was used to find $\sin \theta, \cos \theta$, and $\tan \theta$ for nonstandard angles. Table 2.2 shows the sine of $49^{\circ} 30^{\prime}$ is approximately 0.7604 .

Table 2.2

$\sin \theta$

$\boldsymbol{\theta}$	$\mathbf{0}^{\prime}$	$\mathbf{1 0}^{\prime}$	$\mathbf{2 0}^{\prime}$	$\mathbf{3 0}^{\prime} \mathbf{0}^{\prime}$
45°	0.7071	0.7092	0.7112	0.7133
46	0.7193	0.7214	0.7234	0.7254
47	0.7314	0.7333	0.7353	0.7373
48	0.7431	0.7451	0.7470	0.7490
49$)$	0.7547	0.7566	0.7585	0.7604

Today these trig values are programmed into your calculator and we can retrieve them with the push of a button (or two). To find the sine of 48°, make sure your calculator is in degree MODE , then press the SIN key, 48, and ENTER. The result should be very close to 0.7431 as the table indicates.

EXAMPLE 2 Solving a Right Triangle

Solve the triangle shown in the figure.
Solution We know $\angle B=58^{\circ}$ since $A+B=90^{\circ}$. We can find length b using the tangent function:

$$
\begin{aligned}
\tan 32^{\circ} & =\frac{24}{b} & & \tan 32^{\circ}=\frac{\text { opp }}{\mathrm{adj}} \\
b \tan 32^{\circ} & =24 & & \text { multiply by } b \\
b & =\frac{24}{\tan 32^{\circ}} & & \text { divide by } \tan 32^{\circ} \\
& \approx 38.41 \mathrm{~mm} & & \text { result }
\end{aligned}
$$

(A. You've just learned how to solve a right triangle given one angle and one side

We can find the length c by simply applying the Pythagorean theorem, or by using another trig ratio and a known angle.

$$
\text { For side } \begin{array}{rlrl}
c: & \sin 32^{\circ} & =\frac{24}{c} & \\
\sin 32^{\circ}=\frac{\text { opp }}{\text { hyp }} \\
c \sin 32^{\circ} & =24 & & \text { multiply by } c \\
c & =\frac{24}{\sin 32^{\circ}} & & \text { divide by } \sin 32^{\circ} \\
& \approx 45.29 \mathrm{~mm} & & \text { result }
\end{array}
$$

Angles	Sides
$\boldsymbol{A}=\mathbf{3 2}^{\circ}$	$\boldsymbol{a}=\mathbf{2 4}$
$B=58^{\circ}$	$b \approx 38.41$
$\boldsymbol{C}=\mathbf{9 0}^{\circ}$	$c \approx 45.29$

The complete solution is shown in the table.

Now try Exercises 11 through 16

When solving a right triangle, any of the triangle relationships can be employed: (1) angles must sum to 180°, (2) Pythagorean theorem, (3) special triangles, and (4) the trigonometric functions of an acute angle. However, the resulting equation must have only one unknown or it cannot be used. For the triangle shown in Figure 2.4, we cannot begin with the Pythagorean theorem since sides a and b are unknown, and $\tan 51^{\circ}$ is unusable for the same reason. Since the hypotenuse is given, we could begin with $\cos 51^{\circ}=\frac{b}{152}$ and solve for b, or with $\sin 51^{\circ}=\frac{a}{152}$ and solve for a, then work out a com-

Figure 2.4
 plete solution. Verify that $a \approx 118.13 \mathrm{ft}$ and $b \approx 95.66 \mathrm{ft}$.

B. Solving Right Triangles Given Two Sides

The partial table for $\sin \theta$ given earlier was also used in times past to find an angle whose sine was known, meaning if $\sin \theta \approx 0.7604$, then θ must be 49.5° (see the last line of Table 2.2). The modern notation for "an angle whose sine is known" is $\theta=\boldsymbol{\operatorname { s i n }}^{-\mathbf{1}} \boldsymbol{x}$ or $\theta=\arcsin \boldsymbol{x}$, where x is the known value for $\sin \theta$. The values for the acute angles $\theta=\sin ^{-1} x, \theta=\cos ^{-1} x$, and $\theta=\tan ^{-1} x$ are also programmed into your calculator and are generally accessed using the INV or 2 nd keys with the related $\mathbf{S I N}$, cos, or TAN key. With these we are completely equipped to find all six measures of a right triangle, given at least one side and any two other measures.

EXAMPLE $3>$ Solving a Right Triangle

Solve the triangle given in the figure.
Solution - Since the hypotenuse is unknown, we cannot begin with the sine or cosine ratios. The opposite and adjacent sides for α are known, so we use $\tan \alpha$. For $\tan \alpha=\frac{17}{25}$
 we find $\alpha=\tan ^{-1}\left(\frac{17}{25}\right) \approx 34.2^{\circ}\left[\right.$ verify that $\tan \left(34.2^{\circ}\right) \approx$ $0.6795992982 \approx \frac{17}{25}$]. Since α and β are complements, $\beta \approx 90^{\circ}-34.2^{\circ}=55.8^{\circ}$. The Pythagorean theorem

Angles	Sides
$\alpha \approx 34.2^{\circ}$	$\boldsymbol{a}=\mathbf{1 7}$
$\beta \approx 55.8^{\circ}$	$\boldsymbol{b}=\mathbf{2 5}$
$\boldsymbol{\gamma}=\mathbf{9 0 ^ { \circ }}$	$c \approx 30.23$

2.2 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. The phrase, "an angle whose tangent is known," is written notationally as \qquad -.
2. Given the two legs of a right triangle, you can begin solving the triangle by using the \qquad theorem to find the measure of the \qquad or using the \qquad calculator key to find the measure of $\mathrm{a}(\mathrm{n})$ \qquad
3. Discuss/Explain exactly what is meant when you are asked to "solve a triangle." Include an illustrative example.
4. To \qquad a triangle means to find the measure of all \qquad angles and all three \qquad
5. Given an acute angle and the length of the hypotenuse of a right triangle, the only trig functions that cannot be used to determine the length of another side are \qquad and \qquad (drawing a diagram may help).
6. Given an acute angle and the length of the adjacent leg, which four (of the six) trig functions could be used to begin solving the triangle?

DEVELOPING YOUR SKILLS

Solve each triangle using trig functions of an acute angle $\boldsymbol{\theta}$. Give a complete answer (in table form) using exact values.
7.

8.

9.

10.

Solve the triangles shown and write answers in table form. Round sides to the nearest 100 th of a unit. Verify that angles sum to 180° and that the three sides satisfy (approximately) the Pythagorean theorem.
11.

12.

13.

14.

15.

16.

Use a calculator to find the value of each expression, rounded to four decimal places.
17. $\sin 27^{\circ}$
18. $\cos 72^{\circ}$
19. $\tan 40^{\circ}$
20. $\cot 57.3^{\circ}$
21. $\sec 40.9^{\circ}$
22. $\csc 39^{\circ}$
23. $\sin 65^{\circ}$
24. $\tan 84.1^{\circ}$
Use a calculator to find the acute angle whose corresponding ratio is given. Round to the nearest 10th
39.

40.

41.

42.
 of a degree. For Exercises 25 through 32, use Exercises 17 through 24 as a check.
25. $\sin A=0.4540$
26. $\cos B=0.3090$
27. $\tan \theta=0.8391$
28. $\cot A=0.6420$
29. $\sec B=1.3230$
30. $\csc \beta=1.5890$
31. $\sin A=0.9063$
32. $\tan B=9.6768$
33. $\tan \alpha=0.9896$
34. $\cos \alpha=0.7408$
35. $\sin \alpha=0.3453$
36. $\tan \alpha=3.1336$

Select an appropriate function to find the angle indicated (round to 10ths of a degree).
37.

38.

Draw a right triangle $A B C$ as shown, using the information given. Then select an appropriate ratio to find the side indicated. Round to the nearest 100th.

Exercises 43 to 48

43. $\angle A=25^{\circ}$
$c=52 \mathrm{~mm}$
find side a
45. $\angle A=32^{\circ}$
$a=1.9 \mathrm{mi}$
find side b
47. $\angle A=62.3^{\circ}$
$b=82.5$ furlongs
find side c
44. $\angle B=55^{\circ}$
$b=31 \mathrm{ft}$
find side c
46. $\angle B=29.6^{\circ}$
$c=9.5 \mathrm{yd}$
find side a
48. $\angle B=12.5^{\circ}$
$a=32.8 \mathrm{~km}$
find side b

WORKING WITH FORMULAS

49. The sine of an angle between two sides of a triangle: $\sin \theta=\frac{2 A}{a b}$

If the area A and two sides a and b of a triangle are known, the sine of the angle between the two sides is given by the formula shown.
 Find the angle θ for the triangle shown given $A \approx 38.9$, and use it to solve the triangle.
(Hint: Apply the same concept to angle γ or β.)
50. Illumination of a surface: $E=\frac{I \cos \theta}{d^{2}}$

The illumination E of a surface by a light source is a measure of the luminous flux per unit area that reaches the surface. The value of E [in lumens (lm)
per square foot] is given by the formula shown, where d is the distance from the light source (in feet), I is the intensity of the light [in candelas (cd)], and θ is the angle the light source makes with the vertical. For reading a book, an illumination E of at least $18 \mathrm{~lm} / \mathrm{ft}^{2}$ is recommended. Assuming the open book is lying on a horizontal surface, how far away should a light source be placed if it has an intensity of 90 cd (about 75 W) and the light flux makes an angle of 65° with the book's surface (i.e., $\theta=25^{\circ}$)?

APPLICATIONS

Alternating current: In AC

(alternating current) applications, the relationship between measures known as the impedance (Z), resistance (R), and the phase angle (θ) can be
 demonstrated using a right triangle.
Both the resistance and the impedance are measured in ohms (Ω).
51. Find the impedance Z if the phase angle θ is 34°, and the resistance R is 320Ω.
52. Find the phase angle θ if the impedance Z is 420Ω, and the resistance R is 290Ω.
53. Contour maps: In the figure shown, the contour interval is 175 m (each concentric line represents an increase of 175 m in elevation), and the scale of horizontal distances is $1 \mathrm{~cm}=500 \mathrm{~m}$. (a) Find the vertical change from A to B (the increase in elevation); (b) use a proportion to find the horizontal change between points A and B if the measured distance on the map is 2.4 cm ; and (c) draw the corresponding right triangle and use it to estimate the length of the trail up the mountain side that connects A and B, then use trig to compute the approximate angle of incline as the hiker climbs from point A to point B.
54. Contour maps: In the figure shown, the contour interval is 150 m (each concentric line represents an increase of 150 m in elevation), and the scale of horizontal distances is $1 \mathrm{~cm}=250 \mathrm{~m}$. (a) Find the vertical change
 from A to B (the increase in elevation); (b) use a proportion to find the horizontal change between points A and B if the measured distance on the map is 4.5 cm ; and (c) draw the corresponding right triangle and use it to estimate the length of the trail up the mountain side that connects A and B, then use trig to compute the approximate angle of incline as the hiker climbs from point A to point B.
55. Height of a rainbow: While visiting the Lapahoehoe Memorial on the island of Hawaii, Bruce and Carma see a spectacularly vivid rainbow arching over the bay. Bruce speculates the rainbow is 500 ft away, while Carma
 estimates the angle of elevation to the highest point of the rainbow is about 42°. What was the approximate height of the rainbow?
56. High-wire walking: As part of a circus act, a high-wire walker not only "walks the wire," she walks a wire that is set at an incline of 10° to the horizontal! If the length of the (inclined) wire is 25.39 m , (a) how much higher is the wire set at the destination pole than at the departure pole?
(b) How far apart are the poles?
57. Diagonal of a cube: A cubical box has a diagonal measure of 35 cm . (a) Find the dimensions of the box

and (b) the angle θ that the diagonal makes at the lower corner of the box.
58. Diagonal of a rectangular parallelepiped: A rectangular box has a width of 50 cm and a length of 70 cm . (a) Find the height h that ensures the diagonal across the middle of the box
 will be 90 cm and (b) the angle θ that the diagonal makes at the lower corner of the box.

EXTENDING THE CONCEPT

59. Use the diagram given to derive a formula for the height h of the taller building

Exercises 59 and 60 in terms of the height x of the shorter building and the ratios for $\tan u$ and $\tan v$. Then use the formula to find h given the shorter building is 75 m tall with $u=40^{\circ}$ and $v=50^{\circ}$.
60. Use the diagram given to derive a formula for the distance d between the two buildings in terms of the height x of the shorter building and the ratios for $\tan u$ and $\tan v$. Then use the formula to find d given the shorter building is 75 m tall with $u=40^{\circ}$ and $v=50^{\circ}$.

MAINTAINING YOUR SKILLS

61. (1.1) Convert from DMS to decimal degrees. $132^{\circ} 42^{\prime} 54^{\prime \prime}$
62. (1.1) Convert from decimal degrees to DMS. 36.4525°
63. (2.1) Given $\tan 22.5^{\circ}=\sqrt{2}-1$, find $\sqrt{8} \cot 22.5^{\circ}$.
64. (1.3) Given $(-2,5)$ is on the terminal side of angle θ in standard position, find $\csc \theta$.
65. (2.1) Using the figure given, find $\sin \beta$.
66. (1.4) Verify $\sec \theta=\tan \theta \sin \theta+\cos \theta$ is an identity.

MID-CHAPTER CHECK

1. Given $\cos \theta=\frac{12}{13}$, determine the exact value of the other five trig functions of the acute angle θ.
2. Given the triangle shown in the diagram, find the exact values of the following trig functions.
a. $\tan \alpha$
b. $\sec \beta$
c. $\csc \alpha$
d. $\cot \beta$

Exercise 2

3. Given α and β are complementary angles, verify $\tan \alpha=\frac{\cos \beta}{\cos \alpha}$ is an identity.
4. Evaluate using a calculator. Round to four decimal places.
a. $\tan 53^{\circ}$
b. $\sin 28.4^{\circ}$
c. $\cos 61.6^{\circ}$
d. $\tan 45^{\circ}$
5. Solve the triangle shown in the diagram.

6. Given $\tan 75^{\circ}=2+\sqrt{3}$, what is the value of \cot 15° ? Why?
7. Solve the triangle shown in the diagram.

8. Complete the table from memory.

$\boldsymbol{\theta}$	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
30°						
45°						
60°						

9. The day before the Macy's Thanksgiving Day Parade, the 14 -ft-wide planet Earth balloon is inflated and anchored on 77th Street. One end of a $20-\mathrm{ft}$ anchor line is attached to a tether on the bottom of the balloon, 16 ft above the ground. To the nearest degree, find the acute angle the anchor line makes with the street.
10. The doors of a public library are 24 in . above the level front plaza. If a wheelchair access ramp must make an angle of 4° with the horizontal, how far from the door landing must it begin? Round to one decimal place.

REINFORCING BASIC CONGEPTS

The Area of a Triangle

While you're likely familiar with the most common formula for the area of a triangle, $\mathcal{A}=\frac{1}{2} b h$, you might be surprised to learn that over 20 different formulas exist for computing this area. Many of these involve very basic trigonometric ideas, and we'll use some of these ideas to develop two additional formula types here. For $\mathcal{A}=\frac{1}{2} b h$, recall that b represents the length of a designated base of the triangle, and h represents the length of the altitude drawn

Figure 2.5
 to that base (Figure 2.5). If the height h of the triangle isn't given, but two sides a and b and the angle C between them are known (Figure 2.6), h canbe found using a sine ratio: $\sin C=\frac{h}{a}$, giving $a \sin C=h$. Substituting $a \sin C$ for h in the formula $\mathcal{A}=\frac{1}{2} b h$ gives $\mathcal{A}=\frac{1}{2} b a \sin C=\frac{1}{2} a b \sin C$. By designating the other sides as "the base," and drawing altitudes from the opposite vertex (Figures 2.7 and 2.8), the formulas $\mathcal{A}=\frac{1}{2} b c \sin A$ and $\mathcal{A}=\frac{1}{2} a c \sin B$ are likewise obtained.

Figure 2.6

Figure 2.7

Figure 2.8

Area Given Two Sides and an Included Angle (SAS)

1. $\mathcal{A}=\frac{1}{2} a b \sin C$
2. $\mathcal{A}=\frac{1}{2} b c \sin A$
3. $\mathcal{A}=\frac{1}{2} a c \sin B$

In words, the formulas say the area of a triangle is equal to one-half the product of two sides times the sine of the angle between them.

Illustration $1>$ Find the area of $\triangle A B C$ given $a=16.2 \mathrm{~cm}, b=25.6 \mathrm{~cm}$, and $C=28.3^{\circ}$.
Solution $>$ Since sides a, b, and angle C are given, we apply the first formula.

$$
\begin{aligned}
\mathcal{A} & =\frac{1}{2} a b \sin C & & \text { area formula } \\
& =\frac{1}{2}(16.2)(25.6) \sin 28.3^{\circ} & & \text { substitute } 16.2 \text { for } a, 25.6 \text { for } b, \text { and } 28.3^{\circ} \text { for } C \\
& \approx 98.3 \mathrm{~cm}^{2} & & \text { result }
\end{aligned}
$$

The area of this triangle is approximately $98.3 \mathrm{~cm}^{2}$.

Using the SAS formulas, a formula requiring two angles and one side can be developed. Observe that formula 1 can be written in terms of $b: b=\frac{2 \mathcal{A}}{c \sin A}$; and formula 3 can be written in terms of $a: a=\frac{2 \mathcal{A}}{c \sin B}$. Substituting $\frac{2 \mathcal{A}}{c \sin A}$ for b and $\frac{2 \mathcal{A}}{c \sin B}$ for a in formula 2 gives the following:

$$
\begin{aligned}
\mathcal{A} & =\frac{1}{2} a b \sin C & & \text { given formula } \\
2 \mathcal{A} & =\frac{2 \mathcal{A}}{c \sin B} \frac{2 \mathcal{A}}{c \sin A} \sin C & & \text { substitute } \frac{2 \mathcal{A}}{c \sin B} \text { for } a, \frac{2 \mathcal{A}}{c \sin A} \text { for } b \\
c^{2} \sin A \sin B & =2 \mathcal{A} \sin C & & \text { multiply by } c \sin A \text { and } c \sin B, \text { divide by } 2 \sin C \\
\frac{c^{2} \sin A \sin B}{2 \sin C} & =\mathcal{A} & & \text { solve for } \mathcal{A}
\end{aligned}
$$

Note that if any two angles A and B are given, the third can easily be found by subtracting the sum of these two from $180^{\circ}: C=180^{\circ}-(A+B)$. As with the previous formula, versions relying on side b or side a can also be found.

Area Given Two Angles and Any Side (AAS/ASA)

$$
\text { 1. } \mathcal{A}=\frac{c^{2} \sin A \sin B}{2 \sin C} \quad \text { 2. } \mathcal{A}=\frac{a^{2} \sin B \sin C}{2 \sin A} \quad \text { 3. } \mathcal{A}=\frac{b^{2} \sin A \sin C}{2 \sin B}
$$

In Chapter 7, yet another useful relationship for the area of a triangle will be developed, called Heron's formula. The formula requires only the length of the three sides, and can be developed both algebraically and using trigonometry. Use the appropriate formula to find the area of the following triangles. Round to the nearest tenth.
1.

2.

3.

4.

2.3 \quad Applications of Static Trigonometry

Learning Objectives

In Section 2.3 you will learn how to:A. Solve applications involving angles of elevation and depression
B. Solve applications involving angles of rotationC. Solve general applications of right triangles

In Section 2.2, we essentially developed the techniques and skills necessary to solve a right triangle apart from any real context. However, many real-world relationships can be modeled by superimposing a right triangle in their study and these same skills are indispensable to the solution process. Architects, surveyors, and scientists routinely use right triangle relationships in their work.

A. Applications Using Angles of Elevation/Depression

While the name seems self-descriptive, in more formal terms an angle of elevation is defined to be the acute angle formed by a horizontal line of orientation (parallel to level ground) and the line of sight (see Figure 2.9). An angle of depression is likewise defined but involves a line of sight that is below the horizontal line of orientation (Figure 2.10).

Figure 2.9
Figure 2.10

Angles of elevation/depression make distance and length computations of all sizes a relatively easy matter and are extensively used by surveyors, engineers, astronomers, and even the casual observer who is familiar with the basics of trigonometry.

EXAMPLE $1>$ Applying Angles of Elevation

A group of campers has pitched their tent 250 yd from the base of a tall cliff. The evening's conversation turns to a discussion of the cliff's height, and they all lodge an estimate. If the angle of elevation from the campsite to the top of the cliff is 40°, how tall is the cliff?

Solution $>$ As described we want to know the height of the opposite side, given the adjacent side, so we use the tangent function.

For height h :

$$
\begin{aligned}
\tan 40^{\circ} & =\frac{h}{250} & & \tan 40^{\circ}=\frac{o p p}{\mathrm{adj}} \\
250 \tan 40^{\circ} & =h & & \text { multiply by } 250 \\
209.8 & \approx h & & \text { result }\left(\tan 40^{\circ} \approx 0.8391\right)
\end{aligned}
$$

The cliff is approximately 209.8 yd high (about 629 ft).

Now try Exercises 7 through 12

EXAMPLE 2 Applying Angles of Depression

From the edge of the Perito Moreno glacier in Patagonia, Argentina, Gary notices a kayak on the lake 30 m below. If the angle of depression at that point is 35°, what is the distance d from the kayak to the glacier?
Solution From the diagram, we note that d is the side opposite a 55° angle (the complement of the 35° angle). Since the adjacent side is known, we use the tangent function to solve for d.
\square A. You've just learned how to solve applications involving angles of elevation and depression

$$
\begin{aligned}
\tan 55^{\circ} & =\frac{d}{30} & & \tan 55^{\circ}=\frac{\mathrm{opp}}{\mathrm{adj}} \\
30 \tan 55^{\circ} & =d & & \text { multiply by } 30 \text { (exact form) } \\
42.8 & \approx d & & \text { result (approximate form) }
\end{aligned}
$$

The kayak is approximately $42.8 \mathrm{~m}(141 \mathrm{ft})$ from the glacier.

Now try Exercises 13 through 18

B. Applications of Angles of Rotation

Closely related to angles of depression/elevation are acute angles of rotation from a fixed orientation to a fixed line of sight. In this case, the movement is simply horizontal rather than vertical. Land surveyors use a special type of measure called bearings, where they indicate the acute angle the line of sight makes with a due north or due south line of reference. For instance, Figure 2.11(a) shows a bearing of $\mathrm{N} 60^{\circ} \mathrm{E}$ and Figure 2.11(b) shows a bearing of $\mathrm{S} 40^{\circ} \mathrm{W}$.

Figure 2.11

EXAMPLE 3 Applying Angles of Rotation

A city building code requires a new shopping complex to be built at least 150 ft from an avenue that runs due east and west. Using a modern theodolite set up on the avenue, a surveyor finds the tip of the shopping complex closest to the avenue lies 200 ft away on a bearing of $\mathrm{N} 41^{\circ} 17^{\prime} 15^{\prime \prime} \mathrm{W}$. How far from the avenue is this tip of the building?
Solution - To find the distance d, we first convert the given angle to decimal degrees, then find its complement. For $41^{\circ} 17^{\prime} 15^{\prime \prime}$ we have $[41+17(1 / 60)+(15 / 3600)]^{\circ}=41.2875^{\circ}$. The complement of this angle is $90^{\circ}-41.2875^{\circ}=48.7125^{\circ}$. Since we need the side opposite this angle and the hypotenuse is known, we use a sine function to solve for d.

$$
\begin{aligned}
\sin 48.7125^{\circ} & =\frac{d}{200} & & \sin 48.7125^{\circ}=\frac{\text { opp }}{\text { hyp }} \\
200 \sin 48.7125^{\circ} & =d & & \text { multiply by } 200 \text { (exact form) } \\
150.28 & \approx d & & \text { result (approximate form) }
\end{aligned}
$$

The shopping complex is approximately 150.28 ft from the avenue, just barely in compliance with the city code.

Distance, velocity, and time are related by the standard formula for uniform motion, $D=r t$. Often we must use this relationship in applications requiring trigonometry, as follows in Example 4.

EXAMPLE 4 - Applying Angles of Rotation

To thwart drivers who have radar detection equipment, a state trooper takes up a hidden position 50 ft from the roadway. Using a sighting device she finds the angle between her position and a road sign in the distance is 79°. She then uses a stop watch to determine how
 long it takes a vehicle to pass her location and reach the road sign. In quick succession, an 18-wheeler, a truck, and a car pass her position, with the time each takes to travel this distance noted. Find the speed of each vehicle in miles per hour if
a. The 18 -wheeler takes 2.7 sec .
b. The truck takes 2.3 sec .
c. The car takes 1.9 sec .

Solution $>$ We begin by finding the distance traveled by each vehicle. Using $\tan 79^{\circ}=\frac{d}{50}$ gives $d=50 \tan 79^{\circ} \approx 257 \mathrm{ft}$. To convert a rate given in feet per second to miles per hour, recall there are 5280 ft in 1 mi and 3600 sec in 1 hr .
a. 18 -wheeler: $\left(\frac{257 \mathrm{ft}}{2.7 \mathrm{sec}}\right)\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right)\left(\frac{3600 \mathrm{sec}}{1 \mathrm{hr}}\right) \approx\left(\frac{65 \mathrm{mi}}{1 \mathrm{hr}}\right)$

The 18 -wheeler is traveling approximately 65 mph .
b. Using the same calculation with 2.3 sec shows the truck was going about 76 mph .
c. At 1.9 sec , the car was traveling about 92 mph .

Now try Exercises 27 through 32

C. Additional Applications of Right Triangles

In their widest and most beneficial use, the trig functions of acute angles are used with other problem-solving skills, such as drawing a diagram, labeling unknowns, working the solution out in stages, and so on. Example 5 serves to illustrate some of these combinations.

EXAMPLE $5>$ Applying Angles of Elevation and Depression

From his hotel room window on the sixth floor, Singh notices some window washers high above him on the hotel across the street. Curious as to their height above ground, he quickly estimates the buildings are 50 ft apart, the angle of elevation to the workers is about 80°, and the angle of depression to the base of the hotel is about 50°.
a. How high above ground is the window of Singh's hotel room?
b. How high above ground are the workers?

a. Begin by drawing a diagram of the situation (see figure). To find the height of the window we'll use the tangent ratio, since the adjacent side of the angle is known, and the opposite side is the height we desire.
For the height $h_{1}: \quad \tan 50^{\circ}=\frac{h_{1}}{50} \quad \tan 50^{\circ}=\frac{\text { opp }}{\text { adj }}$

$$
\begin{array}{rll}
50 \tan 50^{\circ} & =h_{1} & \text { solve for } h_{1} \\
59.6 \approx h_{1} & \text { result }\left(\tan 50^{\circ} \approx 1.1918\right)
\end{array}
$$

The window is approximately 59.6 ft above ground.
b. For the height h_{2} :

$$
\begin{aligned}
\tan 80^{\circ} & =\frac{h_{2}}{50} & & \tan 80^{\circ}=\frac{\mathrm{opp}}{\mathrm{adj}} \\
50 \tan 80^{\circ} & =h_{2} & & \text { solve for } h_{2} \\
283.6 & \approx h_{2} & & \text { result }\left(\tan 80^{\circ} \approx 5.6713\right)
\end{aligned}
$$

The workers are approximately $283.6+59.6=343.2 \mathrm{ft}$ above ground .
Now try Exercises 43 through 46

There are a number of additional, interesting applications in the exercise set.

- C. You've just learned how to solve general applications of right triangles

TECHNOLOGY HIGHLIGHT

Using the Storage and Recall Features of a Graphing Calculator

Computations involving the trig ratios often produce irrational numbers. Sometimes the number is used numerous times in an application, and it helps to store the value in a memory location so it can instantly be recalled without having to look it up, recompute its value, or enter it digit by digit. Storage locations are also used when writing programs for your graphing calculator. Suppose the value $\frac{1+\sqrt{5}}{2} \approx 1.6180339887$ were to be used repeatedly. You could store this value in the temporary memory location $\mathbf{X}, \mathbf{T}, \boldsymbol{\theta}, \boldsymbol{n}$ using the keystrokes $\frac{1+\sqrt{5}}{2}$ STO甘 $\mathbf{X}, \mathbf{T}, \boldsymbol{\theta}, \boldsymbol{n}$, or in a permanent memory location using the ALPHA locations A through Z. In temporary storage, the value could potentially be overwritten once you leave the home screen. To use a stored value, we simply bring up the location name to the home screen.

Example 1: Save the value of $\frac{1+\sqrt{5}}{2}$ in location $X, \boldsymbol{T}, \boldsymbol{\theta}, \boldsymbol{n}$, then investigate the relationship between (a) this number and its reciprocal and (b) this number and its square. What do you notice? Why does the value of x^{-1} seem to be off by one decimal place?

Solution: After storing the number, as shown in Figure 2.12, we find its reciprocal is equal to the original number minus 1 , while its square is equal to the original number plus 1 . The value of x^{-1} appears off due to rounding.

Now suppose we wanted to investigate the trigonometric formula for a triangle's area: $\mathcal{A}=\frac{1}{2} a b \sin \theta$, where b is the base, a is the length of one side, and θ is the angle between them. The formula has four unknowns, \mathcal{A}, a, b, and θ. The idea here is to let θ represent the independent variable x, and \mathcal{A} the dependent variable y, then evaluate the function for different values of a and b. On the $\mathbf{Y}=$ screen, enter the formula as $Y_{1}=0.5 A B \sin X$. On the home screen, store a value of 2 in location A and 12 in location B using 2 STO ALPHA MATH and 12 STO ALPHA APPS, respectively, as shown in Figure 2.13. The final result can be computed on the home screen (or using the TABLE feature) by supplying a value to memory location $\mathbf{X}, \mathrm{T}, \boldsymbol{\theta}, \boldsymbol{n}$, then calling up $\mathrm{Y} 1($ VARS \square (Y-VARS) 1:Function ENTER) and evaluating $Y_{1}(X)$. As Figure 2.13 shows, we used 30 STO X,T,日,n , and the area of a triangle with $a=2, b=12$, and $\theta=30^{\circ}$ is 6 units 2 (although the display couldn't hold all of the information without scrolling).

Exercise 1: Evaluate the area formula once again, using $a=5$ and $b=5 \sqrt{3}$. What values of X will give an area greater than 10 units 2 ?

2.3 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. A horizontal line of \qquad is an imaginary line
\qquad to level ground.
2. Because most \qquad are programmed with the trig functions \qquad , \qquad , and \qquad , we will often use these three when solving applications.
3. Compare/Contrast applications of angles of elevation/depression with those using angles of rotation.
4. The acute angle formed by a line of \qquad that falls below a horizontal line of orientation is called an angle of \qquad -
5. The bearing $S 35^{\circ}$ \qquad indicates a line of sight that forms an angle of \qquad to the east of a line heading due \qquad -.
6. Discuss/Explain how an angle of elevation/ depression naturally yields two right triangles that can be used to solve an application. Include an illustrative sketch.

DEVELOPING YOUR SKILLS

Find the height of the indicated floor of a skyscraper, given the angle of elevation θ at a point 40 m from the base of the building.
7. fourth floor;

$$
\theta=15.3763^{\circ}
$$

8. twenty-first floor; $\theta=57.1715^{\circ}$
9. fifth floor; $\theta=19.2900^{\circ}$
10. twenty-second floor; $\theta=58.3925^{\circ}$
11. sixth floor; $\theta=23.0255^{\circ}$
12. twenty-third floor; $\theta=59.5346^{\circ}$

Exercises 7 to 12

Find the depth of a fishing hook given α, the angle of depression that the 35 ft of fishing line makes with the surface of the water.
13. $\alpha=45.5847^{\circ}$

From a sketch of the following bearings, find the measure of the acute angles formed with (a) the north/south line and (b) the east/west line.
19. $\mathrm{N} 63^{\circ} \mathrm{W}$
20. $\mathrm{N} 81^{\circ} \mathrm{E}$
21. $\mathrm{S} 49^{\circ} \mathrm{E}$
22. $\mathrm{S} 39^{\circ} \mathrm{W}$
23. $\mathrm{N} 23^{\circ} 31^{\prime} \mathrm{E}$
24. $\mathrm{N} 42^{\circ} 24^{\prime} \mathrm{W}$
25. S $15^{\circ} 32^{\prime} 49^{\prime \prime} \mathrm{W}$
26. $\mathrm{S} 77^{\circ} 18^{\prime} 06^{\prime \prime} \mathrm{E}$

A jogger parks her car $\mathbf{8 0} \mathbf{m}$ directly across from a trail that is parallel to the parking lot. Given the acute angle β formed by the shortest distance to the trail and the path she took, find (a) the distance she jogged to the trail and (b) the amount of time it took her to reach the trail, jogging at a constant rate of $3 \mathrm{~m} / \mathrm{sec}$.

Exercises 27 to 32

27. $\beta=10^{\circ}$
28. $\beta=65^{\circ}$
29. $\beta=15^{\circ}$
30. $\beta=70^{\circ}$
31. $\beta=20^{\circ}$
32. $\beta=75^{\circ}$

WORKING WITH FORMULAS

33. Height of a building: $h=\frac{d}{\cot \alpha-\cot \beta}$

The given formula can be used to calculate the height h of a building when the distance d and angles of elevation α and β are known (see the diagram). Use the formula to find the height of the building shown.

APPLICATIONS

35. Angle of elevation: For a person standing 100 m from the center of the base of the Eiffel Tower, the angle of elevation to the top of the tower is 71.6°. How tall is the Eiffel Tower?
36. Angle of elevation: In 2001, the tallest building in the world was the Petronas Tower I in Kuala Lumpur, Malaysia. For a person standing 25.9 ft from the base of the tower, the angle of elevation to the top of the tower is 89°. How tall is the Petronas tower?
37. Angle of depression: A person standing near the top of the Eiffel Tower notices a car wreck some distance from the tower. If the angle of depression from the person's eyes to the wreck is 32°, how far away is the accident from the base of the tower? See Exercise 35.
38. Angle of depression: A person standing on the top of the Petronas Tower I looks out across the city and pinpoints her residence. If the angle of depression from the person's eyes to her home is 5°, how far away (in feet and in miles) is the residence from the base of the tower? See Exercise 36.

34. Distance between two planes departing from the

 same airport: $d=\sqrt{r_{1}^{2} t_{1}^{2}+r_{2}^{2} t_{2}^{2}+2 r_{1} t_{1} r_{2} t_{2} \cos \theta}$The formula shown gives the surface distance between two planes when the first plane flies due north at rate r_{1} for time t_{1} and the second plane flies at a bearing of $\mathrm{S} \theta \mathrm{E}$ at rate r_{2} for time t_{2}. To the nearest mile, find the distance between two planes departing from Dallas Fort Worth given the first plane heads due north at 450 mph for 2.5 hr and the second plane heads $\mathrm{S} 15^{\circ} \mathrm{E}$ at 500 mph for 3 hr .
39. Angles of rotation: From a point 110 ft due south of the eastern end of a planned east/west bridge spanning the Illinois river, a surveyor notes the western end lies on a bearing of N $38^{\circ} 35^{\prime} 15^{\prime \prime} \mathrm{W}$. To the nearest inch, how long will the bridge be?
40. Angles of rotation: A large sign spans an east/west highway. From a point 35 m due
 west of the southern base of the sign, a surveyor finds the northern base lies on a bearing of $\mathrm{N} 67^{\circ} 11^{\prime} 42^{\prime \prime} \mathrm{E}$. To the nearest centimeter, how wide is the sign?

41. Crop duster's speed: While standing near the edge of a farmer's field, Johnny watches a crop duster dust the farmer's field for insect control. Curious as to the plane's speed during each drop,
 Johnny attempts an estimate using the angle of rotation from one end of the field to the other, while standing 50 ft from one corner. Using a stopwatch he finds the plane makes each pass in 2.35 sec . If the angle of rotation was 83°, how fast (in miles per hour) is the plane flying as it applies the insecticide?
42. Train speed: While driving to their next gig, Josh and the boys get stuck in a line of cars at a railroad crossing as the gates go down. As the sleek, speedy express train approaches, Josh decides to pass the time estimating its speed. He spots a large oak tree beside the track some distance away, and figures the angle of rotation from the crossing to the tree is about 80°. If their car is 60 ft from the crossing and it takes the train 3 sec to reach the tree, how fast is the train moving in miles per hour?
43. Height of a climber: A local Outdoors Club has just hiked to the south rim of a large canyon, when they spot a climber attempting to scale the taller northern face. Knowing the distance between the sheer walls of the northern and southern faces of the canyon is approximately 175 yd , they attempt to compute the distance remaining for the climbers to reach the top of the northern

rim. Using a homemade transit, they sight an angle of depression of 55° to the bottom of the north face, and angles of elevation of 24° and 30° to the climbers and top of the northern rim respectively.
(a) How high is the southern rim of the canyon?
(b) How high is the northern rim? (c) How much farther until the climber reaches the top?
44. Observing wildlife: From her elevated observation post 300 ft away, a naturalist spots a troop of baboons high up in a tree. Using the small transit attached to her telescope, she finds the angle of depression to the bottom of this tree is 14°, while the angle of elevation to the top of the tree is 25°. The angle of elevation to the troop of baboons is 21°. Use this information to find (a) the height of the observation post, (b) the height of the baboons' tree, and (c) the height of the baboons above ground.
45. Angle of elevation: The tallest free-standing tower in the world is the CNN Tower in Toronto, Canada. The tower includes a rotating restaurant high above the ground. From a distance of 500 ft the angle of elevation to the pinnacle of the tower is 74.6°. The angle of elevation to the
 restaurant from the same vantage point is 66.5°. How tall is the CNN Tower? How far below the pinnacle of the tower is the restaurant located?
46. Angle of elevation: In January 2009, Burj Dubai unofficially captured the record as the world's tallest building, according to the Council on Tall Buildings and Urban Habitat (Source: www.ctbuh.org). Measured at a point 159 m from its base, the angle of elevation to the top of the spire is 79°. From a distance of about 134 m , the angle of elevation to the top of the roof is also 79°. How tall is Burj Dubai from street level to the top of the spire? How tall is the spire itself?

EXTENDING THE CONCEPT

47. One of the challenges facing any terrestrial exploration of Mars is its weak and erratic magnetic field. An unmanned rover begins a critical mission at landing site \mathbf{A} where magnetic north lies on a bearing of $\mathrm{N} 30^{\circ} \mathrm{W}$ of true (polar) north (see figure). The rover departs in the magnetic direction of $\mathrm{S} 20^{\circ} \mathrm{E}$ and travels straight for 1.4 km to site \mathbf{B}. At this point, magnetic north lies on a bearing of $\mathrm{N} 45^{\circ} \mathrm{E}$ of true north. The rover turns to magnetic direction of $\mathrm{N} 5^{\circ} \mathrm{W}$ and travels 2 km straight to site \mathbf{C}. At \mathbf{C}, magnetic north lies on a bearing of $\mathrm{N} 10^{\circ} \mathrm{W}$ of true north. In what magnetic direction should the rover head to return to site \mathbf{A} ?

Exercise 47

Exercise 48

48. As of the year 2009, the Bailong elevator outside of Zhangjiajie, China, was the highest exterior glass elevator in the world. While Christine was descending in the red car, she noticed Simon ascending in the yellow car, below her at an angle of depression of 50°. Seven seconds later, Simon was above her at an angle of elevation of 50°. If the cars have the same velocity ascending and descending, and the horizontal distance between the two cars is 47 ft , how fast do the cars travel?

MAINTAINING YOUR SKILLS

49. (1.1) The hypotenuse of a 30-60-90 triangle measures $14 \sqrt{3} \mathrm{in}$. Find the lengths of the two legs.
50. (2.1) Given $\sec \theta=5$, find the exact value of $\csc ^{2}\left(90^{\circ}-\theta\right)$
51. (1.3) Given the terminal side of θ is coincident with the ray $y=-3 x, x>0$, evaluate
a. $\sin \theta$
b. $\cos \theta$
52. (1.2) Find the measure of angle C in triangle $A B C$, given $A=48^{\circ} 36^{\prime}$ and $B=91^{\circ} 44^{\prime} 21^{\prime \prime}$.
53. (2.1) Given $\sin \alpha=\frac{2}{5}$, find the value of the other five trig functions of the acute angle α.
54. (2.2) Solve the triangle shown and write the answers in table form. Round sides to the nearest tenth.

2.4 Extending Beyond Acute Angles

Learning Objectives

In Section 2.4 you will learn how to:
\square
A. Find the reference angle of any nonquadrantal angleB. Use reference angles to evaluate the trig functions for any nonquadrantal angleC. Solve applications using the trig functions of any angle

In Section 2.1, we developed the "ratio of sides" definition of the six trig functions. While extremely useful, the ratio of two sides of a right triangle limits their application to acute angles. Using the concept of a reference angle, we can extend our understanding of right triangle trigonometry to cover all nonquadrantal angles as well, and consequently expand our ability to solve applications involving trigonometry.

A. Reference Angles

For any nonquadrantal angle θ in standard position, the acute angle θ_{r} formed by the terminal side and the nearest x-axis is called the reference angle. Several examples of this definition are illustrated in Figures 2.14 through 2.17 for $\theta>0^{\circ}$ (note that if $0^{\circ}<\theta<90^{\circ}$, then $\theta_{r}=\theta$).

Figure 2.14
Figure 2.15

Figure 2.16
Figure 2.17

$\theta_{r}=360^{\circ}-\theta$

EXAMPLE $1>$ Finding Reference Angles

Determine the reference angle for
a. 315°
b. 150°
c. 239°
d. 425°

Solution Begin by mentally visualizing each angle and the quadrant where it terminates.
a. 315° is a QIV angle:
c. 239° is a QIII angle: $\theta_{r}=360^{\circ}-315^{\circ}=45^{\circ}$ $\theta_{r}=239^{\circ}-180^{\circ}=59^{\circ}$
b. 150° is a QII angle:
d. 425° is a QI angle:
$\theta_{r}=180^{\circ}-150^{\circ}=30^{\circ}$

$$
\theta_{r}=425^{\circ}-360^{\circ}=65^{\circ}
$$

Now try Exercises 9 through 18

In our everyday experience, there are many actions and activities where angles greater than or equal to 360° are applied. Some common instances are a professional basketball player who "does a three-sixty" (360°) while going to the hoop, a diver who completes a "two-and-a-half" $\left(900^{\circ}\right)$ off the high board, and a skater who executes a perfect triple axel ($3 \frac{1}{2}$ turns or 1260°). As these examples suggest, angles greater than 360° must still terminate on a quadrantal axis, or in one of the four quadrants, allowing a reference angle to be found and the functions to be evaluated for any angle regardless of size. Figure 2.18 illustrates that $\alpha=135^{\circ}, \beta=-225^{\circ}$, and $\theta=495^{\circ}$ are all coterminal, with each having a reference angle of 45°.

Since 360° is one full rotation, all angles $\theta+360^{\circ} k$ will be coterminal for any integer k. For angles with a very large magnitude, we can find the quadrant of the terminal side by adding or subtracting as many integer multiples of 360° as needed until $\theta<360^{\circ}$.

EXAMPLE 2 Finding Reference Angles

Determine the reference angle for
a. 1908°
b. -1116°

Solution a. Since $\frac{1908^{\circ}}{360^{\circ}}=5.3$, there are five complete multiples of 360° (rotations) in 1908°.

$$
\begin{aligned}
1908^{\circ}-360^{\circ}(5) & =1908^{\circ}-1800^{\circ} & & \text { subtract five multiples of } 360^{\circ} \\
& =108^{\circ} & & \text { simplify }
\end{aligned}
$$

1908° and 108° are coterminal QII angles:

$$
\theta_{r}=180^{\circ}-108^{\circ}=72^{\circ}
$$

b. Since $\frac{-1116^{\circ}}{360^{\circ}}=-3.1$, there are three complete multiples of 360° in -1116°.

To find a positive coterminal angle between 0° and 360°, add one more multiple of 360° (in this case, $3+1=4$ multiples of 360°).

$$
\begin{aligned}
-1116^{\circ}+360^{\circ}(4) & =-1116^{\circ}+1440^{\circ} \quad & & \text { add four multiples of } 360^{\circ} \\
& =324^{\circ} & & \text { simplify }
\end{aligned}
$$

-1116° and 324° are coterminal QIV angles:

$$
\theta_{r}=360^{\circ}-324^{\circ}=36^{\circ}
$$

Now try Exercises 19 through 26

B. The Trig Functions of Any Angle

In Section 2.1, we reconciled the two definitions of the trig functions of acute angles by placing a right triangle in the first quadrant. When an angle θ is not acute, we draw a vertical line segment from the terminal side of θ to the x-axis, forming a right triangle with the reference angle θ_{r}. For any trig function T, we find the value of $T(\theta)$ by simply finding $T\left(\theta_{r}\right)$ and applying the correct sign based on the quadrant of the terminal side (see Figure 2.19).

Figure 2.19

Quadrant II Sine is positive	All are positive
Quadrant I Tangent Quadrant III	Cosine is positive Quadrant IV

EXAMPLE $3-$ Evaluating Trig Functions Using $\boldsymbol{\theta}_{\boldsymbol{r}}$
Use a reference angle to evaluate $\sin \theta, \cos \theta$, and $\tan \theta$ for $\theta=315^{\circ}$.
Solution The terminal side is in QIV where cosine is positive
 while sine and tangent are negative. With $\theta_{r}=45^{\circ}$, we consider a 45-45-90 triangle placed in the coordinate plane as shown in the margin and we have:

$$
\begin{aligned}
\sin 315^{\circ} & =-\sin \theta_{r} & & \text { QIV: } \sin \theta<0 \\
& =-\sin 45^{\circ} & & \text { replace } \theta_{r} \text { with } 45^{\circ} \\
& =-\frac{\sqrt{2}}{2} & & \sin 45^{\circ}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

Similarly, the values for cosine and tangent are

$$
\begin{aligned}
\cos 315^{\circ} & =+\cos \theta_{r} & \tan 315^{\circ} & =-\tan \theta_{r} \\
& =\cos 45^{\circ} & & =-\tan 45^{\circ} \\
& =\frac{\sqrt{2}}{2} & & =-1
\end{aligned}
$$

EXAMPLE 4

Evaluating Trig Functions of Any Angle
Evaluate $\sin 150^{\circ}, \cos \left(-210^{\circ}\right)$, and $\tan 510^{\circ}$.

Solution The three angles are coterminal in QII

B. You've just learned how to use reference angles to evaluate the trig functions for any nonquadrantal angle where sine is positive while cosine and tangent are negative. With $\theta_{r}=30^{\circ}$, we visualize a 30-60-90 triangle in the coordinate plane, as shown.

$$
\begin{aligned}
\sin 150^{\circ} & =+\sin \theta_{r} & \cos \left(-210^{\circ}\right) & =-\cos \theta_{r} \\
& =-\cos 30^{\circ} & \tan 510^{\circ} & =-\tan \theta_{r} \\
& =\sin 30^{\circ} & & =-\tan 30^{\circ} \\
& =\frac{1}{2} & & \\
& =-\frac{\sqrt{3}}{2} & & =-\frac{\sqrt{3}}{3}
\end{aligned}
$$

Now try Exercises 43 through 54

Note the reference angles in Examples 3 and 4 called for the use of special triangles, but the principles demonstrated apply for reference angles of any size. See Exercises 55 through 62.

Figure 2.20

C. Applications of the Trig Functions of Any Angle

One of the most basic uses of coterminal angles is determining all values of θ that satisfy a stated relationship. For example, by now you are aware that if $\sin \theta=\frac{1}{2}$ (positive one-half), then $\theta=30^{\circ}$ or $\theta=150^{\circ}$ (see Figure 2.20). But this is also true for all angles coterminal with these two, and we would write the solutions as $\theta=30^{\circ}+360^{\circ} k$ and $\theta=150^{\circ}+360^{\circ} k$ for all integers k.

EXAMPLE $5>$ Finding All Angles that Satisfy a Given Equation

Find all angles satisfying the relationship given. Answer in degrees.
a. $\cos \theta=-\frac{\sqrt{2}}{2}$
b. $\tan \theta=-1.3764$

Solution a. Cosine is negative in QII and QIII. Recognizing $\cos 45^{\circ}=\frac{\sqrt{2}}{2}$, we reason $\theta_{r}=45^{\circ}$ and two solutions are $\theta=135^{\circ}$ from QII and $\theta=225^{\circ}$ from QIII. For all values of θ satisfying the relationship, we have $\theta=135^{\circ}+360^{\circ} \mathrm{k}$ and $\theta=225^{\circ}+360^{\circ} k$. See Figure 2.21.

Figure 2.21

WORTHY OF NOTE

Since reference angles are acute, we find them by using the $\sin ^{-1}, \cos ^{-1}$, or $\tan ^{-1}$ keys for positive values.
b. Tangent is negative in QII and QIV. For -1.3764 we find θ_{r} using a calculator:

$$
\begin{aligned}
& \text { 2nd TAN }\left(\tan ^{-1}\right) 1.3764 \text { ENTER shows } \\
& \tan ^{-1}(1.3764) \approx 54 \text {, so } \theta_{r}=54^{\circ} \text {. } \\
& \text { Two solutions are } \theta=180^{\circ}-54^{\circ}=126^{\circ} \\
& \text { from QII, and in QIV } \theta=360^{\circ}-54^{\circ}=306^{\circ} \text {. } \\
& \text { The result is } \theta=126^{\circ}+360^{\circ} k \text { and } \\
& \theta=306^{\circ}+360^{\circ} k \text {. Note these can be } \\
& \text { combined into the single statement } \\
& \theta=126^{\circ}+180^{\circ} k \text {. See Figure } 2.22 \text {. }
\end{aligned}
$$

Figure 2.22

Now try Exercises 65 through 72

We close this section with an additional application of the concepts related to trigonometric functions of any angle.

EXAMPLE 6 Applications of Coterminal Angles: Location on Radar

A radar operator calls the captain over to her screen saying, "Sir, we have an unidentified aircraft at bearing $\mathrm{N} 20^{\circ} \mathrm{E}$ (a standard 70° rotation). I think it's a UFO." The captain asks, "What makes you think so?" To which the sailor replies, "Because it's at 5000 ft and not moving!" Name all angles for which the UFO causes a "blip" to occur on the radar screen.

Solution $>$ Since radar typically sweeps out a 360° angle, a blip will occur on the screen for all angles
C. You've just learned how to solve applications using the trig functions of any angle
$\theta=70^{\circ}+360^{\circ} k$, where k is an integer.

Now try Exercises 73 through 78

2.4 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. Since the angles 280° and -440° differ by a multiple of 360°, they are \qquad and both have a \qquad angle of 80°. While not coterminal with these two angles, 100° also has a reference angle of \qquad -.
2. The trig function values of 150° can be found with the function values of the 30° \qquad angle. The signs of the trig function values are determined by the \qquad of the \qquad side of the angle.
3. If θ satisfies a given trigonometric relationship, then for all \qquad $k, \theta+$ \qquad does as well.
4. For any angle θ, its reference angle θ_{r} is the positive \qquad angle formed by the \qquad side and the nearest x-axis.
5. Discuss the similarities and differences between the trigonometry of right triangles and the trigonometry of any angle.
6. Let $T(x)$ represent any one of the six basic trig functions. Explain why the equation $T(x)=k$ will always have exactly two solutions in [0, 360°) if x is not a quadrantal angle.

DEVELOPING YOUR SKILLS

7. Draw a 30-60-90 triangle with the 60° angle at the origin and the short side along the positive x-axis. Determine the slope and equation of the line coincident with the hypotenuse, then pick any point on this line and evaluate $\sin 60^{\circ}$, $\cos 60^{\circ}$, and $\tan 60^{\circ}$. Comment on what you notice.
8. Draw a $45-45-90$ triangle with a 45° angle at the origin and one side along the positive x-axis. Determine the slope and equation of the line coincident with the hypotenuse, then pick any point on this line and evaluate $\sin 45^{\circ}, \cos 45^{\circ}$, and $\tan 45^{\circ}$. Comment on what you notice.

Name the reference angle $\boldsymbol{\theta}_{\boldsymbol{r}}$ for the angle $\boldsymbol{\theta}$ given.
9. $\theta=50^{\circ}$
10. $\theta=120^{\circ}$
11. $\theta=210^{\circ}$
12. $\theta=315^{\circ}$
13. $\theta=-45^{\circ}$
14. $\theta=-150^{\circ}$
15. $\theta=112^{\circ}$
16. $\theta=417^{\circ}$
17. $\theta=404.4^{\circ}$
18. $\theta=222.2^{\circ}$
19. $\theta=500^{\circ}$
20. $\theta=1125^{\circ}$
21. $\theta=-168.4^{\circ}$
22. $\theta=-328.2^{\circ}$
23. $\theta=-382.1^{\circ}$
24. $\theta=1646.3^{\circ}$
25. $\theta=1361^{\circ} 30^{\prime}$
26. $\theta=-969^{\circ} 45^{\prime}$

Find the exact value of $\sin \theta, \cos \theta$, and $\tan \theta$ using reference angles.
27. $\theta=330^{\circ}$
28. $\theta=390^{\circ}$
29. $\theta=-45^{\circ}$
30. $\theta=-120^{\circ}$
31. $\theta=240^{\circ}$
32. $\theta=315^{\circ}$
33. $\theta=-150^{\circ}$
34. $\theta=-210^{\circ}$
35. $\theta=600^{\circ}$
36. $\theta=480^{\circ}$
37. $\theta=-840^{\circ}$
38. $\theta=-930^{\circ}$
39. $\theta=570^{\circ}$
40. $\theta=495^{\circ}$
41. $\theta=-1230^{\circ}$
42. $\theta=3270^{\circ}$

Find two positive and two negative angles that are coterminal with the angle given. Answers will vary.
43. 52°
44. 12°
45. 87.5°
46. 22.8°
47. 225°
48. 175°
49. -107°
50. -215°

Evaluate in exact form as indicated.

51. $\sin 120^{\circ}, \cos \left(-240^{\circ}\right), \tan 480^{\circ}$
52. $\sin 225^{\circ}, \cos 585^{\circ}, \tan \left(-495^{\circ}\right)$
53. $\sin \left(-30^{\circ}\right), \cos \left(-390^{\circ}\right), \tan 690^{\circ}$
54. $\sin 210^{\circ}, \cos 570^{\circ}, \tan \left(-150^{\circ}\right)$

For each exercise, state the quadrant of the terminal side of $\boldsymbol{\theta}$ and the sign of the function in that quadrant. Then find the reference angle $\boldsymbol{\theta}_{r}$ and evaluate the function at both $\boldsymbol{\theta}$ and $\boldsymbol{\theta}_{r}$ using a calculator. Round to four decimal places.
55. $\theta=719^{\circ}$; sine
56. $\theta=528^{\circ}$; cosine
57. $\theta=-419^{\circ}$; tangent
58. $\theta=-621^{\circ}$; secant
59. $\theta=681^{\circ}$; cosecant
60. $\theta=995^{\circ}$; tangent
61. $\theta=805^{\circ}$; cosine
62. $\theta=772^{\circ}$; sine

WORKING WITH FORMULAS

63. The area of a parallelogram: $A=a b \sin \theta$

The area of a parallelogram is given by the formula shown, where a and b are the lengths of the sides and θ is the angle between them. Use the formula to complete the following: (a) find the area of a parallelogram with sides $a=9$ and $b=21$ given $\theta=50^{\circ}$. (b) What is the smallest integer value of θ where the area is greater than 150 units 2 ? (c) State what happens when $\theta=90^{\circ}$. (d) How can you find the area of a triangle using this formula?
64. The angle between two intersecting lines:

$$
\tan \theta=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}
$$

Given line 1 and line 2 with slopes m_{1} and m_{2}, respectively, the angle between the two lines is given by the formula shown. Find the angle θ if the equation of line 1 is $y_{1}=\frac{3}{4} x+2$ and line 2 has equation $y_{2}=-\frac{2}{3} x+5$.

APPLICATIONS

Find all angles satisfying the stated relationship. For standard angles, express your answer in exact form. For nonstandard values, use a calculator and round function values to tenths.
65. $\cos \theta=\frac{1}{2}$
66. $\sin \theta=\frac{\sqrt{2}}{2}$
67. $\sin \theta=-\frac{\sqrt{3}}{2}$
68. $\tan \theta=-\frac{\sqrt{3}}{1}$
69. $\sin \theta=0.8754$
70. $\cos \theta=0.2378$
71. $\tan \theta=-2.3512$
72. $\cos \theta=-0.0562$
73. Nonacute angles: At a recent carnival, one of the games on the midway was played using a large spinner that turns clockwise. On Jorge's spin the number 25 began at the 12 o'clock (top/center)

Exercise 73
 position, returned to this position five times during the spin and stopped at the 3 o'clock position. What angle θ did the spinner spin through? Name all angles that are coterminal with θ.
74. Nonacute angles: One of the four blades on a ceiling fan has a decal on it and begins at a designated " 12 o'clock" position. Turning the switch on and then immediately off causes the blade to make over three complete, counterclockwise rotations, with the blade stopping at the 8 o'clock position. What angle θ did the blade turn through? Name all angles that are coterminal with θ.
75. High dives: As part of a diving competition, David executes a perfect reverse two-and-a-half flip. Does he enter the water feet first or head first? Through what angle did he turn from takeoff until the moment he entered the water?

76. Gymnastics: While working out on a trampoline, Charlene does three complete, forward flips and then belly-flops on the trampoline before returning to the upright position. What angle did she turn through from the start of

Exercise 77
this maneuver to the moment she belly-flops?
77. Spiral of Archimedes: The graph shown is called the spiral of Archimedes. Through what angle θ has the spiral turned, given the spiral terminates at $(6,-2)$ as indicated?

Exercise 78
78. Involute of a circle: The graph shown is called the involute of a circle. Through what angle θ has the involute turned, given the graph terminates at $(-4,-3.5)$ as indicated?

EXTENDING THE CONCEPT

79. In an elementary study of trigonometry, the hands of a clock are often studied because of the angle relationship that exists between the hands. For example, at 3 o'clock, the angle between the two hands is a right angle and measures 90°.
a. What is the angle between the two hands at 1 o'clock? 2 o'clock? Explain why.
b. What is the angle between the two hands at 6:30? 7:00? 7:30? Explain why.
c. Name four times at which the hands will form a 45° angle.
80. In the diagram shown, the indicated ray is of arbitrary length. (a) Through what additional angle α would the ray have to be rotated to create triangle $A B C$?
(b) What will be the length of
 side $A C$ once the triangle is complete?
81. Referring to Exercise 74, suppose the fan blade had a radius of 20 in . and is turning at a rate of 12 revolutions per second. (a) Find the angle the blade turns through in 3 sec . (b) Find the circumference of the circle traced out by the tip
of the blade. (c) Find the total distance traveled by the blade tip in 10 sec . (d) Find the speed, in miles per hour, that the tip of the blade is traveling.

MAINTAINING YOUR SKILLS

82. (2.3) Jazon is standing 117 ft from the base of the Washington Monument in Washington, D.C. If his eyes are 5 ft above level ground and he must hold his head at a 78° angle from horizontal to see the top of the monument (the angle of elevation of 78°), estimate the height of the monument. Answer to the nearest tenth of a foot.
83. (2.1) Given $\tan 40^{\circ} \approx 0.8391$, what is the value of cot 50° ? Why?
84. (2.2) Solve the given triangle using a calculator. Express all angles and sides to the nearest tenth of a unit. Answer in table form.

Exercise 84

85. (2.2) Solve the given Exercise 85 triangle using special angles. Express all angles and sides in exact form. Answer in table form.
86. (1.4) Write $\sin \theta$ in terms
 of $\cos \theta$.
87. (1.1) Find the complement and supplement of $12^{\circ} 34^{\prime} 56^{\prime \prime}$.

SUMMARY AND CONCEPT REVIEW

SECTION 2.1 A Right Triangle View of Trigonometry

KEY CONCEPTS

- The sides of a right triangle can be named relative to their location with respect to a given angle.

- The ratios of two sides with respect to a given angle are named as follows:

$$
\sin \alpha=\frac{\text { opp }}{\text { hyp }} \quad \cos \alpha=\frac{\text { adj }}{\text { hyp }} \quad \tan \alpha=\frac{\text { opp }}{\text { adj }}
$$

- The reciprocal of the ratios above play a vital role and are likewise given special names:

$$
\begin{array}{lll}
\csc \alpha=\frac{\text { hyp }}{\text { opp }} & \sec \alpha=\frac{\text { hyp }}{\text { adj }} & \cot \alpha=\frac{\text { adj }}{\text { opp }} \\
\csc \alpha=\frac{1}{\sin \alpha} & \sec \alpha=\frac{1}{\cos \alpha} & \cot \alpha=\frac{1}{\tan \alpha}
\end{array}
$$

- In certain applications, using the coordinate plane to define the trig functions is advantageous, while at other times, the right triangle definitions are more useful. By positioning a right triangle in QI, we can reconcile the two definitions.
- Each trig function of α is equal to the cofunction of its complement. For instance, the complement of sine is cosine and $\sin \alpha=\cos \left(90^{\circ}-\alpha\right)$.

EXERCISES

Use the triangle shown to find the values of the indicated functions.
Exercise 1 to 6

1. a. $\sin \alpha$
b. $\sin \beta$
2. a. $\csc \alpha$
b. $\csc \beta$
b. $\sec \beta$
3. Given $\tan \theta=3$, determine the exact values of the other five trig functions of the acute angle θ.
4. Rewrite each expression in terms of a cofunction.
a. $\tan 57.4^{\circ}$
b. $\sin \left(19^{\circ} 30^{\prime} 15^{\prime \prime}\right)$

SECTION 2.2 Solving Right Triangles

KEY CONCEPTS

- To solve a right triangle means to apply any combination of the trig functions, along with the triangle properties, until all sides and all angles are known.
- A right triangle can be solved if (a) two sides are given or (b) one side and one acute angle are given.
- The expression $\cos ^{-1} x$ represents an angle θ whose cosine is $x(\cos \theta=x)$.

EXERCISES

9. Use a calculator to solve for A :
a. $\cos 37^{\circ}=A$
b. $\cos A=0.4340$

Solve each triangle. Round angles to the nearest tenth and sides to the nearest hundredth.
10.

11.

12. Josephine is to weld a vertical support to a $20-\mathrm{m}$ ramp so that the incline is exactly 15°. What is the height h of the support that must be used?

13. A slice of bread is roughly 14 cm by 10 cm . If the slice is cut diagonally in half, what acute angles are formed?

SECTION 2.3 Applications of Static Trigonometry

KEY CONCEPTS

- An angle of elevation is the angle formed by a horizontal line of orientation (parallel to level ground) and the line of sight. An angle of depression is likewise formed, but with the line of sight below the line of orientation.
- Bearings (e.g. N $26^{\circ} \mathrm{W}$) are specified with three pieces of information: (1) the direction North or South of an east/west reference line, (2) the acute angle the bearing forms with a north/south reference line, and (3) the direction East or West of this north/south reference line.
- Accurate sketches are a key component to solving more complex applications.

EXERCISES

14. Directly above center court, the Yakima SunDome in Yakima, Washington, rises to its maximum height of 92 ft . The angle of elevation from Justin's parking spot at a Yakama Sun Kings home game to the top of the dome is 11°. To the nearest foot, how far from center court is Justin parked?
15. What are the four bearings that make an angle of 31° with a north/south line and 59° with an east/ west line?
16. Dr. Stampfli is waiting for a helicopter to land on the hospital helipad, 120 ft from where he is standing. The angle of elevation to the helicopter from the doctor's position is 14°. How fast is the helicopter descending if it takes 20 sec to land? Assume the descent is strictly vertical.
17. From the observation deck of a seaside building 480 m high, Armando sees two fishing boats in the distance. The angle of depression to the nearer boat is 63.5°, while for the boat farther away the angle is 45°.
(a) How far out to sea is the nearer boat? (b) How far apart are the two boats?

SECTION 2.4 Extending Beyond Acute Angles

KEY CONCEPTS

- A reference angle θ_{r} is defined to be the acute angle formed by the terminal side of a given angle θ and the x-axis.
- By placing a right triangle in the coordinate plane with one acute angle at the origin and a leg along the x-axis, we note the trig functions can be defined in terms of the ratio of sides of the right triangle, or the ratio of coordinates of a point $P(x, y)$ on the hypotenuse of this triangle.
- Reference angles can be used to evaluate the trig functions of any nonquadrantal angle, since the values are fixed by the ratio of sides and the signs are dictated by the quadrant of the terminal side.
- If the value of a trig function and the quadrant of the terminal side are known, the related angle θ can be found using a reference angle in conjunction with the special triangles or the $\sin ^{-1}, \cos ^{-1}$, or $\tan ^{-1}$ features of a calculator.
- If θ is a solution to $\sin \theta=k$, then $\theta+360^{\circ} n$ is also a solution for any integer n.

EXERCISES

18. Name the reference angle for the angles $\theta=-152^{\circ}, \theta=521^{\circ}$, and $\theta=210^{\circ}$.
19. Find the exact value of $\sin \theta, \cos \theta$, and $\tan \theta$, given $\theta=-870^{\circ}$.
20. Evaluate in exact form as indicated.
a. $\sin 135^{\circ}$
b. $\cos -225^{\circ}$
c. $\tan 855^{\circ}$
21. Find all angles satisfying the stated relationship. For standard angles, express your answer in exact form. For nonstandard angles, use a calculator and round to the nearest tenth.
a. $\tan \theta=-1$
b. $\cos \theta=\frac{\sqrt{3}}{2}$
c. $\tan \theta=4.0108$
d. $\sin \theta=-0.4540$
22. Evaluate $\sin \alpha$ and $\tan \beta$ given $a=6, b=5$, and $c=\sqrt{61}$ for the triangle shown.
23. The front door of city hall is 225 ft directly north of

Exercise 1

 a statue of Abraham Lincoln. The police station is due east of city hall and its front door lies on a bearing of $\mathrm{N} 36^{\circ} \mathrm{E}$ from the statue. How far is the police station door from the city hall door? Round to the nearest tenth.
3. Find the exact value of $\sin \theta, \cos \theta$, and $\tan \theta$ given $\theta=1200^{\circ}$.
4. Solve the triangle shown and write answers in table form. Round to the nearest tenth.

Exercise 4

5. Jonas, a tornado chaser, notes the angle of elevation to the top of an F2 tornado is 17.3° when it just touches down in Smallville, 3.2 km away. How tall is the tornado at that moment?
6. Find the value of x that makes the statement an identity. $\csc (2 x)^{\circ}=\sec (3 x-5)^{\circ}$
7. Given $\cos \theta=\frac{36}{85}$, determine the exact value of the other five trig functions of the acute angle θ.
8. The service door into the foyer of a large office building is $36^{\prime \prime}$ wide by $78^{\prime \prime}$ tall. The building manager has ordered a large wall painting $85^{\prime \prime}$ by $85^{\prime \prime}$ to add some atmosphere to the foyer area.
(a) Can the painting be brought in the service door? (b) If so, at what two integer-valued angles (with respect to level ground) could the painting be tilted?
9. Evaluate in exact form as indicated.
a. $\sin -30^{\circ}$
b. $\cos 330^{\circ}$
c. $\tan -750^{\circ}$
10. Given $\sin \theta=\frac{16}{63}$, what is the value of $\cos \left(90^{\circ}-\theta\right)$? Why?
11. Pat watches Jeff try to start the lawn mower directly in front of his second-story window. Pat is 16 ft above the level lawn below, and the angle of depression to the lawn mower is $\theta=38^{\circ} 39^{\prime}$. How far is the mower from the house?

Exercise 11

12. Name the reference angle θ_{r} for the angle θ given.
a. 735°
b. -135°
13. From midnight through $9: 00$ p.M. the following day, what signed angle does a clock's hour hand rotate through?
14. Given α and β are complementary angles, verify $\cos \alpha \cot \beta=\cos \beta$.
15. On your approach shot to the ninth green, the Global Positioning System (GPS) your cart is equipped with tells you the pin is 115.47 yd away. The distance plate states the straight line distance to the hole is 100 yd
 (see the diagram). Relative to a straight line between the plate and the hole, at what acute angle θ should you hit the shot?
16. The electricity supply lines to the top of Lone Eagle Plateau must be replaced, and the new lines will be run in conduit buried slightly beneath the surface. The scale of
 elevation is $1: 150$ (each closed figure indicates an increase in 150 ft of elevation), and the scale of horizontal distance is $1 \mathrm{in} .=200 \mathrm{ft}$. (a) Find the increase in elevation from point A to point B,
(b) use a proportion to find the horizontal distance from A to B if the measured distance on the map is $2 \frac{1}{4}$ in., (c) draw the corresponding right triangle and use it to estimate the length of conduit needed from A to B and the angle of incline the installers will experience while installing the conduit.
17. Solve the triangle $A B C$ shown by completing the table. Round to the nearest tenth.

Exercise 17

18. Ron set up his bird watching outpost 135 yd due north of a duck nest. Some time later, he watches a mother duck and her ducklings swim due west for $9 \mathrm{~min}, 52 \mathrm{sec}$ to a point on bearing $\mathrm{S} 65^{\circ} 30^{\prime} \mathrm{W}$. How far did they swim? How fast were they swimming?
19. Use a reference angle to find the value of $\tan 780^{\circ}$.
20. Virtually everyone is familiar with the Statue of Liberty in New York Bay, but fewer know that America is home to a second "Statue of Liberty" standing proudly atop the iron dome of the Capitol Building. From a distance of 600 ft , the angle of elevation from ground level to the top of the statue (from the east side) is 25.60°. The angle of elevation to the base of the statue is 24.07°. How tall is the statue Freedom (the name sculptor Thomas Crawford gave this statue)?

PRACTICE TEST

1. In the right triangle shown, find b given $\alpha=41^{\circ}$ and $c=25 \mathrm{~cm}$. Round to the nearest hundredth.
2. Name the reference angle of each angle given.

Exercise 1

a. 225°
b. -510°
3. Given $\csc \theta=4$, find the other five trig functions of the acute angle θ.
Solve the triangles shown. Answer in table form.
4.

Exercise 4

5. $a=138 \mathrm{ft}, b=174 \mathrm{ft}$

Exercise 5

6. From her Brooklyn apartment, Catherine has a perfect view of a cell phone tower on the roof of a neighboring building, 73 ft away. From her window, the angle of elevation to the top of the tower is 32° and the angle of depression to the bottom of the tower is 17°. How tall is the tower?

Exercise 6

7. Complete the table using reference angles and exact values.

$\boldsymbol{\theta}$	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
30°						
45°						
60°						
135°						
240°						
330°						

8. Given the figure shown, find the following:
a. $\sin \left(180^{\circ}+B\right)$
b. $\cos \left(180^{\circ}-B\right)$
c. $\tan (-B)$

Exercise 8

9. During halftime of a professional football game, Maya the disc dog and her handler Veronica put on an amazing performance. The show begins with Maya on one side line and Veronica 160 ft directly across from her on the opposite sideline. Maya streaks down her sideline for 5.5 sec at a speed of $32 \mathrm{ft} / \mathrm{sec}$ before she makes a spectacular behind-the-back catch. At what angle θ did Veronica throw the disc?

Exercise 10

10. Given $\sin 15^{\circ}=\frac{1}{2} \sqrt{2-\sqrt{3}}$ in exact form, find the exact value of $4 \cos ^{2} 75^{\circ}$ using a cofunction.
11. The "plow" is a yoga position in which a person lying on their back brings their feet up, over, and behind their head and touches them to the floor. If distance from hip to shoulder (at the right angle) is 57 cm and from hip to toes is 88 cm , find the distance from shoulders to toes and the angle formed at the hips.

Exercise 11

12. While doing some night fishing, you round a peninsula and a tall light house comes into view. Taking a sighting, you find the angle of elevation to the top of the lighthouse is 25°. If the lighthouse is known to be 27 m tall, how far from the lighthouse are you?

Exercise 12

13. The control tower at Ocala International Airport is tracking two inbound flights. Flight 178 is 2.3 mi away at a bearing of $\mathrm{N} 22.1^{\circ} \mathrm{E}$ and Flight 259 is on a bearing of $\mathrm{N} 67.9^{\circ} \mathrm{W}$. If the onboard radar of Flight 178 shows Flight 259 at a bearing of S 57.1° W, how far apart are the two planes?
14. Find all angles that satisfy $\cos \theta=-\frac{\sqrt{3}}{2}$.
15. Using the given figure, identify the following ratios as trig functions of the angle α.
a. $\frac{b}{a}$
b. $\frac{c}{a}$
c. $\frac{b}{c}$
d. $\frac{a}{c}$
e. $\frac{c}{b}$
f. $\frac{a}{b}$
Exercise 15

16. Find the angle θ that the diagonal across the middle of the box makes at the upper corner.

Exercise 16

17. Given α and β are complementary angles, verify $\sin \alpha(\sec \beta-\sin \alpha)=\sin ^{2} \beta$ is an identity.
18. On a calm, clear day, a helium balloon is released and begins rising. (a) How high is the balloon if the angle of elevation is 38° from a distance of 50 ft ? (b) If a second reading of 56° is taken five seconds later, how high is the balloon? (c) How fast is the balloon rising in miles per hour (round to tenths)?
19. Given $\sin 32^{\circ} \approx 0.53$, find the value of $\sin 148^{\circ}$, \sin 212°, and $\sin 328^{\circ}$ without using a calculator.
20. The cities of Cairo, Alexandria, and Port Said, on the boundaries of the Nile River Delta, approximate the vertices of a right triangle, as shown. If the distance from Cairo to Port Said is 168 km , how far is Alexandria from Port Said?

Exercise 20

GALCULATOR EXPLORATION AND DISCOVERY

Finding the Distance from the Earth to the Sun

Aristarchus of Samos ($\sim 310-230$ b.c.) was a Greek astronomer and mathematician. He appears to be among the first to realize that when the Moon is in its first quarter, the triangle formed by the Sun, the Earth, and the Moon ($\triangle E M S$ in the figure) must be a right triangle.

Although he did not have trigonometry or even degree measure at his disposal, in effect he estimated $\angle E$ to be 87° and used this right triangle to reckon how many times farther the Sun was from the Earth, than the Moon was from the Earth. Since $\overline{E M}$ is the side adjacent to $\angle E$ and $\overline{E S}$ is the hypotenuse of the right triangle, we can use either the cosine or secant functions to find this same information. Here we'll use the secant function.

$$
\begin{aligned}
\sec 87^{\circ} & =\frac{\overline{E S}}{\overline{E M}} & & \text { sec } 87^{\circ}=\frac{\text { hypotenuse }}{\text { adjacent }} \\
\overline{E M} \sec 87^{\circ} & =\overline{E S} & & \text { multiply by } \overline{E M} \\
19.1 \overline{E M} & \approx \overline{E S} & & \sec 87^{\circ} \approx 19.1
\end{aligned}
$$

Figure 2.23
Using Aristarchus＇estimate of 87° for $\angle E$ ，the distance from the Earth to the Sun would be about 19 times the distance from the Earth to the Moon．While his reasoning was sound，the actual distance from the Earth to the Sun is about 387 times the distance from the Earth to the Moon．This huge difference can partially be attributed to a lack of precise measurements，but the principal reason is the behavior of the secant function as its input values approach 90° ．By entering the secant function as $Y_{1}=1 / \cos (X)$ on the $Y=$ screen and setting up a table using 2nd WINDOW（TBLEST）as shown in Figure 2．23，we obtain the table shown in Figure 2．24．Knowing the value for Y_{1} should be about 387 for this application，we infer that the measure of $\angle E$ must be somewhere between 89.5° and 90° ．We improve this estimate by resetting the table to start at 89.5 ，with $\Delta \mathrm{Tbl}=0.05$ ．Scrolling downward，we identify 89.85° as a close estimate for $\angle E$ ，since $\mathrm{Y}_{1} \approx 382$（see Figure 2.25 ）．With accurate estimates of this angle，we can closely approximate the average distance from the Sun to the Earth，which is now known to be $92,960,000 \mathrm{mi}$ （Source：www．nasa．gov／worldbook／sun＿worldbook．html）．
Exercise 1：Using 240，000 mi as the average distance from the Earth to the Moon，what would have been Aristarchus＇original estimate of the Sun＇s distance from the Earth？ Round your answer to the nearest thousand miles．

Exercise 2：Using 240，000 mi as the average distance from the Earth to the Moon and 89.85° as an improved estimate of $\angle E$ ，estimate the Sun＇s distance from the Earth．Round your answer to the nearest thousand miles．

Exercise 3：Use the table feature of your graphing calculator as shown earlier to find an estimate of $\angle E$ ，correct to the nearest thousandth．

Figure 2.24

X	V1	
87	19.107	
晶．5	2－9\％	
昍．5	30.80	
晶	7－4	
㫛．5	HFEF：	
90	EFiFi：	

Figure 2.25

Exercise 4：Using 240，000 mi as the average distance from the Earth to the Moon and your result from Exercise 3，esti－ mate the Sun＇s distance from the Earth．Round your answer to the nearest thousand miles．

STRENGTHENING CORE SKILLS

Standard Angles，Reference Angles，and the Trig Functions

A review of the main ideas discussed in this chapter indicates there are four of what might be called＂core skills．＂These are skills that（a）play a fundamental part in the acquisition of concepts，（b）hold the overall structure together as we move from concept to concept，and（c）are ones we return to again and again throughout our study．The first of these is（1）knowing the standard angles and standard values．These values are＂standard＂because no estimation，interpolation，or special methods are required to name their value，and each can be expressed as a single factor．This gives them a great advantage in that further conceptual development can take place without the main points being obscured by large expressions or decimal approximations． Knowing the value of the trig functions for each standard angle will serve you very well throughout this study．Know the chart on page 48 and the ideas that led to it．

The standard angles／values brought us to the trigonometry of any angle，forming a strong bridge to the second core skill：（2）using reference angles to determine the value of the trig functions in each quadrant．For review，a 30－60－90 triangle will always have sides that are in the proportion $1 x: \sqrt{3} x: 2 x$ ，regardless of its size．This means for any angle θ ，where $\theta_{r}=30^{\circ}, \sin \theta=\frac{1}{2}$ or $\sin \theta=-\frac{1}{2}$ since the ratio is fixed but the sign depends on the quadrant of $\theta: \sin 30^{\circ}=\frac{1}{2}$［QI］， $\sin 150^{\circ}=\frac{1}{2}$［QII］， $\sin 210^{\circ}=-\frac{1}{2}$［QIII］， $\sin 330^{\circ}=-\frac{1}{2}$［QII］，and so on（see Figure 2．26）．

Figure 2.26

In turn, the reference angles led us to a third core skill, helping us realize that if θ was not a quadrantal angle, (3) equations like $\cos (\theta)=-\frac{\sqrt{3}}{2}$ must have two solutions in $\left[0,360^{\circ}\right)$. From the standard angles and standard values we learn to recognize that for $\cos \theta=-\frac{\sqrt{3}}{2}, \theta_{r}=30^{\circ}$, which will occur as a reference angle in the two quadrants where cosine is negative, QII and QIII. The solutions in $\left[0,360^{\circ}\right.$) are $\theta=150^{\circ}$ and $\theta=210^{\circ}$ (see Figure 2.27).

Of necessity, this brings us to the fourth core skill, (4) effective use of a calculator. The standard angles are a wonderful vehicle for introducing the basic ideas of trigonometry, and actually occur quite frequently in real-world applications. But by far, most of

Figure 2.27
 the values we encounter will be nonstandard values where θ_{r} must be found using a calculator. However, once θ_{r} is found, the reason and reckoning inherent in these ideas can be directly applied.

The Summary and Concept Review Exercises, as well as the Practice Test offer ample opportunities to refine these skills, so that they will serve you well in future chapters as we continue our attempts to explain and understand the world around us in mathematical terms.

Exercise 1: Fill in the table from memory.

θ	0	30°	45°	60°	90°	120°	135°	$150{ }^{\circ}$	180°	210°	$225{ }^{\circ}$
$\sin \theta$											
$\cos \theta$											
$\tan \theta$											

Exercise 2: Solve each equation in $\left[0,360^{\circ}\right)$ without the use of a calculator.
a. $2 \sin \theta+\sqrt{3}=0$
b. $-3 \sqrt{2} \cos \theta+4=1$
c. $-\sqrt{3} \tan \theta+2=1$
d. $\sqrt{2} \sec \theta+1=3$

Exercise 3: Solve each equation in $\left[0,360^{\circ}\right.$) using a calculator and rounding answers to one decimal place.
a. $\sqrt{6} \sin \theta-2=1$
b. $-3 \sqrt{2} \cos \theta+\sqrt{2}=0$
c. $3 \tan \theta+\frac{1}{2}=-\frac{1}{4}$
d. $2 \sec \theta=-5$

CUMULATIVE REVIEW CHAPTERS 1-2

1. Given that $\tan \theta=\frac{80}{39}$, draw a right triangle that corresponds to this ratio, then use the Pythagorean theorem to find the length of the missing side. Finally, find the two acute angles.
2. During a storm, a tall tree snapped, as shown in the diagram. Find the tree's original height. Round to tenths of a meter.

3. Find the measure of angle α for the triangle shown and convert it to decimal degrees.
4. For $\theta=729.5^{\circ}$, find the

Exercise 3

 value of $\sin \theta, \cos \theta$, and $\tan \theta$ using reference angles and a calculator. Round to four decimal places.
5. The world's tallest indoor waterfall is in Detroit, Michigan, in the lobby of the International Center Building. Standing 66 ft from the base of the falls, the angle of elevation is 60°. How tall is the waterfall?
6. It's a warm, lazy Saturday and Hank is watching a county maintenance crew mow the park across the street. He notices the mower takes 29 sec to pass through 77° of rotation from one end of the park to the other. If the corner of the park is 60 ft directly across the street from his house, (a) how wide is the park? (b) How fast (in mph) does the mower travel as it cuts the grass?
7. Find $f(\theta)$ for all six trig functions, given the point $P(-9,40)$ is a point on the terminal side of the angle. Then find the angle θ in degrees, rounded to tenths.
8. State true or false and explain your response: $(\sin t)(\sec t)=1$.
9. Complete the following statement: The cofunction of sine is cosine because . . .
10. Find the value of all six trig functions given $\tan t=-\frac{68}{51}$ and $\sin t>0$.
11. Find two positive and two negative angles that are coterminal with -100°.
12. Find the lengths of all unknown sides in the triangles shown.

Exercise 12

13. Without using a calculator, find the angle θ in $\left[0^{\circ}, 360^{\circ}\right)$ such that $\tan \theta$ is undefined and $\cos \left(\theta-90^{\circ}\right)=-1$.
14. Verify $\tan \theta(\cos \theta+\csc \theta)=\sin \theta+\sec \theta$.
15. Given $a=b=12.1$ in., find $\sin \beta$.

Exercise 15

Solve the right triangles by completing each table. Round sides to the nearest hundredth of a unit and angles to the nearest tenth of a degree.

Exercises 16 and 17

16.

Angles	Sides
$B=\mathbf{2 3}^{\circ}$	$\boldsymbol{b}=\mathbf{3} \mathbf{f t}$
$\boldsymbol{C}=\mathbf{9 0}^{\circ}$	

17.

Angles	Sides
	$a=11 \mathrm{~m}$
	$b=10 \mathrm{~m}$
$C=90^{\circ}$	

18. John and Georgeline are buying their first home and need a plot survey for the mortgage. The surveyor stakes out the rectangular property and notes the front border runs due east/west. From the western front corner, she finds the eastern back corner is on a bearing of $\mathrm{N} 11^{\circ} 18^{\prime} 36^{\prime \prime} \mathrm{E}$. If the property measures 150 ft from the front to the back, how wide is it?
19. Find the exact values of $\sin \left(-390^{\circ}\right), \cos \left(-390^{\circ}\right)$, and $\tan \left(-390^{\circ}\right)$ using reference angles.
20. Convert 64.5575° to DMS notation.
21. Solve triangle $A B C$ given $a=1.2 \mathrm{~mm}, b=2.9 \mathrm{~mm}$, and $c=1.5 \mathrm{~mm}$ if possible. If not, explain why.
22. Write $\csc \theta$ entirely in terms of $\cos \theta$.
23. Using the right triangle Exercise 23 shown, find the values of the six trig functions of β given $a=7 \mathrm{~m}$ and $b=\sqrt{15} \mathrm{~m}$.
24. Find all angles that satisfy $\cos \theta=-0.29$. Use a
 calculator and round to tenths.
25. The longer leg of a 30-60-90 triangle measures 5 in .

Find the lengths of the other two sides of the triangle.

CHAPTER CONNECTIONS

Radian Measure and Dynamic Trigonometry

CHAPTER OUTLINE

3.1 Angle Measure in Radians 90

3.2 Arc Length, Velocity, and the Area of
a Circular Sector 97
3.3 The Unit Circle 108
3.4 The Trigonometry of Real Numbers 117

The great green circles produced by the process of pivot irrigation often arouse the curiosity of airline passengers flying overhead. Here, the tools of trigonometry can be used to investigate the sprinkler's angular velocity (the number of revolutions per hour), its linear velocity (how fast each sprinkler along the radial arm is moving), as well as the size of the area being irrigated. In calculations like these, the measure of an angle is often given in a new unit called radians, as this contributes to the simplification of the formulas involved, and many other formulas and procedures. The use of radians also enables a clearer view of the trigonometric functions as functions of a real number (rather than merely functions of an angle), thus extending their influence on both pure and applied mathematics.

- This application appears as

Exercise 60 in Section 3.2

3.1 Angle Measure in Radians

Learning Objectives

In Section 3.1 you will learn how to:A. Use radians for angle measureB. Find the radian measure of the standard anglesC. Convert between degrees and radians for nonstandard angles

WORTHY OF NOTE

Using the properties of ratios, we note that since both r (radius) and s (arc length) are measured in like units, the units actually "cancel," making radians a unitless measure:

$$
\theta=\frac{s \text { units }}{r \text { units }}=\frac{s}{r} \text {. }
$$

While angle measure based on a 360° circle has been accepted for centuries, its basic construct is no better than other measures proposed and used over time (stadia, gons, cirs, points, mils, gradients, and so on). In the 1870 s, mathematicians Thomas Muir and James Thomson (the brother of Lord Kelvin) advocated the need for a new unit that stated the measure of an angle in terms of a circle's inherent characteristics, rather than arbitrarily declared numbers like 360 (degrees), 400 (gradients), or 1000 (mils).

A. The Radian Measure of an Angle

To help develop this new unit of angle measure, we use a central circle, which is a circle in the $x y$-plane with its center at the origin. A central angle is an angle whose vertex is at the center of the circle. For central angle θ intersecting the circle at points B and C, we say circular arc $B C$, denoted $B C$, subtends $\angle B A C$, as shown in Figure 3.1. The letter s is commonly used to represent arc length, and if we define 1 radian (abbreviated rad) to be the measure of an angle subtended by an arc equal in length to the radius, then $\theta=1 \mathrm{rad}$ when $s=r$ (see Figure 3.2). We can then find the radian measure of any central angle by dividing the length of the subtended arc by r :

$$
\frac{s}{r}=\theta \text { radians. }
$$

Figure 3.1

Figure 3.2

Radians

If central angle θ is subtended by an arc that is equal in length to the radius, then $\theta=1$ radian .

Radian Measure of an Angle

If θ is a central angle in a circle of radius r, and is subtended by an arc of length s, then the measure of θ in radians is

$$
\theta=\frac{s}{r}
$$

EXAMPLE 1 - Finding the Radian Measure of an Angle

If the circle shown in the figure has radius $r=8 \mathrm{~cm}$, what is the radian measure of angle θ ?

Solution Using the formula $\theta=\frac{s}{r}$ with $s=18$ and $r=8$ gives

$$
\begin{aligned}
\theta & =\frac{18}{8} & & \text { substitute } 18 \text { for } s \text { and } 8 \text { for } r \\
& =\frac{9}{4} & & \text { result }
\end{aligned}
$$

The angle θ measures $\frac{9}{4}$, or 2.25 rad .
Now try Exercises 7 through 18

- A. You've just learned how to find the radian measure of an angle

WORTHY OF NOTE

We will often use the convention that unless degree measure is explicitly implied or noted with the ${ }^{\circ}$ symbol, radian measure is being used. In other words,
$\theta=\frac{\pi}{2}, \theta=2$, and $\theta=32.76$ all indicate angles measured in radians.
division by $2: \frac{\pi}{2}=90^{\circ} \quad$ division by $3: \frac{\pi}{3}=60^{\circ}$
division by $4: \frac{\pi}{4}=45^{\circ} \quad$ division by $6: \frac{\pi}{6}=30^{\circ}$.
See Figure 3.4. The radian measures of these standard angles play a major role in this chapter, and you are encouraged to become very familiar with them. Additional conversions can quickly be found using multiples of these four.

Figure 3.3

Figure 3.4

EXAMPLE 2 Finding the Radian Measure of Standard Angles

Use multiples of a standard angle to find the exact radian measure of the angles given.
a. 120°
b. -225°
c. 270°

Solution a. Since 120° is a multiple of both 30° and 60°, we can use either angle. If we use $30^{\circ}=\frac{\pi}{6}$, we have

$$
\begin{array}{rlrl}
120^{\circ} & =4\left(30^{\circ}\right) & 120^{\circ} \text { is a multiple of } 30^{\circ} \\
& =4\left(\frac{\pi}{6}\right) & \text { substitute } 30^{\circ} \text { with } \frac{\pi}{6} \mathrm{rad} \\
& =\frac{2 \pi}{3} \quad \text { simplify }
\end{array}
$$

WORTHY OF NOTE

Since a full rotation is 2π radians, angles θ and $\theta+2 \pi k$ are coterminal for any integer k when θ is measured in radians.
See Exercises 25 through 28.
B. You've just learned how to find the radian measure of the standard angles
c. $270^{\circ}=3\left(90^{\circ}\right)$
$=3\left(\frac{\pi}{2}\right)$
$=\frac{3 \pi}{2}$
Now try Exercises 29 through 36
Note in Example 2(c), we could have treated 270° as a multiple of 30° or 45°, and obtained the same answer after simplification.

C. Converting between Degrees and Radians

The relationship $\pi=180^{\circ}$ also gives the factors needed for converting from degrees to radians or from radians to degrees, even if θ is a nonstandard angle. Dividing by π we have $1=\frac{180^{\circ}}{\pi}$, while division by 180° shows $1=\frac{\pi}{180^{\circ}}$. Multiplying a given angle by the appropriate conversion factor gives the equivalent measure.

Degrees/Radians Conversion Factors

To convert from radians to degrees:

$$
\text { multiply by } \frac{180^{\circ}}{\pi} \text {. }
$$

To convert from degrees to radians:
multiply by $\frac{\pi}{180^{\circ}}$.

EXAMPLE 3 - Converting from Degrees to Radians

Convert each angle from degrees to radians. Write each result in exact form and in approximate form, rounded to thousandths.
a. -75°
b. $250^{\circ} 12^{\prime}$

Solution $>$ a. For degrees to radians, use the conversion factor $\frac{\pi}{180^{\circ}}$.

$$
\begin{aligned}
-75^{\circ} & =-75^{\circ} \cdot \frac{\pi}{180^{\circ}} & & \text { apply conversion factor } \\
& =-\frac{75}{180} \pi & & \text { rewrite expression } \\
& =-\frac{5 \pi}{12} & & \text { exact form } \\
& \approx-1.309 & & \text { approximate form (to thousandths) }
\end{aligned}
$$

b. Begin by converting from DMS notation to decimal degrees, then use the conversion factor $\frac{\pi}{180^{\circ}}$.

$$
\begin{array}{rlrl}
250^{\circ} 12^{\prime} & =250.2^{\circ} & \left(250+\frac{12}{60}\right)^{\circ}=250.2^{\circ} \\
& =250.2^{\circ}\left(\frac{\pi}{180^{\circ}}\right) & & \text { apply conversion factor } \\
& =\frac{250.2}{180} \pi & & \text { rewrite expression } \\
& =1.39 \pi & & \text { exact form } \\
& \approx 4.367 & & \text { approximate form (to thousandths) }
\end{array}
$$

Now try Exercises 37 through 48

EXAMPLE $4>$ Converting from Radians to Degrees

Convert each angle from radians to degrees. Write each result in exact form and in approximate form, rounded to hundredths as needed.
a. $\frac{\pi}{24}$
b. -5

Solution

■ C. You've just learned how to convert between degrees and radians for nonstandard angles
a. For radians to degrees, use the conversion factor $\frac{180^{\circ}}{\pi}$.

$$
\begin{aligned}
\frac{\pi}{24} & =\frac{\pi}{24}\left(\frac{180^{\circ}}{\pi}\right) & & \text { apply conversion factor } \\
& =\frac{\pi}{\pi}\left(\frac{180^{\circ}}{24}\right) & & \text { rewrite expression } \\
& =7.5^{\circ} & & \text { exact form, } \frac{\pi}{\pi}=1, \frac{180}{24}=7.5
\end{aligned}
$$

b. $\quad-5=-5\left(\frac{180^{\circ}}{\pi}\right)$ apply conversion factor

$$
=-\frac{5}{1}\left(\frac{180^{\circ}}{\pi}\right) \text { rewrite expression }
$$

$$
=-\frac{900^{\circ}}{\pi} \quad \text { exact form }
$$

$$
\approx-286.48^{\circ} \quad \text { approximate form (to hundredths) }
$$

Now try Exercises 49 through 64

As in Example 3, approximating the radian measure of an angle lends insight to its size. Figure 3.3 on page 91 is a useful tool for determining the quadrant of the terminal side of an angle measured in radians and shows that the angle in Example 3(a) terminates in QIV, while the angle in 3(b) terminates in QIII. See Exercises 65 through 72.

TECHNOLOGY HIGHLIGHT

Decimal Degree and Radian Conversions

Most graphing calculators are programmed to compute conversions involving angle measure. On the TI-84 Plus, this is accomplished using the "'" feature for degree to radian conversions while in radian MODE , and the " r " feature for radian to degree conversions while in degree MODE . Both are found on the ANGLE submenu located at 2nd APPS , as is the 4:DDMS feature used for conversion to the degrees, minutes, seconds format (see Figure 3.5). We'll illustrate by converting both standard and nonstandard angles. To convert $180^{\circ}, 72^{\circ}$, and -45° to radians, be sure you are in radian MODE then enter 180 2nd APPS ENTER (the 1: ${ }^{\circ}$ feature is the default), then ENTER once again to execute the operation. The screen shows a value of 3.141592654 , which we expected since $180^{\circ}=\pi$. For 72° and -45°, we simply recall 180° (2nd ENTER) and overwrite the desired value (see Figure 3.6). For radian-to-degree conversions, be sure you are in degree MODE and complete the conversions in a similar manner, using 2nd APPS 3:r instead of $1:^{\circ}$.

Figure 3.5

Figure 3.6

Exercise 1: Use your graphing calculator to convert the radian measures $\frac{\pi}{2}, \pi, \frac{25 \pi}{12}$, and 2.37 to degrees, then verify each using standard angles or a conversion factor.

Exercise 2: Experiment with the 2nd APPS 3: DMS feature, and use it to convert 108.716° to the DMS format. Verify the result manually.

3.1 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. A ___ circle of radius ___ will have x-intercepts of $(-5,0)$ and $(5,0)$. On this circle, an arc of length 5π subtends an angle of \qquad radians.
2. The expression "theta equals two degrees" is written
\qquad using the "0" notation. The expression, "theta equals two radians" is simply written \qquad
3. For the radian measure of a standard angle in simplified form, the numerator will always be a multiple of __. All such nonquadrantal angles will have a denominator of \qquad , \qquad , or \qquad _, while the quadrantal angles will have a denominator of \qquad or \qquad -.
4. If θ is not a special angle, multiply by \qquad to convert radians to degrees. To convert degrees to radians, multiply by \qquad -.
5. Discuss/Explain how the radian measure of the standard angles $\left(30^{\circ}, 45^{\circ}\right.$, and $\left.60^{\circ}\right)$ and their multiples can be found without using a conversion factor.
6. Discuss/Explain the difference between 1° and 1 radian. Exactly what is a radian? Without any conversions, explain why an angle of 4 rad terminates in QIII.

DEVELOPING YOUR SKILLS

Use the diagram shown and information given to find the radian measure of each angle α.
7. $s=12 \mathrm{in}$., $r=3 \mathrm{in}$.
8. $s=24 \mathrm{~m}, r=4 \mathrm{~m}$
9. $s=5 \mathrm{~cm}, r=5 \mathrm{~cm}$
10. $s=10 \mathrm{ft}, r=10 \mathrm{ft}$
11. $s=3 \mathrm{dm}, r=6 \mathrm{dm}$

12. $s=8 \mathrm{yd}, r=24 \mathrm{yd}$
13. $s=4.2 \mathrm{mi}, r=1.4 \mathrm{mi}$
14. $s=5.2 \mathrm{~mm}, r=2.6 \mathrm{~mm}$
15. $s=22 \mathrm{~km}, r=6 \mathrm{~km}$
16. $s=30 \mathrm{~km}, r=8 \mathrm{~km}$
17. $s=48 \mathrm{ft}, r=3 \mathrm{yd}$
18. $s=11 \mathrm{~cm}, r=20 \mathrm{~mm}$

Use the diagram shown and information given to find the radian measure of each angle β.
19. $s=21 \mathrm{~cm}, r=7 \mathrm{~cm}$
20. $s=25 \mathrm{ft}, r=5 \mathrm{ft}$
21. $s=6$ in., $r=2.5 \mathrm{in}$.
22. $s=12.6 \mathrm{~m}, r=7 \mathrm{~m}$
23. $s=3 \frac{2}{5} \mathrm{yd}, r=\frac{4}{5} \mathrm{yd}$

24. $s=3 \frac{2}{7} \mathrm{~mm}, r=\frac{6}{7} \mathrm{~mm}$

Find two positive angles and two negative angles that are coterminal with the angle given. Answers may vary.
25. $\theta=\frac{\pi}{6}$
26. $\theta=\frac{\pi}{4}$
27. $\theta=\frac{\pi}{3}$
28. $\theta=\frac{\pi}{2}$

Convert the following degree measures to radians in exact form, without the use of a calculator.
29. $\theta=360^{\circ}$
30. $\theta=180^{\circ}$
31. $\theta=45^{\circ}$
32. $\theta=30^{\circ}$
33. $\theta=210^{\circ}$
34. $\theta=330^{\circ}$
35. $\theta=-120^{\circ}$
36. $\theta=-225^{\circ}$

Convert each degree measure to radians. Leave in exact form.
37. $\theta=40^{\circ}$
38. $\theta=230^{\circ}$
39. $\theta=-305^{\circ}$
40. $\theta=-35^{\circ}$
41. $\theta=100^{\circ} 24^{\prime}$
42. $\theta=200^{\circ} 48^{\prime}$

Convert each degree measure to radians. Round to the nearest ten-thousandth.
43. $\theta=27^{\circ}$
44. $\theta=52^{\circ}$
45. $\theta=227.9^{\circ}$
46. $\theta=154.4^{\circ}$
47. $\theta=-52^{\circ} 35^{\prime}$
48. $\theta=-191^{\circ} 23^{\prime}$

Convert each radian measure to degrees, without the use of a calculator.
49. $\theta=\frac{\pi}{3}$
50. $\theta=\frac{\pi}{4}$
51. $\theta=\frac{\pi}{6}$
52. $\theta=\frac{\pi}{2}$
53. $\theta=\frac{2 \pi}{3}$
54. $\theta=\frac{5 \pi}{6}$
55. $\theta=4 \pi$
56. $\theta=6 \pi$

Convert each radian measure to degrees. Round to the nearest tenth.
57. $\theta=\frac{11 \pi}{12}$
58. $\theta=\frac{17 \pi}{36}$
59. $\theta=3.2541$
60. $\theta=1.0257$
61. $\theta=3$
62. $\theta=5$
63. $\theta=-2.5$
64. $\theta=-3.7$

If the following angles are drawn in standard position on the central circle shown, identify the point $a-f$ through which the terminal side passes.

65. a. $\theta=2$
66. a. $\theta=4$
b. $\theta=5$
b. $\theta=1$
c. $\theta=3$
c. $\theta=6$

Without using a calculator, identify the terminal side quadrant of the given angles in standard position.
67. $\theta=2.5$
68. $\theta=5.4$
69. $\theta=1.2$
70. $\theta=3.9$
71. $\theta=-1.9$
72. $\theta=-4.3$

WORKING WITH FORMULAS

73. Torque applied by a wrench: $\tau=r F \sin \theta$

A wrench used to free a stuck nut applies a torque τ (measured in foot-pounds) when a force F (in pounds) is applied r feet from the nut at an angle θ to the wrench. Find how much torque is being applied to a particularly stubborn nut if 54 lb of force is being applied 8 in . from the nut, at an angle of $\frac{\pi}{3}$ to the wrench. How much force should be applied at this angle and point if the nut will only release when the applied torque reaches $50 \mathrm{ft}-\mathrm{lb}$?
74. Horsepower for an electric winch: $H=\frac{\pi r w \omega}{198,000}$

Ignoring the fact that the cable may wind over itself, an electric winch with drum of radius r (in inches) turning at $\omega \mathrm{rpm}$ is applying H units of horsepower when it lifts a weight of w pounds. How much horsepower is required of a winch to lift 100 lb if the drum has radius 8 in . and is turning at 90 rpm ? If the maximum horsepower of the motor is 5 hp , what is the greatest weight this winch can lift?

APPLICATIONS

75. Automobile racing: While preparing the annual Bonneville Speedway, the Utah State Highway Department marks out a 1.75 -mi-radius circular track in the Bonneville Salt Flats. If a mechanical failure ends Andy's race after only 7 mi , through what central angle (in radians) did he travel?
76. Planetary orbits: The moon Triton orbits the planet Neptune in a near perfect circular path of radius $354,759 \mathrm{~km}$. When the moon has traveled $3,192,831 \mathrm{~km}$, what central angle does its path subtend?
77. Automobile racing: An endurance race on the circular track at the Bonneville Speedway (see Exercise 75) consists of 45.5 laps. What is the radian measure of the central angle swept out by a car that completes the race?
78. Planetary orbits: Triton completes one full orbit of Neptune every 6 days (see Exercise 76). What is the radian measure of the central angle Triton makes in 15 days?
79. Automobile testing: A 300-ft-diameter circle painted on a smooth, flat piece of pavement is known as a skid pad. A small car gradually accelerates over 2000 ft before it begins to slip off the pad. To the nearest whole degree, what is the measure of the central angle swept out by the car?
80. Amusement park rides: The Tumble Bug travels on a 100 -ft-diameter circular track. What central angle is subtended by the 70 - ft -long train of six cars? Round to the nearest whole degree.
81. The Pantheon: The tomb of the artist Raphael is in one of the eight niches of the circular rotunda of this ancient building. Express in radians the central angle of 112.5° formed by the main entrance and the commemorative bust of this great painter.

82. Submarine design:

The top-hatch of a research submarine is opened by rotating the hatch wheel 123.75° counterclockwise. Express this angle in radians.

EXTENDING THE CONCEPT

83. Determine the radian measure of both 1 minute and 1 second. Use your results to determine the radian measure of $67^{\circ} 33^{\prime} 18^{\prime \prime}$. Check your results by first converting the angle to decimal form.
84. Triton completes one orbit of Neptune every six Earth days (see Exercise 78) in the opposite direction of the planet's 16 -hr-long rotation. From the point of view of an astronaut on the surface of Neptune, find the central angle (in radians) Triton appears to sweep out in 24 hr .

MAINTAINING YOUR SKILLS

85. (2.4) Find the exact value of $\sin 210^{\circ}, \cos 210^{\circ}$, and $\tan 210^{\circ}$ using reference angles.
86. (1.4) Write $\sec \theta$ in terms of $\csc \theta$.
87. (2.2) Find the acute angle A such that $\cos A=0.2525$. Round to the nearest tenth of a degree.
88. (1.3) Find $\cot \theta$ given the terminal side of θ in standard position is coincident with $y=2.1 x, x<0$.
89. (2.4) Find the reference angle of the following:
a. 512°
b. -762°
90. (1.2) For triangle $A B C$, find the measures of all three angles if $A=(x+2)^{\circ}, B=(7 x)^{\circ}$, and $C=(4 x-2)^{\circ}$.

3.2 Arc Length, Velocity, and the Area of a Circular Sector

Learning Objectives

In Section 3.2 you will learn how to:A. Use radians to compute the length of a subtended arc
B. Solve applications involving angular velocity and linear velocity
C. Calculate the area of a circular sector

Figure 3.7

Prior to the widespread use of radians, the length of an arc was found using a proportional part of 360° : $\frac{\text { amount of rotation }}{360^{\circ}}=\frac{\text { length of arc }}{2 \pi r}$, or $\frac{\theta}{360^{\circ}}=\frac{s}{2 \pi r}$. Solving for s yields $s=\left(\frac{\theta}{360^{\circ}}\right) 2 \pi r$, or $s=\left(\frac{2 \pi}{360^{\circ}}\right) r \theta$ after regrouping. While this formula is certainly usable, it's very unwieldy and has limited value in many practical applications. With θ in radians we know $2 \pi=360^{\circ}$, giving $\frac{2 \pi}{360^{\circ}}=1$ by division. After substituting 1 for $\frac{2 \pi}{360^{\circ}}$, the formula quickly simplifies to $s=r \theta$, a much more elegant result but once again, θ must be expressed in radians.

A. The Length of a Subtended Arc

Recall that in a circle of radius r, the radian measure of a central angle θ is $\frac{s}{r}$, where s is the length of the subtended arc (see Figure 3.7). In practice, measuring the length of an arc is often a more difficult task than measuring the angle θ. Note that by multiplying both sides of $\theta=\frac{s}{r}$ by r, we obtain a formula for the length of an arc: $s=r \theta$ provided θ is in radians.

Arc Length

If θ is a central angle in a circle of radius r, then the length of the subtended arc s is

$$
s=r \theta
$$

provided θ is expressed in radians.

EXAMPLE 1 Using the Formula for Arc Length

If the circle in Figure 3.7 has radius $r=10 \mathrm{~cm}$, what is the length of the arc subtended by an angle of 3.5 rad ?
Solution Using the formula $s=r \theta$ with $r=10$ and $\theta=3.5$ gives

$$
\begin{aligned}
s & =10(3.5) & & \text { substitute } 10 \text { for } r \text { and } 3.5 \text { for } \theta \\
& =35 & & \text { result }
\end{aligned}
$$

The subtended arc has a length of 35 cm .

Now try Exercises 7 through 18

Note that if the angle is expressed in degrees, we first convert it to radians before applying the formula. One area where these conversions are necessary is applications involving longitude and latitude (see Figure 3.8). The latitude of a fixed point on the Earth's surface tells how many degrees north or south of the equator the point is, as measured from the center of the Earth. The longitude of a fixed point on the Earth's surface tells how many degrees east or west of the Prime Meridian (through Greenwich, England) the point is, as measured along the equator to the longitude line going through the point. For example, the city of New Orleans, Louisiana, is located at $30^{\circ} \mathrm{N}$ latitude, $90^{\circ} \mathrm{W}$ longitude (see Figure 3.8).

Figure 3.8

EXAMPLE 2 Applying the Arc Length Formula: Distances Between Cities

The cities of Quito, Ecuador, and Macapá, Brazil, both lie very near the equator, at a latitude of 0°. However, Quito is at approximately 78° west longitude, while Macapá is at 51° west longitude (see Figure 3.8). Assuming the Earth has a radius of 3960 mi , how far apart are these cities?
Solution First we note that $(78-51)^{\circ}=27^{\circ}$ of longitude separate the two cities. Using the conversion factor $1=\frac{\pi}{180^{\circ}}$ we find the equivalent radian measure

WORTHY OF NOTE

Note that $r=3960$ mi was used because Quito and Macapá are both on the equator. For other cities sharing the same longitude but not on the equator, the radius of the Earth at that longitude must be used. See Exercise 61.
is $27^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{3 \pi}{20}$. The arc length formula gives

$$
\begin{aligned}
s & =r \theta & & \text { arc length formula; } \theta \text { in radians } \\
& =3960\left(\frac{3 \pi}{20}\right) & & \text { substitute } 3960 \text { for } r \text { and } \frac{3 \pi}{20} \text { for } \theta \\
& =594 \pi & & \text { result }
\end{aligned}
$$

Quito and Macapá are approximately 1866 mi apart (see Worthy of Note in the margin).
(A. You've just learned how to use radians to compute the length of a subtended arc

WORTHY OF NOTE

Generally speaking, the velocity of an object is its change in position per unit time, and can be either positive or negative. The rate or speed of an object is the magnitude of the velocity, regardless of direction.

B. Angular and Linear Velocity

The angular velocity of an object is defined as the amount of rotation per unit time. Here, we often use the symbol ω (omega) to represent the angular velocity, and θ to represent the angle through which the terminal side has rotated, measured in radians: $\omega=\frac{\theta}{t}$. For instance, a Ferris wheel turning at 10 revolutions per minute has an angular velocity of

$$
\begin{aligned}
\omega & =\frac{10 \text { revolutions }}{1 \mathrm{~min}} & & \omega=\frac{\theta}{t} \\
& =\frac{10(2 \pi)}{1 \mathrm{~min}} & & \text { substitute } 2 \pi \text { for } 1 \text { revolution } \\
& =\frac{20 \pi \mathrm{rad}}{1 \mathrm{~min}} & & 10(2)=20
\end{aligned}
$$

The linear velocity of an object is defined as a change of position or distance traveled per unit time. In the context of angular motion, we consider the distance traveled by a point on the circumference of the Ferris wheel, which is equivalent to the length of the resulting arc s. This relationship is expressed as $V=\frac{s}{t}$, a formula that can be written directly in terms of the angular velocity since $s=r \theta: V=\frac{r \theta}{t}=r\left(\frac{\theta}{t}\right)=r \omega$.

Angular and Linear Velocity

Given a circle of radius r with point P on the circumference, and central angle θ in radians with P on the terminal side. If P moves along the circumference at a uniform rate:

1. The rate at which θ changes is called the angular velocity ω,

$$
\omega=\frac{\theta}{t}
$$

2. The rate at which the position of P changes is called the linear velocity V,

$$
V=\frac{r \theta}{t} \Rightarrow V=r \omega
$$

EXAMPLE $3>$ Using the Velocity Formulas

A point P is rotating around the circumference of a circle with radius $r=2 \mathrm{ft}$ at a constant rate. If it takes 5 sec for the point to rotate through an angle of 510°,
a. What is the angular velocity of P ?
b. What is the linear velocity of P ?

Solution a. Since our formulas require θ to be in radians, we first convert from degrees to radians.

$$
\begin{aligned}
510^{\circ} & =510^{\circ}\left(\frac{\pi}{180^{\circ}}\right) & & \text { apply conversion factor } \\
& =\frac{510^{\circ}}{180^{\circ}} \pi & & \text { rewrite expression } \\
& =\frac{17 \pi}{6} & & \text { result }
\end{aligned}
$$

Applying the formula for angular velocity gives:

$$
\begin{array}{rlr}
\omega & =\frac{\theta}{t} & \text { angular velocity formula } \\
& =\frac{\left(\frac{17 \pi}{6}\right)}{5} & \\
& \text { substitute } \frac{17 \pi}{6} \text { for } \theta \text { and } 5 \text { for } t \\
& =\left(\frac{17 \pi}{6}\right) \frac{1}{5} & \text { invert and multiply } \\
& =\frac{17}{30} \pi & \text { result (exact form) }
\end{array}
$$

P is moving at an angular velocity of $\frac{17}{30} \pi \approx 1.78$ radians per second.
b. Using the exact result from part (a) and the formula for linear velocity, we have

$$
\begin{aligned}
V & =r \omega & & \text { linear velocity formula } \\
& =(2) \frac{17}{30} \pi & & \text { substitute } 2 \text { for } r \text { and } \frac{17}{30} \pi \text { for } \omega \\
& =\frac{17}{15} \pi & & \text { result (exact form) }
\end{aligned}
$$

P is moving at a linear velocity of $\frac{17}{15} \pi \approx 3.56$ feet per second.
Now try Exercises 19 through 34

Revolutions per unit time is a common unit of measure for angular velocity, as in revolutions per second (rps) for modern dental drills and revolutions per minute (rpm) for automotive engines. For this reason, many applications are stated using this unit. But in computations involving the formulas for angular and linear velocity, the units must be expressed in radians per unit time.

EXAMPLE $4-$ Using Angular Velocity to Determine Linear Velocity
The wheels on a racing bicycle have a radius of 13 in . How fast is the cyclist traveling in miles per hour, if the wheels are turning at 300 rpm ?
Solution $>$ Note that $\omega=\frac{300 \mathrm{rev}}{1 \mathrm{~min}}=\frac{300(2 \pi)}{1 \mathrm{~min}}=\frac{600 \pi}{1 \mathrm{~min}}$.

Using the formula $V=r \omega$ gives a linear velocity of

$$
V=(13 \mathrm{in} .) \frac{600 \pi}{1 \mathrm{~min}} \approx \frac{24,504.4 \mathrm{in} .}{1 \mathrm{~min}}
$$

To convert this to miles per hour we convert minutes to hours ($1 \mathrm{hr}=60 \mathrm{~min}$) and inches to miles $(1 \mathrm{mi}=5280 \times 12 \mathrm{in}$. $)$:

$$
\left(\frac{24,504.4 \text { inr. }}{1 \mathrm{mint}}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{hr}}\right)\left(\frac{1 \mathrm{mi}}{63,360 \mathrm{irr} .}\right) \approx 23.2 \mathrm{mph} .
$$

The bicycle is traveling about 23.2 mph .

To help understand the relationship between angular velocity and linear velocity, consider two large rollers with a radius of 1.6 ft , used to move an industrial conveyor belt. The rollers have a circumference of $C=2 \pi(1.6 \mathrm{ft}) \approx 10.05 \mathrm{ft}$, meaning that for each revolution of the rollers, an object on the belt will move 10.05 ft (from P_{1} to P_{2}).

If the rollers are rotating at 20 rpm , an object on the belt (or a point on the circumference of a roller), will be moving at a rate of $20 \cdot 10.05=201 \mathrm{ft} / \mathrm{min}$ (about 2.3 miles per hour). In other words,

$$
\begin{array}{rlrl}
\omega & =\frac{20 \text { revolutions }}{1 \mathrm{~min}} & \omega=\frac{\theta}{t} \\
& =\frac{20 \cdot 2 \pi}{1 \mathrm{~min}}=\frac{40 \pi}{1 \mathrm{~min}} & & \text { substitute } 2 \pi \text { for } 1 \text { revolution } \\
V & =r \omega & & \text { formula for velocity } \\
& =(1.6 \mathrm{ft}) \frac{40 \pi}{1 \mathrm{~min}} & & \text { substitute } 1.6 \mathrm{ft} \text { for } r, 40 \pi \text { for } \omega \\
& \approx 201 \mathrm{ft} \text { per min } & \text { result }
\end{array}
$$

C. The Area of a Circular Sector

Using a central angle θ measured in radians, we can also develop a formula for the area of a circular sector (a pie slice) using a proportion. Recall the total area of a circle is πr^{2} and the radian measure of a 360° rotation is 2π. The ratio of the area of a sector to the total area will be identical to the ratio of the subtended angle to one full rotation. See Figure 3.9. Using \mathcal{A} to represent the area of the sector, we have $\frac{\mathcal{A}}{\pi r^{2}}=\frac{\theta}{2 \pi}$ and solving for \mathcal{A} gives $\mathcal{A}=\frac{1}{2} r^{2} \theta$.

Figure 3.9

Area of a Sector

If θ is a central angle in a circle of radius r, the area of the sector formed is

$$
\mathcal{A}=\frac{1}{2} r^{2} \theta
$$

provided θ is expressed in radians.

EXAMPLE $5>$ Using the Formula for the Area of a Sector

What is the area of the circular sector formed by a central angle of $\frac{3 \pi}{4}$, if the radius
of the circle is 72 ft ? Round to tenths.

Solution Using the formula $\mathcal{A}=\frac{1}{2} r^{2} \theta$ we have

$$
\begin{aligned}
\mathcal{A} & =\left(\frac{1}{2}\right)(72)^{2}\left(\frac{3 \pi}{4}\right) \quad \text { substitute } 72 \text { for } r, \frac{3 \pi}{4} \text { for } \theta \\
& =1944 \pi \mathrm{ft}^{2} \quad \text { result }
\end{aligned}
$$

The area of this sector is approximately $6107.3 \mathrm{ft}^{2}$.

Now try Exercises 35 through 46

In many applications, the computations of circular areas and sectors are combined with the concept of angular velocity, as in Example 6.

EXAMPLE 6 - Finding the Area of a Circular Sector

The second hand of a wristwatch measures 12 mm from the central axis to its tip. Find the area of the watch face the second hand passes over in a 20 -sec time period.
Solution - To begin, we find the angle the second hand passes through in 20 sec . Since the second hand moves one full revolution (2π) in 60 sec , its angular velocity is

$$
\begin{aligned}
\omega & =\frac{\theta}{t} & & \text { angular velocity formula } \\
& =\frac{2 \pi}{60} & & \text { substitute } 2 \pi \text { for } \theta \text { and } 60 \text { for } t \\
& =\frac{\pi}{30} & & \text { simplify }
\end{aligned}
$$

Multiplying both sides of the angular velocity formula $\omega=\frac{\theta}{t}$ by t yields a formula for the angle: $\theta=\omega t$. Using this formula and the value of ω, we can find the angle the second hand passes through in 20 sec .

$$
\begin{aligned}
\theta & =\omega t & & \text { angle formula } \\
& =\frac{\pi}{30}(20) & & \text { substitute } \frac{\pi}{30} \text { for } \omega \text { and } 20 \text { for } t \\
& =\frac{20}{30} \pi & & \text { rewrite expression } \\
& =\frac{2}{3} \pi & & \text { result }
\end{aligned}
$$

With $\theta=\frac{2}{3} \pi$ radians, we now compute the area as before.

$$
\begin{aligned}
\mathcal{A} & =\frac{1}{2} r^{2} \theta & & \text { area of a sector formula } \\
& =\frac{1}{2}(12)^{2}\left(\frac{2}{3} \pi\right) & & \text { substitute 12 for } r \text { and } \frac{2}{3} \pi \text { for } \theta \\
& =\frac{288}{6} \pi & & \text { multiply } \\
& =48 \pi \mathrm{~mm}^{2} & & \text { result (exact form) }
\end{aligned}
$$

The second hand of the watch passes over an area of $48 \pi \approx 150.8 \mathrm{~mm}^{2}$ in 20 sec .

3.2 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. For any fixed point on the Earth's surface, \qquad gives its location as the number of degrees north or south of the \qquad , while \qquad gives the number of degrees east or west of the \qquad -.
2. The formula for arc length is \qquad The formula for the area of a sector is $\mathcal{A}=$ \qquad For both formulas, θ must be in \qquad .
3. The formula for angular velocity is \qquad . The formula for the linear velocity of a point P on the circumference of a circle moving with an angular velocity ω is \qquad , as long as ω is in \qquad per unit time.
4. The angle θ can be found by \qquad both sides of the formula for \qquad velocity by \qquad . If the formula for \qquad velocity is multiplied by \qquad the arc length is the result.
5. Discuss/Explain the difference between angular velocity and linear velocity. In particular, why does one depend on the radius while the other does not? Include an example from your own experience.
6. Develop a formula for the area of a sector, if the angle is in degrees. Discuss what you discover.

DEVELOPING YOUR SKILLS

Use the formula for arc length to find the value of the unknown quantity: $s=r \theta$.
7. $\theta=3.5 ; r=280 \mathrm{~m}$
8. $\theta=2.3 ; r=129 \mathrm{~cm}$
9. $s=2007 \mathrm{mi} ; r=2676 \mathrm{mi}$
10. $s=4435.2 \mathrm{~km} ; r=12,320 \mathrm{~km}$
11. $\theta=\frac{3 \pi}{4} ; s=4146.9 \mathrm{yd}$
12. $\theta=\frac{11 \pi}{6} ; s=28.8$ nautical miles
13. $\theta=\frac{4 \pi}{3} ; r=2 \mathrm{mi}$
14. $\theta=\frac{3 \pi}{2} ; r=424 \mathrm{in}$.
15. $s=252.35 \mathrm{ft} ; r=980 \mathrm{ft}$
16. $s=942.3 \mathrm{~mm} ; r=1800 \mathrm{~mm}$
17. $\theta=320^{\circ} ; s=52.5 \mathrm{~km}$
18. $\theta=220.5^{\circ} ; s=7627 \mathrm{~m}$

Point P passes through a central angle θ in time \boldsymbol{t} as it travels around a circle. Find its exact angular velocity in radians per unit time.
19. $\theta=360^{\circ} ; t=8 \mathrm{sec}$
20. $\theta=540^{\circ} ; t=9 \mathrm{yr}$
21. $\theta=450^{\circ} ; t=10 \mathrm{hr}$
22. $\theta=270^{\circ} ; t=12 \mathrm{~min}$
23. $\theta=210^{\circ} ; t=7$ days
24. $\theta=690^{\circ} ; t=5 \mathrm{sec}$
25. $\theta=420^{\circ} ; t=4 \mathrm{~min}$
26. $\theta=300^{\circ} ; t=5 \mathrm{hr}$

Point P travels around a circle of radius r as described.
Find its linear velocity, rounded to the nearest hundredth as necessary.
27. $\omega=5 \mathrm{rad} / \mathrm{sec} ; r=8 \mathrm{in}$.
28. $\omega=12 \mathrm{rad} / \mathrm{min} ; r=15 \mathrm{ft}$
29. $\omega=14 \pi \mathrm{rad} / \mathrm{hr} ; r=3.2 \mathrm{mi}$
30. $\omega=2312 \pi \mathrm{rad} / \mathrm{hr} ; r=0.01 \mathrm{~km}$
31. $\theta=168^{\circ} ; t=0.28 \mathrm{sec} ; r=3 \mathrm{~mm}$
32. $\theta=282^{\circ} ; t=4.1 \mathrm{~min} ; r=1.2 \mathrm{yd}$
33. $\theta=30 ; t=6 \mathrm{hr} ; r=1.2 \mathrm{~km}$
34. $\theta=45$; $t=3 \mathrm{hr} ; r=2 \mathrm{mi}$

Use the formula for area of a circular sector to find the value of the unknown quantity: $\mathcal{A}=\frac{1}{2} r^{2} \boldsymbol{\theta}$.
35. $\theta=5 ; r=6.8 \mathrm{~km}$
36. $\theta=3$; $r=45 \mathrm{mi}$
37. $\mathcal{A}=1080 \mathrm{mi}^{2} ; r=60 \mathrm{mi}$
38. $\mathcal{A}=437.5 \mathrm{~cm}^{2} ; r=12.5 \mathrm{~cm}$
39. $\theta=\frac{7 \pi}{6} ; \mathcal{A}=16.5 \mathrm{~m}^{2}$
40. $\theta=\frac{19 \pi}{12} ; \mathcal{A}=753 \mathrm{~cm}^{2}$

Find the angle, radius, arc length, and/or area as needed, until all values are known.
41.

42.

43.

44.

45.

46.

WORKING WITH FORMULAS

47. Haversine formula, first part: $h=\sin ^{2}\left(\frac{\alpha_{2}-\alpha_{1}}{2}\right)+\cos \alpha_{2} \cos \alpha_{1} \sin ^{2}\left(\frac{\beta_{2}-\beta_{1}}{2}\right)$
The great circles of a sphere have the same center and radius as the sphere itself. As a result, the shortest path between two points on a sphere will always be an arc of a great circle. In navigation, the haversine formula is often used to determine the shortest distance between two points on the surface of the Earth, and uses the value of h determined by the formula shown. Here, the respective latitudes of each point are given by α_{1} and α_{2}, and their longitudes by β_{1} and β_{2}, with all angles in radians. Find the value of h for the cities of Houston, Texas $\left(30^{\circ} \mathrm{N}, 95^{\circ} \mathrm{W}\right)$, and San Francisco, California $\left(38^{\circ} \mathrm{N}, 122^{\circ} \mathrm{W}\right)$.
48. Haversine formula, second part:
$d=2 R \sin ^{-1}(\sqrt{h})$
The distance d between two points on a great circle of radius R is found using the formula shown, where h is the value determined by the haversine formula in Exercise 47. Given the radius of the Earth is 3960 mi, use your calculator in radian mode and the result from Exercise 47 to find the distance between Houston and San Francisco. Check your result using any Internet distance calculator or GPS device (which will most likely be using this formula anyway).

APPLICATIONS

49. Arc length: The city of Pittsburgh, Pennsylvania, is directly north of West Palm Beach, Florida. Pittsburg is at 40.3° north latitude, while West Palm Beach is at 26.4° north latitude. Assuming the Earth has a radius of 3960 mi , how far apart are these cities?
50. Arc length: Both Libreville, Gabon, and Jamame, Somalia, lie near the equator, but on opposite ends of the African continent. If Libreville is at 9.3° east longitude and Jamame is 42.5° east longitude, how wide is the continent of Africa at the equator?
51. Riding a round-a-bout: At the park two blocks from our home, the kids' round-a-bout has a radius of 56 in . About the time the kids stop screaming, "Faster, Daddy, faster!" I estimate the round-a-bout is turning at $\frac{3}{4}$
 revolutions per second. (a) What is the related angular velocity? (b) What is the linear velocity (in miles per hour) of Eli and Reno, who are "hanging on for dear life" at the rim of the round-a-bout?
52. Carnival rides: At carnivals and fairs, the Gravity Drum is a popular ride. People stand along the wall of a circular drum with radius 12 ft , which begins spinning very fast, pinning them against the wall. The drum is then turned on its side by an armature, with the riders screaming and squealing with delight. As the drum is raised to a near-vertical position, it is spinning at a rate of 35 rpm . (a) What is the angular velocity in radians? (b) What is the linear velocity (in miles per hour) of a person on this ride?
53. Speed of a winch: A winch is being used to lift a turbine off the ground so that a tractor-
 trailer can back under it and load it up for transport. The winch drum has a radius of 3 in . and is turning at 20 rpm . Find (a) the angular velocity of the drum in radians, (b) the linear velocity of the turbine in feet per second as it is being raised, and (c) how long it will take to get the load to the desired height of 6 ft (ignore the fact that the cable may wind over itself on the drum).
54. Speed of a current: An instrument called a flowmeter is used to measure the speed of flowing water, like that in a river or stream. A cruder method involves placing a paddle wheel in the current, and using the wheel's radius and angular velocity to calculate the speed of water flow. If the paddle wheel has a radius of 5.6 ft and is turning at 30 rpm , find (a) the angular velocity of the wheel in radians and (b) the linear velocity of the water current in miles per hour.
55. Area of a sector: A water sprinkler is set to shoot a stream of water a distance of 12 m and rotate through an angle of 40°. (a) What is the area of the lawn it waters? (b) For $r=12 \mathrm{~m}$, what angle is required to water twice as much area? (c) For
$\theta=40^{\circ}$, what range for the water stream is required to water twice as much area?
56. Area of a sector: A motion detector can detect movement up to 25 m away through an angle of 75°. (a) What area can the motion detector monitor? (b) For $r=25 \mathrm{~m}$, what angle is required to monitor 50% more area? (c) For $\theta=75^{\circ}$, what range is required for the detector to monitor 50% more area?
57. Angular and linear velocity: The planet Jupiter's largest moon, Ganymede, rotates around the planet at a distance of about $656,000 \mathrm{mi}$, in an orbit that is perfectly circular. If the moon completes one rotation about Jupiter in 7.15 days, (a) find the angle θ that the moon moves through in 1 day, in both degrees and radians, (b) find the angular velocity of the moon in radians per hour, and (c) find the moon's linear velocity in miles per second as it orbits Jupiter.
58. Angular and linear velocity: The planet Neptune has an orbit that is nearly circular. It orbits the Sun at a distance of 4497 million km and completes one revolution every 165 yr. (a) Find the angle θ that the planet moves through in 1 yr in both degrees and radians and (b) find the linear velocity (km/hr) as it orbits the Sun.
59. Center-pivot irrigation: A standard $1 / 4$-mi irrigation system has a radius of 400 m and rotates once every 3 days. Find the linear velocity of the outside set of wheels to the nearest tenth of a meter per hour.
60. Area of crop field: If a center-
 pivot irrigation system with radius of 500 m rotates once every 100 hr , find the area of a crop field irrigated in 1 day. Round to the nearest square meter.

EXTENDING THE CONCEPT

61. The radius of the Earth at the equator ($0^{\circ} \mathrm{N}$ latitude) is approximately 3960 mi . Beijing, China, is located at $39.5^{\circ} \mathrm{N}$ latitude, $116^{\circ} \mathrm{E}$ longitude. Philadelphia, Pennsylvania, is located at the same latitude, but at $75^{\circ} \mathrm{W}$ longitude. (a) Use the diagram given and a cofunction relationship to find the radius r of the Earth (parallel to the equator) at this latitude; (b) use the arc length formula to compute the shortest distance between these two cities along this latitude; and (c) if the supersonic Concorde flew a direct flight between Beijing and Philadelphia along this latitude, approximate the flight time assuming a cruising speed of 1250 mph . Note: The shortest distance is actually traversed by heading northward, using the arc of a "great circle" that goes through these two cities.

62. The Duvall family is out on a family bicycle ride around Creve Coeur Lake. The adult bikes have a pedal sprocket with a 4 -in. radius, wheel sprocket with 2 -in. radius, and tires with a 13 -in. radius. The kids' bikes have pedal sprockets with a $2.5-\mathrm{in}$. radius, wheel sprockets with $1.5-\mathrm{in}$. radius, and tires with a $9-\mathrm{in}$. radius. (a) If adults and kids both pedal at 50 rpm , how far ahead (in yards) are the adults after 2 min ? (b) If adults pedal at 50 rpm , how fast do the kids have to pedal to keep up?

MAINTAINING YOUR SKILLS

63. (3.1) Convert θ to degrees.
$\theta=\frac{4 \pi}{3}$
64. (3.1) Convert to radians. Leave the result in terms of π.
$\theta=150^{\circ}$
65. (1.1) Find the exact length of the legs of a 45-45-90 triangle whose hypotenuse measures 10 in .
66. (2.3) A small boat is 1403 ft away from the base of one of the towers of the Golden Gate Bridge. The angle of elevation from its position to the top of the tower is 28°. To the nearest foot, how tall is the tower?

Given $a=\sqrt{\mathbf{3 0}}, b=\sqrt{19}$, and $c=7$ use the triangle shown to find the following.
67. (2.1) $\csc \alpha$
68. (2.1) $\cot \beta$

Exercises 67 and 68

MID-CHAPTER CHECK

1. The city of Las Vegas, Nevada, is located at $36^{\circ} 06^{\prime} 36^{\prime \prime}$ north latitude, $115^{\circ} 04^{\prime} 48^{\prime \prime}$ west longitude. (a) Convert both measures to decimal degrees. (b) If the radius of the Earth is 3960 mi , how far north of the equator is Las Vegas?
2. Find the angle subtended by the arc shown in the figure, then determine the area of the sector.

Exercise 2

3. Find the exact radian measure of the following angles.
a. 210°
b. -135°
c. 480°
4. Convert the following angles to degree measure. Round to the nearest hundredth if necessary.
a. 4
b. -2.34
c. $\frac{3 \pi}{2}$
5. Name one positive and one negative angle that are coterminal with $\frac{5 \pi}{6}$. Answers may vary.
6. At a kid's carnival, the merry-go-round makes 10 revolutions per minute, with the outermost riders a distance of 15 ft from the center. (a) What is the
angular velocity of these riders? (b) What is the linear velocity of these riders in miles per hour?
7. A windshield wiper has a radius of 15 in . and sweeps through an angle of 105° as it wipes the windshield. (a) To the nearest whole, what is the area of the windshield it wipes? (b) To the nearest whole, what angle (in degrees) would be needed for the wiper to wipe an area of $\mathcal{A}=226$ in 2 ?
8. Identify the quadrant of the terminal side of the given angles when in standard position.
a. 2.9
b. -2
c. -5.1
d. 6.2
9. In a 1941 naval battle, a faulty torpedo launched by the HMS Trinidad followed a circular path and struck its own ship. Given the velocity of the torpedo was $35 \mathrm{~m} / \mathrm{s}$ during its 81 -sec trip, find the radius of the circular path it took.
10. Before it closed in 1971, the Langhorne Speedway was better known as "The Big Left Turn" because of its 1 -mi-long circular track. On April 24, 1960, a young A. J. Foyt captured the checkered flag in a 50-lap championship race at this speedway. Through what central angle had he driven during the first 19.1 mi of the $50-\mathrm{mi}$ race?

REINFORCING BASIC CONCEPTS

More on Radians

To increase your understanding and appreciation of radian measure, consider the protractor shown in Figure 3.10, which is marked in both degrees and radians. Besides the obvious conversions it illustrates, $15^{\circ}=\frac{\pi}{12}, 30^{\circ}=\frac{\pi}{6}$, and so on, we note that either system is adequate for measuring the amount of rotation for an angle in standard position. As drawn, this would be particularly true for multiples of $15^{\circ}=\frac{\pi}{12}$. However, angles measured in radians have a twofold advantage over

Figure 3.10
 those measured in degrees.

First, the formula $s=r \theta$ (θ in radians) enables us to find the length of the related circular arc directly, without having to determine a proportional part of the 360° in a full circle. For the protractor shown, $r=7 \mathrm{~cm}$ and using an angle of $60^{\circ}=\frac{\pi}{3}$, we have $s=7\left(\frac{\pi}{3}\right) \approx 7.33 \mathrm{~cm}$. To verify calculations of this kind, take any semicircular protractor you have available and determine its radius r. On a sheet of paper, stand the protractor on the 0° end, mark where the 0° meets the paper and roll the protractor along a straight line to $60^{\circ}=\frac{\pi}{3}$ and make another mark. Then draw a line segment between these two marks and measure its length-the result will be very close to $s=r\left(\frac{\pi}{3}\right)$. Repeat this process for other
 angles measured in radians.

Second, if we also mark the protractor in unit radians, as shown in Figure 3.11 (note $\frac{\pi}{3}=1.047$ or just more than 1 rad), the measure of the arc will be numerically equal to the measure of the angle. If you repeat the previous experiment and "roll the protractor" to $t=2$ rad, the resulting line segment will be exactly twice as long as the radius. Try it! This again shows that we can view t as either an angle in radians or as the length of the related arc. More importantly, when this "unit protractor" is seen as the upper half of a unit circle (see Figure 3.12), we are also reminded of why we can view the trig functions as functions of a real number. Specifically, this is because the arc length t, $t \in \mathbb{R}$, acts as a "circular number line" that associates any real number t with a unique point (x, y) on the unit circle. For $\cos t=x$ and $\sin t=y$, the trig functions are now indeed functions of any real number, since the real number line, circular or otherwise, is infinite in length and extends in both a positive and negative direction (note that this view of trigonometry is independent of the right triangle view). Using the grid provided in Figure 3.12, we estimate that an arc length of $t=1.25$ units corresponds to the point $(0.32,0.95)$ on the unit circle. After verifying $(0.32)^{2}+(0.95)^{2} \approx 1$, we use a calculator to support our findings and sure enough, $\cos 1.25=0.3153223624$ and $\sin 1.25=0.9489846194$. Use this information to complete the following exercises.

Exercise 1: Estimate the point (x, y) on the unit circle associated with the values of t indicated, then verify that $x^{2}+y^{2} \approx 1$. Finally, use a calculator to show $x \approx \cos t$ and $y \approx \sin t$ for (a) $t=0.25$, (b) $t=0.5$, (c) $t=0.75$, and (d) $t=1$.

Exercise 2: Estimate the point (x, y) on the unit circle associated with the values of t indicated, then verify that $x^{2}+y^{2} \approx 1$. Finally, use standard values to show $x \approx \cos t$ and $y \approx \sin t$ for (a) $t=\frac{2 \pi}{3}$, (b) $t=\frac{3 \pi}{4}$, (c) $t=\frac{5 \pi}{6}$, and (d) $t=\pi$.

3.3 The Unit Circle

Learning Objectives

In Section 3.3 you will learn how to:

A. Locate points on a unit circle and use symmetry to locate other pointsB. Use special triangles to find points on a unit circle and locate other points using symmetryC. Define the six trig functions in terms of a point on the unit circleIn Section 3.2, we noted that using radians as a unit of angle measure simplified calculations involving arc length, angular and linear velocity, and the area of a circular sector. In much the same way, the definitions of the trig functions seen in Chapter 1 can be simplified by considering points on the circumference of a unit circle $(r=1)$.
For example, recall that $\cos \theta=\frac{x}{r}$. If $r=1$, we have $\cos \theta=x$, with each of the other trig functions likewise more simple. In practice, the importance of using a unit circle goes far beyond these algebraic simplifications and is truly the beginning of a more modern (and more useful) view of trigonometry.

A. The Unit Circle

A circle is defined as the set of all points in a plane that are a fixed distance called the radius, from a fixed point called the center. Since the definition involves distance, we can construct the general equation of a circle using the distance formula. Assume the center has coordinates (h, k) and let (x, y) represent any point on the graph. Since the distance between these points is the radius r, the distance formula yields $\sqrt{(x-h)^{2}+(y-k)^{2}}=r$. Squaring both sides gives $(x-h)^{2}+(y-k)^{2}=r^{2}$. For central circles both h and k are zero, and the result is the equation for a central circle of radius r : $x^{2}+y^{2}=r^{2}(r>0)$. The unit circle is defined as a central circle with radius 1 unit: $x^{2}+y^{2}=1$. As such, the figure can easily be graphed by drawing a circle through the four quadrantal points $(1,0),(-1,0)$, $(0,1)$, and $(0,-1)$ as in Figure 3.13. To find other points on the circle, we simply select any value of x, where $|x|<1$, then substitute and solve for y; or any value of y, where $|y|<1$, then solve for x.

Figure 3.13

EXAMPLE 1 Finding Points on a Unit Circle

Find a point on the unit circle given $y=\frac{1}{2}$ with (x, y) in QII.
Solution $>$ Using the equation of a unit circle, we have

$$
\begin{aligned}
x^{2}+y^{2} & =1 & & \text { unit circle equation } \\
x^{2}+\left(\frac{1}{2}\right)^{2} & =1 & & \text { substitute } \frac{1}{2} \text { for } y \\
x^{2}+\frac{1}{4} & =1 & & \left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
x^{2} & =\frac{3}{4} & & \text { subtract } \frac{1}{4} \\
x & = \pm \frac{\sqrt{3}}{2} & & \text { result }
\end{aligned}
$$

With (x, y) in QII, we choose $x=-\frac{\sqrt{3}}{2}$. The point is $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.

Additional points on the unit circle can be found using symmetry. The simplest examples come from the quadrantal points, where $(1,0)$ and $(-1,0)$ are on opposite sides of the y-axis, and $(0,1)$ and $(0,-1)$ are on opposite sides of the x-axis. In general, if a and b are positive real numbers and (a, b) is on the unit circle, then $(-a, b),(a,-b)$, and $(-a,-b)$ are also on the circle because a circle is symmetric to both axes and the origin! For the point $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ from Example 1, three other points are $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ in QIII, $\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ in QIV, and $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ in QI. See Figure 3.14.

Figure 3.14

EXAMPLE 2 Using Symmetry to Locate Points on a Unit Circle

Name the quadrant containing $\left(-\frac{3}{5},-\frac{4}{5}\right)$ and verify it's on a unit circle. Then use symmetry to find three other points on the circle.
Solution \downarrow Since both coordinates are negative, $\left(-\frac{3}{5},-\frac{4}{5}\right)$ is in QIII. Substituting into the equation for a unit circle yields

$$
\begin{aligned}
x^{2}+y^{2} & =1 & & \text { unit circle equation } \\
\left(\frac{-3}{5}\right)^{2}+\left(\frac{-4}{5}\right)^{2} & \stackrel{?}{=} 1 & & \text { substitute } \frac{-3}{5} \text { for } x \text { and } \frac{-4}{5} \text { for } y \\
\frac{9}{25}+\frac{16}{25} & \stackrel{?}{=} 1 & & \text { simplify } \\
\frac{25}{25} & =1 & & \text { result checks }
\end{aligned}
$$

Since $\left(\frac{-3}{5}, \frac{-4}{5}\right)$ is on the unit circle, $\left(\frac{3}{5}, \frac{-4}{5}\right),\left(\frac{-3}{5}, \frac{4}{5}\right)$,
 and $\left(\frac{3}{5}, \frac{4}{5}\right)$ are also on the circle due to symmetry (see figure).
A. You've just learned how to locate points on a unit circle and use symmetry to locate other points

Now try Exercises 19 through 26

B. Special Triangles and the Unit Circle

The special triangles from Section 1.1 can also be used to find points on a unit circle. As usually written, the triangles state a proportional relationship between their sides after assigning a value of 1 to the shortest side. However, precisely due to this proportional relationship, we can divide all sides by the length of the hypotenuse, giving it a length of 1 unit (see Figures 3.15 and 3.16).

Figure 3.15

Figure 3.16

We then place the triangle within the unit circle, and reflect it from quadrant to quadrant to find additional points. We use the sides of the triangle to determine the absolute value of each coordinate, and the quadrant to give each coordinate the appropriate sign. Note the angles in these special triangles are now expressed in radians.

EXAMPLE $3>$ Using a Special Triangle and Symmetry to Locate Points on a Unit Circle

Use the $\frac{\pi}{4}: \frac{\pi}{4}: \frac{\pi}{2}$ triangle from Figure 3.16 to find four points on the unit circle.
Solution $>$ Begin by superimposing the triangle in QI, noting it gives the point $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ shown in Figure 3.17. By reflecting the triangle into QII, we find the additional point $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ on this circle. Realizing we can simply apply the circle's remaining symmetries, we obtain the two additional points $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ and $\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ shown in Figure 3.18.

Figure 3.17

Figure 3.18

Now try Exercises 27 and 28

Applying the same idea to a $\frac{\pi}{6}: \frac{\pi}{3}: \frac{\pi}{2}$ triangle would give the points $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$, $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right),\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ and $\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$, which includes the same point we found in Example 1.

When a central angle θ is viewed as a rotation, each rotation can be associated with a unique point (x, y) on the terminal side, where it intersects the unit circle (see Figure 3.19). For the quadrantal angles $\frac{\pi}{2}, \pi, \frac{3 \pi}{2}$, and 2π, we associate the points $(0,1)$, $(-1,0),(0,-1)$, and $(1,0)$, respectively. When this rotation results in a special angle θ, the association can be found using a special triangle in a manner

Figure 3.19

similar to Example 3. Figure 3.20 shows we associate the point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ with $\theta=\frac{\pi}{6}$, $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ with $\theta=\frac{\pi}{4}$, and by reorienting the $\frac{\pi}{6}: \frac{\pi}{3}: \frac{\pi}{2}$ triangle, $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ is associated with a rotation of $\theta=\frac{\pi}{3}$.

Figure 3.20

For standard rotations from $\theta=0$ to $\theta=\frac{\pi}{2}$ we have the following:

Rotation $\boldsymbol{\theta}$	$\mathbf{0}$	$\frac{\boldsymbol{\pi}}{\mathbf{6}}$	$\frac{\boldsymbol{\pi}}{\mathbf{4}}$	$\frac{\boldsymbol{\pi}}{\mathbf{3}}$	$\frac{\boldsymbol{\pi}}{\mathbf{2}}$
Associated point (x, y)	$(0,0)$	$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$	$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$	$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$	$(0,1)$

Each of these points give rise to three others using the symmetry of the circle. With this symmetry and a reference angle θ_{r}, we can associate additional points on a unit circle for $\theta>\frac{\pi}{2}$. Several examples of the reference angle concept are shown in Figure 3.21 for $\theta>0$ in radians.

Figure 3.21

$$
\begin{gathered}
\frac{\pi}{2}<\theta<\pi \\
\theta_{r}=\pi-\theta
\end{gathered}
$$

$$
<\frac{2}{2}
$$

$$
\frac{3 \pi}{2}<\theta<2 \pi
$$

$$
\theta_{r}=2 \pi-\theta
$$

Due to the symmetries of the circle, reference angles of $\frac{\pi}{6}, \frac{\pi}{4}$, and $\frac{\pi}{3}$ serve to fix the absolute value of the coordinates for x and y, and we simply use the appropriate sign for each coordinate (r is always positive). As before, this depends solely on the quadrant of the terminal side.

EXAMPLE 4

Finding Points on a Unit Circle Associated with a Rotation $\boldsymbol{\theta}$
Determine the reference angle for each rotation given, then find the associated point (x, y) on the unit circle.
a. $\theta=\frac{5 \pi}{6}$
b. $\theta=\frac{4 \pi}{3}$
c. $\theta=\frac{7 \pi}{4}$

Solution

区
B. You've just learned how to use special triangles to find points on a unit circle and locate other points using symmetry

Now try Exercises 29 through 36

C. Trigonometric Functions and Points on the Unit Circle

We can now define the six trigonometric functions in terms of a point (x, y) on the unit circle, with the use of right triangles fading from view. For this reason they are sometimes called the circular functions.

The Circular Functions

For any rotation θ and point $P(x, y)$ on the unit circle associated with θ,

$$
\begin{array}{ccc}
\cos \theta=x & \sin \theta=y & \tan \theta=\frac{y}{x} ; x \neq 0 \\
\sec \theta=\frac{1}{x} ; x \neq 0 & \csc \theta=\frac{1}{y} ; y \neq 0 & \cot \theta=\frac{x}{y} ; y \neq 0
\end{array}
$$

Note that once $\sin \theta, \cos \theta$, and $\tan \theta$ are known, the values of $\csc \theta$, $\sec \theta$, and $\cot \theta$ follow automatically since a number and its reciprocal always have the same sign. See Figure 3.24.

Figure 3.24
(C. You've just learned how to define the six trig functions in terms of a point on the unit circle

$\wedge y$	
$\begin{gathered} \text { QII } \\ x<0, y>0 \\ \text { (only } y \text { is positive) } \end{gathered}$	$\begin{gathered} \mathrm{QI} \\ x>0, y>0 \\ \text { (both } x \text { and } y \text { are positive) } \end{gathered}$
$\sin \theta$ is positive	All functions are positive
$\tan \theta$ is positive	$\cos \theta$ is positive $\quad x$
$\begin{gathered} \text { QIII } \\ x<0, y<0 \\ \text { (both } x \text { and } y \text { are negative) } \end{gathered}$	$\begin{gathered} \text { QIV } \\ x>0, y<0 \\ \text { (only } x \text { is positive) } \end{gathered}$

EXAMPLE $5>$ Evaluating Trig Functions for a Rotation $\boldsymbol{\theta}$

Evaluate the six trig functions for $\theta=\frac{5 \pi}{4}$.
Solution A rotation of $\frac{5 \pi}{4}$ terminates in QIII, so $\theta_{r}=\frac{5 \pi}{4}-\pi=\frac{\pi}{4}$. The associated point is $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ since $x<0$ and $y<0$ in QIII.

This yields

$$
\cos \left(\frac{5 \pi}{4}\right)=-\frac{\sqrt{2}}{2} \quad \sin \left(\frac{5 \pi}{4}\right)=-\frac{\sqrt{2}}{2} \quad \tan \left(\frac{5 \pi}{4}\right)=1
$$

Noting the reciprocal of $-\frac{\sqrt{2}}{2}$ is $-\sqrt{2}$ after rationalizing, we have

$$
\sec \left(\frac{5 \pi}{4}\right)=-\sqrt{2} \quad \csc \left(\frac{5 \pi}{4}\right)=-\sqrt{2} \quad \cot \left(\frac{5 \pi}{4}\right)=1
$$

Now try Exercises 37 through 40

TECHNOLOGY HIGHLIGHT

Graphing the Unit Circle

When using a graphing calculator to study the unit circle, it's important to keep two things in mind. First, most graphing calculators are only capable of graphing functions, which means we must modify the equation of the circle (and relations like ellipses, hyperbolas, horizontal parabolas, and so on) before it can be graphed. Second, most standard viewing windows have the x - and y-values preset at $[-10,10]$ even though the calculator screen is 94 pixels wide and 64 pixels high. This tends to compress the y-values and give a skewed image of the graph. Consider the equation $x^{2}+y^{2}=1$. From our work in this section, we know this is the equation of a circle centered at $(0,0)$ with radius $r=1$. For the calculator to graph this relation, we must define it in two pieces, each of which is a function, by solving for y :

$$
\begin{aligned}
x^{2}+y^{2} & =1 & & \text { original equation } \\
y^{2} & =1-x^{2} & & \text { isolate } y^{2} \\
y & = \pm \sqrt{1-x^{2}} & & \text { solve for } y
\end{aligned}
$$

Note that we can separate this result into two parts, each of which is a function. The graph of $\mathrm{Y}_{1}=\sqrt{1-x^{2}}$ gives the "upper half" of the circle, while $Y_{2}=-\sqrt{1-x^{2}}$ gives the "lower half." We can enter these on the $\mathbf{Y}=$ screen as shown, using the expression $-Y_{1}$ instead of reentering the entire expression. The function variables Y_{1}, Y_{2}, Y_{3}, and so on, can be accessed using VARS \downarrow (Y-VARS) ENTER (1:Function). Graphing Y_{1} and Y_{2} on the standard screen, the result appears very small and more elliptical than circular (Figure 3.25). One way to fix this (there are many others), is to use the Z00M 4:ZDecimal option, which places the tic marks equally spaced on both axes, instead of trying to force both to display points from -10 to 10. Using this option gives the screen shown in Figure 3.26. An even better graph can be obtained using the Z00M 2:Zoom In option (or by manually resetting the window size). Using the TRACE feature enables us to view points on the unit circle, but recall that this image is actually the union of two graphs and we may need to jump between the upper and lower halves using the up \triangle or down \square arrows.

Figure 3.25

Figure 3.26

Exercise 1: Use the TRACE feature to verify the point $(0.6,0.8)$ is on the unit circle, as well as the other three related points given by symmetry (as shown in Example 2).
Exercise 2: Use the 2nd TRACE (CALC) feature to evaluate the function at $\frac{\sqrt{2}}{2}$. What do you notice about the output? For $\cos \theta$ or $\sin \theta$, what value of θ can we associate with this point?
Exercise 3: What other standard values can you identify as you TRACE around the circle?

3.3 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. A central circle is symmetric to the \qquad axis, the
\qquad axis and to the \qquad -
2. On a unit circle, $\cos \theta=$ \qquad , $\sin \theta=$ \qquad and $\tan \theta=$ \qquad ; while $\frac{1}{x}=$ \qquad $\frac{1}{y}=\longrightarrow$, and $\frac{x}{y}=$ \qquad
3. Discuss/Explain how knowing only one point on the unit circle, actually gives the location of four points. Why is this helpful to a study of the circular functions?
4. Since $\left(\frac{5}{13},-\frac{12}{13}\right)$ is on the unit circle, the point
\qquad in QII is also on the circle.
5. Reference angles are the \qquad angles formed by the terminal side of angles in standard position and the \qquad . They must measure between \qquad and radians.
6. Discuss/Explain how the unit circle simplifies the definitions of the trig functions and why the points on this circle are sufficient to describe any rotation.

DEVELOPING YOUR SKILLS

Given the point is on a unit circle, complete the ordered pair (x, y) for the quadrant indicated. For Exercises 7 to 14, answer in radical form as needed. For Exercises 15 to 18 , round results to four decimal places.
7. $(x,-0.8)$; QIII
8. $(-0.6, y)$; QII
9. $\left(\frac{5}{13}, y\right)$; QIV
10. $\left(x,-\frac{8}{17}\right)$; QIV
11. $\left(\frac{\sqrt{11}}{6}, y\right) ; \mathrm{QI}$
12. $\left(x,-\frac{\sqrt{13}}{7}\right)$; QIII
13. $\left(-\frac{\sqrt{11}}{4}, y\right)$; QII
14. $\left(x, \frac{\sqrt{6}}{5}\right)$; QI
15. $(x,-0.2137)$; QIII
16. (0.9909, y); QIV
17. ($x, 0.1198$); QII
18. $(0.5449, y)$; QI

Verify the point given is on a unit circle, then use symmetry to find three more points on the circle.
Results for Exercises 19 to 22 are exact, results for
Exercises 23 to 26 are approximate.
19. $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
20. $\left(\frac{\sqrt{7}}{4},-\frac{3}{4}\right)$
21. $\left(\frac{\sqrt{11}}{6},-\frac{5}{6}\right)$
22. $\left(-\frac{\sqrt{6}}{3},-\frac{\sqrt{3}}{3}\right)$
23. $(0.3325,0.9431)$
24. $(0.7707,-0.6372)$
25. $(0.9937,-0.1121)$
26. $(-0.2029,0.9792)$
27. Use a $\frac{\pi}{6}: \frac{\pi}{3}: \frac{\pi}{2}$ triangle with a hypotenuse of length 1 to verify that $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ is a point on the unit circle.
28. Use the results from Exercise 27 to find three additional points on the circle and name the quadrant of each point.

Find the reference angle associated with each rotation, then find the associated point (x, y) on the unit circle.
29. $\theta=\frac{5 \pi}{4}$
30. $\theta=\frac{5 \pi}{3}$
31. $\theta=-\frac{5 \pi}{6}$
32. $\theta=-\frac{7 \pi}{4}$
33. $\theta=\frac{11 \pi}{4}$
34. $\theta=\frac{11 \pi}{3}$
35. $\theta=\frac{25 \pi}{6}$
36. $\theta=\frac{39 \pi}{4}$

Without the use of a calculator, state the exact value of the trig functions for the given angle. A diagram may help.
37. a. $\sin \left(\frac{\pi}{4}\right)$
b. $\sin \left(\frac{3 \pi}{4}\right)$
c. $\sin \left(\frac{5 \pi}{4}\right)$
d. $\sin \left(\frac{7 \pi}{4}\right)$
e. $\sin \left(\frac{9 \pi}{4}\right)$
f. $\sin \left(-\frac{\pi}{4}\right)$
g. $\sin \left(-\frac{5 \pi}{4}\right)$
h. $\sin \left(-\frac{11 \pi}{4}\right)$
38. a. $\tan \left(\frac{\pi}{3}\right)$
b. $\tan \left(\frac{2 \pi}{3}\right)$
c. $\tan \left(\frac{4 \pi}{3}\right)$
d. $\tan \left(\frac{5 \pi}{3}\right)$
e. $\tan \left(\frac{7 \pi}{3}\right)$
f. $\tan \left(-\frac{\pi}{3}\right)$
g. $\tan \left(-\frac{4 \pi}{3}\right)$
h. $\tan \left(-\frac{10 \pi}{3}\right)$
39. a. $\cos \pi$
b. $\cos 0$
c. $\cos \left(\frac{\pi}{2}\right)$
d. $\cos \left(\frac{3 \pi}{2}\right)$
40. a. $\sin \pi$
b. $\sin 0$
c. $\sin \left(\frac{\pi}{2}\right)$
d. $\sin \left(\frac{3 \pi}{2}\right)$

WORKING WITH FORMULAS

41. Unit sphere: $x^{2}+y^{2}+z^{2}=1$

The unit circle is actually the intersection of the unit sphere with the $x y$-plane $(z=0)$. Any ordered triple (x, y, z) in three dimensional space that satisfies this equation is on the surface of the unit sphere. Find two possible values of each missing variable for the following points on the unit sphere.
a. $\left(x,-\frac{4}{9}, \frac{1}{9}\right)$
b. $\left(\frac{2}{11}, y,-\frac{9}{11}\right)$
c. $\left(\frac{2}{7}, \frac{3}{7}, z\right)$
42. From Pythagorean triples to points on the unit circle: $(x, y, r) \rightarrow\left(\frac{x}{r}, \frac{y}{r}, 1\right)$

While not strictly a "formula," dividing a Pythagorean triple by r is a simple algorithm for rewriting any Pythagorean triple as a triple with hypotenuse 1 . This enables us to identify certain points on a unit circle, and to evaluate the six trig functions of the related acute angle. Rewrite each triple as a triple with hypotenuse 1 , verify $\left(\frac{x}{r}, \frac{y}{r}\right)$ is a point on the unit circle, and evaluate the six trig functions using this point.
a. $(5,12,13)$
b. $(7,24,25)$
c. $(12,35,37)$
d. $(9,40,41)$

APPLICATIONS

Unit circle points: In Exercises 23 through 26, four decimal approximations of unit circle points were given. Find such unit circle points that are on the terminal side of the following angles in standard position. (Hint: Use the definitions of the circular functions.)
43. $\theta=40^{\circ}$
44. $\theta=140^{\circ}$
45. $\theta=201^{\circ}$
46. $\theta=339^{\circ}$
47. $\theta=2$
48. $\theta=1$
49. $\theta=5$
50. $\theta=4$

Mosaic design: The floor of a local museum contains a mosaic zodiac circle as shown. The circle is $1 \mathrm{~m}(=100 \mathrm{~cm})$ in radius, with all 12 zodiac signs represented by small, evenly spaced bronze disks on the circumference.
51. If the disk representing Libra is 96.6 cm to the right of and 25.9 cm above the center of the zodiac, what is the distance d (see illustration) from Libra's disk to Pisces' disk? What is the distance from Libra's disk to Virgo's disk?
52. If the disk representing Taurus is 70.7 cm to the left of and 70.7 cm below the center of the zodiac, what is the distance from Taurus' disk to Leo's disk? What is the distance from Taurus' disk to Scorpio's disk?
53. Using a special triangle, identify (in relation to the center of the zodiac) the location of the point P (see illustration) where the steel rod separating Scorpio and Sagittarius intersects the circumference. Round to the nearest tenth of a centimeter.
54. Using a special triangle, identify (in relation to the center of the zodiac) the location of the point where the steel rod separating Aquarius and Pisces intersects the circumference. Round to the nearest tenth of a centimeter.

Exercises 51 to 54

EXTENDING THE CONCEPT

55. Use the figure shown to verify the ratio identity for tangent and the reciprocal identity for secant.
56. In addition to the symmetry across the x - and y-axes, the unit circle has a "rotational" symmetry that we can also use to find additional points. Consider the unit circle point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ and its associated angle $\frac{\pi}{6}$. (a) Rotate this point an additional $\frac{\pi}{2}$ radians around the unit circle and identify the new associated angle and coordinates.
(b) Repeat this rotation three more times and comment on what you notice. (c) Given

Exercise 55
 $(0.8,0.6)$ is on the unit circle, use rotational symmetry to find three additional points on the circle.

MAINTAINING YOUR SKILLS

57. (3.2) For emissions testing, automobiles are held stationary while a heavy roller installed in the floor allows the wheels to turn freely. If the large wheels of a customized pickup have a radius of 18 in . and are turning at 300 rpm , what speed is the speedometer of the truck reading in miles per hour?
58. (3.1) Complete the table from memory or mental calculation only.

Degrees	30°	45°	60°	90°	180°	270°	360°
Radians							

59. (3.2) Find (a) the radian measure of θ, and (b) the area of the circular sector.
60. (3.1) Find the complement of $\theta=\frac{\pi}{10}$.
61. (3.1) Find the supplement of $\theta=3$.
62. (1.3) Find the values of the remaining trig functions of θ given $\tan \theta=\frac{5}{7}$ and $\cos \theta<0$.

3.4 The Trigonometry of Real Numbers

Learning Objectives

In Section 3.4 you will learn how to:
A. Define the six trig functions in terms of a real number t
B. Find the real number t corresponding to special values of $\sin t, \cos t$, and $\tan t$
C. Find the real number t corresponding to any trig function value

In this section, we introduce the trigonometry of real numbers, a view of trigonometry that can exist free of its historical roots in a study of right triangles. In fact, the ultimate value of these functions is not in their classical study, but in the implications and applications that follow from understanding them as functions of a real number, rather than simply as functions of a given angle.

A. The Trigonometry of Real Numbers

Defining the trig functions in terms of a point on the unit circle is precisely what we needed to work with them as functions of real numbers. This is because when $r=1$ and θ is in radians, the length of the subtended arc is numerically the same as the measure of the angle: $s=(1) \theta \Rightarrow s=\theta$! This means we can view any function of θ as a like function of arc length s, where $s \in \mathbb{R}$ (see the Strengthening Core Skills feature at the end of this chapter). As a compromise the variable t is commonly used, with t representing either the amount of rotation or the length

Figure 3.27
 of the arc. As such we will assume t is a unitless quantity, although there are other reasons for this assumption. In Figure 3.27, a rotation of $\theta=\frac{3 \pi}{4}$ is subtended by an arc length of $s=\frac{3 \pi}{4}$ (about 2.356 units). The reference angle for θ is $\frac{\pi}{4}$, which we will now refer to as a reference arc. As you work through the remaining examples and the exercises that follow, it will often help to draw a quick sketch similar to that in Figure 3.27 to determine the quadrant of the terminal side, the reference arc, and the sign of each function.

EXAMPLE 1 Evaluating Trig Functions for a Real Number t
Evaluate the six trig functions for the given value of t.
a. $t=\frac{11 \pi}{6}$
b. $t=\frac{3 \pi}{2}$

Solution a. For $t=\frac{11 \pi}{6}$, the arc terminates in QIV where $x>0$ and $y<0$. The

reference arc is $\frac{\pi}{6}$ and from our previous work we know the corresponding point (x, y) is $\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$. This gives

$$
\begin{array}{lll}
\cos \left(\frac{11 \pi}{6}\right)=\frac{\sqrt{3}}{2} & \sin \left(\frac{11 \pi}{6}\right)=-\frac{1}{2} & \tan \left(\frac{11 \pi}{6}\right)=-\frac{\sqrt{3}}{3} \\
\sec \left(\frac{11 \pi}{6}\right)=\frac{2 \sqrt{3}}{3} & \csc \left(\frac{11 \pi}{6}\right)=-2 & \cot \left(\frac{11 \pi}{6}\right)=-\sqrt{3}
\end{array}
$$

b. $t=\frac{3 \pi}{2}$ is a quadrantal angle and the associated point is $(0,-1)$. This yields

$$
\begin{array}{lll}
\cos \left(\frac{3 \pi}{2}\right)=0 & \sin \left(\frac{3 \pi}{2}\right)=-1 & \tan \left(\frac{3 \pi}{2}\right)=\text { undefined } \\
\sec \left(\frac{3 \pi}{2}\right)=\text { undefined } & \csc \left(\frac{3 \pi}{2}\right)=-1 & \cot \left(\frac{3 \pi}{2}\right)=0
\end{array}
$$

Now try Exercises 7 through 10

As Example 1(b) indicates, as functions of a real number the concept of domain comes into play. From their definition it is apparent there are no restrictions on the domain of cosine and sine, but the domains of the other functions must be restricted to exclude division by zero. For functions with x in the denominator, we cast out the odd multiples of $\frac{\pi}{2}$, since the x-coordinate of the related quadrantal points is zero: $\frac{\pi}{2} \rightarrow(0,1), \frac{3 \pi}{2} \rightarrow(0,-1)$, and so on. The excluded values can be stated as $t \neq \frac{\pi}{2}+\pi k$ for all integers k. For functions with y in the denominator, we cast out all multiples of $\pi(t \neq \pi k$ for all integers $k)$ since the y-coordinate of these points is zero: $0 \rightarrow(1,0), \pi \rightarrow(-1,0), 2 \pi \rightarrow(1,0)$, and so on.

The Domains of the Trig Functions as Functions of a Real Number

For $t \in \mathbb{R}$ and $k \in \mathbb{Z}$, the domains of the trig functions are:

$$
\begin{array}{ccc}
\cos t=x & \sin t=y & \tan t=\frac{y}{x} ; x \neq 0 \\
t \in \mathbb{R} & t \in \mathbb{R} & t \neq \frac{\pi}{2}+\pi k \\
\sec t=\frac{1}{x} ; x \neq 0 & \csc t=\frac{1}{y} ; y \neq 0 & \cot t=\frac{x}{y} ; y \neq 0 \\
t \neq \frac{\pi}{2}+\pi k & t \neq \pi k & t \neq \pi k
\end{array}
$$

For a given point (x, y) on the unit circle associated with the real number t, the value of each function at t can still be determined even if t is unknown.

EXAMPLE $2-$ Finding Function Values Given a Point on the Unit Circle

Given $\left(\frac{-7}{25}, \frac{24}{25}\right)$ is a point on the unit circle corresponding to a real number t, find the value of all six trig functions of t.
Solution

Y A. You've just learned how to define the six trig functions in terms of a real number t

Now try Exercises 11 through 36

B. Finding a Real Number t Whose Function Value Is Special

In Example 2, we were able to determine the values of the trig functions even though t was unknown. In many cases, however, we need to find the value of t. For instance, what is the value of t given $\cos t=-\frac{\sqrt{3}}{2}$ with t in QII? Exercises of this type fall into two broad categories: (1) you recognize the given number as one of the special values: $\pm\left\{0, \frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{3}, \sqrt{3}, 1\right\} ; \quad$ or (2) you don't. If you recognize a special value, you can often name the real number t after a careful consideration of

Figure 3.28
 the related quadrant and required sign.
The diagram in Figure 3.28 reviews these special values for $0 \leq t \leq \frac{\pi}{2}$ but remember-all other special values can be found using reference arcs and the symmetry of the circle.

EXAMPLE $3>$ Finding t for Given Special Values and Conditions

Find the value of t that corresponds to the given function values.
a. $\cos t=-\frac{\sqrt{2}}{2} ; t$ in QII
b. $\tan t=\sqrt{3} ; t$ in QIII

Solution a. The cosine function is negative in QII and QIII, where $x<0$. We recognize $-\frac{\sqrt{2}}{2}$ as a standard value for sine and cosine, related to certain multiples of $t=\frac{\pi}{4}$. In QII, we have $t=\frac{3 \pi}{4}$.
b. The tangent function is positive in QI and QIII, where x and y have like signs. We recognize $\sqrt{3}$ as a standard value for tangent and cotangent, related to certain multiples of $t=\frac{\pi}{3}$. For tangent in QIII, we have $t=\frac{4 \pi}{3}$.
B. You've just learned how to find the real number t corresponding to special values of $\sin t, \cos t$, and $\tan t$

The following table summarizes the relationship between a special arc $t(t$ in QI$)$ and the value of each trig function at t. Due to the frequent use of these relationships, students are encouraged to commit them to memory.

\boldsymbol{t}	$\sin \boldsymbol{t}$	$\cos \boldsymbol{t}$	$\tan \boldsymbol{t}$	$\csc \boldsymbol{t}$	$\sec \boldsymbol{t}$	$\cot \boldsymbol{t}$
0	0	1	0	undefined	1	undefined
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$	2	$\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$	2	$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
$\frac{\pi}{2}$	1	0	undefined	1	undefined	0

C. Finding a Real Number t for Any Function Value

In Example 3, we recognized the values given as those of a special arc, and we were able to identify t using a reference arc and quadrant analysis. If the given function value is not one of the "special values," we use the $\sin ^{-1}, \cos ^{-1}$, and $\tan ^{-1}$ keys of our calculator (in radian MODE), as in Section 2.2. By applying the correct inverse function to the absolute value of the given trig function value of t, we find the associated reference arc $\boldsymbol{t}_{\boldsymbol{r}}$. Now as in Example 3, we can find the real number t with a careful consideration of the related quadrant.

EXAMPLE 4

Finding t for Given Values and Conditions

Find the value of $t \in[0,2 \pi)$ that corresponds to the given function values.
a. $\cos t=0.1217 ; \sin t<0$
b. $\cot t=-0.7259 ; \cos t<0$

Solution

a. The cosine function is positive in QI and QIV, while the sine function is negative in QIII and QIV. Since both must be true, the arc terminates in QIV. To find the reference arc

$$
\begin{aligned}
t_{r} & =\cos ^{-1}|0.1217| \\
& \approx 1.4488
\end{aligned}
$$

take inverse cosine of absolute value
calculator in radian mode

Using the sketch shown, we can quickly find the value of t.

$$
\begin{aligned}
t & =2 \pi-t_{r} \\
& \approx 2 \pi-1.4488 \\
& \approx 4.8344
\end{aligned}
$$

arc terminates in QIV

$$
\text { replace } t_{r} \text { with } 1.4488
$$

result

A quick check on your calculator shows $\cos 4.8344 \approx 0.1217$ and $\sin 4.8344 \approx-0.9926<0$.

WORTHY OF NOTE

In Example 5(b) of Section 2.4, we noted reference angles (and now here reference arcs) require the inverse trig functions of positive values. In Chapter 6, we consider the use of these functions on negative values as well.
C. You've just learned how to find the real number t corresponding to any trig function value
b. The arc terminates in QII where cotangent and cosine are both negative (see figure). Since we don't have a $\cot ^{-1}$ key on our calculator, we use the ratio identity $\tan t=\frac{1}{\cot t}=\frac{1}{-0.7259} \approx-1.3776$ to use the $\tan ^{-1}$ key. For the reference $\operatorname{arc} t_{r}$ we then have

$$
\begin{array}{rlrl}
t_{r} & \approx \tan ^{-1} \mid-1.3776 & t & =\pi-t_{r} \\
& =\tan ^{-1} 1.3776 & & \approx \pi-0.9429 \\
& \approx 0.9429 & & \approx 2.1987
\end{array}
$$

Now try Exercises 53 through 68
Whether the unit is $1 \mathrm{~cm}, 1 \mathrm{~m}, 1 \mathrm{~km}$, or even 1 light-year, using 1 unit designations serves to simplify a great many practical applications, including those involving the arc length formula, $s=r \theta$. See Exercises 71 through 78. With the trigonometry of real numbers, we'll see radian measure and the unit circle are much more than simple conveniences.

3.4 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. On a unit circle, the \qquad of the arc subtended is numerically \qquad to the \qquad measure of the
central angle. The variable \qquad is used as a compromise between the variables s and _.
2. A \qquad arc is the shortest path from a point on the unit circle to the \qquad . Its measure is always between 0 and _.
3. On a unit circle, $\cos t=$ \qquad , $\sin t=$ \qquad —, and $\tan t=\square$; while $\frac{1}{x}=$ \qquad $\frac{1}{y}=$ \qquad , and $\frac{x}{y}=$ \qquad -.
4. On a unit circle with θ in radians, the length of $\mathrm{a}(\mathrm{n})$ is numerically the same as the measure of the \qquad since for $s=r \theta, s=\theta$ when $r=1$.
5. Complete the unit circle shown in Figure 3.28 by identifying all special points. Be sure to include the quadrantal points.
6. A student is asked to find t using a calculator, given $\sin t \approx 0.5592$ with t in QII. The answer submitted is $t=\sin ^{-1} 0.5592 \approx 34^{\circ}$. Discuss/Explain why this answer is not correct. What is the correct response?

DEVELOPING YOUR SKILLS

Use the symmetry of the circle and reference arcs as needed to state the exact value of the trig functions for the given real number, without the use of a calculator. A diagram may help.
7. a. $\cos \left(\frac{\pi}{6}\right)$
b. $\cos \left(\frac{5 \pi}{6}\right)$
8. a. $\csc \left(\frac{\pi}{6}\right)$
b. $\csc \left(\frac{5 \pi}{6}\right)$
c. $\cos \left(\frac{7 \pi}{6}\right)$
d. $\cos \left(\frac{11 \pi}{6}\right)$
c. $\csc \left(\frac{7 \pi}{6}\right)$
d. $\csc \left(\frac{11 \pi}{6}\right)$
e. $\cos \left(\frac{13 \pi}{6}\right)$
f. $\cos \left(-\frac{\pi}{6}\right)$
e. $\csc \left(\frac{13 \pi}{6}\right)$
f. $\csc \left(-\frac{\pi}{6}\right)$
g. $\cos \left(-\frac{5 \pi}{6}\right)$
h. $\cos \left(-\frac{23 \pi}{6}\right)$
g. $\csc \left(-\frac{11 \pi}{6}\right)$
h. $\csc \left(-\frac{17 \pi}{6}\right)$
9. a. $\tan \pi$
b. $\tan 0$
c. $\tan \left(\frac{\pi}{2}\right)$
d. $\tan \left(\frac{3 \pi}{2}\right)$
10. a. $\cot \pi$
b. $\cot 0$
c. $\cot \left(\frac{\pi}{2}\right)$
d. $\cot \left(\frac{3 \pi}{2}\right)$

Given (x, y) is a point on a unit circle corresponding to t, find the value of all six circular functions of t.
11.

13.

15.

12.

14.

16.

17. $\left(-\frac{2}{5}, \frac{\sqrt{21}}{5}\right)$
18. $\left(\frac{\sqrt{7}}{4},-\frac{3}{4}\right)$
19. $\left(-\frac{1}{3},-\frac{2 \sqrt{2}}{3}\right)$
20. $\left(-\frac{2 \sqrt{6}}{5},-\frac{1}{5}\right)$
21. $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
22. $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
23. $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
24. $\left(\frac{\sqrt{2}}{3},-\frac{\sqrt{7}}{3}\right)$

On a unit circle, the real number t can represent either the amount of rotation or the length of the arc when we associate t with a point (x, y) on the circle. In the circle diagram shown, the real number t in radians is marked off along the circumference. For Exercises 25 through 36, name the quadrant in which t terminates and use the figure to estimate function values to one decimal place (use a straightedge). Check results using a calculator.

Exercises 25 to 36

25. $\sin 0.75$
26. $\cos 2.75$
27. $\cos 5.5$
28. $\sin 4.0$
29. $\tan 0.8$
30. $\sec 3.75$
31. $\csc 2.0$
32. $\cot 0.5$
33. $\cos \left(\frac{5 \pi}{8}\right)$
34. $\sin \left(\frac{5 \pi}{8}\right)$
35. $\tan \left(\frac{8 \pi}{5}\right)$
36. $\sec \left(\frac{8 \pi}{5}\right)$

Without using a calculator, find the value of t in $[0,2 \pi)$ that corresponds to the following functions.
37. $\sin t=\frac{\sqrt{3}}{2} ; t$ in QII
38. $\cos t=\frac{1}{2} ; t$ in QIV
39. $\cos t=-\frac{\sqrt{3}}{2} ; t$ in QIII
40. $\sin t=-\frac{1}{2}$; t in QIV
41. $\tan t=-\sqrt{3}$; t in QII
42. $\sec t=-2$; t in QIII
43. $\sin t=1$; t is quadrantal
44. $\cos t=-1 ; t$ is quadrantal

Without using a calculator, find the two values of t (where possible) in $[0,2 \pi)$ that make each equation true.
45. $\sec t=-\sqrt{2}$
46. $\csc t=-\frac{2}{\sqrt{3}}$
47. $\tan t$ undefined
48. $\csc t$ undefined
49. $\cos t=-\frac{\sqrt{2}}{2}$
50. $\sin t=\frac{\sqrt{2}}{2}$
51. $\sin t=0$
52. $\cos t=-1$

Using a calculator, find the value of t in $[0,2 \pi)$ that corresponds to the following functions. Round to four decimal places.
53. $\sin t=0.3215, \cos t>0$
54. $\cos t=0.7402, \sin t>0$
55. $\cos t=-0.1424, \tan t>0$
56. $\sin t=-0.5252, \cot t<0$
57. $\cot t=-1.2345$, sec $t<0$
58. $\sec t=-2.0025, \tan t<0$
59. $\csc t=-1.9709, \cot t<0$
60. $\cot t=0.6352, \csc t<0$

Find an additional value of t in $[0,2 \pi)$ that makes the equation true.
61. $\sin 0.8 \approx 0.7174$
62. $\cos 2.12 \approx-0.5220$
63. $\cos 4.5 \approx-0.2108$
64. $\sin 5.23 \approx-0.8690$
65. $\tan 0.4 \approx 0.4228$
66. $\sec 5.7 \approx 1.1980$
67. Given $\left(\frac{3}{4},-\frac{4}{5}\right)$ is a point on the unit circle that corresponds to t. Find the coordinates of the point corresponding to (a) $-t$ and (b) $t+\pi$.
68. Given $\left(-\frac{7}{25}, \frac{24}{25}\right)$ is a point on the unit circle that corresponds to t. Find the coordinates of the point corresponding to (a) $-t+\pi$ and (b) $t-\pi$.

WORKING WITH FORMULAS

69. The sine and cosine of $(2 k+1) \frac{\pi}{4} ; k \in Z$

In the solution to Example 3(a), we mentioned $\pm \frac{\sqrt{2}}{2}$ were standard values for sine and cosine, "related to certain multiples of $\frac{\pi}{4}$." Actually, we meant "odd multiples of $\frac{\pi}{4}$." The odd multiples of $\frac{\pi}{4}$ are given by the "formula" shown, where k is any integer. (a) What multiples of $\frac{\pi}{4}$ are generated by $k=-3,-2,-1,0,1,2,3$? (b) Find similar formulas for Example 3(b), where $\sqrt{3}$ is a standard value for tangent and cotangent, "related to certain multiples of $\frac{\pi}{6}$,"
70. Polynomial approximation of inverse sine: $\sin ^{-1} x \approx x+\frac{1}{6} x^{3}+\frac{3}{40} x^{5}$

Approximations such as the one shown are one of many useful results from calculus. (a) Use the polynomial given to verify your results of Exercise 53 by approximating $\sin ^{-1} 0.3215$. (b) Compare the approximations of $\sin ^{-1} 0.99$ and $\sin ^{-1} 0.01$ with your calculator results. What do you notice?

APPLICATIONS

71. Laying new sod:

When new sod is laid, a heavy roller is used to press the sod down to ensure good contact with the ground beneath. The radius of the roller is 1 ft .
(a) Through what angle (in radians) has the roller turned after being pulled across 5 ft of yard? (b) What angle must the roller turn through to press a length of 30 ft ?
72. Cable winch: A large winch with a radius of 1 ft winds in 3 ft of cable. (a) Through what angle (in radians) has it turned? (b) What angle must it turn through in order to winch in 12.5 ft of cable?
73. Wiring an apartment: In the wiring of an apartment complex, electrical wire is being pulled from a spool with radius 1 decimeter ($1 \mathrm{dm}=10 \mathrm{~cm}$). (a) What length (in decimeters) is removed as the spool turns through 5 rad ? (b) How many decimeters are removed in one complete turn ($t=2 \pi$) of the spool?
74. Barrel races: In the barrel races popular at some family reunions, contestants stand on a hard rubber barrel with a radius of 1 cubit (1 cubit $=18$ in. $)$, and try to "walk the barrel" from the start line to the finish line without falling. (a) What distance (in cubits) is traveled as the barrel is walked through an angle of 4.5 rad ?
 (b) If the race is 25 cubits long, through what angle will the winning barrel walker walk the barrel?

Interplanetary measurement: In the year 1905, astronomers began using astronomical units or AU to study the distances between the celestial bodies of our solar system. One AU represents the average distance between the Earth and the Sun, which is about 93 million miles. Pluto is roughly 39.24 AU from the Sun.
75. If the Earth travels through an angle of 2.5 rad about the Sun, (a) what distance in astronomical units (AU) has it traveled? (b) How many AU does it take for one complete orbit around the Sun?
76. If you include the dwarf planet Pluto, Jupiter is the middle (fifth of nine) planet from the Sun. Suppose astronomers had decided to use its average distance from the Sun as 1 AU . In this case, 1 AU would be 480 million miles. If Jupiter travels through an angle of 4 rad about the Sun, (a) what distance in the "new" astronomical units (AU) has it traveled? (b) How many of the new AU does it take to complete one-half an orbit about the Sun? (c) What distance in the new AU is the dwarf planet Pluto from the Sun?
77. Compact disk circumference: A standard compact disk has a radius of 6 cm . Call this length "1 unit." Mark a starting point on any large surface, then carefully roll the compact disk along this line without slippage, through one full revolution ($2 \pi \mathrm{rad}$) and mark this spot. Take an accurate measurement of the resulting line segment. Is the result close to 2π "units" ($2 \pi \times 6 \mathrm{~cm}$)?
78. Verifying $s=r \boldsymbol{\theta}$: On a protractor, carefully measure the distance from the middle of the protractor's eye to the edge of the protractor along the
 0° mark, to the nearest half-millimeter. Call this length " 1 unit." Then use a ruler to draw a straight line on a blank sheet of paper, and with the protractor on edge, start the zero degree mark at one end of the line, carefully roll the protractor until it reaches 1 radian (57.3°), and mark this spot. Now measure the length of the line segment created. Is it very close to 1 "unit" long?

EXTENDING THE CONCEPT

79. In this section, we discussed the domain of the circular functions, but said very little about their range. Review the concepts presented here and determine the range of $y=\cos t$ and $y=\sin t$. In other words, what are the smallest and largest output values we can expect?
80. Since $\tan t=\frac{\sin t}{\cos t}$, what can you say about the range of the tangent function?

Use the radian grid given with Exercises 25-36 to answer Exercises 81 and 82.
81. Given $\cos (2 t)=-0.6$ with the terminal side of the arc in QII, (a) what is the value of $2 t$? (b) What quadrant is $t \mathrm{in}$? (c) What is the value of $\cos t$? (d) Does $\cos (2 t)=2 \cos t$?
82. Given $\sin (2 t)=-0.8$ with the terminal side of the arc in QIII, (a) what is the value of $2 t$? (b) What quadrant is $t \mathrm{in}$? (c) What is the value of $\sin t$? (d) Does $\sin (2 t)=2 \sin t$?

MAINTAINING YOUR SKILLS

83. (3.2) The armature for the rear windshield wiper has a length of 24 in., with a rubber wiper blade that is 20 in . long. What area of
 my rear windshield is cleaned as the armature swings back-and-forth through an angle of 110° ?
84. (1.1) The boxes used to ship some washing machines are perfect cubes with edges measuring 38 in. Use a special triangle to find the length of the diagonal d of one side, and the length of the interior diagonal D (through the middle of the box).
85. (1.3) Given $\sin \theta=\frac{21}{29}$ and $\cos \theta<0$, find the value of the other five trig functions of θ.
86. (2.3) From the far end of a 50 ft pool, the angle of elevation to the highest diving board is 19.8°. To the nearest foot, how high is the board?
87. (3.3) For $\theta=\frac{11 \pi}{6}$, use a reference angle θ_{r} to evaluate the six trig functions of θ.
88. (2.2) Triangle $A B C$ has sides of $a=12 \mathrm{~m}$, $b=35 \mathrm{~m}$, and $c=37 \mathrm{~m}$. Verify that this is a right triangle and find the measure of angles A, B, and C, rounded to the nearest tenth.

SUMMARY AND CONCEPT REVIEW

SECTION 3.1 Angle Measure in Radians

KEY CONCEPTS

- One (1) radian is the measure of a central angle subtended by an arc equal in length to the radius.
- Since $C=2 \pi r$, there are 2π radians in a complete revolution.
- The radian measure of an angle is $\theta=\frac{s}{r}$, where r is the radius of the circle and s is the length of the arc subtended by θ.
- With θ measured in radians, θ and $\theta+2 \pi k$ are coterminal for any integer k.
- To convert degree measure to radians, multiply by $\frac{\pi}{180^{\circ}}$; for radians to degrees, multiply by $\frac{180^{\circ}}{\pi}$.
- Special angle conversions: $30^{\circ}=\frac{\pi}{6}, 45^{\circ}=\frac{\pi}{4}, 60^{\circ}=\frac{\pi}{3}, 90^{\circ}=\frac{\pi}{2}$.

EXERCISES

1. A central angle of a circle of radius 5 in . subtends a 15 in . long arc. Find the radian measure of this angle.
2. Convert to degrees and round to the nearest tenth: 2 rad .
3. Convert to radians and round to the nearest hundredth: -101°.
4. Convert to degrees: $\frac{2 \pi}{3}$
5. Convert to radians: 210°.
6. Find two positive and two negative angles that are coterminal with $\theta=\frac{\pi}{5}$. Answers may vary.

SECTION 3.2 Arc Length, Velocity, and the Area of a Circular Sector

KEY CONCEPTS

- The formula for arc length: $s=r \theta, \theta$ in radians.
- The formula for the area of a circular sector: $\mathcal{A}=\frac{1}{2} r^{2} \theta, \theta$ in radians.
- A location north or south of the equator is given in degrees latitude; a location east or west of the Greenwich Meridian is given in degrees longitude.
- Angular velocity is a rate of rotation per unit time: $\omega=\frac{\theta}{t}$.
- Linear velocity is a change in position per unit time: $V=\frac{r \theta}{t}$ or $V=r \omega, \theta$ in radians.

EXERCISES

7. Find the arc length if $r=5$ and $\theta=57^{\circ}$.

Find the angle, radius, arc length, and/or area as needed, until all values are known.
8.

9.

10.

11. With great effort, 5-yr-old Mackenzie has just rolled her bowling ball down the lane, and it is traveling painfully slow. So slow, in fact, that you can count the number of revolutions the ball makes using the finger holes as a reference. (a) If the ball is rolling at 1.5 revolutions per second, what is the angular velocity? (b) If the ball's radius is 5 in., what is its linear velocity in feet per second? (c) If the distance to the first pin is 60 ft and the ball is true, how many seconds until it hits?

SECTION 3.3 The Unit Circle

KEY CONCEPTS

- A central unit circle is a circle with radius 1 unit having its center at the origin.
- A central circle is symmetric to both axes and the origin. This means that if (a, b) is a point on the circle, then $(-a, b),(-a,-b)$, and $(a,-b)$ are also on the circle and satisfy the equation of the circle.
- The points on the unit circle that correspond to the special angles are:

$$
\frac{\pi}{6} \rightarrow\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right), \frac{\pi}{4} \rightarrow\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \frac{\pi}{3} \rightarrow\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
$$

- A reference angle is defined to be the acute angle formed by the terminal side of a given angle and the x-axis.
- For any rotation θ and a point on the unit circle associated with θ, we have:

$$
\begin{array}{rlrrrr}
\cos \theta=x & \sin \theta=y & \tan \theta & =\frac{y}{x} & \sec \theta & =\frac{1}{x} \\
x & \csc \theta & =\frac{1}{y} & \cot \theta & =\frac{x}{y} \\
x & x & \neq 0 & y & \neq 0 & y
\end{array}
$$

EXERCISES

12. Given $\left(\frac{\sqrt{13}}{7}, y\right)$ is on a unit circle, find y if the point is in QIV, then use the symmetry of the circle to locate three other points.
13. Find the reference angle associated with $\theta=\frac{16 \pi}{6}$ and the associated point.
14. Evaluate without using a calculator: $\sin \left(\frac{7 \pi}{6}\right)$
15. Verify the approximate point $(-0.7431,-0.6691)$ is on the unit circle and find the tangent of the associated angle.
16. Find the point on the unit circle that corresponds to $\theta=6$. Round to four decimal places.

SECTION 3.4 The Trigonometry of Real Numbers

KEY CONCEPTS

- On a unit circle with θ in radians, the length of a subtended arc is numerically the same as the subtended angle, making the arc a "circular number line" and associating any given rotation with a unique real number.
- For functions of a real number we refer to a reference arc rather than a reference angle.
- For any real number t and a point on the unit circle associated with t, we have:

$$
\begin{array}{rlrrrr}
\cos t=x & \sin t=y & \tan t & =\frac{y}{x} & \sec t & =\frac{1}{x} \\
& \csc t=\frac{1}{y} & \cot t=\frac{x}{y} \\
x & \neq 0 & x & \neq 0 & y & \neq 0
\end{array} y \neq 0
$$

- The domain of each trig function must exclude division by zero (see box on page 118).
- Given the specific value of any function, the related real number t or angle θ can be found using a reference arc/angle, or the $\sin ^{-1}, \cos ^{-1}$, or $\tan ^{-1}$ features of a calculator.

EXERCISES

17. Given $\left(\frac{3}{4},-\frac{\sqrt{7}}{4}\right)$ is on the unit circle, find the value of all six trig functions of t without the use of a calculator.
18. Without using a calculator, find two values in $[0,2 \pi)$ that make the equation true: $\csc t=\frac{2}{\sqrt{3}}$.
19. Use a calculator to find the value of t that corresponds to the situation described: $\cos t=-0.7641$ with t in QII.
20. A crane used for lifting heavy equipment has a winch-drum with a 1 -yd radius. (a) If 59 ft of cable has been wound in while lifting some equipment to the roof-top of a building, what radian angle has the drum turned through? (b) What angle must the drum turn through to wind in 75 ft of cable?

MIXED REVIEW

1. Name two values in $[0,2 \pi]$ where $\tan t=1$.
2. Name two values in $[0,2 \pi]$ where $\cos t=-\frac{1}{2}$.
3. Find the arc length and area of the shaded sector.
4. Name the reference angle θ_{r} for the angle θ given.
a. $\frac{5 \pi}{6}$
b. $-\frac{5 \pi}{3}$
5. Verify that $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ is a point on the unit circle and find
 the value of all six trig functions at this point.
6. A salad spinner consists of a colander basket inside a large bowl, and is used to wash and dry lettuce and other salad ingredients. In vigorous use, the spinner is turned at about 3 revolutions per second. (a) Find the angular velocity and (b) find the linear velocity of a point of the circumference if the basket has a $20-\mathrm{cm}$ radius.
7. Use a reference angle to find the value of $\cos \left(\frac{37 \pi}{4}\right)$.
8. Solve each equation in $[0,2 \pi)$ without the use of a calculator. If the expression is undefined, so state.
a. $x=\sin \left(-\frac{\pi}{4}\right)$
b. $\sec x=\sqrt{2}$
c. $\cot \left(\frac{\pi}{2}\right)=x$
d. $\cos \pi=x$
e. $\csc x=\frac{2 \sqrt{3}}{3}$
f. $\tan \left(\frac{\pi}{2}\right)=x$
9. Convert the following to radian measure. Round to the nearest ten-thousandth when necessary.
a. -135°
b. 258.1°
10. Find the radius of a circle if an angle of 114.6° subtends an arc of length 3.2 m .
11. Convert the following to degree measure. Round to the nearest tenth when necessary.
a. $\frac{7 \pi}{3}$
b. $-\frac{1}{2}$
12. Given $\left(x, \frac{3}{4}\right)$ is on a unit circle, find x if the point is in QII, then use the symmetry of the circle to locate three other points.
13. Find two positive and two negative angles that are coterminal with $\frac{3 \pi}{7}$. Answers may vary.
14. Use a calculator to find two values in $[0,2 \pi)$ that make the equation true: $\cot t=-2.8127$.
15. The minute hand on Big Ben in London, England, measures 3.5 m from the center of the clock to its tip. To the nearest hundredth, find the area of the circular sector it passes over in 35 min .
16. Identify the terminal side quadrant of the following angles.
a. $\theta=4$
b. $\theta=-5$
17. As of 2009 , the maximum speed of a standard $12-\mathrm{cm}-$ wide Blu-ray disk is $10,000 \mathrm{rpm}$. In kilometers per hour, how fast is a point on the circumference of a standard disk moving?
18. What values of t must be excluded from the domain of $f(t)=\tan t$?
19. Find the point on the unit circle that corresponds to $\theta=8.25$. Round to the nearest ten-thousandth.
20. Find the radian measure of β given $r=4.4$ in. and

Exercise 20
 $s=7.7 \mathrm{in}$.

PRACTICE TEST

1. Name the reference angle of each angle θ given.
a. $\frac{7 \pi}{6}$
b. $\frac{25 \pi}{3}$
2. Complete the table using reference angles and exact values. If a function is undefined, so state.

t	$\sin t$	$\cos t$	$\tan t$	$\csc t$	$\sec t$	$\cot t$
0						
$\frac{2 \pi}{3}$						
$\frac{7 \pi}{6}$						
$\frac{5 \pi}{4}$						
$\frac{5 \pi}{3}$						
$\frac{7 \pi}{4}$						
$\frac{13 \pi}{6}$						

3. Verify that $\left(\frac{1}{3},-\frac{2 \sqrt{2}}{3}\right)$ is a point on the unit circle, then find the value of all six trig functions associated with this point.
4. In order to take pictures of a dance troupe as it performs, a camera crew rides in a cart on tracks that trace a circular arc. The radius of the arc is 75 ft , and from end to end the cart sweeps out an angle of
172.5° in 20 seconds. Use this information to find
(a) the length of the track in feet and inches, (b) the angular velocity of the cart, and (c) the linear velocity of the cart in both $\mathrm{ft} / \mathrm{sec}$ and mph .
5. Find the value of $t \in[0,2 \pi)$ satisfying the conditions given.
a. $\sin t=-\frac{1}{2}, t$ in QIII
b. $\sec t=\frac{2 \sqrt{3}}{3}, t$ in QIV
c. $\tan t=-1, t$ in QII
6. Memphis, Tennessee, is directly north of New Orleans, Louisiana, at $90^{\circ} \mathrm{W}$ longitude. Find the approximate distance between the cities in kilometers, given the Earth has a radius of 6373 km and Memphis is at $35^{\circ} \mathrm{N}$ latitude, while New Orleans is at $29.6^{\circ} \mathrm{N}$ latitude.
7. Given that $\left(\frac{20}{29}, \frac{21}{29}\right)$ is a point on the central unit circle, use the symmetry of the circle to name three other points on the circle.

Exercise 8

8. Show that the length of chord \mathcal{L} in the diagram is given by $\mathcal{L}=2 r$, where R is the radius of the circle and $r=R \cos \theta$. If the radius R is 15.7 cm and $\theta=33^{\circ}$, how long is the chord?

9. Find the value of t satisfying the given conditions.
a. $\sin t=-0.7568 ; t$ in QIII
b. $\sec t=-1.5 ; t$ in QII
10. Convert the following to radian measure. Round all nonstandard angles to the nearest ten-thousandth.
a. 300°
b. $-72^{\circ} 39^{\prime}$
c. π°
11. Convert the following to degree measure. Round all nonstandard angles to the nearest tenth.
a. 9.29
b. $-\frac{3 \pi}{2}$
c. 45
12. While Malena is jumping rope, her hands move in a circular path of radius 3 in. at a rate of 50 rpm . A point P on the middle of the rope also moves in a circular path at the same rate, but of radius 3 ft . To the nearest tenth of a mile per hour, find the linear velocity of (a) her hands and
 (b) the point P.
13. Find the measure of the angle θ shown. Round to the nearest tenth of a degree.
14. Find the area \mathcal{A} of the circular sector shown. Round to the nearest tenth.

Exercises 13 and 14

15. What values of t must be excluded from the domain of $f(t)=\csc t$?
16. Identify the terminal side quadrant of the following angles.
a. $\theta=1$
b. $\theta=5$
c. $\theta=-3.14$
d. $\theta=-4$
17. Walking to her car one frigid Minnesota morning, Sheena noticed a tire was low. On the way to work, she adds air to the tire, returning it to its original circular shape of radius 12.9 in . What central angle subtends the portion of the tire that was flattened against Sheena's driveway

Exercise 17
 (see figure)? Round to the nearest tenth of a degree.
18. Dragon the hamster runs on his stationary wheel at a speed of 200 rpm . If the wheel has a radius of 1 dm , how long would it take him to run 1 km at this rate?
19. Find the point on the unit circle that corresponds to $\theta=-2.22$. Round to the nearest ten-thousandth.
20. Find two positive and two negative angles that are coterminal with $-\frac{5 \pi}{9}$. Answers may vary.

GALCULATOR EXPLORATION AND DISCOVERY

Signs, Quadrants, and Reference Arcs

Graphing calculators can help us visualize the concept of reference arcs and angles, and better understand their connection to the circular functions. Just prior to Example 3 from Section 2.1, we placed a 30-60-90 triangle in QI, with the 30° angle at the origin and the longer leg along the x-axis. We later noted that the slope of the line coincident with the hypotenuse must be $m=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$, since the $\frac{\text { rise }}{\text { run }}$ ratio was identical to the ratio of the shorter leg to the longer leg of the triangle. The equation of this line is then $y=\frac{\sqrt{3}}{3} x$. From elementary geometry, we know that vertical angles are equal, and so the acute angle in QIII formed by this line and the negative x-axis must also measure 30°, and is the reference angle for 210° (see Fig-

Figure 3.29
 ure 3.29). By reorienting the same triangle in QII, two additional 30° angles can be formed, where the line coincident with this hypotenuse has an equation of $y=-\frac{\sqrt{3}}{3} x$. These are the 30° reference angles for 150° and 330°. From our work in Section 3.3, the equation of a unit circle is given by $x^{2}+y^{2}=1$, which
is $y= \pm \sqrt{1-x^{2}}$ in function form. By graphing these functions on a graphing calculator, we can verify two important concepts: (1) that the point on a unit circle associated with $30^{\circ}=\frac{\pi}{6}$ is $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ and (2) that the coordinates of the points associated with reference angles/arcs of similar measure are identical except for their sign. Using a graphing calculator, enter $\mathrm{Y}_{1}=\sqrt{1}-x^{2}$ (the upper half of a unit circle), $\mathrm{Y}_{2}=\frac{\sqrt{3}}{3} x, \mathrm{Y}_{3}=-\sqrt{1-x^{2}}$ (the lower half of a unit circle), and $Y_{4}=-\frac{\sqrt{3}}{3} x$ (see Figure 3.30). Graphing the functions using the ZOOM 4:ZDecimal feature will produce a "friendly" and square viewing window, but with a relatively small unit circle. Using the zOOM 2:Zoom In feature will give a better view, with the final window size depending on the settings of your zoom factors. Our settings were at XFactor $=2$ and YFactor $=2$, which produced the screen shown in Figure 3.31 (to access the zoom factors, press Zoom \square 4:SetFactors). Now comes the fun part. To find the point on the unit circle corresponding to $30^{\circ}=\frac{\pi}{6}$, we need only find where the line intersects the unit circle in QI. This is accomplished using the keystrokes 2nd TRACE (CALC) 5:Intersect, and identifying the graphs we're interested in. After doing so, the calculator returns the values shown in Figure 3.32, which are indeed the equivalent of $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. Using the down arrow \square at this point will "jump the cursor" to the point where $\mathrm{Y}_{3}=-\sqrt{1-x^{2}}$ and $\mathrm{Y}_{4}=-\frac{\sqrt{3}}{3} x$ intersect, where we note the output values remain the same except that in QIV, the y-coordinate is negative (see Figure 3.33). In addition, since the calculator stores the last used x-value in the temporary location $X, T, \boldsymbol{\theta}, \boldsymbol{n}$ we can find the point of intersection in $\mathrm{QIII}\left(\mathrm{Y}_{3}=-\sqrt{1-x^{2}}\right.$ with $\left.\mathrm{Y}_{2}=\frac{\sqrt{3}}{3} x\right)$ by sim-
 in $\mathrm{QII}\left(\mathrm{Y}_{1}=\sqrt{1-x^{2}}\right.$ with $\left.\mathrm{Y}_{4}=-\frac{\sqrt{3}}{3} x\right)$ using the up arrow \square (press the up and down arrows repeatedly for effect). Exercises of this type help to reinforce the value of reference angles and arcs, and give visual support for the unit circle definition of the trig functions, as we can more clearly see, for example, that for $\cos t=x: \cos 30^{\circ}$ in QI and $\cos 330^{\circ}$ in QIV are both equal
to $\frac{\sqrt{3}}{2}$, while $\cos 150^{\circ}$ in QII and $\cos 210^{\circ}$ in QIII are both equal to $-\frac{\sqrt{3}}{2}$.

Figure 3.30

Figure 3.31

Figure 3.32

Figure 3.33

Exercise 1: Place a 45-45-90 triangle in QI, with a 45° angle at the origin and one side along the positive x-axis, then answer the following questions.
a. What is the equation of the line coincident with the hypotenuse?
b. What acute angle is formed in QIII by the line from (a) and the negative x-axis? Why?
c. The acute angle from (b) is the reference angle for what positive angle $\theta\left(0<\theta<360^{\circ}\right)$?
d. If the $45-45-90$ triangle were reoriented in QII, what would be the equation of the line coincident with the hypotenuse?
e. Using the triangle and line from (d), reference angles of $\theta_{r}=45^{\circ}$ in QII and QIV are created. Find θ for each of these angles $\left(0<\theta<360^{\circ}\right)$.
f. Use a graphing calculator to determine where the lines from (a) and (d) intersect with the unit circle, and use the results to find/verify the value of $\sin 45^{\circ}, \sin 135^{\circ}, \sin 225^{\circ}$ and $\sin 315^{\circ}$.

Exercise 2: Repeat Exercise 1 using a 30-60-90 triangle with the shorter side along the x-axis. Use the results to find the value of $\tan 60^{\circ}, \tan 120^{\circ}, \tan 240^{\circ}$ and $\tan 300^{\circ}$.

STRENGTHENING CORE SKILLS

Trigonometry of the Real Numbers and the Wrapping Function

The circular functions are sometimes discussed in terms of what is called a wrapping function, in which the real number line is literally wrapped around the unit circle. This approach can help illustrate how the trig functions can be seen as functions of the real numbers, and apart from any reference to a right triangle. Figure 3.34 shows (1) a unit circle with the location of certain points on the circumference clearly marked and (2) a number line that has been marked in multiples of $\frac{\pi}{12}$ to coincide with the length of the special arcs (integers are shown in the background). Figure 3.35 shows this same number line wrapped counterclockwise around the unit circle in the positive direction. Note how the resulting diagram confirms that an arc of length $t=\frac{\pi}{4}$ is associated with the point $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ on the unit circle: $\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$ and $\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$; while an arc of length of $t=\frac{5 \pi}{6}$ is associated with the point $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right): \cos \frac{5 \pi}{6}=-\frac{\sqrt{3}}{2}$ and $\sin \frac{5 \pi}{6}=\frac{1}{2}$. Use this information to complete the exercises given.

Figure 3.34

Figure 3.35

1. What is the ordered pair associated with an arc length of $t=\frac{2 \pi}{3}$? What is the value of $\cos t ? \sin t$?
2. What arc length t is associated with the ordered pair $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$? Is $\cos t$ positive or negative? Why?
3. If we continued to wrap this number line all the way around the circle, in what quadrant would an arc length of $t=\frac{11 \pi}{6}$ terminate? Would $\sin t$ be positive or negative?
4. Suppose we wrapped a number line with negative values clockwise around the unit circle. In what quadrant would an arc length of $t=-\frac{5 \pi}{3}$ terminate? What is $\cos t ? \sin t$? What positive rotation terminates at the same point?

CUMULATIVE REVIEW CHAPTERS 1-3

1. Without a calculator, what values in $[0,2 \pi)$ make the equation true: $\sin t=-\frac{\sqrt{3}}{2}$?
2. Given $\left(\frac{3}{4},-\frac{\sqrt{7}}{4}\right)$ is a point on the unit circle corresponding to t, find all six trig functions of t.
3. Find the complement of $67^{\circ} 22^{\prime} 39^{\prime \prime}$.
4. Given $\cot \frac{\pi}{8}=\sqrt{2}+1$, find $\tan ^{2} \frac{3 \pi}{8}$ without a calculator.
5. Given $A=9 x^{\circ}, B=(6 x+4)^{\circ}$, and $C=7 x^{\circ}$, find the measures of the angles of $\triangle A B C$.
6. As of 2009 , the Key Tower in Cleveland was the fifty-fifth tallest building in the world. If Lewis is standing 457 m from the base of the tower, the angle of elevation to the top of the tower is 32.31°. To the nearest meter, how tall is the Key Tower?
7. Find the measure of angle α for the triangle shown and convert it to radians. Round to four decimal places.

8. Verify the point $\left(\frac{8}{17}, \frac{15}{17}\right)$ is on a unit circle, and use the circle's symmetry to find three other points on the circle.
9. Find the value of the six trigonometric functions, given $(-5,-8)$ is on the terminal side of angle θ in standard position.
10. Given $t=\frac{11 \pi}{6}$, use reference arcs to state the value of all six trig functions of t without using a calculator.
Solve each triangle by completing the table. Round angles to the nearest tenth and sides to the nearest hundredth.
11.

Angles	Sides
	$a=\mathbf{7 t t}$
$C=90^{\circ}$	$c=14 \mathrm{ft}$

12.

Angles	Sides
$A=38^{\circ}$	
$C=90^{\circ}$	$c=11 \mathrm{~cm}$

13. The conveyor belt used in many grocery check-out lines is on rollers that have a $2-\mathrm{in}$. radius and turn at 252 rpm . (a) What is the angular velocity of the rollers? (b) How fast are your groceries moving (in mph) when the belt is moving?
14. The planet Mars has a near-circular orbit (its eccentricity is 0.093 - the closer to zero, the more circular the orbit). It orbits the Sun at an average distance of $142,000,000 \mathrm{mi}$ and takes 687 days to complete one circuit. (a) Find the angular velocity of its orbit in radians per year, and (b) find the planet's linear velocity as it orbits the Sun, in miles per second.
15. Verify the equation is an identity using factoring and fundamental identities. $\frac{\sin x \cos x+\cos x}{\sin x+\sin ^{2} x}=\cot x$
16. Given $t=5.37$, (a) in what quadrant does the arc terminate? (b) What is the reference arc? (c) Find the value of $\sin t$ rounded to four decimal places.
17. A jet-stream water sprinkler shoots water a distance of 15 m and turns back and forth through an angle of $t=1.2 \mathrm{rad}$. (a) What is the length of the arc that the sprinkler reaches? (b) What is the area in m^{2} of the yard that is watered?
18. Find the exact value of $\sin \theta, \cos \theta$, and $\tan \theta$ given $\theta=225^{\circ}$.
19. Find two negative angles that are coterminal with 1000°. Answers may vary.
20. Use the triangle shown to find the values of the indicated functions, given $a=4, b=2 \sqrt{5}$, and $c=6$.
a. $\sin \beta$
b. $\cot \alpha$
c. $\sec \beta$

Exercise 20

21. The Earth has a radius of 3960 mi. Mexico City, Mexico, is located at approximately $19^{\circ} \mathrm{N}$ latitude, and is almost exactly due south of Hutchinson, Kansas, located at about $38^{\circ} \mathrm{N}$ latitude. How many miles separate the two cities?
22. Ryan is playing catch with himself, throwing a baseball high into the air and catching it. At the ball's maximum height, the shadow of the ball is 35 ft away from him. If Ryan is 4.2 ft tall and casts a $2.8-\mathrm{ft}$ shadow, how high is he throwing the baseball?
23. Given $(\sin \theta)(\tan \theta)>0$ and $\left(\cos ^{2} \theta\right)(\sin \theta)<0$, determine the terminal side quadrant of θ.
24. Given $\theta=321^{\circ} 54^{\prime}$, find the reference angle θ_{r}.
25. Find the value of the indicated function. If it is undefined, so state.
a. $\sec 360^{\circ}$
b. $\tan 270^{\circ}$
c. $\csc \pi$
d. $\cot \frac{\pi}{2}$

CHAPTER CONNECTIONS

Trigonometric Graphs and Models

CHAPTER OUTLINE

4.1 Graphs of the Sine and Cosine Functions 134
4.2 Graphs of the Cosecant, Secant, Tangent,
and Cotangent Functions 150
4.3 Transformations of Trigonometric Graphs 168
4.4 Trigonometric Applications and Models 180

While written records of trigonometry are much more recent than those of geometry and algebra, the roots of trigonometry are likely just as ancient. Peering into the nighttime heavens, ancient scholars noticed patterns among the celestial bodies, giving rise to the desire to model their regular recurrence. But even at the beginning of the modern age, with the tools of geometry at hand and the study of algebra maturing, astronomers were unable to come up with accurate models. This had to wait for the study of periodic functions to mature. These functions also enable us to model and predict many other types of cyclic phenomena, including critical ocean and wave behavior. To accomplish this, the National Oceanic and Atmospheric Administration (NOAA) uses a network of buoys such as the DART ${ }^{\circledR}$ II shown to ensure the early detection and warning of tsunamis.

- This application appears as Exercise 55 in Section 4.1

4.1 Graphs of the Sine and Cosine Functions

Learning Objectives

In Section 4.1 you will learn how to:

A. Graph $f(t)=\sin t$ using special values and symmetryB. Graph $f(t)=\cos t$ using special values and symmetryC. Graph sine and cosine functions with various amplitudes and periodsD. Write the equation for a given graphFigure 4.1

$\sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}$

As with the graphs of other functions, trigonometric graphs contribute a great deal toward the understanding of each function and its applications. For now, our primary interest is the general shape of each basic graph and some of the transformations that can be applied. We will also learn to analyze each graph, and to capitalize on the features that enable us to apply the functions as real-world models.

A. Graphing $f(t)=\sin t$

Consider the following table of values (Table 4.1) for $\sin t$ and the special angles in QI.
Table 4.1

\boldsymbol{t}	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \boldsymbol{t}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Observe that in this interval, sine values are increasing from 0 to 1 . From $\frac{\pi}{2}$ to π (QII), special values taken from the unit circle show sine values are decreasing from 1 to 0, but through the same output values as in QI. See Figures 4.1 through 4.3.

Figure 4.2

$\sin \left(\frac{3 \pi}{4}\right)=\frac{\sqrt{2}}{2}$

Figure 4.3

$\sin \left(\frac{5 \pi}{6}\right)=\frac{1}{2}$

With this information we can extend our table of values through π, noting that $\sin \pi=0$ (see Table 4.2).

Table 4.2

\boldsymbol{t}	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π
$\sin t$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Using the symmetry of the circle and the fact that y is negative in QIII and QIV, we can complete the table for values between π and 2π.

EXAMPLE 1

Finding Function Values Using Symmetry
Use the symmetry of the unit circle and reference arcs of special values to complete Table 4.3. Recall that y is negative in QIII and QIV.

Table 4.3

\boldsymbol{t}	π	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$	2π
$\sin t$									

Solution Symmetry shows that for any odd multiple of $t=\frac{\pi}{4}, \sin t= \pm \frac{\sqrt{2}}{2}$ depending on the quadrant of the terminal side. Similarly, for any reference arc of $\frac{\pi}{6}, \sin t= \pm \frac{1}{2}$, while any reference arc of $\frac{\pi}{3}$ will give $\sin t= \pm \frac{\sqrt{3}}{2}$. The completed table is shown in Table 4.4.

Table 4.4

\boldsymbol{t}	π	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$	2π
$\sin t$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0

Now try Exercises 7 and 8
Noting that $\frac{1}{2}=0.5, \frac{\sqrt{2}}{2} \approx 0.71$, and $\frac{\sqrt{3}}{2} \approx 0.87$, we plot these points and connect them with a smooth curve to graph $y=\sin t$ in the interval $[0,2 \pi]$. The first five plotted points are labeled in Figure 4.4.

Figure 4.4

Expanding the table from 2π to 4π using reference arcs and the unit circle shows that function values begin to repeat. For example, $\sin \left(\frac{13 \pi}{6}\right)=\sin \left(\frac{\pi}{6}\right)$ since $\theta_{r}=\frac{\pi}{6}, \sin \left(\frac{9 \pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)$ since $\theta_{r}=\frac{\pi}{4}$, and so on. Functions that cycle through a set pattern of values are said to be periodic functions.

Periodic Functions

A function f is said to be periodic if there is a positive number P such that

$$
f(t+P)=f(t)
$$

for all t in the domain. The smallest number P for which this occurs is called the period of f.

For the sine function we have $\sin t=\sin (t+2 \pi)$, as in $\sin \left(\frac{13 \pi}{6}\right)=\sin \left(\frac{\pi}{6}+2 \pi\right)$ and $\sin \left(\frac{9 \pi}{4}\right)=\sin \left(\frac{\pi}{4}+2 \pi\right)$, with the idea extending to all other real numbers t : $\sin t=\sin (t+2 \pi k)$ for all integers k. The sine function is periodic with period $P=2 \pi$.

Although we initially focused on positive values of t in $[0,2 \pi], t<0$ and $k<0$ are certainly possibilities and we note the graph of $f(t)=\sin t$ extends infinitely in both directions (see Figure 4.5).

Figure 4.5

Finally, both the graph and the unit circle confirm that the range of $f(t)=\sin t$ is $[-1,1]$, and that $f(t)=\sin t$ is an odd function. In particular, the graph shows $\sin \left(-\frac{\pi}{2}\right)=-\sin \left(\frac{\pi}{2}\right)$, and the unit circle shows $\sin t=y$, and $\sin (-t)=-y$ (see Figure 4.6), from which we obtain $\sin (-t)=-\sin t$ by substitution. As a handy reference, the following box summarizes the main characteristics of $f(t)=\sin t$.

Figure 4.6

Characteristics of $f(t)=\sin t$

For all real numbers t and integers k,

$$
\begin{gathered}
\text { Domain } \\
(-\infty, \infty) \\
\text { Symmetry } \\
\text { odd } \\
\sin (-t)=-\sin t
\end{gathered}
$$

Increasing

$\left(0, \frac{\pi}{2}\right) \cup\left(\frac{3 \pi}{2}, 2 \pi\right)$

$$
\begin{gathered}
\text { Range } \\
{[-1,1]}
\end{gathered}
$$

Maximum value
$\sin t=1$

$$
\text { at } t=\frac{\pi}{2}+2 \pi k
$$

Decreasing
$\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$

Period 2π

Minimum value

$$
\sin t=-1
$$

$$
\text { at } t=\frac{3 \pi}{2}+2 \pi k
$$

Zeroes

$t=k \pi$

EXAMPLE $2-$ Using the Period of $\sin t$ to Find Function Values

Use the characteristics of $f(t)=\sin t$ to match the given value of t to the correct value of $\sin t$.
a. $t=\left(\frac{\pi}{4}+8 \pi\right)$
b. $t=-\frac{\pi}{6}$
c. $t=\frac{17 \pi}{2}$
d. $t=21 \pi$
e. $t=\frac{11 \pi}{2}$
I. $\sin t=1$
II. $\sin t=-\frac{1}{2}$
III. $\sin t=-1$
IV. $\sin t=\frac{\sqrt{2}}{2} \quad$ V. $\sin t=0$

Solution a. Since $\sin \left(\frac{\pi}{4}+8 \pi\right)=\sin \frac{\pi}{4}$, the correct match is (IV).
b. Since $\sin \left(-\frac{\pi}{6}\right)=-\sin \frac{\pi}{6}$, the correct match is (II).
c. Since $\sin \left(\frac{17 \pi}{2}\right)=\sin \left(\frac{\pi}{2}+8 \pi\right)=\sin \frac{\pi}{2}$, the correct match is (I).
d. Since $\sin (21 \pi)=\sin (\pi+20 \pi)=\sin \pi$, the correct match is (V).
e. Since $\sin \left(\frac{11 \pi}{2}\right)=\sin \left(\frac{3 \pi}{2}+4 \pi\right)=\sin \left(\frac{3 \pi}{2}\right)$, the correct match is (III).

Now try Exercises 9 and 10

Many of the transformations applied to algebraic graphs can also be applied to trigonometric graphs. These transformations may stretch, reflect, or translate the graph, but it will still retain its basic shape. In numerous applications, it will help if you're able to draw a quick, accurate sketch of the transformations involving $f(t)=\sin t$. To assist this effort, we'll begin with the interval [$0,2 \pi$], combine the characteristics just listed with some simple geometry, and offer the following four-step process. Steps I through IV are illustrated in Figures 4.7 through 4.10.

Figure 4.7
Figure 4.8

Figure 4.9

Figure 4.10

Step I: Draw the y-axis, mark zero halfway up, with -1 and 1 an equal distance from this zero. Then draw an extended t-axis and tick mark 2π to the extreme right (Figure 4.7).
Step II: On the t-axis, mark halfway between 0 and 2π and label it " π," mark halfway between π on either side and label the marks $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$. Halfway between these you can draw additional tick marks to represent the remaining multiples of $\frac{\pi}{4}$ (Figure 4.8).
Step III: Next, lightly draw a rectangular frame, which we'll call the reference rectangle, $P=2 \pi$ units wide and 2 units tall, centered on the t-axis and with the y-axis along the left side (Figure 4.9).

Step IV: Knowing $y=\sin t$ is positive and increasing in QI, that the range is $[-1,1]$, that the zeroes are $0, \pi$, and 2π, and that maximum and minimum values occur halfway between the zeroes (since there is no horizontal shift), we can draw a reliable graph of $y=\sin t$ by partitioning the rectangle into four equal parts to locate these values (note bold tick-marks). We will call this partitioning of the reference rectangle the rule of fourths, since we are then scaling the t-axis in increments of $\frac{P}{4}$ (Figure 4.10).

EXAMPLE 3 - Graphing $y=\sin t$ Using a Reference Rectangle

Use steps I through IV to draw a sketch of $y=\sin t$ for the interval $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$.
Solution - Start by completing steps I and II, then extend the t-axis to include -2π.
Beginning at $t=0$, draw a reference rectangle 2π units wide and 2 units tall, centered on the t-axis. After applying the rule of fourths, we note the zeroes occur at $t=0, t=\pi$, and $t=2 \pi$, while the $\mathrm{max} / \mathrm{min}$ values fall halfway between them at $t=\frac{\pi}{2}$ and $t=\frac{3 \pi}{2}$ (see Figure 4.11). Plot these points and connect them with a smooth, dashed curve. This is the primary period of the sine curve.

Figure 4.11

Using the periodic nature of the sine function, we can also graph the sine curve on the interval $[-2 \pi, 0]$, as shown in Figure 4.12. The rule of fourths again helps to locate the zeroes and max/min values (note the bold tick-marks) over this interval.

Figure 4.12

For the graph of $y=\sin t$ in $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$, we simply highlight the graph in this interval using a solid curve, as shown in Figure 4.13.
is $P=2 \pi$ units wide, this
section of the graph can is $P=2 \pi$ units wide, this
section of the graph can generate the entire graph of $y=\sin t$.

V A. You've just learned how to graph $f(t)=\sin t$ using special values and symmetry

WORTHY OF NOTE

Since the interval $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$

$$
\text { Figure } 4.13
$$

B. Graphing $f(t)=\cos t$

With the graph of $f(t)=\sin t$ established, sketching the graph of $f(t)=\cos t$ is a very natural next step. First, note that when $t=0, \cos t=1$ so the graph of $y=\cos t$ will begin at $(0,1)$ in the interval $[0,2 \pi]$. Second, we've seen $\left(\pm \frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$, $\left(\pm \frac{\sqrt{3}}{2}, \pm \frac{1}{2}\right)$ and $\left(\pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{2}\right)$ are all points on the unit circle since they satisfy $x^{2}+y^{2}=1$. Since $\cos t=x$ and $\sin t=y$, the Pythagorean identity $\cos ^{2} t+\sin ^{2} t=1$ can be obtained by direct substitution. This means if $\sin t= \pm \frac{1}{2}$, then $\cos t= \pm \frac{\sqrt{3}}{2}$ and vice versa, with the signs taken from the appropriate quadrant. Similarly, if $\sin t=0$, then $\cos t= \pm 1$ and vice versa. The table of values for cosine then becomes a simple variation of the table for sine, as shown in Table 4.5 for $t \in[0, \pi]$.

Table 4.5

t	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π
$\sin t$	0	$\frac{1}{2}=0.5$	$\frac{\sqrt{2}}{2} \approx 0.71$	$\frac{\sqrt{3}}{2} \approx 0.87$	1	$\frac{\sqrt{3}}{2} \approx 0.87$	$\frac{\sqrt{2}}{2} \approx 0.71$	$\frac{1}{2}=0.5$	0
$\cos t$	$\mathbf{1}$	$\frac{\sqrt{3}}{\mathbf{2}} \approx \mathbf{0 . 8 7}$	$\frac{\sqrt{2}}{\mathbf{2}} \approx \mathbf{0 . 7 1}$	$\frac{\mathbf{1}}{\mathbf{2}}=\mathbf{0 . 5}$	$\mathbf{0}$	$-\frac{\mathbf{1}}{\mathbf{2}}=-\mathbf{0 . 5}$	$-\frac{\sqrt{2}}{\mathbf{2}} \approx-\mathbf{0 . 7 1}$	$-\frac{\sqrt{3}}{\mathbf{2}} \approx \mathbf{- 0 . 8 7}$	$\mathbf{- 1}$

The same values can be taken from the unit circle, but this view requires much less effort and easily extends to values of t in $[\pi, 2 \pi]$. Using the points from Table 4.5 and its extension through $[\pi, 2 \pi]$, we can draw the graph of $y=\cos t$ in $[0,2 \pi]$ and identify where the function is increasing and decreasing in this interval. See Figure 4.14.

Figure 4.14

The function is decreasing for t in $(0, \pi)$, and increasing for t in $(\pi, 2 \pi)$. The end result appears to be the graph of $y=\sin t$ shifted to the left $\frac{\pi}{2}$ units, a fact more easily seen if we extend the graph to $-\frac{\pi}{2}$ as shown. This is in fact the case, and is a relationship we will later prove in Chapter 5. Like $y=\sin t$, the function $y=\cos t$ is periodic with period $P=2 \pi$, with the graph extending infinitely in both directions.

Finally, we note that cosine is an even function, meaning $\cos (-t)=\cos t$ for all t in the domain. For instance, $\cos \left(-\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)=0$ (see Figure 4.14). Here is a summary of important characteristics of the cosine function.

Characteristics of $f(t)=\cos t$
For all real numbers t and integers k,

Domain

$(-\infty, \infty)$
Symmetry
even
$\cos (-t)=\cos t$

Increasing

($\pi, 2 \pi$)

Range
$[-1,1]$
Maximum value
$\cos t=1$ at $t=2 \pi k$

Decreasing

$(0, \pi)$

Period 2π

Minimum value
$\cos t=-1$ at $t=\pi+2 \pi k$

Zeroes

$$
t=\frac{\pi}{2}+\pi k
$$

EXAMPLE 4 Graphing $y=\cos t$ Using a Reference Rectangle

Draw a sketch of $y=\cos t$ for t in $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$.
Solution As with the graph of $y=\sin t$, begin by completing steps I and II, then extend the t-axis to include -2π. Beginning at $t=0$, draw a reference rectangle 2π units wide and 2 units tall, centered on the t-axis. After applying the rule of fourths, we note the zeroes occur at $t=\frac{\pi}{2}$ and $t=\frac{3 \pi}{2}$ with the max $/ \mathrm{min}$ values at $t=0, t=\pi$, and $t=2 \pi$. Plot these points and connect them with a smooth, dashed curve (see Figure 4.15). This is the primary period of the cosine curve.

Figure 4.15

Using the periodic nature of the cosine function, we can also graph the cosine curve on the interval $[-2 \pi, 0]$, as shown in Figure 4.16. The rule of fourths again helps to locate the zeroes and max $/ \mathrm{min}$ values (note the bold tick-marks) over this
with a smooth curve.

WORTHY OF NOTE

We also could have graphed the cosine curve in this interval using the table

\boldsymbol{t}	$\cos \boldsymbol{t}$
$-\frac{\pi}{2}$	0
0	1
$\frac{\pi}{2}$	0
π	-1
$\frac{3 \pi}{2}$	0

and connecting these points
interval.

Figure 4.16

For the graph of $y=\cos t$ in $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$, we simply highlight the graph in this interval using a solid curve, as shown in Figure 4.17

[^0]B. You've just learned how to graph $f(t)=\cos t$ using special values and symmetry

Figure 4.17

Now try Exercises 13 and 14

C. Graphing $y=A \sin (B t)$ and $y=A \cos (B t)$

In many applications, trig functions have maximum and minimum values other than 1 and -1 , and periods other than 2π. For instance, in tropical regions the daily maximum and minimum temperatures may vary by no more than 20°, while for desert regions this difference may be 40° or more. This variation is modeled by the amplitude of the sine and cosine functions.

Amplitude and the Coefficient \boldsymbol{A} (assume $B=1$)

For functions of the form $y=A \sin t$ and $y=A \cos t$, let M represent the Maximum value and m the minimum value of the functions. Then the quantity $\frac{M+m}{2}$ gives the average value of the function, while $\frac{M-m}{2}$ gives the amplitude of the function. Amplitude is the maximum displacement from the average value in the positive or negative direction. It is represented by $|A|$, with A playing a role similar to that seen for algebraic graphs $[A f(t)$ vertically stretches or compresses the graph of f, and reflects it across the t-axis if $A<0$]. Graphs of the form $y=\sin t($ and $y=\cos t$) can quickly be sketched with any amplitude by noting (1) the zeroes of the function remain fixed since $\sin t=0$ implies $A \sin t=0$, and (2) the maximum and minimum values are A and $-A$, respectively, since $\sin t=1$ or -1 implies $A \sin t=A$ or $-A$. Note this implies the reference rectangle will be $2 A$ units tall and P units wide. Connecting the points that result with a smooth curve will complete the graph.

EXAMPLE $5>$ Graphing $y=A \sin t$ Where $A \neq 1$

Draw a sketch of $y=4 \sin t$ in the interval $[0,2 \pi]$.
Solution With an amplitude of $|A|=4$, the reference rectangle will be $2(4)=8$ units tall, by 2π units wide. Using the rule of fourths, the zeroes are still $t=0, t=\pi$, and $t=2 \pi$, with the max/min values spaced equally between. The maximum value is $4 \sin \left(\frac{\pi}{2}\right)=4(1)=4$, with a minimum value of $4 \sin \left(\frac{3 \pi}{2}\right)=4(-1)=-4$.
Connecting these points with a "sine curve" gives the graph $\operatorname{shown}(y=\sin t$ is also shown for comparison).

Period and the Coefficient B

While basic sine and cosine functions have a period of 2π, in many applications the period may be very long (tsunamis) or very short (electromagnetic waves). For the equations $y=A \sin (B t)$ and $y=A \cos (B t)$, the period depends on the value of B. To see why, consider the function $y=\cos (2 t)$ and Table 4.6. Multiplying input values by 2 means each cycle will be completed twice as fast. The table shows that $y=\cos (2 t)$ completes a full cycle in $[0, \pi]$, giving a period of $P=\pi$ (Figure 4.18, red graph).

Table 4.6

\boldsymbol{t}	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
$\boldsymbol{2} \boldsymbol{t}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\cos (\mathbf{2} \boldsymbol{t})$	1	0	-1	0	1

Dividing input values by 2 (or multiplying by $\frac{1}{2}$) will cause the function to complete a cycle only half as fast, doubling the time required to complete a full cycle. Table 4.7 shows $y=\cos \left(\frac{1}{2} t\right)$ completes only one-half cycle in 2π (Figure 4.18 , blue graph).

Table 4.7
(values in blue are approximate)

\boldsymbol{t}	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
$\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{t}$	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3 \pi}{8}$	$\frac{\pi}{2}$	$\frac{5 \pi}{8}$	$\frac{3 \pi}{4}$	$\frac{7 \pi}{8}$	π
$\cos \left(\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{t}\right)$	1	0.92	$\frac{\sqrt{2}}{2}$	0.38	0	-0.38	$-\frac{\sqrt{2}}{2}$	-0.92	-1

The graphs of $y=\cos t, y=\cos (2 t)$, and $y=\cos \left(\frac{1}{2} t\right)$ shown in Figure 4.18 clearly illustrate this relationship and how the value of B affects the period of a graph.

To find the period for arbitrary values of B, the formula $P=\frac{2 \pi}{|B|}$ is used. Note for $y=\cos (2 t), B=2$ and $P=\frac{2 \pi}{2}=\pi$, as

shown. For $y=\cos \left(\frac{1}{2} t\right),|B|=\frac{1}{2}$ and $P=\frac{2 \pi}{1 / 2}=4 \pi$.

Period Formula for Sine and Cosine

For B a real number and functions $y=A \sin (B t)$ and $y=A \cos (B t)$,

$$
P=\frac{2 \pi}{|B|}
$$

To sketch these functions for periods other than 2π, we still use a reference rectangle of height $2 A$ and length P, then break the enclosed t-axis in four equal parts to help draw the graph. In general, if the period is "very large" one full cycle is appropriate for the graph. If the period is "very small," graph at least two cycles.

Note the value of B in Example 6 includes a factor of π. This actually happens quite frequently in applications of the trig functions.

EXAMPLE 6 Graphing $y=A \cos (B t)$, Where $A, B \neq 1$

Draw a sketch of $y=-2 \cos (0.4 \pi t)$ for t in $[-\pi, 2 \pi]$.
Solution \downarrow The amplitude is $|A|=2$, so the reference rectangle will be $2(2)=4$ units high. Since $A<0$, the graph will be vertically reflected across the t-axis. The period is $P=\frac{2 \pi}{0.4 \pi}=5$ (note the factors of π reduce to 1), so the reference rectangle will be 5 units in length. Breaking the t-axis into four parts within the frame (rule of fourths) gives $\left(\frac{1}{4}\right) 5=\frac{5}{4}$ units, indicating that we should scale the t-axis in multiples of $\frac{1}{4}$. Note the zeroes occur at $\frac{5}{4}$ and $\frac{15}{4}$, with a maximum value at $\frac{10}{4}$. In cases where the π factor reduces, we scale the t-axis as a "standard" number line, and estimate the location of multiples of π. For practical reasons, we first draw the unreflected graph (shown in blue) for guidance in drawing the reflected graph, which is then extended to fit the given interval.
C. You've just learned how to graph sine and cosine functions with various amplitudes and periods

Now try Exercises 21 through 32

D. Writing Equations from Graphs

Mathematical concepts are best reinforced by working with them in both "forward and reverse." Where graphs are concerned, this means we should attempt to find the equation of a given graph, rather than only using an equation to sketch the graph. Exercises of this type require that you become very familiar with the graph's basic characteristics and how each is expressed as part of the equation.

EXAMPLE $7>$ Determining the Equation of a Given Graph

The graph shown here is of the form $y=A \sin (B t)$. Find the value of A and B.

Solution By inspection, the graph has an amplitude of $A=2$ and a period of $P=\frac{3 \pi}{2}$. To find B we used the period formula $P=\frac{2 \pi}{|B|}$, substituting $\frac{3 \pi}{2}$ for P and solving.

$$
\begin{aligned}
P & =\frac{2 \pi}{|B|} & & \text { period formula } \\
\frac{3 \pi}{2} & =\frac{2 \pi}{B} & & \text { substitute } \frac{3 \pi}{2} \text { for } P ; B>0 \\
3 \pi B & =4 \pi & & \text { multiply by } 2 B \\
B & =\frac{4}{3} & & \text { solve for } B
\end{aligned}
$$

The result is $B=\frac{4}{3}$, which gives us the equation $y=2 \sin \left(\frac{4}{3} t\right)$.
D. You've just learned how to write the equation for a given graph

Now try Exercises 33 through 52

There are a number of interesting applications of this "graph to equation" process in the exercise set. See Exercises 55 to 66.

TECHNOLOGY HIGHLIGHT

Exploring Amplitudes and Periods

In practice, trig applications offer an immense range of coefficients, creating amplitudes that are sometimes very large and sometimes extremely small, as well as periods ranging from nanoseconds, to many years. This Technology Highlight is designed to help you use the calculator more effectively in the study of these functions. To begin, we note that many calculators offer a preset Z00M option that automatically sets a window size convenient to many trig graphs. The resulting WINDOW after pressing Z00M 7:ZTrig on a TI-84 Plus is shown in Figure 4.19 for a calculator set in Radian MODE.

In Section 4.1 we noted that a change in amplitude will not change the location of the zeroes or max/min values. On the $Y=$ screen, enter $Y_{1}=\frac{1}{2} \sin x, Y_{2}=\sin x, Y_{3}=2 \sin x$, and $Y_{4}=4 \sin x$, then use Z00M 7:ZTrig to graph the functions. As you see in Figure 4.20, each graph rises to the expected amplitude at the expected location, while "holding on" to the zeroes.

To explore concepts related to the coefficient B and the period of a trig function, enter $Y_{1}=\sin \left(\frac{1}{2} x\right)$ and $Y_{2}=\sin (2 x)$ on the $Y=$ screen and graph using Z00M 7:ZTrig. While the result is "acceptable," the graphs are difficult to read and compare, so we manually change the window size to obtain a better view (Figure 4.21).

Figure 4.19

Figure 4.20

Figure 4.21

A true test of effective calculator use comes when the amplitude or period is a very large or very small number. For instance, the tone you hear while pressing " 5 " on your telephone is actually a combination of the tones modeled by $Y_{1}=\sin [2 \pi(770) t]$ and
$Y_{2}=\sin [2 \pi(1336) t]$. Graphing these functions requires a careful analysis of the period, otherwise the graph can appear garbled, misleading, or difficult to read-try graphing Y_{1} on the zoom 7:ZTrig or zoom 6:ZStandard screens. First note $A=1$, and $P=\frac{2 \pi}{2 \pi 770}$ or $\frac{1}{770}$. With a period this short, even graphing the function from $\mathrm{Xmin}=-1$ to $\mathrm{Xmax}=1$ gives a distorted graph (see Figure 4.22). Setting Xmin to $-1 / 770$, Xmax to $1 / 770$, and Xscl to (1/770)/10 gives the graph in Figure 4.23, which can be used to investigate characteristics of the function.

Exercise 1: Graph the second tone $Y_{2}=\sin [2 \pi(1336) t]$ and find its value at $t=0.00025 \mathrm{sec}$.

Figure 4.22

Figure 4.23

Exercise 2: Graph the function $\mathrm{Y}_{1}=950 \sin (0.005 t)$ on a "friendly" window and find the value at $t=550$.

4.1 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. For the sine function, output values are \qquad in the interval $\left[0, \frac{\pi}{2}\right]$.
2. For the sine and cosine functions, the domain is
\qquad and the range is \qquad —.
3. Discuss/Explain how the values generated by the unit circle can be used to graph the function $f(t)=\sin t$. Be sure to include the domain and range of this function in your discussion.
4. For the cosine function, output values are \qquad in the interval $\left[0, \frac{\pi}{2}\right]$.
5. The amplitude of sine and cosine is defined to be the maximum \qquad from the \qquad value in the positive and negative directions.
6. Discuss/Describe the four-step process outlined in this section for the graphing of basic trig functions. Include a worked-out example and a detailed explanation.

DEVELOPING YOUR SKILLS

7. Use the symmetry of the unit circle and reference arcs of standard values to complete a table of values for $y=\cos t$ in the interval $t \in[\pi, 2 \pi]$.
8. Use the standard values for $y=\cos t$ for $t \in[\pi, 2 \pi]$ to create a table of values for $y=\sin t$ on the same interval.

Use the characteristics of $f(t)=\sin t$ to match the given value of t to the correct value of $\sin t$.
9. a. $t=\left(\frac{\pi}{6}+10 \pi\right)$
b. $t=-\frac{\pi}{4}$
c. $t=\frac{-15 \pi}{4}$
d. $t=13 \pi$
e. $t=\frac{21 \pi}{2}$
I. $\sin t=0$
II. $\sin t=\frac{1}{2}$
III. $\sin t=1$
IV. $\sin t=\frac{\sqrt{2}}{2}$
V. $\sin t=-\frac{\sqrt{2}}{2}$
10. a. $t=\left(\frac{\pi}{4}-12 \pi\right)$
b. $t=\frac{11 \pi}{6}$
c. $t=\frac{23 \pi}{2}$
d. $t=-19 \pi$
e. $t=-\frac{25 \pi}{4}$
I. $\sin t=-\frac{1}{2}$
II. $\sin t=-\frac{\sqrt{2}}{2}$
III. $\sin t=0$
IV. $\sin t=\frac{\sqrt{2}}{2}$
V. $\sin t=-1$

Use steps I through IV given in this section to draw a sketch of each graph.
11. $y=\sin t$ for $t \in\left[-\frac{3 \pi}{2}, \frac{\pi}{2}\right]$
12. $y=\sin t$ for $t \in[-\pi, \pi]$
13. $y=\cos t$ for $t \in\left[-\frac{\pi}{2}, 2 \pi\right]$
14. $y=\cos t$ for $t \in\left[-\frac{\pi}{2}, \frac{5 \pi}{2}\right]$

Use a reference rectangle and the rule of fourths to draw an accurate sketch of the following functions through two complete cycles-one where $t>0$, and one where $t<0$. Clearly state the amplitude and period as you begin.
15. $y=3 \sin t$
16. $y=4 \sin t$
17. $y=-2 \cos t$
18. $y=-3 \cos t$
19. $y=\frac{1}{2} \sin t$
20. $y=\frac{3}{4} \sin t$
21. $y=-\sin (2 t)$
22. $y=-\cos (2 t)$
23. $y=0.8 \cos (2 t)$
24. $y=1.7 \sin (4 t)$
25. $f(t)=4 \cos \left(\frac{1}{2} t\right)$
26. $y=-3 \cos \left(\frac{3}{4} t\right)$
27. $f(t)=3 \sin (4 \pi t)$
28. $g(t)=5 \cos (8 \pi t)$
29. $y=4 \sin \left(\frac{5 \pi}{3} t\right)$
30. $y=2.5 \cos \left(\frac{2 \pi}{5} t\right)$
31. $f(t)=2 \sin (256 \pi t)$
32. $g(t)=3 \cos (184 \pi t)$

Clearly state the amplitude and period of each function, then match it with the corresponding graph.
33. $y=-2 \cos (4 t)$
34. $y=2 \sin (4 t)$
35. $y=3 \sin (2 t)$
36. $y=-3 \cos (2 t)$
37. $f(t)=\frac{3}{4} \cos (0.4 t)$
38. $g(t)=\frac{7}{4} \cos (0.8 t)$
39. $y=4 \sin (144 \pi t)$
40. $y=4 \cos (72 \pi t)$
a.

b.

c.

d.

e.

f.

g.

h.

The graphs shown are of the form $y=A \cos (B t)$. Use the characteristics illustrated for each graph to determine its equation.
41.

42.

43.

44.

The graphs shown are of the form $y=A \sin (B t)$. Use the characteristics illustrated for each graph to determine its equation.
45.

46.

47.

48.

49. $y=-\cos x$;
$y=\sin x$

51. $\begin{aligned} y & =-2 \cos x ; \\ y & =2 \sin (3 x)\end{aligned}$
$y=2 \sin (3 x)$

50. $y=-\cos x$;
$y=\sin (2 x)$

52. $y=2 \cos (2 \pi x)$;
$y=-2 \sin (\pi x)$

Match each graph to its equation, then graphically estimate the points of intersection. Confirm or contradict your estimate(s) by substituting the values into the given equations using a calculator.

WORKING WITH FORMULAS

53. Area of a regular polygon inscribed in a circle:
$\mathcal{A}=\frac{n r^{2}}{2} \sin \left(\frac{2 \pi}{n}\right)$
The formula shown gives the area of a regular polygon inscribed in a circle, where n is the number of sides $(n \geq 3)$ and r is the radius of the circle. Given $r=10 \mathrm{~cm}$,
a. What is the area of

Exercise 53
 the circle?
b. What is the area of the polygon when $n=4$? Find the length of the sides of the polygon using two different methods.
c. Calculate the area of the polygon for $n=10,20,30$, and 100 . What do you notice?
54. Hydrostatics, surface tension, and contact angles: $y=\frac{2 \gamma \cos \theta}{k r}$

The height that a liquid will rise in a capillary tube is given by the formula shown, where r is the radius of the tube, θ is the contact angle of the liquid
 (the meniscus), γ is the surface tension of the liquid-vapor film, and k is a constant that depends on the weight-density of the liquid. How high will the liquid rise given that the surface tension $\gamma=0.2706$, the tube has radius $r=0.2 \mathrm{~cm}$, the contact angle $\theta=22.5^{\circ}$, and $k=1.25$?

APPLICATIONS

Tidal waves: Tsunamis, also known as tidal waves, are ocean waves produced by earthquakes or other upheavals in the Earth's crust and can move through the water undetected for hundreds of miles at great speed. While traveling in the open ocean, these waves can be represented by a sine graph with a very long wavelength (period) and a very small amplitude. Tsunami waves only attain a monstrous size as they approach the shore, and represent a very different phenomenon than the ocean swells created by heavy winds over an extended period of time.
55. A graph modeling a tsunami wave is given in the figure. (a) What is the height of the tsunami
 wave (from crest to trough)? Note that $h=0$ is considered the level of a calm ocean. (b) What is the tsunami's wavelength? (c) Find an equation for this wave.
56. A heavy wind is kicking up ocean swells approximately 10 ft high (from crest to trough), with wavelengths of 250 ft . (a) Find an equation that models these swells. (b) Graph the equation. (c) Determine the height of a wave measured 200 ft from the trough of the previous wave.

Sinusoidal models: The sine and cosine functions are of great importance to meteorological studies, as when modeling the temperature based on the time of day, the illumination of the Moon as it goes through its phases, or even the prediction of tidal motion.
57. The graph given shows the deviation from the average daily temperature for the hours of a given day, with $t=0$ corresponding to 6 A.M.
(a) Use the graph to

determine the related equation. (b) Use the equation to find the deviation at $t=11$ (5 P.m.) and confirm that this point is on the graph. (c) If the average temperature for this day was 72°, what was the temperature at midnight?
58. The equation $y=7 \sin \left(\frac{\pi}{6} t\right)$ models the height of the tide along a certain coastal area, as compared to average sea level. Assuming $t=0$ is midnight,
(a) graph this function over a $12-\mathrm{hr}$ period.
(b) What will the height of the tide be at 5 A.м.?
(c) Is the tide rising or falling at this time?

Sinusoidal movements: Many animals exhibit a wavelike motion in their movements, as in the tail of a shark as it swims in a straight line or the wingtips of a large bird in flight. Such movements can be modeled by a sine or cosine function and will vary depending on the animal's size, speed, and other factors.
59. The graph shown models the position of a shark's tail at time t, as measured to the left (negative) and

right (positive) of a straight line along its length.
(a) Use the graph to determine the related equation.
(b) Is the tail to the right, left, or at center when $t=6.5 \mathrm{sec}$? How far? (c) Would you say the shark is "swimming leisurely," or "chasing its prey"? Justify your answer.
60. The State Fish of Hawaii is the hитиhитипикипикиариа'a, a small colorful fish found abundantly in coastal waters. Suppose the tail motion of an adult fish is modeled by the equation $d(t)=\sin (15 \pi t)$ with $d(t)$ representing the position of the fish's tail at time t, as measured in inches to the left (negative) or right (positive) of a straight line along its length. (a) Graph the equation over two periods. (b) Is the tail to the left or right of center at $t=2.7 \mathrm{sec}$? How far? (c) Would you say this fish is "swimming leisurely," or "running for cover"? Justify your answer.

Kinetic energy: The kinetic energy a planet possesses as it orbits the Sun can be modeled by a cosine function. When the planet is at its apogee (greatest distance from the Sun), its kinetic energy is at its lowest point as it slows down and "turns around" to head back toward the Sun. The kinetic energy is at its highest when the planet "whips around the Sun" to begin a new orbit.
61. Two graphs are given here. (a) Which of the graphs could represent the kinetic energy of a planet orbiting the Sun if the planet is at its perigee (closest distance to the Sun) when $t=0$? (b) For what value(s) of t does this planet possess 62.5% of its maximum kinetic energy with the kinetic energy increasing? (c) What is the orbital period of this planet?
a.

b.

62. The potential energy of the planet is the antipode of its kinetic energy, meaning when kinetic energy is at 100%, the potential energy is 0%, and when kinetic energy is at 0% the potential energy is at 100%. (a) How is the graph of the kinetic energy related to the graph of the potential energy? In other words, what transformation could be applied to the kinetic energy graph to obtain the potential energy graph? (b) If the kinetic energy is at 62.5% and increasing, what can be said about the potential energy in the planet's orbit at this time?

Visible light: One of the narrowest bands in the electromagnetic spectrum is the region involving visible light. The wavelengths (periods) of visible light vary from 400 nanometers (purple/violet colors) to 700 nanometers (bright red). The approximate wavelengths of the other colors are shown in the diagram.

63. The equations for the colors in this spectrum have the form $y=\sin (\gamma t)$, where $\frac{2 \pi}{\gamma}$ gives the length of the sine wave. (a) What color is represented by the equation $y=\sin \left(\frac{\pi}{240} t\right)$? (b) What color is represented by the equation $y=\sin \left(\frac{\pi}{310} t\right)$?
64. Name the color represented by each of the graphs (a) and (b) and write the related equation.
a.

b.

Alternating current: Surprisingly, even characteristics of the electric current supplied to your home can be modeled by sine or cosine functions. For alternating current (AC), the amount of current I (in amps) at time t can be modeled by $I=A \sin (\omega t)$, where A represents the maximum current that is produced, and ω is related to the frequency at which the generators turn to produce the current.
65. Find the equation of the household current modeled by the graph, then use the equation to determine I when $t=0.045 \mathrm{sec}$. Verify that the resulting ordered pair Exercise 65 is on the graph.
66. If the voltage produced by an AC circuit is modeled by the equation $E=155 \sin (120 \pi t)$, (a) what is the period and amplitude of the related graph? (b) What voltage is produced when $t=0.2$?

EXTENDING THE CONCEPT

67. For $y=A \sin (B x)$ and $y=A \cos (B x)$, the expression $\frac{M+m}{2}$ gives the average value of the function, where M and m represent the maximum and minimum values, respectively. What was the average value of every function graphed in this section? Compute a table of values for $y=2 \sin t+3$, and note its maximum and minimum values. What is the average value of this function? What transformation has been applied to change the average value of the function? Can you name the average value of $y=-2 \cos t+1$ by inspection?
68. To understand where the period formula $P=\frac{2 \pi}{B}$ came from, consider that if $B=1$, the graph of $y=\sin (B t)=\sin (1 t)$ completes one cycle from $1 t=0$ to $1 t=2 \pi$. If $B \neq 1, y=\sin (B t)$ completes one cycle from $B t=0$ to $B t=2 \pi$. Discuss how this observation validates the period formula.
69. The tone you hear when pressing the digit " 9 " on your telephone is actually a combination of two separate tones, which can be modeled by the functions $f(t)=\sin [2 \pi(852) t]$ and $g(t)=\sin [2 \pi(1477) t]$. Which of the two functions has the shortest period? By carefully scaling the axes, graph the function having the shorter period using the steps I through IV discussed in this section.

MAINTAINING YOUR SKILLS

70. (3.4) Given $\sin 1.12 \approx 0.9$, find an additional value of t in $[0,2 \pi)$ that makes the equation $\sin t \approx 0.9$ true.
71. (3.2) Invercargill, New Zealand, is at $46^{\circ} 14^{\prime} 24^{\prime \prime}$ south latitude. If the Earth has a radius of 3960 mi , how far is Invercargill from the equator?
72. (1.3) Given $\cos t=\frac{28}{53}$ with $\tan t<0$: (a) find the related values of x, y, and r; (b) state the quadrant of the terminal side; and (c) give the value of the other five trig functions of t.
73. (1.1) Use a standard triangle to calculate the distance from the ball to the pin on the seventh hole, given the ball is in a straight line with the 100 -yd plate, as shown in the figure.

Exercise 73

74. (3.2) The Ferris wheel shown has a radius of 25 ft and is turning at a rate of 14 rpm . (a) What is the angular velocity in radians? (b) What distance does a seat on the rim travel as the Ferris wheel turns through an angle of 225° ? (c) What is the linear velocity (in miles per hour) of a person sitting in a seat at the rim of the Ferris wheel?

Exercise 74

75. (2.3) The world's tallest unsupported flagpole was erected in 1985 in Vancouver, British Columbia. Standing 60 ft from the base of the pole, the angle of elevation is 78°. How tall is the pole?

4.2 Graphs of the Cosecant, Secant, Tangent, and Cotangent Functions

Learning Objectives

In Section 4.2 you will learn how to:

A. Graph the functions $y=A \csc (B t)$ and $y=A \sec (B t)$B. Graph $y=\tan t$ using asymptotes, zeroes, and the ratio $\frac{\sin t}{\cos t}$C. Graph $y=\cot t u s i n g$ asymptotes, zeroes, and the ratio $\frac{\cos t}{\sin t}$D. Identify and discuss important characteristics of $y=\tan t$ and $y=\cot t$E. Graph $y=A \tan (B t)$ and $y=A \cot (B t)$ with various values of A and B

Unlike sine and cosine, the cosecant, secant, tangent, and cotangent functions have no maximum or minimum values over their domains. However, it is precisely this unique feature that adds to their value as mathematical models. Collectively, these six trig functions give scientists the tools they need to study, explore, and investigate a wide range of phenomena, extending our understanding of the world around us.

A. Graphs of $y=A \csc (B t)$ and $y=A \sec (B t)$

From our earlier work, recall that $y=\sin t$ and $y=\csc t$ are reciprocal functions: $\csc t=\frac{1}{\sin t}$. Likewise, we have $\sec t=\frac{1}{\cos t}$. The graphs of these reciprocal functions follow quite naturally from the graphs of $y=A \sin (B t)$ and $y=A \cos (B t)$ by using these observations:

1. You cannot divide by zero.
2. The reciprocal of a very small number (<1) is a very large number (and vice versa).
3. The reciprocal of ± 1 is ± 1.

Just as with rational functions, division by zero creates a vertical asymptote, so the graph of $y=\csc t=\frac{1}{\sin t}$ will have a vertical asymptote at every point where $\sin t=0$. This occurs at $t=\pi k$, where k is an integer $(\ldots-2 \pi,-\pi, 0, \pi, 2 \pi, \ldots)$. Further, when $\sin (B t)= \pm 1, \csc (B t)= \pm 1$ since the reciprocal of 1 and -1 are still 1 and -1 , respectively. Finally, due to observation 2 , the graph of the cosecant function will be increasing when the sine function is decreasing, and decreasing when the sine function is increasing.

Considering the case where $A=1$, we can graph $y=\csc (B t)$ by first drawing a sketch of $y=\sin (B t)$. Then using the previous observations and a few well-known values, we can accurately complete the graph of $y=\csc (B t)$. See Example 1. From the graph, we discover that the period of the cosecant function is also $\frac{2 \pi}{B}$ and that $y=\csc (B t)$ is an odd function.

EXAMPLE 1 Graphing $y=A \csc (B t)$ for $A=1$

Graph the function $y=\csc t$ over the interval $[0,4 \pi]$.
Solution Begin by sketching the function $y=\sin t$, using a standard reference rectangle $2 A=2(1)=2$ units high by $\frac{2 \pi}{B}=\frac{2 \pi}{1}=2 \pi$ units in length. Since $\csc t=\frac{1}{\sin t}$, the graph of $y=\csc t$ will be asymptotic at the zeroes of $y=\sin t(t=0, \pi$, and $2 \pi)$. As in Section 4.1, we can then extend the graph into the interval $[2 \pi, 4 \pi]$ by reproducing the graph from $[0,2 \pi]$. A partial table and the resulting graph are shown.

t	$\sin t$	$\csc t$
0	0	$\frac{1}{0} \rightarrow$ undefined
$\frac{\pi}{6}$	$\frac{1}{2}=0.5$	$\frac{2}{1}=2$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2} \approx 0.71$	$\frac{2}{\sqrt{2}} \approx 1.41$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2} \approx 0.87$	$\frac{2}{\sqrt{3}} \approx 1.15$
$\frac{\pi}{2}$	1	1

- Vertical asymptotes where sine is zero
- When $\sin (B t)= \pm 1$, $\csc (B t)= \pm 1$
- Output values are reciprocated

Similar to Example 1, the graph of $y=\sec t=\frac{1}{\cos t}$ will have vertical asymptotes where $\cos t=0\left(t=\frac{\pi}{2}\right.$ and $\left.\frac{3 \pi}{2}\right)$. Note that if $A \neq 1$, we would then use the graph of $y=A \cos (B t)$ to graph $y=A \sec (B t)$, as in Example 2.

EXAMPLE 2 - Graphing $y=A \sec (B t)$ for $A, B \neq 1$
Graph the function $y=3 \sec \left(\frac{\pi}{2} t\right)$ over the interval $[-2,6]$.
Solution Begin by sketching the function $y=3 \cos \left(\frac{\pi}{2} t\right)$ using a reference rectangle 6 units high by $\frac{2 \pi}{B}=\frac{2 \pi}{\pi / 2}=4$ units long as a guide. Within the rectangle, each tick mark will be 1 unit apart, with the asymptotes occurring at the zeroes of $y=3 \cos \left(\frac{\pi}{2} t\right)(t=1$ and $t=3)$. We then extend the graph to cover the interval $[-2,6]$ by reproducing the appropriate sections of the graph. A partial table and the resulting graph are shown.

\boldsymbol{t}	$\mathbf{3} \cos \left(\frac{\boldsymbol{\pi}}{\mathbf{2}} \boldsymbol{t}\right)$	$\mathbf{3} \sec \left(\frac{\boldsymbol{\pi}}{\mathbf{2}} \boldsymbol{t}\right)$
0	3	3
$\frac{1}{3}$	$3 \cdot \frac{\sqrt{3}}{2} \approx 2.60$	$3 \cdot \frac{2}{\sqrt{3}} \approx 3.46$
$\frac{1}{2}$	$3 \cdot \frac{\sqrt{2}}{2} \approx 2.12$	$3 \cdot \frac{2}{\sqrt{2}} \approx 4.24$
$\frac{2}{3}$	$3 \cdot \frac{1}{2}=1.5$	$3 \cdot \frac{2}{1}=6$
1	0	$\frac{1}{0} \rightarrow$ undefined

- Vertical asymptotes where cosine is zero
- When $A \cos (B t)= \pm A$, $A \sec (B t)= \pm A$

Now try Exercises 11 through 14
$\boxed{\square}$ A. You've just learned how to graph $y=A \csc (B t)$ and $y=A \sec (B t)$

From the graph, we discover that the period of the secant function is also $\frac{2 \pi}{B}$, and that $y=A \sec (B t)$ is an even function. The most important characteristics of the cosecant and secant functions are summarized in the following box. Note that for these functions, there is no discussion of amplitude, and no mention is made of their zeroes since neither graph intersects the t-axis.

Characteristics of $f(t)=\csc t$ and $f(t)=\sec t$

For all real numbers t and integers k,

$$
y=\csc t
$$

Domain Range Asymptotes

$$
t \neq k \pi \quad(-\infty,-1] \cup[1, \infty) \quad t=k \pi
$$

Period

2π

Symmetry
odd $\csc (-t)=-\csc t$

$$
y=\sec t
$$

Domain

Range
Asymptotes

$$
t \neq \frac{\pi}{2}+\pi k \quad(-\infty,-1] \cup[1, \infty) \quad t=\frac{\pi}{2}+\pi k
$$

Period

2π

Symmetry

even $\sec (-t)=\sec t$

Figure 4.24

$\tan t=\frac{y}{x}$

B. The Graph of $y=\tan t$

Like the secant and cosecant functions, tangent is defined in terms of a ratio, creating asymptotic behavior at the zeroes of the denominator. In terms of the unit circle, $\tan t=\frac{y}{x}$, which means in $[-\pi, 2 \pi]$, vertical asymptotes occur at $t=-\frac{\pi}{2}, t=\frac{\pi}{2}$, and $\frac{3 \pi}{2}$, since the x-coordinate on the unit circle is zero (see Figure 4.24). We further note $\tan t=0$ when the y-coordinate is zero, so the function will have t-intercepts at $t=-\pi, 0, \pi$, and 2π in the same interval. This produces the framework for graphing the tangent function shown in Figure 4.25.

Figure 4.25

Knowing the graph must go through these zeroes and approach the asymptotes, we are left with determining the direction of the approach. This can be discovered by noting that in QI, the y-coordinates of points on the unit circle start at 0 and increase, while the x-values start at 1 and decrease. This means the ratio $\frac{y}{x}$ defining $\tan t$ is increasing, and in fact becomes infinitely large as t gets very close to $\frac{\pi}{2}$. A similar observation can be made for a negative rotation of t in QIV. Using the additional points provided by $\tan \left(-\frac{\pi}{4}\right)=-1$ and $\tan \left(\frac{\pi}{4}\right)=1$, we find the graph of $\tan t$ is increasing throughout the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and that the function has a period of π. We also note $y=\tan t$ is an odd function (symmetric about the origin), since $\tan (-t)=-\tan t$ as evidenced by the two points just computed. The completed graph is shown in Figure 4.26 with the primary interval in red.

Figure 4.26

The graph can also be developed by noting $\sin t=y, \cos t=x$, and $\tan t=\frac{y}{x}$. This gives $\tan t=\frac{\sin t}{\cos t}$ by direct substitution and we can quickly complete a table of values for $\tan t$, as shown in Example 3.

EXAMPLE $3-$ Constructing a Table of Values for $f(t)=\tan t$

Complete Table 4.8 shown for $\tan t=\frac{y}{x}$ using the values given for $\sin t$ and $\cos t$, then graph the function by plotting points.

Table 4.8

t	$\mathbf{0}$	$\frac{\pi}{\mathbf{6}}$	$\frac{\pi}{\mathbf{4}}$	$\frac{\boldsymbol{\pi}}{\mathbf{3}}$	$\frac{\boldsymbol{\pi}}{\mathbf{2}}$	$\frac{\mathbf{2 \pi}}{\mathbf{3}}$	$\frac{\mathbf{3 \pi}}{\mathbf{4}}$	$\frac{\mathbf{5 \pi}}{\mathbf{6}}$	$\boldsymbol{\pi}$
$\sin t=\boldsymbol{y}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos t=\boldsymbol{x}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\tan t=\frac{\boldsymbol{y}}{\boldsymbol{x}}$									

Solution For the noninteger values of x and y, the "twos will cancel" each time we compute $\frac{y}{x}$. This means we can simply list the ratio of numerators. The resulting points are shown in Table 4.9, along with the plotted points. The graph shown in Figure 4.27 was completed using symmetry and the previous observations.

Table 4.9

t	$\mathbf{0}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{\mathbf{3}}$	$\frac{\pi}{2}$	$\frac{\mathbf{2 \pi}}{\mathbf{3}}$	$\frac{\mathbf{3 \pi}}{\mathbf{4}}$	$\frac{\mathbf{5 \pi}}{\mathbf{6}}$	$\boldsymbol{\pi}$
$\sin t=\boldsymbol{y}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos t=\boldsymbol{x}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\tan t=\frac{\boldsymbol{y}}{\boldsymbol{x}}$	0	$\frac{1}{\sqrt{3}} \approx 0.58$	1	$\sqrt{3} \approx 1.7$	undefined	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Figure 4.27

Now try Exercises 15 and 16
(B. You've just learned how to graph $y=\tan t$ using asymptotes, zeroes, and the ratio $\frac{\sin t}{\cos t}$

Additional values can be found using a calculator as needed. For future use and reference, it will help to recognize the approximate decimal equivalent of all special values and radian angles. In particular, note that $\sqrt{3} \approx 1.73$ and $\frac{1}{\sqrt{3}} \approx 0.58$. See
Exercises $\mathbf{1 7}$ through 22 . Exercises 17 through 22.

C. The Graph of $y=\cot t$

Since the cotangent function is also defined in terms of a ratio, it too displays asymptotic behavior at the zeroes of the denominator, with t-intercepts at the zeroes of the numerator. Like the tangent function, $\cot t=\frac{x}{y}$ can be written in terms of $\cos t=x$ and $\sin t=y: \cot t=\frac{\cos t}{\sin t}$, and the graph obtained by plotting points.

EXAMPLE $4-$ Constructing a Table of Values for $f(t)=\cot t$

Complete a table of values for $\cot t=\frac{x}{y}$ for t in $[0, \pi]$ using its ratio relationship with $\cos t$ and $\sin t$. Use the results to graph the function for t in $(-\pi, 2 \pi)$.
Solution The completed table is shown here. In this interval, the cotangent function has asymptotes at 0 and π since $y=0$ at these points, and has a t-intercept at $\frac{\pi}{2}$ since $x=0$. The graph shown in Figure 4.28 was completed using the period $P=\pi$.

t	$\mathbf{0}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{\mathbf{2 \pi}}{\mathbf{3}}$	$\frac{\mathbf{3 \pi}}{\mathbf{4}}$	$\frac{\mathbf{5 \pi}}{\mathbf{6}}$	$\boldsymbol{\pi}$
$\sin t=\boldsymbol{y}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos t=\boldsymbol{x}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\cot t=\frac{\boldsymbol{x}}{\boldsymbol{y}}$	undefined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	undefined

Figure 4.28

■ C. You've just learned how to graph $y=\cot t$ using asymptotes, zeroes, and the ratio $\frac{\cos t}{\sin t}$

D. Characteristics of $y=\tan t$ and $y=\cot t$

The most important characteristics of the tangent and cotangent functions are summarized in the following box. There is no discussion of amplitude, maximum, or minimum values, since maximum or minimum values do not exist. For future use and reference, perhaps the most significant characteristic distinguishing tan t from cot t is that tan tincreases, while cot t decreases over their respective domains. Also note that due to symmetry, the zeroes of each function are always located halfway between the asymptotes.

Characteristics of $f(t)=\tan t$ and $f(t)=\cot t$

For all real numbers t and integers k,

$\boldsymbol{y}=\tan t$					
Domain	Range	Asymptotes	Domain	Range	Asymptotes
$t \neq \frac{\pi}{2}+\pi k$	$(-\infty, \infty)$	$t=\frac{\pi}{2}+\pi k$	$t \neq k \pi$	$(-\infty, \infty)$	$t=k \pi$
Period	Behavior	Symmetry	Period	Behavior	Symmetry
π	increasing	odd	π	decreasing	odd
		$\tan (-t)=-\tan t$			$\cot (-t)=-\cot t$

EXAMPLE $5>$ Using the Period of $f(t)=$ tan t to Find Additional Points Given $\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$, what can you say about $\tan \left(\frac{7 \pi}{6}\right), \tan \left(\frac{13 \pi}{6}\right)$, and $\tan \left(-\frac{5 \pi}{6}\right)$?
Solution $>$ Each value of t differs from $\frac{\pi}{6}$ by a multiple of $\pi: \tan \left(\frac{7 \pi}{6}\right)=\tan \left(\frac{\pi}{6}+\pi\right)$, $\tan \left(\frac{13 \pi}{6}\right)=\tan \left(\frac{\pi}{6}+2 \pi\right)$, and $\tan \left(-\frac{5 \pi}{6}\right)=\tan \left(\frac{\pi}{6}-\pi\right)$. Since the period of the tangent function is $P=\pi$, all of these expressions have a value of $\frac{1}{\sqrt{3}}$.

Now try Exercises 25 through 30

Since the tangent function is more common than the cotangent, many needed calculations will first be done using the tangent function and its properties, then reciprocated. For instance, to evaluate $\cot \left(-\frac{\pi}{6}\right)$ we reason that cot t is an odd function, so $\cot \left(-\frac{\pi}{6}\right)=-\cot \left(\frac{\pi}{6}\right)$. Since cotangent is the reciprocal of tangent and $\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}},-\cot \left(\frac{\pi}{6}\right)=-\sqrt{3}$. See Exercises 31 and 32.

E. Graphing $y=A \tan (B t)$ and $y=A \cot (B t)$

The Coefficient A: Vertical Stretches and Compressions

For the tangent and cotangent functions, the role of coefficient A is best seen through an analogy from basic algebra (the concept of amplitude is foreign to these functions). Consider the graph of $y=x^{3}$ (Figure 4.29). Comparing the parent function $y=x^{3}$ with functions $y=A x^{3}$, the graph is stretched vertically if $|A|>1$ (see Figure 4.30) and compressed if $0<|A|<1$. In the latter case the graph becomes very "flat" near the zeroes, as shown in Figure 4.31.

Figure 4.29
$y=x^{3}$

Figure 4.30
$y=4 x^{3} ; A=4$

Figure 4.31
$y=\frac{1}{4} x^{3} ; A=\frac{1}{4}$

While cubic functions are not asymptotic, they are a good illustration of A 's effect on the tangent and cotangent functions. Fractional values of $A(|A|<1)$ compress the graph, flattening it out near its zeroes. Numerically, this is because a fractional part of a small quantity is an even smaller quantity. For instance, compare $\tan \left(\frac{\pi}{6}\right)$ with $\frac{1}{4} \tan \left(\frac{\pi}{6}\right)$. To two decimal places, $\tan \left(\frac{\pi}{6}\right)=0.57$, while $\frac{1}{4} \tan \left(\frac{\pi}{6}\right)=0.14$, so the graph must be "nearer the t-axis" at this value.

EXAMPLE 6 - Comparing the Graph of $f(t)=\tan t$ and $g(t)=A \tan t$

Draw a "comparative sketch" of $y=\tan t$ and $y=\frac{1}{4} \tan t$ on the same axis and discuss similarities and differences. Use the interval $[-\pi, 2 \pi]$.
Solution Both graphs will maintain their essential features (zeroes, asymptotes, period, increasing, and so on). However, the graph of $y=\frac{1}{4} \tan t$ is vertically compressed, causing it to flatten out near its zeroes and changing how the graph approaches its asymptotes in each interval.

Now try Exercises 33 through 36

The Coefficient B: The Period of Tangent and Cotangent

WORTHY OF NOTE

It may be easier to interpret the phrase "twice as fast" as $2 P=\pi$ and "one-half as fast" as $\frac{1}{2} P=\pi$. In each case, solving for P gives the correct interval for the period of the new function.

Like the other trig functions, the value of B has a material impact on the period of the function, and with the same effect. The graph of $y=\cot (2 t)$ completes a cycle twice as fast as $y=\cot t\left(P=\frac{\pi}{2}\right.$ versus $\left.P=\pi\right)$, while $y=\cot \left(\frac{1}{2} t\right)$ completes a cycle one-half as fast $(P=2 \pi$ versus $P=\pi)$.

This reasoning leads us to a period formula for tangent and cotangent, namely, $P=\frac{\pi}{|B|}$, where B is the coefficient of the input variable.

Similar to the four-step process used to graph sine and cosine functions, we can graph tangent and cotangent functions using a rectangle $P=\frac{\pi}{B}$ units in length and $2 A$ units high, centered on the primary interval. After dividing the length of the rectangle into fourths, the t-intercept will always be the halfway point, with y-values of $|A|$ occuring at the $\frac{1}{4}$ and $\frac{3}{4}$ marks. See Example 7.

EXAMPLE 7 Graphing $y=A \cot (B t)$ for $A, B \neq 1$
Sketch the graph of $y=3 \cot (2 t)$ over the interval $[-\pi, \pi]$.
Solution For $y=3 \cot (2 t),|A|=3$, which results in a vertical stretch, and $|B|=2$, which gives a period of $\frac{\pi}{2}$. The function is still undefined (asymptotic) at $t=0$ and then at all integer multiples of $P=\frac{\pi}{2}$. We also know the graph is decreasing, with zeroes of the function halfway between the asymptotes. The inputs $t=\frac{\pi}{8}$ and $t=\frac{3 \pi}{8}$ (the $\frac{1}{4}$ and $\frac{3}{4}$ marks between 0 and $\frac{\pi}{2}$) yield the points $\left(\frac{\pi}{8}, 3\right)$ and $\left(\frac{3 \pi}{8},-3\right)$, which we'll use along with the period and symmetry of the function to complete the graph:

Now try Exercises 37 through 48

As with the trig functions from Section 4.1, it is possible to determine the equation of a tangent or cotangent function from a given graph. Where previously we used the amplitude, period, and max/min values to obtain our equation, here we first determine the period of the function by calculating the "distance" between asymptotes, then choose any convenient point on the graph (other than a t-intercept) and substitute in the equation to solve for A.

EXAMPLE 8 Constructing the Equation for a Given Graph

Find the equation of the graph, given it's of the form $y=A \tan (B t)$.

Solution Using the primary interval and the asymptotes at $t=-\frac{\pi}{3}$ and $t=\frac{\pi}{3}$, we find the period is $P=\frac{\pi}{3}-\left(-\frac{\pi}{3}\right)=\frac{2 \pi}{3}$. To find the value of B we substitute $\frac{2 \pi}{3}$ for P in $P=\frac{\pi}{B}$ and find $B=\frac{3}{2}$ (verify). This gives the equation $y=A \tan \left(\frac{3}{2} t\right)$.
E. You've just learned how to graph $y=A \tan (B t)$ and $y=A \cot (B t)$ with various values of A and B

To find A, we take the point $\left(\frac{\pi}{2},-2\right)$ shown, and use $t=\frac{\pi}{2}$ with $y=-2$ to solve for A :

$$
\begin{aligned}
y & =A \tan \left(\frac{3}{2} t\right) & & \text { substitute } \frac{3}{2} \text { for } B \\
-2 & =A \tan \left[\left(\frac{3}{2}\right)\left(\frac{\pi}{2}\right)\right] & & \text { substitute }-2 \text { for } y \text { and } \frac{\pi}{2} \text { for } t \\
-2 & =A \tan \left(\frac{3 \pi}{4}\right) & & \text { multiply } \\
A & =\frac{-2}{\tan \left(\frac{3 \pi}{4}\right)} & & \text { solve for } A \\
& =2 & & \text { result; } \tan \left(\frac{3 \pi}{4}\right)=-1
\end{aligned}
$$

The equation of the graph is $y=2 \tan \left(\frac{3}{2} t\right)$.

TECHNOLOGY HIGHLIGHT

Zeroes, Asymptotes, and the Tangent/Cotangent Functions

In this Technology Highlight, we'll explore the tangent and cotangent functions from the perspective of their ratio definition. While we could easily use $Y_{1}=\tan x$ to generate and explore the graph, we would miss an opportunity to note the many important connections that emerge from a ratio definition perspective. To begin, enter $Y_{1}=\sin x, Y_{2}=\cos x$, and $Y_{3}=\frac{Y_{1}}{Y_{2}}$, as shown in Figure 4.32 [recall that function variables are accessed using vars
(Y-VARS) ENTER (1:Function)]. Note that Y_{2} has been disabled by overlaying the cursor on the equal sign and pressing ENTER. In addition, note the slash next to Y_{1} is more bold than the other slashes. The TI-84 Plus offers options that help distinguish between graphs when more than one is being displayed, and we selected a bold line for Y_{1} by moving the cursor to the far left position and repeatedly pressing ENTER until the desired option appeared. Pressing Z00M 7:ZTrig at this point produces the screen shown in Figure 4.33, where we note that $\tan x$ is zero everywhere that $\sin x$ is zero. This is hardly surprising since $\tan x=\frac{\sin x}{\cos x}$, but is a point that is often overlooked. Going back to the $Y=$ screen and disabling Y_{1} while enabling Y_{2} will produce the graph shown in Figure 4.34.

Exercise 1: What do you notice about the zeroes of $\cos x$ as they relate to the graph of $Y_{3}=\tan x$?
Exercise 2: Go to the $Y=$ screen and change Y_{3} from $\frac{Y_{1}}{Y_{2}}$ (tangent) to $\frac{Y_{2}}{Y_{1}}$ (cotangent), then repeat the previous investigation regarding $y=\sin x$ and $y=\cos x$.

Figure 4.32

Figure 4.33

Figure 4.34

4.2 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. The period of $y=\tan t$ and $y=\cot t$ is \qquad .
To find the period of $y=\tan (B t)$ and $y=\cot (B t)$, the formula \qquad is used.
2. Tan t and $\cot t$ are \qquad functions, so
$f(-t)=$ \qquad . If $\tan \left(-\frac{11 \pi}{12}\right) \approx 0.268$, then $\tan \left(\frac{11 \pi}{12}\right) \approx$ \qquad .
3. Discuss/Explain (a) how you could obtain a table of values for $y=\sec t$ in $[0,2 \pi]$, with the values for $y=\cos t$, and (b) how you could obtain a table of values for $y=\csc \left(\frac{3}{2} t\right) t$ in $[0,2 \pi]$, given the values for $y=\sin \left(\frac{3}{2} t\right)$.
4. The function $y=\tan t$ is \qquad everywhere it is defined. The function $y=\cot t$ is everywhere it is defined.
5. The asymptotes of $y=$ \qquad are located at odd multiples of $\frac{\pi}{2}$. The asymptotes of $y=$ \qquad are located at integer multiples of π.
6. Explain/Discuss how the zeroes of $y=\sin t$ and $y=\cos t$ are related to the graphs of $y=\tan t$ and $y=\cot t$. How can these relationships help graph functions of the form $y=A \tan (B t)$ and $y=A \cot (B t)$?

DEVELOPING YOUR SKILLS

Draw the graph of each function by first sketching the related sine and cosine graphs, and applying the observations from this section.
7. $y=\csc (2 t)$
8. $y=\csc (\pi t)$
9. $y=\sec \left(\frac{1}{2} t\right)$
10. $y=\sec (2 \pi t)$
11. $y=3 \csc t$
12. $g(t)=2 \csc (4 t)$
13. $y=2 \sec t$
14. $f(t)=3 \sec (2 t)$

Use the values given for $\sin t$ and $\cos t$ to complete the tables.
15.

\boldsymbol{t}	$\boldsymbol{\pi}$	$\frac{7 \pi}{\mathbf{6}}$	$\frac{\mathbf{5 \pi}}{\mathbf{4}}$	$\frac{\mathbf{4 \pi}}{\mathbf{3}}$	$\frac{\mathbf{3 \pi}}{\mathbf{2}}$
$\sin t=y$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\cos t=x$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
$\tan t=\frac{y}{x}$					

16.

	$\frac{3 \pi}{\mathbf{2}}$	$\frac{\mathbf{5 \pi}}{\mathbf{3}}$	$\frac{7 \pi}{\mathbf{4}}$	$\frac{\mathbf{1 1 \pi}}{\mathbf{6}}$	2π
$\sin t=y$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
$\cos t=x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan t=\frac{y}{x}$					

17. Without reference to a text or calculator, attempt to name the decimal equivalent of the following values to one decimal place.

$$
\begin{array}{llllll}
\frac{\pi}{2} & \frac{\pi}{4} & \frac{\pi}{6} & \sqrt{2} & \frac{\sqrt{2}}{2} & \frac{2}{\sqrt{3}}
\end{array}
$$

18. Without reference to a text or calculator, attempt to name the decimal equivalent of the following values to one decimal place.

$$
\begin{array}{llllll}
\frac{\pi}{3} & \pi & \frac{3 \pi}{2} & \sqrt{3} & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{3}}
\end{array}
$$

19. State the value of each expression without the use of a calculator.
a. $\tan \left(-\frac{\pi}{4}\right)$
b. $\cot \left(\frac{\pi}{6}\right)$
c. $\cot \left(\frac{3 \pi}{4}\right)$
d. $\tan \left(\frac{\pi}{3}\right)$
20. State the value of t without the use of a calculator.
a. $\cot \left(\frac{\pi}{2}\right)$
b. $\tan \pi$
c. $\tan \left(-\frac{5 \pi}{4}\right)$
d. $\cot \left(-\frac{5 \pi}{6}\right)$
21. State the value of t without the use of a calculator, given $t \in[0,2 \pi)$ terminates in the quadrant indicated.
a. $\tan t=-1, t$ in QIV
b. $\cot t=\sqrt{3}, t$ in QIII
c. $\cot t=-\frac{1}{\sqrt{3}}, t$ in QIV
d. $\tan t=-1, t$ in QII
22. State the value of each expression without the use of a calculator, given $t \in[0,2 \pi)$ terminates in the quadrant indicated.
a. $\cot t=1, t$ in QI
b. $\tan t=-\sqrt{3}, t$ in QII
c. $\tan t=\frac{1}{\sqrt{3}}, t$ in QI
d. $\cot t=1, t$ in QIII

Use the values given for $\sin t$ and $\cos t$ to complete the tables.
23.

\boldsymbol{t}	$\boldsymbol{\pi}$	$\frac{\mathbf{7 \pi}}{\mathbf{6}}$	$\frac{\mathbf{5 \pi}}{\mathbf{4}}$	$\frac{\mathbf{4 \pi}}{\mathbf{3}}$	$\frac{\mathbf{3 \pi}}{\mathbf{2}}$
$\sin t=y$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\cos t=x$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
$\cot t=\frac{x}{y}$					

24.

	$\frac{\mathbf{3} \boldsymbol{\pi}}{\mathbf{2}}$	$\frac{\mathbf{5 \pi}}{\mathbf{3}}$	$\frac{\mathbf{7 \pi}}{\mathbf{4}}$	$\frac{\mathbf{1 1 \pi}}{\mathbf{6}}$	$\mathbf{2 \pi}$
$\sin t=y$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
$\cos t=x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cot t=\frac{x}{y}$					

25. Given $t=\frac{11 \pi}{24}$ is a solution to $\tan t \approx 7.6$, use the period of the function to name three additional solutions. Check your answer using a calculator.
26. Given $t=\frac{7 \pi}{24}$ is a solution to $\cot t \approx 0.77$, use the period of the function to name three additional solutions. Check your answer using a calculator.
27. Given $t \approx 1.5$ is a solution to $\cot t=0.07$, use the period of the function to name three additional solutions. Check your answers using a calculator.
28. Given $t \approx 1.25$ is a solution to $\tan t=3$, use the period of the function to name three additional solutions. Check your answers using a calculator.

Verify the value shown for t is a solution to the equation given, then use the period of the function to name all real roots. Check two of these roots on a calculator.
29. $t=\frac{\pi}{10} ; \tan t \approx 0.3249$
30. $t=-\frac{\pi}{16} ; \tan t \approx-0.1989$
31. $t=\frac{\pi}{12} ; \cot t=2+\sqrt{3}$
32. $t=\frac{5 \pi}{12} ; \cot t=2-\sqrt{3}$

Graph each function over the interval indicated, noting the period, asymptotes, zeroes, and value of A. Include a comparative sketch of $\boldsymbol{y}=\boldsymbol{\operatorname { t a n }} \boldsymbol{t}$ or $\boldsymbol{y}=\cot \boldsymbol{t}$ as indicated.
33. $f(t)=2 \tan t ;[-2 \pi, 2 \pi]$
34. $g(t)=\frac{1}{2} \tan t ;[-2 \pi, 2 \pi]$
35. $h(t)=3 \cot t ;[-2 \pi, 2 \pi]$
36. $r(t)=\frac{1}{4} \cot t ;[-2 \pi, 2 \pi]$

Graph each function over the interval indicated, noting the period, asymptotes, zeroes, and value of A and B.
37. $y=\tan (2 t) ;\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
38. $y=\tan \left(\frac{1}{4} t\right) ;[-4 \pi, 4 \pi]$
39. $y=\cot (4 t) ;\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
40. $y=\cot \left(\frac{1}{2} t\right) ;[-2 \pi, 2 \pi]$
41. $y=2 \tan (4 t) ;\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
42. $y=4 \tan \left(\frac{1}{2} t\right) ;[-2 \pi, 2 \pi]$
43. $y=5 \cot \left(\frac{1}{3} t\right) ;[-3 \pi, 3 \pi]$
44. $y=\frac{1}{2} \cot (2 t) ;\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
45. $y=3 \tan (2 \pi t) ;\left[-\frac{1}{2}, \frac{1}{2}\right]$
46. $y=4 \tan \left(\frac{\pi}{2} t\right) ;[-2,2]$
47. $f(t)=2 \cot (\pi t) ;[-1,1]$
48. $p(t)=\frac{1}{2} \cot \left(\frac{\pi}{4} t\right) ;[-4,4]$

Clearly state the period of each function, then match it with the corresponding graph.
49. $y=2 \csc \left(\frac{1}{2} t\right)$
50. $y=2 \sec \left(\frac{1}{4} t\right)$
51. $y=\sec (8 \pi t)$
52. $y=\csc (12 \pi t)$
a.

b.

c.

d.

Find the equation of each graph, given it is of the form $y=A \csc (B t)$.
53.

54.

Find the equation of each graph, given it is of the form $y=A \tan (B t)$.
55.

56.

Find the equation of each graph, given it is of the form $y=A \cot (B t)$.
57.

58.

59. Given that $t=-\frac{\pi}{8}$ and $t=-\frac{3 \pi}{8}$ are solutions to $\cot (3 t)=\tan t$, use a graphing calculator to find two additional solutions in $[0,2 \pi]$.
60. Given $t=\frac{1}{6}$ is a solution to $\tan (2 \pi t)=\cot (\pi t)$, use a graphing calculator to find two additional solutions in $[-1,1]$.

WORKING WITH FORMULAS

61. The height of an object calculated from a distance: $h=\frac{d}{\cot u-\cot v}$ The height h of a tall structure can be computed using two angles of elevation measured some distance apart along a straight line with the object. This height is given by the formula shown, where d is the distance between the two points from which angles u and v were measured. Find the height h of a building if $u=40^{\circ}, v=65^{\circ}$, and $d=100 \mathrm{ft}$.

62. Position of an image reflected from a spherical lens: $\tan \theta=\frac{\boldsymbol{h}}{\boldsymbol{s}-\boldsymbol{k}}$ The equation shown is used to help locate the position of an image reflected by a spherical mirror, where s is the distance of the object from the lens along a horizontal axis, θ is the angle of elevation from this axis, h is the altitude of the right triangle indicated, and k is distance from the lens to the foot of altitude h. Find the distance k given $h=3 \mathrm{~mm}, \theta=\frac{\pi}{24}$, and that the object is 24 mm from
 the lens.

APPLICATIONS

63. Circumscribed polygons: The perimeter of a regular polygon circumscribed about a circle of radius r is given by $P=2 n r \tan \left(\frac{\pi}{n}\right)$, where n is the number of $\operatorname{sides}(n \geq 3)$ and r is the radius of the circle. Given $r=10 \mathrm{~cm}$, (a) What is the circumference of the circle? (b) What is the perimeter of the polygon when $n=4$? Why? (c) Calculate the perimeter of the polygon for $n=10,20,30$, and 100. What do you notice? See Exercise 53 from Section 4.1.
64. Circumscribed polygons: The area of a regular polygon circumscribed about a circle of radius r is given by $A=n r^{2} \tan \left(\frac{\pi}{n}\right)$, where n is the number of sides $(n \geq 3)$ and r is the
 radius of the circle. Given $r=10 \mathrm{~cm}$,
a. What is the area of the circle?
b. What is the area of the polygon when $n=4$? Why?
c. Calculate the area of the polygon for $n=10,20,30$, and 100 . What do you notice?

Coefficients of friction: Pulling someone on a sled is much easier during the winter than in the summer, due to a phenomenon known as the coefficient of friction. The friction between the sled's skids and the snow is much lower than the friction between the skids and the dry ground or pavement. Basically, the coefficient of friction is defined by the relationship $\mu=\tan \theta$, where θ is the angle at which a block composed of one material will slide down an inclined plane made of another material, with a constant velocity. Coefficients of friction have been established experimentally for many materials and a short list is shown here.

Material	Coefficient
steel on steel	0.74
copper on glass	0.53
glass on glass	0.94
copper on steel	0.68
wood on wood	0.5

65. Graph the function $\mu=\tan \theta$, with θ in degrees over the interval $\left[0^{\circ}, 60^{\circ}\right]$ and use the graph to estimate solutions to the following. Confirm or contradict your estimates using a calculator.
a. A block of copper is placed on a sheet of steel, which is slowly inclined. Is the block of copper moving when the angle of inclination is 30° ? At what angle of inclination will the copper block be moving with a constant velocity down the incline?
b. A block of copper is placed on a sheet of cast-iron. As the cast-iron sheet is slowly inclined, the copper block begins sliding at a constant velocity when the angle of inclination is approximately 46.5°. What is the coefficient of friction for copper on cast-iron?
c. Why do you suppose coefficients of friction greater than $\mu=2.5$ are extremely rare? Give an example of two materials that likely have a high μ-value.
66. Graph the function $\mu=\tan \theta$ with θ in radians over the interval $\left[0, \frac{5 \pi}{12}\right]$ and use the graph to estimate solutions to the following. Confirm or contradict your estimates using a calculator.
a. A block of glass is placed on a sheet of glass, which is slowly inclined. Is the block of glass moving when the angle of inclination is $\frac{\pi}{4}$? What is the smallest angle of inclination for which the glass block will be moving with a constant velocity down the incline (rounded to four decimal places)?
b. A block of Teflon is placed on a sheet of steel. As the steel sheet is slowly inclined, the Teflon block begins sliding at a constant velocity when the angle of inclination is approximately 0.04 . What is the coefficient of friction for Teflon on steel?
c. Why do you suppose coefficients of friction less than $\mu=0.04$ are extremely rare for two solid materials? Give an example of two materials that likely have a very low μ value.
67. Tangent lines: The actual definition of the word tangent comes from the Latin tangere, meaning "to touch." In mathematics, a tangent line touches the graph of a circle at only one point and function values for $\tan \theta$ are obtained from the length of the line segment tangent to a unit circle.
a. What is the length of the line segment when $\theta=80^{\circ}$?
b. If the line segment is 16.35 units long, what is the value of θ ?
c. Can the line segment ever be greater than 100 units long? Why or why not?
d. How does your answer to (c) relate to the asymptotic behavior of the graph?

68. Illumination: The angle α made by a light source and a point on a horizontal surface can be found using the formula $\csc \alpha=\frac{I}{r^{2} E}$, where E is the illuminance (in lumens $/ \mathrm{m}^{2}$) at the point, I is the intensity of the light source in lumens, and r is the distance in meters from the light source to the point. Use the graph from Example 1 to help determine the angle α given $I=700$ lumens, $E=55$ lumens $/ \mathrm{m}^{2}$, and the flashlight is held so that the distance r is 3 m .

69. Area of a polygon: The area of a regular polygon that has been circumscribed about a circle of radius r (see figure) is given by the formula $A=n r^{2} \sin \left(\frac{\pi}{n}\right) \sec \left(\frac{\pi}{n}\right)$, where n represents the number of sides. (a) Verify the formula for a square circumscribed about a circle with radius 4 m . (b) Find the area of a dodecagon (12 sides) circumscribed about the same circle.
70. Perimeter of a polygon: The perimeter of a regular polygon circumscribed about a
 circle of radius r is given by the formula $P=2 n r \sin \left(\frac{\pi}{n}\right) \sec \left(\frac{\pi}{n}\right)$, where n represents the number of sides. (a) Verify the formula for a square circumscribed about a circle with radius 4 m . (b) Find the perimeter of a dodecagon (12 sides) circumscribed about the same circle.

EXTENDING THE CONCEPT

71. The golden ratio $\frac{-1+\sqrt{5}}{2}$ has long been thought to be the most pleasing ratio in art and architecture. It is commonly believed that many forms of ancient architecture were constructed using this ratio as a guide. The ratio actually turns up in some surprising places, far removed from its original inception as a line segment cut in "mean and extreme" ratio. Given $x=0.6662394325$, try to find a connection between $y=\cos x, y=\tan x$, $y=\sin x$, and the golden ratio.
72. Determine the slope of the line drawn through the parabola (called a secant line) in Figure I. Use the same method (any two points on the line) to calculate the slope of the line drawn tangent to the parabola in Figure II. Compare your calculations to the tangent of the angles α and β that each line makes with the x-axis. What can you conclude? Write a formula for the point/slope equation of a line using $\tan \theta$ instead of m.

Figure I

Figure II

MAINTAINING YOUR SKILLS

73. (2.3) A tent rope is 4 ft long and attached to the tent wall 2 ft above the ground. How far from the tent is the stake holding the rope?

Exercise 74

74. (3.2) A lune is a section of surface area on a sphere, which is subtended by an angle θ at the circumference. For θ in radians, the surface area of a lune is $A=2 r^{2} \theta$, where r is the radius of the sphere. Find the area of a lune on the surface of the Earth which is subtended by an angle of 15°. Assume the radius of the Earth is 6373 km .
75. (3.3) Use a reference arc to determine the value of $\cos \left(\frac{29 \pi}{6}\right)$.
76. (3.4) State the points on the unit circle that correspond to $t=0, \frac{\pi}{4}, \frac{\pi}{2}, \pi, \frac{3 \pi}{4}, \frac{3 \pi}{2}$, and 2π. What is the value of $\tan \left(\frac{\pi}{2}\right)$? Why?
77. (2.4) Given $\sin 212^{\circ} \approx-0.53$, find another angle θ in $\left[0^{\circ}, 360^{\circ}\right)$ that satisfies $\sin \theta \approx-0.53$ without using a calculator.
78. (4.1) At what value(s) of t does the horizontal line $y=3$ intersect the graph of $y=-3 \sin t$?

MID-CHAPTER CHECK

1. Which function, $y=\tan t$ or $y=\cot t$, is decreasing on its domain? Which function, $y=\cos t$ or $y=\sin t$, begins at $(0,1)$ in the interval $t \in[0,2 \pi)$?
2. State the period of $y=\sin \left(\frac{\pi}{2} t\right)$. Where will the \max / min values occur in the primary interval?
3. Evaluate without using a calculator: (a) $\cot 60^{\circ}$ and (b) $\sin \left(\frac{7 \pi}{4}\right)$.
4. Evaluate using a calculator: (a) $\sec \left(\frac{\pi}{12}\right)$ and (b) $\tan 4.3$.
5. Which of the six trig functions are even functions?
6. State the domain of $y=\sin t$ and $y=\tan t$.
7. Name the location of the asymptotes and graph

$$
y=3 \tan \left(\frac{\pi}{2} t\right) \text { for } t \in[-2 \pi, 2 \pi]
$$

8. Clearly state the amplitude and period, then sketch the graph: $y=-3 \cos \left(\frac{\pi}{2} t\right)$.
9. On a unit circle, if arc t has length 5.94, (a) in what quadrant does it terminate? (b) What is its reference arc ? (c) Of $\sin t, \cos t$, and $\tan t$, which are negative for this value of t ?
10. For the graph given here, (a) clearly state the amplitude and period; (b) find the equation of the graph; (c) graphically find $f(\pi)$ and then confirm/contradict your estimation using a calculator.

Exercise 10

REINFORCING BASIC CONCEPTS

Trigonometric Potpourri

This Reinforcing Basic Concepts is simply a collection of patterns, observations, hints, and reminders connected with an introduction to trigonometry. Individually the points may seem trivial, but taken together they tend to reinforce the core fundamentals of trig, enabling you to sequence and store the ideas in your own way. Having these basic elements available for instant retrieval builds a stronger bridge to future concepts, assists in the discovery of additional connections, and enables a closer tie between these concepts and the real-world situations to which they will be applied. Just a little work now pays big dividends later. As Louis Pasteur once said, "Fortune favors a prepared mind."

1. The collection begins with an all-encompassing view of the trig functions, as seen by the imposition of a right triangle in a unit circle, on the coordinate grid. This allows all three approaches to trigonometry to be seen at one time:

$$
\begin{gathered}
\text { right triangle: } \cos t=\frac{\mathrm{adj}}{\mathrm{hyp}} \text { any angle: } \cos t=\frac{x}{r} \\
\text { real number: } \cos t=x
\end{gathered}
$$

Should you ever forget the association of x with cosine and y with sine, just remember that c comes before s in the alphabet in the same way the x comes before $y: \cos t \rightarrow x$ and $\sin t \rightarrow y$.

2. Know the standard angles and the standard values. As mentioned earlier, they are used repeatedly throughout higher mathematics to introduce new concepts and skills without the clutter and distraction of large decimal values. It is interesting to note the standard values (from QI) can always be recreated using the pattern of fourths. Simply write the fractions with integer numerators from $\frac{0}{4}$ through $\frac{4}{4}$, and take their square root:

$$
\sqrt{\frac{0}{4}}=0 \quad \sqrt{\frac{1}{4}}=\frac{1}{2} \quad \sqrt{\frac{2}{4}}=\frac{\sqrt{2}}{2} \quad \sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2} \quad \sqrt{\frac{4}{4}}=1
$$

3. There are many decimal equivalents in elementary mathematics that contribute to concept building. In the same way you recognize the decimal values of $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$, and others, it helps tremendously to recognize or "know" decimal equivalents for values that are commonly used in a study of trig. They help to identify the quadrant of an arc/angle's terminal side when t is expressed in radians, they assist in graphing and estimation skills, and are used extensively throughout this text and in other areas of mathematics. In terms of π these are $\frac{\pi}{2}, \pi, \frac{3 \pi}{2}$, and 2π. In
terms of radicals they are $\sqrt{2}, \frac{\sqrt{2}}{2}, \sqrt{3}$, and $\frac{\sqrt{3}}{2}$. Knowing $\pi \approx 3.14$ leads directly to $\frac{\pi}{2} \approx 1.57$ and $2 \pi \approx 6.28$, while adding the decimal values for π and $\frac{\pi}{2}$ gives $\frac{3 \pi}{2} \approx 4.71$. Further, since $\sqrt{2} \approx 1.41, \frac{\sqrt{2}}{2} \approx 0.7$, and since $\sqrt{3} \approx 1.73, \frac{\sqrt{3}}{2} \approx 0.87$.
4. To specifically remember what standard value is associated with a standard angle or arc, recall that
a. If t is a quadrantal arc/angle, it's easiest to use the coordinates (x, y) of a point on a unit circle.
b. If t is any odd multiple of $\frac{\pi}{4}, \sin t$ and $\cos t$ must be $-\frac{\sqrt{2}}{2}$ or $\frac{\sqrt{2}}{2}$, with the choice depending on the quadrant of the terminal side. The values of the other functions can be found using these.
c. If t is a multiple of $\frac{\pi}{6}$ (excluding the quadrantal angles), the value for sine and cosine must be either $\pm \frac{1}{2}$ or $\pm \frac{\sqrt{3}}{2}$, depending on the quadrant of the terminal side. If there's any hesitation about which value applies to sine and which to cosine, mental imagery can once again help. Since $\frac{\sqrt{3}}{2} \approx 0.87>\frac{1}{2}=0.5$, we simply apply the larger value to the larger arc/angle. Note that for the triangle drawn in
QI $\left(\frac{\pi}{3}=60^{\circ}\right.$ angle at vertex $), y$ is obviously longer than x, meaning the
 association must be $\sin t=\frac{\sqrt{3}}{2}$ and $\cos t=\frac{1}{2}$. For the triangle in $\mathrm{QII}\left(\frac{5 \pi}{6}=150^{\circ}\right.$ whose reference angle is 30°), x is longer than y, meaning the association must be $\cos t=-\frac{\sqrt{3}}{2}$ and $\sin t=\frac{1}{2}$.
5. Although they are often neglected or treated lightly in a study of trig, the secant, cosecant, and cotangent functions play an integral role in more advanced mathematics classes. Be sure you're familiar with their reciprocal relationship to the more common cosine, sine, and tangent functions:

$$
\begin{aligned}
& \sec t=\frac{1}{\cos t}, \cos t=\frac{1}{\sec t}, \sec t \cos t=1 ; \cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2} \rightarrow \sec \left(\frac{2 \pi}{3}\right)=-2 \\
& \csc t=\frac{1}{\sin t}, \sin t=\frac{1}{\csc t}, \csc t \sin t=1 ; \sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2} \rightarrow \csc \left(\frac{2 \pi}{3}\right)=\frac{2}{\sqrt{3}} \\
& \cot t=\frac{1}{\tan t}, \tan t=\frac{1}{\cot t}, \cot t \tan t=1 ; \tan 60^{\circ}=\sqrt{3} \rightarrow \cot 60^{\circ}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

6. Finally, the need to be very familiar with the basic graphs of the trig functions would be hard to overstate. As with transformations of the toolbox functions (from algebra), transformations of the basic trig graphs are a huge help to the understanding and solution of trig equations and inequalities, as well as to their application in the context of real-world phenomena.

4.3 Transformations of Trigonometric Graphs

Learning Objectives

In Section 4.3 you will learn how to:
A. Graph vertical translations of $y=A \sin (B t)$ and $y=A \cos (B t)$
B. Graph horizontal translations of $y=A \sin (B t)$ and $y=A \cos (B t)$
C. Identify and apply important characteristics of $y=A \sin (B t \pm C)+D$
D. Apply vertical and horizontal translations to $y=A \csc (B t)$, $y=A \sec (B t)$, $y=A \tan (B t)$, and $y=A \cot (B t)$

WORTHY OF NOTE

For a complete review of transformations of graphs, see Appendix II.A.

From your algebra experience, you may remember a study of the toolbox functions (sometimes called the Library of Functions), and how these basic graphs were transformed (shifted, reflected, stretched, and so on). These transformations helped us investigate and understand some powerful applications in a study of variations. A study of trigonometry follows a similar pattern, in that once the basic trigonometric graphs have been introduced, transforming these graphs will enable us to look at some significant and powerful trigonometric applications in Section 4.4.

A. Vertical Translations: $y=A \sin (B t)+D$ and $y=A \cos (B t)+D$

On any given day, outdoor temperatures tend to follow a sinusoidal pattern, or a pattern that can be modeled by a sine function. As the Sun rises, the morning temperature begins to warm and rise until reaching its high in the late afternoon, then begins to cool during the early evening and nighttime hours until falling to its nighttime low just prior to sunrise. Next morning, the
cycle begins again. In the northern latitudes where the winters are very cold, it's not unreasonable to assume an average daily temperature of $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$, and a temperature graph in degrees Celsius that looks like the one in Figure 4.35 . For the moment, we'll assume that $t=0$ corresponds to $12: 00$ noon. Note that $|A|=15$ and $P=24$, yielding $24=\frac{2 \pi}{B}$ or $B=\frac{\pi}{12}$.

If you live in a more temperate area, the daily temperatures still follow a sinusoidal pattern, but the average temperature could be much higher. This is an example of a vertical shift, and is the role D plays in the equation $y=A \sin (B t)+D$. All other aspects of a graph remain the same; it is simply shifted D units up if $D>0$ and D units down if $D<0$. As in Section 4.1, for maximum value M and minimum value $m, \frac{M-m}{2}$ gives the

Figure 4.36
 amplitude A of a sine curve, while $\frac{M+m}{2}$ gives the average value D. In a more tropical climate, the average temperature may be $20^{\circ} \mathrm{C}$, and for this graph we need only shift the graph 20 units upward, centering it at $y=20$ (see Figure 4.36). This is simply another example of the following general concept:

Vertical Translations of a Basic Graph

Given any function whose graph is determined by $y=f(x)$ and a constant $k>0$,

1. The graph of $y=f(x)+k$ is the graph of $f(x)$ shifted upward k units.
2. The graph of $y=f(x)-k$ is the graph of $f(x)$ shifted downward k units.

Note that the graphs of $f(t)=A \sin (B t)+D$ and $g(t)=A \cos (B t)+D$ are similarly obtained from the graphs of $y=A \sin (B t)$ and $y=A \cos (B t)$. As discussed, the only adjustment required in our graphing procedure is centering the graph on the new average value, the horizontal line $y=D$.

EXAMPLE 1 Graphing $y=A \sin (B t)+D$

Draw a sketch of $y=3 \sin \left(\frac{1}{2} t\right)+4$ for t in $[-2 \pi, 6 \pi]$.
Solution The amplitude is $|A|=3$, so the reference rectangle will be 2(3) $=6$ units high. The period is $P=\frac{2 \pi}{1 / 2}=4 \pi$, so the rectangle will be 4π units in length. Since $D=4$, the graph will be centered on the line $y=4$. Using the rule of fourths continues to reveal the location of the zeroes and maximum/minimum values, which will be $\left(\frac{1}{4}\right) 4 \pi=\pi$ units apart. As in Section 4.1, after completing the graph within the reference rectangle, we carefully extend the graph over the desired interval.
A. You've just learned how to graph vertical translations of sine and cosine

Now try Exercises 7 through 12

B. Horizontal Translations: $y=A \sin (B t+C)+D$ and
 $$
y=A \cos (B t+C)+D
$$

In Example $1, t=0$ yields the average value of the function. In some cases, scientists would rather "benchmark" their study of periodic phenomena by placing the maximum or minimum value at $t=0$ instead of the average value. Rather than make additional studies or recompute using available data, we can simply shift these graphs using a horizontal translation. To help understand how, consider the graph of $y=x^{2}$. The graph is a parabola, concave up, with a vertex at the origin. Comparing this function with $y_{1}=(x-3)^{2}$ and $y_{2}=(x+3)^{2}$, we note y_{1} is simply the parent graph shifted 3 units right, and y_{2} is the parent graph shifted 3 units left ("opposite the sign"). See Figures 4.37 through 4.39.

While quadratic functions have no maximum value if $\boldsymbol{A}>0$, these graphs are a good reminder of how a basic graph can be horizontally shifted. We simply replace the independent variable x with $(x \pm h)$ or t with $(t \pm h)$, where h is the desired shift and the sign is chosen depending on the direction of the shift.

Figure 4.37
$y=x^{2}$

Figure 4.38
$y_{1}=(x-3)^{2}$

Figure 4.39

$$
y_{2}=(x+3)^{2}
$$

EXAMPLE 2 Graphing $y=A \cos (B t+C), B=1$
Draw a sketch of $y=0.7 \cos \left(t-\frac{\pi}{6}\right)$ over one period.
Solution With an amplitude of $|A|=0.7$ and a period of $P=\frac{2 \pi}{1}=2 \pi$, the reference rectangle will be $2(0.7)=1.4$ units high and 2π units long. With $C=-\frac{\pi}{6}$, the graph is shifted $\frac{\pi}{6}$ units right ("opposite the sign"). Because of this horizontal shift, the zeroes and maximum/minimum values given by the rule of fourths $\left(0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi\right)$ will also shift, giving $0+\frac{\pi}{6}=\frac{\pi}{6}, \frac{\pi}{2}+\frac{\pi}{6}=\frac{2 \pi}{3}, \pi+\frac{\pi}{6}=\frac{7 \pi}{6}$, $\frac{3 \pi}{2}+\frac{\pi}{6}=\frac{5 \pi}{3}$, and $2 \pi+\frac{\pi}{6}=\frac{13 \pi}{6}$. The maximum values will occur at $\frac{\pi}{6}$ and $\frac{13 \pi}{6}$, with the minimum value occuring at $\frac{7 \pi}{6}$. The zeroes occur at $\frac{2 \pi}{3}$ and $\frac{5 \pi}{3}$. Connecting these points with a "cosine curve" gives the translated graph shown, as compared to $y=0.7 \cos t$, which is shown in the background for reference.

Now try Exercises 13 through 18

Using special values, transformations, and the rule of fourths, we can easily graph any horizontally and/or vertically shifted function.

EXAMPLE 3 - Graphing $f(t)=A \sin (B t+C)+D, B \neq 1$

Draw a sketch of $f(t)=\frac{5}{4} \sin \left[2\left(t+\frac{\pi}{4}\right)\right]-1$ for t in $\left[-\frac{\pi}{2}, \pi\right]$.
Solution Note that we can obtain the graph of the function given, by first considering $y=\frac{5}{4} \sin (2 t)$, and shifting it to the left $\frac{\pi}{4}$ units (opposite the sign), then shifting this result one unit down. For $y=\frac{5}{4} \sin (2 t)$, the amplitude is $|A|=\frac{5}{4}$ and the period is $P=\frac{2 \pi}{2}=\pi$, so the reference rectangle will be $\frac{5}{2}$ units high and π units wide. With a period of π, applying the rule of fourths and a horizontal shift of $\frac{\pi}{4}$ units

B/ B. You've just learned how to graph horizontal translations of sine and cosine

WORTHY OF NOTE

When the function
$f(t)=\frac{5}{4} \sin \left[2\left(t+\frac{\pi}{4}\right)\right]-1$ is written in standard form as $f(t)=\frac{5}{4} \sin \left(2 t+\frac{\pi}{2}\right)-1$, we can easily see why it is equivalent to $g(t)=\frac{5}{4} \cos (2 t)-1$. Using the cofunction relationship and the fact that cosine is even, $\sin \left(2 t+\frac{\pi}{2}\right)=\cos (2 t)$.
gives, $0-\frac{\pi}{4}=-\frac{\pi}{4}, \frac{\pi}{4}-\frac{\pi}{4}=0, \frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}, \frac{3 \pi}{4}-\frac{\pi}{4}=\frac{\pi}{2}$, and $\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$. The zeroes of the graph of $y=\frac{5}{4} \sin \left[2\left(t+\frac{\pi}{4}\right)\right]$ occur at $-\frac{\pi}{4}, \frac{\pi}{4}$ and $\frac{3 \pi}{4}$, with the max/min values spaced equally in between (at 0 and $\frac{\pi}{2}$). Connecting these points with a "sine curve" gives the graph shown here, which we then extend across the indicated interval.

Shifting the graph down 1 unit gives the graph of $f(t)=\frac{5}{4} \sin \left[2\left(t+\frac{\pi}{4}\right)\right]-1$ shown.

Now try Exercises 19 through 22
In Section 4.1, we saw that the graph of $y=\cos t$ could be viewed as the graph of $y=\sin t$ shifted to the left $\frac{\pi}{2}$ units. We also see this concept demonstrated in Example 3, where the sine graph shown can be viewed as that of the cosine function: $g(t)=\frac{5}{4} \cos (2 t)-1$.

C. Important Characteristics of $y=A \sin (B t \pm C)+D$

Equations like $f(t)=\frac{5}{4} \sin \left[2\left(t+\frac{\pi}{4}\right)-1\right]$ from Example 3 are said to be written in shifted form, since changes to the input variable are seen directly and we can easily tell the magnitude and direction of the shift. To obtain the standard form we distribute the value of B : $f(t)=\frac{5}{4} \sin \left(2 t+\frac{\pi}{2}\right)-1$. As the comments following Example 3 indicate, any cosine function can be written as a shifted sine function (also see the Worthy of Note). Because of this, the standard form combines sine and cosine functions into a single family called the sinusoids, which are generally written as $y=A \sin (B t \pm C)+D$. The result is called a sinusoidal equation in standard form, with the shifted form found by factoring out B from $B t \pm C$:

$$
y=A \sin (B t \pm C)+D \rightarrow y=A \sin \left[B\left(t \pm \frac{C}{B}\right)\right]+D
$$

WORTHY OF NOTE

It's important that you don't confuse the standard form with the shifted form. Each has a place and purpose, but the horizontal shift can be identified only by focusing on the change in an independent variable. Even though the equations $y=4(x+3)^{2}$ and $y=(2 x+6)^{2}$ are equivalent, only the first explicitly shows that $y=4 x^{2}$ has been shifted three units left. Likewise $y=\sin [2(t+3)]$ and $y=\sin (2 t+6)$ are equivalent, but only the first explicitly gives the horizontal shift (three units left). Applications involving a horizontal shift come in an infinite variety, and the shifts are generally not uniform or standard.

In either case, C gives what is known as the phase angle of the function, and is used in a study of AC circuits and other areas, to discuss how far a given function is "out of phase" with a reference function. In the latter case, $\frac{C}{B}$ is simply the horizontal shift (or phase shift) of the function and gives the magnitude and direction of this shift (opposite the sign).

Characteristics of Sinusoidal Equations

Transformations of the graph of $y=\sin t$ are written as $y=A \sin (B t)$, where

1. $|A|$ gives the amplitude of the graph, or the maximum displacement from the average value.
2. B is related to the period P of the graph according to the ratio $P=\frac{2 \pi}{B}$
(the interval required for one complete cycle). Translations of $y=A \sin (B t)$ can be written as follows:

Standard form

Shifted form

$$
y=A \sin (B t \pm C)+D \quad y=A \sin \left[B\left(t \pm \frac{C}{B}\right)\right]+D
$$

3. In either case, C is called the phase angle of the graph, while $\pm \frac{C}{B}$ gives the magnitude and direction of the horizontal shift (opposite the given sign).
4. D gives the vertical shift of the graph, and the location of the average value. The shift will be in the same direction as the given sign.

Knowing where each cycle begins and ends is a helpful part of sketching a graph of the equation model. The primary interval for a sinusoidal graph can be found by solving the inequality $0 \leq B t \pm C<2 \pi$, with the reference rectangle and rule of fourths giving the zeroes, max/min values, and a sketch of the graph in this interval. The graph can then be extended in either direction, and shifted vertically as needed.

EXAMPLE $4>$ Analyzing the Transformation of a Trig Function

Identify the amplitude, period, horizontal shift, vertical shift (average value), and endpoints of the primary interval.

$$
y=2.5 \sin \left(\frac{\pi}{4} t+\frac{3 \pi}{4}\right)+6
$$

Solution The equation gives an amplitude of $|A|=2.5$, with an average value of $D=6$. The maximum value will be $y=2.5(1)+6=8.5$, with a minimum of $y=2.5(-1)+6=3.5$. With $B=\frac{\pi}{4}$, the period is $P=\frac{2 \pi}{\pi / 4}=8$. To find the horizontal shift, we factor out $\frac{\pi}{4}$ to write the equation in shifted form: $\left(\frac{\pi}{4} t+\frac{3 \pi}{4}\right)=$ $\frac{\pi}{4}(t+3)$. The horizontal shift is 3 units left. For the endpoints of the primary interval we solve $0 \leq \frac{\pi}{4}(t+3)<2 \pi$, which gives $-3 \leq t<5$.

GRAPHICAL SUPPORT

The analysis of $y=2.5 \sin \left[\frac{\pi}{4}(t+3)\right]+6$ from
Example 4 can be verified on a graphing calculator. Enter the function as Y_{1} on the $Y=$ screen and set an appropriate window size using the information gathered. Press the TRACE key and -3 ENTER and the calculator gives the average value $y=6$ as output.
Repeating this for $x=5$ shows one complete
 cycle has been completed.

To help gain a better understanding of sinusoidal functions, their graphs, and the role the coefficients A, B, C, and D play, it's often helpful to reconstruct the equation of a given graph.

EXAMPLE 5 - Determining the Equation of a Trig Function from Its Graph

Determine the equation of the given graph using a sine function.
c. You've just learned how to identify and apply important characteristics of $y=A \sin (B t \pm C)+D$

Solution From the graph it is apparent the maximum value is 300 , with a minimum of 50 . This gives a value
of $\frac{300+50}{2}=175$ for D and $\frac{300-50}{2}=125$
for A. The graph completes one cycle from $t=2$
to $t=18$, showing $P=18-2=16$ and $B=\frac{\pi}{8}$.
The average value first occurs at $t=2$, so the basic graph has been shifted to the right 2 units.

Now try Exercises 35 through 40

D. Vertical and Horizontal Translations of Other Trig Functions

In Section 4.2, we used the graphs of $y=A \sin (B t)$ and $y=A \cos (B t)$ to help graph $y=A \csc (B t)$ and $y=A \sec (B t)$, respectively. If a vertical or horizontal translation is being applied to a cosecant/secant function, we simply apply the same translations to the underlying sine/cosine function as an aid to graphing the function at hand.

EXAMPLE 6 Graphing $y=A \sec (B t+C)+D$
Draw a sketch of $y=2 \sec \left(\frac{\pi}{3} t-\frac{\pi}{2}\right)-3$ for t in $[0,9]$.
Solution To graph this secant function, consider the function $y=2 \cos \left(\frac{\pi}{3} t-\frac{\pi}{2}\right)-3$. In shifted form, we have $y=2 \cos \left[\frac{\pi}{3}\left(t-\frac{3}{2}\right)\right]-3$. With an amplitude of $|A|=2$
and period of $P=\frac{2 \pi}{\pi / 3}=6$, the reference rectangle will be 4 units high and 6 units wide. The rule of fourths shows the zeroes and max/min values of the unshifted graph will occur at $0, \frac{3}{2}, 3, \frac{9}{2}$, and 6 . Applying a horizontal shift of $+\frac{3}{2}$ units gives the values $\frac{3}{2}, 3, \frac{9}{2}, 6$, and $\frac{15}{2}$, which we combine with the reference rectangle to produce the cosine and secant graphs shown next. Note the vertical asymptotes of the secant function occur at the zeroes of the cosine function.

By shifting these results 3 units downward (centered on the line $y=-3$), we obtain the graph of $y=2 \sec \left(\frac{\pi}{3} t-\frac{\pi}{2}\right)-3$.

Now try Exercises 41 through 44

To horizontally and/or vertically translate the graphs of $y=A \tan (B t)$ and $y=A \cot (B t)$, we once again apply the translations to the basic graph. Recall for these two functions:

1. The primary interval of $y=\tan t$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, while that of $y=\cot t$ is $[0, \pi]$.
2. $y=\tan t$ increases while $y=\cot t$ decreases on their respective domains.

EXAMPLE 7 Graphing $y=A \tan (B t+C)$

Draw a sketch of $y=2.5 \tan (0.5 t+1.5)$ over two periods.
Solution - In shifted form, this equation is $y=2.5 \tan [0.5(t+3)]$. With $A=2.5$ and $B=0.5$, the graph is vertically stretched with a period of 2π. Note that $t=-\pi$ and π gives the location of the asymptotes for the unshifted graph, while $t=-\frac{\pi}{2}$ and $\frac{\pi}{2}$ gives -2.5 and 2.5 , respectively.

Shifting the graph 3 units left produces the one shown $(-\pi-3 \approx-6.14$,
$-\frac{\pi}{2}-3 \approx-4.57,0-3=-3$,
$\frac{\pi}{2}-3 \approx-1.43$, and $\pi-3 \approx 0.14$).

WORTHY OF NOTE

The reference rectangle shown is 5 units high by 2π units wide.
D. You've just learned how to apply vertical and horizontal translations to cosecant, secant, tangent, and cotangent

Now try Exercises 45 through 48

TECHNOLOGY HIGHLIGHT

Locating Zeroes, Roots, and x-Intercepts

As you know, the zeroes of a function are input values that cause an output of zero. Graphically, these show up as x-intercepts and once a function is graphed they can be located (if they exist) using the 2nd calc 2:zero feature. This feature is similar to the 3 :minimum and 4 :maximum features, in that we have the calculator search a specified interval by giving a left bound and a right bound. To illustrate, enter $Y_{1}=3 \sin \left(\frac{\pi}{2} x\right)-1$ on the $Y=$ screen and graph it using the Z00M 7:ZTrig option. The resulting graph shows

Figure 4.40

there are six zeroes in this interval and we'll locate the first negative root. Knowing the 7:Trig option uses tick marks that are spaced every $\frac{\pi}{2}$ units, this root is in the interval $\left(-\pi,-\frac{\pi}{2}\right)$. After pressing 2 2nd CALC 2:zero the calculator returns you to the graph, and requests a "Left Bound" (see Figure 4.40). We enter $-\pi$ (press ENTER) and the calculator marks this choice with a " $>$ " marker (pointing to the right), then asks for a "Right Bound." After entering $-\frac{\pi}{2}$, the calculator marks this with a " 4 " marker and asks
for a "Guess." Bypass this option by pressing ENTER once again (see Figure 4.41). The calculator searches the interval until it locates a zero (Figure 4.42) or displays an error message indicating it was unable to comply (no zeroes in the interval). Use these ideas to locate the zeroes of the following functions in $[0, \pi]$.

Figure 4.41

Exercise 1: $\quad y=-2 \cos (\pi t)+1$
Exercise 3: $y=\frac{3}{2} \tan (2 x)-1$

Figure 4.42

Exercise 2: $\quad y=0.5 \sin [\pi(t-2)]$
Exercise 4: $y=x^{3}-\cos x$

4.3 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. A sinusoidal wave is one that can be modeled by functions of the form \qquad or
\qquad -
2. The graph of $y=\sin x+k$ is the graph of $y=\sin x$ shifted \qquad k units. The graph of $y=\sin (x-h)$ is the graph of $y=\sin x$ shifted
\qquad h units.
3. Explain/Discuss the difference between the standard form of a sinusoidal equation, and the shifted form. How do you obtain one from the other? For what benefit?
4. To find the primary interval of a sinusoidal graph, solve the inequality \qquad —.
5. To graph $y=A \csc (B t+C)+D$, first sketch a graph of \qquad . The vertical asymptotes of $y=A \csc (B t)$ will occur at the \qquad of this sine function. Then shift the graph horizontally \qquad units, and vertically \qquad units.
6. Write out a step-by-step procedure for sketching the graph of $y=30 \sin \left(\frac{\pi}{2} t-\frac{1}{2}\right)+10$. Include use of the reference rectangle, primary interval, zeroes, max/mins, and so on. Be complete and thorough.

DEVELOPING YOUR SKILLS

Sketch the following functions over the indicated interval.

7. $y=2 \sin (4 t)+3 ;[0, \pi]$
8. $y=3 \cos (2 t)+5 ;[0,2 \pi]$
9. $y=10 \cos \left(\frac{\pi}{6} t\right)-5 ;[-6,18]$
10. $y=5 \sin \left(\frac{\pi}{8} t\right)-3 ;[-8,24]$
11. $y=-4 \sin \left(\frac{\pi}{2} t\right)+4 ;[-4,4]$
12. $y=-6 \cos \left(\frac{\pi}{3} t\right)+6 ;[-6,6]$
13. $y=\frac{1}{2} \cos \left(t-\frac{\pi}{2}\right) ;[0,3 \pi]$
14. $y=\frac{1}{3} \sin (t-\pi) ;[0,3 \pi]$
15. $y=3 \sin \left(t+\frac{\pi}{3}\right) ;[-\pi, 2 \pi]$
16. $y=2 \cos \left(t+\frac{\pi}{4}\right) ;[-\pi, 2 \pi]$
17. $y=3 \sin (4 t-\pi) ;[0, \pi]$
18. $y=-2 \cos \left(3 t-\frac{\pi}{2}\right) ;\left[0, \frac{4 \pi}{3}\right]$

Sketch one complete period of each function.

19. $f(t)=25 \sin \left[\frac{\pi}{4}(t-2)\right]+55$
20. $g(t)=24.5 \sin \left[\frac{\pi}{10}(t-2.5)\right]+15.5$
21. $h(t)=1500 \sin \left(\frac{\pi}{8} t+\frac{\pi}{4}\right)+7000$
22. $p(t)=350 \sin \left(\frac{\pi}{6} t+\frac{\pi}{3}\right)+420$

Identify the amplitude (A), period (P), horizontal shift (HS), vertical shift (VS), and endpoints of the primary interval (PI) for each function given.
23. $y=120 \sin \left[\frac{\pi}{12}(t-6)\right]$
24. $y=560 \sin \left[\frac{\pi}{4}(t+4)\right]$
25. $h(t)=\sin \left(\frac{\pi}{6} t-\frac{\pi}{3}\right)$
26. $r(t)=\sin \left(\frac{\pi}{10} t-\frac{2 \pi}{5}\right)$
27. $y=\sin \left(\frac{\pi}{4} t-\frac{\pi}{6}\right)$
28. $y=\sin \left(\frac{\pi}{3} t+\frac{5 \pi}{12}\right)$
29. $f(t)=24.5 \sin \left[\frac{\pi}{10}(t-2.5)\right]+15.5$
30. $g(t)=40.6 \sin \left[\frac{\pi}{6}(t-4)\right]+13.4$
31. $g(t)=28 \sin \left(\frac{\pi}{6} t-\frac{5 \pi}{12}\right)+92$
32. $f(t)=90 \sin \left(\frac{\pi}{10} t-\frac{\pi}{5}\right)+120$
33. $y=2500 \sin \left(\frac{\pi}{4} t+\frac{\pi}{12}\right)+3150$
34. $y=1450 \sin \left(\frac{3 \pi}{4} t+\frac{\pi}{8}\right)+2050$

Find the equation of the graph given. Write answers in the form $y=A \sin (B t+C)+D$.
35.

36.

37.

38.

39.

40.

Sketch the following functions over the indicated interval.
41. $y=5 \sec \left[\frac{1}{3}\left(t+\frac{3 \pi}{2}\right)\right]+2 ;[-3 \pi, 6 \pi]$
42. $y=3 \csc \left[\frac{1}{2}(t+\pi)\right]+1 ;[-2 \pi, 4 \pi]$
43. $y=0.7 \csc \left(\pi t-\frac{\pi}{4}\right)-1.2 ;[-1.25,1.75]$
44. $y=1.3 \sec \left(\frac{\pi}{3} t-\frac{\pi}{6}\right)-1.6 ;[-2,6]$

Sketch two complete periods of each function.

45. $y=0.5 \tan \left[\frac{\pi}{4}(t+2)\right]$
46. $y=1.5 \cot \left[\frac{\pi}{2}(t+1)\right]$
47. $y=10 \cot (2 t-1)$
48. $y=8 \tan (3 t-2)$

WORKING WITH FORMULAS

49. The area between $y=A \sin (B t)$ and the t-axis, for $t \in\left[\mathbf{0}, \frac{\pi}{B}\right]: \mathcal{A}=\frac{\mathbf{2 A}}{\boldsymbol{B}}$

The formula shown gives the exact area between the indicated graph and the t-axis, for the interval indicated. (a) Use the formula to calculate the area between the graph of $y=5 \sin (4 t)$ and the t-axis, between 0 and $\frac{\pi}{4}$. (b) Use the formula to calculate the area between the graph of $y=4 \sin \left(\frac{\pi}{3} t\right)$ and the t-axis, between 0 and 3. (c) Use your knowledge of transformations to find the area under the graph of $4 \sin \left(\frac{\pi}{3} t-\frac{2 \pi}{3}\right)$ between 2 and 5 .

50. Number of daylight hours:

$D(t)=\frac{K}{2} \sin \left[\frac{2 \pi}{365}(t-79)\right]+12$
The number of daylight hours for a particular day of the year is modeled by the formula given, where $D(t)$ is the number of daylight hours on day t of the year and K is a constant related to the total variation of daylight hours, latitude of the location, and other factors. For the city of Reykjavik, Iceland, $K \approx 17$, while for Detroit, Michigan, $K \approx 6$. How many hours of daylight will each city receive on June 30 (the 182nd day of the year)?

APPLICATIONS

51. Temperature models: The average temperature on Valentine's Day in Sydney, Australia, can be modeled with the equation $T(t)=4 \cos \left(\frac{\pi}{12} t+\frac{9 \pi}{12}\right)+22$, where T is the temperature in Celsius and t is the time of day ($t=0$ corresponds to midnight). Use the model to
(a) find the period of the model; (b) find the average minimum and maximum temperature; and (c) when these "extreme" temperatures occur.
52. Temperature models: The average temperature on Valentine's Day in Sydney, North Dakota, can be modeled with the equation $T(t)=5 \cos \left(\frac{\pi}{12} t+\frac{9 \pi}{12}\right)-8$, where T is the temperature in Celsius and t is the time of day ($t=0$ corresponds to midnight). Use the model to (a) find the period of the model; (b) find the average minimum and maximum temperature; and (c) when these extreme temperatures occur.
53. Wave height: A data buoy placed off the coast of Santa Cruz, California, measures wave height and transmits the information to a monitoring station. For the minute 12:28 PDT (low tide), the wave height can be modeled with the equation $y=2.6 \sin \left(\frac{2 \pi}{6} t\right)-0.6$, where t is measured in seconds and y is in feet $(y=0$ corresponds to the height of calm sea between high and low tide). Use the model to find (a) the time between each wave and (b) wave height from peak to trough.
54. Wave height: The same buoy from Exercise 53 transmits data that is used to model wave height during high tide. For the minute 20:12 PDT, wave height can be modeled with the equation $y=3.1 \sin \left(\frac{2 \pi}{10} t\right)+3.8$, where t is measured in seconds and y is in feet. Use the model to find (a) the maximum height of a wave (above calm sea) and (b) how many waves break during this minute.
55. Height of the Orion crew vehicle: A new Ares I-X rocket carrying an Orion crew vehicle is set for liftoff. As it accelerates vertically for the first 20 sec (before pitch over), the crew vehicle's height in miles, $t \mathrm{sec}$ after liftoff can be modeled by the function $h(t)=3 \tan \left(\frac{\pi}{80} t\right)$. Use the model to (a) find the period of the function; (b) estimate when the height is 2 mi ; and (c) find the height when pitch over begins.
56. Construction height: During the 54 months the skyscraper Burj Dubai was being built (see Section 2.3, Exercise 46), its ever-changing height in meters could be modeled by the function $h(t)=472 \tan \left(\frac{\pi}{162} t\right)$, where t is the number of months after construction began. Use the model to (a) find the period of the function; (b) estimate when the height is 409 m ; and (c) find the topped-out height.

Daylight hours model: Solve using a graphing calculator and the formula given in Exercise 50.
57. For the city of Caracas, Venezuela, $K \approx 1.3$, while for Tokyo, Japan, $K \approx 4.8$.
a. How many hours of daylight will each city receive on January 15th (the 15th day of the year)?
b. Graph the equations modeling the hours of daylight on the same screen. Then determine (i) what days of the year these two cities will have the same number of hours of daylight, and (ii) the number of days each year that each city receives 11.5 hr or less of daylight.
58. For the city of Houston, Texas, $K \approx 3.8$, while for Pocatello, Idaho, $K \approx 6.2$.
a. How many hours of daylight will each city receive on December 15 (the 349th day of the year)?
b. Graph the equations modeling the hours of daylight on the same screen. Then determine (i) how many days each year Pocatello receives more daylight than Houston, and (ii) the number of days each year that each city receives 13.5 hr or more of daylight.

EXTENDING THE CONCEPT

59. The formulas we use in mathematics can sometimes seem very mysterious. We know they "work," and we can graph and evaluate them-but where did they come from? Consider the formula for the number of daylight hours from Exercise 50:
$D(t)=\frac{K}{2} \sin \left[\frac{2 \pi}{365}(t-79)\right]+12$.
a. We know that the addition of 12 represents a vertical shift, but what does a vertical shift of 12 mean in this context?
b. We also know the factor $(t-79)$ represents a phase shift of 79 to the right. But what does a horizontal (phase) shift of 79 mean in this context?
c. Finally, the coefficient $\frac{K}{2}$ represents a change in amplitude, but what does a change of amplitude mean in this context? Why is the coefficient bigger for the northern latitudes?
60. Use a graphing calculator to graph the equation $f(x)=\frac{3 x}{2}-2 \sin (2 x)-1.5$.
a. Determine the interval between each peak of the graph. What do you notice?
b. Graph $g(x)=\frac{3 x}{2}-1.5$ on the same screen and comment on what you observe.
c. What would the graph of
$f(x)=-\frac{3 x}{2}+2 \sin (2 x)+1.5$ look like?
What is the x-intercept?
61. Use the formula from Exercise 49 and basic geometry to find the exact area of a "valley" in the graph of $y=2 \sin \left(\frac{\pi}{3} t-\frac{2 \pi}{3}\right)$. These "valleys" go from one "peak" (maximum point) to the next.

MAINTAINING YOUR SKILLS

62. (3.4) In what quadrant does the angle $t=3.7$ terminate? What is the reference arc?
63. (3.1) The planet Venus orbits the Sun in a path that is nearly circular, with a radius of 67.2 million miles. Through what angle of its orbit has the planet moved after traveling 168 million miles?
64. (1.3) Given $\sin \theta=-\frac{5}{12}$ with $\tan \theta<0$, find the value of all six trig functions of θ.
65. (2.3) While waiting for John in the parking lot of the hotel, Rick passes the time by estimating the angle of elevation of the hotel's exterior elevator. By careful observation, he notes that from an angle of elevation of 20°, it takes the elevator 5 sec until
the angle grows to 52° and reaches the penthouse floor. If his car is parked 150 ft from the hotel, (a) how far does the elevator move during this time? (b) What is the average speed (in miles per hour) of the elevator?
66. (2.2) The vertices of a triangle have coordinates $(-2,6),(1,10)$, and $(2,3)$. Verify that a right triangle is formed and find the measures of the two acute angles.
67. (4.1/4.2) Draw a quick sketch of $y=2 \sin x$, $y=2 \cos x$, and $y=2 \tan x$ for $x \in\left[-\frac{\pi}{2}, 2 \pi\right]$.

4.4 Trigonometric Applications and Models

Learning Objectives

In Section 4.4 you will learn how to:
A. Model simple harmonic motion
B. Solve applications using sinusoidal modelsC. Solve applications involving the tangent, cotangent, secant, and cosecant functions

Figure 4.43

At rest	Stretched	Released
4	4-1	4
\%	\%	
${ }^{2}-$	${ }^{2}$	${ }^{2} \frac{1}{4} \uparrow$
0	${ }^{0}$ \%	${ }^{0}<$
-2二	-2	$-2 \underset{ }{ }$
-4-	-4-	-4

While sinusoidal applications are very common, the tangent, cotangent, secant, and cosecant functions have their own claim to significance in the applications they model. For instance, tangent functions are used to model the movement of a rotating light, while secant functions can be used to model shadow lengths.

A. Simple Harmonic Motion: $y=A \sin (B t)$ or $y=A \cos (B t)$

The periodic motion of springs, tides, sound, and other phenomena all exhibit what is known as harmonic motion, which can be modeled using sinusoidal functions.

Harmonic Models-Springs

Consider a spring hanging from a beam with a weight attached to one end. When the weight is at rest, we say it is in equilibrium, or has zero displacement from center. Stretching the spring and then releasing it causes the weight to "bounce up and down," with its displacement from center neatly modeled over time by a sine wave (see Figure 4.43).

For objects in harmonic motion (there are other harmonic models), the input variable t is always a time unit (seconds, minutes, days, etc.), so in addition to the period of the sinusoid, we are very interested in its frequency-the number of cycles it completes per unit time (see Figure 4.44). Since the period gives the time required to complete one cycle, the frequency f is given by $f=\frac{1}{P}=\frac{B}{2 \pi}$.

EXAMPLE 1 - Applications of Sine and Cosine: Harmonic Motion

For the harmonic motion modeled by the sinusoid in Figure 4.44,
a. Find an equation of the form $y=A \cos (B t)$.
b. Determine the frequency.
c. Use the equation to find the position of the weight at $t=1.8 \mathrm{sec}$.

Solution a. By inspection the graph has an amplitude $|A|=3$ and a period $P=2$. After substitution into $P=\frac{2 \pi}{B}$, we obtain $B=\pi$ and the equation $y=-3 \cos (\pi t)$.
b. Frequency is the reciprocal of the period so $f=\frac{1}{2}$, showing one-half a cycle is completed each second (as the graph indicates).
c. Evaluating the model at $t=1.8$ gives $y=-3 \cos [\pi(1.8)] \approx-2.43$, meaning the weight is 2.43 cm below the equilibrium point at this time.

Now try Exercises 23 through 26

Harmonic Models-Sound Waves

A second example of harmonic motion is the production of sound. For the purposes of this study, we'll look at musical notes. The vibration of matter produces a pressure wave or sound energy, which in turn vibrates the eardrum. Through the intricate structure of the middle ear, this sound energy is converted into mechanical energy and sent
to the inner ear where it is converted to nerve impulses and transmitted to the brain. If the sound wave has a high frequency, the eardrum vibrates with greater frequency, which the brain interprets as a "high-pitched" sound. The intensity of the sound wave can also be transmitted to the brain via these mechanisms, and if the arriving sound wave has a high amplitude, the eardrum vibrates more forcefully and the sound is interpreted as "loud" by the brain. These characteristics are neatly modeled using $y=A \sin (B t)$. For the moment we will focus on the frequency, keeping the amplitude constant at $A=1$.

The musical note known as A_{4} or "the A above middle C" is produced with a frequency of 440 vibrations per second, or 440 hertz (Hz) (this is the note most often used in the tuning of pianos and other musical instruments). For any given note, the same note one octave higher will have double the frequency, and the same note one octave lower will have one-half the frequency. In addition, with $f=\frac{1}{P}$ the value of $B=2 \pi\left(\frac{1}{P}\right)$ can always be expressed as $B=2 \pi f$, so A_{4} has the equation $y=\sin [440(2 \pi t)]$ (after rearranging the factors). The same note one octave lower is A_{3} and has the equation $y=\sin [220(2 \pi t)]$, with one-half the frequency. To draw the representative graphs, we must scale the t-axis in very small increments (seconds $\times 10^{-3}$) since $P=\frac{1}{440} \approx 0.0023$ for A_{4}, and $P=\frac{1}{220} \approx 0.0045$ for A_{3}. Both are graphed in Figure 4.45, where we see that the higher note completes two cycles in the same interval that the lower note completes one.

Figure 4.45

EXAMPLE $2>$ Applications of Sine and Cosine: Sound Frequencies

The table here gives the frequencies for three octaves of the 12 "chromatic" notes with frequencies between 110 Hz and 840 Hz . Two of the 36 notes are graphed in the figure. Which two?

	Frequency by Octave		
Note	Octave 2	Octave 3	Octave 4
A	110.00	220.00	440.00
A\#	116.54	233.08	466.16
B	123.48	$\mathbf{2 4 6 . 9 6}$	493.92
C	130.82	261.64	523.28
C\#	138.60	277.20	554.40
D	146.84	293.68	587.36
D\#	155.56	311.12	622.24
E	$\mathbf{1 6 4 . 8 2}$	329.24	659.28
F	174.62	349.24	698.48
F\#	185.00	370.00	740.00
G	196.00	392.00	784.00
G\#	207.66	415.32	830.64

Solution - Since amplitudes are equal, the only difference is the frequency and period of the notes. It appears that y_{1} has a period of about 0.004 sec , giving a frequency of $\frac{1}{0.004}=250 \mathrm{~Hz}$-very likely a B_{3} (in bold). The graph of y_{2} has a period of about to model simple harmonic motion 0.006 , for a frequency of $\frac{1}{0.006} \approx 167 \mathrm{~Hz}$-probably an E_{2} (also in bold).

Now try Exercises 27 through 30

B. Sinusoidal Models in Applications

Recall that in Section 4.3, we considered the sinusoidal pattern outdoor temperatures tend to follow. The necessity of vertical translations was made clear by comparing the cold temperatures of northern latitudes with those of more tropical climates. In Example 3 of this section, we apply what we learned there to actually construct and use a sinusoidal model for temperature. As a reminder, for a sinusoidal function with maximum value M and minimum value m, the amplitude $A=\frac{M-m}{2}$ and the average value $D=\frac{M+m}{2}$.

EXAMPLE 3 Modeling Temperature Using a Sine Function

On a fine day in Galveston, Texas, the high temperature might be about $85^{\circ} \mathrm{F}$ with an overnight low of $61^{\circ} \mathrm{F}$.
a. Find a sinusoidal equation model for the daily temperature.
b. Sketch the graph.
c. Approximate what time(s) of day the temperature is $65^{\circ} \mathrm{F}$. Assume $t=0$ corresponds to 12:00 noon.
Solution

WORTHY OF NOTE

Recall from Section 4.3 that transformations of any function $y=f(x)$ remain consistent regardless of the function f used. For the sine function, the transformation $y=a f(x \pm h) \pm k$ is more commonly written $y=A \sin (t \pm C) \pm D$, and $|A|$ gives a vertical stretch or compression, C is a horizontal shift opposite the sign, and D is a vertical shift, as seen in Example 3.
a. We first note the period is still $P=24$, so $B=\frac{\pi}{12}$, and the equation model will have the form $y=A \sin \left(\frac{\pi}{12} t\right)+D$. Using $\frac{M+m}{2}=\frac{85+61}{2}$, we find the average value $D=73$, with amplitude $A=\frac{85-61}{2}=12$. The resulting equation is $y=12 \sin \left(\frac{\pi}{12} t\right)+73$.

Figure 4.46
b. To sketch the graph, use a reference rectangle $2 A=24$ units tall and $P=24$ units wide, along with the rule of fourths to locate zeroes and max/min values. Using an appropriate scale, shift the rectangle and plotted points vertically upward 73 units and carefully draw the finished graph through the points and within the rectangle (see Figure 4.46).

This gives the graph of $y=12 \sin \left(\frac{\pi}{12} t\right)+73$. Note the broken-line notation "§" in Figure 4.46 indicates that certain values along an axis are unused (in this case, we skipped 0° to 60°), and we began scaling the axis with the values needed.
c. As indicated in Figure 4.46, the temperature hits 65° twice, at about 15 and 21 hr after 12:00 noon, or at 3:00 A.m. and 9:00 A.m. Verify by computing $f(15)$ and $f(21)$.

Sinusoidal graphs actually include both sine and cosine graphs, the difference being that sine graphs begin at the average value, while cosine graphs begin at the maximum value. Sometimes it's more advantageous to use one over the other, but equivalent forms can easily be found. In Example 4, a cosine function is used to model an animal population that fluctuates sinusoidally due to changes in food supplies.

EXAMPLE 4 Modeling Population Fluctuations Using a Cosine Function

The population of a certain animal species can be modeled by the function $P(t)=1200 \cos \left(\frac{\pi}{5} t\right)+9000$, where $P(t)$ represents the population in year t.
Use the model to
a. Find the period of the function.
b. Graph the function over one period.
c. Find the maximum and minimum values.
d. Estimate the number of years the population is less than 8000 .

Solution
(B. You've just learned how to solve applications using sinusoidal models
a. Since $B=\frac{\pi}{5}$, the period is $P=\frac{2 \pi}{\pi / 5}=10$, meaning the population of this species fluctuates over a 10 -yr cycle.
b. Use a reference rectangle ($2 A=2400$ by $P=10$ units) and the rule of fourths to locate zeroes and max/min values, which occur at $t=0,2.5,5,7.5$, and 10. Shift this graph upward 9000 units (using an appropriate scale) to obtain the graph of $P(t)$ shown.
c. The maximum value is
 $9000+1200=10,200$ and the minimum value is $9000-1200=7800$.
d. As determined from the graph, the population drops below 8000 animals for approximately 2 yr. Verify by computing $P(4)$ and $P(6)$.

Now try Exercises 35 through 38

C. Applications of the Remaining Trig Functions

We end this section with two examples of how tangent, cotangent, secant, and cosecant functions can be applied. Numerous others can be found in the exercise set.

EXAMPLE 5 - Applications of $y=A \tan (B t)$: Modeling the Movement of a Light Beam

One evening, in port during a Semester at Sea, Richard is debating a project choice for his Precalculus class. Looking out his porthole, he notices a revolving light turning at a constant speed near the corner of a long warehouse. The light throws its beam along the length of the warehouse, then disappears into the air, and then returns time and time again. Suddenly-Richard has his project. He notes the time it takes the beam to traverse the warehouse wall is very close to 4 sec ,
 and in the morning he measures the wall's length at 127.26 m . His project? Modeling the distance of the beam from the corner of the warehouse as a function of time using a tangent function. Can you help?

Solution $>$ The equation model will have the form $D(t)=A \tan (B t)$, where $D(t)$ is the distance (in meters) of the beam from the corner after $t \mathrm{sec}$. The distance along the wall is measured in positive values so we're using only $\frac{1}{2}$ the period of the function, giving $\frac{1}{2} P=4$ (the beam "disappears" at $t=4$) so $P=8$. Substitution in the period formula gives $B=\frac{\pi}{8}$ and the equation $D=A \tan \left(\frac{\pi}{8} t\right)$.

Knowing the beam travels 127.26 m in about 4 sec (when it disappears into infinity), we'll use $t=3.9$ and $D=127.26$ in order to solve for A and complete our equation model (see note following this example).

$$
\begin{aligned}
A \tan \left(\frac{\pi}{8} t\right) & =D & & \text { equation model } \\
A \tan \left[\frac{\pi}{8}(3.9)\right] & =127.26 & & \text { substitute } 127.26 \text { for } D \text { and } 3.9 \text { for } t \\
A & =\frac{127.26}{\tan \left[\frac{\pi}{8}(3.9)\right]} & & \text { solve for } A \\
& \approx 5 & & \text { result }
\end{aligned}
$$

One equation approximating the distance of the beam from the corner of the warehouse is $D(t)=5 \tan \left(\frac{\pi}{8} t\right)$.

Now try Exercises 39 through 42

For Example 5, we should note the choice of 3.9 for t was arbitrary, and while we obtained an "acceptable" model, different values of A would be generated for other choices. For instance, $t=3.95$ gives $A \approx 2.5$, while $t=3.99$ gives $A \approx 0.5$. The true value of A depends on the distance of the light from the corner of the warehouse wall. In any case, it's interesting to note that at $t=2 \mathrm{sec}$ (one-half the time it takes the beam to disappear), the beam has traveled only 5 m from the corner of the building: $D(2)=5 \tan \left(\frac{\pi}{4}\right)=5 \mathrm{~m}$. Although the light is rotating at a constant angular speed, the speed of the beam along the wall increases dramatically as t gets close to 4 sec .

EXAMPLE $6>$ Applications of $y=A \csc (B t)$: Modeling the Length of a Shadow

During the long winter months in southern Michigan, Daniel begins planning for his new solar-powered water heater. He needs to choose a panel location on his roof, and is primarily concerned with the moving shadows of the trees throughout the day. To this end, he begins studying the changing shadow length of a tree in front of his house. At sunrise, the
 shadow is too long to measure. As the morning progresses, the shadow decreases in length, until at high noon it measures its shortest length of 7 ft . As the day moves on, the shadow increases in length, until at sunset it is again too long to measure. Given sunrise occurs at 6:00 A.M. and sunset at 6:00 P.M.:
a. Use the cosecant function to model the tree's shadow length.
b. Approximate the shadow length at 10:00 A.m.
C. You've just learned how to solve applications involving the tangent, cotangent, secant, and cosecant functions

Solution a. It appears the function $L(t)=A \csc (B t)$ will model the shadow length, since the shadow decreases from an "infinitely large" height to a minimum height, the shadow decreases from an "infinitely large" height to a minimum height,
then returns to an infinite height. Let $t=0$ correspond to 6:00 A.M. and note Daniel's observations over the 12 hr of daylight. Since the length of the shadow is measured in positive values, we need only $\frac{1}{2}$ the period of the function, giving $\frac{1}{2} P=12$ (so $P=24$). The period formula gives $B=\frac{\pi}{12}$ and the equation model is $L(t)=A \csc \left(\frac{\pi}{12} t\right)$. We solve for A to complete the model, using $L=7$ when $t=6$ (noon).

$$
\begin{aligned}
L(t) & =A \csc \left(\frac{\pi}{12} t\right) & & \text { equation model } \\
7 & =A \csc \left[\frac{\pi}{12}(6)\right] & & \text { substitute } 7 \text { for } L \text { and } 6 \text { for } t \\
A & =\frac{7}{\csc \left(\frac{\pi}{2}\right)} & & \text { solve for } A ; \frac{6 \pi}{12}=\frac{\pi}{2} \\
& =\frac{7}{1} & & \csc \left(\frac{\pi}{2}\right)=1 \\
& =7 & & \text { result }
\end{aligned}
$$ The equation modeling the shadow length of the tree is $L(t)=7 \csc \left(\frac{\pi}{12} t\right)$.

b. Evaluating the model at $t=4$ (10 A.m.) gives $L=7 \csc \left(\frac{\pi}{3}\right)=7\left(\frac{2 \sqrt{3}}{3}\right) \approx 8.08$, meaning the shadow is approximately $8 \mathrm{ft}, 1 \mathrm{in}$. long at 10 A.m.

Now try Exercises 43 and 44

4.4 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. For $y=A \sin (B x+C)+D$, the maximum value occurs when \qquad $=1$, leaving $y=$ \qquad
2. Any phenomenon with sinusoidal behavior regularly fluctuates between a \qquad and
\qquad value.
3. Explain/Discuss how to find an equation model of the form $y=A \cos (B t)$ given the graph of a function that models simple harmonic motion.
4. For $y=A \sin (B x+C)+D$, the minimum value occurs when \qquad $=-1$, leaving $y=$ \qquad
5. Given the period P, the frequency is __. Given the frequency f, the value of B is \qquad -.
6. Sketch a right triangle that illustrates the situation presented in Example 5, and use it to explain why the model has the form $D(t)=A \tan (B t)$. Be sure to explain what physical dimension the constant A represents.

DEVELOPING YOUR SKILLS

Use the graphs given to (a) state the amplitude A and period P of the function; (b) estimate the value at $x=14$; and (c) estimate the interval in $[0, P]$ where $f(x) \geq 20$.
7.

8.

Use the graphs given to (a) state the amplitude A and period P of the function; (b) estimate the value at $x=2$; and (c) estimate the interval in $[0, P]$, where $f(x) \leq-100$.
9.

10.

Use the information given to write a sinusoidal equation and sketch its graph. Recall $B=\frac{2 \pi}{P}$.
11. Max: 100 , min: $20, P=30$
12. Max: 95 , min: $40, P=24$
13. Max: 20 , min: $4, P=360$
14. Max: 12,000 , min: $6500, P=10$

Find the frequency of the following harmonic motion models.
15. $y=4 \cos \left(\frac{\pi}{2} t\right)$
16. $y=3 \sin \left(\frac{\pi}{3} t\right)$
17. $y=3.14 \sin (2 t)$
18. $y=0.07 \cos (4 t)$
19. $y=\frac{3}{4} \cos \left(\frac{4}{3} t\right)$
20. $y=\frac{5}{3} \sin \left(\frac{6}{5} t\right)$

WORKING WITH FORMULAS

21. The relationship between the coefficient B, the frequency f, and the period P

In many applications of trigonometric functions, the equation $y=A \sin (B t)$ is written as $y=A \sin [(2 \pi f) t]$, where $B=2 \pi f$. Justify the new equation using $f=\frac{1}{P}$ and $P=\frac{2 \pi}{B}$. In other words, explain how $A \sin (B t)$ becomes $A \sin [(2 \pi f) t]$, as though you were trying to help another student with the ideas involved.
22. Orbiting distance north or south of the equator: $D(t)=A \cos (B t)$

Unless a satellite is placed in a strict equatorial orbit, its distance north or south of the equator will vary according to the sinusoidal model shown, where $D(t)$ is the distance t min after entering orbit. Negative values indicate it is south of the equator, and the distance D is actually a two-dimensional distance, as seen from a vantage point in outer
space. The value of B depends on the speed of the satellite and the time it takes to complete one orbit, while $|A|$ represents the maximum distance from the equator. (a) Find the equation model for a satellite whose maximum distance north of the equator is 2000 miles and that completes one orbit every $2 \mathrm{hr}(P=120)$. (b) How many minutes after entering orbit is the satellite directly above the equator $[D(t)=0]$? (c) Is the satellite north or south of the equator 257 min after entering orbit? How far north or south?

APPLICATIONS

23. Harmonic motion: A weight on the end of a spring is oscillating in harmonic motion. The equation model for the oscillations is $d(t)=6 \sin \left(\frac{\pi}{2} t\right)$, where d is the
 distance (in centimeters) from the equilibrium point in $t \mathrm{sec}$.
a. What is the period of the motion? What is the frequency of the motion?
b. What is the displacement from equilibrium at $t=2.5 ?$ Is the weight moving toward the equilibrium point or away from equilibrium at this time?
c. What is the displacement from equilibrium at $t=3.5$? Is the weight moving toward the equilibrium point or away from equilibrium at this time?
d. How far does the weight move between $t=1$ and $t=1.5 \mathrm{sec}$? What is the average velocity for this interval? Do you expect a greater or lesser velocity for $t=1.75$ to $t=2$? Explain why.
24. Harmonic motion: The bob on the end of a 24 -in. pendulum is oscillating in harmonic motion. The equation model for the oscillations is $d(t)=20 \cos (4 t)$, where d is the distance (in inches) from the equilibrium point, $t \mathrm{sec}$ after being released from one side.
a. What is the period of the motion? What is the frequency of the motion?
b. What is the displacement from equilibrium at $t=0.25 \mathrm{sec}$? Is the weight moving toward the equilibrium point or away from equilibrium at this time?
c. What is the displacement from equilibrium at $t=1.3 \mathrm{sec}$? Is the weight moving toward the equilibrium point or away from equilibrium at this time?
d. How far does the bob move between $t=0.25$ and $t=0.35 \mathrm{sec}$? What is its average velocity for this interval? Do you expect a greater velocity for the interval $t=0.55$ to $t=0.6$? Explain why.
25. Harmonic motion: A simple pendulum 36 in. in length is oscillating in harmonic motion. The bob at the end of the pendulum swings through an arc of 30 in. (from the far left to the far right, or one-half
cycle) in about 0.8 sec . What is the equation model for this harmonic motion?
26. Harmonic motion: As part of a study of wave motion, the motion of a floater is observed as a series of uniform ripples of water move beneath it. By careful observation, it is noted that the floater bobs up and down through a distance of 2.5 cm every 0.2 sec . What is the equation model for this harmonic motion?
27. Sound waves: Two of the musical notes from the chart on page 181 are graphed in the figure. Use the graphs given to determine which two.

28. Sound waves: Two chromatic notes not on the chart from page 181 are graphed in the figure. Use the graphs and the discussion regarding octaves to determine which two. Note the scale of the t-axis has been changed to hundredths of a second.

Sound waves: Use the chart on page 181 to write the equation for each note in the form $y=\sin [f(2 \pi t)]$ and clearly state the period of each note.
29. notes D_{2} and G_{3}
30. notes A_{4} and CH_{2}

Use the information given to write a sinusoidal equation, sketch its graph, and answer the question posed.
31. Temperature models: In Geneva, Switzerland, the daily temperature in January ranges from an average high of $39^{\circ} \mathrm{F}$ to an average low of $29^{\circ} \mathrm{F}$. (a) Find a sinusoidal equation model for the daily temperature; (b) sketch the graph; and (c) approximate the time(s) each January day the temperature reaches the freezing point $\left(32^{\circ} \mathrm{F}\right)$.
Assume $t=0$ corresponds to noon.
Source: 2004 Statistical Abstract of the United States, Table 1331.
32. Temperature models: In Nairobi, Kenya, the daily temperature in January ranges from an average high of $77^{\circ} \mathrm{F}$ to an average low of $58^{\circ} \mathrm{F}$. (a) Find a sinusoidal equation model for the daily temperature; (b) sketch the graph; and (c) approximate the time(s) each January day the temperature reaches a comfortable $72^{\circ} \mathrm{F}$. Assume $t=0$ corresponds to noon.
Source: 2004 Statistical Abstract of the United States, Table 1331.
33. Daylight hours: In Oslo, Norway, the number of hours of daylight reaches a low of 6 hr in January, and a high of nearly 18.8 hr in July. (a) Find a sinusoidal equation model for the number of daylight hours each month; (b) sketch the graph; and (c) approximate the number of days each year there are more than 15 hr of daylight. Use 1 month ≈ 30.5 days. Assume $t=0$ corresponds to January 1.
Source: www.visitnorway.com/templates.
34. Daylight hours: In Vancouver, British Columbia, the number of hours of daylight reaches a low of 8.3 hr in January, and a high of nearly 16.2 hr in July. (a) Find a sinusoidal equation model for the number of daylight hours each month; (b) sketch the graph; and (c) approximate the number of days each year there are more than 15 hr of daylight. Use 1 month ≈ 30.5 days. Assume $t=0$ corresponds to January 1.

Source: www.bcpassport.com/vital/temp.
35. Animal populations: Recent studies seem to indicate the population of North American porcupine (Erethizon dorsatum) varies sinusoidally with the solar (sunspot) cycle due to its effects on Earth's ecosystems. Suppose the population of this species in a certain locality is modeled by the function $P(t)=250 \cos \left(\frac{2 \pi}{11} t\right)+950$, where $P(t)$ represents the population of porcupines in year t. Use the model to (a) find the period of the function; (b) graph the function over one period; (c) find the maximum and minimum values; and (d) estimate the number of years the population is less than 740 animals.
Source: Ilya Klvana, McGill University (Montreal), Master of Science thesis paper, November 2002.
36. Animal populations: The population of mosquitoes in a given area is primarily influenced by precipitation, humidity, and temperature. In tropical regions, these tend to fluctuate sinusoidally in the course of a year. Using trap counts and statistical projections, fairly accurate estimates of a mosquito
population can be obtained. Suppose the population in a certain region was modeled by the function $P(t)=50 \cos \left(\frac{\pi}{26} t\right)+950$, where $P(t)$ was the mosquito population (in thousands) in week t of the year. Use the model to (a) find the period of the function; (b) graph the function over one period; (c) find the maximum and minimum population values; and (d) estimate the number of weeks the population is less than 915,000.
37. Animal populations: Use a horizontal translation to shift the graph from Exercise 35 so that the average population of the North American porcupine begins at $t=0$. Verify results on a graphing calculator, then find a sine function that gives the same graph as the shifted cosine function.
38. Animal populations: Use a horizontal translation to shift the graph from Exercise 36 so that the average population of mosquitoes begins at $t=0$. Verify results on a graphing calculator, then find a sine function that gives the same graph as the shifted cosine function.

Tangent function data models: Model the data in Exercises 39 and 40 using the function $y=A \tan (B x)$. State the period of the function, the location of the asymptotes, the value of A, and name the point (x, y) used to calculate A (answers may vary). Use your equation model to evaluate the function at $x=-2$ and $x=2$. What observations can you make? Also see Exercise 45 .
39.

Input	Output	Input	Output
-6	$-\infty$	1	1.4
-5	-20	2	3
-4	-9.7	3	5.2
-3	-5.2	4	9.7
-2	-3	5	20
-1	-1.4	6	∞
0	0		

40.

Input	Output	Input	Output
-3	$-\infty$	0.5	6.4
-2.5	-91.3	1	13.7
-2	-44.3	1.5	23.7
-1.5	-23.7	2	44.3
-1	-13.7	2.5	91.3
-0.5	-6.4	3	∞
0	0		

41. As part of a lab setup, a laser pen is made to swivel on a large protractor as illustrated in the figure. For their lab project, students are asked to take the instrument to one end of a long hallway and measure the distance of the projected beam relative to the angle the pen is being held, and collect the data in a table. Use the data to find a function of the form $y=A \tan (B \theta)$. State the period of the function, the location of the asymptotes, the value of A, and name the point (θ, y) you used to calculate A (answers may vary).

Based on the result, can you approximate the length of the laser pen? Note that in degrees, the period formula for tangent is $P=\frac{180^{\circ}}{B}$.
42. Use the equation model obtained in Exercise 41 to compare the values given by the equation with the actual data. As a percentage, what was the largest deviation between the two?
43. Shadow length: At high noon, a flagpole in Oslo, Norway, casts a $10-\mathrm{m}$-long shadow during the month of January. Using information from Exercise 33, (a) find a cosecant function that models the shadow length, and (b) use the model to find the length of the shadow at 2:00 P.M.
44. Shadow length: At high noon, the "Living Shangri-La" skyscraper in Vancouver, British Columbia, casts a $15-\mathrm{m}$-long shadow during the month of June. Given there are 16 hr of daylight that month, (a) find a cosecant function that models the shadow length, and (b) use the model to find the length of the shadow at 7:30 A.m.

EXTENDING THE CONCEPT

45. Rework Exercises 39 and 40, obtaining a new equation for the data using a different ordered pair to compute the value of A. What do you notice? Try yet another ordered pair and calculate A once again for another equation Y_{2}. Complete a table of values using the given inputs, with the outputs of the three equations generated (original, Y_{1}, and Y_{2}). Does any one equation seem to model the data better than the others? Are all of the equation models "acceptable"? Please comment.
46. Regarding Example 5, we can use the standard distance/rate/time formula $D=R T$ to compute the average velocity of the beam of light along the wall in any interval of time: $R=\frac{D}{T}$. For example, using $D(t)=5 \tan \left(\frac{\pi}{8} t\right)$, the average velocity in the interval $[0,2]$ is $\frac{D(2)-D(0)}{2-0}=2.5 \mathrm{~m} / \mathrm{sec}$.
Calculate the average velocity of the beam in the time intervals [2, 3], [3, 3.5], and [3.5, 3.8] sec. What do you notice? How would the average velocity of the beam in the interval [3.9, 3.99] sec compare?
47. A dampening factor is any function whose product with a sinusoidal function causes a systematic change in amplitude. In the graph shown, $y=\sin (3 x)$ is dampened by the function $y=-\frac{1}{4} x+2$. Notice the peaks and valleys of the sine graph are points on the graph of this line. The table given shows points of intersection for $y=\sin (3 x)$ and another dampening factor. Use the regression capabilities of a graphing calculator to find its equation and graph both functions on the same screen.

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{x}	\boldsymbol{y}
$-\frac{7 \pi}{4}$	4.64	$\frac{5 \pi}{4}$	1.33
$-\frac{3 \pi}{4}$	3.14	$\frac{9 \pi}{4}$	1.02
$\frac{\pi}{4}$	2.04	$\frac{13 \pi}{4}$	1.09

MAINTAINING YOUR SKILLS

48. (4.2) Draw a quick sketch of $y=-\tan x$ for $x \in\left[-\frac{3 \pi}{2}, 2 \pi\right]$.
49. (3.4) What four values of t satisfy the equation $|\cos t|=\frac{1}{2} ?$
50. (4.3) Determine the equation of the graph shown, given it's of the form $y=A \cos (B t \pm C)+D$.
51. (4.3) The graph of $y=\sec x$ is shifted to the right $\frac{\pi}{3}$ units. What is the equation of the shifted graph?
52. (2.3) Clarke is standing between two tall buildings. The angle of elevation to the top of the building to her north is 60°, while the angle of elevation to the top of the building to her south is 70°. If she is 400 m from the northern building and 200 m from the southern building, which one is taller?
53. (3.2) Lying on his back in three inches of newly fallen snow, Mitchell stretches out his arms and moves them back and forth (like a car's wiper blades) to form a snow angel. If his arms are 24 in . long and move through an angle of 35° at the shoulders, what is the area of the angel's wings that are formed?

SUMMARY AND CONCEPT REVIEW

SECTION 4.1 Graphs of the Sine and Cosine Functions

KEY CONCEPTS

- Graphing sine and cosine functions using the special values from the unit circle results in a periodic, wavelike graph with domain $(-\infty, \infty)$.

- The characteristics of each graph play a vital role in their contextual application, and these are summarized on pages 136 and 140.
- The amplitude of a sine or cosine graph is the maximum displacement from the average value.

For $y=A \sin (B t)$ and $y=A \cos (B t)$, the amplitude is $|A|$.

- The period of a periodic function is the smallest interval required to complete one cycle.

For $y=A \sin (B t)$ and $y=A \cos (B t), P=\frac{2 \pi}{B}$ gives the period.

- If $|A|>1$, the graph is vertically stretched, if $0<|A|<1$ the graph is vertically compressed, and if $A<0$ the graph is reflected across the x-axis.
- If $B>1$, the graph is horizontally compressed (the period is smaller/shorter);
if $B<1$ the graph is horizontally stretched (the period is larger/longer).
- To graph $y=A \sin (B t)$ or $A \cos (B t)$, draw a reference rectangle $2 A$ units high and $P=\frac{2 \pi}{B}$ units wide, centered on the x-axis, then use the rule of fourths to locate zeroes and max $/ \mathrm{min}$ values. Connect these points with a smooth curve.

EXERCISES

Use a reference rectangle and the rule of fourths to draw an accurate sketch of the following functions through at least one full period. Clearly state the amplitude and period as you begin.

1. $y=3 \sin t$
2. $y=-\cos (2 t)$
3. $y=1.7 \sin (4 t)$
4. $f(t)=2 \cos (4 \pi t)$
5. $g(t)=3 \sin (398 \pi t)$
6. The given graph is of the form $y=A \sin (B t)$. Determine the equation of the graph.

7. Referring to the chart of colors visible in the electromagnetic spectrum (page 149), what color is represented by the equation $y=\sin \left(\frac{\pi}{270} t\right)$? By $y=\sin \left(\frac{\pi}{320} t\right)$?

SECTION 4.2 Graphs of the Cosecant, Secant, Tangent, and Cotangent Functions

KEY CONCEPTS

- The graph of $y=\sec t=\frac{1}{\cos t}$ will be asymptotic everywhere $\cos t=0$, increasing where $\cos t$ is decreasing, and decreasing where $\cos t$ is increasing.
- The graph of $y=\csc t=\frac{1}{\sin t}$ will be asymptotic everywhere $\sin t=0$, increasing where $\sin t$ is decreasing, and decreasing where $\sin t$ is increasing.
- Since $\tan t$ is defined in terms of the ratio $\frac{y}{x}$, the graph will be asymptotic everywhere $x=0$ on the unit circle, meaning all odd multiples of $\frac{\pi}{2}$.
- Since $\cot t$ is defined in terms of the ratio $\frac{x}{y}$, the graph will be asymptotic everywhere $y=0$ on the unit circle, meaning all integer multiples of π.
- The graph of $y=\tan t$ is increasing everywhere it is defined; the graph of $y=\cot t$ is
 decreasing everywhere it is defined.
- The characteristics of each graph play a vital role in their contextual application, and these are summarized on pages 152 and 156.
- For the more general tangent and cotangent graphs $y=A \tan (B t)$ and $y=A \cot (B t)$, if $|A|>1$, the graph is vertically stretched, if $0<|A|<1$ the graph is vertically compressed, and if $A<0$ the graph is reflected across the x-axis.
- If $B>1$, the graph is horizontally compressed (the period is smaller/shorter); if $B<1$ the graph is horizontally stretched (the period is larger/longer).
- To graph $y=A \tan (B t)$, note $A \tan (B t)$ is zero at $t=0$. Compute the period $P=\frac{\pi}{B}$ and draw asymptotes a distance of $\frac{P}{2}$ on either side of the y-axis. Plot zeroes halfway between the asymptotes and use symmetry to complete the graph.
- To graph $y=A \cot (B t)$, note it is asymptotic at $t=0$. Compute the period $P=\frac{\pi}{B}$ and draw asymptotes a distance P on either side of the y-axis. Plot zeroes halfway between the asymptotes and use symmetry to complete the graph.

EXERCISES

8. Use a reference rectangle and the rule of fourths to draw an accurate sketch of $y=3 \sec t$ through at least one full period. Clearly state the period as you begin.
9. The given graph is of the form $y=A \csc (B t)$. Determine the equation of the graph.
10. State the value of each expression without the aid of a calculator:
a. $\tan \left(\frac{7 \pi}{4}\right)$
b. $\cot \left(\frac{\pi}{3}\right)$

Exercise 9

11. State the value of each expression without the aid of a calculator, given that t terminates in QII.
a. $\tan ^{-1}(-\sqrt{3})$
b. $\cot ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$
12. Graph $y=6 \tan \left(\frac{1}{2} t\right)$ in the interval $[-2 \pi, 2 \pi]$.
13. Graph $y=\frac{1}{2} \cot (2 \pi t)$ in the interval $[-1,1]$.
14. Use the period of $y=\cot t$ to name three additional solutions to $\cot t=0.0208$, given $t=1.55$ is a solution. Many solutions are possible.
15. Given $t=0.4444$ is a solution to $\cot ^{-1}(t)=2.1$, use an analysis of signs and quadrants to name an additional solution in $[0,2 \pi)$.
16. Find the approximate height of Mount Rushmore, using $h=\frac{d}{\cot u-\cot v}$ and the values shown.

SECTION 4.3 Transformations of Trigonometric Graphs

KEY CONCEPTS

- The equation $y=A \sin (B t \pm C)+D$ is called the standard form of a general sinusoid. The equation $y=A \sin \left[B\left(t \pm \frac{C}{B}\right)\right]+D$ is called the shifted form of a general sinusoid.
- In either form, D represents the average value of the function and a vertical shift D units upward if $D>0$, D units downward if $D<0$. For a maximum value M and minimum value $m, \frac{M+m}{2}=D, \frac{M-m}{2}=A$.
- The shifted form $y=A \sin \left[B\left(t \pm \frac{C}{B}\right)\right]+D$ enables us to quickly identify the horizontal shift of the function: $\frac{C}{B}$ units in a direction opposite the given sign.
- To graph a shifted sinusoid, locate the primary interval by solving $0 \leq B t+C<2 \pi$, then use a reference rectangle along with the rule of fourths to sketch the graph in this interval. The graph can then be extended as needed, then shifted vertically D units.

EXERCISES

For each equation given, (a) identify/clearly state the amplitude, period, horizontal shift, and vertical shift; then (b) graph the equation using the primary interval, a reference rectangle, and rule of fourths.
17. $y=240 \sin \left[\frac{\pi}{6}(t-3)\right]+520$
18. $y=3.2 \cos \left(\frac{\pi}{4} t+\frac{3 \pi}{2}\right)+6.4$

For each graph given, identify the amplitude, period, horizontal shift, and vertical shift, and give the equation of the graph.
19.

20.

SECTION 4.4 Trigonometric Applications and Models

KEY CONCEPTS

- One basic application of sinusoidal graphs involves phenomena in harmonic motion, or motion that can be modeled by functions of the form $y=A \sin (B t)$ or $y=A \cos (B t)$ (with no horizontal or vertical shift).
- Many everyday phenomena follow a sinusoidal pattern, or a pattern that can be modeled by a sine or cosine function (e.g., daily temperatures, hours of daylight, and some animal populations).
- To obtain accurate equation models of sinusoidal phenomena, vertical and horizontal shifts of a basic function are used.

EXERCISES

21. Use the chart on page 181 to write the equation for the note $\mathrm{F} \#_{3}$ in the form $y=\sin [f(2 \pi t)]$ and state its period.
22. Monthly precipitation in Cheyenne, Wyoming, can be modeled by a sine function, by using the average precipitation for July (2.26 in .) as a maximum (actually slightly higher in May), and the average precipitation for February (0.44 in .) as a minimum. Assume $t=0$ corresponds to March. (a) Use the information to construct a sinusoidal model. (b) Use the model to estimate the inches of precipitation Cheyenne receives in August $(t=5)$ and December $(t=9)$.
Source: 2004 Statistical Abstract of the United States, Table 380.
23. Model the data in the table using a tangent function. Clearly state the period, the value of A, and the location of the asymptotes.

Input	Output	Input	Output
-6	$-\infty$	1	1.4
-5	-19.4	2	3
-4	-9	3	5.2
-3	-5.2	4	9
-2	-3	5	19.4
1	-1.4	6	∞
0	0		

MIXED REVIEW

State the equation of the function $f(t)$ shown using a

1. sine function
2. cosine function

Exercises 1 and 2

3. For the graph of periodic function f given, state the (a) amplitude, (b) average value, (c) period, and (d) value of $f(4)$.

Exercise 3

State the equation of the function $g(t)$ shown using a
4. tangent function
5. cotangent function

Exercises 4 and 5

6. The data given in the table tracks the length of the shadow cast by an obelisk for the 12 daylight hours at a certain location (positive and negative values indicate lengths before noon and afternoon, respectively). Assume $t=0$ corresponds to 6:00 A.m.
(a) Use the data to construct an equation modeling the length L of the shadow and graph the function. (b) Use the function to find the shadow's length at 1:30 P.M.
(c) If the shadow is " -52 m " long, what time is it?

Hour of Day	Length (\mathbf{m})	Hour of Day	Length (\mathbf{m})
0	∞	7	-10.7
1	149.3	8	-23.1
2	69.3	9	-40
3	40.0	10	-69.3
4	23.1	11	-149.3
5	10.7	12	$-\infty$
6	0		

Use a reference rectangle and the rule of fourths to graph the following functions in $[0,2 \pi)$.
7. $y=-2 \csc t$
8. $y=3 \sec t$
9. $f(t)=\cos (2 t)-1$
10. $g(t)=-\sin (3 t)+1$
11. $h(t)=\frac{3}{2} \sin \left(\frac{\pi}{2} t\right)$
12. $p(t)=6 \cos (\pi t)$
13. Monthly precipitation in Minneapolis, Minnesota, can be modeled by a sine function, by using the average precipitation for August (4.05 in.) as a maximum (actually slightly higher in June), and the average precipitation for February (0.79 in .) as a minimum. Assume $t=0$ corresponds to April.
(a) Use the information to construct a sinusoidal model, and (b) use the model to approximate the inches of precipitation Minneapolis receives in July $(t=3)$ and December $(t=8)$.
Source: 2004 Statistical Abstract of the United States, Table 380.
14. Which of the following functions indicates that the graph of $y=\sin (2 t)$ has been shifted horizontally $\frac{\pi}{4}$ units left?
a. $y=\sin \left[2\left(t+\frac{\pi}{4}\right)\right]$
b. $y=\sin \left(2 t+\frac{\pi}{4}\right)$
c. $y=\sin \left[2\left(t-\frac{\pi}{4}\right)\right]$
d. $y=\sin (2 t)-\frac{\pi}{4}$
15. Find the frequency of the following harmonic motion models.
a. $y=5.2 \sin \left(\frac{\pi}{6} t\right)$
b. $y=\frac{\pi}{3} \cos \left(\frac{8}{3} t\right)$
16. Given $t=\frac{5 \pi}{12}$ is a solution to $\tan t \approx 3.732$, use the period of the function to name three additional solutions. Answers may vary.

State the amplitude, period, horizontal shift, vertical shift, and endpoints of the primary interval, then sketch the graph using a reference rectangle and the rule of fourths.
17. $y=5 \cos (2 t)-8$
18. $y=\frac{7}{2} \sin \left[\frac{\pi}{2}(x-1)\right]$

State the period and phase shift, then sketch the graph of each function.
19. $y=2 \tan \left(\frac{1}{4} t\right)$
20. $y=3 \sec \left(x-\frac{\pi}{2}\right)$

PRACTICE TEST

1. Complete the table using exact values, including the point on the unit circle associated with t.

| t | $\mathbf{0}$ | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{2}$ | $\frac{2 \pi}{3}$ | $\frac{5 \pi}{\mathbf{6}}$ | $\frac{\mathbf{5 \pi}}{\mathbf{4}}$ | $\frac{\mathbf{4 \pi}}{\mathbf{3}}$ | $\frac{3 \pi}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\sin t$ | | | | | | | | | |
| $\cos t$ | | | | | | | | | |
| $\tan t$ | | | | | | | | | |
| $\csc t$ | | | | | | | | | |
| $\sec t$ | | | | | | | | | |
| $P(x, y)$ | | | | | | | | | |

2. State the value of each expression without the use of a calculator:
a. $\cos \left(\frac{3 \pi}{2}\right)$
b. $\sin \pi$
c. $\tan \left(\frac{5 \pi}{4}\right)$
d. $\sec \left(\frac{\pi}{6}\right)$
3. State the value of each expression without the use of a calculator:
a. $\tan ^{-1}(\sqrt{3})$; QI
b. $\cos ^{-1}\left(-\frac{1}{2}\right)$; QII
c. $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$; QIII
d. $\sec ^{-1}(\sqrt{2})$; QIV

State the amplitude (if it exists) and period of each function, then sketch the graph in the interval indicated using a reference rectangle and the rule of fourths.
4. $y=3 \sin \left(\frac{\pi}{5} t\right), t \in[0,10)$
5. $y=2 \sec (2 t), t \in[0,2 \pi)$
6. $y=4 \tan (3 t), t \in[0, \pi)$

State the amplitude (if it exists), period, horizontal shift, and vertical shift of each function, then sketch the graph in the interval indicated using a reference rectangle and the rule of fourths.
7. $y=12 \sin \left[3\left(t-\frac{\pi}{6}\right)\right]+19, t \in[0,2 \pi)$
8. $y=\frac{3}{4} \cos \left(\frac{1}{2} \pi t\right)-\frac{1}{2}, t \in[-2,6)$
9. $y=2 \cot \left[\frac{1}{3} \pi\left(t-\frac{3}{2}\right)\right], t \in[0,6)$
10. The revenue for Otake's Mower Repair is very seasonal, with business in the summer months far exceeding business in the winter months. Monthly revenue for the company can be modeled by the function $R(x)=7.5 \cos \left(\frac{\pi}{6} x+\frac{4 \pi}{3}\right)+12.5$, where $R(x)$ is the average revenue (in thousands of dollars) for month $x(x=1 \rightarrow$ Jan). (a) What is the average revenue for September? (b) For what months of the year is revenue at least $\$ 12,500$?
11. Given $t=4.25$ is a solution to $\tan t \approx 2$, use the period $P=\pi$ to find two other solutions.
12. Given $t \approx 1.4602$ is a solution to $\tan ^{-1}(9)=t$, find another solution using a reference angle/arc.
13. Although Reno, Nevada is a very arid city, the amount of monthly precipitation tends to follow a sinusoidal pattern. (a) Find an equation model for the precipitation in Reno, given the annual high is 1.06 in., while annual low is 0.24 in . and occurs in the month of July. (b) In what month does the annual high occur?
14. A weight on the end of a spring is oscillating in harmonic motion with a frequency of $f=3$ cycles per second and a displacement of 5 cm . Find an equation of the form $y=A \cos (B t)$ that models the motion.
15. Due to tidal motions, the depth of water in Brentwood Bay varies sinusoidally as shown in the diagram, where time is in hours and depth is in feet. Find an equation that models the depth of water at time t.

Exercise 15

16. Determine the equation of the graph shown, given it is of the form $y=A \csc (B t)+D$.

Exercise 16

Match each equation with its corresponding graph.
17. $y=3 \sin \left[2\left(t-\frac{\pi}{6}\right)\right]$
18. $y=3 \sin (\pi t)-1$
19. $y=-3 \sin (\pi t)+1$
a.

c.

20. $y=3 \sin \left(2 t-\frac{\pi}{6}\right)$
b.

d.

CALCULATOR EXPLORATION AND DISCOVERY

Variable Amplitudes and Modeling the Tides

Tidal motion is often too complex to be modeled by a single sine function. In this Exploration and Discovery, we'll look at a method that combines two sine functions to help model a tidal motion with variable amplitude. In the process, we'll use much of what we know about the amplitude, horizontal shifts and vertical shifts of a sine function, helping to reinforce these important concepts and broaden our understanding about how they can be applied. The graph in Figure 4.47 shows three days of tidal motion for Davis Inlet, Canada.

Figure 4.47

Figure 4.48

As you can see, the amplitude of the graph varies, and there is no single sine function that can serve as a model. However, notice that the amplitude varies predictably, and that the high tides and low tides can independently be modeled by a sine function. To simplify our exploration, we will use the assumption that tides have an exact 24-hr period (close, but no), that variations between high and low tides takes place every 12 hr (again close but not exactly true), and the variation between the "low-high" (1.9 m) and the "high-high" (2.4 m) is uniform. A similar assumption is made for the low tides. The result is the graph in Figure 4.48.

First consider the high tides, which vary from a maximum of 2.4 to a minimum of 1.9. Using the ideas from Section 4.4 to construct an equation model gives $A=\frac{2.4-1.9}{2}=0.25$ and $D=\frac{2.4+1.9}{2}=2.15$. With a period of $P=24 \mathrm{hr}$ we obtain the equation $\mathrm{Y}_{1}=0.25 \sin \left(\frac{\pi}{12} x\right)+2.15$. Using 0.9 and 0.7 as the maximum and minimum low tides,
similar calculations yield the equation $\mathrm{Y}_{2}=0.1 \sin \left(\frac{\pi}{12} x\right)+0.8$ (verify this). Graphing these two functions over a $24-\mathrm{hr}$ period yields the graph in Figure 4.49, where we note the high and low values are correct, but the two functions are in phase with each other. As can be determined from Figure 4.48, we want the high tide model to start at the average value and decrease, and the low tide equation model to start at high-low and decrease. Replacing x with $x-12$ in Y_{1} and x with $x+6$ in Y_{2} accomplishes this result (see Figure 4.50). Now comes the fun part! Since Y_{1} represents the low/high maximum values for high tide, and Y_{2} represents the low/high minimum values for low tide, the amplitude and average value for the tidal motion at Davis Inlet are $A=\frac{\mathrm{Y}_{1}-\mathrm{Y}_{2}}{2}$ and $D=\frac{Y_{1}+Y_{2}}{2}$! By entering $Y_{3}=\frac{Y_{1}-Y_{2}}{2}$ and $Y_{4}=\frac{Y_{1}+Y_{2}}{2}$, the equation for the tidal motion (with its variable amplitude) will have the form $\mathrm{Y}_{5}=\mathrm{Y}_{3} \sin (B x \pm C)+\mathrm{Y}_{4}$, where the value of B and C must be determined. The key here is to note there is only a 12 -hr difference between the changes in amplitude, so $P=12$ (instead of 24) and $B=\frac{\pi}{6}$ for this function. Also, from the graph (Figure 4.48) we note the tidal motion begins at a minimum and increases, indicating a shift of 3 units to the right is required. Replacing x with $x-3$ gives the equation modeling these tides, and the final equation is $Y_{5}=Y_{3} \sin \left[\frac{\pi}{6}(x-3)\right]+Y_{4}$. Figure 4.51 gives a screen shot of Y_{1}, Y_{2}, and Y_{5} in the interval [0,24]. The tidal graph from Figure 4.48 is shown in Figure 4.52 with Y_{3} and Y_{4} superimposed on it.

Figure 4.52

Figure 4.49

Figure 4.50

Figure 4.51

Exercise 1: The website www.tides.com/tcpred.htm offers both tide and current predictions for various locations around the world, in both numeric and graphical form. In addition, data for the "two" high tides and "two" low tides are clearly highlighted. Select a coastal area where tidal motion is similar to that of Davis Inlet, and repeat this exercise. Compare your model to the actual data given on the website. How good was the fit?

STRENGTHENING CORE SKILLS

Transformations via Composition

Historically, many of the transformations studied in this chapter played a fundamental role in the development of modern trigonometry. To make the connection, we note that many transformations can be viewed as a composition of functions.
For instance, for $f(t)=\cos t+1$ (the cosine function shifted one unit up) and $g(t)=t-\frac{\pi}{3}$, the composition $h(t)=f[g(t)]$ yields $h(t)=\cos \left(t-\frac{\pi}{3}\right)+1$, a cosine curve shifted 1 unit up and $\frac{\pi}{3}$ units right. Enter $f(t)$ as Y_{1} and $h(t)$ as Y_{2} on your graphing calculator, then graph and inspect the results.

As you see, we do obtain the same curve shifted $\frac{\pi}{3}$ units to the right (see Figure 4.53). But now, notice what happens when we compose $h(t)$ with $j(t)=t-\frac{\pi}{6}$ (shifting another $\frac{\pi}{6}$ units right). After simplification, $h[j(t)]=\cos \left(t-\frac{\pi}{2}\right)+1$ and by observation of Figure 4.54, its graph is the same as $y=\sin t+1$ (consider the cofunction properties). In Chapter 6, we'll look at solving trigonometric equations in depth, but from algebra, a zero of a (trig) function is where its graph touches the t-axis. With this in mind, the vertically shifted sine function is a function whose zeroes can easily be found, using the rule of fourths. The zeroes of $h[j(t)]$ are $t=\frac{3 \pi}{2}+2 \pi k$, which means the zeroes of $h(t)$ (the original function) can be found by shifting these zeroes $\frac{\pi}{6}$ units left, returning them to their original position. The zeroes of $h(t)$ are $t=\left(\frac{3 \pi}{2}-\frac{\pi}{6}\right)+2 \pi k=\frac{8 \pi}{6}+2 \pi k=\frac{4 \pi}{3}+2 \pi k$ (verify by substitution).

Figure 4.54

Figure 4.53 The key is to shift cosine functions to the right a total of $\frac{\pi}{2}$ units, and sine functions to the left a total of $\frac{\pi}{2}$ units, allowing the use of the cofunction properties. A similar method can be employed with the secant and cosecant functions, while a reflection and translation are necessary for the tangent and cotangent functions. For Exercises $1-3$, use this method to (a) compose $f(t)$ with a horizontal translation $g(t)$ to find such functions $h(t)$, and (b) use the zeroes of h to find the zeroes of f. Verify each solution by direct substitution.
Exercise 1: $f(t)=\sin \left(t+\frac{\pi}{4}\right)-1 \quad$ Exercise 2: $f(t)=\cos \left(t+\frac{\pi}{6}\right)-1 \quad$ Exercise 3: $f(t)=3 \sin (t-0.7)+3$

CUMULATIVE REVIEW CHAPTERS 1-4

1. Use a reference rectangle and the rule of fourths to graph $y=2.5 \sin \left(\frac{\pi}{2} t\right)$ in $[-2,6)$.
2. State the period, horizontal shift, and x-intercepts of the function $y=-\tan \left(2 x+\frac{\pi}{2}\right)$ in $\left[-\frac{\pi}{2}, \pi\right)$. Then state whether the function is increasing or decreasing and sketch its graph.
3. Given that $\cot \theta=\frac{55}{48}$, use a right triangle that corresponds to this ratio to find the length of the missing side. Then find the two acute angles.
4. Without a calculator, what values in $[0,2 \pi)$ make the equation true? $\cos t=\frac{\sqrt{3}}{2}$?
5. Given $\left(-\frac{1}{3}, \frac{2 \sqrt{2}}{3}\right)$ is a point on the unit circle corresponding to t, find all six trig functions of t.
6. A 12-ft-long ladder is leaning against a wall at an angle of 68°. To the nearest half-inch, how high up the wall does it reach?
7. Given $\alpha=54^{\circ} 13^{\prime} 03^{\prime \prime}$, find

Exercises 7 and 8 the measure of angle β for the triangle shown and convert it to
a. decimal degrees
b. radians

8. Given $b=13.2 \mathrm{~cm}$, use Exercise 7 and the triangle shown to find the measure of the remaining two sides.
9. Verify the point $\left(\frac{13}{85}, \frac{84}{85}\right)$ is on a unit circle, and use the circle's symmetry to find three other points on the circle.
10. For $\theta=701.2^{\circ}$, find the reference angle and use it to find the value of $\sin \theta, \cos \theta$, and $\tan \theta$ with a calculator. Round to four decimal places.
11. Hunter and his dad are kiteboarding at the beach. Hunter is 10 m away from his dad, and the kite is directly above his dad's head. The angle of elevation from Hunter to the kite is 69°. To the nearest meter, how high is the kite?
12. Danielle scored her first soccer goal by firing a straight on blast from her left foot. From the point of view of the referee standing on the goal line, the ball passed through 52° of rotation in

Exercises 12

 2 sec . If the referee was 28 ft from the point where the ball crossed the goal line, (a) how far was Danielle from the goal line? (b) What was the average velocity of the ball in $\mathrm{ft} / \mathrm{sec}$?
13. Given $t=\frac{4 \pi}{3}$, use reference arcs to state the value of all six trig functions of t without using a calculator.
14. A skateboard has wheels with a 1 -in. radius. If Xihuan is cruising at 11 mph , find how fast the wheels are spinning (in rpm).
15. One lazy summer day, a butterfly is circling a purple geranium. The butterfly takes 4 sec to fly a circular path of radius 14 in . (a) Find the butterfly's angular velocity in radians per second. (b) Find the butterfly's linear velocity in inches per second.
16. Find $T(\theta)$ for all six trig functions T, given the point $P(8,-15)$ is a point on the terminal side of the angle. Then find the angle θ in degrees, rounded to tenths.
17. Given $t=4.22$, (a) in what quadrant does the arc terminate? (b) What is the reference arc? (c) Find the value of $\tan t$ rounded to four decimal places.
18. Determine the equation of the graph shown given it is of the form $y=A \tan (B t)$.

19. Determine the equation of the graph shown given it is of the form $y=A \sin (B t \pm C)+D$.

20. In London, the average temperature on a summer day ranges from a high of $72^{\circ} \mathrm{F}$ to a low of $56^{\circ} \mathrm{F}$. Use this information to write a sinusoidal equation model, assuming the low temperature occurs at 6:00 A.m. Clearly state the amplitude, average value, period, and horizontal shift.
Source: 2004 Statistical Abstract of the United States, Table 1331.
21. State true or false and explain your response: $(\cos t)(\csc t)=1$.
22. Complete the following statement: The cofunction of tangent is cotangent because . . .
23. Find the value of all six trig functions given $\csc t=-\frac{13}{5}$ and $\cos t>0$.
24. The Earth has a radius of 3960 mi . Tokyo, Japan, is located at approximately $36^{\circ} \mathrm{N}$ latitude, and is almost exactly due north of Lake Julius, Australia, located at $20^{\circ} \mathrm{S}$ latitude. How many miles separate these two locations?
25. The profits of Red-Bud Nursery can be modeled by a sinusoid, with profit peaking twice each year. Given profits reach a yearly low of $\$ 4000$ in midJanuary (month 1.5), and a yearly high of $\$ 14,000$ in mid-April (month 4.5), (a) construct an equation for their yearly profits. (b) Use the model to find their profits for August. (c) Name the other month at which profit peaks.

Modeling With Technology: Trigonometric Equation Models

Learning Objectives

In MWT you will learn how to:A. Create a trigonometric model from critical points or dataB. Create a sinusoidal model from data using regression

In the most common use of the word, a cycle is any series of events or operations that occur in a predictable pattern and return to a starting point. This includes things as diverse as the wash cycle on a washing machine and the powers of i. There are a number of common events that occur in sinusoidal cycles, or events that can be modeled by a sine wave. As in Section 4.4, these include monthly average temperatures, monthly average daylight hours, and harmonic motion, among many others. Less well-known applications include alternating current, biorhythm theory, and animal populations that fluctuate over a known period of years. In this section, we develop two methods for creating a sinusoidal model. The first uses information about the critical points (where the cycle reaches its maximum or minimum values); the second involves computing the equation of best fit (a regression equation) for a set of data.

A. Critical Points and Sinusoidal Models

Although future courses will define them more precisely, we will consider critical points to be inputs where a function attains a minimum or maximum value. If an event or phenomenon is known to behave sinusoidally (regularly fluctuating between a maximum and minimum), we can create an acceptable model of the form $y=A \sin (B x+C)+D$ given these critical points (x, y) and the period. For instance, many weather patterns have a period of 12 months. Using the formula $P=\frac{2 \pi}{B}$, we find $B=\frac{2 \pi}{P}$ and substituting 12 for P gives $B=\frac{\pi}{6}$ (always the case for phenomena with a 12 -month cycle). The maximum value of $A \sin (B x+C)+D$ will always occur when $\sin (B x+C)=1$, and the minimum at $\sin (B x+C)=-1$, giving this system of equations: max value $M=A(1)+D$ and min value $m=A(-1)+D$. Solving the system for A and D gives $A=\frac{M-m}{2}$ and $D=\frac{M+m}{2}$ as before. To find C, assume the maximum and minimum values occur at $\left(x_{2}, M\right)$ and $\left(x_{1}, m\right)$, respectively. We can substitute the values computed for A, B, and D in $y=A \sin (B x+C)+D$, along with either $\left(x_{2}, M\right)$ or $\left(x_{1}, m\right)$, and solve for C. Using the minimum value $\left(x_{1}, m\right)$, where $x=x_{1}$ and $y=m$, we have

$$
\begin{aligned}
y & =A \sin (B x+C)+D & & \text { sinusoidal equation model } \\
m & =A \sin \left(B x_{1}+C\right)+D & & \text { substitute } m \text { for } y \text { and } x_{1} \text { for } x \\
\frac{m-D}{A} & =\sin \left(B x_{1}+C\right) & & \text { isolate sine function }
\end{aligned}
$$

Fortunately, for sine models constructed from critical points we have $\frac{y-D}{A} \rightarrow \frac{m-D}{A}$, which is always equal to -1 (see Exercise 26). This gives a simple result for C, since $-1=\sin \left(B x_{1}+C\right)$ leads to $\frac{3 \pi}{2}=B x_{1}+C$ or $C=\frac{3 \pi}{2}-B x_{1}$. See Exercises 1 through 6 for practice with these ideas.

EXAMPLE 1 Developing a Model for Polar Ice Cap Extent from Critical Points

When the Spirit and Odyssey Rovers landed on Mars (January 2004), there was a renewed public interest in studying the planet. Of particular interest were the polar ice caps, which are now thought to hold frozen water, especially the northern cap. The Martian ice caps expand and contract with the seasons, just as they do here on Earth but there are about 687 days in a Martian year, making each Martian "month" just over 57 days long (1 Martian day ≈ 1 Earth day). At its smallest size, the northern ice cap covers an area of roughly 0.17 million square miles. At the height of winter, the cap covers about 3.7 million square miles (an area about the size of the 50 United States). Suppose these occur at the beginning of month $4(x=4)$ and month $10(x=10)$ respectively.
a. Use this information to create a sinusoidal model of the form $f(x)=A \sin (B x+C)+D$.
b. Use the model to predict the area of the ice cap in the eighth Martian month.
c. Use a graphing calculator to determine the number of months the cap covers less than 1 million mi^{2}.

Solution
a. Assuming a " 12 -month" weather pattern, $P=12$ and $B=\frac{\pi}{6}$. The maximum and minimum points are $(10,3.7)$ and $(4,0.17)$. Using this information,
$D=\frac{3.7+0.17}{2}=1.935$ and $A=\frac{3.7-0.17}{2}=1.765$. Using
$C=\frac{3 \pi}{2}-B x_{1}$ gives $C=\frac{3 \pi}{2}-\frac{\pi}{6}(4)=\frac{5 \pi}{6}$. The equation model is $f(x)=1.765 \sin \left(\frac{\pi}{6} x+\frac{5 \pi}{6}\right)+1.935$, where $f(x)$ represents millions of square miles in month x.
b. For the size of the cap in month 8 we evaluate the function at $x=8$.

$$
\begin{aligned}
f(8) & =1.765 \sin \left[\frac{\pi}{6}(8)+\frac{5 \pi}{6}\right]+1.935 & \text { substitute } 8 \text { for } x \\
& =2.8175 & \text { result }
\end{aligned}
$$

In month 8 , the polar ice cap will cover about $2,817,500 \mathrm{mi}^{2}$.
c. Of the many options available, we opt to solve by locating the points where $Y_{1}=1.765 \sin \left(\frac{\pi}{6} x+\frac{5 \pi}{6}\right)+1.935$ and $Y_{2}=1$ intersect. After entering the functions on the $Y=$ screen, we set $x \in[0,12]$ and $y \in[-1,5]$ for a window with a frame around the output values.
Press 2nd trace (CALC) 5:intersect to find the intersection points. To four decimal places they occur at $x=2.0663$ and $x=5.9337$. The ice cap at the northern pole of Mars has an area of less than 1 million mi^{2} from early in the second month to late in the fifth month. The second intersection is shown in the figure.

While this form of "equation building" can't match the accuracy of a regression model (computed from a larger set of data), it does lend insight as to how sinusoidal functions work. The equation will always contain the maximum and minimum values, and using the period of the phenomena, we can create a smooth sine wave that "fills in the blanks" between these critical points.

EXAMPLE $2-$ Developing a Model of Wildlife Population from Critical Points

Naturalists have found that many animal populations, such as the arctic lynx, some species of fox, and certain rabbit breeds, tend to fluctuate sinusoidally over 10-year periods. Suppose that an extended study of a lynx population began in 2000, and in the third year of the study, the population had fallen to a minimum of 2500 . In the eighth year the population hit a maximum of 9500 .
a. Use this information to create a sinusoidal model of the form $P(x)=A \sin (B x+C)+D$.
b. Use the model to predict the lynx population in the year 2006.
c. Use a graphing calculator to determine the number of years the lynx population is above 8000 in a 10 -year period.

Solution
a. Since $P=10$, we have $B=\frac{2 \pi}{10}=\frac{\pi}{5}$. Using 2000 as year zero, the minimum and maximum populations occur at $(3,2500)$ and $(8,9500)$. From the information given, $D=\frac{9500+2500}{2}=6000$, and $A=\frac{9500-2500}{2}=3500$. Using the minimum value we have $C=\frac{3 \pi}{2}-\frac{\pi}{5}(3)=\frac{9 \pi}{10}$, giving an equation model of $P(x)=3500 \sin \left(\frac{\pi}{5} x+\frac{9 \pi}{10}\right)+6000$, where $P(x)$ represents the lynx population in year x.
b. For the population in 2006 we evaluate the function at $x=6$.

$$
\begin{array}{rlrl}
P(x) & =3500 \sin \left(\frac{\pi}{5} x+\frac{9 \pi}{10}\right)+6000 & & \text { sinusoidal function model } \\
P(6) & =3500 \sin \left[\frac{\pi}{5}(6)+\frac{9 \pi}{10}\right]+6000 & \text { substitute } 6 \text { for } x \\
& \approx 7082 & & \text { result }
\end{array}
$$

In 2006, the lynx population was about 7082.
c. Using a graphing calculator and the functions
$Y_{1}=3500 \sin \left(\frac{\pi}{5} x+\frac{9 \pi}{10}\right)+6000$ and
$Y_{2}=8000$, we attempt to find points of intersection. Enter the functions (press $\boldsymbol{Y}=$) and set a viewing window (we used $x \in[0,12]$ and $y \in[0,10,000])$. Press

2nd TRACE (CALC) 5:intersect to find where Y_{1} and Y_{2} intersect. To four decimal places this occurs at $x=6.4681$ and $x=9.5319$. The lynx population exceeded
 8000 for roughly 3 years. The first intersection is shown.

This type of equation building isn't limited to the sine function. In fact, there are many situations where a sine model cannot be applied. Consider the length of the shadows cast by a flagpole or radio tower as the Sun makes its way across the sky. The shadow's length follows a regular pattern (shortening then lengthening) and "always returns to a starting point," yet when the Sun is low in the sky the shadow becomes (theoretically) infinitely long, unlike the output values from a sine function. If we consider signed shadow lengths at a latitude where the Sun passes directly overhead (in contrast with Example 6 in Section 4.4), an equation involving $\tan x$ might provide a good model. We'll attempt to model the data using $y=A \tan (B x \pm C)$, with the D-term absent since a vertical shift in this context has no meaning. Recall that the period of the tangent function is $P=\frac{\pi}{|B|}$ and that $\pm \frac{C}{B}$ gives the magnitude and direction of the horizontal shift, in a direction opposite the sign.

EXAMPLE 3 - Using Data to Develop a Function Model for Shadow Length
The data given tracks the length of a gnomon's shadow for the 12 daylight hours at a certain location near the equator (positive and negative values indicate lengths before noon and after noon respectively).
Assume $t=0$ represents 6:00 A.m.
a. Use the data to find an equation model of the form $L(t)=A \tan (B t \pm C)$.
b. Graph the function and scatter

Hour of the Day	Length $(\mathbf{c m})$	Hour of the Day	Length $(\mathbf{c m})$
0	∞	7	-2.1
1	29.9	8	-4.6
2	13.9	9	-8.0
3	8.0	10	-13.9
4	4.6	11	-29.9
5	2.1	12	$-\infty$
6	0		

c. Find the shadow's length at $4: 30$ P.m.
d. If the shadow is 6.1 cm long, what time in the morning is it?

Solution a. We begin by noting this phenomenon has a period of $P=12$. Using the period formula for tangent we solve for $B: P=\frac{\pi}{B}$ gives $12=\frac{\pi}{B}$, so $B=\frac{\pi}{12}$. Since we want $(6,0)$ to be the "center" of the function [instead of $(0,0)$], we desire a horizontal shift 6 units to the right. Using the ratio $\frac{C}{B}\left(\right.$ with $\left.B=\frac{\pi}{12}\right)$ gives $-6=\frac{12 C}{\pi}$ so $C=-\frac{\pi}{2}$. To find A we use the equation built so far: $L(t)=A \tan \left(\frac{\pi}{12} t-\frac{\pi}{2}\right)$, and any data point to solve for A. Using $(3,8)$ we obtain $8=A \tan \left(\frac{\pi}{12}(3)-\frac{\pi}{2}\right)$: $8=A \tan \left(-\frac{\pi}{4}\right)$ simplify $-8=A \quad$ solve for $A: \tan \left(-\frac{\pi}{4}\right)=-1$

The equation model is
$L(t)=-8 \tan \left(\frac{\pi}{12} t-\frac{\pi}{2}\right)$.
b. The scatter plot and graph are shown in the figure.

V. A. You've just learned how to create a trigonometric model from critical points or data
c. 4:30 P.M. indicates $t=10.5$. Evaluating $L(10.5)$ gives

$$
\begin{aligned}
L(t) & =-8 \tan \left(\frac{\pi}{12} t-\frac{\pi}{2}\right) & & \text { function model } \\
L(10.5) & =-8 \tan \left[\frac{\pi}{12}(10.5)-\frac{\pi}{2}\right] & & \text { substitute } 10.5 \text { for } t \\
& =-8 \tan \left(\frac{3 \pi}{8}\right) & & \text { simplify } \\
& \approx-19.31 & & \text { result }
\end{aligned}
$$

At 4:30 P.M., the shadow has a length of $|-19.31|=19.31 \mathrm{~cm}$.
d. Substituting 6.1 for $L(t)$ and solving for t graphically gives the graph shown, where we note the day is about 3.5 hr old-it is about 9:30 A.m.

Now try Exercises 11 through 14

B. Data and Sinusoidal Regression

Most graphing calculators are programmed to handle numerous forms of polynomial and nonpolynomial regression, including sinusoidal regression. The sequence of steps used is the same regardless of the form chosen. Exercises 15 through 18 offer further practice with regression fundamentals. Example 4 illustrates their use in context.

EXAMPLE $4>$ Calculating a Regression Equation for Seasonal Temperatures

The data shown give the record high temperature for selected months in Bismarck, North Dakota.
a. Use the data to draw a scatter plot, then find a sinusoidal regression model and graph both on the same screen.

$\begin{gathered} \text { Month } \\ (\mathbf{J a n} \rightarrow \mathbf{1}) \end{gathered}$	Temp. (${ }^{\circ} \mathbf{F}$)	$\begin{gathered} \text { Month } \\ (\mathbf{J a n} \rightarrow \mathbf{1}) \end{gathered}$	Temp. $\left({ }^{\circ} \mathbf{F}\right)$
1	63	9	105
3	81	11	79
5	98	12	65
7	109		

b. Use the equation model to estimate the record high temperatures for months 2,6 , and 8 .
c. Determine what month gives the largest difference between the actual data and the computed results.
Source: NOAA Comparative Climate Data 2004.
Solution a. Entering the data and running the regression (in radian mode) results in the coefficients shown in Figure MWT 1. After entering the equation in Y_{1} and pressing zoom 9:Zoom Stat we obtain the graph shown in Figure MWT 2 (indicated window settings have been rounded).

Figure MWT 1

Figure MWT 2

b．Using $x=2, x=6$ ，and $x=8$ as inputs，the equation model projects record high temperatures of $68.5^{\circ}, 108.0^{\circ}$ ，and 108.1° ， respectively．
c．In the header of L 3 ，use $\mathrm{Y}_{1}(\mathrm{~L} 1)$ ENTER to evaluate the regression model using the inputs from L1， and place the results in L3．Entering L2－L3 in the header of L 4 gives the results shown in

Figure MWT 3

Lz	L3	L4
6		H＋P安
晾	7－75	2.4248
吅 10	100．61	－2．611
10.	1009	$4.15{ }^{2}$
$7{ }^{7}$	78.845	－154日
65	68．661	－3．651

Now try Exercises 19 through 22 －

Weather patterns differ a great deal depending on the locality．For example，the annual rainfall received by Seattle，Washington，far exceeds that received by Cheyenne， Wyoming．Our final example compares the two amounts and notes an interesting fact about the relationship．

EXAMPLE 5 Calculating a Regression Model for Seasonal Rainfall

The average monthly rainfall（in inches）for Cheyenne，Wyoming，and Seattle，Washington，is shown in the table．
a．Use the data to find a sinusoidal regression model for the average monthly rainfall in each city．Enter or paste the equation for Cheyenne in Y_{1} and the equation for Seattle in Y_{2} ．
b．Graph both equations on the same screen（without the scatter plots）and use trace or 2nd trace
（CALC）5：intersect to help estimate the number of months Cheyenne receives more rainfall than Seattle．
Source：NOAA Comparative Climate Data 2004.

Solution

B．You＇ve just learned how to create a sinusoidal model from data using regression
a．Setting the calculator in Float 0123456789 MODE and running sinusoidal regressions gives the equations shown in Figure MWT 4.
b．Both graphs are shown in Figure MWT 5.
Using the TRACE feature，we find the graphs intersect at approximately $(4.7,2.0)$ and $(8.4,1.7)$ ．Cheyenne receives more rain than Seattle for about $8.4-4.7=3.7$ months of the year．

Figure MWT 4

Figure MWT 5

MODELING WITH TECHNOLOGY EXERCISES

Find the sinusoidal equation for the information as given.

1. minimum value at $(9,25)$; maximum value at $(3,75)$; period: 12 min
2. minimum value at $(4.5,35)$; maximum value at $(1.5,121)$; period: 6 yr
3. minimum value at $(15,3)$; maximum value at (3, 7.5); period: 24 hr
4. minimum value at $(3,3.6)$; maximum value at (7,12); period: 8 hr
5. minimum value at $(5,279)$; maximum value at $(11,1285)$; period: 12 yr
6. minimum value at $(6,8280)$; maximum value at (22, 23,126); period: 32 yr
7. Record monthly temperatures: The U.S. National Oceanic and Atmospheric Administration (NOAA) keeps temperature records for most major U.S. cities. For Phoenix, Arizona, they list an average high temperature of $65.0^{\circ} \mathrm{F}$ for the month of January (month 1) and an average high temperature of $104.2^{\circ} \mathrm{F}$ for July (month 7). Assuming January and July are the coolest and warmest months of the year, (a) build a sinusoidal function model for temperatures in Phoenix, and (b) use the model to find the average high temperature in September. (c) If a person has a tremendous aversion to temperatures over 95°, during what months should they plan to vacation elsewhere?
8. Seasonal size of polar ice caps: Much like the polar ice cap on Mars, the sea ice that surrounds the continent of Antarctica (the Earth's southern

polar cap) varies seasonally, from about 8 million mi^{2} in September to about 1 million mi^{2} in March. Use this information to (a) build a sinusoidal equation that models the advance and retreat of the sea ice, and (b) determine the size of the ice sheet in May. (c) Find the months of the year that the sea ice covers more than 6.75 million mi^{2}.
9. Body temperature cycles: A phenomenon is said to be circadian if it occurs in 24-hr cycles. A person's body temperature is circadian, since there are normally small, sinusoidal variations in body temperature from a low of $98.2^{\circ} \mathrm{F}$ to a high of $99^{\circ} \mathrm{F}$ throughout a $24-\mathrm{hr}$ day. Use this information to (a) build the circadian equation for a person's body temperature, given $t=0$ corresponds to midnight and that a person usually reaches their minimum temperature at 5 A.M.; (b) find the time(s) during a day when a person reaches "normal" body temperature $\left(98.6^{\circ}\right)$; and (c) find the number of hours each day that body temperature is $98.4^{\circ} \mathrm{F}$ or less.
10. Position of engine piston: For an internal combustion engine, the position of a piston in the cylinder can be modeled by a sinusoidal function. For a particular engine size and idle speed, the piston head is 0 in . from the top of the cylinder (the minimum value) when $t=0$ at the beginning of the intake stroke, and reaches a maximum distance of 4 in . from the top of the cylinder (the maximum value) when $t=\frac{1}{48} \mathrm{sec}$ at the beginning of the compression stroke. Following the compression stroke is the power stroke $\left(t=\frac{2}{48}\right)$, the exhaust stroke $\left(t=\frac{3}{48}\right)$, and the intake stroke $\left(t=\frac{4}{48}\right)$, after which it all begins again. Given the period of a four-stroke engine under these conditions is $P=\frac{1}{24}$ second, (a) find the sinusoidal equation modeling the position of the piston, and (b) find the distance of the piston from the top of the cylinder at $t=\frac{1}{9} \mathrm{sec}$. Which stroke is the engine in at this moment?

Data and tangent functions: Use the data given to find an equation model of the form $f(x)=A \tan (B x+C)$. Then graph the function and scatter plot to help find (a) the output for $x=2.5$, and (b) the value of x where $f(x)=16$.
11.

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{x}	\boldsymbol{y}
0	∞	7	-1.4
1	20	8	-3
2	9.7	9	-5.2
3	5.2	10	-9.7
4	3	11	-20
5	1.4	12	$-\infty$
6	0		

12.

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{x}	\boldsymbol{y}
0	∞	7	6.4
1	-91.3	8	13.7
2	-44.3	9	23.7
3	-23.7	10	44.3
4	-13.7	11	91.3
5	-6.4	12	∞
6	0		

occurred to me, the buildings were barely visible. Three miles later I hold a $30-\mathrm{cm}$ ruler up to my eyes at arm's length, and the apparent height of the tallest building is 1 cm . After three more miles the apparent height is 1.8 cm . Measurements are taken every 3 mi until I reach town and are shown in the table (assume I was 24 mi from the parking garage when I began this activity). (a) Use the data to come up with a tangent function model of the building's apparent height after traveling a distance of x mi closer. (b) What was the apparent height of the building after I had driven 19 mi ? (c) How many miles had I driven when the apparent height of the building took up all 30 cm of my ruler?
14. Earthquakes and elastic rebound: The theory of elastic rebound has been used by seismologists to study the cause of earthquakes. As seen in the figure, the Earth's crust is stretched to a breaking point by the slow movement of one tectonic plate in a direction opposite the other along a fault line, and when the rock snaps-each half violently rebounds to its original alignment causing the Earth to quake.

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{x}	\boldsymbol{y}
-4.5	-61	1	2.1
-4	-26	2	6.8
-3	-14.8	3	15.3
-2	-7.2	4	25.4
-1	-1.9	4.5	59
0	0		

Suppose the misalignment of these plates through the stress and twist of crustal movement can be modeled by a tangent graph, where x represents the horizontal distance from the original stress line, and y represents the vertical distance from the fault line. Assume a "period" of 10.2 m . (a) Use the data from the table to come up with a trigonometric model of the deformed stress line. (b) At a point 4.8 m along the fault line, what is the distance to the deformed stress line (moving parallel to the original stress line)? (c) At what point along the fault line is the vertical distance to the deformed stress line 50 m ?

Data and sinusoidal regression models: For the following sets of data (a) find a sinusoidal regression equation using your calculator; (b) construct an equation manually using the period and maximum/minimum values; and (c) graph both on the same screen, then use a TABLE to find the largest difference between output values.
15.

Day of Month	Output
1	15
4	41
7	69
10	91
13	100
16	90
19	63
22	29
25	5
28	2
31	18

16.

Day of Month	Output
1	179
4	201
7	195
10	172
13	145
16	120
19	100
22	103
25	124
28	160
31	188

17.

Month $\left(\right.$ Jan. $\left.^{\mathbf{1}} \mathbf{1}\right)$	Output
1	16
2	19
3	21
4	22
5	21
6	19
7	16
8	13
9	11
10	10
11	11
12	13

18.

Month $($ Jan. $=\mathbf{1})$	Output
1	86
2	96
3	99
4	95
5	83
6	72
7	56
8	48
9	43
10	49
11	58
12	73

numbered months. (c) Use the graph and equation to estimate the number of days per year the flow rate is below $500 \mathrm{~m}^{3} / \mathrm{sec}$.

Source: Global River Discharge Database Project; www.rivdis.sr.unh.edu.
21. Illumination of the moon's surface: The table given indicates the percent of the Moon that is illuminated for the days of a particular month, at a given latitude. (a) Use a graphing calculator to find a sinusoidal regression model. (b) Use the model to determine what percent of the Moon is illuminated on day 20. (c) Use the maximum and minimum values with the period and an appropriate horizontal shift to create your own model of the data. How do the values for A, B, C, and D compare?

Day	\% Illum.	Day	\% Illum.
1	28	19	34
4	55	22	9
7	82	25	0
10	99	28	9
13	94	31	30
16	68		

22. Connections between weather and mood: The mood of persons with SAD syndrome (seasonal affective disorder) often depends on the weather. Victims of SAD are typically more despondent in rainy weather than when the Sun is out, and more comfortable in the daylight hours than at night. The table shows the average number of daylight hours for Vancouver, British Columbia, for 12 months of a year. (a) Use a calculator to find a sinusoidal regression model. (b) Use the model to estimate the number of days per year (use 1 month ≈ 30.5 days) with more than 14 hr of daylight. (c) Use the maximum and minimum values with the period and an appropriate horizontal shift to create a model of the data. How do the values for A, B, C, and D compare?
Source: Vancouver Climate at www.bcpassport.com/vital.

Month	Hours	Month	Hours
1	8.3	7	16.2
2	9.4	8	15.1
3	11.0	9	13.5
4	12.9	10	11.7
5	14.6	11	9.9
6	15.9	12	8.5

23. Average monthly rainfall: The average monthly rainfall (in inches) for Reno, Nevada, is shown in the table. (a) Use the data to find a sinusoidal regression model for the monthly rainfall. (b) Graph this equation model and the rainfall equation model for Cheyenne, Wyoming (from Example 5), on the same screen, and estimate the number of months that Reno gets more rainfall than Cheyenne.
Source: NOAA Comparative Climate Data 2004.

Month $(\mathbf{J a n} \rightarrow \mathbf{1})$	Reno Rainfall	Month $(\mathbf{J a n} \rightarrow \mathbf{1})$	Reno Rainfall
1	1.06	7	0.24
2	1.06	8	0.27
3	0.86	9	0.45
4	0.35	10	0.42
5	0.62	11	0.80
6	0.47	12	0.88

24. Hours of daylight by month: The number of daylight hours per month (as measured on the 15th of each month) is shown in the table for the cities of Beaumont, Texas, and Minneapolis, Minnesota.
(a) Use the data to find a sinusoidal regression model of the daylight hours for each city. (b) Graph both equations on the same screen and use the graphs to estimate the number of days

Month $(\mathbf{J a n} \rightarrow \mathbf{1})$	TX Sunlight	MN Sunlight
1	10.4	9.1
2	11.2	10.4
3	12.0	11.8
4	12.9	13.5
5	14.4	16.2
6	14.1	15.7
7	13.9	15.2
8	13.3	14.2
9	12.4	12.6
10	11.5	11.0
11	10.7	9.6
12	10.2	8.7

Beaumont receives more daylight than
Minneapolis (use 1 month $=30.5$ days).
Source: www.encarta.msn.com/media_701500905/ Hours_of_Daylight_by_Latitude.html.
25. Biorhythm theory: $\boldsymbol{P}(\boldsymbol{d})=\mathbf{5 0} \sin ($ Bd $)+50$ Advocates of biorhythm theory believe that human beings are influenced by certain biological cycles that begin at birth, have different periods, and continue throughout life. The classical cycles and their periods are physical potential (23 days), emotional potential (28 days), and intellectual potential (33 days). On any given day of life, the percent of potential in these three areas is purported to be modeled by the function shown, where $P(d)$ is the percent of available potential on day d of life. Find the value of B for each of the physical, emotional, and intellectual potentials and use it to see what the theory has to say about your potential today. Use day $d=365.25$ (age) + days since last birthday.
26. Verifying the amplitude formula: For the equations from Examples 1 and 2, use the minimum value (x, m) to show that $\frac{y-D}{A} \rightarrow \frac{m-D}{A}$ is equal to -1 . Then verify this relationship in general by substituting $\frac{M-m}{2}$ for $A, \frac{M+m}{2}$ for D.

5.1 More on Verifying Identities

Learning Objectives

In Section 5.1 you will learn how to:A. Identify and use identities due to symmetry
B. Verify general identitiesC. Use counterexamples and contradictions to show an equation is not an identity

WORTHY OF NOTE

The identities due to symmetry are sometimes referred to as the even/odd properties. These properties can help express the cofunction identities in shifted form. For example,

$$
\begin{aligned}
\sin t & =\cos \left(\frac{\pi}{2}-t\right) \\
& =\cos \left[-\left(t-\frac{\pi}{2}\right)\right] \\
& =\cos \left(t-\frac{\pi}{2}\right) .
\end{aligned}
$$

In Section 1.4, our primary goal was to illustrate how basic algebra skills can be used to rewrite trigonometric expressions and verify simple identities. In this section, we'll sharpen and refine these skills so they can be applied more generally, as we develop the ability to verify a much wider range of identities.

A. Identities Due to Symmetry

The symmetry of the unit circle and the wrapping function presented in Chapter 3's Strengthening Core Skills feature, lead us directly to the final group of fundamental identities. Given $t>0$, consider the points on the unit circle associated with t and $-t$, as shown in Figure 5.1. From our definitions of the trig functions, $\sin t=y$ and $\sin (-t)=-y$, and we recognize sine is an odd function: $\sin (-t)=-\sin t$. The remaining identities due to symmetry can similarly be developed, and are shown here with the complete family of fundamental identities.

Figure 5.1

Fundamental Trigonometric Identities

Reciprocal	Ratio	Pythagorean identities	Identities due to symmetry

$$
\begin{array}{llll}
\sin t=\frac{1}{\csc t} & \tan t=\frac{\sin t}{\cos t} & \sin ^{2} t+\cos ^{2} t=1 & \sin (-t)=-\sin t \\
\cos t=\frac{1}{\sec t} & \tan t=\frac{\sec t}{\csc t} & \tan ^{2} t+1=\sec ^{2} t & \cos (-t)=\cos t \\
\tan t=\frac{1}{\cot t} & \cot t=\frac{\cos t}{\sin t} & 1+\cot ^{2} t=\csc ^{2} t & \tan (-t)=-\tan t
\end{array}
$$

EXAMPLE $1-$ Using an Identity Due to Symmetry to Verify an Identity

Verify the identity: $(1-\tan t)^{2}=\sec ^{2} t+2 \tan (-t)$
Solution Begin by squaring the left-hand side, in hopes of using a Pythagorean identity.

$$
\begin{aligned}
(1-\tan t)^{2} & =1-2 \tan t+\tan ^{2} t & & \text { binomial square } \\
& =1+\tan ^{2} t-2 \tan t & & \text { rewrite terms } \\
& =\sec ^{2} t-2 \tan t & & \text { substitute } \sec ^{2} t \text { for } 1+\tan ^{2} t
\end{aligned}
$$

At this point, we appear to be off by two signs, but quickly recall that tangent is an odd function and $-\tan t=\tan (-t)$. By writing $\sec ^{2} t-2 \tan t$ as $\sec ^{2} t+2(-\tan t)$, we can complete the verification.

$$
\begin{array}{ll}
=\sec ^{2} t+2(-\tan t) & \text { rewrite expression to obtain }-\tan t \\
=\sec ^{2} t+2 \tan (-t) & \text { substitute } \tan (-t) \text { for }-\tan t
\end{array}
$$

Now try Exercises 7 through 12

B. Verifying Identities

We're now ready to put these ideas, and the ideas from Section 1.4 , to work for us. When verifying identities we attempt to mold, change, or rewrite one side of the equality until we obtain a match with the other side. What follows is a collection of the ideas

WORTHY OF NOTE

When verifying identities, it is actually permissible to work on each side of the equality independently, in the effort to create a "match." But properties of equality can never be used, since we cannot assume an equality exists.
and methods we've observed so far, which we'll call the Guidelines for Verifying Identities. But remember, there really is no right place to start. Think things over for a moment, then attempt a substitution, simplification, or operation and see where it leads. If you hit a dead end, that's okay! Just back up and try something else.

Guidelines for Verifying Identities

1. As a general rule, work on only one side of the identity.

- We cannot assume the equation is true, so properties of equality cannot be applied.
- We verify the identity by changing the form of one side until we get a match with the other.

2. Work with the more complex side, as it is easier to reduce/simplify than to "build."
3. If an expression contains more than one term, it is often helpful to combine terms using $\frac{A}{B} \pm \frac{C}{D}=\frac{A D \pm B C}{B D}$.
4. Converting all functions to sines and cosines can be helpful.
5. Apply other algebra skills as appropriate: distribute, factor, multiply by a conjugate, and so on.
6. Know the fundamental identities inside out, upside down, and backward -they are the key!

Note how these ideas are employed in Examples 2 through 4, particularly the frequent use of fundamental identities.

EXAMPLE $2-$ Verifying an Identity

Verify the identity: $\sin ^{2} \theta \tan ^{2} \theta=\tan ^{2} \theta-\sin ^{2} \theta$.
Solution - As a general rule, the side with the greater number of terms or the side with rational terms is considered "more complex," so we begin with the right-hand side.

$$
\begin{aligned}
\tan ^{2} \theta-\sin ^{2} \theta & =\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\sin ^{2} \theta & & \text { substitute } \frac{\sin ^{2} \theta}{\cos ^{2} \theta} \text { for } \tan ^{2} \theta \\
& =\frac{\sin ^{2} \theta}{1} \cdot \frac{1}{\cos ^{2} \theta}-\sin ^{2} \theta & & \text { decompose rational term } \\
& =\sin ^{2} \theta \sec ^{2} \theta-\sin ^{2} \theta & & \text { substitute } \sec ^{2} \theta \text { for } \frac{1}{\cos ^{2} \theta} \\
& =\sin ^{2} \theta\left(\sec ^{2} \theta-1\right) & & \text { factor out } \sin ^{2} \theta \\
& =\sin ^{2} \theta \tan ^{2} \theta & & \text { substitute } \tan ^{2} \theta \text { for } \sec ^{2} \theta-1
\end{aligned}
$$

Now try Exercises 13 through 18

Example 2 involved factoring out a common expression. Just as often, we'll need to multiply numerators and denominators by a common expression, as in Example 3.

EXAMPLE $3-$ Verifying an Identity by Multiplying Conjugates

Verify the identity: $\frac{\cos t}{1+\sec t}=\frac{1-\cos t}{\tan ^{2} t}$.
Solution Both sides of the identity have a single term and one is really no more complex than the other. As a matter of choice we begin with the left side. Noting the
denominator on the left has the term $\sec t$, with a corresponding term of $\tan ^{2} t$ to the right, we reason that multiplication by a conjugate might be productive.

$$
\begin{aligned}
\frac{\cos t}{1+\sec t} & =\left(\frac{\cos t}{1+\sec t}\right)\left(\frac{1-\sec t}{1-\sec t}\right) & & \text { multiply above and below by the conjugate } \\
& =\frac{\cos t-1}{1-\sec ^{2} t} & & \text { distribute: } \cos t \sec t=1,(A+B)(A-B)=A^{2}-B^{2} \\
& =\frac{\cos t-1}{-\tan ^{2} t} & & \begin{array}{l}
\text { substitute }-\tan ^{2} t \text { for } 1-\sec ^{2} t \\
\left(1+\tan ^{2} t=\sec ^{2} t \Rightarrow 1-\sec ^{2} t=-\tan ^{2} t\right)
\end{array} \\
& =\frac{1-\cos t}{\tan ^{2} t} & & \text { multiply above and below by }-1
\end{aligned}
$$

Now try Exercises 19 through 22

Example 3 highlights the need to be very familiar with families of identities. To replace $1-\sec ^{2} t$, we had to use $-\tan ^{2} t$, not simply $\tan ^{2} t$, since the related Pythagorean identity is $1+\tan ^{2} t=\sec ^{2} t$.

As noted in the Guidelines, combining rational terms is often helpful. At this point, students are encouraged to work with the pattern $\frac{A}{B} \pm \frac{C}{D}=\frac{A D \pm B C}{B D}$ as a means of combing rational terms quickly and efficiently.

EXAMPLE $4-$ Verifying an Identity by Combining Terms

Verify the identity: $\frac{\sec x}{\sin x}-\frac{\sin x}{\sec x}=\frac{\tan ^{2} x+\cos ^{2} x}{\tan x}$.
Solution We begin with the left-hand side.

V/B. You've just learned how to verify general identities

$$
\begin{aligned}
\frac{\sec x}{\sin x}-\frac{\sin x}{\sec x} & =\frac{\sec ^{2} x-\sin ^{2} x}{\sin x \sec x} & & \text { combine terms: } \frac{A}{B}-\frac{C}{D}=\frac{A D-B C}{B D} \\
& =\frac{\left(1+\tan ^{2} x\right)-\left(1-\cos ^{2} x\right)}{\left(\frac{\sin x}{1}\right)\left(\frac{1}{\cos x}\right)} & \begin{array}{l}
\text { substitute } 1+\tan ^{2} x \text { for } \sec ^{2} x, \\
1-\cos ^{2} x \text { for } \sin ^{2} x, \frac{1}{\cos x} \text { for } \sec x \\
\end{array} & =\frac{\tan ^{2} x+\cos ^{2} x}{\tan x}
\end{aligned}
$$

Now try Exercises 23 through 28

Identities come in an infinite variety and it would be impossible to illustrate all variations. Using the general ideas and skills presented should prepare you to verify any of those given in the exercise set, as well as those you encounter in your future studies. See Exercises 29 through 58.

C. Showing an Equation Is Not an Identity

To show an equation is not an identity, we need only find a single value for which the functions involved are defined but the equation is false. This can often be done by trial and error, or even by inspection. To illustrate the process, we'll use two common misconceptions that arise in working with identities.

EXAMPLE 5 Showing an Equation Is Not an Identity

Show the equations given are not identities.
a. $\sin (2 x)=2 \sin x$
b. $\cos (\alpha+\beta)=\cos \alpha+\cos \beta$

Solution
C. You've just learned how to use counterexamples and contradictions to show an equation is not an identity
a. The assumption here seems to be that we can factor out the coefficient from the argument. By inspection we note the amplitude of $\sin (2 x)$ is $A=1$, while the amplitude of $2 \sin x$ is $A=2$. This means they cannot possibly be equal for all values of x, although they are equal for integer multiples of π. Verify they are not equivalent using $x=\frac{\pi}{6}$ or other standard values.

GRAPHICAL SUPPORT

While not a definitive method of proof, a graphing calculator can be used to investigate whether an equation is an identity. Since the left and right members of the equation must be equal for all values (where they are defined), their graphs must be identical. Graphing the left and right sides of the equation from Example 5(a) as Y_{1} and Y_{2}
 shows the equation $\sin (2 x)=2 \sin x$ is definitely not an identity.
b. The assumption here is that we can distribute function values. This is similar to saying $\sqrt{x+4}=\sqrt{x}+2$, a statement obviously false for all values except $x=0$. Here we'll substitute convenient values to prove the equation false, namely, $\alpha=\frac{3 \pi}{4}$ and $\beta=\frac{\pi}{4}$.

$$
\begin{aligned}
\cos \left(\frac{3 \pi}{4}+\frac{\pi}{4}\right) & =\cos \left(\frac{3 \pi}{4}\right)+\cos \left(\frac{\pi}{4}\right) & & \text { substitute } \frac{3 \pi}{4} \text { for } \alpha \text { and } \frac{\pi}{4} \text { for } \beta \\
\cos \pi & =-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} & & \text { simplify } \\
-1 & \neq 0 & & \text { result is false }
\end{aligned}
$$

Now try Exercises 59 through 64

TECHNOLOGY HIGHLIGHT

Identities and Graphical Tests

Unless you are told to verify a known identity, how would you know ahead of time that it was possible? What if there was a misprint on a test, quiz, or homework assignment and what you were trying to prove wasn't possible? In cases like these, a graphical test can be used. While not fool-proof, seeing if the graphs appear identical can either suggest the identity is true, or definitely show it is not. When testing identities, it helps to ENTER the left-hand side of the equation as Y_{1} on the $Y=$ screen, and the right-hand side as Y_{2}. We can then

Figure 5.2
 test whether an identity relationship might exist by activating the two relations in question, graphing both relations, and noting whether two graphs or a single graph appears on the GRAPH screen. After entering the six functions shown in Figure 5.2, leave Y_{1} and Y_{2} active, then deactivate Y_{3} through Y_{6} by
overlaying the equal sign with the cursor and pressing ENTER. In this way, we'll test each pair to see if their graphs appear identical. Of course, the calculator's TABLE feature could also be used. Using the calculator's Z00M 7:ZTrig feature, we obtain the graph shown in Figure 5.3, which indicates that an identity relationship likely exists between Y_{1} and Y_{2}. After deactivating Y_{1} and Y_{2} we activate Y_{3} and Y_{4} and again note the likelihood of an identity relationship, since only one graph can be seen. However, when testing Y_{5} and Y_{6}, we note the existence of two distinct graphs (see Figure 5.4), and conclude as in Example 5(a) that $\sin (2 x) \neq 2 \sin x$-even though $\sin (2 x)=2 \sin x$ for integer multiples of π (the points of intersection). Use this technique to help determine which of the following equations are not identities.

Figure 5.3

Figure 5.4

Exercise 1: $\frac{1-\sin ^{2} \theta}{\cos \theta}=\cos \theta$
Exercise 3: $\frac{\cos x}{1+\sin x}=\frac{1-\sin x}{\cos x}$

Exercise 2: $\quad \cos (2 x)=1-2 \sin ^{2} x$
Exercise 4: $\frac{\cos x}{1-\sin x}=\sec x-\tan x$

5.1 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. The identities $-\sin x \tan x=\sin (-x) \tan x$ and $\cos (-x) \cot x=\cos x \cot x$ are examples of
\qquad due to \qquad -.
2. To verify an identity, always begin with the more
\qquad expression, since it is easier to
\qquad than to \qquad _.
3. Discuss/Explain why you must not add, subtract, multiply, or divide both sides of the equation when verifying identities.
4. To show an equation is not an identity, we must find at least \qquad input value where both sides of the equation are defined, but results in a \qquad equation.
5. Converting all terms to functions of \qquad and
\qquad may help verify an identity.
6. Discuss/Explain the difference between operating on both sides of an equation (see Exercise 5) and working on each side independently.

DEVELOPING YOUR SKILLS

Verify that the following equations are identities.
7. $(1+\sin x)[1+\sin (-x)]=\cos ^{2} x$
8. $(\sec x+1)[\sec (-x)-1]=\tan ^{2} x$
9. $\sin ^{2}(-x)+\cos ^{2} x=1$
10. $1+\cot ^{2}(-x)=\csc ^{2} x$
11. $\frac{1-\sin (-x)}{\cos x+\cos (-x) \sin x}=\sec x$
12. $\frac{1+\cos (-x)}{\sin x-\cos x \sin (-x)}=\csc x$
13. $\cos ^{2} x \tan ^{2} x=1-\cos ^{2} x$
14. $\sin ^{2} x \cot ^{2} x=1-\sin ^{2} x$
15. $\tan x+\cot x=\sec x \csc x$
16. $\cot x \cos x=\csc x-\sin x$
17. $\frac{\cos x}{\tan x}=\csc x-\sin x$
18. $\frac{\sin x}{\cot x}=\sec x-\cos x$
19. $\frac{\cos \theta}{1-\sin \theta}=\sec \theta+\tan \theta$
20. $\frac{\sin \theta}{1-\cos \theta}=\csc \theta+\cot \theta$
21. $\frac{1-\sin x}{\cos x}=\frac{\cos x}{1+\sin x}$
22. $\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}$
23. $\frac{\csc x}{\cos x}-\frac{\cos x}{\csc x}=\frac{\cot ^{2} x+\sin ^{2} x}{\cot x}$
24. $\frac{1}{\cos ^{2} x}+\frac{1}{\sin ^{2} x}=\csc ^{2} x \sec ^{2} x$
25. $\frac{\sin x}{1+\sin x}-\frac{\sin x}{1-\sin x}=-2 \tan ^{2} x$
26. $\frac{\cos x}{1+\cos x}-\frac{\cos x}{1-\cos x}=-2 \cot ^{2} x$
27. $\frac{\cot x}{1+\csc x}-\frac{\cot x}{1-\csc x}=2 \sec x$
28. $\frac{\tan x}{1+\sec x}-\frac{\tan x}{1-\sec x}=2 \csc x$
29. $\frac{\sec ^{2} x}{1+\cot ^{2} x}=\tan ^{2} x$
30. $\frac{\csc ^{2} x}{1+\tan ^{2} x}=\cot ^{2} x$
31. $\sin ^{2} x\left(\cot ^{2} x-\csc ^{2} x\right)=-\sin ^{2} x$
32. $\cos ^{2} x\left(\tan ^{2} x-\sec ^{2} x\right)=-\cos ^{2} x$
33. $\cos x \cot x+\sin x=\csc x$
34. $\sin x \tan x+\cos x=\sec x$
35. $\frac{\sec x}{\cot x+\tan x}=\sin x$
36. $\frac{\csc x}{\cot x+\tan x}=\cos x$
37. $\frac{\sin x-\csc x}{\csc x}=-\cos ^{2} x$
38. $\frac{\cos x-\sec x}{\sec x}=-\sin ^{2} x$
39. $\frac{1}{\csc x-\sin x}=\tan x \sec x$
40. $\frac{1}{\sec x-\cos x}=\cot x \csc x$
41. $\frac{1+\sin x}{1-\sin x}=(\tan x+\sec x)^{2}$
42. $\frac{1-\cos x}{1+\cos x}=(\csc x-\cot x)^{2}$
43. $\frac{\cos x-\sin x}{1-\tan x}=\frac{\cos x+\sin x}{1+\tan x}$
44. $\frac{1-\cot x}{1+\cot x}=\frac{\sin x-\cos x}{\sin x+\cos x}$
45. $\frac{\tan ^{2} x-\cot ^{2} x}{\tan x-\cot x}=\csc x \sec x$
46. $\frac{\cot x-\tan x}{\cot ^{2} x-\tan ^{2} x}=\sin x \cos x$
47. $\frac{\cot x}{\cot x+\tan x}=1-\sin ^{2} x$
48. $\frac{\tan x}{\cot x+\tan x}=1-\cos ^{2} x$
49. $\frac{\sec ^{4} x-\tan ^{4} x}{\sec ^{2} x+\tan ^{2} x}=1$
50. $\frac{\csc ^{4} x-\cot ^{4} x}{\csc ^{2} x+\cot ^{2} x}=1$
51. $\frac{\cos ^{4} x-\sin ^{4} x}{\cos ^{2} x}=2-\sec ^{2} x$
52. $\frac{\sin ^{4} x-\cos ^{4} x}{\sin ^{2} x}=2-\csc ^{2} x$
53. $(\sec x+\tan x)^{2}=\frac{(\sin x+1)^{2}}{\cos ^{2} x}$
54. $(\csc x+\cot x)^{2}=\frac{(\cos x+1)^{2}}{\sin ^{2} x}$
55. $\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}+\frac{\csc x}{\sec x}=\frac{\sec x+\cos x}{\sin x}$
56. $\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}+\frac{\sec x}{\csc x}=\frac{\csc x+\sin x}{\cos x}$
57. $\frac{\sin ^{4} x-\cos ^{4} x}{\sin ^{3} x+\cos ^{3} x}=\frac{\sin x-\cos x}{1-\sin x \cos x}$
58. $\frac{\sin ^{4} x-\cos ^{4} x}{\sin ^{3} x-\cos ^{3} x}=\frac{\sin x+\cos x}{1+\sin x \cos x}$

Show that the following equations are not identities.
59. $\sin \left(\theta+\frac{\pi}{3}\right)=\sin \theta+\sin \left(\frac{\pi}{3}\right)$
60. $\cos \left(\frac{\pi}{4}\right)+\cos \theta=\cos \left(\frac{\pi}{4}+\theta\right)$
61. $\cos (2 \theta)=2 \cos \theta$
62. $\tan (2 \theta)=2 \tan \theta$
63. $\tan \left(\frac{\theta}{4}\right)=\frac{\tan \theta}{\tan 4}$
64. $\cos ^{2} \theta-\sin ^{2} \theta=-1$

WORKING WITH FORMULAS

65. Distance to top of movie screen:

$d^{2}=(20+x \cos \theta)^{2}+(20-x \sin \theta)^{2}$
At a theater, the optimum viewing angle depends on a number of factors, like the height of the screen, the incline of the auditorium, the location of a seat, the height of your eyes while seated, and so on. One of the measures needed to find the "best" seat is the distance from your eyes to the top of the screen. For a theater with the dimensions shown, this distance is given by the formula here (x is the diagonal distance from the horizontal floor to your seat).
(a) Show the formula is equivalent to $800+40 x(\cos \theta-\sin \theta)+x^{2}$.
(b) Find the distance d if $\theta=18^{\circ}$ and you are sitting in the eighth row with the rows spaced 3 ft apart.

66. The area of triangle $A B C: A=\frac{c^{2} \sin A \sin B}{2 \sin C}$

If one side and three angles of a triangle are known, its area can be computed using this formula, where side c is opposite angle C. Find the area of the triangle shown in the diagram.

APPLICATIONS

67. Pythagorean theorem: For the triangle shown,
(a) find an expression for the length of the hypotenuse in terms of $\tan x$ and $\cot x$, then determine the length of the hypotenuse when
 $x=1.5 \mathrm{rad}$; (b) show the expression you found in part (a) is equivalent to $h=\sqrt{\csc x \sec x}$ and recompute the length of the hypotenuse using this expression. Did the answers match?
68. Pythagorean theorem: For the triangle shown, (a) find an expression for the area of the triangle in terms of $\cot x$ and $\cos x$, then determine its area given $x=\frac{\pi}{6}$; (b) show the expression you found in part (a) is equivalent to $A=\frac{1}{2}(\csc x-\sin x)$ and recompute the area using this expression. Did the answers match?

Exercise 68

69. Viewing distance: Referring to Exercise 65, find a formula for D-the distance from this patron's eyes to the bottom of the movie screen. Simplify the result using a Pythagorean identity, then find the value of D.
70. Viewing angle: Referring to Exercises 65 and 69, once d and D are known, the viewing angle α (the angle subtended by the movie screen and the viewer's eyes) can be found using the formula $\cos \alpha=\frac{d^{2}+D^{2}-20^{2}}{2 d D}$. Find the value of $\cos \alpha$ for this particular theater, person, and seat.
71. Intensity of light: In a study of the luminous intensity of light, the expression
$\sin \alpha=\frac{I_{1} \cos \theta}{\sqrt{\left(I_{1} \cos \theta\right)^{2}+\left(I_{2} \sin \theta\right)^{2}}}$ can occur.
Simplify the equation for the moment $I_{1}=I_{2}$.
72. Intensity of light: Referring to Exercise 71, find the angle θ given $I_{1}=I_{2}$ and $\alpha=60^{\circ}$.

EXTENDING THE CONCEPT

73. Just as the points $P(x, y)$ on the unit circle $x^{2}+y^{2}=1$ are used to name the circular trigonometric functions, the points $P(x, y)$ on the unit hyperbola $x^{2}-y^{2}=1$ are used to name what are called the hyperbolic trigonometric functions. The hyperbolic functions are used extensively in many of the applied sciences. The identities for these functions have many similarities to those for the circular functions, but also have some significant differences. Using the Internet or the resources of a
library, do some research on the functions $\sinh t$, $\cosh t$, and $\tanh t$, where t is any real number. In particular, see how the Pythagorean identities compare/contrast between the two forms of trigonometry.
74. Verify the identity $\frac{\sin ^{6} x-\cos ^{6} x}{\sin ^{4} x-\cos ^{4} x}=1-\sin ^{2} x \cos ^{2} x$.
75. Use factoring to show the equation is an identity: $\sin ^{4} x+2 \sin ^{2} x \cos ^{2} x+\cos ^{4} x=1$.

MAINTAINING YOUR SKILLS

76. (3.3) Verify the point $\left(-\frac{3}{4}, \frac{\sqrt{7}}{4}\right)$ is on the unit circle and use it to give the value of the six trig functions of θ.
77. (2.3) Standing 265 ft from the base of the Strastosphere Tower in Las Vegas, Nevada, the angle of elevation to the top of the tower is about 77°. Approximate the height of the tower to the nearest foot.
78. (4.2) The equation of the function graphed in the figure is of the form $y=\cot (B x)$. What is the value of B ?

79. (1.3) Find $f(\theta)$ for all six trig functions, given $P(-16,-63)$ is on the terminal side of θ.
80. (3.2) The Earth has a radius of 3960 mi. Charlotte, North Carolina, is located at $35^{\circ} \mathrm{N}$ latitude, $80.5^{\circ} \mathrm{W}$ longitude. Amarillo, Texas, is located at $35^{\circ} \mathrm{N}$ latitude, $101.5^{\circ} \mathrm{W}$ longitude. How many miles separate the two cities?
81. (4.1) Use a reference rectangle and the rule of fourths to sketch the graph of $y=2 \sin (2 t)$ for $t \in[0,2 \pi)$.

5.2
 The Sum and Difference Identities

Learning Objectives

In Section 5.2 you will learn how to:
A. Develop and use sum and difference identities for cosine
B. Use the cofunction identities to develop the sum and difference identities for sine and tangent
C. Use the sum and difference identities to verify other identities

Figure 5.5

Figure 5.6

The sum and difference formulas for sine and cosine have a long and ancient history. Originally developed to help study the motion of celestial bodies, they were used centuries later to develop more complex concepts, such as the derivatives of the trig functions, complex number theory, and the study of wave motion in different mediums. These identities are also used to find exact results (in radical form) for many nonstandard angles, a result of great importance to the ancient astronomers and still of notable mathematical significance today.

A. The Sum and Difference Identities for Cosine

On a unit circle with center C, consider the point A on the terminal side of angle α, and point B on the terminal side of angle β, as shown in Figure 5.5. Since $r=1$, the coordinates of A and B are $(\cos \alpha, \sin \alpha)$ and $(\cos \beta, \sin \beta)$, respectively. Using the distance formula, we find that $\overline{A B}$ is equal to

$$
\begin{aligned}
\overline{A B} & =\sqrt{(\cos \alpha-\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2}} \\
& =\sqrt{\cos ^{2} \alpha-2 \cos \alpha \cos \beta+\cos ^{2} \beta+\sin ^{2} \alpha-2 \sin \alpha \sin \beta+\sin ^{2} \beta} \quad \begin{array}{l}
\text { binomial } \\
\text { squares }
\end{array} \\
& =\sqrt{\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)+\left(\cos ^{2} \beta+\sin ^{2} \beta\right)-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta} \text { regroup } \\
& =\sqrt{2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta} \quad \cos ^{2} u+\sin ^{2} u=1
\end{aligned}
$$

With no loss of generality, we can rotate sector $A C B$ clockwise, until side $\overline{C B}$ coincides with the x-axis. This creates new coordinates of $(1,0)$ for B, and new coordinates of $(\cos (\alpha-\beta), \sin (\alpha-\beta))$ for A, but the distance $\overline{A B}$ remains unchanged! (see Figure 5.6). Recomputing the distance gives

$$
\begin{aligned}
\overline{A B} & =\sqrt{[\cos (\alpha-\beta)-1]^{2}+[\sin (\alpha-\beta)-0]^{2}} \\
& =\sqrt{\cos ^{2}(\alpha-\beta)-2 \cos (\alpha-\beta)+1+\sin ^{2}(\alpha-\beta)} \\
& =\sqrt{\left[\cos ^{2}(\alpha-\beta)+\sin ^{2}(\alpha-\beta)\right]-2 \cos (\alpha-\beta)+1} \\
& =\sqrt{2-2 \cos (\alpha-\beta)}
\end{aligned}
$$

Since both expressions represent the same distance, we can set them equal to each other and solve for $\cos (\alpha-\beta)$.

$$
\begin{aligned}
\sqrt{2-2 \cos (\alpha-\beta)} & =\sqrt{2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta} & & \overline{A B}=\overline{A B} \\
2-2 \cos (\alpha-\beta) & =2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta & & \text { property of radicals } \\
-2 \cos (\alpha-\beta) & =-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta & & \text { subtract 2 } \\
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta & & \text { divide both sides by }-2
\end{aligned}
$$

The result is called the difference identity for cosine. The sum identity for cosine follows immediately, by substituting $-\beta$ for β.

$$
\begin{aligned}
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta & & \text { difference identity } \\
\cos (\alpha-[-\beta]) & =\cos \alpha \cos (-\beta)+\sin \alpha \sin (-\beta) & & \text { substitute }-\beta \text { for } \beta \\
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta & & \cos (-\beta)=\cos \beta ; \sin (-\beta)=-\sin \beta
\end{aligned}
$$

The sum and difference identities can be used to find exact values for the trig functions of certain angles (values written in nondecimal form using radicals), simplify expressions, and to establish additional identities.

EXAMPLE 1 Finding Exact Values for Non-Standard Angles

Use the sum and difference identities for cosine to find exact values for
a. $\cos 15^{\circ}=\cos \left(45^{\circ}-30^{\circ}\right)$
b. $\cos 75^{\circ}=\cos \left(45^{\circ}+30^{\circ}\right)$

Check results on a calculator.
Solution Each involves a direct application of the related identity, and uses special values.

$$
\text { a. } \begin{array}{rlrl}
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta & & \text { difference identity } \\
\cos \left(45^{\circ}-30^{\circ}\right) & =\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ} & & \alpha=45^{\circ}, \beta=30^{\circ} \\
& =\left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right) & & \text { standard values } \\
\cos 15^{\circ} & =\frac{\sqrt{6}+\sqrt{2}}{4} & & \\
\text { combine terms }
\end{array}
$$

To 10 decimal places, $\cos 15^{\circ}=0.9659258263$.
b. $\quad \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \quad$ sum identity $\cos \left(45^{\circ}+30^{\circ}\right)=\cos 45^{\circ} \cos 30^{\circ}-\sin 45^{\circ} \sin 30^{\circ} \quad \alpha=45^{\circ}, \beta=30^{\circ}$

$$
\begin{array}{rlr}
& =\left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right) & \text { standard values } \\
\cos 75^{\circ} & =\frac{\sqrt{6}-\sqrt{2}}{4} & \text { combine terms }
\end{array}
$$

To 10 decimal places, $\cos 75^{\circ}=0.2588190451$.

Now try Exercises 7 through 12

CAUTION $>$ Be sure you clearly understand how these identities work. In particular, note that $\cos \left(60^{\circ}+30^{\circ}\right) \neq \cos 60^{\circ}+\cos 30^{\circ}\left(0 \neq \frac{1}{2}+\frac{\sqrt{3}}{2}\right)$ and in general $f(a+b) \neq f(a)+f(b)$.

These identities are listed here using the " \pm " and " \mp " notation to avoid needless repetition. In their application, use both upper symbols or both lower symbols depending on whether you're evaluating the cosine of a sum (upper symbols) or difference (lower symbols). As with the other identities, these can be rewritten to form other members of the identity family, as when they are used to consolidate a larger expression. This is shown in Example 2.

The Sum and Difference Identities for Cosine
cosine family: $\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \quad$ functions repeat, signs alternate
$\cos \alpha \cos \beta \mp \sin \alpha \sin \beta=\cos (\alpha \pm \beta)$ can be used to expand or contract

EXAMPLE $2-$ Using a Sum/Difference Identity to Simplify an Expression

Write as a single expression in cosine and evaluate: $\cos 57^{\circ} \cos 78^{\circ}-\sin 57^{\circ} \sin 78^{\circ}$
Solution - Since the functions repeat and are expressed as a difference, we use the sum identity for cosine to rewrite the difference as a single expression.

$$
\begin{array}{rlrl}
\cos \alpha \cos \beta-\sin \alpha \sin \beta & =\cos (\alpha+\beta) & \text { sum identity for cosine } \\
\cos 57^{\circ} \cos 78^{\circ}-\sin 57^{\circ} \sin 78^{\circ}=\cos \left(57^{\circ}+78^{\circ}\right) & \alpha=57^{\circ}, \beta=78^{\circ}
\end{array}
$$

The expression is equal to $\cos 135^{\circ}=-\frac{\sqrt{2}}{2}$.

The sum and difference identities can be used to evaluate the cosine of the sum of two angles, even when they are not adjacent, or even expressed in terms of cosine.

EXAMPLE $3-$ Computing the Cosine of a Sum

Given $\sin \alpha=\frac{5}{13}$ with the terminal side in QI, and $\tan \beta=-\frac{24}{7}$ with the terminal side in QII. Compute the value of $\cos (\alpha+\beta)$.
Solution $>$ To use the sum formula we need the value of $\cos \alpha, \sin \alpha, \cos \beta$, and $\sin \beta$. Using the given information about the quadrants along with the Pythagorean theorem, we draw the triangles shown in Figures 5.7 and 5.8, yielding the values that follow.

$$
\cos \alpha=\frac{12}{13}(\mathrm{QI}), \sin \alpha=\frac{5}{13}(\mathrm{QI}), \cos \beta=-\frac{7}{25}(\mathrm{QII}), \text { and } \sin \beta=\frac{24}{25}(\mathrm{QII})
$$

Using $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$ gives this result:

$$
\begin{aligned}
\cos (\alpha+\beta) & =\left(\frac{12}{13}\right)\left(-\frac{7}{25}\right)-\left(\frac{5}{13}\right)\left(\frac{24}{25}\right) \\
& =-\frac{84}{325}-\frac{120}{325} \\
& =-\frac{204}{325}
\end{aligned}
$$

Now try Exercises 17 and 18

B. The Sum and Difference Identities for Sine and Tangent

The cofunction identities were actually introduced in Section 2.1, using the complementary angles in a right triangle. In this section we'll verify that $\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$ and $\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta$. For the first, we use the difference identity for cosine to obtain

$$
\begin{aligned}
\cos \left(\frac{\pi}{2}-\theta\right) & =\cos \frac{\pi}{2} \cos \theta+\sin \frac{\pi}{2} \sin \theta \\
& =(0) \cos \theta+(1) \sin \theta \\
& =\sin \theta
\end{aligned}
$$

For the second, we use $\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$, and replace θ with the real number $\frac{\pi}{2}-t$. This gives

$$
\begin{aligned}
\cos \left(\frac{\pi}{2}-\theta\right) & =\sin \theta & & \text { cofunction identity for cosine } \\
\cos \left(\frac{\pi}{2}-\left[\frac{\pi}{2}-t\right]\right) & =\sin \left(\frac{\pi}{2}-t\right) & & \text { replace } \theta \text { with } \frac{\pi}{2}-t \\
\cos t & =\sin \left(\frac{\pi}{2}-t\right) & & \text { result, note }\left[\frac{\pi}{2}-\left(\frac{\pi}{2}-t\right)\right]=t
\end{aligned}
$$

This establishes the cofunction relationship for sine: $\sin \left(\frac{\pi}{2}-t\right)=\cos t$ for any real number t. Both identities can be written in terms of the real number t. See Exercises 19 through 24.

The Cofunction Identities

$$
\cos \left(\frac{\pi}{2}-t\right)=\sin t \quad \sin \left(\frac{\pi}{2}-t\right)=\cos t
$$

The sum and difference identities for sine can easily be developed using cofunction identities. Since $\sin t=\cos \left(\frac{\pi}{2}-t\right)$, we need only rename t as the sum $(\alpha+\beta)$ or the difference $(\alpha-\beta)$ and work from there.

$$
\begin{aligned}
\sin t & =\cos \left(\frac{\pi}{2}-t\right) & & \text { cofunction identity } \\
\sin (\alpha+\beta) & =\cos \left[\frac{\pi}{2}-(\alpha+\beta)\right] & & \\
& =\cos \left[\left(\frac{\pi}{2}-\alpha\right)-\beta\right] & & \text { substitute }(\alpha+\beta) \text { for } t \\
& =\cos \left(\frac{\pi}{2}-\alpha\right) \cos \beta+\sin \left(\frac{\pi}{2}-\alpha\right) \sin \beta & & \begin{array}{l}
\text { apply difference identity } \\
\text { for cosine }
\end{array} \\
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta & & \text { result }
\end{aligned}
$$

The difference identity for sine is likewise developed. The sum and difference identities for tangent can be derived using ratio identities and their derivation is left as an exercise (see Exercise 78).

The Sum and Difference Identities for Sine and Tangent

sine family: $\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \quad$ functions alternate, signs repeat $\sin \alpha \cos \beta \pm \cos \alpha \sin \beta=\sin (\alpha \pm \beta) \quad$ can be used to expand or contract

$$
\begin{aligned}
\text { tangent family: } \tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} & \begin{array}{l}
\text { signs match original in numerator, } \\
\text { signs alternate in denominator }
\end{array} \\
\qquad \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}=\tan (\alpha \pm \beta) & \text { can be used to expand or contract }
\end{aligned}
$$

EXAMPLE 4A $>$ Simplifying Expressions Using Sum/Difference Identities

Write as a single expression in sine: $\sin (2 t) \cos t+\cos (2 t) \sin t$.
Solution - Since the functions in each term alternate and the expression is written as a sum, we use the sum identity for sine:

$$
\begin{aligned}
\sin \alpha \cos \beta+\cos \alpha \sin \beta & =\sin (\alpha+\beta) & & \text { sum identity for sine } \\
\sin (2 t) \cos t+\cos (2 t) \sin t & =\sin (2 t+t) & & \text { substitute } 2 t \text { for } \alpha \text { and } t \text { for } \beta
\end{aligned}
$$

The expression is equal to $\sin (3 t)$.

EXAMPLE 4B Simplifying Expressions Using Sum/Difference Identities

Use the sum or difference identity for tangent to find the exact value of $\tan \frac{11 \pi}{12}$.
Solution \downarrow Since an exact value is requested, $\frac{11 \pi}{12}$ must be the sum or difference of two standard angles. A casual inspection reveals $\frac{11 \pi}{12}=\frac{2 \pi}{3}+\frac{\pi}{4}$. This gives

$$
\begin{aligned}
\tan (\alpha+\beta) & =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} & & \text { sum identity for tangent } \\
\tan \left(\frac{2 \pi}{3}+\frac{\pi}{4}\right) & =\frac{\tan \left(\frac{2 \pi}{3}\right)+\tan \left(\frac{\pi}{4}\right)}{1-\tan \left(\frac{2 \pi}{3}\right) \tan \left(\frac{\pi}{4}\right)} & & \alpha=\frac{2 \pi}{3}, \beta=\frac{\pi}{4} \\
& =\frac{-\sqrt{3}+1}{1-(-\sqrt{3})(1)} & & \tan \left(\frac{2 \pi}{3}\right)=-\sqrt{3}, \tan \left(\frac{\pi}{4}\right)=1 \\
& =\frac{1-\sqrt{3}}{1+\sqrt{3}} & & \text { simplify expression }
\end{aligned}
$$

Now try Exercises 25 through 54

C. Verifying Other Identities

Once the sum and difference identities are established, we can simply add these to the tools we use to verify other identities.

EXAMPLE 5 Verifying an Identity

Verify that $\tan \left(\theta-\frac{\pi}{4}\right)=\frac{\tan \theta-1}{\tan \theta+1}$ is an identity.
Solution - Using a direct application of the difference formula for tangent we obtain

$$
\begin{aligned}
\tan \left(\theta-\frac{\pi}{4}\right) & =\frac{\tan \theta-\tan \frac{\pi}{4}}{1+\tan \theta \tan \frac{\pi}{4}} & \alpha=\theta, \beta=\frac{\pi}{4} \\
& =\frac{\tan \theta-1}{1+\tan \theta}=\frac{\tan \theta-1}{\tan \theta+1} & \tan \left(\frac{\pi}{4}\right)=1
\end{aligned}
$$

Now try Exercises 55 through 60

EXAMPLE 6 - Verifying an Identity

Verify that $\sin (\alpha+\beta) \sin (\alpha-\beta)=\sin ^{2} \alpha-\sin ^{2} \beta$ is an identity.
Solution - Using the sum and difference formulas for sine we obtain

$$
\begin{array}{lll}
\sin (\alpha+\beta) \sin (\alpha-\beta) & =(\sin \alpha \cos \beta+\cos \alpha \sin \beta)(\sin \alpha \cos \beta-\cos \alpha \sin \beta) \\
& =\sin ^{2} \alpha \cos ^{2} \beta-\cos ^{2} \alpha \sin ^{2} \beta & (A+B)(A-B)=A^{2}-B^{2} \\
& =\sin ^{2} \alpha\left(1-\sin ^{2} \beta\right)-\left(1-\sin ^{2} \alpha\right) \sin ^{2} \beta & \\
\text { use cos} 2=1-\sin ^{2} x \text { to write the } \\
\text { expression solely in terms of sine } \\
\text { d difference } & & =\sin ^{2} \alpha-\sin ^{2} \alpha \sin ^{2} \beta-\sin ^{2} \beta+\sin ^{2} \alpha \sin ^{2} \beta \\
\text { other } & & \text { distribute } \\
& =\sin ^{2} \alpha-\sin ^{2} \beta & \text { simplify }
\end{array}
$$

TECHNOLOGY HIGHLIGHT

Relationships Between the Sum/Difference Formulas

In Example 3, we found that for $\sin \alpha=\frac{5}{13}$ in QI and $\tan \beta=-\frac{24}{7}$ in QII,

Figure 5.9
$1-(-204-325)^{2}$ -6060623669 $\sqrt{(\text { (Ans) }}$
.7784615385 AresFreac
$25.3 / 325$ yielding $\sin ^{2} \theta=0.6060023669$ (see Figure 5.9). To compute $\sqrt{0.6060023669}$, we use $\sqrt{\text { Ans }}$ where "Ans" is the result of the most recent calculation and can be accessed using 2nd (-). Knowing the answer must be rational (discuss why), we convert this value to fraction form using MATH ENTER (1:DFrac) ENTER giving $\sin \theta=\sin (\alpha+\beta)=\frac{253}{325}(\alpha+\beta$ is in QII where $\sin \theta>0$). At this point the value of $\tan (\alpha+\beta)$ is even easier to calculate, $\operatorname{since} \frac{\sin \theta}{\cos \theta}=\tan \theta$ for all θ (including $\theta=\alpha+\beta$). Since the denominators from $\sin (\alpha+\beta)$ and $\cos (\alpha+\beta)$ are identical, they reduce to 1 leaving the ratio of numerators, giving $\tan \theta=\tan (\alpha+\beta)=-\frac{253}{204}$. Use these ideas to complete the following exercises.

Exercise 1: For tan $\alpha=\frac{40}{9}$ in QIII and $\cos \beta=\frac{12}{37}$ in QIV, find $\cos (\alpha-\beta), \sin (\alpha-\beta)$, and $\tan (\alpha-\beta)$.
Exercise 2: For $\cos \alpha=-\frac{8}{17}$ in QIII and $\sin \beta=\frac{20}{29}$ in QII, find $\sin (\alpha+\beta), \cos (\alpha+\beta)$, and $\tan (\alpha+\beta)$.

5.2 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. Since $\tan 45^{\circ}+\tan 60^{\circ}>1$, we know $\tan 45^{\circ}+$ $\tan 60^{\circ}=\tan 105^{\circ}$ is \qquad since $\tan \theta<0$ in \qquad
2. For the cosine sum/difference identities, the functions \qquad in each term, with the \qquad sign between them.
3. Discuss/Explain how we know the exact value for $\cos \frac{11 \pi}{12}=\cos \left(\frac{2 \pi}{3}+\frac{\pi}{4}\right)$ will be negative, prior to applying any identity.
4. To find an exact value for $\tan 105^{\circ}$, use the sum identity for tangent with $\alpha=$ \qquad and $\beta=$ \qquad
5. For the sine sum/difference identities, the functions __ in each term, with the \qquad sign between them.
6. Discuss/Explain why $\tan (\alpha-\beta)=\frac{\sin (\alpha-\beta)}{\cos (\beta-\alpha)}$ is an identity, even though the arguments of cosine have been reversed. Then verify the identity.

DEVELOPING YOUR SKILLS

Find the exact value of the expression given using a sum or difference identity. Some simplifications may involve using symmetry and the formulas for negatives.
7. $\cos 105^{\circ}$
8. $\cos 135^{\circ}$
9. $\cos \left(\frac{7 \pi}{12}\right)$
10. $\cos \left(-\frac{5 \pi}{12}\right)$

Use sum/difference identities to verify that both expressions give the same result.
11. a. $\cos \left(45^{\circ}+30^{\circ}\right)$
b. $\cos \left(120^{\circ}-45^{\circ}\right)$
12. a. $\cos \left(\frac{\pi}{6}-\frac{\pi}{4}\right)$
b. $\cos \left(\frac{\pi}{4}-\frac{\pi}{3}\right)$

Rewrite as a single expression in cosine.
13. $\cos (7 \theta) \cos (2 \theta)+\sin (7 \theta) \sin (2 \theta)$
14. $\cos \left(\frac{\theta}{3}\right) \cos \left(\frac{\theta}{6}\right)-\sin \left(\frac{\theta}{3}\right) \sin \left(\frac{\theta}{6}\right)$

Find the exact value of the given expressions.
15. $\cos 183^{\circ} \cos 153^{\circ}+\sin 183^{\circ} \sin 153^{\circ}$
16. $\cos \left(\frac{7 \pi}{36}\right) \cos \left(\frac{5 \pi}{36}\right)-\sin \left(\frac{7 \pi}{36}\right) \sin \left(\frac{5 \pi}{36}\right)$
17. For $\sin \alpha=-\frac{4}{5}$ with terminal side in QIV and $\tan \beta=-\frac{5}{12}$ with terminal side in QII, find $\cos (\alpha+\beta)$.
18. For $\sin \alpha=\frac{112}{113}$ with terminal side in QII and $\sec \beta=-\frac{89}{39}$ with terminal side in QII, find $\cos (\alpha-\beta)$.

Use a cofunction identity to write an equivalent expression.
19. $\cos 57^{\circ}$
20. $\sin 18^{\circ}$
21. $\tan \left(\frac{5 \pi}{12}\right)$
22. $\sec \left(\frac{\pi}{10}\right)$
23. $\sin \left(\frac{\pi}{6}-\theta\right)$
24. $\cos \left(\frac{\pi}{3}+\theta\right)$

Rewrite as a single expression.

25. $\sin (3 x) \cos (5 x)+\cos (3 x) \sin (5 x)$
26. $\sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{3}\right)-\cos \left(\frac{x}{2}\right) \sin \left(\frac{x}{3}\right)$
27. $\frac{\tan (5 \theta)-\tan (2 \theta)}{1+\tan (5 \theta) \tan (2 \theta)}$
28. $\frac{\tan \left(\frac{x}{2}\right)+\tan \left(\frac{x}{8}\right)}{1-\tan \left(\frac{x}{2}\right) \tan \left(\frac{x}{8}\right)}$

Find the exact value of the given expressions.
29. $\sin 137^{\circ} \cos 47^{\circ}-\cos 137^{\circ} \sin 47^{\circ}$
30. $\sin \left(\frac{11 \pi}{24}\right) \cos \left(\frac{5 \pi}{24}\right)+\cos \left(\frac{11 \pi}{24}\right) \sin \left(\frac{5 \pi}{24}\right)$
31. $\frac{\tan \left(\frac{11 \pi}{21}\right)-\tan \left(\frac{4 \pi}{21}\right)}{1+\tan \left(\frac{11 \pi}{21}\right) \tan \left(\frac{4 \pi}{21}\right)}$
32. $\frac{\tan \left(\frac{3 \pi}{20}\right)+\tan \left(\frac{\pi}{10}\right)}{1-\tan \left(\frac{3 \pi}{20}\right) \tan \left(\frac{\pi}{10}\right)}$
33. For $\cos \alpha=-\frac{7}{25}$ with terminal side in QII and $\cot \beta=\frac{15}{8}$ with terminal side in QIII, find
a. $\sin (\alpha+\beta)$
b. $\tan (\alpha+\beta)$
34. For $\csc \alpha=\frac{29}{20}$ with terminal side in QI and $\cos \beta=-\frac{12}{37}$ with terminal side in $\mathrm{Q} I$, find
a. $\sin (\alpha-\beta)$
b. $\tan (\alpha-\beta)$

Find the exact value of the expression given using a sum or difference identity. Some simplifications may involve using symmetry and the formulas for negatives.
35. $\sin 105^{\circ}$
36. $\sin \left(-75^{\circ}\right)$
37. $\sin \left(\frac{5 \pi}{12}\right)$
38. $\sin \left(\frac{11 \pi}{12}\right)$
39. $\tan 150^{\circ}$
40. $\tan 75^{\circ}$
41. $\tan \left(\frac{2 \pi}{3}\right)$
42. $\tan \left(-\frac{\pi}{12}\right)$

Use sum/difference identities to verify that both expressions give the same result.
43. a. $\sin \left(45^{\circ}-30^{\circ}\right)$
44. a. $\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right)$
b. $\sin \left(135^{\circ}-120^{\circ}\right)$
b. $\sin \left(\frac{\pi}{4}-\frac{\pi}{6}\right)$
45. Find $\sin 255^{\circ}$ given $150^{\circ}+105^{\circ}=255^{\circ}$. See Exercises 7 and 35.
46. Find $\cos \left(\frac{19 \pi}{12}\right)$ given $2 \pi-\frac{5 \pi}{12}=\frac{19 \pi}{12}$. See Exercises 10 and 37.
47. Given α and β are acute angles with $\sin \alpha=\frac{12}{13}$ and $\tan \beta=\frac{35}{12}$, find
a. $\sin (\alpha+\beta)$
b. $\cos (\alpha-\beta)$
c. $\tan (\alpha+\beta)$
48. Given α and β are acute angles with $\cos \alpha=\frac{8}{17}$ and $\sec \beta=\frac{25}{7}$, find
a. $\sin (\alpha+\beta)$
b. $\cos (\alpha-\beta)$
c. $\tan (\alpha+\beta)$
49. Given α and β are obtuse angles with $\sin \alpha=\frac{28}{53}$ and $\cos \beta=-\frac{13}{85}$, find
a. $\sin (\alpha-\beta)$
b. $\cos (\alpha+\beta)$
c. $\tan (\alpha-\beta)$
50. Given α and β are obtuse angles with $\tan \alpha=-\frac{60}{11}$ and $\sin \beta=\frac{35}{37}$, find
a. $\sin (\alpha-\beta)$
b. $\cos (\alpha+\beta)$
c. $\tan (\alpha-\beta)$
51. Use the diagram indicated to compute the following:
a. $\sin A$
b. $\cos A$
c. $\tan A$

Exercise 51
Exercise 52

52. Use the diagram indicated to compute the following:
a. $\sin \beta$
b. $\cos \beta$
c. $\tan \beta$
53. For the figure indicated, show that $\theta=\alpha+\beta$ and compute the following:
a. $\sin \theta$
b. $\cos \theta$
c. $\tan \theta$

54. For the figure indicated, show that $\theta=\alpha+\beta$ and compute the following:
a. $\sin \theta$
b. $\cos \theta$
c. $\tan \theta$

Exercise 54

Verify each identity.

55. $\sin (\pi-\alpha)=\sin \alpha$
56. $\cos (\pi-\alpha)=-\cos \alpha$
57. $\cos \left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}(\cos x-\sin x)$
58. $\sin \left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}(\sin x+\cos x)$
59. $\tan \left(x+\frac{\pi}{4}\right)=\frac{1+\tan x}{1-\tan x}$
60. $\tan \left(x-\frac{\pi}{4}\right)=\frac{\tan x-1}{\tan x+1}$
61. $\cos (\alpha+\beta)+\cos (\alpha-\beta)=2 \cos \alpha \cos \beta$
62. $\sin (\alpha+\beta)+\sin (\alpha-\beta)=2 \sin \alpha \sin \beta$
63. $\cos (2 t)=\cos ^{2} t-\sin ^{2} t$
64. $\sin (2 t)=2 \sin t \cos t$
65. $\sin (3 t)=-4 \sin ^{3} t+3 \sin t$
66. $\cos (3 t)=4 \cos ^{3} t-3 \cos t$
67. Use a difference identity to show

$$
\cos \left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}(\cos x+\sin x)
$$

68. Use sum/difference identities to show
$\sin \left(x+\frac{\pi}{4}\right)+\sin \left(x-\frac{\pi}{4}\right)=\sqrt{2} \sin x$

WORKING WITH FORMULAS

69. Force and equilibrium: $F=\frac{W k}{c} \tan (p-\theta)$ The force required to maintain equilibrium when a screw jack is used can be modeled by the formula shown, where p is the pitch angle of the screw, W is the weight of the load, θ is the angle of friction, with k and c being constants related to a particular jack. Simplify the formula using the difference formula for tangent given $p=\frac{\pi}{6}$ and $\theta=\frac{\pi}{4}$.

APPLICATIONS

71. AC circuits: In a study of AC circuits, the equation $R=\frac{\cos s \cos t}{\bar{\omega} C \sin (s+t)}$ sometimes arises. Use a sum identity and algebra to show this equation is equivalent to $R=\frac{1}{\bar{\omega} C(\tan s+\tan t)}$.
72. Fluid mechanics: In studies of fluid mechanics, the equation $\gamma_{1} V_{1} \sin \alpha=\gamma_{2} V_{2} \sin (\alpha-\beta)$ sometimes arises. Use a difference identity to show that if $\gamma_{1} V_{1}=\gamma_{2} V_{2}$, the equation is equivalent to $\cos \beta-\cot \alpha \sin \beta=1$.
73. Art and mathematics: When working in twopoint geometric perspective, artists must scale their work to fit on the paper or canvas they are using. In doing so, the equation $\frac{A}{B}=\frac{\tan \theta}{\tan \left(90^{\circ}-\theta\right)}$ arises.
Rewrite the expression on the right in terms of sine and cosine, then use the difference identities to show the equation can be rewritten as $\frac{A}{B}=\tan ^{2} \theta$.
74. Traveling waves: If two waves of the same frequency, velocity, and amplitude are traveling along a string in opposite directions, they can be represented by the equations $\mathrm{Y}_{1}=A \sin (k x-\omega t)$ and $Y_{2}=A \sin (k x+\omega t)$. Use the sum and difference formulas for sine to show the result $\mathrm{Y}_{R}=\mathrm{Y}_{1}+\mathrm{Y}_{2}$ of these waves can be expressed as $\mathrm{Y}_{R}=2 A \sin (k x) \cos (\omega t)$.
75. Brewster's law of reflection: $\tan \theta_{p}=\frac{\boldsymbol{n}_{\mathbf{2}}}{\boldsymbol{n}_{\mathbf{1}}}$

Brewster's law of optics states that when unpolarized light strikes a dielectric surface, the transmitted light rays and the reflected light rays are perpendicular to each other. The proof of Brewster's law involves the expression $n_{1} \sin \theta_{p}=n_{2} \sin \left(\frac{\pi}{2}-\theta_{p}\right)$. Use the difference identity for sine to verify that this expression leads to Brewster's law.
75. Pressure on the eardrum: If a frequency generator is placed a certain distance from the ear, the pressure on the eardrum can be modeled by the function $P_{1}(t)=A \sin (2 \pi f t)$, where f is the frequency and t is the time in seconds. If a second frequency generator with identical settings is placed slightly closer to the ear, its pressure on the eardrum could be represented by $P_{2}(t)=A \sin (2 \pi f t+C)$, where C is a constant. Show that if $C=\frac{\pi}{2}$, the total pressure on the eardrum $\left[P_{1}(t)+P_{2}(t)\right]$ is $P(t)=A[\sin (2 \pi f t)+\cos (2 \pi f t)]$.
76. Angle between two cables: Two cables used to steady a radio tower are attached to the tower at heights of 5 ft and 35 ft , with both secured to a stake 12 ft from the tower (see figure). Find the value of $\cos \theta$, where θ is the angle between the upper and lower cables.

77. Difference quotient: Given $f(x)=\sin x$, show that the difference quotient $\frac{f(x+h)-f(x)}{h}$ results in the expression $\sin x\left(\frac{\cos h-1}{h}\right)+\cos x\left(\frac{\sin h}{h}\right)$.
78. Difference identity: Derive the difference identity for tangent using $\tan (\alpha-\beta)=\frac{\sin (\alpha-\beta)}{\cos (\alpha-\beta)}$. (Hint: After applying the difference identities, divide the numerator and denominator by $\cos \alpha \cos \beta$.)

EXTENDING THE CONCEPT

A family of identities called the angle reduction formulas will be of use in our study of complex numbers and other areas. These formulas use the period of a function to reduce large angles to an angle in [$0,360^{\circ}$) or $[0,2 \pi$) having an equivalent function value: (1) $\cos (t+2 \pi k)=\cos t$; (2) $\sin (t+2 \pi k)=\sin t$. Use the reduction formulas to find values for the following functions (note the formulas can also be expressed in degrees).
79. $\cos 1665^{\circ}$
80. $\cos \left(\frac{91 \pi}{6}\right)$
81. $\sin \left(\frac{41 \pi}{6}\right)$
82. $\sin 2385^{\circ}$
83. An alternative method of proving the difference formula for cosine uses a unit circle and the fact that equal arcs are subtended by equal chords ($D=d$ in the diagram). Using a combination of algebra, the distance formula, and a Pythagorean identity, show that $\cos (\alpha-\beta)=\cos \alpha \cos \beta+$ $\sin \alpha \sin \beta$ (start by computing D^{2} and d^{2}). Then discuss/explain how the sum identity can be found using the fact that $\beta=-(-\beta)$.
84. A proof without words: Verify the Pythagorean theorem for each right triangle in the diagram, then discuss/explain how the diagram offers a proof of the sum identities for sine and cosine. Be detailed and thorough.

MAINTAINING YOUR SKILLS

85. (3.4) Verify that $\left(\frac{\sqrt{7}}{4}, \frac{3}{4}\right)$ is a point on the unit circle, then state the values of $\sin t, \cos t$, and $\tan t$ associated with this point.
86. (3.2) Find the area of the circular segment and the length of the arc subtended by $\theta=57^{\circ}$ for $r=2 \mathrm{ft}$.
87. (1.1) Name the standard ratio of the sides for a 45-45-90 and 30-60-90 triangle. Include a diagram.
88. (3.4) State the domain of the function: $y=\tan t$.
89. (4.3) Graph using transformations of a basic function: $y=-2 \cos \left(t+\frac{\pi}{4}\right) ; t \in[0,2 \pi)$
90. (2.3) Use an appropriate trig ratio to find the length of the bridge needed to cross the lake shown in the figure.

Exercise 83

Exercise 84

Verify that the following equations are identities.

1. $\cos ^{2} x-\cot ^{2} x=-\cos ^{2} x \cot ^{2} x$
2. $1-\sin ^{4} t=\left(1+\sin ^{2} t\right) \cos ^{2} t$
3. $\frac{2 \sin x}{\sec x}-\frac{\cos x}{\csc x}=\cos x \sin x$
4. $\frac{1-\cos t}{\cos t}+\frac{\sec t-1}{\sec t}=\sec t-\cos t$

Show the equations given are not identities.
5. $1+\sec ^{2} x=\tan ^{2} x$
6. $\cos ^{2} t=\sin ^{2} t-1$

Rewrite as a single expression.
7. $\cos (6 \alpha) \cos (2 \alpha)+\sin (6 \alpha) \sin (2 \alpha)$
8. $\sin \left(\frac{\pi}{4} t\right) \cos \left(\frac{\pi}{3} t\right)+\cos \left(\frac{\pi}{4} t\right) \sin \left(\frac{\pi}{3} t\right)$
9. Given α and β are acute angles with $\cos \alpha=\frac{3}{5}$ and $\cot \beta=\frac{5}{12}$, find
a. $\sin (\alpha+\beta)$
b. $\cos (\alpha-\beta)$
c. $\tan (\alpha+\beta)$
10. Given α and β are obtuse angles with $\sin \alpha=\frac{56}{65}$ and $\tan \beta=-\frac{80}{39}$, find
a. $\sin (\alpha-\beta)$
b. $\cos (\alpha+\beta)$
c. $\tan (\alpha-\beta)$

REINFORCING BASIC CONCEPTS

Understanding Identities

Sometimes a tactile verification of identities can help us understand and appreciate them. For the following exercises you will need a $\mathrm{cm} / \mathrm{mm}$ ruler and a protractor.
Exercise 1: As carefully as you can (very carefully), measure the opposite and adjacent sides of each triangle below to the nearest half-millimeter (mm) with respect to the angle α or β given. Then use the Pythagorean theorem to compute the length of the hypotenuse. Then measure the hypotenuse and compare your measured result with your computed result. What was the percent difference between the two measurements?

Exercise 2: Using the measured lengths, write the values for $\sin \alpha, \cos \alpha, \tan \alpha, \sin \beta, \cos \beta$, and $\tan \beta$ for each triangle. Compute $\sin ^{2} \alpha+\cos ^{2} \alpha$ and $\sin ^{2} \beta+\cos ^{2} \beta$. What do you notice?
Exercise 3: Is it true that $\tan \alpha=\frac{\sin \alpha}{\cos \alpha} ? \tan \beta=\frac{\sin \beta}{\cos \beta}$?
As an additional tool to help verify identities, we can write each function in terms of its unit circle definition, enabling us to work through a proof in more algebraic terms. This sometimes makes the process less cumbersome. Recall that for $P(x, y)$ on the unit circle, $x^{2}+y^{2}=1$.

Verify the identity: $\cos ^{2} \theta-\sin ^{2} \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$. We begin with the rational term on the right.

$$
\begin{array}{rlrl}
\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} & =\frac{1-\frac{y^{2}}{x^{2}}}{1+\frac{y^{2}}{x^{2}}} & \tan \theta=\frac{y}{x} \\
& =\frac{\frac{x^{2}-y^{2}}{x^{2}}}{\frac{x^{2}+y^{2}}{x^{2}}} & \text { combine terms: } \frac{A}{B} \pm \frac{C}{D}=\frac{A D \pm B C}{B D} \\
& =\frac{x^{2}-y^{2}}{x^{2}+y^{2}} & \text { simplify } \\
& =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{1} \quad \cos \theta=x ; \sin \theta=y ; \quad x^{2}+y^{2}=1
\end{array}
$$

Exercise 4: Use this method to verify the identity $\frac{\csc ^{2} x-\cot ^{2} x}{\cot ^{2} x}=\sec ^{2} x-1$.

5.3 The Double-Angle and Half-Angle Identities

Learning Objectives

In Section 5.3 you will learn how to:

A. Derive and use the double-angle identities for cosine, tangent, and sineB. Develop and use the power reduction and half-angle identities

The derivation of the sum and difference identities in Section 5.2 was a "watershed event" in the study of identities. By making various substitutions, they lead us very naturally to many new identity families, giving us a heightened ability to simplify expressions, solve equations, find exact values, and model real-world phenomena. In fact, many of the identities are applied in very practical ways, as in a study of projectile motion and the conic sections.

A. The Double-Angle Identities

The double-angle identities for sine, cosine, and tangent can all be derived using the related sum identities with two equal angles $(\alpha=\beta)$. We'll illustrate the process here for the cosine of twice an angle.

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta & & \text { sum identity for cosine } \\
\cos (\alpha+\alpha) & =\cos \alpha \cos \alpha-\sin \alpha \sin \alpha & & \text { assume } \alpha=\beta \text { and substitute } \alpha \text { for } \beta \\
\cos (2 \alpha) & =\cos ^{2} \alpha-\sin ^{2} \alpha & & \text { simplify-double-angle identity for cosine }
\end{aligned}
$$

Using the Pythagorean identity $\cos ^{2} \alpha+\sin ^{2} \alpha=1$, we can easily find two additional members of this family, which are often quite useful. For $\cos ^{2} \alpha=1-\sin ^{2} \alpha$ we have

$$
\begin{aligned}
\cos (2 \alpha) & =\cos ^{2} \alpha-\sin ^{2} \alpha & & \text { double-angle identity for cosine } \\
& =\left(1-\sin ^{2} \alpha\right)-\sin ^{2} \alpha & & \text { substitute } 1-\sin ^{2} \alpha \text { for } \cos ^{2} \alpha \\
\cos (2 \alpha) & =1-2 \sin ^{2} \alpha & & \text { double-angle in terms of sine }
\end{aligned}
$$

Using $\sin ^{2} \alpha=1-\cos ^{2} \alpha$ we obtain an additional form:

$$
\begin{aligned}
\cos (2 \alpha) & =\cos ^{2} \alpha-\sin ^{2} \alpha & & \text { double-angle identity for cosine } \\
& =\cos ^{2} \alpha-\left(1-\cos ^{2} \alpha\right) & & \text { substitute } 1-\cos ^{2} \alpha \text { for } \sin ^{2} \alpha \\
\cos (2 \alpha) & =2 \cos ^{2} \alpha-1 & & \text { double-angle in terms of cosine }
\end{aligned}
$$

The derivations of $\sin (2 \alpha)$ and $\tan (2 \alpha)$ are likewise developed and are asked for in Exercise 83. The double-angle identities are collected here for your convenience.

The Double-Angle Identities

$$
\text { cosine: } \quad \begin{aligned}
\cos (2 \alpha)= & \cos ^{2} \alpha-\sin ^{2} \alpha \quad \text { sine: } \sin (2 \alpha)=2 \sin \alpha \cos \alpha \\
= & 1-2 \sin ^{2} \alpha \\
= & 2 \cos ^{2} \alpha-1 \\
& \quad \text { tangent: } \quad \tan (2 \alpha)=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}
\end{aligned}
$$

EXAMPLE 1 Using a Double-Angle Identity to Find Function Values

Given $\sin \alpha=\frac{5}{8}$, find the value of $\cos (2 \alpha)$.

Solution - Using the double-angle identity for cosine in terms of sine, we find

$$
\begin{aligned}
\cos (2 \alpha) & =1-2 \sin ^{2} \alpha & & \text { double-angle in terms of sine } \\
& =1-2\left(\frac{5}{8}\right)^{2} & & \text { substitute } \frac{5}{8} \text { for } \sin \alpha \\
& =1-\frac{25}{32} & & 2\left(\frac{5}{8}\right)^{2}=\frac{25}{32} \\
& =\frac{7}{32} & & \text { result }
\end{aligned}
$$

If $\sin \alpha=\frac{5}{8}$, then $\cos (2 \alpha)=\frac{7}{32}$.

Like the fundamental identities, the double-angle identities can be used to verify or develop others. In Example 2, we explore one of many multiple-angle identities, verifying that $\cos (3 \theta)$ can be rewritten as $4 \cos ^{3} \theta-3 \cos \theta$ (in terms of powers of $\cos \theta$).

EXAMPLE 2 Verifying a Multiple-Angle Identity

Verify that $\cos (3 \theta)=4 \cos ^{3} \theta-3 \cos \theta$ is an identity.
Solution - Use the sum identity for cosine, with $\alpha=2 \theta$ and $\beta=\theta$. Note that our goal is an expression using cosines only, with no multiple angles.

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta & & \text { sum identity for cosine } \\
\cos (2 \theta+\theta) & =\cos (2 \theta) \cos \theta-\sin (2 \theta) \sin \theta & & \text { substitute } 2 \theta \text { for } \alpha \text { and } \theta \text { for } \beta \\
\cos (3 \theta) & =\left(2 \cos ^{2} \theta-1\right) \cos \theta-(2 \sin \theta \cos \theta) \sin \theta & & \text { substitute for } \cos (2 \theta) \text { and } \sin (2 \theta) \\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta \sin ^{2} \theta & & \text { multiply } \\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta\left(1-\cos ^{2} \theta\right) & & \text { substitute } 1-\cos ^{2} \theta \text { for } \sin ^{2} \theta \\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta+2 \cos ^{3} \theta & & \text { multiply } \\
& =4 \cos ^{3} \theta-3 \cos \theta & & \text { combine terms }
\end{aligned}
$$

Now try Exercises 21 and 22

EXAMPLE 3 Using a Double-Angle Formula to Find Exact Values

Find the exact value of $\sin 22.5^{\circ} \cos 22.5^{\circ}$.
Solution - A product of sines and cosines having the same argument hints at the double-angle identity for sine. Using $\sin (2 \alpha)=2 \sin \alpha \cos \alpha$ and dividing by 2 gives
(A. You've just learned how to derive and use the doubleangle identities for cosine, tangent, and sine

$$
\begin{aligned}
\sin \alpha \cos \alpha & =\frac{\sin (2 \alpha)}{2} & & \text { double-angle identity for sine } \\
\sin 22.5^{\circ} \cos 22.5^{\circ} & =\frac{\sin \left[2\left(22.5^{\circ}\right)\right]}{2} & & \text { replace } \alpha \text { with } 22.5^{\circ} \\
& =\frac{\sin 45^{\circ}}{2} & & \text { multiply } \\
& =\frac{\frac{\sqrt{2}}{2}}{2}=\frac{\sqrt{2}}{4} & & \sin 45^{\circ}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

B. The Power Reduction and Half-Angle Identities

Expressions having a trigonometric function raised to a power occur quite frequently in various applications. We can rewrite even powers of these trig functions in terms of an expression containing only cosine to the power 1, using what are called the power reduction identities. This makes the expression easier to use and evaluate. It can legitimately be argued that the power reduction identities are actually members of the double-angle family, as all three are a direct consequence. To find identities for $\cos ^{2} x$ and $\sin ^{2} x$, we solve the related double-angle identity involving $\cos (2 x)$.

$$
\begin{aligned}
1-2 \sin ^{2} \alpha & =\cos (2 \alpha) & & \cos (2 \alpha) \text { in terms of sine } \\
-2 \sin ^{2} \alpha & =\cos (2 \alpha)-1 & & \text { subtract 1, then divide by }-2 \\
\sin ^{2} \alpha & =\frac{1-\cos (2 \alpha)}{2} & & \text { power reduction identity for sine }
\end{aligned}
$$

Using the same approach for $\cos ^{2} \alpha$ gives $\cos ^{2} \alpha=\frac{1+\cos (2 \alpha)}{2}$. The identity for $\tan ^{2} \alpha$ can be derived from $\tan (2 \alpha)=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}$ (see Exercise 84), but in this case, it's easier to use the identity $\tan ^{2} u=\frac{\sin ^{2} u}{\cos ^{2} u}$. The result is $\frac{1-\cos (2 \alpha)}{1+\cos (2 \alpha)}$.

The Power Reduction Identities

$$
\cos ^{2} \alpha=\frac{1+\cos (2 \alpha)}{2} \quad \sin ^{2} \alpha=\frac{1-\cos (2 \alpha)}{2} \quad \tan ^{2} \alpha=\frac{1-\cos (2 \alpha)}{1+\cos (2 \alpha)}
$$

EXAMPLE $4-$ Using a Power Reduction Formula

Write $8 \sin ^{4} x$ in terms of an expression containing only cosines to the power 1 .
Solution $>\sin ^{4} x=8\left(\sin ^{2} x\right)^{2}$

> original expression
$=8\left[\frac{1-\cos (2 x)}{2}\right]^{2}$
$=2\left[1-2 \cos (2 x)+\cos ^{2}(2 x)\right]$
substitute $\frac{1-\cos (2 x)}{2}$ for $\sin ^{2} x$
$=2\left[1-2 \cos (2 x)+\frac{1+\cos (4 x)}{2}\right]$
multiply
$=2-4 \cos (2 x)+1+\cos (4 x)$
substitute $\frac{1+\cos (4 x)}{2}$ for $\cos ^{2}(2 x)$
$=3-4 \cos (2 x)+\cos (4 x)$
multiply
result
Now try Exercises 31 through 36

The half-angle identities follow directly from the power reduction identities, using algebra and a simple change of variable. For $\cos ^{2} \alpha=\frac{1+\cos (2 \alpha)}{2}$, we first take square roots and obtain $\cos \alpha= \pm \sqrt{\frac{1+\cos (2 \alpha)}{2}}$. Using the substitution $u=2 \alpha$ gives $\alpha=\frac{u}{2}$, and making these substitutions results in the half-angle identity for cosine: $\cos \left(\frac{u}{2}\right)= \pm \sqrt{\frac{1+\cos u}{2}}$, where the radical's sign depends on the quadrant in which $\frac{u}{2}$ terminates. Using the same substitution for sine gives $\sin \left(\frac{u}{2}\right)= \pm \sqrt{\frac{1-\cos u}{2}}$,
and for the tangent identity, $\tan \left(\frac{u}{2}\right)= \pm \sqrt{\frac{1-\cos u}{1+\cos u}}$. In the case of $\tan \left(\frac{u}{2}\right)$, we can actually develop identities that are free of radicals by rationalizing the denominator or numerator. We'll illustrate the former, leaving the latter as an exercise (see Exercise 82).

$$
\begin{aligned}
\tan \left(\frac{u}{2}\right) & = \pm \sqrt{\frac{(1-\cos u)(1-\cos u)}{(1+\cos u)(1-\cos u)}} & & \text { multiply by the conjugate } \\
& = \pm \sqrt{\frac{(1-\cos u)^{2}}{1-\cos ^{2} u}} & & \text { rewrite } \\
& = \pm \sqrt{\frac{(1-\cos u)^{2}}{\sin ^{2} u}} & & \text { Pythagorean identity } \\
& = \pm\left|\frac{1-\cos u}{\sin u}\right| & & \sqrt{x^{2}}=|x|
\end{aligned}
$$

Since $1-\cos u>0$ and $\sin u$ has the same sign as $\tan \left(\frac{u}{2}\right)$ for all u in its domain, the relationship can simply be written $\tan \left(\frac{u}{2}\right)=\frac{1-\cos u}{\sin u}$.

The Half-Angle Identities

$$
\begin{gathered}
\cos \left(\frac{u}{2}\right)= \pm \sqrt{\frac{1+\cos u}{2}} \quad \sin \left(\frac{u}{2}\right)= \pm \sqrt{\frac{1-\cos u}{2}} \quad \tan \left(\frac{u}{2}\right)= \pm \sqrt{\frac{1-\cos u}{1+\cos u}} \\
\tan \left(\frac{u}{2}\right)=\frac{1-\cos u}{\sin u} \quad \tan \left(\frac{u}{2}\right)=\frac{\sin u}{1+\cos u}
\end{gathered}
$$

EXAMPLE $5>$ Using Half-Angle Formulas to Find Exact Values

Use the half-angle identities to find exact values for (a) $\sin 15^{\circ}$ and (b) tan 15°.
Solution $>$ Noting that 15° is one-half the standard angle 30°, we can find each value by applying the respective half-angle identity with $u=30^{\circ}$ in Quadrant I.
a. $\sin \left(\frac{30^{\circ}}{2}\right)=\sqrt{\frac{1-\cos 30^{\circ}}{2}}$
b. $\tan \left(\frac{30^{\circ}}{2}\right)=\frac{1-\cos 30^{\circ}}{\sin 30^{\circ}}$
$=\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}}$
$\sin 15^{\circ}=\frac{\sqrt{2-\sqrt{3}}}{2}$

$$
\tan 15^{\circ}=\frac{1-\frac{\sqrt{3}}{2}}{\frac{1}{2}}=2-\sqrt{3}
$$

Now try Exercises 37 through 48

EXAMPLE $6>$ Using Half-Angle Formulas to Find Exact Values

For $\cos \theta=-\frac{7}{25}$ and θ in QIII, find exact values of $\sin \left(\frac{\theta}{2}\right)$ and $\cos \left(\frac{\theta}{2}\right)$.

Solution With θ in $\mathrm{QIII} \rightarrow \pi<\theta<\frac{3 \pi}{2}$, we know $\frac{\theta}{2}$ must be in $\mathrm{QII} \rightarrow \frac{\pi}{2}<\frac{\theta}{2}<\frac{3 \pi}{4}$ and we choose our signs accordingly: $\sin \left(\frac{\theta}{2}\right)>0$ and $\cos \left(\frac{\theta}{2}\right)<0$.

Y B. You've just learned how to develop and use the power reduction and half-angle identities

$$
\begin{aligned}
\sin \left(\frac{\theta}{2}\right) & =\sqrt{\frac{1-\cos \theta}{2}} & \cos \left(\frac{\theta}{2}\right) & =-\sqrt{\frac{1+\cos \theta}{2}} \\
& =\sqrt{\frac{1-\left(-\frac{7}{25}\right)}{2}} & & =-\sqrt{\frac{1+\left(-\frac{7}{25}\right)}{2}} \\
& =\sqrt{\frac{16}{25}}=\frac{4}{5} & & =-\sqrt{\frac{9}{25}}=-\frac{3}{5}
\end{aligned}
$$

Now try Exercises 49 through 64

For a mixed variety of identities, see Exercises 65-80.

5.3 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. The double-angle identities can be derived using the \qquad identities with $\alpha=\beta$. For $\cos (2 \theta)$ we expand $\cos (\alpha+\beta)$ using \qquad -.
2. Multiple-angle identities can be derived using the sum and difference identities. For $\sin (3 x)$ use sin (\qquad $+$ \qquad).
3. Explain/Discuss how the three different identities for $\tan \left(\frac{u}{2}\right)$ are related. Verify that

$$
\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}
$$

2. If θ is in QIII then $180^{\circ}<\theta<270^{\circ}$ and $\frac{\theta}{2}$ must be in \quad since $\quad<\quad<\frac{\theta}{2}<$ \qquad .
3. For the half-angle identities the sign preceding the radical depends on the \qquad in which $\frac{u}{2}$ \qquad
4. In Example 6, we were given $\cos \theta=-\frac{7}{25}$ and θ in QIII. Discuss how the result would differ if we stipulate that θ is in QII instead.

DEVELOPING YOUR SKILLS

Find exact values for $\sin (2 \theta), \cos (2 \theta)$, and $\tan (2 \theta)$ using the information given.
7. $\sin \theta=\frac{5}{13} ; \theta$ in QII
8. $\cos \theta=-\frac{21}{29} ; \theta$ in QII
9. $\cos \theta=-\frac{9}{41} ; \theta$ in QII
10. $\sin \theta=-\frac{63}{65} ; \theta$ in QIII
11. $\tan \theta=\frac{13}{84} ; \theta$ in QIII
12. $\sec \theta=\frac{53}{28} ; \theta$ in QI
14. $\cos \theta=-\frac{8}{17} ; \tan \theta>0$
15. $\csc \theta=\frac{5}{3} ; \sec \theta<0$
16. $\cot \theta=-\frac{80}{39} ; \cos \theta>0$
13. $\sin \theta=\frac{48}{73} ; \cos \theta<0$

Find exact values for $\sin \theta, \cos \theta$, and $\tan \theta$ using the information given.
17. $\sin (2 \theta)=\frac{24}{25} ; 2 \theta$ in QII
18. $\sin (2 \theta)=-\frac{240}{289} ; 2 \theta$ in QIII
19. $\cos (2 \theta)=-\frac{41}{841} ; 2 \theta$ in QII
20. $\cos (2 \theta)=\frac{120}{169} ; 2 \theta$ in QIV
21. Verify the following identity:
$\sin (3 \theta)=3 \sin \theta-4 \sin ^{3} \theta$
22. Verify the following identity:

$$
\cos (4 \theta)=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1
$$

Use a double-angle identity to find exact values for the following expressions.
23. $\cos 75^{\circ} \sin 75^{\circ}$
24. $\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}$
25. $1-2 \sin ^{2}\left(\frac{\pi}{8}\right)$
26. $2 \cos ^{2}\left(\frac{\pi}{12}\right)-1$
27. $\frac{2 \tan 22.5^{\circ}}{1-\tan ^{2} 22.5^{\circ}}$
28. $\frac{2 \tan \left(\frac{\pi}{12}\right)}{1-\tan ^{2}\left(\frac{\pi}{12}\right)}$
29. Use a double-angle identity to rewrite $9 \sin (3 x) \cos (3 x)$ as a single function. [Hint: $9=\frac{9}{2}(2)$.]
30. Use a double-angle identity to rewrite $2.5-5 \sin ^{2} x$ as a single term.
[Hint: Factor out a constant.]
Rewrite in terms of an expression containing only cosines to the power 1.
31. $\sin ^{2} x \cos ^{2} x$
32. $\sin ^{4} x \cos ^{2} x$
33. $3 \cos ^{4} x$
34. $\cos ^{4} x \sin ^{4} x$
35. $2 \sin ^{6} x$
36. $4 \cos ^{6} x$

Use a half-angle identity to find exact values for $\sin \theta, \cos \theta$, and $\tan \theta$ for the given value of θ.
37. $\theta=22.5^{\circ}$
38. $\theta=75^{\circ}$
39. $\theta=\frac{\pi}{12}$
40. $\theta=\frac{5 \pi}{12}$
41. $\theta=67.5^{\circ}$
42. $\theta=112.5^{\circ}$
43. $\theta=\frac{3 \pi}{8}$
44. $\theta=\frac{11 \pi}{12}$

Use the results of Exercises 37-40 and a half-angle identity to find the exact value.
45. $\sin 11.25^{\circ}$
46. $\tan 37.5^{\circ}$
47. $\sin \left(\frac{\pi}{24}\right)$
48. $\cos \left(\frac{5 \pi}{24}\right)$

Use a half-angle identity to rewrite each expression as a single, nonradical function.
49. $\sqrt{\frac{1+\cos 30^{\circ}}{2}}$
50. $\sqrt{\frac{1-\cos 45^{\circ}}{2}}$
51. $\sqrt{\frac{1-\cos (4 \theta)}{1+\cos (4 \theta)}}$
52. $\frac{1-\cos (6 x)}{\sin (6 x)}$
53. $\frac{\sin (2 x)}{1+\cos (2 x)}$
54. $\frac{\sqrt{2(1+\cos x)}}{1+\cos x}$

Find exact values for $\sin \left(\frac{\theta}{2}\right), \cos \left(\frac{\theta}{2}\right)$, and $\tan \left(\frac{\theta}{2}\right)$ using the information given.
55. $\sin \theta=\frac{12}{13} ; \theta$ is obtuse
56. $\cos \theta=-\frac{8}{17} ; \theta$ is obtuse
57. $\cos \theta=-\frac{4}{5} ; \theta$ in QII
58. $\sin \theta=-\frac{7}{25} ; \theta$ in QIII
59. $\tan \theta=-\frac{35}{12} ; \theta$ in QII
60. $\sec \theta=-\frac{65}{33} ; \theta$ in QIII
61. $\sin \theta=\frac{15}{113} ; \theta$ is acute
62. $\cos \theta=\frac{48}{73} ; \theta$ is acute
63. $\cot \theta=\frac{21}{20} ; \pi<\theta<\frac{3 \pi}{2}$
64. $\csc \theta=\frac{41}{9} ; \frac{\pi}{2}<\theta<\pi$

Verify the following identities.

65. $\frac{2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x}=\tan (2 x)$
66. $\frac{1-2 \sin ^{2} x}{2 \sin x \cos x}=\cot (2 x)$
67. $(\sin x+\cos x)^{2}=1+\sin (2 x)$
68. $\left(\sin ^{2} x-1\right)^{2}=\sin ^{4} x+\cos (2 x)$
69. $\cos (8 \theta)=\cos ^{2}(4 \theta)-\sin ^{2}(4 \theta)$
70. $\sin (4 x)=4 \sin x \cos x\left(1-2 \sin ^{2} x\right)$
71. $\frac{\cos (2 \theta)}{\sin ^{2} \theta}=\cot ^{2} \theta-1$
72. $\csc ^{2} \theta-2=\frac{\cos (2 \theta)}{\sin ^{2} \theta}$
73. $\tan (2 \theta)=\frac{2}{\cot \theta-\tan \theta}$
74. $\cot \theta-\tan \theta=\frac{2 \cos (2 \theta)}{\sin (2 \theta)}$
75. $\tan x+\cot x=2 \csc (2 x)$
76. $\csc (2 x)=\frac{1}{2} \csc x \sec x$
77. $\cos ^{2}\left(\frac{x}{2}\right)-\sin ^{2}\left(\frac{x}{2}\right)=\cos x$
78. $1-2 \sin ^{2}\left(\frac{x}{4}\right)=\cos \left(\frac{x}{2}\right)$
79. $1-\sin ^{2}(2 \theta)=1-4 \sin ^{2} \theta+4 \sin ^{4} \theta$
80. $2 \cos ^{2}\left(\frac{x}{2}\right)-1=\cos x$
81. Show $\sin ^{2} \alpha+(1-\cos \alpha)^{2}=\left[2 \sin \left(\frac{\alpha}{2}\right)\right]^{2}$.
82. Show that $\tan \left(\frac{u}{2}\right)= \pm \sqrt{\frac{1-\cos u}{1+\cos u}}$ is equivalent to $\frac{\sin u}{1+\cos u}$ by rationalizing the numerator.
83. Derive the identity for $\sin (2 \alpha)$ and $\tan (2 \alpha)$ using $\sin (\alpha+\beta)$ and $\tan (\alpha+\beta)$, where $\alpha=\beta$.
84. Derive the identity for $\tan ^{2}(\alpha)$ using
$\tan (2 \alpha)=\frac{2 \tan (\alpha)}{1-\tan ^{2}(\alpha)}$. [Hint: Solve for $\tan ^{2} \alpha$ and work in terms of sines and cosines.]

WORKING WITH FORMULAS

85. Supersonic speeds, the sound barrier, and Mach

 numbers: $\mathcal{M}=\boldsymbol{\operatorname { c s c }}\left(\frac{\boldsymbol{\theta}}{\mathbf{2}}\right)$The speed of sound varies with temperature and altitude. At $32^{\circ} \mathrm{F}$, sound travels about $742 \mathrm{mi} / \mathrm{hr}$ at sea level. A jet-plane flying faster than the speed of sound (called supersonic speed) has "broken the sound barrier." The plane projects threedimensional sound waves about the nose of the craft that form the shape of a cone. The cone intersects the Earth along a hyperbolic path, with a sonic boom being heard by anyone along this path. The ratio of the plane's speed to the speed of sound is

called its Mach number \mathcal{M}, meaning a plane flying at $\mathcal{M}=3.2$ is traveling 3.2 times the speed of sound. This Mach number can be determined using the formula given here, where θ is the vertex angle of the cone described. For the following exercises, use the formula to find \mathcal{M} or θ as required. For parts (a) and (b), answer in exact form (using a half-angle identity) and approximate form.
a. $\theta=30^{\circ}$
b. $\theta=45^{\circ}$
c. $\mathcal{M}=2$
86. Malus's law: $I=I_{0} \cos ^{2} \theta$

When a beam of plane-polarized light with intensity I_{0} hits an analyzer, the intensity I of the transmitted beam of light can be found using the formula shown, where θ is the angle formed between the transmission axes of the polarizer and the analyzer. Find the intensity of the beam when $\theta=15^{\circ}$ and $I_{0}=300$ candelas (cd). Answer in exact form (using a power reduction identity) and approximate form.

APPLICATIONS

87. Clock angles: Kirkland City has a large clock atop city hall, with a minute hand that is 3 ft long. Claire and Monica independently attempt to devise a function that will track the distance
 between the tip of the minute hand at t minutes between the hours, and the tip of the minute hand when it is in the vertical position as shown. Claire finds the function $d(t)=\left|6 \sin \left(\frac{\pi t}{60}\right)\right|$, while Monica devises $d(t)=\sqrt{18\left[1-\cos \left(\frac{\pi t}{30}\right)\right]}$. Use the identities from this section to show the functions are equivalent.
88. Origami: The Japanese art of origami involves the repeated folding of a single piece of paper to create various art forms. When the upper right corner of
 a rectangular $21.6-\mathrm{cm}$ by $28-\mathrm{cm}$ piece of paper is folded down until the corner is flush with the other side, the length L of the fold is related to the angle θ by $L=\frac{10.8}{\sin \theta \cos ^{2} \theta}$. (a) Show this is equivalent to $L=\frac{21.6 \sec \theta}{\sin (2 \theta)}$, (b) find the length of the fold if $\theta=30^{\circ}$, and (c) find the angle θ if $L=28.8 \mathrm{~cm}$.
89. Machine gears: A machine part involves two gears. The first has a radius of 2 cm and the second a radius of 1 cm , so the smaller gear turns twice as fast as the larger gear. Let θ represent the angle of rotation in the larger gear, measured from a vertical and downward starting position. Let P be a point on the circumference
 of the smaller gear, starting at the vertical and downward position. Four engineers working on an improved design for this component devise functions that track the height of point P above the horizontal plane shown, for a rotation of θ° by the larger gear. The functions they develop are: Engineer A: $f(\theta)=\sin \left(2 \theta-90^{\circ}\right)+1$; Engineer B: $g(\theta)=2 \sin ^{2} \theta$; Engineer C: $k(\theta)=1+\sin ^{2} \theta-\cos ^{2} \theta$; and Engineer D: $h(\theta)=1-\cos (2 \theta)$. Use any of the identities you've learned so far to show these four functions are equivalent.
90. Working with identities: Compute the value of $\sin 15^{\circ}$ two ways, first using the half-angle identity for sine, and second using the difference identity for sine. (a) Find a decimal approximation for each to show the results are equivalent and (b) verify algebraically that they are equivalent. (Hint: Square both sides.)
91. Working with identities: Compute the value of $\cos 15^{\circ}$ two ways, first using the half-angle identity for cosine, and second using the difference identity for cosine. (a) Find a decimal approximation for each to show the results are equivalent and (b) verify algebraically that they are equivalent. (Hint: Square both sides.)

EXTENDING THE CONCEPT

92. A proof without words:

From elementary geometry we have the following: (a) an angle inscribed in a semicircle is a right angle; and (b) the measure of an inscribed angle (vertex on the circumference) is onehalf the measure of its

Exercise 92

intercepted arc. Discuss/explain how the unit-circle diagram offers a proof that $\tan \left(\frac{x}{2}\right)=\frac{\sin x}{1+\cos x}$. Be detailed and thorough.
93. Using $\theta=30^{\circ}$ and repeatedly applying the halfangle identity for cosine, show that $\cos 3.75^{\circ}$ is equal to $\frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}{2}$. Verify the result using a calculator, then use the patterns noted to write the value of $\cos 1.875^{\circ}$ in closed form (also verify this result). As θ becomes very small, what appears to be happening to the value of $\cos \theta$?

MAINTAINING YOUR SKILLS

94. (4.3) State the period of the functions given:
a. $y=3 \sin \left(\frac{\pi}{8} x-\frac{\pi}{3}\right)$
b. $y=4 \tan \left(2 x+\frac{\pi}{4}\right)$
95. (1.4) State the three Pythagorean identities.
96. (1.1) Solve the triangles given using only special ratio/special triangle values.

97. (2.1) Clarence the Clown is about to be shot from a circus cannon to a safety net on the other side of the main tent. If the cannon is 30 ft long and must be aimed at 40° for Clarence to hit the net, the end of the cannon must be how high from ground level?
98. (3.2) The area of a circular sector is $A=\frac{125 \pi}{3}$. If $r=25 \mathrm{~m}$, what angle is subtended?
99. (4.4) Temperatures in Baghdad, Iraq, range from an average low of $58^{\circ} \mathrm{F}$ in January (month 1) to an average high of $110^{\circ} \mathrm{F}$ in July (month 7). Use this information to construct a sinusoidal model that approximates the average temperatures in Baghdad for the other 10 months.

5.4 The Product-to-Sum and Sum-to-Product Identities

Learning Objectives

In Section 5.4 you will learn how to:
A. Derive and use the product-to-sum and sum-to-product identities
B. Solve applications using these and other identities

As you may have noticed, the identities we're studying are much more than an exercise in rewriting trigonometric expressions. In fact, most identities are the result of challenges that ancient astronomers and scientists faced in their attempt to understand the world around them, and even today these identities are applied in very practical ways. For instance, one of the most profound discoveries of the eighteenth century was that the behavior of electricity, light, and sound could all be modeled using sinusoidal waves. The product-to-sum and sum-to-product identities play a fundamental role in the investigation and study of these phenomena.

A. The Product-to-Sum Identities

As mentioned in the introduction, the product-to-sum and sum-to-product identities are of immense importance to the study of any phenomenon that travels in waves, like light and sound. In fact, the tones you hear as you dial a telephone are actually the sum of two sound waves interacting with each other. Each derivation of a product-to-sum identity is very similar (see Exercise 39), and we illustrate by deriving the identity for $\cos \alpha \cos \beta$. Beginning with the sum and difference identities for cosine, we have

$$
\begin{aligned}
\cos \alpha \cos \beta+\sin \alpha \sin \beta & =\cos (\alpha-\beta) & & \text { cosine of a difference } \\
+\frac{\cos \alpha \cos \beta-\sin \alpha \sin \beta}{y \cos \alpha \cos \beta} & =\frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)}+\cos (\alpha+\beta) & & \text { combine equations } \\
\cos \alpha \cos \beta & =\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)] & & \text { divide by } 2
\end{aligned}
$$

The identities from this family are listed here.

The Product-to-Sum Identities

$$
\begin{array}{ll}
\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)] & \sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)] \\
\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] & \cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)]
\end{array}
$$

EXAMPLE 1 Rewriting a Product as an Equivalent Sum Using Identities

Solution This is a direct application of the product-to-sum identity, with $\alpha=27 t$ and $\beta=15 t$.

$$
\begin{aligned}
\cos \alpha \cos \beta & =\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)] & & \text { product-to-sum identity } \\
2 \cos (27 t) \cos (15 t) & =2\left(\frac{1}{2}\right)[\cos (27 t-15 t)+\cos (27 t+15 t)] & & \text { substitute } \\
& =\cos (12 t)+\cos (42 t) & & \text { result }
\end{aligned}
$$

Now try Exercises 7 through 18

There are times we find it necessary to "work in the other direction," writing a sum of two trig functions as a product. This family of identities can be derived from the product-to-sum identities using a change of variable. We'll illustrate the process for $\sin u+\sin v$. You are asked for the derivation of $\cos u+\cos v$ in Exercise 40. To begin, we use $2 \alpha=u+v$ and $2 \beta=u-v$. This creates the sum $2 \alpha+2 \beta=2 u$ and the difference $2 \alpha-2 \beta=2 v$, yielding $\alpha+\beta=u$ and $\alpha-\beta=v$, respectively. Dividing the original expressions by 2 gives $\alpha=\frac{u+v}{2}$ and $\beta=\frac{u-v}{2}$, which all together make the derivation a matter of direct substitution. Using these values in any product-to-sum identity gives the related sum-to-product, as shown here.

$$
\begin{array}{ll}
\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] & \text { product-to-sum identity (sum of sines) } \\
\sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)=\frac{1}{2}(\sin u+\sin v) & \begin{array}{l}
\text { substitute } \frac{u+v}{2} \text { for } \alpha, \frac{u-v}{2} \text { for } \beta, \\
\text { substitute } u \text { for } \alpha+\beta \text { and } v \text { for } \alpha-\beta
\end{array} \\
2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)=\sin u+\sin v & \text { multiply by 2 }
\end{array}
$$

The sum-to-product identities follow.

The Sum-to-Product Identities

$$
\begin{array}{ll}
\cos u+\cos v=2 \cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right) & \sin u+\sin v=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right) \\
\sin u-\sin v=2 \cos \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right) & \cos u-\cos v=-2 \sin \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)
\end{array}
$$

EXAMPLE 2 Rewriting a Sum as an Equivalent Product Using Identities

Given $y_{1}=\sin (12 \pi t)$ and $y_{2}=\sin (10 \pi t)$, express $y_{1}+y_{2}$ as a product of trigonometric functions.
Solution This is a direct application of the sum-to-product identity $\sin u+\sin v$, with $u=12 \pi t$ and $v=10 \pi t$.

$$
\sin u+\sin v=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right) \quad \text { sum-to-product identity }
$$

A. You've just learned how to derive and use the product-to-sum and sum-to-product identities

Now try Exercises 19 through 30

For a mixed variety of identities, see Exercises 31-38.

B. Applications of Identities

In more advanced mathematics courses, rewriting an expression using identities enables the extension or completion of a task that would otherwise be very difficult (or even impossible). In addition, there are a number of practical applications in the physical sciences.

Sound Waves

Each tone you hear on a touch-tone phone is actually the combination of precisely two sound waves with different frequencies (frequency f is defined as $f=\frac{B}{2 \pi}$). This is why the tones you hear sound identical, regardless of what phone you use. The sum-to-product and product-to-sum formulas help us to understand, study, and use sound in very powerful and practical ways, like sending faxes and using other electronic media.

EXAMPLE 3 - Using an Identity to Solve an Application

On a touch-tone phone, the sound created by pressing 5 is produced by combining a sound wave with frequency 1336 cycles/sec, with another wave having frequency 770 cycles/sec. Their respective equations are $y_{1}=\cos (2 \pi 1336 t)$ and $y_{2}=\cos (2 \pi 770 t)$, with the resultant wave being $y=y_{1}+y_{2}$ or $y=\cos (2672 \pi t)+\cos (1540 \pi t)$. Rewrite this
 sum as a product.
Solution - This is a direct application of the sum-to-product identity, with $u=2672 \pi t$ and $v=1540 \pi t$. Computing one-half the sum/difference of u and v gives

$$
\begin{aligned}
& \frac{2672 \pi t+1540 \pi t}{2}=2106 \pi t \text { and } \frac{2672 \pi t-1540 \pi t}{2}=566 \pi t . \\
& \cos u+\cos v=2 \cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)
\end{aligned} \begin{aligned}
& \text { sum-to-product identity } \\
& \text { substitute } 2672 \pi t \text { for } u \\
& \cos (2672 \pi t)+\cos (1540 \pi t)=2 \cos (2106 \pi t) \cos (566 \pi t) \\
& \text { and } 1540 \pi t \text { for } v
\end{aligned}
$$

Note we can identify the button pressed when the wave is written as a sum. If we have only the resulting wave (written as a product), the product-to-sum formula must be used to identify which button was pressed.

Projectile Motion

A projectile is any object that is thrown, shot, kicked, dropped, or otherwise given an initial velocity, but lacking a continuing source of propulsion. If air resistance is ignored, the range of the projectile depends only on its initial velocity v and the angle θ at which it is propelled. This phenomenon is modeled by the function

$$
r(\theta)=\frac{1}{16} v^{2} \sin \theta \cos \theta
$$

EXAMPLE 4 Using Identities to Solve an Application

a. Use an identity to show $r(\theta)=\frac{1}{16} v^{2} \sin \theta \cos \theta$ is equivalent to

$$
r(\theta)=\frac{1}{32} v^{2} \sin (2 \theta) .
$$

b. If the projectile is thrown with an initial velocity of $v=96 \mathrm{ft} / \mathrm{sec}$, how far will it travel if $\theta=15^{\circ}$?
c. From the result of part (a), determine what angle θ will give the maximum range for the projectile.

Solution to solve applications using these and other identities
a. Note that we can use a double-angle identity if we rewrite the coefficient. Writing $\frac{1}{16}$ as $2\left(\frac{1}{32}\right)$ and commuting the factors gives $r(\theta)=\left(\frac{1}{32}\right) v^{2}(2 \sin \theta \cos \theta)=\left(\frac{1}{32}\right) v^{2} \sin (2 \theta)$.
b. With $v=96 \mathrm{ft} / \mathrm{sec}$ and $\theta=15^{\circ}$, the formula gives $r\left(15^{\circ}\right)=\left(\frac{1}{32}\right)(96)^{2} \sin 30^{\circ}$. Evaluating the result shows the projectile travels a horizontal distance of 144 ft .
c. For any initial velocity $v, r(\theta)$ will be maximized when $\sin (2 \theta)$ is a maximum. This occurs when $\sin (2 \theta)=1$, meaning $2 \theta=90^{\circ}$ and $\theta=45^{\circ}$. The maximum range is achieved when the projectile is released at an angle of 45°.

Now try Exercises 47 and 48

GRAPHICAL SUPPORT

The result in Example 4(c) can be verified graphically by assuming an initial velocity of $96 \mathrm{ft} / \mathrm{sec}$ and entering the function
$r(\theta)=\frac{1}{32}(96)^{2} \sin (2 \theta)=288 \sin (2 \theta)$ as Y_{1} on a graphing calculator. With an amplitude of 288 and results confined to the first quadrant, we set an appropriate window, graph the function, and use the 2nd TRACE (CALC 4:maximum) feature. As shown in the figure, the max occurs at $\theta=45^{\circ}$.

TECHNOLOGY HIGHLIGHT

Trigonometric Graphs and ZoomSto/ZoomRcl

In Chapter 4, we saw how the Z00M 7:ZTrig screen could be used to study trigonometric graphs. The calculator automatically creates a friendly window using the available pixels, setting Xmin $\approx-360^{\circ}$ or -2π and $\mathrm{Xmax} \approx 360^{\circ}$ or 2π. In addition, it sets $\mathrm{Ymin}=-4$ and $Y \max =4$ since a large number of trig graphs fall within this amplitude range. However, a great deal of study, investigation, and comparison is done in the interval $[0,2 \pi]$ and with sine and cosine graphs having a much smaller amplitude. In these cases, it helps to use the ZOOM \square (MEMORY) feature of the TI-84 Plus. To use this feature, you set the window to the desired settings and press Zoom \square (MEMORY) 2:ZoomSto, which will store these settings for future use. The window size will be changed each time Z00M 7:ZTrig, ZOOM 4:ZDecimal, or Z00M 7:ZStandard is used, but you can always return to the stored settings using ZOOM \square (MEMORY) 3:ZoomRcl. Suppose we wanted to investigate the graph of $Y_{1}=\cos (2 x)$, along with the three related identities developed in the previous section. Using Z00M 7:ZTrig in degree mode gives the window shown in Figure 5.10. If our particular interest was $[0,360]$ we could reset $X \min =0, X \max =360$, and $\mathrm{Xscl}=45$. Using the preset Ymin and Ymax values leaves too much "wasted space," so we reset these to $\mathrm{Ymin}=-2$ and $Y \max =2$ or some other desired setting. Press GRAPH to see $Y_{1}=\cos (2 x)$ with these settings (Figure 5.11), then (MEMORY) 2:ZoomSto to store the

Figure 5.10
WITH[IT)
人以ir=- 52,5

$\mathrm{x}=1=\mathrm{F}$

Mr. $x=4$
$\mathrm{ME}=1$
Kr트를
 settings for future use.

Exercise 1: Enter $Y_{2}=\cos ^{2} x-\sin ^{2} x$ and $Y_{3}=1-2 \sin ^{2} x$, then graph Y_{1}, Y_{2}, and Y_{3} on the ZOOM 7:ZTrig screen. What do you notice? Now use the keystrokes Zoom \square (MEMORY) 3:ZoomRcl to graph these functions using the stored settings. Can you distinguish between the graphs?
Exercise 2: Enter $Y_{1}=\tan ^{2} x$ and $Y_{2}=\frac{1-\cos (2 x)}{1+\cos (2 x)}$. Use the Zoom 7:ZTrig screen to graphically verify that $\mathrm{Y}_{1}=\mathrm{Y}_{2}$ is an identity, then take a closer look at the graphs using zoom \square (MEMORY) 3:ZoomRcl. Use this screen to approximate the values of x for which $\tan ^{2} x=1$.

5.4 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. The \qquad -to- \qquad identities can be derived using the addition and subtraction of the \qquad
2. Light and \qquad can both be modeled using
and \qquad identities.
\qquad waves. When modeling these phenomena, we define frequency as \qquad —.
3. The function $r(\theta)=$ \qquad models the
\qquad of a projectile when \qquad is not taken into account.
4. By substituting $-v$ for v and applying an identity due to symmetry, the sum-to-product identity $\sin u+\sin v=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)$ can be used to develop sum-to-product identity: \qquad
5. Explain/Discuss why many consider the sum and difference formulas the only non-fundamental formulas that must be memorized. Be sure to include the cofunction, double-angle, half-angle, and power reduction identities in your discussion.
6. In Example 4(a), a double-angle identity was used. Explain how a product-to-sum identity could have been used instead, with the same results.

DEVELOPING YOUR SKILLS

Write each product as a sum using the product-to-sum identities.
7. $\sin (-4 \theta) \sin (8 \theta)$
8. $\cos (15 \alpha) \sin (-3 \alpha)$
9. $2 \cos \left(\frac{7 t}{2}\right) \sin \left(\frac{3 t}{2}\right)$
10. $2 \sin \left(\frac{5 t}{2}\right) \sin \left(\frac{9 t}{2}\right)$
11. $2 \cos (1979 \pi t) \cos (439 \pi t)$
12. $2 \cos (2150 \pi t) \cos (268 \pi t)$
13. $2 \sin (x+2 y) \cos (x-2 y)$
14. $2 \sin (3 x+y) \cos (3 x-y)$

Find the exact value using product-to-sum identities.
15. $2 \cos 15^{\circ} \sin 135^{\circ}$
16. $2 \cos 105^{\circ} \cos 165^{\circ}$
17. $\sin \left(\frac{7 \pi}{8}\right) \cos \left(\frac{\pi}{8}\right)$
18. $\sin \left(\frac{7 \pi}{12}\right) \sin \left(-\frac{\pi}{12}\right)$

Write each sum as a product using the sum-to-product identities.
19. $\cos (9 h)+\cos (4 h)$
20. $\sin (14 k)+\sin (41 k)$
21. $\sin \left(\frac{11 x}{8}\right)-\sin \left(\frac{5 x}{8}\right)$
22. $\cos \left(\frac{7 x}{6}\right)-\cos \left(\frac{5 x}{6}\right)$
23. $\cos (697 \pi t)-\cos (1447 \pi t)$
24. $\cos (852 \pi t)+\cos (1209 \pi t)$
25. $\sin (3 x+y)+\sin (3 x+5 y)$
26. $\sin (2 x-y)-\sin (4 x+y)$

Find the exact value using sum-to-product identities.
27. $\cos 75^{\circ}+\cos 15^{\circ}$
28. $\cos 285^{\circ}-\cos 195^{\circ}$
29. $\sin \left(\frac{17 \pi}{12}\right)-\sin \left(\frac{13 \pi}{12}\right)$
30. $\sin \left(\frac{11 \pi}{12}\right)+\sin \left(\frac{7 \pi}{12}\right)$

Verify the following identities.

31. $\frac{\sin m+\sin n}{\cos m+\cos n}=\tan \left(\frac{m+n}{2}\right)$
32. $\frac{\sin m-\sin n}{\cos m-\cos n}=-\cot \left(\frac{m+n}{2}\right)$
33. $\frac{2 \sin 2 t \cos t-\sin 3 t}{\cos t}=\tan t$
34. $\frac{2 \cos 3 t \cos 2 t-\cos 5 t}{\sin t}=\cot t$
35. $\frac{2 \cos 2 t}{\sin 3 t-\sin t}=\csc t$ 36. $\frac{2 \sin 2 t}{\cos t-\cos 3 t}=\csc t$
36. $\frac{\sin (120 \pi t)+\sin (80 \pi t)}{\cos (120 \pi t)-\cos (80 \pi t)}=-\cot (20 \pi t)$
37. $\frac{\cos (14 \pi t)+\cos (6 \pi t)}{\sin (14 \pi t)-\sin (6 \pi t)}=\cot (4 \pi t)$
38. Derive the product-to-sum identity for $\sin \alpha \sin \beta$.
39. Derive the sum-to product identity for $\cos u+\cos v$.

WORKING WITH FORMULAS

41. A product-to-sum identity: $\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$ Using exact values, verify the identity shown is true when $\alpha=\frac{5 \pi}{6}$ and $\beta=\frac{2 \pi}{3}$.
42. A product-to-sum identity:
$\sin a \sin b \sin c=\frac{1}{4}[\sin (a+b-c)+\sin (b+c-a)+\sin (c+a-b)-\sin (a+b+c)]$
Using exact values, verify the identity shown is true when $a=30^{\circ}, b=120^{\circ}$, and $c=240^{\circ}$.

APPLICATIONS

Touch-tone phones: The diagram given in Example 3 shows the various frequencies used to create the tones for a touch-tone phone. Use a sum-to-product identity to write the resultant wave when the following numbers are pressed.
43. 3
44. 8

One button is randomly pressed and the resultant wave is modeled by $y(t)$ shown. Use a product-to-sum identity to write the expression as a sum and determine the button pressed.
45. $y(t)=2 \cos (2150 \pi t) \cos (268 \pi t)$
46. $y(t)=2 \cos (1906 \pi t) \cos (512 \pi t)$

Range of a projectile: Exercises 47 and 48 refer to Example 4. In Example 4, we noted that the range of a projectile was maximized at $\theta=45^{\circ}$. If $\theta>45^{\circ}$ or $\theta<45^{\circ}$, the projectile falls short of its maximum potential distance. In Exercises 47 and 48 assume that the projectile has an initial velocity of $96 \mathrm{ft} / \mathrm{sec}$.
47. Compute how many feet short of maximum the projectile falls if (a) $\theta=22.5^{\circ}$ and (b) $\theta=67.5^{\circ}$. Answer in both exact and approximate form.
48. Use a calculator to compute how many feet short of maximum the projectile falls if (a) $\theta=40^{\circ}$ and $\theta=50^{\circ}$ and (b) $\theta=37.5^{\circ}$ and $\theta=52.5^{\circ}$. Do you see a pattern? Discuss/explain what you notice and experiment with other values to confirm your observations.
49. A clapotic (or standing) wave is formed when a wave strikes and reflects off a seawall or other immovable object. Against one particular seawall, the standing wave that forms can be modeled by summing the incoming wave represented by the equation $y_{i}=2 \sin (1.1 x-0.6 t)$ with the outgoing wave represented by the equation $y_{o}=2 \sin (1.1 x+0.6 t)$. Use a sum-to-product identity to express the resulting wave $y=y_{i}+y_{o}$ as a product.

EXTENDING THE CONCEPT

50. Can you find three distinct, real numbers whose sum is equal to their product? A little known fact from trigonometry stipulates that for any triangle, the sum of the tangents of the angles is equal to the products of their tangents. Use a calculator to test this statement, recalling the three angles must sum to 180°. Our website at www.mhhe.com/coburn shows a method that enables you to verify the statement using tangents that are all rational values.
51. Verify the product-to-sum identity given in Exercise 42 :
$\sin a \sin b \sin c=\frac{1}{4}[\sin (a+b-c)+\sin (b+c-a)+\sin (c+a-b)-\sin (a+b+c)]$

MAINTAINING YOUR SKILLS

52. (3.4) Use a calculator to find two values of t that satisfy $\sin t \approx 0.9889$. Round to four decimal places.
53. (4.2) Given $\mathrm{Y}_{1}=\tan \alpha$ and $\mathrm{Y}_{2}=\cot \alpha$, which function is increasing? Which is defined for $\alpha \in(0, \pi)$?
54. (1.1) The hypotenuse of a certain right triangle is twice the shortest side. Solve the triangle.
55. (3.3) Verify that $\left(\frac{16}{65}, \frac{63}{65}\right)$ is on the unit circle, then find $\tan \theta$ and $\sec \theta$ to verify $1+\tan ^{2} \theta=\sec ^{2} \theta$.
56. (4.3) Write the equation of the function graphed in terms of a sine function of the form
$y=A \sin (B x+C)+D$.

57. (5.2) Use the sum identity for cosine to find the exact value of $\cos \left(105^{\circ}\right)$.

SUMMARY AND CONCEPT REVIEW

SECTION 5.1 More on Verifying Identities

KEY CONCEPTS

- The sine and tangent functions are odd functions, while cosine is even.
- The steps used to verify an identity must be reversible.
- If two expressions are equal, one may be substituted for the other and the result will be equivalent.
- To verify an identity we mold, change, substitute, and rewrite one side until we "match" the other side.
- Verifying identities often involves a combination of algebraic skills with the fundamental trig identities. A collection and summary of the Guidelines for Verifying Identities can be found on page 213.
- To show an equation is not an identity, find any one value where the expressions are defined but the equation is false, or graph both functions on a calculator to see if the graphs are identical.

EXERCISES

Verify that each equation is an identity.

1. $\frac{\csc ^{2} x\left(1-\cos ^{2} x\right)}{\tan ^{2} x}=\cot ^{2} x$
2. $\frac{\cot x}{\sec x}-\frac{\csc x}{\tan x}=\cot x(\cos x-\csc x)$
3. $\frac{\sin ^{4} x-\cos ^{4} x}{\sin x \cos x}=\tan x-\cot x$
4. $\frac{(\sin x+\cos x)^{2}}{\sin x \cos x}=\csc x \sec x+2$

SECTION 5.2 The Sum and Difference Identities

KEY CONCEPTS

The sum and difference identities can be used to

- Find exact values for nonstandard angles that are a sum or difference of two standard angles.
- Verify the cofunction identities and to rewrite a given function in terms of its cofunction.
- Find coterminal angles in $\left[0,360^{\circ}\right.$) for very large angles (the angle reduction formulas).
- Evaluate the difference quotient for $\sin x, \cos x$, and $\tan x$.
- Rewrite a sum as a single expression: $\cos \alpha \cos \beta+\sin \alpha \sin \beta=\cos (\alpha-\beta)$.

The sum and difference identities for sine and cosine can be remembered by noting

- For $\cos (\alpha \pm \beta)$, the function repeats and the signs alternate: $\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
- For $\sin (\alpha \pm \beta)$ the signs repeat and the functions alternate: $\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$

EXERCISES

Find exact values for the following expressions using sum and difference formulas.
5. a. $\cos 75^{\circ}$
b. $\tan \left(\frac{\pi}{12}\right)$
6. a. $\tan 15^{\circ}$
b. $\sin \left(-\frac{\pi}{12}\right)$

Evaluate exactly using sum and difference formulas.
7. a. $\cos 109^{\circ} \cos 71^{\circ}-\sin 109^{\circ} \sin 71^{\circ}$
b. $\sin 139^{\circ} \cos 19^{\circ}-\cos 139^{\circ} \sin 19^{\circ}$

Rewrite as a single expression using sum and difference formulas.
8. a. $\cos (3 x) \cos (-2 x)-\sin (3 x) \sin (-2 x)$
b. $\sin \left(\frac{x}{4}\right) \cos \left(\frac{3 x}{8}\right)+\cos \left(\frac{x}{4}\right) \sin \left(\frac{3 x}{8}\right)$

Evaluate exactly using sum and difference formulas, by reducing the angle to an angle in $\left[0,360^{\circ}\right)$ or $[0,2 \pi)$.
9. a. $\cos 1170^{\circ}$
b. $\sin \left(\frac{57 \pi}{4}\right)$

Use a cofunction identity to write an equivalent expression for the one given.
10. a. $\cos \left(\frac{x}{8}\right)$
b. $\sin \left(x-\frac{\pi}{12}\right)$
11. Verify that both expressions yield the same result using sum and difference formulas. $\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right)$ and $\tan 15^{\circ}=\tan \left(135^{\circ}-120^{\circ}\right)$.
12. Use sum and difference formulas to verify the following identity.

$$
\cos \left(x+\frac{\pi}{6}\right)+\cos \left(x-\frac{\pi}{6}\right)=\sqrt{3} \cos x
$$

SECTION 5.3 The Double-Angle and Half-Angle Identities

KEY CONCEPTS

- When multiple angle identities (identities involving $n \theta$) are used to find exact values, the terminal side of θ must be determined so the appropriate sign can be used.
- The power reduction identities for $\cos ^{2} x$ and $\sin ^{2} x$ are closely related to the double-angle identities, and can be derived directly from $\cos (2 x)=2 \cos ^{2} x-1$ and $\cos (2 x)=1-2 \sin ^{2} x$.
- The half-angle identities can be developed from the power reduction identities by using a change of variable and taking square roots. The sign is then chosen based on the quadrant of the half angle.

EXERCISES

Find exact values for $\sin (2 \theta), \cos (2 \theta)$, and $\tan (2 \theta)$ using the information given.
13. a. $\cos \theta=\frac{13}{85} ; \theta$ in QIV
b. $\csc \theta=-\frac{29}{20} ; \theta$ in QIII

Find exact values for $\sin \theta, \cos \theta$, and $\tan \theta$ using the information given.
14. a. $\cos (2 \theta)=-\frac{41}{841} ; \theta$ in QII
b. $\sin (2 \theta)=-\frac{336}{625} ; \theta$ in QII

Find exact values using the appropriate double-angle identity.
15. a. $\cos ^{2} 22.5^{\circ}-\sin ^{2} 22.5^{\circ}$
b. $1-2 \sin ^{2}\left(\frac{\pi}{12}\right)$

Find exact values for $\sin \theta$ and $\cos \theta$ using the appropriate half-angle identity.
16. a. $\theta=67.5^{\circ}$
b. $\theta=\frac{5 \pi}{8}$

Find exact values for $\sin \left(\frac{\theta}{2}\right)$ and $\cos \left(\frac{\theta}{2}\right)$ using the given information.
17. a. $\cos \theta=\frac{24}{25} ; 0^{\circ}<\theta<360^{\circ} ; \theta$ in QIV
b. $\csc \theta=-\frac{65}{33} ;-90^{\circ}<\theta<0 ; \theta$ in QIV
18. The area of an isosceles triangle (two equal sides) is given by the formula $A=x^{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)$, where the equal sides have length x and the vertex angle measures θ°. (a) Use this formula and the half-angle identities to find the area of an isosceles triangle with vertex angle $\theta=30^{\circ}$ and equal sides of 12 cm . (b) Use substitution and a double-angle identity to verify that $x^{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)=\frac{1}{2} x^{2} \sin \theta$, then recompute the triangle's area. Do the results match?

SECTION 5.4 The Product-to-Sum and Sum-to-Product Identities

KEY CONCEPTS

- The product-to-sum and sum-to-product identities can be derived using the sum and difference formulas, and have important applications in many areas of science.
- The product-to-sum formula for $\sin \alpha \cos \beta$ can be used to find the product-to-sum formula for $\cos \alpha \sin \beta$ by carefully applying the commutative property of multiplication.
- If we set $\alpha=\beta=\theta$ in the product-to-sum formulas, we can quickly derive some of the double-angle and power reduction identities.

EXERCISES

Write each product as a sum.
19. $\cos (3 t) \sin (-9 t)$
20. $\sin \left(\frac{2 \pi}{3} t\right) \sin \left(\frac{4 \pi}{3} t\right)$

Write each sum as a product.
21. $\cos t+\cos (3 t)$
22. $\sin \left(-\frac{t}{4}\right)-\sin \left(\frac{3 t}{8}\right)$

Find the exact values using identities.
23. $2 \cos \left(\frac{11 \pi}{12}\right) \cos \left(\frac{\pi}{12}\right)$
24. $\cos 75^{\circ}-\cos 15^{\circ}$
25. Verify the equation is an identity. $\frac{\cos (3 \alpha)-\cos \alpha}{\cos (3 \alpha)+\cos \alpha}=\frac{2 \tan ^{2} \alpha}{\sec ^{2} \alpha-2}$

MIXED REVIEW

1. Verify the equation is an identity:

$$
\sin (-\theta) \tan (-\theta)+\cos \theta=\sec (-\theta)
$$

2. Show that the following equation is not an identity:

$$
\sqrt{\sin ^{2} \theta}=\sin \theta
$$

Find the exact value of each expression using a sum or difference identity.
3. $\tan 255^{\circ}$

$$
\text { 4. } \cos \left(\frac{19 \pi}{12}\right)
$$

5. Find the exact value of $2 \cos ^{2}\left(\frac{\pi}{12}\right)-1$ using an appropriate identity.
6. Find the exact value of $2 \sin \left(\frac{\pi}{8}\right) \cos \left(\frac{\pi}{8}\right)$ using an appropriate identity.
Verify that each equation is an identity.
7. $\frac{1-\cos ^{2} \theta+\sin ^{2} \theta}{\tan ^{2} \theta}=1+\cos (2 \theta)$
8. $\frac{(\cos t+\sin t)^{2}}{\tan t}=\cot t+2 \cos ^{2} t$

Find exact values for $\sin \left(\frac{x}{2}\right)$ and $\cos \left(\frac{x}{2}\right)$ using the
information given.
9. $\sin x=\frac{-6}{7.5} ; 540^{\circ}<x<630^{\circ}$
10. $\sec x=\frac{11.7}{4.5} ; 0<x<\frac{\pi}{2}$

Verify the following identities using a sum formula.
11. $\sin (2 \alpha)=2 \sin \alpha \cos \alpha$
12. $\cos (2 \alpha)=\cos ^{2} \alpha-\sin ^{2} \alpha$

Find the value of each expression using sum-to-product and half-angle identities (without using a calculator).
13. $\sin 172.5^{\circ}-\sin 52.5^{\circ}$
14. $\cos 172.5^{\circ}+\cos 52.5^{\circ}$

Use the product-to-sum formulas to find the exact value of
15. $\sin \left(\frac{13 \pi}{24}\right) \cos \left(\frac{7 \pi}{24}\right) \quad$ 16. $\sin \left(\frac{13 \pi}{24}\right) \sin \left(\frac{7 \pi}{24}\right)$
17. Verify the identity:
$\sin (\alpha+\beta) \sin (\alpha-\beta)=\sin ^{2} \alpha-\sin ^{2} \beta$
18. Verify the identity:

$$
\left[\cos \left(\frac{\theta}{2}\right)-\sin \left(\frac{\theta}{2}\right)\right]^{2}=1-\sin \theta
$$

The horizontal distance an object will travel when it is projected at angle θ with initial velocity v is given by the equation $R=\frac{1}{16} v^{2} \sin \theta \cos \theta$.

19. Use an identity to show this equation can be written as $R=\frac{1}{32} v^{2} \sin (2 \theta)$.
20. Use this equation to show why the horizontal distance traveled by the object is the same for any two complementary angles.

PRACTICE TEST

Verify each identity using fundamental identities.

1. $\frac{(\csc x-\cot x)(\csc x+\cot x)}{\sec x}=\cos x$
2. $\frac{\sin ^{3} x-\cos ^{3} x}{1+\cos x \sin x}=\sin x-\cos x$
3. Find the value of all six trigonometric functions given $\cos \theta=\frac{48}{73} ; \theta$ in QIV.
4. Find the exact value of $\tan 15^{\circ}$ using a sum or difference formula.
5. Rewrite as a single expression and evaluate: $\cos 81^{\circ} \cos 36^{\circ}+\sin 81^{\circ} \sin 36^{\circ}$.
6. Evaluate $\cos 1935^{\circ}$ exactly using an angle reduction formula.
7. Use sum and difference formulas to verify $\sin \left(x+\frac{\pi}{4}\right)-\sin \left(x-\frac{\pi}{4}\right)=\sqrt{2} \cos x$.
8. Find exact values for $\sin \theta, \cos \theta$, and $\tan \theta$ given $\cos (2 \theta)=-\frac{161}{289} ; \theta$ in QI.
9. Use a double-angle identity to evaluate $2 \cos ^{2} 75^{\circ}-1$
10. Find exact values for $\sin \left(\frac{\theta}{2}\right)$ and $\cos \left(\frac{\theta}{2}\right)$ given $\tan \theta=\frac{12}{35} ; \theta$ in QI.
11. The area of a triangle is given geometrically as $A=\frac{1}{2}$ base \cdot height. The trigonometric for-
 mula for the triangle's area is $A=\frac{\mathbf{1}}{\mathbf{2}} b \boldsymbol{c} \sin \alpha$, where α is the angle formed by the sides b and c. In a certain triangle, $b=8, c=10$, and $\alpha=22.5^{\circ}$. Use the formula for A given here and a half-angle identity to find the area of the triangle in exact form.
12. The equation $A x^{2}+B x y+C y^{2}=0$ can be written in an alternative form that makes it easier to graph. This is done by eliminating the mixed $x y$-term using the relation $\tan (2 \theta)=\frac{B}{A-C}$ to find θ. We can then find values for $\sin \theta$ and $\cos \theta$, which are used in a conversion formula. Find $\sin \theta$ and $\cos \theta$ for $17 x^{2}+5 \sqrt{3} x y+2 y^{2}=0$, assuming 2θ in QI.

Verify that each equation is an identity.
13. $\frac{\tan \theta+\cot \theta}{\sin \theta \cos \theta}=\csc ^{2} \theta \sec ^{2} \theta$
14. $-2 \cos ^{4} \theta+3 \cos ^{2} \theta-1=\sin ^{2} \theta \cos (2 \theta)$

Find exact values for the following expressions using sum and difference formulas.
15. $\tan \left(15^{\circ}\right)$ 16. $\cos \left(15^{\circ}\right)-\sin \left(15^{\circ}\right)$
17. Find exact values for $\sin (2 \theta), \cos (2 \theta)$, and $\tan (2 \theta)$ using the information given.
$\sin \theta=-\frac{12}{37} ; \theta$ in QIII
18. Verify that the following equation is an identity:
$\frac{\csc ^{2} x-2}{2 \cot ^{2} x-\csc ^{2} x}=1$
19. One of the buttons on a telephone is pressed, and the equation of the resultant wave is modeled by $y(t)=\cos (2 \pi 1336 t)+\cos (2 \pi 941 t)$. (a) Use the diagram on page 241 to determine which button on the touch-tone phone was pressed. (b) Use a sum-to-product identity to write this sum as a product.
20. Noise-canceling headphones rely on a microphone and sophisticated circuitry to generate sound waves that "cancel" unwanted waves before they reach the ear. If airplane wind noise modeled as $y_{a}=\sin 800 \pi t$ is picked up by the mic, the headphones will generate a sound wave modeled by $y_{h}=\sin (800 \pi t-\pi)$. Use a sum-toproduct identity to rewrite $y_{a}+y_{h}$ as a product. What do you notice?

CALCULATOR EXPLORATION AND DISCOVERY

Seeing the Beats as the Beats Go On

When two sound waves of slightly different frequencies are combined, the resultant wave varies periodically in amplitude over time. These amplitude pulsations are called beats. In this Exploration and Discovery, we'll look at ways to "see" the beats more clearly on a graphing calculator, by representing sound waves very simplistically as $\mathrm{Y}_{1}=\cos (\mathrm{mt})$ and $\mathrm{Y}_{2}=\cos (n t)$ and noting a relationship between m, n, and the number of beats in $[0,2 \pi]$. Using a sum-to-product formula, we can represent the resultant wave as a single term. For $Y_{1}=\cos (12 t)$ and $Y_{2}=\cos (8 t)$ the result is

$$
\begin{aligned}
\cos (12 t)+\cos (8 t) & =2 \cos \left(\frac{12 t+8 t}{2}\right) \cos \left(\frac{12 t-8 t}{2}\right) \\
& =2 \cos (10 t) \cos (2 t)
\end{aligned}
$$

The window used and resulting graph are shown in Figures 5.12 and 5.13, and it appears that "silence" occurs four times in this interval-where the graph of the combined waves is tangent to (bounces off of) the x-axis. This indicates a total of four beats. Note the number of beats is equal to the difference $m-n: 12-8=4$. Further experimentation will show this is not a coincidence, and this enables us to construct two additional functions that will frame these pul-
sations and make them easier to see. Since the maximum amplitude of the resulting wave is 2 , we use functions of the form $\pm 2 \cos \left(\frac{k}{2} x\right)$ to construct the frame, where k is the number of beats in the interval $(m-n=k)$. For $\mathrm{Y}_{1}=\cos (12 t)$ and $\mathrm{Y}_{2}=\cos (8 t)$, we have $k=\frac{12-8}{2}=2$ and the functions we use will be $\mathrm{Y}_{2}=2 \cos (2 x)$ and $Y_{3}=-2 \cos (2 x)$ as shown in Figure 5.14. The result is shown in Figure 5.15, where the frame clearly shows the four beats or more precisely, the four moments of silence.

For each exercise, (a) express the sum $\mathrm{Y}_{1}+\mathrm{Y}_{2}$ as a product, (b) graph Y_{R} on a graphing calculator for $x \in[0,2 \pi]$ and identify the number of beats in this interval, and (c) determine what value of k in $\pm 2 \cos \left(\frac{k}{2} x\right)$ would be used to frame the resultant Y_{R}, then enter these as Y_{2} and Y_{3} to check the result.

Exercise 1: $\mathrm{Y}_{1}=\cos (14 t) ; \quad \mathrm{Y}_{2}=\cos (8 t)$
Exercise 3: $\mathrm{Y}_{1}=\cos (14 t)$;

$$
\mathrm{Y}_{2}=\cos (6 t)
$$

Figure 5.12

Figure 5.14

Figure 5.15

Exercise 2: $\mathrm{Y}_{1}=\cos (12 t)$;

$$
\mathrm{Y}_{2}=\cos (9 t)
$$

Exercise 4: $\mathrm{Y}_{1}=\cos (11 t)$;

Figure 5.13

STRENGTHENING CORE SKILLS

Identities-Connections and Relationships

It is a well-known fact that information is retained longer and used more effectively when it is organized, sequential, and connected. In this Strengthening Core Skills (SCS), we attempt to do just that with our study of identities. In flowchart form we'll show that the entire range of identities has only two tiers, and that the fundamental identities and the sum and difference identities are really the keys to the entire range of identities. Beginning with the right triangle definition of sine, cosine, and tangent, the reciprocal identities and ratio identities are more semantic (word related) than mathematical, and the Pythagorean identities follow naturally from the properties of right triangles. These form the first tier.

Basic Definitions

$$
\sin \theta=\frac{\text { opp }}{\text { hyp }} \quad \cos \theta=\frac{\text { adj }}{\text { hyp }} \quad \tan \theta=\frac{\text { opp }}{\text { adj }}
$$

Reciprocal Identities

$$
\begin{array}{ll}
\text { Reciprocal Identities } & \\
\begin{array}{l}
\text { Ratio Identities } \\
\frac{1}{\sin \theta}=\csc \theta \\
\frac{1}{\cos \theta}=\sec \theta \\
\frac{1}{\cos \theta}=\tan \theta \\
\tan \theta
\end{array}=\cot \theta & \frac{\cos \theta}{\sin \theta}=\cot \theta \\
& \frac{\sec \theta}{\csc \theta}=\tan \theta
\end{array}
$$

Pythagorean Identities

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

$\tan ^{2} \theta+1=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta$
(divide by $\cos ^{2} \theta$)
(divide by $\sin ^{2} \theta$)

The reciprocal and ratio identities are actually defined, while the Pythagorean identities are derived from these two families. In addition, the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ is the only Pythagorean identity we actually need to memorize; the other two follow by division of $\cos ^{2} \theta$ and $\sin ^{2} \theta$ as indicated.

In virtually the same way, the sum and difference identities for sine and cosine are the only identities that need to be memorized, as all other identities in the second tier flow from these.

Sum/Difference Identities

Double-Angle Identities
 use $\alpha=\beta$

in sum identities
$\sin (2 \alpha)=2 \sin \alpha \cos \alpha \quad \cos ^{2} \alpha=\frac{1+\cos (2 \alpha)}{2}$
$\cos (2 \alpha)=\cos ^{2} \alpha-\sin ^{2} \alpha \quad \sin ^{2} \alpha=\frac{1-\cos (2 \alpha)}{2}$

$$
\begin{array}{cc}
\cos (2 \alpha)=2 \cos ^{2} \alpha-1 & \cos (2 \alpha)=1-2 \sin ^{2} \alpha \\
\left(\text { use } \sin ^{2} \alpha=1-\cos ^{2} \alpha\right) & \left(\text { use } \cos ^{2} \alpha=1-\sin ^{2} \alpha\right)
\end{array}
$$

Half-Angle Identities

solve for $\cos \alpha, \sin \alpha$ and use $\alpha=u / 2$ in the power reduction identities
$\cos \left(\frac{u}{2}\right)= \pm \sqrt{\frac{1+\cos u}{2}}$
Product-to-Sum Identities combine various sum/difference identities see Section 5.4
$\sin \left(\frac{u}{2}\right)= \pm \sqrt{\frac{1-\cos u}{2}}$ see Section 5.4

Exercise 1: Starting with the identity $\sin ^{2} \alpha+\cos ^{2} \alpha=1$, derive the other two Pythagorean identities.

Exercise 2: Starting with the identity
$\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$, derive the double-angle identities for cosine.

CUMULATIVE REVIEW CHAPTERS 1-5

1. Solve using a standard triangle.

$a=20, \quad b=$ \qquad
\qquad
$\alpha=30^{\circ}, \beta=$ \qquad , $\gamma=$ \qquad
2. Solve using trigonometric ratios.

$a=$ \qquad $b=$ \qquad , $c=82$
$\alpha=$ \qquad , $\beta=63^{\circ}$, $\gamma=$ \qquad
3. State the three Pythagorean identities.
4. Given θ is in QIV and $\theta_{r}=32^{\circ}$, find the value of θ.
5. The rollers on a conveyor belt have a radius of 6 in. and are turning at 300 rpm . How fast (in feet per second) is an object on the conveyor belt moving?
6. State the value of all six trig functions given $\tan \alpha=-\frac{3}{4}$ with $\cos \alpha>0$.
7. Sketch the graph of $y=3 \cos \left(2 x-\frac{\pi}{4}\right)$ using a reference rectangle and the rule of fourths.
8. Given $\cos 53^{\circ} \approx 0.6$ and $\cos 37^{\circ} \approx 0.8$ approximate the value of $\cos 16^{\circ}$ without using a calculator.
9. Verify that the following is an identity:
$\cos ^{2}\left(\frac{\alpha}{2}\right)=\frac{\sec \alpha+2+\cos \alpha}{2 \sec \alpha+2}$
10. Determine the equation of

Exercise 10 the function shown, given it is of the form $y=A \cos [B(t+C)]+D$.
11. State the double-angle identities for sine and cosine.
12. Find $\sin (\alpha+\beta)$ and $\cos (\alpha+\beta)$ given
 $\cos \alpha=\frac{7}{25}$ in QIV and $\csc \beta=-\frac{13}{5}$ in QIII.
13. Use the sum identities to find exact values for $\sin 195^{\circ}$ and $\cos 195^{\circ}$.
14. Use a product-to-sum formula to find an exact value for $\cos \left(\frac{\pi}{12}\right) \sin \left(\frac{5 \pi}{12}\right)$.
15. The approximate number of hours of daylight for Juneau, Alaska, is given month by month in the table to the right. Use the data to find an appropriate regression equation, then answer the following questions.
a. Approximately how many daylight hours were there on April $15(t=4.5)$?
b. Approximate the dates between which there are over 15 hr of daylight.

Month $(\mathbf{J a n} . \rightarrow \mathbf{1})$	Daylight $(\mathbf{h r})$	Month $(\mathbf{J a n} . \rightarrow \mathbf{1})$	Daylight $(\mathbf{h r})$
1	5.5	7	18.1
2	8	8	17
3	11	9	14.5
4	13.5	10	12.5
5	16.5	11	9.5
6	18	12	7.5

16. Road Gang 52 out of Oklahoma City, Oklahoma, is responsible for rebuilding dangerous roadbeds for the rail line between Denton, Texas, and Arkansas City, Kansas. Due to favorable weather conditions, the gang can refurbish a high of 0.8 mi of track per day in June, but only 0.62 mi of track in the cold of December. (a) Use this information to build a sinusoidal equation that models the amount of track Gang 52 can rebuild each month. (b) How many months of the year can Gang 52 rebuild more than 0.75 mi of track per day?

Verify the identities.
17. $\cot x\left(\tan x-\frac{\sin x}{\cos ^{3} x}\right)=\tan ^{2} x$
18. $\cos ^{2} x-\csc ^{2} x \cos ^{2} x=-\frac{\cos ^{4} x}{\sin ^{2} x}$
19. The cities of Kiev and Leningrad have played significant roles in the history of Russia. Kiev is located at $50.3^{\circ} \mathrm{N}$ latitude and $30.3^{\circ} \mathrm{E}$ longitude. Leningrad is located at $59.6^{\circ} \mathrm{N}$ latitude and at roughly the same longitude. If the radius of the Earth is 6372 km , how many kilometers separate the two cities?
20. The planet Venus completes one orbit of the Sun in roughly 225 days. Find its linear velocity in miles per second if the radius of its orbit is approximately 67 million miles.

CHAPTER CONNECTIONS

Inverse Functions and Trigonometric Equations

CHAPTER OUTLINE

6.1 One-to-One and Inverse Functions 254

6.2 The Inverse Trig Functions and Their Applications 266
 6.2 The Inverse Trig Functions and Their Applications 266
 266

6.3 Solving Basic Trig Equations 284

6.3 Solving Basic Trig Equations 284
6.4 Solving General Trig Equations and Applications 295

6.4 Solving General Trig Equations
and Applications 295

This chapter will unify much of what we've learned so far, and lead us to some intriguing, sophisticated, and surprising applications of trigonometry. Defining the trig functions (Chapters 1, 2, 3) helped us study a number of new relationships not possible using algebra alone. Their graphs (Chapter 4) gave us insights into how the functions are related to each other, and enabled a study of periodic phenomena. The identities (Chapter 5) were used to simplify complex expressions and to show how trig functions often work together to model natural events. One such "event" is a river's seasonal discharge rate, which tends to be greater during the annual snow melt. In this chapter, we'll learn how to predict the discharge rate during specific months of the year, information of great value to fisheries, oceanographers, and other scientists.

- This application appears as Exercises 45 and 46 in Section 6.4

6.1 One-to-One and Inverse Functions

Learning Objectives

In Section 6.1 you will learn how to:A. Identify one-to-one functionsB. Explore inverse functions using ordered pairsC. Find inverse functions using an algebraic methodD. Graph a function and its inverseE. Solve applications of inverse functions

Consider the function $f(x)=2 x-3$. If $f(x)=7$, the equation becomes $2 x-3=7$, and the corresponding value of x can be found using inverse operations. In this section, we introduce the concept of an inverse function, which can be viewed as a formula for finding x-values that correspond to any given value of $f(x)$.

A. Identifying One-to-One Functions

The graphs of $y=2 x$ and $y=x^{2}$ are shown in Figures 6.1 and 6.2. The dashed, vertical lines clearly indicate both are functions, with each x-value corresponding to only one y. But the points on $y=2 x$ have one characteristic those from $y=x^{2}$ do noteach y-value also corresponds to only one x (for $y=x^{2}, 4$ corresponds to both -2 and 2). If each element from the range of a function corresponds to only one element of the domain, the function is said to be one-to-one.

Figure 6.1

Figure 6.2

One-to-One Functions

A function f is one-to-one if every element in the range corresponds to only one element of the domain.

$$
\begin{array}{ll}
\text { In symbols, } & \text { if } f\left(x_{1}\right)=f\left(x_{2}\right) \text {, then } x_{1}=x_{2}, \text { or } \\
& \text { if } x_{1} \neq x_{2} \text {, then } f\left(x_{1}\right) \neq f\left(x_{2}\right) .
\end{array}
$$

From this definition we note the graph of a one-to-one function must not only pass a vertical line test (to show each x corresponds to only one y), but also pass a horizontal line test (to show each y corresponds to only one x).

Horizontal Line Test

If every horizontal line intersects the graph of a function in at most one point, the function is one-to-one.

Notice the graph of $y=2 x$ (Figure 6.3) passes the horizontal line test, while the graph of $y=x^{2}$ (Figure 6.4) does not.

Figure 6.3

Figure 6.4

EXAMPLE 1 Identifying One-to-One Functions

Use the horizontal line test to determine whether each graph is the graph of a one-to-one function.
a.

b.

c.

d.

A careful inspection shows all four graphs depict a function, since each passes the vertical line test. Only (a) and (b) pass the horizontal line test and are one-to-one functions.

Now try Exercises 7 through 28

If the function is given in ordered pair form, we simply check to see that no given second coordinate is paired with more than one first coordinate.

B. Inverse Functions and Ordered Pairs

Table 6.1

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-3	-9
0	-3
2	1
$\mathbf{5}$	7
8	13

Table 6.2

\boldsymbol{x}	$\boldsymbol{F}(\boldsymbol{x})$
-9	-3
-3	0
1	2
7	5
13	8

Consider the function $f(x)=2 x-3$ and the solutions shown in Table 6.1. Figure 6.5 shows this function in diagram form (in blue), and illustrates that for each element of the domain, we multiply by 2 , then subtract 3 . An inverse function for f is one that takes the result of these operations (elements of the range), and returns the original domain element. Figure 6.6 shows that function F achieves this by "undoing" the operations in reverse order: add 3, then divide by 2 (in red). A table of values for $F(x)$ is shown (Table 6.2).

Figure 6.5

Figure 6.6

From this illustration we make the following observations regarding an inverse function, which we actually denote as $f^{-1}(x)$.

Inverse Functions

If f is a one-to-one function with ordered pairs (a, b),

1. $f^{-1}(x)$ is a one-to-one function with ordered pairs (b, a).
2. The range of f will be the domain of $f^{-1}(x)$.
3. The domain of f will be the range of $f^{-1}(x)$.

CAUTION - The notation $f^{-1}(x)$ is simply a way of denoting an inverse function and has nothing to do with exponential properties. In particular, $f^{-1}(x)$ does not mean $\frac{1}{f(x)}$.

EXAMPLE $2-$ Finding the Inverse of a Function

Find the inverse of each one-to-one function given:
a. $f(x)=\{(-4,13),(-1,7),(0,5),(2,1),(5,-5),(8,-11)\}$
b. $p(x)=-3 x+2$

Solution
B. You've just learned how to explore inverse functions using ordered pairs
a. When a function is defined as a set of ordered pairs, the inverse function is found by simply interchanging the x - and y-coordinates: $f^{-1}(x)=\{(13,-4),(7,-1),(5,0),(1,2),(-5,5),(-11,8)\}$.
b. Using diagrams similar to Figures 6.5 and 6.6 , we reason that $p^{-1}(x)$ will subtract 2 , then divide the result by $-3: p^{-1}(x)=\frac{x-2}{-3}$. As a test, we find that $(-2,8),(0,2)$, and $(3,-7)$ are solutions to $p(x)$, and note that $(8,-2)$, $(2,0)$, and $(-7,3)$ are indeed solutions to $p^{-1}(x)$.

Now try Exercises 29 through 40

C. Finding Inverse Functions Using an Algebraic Method

WORTHY OF NOTE

If a function is not one-toone, no inverse function exists since interchanging the x - and y-coordinates will result in a nonfunction. For instance, interchanging the coordinates of $(-2,4)$ and $(2,4)$ from $y=x^{2}$ results in $(4,-2)$ and $(4,2)$, and we have one x-value being mapped to two y-values, in violation of the function definition.

The fact that interchanging x - and y-values helps determine an inverse function can be generalized to develop an algebraic method for finding inverses. Instead of interchanging specific x - and y-values, we actually interchange the x - and y-variables, then solve the equation for y. The process is summarized here.

Finding an Inverse Function

1. Use y instead of $f(x)$.
2. Interchange x and y.
3. Solve the equation for y.
4. The result gives the inverse function: substitute $f^{-1}(x)$ for y.

In this process, it might seem like we're using the same y to represent two different functions. To see why there is actually no contradiction, see Exercise 103.

EXAMPLE $3>$ Finding Inverse Functions Algebraically

Use the algebraic method to find the inverse function for
a. $f(x)=\sqrt[3]{x+5}$
b. $g(x)=\frac{2 x}{x+1}$

Solution

$$
\text { a. } \begin{aligned}
f(x) & =\sqrt[3]{x+5} & & \text { given function } \\
y & =\sqrt[3]{x+5} & & \text { use } y \text { instead of } f(x) \\
x & =\sqrt[3]{y+5} & & \text { interchange } x \text { and } y \\
x^{3} & =y+5 & & \text { cube both sides } \\
x^{3}-5 & =y & & \text { solve for } y \\
x^{3}-5 & =f^{-1}(x) & & \text { the result is } f^{-1}(x)
\end{aligned}
$$

For $f(x)=\sqrt[3]{x+5}, f^{-1}(x)=x^{3}-5$.
b. $\quad g(x)=\frac{2 x}{x+1} \quad$ given function
$y=\frac{2 x}{x+1} \quad$ use y instead of $f(x)$
$x=\frac{2 y}{y+1} \quad$ interchange x and y
$x y+x=2 y \quad$ multiply by $y+1$ and distribute
$x=2 y-x y \quad$ gather terms with y
$x=y(2-x) \quad$ factor
$\frac{x}{2-x}=y \quad$ solve for y
$\frac{x}{2-x}=g^{-1}(x) \quad$ the result is $g^{-1}(x)$
For $g(x)=\frac{2 x}{x+1}, g^{-1}(x)=\frac{x}{2-x}$.
Now try Exercises 41 through 48
In cases where a given function is not one-to-one, we can sometimes restrict the domain to create a function that is, and then determine an inverse. The restriction we use is arbitrary, and only requires that the result still produces all possible range values. For the most part, we simply choose a limited domain that seems convenient or reasonable.

EXAMPLE $4>$ Restricting the Domain to Create a One-to-One Function

Given $f(x)=(x-4)^{2}$, restrict the domain to create a one-to-one function, then find $f^{-1}(x)$. State the domain and range of both resulting functions.

Solution $>$ The graph of f is a parabola, opening upward with the vertex at $(4,0)$. Restricting the domain to $x \geq 4$ (see figure) leaves only the "right branch" of the parabola, creating a one-to-one function without affecting the range, $y \in[0, \infty)$. For $f(x)=(x-4)^{2}$, $x \geq 4$, we have

$$
\begin{aligned}
f(x) & =(x-4)^{2} & & \text { given function } \\
y & =(x-4)^{2} & & \text { use } y \text { instead of } f(x) \\
x & =(y-4)^{2} & & \text { interchange } x \text { and } y \\
\pm \sqrt{x} & =y-4 & & \text { take square roots } \\
\sqrt{x}+4 & =y & & \text { solve for } y, \text { use } \sqrt{x} \text { since } x \geq 4
\end{aligned}
$$

The result shows $f^{-1}(x)=\sqrt{x}+4$, with domain $x \in[0, \infty)$ and range $y \in[4, \infty)$ (the domain of f becomes the range of f^{-1}, and the range of f becomes the domain of f^{-1}).

While we now have the ability to find the inverse of a function, we still lack a definitive method of verifying the inverse is correct. Actually, the diagrams in Figures 6.5 and 6.6 suggest just such a method. If we use the function f itself as an input for f^{-1}, or the function f^{-1} as an input for f, the end result should simply be x, as each function "undoes" the operations of the other. This is a composition of functions and using the notation for composition we have,

Verifying Inverse Functions

If f is a one-to-one function, then the function f^{-1} exists, where

$$
\left(f \circ f^{-1}\right)(x)=x \quad \text { and } \quad\left(f^{-1} \circ f\right)(x)=x
$$

EXAMPLE $5>$ Finding and Verifying an Inverse Function

Use the algebraic method to find the inverse function for $f(x)=\sqrt{x+2}$. Then verify the inverse you found is correct.
Solution $>$ Since the graph of f is the graph of $y=\sqrt{x}$ shifted 2 units left, we know f is one-to-one with domain $x \in[-2, \infty)$ and range $y \in[0, \infty)$. This is important since the domain and range values will be interchanged for the inverse function. The domain of f^{-1} will be $x \in[0, \infty)$ and its range $y \in[-2, \infty)$.
C. You've just learned how to find inverse functions using an algebraic method
given function; $x \geq-2$
use y instead of $f(x)$
interchange x and y
solve for y (square both sides)

$$
x^{2}-2=y
$$

$$
f^{-1}(x)=x^{2}-2
$$

Verify $>\left(f \circ f^{-1}\right)(x)=f\left[f^{-1}(x)\right]$

$$
=\sqrt{f^{-1}(x)+2}
$$

$$
=\sqrt{\left(x^{2}-2\right)+2}
$$

$$
=\sqrt{x^{2}}
$$

$$
=x \checkmark
$$

$$
\text { Verify }>\left(f^{-1} \circ f\right)(x)=f^{-1}[f(x)]
$$

$$
=[f(x)]^{2}-2
$$

$$
=[\sqrt{x+2}]^{2}-2
$$

$$
=x+2-2 \quad \text { simplify }
$$

$$
=x \checkmark
$$

result

Now try Exercises 55 through 80

D. The Graph of a Function and Its Inverse

Graphing a function and its inverse on the same axes reveals an interesting and useful relationship-the graphs are reflections across the line $y=x$ (the identity function). Consider the function $f(x)=2 x+3$, and its inverse $f^{-1}(x)=\frac{x-3}{2}=\frac{1}{2} x-\frac{3}{2}$. In Figure 6.7, the points $(1,5),(0,3),\left(-\frac{3}{2}, 0\right)$, and $(-4,-5)$ from f (see Table 6.3) are graphed in blue, with the points $(5,1),(3,0),\left(0,-\frac{3}{2}\right)$, and $(-5,-4)$ (see Table 6.4)
from f^{-1} graphed in red (note the x - and y-values are reversed). Graphing both lines illustrates this symmetry (Figure 6.8).

Table 6.3

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
1	5
0	3
$-\frac{3}{2}$	0
-4	-5

Figure 6.7

Figure 6.8

Table 6.4

\boldsymbol{x}	$\boldsymbol{f}^{-1}(\boldsymbol{x})$
5	1
3	0
0	$-\frac{3}{2}$
-5	-4

EXAMPLE $6>$ Graphing a Function and Its Inverse

In Example 5, we found the inverse function for $f(x)=\sqrt{x+2}$ was $f^{-1}(x)=x^{2}-2, x \geq 0$. Graph these functions on the same axes and comment on how the graphs are related.
Solution \quad The graph of f is a square root function with initial point $(-2,0)$, a y-intercept of $(0, \sqrt{2})$, and an x-intercept of $(-2,0)$ (Figure 6.9 in blue). The graph of $x^{2}-2, x \geq 0$ is the right-hand branch of a parabola, with y-intercept at $(0,-2)$ and an x-intercept at $(\sqrt{2}, 0)$ (Figure 6.9 in red).

Figure 6.9

Figure 6.10

Connecting these points with a smooth curve indeed shows their graphs are symmetric to the line $y=x$ (Figure 6.10).

Now try Exercises 81 through 88

EXAMPLE $7>$ Graphing a Function and Its Inverse
Given the graph shown in Figure 6.11, use the grid in Figure 6.12 to draw a graph of the inverse function.

Figure 6.11

Figure 6.12

Solution From the graph, the domain of f appears to be $x \in \mathbb{R}$ and the range is $y \in(0, \infty)$. This means the domain of f^{-1} will be $x \in(0, \infty)$ and the range will be $y \in \mathbb{R}$. To sketch f^{-1}, draw the line $y=x$, interchange the x - and y-coordinates of the selected points, then plot these points and draw a smooth curve using the domain and range boundaries as a guide.

Now try Exercises 89 through 94

A summary of important points is given here.

Functions and Inverse Functions

1. If the graph of a function passes the horizontal line test, the function is one-to-one.
2. If a function f is one-to-one, the function f^{-1} exists.
3. The domain of f is the range of f^{-1}, and the range of f is the domain of f^{-1}.
4. For a function f and its inverse $f^{-1},\left(f \circ f^{-1}\right)(x)=x$ and $\left(f^{-1} \circ f\right)(x)=x$.
5. The graphs of f and f^{-1} are symmetric with respect to the line $y=x$.

E. Applications of Inverse Functions

Our final example illustrates one of the many ways that inverse functions can be applied.

EXAMPLE $8>$ Using Volume to Understand Inverse Functions

The volume of an equipoise cylinder (height equal to diameter) is given by $v(x)=2 \pi x^{3}$ (since $h=d=2 r$), where $v(x)$ represents the volume in units cubed and x represents the radius of the cylinder.
a. Find the volume of such a cylinder if $x=10 \mathrm{ft}$.
b. Find $v^{-1}(x)$, and discuss what the input and output variables
 represent.
c. If a volume of $1024 \pi \mathrm{ft}^{3}$ is required, which formula would be easier to use to find the radius? What is this radius?
Solution
a. $\begin{aligned} v(x) & =2 \pi x^{3} & & \text { given function } \\ v(10) & =2 \pi(10)^{3} & & \text { substitute } 10 \text { for } x \\ & =2000 \pi & & 10^{3}=1000, \text { exact form }\end{aligned}$

With a radius of 10 ft , the volume of the cylinder would be $2000 \pi \mathrm{ft}^{3}$.
b. $\quad v(x)=2 \pi x^{3} \quad$ given function

$$
\begin{aligned}
y & =2 \pi x^{3} & & \text { use } y \text { instead of } v(x) \\
x & =2 \pi y^{3} & & \text { interchange } x \text { and } y \\
\frac{x}{2 \pi} & =y^{3} & & \text { solve for } y \\
\sqrt[3]{\frac{x}{2 \pi}} & =y & & \text { result }
\end{aligned}
$$

The inverse function is $v^{-1}(x)=\sqrt[3]{\frac{x}{2 \pi}}$. In this case, the input x is a given volume, and the output $v^{-1}(x)$ is the radius of an equipoise cylinder that will hold this volume.
E. You've just learned how to solve an application of inverse functions
c. Since the volume is known and we need the radius, using $v^{-1}(x)=\sqrt[3]{\frac{x}{2 \pi}}$
would be more efficient.

$$
\begin{aligned}
v^{-1}(1024 \pi) & =\sqrt[3]{\frac{1024 \pi}{2 \pi}} & & \text { substitute } 1024 \pi \text { for } x \text { in } v^{-1}(x) \\
& =\sqrt[3]{512} & & \frac{2 \pi}{2 \pi}=1 \\
& =8 & & \text { result }
\end{aligned}
$$

The radius of the cylinder would be 8 ft .

Now try Exercises 97 through 102

TECHNOLOGY HIGHLIGHT

Investigating Inverse Functions

Many important ideas from this section can be illustrated using a graphing calculator. To begin, enter the function $Y_{1}=2 \sqrt[3]{x-2}$ and $Y_{2}=\frac{x^{3}}{8}+2$ (which appear to be inverse functions) on the $Y=$ screen, then press zoom
5:ZSquare. The graphs seem to be reflections across the line $y=x$ (Figure 6.13). To verify, use the TABLE feature with inputs $x=-2,-1,0,1,2$, and 3 . As shown in Figure 6.14 , the points $(1,-2),(2,0)$, and $(3,2)$ are on Y_{1},

Figure 6.13
 and the points $(-2,1),(0,2)$, and $(2,3)$ are all on Y_{2}. While this seems convincing (the x - and y-coordinates are interchanged), the technology can actually compose the two functions to verify an inverse relationship. Function names Y_{1} and Y_{2} can be accessed using the VARS and \square keys, then pressing ENTER. After entering $Y_{3}=Y_{1}\left(Y_{2}\right)$ and $Y_{4}=Y_{2}\left(Y_{1}\right)$ on the $Y=$ screen, we observe whether one function "undoes" the other using the TABLE feature (Figure 6.15).

Figure 6.14

Figure 6.15

For the functions given, (a) find $f^{-1}(x)$, then use your calculator to verify they are inverses by (b) using ordered pairs, (c) composing the functions, and (d) showing their graphs are symmetric to $y=x$.
Exercise 1: $f(x)=2 x+1$
Exercise 2: $g(x)=x^{2}+1 ; x \geq 0$
Exercise 3: $\quad h(x)=\frac{x}{x+1}$

6.1 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. A function is one-to-one if each \qquad coordinate corresponds to exactly \qquad first coordinate.
2. A certain function is defined by the ordered pairs $(-2,-11),(0,-5),(2,1)$, and $(4,19)$. The inverse function is \qquad _.
3. State true or false and explain why: To show that g is the inverse function for f, simply show that $(f \circ g)(x)=x$. Include an example in your response.
4. If every
\qquad line intersects the graph of a function in at most \qquad point, the function is one-to-one.
5. To find f^{-1} using the algebraic method, we (1) use
\qquad instead of $f(x),(2)$ \qquad x and y, (3) \qquad for y, and (4) replace y with $f^{-1}(x)$.
6. Discuss/Explain why no inverse function exists for $f(x)=(x+3)^{2}$ and $g(x)=\sqrt{4-x^{2}}$. How would the domain of each function have to be restricted to allow for an inverse function?

DEVELOPING YOUR SKILLS

Determine whether each graph given is the graph of a one-to-one function. If not, give examples of how the definition of one-to-oneness is violated.
7.

8.

9.

10.

11.

12.

13.

14.

15.

Determine whether the functions given are one-to-one. If not, state why.
16. $\{(-7,4),(-1,9),(0,5),(-2,1),(5,-5)\}$
17. $\{(9,1),(-2,7),(7,4),(3,9),(2,7)\}$
18. $\{(-6,1),(4,-9),(0,11),(-2,7),(-4,5),(8,1)\}$
19. $\{(-6,2),(-3,7),(8,0),(12,-1),(2,-3),(1,3)\}$

Determine if the functions given are one-to-one by noting the function family to which each belongs and mentally picturing the shape of the graph. If a function is not one-to-one, discuss how the definition of one-tooneness is violated.
20. $f(x)=3 x-5$
21. $g(x)=(x+2)^{3}-1$
22. $h(x)=-|x-4|+3$
23. $p(t)=3 t^{2}+5$
24. $s(t)=\sqrt{2 t-1}+5$
25. $r(t)=\sqrt[3]{t+1}-2$
26. $y=3$
27. $y=-2 x$
28. $y=x$

For Exercises 29 to 32, find the inverse function of the one-to-one functions given.
29. $f(x)=\{(-2,1),(-1,4),(0,5),(2,9),(5,15)\}$
30. $g(x)=\{(-2,30),(-1,11),(0,4),(1,3),(2,2)\}$
31. $v(x)$ is defined by the ordered pairs shown.

32. $w(x)$ is defined by the ordered pairs shown.

Find the inverse function using diagrams similar to those illustrated in Example 2. Check the result using three test points.
33. $f(x)=x+5$
34. $g(x)=x-4$
35. $p(x)=-\frac{4}{5} x$
36. $r(x)=\frac{3}{4} x$
37. $f(x)=4 x+3$
38. $g(x)=5 x-2$
39. $Y_{1}=\sqrt[3]{x-4}$
40. $Y_{2}=\sqrt[3]{x+2}$

Find each function $f(x)$ given, (a) find any three ordered pair solutions (a, b), then (b) algebraically compute $f^{-1}(x)$, and (c) verify the ordered pairs (b, a) satisfy $f^{-1}(x)$.
41. $f(x)=\sqrt[3]{x-2}$
42. $f(x)=\sqrt[3]{x+3}$
43. $f(x)=x^{3}+1$
44. $f(x)=x^{3}-2$
45. $f(x)=\frac{8}{x+2}$
46. $f(x)=\frac{12}{x-1}$
47. $f(x)=\frac{x}{x+1}$
48. $f(x)=\frac{x+2}{1-x}$

The functions given in Exercises 49 through 54 are not one-to-one. (a) Determine a domain restriction that preserves all range values, then state this domain and range. (b) Find the inverse function and state its domain and range.
49. $f(x)=(x+5)^{2}$
50. $g(x)=x^{2}+3$
51. $v(x)=\frac{8}{(x-3)^{2}}$
52. $V(x)=\frac{4}{x^{2}}+2$
53. $p(x)=(x+4)^{2}-2$
54. $q(x)=\frac{4}{(x-2)^{2}}+1$

For each function $f(x)$ given, prove (using a composition) that $g(x)=f^{-1}(x)$.
55. $f(x)=-2 x+5, g(x)=\frac{x-5}{-2}$
56. $f(x)=3 x-4, g(x)=\frac{x+4}{3}$
57. $f(x)=\sqrt[3]{x+5}, g(x)=x^{3}-5$
58. $f(x)=\sqrt[3]{x-4}, g(x)=x^{3}+4$
59. $f(x)=\frac{2}{3} x-6, g(x)=\frac{3}{2} x+9$
60. $f(x)=\frac{4}{5} x+6, g(x)=\frac{5}{4} x-\frac{15}{2}$
61. $f(x)=x^{2}-3 ; x \geq 0, g(x)=\sqrt{x+3}$
62. $f(x)=x^{2}+8 ; x \geq 0, g(x)=\sqrt{x-8}$

Find the inverse of each function $f(x)$ given, then prove (by composition) your inverse function is correct. Note the domain of f is all real numbers.
63. $f(x)=3 x-5$
64. $f(x)=5 x+4$
65. $f(x)=\frac{x-5}{2}$
66. $f(x)=\frac{x+4}{3}$
67. $f(x)=\frac{1}{2} x-3$
68. $f(x)=\frac{2}{3} x+1$
69. $f(x)=x^{3}+3$
70. $f(x)=x^{3}-4$
71. $f(x)=\sqrt[3]{2 x+1}$
72. $f(x)=\sqrt[3]{3 x-2}$
73. $f(x)=\frac{(x-1)^{3}}{8}$
74. $f(x)=\frac{(x+3)^{3}}{-27}$

Find the inverse of each function, then prove (by composition) your inverse function is correct. State the implied domain and range as you begin, and use these to state the domain and range of the inverse function.
75. $f(x)=\sqrt{3 x+2}$
76. $g(x)=\sqrt{2 x-5}$
77. $p(x)=2 \sqrt{x-3}$
78. $q(x)=4 \sqrt{x+1}$
79. $v(x)=x^{2}+3 ; x \geq 0$
80. $w(x)=x^{2}-1 ; x \geq 0$

Graph each function $f(x)$ and its inverse $f^{-1}(x)$ on the same grid and "dash-in" the line $y=x$. Note how the graphs are related. Then verify the "inverse function" relationship using a composition.
81. $f(x)=4 x+1 ; f^{-1}(x)=\frac{x-1}{4}$
82. $f(x)=2 x-7 ; f^{-1}(x)=\frac{x+7}{2}$
83. $f(x)=\sqrt[3]{x+2} ; f^{-1}(x)=x^{3}-2$
84. $f(x)=\sqrt[3]{x-7} ; f^{-1}(x)=x^{3}+7$
85. $f(x)=0.2 x+1 ; f^{-1}(x)=5 x-5$
86. $f(x)=\frac{2}{9} x+4 ; f^{-1}(x)=\frac{9}{2} x-18$
87. $f(x)=(x+2)^{2}, x \geq-2 ; f^{-1}(x)=\sqrt{x}-2$
88. $f(x)=(x-3)^{2}, x \geq 3 ; f^{-1}(x)=\sqrt{x}+3$

Determine the domain and range for each function whose graph is given, and use this information to state the domain and range of the inverse function. Then sketch in the line $y=x$, estimate the location of two or more points on the graph, and use these to graph $f^{-1}(x)$ on the same grid.
89.

90.

91.

92.

93.

94.

WORKING WITH FORMULAS

95. The height of a projected image: $f(x)=\frac{1}{2} x-8.5$

The height of an image projected on a screen by a projector is given by the formula shown, where $f(x)$ represents the actual height of the image on the projector (in centimeters) and x is the distance of the projector from the screen (in centimeters).
(a) When the projector is 80 cm from the screen, how large is the image? (b) Show that the inverse function is $f^{-1}(x)=2 x+17$, then input your answer from part (a) and comment on the result. What information does the inverse function give?
96. The radius of a sphere: $r(x)=\sqrt[3]{\frac{3 x}{4 \pi}}$

In generic form, the radius of a sphere is given by the formula shown, where $r(x)$ represents the radius and x represents the volume of the sphere in cubic units. (a) If a weather balloon that is roughly spherical holds $14,130 \mathrm{in}^{3}$ of air, what is the radius of the balloon (use $\pi \approx 3.14$)? (b) Show that the inverse function is $r^{-1}(x)=\frac{4}{3} \pi x^{3}$, then input your answer from part (a) and comment on the result. What information does the inverse function give?

APPLICATIONS

97. Temperature and altitude: The temperature (in degrees Fahrenheit) at a given altitude can be approximated by the function $f(x)=-\frac{7}{2} x+59$, where $f(x)$ represents the temperature and x represents the altitude in thousands of feet. (a) What is the approximate temperature at an altitude of $35,000 \mathrm{ft}$ (normal cruising altitude for commercial airliners)? (b) Find $f^{-1}(x)$, and state what the independent and dependent variables represent. (c) If the temperature outside a weather balloon is $-18^{\circ} \mathrm{F}$, what is the approximate altitude of the balloon?
98. Fines for speeding: In some localities, there is a set formula to determine the amount of a fine for exceeding posted speed limits. Suppose the amount of the fine for exceeding a 50 mph speed limit was given by the function $f(x)=12 x-560(x>50)$ where $f(x)$ represents the fine in dollars for a speed of $x \mathrm{mph}$. (a) What is the fine for traveling 65 mph through this speed zone? (b) Find $f^{-1}(x)$, and state what the independent and dependent variables represent. (c) If a fine of $\$ 172$ were assessed, how fast was the driver going through this speed zone?
99. Effect of gravity: Due to the effect of gravity, the distance an object has fallen after being dropped is given by the function $f(x)=16 x^{2} ; x \geq 0$, where $f(x)$ represents the distance in feet after x sec. (a) How far has the object fallen 3 sec after it has been dropped? (b) Find $f^{-1}(x)$, and state what the independent and dependent variables represent. (c) If the object is dropped from a height of 784 ft , how many seconds until it hits the ground (stops falling)?
100. Area and radius: In generic form, the area of a circle is given by $f(x)=\pi x^{2}$, where $f(x)$ represents the area in square units for a circle with radius x. (a) A pet dog is tethered to a stake in the backyard. If the tether is 10 ft long, how much area does the dog have to roam (use $\pi \approx 3.14$)? (b) Find $f^{-1}(x)$, and state what the independent and dependent variables represent. (c) If the owners want to allow the dog $1256 \mathrm{ft}^{2}$ of area to live and roam, how long a tether should be used?
101. Volume of a cone: In generic form, the volume of an equipoise cone (height equal to radius) is given by $f(x)=\frac{1}{3} \pi x^{3}$, where $f(x)$ represents the volume in units ${ }^{3}$ and x represents the height of the cone. (a) Find the volume of such a cone if $r=30 \mathrm{ft}$ (use $\pi \approx 3.14$). (b) Find $f^{-1}(x)$, and state what the independent and dependent variables represent. (c) If the volume of water in the cone is $763.02 \mathrm{ft}^{3}$, how deep is the water at its deepest point?

102. Wind power: The power delivered by a certain wind-powered generator can be modeled by the function $f(x)=\frac{x^{3}}{2500}$, where $f(x)$ is the horsepower (hp) delivered by the generator and x represents the speed of the wind in miles per hour. (a) Use the model to determine how much horsepower is generated by a 30 mph wind. (b) The person monitoring the output of the generators (wind generators are usually erected in large numbers) would like a function that gives the wind speed based on the horsepower readings on the gauges in the monitoring station. For this purpose, find $f^{-1}(x)$ and state what the independent and dependent variables represent. (c) If gauges show 25.6 hp is being generated, how fast is the wind blowing?

EXTENDING THE CONCEPT

103. For a deeper understanding of the algebraic method for finding an inverse, suppose a function f is defined as $f(x):\{(x, y) \mid y=3 x-6\}$. We can then define the inverse as $f^{-1}:\{(x, y) \mid x=3 y-6\}$, having interchanged x and y in the equation portion. The equation for f^{-1} is not in standard form, but (x, y) still represents all ordered pairs satisfying either equation. Solving for y gives $f^{-1}:\left\{(x, y) \left\lvert\, y=\frac{x}{3}+2\right.\right\}$, and demonstrates the role of steps 2,3 , and 4 of the method. (a) Find five ordered pairs that satisfy the equation for f, then (b) interchange their coordinates and show they satisfy the equation for f^{-1}.
104. The function $f(x)=\frac{1}{x}$ is one of the few functions that is its own inverse. This means the ordered pairs (a, b) and (b, a) must satisfy both f and f^{-1}. (a) Find f^{-1} using the algebraic method to verify that $f(x)=f^{-1}(x)=\frac{1}{x}$. (b) Graph the function $f(x)=\frac{1}{x}$ using a table of integers from -4 to 4 . Note that for any ordered pair (a, b) on f, the
ordered pair (b, a) is also on f. (c) State where the graph of $y=x$ will intersect the graph of this function and discuss why.
105. By inspection, which of the following is the inverse function for $f(x)=\frac{2}{3}\left(x-\frac{1}{2}\right)^{5}+\frac{4}{5}$?
a. $f^{-1}(x)=\sqrt[5]{\frac{1}{2}\left(x-\frac{2}{3}\right)}-\frac{4}{5}$
b. $f^{-1}(x)=\frac{3}{2} \sqrt[5]{(x-2)}-\frac{5}{4}$
c. $f^{-1}(x)=\frac{3}{2} \sqrt[5]{\left(x+\frac{1}{2}\right)}-\frac{5}{4}$
d. $f^{-1}(x)=\sqrt[5]{\frac{3}{2}\left(x-\frac{4}{5}\right)}+\frac{1}{2}$
106. Suppose a function is defined as $f(x)=$ the exponent that goes on 9 to obtain x. For example, $f(81)=2$ since 2 is the exponent that goes on 9 to obtain 81, and $f(3)=\frac{1}{2}$ since $\frac{1}{2}$ is the exponent that goes on 9 to obtain 3. Determine the value of each of the following:
a. $f(1)$
b. $f(729)$
c. $f^{-1}(2)$
d. $f^{-1}\left(\frac{1}{2}\right)$

MAINTAINING YOUR SKILLS

107. (5.1) Verify the following is an identity: $\tan ^{2} \theta \sin ^{2} \theta=\tan ^{2} \theta-\sin ^{2} \theta$.
108. (5.3) Given $\tan (2 \beta)=\frac{7}{24}$, with 2β in QI, use double-angle formulas to find exact values for $\cos \beta$ and $\sin \beta$.
109. (4.3) Write the equation of the function graphed in two ways-in terms of a sine function then in terms of a cosine function.

110. (1.3) Find $f(\theta)$ for all six trig functions, given $P(-8,15)$ is on the terminal side of the angle.
111. (2.3) Standing 9 km (9000 meters) from the base of Mount Fuji (Japan), the angle of elevation to the summit is $22^{\circ} 46^{\prime}$. Is Mount Fuji taller than Mount Hood (Oregon), which stands 3428 m high?
112. (3.2) The area of a circular sector is $A=\frac{125 \pi}{3} \mathrm{~m}^{2}$. If $r=10 \mathrm{~m}$, what angle is subtended?

6.2 The Inverse Trig Functions and Their Applications

Learning Objectives

In Section 6.2 you will learn how to:
A. Find and graph the inverse sine function and evaluate related expressions
B. Find and graph the inverse cosine and tangent functions and evaluate related expressions
C. Apply the definition and notation of inverse trig functions to simplify compositionsD. Find and graph inverse functions for $\sec x$, $\csc x$, and $\cot x$E. Solve applications involving inverse functions

While we usually associate the number π with the features of a circle, it also occurs in some "interesting" places, such as the study of normal (bell) curves, Bessel functions, Stirling's formula, Fourier series, Laplace transforms, and infinite series. In much the same way, the trigonometric functions are surprisingly versatile, finding their way into a study of complex numbers and vectors, the simplification of algebraic expressions, and finding the area under certain curves-applications that are hugely important in a continuing study of mathematics. As you'll see, a study of the inverse trig functions helps support these fascinating applications.

A. The Inverse Sine Function

In Section 6.1, we established that only one-to-one functions have an inverse. All six trig functions fail the horizontal line test and are not one-to-one as given. However, by suitably restricting the domain, a one-to-one function can be defined that makes finding an inverse possible. For the sine function, it seems natural to choose the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ since it is centrally located and the sine function attains all possible range values in this interval. A graph of $y=\sin x$ is shown in Figure 6.16, with the portion corresponding to this interval colored in red. Note the range is still $[-1,1]$ (Figure 6.17).

Figure 6.16

Figure 6.17

WORTHY OF NOTE

In Example 4 of Section 6.1, we noted that by suitably restricting the domain of a quadratic function, a one-to-one function could be defined that made finding an inverse function possible. Specifically, for $f(x)=x^{2} ; x \geq 0, f^{-1}(x)=\sqrt{x}$.

We can obtain an implicit equation for the inverse of $y=\sin x$ by interchanging x - and y-values, obtaining $x=\sin y$. By accepted convention, the explicit form of the inverse sine function is written $y=\sin ^{-1} x$ or $y=\arcsin x$. Since domain and range values have been interchanged, the domain of $y=\sin ^{-1} x$ is $[-1,1]$ and the range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. The graph of $y=\sin ^{-1} x$ can be found by reflecting the portion in red across the line $y=x$ and using the endpoints of the domain and range (see Figure 6.18).

Figure 6.18
 -

The Inverse Sine Function

For $y=\sin x$ with domain $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
and range $[-1,1]$, the inverse sine function is

$$
y=\sin ^{-1} x \text { or } y=\arcsin x
$$

with domain $[-1,1]$ and range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$
y=\sin ^{-1} x \text { if and only if } \sin y=x
$$

From the implicit form $x=\sin y$, we learn to interpret the inverse function as, " y is the number or angle whose sine is x." Learning to read and interpret the explicit form in this way will be helpful. That is, $y=\sin ^{-1} x$ means " y is the number or angle whose sine is x."

$$
y=\sin ^{-1} x \Leftrightarrow x=\sin y \quad x=\sin y \Leftrightarrow y=\sin ^{-1} x
$$

EXAMPLE $1>$ Evaluating $y=\sin ^{-1} x$ Using Special Values

Evaluate the inverse sine function for the values given:
a. $y=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
b. $y=\arcsin \left(-\frac{1}{2}\right)$
c. $y=\sin ^{-1}(2)$

Solution For x in $[-1,1]$ and y in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,
a. $y=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right): y$ is the number or angle whose sine is $\frac{\sqrt{3}}{2}$

$$
\Rightarrow \sin y=\frac{\sqrt{3}}{2}, \text { so } \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}
$$

b. $y=\arcsin \left(-\frac{1}{2}\right): y$ is the arc or angle whose sine is $-\frac{1}{2}$

$$
\Rightarrow \sin y=-\frac{1}{2}, \text { so } \arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{6} .
$$

c. $y=\sin ^{-1}(2): y$ is the number or angle whose sine is 2
$\Rightarrow \sin y=2$. Since 2 is not in $[-1,1], \sin ^{-1}(2)$ is undefined.
Now try Exercises 7 through 12

Table 6.5

\boldsymbol{x}	$\sin \boldsymbol{x}$
$-\frac{\pi}{2}$	-1
$-\frac{\pi}{3}$	$-\frac{\sqrt{3}}{2}$
$-\frac{\pi}{4}$	$-\frac{\sqrt{2}}{2}$
$-\frac{\pi}{6}$	$-\frac{1}{2}$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

In Examples 1(a) and 1(b), note that the equations $\sin y=\frac{\sqrt{3}}{2}$ and $\sin y=-\frac{1}{2}$ each have an infinite number of solutions, but only one solution in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

When x is one of the standard values $\left(0, \frac{1}{2}, \frac{\sqrt{3}}{2}, 1\right.$, and so on $), y=\sin ^{-1} x$ can be evaluated by reading a standard table "in reverse." For $y=\arcsin (-1)$, we locate the number -1 in the right-hand column of Table 6.5 , and note the "number or angle whose sine is $-1, "$ is $-\frac{\pi}{2}$. If x is between -1 and 1 but is not a standard value, we can use the $\sin ^{-1}$ function on a calculator, which is most often the 2 nd or INV function for SIN.

EXAMPLE $2>$ Evaluating $y=\sin ^{-1} x$ Using a Calculator

Evaluate each inverse sine function twice. First in radians rounded to four decimal places, then in degrees to the nearest tenth.
a. $y=\sin ^{-1} 0.8492$
b. $y=\arcsin (-0.2317)$

Solution For x in $[-1,1]$, we evaluate $y=\sin ^{-1} x$.

WORTHY OF NOTE

The $\sin ^{-1} x$ notation for the inverse sine function is a carryover from the $f^{-1}(x)$ notation for a general inverse function, and likewise has nothing to do with the reciprocal of the function. The $\arcsin x$ notation derives from our work in radians on the unit circle, where $y=\arcsin x$ can be interpreted as " y is an arc whose sine is x."
a. $y=\sin ^{-1} 0.8492$: With the calculator in radian MODE , use the keystrokes 2nd SIN $0.8492 \square$ ENTER. We find $\sin ^{-1}(0.8492) \approx 1.0145$ radians. In degree MODE , the same sequence of keystrokes gives $\sin ^{-1}(0.8492) \approx 58.1^{\circ}$ (note that $1.0145 \mathrm{rad} \approx 58.1^{\circ}$).
b. $y=\arcsin (-0.2317)$: In radian MODE , we find $\sin ^{-1}(-0.2317) \approx$ -0.2338 rad. In degree MODE, $\sin ^{-1}(-0.2317) \approx-13.4^{\circ}$.

Now try Exercises 13 through 16

From our work in Section 6.1, we know that if f and g are inverses, $(f \circ g)(x)=x$ and $(g \circ f)(x)=x$. This suggests the following properties.

Inverse Function Properties for Sine

For $f(x)=\sin x$ and $g(x)=\sin ^{-1} x$:
I. $(f \circ g)(x)=\sin \left(\sin ^{-1} x\right)=x$ for x in $[-1,1]$
and
II. $(g \circ f)(x)=\sin ^{-1}(\sin x)=x$ for x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

EXAMPLE $3>$ Evaluating Expressions Using Inverse Function Properties
Evaluate each expression and verify the result on a calculator.
a. $\sin \left[\sin ^{-1}\left(\frac{1}{2}\right)\right]$
b. $\arcsin \left[\sin \left(\frac{\pi}{4}\right)\right]$
c. $\sin ^{-1}\left[\sin \left(\frac{5 \pi}{6}\right)\right]$

Solution
a. $\sin \left[\sin ^{-1}\left(\frac{1}{2}\right)\right]=\frac{1}{2}$, since $\frac{1}{2}$ is in $[-1,1]$

Property I
b. $\arcsin \left[\sin \left(\frac{\pi}{4}\right)\right]=\frac{\pi}{4}$, since $\frac{\pi}{4}$ is in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad$ Property II
c. $\sin ^{-1}\left[\sin \left(\frac{5 \pi}{6}\right)\right] \neq \frac{5 \pi}{6}$, since $\frac{5 \pi}{6}$ is not in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

This doesn't mean the expression cannot be evaluated, only that we cannot use Property II. Since $\sin \left(\frac{5 \pi}{6}\right)=\sin \left(\frac{\pi}{6}\right), \sin ^{-1}\left[\left(\sin \frac{5 \pi}{6}\right)\right]=\sin ^{-1}\left[\sin \left(\frac{\pi}{6}\right)\right]=\frac{\pi}{6}$. The calculator verification for each is shown in Figures 6.19 and 6.20. Note $\frac{\pi}{6} \approx 0.5236$ and $\frac{\pi}{4} \approx 0.7854$.

Figure 6.19

Parts (a) and (b)

Figure 6.20
Part (c)

A. You've just learned how to find and graph the inverse sine function and evaluate related expressions

Now try Exercises 17 through 24

B. The Inverse Cosine and Inverse Tangent Functions

Like the sine function, the cosine function is not one-to-one and its domain must also be restricted to develop an inverse function. For convenience we choose the interval $x \in[0, \pi]$ since it is again somewhat central and takes on all of its range values in this interval. A graph of the cosine function, with the interval corresponding to this interval shown in red, is given in Figure 6.21. Note the range is still $[-1,1]$ (Figure 6.22).

Figure 6.21

Figure 6.22

Figure 6.23

For the implicit equation of inverse cosine, $y=\cos x$ becomes $x=\cos y$, with the corresponding explicit forms being $y=\cos ^{-1} x$ or $y=\arccos x$. By reflecting the graph of $y=\cos x$ across the line $y=x$, we obtain the graph of $y=\cos ^{-1} x$ shown in Figure 6.23.

The Inverse Cosine Function

For $y=\cos x$ with domain $[0, \pi]$ and range $[-1,1]$, the inverse cosine function is

$$
y=\cos ^{-1} x \text { or } y=\arccos x
$$

with domain $[-1,1]$ and range $[0, \pi]$.

$$
y=\cos ^{-1} x \text { if and only if } \cos y=x
$$

EXAMPLE 4 Evaluating $y=\cos ^{-1} x$ Using Special Values
Evaluate the inverse cosine for the values given:
a. $y=\cos ^{-1}(0)$
b. $y=\arccos \left(-\frac{\sqrt{3}}{2}\right)$
c. $y=\cos ^{-1}(\pi)$

Solution For x in $[-1,1]$ and y in $[0, \pi]$,
a. $y=\cos ^{-1}(0): y$ is the number or angle whose cosine is $0 \Rightarrow \cos y=0$. This shows $\cos ^{-1}(0)=\frac{\pi}{2}$.
b. $y=\arccos \left(-\frac{\sqrt{3}}{2}\right): y$ is the arc or angle whose cosine is $-\frac{\sqrt{3}}{2} \Rightarrow \cos y=-\frac{\sqrt{3}}{2}$. This shows $\arccos \left(-\frac{\sqrt{3}}{2}\right)=\frac{5 \pi}{6}$.
c. $y=\cos ^{-1}(\pi): y$ is the number or angle whose cosine is $\pi \Rightarrow \cos y=\pi$.

Since $\pi \notin[-1,1], \cos ^{-1}(\pi)$ is undefined.

Now try Exercises 25 through 34

Knowing that $y=\cos x$ and $y=\cos ^{-1} x$ are inverse functions enables us to state inverse function properties similar to those for sine.

Inverse Function Properties for Cosine

For $f(x)=\cos x$ and $g(x)=\cos ^{-1} x$:
I. $(f \circ g)(x)=\cos \left(\cos ^{-1} x\right)=x$ for x in $[-1,1]$
and
II. $(g \circ f)(x)=\cos ^{-1}(\cos x)=x$ for x in $[0, \pi]$

EXAMPLE 5 - Evaluating Expressions Using Inverse Function Properties

Evaluate each expression.
a. $\cos \left[\cos ^{-1}(0.73)\right]$
b. $\arccos \left[\cos \left(\frac{\pi}{12}\right)\right]$
c. $\cos ^{-1}\left[\cos \left(\frac{4 \pi}{3}\right)\right]$

Solution
a. $\cos \left[\cos ^{-1}(0.73)\right]=0.73$, since 0.73 is in $[-1,1]$ Property ।
b. $\arccos \left[\cos \left(\frac{\pi}{12}\right)\right]=\frac{\pi}{12}$, since $\frac{\pi}{12}$ is in $[0, \pi] \quad$ Property II
c. $\cos ^{-1}\left[\cos \left(\frac{4 \pi}{3}\right)\right] \neq \frac{4 \pi}{3}$, since $\frac{4 \pi}{3}$ is not in $[0, \pi]$.

This expression cannot be evaluated using Property II. Since
$\cos \left(\frac{4 \pi}{3}\right)=\cos \left(\frac{2 \pi}{3}\right), \cos ^{-1}\left[\cos \left(\frac{4 \pi}{3}\right)\right]=\cos ^{-1}\left[\cos \left(\frac{2 \pi}{3}\right)\right]=\frac{2 \pi}{3}$.
The results can also be verified using a calculator.

For the tangent function, we likewise restrict the domain to obtain a one-to-one function, with the most common choice being $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. The corresponding range is \mathbb{R}. The implicit equation for the inverse tangent function is $x=\tan y$ with the explicit forms $y=\tan ^{-1} x$ or $y=\arctan x$. With the domain and range interchanged, the domain of $y=\tan ^{-1} x$ is \mathbb{R}, and the range is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. The graph of $y=\tan x$ for x in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is shown in red (Figure 6.24), with the inverse function $y=\tan ^{-1} x$ shown in blue (Figure 6.25).

Figure 6.24

Figure 6.25

The Inverse Tangent Function
Inverse Function Properties for Tangent

For $y=\tan x$ with domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and range \mathbb{R}, the inverse tangent function is

$$
y=\tan ^{-1} x \text { or } y=\arctan x
$$

with domain \mathbb{R} and range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$
y=\tan ^{-1} x \text { if and only if } \tan y=x
$$

For $f(x)=\tan x$ and $g(x)=\tan ^{-1} x$:
I. $(f \circ g)(x)=\tan \left(\tan ^{-1} x\right)=x$ for x in \mathbb{R} and
II. $(g \circ f)(x)=\tan ^{-1}(\tan x)=x$ for x in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

EXAMPLE $6>$ Evaluating Expressions Involving Inverse Tangent

Evaluate each expression.
a. $\tan ^{-1}(-\sqrt{3})$
b. $\arctan [\tan (-0.89)]$

Solution For x in \mathbb{R} and y in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

Y B. You've just learned how to find and graph the inverse cosine and tangent functions and evaluate related expressions
a. $\tan ^{-1}(-\sqrt{3})=-\frac{\pi}{3}$, since $\tan \left(-\frac{\pi}{3}\right)=-\sqrt{3}$
b. $\arctan [\tan (-0.89)]=-0.89$, since -0.89 is in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Property II

C. Using the Inverse Trig Functions to Evaluate Compositions

In the context of angle measure, the expression $y=\sin ^{-1}\left(-\frac{1}{2}\right)$ represents an anglethe angle y whose sine is $-\frac{1}{2}$. It seems natural to ask, "What happens if we take the tangent of this angle?" In other words, what does the expression $\tan \left[\sin ^{-1}\left(-\frac{1}{2}\right)\right]$ mean? Similarly, if $y=\cos \left(\frac{\pi}{3}\right)$ represents a real number between -1 and 1 , how do we compute $\sin ^{-1}\left[\cos \left(\frac{\pi}{3}\right)\right]$? Expressions like these occur in many fields of study.

EXAMPLE $7>$ Simplifying Expressions Involving Inverse Trig Functions

Simplify each expression:
a. $\tan \left[\arcsin \left(-\frac{1}{2}\right)\right]$
b. $\sin ^{-1}\left[\cos \left(\frac{\pi}{3}\right)\right]$

Solution \quad a. In Example 1 we found $\arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{6}$. Substituting $-\frac{\pi}{6}$ for $\arcsin \left(-\frac{1}{2}\right)$ gives $\tan \left(-\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{3}$, showing $\tan \left[\arcsin \left(-\frac{1}{2}\right)\right]=-\frac{\sqrt{3}}{3}$.
b. For $\sin ^{-1}\left[\cos \left(\frac{\pi}{3}\right)\right]$, we begin with the inner function $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$. Substituting $\frac{1}{2}$ for $\cos \left(\frac{\pi}{3}\right)$ gives $\sin ^{-1}\left(\frac{1}{2}\right)$. With the appropriate checks satisfied we have $\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$, showing $\sin ^{-1}\left[\cos \left(\frac{\pi}{3}\right)\right]=\frac{\pi}{6}$.

Now try Exercises 53 through 64

If the argument is not a special value and we need the answer in exact form, we can draw the triangle described by the inner expression using the definition of the trigonometric functions as ratios. In other words, for $\theta=\sin ^{-1}\left(\frac{8}{17}\right)$, we draw a triangle with hypotenuse 17 and side 8 opposite θ to model the statement, "an angle

Figure 6.26
 whose sine is $\frac{8}{17}=\frac{\mathrm{opp}}{\text { hyp }}$ " (see Figure 6.26). Using the Pythagorean theorem, we find the adjacent side is 15 and can now name any of the other trig functions.

EXAMPLE 8 - Using a Diagram to Evaluate an Expression Involving Inverse Trig Functions

 Evaluate the expression $\tan \left[\sin ^{-1}\left(-\frac{8}{17}\right)\right]$.Solution The expression $\tan \left[\sin ^{-1}\left(-\frac{8}{17}\right)\right]$ is equivalent to $\tan \theta$,

WORTHY OF NOTE

To verify the result of Example 8, we can actually find the value of $\sin ^{-1}\left(-\frac{8}{17}\right)$ on a calculator, then take the tangent of the result. See the figure.

```
sin- \(-8 / 17)\)
```

-28.67248694
-. 5.33333333
Ars. Frac
$-8 / 15$ where $\theta=\sin ^{-1}\left(-\frac{8}{17}\right)$ with θ in
$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (QIV or QI). For
$\sin \theta=-\frac{8}{17}(\sin \theta<0), \theta$ must be in

QIII or QIV. To satisfy both, θ must be in QIV. From the figure we note $\tan \theta=-\frac{8}{15}$, showing $\tan \left[\sin ^{-1}\left(-\frac{8}{17}\right)\right]=-\frac{8}{15}$.

Now try Exercises 65 through 72

4 These ideas apply even when one side of the triangle is unknown. In other words, we can still draw a triangle for $\theta=\cos ^{-1}\left(\frac{x}{\sqrt{x^{2}+16}}\right)$, since " θ is an angle whose cosine is $\frac{x}{\sqrt{x^{2}+16}}=\frac{\text { adj }}{\text { hyp }}$.,

EXAMPLE 9

Using a Diagram to Evaluate an Expression Involving Inverse Trig Functions Evaluate the expression $\tan \left[\cos ^{-1}\left(\frac{x}{\sqrt{x^{2}+16}}\right)\right]$. Assume $x>0$ and the inverse function is defined for the expression given.
Solution Rewrite $\tan \left[\cos ^{-1}\left(\frac{x}{\sqrt{x^{2}+16}}\right)\right]$ as $\tan \theta$, where $\theta=\cos ^{-1}\left(\frac{x}{\sqrt{x^{2}+16}}\right)$. Draw a triangle with side x adjacent to θ and a hypotenuse of
 $\sqrt{x^{2}+16}$. The Pythagorean theorem gives $x^{2}+$ opp $^{2}=\left(\sqrt{x^{2}+16}\right)^{2}$, which leads to opp $^{2}=\left(x^{2}+16\right)-x^{2}$ giving opp $=\sqrt{16}=4$. This shows $\tan \theta=\tan \left[\cos ^{-1}\left(\frac{x}{\sqrt{x^{2}+16}}\right)\right]=\frac{4}{x}$ (see the figure).

Now try Exercises 73 through 76

D. The Inverse Functions for Secant, Cosecant, and Cotangent

As with the other functions, we restrict the domain of the secant, cosecant, and cotangent functions to obtain a one-to-one function that is invertible (an inverse can be found). Once again the choice is arbitrary, and some domains are easier to work with than others in more advanced mathematics. For $y=\sec x$, we've chosen the "most

Figure 6.27

$$
y=\sec x
$$

Figure 6.28
$y=\sec ^{-1} x$

$$
\begin{gathered}
y=\sec ^{-1} x \\
x \in(-\infty,-1] \cup[1, \infty) \\
y \in\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]
\end{gathered}
$$

intuitive" restriction, one that seems more centrally located (nearer the origin). The graph of $y=\sec x$ is reproduced here, along with its inverse function (see Figures 6.27 and 6.28). The domain, range, and graphs of the functions $y=\csc ^{-1} x$ and $y=\cot ^{-1} x$ are asked for in the Exercises (see Exercise 100).

The functions $y=\sec ^{-1} x, y=\csc ^{-1} x$, and $y=\cot ^{-1} x$ can be evaluated by

WORTHY OF NOTE

While the domains of $y=\cot ^{-1} x$ and $y=\tan ^{-1} x$ both include all real numbers, evaluating $\cot ^{-1} x$ using $\tan ^{-1}\left(\frac{1}{x}\right)$ involves the restriction $x \neq 0$. To maintain consistency, the equation $\cot ^{-1} x=\frac{\pi}{2}-\tan ^{-1} x$ is often used. The graph of $y=\frac{\pi}{2}-\tan ^{-1} x$ is that of $y=\tan ^{-1} x$ reflected across the x-axis and shifted $\frac{\pi}{2}$ units up, with the result identical to the graph of $y=\cot ^{-1} x$. noting their relationship to $y=\cos ^{-1} x, y=\sin ^{-1} x$, and $y=\tan ^{-1} x$, respectively. For $y=\sec ^{-1} x$, we have

$$
\begin{aligned}
\sec y & =x & & \text { definition of inverse function } \\
\frac{1}{\sec y} & =\frac{1}{x} & & \text { property of reciprocals } \\
\cos y & =\frac{1}{x} & & \text { reciprocal ratio } \\
y & =\cos ^{-1}\left(\frac{1}{x}\right) & & \text { rewrite using inverse function notation } \\
\sec ^{-1} x & =\cos ^{-1}\left(\frac{1}{x}\right) & & \text { substitute } \sec ^{-1} x \text { for } y
\end{aligned}
$$

In other words, to find the value of $y=\sec ^{-1} x$, evaluate $y=\cos ^{-1}\left(\frac{1}{x}\right),|x| \geq 1$. Similarly, the expression $\csc ^{-1} x$ can be evaluated using $\sin ^{-1}\left(\frac{1}{x}\right),|x| \geq 1$. The expression $\cot ^{-1} x$ can likewise be evaluated using an inverse tangent function: $\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right)$.

EXAMPLE 10 Evaluating an Inverse Trig Function

Evaluate using a calculator only if necessary:
a. $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
b. $\cot ^{-1}\left(\frac{\pi}{12}\right)$

Solution
D. You've just learned how to find and graph inverse functions for $\sec x, \csc x$, and $\cot x$

A summary of the highlights from this section follows.

Summary of Inverse Function Properties and Compositions

1. For $\sin x$ and $\sin ^{-1} x$,
$\sin \left(\sin ^{-1} x\right)=x$, for any x in the interval $[-1,1] ;$
$\sin ^{-1}(\sin x)=x$, for any x in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
2. For $\tan x$ and $\tan ^{-1} x$,
$\tan \left(\tan ^{-1} x\right)=x$, for any real number $x ;$
$\tan ^{-1}(\tan x)=x$, for any x in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
3. For $\cos x$ and $\cos ^{-1} x$, $\cos \left(\cos ^{-1} x\right)=x$, for any x in the interval $[-1,1]$; $\cos ^{-1}(\cos x)=x$, for any x in the interval $[0, \pi]$
4. To evaluate $\sec ^{-1} x$, use $\cos ^{-1}\left(\frac{1}{x}\right),|x| \geq 1$; for $\csc ^{-1} x$, use $\sin ^{-1}\left(\frac{1}{x}\right),|x| \geq 1 ;$ for $\cot ^{-1} x$, use $\frac{\pi}{2}-\tan ^{-1} x$, for all real numbers x

E. Applications of Inverse Trig Functions

We close this section with one example of the many ways that inverse functions can be applied.

EXAMPLE $11>$ Using Inverse Trig Functions to Find Viewing Angles

Believe it or not, the drive-in movie theaters that were so popular in the 1950s are making a comeback! If you arrive early, you can park in one of the coveted "center spots," but if you arrive late, you might have to park very close and strain your neck to watch the movie. Surprisingly, the maximum viewing angle (not the most comfortable viewing angle in this case) is actually very close to the front. Assume the base of a $30-\mathrm{ft}$ screen is 10 ft above eye level

Figure 6.29 (see Figure 6.29).
a. Use the inverse function concept to find expressions for angle α and angle β.
b. Use the result of Part (a) to find an expression for the viewing angle θ.
c. Use a calculator to find the viewing angle θ (to tenths of a degree) for distances of $15,25,35$, and 45 ft , then to determine the distance x (to tenths of a foot) that maximizes the viewing angle.

Solution a. The side opposite β is 10 ft , and we want to know x-the adjacent side. This suggests we use $\tan \beta=\frac{10}{x}$, giving $\beta=\tan ^{-1}\left(\frac{10}{x}\right)$. In the same way, we find that $\alpha=\tan ^{-1}\left(\frac{40}{x}\right)$.
b. From the diagram we note that $\theta=\alpha-\beta$, and substituting for α and β directly gives $\theta=\tan ^{-1}\left(\frac{40}{x}\right)-\tan ^{-1}\left(\frac{10}{x}\right)$.

I E. You've just learned how to solve applications involving inverse functions
c. After we enter $Y_{1}=\tan ^{-1}\left(\frac{40}{x}\right)-\tan ^{-1}\left(\frac{10}{x}\right)$, a graphing calculator gives approximate viewing angles of $35.8^{\circ}, 36.2^{\circ}, 32.9^{\circ}$, and 29.1°, for $x=15$, 25,35 , and 45 ft , respectively. From these data, we note the distance x that makes θ a maximum must be between 15 and 35 ft , and using 2nd TRACE (CALC)

Figure 6.30

Now try Exercises 89 through 95

TECHNOLOGY HIGHLIGHT

More on Inverse Functions

The domain and range of the inverse functions for sine, cosine, and tangent are preprogrammed into most graphing calculators, making them an ideal tool for reinforcing the concepts involved. In particular, $\sin x=y$ implies that $\sin ^{-1} y=x$ only if $-90^{\circ} \leq x \leq 90^{\circ}$ and $-1 \leq y \leq 1$. To illustrate this fact we'll use the TABLE feature of the grapher. Begin by using the TBLSET screen (2nd (window) to set TblStart $=90$ with $\Delta \mathrm{Tbl}=-30$. After placing the calculator in degree MODE , go to the $Y=$ screen and input $Y_{1}=\sin x, Y_{2}=\sin ^{-1} x$, and $Y_{3}=Y_{2}\left(Y_{1}\right)$ (the composition $Y_{2} \circ Y_{1}$). Then disable Y_{2} [turn it off- Y_{3} will read it anyway) so that both Y_{1} and Y_{3} will be displayed simultaneously on the TABLE screen. Pressing 2nd GRAPH brings up the TABLE shown in Figure 6.31, where we note the inputs are standard angles, the outputs in Y_{1} are the (expected) standard values, and the outputs in Y_{3} return the original standard values. Now scroll upward until 180° is at the top of the X column (Figure 6.32), and note that Y_{3} continues to return standard

Figure 6.31

X	$Y 1$	Y 3
Fir	1	90
60	-18660	60
0		0
-	--5	- 50
-900	-i	-90\%
人 $=9$		

Figure 6.32

X	Y1	Y 3
F1:0	0	0
150	E6005	30
90	i	90
60	- 砳60 $^{\text {a }}$	60
80	0	0
X=18		

Exercise 1: Go through an exercise similar to the one here using $Y_{1}=\cos x$ and $Y_{2}=\cos ^{-1} x$. Remember to modify the TBLSET to accommodate the restricted domain for cosine.
Exercise 2: Complete parts (a) and (b) using the TABLE from Exercise 1. Complete parts (c) and (d) without a calculator.
a. $\cos ^{-1}\left(\cos 150^{\circ}\right)$
b. $\cos ^{-1}\left(\cos 210^{\circ}\right)$
c. $\cos ^{-1}\left(\cos 120^{\circ}\right)$
d. $\cos ^{-1}\left(\cos 240^{\circ}\right)$

6.2 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. All six trigonometric functions fail the \qquad
\qquad test and therefore are not \qquad to \qquad .
2. The two most common ways of writing the inverse function for $y=\sin x$ are \qquad and \qquad .
3. The domain for the inverse sine function is
\qquad and the range is \qquad .
4. The domain for the inverse cosine function is and the range is \qquad .
5. Most calculators do not have a key for evaluating an expression like $\sec ^{-1} 5$. Explain how it is done using the cos key.
6. Discuss/Explain what is meant by the implicit form of an inverse function and the explicit form. Give algebraic and trigonometric examples.

DEVELOPING YOUR SKILLS

The tables here show values of $\sin \theta, \cos \theta$, and $\tan \theta$ for $\theta \in\left[-180^{\circ}\right.$ to $\left.210^{\circ}\right]$. The restricted domain used to develop the inverse functions is shaded. Use the information from these tables to complete the exercises that follow.

$y=\sin$				$y=\cos \theta$				$y=\boldsymbol{t a n} \theta$			
$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	θ	$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$	θ	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$
-180°	0	30°	$\frac{1}{2}$	-180°	-1	30°	$\frac{\sqrt{3}}{2}$	-180°	0	30°	$\frac{\sqrt{3}}{3}$
-150°	$-\frac{1}{2}$	60°	$\frac{\sqrt{3}}{2}$	-150°	$-\frac{\sqrt{3}}{2}$	60°	$\frac{1}{2}$	-150°	$\frac{\sqrt{3}}{3}$	60°	$\sqrt{3}$
-120°	$-\frac{\sqrt{3}}{2}$	90°	1	-120°	$-\frac{1}{2}$	90°	0	-120°	$\sqrt{3}$	90°	-
-90°	-1	120°	$\frac{\sqrt{3}}{2}$	-90°	0	120°	$-\frac{1}{2}$	-90°	-	120°	$-\sqrt{3}$
-60°	$-\frac{\sqrt{3}}{2}$	150°	$\frac{1}{2}$	-60°	$\frac{1}{2}$	150°	$-\frac{\sqrt{3}}{2}$	-60°	$-\sqrt{3}$	150°	$-\frac{\sqrt{3}}{3}$
-30°	$-\frac{1}{2}$	180°	0	-30°	$\frac{\sqrt{3}}{2}$	180°	-1	-30°	$-\frac{\sqrt{3}}{3}$	180°	0
0	0	210°	$-\frac{1}{2}$	0	1	210°	$-\frac{\sqrt{3}}{2}$	0	0	210°	$\sqrt{3}$

Use the preceding tables to fill in each blank (principal values only).

$$
\begin{array}{|c|c|}
\hline \sin 0=0 & \sin ^{-1} 0=- \\
\sin \left(\frac{\pi}{6}\right)=- & \arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6} \\
\hline \sin \left(-\frac{5 \pi}{6}\right)=-\frac{1}{2} & \sin ^{-1}\left(-\frac{1}{2}\right)=- \\
\hline \sin \left(-\frac{\pi}{2}\right)=-1 & \sin ^{-1}(-1)= \\
\hline
\end{array}
$$

8.

$\sin \pi=0$	$\sin ^{-1} 0=-$
$\sin 120^{\circ}=\frac{\sqrt{3}}{2}$	$\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=-$
$\sin \left(-60^{\circ}\right)=-\frac{\sqrt{3}}{2}$	$\arcsin \left(-\frac{\sqrt{3}}{2}\right)=-$
$\sin 180^{\circ}=\square$	$\arcsin 0=0$

Evaluate without the aid of calculators or tables, keeping the domain and range of each function in mind. Answer in radians.
9. $\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)$
10. $\arcsin \left(\frac{\sqrt{3}}{2}\right)$
11. $\sin ^{-1} 1$
12. $\arcsin \left(-\frac{1}{2}\right)$

Evaluate using a calculator, keeping the domain and range of each function in mind. Answer in radians to the nearest ten-thousandth and in degrees to the nearest tenth.
13. $\arcsin 0.8892$ 14. $\arcsin \left(\frac{7}{8}\right)$
15. $\sin ^{-1}\left(\frac{1}{\sqrt{7}}\right)$
16. $\sin ^{-1}\left(\frac{1-\sqrt{5}}{2}\right)$

Evaluate each expression.

17. $\sin \left[\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)\right]$
18. $\sin \left[\arcsin \left(\frac{\sqrt{3}}{2}\right)\right]$
19. $\arcsin \left[\sin \left(\frac{\pi}{3}\right)\right]$
20. $\sin ^{-1}\left(\sin 30^{\circ}\right)$
21. $\sin ^{-1}\left(\sin 135^{\circ}\right)$
22. $\arcsin \left[\sin \left(\frac{-2 \pi}{3}\right)\right]$
23. $\sin \left(\sin ^{-1} 0.8205\right)$
24. $\sin \left[\arcsin \left(\frac{3}{5}\right)\right]$

Use the tables given prior to Exercise 7 to fill in each blank (principal values only).
25.

$$
\begin{array}{|c|c|}
\hline \cos 0=1 & \cos ^{-1} 1= \\
\hline \cos \left(\frac{\pi}{6}\right)= & \arccos \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6} \\
\cos 120^{\circ}=-\frac{1}{2} & \\
\arccos \left(-\frac{1}{2}\right)=- \\
\cos \pi=-1 & \cos ^{-1}(-1)= \\
\hline
\end{array}
$$

26.

$$
\begin{array}{|c|c|}
\hline \cos \left(-60^{\circ}\right)=\frac{1}{2} & \cos ^{-1}\left(\frac{1}{2}\right)=- \\
\hline \cos \left(-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} & \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=- \\
\hline \cos \left(-120^{\circ}\right)=- & \arccos \left(-\frac{1}{2}\right)=120^{\circ} \\
\hline \cos (2 \pi)=1 & \cos ^{-1} 1= \\
\hline
\end{array}
$$

Evaluate without the aid of calculators or tables. Answer in radians.
27. $\cos ^{-1}\left(\frac{1}{2}\right)$
28. $\arccos \left(-\frac{\sqrt{3}}{2}\right)$
29. $\cos ^{-1}(-1)$
30. $\arccos (0)$

Evaluate using a calculator. Answer in radians to the nearest ten-thousandth, degrees to the nearest tenth.
31. $\arccos 0.1352$
32. $\arccos \left(\frac{4}{7}\right)$
33. $\cos ^{-1}\left(\frac{\sqrt{5}}{3}\right)$
34. $\cos ^{-1}\left(\frac{\sqrt{6}-1}{5}\right)$

Evaluate each expression.
35. $\arccos \left[\cos \left(\frac{\pi}{4}\right)\right]$
36. $\cos ^{-1}\left(\cos 60^{\circ}\right)$
37. $\cos \left(\cos ^{-1} 0.5560\right)$
38. $\cos \left[\arccos \left(-\frac{8}{17}\right)\right]$
39. $\cos \left[\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right]$
40. $\cos \left[\arccos \left(\frac{\sqrt{3}}{2}\right)\right]$
41. $\cos ^{-1}\left[\cos \left(\frac{5 \pi}{4}\right)\right]$
42. $\arccos \left(\cos 44.2^{\circ}\right)$

Use the tables presented before Exercise 7 to fill in each blank. Convert from radians to degrees as needed.
43.

$\tan 0=0$	$\tan ^{-1} 0=$
$\tan \left(-\frac{\pi}{3}\right)=$	$\arctan (-\sqrt{3})=-\frac{\pi}{3}$
$\tan 30^{\circ}=\frac{\sqrt{3}}{3}$	$\arctan \left(\frac{\sqrt{3}}{3}\right)=\square$
$\tan \left(\frac{\pi}{3}\right)=\square$	$\tan ^{-1}(\sqrt{3})=\square$

44.

$$
\begin{array}{|c|c|}
\hline \tan \left(-150^{\circ}\right)=\frac{\sqrt{3}}{3} & \tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)=- \\
\tan \pi=0 & \tan ^{-1} 0=- \\
\hline \tan 120^{\circ}=-\sqrt{3} & \arctan (-\sqrt{3})=- \\
\tan \left(\frac{\pi}{4}\right)=- & \arctan 1=\frac{\pi}{4} \\
\hline
\end{array}
$$

Evaluate without the aid of calculators or tables.
45. $\tan ^{-1}\left(-\frac{\sqrt{3}}{3}\right)$
46. $\arctan (-1)$
47. $\arctan (\sqrt{3})$
48. $\tan ^{-1} 0$

Evaluate using a calculator, keeping the domain and

 range of each function in mind. Answer in radians to the nearest ten-thousandth and in degrees to the nearest tenth.49. $\tan ^{-1}(-2.05)$
50. $\tan ^{-1}(0.3267)$
51. $\arctan \left(\frac{29}{21}\right)$
52. $\arctan (-\sqrt{6})$

Simplify each expression without using a calculator.
53. $\sin ^{-1}\left[\cos \left(\frac{2 \pi}{3}\right)\right]$
54. $\cos ^{-1}\left[\sin \left(-\frac{\pi}{3}\right)\right]$
55. $\tan \left[\arccos \left(\frac{\sqrt{3}}{2}\right)\right]$
56. $\sec \left[\arcsin \left(\frac{1}{2}\right)\right]$
57. $\csc \left[\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)\right]$
58. $\cot \left[\cos ^{-1}\left(-\frac{1}{2}\right)\right]$
59. $\arccos \left[\sin \left(-30^{\circ}\right)\right]$
60. $\arcsin \left(\cos 135^{\circ}\right)$

Explain why the following expressions are not defined.
61. $\tan \left(\sin ^{-1} 1\right)$
62. $\cot (\arccos 1)$
63. $\sin ^{-1}\left[\csc \left(\frac{\pi}{4}\right)\right]$
64. $\cos ^{-1}\left[\sec \left(\frac{2 \pi}{3}\right)\right]$

Use the diagrams shown to write the value of: (a) $\sin \theta$, (b) $\cos \theta$, and (c) $\tan \boldsymbol{\theta}$.
65.

66.

67.

68.

Evaluate each expression by drawing a right triangle and labeling the sides.
69. $\sin \left[\cos ^{-1}\left(-\frac{7}{25}\right)\right]$
70. $\cos \left[\sin ^{-1}\left(-\frac{11}{61}\right)\right]$
71. $\sin \left[\tan ^{-1}\left(\frac{\sqrt{5}}{2}\right)\right]$
72. $\tan \left[\cos ^{-1}\left(\frac{\sqrt{23}}{12}\right)\right]$
73. $\cot \left[\arcsin \left(\frac{3 x}{5}\right)\right]$
74. $\tan \left[\operatorname{arcsec}\left(\frac{5}{2 x}\right)\right]$
75. $\cos \left[\sin ^{-1}\left(\frac{x}{\sqrt{12+x^{2}}}\right)\right]$
76. $\tan \left[\sec ^{-1}\left(\frac{\sqrt{9+x^{2}}}{x}\right)\right]$

Use the tables given prior to Exercise 7 to help fill in each blank.
77.

$\sec 0=1$	$\sec ^{-1} 1=-$
$\sec \left(\frac{\pi}{3}\right)=-$	$\operatorname{arcsec} 2=\frac{\pi}{3}$
$\sec \left(-30^{\circ}\right)=\frac{2}{\sqrt{3}}$	$\operatorname{arcsec}\left(\frac{2}{\sqrt{3}}\right)=\square$
$\sec (\pi)=-$	$\sec ^{-1}(-1)=\pi$

78.

$\sec \left(-60^{\circ}\right)=2$	$\operatorname{arcsec} 2=-$
$\sec \left(\frac{7 \pi}{6}\right)=-\frac{2}{\sqrt{3}}$	$\operatorname{arcsec}\left(-\frac{2}{\sqrt{3}}\right)=-$
$\sec \left(-360^{\circ}\right)=1$	$\operatorname{arcsec} 1=-$
$\sec \left(60^{\circ}\right)=-$	$\sec ^{-1}(2)=60^{\circ}$

Evaluate using a calculator only as necessary.
79. $\operatorname{arccsc} 2$
80. $\csc ^{-1}\left(-\frac{2}{\sqrt{3}}\right)$
81. $\cot ^{-1} \sqrt{3}$
82. $\operatorname{arccot}(-1)$
83. $\operatorname{arcsec} 5.789$
84. $\cot ^{-1}\left(-\frac{\sqrt{7}}{2}\right)$
85. $\sec ^{-1} \sqrt{7}$
86. $\operatorname{arccsc} 2.9875$

WORKING WITH FORMULAS

87. The force normal to an object on an inclined plane: $\boldsymbol{F}_{\boldsymbol{N}}=\boldsymbol{m g} \cos \theta$

When an object is on an inclined plane, the normal force is the force acting perpendicular to the plane and away from the force of gravity, and is measured in a unit called newtons (\mathbf{N}). The magnitude of this force depends on the angle of incline of the plane according to the formula given, where m is the mass of the object in kilograms and g is the force of
 gravity $\left(9.8 \mathrm{~m} / \mathrm{sec}^{2}\right)$. Given $m=225 \mathrm{~g}$, find (a) F_{N} for $\theta=15^{\circ}$ and $\theta=45^{\circ}$ and (b) θ for $F_{N}=1 \mathrm{~N}$ and $F_{N}=2 \mathrm{~N}$.
88. Heat flow on a cylindrical pipe: $T=\left(T_{0}-T_{R}\right) \sin \left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)+T_{R} ; y \geq 0$

When a circular pipe is exposed to a fan-driven source of heat, the temperature of the air reaching the pipe is greatest at the point nearest to the source (see diagram). As you move around the circumference of the pipe away from the source, the temperature of the air reaching the pipe gradually decreases. One possible model of this phenomenon is given by the formula shown, where T is the temperature of the air at a point (x, y) on the circumference of a pipe with outer radius $r=\sqrt{x^{2}+y^{2}}, T_{0}$ is the temperature of the air at the source, and T_{R} is the surrounding room temperature. Assuming $T_{0}=220^{\circ} \mathrm{F}, T_{R}=72^{\circ}$ and $r=5 \mathrm{~cm}$: (a) Find the temperature of the air at the points $(0,5),(3,4),(4,3),(4.58,2)$, and $(4.9,1)$. (b) Why is the temperature decreasing for this sequence of points? (c) Simplify the formula using $r=5$ and use it to find two points on the pipe's circumference where the temperature of the air is 113°.

APPLICATIONS

89. Snowcone
dimensions: Made in the Shade Snowcones sells a colossal size cone that uses a conical cup holding 20 oz of ice and liquid. The cup is 20 cm tall and has a radius of 5.35 cm . Find the angle θ formed by a cross-section of the cup.
90. Avalanche conditions: Winter avalanches occur for many reasons, one being the slope of the mountain. Avalanches seem to occur most often for slopes between 35° and 60° (snow gradually slides off steeper slopes). The slopes at a local ski resort have an average rise of 2000 ft for each horizontal run of 2559 ft . Is this resort prone to avalanches? Find the angle θ and respond.

Exercise 90

91. Distance to hole: A

 popular story on the PGA Tour has Gerry Yang, Tiger Woods' teammate at Stanford and occasional caddie, using the Pythagorean theorem to find the distance Tiger needed to reach a particular hole. Suppose you notice a marker in the ground stating that the straight-line distance from the marker to the hole (H)Exercise 91
93. Viewing angles for advertising: A 25 - ft -wide billboard is erected perpendicular to a straight highway, with the closer edge 50 ft away (see figure). Assume the advertisement on the billboard is most easily read when the viewing angle is 10.5° or more. (a) Use inverse functions to find an expression for the viewing angle θ. (b) Use a calculator to help determine the distance d (to tenths of a foot) for which the viewing angle is greater than 10.5°. (c) What distance d maximizes this viewing angle?

Exercise 93

94. Viewing angles at an art show: At an art show, a painting 2.5 ft in height is hung on a wall so that its base is 1.5 ft above the eye level of an average viewer (see figure). (a) Use inverse functions to find expressions for angles α and β. (b) Use the result to find an expression for the viewing angle θ. (c) Use a

Exercise 94

calculator to help determine the distance x (to tenths of a foot) that maximizes this viewing angle.
95. Shooting angles and shots on goal: A soccer player is on a breakaway and is dribbling just inside the right sideline toward the opposing goal (see figure). As the defense closes in, she has just a few seconds to decide when to shoot. (a) Use inverse functions to find an expression for the shooting angle θ. (b) Use a calculator to help determine the distance d (to tenths of a foot) that will maximize the shooting angle for the dimensions shown.

Exercise 95

EXTENDING THE CONCEPT

Consider a satellite orbiting at an altitude of x mi above the Earth. The distance d from the satellite to the horizon and the length s of the corresponding arc of the Earth are shown in the diagram.

96. To find the distance d we use the formula $d=\sqrt{2 r x+x^{2}}$. (a) Show how this formula was developed using the Pythagorean theorem. (b) Find a formula for the angle θ in terms of r and x, then a formula for the arc length s.
97. If the Earth has a radius of 3960 mi and the satellite is orbiting at an altitude of 150 mi , (a) what is the measure of angle θ ? (b) how much longer is d than s ?

A projectile is any object that is shot, thrown, slung, or otherwise projected and has no continuing source of propulsion. The horizontal and vertical position of the projectile depends on its initial velocity, angle of projection, and height of release (air resistance is neglected). The horizontal position of the projectile is given by $x=v_{0} \cos \theta t$, while its vertical position is modeled by $y=y_{0}+v_{0} \sin \theta t-16 t^{2}$, where y_{0} is the height it is projected from, θ is the projection angle, and t is the elapsed time in seconds.
98. A circus clown is shot out of a specially made cannon at an angle of 55°, with an initial velocity of $85 \mathrm{ft} / \mathrm{sec}$, and the end of the cannon is 10 ft high.
a. Find the position of the safety net (distance from the cannon and height from the
 ground) if the clown hits the net after 4.3 sec .
b. Find the angle at which the clown was shot if the initial velocity was $75 \mathrm{ft} / \mathrm{sec}$ and the clown hits a net that is placed 175.5 ft away after 3.5 sec .
99. A winter ski jumper leaves the ski-jump with an initial velocity of $70 \mathrm{ft} / \mathrm{sec}$ at an angle of 10°. Assume the jump-off point has coordinates (0,0).
a. What is the horizontal position of the skier after 6 sec ?
b. What is the vertical position of the skier after 6 sec ?
c. What diagonal distance (down the mountain side) was traveled if the skier touched down after being airborne for 6 sec ?
100. Suppose the domain of $y=\csc x$ was restricted to $x \in\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$,

Exercise 99

 and the domain of $y=\cot x$ to $x \in(0, \pi)$. (a) Would these functions then be one-to-one? (b) What are the corresponding ranges? (c) State the domain and range of $y=\csc ^{-1} x$ and $y=\cot ^{-1} x$. (d) Graph each function.

MAINTAINING YOUR SKILLS

101. (5.3) Use the triangle given with a double-angle identity to find the exact value of $\sin (2 \theta)$.

102. (5.2) Use the triangle given with a sum identity to find the exact value of $\sin (\alpha+\beta)$.
103. (3.2) Charlene just bought her daughter a battery operated jeep. If the wheels have a radius of 4 in .
and are turning at 3.5 revolutions per second at top speed, find the top speed of the vehicle in miles per hour, rounded to the nearest tenth.
104. (4.3) State the amplitude, period, and horizontal shift for $y=5 \sin \left(3 x-\frac{\pi}{2}\right)$.
105. (1.3) Evaluate $\sin \theta, \cos \theta$, and $\tan \theta$ if the terminal side is along the line $y=\frac{12}{5} x$ with θ in QI.
106. (4.2) Explain how the graph of $y=\sec x$ is related to the graph of $y=\cos x$. Include a discussion of the domain and range of $y=\sec x$ and where the asymptotes occur.

MID-CHAPTER CHECK

1. The algebraic method for finding the inverse function for $f(x)=\tan x$ is illustrated here. The equation in
(3) is called the \qquad form of the inverse equation. The equation in (4) is called the \qquad
(5) $f^{-1}(x)=\tan ^{-1} x \quad$ substitute $f^{-1}(x)$ for y
2. Determine whether the function given is one-to-one. If not, state why.

$$
\{(-3,5),(-1,11),(5,12),(-2,5),(1,-3)\}
$$

3. Find the inverse function of the one-to-one function given.
$f(x)=\{(-3,-14),(-1,-8),(5,10),(-2,-11)$, $(1,-2)\}$
4. Use the algebraic method to find the inverse function for $f(x)=2^{3} \sqrt{2 x+1}+3$, then verify your work using a composition.
5. The function $g(x)=|x+3|-2$ is not one-to-one. (a) State why. (b) Determine a domain restriction that preserves all range values and enables an inverse to be found, and (c) find an inverse function and state its domain and range. (Hint: Use the graph to determine the restriction and to help find the inverse.)
6. Comment on the third line in the following sequence. In particular, why does the "pattern" of inverses not hold in the third line?

$$
\begin{array}{rll}
\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2} & \rightarrow & \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=60^{\circ} \\
\sin \left(90^{\circ}\right)=1 & \rightarrow & \sin ^{-1}(1)=90^{\circ} \\
\sin \left(120^{\circ}\right)=\frac{\sqrt{3}}{2} & \rightarrow & \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=60^{\circ}(?)
\end{array}
$$

7. Evaluate the following expressions without a calculator.
a. $\sec ^{-1}(\sqrt{2})$
b. $\csc ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
8. Evaluate the following expressions without a calculator.
a. $\cos ^{-1}\left[\cos \left(\frac{\pi}{6}\right)\right]$
b. $\cos ^{-1}\left[\cos \left(\frac{7 \pi}{6}\right)\right]$
9. Evaluate the following expressions with a calculator, keeping the domain and range of each function in mind. Answer in radians to the nearest tenth.
a. $\sin ^{-1}(\sin 2.2)$
b. $\cos ^{-1}(\cos 5.1)$
10. Evaluate the following expressions exactly by drawing the corresponding triangle.
a. $\cos \left[\tan ^{-1}\left(\frac{13}{84}\right)\right]$
b. $\sec \left[\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+49}}\right)\right]$

REINFORCING BASIC CONCEPTS

The Domains of the Inverse Trig Functions

When working with the inverse trig functions, the most common difficulty students face is remembering and applying their respective domains and ranges. If we follow a few guiding principles when restricting the domain of the original function, there is no need to memorize six seemingly arbitrary intervals. Simply recall that the restricted domain of a trig function is the range of its inverse function, and the range of the original function is the domain of the inverse.

1. Know the graphs of the six basic trig functions. The importance of this fundamental knowledge cannot be overstated. Without it, domain restrictions seem random and arbitrary.
2. The domain restriction should always include the interval $\left(\mathbf{0}, \frac{\pi}{2}\right)$. This ensures our domain will be "centrally
located."
3. Select the nearest interval that includes all other range values. This interval will be either $\left(-\frac{\pi}{2}, 0\right)$ or $\left(\frac{\pi}{2}, \pi\right)$. If both are possible (as in the case of $y=\tan t$), "keep the graph in one piece."
4. As necessary, include endpoints of these intervals to ensure that all possible range values are included. The domain restriction must not only leave a graph that is one-to-one, it also must ensure all possible range values appear.

With these principles in mind, take another look at the graphs of the six trig functions.

Note that while these domain restrictions are not necessarily used uniformly in subsequent mathematics courses, they do guide most calculators and our work here in trigonometry. That said, use the graphs and the four principles just mentioned to complete the following.
Exercise 1: Determine the domain and range of (a) $y=\csc ^{-1} x$ and (b) $y=\cos ^{-1} x$.
Exercise 2: Determine the domain and range of (a) $y=\cot ^{-1} x$ and (b) $y=\sin ^{-1} x$. For $y=\cot ^{-1} x$, compare your answer to the Worthy of Note on p. 274.

6.3 Solving Basic Trig Equations

Learning Objectives

In Section 6.3 you will learn how to:A. Use a graph to gain information about principal roots, roots in $[0,2 \pi)$, and roots in \mathbb{R}B. Use inverse functions to solve trig equations for the principal rootC. Solve trig equations for roots in $[0,2 \pi)$ or $\left[0^{\circ}, 360^{\circ}\right)$D. Solve trig equations for roots in \mathbb{R}E. Solve trig equations using fundamental identitiesF. Solve trig equations using graphing technology

In this section, we'll take the elements of basic equation solving and use them to help solve trig equations, or equations containing trigonometric functions. All of the algebraic techniques previously used can be applied to these equations, including the properties of equality and all forms of factoring (common terms, difference of squares, etc.). As with polynomial equations, we continue to be concerned with the number of solutions as well as with the solutions themselves, but there is one major difference. There is no "algebra" that can transform a function like $\sin x=\frac{1}{2}$ into $x=$ solution. For that we rely on the inverse trig functions from Section 6.2.

A. The Principal Root, Roots in $[0,2 \pi)$, and Real Roots

In a study of polynomial equations, making a connection between the degree of an equation, its graph, and its possible roots, helped give insights as to the number, location, and nature of the roots. Similarly, keeping graphs of basic trig functions constantly in mind helps you gain information regarding the solutions to trig equations. When solving trig equations, we refer to the solution found using $\sin ^{-1}, \cos ^{-1}$, and $\tan ^{-1}$ as the principal root. You will alternatively be asked to find (1) the principal root, (2) solutions in $[0,2 \pi)$ or $\left[0^{\circ}, 360^{\circ}\right)$, or (3) solutions from the set of real numbers \mathbb{R}. For convenience, graphs of the basic sine, cosine, and tangent
functions are repeated in Figures 6.33 through 6.35. Take a mental snapshot of them and keep them close at hand.

Figure 6.33

Figure 6.34

Figure 6.35

EXAMPLE 1

WORTHY OF NOTE

Note that we refer to $\left(0, \frac{\pi}{2}\right)$ as Quadrant I or QI, regardless of whether we're discussing the unit circle or the graph of the function. In Example 1(b), the solutions correspond to those found in QI and QII on the unit circle, where $\sin x$ is also positive.

Y A. You've just learned how to use a graph to gain information about principal roots, roots in $[0,2 \pi)$, and roots in \mathbb{R}

Visualizing Solutions Graphically
Consider the equation $\sin x=\frac{2}{3}$. Using a graph of $y=\sin x$ and $y=\frac{2}{3}$,
a. State the quadrant of the principal root.
b. State the number of roots in $[0,2 \pi)$ and their quadrants.
c. Comment on the number of real roots.

Solution \downarrow We begin by drawing a quick sketch of $y=\sin x$ and $y=\frac{2}{3}$, noting that solutions will occur where the graphs intersect.
a. The sketch shows the principal root occurs between 0 and $\frac{\pi}{2}$ in QI.
b. For $[0,2 \pi)$ we note the graphs intersect twice and there will be two solutions in this interval.
c. Since the graphs of $y=\sin x$ and $y=\frac{2}{3}$ extend infinitely in both directions, they will intersect an infinite number of times - but at regular intervals! Once a root is found, adding integer multiples of 2π (the period of sine) to this root will give the location of additional roots. Now try Exercises 7 through 10

When this process is applied to the equation $\tan x=-2$, the graph shows the principal root occurs between $-\frac{\pi}{2}$ and 0 in QIV on the unit circle (see Figure 6.36). In the interval $[0,2 \pi)$ the graphs intersect twice, in QII and QIV where $\tan x$ is negative (graphically-below the x-axis). As in Example 1, the graphs continue infinitely and will intersect an infinite number of times-but again at regular intervals! Once a root is found, adding integer mul-
 tiples of π (the period of tangent) to this root will give the location of other roots.

B. Inverse Functions and Principal Roots

To solve equations having a single variable term, the basic goal is to isolate the variable term and apply the inverse function or operation. This is true for algebraic equations like $2 x-1=0,2 \sqrt{x}-1=0$, or $2 x^{2}-1=0$, and for trig equations like $2 \sin x-1=0$. In each case we would add 1 to both sides, divide by 2 , then apply the appropriate inverse. When the inverse trig functions are applied, the result is only the principal root and other solutions may exist depending on the interval under consideration.

EXAMPLE 2 Finding Principal Roots

Find the principal root of $\sqrt{3} \tan x-1=0$.
Solution We begin by isolating the variable term, then apply the inverse function.

Table 6.6

$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0

(B. You've just learned how to use inverse functions to solve trig equations for the principal root

$$
\begin{aligned}
\sqrt{3} \tan x-1 & =0 & & \text { given equation } \\
\tan x & =\frac{1}{\sqrt{3}} & & \text { add } 1 \text { and divide by } \sqrt{3} \\
\tan ^{-1}(\tan x) & =\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) & & \text { apply inverse tangent to both sides } \\
x & =\frac{\pi}{6} & & \text { result (exact form) }
\end{aligned}
$$

Now try Exercises 11 through 28

Equations like the one in Example 2 demonstrate the need to be very familiar with the functions of a special angle. They are frequently used in equations and applications to ensure results don't get so messy they obscure the main ideas. For convenience, the values of $\sin \theta$ and $\cos \theta$ are repeated in Table 6.6 for $\theta \in\left[0, \frac{\pi}{2}\right]$. Using symmetry and the appropriate sign, the table can easily be extended to all values in $[0,2 \pi)$. Using the reciprocal and ratio relationships, values for the other trig functions can also be found.

C. Solving Trig Equations for Roots in [0, 2π) or $\left[0^{\circ}, 360^{\circ}\right.$)

To find multiple solutions to a trig equation, we simply take the reference angle of the principal root, and use this angle to find all solutions within a specified range. A mental image of the graph still guides us, and the standard table of values (also held in memory) allows for a quick solution to many equations.

EXAMPLE 3 - Finding Solutions in $[0,2 \pi$)

For $2 \cos \theta+\sqrt{2}=0$, find all solutions in $[0,2 \pi)$.
Solution Isolate the variable term, then apply the inverse function.

WORTHY OF NOTE

Note how the graph of a trig function displays the information regarding quadrants.
From the graph of $y=\cos x$ we "read" that cosine is negative in QII and QIII [the lower "hump" of the graph is below the x-axis in ($\pi / 2,3 \pi / 2$)] and positive in QI and QIV [the graph is above the x-axis in the intervals $(0, \pi / 2)$ and $(3 \pi / 2,2 \pi)]$.

$$
\begin{aligned}
2 \cos \theta+\sqrt{2} & =0 & & \text { given equation } \\
\cos \theta & =-\frac{\sqrt{2}}{2} & & \text { subtract } \sqrt{2} \text { and divide by } 2 \\
\cos ^{-1}(\cos \theta) & =\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right) & & \text { apply inverse cosine to both sides } \\
\theta & =\frac{3 \pi}{4} & & \text { result }
\end{aligned}
$$

With $\frac{3 \pi}{4}$ as the principal root, we know $\theta_{r}=\frac{\pi}{4}$.
Since $\cos x$ is negative in QII and QIII, the second solution is $\frac{5 \pi}{4}$. The second solution could also have been found from memory, recognition, or symmetry on the unit circle. Our (mental) graph verifies these
 are the only solutions in $[0,2 \pi)$.

EXAMPLE 4 Finding Solutions in $[0,2 \pi$)

For $\tan ^{2} x-1=0$, find all solutions in $[0,2 \pi)$.
Solution As with the other equations having a single variable term, we try to isolate this term or attempt a solution by factoring.

$$
\begin{aligned}
\tan ^{2} x-1 & =0 & & \text { given equation } \\
\sqrt{\tan ^{2} x} & = \pm \sqrt{1} & & \text { add } 1 \text { to both sides and take square roots } \\
\tan x & = \pm 1 & & \text { result }
\end{aligned}
$$

The algebra gives $\tan x=1$ or $\tan x=-1$ and we solve each equation independently.

$$
\begin{array}{rlrl}
\tan x & =1 & \tan x & =-1 \\
\tan ^{-1}(\tan x) & =\tan ^{-1}(1) & \tan ^{-1}(\tan x) & =\tan ^{-1}(-1) \\
& \text { apply inverse tangent } \\
x & =\frac{\pi}{4} & x & =-\frac{\pi}{4}
\end{array}
$$

Of the principal roots, only $x=\frac{\pi}{4}$ is in the specified interval. With $\tan x$ positive in QI and QIII, a second solution is $\frac{5 \pi}{4}$. While $x=-\frac{\pi}{4}$ is not in the interval, we still use it as a reference angle in QII and QIV (for $\tan x=-1$) and find the solutions $x=\frac{3 \pi}{4}$ and $\frac{7 \pi}{4}$. The four solutions are $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}$, and $\frac{7 \pi}{4}$, which is supported
 by the graph shown.

Now try Exercises 35 through 42

For any trig function that is not equal to a standard value, we can use a calculator to approximate the principal root or leave the result in exact form, and apply the same ideas to this root to find all solutions in the interval.

EXAMPLE $5>$ Finding Solutions in $\left[0^{\circ}, 360^{\circ}\right.$)

Find all solutions in $\left[0^{\circ}, 360^{\circ}\right.$) for $3 \cos ^{2} \theta+\cos \theta-2=0$.
Solution $>$ Use a u-substitution to simplify the equation and help select an appropriate strategy. For $u=\cos \theta$, the equation becomes $3 u^{2}+u-2=0$ and factoring seems the best approach. The factored form is $(u+1)(3 u-2)=0$, with solutions $u=-1$ and $u=\frac{2}{3}$. Re-substituting $\cos \theta$ for u gives

$$
\begin{aligned}
\cos \theta & =-1 & & \cos \theta
\end{aligned}=\frac{2}{3} \quad \text { equations from factored form }
$$

(C. You've just learned how to solve trig equations for roots in $[0,2 \pi)$ or $\left[0^{\circ}, 360^{\circ}\right)$

Both principal roots are in the specified interval. The first is quadrantal, the second was found using a calculator and is approximately 48.2°. With $\cos \theta$ positive in QI and QIV, a second solution is $(360-48.2)^{\circ}=311.8^{\circ}$. The three solutions are $48.2^{\circ}, 180^{\circ}$, and 311.8° although only $\theta=180^{\circ}$ is exact.

D. Solving Trig Equations for All Real Roots (\mathbb{R})

As we noted, the intersections of a trig function with a horizontal line occur at regular, predictable intervals. This makes finding solutions from the set of real numbers a simple matter of extending the solutions we found in $[0,2 \pi)$ or $\left[0^{\circ}, 360^{\circ}\right)$. To illustrate, consider the solutions to Example 3. For $2 \cos \theta+\sqrt{2}=0$, we found the solutions $\theta=\frac{3 \pi}{4}$ and $\theta=\frac{5 \pi}{4}$. For solutions in \mathbb{R}, we note the "predictable interval" between roots is identical to the period of the function. This means all real solutions will be represented by $\theta=\frac{3 \pi}{4}+2 \pi k$ and $\theta=\frac{5 \pi}{4}+2 \pi k, k \in \mathbb{Z}$ (k is an integer). Both are illustrated in Figures 6.37 and 6.38 with the primary solution indicated with a "*."

Figure 6.37

Figure 6.38

Finding Solutions in \mathbb{R}
Find all real solutions to $\sqrt{3} \tan x-1=0$.
Solution \downarrow In Example 2 we found the principal root was $x=\frac{\pi}{6}$. Since the tangent function has a period of π, adding integer multiples of π to this root will identify all solutions:
 $x=\frac{\pi}{6}+\pi k, k \in \mathbb{Z}$, as illustrated here.

Now try Exercises 51 through 56

These fundamental ideas can be extended to many different situations. When asked to find all real solutions, be sure you find all roots in a stipulated interval before naming solutions by applying the period of the function. For instance, $\cos x=0$ has two solutions in $[0,2 \pi)\left[x=\frac{\pi}{2}\right.$ and $\left.x=\frac{3 \pi}{2}\right]$, which we can quickly extend to find all real roots. But using $x=\cos ^{-1} 0$ or a calculator limits us to the single (principal) root
$x=\frac{\pi}{2}$, and we'd miss all solutions stemming from $\frac{3 \pi}{2}$. Note that solutions involving multiples of an angle (or fractional parts of an angle) should likewise be "handled with care," as in Example 7.

EXAMPLE $7>$ Finding Solutions in \mathbb{R}

Find all real solutions to $2 \sin (2 x) \cos x-\cos x=0$.
Solution \downarrow Since we have a common factor of $\cos x$, we begin by rewriting the equation as $\cos x[2 \sin (2 x)-1]=0$ and solve using the zero factor property. The resulting equations are $\cos x=0$ and $2 \sin (2 x)-1=0 \rightarrow \sin (2 x)=\frac{1}{2}$.

$$
\cos x=0 \quad \sin (2 x)=\frac{1}{2} \quad \text { equations from factored form }
$$

In $[0,2 \pi), \cos x=0$ has solutions $x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$, giving $x=\frac{\pi}{2}+2 \pi k$ and $x=\frac{3 \pi}{2}+2 \pi k$ as solutions in \mathbb{R}. Note these can actually be combined and written as $x=\frac{\pi}{2}+\pi k, k \in \mathbb{Z}$. The solution process for $\sin (2 x)=\frac{1}{2}$ yields $2 x=\frac{\pi}{6}$ and $2 x=\frac{5 \pi}{6}$. Since we seek all real roots, we first extend each solution by $2 \pi k$ before dividing by 2 , otherwise multiple solutions would be overlooked.

$$
\begin{array}{rlrl}
2 x & =\frac{\pi}{6}+2 \pi k & 2 x & =\frac{5 \pi}{6}+2 \pi k
\end{array} \begin{array}{ll}
\text { solutions from } \sin (2 x)=\frac{1}{2} ; k \in \mathbb{Z} \\
x & =\frac{\pi}{12}+\pi k
\end{array}
$$

Now try Exercises 57 through 66

E. Trig Equations and Trig Identities

In the process of solving trig equations, we sometimes employ fundamental identities to help simplify an equation, or to make factoring or some other method possible.

EXAMPLE $8>$ Solving Trig Equations Using an Identity

Find all solutions in $\left[0^{\circ}, 360^{\circ}\right)$ for $\cos (2 \theta)+\sin ^{2} \theta-3 \cos \theta=1$.
Solution With a mixture of functions, exponents, and arguments, the equation is almost impossible to solve as it stands. But we can eliminate the sine function using the identity $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$, leaving a quadratic equation in $\cos x$.

$$
\begin{array}{rll}
\cos (2 \theta)+\sin ^{2} \theta-3 \cos \theta=1 & & \text { given equation } \\
\cos ^{2} \theta-\sin ^{2} \theta+\sin ^{2} \theta-3 \cos \theta=1 & & \text { substitute } \cos ^{2} \theta-\sin ^{2} \theta \text { for } \cos (2 \theta) \\
\cos ^{2} \theta-3 \cos \theta=1 & & \text { combine like terms } \\
\cos ^{2} \theta-3 \cos \theta-1 & =0 & \\
\text { subtract } 1
\end{array}
$$

Let's substitute u for $\cos \theta$ to give us a simpler view of the equation. This gives $u^{2}-3 u-1=0$, which is clearly not factorable over the integers. Using the quadratic formula with $a=1, b=-3$, and $c=-1$ gives

$$
\begin{aligned}
u & =\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-1)}}{2(1)} & & \\
& =\frac{3 \pm \sqrt{13}}{2} & & \text { suadratic formulified in } u
\end{aligned}
$$

E. You've just learned how to solve trig equations using fundamental identities

To four decimal places we have $u=3.3028$ and $u=-0.3028$. To answer in terms of the original variable we re-substitute $\cos \theta$ for u, realizing that $\cos \theta \approx 3.3028$ has no solution, so solutions in $\left[0^{\circ}, 360^{\circ}\right.$) must be provided by $\cos \theta \approx-0.3028$ and occur in QII and QIII. The solutions are $\theta=\cos ^{-1}(-0.3028)=107.6^{\circ}$ and $360^{\circ}-107.6^{\circ}=252.4^{\circ}$ to the nearest tenth of a degree.

Now try Exercises 67 through 82

F. Trig Equations and Graphing Technology

A majority of the trig equations you'll encounter in your studies can be solved using the ideas and methods presented here. But there are some equations that cannot be solved using standard methods because they mix polynomial functions (linear, quadratic, and so on) that can be solved using algebraic methods, with what are called transcendental functions (trigonometric, logarithmic, and so on). By definition, transcendental functions are those that transcend the reach of standard algebraic methods. These kinds of equations serve to highlight the value of graphing and calculating technology to today's problem solvers.

EXAMPLE $9>$ Solving Trig Equations Using Technology

Use a graphing calculator in radian mode to find all real roots of $2 \sin x+\frac{3 x}{5}-2=0$. Round solutions to four decimal places.

Solution \downarrow When using graphing technology our initial concern is the size of the viewing window. After carefully entering the equation on the $Y=$ screen, we note the term $2 \sin x$ will never be larger than 2 or less than -2 for any real number x. On the other hand, the term $\frac{3 x}{5}$ becomes larger for larger values of x, which would seem to cause $2 \sin x+\frac{3 x}{5}$ to "grow" as x gets larger. We conclude the standard window is a good place to start, and the resulting graph is shown in Figure 6.39.

Figure 6.39

Figure 6.40

From this screen it appears there are three real roots, but to be sure none are hidden to the right, we extend the Xmax value to 20 (Figure 6.40). Using 2nd trace (CALC) 2:zero, we follow the prompts and enter a left bound of 0 (a number to the left of the zero) and a right bound of 2 (a number to the right of the zero-see Figure 6.40). If you can visually approximate the root, the calculator prompts you for a GUESS, otherwise just bypass the request by pressing ENTER. The smallest root is approximately $x=0.8435$. Repeating this sequence we find the other roots are $x \approx 3.0593$ and $x \approx 5.5541$.

6.3 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if necessary.

1. For simple equations, a mental graph will tell us the quadrant of the \qquad root, the number of roots in \qquad , and show a pattern for all \qquad roots.
2. Solving trig equations is similar to solving algebraic equations, in that we first \qquad the variable term, then apply the appropriate \qquad function.
3. For $\sin x=\frac{\sqrt{2}}{2}$ the principal root is \qquad , solutions in $[0,2 \pi)$ are \qquad and \qquad , and an expression for all real roots is \qquad and
\qquad $; k \in \mathbb{Z}$.
4. For $\tan x=-1$, the principal root is \qquad , solutions in $[0,2 \pi)$ are \qquad and \qquad and an expression for all real roots is \qquad .
5. Discuss/Explain/Illustrate why $\tan x=\frac{3}{4}$ and $y=\cos x$ have two solutions in $[0,2 \pi)$, even though the period of $y=\tan x$ is π, while the period of $y=\cos x$ is 2π.
6. The equation $\sin ^{2} x=\frac{1}{2}$ has four solutions in $[0,2 \pi)$. Explain how these solutions can be viewed as the vertices of a square inscribed in the unit circle.

DEVELOPING YOUR SKILLS

7. For the equation $\sin x=-\frac{3}{4}$ and the graphs of $y=\sin x$ and $y=-\frac{3}{4}$ given, state (a) the quadrant of the principal root and (b) the number of roots in $[0,2 \pi)$.

Exercise 7

8. For the equation $\cos x=\frac{3}{4}$ and the graphs of $y=\cos x$ and $y=\frac{3}{4}$ given, state (a) the quadrant of the principal root and (b) the number of roots in $[0,2 \pi)$.
9. Given the graph $y=\tan x$ shown here, draw the horizontal line $y=-1.5$ and then for $\tan x=-1.5$, state (a) the quadrant of the principal root and (b) the number of roots in $[0,2 \pi)$.

Exercise 9

Exercise 10

10. Given the graph of $y=\sec x$ shown, draw the horizontal line $y=\frac{5}{4}$ and then for $\sec x=\frac{5}{4}$, state (a) the quadrant of the principal root and (b) the number of roots in $[0,2 \pi)$.
11. The table that follows shows θ in multiples of $\frac{\pi}{6}$ between 0 and $\frac{4 \pi}{3}$, with the values for $\sin \theta$ given. Complete the table without a calculator or references using your knowledge of the unit circle, the signs of $f(\theta)$ in each quadrant, memory/recognition, $\tan \theta=\frac{\sin \theta}{\cos \theta}$, and so on.

Exercise 11

$\boldsymbol{\theta}$	$\sin \boldsymbol{\theta}$	$\cos \boldsymbol{\theta}$	$\boldsymbol{\operatorname { t a n } \theta}$
0	0		
$\frac{\pi}{6}$	$\frac{1}{2}$		
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$		
$\frac{\pi}{2}$	1		
$\frac{2 \pi}{3}$	$\frac{\sqrt{3}}{2}$		
$\frac{5 \pi}{6}$	$\frac{1}{2}$		
π	0		
$\frac{7 \pi}{6}$	$-\frac{1}{2}$		
$\frac{4 \pi}{3}$	$-\frac{\sqrt{3}}{2}$		

Exercise 12

$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\cos \boldsymbol{\theta}$	$\boldsymbol{\operatorname { t a n } \theta}$
0		1	
$\frac{\pi}{4}$		$\frac{\sqrt{2}}{2}$	
$\frac{\pi}{2}$		0	
$\frac{3 \pi}{4}$		$-\frac{\sqrt{2}}{2}$	
π		-1	
$\frac{5 \pi}{4}$		$-\frac{\sqrt{2}}{2}$	
$\frac{3 \pi}{2}$		0	
$\frac{7 \pi}{4}$		$\frac{\sqrt{2}}{2}$	
2π		1	

12. The table shows θ in multiples of $\frac{\pi}{4}$ between 0 and 2π, with the values for $\cos \theta$ given. Complete the table without a calculator or references using your knowledge of the unit circle, the signs of $f(\theta)$ in each quadrant, memory/recognition, $\tan \theta=\frac{\sin \theta}{\cos \theta}$, and so on.

Find the principal root of each equation.
13. $2 \cos x=\sqrt{2}$
14. $2 \sin x=-1$
15. $-4 \sin x=2 \sqrt{2}$
16. $-4 \cos x=2 \sqrt{3}$
17. $\sqrt{3} \tan x=1$
18. $-2 \sqrt{3} \tan x=2$
19. $2 \sqrt{3} \sin x=-3$
20. $-3 \sqrt{2} \csc x=6$
21. $-6 \cos x=6$
22. $4 \sec x=-8$
23. $\frac{7}{8} \cos x=\frac{7}{16}$
24. $-\frac{5}{3} \sin x=\frac{5}{6}$
25. $2=4 \sin \theta$
26. $\pi \tan x=0$
27. $-5 \sqrt{3}=10 \cos \theta$
28. $4 \sqrt{3}=4 \tan \theta$

Find all solutions in $[0,2 \pi)$.
29. $9 \sin x-3.5=1$
30. $6.2 \cos x+4=7.1$
31. $8 \tan x+7 \sqrt{3}=-\sqrt{3}$
32. $\frac{1}{2} \sec x-\frac{3}{4}=-\frac{7}{4}$
33. $\frac{2}{3} \cot x-\frac{5}{6}=-\frac{3}{2}$
34. $-110 \sin x=-55 \sqrt{3}$
35. $4 \cos ^{2} x=3$
36. $4 \sin ^{2} x=1$
37. $-7 \tan ^{2} x=-21$
38. $3 \sec ^{2} x=6$
39. $-4 \csc ^{2} x=-8$
40. $6 \sqrt{3} \cos ^{2} x=3 \sqrt{3}$
41. $4 \sqrt{2} \sin ^{2} x=4 \sqrt{2}$
42. $\frac{2}{3} \cos ^{2} x+\frac{5}{6}=\frac{4}{3}$

Solve the following equations by factoring. State all real solutions in radians using the exact form where possible and rounded to four decimal places if the result is not a standard value.
43. $3 \cos ^{2} \theta+14 \cos \theta-5=0$
44. $6 \tan ^{2} \theta-2 \sqrt{3} \tan \theta=0$
45. $2 \cos x \sin x-\cos x=0$
46. $2 \sin ^{2} x+7 \sin x=4$
47. $\sec ^{2} x-6 \sec x=16$
48. $2 \cos ^{3} x+\cos ^{2} x=0$
49. $4 \sin ^{2} x-1=0$
50. $4 \cos ^{2} x-3=0$

Find all real solutions. Note that identities are not required to solve these exercises.
51. $-2 \sin x=\sqrt{2}$
52. $2 \cos x=1$
53. $-4 \cos x=2 \sqrt{2}$
54. $4 \sin x=2 \sqrt{3}$
55. $\sqrt{3} \tan x=-\sqrt{3}$
56. $2 \sqrt{3} \tan x=2$
57. $6 \cos (2 x)=-3$
58. $2 \sin (3 x)=-\sqrt{2}$
59. $\sqrt{3} \tan (2 x)=-\sqrt{3}$
60. $2 \sqrt{3} \tan (3 x)=6$
61. $-2 \sqrt{3} \cos \left(\frac{1}{3} x\right)=2 \sqrt{3}$
62. $-8 \sin \left(\frac{1}{2} x\right)=-4 \sqrt{3}$
63. $\sqrt{2} \cos x \sin (2 x)-3 \cos x=0$
64. $\sqrt{3} \sin x \tan (2 x)-\sin x=0$
65. $\cos (3 x) \csc (2 x)-2 \cos (3 x)=0$
66. $\sqrt{3} \sin (2 x) \sec (2 x)-2 \sin (2 x)=0$

Solve each equation using calculator and inverse trig functions to determine the principal root (not by graphing). Clearly state (a) the principal root and (b) all real roots.
67. $3 \cos x=1$
68. $5 \sin x=-2$
69. $\sqrt{2} \sec x+3=7$
70. $\sqrt{3} \csc x+2=11$
71. $\frac{1}{2} \sin (2 \theta)=\frac{1}{3}$
72. $\frac{2}{5} \cos (2 \theta)=\frac{1}{4}$
73. $-5 \cos (2 \theta)-1=0$
74. $6 \sin (2 \theta)-3=2$

Solve the following equations using an identity. State all real solutions in radians using the exact form where possible and rounded to four decimal places if the result is not a standard value.
75. $\cos ^{2} x-\sin ^{2} x=\frac{1}{2}$
76. $4 \sin ^{2} x-4 \cos ^{2} x=2 \sqrt{3}$
77. $2 \cos \left(\frac{1}{2} x\right) \cos x-2 \sin \left(\frac{1}{2} x\right) \sin x=1$
78. $\sqrt{2} \sin (2 x) \cos (3 x)+\sqrt{2} \sin (3 x) \cos (2 x)=1$
79. $(\cos \theta+\sin \theta)^{2}=1 \quad$ 80. $(\cos \theta+\sin \theta)^{2}=2$
81. $\cos (2 \theta)+2 \sin ^{2} \theta-3 \sin \theta=0$
82. $3 \sin (2 \theta)-\cos ^{2}(2 \theta)-1=0$

Find all roots in $[0,2 \pi)$ using a graphing calculator. State answers in radians rounded to four decimal places.
83. $5 \cos x-x=3$
84. $3 \sin x+x=4$
85. $\cos ^{2}(2 x)+x=3$
86. $\sin ^{2}(2 x)+2 x=1$
87. $x^{2}+\sin (2 x)=1$
88. $\cos (2 x)-x^{2}=-5$

WORKING WITH FORMULAS

89. Range of a projectile: $R=\frac{5}{49} v^{2} \sin (2 \theta)$

The distance a projectile travels is called its range and is modeled by the formula shown, where R is the range in meters, v is the initial velocity in meters per second, and θ is the angle of release. Two friends are standing 16 m apart playing catch. If the first throw has an initial velocity of $15 \mathrm{~m} / \mathrm{sec}$, what two angles will ensure the ball travels the 16 m between the friends?
90. Fine-tuning a golf swing: $(\text { club head to shoulder })^{2}=(\text { club length })^{2}+$ (arm length) $)^{\mathbf{-}} \mathbf{2}$ (club length)(arm length) $\cos \theta$
A golf pro is taking specific measurements on a client's swing to help improve her game. If the angle θ is too small, the ball is hit late and "too thin" (you top the ball). If θ is too large, the ball is hit early and "too fat" (you scoop the ball). Approximate the angle θ formed by the club and the extended (left) arm using the given measurements and formula shown.

APPLICATIONS

Acceleration due to gravity: When a steel ball is released down an inclined plane, the rate of the ball's acceleration depends on the angle of incline. The acceleration can be approximated by the formula $A(\theta)=9.8 \sin \theta$, where θ is in degrees and the acceleration is measured in meters per second/per second. To the nearest tenth of a degree,
91. What angle produces an acceleration of $0 \mathrm{~m} / \mathrm{sec}^{2}$ when the ball is released? Explain why this is reasonable.
92. What angle produces an acceleration of $9.8 \mathrm{~m} / \mathrm{sec}^{2}$? What does this tell you about the acceleration due to gravity?
93. What angle produces an acceleration of $5 \mathrm{~m} / \mathrm{sec}^{2}$? Will the angle be larger or smaller for an acceleration of $4.5 \mathrm{~m} / \mathrm{sec}^{2}$?
94. Will an angle producing an acceleration of $2.5 \mathrm{~m} / \mathrm{sec}^{2}$ be one-half the angle required for an acceleration of $5 \mathrm{~m} / \mathrm{sec}^{2}$? Explore and discuss.

Snell's law states that when a ray of light passes from one medium into another, the sine of the angle of incidence α varies directly with the sine of the angle of refraction β (see the figure). This
 phenomenon is modeled by the formula $\sin \alpha=k \sin \beta$, where k is called the index of refraction. Note the angle θ is the angle at which the light strikes the surface, so that $\alpha=90^{\circ}-\theta$. Use this information to work Exercises 95 to 98.
95. A ray of light passes from air into water, striking the water at an angle of 55°. Find the angle of incidence α and the angle of refraction β, if the index of refraction for water is $k=1.33$.
96. A ray of light passes from air into a diamond, striking the surface at an angle of 75°. Find the angle of incidence α and the angle of refraction β, if the index of refraction for a diamond is $k=2.42$.
97. Find the index of refraction for ethyl alcohol if a beam of light strikes the surface of this medium at an angle of 40° and produces an angle of refraction $\beta=34.3^{\circ}$. Use this index to find the angle of incidence if a second beam of light created an angle of refraction measuring 15°.
98. Find the index of refraction for rutile (a type of mineral) if a beam of light strikes the surface of this medium at an angle of 30° and produces an angle of refraction $\beta=18.7^{\circ}$. Use this index to find the angle of incidence if a second beam of light created an angle of refraction measuring 10°.
99. Roller coaster
design: As part of a science fair project, Hadra builds a scale
 model of a roller coaster using the equation $y=5 \sin \left(\frac{1}{2} x\right)+7$, where y is the height of the model in inches and x is the distance from the "loading platform" in inches. (a) How high is the platform? (b) What distances from the platform does the model attain a height of 9.5 in .?
100. Company logo: Part of the logo for an engineering firm was modeled by a cosine function. The logo was then manufactured in steel and installed on the entrance marquee of the home office. The position and size of the logo is modeled by the function $y=9 \cos x+15$, where y is the height of the graph above the base of the marquee in inches and
x represents the distance from the edge of the marquee. Assume the graph begins flush with the edge. (a) How far above the base is the beginning of the cosine graph?
(b) What distances from the edge does the graph attain a height of 19.5 in.?

Geometry applications: Solve Exercises 101 and 102 graphically using a calculator. For Exercise 101, give θ in radians rounded to four decimal places. For Exercise 102, answer in degrees to the nearest tenth of a degree.
101. The area of a circular segment (the shaded portion shown) is given by the formula $A=\frac{1}{2} r^{2}(\theta-\sin \theta)$, where θ is in radians. If the circle has a radius of 10 cm ,
 find the angle θ that gives an area of $12 \mathrm{~cm}^{2}$.
102. The perimeter of a trapezoid with parallel sides B and b, altitude h, and base angles α and β is given by the formula $P=B+b+h(\csc \alpha+\csc \beta)$.
 If $b=30 \mathrm{~m}, B=40 \mathrm{~m}, h=10 \mathrm{~m}$, and $\alpha=45^{\circ}$, find the angle β that gives a perimeter of 105 m .
104. Once the fundamental ideas of solving a given family of equations is understood and practiced, a student usually begins to generalize them-making the numbers or symbols used in the equation irrelevant. (a) Use the inverse sine function to find the principal root of $y=A \sin (B x-C)+D$, by solving for x in terms of y, A, B, C, and D. (b) Solve the following equation using the techniques addressed in this section, and then using the "formula" from Part (a): $5=2 \sin \left(\frac{1}{2} x+\frac{\pi}{4}\right)+3$. Do the results agree?

MAINTAINING YOUR SKILLS

105. (1.3) Find the value of all six trig functions given $\cos \theta=-\frac{5}{13}$ and $\tan \theta>0$.
106. (5.1) Verify that the following is an identity: $\frac{\cot x+\tan x}{\csc x}=\sec x$
107. (2.3) A road sign cautions truckers to slow down as the upcoming down hill roads have a -12% grade, meaning the ratio $\frac{\text { rise }}{\text { run }}=-0.12$. Find the angle of descent to the nearest tenth of a degree.
108. (6.2) Evaluate without using a calculator:
a. $\tan \left[\sin ^{-1}\left(-\frac{1}{2}\right)\right]$
b. $\sin \left[\tan ^{-1}(-1)\right]$
109. (4.3) Write the equation of the function shown in two ways-first using a secant function, and second as a cosecant function.

110. (3.2) The largest Ferris wheel in the world, located in Yokohama, Japan, has a radius of 50 m . To the nearest hundredth of a meter, how far does a seat on the rim travel as the wheel turns through $\theta=292.5^{\circ}$?

6.4 Solving General Trig Equations and Applications

Learning Objectives

In Section 6.4 you will learn how to:
A. Use additional algebraic techniques to solve trig equations
B. Solve trig equations using multiple angle, sum and difference, and sum-to-product identitiesC. Solve trig equations of the form
$A \sin (B x \pm C) \pm D=k$D. Use a combination of skills to model and solve a variety of applications

At this point you're likely beginning to understand the true value of trigonometry to the scientific world. Essentially, any phenomenon that is cyclic or periodic is beyond the reach of polynomial (and other) functions, and may require trig for an accurate understanding. And while there is an abundance of trig applications in oceanography, astronomy, meteorology, geology, zoology, and engineering, their value is not limited to the hard sciences. There are also rich applications in business and economics, and a growing number of modern artists are creating works based on attributes of the trig functions. In this section, we try to place some of these applications within your reach, with the exercise set offering an appealing variety from many of these fields.

A. Trig Equations and Algebraic Methods

We begin this section with a follow-up to Section 6.3, by introducing trig equations that require slightly more sophisticated methods to work out a solution.

EXAMPLE $1>$ Solving a Trig Equation by Squaring Both Sides

Find all solutions in $[0,2 \pi): \sec x+\tan x=\sqrt{3}$.
Solution Our first instinct might be to rewrite the equation in terms of sine and cosine, but that simply leads to a similar equation that still has two different functions $[\sqrt{3} \cos x-\sin x=1]$. Instead, we square both sides and see if the Pythagorean identity $1+\tan ^{2} x=\sec ^{2} x$ will be of use. Prior to squaring, we separate the functions on opposite sides to avoid the mixed term $2 \tan x \sec x$.

$$
\begin{aligned}
\sec x+\tan x & =\sqrt{3} & & \text { given equation } \\
(\sec x)^{2} & =(\sqrt{3}-\tan x)^{2} & & \text { subtract tan } x \text { and square } \\
\sec ^{2} x & =3-2 \sqrt{3} \tan x+\tan ^{2} x & & \text { result }
\end{aligned}
$$

Since $\sec ^{2} x=1+\tan ^{2} x$, we substitute directly and obtain an equation in tangent alone.

$$
\begin{aligned}
1+\tan ^{2} x & =3-2 \sqrt{3} \tan x+\tan ^{2} x & & \text { substitute } 1+\tan ^{2} x \text { for } \sec ^{2} x \\
-2 & =-2 \sqrt{3} \tan x & & \text { simplify } \\
\frac{1}{\sqrt{3}} & =\tan x & & \text { solve for } \tan x
\end{aligned}
$$

$$
\tan x>0 \text { in QI and QIII }
$$

The proposed solutions are $x=\frac{\pi}{6}[\mathrm{QI}]$ and $\frac{7 \pi}{6}[\mathrm{QIII}]$. Since squaring an equation sometimes introduces extraneous roots, both should be checked in the original equation. The check shows only $x=\frac{\pi}{6}$ is a solution.

Now try Exercises 7 through 12

Here is one additional example that uses a factoring strategy commonly employed when an equation has more than three terms.

EXAMPLE $2-$ Solving a Trig Equation by Factoring

Find all solutions in $\left[0^{\circ}, 360^{\circ}\right): 8 \sin ^{2} \theta \cos \theta-2 \cos \theta-4 \sin ^{2} \theta+1=0$.
Solution $>$ The four terms in the equation share no common factors, so we attempt to factor by grouping. We could factor $2 \cos \theta$ from the first two terms but instead elect to group the $\sin ^{2} \theta$ terms and begin there.

$$
\begin{array}{rll}
8 \sin ^{2} \theta \cos \theta-2 \cos \theta-4 \sin ^{2} \theta+1=0 & \text { given equation } \\
\left(8 \sin ^{2} \theta \cos \theta-4 \sin ^{2} \theta\right)-(2 \cos \theta-1) & =0 & \text { rearrange and group terms } \\
4 \sin ^{2} \theta(2 \cos \theta-1)-1(2 \cos \theta-1) & =0 & \text { remove common factors } \\
(2 \cos \theta-1)\left(4 \sin ^{2} \theta-1\right) & =0 & \\
\text { remove common binomial factors }
\end{array}
$$

Using the zero factor property, we write two equations and solve each independently.

$$
\begin{array}{cc}
2 \cos \theta-1=0 & 4 \sin ^{2} \theta-1=0 \quad \text { resulting equations } \\
2 \cos \theta=1 & \sin ^{2} \theta=\frac{1}{4} \quad \text { isolate variable term } \\
\cos \theta=\frac{1}{2} & \sin \theta= \pm \frac{1}{2} \quad \text { solve } \\
\cos \theta>0 \text { in QI and QIV } & \sin \theta>0 \text { in QI and QII } \\
\theta=60^{\circ}, 300^{\circ} & \sin \theta<0 \text { in QIII and QIV }
\end{array}
$$

A. You've just learned how to use additional algebraic techniques to solve trig equations

B. Solving Trig Equations Using Various Identities

To solve equations effectively, a student should strive to develop all of the necessary "tools." Certainly the underlying concepts and graphical connections are of primary importance, as are the related algebraic skills. But to solve trig equations effectively we must also have a ready command of commonly used identities. Observe how Example 3 combines a double-angle identity with factoring by grouping.

EXAMPLE $3-$ Using Identities and Algebra to Solve a Trig Equation

Find all solutions in $[0,2 \pi): 3 \sin (2 x)+2 \sin x-3 \cos x=1$. Round solutions to four decimal places as necessary.
Solution $>$ Noting that one of the terms involves a double angle, we attempt to replace that term to make factoring a possibility. Using the double identity for sine, we have

$$
\begin{aligned}
3(2 \sin x \cos x)+2 \sin x-3 \cos x & =1 & & \text { substitute } 2 \sin x \cos x \text { for } \sin (2 x) \\
(6 \sin x \cos x+2 \sin x)-(3 \cos x+1) & =0 & & \text { set equal to zero and group terms } \\
2 \sin x(3 \cos x+1)-1(3 \cos x+1) & =0 & & \text { factor using } 3 \cos x+1 \\
(3 \cos x+1)(2 \sin x-1) & =0 & & \text { common binomial factor }
\end{aligned}
$$

Use the zero factor property to solve each equation independently.
B. You've just learned how to solve trig equations using multiple angle, sum and difference, and sum-to-product identities

$$
\begin{array}{ccl}
3 \cos x+1=0 & 2 \sin x-1=0 & \text { resulting equations } \\
\cos x=-\frac{1}{3} & \sin x=\frac{1}{2} & \text { isolate variable term } \\
\cos x<0 \text { in QII and QIII } & \sin x>0 \text { in QI and QII } \\
x \approx 1.9106,4.3726 & x=\frac{\pi}{6}, \frac{5 \pi}{6} & \text { solutions }
\end{array}
$$

Should you prefer the exact form, the solutions from the cosine equation could be written as $x=\cos ^{-1}\left(-\frac{1}{3}\right)$ and $x=2 \pi-\cos ^{-1}\left(-\frac{1}{3}\right)$.

Now try Exercises 17 through 26

C. Solving Equations of the Form $A \sin (B x \pm C) \pm D=k$

You may remember equations of this form from Section 4.4. They actually occur quite frequently in the investigation of many natural phenomena and in the modeling of data from a periodic or seasonal context. Solving these equations requires a good combination of algebra skills with the fundamentals of trig.

EXAMPLE $4>$ Solving Equations That Involve Transformations

Given $f(x)=160 \sin \left(\frac{\pi}{3} x+\frac{\pi}{3}\right)+320$ and $x \in[0,2 \pi)$, for what real numbers x is $f(x)$ less than 240?

Solution $>$ We reason that to find values where $f(x)<240$, we should begin by finding values where $f(x)=240$. The result is

$$
\begin{array}{rlrl}
160 \sin \left(\frac{\pi}{3} x+\frac{\pi}{3}\right)+320 & =240 & & \text { equation } \\
\sin \left(\frac{\pi}{3} x+\frac{\pi}{3}\right) & =-0.5 & \text { subtract } 320 \text { and divide by } 160 ; \text { isolate variable term }
\end{array}
$$

C. You've just learned how to solve trig equations of the form $A \sin (B x \pm C) \pm D=k$

At this point we elect to use a u-substitution for $\left(\frac{\pi}{3} x+\frac{\pi}{3}\right)=\frac{\pi}{3}(x+1)$ to obtain
a "clearer view."

$$
\sin u=-0.5 \quad \text { substitute } u \text { for } \frac{\pi}{3}(x+1)
$$

$\sin u<0$ in QIII and QIV

$$
u=\frac{7 \pi}{6} \quad u=\frac{11 \pi}{6} \quad \text { solutions in } u
$$

To complete the solution we re-substitute $\frac{\pi}{3}(x+1)$ for u and solve.

$$
\begin{array}{rlrlrl}
\frac{\pi}{3}(x+1) & =\frac{7 \pi}{6} & \frac{\pi}{3}(x+1) & =\frac{11 \pi}{6} & & \text { re-substitute } \frac{\pi}{3}(x+1) \text { for } u \\
x+1 & =\frac{7}{2} & x+1 & =\frac{11}{2} & & \text { multiply both sides by } \frac{3}{\pi} \\
x & =2.5 & x & =4.5 & & \text { solutions }
\end{array}
$$

We now know $f(x)=240$ when $x=2.5$ and $x=4.5$ but when will $f(x)$ be less than 240 ? By analyzing the equation, we find the function has period of $P=\frac{2 \pi}{\frac{\pi}{3}}=6$ and is shifted to the left 1 unit. This would indicate the graph peaks early in the interval [$0,2 \pi$) with a "valley" in the interior. We conclude $f(x)<240$ in the interval $(2.5,4.5)$.

Now try Exercises 27 through 30

GRAPHICAL SUPPORT

Support for the result in Example 4 can be obtained by graphing the equation over the specified interval. Enter
$Y_{1}=160 \sin \left(\frac{\pi}{3} x+\frac{\pi}{3}\right)+320$ on the $Y=$ screen, then $Y_{2}=240$. After locating points of intersection, we note the graphs indeed verify that in the interval $[0,2 \pi), f(x)<240$ for $x \in(2.5,4.5)$.

There is a mixed variety of equation types in Exercises 31 through 40.

D. Applications Using Trigonometric Equations

Using characteristics of the trig functions, we can often generalize and extend many of the formulas that are familiar to you. For example, the formulas for the volume of a right circular cylinder and a right circular cone are well known, but what about the volume of a nonright figure (see Figure 6.41)? Here, trigonometry provides the answer, as the most general volume formula is $V=V_{0} \sin \theta$, where V_{0} is a "standard" volume formula and θ is the complement of angle of deflection (see Exercises 43 and 44).

As for other applications, consider the following from the environmental sciences. Natural scientists are very interested in the discharge rate of major rivers, as this gives an indication of rainfall over the inland area served by the river. In addition, the discharge rate has a large impact on the freshwater and saltwater zones found at the river's estuary (where it empties into the sea).

EXAMPLE 5 - Solving an Equation Modeling the Discharge Rate of a River

For May through November, the discharge rate of the Ganges River (Bangladesh) can be modeled by $D(t)=16,580 \sin \left(\frac{\pi}{3} t-\frac{2 \pi}{3}\right)+17,760$ where $t=1$ represents May 1 , and $D(t)$ is the discharge rate in $\mathrm{m}^{3} / \mathrm{sec}$.
Source: Global River Discharge Database Project; www.rivdis.sr.unh.edu.
a. What is the discharge rate in mid-October?
b. For what months (within this interval) is the discharge rate over $26,050 \mathrm{~m}^{3} / \mathrm{sec}$?

Solution
a. To find the discharge rate in mid-October we simply evaluate the function at $t=6.5$:

$$
\begin{aligned}
D(t) & =16,580 \sin \left(\frac{\pi}{3} t-\frac{2 \pi}{3}\right)+17,760 & & \text { given function } \\
D(6.5) & =16,580 \sin \left[\frac{\pi}{3}(6.5)-\frac{2 \pi}{3}\right]+17,760 & & \text { substitute } 6.5 \text { for } t \\
& =1180 & & \text { compute result on a calculator }
\end{aligned}
$$

In mid-October the discharge rate is $1180 \mathrm{~m}^{3} / \mathrm{sec}$.
b. We first find when the rate is equal to $26,050 \mathrm{~m}^{3} / \mathrm{sec}: D(t)=26,050$.

$$
\begin{aligned}
26,050 & =16,580 \sin \left(\frac{\pi}{3} t-\frac{2 \pi}{3}\right)+17,760 & & \text { substitute } 26,050 \text { for } D(t) \\
0.5 & =\sin \left(\frac{\pi}{3} t-\frac{2 \pi}{3}\right) & & \text { subtract } 17,760 ; \text { divide by } 16,580
\end{aligned}
$$

Using a u-substitution for $\left(\frac{\pi}{3} t-\frac{2 \pi}{3}\right)$ we obtain the equation

$$
\begin{aligned}
& 0.5=\sin u \\
& \sin u>0 \text { in QI and QII }
\end{aligned}
$$

$$
u=\frac{\pi}{6} \quad u=\frac{5 \pi}{6} \quad \text { solutions in } u
$$

To complete the solution we re-substitute $\left(\frac{\pi}{3} t-\frac{2 \pi}{3}\right)=\frac{\pi}{3}(t-2)$ for u and solve.

$$
\begin{aligned}
\frac{\pi}{3}(t-2) & =\frac{\pi}{6} & \frac{\pi}{3}(t-2) & =\frac{5 \pi}{6}
\end{aligned}
$$

The Ganges River will have a flow rate of over $26,050 \mathrm{~m}^{3} / \mathrm{sec}$ between mid-June (2.5) and mid-August (4.5).

GRAPHICAL SUPPORT

To obtain a graphical view of the solution to Example 5(b), enter
$Y_{1}=16,580 \sin \left(\frac{\pi}{3} t-\frac{2 \pi}{3}\right)+17,760$ on the
$Y=$ screen, then $Y_{2}=26,050$. To set an appropriate window, note the amplitude is 16,580 and that the graph has been vertically shifted by 17,760 . Also note the x-axis represents May through November. After locating points of intersection, we note the graphs verify that in the interval [1, 8]

$D(t)>26,050$ for $t \in(2.5,4.5)$.

Our final application comes from the business/economics arena. Many businesses specialize in seasonal merchandise and run through cycles of high-sales/low-sales/high-sales/low-sales that are fairly regular from year to year. To even out the "feast or famine" effect, revenue projections need to be made and budgets set up.

EXAMPLE $6>$ Joe's Water Sports sells boats, equipment for water skiing, camping supplies, and other supplies for water sports. Sales are great in summer but weak in winter. Revenue projections from day to day can be modeled by the function $R(d)=750 \sin \left(\frac{2 \pi}{365} d-\frac{\pi}{2}\right)+950$, where $R(d)$ is the daily revenue on the $d \mathrm{th}$ day of the year $(d=1 \rightarrow \operatorname{Jan} 1)$.
a. Estimate the revenue for May 1.
b. For what days of the year is revenue over $\$ 1250$?

Solution a. To find the revenue for May we evaluate $R(d)$ at $d=(31+28+31+30+1)=121:$

$$
\begin{aligned}
R(d) & =750 \sin \left(\frac{2 \pi}{365} d-\frac{\pi}{2}\right)+950 & & \text { given function } \\
R(121) & =750 \sin \left[\frac{2 \pi}{365}(121)-\frac{\pi}{2}\right]+950 & & \text { substitute } 121 \text { for } d \\
& \approx \$ 1317.52 & & \text { result }
\end{aligned}
$$

On May 1 the projected revenue is about $\$ 1317.52$.
b. We first find when the amount of revenue is equal to $\$ 1250$: $R(d)=1250$.

$$
\begin{aligned}
1250 & =750 \sin \left(\frac{2 \pi}{365} d-\frac{\pi}{2}\right)+950 & & \text { substitute } 1250 \text { for } R(d) \\
0.4 & =\sin \left(\frac{2 \pi}{365} d-\frac{\pi}{2}\right) & & \text { subtract } 950 ; \text { divide by } 750
\end{aligned}
$$

Using a u-substitution for $\left(\frac{2 \pi}{365} d-\frac{\pi}{2}\right)$ we obtain the equation

$$
\begin{aligned}
& 0.4=\sin u \\
& \sin u>0 \text { in QI and QII } \\
& u \approx 0.4115 \quad u \approx 2.7301
\end{aligned}
$$

To complete the solution we re-substitute $\frac{2 \pi}{365} d-\frac{\pi}{2}$ for u and solve.

$$
\begin{aligned}
\frac{2 \pi}{365} d-\frac{\pi}{2} & \approx 0.4115 & \frac{2 \pi}{365} d-\frac{\pi}{2} & \approx 2.7301
\end{aligned} \text { re-substitute } \frac{2 \pi}{365} d-\frac{\pi}{2} \text { for } u t
$$

Joe's Water Sports will have revenue income of over $\$ 1250$ between late April (day 115) and early September (day 250), during the summer swim season.
D. You've just learned how to use a combination of skills to model and solve a variety of applications

Now try Exercises 47 and 48

There is a variety of additional exercises in the Exercise Set. See Exercises 49 through 54.

TECHNOLOGY HIGHLIGHT

Window Size and Applications of the Trig Equations

As for graphical studies of other types of equations, setting an appropriate window size for trigonometric equations is a high priority. For applications involving sine and cosine functions, several things can be done to ensure a "good" window.

Ymax, Ymin, and Yscl

For equations of the form $y=A \sin (B x-C)+D$, note the largest value that $\sin (B x-C)$ can attain is 1 , and the smallest is -1 . This immediately tells us the largest value (Ymax) for y is $A(1)+D$, and the smallest value for $y(Y \min)$ is $A(-1)+D$. However, to leave room for the calculator to display function names, TRACE values, and other information, we always add a "frame." Use this information to set $Y m a x, Y m i n$, and $Y s c l=\frac{Y \max -Y \min }{10}$.

Xmax, Xmin, and Xscl

The values for $\mathrm{Xmax}, \mathrm{Xmin}$, and Xscl are always taken from the period of the function. For sine and cosine graphs, $P=\frac{2 \pi}{B}$. If any period is sufficient we simply use $X \min =0$ and $X \max =P$. If we want to see a primary interval, say where $\cos \theta$ begins at $y=A$ and ends at $y=A$, we set $(B x-C)=0$ and $(B x-C)=2 \pi$ to find this interval. For Xscl, $\frac{P}{10}$ usually works well, but if the period is 12 and represents the months of the year, we would use $\frac{P}{12}$ as it places each month at a tick mark. Although scaling the axes is somewhat arbitrary, it should be used to improve the "readability" of a graph. We'll illustrate using the function $R(t)=7500 \sin \left[\frac{\pi}{6}(t-4.9)\right]+8500$.
Enter the function as $Y_{1}=7500 \sin \left[\frac{\pi}{6}(X-4.9)\right]+8500$ on the $Y=$ screen, then press window to begin setting the window size. For this example $A=7500, B=\frac{\pi}{6}, C=\frac{4.9 \pi}{6}$, and $D=8500$.

$$
\begin{array}{ll}
Y \max =7500(1)+8500=16,000 & X \max =\frac{2 \pi}{(\pi / 6)}=12 \\
Y \min =7500(-1)+8500=1000 & X \min =0 \\
Y \text { scl }=1500 & X \text { Xcl }=\frac{12}{12}=1
\end{array}
$$

The $\mathbf{Y}=$ screen, window screen, and GRAPH screen are shown in Figures 6.42, 6.43, and 6.44, respectively. Note that we have actually used a wider range of y-values than was necessary for our window, to ensure that the equation and displayed values do not obscure the graph.

Figure 6.42

Figure 6.43

Figure 6.44

Use these ideas to complete the following exercises.

Exercise 1: Verify the results from Example 4.
$f(x)=160 \sin \left(\frac{\pi}{3} x+\frac{\pi}{3}\right)+320$

Exercise 2: Verify the results from Example 5.

$$
D(t)=16,580 \sin \left(\frac{\pi}{3} t-\frac{2 \pi}{3}\right)+17,760
$$

6.4 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. The three Pythagorean identities are \qquad -
\qquad , and \qquad -
2. When an equation contains two functions from a Pythagorean identity, sometimes \qquad both sides will lead to a solution.
3. One strategy to solve equations with four terms and no common factors is \qquad by \qquad - .
4. To combine two sine or cosine terms with different arguments, we can use the \qquad to \qquad formulas.
5. Regarding Example 5, discuss/explain how to determine the months of the year the discharge rate is under $26,050 \mathrm{~m}^{3} / \mathrm{sec}$, using the solution set given.
6. Regarding Example 6, discuss/explain how to determine the months of the year the revenue projection is under $\$ 1250$ using the solution set given.

DEVELOPING YOUR SKILLS

Solve each equation in $[0,2 \pi)$ using the method indicated. Round nonstandard values to four decimal places.

- Squaring both sides

- Factor by grouping

13. $\cot x \csc x-2 \cot x-\csc x+2=0$
14. $4 \sin x \cos x-2 \sqrt{3} \sin x-2 \cos x+\sqrt{3}=0$
15. $3 \tan ^{2} x \cos x-3 \cos x+2=2 \tan ^{2} x$
16. $4 \sqrt{3} \sin ^{2} x \sec x-\sqrt{3} \sec x+2=8 \sin ^{2} x$

- Using identities

17. $\frac{1+\cot ^{2} x}{\cot ^{2} x}=2$
18. $\frac{1+\tan ^{2} x}{\tan ^{2} x}=\frac{4}{3}$
19. $3 \cos (2 x)+7 \sin x-5=0$
20. $3 \cos (2 x)-\cos x+1=0$
21. $2 \sin ^{2}\left(\frac{x}{2}\right)-3 \cos \left(\frac{x}{2}\right)=0$
22. $2 \cos ^{2}\left(\frac{x}{3}\right)+3 \sin \left(\frac{x}{3}\right)-3=0$
23. $\cos (3 x)+\cos (5 x) \cos (2 x)+$

$$
\sin (5 x) \sin (2 x)-1=0
$$

24. $\sin (7 x) \cos (4 x)+\sin (5 x)-$

$$
\cos (7 x) \sin (4 x)+\cos x=0
$$

25. $\sec ^{4} x-2 \sec ^{2} x \tan ^{2} x+\tan ^{4} x=\tan ^{2} x$
26. $\tan ^{4} x-2 \sec ^{2} x \tan ^{2} x+\sec ^{4} x=\cot ^{2} x$

State the period P of each function and find all solutions in $[0, P)$. Round to four decimal places as needed.
27. $250 \sin \left(\frac{\pi}{6} x+\frac{\pi}{3}\right)-125=0$
28. $-75 \sqrt{2} \sec \left(\frac{\pi}{4} x+\frac{\pi}{6}\right)+150=0$
29. $1235 \cos \left(\frac{\pi}{12} x-\frac{\pi}{4}\right)+772=1750$
30. $-0.075 \sin \left(\frac{\pi}{2} x+\frac{\pi}{3}\right)-0.023=-0.068$

Solve each equation in $[0,2 \pi)$ using any appropriate method. Round nonstandard values to four decimal places.
31. $\cos x-\sin x=\frac{\sqrt{2}}{2}$
32. $5 \sec ^{2} x-2 \tan x-8=0$
33. $\frac{1-\cos ^{2} x}{\tan ^{2} x}=\frac{\sqrt{3}}{2}$
34. $5 \csc ^{2} x-5 \cot x-5=0$
35. $\csc x+\cot x=1$
36. $\frac{1-\sin ^{2} x}{\cot ^{2} x}=\frac{\sqrt{2}}{2}$
37. $\sec x \cos \left(\frac{\pi}{2}-x\right)=-1$
38. $\sin \left(\frac{\pi}{2}-x\right) \csc x=\sqrt{3}$
39. $\sec ^{2} x \tan \left(\frac{\pi}{2}-x\right)=4$
40. $2 \tan \left(\frac{\pi}{2}-x\right) \sin ^{2} x=\frac{\sqrt{3}}{2}$

WORKING WITH FORMULAS

41. The equation of a line in trigonometric form: $\boldsymbol{y}=\frac{\boldsymbol{D}-\boldsymbol{x} \cos \theta}{\sin \theta}$

The trigonometric form of a linear equation is given by the formula shown, where D is the perpendicular distance from the origin to the line and θ is the angle between the perpendicular segment and the x-axis. For each pair of perpendicular lines given,
(a) find the point (a, b) of their intersection;
(b) compute the distance $D=\sqrt{a^{2}+b^{2}}$ and the angle $\theta=\tan ^{-1}\left(\frac{b}{a}\right)$, and give the
equation of the line in trigonometric form; and

(c) use the GRAPH or the 2nd GRAPH TABLE feature of a graphing calculator to verify that both equations name the same line.
I. $L_{1}: y=-x+5$
$L_{2}: y=x$
II. $L_{1}: y=-\frac{1}{2} x+5$
$L_{2}: y=2 x$
III. $L_{1}: y=-\frac{\sqrt{3}}{3} x+\frac{4 \sqrt{3}}{3}$
$L_{2}: y=\sqrt{3} x$
42. Rewriting $y=a \cos x+b \sin x$ as a single function: $y=k \sin (x+\theta)$

Linear terms of sine and cosine can be rewritten as a single function using the formula shown, where $k=\sqrt{a^{2}+b^{2}}$ and $\theta=\sin ^{-1}\left(\frac{a}{k}\right)$. Rewrite the equations given using these relationships and verify they are equivalent using the GRAPH or the 2nd GRAPH TABLE feature of a graphing calculator:
a. $y=2 \cos x+2 \sqrt{3} \sin x$
b. $y=4 \cos x+3 \sin x$

The ability to rewrite a trigonometric equation in simpler form has a tremendous number of applications in graphing, equation solving, working with identities, and solving applications.

APPLICATIONS

43. Volume of a cylinder: The volume

Exercise 43 of a cylinder is given by the formula $V=\pi r^{2} h \sin \theta$, where r is the radius and h is the height of the cylinder, and θ is the indicated complement of the angle of deflection α. Note that when $\theta=\frac{\pi}{2}$, the formula becomes that
 of a right circular cylinder (if $\theta \neq \frac{\pi}{2}$, then h is called the slant height or lateral height of the cylinder). An old farm silo is built in the form of a right circular cylinder with a radius of 10 ft and a height of 25 ft . After an earthquake, the silo became tilted with an angle of deflection $\alpha=5^{\circ}$.
(a) Find the volume of the silo before the earthquake. (b) Find the volume of the silo after the earthquake. (c) What angle θ is required to bring the original volume of the silo down 2% ?
44. Volume of a cone: The volume of a cone is given by the formula $V=\frac{1}{3} \pi r^{2} h \sin \theta$, where r is the radius and h is the height of the cone, and θ is the indicated complement of the angle of deflection α. Note that when $\theta=\frac{\pi}{2}$, the formula becomes that of a right circular cone (if $\theta \neq \frac{\pi}{2}$, then h is called the slant height or lateral height of the cone). As part of a sculpture exhibit, an artist is constructing three such structures each with a radius of 2 m and a slant height of 3 m . (a) Find the volume of the sculptures if the angle of deflection is $\alpha=15^{\circ}$.
(b) What angle θ was used if the volume of each sculpture is $12 \mathrm{~m}^{3}$?

Exercise 44

45. River discharge rate: For June through February, the discharge rate of the La Corcovada River (Venezuela) can be modeled by the function $D(t)=36 \sin \left(\frac{\pi}{4} t-\frac{9}{4}\right)+44$, where t represents the months of the year with $t=1$ corresponding to June, and $D(t)$ is the discharge rate in cubic meters per second. (a) What is the discharge rate in midSeptember? (b) For what months of the year is the discharge rate over $50 \mathrm{~m}^{3} / \mathrm{sec}$?
Source: Global River Discharge Database Project; www.rivdis.sr.unh.edu.
46. River discharge rate: For February through June, the average monthly discharge of the Point Wolfe River (Canada) can be modeled by the function $D(t)=4.6 \sin \left(\frac{\pi}{2} t+3\right)+7.4$, where t represents the months of the year with $t=1$ corresponding to February, and $D(t)$ is the discharge rate in cubic meters/second. (a) What is the discharge rate in mid-March $(t=2.5)$? (b) For what months of the year is the discharge rate less than $7.5 \mathrm{~m}^{3} / \mathrm{sec}$?
Source: Global River Discharge Database Project; www.rivdis.sr.unh.edu.
47. Seasonal sales: Hank's Heating Oil is a very seasonal enterprise, with sales in the winter far exceeding sales in the summer. Monthly sales for the company can be modeled by
$S(x)=1600 \cos \left(\frac{\pi}{6} x-\frac{\pi}{12}\right)+5100$, where $S(x)$ is the average sales in month $x(x=1 \rightarrow$ January $)$. (a) What is the average sales amount for July? (b) For what months of the year are sales less than $\$ 4000$?
48. Seasonal income: As a roofing company employee, Mark's income fluctuates with the seasons and the availability of work. For the past several years his average monthly income could be approximated by the function $I(m)=2100 \sin \left(\frac{\pi}{6} m-\frac{\pi}{2}\right)+3520$, where $I(m)$ represents income in month $m(m=1 \rightarrow$ January). (a) What is Mark's average monthly income in October? (b) For what months of the year is his average monthly income over $\$ 4500$?
49. Seasonal ice thickness: The average thickness of the ice covering an arctic lake can be modeled by the function $T(x)=9 \cos \left(\frac{\pi}{6} x\right)+15$, where $T(x)$ is the average thickness in month $x(x=1 \rightarrow$ January $)$. (a) How thick is the ice in mid-March? (b) For what months of the year is the ice at most 10.5 in. thick?
50. Seasonal temperatures: The function $T(x)=19 \sin \left(\frac{\pi}{6} x-\frac{\pi}{2}\right)+53$ models the average
 monthly temperature of the water in a mountain stream, where $T(x)$ is the temperature $\left({ }^{\circ} \mathrm{F}\right)$ of the water in month x ($x=1 \rightarrow$ January). (a) What is the temperature of the water in October? (b) What two months are most likely to give a temperature reading of $62^{\circ} \mathrm{F}$? (c) For what months of the year is the temperature below $50^{\circ} \mathrm{F}$?
51. Coffee sales: Coffee sales fluctuate with the weather, with a great deal more coffee sold in the winter than in the summer. For Joe's Diner, assume the function $G(x)=21 \cos \left(\frac{2 \pi}{365} x+\frac{\pi}{2}\right)+29$ models daily coffee sales (for non-leap years), where $G(x)$ is the number of gallons sold and x represents the days of the year $(x=1 \rightarrow$ January 1$)$.
(a) How many gallons are projected to be sold on March 21? (b) For what days of the year are more than 40 gal of coffee sold?
52. Park attendance: Attendance at a popular state park varies with the weather, with a great deal more visitors coming in during the summer months. Assume daily attendance at the park can be modeled by the function $V(x)=437 \cos \left(\frac{2 \pi}{365} x-\pi\right)+545$ (for non-leap years), where $V(x)$ gives the number of visitors on day $x(x=1 \rightarrow$ January 1$)$.
(a) Approximately how many people visited the park on November $1(11 \times 30.5=335.5)$? (b) For what days of the year are there more than 900 visitors?
53. Exercise routine: As part of his yearly physical, Manu Tuiosamoa's heart rate is closely monitored during a 12-min, cardiovascular exercise routine. His heart rate in beats per minute (bpm) is modeled by the function $B(x)=58 \cos \left(\frac{\pi}{6} x+\pi\right)+126$ where x represents the duration of the workout in minutes. (a) What was his resting heart rate?
(b) What was his heart rate 5 min into the workout?
(c) At what times during the workout was his heart rate over 170 bpm ?
54. Exercise routine: As part of her workout routine, Sara Lee programs her treadmill to begin at a slight initial grade (angle of incline), gradually increase to a maximum grade, then gradually decrease back to the original grade. For the duration of her workout, the grade is modeled by the function $G(x)=3 \cos \left(\frac{\pi}{5} x-\pi\right)+4$, where $G(x)$ is the percent grade x minutes after the workout has begun. (a) What is the initial grade for her workout? (b) What is the grade at $x=4 \mathrm{~min}$? (c) At $G(x)=4.9 \%$, how long has she been working out? (d) What is the duration of the treadmill workout?

56. Use multiple identities to find all real solutions for the equation given: $\sin (5 x)+\sin (2 x) \cos x+$ $\cos (2 x) \sin x=0$.
57. A rectangular parallelepiped with square ends has 12 edges and six surfaces. If the sum of all edges is 176 cm and the total surface area is $1288 \mathrm{~cm}^{2}$, find (a) the length of the diagonal of the parallelepiped (shown in bold) and (b) the angle

Exercise 57
 the diagonal makes with the base (two answers are possible).

MAINTAINING YOUR SKILLS

58. (1.3) Find $f(\theta)$ for all six trig functions, given $P(-51,68)$ is on the terminal side.
59. (6.2) Draw a corresponding triangle to help write $\cos \left[\tan ^{-1}\left(\frac{x}{6}\right)\right]$ in algebraic form.
60. (5.3) Use identities to evaluate $\cos (4 x)$ exactly, given $\sin x=\frac{3}{5}$ and $\cos x=\frac{4}{5}$.
61. (5.2) If $\sin \alpha=\frac{\sqrt{2}}{2}$ and $\cos \beta=\frac{\sqrt{3}}{2}$, find the value of $\sin (\alpha+\beta)$ and the value of $\cos (\alpha+\beta)$.
62. (4.1) The graph of the function shown models one of the seven primary colors. Use the wavelength chart on page 149 to identify the color. The x-axis is marked in nanometers.

Exercise 62

63. (2.3) The Sears Tower in Chicago, Illinois, remains one of the tallest structures in the world. The top of the roof reaches 1450 ft above the street below and the antenna extends an additional 280 ft into the air. Find the viewing angle θ for the antenna from a distance of 1000 ft (the angle formed from the base of the antenna to its top).

Exercise 63

SUMMARY AND CONCEPT REVIEW

SECTION 6.1 One-to-One and Inverse Functions

KEY CONCEPTS

- A function is one-to-one if each element of the range corresponds to a unique element of the domain.
- If every horizontal line intersects the graph of a function in at most one point, the function is one-to-one.
- If f is a one-to-one function with ordered pairs (a, b), then the inverse of f exists and is that one-to-one function f^{-1} with ordered pairs of the form (b, a).
- The range of f becomes the domain of f^{-1}, and the domain of f becomes the range of f^{-1}.
- To find f^{-1} using the algebraic method:

1. Use y instead of $f(x)$.
2. Interchange x and y.
3. Solve the equation for y.
4. Substitute $f^{-1}(x)$ for y.

- If f is a one-to-one function, the inverse f^{-1} exists, where $\left(f \circ f^{-1}\right)(x)=x$ and $\left(f^{-1} \circ f\right)(x)=x$.
- The graphs of f and f^{-1} are symmetric with respect to the identity function $y=x$.

EXERCISES

Determine whether the functions given are one-to-one by noting the function family to which each belongs and mentally picturing the shape of the graph.

1. $h(x)=-|x-2|+3$
2. $p(x)=2 x^{2}+7$
3. $s(x)=\sqrt{x-1}+5$

Find the inverse of each function given. Then show graphically and using composition that your inverse function is correct. State any necessary restrictions.
4. $f(x)=-3 x+2$
5. $f(x)=x^{2}-2, x \geq 0$
6. $f(x)=\sqrt{x-1}$

Determine the domain and range for each function whose graph is given, and use this information to state the domain and range of the inverse function. Then sketch in the line $y=x$, estimate the location of three points on the graph, and use these to graph $f^{-1}(x)$ on the same grid.
7.

8.

9.

10. Fines for overdue material: Some libraries have set fees and penalties to discourage patrons from holding borrowed materials for an extended period. Suppose the fine for overdue DVDs is given by the function $f(t)=0.15 t+2$, where $f(t)$ is the amount of the fine t days after it is due. (a) What is the fine for keeping a DVD seven (7) extra days? (b) Find $f^{-1}(t)$, then input your answer from part (a) and comment on the result. (c) If a fine of $\$ 3.80$ was assessed, how many days was the DVD overdue?

SECTION 6.2 The Inverse Trig Functions and Their Applications

KEY CONCEPTS

- In order to create one-to-one functions, the domains of $y=\sin t, y=\cos t$, and $y=\tan t$ are restricted as follows:
(a) $y=\sin t, t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$; (b) $y=\cos t, t \in[0, \pi]$; and (c) $y=\tan t ; t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- For $y=\sin x$, the inverse function is given implicitly as $x=\sin y$ and explicitly as $y=\sin ^{-1} x$ or $y=\arcsin x$.
- The expression $y=\sin ^{-1} x$ is read, " y is the angle or real number whose sine is x." The other inverse functions are similarly read/understood.
- For $y=\cos x$, the inverse function is given implicitly as $x=\cos y$ and explicitly as $y=\cos ^{-1} x$ or $y=\arccos x$.
- For $y=\tan x$, the inverse function is given implicitly as $x=\tan y$ and explicitly as $y=\tan ^{-1} x$ or $y=\arctan x$.
- The domains of $y=\sec x, y=\csc x$, and $y=\cot x$ are likewise restricted to create one-to-one functions:
(a) $y=\sec t ; t \in\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right] ;$ (b) $y=\csc t, t \in\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$; and (c) $y=\cot t, t \in(0, \pi)$.
- In some applications, inverse functions occur in a composition with other trig functions, with the expression best evaluated by drawing a diagram using the ratio definition of the trig functions.
- To evaluate $y=\sec ^{-1} t$, we use $y=\cos ^{-1}\left(\frac{1}{t}\right)$; for $y=\cot ^{-1} t$, use $\tan ^{-1}\left(\frac{1}{t}\right)$; and so on.
- Trigonometric substitutions can be used to simplify certain algebraic expressions.

EXERCISES

Evaluate without the aid of calculators or tables. State answers in both radians and degrees in exact form.
11. $y=\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)$
12. $y=\csc ^{-1} 2$
13. $y=\arccos \left(-\frac{\sqrt{3}}{2}\right)$

Evaluate the following using a calculator, keeping the domain and range of each function in mind. Answer in radians to the nearest ten-thousandth and in degrees to the nearest tenth. Some may be undefined.
14. $y=\tan ^{-1} 4.3165$
15. $y=\sin ^{-1} 0.8892$
16. $f(x)=\arccos \left(\frac{7}{8}\right)$

Evaluate the following without the aid of a calculator. Some may be undefined.
17. $\sin \left[\sin ^{-1}\left(\frac{1}{2}\right)\right]$
18. $\operatorname{arcsec}\left[\sec \left(\frac{\pi}{4}\right)\right]$
19. $\cos \left(\cos ^{-1} 2\right)$

圈
Evaluate the following using a calculator. Some may be undefined.
20. $\sin ^{-1}(\sin 1.0245)$
21. $\arccos \left[\cos \left(-60^{\circ}\right)\right]$
22. $\cot ^{-1}\left[\cot \left(\frac{11 \pi}{4}\right)\right]$

Evaluate each expression by drawing a right triangle and labeling the sides.
23. $\sin \left[\cos ^{-1}\left(\frac{12}{37}\right)\right]$
24. $\tan \left[\operatorname{arcsec}\left(\frac{7}{3 x}\right)\right]$
25. $\cot \left[\sin ^{-1}\left(\frac{x}{\sqrt{81+x^{2}}}\right)\right]$

Use an inverse function to solve the following equations for θ in terms of x.
26. $x=5 \cos \theta$
27. $7 \sqrt{3} \sec \theta=x$
28. $x=4 \sin \left(\theta-\frac{\pi}{6}\right)$

SECTION 6.3 Solving Basic Trig Equations

KEY CONCEPTS

- When solving trig equations, we often consider either the principal root, roots in $[0,2 \pi)$, or all real roots.
- Keeping the graph of each function in mind helps to determine the desired solution set.
- After isolating the trigonometric term containing the variable, we solve by applying the appropriate inverse function, realizing the result is only the principal root.
- Once the principal root is found, roots in $[0,2 \pi)$ or all real roots can be found using reference angles and the period of the function under consideration.
- Trig identities can be used to obtain an equation that can be solved by factoring or other solution methods.

EXERCISES

Solve each equation without the aid of a calculator (all solutions are standard values). Clearly state (a) the principal root; (b) all solutions in the interval $[0,2 \pi$); and (c) all real roots.
29. $2 \sin x=\sqrt{2}$
30. $3 \sec x=-6$
31. $8 \tan x+7 \sqrt{3}=-\sqrt{3}$

Solve using a calculator and the inverse trig functions (not by graphing). Clearly state (a) the principal root; (b) solutions in $[0,2 \pi$); and (c) all real roots. Answer in radians to the nearest ten-thousandth as needed.
32. $9 \cos x=4$
33. $\frac{2}{5} \sin (2 \theta)=\frac{1}{4}$
34. $\sqrt{2} \csc x+3=7$
35. The area of a circular segment (the shaded portion shown in the diagram) is given by the formula $A=\frac{1}{2} r^{2}(\theta-\sin \theta)$, where θ is in radians. If the circle has a radius of 10 cm , find the angle θ that gives an area of $12 \mathrm{~cm}^{2}$.

SECTION 6.4 Solving General Trig Equations and Applications

KEY CONCEPTS

- In addition to the basic solution methods from Section 6.3, additional strategies include squaring both sides, factoring by grouping, and using the full range of identities to simplify an equation.
- Many applications result in equations of the form $A \sin (B x+C)+D=k$. To solve, isolate the factor $\sin (B x+C)$ (subtract D and divide by A), then apply the inverse function.
- Once the principal root is found, roots in $[0,2 \pi)$ or all real roots can be found using reference angles and the period of the function under consideration.

EXERCISES

Find solutions in $[0,2 \pi)$ using the method indicated. Round nonstandard values to four decimal places.

36. squaring both sides

$\sin x+\cos x=\frac{\sqrt{6}}{2}$

38. factor by grouping

$4 \sin x \cos x-2 \sqrt{3} \sin x-2 \cos x+\sqrt{3}=0$

37. using identities

$3 \cos (2 x)+7 \sin x-5=0$
39. using any appropriate method $\csc x+\cot x=1$

State the period P of each function and find all solutions in $[0, P)$. Round to four decimal places as needed.
40. $-750 \sin \left(\frac{\pi}{6} x+\frac{\pi}{2}\right)+120=0 \quad$ 41. $80 \cos \left(\frac{\pi}{3} x+\frac{\pi}{4}\right)-40 \sqrt{2}=0$
42. The revenue earned by Waipahu Joe's Tanning Lotions fluctuates with the seasons, with a great deal more lotion sold in the summer than in the winter. The function $R(x)=15 \sin \left(\frac{\pi}{6} x-\frac{\pi}{2}\right)+30$ models the monthly sales of lotion nationwide, where $R(x)$ is the revenue in thousands of dollars and x represents the months of the year ($x=1 \rightarrow$ Jan). (a) How much revenue is projected for July? (b) For what months of the year does revenue exceed $\$ 37,000$?

MIXED REVIEW

1. Given $f(x)=\frac{1}{(x+2)^{2}}, x>-2$: (a) use the algebraic method to find the inverse function,
(b) state the domain and range of $f^{-1}(x)$, and
(c) verify your inverse is correct using a composition.
2. Determine the domain

Exercise 2

and range for the function f whose graph is given, and use this information to state the domain and range of f^{-1}. Then sketch the line $y=x$ and sketch the graph of $y=f^{-1}(x)$ on the same grid.

Solve the following equations for $x \in[0,2 \pi)$ without the aid of a calculator.
3. $-12 \sin x+5=11$
4. $\frac{3}{4} \cos ^{2} x-\frac{1}{3}=\frac{1}{24}$

Evaluate each expression by drawing a right triangle and labeling the sides appropriately.

$$
\text { 5. } \tan \left[\operatorname{arccsc}\left(\frac{10}{x}\right)\right] \quad \text { 6. } \sin \left[\sec ^{-1}\left(\frac{\sqrt{64+x^{2}}}{x}\right)\right]
$$

7. Solve for x in the interval $[0,2 \pi)$. Round to four decimal places as needed:

$$
-100 \sin \left(\frac{\pi}{4} x-\frac{\pi}{6}\right)+80=100
$$

8. Without the aid of a calculator, find: (a) the principal roots, (b) all solutions in $[0,2 \pi)$, and (c) all real solutions: $(\cos x-1)\left[2 \cos ^{2}(x)-1\right]=0$.
9. For $g(x)=\sqrt{x-1}+2$, (a) state the domain and range, (b) find $g^{-1}(x)$ and state its domain and range, and (c) compute at least three ordered pairs (a, b) for g and show the ordered pairs (b, a) are solutions to g^{-1}.
10. State the domain and range of the following functions from memory, using only a "mental picture" of the graphs of $y=\sin t, y=\cos t$, and $y=\tan t$.
a. $f(t)=\sin ^{-1} t$
b. $g(t)=\cos ^{-1} t$
c. $h(t)=\tan ^{-1} t$

Evaluate without the aid of a calculator or tables. Answer in both radians and degrees.
11. $y=\operatorname{arcsec}(-\sqrt{2})$
12. $y=\sin ^{-1} 0$
13. $y=\arctan \sqrt{3}$

Use an inverse function to solve each equation for θ in terms of x.
14. $\frac{x}{10}=\tan \theta$
15. $2 \sqrt{2} \csc \left(\theta-\frac{\pi}{4}\right)=x$
16. On a large clock, the distance from the tip of the hour hand to the base of the " 12 " can be approximated by the function $D(t)=\left|8 \sin \left(\frac{\pi t}{12}\right)\right|+2$, where $D(t)$ is this distance in feet at time t in hours. Use this function to approximate (a) the time of day when the hand is 6 ft from the 12 and 10 ft from the 12 and (b) the distance between the tip and the 12 at 4:00. Check your answer graphically.
17. The figure shows a smaller pentagon inscribed within a larger pentagon. Find the measure of angle θ using the diagram and equation given:

$3.2^{2}=11^{2}+9.4^{2}-2(11)(9.4) \cos \theta$
18. Given $100 \sin t=70$, use a calculator to find (a) the principal root, (b) all solutions in $[0,2 \pi$), and (c) all real solutions. Round to the nearest ten-thousandth.
19. Use an identity to find all real solutions for $\cos (2 \theta)+2 \sin ^{2} \theta=-2 \sin \theta$
20. State the period P of the function and find all exact solutions in $x \in[0, P)$, given
$124 \cos \left[\frac{\pi}{12}(x-3)\right]+82=144$

PRACTICE TEST

1. For $f(x)=x^{3}$, the inverse function is $f^{-1}(x)=\sqrt[3]{x}$, but for $f(x)=x^{2}$, the inverse function is not $f^{-1}(x)=\sqrt{x}$. Explain why.
2. For t in radians, the area of a circular sector is given by $A(t)=\frac{1}{2} r^{2} t$. (a) Find the area if $r=10 \mathrm{~cm}$ and $t=\frac{\pi}{4}$. (b) Use the algebraic method to find $A^{-1}(t)$, then substitute the result from part (a). What do you notice?
3. Sketch the graph of $y=\cos ^{-1} x$ and state its domain and range.
4. Use a calculator to approximate the value of $y=\sec ^{-1}(3)$ to four decimal places.

Evaluate without the aid of calculators or tables.
5. $y=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
6. $f(x)=\sin \left[\sin ^{-1}\left(\frac{1}{2}\right)\right]$
7. $y=\arccos \left(\cos 30^{\circ}\right)$

Evaluate the following. Answer in exact form, where possible.
8. $y=\sin ^{-1} 0.7528$
9. $y=\arctan \left(\tan 78.5^{\circ}\right)$
10. $y=\sec ^{-1}\left[\sec \left(\frac{7 \pi}{24}\right)\right]$

Evaluate the expressions by drawing a right triangle and labeling the sides.
11. $\cos \left[\tan ^{-1}\left(\frac{56}{33}\right)\right]$
12. $\cot \left[\cos ^{-1}\left(\frac{x}{\sqrt{25+x^{2}}}\right)\right]$

Solve without the aid of a calculator (all solutions are standard values). Clearly state (a) the principal root, (b) all solutions in the interval $[0,2 \pi$), and (c) all real roots.
13. $8 \cos x=-4 \sqrt{2}$
14. $\sqrt{3} \sec x+2=4$

Solve each equation using a calculator and inverse trig functions to find the principal root (not by graphing). Then state (a) the principal root, (b) all solutions in the interval $[0,2 \pi)$, and (c) all real roots.
15. $\frac{2}{3} \sin (2 x)=\frac{1}{4}$
16. $-3 \cos (2 x)-0.8=0$

Solve the equations graphically in the indicated interval using a graphing calculator. State answers in radians rounded to the nearest ten-thousandth.
17. $3 \cos (2 x-1)=\sin x ; x \in[-\pi, \pi]$
18. $2 \sqrt{x}-1=3 \cos ^{2} x ; x \in[0,2 \pi)$

Solve the following equations for $x \in[0,2 \pi)$ using a combination of identities and/or factoring. State solutions in radians using the exact form, where possible.
19. $2 \sin x \sin (2 x)+\sin (2 x)=0$
20. $(\cos x+\sin x)^{2}=\frac{1}{2}$

Solve each equation in $[0,2 \pi)$ by squaring both sides, factoring, using identities or by using any appropriate method. Round nonstandard values to four decimal places.
21. $3 \sin (2 x)+\cos x=0$
22. $\frac{2}{3} \sin \left(2 x-\frac{\pi}{6}\right)+\frac{3}{2}=\frac{5}{6}$
23. The revenue for Otake's Mower Repair is very seasonal, with business in the summer months far exceeding business in the winter months. Monthly
revenue for the company can be modeled by the function $R(x)=7.5 \cos \left(\frac{\pi}{6} x+\frac{4 \pi}{3}\right)+12.5$, where $R(x)$ is the average revenue (in thousands of dollars) for month $x(x=1 \rightarrow \mathrm{Jan})$. (a) What is the average revenue for September? (b) For what months of the year is revenue at least $\$ 12,500$?
24. State the domain and range of $f(x)=(x-2)^{2}-3$ and determine if f is a one-to-one function. If so, find its inverse. If not, restrict the domain of f to create a one-to-one function, then find the inverse of this new function, including the domain and range.
25. Evaluate without the aid of calculators or tables. $\sin \left(\tan ^{-1}\left\{\tan \left[\sec ^{-1}\left(-\frac{2}{\sqrt{3}}\right)\right]\right\}\right)$

CALCULATOR EXPLORATION AND DISCOVERY

Solving Equations Graphically Using a Graphing Calculator

The periodic behavior of the trig functions is often used to form a solution set, which can be very helpful when solutions are nonstandard values. In addition, some equations are very difficult to solve analytically, and even with the use of a graphing calculator a strong combination of analytical skills with technical skills is required to state the solution set. Consider the equation $5 \sin \left(\frac{1}{2} x\right)+5=\cot \left(\frac{1}{2} x\right)$. There appears to be no quick analytical solution, and the first attempt at a graphical solution holds some hidden surprises. Enter $Y_{1}=5 \sin \left(\frac{1}{2} x\right)+5$ and $Y_{2}=\frac{1}{\tan \left(\frac{1}{2} x\right)}$ on the $Y=$ screen. Pressing Zoom 7:ZTrig gives the screen shown in Figure 6.45, where we note there are at least two and possibly three solutions, depending on how the sine graph "cuts" the cotangent graph. We are also uncertain as to whether the graphs intersect again between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$. Increasing the maximum Y-value to Ymax $=8$ shows they do indeed. But once again, are there now three or four solutions? In situations like this it is helpful to use the Zeroes Method for solving graphically, where we actually compute the difference between the two functions, looking for a difference of zero (meaning they intersect), with every x-intercept indicating an intersection point. On the $\mathbf{Y}=$ screen, disable Y_{1} and Y_{2} and enter Y_{3} as $Y_{1}-Y_{2}$. Pressing zoom

Figure 6.45

Figure 6.46
 7:ZTrig at this point clearly shows that there are four solutions (Figure 6.46), which can easily be found using 2nd CALC 2:zero: $x \approx-5.7543,-4.0094,-3.1416$, and 0.3390 . To investigate solutions in \mathbb{R}, note the period of Y_{1} is $P=\frac{2 \pi}{\frac{1}{2}}=4 \pi$. On the 2 nd WINDow (TBLSET) screen, enter any one of the four solutions as the TbIStart value, then set Δ TBL to π, put the calculator in AUTO mode, and go to 2 nd GRAPH (TABLE). Scrolling through the TABLE shows this solution indeed repeats every 4π and we write the solution (to four decimal places) as
$x \approx-5.7543+4 \pi k$ for all integers k. The other solutions are likewise found. Use these ideas to find all real solutions to the exercises that follow.

Exercise 1: $(1+\sin x)^{2}+\cos (2 x)=4 \cos x(1+\sin x)$
Exercise 2: $4 \sin x=2 \cos ^{2}\left(\frac{x}{2}\right)$

STRENGTHENING CORE SKILLS

Trigonometric Equations and Inequalities

The ability to draw a quick graph of the trigonometric functions is a tremendous help in understanding equations and inequalities. A basic sketch can help reveal the number of solutions in $[0,2 \pi)$ and the quadrant of each solution. For nonstandard angles, the value given by the inverse function can then be used as a basis for stating the solution set for all real numbers. We'll illustrate the process using a few simple examples, then generalize our observations to solve more realistic applications. Consider the function $f(x)=2 \sin x+1$, a sine wave with amplitude 2, and a vertical translation of +1 . To find intervals in $[0,2 \pi)$ where $f(x)>2.5$, we reason that f has a maximum of $2(1)+1=3$ and a minimum of $2(-1)+1=-1$, since $-1 \leq \sin x \leq 1$. With no phase shift and a standard period of 2π, we can easily draw a quick sketch of f by vertically translating x-intercepts and max $/ \mathrm{min}$ points 1 unit up. After drawing the line $y=2.5$ (see Figure 6.47), it appears there are two intersections in the interval, one in QI and one in QII. More importantly, it is clear that $f(x)>2.5$ between these two solutions. Substituting 2.5 for $f(x)$ in $f(x)=2 \sin x+1$, we solve for $\sin x$ to obtain $\sin x=0.75$, which we use to state the solution in exact form: $f(x)>2.5$ for $x \in\left(\sin ^{-1} 0.75, \pi-\sin ^{-1} 0.75\right)$. In approximate form the solution interval is $x \in(0.85,2.29)$. If the function involves a horizontal shift, the graphical analysis will reveal which intervals

Figure 6.47
 should be chosen to satisfy the given inequality.

The basic ideas remain the same regardless of the complexity of the equation, and we illustrate by studying Example 6 from Section 6.4. Given the function $R(d)=750 \sin \left(\frac{2 \pi}{365} d-\frac{\pi}{2}\right)+950$, we were asked to solve the inequality $R(d)>1250$. Remember-our current goal is not a supremely accurate graph, just a sketch that will guide us to the solution using the inverse functions and the correct quadrants. Perhaps that greatest challenge is recalling that when $B \neq 1$, the horizontal shift is $-\frac{C}{B}$, but other than this a fairly accurate sketch can quickly be obtained.

Illustration $1 \triangleright$ Given $R(d)=750 \sin \left(\frac{2 \pi}{365} d-\frac{\pi}{2}\right)+950$, find intervals in $[0,365]$ where $R(d)>1250$.
Solution $>$ This is a sine wave with a period of 365 days, an amplitude of 750 , shifted $-\frac{C}{B}=91.25$ units to the right and 950 units up. The maximum value will be 1700 and the minimum value will be 200 . For convenience, scale the axes from 0 to 360 (as though the period were 360 days), and plot the x-intercepts and maximum/minimum values for a standard sine wave with amplitude 750 (by scaling the axes). Then shift these points about 90 units in the positive direction (to the right), and 950 units up, again using a scale that makes this convenient (see Figure 6.48). This sketch along with the graph of $y=1250$ is sufficient to show that solutions to $R(d)=1250$ occur early in the second quarter and late in the third quarter, with solutions to $R(d)>1250$

Figure 6.48
 occurring between these solutions. For $R(d)=750 \sin \left(\frac{2 \pi}{365} d-\frac{\pi}{2}\right)+950$, we substitute 1250 for $R(d)$ and isolate the sine function, obtaining $\sin \left(\frac{2 \pi}{365} d-\frac{\pi}{2}\right)=0.4$, which leads to exact form solutions of $d=\left(\sin ^{-1} 0.4+\frac{\pi}{2}\right)\left(\frac{365}{2 \pi}\right)$ and $d=\left(\pi-\sin ^{-1} 0.4+\frac{\pi}{2}\right)\left(\frac{365}{2 \pi}\right)$. In approximate form the solution interval is $x \in[115,250]$.

Practice with these ideas by finding solutions to the following inequalities in the intervals specified.
Exercise 1: $f(x)=3 \sin x+2 ; f(x)>3.7 ; x \in[0,2 \pi)$
Exercise 2: $g(x)=4 \sin \left(x-\frac{\pi}{3}\right)-1 ; g(x) \leq-2 ; x \in[0,2 \pi)$
Exercise 3: $h(x)=125 \sin \left(\frac{\pi}{6} x-\frac{\pi}{2}\right)+175 ; h(x) \leq 150 ; x \in[0,12)$
Exercise 4: $f(x)=15,750 \sin \left(\frac{2 \pi}{360} x-\frac{\pi}{4}\right)+19,250 ; f(x)>25,250 ; x \in[0,360)$

CUMULATIVE REVIEW CHAPTERS 1-6

1. Find $f(\theta)$ for all six trig functions, given $P(-13,84)$ is on the terminal side with θ in QII.
2. Find the lengths of the missing sides.
3. Convert $56^{\circ} 20^{\prime} 06^{\prime \prime}$ to (a) decimal degrees, and (b) radians (round to four places).
4. Verify $\left(-\frac{5}{6}, \frac{\sqrt{11}}{6}\right)$ is on the unit circle and use it to state the values $\sin t, \cos t$, and $\tan t$.
5. Standing $5 \mathrm{mi}(26,400 \mathrm{ft})$ from the base of Mount Logan (Yukon), the angle of elevation to the summit is $36^{\circ} 56^{\prime}$. How much taller is Mount McKinley (Alaska), which stands at $20,320 \mathrm{ft}$ high?
6. The largest clock face in the world, located in Toi, Japan, has a diameter of 100 ft . To the nearest inch, how far does the tip of the minute hand travel from 1:05 P.m. to 1:37 Р.м.? Assume the minute hand has a length of 50 ft .
7. Find all solutions in $[0,2 \pi)$. Round to four decimal places as needed: $3 \sin (2 x)+\cos x=0$.
8. The Petronas Towers in Malaysia are two of the tallest structures in the world. The top of the roof reaches 1483 ft above the street below and the stainless steel pinnacles extend an additional 241 ft into the air (see figure). Find the viewing angle θ for the pinnacles from a distance of 1000 ft (the angle formed from the base of the antennae to its top).

9. A wheel with radius 45 cm is turning at 5 revolutions per second. Find the linear velocity of a point on the rim in kilometers per hour, rounded to the nearest tenth of a kilometer.
10. Find all real solutions to the equation $-2 \sin \left(\frac{\pi}{6} x\right)=\sqrt{3}$
11. Evaluate without using a calculator:
$\cos \left[\sin ^{-1}\left(\frac{1}{2}\right)\right]$.
12. The Earth has a radius of 3960 mi . Tokyo, Japan, is located at $35.4^{\circ} \mathrm{N}$ latitude, very near the $139^{\circ} \mathrm{E}$ latitude line. Adelaide, Australia, is at $34.6^{\circ} \mathrm{S}$ latitude, and also very near 139° E latitude. How many miles separate the two cities?
13. The table shown gives the percentage of the Moon that is illuminated for the days of a particular month, at a given latitude. (a) Use a graphing calculator to find a sinusoidal regression model. (b) If this data applies to May, use the regression model to estimate the percent of the Moon that will be illuminated on June 7.

Day	\% Illum.	Day	\% Illum.
1	15	19	63
4	41	22	29
7	69	25	8
10	91	28	2
13	100	31	18
16	90	-	-

14. List the three Pythagorean identities and three identities equivalent to $\cos (2 \theta)$.
15. For $f(x)=325 \cos \left(\frac{\pi}{6} x-\frac{\pi}{2}\right)+168$, what values of x in $[0,2 \pi)$ satisfy $f(x)>330.5$?
16. The revenue for Otake's Mower Repair is seasonal, with business in the summer months far exceeding business in the winter months. Monthly revenue for the company can be modeled by the function $R(x)=7.5 \cos \left(\frac{\pi}{6} x+\pi\right)+12.5$, where $R(x)$ is the average revenue (in thousands of dollars) for month $x(x=1 \rightarrow \mathrm{Jan})$. (a) What is the average revenue for October? (b) For what months of the year is revenue more than $\$ 16,250$?
17. Use the triangle given to find the exact value of $\sin (2 \theta)$.

18. Write the equation of the function whose graph is given in terms of a sine function.

19. Verify that the following is an identity: $\frac{\cos x+1}{\tan ^{2} x}=\frac{\cos x}{\sec x-1}$
20. The amount of waste product released by a manufacturing company varies according to its production schedule, which is much heavier during the summer months and lighter in the winter. Waste products reach a maximum of 32.5 tons in the month of July, and falls to a minimum of 21.7 tons in January $(t=1)$. (a) Use this information to build a sinusoidal equation that models the amount of waste produced each month. (b) During what months of the year does output exceed 30 tons?

CHAPTER CONNECTIONS

Applications of Trigonometry

CHAPTER OUTLINE

7.1 Oblique Triangles and the Law of Sines 316

7.2 The Law of Cosines;
the Area of a Triangle 329

7.3 Vectors and Vector Diagrams 344

7.4 Vector Applications and the Dot Product 359

When an airline pilot charts a course, it's not as simple as pointing the airplane in the right direction. Wind currents must be taken into consideration, and compensated for by additional thrust or a change of heading that will help equalize the force of the wind and keep the plane flying in the desired direction. The effect of these forces working together can be modeled using a carefully drawn vector diagram, and with the aid of trigonometry, a pilot can easily determine any adjustments in navigation needed.

- This application appears as Exercise 85 in Section 7.3.

7.1 \quad Oblique Triangles and the Law of Sines

Learning Objectives

In Section 7.1 you will learn how to:
A. Develop the law of sines and use it to solve ASA and AAS triangles
B. Solve SSA triangles (the ambiguous case) using the law of sinesC. Use the law of sines to solve applications

WORTHY OF NOTE

As with right triangles, solving an oblique triangle involves determining the lengths of all three sides and the measures of all three angles.

Many applications of trigonometry involve oblique triangles, or triangles that do not have a 90° angle. For example, suppose a trolley carries passengers from ground level up to a mountain chateau, as shown in Figure 7.1. Assuming the cable could be held taut, what is its approximate length? Can we also determine the slant height of the mountain? To answer questions like these, we'll develop techniques that enable us to solve acute and obtuse triangles using fundamental trigonometric relationships.

A. The Law of Sines and Unique Solutions

Consider the oblique triangle $A B C$ pictured in Figure 7.2. Since it is not a right triangle, it seems the trigonometric ratios studied earlier cannot be applied. But if we draw the altitude h (from vertex B), two right triangles are formed that share a common side. By applying the sine ratio to angles A and C, we can develop a relationship that will help us solve the triangle.

For $\angle A$ we have $\sin A=\frac{h}{c}$ or $h=c \sin A$. For

Figure 7.2
 $\angle C$ we have $\sin C=\frac{h}{a}$ or $h=a \sin C$. Since both products are equal to h, the transitive property gives $c \sin A=a \sin C$, which leads to

$$
\begin{array}{rlrl}
c \sin A & =a \sin C & \text { since } h=h \\
\frac{c \sin A}{a c} & =\frac{a \sin C}{a c} & & \text { divide by ac } \\
\frac{\sin A}{a} & =\frac{\sin C}{c} & & \text { simplify }
\end{array}
$$

Using the same triangle and the altitude drawn from C (Figure 7.3), we note a similar relationship involving angles A and $B: \sin A=\frac{h}{b}$ or $h=b \sin A$, and $\sin B=\frac{h}{a}$ or $h=a \sin B$. As before, we can then write $\frac{\sin A}{a}=\frac{\sin B}{b}$. If $\angle A$ is obtuse, the altitude h actually falls outside the triangle, as shown in Figure 7.4. In this case, consider that $\sin \left(180^{\circ}-\alpha\right)=\sin \alpha$ from the difference formula for sines (Exercise 55, Section 5.2). In the figure we note $\sin \left(180^{\circ}-\alpha\right)=\frac{h}{c}=\sin \alpha$, yielding $h=c \sin \alpha$

Figure 7.3

Figure 7.4

WORTHY OF NOTE

The case where three angles are known (AAA) is not considered since we then have a family of similar triangles, with infinitely many solutions.

WORTHY OF NOTE

When working with triangles, keeping these basic properties in mind will prevent errors and assist in their solution:

1. The angles must sum to 180°.
2. The combined length of any two sides must exceed the length of the third side.
3. Longer sides will be opposite larger angles.
4. The sine of an angle cannot be greater than 1 .
5. For $y \in(0,1)$, the equation $y=\sin \theta$ has two solutions in ($0^{\circ}, 180^{\circ}$) that are supplements.
and the preceding relationship can now be stated using any pair of angles and corresponding sides. The result is called the law of sines, which is usually stated by combining the three possible proportions.

The Law of Sines

For any triangle $A B C$, the ratio of the sine of an angle to the side opposite that angle is constant:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

As a proportional relationship, the law requires that we have three parts in order to solve for the fourth. This suggests the following possibilities:

1. two angles and an included side (ASA)
2. two angles and a side opposite one of these angles (AAS)
3. two sides and an angle opposite one of these sides (SSA)
4. two sides and an included angle (SAS)
5. three sides (SSS)

Each of these possibilities is diagrammed in Figures 7.5 through 7.9.

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8
SAS

Figure 7.9
SSS

Since applying the law of sines requires we have a given side opposite a known angle, it cannot be used in the case of SAS or SSS triangles. These require the law of cosines, which we will develop in Section 7.2. In the case of ASA and AAS triangles, a unique triangle is formed since the measure of the third angle is fixed by the two angles given (they must sum to 180°) and the remaining sides must be of fixed length.

EXAMPLE $1>$ Solving a Triangle Using the Law of Sines

Solve the triangle shown, and state your answer using a table.
Solution
This is not a right triangle, so the standard ratios cannot be used. Since $\angle B$ and $\angle C$ are given, we know $\angle A=$ $180^{\circ}-\left(110^{\circ}+32^{\circ}\right)=38^{\circ}$. With $\angle A$ and side a, we have

WORTHY OF NOTE

Although not a definitive check, always review the solution table to ensure the smallest side is opposite the smallest angle, the largest side is opposite the largest angle, and so on. If this is not the case, you should go back and check your work.
$\boxed{\square}$ A. You've just learned how to develop the law of sines and use it to solve ASA and AAS triangles

Figure 7.10

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} & & \text { law of sines applied to } \angle A \text { and } \angle B \\
\frac{\sin 38^{\circ}}{39} & =\frac{\sin 110^{\circ}}{b} & & \text { substitute given values } \\
b \sin 38^{\circ} & =39 \sin 110^{\circ} & & \text { multiply by } 39 b \\
b & =\frac{39 \sin 110^{\circ}}{\sin 38^{\circ}} & & \text { divide by } \sin 38^{\circ} \\
b & \approx 59.5 & & \text { result }
\end{aligned}
$$

Repeating this procedure using $\frac{\sin A}{a}=\frac{\sin C}{c}$ shows side $c \approx 33.6 \mathrm{~cm}$. In table form we have

Angles	Sides (cm)
$A=38^{\circ}$	$\boldsymbol{a}=\mathbf{3 9 . 0}$
$\boldsymbol{B}=\mathbf{1 1 0}^{\circ}$	$b \approx 59.5$
$\boldsymbol{C}=\mathbf{3 2}^{\circ}$	$c \approx 33.6$

Now try Exercises 7 through 24

B. Solving SSA Triangles-The Ambiguous Case

To understand the concept of unique and nonunique solutions regarding the law of sines, consider an instructor who asks a large group of students to draw a triangle with sides of 15 and 12 units, and a nonincluded 25° angle. Unavoidably, three different solutions will be offered (see Figure 7.10). For the SSA case, there is some doubt as to the number of solutions possible, or whether a solution even exists.

To further understand why, consider a triangle with side $c=30 \mathrm{~cm}, \angle A=30^{\circ}$, and side a opposite the 30° angle (Figure 7.11—note the length of side b is yet to be determined). From our work with 30-60-90 triangles, we know if $a=15 \mathrm{~cm}$, it is exactly the length needed to form a right triangle (Figure 7.12).

Figure 7.11

Figure 7.12

By varying the length of side a, we note three other possibilities. If side $a<15 \mathrm{~cm}$, no triangle is possible since a is too short to contact side b (Figure 7.13), while if $15 \mathrm{~cm}<$ side $a<30 \mathrm{~cm}$, two triangles are possible since side a will then intersect side b at two points, C_{1} and C_{2} (Figure 7.14).

For future use, note that when two triangles are possible, angles C_{1} and C_{2} must be supplements since an isosceles triangle is formed. Finally, if side $a>30 \mathrm{~cm}$, it will

Figure 7.13

Figure 7.14

Figure 7.15

intersect side b only once, forming the obtuse triangle shown in Figure 7.15, where we've assumed $a=35 \mathrm{~cm}$. Since the final solution is in doubt until we do further work, the SSA case is called the ambiguous case of the law of sines.

EXAMPLE 2 - Analyzing the Ambiguous Case of the Law of Sines

Given triangle $A B C$ with $\angle A=45^{\circ}$ and side $c=100 \sqrt{2} \mathrm{~mm}$,
a. What length for side a will produce a right triangle where $\angle C=90^{\circ}$?
b. How many triangles can be formed if side $a=90 \mathrm{~mm}$?
c. If side $a=120 \mathrm{~mm}$, how many triangles can be formed?
d. If side $a=145 \mathrm{~mm}$, how many triangles
 can be formed?
Solution a. Recognizing the sides of a 45-45-90 triangle are in proportion according to $1 x: 1 x: \sqrt{2} x$, side a must be 100 mm for a right triangle to be formed.
b. If $a=90 \mathrm{~mm}$, it will be too short to contact side b and no triangle is possible.
c. As shown in Figure 7.16, if $a=120 \mathrm{~mm}$, it will contact side b in two distinct places and two triangles are possible.
d. If $a=145 \mathrm{~mm}$, it will contact side b only once, since it is longer than side c and will "miss" intersecting side b a second time as it pivots around $\angle B$ (see Figure 7.17). One triangle is possible.

Figure 7.16
Figure 7.17

Now try Exercises 25 and 26
For a better understanding of the SSA (ambiguous) case, scaled drawings can initially be used along with a metric ruler and protractor. Begin with a horizontal line segment of undetermined length to represent the third (unknown) side, and use the protractor to draw the given angle on either the left or right side of this segment (we chose the left). Then use the metric ruler to draw an adjacent side of appropriate length, choosing a scale that enables a complete diagram. For instance, if the given sides are 3 ft and 5 ft , use 3 cm and 5 cm instead $(1 \mathrm{~cm}=1 \mathrm{ft})$. If the sides are 80 mi and 120 mi , use 8 cm and $12 \mathrm{~cm}(1 \mathrm{~cm}=10 \mathrm{mi})$, and so on. Once the adjacent side is drawn, start at the free endpoint and draw a vertical segment to represent the remaining side. A careful sketch will often indicate whether none, one, or two triangles are possible (see the Reinforcing Basic Concepts feature on page 343).

EXAMPLE 3 - Solving the Ambiguous Case of the Law of Sines

Solve the triangle with side $b=100 \mathrm{ft}$, side $c=60 \mathrm{ft}$, and $\angle C=28.0^{\circ}$.
Solution - Two sides and an angle opposite are given (SSA), and we draw a diagram to help determine the possibilities. Draw the horizontal segment of some length and use a protractor to mark $\angle C=28^{\circ}$. Then draw a segment 10 cm long (to represent $b=100 \mathrm{ft}$) as the adjacent side of the angle, with a vertical segment 6 cm long from
 the free end of b (to represent $c=60 \mathrm{ft}$). It seems apparent that side c will intersect the horizontal side in two places (see figure), and two triangles are possible. We apply the law of sines to solve the first triangle, whose features we'll note with a subscript of 1 .

$$
\begin{aligned}
\frac{\sin B_{1}}{b} & =\frac{\sin C}{c} & & \text { law of sines } \\
\frac{\sin B_{1}}{100} & =\frac{\sin 28^{\circ}}{60} & & \text { substitute } \\
\sin B_{1} & =\frac{5}{3} \sin 28^{\circ} & & \text { solve for } \sin B_{1} \\
B_{1} & \approx 51.5^{\circ} & & \text { apply arcsine }
\end{aligned}
$$

WORTHY OF NOTE

In Example 3, we found $\angle B_{2}$ using the property that states the angles must be supplements (see the isosceles triangle comment on bottom of page 318). We could also view $\angle B_{1}$ as a Ql reference angle, which also gives a Qll solution of $(180-51.5)^{\circ}=128.5^{\circ}$.

Angles	Sides $(\mathbf{f t})$
$A_{1} \approx 100.5^{\circ}$	$a_{1} \approx 125.7^{\circ}$
$B_{1} \approx 51.5^{\circ}$	$\boldsymbol{b}=\mathbf{1 0 0}$
$C=\mathbf{2 8}$	$\boldsymbol{c}=\mathbf{6 0}$

Angles	Sides (ft)
$A_{2} \approx 23.5^{\circ}$	$a_{2} \approx 51.0$
$B_{2} \approx 128.5^{\circ}$	$\boldsymbol{b}=\mathbf{1 0 0}$
$C=\mathbf{2 8}^{\circ}$	$\boldsymbol{c}=\mathbf{6 0}$

Figure 7.18

Admittedly, the scaled drawing approach has some drawbacks - it takes time to draw the diagrams and is of little use if the situation is a close call. It does, however, offer a deeper understanding of the subtleties involved in solving the SSA case. Instead of a scaled drawing, we can use a simple sketch as a guide, while keeping in mind the properties mentioned in the Worthy of Note on page 317.

EXAMPLE 4 Solving the Ambiguous Case of the Law of Sines

Solve the triangle with side $a=220 \mathrm{ft}$, side $b=200 \mathrm{ft}$, and $\angle A=40^{\circ}$.
Solution - The information given is again SSA, and we apply the law of sines with this in mind.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} & & \text { law of sines } \\
\frac{\sin 40^{\circ}}{220} & =\frac{\sin B}{200} & & \text { substitute } \\
\sin B & =\frac{200 \sin 40^{\circ}}{220} & & \text { solve for } \sin B \\
B_{1} & \approx 35.7^{\circ} & & \text { apply arcsine }
\end{aligned}
$$

This is the solution from Quadrant I. The QII solution is about $(180-35.7)^{\circ}=144.3^{\circ}$. At this point our solution tables have this form:

Angles	Sides (ft)
$\boldsymbol{A}=\mathbf{4 0 ^ { \circ }}$	$\boldsymbol{a}=\mathbf{2 2 0}$
$B_{1} \approx 35.7^{\circ}$	$\boldsymbol{b}=\mathbf{2 0 0}$
$C_{1}=$	$c_{1}=$

Angles	Sides (ft)
$\boldsymbol{A}=\mathbf{4 0 ^ { \circ }}$	$\boldsymbol{a}=\mathbf{2 2 0}$
$B_{2} \approx 144.3^{\circ}$	$\boldsymbol{b}=\mathbf{2 0 0}$
$C_{2}=$	$c_{2}=$

It seems reasonable to once again find the remaining angles and finish by reapplying the law of sines, but observe that the sum of the two angles from the second solution already exceeds $180^{\circ}: 40^{\circ}+144.3^{\circ}=184.3^{\circ}$! This means no second solution is possible (side a is too long). We find that $C_{1} \approx 104.3^{\circ}$, and applying the law of sines gives a value of $c_{1} \approx 331.7 \mathrm{ft}$.

Now try Exercises 33 through 44

C. Applications of the Law of Sines

As "ambiguous" as it is, the ambiguous case has a number of applications in engineering, astronomy, physics, and other areas. Here is an example from astronomy.

EXAMPLE 5 - Solving an Application of the Ambiguous Case—Planetary Distance

The planet Venus can be seen from Earth with the naked eye, but as the diagram indicates, the position of Venus is uncertain (we are unable to tell if Venus is in the near position or the far position). Given the Earth is 93 million miles from the Sun and Venus is 67 million miles from the Sun, determine the closest and farthest possible distances that separate the planets in this alignment. Assume a viewing angle of $\theta \approx 18^{\circ}$ and that the orbits of both planets are roughly circular.

Solution \downarrow A close look at the information and diagram shows a SSA case. Begin by applying the law of sines where $E \rightarrow$ Earth, $V \rightarrow$ Venus, and $S \rightarrow$ Sun.

$$
\begin{aligned}
\frac{\sin E}{e} & =\frac{\sin V}{v} & & \text { law of sines } \\
\frac{\sin 18^{\circ}}{67} & =\frac{\sin V}{93} & & \text { substitute given values } \\
\sin V & =\frac{93 \sin 18^{\circ}}{67} & & \text { solve for } \sin V \\
V & \approx 25.4^{\circ} & & \text { apply arcsine }
\end{aligned}
$$

This is the angle V_{1} formed when Venus is farthest away. The angle V_{2} at the closer distance is $180^{\circ}-25.4^{\circ}=154.6^{\circ}$. At this point, our solution tables have this form:

Angles	Sides $(\mathbf{1 0 6} \mathbf{~ m i})$
$\boldsymbol{E}=\mathbf{1 8}^{\circ}$	$\boldsymbol{e}=\mathbf{6 7}$
$V_{1} \approx 25.4^{\circ}$	$\boldsymbol{v}=\mathbf{9 3}$
$S_{1}=$	$s_{1}=$

Angles	Sides (10 $\mathbf{1 0}^{\mathbf{m i})}$
$\boldsymbol{E}=\mathbf{1 8}^{\circ}$	$\boldsymbol{e}=\mathbf{6 7}$
$V_{2}=154.6^{\circ}$	$\boldsymbol{v}=\mathbf{9 3}$
$S_{2}=$	$s_{2}=$

For S_{1} and S_{2} we have $S_{1} \approx 180^{\circ}-\left(18^{\circ}+25.4^{\circ}\right)=136.6^{\circ}$ (larger angle) and $S_{2} \approx 180^{\circ}-\left(18^{\circ}+154.6^{\circ}\right)=7.4^{\circ}$ (smaller angle). Re-applying the law of sines for s_{1} shows the farther distance between the planets is about 149 million miles. Solving for s_{2} shows that the closer distance is approximately 28 million miles.

Now try Exercises 47 and 48

EXAMPLE $6>$ Solving an Application of the Ambiguous Case—Radar Detection

As shown in Figure 7.19, a radar ship is 30.0 mi off shore when a large fleet of ships leaves port at an angle of 43.0°.
a. If the maximum range of the ship's radar is 20.0 mi , will the departing fleet be detected?
b. If the maximum range of the ship's radar is 25.0 mi , how far from port is the fleet when it is first detected?
Solution a. This is again the SSA (ambiguous) case. Applying the law of sines gives

$$
\begin{array}{rlrl}
\frac{\sin 43^{\circ}}{20} & =\frac{\sin \theta}{30} & & \text { law of sines } \\
\sin \theta & =\frac{30 \sin 43^{\circ}}{20} & & \text { solve for } \sin \theta \\
\sin \theta & \approx 1.02299754 & \text { result }
\end{array}
$$

Figure 7.19

C. You've just learned how to use the law of sines to solve applications

$$
\begin{aligned}
\frac{\sin 43^{\circ}}{25} & =\frac{\sin 11.9^{\circ}}{d} \quad \text { law of sines } \\
d & =\frac{25 \sin 11.9^{\circ}}{\sin 43^{\circ}} \quad \text { solve for } d
\end{aligned}
$$

This shows the fleet is first detected about 7.6 mi from port.

Now try Exercises 49 and 50

There are a number of additional, interesting applications in the exercise set (see Exercises 51 through 70).

TECHNOLOGY HIGHLIGHT

Using TABLES to Understand the Law of Sines

Using the TABLE feature of a graphing calculator can increase our
Figure 7.21 understanding of the ambiguous case. Consider the "unfinished" $\triangle A B C$ shown in Figure 7.21, and the following questions:

1. What length(s) of side a will result in one obtuse triangle?
2. What length(s) of side a will result in two triangles?
3. What length(s) of side a will result in one right triangle?

We can easily answer all three questions with the TABLE feature of a graphing calculator. Using the law of sines we have the following sequence:

$$
\begin{aligned}
\frac{\sin C}{14} & =\frac{\sin 40^{\circ}}{a} \\
\sin C & =\frac{14 \sin 40^{\circ}}{a} \\
C & =\sin ^{-1}\left(\frac{14 \sin 40^{\circ}}{a}\right)
\end{aligned}
$$

We can enter this expression for $\angle C$ as Y_{1} on the $Y=$ screen of the calculator (see Figure 7.22), then use the TABLE feature to evaluate the expression for different lengths of side a. The expression for Y_{2} gives the second value for $\angle C$ if two triangles are possible. A casual observation shows that side a must be 14 cm or longer to answer question 1. For $a>14 \mathrm{~cm}$, side a will intersect side b one time (to the right) and miss side b entirely (to the left) as it pivots at vertex B. To investigate other possibilities for side a, set up the TBLSET screen

Figure 7.22
 (2nd (window), as shown in Figure 7.23, which has us start at $a=14$ and counting backward by 1's ($\Delta \mathrm{Tbl}=-1$). Pressing 2nd GRAPH (TABLE) produces the TABLE shown in Figure 7.24. Note when $a=14$, angle $C=40^{\circ}$ and an isosceles triangle is formed (base angles are equal). For $9<x<14$, two triangles are formed. Figure 7.25 shows the case where

Figure 7.23

Figure 7.24

Figure 7.25

side $a \approx 10 \mathrm{~cm}$. When side $a \approx 9 \mathrm{~cm}$, a single right triangle is formed. When side $a<9 \mathrm{~cm}$, the table returns an error message because the value of $\left[\frac{14 \sin 40^{\circ}}{a}\right]$ is greater than one and no triangle can be formed. Use a diagram similar to the one shown and these ideas/methods to investigate triangles given the following conditions:

Exercise 1: $\angle A=35^{\circ}$, side $c=25 \mathrm{~mm}$, side $a=$ \qquad
Exercise 2: $\angle A=30^{\circ}$, side $c=8$ in., side $a=$
Exercise 3: $\angle C=52^{\circ}$, side $a=27.5 \mathrm{~cm}$, side $c=$ \qquad

7.1 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. For the law of sines, if two sides and an angle opposite one side are given, this is referred to as the \qquad case, since the solution is in doubt until further work.
2. Two inviolate properties of a triangle that can be used to help solve the ambiguous case are: (a) the angles must sum to \qquad and (b) no sine ratio can exceed \qquad .
3. For positive k, the equation $\sin \theta=k$ has two solutions, one in Quadrant \qquad and the other in Quadrant \qquad -.

DEVELOPING YOUR SKILLS

Solve each of the following equations for the unknown part (if possible). Round sides to the nearest hundredth and degrees to the nearest tenth.
7. $\frac{\sin 32^{\circ}}{15}=\frac{\sin 18.5^{\circ}}{a}$
8. $\frac{\sin 52^{\circ}}{b}=\frac{\sin 30^{\circ}}{12}$
9. $\frac{\sin 63^{\circ}}{21.9}=\frac{\sin C}{18.6}$
10. $\frac{\sin B}{3.14}=\frac{\sin 105^{\circ}}{6.28}$
11. $\frac{\sin C}{48.5}=\frac{\sin 19^{\circ}}{43.2}$
12. $\frac{\sin 38^{\circ}}{125}=\frac{\sin B}{190}$

Solve each triangle using the law of sines. If the law of sines cannot be used, state why. Draw and label a triangle or label the triangle given before you begin.
13. side $a=75 \mathrm{~cm}$
14. side $b=385 \mathrm{~m}$

$$
\begin{aligned}
& \angle A=38^{\circ} \\
& \angle B=64^{\circ}
\end{aligned}
$$

$$
\angle B=47^{\circ}
$$

$$
\angle A=108^{\circ}
$$

15. side $b=10 \sqrt{3}$ in.

$$
\begin{aligned}
& \angle A=30^{\circ} \\
& \angle B=60^{\circ}
\end{aligned}
$$

16.

17.

18.

19.
$\angle=45^{\circ}$
$\angle B=45^{\circ}$
side $c=15 \sqrt{2} \mathrm{mi}$
20. $\angle A=20.4^{\circ}$
side $c=12.9 \mathrm{mi}$ $\angle B=63.4^{\circ}$
21. $\angle B=103.4^{\circ}$
22.
side $a=42.7 \mathrm{~km}$

$$
\angle C=19.6^{\circ}
$$

23.

24.

Answer each question and justify your response using a diagram, but do not solve.
25. Given $\triangle A B C$ with $\angle A=30^{\circ}$ and side $c=20 \mathrm{~cm}$, (a) what length for side a will produce a right triangle? (b) How many triangles can be formed if side $a=8 \mathrm{~cm}$? (c) If side $a=12 \mathrm{~cm}$, how many triangles can be formed? (d) If side $a=25 \mathrm{~cm}$, how many triangles can be formed?
26. Given $\triangle A B C$ with $\angle A=60^{\circ}$ and side $c=6 \sqrt{3} \mathrm{~m}$, (a) what length for side a will produce a right triangle? (b) How many triangles can be formed if side $a=8 \mathrm{~m}$? (c) If side $a=10 \mathrm{~m}$, how many triangles can be formed? (d) If side $a=15 \mathrm{~m}$, how many triangles can be formed?

Solve using the law of sines and a scaled drawing. If two triangles exist, solve both completely.
27. side $b=385 \mathrm{~m}$
$\angle B=67^{\circ}$
side $a=490 \mathrm{~m}$
29. side $c=25.8 \mathrm{mi}$

$$
\angle A=30^{\circ}
$$

side $a=12.9 \mathrm{mi}$
31. side $c=58 \mathrm{mi}$
$\angle C=59^{\circ}$
side $b=67 \mathrm{mi}$
28. side $a=36.5 \mathrm{yd}$
$\angle B=67^{\circ}$
side $b=12.9 \mathrm{yd}$
30. side $c=10 \sqrt{3}$ in.
$\angle A=60^{\circ}$
side $a=15 \mathrm{in}$.
32. side $b=24.9 \mathrm{~km}$
$\angle B=45^{\circ}$
side $a=32.8 \mathrm{~km}$

Use the law of sines to determine if no triangle, one triangle, or two triangles can be formed from the diagrams given (diagrams may not be to scale), then solve. If two solutions exist, solve both completely. Note the arrowhead marks the side of undetermined length.
33.

34.

35.

36.

37.

38.

For Exercises 39 to 44, assume the law of sines is being applied to solve a triangle. Solve for the unknown angle (if possible), then determine if a second angle $\left(0^{\circ}<\theta<180^{\circ}\right)$ exists that also satisfies the proportion.
39. $\frac{\sin A}{12}=\frac{\sin 48^{\circ}}{27}$
40. $\frac{\sin 60^{\circ}}{32}=\frac{\sin B}{9}$
41. $\frac{\sin 57^{\circ}}{35.6}=\frac{\sin C}{40.2}$
42. $\frac{\sin B}{5.2}=\frac{\sin 65^{\circ}}{4.9}$
43. $\frac{\sin A}{280}=\frac{\sin 15^{\circ}}{52}$
44. $\frac{\sin 29^{\circ}}{121}=\frac{\sin B}{321}$

WORKING WITH FORMULAS

45. Triple angle formula for $\operatorname{sine} \sin (3 \theta)=3 \sin \theta-4 \sin ^{3} \theta$

Most students are familiar with the double-angle formula for $\operatorname{sine} \sin (2 \theta)=2 \sin \theta \cos \theta$. The triple-angle formula for sine is given here. Use the formula to find an exact value for $\sin 135^{\circ}$, then verify the result using a reference angle.
46. Radius of a circumscribed circle: $R=\frac{b}{2 \sin B}$

Given $\triangle A B C$ is circumscribed by a circle of radius R, the radius of the circle can be found using the formula shown, where side b is opposite angle B. Find the radius of the circle shown.

APPLICATIONS

47. Planetary distances: In a solar system that parallels our own, the planet Sorus can be seen from a Class M planet Exercise 47 with the naked eye, but as the diagram indicates, the position of Sorus is uncertain. Assume the orbits of both planets are roughly circular and that the viewing angle θ is about 20°. If the
 Class M planet is 82 million miles from its sun and Sorus is 51 million miles from this sun, determine the closest and farthest possible distances that separate the planets in this alignment.
48. Planetary distances: In a solar system that parallels our own, the planet Cirrus can be seen from a Class M planet with the naked eye, but as the diagram indicates, the position of Cirrus is uncertain. Assume the orbits of both planets are roughly circular and that the viewing angle θ is about 15°. If the
 Class M planet is 105 million miles from its sun and Cirrus is 70 million miles from this sun, determine the closest and farthest possible distances that separate the planets in this alignment.
49. Radar detection: A radar ship is 15.0 mi off shore from a major port when a large fleet of ships leaves the port at the 35.0° angle shown. (a) If the maximum range of the ship's radar is 8.0 mi , will the departing fleet be detected? (b) If the maximum range of the ship's radar is 12 mi , how far from port is the fleet when it is first detected?
50. Motion detection: To notify environmentalists of the presence of big game, motion detectors are installed 200 yd from a watering hole. A pride of lions has just visited the hole and is leaving the area at the 29.0° angle shown. (a) If the maximum range of the motion detector is 90 yd , will the pride be detected?

(b) If the maximum range of the motion detector is 120 yd , how far from the watering hole is the pride when first detected?

Exercise 51

51. Distance between cities: The cities of V an Gogh,
Rembrandt, \boldsymbol{P} issarro, and Seurat are situated as shown in
 the diagram. Assume that triangle RSP is isosceles and use the law of sines to find the distance between Van Gogh and Seurat, and between Van Gogh and Pissarro.
52. Distance between cities: The cities of Mozart, Rossini, \boldsymbol{O} ffenbach, and Verdi are situated as shown in the diagram. Assume that triangle $R O V$ is

Exercise 52
 isosceles and use the law of sines to find the distance between Mozart and Verdi, and between Mozart and O ffenbach.
53. Distance to target: To practice for a competition, an archer stands as shown in the diagram and attempts to hit a moving target.
(a) If the archer has a maximum effective range of about 180 ft , can the target be hit?

(b) What is the shortest range the archer can have and still hit the target? (c) If the archer's range is 215 ft and the target is moving at $10 \mathrm{ft} / \mathrm{sec}$, how many seconds is the target within range?
54. Distance to target: As part of an All-Star competition, a quarterback stands as shown in the diagram and attempts to hit a moving target with a football. (a) If the quarterback has a maximum effective range of about 35 yd , can the target be hit?
(b) What is the shortest range the quarterback can have and still hit the target?

(c) If the quarterback's range is 45 yd and the target is moving at $5 \mathrm{yd} / \mathrm{sec}$, how many seconds is the target within range?

In Exercises 55 and 56, three rods are attached via pivot joints so the rods can be manipulated to form a triangle. How many triangles can be formed if angle B must measure 26° ? If one triangle, solve it. If two, solve both. Diagrams are not drawn to scale.
55.

56.

In the diagrams given, the measure of angle C and the length of sides a and c are fixed. Side c can be rotated at pivot point B. Solve any triangles that can be formed. (Hint: Begin by using the grid to find lengths a and c, then find angle C.)
57.

58.

Length of a rafter: Determine the length of both roof rafters in the diagrams given.
59.

60.

61. Map distance: A cartographer is using aerial photographs to prepare a map for publication. The distance from
Sexton to Rhymes is known to be 27.2 km . Using a protractor, the map maker measures an angle of 96° from Sexton to Tarryson (a newly developed area) and an angle of 58° from Rhymes to Tarryson. Compute each
 unknown distance.
62. Height of a fortress: An ancient fortress is built on a steep hillside, with the base of the fortress walls making a 102° angle with the hill. At the moment the fortress casts a $112-\mathrm{ft}$ shadow, the angle of elevation from the tip of the shadow to the top of the wall is 32°. What is the distance from the base of the fortress to the top of the tower?

Exercise 62

63. Distance to a fire: In Yellowstone Park, a fire is spotted by park rangers stationed in two towers that are known to be 5 mi apart. Using the line between them as a baseline, tower A
 reports the fire is at an angle of 39°, while tower B reports an angle of 58°. How far is the fire from the closer tower?
64. Width of a canyon: To find the distance across Waimea Canyon (on the island of Kauai), a surveyor marks a $1000-\mathrm{m}$ baseline along the southern rim.
Using a transit, she sights on a large rock formation on the north rim, and

Exercise 64
 finds the angles indicated. How wide is the canyon from point B to point C ?
65. Height of a blimp: When the GoodYear Blimp is viewed from the field-level bleachers near the southern end-zone of a football stadium, the angle of elevation is 62°. From the fieldlevel bleachers near

Exercise 65
 the northern endzone, the angle of elevation is 70°. Find the height of the blimp if the distance from the southern bleachers to the northern bleachers is 145 yd .
66. Height of a blimp: The rock-n-roll group Pink Floyd just finished their most recent tour and has moored their touring blimp at a hangar near the airport in Indianapolis, Indiana. From an unknown distance away, the angle of elevation is measured at 26.5°. After moving 110 yd closer, the angle of elevation has become 48.3°. At what height is the blimp moored?
67. Circumscribed triangles: A triangle is circumscribed within the upper semicircle drawn in the figure. Use the law of sines to solve the triangle given the measures shown. What is the diameter of the

Exercises 67 and 68
 circle? What do you notice about the triangle?
68. Circumscribed triangles: A triangle is circumscribed within the lower semicircle shown. Use the law of sines to solve the triangle given the measures shown. How long is the longer chord? What do you notice about the triangle?
69. Height of a mountain: Approaching from the west, a group of hikers notes the angle of elevation to the summit of a steep mountain is 35° at a distance of 1250 meters. Arriving at the base of the mountain, they estimate this side of the mountain has an average slope of 48°. (a) Find the slant height of the mountain's west side. (b) Find the slant height of the east side of the mountain, if the east side has an average slope of 65°. (c) How tall is the mountain?
70. Distance on a map: Coffeyville and Liberal, Kansas, lie along the state's southern border and are roughly 298 mi apart. Olathe, Kansas, is very near the Exercise 70 state's eastern border at an angle of 23° with Liberal and 72° with Coffeyville (using the
 southern border as one side of the angle).
(a) Compute the distance between these cities.
(b) What is the shortest (straight line) distance from Olathe to the southern border of Kansas?

EXTENDING THE CONCEPT

71. Solve the triangle shown in three ways - first by using the law of sines, second using right triangle trigonometry, and third using the standard 30-60-90 triangle. Was one method "easier" than the others? Use these connections to express the irrational number $\sqrt{3}$ as a quotient of two trigonometric functions of an angle. Can you find a similar expression for $\sqrt{2}$?

72. Use the law of sines and any needed identities to solve the triangle shown.
73. Similar to the law of sines, there is a law of
 tangents. The law says for any triangle $A B C$,
$\frac{a+b}{a-b}=\frac{\tan \left[\frac{1}{2}(A+B)\right]}{\tan \left[\frac{1}{2}(A-B)\right]}$.
Use the law of tangents to solve the triangle shown.

MAINTAINING YOUR SKILLS

76. (6.4) Find all solutions to the equation $2 \sin x=\cos (2 x)$
77. (5.1) Prove the given identity: $\tan ^{2} x-\sin ^{2} x=\tan ^{2} x \sin ^{2} x$
78. (5.4) Use sum-to-product formulas to verify that the following is an identity: $\cot x=\frac{\cos (3 x)+\cos x}{\sin (3 x)-\sin x}$
79. (6.4) Find all solutions in $[0,2 \pi)$: $2 \sin ^{2} x-7 \sin x=-3$
80. Lines L_{1} and L_{2} shown are parallel. The three triangles between these lines all share the same base (in bold). Explain why all

Exercise 74

 three triangles must have the same area.
75. A UFO is sighted on a direct line between the towns of Batesville and Cave City, sitting stationary in the sky. The towns are 13 mi apart as the crow flies. A student in Batesville calls a friend in Cave City and both take measurements of the angle of elevation: 35° from Batesville and 42° from Cave City. Suddenly the UFO zips across the sky at a level altitude heading directly for Cave City, then stops and hovers long enough for an additional measurement from Batesville: 24°. If the UFO was in motion for 1.2 sec , at what average speed (in mph) did it travel?
80. (3.2) A Ferris wheel has a diameter of 50 ft . What is the linear distance a seat on the ferris wheel moves as the wheel rotates through an angle of 245° ?
81. (4.3) Determine the equation of the graph shown, given it is of the form $y=A \tan (B x \pm C)$.

Exercise 81

7.2 The Law of Cosines; the Area of a Triangle

Learning Objectives

In Section 7.2 you will learn how to:
A. Apply the law of cosines when two sides and an included angle are known (SAS)
B. Apply the law of cosines when three sides are known (SSS)
C. Solve applications using the law of cosines
D. Use trigonometry to find the area of a triangle

The distance formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ is traditionally developed by placing two arbitrary points on a rectangular coordinate system and using the Pythagorean theorem. The relationship known as the law of cosines is developed in much the same way, but this time by using three arbitrary points (the vertices of a triangle). After giving the location of one vertex in trigonometric form, we obtain a formula that enables us to solve SSS and SAS triangles, which cannot be solved using the law of sines alone.

A. The Law of Cosines and SAS Triangles

In situations where all three sides are known (but no angles), the law of sines cannot be applied. The same is true when two sides and the angle between them are known, since we must have an angle opposite one of the sides. In these two cases (Figure 7.26), side-side-side (SSS) and side-angle-side (SAS), we use the law of cosines.

Figure 7.26
Law of sines cannot be applied.

WORTHY OF NOTE

Keep in mind that the sum of any two sides of a triangle must be greater than the remaining side. For example, if $a=7, B=20$, and $C=12$, no triangle is possible (see the figure).

To solve these cases, it's evident we need additional insight on the unknown angles. Consider a general triangle $A B C$ on the rectangular coordinate system conveniently placed with vertex A at the origin, side c along the x-axis, and the vertex C at some point (x, y) in QI (Figure 7.27).
Note $\cos \theta=\frac{x}{b}$ giving $x=b \cos \theta$, and $\sin \theta=\frac{y}{b}$ or $y=b \sin \theta$. This means we can write the point (x, y) as $(b \cos \theta, b \sin \theta)$ as shown, and use the Pythagorean theorem with side $x-c$ to find the length of side a of the exterior, right triangle. It follows that

$$
\begin{aligned}
a^{2} & =(x-c)^{2}+y^{2} \\
& =(b \cos \theta-c)^{2}+(b \sin \theta)^{2} \\
& =b^{2} \cos ^{2} \theta-2 b c \cos \theta+c^{2}+b^{2} \sin ^{2} \theta \\
& =b^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta+c^{2}-2 b c \cos \theta \\
& =b^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+c^{2}-2 b c \cos \theta \\
& =b^{2}+c^{2}-2 b c \cos \theta
\end{aligned}
$$

substitute $b \cos \theta$ for x and $b \sin \theta$ for y
square binomial, square term
rearrange terms
factor out b^{2}
substitute 1 for $\cos ^{2} \theta+\sin ^{2} \theta$

We now have a formula relating all three sides and an included angle. Since the naming of the angles is purely arbitrary, the formula can be used in any of the three forms shown. For the derivation of the formula where $\angle B$ is acute, see Exercise 60.

The Law of Cosines

For any triangle $A B C$ and corresponding sides a, b, and c,

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

Note the relationship between the indicated angle and squared side.
In words, the law of cosines says that the square of any side is equal to the sums of the squares of the other two sides, minus twice their product times the cosine of the included angle. It is interesting to note that if the included angle is 90°, the formula reduces to the Pythagorean theorem since $\cos 90^{\circ}=0$.

EXAMPLE $1>$ Verifying the Law of Cosines

For the triangle shown, verify:
a. $c^{2}=a^{2}+b^{2}-2 a b \cos C$
b. $b^{2}=a^{2}+c^{2}-2 a c \cos B$

Solution - Note the included angle C is a right angle.

$$
\begin{aligned}
& \text { a. } \begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& 20^{2}=10^{2}+(10 \sqrt{3})^{2}-2(10 \sqrt{3})(10) \cos 90^{\circ} \\
& 400=100+300-0 \\
&=400 \checkmark \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& \begin{aligned}
(10 \sqrt{3})^{2} & =10^{2}+20^{2}-2(10)(20) \cos 60^{\circ} \\
300 & =100+400-400\left(\frac{1}{2}\right) \\
& =500-200 \\
& =300 \boldsymbol{l}
\end{aligned}
\end{aligned} \begin{aligned}
\end{aligned} \\
&
\end{aligned}
$$

. CAUTION | When evaluating the law of cosines, a common error is to combine the coefficient of $\cos \theta$ |
| :--- |
| with the squared terms (the terms shown in blue): $a^{2}=b^{2}+c^{2}-2 b c \cos A$. Be sure to |
| use the correct order of operations when simplifying the expression. |

Once additional information about the triangle is known, the law of sines can be used to complete the solution.

EXAMPLE $2-$ Solving a Triangle Using the Law of Cosines—SAS

Solve the triangle shown. Write the solution in table form.

Solution \quad The given information is SAS. Apply the law of cosines with respect to side b and $\angle B$:

WORTHY OF NOTE

After using the law of cosines, we often use the law of sines to complete a solution. With a little foresight, we can avoid the ambiguous case-since the ambiguous case occurs only if θ could be obtuse (the largest angle of the triangle). After calculating the third side of a SAS triangle using the law of cosines, use the law of sines to find the smallest angle, since it cannot be obtuse.
A. You've just learned how to apply the law of cosines when two sides and an included angle are known (SAS)
$b^{2}=a^{2}+c^{2}-2 a c \cos B$

$$
\begin{aligned}
b^{2} & =(16)^{2}+(7)^{2}-2(16)(7) \cos 95^{\circ} & & \text { substitute known values } \\
& \approx 324.522886 & & \text { simplify } \\
b & \approx 18.0 & & \sqrt{324.522886} \approx 18.0
\end{aligned}
$$

We now have side b opposite $\angle B$, and complete the solution using the law of sines, selecting the smaller angle to avoid the ambiguous case (we could apply the law of cosines again, if we chose).

$$
\begin{aligned}
& \frac{\sin C}{c}=\frac{\sin B}{b} \quad \text { law of sines applied to } \angle C \text { and } \angle B \\
& \frac{\sin C}{7} \approx \frac{\sin 95^{\circ}}{18} \quad \text { substitute given values } \\
& \sin C \approx 7 \cdot \frac{\sin 95^{\circ}}{18} \quad \text { solve for } \sin C \\
& C \approx \sin ^{-1}\left(\frac{7 \sin 95^{\circ}}{18}\right) \quad \text { apply } \sin ^{-1} \\
& \approx 22.8^{\circ} \quad \text { result } \\
& \text { For the remaining angle, } \angle A: 180^{\circ}-\left(95^{\circ}+22.8^{\circ}\right)=62.2^{\circ} \text {. } \\
& \text { The finished solution is shown in the table (given }
\end{aligned}
$$ information is in bold).

Now try Exercises 15 through 26

B. The Law of Cosines and SSS Triangles

When three sides of a triangle are given, we use the law of cosines to find any one of the three angles. As a good practice, we first find the largest angle, or the angle opposite the largest side. This will ensure that the remaining two angles are acute, avoiding the ambiguous case if the law of sines is used to complete the solution.

Solve the triangle shown. Write the solution in table form, with angles rounded to tenths of a degree.

Solution The information is given as SSS. Since side c is the longest side, we apply the law of cosines with respect to side c and $\angle C$:

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos C & & \text { law of cosines with respect to } c \\
28^{2} & =(15)^{2}+(25)^{2}-2(15)(25) \cos C & & \text { substitute known values } \\
784 & =850-750 \cos C & & \text { simplify } \\
-66 & =-750 \cos C & & \text { isolate variable term } \\
0.088 & =\cos C & & \text { divide } \\
\cos ^{-1} 0.088 & =C & & \text { solve for } C \\
85.0^{\circ} & \approx C & & \text { result }
\end{aligned}
$$

We now have $\angle C$ opposite side c and finish up using the law of sines.

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin C}{c} \quad \text { law of sines applied to } \angle A \text { and } \angle C \\
& \frac{\sin A}{15} \approx \frac{\sin 85^{\circ}}{28} \quad \text { substitute given values } \\
& \sin A \approx 15 \cdot \frac{\sin 85^{\circ}}{28} \quad \text { solve for } \sin A \\
& \approx 0.5336757311 \quad \text { simplify } \\
& A \approx \sin ^{-1} 0.5336757311 \text { solve for } A \\
& \approx 32.3^{\circ} \quad \text { result }
\end{aligned}
$$

B. You've just learned how to apply the law of cosines when three sides are known (SSS)

Now try Exercises 27 through 34

C. Applications Using the Law of Cosines

As with the law of sines, the law of cosines has a large number of applications from very diverse fields including geometry, navigation, surveying, and astronomy.

EXAMPLE 4 Solving an Application of the Law of Cosines-Geological Surveys

A volcanologist needs to measure the distance across the base of an active volcano. Distance $A B$ is measured at 1.5 km , while distance $A C$ is 3.2 km . Using a theodolite (a sighting instrument used by surveyors), angle $B A C$ is found to be 95.7°. What is the distance across the base?

Solution The information is given as SAS. To find the distance $B C$ across the base of the volcano, we apply the law of cosines with respect to $\angle A$.

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
& =(1.5)^{2}+(3.2)^{2}-2(1.5)(3.2) \cos 95.7^{\circ} \\
& \approx 13.44347 \\
a & \approx 3.7
\end{aligned}
$$

law of cosines with respect to a substitute known values simplify solve for a

The volcano is approximately 3.7 km wide at its base.

Recall from Section 2.3 that the bearings used by surveyors are stated as a number of degrees East or West from a due North or South orientation. Headings provide the same information, but are more commonly used in aerial and nautical navigation. They are stated simply as an amount of rotation from due north, in the clockwise direction $\left(0^{\circ} \leq \theta<360^{\circ}\right)$. For instance, the bearing $\mathrm{N} 25^{\circ} \mathrm{W}$ and a heading of 335° would indicate the same direction or course. See Exercises 41 through 44. A variety of additional applications of the law of cosines can be found in Exercises 45 through 52.

D. Trigonometry and the Area of a Triangle

While you're likely familiar with the most common formula for a triangle's area, $\mathcal{A}=\frac{1}{2} b h$, there are actually over 20 formulas for computing this area. Many involve basic trigonometric ideas, and we'll use some of these ideas to develop three additional formulas here.

For $\mathcal{A}=\frac{1}{2} b h$, recall that b represents the length of a designated base, and h represents the length of the altitude drawn to that base (see Figure 7.28). If the height h is unknown, but sides a and b with angle C between them are known, h can be found using $\sin C=\frac{h}{a}$, giving $h=a \sin C$. Figure 7.29 indicates the same result is obtained if C is obtuse, since $\sin \left(180^{\circ}-C\right)=\sin C$. Substituting $a \sin C$ for h in the formula $\mathcal{A}=\frac{1}{2} b h$ gives $\mathcal{A}=\frac{1}{2} b a \sin C$, or $\mathcal{A}=\frac{1}{2} a b \sin C$ in more common form. Since naming the angles in a triangle is arbitrary, the formulas $\mathcal{A}=\frac{1}{2} b c \sin A$ and $\mathcal{A}=\frac{1}{2} a c \sin B$ can likewise be obtained.

Figure 7.28

Figure 7.29

Area Given Two Sides and an Included Angle (SAS)

$$
\begin{array}{lll}
\text { 1. } \mathcal{A}=\frac{1}{2} a b \sin C & \text { 2. } \mathcal{A}=\frac{1}{2} b c \sin A & \text { 3. } \mathcal{A}=\frac{1}{2} a c \sin B
\end{array}
$$

In words, the formulas say the area of a triangle is equal to one-half the product of two sides times the sine of the angle between them.

EXAMPLE $5>$ Finding the Area of a Nonright Triangle

Find the area of $\triangle A B C$, if $a=16.2 \mathrm{~cm}$, $b=25.6 \mathrm{~cm}$, and $C=28.3^{\circ}$.

Solution \downarrow Since sides a and b and angle C are given, we apply the first formula.

$$
\begin{aligned}
\mathcal{A} & =\frac{1}{2} a b \sin C \\
& =\frac{1}{2}(16.2)(25.6) \sin 28.3^{\circ} \\
& \approx 98.3 \mathrm{~cm}^{2}
\end{aligned}
$$

area formula

The area of this triangle is approximately $98.3 \mathrm{~cm}^{2}$.
Now try Exercises 53 and 54

Using these formulas, a second formula type requiring two angles and one side (AAS or ASA) can be developed. Solving for b in $\mathcal{A}=\frac{1}{2} b c \sin A$ gives $b=\frac{2 \mathcal{A}}{c \sin A}$. Likewise, solving for a in $\mathcal{A}=\frac{1}{2} a c \sin B$ yields $a=\frac{2 \mathcal{A}}{c \sin B}$. Substituting these for b and a in $\mathcal{A}=\frac{1}{2} a b \sin C$ gives

$$
\begin{aligned}
\mathcal{A} & =\frac{1}{2} \cdot a \cdot b \cdot \sin C & & \text { given formula } \\
2 \mathcal{A} & =\frac{2 \mathcal{A}}{c \sin B} \cdot \frac{2 \mathcal{A}}{c \sin A} \cdot \sin C & & \text { substitute } \frac{2 \mathcal{A}}{c \sin B} \text { for a, } \frac{2 \mathcal{A}}{c \sin A} \text { for } b ; \text { multiply by 2 } \\
c^{2} \sin A \cdot \sin B & =2 \mathcal{A} \cdot \sin C & & \text { multiply by } c \sin A \cdot c \sin B ; \text { divide by } 2 \mathcal{A} \\
\frac{c^{2} \sin A \sin B}{2 \sin C} & =\mathcal{A} & & \text { solve for } \mathcal{A}
\end{aligned}
$$

As with the previous formula, versions relying on side a or side b can also be found.

Area Given Two Angles and Any Side (AAS/ASA)

1. $\mathcal{A}=\frac{c^{2} \cdot \sin A \cdot \sin B}{2 \sin C}$
2. $\mathcal{A}=\frac{a^{2} \cdot \sin B \cdot \sin C}{2 \sin A}$
3. $\mathcal{A}=\frac{b^{2} \cdot \sin A \cdot \sin C}{2 \sin B}$

EXAMPLE 6 Finding the Area of a Nonright Triangle

Find the area of $\triangle A B C$ if $a=34.5 \mathrm{ft}, B=87.9^{\circ}$, and $C=29.3^{\circ}$.
Solution - Since side a is given, we apply the second version of the formula. First we find the measure of angle A, then make the appropriate substitutions:

$$
\begin{aligned}
A & =180^{\circ}-\left(87.9^{\circ}+29.3^{\circ}\right)=62.8^{\circ} & & \\
\mathcal{A} & =\frac{a^{2} \sin B \sin C}{2 \sin A} & & \text { area formula-side a } \\
& =\frac{(34.5)^{2} \sin 87.9^{\circ} \sin 29.3^{\circ}}{2 \sin 62.8^{\circ}} & & \text { substitute } 34.5 \text { for } a, 87.9^{\circ} \text { for } B, 29.3^{\circ} \text { for } C \text {, and } 62.8^{\circ} \text { for } A \\
& \approx 327.2 \mathrm{ft}^{2} & & \text { simplify }
\end{aligned}
$$

The area of this triangle is approximately $327.2 \mathrm{ft}^{2}$.

Now try Exercises 55 and 56

Our final formula for a triangle's area is a useful addition to the other two, as it requires only the lengths of the three sides. The development of the formula requires only a Pythagorean identity and solving for the angle C in the law of cosines, as follows.

$$
\begin{aligned}
a^{2}+b^{2}-2 a b \cos C & =c^{2} & & \text { law of cosines } \\
a^{2}+b^{2}-c^{2} & =2 a b \cos C & & \text { add } 2 a b \cos C, \text { subtract } c^{2} \\
\frac{a^{2}+b^{2}-c^{2}}{2 a b} & =\cos C & & \text { divide by } 2 a b
\end{aligned}
$$

Beginning with our first area formula, we then have

$$
\begin{aligned}
\mathcal{A} & =\frac{1}{2} a b \sin C & & \text { previous area formula } \\
& =\frac{1}{2} a b \sqrt{1-\cos ^{2} C} & & \sin ^{2} C+\cos ^{2} C=1 \rightarrow \sin C=\sqrt{1-\cos ^{2} C} \\
& =\frac{1}{2} a b \sqrt{1-\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)^{2}} & & \text { substitute } \frac{a^{2}+b^{2}+c^{2}}{2 a b} \text { for } \cos C
\end{aligned}
$$

and can find the area of any triangle given its three sides. While the formula certainly serves this purpose, it is not so easy to use. By working algebraically and using the perimeter of the triangle, we can derive a more elegant version.

$$
\begin{array}{rlrl}
\mathcal{A}^{2} & =\frac{1}{4} a^{2} b^{2}\left[1-\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)^{2}\right] & & \text { square both sides } \\
& =\frac{1}{4} a^{2} b^{2}\left[1+\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)\right]\left[1-\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)\right] & & \begin{array}{l}
\text { factor as a difference of } \\
\text { squares }
\end{array} \\
& =\frac{1}{4} a^{2} b^{2}\left[\frac{2 a b+a^{2}+b^{2}-c^{2}}{2 a b}\right]\left[\frac{2 a b-a^{2}-b^{2}+c^{2}}{2 a b}\right] & & 1=\frac{2 a b}{2 a b} ; \text { combine terms } \\
& =\frac{1}{4}\left[\frac{\left(a^{2}+2 a b+b^{2}\right)-c^{2}}{2}\right]\left[\frac{-\left(a^{2}-2 a b+b^{2}\right)+c^{2}}{2}\right] & \begin{array}{l}
\text { rewrite/regroup } \\
\text { numerator; cancel } a^{2} b^{2}
\end{array} \\
& =\frac{1}{16}\left[(a+b)^{2}-c^{2}\right]\left[c^{2}-(a-b)^{2}\right] & & \text { factor (binomial squares) } \\
& =\frac{1}{16}(a+b+c)(a+b-c)(c+a-b)(c-a+b) & & \text { factor (difference of squares) }
\end{array}
$$

For the perimeter $a+b+c=p$, we note the following relationships (subtract $2 c, 2 b$, and $2 a$ respectively, from both sides):

$$
a+b-c=p-2 c \quad c+a-b=p-2 b \quad c-a+b=p-2 a
$$

and making the appropriate substitutions gives

$$
\mathcal{A}^{2}=\frac{1}{16} p(p-2 c)(p-2 b)(p-2 a) \quad \text { substitute }
$$

While this would provide a usable formula for the area in terms of the perimeter, we can refine it further using the semiperimeter $s=\frac{a+b+c}{2}=\frac{p}{2}$. Since $\frac{1}{16}=\left(\frac{1}{2}\right)^{4}$, we can write the expression as

$$
\begin{array}{ll}
=\frac{p}{2}\left(\frac{p-2 c}{2}\right)\left(\frac{p-2 b}{2}\right)\left(\frac{p-2 a}{2}\right) & \text { rewrite expression } \\
=\frac{p}{2}\left(\frac{p}{2}-c\right)\left(\frac{p}{2}-b\right)\left(\frac{p}{2}-a\right) & \text { simplify } \\
=s(s-c)(s-b)(s-a) & \\
\text { substitute } s \text { for } \frac{p}{2}
\end{array}
$$

Taking the square root of each side produces what is known as Heron's formula.

$$
\mathcal{A}=\sqrt{s(s-a)(s-b)(s-c)} \quad \text { Heron's formula }
$$

Heron's Formula

Given $\triangle A B C$ with sides a, b, and c and semiperimeter $s=\frac{a+b+c}{2}$, the area of the triangle is

$$
\mathcal{A}=\sqrt{s(s-a)(s-b)(s-c)}
$$

EXAMPLE 7 Solving an Application of Heron's Formula-Construction Planning

A New York City developer wants to build condominiums on the triangular lot formed by Greenwich, Watts, and Canal Streets. How many square meters does the developer have to work with if the frontage along each street is approximately $34.1 \mathrm{~m}, 43.5 \mathrm{~m}$, and 62.4 m , respectively?
Solution The perimeter of the lot is $p=34.1+43.5+62.4=140 \mathrm{~m}$, so $s=70 \mathrm{~m}$. By direct substitution we obtain

$$
\begin{aligned}
\mathcal{A} & =\sqrt{s(s-a)(s-b)(s-c)} & & \text { Heron's formula } \\
& =\sqrt{70(70-34.1)(70-43.5)(70-62.4)} & & \text { substitute known values } \\
& =\sqrt{70(35.9)(26.5)(7.6)} & & \text { simplify } \\
& =\sqrt{506,118.2} & & \text { multiply } \\
& \approx 711.4 & & \text { result }
\end{aligned}
$$

The developer has about $711.4 \mathrm{~m}^{2}$ of land to work with.

Now try Exercises 57 and 58

D. You've just learned how to use trigonometry to find the area of a triangle

For a derivation of Heron's formula that does not depend on trigonometry, see Appendix VI.

TECHNOLOGY HIGHLIGHT

A Simple Program for the Law of Cosines (SSS)

Our website at www.mhhe.com/coburn has a number of interesting and useful features. In particular, there are some Technology Extensions, which are simple programs that may be of use in your study of Algebra and Trig. Writing programs tends to offer great insight as to how the various parts of a formula are related, and how the formula itself operates. You may notice that we've given this program a descriptive name, but the TI-84 Plus limits us to eight characters: SSSBYCOS (SSS by Cosines). The blank lines indicate that you should write the purpose and meaning of certain lines in the program, based on what is given elsewhere, or what you see as the output.

PROGRAM:SSSBYCOS

:CIrHome

:Disp "THIS PRGM SOLVES"
:Disp "SSS TRIANGLES"
:Disp "USING THE LAW"
:Disp "OF COSINES"
:Pause:CIrHome

[^1]| :Disp "PLEASE ENTER"
 :Disp "THE LONGEST" | |
| :---: | :---: |
| | |
| :Disp "SIDE AS SIDE A" | |
| :Pause | |
| :Disp " " | Displays a blank line for formatting purposes |
| :Disp "THE 3 SIDES ARE:" | Displays THE 3 SIDES ARE |
| :Prompt A, B, C | Prompts user to input 3 lengths, stores them in A, B, and C |
| :CIrHome | |
| $: \cos ^{-1}\left(\left(A^{2}-\left(B^{2}+C^{2}\right)\right) /(-2 B C) \rightarrow D\right.$ | Computes the value of $\angle \mathrm{A}$ and stores it in memory location D |
| :Disp "ANGLE A IS:" | Displays ANGLE A IS: |
| :round(D,1) \rightarrow D | Rounds the value stored in D to one decimal, stores the new value |
| :Disp "D" | Displays the value now stored in memory location D |
| :Pause | |
| $: \sin ^{-1}((B * \sin (\mathrm{D})$)/20) \rightarrow E | |
| :Disp "ANGLE B IS:" | |
| :round (E,1) \rightarrow E | |
| :Disp "E" | |
| :Pause | |
| $:(180-(A+B)) \rightarrow F$ | |
| :Disp "ANGLE C IS:" | |
| :round ($\mathbf{F}, 1$) \rightarrow F | |
| :Disp "F" | |

Exercise 1: Using this program as a guide, write a program that will solve SAS triangles using the law of cosines.

7.2 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. When the information given is SSS or SAS, the law of \qquad is used to solve the triangle.
2. Write out which version of the law of cosines you would use to begin solving the triangle shown: \qquad

3. If the law of cosines is applied to a right triangle, the result is the same as the \qquad theorem,
4. Fill in the blank so that the law of cosines is complete: $c^{2}=a^{2}+b^{2}-$ \qquad $\cos C$
5. Solve the triangle in Exercise 2 using only the law of cosines, then by using the law of cosines followed by the law of sines. Which method was more efficient?
6. Begin with $a^{2}=b^{2}+c^{2}-2 b c \cos A$ and write $\cos A$ in terms of a, b, and c (solve for $\cos A$). Why must $b^{2}+c^{2}-a^{2}<2 b c$ hold in order for a solution to exist?

DEVELOPING YOUR SKILLS

Determine whether the law of cosines can be used to begin the solution process for each triangle.
7.

8.

9.

10.

11.

12.

For each triangle, verify all three forms of the law of cosines.
13.

14.

Solve each of the following equations for the unknown part.
15. $4^{2}=5^{2}+6^{2}-2(5)(6) \cos B$
16. $12.9^{2}=15.2^{2}+9.8^{2}-2(15.2)(9.8) \cos C$
17. $a^{2}=9^{2}+7^{2}-2(9)(7) \cos 52^{\circ}$
18. $b^{2}=3.9^{2}+9.5^{2}-2(3.9)(9.5) \cos 30^{\circ}$
19. $10^{2}=12^{2}+15^{2}-2(12)(15) \cos A$
20. $202^{2}=182^{2}+98^{2}-2(182)(98) \cos B$

Solve each triangle using the law of cosines.
21. side $a=75 \mathrm{~cm}$

$$
\angle C=38^{\circ}
$$

side $b=32 \mathrm{~cm}$
22. side $b=385 \mathrm{~m}$

$$
\angle C=67^{\circ}
$$

side $a=490 \mathrm{~m}$
23. side $c=25.8 \mathrm{mi}$

$$
\angle B=30^{\circ}
$$

side $a=12.9 \mathrm{mi}$
Solve using the law of cosines (if possible). Label each triangle appropriately before you begin.
24.

25.

26.

27. side $c=10 \sqrt{3}$ in.
28. side $a=282 \mathrm{ft}$
side $b=6 \sqrt{3} \mathrm{in}$.
side $a=15 \sqrt{3}$ in.
side $b=129 \mathrm{ft}$ side $c=300 \mathrm{ft}$
29. side $a=32.8 \mathrm{~km}$
side $b=24.9 \mathrm{~km}$
side $c=12.4 \mathrm{~km}$
30.

31.

33. side $a=12 \sqrt{3} \mathrm{yd}$
side $b=12.9$ yd
side $c=9.2$ yd
34. side $a=36.5 \mathrm{AU}$
side $b=12.9 \mathrm{AU}$
side $c=22 \mathrm{AU}$

WORKING WITH FORMULAS

35. Alternative form for the law of cosines:
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
By solving the law of cosines for the cosine of the angle, the formula can be written as shown.
 Derive this formula (solve for $\cos \theta$), beginning from $a^{2}=b^{2}+c^{2}-2 b c \cos A$, then use this form to begin the solution of the triangle given.
36. The perimeter of a trapezoid:
$\boldsymbol{P}=\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{h}(\boldsymbol{\operatorname { c s c }} \alpha+\boldsymbol{\operatorname { c s c }} \beta)$
The perimeter of a trapezoid can be found using the formula shown, where a and b
 represent the lengths of the parallel sides, h is the height of the trapezoid, and α and β are the base angles. Find the perimeter of Trapezoid Park (to the nearest foot) if $a=5000 \mathrm{ft}, b=7500 \mathrm{ft}$, and $h=2000 \mathrm{ft}$, with base angles $\alpha=42^{\circ}$ and $\beta=78^{\circ}$.

APPLICATIONS

37. Distance between cities: The satellite Mercury II measures its distance from Portland and from Green Bay using radio waves as shown. Using an on-board sighting device, the satellite determines that $\angle M$ is 99°. How many miles is it from Portland to Green Bay?

38. Distance between cities: Voyager VII measures its distance from Los Angeles and from San Francisco using radio waves as shown. Using an on-board sighting device, the satellite determines $\angle V$ is 95°. How many kilometers separate Los Angeles and San Francisco?

39. Runway length: Surveyors are measuring a large, marshy area outside of the city as part of a feasibility study for the construction of a new airport. Using a theodolite and the
 markers shown gives the information indicated. If the main runway must be at least $11,000 \mathrm{ft}$ long, and environmental concerns are satisfied, can the airport be constructed at this site (recall that $1 \mathrm{mi}=5280 \mathrm{ft})$?
40. Tunnel length: An engineering firm decides to bid on a proposed tunnel through Harvest Mountain. In order to find the tunnel's length, the measurements shown are taken. (a) How long will the tunnel be? (b) Due to previous tunneling experience, the firm estimates a cost of $\$ 5000$ per foot for boring through this type of rock and constructing the tunnel according to required specifications. If management insists on a 25% profit, what will be their minimum bid to the nearest hundred?

41. Trip planning: A business executive is going to fly the corporate jet from Providence to College Cove. She calculates the distances shown using a map, with Mannerly Main for reference since it is due east of Providence. What is the measure of angle P ? What heading should she set for this trip?

Exercise 41

42. Trip planning: A troop of Scouts is planning a hike from M ontgomery to P attonville. They calculate the distances shown using a map, using $B r a d l e y t o n ~ f o r ~ r e f e r e n c e ~ s i n c e ~ i t ~ i s ~ d u e ~ e a s t ~ o f ~ ? ~$ Montgomery. What is the measure of angle M ? What heading should they set for this trip?

43. Aerial distance: Two planes leave Los Angeles International Airport at the same time. One travels due west (at heading 270°) with a cruising speed of 450 mph , going to Tokyo, Japan, with a group that seeks tranquility at the foot of Mount Fuji. The other travels at heading 225° with a cruising speed of 425 mph , going to Brisbane, Australia, with a group seeking adventure in the Great Outback. Approximate the distance between the planes after 5 hr of flight.
44. Nautical distance: Two ships leave Honolulu Harbor at the same time. One travels 15 knots (nautical miles per hour) at heading 150°, and is going to the Marquesas Islands (Crosby, Stills, and Nash). The other travels 12 knots at heading 200°, and is going to the Samoan Islands (Samoa, le galu $a t u)$. How far apart are the two ships after 10 hr ?
45. Geoboard geometry: A rubber band is placed on a geoboard (a board with all pegs 1 cm apart) as shown. Approximate the perimeter of the triangle formed by the rubber band and the angle formed at each vertex. (Hint: Use a standard triangle to find $\angle A$ and length $\overline{A B}$.)

46. Geoboard geometry: A rubber band is placed on a geoboard as shown. Approximate the perimeter of the triangle formed by the rubber band and the angle formed at each vertex. (Hint: Use a Pythagorean triple, then find angle A.)

Exercise 46

In Exercises 47 and 48, three rods are attached via pivot joints so the rods can be manipulated to form a triangle. Find the three angles of the triangle formed.
47.

48.

49. Pentagon perimeter: Find the perimeter of a regular pentagon that is circumscribed by a circle with radius $r=10 \mathrm{~cm}$.
50. Hexagon perimeter: Find the perimeter of a regular hexagon that is circumscribed by a circle with radius $r=15 \mathrm{~cm}$.

Solve the following triangles. Round sides and angles to the nearest tenth. (Hint: Use Pythagorean triples.)
51.

52.

53. Billboard design: Creative

Designs iNc. has designed a flashy, new billboard for one of its clients. Using a rectangular highway billboard measuring 20 ft by 30 ft , the primary

Exercise 53

 advertising area is a triangle formed using the diagonal of the billboard as one side, and one-half the base as another (see figure). Use the dimensions given to find the angle α formed at the corner, then compute the area of the triangle using two sides and this included angle.
54. Area caught by surveillance camera: A stationary surveillance camera is set up to monitor activity in the parking lot of a shopping mall. If the camera has a 38° Exercise 54
 field of vision, how many square feet of the parking lot can it tape using the dimensions given?
55. Pricing for undeveloped lots: Undeveloped land in a popular resort area is selling for $\$ 3,000,000 /$ acre. Given the dimensions of the lot shown, (a) find what

Exercise 55
 percent of a full acre is being purchased (to the nearest whole percent), and (b) compute the cost of the lot. Recall that 1 acre $=43,560 \mathrm{ft}^{2}$.
56. Area of the Nile River Delta: The Nile River Delta is one of the world's largest. The delta begins slightly up river from the Egyptian capitol (Cairo) and stretches along the Mediterranean from Alexandria in the west to Port Said in the east (over 240 km). Approximate the area of this rich agricultural region using the two triangles shown.

57. Area of the Yukon Territory: The Yukon Territory in northwest Canada is roughly triangular in shape with sides of 1289 km , 1063 km , and 922 km . What is the approximate area covered by this territory?
58. Alternate method for computing area: Referring to Exercise 53, since the dimensions of the billboard are known, all three sides of the triangle can actually be determined. Find the length of the sides rounded to the nearest whole, then use Heron's formula to find the area of the triangle. How close was your answer to that in Exercise 53?

EXTENDING THE CONCEPT

59. No matter how hard I try, I cannot solve the triangle shown. Why?
60. In Figure 7.27 (page 330), note that if the x-coordinate of vertex B is greater than the x-coordinate of vertex $C, \angle B$ becomes acute, and $\angle C$ obtuse. How does this change the relationship between x and c ? Verify the law of cosines remains unchanged.
61. For the triangle shown, verify that $c=b \cos A+a \cos B$, then use two different forms of the law of cosines to show this relationship holds for any triangle $A B C$.
62. Most students are familiar with this double-angle formula for cosine: $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$. The triple angle formula for cosine is $\cos (3 \theta)=4 \cos ^{3} \theta-3 \cos \theta$. Use the formula to find an exact value for $\cos 135^{\circ}$. Show that you get the same result as when using a reference angle.

Exercise 59

Exercise 61

MAINTAINING YOUR SKILLS

63. (6.3) Find the primary solution to:
$-3 \sec \theta+7 \sqrt{3}=5 \sqrt{3}$.
64. (3.3) State exact forms for each of the following: $\sin \left(\frac{\pi}{6}\right), \cos \left(\frac{7 \pi}{6}\right)$, and $\tan \left(\frac{\pi}{3}\right)$.
65. (1.4) Derive the other two common versions of the Pythagorean identities, given $\sin ^{2} x+\cos ^{2} x=1$.
66. (1.4) Use fundamental identities to find the values of all six trig functions that satisfy the conditions $\sin x=-\frac{5}{13}$ and $\cos x>0$.
67. (5.2) Use a sum identity to find the value of $\sin 75^{\circ}$ in exact form.
68. (6.2) Evaluate the expression by drawing a representative triangle: csc $\left[\tan ^{-1}\left(\frac{55}{48}\right)\right]$.

MID-CHAPTER CHECK

1. Beginning with $\frac{\sin A}{a}=\frac{\sin B}{b}$, solve for $\sin B$.
2. Given $b^{2}=a^{2}+c^{2}-2 a c \cos B$, solve for $\cos B$.

Solve the triangles shown below using any appropriate method.
3.

4.

Solve the triangles described below using the law of sines. If more than one triangle exists, solve both.
5. $A=44^{\circ}, a=2.1 \mathrm{~km}, c=2.8 \mathrm{~km}$
6. $C=27^{\circ}, a=70 \mathrm{yd}, c=100 \mathrm{yd}$
7. A large highway sign is erected on a steep hillside that is inclined 45° from the horizontal. At 9:00 A.m. the sign casts a 75 ft shadow. Find the height of the sign if the angle of elevation (measured from a horizontal line) from the tip of the shadow to the top of the sign is 65°.

8. Modeled after an Egyptian obelisk, the Washington Monument (Washington, D.C.) is one of the tallest masonry buildings in the world. Find the height of the monument given the measurements shown (see the figure).
9. The circles shown here have radii of $4 \mathrm{~cm}, 9 \mathrm{~cm}$, and 12 cm , and are tangent to each other. Find the angles formed by the line segments joining their centers.

10. On her delivery route, Judy drives 23 miles to Columbus, then 17 mi to Drake, then back home to Balboa. Use the diagram given to find the distance from \boldsymbol{D} rake to \boldsymbol{B} alboa.

REINFORCING BASIC CONCEPTS

Scaled Drawings and the Laws of Sine and Cosine

In mathematics, there are few things as satisfying as the tactile verification of a concept or computation. In this Reinforcing Basic Concepts, we'll use scaled drawings to verify the relationships stated by the law of sines and the law of cosines. First, gather a blank sheet of paper, a ruler marked in centimeters/millimeters, and a protractor. When working with scale models, always measure and mark as carefully as possible. The greater the care, the better the results. For the first illustration (see Figure 7.30), we'll draw a $20-\mathrm{cm}$ horizontal line segment near the bottom of the paper, then use the left endpoint to mark off a 35° angle. Draw the second side a length of 18 cm . Our first goal is to compute the length of the side needed to complete the triangle, then verify our computation by measurement. Since the current "triangle" is SAS, we use the law of cosines. Label the 35° as $\angle A$, the top vertex as $\angle B$, and the right endpoint as $\angle C$.

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
& =(20)^{2}+(18)^{2}-2(20)(18) \cos 35 \\
& \approx 724-589.8 \\
& =134.2 \\
a & \approx 11.6
\end{aligned}
$$

law of cosines with respect to a
substitute known values
simplify (round to 10)
combine terms
solve for a

Figure 7.30

The computed length of side a is approximately 11.6 cm , and if you took great care in drawing your diagram, you'll find the missing side is indeed very close to this length.
Exercise 1: Finish solving the triangle in Figure 7.30 using the law of sines. Once you've computed $\angle B$ and $\angle C$, measure these angles from the diagram using your protractor. How close was the computed measure to the actual measure?

For the second illustration (see Figure 7.31), draw any arbitrary triangle on a separate blank sheet, noting that the larger the triangle, the easier it is to measure the angles. After you've drawn it, measure the length of each side to the nearest millimeter (our triangle turned out to be $21.2 \mathrm{~cm} \times 13.3 \mathrm{~cm} \times 15.3 \mathrm{~cm}$). Now use the law of cosines to find one angle, then the law of sines to solve the triangle. The computations for our triangle gave angles of $95.4^{\circ}, 45.9^{\circ}$, and 38.7°. What angles did your computations give? Finally, use your protractor to measure the angles of the triangle you drew. With careful drawings, the meas-

Figure 7.31
 ured results are often remarkably accurate!

Exercise 2: Using sides of 18 cm and 15 cm , draw a 35° angle, a 50° angle, and a 70° angle, then complete each triangle by connecting the endpoints. Use the law of cosines to compute the length of this third side, then actually measure each one. Was the actual length close to the computed length?

7.3 \quad Vectors and Vector Diagrams

Learning Objectives

In Section 7.3 you will learn how to:
A. Represent a vector quantity geometrically
B. Represent a vector quantity graphicallyC. Perform defined operations on vectors
D. Represent a vector quantity algebraically and find unit vectorsE. Use vector diagrams to solve applications

Figure 7.33

Figure 7.35

The study of vectors is closely connected to the study of force, motion, velocity, and other related phenomena. Vectors enable us to quantify certain characteristics of these phenomena and to physically represent their magnitude and direction with a simple model. To quantify something means we assign it a relative numeric value for purposes of study and comparison. While very uncomplicated, this model turns out to be a powerful mathematical tool.

A. The Notation and Geometry of Vectors

Measurements involving time, area, volume, energy, and temperature are called scalar measurements or scalar quantities because each can be adequately described by their magnitude alone and the appropriate unit or "scale." The related real number is simply called a scalar. Concepts that require more than a single quantity to describe their attributes are called vector quantities. Examples might include
force, velocity, and displacement, which require knowing a magnitude and direction to describe them completely.

To begin our study, consider two identical airplanes flying at 300 mph , on a parallel course and in the same direction. Although we don't know how far apart they are, what direction they're flying, or if one is "ahead" of the other, we can still model, "300 mph on a parallel course," using directed line segments (Figure 7.32). Drawing these segments parallel with the arrowheads pointing the same way models the direction of

Figure 7.32
 flight, while drawing segments the same length indicates the velocities are equal. The directed segment used to represent a vector quantity is simply called a vector. In this case, the length of the vector models the magnitude of the velocity, while the arrowhead indicates the direction of travel. The origin of the segment is called the initial point, with the arrowhead pointing to the terminal point. Both are labeled using capital letters as shown in Figure 7.33 and we call this a geometric representation of the vectors.

Vectors can be named using the initial and terminal points that define them (initial point first) as in $\overrightarrow{A B}$ and $\overrightarrow{C D}$, or using a bold, small case letter with the favorites being \mathbf{v} (first letter of the word vector) and \mathbf{u}. Other small case, bold letters can be used and subscripted vector names $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots\right)$ are also common. Two vectors are equal if they have the same magnitude and direction. For $\mathbf{u}=\overrightarrow{A B}$ and $\mathbf{v}=\overrightarrow{C D}$, we can say $\mathbf{u}=\mathbf{v}$ or $\overrightarrow{A B}=\overrightarrow{C D}$ since both airplanes are flying at the same speed and in the same direction (Figure 7.33).

Based on these conventions, it seems reasonable to represent an airplane flying at 600 mph with a vector that is twice as long as \mathbf{u} and \mathbf{v}, and one flying at 150 mph with a vector that is half as long. If all planes are flying in the same direction on a parallel course, we can represent them geometrically as shown in Figure 7.34, and state that $\mathbf{w}=2 \mathbf{v}, \mathbf{x}=\frac{1}{2} \mathbf{v}$, and $\mathbf{w}=4 \mathbf{x}$. The multiplication of a vector by a constant is called scalar multiplication, since the product changes only the
 scale or size of the vector and not its direction.

Finally, consider the airplane represented by vector \mathbf{v}_{2}, flying at 200 mph on a parallel course but in the opposite direction (see Figure 7.35). In this case, the directed segment will be $\frac{200}{300}=\frac{2}{3}$ as long as \mathbf{v} and point in the opposite or "negative" direction. In perspective we can now state: $\mathbf{v}_{2}=-\frac{2}{3} \mathbf{v}, \mathbf{v}_{2}=-\frac{1}{3} \mathbf{w}, \mathbf{v}_{2}=-\frac{4}{3} \mathbf{x}$, or any equivalent form of these equations.

EXAMPLE 1 Using Geometric Vectors to Model Forces Acting on a Point

Two tugboats are attempting to free a barge that is stuck on a sand bar. One is pulling with a force of 2000 newtons (N) in a certain direction, the other is pulling with a force of 1500 N in a direction that is perpendicular to the first. Represent the situation geometrically using vectors.

Solution

(A. You've just learned how to represent a vector quantity geometrically

We could once again draw a vector of arbitrary length and let it represent the 2000-N force applied by the first tugboat. For better perspective, we can actually use a ruler and choose a convenient length, say 6 cm . We then represent the pulling force of the second tug with a vector that is $\frac{1500}{2000}=\frac{3}{4}$ as long $(4.5 \mathrm{~cm})$, drawn at a 90° angle with relation to the first. Note that many correct solutions are possible, depending on the direction of the first vector
 drawn.

Now try Exercises 7 through 12

B. Vectors and the Rectangular Coordinate System

Representing vectors geometrically (with a directed line segment) is fine for simple comparisons, but many applications involve numerous vectors acting on a single point or changes in a vector quantity over time. For these situations, a graphical representation in the coordinate plane helps to analyze this interaction. The only question is where to place the vector on the grid, and the answer is-it really doesn't matter. Consider the three vectors shown in Figure 7.36. From the initial point of each, counting four units in the vertical direction, then three units in the horizontal direction, puts us at the terminal point. This shows

Figure 7.36
 the vectors are all 5 units long (since a 3-4-5 triangle is formed) and are all parallel (since slopes are equal: $\frac{\Delta y}{\Delta x}=\frac{4}{3}$). In other words, they are equivalent vectors.

Since a vector's location is unimportant, we can replace any given vector with a unique and equivalent vector whose initial point is $(0,0)$, called the position vector.

Position Vectors

For a vector \mathbf{v} with initial point $\left(x_{1}, y_{1}\right)$ and terminal point $\left(x_{2}, y_{2}\right)$, the position vector for \mathbf{v} is

$$
\mathbf{v}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle,
$$

an equivalent vector with initial point $(0,0)$ and terminal point $\left(x_{2}-x_{1}, y_{2},-y_{1}\right)$.
For instance, the initial and terminal points of vector win Figure 7.36 are $(2,-4)$ and $(5,0)$, respectively, with $(5-2,0-(-4))=(3,4)$. Since $(3,4)$ is also the terminal point of \mathbf{v} (whose initial point is at the origin), \mathbf{v} is the position vector for \mathbf{u} and w. This observation also indicates that every geometric vector in the $x y$-plane corresponds to a unique ordered pair of real numbers (a, b), with a as the horizontal component and b as the vertical component of the vector. As indicated, we denote the vector in
component form as $\langle\boldsymbol{a}, \boldsymbol{b}\rangle$, using the new notation to prevent confusing vector $\langle a, b\rangle$ with the ordered pair (a, b). Finally, while each of the vectors in Figure 7.36 has a component form of $\langle 3,4\rangle$, the horizontal and vertical components can be read directly only from $\mathbf{v}=\langle 3,4\rangle$, giving it a distinct advantage.

EXAMPLE $2-$ Verifying the Components of a Position Vector

Vector $\mathbf{v}=\langle 12,-5\rangle$ has initial point $(-4,3)$.
a. Find the coordinates of the terminal point.
b. Verify the position vector for \mathbf{v} is $\langle 12,-5\rangle$ and find its length.

Solution

a. Since \mathbf{v} has a horizontal component of 12 and a vertical component of -5 , we add 12 to the x-coordinate and -5 to the y-coordinate of the initial point. This gives a terminal point of $(12+(-4),-5+3)=(8,-2)$.
b. To verify we use the initial and terminal points to compute $\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle$, giving a position vector of $\langle 8-(-4),-2-3\rangle=\langle 12,-5\rangle$. To find its length we can use either the Pythagorean theorem or simply note that a 5-12-13 Pythagorean triple is formed. Vector \mathbf{v} has a length of 13 units.

Now try Exercises 13 through 20 -

For the remainder of this section, vector $\mathbf{v}=\langle a, b\rangle$ will refer to the unique position vector for all those equivalent to \mathbf{v}. Upon considering the graph of $\langle a, b\rangle$ (shown in QI for convenience in Figure 7.37), several things are immediately evident. The length or magnitude of the vector, which is denoted $|\mathbf{v}|$, can be determined using the Pythagorean theorem: $|\mathbf{v}|=\sqrt{a^{2}+b^{2}}$. In addition, basic trigonometry shows the horizontal component can be

Figure 7.37
 found using $\cos \theta=\frac{a}{|\mathbf{v}|}$ or $a=|\mathbf{v}| \cos \theta$, with the vertical component being $\sin \theta=\frac{b}{|\mathbf{v}|}$ or $b=|\mathbf{v}| \sin \theta$. Finally, we note the angle θ can be determined using $\tan \theta=\frac{b}{a}$, or $\theta_{r}=\tan ^{-1}\left|\frac{b}{a}\right|$ and the quadrant of \mathbf{v}.

Vector Components in Trig Form

For a position vector $\mathbf{v}=\langle a, b\rangle$ and angle θ, we have horizontal component: $a=|\mathbf{v}| \cos \theta \quad$ vertical component: $b=|\mathbf{v}| \sin \theta$,
where $\quad \theta_{r}=\tan ^{-1}\left|\frac{b}{a}\right|$ and

$$
|\mathbf{v}|=\sqrt{a^{2}+b^{2}}
$$

The ability to model characteristics of a vector using these equations is a huge benefit to solving applications, since we must often work out solutions using only the partial information given.

EXAMPLE 3 - Finding the Magnitude and Direction Angle of a Vector

For $\mathbf{v}_{1}=\langle-2.5,-6\rangle$ and $\mathbf{v}_{2}=\langle 3 \sqrt{3}, 3\rangle$,
a. Graph each vector and name the quadrant where it is located.
b. Find their magnitudes.
c. Find the angle θ for each vector (round to tenths of a degree as needed).

Solution
a. The graphs of \mathbf{v}_{1} and \mathbf{v}_{2} are shown in the figure. Using the signs of each coordinate, we
 note that \mathbf{v}_{1} is in QIII, and \mathbf{v}_{2} is in QI.
b. $\left|\mathbf{v}_{\mathbf{1}}\right|=\sqrt{(-2.5)^{2}+(-6)^{2}} \quad\left|\mathbf{v}_{2}\right|=\sqrt{(3 \sqrt{3})^{2}+(3)^{2}}$

$$
=\sqrt{6.25+36} \quad=\sqrt{27+9}
$$

$$
=\sqrt{42.25}
$$

$$
=\sqrt{36}
$$

$$
=6.5
$$

$$
=6
$$

c. For $\mathbf{v}_{1}: \theta_{r}=\tan ^{-1}\left|\frac{-6}{-2.5}\right| \quad$ For $\mathbf{v}_{2}: \theta_{r}=\tan ^{-1}\left|\frac{3}{3 \sqrt{3}}\right|$

$$
=\tan ^{-1}(2.4) \approx 67.4^{\circ}
$$

$$
=\tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)=30^{\circ}
$$

In QIII, $\theta_{1} \approx 247.4^{\circ}$.
In QI, $\theta_{2}=30^{\circ}$.
Now try Exercises 21 through 24 -

Figure 7.39

B. You've just learned how to represent a vector quantity graphically

EXAMPLE 4

Finding the Horizontal and Vertical Components of a Vector

The vector $\mathbf{v}=\langle a, b\rangle$ is in QIII, has a magnitude of $|\mathbf{v}|=21$, and forms an angle of 25° with the negative x-axis (Figure 7.38). Find the horizontal and vertical components of the vector, rounded to tenths.

Solution

Begin by graphing the vector and setting up the equations for its components. For $\theta_{r}=25^{\circ}$, $\theta=205^{\circ}$.

For the horizontal component:

$$
\begin{aligned}
a & =|\mathbf{v}| \cos \theta \\
& =21 \cos 205^{\circ} \\
& \approx-19
\end{aligned}
$$

Figure 7.38

For the vertical component:

$$
\begin{aligned}
b & =|\mathbf{v}| \sin \theta \\
& =21 \sin 205^{\circ} \\
& \approx-8.9
\end{aligned}
$$

With \mathbf{v} in QIII, its component form is approximately $\langle-19,-8.9\rangle$. As a check, we apply the Pythagorean theorem: $\sqrt{(-19)^{2}+(-8.9)^{2}} \approx 21 \checkmark$. See Figure 7.39.

Now try Exercises 25 through 30 -

C. Operations on Vectors and Vector Properties

The operations defined for vectors have a close-knit graphical representation. Consider a local park having a large pond with pathways around both sides, so that a park visitor can enjoy the view from either side. Suppose $\mathbf{v}=\langle 8,2\rangle$ is the position vector representing a person who decides to turn to the right at the pond, while $\mathbf{u}=\langle 2,6\rangle$ represents a person who decides to first turn left. At $(8,2)$ the first person

Figure 7.40

changes direction and walks to $(10,8)$ on the other side of the pond, while the second person arrives at $(2,6)$ and turns to head for $(10,8)$ as well. This is shown graphically in Figure 7.40 and demonstrates that (1) a parallelogram is formed (opposite sides equal and parallel), (2) the path taken is unimportant relative to the destination, and (3) the coordinates of the destination represent the sum of corresponding coordinates from the terminal points of \mathbf{u} and $\mathbf{v}:(2,6)+(8,2)=(2+8,6+2)=(10,8)$. In other words, the result of adding \mathbf{u} and \mathbf{v} gives the new position vector $\mathbf{u}+\mathbf{v}=\mathbf{w}$, called the resultant or the resultant vector. Note the resultant vector is a diagonal of the parallelogram formed. Geometrically or graphically, the addition of vectors can be viewed as a "tail-to-tip" combination of one with another, by shifting one vector (without changing its direction) so that its tail (initial point) is at the tip (terminal point) of the other vector. This is illustrated in Figures 7.41 through 7.43.

Figure 7.41
Given vectors u and v

Figure 7.42
Shift vector v

The subtraction of vectors can be understood as either $\mathbf{u}-\mathbf{v}$ or $\mathbf{u}+(-\mathbf{v})$. Since the location of a vector is unimportant relative to the information it carries, vector subtraction can be interpreted as the tip-to-tip diagonal of the parallelogram from vector addition. In Figures 7.41 to 7.43 , assume $\mathbf{u}=\langle 1,-5\rangle$ and $\mathbf{v}=\langle 9,-4\rangle$. Then $\mathbf{u}-\mathbf{v}=\langle 1,-5\rangle-\langle 9,-4\rangle=$ $\langle 1-9,-5+4\rangle$ giving the position vector $\langle-8,-1\rangle$. By repositioning this vector with its tail at the tip of \mathbf{v}, we note the new vector points directly at \mathbf{u}, forming the diagonal (see Figure 7.44). Scalar multiplication of vectors also has a graphical representation that corresponds to the geometric description given earlier.

Operations on Vectors

Given vectors $\mathbf{u}=\langle a, b\rangle, \mathbf{v}=\langle c, d\rangle$, and a scalar k,

1. $\mathbf{u}+\mathbf{v}=\langle a+c, b+d\rangle$
2. $\mathbf{u}-\mathbf{v}=\langle a-c, b-d\rangle$
3. $k \mathbf{u}=\langle k a, k b\rangle$ for $k \in \mathbb{R}$

If $k>0$, the new vector points in the same direction as \mathbf{u}. If $k<0$, the new vector points in the opposite direction as \mathbf{u}.

EXAMPLE 5 - Representing Operations on Vectors Graphically

Given $\mathbf{u}=\langle-3,-2\rangle$ and $\mathbf{v}=\langle 4,-6\rangle$ compute each of the following and represent the result graphically:
a. $-2 \mathbf{u}$
b. $\frac{1}{2} \mathbf{v}$
c. $-2 \mathbf{u}+\frac{1}{2} \mathbf{v}$

Note the relationship between part (c) and parts (a) and (b).
Solution

b. $\frac{1}{2} \mathbf{v}=\frac{1}{2}\langle 4,-6\rangle$
c. $-2 \mathbf{u}+\frac{1}{2} \mathbf{v}=\langle 6,4\rangle+\langle 2,-3\rangle$

$$
=\langle 2,-3\rangle
$$

$$
=\langle 8,1\rangle
$$

Now try Exercises 31 through 48

V C. You've just learned how to perform defined operations on vectors

The properties that guide operations on vectors closely resemble the familiar properties of real numbers. Note we define the zero vector $\mathbf{0}=\langle 0,0\rangle$ as one having no magnitude or direction.

Properties of Vectors

For vector quantities \mathbf{u}, \mathbf{v}, and \mathbf{w} and real numbers c and k,

1. $1 \mathbf{u}=\mathbf{u}$
2. $0 \mathbf{u}=\mathbf{0}=k \mathbf{0}$
3. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
4. $\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})$
5. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
6. $(c k) \mathbf{u}=c(k \mathbf{u})=k(c \mathbf{u})$
7. $\mathbf{u}+\mathbf{0}=\mathbf{u}$
8. $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
9. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
10. $(c+k) \mathbf{u}=c \mathbf{u}+k \mathbf{u}$

Proof of Property 3

For $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle$, we have

$$
\begin{aligned}
\mathbf{u}+\mathbf{v} & =\langle a, b\rangle+\langle c, d\rangle & & \text { sum of } \mathbf{u} \text { and } \mathbf{v} \\
& =\langle a+c, b+d\rangle & & \text { vector addition } \\
& =\langle c+a, d+b\rangle & & \text { commutative property } \\
& =\langle c, d\rangle+\langle a, b\rangle & & \text { vector addition } \\
& =\mathbf{v}+\mathbf{u} & & \text { result }
\end{aligned}
$$

Proofs of the other properties are similarly derived (see Exercises 89 through 97).

WORTHY OF NOTE

Earlier we stated, "Two vectors are equal if they have the same magnitude and direction." Note that this means two vectors are equal if their components are equal.

D. Algebraic Vectors, Unit Vectors, and i, j Form

While the bold, small case \mathbf{v} and the $\langle a, b\rangle$ notation for vectors has served us well, we now introduce an alternative form that is somewhat better suited to the algebra of vectors, and is used extensively in some of the physical sciences. Consider the vector $\langle 1,0\rangle$, a vector 1 unit in length extending along the x-axis. It is called the horizontal unit vector and given the special designation \mathbf{i} (not to be confused with the imaginary unit $i=\sqrt{-1}$). Likewise, the vector $\langle 0,1\rangle$ is called the vertical unit vector and given the designation \mathbf{j} (see Figure 7.45). Using scalar multiplication, the unit vector along the negative x-axis is $-\mathbf{i}$ and along the negative y-axis is $-\mathbf{j}$. Similarly, the vector $4 \mathbf{i}$ represents a position vector 4 units long along the x-axis, and $-5 \mathbf{j}$ represents a position vector 5 units long along the negative y-axis. Using these conventions, any nonquadrantal vector $\langle a, b\rangle$ can be written as a linear combination of \mathbf{i} and \mathbf{j}, with a and b expressed as multiples of \mathbf{i} and \mathbf{j}, respectively: $a \mathbf{i}+b \mathbf{j}$. These ideas can easily be generalized and applied to any vector.

Figure 7.45

Algebraic Vectors and \mathbf{i}, \mathbf{j} Form

For the unit vectors $\mathbf{i}=\langle 1,0\rangle$ and $\mathbf{j}=\langle 0,1\rangle$, any arbitrary vector $\mathbf{v}=\langle a, b\rangle$ can be written as a linear combination of \mathbf{i} and \mathbf{j} :

$$
\mathbf{v}=a \mathbf{i}+b \mathbf{j}
$$

Graphically, \mathbf{v} is being expressed as the resultant of a vector sum.

EXAMPLE $6>$ Finding the Horizontal and Vertical Components of Algebraic Vectors
Vector \mathbf{u} is in QII, has a magnitude of 15 , and makes an angle of 20° with the negative x-axis.
a. Graph the vector.
b. Find the horizontal and vertical components (round to one decimal place) then write \mathbf{u} in component form.
c. Write \mathbf{u} in terms of \mathbf{i} and \mathbf{j}.

Solution a. The vector is graphed in Figure 7.46.

Figure 7.47

Figure 7.48

Vertical Component

$$
\begin{aligned}
b & =|\mathbf{v}| \sin \theta \\
& =15 \sin 160^{\circ} \\
& \approx 5.1
\end{aligned}
$$

Figure 7.46
b. Horizontal Component

$$
\begin{aligned}
a & =|\mathbf{v}| \cos \theta \\
& =15 \cos 160^{\circ} \\
& \approx-14.1
\end{aligned}
$$

With the vector in QII, $\mathbf{u}=\langle-14.1,5.1\rangle$ in component form.
c. In terms of \mathbf{i} and \mathbf{j} we have $\mathbf{u}=-14.1 \mathbf{i}+5.1 \mathbf{j}$. See Figure 7.47.

Now try Exercises 49 through 62 -

Some applications require that we find a nonhorizontal, nonvertical vector one unit in length, having the same direction as a given vector \mathbf{v}. To understand how this is done, consider vector $\mathbf{v}=\langle 6,8\rangle$. Using the Pythagorean theorem we find $|\mathbf{v}|=10$, and can form a 6-8-10 triangle using the horizontal and vertical components (Figure 7.48). Knowing that similar triangles have sides that are proportional, we can find a unit vector in the same direction as \mathbf{v} by dividing all three sides by 10 , giving a triangle with sides $\frac{3}{5}, \frac{4}{5}$, and 1 . The new vector " \mathbf{u} " (along the hypotenuse) indeed points in the same direction since we have merely shortened \mathbf{v}, and is a unit vector since $\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2} \rightarrow \frac{9}{25}+\frac{16}{25}=1$. In retrospect, we have divided the components
of vector \mathbf{v} by its magnitude $|\mathbf{v}|$ (or multiplied components by the reciprocal of $|\mathbf{v}|$) to obtain the desired unit vector: $\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\langle 6,8\rangle}{10}=\left\langle\frac{6}{10}, \frac{8}{10}\right\rangle=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$. In general we
have the following:

Unit Vectors

For any nonzero vector $\mathbf{v}=\langle a, b\rangle=a \mathbf{i}+b \mathbf{j}$, the vector

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{a}{\sqrt{a^{2}+b^{2}}} \mathbf{i}+\frac{b}{\sqrt{a^{2}+b^{2}}} \mathbf{j}
$$

is a unit vector in the same direction as \mathbf{v}.
You are asked to verify this relationship in Exercise 100. In summary, for vector $\mathbf{v}=6 \mathbf{i}+8 \mathbf{j}$, we find $|\mathbf{v}|=\sqrt{6^{2}+8^{2}}=10$, so the unit vector pointing in the same direction is $\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{j}$. See Exercises 63 through 74 .

EXAMPLE 7 Using Unit Vectors to Find Coincident Vectors

Vectors \mathbf{u} and \mathbf{v} form the 37° angle illustrated in the figure. Find the vector \mathbf{w} (in red), which points in the same direction as \mathbf{v} (is coincident with \mathbf{v}) and forms the base of the right triangle shown.
Solution \downarrow Using the Pythagorean theorem we find $|\mathbf{u}| \approx 7.3$ and $|\mathbf{v}|=10$. Using the cosine of 37° the magnitude of \mathbf{w} is then $|\mathbf{w}| \approx 7.3 \cos 37^{\circ}$ or about 5.8. To ensure that \mathbf{w} will point in the same direction as \mathbf{v}, we simply multiply the 5.8 magnitude by the unit vector for $\mathbf{v}:|\mathbf{w}| \frac{\mathbf{v}}{|\mathbf{v}|} \approx(5.8) \frac{\langle 8,6\rangle}{10}=(5.8)\langle 0.8,0.6\rangle$, and we find that $\mathbf{w} \approx\langle 4.6,3.5\rangle$. As a check we use the Pythagorean theorem: $\sqrt{4.6^{2}+3.5^{2}}=$

V/ D. You've just learned how to represent a vector quantity algebraically and find unit vectors

WORTHY OF NOTE

In this context, \mathbf{w} is called the projection of \mathbf{u} on \mathbf{v}, an idea applied more extensively in Section 7.4

Now try Exercises 75 through 78

E. Vector Diagrams and Vector Applications

Applications of vectors are virtually unlimited, with many of these in the applied sciences. Here we'll look at two applications that are an extension of our work in this section. In Section 7.4 we'll see how vectors can be applied in a number of other creative and useful ways.

In Example 1, two tugboats were pulling on a barge to dislodge it from a sand bar, with the pulling force of each represented by a vector. Using our knowledge of vector components, vector addition, and resultant forces (a force exerted along the resultant), we can now determine the direction and magnitude of the resultant force if we know the angle formed by one of the vector forces and the barge.

EXAMPLE 8 - Solving an Application of Vectors—Force Vectors Acting on a Barge

Two tugboats are attempting to free a barge that is stuck on a sand bar, and are exerting the forces shown in Figure 7.49. Find the magnitude and direction of the resultant force.

Solution Begin by orienting the diagram on a coordinate grid (see Figure 7.50). Since the angle between the vectors is 90°, we know the acute angle formed by the first tugboat and the x-axis is 55°. With this information, we can write each vector in " i, j " form and add the vectors to find the resultant.
For vector \mathbf{v}_{1} (in QII):
Horizontal Component

Vertical Component

$$
\begin{aligned}
a & =\left|\mathbf{v}_{1}\right| \cos \theta \\
& =2000 \cos 125^{\circ} \\
& \approx-1147
\end{aligned}
$$

$$
\begin{aligned}
b & =\left|\mathbf{v}_{1}\right| \sin \theta \\
& =2000 \sin 125^{\circ} \\
& \approx 1638
\end{aligned}
$$

$$
\mathbf{v}_{1} \approx-1147 \mathbf{i}+1638 \mathbf{j}
$$

For vector \mathbf{v}_{2} (in QI):

Horizontal Component

Vertical Component

$$
\begin{array}{rlrl}
a & =\left|\mathbf{v}_{2}\right| \cos \theta & b & =\left|\mathbf{v}_{2}\right| \mathrm{si} \\
& =1500 \cos 35^{\circ} & & =1500 \\
& \approx 1229 & & \approx 860 \\
& & \mathbf{v}_{2} \approx 1229 \mathbf{i}+860 \mathbf{j}
\end{array}
$$

This gives a resultant of $\mathbf{v}_{1}+\mathbf{v}_{2} \approx(-1147 \mathbf{i}+1638 \mathbf{j})+$ $(1229 \mathbf{i}+860 \mathbf{j})=82 \mathbf{i}+2498 \mathbf{j}$, with magnitude $\left|\mathbf{v}_{1}+\mathbf{v}_{2}\right| \approx \sqrt{82^{2}+2498^{2}} \approx 2499 \mathrm{~N}$. To find the direction of the force, we have $\theta_{r}=\tan ^{-1}\left|\frac{2498}{82}\right|$, or about 88°.

It's worth noting that a single tugboat pulling at 88° with a force of 2499 N would have the same effect as the two tugs in the original diagram. In other words, the resultant vector $82 \mathbf{i}+2498 \mathbf{j}$ truly represents the "result" of the two forces.

Knowing that the location of a vector is unimportant enables us to model and solve a great number of seemingly unrelated applications. Although the final example concerns aviation, headings, and crosswinds, the solution process has a striking similarity to the "tugboat" example just discussed. In navigation, headings involve a single angle, which is understood to be the amount of rotation from due north in the clockwise direction. Several headings are illustrated in Figures 7.51 through 7.54.

Figure 7.51

Figure 7.52

Figure 7.53

Figure 7.54

In order to keep an airplane on course, the captain must consider the direction and speed of any wind currents, since the plane's true course (relative to the ground) will be affected. Both the plane and the wind can be represented by vectors, with the plane's true course being the resultant vector.

EXAMPLE $9>$ Solving an Application of Vectors—Airplane Navigation

An airplane is flying at 240 mph , heading 75°, when it suddenly encounters a strong, 60 mph wind blowing from the southwest, heading 10°. What is the actual course and speed of the plane (relative to the ground) as it flies through this wind?

Solution Begin by drawing a vector \mathbf{p} to represent the speed and direction of the airplane (Figure 7.55). Since the heading is 75°, the angle between the vector and the x-axis must be 15°. For convenience (and because location is unimportant) we draw it as a position vector. Note the vector \mathbf{w} representing the wind will be $\frac{60}{240}=\frac{1}{4}$ as long, and can also be drawn as a position vector-with an acute 80° angle. To find the resultant, we first find the components of each vector, then add. For vector \mathbf{w} (in QI):

$$
\begin{aligned}
& \text { Horizontal Component } \\
& \begin{array}{rlrl}
a & =|\mathbf{w}| \cos \theta & & \text { Vertical Component } \\
=60 \cos 80^{\circ} & & =|\mathbf{w}| \sin \theta \\
& \approx 10.4 & & =60 \sin 80^{\circ}
\end{array} \\
& \\
& \\
& \\
&
\end{aligned}
$$

For vector \mathbf{p} (in QI):

Horizontal Component

$$
\begin{array}{rlrl}
a & =|\mathbf{p}| \cos \theta & b & =|\mathbf{p}| \sin \theta \\
& =240 \cos 15^{\circ} \quad & =240 \sin 15^{\circ} \\
& =231.8 & & \approx 62.1 \\
& & \mathbf{p} \approx 231.8 \mathbf{i}+62.1 \mathbf{j}
\end{array}
$$

The resultant is $\mathbf{w}+\mathbf{p} \approx(10.4 \mathbf{i}+59.1 \mathbf{j})+(231.8 \mathbf{i}+62.1 \mathbf{j})=242.2 \mathbf{i}+121.2 \mathbf{j}$, with magnitude $|\mathbf{w}+\mathbf{p}| \approx \sqrt{(242.2)^{2}+(121.2)^{2}} \approx 270.8 \mathrm{mph}$ (see Figure 7.56).
To find the heading of the plane relative to the ground we use $\theta_{r}=\tan ^{-1}\left|\frac{121.2}{242.2}\right|$, with magnitude $|\mathbf{w}+\mathbf{p}| \approx \sqrt{(242.2)^{2}+(121.2)^{2}} \approx 270.8 \mathrm{mph}$ (see Figure 7.56).
To find the heading of the plane relative to the ground we use $\theta_{r}=\tan ^{-1}\left|\frac{121.2}{242.2}\right|$, which shows $\theta_{r} \approx 26.6^{\circ}$. The plane is flying on a course heading of $90^{\circ}-26.6^{\circ}=63.4^{\circ}$ at a speed of about 270.8 mph relative to the ground. Note the airplane has actually "increased speed" due to the wind.

Now try Exercises 83 through 86

WORTHY OF NOTE

Be aware that using the rounded values of intermediate calculations may cause slight variations in the final result. In Example 9, if we calculate $\mathbf{w}+\mathbf{p}=$ $\left(60 \cos 80^{\circ}+240 \cos 15^{\circ}\right) \mathbf{i}+$ $\left(60 \sin 80^{\circ}+240 \sin 15^{\circ}\right) \mathbf{j}$, then find $|\mathbf{w}+\mathbf{p}|$, the result is actually closer to 270.9 mph .

Vertical Component

Figure 7.57 also be solved using what is called the parallelogram method, which takes its name from the tail-to-tip vector addition noted earlier (See Figure 7.57). The resultant will be a diagonal of the parallelogram, whose magnitude can be found using the law of cosines. For Example 9, we note the parallelogram has two acute angles of $(80-15)^{\circ}=65^{\circ}$, and since the adjacent angles must sum to 180°, the obtuse angles must be 115°. Using the law of cosines,

Applications like those in Examples 8 and 9 can

$$
\begin{aligned}
|\mathbf{w}+\mathbf{p}|^{2} & =\mathbf{p}^{2}+\mathbf{w}^{2}-2 \mathbf{p w} \cos 115^{\circ} & & \text { law of cosines } \\
& =240^{2}+60^{2}-2(240)(60) \cos 115^{\circ} & & \text { substitute } 240 \text { for } \mathbf{p}, 60 \text { for } \mathbf{w} \\
& =73371.40594 & & \text { compute result } \\
|\mathbf{w}+\mathbf{p}| & \approx 270.9 & & \text { take square roots }
\end{aligned}
$$

Note this answer is slightly more accurate, since there was no rounding until the final stage.

TECHNOLOGY HIGHLIGHT

Vector Components Given the Magnitude and the Angle θ

The TABLE feature of a graphing calculator can help us find the horizontal and vertical components of any vector with ease. Consider the vector v shown in Figure 7.58 , which has a magnitude of 9.5 with $\theta=15^{\circ}$. Knowing this magnitude is used in both computations, first store 9.5 in storage location A: 9.5 STO \rightarrow ALPHA MATH . Next, enter the expressions for the horizontal and vertical components as Y_{1} and Y_{2} on the $Y=$ screen (see Figure 7.59). Note that storing the magnitude 9.5 in memory will prevent our having to alter Y_{1} and Y_{2} as we apply these ideas to other values of θ. As an additional check, note that Y_{3} recomputes the magnitude of the vector using the components generated in Y_{1} and Y_{2}. To access the function variables we press: VARS \square ENTER and select the desired function. Although our primary interest is the components for $\theta=15^{\circ}$, we use the TBLSET screen to begin at TbIStart $=0, \Delta \mathrm{Tbl}=5$, and have it count AUTOmatically, so we can make additional observations. Pressing 2nd GRAPH (TABLE) brings up the screen shown in Figure 7.60. As expected, at $\theta=0^{\circ}$ the horizontal component is the same as the magnitude and the vertical component is zero. At $\theta=15^{\circ}$ we have the components of the vector pictured in Figure 7.58, approximately $\langle 9.18,2.46\rangle$. If the angle were increased to $\theta=30^{\circ}$, a 30-60-90 triangle could be formed and one component should be $\sqrt{3}$ times the other. Sure enough, $\sqrt{3}(4.75) \approx 8.2272$.

Figure 7.59
Figure 7.58

Figure 7.60

X^{\prime}	'r'1	Y '
0	9.5	
5		92790
15	9.176	2.458
\%	- 98	자늬
$\underline{5}$		4.1414
-		

Exercise 1: If $\theta=45^{\circ}$, what would you know about the lengths of the horizontal and vertical components? Scroll down to $\theta=45^{\circ}$ to verify.
Exercise 2: If $\theta=60^{\circ}$, what would you know about the lengths of the horizontal and vertical components? Scroll down to $\theta=60^{\circ}$ to verify.
Exercise 3: We used column Y_{3} as a double check on the magnitude of \mathbf{v} for any given θ. What would this value be for $\theta=45^{\circ}$ and $\theta=60^{\circ}$? Press the right arrow \qquad to verify. What do you notice?

7.3 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. Measurements that can be described using a single number are called \qquad quantities.
2. \qquad quantities require more than a single number to describe their attributes. Examples are force, velocity, and displacement.
3. To represent a vector quantity geometrically we use a \qquad segment.
4. Two vectors are equal if they have the same
\qquad and \qquad _.
5. Discuss/Explain the geometric interpretation of vector addition. Give several examples and illustrations.
6. Describe the process of finding a resultant vector given the magnitude and direction of two arbitrary vectors \mathbf{u} and \mathbf{v}. Follow-up with an example.

DEVELOPING YOUR SKILLS

Draw the comparative geometric vectors indicated.

7. Three oceanic research vessels are traveling on a parallel course in the same direction, mapping the ocean floor. One ship is traveling at 12 knots (nautical miles per hour), one at 9 knots, and the third at 6 knots.
8. As part of family reunion activities, the Williams Clan is at a bowling alley and using three lanes. Being amateurs they all roll the ball straight on, aiming for the 1 pin. Grand Dad in Lane 1 rolls his ball at $50 \mathrm{ft} / \mathrm{sec}$. Papa in Lane 2 lets it rip at $60 \mathrm{ft} / \mathrm{sec}$, while Junior in Lane 3 can muster only $30 \mathrm{ft} / \mathrm{sec}$.
9. Vector \mathbf{v}_{1} is a geometric vector representing a boat traveling at 20 knots. Vectors $\mathbf{v}_{2}, \mathbf{v}_{3}$, and \mathbf{v}_{4} are geometric vectors representing boats traveling at 10 knots, 15 knots, and 25 knots, respectively. Draw these vectors given that \mathbf{v}_{2} and \mathbf{v}_{3} are traveling the same direction and parallel to \mathbf{v}_{1}, while \mathbf{v}_{4} is traveling in the opposite direction and parallel to \mathbf{v}_{1}.
10. Vector \mathbf{F}_{1} is a geometric vector representing a force of 50 N . Vectors $\mathbf{F}_{2}, \mathbf{F}_{3}$, and \mathbf{F}_{4} are geometric vectors representing forces of $25 \mathrm{~N}, 35 \mathrm{~N}$, and 65 N, respectively. Draw these vectors given that \mathbf{F}_{2} and \mathbf{F}_{3} are applied in the same direction and parallel to \mathbf{F}_{1}, while \mathbf{F}_{4} is applied in the opposite direction and parallel to \mathbf{F}_{1}.

Represent each situation described using geometric vectors.

11. Two tractors are pulling at a stump in an effort to clear land for more crops. The Massey-Ferguson is pulling with a force of 250 N , while the John Deere is pulling with a force of 210 N . The chains attached to the stump and each tractor form a 25° angle.
12. In an effort to get their mule up and plowing again, Jackson and Rupert are pulling on ropes attached to the mule's harness. Jackson pulls with 200 lb of force, while Rupert, who is really upset, pulls with 220 lb of force. The angle between their ropes is 16°.

Draw the vector v indicated, then graph the equivalent

 position vector.13. initial point $(-3,2)$; terminal point $(4,5)$
14. initial point $(-4,-4)$; terminal point $(2,3)$
15. initial point $(5,-3)$; terminal point $(-1,2)$
16. initial point $(1,4)$; terminal point $(-2,2)$

For each vector $\mathrm{v}=\langle a, b\rangle$ and initial point (x, y) given, find the coordinates of the terminal point and the length of the vector.
17. $\mathbf{v}=\langle 7,2\rangle$; initial point $(-2,-3)$
18. $\mathbf{v}=\langle-6,1\rangle$; initial point $(5,-2)$
19. $\mathbf{v}=\langle-3,-5\rangle$; initial point $(2,6)$
20. $\mathbf{v}=\langle 8,-2\rangle$; initial point $(-3,-5)$

For each position vector given, (a) graph the vector and name the quadrant, (b) compute its magnitude, and (c) find the acute angle θ formed by the vector and the nearest x-axis.
21. $\langle 8,3\rangle$
22. $\langle-7,6\rangle$
23. $\langle-2,-5\rangle$
24. $\langle 8,-6\rangle$

For Exercises 25 through 30, the magnitude of a vector is given, along with the quadrant of the terminal point and the angle it makes with the nearest x-axis. Find the horizontal and vertical components of each vector and write the result in component form.
25. $|\mathbf{v}|=12 ; \theta=25^{\circ}$; QII
26. $|\mathbf{u}|=25 ; \theta=32^{\circ}$; QIII
27. $|\mathbf{w}|=140.5 ; \theta=41^{\circ}$; QIV
28. $|\mathbf{p}|=15 ; \theta=65^{\circ}$; QI
29. $|\mathbf{q}|=10 ; \theta=15^{\circ}$; QIII
30. $|\mathbf{r}|=4.75 ; \theta=62^{\circ}$; QII

For each pair of vectors u and v given, compute (a) through (d) and illustrate the indicated operations graphically.
a. $\mathbf{u}+\mathbf{v}$
b. $\mathbf{u}-\mathrm{v}$
c. $2 \mathbf{u}+1.5 \mathbf{v}$
d. $\mathbf{u}-2 \mathbf{v}$
31. $\mathbf{u}=\langle 2,3\rangle ; \mathbf{v}=\langle-3,6\rangle$
32. $\mathbf{u}=\langle-3,-4\rangle ; \mathbf{v}=\langle 0,5\rangle$
33. $\mathbf{u}=\langle 7,-2\rangle ; \mathbf{v}=\langle 1,6\rangle$
34. $\mathbf{u}=\langle-5,-3\rangle ; \mathbf{v}=\langle 6,-4\rangle$
35. $\mathbf{u}=\langle-4,2\rangle ; \mathbf{v}=\langle 1,4\rangle$
36. $\mathbf{u}=\langle 7,3\rangle ; \mathbf{v}=\langle-7,3\rangle$

Use the graphs of vectors a, b, c, d, e, f, g, and h given to determine if the following statements are true or false.

37. $\mathbf{a}+\mathbf{c}=\mathbf{b}$
38. $\mathbf{f}-\mathbf{e}=\mathbf{g}$
39. $\mathbf{c}+\mathbf{f}=\mathbf{h}$
40. $\mathbf{b}+\mathbf{h}=\mathbf{c}$
41. $\mathbf{d}-\mathbf{e}=\mathbf{h}$
42. $\mathbf{d}+\mathbf{f}=\mathbf{0}$

For the vectors u and v shown, compute $u+v$ and $\mathbf{u}-\mathbf{v}$ and represent each result graphically.
43.

44.

45.

46.

47.

48.

Graph each vector and write it as a linear combination of i and j. Then compute its magnitude.
49. $\mathbf{u}=\langle 8,15\rangle$
50. $\mathbf{v}=\langle-5,12\rangle$
51. $\mathbf{p}=\langle-3.2,-5.7\rangle$
52. $\mathbf{q}=\langle 7.5,-3.4\rangle$

For each vector here, θ_{r} represents the acute angle formed by the vector and the x-axis. (a) Graph each vector, (b) find the horizontal and vertical components and write the vector in component form, and (c) write the vector in \mathbf{i}, \mathbf{j} form. Round to the nearest tenth.
53. \mathbf{v} in QIII, $|\mathbf{v}|=12, \theta_{r}=16^{\circ}$
54. \mathbf{u} in $\mathrm{QII},|\mathbf{u}|=10.5, \theta_{r}=25^{\circ}$
55. w in $\mathrm{QI},|\mathbf{w}|=9.5, \theta_{r}=74.5^{\circ}$
56. \mathbf{v} in QIV, $|\mathbf{v}|=20, \theta_{r}=32.6^{\circ}$

For vectors v_{1} and v_{2} given, compute the vector sums (a) through (d) and find the magnitude and direction of each resultant.
a. $\mathbf{v}_{1}+\mathbf{v}_{2}=\mathbf{p}$
b. $\mathbf{v}_{1}-\mathbf{v}_{2}=\mathbf{q}$
c. $2 \mathbf{v}_{1}+1.5 \mathbf{v}_{2}=\mathbf{r}$
d. $\mathbf{v}_{1}-2 \mathbf{v}_{2}=\mathbf{s}$
57. $\mathbf{v}_{1}=2 \mathbf{i}-3 \mathbf{j} ; \mathbf{v}_{2}=-4 \mathbf{i}+5 \mathbf{j}$
58. $\mathbf{v}_{1}=7.8 \mathbf{i}+4.2 \mathbf{j} ; \mathbf{v}_{2}=5 \mathbf{j}$
59. $\mathbf{v}_{1}=5 \sqrt{2} \mathbf{i}+7 \mathbf{j} ; \mathbf{v}_{2}=-3 \sqrt{2} \mathbf{i}-5 \mathbf{j}$
60. $\mathbf{v}_{1}=6.8 \mathbf{i}-9 \mathbf{j} ; \mathbf{v}_{2}=-4 \mathbf{i}+9 \mathbf{j}$
61. $\mathbf{v}_{1}=12 \mathbf{i}+4 \mathbf{j} ; \mathbf{v}_{2}=-4 \mathbf{i}$
62. $\mathbf{v}_{1}=2 \sqrt{3} \mathbf{i}-6 \mathbf{j} ; \mathbf{v}_{2}=-4 \sqrt{3} \mathbf{i}+2 \mathbf{j}$

Find a unit vector pointing in the same direction as the vector given. Verify that a unit vector was found.
63. $\mathbf{u}=\langle 7,24\rangle$
64. $\mathbf{v}=\langle-15,36\rangle$
65. $\mathbf{p}=\langle-20,21\rangle$
66. $\mathbf{q}=\langle 12,-35\rangle$
67. $20 \mathbf{i}-21 \mathbf{j}$
68. $-4 \mathbf{i}-7.5 \mathbf{j}$
69. $3.5 \mathbf{i}+12 \mathbf{j}$
70. $-9.6 \mathbf{i}+18 \mathbf{j}$
71. $\mathbf{v}_{1}=\langle 13,3\rangle$
72. $\mathbf{v}_{2}=\langle-4,7\rangle$
73. $6 \mathbf{i}+11 \mathbf{j}$
74. $-2.5 \mathbf{i}+7.2 \mathbf{j}$

Vectors p and q form the angle indicated in each diagram. Find the vector r that points in the same direction as q and forms the base of the right triangle shown.
75.

76.

77.

78.

WORKING WITH FORMULAS

The magnitude of a vector in three dimensions: $|\mathbf{v}|=\sqrt{a^{2}+b^{2}+c^{2}}$
79. The magnitude of a vector in three dimensional space is given by the formula shown, where the components of the position vector \mathbf{v} are $\langle a, b, c\rangle$. Find the magnitude of \mathbf{v} if $\mathbf{v}=\langle 5,9,10\rangle$.
80. Find a cardboard box of any size and carefully measure its length, width, and height. Then use the given formula to find the magnitude of the box's diagonal. Verify your calculation by direct measurement.

APPLICATIONS

81. Tow forces: A large van has careened off of the road into a ditch, and two tow trucks are attempting to winch it out. The cable from the first winch exerts a force of 900 lb , while the cable from the second exerts a force of 700 lb .
Determine the angle θ
 for the first tow truck that will bring the van directly out of the ditch and along the line indicated.
82. Projectile components: An arrow is shot into the air at an angle of 37° with an initial velocity of $100 \mathrm{ft} / \mathrm{sec}$. Compute the horizontal and vertical components of the representative vector.
83. Tow forces: Two tugboats are pulling a large ship into dry dock. The first is pulling with a force of 1250 N and the second with a force of 1750 N . Determine the angle θ for the second tugboat that will keep the ship moving straight forward and into the dock.

84. Projectile components: A football is punted (kicked) into the air at an angle of 42° with an initial velocity of $20 \mathrm{~m} / \mathrm{sec}$. Compute the horizontal and vertical components of the representative vector.
85. Headings and cross-winds: An airplane is flying at 250 mph on a heading of 75°. There is a strong, 35 mph wind blowing from the southwest on a heading of 10°. What is the true course and speed of the plane (relative to the ground)?
86. Headings and currents: A cruise ship is traveling at 16 knots on a heading of 300°. There is a strong water current flowing at 6 knots from the northwest on a heading of 120°. What is the true course and speed of the cruise ship?

The lights used in a dentist's office are multijointed so they can be configured in multiple ways to accommodate various needs. As a simple model, consider such a light that has the three joints, as illustrated. The first segment has a length of 45 cm , the second is 40 cm in length, and the third is 35 cm .
87. If the joints of the light are positioned so a straight line is formed and the angle made with the horizontal is 15°, determine the approximate coordinates of the joint nearest the light.

EXTENDING THE CONCEPT

For the arbitrary vectors $\mathbf{u}=\langle a, b\rangle, \mathrm{v}=\langle c, d\rangle$, and $\mathbf{w}=\langle e, f\rangle$ and the scalars c and k, prove the following vector properties using the properties of real numbers.
89. $1 \mathbf{u}=\mathbf{u}$
90. $0 \mathbf{u}=\mathbf{0}=k \mathbf{0}$
91. $\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})$
92. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
93. $(c k) \mathbf{u}=c(k \mathbf{u})=k(c \mathbf{u})$
94. $\mathbf{u}+\mathbf{0}=\mathbf{u}$
95. $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
96. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
97. $(c+k) \mathbf{u}=c \mathbf{u}+k \mathbf{u}$
98. Consider an airplane flying at 200 mph at a heading of 45°. Compute the groundspeed of the plane under the following conditions. A strong, $40-\mathrm{mph}$ wind is blowing (a) in the same direction; (b) in the direction of due north $\left(0^{\circ}\right)$; (c) in the direction heading 315°; (d) in the direction heading 270°; and (e) in the direction heading 225°. What did you notice about the groundspeed for (a) and (b)? Explain why the plane's speed is greater than 200 mph for (a) and (b), but less than 200 mph for the others.
88. If the first segment is rotated 75° above horizontal, the second segment -30° (below the horizontal), and the third segment is parallel to the horizontal, determine the approximate coordinates of the joint nearest the light.

MAINTAINING YOUR SKILLS

102. (2.3) Mt. Tortolas lies on the Argentine-Chilean border. When viewed from a distance of 5 mi , the angle of elevation to the top of the peak is 38°. How tall is Mount Tortolas? State your answer in feet.
103. (5.1) Prove the following is an identity:
$2 \sec ^{2} \theta=\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}$
104. (4.3) Graph the function $y=3 \sin \left(2 x-\frac{\pi}{4}\right)$ using a reference rectangle and the rule of fourths.
105. (1.4) Use fundamental identities to find the values of all six trig functions that satisfy the conditions, $\sec x=\frac{13}{12}$ and $\sin x>0$.
106. (7.2) The satellite Jupiter VII measures its distance from Denver and from Louisville using radio waves as shown. With an

Exercise 106 onboard sighting device, the satellite is able to determine that $\angle \mathbf{J}$ is 98°. How many miles is it from Denver to Louisville?
107. (4.3) Find the equation of the graph shown,
(a) given it is of the form $y=A \sin (B x \pm C)$ and (b) given it is of the form
 $y=A \cos (B x \pm C)$.

7.4 $\begin{aligned} & \text { Vector Applications and the Dot Product }\end{aligned}$

Learning Objectives
In Section 7.4 you will learn how to:
A. Use vectors to investigate forces in equilibrium
B. Find the components of one vector along another
C. Solve applications involving workD. Compute dot products and the angle between two vectorsE. Find the projection of one vector along another and resolve a vector into orthogonal components
F. Use vectors to develop an equation for nonvertical projectile motion and solve related applications

In Section 7.3 we introduced the concept of a vector, with its geometric, graphical, and algebraic representations. We also looked at operations on vectors and employed vector diagrams to solve basic applications. In this section we introduce additional ideas that enable us to solve a variety of new applications, while laying a strong foundation for future studies.

A. Vectors and Equilibrium

Much like the intuitive meaning of the word, vector forces are in equilibrium when they "counterbalance" each other. The simplest example is two vector forces of equal magnitude acting on the same point but in opposite directions. Similar to a tug-of-war with both sides equally matched, no one wins. If vector \mathbf{F}_{1} has a magnitude of 500 lb in the positive direction, $\mathbf{F}_{1}=\langle 500,0\rangle$ would need vector $\mathbf{F}_{2}=\langle-500,0\rangle$ to counter it. If the forces are nonquadrantal, we intuitively sense the components must still sum to zero, and that $\mathbf{F}_{3}=\langle 600,-200\rangle$ would need $\mathbf{F}_{4}=\langle-600,200\rangle$ for equilibrium to occur (see Figure 7.61). In other words, two vectors are in equilibrium when their sum is

Figure 7.61

the zero vector $\mathbf{0}$. If the forces have unequal magnitudes or do not pull in opposite directions, recall a resultant vector $\mathbf{F}=\mathbf{F}_{a}+\mathbf{F}_{b}$ can be found that represents the combined force. Equilibrium will then occur by adding the vector $-1(\mathbf{F})$ and this vector is sometimes called the equilibriant.

These ideas can be extended to include any number of vector forces acting on the same point. In general, we have the following:

Vectors and Equilibrium

Given vectors $\mathbf{F}_{1}, \mathbf{F}_{2}, \ldots, \mathbf{F}_{n}$ acting on a point P,

1. The resultant vector is $\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}+\cdots+\mathbf{F}_{n}$.
2. Equilibrium for these forces requires the vector $-1 \mathbf{F}$, where $\mathbf{F}+(-1 \mathbf{F})=\mathbf{0}$.

EXAMPLE $1>$ Finding the Equilibriant for Vector Forces

Two force vectors \mathbf{F}_{1} and \mathbf{F}_{2} act on the point P as shown. Find a force \mathbf{F}_{3} so equilibrium will occur, and sketch it on the grid.
Solution Begin by finding the horizontal and vertical components of each vector. For \mathbf{F}_{1} we have $\left\langle-4.5 \cos 64^{\circ}, 4.5 \sin 64^{\circ}\right\rangle \approx\langle-2.0,4.0\rangle$, and for \mathbf{F}_{2} we have $\left\langle 6.3 \cos 18^{\circ}, 6.3 \sin 18^{\circ}\right\rangle \approx$ $\langle 6.0,1.9\rangle$. The resultant vector is $\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}=\langle 4.0,5.9\rangle$, meaning equilibrium will occur by applying the force $-1 \mathbf{F}=\langle-4.0,-5.9\rangle$ (see figure).

Now try Exercises 7 through 20

B. The Component of u along v: comp u

As in Example 1, many simple applications involve position vectors where the angle and horizontal/vertical components are known or can easily be found. In these situations, the components are often quadrantal, that is, they lie along the x - and y-axes and meet at a right angle. Many other applications require us to find components of a vector that are nonquadrantal, with one of the components parallel to, or lying along a second vector. Given vectors \mathbf{u} and \mathbf{v}, as shown in Figure 7.62, we symbolize the component of \mathbf{u} that lies along \mathbf{v} as $\operatorname{comp}_{\mathbf{v}} \mathbf{u}$, noting its value is simply $|\mathbf{u}| \cos \theta$ since $\cos \theta=\frac{\operatorname{adj}}{\text { hyp }}=\frac{\operatorname{comp}_{\mathrm{v}} \mathrm{u}}{|\mathbf{u}|}$. As the diagrams further indicate, $\operatorname{comp}_{\mathrm{v}} \mathbf{u}=|\mathbf{u}| \cos \theta$ regardless

Figure 7.62

of how the vectors are oriented. Note that even when the components of a vector do not lie along the x - or y-axes, they are still orthogonal (meet at a 90° angle).

It is important to note that $c^{2} \mathrm{~m}_{\mathrm{v}} \mathrm{u}$ is a scalar quantity (not a vector), giving only the magnitude of this component (the vector projection of \mathbf{u} along \mathbf{v} is studied later in this section). From these developments we make the following observations regarding the angle θ at which vectors \mathbf{u} and \mathbf{v} meet:

Vectors and the Component of u Along v

Given vectors \mathbf{u} and \mathbf{v}, which meet at an angle θ,

1. $\operatorname{comp}_{\mathrm{v}} \mathrm{u}=|\mathbf{u}| \cos \theta$.
2. If $0^{\circ}<\theta<90^{\circ}, \operatorname{comp}_{\mathrm{v}} \mathrm{u}>0$; if $90^{\circ}<\theta<180^{\circ}$, $\operatorname{comp}_{\mathrm{v}} \mathrm{u}<0$.
3. If $\theta=0^{\circ}, \mathbf{u}$ and \mathbf{v} have the same direction and $\operatorname{comp}_{\mathbf{v}} \mathbf{u}=|\mathbf{u}|$.
4. If $\theta=90^{\circ}, \mathbf{u}$ and \mathbf{v} are orthogonal and comp $\mathbf{v} \mathbf{u}=0$.
5. If $\theta=180^{\circ}, \mathbf{u}$ and \mathbf{v} have opposite directions and comp ${ }_{v} \mathbf{u}=-|\mathbf{u}|$.

EXAMPLE 2 - Finding the Component of Vector G Along Vector v

Given the vectors \mathbf{G} and \mathbf{v} with $|\mathbf{G}|=850 \mathrm{lb}$ as shown in the figure, find comp ${ }_{\mathrm{v}} \mathrm{G}$.
Solution \downarrow Using $|\mathbf{G}| \cos \theta=\operatorname{comp}_{\mathrm{v}} \mathrm{G}$ we have $850 \cos 65^{\circ} \approx 359 \mathrm{lb}$. The component of \mathbf{G} along \mathbf{v} is about 359 pounds.

Now try Exercises 21 through 26

One interesting application of equilibrium and comp $\mathrm{c}_{\mathrm{v}} \mathrm{u}$ involves the force of gravity acting on an object placed on a ramp or an inclined plane. The greater the incline, the greater the tendency of the object to slide down the plane (for this study, we assume there is no friction between the object and the plane). While the force of gravity continues to pull straight downward (represented by the vector \mathbf{G} in Figure 7.63), \mathbf{G} is now the resultant of a force acting parallel to the plane along vector \mathbf{v} (causing the object to slide) and a force acting perpendicular to the plane along vector \mathbf{p} (causing the object to press against the plane). If we knew the component of \mathbf{G} along \mathbf{v} (indicated by the shorter, bold segment), we would know the force required to keep the object stationary as the two forces must be opposites. Note that \mathbf{G} forms a right angle with the base of the inclined plane (see Figure 7.64), meaning that α and β must be complementary angles. Also note that since the location of a vector is unimportant, vector \mathbf{p} has been repositioned for clarity.

Figure 7.63

Figure 7.64

EXAMPLE 3A 1 Finding Components of Force for an Object on a Ramp

A 850-lb object is sitting on a ramp that is inclined at 25°. Find the force needed to hold the object stationary (in equilibrium).
Solution $>$ Given $\alpha=25^{\circ}$, we know $\beta=65^{\circ}$. This means the component of \mathbf{G} along the inclined plane is $\operatorname{comp}_{\mathrm{v}} \mathrm{G}=850 \cos 65^{\circ}$ or about 359 lb . A force of 359 lb is required to keep the object from
 sliding down the incline (compare to Example 2).

EXAMPLE 3B

Solution
B. You've just learned how to find the components of one vector along another

A winch is being used to haul a 2000-lb block of granite up a ramp that is inclined at 15°. If the winch has a maximum tow rating of 500 lb , will it be successful?

We again need the component of \mathbf{G} along the inclined plane: $\operatorname{comp}_{\mathrm{v}} \mathrm{G}=2000 \cos 75^{\circ} \approx 518 \mathrm{lb}$. Since the capacity of the winch is exceeded, the attempt will likely not be successful.

Now try Exercises 27 through 30

C. Vector Applications Involving Work

In common, everyday usage, work is understood to involve the exertion of energy or force to move an object a certain distance. For example, digging a ditch is hard work and involves moving dirt (exerting a force) from the trench to the bankside (over a certain distance). In an office, moving a filing cabinet likewise involves work. If the filing cabinet is heavier, or the distance it needs to be moved is greater, more work is required to move it (Figures 7.65 and 7.66).

To determine how much work was done by each person, we need to quantify the concept. Consider a constant force \mathbf{F}, applied to move an object a distance D in the same direction as the force. In this case, work is defined as the product of the force applied and the distance the object is moved: Work $=$ Force \times Distance or $W=|\mathbf{F}| D$. If the force is given in pounds and the distance in feet, the amount of work is measured in a unit called foot-pounds (ft-lb). If the force is in newtons and the distance in meters, the amount of work is measured in Newton-meters (N-m).

EXAMPLE $4>$ Solving Applications of Vectors - Work and Force Parallel to the Direction of Movement

While rearranging the office, Carrie must apply a force of 55.8 N to relocate a filing cabinet 4.5 m , while Bernard applies a 77.5 N force to move a second cabinet 3.2 m . Who did the most work?

Solution For Carrie: $W=|\mathbf{F}| D$

$$
=251.1 \mathrm{~N}-\mathrm{m}
$$

$$
\text { For Bernard: } \begin{aligned}
W & =|\mathbf{F}| D \\
& =(77.5)(3.2) \\
& =248 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

Carrie did $251.1-248=3.1 \mathrm{~N}-\mathrm{m}$ more work than Bernard.

Now try Exercises 31 and 32

In many applications of work, the force \mathbf{F} is not applied parallel to the direction of movement, as illustrated in Figures 7.67 and 7.68.

In calculating the amount of work done, the general concept of force \times distance is preserved, but only the component of force in the direction of movement is used.

Figure 7.67

Figure 7.68

WORTHY OF NOTE

In the formula
$W=|\mathbf{F}| \cos \theta \times D$, observe that if $\theta=0^{\circ}$, we have the old formula for work when the force is applied in the direction of movement $W=\mathbf{F}$. If $\theta \neq 0^{\circ}, \cos \theta \neq 1$ and the "effective force" on the object becomes $|\mathbf{F}| \cos \theta$.

In terms of the component forces discussed earlier, if \mathbf{F} is a constant force applied at angle θ to the direction of movement, the amount of work done is the component of force along D times the distance the object is moved.

Force Vectors and Work W

Given a force \mathbf{F} applied in the direction of movement at the acute angle θ to an object, and D the distance it is moved,

$$
W=|\mathbf{F}| \cos \theta \times D
$$

EXAMPLE $5>$ Solving an Application of Vectors—Work and Force

 Applied at Angle $\boldsymbol{\theta}$ to the Direction of MovementTo help move heavy pieces of furniture across the floor, movers sometime employ a body harness similar to that used for a plow horse. A mover applies a constant $200-\mathrm{lb}$ force to drag a piano 100 ft down a long hallway and into another room.
 If the straps make a 40° angle with the direction of movement, find the amount of work performed.
Solution \quad The component of force in the direction of movement is $200 \cos 40^{\circ}$ or about 153 lb . The amount of work done is $W \approx 153(100)=15,300 \mathrm{ft}-\mathrm{lb}$.

Now try Exercises 35 through 40

These ideas can be generalized to include work problems where the component of force in the direction of motion is along a nonhorizontal vector v. Consider Example 6.

EXAMPLE 6 Solving an Application of Vectors —Forces Along a Nonhorizontal Vector

The force vector $\mathbf{F}=\langle 5,12\rangle$ moves an object along the vector $\mathbf{v}=\langle 15.44,2\rangle$ as shown. Find the amount of work required to move the object along the entire length of \mathbf{v}. Assume force is in pounds and distance in feet.
Solution To begin, we first determine the angle between the vectors. In this case we have $\theta=\tan ^{-1}\left|\frac{12}{5}\right|-\tan ^{-1}\left|\frac{2}{15.44}\right| \approx 60^{\circ}$.

V. C. You've just learned how to solve applications involving work

For $|\mathbf{F}|=13$ (5-12-13 triangle), the component of force in the direction of motion is comp ${ }_{\mathrm{v}} \mathrm{F}=13 \cos 60^{\circ}=6.5$. With $|\mathbf{v}|=\sqrt{(15.44)^{2}+(2)^{2}} \approx 15.57$, the work required is $W=\operatorname{comp}_{\mathrm{v}} \mathrm{F} \times|\mathrm{v}|$ or $(6.5)(15.57) \approx 101.2 \mathrm{ft}-\mathrm{lb}$.

Now try Exercises 41 through 44

D. Dot Products and the Angle Between Two Vectors

When the component of force in the direction of motion lies along a nonhorizontal vector (as in Example 6), the work performed can actually be computed more efficiently using an operation called the dot product. For any two vectors \mathbf{u} and \mathbf{v}, the dot product $\mathbf{u} \cdot \mathbf{v}$ is equivalent to $\operatorname{comp}_{\mathbf{v}} \mathbf{u} \times|\mathbf{v}|$, yet is much easier to compute (for the proof of $\mathbf{u} \cdot \mathbf{v}=\operatorname{comp}_{\mathbf{v}} \mathbf{u} \times|\mathbf{v}|$, see Appendix VI). The operation is defined as follows:

The Dot Product $\mathbf{u} \cdot \mathbf{v}$

Given vectors $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle, \mathbf{u} \cdot \mathbf{v}=\langle a, b\rangle \cdot\langle c, d\rangle=a c+b d$. In words, it is the real number found by taking the sum of corresponding component products.

EXAMPLE 7 Using the Dot Product to Determine Force Along a Nonhorizontal Vector

Verify the answer to Example 6 using the dot product $\mathbf{u} \cdot \mathbf{v}$.
Solution $>$ For $\mathbf{u}=\langle 5,12\rangle$ and $\mathbf{v}=\langle 15.44,2\rangle$, we have $\mathbf{u} \cdot \mathbf{v}=\langle 5,12\rangle \cdot\langle 15.44,2\rangle$ giving $5(15.44)+12(2)=101.2$. The result is 101.2, as in Example 6.

Now try Exercises 45 through 48

Note that dot products can also be used in the simpler case where the direction of motion is along a horizontal distance (Examples 4 and 5). While the dot product offers a powerful and efficient way to compute the work performed, it has many other applications; for example, to find the angle between two vectors. Consider that for any two vectors \mathbf{u} and $\mathbf{v}, \mathbf{u} \cdot \mathbf{v}=|\mathbf{u}| \cos \theta \times|\mathbf{v}|$, leading directly to $\cos \theta=\frac{\mathbf{u}}{|\mathbf{u}|} \cdot \frac{\mathbf{v}}{|\mathbf{v}|}$ (solve for
$\cos \theta$. $\cos \theta$).

In summary,

The Angle $\boldsymbol{\theta}$ Between Two Vectors

Given the nonzero vectors \mathbf{u} and \mathbf{v} :

$$
\cos \theta=\frac{\mathbf{u}}{|\mathbf{u}|} \cdot \frac{\mathbf{v}}{|\mathbf{v}|} \quad \text { and } \quad \theta=\cos ^{-1}\left(\frac{\mathbf{u}}{|\mathbf{u}|} \cdot \frac{\mathbf{v}}{|\mathbf{v}|}\right)
$$

In the special case where \mathbf{u} and \mathbf{v} are unit vectors, this $\operatorname{simplifies~to~} \cos \theta=\mathbf{u} \cdot \mathbf{v}$ since $|\mathbf{u}|=|\mathbf{v}|=1$. This relationship is shown in Figure 7.69. The dot product $\mathbf{u} \cdot \mathbf{v}$ gives comp $\mathbf{v} \mathbf{u} \times|\mathbf{v}|$, but $|\mathbf{v}|=1$ and the component of \mathbf{u} along \mathbf{v} is simply the adjacent side of a right triangle whose hypotenuse is 1 . Hence $\mathbf{u} \cdot \mathbf{v}=\cos \theta$.

EXAMPLE $8>$ Determining the Angle Between Two Vectors

Find the angle between the vectors given.
a. $\mathbf{u}=\langle-3,4\rangle ; \mathbf{v}=\langle 5,12\rangle$
b. $\mathbf{v}_{1}=2 \mathbf{i}-3 \mathbf{j} ; \mathbf{v}_{2}=6 \mathbf{i}+4 \mathbf{j}$

Solution
a. $\cos \theta=\frac{\mathbf{u}}{|\mathbf{u}|} \cdot \frac{\mathbf{v}}{|\mathbf{v}|}$
$=\left\langle\frac{-3}{5}, \frac{4}{5}\right\rangle \cdot\left\langle\frac{5}{13}, \frac{12}{13}\right\rangle$
$=\frac{-15}{65}+\frac{48}{65}$
$=\frac{33}{65}$
$\theta=\cos ^{-1}\left(\frac{33}{65}\right)$
$\approx 59.5^{\circ}$
b. $\cos \theta=\frac{\mathbf{v}_{1}}{\left|\mathbf{v}_{1}\right|} \cdot \frac{\mathbf{v}_{2}}{\left|\mathbf{v}_{2}\right|}$

$$
\begin{aligned}
& =\left\langle\frac{2}{\sqrt{13}}, \frac{-3}{\sqrt{13}}\right\rangle \cdot\left\langle\frac{6}{\sqrt{52}}, \frac{4}{\sqrt{52}}\right\rangle \\
& =\frac{12}{\sqrt{676}}+\frac{-12}{\sqrt{676}} \\
& =\frac{0}{26}=0 \\
\theta & =\cos ^{-1} 0 \\
& =90^{\circ}
\end{aligned}
$$

Note we have implicitly shown that if $\mathbf{u} \cdot \mathbf{v}=0$, then \mathbf{u} is orthogonal to \mathbf{v}. As with other vector operations, recognizing certain properties of the dot product will enable us to work with them more efficiently.

Properties of the Dot Product

Given vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} and a constant k,

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}$
3. $\mathbf{w} \cdot(\mathbf{u}+\mathbf{v})=\mathbf{w} \cdot \mathbf{u}+\mathbf{w} \cdot \mathbf{v}$
4. $k(\mathbf{u} \cdot \mathbf{v})=k \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot k \mathbf{v}$
5. $\mathbf{0} \cdot \mathbf{u}=\mathbf{u} \cdot \mathbf{0}=0$
6. $\frac{\mathbf{u}}{|\mathbf{u}|} \cdot \frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}$

Property 6 offers an alternative to unit vectors when finding $\cos \theta$-the dot product of the vectors can be computed first, and the result divided by the product of their magnitudes: $\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}$. Proofs of the first two properties are given here. Proofs of the others have a similar development (see Exercises 79 through 82). For any two nonzero vectors $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle$:

$$
\begin{aligned}
\text { Property 1: } \mathbf{u} \cdot \mathbf{v} & =\langle a, b\rangle \cdot\langle c, d\rangle \\
& =a c+b d \\
& =c a+d b \\
& =\langle c, d\rangle \cdot\langle a, b\rangle \\
& =\mathbf{v} \cdot \mathbf{u}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Property} 2: \mathbf{u} \cdot \mathbf{u} & =\langle a, b\rangle \cdot\langle a, b\rangle \\
& =a^{2}+b^{2} \\
& =|\mathbf{u}|^{2}
\end{aligned}
$$

(since $|\mathbf{u}|=\sqrt{a^{2}+b^{2}}$)

Using $\operatorname{comp}_{\mathrm{v}} \mathbf{u}=|\mathbf{u}| \cos \theta$ and $\mathbf{u} \cdot \mathbf{v}=\operatorname{comp}_{\mathrm{v}} \mathbf{u} \times|\mathbf{v}|$, we can also state the following relationships, which give us some flexibility on how we approach applications of the dot product.

For any two vectors $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle$:
(1) $\mathbf{u} \cdot \mathbf{v}=a c+b d \quad$ standard computation of the dot product
(2) $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}| \cos \theta \times|\mathbf{v}| \quad$ alternative computation of the dot product
(3) $\mathbf{u} \cdot \mathbf{v}=\operatorname{comp}_{\mathbf{v}} \mathbf{u} \times|\mathbf{v}| \quad$ replace $|\mathbf{u}| \cos \theta$ in (2) with comp \mathbf{u}
(4) $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}=\cos \theta \quad$ divide (2) by scalars $|\mathbf{u}|$ and $|\mathbf{v}|$
(5) $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}=$ comp $_{\mathrm{v}} \mathbf{u} \quad$ divide (3) by $|\mathbf{v}|$

E. Vector Projections and Orthogonal Components

In work problems and other simple applications, it is enough to find and apply comp $\mathrm{v}_{\mathrm{v}} \mathrm{u}$ (Figure 7.70). However, applications involving thrust and drag forces, tension and stress limits in a cable, electronic circuits, and cartoon animations often require that we also find the vector form of comp $_{v} \mathbf{u}$. This is called the projection of \mathbf{u} along \mathbf{v} or $\mathbf{p r o j}_{\mathbf{v}} \mathbf{u}$, and is a vector in the same direction of \mathbf{v} with magnitude comp $_{\mathrm{v}} \mathbf{u}$ (Figures 7.71 and 7.72).

Figure 7.71

Figure 7.72

By its design, the unit vector $\frac{\mathbf{v}}{|\mathbf{v}|}$ has a length of one and points in the same direction as \mathbf{v}, so $\mathbf{p r o j}_{\mathbf{v}} \mathbf{u}$ can be computed as $\operatorname{comp}_{\mathbf{v}} \mathbf{u} \times \frac{\mathbf{v}}{|\mathbf{v}|}$ (see Example 7, Section 7.3). Using equation (5) from page 365 and the properties shown earlier, an alternative formula for $\mathbf{p r o j}_{\mathbf{v}} \mathbf{u}$ can be found that is usually easier to simplify:

$$
\begin{aligned}
\mathbf{p r o j}_{\mathbf{v}} \mathbf{u} & =\operatorname{comp}_{\mathbf{v}} \mathbf{u} \times \frac{\mathbf{v}}{|\mathbf{v}|} & & \text { definition of a projection } \\
& =\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} \times \frac{\mathbf{v}}{|\mathbf{v}|} & & \text { substitute } \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} \text { for comp } \mathbf{v} \mathbf{u} \\
& =\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}} \times \mathbf{v} & & \text { rewrite factors }
\end{aligned}
$$

Vector Projections

Given vectors \mathbf{u} and \mathbf{v}, the projection of \mathbf{u} along \mathbf{v} is the vector

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}
$$

EXAMPLE 9A - Finding the Projection of One Vector Along Another

Given $\mathbf{u}=\langle-7,1\rangle$ and $\mathbf{v}=\langle 6,6\rangle$, find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
Solution \quad To begin, find $\mathbf{u} \cdot \mathbf{v}$ and $|\mathbf{v}|$.

$$
\left.\left.\begin{array}{rlrl}
\mathbf{u} \cdot \mathbf{v} & =\langle-7,1\rangle \cdot\langle 6,6\rangle & & |\mathbf{v}|
\end{array}\right)=\sqrt{6^{2}+6^{2}}\right)
$$

WORTHY OF NOTE

Note that $\mathbf{u}_{2}=\mathbf{u}-\mathbf{u}_{1}$ is the shorter diagonal of the parallelogram formed by the vectors \mathbf{u} and $\mathbf{u}_{1}=$ proj$_{\mathbf{v}} \mathbf{u}$. This can also be seen in the graph supplied for Example 9B.

A useful consequence of computing $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is we can then resolve the vector \mathbf{u} into orthogonal components that need not be quadrantal. One component will be parallel to \mathbf{v} and the other perpendicular to \mathbf{v} (the dashed line in the diagram in Example 9A). In general terms, this means we can write \mathbf{u} as the vector sum $\mathbf{u}_{1}+\mathbf{u}_{2}$, where $\mathbf{u}_{1}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ and $\mathbf{u}_{2}=\mathbf{u}-\mathbf{u}_{1}\left(\right.$ note $\left.\mathbf{u}_{1} \| \mathbf{v}\right)$.

Resolving a Vector into Orthogonal Components

Given vectors \mathbf{u}, \mathbf{v}, and $\mathbf{p r o j}_{\mathbf{v}} \mathbf{u}, \mathbf{u}$ can be resolved into the orthogonal components \mathbf{u}_{1} and \mathbf{u}_{2}, where $\mathbf{u}=\mathbf{u}_{1}+\mathbf{u}_{2}, \mathbf{u}_{1}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, and $\mathbf{u}_{2}=\mathbf{u}-\mathbf{u}_{1}$.

EXAMPLE 9B - Resolving a Vector into Orthogonal Components

Given $\mathbf{u}=\langle 2,8\rangle$ and $\mathbf{v}=\langle 8,6\rangle$, resolve \mathbf{u} into orthogonal components \mathbf{u}_{1} and \mathbf{u}_{2}, where $\mathbf{u}_{1} \| \mathbf{v}$ and $\mathbf{u}_{2} \perp \mathbf{v}$. Also verify $\mathbf{u}_{1} \perp \mathbf{u}_{2}$.

Solution Once again, begin by finding $\mathbf{u} \cdot \mathbf{v}$ and $|\mathbf{v}|$.

$$
\begin{aligned}
& \mathbf{u} \cdot \mathbf{v}=\langle 2,8\rangle \cdot\langle 8,6\rangle \\
& =16+48 \\
& =64 \quad=10 \\
& |\mathbf{v}|=\sqrt{8^{2}+6^{2}} \\
& =\sqrt{100} \\
& \operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v} \quad \text { projection of } \mathbf{u} \text { along } \mathbf{v} \\
& =\left(\frac{64}{100}\right)\langle 8,6\rangle \quad \begin{array}{l}
\text { substitute } 64 \text { for } \mathbf{u} \cdot \mathbf{v}, 10 \text { for } \\
\mid \mathbf{v}, \text { and }\langle 8,6\rangle \text { for } \mathbf{v}
\end{array} \\
& =\langle 5.12,3.84\rangle \text { result }
\end{aligned}
$$

E. You've just learned how to find the projection of one vector along another and resolve a vector into orthogonal components

For $\mathbf{p r o j}_{\mathbf{v}} \mathbf{u}=\mathbf{u}_{1}=\langle 5.12,3.84\rangle$, we have $\mathbf{u}_{2}=\mathbf{u}-\mathbf{u}_{1}=\langle 2,8\rangle-\langle 5.12,3.84\rangle=$ $\langle-3.12,4.16\rangle$. To verify $\mathbf{u}_{1} \perp \mathbf{u}_{2}$, we need only show $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=0$:

$$
\begin{aligned}
\mathbf{u}_{1} \cdot \mathbf{u}_{2} & =\langle 5.12,3.84\rangle \cdot\langle-3.12,4.16\rangle \\
& =(5.12)(-3.12)+(3.84)(4.16) \\
& =0 \checkmark
\end{aligned}
$$

Now try Exercises 67 through 72

F. Vectors and the Height of a Projectile

Our final application of vectors involves projectile motion. A projectile is any object that is thrown or projected upward, with no source of propulsion to sustain its motion. In this case, the only force acting on the projectile is gravity (air resistance is neglected), so the maximum height and the range of the projectile depend solely on its initial velocity and the angle θ at which it is projected. In a college algebra course, the equation $y=v_{0} t-16 t^{2}$ is developed to model the height in feet (at time t) of a projectile thrown vertically upward with initial velocity of v_{0} feet per second. Here, we'll modify the equation slightly to take into account that the object is now moving horizontally as well as vertically. As you can see in Figure 7.73, the vector v representing the initial velocity, as well as the velocity vector at other times, can easily be decomposed into horizontal and vertical components. This will enable us to find a more general relationship for the position of the projectile. For now, we'll let \mathbf{v}_{y} represent the component of velocity in the vertical (y) direction, and \mathbf{v}_{x} represent the component of velocity in the horizontal (x) direction. Since gravity acts only in the vertical (and negative) direction, the horizontal component of the velocity remains constant at $\mathbf{v}_{x}=|\mathbf{v}| \cos \theta$. Using $D=R T$, the x-coordinate of the projectile at time t is $x=(|\mathbf{v}| \cos \theta) t$. For the vertical component \mathbf{v}_{y} we use the projectile equation developed earlier, substituting $|\mathbf{v}| \sin \theta$ for v_{0}, since the angle of projection is no longer 90°. This gives the y-coordinate at time t as $y=v_{0} t-16 t^{2}=(|\mathbf{v}| \sin \theta) t-16 t^{2}$.

Figure 7.73

Projectile Motion

Given an object is projected upward from the origin with initial velocity $|\mathbf{v}|$ at angle θ. The x-coordinate of its position at time t is $x=(|\mathbf{v}| \cos \theta) t$. The y-coordinate of its position at time t is $y=(|\mathbf{v}| \sin \theta) t-16 t^{2}$.

EXAMPLE 10 Solving an Application of Vectors—Projectile Motion

An arrow is shot upward with an initial velocity of $150 \mathrm{ft} / \mathrm{sec}$ at an angle of 50°.
a. Find the position of the arrow after 2 sec .
b. How many seconds does it take to reach a height of 190 ft ?

Solution $-\quad$ a. Using the preceding equations yields these coordinates for its position at $t=2$:

$$
\begin{aligned}
x & =(|\mathbf{v}| \cos \theta) t \\
& =\left(150 \cos 50^{\circ}\right)(2) \\
& \approx 193
\end{aligned}
$$

$$
\begin{aligned}
y & =(|\mathbf{v}| \sin \theta) t-16 t^{2} \\
& =\left(150 \sin 50^{\circ}\right)(2)-16(2)^{2} \\
& \approx 166
\end{aligned}
$$

The arrow has traveled a horizontal distance of about 193 ft and is 166 ft high.
b. To find the time required to reach 190 ft in height, set the equation for the y coordinate equal to 190 , which yields a quadratic equation in t :

$$
\begin{aligned}
y & =(|\mathbf{v}| \sin \theta) t-16 t^{2} & & \text { equation for } y \\
190 & =\left(150 \sin 50^{\circ}\right) t-16 t^{2} & & \text { substitute } 150 \text { for }|\mathbf{v}| \text { and } 50^{\circ} \text { for } \theta \\
0 & \approx-16 t^{2}+115 t-190 & & 150 \sin 50 \approx 115
\end{aligned}
$$

Using the quadratic formula we find that $t \approx 2.6 \mathrm{sec}$ and $t \approx 4.6 \mathrm{sec}$ are solutions. This makes sense, since the arrow reaches a given height once on the way up and again on the way down, as long as it hasn't reached its maximum height.
F. You've just learned how to use vectors to develop an equation for nonvertical projectile motion and solve related applications

Now try Exercises 73 through 78

For more on projectile motion, see the Calculator Exploration and Discovery feature at the end of this chapter.

TECHNOLOGY HIGHLGHT

The Magnitude and Reference Angle of a Vector

As you've seen in this chapter, a vector can be written or named in the component form $\langle a, b\rangle$ or in terms of its magnitude and direction. The vector $\langle 5 \sqrt{3}, 5\rangle$ is equal to the position vector with magnitude 10 and angle $\theta=30^{\circ}$, since $10 \cos 30^{\circ}=5 \sqrt{3}$ and $10 \sin 30^{\circ}=5$. Many calculators use " r " (instead of $|\mathbf{v}|$) for the magnitude of a vector. When the magnitude and angle of a vector are written in the form (r, θ) we say the vector is written in polar form. Most graphing calculators offer features that enable a quick conversion from the component form $\langle a, b\rangle$ of a vector to its polar form (r, θ) and vice versa. On the TI-84 Plus, these features are accessed using 2nd APPS (ANGLE). As you can see from the screen in Figure 7.74, we are interested in options 5 through 8 (press the up arrow Δ to bring option 8 into view). Option 5:R $\boldsymbol{P r}$ (takes the Rectangular coordinates and returns the magnitude \mathbf{r} of the Polar Coordinates. Option 6:R P \boldsymbol{P} (returns the angle of the Polar form.
Option 7:P $>\mathbf{R x}($ takes the Polar form (r, θ) of the vector and returns the

Figure 7.74

horizontal component of the Rectangular form. As you might expect, option 8:P Ry(takes the Polar form (r, θ) of the vector and returns the vertical component of the Rectangular form. To verify the previous illustration for $\langle 5 \sqrt{3}, 5\rangle$, we CLEAR the home screen and press 2nd APPS 5 to access the desired option and enter the components as
5:R $\boldsymbol{P r}(5 \sqrt{3}, 5)$. Pressing ENTER gives a magnitude 10, as expected (Figure 7.75).

Exercise 1: Use your calculator to write the vector $\langle 5 \sqrt{2}, 5 \sqrt{2}\rangle$ in polar form. Check the result by converting manually.
Exercise 2: Use your calculator to write the vector $(r, \theta)=\langle 20 \sqrt{2}, 45\rangle$ in rectangular form. Check the result by converting manually.

7.4 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. Vector forces are in \qquad when they counterbalance each other. Such vectors have a sum of
2. The component of a vector \mathbf{u} along another vector \mathbf{v} is written notationally as \qquad , and is computed as \qquad -.
3. Two vectors that meet at a right angle are said to be
\qquad -.

Figure 7.75

4. The component of \mathbf{u} along \mathbf{v} is a \qquad quantity. The projection of \mathbf{u} along \mathbf{v} is a
5. Explain/Discuss exactly what information the dot product of two vectors gives us. Illustrate with a few examples.
6. Compare and contrast the projectile equations $y=v_{0} t-16 t^{2}$ and $y=\left(v_{0} \sin \theta\right) t-16 t^{2}$. Discuss similarities/differences using illustrative examples.

DEVELOPING YOUR SKILLS

The force vectors given are acting on a common point P. Find an additional force vector so that equilibrium takes place.
7. $\mathbf{F}_{1}=\langle-8,-3\rangle ; \mathbf{F}_{2}=\langle 2,-5\rangle$
8. $\mathbf{F}_{1}=\langle-2,7\rangle ; \mathbf{F}_{2}=\langle 5,3\rangle$
9. $\mathbf{F}_{1}=\langle-2,-7\rangle ; \mathbf{F}_{2}=\langle 2,-7\rangle ; \mathbf{F}_{3}=\langle 5,4\rangle$
10. $\mathbf{F}_{1}=\langle-3,10\rangle ; \mathbf{F}_{2}=\langle-10,3\rangle$; $\mathbf{F}_{3}=\langle-9,-2\rangle$
11. $\mathbf{F}_{1}=5 \mathbf{i}-2 \mathbf{j} ; \mathbf{F}_{2}=\mathbf{i}+10 \mathbf{j}$
12. $\mathbf{F}_{1}=-7 \mathbf{i}+6 \mathbf{j} ; \mathbf{F}_{2}=-8 \mathbf{i}-3 \mathbf{j}$
13. $\mathbf{F}_{1}=2.5 \mathbf{i}+4.7 \mathbf{j} ; \mathbf{F}_{2}=-0.3 \mathbf{i}+6.9 \mathbf{j} ; \mathbf{F}_{3}=-12 \mathbf{j}$
14. $\mathbf{F}_{1}=3 \sqrt{2} \mathbf{i}-2 \sqrt{3} \mathbf{j} ; \mathbf{F}_{2}=-2 \mathbf{i}+7 \mathbf{j}$;
$\mathbf{F}_{3}=5 \mathbf{i}+2 \sqrt{3} \mathbf{j}$
15.

16.

17. The force vectors \mathbf{F}_{1} and \mathbf{F}_{2} are simultaneously acting on a point P. Find a third vector \mathbf{F}_{3} so that equilibrium takes place if $\mathbf{F}_{1}=\langle 19,10\rangle$ and $\mathbf{F}_{2}=\langle 5,17\rangle$.
18. The force vectors $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3} are simultaneously acting on a point P. Find a fourth vector \mathbf{F}_{4} so that equilibrium takes place if $\mathbf{F}_{1}=\langle-12,2\rangle$, $\mathbf{F}_{2}=\langle-6,17\rangle$, and $\mathbf{F}_{3}=\langle 3,15\rangle$.
19. A new "Survivor" game involves a three-team tug-of-war. Teams 1 and 2 are pulling with the magnitude and at the angles indicated in the diagram. If the
 teams are currently in a stalemate, find the magnitude and angle of the rope held by team 3 .
20. Three cowhands have roped a wild stallion and are attempting to hold him steady. The first and second cowhands are pulling with the magnitude and at the
 angles indicated in the diagram. If the stallion is held fast by the three cowhands, find the magnitude and angle of the rope from the third cowhand.

Find the component of u along $v\left(\right.$ compute $\left.^{\operatorname{comp}} \mathbf{v} u\right)$ for the vectors u and v given.
21.

22.

23.

24.

25.

26.

Determine the missing component of static equilibrium.
27. A $500-\mathrm{lb}$ crate is sitting on a ramp that is inclined at 35°. Find the force needed to hold the object stationary.

28. A 1200-lb skiff is being pulled from a lake, using a boat ramp inclined at 20°. Find the minimum force needed to dock the
 skiff.
29. A $325-\mathrm{kg}$ carton is sitting on a ramp, held stationary by 225 kg of tension in a restraining rope. Find the ramps's angle of incline.

30. A heavy dump truck is being winched up a ramp with an 18° incline. Approximate the weight of
 the truck if the winch is working at its maximum capacity of 1.75 tons and the truck is barely moving.

Determine the amount of work done.

31. While rearranging the patio furniture, Rick has to push the weighted base of the umbrella stand 15 m . If he uses a constant force of 75 N , how much work did he do?
32. Vinny's car just broke down in the middle of the road. Luckily, a buddy is with him and offers to steer if Vinny will get out and push. If he pushes with a constant force of 185 N to move the car 30 m , how much work did he do?

WORKING WITH FORMULAS

The range of a projectile: $R=\frac{v^{2} \sin \theta \cos \theta}{16}$

33. The range of a projected object (total horizontal distance traveled) is given by the formula shown, where v is the initial velocity and θ is the angle at which it is projected. If an arrow leaves the bow traveling $175 \mathrm{ft} / \mathrm{sec}$ at an angle of 45°, what horizontal distance will it travel?
34. A collegiate javelin thrower releases the javelin at a 40° angle, with an initial velocity of about $95 \mathrm{ft} / \mathrm{sec}$. If the NCAA record is 280 ft , will this throw break the record? What is the smallest angle of release that will break this record? If the javelin were released at the optimum 45°, by how many feet would the record be broken?

APPLICATIONS

35. Plowing a field: An old-time farmer is plowing his field with a mule. How much work does the mule do in plowing one length of a field 300 ft long, if it pulls the plow with a constant force of 250 lb and the straps make a 30° angle with the horizontal?

36. Pulling a sled:

To enjoy a beautiful snowy day, a mother is pulling her three children on a sled
 along a level street. How much work (play) is done if the street is 100 ft long and she pulls with a constant force of 55 lb with the tow-rope making an angle of 32° with the street?
37. Tough-man contest: As part of a "tough-man" contest, participants are required to pull a bus along a level street for 100 ft . If one contestant did $45,000 \mathrm{ft}-\mathrm{lb}$ of work to accomplish the task and the straps used made an angle of 5° with the street, find the tension in the strap during the pull.
38. Moving supplies: An arctic explorer is hauling supplies from the supply hut to her tent, a distance of 150 ft , in a sled she is dragging behind her. If $9000 \mathrm{ft}-\mathrm{lb}$ of work was done and the straps used made an angle of 25° with the snow-covered ground, find the tension in the strap during the task.
39. Wheelbarrow rides: To break up the monotony of a long, hot, boring Saturday, a father decides to (carefully) give his kids a ride in a wheelbarrow. He applies a force of 30 N to move the "load" 100 m , then stops to rest. Find the amount of work done if the wheelbarrow makes an angle of 20° with level ground while in motion.
40. Mowing the lawn: A home owner applies a force of 40 N to push her lawn mower back and forth across the back yard. Find the amount of work done if the yard is 50 m long, requires 24 passes to get the lawn mowed, and the mower arm makes an angle of 39° with the level ground.

Force vectors: For the force vector \mathbf{F} and vector \mathbf{v} given, find the amount of work required to move an object along the entire length of \mathbf{v}. Assume force is in pounds and distance in feet.
41. $\mathbf{F}=\langle 15,10\rangle ; \mathbf{v}=\langle 50,5\rangle$
42. $\mathbf{F}=\langle-5,12\rangle ; \mathbf{v}=\langle-25,10\rangle$
43. $\mathbf{F}=\langle 8,2\rangle ; \mathbf{v}=\langle 15,-1\rangle$
44. $\mathbf{F}=\langle 15,-3\rangle ; \mathbf{v}=\langle 24,-20\rangle$
45. Use the dot product to verify the solution to Exercise 41.
46. Use the dot product to verify the solution to Exercise 42.
47. Use the dot product to verify the solution to Exercise 43.
48. Use the dot product to verify the solution to Exercise 44.

For each pair of vectors given, (a) compute the dot product $p \cdot q$ and (b) find the angle between the vectors to the nearest tenth of a degree.
49. $\mathbf{p}=\langle 5,2\rangle ; \mathbf{q}=\langle 3,7\rangle$
50. $\mathbf{p}=\langle-3,6\rangle ; \mathbf{q}=\langle 2,-5\rangle$
51. $\mathbf{p}=-2 \mathbf{i}+3 \mathbf{j} ; \mathbf{q}=-6 \mathbf{i}-4 \mathbf{j}$
52. $\mathbf{p}=-4 \mathbf{i}+3 \mathbf{j} ; \mathbf{q}=-6 \mathbf{i}-8 \mathbf{j}$
53. $\mathbf{p}=7 \sqrt{2} \mathbf{i}-3 \mathbf{j} ; \mathbf{q}=2 \sqrt{2} \mathbf{i}+9 \mathbf{j}$
54. $\mathbf{p}=\sqrt{2} \mathbf{i}-3 \mathbf{j} ; \mathbf{q}=3 \sqrt{2} \mathbf{i}+5 \mathbf{j}$

Determine if the pair of vectors given are orthogonal.
55. $\mathbf{u}=\langle 7,-2\rangle ; \mathbf{v}=\langle 4,14\rangle$
56. $\mathbf{u}=\langle-3.5,2.1\rangle ; \mathbf{v}=\langle-6,-10\rangle$
57. $\mathbf{u}=\langle-6,-3\rangle ; \mathbf{v}=\langle-8,15\rangle$
58. $\mathbf{u}=\langle-5,4\rangle ; \mathbf{v}=\langle-9,-11\rangle$
59. $\mathbf{u}=-2 \mathbf{i}-6 \mathbf{j} ; \mathbf{v}=9 \mathbf{i}-3 \mathbf{j}$
60. $\mathbf{u}=3 \sqrt{2} \mathbf{i}-2 \mathbf{j} ; \mathbf{v}=2 \sqrt{2} \mathbf{i}+6 \mathbf{j}$

Find $\operatorname{comp}_{\mathbf{v}} \mathbf{u}$ for the vectors \mathbf{u} and v given.
61. $\mathbf{u}=\langle 3,5\rangle ; \mathbf{v}=\langle 7,1\rangle$
62. $\mathbf{u}=\langle 3,5\rangle ; \mathbf{v}=\langle-7,1\rangle$
63. $\mathbf{u}=-7 \mathbf{i}+4 \mathbf{j} ; \mathbf{v}=-10 \mathbf{j}$
64. $\mathbf{u}=8 \mathbf{i} ; \mathbf{v}=10 \mathbf{i}+3 \mathbf{j}$
65. $\mathbf{u}=7 \sqrt{2} \mathbf{i}-3 \mathbf{j} ; \mathbf{v}=6 \mathbf{i}+5 \sqrt{3} \mathbf{j}$
66. $\mathbf{u}=-3 \sqrt{2} \mathbf{i}+6 \mathbf{j} ; \mathbf{v}=2 \mathbf{i}+5 \sqrt{5} \mathbf{j}$

For each pair of vectors given, (a) find the projection of u along $v(c o m p u t e ~ p r o j v u)$ and (b) resolve u into vectors u_{1} and u_{2}, where $u_{1} \| v$ and $u_{2} \perp v$.
67. $\mathbf{u}=\langle 2,6\rangle ; \mathbf{v}=\langle 8,3\rangle$
68. $\mathbf{u}=\langle-3,8\rangle ; \mathbf{v}=\langle-12,3\rangle$
69. $\mathbf{u}=\langle-2,-8\rangle ; \mathbf{v}=\langle-6,1\rangle$
70. $\mathbf{u}=\langle-4.2,3\rangle ; \mathbf{v}=\langle-5,-8.3\rangle$
71. $\mathbf{u}=10 \mathbf{i}+5 \mathbf{j} ; \mathbf{v}=12 \mathbf{i}+2 \mathbf{j}$
72. $\mathbf{u}=-3 \mathbf{i}-9 \mathbf{j} ; \mathbf{v}=5 \mathbf{i}-3 \mathbf{j}$

Projectile motion: A projectile is launched from a catapult with the initial velocity v_{0} and angle θ indicated. Find
(a) the position of the object after 3 sec and (b) the time required to reach a height of 250 ft .
73. $v_{0}=250 \mathrm{ft} / \mathrm{sec} ; \theta=60^{\circ}$
74. $v_{0}=300 \mathrm{ft} / \mathrm{sec} ; \theta=55^{\circ}$
75. $v_{0}=200 \mathrm{ft} / \mathrm{sec} ; \theta=45^{\circ}$
76. $v_{0}=500 \mathrm{ft} / \mathrm{sec} ; \theta=70^{\circ}$
77. At the circus, a "human cannon ball" is shot from a large cannon with an initial velocity of $90 \mathrm{ft} / \mathrm{sec}$ at an angle of 65° from the horizontal. How high is the acrobat after 1.2 sec ? How long until the acrobat is again at this same height?
78. A center fielder runs down a long hit by an opposing batter and whirls to throw the ball to the infield to keep the hitter to a double. If the initial velocity of the throw is $130 \mathrm{ft} / \mathrm{sec}$ and the ball is released at an angle of 30° with level ground, how high is the ball after 1.5 sec ? How long until the ball again reaches this same height?

EXTENDING THE CONCEPT

For the arbitrary vectors $\mathbf{u}=\langle a, b\rangle, \mathbf{v}=\langle c, d\rangle$, and $\mathbf{w}=\langle e, f\rangle$ and the scalar k, prove the following vector properties using the properties of real numbers.
79. $\mathbf{w} \cdot(\mathbf{u}+\mathbf{v})=\mathbf{w} \cdot \mathbf{u}+\mathbf{w} \cdot \mathbf{v}$
80. $k(\mathbf{u} \cdot \mathbf{v})=k \mathbf{u} \cdot \mathbf{v}=\mathrm{u} \cdot k \mathbf{v}$
81. $\mathbf{0} \cdot \mathbf{u}=\mathbf{u} \cdot \mathbf{0}=0$
82. $\frac{\mathbf{u}}{|\mathbf{u}|} \cdot \frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}$
83. As alternative to $\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}$ for finding the angle between two vectors, the equation $\tan \theta=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}$ can be used, where m_{1} and m_{2} represent the slopes of the vectors. Find the angle between the vectors $1 \mathbf{i}+5 \mathbf{j}$ and $5 \mathbf{i}+2 \mathbf{j}$ using each equation and comment on which you found more efficient. Then see if you can find a geometric connection between the two equations.
84. Use the equations for the horizontal and vertical components of the projected object's position to obtain the equation of trajectory $y=(\tan \theta) x-\frac{16}{v^{2} \cos ^{2} \theta} x^{2}$. This is a quadratic equation in x. What can you say about its graph? Include comments about the concavity, x-intercepts, maximum height, and so on.

MAINTAINING YOUR SKILLS

85. (7.1) Solve using the law of sines.

86. (7.2) Solve using the law of cosines.

87. (6.2) Draw the graph of $y=\sin ^{-1} x$ and state the domain and range of the function.
88. (6.4) Use a sum identity to find all solutions in $[0,2 \pi)$. Answer in exact form. $\sin (2 x) \cos x+\cos (2 x) \sin x=0.5$
89. (5.3) Use a half-angle identity to find the value of $\sin 15^{\circ}$ and $\cos 75^{\circ}$ in exact form. What do you notice?
90. (2.3) From the top of a $1000-\mathrm{ft}$ cliff to a hut in the valley below, the angle of depression is 27°. How far is the hut from the foot of the cliff?

SUMMARY AND CONCEPT REVIEW

SECTION 7.1 Oblique Triangles and the Law of Sines

KEY CONCEPTS

- In any triangle, the ratio of the sine of an angle to its opposite side is constant: $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.
- The law of sines requires a known angle, a side opposite this angle, and an additional side or angle, hence cannot be applied for SSS and SAS triangles.
- For AAS and ASA triangles, the law of sines yields a unique solution.
- When given two sides of a triangle and an angle opposite one of these sides (SSA), the number of solutions is in doubt, giving rise to the designation, "the ambiguous case."
- SSA triangles may have no solution, one solution, or two solutions, depending on the length of the side opposite the given angle.
- When solving triangles, always remember:
- The sum of all angles must be $180^{\circ}: \angle A+\angle B+\angle C=180^{\circ}$.
- The sum of any two sides must exceed the length of the remaining side.
- Longer sides are opposite larger angles.
- $k=\sin ^{-1} \theta$ has no solution for $|k|>1$.
- $k=\sin ^{-1} \theta$ has two solutions in $\left[0^{\circ}, 360^{\circ}\right)$ for $0<|k|<1$.

EXERCISES

Solve the following triangles.

3. A tree is growing vertically on a hillside. Find the height of the tree if it makes an angle of 110° with the hillside and the angle of elevation from the base of the hill to the top of the tree is 25° at a distance of 70 ft .

4. Find two values of θ that will make the equation true: $\frac{\sin \theta}{14}=\frac{\sin 50^{\circ}}{31}$.
5. Solve using the law of sines. If two solutions exist, find both (figure not drawn to scale).

6. Jasmine is flying her tethered, gas-powered airplane at a local park, where a group of bystanders is watching from a distance of 60 ft , as shown. If the tether has a radius of 35 ft and one of the bystanders walks away at an angle of 40°, will he get hit by the plane? What is the smallest angle of exit he could take (to the nearest whole) without being struck by Jasmine's plane?

SECTION 7.2 The Law of Cosines; the Area of a Triangle

KEY CONCEPTS

- The law of cosines is used to solve SSS and SAS triangles.
- The law of cosines states that in any triangle, the square of any side is equal to the sums of the squares of the other two sides, minus twice their product times the cosine of the included angle:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

- When using the law of cosines to solve a SSS triangle, always begin with the largest angle or the angle opposite the largest side.
- The area of a nonright triangle can be found using the following formulas. The choice of formula depends on the information given.
- two sides a and b with included angle C

$$
\mathcal{A}=\frac{1}{2} a b \sin C
$$

- two angles A and B with included side c

$$
\mathcal{A}=\frac{c^{2} \sin A \sin B}{2 \sin C}
$$

- three sides a, b, and c

$$
\begin{aligned}
& \text { with } s=\frac{a+b+c}{2} \\
& \mathcal{A}=\sqrt{s(s-a)(s-b)(s-c)}
\end{aligned}
$$

EXERCISES

7. Solve for $B: 9^{2}=12^{2}+15^{2}-2(12)(15) \cos B$
8. Use the law of cosines to find the missing side.
9. While preparing for the day's orienteering meet, Rick finds that the distances between the first three markers he wants to pick up are 1250 yd, 1820 yd, and 720 yd. Find the measure of each angle in the triangle formed so that Rick is sure to find all three markers.

10. The Great Pyramid of Giza, also known as Khufu's pyramid, is the sole remaining member of the Seven Wonders of the Ancient World. It was built as a tomb for the Egyptian pharaoh Khufu from the fourth dynasty. This square pyramid is made up of four isosceles triangles, each with a base of 230.0 m and a slant height of about 218.7 m . Approximate the total surface area of Khufu's pyramid (excluding the base).

SECTION 7.3 Vectors and Vector Diagrams

KEY CONCEPTS

- Quantities/concepts that can be described using a single number are called scalar quantities. Examples are time, perimeter, area, volume, energy, temperature, weight, and so on.
- Quantities/concepts that require more than a single number to describe their attributes are called vector quantities. Examples are force, velocity, displacement, pressure, and so on.
- Vectors can be represented using directed line segments to indicate magnitude and direction. The origin of the segment is called the initial point, with the arrowhead pointing to the terminal point. When used solely for comparative analysis, they are called geometric vectors.
- Two vectors are equal if they have the same magnitude and direction.
- Vectors can be represented graphically in the $x y$-plane by naming the initial and terminal points of the vector or by giving the magnitude and angle of the related position vector [initial point at $(0,0)$].
- For a vector with initial point $\left(x_{1}, y_{1}\right)$ and terminal point $\left(x_{2}, y_{2}\right)$, the related position vector can be written in the component form $\langle a, b\rangle$, where $a=x_{2}-x_{1}$ and $b=y_{2}-y_{1}$.
- For a vector written in the component form $\langle a, b\rangle, a$ is called the horizontal component and b is called the vertical component of the vector.
- For vector $\mathbf{v}=\langle a, b\rangle$, the magnitude of \mathbf{v} is $|\mathbf{v}|=\sqrt{a^{2}+b^{2}}$.
- Vector components can also be written in trigonometric form. See page 346.
- For $\mathbf{u}=\langle a, b\rangle, \mathbf{v}=\langle c, d\rangle$, and any scalar k, we have the following operations defined:

$$
\mathbf{u}+\mathbf{v}=\langle a+c, b+d\rangle \quad \mathbf{u}-\mathbf{v}=\langle a-c, b-d\rangle \quad k \mathbf{u}=\langle k a, k b\rangle \text { for } k \in \mathrm{R}
$$

If $k>0$, the new vector has the same direction as $\mathbf{u} ; k<0$, the opposite direction.

- Vectors can be written in algebraic form using \mathbf{i}, \mathbf{j} notation, where \mathbf{i} is an x-axis unit vector and \mathbf{j} is a y-axis unit vector. The vector $\langle a, b\rangle$ is written as a linear combination of \mathbf{i} and $\mathbf{j}:\langle a, b\rangle=a \mathbf{i}+b \mathbf{j}$.
- For any nonzero vector \mathbf{v}, vector $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}$ is a unit vector in the same direction as \mathbf{v}.
- In aviation and shipping, the heading of a ship or plane is understood to be the amount of rotation from due north in the clockwise direction.

EXERCISES

11. Graph the vector $\mathbf{v}=\langle 9,5\rangle$, then compute its magnitude and direction angle.
12. Write the vector $\mathbf{u}=\langle-8,3\rangle$ in \mathbf{i}, \mathbf{j} form and compute its magnitude and direction angle.
13. Approximate the horizontal and vertical components of the vector \mathbf{u}, where $|\mathbf{u}|=18$ and $\theta=52^{\circ}$.
14. Compute $2 \mathbf{u}+\mathbf{v}$, then find the magnitude and direction of the resultant: $\mathbf{u}=\langle-3,-5\rangle$ and $\mathbf{v}=\langle 2,8\rangle$.
15. Find a unit vector that points in the same direction as $\mathbf{u}=7 \mathbf{i}+12 \mathbf{j}$.
16. Without computing, if $\mathbf{u}=\langle-9,2\rangle$ and $\mathbf{v}=\langle 2,8\rangle$, will the resultant sum lie in Quadrant I or II? Why?
17. It's once again time for the Great River Race, a $\frac{1}{2}$-mi swim across the Panache River. If Karl fails to take the river's 1-mph current into account and he swims the race at 3 mph , how far from the finish marker does he end up when he makes it to the other side?
18. Two Coast Guard vessels are towing a large yacht into port. The first is pulling with a force of 928 N and the second with a force of 850 N . Determine the angle θ for the second Coast Guard vessel that will keep the ship moving safely in a straight line.

SECTION 7.4 Vector Applications and the Dot Product

KEY CONCEPTS

- Vector forces are in equilibrium when the sum of their components is the zero vector.
- When the components of vector \mathbf{u} are nonquadrantal, with one of its components lying along vector \mathbf{v}, we call this component the "component of \mathbf{u} along \mathbf{v} " or comp $\mathbf{v} \mathbf{u}$.
- For vectors \mathbf{u} and $\mathbf{v}, \operatorname{comp}_{\mathbf{v}} \mathbf{u}=|\mathbf{u}| \cos \theta$, where θ is the angle between \mathbf{u} and \mathbf{v}.
- Work done is computed as the product of the constant force \mathbf{F} applied, times the distance D the force is applied: $W=|\mathbf{F}| \cdot D$.
- If force is not applied parallel to the direction of movement, only the component of the force in the direction of movement is used in the computation of work. If \mathbf{u} is a force vector not parallel to the direction of vector \mathbf{v}, the equation becomes $W=\operatorname{comp}_{\mathrm{v}} \mathrm{u} \cdot|\mathbf{v}|$.
- For vectors $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle$, the dot product $\mathbf{u} \cdot \mathbf{v}$ is defined as the scalar $a c+b d$.
- The dot product $\mathbf{u} \cdot \mathbf{v}$ is equivalent to $\operatorname{comp}_{\mathbf{u}} \mathbf{v} \cdot|\mathbf{v}|$ and to $|\mathbf{u}||\mathbf{v}| \cos \theta$.
- The angle between two vectors can be computed using $\cos \theta=\frac{\mathbf{u}}{|\mathbf{u}|} \cdot \frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \mathbf{v} \mid}$.
- Given vectors \mathbf{u} and \mathbf{v}, the projection of \mathbf{u} along \mathbf{v} is the vector $\mathbf{p r o j}_{\mathbf{v}} \mathbf{u}$ defined by $\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}$.
- Given vectors \mathbf{u} and \mathbf{v} and $\mathbf{p r o j}_{\mathbf{v}} \mathbf{u}, \mathbf{u}$ can be resolved into the orthogonal components \mathbf{u}_{1} and \mathbf{u}_{2} where $\mathbf{u}=\mathbf{u}_{1}+\mathbf{u}_{2}, \mathbf{u}_{1}=\mathbf{p r o j} \mathbf{j}_{\mathbf{v}} \mathbf{u}$, and $\mathbf{u}_{2}=\mathbf{u}-\mathbf{u}_{1}$.
- The horizontal distance x a projectile travels in t seconds is $x=(|\mathbf{v}| \cos \theta) t$.
- The vertical height y of a projectile after t seconds is $y=(|\mathbf{v}| \sin \theta) t-16 t^{2}$, where $|\mathbf{v}|$ is the magnitude of the initial velocity, and θ is the angle of projection.

EXERCISES

19. For the force vectors \mathbf{F}_{1} and \mathbf{F}_{2} given, find the resultant and an additional force vector so that equilibrium takes place: $\mathbf{F}_{1}=\langle-20,70\rangle ; \mathbf{F}_{2}=\langle 45,53\rangle$.
20. Find comp ${ }_{v}$ u for $\mathbf{u}=-12 \mathbf{i}-16 \mathbf{j}$ and $\mathbf{v}=19 \mathbf{i}-13 \mathbf{j}$.
21. Find the component d that ensures vectors \mathbf{u} and \mathbf{v} are orthogonal: $\mathbf{u}=\langle 2,9\rangle$ and $\mathbf{v}=\langle-18, d\rangle$.
22. Compute $\mathbf{p} \cdot \mathbf{q}$ and find the angle between them: $\mathbf{p}=\langle-5,-2\rangle ; \mathbf{q}=\langle 4,-7\rangle$.
23. Given force vector $\mathbf{F}=\langle 50,15\rangle$ and $\mathbf{v}=\langle 85,6\rangle$, find the work required to move an object along the entire length of \mathbf{v}. Assume force is in pounds and distance in feet.
24. A $650-\mathrm{lb}$ crate is sitting on a ramp that is inclined at 40°. Find the force needed to hold the crate stationary.
25. An arctic explorer is hauling supplies from the supply hut to her tent, a distance of 120 ft , in a sled she is dragging behind her. If the straps used make an angle of 25° with the snow-covered ground and she pulls with a constant force of 75 lb , find the amount of work done.
26. A projectile is launched from a sling-shot with an initial velocity of $v_{0}=280 \mathrm{ft} / \mathrm{sec}$ at an angle of $\theta=50^{\circ}$. Find (a) the position of the object after 1.5 sec and (b) the time required to reach a height of 150 ft .

MIXED REVIEW

Solve each triangle using either the law of sines or law of cosines (whichever is appropriate) then find the area of each.

1. B

2.

3. Find the horizontal and vertical components of the vector \mathbf{u}, where $|\mathbf{u}|=21$ and $\theta=40^{\circ}$.
4. Compute $2 \mathbf{u}+\mathbf{v}$, then find the magnitude and direction of the resultant: $\mathbf{u}=\langle 6,-3\rangle, \mathbf{v}=\langle-2,8\rangle$.
5. Find the height of a flagpole that sits atop a hill, if it makes an angle of 122° with the hillside, and the angle of elevation between
 the side of the hill to the top of the flagpole is 35° at a distance of 120 ft .
6. A $900-\mathrm{lb}$ crate is sitting on a ramp that is inclined at 28°. Find the force needed to hold the object stationary.

7. A jet plane is flying at 750 mph on a heading of 30°. There is a strong, $50-\mathrm{mph}$ wind blowing from due south (heading 0°). What is the true course and speed of the plane (relative to the ground)?
8. Graph the vector $\mathbf{v}=\langle-8,5\rangle$, then compute its magnitude and direction.
9. Solve using the law of sines. If two solutions exist, find both.
10. A local Outdoors Club sponsors a treasure hunt activity for its members, and has placed surprise packages at the corners

11. As part of a lab demonstrating centrifugal and centripetal forces, a physics teacher is whirling a tethered weight above her head while a group of students looks on from a distance of 20 ft as shown. If the tether has a radius of 10 ft and a student departs
 of the triangular park shown. Find the measure of each angle to help club members find their way to the treasure. the weight? What is the smallest angle of exit the student could take (to the nearest whole) without being struck by the whirling weight?
12. Given the vectors $\mathbf{p}=\langle-5,2\rangle$ and $\mathbf{q}=\langle 4,7\rangle$, use the dot product $\mathbf{p} \cdot \mathbf{q}$ to find the angle between them.
13. On a large world map, if you connect the cities of Honolulu, Hawaii, San Francisco, California, and Tokyo, Japan, on a map, a triangle is formed. Find the distance (a) from Honolulu to Tokyo and (b) from Honolulu to San Francisco, given the angle at the Honolulu vertex is 108.4°, the angle at the San Francisco vertex is 45.5°, and the distance between Tokyo and San Francisco is 5142 mi.
14. Solve for A to the nearest hundredth of a degree: $12^{2}=5^{2}+10^{2}-2(5)(10) \cos A$
15. Two tractors are dragging a large, fallen tree into the brush pile that's being prepared for a large Fourth of July bonfire. The
 first is pulling with a force of 418 N and the second with a force of 320 N . Determine the angle θ for the second tractor that will keep the tree headed straight for the brush pile.
16. Find the unit vector pointing in the same direction as $11 \mathbf{i}-60 \mathbf{j}$.
17. Given the vectors $\mathbf{u}=-12 \mathbf{i}-16 \mathbf{j}$ and $\mathbf{v}=19 \mathbf{i}-13 \mathbf{j}$, find $\operatorname{comp}_{\mathbf{v}} \mathbf{u}$ and $\mathbf{p r o j}_{\mathbf{v}} \mathbf{u}$.
18. Find the area of the triangular park in Exercise 10.
19. Find the coordinates of the terminal point of the vector $\langle 5,-2\rangle$ given its initial point is $(-3,1)$.
20. Find the measure of the smallest angle in a triangle whose sides measure $1.1 \mathrm{~m}, 1.2 \mathrm{~m}$, and 1.3 m . Round to the nearest hundredth of a degree.

1. Within the Kilimanjaro Game Reserve, a fire is spotted by park rangers stationed in two towers known to be 10 mi apart. Using the line between them as a baseline, tower A reports the fire is at an angle of 39°, while tower B reports an angle of 68°. How far is the fire from the closer tower?
2. At the circus, Mac and Joe are watching a high-wire act from first-row seats on opposite sides of the center ring. Find the height of the performing acrobat at the instant Mac measures an angle of elevation of 68° while Joe measures an angle of 72°. Assume Mac and Joe are 100 ft apart.

3. Three rods are attached via two joints and shaped into a triangle. How many triangles can
 be formed if the angle at the joint B must measure 20° ? If two triangles can be formed, solve both.
4. Jackie and Sam are rounding up cattle in the brush country, and are communicating via walkietalkie. Jackie is at the water hole and Sam is at Dead Oak, which are 6 mi apart. Sam finds some strays and
 heads them home at the 32° indicated. (a) If the maximum range of Jackie's unit is 3 mi , will she be able to communicate with Sam as he heads home?
(b) If the maximum range were 4 mi , how far from Dead Oak is Sam when he is first contacted by Jackie?
5. As part of an All-Star competition, a group of soccer players (forwards) stand where shown in the diagram and attempt to hit a moving target with a twohanded overhead pass. If a player has a maximum effective range of approximately (a) 25 yd, can the target be hit? (b) about

Exercise 5

 28 yd, how many "effective" throws can be made? (c) 35 yd and the target is moving at $5 \mathrm{yd} / \mathrm{sec}$, how many seconds is the target within range?
6. The summit of Triangle Peak can only be reached from one side, using a trail straight up the side that is
 approximately 3.5 mi long. If the mountain is 5 mi wide at its base and the trail makes a 24° angle with the horizontal, (a) what is the approximate length of the opposing side?
(b) How tall is the peak (in feet)?
7. The Bermuda Triangle is generally thought to be the triangle formed by Miami, Florida, San Juan, Puerto Rico, and Bermuda itself. If the distances
 between these locations are the $1025 \mathrm{mi}, 1020 \mathrm{mi}$, and 977 mi indicated, find the measure of each angle and the area of the Bermuda Triangle.
8. A helicopter is flying at 90 mph on a heading of 40°. A $20-\mathrm{mph}$ wind is blowing from the NE on a heading of 190°. What is the true course and speed of the
helicopter relative to the ground? Draw a diagram as part of your solution.
9. Two mules walking along a river bank are pulling a heavy barge up river. The first is pulling with a force of 250 N and the second with a force of 210 N . Determine the angle θ for the second mule that will ensure the barge stays midriver and does not collide with the shore.

Exercise 10

10. Along a production line, various tools are attached to the ceiling with a multijointed arm so that workers can draw one down, position it for use, then move it up out of the way for the next tool (see the diagram). If the first segment is 100 cm , the second is 75 cm , and the third is 50 cm , determine the
 approximate coordinates of the last joint.
11. Three ranch hands have roped a run-away steer and are attempting to hold him steady. The first and second ranch hands are pulling with the magnitude and at the angles indicated in the diagram. If the steer is held fast by the efforts of all three, find
 the magnitude of the tension and angle of the rope from the third cowhand.
12. For $\mathbf{u}=\langle-9,5\rangle$ and $\mathbf{v}=\langle-2,6\rangle$, (a) compute the angle between \mathbf{u} and \mathbf{v}; (b) find the projection of \mathbf{u} along \mathbf{v} (find $\mathbf{p r o j}_{\mathbf{v}} \mathbf{u}$); and (c) resolve \mathbf{u} into vectors \mathbf{u}_{1} and \mathbf{u}_{2}, where $\mathbf{u}_{1} \| \mathbf{v}$ and $\mathbf{u}_{2} \perp \mathbf{v}$.
13. A lacrosse player flips a long pass to a teammate way down field who is near the opponent's goal. If the initial velocity of the pass is $110 \mathrm{ft} / \mathrm{sec}$ and the ball is released at an angle of 50° with level ground, how high is the ball after 2 sec ? How long until the ball again reaches this same height?
14. Write an expression for C in the law of cosines: $c^{2}=a^{2}+b^{2}-2 a b \cos C$
15. Given vector \mathbf{v} has initial point $(13,-9)$ and terminal point $(-7,-3)$, find (a) the equivalent position vector and (b) $|\mathbf{v}|$.
16. Find the unit vector pointing in the same direction as $\frac{5}{4} \mathbf{i}+\frac{3}{2} \mathbf{j}$.
17. A position vector \mathbf{v} in QII makes an angle of 35° with the x-axis and has magnitude of 8 . Write the vector in component form, rounded to the nearest tenth.
18. John is carefully pulling his boat out of the garage onto the driveway by hand. The driveway slopes downward at an angle of 4° and he is pulling the boat upward at an angle of 11°. (a) Write an equation for the work done if he pulls the boat $x \mathrm{ft}$ down the driveway, using a constant force of $p \mathrm{lb}$.
(b) Use the equation to determine how much work is done if he pulls the boat 20 ft with a constant force of 80 lb .

19. For the force vector $\mathbf{F}=-8 \mathbf{i}+7 \mathbf{j}$ and vector $\mathbf{v}=$ $2 \mathbf{i}+9 \mathbf{j}$, (a) find the angle between \mathbf{F} and \mathbf{v} and (b) find the amount of work required to move an object along the entire length of \mathbf{v}. Assume force is in pounds and distance in feet.
20. Due to its huge biodiversity, preserving Southeast Asia's Coral Triangle has become a top priority for conservationists. Stretching from the northern Philippines (P), south through Borneo (B) to the Lesser Sunda Islands (L), then eastward to the Solomon Islands (S), this area is home to over 75% of all coral species known. Use the triangle formulas from section 7.2 to help find the total area of this natural wonderland, given the dimensions shown.

GALCULATOR EXPLORATION AND DISCOVERY

Investigating Projectile Motion

There are two important aspects of projectile motion that were not discussed earlier, the range of the projectile and the optimum angle θ that will maximize this range. Both can be explored using the equations for the horizontal and vertical components of the projectile's position: horizontal $\rightarrow(|\mathbf{v}| \cos \theta) t$ and vertical $\rightarrow(|\mathbf{v}| \sin \theta) t-16 t^{2}$. In Example 10 of Section 7.4, an arrow was shot from a bow with initial velocity $|\mathbf{v}|=150 \mathrm{ft} / \mathrm{sec}$ at an angle of $\theta=50^{\circ}$. Enter the equations above on the $Y=$ screen as Y_{1} and Y_{2}, using these values (Figure 7.76). Then set up the TABLE using TblStart $=0$, $\Delta \mathrm{Tbl}=0.5$ and the AUTO mode. The resulting table is shown in Figure 7.77, where Y_{1} represents the horizontal distance the arrow has traveled, and Y_{2} represents the height of the arrow. To find the range of the arrow, scroll downward \square until the height $\left(\mathrm{Y}_{2}\right)$ shows a value that is less than or equal to zero (the arrow has hit the ground). As Figure 7.78 shows, this happens somewhere between $t=7$ and $t=7.5 \mathrm{sec}$. We could now change the TBLSET settings to TblStart $=0$ and $\Delta \mathrm{Tbl}=0.1$ to get a better approximation of the time the arrow is in flight (it's just less than 7.2 sec) and the horizontal range of the arrow (about 692.4 ft), but our main interest is how to compute these values exactly. We begin with the equation for the arrow's vertical position $y=(|\mathbf{v}| \sin \theta) t-16 t^{2}$. Since the object returns to Earth when $y=0$, we substitute 0 for y and factor out $t: 0=t(|\mathbf{v}| \sin \theta-16 t)$. Solving for t gives $t=0$ or $t=\frac{|\mathbf{v}| \sin \theta}{16}$. Since the component of velocity in the horizontal direction is $|\mathrm{v}| \cos \theta$, the basic distance relationship $D=\mathrm{r} \cdot \mathrm{t}$ gives the horizontal range of $R=|\mathbf{v}| \cos \theta \cdot \frac{|\mathbf{v}| \sin \theta}{16}$ or $\frac{|\mathbf{v}|^{2} \sin \theta \cos \theta}{16}$. Checking the values given for the arrow $\left(|\mathbf{v}|=150 \mathrm{ft} / \mathrm{sec}\right.$ and $\left.\theta=50^{\circ}\right)$ verifies the range is $R \approx 692.4$. But what about the maximum possible range for the arrow? Using $|\mathbf{v}|=150$ for R results in an equation in theta only: $R(\theta)=\frac{150^{2} \sin \theta \cos \theta}{16}$, which we can enter as Y_{3} and investigate for various θ. After carefully entering $R(\theta)$ as Y_{3} and resetting TBLSET to TblStart $=30$ and $\Delta \mathrm{Tbl}=5$, the TABLE in Figure 7.79 shows a maximum range of about 703 ft at 45°. Resetting TBLSET to $\mathrm{TblStart}=40$ and $\Delta \mathrm{Tbl}=1$ verifies this fact.

For each of the following exercises, find (a) the height of the projectile after 1.75 sec , (b) the maximum height of the projectile, (c) the range of the projectile, and (d) the number of seconds the projectile is airborne.
Exercise 1: A javelin is thrown with an initial velocity of $85 \mathrm{ft} / \mathrm{sec}$ at an angle of 42°.
Exercise 2: A cannon ball is shot with an initial velocity of $1120 \mathrm{ft} / \mathrm{sec}$ at an angle of 30°.
Exercise 3: A baseball is hit with an initial velocity of $120 \mathrm{ft} / \mathrm{sec}$ at an angle of 50°. Will it clear the center field fence, 10 ft high and 375 ft away?
Exercise 4: A field goal (American football) is kicked with an initial velocity of $65 \mathrm{ft} / \mathrm{sec}$ at an angle of 35°. Will it clear the crossbar, 10 ft high and 40 yd away?

STRENGTHENING CORE SKILLS

Vectors and Static Equilibrium

In Sections 7.3 and 7.4, the concepts of vector forces, resultant forces, and equilibrium were studied extensively. A nice extension of these concepts involves what is called static equilibrium. Assuming that only coplanar forces are acting on an object, the object is said to be in static equilibrium if the sum of all vector forces acting on it is $\mathbf{0}$. This implies that the object is stationary, since the forces all counterbalance each other. The methods involved are simple and direct, with a wonderful connection to the systems of equations you've likely seen previously. Consider the following example.

Illustration $1 \triangleright$ As part of their training, prospective FBI agents must move hand-over-hand across a rope strung between two towers. An agent-in-training weighing 180 lb is two-thirds of the way across, causing the rope to deflect from the horizontal at the angles shown. What is the tension in each part of the rope at this point?
Solution $>$ We have three concurrent forces acting on the point where the agent grasps the rope. Begin by drawing a vector diagram and computing the components of each force, using the \mathbf{i}, \mathbf{j} notation. Note that $\mathbf{w}=-180 \mathbf{j}$.

$$
\begin{aligned}
\mathbf{u} & =-|\mathbf{u}| \cos \left(9^{\circ}\right) \mathbf{i}+|\mathbf{u}| \sin \left(9^{\circ}\right) \mathbf{j} \\
& \approx-0.9877|\mathbf{u}| \mathbf{i}+0.1564|\mathbf{u}| \mathbf{j} \\
\mathbf{v} & =|\mathbf{v}| \cos \left(14^{\circ}\right) \mathbf{i}+|\mathbf{v}| \sin \left(14^{\circ}\right) \mathbf{j} \\
& \approx 0.9703|\mathbf{v}| \mathbf{i}+0.2419|\mathbf{v}| \mathbf{j}
\end{aligned}
$$

For equilibrium, all vector forces must sum to the zero vector: $\mathbf{u}+\mathbf{v}+\mathbf{w}=0$, which results in the following equation: $-0.9877|\mathbf{u} \mathbf{i}+0.1564| \mathbf{u}|\mathbf{j}+0.9703| \mathbf{v} \mathbf{i}+0.2419 \mid \mathbf{v} \mathbf{j}-180 \mathbf{j}=0 \mathbf{i}+0 \mathbf{j}$. Factoring out \mathbf{i} and \mathbf{j} from the left-hand side yields $(-0.9877|\mathbf{u}|+0.9703 \mid \mathbf{v}) \mathbf{i}+(0.1564|\mathbf{u}|+0.2419|\mathbf{v}|-180) \mathbf{j}=0 \mathbf{i}+0 \mathbf{j}$. Since any two vectors are equal only when corresponding components are equal, we obtain a system in the two variables

$$
|\mathbf{u}| \text { and }|\mathbf{v}|:\left\{\begin{array}{r}
-0.9877|\mathbf{u}|+0.9703|\mathbf{v}|)=0 \\
0.1564|\mathbf{u}|+0.2419|\mathbf{v}|-180=0
\end{array}\right.
$$

Solving the system using matrix equations and a calculator (or any desired method), gives $|\mathbf{u}| \approx 447 \mathrm{lb}$ and $|\mathbf{v}| \approx 455 \mathrm{lb}$.
At first it may seem surprising that the vector forces (tension) in each part of the rope are so much greater than the 180 lb the agent weighs. But with a $180-\mathrm{lb}$ object hanging from the middle of the rope, the tension required to keep the rope taut (with small angles of deflection) must be very great. This should become more obvious to you after you work Exercise 2.
Exercise 1: A $500-\mathrm{lb}$ crate is suspended by two ropes attached to the ceiling rafters. Find the tension in each rope.
Exercise 2: Two people team up to carry a $150-\mathrm{lb}$ weight by passing a rope through an eyelet in the object. Find the tension in each rope.
Exercise 3: Referring to Illustration 1, if the rope has a tension limit of 600 lb (before it
 snaps), can a $200-\mathrm{lb}$ agent make it across?

CUMULATIVE REVIEW CHAPTERS 1-7

1. Solve using a standard triangle.

$a=20, b=$ \qquad $c=$
$\alpha=30^{\circ}, \beta=$ \qquad , $\gamma=$
\qquad
2. Solve using trigonometric ratios.
$a \approx$ \qquad $b \approx$ \qquad $c=82$
$\alpha=$ \qquad , $\beta=63^{\circ}, \gamma=$ \qquad
3. Solve for $t: A \cos (B t+C)-D=0$
4. For a complex number $a+b i$, (a) verify the sum of a complex number and its conjugate is a real number, and (b) verify the product of a complex number and its conjugate is a real number.
5. State the value of all six trig functions given $\tan \alpha=-\frac{3}{4}$ with $\cos \alpha>0$.
6. Sketch the graph of $y=3 \cos \left(\frac{\pi}{6} x-\frac{\pi}{3}\right)$ using a reference rectangle and the rule of fourths.
7. State each related identity:
a. $\sin (2 \alpha)$
b. $\sin \left(\frac{\alpha}{2}\right)$
c. $\sin (\alpha+\beta)$
8. State the domain and range of each function:
a. $y=\sin ^{-1} t$
b. $y=\cos ^{-1} t$
c. $y=\tan ^{-1} t$
9. Given $\cos 53^{\circ} \approx 0.6$ and $\cos 72^{\circ} \approx 0.3$, approximate the value of $\cos 19^{\circ}$ and $\cos 125^{\circ}$ without using a calculator.
10. Find all real values of x that satisfy the equation $\sqrt{3}+2 \sin (2 x)=2 \sqrt{3}$. State the answer in degrees.
11. The approximate number of daylight hours for Juneau, Alaska ($58^{\circ} \mathrm{N}$ latitude), is given in the table. Use the data to find an appropriate regression equation, then answer the following:
a. Approximately how many daylight hours were there on April $15(t=4.5)$?
b. Approximate the dates between which there are over 15 hr of daylight.
Source: Alaskan Alternative Energy @ www.absak.com/design/sunhours.

Month (Jan \rightarrow 1)	Daylight (hours)	Month (Jan \rightarrow 1)	Daylight (hours)
1	6.5	7	18.1
2	8.3	8	16.5
3	10.5	9	14.0
4	13.2	10	11.5
5	15.7	11	9.0
6	17.8	12	6.9

12. Verify that $\csc ^{2} t+\sec ^{2} t=\csc ^{2} t \sec ^{2} t$ is an identity.
13. Verify that the following is an identity:

$$
\frac{2 \cos ^{2} \theta}{\csc ^{2} \theta}+\frac{2 \sin ^{2} \theta}{\sec ^{2} \theta}=\sin ^{2}(2 \theta)
$$

Solve each triangle using the law of sines or the law of cosines, whichever is appropriate.
14. A

15.

16. A mountain climber has slipped off the edge of a cliff, and his partner is attempting to pull him 30 ft up the face of the cliff and back onto the plateau. If the rope makes an angle of 10° with the plateau and she must pull with a force of 200 lb to make headway, how much work is done to save the fallen climber?
17. A $900-\mathrm{lb}$ crate is sitting on a ramp that is inclined at 28°. Find the force needed to hold the object stationary.

Exercise 17

18. A jet plane is flying at 750 mph on a heading of 30°. There is a strong, $50-\mathrm{mph}$ wind blowing from due south (heading of 0°). What is the true course and speed of the plane (relative to the ground)?
19. Use the dot product to find the angle θ between the vectors $\langle-3,8\rangle$ and $\langle 7,6\rangle$.
20. The graph given is of the form $y=A \sin (B x \pm C)$. Find the values of A, B, and C.

Exercise 20

Trigonometric Connections to Algebra

CHAPTER OUTLINE

8.1 Complex Numbers 384

8.2 Complex Numbers in Trigonometric Form 394

8.3 De Moivre's Theorem and the Theorem on nth Roots
 406

8.4 Polar Coordinates, Equations, and Graphs 416
8.5 Parametric Equations and Graphs 432

CHAPTER CONNECTIONS

While surprising to some, there are a number of "natural connections" between a study of algebra and a study of trigonometry. As the study of complex numbers matured, it was found that they could be represented in trigonometric form, leading to vastly simplified methods of computing powers and roots. Trigonometry also offers essential alternatives to using points (x, y) for graphing algebraic relations. While the use of rectangular coordinates is much more widely known, polar graphs and graphs using parametric equations bring a higher level of simplicity in certain instances where a graph is required. Cathedral windows like the one shown here are just one place where the beauty and intricacy of polar graphs can be appreciated.

- The graphs shown appear as Exercises 73 and 81 in Section 8.4

8.1
 Complex Numbers

Learning Objectives

In Section 8.1 you will learn how to:A. Identify and simplify imaginary and complex numbersB. Add and subtract complex numbersC. Multiply complex numbers and find powers of iD. Divide complex numbers

WORTHY OF NOTE

It was René Descartes (in 1637) who first used the term imaginary to describe these numbers; Leonhard Euler (in 1777) who introduced the letter i to represent $\sqrt{-1}$; and Carl F. Gauss (in 1831) who first used the phrase complex number to describe solutions that had both a real number part and an imaginary part. For more on complex numbers and their story, see www.mhhe.com/coburn

For centuries, even the most prominent mathematicians refused to work with equations like $x^{2}+1=0$. Using the principal of square roots gave the "solutions" $x=\sqrt{-1}$ and $x=-\sqrt{-1}$, which they found baffling and mysterious, since there is no real number whose square is -1 . In this section, we'll see how this "mystery" was finally resolved.

A. Identifying and Simplifying Imaginary and Complex Numbers

The equation $x^{2}=-1$ has no real solutions, since the square of any real number is non-negative. But if we apply the principle of square roots we get $x=\sqrt{-1}$ and $x=-\sqrt{-1}$, which seem to check when substituted into the original equation:

$$
\begin{align*}
x^{2}+1 & =0 & & \text { original equation } \\
(\sqrt{-1})^{2}+1 & =0 & & \text { substitute } \sqrt{-1} \text { for } x \tag{1}\\
-1+1 & =0 \checkmark & & \text { answer "checks" } \\
(-\sqrt{-1})^{2}+1 & =0 & & \text { substitute }-\sqrt{-1} \text { for } x \tag{2}\\
-1+1 & =0 \sqrt{x} & & \text { answer "checks" }
\end{align*}
$$

This observation likely played a part in prompting Renaissance mathematicians to study such numbers in greater depth, as they reasoned that while these were not real number solutions, they must be solutions of a new and different kind. Their study eventually resulted in the introduction of the set of imaginary numbers and the imaginary unit i, as follows.

Imaginary Numbers and the Imaginary Unit

- Imaginary numbers are those of the form $\sqrt{-k}$, where k is a positive real number.
- The imaginary unit i represents the number whose square is -1 :

$$
i^{2}=-1 \text { and } i=\sqrt{-1}
$$

As a convenience to understanding and working with imaginary numbers, we rewrite them in terms of i, allowing that the product property of radicals $(\sqrt{A B}=\sqrt{A} \sqrt{B})$ still applies if only one of the radicands is negative. For $\sqrt{-3}$, we have $\sqrt{-1 \cdot 3}=\sqrt{-1} \sqrt{3}=i \sqrt{3}$. In general, we simply state the following property.

Rewriting Imaginary Numbers

- For any positive real number k,

$$
\sqrt{-k}=i \sqrt{k}
$$

For $\sqrt{-20}$ we have

$$
\begin{aligned}
\sqrt{-20} & =i \sqrt{20} \\
& =i \sqrt{4 \cdot 5} \\
& =2 i \sqrt{5}
\end{aligned}
$$

and we say the expression has been simplified and written in terms of i. Note that we've written the result with the unit " i " in front of the radical to prevent it being interpreted as being under the radical. In symbols, $2 i \sqrt{5}=2 \sqrt{5} i \neq 2 \sqrt{5 i}$.

The solutions to $x^{2}=-1$ also serve to illustrate that for $k>0$, there are two solutions to $x^{2}=-k$, namely, $i \sqrt{k}$ and $-i \sqrt{k}$. In other words, every negative number has two square roots, one positive and one negative. The first of these, $i \sqrt{k}$, is called the principal square root of $-k$.

EXAMPLE 1 Simplifying Imaginary Numbers

Rewrite the imaginary numbers in terms of i and simplify if possible.
a. $\sqrt{-7}$
b. $\sqrt{-81}$
c. $\sqrt{-24}$
d. $-3 \sqrt{-16}$

Solution
a. $\sqrt{-7}=i \sqrt{7}$
b. $\sqrt{-81}=i \sqrt{81}$
c. $\sqrt{-24}=i \sqrt{24}$
$=i \sqrt{4 \cdot 6}$
$=2 i \sqrt{6}$
d. $-3 \sqrt{-16}=-3 i \sqrt{16}$
$=-3 i(4)$
$=-12 i$
Now try Exercises 7 through 12

EXAMPLE 2 Writing an Expression in Terms of \boldsymbol{i}

The numbers $x=\frac{-6+\sqrt{-16}}{2}$ and $x=\frac{-6-\sqrt{-16}}{2}$ are not real, but are known to be solutions of $x^{2}+6 x+13=0$. Simplify $\frac{-6+\sqrt{-16}}{2}$.
Solution - Using the i notation, we have

WORTHY OF NOTE

The expression $\frac{-6+4 i}{2}$ from the solution of Example 2 can also be simplified by rewriting it as two separate terms, then simplifying each term:

$$
\begin{aligned}
& \frac{-6+4 i}{2}=\frac{-6}{2}+\frac{4 i}{2} \\
& =-3+2 i .
\end{aligned}
$$

$$
\begin{array}{rlrl}
\frac{-6+\sqrt{-16}}{2} & =\frac{-6+i \sqrt{16}}{2} & \text { write in inotation } \\
& =\frac{-6+4 i}{2} & & \text { simplify } \\
& =\frac{2(-3+2 i)}{2} & & \text { factor numerator } \\
& =-3+2 i & & \text { reduce }
\end{array}
$$

Now try Exercises 13 through 16
The result in Example 2 contains both a real number part (-3) and an imaginary part (2i). Numbers of this type are called complex numbers.

Complex Numbers

Complex numbers are numbers that can be written in the form $a+b i$, where a and b are real numbers and $i=\sqrt{-1}$.

The expression $a+b i$ is called the standard form of a complex number. From this definition we note that all real numbers are also complex numbers, since $a+0 i$ is complex with $b=0$. In addition, all imaginary numbers are complex numbers, since $0+b i$ is a complex number with $a=0$.

EXAMPLE 3 Writing Complex Numbers in Standard Form

Write each complex number in the form $a+b i$, and identify the values of a and b.
a. $2+\sqrt{-49}$
b. $\sqrt{-12}$
c. 7
d. $\frac{4+3 \sqrt{-25}}{20}$

Solution

$$
\text { a. } \begin{aligned}
2+\sqrt{-49} & =2+i \sqrt{49} \\
& =2+7 i \\
a & =2, b=7
\end{aligned}
$$

b. $\sqrt{-12}=0+i \sqrt{12}$

$$
=0+2 i \sqrt{3}
$$

$$
a=0, b=2 \sqrt{3}
$$

$$
\text { c. } \begin{aligned}
7=7+0 i \\
a=7, b=0
\end{aligned} \quad \text { d. } \begin{aligned}
\frac{4+3 \sqrt{-25}}{20} & =\frac{4+3 i \sqrt{25}}{20} \\
& =\frac{4+15 i}{20} \\
& =\frac{1}{5}+\frac{3}{4} i \\
a & =\frac{1}{5}, b=\frac{3}{4}
\end{aligned}
$$

Now try Exercises 17 through 24

Complex numbers complete the development of our "numerical landscape." Sets
A. You've just learned how to identify and simplify imaginary and complex numbers
of numbers and their relationships are represented in Figure 8.1, which shows how some sets of numbers are nested within larger sets and highlights the fact that complex numbers consist of a real number part (any number within the orange rectangle), and an imaginary number part (any number within the yellow rectangle).

Figure 8.1
C (complex): Numbers of the form $a+b i$, where $a, b \in \mathbb{R}$ and $i=\sqrt{-1}$.

R (real): All rational and irrational numbers: $a+b i$, where $a \in \mathrm{R}$ and $b=0$.

B. Adding and Subtracting Complex Numbers

The sum and difference of two polynomials is computed by identifying and combining like terms. The sum or difference of two complex numbers is computed in a similar way, by adding the real number parts from each, and the imaginary parts from each. Notice in Example 4 that the commutative, associative, and distributive properties also apply to complex numbers.

EXAMPLE 4 Adding and Subtracting Complex Numbers

Perform the indicated operation and write the result in $a+b i$ form.

Solution
B. You've just learned how to add and subtract complex numbers
a. $(2+3 i)+(-5+2 i)$
b. $(-5-4 i)-(-2-\sqrt{2} i)$

$$
\text { a. } \begin{aligned}
(2 & +3 i)+(-5+2 i) \\
& =2+3 i+(-5)+2 i \\
& =2+(-5)+3 i+2 i \\
& =[2+(-5)]+(3 i+2 i) \\
& =-3+5 i
\end{aligned}
$$

original sum
b. $(-5-4 i)-(-2-\sqrt{2} i)$
original
distribute
commute terms
$=-5-4 i+2+\sqrt{2} i$
difference
distribute
$=-5+2+(-4 i)+\sqrt{2} i$
commute terms
group like terms

$$
=(-5+2)+[(-4 i)+\sqrt{2} i]
$$

result

$$
=-3+(-4+\sqrt{2}) i
$$

C. Multiplying Complex Numbers; Powers of i

The product of two complex numbers is computed using the distributive property and the F-O-I-L process in the same way we apply these to binomials. If any result gives a factor of i^{2}, remember that $i^{2}=-1$.

EXAMPLE 5 - Multiplying Complex Numbers

Find the indicated product and write the answer in $a+b i$ form.
a. $\sqrt{-4} \sqrt{-9}$
b. $\sqrt{-6}(2+\sqrt{-3})$
c. $(6-5 i)(4+i)$
d. $(2+3 i)(2-3 i)$

Solution
a. $\sqrt{-4} \sqrt{-9}$
$=i \sqrt{4} \cdot i \sqrt{9}$
rewrite in terms of i

$$
=2 i \cdot 3 i
$$

simplify

$$
\begin{array}{ll}
=6 i^{2} & \text { multiply } \\
=-6+0 i & \text { result }\left(i^{2}=-1\right)
\end{array}
$$

b. $\begin{array}{rlrl}\sqrt{-6}(2+\sqrt{-3}) & & \\ & =i \sqrt{6}(2+i \sqrt{3}) & & \text { rewrite in terms of } i \\ & =2 i \sqrt{6}+i^{2} \sqrt{18} & & \text { distribute } \\ & =2 i \sqrt{6}+(-1) \sqrt{9} \sqrt{2} & & i^{2}=-1 \\ & =2 i \sqrt{6}-3 \sqrt{2} & & \text { simplify } \\ & =-3 \sqrt{2}+2 i \sqrt{6} & & \text { standard form }\end{array}$

$$
\text { c. }
$$

$$
\text { d. }(2+3 i)(2-3 i)
$$

Now try Exercises 31 through 48

WORTHY OF NOTE

Notice that the product of a complex number and its conjugate also gives us a method for factoring the sum of two squares using complex numbers! For the expression $x^{2}+4$, the factored form would be $(x+2 i)(x-2 i)$. For more on this idea, see Exercise 79.

When computing with imaginary and complex numbers, always write the square root of a negative number in terms of i before you begin, as shown in Examples 5(a) and 5(b). Otherwise we get conflicting results, since $\sqrt{-4} \sqrt{-9}=\sqrt{36}=6$ if we multiply the radicands first, which is an incorrect result because the original factors were imaginary.
See Exercise 80.

Recall that expressions $2 x+5$ and $2 x-5$ are called binomial conjugates. In the same way, $a+b i$ and $a-b i$ are called complex conjugates. From Example 5(d), we note that the product of the complex number $a+b i$ with its complex conjugate $a-b i$ is a real number. This relationship is useful when rationalizing expressions with a complex number in the denominator, and we generalize the result as follows:

Product of Complex Conjugates

For a complex number $a+b i$ and its conjugate $a-b i$, their product $(a+b i)(a-b i)$ is the real number $a^{2}+b^{2}$;

$$
(a+b i)(a-b i)=a^{2}+b^{2}
$$

Showing that $(a+b i)(a-b i)=a^{2}+b^{2}$ is left as an exercise (see Exercise 79), but from here on, when asked to compute the product of complex conjugates, simply refer to the formula as illustrated here: $(-3+5 i)(-3-5 i)=(-3)^{2}+5^{2}$ or 34 .

These operations on complex numbers enable us to verify complex solutions by substitution, in the same way we verify solutions for real numbers. In Example 2 we stated that $x=-3+2 i$ was one solution to $x^{2}+6 x+13=0$. This is verified here.

EXAMPLE $6>$ Checking a Complex Root by Substitution

Verify that $x=-3+2 i$ is a solution to $x^{2}+6 x+13=0$.
Solution

$$
\begin{array}{rlrl}
x^{2}+6 x+13 & =0 & & \text { original equation } \\
(-3+2 i)^{2}+6(-3+2 i)+13 & =0 & & \text { substitute }-3+2 i \text { for } x \\
(-3)^{2}+2(-3)(2 i)+(2 i)^{2}-18+12 i+13 & =0 & & \text { square and distribute } \\
9-12 i+4 i^{2}+12 i-5 & =0 & \text { simplify } \\
9+(-4)-5 & =0 & & \text { combine terms }\left(12 i-12 i=0 ; i^{2}=-1\right) \\
0 & =0 \checkmark
\end{array}
$$

Now try Exercises 49 through 56

EXAMPLE $7>$ Checking a Complex Root by Substitution

Show that $x=2-i \sqrt{3}$ is a solution of $x^{2}-4 x=-7$.
Solution $>\quad x^{2}-4 x=-7 \quad$ original equation

$$
\begin{aligned}
(2-i \sqrt{3})^{2}-4(2-i \sqrt{3}) & =-7 & & \text { substitute } 2-i \sqrt{3} \text { for } x \\
4-4 i \sqrt{3}+(i \sqrt{3})^{2}-8+4 i \sqrt{3} & =-7 & & \text { square and distribute } \\
4-4 i \sqrt{3}-3-8+4 i \sqrt{3} & =-7 & & (i \sqrt{3})^{2}=-3 \\
-7 & =-7 \checkmark & & \text { solution checks }
\end{aligned}
$$

Now try Exercises 57 through 60

The imaginary unit i has another interesting and useful property. Since $i=\sqrt{-1}$ and $i^{2}=-1$, we know that $i^{3}=i^{2} \cdot i=(-1) i=-i$ and $i^{4}=\left(i^{2}\right)^{2}=1$. We can now simplify any higher power of i by rewriting the expression in terms of i^{4}.

$$
\begin{aligned}
& i^{5}=i^{4} \cdot i=i \\
& i^{6}=i^{4} \cdot i^{2}=-1 \\
& i^{7}=i^{4} \cdot i^{3}=-i \\
& i^{8}=\left(i^{4}\right)^{2}=1
\end{aligned}
$$

Since the powers of i "cycle through" the four values $i,-1,-i$ and 1 , we reduce higher powers using the power property of exponents and $i^{4}=1$. Essentially, we divide the exponent on i by 4 , then use the remainder to compute the value of the expression. For $i^{35}, 35 \div 4=8$ remainder 3 , showing $i^{35}=\left(i^{4}\right)^{8} \cdot i^{3}=-i$.

EXAMPLE $8>$ Simplifying Higher Powers of i

Simplify:
a. i^{22}
b. i^{28}
c. i^{57}
d. i^{75}

Solution
a. $i^{22}=\left(i^{4}\right)^{5} \cdot\left(i^{2}\right)$
$=(1)^{5}(-1)$
$=-1$
b. $i^{28}=\left(i^{4}\right)^{7}$
$=(1)^{7}$
$=1$
(C. You've just learned how to multiply complex numbers and find powers of i
c. $i^{57}=\left(i^{4}\right)^{14} \cdot i$

$$
\text { d. } i^{75}=\left(i^{4}\right)^{18} \cdot\left(i^{3}\right)
$$

$$
\begin{aligned}
& =(1)^{14} i \\
& =i
\end{aligned}
$$

$$
t
$$

$$
\begin{aligned}
& =(1)^{18}(-i) \\
& =-i
\end{aligned}
$$

D. Division of Complex Numbers

Since $i=\sqrt{-1}$, expressions like $\frac{3-i}{2+i}$ actually have a radical in the denominator. To divide complex numbers, we simply rationalize the denominator using a complex conjugate.

EXAMPLE 9

Dividing Complex Numbers

Divide and write each result in $a+b i$ form.
a. $\frac{2}{5-3 i}$
b. $\frac{3-i}{2+i}$
c. $\frac{6+\sqrt{-36}}{3+\sqrt{-9}}$

Solution

V D. You've just learned how to divide complex numbers
a. $\frac{2}{5-3 i}=\frac{2}{5-3 i} \cdot \frac{5+3 i}{5+3 i} \quad$ b. $\frac{3-i}{2+i}=\frac{3-i}{2+i} \cdot \frac{2-i}{2-i}$

$$
=\frac{2(5+3 i)}{5^{2}+3^{2}}
$$

$$
=\frac{10+6 i}{34}
$$

$$
=\frac{10}{34}+\frac{6}{34} i
$$

$$
=\frac{5}{17}+\frac{3}{17} i
$$

$$
\text { c. } \frac{6+\sqrt{-36}}{3+\sqrt{-9}}=\frac{6+i \sqrt{36}}{3+i \sqrt{9}} \quad \text { convert to } i \text { notation }
$$

$$
=\frac{6+6 i}{3+3 i} \quad \text { simplify }
$$

The expression can be further simplified by reducing common factors.

$$
=\frac{6(1+i)}{3(1+i)}=2 \quad \text { factor and reduce }
$$

Now try Exercises 63 through 68

Operations on complex numbers can be checked using inverse operations, just as we do for real numbers. To check the answer $1-i$ from Example 9(b), we multiply it by the divisor:

$$
\begin{aligned}
(1-i)(2+i) & =2+i-2 i-i^{2} \\
& =2-i-(-1) \\
& =2-i+1 \\
& =3-i \checkmark
\end{aligned}
$$

Several checks are asked for in the exercises.

TECHNOLOGY HIGHLIGHT

Graphing Calculators and Operations on Complex Numbers

Virtually all graphing calculators have the ability to find imaginary and complex roots, as well as perform operations on complex numbers. To use this capability on the TI-84 Plus, we first put the calculator in $a+b i$ mode. Press the MODE key (next to the 2nd key) and the screen shown in Figure 8.2 appears. On the third line from the bottom, note the calculator may be in "Real" mode. To change to " $a+$ bi" mode, simply navigate the cursor down to this line using the down arrow, then overlay the " $a+b i$ " selection using the right arrow

Figure 8.2
 and press the ENTER key. The calculator is now in complex number mode. Press 2nd MODE (QUIT) to return to the home screen. To compute the product $(-2-3 i)(5+4 i)$, enter the expression on the home screen exactly as it is written. The number " i " is located above the decimal point on the bottom row. After pressing ENTER the result $2-23 i$ immediately appears. Compute the product by hand to see if results match.

Exercise 1: Use a graphing calculator to compute the sum $(-2+\sqrt{-108})+(5-\sqrt{-192})$. Note the result is in approximate form. Compute the sum by hand in exact form and compare the results.
Exercise 2: Use a graphing calculator to compute the product $(-3+7 i)(4-5 i)$. Then compute the product by hand and compare results. Check your answer using complex number division.
Exercise 3: Use a graphing calculator to compute the quotient $(2 i) /(3+i)$. Then compute the quotient by hand and compare results. Check your answer using multiplication.

8.1 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section, if necessary.

1. Given the complex number $3+2 i$, its complex conjugate is \qquad -.
2. The product $(3+2 i)(3-2 i)$ gives the real number \qquad
3. If the expression $\frac{4+6 i \sqrt{2}}{2}$ is written in the standard form $a+b i$, then $a=$ \qquad and $b=$ \qquad —.
4. For $i=\sqrt{-1}, i^{2}=\ldots, i^{4}=\ldots, i^{6}=\ldots$, and $i^{8}=\ldots, i^{3}=$ —,$i^{5}=$ _,$i^{7^{7}=}$, and $i^{9}=$ _.
5. Discuss/Explain which is correct:
a. $\sqrt{-4} \cdot \sqrt{-9}=\sqrt{(-4)(-9)}=\sqrt{36}=6$
b. $\sqrt{-4} \cdot \sqrt{-9}=2 i \cdot 3 i=6 i^{2}=-6$
6. Compare/Contrast the product $(1+\sqrt{2})(1-\sqrt{3})$ with the product $(1+i \sqrt{2})(1-i \sqrt{3})$. What is the same? What is different?

DEVELOPING YOUR SKILLS

Simplify each radical (if possible). If imaginary, rewrite in terms of i and simplify.
7. a. $\sqrt{-16}$
b. $\sqrt{-49}$
c. $\sqrt{27}$
d. $\sqrt{72}$
8. a. $\sqrt{-81}$
b. $\sqrt{-169}$
c. $\sqrt{64}$
d. $\sqrt{98}$
9. a. $-\sqrt{-18}$
b. $-\sqrt{-50}$
c. $3 \sqrt{-25}$
d. $2 \sqrt{-9}$
10. a. $-\sqrt{-32}$
b. $-\sqrt{-75}$
c. $3 \sqrt{-144}$
d. $2 \sqrt{-81}$
11. a. $\sqrt{-19}$
b. $\sqrt{-31}$
c. $\sqrt{\frac{-12}{25}}$
d. $\sqrt{\frac{-9}{32}}$
12. a. $\sqrt{-17}$
b. $\sqrt{-53}$
c. $\sqrt{\frac{-45}{36}}$
d. $\sqrt{\frac{-49}{75}}$

Write each complex number in the standard form $a+b i$ and clearly identify the values of a and b.
13. a. $\frac{2+\sqrt{-4}}{2}$
b. $\frac{6+\sqrt{-27}}{3}$
14. a. $\frac{16-\sqrt{-8}}{2}$
b. $\frac{4+3 \sqrt{-20}}{2}$
15. a. $\frac{8+\sqrt{-16}}{2}$
b. $\frac{10-\sqrt{-50}}{5}$
16. a. $\frac{6-\sqrt{-72}}{4}$
b. $\frac{12+\sqrt{-200}}{8}$
17. a. 5
b. $3 i$
18. a. -2
b. $-4 i$
19. a. $2 \sqrt{-81}$
b. $\frac{\sqrt{-32}}{8}$
20. a. $-3 \sqrt{-36}$
b. $\frac{\sqrt{-75}}{15}$
21. a. $4+\sqrt{-50}$
b. $-5+\sqrt{-27}$
22. a. $-2+\sqrt{-48}$
b. $7+\sqrt{-75}$
23. a. $\frac{14+\sqrt{-98}}{8}$
b. $\frac{5+\sqrt{-250}}{10}$
24. a. $\frac{21+\sqrt{-63}}{12}$
b. $\frac{8+\sqrt{-27}}{6}$

Perform the addition or subtraction. Write the result in $a+b i$ form.
25. a. $(12-\sqrt{-4})+(7+\sqrt{-9})$
b. $(3+\sqrt{-25})+(-1-\sqrt{-81})$
c. $(11+\sqrt{-108})-(2-\sqrt{-48})$
26. a. $(-7-\sqrt{-72})+(8+\sqrt{-50})$
b. $(\sqrt{3}+\sqrt{-2})-(\sqrt{12}+\sqrt{-8})$
c. $(\sqrt{20}-\sqrt{-3})+(\sqrt{5}-\sqrt{-12})$
27. a. $(2+3 i)+(-5-i)$
b. $(5-2 i)+(3+2 i)$
c. $(6-5 i)-(4+3 i)$
28. a. $(-2+5 i)+(3-i)$
b. $(7-4 i)-(2-3 i)$
c. $(2.5-3.1 i)+(4.3+2.4 i)$
29. a. $(3.7+6.1 i)-(1+5.9 i)$
b. $\left(8+\frac{3}{4} i\right)-\left(-7+\frac{2}{3} i\right)$
c. $\left(-6-\frac{5}{8} i\right)+\left(4+\frac{1}{2} i\right)$
30. a. $(9.4-8.7 i)-(6.5+4.1 i)$
b. $\left(3+\frac{3}{5} i\right)-\left(-11+\frac{7}{15} i\right)$
c. $\left(-4-\frac{5}{6} i\right)+\left(13+\frac{3}{8} i\right)$

Multiply and write your answer in $a+b i$ form.

31. a. $5 i(-3 i)$
b. $(4 i)(-4 i)$
32. a. $3(2-3 i)$
b. $-7(3+5 i)$
33. a. $-7 i(5-3 i)$
b. $6 i(-3+7 i)$
34. a. $(-4-2 i)(3+2 i)$
b. $(2-3 i)(-5+i)$
35. a. $(-3+2 i)(2+3 i)$
b. $(3+2 i)(1+i)$
36. a. $(5+2 i)(-7+3 i)$
b. $(4-i)(7+2 i)$

For each complex number, name the complex conjugate. Then find the product.
37. a. $4+5 i$
b. $3-i \sqrt{2}$
38. a. $2-i$
b. $-1+i \sqrt{5}$
39. a. $7 i$
b. $\frac{1}{2}-\frac{2}{3} i$
40. a. $-5 i$
b. $\frac{3}{4}+\frac{1}{5} i$

Compute the special products and write your answer in $a+b i$ form.
41. a. $(4-5 i)(4+5 i)$
b. $(7-5 i)(7+5 i)$
42. a. $(-2-7 i)(-2+7 i)$
b. $(2+i)(2-i)$
43. a. $(3-i \sqrt{2})(3+i \sqrt{2})$
b. $\left(\frac{1}{6}+\frac{2}{3} i\right)\left(\frac{1}{6}-\frac{2}{3} i\right)$
44. a. $(5+i \sqrt{3})(5-i \sqrt{3})$
b. $\left(\frac{1}{2}+\frac{3}{4} i\right)\left(\frac{1}{2}-\frac{3}{4} i\right)$
45. a. $(2+3 i)^{2}$
b. $(3-4 i)^{2}$
46. a. $(2-i)^{2}$
b. $(3-i)^{2}$
47. a. $(-2+5 i)^{2}$
b. $(3+i \sqrt{2})^{2}$
48. a. $(-2-5 i)^{2}$
b. $(2-i \sqrt{3})^{2}$

Use substitution to determine if the value shown is a solution to the given equation.
49. $x^{2}+36=0 ; x=-6$
50. $x^{2}+16=0 ; x=-4$
51. $x^{2}+49=0 ; x=-7 i$
52. $x^{2}+25=0 ; x=-5 i$
53. $(x-3)^{2}=-9 ; x=3-3 i$
54. $(x+1)^{2}=-4 ; x=-1+2 i$
55. $x^{2}-2 x+5=0 ; x=1-2 i$
56. $x^{2}+6 x+13=0 ; x=-3+2 i$
57. $x^{2}-4 x+9=0 ; x=2+i \sqrt{5}$
58. $x^{2}-2 x+4=0 ; x=1-\sqrt{3} i$
59. Show that $x=1+4 i$ is a solution to $x^{2}-2 x+17=0$. Then show its complex conjugate $1-4 i$ is also a solution.
60. Show that $x=2-3 \sqrt{2} i$ is a solution to $x^{2}-4 x+22=0$. Then show its complex conjugate $2+3 \sqrt{2} i$ is also a solution.

Simplify using powers of \boldsymbol{i}.

61. a. i^{48}
b. i^{26}
c. i^{39}
d. i^{53}
62. a. i^{36}
b. i^{50}
c. i^{19}
d. i^{65}

Divide and write your answer in $a+b i$ form. Check your answer using multiplication.
63. a. $\frac{-2}{\sqrt{-49}}$
b. $\frac{4}{\sqrt{-25}}$
64. a. $\frac{2}{1-\sqrt{-4}}$
b. $\frac{3}{2+\sqrt{-9}}$
65. a. $\frac{7}{3+2 i}$
b. $\frac{-5}{2-3 i}$
66. a. $\frac{6}{1+3 i}$
b. $\frac{7}{7-2 i}$
67. a. $\frac{3+4 i}{4 i}$
b. $\frac{2-3 i}{3 i}$
68. a. $\frac{-4+8 i}{2-4 i}$
b. $\frac{3-2 i}{-6+4 i}$

WORKING WITH FORMULAS

69. Absolute value of a complex number:
$|a+b i|=\sqrt{a^{2}+b^{2}}$
The absolute value of any complex number $a+b i$ (sometimes called the modulus of the number) is computed by taking the square root of the sum of the squares of a and b. Find the absolute value of the given complex numbers.
a. $|2+3 i|$
b. $|4-3 i|$
c. $|3+\sqrt{2} i|$
70. Binomial cubes:
$(A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3}$
The cube of any binomial can be found using the formula shown, where A and B are the terms of the binomial. Use the formula to compute $(1-2 i)^{3}$ (note $A=1$ and $B=-2 i$).

APPLICATIONS

71. Dawn of imaginary numbers: In a day when imaginary numbers were imperfectly understood, Girolamo Cardano (1501-1576) once posed the problem, "Find two numbers that have a sum of 10 and whose product is 40. ." In other words, $A+B=10$ and $A B=40$. Although the solution is routine today, at the time the problem posed an enormous challenge. Verify that $A=5+\sqrt{15} i$ and $B=5-\sqrt{15} i$ satisfy these conditions.
72. Verifying calculations using i : Suppose Cardano had said, "Find two numbers that have a sum of 4 and a product of 7 " (see Exercise 71). Verify that $A=2+\sqrt{3} i$ and $B=2-\sqrt{3} i$ satisfy these conditions.

Although it may seem odd, imaginary numbers have several applications in the real world. Many of these involve a study of electrical circuits, in particular alternating current or AC circuits. Briefly, the components of an AC circuit are current I (in amperes), voltage V (in volts), and the impedance Z (in ohms). The impedance of an electrical circuit is a measure of the total opposition to the flow of current through the circuit and is calculated as $Z=R+i X_{L}-i X_{C}$ where R represents a pure resistance, X_{C} represents the capacitance, and X_{L} represents the inductance. Each of these is also measured in ohms (symbolized by Ω).
73. Find the impedance Z if $R=7 \Omega$,
$X_{L}=6 \Omega$, and $X_{C}=11 \Omega$.
74. Find the impedance Z if $R=9.2 \Omega$,
$X_{L}=5.6 \Omega$, and $X_{C}=8.3 \Omega$.

The voltage V across any element in an AC circuit is calculated as a product of the current I and the impedance $Z: V=I Z$.
75. Find the voltage in a circuit with current
$I=3-2 i$ amperes and an impedance of $Z=5+5 i \Omega$.
76. Find the voltage in a circuit with current
$I=2-3 i$ amperes and an impedance of $Z=4+2 i \Omega$.

For an $A C$ circuit wired in parallel, the total impedance (in ohms) is given by $Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$, where Z_{1} and Z_{2} represent the impedance in each branch of the circuit.
77. Find the total impedance Z if
$Z_{1}=1+2 i$ and $Z_{2}=3-2 i$.
78. Find the total impedance Z if
$Z_{1}=3-i$ and $Z_{2}=2+i$.

EXTENDING THE CONCEPT

79. Up to this point, we've said that expressions like $x^{2}-9$ and $p^{2}-7$ are factorable:

$$
\begin{aligned}
& x^{2}-9=(x+3)(x-3) \quad \text { and } \\
& p^{2}-7=(p+\sqrt{7})(p-\sqrt{7})
\end{aligned}
$$

while $x^{2}+9$ and $p^{2}+7$ are prime. More correctly, we should state that $x^{2}+9$ and $p^{2}+7$ are nonfactorable using real numbers, since they actually can be factored if complex numbers are used. From $(a+b i)(a-b i)=a^{2}+b^{2}$ we note $a^{2}+b^{2}=(a+b i)(a-b i)$, showing

$$
\begin{aligned}
& x^{2}+9=(x+3 i)(x-3 i) \text { and } \\
& p^{2}+7=(p+i \sqrt{7})(p-i \sqrt{7})
\end{aligned}
$$

Use this idea to factor the following.
a. $x^{2}+36$
b. $m^{2}+3$
c. $n^{2}+12$
d. $4 x^{2}+49$
80. In this section, we noted that the product property of radicals $\sqrt{A B}=\sqrt{A} \sqrt{B}$, can still be applied when at most one of the factors is negative. So what happens if both are negative? First consider the
expression $\sqrt{-4 \cdot-25}$. What happens if you first multiply in the radicand, then compute the square root? Next consider the product $\sqrt{-4} \cdot \sqrt{-25}$. Rewrite each factor using the i notation, then compute the product. Do you get the same result as before? What can you say about $\sqrt{-4 \cdot-25}$ and $\sqrt{-4} \cdot \sqrt{-25}$?
81. Simplify the expression $i^{17}(3-4 i)-3 i^{3}(1+2 i)^{2}$.
82. While it is a simple concept for real numbers, the square root of a complex number is much more involved due to the interplay between its real and imaginary parts. For $z=a+b i$ the square root of z can be found using the formula:
$\sqrt{z}=\frac{\sqrt{2}}{2}(\sqrt{|z|+a} \pm i \sqrt{|z|-a})$, where the sign is chosen to match the sign of b (see Exercise 69). Use the formula to find the square root of each complex number, then check by squaring.
a. $z=-7+24 i$
b. $z=5-12 i$
c. $z=4+3 i$

MAINTAINING YOUR SKILLS

83. (7.4) Find the angle θ between the vectors $\mathbf{u}=\langle-2,9\rangle$ and $\mathbf{v}=\langle 6,5\rangle$.
84. (6.4) Find all real solutions to $2 \sin (2 \theta)+\sqrt{3}=0$.
85. (5.1) Prove the following identity:
$1+\sin \theta=\frac{\cos ^{2} \theta}{1-\sin \theta}$.
86. (4.3) Graph the function using a reference rectangle and the rule of fourths:
$y=3 \cos \left(2 \theta-\frac{\pi}{4}\right)$
87. (7.2) Solve the triangle shown, then compute its perimeter and area.

88. (7.3) A plane is flying 200 mph at heading 30°, with a 40 mph wind blowing from the west. Find the true course and speed of the plane.

8.2 Complex Numbers in Trigonometric Form

Learning Objectives

In Section 8.2 you will learn how to:A. Graph a complex numberB. Write a complex number in trigonometric formC. Convert from trigonometric form to rectangular formD. Interpret products and quotients geometricallyE. Compute products and quotients in trigonometric form
F. Solve applications involving complex numbers (optional)

Once the set of complex numbers became recognized and defined, the related basic operations matured very quickly. With little modification-sums, differences, products, quotients, and powers all lent themselves fairly well to the algebraic techniques used for real numbers. But roots of complex numbers did not yield so easily and additional tools and techniques were needed. Writing complex numbers in trigonometric form enables us to find complex roots (Section 8.3) and in some cases, makes computing products, quotients, and powers more efficient.

A. Graphing Complex Numbers

In previous sections, we defined a vector quantity as one that required more than a single component to describe its attributes. The complex number $z=a+b i$ certainly fits this description, since both a real number "component" and an imaginary "component" are needed to define it. In many respects, we can treat complex numbers in the same way we treated vectors and in fact, there is much we can learn from this connection.

Since both axes in the $x y$-plane have real number values, it's not possible to graph a complex number in \mathbb{R} (the real plane). However, in the same way we used the x-axis for the horizontal component of a vector and the y-axis for the vertical,

WORTHY OF NOTE

Surprisingly, the study of complex numbers matured much earlier than the study of vectors, and using directed line segments to represent complex numbers actually preceded their application to a vector quantity.
we can let the x-axis represent the real valued part of a complex number and the y-axis the imaginary part. The result is called the complex plane \mathbb{C}. Every point (a, b) in \mathbb{C} can be associated with a complex number $a+b i$, and any complex number $a+b i$ can be associated with a point (a, b) in \mathbb{C} (Figure 8.3). The point (a, b) can also be regarded as the terminal point of a position vector representing the complex number, generally named

Figure 8.3
 using the letter z.

EXAMPLE $1 \rightarrow$ Graphing Complex Numbers

Graph the complex numbers below on the same complex plane.
a. $z_{1}=-2-6 i$
b. $z_{2}=5+4 i$
c. $z_{3}=5$
d. $z_{4}=4 i$

Solution
A. You've just learned how to graph a complex number

Figure 8.4

The graph of each complex number is shown in the figure. parallelogram (tail-to-tip) method employed for vectors in Section 7.3.

B. Complex Numbers in Trigonometric Form

 tance between the real number x and

Now try Exercises 7 through 10

In Example 1, you likely noticed that from a vector perspective, z_{2} is the "resultant vector" for the sum $z_{3}+z_{4}$. To investigate further, consider $z_{1}=(2+3 i)$, $z_{2}=(-5+2 i)$, and the sum $z_{1}+z_{2}=z$ shown in Figure 8.4. The figure helps to confirm that the sum of complex numbers can be illustrated geometrically using the

The complex number $z=a+b i$ is said to be in rectangular form since it can be graphed using the rectangular coordinates of the complex plane. Complex numbers can also be written in trigonometric form. Similar to how $|x|$ represents the dis-
zero, $|z|$ represents the distance between (a, b) and the origin in the complex plane, and is computed as $|z|=\sqrt{a^{2}+b^{2}}$. With any nonzero z, we can also associate an angle θ, which is the angle in standard position whose terminal side coincides with the graph of z. If we let r represent $|z|$, Figure 8.5 shows $\cos \theta=\frac{a}{r}$ and $\sin \theta=\frac{b}{r}$, yielding $r \cos \theta=a$ and $r \sin \theta=b$. The appropriate substitutions into $a+b i$ give the trigonometric form:

$$
\begin{aligned}
z & =a+b i \\
& =r \cos \theta+r \sin \theta \cdot i
\end{aligned}
$$

Figure 8.5
 \xrightarrow{x}

WORTHY OF NOTE

While it is true the trigonometric form can more generally be written as $z=r[\cos (\theta+2 \pi k)+$ $i \sin (\theta+2 \pi k)]$ for $k \in \mathbb{Z}$, the result is identical for any integer k and we will select θ so that $0 \leq \theta<2 \pi$ or $0^{\circ} \leq \theta<360^{\circ}$, depending on whether we are working in radians or degrees.

Factoring out r and writing the imaginary unit as the lead factor of $\sin \theta$ gives the relationship in its more common form, $z=r(\cos \theta+i \sin \theta)$, where $\tan \theta=\frac{b}{a}$.

The Trigonometric Form of a Complex Number

For the complex number $z=a+b i$ and angle θ shown, $z=r(\cos \theta+i \sin \theta)$ is the trigonometric form of z, where $r=\sqrt{a^{2}+b^{2}}$, and $\tan \theta=\frac{b}{a} ; a \neq 0$.

- $r=|z|$ represents the magnitude of z (also called the modulus).
- θ is often referred to as the argument of z.

Be sure to note that for $\tan \theta=\frac{b}{a}, \tan ^{-1}\left|\frac{b}{a}\right|$ is equal to θ_{r} (the reference angle for θ) and the value of θ will ultimately depend on the quadrant of z.

EXAMPLE $2-$ Converting a Complex Number from Rectangular to Trigonometric Form

State the quadrant of the complex number, then write each in trigonometric form.
a. $z_{1}=-2-2 i$
b. $z_{2}=6+2 i$

Solution Knowing that modulus r and angle θ are needed for the trigonometric form, we first determine these values. Once again, to find the correct value of θ, it's important to note the quadrant of the complex number.

$$
\text { a. } \begin{aligned}
z_{1} & =-2-2 i ; \text { QIII } \\
r & =\sqrt{(-2)^{2}+(-2)^{2}} \\
& =\sqrt{8}=2 \sqrt{2} \\
\theta_{r} & =\tan ^{-1}\left|\frac{-2}{-2}\right| \\
& =\tan ^{-1}(1) \\
& =\frac{\pi}{4}
\end{aligned}
$$

$$
\text { b. } \begin{aligned}
z & =6+2 i ; \mathrm{QI} \\
r & =\sqrt{(6)^{2}+(2)^{2}} \\
& =\sqrt{40}=2 \sqrt{10} \\
\theta_{r} & =\tan ^{-1}\left|\frac{2}{6}\right| \\
& =\tan ^{-1}\left(\frac{1}{3}\right)
\end{aligned}
$$

z is in QI, so $\theta=\tan ^{-1}\left(\frac{1}{3}\right)$
$z=2 \sqrt{10}\left(\cos \left[\tan ^{-1}\left(\frac{1}{3}\right)\right]+\right.$
$\left.z_{1}=2 \sqrt{2}\left[\cos \left(\frac{5 \pi}{4}\right)+i \sin \left(\frac{5 \pi}{4}\right)\right] \quad i \sin \left[\tan ^{-1}\left(\frac{1}{3}\right)\right]\right)$
See the figure.
7. B. You've just learned how to write a complex number in trigonometric form

WORTHY OF NOTE

Using the triangle diagrams from Section 6.2,
$\cos \left[\tan ^{-1}\left(\frac{1}{3}\right)\right]$ and $\sin \left[\tan ^{-1}\left(\frac{1}{3}\right)\right]$ can easily be evaluated and used to verify $2 \sqrt{10}$ cis $\left[\tan ^{-1}\left(\frac{1}{3}\right)\right]=6+2 i$.

Since the angle θ is repeated for both cosine and sine, we often use an abbreviated notation for the trigonometric form, called "cis" (sis) notation: $z=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$. The results of Example 2(a) and 2(b) would then be written $z=2 \sqrt{2} \operatorname{cis}\left(\frac{5 \pi}{4}\right)$ and $z=2 \sqrt{10} \operatorname{cis}\left[\tan ^{-1}\left(\frac{1}{3}\right)\right]$, respectively.

As in Example 2b, when $\theta_{r}=\tan ^{-1}\left|\frac{b}{a}\right|$ is not a standard angle we can either answer in exact form as shown, or use a four-decimal-place approximation: $2 \sqrt{10} \operatorname{cis}(0.3218)$.

C. Converting from Trigonometric Form to Rectangular Form

Converting from trigonometric form back to rectangular form is simply a matter of evaluating r cis θ. This can be done regardless of whether θ is a standard angle or in the form $\tan ^{-1}\left(\frac{b}{a}\right)$, since in the latter case we can construct a right triangle with side b opposite θ and side a adjacent θ, and find the needed values as in Section 6.2.

EXAMPLE 3 Converting a Complex Number from Trigonometric to Rectangular Form

Graph the following complex numbers, then write them in rectangular form.
a. $z=12 \operatorname{cis}\left(\frac{\pi}{6}\right)$
b. $z=13 \operatorname{cis}\left[\tan ^{-1}\left(\frac{5}{12}\right)\right]$

Solution

- C. You've just learned how to convert from trigonometric form to rectangular form
a. We have $r=12$ and $\theta=\frac{\pi}{6}$, which yields the graph in Figure 8.6. In the nonabbreviated form we have $z=12\left[\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right]$. Evaluating within the brackets gives $z=12\left[\frac{\sqrt{3}}{2}+\frac{1}{2} i\right]=6 \sqrt{3}+6 i$.
b. For $r=13$ and $\theta=\tan ^{-1}\left(\frac{5}{12}\right)$, we have the graph shown in Figure 8.7. Here we obtain the rectangular form directly from the diagram with $z=12+5 i$. Verify by

Figure 8.6

Figure 8.7

Now try Exercises 27 through 34

D. Interpreting Products and Quotients Geometrically

The multiplication and division of complex numbers has some geometric connections that can help us understand their computation in trigonometric form. Note the relationship between the modulus and argument of the following product, with the moduli (plural of modulus) and arguments from each factor.

EXAMPLE 4 Noting Graphical Connections for the Product of Two Complex Numbers

For $z_{1}=3+3 i$ and $z_{2}=0+2 i$,
a. Graph the complex numbers and compute their moduli and arguments.
b. Compute and graph the product $z_{1} z_{2}$ and find its modulus and argument. Discuss any connections you see between the factors and the resulting product.
Solution a. The graphs of z_{1} and z_{2} are shown in the figure. For the modulus and argument we have:

$$
\begin{aligned}
z_{1} & =3+3 i ; \quad \mathrm{QI} & z_{2} & =0+2 i ; \quad \text { (quadrantal) } \\
r & =\sqrt{(3)^{2}+(3)^{2}} & r & =2 \text { directly } \\
& =\sqrt{18}=3 \sqrt{2} & & \theta=90^{\circ} \text { directly } \\
\theta & =\tan ^{-1} 1 & & \\
\Rightarrow \theta & =45^{\circ} & &
\end{aligned}
$$

b. The product $z_{1} z_{2}$ is $(3+3 i)(2 i)=-6+6 i$, which is in QII. The modulus is
 $\sqrt{(-6)^{2}+(6)^{2}}=\sqrt{72}=6 \sqrt{2}$, with $\theta_{r}=\tan ^{-1}|-1|=45^{\circ}$ and an argument $\theta=135^{\circ}(\mathrm{QII})$. Note the product of the two moduli is equal to the modulus of the final product: $2 \cdot 3 \sqrt{2}=6 \sqrt{2}$. Also note that the sum of the arguments for z_{1} and z_{2} is equal to the argument of the product: $45^{\circ}+90^{\circ}=135^{\circ}$!

Now try Exercises 35 and 36

A similar geometric connection exists for the division of complex numbers. This connection is explored in Exercises 37 and 38 of the exercise set.

E. Products and Quotients in Trigonometric Form

The connections in Example 4 are not a coincidence, and can be proven to hold for all complex numbers. Consider any two nonzero complex numbers $z_{1}=r_{1}$ $(\cos \alpha+i \sin \alpha)$ and $z_{2}=r_{2}(\cos \beta+i \sin \beta)$. For the product $z_{1} z_{2}$ we have

$$
\begin{aligned}
z_{1} z_{2} & =r_{1}(\cos \alpha+i \sin \alpha) r_{2}(\cos \beta+i \sin \beta) \quad \text { product in trig form } \\
& =r_{1} r_{2}[(\cos \alpha+i \sin \alpha)(\cos \beta+i \sin \beta)] \quad \text { rearrange factors } \\
& =r_{1} r_{2}\left[\cos \alpha \cos \beta+i \sin \beta \cos \alpha+i \sin \alpha \cos \beta+i^{2} \sin \alpha \sin \beta\right] \quad \mathrm{F}-0-\mathrm{I}-\mathrm{L} \\
& =r_{1} r_{2}[(\cos \alpha \cos \beta-\sin \alpha \sin \beta)+i(\sin \beta \cos \alpha+\sin \alpha \cos \beta)] \quad \text { commute } \\
& =t_{1} r_{2}[\cos (\alpha+\beta)+i \sin (\alpha+\beta)] \quad \text { use sum/difference identities for sine/cosine } i^{2}=-1
\end{aligned}
$$

In words, the proof says that to multiply complex numbers in trigonometric form, we multiply the moduli and add the arguments. For division, we divide the moduli and subtract the arguments. The proof for division resembles that for multiplication and is asked for in Exercise 71.

Products and Quotients of Complex Numbers in Trigonometric Form
For the complex numbers $z_{1}=r_{1}(\cos \alpha+i \sin \alpha)$ and

$$
\begin{gathered}
z_{2}=r_{2}(\cos \beta+i \sin \beta) \\
z_{1} z_{2}=r_{1} r_{2}[\cos (\alpha+\beta)+i \sin (\alpha+\beta)] \\
\text { and } \\
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}[\cos (\alpha-\beta)+i \sin (\alpha-\beta)], z_{2} \neq 0 .
\end{gathered}
$$

EXAMPLE $5>$ Multiplying Complex Numbers in Trigonometric Form

For $z_{1}=-3+\sqrt{3} i$ and $z_{2}=\sqrt{3}+1 i$,
a. Write z_{1} and z_{2} in trigonometric form and compute $z_{1} z_{2}$.
b. Compute the quotient $\frac{z_{1}}{z_{2}}$ in trigonometric form.
c. Verify the product using the rectangular form.

Solution
E. You've just learned how to compute products and quotients in trigonometric form
a. For z_{1} in QII we find $r=2 \sqrt{3}$ and $\theta=150^{\circ}$, for z_{2} in QI, $r=2$ and $\theta=30^{\circ}$. In trigonometric form,

$$
\begin{array}{rlr}
z_{1} & =2 \sqrt{3}\left(\cos 150^{\circ}+i \sin 150^{\circ}\right) \text { and } \\
z_{2} & =2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right): \\
z_{1} z_{2} & =2 \sqrt{3}\left(\cos 150^{\circ}+i \sin 150^{\circ}\right) \cdot 2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)_{\text {multiply moduli, }} \\
& =2 \sqrt{3} \cdot 2\left[\cos \left(150^{\circ}+30^{\circ}\right)+i \sin \left(150^{\circ}+30^{\circ}\right)\right] \quad \text { add arguments } \\
& =4 \sqrt{3}\left(\cos 180^{\circ}+i \sin 180^{\circ}\right) \\
& =4 \sqrt{3}(-1+0 i) \\
& =-4 \sqrt{3}
\end{array}
$$

$$
\text { b. } \frac{z_{1}}{z_{2}}=\frac{2 \sqrt{3}\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)}{2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)}
$$

$$
=\sqrt{3}\left[\cos \left(150^{\circ}-30^{\circ}\right)+i \sin \left(150^{\circ}-30^{\circ}\right)\right] \text { divide moduli, subtract arguments }
$$

$$
=\sqrt{3}\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)
$$

$$
=\sqrt{3}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)
$$

$$
=-\frac{\sqrt{3}}{2}+\frac{3}{2} i
$$

$$
\text { c. } z_{1} z_{2}=(-3+\sqrt{3} i)(\sqrt{3}+1 i)
$$

$$
=-3 \sqrt{3}-3 i+3 i+\sqrt{3} i^{2}
$$

$$
=-4 \sqrt{3}
$$

Now try Exercises 39 through 42
Converting to trigonometric form for multiplication and division seems too clumsy for practical use, as we can often compute these results more efficiently in rectangular form. However, this approach leads to powers and roots of complex numbers, an indispensable part of advanced equation solving, and these are not easily found in rectangular form. In any case, note that the power and simplicity of computing products/quotients in trigonometric form is highly magnified when the complex numbers are given in trig form:

$$
\left(12 \operatorname{cis} 50^{\circ}\right)\left(3 \operatorname{cis} 20^{\circ}\right)=36 \operatorname{cis} 70^{\circ} \quad \frac{12 \operatorname{cis} 50^{\circ}}{3 \operatorname{cis} 20^{\circ}}=4 \operatorname{cis} 30^{\circ}
$$

See Exercises 43 through 50.

WORTHY OF NOTE

You may have wondered why we're using an amplitude of 311 for a 220-V appliance. Due to the nature of the sine wave, the average value of an alternating current is always zero and gives no useful information about the voltage generated. Instead, the root-mean-square (rms) of the voltage is given on most appliances. While the maximum voltage is 311 V , the rms voltage is $\frac{311}{\sqrt{2}} \approx 220 \mathrm{~V}$. See Exercise 72 .

F. (Optional) Applications of Complex Numbers

Somewhat surprisingly, complex numbers have several applications in the real world. Many of these involve a study of electricity, and in particular AC (alternating current) circuits.

In simplistic terms, when an armature (molded wire) is rotated in a uniform magnetic field, a voltage V is generated that depends on the strength of the field. As the armature is rotated, the voltage varies between a maximum and a minimum value, with the amount of voltage modeled by $V(\theta)=V_{\max } \sin (B \theta)$, with θ in degrees. Here, $V_{\max }$ represents the maximum voltage attained, and the

Figure 8.8
 input variable θ represents the angle the armature makes with the magnetic flux, indicated in Figure 8.8 by the dashed arrows between the magnets.

When the armature is perpendicular to the flux, we say $\theta=0^{\circ}$. At $\theta=0^{\circ}$ and $\theta=180^{\circ}$, no voltage is produced, while at $\theta=90^{\circ}$ and $\theta=270^{\circ}$, the voltage reaches its maximum and minimum values, respectively (hence the name alternating current). Many electric dryers and other large appliances are labeled as 220 volt (V) appliances, but use an alternating current that varies from 311 V to -311 V (see Worthy of Note). This means when $\theta=52^{\circ}, V\left(52^{\circ}\right)=311 \sin \left(52^{\circ}\right)=245 \mathrm{~V}$ is being generated. In practical applications, we use time t as the independent variable, rather than the angle of the armature. These large appliances usually operate with a frequency of 60 cycles per second, or 1 cycle every $\frac{1}{60}$ of a second $\left(P=\frac{1}{60}\right)$. Using $B=\frac{2 \pi}{P}$, we obtain $B=120 \pi$ and our equation model becomes $V(t)=311 \sin (120 \pi t)$ with t in radians. This variation in voltage is an excellent example of a simple harmonic model.

Use the equation $V(t)=311 \sin (120 \pi t)$ to:
a. Create a table of values illustrating the voltage produced every thousandth of a second for the first half-cycle $\left(t=\frac{1}{120} \approx 0.008\right)$.
b. Use a graphing calculator to find the times t in this half-cycle when 160 V is being produced.
Solution \downarrow a. Starting at $t=0$ and using increments of 0.001 sec produces the table shown.

Time \boldsymbol{t}	Voltage
0	0
0.001	114.5
0.002	212.9
0.003	281.4
0.004	310.4
0.005	295.8
0.006	239.6
0.007	149.8
0.008	39.0

b. From the table we note $V(t)=160$ when $t \in(0.001,0.002)$ and
$t \in(0.006,0.007)$. Using the intersection of graphs method places these values at $t \approx 0.0014$ and $t \approx 0.0069$ (see graph).

Now try Exercises 53 and 54

Figure 8.10

Figure 8.11
Voltage leads current

Figure 8.12
Voltage lags current by 90°

WORTHY OF NOTE

While mathematicians generally use the symbol i to represent $\sqrt{-1}$, the " i " is used in other fields to represent an electric current so the symbol $j=\sqrt{-1}$ is used instead. In conformance with this convention, we will temporarily use j for $\sqrt{-1}$ as well.

The chief components of AC circuits are voltage (V) and current (I). Due to the nature of how the current is generated, V and I can be modeled by sine functions. Other characteristics of electricity include pure resistance (R), inductive reactance $\left(X_{L}\right)$, and capacitive reactance $\left(X_{C}\right)$ (see Figure 8.9). Each of these is measured in a unit called ohms (Ω), while current I is measured in amperes (A), and voltages are measured in volts (V). These components of
 electricity are related by fixed and inherent traits, which include the following: (1) voltage across a resistor is always in phase with the current, meaning the phase shift or phase angle between them is 0° (Figure 8.10); (2) voltage across an inductor leads the current by 90° (Figure 8.11); (3) voltage across a capacitor lags the current by 90° (Figure 8.12); and (4) voltage is equal to the product of the current times the resistance or reactance: $V=I R, V=I X_{L}$, and $V=I X_{C}$.

Different combinations of R, X_{L}, and X_{C} in a combined (series) circuit alter the phase angle and the resulting voltage. Since voltage across a resistance is always in phase with the current (trait 1), we can model the resistance as a vector along the positive real axis (since the phase angle is 0°). For traits (2) and (3), X_{L} is modeled on the positive imaginary axis since voltage leads current by 90°, and X_{C} on the negative imaginary axis since voltage lags current by 90° (see Figure 8.13). These natural characteristics make the complex plane a perfect fit for describing the characteristics of the circuit.

Figure 8.13

Consider a series circuit (Figure 8.9), where $R=12 \Omega, X_{L}=9 \Omega$, and $X_{C}=4 \Omega$. For a current of $I=2 \mathrm{amps}$ through this circuit, the voltage across each individual element would be $V_{R}=(2)(12)=24 \mathrm{~V}(A$ to $B), V_{L}=(2)(9)=18 \mathrm{~V}$ (B to C), and $V_{C}=(2)(4)=8 \mathrm{~V}(C$ to $D)$. However, the resulting voltage across this circuit cannot be an arithmetic sum, since R is real, while X_{L} and X_{C} are represented by imaginary numbers. The joint effect of resistance (R) and reactance $\left(X_{L}, X_{C}\right)$ in a circuit is called the impedance, denoted by the letter Z, and is a measure of the total resistance to the flow of electrons. It is computed $Z=R+X_{L} j-X_{C} j$ (see Worthy of Note), due to the phase angle relationship of the voltage in each element (X_{L} and X_{C} point in opposite directions, hence the subtraction). The expression for Z is more commonly written $R+\left(X_{L}-X_{C}\right) j$, where we more clearly note Z is a complex number whose magnitude and angle with the x-axis can be found as before: $|Z|=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$ and $\theta_{r}=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)$. The angle θ represents the phase angle between the voltage and current brought about by this combination of elements. The resulting voltage of the circuit is then calculated as the product of the current with the magnitude of the impedance, or $V_{R L C}=I|Z|(Z$ is also measured in ohms, Ω).

EXAMPLE 7 Finding the Impedence and Phase Angle of the Current in a Circuit
For the circuit diagrammed in the figure, (a) find the magnitude of Z, the phase angle between current and voltage, and write the result in trigonometric form; and (b) find the total voltage across this circuit.

Solution a. Using the values given, we find

$$
\begin{aligned}
Z & =R+\left(X_{L}-X_{C}\right) j \\
& =12+(9-4) j \\
& =12+5 j(\mathrm{QI}):
\end{aligned}
$$

This gives a magnitude of
$|Z|=\sqrt{(12)^{2}+(5)^{2}}=\sqrt{169}=13 \Omega$, with a phase angle of
$\theta=\tan ^{-1}\left(\frac{5}{12}\right) \approx 22.6^{\circ}$ (voltage leads the current by about 22.6°).
In trigonometric form $Z \approx 13$ cis 22.6°.
F. You have just learned how to solve applications involving complex numbers
b. With $I=2 \mathrm{amps}$, the total voltage across this circuit is
$V_{R L C}=I|Z|=2(13)=26 \mathrm{~V}$.

Now try Exercises 55 through 70

TECHNOLOGY HIGHLIGHT

Graphing Calculators and Complex Numbers

With a graphing calculator in " $a+b i$ " mode, we have the ability to confirm and extend many of the results obtained in this section. To find the argument of a complex number using the calculator, press MATH then $\square \square$ to get to the CPX (complex) submenu (Figure 8.14). Option "4:angle(" displays the angle (argument) of the complex number entered. This option can also find the argument for a product or quotient if entered in that form. Let's use the calculator to verify that for the product of complex numbers, we add the arguments of each factor. We'll use $z_{1}=2+3 i$ and $z_{2}=8+2 i$ for this purpose. Results are displayed on the screen in Figure 8.15, where we note that arguments do indeed sum to $\approx 70.35^{\circ}$. Note that option " $5:$ abs(" can be used to find the modulus of a complex number.

Figure 8.14

Figure 8.15

Exercise 1: Use $z_{1}=2+3 i$ and $z_{2}=8+2 i$ and a graphing calculator to confirm that for the quotient of complex numbers, we subtract the arguments of each factor.
Exercise 2: Create two complex numbers on your own, one with $\alpha=45^{\circ}$ and another with $\beta=30^{\circ}$. (Hint: Use $\tan ^{-1} \frac{b}{a}$.) Use these numbers and your graphing calculator to verify the moduli and argument relationships for products and quotients.
Exercise 3: Compute the product $(87-87 i)(-187.5+62.5 \sqrt{3} i)$ by hand, then once again using the trigonometric form. Comment on what you notice.

8.2 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. For a complex number written in the form $z=r(\cos \theta+i \sin \theta), r$ is called the \qquad and θ is called the \qquad —.
2. The complex number $z=2\left[\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right]$ can be written as the abbreviated "cis" notation as
\qquad —.
3. To multiply complex numbers in trigonometric form, we \qquad the moduli and \qquad the arguments.
4. To divide complex numbers in trigonometric form, we \qquad the moduli and \qquad the arguments.
5. Write $z=-1-\sqrt{3} i$ in trigonometric form and explain why the argument is $\theta=240^{\circ}$ instead of 60° as indicated by your calculator.
6. Discuss the similarities between finding the components of a vector and writing a complex number in trigonometric form.

DEVELOPING YOUR SKILLS

Graph the complex numbers z_{1}, z_{2}, and z_{3} given, then express one as the sum of the other two.
7. $z_{1}=7+2 i$
8. $z_{1}=2+7 i$
$z_{2}=8+6 i$
$z_{3}=1+4 i$
$z_{2}=3+4 i$
9. $z_{1}=-2-5 i$
$z_{2}=1-7 i$
10. $z_{1}=-2+6 i$
$z_{3}=3-2 i$
$z_{2}=7-2 i$
$z_{3}=5+4 i$

State the quadrant of each complex number, then write it in trigonometric form. For Exercises 11 through 14, answer in degrees. For 15 through 18, answer in radians.
11. $-2-2 i$
12. $7-7 i$
13. $-5 \sqrt{3}-5 i$
14. $2-2 \sqrt{3} i$
15. $-3 \sqrt{2}+3 \sqrt{2} i$
16. $5 \sqrt{7}-5 \sqrt{7} i$
17. $4 \sqrt{3}-4 i$
18. $-6+6 \sqrt{3} i$

Write each complex number in trigonometric form. For Exercises 19 through 22, answer in degrees using both an exact form and an approximate form, rounding to tenths. For 23 through 26, answer in radians using both an exact form and an approximate form, rounding to four decimal places.
19. $8+6 i$
20. $-9+12 i$
21. $-5-12 i$
22. $-8+15 i$
23. $6+17.5 i$
24. $30-5.5 i$
25. $-6+10 i$
26. $12-4 i$

Graph each complex number using its trigonometric form, then convert each to rectangular form.
27. $2 \operatorname{cis}\left(\frac{\pi}{4}\right)$
28. $12 \operatorname{cis}\left(\frac{\pi}{6}\right)$
29. $4 \sqrt{3} \operatorname{cis}\left(\frac{\pi}{3}\right)$
30. $5 \sqrt{3} \operatorname{cis}\left(\frac{7 \pi}{6}\right)$
31. 17 cis $\left[\tan ^{-1}\left(\frac{15}{8}\right)\right]$
32. $10 \operatorname{cis}\left[\tan ^{-1}\left(\frac{3}{4}\right)\right]$
33. $6 \operatorname{cis}\left[\pi-\tan ^{-1}\left(\frac{5}{\sqrt{11}}\right)\right]$
34. 4 cis $\left[\pi+\tan ^{-1}\left(\frac{\sqrt{7}}{3}\right)\right]$

For the complex numbers z_{1} and z_{2} given, find their moduli r_{1} and r_{2} and arguments θ_{1} and θ_{2}. Then compute their product in rectangular form. For modulus r and argument θ of the product, verify that $r_{1} r_{2}=r$ and $\theta_{1}+\theta_{2}=\theta$.
35. $z_{1}=-2+2 i ; \quad z_{2}=3+3 i$
36. $z_{1}=1+\sqrt{3} i ; \quad z_{2}=3+\sqrt{3} i$

For the complex numbers z_{1} and z_{2} given, find their moduli r_{1} and r_{2} and arguments θ_{1} and θ_{2}. Then compute their quotient in rectangular form. For modulus r and argument θ of the quotient, verify that $\frac{r_{1}}{r_{2}}=r$ and $\theta_{1}-\theta_{2}=\theta$.

$$
\begin{aligned}
& \text { 37. } z_{1}=\sqrt{3}+i ; \quad z_{2}=1+\sqrt{3} i \\
& \text { 38. } z_{1}=-\sqrt{3}+i ; \quad z_{2}=3+0 i
\end{aligned}
$$

Compute the product $z_{1} z_{2}$ and quotient $\frac{z_{1}}{z_{2}}$ using the trigonometric form. Answer in exact rectangular form where possible, otherwise round all values to two
decimal places.
39. $z_{1}=-4 \sqrt{3}+4 i$
$z_{2}=\frac{3 \sqrt{3}}{2}+\frac{3}{2} i$
41. $\begin{aligned} z_{1} & =-2 \sqrt{3}+0 i \\ z_{2} & =-\frac{21}{2}+\frac{7 i \sqrt{3}}{2}\end{aligned}$
40. $\begin{aligned} z_{1} & =\frac{5 \sqrt{3}}{2}+\frac{5}{2} i \\ z_{2} & =0+6 i\end{aligned}$
$z_{2}=0+6 i$

WORKING WITH FORMULAS

51. Equilateral triangles in the complex plane:
$u^{2}+v^{2}+w^{2}=u v+u w+v w$
If the line segments connecting the complex numbers u, v, and w form the vertices of an equilateral triangle, the formula shown holds true. Verify that $u=2+\sqrt{3} i, v=10+\sqrt{3} i$, and $w=6+5 \sqrt{3} i$ form the vertices of an equilateral triangle using the distance formula, then verify the formula given.
52. The cube of a complex number:
$(A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3}$
The cube of any binomial can be found using the formula here, where A and B are the terms of the binomial. Use the formula to compute the cube of $1-2 i($ note $A=1$ and $B=-2 i)$.

APPLICATIONS

53. Electric current: In the United States, electric power is supplied to homes and offices via a " 120 V circuit," using an alternating current that varies from 170 V to -170 V , at a frequency of 60 cycles $/ \mathrm{sec}$. (a) Write the voltage equation for U.S. households, (b) create a table of values illustrating the voltage produced every thousandth of a second for the first half-cycle, and (c) find the first time t in this half-cycle when exactly 140 V is being produced.
54. Electric current: While the electricity supplied in Europe is still not quite uniform, most countries employ $230-\mathrm{V}$ circuits, using an alternating current that varies from 325 V to -325 V . However, the frequency is only 50 cycles per second. (a) Write the voltage equation for these European countries, (b) create a table of values illustrating the voltage produced every thousandth of a second for the first half-cycle, and (c) find the first time t in this half-cycle when exactly 215 V is being produced.

AC circuits: For the circuits indicated in Exercises 55 through 60, (a) find the magnitude of Z, the phase angle between current and voltage, and write the result in trigonometric form; and (b) find the total voltage across this circuit. Recall $Z=R+\left(X_{L}-X_{C}\right) j$ and $|Z|=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$.
55. $R=15 \Omega, X_{L}=12 \Omega$, and $X_{C}=4 \Omega$, with $I=3 \mathrm{~A}$
56. $R=24 \Omega, X_{L}=12 \Omega$, and $X_{C}=5 \Omega$, with $I=2.5 \mathrm{~A}$

57. $R=7 \Omega, X_{L}=6 \Omega$, and $X_{C}=11 \Omega$, with $I=1.8 \mathrm{~A}$
58. $R=9.2 \Omega, X_{L}=5.6 \Omega$, and $X_{C}=8.3 \Omega$, with $I=2.0 \mathrm{~A}$

Exercises 59 and 60

59. $R=12 \Omega$ and $X_{L}=5 \Omega$, with $I=1.7 \mathrm{~A}$
60. $R=35 \Omega$ and $X_{L}=12 \Omega$, with $I=4 \mathrm{~A}$

AC circuits-voltage: The current I and the impedance Z for certain AC circuits are given. Write I and Z in trigonometric form and find the voltage in each circuit. Recall $V=I Z$.
61. $I=\sqrt{3}+1 j \mathrm{~A}$ and $Z=5+5 j \Omega$
62. $I=\sqrt{3}-1 j \mathrm{~A}$ and $Z=2+2 j \Omega$
63. $I=3-2 j \mathrm{~A}$ and $Z=2+3.75 j \Omega$
64. $I=4+3 j \mathrm{~A}$ and $Z=2-4 j \Omega$

AC circuits - current: If the voltage and impedance are known, the current I in the circuit is calculated as the quotient $I=\frac{V}{Z}$. Write V and Z in trigonometric form to find the current in each circuit.
65. $V=2+2 \sqrt{3} j$ and $Z=4-4 j \Omega$
66. $V=4 \sqrt{3}-4 j$ and $Z=1-1 j \Omega$
67. $V=3-4 j$ and $Z=4+7.5 j \Omega$
68. $V=2.8+9.6 j$ and $Z=1.4-4.8 j \Omega$

Parallel circuits: For AC circuits wired in parallel, the total impedance is given by $Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$, where Z_{1} and Z_{2} represent the impedance in each branch. Find the total impedance for the values given. Compute the product in the numerator using trigonometric form, and the sum in the denominator in rectangular form.
69. $Z_{1}=1+2 j$ and $Z_{2}=3-2 j$
70. $Z_{1}=3-j$ and $Z_{2}=2+j$

EXTENDING THE CONCEPT

71. Verify/prove that for the complex numbers
$z_{1}=r_{1}(\cos \alpha+i \sin \alpha)$ and
$z_{2}=r_{2}(\cos \beta+i \sin \beta)$,
$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}[\cos (\alpha-\beta)+i \sin (\alpha-\beta)]$.
72. Using the Internet, a trade manual, or some other resource, find the voltage and frequency at which electricity is supplied to most of Japan (oddly enough-two different frequencies are in common use). As in Example 6, the voltage given will likely be the root-mean-square (rms) voltage. Use the information to find the true voltage and the equation model for voltage in most of Japan.
73. Recall that two lines are perpendicular if their slopes have a product of -1 . For the directed line segment representing the complex number $z_{1}=7+24 i$, find complex numbers z_{2} and z_{3} whose directed line segments are perpendicular to z_{1} and have a magnitude one-fifth as large.
74. The magnitude of the impedance is $|Z|=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$. If R, X_{L}, and X_{C} are all nonzero, what conditions would make the magnitude of Z as small as possible?

MAINTAINING YOUR SKILLS

75. (6.4) Solve for $x \in[0,2 \pi)$:

$$
350=750 \sin \left(2 x-\frac{\pi}{4}\right)-25
$$

76. (5.3) Write $\cos 15^{\circ}$ in exact form using (a) a half angle identity and (b) a difference identity. Verify the results obtained are equivalent.
77. (5.1) Verify the following is an identity:
$\frac{1+\cos \alpha}{1-\cos \alpha}=\frac{\sec \alpha+1}{\sec \alpha-1}$
78. (3.1) For $24^{\circ} 12^{\prime} 36^{\prime \prime}$, (a) determine its complement, (b) convert the complement to decimal degrees, and (c) convert the complement to radians.
79. (7.1) A ship is spotted by two observation posts that are 4 mi apart. Using the line between them for reference, the first post reports the ship is at an angle of 41°, while the second reports an angle of 63°, as shown. How far is the ship from the closest post?

Exercises 79

80. (7.3) Two tugboats are pulling a large ship into dry dock. The first is pulling with a force of 1500 N and the second with a force of 1800 N . Determine the angle θ

Exercises 80

 for the second tugboat that will keep the ship moving straight forward and into the dock.

8.3 De Moivre's Theorem and the Theorem on nth Roots

Learning Objectives

In Section 8.3 you will Iearn how to:A. Use De Moivre's theorem to raise complex numbers to any power
B. Use De Moivre's theorem to check solutions to polynomial equations
C. Use the nth roots theorem to find the nth roots of a complex number

WORTHY OF NOTE

Sometimes the argument of cosine and sine becomes very large after applying De Moivre's theorem. In these cases, we use the fact that $\theta=\theta \pm 360^{\circ} \mathrm{k}$ and $\theta=\theta \pm 2 \pi k$ represent coterminal angles for integers k, and use the coterminal angle θ where $0^{\circ} \leq \theta<360^{\circ}$ or $0 \leq \theta<2 \pi$.

The material in this section represents some of the most significant developments in the history of mathematics. After hundreds of years of struggle, mathematical scientists had not only come to recognize the existence of complex numbers, but were able to make operations on them commonplace and routine. This allowed for the unification of many ideas related to the study of polynomial equations, and answered questions that had puzzled scientists from many different fields for centuries. In this section, we will look at two fairly simple theorems that actually represent over 1000 years in the evolution of mathematical thought.

A. De Moivre's Theorem

Having found acceptable means for applying the four basic operations to complex numbers, our attention naturally shifts to the computation of powers and roots. Without them, we'd remain wholly unable to offer complete solutions to polynomial equations and find solutions for many applications. The computation of powers, squares, and cubes offer little challenge, as they can be computed easily using the formula for binomial squares $\left[(A+B)^{2}=A^{2}+2 A B+B^{2}\right]$ or by applying the binomial theorem. For larger powers, the binomial theorem becomes too time consuming and a more efficient method is desired. The key here is to use the trigonometric form of the complex number. In Section 8.2, we noted the product of two complex numbers involved multiplying their moduli and adding their arguments:

For $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ we have $z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$
For the square of a complex number, $r_{1}=r_{2}$ and $\theta_{1}=\theta_{2}$. Using θ itself yields

$$
\begin{aligned}
z^{2} & =r^{2}[\cos (\theta+\theta)+i \sin (\theta+\theta)] \\
& =r^{2}[\cos (2 \theta)+i \sin (2 \theta)]
\end{aligned}
$$

Multiplying this result by $z=r(\cos \theta+i \sin \theta)$ to compute z^{3} gives

$$
\begin{aligned}
r^{2}[\cos (2 \theta)+i \sin (2 \theta)] r(\cos \theta+i \sin \theta) & =r^{3}[\cos (2 \theta+\theta)+i \sin (2 \theta+\theta)] \\
& =r^{3}[\cos (3 \theta)+i \sin (3 \theta)]
\end{aligned}
$$

The result can be extended further and generalized into De Moivre's theorem.

De Moivre's Theorem

For any positive integer n, and $z=r(\cos \theta+i \sin \theta)$,

$$
z^{n}=r^{n}[\cos (n \theta)+i \sin (n \theta)]
$$

For a proof of the theorem where n is an integer and $n \geq 1$, see Appendix VI.

EXAMPLE $1-$ Using De Moivre's Theorem to Compute the Power of a Complex Number

 Use De Moivre's theorem to compute z^{9}, given $z=-\frac{1}{2}-\frac{1}{2} i$.Solution \downarrow Here we have $r=\sqrt{\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)^{2}}=\frac{\sqrt{2}}{2}$. With z in QIII, $\tan \theta=1$ yields $\theta=\frac{5 \pi}{4}$. The trigonometric form is $z=\frac{\sqrt{2}}{2}\left[\cos \left(\frac{5 \pi}{4}\right)+i \sin \left(\frac{5 \pi}{4}\right)\right]$ and applying the theorem with $n=9$ gives

$$
\begin{aligned}
z^{9} & =\left(\frac{\sqrt{2}}{2}\right)^{9}\left[\cos \left(9 \cdot \frac{5 \pi}{4}\right)+i \sin \left(9 \cdot \frac{5 \pi}{4}\right)\right] & & \text { De Moivre's theorem } \\
& =\frac{\sqrt{2}}{32}\left[\cos \left(\frac{45 \pi}{4}\right)+i \sin \left(\frac{45 \pi}{4}\right)\right] & & \text { simplify } \\
& =\frac{\sqrt{2}}{32}\left[\cos \left(\frac{5 \pi}{4}\right)+i \sin \left(\frac{5 \pi}{4}\right)\right] & & \text { coterminal angles } \\
& =\frac{\sqrt{2}}{32}\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i\right) & & \text { evaluate functions } \\
& =-\frac{1}{32}-\frac{1}{32} i & & \text { result }
\end{aligned}
$$

Now try Exercises 7 through 14

As with products and quotients, if the complex number is given in trigonometric form, computing any power of the number is both elegant and efficient. For instance, if $z=2$ cis 40°, then $z^{4}=16$ cis 160°. See Exercises 15 through 18.

For cases where θ is not a standard angle, De Moivre's theorem requires an intriguing application of the skills developed in Chapter 5, including the use of multiple angle identities and working from a right triangle drawn relative to $\theta_{r}=\tan ^{-1}\left|\frac{b}{a}\right|$.

See Exercises 53 and 54.

B. Checking Solutions to Polynomial Equations

One application of De Moivre's theorem is checking the complex roots of a polynomial, as in Example 2.

EXAMPLE 2 Using De Moivre's Theorem to Check Solutions to a Polynomial Equation

Use De Moivre's theorem to show that $z=-2-2 i$ is a solution to $z^{4}-3 z^{3}-38 z^{2}-128 z-144=0$.

Solution We will apply the theorem to the third and fourth degree terms, and compute the square directly. Since z is in QIII, the trigonometric form is $z=2 \sqrt{2}$ cis 225°. In the following illustration, note that 900° and 180° are coterminal, as are 675° and 315°.

$$
\begin{aligned}
& (-2-2 i)^{4} \\
& =(2 \sqrt{2})^{4} \operatorname{cis}\left(4 \cdot 225^{\circ}\right) \\
& =(2 \sqrt{2})^{4} \operatorname{cis} 900^{\circ} \\
& =64 \operatorname{cis} 180^{\circ} \\
& =64(-1+0 i) \\
& \quad=-64
\end{aligned}
$$

$$
\begin{array}{rlrl}
(-2-2 i)^{3} & (-2-2 i)^{2} \\
= & (2 \sqrt{2})^{3} \operatorname{cis}\left(3 \cdot 225^{\circ}\right) & & =4+8 i+(2 i)^{2} \\
= & (2 \sqrt{2})^{3} \operatorname{cis} 675^{\circ} & & =4+8 i+4 i^{2} \\
= & (2 \sqrt{2})^{3} \operatorname{cis} 315^{\circ} & & =4+8 i-4 \\
= & 16 \sqrt{2}\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i\right) & & =0+8 i \\
= & 16-16 i & & =8 i
\end{array}
$$

Substituting back into the original equation gives

$$
\begin{aligned}
1 z^{4}-3 z^{3}-38 z^{2}-128 z-144 & =0 \\
1(-64)-3(16-16 i)-38(8 i)-128(-2-2 i)-144 & =0 \\
-64-48+48 i-304 i+256+256 i-144 & =0 \\
(-64-48+256-144)+(48-304+256) i & =0 \\
0 & =0 \checkmark
\end{aligned}
$$

Now try Exercises 19 through 26

Regarding Example 2, we know from a study of algebra that complex roots must occur in conjugate pairs, meaning $-2+2 i$ is also a root. This equation actually has two real and two complex roots, with $z=9$ and $z=-2$ being the two real roots.

C. The nth Roots Theorem

Having looked at De Moivre's theorem, which raises a complex number to any power, we now consider the \boldsymbol{n} th roots theorem, which will compute the nth roots of a complex number. If we allow that De Moivre's theorem also holds for rational values $\frac{1}{n}$, instead of only the integers n illustrated previously, the formula for computing an nth root would be a direct result:

$$
\begin{aligned}
z^{\frac{1}{n}} & =r^{\frac{1}{n}}\left[\cos \left(\frac{1}{n} \theta\right)+i \sin \left(\frac{1}{n} \theta\right)\right] \quad \text { replace } n \text { with } \frac{1}{n} \text { in De Moivre's theorem } \\
& =\sqrt[n]{r}\left[\cos \left(\frac{\theta}{n}\right)+i \sin \left(\frac{\theta}{n}\right)\right] \quad \text { simplify }
\end{aligned}
$$

However, this formula would find only the principal nth root! In other words, periodic solutions would be ignored. As in Section 8.2, it's worth noting the most general form of a complex number is $z=r\left[\cos \left(\theta+360^{\circ} k\right)+i \sin \left(\theta+360^{\circ} k\right)\right]$, for $k \in \mathbb{Z}$. When De Moivre's theorem is applied to this form for integers n, we obtain $z^{n}=r^{n}\left[\cos \left(n \theta+360^{\circ} k n\right)+i \sin \left(n \theta+360^{\circ} k n\right)\right]$, which returns a result identical to $r^{n}[\cos (n \theta)+i \sin (n \theta)]$. However, for the rational exponent $\frac{1}{n}$, the general form takes additional solutions into account and will return all n, nth roots.

$$
\begin{aligned}
z^{\frac{1}{n}} & =r^{\frac{1}{n}}\left\{\cos \left[\frac{1}{n}\left(\theta+360^{\circ} k\right)\right]+i \sin \left[\frac{1}{n}\left(\theta+360^{\circ} k\right)\right]\right\} \begin{array}{l}
\begin{array}{l}
\text { De Moivr } \\
\text { theorem } \\
\text { exponent }
\end{array} \\
\\
\end{array}=\sqrt[n]{r}\left[\cos \left(\frac{\theta}{n}+\frac{360^{\circ} k}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{360^{\circ} k}{n}\right)\right] \quad \begin{array}{l}
\text { simplify }
\end{array}
\end{aligned}
$$

The nth Roots Theorem

For $z=r(\cos \theta+i \sin \theta)$, a positive integer n, and $r \in \mathbb{R}, z$ has exactly n distinct nth roots determined by

$$
\sqrt[n]{z}=\sqrt[n]{r}\left[\cos \left(\frac{\theta}{n}+\frac{360^{\circ} k}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{360^{\circ} k}{n}\right)\right]
$$

where $k=0,1,2, \ldots, n-1$.

For ease of computation, it helps to note that once the argument for the principal root is found using $k=0, \frac{\theta}{n}+\frac{360^{\circ} k}{n}$ simply adds $\frac{360^{\circ}}{n}\left(\right.$ or $\left.\frac{2 \pi}{n}\right)$ to the previous argument for $k=1,2,3, \ldots, n-1$.

In Example 3 you're asked to find the three cube roots of 1, also called the cube roots of unity, and graph the results. The nth roots of unity play a significant role in the solution of many polynomial equations. For an in-depth study of this connection, visit www.mhhe.com/coburn and go to Section 8.7: Trigonometry, Complex Numbers, and Cubic Equations.

EXAMPLE 3 Finding nth Roots

Use the nth roots theorem to solve the equation $x^{3}-1=0$. Write the results in rectangular form and graph.
Solution - From $x^{3}-1=0$, we have $x^{3}=1$ and must find the three cube roots of unity. As before, we begin in trigonometric form: $1+0 i=1\left(\cos 0^{\circ}+i \sin 0^{\circ}\right)$ since $\theta=\tan ^{-1}(0)=0^{\circ}$. With $n=3, r=1$, and $\theta=0^{\circ}$, we have $\sqrt[3]{r}=\sqrt[3]{1}=1$, and $\frac{0^{\circ}}{3}+\frac{360^{\circ} k}{3}=0^{\circ}+120^{\circ} k$. The principal $\operatorname{root}(k=0)$ is $z_{0}=1\left(\cos 0^{\circ}+i \sin 0^{\circ}\right)=1$. Adding 120° to each previous argument, we find the other roots are

$$
\begin{aligned}
& z_{1}=1\left(\cos 120^{\circ}+i \sin 120^{\circ}\right) \\
& z_{2}=1\left(\cos 240^{\circ}+i \sin 240^{\circ}\right) .
\end{aligned}
$$

In rectangular form these are $-\frac{1}{2}+\frac{\sqrt{3}}{2} i$, and $-\frac{1}{2}-\frac{\sqrt{3}}{2} i$, as shown in the figure.

Now try Exercises 27 through 40

EXAMPLE 4 Finding nth Roots

Use the nth roots theorem to find the five fifth roots of $z=16 \sqrt{3}+16 i$.
Solution In trigonometric form, $16 \sqrt{3}+16 i=32\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$ since $\theta=\tan ^{-1}\left(\frac{16}{16 \sqrt{3}}\right)=30^{\circ}$. With $n=5, r=32$, and $\theta=30^{\circ}$, we have $\sqrt[5]{r}=\sqrt[5]{32}=2$, and $\frac{30^{\circ}}{5}+\frac{360^{\circ} k}{5}=6^{\circ}+72^{\circ} k$. The principal root is $z_{0}=2\left(\cos 6^{\circ}+i \sin 6^{\circ}\right)$.
Adding 72° to each previous argument, we find the other four roots are

$$
\begin{array}{ll}
z_{1}=2\left(\cos 78^{\circ}+i \sin 78^{\circ}\right) & z_{2}=2\left(\cos 150^{\circ}+i \sin 150^{\circ}\right) \\
z_{3}=2\left(\cos 222^{\circ}+i \sin 222^{\circ}\right) & z_{4}=2\left(\cos 294^{\circ}+i \sin 294^{\circ}\right)
\end{array}
$$

Of the five roots in Example 4, only $z_{2}=2\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$ uses a standard angle. Applying De Moivre's theorem with $n=5$ gives $\left(2 \text { cis } 150^{\circ}\right)^{5}=32 \operatorname{cis} 750^{\circ}=32 \operatorname{cis} 30^{\circ}$ or $16 \sqrt{3}+16 i . /$ See Exercise 48.

As a consequence of the arguments in a solution being uniformly separated by $\frac{360^{\circ}}{n}$, the graphs of complex roots are equally spaced about a circle of radius r. The five fifth roots from Example 3 are shown in Figure 8.16 (note

Figure 8.16
 each argument differs by 72°).

For additional insight into roots of complex numbers, we reason that the nth roots of a complex number must also be complex. To find the four fourth roots of $z=8+8 \sqrt{3} i=16\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$, we seek a number of the form $r(\cos \alpha+i \sin \alpha)$ such that $[r(\cos \alpha+i \sin \alpha)]^{4}=16\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$. Applying De Moivre's theorem to the left-hand side and equating equivalent parts we obtain

$$
\begin{aligned}
r^{4}[\cos (4 \alpha)+i \sin (4 \alpha)] & =16\left(\cos 60^{\circ}+i \sin 60^{\circ}\right), \text { which leads to } \\
r^{4} & =16 \text { and } \\
4 \alpha & =60^{\circ}
\end{aligned}
$$

From this it is obvious that $r=2$, but as with similar equations solved in Chapter 6, the equation $4 \alpha=60^{\circ}$ has multiple solutions. To find them, we first add $360^{\circ} k$ to 60°, then solve for α.

$$
\begin{aligned}
4 \alpha & =60^{\circ}+360^{\circ} k & & \text { add } 360^{\circ} k \\
\alpha & =\frac{60^{\circ}+360^{\circ} k}{4} & & \text { divide by } 4 \\
& =15^{\circ}+90^{\circ} k & & \text { result }
\end{aligned}
$$

For convenience, we start with $k=0,1,2$, and so on, which leads to

$$
\begin{aligned}
& \text { For } k=0: \quad \alpha=15^{\circ}+90^{\circ}(0) \quad \text { For } k=1: \quad \alpha=15^{\circ}+90^{\circ}(1) \\
& =15^{\circ} \\
& =105^{\circ} \\
& \text { For } k=2: \quad \alpha=15^{\circ}+90^{\circ}(2) \quad \text { For } k=3: \quad \alpha=15^{\circ}+90^{\circ}(3) \\
& =195^{\circ} \quad=285^{\circ}
\end{aligned}
$$

At this point it should strike us that we have four roots-exactly the number required. Indeed, using $k=4$ gives $\alpha=15^{\circ}+90^{\circ}(4)=375^{\circ}$, which is coterminal with the 15° obtained when $k=0$. Hence, the four fourth roots are

$$
\begin{array}{ll}
z_{0}=2\left(\cos 15^{\circ}+i \sin 15^{\circ}\right) & z_{1}=2\left(\cos 105^{\circ}+i \sin 105^{\circ}\right) \\
z_{2}=2\left(\cos 195^{\circ}+i \sin 195^{\circ}\right) & z_{3}=2\left(\cos 285^{\circ}+i \sin 285^{\circ}\right) .
\end{array}
$$

The check for these solutions is asked for in Exercise 47.
As a final note, it must have struck the mathematicians who pioneered these discoveries with some amazement that complex numbers and the trigonometric functions should be so closely related. The amazement must have been all the more profound upon discovering an additional connection between complex numbers and exponential functions. For more on these connections, see the Strengthening Core Skills feature at the end of this chapter or visit www.mhhe.com/coburn and review Section 8.6: Complex Numbers in Exponential Form.

TECHNOLOGY HIGHLIGHT

Templates, Graphing Calculators, and Complex Numbers

To work efficiently with larger expressions on a graphing calculator, it helps to set up a general template that can repeatedly be recalled and reused. For De Moivre's theorem, different complex numbers will give different values for n, r, and θ. Generally n and r will consist of a single digit, but θ will often have one, two, or three digits so we set the template to accommodate this fact. After clearing the home screen, we enter the generic template $\mathrm{R}^{\wedge} \mathrm{N} *(\cos (\mathrm{~N} * \theta)+i \sin (\mathrm{~N} * \theta))$ as in Figure 8.17, store the value of θ, then recall the expression each time we wish to use it. For nth roots we enter $N \sqrt{x} \sqrt{R} *(\cos (\theta / N+360 K / N)+$ $i \sin (\theta / \mathrm{N}+360 \mathrm{~K} / \mathrm{N})$). In either case we can recall and overwrite the values to use the formula (as in Example 1 here), or store values in N, R, θ, and K to use the formula as it stands (as in Example 2).

EXAMPLE 1 Use the template above for De Moivre's theorem and your graphing calculator to find the value of $(2 \sqrt{3}-2 i)^{6}$.
Solution: In this case the complex number is $z=2 \sqrt{3}-2 i$ (in QIV) with $n=6, r=4$, and $\theta=-30^{\circ}$. Storing -30 in location $\theta(-30$ STO \rightarrow ALPHA 3), we recall the expression for De Moivre's theorem and enter/overwrite N and R. Here, $z^{6}=-4096$. See Figure 8.18.
EXAMPLE 2 Use the template above for the nth roots theorem and the storage/ recall abilities of your graphing calculator to find the three cube roots of $z=-2-2 i$.

Solution: The complex number $z=-2-2 i$ (in QIII) yields $r=\sqrt{8}$ and $\theta=225^{\circ}$. With $n=3$ and $k=0$ to begin, we store these values in their respective locations: $\sqrt{8}$ STO \rightarrow ALPHA \times for R, $3 \times$ STO \rightarrow ALPHA LOG for $\mathrm{N}, 225$ STO \rightarrow ALPHA 3 for θ, and 0 STO \rightarrow ALPHA 1 for K (see Figure 8.19). Recalling the template for nth roots and pressing ENTER gives $z_{0}=0.3660254038+1.366025404 i$. Changing the value of k to $k=1$ and $k=2$ gives $z_{1}=-1.366025404-0.3660254038 i$, with

Figure 8.17

Figure 8.18

Figure 8.19

Exercise 1: Use the appropriate template to find the three cube roots of unity,
$z=1+0 i\left(\right.$ note $\left.\frac{\sqrt{3}}{2} \approx 0.8660\right)$.
Exercise 2: Use the appropriate template to find z^{3}, given $z=1-\sqrt{3} i$.

8.3 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. For $z=r(\cos \theta+i \sin \theta), z^{5}$ is computed as according to \qquad theorem.
2. If $z=6 i$, then z raised to an \qquad power will be real and z raised to an \qquad power will be
\qquad since $\theta=$ \qquad
3. One application of De Moivre's theorem is to check \qquad solutions to a polynomial equation.
4. From Example 4, go ahead and compute the value of z_{5}, z_{6}, and z_{7}. What do you notice? Discuss how this reaffirms that there are exactly n, nth roots.
5. The nth roots of a complex number are equally spaced on a circle of radius r, since their arguments all differ by \qquad degrees or \qquad radians.
6. Use a calculator to find $(1-3 i)^{4}$. Then use it again to find the fourth root of the result. What do you notice? Explain the discrepancy and then resolve it using the nth roots theorem to find all four roots.

DEVELOPING YOUR SKILLS

Use De Moivre's theorem to compute the following. Clearly state the value of r, n, and θ before you begin.
7. $(3+3 i)^{4}$
8. $(-2+2 i)^{6}$
9. $(-1+\sqrt{3} i)^{3}$
10. $(\sqrt{3}-i)^{3}$
11. $\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)^{5}$
12. $\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)^{6}$
13. $\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i\right)^{6}$
14. $\left(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)^{5}$
15. $\left(4 \text { cis } 330^{\circ}\right)^{3}$
16. $\left(4 \operatorname{cis} 300^{\circ}\right)^{3}$
17. $\left(\frac{\sqrt{2}}{2} \operatorname{cis} 135^{\circ}\right)^{5}$
18. $\left(\frac{\sqrt{2}}{2} \operatorname{cis} 135^{\circ}\right)^{8}$

Use De Moivre's theorem to verify the solution given for each polynomial equation.
19. $z^{4}+3 z^{3}-6 z^{2}+12 z-40=0 ; z=2 i$
20. $z^{4}-z^{3}+7 z^{2}-9 z-18=0 ; z=-3 i$
21. $z^{4}+6 z^{3}+19 z^{2}+6 z+18=0 ; z=-3-3 i$
22. $2 z^{4}+3 z^{3}-4 z^{2}+2 z+12=0 ; z=1-i$
23. $z^{5}+z^{4}-4 z^{3}-4 z^{2}+16 z+16=0 ; z=\sqrt{3}-i$
24. $z^{5}+z^{4}-16 z^{3}-16 z^{2}+256 z+256=0 ;$ $z=2 \sqrt{3}+2 i$
25. $z^{4}-4 z^{3}+7 z^{2}-6 z-10=0 ; z=1+2 i$
26. $z^{4}-2 z^{3}-7 z^{2}+28 z+52=0 ; z=3-2 i$

Find the \boldsymbol{n} th roots indicated by writing and solving the related equation.
27. five fifth roots of unity
28. six sixth roots of unity
29. five fifth roots of 243
30. three cube roots of 8
31. three cube roots of $-27 i$
32. five fifth roots of $32 i$

Solve each equation using the \boldsymbol{n} th roots theorem.

33. $x^{5}-32=0$
34. $x^{5}-243=0$
35. $x^{3}-27 i=0$
36. $x^{3}+64 i=0$
37. $x^{5}-\sqrt{2}-\sqrt{2} i=0$
38. $x^{5}-1+\sqrt{3} i=0$
39. Solve the equation $x^{3}-1=0$ by factoring it as the difference of cubes and applying the quadratic formula. Compare results to those obtained in Example 3.
40. Use the nth roots theorem to find the four fourth roots of unity, then find all solutions to $x^{4}-1=0$ by factoring it as a difference of squares. What do you notice?

Use the nth roots theorem to find the nth roots. Clearly state r, n, and θ (from the trigonometric form of z) as you begin. Answer in exact form when possible, otherwise use a four decimal place approximation.
41. four fourth roots of $-8+8 \sqrt{3} i$
43. four fourth roots of $-7-7 i$
42. five fifth roots of $16-16 \sqrt{3} i$
44. three cube roots of $9+9 i$

WORKING WITH FORMULAS

The discriminant of a cubic equation: $D=\frac{4 p^{3}+27 q^{2}}{108}$
For cubic equations of the form $z^{3}+p z+q=0$, where p and q are real numbers, one solution has the form $z=\sqrt[3]{-\frac{q}{2}+\sqrt{\boldsymbol{D}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\boldsymbol{D}}}$, where \boldsymbol{D} is called the discriminant. Compute the value of \boldsymbol{D} for the cubic equations given, then use the nth roots theorem to find the three cube roots of $-\frac{q}{2}+\sqrt{D}$ and $-\frac{q}{2}-\sqrt{D}$ in trigonometric form (also see Exercises 55 and 56).
45. $z^{3}-6 z+4=0$
46. $z^{3}-12 z-8=0$

APPLICATIONS

47. Powers and roots: Just after Example 4, the four fourth roots of $z=8+8 \sqrt{3} i$ were given as
$z_{0}=2\left(\cos 15^{\circ}+i \sin 15^{\circ}\right)$
$z_{1}=2\left(\cos 105^{\circ}+i \sin 105^{\circ}\right)$
$z_{2}=2\left(\cos 195^{\circ}+i \sin 195^{\circ}\right)$
$z_{3}=2\left(\cos 285^{\circ}+i \sin 285^{\circ}\right)$.
Verify these are the four fourth roots of $z=8+8 \sqrt{3} i$ using a calculator and De Moivre's theorem.
48. Powers and roots: In Example 4 we found the five fifth roots of $z=16 \sqrt{3}+16 i$ were
$z_{0}=2\left(\cos 6^{\circ}+i \sin 6^{\circ}\right)$
$z_{1}=2\left(\cos 78^{\circ}+i \sin 78^{\circ}\right)$
$z_{2}=2\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$
$z_{3}=2\left(\cos 222^{\circ}+i \sin 222^{\circ}\right)$
$z_{4}=2\left(\cos 294^{\circ}+i \sin 294^{\circ}\right)$
Verify these are the five fifth roots of $16 \sqrt{3}+16 i$ using a calculator and De Moivre's theorem.

Electrical circuits: For an AC circuit with three branches wired in parallel, the total impedance is given by $Z_{T}=\frac{Z_{1} Z_{2} Z_{3}}{Z_{1} Z_{2}+Z_{1} Z_{3}+Z_{2} Z_{3}}$, where Z_{1}, Z_{2}, and Z_{3} represent the impedance in each branch of the circuit. If the impedance in each branch is identical, $Z_{1}=Z_{2}=Z_{3}=Z$, and the numerator becomes Z^{3} and the denominator becomes $3 Z^{2}$, (a) use De Moivre's theorem to calculate the numerator and denominator for each value of Z given, (b) find the total impedance by computing the quotient $\frac{Z^{3}}{3 Z^{2}}$, and (c) verify your result is identical to $\frac{Z}{3}$.
49. $Z=3+4 j$ in all three branches
50. $Z=5 \sqrt{3}+5 j$ in all three branches

EXTENDING THE CONCEPT

In Chapter 5 , you were asked to verify that $\sin (3 \theta)=3 \sin \theta-4 \sin ^{3} \theta$ and $\cos (4 \theta)=8 \cos ^{2} \theta-8 \cos ^{2} \theta+1$ were identities (Section 5.3, Exercises 21 and 22). For $z=3+\sqrt{7} i$, verify $|z|=4$ and $\theta=\tan ^{-1}\left(\frac{\sqrt{7}}{3}\right)$, then draw a right triangle with $\sqrt{7}$ opposite θ and 3 adjacent to θ. Discuss how this right triangle and the identities given can be used in conjunction with De Moivre's theorem to find the exact value of the powers given (also see Exercises 53 and 54).
51. $(3+\sqrt{7} i)^{3}$
52. $(3+\sqrt{7} i)^{4}$

For cases where $\boldsymbol{\theta}$ is not a standard angle, working toward an exact answer using De Moivre's theorem requires the use of multiple angle identities and drawing the right triangle related to $\theta=\tan ^{-1}\left|\frac{b}{a}\right|$. For Exercises 53 and 54, use De Moivre's theorem to compute the complex powers by (a) constructing the related right triangle for θ, (b) evaluating $\sin (4 \theta)$ using two applications of double-angle identities, and (c) evaluating $\cos (4 \theta)$ using a Pythagorean identity and the computed value of $\sin (4 \theta)$.
53. $z=(1+2 i)^{4}$
54. $(2+\sqrt{5 i})^{4}$

The solutions to the cubic equations in Exercises 45 and 46 (repeated as the equations in Exercises 55 and 56) can be found by adding the cube roots of $-\frac{q}{2}+\sqrt{D}$ and $-\frac{q}{2}-\sqrt{D}$ that have arguments summing to 360°.
55. Find the roots of $z^{3}-6 z+4=0$
56. Find the roots of $z^{3}-12 z-8=0$

MAINTAINING YOUR SKILLS

57. (8.1) In AC (alternating current) circuits, the current I is computed as the quotient of the voltage V and the impedance $Z: I=\frac{V}{Z}$. (a) Find the amount of current given $V=14-5 i$ and $Z=3-2 i$.
(b) Verify your answer by showing $Z I=V$.
58. (6.2) Using her calculator, Julia finds that $\sin 120^{\circ}=\frac{\sqrt{3}}{2}$ but $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \neq 120^{\circ}$. Explain why.
59. (5.1) Prove the following is an identity:
$\frac{\tan ^{2} x}{\sec x+1}=\frac{1-\cos x}{\cos x}$
60. (8.2) Convert $z=4-4 i$ to trigonometric form.
61. (1.1) Solve the triangle shown using a 30-60-90 standard triangle.

62. (2.2) Solve the triangle given. Round lengths to hundredths of a meter.

MID-CHAPTER CHECK

1. Find the sum and product of the complex numbers $2+3 i$ and $2-3 i$. Comment on what you notice.
2. Determine the quotient: $\frac{2+3 i}{3-2 i}$
3. Check by substitution: Is $x=1+2 i$ a solution to $x^{2}-2 x+5=0$?
4. State the quadrant of each complex number, then write it in trigonometric form in degrees rounded to the nearest tenth (when necessary).
a. $-4+4 \sqrt{3} i$
b. $-12-9 i$
5. Convert the following complex numbers to rectangular form.
a. $3 \sqrt{2} \operatorname{cis}\left(\frac{\pi}{4}\right)$
b. $2 \sqrt{3} \operatorname{cis}\left(\frac{11 \pi}{6}\right)$
6. Given $z_{1}=0-5 i$ and $z_{2}=2-2 \sqrt{3} i$, compute the product $z_{1} z_{2}$ using the trigonometric form. Answer in degrees.
7. Given $z_{1}=-3+3 i$ and $z_{2}=5 \sqrt{3}+5 i$, compute the quotient $\frac{z_{1}}{z_{2}}$ using the trigonometric form. Answer in radians.
8. Use De Moivre's theorem to find the value of $(-2+2 i)^{5}$.
9. Use the nth roots theorem to find the five fifth roots of -32 . Leave your answer in degree trigonometric form.
10. Use the nth roots theorem to find all solutions (real and complex) to $x^{3}-729=0$.

REINFORCING BASIC CONCEPTS

More on the Imaginary Unit

It would be hard to overstate the importance of the multiplicative identity " 1 " (the real number unit) to a study of the real numbers. Much of its utility is based on the fact that multiplication by 1 does not change the magnitude of a given quantity. After a study of complex numbers, it might seem natural to wonder if there are any similarities between the imaginary unit " i " and the real number unit " 1 ." In a spirit of exploration, we begin by computing the product of $z_{1}=2+3 i$ and the imaginary unit.

$$
\begin{aligned}
z_{1} \cdot i & =(2+3 i)(i) & & \text { substitute } 2+3 i \text { for } z_{1} \\
& =2 i+3 i^{2} & & \text { distribute } \\
& =2 i+3(-1) & & \text { substitute }-1 \text { for } i^{2} \\
& =-3+2 i & & \text { multiply and rearrange terms }
\end{aligned}
$$

At first, the investigation appears to be a dead end. But a closer look reveals that multiplying z_{1} by the imaginary unit likewise does not change its magnitude, only its orientation, due to the causal interplay between the real and imaginary parts. For $z_{1}=2+3 i$ and $z_{2}=-3+2 i$ we have $\left|z_{1}\right|=\sqrt{2^{2}+3^{2}}=\sqrt{13}$, and $\left|z_{2}\right|=\sqrt{(-3)^{2}+2^{2}}=$ $\sqrt{13}$. Further, from the graphs of z_{1} and z_{2} in the complex plane, we note that z_{2} is a 90° counterclockwise rotation of z_{1}. In fact, it turns out that the product of any complex number z and the imaginary unit yields a 90° counterclockwise rotation of z, on a central circle of radius $|z|$. To see why, consider $i=0+1 i=1 \operatorname{cis}\left(90^{\circ}\right)$ and $z=a+b i=|z|$ cis θ. From the standard method of multiplying complex numbers, if $z_{1}=\left|z_{1}\right| \operatorname{cis} \alpha$ and $z_{2}=\left|z_{2}\right| \operatorname{cis} \beta$, then $z_{1} z_{2}=\left|z_{1} z_{2}\right| \operatorname{cis}(\alpha+\beta)$.

$$
\begin{aligned}
z i & =(|z| \operatorname{cis} \theta)\left(1 \operatorname{cis} 90^{\circ}\right) & & \text { trigonometric form } \\
& =|z|(1) \operatorname{cis}\left(\theta+90^{\circ}\right) & & \text { multiply magnitudes, add arguments } \\
& =|z| \operatorname{cis}\left(\theta+90^{\circ}\right) & & \text { result }
\end{aligned}
$$

By combining this with the preceding result, we note the following:

1. If $\left|z_{1}\right|=1$, then $\left|z_{1} z_{2}\right|=\left|z_{2}\right|$.
2. If $\left|z_{1}\right|=1$, then $z_{1} z_{2}$ corresponds to a rotation of z_{2} by α°.

If these are true, we have an alternative method of finding the nth roots of a complex number, if any one of them is known. These and other ideas are explored in the following exercises.
Exercise 1: Based on these observations, what is the effect of multiplying any complex number z by i^{2}, i^{3}, or i^{4} ?
Exercise 2: Verify $z_{1}=2+3 i$ is a fourth root of $z=-119-120 i$. Recalling that the nth roots of a complex number are separated by $\left(\frac{360}{n}\right)^{\circ}$, the four fourth roots of z must be 90° apart. Use the preceding observations and multiplication by i to find the other three roots.
Exercise 3: For $z=0+1 i$, we noted $|z|=1$ and $\theta=90^{\circ}$. (a) Find the magnitude and angle θ for $z=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$, and (b) use what you find along with our previous observations to find all solutions to $z^{8}=256$, given $2 i$ is a solution.
Exercise 4: (a) Describe the set of all complex numbers whose magnitude is 1. (b) Considering your answers to Exercises 2 and 3, find the unique complex number whose product with any complex number z amounts to rotating z counterclockwise 120°, and (c) use what you observe to find the remaining third roots of $-8 i$, given $2 i$ is a root.

8.4 Polar Coordinates, Equations, and Graphs

Learning Objectives

In Section 8.4 you will learn how to:A. Plot points given in polar form
B. Express a point in polar form
C. Convert between polar form and rectangular formD. Sketch basic polar graphs using an r-value analysisE. Use symmetry and families of curves to write a polar equation given a polar graph or information about the graph

Figure 8.20

Figure 8.21

One of the most enduring goals of mathematics is to express relations with the greatest possible simplicity and ease of use. For $\frac{\tan \theta-\cot \theta}{\tan ^{2} \theta-\cot ^{2} \theta}=\sin \theta \cos \theta$, we would definitely prefer working with $\sin \theta \cos \theta$, although the expressions are equivalent. Similarly, we would prefer computing $(3+\sqrt{3} i)^{6}$ in trigonometric form rather than algebraic form—and would quickly find the result is - 1728. In just this way, many equations and graphs are easier to work with in polar form rather than rectangular form. In rectangular form, a circle of radius 2 centered at $(0,2)$ has the equation $x^{2}+(y-2)^{2}=4$. In polar form, the equation of the same circle is simply $r=4 \sin \theta$. As you'll see, polar coordinates offer an alternative method for plotting points and graphing relations.

A. Plotting Points Using Polar Coordinates

Suppose a Coast Guard station receives a distress call from a stranded boat. The boater could attempt to give the location in rectangular form, but this might require imposing an arbitrary coordinate grid on an uneven shoreline, using uncertain points of reference. However, if the radio message said, "We're stranded 4 miles out, bearing 60°," the Coast Guard could immediately locate the boat and send help. In polar coordinates, " 4 miles out, bearing 60° " would simply be written $(r, \theta)=\left(4,30^{\circ}\right)$, with r representing the distance from the station and $\theta>0$ measured from a horizontal axis in the counterclockwise direction as before (see Figure 8.20). If we placed the scenario on a rectangular grid (assuming a straight shoreline), the coordinates of the boat would be $(2 \sqrt{3}, 2)$ using basic trigonometry. As you see, the polar coordinate system uses angles and distances to locate a point in the plane. In this example, the Coast Guard station would be considered the pole or origin, with the x-axis as the polar axis or axis of reference (Figure 8.21). A distinctive feature of polar coordinates is that we allow r to be negative, in which case $P(r, \theta)$ is the point $|r|$ units from the pole in a direction opposite $\left(180^{\circ}\right)$ to that of θ (Figure 8.22). For convenience, polar graph paper is often used when working with polar coordinates. It consists of a series of concentric circles that share the same center and have integer radii. The standard angles are marked off in multiples of $\frac{\pi}{12}=15^{\circ}$ depending on whether you're working in radians or degrees (Figure 8.23). To plot the point $P(r, \theta)$, go a distance of $|r|$ at 0° then move θ° counterclockwise along a circle of radius r. If $r>0$, plot a point at that location (you're finished). If $r<0$, the point is plotted on a circle of the same radius, but 180° in the opposite direction.

Figure 8.22

Figure 8.23

EXAMPLE 1 Plotting Points in Polar Coordinates

Plot each point $P(r, \theta)$ given:

$$
A\left(4,45^{\circ}\right) ; B\left(-5,135^{\circ}\right) ; C\left(-3,-30^{\circ}\right) ; D\left(2, \frac{2 \pi}{3}\right) ; E\left(-5, \frac{\pi}{3}\right) ; \text { and } F\left(3,-\frac{\pi}{6}\right) .
$$

Solution

च. A. You've just learned how to plot points given in polar form

For $A\left(4,45^{\circ}\right)$ go 4 units at 0°, then rotate 45° counterclockwise and plot point A. For $B\left(-5,135^{\circ}\right)$, move $|-5|=5$ units at 0°, rotate 135°, then actually plot point B 180° in the opposite direction, as shown. Point $C\left(-3,-30^{\circ}\right)$ is plotted by moving $|-3|=3$ units at 0°, rotating -30°, then plotting point $C 180^{\circ}$ in the opposite direction (since $r<0$). See Figure 8.24. The points $D\left(2, \frac{2 \pi}{3}\right), E\left(-5, \frac{\pi}{3}\right)$, and $F\left(3,-\frac{\pi}{6}\right)$ are plotted on the grid in Figure 8.25.

Figure 8.24

Figure 8.25

Now try Exercises 7 through 22
While plotting the points $B\left(-5,135^{\circ}\right)$ and $F\left(3,-\frac{\pi}{6}\right)$, you likely noticed that the coordinates of a point in polar coordinates are not unique. For $B\left(-5,135^{\circ}\right)$ it appears more natural to name the location $\left(5,315^{\circ}\right)$, while for $F\left(3,-\frac{\pi}{6}\right)$, the expression $\left(3, \frac{11 \pi}{6}\right)$ is just as reasonable. In fact, for any point $P(r, \theta)$ in polar coordinates, $P(r, \theta \pm 2 \pi)$ and $P(-r, \theta \pm \pi)$ name the same location. See Exercises 23 through 36.

B. Expressing a Point in Polar Coordinates

Conversions between rectangular and polar coordinates is a simple application of skills from previous sections, and closely resembles the conversion from the rectangular form to the trigonometric form of a complex number. To make the connection, we first assume $r>0$ with θ in Quadrant II (see Figure 8.26). In rectangular form, the coordinates of the point

Figure 8.26
 are simply (x, y), with the lengths of x and y forming the sides of a right triangle. The distance r from the origin to point P resembles the modulus of a complex number and is computed in the same way: $r=\sqrt{x^{2}+y^{2}}$. As long as $x \neq 0$, we have $\theta_{r}=\tan ^{-1}\left|\frac{y}{x}\right|$, noting θ_{r} is a reference
angle if the terminal side is not in Quadrant I. If needed, refer to Section 3.4 for a review of reference arcs and reference angles.

Converting from Rectangular to Polar Coordinates

Any point $P(x, y)$ in rectangular coordinates can be represented as $P(r, \theta)$ in polar coordinates, where $r=\sqrt{x^{2}+y^{2}}$ and $\theta_{r}=\tan ^{-1}\left|\frac{y}{x}\right|, x \neq 0$.

EXAMPLE 2 Converting a Point from Rectangular Form to Polar Form

Convert from rectangular to polar form, with $r>0$ and $0^{\circ} \leq \theta<360^{\circ}$ (round values to one decimal place as needed).
a. $P(-5,12)$
b. $P(3 \sqrt{2},-3 \sqrt{2})$

Solution a. Point $P(-5,12)$ is in Quadrant II.

$$
\begin{aligned}
r & =\sqrt{(-5)^{2}+12^{2}} & & \theta_{r}
\end{aligned} \tan ^{-1}\left(\frac{12}{5}\right)
$$

$$
P(-5,12) \rightarrow P\left(13,112.6^{\circ}\right)
$$

b. Point $P(3 \sqrt{2},-3 \sqrt{2})$ is in Quadrant IV.

$$
\begin{aligned}
r & =\sqrt{(3 \sqrt{2})^{2}+(-3 \sqrt{2})^{2}} & \theta_{r} & =\tan ^{-1}\left(\frac{3 \sqrt{2}}{3 \sqrt{2}}\right) \\
& =\sqrt{36} & \theta_{r} & =45^{\circ} \\
& =6 & \theta & =315^{\circ}
\end{aligned}
$$

$$
P(3 \sqrt{2},-3 \sqrt{2}) \rightarrow P\left(6,315^{\circ}\right)
$$

C. Converting Between Polar Coordinates and Rectangular Coordinates

The conversion from polar form to rectangular form is likewise straightforward. From Figure 8.27 we again note $\cos \theta=\frac{x}{r}$ and $\sin \theta=\frac{y}{r}$, giving $x=r \cos \theta$ and $y=r \sin \theta$. The conversion simply consists of making these substitutions and simplifying.

Figure 8.27

Converting from Polar to Rectangular Coordinates

Any point $P(r, \theta)$ in polar coordinates can be represented as $P(x, y)$ in rectangular coordinates, where $x=r \cos \theta$ and $y=r \sin \theta$.

EXAMPLE 3 Converting a Point from Polar Form to Rectangular Form

Convert from polar to rectangular form (round values to one decimal place as needed).
a. $P\left(12, \frac{5 \pi}{3}\right)$
b. $P\left(6,240^{\circ}\right)$

Solution a. Point $P\left(12, \frac{5 \pi}{3}\right)$ is in Quadrant IV.

$$
\begin{array}{rlrl}
x & =r \cos \theta & y & =r \sin \theta \\
& =12 \cos \left(\frac{5 \pi}{3}\right) & & =12 \sin \left(\frac{5 \pi}{3}\right) \\
& =12\left(\frac{1}{2}\right) & & =12\left(\frac{-\sqrt{3}}{2}\right) \\
& =6 & & =-6 \sqrt{3} \\
P\left(12, \frac{5 \pi}{3}\right) \rightarrow P(6,-6 \sqrt{3}) \approx P(6,-10.4) &
\end{array}
$$

b. Point $P\left(6,240^{\circ}\right)$ is in Quadrant III.

$$
\begin{array}{rlrl}
x & =6 \cos 240^{\circ} & y & =6 \sin 240^{\circ} \\
=6\left(-\frac{1}{2}\right) & & =6\left(\frac{-\sqrt{3}}{2}\right) \\
& =-3 & & =-3 \sqrt{3} \\
P\left(6,240^{\circ}\right) \rightarrow P(-3, & -3 \sqrt{3}) \approx P(-3,-5.2)
\end{array}
$$

Now try Exercises 45 through 52

Using the relationships $x=r \cos \theta$ and $y=r \sin \theta$, we can convert an equation given in rectangular form, to an equivalent equation in polar form.

EXAMPLE 4 - Converting an Equation from Rectangular Form to Polar Form

Convert the following equations to polar form.
a. $x^{2}+y^{2}=16$
b. $y=\frac{1}{x}$

Solution
a. The graph of this equation is a circle of radius 4 centered at the origin.

$$
\begin{aligned}
x^{2}+y^{2} & =16 & & \text { given equation } \\
(r \cos \theta)^{2}+(r \sin \theta)^{2} & =16 & & \text { substitute } r \cos \theta \text { for } x \text { and } r \sin \theta \text { for } y \\
r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta & =16 & & \text { expand squares } \\
r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) & =16 & & \text { factor out } r^{2} \text { on the left } \\
r^{2}(1) & =16 & & \text { Pythagorean identity, } \cos ^{2} \theta+\sin ^{2} \theta=1 \\
r^{2} & =16 & & \text { simplify } \\
r & =4 & & \text { square root of both sides }
\end{aligned}
$$

In polar form, the equation of this circle is expressed simply as $r=4$.

WORTHY OF NOTE

Note in Part b of Example 4, the equation was actually simpler in rectangular coordinates.
b. For this rational function, we proceed as before, simplifying with algebra and trigonometric identities.

$$
\begin{aligned}
y & =\frac{1}{x} & & \text { given equation } \\
r \sin \theta & =\frac{1}{r \cos \theta} & & \text { substitute } r \cos \theta \text { for } x \text { and } r \sin \theta \text { for } y \\
(r \sin \theta)(r \cos \theta) & =1 & & \text { multiply both sides by } r \cos \theta \\
r^{2} \sin \theta \cos \theta & =1 & & \text { reorder terms } \\
2 r^{2} \sin \theta \cos \theta & =2 & & \text { multiply both sides by } 2 \\
r^{2} \sin 2 \theta & =2 & & \text { double angle identity: } 2 \sin \theta \cos \theta=\sin 2 \theta
\end{aligned}
$$

Multiplying both sides by 2 enabled us to use a double-angle identity and express the rational function in polar form as $r^{2} \sin 2 \theta=2$. Note the similarity to rectangular coordinates, where there are many different forms in which an equation may be written.

Now try Exercises 53 through 60

Converting an equation given in polar form to rectangular form relies primarily on the relationships $x=r \cos \theta, y=r \sin \theta, \tan \theta=\frac{y}{x}$, and $x^{2}+y^{2}=r^{2}$. With experience, you will become familiar with various "tricks of the trade," which include

1. Multiplying both sides of an equation by r to yield terms of $r \cos \theta$ or $r \sin \theta$.
2. Taking the tangent of both sides.
3. Squaring both sides of an equation to yield r^{2}.

EXAMPLE $5>$ Converting an Equation from Polar Form to Rectangular Form

Convert the following equations to rectangular form.
a. $\theta=\frac{\pi}{4}$
b. $r=4 \sin \theta$

Solution $>$ a. With θ isolated on the left side, we must introduce a trig function.

$$
\begin{aligned}
\theta & =\frac{\pi}{4} & & \text { given equation } \\
\tan \theta & =\tan \frac{\pi}{4} & & \text { take tangent of both sides } \\
\frac{y}{x} & =1 & & \text { substitute } \frac{y}{x} \text { for } \tan \theta ; \tan \frac{\pi}{4}=1 \\
y & =x & & \text { multiply both sides by } x
\end{aligned}
$$

In rectangular form, we recognize the equation $y=x$ as a line with slope 1 passing through the origin.
b. Hoping to use the relationship $y=r \sin \theta$, we proceed as follows:

$$
\begin{aligned}
r & =4 \sin \theta & & \text { given equation } \\
r^{2} & =4 r \sin \theta & & \text { multiply both sides by } r \\
x^{2}+y^{2} & =4 y & & \text { substitute } x^{2}+y^{2} \text { for } r^{2} \text { and } y \text { for } r \sin \theta
\end{aligned}
$$

Using algebra, we can write the equation $x^{2}+y^{2}=4 y$ as $x^{2}+(y-2)^{2}=4$, which is the standard form of a circle with center $(0,2)$ and radius 2 .

V C. You've just learned how to convert between polar form and rectangular form

While squaring both sides of the equation in Example 5(b) would also have yielded r^{2} on the left, the right would have become $16 \sin ^{2} \theta$, which does not easily convert to rectangular form. Often, you will need to try various approaches before finding one that works.

D. Basic Polar Graphs and r-Value Analysis

To really understand polar graphs, an intuitive sense of how they're developed is needed. Polar equations are generally stated in terms of r and trigonometric functions of θ, with θ being the input value and r being the output value. First, it helps to view the length r as the long second hand of a clock, but extending an equal distance in both directions from center (Figure 8.28). This "second hand" ticks around the face of the clock in the counterclockwise direction, with the angular measure of each tick being $\frac{\pi}{12}$ radians $=15^{\circ}$. As each angle "ticks by," we locate a point somewhere along the radius,

Figure 8.28
 depending on whether r is positive or negative, and plot it on the face of the clock before going on to the next tick. For the purposes of this study, we will allow that all polar graphs are continuous and smooth curves, without presenting a formal proof.

EXAMPLE $6>$ Graphing Basic Polar Equations

Graph the polar equations.
a. $r=4$
b. $\theta=\frac{\pi}{4}$

Solution
a. For $r=4$, we're plotting all points of the form $(4, \theta)$ where r has a constant value and θ varies. As the second hand "ticks around the polar grid," we plot all points a distance of 4 units from the pole. As you might imagine, the graph is a circle with radius 4. See Example 4(a).
b. For $\theta=\frac{\pi}{4}$, all points have the form $\left(r, \frac{\pi}{4}\right)$ with $\frac{\pi}{4}$ constant and r varying. In this case, the "second hand" is frozen at $\frac{\pi}{4}$, and we plot any selection of r-values, producing the straight line shown in the
 figure. See Example 5(a).

Now try Exercises 69 through 72

To develop an "intuitive sense" that allows for the efficient graphing of more sophisticated equations, we use a technique called r-value analysis. This technique basically takes advantage of the predictable patterns in $r=\sin \theta$ and $r=\cos \theta$ taken from their graphs, including the zeros and maximum/minimum values.

We begin with the r-value analysis for $r=\sin \theta$, using the graph shown in Figure 8.29. Note the analysis occurs in the four colored parts corresponding to Quadrants I, II, III, and IV, and that the maximum value of $|\sin \theta|=1$.

WORTHY OF NOTE

It is important to remember that if $r<0$, the related point on the graph is $|r|$ units from center, 180° in the opposite direction: $(-r, \theta) \rightarrow\left(r, \theta+180^{\circ}\right)$. In addition, students are encouraged not to use a table of values, a conversion to rectangular coordinates, or a graphing calculator until after the r-value analysis.

Figure 8.29

1. As θ moves from 0 to $\frac{\pi}{2}, \sin \theta$ is positive and $|\sin \theta|$ increases from 0 to 1 .
\Rightarrow for $r=\sin \theta, r$ is increasing
2. As θ moves from $\frac{\pi}{2}$ to $\pi, \sin \theta$ is positive and $|\sin \theta|$ decreases from 1 to 0 .
\Rightarrow for $r=\sin \theta, r$ is decreasing
3. As θ moves from π to $\frac{3 \pi}{2}, \sin \theta$ is negative and $|\sin \theta|$ increases from 0 to 1 . \Rightarrow for $r=\sin \theta, r$ is increasing
4. As θ moves from $\frac{3 \pi}{2}$ to $2 \pi, \sin \theta$ is negative and $|\sin \theta|$ decreases from 1 to 0 .
\Rightarrow for $r=\sin \theta, r$ is decreasing
In summary, note that the value of $|r|$ goes through four cycles, two where it is increasing from 0 to 1 (in red), and two where it is decreasing from 1 to 0 (in blue).

EXAMPLE $7>$ Graphing Polar Equations Using an r-Value Analysis

Sketch the graph of $r=4 \sin \theta$ using an r-value analysis.
Solution Begin by noting that $r=0$ at $\theta=0$, and will increase from 0 to 4 as the clock "ticks" from 0 to $\frac{\pi}{2}$, $\operatorname{since} \sin \theta$ is increasing from 0 to 1. (1) For $\theta=\frac{\pi}{6}, \frac{\pi}{4}$, and $\frac{\pi}{3}, r=2, r \approx 2.8$, and $r \approx 3.5$, respectively (at $\theta=\frac{\pi}{2}, r=4$). See Figure 8.30. (2) As θ continues "ticking" from $\frac{\pi}{2}$ to $\pi,|r|$ decreases from 4 to 0 , $\operatorname{since} \sin \theta$ is decreasing from 1 to 0 . For $\theta=\frac{2 \pi}{3}, \frac{3 \pi}{4}$, and $\frac{5 \pi}{6}, r \approx 3.5, r \approx 2.8$, and $r=2$, respectively (at $\theta=\pi, r=0$). See Figure 8.31. (3) From π to $\frac{3 \pi}{2},|r|$ increases from 0 to 4 , but since $r<0$, this portion of the graph is reflected back into Quadrant I, overlapping the portion already drawn from 0 to $\frac{\pi}{2}$.

Figure 8.30

Figure 8.31

(4) From $\frac{3 \pi}{2}$ to $2 \pi,|r|$ decreases from 4 to 0 , overlapping the portion drawn from $\frac{\pi}{2}$ to π. We conclude the graph is a closed figure limited to Quadrants I and II as shown in Figure 8.31. This is a circle with radius 2, centered at $(0,2)$ [see Example 5(b)]. In summary:

$$
r=4 \sin \theta
$$

$\boldsymbol{\theta}$	$\mathbf{0}$ to $\frac{\boldsymbol{\pi}}{\mathbf{2}}$	$\frac{\boldsymbol{\pi}}{\mathbf{2}}$ to $\boldsymbol{\pi}$	$\boldsymbol{\pi}$ to $\frac{\mathbf{3} \boldsymbol{\pi}}{\mathbf{2}}$	$\frac{\mathbf{3} \boldsymbol{\pi}}{\mathbf{2}}$ to $\mathbf{2 \pi}$
$\|r\|$	0 to 4	4 to 0	0 to 4	4 to 0

Now try Exercises 73 and 74

Although it takes some effort, r-value analysis offers an efficient way to graph polar equations, and gives a better understanding of graphing in polar coordinates. In addition, it often enables you to sketch the graph with a minimum number of calculations and plotted points. As you continue using the technique, it will help to have Figure 8.29 in plain view for quick reference, as well as the corresponding analysis of $y=\cos \theta$ for polar graphs involving cosine (see Exercise 114).

EXAMPLE $8 \rightarrow$ Graphing Polar Equations Using an r-Value Analysis

Sketch the graph of $r=2+2 \sin \theta$ using an r-value analysis.
Solution $>$ Since the minimum value of $\sin \theta$ is -1 , we note that r will always be greater than or equal to zero. At $\theta=0, r$ has a value of $2(\sin 0=0)$, and will increase from 2 to 4 as the clock "ticks" from 0 to $\frac{\pi}{2}(\sin \theta$ is positive and $|\sin \theta|$ is increasing).
From $\frac{\pi}{2}$ to π, r decreases from 4 to $2(\sin \theta$ is positive and $|\sin \theta|$ is decreasing $)$. From π to $\frac{3 \pi}{2}, r$ decreases from 2 to $0(\sin \theta$ is negative and $|\sin \theta|$ is increasing); and from $\frac{3 \pi}{2}$ to $2 \pi, r$ increases from 0 to $2(\sin \theta$ is negative and $|\sin \theta|$ is decreasing). We conclude the graph is a closed figure containing the points $(2,0)$, $\left(4, \frac{\pi}{2}\right),(2, \pi)$, and $\left(0, \frac{3 \pi}{2}\right)$. Noting that $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$ will produce integer values, we evaluate $r=2+2 \sin \theta$ and obtain the additional points $\left(3, \frac{\pi}{6}\right)$ and $\left(3, \frac{5 \pi}{6}\right)$. Using these points and the r-value analysis produces the graph shown here, called a cardioid (from the limaçon family of curves). In summary we have:
D. You've just learned how to sketch basic polar graphs using an r-value analysis

$\boldsymbol{\theta}$	$\boldsymbol{r}=\mathbf{2}+\mathbf{2} \sin \boldsymbol{\theta}$
(1) 0 to $\frac{\pi}{2}$	2 to 4
(2) $\frac{\pi}{2}$ to π	4 to 2
(3) π to $\frac{3 \pi}{2}$	2 to 0
(4) $\frac{3 \pi}{2}$ to 2π	0 to 2

Figure 8.32
Vertical-axis symmetry:

$$
r=-2-2 \sin \theta
$$

WORTHY OF NOTE

In mathematics we refer to the tests for polar symmetry as sufficient but not necessary conditions. The tests are sufficient to show symmetry (if the test is satisfied, the graph must be symmetric), but the tests are not necessary to show symmetry (the graph may be symmetric even if the test is not satisfied).

E. Symmetry and Families of Polar Graphs

Even with a careful r-value analysis, some polar graphs require a good deal of effort to produce. In many cases, symmetry can be a big help, as can recognizing certain families of equations and their related graphs. As with other forms of graphing, gathering this information beforehand will enable you to graph relations with a smaller number of plotted points. Figures 8.32 to 8.35 offer some examples of symmetry for polar graphs.

Figure 8.33
Polar-axis symmetry:

$$
r=5 \cos \theta
$$

Figure 8.34

Polar symmetry:
$r=5 \sin (2 \theta)$

Figure 8.35
Polar symmetry:

$$
r^{2}=25 \cos (2 \theta)
$$

The tests for symmetry in polar coordinates bear a strong resemblance to those for rectangular coordinates, but there is a major difference. Since there are many different ways to name a point in polar coordinates, a polar graph may actually exhibit a form of symmetry without satisfying the related test. In other words, the tests are sufficient to establish symmetry, but not necessary.

The formal tests for symmetry are explored in Exercises 116 to 118. For our purposes, we'll rely on a somewhat narrower view, one that is actually a synthesis of our observations here and our previous experience with the sine and cosine.

Symmetry for Graphs of Certain Polar Equations

Given the polar equation $r=f(\theta)$,

1. If $f(\theta)$ represents an expression in terms of sine(s), the graph will be symmetric to $\theta=\frac{\pi}{2}:(r, \theta)$ and $(r, \pi-\theta)$ are on the graph.
2. If $f(\theta)$ represents an expression in terms of cosine(s), the graph will be symmetric to $\theta=0$: (r, θ) and $(r,-\theta)$ are on the graph.

While the fundamental ideas from Examples 7 and 8 go a long way toward graphing other polar equations, our discussion would not be complete without a review of the period of sine and cosine. Many polar equations have factors of $\sin (n \theta)$ or $\cos (n \theta)$ in them, and it helps to recall the period formula $P=\frac{2 \pi}{n} . \quad$ Comparing $\quad r=4 \sin \theta \quad$ from

Figure 8.36

Example 7 with $r=4 \sin (2 \theta)$, we note the period of sine changes from $P=2 \pi$ to $P=\frac{2 \pi}{2}=\pi$, meaning there will be twice as many cycles and $|r|$ will now go through eight cycles—four where $|\sin (2 \theta)|$ is increasing from 0 to 1 (in red), and four where it is decreasing from 1 to 0 (in blue). See Figure 8.36.

EXAMPLE 9 Sketching Polar Graphs Using Symmetry and r-Values

Sketch the graph of $r=4 \sin (2 \theta)$ using symmetry and an r-value analysis.
Solution Since r is expressed in terms of sine, the graph will be symmetric to $\theta=\frac{\pi}{2}$. We note that $r=0$ at $\theta=\frac{n \pi}{2}$, where n is any integer, and the graph will go through the pole at these points. This also tells us the graph will be a closed figure. From the graph of $\sin (2 \theta)$ in Figure 8.36, we see $|\sin (2 \theta)|=1$ at $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}$, and $\frac{7 \pi}{4}$, so the graph will include the points $\left(4, \frac{\pi}{4}\right),\left(-4, \frac{3 \pi}{4}\right),\left(4, \frac{5 \pi}{4}\right)$, and $\left(-4, \frac{7 \pi}{4}\right)$. Only the analysis of the first four cycles is given next, since the remainder of the graph can be drawn using symmetry.

	Cycle	r-Value Analysis	Location of Graph
(1)	0 to $\frac{\pi}{4}$	$\|r\|$ increases from 0 to 4	QI $(r>0)$
(2)	$\frac{\pi}{4}$ to $\frac{\pi}{2}$	$\|r\|$ decreases from 4 to 0	QI $(r>0)$
(3)	$\frac{\pi}{2}$ to $\frac{3 \pi}{4}$	$\|r\|$ increases from 0 to 4	QIV $(r<0)$
(4)	$\frac{3 \pi}{4}$ to π	$\|r\|$ decreases from 4 to 0	QIV $(r<0)$

Table 8.1

$\boldsymbol{\theta}$	$\boldsymbol{r}=\mathbf{4} \sin (\mathbf{2 \theta})$
0	0
$\frac{\pi}{6}$	$2 \sqrt{3} \approx 3.5$
$\frac{\pi}{4}$	4
$\frac{\pi}{3}$	$2 \sqrt{3} \approx 3.5$
$\frac{\pi}{2}$	0
$\frac{2 \pi}{3}$	$-2 \sqrt{3} \approx-3.5$
$\frac{3 \pi}{4}$	-4
$\frac{5 \pi}{6}$	$-2 \sqrt{3} \approx-3.5$
π	0

Plotting the points and applying the r-value analysis with the symmetry involved produces the graph in the figure, called a four-leaf rose. At any time during this process, additional points such as those shown in Table 8.1 can be calculated to "round-out" the graph.

$$
r=4 \sin (2 \theta)
$$

$\boldsymbol{\theta}$	$\|\boldsymbol{r}\|$
0 to $\frac{\pi}{4}$	0 to 4
$\frac{\pi}{4}$ to $\frac{\pi}{2}$	4 to 0
$\frac{\pi}{2}$ to $\frac{3 \pi}{4}$	0 to 4
$\frac{3 \pi}{4}$ to π	4 to 0

Now try Exercises 79 through 86

Graphing Polar Equations

To assist the process of graphing polar equations:

1. Carefully note any symmetries you can use.
2. Have graphs of $y=\sin (n \theta)$ and $y=\cos (n \theta)$ in view for quick reference.
3. Use these graphs to analyze the value of r as the "clock ticks" around the polar grid: (a) determine the max/min r-values and write them in polar form, and (b) determine the polar-axis intercepts and write them in polar form.
4. Plot the points, then use the r-value analysis and any symmetries to complete the graph.

Similar to polynomial graphs, polar graphs come in numerous shapes and varieties, yet many of them share common characteristics and can be organized into certain families. Some of the more common families are illustrated in Appendix VII, and give the general equation and related graph for common family members. Also included are characteristics of certain graphs that will enable you to develop the polar equation given its graph or information about its graph. For further investigations using a graphing calculator, see Exercises 87 through 92.

EXAMPLE $10>$ Graphing a Limaçon Using Stated Conditions

Find the equation of the polar curve satisfying the given conditions, then sketch the graph: limaçon, symmetric to $\theta=90^{\circ}$, with $a=2$ and $b=-3$.
Solution The general equation of a limaçon symmetric to $\theta=90^{\circ}$ is $r=a+b \sin \theta$, so our desired equation is $r=2-3 \sin \theta$. Since $|a|<|b|$, the limaçon has an inner loop of length $3-2=1$ and a maximum distance from the origin of $2+3=5$. The polar-axis intercepts are $\left(2,0^{\circ}\right)$ and $\left(2,180^{\circ}\right)$. With $b<0$, the graph is reflected across the polar axis (facing "downward"). The complete graph is shown in the figure.

$\boldsymbol{\theta}$	$\boldsymbol{r}=\mathbf{2}-\mathbf{3} \sin \boldsymbol{\theta}$
0°	2
45°	≈-0.1
90°	-1
135°	≈-0.1
180°	2
225°	≈ 4.1
270°	5
315°	≈ 4.1
360°	2

Now try Exercises 95 through 110

EXAMPLE 11 Modeling the Flight Path of a Scavenger Bird

Scavenger birds sometimes fly over dead or dying animals (called carrion) in a "figure-eight" formation, closely resembling the graph of a lemniscate. Suppose the flight path of one of these birds was plotted and found to contain the polar coordinates $\left(81,0^{\circ}\right)$ and $\left(0,45^{\circ}\right)$. Find the equation of the lemniscate. If the bird lands at the point $\left(r, 136^{\circ}\right)$, how far is it from the carrion? Assume r is in yards.
Solution $-\operatorname{Since}\left(81,0^{\circ}\right)$ is a point on the graph, the lemniscate is symmetric to the polar axis and the general equation is $r^{2}=a^{2} \cos (2 \theta)$. The point $\left(81,0^{\circ}\right)$ indicates $a=81$, hence the equation is $r^{2}=6561 \cos (2 \theta)$. At $\theta=136^{\circ}$ we have $r^{2}=6561 \cos 272^{\circ}$, and the bird has landed $r \approx 15$ yd away.

$\boldsymbol{\theta}$	$\boldsymbol{r}=\sqrt{\mathbf{6 5 6 1} \boldsymbol{\operatorname { c o s } (\mathbf { 2 \theta })}}$
0°	81
30°	≈ 57.3
60°	error
90°	error
120°	error
150°	≈ 57.3
180°	81

E．You＇ve just learned how to use symmetry and families of curves to write a polar equation given a polar graph or information about the graph

You＇ve likely been wondering how the different families of polar graphs were named．The roses are easy to figure as each graph has a flower－like appearance．The limaçon（pronounced li－ma－sawn）family takes its name from the Latin words limax or lamacis，meaning＂snail．＂With some imagination，these graphs do have the appear－ ance of a snail shell．The cardioids are a subset of the limaçon family and are so named due to their obvious resemblance to the human heart．In fact，the name stems from the Greek kardia meaning heart，and many derivative words are still in common use（a car－ diologist is one who specializes in a study of the heart）．Finally，there is the lemnis－ cate family，a name derived from the Latin lemniscus，which describes a certain kind of ribbon．Once again，a little creativity enables us to make the connection between ribbons，bows，and the shape of this graph．

TECHNOLOGY HIGHLIGHT

Polar and Rectangular Coordinates（and Symmetry）on a Graphing Calculator

Most graphing calculators are programmed to evaluate and graph four kinds of relations－functions，sequences，polar equations，and parametric equations．This is the reason the＂default＂variable key $\mathbf{X}_{\mathbf{X}, \mathrm{T}, \boldsymbol{n} \boldsymbol{n}}$ is embossed with four different input variables．The X is used for functions， T for parametric equations，θ for polar equations，and n for relations defined by a sequence．To change the operating mode of the calcula－ tor，press the MODE key，highlight the desired operating mode，and press ENTER（Figure 8．37）．In this case，our main interest is polar equations．Note the $Y=$ screen obtained while in Pol（polar mode）is similar to that obtained in Func （function mode），except the dependent variable is now r_{i} instead of \boldsymbol{Y}_{i}（Figure 8．38）．In addition，a θ now appears when the variable key X_{1}, T, θ, η is pressed，rather than an X as when in function mode．Verify by entering the equation from Example 7，$r_{1}=4 \sin \theta$ ，as shown．Since polar graphs are by nature different from polynomial graphs，the winoow screen also takes on a different appearance（Figure 8．39）．We can still set a desired window size or use the 200 M options as before，and we can also state the desired interval for θ ，and indicate the interval between plotted points using θ step．The standard settings （z00M 6）are shown in Figure 8．39．Knowing that the graph of r_{1} is a circle of radius 4 centered at $(0,2)$ ，we set the window appropriately to obtain the GRAPH shown in Figure 8．40．

Figure 8.38
F1ot F1ote F1ors ＊1日4三iヶ6） $\stackrel{\rightharpoonup}{*} \varepsilon=$
$\stackrel{+}{ }{ }^{-} 3=$ $\times 4=$ $\stackrel{r}{-5}=$

Figure 8.39

Figure 8.37

Figure 8.40

Exercise 1：Graph $r_{1}=4 \sin \theta$ three more times，using θ step $=15, \theta$ step $=45$ ，and θ step $=60$ ．What do you notice？
Exercise 2：Graph $r_{1}=2+4 \cos \left(\frac{\theta}{2}\right)$ on the standard screen（zoom 6）．It appears that only one－half of the graph is drawn．Can you determine why？Graph this equation three more times using $\theta \mathrm{max}=540$ ， $\theta \max =630$ ，and $\theta \max =720$ ．What do you notice？
Exercise 3：Graph $r_{1}=4 \sin (n \theta)$ for $n=3,4,5$ ，and 6 ．What pattern do you see？Verify using $r_{1}=4 \cos (n \theta)$ ．

8.4 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. The point (r, θ) is said to be written in coordinates.
2. The point $\left(4,135^{\circ}\right)$ is located in Q \qquad while $\left(-4,135^{\circ}\right)$ is located in Q \qquad _.
3. Write out the procedure for plotting points in polar coordinates, as though you were explaining the process to a friend.
4. In polar coordinates, the origin is called the \qquad and the horizontal axis is called the \qquad axis.
5. If a polar equation is given in terms of cosine, the graph will be symmetric to \qquad
6. Discuss the graph of $r=6 \cos \theta$ in terms of an r-value analysis, using $y=\cos \theta$ and a color-coded graph.

DEVELOPING YOUR SKILLS

Plot the following points using polar graph paper.
7. $\left(4, \frac{\pi}{2}\right)$
8. $\left(3, \frac{3 \pi}{2}\right)$
9. $\left(2, \frac{5 \pi}{4}\right)$
10. $\left(4.5,-\frac{\pi}{3}\right)$
11. $\left(-5, \frac{5 \pi}{6}\right)$
12. $\left(-4, \frac{7 \pi}{4}\right)$
13. $\left(-3,-\frac{2 \pi}{3}\right)$
14. $\left(-4,-\frac{\pi}{4}\right)$

Express the points shown using polar coordinates with θ in radians, $0 \leq \theta<2 \pi$ and $r>0$.
15.

16.

17.

18.

19.

20.

21.

22.

List three alternative ways the given points can be expressed in polar coordinates using $r>0, r<0$, and $\theta \in[-2 \pi, 2 \pi)$.
23. $\left(3 \sqrt{2}, \frac{3 \pi}{4}\right)$
24. $\left(4 \sqrt{3},-\frac{5 \pi}{3}\right)$
25. $\left(-2, \frac{11 \pi}{6}\right)$
26. $\left(-3,-\frac{7 \pi}{6}\right)$

Match each (r, θ) given to one of the points A, B, C, or D shown.

27. $\left(4,-\frac{5 \pi}{6}\right) \quad$ 28. $\left(4,-\frac{5 \pi}{4}\right)$
29. $\left(-4, \frac{\pi}{6}\right)$
30. $\left(-4, \frac{3 \pi}{4}\right)$
31. $\left(-4,-\frac{5 \pi}{4}\right)$
32. $\left(-4,-\frac{\pi}{4}\right)$
33. $\left(4, \frac{13 \pi}{6}\right)$
34. $\left(4, \frac{19 \pi}{6}\right)$
35. $\left(-4,-\frac{21 \pi}{4}\right)$
36. $\left(4,-\frac{35 \pi}{6}\right)$

Convert from rectangular coordinates to polar coordinates. A diagram may help.
37. $(-8,0)$
38. $(0,-7)$
39. $(4,4)$
40. $(4 \sqrt{3}, 4)$
41. $(5 \sqrt{2}, 5 \sqrt{2})$
42. $(6,-6 \sqrt{3})$
43. $(-5,-12)$
44. $(-3.5,12)$

Convert from polar coordinates to rectangular coordinates. A diagram may help.
45. $\left(8,45^{\circ}\right)$
46. $\left(6,60^{\circ}\right)$
47. $\left(4, \frac{3 \pi}{4}\right)$
48. $\left(5, \frac{5 \pi}{6}\right)$
49. $\left(-2, \frac{7 \pi}{6}\right)$
50. $\left(-10, \frac{4 \pi}{3}\right)$
51. $\left(-5,-135^{\circ}\right)$
52. $\left(-4,-30^{\circ}\right)$

Convert the following equations to polar form.
53. $x^{2}=25-y^{2}$
54. $y=\sqrt{3} x$
55. $x=\frac{3}{y}$
56. $6 x y=1$
57. $y=3 x^{2}+x$
58. $y^{2}=5 x$
59. $x^{2}-y^{2}=x^{4}+2 x^{2} y^{2}+y^{4}$
60. $x^{2}-y^{2}=2 x y$

Convert the following equations to rectangular form.

61. $r=6 \cos \theta$
62. $r=2 \sin \theta$
63. $r=2 \sec \theta$
64. $r=-3 \csc \theta$
65. $r=\sqrt{r \cos \theta-1}$
66. $r \sin \theta=r \sqrt{\cos 2 \theta}$
67. $r=\frac{1}{1+\sin \theta}$
68. $r=\frac{6}{2+4 \sin \theta}$

Sketch each polar graph using an r-value analysis (a table may help), symmetry, and any convenient points.
69. $r=5$
70. $r=6$
71. $\theta=\frac{\pi}{6}$
72. $\theta=-\frac{3 \pi}{4}$
73. $r=4 \cos \theta$
74. $r=2 \sin \theta$
75. $r=3+3 \sin \theta$
76. $r=2+2 \cos \theta$
77. $r=2-4 \sin \theta$
78. $r=1-2 \cos \theta$
79. $r=5 \cos (2 \theta)$
80. $r=3 \sin (4 \theta)$
81. $r=4 \sin 2 \theta$
82. $r=6 \cos (5 \theta)$
83. $r^{2}=9 \sin (2 \theta)$
84. $r^{2}=16 \cos (2 \theta)$
85. $r=4 \sin \left(\frac{\theta}{2}\right)$
86. $r=6 \cos \left(\frac{\theta}{2}\right)$

Use a graphing calculator in polar mode to produce the following polar graphs.
87. $r=4 \sqrt{1-\sin ^{2} \theta}$, a hippopede
88. $r=3+\csc \theta$, a conchoid
89. $r=2 \cos \theta \cot \theta$, a cissoid
90. $r=\cot \theta$, a kappa curve
91. $r=8 \sin \theta \cos ^{2} \theta$, a bifoliate
92. $r=8 \cos \theta\left(4 \sin ^{2} \theta-2\right)$, a folium

WORKING WITH FORMULAS

93. The midpoint formula in polar coordinates:
$M=\left(\frac{r \cos \alpha+R \cos \beta}{2}, \frac{r \sin \alpha+R \sin \beta}{2}\right)$
The midpoint of a line segment connecting the points (r, α) and (R, β) in polar coordinates can be found using the formula shown. Find the midpoint of the line segment between $(r, \alpha)=\left(6,45^{\circ}\right)$ and $(R, \beta)=\left(8,30^{\circ}\right)$, then convert these points to rectangular coordinates and find the midpoint using the "standard" formula. Do the results match?
94. The distance formula in polar coordinates:
$d=\sqrt{R^{2}+r^{2}-2 R r \cos (\alpha-\beta)}$
Using the law of cosines, it can be shown that the distance between the points (R, α) and (r, β) in polar coordinates is given by the formula indicated. Use the formula to find the distance between $(R, \alpha)=\left(6,45^{\circ}\right)$ and $(r, \beta)=\left(8,30^{\circ}\right)$, then convert these to rectangular coordinates and compute the distance between them using the "standard" formula. Do the results match?

APPLICATIONS

Polar graphs: Find the equation of a polar graph satisfying the given conditions, then sketch the graph.
95. limaçon, symmetric to polar axis, $a=4$ and $b=4$
97. rose, five petals, one petal symmetric to the polar axis, $a=4$
99. lemniscate, $a=4$ through $(\pi, 4)$
101. circle, symmetric to $\theta=\frac{\pi}{2}$, center at $\left(2, \frac{\pi}{2}\right)$, containing $\left(2, \frac{\pi}{6}\right)$
96. rose, four petals, two petals symmetric to the polar axis, $a=6$
98. limaçon, symmetric to $\theta=\frac{\pi}{2}, a=2$ and $b=4$
100. lemniscate, $a=8$ through $\left(8, \frac{\pi}{4}\right)$
102. circle, symmetric to polar axis, through $(6, \pi)$

Matching: Match each graph to its equation a through h, which follow. Justify your answers.
103.

104.

105.

106.

109.

110.

a. $r=6 \cos \theta$
b. $r=3-3 \sin \theta$
c. $r=6 \cos (4 \theta)$
d. $r^{2}=36 \cos (2 \theta)$
e. $r^{2}=36 \sin (2 \theta)$
f. $r=2+4 \sin \theta$
g. $r=6 \sin \theta$
h. $r=6 \sin (5 \theta)$
111. Figure eights: Waiting for help to arrive on foot, a light plane is circling over some stranded hikers using a "figure eight" formation, closely resembling the graph of a lemniscate. Suppose the flight path of the plane was plotted (using the hikers as the origin) and found to contain the polar coordinates $\left(7200,45^{\circ}\right)$ and $\left(0,90^{\circ}\right)$ with r in meters. Find the equation of the lemniscate.
112. Animal territories: Territorial animals often prowl the borders of their territory, marking the boundaries with various bodily excretions. Suppose the territory of one such animal was limaçon shaped, with the pole representing the den of the animal. Find the polar equation defining the animal's territory if markings are left at $\left(750,0^{\circ}\right),\left(1000,90^{\circ}\right)$, and $\left(750,180^{\circ}\right)$. Assume r is in meters.
113. Prop manufacturing: The propellers for a toy boat are manufactured by stamping out a rose with n petals and then bending each blade. If the manufacturer wants propellers with five blades and a radius of 15 mm , what two polar equations will satisfy these specifications?
114. Polar curves and cosine: Do a complete r-value analysis for graphing polar curves involving cosine. Include a color-coded graph showing the relationship between r and
 θ, similar to the analysis for sines that preceded Example 8.

EXTENDING THE CONCEPT

115. The polar graph $r=a \theta$ is called the Spiral of Archimedes. Consider the spiral $r=\frac{1}{2} \theta$. As this graph spirals around the origin, what is the distance between each positive, polar intercept? In QI, what is the distance between consecutive branches of the spiral each time it intersects $\theta=\frac{\pi}{4}$? What is the distance between consecutive branches of the spiral at $\theta=\frac{\pi}{2}$? What can you conclude?
As mentioned in the exposition, tests for symmetry of polar graphs are sufficient to show symmetry (if the test is satisfied, the graph must be symmetric), but the tests are not necessary to show symmetry (the graph may be symmetric even if the test is not satisfied). For $r=f(\theta)$, the formal tests for the symmetry are: (1) the graph will be symmetric to the polar axis if $f(\theta)=f(-\theta)$; (2) the graph will be symmetric to the line $\theta=\frac{\pi}{2}$ if $f(\pi-\theta)=f(\theta)$; and (3) the graph will be symmetric to the pole if $f(\theta)=-\boldsymbol{f}(\theta)$.
116. Sketch the graph of $r=4 \sin (2 \theta)$. Show the equation fails the first test, yet the graph is still symmetric to the polar axis.
117. Why is the graph of every lemniscate symmetric to the pole?
118. Verify that the graph of every limaçon of the form $r=a+b \cos \theta$ is symmetric to the polar axis.
119. The graphs of $r=a \sin (n \theta)$ and $r=a \cos (n \theta)$ are from the rose family of polar graphs. If n is odd, there are n petals in the rose, and if n is even, there are $2 n$ petals. An interesting extension of this fact is that the n petals enclose exactly 25% of the area of the circumscribed circle, and the $2 n$ petals enclose exactly 50%. Find the area within the boundaries of the rose defined by $r=6 \sin (5 \theta)$.

MAINTAINING YOUR SKILLS

120. (1.3) Find the value of all six trig functions given
$\sin \theta=-\frac{5}{13}$ and $\sec \theta>0$.
121. (5.1) Verify that the following is an identity:
$\frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x}$
122. (7.4) Find the angle θ between the vectors $\mathbf{u}=-12 \mathbf{i}+5 \mathbf{j}$ and $\mathbf{v}=-2 \mathbf{i}+10 \mathbf{j}$.
123. (8.2) Which complex number has the greater absolute value: $z_{1}=15+1 i$ or $z_{2}=13+9 i$?
124. (4.3) The graph of $f(x)=A \sin (B x+C)$ is shown here. Find the value of A, B, and C given that $f\left(\frac{3 \pi}{8}\right)=-3$.

Exercise 124

125. (2.2) The blueprint for a ride at Wet Willy's Water Park is pictured here. Find the entire length L of the slide given the dimensions and angles indicated.

Exercise 125

8.5 Parametric Equations and Graphs

Learning Objectives

In Section 8.5 you will learn how to:A. Sketch the graph of a parametric equationB. Write parametric equations in rectangular form
C. Graph curves from the cycloid familyD. Solve applications involving parametric equations

Figure 8.41

Figure 8.42

A large portion of the mathematics curriculum is devoted to functions, due to their overall importance and widespread applicability. But there are a host of applications for which nonfunctions are a more natural fit. In this section, we show that many nonfunctions can be expressed as parametric equations, where each is actually a function. These equations can be appreciated for the diversity and versatility they bring to the mathematical spectrum.

A. Sketching a Curve Defined Parametrically

Suppose you were given the set of points in the table here, and asked to come up with an equation model for the data. To begin, you might plot the points to see if any patterns or clues emerge, but in this case the result seems to be a curve we've never seen before (see Figure 8.41).

x	0	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	0	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$	0
y	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1

You also might consider running a regression on the data, but it's not possible since the graph is obviously not a function. However, a closer look at the data reveals the y-values could be modeled independently of the x-values by a cosine function, $y=\cos t$ for $t \in[0, \pi]$. This observation leads to a closer look at the x-values, which we find could be modeled by a sine function over the same interval, namely, $x=\sin (2 t)$ for $t \in[0, \pi]$. These two functions combine to name all points on this curve, and both use the independent variable t called a parameter. The functions $x=\sin (2 t)$ and $y=\cos t$ are called the parametric equations for this curve. The complete curve, shown in Figure 8.42, is called a Lissajous figure, or a closed graph (coincident beginning and ending points) that crosses itself to form two or more loops. Note that since the maximum value of x and y is 1 (the amplitude of each function), the entire figure will fit within a 2×2 rectangle centered at the origin. This observation can often be used to help sketch parametric graphs with trigonometric parameters. In general, parametric equations can take many forms, including polynomial, exponential, trigonometric, and other forms.

Parametric Equations

Given the set of points $P(x, y)$ such that $x=f(t)$ and $y=g(t)$, where f and g are both defined on an interval of the domain, the equations $x=f(t)$ and $y=g(t)$ are called parametric equations, with parameter t.

EXAMPLE $1>$ Graphing a Parametric Curve Where f and g Are Algebraic

Graph the curve defined by the parametric equations $x=t^{2}-3$ and $y=2 t+1$.
Solution Begin by creating a table of values using $t \in[-3,3]$. After plotting ordered pairs (x, y), the result appears to be a parabola, opening to the right.

\boldsymbol{t}	$\boldsymbol{x}=\boldsymbol{t}^{\mathbf{2}}-\mathbf{3}$	$\boldsymbol{y}=\mathbf{2} \boldsymbol{t}+\mathbf{1}$
-3	6	-5
-2	1	-3
-1	-2	-1
0	-3	1
1	-2	3
2	1	5
3	6	7

Now try Exercises 7 through 12, Part a

If the parameter is a trig function, we'll often use standard angles as inputs to simplify calculations and the period of the function(s) to help sketch the resulting graph. Also note that successive values of t give rise to a directional evolution of the graph, meaning the curve is traced out in a direction dictated by the points that correspond to the next value of t. The arrows drawn along the graph illustrate this direction, also known as the orientation of the graph.

EXAMPLE $2-$ Graphing a Parametric Curve Where f and g Are Trig Functions

Graph the curve defined by the parametric equations $x=2 \cos t$ and $y=4 \sin t$.
Solution \downarrow Using standard angle inputs and knowing the maximum value of any x - and y-coordinate will be 2 and 4 , respectively, we begin computing and graphing a few points. After going from 0 to π, we note the graph appears to be a vertical ellipse. This is verified using standard values from π to 2π. Plotting the points and connecting them with a smooth curve produces the ellipse shown in the figure.

t	$\boldsymbol{x}=\mathbf{2} \cos \boldsymbol{t}$	$\boldsymbol{y}=\mathbf{4} \sin \boldsymbol{t}$
0	2	0
$\frac{\pi}{6}$	$\sqrt{3}$	2
$\frac{\pi}{3}$	1	$2 \sqrt{3}$
$\frac{\pi}{2}$	0	4
$\frac{2 \pi}{3}$	-1	$2 \sqrt{3}$
$\frac{5 \pi}{6}$	$-\sqrt{3}$	2
π	-2	0

Now try Exercises 13 through 18, Part a

Note the ellipse has a counterclockwise orientation.

B. Writing Parametric Equations in Rectangular Form

When graphing parametric equations, there are sometimes alternatives to simply plotting points. One alternative is to try and eliminate the parameter, writing the parametric equations in standard, rectangular form. To accomplish this we use some connection that allows us to "rejoin" the parameterized equations, such as variable t itself, a trigonometric identity, or some other connection.

EXAMPLE 3 Eliminating the Parameter to Obtain the Rectangular Form

Eliminate the parameter from the equations in Example 1: $x=t^{2}-3$ and $y=2 t+1$.
Solution Solving for t in the second equation gives $t=\frac{y-1}{2}$, which we then substitute into the first. The result is $x=\left(\frac{y-1}{2}\right)^{2}-3=\frac{1}{4}(y-1)^{2}-3$. Notice this is indeed a horizontal parabola, opening to the right, with vertex at $(-3,1)$.

Now try Exercises 7 through 12, Part b

EXAMPLE 4 Eliminating the Parameter to Obtain the Rectangular Form
Eliminate the parameter from the equations in Example 2: $x=2 \cos t$ and $y=4 \sin t$.
Solution - Instead of trying to solve for t, we note the parametrized equations involve sine and cosine functions with the same argument (t), and opt to use the identity $\cos ^{2} t+\sin ^{2} t=1$. Squaring both equations and solving for $\cos ^{2} t$ and $\sin ^{2} t$ yields $\frac{x^{2}}{4}=\cos ^{2} t$ and $\frac{y^{2}}{16}=\sin ^{2} t$. This shows $\cos ^{2} t+\sin ^{2} t=\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$, and as we suspected-the result is a vertical ellipse with vertices at $(0, \pm 4)$ and endpoints of the minor axis at $(\pm 2,0)$.

Now try Exercises 13 through 18, Part b

It's important to realize that a given curve can be represented parametrically in infinitely many ways. This flexibility sometimes enables us to simplify the given form, or to write a given polynomial form in an equivalent nonpolynomial form. The easiest way to write the function $y=f(x)$ in parametric form is $x=t ; y=f(t)$, which is valid as long as t is in the domain of $f(t)$.

EXAMPLE 5 Writing an Equation in Terms of Various Parameters Write the equation $y=4(x-3)^{2}+1$ in three different parametric forms.
Solution 1. If we let $x=t$, we have $y=4(t-3)^{2}+1$.
2. Letting $x=t+3$ simplifies the related equation for y, and we begin to see some of the advantages of using a parameter: $x=t+3 ; y=4 t^{2}+1$.
3. As a third alternative, we can let $x=\frac{1}{2} \tan t+3$, which gives

$$
x=\frac{1}{2} \tan t+3 ; y=4\left(\frac{1}{2} \tan t\right)^{2}+1=\tan ^{2} t+1 \text { or } y=\sec ^{2} t .
$$

C．Graphing Curves from the Cycloid Family

The cycloids are an important family of curves，and are used extensively to solve what are called brachistochrone applications．The name comes from the Greek brakhus， meaning short，and khronos，meaning time，and deal with finding the path along which a weight will fall in the shortest time possible．Cycloids are an excellent example of why parametric equations are important，as it＇s very difficult to name them in rectan－ gular form．Consider a point fixed to the circumference of a wheel as it rolls from left to right．If we trace the path of the point as the wheel rolls，the resulting curve is a cycloid．Figure 8.43 shows the location of the point every one－quarter turn．

Figure 8.43

By superimposing a coordinate grid on the diagram in Figure 8．43，we can con－ struct parametric equations that will produce the graph．This is done by developing equations for the location of a point $P(x, y)$ on the circumference of a circle with center (h, k) ，as the circle rotates through angle t ．After a rotation of t rad，the x－coordinate of $P(x, y)$ is $x=h-a$（Figure 8．44），and the y－coordinate is $y=k-b$ ．Using a right triangle with the radius as the hypotenuse，we find $\sin t=\frac{a}{r}$ and $\cos t=\frac{b}{r}$ ，giving $a=r \sin t$ and $b=r \cos t$ ．Substituting into $x=h-a$ and $y=k-b$ yields $x=h-r \sin t$ and $y=k-r \cos t$ ．Since the circle has radius r ，we know $k=r$（the ＂height＂of the center is constantly $k=r$ ）．The arc length subtended by t is the same as the distance h（see Figure 8．44），meaning $h=r t$（ t in radians）Substituting $r t$ for h and r for k in the equations $x=h-r \sin t$ and $y=k-r \cos t$ ，gives the equation of the cycloid in parametric form：$x=r t-r \sin t$ and $y=r-r \cos t$ ，sometimes written $x=r(t-\sin t)$ and $y=r(1-\cos t)$ ．

Figure 8.44

Figure 8.45

Most graphers have a parametric MODE that enables you to enter the equations for x and y separately，and graph the resulting points as a single curve．After pressing the $Y=$ key（in parametric mode），the screen in Figure 8.45 comes into view，and we enter the equation of the cycloid formed by a circle of radius $r=3$ ．To set the viewing window （including a frame），press Window and set Ymin $=-1$ and Ymax at slightly more than 6 （since $r=3$ ）．Since the cycloid completes one cycle every $2 \pi r$ ，we set Xmax at $2 \pi r n$ ，where n is the number of cycles we＇d like to see．In this case，we set it for four

Figure 8.46

cycles $(2 \pi)(3)(4)=24 \pi$ (Figure 8.46). With $r=3$ we can set Xscl at $3(2 \pi)=6 \pi \approx 18.8$ to tick each cycle, or Xscl $=3 \pi \approx 9.4$ to tick each half cycle (Figure 8.46). For parametric equations, we must also specify a range of values for t, which we set at $\operatorname{Tmin}=0$, $\operatorname{Tmax}=8 \pi \approx 25.1$ for the four cycles, and Tstep $=\frac{\pi}{6} \approx 0.52$ (Tstep controls the number of points plotted and joined to form the curve). The window settings and resulting graph are shown in Figure 8.47, which doesn't look much like a cycloid because the current settings do not produce a square viewing window. Using ZOOM 5:ZSquare (and changing Yscl) produces the graph shown in Figure 8.48, which looks much more like the cycloid we expected.

Figure 8.47

Figure 8.48

Use a graphing calculator to graph the curve defined by the equations $x=3 \cos ^{3} t$ and $y=3 \sin ^{3} t$, called a hypocycloid with four cusps.
Solution - A hypocycloid is a curve traced out by the path of a point on the circumference of a circle as it rolls inside a larger circle of radius r (see Figure 8.49). Here $r=3$

Figure 8.49

- c. You've just learned how to graph curves from the cycloid family
and we set Xmax and Ymax accordingly. Knowing ahead of time the hypocycloid will have four cusps, we set $\mathrm{Tmax}=4(2 \pi) \approx 25.13$ to show all four. The window settings used and the resulting graph are shown in Figures 8.50 and 8.51.

Figure 8.51
Figure 8.50

Now try Exercises 27 through 35

D. Common Applications of Parametric Equations

In Example 1 the parameter was simply the real number t, which enabled us to model the x - and y-values of an ordered pair (x, y) independently. In Examples 2 and 6, the parameter t represented an angle. Here we introduce yet another kind of parameter, that of time t.

A projectile is any object thrown, dropped, or projected in some way with no continuing source of propulsion. The parabolic path traced out by the projectile (assuming negligible air resistance) was fully developed in Section 7.4. It is stated again here
in parametric terms. For the projectile's location $P(x, y)$ and any time t in seconds, the x-coordinate (horizontal distance from point of projection) is given by $x=v_{0} t \cos \theta$, where v_{0} is the initial velocity in feet per second and t is the time in seconds. The y-coordinate (vertical height) is $y=v_{0} t \sin \theta-16 t^{2}$.

EXAMPLE $7>$ Using Parametric Equations in Projectile Applications

As part of a circus act, Karl the Human Cannonball is shot out of a specially designed cannon at an angle of 40° with an initial velocity of $120 \mathrm{ft} / \mathrm{sec}$. Use a graphing calculator to graph the resulting parametric curve. Then use the graph to determine how high the Ring Master must place a circular ring for Karl to be shot through at the maximum height of his trajectory, and how far away the net must be placed to catch Karl.
Solution The information given leads to the equations $x=120 t \cos 40^{\circ}$ and $y=120 t \sin 40^{\circ}-16 t^{2}$. Enter these equations on the $Y=$ screen of your calculator, remembering to reset the MODE to degrees (circus clowns may not know or understand radians). To set the window size, we can use trial and error, or estimate using $\theta=45^{\circ}$ (instead of 40°) and an estimate for t (the time that Karl will stay aloft). With $t=6$ we get estimates of $x=120(6)\left(\frac{\sqrt{2}}{2}\right)=360 \sqrt{2}$ for the horizontal distance. To find a range for y, use $t=3$ since the maximum height of the parabolic path will occur halfway through the flight. This gives an estimate of $120(3)\left(\frac{\sqrt{2}}{2}\right)-16(9)=180 \sqrt{2}-144$ for y. The results are shown in Figures 8.52 and 8.53. Using the TRACE feature or 2nd GRAPH (TABLE) feature, we find the center of the net used to catch Karl should be set at a distance of about 440 ft from the cannon, and the ring should be located 220 ft from the cannon at a height of about 93 ft .

Figure 8.53

Figure 8.52

Now try Exercises 46 through 49

It is well known that planets orbit the Sun in elliptical paths. While we're able to model their orbits in both rectangular and polar form, neither of these forms can give a true picture of the direction they travel. This gives parametric forms a great advantage, in that they can model the shape of the orbit, while also indicating the direction of travel. We illustrate in Example 8 using a "planet" with a very simple orbit.

EXAMPLE 8 Modeling Elliptical Orbits Parametrically

The elliptical orbit of a certain planet is defined parametrically as $x=4 \sin t$ and $y=-3 \cos t$. Graph the orbit and verify that for increasing values of t, the planet orbits in a counterclockwise direction.
Solution Eliminating the parameter as in Example 4, we obtain the equation $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, or the equation of an ellipse with center at $(0,0)$, major axis of length 8 , and minor axis of length 6 . The path of the planet is traced out by the ordered pairs (x, y) generated by the parametric equations, shown in the table for $t \in[0, \pi]$. Starting at $t=0, P(x, y)$ begins at $(0,-3)$ with x and y both increasing until $t=\frac{\pi}{2}$. Then from $t=\frac{\pi}{2}$ to $t=\pi, y$ continues to increase as x decreases, indicating a counterclockwise orbit in this case. The orbit is illustrated in the figure.

t	$x=\mathbf{4} \sin t$	$y=-\mathbf{3} \cos t$
0	0	-3
$\frac{\pi}{6}$	2	-2.6
$\frac{\pi}{3}$	3.46	-1.5
$\frac{\pi}{2}$	4	0
$\frac{2 \pi}{3}$	3.46	1.5
$\frac{5 \pi}{6}$	2	2.6
π	0	3

Now try Exercises 50 and 51

Finally, you may recall from your previous work with linear 3×3 systems, that a dependent system occurs when one of the three equations is a linear combination of the other two. The result is a system with more variables than equations, with solutions expressed in terms of a parameter, or in parametric form. These solutions can be explored on a graphing calculator using ordered triples of the form $(t, f(t), g(t))$, where $\mathrm{Y}_{1}=f(t)$ and $\mathrm{Y}_{2}=g(t)$ (see Exercises 52 through 55). For more information, see the Calculator Exploration and Discovery feature on page 448.
D. You've just learned how to solve applications involving parametric equations

TECHNOLOGY HIGHLIGHT

Exploring Parametric Graphs

Most graphing calculators have features that make it easy (and fun) to explore parametric equations by using a circular cursor to trace the path of the plotted points, as they are generated by the equations. This can be used to illustrate the path of a projectile, the distance of a runner, or the orbit of a planet. Operations can also be applied to the parameter T to give the effect of "speed" (the points from one set of equations are plotted faster than the points of a second set). To help illustrate their use, consider again the simple, elliptical orbit of a planet in Example 8. Physics tells us the closer a planet is to the Sun, the faster its orbit. In fact, the orbital speed of Mercury is about twice that of Mars and about 10 times as fast as the dwarf planet Pluto $(29.8,15$, and $2.9 \mathrm{mi} / \mathrm{sec}$,
respectively). With this information, we can explore a number of interesting questions. On the $Y=$ screen, let the orbits of Planet 1 and Planet 2 be modeled parametrically by the equations shown in Figure 8.54. Since the orbit of Planet 1 is "smaller" (closer to the Sun), we have T-values growing at a rate that is four times as fast as for Planet 2. Notice to the far left of $X_{1 \mathrm{~T}}$, there is a symbol that looks like an old key " -0 ." By moving the cursor to the far left of the equation, you can change how the graph will look by repeatedly

Figure 8.54
 pressing ENTER. With this symbol in view, the calculator will trace out the curve with a circular cursor, which in this case represents the planets as they orbit (be sure you are in simultaneous MODE). Setting the window as in Figure 8.55 and pressing GRAPH produces Figure 8.56 , which displays their elliptical paths as they race around the Sun. Notice the inner planet has already completed one orbit while the outer planet has just completed one-fourth of an orbit.

Figure 8.55
Figure 8.56

Exercise 1: Verify that the inner planet completes four orbits for every single orbit of the outer planet.
Exercise 2: Suppose that due to some cosmic interference, the orbit of the faster planet begins to decay at a rate of $\mathrm{T}^{0.84}$ (replace T with $\mathrm{T}^{0.84}$ in both equations for the inner planet). By observation, about how many orbits did the inner planet make for the first revolution of the outer planet? What is the ratio of orbits for the next complete orbit of the outer planet?

8.5 EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. When the coordinates of a point (x, y) are generated independently using $x=f(t)$ and $y=g(t), t$ is called a(n)
2. The equations $x=f(t)$ and $y=g(t)$ used to generate the ordered pairs (x, y) are called \qquad equations.
3. Parametric equations can both graph a curve and indicate the \qquad traveled by a point on the curve.
4. To write parametric equations in rectangular form, we must \qquad the parameter to write a single equation.
5. Discuss the connection between solutions to dependent systems and the parametric equations studied in this section.
6. In your own words, explain and illustrate the process used to develop the equation of a cycloid. Illustrate with a specific example.

DEVELOPING YOUR SKILLS

For Exercises 7 through 18, (a) graph the curves defined by the parametric equations using the specified interval and identify the graph (if possible) and (b) eliminate the parameter (Exercises 7 to 16 only) and write the corresponding rectangular form.
7. $x=t+2 ; t \in[-3,3]$

$$
y=t^{2}-1
$$

8. $x=t-3 ; t \in[-5,5]$
$y=2-0.5 t^{2}$
9. $x=(2-t)^{2} ; t \in[0,5]$
$y=(t-3)^{2}$
10. $x=t^{3}-3 ; t \in[-2,2.5]$ $y=t^{2}+1$
11. $x=\frac{5}{t}, t \neq 0 ; t \in[-3.5,3.5]$ $y=t^{2}$
12. $x=\frac{t^{3}}{10} ; t \in[-5,5]$
$y=|t|$
13. $x=4 \cos t ; t \in[0,2 \pi)$
$y=3 \sin t$
14. $x=2 \sin t ; t \in[0,2 \pi)$ $y=-3 \cos t$
15. $x=4 \sin (2 t) ; t \in[0,2 \pi)$ $y=6 \cos t$
16. $x=4 \cos (2 t) ; t \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ $y=6 \sin t$
17. $x=\frac{-3}{\tan t} ; t \in(0, \pi)$

$$
y=5 \sin (2 t)
$$

18. $x=\tan ^{2} t ; t \neq \frac{\pi}{2}, t \in[0, \pi]$

$$
y=3 \cos t
$$

Write each function in three different parametric forms by altering the parameter. For Exercises 19-22 use at least one trigonometric form, restricting the domain as needed.
19. $y=3 x-2$
20. $y=0.5 x+6$
21. $y=(x+3)^{2}+1$
22. $y=2(x-5)^{2}-1$
23. $y=\tan ^{2}(x-2)+1$
24. $y=\sin (2 x-1)$
25. Use a graphing calculator or computer to verify that the parametric equations from Example 5 all produce the same graph.
26. Use a graphing calculator or computer to verify that your parametric equations from Exercise 21 all produce the same graph.

The curves defined by the following parametric equations are from the cycloid family. (a) Use a graphing calculator or computer to draw the graph and (b) use the graph to approximate all x - and y-intercepts, and maximum and minimum values to one decimal place.
27. $x=8 \cos t+2 \cos (4 t), y=8 \sin t-2 \sin (4 t)$, hypocycloid (5-cusp)
28. $x=8 \cos t+4 \cos (2 t), y=8 \sin t-4 \sin (2 t)$, hypocycloid (3-cusp)
29. $x=\frac{2}{\tan t}, y=8 \sin t \cos t$, serpentine curve
30. $x=8 \sin ^{2} t, y=\frac{8 \sin ^{3} t}{\cos t}$, cissoid of Diocles
31. $x=2(\cos t+t \sin t), y=2(\sin t-t \cos t)$, involute of a circle
32. $4 x=(16-36) \cos ^{3} t, 6 y=(16-36) \sin ^{3} t$, evolute of an ellipse
33. $x=3 t-\sin t, y=3-\cos t$, curtate cycloid
34. $x=t-3 \sin t, y=1-3 \cos t$, prolate cycloid
35. $x=2[3 \cos t-\cos (3 t)], y=2[3 \sin t-\sin (3 t)]$, nephroid

Use a graphing calculator or computer to draw the following parametrically defined graphs, called Lissajous figures (Exercise 37 is a scaled version of the initial example from this section). Then find the dimensions of the rectangle necessary to frame the figure and state the number of times the graph crosses itself.
36. $\begin{aligned} x & =6 \sin (3 t) \\ y & =8 \cos t\end{aligned}$
37. $\begin{aligned} x & =6 \sin (2 t) \\ y & =8 \cos t\end{aligned}$
38. $x=8 \sin (4 t)$
39. $x=5 \sin (7 t)$
$y=10 \cos t$
$y=7 \cos (4 t)$
40. $x=8 \sin (4 t)$
$y=10 \cos (3 t)$
41. $x=10 \sin (1.5 t)$
$y=10 \cos (2.5 t)$
42. Use a graphing calculator to experiment with parametric equations of the form $x=A \sin (m t)$ and $y=B \cos (n t)$. Try different values of A, B, m, and n, then discuss their effect on the Lissajous figures.
43. Use a graphing calculator to experiment with parametric equations of the form $x=\frac{a}{\tan t}$ and $y=b \sin t \cos t$. Try different values of a and b, then discuss their effect on the resulting graph, called a serpentine curve. Also see Exercise 29.

WORKING WITH FORMULAS

44. The Folium of Descartes:

$x(t)=\frac{3 k t}{1+t^{3}} ; y(t)=\frac{3 k t^{2}}{1+t^{3}}$
The Folium of Descartes is a parametric curve developed by Descartes in order to test the ability of Fermat to find its maximum and minimum values.
a. Graph the curve on a graphing calculator with $k=1$ using a reduced window (zoom 4), with $\operatorname{Tmin}=-6, \operatorname{Tmax}=6$, and Tstep $=0.1$. Locate the coordinates of the tip of the folium (the loop).
b. This graph actually has a discontinuity (a break in the graph). At what value of t does this occur?
c. Experiment with different values of k and generalize its effect on the basic graph.
45. The Witch of Agnesi: $x(t)=2 k t ; y(t)=\frac{2 k}{1+t^{2}}$

The Witch of Agnesi is a parametric curve named by Maria Agnesi in 1748. Some believe various translations confused the Italian word for witch with a similar word that means curve, or turning. In any case, the name stuck. The curve can also be stated in trigonometric form: $x(t)=2 k \cot t$ and $y=2 k \sin ^{2} t$.
a. Graph the curve with $k=1$ on a calculator or computer on a reduced window (200 M 4) using both of the forms shown with Tmin $=-6$, $\operatorname{Tmax}=6$, and Tstep $=0.1$. Try to determine the maximum value.
b. Explain why the x-axis is a horizontal asymptote.
c. Experiment with different values of k and generalize its effect on the basic graph.

APPLICATIONS

Model each application using parametric equations, then solve using the GRAPH and TRACE features of a graphing calculator.
46. Archery competition: At an archery contest, a large circular target 5 ft in diameter is laid flat on the ground with the bull's-eye exactly 180 yd (540 ft) away from the archers. Marion draws her bow and shoots an arrow at angle of 25° above horizontal with an initial velocity of $150 \mathrm{ft} / \mathrm{sec}$ (assume the archers are standing in a depression and the arrow is shot from ground level). (a) What was the maximum height of the arrow? (b) Does the arrow hit the target? (c) What is the distance between Marion's arrow and the bull's-eye after the arrow hits?

47. Football competition: As part of their contribution to charity, a group of college quarterbacks participate in a contest. The object is to throw a football through a hoop whose center is 30 ft high and $25 \mathrm{yd}(75 \mathrm{ft})$ away, trying to hit a stationary (circular) target laid on the ground with the center $56 \mathrm{yd}(168 \mathrm{ft})$ away. The hoop and target both have a diameter of 4 ft . On his turn, Lance throws the football at an angle of 36° with an initial velocity of $75 \mathrm{ft} / \mathrm{sec}$. (a) Does the football make it through the hoop? (b) Does the ball hit the target? (c) What is the approximate distance between the football and the center of the target when the ball hits the ground?
48. Walk-off home run: It's the bottom of the ninth, two outs, the count is full, and the bases are loaded with the opposing team ahead 5 to 2. The home team has Heavy Harley, their best hitter at the plate;
 the opposition has Raymond the Rocket on the mound. Here's the pitch . . . it's hit . . . a long fly ball to left-center field! If the ball left the bat at an angle of 30° with an initial velocity of $112 \mathrm{ft} / \mathrm{sec}$, will it clear the home run fence, 9 ft high and 320 ft away?
49. Last-second win: It's fourth-and-long, late in the fourth quarter of the homecoming football game, with the home team trailing 29 to 27 . The coach elects to kick a field goal, even though the goal posts are $50 \mathrm{yd}(150 \mathrm{ft})$ away from the spot of the kick. If the ball leaves the kicker's foot at an angle of 29° with an initial velocity of $80 \mathrm{ft} / \mathrm{sec}$, and the kick is "true," will the home team win (does the ball clear the 10 -ft high cross bar)?

50. Particle motion: The motion of a particle is modeled by the parametric equations
$\left\{\begin{array}{l}x=5 t-2 t^{2} \\ y=3 t-2\end{array}\right.$. Between $t=0$ and $t=1$, is the particle moving to the right or to the left? Is the particle moving upward or downward?
51. Electron motion: The motion of an electron as it orbits the nucleus is modeled by the parametric equations $\left\{\begin{array}{l}x=6 \cos t \\ y=2 \sin t\end{array}\right.$ with t in radians. Between $t=2$ and $t=3$, is the electron moving to the right or to the left? Is the electron moving upward or downward?

Systems applications: Solve the following systems using elimination. If the system is dependent, write the general solution in parametric form and use a calculator to generate several solutions.
52. $\left\{\begin{array}{l}2 x-y+3 z=-3 \\ 3 x+2 y-z=4 \\ 8 x+3 y+z=5\end{array}\right.$
53. $\left\{\begin{array}{l}x-5 y+z=3 \\ 5 x+y-7 z=-9 \\ 2 x+3 y-4 z=-6\end{array}\right.$
54. $\left\{\begin{array}{l}-5 x-3 z=-1 \\ x+2 y-2 z=-3 \\ -2 x+6 y-9 z=-10\end{array}\right.$
55. $\left\{\begin{array}{l}x+y-5 z=-4 \\ 2 y-3 z=-1 \\ x-3 y+z=-3\end{array}\right.$
56. Regressions and parameters: Draw a scatter-plot of the data given in the table. Note that connecting the points with a smooth curve will not result in a function, so a standard regression cannot be run on the data. Now consider the x-values alone-what do you notice? Find a sinusoidal model for the x-values, using $T=0,1,2,3, \ldots, 8$. Use the same inputs to run some form

\boldsymbol{x}	\boldsymbol{y}
0	0
$\sqrt{2}$	0.25
2	2
$\sqrt{2}$	6.75
0	16
$-\sqrt{2}$	31.25
-2	54
$-\sqrt{2}$	85.75
0	128

57. Regressions and parameters:

Draw a scatter-plot of the data given in the table, and connect the points with a smooth curve. The result is a function, but no standard regression seems to give an accurate model. The x-values alone are actually generated by an exponential function. Run a regression on these values using $T=0,1,2,3, \ldots, 8$ as inputs

\boldsymbol{x}	\boldsymbol{y}
1	0
1.2247	-1.75
1.5	-3
1.8371	-3.75
2.25	-4
2.7557	-3.75
3.375	-3
4.1335	-1.75
5.0625	0

Then use the same inputs to run some form of regression on the y-values and use the results to form the "best-fit" parametric equations for this data (use L1 for T, L2 for the x-values, and L3 for the y-values). With your calculator in parametric MODE , enter the equations as $X_{1 T}$ and $Y_{1 T}$, then graph these along with the scatterplot (L2, L3) to see the finished result. Use the TABLE feature of your calculator to comment on the accuracy of the model.

EXTENDING THE CONCEPT

58. What is the difference between an epicycloid, a hypercycloid, and a hypocycloid? Do a word study on the prefixes epi-, hyper-, and hypo-, and see how their meanings match with the mathematical figures graphed in Exercises 27 to 35 . To what other shapes or figures are these prefixes applied?
59. The motion of a particle in a certain medium is modeled by the parametric equations $\left\{\begin{array}{l}x=6 \sin (4 t) \\ y=8 \cos t\end{array}\right.$. Initially, use only the 2nd GRAPH (TABLE) feature of your calculator (not the graph) to name the intervals for which the particle is moving (a) to the left and upward and (b) to the left and downward. Answer to the nearest tenth (set $\Delta \mathrm{Tbl}=0.1)$. Is it possible for this particle to collide with another particle in this medium whose movement is modeled by $\left\{\begin{array}{l}x=3 \cos t+7 \\ y=2 \sin t+2\end{array}\right.$? Discuss why or why not.
60. Write the function $y=\frac{1}{2}(x+3)^{2}-1$ in parametric form using the substitution $x=2 \cos t-3$ and the appropriate double-angle identity. Is the result equivalent to the original function? Why or why not?

MAINTAINING YOUR SKILLS

61. (7.3) A ship is traveling at 12 mph on a heading of 315°, when it encounters a $3-\mathrm{mph}$ current with a heading of 30°. Find the true course and speed of the ship as it travels through the current.

62. (4.3) Use the graph shown to write an equation of the form $y=A \sec (B x+C)$.

63. (5.2) Use a sum or difference identity to write the value of $\cos 105^{\circ}$ in exact form.
64. (6.4) Find all values of $x \in[0,2 \pi)$ that make the equation true: $1560=250 \sin \left(2 x-\frac{\pi}{6}\right)+1735$. Round to four decimal places as needed.
65. (7.1) Determine the number of triangles that can be formed from the dimensions given here. If two triangles exist, solve both.

66. (3.2) The wheels on a motorcycle are rotating at 1000 rpm . If they have a $12-\mathrm{in}$. radius, how fast is the motorcycle traveling in miles per hour?

SUMMARY AND CONCEPT REVIEW

SECTION 8.1 Complex Numbers

KEY CONCEPTS

- The italicized i represents the number whose square is -1 . This means $i^{2}=-1$ and $i=\sqrt{-1}$.
- Larger powers of i can be simplified using $i^{4}=1$.
- For $k>0, \sqrt{-k}=i \sqrt{k}$ and we say the expression has been written in terms of i.
- The standard form of a complex number is $a+b i$, where a is the real number part and $b i$ is the imaginary number part.
- To add or subtract complex numbers, combine the like terms.
- For any complex number $a+b i$, its complex conjugate is $a-b i$.
- The product of a complex number and its conjugate is a real number.
- The commutative, associative, and distributive properties also apply to complex numbers and are used to perform basic operations.
- To multiply complex numbers, use the F-O-I-L method and simplify.
- To find a quotient of complex numbers, multiply the numerator and denominator by the conjugate of the denominator.

EXERCISES

Simplify each expression and write the result in standard form.

1. $\sqrt{-72}$
2. $6 \sqrt{-48}$
3. $\frac{-10+\sqrt{-50}}{5}$
4. $\sqrt{3} \sqrt{-6}$
5. i^{57}

Perform the operation indicated and write the result in standard form.
6. $(5+2 i)^{2}$
7. $\frac{5 i}{1-2 i}$
8. $(-3+5 i)-(2-2 i)$
9. $(2+3 i)(2-3 i)$
10. $4 i(-3+5 i)$

Use substitution to show the given complex number and its conjugate are solutions to the equation shown.
11. $x^{2}-9=-34 ; x=5 i$
12. $x^{2}-4 x+9=0 ; x=2+i \sqrt{5}$

SECTION 8.2 Complex Numbers in Trigonometric Form

KEY CONCEPTS

- A complex number $a+b i=(a, b)$ can be written in trigonometric form by noting (from its graph) that $a=r \cos \theta$ and $b=r \sin \theta: a+b i=$ $r(\cos \theta+i \sin \theta)$.
- The angle θ is called the argument of z and r is called the modulus of z.
- The argument of a complex number z is not unique, since any rotation of $\theta+2 \pi k$ (k an integer) will yield a coterminal angle.
- To convert from trigonometric to rectangular form, evaluate $\cos \theta$ and $\sin \theta$
 and multiply by the modulus.
- To multiply complex numbers in trig form, multiply the moduli and add the arguments. To divide complex numbers in trig form, divide the moduli and subtract the arguments.
- Complex numbers have numerous real-world applications, particularly in a study of AC electrical circuits.
- The impedance of an AC circuit is given as $Z=R+j\left(X_{L}-X_{C}\right)$, where R is a pure resistance, X_{C} is the capacitive reactance, X_{L} is the inductive reactance, and $j=\sqrt{-1}$.
- Z is a complex number with magnitude $|Z|=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$ and phase angle $\theta=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)$ (θ represents the angle between the voltage and current).
- In an AC circuit, voltage $V=I Z$; current $I=\frac{V}{Z}$.

EXERCISES

13. Write in trigonometric form: $z=-1-\sqrt{3} i$
14. Write in rectangular form:

$$
z=3 \sqrt{2}\left[\operatorname{cis}\left(\frac{\pi}{4}\right)\right]
$$

15. Graph in the complex plane:

$$
z=5\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)
$$

16. For $z_{1}=8 \operatorname{cis}\left(\frac{\pi}{4}\right)$ and $z_{2}=2 \operatorname{cis}\left(\frac{\pi}{6}\right)$, compute $z_{1} z_{2}$ and $\frac{z_{1}}{z_{2}}$.
17. Find the current I in a circuit where $V=4 \sqrt{3}-4 j$ and $Z=1-\sqrt{3} j \Omega$.
18. In the $V_{R L C}$ series circuit shown, $R=10 \Omega, X_{L}=8 \Omega$, and $X_{C}=5 \Omega$. Find the magnitude of Z and the phase angle between current and voltage. Express the result in trigonometric form.

SECTION 8.3 De Moivre's Theorem and the Theorem on nth Roots

KEY CONCEPTS

- For complex number $z=r(\cos \theta+i \sin \theta), z^{n}=r^{n}[\cos (n \theta)+i \sin (n \theta)]$ (De Moivre's theorem).
- De Moivre's theorem can be used to check complex solutions of polynomial equations.
- For complex number $z=r(\cos \theta+i \sin \theta), \sqrt[n]{z}=\sqrt[n]{r}\left[\cos \left(\frac{\theta}{n}+\frac{2 \pi k}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{2 \pi k}{n}\right)\right]$, for $k=1,2,3, \ldots, n-1$ (nth roots theorem).
- The nth roots of a complex number are equally spaced around a circle of radius r in the complex plane.

EXERCISES

19. Use De Moivre's theorem to compute the value of $(-1+i \sqrt{3})^{5}$.
20. Use De Moivre's theorem to verify that $z=1-i$ is a solution of $z^{4}+z^{3}-2 z^{2}+2 z+4=0$.
21. Use the nth roots theorem to find the three cube roots of $125 i$.
22. Solve the equation using the nth roots theorem: $x^{3}-216=0$.
23. Given that $z=2+2 i$ is a fourth root of -64 , state the other three roots.
24. Solve using the quadratic formula and the nth roots theorem: $z^{4}+6 z^{2}+25=0$.
25. Use De Moivre's theorem to verify the three roots of $125 i$ found in Exercise 21.

SECTION 8.4 Polar Coordinates, Equations, and Graphs

KEY CONCEPTS

- In polar coordinates, the location of a point in the plane is denoted (r, θ), where r is the distance to the point from the origin or pole, and θ is the angle between a stipulated polar axis and a ray containing P.
- In the polar coordinate system, the location (r, θ) of a point is not unique for two reasons: (1) the angles θ and $\theta+2 \pi n$ are coterminal (n an integer), and (2) r may be negative.

- The point $P(r, \theta)$ can be converted to $P(x, y)$ in rectangular coordinates where $x=r \cos \theta$ and $y=r \sin \theta$.
- The point $P(x, y)$ in rectangular coordinates can be converted to $P(r, \theta)$ in polar coordinates, where $r=\sqrt{x^{2}+y^{2}}$ and $\theta_{r}=\tan ^{-1}\left|\frac{y}{x}\right|$.
- To sketch a polar graph, we view the length r as being along the second hand of a clock, ticking in a counterclockwise direction. Each "tick" is $\frac{\pi}{12} \mathrm{rad}$ or 15°. For each tick we locate a point on the radius and plot it on the face of the clock before going on.
- For graphing, we also apply an " r-value" analysis, which looks where r is increasing, decreasing, zero, maximized, and/or minimized.
- If the polar equation is given in terms of sines, the graph will be symmetric to $\theta=\frac{\pi}{2}$.
- If the polar equation is given in terms of cosines, the graph will be symmetric to the polar axis.
- The graphs of several common polar equations are given in Appendix VII.

EXERCISES

Sketch using an r-value analysis (include a table), symmetry, and any convenient points.
26. $r=5 \sin \theta$
27. $r=4+4 \cos \theta$
28. $r=2+4 \cos \theta$
29. $r=8 \sin (2 \theta)$

SECTION 8.5 Parametric Equations and Graphs

KEY CONCEPTS

- If we consider the set of points $P(x, y)$ such that the x-values are generated by $f(t)$ and the y-values are generated by $g(t)$ (assuming f and g are both defined on an interval of the domain), the equations $x=f(t)$ and $y=g(t)$ are called parametric equations, with parameter t.
- Parametric equations can be converted to rectangular form by eliminating the parameter. This can sometimes be done by solving for t in one equation and substituting in the other, or by using trigonometric forms.
- A function can be written in parametric form many different ways, by altering the parameter or using trigonometric identities.
- The cycloids are an important family of curves, with equations $x=r(t-\sin t)$ and $y=r(1-\cos t)$.
- The solutions to dependent systems of equations are often expression in parametric form, with the points $P(x, y)$ given by the parametric equations generating solutions to the system.

EXERCISES

Graph the curves defined by the parametric equations over the specified interval and identify the graph. Then eliminate the parameter and write the corresponding rectangular form.
30. $x=t-4$: $t \in[-3,3]$: $y=-2 t^{2}+3$
31. $x=(2-t)^{2}: t \in[0,5]:$
$y=(t-3)^{2}$
32. $\begin{aligned} x & =-3 \sin t: t \in[0,2 \pi) \text { : } \\ y & =4 \cos t\end{aligned}$
33. Write the function in three different forms by altering the parameter: $y=2(x-5)^{2}-1$
34. Use a graphing calculator to graph the Lissajous figure indicated, then state the size of the rectangle needed to frame it: $x=4 \sin (5 t) ; y=8 \cos t$

MIXED REVIEW

1. Perform the operations indicated.
a. $\sqrt{-18}+\sqrt{-50}$
b. $(1-2 i)^{2}$
c. $\frac{3 i}{1+i}$
d. $(2+i \sqrt{3})(2-i \sqrt{3})$
2. a. Graph the complex number using the rectangular form, then convert to trigonometric form: $z=4-4 i$.
b. Graph the complex number using the trigonometric form, then convert to rectangular form: $z=6\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)$.
3. a. Verify that $z=4-5 i$ and its conjugate are solutions to $z^{2}-8 z+41=0$.
b. Solve using the quadratic formula:

$$
z^{2}-6 i z+7=0
$$

4. Given $z_{1}=8\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$ and $z_{2}=4\left(\cos 15^{\circ}+i \sin 15^{\circ}\right)$ compute:
a. the product $z_{1} z_{2}$
b. the quotient $\frac{z_{1}}{z_{2}}$
5. Find the result using De Moivre's

$$
\text { theorem: }(2 \sqrt{3}-2 i)^{6}
$$

6. Use the nth roots theorem to find the four fourth roots of $-2+2 i \sqrt{3}$.
7. The impedance of an AC circuit is $Z=R+j\left(X_{L}-X_{C}\right)$. The voltage across the circuit is $V_{R L C}=I|Z|$. Given $R=12 \Omega, X_{L}=15.2 \Omega$, and $X_{C}=9.4 \Omega$, write Z in trigonometric form and find the voltage in the circuit if the current is $I=6.5 \mathrm{~A}$.
8. Graph the curve defined by the parametric equations given, using the interval $t \in[0,10]$. Then identify the graph: $x=(t-2)^{2}, y=(t-4)^{2}$
9. Plot the polar coordinates given, then convert to rectangular coordinates.
a. $\left(3.5, \frac{2 \pi}{3}\right)$
b. $\left(-4, \frac{5 \pi}{4}\right)$
10. Match each equation to its corresponding graph. Justify each response.
(i) $r=3.5+\cos \theta$
(ii) $r^{2}=20.25 \sin (-2 \theta)$
(iii) $r=4.5 \cos \theta$
a.

b.

c.

11. In the design of their corporate headquarters, Centurion Computing includes a seven-leaf rose in a large foyer, with a fountain in the center. Each of the leaves is 5 m long (when measured from the center of the fountain), and will hold flower beds for carefully chosen perennials. The rose is to be symmetric to a vertical axis, with the leaf bisected by $\theta=\frac{\pi}{2}$ pointing directly to the elevators. Find the equation of the rose in polar form.
12. Find the quotient in trigonometric form:
$z_{1}=3+\sqrt{3} i$ and $z_{2}=\sqrt{3}+3 i$
13. Write the parametric equations in rectangular form:
$x=3 \cos T$
$y=-4 \sin T$
14. Simplify the following expressions:
a. i^{29}
b. i^{66}
c. i^{136}
d. i^{87}
15. Use De Moivre's theorem to verify $-\frac{5 \sqrt{2}}{2}-\frac{5 \sqrt{2}}{2} i$ is a solution for $\frac{1}{25} z^{4}+z^{2}+25-25 i=0$
16. Find the equation of a lemniscate with $a=10$ through (100, 0).
17. Eliminate the parameter from $x=3 \cos t$ and $y=3$ $\sin t$.
18. Evaluate $(3-4 i)^{3}$. Express your answer in rectangular form.
19. Find the eight eighth roots of unity.
20. At the end of the football game, Ismael throws a "Hail Mary" pass to Martin, who in turn scores the winning touchdown. If the football leaves Ismael's hand at an angle of 50° with an initial velocity of $65 \mathrm{ft} / \mathrm{sec}$, how far down the field does it travel through the air?

PRACTICE TEST

Simplify each expression.

1. $\frac{-8+\sqrt{-20}}{6}$
2. i^{39}
3. Given $x=\frac{1}{2}+\frac{\sqrt{3}}{2} i$ and $y=\frac{1}{2}-\frac{\sqrt{3}}{2} i$ find
a. $x+y$
b. $x-y$
c. $x y$
4. Compute the quotient: $\frac{3 i}{1-i}$.
5. Find the product: $(3 i+5)(5-3 i)$.
6. Show $x=2-3 i$ is a solution of $x^{2}-4 x+13=0$.
7. Compute the quotient $\frac{z_{1}}{z_{2}}$, given $z_{1}=6 \sqrt{5} \operatorname{cis}\left(\frac{\pi}{8}\right)$ and $z_{2}=3 \sqrt{5} \operatorname{cis}\left(\frac{\pi}{12}\right)$.
8. Compute the product $z=z_{1} z_{2}$ in trigonometric form, then verify $\left|z_{1}\right|\left|z_{2}\right|=|z|$ and $\theta_{1}+\theta_{2}=\theta$: $z_{1}=-6+6 i ; z_{2}=4-4 \sqrt{3} i$
9. The impedance of an AC circuit is $Z=R+$ $j\left(X_{L}-X_{C}\right)$. The voltage across the circuit is $V_{R L C}=I|Z|$. Given $R=18 \Omega, X_{L}=6.1 \Omega$, and $X_{C}=1.4 \Omega$, express Z in trigonometric form and find the voltage in the circuit if the current is $I=2.5 \mathrm{~A}$.
10. Use De Moivre's theorem to compute the value of $(\sqrt{3}-i)^{4}$.
11. Use De Moivre's theorem to verify $2+2 \sqrt{3} i$ is a solution to $z^{5}+3 z^{3}+64 z^{2}+192=0$.
12. Use the nth roots theorem to solve $x^{3}-125 i=0$.
13. Solve using u-substitution, the quadratic formula, and the nth roots theorem: $z^{4}-6 z^{2}+58=0$.

Graph each polar equation.
14. $r=3+3 \cos \theta$
15. $r=4+8 \cos \theta$
16. $r=6 \sin (2 \theta)$

For Exercises 17 and 18, identify and graph each conic section from the parametric equations given. Then remove the parameter and convert to rectangular form.
17. $x=4 \sin t$
18. $x=(t-3)^{2}+1$
$y=5 \cos t$
$y=t+2$
19. Use a graphing calculator to graph the cycloid, then identify the maximum and minimum values, and the period. $x=4 T-4 \sin T, y=4-4 \cos T$
20. The soccer match is tied, with time running out. In a desperate attempt to win, the opposing coach pulls his goalie and substitutes a forward. Suddenly, Marques gets a break-away and has an open shot at the empty net, 165 ft away. If the kick is on-line and leaves his foot at an angle of 28° with an initial velocity of $80 \mathrm{ft} / \mathrm{sec}$, is the ball likely to go in the net and score the winning goal?

CALCULATOR EXPLORATION AND DISCOVERY

Parametric Equations and Dependent Systems

As mentioned in Section 8.5, solutions to a linearly dependent system of equations can be represented parametrically. Consider the following illustration.

Illustration 1॰ Solve using elimination: $\left\{\begin{array}{l}3 x-2 y+z=-1 \\ 2 x+y-z=5 \\ 10 x-2 y=8\end{array}\right.$
Solution \downarrow Using R1, we'll target z in R 2 , since R 3 has no z-term.

$$
\begin{cases}3 x-2 y+z=-1 & \text { R1 } \\ 2 x+y-z=5 & \text { R2 } \\ 10 x-2 y=8 & \text { R3 }\end{cases}
$$

$\mathrm{R} 1+\mathrm{R} 2$ eliminates the z-term from R2, yielding a new R2: $5 x-y=4$, and we obtain the equivalent system shown.

$$
\left\{\begin{array} { l c }
{ 3 x - 2 y + z = - 1 } & { \mathrm { R } 1 + \mathrm { R } 2 \rightarrow \mathrm { R } 2 } \\
{ 2 x + y - z = 5 } & { } \\
{ 1 0 x - 2 y = 8 } & { \mathrm { R } 3 \rightarrow \mathrm { R } 3 }
\end{array} \left\{\begin{array}{l}
3 x-2 y+z=-1 \\
5 x-y=4 \\
10 x-2 y=8
\end{array}\right.\right.
$$

To finish, we use $-2 \mathrm{R} 2+\mathrm{R} 3$ to eliminate the y-term in R 3 , but this also eliminates all other terms:

$$
\begin{array}{r}
-2 \mathrm{R} 2 \\
+ \\
\mathrm{R} 3
\end{array}\left\{\begin{aligned}
-10 x+2 y & =-8 \\
\frac{10 x-2 y}{} & =\frac{8}{0}
\end{aligned} \quad\right. \text { result }
$$

Since R3 $=2 \mathrm{R} 2$, the system is linearly dependent and equivalent to $\left\{\begin{array}{l}3 x-2 y+z=-1 \\ 5 x-y=4\end{array}\right.$. For a solution, we express the remaining equations in terms of a common variable, called the parameter. For R2 we have $y=5 x-4$, and substituting $5 x-4$ for y in R1 we can also write z in terms of x :

$$
\begin{aligned}
3 x-2 y+z & =-1 & & \text { R1 } \\
3 x-2(5 x-4)+z & =-1 & & \text { substitute } 5 x-4 \text { for } y \\
z & =7 x-9 & & \text { simplify and solve for } z
\end{aligned}
$$

The general solution is $(x, 5 x-4,7 x-9)$. In cases of linear dependence, it is common practice to express the solution in terms of a new parameter, with t being a common choice. The solution to the original system is any triple satisfying $(t, 5 t-4,7 t-9)$. We can actually enter this solution in parametric form using our calculator, with $\mathrm{X}_{1 \mathrm{~T}}=5 \mathrm{~T}-4, \mathrm{Y}_{1 \mathrm{~T}}=7 \mathrm{~T}-9$, and T as the parameter (Figure 8.57). Since the slope of both parameterized lines is very steep, window settings are a concern. Using $\mathrm{T} \in[-10,10]$, with $x \in[-50,50]$ and $y \in[-50,50]$ will display a large number of the possible solutions (Figure 8.58). The graph is shown in Figure 8.59, with the TRACE feature being used to view various possibilities. The solution illustrated in Figure 8.59 is the ordered triple (3, 11, 12).

Figure 8.59

Figure 8.57

Figure 8.58

Solve each system using elimination. If the system is linearly dependent, write the general solution in parametric form and use a calculator to generate several solutions. Many representations are possible.
Exercise 1: $\left\{\begin{array}{l}2 x-y-z=-1 \\ -3 x+2 y+z=4 \\ 3 x-3 y=-9\end{array} \quad\right.$ Exercise 2: $\left\{\begin{array}{l}-x+y+2 z=1 \\ 2 x-3 y-3 z=1 \\ 4 x-7 y-5 z=5\end{array}\right.$

STRENGTHENING CORE SKILLS

Complex Numbers,
 Sum and Difference Identities, and Euler's Formula

Sum and Difference Identities

In Section 8.2, we used the sum and difference identities to establish the process for multiplying and dividing complex numbers in trigonometric form. As a result, we can use multiplication and division of complex numbers to recall the sum and difference identities. If we let $z_{1}=\operatorname{cis} \alpha$ and $z_{2}=\operatorname{cis} \beta$ (note $r_{1}=r_{2}=1$), we proceed as follows:

$$
\begin{aligned}
z_{1} z_{2} & =\operatorname{cis} \alpha \operatorname{cis} \beta & & \text { substitute cis } \alpha \text { for } z_{1} \text { and cis } \beta \text { for } z_{2} \\
& =\operatorname{cis}(\alpha+\beta) & & \text { multiplication of complex numbers in trig form } \\
& =\cos (\alpha+\beta)+i \sin (\alpha+\beta) & & \text { expand cis notation }
\end{aligned}
$$

Alternatively, we could have directly multiplied the complex numbers in trigonometric form.

$$
\begin{aligned}
z_{1} z_{2}= & \operatorname{cis} \alpha \operatorname{cis} \beta & & \text { as before } \\
= & (\cos \alpha+i \sin \alpha)(\cos \beta+i \sin \beta) & & \text { expand cis notation } \\
= & \cos \alpha \cos \beta+i \cos \alpha \sin \beta & & \\
& +i \sin \alpha \cos \beta+i^{2} \sin \alpha \sin \beta & & \text { F-O-I-L } \\
= & \cos \alpha \cos \beta-\sin \alpha \sin \beta & & \text { rearrange terms } \\
& +i(\cos \alpha \sin \beta+\sin \alpha \cos \beta) & &
\end{aligned}
$$

Consider the last line of each expression of $z_{1} z_{2}$. Since the real and imaginary parts of the product $z_{1} z_{2}$ must be equal regardless of how it is written, we have two of the sum identities:

$$
\begin{aligned}
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \sin (\alpha+\beta)=\cos \alpha \sin \beta+\sin \alpha \cos \beta
\end{aligned}
$$

In Exercise 1, you will produce two of the difference identities using the division of complex numbers.

Euler's Formula

As mentioned in Section 8.3, one of the more fascinating discoveries involving complex numbers was that they can also be expressed in exponential form. While several mathematicians were aware of the relationship, it was Leonard Euler who first published the formula in its current form, and the formula still bears his name.

Euler's Formula

For any real number x,

$$
e^{i x}=\cos x+i \sin x
$$

Although the formula appears imposing and uses the imaginary unit as an exponent, these exponential terms retain the same properties as real number exponents. This greatly facilitates the computation of products, quotients, and powers of complex numbers, and relieves much of the tedium encountered when using the trigonometric form. Using Euler's formula we can rewrite the trigonometric form of a complex number as follows:

$$
\begin{aligned}
z & =r(\cos \theta+i \sin \theta) & & \text { trigonometric form } \\
& =r e^{i \theta} & & \text { substitute } \mathrm{e}^{i \theta} \text { for } \cos \theta+i \sin \theta
\end{aligned}
$$

In Example 5 from Section 8.2, we were given $z_{1}=-3+\sqrt{3} i$ and $z_{2}=\sqrt{3}+1 i$. In trigonometric form, we have $z_{1}=2 \sqrt{3} \operatorname{cis}\left(\frac{5 \pi}{6}\right)$ and $z_{2}=2 \operatorname{cis}\left(\frac{\pi}{6}\right)$, and using Euler's formula we obtain the exponential form: $z_{1}=2 \sqrt{3} e^{i\left(\frac{5 \pi}{6}\right)}$ and $z_{2}=2 e^{i\left(\frac{\pi}{6}\right)}$. In this form, computing the product $z_{1} z_{2}$ requires only the application of the product property of exponents.

$$
\begin{aligned}
z_{1} z_{2} & =\left[2 \sqrt{3} e^{i\left(\frac{5 \pi}{6}\right)}\right]\left[2 e^{i\left(\frac{\pi}{6}\right)}\right] & & \text { substitute } 2 \sqrt{3} e^{i\left(\frac{5 \pi}{6}\right)} \text { for } z_{1} \text { and } 2 e^{i\left(\frac{\pi}{6}\right)} \text { for } z_{2} \\
& =(2 \sqrt{3} \cdot 2)\left[e^{i\left(\frac{5 \pi}{6}\right)} e^{i\left(\frac{\pi}{6}\right)}\right] & & \text { rearrange terms } \\
& =4 \sqrt{3} e^{i\left(\frac{5 \pi}{6}\right)+i\left(\frac{\pi}{6}\right)} & & \text { product property of exponents } \\
& =4 \sqrt{3} e^{i \pi} & & \frac{5 \pi}{6}+\frac{\pi}{6}=\pi
\end{aligned}
$$

Using the formula to convert this result back into trigonometric form yields the following sequence, and the same result as before.

$$
\begin{array}{ll}
=4 \sqrt{3}(\cos \pi+i \sin \pi) & \\
=4 \sqrt{3}(-1+0 i) & \\
=\cos \pi=-1, \sin \pi=0 \\
=-4 \sqrt{3} &
\end{array}
$$

Exercise 1: Given $z_{1}=\operatorname{cis} \alpha$ and $z_{2}=\operatorname{cis} \beta$, evaluate $\frac{z_{1}}{z_{2}}$ in two different ways to verify the difference identities.

Exercise 2: Given $z_{1}=\operatorname{cis} 225^{\circ}$ and $z_{2}=\operatorname{cis} 300^{\circ}$, perform the following:
a. Compute the product $z_{1} z_{2}$ in trigonometric form.
b. Express z_{1} and z_{2} in rectangular form and compute $z_{1} z_{2}$ directly.
c. Use your answers to Parts (a) and (b) to determine $\cos 525^{\circ}$ and $\sin 525^{\circ}$.
d. Use a sum identity to verify your results from Part (c).
e. Use a calculator to verify your results from Part (c).

Exercise 3: Use the exponential form of $z_{1}=-3+\sqrt{3} i$ and $z_{2}=\sqrt{3}+1 i$ to compute $\frac{z_{1}}{z_{2}}$. Answer in exact rectangular form and compare your answer to Example 5(b) from Section 8.2.
Exercise 4: Use the exponential form of $z_{1}=4 \operatorname{cis}\left(\frac{\pi}{5}\right)$ and $z_{2}=2 \operatorname{cis}\left(\frac{3 \pi}{10}\right)$ to compute $z_{1} z_{2}$. Answer in exact rectangular form.

Exercise 5: Use the exponential form of $z=3$ cis 137° to compute z^{4}. Answer in rectangular form rounded to two decimal places.

CUMULATIVE REVIEW CHAPTERS 1-8

Solve each equation.

1. $-6 \tan x=2 \sqrt{3}$
2. $\frac{\sin 27^{\circ}}{18}=\frac{\sin x}{35}$
3. $25 \sin \left(\frac{\pi}{3} x-\frac{\pi}{6}\right)+3=15.5$
4. $619^{2}=450^{2}+325^{2}-2(450)(325) \cos \theta$

Graph each relation. Include and label vertices, x - and y-intercepts, asymptotes, and other features as applicable.
5. At 2000 m from the base of a mountain, the angle of elevation to its peak is 40°. If the slope of the mountain
 itself is 72°, how tall is the mountain?
6. Solve the equation for $x \in\left[0,360^{\circ}\right):|\tan x|=\sqrt{3}$.
7. Find $\sin (2 t)$ and $\cos (2 t)$ given $\cos t=\frac{12}{13}$ with t in Quadrant IV.
8. $y=-2 \cos \left(x-\frac{\pi}{4}\right)+1$
9. $r=4 \cos (2 \theta)$
10. $x=2 \sin t$ $y=\tan t$
11. Use the dot product to find the angle between the vectors $\mathbf{u}=\langle-4,5\rangle$ and $\mathbf{v}=\langle 3,7\rangle$.
12. Solve using a standard triangle (no trig).

13. Find the area of the triangle shown.

14. Verify the following is an identity: $(\cos \theta+\sin \theta)^{2}=1+\sin (2 \theta)$
15. For what values of $\theta \in[0,2 \pi)$ is the following relation not defined?
$\sec \theta-\cot \theta=\frac{\cos \theta}{1+\sin \theta}$
16. Convert $\gamma=2.426$ to degrees, rounded to the nearest tenth.
17. Name an angle coterminal with $\alpha=32^{\circ}$ and one coterminal with $\beta=0.7169$.
18. An arc is subtended by $\theta=125^{\circ}$. If the circle has a radius of 6 ft , how long is the arc?
19. What is the area of the circular sector described in Exercise 18?
20. A child's bicycle has wheels with an 8 -in. radius that are rotating at 300 rpm (revolutions per minute). (a) Find the angular velocity of the wheels and, (b) the linear velocity of the bicycle in miles per hour.
21. When viewed from a distance of 100 yd , the angle of elevation from the canyon floor to the top of the canyon is 52°. How tall are the canyon walls?
22. Starting with $\sin ^{2} \theta+\cos ^{2} \theta=1$, derive the Pythagorean identities involving sec/tan and csc/cot.
23. Starting with $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$, use a Pythagorean identity to derive two other forms of the double angle formula for cosine.
24. Use a sum/difference identity to find the value of $\sin 15^{\circ}$ and $\sin 105^{\circ}$ in exact form.
25. Write in terms of a single sine function: $\sin \left(\frac{\pi}{8}\right) \cos \left(\frac{\pi}{12}\right)-\cos \left(\frac{\pi}{8}\right) \sin \left(\frac{\pi}{12}\right)$
26. A mover applies a constant force of $18 \sqrt{3} \mathrm{~N}$ at 30° to move a piano 15 m . How much work was done?

To notify nature enthusiasts of the presence of nocturnal animals, a motion detector is installed 20 m from a watering hole. A rare brown hyena (Hyaena brunnea) just made a midnight visit to the hole and is leaving the area at the 32°
 angle shown.
27. If the maximum range of the motion detector is 10 m , will the hyena be detected?
28. If the maximum range of the motion detector is 12 m , how far from the watering hole is the hyena when it is first detected?
29. Given $z=1-\sqrt{3} i$, use De Moivre's theorem to calculate the value of z^{4}.
30. Use the nth roots theorem to find the four fourth roots of $-8+8 \sqrt{3} i$.

APPENDIX I

Exponential and Logarithmic Functions

APPENDIX OUTLINE

A Exponential Functions A-1
B Logarithms and Logarithmic Functions A-13
C Properties of Logarithms; Solving Exponential/Logarithmic Equations A-28
D Applications from Business, Finance, and Science A-44

A Exponential Functions

Learning Objectives

In Section A you will learn how to:A. Evaluate an exponential functionB. Graph general exponential functionsC. Graph base-e exponential functionsD. Solve exponential equations and applications

Demographics is the statistical study of human populations. In this section, we introduce the family of exponential functions, which are widely used to model population growth or decline with additional applications in science, engineering, and many other fields. As with other functions, we begin with a study of the graph and its characteristics.

A. Evaluating Exponential Functions

In the boomtowns of the old west, it was not uncommon for a town to double in size every year (at least for a time) as the lure of gold drew more and more people westward. When this type of growth is modeled using mathematics, exponents play a lead role. Suppose the town of Goldsboro had 1000 residents when gold was first discovered. After 1 yr the population doubled to 2000 resi-
 dents. The next year it doubled again to 4000 , then again to 8000 , then to 16,000 and so on. You probably recognize the digits in blue as powers of two (indicating the population is doubling), with each one multiplied by 1000 (the initial population). This suggests we can model the relationship using

$$
P(x)=1000 \cdot 2^{x}
$$

where $P(x)$ is the population after x yr. Further, we can evaluate this function, called an exponential function, for fractional parts of a year using rational exponents. The population of Goldsboro one-and-a-half years after the gold rush was

$$
\begin{aligned}
P\left(\frac{3}{2}\right) & =1000 \cdot 2^{\frac{3^{2}}{2}} \\
& =1000 \cdot(\sqrt{2})^{3} \\
& \approx 2828 \text { people }
\end{aligned}
$$

WORTHY OF NOTE

To properly understand the exponential function and its graph requires that we evaluate $f(x)=2^{x}$ even when x is irrational. For example, what does $2^{\sqrt{5}}$ mean? While the technical details require calculus, it can be shown that successive approximations of $2^{\sqrt{5}}$ as in $2^{2.2360}$, $2^{2.23606}, 2^{2.23236067}, \ldots$ approach a unique real number, and $f(x)=2^{x}$ exists for all real numbers x.

In general, exponential functions are defined as follows.

Exponential Functions

For $b>0, b \neq 1$, and all real numbers x,

$$
f(x)=b^{x}
$$

defines the base b exponential function.

Limiting b to positive values ensures that outputs will be real numbers, and the restriction $b \neq 1$ is needed since $y=1^{x}$ is a constant function (1 raised to any power is still 1). Specifically note the domain of an exponential function is all real numbers, and that all of the familiar properties of exponents still hold. A summary of these properties follows.

Exponential Properties

For real numbers a, b, m, and n, with $a, b>0$,

$$
\begin{aligned}
b^{m} \cdot b^{n} & =b^{m+n} & \frac{b^{m}}{b^{n}} & =b^{m-n} \\
(a b)^{n} & =a^{n} \cdot b^{n} & b^{-n} & =\frac{1}{b^{n}}
\end{aligned}
$$

EXAMPLE $1>$ Evaluating Exponential Functions

Evaluate each exponential function for $x=2, x=-1, x=\frac{1}{2}$, and $x=\pi$. Use a calculator for $x=\pi$, rounding to five decimal places.
a. $f(x)=4^{x}$
b. $g(x)=\left(\frac{4}{9}\right)^{x}$

Solution
A. You've just learned how to evaluate an exponential function
b. For $g(x)=\left(\frac{4}{9}\right)^{x}$,

$$
g(2)=\left(\frac{4}{9}\right)^{2}=\frac{16}{81}
$$

$$
g(-1)=\left(\frac{4}{9}\right)^{-1}=\frac{9}{4}
$$

$$
g\left(\frac{1}{2}\right)=\left(\frac{4}{9}\right)^{\frac{1}{2}}=\sqrt{\frac{4}{9}}=\frac{2}{3}
$$

$$
g(\pi)=\left(\frac{4}{9}\right)^{\pi} \approx 0.07827
$$

Now try Exercises 7 through 12

B. Graphing Exponential Functions

To gain a better understanding of exponential functions, we'll graph examples of $y=b^{x}$ and note some of the characteristic features. Since $b \neq 1$, it seems reasonable that we graph one exponential function where $b>1$ and one where $0<b<1$.

EXAMPLE 2 Graphing Exponential Functions with $b>1$

Graph $y=2^{x}$ using a table of values.
Solution - To get an idea of the graph's shape we'll use integer values from -3 to 3 in our table, then draw the graph as a continuous curve, since the function is defined for all real numbers.

WORTHY OF NOTE

As in Example 2, functions that are increasing for all $x \in D$ are said to be monotonically increasing or simply monotonic functions. The function in Example 3 is monotonically decreasing.

Now try Exercises 13 and 14

Several important observations can now be made. First note the x-axis (the line $y=0$) is a horizontal asymptote for the function, because as $x \rightarrow-\infty, y \rightarrow 0$. Second, the function is increasing over its entire domain, giving the function a range of $y \in(0, \infty)$.

EXAMPLE 3 Graphing Exponential Functions with $0<b<1$

Graph $y=\left(\frac{1}{2}\right)^{x}$ using a table of values.
Solution Using properties of exponents, we can write $\left(\frac{1}{2}\right)^{x}$ as $\left(\frac{2}{1}\right)^{-x}=2^{-x}$. Again using integers from -3 to 3 , we plot the ordered pairs and draw a continuous curve.

\boldsymbol{x}	$\boldsymbol{y}=\mathbf{2}^{\boldsymbol{- x}}$
-3	$2^{-(-3)}=2^{3}=8$
-2	$2^{-(-2)}=2^{2}=4$
-1	$2^{-(-1)}=2^{1}=2$
0	$2^{0}=1$
1	$2^{-1}=\frac{1}{2}$
2	$2^{-2}=\frac{1}{4}$
3	$2^{-3}=\frac{1}{8}$

Now try Exercises 15 and 16

We note this graph is also asymptotic to the x-axis, but decreasing on its domain. In addition, both $y=2^{x}$ and $y=2^{-x}=\left(\frac{1}{2}\right)^{x}$ have a y-intercept of $(0,1)$ (which we expect since any base to the zero power is 1) and both are one-to-one, which suggests that an inverse function can be found. Finally, observe that $y=b^{-x}$ is a reflection of $y=b^{x}$ across the y-axis, a property that indicates these basic graphs might also be transformed in other ways (see Appendix II). The characteristics of exponential functions are summarized here:

WORTHY OF NOTE

When an exponential function is increasing, it can be referred to as a "growth function." When decreasing, it is often called a "decay function." Each of the graphs shown in Figures AI. 1 and Al. 2 should now be added to your repertoire of basic functions, to be sketched from memory and analyzed or used as needed.

$$
f(x)=b^{x}, b>0 \text { and } b \neq 1
$$

- one-to-one function
- y-intercept $(0,1)$
- domain: $x \in \mathbb{R}$
- increasing if $b>1$
- range: $y \in(0, \infty)$
- decreasing if $0<b<1$
- asymptotic to the x-axis (the line $y=0$)

Figure AI. 1

Figure AI. 2

Just as the graph of a quadratic function maintains its parabolic shape regardless of the transformations applied, exponential functions will also maintain their general shape and features. Any sum or difference applied to the basic function $\left(y=b^{x} \pm k\right.$ vs. $\left.y=b^{x}\right)$ will cause a vertical shift in the same direction as the sign, and any change to input values $\left(y=b^{x+h}\right.$ vs. $\left.y=b^{x}\right)$ will cause a horizontal shift in a direction opposite the sign.

EXAMPLE $4>$ Graphing Exponential Functions Using Transformations

Graph $F(x)=2^{x-1}+2$ using transformations of the basic function $f(x)=2^{x}$ (not by simply plotting points). Clearly state what transformations are applied.
B. You've just learned how to graph general exponential functions

Solution The graph of F is that of the basic function $y=2^{x}$ shifted 1 unit right and 2 units up. With this in mind the horizontal asymptote shifts from $y=0$ to $y=2$ and $(0,1)$ shifts to $(1,3)$. The y-intercept of F is at $(0,2.5)$.

$$
\begin{aligned}
F(0) & =2^{(0)-1}+2 \\
& =2^{-1}+2 \\
& =\frac{1}{2}+2 \\
& =2.5
\end{aligned}
$$

To help sketch a more accurate graph, the additional point $(3,6)$ is used: $F(3)=6$.
Now try Exercises 17 through 38

C. The Base-e Exponential Function: $f(x)=e^{x}$

In nature, exponential growth occurs when the rate of change in a population's growth is in constant proportion to its current size. Using the rate of change notation, $\frac{\Delta P}{\Delta t}=k P$, where k is a constant. For the city of Goldsboro, we know the population at time t is given by $P(t)=1000 \cdot 2^{t}$, but have no information on this value of k (see Exercise 96). We can actually rewrite this function, and other exponential functions, using

WORTHY OF NOTE

Just as the ratio of a circle's circumference to its diameter is an irrational number symbolized by π, the irrational number that results from $\left(1+\frac{1}{x}\right)^{x}$ for infinitely large x is symbolized by e. Writing exponential functions in terms of e simplifies many calculations in advanced courses, and offers additional advantages in applications of exponential functions.
a base that gives the value of k directly and without having to apply the difference quotient. This new base is an irrational number, symbolized by the letter e and defined as follows.

The Number e

For $x>0$,

$$
\text { as } x \rightarrow \infty,\left(1+\frac{1}{x}\right)^{x} \rightarrow e
$$

In words, e is the number that $\left(1+\frac{1}{x}\right)^{x}$ approaches as x becomes infinitely large.

It has been proven that as x grows without bound, $\left(1+\frac{1}{x}\right)^{x}$ indeed approaches the unique, irrational number that we have named e (see Exercise 97). Table AI. 1 gives approximate values of the expression for selected values of x, and shows $e \approx 2.71828$ to five decimal places.

The result is the base- e exponential function: $f(x)=e^{x}$, also called the natural exponential function. Instead of having to enter a decimal approximation when computing with e, most calculators have an " e^{x} " key, usually as the 2nd function for the key marked LN. To find the value of e^{2}, use the keystrokes 2 nd
LN $2 \square$ ENTER, and the calculator display should read 7.389056099. Note the calculator supplies the left parenthesis for the exponent, and you must supply the right.

EXAMPLE $5>$ Evaluating the Natural Exponential Function

Use a calculator to evaluate $f(x)=e^{x}$ for the values of x given. Round to six decimal places as needed.
a. $f(3)$
b. $f(1)$
c. $f(0)$
d. $f\left(\frac{1}{2}\right)$

Solution
a. $f(3)=e^{3} \approx 20.085537$
b. $f(1)=e^{1} \approx 2.718282$
c. $f(0)=e^{0}=1$ (exactly)
d. $f\left(\frac{1}{2}\right)=e^{\frac{1}{2}} \approx 1.648721$

Now try Exercises 39 through 46

Although e is an irrational number, the graph of $y=e^{x}$ behaves in exactly the same way and has the same characteristics as other exponential graphs. Figure AI. 3 shows this graph on the same grid as $y=2^{x}$ and $y=3^{x}$. As we might expect, all three graphs are increasing, have an asymptote at $y=0$, and contain the point $(0,1)$, with the graph of $y=e^{x}$ "between" the other two. The domain for all three functions, as with all basic exponential functions, is $x \in(-\infty, \infty)$ with range $y \in(0, \infty)$. The same transformations discussed in Appendix II can be applied to the graph of $y=e^{x}$.

Figure AI. 3

EXAMPLE 6 Graphing Exponential Functions Using a Transformation

Graph $f(x)=e^{x+1}-2$ using transformations of $y=e^{x}$. Clearly state the transformations applied.
Solution - The graph of f is the same as $y=e^{x}$, shifted 1 unit left and 2 units down. The point $(0,1)$ becomes $(-1,-1)$, and the horizontal asymptote becomes $y=-2$. As the basic shape of the graph is known, we compute $f(1) \approx 5.4$, and complete the graph as shown.

Now try Exercises 47 through 52

D. Solving Exponential Equations Using the Uniqueness Property

Since exponential functions are one-to-one, we can solve equations where each side is an exponential term with the identical base. This is because one-to-oneness guarantees a unique solution to the equation.

Exponential Equations and the Uniqueness Property

For all real numbers m, n, and b, where $b>0$ and $b \neq 1$,

$$
\begin{aligned}
& \text { If } b^{m}=b^{n} \text {, } \\
& \text { then } m=n .
\end{aligned}
$$

Equal bases imply exponents are equal.
The equation $2^{x}=32$ can be written as $2^{x}=2^{5}$, and we note $x=5$ is a solution. Although $3^{x}=32$ can be written as $3^{x}=2^{5}$, the bases are not alike and the solution to this equation must wait until additional tools are developed in Appendix I.C.

EXAMPLE 7 Solving Exponential Equations

Solve the exponential equations using the uniqueness property.
a. $3^{2 x-1}=81$
a. $\quad 3^{2 x-1}=81$
b. $25^{-2 x}=125^{x+7}$
c. $\left(\frac{1}{6}\right)^{-3 x-2}=36^{x+1}$
d. $e^{x} e^{2}=\frac{e^{4}}{e^{x+1}}$
given
$3^{2 x-1}=3^{4} \quad$ rewrite using base 3
$\Rightarrow 2 x-1=4 \quad$ uniqueness property
$x=\frac{5}{2}$
solve for x
Check

$$
\begin{aligned}
3^{2 x-1} & =81 & & \text { given } \\
3^{2\left(\frac{5}{2}\right)-1} & =81 & & \text { substitute } \frac{5}{2} \text { for } x \\
3^{5-1} & =81 & & \text { simplify } \\
3^{4} & =81 & & \text { result checks } \\
81 & =81 \checkmark & &
\end{aligned}
$$

The remaining checks are left to the student.
b. $\quad 25^{-2 x}=125^{x+7}$

$$
\begin{aligned}
\left(5^{2}\right)^{-2 x} & =\left(5^{3}\right)^{x+7} & & \text { rewrite using base } 5 \\
5^{-4 x} & =5^{3 x+21} & & \text { power property of exponents } \\
\Rightarrow-4 x & =3 x+21 & & \text { uniqueness property } \\
x & =-3 & & \text { solve for } x
\end{aligned}
$$

c. $\left(\frac{1}{6}\right)^{-3 x-2}=36^{x+1}$

$$
\begin{aligned}
\left(6^{-1}\right)^{-3 x-2} & =\left(6^{2}\right)^{x+1} & & \text { rewrite using base } 6 \\
6^{3 x+2} & =6^{2 x+2} & & \text { power property of exponents } \\
\Rightarrow 3 x+2 & =2 x+2 & & \text { uniqueness property } \\
x & =0 & & \text { solve for } x
\end{aligned}
$$

given
d. $\quad e^{x} e^{2}=\frac{e^{4}}{e^{x+1}} \quad$ give

$$
e^{x+2}=e^{4-(x+1)} \quad \text { product property; quotient property }
$$

$e^{x+2}=e^{3-x}$
simplify
$\Rightarrow x+2=3-$
$2 x=1$
uniqueness property
$x=\frac{1}{2}$
add x, subtract 2
solve for x

One very practical application of the natural exponential function involves Newton's law of cooling. This law or formula models the temperature of an object as it cools down, as when a pizza is removed from the oven and placed on the kitchen counter. The function model is

$$
T(x)=T_{R}+\left(T_{0}-T_{R}\right) e^{k x}, k<0
$$

where T_{0} represents the initial temperature of the object, T_{R} represents the temperature of the room or surrounding medium, $T(x)$ is the temperature of the object x min later, and k is the cooling rate as determined by the nature and physical properties of the object.

EXAMPLE 8 - Applying an Exponential Function—Newton's Law of Cooling
A pizza is taken from a $425^{\circ} \mathrm{F}$ oven and placed on the counter to cool. If the temperature in the kitchen is $75^{\circ} \mathrm{F}$, and the cooling rate for this type of pizza is $k=-0.35$,
a. What is the temperature (to the nearest degree) of the pizza 2 min later?
b. To the nearest minute, how long until the pizza has cooled to a temperature below $90^{\circ} \mathrm{F}$?
c. If Zack and Raef like to eat their pizza at a temperature of about $110^{\circ} \mathrm{F}$, how many minutes should they wait to "dig in"?
Solution Begin by substituting the given values to obtain the equation model:

$$
\begin{aligned}
T(x) & =T_{R}+\left(T_{0}-T_{R}\right) e^{k x} & & \text { general equation model } \\
& =75+(425-75) e^{-0.35 x} & & \text { substitute } 75 \text { for } T_{R}, 425 \text { for } T_{0} \text {, and }-0.35 \text { for } k \\
& =75+350 e^{-0.35 x} & & \text { simplify }
\end{aligned}
$$

For part (a) we simply find $T(2)$:

$$
\text { a. } \begin{aligned}
T(2) & =75+350 e^{-0.35(2)} & & \text { substitute } 2 \text { for } x \\
& \approx 249 & & \text { result }
\end{aligned}
$$

Two minutes later, the temperature of the pizza is near 249°.
b. Using the TABLE feature of a graphing calculator shows the pizza reaches a temperature of just under 90° after $9 \min : T(9) \approx 90^{\circ} \mathrm{F}$.
c. We elect to use the intersection of graphs method (see the Technology Highlight on this page). After setting an appropriate window, we enter $\mathrm{Y}_{1}=75+350 e^{-0.35 x}$ and $\mathrm{Y}_{2}=110$, then press 2 nd CALC option 5: intersect. After pressing ENTER three times, the coordinates of the point of intersection appear at the bottom of the screen: $x \approx 6.6, y=110$. It appears the boys should wait about $6 \frac{1}{2} \mathrm{~min}$ for the pizza to cool.

Now try Exercises 75 and 76
Another common application of exponential functions involves appreciation (as when an item grows in value over time), and depreciation (as when tools and equipment decrease in value over time).

EXAMPLE $9>$ Applications of Exponential Functions—Depreciation

For insurance purposes, it is estimated that large household appliances lose $\frac{1}{5}$ of their value each year. The current value can then be modeled by the function $V(t)=V_{0}\left(\frac{4}{5}\right)^{t}$, where V_{0} is the initial value and $V(t)$ represents the value after t years. How many years does it take a washing machine that cost $\$ 625$ new, to depreciate to a value of $\$ 256$?
Solution For this exercise, $V_{0}=\$ 625$ and $V(t)=\$ 256$. The formula yields

$$
\begin{aligned}
V(t) & =V_{0}\left(\frac{4}{5}\right)^{t} & & \text { given } \\
256 & =625\left(\frac{4}{5}\right)^{t} & & \text { substitute known values } \\
\frac{256}{625} & =\left(\frac{4}{5}\right)^{t} & & \text { divide by } 625 \\
\left(\frac{4}{5}\right)^{4} & =\left(\frac{4}{5}\right)^{t} & & \text { equate bases } \frac{256}{625}=\left(\frac{4}{5}\right)^{4} \\
\Rightarrow 4 & =t & & \text { Uniqueness Property }
\end{aligned}
$$

After 4 yr , the washing machine's value has dropped to $\$ 256$.
Now try Exercises 77 through 90 -
D. You've just learned how to solve exponential equations and applications
plications of exponential functions in the Exercise Set.

TECHNOLOGY HIGHLIGHT

Solving Exponential Equations Graphically

In this section, we showed the exponential function $f(x)=b^{x}$ was defined for all real numbers and was a one-to-one function. This is important because it establishes that equations like $2^{x}=7$ must have a solution, even if x is not rational. In fact, since $2^{2}=4$ and $2^{3}=8$, the following inequalities indicate the solution must be between 2 and 3 .

$$
\begin{array}{cl}
4<7<8 & 7 \text { is between } 4 \text { and } 8 \\
2^{2}<2^{x}<2^{3} & \text { replace } 4 \text { with } 2^{2}, 8 \text { with } 2^{3} \\
\Rightarrow 2<x<3 & x \text { must be between } 2 \text { and } 3
\end{array}
$$

Until we develop an inverse for exponential functions, we are unable to solve many of these equations in exact form. We can, however, get a very close approximation using a graphing calculator. For the equation $2^{x}=7$, enter $Y_{1}=2^{x}$ and $Y_{2}=7$ on the $Y=$ screen. Then press Z00M 6 to graph both functions (see Figure AI.4). To find the point of intersection, press 2nd TRACE (CALC) and select option 5: intersect, then press ENTER three times (to identify the intersecting functions and bypass "Guess"). The x - and y-coordinates of the point of intersection will appear at the bottom of the screen, with the x-coordinate being the solution. As you can see, x is indeed between 2 and 3 . Solve the following equations. First estimate the answer by bounding it between two integers, then solve the equation graphically. Adjust the viewing window as needed.

Exercise 1: $\quad 3^{x}=22$
Exercise 2: $\quad 2^{x}=0.125$
Exercise 3: $\quad e^{x-1}=9$

Figure Al. 4

Exercise 4: $\quad e^{0.5 x}=0.1 x^{3}$

A EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. An exponential function is one of the form $y=$
\qquad , where \qquad >0, \qquad $\neq 1$, and \qquad is any real number.
2. The domain of $y=b^{x}$ is all \qquad , and the
range is $y \in$ \qquad Further, as $x \rightarrow-\infty, y$ \qquad
3. For exponential functions of the form $y=a b^{x}$, the y-intercept is $(0$, \qquad), since $b^{0}=$ \qquad for any real number b.
4. If each side of an equation can be written as an exponential term with the same base, the equation can be solved using the \qquad -.
5. State true or false and explain why: $y=b^{x}$ is always increasing if $0<b<1$.
6. Discuss/Explain the statement, "For $k>0$, the y-intercept of $y=a b^{x}+k$ is $(0, a+k) . "$

DEVELOPING YOUR SKILLS

Use a calculator (as needed) to evaluate each function as indicated. Round answers to thousandths.
7. $P(t)=2500 \cdot 4^{t}$;
$t=2, t=\frac{1}{2}, t=\frac{3}{2}$,
$t=\sqrt{3}$
8. $Q(t)=5000 \cdot 8^{t}$;
$t=2, t=\frac{1}{3}, t=\frac{5}{3}$,
$t=5$
9. $f(x)=0.5 \cdot 10^{x}$;
$x=3, x=\frac{1}{2}, x=\frac{2}{3}$,
$x=\sqrt{7}$
10. $g(x)=0.8 \cdot 5^{x}$;
$x=4, x=\frac{1}{4}, x=\frac{4}{5}$,
$x=\pi$
11. $V(n)=10,000\left(\frac{2}{3}\right)^{n}$;
12. $W(m)=3300\left(\frac{4}{5}\right)^{m}$;
$n=0, n=4, n=4.7, \quad m=0, m=5, m=7.2$,
$n=5 \quad m=10$

Graph each function using a table of values and integer inputs between -3 and 3 . Clearly label the y-intercept and one additional point, then indicate whether the function is increasing or decreasing.
13. $y=3^{x}$
14. $y=4^{x}$
15. $y=\left(\frac{1}{3}\right)^{x}$
16. $y=\left(\frac{1}{4}\right)^{x}$

Graph each of the following functions by translating the basic function $y=b^{x}$, sketching the asymptote, and strategically plotting a few points to round out the graph. Clearly state the basic function and what shifts are applied.
17. $y=3^{x}+2$
18. $y=3^{x}-3$
19. $y=3^{x+3}$
20. $y=3^{x-2}$
21. $y=2^{-x}$
22. $y=3^{-x}$
23. $y=2^{-x}+3$
24. $y=3^{-x}-2$
25. $y=2^{x+1}-3$
26. $y=3^{x-2}+1$
27. $y=\left(\frac{1}{3}\right)^{x}+1$
28. $y=\left(\frac{1}{3}\right)^{x}-4$
29. $y=\left(\frac{1}{3}\right)^{x-2}$
30. $y=\left(\frac{1}{3}\right)^{x+2}$
31. $f(x)=\left(\frac{1}{3}\right)^{x}-2$
32. $g(x)=\left(\frac{1}{3}\right)^{x}+2$

Match each graph to the correct exponential equation.
33. $y=5^{-x}$
34. $y=4^{-x}$
35. $y=3^{-x+1}$
36. $y=3^{-x}+1$
37. $y=2^{x+1}-2$
38. $y=2^{x+2}-1$
a.

c.

b.

d.

f.

Use a calculator to evaluate each expression, rounded to six decimal places.
39. e^{1}
40. e^{0}
41. e^{2}
42. e^{5}
43. $e^{1.5}$
44. $e^{-3.2}$
45. $e^{\sqrt{2}}$
46. e^{π}

Graph each exponential function.

47. $f(x)=e^{x+3}-2$
48. $g(x)=e^{x-2}+1$
49. $r(t)=-e^{t}+2$
50. $s(t)=-e^{t+2}$
51. $p(x)=e^{-x+2}-1$
52. $q(x)=e^{-x-1}+2$

Solve each exponential equation and check your answer by substituting into the original equation.
53. $10^{x}=1000$
54. $144=12^{x}$
55. $25^{x}=125$
56. $81=27^{x}$
57. $8^{x+2}=32$
58. $9^{x-1}=27$
59. $32^{x}=16^{x+1}$
60. $100^{x+2}=1000^{x}$
61. $\left(\frac{1}{5}\right)^{x}=125$
62. $\left(\frac{1}{4}\right)^{x}=64$
63. $\left(\frac{1}{3}\right)^{2 x}=9^{x-6}$
64. $\left(\frac{1}{2}\right)^{3 x}=8^{x-2}$
65. $\left(\frac{1}{9}\right)^{x-5}=3^{3 x}$
66. $2^{-2 x}=\left(\frac{1}{32}\right)^{x-3}$
67. $25^{3 x}=125^{x-2}$
68. $27^{2 x+4}=9^{4 x}$
69. $\frac{e^{4}}{e^{2-x}}=e^{3} e$
70. $e^{x}\left(e^{x}+e\right)=\frac{e^{x}+e^{3 x}}{e^{-x}}$
71. $\left(e^{2 x-4}\right)^{3}=\frac{e^{x+5}}{e^{2}}$
72. $e^{x} e^{x+3}=\left(e^{x+2}\right)^{3}$

WORKING WITH FORMULAS

73. The growth of bacteria: $P(t)=1000 \cdot \mathbf{3}^{t}$

If the initial population of a common bacterium is 1000 and the population triples every day, its population is given by the formula shown, where $P(t)$ is the total population after t days. (a) Find the total population 12 hr , 1 day, $1 \frac{1}{2}$ days, and 2 days later. (b) Do the outputs show the population is tripling every 24 hr (1 day)? (c) Explain why this is an increasing function. (d) Graph the function using an appropriate scale.
74. Spinners with numbers 1-4: $\boldsymbol{P}(\boldsymbol{x})=\left(\frac{1}{4}\right)^{x}$

Games that involve moving pieces around a board using a fair spinner are fairly common. If the spinner has the numbers 1 through 4, the probability that any one number is spun repeatedly is given by the formula shown, where x represents the number of spins and $P(x)$ represents the probability the same number results x times. (a) What is the probability that the first player spins a 2? (b) What is the probability that all four players spin a 2? (c) Explain why this is a decreasing function.

APPLICATIONS

Use Newton's law of cooling to complete Exercises 75 and 76: $T(x)=T_{R}+\left(T_{0}-T_{R}\right) e^{k x}$.
75. Cold party drinks: Janae was late getting ready for the party, and the liters of soft drinks she bought were still at room temperature $\left(73^{\circ} \mathrm{F}\right)$ with guests due to arrive in 15 min . If she puts these in her freezer at $-10^{\circ} \mathrm{F}$, will the drinks be cold enough $\left(35^{\circ} \mathrm{F}\right.$) for her guests? Assume $k \approx-0.031$.
76. Warm party drinks: Newton's law of cooling applies equally well if the "cooling is negative," meaning the object is taken from a colder medium and placed in a warmer one. If a can of soft drink is taken from a $35^{\circ} \mathrm{F}$ cooler and placed in a room where the temperature is $75^{\circ} \mathrm{F}$, how long will it take the drink to warm to $65^{\circ} \mathrm{F}$? Assume $k \approx-0.031$.

77. Depreciation:

 The financial analyst for a large construction firm estimates that its heavy equipment loses one-fifth of its value each year. The current value of the equipment is then modeled by the function $V(t)=V_{0}\left(\frac{4}{5}\right)^{t}$, where V_{0} represents the initial value, t is in years, and $V(t)$ represents the value after t years. (a) How much is a large earthmover worth after 1 yr if it cost $\$ 125$ thousand new? (b) How many years does it take for the earthmover to depreciate to a value of $\$ 64$ thousand?
78. Depreciation: Photocopiers have become a critical part of the operation of many businesses, and due to their heavy use they can depreciate in value very quickly. If a copier loses $\frac{3}{8}$ of its value each year,
the current value of the copier can be modeled by the function $V(t)=V_{0}\left(\frac{5}{8}\right)^{t}$, where V_{0} represents the initial value, t is in years, and $V(t)$ represents the value after t yr. (a) How much is this copier worth after one year if it cost $\$ 64$ thousand new? (b) How many years does it take for the copier to depreciate to a value of $\$ 25$ thousand?
79. Depreciation: Margaret Madison, DDS, estimates that her dental equipment loses one-sixth of its value each year. (a) Determine the value of an x-ray machine after 5 yr if it cost $\$ 216$ thousand new, and (b) determine how long until the machine is worth less than $\$ 125$ thousand.
80. Exponential decay: The groundskeeper of a local high school estimates that due to heavy usage by the baseball and softball teams, the pitcher's mound loses one-fifth of its height every month.
(a) Determine the height of the mound after 3 months if it was 25 cm to begin, and (b) determine how long until the pitcher's mound is less than 16 cm high (meaning it must be rebuilt).

81. Exponential growth: Similar to a small town doubling in size after a discovery of gold, a business that develops a product in high demand has the potential for doubling its revenue each year for a number of years. The revenue would be modeled by the function $R(t)=R_{0} 2^{t}$, where R_{0} represents the initial revenue, and $R(t)$ represents the revenue after t years. (a) How much revenue is being generated after 4 yr , if the company's initial revenue was $\$ 2.5$ million? (b) How many years does it take for the business to be generating $\$ 320$ million in revenue?
82. Exponential growth: If a company's revenue grows at a rate of 150% per year (rather than doubling as in Exercise 81), the revenue would be modeled by the function $R(t)=R_{0}\left(\frac{3}{2}\right)^{t}$, where R_{0} represents the initial revenue, and $R(t)$ represents the revenue after t years. (a) How much revenue is being generated after 3 yr , if the company's initial revenue was $\$ 256$ thousand? (b) How long until the business is generating $\$ 1944$ thousand in revenue? (Hint: Reduce the fraction.)

Photochromatic sunglasses: Sunglasses that darken in sunlight (photochromatic sunglasses) contain millions of molecules of a substance known as silver halide. The molecules are transparent indoors in the absence of ultraviolent (UV) light. Outdoors, UV light from the sun causes the molecules to change shape, darkening the lenses in response to the intensity of the UV light. For certain lenses, the function $T(x)=0.85^{x}$ models the transparency of the lenses (as a percentage) based on a UV index x. Find the transparency (to the nearest percent), if the lenses are exposed to
83. sunlight with a UV index of 7
(a high exposure).
84. sunlight with a UV index of 5.5
(a moderate exposure).
85. Given that a UV index of 11 is very high and most individuals should stay indoors, what is the minimum transparency percentage for these lenses?
86. Use trial-and-error to determine the UV index when the lenses are 50% transparent.

Modeling inflation: Assuming the rate of inflation is 5\% per year, the predicted price of an item can be modeled by the function $P(t)=P_{0}(1.05)^{t}$, where P_{0} represents the initial price of the item and t is in years. Use this information to solve Exercises 87 and 88 .
87. What will the price of a new car be in the year 2010 , if it cost $\$ 20,000$ in the year 2000?
88. What will the price of a gallon of milk be in the year 2010, if it cost $\$ 2.95$ in the year 2000 ? Round to the nearest cent.

Modeling radioactive decay: The half-life of a radioactive substance is the time required for half an initial amount of the substance to disappear through decay. The amount of the substance remaining is given by the formula $Q(t)=Q_{0}\left(\frac{1}{2}\right)^{\frac{1}{t}}$, where h is the half-life, t represents the elapsed time, and $Q(t)$ represents the amount that remains (t and h must have the same unit of time). Use this information to solve Exercises 89 and 90 .
89. Some isotopes of the substance known as thorium have a half-life of only 8 min . (a) If 64 grams are initially present, how many grams (g) of the substance remain after 24 min ? (b) How many minutes until only 1 gram (g) of the substance remains?
90. Some isotopes of sodium have a half-life of about 16 hr . (a) If 128 g are initially present, how many grams of the substance remain after 2 days (48 hr)? (b) How many hours until only 1 g of the substance remains?

EXTENDING THE CONCEPT

91. If $10^{2 x}=25$, what is the value of 10^{-x} ?
92. If $3^{0.5 x}=5$, what is the value of 3^{x+1} ?
93. If $5^{3 x}=27$, what is the value of $5^{2 x}$?
94. If $\left(\frac{1}{2}\right)^{x+1}=\frac{1}{3}$, what is the value of $\left(\frac{1}{2}\right)^{-x}$?
95. The formula $f(x)=\left(\frac{1}{2}\right)^{x}$ gives the probability that " x " number of flips result in heads (or tails). First determine the probability that 20 flips results in 20 heads in a row. Then use the Internet or some other resource to determine the probability of winning a state lottery (expressed as a decimal). Which has the greater probability? Were you surprised?

The growth rate constant that governs an exponential function was introduced on page A-4.
96. In later sections, we will easily be able to find the growth constant k for Goldsboro, where $P(t)=1000 \cdot 2^{t}$. For now we'll approximate its value using the rate of change formula on a very small interval of the domain. From the definition of an exponential function, $\frac{\Delta P}{\Delta t}=k P(t)$. Since k is constant, we can choose any value of t, say $t=4$. For $h=0.0001$, we have $\frac{1000 \cdot 2^{4+0.0001}-1000 \cdot 2^{4}}{0.0001}=k \cdot P(4)$
(a) Use the equation shown to solve for k (round to thousandths). (b) Show that k is constant by completing the same exercise for $t=2$ and $t=6$. (c) Verify that $P(t)=1000 \cdot 2^{t}$ and $P(t)=1000 e^{k t}$ give approximately the same results.
97. As we analyze the expression $\left(1+\frac{1}{x}\right)^{x}$, we notice a battle (of sorts) takes place between the base $\left(1+\frac{1}{x}\right)$ and the exponent x. As $x \rightarrow \infty, \frac{1}{x}$ becomes infinitely small, but the exponent becomes infinitely large. So what happens? The answer is best understood by computing a series of average rates of change, using the intervals given here. Using the tools of Calculus, it can be shown that this rate of change becomes infinitely small, and that the "battle" ends at the irrational number e. In other words, e is an upper bound on the value of this expression, regardless of how large x becomes.
regardless of how large x becomes.
a. Use a calculator to find the average rate of change for $y=\left(1+\frac{1}{x}\right)^{x}$ in these intervals: [1, 1.01], [4, 4.01],
$[10,10.01]$, and [20, 20.01]. What do you notice?
b. What is the smallest integer value for x that gives the value of e correct to four decimal places?
c. Use a graphing calculator to graph this function on a window size of $x \in[0,25]$ and $y \in[0,3]$. Does the graph seem to support the statements above?

B Logarithms and Logarithmic Functions

Learning Objectives

In Section B you will learn how to:
A. Write exponential equations in logarithmic form
B. Find common logarithms and natural logarithmsC. Graph logarithmic functionsD. Find the domain of a logarithmic functionE. Solve applications of logarithmic functions

A transcendental function is one whose solutions are beyond or transcend the methods applied to polynomial functions. The exponential function and its inverse, called the logarithmic function, are transcendental functions. In this section, we'll use the concept of an inverse to develop an understanding of the logarithmic function, which has numerous applications that include measuring pH levels, sound and earthquake intensities, barometric pressure, and other natural phenomena.

A. Exponential Equations and Logarithmic Form

While exponential functions have a large number of significant applications, we can't appreciate their full value until we develop the inverse function. Without it, we're unable to solve all but the simplest equations, of the type encountered in Appendix I.A Using the fact that $f(x)=b^{x}$ is one-to-one, we have the following:

1. The function $f^{-1}(x)$ must exist.
2. We can graph $f^{-1}(x)$ by interchanging the x - and y-coordinates of points from $f(x)$.
3. The domain of $f(x)$ will become the range of $f^{-1}(x)$.
4. The range of $f(x)$ will become the domain of $f^{-1}(x)$.
5. The graph of $f^{-1}(x)$ will be a reflection of $f(x)$ across the line $y=x$.

Table AI. 2 contains selected values for $f(x)=2^{x}$. The values for $f^{-1}(x)$ in Table AI. 3 were found by interchanging x - and y-coordinates. Both functions were then graphed using these values.

Table AI. 2

$\boldsymbol{f}(\boldsymbol{x}): \boldsymbol{y}=\mathbf{2}^{\boldsymbol{x}}$	
\boldsymbol{x}	\boldsymbol{y}
-3	$\frac{1}{8}$
-2	$\frac{1}{4}$
-1	$\frac{1}{2}$
0	1
1	2
2	4
3	8

Table AI. 3

$\boldsymbol{f}^{-\mathbf{1}}(\boldsymbol{x}): \boldsymbol{x}=\mathbf{2}^{\boldsymbol{y}}$	
x	$y=f^{-1}(x)$
$\frac{1}{8}$	-3
$\frac{1}{4}$	-2
$\frac{1}{2}$	-1
1	0
2	1
4	2
8	3

Figure AI. 5

The interchange of x and y and the graphs in Figure AI. 5 show that $f^{-1}(x)$ has an x-intercept of $(1,0)$, a vertical asymptote at $x=0$, a domain of $x \in(0, \infty)$, and a range of $y \in(-\infty, \infty)$. To find an equation for $f^{-1}(x)$, we'll attempt to use the algebraic approach employed in Section 6.1. For $f(x)=2^{x}$,

1. use y instead of $f(x): y=2^{x}$.
2. interchange x and $y: x=2^{y}$.

At this point we have an implicit equation for the inverse function, but no algebraic operations that enable us to solve explicitly for y in terms of x. Instead, we write $x=2^{y}$ in function form by noting that " y is the exponent that goes on base 2 to obtain x." In the language of mathematics, this phrase is represented by $y=\log _{2} x$ and is called a logarithmic function with base 2 . For example, from Table AI. 3 we have: -3 is the exponent that goes on base 2 to get $\frac{1}{8}$, and this is written $-3=\log _{2} \frac{1}{8} \operatorname{since} 2^{-3}=\frac{1}{8}$. For $y=b^{x}, x=b^{y} \rightarrow y=\log _{b} x$ is the inverse function, and is read, " y is the logarithm base b of x." For this new function, we must always keep in mind what y representsy is an exponent. In fact, y is the exponent that goes on base b to obtain $x: y=\log _{b} x$.

Logarithmic Functions

For positive numbers x and b, with $b \neq 1$,

$$
y=\log _{b} x \text { if and only if } x=b^{y}
$$

The function $f(x)=\log _{b} x$ is a logarithmic function with base b. The expression $\log _{b} x$ is simply called a logarithm, and represents the exponent on b that yields x.

Finally, note the equations $x=b^{y}$ and $y=\log _{b} x$ are equivalent. We say that $x=b^{y}$ is the exponential form of the equation, whereas $y=\log _{b} x$ is written in logarithmic form.

EXAMPLE 1 Converting from Logarithmic Form to Exponential Form

Write each equation in words, then in exponential form.
a. $3=\log _{2} 8$
b. $1=\log _{10} 10$
c. $0=\log _{e} 1$
d. $-2=\log _{3}\left(\frac{1}{9}\right)$

Solution a. $3=\log _{2} 8 \rightarrow 3$ is the exponent on base 2 to obtain $8: 2^{3}=8$.
b. $1=\log _{10} 10 \rightarrow 1$ is the exponent on base 10 to obtain $10: 10^{1}=10$.
c. $0=\log _{e} 1 \rightarrow 0$ is the exponent on base e to obtain $1: e^{0}=1$.
d. $-2=\log _{3}\left(\frac{1}{9}\right) \rightarrow-2$ is the exponent on base 3 to obtain $\frac{1}{9}: 3^{-2}=\frac{1}{9}$.

Now try Exercises 7 through 22

To convert from exponential form to logarithmic form, note the exponent on the base and read from there. For $5^{3}=125$, " 3 is the exponent that goes on base 5 to obtain $125, "$ or 3 is the logarithm base 5 of 125:3 $=\log _{5} 125$.

EXAMPLE 2 Converting from Exponential Form to Logarithmic Form

Write each equation in words, then in logarithmic form.
a. $10^{3}=1000$
b. $2^{-1}=\frac{1}{2}$
c. $e^{2} \approx 7.389$
d. $9^{\frac{3}{2}}=27$

Solution
A. You've just learned how to write exponential equations in logarithmic form

WORTHY OF NOTE

Since base-10 logarithms occur so frequently, we usually use only $\log x$ to represent $\log _{10} x$. We do something similar with square roots. Technically, the "square root of x " should be written $\sqrt[2]{x}$. However, square roots are so common we often leave off the two, assuming that if no index is written, an index of two is intended.
a. $10^{3}=1000 \rightarrow 3$ is the exponent on base 10 to obtain 1000 , or 3 is the logarithm base 10 of $1000: 3=\log _{10} 1000$.
b. $2^{-1}=\frac{1}{2} \rightarrow-1$ is the exponent on base 2 to obtain $\frac{1}{2}$, or
-1 is the logarithm base 2 of $\frac{1}{2}:-1=\log _{2}\left(\frac{1}{2}\right)$.
c. $e^{2} \approx 7.389 \rightarrow 2$ is the exponent on base e to obtain 7.389 , or 2 is the logarithm base e of 7.389: $2 \approx \log _{e} 7.389$.
d. $9^{\frac{3}{2}}=27 \rightarrow \frac{3}{2}$ is the exponent on base 9 to obtain 27 , or $\frac{3}{2}$ is the logarithm base 9 of $27: \frac{3}{2}=\log _{9} 27$.

Now try Exercises 23 through 38 -

B. Finding Common Logarithms and Natural Logarithms

Of all possible bases for $\log _{b} x$, the most common are base 10 (likely due to our base-10 number system), and base e (due to the advantages it offers in advanced courses). The expression $\log _{10} x$ is called a common logarithm, and we simply write $\log x$ for $\log _{10} x$. The expression $\log _{e} x$ is called a natural logarithm, and is written in abbreviated form as $\ln x$.

Some logarithms are easy to evaluate. For example, $\log 100=2$ since $10^{2}=100$, and $\log \frac{1}{100}=-2$ since $10^{-2}=\frac{1}{100}$. But what about the expressions $\log 850$ and $\ln 4$? Because logarithmic functions are continuous on their domains, a value exists for $\log 850$ and the equation $10^{x}=850$ must have a solution. Further, the inequalities

$$
\begin{gathered}
\log 100<\log 850<\log 1000 \\
2<\log 850<3
\end{gathered}
$$

tell us that $\log 850$ must be between 2 and 3. Fortunately, modern calculators can compute base-10 and base-e logarithms instantly, often with nine-decimal-place accuracy. For $\log 850$, press LOG , then input 850 and press ENTER. The display should read 2.929418926 . We can also use the calculator to verify $10^{2.929418926}=850$ (see Figure AI.6). For $\ln 4$, press the LN key, then input 4 and press ENTER to obtain 1.386294361. Figure AI. 7 verifies that $e^{1.386294361}=4$.

Figure AI. 6

Figure AI. 7

EXAMPLE 3 - Finding the Value of a Logarithm

Determine the value of each logarithm without using a calculator:
a. $\log _{2} 8$
b. $\log _{5}\left(\frac{1}{25}\right)$
c. $\log _{e} e$
d. $\log _{10} \sqrt{10}$

Solution a. $\log _{2} 8$ represents the exponent on 2 to obtain $8: \log _{2} 8=3$, since $2^{3}=8$.
b. $\log _{5}\left(\frac{1}{25}\right)$ represents the exponent on 5 to obtain $\frac{1}{25}: \log _{525} \frac{1}{25}=-2$, since $5^{-2}=\frac{1}{25}$.
c. $\log _{e} e$ represents the exponent on e to obtain $e: \log _{e} e=1$, since $e^{1}=e$.
d. $\log _{10} \sqrt{10}$ represents the exponent on 10 to obtain $\sqrt{10}: \log _{10} \sqrt{10}=\frac{1}{2}$, since $10^{\frac{1}{2}}=\sqrt{10}$.

Now try Exercises 39 through 50 -

EXAMPLE 4 Using a Calculator to Find Logarithms
Use a calculator to evaluate each logarithmic expression. Verify the result.
a. $\log 1857$
b. $\log 0.258$
c. $\ln 3.592$

Solution
B. You've just learned how to find common logarithms and natural logarithms
a. $\log 1857=3.268811904$,
c. $\ln 3.592 \approx 1.27870915$ $e^{1.27870915} \approx 3.592 \checkmark$
b. $\log 0.258=-0.588380294$, $10^{-0.588380294}=0.258 \checkmark$

Now try Exercises 51 through 58

C. Graphing Logarithmic Functions

For convenience and ease of calculation, our first examples of logarithmic graphs are done using base-2 logarithms. However, the basic shape of a logarithmic graph remains unchanged regardless of the base used, and transformations can be applied to $y=\log _{b}(x)$ for any value of b. For $y=a \log (x \pm h) \pm k, a$ continues to govern stretches, compressions, and vertical reflections, the graph will shift horizontally h units opposite the sign, and shift k units vertically in the same direction as the sign. Our earlier graph of $y=\log _{2} x$ was completed using $x=2^{y}$ as the inverse function for $y=2^{x}$

Figure AI. 8
 (Figure AI.5). For reference, the graph is repeated in Figure AI. 8.

EXAMPLE 5 Graphing Logarithmic Functions Using Transformations

Graph $f(x)=\log _{2}(x-3)+1$ using transformations of $y=\log _{2} x$ (not by simply plotting points). Clearly state what transformations are applied.
Solution - The graph of f is the same as that of $y=\log _{2} x$, Figure Al. 9 shifted 3 units right and 1 unit up. The vertical asymptote will be at $x=3$ and the point $(1,0)$ from the basic graph becomes $(1+3,0+1)=(4,1)$. Knowing the graph's basic shape, we compute one additional point using $x=7$:

$$
\begin{aligned}
f(7) & =\log _{2}(7-3)+1 \\
& =\log _{2} 4+1 \\
& =2+1 \\
& =3
\end{aligned}
$$

The point $(7,3)$ is on the graph, shown in Figure AI. 9 .

Now try Exercises 59 through 62 -

As with the exponential functions, much can be learned from graphs of logarithmic functions and a summary of important characteristics is given here.

$$
f(x)=\log _{b} x, b>0 \text { and } b \neq 1
$$

- one-to-one function	- x-intercept $(1,0)$
- domain: $x \in(0, \infty)$	- range: $y \in \mathbb{R}$
- increasing if $b>1$	- decreasing if $0<b<1$

- asymptotic to the y-axis (the line $x=0$)

EXAMPLE 6 Graphing Logarithmic Functions Using Transformations

Graph $g(x)=-\ln (x+2)$ using transformations of $y=\ln x$ (not by simply plotting points). Clearly state what transformations are applied.
Solution The graph of g is the same as $y=\ln x$, shifted 2 units

WORTHY OF NOTE

Accurate graphs can actually be drawn for logarithms of any base using what is called the change-of-base formula, introduced in Appendix I.C
C. You've just learned how to graph logarithmic functions left, then reflected across the x-axis. The vertical asymptote will be at $x=-2$, and the point $(1,0)$ from the basic function becomes $(-1,0)$. To complete the graph we compute $f(6)$:

$$
\begin{aligned}
f(6) & =-\ln (6+2) \\
& =-\ln 8 \\
& \approx-2.1 \text { (using a calculator). }
\end{aligned}
$$

The point $(6,-2.1)$ is on the graph shown in the figure.

D. Finding the Domain of a Logarithmic Function

Examples 5 and 6 illustrate how the domain of a logarithmic function can change when certain transformations are applied. Since the domain consists of positive real numbers, the argument of a logarithmic function must be greater than zero. This means finding the domain often consists of solving various inequalities.

EXAMPLE 7 Finding the Domain of a Logarithmic Function

Determine the domain of each function.
a. $p(x)=\log _{2}(2 x+3)$
b. $q(x)=\log _{5}\left(x^{2}-2 x\right)$
c. $r(x)=\log \left(\frac{3-x}{x+3}\right)$
d. $f(x)=\ln |x-2|$

Solution Begin by writing the argument of each logarithmic function as a greater than inequality.
a. Solving $2 x+3>0$ for x gives $x>-\frac{3}{2}$, and the domain of p is $x \in\left(-\frac{3}{2}, \infty\right)$.
b. For $x^{2}-2 x>0$, we note $y=x^{2}-2 x$ is a parabola, opening upward, with zeroes at $x=0$ and $x=2$ (see Figure AI.10). This means $x^{2}-2 x$ will be positive for $x<0$ and $x>2$. The domain of q is $x \in(-\infty, 0) \cup(2, \infty)$.

Figure AI. 10

WORTHY OF NOTE

Each inequality could also have been solved using the interval test method, by noting the location of zeroes and any vertical asymptotes on the x-axis and checking the sign of the function at mid-interval points.
D. You've just learned how to find the domain of a logarithmic function

$$
1
$$

c. For $\frac{3-x}{x+3}>0$, we note $y=\frac{3-x}{x+3}$ has a zero at $x=3$, and a vertical asymptote at $x=-3$. Outputs are positive when $x=0$ (see Figure AI.11), so y is positive in the interval $(-3,3)$ and negative elsewhere. The domain of r is $x \in(-3,3)$.

Figure AI. 11

d. For $|x-2|>0$, we note $y=|x-2|$ is the graph of $y=|x|$ shifted 2 units right, with its vertex at $(2,0)$. The graph is positive for all x, except at $x=2$. The domain of f is $x \in(-\infty, 2) \cup(2, \infty)$.

Now try Exercises 73 through 78 -

GRAPHICAL SUPPORT

The domain for $r(x)=\log _{10}\left(\frac{3-x}{x+3}\right)$ from
Example 7(c) can be confirmed using the LOG key on a graphing calculator. Use the key to enter the equation as Y_{1} on the $Y=$ screen, then graph the function using the Z00M 4:ZDecimal option. Both the graph and TABLE feature help to confirm the domain is $x \in(-3,3)$.

WORTHY OF NOTE

The decibel (dB) is the reference unit for sound, and is based on the faintest sound a person can hear, called the threshold of audibility. It is a base-10 logarithmic scale, meaning a sound 10 times more intense is one decibel louder.

E. Applications of Logarithms

As we use mathematics to model the real world, there are times when the range of outcomes is so large that using a linear scale would be hard to manage. For example, compared to a whisper - the scream of a jet engine may be up to ten billion times louder. Similar ranges exist in the measurement of earthquakes, light, acidity, and voltage. In lieu of a linear scale, logarithms are used where each whole number increase in magnitude represents a tenfold increase in the intensity. For earthquake intensities (a measure of the wave energy produced by the quake), units called magnitudes (or Richter values) are used. Earthquakes with a magnitude of 6.5 or more often cause significant damage, while the slightest earthquakes have magnitudes near 1 and are barely perceptible. The magnitude of the intensity $M(I)$ is given by $M(I)=\log \left(\frac{I}{I_{0}}\right)$ where I is the measured intensity and I_{0} represents a minimum or reference intensity. The value of I is often given as a multiple of this reference intensity.

EXAMPLE 8A

Finding the Magnitude of an Earthquake

Find the magnitude of an earthquake (rounded to hundredths) with the intensities given.
a. $I=4000 I_{0}$
b. $I=8,252,000 I_{0}$

Solution

$$
\text { a. } \begin{aligned}
M(I) & =\log \left(\frac{I}{I_{0}}\right) & & \text { magnitude equation } \\
M\left(4000 I_{0}\right) & =\log \left(\frac{4000 I_{0}}{I_{0}}\right) & & \text { substitute } 4000 I_{0} \text { for } / \\
& =\log 4000 & & \text { simplify } \\
& \approx 3.60 & & \text { result }
\end{aligned}
$$

The earthquake had a magnitude of 3.6.

$$
\begin{array}{lrl}
\text { b. } & & \\
M(I) & =\log \left(\frac{I}{I_{0}}\right) & \\
M\left(8,252,000 I_{0}\right) & =\log \left(\frac{8,252,000 I_{0}}{I_{0}}\right) & \\
\text { substitude equation } 8,252,000 I_{0} \text { for } / \\
& =\log 8,252,000 & \\
& \approx 6.92 &
\end{array}
$$

The earthquake had a magnitude of about 6.92 .

EXAMPLE 8B \rightarrow Comparing Earthquake Intensity to the Reference Intensity

How many times more intense than the reference intensity I_{0} is an earthquake with a magnitude of 6.7?

Solution

$$
\begin{aligned}
M(I) & =\log \left(\frac{I}{I_{0}}\right) & & \text { magnitude equation } \\
6.7 & =\log \left(\frac{I}{I_{0}}\right) & & \text { substitute } 6.7 \text { for } M(I) \\
10^{6.7} & =\left(\frac{I}{I_{0}}\right) & & \text { exponential form } \\
I & =10^{6.7} I_{0} & & \text { solve for } I \\
I & =5,011,872 I_{0} & & 10^{6.7} \approx 5,011,872
\end{aligned}
$$

An earthquake of magnitude 6.7 is over 5 million times more intense than the reference intensity.

EXAMPLE 8C Comparing Earthquake Intensities

The Great San Francisco Earthquake of 1906 left over 800 dead, did $\$ 80,000,000$ in damage (see photo), and had an estimated magnitude of 7.7. The 2004 Indian Ocean earthquake, which had a magnitude of approximately 9.2 , triggered a series of deadly tsunamis and was responsible for nearly 300,000 casualties. How much more intense was the 2004 quake?
Solution - To find the intensity of each quake, substitute the given magnitude for $M(I)$ and solve for I :

$$
\left.\begin{array}{rlrl}
M(I) & =\log \left(\frac{I}{I_{0}}\right) & & \text { magnitude equation } \\
7.7 & =\log \left(\frac{I}{I_{0}}\right) & & \text { substitute for } M(I)
\end{array}\right)=\log \left(\frac{I}{I_{0}}\right)
$$

Using these intensities, we find that the Indian Ocean quake was $\frac{10^{9.2}}{10^{7.7}}=10^{1.5} \approx 31.6$ times more intense.

Now try Exercises 81 through 90

A second application of logarithmic functions involves the relationship between altitude and barometric pressure. The altitude or height above sea level can be determined by the formula $H=(30 T+8000) \ln \left(\frac{P_{0}}{P}\right)$, where H is the altitude in meters for a temperature T in degrees Celsius, P is the barometric pressure at a given altitude in units called centimeters of mercury (cmHg), and P_{0} is the barometric pressure at sea level: 76 cmHg .

EXAMPLE 9 Using Logarithms to Determine Altitude

Hikers at the summit of Mt. Shasta in northern California take a pressure reading of 45.1 cmHg at a temperature of $9^{\circ} \mathrm{C}$. How high is Mt. Shasta?

Solution $>$ For this exercise, $P_{0}=76, P=45.1$, and $T=9$. The formula yields

$$
\begin{aligned}
H & =(30 T+8000) \ln \left(\frac{P_{0}}{P}\right) & & \text { given formula } \\
& =[30(9)+8000] \ln \left(\frac{76}{45.1}\right) & & \text { substitute given values } \\
& =8270 \ln \left(\frac{76}{45.1}\right) & & \text { simplify } \\
& \approx 4316 & & \text { result }
\end{aligned}
$$

Mt. Shasta is about 4316 m high.

Our final application shows the versatility of logarithmic functions, and their value as a realworld model. Large advertising agencies are well aware that after a new ad campaign, sales will increase rapidly as more people become aware of the product. Continued advertising will give the new product additional market share, but once the "newness" wears off and the competition begins responding, sales tend to taper off-regardless of any additional amount spent on ads. This phenomenon can be modeled by the function

$$
S(d)=k+a \ln d
$$

where $S(d)$ is the number of expected sales after d dollars are spent, and a and k are constants related to product type and market size.

EXAMPLE $10>$ Using Logarithms for Marketing Strategies

Market research has shown that sales of the MusicMaster, a new system for downloading and playing music, can be approximated by the equation $S(d)=2500+250 \ln d$, where $S(d)$ is the number of sales after d thousand dollars is spent on advertising.
a. What sales volume is expected if the advertising budget is $\$ 40,000$?
b. If the company needs to sell 3500 units to begin making a profit, how much should be spent on advertising?
c. To gain a firm hold on market share, the company is willing to continue spending on advertising up to a point where only 3 additional sales are gained for each $\$ 1000$ spent, in other words, $\frac{\Delta S}{\Delta d}=\frac{3}{1}$. Verify that spending between $\$ 83,200$ and $\$ 83,300$ puts them very close to this goal.

Solution \downarrow a. For sales volume, we simply evaluate the function for $d=40$ (d in thousands):

$$
\begin{aligned}
S(d) & =2500+250 \ln d & & \text { given equation } \\
S(40) & =2500+250 \ln 40 & & \text { substitute } 40 \text { for } d \\
& \approx 2500+922 & & 250 \ln 40 \approx 922 \\
& =3422 & &
\end{aligned}
$$

Spending \$40,000 on advertising will generate approximately 3422 sales.

b. To find the advertising budget needed, we substitute number of sales and solve for d.

$$
\begin{aligned}
S(d) & =2500+250 \ln d & & \text { given equation } \\
3500 & =2500+250 \ln d & & \text { substitute } 3500 \text { for } S(d) \\
1000 & =250 \ln d & & \text { subtract } 2500 \\
4 & =\ln d & & \text { divide by } 250 \\
e^{4} & =d & & \text { exponential form } \\
54.598 & \approx d & & e^{4} \approx 54.598
\end{aligned}
$$

About $\$ 54,600$ should be spent in order to sell 3500 units.

v
E. You've just learned how to solve applications of logarithmic functions
c. To verify, we calculate the average rate of change on the interval [83.2, 83.3].

$$
\begin{aligned}
\frac{\Delta S}{\Delta d} & =\frac{S\left(d_{2}\right)-S\left(d_{1}\right)}{d_{2}-d_{1}} & & \text { formula for average rate of change } \\
& =\frac{S(83.3)-S(83.2)}{83.3-83.2} & & \text { substitute } 83.3 \text { for } d_{2} \text { and } 83.2 \text { for } d_{1} \\
& \approx \frac{3605.6-3605.3}{0.1} & & \text { evaluate } S(83.3) \text { and } S(83.2) \\
& =3 & &
\end{aligned}
$$

The average rate of change in this interval is very close to $\frac{3}{1}$.
Now try Exercises 95 and 96

B EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. A logarithmic function is of the form $y=$ \qquad where \qquad >0, \qquad $\neq 1$ and inputs are \qquad than zero.
2. For logarithmic functions of the form $y=\log _{b} x$, the x-intercept is \qquad , since $\log _{b} 1=$ \qquad —.
3. What number does the expression $\log _{2} 32$ represent? Discuss/Explain how $\log _{2} 32=\log _{2} 2^{5}$ justifies this fact.
4. The range of $y=\log _{b} x$ is all \qquad , and the domain is $x \in$ \qquad Further, as $x \rightarrow 0$,
$y \rightarrow$ \qquad
5. The function $y=\log _{b} x$ is an increasing function if
\qquad and a decreasing function if \qquad
6. Explain how the graph of $\mathrm{Y}=\log _{b}(x-3)$ can be obtained from $y=\log _{b} x$. Where is the "new" x-intercept? Where is the new asymptote?

DEVELOPING YOUR SKILLS

Write each equation in exponential form.
7. $3=\log _{2} 8$
8. $2=\log _{3} 9$
9. $-1=\log _{7} \frac{1}{7}$
10. $-3=\log _{e} \frac{1}{e^{3}}$
11. $0=\log _{9} 1$
12. $0=\log _{e} 1$
13. $\frac{1}{3}=\log _{8} 2$
14. $\frac{1}{2}=\log _{81} 9$
15. $1=\log _{2} 2$
16. $1=\log _{e} e$
17. $\log _{7} 49=2$
18. $\log _{4} 16=2$
19. $\log _{10} 100=2$
20. $\log _{10} 10,000=4$
21. $\log _{e}(54.598) \approx 4$
22. $\log _{10} 0.001=-3$

Write each equation in logarithmic form.

23. $4^{3}=64$
24. $e^{3} \approx 20.086$
25. $3^{-2}=\frac{1}{9}$
26. $2^{-3}=\frac{1}{8}$
27. $e^{0}=1$
28. $8^{0}=1$
29. $\left(\frac{1}{3}\right)^{-3}=27$
30. $\left(\frac{1}{5}\right)^{-2}=25$
31. $10^{3}=1000$
32. $e^{1}=e$
33. $10^{-2}=\frac{1}{100}$
34. $10^{-5}=\frac{1}{100,000}$
35. $4^{\frac{3}{2}}=8$
36. $e^{\frac{3}{4}} \approx 2.117$
37. $4^{\frac{-3}{2}}=\frac{1}{8}$
38. $27^{\frac{-2}{3}}=\frac{1}{9}$

Determine the value of each logarithm without using a calculator.
39. $\log _{4} 4$
40. $\log _{9} 9$
41. $\log _{11} 121$
42. $\log _{12} 144$
43. $\log _{e} e$
44. $\log _{e} e^{2}$
45. $\log _{4} 2$
46. $\log _{81} 9$
47. $\log _{7} \frac{1}{49}$
48. $\log _{9} \frac{1}{81}$
49. $\log _{e} \frac{1}{e^{2}}$
50. $\log _{e} \frac{1}{\sqrt{e}}$

Use a calculator to evaluate each expression, rounded to four decimal places.
51. $\log 50$
52. $\log 47$
53. $\ln 1.6$
54. $\ln 0.75$
55. $\ln 225$
56. $\ln 381$
57. $\log \sqrt{37}$
58. $\log 4 \pi$

Graph each function using transformations of $y=\log _{b} x$ and strategically plotting a few points. Clearly state the transformations applied.
59. $f(x)=\log _{2} x+3$
60. $g(x)=\log _{2}(x-2)$
61. $h(x)=\log _{2}(x-2)+3$
62. $p(x)=\log _{3} x-2$
63. $q(x)=\ln (x+1)$
64. $r(x)=\ln (x+1)-2$
65. $\mathrm{Y}_{1}=-\ln (x+1)$
66. $\mathrm{Y}_{2}=-\ln x+2$

Use the transformation equation $y=a f(x \pm h) \pm k$ and the asymptotes and intercept(s) of the parent function to match each equation to one of the graphs given.
67. $y=\log _{b}(x+2)$
68. $y=2 \log _{b} x$
69. $y=1-\log _{b} x$
70. $y=\log _{b} x-1$
71. $y=\log _{b} x+2$
72. $y=-\log _{b} x$
I.

III.

v.

II.

IV.

VI.

Determine the domain of the following functions.
73. $y=\log _{6}\left(\frac{x+1}{x-3}\right)$
74. $y=\ln \left(\frac{x-2}{x+3}\right)$
75. $y=\log _{5} \sqrt{2 x-3}$
76. $y=\ln \sqrt{5-3 x}$
77. $y=\log \left(9-x^{2}\right)$
78. $y=\ln \left(9 x-x^{2}\right)$

WORKING THE FORMULAS

79. pH level: $f(x)=-\log _{10} x$

The pH level of a solution indicates the concentration of hydrogen $\left(\mathrm{H}^{+}\right)$ions in a unit called moles per liter. The pH level $f(x)$ is given by the formula shown, where x is the ion concentration (given in scientific notation). A solution with $\mathrm{pH}<7$ is called an acid (lemon juice: $\mathrm{pH} \approx 2$), and a solution with $\mathrm{pH}>7$ is called a base (household ammonia: $\mathrm{pH} \approx 11$). Use the formula to determine the pH level of tomato juice if $x=7.94 \times 10^{-5}$ moles per liter. Is this an acid or base solution?

80. Time required for an investment to double:

$T(r)=\frac{\log 2}{\log (1+r)}$
The time required for an investment to double in value is given by the formula shown, where r represents the interest rate (expressed as a decimal) and $T(r)$ gives the years required. How long would it take an investment to double if the interest rate were (a) 5%, (b) 8%, (c) 12% ?

APPLICATIONS

Earthquake intensity: Use the information provided in Example 8 to answer the following.
81. Find the value of $M(I)$ given
a. $I=50,000 I_{0}$ and
b. $I=75,000 I_{0}$.
82. Find the intensity I of the earthquake given

$$
\text { a. } M(I)=3.2 \quad \text { and } \quad \text { b. } M(I)=8.1
$$

83. Earthquake intensity: On June 25, 1989, an earthquake with magnitude 6.2 shook the southeast side of the Island of Hawaii (near Kalapana), causing some $\$ 1,000,000$ in damage. On October 15, 2006, an earthquake measuring 6.7 on the Richter scale shook the northwest side of the island, causing over $\$ 100,000,000$ in damage. How much more intense was the 2006 quake?
84. Earthquake intensity: The most intense earthquake of the modern era occurred in Chile on May 22, 1960, and measured 9.5 on the Richter scale. How many times more intense was this earthquake, than the quake that hit Northern Sumatra (Indonesia) on March 28, 2005, and measured 8.7?

Brightness of a star: The brightness or intensity I of a star as perceived by the naked eye is measured in units called magnitudes. The brightest stars have magnitude $1[M(I)=1]$ and the dimmest have magnitude $6[M(I)=6]$. The magnitude of a star is given by the equation $M(I)=6-2.5 \cdot \log \left(\frac{I}{I_{0}}\right)$, where I is the actual intensity of light from the star and I_{0} is the faintest light visible to the human eye, called the reference intensity. The intensity I is often given as a multiple of this reference intensity.
85. Find the value of $M(I)$ given

$$
\text { a. } I=27 I_{0} \quad \text { and } \quad \text { b. } I=85 I_{0}
$$

86. Find the intensity I of a star given
a. $M(I)=1.6$ and
b. $M(I)=5.2$.

Intensity of sound: The intensity of sound as perceived by the human ear is measured in units called decibels (dB). The loudest sounds that can be withstood without damage to the eardrum are in the $120-$ to $130-\mathrm{dB}$ range, while a whisper may measure in the $15-$ to $20-\mathrm{dB}$ range. Decibel measure is given by the equation $D(I)=10 \log \left(\frac{I}{I_{0}}\right)$, where I is the actual intensity of the sound and I_{0} is the faintest sound perceptible by the
human ear-called the reference intensity. The intensity I is often given as a multiple of this reference intensity, but often the constant 10^{-16} (watts per $\mathrm{cm}^{2} ; \mathrm{W} / \mathrm{cm}^{2}$) is used as the threshold of audibility.
87. Find the value of $D(I)$ given

$$
\text { a. } I=10^{-14} \quad \text { and } \quad \text { b. } I=10^{-4}
$$

88. Find the intensity I of the sound given
a. $D(I)=83$ and
b. $D(I)=125$.
89. Sound intensity of a hair dryer: Every morning (it seems), Jose is awakened by the mind-jarring, ear-jamming sound of his daughter's hair dryer (75 dB). He knew he was exaggerating, but told her (many times) of how it reminded him of his railroad days, when the air compressor for the pneumatic tools was running (110 dB). In fact, how many times more intense was the sound of the air compressor compared to the sound of the hair dryer?
90. Sound intensity of a busy street: The decibel level of noisy, downtown traffic has been estimated at 87 dB , while the laughter and banter at a loud party might be in the 60 dB range. How many times more intense is the sound of the downtown traffic?

The barometric equation $H=(30 T+8000) \ln \left(\frac{P_{0}}{P}\right)$ was discussed in Example 9.
91. Temperature and atmospheric pressure: Determine the height of Mount McKinley (Alaska), if the temperature at the summit is $-10^{\circ} \mathrm{C}$, with a barometric reading of 34 cmHg .
92. Temperature and atmospheric pressure: A large passenger plane is flying cross-country. The instruments on board show an air temperature of $3^{\circ} \mathrm{C}$, with a barometric pressure of 22 cmHg . What is the altitude of the plane?
93. Altitude and atmospheric pressure: By definition, a mountain pass is a low point between two mountains. Passes may be very short with steep slopes, or as large as a valley between two peaks. Perhaps the highest drivable pass in the world is the Semo La pass in central Tibet. At its highest elevation, a temperature reading of $8^{\circ} \mathrm{C}$ was taken, along with a barometer reading of 39.3 cmHg . (a) Approximately how high is the Semo La pass? (b) While traveling up to this pass, an elevation marker is seen. If the barometer reading was 47.1 cmHg at a temperature of $12^{\circ} \mathrm{C}$, what height did the marker give?
94. Altitude and atmospheric pressure: Hikers on Mt. Everest take successive readings of 35 cmHg at $5^{\circ} \mathrm{C}$ and 30 cmHg at $-10^{\circ} \mathrm{C}$. (a) How far up the mountain are they at each reading? (b) Approximate the height of Mt. Everest if the temperature at the summit is $-27^{\circ} \mathrm{C}$ and the barometric pressure is 22.2 cmHg .
95. Marketing budgets: An advertising agency has determined the number of items sold by a certain client is modeled by the equation $N(A)=1500+315 \ln A$, where $N(A)$ represents the number of sales after spending A thousands of dollars on advertising. Determine the approximate number of items sold on an advertising budget of (a) $\$ 10,000$; (b) $\$ 50,000$. (c) Use the TABLE feature of a calculator to estimate how large a budget is needed (to the nearest $\$ 500$ dollars) to sell 3000 items. (d) This company is willing to continue advertising as long as eight additional sales are gained for every $\$ 1000$ spent: $\frac{\Delta N}{\Delta A}=\frac{8}{1}$. Show this occurs by spending between $\$ 39,300$ to $\$ 39,400$.
96. Sports promotions: The accountants for a major boxing promoter have determined that the number of pay-per-view subscriptions sold to their championship bouts can be modeled by the function $N(d)=15,000+5850 \ln d$, where $N(d)$ represents the number of subscriptions sold after spending d thousand dollars on promotional activities. Determine the number of subscriptions sold if (a) \$50,000 and (b) \$100,000 is spent. (c) Use the TABLE feature of a calculator to estimate how much should be spent (to the nearest $\$ 1000$ dollars) to sell over 50,000 subscriptions.
(d) This promoter is willing to continue promotional spending as long as 14 additional subscriptions are sold for every $\$ 1000$ spent: $\frac{\Delta N}{\Delta d}=\frac{14}{1}$. Show this occurs by spending between $\$ 417,800$ and \$417,900.
97. Home ventilation: In the construction of new housing, there is considerable emphasis placed on correct ventilation. If too little outdoor air enters a home, pollutants can sometimes accumulate to levels that pose a health risk. For homes of various sizes, ventilation requirements have been established and are based on floor area and the number of bedrooms. For a three-bedroom home, the relationship can be modeled by the function $C(x)=42 \ln x-270$, where $C(x)$ represents the number of cubic feet of air per minute (cfm) that
should be exchanged with outside air in a home with floor area x (in square feet). (a) How many cfm of exchanged air are needed for a threebedroom home with a floor area of $2500 \mathrm{ft}^{2}$?
(b) If a three-bedroom home is being mechanically ventilated by a system with 40 cfm capacity, what is the square footage of the home, assuming it is built to code?
98. Runway takeoff distance: Many will remember the August 27, 2006, crash of a commuter jet at Lexington's Blue Grass Airport, that was mistakenly trying to take off on a runway that was just too short. Forty-nine lives were lost. The minimum required
 length of a runway depends on the maximum allowable takeoff weight (mtw) of a specific plane. This relationship can be approximated by the function $L(x)=2085 \ln x-14,900$, where $L(x)$ represents the required length of a runway in feet, for a plane with $x \mathrm{mtw}$ in pounds.
a. The Airbus- 320 has a $169,750 \mathrm{lb}$ mtw. What minimum runway length is required for takeoff?
b. A Learjet 30 model requires a runway of 5550 ft to takeoff safely. What is its mtw?

Memory retention: Under certain conditions, a person's retention of random facts can be modeled by the equation $P(x)=95-14 \log _{2} x$, where $P(x)$ is the percentage of those facts retained after x number of days. Find the percentage of facts a person might retain after:
99. a. 1 day
b. 4 days
c. 16 days
100. a. 32 days
b. 64 days
c. 78 days
101. $\mathbf{p H}$ level: Use the formula given in Exercise 79 to determine the pH level of black coffee if $x=5.1 \times 10^{-5}$ moles per liter. Is black coffee considered an acid or base solution?
102. The length of time required for an amount of money to triple is given by the formula
$T(r)=\frac{\log 3}{\log (1+r)}$ (refer to Exercise 80). Construct
a table of values to help estimate what interest rate is needed for an investment to triple in nine years.

EXTENDING THE CONCEPT

103. Many texts and reference books give estimates of the noise level (in decibels dB) of common sounds. Through reading and research, try to locate or approximate where the following sounds would fall along this scale. In addition, determine at what point pain or ear damage begins to occur.
a. threshold of audibility
b. lawn mower
c. whisper
d. loud rock concert
e. lively party
f. jet engine
104. Determine the value of x that makes the equation true: $\log _{3}\left[\log _{3}\left(\log _{3} x\right)\right]=0$.
105. Find the value of each expression without using a calculator.
a. $\log _{64} \frac{1}{16}$
b. $\log _{\frac{9}{9}} \frac{27}{8}$
c. $\log _{0.25} 32$
106. Suppose you and I represent two different numbers. Is the following cryptogram true or false? The log of me base me is one and the log of you base you is one, but the log of you base me is equal to the log of me base you turned upside down.

MID-CHAPTER CHECK

1.Write the following in logarithmic form.
a. $27^{\frac{2}{3}}=9$
b. $81^{\frac{5}{4}}=243$
2. Write the following in exponential form.
a. $\log _{8} 32=\frac{5}{3}$
b. $\log _{1296} 6=0.25$
3. Solve each equation for the unknown:
a. $4^{2 x}=32^{x-1}$
b. $\left(\frac{1}{3}\right)^{4 b}=9^{2 b-5}$
4. Solve each equation for the unknown:
a. $\log _{27} x=\frac{1}{3}$
b. $\log _{b} 125=3$
5. The homes in a popular neighborhood are growing in value according to the formula $V(t)=V_{0}\left(\frac{9}{8}\right)^{t}$, where t is the time in years, V_{0} is the purchase price of the home, and $V(t)$ is the current value of the home. (a) In 3 yr , how much will a $\$ 50,000$ home be worth? (b) Use the TABLE feature of your calculator to estimate how many years (to the nearest year) until the home doubles in value.
6. The graph of the function $f(x)=5^{x}$ has been shifted right 3 units, up 2 units, and stretched by a factor of 4 . What is the equation of the resulting function?
7. Gianni is ready to dig into a steaming plate of gnocchi, but at $200^{\circ} \mathrm{F}$ it is too hot to eat. The temperature in the room is $75^{\circ} \mathrm{F}$ and the cooling rate for this pasta is $k=-0.28$. (a) What is the temperature (to the nearest degree) of the gnocchi 3 min later? (b) Use the TABLE feature of your calculator to estimate (to the nearest minute) when the gnocchi has cooled to 105°.
8. Write the following equations in logarithmic form, then verify the result on a calculator.
a. $81=3^{4}$
b. $e^{4} \approx 54.598$
9. Write the following equations in exponential form, then verify the result on a calculator.
a. $\frac{2}{3}=\log _{27} 9$
b. $1.4 \approx \ln 4.0552$
10. On August 15, 2007, an earthquake measuring 8.0 on the Richter scale struck coastal Peru. On October 17, 1989, right before Game 3 of the World Series between the Oakland A's and the San Francisco Giants, the Loma Prieta earthquake, measuring 7.1 on the Richter scale, struck the San Francisco Bay area. How much more intense was the Peruvian earthquake?

REINFORCING BASIC CONCEPTS

Linear and Logarithmic Scales

The use of logarithmic scales as a tool of measurement is primarily due to the range of values for the phenomenon being measured. For instance, time is generally measured on a linear scale, and for short periods a linear scale is appropriate. For the time line in Figure AI.12, each tick-mark represents 1 unit, and the time line can display a period of 10 yr .

However, the scale would be useless in a study of world history or geology. If we scale the number line logarithmically, each tick-mark represents a power of 10 (Figure AI.13) and a scale of the same length can now display a time period of 10 billion years.

Figure AI. 12

Figure AI. 13

In much the same way, logarithmic measures are needed in a study of sound and earthquake intensity, as the scream of a jet engine is over 1 billion times more intense than the threshold of hearing, and the most destructive earthquakes are billions of times stronger than the slightest earth movement that can be felt. Figures AI. 14 and AI. 15 show logarithmic scales for measuring sound in decibels (1 bel $=10$ decibels) and earthquake intensity in Richter values (or magnitudes).

As you view these scales, remember that each unit increase represents a power of 10. For instance, the 1906 San Francisco earthquake was $7.7-5.5=2.2$ magnitudes greater than the San Jose quake of 1992 , meaning it was $10^{2.2} \approx 158$ times more intense. Use this information to complete the following exercises. Determine how many times more intense the first sound is compared to the second.
Exercise 1: jet engine: 14 bels; rock concert: 11.8 bels
Exercise 2: pneumatic hammer: 11.2 bels; heavy lawn mower: 8.5 bels
Exercise 3: train horn: 7.5 bels; soft music: 3.4 bels
Determine how many times more intense the first quake was compared to the second.
Exercise 4: Great Chilean (1960): magnitude 9.5; Kobe, Japan (1995): magnitude 6.9
Exercise 5: Northern Sumatra (2004): magnitude 9.1; Southern Greece (2008): magnitude 4.5

C Properties of Logarithms; Solving Exponential/ Logarithmic Equations

Learning Objectives

 In Section C you will learn how to:A. Solve logarithmic equations using the fundamental properties of logarithmsB. Apply the product, quotient, and power properties of logarithmsC. Solve general logarithmic and exponential equationsD. Solve applications involving logistic, exponential, and logarithmic functions

In this section, we develop the ability to solve logarithmic and exponential equations of any base. A logarithmic equation has at least one term that involves the logarithm of a variable. Likewise, an exponential equation has at least one term that involves a variable exponent. In the same way that we might square both sides or divide both sides of an equation in the solution process, we'll show that we can also exponentiate both sides or take logarithms of both sides to help obtain a solution.

A. Solving Equations Using the Fundamental Properties of Logarithms

In Appendix I.B, we converted expressions from exponential form to logarithmic form using the basic definition: $x=b^{y} \Leftrightarrow y=\log _{b} x$. This relationship reveals the following four properties:

Fundamental Properties of Logarithms

For any base $b>0, b \neq 1$,
I. $\log _{b} b=1$, since $b^{1}=b$
II. $\log _{b} 1=0$, since $b^{0}=1$
III. $\log _{b} b^{x}=x$, since $b^{x}=b^{x}$ (exponential form)
IV. $b^{\log _{b} x}=x(x>0)$, since $\log _{b} x=\log _{b} x$ (logarithmic form)

To see the verification of Property IV more clearly, again note that for $y=\log _{b} x, b^{y}=x$ is the exponential form, and substituting $\log _{b} x$ for y yields $b^{\log _{b} x}=x$. Also note that Properties III and IV demonstrate that $y=\log _{b} x$ and $y=b^{x}$ are inverse functions. In common language, "a base- b logarithm undoes a base- b exponential," and "a base- b exponential undoes a base- b logarithm." For $f(x)=\log _{b} x$ and $f^{-1}(x)=b^{x}$, using a composition verifies the inverse relationship:

$$
\begin{aligned}
\left(f \circ f^{-1}\right)(x) & =f\left[f^{-1}(x)\right] & \left(f^{-1} \circ f\right)(x) & =f^{-1}[f(x)] \\
& =\log _{b} b^{x} & & =b^{\log _{b} x} \\
& =x & & =x
\end{aligned}
$$

These properties can be used to solve basic equations involving logarithms and exponentials. For the examples and exercises that follow, note that if $\log _{b} x=k$, then $b^{\log _{b} x}=b^{k}$ and we say that we have exponentiated both sides.

EXAMPLE 1 Solving Basic Logarithmic Equations

Solve each equation by applying fundamental properties. Answer in exact form and approximate form using a calculator (round to 1000ths).
a. $\ln x=2$
b. $-0.52=\log x$

Solution

a. | $\ln x$ | $=2$ | | given |
| ---: | :--- | ---: | :--- |
| $e^{\ln x}$ | $=e^{2}$ | | exponentiate both sides |
| x | $=e^{2}$ | | Property IV (exact form) |
| x | ≈ 7.389 | | approximate form |
| b. -0.52 | $=\log x$ | | given |
| $10^{-0.52}$ | $=10^{\log x}$ | | exponentiate both sides |
| $10^{-0.52}$ | $=x$ | | Property IV (exact form) |
| 0.302 | $\approx x$ | | approximate form |

Note that exponentiating both sides of the equation produced the same result as simply writing the original equation in exponential form, and either approach can be used.

EXAMPLE 2 Solving Basic Exponential Equations

Solve each equation by applying fundamental properties. Answer in exact form and approximate form using a calculator (round to 1000ths).
a. $e^{x}=167$
b. $10^{x}=8.223$

Solution

a. | e^{x} | $=167$ | | given |
| ---: | :--- | ---: | :--- |
| $\ln e^{x}$ | $=\ln 167$ | | take natural log of both sides |
| x | $=\ln 167$ | | Property III (exact form) |
| x | ≈ 5.118 | | approximate form |
| b. $\quad 10^{x}$ | $=8.223$ | | given |
| $\log 10^{x}$ | $=\log 8.223$ | | take common log of both sides |
| x | $=\log 8.223$ | | Property III (exact form) |
| x | ≈ 0.915 | | approximate form |

Now try Exercises 11 through 14

Similar to our previous observation, taking the logarithm of both sides produced the same result as writing the original equation in logarithmic form, and either approach can be used.

If an equation has a single logarithmic or exponential term (base 10 or base e), the equation can be solved by isolating this term and applying one of the fundamental properties.

EXAMPLE 3 Solving Exponential Equations

Solution

WORTHY OF NOTE

To check solutions using a calculator, we can STO (store) the exact result in storage location $\mathrm{X}, \mathrm{T}, \boldsymbol{\theta}, \mathrm{n}$ (the function variable x) and simply enter the original equation on the home screen. The figure shows this verification for Example 3(b).

$\left.3 \mathrm{~S}^{\circ} \mathrm{Q}+1\right\rangle-594311$「

Solve each equation. Write answers in exact form and approximate form to four decimal places.
a. $10^{x}-29=51$
b. $3 e^{x+1}-5=7$
a. $10^{x}-29=51$ given

$$
10^{x}=80 \quad \text { add } 29
$$

Since the left-hand side is base 10 , we apply a common logarithm.

$$
\begin{aligned}
\log 10^{x} & =\log 80 & & \text { take the common } \log \text { of both sides } \\
x & =\log 80 & & \text { Property III (exact form) } \\
x & \approx 1.9031 & & \text { approximate form }
\end{aligned}
$$

b. $3 e^{x+1}-5=7$ given

$$
\begin{aligned}
3 e^{x+1} & =12 & & \text { add } 5 \\
e^{x+1} & =4 & & \text { divide by } 3
\end{aligned}
$$

Since the left-hand side is base e, we apply a natural logarithm.

$$
\begin{aligned}
\ln e^{x+1} & =\ln 4 & & \text { take the natural log of both sides } \\
x+1 & =\ln 4 & & \text { Property III } \\
x & =\ln 4-1 & & \text { solve for } x \text { (exact form) } \\
x & \approx 0.3863 & & \text { approximate form }
\end{aligned}
$$

EXAMPLE 4 Solving Logarithmic Equations

Solution
$\boxed{\square}$
A. You've just learned how to solve logarithmic equations using the fundamental properties of logarithms

Solve each equation. Write answers in exact form and approximate form to four decimal places.
a. $2 \log (7 x)+1=4$
b. $-4 \ln (x+1)-5=7$
a. $\quad 2 \log (7 x)+1=4$ $2 \log (7 x)=3$ $\log (7 x)=\frac{3}{2}$

$$
7 x=10^{\frac{3}{2}}
$$

exponential form
$x=\frac{10^{\frac{3}{2}}}{7} \quad$ divide by 7 (exact form)
$x \approx 4.5175 \quad$ approximate form
b. $-4 \ln (x+1)-5=$

$$
-4 \ln (x+1)=12 \quad \text { add } 5
$$

$$
\ln (x+1)=-3 \quad \text { divide by }-4
$$

$$
x+1=e^{-3} \quad \text { exponential form }
$$

$$
x=e^{-3}-1 \quad \text { subtract } 1 \text { (exact form) }
$$

$$
x \approx-0.9502 \quad \text { approximate form }
$$

Now try Exercises 21 through 26

GRAPHICAL SUPPORT

Solutions can be also checked using the intersection of graphs method. For Example 4(a), enter $Y_{1}=2 \log (7 x)+1$ and $Y_{2}=4$ on the $\mathbf{Y}=$ screen. From the domain of the function and the expected answer, we set a window that includes only Quadrant I. Use the keystrokes 2nd TRACE (CALC) 5:intersect, and identify each graph by pressing ENTER 3 times. The calculator will find the point of
 intersection and display it at the bottom of the screen.

B. The Product, Quotient, and Power Properties of Logarithms

Generally speaking, equation solving involves simplifying the equation, isolating a variable term on one side, and applying an inverse to solve for the unknown. For logarithmic equations such as $\log x+\log (x+3)=1$, we must find a way to combine the terms on the left, before we can work toward a solution. This requires a further exploration of logarithmic properties.

Due to the close connection between exponents and logarithms, their properties are very similar. To illustrate, we'll use terms that can all be written in the form 2^{x}, and write the equations $8 \cdot 4=32, \frac{8}{4}=2$, and $8^{2}=64$ in both exponential form and logarithmic form.

> The exponents from a product are added:
> The exponents from a quotient are subtracted:

The exponents from a power are multiplied:
exponential form:
logarithmic form:
$\left(2^{3}\right)^{2}=2^{3 \cdot 2}$
$\log _{2} 8^{2}=2 \cdot \log _{2} 8$

Each illustration can be generalized and applied with any base b.

Properties of Logarithms

Give M, N, and $b \neq 1$ are positive real numbers, and any real number p.

Product Property
$\log _{b}(M N)=\log _{b} M+\log _{b} N$
The \log of a product is a sum of logarithms.

Quotient Property $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$
The \log of a quotient is a difference of logarithms.

Power Property
$\log _{b} M^{p}=p \log _{b} M$
The \log of a quantity to a power is the power times the log of the quantity.

Proof of the Product Property

Given M, N, and $b \neq 1$ are positive real numbers, $\log _{b}(M N)=\log _{b} M+\log _{b} N$.
For $P=\log _{b} M$ and $Q=\log _{b} N$, we have $b^{P}=M$ and $b^{Q}=N$ in exponential form. It follows that

$$
\begin{aligned}
\log _{b}(M N) & =\log _{b}\left(b^{P} b^{Q}\right) & & \text { substitute } b^{P} \text { for } M \text { and } b^{Q} \text { for } N \\
& =\log _{b}\left(b^{P+Q}\right) & & \text { properties of exponents } \\
& =P+Q & & \text { log property } 3 \\
& =\log _{b} M+\log _{b} N & & \text { substitute } \log _{b} M \text { for } P \text { and } \log _{b} N \text { for } Q
\end{aligned}
$$

Proof of the Quotient Property

Given M, N, and $b \neq 1$ are positive real numbers, $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$.
For $P=\log _{b} M$ and $Q=\log _{b} N$, we have $b^{P}=M$ and $b^{Q}=N$ in exponential form. It follows that

$$
\begin{aligned}
\log _{b}\left(\frac{M}{N}\right) & =\log _{b}\left(\frac{b^{P}}{b^{Q}}\right) & & \text { substitute } b^{p} \text { for } M \text { and } b^{Q} \text { for } N \\
& =\log _{b}\left(b^{P-Q}\right) & & \text { properties of exponents } \\
& =P-Q & & \text { log property } 3 \\
& =\log _{b} M-\log _{b} N & & \text { substitute } \log _{b} M \text { for } P \text { and } \log _{b} N \text { for } Q
\end{aligned}
$$

Proof of the Power Property

Given M and $b \neq 1$ are positive real numbers and any real number x, $\log _{b} M^{x}=x \log _{b} M$.

For $P=\log _{b} M$, we have $b^{P}=M$ in exponential form. It follows that

$$
\begin{aligned}
\log _{b}(M)^{x} & =\log _{b}\left(b^{P}\right)^{x} & & \text { substitute } b^{P} \text { for } M \\
& =\log _{b}\left(b^{P x}\right) & & \text { properties of exponents } \\
& =P x & & \text { log property } 3 \\
& =\left(\log _{b} M\right) x & & \text { substitute } \log _{b} M \text { for } P \\
& =x \log _{b} M & & \text { rewrite factors }
\end{aligned}
$$

CAUTION

It's very important that you read and understand these properties correctly. For instance, note that $\log _{b}(M+N) \neq \log _{b} M+\log _{b} N$, and $\log _{b}\left(\frac{M}{N}\right) \neq \frac{\log _{b} M}{\log _{b} N}$. In the first case, it might help to compare the statement $f(x+3)$ with $f(x)+f(3)$. The first represents a horizontal shift of the graph 3 units left, the second is a vertical shift of $f(x)$ by $f(3)$ units. In particular, $f(x+3) \neq f(x)+f(3)$.

In many cases, these properties are applied to consolidate logarithmic terms in preparation for equation solving.

EXAMPLE 5 Rewriting Expressions Using Logarithmic Properties

Use the properties of logarithms to write each expression as a single term.
a. $\log _{2} 7+\log _{2} 5$
b. $2 \ln x+\ln (x+6)$
c. $\ln (x+2)-\ln x$

Solution \quad a. $\log _{2} 7+\log _{2} 5=\log _{2}(7 \cdot 5) \quad$ product property

$$
=\log _{2} 35 \quad \text { simplify }
$$

b. $2 \ln x+\ln (x+6)=\ln x^{2}+\ln (x+6) \quad$ power property

$$
\begin{array}{ll}
=\ln \left[x^{2}(x+6)\right] & \\
=\operatorname{product~property~} \\
=\ln \left[x^{3}+6 x^{2}\right] & \\
\text { simplify }
\end{array}
$$

c. $\ln (x+2)-\ln x=\ln \left(\frac{x+2}{x}\right)$ quotient property

Now try Exercises 27 through 42

EXAMPLE $6>$ Rewriting Logarithmic Expressions Using the Power Property
Use the power property of logarithms to rewrite each term as a product.
a. $\ln 5^{x}$
b. $\log 32^{x+2}$
c. $\log \sqrt{x}$

Solution
a. $\ln 5^{x}=x \ln 5 \quad$ power property
b. $\log 32^{x+2}=(x+2) \log 32$ power property (note use of parentheses)
c. $\log \sqrt{x}=\log x^{\frac{1}{2}} \quad$ write radical using a rational exponent

$$
=\frac{1}{2} \log x \quad \text { power property }
$$

Now try Exercises 43 through 50

CAUTION

Note from Example 6(b) that parentheses must be used whenever the exponent is a sum or difference. There is a huge difference between $(x+2) \log 32$ and $x+2 \log 32$.

In other cases, these properties help rewrite an expression so that certain procedures can be applied more easily. Example 7 actually lays the foundation for more advanced work in mathematics.

EXAMPLE 7 Rewriting Expressions Using Logarithmic Properties

Use the properties of logarithms to write the following expressions as a sum or difference of simple logarithmic terms.
a. $\log \left(x^{2} z\right)$
b. $\ln \sqrt{\frac{x}{x+5}}$
c. $\ln \left[\frac{e \sqrt{x^{2}+1}}{(2 x+5)^{3}}\right]$

$$
\begin{aligned}
& \text { Solution a. } \log \left(x^{2} z\right)=\log x^{2}+\log z \quad \text { product property } \\
& =2 \log x+\log z \quad \text { power property } \\
& \text { b. } \ln \sqrt{\frac{x}{x+5}}=\ln \left(\frac{x}{x+5}\right)^{\frac{1}{2}} \quad \text { write radical using a rational exponent } \\
& =\frac{1}{2} \ln \left(\frac{x}{x+5}\right) \quad \text { power property } \\
& =\frac{1}{2}[\ln x-\ln (x+5)] \quad \text { quotient property } \\
& \text { c. } \ln \left[\frac{e \sqrt{x^{2}+1}}{(2 x+5)^{3}}\right]=\ln \left[\frac{e\left(x^{2}+1\right)^{\frac{1}{2}}}{(2 x+5)^{3}}\right] \quad \text { write radical using a rational exponent } \\
& =\ln \left[e\left(x^{2}+1\right)^{\frac{1}{2}}\right]-\ln (2 x+5)^{3} \quad \text { quotient property } \\
& =\ln e+\ln \left(x^{2}+1\right)^{\frac{1}{2}}-\ln (2 x+3)^{3} \quad \text { product property } \\
& =1+\frac{1}{2} \ln \left(x^{2}+1\right)-3 \ln (2 x+3) \quad \text { power property }
\end{aligned}
$$

Now try Exercises 51 through 60

Although base-10 and base-e logarithms dominate the mathematical landscape, there are many practical applications that use other bases. Fortunately, a formula exists that will convert any given base into either base 10 or base e. It's called the change-of-base formula.

Change-of-Base Formula

For the positive real numbers M, a, and b, with $a, b \neq 1$,

$$
\begin{array}{ccc}
\log _{b} M=\frac{\log M}{\log b} & \log _{b} M=\frac{\ln M}{\ln b} & \log _{b} M=\frac{\log _{a} M}{\log _{a} b} \\
\text { base } 10 & \text { base } e & \text { arbitrary base } a
\end{array}
$$

Proof of the Change-of-Base Formula:

For $y=\log _{b} M$, we have $b^{y}=M$ in exponential form. It follows that

$$
\begin{aligned}
& \log _{a}\left(b^{y}\right)=\log _{a} M \\
& y \log _{a} b=\log _{a} M \\
& y=\frac{\log _{a} M}{\log _{a} b} \quad \text { take base-a logarithm of both sides } \\
& \text { power property of logarithms } \\
& \log _{b} M=\frac{\log _{a} M}{\log _{a} b} \quad \text { divide by } \log _{a} b \\
& \text { substitute } \log _{b} M \text { for } y
\end{aligned}
$$

EXAMPLE $8>$ Using the Change-of-Base Formula to Evaluate Expressions

Find the value of each expression using the change-of-base formula. Answer in exact form and approximate form using nine digits, then verify the result using the original base.
a. $\log _{3} 29$
b. $\log _{5} 3.6$

Solution
a. $\log _{3} 29=\frac{\log 29}{\log 3}$

$$
=3.065044752
$$

$$
\text { b. } \begin{aligned}
\log _{5} 3.6 & =\frac{\ln 3.6}{\ln 5} \\
& =0.795888947
\end{aligned}
$$

Check $\rightarrow 3^{3.065044752}=29 \Omega$

$$
5^{0.795888947}=3.6 \checkmark
$$

B. You've just learned how to apply the product, quotient, and power properties of logarithms

The change-of-base formula can also be used to study and graph logarithmic functions of any base. For $y=\log _{b} x$, the right-hand expression is simply rewritten using the formula and the equivalent function is $y=\frac{\log x}{\log b}$. The new function can then be evaluated as in Example 8, or used to study the graph of $y=\log _{b} x$ for any base b.

C. Solving Logarithmic Equations

One of the most common mistakes in solving exponential and logarithmic equations is to apply the inverse function too early - before the equation has been simplified. Furthermore, since the domain of $y=\log _{b} x$ is $x>0$, logarithmic equations can sometimes produce extraneous roots, and checking all answers is a good practice. We'll illustrate by solving the equation mentioned earlier: $\log x+\log (x+3)=1$.

EXAMPLE 9 Solving a Logarithmic Equation

Solve for x and check your answer: $\log x+\log (x+3)=1$.

$$
\begin{aligned}
\text { Solution } & \begin{aligned}
\log x+\log (x+3) & =1 & & \text { original equation } \\
\log [x(x+3)] & =1 & & \text { product property } \\
x^{2}+3 x & =10^{1} & & \text { exponential form, distribute } x \\
x^{2}+3 x-10 & =0 & & \text { set equal to } 0 \\
(x+5)(x-2) & =0 & & \text { factor } \\
x=-5 \text { or } x & =2 & & \text { result }
\end{aligned} &
\end{aligned}
$$

Check \downarrow The "solution" $x=-5$ is outside the domain and is discarded. For $x=2$,

$$
\begin{array}{rlrl}
\log x+\log (x+3) & =1 & & \text { origigal equation } \\
\log 2+\log (2+3) & =1 & & \text { substitute } 2 \text { for } x \\
\log 2+\log 5 & =1 & & \text { simplify } \\
\log (2 \cdot 5) & =1 & & \text { product property } \\
\log 10 & =1 \Omega & \text { Property } 1
\end{array}
$$

Now try Exercises 73 through 80
As an alternative check, you could also use a calculator to verify $\log 2+\log 5=1$ directly.

If the simplified form of an equation yields a logarithmic term on both sides, the uniqueness property of logarithms provides an efficient way to work toward a solution. Since logarithmic functions are one-to-one, we have

The Uniqueness Property of Logarithms

For positive real numbers m, n, and $b \neq 1$,

$$
\text { If } \log _{b} m=\log _{b} n, \quad \text { then } m=n
$$

Equal bases imply equal arguments.

Solve each equation using the uniqueness property.
a. $\log (x+2)=\log 7+\log x$
b. $\ln 87-\ln x=\ln 29$

WORTHY OF NOTE

The uniqueness property can also be viewed as exponentiating both sides using the appropriate base, then applying Property IV.

$$
\begin{aligned}
& \text { a. } \log (x+2)=\log 7+\log x \\
& \log (x+2)=\log 7 x \\
& x+2=7 x \\
& \text { uniqueness property } \\
& 2=6 x \\
& \frac{1}{3}=x \quad \text { result } \\
& \text { b. } \ln 87-\ln x=\ln 29 \\
& \ln \left(\frac{87}{x}\right)=\ln 29 \\
& \frac{87}{x}=29 \\
& 87=29 x \\
& 3=x
\end{aligned}
$$

The checks are left to the student.

Now try Exercises 81 through 86

Often the solution may depend on using a variety of algebraic skills in addition to logarithmic or exponential properties.

EXAMPLE 11 Solving Logarithmic Equations

Solve each equation and check your answers.
a. $\ln (x+7)-2 \ln 5=0.9$
b. $\log (x+$
12) $-\log x=\log (x+9)$

Solution

WORTHY OF NOTE

If all digits given by your calculator are used in the check, a calculator will generally produce "exact" answers. Try using the solution $x=54.49007778$ in Example 11(a) by substituting directly, or by storing the result of the original computation and using your home screen.
a. $\ln (x+7)-2 \ln 5=0.9$
$\ln (x+7)-\ln 5^{2}=0.9$
$\ln \left(\frac{x+7}{25}\right)=0.9$
$\frac{x+7}{25}=e^{0.9}$
$x+7=25 e^{0.9} \quad$ clear denominator
$x=25 e^{0.9}-7 \quad$ solve for x (exact form)
$x \approx 54.49$
Check:

$$
\ln (x+7)-2 \ln 5=0.9
$$

approximate form (to 100ths)
original equation

$$
\ln (54.49+7)-2 \ln 5 \approx 0.9
$$

substitute 54.49 for x

$$
\ln 61.49-2 \ln 5 \approx 0.9
$$

simplify

$$
0.9 \approx 0.9
$$

result checks
b. $\log (x+12)-\log x=\log (x+9)$

$$
\begin{aligned}
\log \left(\frac{x+12}{x}\right) & =\log (x+9) & & \text { quotient property } \\
\frac{x+12}{x} & =x+9 & & \text { uniqueness propert } \\
x+12 & =x^{2}+9 x & & \text { clear denominator } \\
0 & =x^{2}+8 x-12 & & \text { set equal to } 0
\end{aligned}
$$

The equation is not factorable, and the quadratic formula must be used.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & & \text { quadratic formula } \\
& =\frac{-8 \pm \sqrt{(8)^{2}-4(1)(-12)}}{2(1)} & & \text { substitute } 1 \text { for } a, 8 \text { for } b,-12 \text { for } c \\
& =\frac{-8 \pm \sqrt{112}}{2}=\frac{-8 \pm 4 \sqrt{7}}{2} & & \text { simplify } \\
& =-4 \pm 2 \sqrt{7} & & \text { result }
\end{aligned}
$$

Substitution shows $x=-4+2 \sqrt{7}(x \approx 1.29150)$ checks, but substituting $-4-2 \sqrt{7}$ for x gives $\log (2.7085)-\log (-9.2915)=\log (-0.2915)$ and two of the three terms do not represent real numbers $(x=-4-2 \sqrt{7}$ is an extraneous root).

Now try Exercises 87 through 102

GRAPHICAL SUPPORT

Logarithmic equations can also be checked using the intersection of graphs method. For Example 11(b), we first enter $\log (x+12)-\log x$ as Y_{1} and $\log (x+9)$ as Y_{2} on the $Y=$ screen. Using 2nd Trace
(CALC) 5:intersect, we find the graphs intersect at $x=1.2915026$, and that this is the only solution (knowing the graph's basic shape,
 we conclude they cannot intersect again).

CAUTION - Be careful not to dismiss or discard a possible solution simply because it's negative. For the equation $\log (-6-x)=1, x=-16$ is the solution (the domain here allows negative numbers: $-6-x>0$ yields $x<-6$ as the domain). In general, when a logarithmic equation has multiple solutions, all solutions should be checked.

Solving exponential equations likewise involves isolating an exponential term on one side, or writing the equation where exponential terms of like base occur on each side. The latter case can be solved using the uniqueness property. If the exponential base is neither 10 nor e, logarithms of either base can be used along with the Power Property to solve the equation.

EXAMPLE 12 Solving an Exponential Equation Using Base 10 or Base e

Solve the exponential equation. Answer in both exact form, and approximate form to four decimal places: $4^{3 x}-1=8$
Solution - $4^{3 x}-1=8$ given equation

$$
4^{3 x}=9 \quad \text { add } 1
$$

WORTHY OF NOTE

The equation $\log 4^{3 x}=\log 9$ from Example 12, can actually be solved using the change-of-base property, by taking logarithms base 4 of both sides.

$$
\begin{aligned}
& \log _{4} 4^{3 x}=\log _{4} 9 \\
& \begin{array}{ll}
\text { logarithms } \\
\text { base } 4
\end{array} \\
& 3 x=\frac{\log 9}{\log 4} \\
& \begin{array}{l}
\text { Property III; } \\
\text { change-of- } \\
\text { base } \\
\text { property }
\end{array} \\
& x=\frac{\log 9}{3 \log 4} \text { divide by } 3
\end{aligned}
$$

The left-hand side is neither base 10 or base e, so the choice is arbitrary. Here we chose base 10 to solve.

$$
\begin{aligned}
\log 4^{3 x} & =\log 9 & & \text { take logarithm base } 10 \text { of both sides } \\
3 x \log 4 & =\log 9 & & \text { power property } \\
x & =\frac{\log 9}{3 \log 4} & & \text { divide by } 3 \log 4 \text { (exact form) } \\
x & \approx 0.5283 & & \text { approximate form }
\end{aligned}
$$

Now try Exercises 103 through 106

In some cases, two exponential terms with unlike bases may be involved. Here again, either common logs or natural logs can be used, but be sure to distinguish between constant terms like $\ln 5$ and variable terms like $x \ln 5$. As with all equations, the goal is to isolate the variable terms on one side, with all constant terms on the other.

EXAMPLE 13 Solving an Exponential Equation with Unlike Bases

Begin by taking the natural log of both sides:
C. You've just learned how to solve general logarithmic and exponential equations

$$
\begin{aligned}
\ln \left(5^{x+1}\right) & =\ln \left(6^{2 x}\right) & & \text { apply base-e logarithms } \\
(x+1) \ln 5 & =2 x \ln 6 & & \text { power property } \\
x \ln 5+\ln 5 & =2 x \ln 6 & & \text { distribute } \\
\ln 5 & =2 x \ln 6-x \ln 5 & & \text { variable terms to one sid } \\
\ln 5 & =x(2 \ln 6-\ln 5) & & \text { factor out } x \\
\frac{\ln 5}{2 \ln 6-\ln 5} & =x & & \text { solve for } x \text { (exact form) } \\
0.8153 & \approx x & & \text { approximate form }
\end{aligned}
$$

The solution can be checked on a calculator.
Now try Exercises 107 through 110

D. Applications of Logistic, Exponential, and Logarithmic Functions

Applications of exponential and logarithmic functions take many different forms and it would be impossible to illustrate them all. As you work through the exercises, try to adopt a "big picture" approach, applying the general principles illustrated here to other applications. Some may have been introduced in previous sections. The difference here is that we can now solve for the independent variable, instead of simply evaluating the relationships.

In applications involving the logistic growth of animal populations, the initial stage of growth is virtually exponential, but due to limitations on food, space, or other resources, growth slows and at some point it reaches a limit. In business, the same principle applies to the logistic growth of sales or profits, due to market saturation. In these cases, the exponential term appears in the denominator of a quotient, and we "clear denominators" to begin the solution process.

EXAMPLE 14

Solving a Logistics Equation

A small business makes a new discovery and begins an aggressive advertising campaign, confident they can capture 66% of the market in a short period of time. They anticipate their market share will be modeled by the function
$M(t)=\frac{66}{1+10 e^{-0.05 t}}$, where $M(t)$ represents the percentage after t days. Use this function to answer the following.
a. What was the company's initial market share $(t=0)$? What will their market share be 30 days later?
b. How long will it take the company to reach a 60% market share?

Solution
a. $M(t)=\frac{66}{1+10 e^{-0.05 t}} \quad$ given

$$
\begin{aligned}
M(0) & =\frac{1}{1+10 e^{-0.05(0)}} & & \text { substitute } 0 \text { for } t \\
& =\frac{66}{11} & & \text { simplify } \\
& =6 & & \text { result }
\end{aligned}
$$

The company originally had only a 6% market share.

$$
\begin{aligned}
M(30) & =\frac{66}{1+10 e^{-0.05(30)}} & & \text { substitute } 30 \text { for } t \\
& =\frac{66}{1+10 e^{-1.5}} & & \text { simplify } \\
& \approx 20.4 & & \text { result }
\end{aligned}
$$

After 30 days, they will hold a 20.4% market share.
b. For Part b, we replace $M(t)$ with 60 and solve for t.

$$
\begin{aligned}
60 & =\frac{66}{1+10 e^{-0.05 t}} & & \text { given } \\
60\left(1+10 e^{-0.05 t}\right) & =66 & & \text { multiply by } 1+10 e^{-0.05 t} \\
1+10 e^{-0.05 t} & =1.1 & & \text { divide by } 60 \\
10 e^{-0.05 t} & =0.1 & & \text { subtract } 1 \\
e^{-0.05 t} & =0.01 & & \text { divide by } 10 \\
\ln e^{-0.05 t} & =\ln 0.01 & & \text { apply base-e logarithms } \\
-0.05 t & =\ln 0.01 & & \text { Property III } \\
t & =\frac{\ln 0.01}{-0.05} & & \text { solve for } t \text { (exact form) } \\
& \approx 92 & & \text { approximate form }
\end{aligned}
$$

According to this model, the company will reach a 60% market share in about 92 days.

Now try Exercises 111 through 116

Earlier we used the barometric equation $H=(30 T+8000) \ln \left(\frac{P_{0}}{P}\right)$ to find an altitude H, given a temperature and the atmospheric (barometric) pressure in centimeters of mercury (cmHg). Using the tools from this section, we are now able to find the atmospheric pressure for a given altitude and temperature.

EXAMPLE 15 Using Logarithms to Determine Atmospheric Pressure

Suppose a group of climbers has just scaled Mt. Rainier, the highest mountain of the Cascade Range in western Washington State. If the mountain is about 4395 m high and the temperature at the summit is $-22.5^{\circ} \mathrm{C}$, what is the atmospheric pressure at this altitude? The pressure at sea level is $P_{0}=76 \mathrm{cmHg}$.

$$
\begin{aligned}
\text { Solution } & =(30 T+8000) \ln \left(\frac{P_{0}}{P}\right) & & \text { given } \\
4395 & =[30(-22.5)+8000] \ln \left(\frac{76}{P}\right) & & \text { substitute } 4395 \text { for } H, 76 \text { for } P_{0}, \text { and }-22.5 \text { for } T \\
4395 & =7325 \ln \left(\frac{76}{P}\right) & & \text { simplify } \\
0.6 & =\ln \left(\frac{76}{P}\right) & & \text { divide by } 7325 \\
e^{0.6} & =\frac{76}{P} & & \text { exponential form } \\
P e^{0.6} & =76 & & \text { multiply by } P \\
P & =\frac{76}{e^{0.6}} & & \text { divide by } e^{0.6} \text { (exact form) }
\end{aligned}
$$

D. You've just learned how to solve applications involving logistic, exponential, and logarithmic functions

$$
P \approx 41.7 \quad \text { approximate form }
$$

Under these conditions and at this altitude, the atmospheric pressure would be 41.7 cmHg .

Now try Exercises 117 through 120

c EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. For $e^{-0.02 x+1}=10$, the solution process is most efficient if we apply a base \qquad logarithm to both sides.
2. To solve $3 \ln x-\ln (x+3)=0$, we can combine terms using the \qquad property, or add $\ln (x+3)$ to both sides and use the \qquad property.
3. Since logarithmic functions are not defined for all real numbers, we should check all "solutions" for
\qquad roots.
4. The statement $\log _{e} 10=\frac{\log 10}{\log e}$ is an example of the \qquad -of- \qquad property.
5. Solve the equation here, giving a step-by-step discussion of the solution process: $\ln (4 x+3)+\ln (2)=3.2$
6. Describe the difference between evaluating the equation below given $x=9.7$ and solving the equation given $y=9.7: y=3 \log _{2}(x-1.7)-2.3$.

DEVELOPING YOUR SKILLS

Solve each equation by applying fundamental properties. Round to thousandths.
7. $\ln x=3.4$
8. $\ln x=\frac{1}{2}$
9. $\log x=\frac{1}{4}$
10. $\log x=1.6$
11. $e^{x}=9.025$
12. $e^{x}=0.343$
13. $10^{x}=18.197$
14. $10^{x}=0.024$

Solve each equation. Write answers in exact form and in approximate form to four decimal places.
15. $4 e^{x-2}+5=70$
16. $2-3 e^{0.4 x}=-7$
17. $10^{x+5}-228=-150$
18. $10^{2 x}+27=190$
19. $-150=290.8-190 e^{-0.75 x}$
20. $250 e^{0.05 x+1}+175=1175$

Solve each equation. Write answers in exact form and in approximate form to four decimal places.
21. $3 \ln (x+4)-5=3$
22. $-15=-8 \ln (3 x)+7$
23. $-1.5=2 \log (5-x)-4$
24. $-4 \log (2 x)+9=3.6$
25. $\frac{1}{2} \ln (2 x+5)+3=3.2$
26. $\frac{3}{4} \ln (4 x)-6.9=-5.1$

Use properties of logarithms to write each expression as a single term.
27. $\ln (2 x)+\ln (x-7)$
28. $\ln (x+2)+\ln (3 x)$
29. $\log (x+1)+\log (x-1)$
30. $\log (x-3)+\log (x+3)$
31. $\log _{3} 28-\log _{3} 7$
32. $\log _{6} 30-\log _{6} 10$
33. $\log x-\log (x+1)$
34. $\log (x-2)-\log x$
35. $\ln (x-5)-\ln x$
36. $\ln (x+3)-\ln (x-1)$
37. $\ln \left(x^{2}-4\right)-\ln (x+2)$
38. $\ln \left(x^{2}-25\right)-\ln (x+5)$
39. $\log _{2} 7+\log _{2} 6$
40. $\log _{9} 2+\log _{9} 15$
41. $\log _{5}\left(x^{2}-2 x\right)+\log _{5} x^{-1}$
42. $\log _{3}\left(3 x^{2}+5 x\right)-\log _{3} x$

Use the power property of logarithms to rewrite each term as the product of a constant and a logarithmic term.
43. $\log 8^{x+2}$
44. $\log 15^{x-3}$
45. $\ln 5^{2 x-1}$
46. $\ln 10^{3 x+2}$
47. $\log \sqrt{22}$
48. $\log \sqrt[3]{34}$
49. $\log _{5} 81$
50. $\log _{7} 121$

Use the properties of logarithms to write the following expressions as a sum or difference of simple logarithmic terms.
51. $\log \left(a^{3} b\right)$
52. $\log \left(m^{2} n\right)$
53. $\ln (x \sqrt[4]{y})$
54. $\ln (\sqrt[3]{p} q)$
55. $\ln \left(\frac{x^{2}}{y}\right)$
56. $\ln \left(\frac{m^{2}}{n^{3}}\right)$
57. $\log \left(\sqrt{\frac{x-2}{x}}\right)$
58. $\log \left(\sqrt[3]{\frac{3-v}{2 v}}\right)$
59. $\ln \left(\frac{7 x \sqrt{3-4 x}}{2(x-1)^{3}}\right)$
60. $\ln \left(\frac{x^{4} \sqrt{x^{2}-4}}{\sqrt[3]{x^{2}+5}}\right)$

Evaluate each expression using the change-of-base formula and either base 10 or base e. Answer in exact form and in approximate form using nine decimal places, then verify the result using the original base.
61. $\log _{7} 60$
62. $\log _{8} 92$
63. $\log _{5} 152$
64. $\log _{6} 200$
65. $\log _{3} 1.73205$
66. $\log _{2} 1.41421$
67. $\log _{0.5} 0.125$
68. $\log _{0.2} 0.008$

Use the change-of-base formula to write an equivalent function, then evaluate the function as indicated (round to four decimal places). Investigate and discuss any patterns you notice in the output values, then determine the next input that will continue the pattern.
69. $f(x)=\log _{3} x ; f(5), f(15), f(45)$
70. $g(x)=\log _{2} x ; g(5), g(10), g(20)$
71. $h(x)=\log _{9} x$; $h(2), h(4), h(8)$
72. $H(x)=\log _{\pi} x ; H(\sqrt{2}), H(2), H\left(\sqrt{2^{3}}\right)$

Solve each equation and check your answers.
73. $\log 4+\log (x-7)=2$
74. $\log 5+\log (x-9)=1$
75. $\log (2 x-5)-\log 78=-1$
76. $\log (4-3 x)-\log 145=-2$
77. $\log (x-15)-2=-\log x$
78. $\log x-1=-\log (x-9)$
79. $\log (2 x+1)=1-\log x$
80. $\log (3 x-13)=2-\log x$

Solve each equation using the uniqueness property of logarithms.
81. $\log (5 x+2)=\log 2$
82. $\log (2 x-3)=\log 3$
83. $\log _{4}(x+2)-\log _{4} 3=\log _{4}(x-1)$
84. $\log _{3}(x+6)-\log _{3} x=\log _{3} 5$
85. $\ln (8 x-4)=\ln 2+\ln x$
86. $\ln (x-1)+\ln 6=\ln (3 x)$

Solve each logarithmic or exponential equation using any appropriate method. Clearly identify any extraneous roots. If there are no solutions, so state.
87. $\log (2 x-1)+\log 5=1$
88. $\log (x-7)+\log 3=2$
89. $\log _{2}(9)+\log _{2}(x+3)=3$
90. $\log _{3}(x-4)+\log _{3}(7)=2$
91. $\ln (x+7)+\ln 9=2$
92. $\ln 5+\ln (x-2)=1$
93. $\log (x+8)+\log x=\log (x+18)$
94. $\log (x+14)-\log x=\log (x+6)$
95. $\ln (2 x+1)=3+\ln 6$
96. $\ln 21=1+\ln (x-2)$
97. $\log (-x-1)=\log (5 x)-\log x$
98. $\log (1-x)+\log x=\log (x+4)$
99. $\ln (2 t+7)=\ln 3-\ln (t+1)$
100. $\ln 6-\ln (5-r)=\ln (r+2)$
101. $\log (x-1)-\log x=\log (x-3)$
102. $\ln x+\ln (x-2)=\ln 4$
103. $7^{x+2}=231$
104. $6^{x+2}=3589$
105. $5^{3 x-2}=128,965$
106. $9^{5 x-3}=78,462$
107. $2^{x+1}=3^{x}$
108. $7^{x}=4^{2 x-1}$
109. $5^{2 x+1}=9^{x+1}$
110. $\left(\frac{1}{5}\right)^{x-1}=\left(\frac{1}{2}\right)^{3-x}$
111. $\frac{250}{1+4 e^{-0.06 x}}=200$
112. $\frac{80}{1+15 e^{-0.06 x}}=50$

WORKING WITH FORMULAS

113. Logistic growth: $P(t)=\frac{C}{1+a e^{-k t}}$

For populations that exhibit logistic growth, the population at time t is modeled by the function shown, where C is the carrying capacity of the population (the maximum population that can be supported over a long period of time), k is the growth constant, and $a=\frac{C-P(0)}{P(0)}$. Solve the formula for t, then use the result to find the value of t given $C=450, a=8, P=400$, and $k=0.075$.

114. Forensics-estimating time of death:

$h=-3.9 \cdot \ln \left(\frac{T-T_{R}}{T_{0}-T_{R}}\right)$
Using the formula shown, a forensic expert can compute the approximate time of death for a person found recently expired, where T is the body temperature when it was found, T_{R} is the (constant) temperature of the room, T_{0} is the body temperature at the time of death $\left(T_{0}=98.6^{\circ} \mathrm{F}\right)$, and h is the number of hours since death. If the body was discovered at 9:00 A.M. with a temperature of $86.2^{\circ} \mathrm{F}$, in a room at $73^{\circ} \mathrm{F}$, at approximately what time did the person expire? (Note this formula is a version of Newton's law of cooling.)

APPLICATIONS

115. Stocking a lake: A farmer wants to stock a private lake on his property with catfish. A specialist studies the area and depth of the lake, along with other factors, and determines it can support a maximum population of around 750 fish, with growth modeled by the function $P(t)=\frac{750}{1+24 e^{-0.075 t}}$, where $P(t)$ gives the current population after t months. (a) How many catfish did the farmer initially put in the lake? (b) How many months until the population reaches 300 fish?
116. Increasing sales: After expanding their area of operations, a manufacturer of small storage buildings believes the larger area can support sales of 40 units per month. After increasing the advertising budget and enlarging the sales force, sales are expected to grow according to the model $S(t)=\frac{40}{1+1.5 e^{-0.08 t}}$, where $S(t)$ is the expected number of sales after t months. (a) How many sales were being made each month, prior to the expansion? (b) How many months until sales reach 25 units per month?

Use the barometric equation $H=(30 T+8000) \ln \left(\frac{P_{\mathbf{0}}}{P}\right)$ for exercises 117 and 118. Recall that $P_{0}=76 \mathrm{cmHg}$.
117. Altitude and temperature: A sophisticated spy plane is cruising at an altitude of $18,250 \mathrm{~m}$. If the temperature at this altitude is $-75^{\circ} \mathrm{C}$, what is the barometric pressure?
118. Altitude and temperature: A large weather balloon is released and takes altitude, pressure, and temperature readings as it climbs, and radios the information back to Earth. What is the pressure reading at an altitude of 5000 m , given the temperature is $-18^{\circ} \mathrm{C}$?

Use Newton's law of cooling $T=T_{R}+\left(T_{0}-T_{R}\right) e^{k h}$ to complete Exercises 119 and 120. Recall that water freezes at $32^{\circ} \mathrm{F}$ and use $k=-0.012$. Refer to Appendix I.A, page A-7 as needed.
119. Making popsicles: On a hot summer day, Sean and his friends mix some Kool-Aid ${ }^{\circledR}$ and decide to freeze it in an ice tray to make popsicles. If the water used for the Kool-Aid ${ }^{\circledR}$ was $75^{\circ} \mathrm{F}$ and the freezer has a temperature of $-20^{\circ} \mathrm{F}$, how long will they have to wait to enjoy the treat?
120. Freezing time: Suppose the current temperature in Esconabe, Michigan, was $47^{\circ} \mathrm{F}$ when a $5^{\circ} \mathrm{F}$ arctic cold front moved over the state. How long would it take a puddle of water to freeze over?

Depreciation/appreciation: As time passes, the value of certain items decrease (appliances, automobiles, etc.), while the value of other items increase (collectibles, real estate, etc.). The time T in years for an item to reach a future value can be modeled by the formula $T=k \ln \left(\frac{V_{n}}{V_{f}}\right)$, where
V_{n} is the purchase price when new, V_{f} is its future value, and k is a constant that depends on the item.
121. Automobile depreciation: If a new car is purchased for $\$ 28,500$, find its value 3 yr later if $k=5$.
122. Home appreciation: If a new home in an "upscale" neighborhood is purchased for $\$ 130,000$, find its value 12 yr later if $k=-16$.

Drug absorption: The time required for a certainpercentage of a drug to be absorbed by the body depends on the drug's absorption rate. This can be modeled by the function $T(p)=\frac{-\ln p}{k}$, where p represents the percent of the drug that remains unabsorbed (expressed as a decimal), k is the absorption rate of the drug, and $T(p)$ represents the elapsed time.
123. For a drug with an absorption rate of 7.2%, (a) find the time required (to the nearest hour) for the body to absorb 35% of the drug, and (b) find the percent of this drug (to the nearest half percent) that remains unabsorbed after 24 hr .
124. For a drug with an absorption rate of 5.7%, (a) find the time required (to the nearest hour) for the body to absorb 50% of the drug, and (b) find the percent of this drug (to the nearest half percent) that remains unabsorbed after 24 hr .

Spaceship velocity: In space travel, the change in the velocity of a spaceship V_{s} (in $\mathrm{km} / \mathrm{sec}$) depends on the mass of the ship M_{s} (in tons), the mass of the fuel which has been burned M_{f} (in tons) and the escape velocity of the exhaust V_{e} (in km/sec). Disregarding frictional forces, these are related by the equation
$V_{s}=V_{e} \ln \left(\frac{M_{s}}{M_{s}-M_{f}}\right)$.

125. For the Jupiter VII rocket, find the mass of the fuel M_{f} that has been burned if $V_{s}=6 \mathrm{~km} / \mathrm{sec}$ when $V_{e}=8 \mathrm{~km} / \mathrm{sec}$, and the ship's mass is 100 tons.
126. For the Neptune X satellite booster, find the mass of the ship M_{s} if $M_{f}=75$ tons of fuel has been burned when $V_{s}=8 \mathrm{~km} / \mathrm{sec}$ and $V_{e}=10 \mathrm{~km} / \mathrm{sec}$.

Learning curve: The job performance of a new employee when learning a repetitive task (as on an assembly line) improves very quickly at first, then grows more slowly over time. This can be modeled by the function $P(t)=a+b \ln t$, where a and b are constants that depend on the type of task and the training of the employee.
127. The number of toy planes an employee can assemble from its component parts depends on the length of time the employee has been working. This output is modeled by $P(t)=5.9+12.6 \ln t$, where $P(t)$ is the number of planes assembled daily after working t days. (a) How many planes is an employee making after 5 days on the job? (b) How many days until the employee is able to assemble 34 planes per day?
128. The number of circuit boards an associate can assemble from its component parts depends on the length of time the associate has been working. This output is modeled by $B(t)=1+2.3 \ln t$, where $B(t)$ is the number of boards assembled daily after working t days. (a) How many boards is an employee completing after 9 days on the job? (b) How long will it take until the employee is able to complete 10 boards per day?

EXTENDING THE CONCEPT

Use prime factors, properties of logs, and the values given to evaluate each expression without a calculator. Check each result using the change-of-base formula:
129. $\log _{3} 4=1.2619$ and $\log _{3} 5=1.4649$:
a. $\log _{3} 20$
b. $\log _{3} \frac{4}{5}$
c. $\log _{3} 25$
130. $\log _{5} 2 \approx 0.4307$ and $\log _{5} 3 \approx 0.6826$:
a. $\log _{5} \frac{9}{2} \quad$ b. $\log _{5} 216$ c. $\log _{5} \sqrt[3]{6}$
131. Match each equation with the most appropriate solution strategy, and justify/discuss why.
a. $e^{x+1}=25$
b. $\log (2 x+3)=\log 53$ \square
c. $\log \left(x^{2}-3 x\right)=2$
d. $10^{2 x}=97$
e. $2^{5 x-3}=32$
f. $7^{x+2}=23$
apply base-10 logarithm to both sides rewrite and apply uniqueness property for exponentials apply uniqueness property for logarithms apply either base-10 or base-e logarithm apply base-e logarithm
write in exponential form

Solve the following equations. Note that equations in Exercises 132 and 133 are in quadratic form.
132. $2 e^{2 x}-7 e^{x}=15$
134. $\log _{2}(x+5)=\log _{4}(21 x+1)$
136. Show that $g(x)=f^{-1}(x)$ by composing the functions.
a. $f(x)=3^{x-2} ; g(x)=\log _{3} x+2$
b. $f(x)=e^{x-1} ; g(x)=\ln x+1$
138. Verify that $\ln x=(\ln 10)(\log x)$, and discuss why they're equal. Then use the relationship to find the value of $\ln e, \ln 10$, and $\ln 2$.
133. $3 e^{2 x}-4 e^{x}-7=-3$
135. Use the algebraic method to find the inverse function.
a. $f(x)=2^{x+1}$
b. $y=2 \ln (x-3)$
137. Use properties of logarithms and/or exponents to show
a. $y=2^{x}$ is equivalent to $y=e^{x \ln 2}$.
b. $y=b^{x}$ is equivalent to $y=e^{r x}$, where $r=\ln b$.
139. Use test values for p and q to demonstrate that the following relationships are false, then state the correct property and use the same test value to
verify the property.
a. $\ln (p q)=\ln p \ln q$
b. $\ln \left(\frac{p}{q}\right)=\frac{\ln p}{\ln q}$
c. $\ln p+\ln q=\ln (p+q)$
140. To understand the formula for the half-life of radioactive material, consider that for each time increment, a constant proportion of mass m is lost. In symbols; $m(t+1)-m(t)=-k m(t)$. (a) Solve for $m(t+1)$ and factor the right-hand side. (b) Evaluate the new equation for $t=0,1,2$, and 3, to show that $m(t)=m(0)(1-k)^{t}$. (c) For any half-life h, we have $m(h)=m(0)(1-k)^{h}=\frac{1}{2} m(0)$. Solve for $1-k$, raise both sides to the power t, and substitute to show $m(t)=m(0)\left(\frac{1}{2}\right)^{\frac{t}{h}}$.

D Applications from Business, Finance, and Science

Learning Objectives

In Section D you will learn how to:

A. Calculate simple interest and compound interestB. Calculate interest compounded continuouslyC. Solve applications of annuities and amortizationD. Solve applications of exponential growth and decay
WORTHY OF NOTE

If a loan is kept for only a certain number of months, weeks, or days, the time t should be stated as a fractional part of a year so the time period for the rate (years) matches the time period over which the loan is repaid.

Would you pay $\$ 750,000$ for a home worth only $\$ 250,000$? Surprisingly, when a conventional mortgage is repaid over 30 years, this is not at all rare. Over time, the accumulated interest on the mortgage is easily more than two or three times the original value of the house. In this section we explore how interest is paid or charged, and look at other applications of exponential and logarithmic functions from business, finance, as well as the physical and social sciences.

A. Simple and Compound Interest

Simple interest is an amount of interest that is computed only once during the lifetime of an investment (or loan). In the world of finance, the initial deposit or base amount is referred to as the principal \boldsymbol{p}, the interest rate \boldsymbol{r} is given as a percentage and stated as an annual rate, with the term of the investment or loan most often given as time t in years. Simple interest is merely an application of the basic percent equation, with the additional element of time coming into play: interest $=$ principal \times rate \times time , or $I=p r t$. To find the total amount A that has accumulated (for deposits) or is due (for loans) after t years, we merely add the accumulated interest to the initial principal: $A=p+p r t$.

Simple Interest Formula

If principal p is deposited or borrowed at interest rate r for a period of t years, the simple interest on this account will be

$$
I=p r t
$$

The total amount A accumulated or due after this period will be:

$$
A=p+p r t \quad \text { or } \quad A=p(1+r t)
$$

EXAMPLE 1 Solving an Application of Simple Interest

Many finance companies offer what have become known as PayDay Loans-a small $\$ 50$ loan to help people get by until payday, usually no longer than 2 weeks. If the cost of this service is $\$ 12.50$, determine the annual rate of interest charged by these companies.

Solution $>$ The interest charge is $\$ 12.50$, the initial principal is $\$ 50.00$, and the time period is 2 weeks or $\frac{2}{52}=\frac{1}{26}$ of a year. The simple interest formula yields

$$
\begin{aligned}
I & =p r t & & \text { simple interest formula } \\
12.50 & =50 r\left(\frac{1}{26}\right) & & \text { substitute } \$ 12.50 \text { for } l, \$ 50.00 \text { for } p, \text { and } \frac{1}{26} \text { for } t \\
6.5 & =r & & \text { solve for } r
\end{aligned}
$$

The annual interest rate on these loans is a whopping 650% !
Now try Exercises 7 through 16

Compound Interest

Many financial institutions pay compound interest on deposits they receive, which is interest paid on previously accumulated interest. The most common compounding periods are yearly, semiannually (two times per year), quarterly (four times per year), monthly (12 times per year), and daily (365 times per year). Applications of compound interest typically involve exponential functions. For convenience, consider $\$ 1000$ in
principal, deposited at 8% for 3 yr . The simple interest calculation shows $\$ 240$ in interest is earned and there will be $\$ 1240$ in the account: $A=1000[1+(0.08)(3)]=\$ 1240$. If the interest is compounded each year $(t=1)$ instead of once at the start of the 3-yr period, the interest calculation shows

$$
\begin{aligned}
& A_{1}=1000(1+0.08)=1080 \text { in the account at the end of year } 1 \\
& A_{2}=1080(1+0.08)=1166.40 \text { in the account at the end of year } 2 \\
& A_{3}=1166.40(1+0.08) \approx 1259.71 \text { in the account at the end of year } 3
\end{aligned}
$$

The account has earned an additional $\$ 19.71$ interest. More importantly, notice that we're multiplying by $(1+0.08)$ each compounding period, meaning results can be computed more efficiently by simply applying the factor $(1+0.08)^{t}$ to the initial principal p. For example,

$$
A_{3}=1000(1+0.08)^{3} \approx \$ 1259.71
$$

In general, for interest compounded yearly the accumulated value is $A=p(1+r)^{t}$. Notice that solving this equation for p will tell us the amount we need to deposit now, in order to accumulate A dollars in t years: $p=\frac{A}{(1+r)^{t}}$. This is called the present value equation.

Interest Compounded Annually

If a principal p is deposited at interest rate r and compounded yearly for a period of $t \mathrm{yr}$, the accumulated value is

$$
A=p(1+r)^{t}
$$

If an accumulated value A is desired after $t \mathrm{yr}$, and the money is deposited at interest rate r and compounded yearly, the present value is

$$
p=\frac{A}{(1+r)^{t}}
$$

EXAMPLE $2-$ Finding the Doubling Time of an Investment

An initial deposit of $\$ 1000$ is made into an account paying 6% compounded yearly. How long will it take for the money to double?

Solution $>$ Using the formula for interest compounded yearly we have

$$
\begin{aligned}
A & =p(1+r)^{t} & & \text { given } \\
2000 & =1000(1+0.06)^{t} & & \text { substitute 2000 for } A, 1000 \text { for } p, \text { and } 0.06 \text { for } r \\
2 & =1.06^{t} & & \text { isolate variable term } \\
\ln 2 & =t \ln 1.06 & & \text { apply base-e logarithms; power property } \\
\frac{\ln 2}{\ln 1.06} & =t & & \text { solve for } t \\
11.9 & \approx t & & \text { approximate form }
\end{aligned}
$$

The money will double in just under 12 yr.
Now try Exercises 17 through 22

If interest is compounded monthly (12 times each year), the bank will divide the interest rate by 12 (the number of compoundings), but then pay you interest 12 times per year (interest is compounded). The net effect is an increased gain in the interest you earn, and the final compound interest formula takes this form:

$$
\text { total amount }=\text { principal }\left(1+\frac{\text { interest rate }}{\text { compoundings per year }}\right)^{(\text {years } \times \text { compoundings per year) }}
$$

Compounded Interest Formula

If principal p is deposited at interest rate r and compounded n times per year for a period of $t \mathrm{yr}$, the accumulated value will be:

$$
A=p\left(1+\frac{r}{n}\right)^{n t}
$$

EXAMPLE 3 Solving an Application of Compound Interest

Solution
A. You've just learned how to calculate simple interest and compound interest

-

Macalyn won $\$ 150,000$ in the Missouri lottery and decides to invest the money for retirement in 20 yr . Of all the options available here, which one will produce the most money for retirement?
a. A certificate of deposit paying 5.4% compounded yearly.
b. A money market certificate paying 5.35% compounded semiannually.
c. A bank account paying 5.25% compounded quarterly.
d. A bond issue paying 5.2% compounded daily.
a. $A=\$ 150,000\left(1+\frac{0.054}{1}\right)^{(20 \times 1)}$

$$
\approx \$ 429,440.97
$$

b. $A=\$ 150,000\left(1+\frac{0.0535}{2}\right)^{(20 \times 2)}$

$$
\approx \$ 431,200.96
$$

c. $A=\$ 150,000\left(1+\frac{0.0525}{4}\right)^{(20 \times 4)}$
$\approx \$ 425,729.59$
d. $A=\$ 150,000\left(1+\frac{0.052}{365}\right)^{(20 \times 365)}$
$\approx \$ 424,351.12$
The best choice is (b), semiannual compounding at 5.35% for 20 yr .
Now try Exercises 23 through 30 -

B. Interest Compounded Continuously

It seems natural to wonder what happens to the interest accumulation as n (the number of compounding periods) becomes very large. It appears the interest rate becomes very small (because we're dividing by n), but the exponent becomes very large (since we're multiplying by n). To see the result of this interplay more clearly, it will help to rewrite the compound interest formula $A=p\left(1+\frac{r}{n}\right)^{n t}$ using the substitution $n=x r$. This gives $\frac{r}{n}=\frac{1}{x}$, and by direct substitution ($x r$ for n and $\frac{1}{x}$ for $\frac{r}{n}$) we obtain the form

$$
A=p\left[\left(1+\frac{1}{x}\right)^{x}\right]^{r t}
$$

by regrouping. This allows for a more careful study of the "denominator versus exponent" relationship using $\left(1+\frac{1}{x}\right)^{x}$, the same expression we used in Appendix I.A to define the number e (also see Appendix I.A Exercise 97). Once again, note what
happens as $x \rightarrow \infty$ (meaning the number of compounding periods increase without bound).

\boldsymbol{x}	$\mathbf{1}$	$\mathbf{1 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 0 , 0 0 0}$	$\mathbf{1 0 0 , 0 0 0}$	$\mathbf{1 , 0 0 0 , 0 0 0}$
$\left(1+\frac{1}{x}\right)^{x}$	2	2.56374	2.70481	2.71692	2.71815	2.71827	2.71828

As before, we have, as $x \rightarrow \infty,\left(1+\frac{1}{x}\right)^{x} \rightarrow e$. The net result of this investigation is a formula for interest compounded continuously, derived by replacing $\left(1+\frac{1}{x}\right)^{x}$ with the number e in the formula for compound interest, where

$$
A=p\left[\left(1+\frac{1}{x}\right)^{x}\right]^{r t}=p e^{r t}
$$

Interest Compounded Continuously

If a principal p is deposited at interest rate r and compounded continuously for a period of t years, the accumulated value will be

$$
A=p e^{r t}
$$

EXAMPLE 4 - Solving an Application of Interest Compounded Continuously

Jaimin has $\$ 10,000$ to invest and wants to have at least $\$ 25,000$ in the account in 10 yr for his daughter's college education fund. If the account pays interest compounded continuously, what interest rate is required?
Solution - In this case, $P=\$ 10,000, A=\$ 25,000$, and $t=10$.

$$
\begin{aligned}
A & =p e^{r t} & & \text { given } \\
25,000 & =10,000 e^{10 r} & & \text { substitute } 25,000 \text { for } A, 10,000 \text { for } p, \text { and } 10 \text { for } t \\
2.5 & =e^{10 r} & & \text { isolate variable term } \\
\ln 2.5 & =10 r \ln e & & \text { apply base-e logarithms (ln } e=1) \text {; power property } \\
\frac{\ln 2.5}{10} & =r & & \text { solve for } r \\
0.092 & \approx r & & \text { approximate form }
\end{aligned}
$$

Jaimin will need an interest rate of about 9.2% to meet his goal.
Now try Exercises 31 through 40

GRAPHICAL SUPPORT

To check the result from Example 4, use $\mathrm{Y}_{1}=$ $10,000 e^{10 x}$ and $Y_{2}=25,000$, then look for their point of intersection. We need only set an appropriate window size to ensure the answer will appear in the viewing window. Since 25,000 is the goal, $y \in[0,30,000]$ seems reasonable for y. Although 12% interest $(x=0.12)$ is too good to be true, $x \in[0,0.12]$

B. You've just learned how to calculate interest compounded continuously leaves a nice frame for the x-values. Verify that the calculator's answer is equal to $\frac{\ln 2.5}{10}$.

WORTHY OF NOTE

It is often assumed that the first payment into an annuity is made at the end of a compounding period, and hence earns no interest. This is why the first $\$ 100$ deposit is not multiplied by the interest factor. These terms are actually the terms of a geometric sequence.

C. Applications Involving Annuities and Amortization

Our previous calculations for simple and compound interest involved a single (lump) deposit (the principal) that accumulated interest over time. Many savings and investment plans involve a regular schedule of deposits (monthly, quarterly, or annual deposits) over the life of the investment. Such an investment plan is called an annuity.

Suppose that for 4 years, $\$ 100$ is deposited annually into an account paying 8% compounded yearly. Using the compound interest formula we can track the accumulated value A in the account:

$$
A=100+100(1.08)^{1}+100(1.08)^{2}+100(1.08)^{3}
$$

To develop an annuity formula, we multiply the annuity equation by 1.08 , then subtract the original equation. This leaves only the first and last terms, since the other (interior) terms add to zero:

$$
\begin{aligned}
1.08 A & =100(1.08)+100(1.08)^{2}+100(1.08)^{3}+100(1.08)^{4} & & \text { multiply by } 1.08 \\
-A & =\frac{-\left[100+100(1.08)^{1}+100(1.08)^{2}+100(1.08)^{3}\right]}{} & & \text { original equation } \\
1.08 A-A & =100(1.08)^{4}-100 & & \begin{array}{l}
\text { subtract ("interior } \\
\text { turms" sum to zero) }
\end{array} \\
0.08 A & =100\left[(1.08)^{4}-1\right] & & \text { factor out } 100 \\
A & =\frac{100\left[(1.08)^{4}-1\right]}{0.08} & & \text { solve for } A
\end{aligned}
$$

This result can be generalized for any periodic payment \mathcal{P}, interest rate r, number of compounding periods n, and number of years t. This would give

$$
A=\frac{\mathcal{P}\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}{\frac{r}{n}}
$$

The formula can be made less formidable using $R=\frac{r}{n}$, where R is the interest rate per compounding period.

Accumulated Value of an Annuity

If a periodic payment \mathcal{P} is deposited n times per year at an annual interest rate r with interest compounded n times per year for t years, the accumulated value is given by

$$
A=\frac{\mathcal{P}}{R}\left[(1+R)^{n t}-1\right], \text { where } R=\frac{r}{n}
$$

This is also referred to as the future value of the account.

EXAMPLE $5>$ Solving an Application of Annuities

Since he was a young child, Fitisemanu's parents have been depositing $\$ 50$ each month into an annuity that pays 6% annually and is compounded monthly. If the account is now worth $\$ 9875$, how long has it been open?
Solution In this case, $\mathcal{P}=50, r=0.06, n=12, R=0.005$, and $A=9875$. The formula gives

$$
\begin{aligned}
A & =\frac{\mathcal{P}}{R}\left[(1+R)^{n t}-1\right] & & \text { future value formula } \\
9875 & =\frac{50}{0.005}\left[(1.005)^{(12)(t)}-1\right] & & \text { substitute } 9875 \text { for } A, 50 \text { for } \mathcal{P}, 0.005 \text { for } R, \text { and } 12 \text { for } n \\
1.9875 & =1.005^{12 t} & & \text { simplify and isolate variable term }
\end{aligned}
$$

$$
\begin{array}{rlrl}
\ln (1.9875) & =12 t(\ln 1.005) & & \text { apply base-e logarithms; power property } \\
\frac{\ln (1.9875)}{12 \ln (1.005)} & =t & & \text { solve for } t \text { (exact form) } \\
11.5 \approx t & & \text { approximate form }
\end{array}
$$

The account has been open approximately 11.5 yr .
Now try Exercises 41 through 44

The periodic payment required to meet a future goal or obligation can be computed by solving for \mathcal{P} in the future value formula: $\mathcal{P}=\frac{A R}{\left[(1+R)^{n t}-1\right]}$. In this form, \mathcal{P} is referred to as a sinking fund.

EXAMPLE $6>$ Solving an Application of Sinking Funds

Sheila is determined to stay out of debt and decides to save $\$ 20,000$ to pay cash for a new car in 4 yr . The best investment vehicle she can find pays 9% compounded monthly. If $\$ 300$ is the most she can invest each month, can she meet her "4-yr" goal?
Solution \downarrow Here we have $\mathcal{P}=300, A=20,000, r=0.09, n=12$, and $R=0.0075$. The sinking fund formula gives

$$
\begin{array}{rlrl}
\mathcal{P} & =\frac{A R}{\left[(1+R)^{n t}-1\right]} & & \text { sinking fund } \\
300 & =\frac{(20,000)(0.0075)}{(1.0075)^{12 t}-1} & & \text { substitute } 300 \text { for } \mathcal{P}, 20,000 \text { for } A, \\
0.0075 \text { for } R \text {, and } 12 \text { for } n \\
300\left(1.0075^{12 t}-1\right) & =150 & & \text { multiply in numerator, clear denominators } \\
1.0075^{12 t} & =1.5 & & \text { isolate variable term } \\
12 t \ln (1.0075) & =\ln 1.5 & & \text { apply base-e logarithms; power property } \\
t & =\frac{\ln (1.5)}{12 \ln (1.0075)} & & \text { solve for } t \text { (exact form) } \\
& \approx 4.5 & & \text { approximate form }
\end{array}
$$

No. She is close, but misses her original 4-yr goal.
Now try Exercises 45 and 46

For Example 6, we could have substituted 4 for t and left \mathcal{P} unknown, to see if a payment of $\$ 300$ per month would be sufficient. You can verify the result would be $\mathcal{P} \approx \$ 347.70$, which is what Sheila would need to invest to meet her 4-yr goal exactly.

For additional practice with the formulas for interest earned or paid, the Working with Formulas portion of this Exercise Set has been expanded. See Exercises 47 through 54.

D. Applications Involving Exponential Growth and Decay

Closely related to interest compounded continuously are applications of exponential growth and exponential decay. If Q (quantity) and t (time) are variables, then Q grows exponentially as a function of t if $Q(t)=Q_{0} e^{r t}$ for positive constants Q_{0} and r. Careful studies have shown that population growth, whether it be humans, bats, or bacteria, can be modeled by these "base-e" exponential growth functions. If $Q(t)=Q_{0} e^{-r t}$, then we say Q decreases or decays exponentially over time. The constant r determines how rapidly a quantity grows or decays and is known as the growth rate or decay rate constant.

EXAMPLE 7 - Solving an Application of Exponential Growth

Because fruit flies multiply very quickly, they are often used in a study of genetics. Given the necessary space and food supply, a certain population of fruit flies is known to double every 12 days. If there were 100 flies to begin, find (a) the growth rate r and (b) the number of days until the population reaches 2000 flies.
Solution a. Using the formula for exponential growth with $Q_{0}=100, t=12$, and $Q(t)=200$, we can solve for the growth rate r.

$$
\begin{aligned}
Q(t) & =Q_{0} e^{r t} & & \text { exponential growth function } \\
200 & =100 e^{12 r} & & \text { subssitute 200 for } Q(t), 100 \text { for } Q_{0} \text {, and } 12 \text { for } t \\
2 & =e^{12 r} & & \text { isolate variable term } \\
\ln 2 & =12 r \ln e & & \text { apply base-e logarithms; power property } \\
\frac{\ln 2}{12} & =r & & \text { solve for } r(\text { exact form }) \\
0.05776 & \approx r & & \text { approximate form }
\end{aligned}
$$

The growth rate is approximately 5.78%.
b. To find the number of days until the fly population reaches 2000 , we substitute 0.05776 for r in the exponential growth function.

$$
\begin{aligned}
Q(t) & =Q_{0} e^{r t} & & \text { exponential growth function } \\
2000 & =10 e^{0.05776 t} & & \text { substitute 2000 for } Q(t), 100 \text { for } Q_{0}, \text { and } 0 \\
20 & =e^{0.05776 t} & & \text { isolate variable term } \\
\ln 20 & =0.05776 t \ln e & & \text { apply base-e logarithms; power property } \\
\frac{\ln 20}{0.05776} & =t & & \text { solve for } t \text { (exact form) } \\
51.87 & \approx t & & \text { approximate form }
\end{aligned}
$$

The fruit fly population will reach 2000 on day 51 .

Now try Exercises 55 and 56

Perhaps the best-known examples of exponential decay involve radioactivity. Ever since the end of World War II, common citizens have been aware of the existence of radioactive elements and the power of atomic energy. Today, hundreds of additional applications have been found for these materials, from areas as diverse as biological research, radiology, medicine, and archeology. Radioactive elements decay of their own accord by emitting radiation. The rate of decay is measured using the half-life of the substance, which is the time required for a mass of radioactive material to decay until only one-half of its original mass remains. This half-life is used to find the rate of decay r, first mentioned in Appendix I.C. In general, if h represents the half-life of the substance, one-half the initial amount remains when $t=h$.

$$
\begin{aligned}
Q(t) & =Q_{0} e^{-r t} & & \text { exponential decay function } \\
\frac{1}{2} Q_{0} & =Q_{0} e^{-r h} & & \text { substitute } \frac{1}{2} Q_{0} \text { for } Q(t), \text { hfor } t \\
\frac{1}{2} & =\frac{1}{e^{r h}} & & \text { divide by } Q_{0} \text {; rewrite expression } \\
2 & =e^{r h} & & \text { property of ratios } \\
\ln 2 & =r h \ln e & & \text { apply base-e logarithms; power property } \\
\frac{\ln 2}{h} & =r & & \text { solve for } r
\end{aligned}
$$

Radioactive Rate of Decay

If h represents the half-life of a radioactive substance per unit time, the nominal rate of decay per a like unit of time is given by

$$
r=\frac{\ln 2}{h}
$$

The rate of decay for known radioactive elements varies greatly. For example, the element carbon-14 has a half-life of about 5730 yr , while the element lead-211 has a half-life of only about 3.5 min . Radioactive elements can be detected in extremely small amounts. If a drug is "labeled" (mixed with a radioactive element and injected into a living organism), its passage through the organism can be traced and information on the health of internal organs can be obtained.

EXAMPLE 8 Solving a Rate of Decay Application

The radioactive element potassium-42 is often used in biological experiments, since it has a half-life of only about 12.4 hr . How much of a $2-\mathrm{g}$ sample will remain after 18 hr and 45 min ?

Solution $>$ To begin we must find the nominal rate of decay r and use this value in the exponential decay function.

$$
\begin{aligned}
& r=\frac{\ln 2}{h} \quad \text { radioactive rate of decay } \\
& r=\frac{\ln 2}{12.4} \text { substitute } 12.4 \text { for } h \\
& r \approx 0.056 \text { result }
\end{aligned}
$$

The rate of decay is approximately 5.6%. To determine how much of the sample remains after 18.75 hr , we use $r=0.056$ in the decay function and evaluate it at $t=18.75$.

$$
\begin{aligned}
Q(t) & =Q_{0} e^{-r t} & & \text { exponential decay function } \\
Q(18.75) & =2 e^{(-0.056)(18.75)} & & \text { substitute 2 for } Q_{0}, 0.056 \text { for } r \text {, and } 18.75 \text { for } t \\
Q(18.75) & \approx 0.7 & & \text { evaluate }
\end{aligned}
$$

After 18 hr and 45 min , only 0.7 g of potassium- 42 will remain.
Now try Exercises 57 through 62

TECHNOLOGY HIGHLIGHT

Exploring Compound Interest

The graphing calculator is an excellent tool for exploring mathematical relationships, particularly when many variables work simultaneously to produce a single result. For example, the formula $A=P\left(1+\frac{r}{n}\right)^{n t}$ has five different unknowns. In Example 2, we asked how long it would take $\$ 1000$ to double if it were compounded yearly at $6 \%(n=1, r=0.06)$. What if we deposited $\$ 5000$ instead of $\$ 1000$? Compounded daily instead of quarterly? Or invested at 12% rather than 10% ? There are many ways a graphing calculator can be used to answer such questions. In this exercise, we make use of the calculator's "alpha constants." Most graphing calculators can use any of the 26 letters of the English alphabet (and even a few other symbols) to store constant values. We can use them to write a formula

on the $Y=$ screen, then change any constant on the home screen to see how other values are affected. On the TI-84 Plus, these alpha constants are shown in green and accessed by pressing the ALPHA key. Suppose we wanted to study the relationship between an interest rate r and the time t required for a deposit to double. Using Y_{1} in place of A as output variable, and x in place of t, enter $A=P\left(1+\frac{r}{n}\right)^{n t}$ as Y_{1} on the $Y=$ screen (Figure AI.16). Let's start with a deposit of $\$ 1000$ at 7% interest compounded monthly. The keystrokes are: 1000 STO \rightarrow ALPHA 8 ENTER, 0.07 STO \rightarrow ALPHA \times ENTER , and 12 STO \rightarrow ALPHA LOG ENTER (Figure AI.17). After setting an appropriate window size (perhaps Xmax $=15$ and $Y \max =3000$), and entering $Y_{2}=2000$ we can graph both functions and use the intersection of graphs method to find the doubling time. This produces the result in Figure AI.18, where we note it will take about 9.9 yr. Return to the home screen (2nd MODE), change the interest rate to 10%, and graph the functions again. This time the point of intersection is just less than 7 yr . Experiment with other rates and compounding periods.

Exercise 1: With $P=\$ 1000$, and $r=0.08$, investigate the "doubling time" for interest compounded quarterly, monthly, daily, and hourly.

Exercise 2: With $P=\$ 1000$, investigate "doubling time" for rates of $6 \%, 8 \%, 10 \%$, and 12%, and $n=4, n=12$, and $n=365$. Which had a more significant impact, more compounding periods, or a greater interest rate?

Exercise 3: Will a larger principal cause the money to double faster? Investigate and respond.

D EXERCISES

CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. \qquad interest is interest paid to you on previously accumulated interest.
2. Given constants Q_{0} and r, and that Q decays exponentially as a function of t, the equation model is $Q(t)=$ \qquad -
3. Explain/Describe the difference between the future value and present value of an annuity. Include an example.
4. The formula for interest compounded is $A=p e^{r t}$, where e is approximately \qquad _.
5. Investment plans calling for regularly scheduled deposits are called \qquad . The annuity formula gives the \qquad value of the account.
6. Describe/Explain how you would find the rate of growth r, given that a population of ants grew from 250 to 3000 in 6 weeks.

For simple interest accounts, the interest earned or due depends on the principal p, interest rate r, and the time t in years according to the formula $I=p r t$.
7. Find p given $I=\$ 229.50, r=6.25 \%$, and $t=9$ months.
8. Find r given $I=\$ 1928.75, p=\$ 8500$, and $t=3.75 \mathrm{yr}$.
9. Larry came up a little short one month at bill-paying time and had to take out a title loan on his car at Check Casher's, Inc. He borrowed \$260, and 3 weeks later he paid off the note for $\$ 297.50$. What was the annual interest rate on this title loan? (Hint: How much interest was charged?)
10. Angela has $\$ 750$ in a passbook savings account that pays 2.5% simple interest. How long will it take the account balance to hit the $\$ 1000$ mark at this rate of interest, if she makes no further deposits? (Hint: How much interest will be paid?)

For simple interest accounts, the amount A accumulated or due depends on the principal p, interest rate r, and the time t in years according to the formula $A=p(1+r t)$.
11. Find p given $A=\$ 2500, r=6.25 \%$, and $t=31$ months.
12. Find r given $A=\$ 15,800, p=\$ 10,000$, and $t=3.75 \mathrm{yr}$.
13. Olivette Custom Auto Service borrowed $\$ 120,000$ at 4.75% simple interest to expand their facility from three service bays to four. If they repaid $\$ 149,925$, what was the term of the loan?
14. Healthy U sells nutritional supplements and borrows $\$ 50,000$ to expand their product line. When the note is due 3 yr later, they repay the lender $\$ 62,500$. If it was a simple interest note, what was the annual interest rate?
15. Simple interest: The owner of Paul's Pawn Shop loans Larry $\$ 200.00$ using his Toro riding mower as collateral. Thirteen weeks later Larry comes back to get his mower out of pawn and pays Paul $\$ 240.00$. What was the annual simple interest rate on this loan?
16. Simple interest: To open business in a new strip mall, Laurie's Custom Card Shoppe borrows $\$ 50,000$ from a group of investors at 4.55% simple interest. Business booms and blossoms, enabling Laurie to repay the loan fairly quickly. If Laurie repays $\$ 62,500$, how long did it take?

For accounts where interest is compounded annually, the amount A accumulated or due depends on the principal p, interest rate r, and the time t in years according to the formula $A=p(1+r)^{t}$.
17. Find t given $A=\$ 48,428, p=\$ 38,000$, and $r=6.25 \%$.
18. Find p given $A=\$ 30,146, r=5.3 \%$, and $t=7 \mathrm{yr}$.
19. How long would it take $\$ 1525$ to triple if invested at 7.1% ?
20. What interest rate will ensure a $\$ 747.26$ deposit will be worth $\$ 1000$ in 5 yr ?

For accounts where interest is compounded annually, the principal P needed to ensure an amount A has been accumulated in the time period t when deposited at interest rate r is given by the formula $P=\frac{A}{(1+r)^{\boldsymbol{t}}}$.
21. The Stringers need to make a $\$ 10,000$ balloon payment in 5 yr . How much should be invested now at 5.75%, so that the money will be available?
22. Morgan is 8 yr old. If her mother wants to have $\$ 25,000$ for Morgan's first year of college (in 10 yr), how much should be invested now if the account pays a 6.375% fixed rate?

For compound interest accounts, the amount A accumulated or due depends on the principal p, interest rate r, number of compoundings per year n, and the time t in years according to the formula $A=p\left(1+\frac{r}{n}\right)^{n t}$.
23. Find t given $A=\$ 129,500, p=\$ 90,000$, and $r=7.125 \%$ compounded weekly.
24. Find r given $A=\$ 95,375, p=\$ 65,750$, and $t=15 \mathrm{yr}$ with interest compounded monthly.
25. How long would it take a $\$ 5000$ deposit to double, if invested at a 9.25% rate and compounded daily?
26. What principal should be deposited at 8.375% compounded monthly to ensure the account will be worth $\$ 20,000$ in 10 yr ?
27. Compound interest: As a curiosity, David decides to invest $\$ 10$ in an account paying 10% interest compounded 10 times per year for 10 yr . Is that enough time for the $\$ 10$ to triple in value?
28. Compound interest: As a follow-up experiment (see Exercise 27), David invests $\$ 10$ in an account paying 12% interest compounded 10 times per year for 10 yr , and another $\$ 10 \mathrm{in}$ an account paying 10% interest compounded 12 times per year for 10 yr . Which produces the better investment-more compounding periods or a higher interest rate?
29. Compound interest: Due to demand, Donovan's Dairy (Wisconsin, USA) plans to double its size in 4 yr and will need $\$ 250,000$ to begin development. If they invest $\$ 175,000$ in an account that pays 8.75% compounded semiannually, (a) will there be sufficient funds to break ground in 4 yr ? (b) If not, find the minimum interest rate that will allow the dairy to meet its $4-\mathrm{yr}$ goal.
30. Compound interest: To celebrate the birth of a new daughter, Helyn invests 6000 Swiss francs in a college savings plan to pay for her daughter's first year of college in 18 yr . She estimates that 25,000 francs will be needed. If the account pays 7.2% compounded daily, (a) will she meet her investment goal? (b) If not, find the minimum rate of interest that will enable her to meet this $18-\mathrm{yr}$ goal.

For accounts where interest is compounded continuously, the amount A accumulated or due depends on the principal p, interest rate r, and the time t in years according to the formula $A=p e^{r t}$.
31. Find t given $A=\$ 2500, p=\$ 1750$, and $r=4.5 \%$.
32. Find r given $A=\$ 325,000, p=\$ 250,000$, and $t=10 \mathrm{yr}$.
33. How long would it take $\$ 5000$ to double if it is invested at 9.25% ? Compare the result to Exercise 25.
34. What principal should be deposited at 8.375% to ensure the account will be worth $\$ 20,000$ in 10 yr ? Compare the result to Exercise 26.
35. Interest compounded continuously: Valance wants to build an addition to his home outside Madrid (Spain) so he can watch over and help his parents in their old age. He hopes to have 20,000 euros put aside for this purpose within 5 yr. If he invests 12,500 euros in an account paying 8.6% interest compounded continuously, (a) will he meet his investment goal? (b) If not, find the minimum rate of interest that will enable him to meet this $5-\mathrm{yr}$ goal.
36. Interest compounded continuously: Minh-Ho just inherited her father's farm near Mito (Japan), which badly needs a new barn. The estimated cost of the barn is $8,465,000$ yen and she would like to begin construction in 4 yr . If she invests $6,250,000$ yen in an account paying 6.5% interest compounded continuously, (a) will she meet her investment goal? (b) If not, find the minimum rate of interest that will enable her to meet this $4-\mathrm{yr}$ goal.
37. Interest compounded continuously: William and Mary buy a small cottage in Dovershire (England), where they hope to move after retiring in 7 yr . The cottage needs about 20,000 euros worth of improvements to make it the retirement home they desire. If they invest 12,000 euros in an account paying 5.5% interest compounded continuously, (a) will they have enough to make the repairs? (b) If not, find the minimum amount they need to deposit that will enable them to meet this goal in 7 yr .
38. Interest compounded continuously: After living in Oslo (Norway) for 20 years, Zirkcyt and Shybrt decide to move inland to help operate the family ski resort. They hope to make the move in 6 yr , after they have put aside 140,000 kroner. If they invest 85,000 kroner in an account paying 6.9% interest compounded continuously, (a) will they meet their 140,000 kroner goal? (b) If not, find the minimum amount they need to deposit that will enable them to meet this goal in 6 yr .

The length of time T (in years) required for an initial principal P to grow to an amount A at a given interest rate r is given by $T=\frac{1}{r} \ln \left(\frac{A}{P}\right)$.
39. Investment growth: A small business is planning to build a new $\$ 350,000$ facility in 8 yr . If they deposit $\$ 200,000$ in an account that pays 5% interest compounded continuously, will they have enough for the new facility in 8 yr? If not, what amount should be invested on these terms to meet the goal?
40. Investment growth: After the twins were born, Sasan deposited $\$ 25,000$ in an account paying 7.5% compounded continuously, with the goal of having $\$ 120,000$ available for their college education 20 yr later. Will Sasan meet the $20-\mathrm{yr}$ goal? If not, what amount should be invested on these terms to meet the goal?

Ordinary annuities: If a periodic payment \mathcal{P} is deposited n times per year, with annual interest rate r also compounded \boldsymbol{n} times per year for \boldsymbol{t} years, the future value of the account is given by $A=\frac{\mathcal{P}\left[(1+R)^{n t}-1\right]}{R}$, where $R=\frac{r}{n}$ (if the rate is 9% compounded monthly, $\left.R=\frac{0.09}{12}=0.0075\right)$.
41. Saving for a rainy day: How long would it take Jasmine to save $\$ 10,000$ if she deposits $\$ 90 /$ month at an annual rate of 7.75% compounded monthly?
42. Saving for a sunny day: What quarterly investment amount is required to ensure that Larry can save $\$ 4700$ in 4 yr at an annual rate of 8.5% compounded quarterly?
43. Saving for college: At the birth of their first child, Latasha and Terrance opened an annuity account and have been depositing $\$ 50$ per month in the account ever since. If the account is now worth $\$ 30,000$ and the interest on the account is 6.2% compounded monthly, how old is the child?
44. Saving for a bequest: When Cherie (Brandon's first granddaughter) was born, he purchased an annuity account for her and stipulated that she should receive the funds (in trust, if necessary) upon his death. The quarterly annuity payments were $\$ 250$ and interest on the account was 7.6% compounded quarterly. The account balance of $\$ 17,500$ was recently given to Cherie. How much longer did Brandon live?
45. Saving for a down payment: Tae-Hon is tired of renting and decides that within the next 5 yr he must save $\$ 22,500$ for the down payment on a home. He finds an investment company that offers 8.5% interest compounded monthly and begins depositing $\$ 250$ each month in the account. (a) Is this monthly amount sufficient to help him meet his 5 yr goal? (b) If not, find the minimum amount he needs to deposit each month that will enable him to meet his goal in 5 yr .
46. Saving to open a business: Madeline feels trapped in her current job and decides to save \$75,000 over the next 7 yr to open up a Harley Davidson franchise. To this end, she invests $\$ 145$ every week in an account paying $7 \frac{1}{2} \%$ interest compounded weekly. (a) Is this weekly amount sufficient to help her meet the seven-year goal? (b) If not, find the minimum amount she needs to deposit each week that will enable her to meet this goal in 7 yr ?

WORKING WITH FORMULAS

Solve for the indicated unknowns.

47. $A=p+p r t$

a. solve for t
b. solve for p
50. $A=p e^{r t}$
a. solve for p
b. solve for r
48. $A=p(1+r)^{t}$
a. solve for t
b. solve for r
51. $Q(t)=Q_{0} e^{r t}$
a. solve for Q_{0}
b. solve for t
49. $A=P\left(1+\frac{r}{n}\right)^{n t}$
a. solve for r
b. solve for t
52. $p=\frac{A R}{\left[(1+R)^{n t}-1\right]}$
a. solve for A
b. solve for n
53. Amount of a mortgage payment:
$\mathcal{P}=\frac{A R}{1-(1+R)^{-n t}}$
The mortgage payment required to pay off (or amortize) a loan is given by the formula shown, where \mathcal{P} is the payment amount, A is the original amount of the loan, t is the time in years, r is the annual interest rate, n is the number of payments per year, and $R=\frac{r}{n}$. Find the monthly payment required to amortize a $\$ 125,000$ home, if the interest rate is $5.5 \% /$ year and the home is financed over 30 yr .
54. Total interest paid on a home mortgage:
$I=\left[\frac{p r t}{1-\left(\frac{1}{1+0.08 \overline{3} r}\right)^{12 t}}\right]-p$
The total interest I paid in t years on a home mortgage of p dollars is given by the formula shown, where r is the interest rate on the loan (note that $0.08 \overline{3}=\frac{1}{12}$). If the original mortgage was $\$ 198,000$ at an interest rate of 6.5%, (a) how much interest has been paid in 10 yr ? (b) Use a table of values to determine how many years it will take for the interest paid to exceed the amount of the original mortgage.

APPLICATIONS

55. Exponential growth: As part of a lab experiment, Luamata needs to grow a culture of 200,000 bacteria, which are known to double in number in 12 hr . If he begins with 1000 bacteria, (a) find the growth rate r and (b) find how many hours it takes for the culture to produce the 200,000 bacteria.
56. Exponential growth: After the wolf population was decimated due to overhunting, the rabbit population in the Boluhti Game Reserve began to double every 6 months. If there were an estimated 120 rabbits to begin, (a) find the growth rate r and (b) find the number of months required for the population to reach 2500 .
57. Radioactive decay: The radioactive element iodine- 131 has a half-life of 8 days and is often used to help diagnose patients with thyroid problems. If a certain thyroid procedure requires 0.5 g and is scheduled to take place in 3 days, what is the minimum amount that must be on hand now (to the nearest hundredth of a gram)?
58. Radioactive decay: The radioactive element sodium-24 has a half-life of 15 hr and is used to help locate obstructions in blood flow. If the procedure requires 0.75 g and is scheduled to take place in 2 days (48 hr), what minimum amount must be on hand now (to the nearest hundredth of a gram)?
59. Radioactive decay: The radioactive element americium-241 has a half-life of 432 yr and although extremely small amounts are used (about 0.0002 g), it is the most vital component of standard household smoke detectors. How many years will it take a 10-g mass of americium-241 to decay to 2.7 g ?
60. Radioactive decay: Carbon-14 is a radioactive compound that occurs naturally in all living organisms, with the amount in the organism constantly renewed. After death, no new carbon-14 is acquired and the amount in the organism begins to decay exponentially. If the half-life of carbon-14 is 5730 yr , how old is a mummy having only 30% of the normal amount of carbon-14?

Carbon-14 dating: If the percentage p of carbon- 14 that remains in a fossil can be determined, the formula $T=-8267 \ln p$ can be used to estimate the number of years T since the organism died.
61. Dating the Lascaux Cave Dwellers: Bits of charcoal from Lascaux Cave (home of the prehistoric Lascaux Cave Paintings) were used to estimate that the fire had burned some $17,255 \mathrm{yr}$ ago. What percent of the original amount of carbon- 14 remained in the bits of charcoal?
62. Dating Stonehenge: Using organic fragments found near Stonehenge (England), scientists were able to determine that the organism that produced the fragments lived about 3925 yr ago. What percent of the original amount of carbon-14 remained in the organism?

EXTENDING THE CONCEPT

63. Many claim that inheritance taxes are put in place simply to prevent a massive accumulation of wealth by a select few. Suppose that in 1890 , your great-grandfather deposited $\$ 10,000$ in an account paying 6.2% compounded continuously. If the account were to pass to you untaxed, what would it be worth in 2010? Do some research on the inheritance tax laws in your state. In particular, what amounts can be inherited untaxed (i.e., before the inheritance tax kicks in)?
64. In Appendix I.A, we noted that one important characteristic of exponential functions is their rate of growth is in constant proportion to the population at time $t: \frac{\Delta P}{\Delta t}=k P$. This rate of growth can also be applied to finance and biological models, as well as the growth of tumors, and is of great value in studying these applications. In Exercise 96 of Appendix I.A, we computed the value of k for the Goldsboro model $\left(P=1000 \cdot 2^{t}\right)$ using the difference quotient. If we rewrite this model in terms of base $e\left(P=1000 \cdot e^{k t}\right)$, the value of k is given directly. The following sequence shows how this is done, and you are asked to supply the reason or justification for each step.

$$
\begin{aligned}
P & =b^{t} & & \text { base- } b \text { exponential } \\
\ln P & =\ln b^{t} & & \\
\ln P & =t \ln b & & \\
P & =e^{t \ln b} & & \\
P & =e^{k t} & & k=\ln b
\end{aligned}
$$

The last step shows the growth rate constant is equal to the natural \log of the given base $b: k=\ln b$.
a. Use this result to verify the growth rate constant for Goldsboro is 0.6931472 .
b. After the Great Oklahoma Land Run of 1890 , the population of the state grew rapidly for the next 2 decades. For this time period, population growth could be approximated by $P=260\left(1.10^{t}\right)$. Find the growth rate constant for this model, and use it to write the base-e population equation. Use the TABLE feature of a graphing calculator to verify that the equations are equivalent.
65. If you have not already completed Exercise 30, please do so. For this exercise, solve the compound interest equation for r to find the exact rate of interest that will allow Helyn to meet her 18 -yr goal.
66. If you have not already completed Exercise 43, please do so. Suppose the final balance of the account was $\$ 35,100$ with interest again being compounded monthly. For this exercise, use a graphing calculator to find r, the exact rate of interest the account would have been earning.

SUMMARY AND CONCEPT REVIEW

A Exponential Functions

KEY CONCEPTS

- An exponential function is defined as $f(x)=b^{x}$, where $b>0, b \neq 1$, and b, x are real numbers.
- The natural exponential function is $f(x)=e^{x}$, where $e \approx 2.71828182846$.
- For exponential functions, we have
- one-to-one function
- y-intercept $(0,1)$
- domain: $x \in \mathbb{R}$
- range: $y \in(0, \infty)$
- increasing if $b>1$
- decreasing if $0<b<1$
- asymptotic to x-axis
- The graph of $y=b^{x \pm h} \pm k$ is a translation of the basic graph of $y=b^{x}$, horizontally h units opposite the sign and vertically k units in the same direction as the sign.
- If an equation can be written with like bases on each side, we solve it using the uniqueness property: If $b^{m}=b^{n}$, then $m=n$ (equal bases imply equal exponents).
- All previous properties of exponents also apply to exponential functions.

EXERCISES

Graph each function using transformations of the basic function, then strategically plot a few points to check your work and round out the graph. Draw and label the asymptote.

1. $y=2^{x}+3$
2. $y=2^{-x}-1$
3. $y=-e^{x+1}-2$

Solve using the uniqueness property.
4. $3^{2 x-1}=27$
5. $4^{x}=\frac{1}{16}$
6. $e^{x} \cdot e^{x+1}=e^{6}$
7. A ballast machine is purchased new for $\$ 142,000$ by the AT \& SF Railroad. The machine loses 15% of its value each year and must be replaced when its value drops below $\$ 20,000$. How many years will the machine be in service?

B Logarithms and Logarithmic Functions

KEY CONCEPTS

- A logarithm is an exponent. For $x, b>0$, and $b \neq 1$, the expression $\log _{b} x$ represents the exponent that goes on base b to obtain x : If $y=\log _{b} x$, then $b^{y}=x \Rightarrow b^{\log _{b} x}=x$ (by substitution).
- The equations $x=b^{y}$ and $y=\log _{b} x$ are equivalent. We say $x=b^{y}$ is the exponential form and $y=\log _{b} x$ is the logarithmic form of the equation.
- The value of $\log _{b} x$ can sometimes be determined by writing the expression in exponential form. If $b=10$ or $b=e$, the value of $\log _{b} x$ can be found directly using a calculator.
- A logarithmic function is defined as $f(x)=\log _{b} x$, where $x, b>0$, and $b \neq 1$.
- $y=\log _{10} x=\log x$ is called a common logarithmic function.
- $y=\log _{e} x=\ln x$ is called a natural logarithmic function.
- For $f(x)=\log _{b} x$ as defined we have
- one-to-one function
- x-intercept $(1,0)$
- domain: $x \in(0, \infty)$
- range: $y \in \mathbb{R}$
- increasing if $b>1$
- decreasing if $0<b<1$
- asymptotic to y-axis
- The graph of $y=\log _{b}(x \pm h) \pm k$ is a translation of the graph of $y=\log _{b} x$, horizontally h units opposite the sign and vertically k units in the same direction as the sign.

EXERCISES

Write each expression in exponential form.
8. $\log _{3} 9=2$
9. $\log _{5} \frac{1}{125}=-3$
10. $\ln 43 \approx 3.7612$

Write each expression in logarithmic form.
11. $5^{2}=25$
12. $e^{-0.25} \approx 0.7788$
13. $3^{4}=81$

Find the value of each expression without using a calculator.
14. $\log _{2} 32$
15. $\ln \left(\frac{1}{e}\right)$
16. $\log _{9} 3$

Graph each function using transformations of the basic function, then strategically plot a few points to check your work and round out the graph. Draw and label the asymptote.
17. $f(x)=\log _{2} x$
18. $f(x)=\log _{2}(x+3)$
19. $f(x)=2+\ln (x-1)$

Find the domain of the following functions.
20. $g(x)=\log \sqrt{2 x+3}$
21. $f(x)=\ln \left(x^{2}-6 x\right)$
22. The magnitude of an earthquake is given by $M(I)=\log \frac{I}{I_{0}}$, where I is the intensity and I_{0} is the reference intensity. (a) Find $M(I)$ given $I=62,000 I_{0}$ and (b) find the intensity I given $M(I)=7.3$.

C Properties of Logarithms; Solving Exponential/Logarithmic Equations

KEY CONCEPTS

- The basic definition of a logarithm gives rise to the following properties: For any base $b>0, b \neq 1$,

1. $\log _{b} b=1\left(\right.$ since $\left.b^{1}=b\right)$
2. $\log _{b} 1=0\left(\right.$ since $\left.b^{0}=1\right)$
3. $\log _{b} b^{x}=x\left(\right.$ since $\left.b^{x}=b^{x}\right)$
4. $b^{\log _{b} x}=x$

- Since a logarithm is an exponent, they have properties that parallel those of exponents.

Product Property like base and multiplication, add exponents:	Quotient Property like base and division, subtract exponents:	Power Property exponent raised to a power, multiply exponents:
$\log _{b}(M N)=\log _{b} M+\log _{b} N$	$\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$	$\log _{b} M^{p}=p \log _{b} M$

- The logarithmic properties can be used to expand an expression: $\log (2 x)=\log 2+\log x$.
- The logarithmic properties can be used to contract an expression: $\ln (2 x)-\ln (x+3)=\ln \left(\frac{2 x}{x+3}\right)$.
- To evaluate logarithms with bases other than 10 or e, use the change-of-base formula:

$$
\log _{b} M=\frac{\log M}{\log b}=\frac{\ln M}{\ln b}
$$

- If an equation can be written with like bases on each side, we solve it using the uniqueness property: if $\log _{b} m=\log _{b} n$, then $m=n$ (equal bases imply equal arguments).
- If a single exponential or logarithmic term can be isolated on one side, then for any base b :

$$
\text { If } b^{x}=k \text {, then } x=\frac{\log k}{\log b} \quad \text { If } \log _{b} x=k \text {, then } x=b^{k} .
$$

EXERCISES

23. Solve each equation by applying fundamental properties.
a. $\ln x=32$
b. $\log x=2.38$
c. $e^{x}=9.8$
d. $10^{x}=\sqrt{7}$
24. Solve each equation. Write answers in exact form and in approximate form to four decimal places.
a. $15=7+2 e^{0.5 x}$
b. $10^{0.2 x}=19$
c. $-2 \log (3 x)+1=-5$
d. $-2 \ln x+1=6.5$
25. Use the product or quotient property of logarithms to write each sum or difference as a single term.
a. $\ln 7+\ln 6$
b. $\log _{9} 2+\log _{9} 15$
c. $\ln (x+3)-\ln (x-1)$
d. $\log x+\log (x+1)$
26. Use the power property of logarithms to rewrite each term as a product.
a. $\log _{5} 9^{2}$
b. $\log _{7} 4^{2}$
c. $\ln 5^{2 x-1}$
d. $\ln 10^{3 x+2}$
27. Use the properties of logarithms to write the following expressions as a sum or difference of simple logarithmic terms.
a. $\ln (x \sqrt[4]{y})$
b. $\ln (\sqrt[3]{p} q)$
c. $\log \left(\frac{\sqrt[3]{x^{5} \cdot y^{4}}}{\sqrt{x^{5} y^{3}}}\right)$
d. $\log \left(\frac{4 \sqrt[3]{p^{5} q^{4}}}{\sqrt{p^{3} q^{2}}}\right)$
28. Evaluate using a change-of-base formula. Answer in exact form and approximate form to thousandths.
a. $\log _{6} 45$
b. $\log _{3} 128$
c. $\ln _{2} 124$
d. $\ln _{5} 0.42$

Solve each equation.
29. $2^{x}=7$
30. $3^{x+1}=5$
31. $e^{x-2}=3^{x}$
32. $\ln (x+1)=2$
33. $\log x+\log (x-3)=1$
34. $\log _{25}(x+2)-\log _{25}(x-3)=\frac{1}{2}$
35. The rate of decay for radioactive material is related to its half-life by the formula $R(h)=\frac{\ln 2}{h}$, where h represents the half-life of the material and $R(h)$ is the rate of decay expressed as a decimal. The element radon- 222 has a half-life of approximately 3.9 days. (a) Find its rate of decay to the nearest hundredth of a percent. (b) Find the half-life of thorium-234 if its rate of decay is 2.89% per day.
36. The barometric equation $H=(30 T+8000) \ln \left(\frac{P_{0}}{P}\right)$ relates the altitude H to atmospheric pressure P, where $P_{0}=76 \mathrm{cmHg}$. Find the atmospheric pressure at the summit of Mount Pico de Orizaba (Mexico), whose summit is at 5657 m . Assume the temperature at the summit is $T=12^{\circ} \mathrm{C}$.

D Applications from Business, Finance, and Science

KEY CONCEPTS

- Simple interest: $I=p r t ; p$ is the initial principal, r is the interest rate per year, and t is the time in years.
- Amount in an account after t years: $A=p+p r t$ or $A=p(1+r t)$.
- Interest compounded n times per year: $A=p\left(1+\frac{r}{n}\right)^{n t} ; p$ is the initial principal, r is the interest rate per year, t is the time in years, and n is the times per year interest is compounded.
- Interest compounded continuously: $A=p e^{r t} ; p$ is the initial principal, r is the interest rate per year, and t is the time in years.
- If a loan or savings plan calls for a regular schedule of deposits, the plan is called an annuity.
- For periodic payment \mathcal{P}, deposited or paid n times per year, at annual interest rate r, with interest compounded or calculated n times per year for t years, and $R=\frac{r}{n}$:
- The accumulated value of the account is $A=\frac{\mathcal{P}}{R}\left[(1+R)^{n t}-1\right]$.
- The payment required to meet a future goal is $\mathcal{P}=\frac{A R}{\left[(1+R)^{n t}-1\right]}$.
- The payment required to amortize an amount A is $\mathcal{P}=\frac{A R}{1-(1+R)^{-n t}}$.
- The general formulas for exponential growth and decay are $Q(t)=Q_{0} e^{r t}$ and $Q(t)=Q_{0} e^{-r t}$, respectively.

EXERCISES

Solve each application.
37. Jeffery borrows $\$ 600.00$ from his dad, who decides it's best to charge him interest. Three months later Jeff repays the loan plus interest, a total of $\$ 627.75$. What was the annual interest rate on the loan?
38. To save money for her first car, Cheryl invests the $\$ 7500$ she inherited in an account paying 7.8% interest compounded monthly. She hopes to buy the car in 6 yr and needs $\$ 12,000$. Is this possible?
39. To save up for the vacation of a lifetime, Al-Harwi decides to save $\$ 15,000$ over the next 4 yr. For this purpose he invests $\$ 260$ every month in an account paying $7 \frac{1}{2} \%$ interest compounded monthly. (a) Is this monthly amount sufficient to meet the four-year goal? (b) If not, find the minimum amount he needs to deposit each month that will allow him to meet this goal in 4 yr.
40. Eighty prairie dogs are released in a wilderness area in an effort to repopulate the species. Five years later a statistical survey reveals the population has reached 1250 dogs. Assuming the growth was exponential, approximate the growth rate to the nearest tenth of a percent.

MIXED REVIEW

1. Evaluate each expression using the change-of-base formula.
a. $\log _{2} 30$
b. $\log _{0.25} 8$
c. $\log _{8} 2$
2. Solve each equation using the uniqueness property.
a. $10^{4 x-5}=1000$
b. $5^{3 x-1}=\sqrt{5}$
c. $2^{x} \cdot 2^{0.5 x}=64$
3. Use the power property of logarithms to rewrite each expression as a product.
a. $\log _{10} 20^{2}$
b. $\log 10^{0.05 x}$
c. $\ln 2^{x-3}$

Graph each of the following functions by shifting the basic function, then strategically plotting a few points to check your work and round out the graph. Graph and label the asymptote.
4. $y=-e^{x}+15$
5. $y=5 \cdot 2^{-x}$
6. $y=\ln (x+5)+7$
7. $y=\log _{2}(-x)-4$
8. Use the properties of logarithms to write the following expressions as a sum or difference of simple logarithmic terms.
a. $\ln \left(\frac{x^{3}}{2 y}\right)$
b. $\log \left(10 a \sqrt[3]{a^{2} b}\right)$
c. $\log _{2}\left(\frac{8 x^{4} \sqrt{x}}{3 \sqrt{y}}\right)$
9. Write the following expressions in exponential form.
a. $\log _{5} 625=4$
b. $\ln 0.15 x=0.45$
c. $\log \left(0.1 \times 10^{8}\right)=7$
10. Write the following expressions in logarithmic form.
a. $343^{1 / 3}=7$
b. $256^{3 / 4}=64$
c. $2^{-3}=\frac{1}{8}$
11. Find the domain of the following functions.
a. $\log \left(2 x^{2}-3 x-2\right)$
b. $\ln \left|x^{3}-8\right|$

Solve the following equations. State answers in exact form.
12. $\log _{5}(4 x+7)=0$
13. $10^{x-4}=200$
14. $e^{x+1}=3^{x}$
15. $\log _{2}(2 x-5)+\log _{2}(x-2)=4$
16. $\log (3 x-4)-\log (x-2)=1$

Solve each application.
17. The magnitude of an earthquake is given by $M(I)=\log \left(\frac{I}{I_{0}}\right)$, where I is the intensity of the quake and I_{0} is the reference intensity 2×10^{11} (energy released from the smallest detectable quake). On October 23, 2004, the Niigata region of Japan was hit by an earthquake that registered 6.5 on the Richter scale. Find the intensity of this earthquake by solving the following equation for
$I: 6.5=\log \left(\frac{I}{2 \times 10^{11}}\right)$.
18. Serene is planning to buy a house. She has $\$ 6500$ to invest in a certificate of deposit that compounds interest quarterly at an annual rate of 4.4%. (a) Find how long it will take for this account to grow to the $\$ 12,500$ she will need for a 10% down payment for a $\$ 125,000$ house. Round to the nearest tenth of a year. (b) Suppose instead of investing an initial $\$ 6500$, Serene deposits $\$ 500$ a quarter in an account paying 4\% each quarter. Find how long it will take for this account to grow to $\$ 12,500$. Round to the nearest tenth of a year.
19. British artist Simon Thomas designs sculptures he calls hypercones. These sculptures involve rings of exponentially decreasing radii rotated through space. For one sculpture, the radii follow the model $r(n)=2(0.8)^{n}$, where n
 counts the rings (outer-most first) and $r(n)$ is radii in meters. Find the radii of the six largest rings in the sculpture. Round to the nearest hundredth of a meter.

Source: http://www.plus.maths.org/issue8/features/art/
20. Ms. Chan-Chiu works for MediaMax, a small business that helps other companies purchase advertising in publications. Her model for the benefits of advertising is $P(a)=1000(1.07)^{a}$, where P represents the number of potential customers reached when a dollars (in thousands) are invested in advertising.
a. Use this model to predict (to the nearest thousand) how many potential customers will be reached when $\$ 50,000$ is invested in advertising.
b. Use this model to determine how much money a company should expect to invest in advertising (to the nearest thousand), if it wants to reach 100,000 potential customers.

PRACTICE TEST

1. Write the expression $\log _{3} 81=4$ in exponential form.
2. Write the expression $25^{1 / 2}=5$ in logarithmic form.
3. Write the expression $\log _{b}\left(\frac{\sqrt{x^{5}} y^{3}}{z}\right)$ as a sum or difference of logarithmic terms.
4. Write the expression $\log _{b} m+\left(\frac{3}{2}\right) \log _{b} n-\frac{1}{2} \log _{b} p$ as a single logarithm.

Solve for x using the uniqueness property.
5. $5^{x-7}=125$
6. $2 \cdot 4^{3 x}=\frac{8^{x}}{16}$

Given $\log _{a} 3 \approx 0.48$ and $\log _{a} 5 \approx 1.72$, evaluate the following without the use of a calculator:
7. $\log _{a} 45$
8. $\log _{a} 0.6$

Graph using transformations of the parent function.
Verify answers using a graphing calculator.
9. $g(x)=-2^{x-1}+3$
10. $h(x)=\log _{2}(x-2)+1$
11. Use the change-of-base formula to evaluate. Verify results using a calculator.
a. $\log _{3} 100$
b. $\log _{6} 0.235$
12. State the domain and range of $f(x)=\ln (x-2)-3$. Then find its inverse, including the domain and range.

Solve each equation.
13. $3^{x-1}=89$
14. $\log _{5} x+\log _{5}(x+4)=1$
15. A copier is purchased new for $\$ 8000$. The machine loses 18% of its value each year and must be replaced when its value drops below $\$ 3000$. How many years will the machine be in service?
16. How long would it take $\$ 1000$ to double if invested at 8% annual interest compounded daily?
17. The number of ounces of unrefined platinum drawn from a mine is modeled by $Q(t)=-2600+$ $1900 \ln (t)$, where $Q(t)$ represents the number of ounces mined in t months. How many months did it take for the number of ounces mined to exceed 3000 ?
18. Septashi can invest his savings in an account paying 7% compounded semi-annually, or in an account paying 6.8% compounded daily. Which is the better investment?
19. Jacob decides to save $\$ 4000$ over the next 5 yr so that he can present his wife with a new diamond ring
for their 20th anniversary. He invests $\$ 50$ every month in an account paying $8 \frac{1}{4} \%$ interest compounded monthly. (a) Is this amount sufficient to meet the $5-\mathrm{yr}$ goal? (b) If not, find the minimum amount he needs to save monthly that will enable him to meet this goal.
20. Chaucer is a typical Welsh Corgi puppy. During his first year of life, his weight very closely follows the model $W(t)=6.79 \ln t-11.97$, where $W(t)$ is his weight in pounds after t weeks and $8 \leq t \leq 52$.
a. How much will Chaucer weigh when he is 6 months old (to the nearest one-tenth pound)?
b. To the nearest week, how old is Chaucer when he weighs 8 lb ?

CALCULATOR EXPLORATION AND DISCOVERY

Investigating Logistic Equations

As we saw in Appendix I.C, logistics models have the form $P(t)=\frac{c}{1+a e^{-b t}}$, where a, b, and c are constants and $P(t)$ represents the population at time t. For populations modeled by a logistics curve (sometimes called an " S " curve) growth is very rapid at first (like an exponential function), but this growth begins to slow down and level off due to various factors. This Calculator Exploration and Discovery is designed to investigate the effects that a, b, and c have on the resulting graph.
I. From our earlier observation, as t becomes larger and larger, the term $a e^{-b t}$ becomes smaller and smaller (approaching 0) because it is a decreasing function: as $t \rightarrow \infty, a e^{-b t} \rightarrow 0$. If we allow that the term eventually becomes so small it can be disregarded, what remains is $P(t)=\frac{c}{1}$ or c. This is why c is called the capacity constant and the population can get no larger than c. In Figure AI.19, the graph of $P(t)=\frac{1000}{1+50 e^{-1 x}}(a=50, b=1$, and $c=1000)$ is shown using a lighter line, while the graph of $P(t)=\frac{750}{1+50 e^{-1 x}}(a=50, b=1$, and $c=750)$, is given in bold. The window size is indicated in Figure AI.20.

Also note that if a is held constant, smaller values of c cause the "interior" of the S curve to grow at a slower rate than larger values, a concept studied in some detail in a Calculus I class.
II. If $t=0, a e^{-b t}=a e^{0}=a$, and we note the ratio $P(0)=\frac{c}{1+a}$ represents the initial population. This also means for constant values of c, larger values of a make the ratio $\frac{c}{1+a}$ smaller; while smaller values of a make the ratio $\frac{c}{1+a}$ larger. From this we conclude that a primarily affects the initial population. For the screens shown next, $P(t)=\frac{1000}{1+50 e^{-1 x}}$ (from I) is graphed using a lighter line. For comparison, the graph of $P(t)=\frac{1000}{1+5 e^{-1 x}} \quad(a=5, b=1$, and $c=1000$) is shown in bold in Figure AI.21, while the graph of

Figure AI. 20

Figure AI. 21

$P(t)=\frac{1000}{1+500 e^{-1 x}}(a=500, b=1$, and $c=1000)$ is shown in bold in Figure AI. 22 .
Note that changes in a appear to have no effect on the rate of growth in the interior of the S curve.
III. As for the value of b, we might expect that it affects the rate of growth in much the same way as the growth rate r does for exponential functions $Q(t)=Q_{0} e^{-r t}$. Sure enough, we note from the graphs shown that b has no effect on the initial value or the eventual capacity, but causes the population to approach this capacity more quickly for larger values of b, and more slowly for smaller values of b. For the screens shown, $P(t)=\frac{1000}{1+50 e^{-1 x}}(a=50, b=1$, and $c=1000)$ is graphed using a lighter line. For comparison, the graph of $P(t)=\frac{1000}{1+50 e^{-1.2 x}}(a=50, b=1.2$, and $c=1000)$ is shown in bold in Figure AI.23, while the graph of $P(t)=\frac{1000}{1+50 e^{-0.8 x}}(a=50, b=0.8$, and $c=1000$) is shown in bold in Figure AI. 24.
The following exercises are based on the population of an ant colony, modeled by the logistic function $P(t)=\frac{2500}{1+25 e^{-0.5 x}}$. Respond to Exercises 1 through 6 without the use of a calculator.

Exercise 1: Identify the values of a, b, and c for this logistics curve.
Exercise 2: What was the approximate initial population of the colony?
Exercise 3: Which gives a larger initial population: (a) $c=2500$ and $a=25$ or (b) $c=3000$ and $a=15$?

Exercise 4: What is the maximum population capacity for this colony?

Figure AI. 22

Figure AI. 23

Figure AI. 24

Exercise 5: Would the population of the colony surpass 2000 more quickly if $b=0.6$ or if $b=0.4$?
Exercise 6: Which causes a slower population growth: (a) $c=2000$ and $a=25$ or (b) $c=3000$ and $a=25$?
Exercise 7: Verify your responses to Exercises 2 through 6 using a graphing calculator.

STRENGTHENING CORE SKILLS

Understanding Properties of Logarithms

To effectively use the properties of logarithms as a mathematical tool, a student must attain some degree of comfort and fluency in their application. Otherwise we are resigned to using them as a template or formula, leaving little room for growth or insight. This feature is divided into two parts. The first is designed to promote an understanding of the product and quotient properties of logarithms, which play a role in the solution of logarithmic and exponential equations.

We begin by looking at some logarithmic expressions that are obviously true:

$$
\log _{2} 2=1 \quad \log _{2} 4=2 \quad \log _{2} 8=3 \quad \log _{2} 16=4 \quad \log _{2} 32=5 \quad \log _{2} 64=6
$$

Next, we view the same expressions with their value understood mentally, illustrated by the numbers in the background, rather than expressly written.
$\log _{2} 2$
$\mathrm{log}_{2} 4$
$\log 8$
log 16
$\log 232$
log 64

This will make the product and quotient properties of equality much easier to "see." Recall the product property states: $\log _{b} M+\log _{b} N=\log _{b}(M N)$ and the quotient property states: $\log _{b} M-\log _{b} N=\log _{b}\left(\frac{M}{N}\right)$. Consider the following.

$$
\log 24+\log 8=\log 32
$$

which is the same as saying

$$
\begin{aligned}
\log _{2} 4+\log _{2} 8 & =\log _{2}(4 \cdot 8) \\
\text { (since } 4 \cdot 8 & =32 \text {) } \\
\log _{b} M+\log _{b} N & =\log _{b}(M N)
\end{aligned}
$$

$$
\log _{2} 64-\log _{2} 32=\log _{2} 2
$$

which is the same as saying

$$
\begin{aligned}
\log _{2} 64-\log _{2} 32 & =\log _{2}\left(\frac{64}{32}\right) \\
\left(\text { since } \frac{64}{32}\right. & =2) \\
\log _{b} M-\log _{b} N & =\log _{b}\left(\frac{M}{N}\right)
\end{aligned}
$$

Exercise 1: Repeat this exercise using logarithms of base 3 and various sums and differences.
Exercise 2: Use the basic concept behind these exercises to combine these expressions: (a) $\log (x)+\log (x+3)$, (b) $\ln (x+2)+\ln (x-2)$, and (c) $\log (x)-\log (x+3)$.

The second part is similar to the first, but highlights the power property: $\log _{b} M^{x}=x \log _{b} M$. For instance, knowing that $\log _{2} 64=6, \log _{2} 8=3$, and $\log _{2} 2=1$, consider the following:
$\log _{2} 8$ can be written as $\log _{2} 2^{3}$ (since $2^{3}=8$). Applying the power property gives $3 \cdot \log _{2} 2=3$.
$\log 64$ can be written as $\log _{2} 2^{6}\left(\right.$ since $\left.2^{6}=64\right)$. Applying the power property gives $6 \cdot \log _{2} 2=6$.

$$
\log _{b} M^{x}=x \log _{b} M
$$

Exercise 3: Repeat this exercise using logarithms of base 3 and various powers.
Exercise 4: Use the basic concept behind these exercises to rewrite each expression as a product: (a) $\log 3^{x}$, (b) $\ln x^{5}$, and (c) $\ln 2^{3 x-1}$.

Transformations of a Basic Graph

In previous coursework, you've likely noted the graph of any function from a given family maintains the same general shape. The graphs of $y=-2 x^{2}-5 x+3$ and $y=x^{2}$ are both parabolas, the graphs of $y=\sqrt[3]{x}$ and $y=-\sqrt[3]{x-2}+1$ are both "horizontal propellers," and so on for other functions. Once you're aware of the main features of a basic function, you can graph any function from that family using far fewer points, and analyze the graph more efficiently. As we study specific transformations of a graph, it's important to develop a global view of the transformations, as they can be applied to virtually any function (see Illustration 7).

A. Vertical and Horizontal Shifts

We'll begin our review using the absolute value function family.

Vertical Translations

If a constant k is added to the output of a basic function $y=f(x)$, the result is a vertical shift since the output values are altered uniformly.

ILLUSTRATION $1>$ Graphing Vertical Translations

Construct a table of values for $f(x)=|x|, g(x)=|x|+1$, and $h(x)=|x|-3$ and graph the functions on the same coordinate grid. Then discuss what you observe.
Solution $>$ A table of values for all three functions is given, with the corresponding graphs shown in the figure.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=\|\boldsymbol{x}\|$	$g(x)=\|x\|+1$	$\boldsymbol{h}(\boldsymbol{x})=\|\boldsymbol{x}\|-\mathbf{3}$
-3	3	4	0
-2	2	3	-1
-1	1	2	-2
0	0	1	-3
1	1	2	-2
2	2	3	-1
3	3	4	0

Note that outputs of $g(x)$ are one more than the outputs for $f(x)$, and that each point on the graph of f has been shifted upward 1 unit to form the graph of g. Similarly, each point on the graph of f has been shifted downward 3 units to form the graph of h since $h(x)=f(x)-3$.

We describe the transformations in Illustration 1 as a vertical shift or vertical translation of a basic graph. The graph of g is the graph of f shifted up 1 unit, and the graph of h is the graph of f shifted down 3 units. In general, we have the following:

Vertical Translations of a Basic Graph

Given $k>0$ and any function whose graph is determined by $y=f(x)$,

1. The graph of $y=f(x)+k$ is the graph of $f(x)$ shifted upward k units.
2. The graph of $y=f(x)-k$ is the graph of $f(x)$ shifted downward k units.

Horizontal Translations

The graph of a parent function can also be shifted left or right. This happens when we alter the inputs to the basic function, as opposed to adding or subtracting something to the basic function itself. For $\mathrm{Y}_{1}=x^{2}+2$ note that we first square inputs, then add 2, which results in a vertical shift. For $Y_{2}=(x+2)^{2}$, we add 2 to x prior to squaring and since the input values are affected, we might anticipate the graph will shift along the x-axis-horizontally.

ILLUSTRATION 2 - Graphing Horizontal Translations

Construct a table of values for $f(x)=x^{2}$ and $g(x)=(x+2)^{2}$, then graph the functions on the same grid and discuss what you observe.
Solution - Both f and g belong to the quadratic family and their graphs are parabolas. A table of values is shown along with the corresponding graphs.
A. You've just reviewed how to perform vertical/ horizontal shifts of a basic graph

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{2}}$	$g(x)=(x+2)^{2}$
-3	9	1
-2	4	0
-1	1	1
0	0	4
1	1	9
2	4	16
3	9	25

It is apparent the graphs of g and f are identical, but the graph of g has been shifted horizontally 2 units left.

We describe the transformation in Illustration 2 as a horizontal shift or horizontal translation of a basic graph. The graph of g is the graph of f, shifted 2 units to the left. Once again it seems reasonable that since input values were altered, the shift must be horizontal rather than vertical. From this example, we also learn the direction of the shift is opposite the sign: $y=(x+2)^{2}$ is 2 units to the left of $y=x^{2}$. Although it may seem counterintuitive, the shift opposite the sign can be "seen" by locating the new x-intercept, which in this case is also the vertex. Substituting 0 for y gives $0=(x+2)^{2}$ with $x=-2$, as shown in the graph. In general, we have

Horizontal Translations of a Basic Graph

Given $h>0$ and any function whose graph is determined by $y=f(x)$,

1. The graph of $y=f(x+h)$ is the graph of $f(x)$ shifted to the left h units.
2. The graph of $y=f(x-h)$ is the graph of $f(x)$ shifted to the right h units.

B. Vertical and Horizontal Reflections

The next transformation we investigate is called a vertical reflection, in which we compare the function $\mathrm{Y}_{1}=f(x)$ with the negative of the function: $\mathrm{Y}_{2}=-f(x)$.

Vertical Reflections

ILLUSTRATION 3 - Graphing Vertical Reflections

Construct a table of values for $\mathrm{Y}_{1}=x^{2}$ and $\mathrm{Y}_{2}=-x^{2}$, then graph the functions on the same grid and discuss what you observe.

Solution A table of values is given for both functions, along with the corresponding graphs.

\boldsymbol{x}	$\mathbf{Y}_{\mathbf{1}}=\boldsymbol{x}^{\mathbf{2}}$	$\mathbf{Y}_{2}=-x^{2}$
-2	4	-4
-1	1	-1
0	0	0
1	1	-1
2	4	-4

As you might have anticipated, the outputs for f and g differ only in sign. Each output is a reflection of the other, being an equal distance from the x-axis but on opposite sides.

The vertical reflection in Illustration 3 is called a reflection across the x-axis. In general,

Vertical Reflections of a Basic Graph

For any function $y=f(x)$, the graph of $y=-f(x)$ is the graph of $f(x)$ reflected across the x-axis.

Horizontal Reflections

It's also possible for a graph to be reflected horizontally across the y-axis. Just as we noted that $f(x)$ versus $-f(x)$ resulted in a vertical reflection, $f(x)$ versus $f(-x)$ results in a horizontal reflection.

ILLUSTRATION 4 Graphing a Horizontal Reflection

Construct a table of values for $f(x)=\sqrt{x}$ and $g(x)=\sqrt{-x}$, then graph the functions on the same coordinate grid and discuss what you observe.

Solution A table of values is given here, along with the corresponding graphs.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}}$	$g(x)=\sqrt{-x}$
-4	not real	2
-2	not real	$\sqrt{2} \approx 1.41$
-1	not real	1
0	0	0
1	1	not real
2	$\sqrt{2} \approx 1.41$	not real
4	2	not real

The graph of g is the same as the graph of f, but it has been reflected across the y-axis. A study of the domain shows why- f represents a real number only for nonnegative inputs, so its graph occurs to the right of the y-axis, while g represents a real number for nonpositive inputs, so its graph occurs to the left.

The transformation in Illustration 4 is called a horizontal reflection of a basic graph. In general,

Horizontal Reflections of a Basic Graph

For any function $y=f(x)$, the graph of $y=f(-x)$ is the graph of $f(x)$ reflected across the y-axis.

C. Vertically Stretching/Compressing a Basic Graph

As the words "stretching" and "compressing" imply, the graph of a basic function can also become elongated or flattened after certain transformations are applied. However, even these transformations preserve the key characteristics of the graph.

ILLUSTRATION 5 - Stretching and Compressing a Basic Graph

Construct a table of values for $f(x)=x^{2}, g(x)=3 x^{2}$, and $h(x)=\frac{1}{3} x^{2}$, then graph the functions on the same grid and discuss what you observe.

Solution - A table of values is given for all three functions, along with the corresponding graphs.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{2}}$	$g(x)=3 x^{2}$	$\boldsymbol{h}(\boldsymbol{x})=\frac{1}{3} x^{\mathbf{2}}$
-3	9	27	3
-2	4	12	$\frac{4}{3}$
-1	1	3	$\frac{1}{3}$
0	0	0	0
1	1	3	$\frac{1}{3}$
2	4	12	$\frac{4}{3}$
3	9	27	3

The outputs of g are triple those of f, making these outputs farther from the x-axis and stretching g upward (making the graph more narrow). The outputs of h are one-third those of f, and the graph of h is compressed downward, with its outputs closer to the x-axis (making the graph wider).

WORTHY OF NOTE

In a study of trigonometry, you'll find that a basic graph can also be stretched or compressed horizontally, a phenomenon known as frequency variations.

■ C. You've just reviewed how to perform vertical stretches and compressions of a basic graph

The transformations in Illustration 5 are called vertical stretches or compressions of a basic graph. In general,

Stretches and Compressions of a Basic Graph

For any function $y=f(x)$, the graph of $y=a f(x)$ is

1. the graph of $f(x)$ stretched vertically if $|a|>1$,
2. the graph of $f(x)$ compressed vertically if $0<|a|<1$.

D. Transformations of a General Function

If more than one transformation is applied to a basic graph, it's helpful to use the following sequence for graphing the new function.

General Transformations of a Basic Graph

Given a function $y=f(x)$, the graph of $y=a f(x \pm h) \pm k$ can be obtained by applying the following sequence of transformations:

1. horizontal shifts
2. reflections
3. stretches or compressions
4. vertical shifts

We generally use a few characteristic points to track the transformations involved, then draw the transformed graph through the new location of these points.

ILLUSTRATION $6>$ Graphing Functions Using Transformations

Use transformations of a parent function to sketch the graphs of
a. $g(x)=-(x+2)^{2}+3$
b. $h(x)=2 \sqrt[3]{x-2}-1$

Solution \quad a. The graph of g is a parabola, shifted left 2 units, reflected across the x-axis, and shifted up 3 units. This sequence of transformations in shown in Figures AII. 1 through AII.3.

Figure All. 1

Shifted left 2 units

Figure All. 2

Reflected across the x-axis

Figure All. 3

Shifted up 3 units
b. The graph of h is a cube root function, shifted right 2 units, stretched by a factor of 2, then shifted down 1 unit. This sequence is shown in Figures AII. 4 through AII. 6 .

Figure All. 4

Shifted right 2 units

Figure All. 5

Stretched by a factor of 2

Figure All. 6

Shifted down 1 unit

WORTHY OF NOTE

Since the shape of the initial graph does not change when translations or reflections are applied, these are called rigid transformations. Stretches and compressions of a basic graph are called nonrigid transformations, as the graph is distended in some way.

It's important to note that the transformations can actually be applied to any function, even those that are new and unfamiliar. Consider the following pattern:

Parent Function

quadratic: $y=x^{2}$
absolute value: $y=|x|$
cube root: $y=\sqrt[3]{x}$
general: $y=f(x)$

Transformation of Parent Function

$$
y=-2(x-3)^{2}+1
$$

$$
y=-2|x-3|+1
$$

$$
y=-2 \sqrt[3]{x-3}+1
$$

$$
y=-2 f(x-3)+1
$$

In each case, the transformation involves a horizontal shift right 3, a vertical reflection, a vertical stretch, and a vertical shift up 1 . Since the shifts are the same regardless of the initial function, we can generalize the results to any function $f(x)$.

General Function

$$
y=f(x)
$$

Transformed Function

$y=\underset{\uparrow}{a f}(x \pm h) \pm k$ vertical stretches and compressions

horizontal shift
h units, opposite k units, same direction of sign direction as sign

Also bear in mind that the graph will be reflected across the y-axis (horizontally) if x is replaced with $-x$. Use this illustration to complete Illustration 7. Rememberif the graph of a function is shifted, the individual points on the graph are likewise shifted.

ILLUSTRATION 7 - Graphing Transformations of a General Function

Given the graph of $f(x)$ shown in Figure AII.7, graph $g(x)=-f(x+1)-2$.
Solution For g, the graph of f is (1) shifted horizontally 1 unit left, (2) reflected across the x-axis, and (3) shifted vertically 2 units down. The final result is shown in Figure AII.8.

Figure All. 7

Figure All. 8

Solving Equations Graphically

At the heart of understanding graphical solutions to an equation is this basic definition: An equation is a statement that two expressions are equal for a certain input value (s). The linear equation $3(x-2)=x-8$ literally says that for some unknown input x, the expression $3(x-2)$ is equal to the expression $x-8$. While overly simplistic, if we were to solve this equation by trial and error, our method might involve systematically using various inputs, in a search for one that resulted in a like output for both expressions. Table AIII. 1 shows the solution to $3(x-2)=x-8$

Table AllI. 1

Inputs	$\mathbf{3}(\boldsymbol{x}-\mathbf{2})$	$\boldsymbol{x}-\mathbf{8}$
-4	-18	-12
-3	-15	-11
-2	-12	-10
-1	-9	-9
0	-6	-8
1	-3	-7
2	0	-6

To solve the equation $2 \sin \left(x-\frac{\pi}{6}\right)+1=1.5$ graphically, we begin by assigning Y_{1} to the left-hand expression, Y_{2} to the right-hand expression, and carefully entering them on the $Y=$ screen (Figure AIII.1). The TI-84 Plus is programmed with a "standard window" for trigonometric functions, which is preset as shown in Figure AIII. 2 (with the calculator in radian MODE), and accessed by pressing ZOOM 7:ZTrig. Note the range is $y \in[-4,4]$, the x-axis is scaled in units of $\frac{\pi}{2} \approx 1.57$, and the independent variable has a domain of roughly -2π to 2π. This should be adequate for the equation at hand, and pressing ENTER and TRACE produces the graph shown

Figure Alll. 1

Figure Alll. 2

in Figure AIII.3. To have the calculator locate a point of intersection, we press 2 nd CALC and select option 5 :intersect by pressing the number 5 or using the down arrow ∇ to access this option. We then press enter three times: The first " ENTER" selects the graph of Y_{1}, the second "ENTER" selects the graph of Y_{2}, and the third "ENTER" (the "GUESS" option) uses the x-value of the current cursor location

Figure Alll. 3

to begin its search for a point of intersection (this means we can help the calculator find a specific point of intersection if there is more than one showing). The calculator will "think" for a moment or two, then display x and y-coordinates of the point of intersection at the bottom of the screen (Figure AIII.4). For $2 \sin \left(x-\frac{\pi}{6}\right)+1=1.5$, the calculator finds a solution of $x \approx 0.7763$ (Figure AIII.4). To find the next point of intersection to the right, recall that the x-axis is scaled in units of $\frac{\pi}{2}$, so we can repeat the preceding sequence of keystrokes, except that we'll enter $x=\pi$ (the point of intersection occurs at roughly the second tick-mark) at the "GUESS" option. The calculator then finds a second solution at $x \approx 3.4125$ (Figure AIII.5). Use these ideas to find points of intersection where $x<0$.

Figure Alll. 5

Regression and Calculator Use

Collecting and analyzing data is a tremendously important mathematical endeavor, having applications throughout business, industry, science, and government. The link between classroom mathematics and real-world mathematics is called a regression, in which we attempt to find an equation that will act as a model for the raw data. In this appendix, we focus on linear and quadratic equation models.

A. Scatter-Plots and Positive/Negative Association

You can hardly pick up a newspaper or magazine without noticing it contains a large volume of data presented in graphs, charts, and tables. In addition, there are many simple experiments or activities that enable you to collect your own data. We begin analyzing the collected data using a scatter-plot, which is simply a graph of all of the ordered pairs in a data set. Often, real data (sometimes called raw data) is not very "well behaved" and the points may be somewhat scattered-the reason for the name.

Positive and Negative Associations

Earlier we noted that lines with positive slope rise from left to right, while lines with negative slope fall from left to right. We can extend this idea to the data from a scatterplot. The data points in Illustration 1A seem to rise as you move from left to right, with larger input values generally resulting in larger outputs. In this case, we say there is a positive association between the variables. If the data seems to decrease or fall as you move left to right, we say there is a negative association.

ILLUSTRATION 1A $>$ Drawing a Scatter-Plot and Observing Associations

The ratio of the federal debt to the total population is known as the per capita debt. The per capita debt of the United States is shown in the table for the odd-numbered years from 1997 to 2007. Draw a scatter-plot of the data and state whether the association is positive or negative.

Source: Data from the Bureau of Public Debt at www.publicdebt.treas.gov

Year	Per Capita Debt (\$1000s)
1997	20.0
1999	20.7
2001	20.5
2003	23.3
2005	27.6
2007	30.4

Solution $>$ Since the amount of debt depends on the year, year is the input x and per capita debt is the output y. Scale the x-axis from 1997 to 2007 and the y-axis from 20 to 30 to comfortably fit the data (the "squiggly lines," near the 20 and 1997 in the graph are used to show that some initial values have been skipped). The graph indicates a positive association between the variables, meaning the debt is generally increasing as time goes on.

ILLUSTRATION 1B Drawing a Scatter-Plot and Observing Associations

A cup of coffee is placed on a table and allowed to cool. The temperature of the coffee is measured every 10 min and the data are shown in the table. Draw the scatter-plot and state whether the association is positive or negative.

Elapsed Time (minutes)	Temperature $\left({ }^{\mathbf{}} \mathbf{F}\right)$
0	110
10	89
20	76
30	72
40	71

Solution - Since temperature depends on cooling time, time is the input x and temperature is the output y. Scale the x-axis from 0 to 40 and the y-axis from 70 to 110 to comfortably fit the data. As you see in the figure, there is a negative association between the variables, meaning the temperature decreases over time.

B. Scatter-Plots and Linear/Nonlinear Associations

The data in Illustration 1A had a positive association, while the association in Illustration 1B was negative. But the data from these examples differ in another important way. In Illustration 1A, the data seem to cluster about an imaginary line. This indicates a linear equation model might be a good approximation for the data, and we say there is a linear association between the variables. The data in Illustration 1B could not accurately be modeled using a straight line, and we say the variables time and cooling temperature exhibit a nonlinear association.

ILLUSTRATION 2 Drawing a Scatter-Plot and Observing Associations

A college professor tracked her annual salary for 2002 to 2009 and the data are shown in the table. Draw the scatter-plot and determine if there is a linear or nonlinear association between the variables. Also state whether the association is positive, negative, or cannot be determined.

- B. You've just learned how to use a scatter-plot to identify linear and nonlinear associations

Year	Salary $(\$ 1000 s)$
2002	30.5
2003	31
2004	32
2005	33.2
2006	35.5
2007	39.5
2008	45.5
2009	52

Solution - Since salary earned depends on a given year, year is the input x and salary is the output y. Scale the x-axis from 1996 to 2005, and the y-axis from 30 to 55 to comfortably fit the data. A line doesn't seem to model the data very well, and the association appears to be nonlinear. The data rises from left to right, indicating a positive association between the variables. This makes good sense, since we expect our salaries to increase over time.

Table AIV. 1

Year (\boldsymbol{x}) $(\mathbf{1 9 8 0} \rightarrow \mathbf{0})$	Time (\boldsymbol{y}) $(\mathbf{s e c})$
0	231
4	231
8	227
12	225
16	228
20	221
24	223

WORTHY OF NOTE

As a rule of thumb, the tic marks for Xscl can be set by mentally estimating $\frac{|X \max |+|X \min |}{10}$ and using a convenient number in the neighborhood of the result (the same goes for Yscl). As an alternative to manually setting the window, the Z00M 9:ZoomStat feature can be used.

C. Linear Regression and the Line of Best Fit

There is actually a sophisticated method for calculating the equation of a line that best fits a data set, called the regression line. The method minimizes the vertical distance between all data points and the line itself, making it the unique line of best fit. Most graphing calculators have the ability to perform this calculation quickly. The process involves these steps: (1) clearing old data; (2) entering new data; (3) displaying the data; (4) calculating the regression line; and (5) displaying and using the regression line. We'll illustrate by finding the regression line for the data shown in Table AIV.1, which gives the men's 400-m freestyle gold medal times (in seconds) for the 1980 through the 2004 Olympics, with $1980 \rightarrow 0$.

Step 1: Clear Old Data

To prepare for the new data, we first clear out any old data. Press the stat key and select option 4:CIrList. This places the ClrList command on the home screen. We tell the calculator which lists to clear by pressing 2 nd 1 to indicate List1 (L1), then enter a comma using the \square key, and continue entering other lists we want to clear:

```
2nd
2 2nd
3 ENTER will clear List1 (L1), List2 (L2), and List3 (L3).
```


Step 2: Enter New Data

Press the STAT key and select option 1:Edit. Move the cursor to the first position of List1, and simply enter the data from the first column of Table AIV. 1 in order: 0 ENTER ENTER 8 ENTER, and so on. Then use the right arrow \square to navigate to List2, and enter the data from the second column: 231 ENTER 231 ENTER 227 ENTER , and so on. When finished, you should obtain the screen shown in Figure AIV.1.

Step 3: Display the Data

With the data held in these lists, we can now display the related ordered pairs on the coordinate grid. First press the $\mathbf{Y}=$ key and CLEAR any existing equations. Then press 2nd $Y=$ to access the "STATPLOTS" screen. With the cursor on 1:Plot1, press ENTER and be sure the options shown in Figure AIV. 2 are highlighted. If you need to make any changes, navigate the cursor to the desired option and press ENTER. Note the data in L1 ranges from 0 to 24, while the data in L2 ranges from 221 to 231 . This means an appropriate viewing window might be $[0,30]$ for the x-values, and [200, 250] for the y-values. Press the Window key and set up the window accordingly. After you're finished, pressing the GRAPH key should produce the graph shown in Figure AIV.3.

Step 4: Calculate the Regression Equation

To have the calculator compute the regression equation, press the STAT and \square keys to move the cursor over to the CALC options (see Figure AIV.4). Since it appears the data is best modeled by a linear equation, we choose option 4:LinReg $(\mathbf{a x}+\mathbf{b})$. Pressing the number 4 places this option

Figure AIV. 1

Figure AIV. 2

Figure AIV. 3

Figure AIV. 4

WORTHY OF NOTE

If the input variable is a unit of time, particularly the time in years, we often scale the data to avoid working with large numbers. For instance, if the data involved the cost of attending a major sporting event for the years 1980 to 2000, we would say 1980 corresponds to 0 and use input values of 0 to 20 (subtracting the smallest value from itself and all other values has the effect of scaling down the data). This is easily done on a graphing calculator. Simply enter the four-digit years in L1, then with the cursor in the header of L1—use the keystrokes

2nd 1 (L1) - 1980
ENTER and the data in this list automatically adjusts.
on the home screen, and pressing enter computes the values of a and b (the calculator automatically uses the values in L1 and L2 unless instructed otherwise). Rounded to hundredths, the linear regression model is $y=-0.38 x+231.18$ (Figure AIV.5).

Step 5: Display and Use the Results

Although graphing calculators have the ability to paste the regression equation directly into Y_{1} on the $Y=$ screen, for now we'll enter $Y_{1}=-0.38 x+231.18$ by hand. Afterward, pressing the GRAPH key will plot the data points (if Plot1 is still active) and graph the line. Your display screen should now look like the one in Figure AIV.6. The regression line is the best estimator for the set of data as a whole, but there will still be some difference between the values it generates and the values from the set of raw data (the output in Figure AIV. 6 shows the estimated time for the 1996 Olympics is 225.1 sec , while the actual time was 228 sec).

Figure AIV. 5

Figure AIV. 6

ILLUSTRATION $3-$ Using Regression to Model Employee Performance

Riverside Electronics reviews employee performance semiannually, and awards increases in their hourly rate of pay based on the review. The table shows Thomas' hourly wage for the last 4 yr (eight reviews). Find the regression equation for the data and use it to project his hourly wage for the year 2011, after his fourteenth review.
Solution Following the prescribed sequence produces the equation $y=0.48 x+9.09$. For $x=14$ we obtain $y=0.48(14)+9.09$ or a wage of $\$ 15.81$. According to this model, Thomas will be earning

Year (\boldsymbol{x})	Wage (\boldsymbol{y})
$(2004) 1$	$\$ 9.58$
2	$\$ 9.75$
$(2005) 3$	$\$ 10.54$
4	$\$ 11.41$
$(2006) 5$	$\$ 11.60$
6	$\$ 11.91$
$(2007) 7$	$\$ 12.11$
8	$\$ 13.02$

Y C. You've just learned how to use a linear regression to find the line of best fit $\$ 15.81$ per hour in 2011.

D. Quadratic Regression and the Parabola of Best Fit

Once the data have been entered, graphing calculators have the ability to find many different regression equations. The choice of regression depends on the context of the data, patterns formed by the scatter-plot, and/or some foreknowledge of how the data are related. Earlier we focused on linear regression equations. We now turn our attention to quadratic regression equations.

ILLUSTRATION 4A Drawing a Scatter－Plot to Sketch a Best－Fit Curve

Since 1990，the number of new books published each year has been growing at a rate that can be approximated by a quadratic function．The table shows the number of books published in the United States for selected years．Draw a scatter－plot and sketch an estimated parabola of best fit by hand．
Source：1998，2000，2002，and 2004 Statistical Abstract of the United States．

Year $(\mathbf{1 9 9 0} \rightarrow \mathbf{0})$	Books Published $(\mathbf{1 0 0 0})$
0	46.7
2	49.2
3	49.8
4	51.7
5	62.0
6	68.2
7	65.8
9	102.0
10	122.1

Solution Begin by drawing the scatter－plot，being sure to scale the axes appropriately．The data appear to form a quadratic pattern，and we sketch a parabola that seems to best fit the data（see graph）．

The regression abilities of a graphing calculator can be used to find a parabola of best fit and the steps are identical to those for linear regression．

ILLUSTRATION 4B－Calculating a Nonlinear Regression Model from a Data Set

Use the data from Example 4A to calculate a quadratic regression equation，then display the data and graph．How well does the equation match the data？
Solution Begain by entering the data in L1 and L2 as shown in Figure AIV．7．Press 2nd $Y=$ to be sure that Plot 1 is still active and is using L1 and L2 with the desired point type．Set the window size to comfortably fit the data（see upcoming Figure AIV．9－window size is indicated along the perimeter）．Finally，press STAT and the right

WORTHY OF NOTE

The TI－84 Plus can round all coefficients to any desired number of decimal places． For three decimal places， press MODE and change the Float setting to＂3．＂Also，be aware that there are addi－ tional methods for pasting the equation in Y_{1} ．
arrow \square to overlay the CALC option． The quadratic regression option is number 5：QuadReg．Pressing 5 places this option directly on the home screen．Lists L1 and L2 are the default lists，so pressing ENTER will have the calculator compute the regression equation for the data in L1 and L2．After＂chewing on the data＂for a short while，the calculator returns the regression equation in the form shown in Figure AIV．8．To maintain a higher degree of accuracy，we can actually paste the entire regression equation in Y_{1} ．

Figure AIV． 7

L1	Lz	L2	z
$\frac{3}{4}$	${ }^{49} 5$		
5	施品		
$\frac{8}{7}$	明宜		
10			

Figure AIV． 8

Recall the last operation using 2nd ENTER , and QuadReg should (re)appear. Then enter the function Y_{1} after the QuadReg option by pressing vars \square (Y-Vars) and ENTER (1:Function) and enter $\left(\mathrm{Y}_{1}\right)$. After pressing ENTER once again, the full equation is automatically pasted in Y_{1}. To compare this equation model with the data, simply press GRAPH and both the graph and plotted data will

Figure AIV. 9
135
 appear. The graph and data seem to match very well (Figure AIV.9).

ILLUSTRATION 4C $>$ Using a Regression Model to Predict Trends

Use the equation from Example 4B to answer the following questions: According to the function model, how many new books were published in 1991? If this trend continues, how many new books will be published in 2011?
Solution $>$ Since the year 1990 corresponds to 0 in this data set, we use an input value of 1 for 1991, and an input of 21 for 2011. Accessing the table (2nd GRAPH) feature and inputting 1 and 21 gives the screen shown. Approximately 47,000 new books were published in 1991, and about 436,000 will be published in the year 2011.

Miscellaneous Algebra Review

Figure AV. 1

The Pythagorean Theorem

Recall a right triangle is one that has a 90° angle. The longest side (opposite the right angle) is called the hypotenuse, while the other two sides are simply called "legs." The Pythagorean theorem is a formula that says if you add the square of each leg, the result will be equal to the square of the hypotenuse. Furthermore, we note the converse of this theorem is also true.

Pythagorean Theorem

1. For any right triangle with legs a, b and hypotenuse c,

$$
a^{2}+b^{2}=c^{2}
$$

2. For any triangle with sides a, b, and c, if $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.

A geometric interpretation of the theorem is given in the figure, which shows $3^{2}+4^{2}=5^{2}$.

The Distance Formula

For any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ not lying on a horizontal or vertical line, a right triangle can be formed as in Figure AV.1. Regardless of the triangle's orientation, the length of side a (the horizontal segment or base of the triangle) will have length $\left|x_{2}-x_{1}\right|$ units, with side b (the vertical segment or height) having length $\left|y_{2}-y_{1}\right|$ units. From the Pythagorean theorem, we see that $c^{2}=a^{2}+b^{2}$ corresponds to $c^{2}=\left(\left|x_{2}-x_{1}\right|\right)^{2}+\left(\left|y_{2}-y_{1}\right|\right)^{2}$. By taking the square root of both sides we obtain the length of the hypotenuse, which is identical to the distance between these two points: $c=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$. The result is called the distance formula, although it's most often written using \boldsymbol{d} for distance, rather than c. Note the absolute value bars are dropped from the formula, since the square of any quantity is always nonnegative. This also means that either point can be used as the initial point in the computation.

The Distance Formula

Given any two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, the straight line distance between them is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

ILLUSTRATION $1>$ Determining if Three Points Form a Right Triangle

Use the distance formula to determine if the following points are the vertices of a right triangle: $(-8,1),(-2,9)$, and $(10,0)$

Solution We begin by finding the distance between each pair of points, then attempt to apply the Pythagorean theorem.

$$
\begin{aligned}
& \text { For }\left(x_{1}, y_{1}\right)=(-8,1),\left(x_{2}, y_{2}\right)=(-2,9): \\
& \begin{array}{rlrl}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \text { For }\left(x_{2}, y_{2}\right)=(-2,9),\left(x_{3}, y_{3}\right)=(10,0): \\
& =\sqrt{[-2-(-8)]^{2}+(9-1)^{2}} & & =\sqrt{\left(x_{3}-x_{2}\right)^{2}+\left(y_{3}-y_{2}\right)^{2}} \\
& =\sqrt{6^{2}+8^{2}} & & =\sqrt{[10-(-2)]^{2}+(0-9)^{2}} \\
& =\sqrt{100}=10 & & =\sqrt{225}=15
\end{array}
\end{aligned}
$$

For $\left(x_{1}, y_{1}\right)=(-8,1),\left(x_{3}, y_{3}\right)=(10,0)$:

$$
\begin{aligned}
d & =\sqrt{\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}} \\
& =\sqrt{[10-(-8)]^{2}+(0-1)^{2}} \\
& =\sqrt{18^{2}+(-1)^{2}} \\
& =\sqrt{325}=5 \sqrt{13}
\end{aligned}
$$

Using the unsimplified form, we clearly see that $a^{2}+b^{2}=c^{2}$ corresponds to $(\sqrt{100})^{2}+(\sqrt{225})^{2}=(\sqrt{325})^{2}$, a true statement. Yes, the triangle is a right triangle.

Composition of Functions

The composition of functions is best understood by studying the "input/output" nature of a function. Consider $g(x)=x^{2}-3$. For $g(x)$ we might say, "inputs are squared, then decreased by three." In diagram form we have:

In many respects, a function box can be regarded as a very simple machine, running a simple program. It doesn't matter what the input is, this machine is going to square the input then subtract three.

ILLUSTRATION $2>$ Evaluating a Function

For $g(x)=x^{2}-3$, find
a. $g(-5)$
b. $g(5 t)$
c. $g(t-4)$

Solution a. $\quad g(x)=x^{2}-3 \quad$ original function

$$
\begin{array}{rlrl}
\text { input }-5 — & & \\
g(-5) & =(-5)^{2}-3 & & \text { square in } \\
& =25-3 & & \text { simplify } \\
& =22 & & \text { result }
\end{array}
$$

b. $\quad g(x)=x^{2}-3 \quad$ original function
input $5 t \longrightarrow \downarrow$

$$
\begin{array}{rlr}
g(5 t) & =(5 t)^{2}-3 \quad \text { square } \\
& =25 t^{2}-3 \quad \text { result }
\end{array}
$$

WORTHY OF NOTE

It's important to note that t and $t-4$ are two different, distinct values-the number represented by t, and a number four less than t. Examples would be 7 and 3 , 12 and 8 , as well as -10 and -14 . There should be nothing awkward or unusual about evaluating $g(t)$ versus evaluating $g(t-4)$ as in Illustration 2(c).
c. $\quad g(x)=x^{2}-3 \quad$ original function

$$
\begin{array}{rlrl}
\text { input } t-4 \longrightarrow \downarrow & & & \\
\qquad \begin{array}{rlr}
g(t-4) & & =(t-4)^{2}-3 \\
& & \\
& =t^{2}-8 t+16-3 & \\
& & \text { expare input, then subtract } 3 \\
& =t^{2}-8 t+13 & \\
\text { result }
\end{array}
\end{array}
$$

When the input value is itself a function (rather than a single number or variable), this process is called the composition of functions. The evaluation method is exactly the same, we are simply using a function input. Using a general function $g(x)$ and a function diagram as before, we illustrate the process in Figure AV.2.

The notation used for the composition of f with g is an open dot "o" placed between them, and is read, " f composed with g." The notation $(f \circ g)(x)$ indicates that $g(x)$ is an input for $f:(f \circ g)(x)=f[g(x)]$. If the order is reversed, as in $(g \circ f)(x)$, then $f(x)$ becomes the input for $g:(g \circ f)(x)=g[f(x)]$. Figure AV. 2 also helps us determine the domain of a composite function, in that the first function g can operate only if x is a valid input for g, and the second function f can operate only if $g(x)$ is a valid input for f. In other words, $(f \circ g)(x)$ is defined for all x in the domain of g, such that $g(x)$ is in the domain of f.

Try not to confuse the new "open dot" notation for the composition of functions, with the multiplication dot used to indicate the product of two functions: $(f \cdot g)(x)=(f g)(x)$ or the product of f with $g ;(f \circ g)(x)=f[g(x)]$ or f composed with g.

The Composition of Functions

Given two functions f and g, the composition of f with g is defined by

$$
(f \circ g)(x)=f[g(x)]
$$

The domain of the composition is all x in the domain of g for which $g(x)$ is in the domain of f.

In Figure AV.3, these ideas are displayed using mapping notation, as we consider the simple case where $g(x)=x$ and $f(x)=\sqrt{x}$.

Figure AV. 3

The domain of g (all real numbers) is shown within the red border, with g taking the negative inputs represented by x_{1} (light red), to a like-colored portion of the rangethe negative outputs $g\left(x_{1}\right)$. The nonnegative inputs represented by x_{2} (dark red) are also mapped to a like-colored portion of the range-the nonnegative outputs $g\left(x_{2}\right)$. While the range of g is also all real numbers, function f can only use the nonnegative inputs represented by $g\left(x_{2}\right)$. This restricts the domain of $(f \circ g)(x)$ to only the inputs from g, where $g(x)$ is in the domain of f.

ILLUSTRATION $3>$ Finding a Composition of Functions

Given $f(x)=\sqrt{x-4}$ and $g(x)=3 x+2$, find
a. $(f \circ g)(x)$
b. $(g \circ f)(x)$

Also determine the domain for each.

Solution

WORTHY OF NOTE

Illustration 3 shows that $(f \circ g)(x)$ is generally not equal to $(g \circ f)(x)$.
a. $f(x)=\sqrt{x-4}$ says "decrease inputs by 4 , and take the square root of the result."

$$
\begin{aligned}
(f \circ g)(x) & =f[g(x)] & & g(x) \text { is an input for } f \\
& =\sqrt{g(x)-4} & & \text { decrease input by 4, and take the square root of the result } \\
& =\sqrt{(3 x+2)-4} & & \text { substitute } 3 x+2 \text { for } g(x) \\
& =\sqrt{3 x-2} & & \text { result }
\end{aligned}
$$

While g is defined for all real numbers, f is defined only for nonnegative numbers. Since $f[g(x)]=\sqrt{3 x-2}$, we need $3 x-2 \geq 0, x \geq \frac{2}{3}$. In interval notation, the domain of $(f \circ g)(x)$ is $x \in\left[\frac{2}{3}, \infty\right)$.
b. The function g says "inputs are multiplied by 3 , then increased by $2 . "$

$$
\begin{aligned}
(g \circ f)(x) & =g[f(x)] & & f(x) \text { is an input for } g \\
& =3 f(x)+2 & & \text { multiply input by } 3, \text { then increase by } 2 \\
& =3 \sqrt{x-4}+2 & & \text { substitute } \sqrt{x-4} \text { for } f(x)
\end{aligned}
$$

For $g[f(x)], g$ can accept any real number input, but f can supply only those where $x \geq 4$. The domain of $(g \circ f)(x)$ is $x \in[4, \infty)$.

Selected Proofs

Proof of Heron's Formula Using Algebra

Note that $\sqrt{a^{2}-d^{2}}=h=\sqrt{c^{2}-e^{2}}$. It follows that

$$
\begin{aligned}
\sqrt{a^{2}-d^{2}} & =\sqrt{c^{2}-e^{2}} \\
a^{2}-d^{2} & =c^{2}-e^{2} \\
a^{2}-(b-e)^{2} & =c^{2}-e^{2} \\
a^{2}-b^{2}+2 b e-e^{2} & =c^{2}-e^{2} \\
a^{2}-b^{2}-c^{2} & =-2 b e \\
\frac{b^{2}+c^{2}-a^{2}}{2 b} & =e
\end{aligned}
$$

This shows: $\quad A=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} b \sqrt{c^{2}-e^{2}} \\
& =\frac{1}{2} b \sqrt{c^{2}-\left(\frac{b^{2}+c^{2}-a^{2}}{2 b}\right)^{2}} \\
& =\frac{1}{2} b \sqrt{c^{2}-\left(\frac{b^{4}+2 b^{2} c^{2}-2 a^{2} b^{2}-2 a^{2} c^{2}+a^{4}+c^{4}}{4 b^{2}}\right)}
\end{aligned}
$$

$$
=\frac{1}{2} b \sqrt{\frac{4 b^{2} c^{2}}{4 b^{2}}-\left(\frac{b^{4}+2 b^{2} c^{2}-2 a^{2} b^{2}-2 a^{2} c^{2}+a^{4}+c^{4}}{4 b^{2}}\right)}
$$

$$
=\frac{1}{2} b \sqrt{\frac{4 b^{2} c^{2}-b^{4}-2 b^{2} c^{2}+2 a^{2} b^{2}+2 a^{2} c^{2}-a^{4}-c^{4}}{4 b^{2}}}
$$

$$
=\frac{1}{4} \sqrt{2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}-a^{4}-b^{4}-c^{4}}
$$

$$
=\frac{1}{4} \sqrt{\left[(a+b)^{2}-c^{2}\right]\left[c^{2}-(a-b)^{2}\right]}
$$

$$
=\frac{1}{4} \sqrt{(a+b+c)(a+b-c)(c+a-b)(c-a+b)}
$$

From this point, the conclusion of the proof is the same as the trigonometric development found on page 335 .

Proof that $\mathbf{u} \cdot \mathbf{v}=\operatorname{comp}_{\mathbf{v}} \mathbf{u} \times|\mathrm{v}|$

Consider the vectors in the figure shown, which form a triangle. Applying the Law of Cosines to this triangle yields:

$$
|\mathbf{u}-\mathbf{v}|^{2}=|\mathbf{u}|^{2}+|\mathbf{v}|^{2}-2|\mathbf{u}||\mathbf{v}| \cos \theta
$$

Using properties of the dot product (page 365), we can rewrite the left-hand side as follows:

$$
\begin{aligned}
|\mathbf{u}-\mathbf{v}|^{2} & =(\mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v}) \\
& =\mathbf{u} \cdot \mathbf{u}-\mathbf{u} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{v} \\
& =|\mathbf{u}|^{2}-2 \mathbf{u} \cdot \mathbf{v}+|\mathbf{v}|^{2}
\end{aligned}
$$

Substituting the last expression for $|\mathbf{u}-\mathbf{v}|^{2}$ from the Law of Cosines gives

$$
\begin{aligned}
|\mathbf{u}|^{2}-2 \mathbf{u} \cdot \mathbf{v}+|\mathbf{v}|^{2} & =|\mathbf{u}|^{2}+|\mathbf{v}|^{2}-2|\mathbf{u}||\mathbf{v}| \cos \theta \\
-2 \mathbf{u} \cdot \mathbf{v} & =-2|\mathbf{u}||\mathbf{v}| \cos \theta \\
\mathbf{u} \cdot \mathbf{v} & =|\mathbf{u}||\mathbf{v}| \cos \theta \\
& =|\mathbf{u}| \cos \theta \times|\mathbf{v}|
\end{aligned}
$$

Substituting comp ${ }_{\mathbf{v}} \mathbf{u}$ for $|\mathbf{u}| \cos \theta$ completes the proof:

$$
\mathbf{u} \cdot \mathbf{v}=\operatorname{comp}_{\mathbf{v}} \mathbf{u} \times|\mathbf{v}|
$$

Proof of De Moivre's Theorem:

$(\cos x+i \sin x)^{n}=\cos (n x)+i \sin (n x)$
For $n>0$, we proceed using mathematical induction.

1. Show the statement is true for $n=1$ (base case):

$$
\begin{aligned}
(\cos x+i \sin x)^{1} & =\cos (1 x)+i \sin (1 x) \\
\cos x+i \sin x & =\cos x+i \sin x
\end{aligned}
$$

2. Assume the statement is true for $n=k$ (induction hypothesis):

$$
(\cos x+i \sin x)^{k}=\cos (k x)+i \sin (k x)
$$

3. Show the statement is true for $n=k+1$:

$$
\begin{aligned}
(\cos x+i \sin x)^{k+1} & =(\cos x+i \sin x)^{k}(\cos x+i \sin x)^{1} \\
& =[\cos (k x)+i \sin (k x)](\cos x+i \sin x) \quad \text { induction hypothesis } \\
& =\cos (k x) \cos x-\sin (k x) \sin x+i[\cos (k x) \sin x+\sin (k x) \cos x] \quad \text { F-0-I-L } \\
& =\cos [(k+1) x]+i \sin [(k+1) x] \quad \checkmark \quad \text { sum/difference identities }
\end{aligned}
$$

By the principle of mathematical induction, the statement is true for all positive integers. For $n<0$ (the theorem is obviously true for $n=0$), consider a positive integer m, where $n=-m$.

$$
\begin{array}{rlrl}
(\cos x+i \sin x)^{n} & =(\cos x+i \sin x)^{-m} & \\
& =\frac{1}{(\cos x+i \sin x)^{m}} & & \text { negative exponent property } \\
& =\frac{1}{\cos (m x)+i \sin (m x)} & & \text { DeMoivre's theorem for } n>0 \\
& =\cos (m x)-i \sin (m x) & & \text { multiply numerator and denominator by } \\
\cos (m x)-i \sin (m x) \text { and simplify } \\
& =\cos (-m x)+i \sin (-m x) & & \text { even/odd identities } \\
& =\cos (n x)+i \sin (n x) & n=-m
\end{array}
$$

Families of Polar Curves

Circles and Spiral Curves

Roses: $r=a \sin (n \theta)$ (illustrated here) and $r=a \cos (n \theta)$

Four-petal rose $r=a \sin (2 \theta)$

Three-petal rose $r=a \sin (3 \theta)$

Eight-petal rose $r=a \sin (4 \theta)$

Five-petal rose $r=a \sin (5 \theta)$

If n is odd \rightarrow there are n petals, if n is even \rightarrow there are $2 n$ petals.
$|a|$ represents the maximum distance from the origin
(the radius of a circumscribed circle)
Limaçons: $r=a+b \sin \theta$ (illustrated here) and $r=a+b \cos \theta$

Limaçon
(inner loop if $|a|<|b|$)
$r=a+b \sin \theta$

Cardioid
(limaçon where $|a|=|b|$) $r=a+b \sin \theta$

Apple
(limaçon where $|a|>|b|$)
$r=a+b \sin \theta$

Eye-ball
(limaçon where $|a| \geq 2|b|$) $r=a+b \sin \theta$
$|a|+|b|$ represents the maximum distance from the origin (along the axis of symmetry)

Lemniscates: $r^{2}=a^{2} \sin (2 \theta)$ and $r^{2}=a^{2} \cos (2 \theta)$

Student Answer Appendix

CHAPTER 1

Exercises 1.1, pp. 7-10

1. Complementary; 180 3. coterminal; 360° 5. Answers will vary
2. $77.5^{\circ} ; 30.8^{\circ}$
3. 53° 11. 42.5°
4. 67.555°
5. 285.0025°
6. 45.7625°
7. $20^{\circ} 15^{\prime} 00^{\prime \prime}$
8. $67^{\circ} 18^{\prime} 25.2^{\prime \prime}$
9. $275^{\circ} 19^{\prime} 48^{\prime \prime}$
10. $5^{\circ} 27^{\prime} 9^{\prime \prime}$ 27. $77^{\circ} 15^{\prime} \quad$ 29. $90^{\circ} 49^{\prime} 36^{\prime \prime} \quad$ 31. $0^{\circ} 56^{\prime} 08^{\prime \prime}$
11. $47^{\circ} 59^{\prime} 59^{\prime \prime}$
12. $-645^{\circ},-285^{\circ}, 435^{\circ}, 795^{\circ}$
13. $-765^{\circ},-405^{\circ}, 315^{\circ}, 675^{\circ}$
14. 65°
15. -130°
16. 80°
17. $5 \sqrt{2} \mathrm{~cm}$
18. $6 \mathrm{ft}, 6 \mathrm{ft}$
19. 10 mm 51. $4 \sqrt{2} \mathrm{yd}, 4 \sqrt{2} \mathrm{yd}$
20. $3 \sqrt{3} \mathrm{~mm}, 6 \mathrm{~mm} \quad$ 55. $\frac{7}{2} \mathrm{in}$., $\frac{7 \sqrt{3}}{2}$ in.
21. $2 \sqrt{3} \mathrm{~cm}, 4 \sqrt{3} \mathrm{~cm}$ 59. $41 \sqrt{2} \mathrm{ft} \approx 58 \mathrm{ft}+10 \mathrm{ft}=68 \mathrm{ft}$
22. 67.555°
23. $\frac{25 \sqrt{3}}{2}$
24. a. 56° b. 0.7 sec
25. $35^{\circ} 33^{\prime} 27^{\prime \prime} \mathrm{S}, 58^{\circ} 3^{\prime} 18^{\prime \prime} \mathrm{W}$ 69. $\mathrm{No} ; 180^{\circ}, 540^{\circ}$ 71. a. 1000 m b. 1000 m

26. $50 \sqrt{2}$ or about 70.7 mi apart 75. $\frac{\sqrt{91}}{3} \mathrm{in}$.

Exercises 1.2, pp. 14-19

1. sides; acute; right; obtuse 3. capital; opposite; lowercase
2. Answers will vary. 7. b 9. d 11. g 13. e 15. 69°
$\begin{array}{lll}\text { 17. } 25^{\circ} & \text { 19. } C=25^{\circ} & \text { 21. } C=65.5^{\circ}\end{array} \quad$ 23. $C=38^{\circ} 10^{\prime}$
3. $C=43^{\circ} 21^{\prime} 51^{\prime \prime} \quad$ 27. $A=27^{\circ}, C=60^{\circ}$
4. $A=102^{\circ}, B=14^{\circ}, C=64^{\circ} \quad$ 31. $A=51^{\circ}, B=53^{\circ}, C=76^{\circ}$
5. $A=26^{\circ}, B=82^{\circ} \quad$ 35. $A=61^{\circ}, B=83^{\circ}, C=36^{\circ}$
6. $A=41^{\circ}, B=98^{\circ}, C=41^{\circ}$ 39. $A=60^{\circ}, B=90^{\circ}, C=30^{\circ}$
7. $c=85^{\circ} ; a=121 \mathrm{dm}, b=89 \mathrm{dm}, c=144 \mathrm{dm}$
8. $c=38^{\circ} ; a=7.4 \mathrm{ft}, b=4.7 \mathrm{ft}, c=4.7 \mathrm{ft}$
9. $C=15^{\circ} ; a=2 \sqrt{2}$ in., $b=\sqrt{3}+1$ in., $c=\sqrt{3}-1$ in.
10. No, $19+16<40$ 49. 62.5 m 51. $30 \mathrm{~m} \quad$ 53. 11 m 55. $9 / 5^{\prime \prime}$
11. $\frac{4}{5}$ in
12. $x=6 \mathrm{~m}$
13. $x=6 \mathrm{ft} ; 24 \mathrm{ft}, 7 \mathrm{ft}$
14. $x=2,1,4,3,12$
15. $h \approx 7.06 \mathrm{~cm} ; m \approx 3.76 \mathrm{~cm} ; n \approx 13.24 \mathrm{~cm}$ 67. 21 m 69. 555 ft 71. 18.8 cm 73. 960 mi 75. Answers will vary. 77. Answers will vary. 79. $84^{\circ} 16^{\prime} 30^{\prime \prime}$ 81. 287° 83. $\frac{5}{\sqrt{2}} \mathrm{~cm}$

Mid-Chapter Check, pp. 19-20

1. $36.11^{\circ} \mathrm{N}, 115.08^{\circ} \mathrm{W} \quad$ 2. $\frac{28 \sqrt{3}}{3}$ in. $\frac{14 \sqrt{3}}{3}$ in. 3. a. $378^{\circ},-342^{\circ}$
b. $253^{\circ},-467^{\circ}$ 4. a. 51° b. 16.3° c. $35^{\circ} 44^{\prime} 21^{\prime \prime} \quad$ d. $90^{\circ}-x$
2. $B=65^{\circ}, C=55^{\circ}$ 6. $3 \sqrt{2} \approx 4.24 \mathrm{ft}$ 7. $R=21^{\circ}, S=111^{\circ}, T=48^{\circ}$
3. 4.1 mm 9. $x=6$ in. 10. 8.6 ft

Reinforcing Basic Concepts, pp. 20-21
Exercise 1: $2(\sqrt{6}-\sqrt{2}) \mathrm{cm}$
Exercise 2: $3(\sqrt{6}+\sqrt{2})^{\prime \prime}$
Exercise 3: $\frac{20}{\sqrt{6}+\sqrt{2}} \mathrm{ft}$

Exercise 4: $\frac{28}{\sqrt{6}-\sqrt{2}} \mathrm{~m}$
Exercise 5: 1 mm
Exercise 6: 1 yd

Exercises 1.3, pp. 28-31

1. origin; x-axis 3. $\cos \theta ; \sin \theta ; \tan \theta ; \frac{r}{x} ; \frac{r}{y} ; \frac{x}{y}$
2. Answers will vary.
3. $y=\frac{5}{4} x,[0, \infty)$, QI \quad 9. $y=\sqrt{3} x,(-\infty, 0]$, QIII
4. $y=-\frac{5}{3} x,[0, \infty)$, QIV 13. $y=-\frac{6}{5} x,(-\infty, 0]$, QII
5. $(-2,-1),(-4,-2), \frac{1}{2}, 2$
6. $(1,3),(2,6), 3, \frac{1}{3}$
7. $(-2,3),(-4,6),-\frac{3}{2},-\frac{2}{3}$
8. $(-3,-4),(-6,-8), \frac{4}{3}, \frac{3}{4}$
9. $(7,-2),(14,-4),-\frac{2}{7},-\frac{7}{2}$
10. $\sin \theta=\frac{15}{17}, \csc \theta=\frac{17}{15}, \cos \theta=\frac{8}{17}, \sec \theta=\frac{17}{8}, \tan \theta=\frac{15}{8}$,
$\cot \theta=\frac{8}{15}$
11. $\sin \theta=\frac{21}{29}, \csc \theta=\frac{29}{21}, \cos \theta=\frac{-20}{29}$,
$\sec \theta=\frac{-29}{20}, \tan \theta=\frac{-21}{20}, \cot \theta=\frac{-20}{21}$
12. $\sin \theta=\frac{-\sqrt{2}}{2}, \csc \theta=\frac{-2}{\sqrt{2}}, \cos \theta=\frac{\sqrt{2}}{2}$,
$\sec \theta=\frac{2}{\sqrt{2}}, \tan \theta=-1, \cot \theta=-1$
13. $\sin \theta=\frac{1}{2}, \csc \theta=2, \cos \theta=\frac{\sqrt{3}}{2}$,
$\sec \theta=\frac{2}{\sqrt{3}}, \tan \theta=\frac{1}{\sqrt{3}}, \cot \theta=\sqrt{3}$
14. $\sin \theta=\frac{4}{\sqrt{17}}, \csc \theta=\frac{\sqrt{17}}{4}, \cos \theta=\frac{1}{\sqrt{17}}$, $\sec \theta=\sqrt{17}, \tan \theta=4, \cot \theta=\frac{1}{4}$
15. $\sin \theta=\frac{-2}{\sqrt{13}}, \csc \theta=\frac{-\sqrt{13}}{2}, \cos \theta=\frac{-3}{\sqrt{13}}$, $\sec \theta=\frac{-\sqrt{13}}{3}, \tan \theta=\frac{2}{3}, \cot \theta=\frac{3}{2}$
16. $\sin \theta=\frac{6}{\sqrt{61}}, \csc \theta=\frac{\sqrt{61}}{6}, \cos \theta=\frac{-5}{\sqrt{61}}$, $\sec \theta=\frac{-\sqrt{61}}{5}, \tan \theta=\frac{-6}{5}, \cot \theta=\frac{-5}{6}$
17. $\sin \theta=\frac{-2 \sqrt{5}}{\sqrt{21}}, \csc \theta=-\frac{\sqrt{21}}{2 \sqrt{5}}, \cos \theta=\frac{1}{\sqrt{21}}$,
$\sec \theta=\sqrt{21}, \tan \theta=-2 \sqrt{5}, \cot \theta=\frac{-1}{2 \sqrt{5}}$
18.

$(4,3): \sin \theta=\frac{3}{5}$ $(-4,-3): \sin \theta=-\frac{3}{5}$
$\cos \theta=\frac{4}{5}$
$\cos \theta=-\frac{4}{5}$
$\tan \theta=\frac{3}{4}$
43.

$(-3, \sqrt{3}): \sin \theta=\frac{1}{2}$
$\cos \theta=-\frac{\sqrt{3}}{2}$
$\tan \theta=-\frac{1}{\sqrt{3}}$
$\tan \theta=\frac{3}{4}$

QII/QIV;
QI/III;
$(3,-\sqrt{3}): \sin \theta=-\frac{1}{2}$
$\cos \theta=\frac{\sqrt{3}}{2}$
$\tan \theta=-\frac{1}{\sqrt{3}}$
45. QII
47. QII
49. positive
51. negative
53. negative
55. $x=4, y=-3, r=5$; QIV; $\sin \theta=\frac{-3}{5}, \csc \theta=\frac{-5}{3}, \cos \theta=\frac{4}{5}$, $\sec \theta=\frac{5}{4}, \tan \theta=\frac{-3}{4}, \cot \theta=\frac{-4}{3}$
57. $x=-12, y=-35, r=37$; QIII; $\sin \theta=\frac{-35}{37}, \csc \theta=\frac{-37}{35}$,
$\cos \theta=\frac{-12}{37}, \sec \theta=\frac{-37}{12}, \tan \theta=\frac{35}{12}, \cot \theta=\frac{12}{35}$
59. $x=2 \sqrt{2}, y=1, r=3$; $\mathrm{QI} ; \sin \theta=\frac{1}{3}, \csc \theta=3, \cos \theta=\frac{2 \sqrt{2}}{3}$,
$\sec \theta=\frac{3}{2 \sqrt{2}}, \tan \theta=\frac{1}{2 \sqrt{2}}, \cot \theta=2 \sqrt{2}$
61. $x=-\sqrt{15}, y=-7, r=8$; QIII; $\sin \theta=\frac{-7}{8}, \csc \theta=\frac{-8}{7}$,
$\cos \theta=\frac{-\sqrt{15}}{8}, \sec \theta=-\frac{8}{\sqrt{15}}, \tan \theta=\frac{7}{\sqrt{15}}, \cot \theta=\frac{\sqrt{15}}{7}$
63. $x=0, y=k ; k>0 ; r=|k|$;
$\sin 90^{\circ}=\frac{k}{k}, \cos 90^{\circ}=\frac{0}{k}, \tan 90^{\circ}=\frac{k}{0}$,
$\sin 90^{\circ}=1, \cos 90^{\circ}=0, \tan 90^{\circ}$ undefined
$\csc 90^{\circ}=1, \sec 90^{\circ}$ undefined
$\cot 90^{\circ}=0$
65. $90^{\circ} \quad$ 67. 270° 69. 0° 71. 180° 73. QIV, negative
75. QIV, negative
77. QIV, negative
79. QI, positive 81. a. $3 / 5$, b. 1, c. Answers will vary.
83. $-2 / 3$
85. $3 / 10$ 87. $6 / 7$
89. $\sin \alpha=\frac{\sqrt{b^{2}-a^{2}}}{b}, \tan \alpha=\frac{\sqrt{b^{2}-a^{2}}}{a}, \sec \alpha=\frac{b}{a}$,
$\csc \alpha=\frac{b \sqrt{b^{2}-a^{2}}}{b^{2}-a^{2}}, \cot \alpha=\frac{a \sqrt{b^{2}-a^{2}}}{b^{2}-a^{2}}$
91. $\sin \theta=\frac{\sqrt{r_{1}^{2} r_{2}^{2}-\left(x_{1} x_{2}+y_{1} y_{2}\right)^{2}}}{r_{1} r_{2}}$, 93. a. 62.74°
b. $94^{\circ} 23^{\prime \prime}$ 95. $x=17, A=43^{\circ}, B=51^{\circ}, C=86^{\circ}$
97. $-813^{\circ},-453^{\circ}, 267^{\circ}, 627^{\circ}$

Exercises 1.4, pp. 35-37

1. $\sin \theta ; \sec \theta ; \cos \theta \quad$ 3. $\cos ^{2} \theta ; 1+\cot ^{2} \theta=\csc ^{2} \theta$
2. $\frac{1-\sin ^{2} \theta}{\sin \theta \sec \theta}$; Answers will vary.
3. Answers may vary;
$\tan \theta=\frac{\sec \theta}{\csc \theta} ; \frac{\sin \theta}{\cos \theta}=\frac{\sec \theta}{\csc \theta} ; \frac{1}{\cot \theta}=\frac{\sec \theta}{\csc \theta} ; \frac{1}{\cot \theta}=\frac{\sin \theta}{\cos \theta}$
4. $1=\sec ^{2} \theta-\tan ^{2} \theta ; \tan ^{2} \theta=\sec ^{2} \theta-1$;
$1=(\sec \theta+\tan \theta)(\sec \theta-\tan \theta) ; \tan \theta= \pm \sqrt{\sec ^{2} \theta-1}$
5. $\sin \theta \cot \theta=\sin \theta \frac{\cos \theta}{\underline{\sin \theta}}=\cos \theta$
6. $\sec ^{2} \theta \cot ^{2} \theta=\frac{1}{\cos ^{2} \theta} \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}=\csc ^{2} \theta$
7. $\cos \theta(\sec \theta-\cos \theta)=\cos \theta \sec \theta-\cos ^{2} \theta=$
$\cos \theta \frac{1}{\cos \theta}-\cos ^{2} \theta=1-\cos ^{2} \theta=\sin ^{2} \theta$
8. $\sin \theta(\csc \theta-\sin \theta)=1-\sin ^{2} \theta=\cos ^{2} \theta$
9. $\tan \theta(\csc \theta+\cot \theta)=\tan \theta \csc \theta+\tan \theta \cot \theta=$

$$
\frac{\sin \theta}{\cos \theta} \frac{1}{\sin \theta}+\frac{\sin \theta}{\cos \theta} \frac{\cos \theta}{\sin \theta}=\frac{1}{\cos \theta}+1=\sec \theta+1
$$

21. $\tan ^{2} \theta \csc ^{2} \theta-\tan ^{2} \theta=\tan ^{2} \theta\left(\csc ^{2} \theta-1\right)=1 ; \tan ^{2} \theta\left(\cot ^{2} \theta\right)=1$
22. $\frac{\sin \theta \cos \theta+\sin \theta}{\cos \theta+\cos ^{2} \theta}=\frac{\sin \theta(\cos \theta+1)}{\cos \theta(1+\cos \theta)}=\tan \theta ; \frac{\sin \theta}{\cos \theta}=\tan \theta$
23. $\frac{1+\sin \theta}{\cos \theta+\cos \theta \sin \theta}=\frac{(1)(1+\sin \theta)}{(\cos \theta)(1+\sin \theta)}=\frac{1}{\cos \theta}=\sec \theta$
24. $\frac{\sin \theta \tan \theta+\sin \theta}{\tan \theta+\tan ^{2} \theta}=\frac{\sin \theta(\tan \theta+1)}{\tan \theta(1+\tan \theta)}=\frac{\sin \theta}{\tan \theta}=$
$\frac{\sin \theta}{\sin \theta / \cos \theta}=\frac{\sin \theta \cos \theta}{\sin \theta}=\cos \theta$
25. $\frac{(\sin \theta+\cos \theta)^{2}}{\cos \theta}=\frac{\sin ^{2} \theta+2 \sin \theta \cos \theta+\cos ^{2} \theta}{\cos \theta}=$
$\frac{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta}{\cos \theta}=\frac{1+2 \sin \theta \cos \theta}{\cos \theta}=$ $\frac{1}{\cos \theta}+\frac{2 \sin \theta \cos \theta}{\cos \theta}=\sec \theta+2 \sin \theta$
26. $(1+\sin \theta)(1-\sin \theta)=1-\sin ^{2} \theta=\cos ^{2} \theta$
27. $\frac{(\csc \theta-\cot \theta)(\csc \theta+\cot \theta)}{\tan \theta}=\frac{\csc ^{2} \theta-\cot ^{2} \theta}{\tan \theta}=\frac{1}{\tan \theta}=\cot \theta$
28. $\frac{\cos ^{2} \theta}{\sin \theta}+\frac{\sin \theta}{1}=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta}=\frac{1}{\sin \theta}=\csc \theta$
29. $\frac{\tan \theta}{\csc \theta}-\frac{\sin \theta}{\cos \theta}=\frac{\tan \theta \cos \theta-\sin \theta \csc \theta}{\csc \theta \cos \theta}=\frac{\frac{\sin \theta}{\cos \theta} \cos \theta-1}{\frac{1}{\sin \theta} \cos \theta}=\frac{\sin \theta-1}{\cot \theta}$
30. $\frac{\sec \theta}{\sin \theta}-\frac{\csc \theta}{\sec \theta}=\frac{\sec ^{2} \theta-\sin \theta \csc \theta}{\sin \theta \sec \theta}=\frac{\sec ^{2} \theta-1}{\sin \theta \frac{1}{\cos \theta}}=\frac{\tan ^{2} \theta}{\tan \theta}=\tan \theta$
31. $\frac{\sin \theta}{ \pm \sqrt{1-\sin ^{2} \theta}}$
32. $\pm \sqrt{\frac{1}{\cot ^{2} \theta}+1}$
33. $\frac{ \pm \sqrt{1-\sin ^{2} \theta}}{\sin \theta}$
34. $\sin \theta=\frac{21}{29}, \tan \theta=-\frac{21}{20}, \sec \theta=-\frac{29}{20}, \csc \theta=\frac{29}{21}, \cot \theta=-\frac{20}{21}$
35. $\cos \theta=-\frac{8}{17}, \sin \theta=-\frac{15}{17}, \sec \theta=-\frac{17}{8}, \csc \theta=-\frac{17}{15}, \cot \theta=\frac{8}{15}$
36. $\cos \theta=\frac{x}{\sqrt{x^{2}+25}}, \sin \theta=\frac{5}{\sqrt{x^{2}+25}}, \tan \theta=\frac{5}{x}$,

$$
\sec \theta=\frac{\sqrt{x^{2}+25}}{x}, \csc \theta=\frac{\sqrt{x^{2}+25}}{5}
$$

53. $\cos \theta=-\frac{\sqrt{120}}{13}=-\frac{2 \sqrt{30}}{13}, \tan \theta=\frac{7}{2 \sqrt{30}}, \sec \theta=-\frac{13}{2 \sqrt{30}}$,

$$
\csc \theta=-\frac{13}{7}, \cot \theta=\frac{2 \sqrt{30}}{7}
$$

55. $\sin \theta=\frac{4 \sqrt{2}}{9}, \cos \theta=-\frac{7}{9}, \tan \theta=-\frac{4 \sqrt{2}}{7}$,

$$
\csc \theta=\frac{9}{4 \sqrt{2}}, \cot \theta=-\frac{7}{4 \sqrt{2}}
$$

57. $V=2\left(1-\cos ^{2} \theta\right)$
58. $\cos ^{3} \theta=(\cos \theta)\left(\cos ^{2} \theta\right)=(\cos \theta)\left(1-\sin ^{2} \theta\right)$
59. $\tan \theta+\tan ^{3} \theta=(\tan \theta)\left(1+\tan ^{2} \theta\right)=(\tan \theta)\left(\sec ^{2} \theta\right)$
60. $\tan ^{2} \theta \sec \theta-4 \tan ^{2} \theta=\left(\tan ^{2} \theta\right)(\sec \theta-4)$

$$
=(\sec \theta-4)\left(\tan ^{2} \theta\right)=(\sec \theta-4)\left(\sec ^{2}-1\right)
$$

$$
=(\sec \theta-4)(\sec \theta-1)(\sec \theta+1)
$$

65. $\cos ^{2} \theta \sin \theta-\cos ^{2} \theta=\left(\cos ^{2} \theta\right)(\sin \theta-1)$
$=\left(1-\sin ^{2} \theta\right)(\sin \theta-1)$
$=(1+\sin \theta)(1-\sin \theta)(\sin \theta-1)$
$=(1+\sin \theta)(1-\sin \theta)(-1)(1-\sin \theta)$
$=(-1)(1+\sin \theta)(1-\sin \theta)^{2}$
66. $\tan \theta=\frac{1+m_{1} m_{2}}{m_{2}-m_{1}} \quad$ 69. $\tan \theta=1$
67. $-2 \sin ^{4} \theta+\sqrt{3} \sin ^{3} \theta+2 \sin ^{2} \theta-\sqrt{3} \sin \theta$
$=\sin \theta\left(-2 \sin ^{3} \theta+\sqrt{3} \sin ^{2} \theta+2 \sin \theta-\sqrt{3}\right)$
$=\sin \theta\left[\left(-2 \sin ^{3} \theta+\sqrt{3} \sin ^{2} \theta\right)+(2 \sin \theta-\sqrt{3})\right]$
$=\sin \theta\left[-\sin ^{2} \theta(2 \sin \theta-\sqrt{3})+1(2 \sin \theta-\sqrt{3})\right]$
$=\sin \theta\left(1-\sin ^{2} \theta\right)(2 \sin \theta-\sqrt{3})$
$=\sin \theta\left(\cos ^{2} \theta\right)(2 \sin \theta-\sqrt{3})$
68. $\frac{7 \sqrt{2}}{2}$ in., $\frac{7 \sqrt{2}}{2}$ in.
69. no, $17+22<40$
70. right and isosceles

Summary and Concept Review, pp. 38-40

$\begin{array}{llll}\text { 1. } 42^{\circ} 56^{\prime} 11^{\prime \prime} & \text { 2. } 120^{\circ} 59^{\prime} 43^{\prime \prime} & \text { 3. } 147.61 \overline{3}^{\circ} & \text { 4. } 32^{\circ} 52^{\prime} 12^{\prime \prime}\end{array}$
5. $207^{\circ}+360^{\circ} k$; Answers will vary. 6. $-276^{\circ},-636^{\circ},-996^{\circ}$
7. approx. 692.82 yd 8. $7 \sqrt{2} \mathrm{~cm}$ 9. obtuse and isosceles
10. i and iii 11. 61° 12. $A=20^{\circ}, B=31^{\circ}, C=129^{\circ}$
13. $10.125 \times 13.5 \times 16.875 \quad$ 14. $57 \mathrm{ft} \quad \mathbf{1 5} .3$ in., 21 in .
16. $y=\frac{3}{5} x$, QI
17. $\cos \theta=-\frac{\sqrt{10}}{10}, \sin \theta=-\frac{3 \sqrt{10}}{10}, \tan \theta=3, \sec \theta=-\sqrt{10}$,

$$
\csc \theta=-\frac{\sqrt{10}}{3}, \cot \theta=\frac{1}{3}
$$

18. a. $\cos \theta=-\frac{12}{37}, \sin \theta=\frac{35}{37}, \tan \theta=-\frac{35}{12}, \sec \theta=-\frac{37}{12}$,

$$
\csc \theta=\frac{37}{35}, \cot \theta=-\frac{12}{35} ;
$$

b. $\cos \theta=\frac{2 \sqrt{13}}{13}, \sin \theta=-\frac{3 \sqrt{13}}{13}, \tan \theta=-\frac{3}{2}, \sec \theta=\frac{\sqrt{13}}{2}$, $\csc \theta=-\frac{\sqrt{13}}{3}, \cot \theta=-\frac{2}{3}$
19. a. $x=4, y=-3, r=5$; $\mathrm{QIV} ; \sin \theta=-\frac{3}{5}$, $\tan \theta=-\frac{3}{4}, \sec \theta=\frac{5}{4}, \csc \theta=-\frac{5}{3}, \cot \theta=-\frac{4}{3}$
b. $x=5, y=-12, r=13$; QIV; $\cos \theta=\frac{5}{13}$,

$$
\sin \theta=-\frac{12}{13}, \sec \theta=\frac{13}{5}, \csc \theta=-\frac{13}{12}, \cot \theta=-\frac{5}{12}
$$

20. a. positive b. positive 21. a. undefined b. 0 c. 0 d. undefined
21. $\sin \theta(\csc \theta-\sin \theta)=\sin \theta \csc \theta-\sin \theta \sin \theta$

$$
\begin{aligned}
& =\sin \theta \frac{1}{\sin \theta}-\sin ^{2} \theta \\
& =1-\sin ^{2} \theta \\
& =\cos ^{2} \theta
\end{aligned}
$$

23. $\frac{\tan ^{2} \theta \csc \theta+\csc \theta}{\sec ^{2} \theta}=\frac{\csc \theta\left(\tan ^{2} \theta+1\right)}{\sec ^{2} \theta}$

$$
\begin{aligned}
& =\frac{\csc \theta \sec ^{2} \theta}{\sec ^{2} \theta} \\
& =\csc \theta
\end{aligned}
$$

24. $\frac{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{\csc \theta}$
$=\frac{\sec ^{2} \theta+\sec \theta \tan \theta-\sec \theta \tan \theta-\tan ^{2} \theta}{\csc \theta}$
$=\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\csc \theta}$
$=\frac{1+\tan ^{2} \theta-\tan ^{2} \theta}{\csc \theta}$
$=\frac{1}{\csc \theta}$
$=\sin \theta$
25. $\frac{\sec ^{2} \theta}{\csc \theta}-\sin \theta=\frac{\sec ^{2} \theta-\sin \theta \csc \theta}{\csc \theta}$

$$
=\frac{\sec ^{2} \theta-1}{\csc \theta}
$$

$$
=\frac{\tan ^{2} \theta}{\csc \theta}
$$

26. $\sin \theta=\frac{-35}{37}, \csc \theta=\frac{-37}{35}, \cot \theta=\frac{12}{35}, \tan \theta=\frac{35}{12}, \sec \theta=\frac{-37}{12}$
27. $\sin \theta=\frac{-4 \sqrt{6}}{25}, \csc \theta=\frac{-25}{4 \sqrt{6}}, \cot \theta=\frac{-23}{4 \sqrt{6}}, \tan \theta=-\frac{4 \sqrt{6}}{23}$, $\cos \theta=\frac{23}{25}$

Mixed Review, pp. 40-41

1. a. 15 cm ; b. $10 \sqrt{3}$ 3. $(-16,14),(-8,7)$
2. $220^{\circ} 48^{\prime} 50^{\prime \prime}$ 7. $12 \sqrt{2}$ in.; $60 \sqrt{2} \approx 84.9$ in.
3. a. QI b. QIV c. QIII d. QII 11. 86.915°
4. $\sin \theta=\frac{-8}{17}, \sec \theta=\frac{17}{15}, \cos \theta=\frac{15}{17}, \csc \theta=\frac{-17}{8}$,
$\tan \theta=\frac{-8}{15}, \cot \theta=\frac{-15}{8}$
5. $\csc \theta \tan \theta-\cos \theta=\frac{1}{\sin \theta} \frac{\sin \theta}{\cos \theta}-\cos \theta$

$$
=\frac{1}{\cos \theta}-\cos \theta=\frac{1-\cos ^{2} \theta}{\cos \theta}=\frac{\sin ^{2} \theta}{\cos \theta}
$$

17. $\cos \theta=-\frac{3 \sqrt{13}}{13}, \sin \theta=\frac{2 \sqrt{13}}{13}, \tan \theta=-\frac{2}{3}, \sec \theta=-\frac{\sqrt{13}}{3}$

$$
\cot \theta=-\frac{3}{2} \quad \text { 19. } \tan \theta=\frac{ \pm \sqrt{1-\cos ^{2} \theta}}{\cos \theta}
$$

Practice Test, pp. 41-42

1. complement: 55°; supplement: 145° 2. $\frac{17 \sqrt{2}}{2} \mathrm{~cm}$
2. $30^{\circ}+360^{\circ} k ; k \in Z \quad$ 4. $100.755^{\circ} ; 48^{\circ} 12^{\prime} 45^{\prime \prime}$
3. a. $430 \mathrm{mi} \quad$ b. $215 \sqrt{3} \approx 372 \mathrm{mi} \quad$ 6. a. $C=90^{\circ}$; right \quad b. $C=92^{\circ}$;
obtuse
4. 67.5°
5. a. $(0,96)$, b. 55.4 mm
6. $a=15 \mathrm{yd}, c=12 \mathrm{yd}, d=10 \mathrm{yd}$
7. 66 m
8. a. $y=-\frac{9}{7} x, \quad$ b. $(-14,18)$
9. $\cos \beta=-\frac{7 \sqrt{130}}{130}, \sin \beta=\frac{9 \sqrt{130}}{130}$,

$$
\begin{aligned}
& \tan \beta=-\frac{9}{7}, \sec \beta=-\frac{\sqrt{130}}{7} \\
& \csc \beta=\frac{\sqrt{130}}{9}, \cot \beta=-\frac{7}{9}
\end{aligned}
$$

13. $\sec \theta=\frac{5}{2}, \sin \theta=\frac{-\sqrt{21}}{5}$,
$\tan \theta=\frac{-\sqrt{21}}{2}, \csc \theta=\frac{-5}{\sqrt{21}}, \cot \theta=\frac{-2}{\sqrt{21}}$
14. $0 ; 1 ; 0$; undefined; 1 ; undefined
$1 ; 0$; undefined; 1 ; undefined; 0
$0 ;-1 ; 0$; undefined; -1 ; undefined
$-1 ; 0$; undefined; -1 ; undefined; 0
15. a. positive b. negative c. positive d. negative
16. $\csc \theta(\tan \theta+\sin \theta)=\csc \theta \tan \theta+\csc \theta \sin \theta$

$$
=\frac{1 \sin \theta}{\sin \theta \cos \theta}+\frac{1}{\sin \theta} \sin \theta=\frac{1}{\cos \theta}+1=\sec \theta+1
$$

17. $\frac{(\csc \theta-\cot \theta)(\csc \theta+\cot \theta)}{\sec \theta}=\frac{\csc ^{2} \theta-\cot ^{2} \theta}{\sec \theta}=\frac{1}{\sec \theta}=\cos \theta$
18. $\frac{\sin ^{3} \theta-\cos ^{3} \theta}{1+\cos \theta \sin \theta}=\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\sin \theta \cos \theta+\cos ^{2} \theta\right)}{1+\cos \theta \sin \theta}$

$$
=\frac{(\sin \theta-\cos \theta)(1+\sin \theta \cos \theta)}{1+\cos \theta \sin \theta}=\sin \theta-\cos \theta
$$

19. $\sin \theta=-\frac{55}{73}, \tan \theta=-\frac{55}{48}, \sec \theta=\frac{73}{48}$,

$$
\csc \theta=-\frac{73}{55}, \cot \theta=-\frac{48}{55}
$$

20. $\cot \theta=\frac{1}{ \pm \sqrt{\sec ^{2} \theta-1}}$

Strengthening Core Skills, pp. 43-44

Exercise 1: $\frac{1+\sin \theta}{\cos \theta}$
Exercise 2: $1+2 \sin \theta \cos \theta$
Exercise 3: $\cos \theta$
Exercise 4: $\frac{2 \cos \theta}{1-\cos ^{2} \theta}$
Exercise 5: $\frac{1-\cos \theta}{\sin \theta}$
Exercise 6: $2 \cos ^{2} \theta-1$

CHAPTER 2

Exercises 2.1, pp. 51-54

1. complementary; cotangent 3. opposite; hypotenuse
2. Answers will vary. 7. a. $\frac{2 \sqrt{3}}{3}$ b. 2 c. $\sqrt{3}$
$\begin{array}{llllll}\text { 9. } \begin{array}{llll}\text { a. } \frac{\sqrt{2}}{2} & \text { b. } \frac{\sqrt{2}}{2} & \text { c. } 1 & \text { 11. } \text { a. } \frac{4}{5}\end{array} \text { b. } \frac{3}{5} & \text { c. } \frac{3}{4}\end{array}$
3. a. $\frac{5}{3}$
b. $\frac{5}{4} \quad$ c. $\frac{3}{4}$
4. $\sin \theta=\frac{12}{13}, \csc \theta=\frac{13}{12}, \sec \theta=\frac{13}{5}, \tan \theta=\frac{12}{5}, \cot \theta=\frac{5}{12}$
5. $\cos \theta=\frac{13}{85}, \sec \theta=\frac{85}{13}, \cot \theta=\frac{13}{84}, \sin \theta=\frac{84}{85}, \csc \theta=\frac{85}{84}$
6. $\sin \theta=\frac{11}{5 \sqrt{5}}, \tan \theta=\frac{11}{2}, \csc \theta=\frac{5 \sqrt{5}}{11}, \cos \theta=\frac{2}{5 \sqrt{5}}, \sec \theta=\frac{5 \sqrt{5}}{2}$
7. $\cos \theta=\frac{\sqrt{5}}{5}, \sin \theta=\frac{2 \sqrt{5}}{5}, \sec \theta=\sqrt{5}, \csc \theta=\frac{\sqrt{5}}{2}, \cot \theta=\frac{1}{2}$
8. $\cos \theta=\frac{t \sqrt{t^{2}+1}}{t^{2}+1}, \sin \theta=\frac{\sqrt{t^{2}+1}}{t^{2}+1}, \tan \theta=\frac{1}{t}$,
$\sec \theta=\frac{\sqrt{t^{2}+1}}{t}, \csc \theta=\sqrt{t^{2}+1}$
9. $(21,20) \quad$ 27. $(\sqrt{5}, 2) \quad$ 29. $(6.5,7.2) \quad$ 31. $(a, b) \quad$ 33. $(55,48)$
$\begin{array}{llll}\text { 35. } 43^{\circ} & \text { 37. } 21^{\circ} & \text { 39. } x=10 & \text { 41. } x=8\end{array}$
10. $\frac{1}{2}, \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{2}, \frac{1}{2}, \sqrt{3}, 2, \frac{2 \sqrt{3}}{3}, \sqrt{3} \quad$ 45. $6+2 \sqrt{3}$
11. $7+4 \sqrt{3}$ 49. $\frac{\sin \alpha}{\sin \beta}=\frac{\sin \alpha}{\cos \alpha}=\tan \alpha$
12. $\sec ^{2} \alpha=\tan ^{2} \alpha+1=\cot ^{2} \beta+1$
13. $\tan ^{2} \alpha \sec ^{2} \beta-\cot ^{2} \beta=\tan ^{2} \alpha \csc ^{2} \alpha-\tan ^{2} \alpha$ $=\tan ^{2} \alpha\left(\csc ^{2} \alpha-1\right)=\tan ^{2} \alpha \cot ^{2} \alpha=1$
14. $7.2 \mathrm{ft} / \mathrm{sec}$
15. 3.75
16. 1.5
17. 0.8
18. a. $10 \sqrt{3} \mathrm{~cm}$
b. $\frac{\sqrt{3}}{3}$
19. $\cot u=\frac{x}{h}$

$$
\begin{aligned}
& x=h \cot u \\
& \cot v=\frac{x-d}{h} \\
& \cot v=\frac{h \cot u-d}{h} \\
& h \cot v=h \cot u-d \\
& d=h \cot u-h \cot v \\
& h=\frac{d}{\cot u-\cot v}
\end{aligned}
$$

67. $\frac{\sin \theta}{\tan ^{2} \theta}=\sin \theta \cot ^{2} \theta=\sin \theta \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{\cos ^{2} \theta}{\sin \theta}=\cot \theta \cos \theta$
68. $14.4 \mathrm{~m} \quad$ 71. $\frac{25}{29}$

Exercises 2.2, pp. 57-60

1. $\theta=\tan ^{-1} x$ 3. Pythagorean; hypotenuse; $\tan ^{-1}$; angle
2. To find the measure of all three angles and all three sides.
3.

Angles	Sides
$\boldsymbol{A}=\mathbf{3 0}$	$a=98 \mathrm{~cm}$
$B=60^{\circ}$	$b=98 \sqrt{3} \mathrm{~cm}$
$\boldsymbol{C}=\mathbf{9 0}$	$\boldsymbol{c}=\mathbf{1 9 6} \mathbf{~ c m}$

11.

Angles	Sides
$\boldsymbol{A}=\mathbf{2 2}^{\circ}$	$\boldsymbol{a}=\mathbf{1 4} \mathbf{~ m}$
$B=68^{\circ}$	$b \approx 34.65 \mathrm{~m}$
$\boldsymbol{C}=\mathbf{9 0}^{\circ}$	$c \approx 37.37 \mathrm{~m}$

verified
15.

Angles	Sides
$\boldsymbol{A}=\mathbf{6 5}^{\circ}$	$\boldsymbol{a}=\mathbf{6 2 5} \mathrm{mm}$
$B=25^{\circ}$	$b \approx 291.44 \mathrm{~mm}$
$\boldsymbol{C}=\mathbf{9 0}^{\circ}$	$c \approx 689.61 \mathrm{~mm}$

verified

9. | Angles | Sides |
| :--- | :--- |
| $A=45^{\circ}$ | $a=9.9 \mathrm{~mm}$ |
| $\boldsymbol{B}=\mathbf{4 5 ^ { \circ }}$ | $\boldsymbol{b}=\mathbf{9 . 9} \mathbf{~ m m}$ |
| $\boldsymbol{C}=\mathbf{9 0}$ | |
10.

Angles	Sides
$A=32^{\circ}$	$\boldsymbol{a}=\mathbf{5 . 6} \mathbf{~ m i}$
$\boldsymbol{B}=\mathbf{5 8}^{\circ}$	$b \approx 8.96 \mathrm{mi}$
$\boldsymbol{C}=\mathbf{9 0}^{\circ}$	$c \approx 10.57 \mathrm{mi}$

verified
$\begin{array}{llll}\text { 17. } 0.4540 & \text { 19. } 0.8391 & \text { 21. } 1.3230 & \text { 23. } 0.9063\end{array}$
$\begin{array}{llllll}\text { 25. } 27^{\circ} & \text { 27. } 40^{\circ} & \text { 29. } 40.9^{\circ} & \text { 31. } 65^{\circ} & \text { 33. } 44.7^{\circ} & \text { 35. } 20.2^{\circ}\end{array}$ 37. 18.4° 39. 46.2° 41. 61.6° 43. 21.98 mm 45. 3.04 mi 47. 177.48 furlongs 49. $\theta \approx 11.0^{\circ}, \beta \approx 23.9^{\circ}, \gamma \approx 145.1^{\circ}$
51. approx. 386.0Ω
53. a. $875 \mathrm{~m} \quad$ b. 1200 m
c. $1485 \mathrm{~m} ; 36.1^{\circ}$

55. approx. 450 ft
57. a. approx. 20.2 cm for each side b. approx. 35.3°
59. $\tan v=\frac{h}{d}$

$$
d=\frac{h}{\tan v}
$$

$$
\tan u=\frac{h-x}{d}
$$

$$
\tan u=\frac{h-x}{\frac{h}{\tan v}}
$$

$$
\tan u=\frac{(h-x) \tan v}{h}
$$

$h \tan u=h \tan v-x \tan v$
$h(\tan v-\tan u)=x \tan v$
$h=\frac{x \tan v}{\tan v-\tan u}$
$\mathrm{h} \approx 253.45 \mathrm{~m}$
61. 132.715° 63. $4+2 \sqrt{2}$
65. 0.75

Mid-Chapter Check, pp. 60-61

1. $\sin \theta=\frac{5}{13}, \tan \theta=\frac{5}{12}, \sec \theta=\frac{13}{12}, \csc \theta=\frac{13}{5}, \cot \theta=\frac{12}{5}$
2. a. $\frac{4}{3}$
b. $\frac{5}{4}$ c. $\frac{5}{4}$ d. $\frac{4}{3}$
3. $\frac{\cos \beta}{\cos \alpha}=\frac{\sin \left(90^{\circ}-\beta\right)}{\cos \alpha}=\frac{\sin \alpha}{\cos \alpha}=\tan \alpha$
4.

a. 1.3270
b. 0.4756
c. 0.4756
d. 1
5.

Angles	Sides
$A=35^{\circ}$	$a \approx 16.80$
$\boldsymbol{B}=\mathbf{5 5}$	$\boldsymbol{b}=\mathbf{2 4}$
$\boldsymbol{C}=\mathbf{9 0 ^ { \circ }}$	$c \approx 29.30$

6.

$\cot 15^{\circ}=2+\sqrt{3}$, since $\cot 15^{\circ}=\tan (90-15)^{\circ}=\tan 75^{\circ}$
7.

Angles	Sides
$A \approx 26.6^{\circ}$	$a=\mathbf{7 f t}$
$B \approx 63.4^{\circ}$	$b=\mathbf{1 4} \mathbf{f t}$
$C=90^{\circ}$	$c \approx 15.7 \mathrm{ft}$

8.

$\boldsymbol{\theta}$	$\sin \boldsymbol{\theta}$	$\cos \boldsymbol{\theta}$	$\tan \boldsymbol{\theta}$	$\csc \boldsymbol{\theta}$	$\sec \boldsymbol{\theta}$	$\cot \boldsymbol{\theta}$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

9. 53° 10. 343.2 in. or $28 \mathrm{ft}, 7.2 \mathrm{in}$.

Reinforcing Basic Concepts, pp. 61-62

1. $70.4 \mathrm{~cm}^{2}$
2. $441.3 \mathrm{~mm}^{2}$
3. 2161.7 in. 2
4. $248.3 \mathrm{ft}^{2}$

Exercises 2.3, pp. 68-71

1. orientation; parallel 3. calculators; sine; cosine; tangent
2. Answers will vary.
3. 11 m 9. 14 m
4. $17 \mathrm{~m} \quad$ 13. 25 ft
5. $29 \mathrm{ft} \quad$ 17. 33 ft 19. a. 63°, b. 27° 21. a. 49°, b. 41°
6. a. $23^{\circ} 31^{\prime}$, b. $66^{\circ} 29^{\prime} \quad$ 25. a. $15^{\circ} 32^{\prime} 49^{\prime \prime}$, b. $74^{\circ} 27^{\prime} 11^{\prime \prime}$
7. a. approx. 81.2 m b. approx 27.1 sec
8. a. approx. 82.8 m b. approx 27.6 sec
9. a. approx. 85.1 m b. approx 28.4 sec 33. approx. 118.3 ft
10. approx. 300.6 m 37. approx. $481.1 \mathrm{~m} \quad$ 39. 87 ft 9 in .
11. approx. 118.1 mph 43. a. approx. $250.0 \mathrm{yd} \quad$ b. approx. 351.0 yd c. approx. 23.1 yd 45. approx. 1815.2 ft ; approx. 665.3 ft 47. S $85^{\circ} \mathrm{W}$ 49. $7 \sqrt{3}$ in. and 21 in.
12. a. $\frac{-3 \sqrt{10}}{10}$, b. $\frac{\sqrt{10}}{10}$
13. $\cos \alpha=\frac{\sqrt{21}}{5}, \tan \alpha=\frac{2 \sqrt{21}}{21}, \csc \alpha=\frac{5}{2}, \sec \alpha=\frac{5 \sqrt{21}}{21}$, $\cot \alpha=\frac{\sqrt{21}}{2}$

Exercises 2.4, pp. 75-78

1. coterminal; reference; 80° 3. integers; $360^{\circ} \mathrm{k}$
2. Answers will vary.
3. slope $=\sqrt{3}$, equation : $y=\sqrt{3} x, \sin 60^{\circ}=\frac{\sqrt{3}}{2}, \cos 60^{\circ}=\frac{1}{2}$, $\tan 60^{\circ}=\sqrt{3}$
4. 50°
5. 30°
6. 45°
7. 68°
8. 44.4°
9. 40°
10. 11.6°
11. $22.1^{\circ} \quad$ 25. $78^{\circ} 30^{\prime}$
12. $\sin \theta=-\frac{1}{2} ; \cos \theta=\frac{\sqrt{3}}{2}, \tan \theta=-\frac{1}{\sqrt{3}}$
13. $\sin \theta=\frac{-\sqrt{2}}{2} ; \cos \theta=\frac{\sqrt{2}}{2}, \tan \theta=-1$
14. $\sin \theta=\frac{-\sqrt{3}}{2} ; \cos \theta=\frac{-1}{2}, \tan \theta=\sqrt{3}$
15. $\sin \theta=-\frac{1}{2} ; \cos \theta=\frac{-\sqrt{3}}{2}, \tan \theta=\frac{1}{\sqrt{3}}$
16. $\sin \theta=\frac{-\sqrt{3}}{2}, \cos \theta=\frac{-1}{2}, \tan \theta=\sqrt{3}$
17. $\sin \theta=\frac{-\sqrt{3}}{2}, \cos \theta=-\frac{1}{2}, \tan \theta=\sqrt{3}$
18. $\sin \theta=\frac{-1}{2}, \cos \theta=\frac{-\sqrt{3}}{2}, \tan \theta=\frac{1}{\sqrt{3}}$
19. $\sin \theta=\frac{-1}{2}, \cos \theta=\frac{-\sqrt{3}}{2}, \tan \theta=\frac{1}{\sqrt{3}}=-1$
20. $52^{\circ}+360^{\circ} k$ 45. $87.5^{\circ}+360^{\circ} k$ 47. $225^{\circ}+360^{\circ} k$
21. $-107^{\circ}+360^{\circ} k$
22. $\frac{\sqrt{3}}{2}, \frac{-1}{2},-\sqrt{3}$ 53. $-\frac{1}{2}, \frac{\sqrt{3}}{2}, \frac{-1}{\sqrt{3}}$
23. QIV; negative; $1^{\circ} ;-0.0175 ; 0.0175$
24. QIV; negative; $59^{\circ} ;-1.6643 ; 1.6643$
25. QIV; negative; $39^{\circ} ;-1.5890 ; 1.5890$
26. QI; positive; $85^{\circ} ; 0.0872 ; 0.0872$
27. a. approx. 144.78 units 2 b. 53° c. The parallelogram is a rectangle whose area is $A=a b$. d. $A=\frac{a b}{2} \sin \theta$
28. $\theta=60^{\circ}+360^{\circ} k$ and $\theta=300^{\circ}+360^{\circ} k$
29. $\theta=240^{\circ}+360^{\circ} k$ and $\theta=300^{\circ}+360^{\circ} k$
30. $\theta=61.1^{\circ}+360^{\circ} k$ and $\theta=118.9^{\circ}+360^{\circ} k$
31. $\theta=113.0^{\circ}+360^{\circ} k$ and $\theta=293.0^{\circ}+360^{\circ} k$
32. $1890^{\circ} ; 90^{\circ}+360^{\circ} k$
33. head first; 900°
34. approx. 701.6°
35. a. $30^{\circ}, 60^{\circ}$ b. $15^{\circ}, 150^{\circ}, 45^{\circ} \quad$ c. Answers will vary.
36. a. $12,960^{\circ}$ b. 125.66 in. c. 15,080 in. d. 85.68 mph
37. approx. $0.8391 ; 40^{\circ}+50^{\circ}=90^{\circ}$ and cofunction relationship
38.

Angles	Sides
$A=30^{\circ}$	$\boldsymbol{a}=\mathbf{1 8} \mathbf{~ m}$
$B=60^{\circ}$	$b=18 \sqrt{3} \mathrm{~m}$
$\boldsymbol{C}=\mathbf{9 0 ^ { \circ }}$	$\boldsymbol{c}=\mathbf{3 6} \mathbf{~ m}$

87. $77^{\circ} 25^{\prime} 04^{\prime \prime} ; 167^{\circ} 25^{\prime} 04^{\prime \prime}$

Summary and Concept Review, pp. 78-80

1. a. $\frac{2 \sqrt{6}}{7}$
b. $\frac{5}{7}$
2. a. $\frac{5}{7}$ b. $\frac{2 \sqrt{6}}{7}$
3. a. $\frac{2 \sqrt{6}}{5}$
b. $\frac{5 \sqrt{6}}{12}$
4. a. $\frac{7 \sqrt{6}}{12}$ b. $\frac{7}{5}$
5. a. $\frac{7}{5}$
b. $\frac{7 \sqrt{6}}{12}$
6. a. $\frac{5 \sqrt{6}}{12}$ b. $\frac{2 \sqrt{6}}{5}$
7. $\sin \theta=\frac{3 \sqrt{10}}{10}, \cos \theta=\frac{\sqrt{10}}{10}, \csc \theta=\frac{\sqrt{10}}{3}, \sec \theta=\sqrt{10}$, $\cot \theta=\frac{1}{3}$
8. a. $\cot 32.6^{\circ}$ b. $\cos \left(70^{\circ} 29^{\prime} 45^{\prime \prime}\right)$
9. a. $A \approx 0.80$
b. $A \approx 64.3^{\circ}$
10.

Angles	Sides
$A=49^{\circ}$	$a=89 \mathrm{in}$.
$\boldsymbol{B}=\mathbf{4 1 ^ { \circ }}$	$\boldsymbol{b} \approx \mathbf{7 7 . 3 7} \mathbf{~ i n .}$
$\boldsymbol{C}=\mathbf{9 0 ^ { \circ }}$	$\boldsymbol{c}=\mathbf{1 1 7 . 9 3} \mathbf{~ i n}$.

11.

Angles	Sides
$\boldsymbol{A} \approx \mathbf{4 3 . 6 ^ { \circ }}$	$a=20 \mathrm{~m}$
$\boldsymbol{B} \approx \mathbf{4 6 . 4}^{\circ}$	$b=21 \mathrm{~m}$
$\boldsymbol{C}=\mathbf{9 0 ^ { \circ }}$	$\boldsymbol{c}=\mathbf{2 9} \mathbf{~ m}$

12. approx. $5.18 \mathrm{~m} \quad$ 13. approx. 54.5° and $35.5^{\circ} \quad$ 14. 473 ft
13. $\mathrm{N} 31^{\circ} \mathrm{E}, \mathrm{N} 31^{\circ} \mathrm{W}, \mathrm{S} 31^{\circ} \mathrm{E}, \mathrm{S} 31^{\circ} \mathrm{W}$ 16. approx. $1.5 \mathrm{ft} / \mathrm{sec}$
14. a. approx. 239.32 m b. approx. 240.68 m apart $18.28^{\circ}, 19^{\circ}, 30^{\circ}$
$\begin{array}{ll}\text { 19. }-\frac{1}{2},-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{3} & \text { 20. a. } \frac{\sqrt{2}}{2}\end{array}$ b. $-\frac{\sqrt{2}}{2} \quad$ c. -1
15. a. $\theta=135^{\circ}+180^{\circ} k$ b. $\theta=30^{\circ}+360^{\circ} k$ or $\theta=330^{\circ}+360^{\circ} k$ c. $\theta \approx 76.0^{\circ}+180^{\circ} k \quad$ d. $\theta \approx-27.0^{\circ}+360^{\circ} k$ or
$\theta \approx 207.0^{\circ}+360^{\circ} k$

Mixed Review, pp. 81-82

1. $\frac{6 \sqrt{61}}{61} ; \frac{5}{6}$
2. $\frac{\sqrt{3}}{2},-\frac{1}{2},-\sqrt{3}$
3. approx. 997 m
4. $\sin \theta=\frac{77}{85}, \tan \theta=\frac{77}{36}, \sec \theta=\frac{85}{36}, \csc \theta=\frac{85}{77}, \cot \theta=\frac{36}{77}$
5. a. $-\frac{1}{2}$
b. $\frac{\sqrt{3}}{2}$
c. $-\frac{\sqrt{3}}{3}$
6. 20 ft 13. -630°
7. 60°
8.

Angles	Sides
$\boldsymbol{A}=\mathbf{1 1 . 3 ^ { \circ }}$	$a \approx 12.1 \mathrm{~m}$
$B=78.7^{\circ}$	$\boldsymbol{b}=\mathbf{6 0 . 5} \mathrm{m}$
$\boldsymbol{C}=\mathbf{9 0}^{\circ}$	$c \approx 61.7 \mathrm{~m}$

19. $\sqrt{3}$

Practice Test , pp. 82-84

$\begin{array}{llll}\text { 1. } 18.87 \mathrm{~cm} & \text { 2. a. } 45^{\circ} & \text { b. } 30^{\circ}\end{array}$
3. $\sin \theta=\frac{1}{4}, \cos \theta=\frac{\sqrt{15}}{4}, \tan \theta=\frac{\sqrt{15}}{15}, \sec \theta=\frac{4 \sqrt{15}}{15}$,
$\cot \theta=\sqrt{15}$
4.

Angles	Sides
$A=33^{\circ}$	$a \approx 8.2 \mathrm{~cm}$
$\boldsymbol{B}=\mathbf{5 7}^{\circ}$	$b \approx 12.6 \mathrm{~cm}$
$\boldsymbol{C}=\mathbf{9 0}^{\circ}$	$\boldsymbol{c}=\mathbf{1 5 . 0} \mathbf{~ c m}$

5.

Angles	Sides
$A \approx 38.4^{\circ}$	$\boldsymbol{a}=\mathbf{1 3 8} \mathbf{~ f t}$
$\boldsymbol{B}=\mathbf{9 0 ^ { \circ }}$	$\boldsymbol{b}=\mathbf{1 7 4} \mathbf{~ f t}$
$C \approx 51.6^{\circ}$	$c \approx 222.1 \mathrm{ft}$

6. approx. 67.9 ft
7.

$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c s c }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { s e c } \theta}$	$\boldsymbol{\operatorname { c o t }} \boldsymbol{\theta}$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
135°	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	$\sqrt{2}$	$-\sqrt{2}$	-1
240°	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$	$-\frac{2 \sqrt{3}}{3}$	-2	$\frac{\sqrt{3}}{3}$
330°	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	-2	$\frac{2 \sqrt{3}}{3}$	$-\sqrt{3}$

8. a. $-\frac{4}{5}$
b. $-\frac{3}{5}$
c. $-\frac{4}{3}$
9. 47.7°
10. $2-\sqrt{3}$
$\begin{array}{lll}\text { 11. about } 67 \mathrm{~cm}, 49.6^{\circ} & \text { 12. } 57.9 \mathrm{~m} & \text { 13. approx. } 2.8 \mathrm{mi} \text {. }\end{array}$
11. $\theta=150^{\circ}+360^{\circ} k$ and $\theta=210^{\circ}+360^{\circ} k$
12. a. $\cot \alpha$
b. $\csc \alpha$
c. $\cos \alpha$
d. $\sin \alpha$
e. $\sec \alpha$
f. $\tan \alpha$
13. $\theta \approx 65.9^{\circ}$
14. $\sin \alpha(\sec \beta-\sin \alpha)=\sin \alpha(\csc \alpha-\sin \alpha)=\sin \alpha\left(\frac{1}{\sin \alpha}-\sin \alpha\right)$

$$
=1-\sin ^{2} \alpha=\cos ^{2} \alpha=\sin ^{2} \beta
$$

18. a. about 39 ft
b. about 74 ft
c. about 4.8 mph
19. $\approx 0.53 ; \approx-0.53 ; \approx-0.53$
20. approx. 228 km

Strengthening Core Skills, pp. 85-86

Exercise 1:

$\boldsymbol{\theta}$	$\mathbf{0}^{\circ}$	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-
$\mathbf{1 2 0}^{\circ}$	$\mathbf{1 3 5}^{\circ}$	$\mathbf{1 5 0}^{\circ}$	$\mathbf{1 8 0}^{\circ}$	$\mathbf{2 1 0}^{\circ}$	$\mathbf{2 2 5}^{\circ}$
$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	$\frac{-\sqrt{2}}{2}$
$\frac{-1}{2}$	$\frac{-\sqrt{2}}{2}$	$\frac{-\sqrt{3}}{2}$	-1	$\frac{-\sqrt{3}}{2}$	$\frac{-\sqrt{2}}{2}$
$-\sqrt{3}$	-1	$\frac{-\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1

Exercise 2: a. $\theta=240^{\circ}, 300^{\circ}$ b. $\theta=45^{\circ}, 315^{\circ}$ c. $\theta=30^{\circ}, 210^{\circ}$

$$
\text { d. } \theta=45^{\circ}, 315^{\circ}
$$

Exercise 3: a. no solution b. $\theta \approx 70.5^{\circ}, 289.5^{\circ}$

$$
\begin{array}{ll}
\text { c. } \theta \approx 166.0^{\circ}, 346.0^{\circ} & \text { d. } \theta \approx 113.6^{\circ}, 246.4^{\circ}
\end{array}
$$

Cumulative Review Chapters 1-2, pp. 86-87
1.

3. $60.585^{\circ} \quad$ 5. $\approx 114.3 \mathrm{ft}$
7. $x=-9, y=40, r=41$, QII;
$\cos \theta=\frac{-9}{41}, \sin \theta=\frac{40}{41}, \tan \theta=\frac{40}{-9}, \sec \theta=\frac{41}{-9}, \csc \theta=\frac{41}{40}$,
$\cot \theta=\frac{-9}{40}, \theta \approx 102.7^{\circ}$
9. $\cos (90-\theta)=\sin \theta$
11. $260^{\circ}, 620^{\circ},-460^{\circ},-820^{\circ}$
13. 270°
15. $\frac{\sqrt{2}}{2}$
17.

Angles	Sides
$A \approx 47.7^{\circ}$	$\boldsymbol{a}=\mathbf{1 1} \mathbf{~ m}$
$B \approx 42.3^{\circ}$	$\boldsymbol{b}=\mathbf{1 0} \mathbf{~ m}$
$\boldsymbol{C}=\mathbf{9 0}^{\circ}$	$c \approx 14.87 \mathrm{~m}$

19. $-\frac{1}{2}, \frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{3}$
20. not possible, $a+c<b$
21. $\sin \beta=\frac{\sqrt{15}}{8}, \cos \beta=\frac{7}{8}, \tan \beta=\frac{\sqrt{15}}{7}, \csc \beta=\frac{8 \sqrt{15}}{15}$,
$\sec \beta=\frac{8}{7}, \cot \beta=\frac{7 \sqrt{15}}{15}$
22. $\frac{5 \sqrt{3}}{3}$ in., $\frac{10 \sqrt{3}}{3}$ in.

CHAPTER 3

Exercises 3.1, pp. 94-97

1. central; $5 ; \pi$ 3. $\pi ; 3 ; 4 ; 6 ; 1 ; 2$ 5. Answers will vary. 7. 4 9. 1
2. $\frac{1}{2}$
3. 3
4. $\frac{11}{3}$
5. $\frac{16}{3}$
6. -3
7. -2.4
8. $-\frac{17}{4}$
9. $\frac{13 \pi}{6}, \frac{25 \pi}{6},-\frac{11 \pi}{6},-\frac{23 \pi}{6}$
10. $\frac{7 \pi}{3}, \frac{13 \pi}{3},-\frac{5 \pi}{3},-\frac{11 \pi}{3}$
$\begin{array}{llll}\text { 29. } 2 \pi \mathrm{rad} & \text { 31. } \frac{\pi}{4} \mathrm{rad} & \text { 33. } \frac{7 \pi}{6} \mathrm{rad} & \text { 35. } \frac{-2 \pi}{3} \mathrm{rad}\end{array}$
11. $\frac{2 \pi}{9}$ 39. $-\frac{61 \pi}{36}$ 41. $\frac{251 \pi}{450}$ 43. 0.4712 rad
12. 3.9776 rad 47. $-0.9178 \mathrm{rad} \quad$ 49. $60^{\circ} \quad$ 51. 30°
13. 120° 55. 720° 57. 165° 59. 186.4°
14. 171.9° 63. -143.2° 65. a. b b. $e \quad$ c. c
15. QII 69. QI 71. QIII
16. $18 \sqrt{3} \approx 31.2 \mathrm{ft}-\mathrm{lb} ; 50 \sqrt{3} \approx 86.6 \mathrm{lb}$
17. $4 \mathrm{rad} \quad$ 77. $91 \pi \mathrm{rad} \quad$ 79. $764^{\circ} \quad$ 81. $\frac{5 \pi}{8}$
18. $1^{\prime}=\frac{\pi}{10,800} \approx 0.000291,1^{\prime \prime}=\frac{\pi}{648,000} \approx 0.00000485$, $\begin{array}{lllll}\text { approx. } 1.179 & 85 . & -\frac{1}{2},-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{3} & \text { 87. } 75.4^{\circ} & \text { 89. a. } 28^{\circ}\end{array}$ b. 42°

Exercises 3.2, pp. 103-106

1. latitude; equator; longitude; Prime Meridian
2. $\omega=\frac{\theta}{t} ; V=r \omega$; radians 5. Answers will vary.
3. $s=980 \mathrm{~m} \quad$ 9. $\theta=0.75 \mathrm{rad} \quad$ 11. $r \approx 1760 \mathrm{yd}$
4. $s=\frac{8 \pi}{3} \mathrm{mi}$ 15. $\theta=0.2575 \mathrm{rad}$ 17. $r \approx 9.4 \mathrm{~km}$
$\begin{array}{llll}\text { 19. } \frac{\pi}{4} \mathrm{rad} / \mathrm{sec} & \text { 21. } \frac{\pi}{4} \mathrm{rad} / \mathrm{hr} & \text { 23. } \frac{\pi}{6} \mathrm{rad} / \mathrm{day} & \text { 25. } \frac{7 \pi}{12} \mathrm{rad} / \mathrm{min}\end{array}$
5. $40 \mathrm{in} . / \mathrm{sec} \quad$ 29. $140.74 \mathrm{mph} \quad$ 31. $31.42 \mathrm{~mm} / \mathrm{sec} \quad 33.6 \mathrm{kph}$
6. $\mathcal{A}=115.6 \mathrm{~km}^{2} \quad$ 37. $\theta=0.6 \mathrm{rad}$ 39. $r \approx 3 \mathrm{~m}$
7. $\theta=1.5 \mathrm{rad} ; s=7.5 \mathrm{~cm} ; r=5 \mathrm{~cm} ; \mathcal{A}=18.75 \mathrm{~cm}^{2}$
8. $\theta=4.3 \mathrm{rad} ; s=43 \mathrm{~m} ; r=10 \mathrm{~m} ; \mathcal{A}=215 \mathrm{~m}^{2}$
9. $\theta=3 \mathrm{rad} ; \mathcal{A}=864 \mathrm{~mm}^{2} ; s=72 \mathrm{~mm} ; r=24 \mathrm{~mm}$
10. approx. $0.04206 \quad 49.960 .7 \mathrm{mi}$ apart
11. a. $1.5 \pi \mathrm{rad} / \mathrm{sec}$ b. about $15 \mathrm{mi} / \mathrm{hr}$
12. a. $40 \pi \mathrm{rad} / \mathrm{min} \quad$ b. $\frac{\pi}{6} \mathrm{ft} / \mathrm{sec} \approx 0.52 \mathrm{ft} / \mathrm{sec} \quad$ c. about 11.5 sec
13. a. $\approx 50.3 \mathrm{~m}^{2} \quad$ b. $\approx 80^{\circ} \quad$ c. $\approx 17 \mathrm{~m}$
14. $\mathbf{a} . \approx 50.3^{\circ} /$ day; $\approx 0.8788 \mathrm{rad} /$ day \quad b. $\approx 0.0366 \mathrm{rad} / \mathrm{hr}$ c. $\approx 6.67 \mathrm{mi} / \mathrm{sec} \quad$ 59. $34.9 \mathrm{~m} / \mathrm{hr} \quad$ 61. a. approx. 3055.6 mi b. approx. $9012.8 \mathrm{mi} \quad$ c. approx. $7 \mathrm{hr}, 13 \mathrm{~min} \quad$ 63. 240°
15. $5 \sqrt{2}$ in. 67. $\frac{7 \sqrt{30}}{30}$

Mid-Chapter Check, p. 106

1. a. $36.11^{\circ} \mathrm{N}, 115.08^{\circ} \mathrm{W}$ b. 2495.7 mi . 2. $\theta=4.3 ; \mathcal{A}=860 \mathrm{~cm}^{2}$
$\begin{array}{lllll}\text { 3. a. } \frac{7 \pi}{6} & \text { b. }-\frac{3 \pi}{4} & \text { c. } \frac{8 \pi}{3} & \text { 4. a. } 229.18^{\circ} & \text { b. }-134.07^{\circ}\end{array}$
$\begin{array}{ccc}\text { c. } 270^{\circ} & \text { 5. } \frac{17 \pi}{6},-\frac{7 \pi}{6} & \text { 6. a. } 20 \pi \mathrm{rad} / \mathrm{min}\end{array} \quad$ b. about 10.7 mph
2. a. $206 \mathrm{in}^{2}$ b. 115° 8. a. QII \quad b. QIII \quad c. QI d. QIV 9. about 451 m 10. 120 rad

Reinforcing Basic Concepts, p. 107

Exercise 1: a. $(0.97,0.24),(0.97)^{2}+(0.24)^{2} \approx 1$,
$\cos t=0.9689124217, \sin t=0.2474039593 \quad$ b. $(0.88,0.48)$,
$(0.88)^{2}+(0.48)^{2} \approx 1, \cos t=0.8775825619, \sin t=0.4794255386$
c. $(0.73,0.68),(0.73)^{2}+(0.68)^{2} \approx 1, \cos t=0.73168886889$,
$\sin t=0.68163876$ d. $(0.54,0.84),(0.54)^{2}+(0.84)^{2} \approx 1$,
$\cos t=0.5403023059, \sin t=0.8414709848$
Exercise 2: a. $(-0.5,0.87),(-0.5)^{2}+(0.87)^{2} \approx 1$,
$\cos t=-\frac{1}{2}, \sin t=\frac{\sqrt{3}}{2} \quad$ b. $(-0.71,0.71),(-0.71)^{2}+(0.71)^{2} \approx 1$,
$\cos t=-\frac{\sqrt{2}}{2}, \sin t=\frac{\sqrt{2}}{2} \quad$ c. $(-0.87,0.5),(-0.87)^{2}+(0.5)^{2} \approx 1$,
$\cos t=-\frac{\sqrt{3}}{2}, \sin t=\frac{1}{2} \quad$ d. $(-1,0),(-1)^{2}+(0)^{2}=1, \cos t=-1$,
$\sin t=0$

Exercises 3.3, pp. 114-117

1. $x ; y$; origin \quad 3. $x ; y ; \frac{y}{x} ; \sec \theta ; \csc \theta ; \cot \theta \quad$ 5. Answers will vary.
2. $(-0.6,-0.8)$
3. $\left(\frac{5}{13}, \frac{-12}{13}\right)$
4. $\left(\frac{\sqrt{11}}{6}, \frac{5}{6}\right)$
5. $\left(\frac{-\sqrt{11}}{4}, \frac{\sqrt{5}}{4}\right)$
6. $(-0.9769,-0.2137)$
7. $(-0.9928,0.1198)$
8. $\left(\frac{-\sqrt{3}}{2}, \frac{-1}{2}\right),\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right),\left(\frac{\sqrt{3}}{2}, \frac{-1}{2}\right)$
9. $\left(\frac{-\sqrt{11}}{6}, \frac{-5}{6}\right),\left(\frac{-\sqrt{11}}{6}, \frac{5}{6}\right),\left(\frac{\sqrt{11}}{6}, \frac{5}{6}\right)$
10. $(-0.3325,0.9431),(-0.3325,-0.9431),(0.3325,-0.9431)$
11. $(0.9937,0.1121),(-0.9937,0.1121),(-0.9937,-0.1121)$
12. $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ is on unit circle. 29. $\frac{\pi}{4} ;\left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}\right)$
13. $\frac{\pi}{6} ;\left(\frac{-\sqrt{3}}{2}, \frac{-1}{2}\right)$
14. $\frac{\pi}{4} ;\left(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
15. $\frac{\pi}{6} ;\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
16. a. $\frac{\sqrt{2}}{2}$
b. $\frac{\sqrt{2}}{2}$
c. $\frac{-\sqrt{2}}{2}$
d. $\frac{-\sqrt{2}}{2}$
e. $\frac{\sqrt{2}}{2}$
f. $\frac{-\sqrt{2}}{2} \quad$ g. $\frac{\sqrt{2}}{2}$
h. $\frac{-\sqrt{2}}{2}$ 39. a. $-1 \quad$ b. 1 c. 0 d. 0
17. a. $\pm \frac{8}{9}$
b. $\pm \frac{6}{11}$
c. $\pm \frac{6}{7}$
18. $(0.7660,0.6428)$
19. $(-0.9336,-0.3584)$
20. $(-0.4161,0.9093)$
21. $(0.2837,-0.9589)$
22. $193.2 \mathrm{~cm}, 51.8 \mathrm{~cm} \quad$ 53. 50 cm right and 86.6 cm above center of circle
23. Answers will vary. 57. about 32 mph
24. a. $\theta=3.7 \quad$ b. $\mathcal{A}=46.25 \mathrm{~cm}^{2} \quad$ 61. $\pi-3$

Exercises 3.4, pp. 121-125

$\begin{array}{ll}\text { 1. length; equal; radian; } t ; \theta & \text { 3. } x ; y ; \frac{y}{x} ; \sec t ; \csc t ; \cot t\end{array}$
5.

7. a. $\frac{\sqrt{3}}{2}$
b. $\frac{-\sqrt{3}}{2} \quad$ c. $\frac{-\sqrt{3}}{2}$
d. $\frac{\sqrt{3}}{2}$
e. $\frac{\sqrt{3}}{2}$ f. $\frac{\sqrt{3}}{2}$
g. $\frac{-\sqrt{3}}{2}$ h. $\frac{\sqrt{3}}{2} \quad$ 9. a. $0 \quad$ b. $0 \quad$ c. undefined \quad d. undefined
11. $\sin t=0.6, \cos t=-0.8, \tan t=-0.75, \csc t=1 . \overline{6}$, sec $t=-1.25$, $\cot t=-1.3$ 13. $\sin t=-\frac{12}{13}, \cos t=-\frac{5}{13}, \tan t=\frac{12}{5}, \csc t=-\frac{13}{12}$,
$\sec t=-\frac{13}{5}, \cot t=\frac{5}{12} \quad$ 15. $\sin t=\frac{\sqrt{11}}{6}, \cos t=\frac{5}{6}, \tan t=\frac{\sqrt{11}}{5}$,
$\csc t=\frac{6 \sqrt{11}}{11}, \sec t=\frac{6}{5}, \cot t=\frac{5 \sqrt{11}}{11}$
17. $\sin t=\frac{\sqrt{21}}{5}, \cos t=\frac{-2}{5}, \tan t=\frac{-\sqrt{21}}{2}, \csc t=\frac{5 \sqrt{21}}{21}$,
$\sec t=\frac{-5}{2}, \cot t=\frac{-2 \sqrt{21}}{21} \quad$ 19. $\sin t=\frac{-2 \sqrt{2}}{3}, \cos t=\frac{-1}{3}$,
$\tan t=2 \sqrt{2}, \csc t=\frac{-3 \sqrt{2}}{4}, \sec t=-3, \cot t=\frac{\sqrt{2}}{4}$
21. $\sin t=\frac{\sqrt{3}}{2}, \cos t=\frac{1}{2}, \tan t=\sqrt{3}, \csc t=\frac{2 \sqrt{3}}{3}, \sec t=2$,
$\cot t=\frac{\sqrt{3}}{3} \quad$ 23. $\sin t=\frac{\sqrt{2}}{2}, \cos t=\frac{-\sqrt{2}}{2}, \tan t=-1, \csc t=\sqrt{2}$,
$\sec t=-\sqrt{2}, \cot t=-1 \quad$ 25. QI, 0.7 27. $\mathrm{QIV}, 0.7 \quad$ 29. QI, 1
$\begin{array}{lllll}\text { 31. QII, } 1.1 & \text { 33. QII, }-0.4 & \text { 35. QIV, }-3.1 & \text { 37. } \frac{2 \pi}{3} & \text { 39. } \frac{7 \pi}{6}\end{array}$
41. $\frac{2 \pi}{3}$
43. $\frac{\pi}{2}$
45. $\frac{3 \pi}{4}, \frac{5 \pi}{4}$
47. $\frac{\pi}{2}, \frac{3 \pi}{2}$
49. $\frac{3 \pi}{4}, \frac{5 \pi}{4}$
51. $0, \pi \quad$ 53. 0.3273 55. 4.5695 57. 2.4608 59. 5.7510 61. 2.3416 63. 1.7832 65. 3.5416 67. a. $\left(\frac{3}{4}, \frac{4}{5}\right)$ b. $\left(\frac{-3}{4}, \frac{4}{5}\right)$
69. a. $-\frac{5 \pi}{4},-\frac{3 \pi}{4},-\frac{\pi}{4}, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
b. tangent: $(3 k+1) \frac{\pi}{3}$; cotangent: $(6 k+1) \frac{\pi}{6} \quad$ 71. a. 5 rad b. 30 rad
73. $\mathbf{\text { a. } . 5 \mathrm { dm }} \quad$ b. $\approx 6.28 \mathrm{dm} \quad$ 75. a. $2.5 \mathrm{AU} \quad$ b. $\approx 6.28 \mathrm{AU}$
77. yes 79. range of $\sin t$ and $\cos t$ is $[-1,1]$
81. a. $2 t \approx 2.2$ b. QI \quad c. $\cos t \approx 0.5 \quad$ d. No $83 . \approx 537.6 \mathrm{in}^{2}$
85. $\cos \theta=-\frac{20}{29}, \tan \theta=-\frac{21}{20}, \csc \theta=\frac{29}{21}, \sec \theta=-\frac{29}{20}, \cot \theta=-\frac{20}{21}$
87. $\sin \theta=-\frac{1}{2}, \cos \theta=\frac{\sqrt{3}}{2}, \tan \theta=-\frac{\sqrt{3}}{3}, \csc \theta=-2, \sec \theta=\frac{2 \sqrt{3}}{3}$,
$\cot \theta=-\sqrt{3}$

Summary and Concept Review, pp. 125-127
$\begin{array}{llll}\text { 1. } 3 \mathrm{rad} & \text { 2. } 114.6^{\circ} & \text { 3. }-1.76 & \text { 4. } 120^{\circ}\end{array}$
5. $\frac{7 \pi}{6} \quad$ 6. $-\frac{19 \pi}{5},-\frac{9 \pi}{5}, \frac{11 \pi}{5}, \frac{21 \pi}{5}$
7. approx. 4.97 units \quad 8. $s=25.5 \mathrm{~cm}, A=191.25 \mathrm{~cm}^{2}$
9. $r \approx 41.74$ in., $A \approx 2003.48 \mathrm{in}^{2}$ 10. $\theta=4.75 \mathrm{rad}, s=38 \mathrm{~m}$
11. a. approx. $9.4248 \mathrm{rad} / \mathrm{sec} \quad$ b. approx. $3.9 \mathrm{ft} / \mathrm{sec} \quad$ c. about 15.4 sec
12. $y=-\frac{6}{7},\left(-\frac{\sqrt{13}}{7}, \frac{6}{7}\right),\left(-\frac{\sqrt{13}}{7},-\frac{6}{7}\right)$, and $\left(\frac{\sqrt{13}}{7}, \frac{6}{7}\right)$
13. $\frac{\pi}{3} ;\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \quad$ 14. $-\frac{1}{2} \quad$ 15. 0.9004 16. $(0.9602,-0.2794)$
17. $\sin t=-\frac{\sqrt{7}}{4}, \csc t=-\frac{4}{\sqrt{7}}, \cos t=\frac{3}{4}, \sec t=\frac{4}{3}$,
$\tan t=-\frac{\sqrt{7}}{3}, \cot t=-\frac{3}{\sqrt{7}}$
18. $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$
19. $t \approx 2.44$
20. a. approx. 19.6667 rad
b. 25 rad

Mixed Review, pp. 127-128

1. $t=\frac{\pi}{4}$ and $t=\frac{5 \pi}{4}$
2. arc length: $\frac{28}{3} \pi \approx 29.3$ units; area: $\frac{112 \pi}{3} \approx 117.3$ units 2
3. $x^{2}+y^{2}=1$ is the unit circle.
$\left(\frac{-\sqrt{2}}{2}\right)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}=\frac{2}{4}+\frac{2}{4}=1, \sin \theta=\frac{\sqrt{2}}{2}$,
$\tan \theta=-1, \sec \theta=-\sqrt{2}$,
$\cos \theta=\frac{-\sqrt{2}}{2}, \csc \theta=\frac{2}{\sqrt{2}}=\sqrt{2}, \cot \theta=-1$
$\begin{array}{lllll}\text { 7. }-\frac{\sqrt{2}}{2} & \text { 9. a. }-\frac{3 \pi}{4} & \text { b. } 4.5047 & \text { 11. a. } 420^{\circ} & \text { b. }-28.6^{\circ}\end{array}$
4. $-\frac{25 \pi}{7},-\frac{11 \pi}{7}, \frac{17 \pi}{7}, \frac{31 \pi}{7} \quad$ 15. $\mathcal{A}=22.45 \mathrm{~m}^{2}$
5. approx. 226.2 kph 19. $(-0.3857,0.9226)$

Practice Test , pp. 128-129

1. a. $\frac{\pi}{6} \quad$ b. $\frac{\pi}{3}$
2.

t	$\sin t$	$\cos t$	$\tan t$	$\csc t$	$\sec t$	$\cot t$
0	0	1	0	undefined	1	undefined
$\frac{2 \pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	-2	$\frac{-\sqrt{3}}{3}$
$\frac{7 \pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	-2	$\frac{-2 \sqrt{3}}{3}$	$\sqrt{3}$
$\frac{5 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1	$-\sqrt{2}$	$-\sqrt{2}$	1
$\frac{5 \pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{2 \sqrt{3}}{3}$	2	$\frac{-\sqrt{3}}{3}$
$\frac{7 \pi}{4}$	$\frac{-\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1	$-\sqrt{2}$	$\sqrt{2}$	-1
$\frac{13 \pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$

3. $\left(\frac{1}{3}\right)^{2}+\left(-\frac{2 \sqrt{2}}{3}\right)^{2}=\frac{1}{9}+\frac{8}{9}=1 ; \sin \theta=\frac{-2 \sqrt{2}}{3}, \cos \theta=\frac{1}{3}$, $\tan \theta=-2 \sqrt{2}, \csc \theta=\frac{-3 \sqrt{2}}{4}, \sec \theta=3, \cot \theta=\frac{-\sqrt{2}}{4}$
4. a. $\approx 225.8 \mathrm{ft}$ or 225 ft 9.6 in .
b. $\frac{23 \pi}{480} \approx 0.1505 \mathrm{rad} / \mathrm{sec}$
c. $11.29 \mathrm{ft} / \mathrm{sec} \approx 7.7 \mathrm{mph}$
5. a. $\frac{7 \pi}{6}$
b. $\frac{11 \pi}{6}$
c. $\frac{3 \pi}{4}$
6. about 600.6 km
7. $\left(-\frac{20}{29}, \frac{21}{29}\right),\left(-\frac{20}{29},-\frac{21}{29}\right),\left(\frac{20}{29},-\frac{21}{29}\right)$
8. about 26.3 cm
9. \mathbf{a}. ≈ 4
b. ≈ 2.3
$\begin{array}{llllll}\text { 10. a. } \frac{5 \pi}{3} & \text { b. }-1.2680 & \text { c. } 0.0548 & \text { 11. a. } 532.3^{\circ} & \text { b. }-270^{\circ}\end{array}$
$\begin{array}{lllll}\text { c. } 2578.3^{\circ} & \text { 12. a. } 0.9 \mathrm{mph} & \text { b. } 10.7 \mathrm{mph} & \text { 13. } 120.3^{\circ} & \text { 14. } 3.5 \mathrm{ft}^{2}\end{array}$
10. $t=\pi k, k \in \mathbb{Z} \quad$ 16. a. QI b. QIV \quad c. QIII d. QII
11. 10.2° 18. Approx. 8 minutes 19. $(-0.6046,-0.7966)$
12. $-\frac{41 \pi}{9},-\frac{23 \pi}{9}, \frac{13 \pi}{9}, \frac{31 \pi}{9}$

Strengthening Core Skills, p. 131

1. $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \cos t=-\frac{1}{2}, \sin t=\frac{\sqrt{3}}{2} \quad$ 2. $t=\frac{5 \pi}{6}$, negative since $x<0$
2. QIV, negative since $y<0 \quad$ 4. QI, $\cos t=\frac{1}{2}, \sin t=\frac{\sqrt{3}}{2}, t=\frac{\pi}{3}$

Cumulative Review Chapters 1-3, pp. 131-132

1. $t=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
2. $22^{\circ} 37^{\prime} 21^{\prime \prime}$
3. $A=72^{\circ}, B=52^{\circ}, C=56^{\circ}$
4. 1.0253 9. $\cos \theta=-\frac{5 \sqrt{89}}{89}, \sin \theta=-\frac{8 \sqrt{89}}{89}, \tan \theta=\frac{8}{5}$,
$\sec \theta=-\frac{\sqrt{89}}{5}, \csc \theta=-\frac{\sqrt{89}}{8}, \cot \theta=\frac{5}{8}$
5.

Angles	Sides
$A=30^{\circ}$	$\boldsymbol{a}=\mathbf{7} \mathbf{f t}$
$B=60^{\circ}$	$b \approx 12.12 \mathrm{ft}$
$\boldsymbol{C}=\mathbf{9 0 ^ { \circ }}$	$\boldsymbol{c}=\mathbf{1 4} \mathbf{~ f t}$

13. a. $\frac{504 \pi}{1 \mathrm{~min}} \quad$ b. $\approx 3 \mathrm{mph}$
14. $\frac{\sin x \cos x+\cos x}{\sin x+\sin ^{2} x}=\frac{\cos x(\sin x+1)}{\sin x(1+\sin x)}$

$$
\begin{aligned}
& =\frac{\cos x}{\sin x} \\
& =\cot x
\end{aligned}
$$

17. a. $S=18 \mathrm{~m} \quad$ b. $\mathcal{A}=135 \mathrm{~m}^{2} \quad$ 19. $-80^{\circ},-440^{\circ}$
18. approx. 1313 mi 23. QIV 25. a. 1 b. undefined c. undefined d. 0

CHAPTER 4

Exercises 4.1, pp. 145-150

1. increasing 3. $(-\infty, \infty)$; $[-1,1]$
2. Answers will vary.
3.

t	$y=\cos t$
π	-1
$\frac{7 \pi}{6}$	$-\frac{\sqrt{3}}{2}$
$\frac{5 \pi}{4}$	$-\frac{\sqrt{2}}{2}$
$\frac{4 \pi}{3}$	$-\frac{1}{2}$
$\frac{3 \pi}{2}$	0
$\frac{5 \pi}{3}$	$\frac{1}{2}$
$\frac{7 \pi}{4}$	$\frac{\sqrt{2}}{2}$
$\frac{11 \pi}{6}$	$\frac{\sqrt{3}}{2}$
2π	1

9. a. II b. V c. IV
d. I e. III
10.

15. $|A|=3, P=2 \pi$

19. $|A|=\frac{1}{2}, P=2 \pi$

23. $|A|=0.8, P=\pi$

27. $|A|=3, P=\frac{1}{2}$

13.

17. $|A|=2, P=2 \pi$

21. $|A|=1, P=\pi$

25. $|A|=4, P=4 \pi$

29. $|A|=4, P=\frac{6}{5}$

31. $|A|=2, P=\frac{1}{128}$

33. $|A|=2, P=\frac{\pi}{2}$, g
35. $|A|=3, P=\pi, \mathrm{f} \quad$ 37. $|A|=\frac{3}{4}, P=5 \pi, \mathrm{~b}$
39. $|A|=4, P=\frac{1}{72}$, d
41. $y=-\frac{3}{4} \cos (8 t)$
43. $y=6 \cos \left(\frac{2 \pi}{3} t\right)$
45. $y=3 \sin \left(\frac{1}{5} t\right)$
47. $y=-\frac{3}{22} \sin (10 \pi t)$
49. red: $y=-\cos x$; blue: $y=\sin x ; x=\frac{3 \pi}{4}, \frac{7 \pi}{4}$
51. red: $y=-2 \cos x$; blue: $y=2 \sin (3 x)$;
$x=\frac{3 \pi}{8}, \frac{3 \pi}{4}, \frac{7 \pi}{8}, \frac{11 \pi}{8}, \frac{7 \pi}{4}, \frac{15 \pi}{8}$
53. a. $100 \pi \mathrm{~cm}^{2} \approx 314.2 \mathrm{~cm}^{2} \quad$ b. $200 \mathrm{~cm}^{2}$; it is a square.
c.

c. | \boldsymbol{n} | \boldsymbol{A} |
| :---: | :---: |
| 10 | 293.89 |
| 20 | 309.02 |
| 30 | 311.87 |
| 100 | 313.95 |

The area of the polygon seems to be approaching the area of the circle.
55. a. $3 \mathrm{ft} \quad$ b. $80 \mathrm{mi} \quad$ c. $h=1.5 \cos \left(\frac{\pi}{40} x\right)$ 57. a. $D=-4 \cos \left(\frac{\pi}{12} t\right)$
$\begin{array}{lll}\text { b. } D \approx 3.86 & \text { c. } 72^{\circ} & \text { 59. a. } D=15 \cos (\pi t) \quad \text { b. at center }\end{array}$
c. Swimming leisurely. One complete cycle in 2 sec! 61. a. Graph a
b. 76 days \quad c. 96 days $\quad \mathbf{6 3}$. a. $480 \mathrm{~nm} \rightarrow$ blue b. $620 \mathrm{~nm} \rightarrow$ orange
65. $I=30 \sin (50 \pi t), I \approx 21.2 \mathrm{amps}$
67. Since $m=-M, 0$;

t	y	avg. value $=3$; shifted up 3 units; avg. value $=1$; amplitude is "centered" on average value.
0	3	
$\frac{\pi}{2}$	5	
π	3	
$\frac{3 \pi}{2}$	1	
2π	3	

69. $g(t)$ has the shortest period;

70. about 3196 mi 73. $d=\frac{200 \sqrt{3}}{3} \approx 115.5 \mathrm{yd}$ 75. about 282 ft 3 in .

Exercises 4.2, pp. 160-165

1. $\pi ; P=\frac{\pi}{|B|} \quad$ 3. odd; $-f(t) ;-0.268 \quad$ 5. a. Use reciprocals of standard values. \mathbf{b}. Use reciprocals of given values.
2.

9.

11.

13.

15. $0, \frac{1}{\sqrt{3}}, 1, \sqrt{3}$, und. 17. $1.6,0.8,0.5,1.4,0.7,1.2$
19. a. -1 b. $\sqrt{3}$ c. -1 d. $\sqrt{3}$
21. a. $\frac{7 \pi}{4} \quad$ b. $\frac{7 \pi}{6} \quad$ c. $\frac{5}{3}$
d. $\frac{3 \pi}{4} \quad$ 23. und., $\sqrt{3}, 1, \frac{1}{\sqrt{3}}, 0$
25. $\frac{-13 \pi}{24}, \frac{35 \pi}{24}, \frac{59 \pi}{24}$
27. $-1.6,4.6,7.8$ 29. $\frac{\pi}{10}+\pi k, k \in Z$
31. $\frac{\pi}{12}+\pi k, k \in Z$
33.

37.

41.

45.

49. $P=4 \pi, \mathrm{~b} \quad$ 51. $P=\frac{1}{4}, \mathrm{~d}$
53. $y=2 \csc (5 \pi t)$
55. $y=3 \tan \left(\frac{1}{2} t\right)$
57. $y=2 \cot \left(\frac{2 \pi}{3} t\right)$
59. $\frac{\pi}{8}, \frac{3 \pi}{8}$
61. about 137.8 ft
63. a.
c.

\boldsymbol{n}	\boldsymbol{P}
10	64.984
20	63.354
30	63.063
100	62.853

b. 80 cm ; it is a square
47.

43.

39.

a. no; $\approx 35^{\circ}$ b. 1.05 c. Angles will be greater than 68.2°; soft rubber on sandstone 67. a. 5.67 units b. 86.5° c. Yes. Range of $\tan \theta$ is $(-\infty, \infty)$. d. The closer θ gets to 90°, the longer the line segment gets. 69. a. $A=4 \cdot 4^{2} \sin \frac{\pi}{4} \sec \frac{\pi}{4}=64 \mathrm{~m}^{2} \quad$ b. $A \approx 51.45 \mathrm{~m}^{2}$
71. $\sin 0.6662394325=0.6180339887 \approx \frac{-1+\sqrt{5}}{2} ; \cos x=\tan x \operatorname{can}$ be rewritten as $\sin ^{2} x=1-\sin x$, which can in turn be converted to $\sin ^{2}(-x)=1+\sin (-x)$, which is the basis of the golden ratio.
73. $\sqrt{12} \mathrm{ft} \approx 3.46 \mathrm{ft}$
75. θ in QII, $\theta_{r}=\frac{\pi}{6} ;-\cos \left(\frac{\pi}{6}\right)=\frac{-\sqrt{3}}{2}$ 77. 328°

Mid-Chapter Check, pp. 165-166

1. $y=\cot t ; y=\cos t \quad$ 2. $P=4$, at $t=1$ and $t=3 \quad$ 3. a. $\frac{1}{\sqrt{3}}$
$\begin{array}{llll}\text { b. } \frac{-\sqrt{2}}{2} & \text { 4. a. } \approx 1.0353 & \text { b. } \approx 2.2858 & \text { 5. } y=\cos t \text { and } y=\sec t\end{array}$
2. $t \in(-\infty, \infty) ; t \neq \frac{\pi}{2} k, k \in \mathbb{Z}$
3. asymptotes: $x=-5,-3,-1,1,3,5$
4. $|A|=3, P=4$;

5. a. QIV b. $2 \pi-5.94 \approx 0.343$ c. $\sin t, \tan t$
6. a. $|A|=6, P=\frac{3 \pi}{4} \quad$ b. $f(t)=-6 \cos \left(\frac{8}{3} t\right)$ c. $f(\pi)=3$

Exercises 4.3, pp. 176-179

1. $y=A \sin (B t+C)+D ; y=A \cos (B t+C)+D$
2. up; right 5. Answers will vary.
3.

9.

13.

15.

17.

19.

21.

23. $|A|=120 ; P=24$; HS: 6 units right; VS: (none); PI: $6 \leq t<30$
25. $|A|=1 ; P=12$; HS: 2 units right; VS: (none); PI: $2 \leq t<14$
27. $|A|=1 ; P=8 ; \mathrm{HS}: \frac{2}{3}$ unit right; VS: (none); $\mathrm{PI}: \frac{2}{3} \leq t<\frac{26}{3}$
29. $|A|=24.5 ; P=20$; HS: 2.5 units right; VS: 15.5 units up; PI:
$2.5 \leq t<22.5$ 31. $|A|=28 ; P=12$; HS: $\frac{5}{2}$ units right; VS: 92 units up; PI: $\frac{5}{2} \leq t<\frac{29}{2}$ 33. $|A|=2500 ; P=8$; HS: $\frac{1}{3}$ unit left; VS: 3150 units up; PI: $-\frac{1}{3} \leq t<\frac{23}{3}$
35. $y=250 \sin \left(\frac{\pi}{12} t\right)+350$
37. $y=5 \sin \left(\frac{\pi}{50} t+\frac{\pi}{2}\right)+13$
39. $y=4 \sin \left(\frac{\pi}{180} t+\frac{\pi}{4}\right)+7$
41.

43.

45.

49. a. 2.5 b. $\frac{24}{\pi} \quad$ c. $\frac{24}{\pi} \quad$ 51. a. 24 hr \quad b. $18^{\circ}, 26^{\circ} \quad$ c. $t=3, t=15$
53. a. $6 \mathrm{sec} \quad$ b. $5.2 \mathrm{ft} \quad$ 55. a. $80 \mathrm{sec} \quad$ b. approx. $15 \mathrm{sec} . \quad$ c. 3 mi
57. a. Caracas: $\approx 11.4 \mathrm{hr}$, Tokyo: $\approx 9.9 \mathrm{hr}$ b. (i) Same \# of hours on 79 th day $\& 261$ st day (ii) Caracas: ≈ 81 days, Tokyo: ≈ 158 days

59. a. Adds 12 hr . The sinusoidal behavior is actually based on hours more/less than an average of 12 hr of light. b. Means 12 hr of light and dark on March 20, day 79 (Solstice!). c. Additional hours of deviation from average. In the north, the planet is tilted closer toward the Sun or farther from Sun, depending on date. Variations will be greater!
61. 12 63. 2.5 rad
65. a. $\approx 137.4 \mathrm{ft}$
b. ≈ 18.7 miles per hou
67.

Exercises 4.4, pp. 185-190

1. $\sin (B x+C) ; A$ 3. minimum; maximum
2. Answers will vary. 7. a. $|A|=50, P=24 \quad$ b. ≈-25
$\left.\begin{array}{cccc}\text { c. }\left[\begin{array}{lll}1.6,10.4] & \text { 9. a. }|A|=200, P=3 & \text { b. }-175\end{array} \quad \text { c. }[1.75,2.75\right.\end{array}\right]$
3. $y=40 \sin \left(\frac{\pi}{15} t\right)+60$
4. $y=8 \sin \left(\frac{\pi}{180} t\right)+12$

5. $P=\frac{2 \pi}{B}, B=\frac{2 \pi}{P} ; f=\frac{1}{P}, P=\frac{1}{f} ; B=\frac{2 \pi}{1 / f}=2 \pi f$; $A \sin (B t)=A \sin [(2 \pi f) t] \quad$ 23. a. $P=4 \mathrm{sec}, f=\frac{1}{4}$ cycle/sec
b. -4.24 cm , moving away c. -4.24 cm , moving toward
d. about 1.76 cm . avg. vel. $=3.52 \mathrm{~cm} / \mathrm{sec}$, greater, still gaining speed
6. $d(t)=15 \cos \left(\frac{5 \pi}{4} t\right) \quad$ 27. red $\rightarrow \mathrm{D}_{2}$; blue $\rightarrow \mathrm{A} \#_{2}$
7. $\mathrm{D}_{2}: y=\sin [146.84(2 \pi t)] ; P \approx 0.0068 \mathrm{sec}$;
$\mathrm{G}_{3}: y=\sin [392(2 \pi t)] ; P \approx 0.00255 \mathrm{sec}$
8. a. $y=5 \sin \left(\frac{\pi}{12} t\right)+34$
b.

9. a. $y=-6.4 \cos \left(\frac{\pi}{6} t\right)+12.4 \quad$ b.
c. ≈ 134 days

10. a. $P=11 \mathrm{yr}$
b.

c. $\max =1200, \min =700$ d. about 2 yr
11. $P(t)=250 \cos \left[\frac{2 \pi}{11}(t-2.75)\right]+950 ; P(t)=250 \sin \left(\frac{2 \pi}{11} t\right)+950$
12. $y=5.2 \tan \left(\frac{\pi}{12} x\right) ; P=12$; asymptotes at $x=6+12 k, k \in \mathbb{Z}$; using
$(3,5.2),|A|=5.2$; at $x=2$, model gives $y \approx 3.002$; at $x=-2$, model gives $y \approx-3.002$; answers will vary. 41. Answers will vary; $y=11.95 \tan \theta ; P=180^{\circ}$; asymptotes at $\theta=90^{\circ}+180^{\circ} k ;|A|=11.95$ from $\left(30^{\circ}, 6.9 \mathrm{~cm}\right)$; pen is $\approx 12 \mathrm{~cm}$ long.
13. a. $L(t)=10 \csc \left(\frac{\pi}{6} t\right)$ b. 20 m 45. Answers will vary.
14. the dampening factor is quadratic, $f(x) \approx 0.02 x^{2}-0.32 x+2.28$,
$\mathrm{Y}_{1}=\sin (3 x), \mathrm{Y}_{2}=0.02 x^{2}-0.32 x+2.28, x \in[-2 \pi, 7 \pi], y \in[-5,5]$

15. $t=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3} \quad$ 51. $y=\sec \left(x-\frac{\pi}{3}\right)$
16. $2 \times \frac{1}{2}\left(24^{2}\right)\left(\frac{7 \pi}{36}\right)=112 \pi \mathrm{in}^{2}$
17. $\frac{1}{4}$
18. $\frac{1}{\pi}$
19. $\frac{2}{3 \pi}$

Summary and Concept Review, pp. 190-193

1. $|A|=3, P=2 \pi$

2. $|A|=1.7, P=\frac{\pi}{2}$

3. $|A|=1, P=\pi$

4. $|A|=2, P=\frac{1}{2}$

5. $|A|=3, P=\frac{1}{199}$

6. $y=0.75 \sin (6 t)$ 7. green; red
7. $P=2 \pi$

8. $y=4 \csc (3 \pi t) \quad$ 10. a. $\tan \left(\frac{7 \pi}{4}\right)=-1 ; \quad$ b. $\cot \left(\frac{\pi}{3}\right)=\frac{1}{\sqrt{3}}$
9. a. $\theta=\frac{2 \pi}{3} ; \quad$ b. $\theta=\frac{2 \pi}{3}$
10.

13.

14. $1.55+k \pi$ radians; $k \in Z$
15. 3.5860
16. $\approx 151.14 \mathrm{~m}$
17. a. $|A|=240, P=12$, HS: 3 units right, VS: 520 units up
b.

18. a. $|A|=3.2, P=8$, HS: 6 units left, VS: 6.4 units up b.

19. $|A|=125, P=24$, HS: 3 units right, VS: 175 units up, $y=125 \cos \left[\frac{\pi}{12}(t-3)\right]+175 \quad$ 20. $A=75, P=\frac{3 \pi}{8}, \mathrm{HS}:$ (none), VS: 105 units up, $\quad y=75 \sin \left(\frac{16}{3} t\right)+105$
21. $y=\sin [370(2 \pi t)] ; P \approx 0.0027 \mathrm{sec}$
22. a. $P(t)=0.91 \sin \left(\frac{\pi}{6} t\right)+1.35$ b. Aug: 1.81 in., Dec: 0.44 in. 23. $y=5.2 \tan \left(\frac{\pi}{12} x\right)$; period $=12 ; A=5.2$; asymptotes $x=-6, x=6$

Mixed Review, p. 194

1. $f(t)=10 \sin (2 t)$ 3. a. $A=10 \quad$ b. $D=15 \quad$ c. $P=6$
d. $f(4)=20 \quad$ 5. $y=-2 \cot \left[\frac{3}{2}\left(x+\frac{\pi}{3}\right)\right]$, other solutions are possible.
2.

9.

11.

13. a. $P(t)=1.63 \sin \left(\frac{\pi}{6} t\right)+2.42$ b. July: 4.05 in., Dec: 1.01 in.
15. a. $\frac{1}{12}$
b. $\frac{4}{3 \pi}$
17. $|A|=5 ; P=\pi$;

HS: (none);
VS: 8 units down; PI: $0 \leq t<\pi$

19. $P=4 \pi$; no horizontal shift

Practice Test, pp. 195-196
1.

\boldsymbol{t}	$\sin t$	$\cos \boldsymbol{t}$	$\tan t$	$\csc t$	$\sec t$	$\cot t$	$\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y})$
$\mathbf{0}$	0	1	0	-	1	-	$(1,0)$
$\frac{\boldsymbol{\pi}}{\mathbf{6}}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$	$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
$\frac{\boldsymbol{\pi}}{\mathbf{4}}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1	$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
$\frac{\boldsymbol{\pi}}{\mathbf{2}}$	1	0	-	1	-	0	$(0,1)$
$\frac{\mathbf{2 \pi}}{\mathbf{3}}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	-2	$-\frac{\sqrt{3}}{3}$	$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$\frac{\mathbf{5 \pi}}{\mathbf{6}}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	2	$-\frac{2 \sqrt{3}}{3}$	$-\sqrt{3}$	$\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
$\frac{\mathbf{5 \pi}}{\mathbf{4}}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1	$-\sqrt{2}$	$-\sqrt{2}$	1	$\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$
$\frac{\mathbf{4 \pi}}{\mathbf{3}}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$	$-\frac{2 \sqrt{3}}{3}$	-2	$\frac{\sqrt{3}}{3}$	$\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
$\frac{\mathbf{3 \pi}}{\mathbf{2}}$	-1	0	-	-1	-	0	$(0,-1)$

2. a. $0 \quad$ b. 0 c. 1 d. $\frac{2 \sqrt{3}}{3}$
3. a. $\frac{\pi}{3}$
b. $\frac{2 \pi}{3} \quad$ c. $\frac{4 \pi}{3}$
d. $\frac{7 \pi}{4}$
4. $|A|=3, P=10$
5. no amplitude, $P=\pi$

6. no amplitude, $P=\frac{\pi}{3}$

7. $|A|=12, P=\frac{2 \pi}{3}$, HS: $\frac{\pi}{6}$ right,

VS: 19 units up

8. $|A|=\frac{3}{4}, P=4$, HS: 0 ,
9. no amplitude, $P=3$, HS: $\frac{3}{2}$ right, VS: $\frac{1}{2}$ unit down

VS: none

10. a. 6 or $\$ 6,000$ b. January through July 11. $t \approx 1.11, t \approx 7.39$
12. $t \approx 4.6018$ 13. a. $r(t)=0.41 \sin \left[\frac{\pi}{6}(x+2)\right]+0.65 \quad$ b. January
14. $y=5 \cos (6 \pi t) \quad$ 15. $y=7.5 \sin \left(\frac{\pi}{6} t-\frac{\pi}{2}\right)+12.5$
16. $y=2 \csc \left(\frac{\pi}{2} t\right)-1 \quad$ 17. a 18. c 19. b 20. d

Strengthening Core Skills, pp. 197-198

Exercise 1. a. $h(t)=\sin \left(t+\frac{\pi}{2}\right)-1 \quad$ b. $t=\frac{\pi}{4}+2 \pi k$
Exercise 2. a. $h(t)=\cos \left(t-\frac{\pi}{2}\right)-1 \quad$ b. $t=-\frac{\pi}{6}+2 \pi k$
Exercise 3. a. $h(t)=3 \sin \left(t+\frac{\pi}{2}\right)+3 \quad$ b. $t=\left(\frac{3 \pi}{2}+0.7\right)+2 \pi k$

Cumulative Review Chapters 1-4, pp. 198-199

1.

3. 73 ; approx. $41.1^{\circ}, 48.9^{\circ}$
5. $\sin t=\frac{2 \sqrt{2}}{3}, \cos t=-\frac{1}{3}, \tan t=-2 \sqrt{2}, \csc t=\frac{3 \sqrt{2}}{4}, \sec t=-3$, $\cot t=-\frac{\sqrt{2}}{4} \quad$ 7. a. $35.7825^{\circ} \quad$ b. approx 0.6245
9. $\left(\frac{13}{85}\right)^{2}+\left(\frac{84}{85}\right)^{2}=\frac{169}{7225}+\frac{7056}{7225}=1,\left(-\frac{13}{85}, \frac{84}{85}\right)$,
$\left(-\frac{13}{85},-\frac{84}{85}\right),\left(\frac{13}{85},-\frac{84}{85}\right) \quad$ 11. $26 \mathrm{~m} \quad$ 13. $\sin t=-\frac{\sqrt{3}}{2}, \cos t=-\frac{1}{2}$,
$\tan t=\sqrt{3}, \csc t=-\frac{2 \sqrt{3}}{3}, \sec t=-2, \cot t=\frac{\sqrt{3}}{3} \quad$ 15. a. $\frac{\pi}{2} \mathrm{rad} / \mathrm{sec}$
b. $22 \mathrm{in} . / \mathrm{sec} \quad$ 17. a. QIII \quad b. $4.22-\pi \approx 1.08 \quad$ c. 1.8641
19. $y=\frac{3}{2} \sin \left(4 t-\frac{\pi}{2}\right)+\frac{1}{2} \quad$ 21. false; $(\cos t)(\csc t)=\cot t$
23. $\sin t=-\frac{5}{13}, \cos t=\frac{12}{13}, \tan t=-\frac{5}{12}, \sec t=\frac{13}{12}, \cot t=-\frac{12}{5}$
25. a. $y=5000 \sin \left(\frac{\pi}{3} x+\pi\right)+9000 \quad$ b. $\approx \$ 4670 \quad$ c. mid-October

MODELING WITH TECHNOLOGY

Modeling with Technology Exercises, pp. 207-210

1. $y=25 \sin \left(\frac{\pi}{6} x\right)+50 \quad$ 3. $y=2.25 \sin \left(\frac{\pi}{12} x+\frac{\pi}{4}\right)+5.25$
2. $y=503 \sin \left(\frac{\pi}{6} x+\frac{2 \pi}{3}\right)+782$
3. a. $T(x)=19.6 \sin \left(\frac{\pi}{6} x+\frac{4 \pi}{3} x\right)+84.6 \quad$ b. about $94.4^{\circ} \mathrm{F}$
c. beginning of May $(x \approx 5.1)$ to end of August $(x \approx 8.9)$
4. a. $T(x)=0.4 \sin \left(\frac{\pi}{12} x+\frac{13 \pi}{12}\right)+98.6 \quad$ b. at 11 A.M. and 11 р.м.
c. from $x=1$ to $x=9$, about 8 hr
5. $P=12, B=\frac{\pi}{12}, C=\frac{\pi}{2}$; using $(4,3)$ gives $A=-3 \sqrt{3}$, so
$f(x)=-3 \sqrt{3} \tan \left(\frac{\pi}{12} x+\frac{\pi}{2}\right)$ a. $f(2.5) \approx 6.77$ b. $f(x)=16$ for
$x \approx 1.20$ 13. a. using $(18,10)$ gives $A \approx 4.14 ; H(d)=4.14 \tan \left(\frac{\pi}{48} d\right)$
b. $\approx 12.2 \mathrm{~cm} \quad$ c. $\approx 21.9 \mathrm{mi}$
6. a. $y \approx 49.26 \sin (0.213 x-1.104)+51.43$
b. $y \approx 49 \sin (0.203 x-0.963)+51$ c. at day $31 \approx 5.6$
7. a. $y \approx 5.88 \sin (0.523 x-0.521)+16.00$
b. $y \approx 6 \sin (0.524 x-0.524)+16$ c. at month $9 \approx 0.12$
8. a. $T(m) \approx 15.328 \sin (0.461 m-1.610)+85.244$

b. \begin{tabular}{|c|c|}

\hline Month \& | Temp. |
| :---: |
| $\left({ }^{\circ} \mathbf{F}\right)$ |

\hline 1 \& 71

\hline 3 \& 82

\hline 5 \& 95

\hline 7 \& 101

\hline 9 \& 94

\hline 11 \& 80

\hline
\end{tabular}

c. max difference is about $1^{\circ} \mathrm{F}$ in months 6 and 8
21. a. $f(x) \approx 49.659 \sin (0.214 x-0.689)+48.328$ b. about 26.8% c. $g(x)=49.5 \sin \left(\frac{2 \pi}{31} x-\frac{7 \pi}{62}\right)+49.5$; values for A, B, and D are very close; some variation in C.
23. a. Reno: $R(t) \approx 0.452 \sin (0.396 t+1.831)+0.750$
b. The graphs intersect at $t \approx 2.6$ and $t \approx 10.5$. Reno gets more rainfall than Cheyenne for about 4 months of the year: $2.6+(12-10.5)=4.1$

25. physical, $\frac{2 \pi}{23}$; emotional, $\frac{\pi}{14}$; intellectual, $\frac{2 \pi}{33}$; answers will vary.

CHAPTER 5

Exercises 5.1, pp. 216-219

1. identities; symmetry. 3. complicated; simplify; build. 5. Because we don't know if the equation is true.
2. $(1+\sin x)[1+\sin (-x)]=(1+\sin x)(1-\sin x)=1-\sin ^{2} x=\cos ^{2} x$
3. $\sin ^{2}(-x)+\cos ^{2} x=(-\sin x)^{2}+\cos ^{2} x=\sin ^{2} x+\cos ^{2} x=1$
4. $\frac{1-\sin (-x)}{\cos x+\cos (-x) \sin x}=\frac{1+\sin x}{\cos x+\cos x \sin x}=\frac{1+\sin x}{\cos x(1+\sin x)}$

$$
=\frac{1}{\cos x}=\sec x
$$

13. $\cos ^{2} x \tan ^{2} x=\cos ^{2} x \frac{\sin ^{2} x}{\cos ^{2} x}$

$$
\begin{aligned}
& =\sin ^{2} x \\
& =1-\cos ^{2} x
\end{aligned}
$$

15. $\tan x+\cot x=\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}$

$$
\begin{aligned}
& =\frac{\sin ^{2} x+\cos ^{2} x}{\cos x \sin x} \\
& =\frac{1}{\cos x \sin x} \\
& =\frac{1}{\cos x} \frac{1}{\sin x} \\
& =\sec x \csc x
\end{aligned}
$$

17. $\csc x-\sin x=\frac{1}{\sin x}-\sin x$

$$
\begin{aligned}
& =\frac{1-\sin ^{2} x}{\sin x} \\
& =\frac{\cos ^{2} x}{\sin x} \\
& =\frac{\cos x}{\sin x / \cos x} \\
& =\frac{\cos x}{\tan x}
\end{aligned}
$$

19. $\sec \theta+\tan \theta=\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}$

$$
\begin{aligned}
& =\frac{1+\sin \theta}{\cos \theta} \\
& =\frac{(1+\sin \theta)(1-\sin \theta)}{\cos \theta(1-\sin \theta)} \\
& =\frac{1-\sin ^{2} \theta}{\cos \theta(1-\sin \theta)} \\
& =\frac{\cos ^{2} \theta}{\cos \theta(1-\sin \theta)} \\
& =\frac{\cos \theta}{1-\sin \theta}
\end{aligned}
$$

21. $\frac{1-\sin x}{\cos x}=\frac{(1-\sin x)(1+\sin x)}{\cos x(1+\sin x)}$

$$
\begin{aligned}
& =\frac{1-\sin ^{2} x}{\cos x(1+\sin x)} \\
& =\frac{\cos ^{2} x}{\cos x(1+\sin x)} \\
& =\frac{\cos x}{1+\sin x}
\end{aligned}
$$

23. $\frac{\csc x}{\cos x}-\frac{\cos x}{\csc x}=\frac{\csc ^{2} x-\cos ^{2} x}{\cos x \csc x}$

$$
\begin{aligned}
& =\frac{\csc ^{2} x-\left(1-\sin ^{2} x\right)}{\cos x \frac{1}{\sin x}} \\
& =\frac{\csc ^{2} x-1+\sin ^{2} x}{\cot x} \\
& =\frac{\cot ^{2} x+\sin ^{2} x}{\cot x}
\end{aligned}
$$

25. $\frac{\sin x}{1+\sin x}-\frac{\sin x}{1-\sin x}=\frac{\sin x(1-\sin x)-\sin x(1+\sin x)}{(1+\sin x)(1-\sin x)}$

$$
\begin{aligned}
& =\frac{\sin x-\sin ^{2} x-\sin x-\sin ^{2} x}{1-\sin ^{2} x} \\
& =\frac{-2 \sin ^{2} x}{\cos ^{2} x} \\
& =-2 \tan ^{2} x
\end{aligned}
$$

27. $\frac{\cot x}{1+\csc x}-\frac{\cot x}{1-\csc x}=\frac{\cot x(1-\csc x)-\cot x(1+\csc x)}{(1+\csc x)(1-\csc x)}$

$$
\begin{aligned}
& =\frac{\cot x-\cot x \csc x-\cot x-\cot x \csc x}{1-\csc ^{2} x} \\
& =\frac{2 \cot x \csc x}{\cot ^{2} x} \\
& =\frac{2 \csc x}{\cot x} \\
& =\frac{2 \frac{1}{\sin x}}{\frac{\cos x}{\sin x}} \\
& =\frac{2}{\cos x} \\
& =2 \sec x
\end{aligned}
$$

29. $\frac{\sec ^{2} x}{1+\cot ^{2} x}=\frac{\sec ^{2} x}{\csc ^{2} x}$

$$
\begin{aligned}
& =\frac{\frac{1}{\cos ^{2} x}}{\frac{1}{\sin ^{2} x}} \\
& =\frac{\sin ^{2} x}{\cos ^{2} x} \\
& =\tan ^{2} x
\end{aligned}
$$

31. $\sin ^{2} x\left(\cot ^{2} x-\csc ^{2} x\right)=\sin ^{2} x \cot ^{2} x-\sin ^{2} x \csc ^{2} x$

$$
\begin{aligned}
& =\sin ^{2} x \frac{\cos ^{2} x}{\sin ^{2} x}-\sin ^{2} x \frac{1}{\sin ^{2} x} \\
& =\cos ^{2} x-1 \\
& =-\sin ^{2} x
\end{aligned}
$$

33. $\cos x \cot x+\sin x=\cos x \frac{\cos x}{\sin x}+\sin x$

$$
\begin{aligned}
& =\frac{\cos ^{2} x}{\sin x}+\sin x \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\sin x} \\
& =\frac{1}{\sin x} \\
& =\csc x
\end{aligned}
$$

35. $\frac{\sec x}{\cot x+\tan x}=\frac{\frac{1}{\cos x}(\sin x)(\cos x)}{\left(\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}\right)(\sin x)(\cos x)}$

$$
=\frac{\sin x}{\cos ^{2} x+\sin ^{2} x}
$$

$$
=\frac{\sin x}{1}
$$

$$
=\sin x
$$

37. $\frac{\sin x-\csc x}{\csc x}=\frac{\sin x}{\csc x}-\frac{\csc x}{\csc x}$
$=\sin ^{2} x-1$
$=-\cos ^{2} x$
38. $\frac{\tan ^{2} x-\cot ^{2} x}{\tan x-\cot x}=\frac{(\tan x+\cot x)(\tan x-\cot x)}{(\tan x-\cot x)}$

$$
\begin{aligned}
& =\tan x+\cot x \\
& =\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x} \\
& =\frac{\sin ^{2} x+\cos ^{2} x}{\cos x \sin x} \\
& =\frac{1}{\cos x \sin x} \\
& =\frac{1}{\cos x} \frac{1}{\sin x} \\
& =\sec x \csc x
\end{aligned}
$$

$$
\text { 47. } \begin{aligned}
& =\csc x \sec x \\
\cot x+\tan x & =\frac{\frac{\cos x}{\sin x}}{\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}} \frac{(\cos x)(\sin x)}{(\cos x)(\sin x)} \\
& =\frac{\cos ^{2} x}{\cos ^{2} x+\sin ^{2} x} \\
& =\frac{\cos ^{2} x}{1} \\
& =1-\sin ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& \text { 39. } \frac{1}{\csc x-\sin x}=\frac{1}{(\csc x-\sin x)} \frac{\sin x}{\sin x} \\
& =\frac{\sin x}{1-\sin ^{2} x} \\
& =\frac{\sin x}{\cos ^{2} x} \\
& =\frac{\sin x}{\cos x} \frac{1}{\cos x} \\
& =\tan x \sec x \\
& \text { 41. } \frac{1+\sin x}{1-\sin x}=\frac{(1+\sin x)}{(1-\sin x)} \frac{(1+\sin x)}{(1+\sin x)} \\
& =\frac{1+2 \sin x+\sin ^{2} x}{1-\sin ^{2} x} \\
& =\frac{1+2 \sin x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x}+2 \frac{\sin x}{\cos x} \frac{1}{\cos x}+\frac{\sin ^{2} x}{\cos ^{2} x} \\
& =\sec ^{2} x+2 \tan x \sec x+\tan ^{2} x \\
& =(\sec x+\tan x)^{2} \\
& =(\tan x+\sec x)^{2} \\
& \text { 43. } \frac{\cos x-\sin x}{1-\tan x}=\frac{(\cos x-\sin x)}{(1-\tan x)} \frac{(\cos x+\sin x)}{(\cos x+\sin x)} \\
& =\frac{(\cos x-\sin x)(\cos x+\sin x)}{\cos x+\sin x-\sin x-\frac{\sin ^{2} x}{\cos x}} \\
& =\frac{(\cos x-\sin x)(\cos x+\sin x)}{\cos x\left(1-\frac{\sin ^{2} x}{\cos ^{2} x}\right)} \\
& =\frac{(\cos x-\sin x)(\cos x+\sin x)}{\cos x\left(1-\tan ^{2} x\right)} \\
& =\frac{(\cos x-\sin x)(\cos x+\sin x)}{\cos x(1-\tan x)(1+\tan x)} \\
& =\frac{(\cos x=\sin x)(\cos x+\sin x)}{(\cos x-\sin x)(1+\tan x)} \\
& =\frac{\cos x+\sin x}{1+\tan x}
\end{aligned}
$$

49. $\frac{\sec ^{4} x-\tan ^{4} x}{\sec ^{2} x+\tan ^{2} x}=\frac{\left(\sec ^{2} x-\tan ^{2} x\right)\left(\sec ^{2} x+\tan ^{2} x\right)}{\left(\sec ^{2} x+\tan ^{2} x\right)}$

$$
\begin{aligned}
& =\sec ^{2} x-\tan ^{2} x \\
& =1
\end{aligned}
$$

51. $\frac{\cos ^{4} x-\sin ^{4} x}{\cos ^{2} x}=\frac{\left(\cos ^{2} x-\sin ^{2} x\right)\left(\cos ^{2} x+\sin ^{2} x\right)}{\cos ^{2} x}$

$$
=\frac{\left(\cos ^{2} x-\sin ^{2} x\right)(1)}{\cos ^{2} x}
$$

$$
=\frac{\cos ^{2} x}{\cos ^{2} x}-\frac{\sin ^{2} x}{\cos ^{2} x}
$$

$$
=1-\tan ^{2} x
$$

$$
=1-\left(\sec ^{2} x-1\right)
$$

$$
=1-\sec ^{2} x+1
$$

$$
=2-\sec ^{2} x
$$

53. $(\sec x+\tan x)^{2}=\sec ^{2} x+2 \sec x \tan x+\tan ^{2} x$

$$
\begin{aligned}
& =\frac{1}{\cos ^{2} x}+\frac{2 \sin x}{\cos ^{2} x}+\frac{\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1+2 \sin x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{(1+\sin x)^{2}}{\cos ^{2} x} \\
& =\frac{(\sin x+1)^{2}}{\cos ^{2} x}
\end{aligned}
$$

55. $\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}+\frac{\csc x}{\sec x}=\frac{\cos ^{2} x \sec x+\sin ^{2} x \sec x+\csc x \sin x \cos x}{\sin x \cos x \sec x}$

$$
\begin{aligned}
& =\frac{\sec x\left(\cos ^{2} x+\sin ^{2} x\right)+(1) \cos x}{\sin x(1)} \\
& =\frac{\sec x+\cos x}{\sin x}
\end{aligned}
$$

57. $\frac{\sin ^{4} x-\cos ^{4} x}{\sin ^{3} x+\cos ^{3} x}=\frac{\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{2} x-\cos ^{2} x\right)}{(\sin x+\cos x)\left(\sin ^{2} x-\sin x \cos x+\cos ^{2} x\right)}$

$$
\begin{aligned}
& =\frac{(1)(\sin x+\cos x)(\sin x-\cos x)}{(\sin x+\cos x)\left(\sin ^{2} x+\cos ^{2} x-\sin x \cos x\right)} \\
& =\frac{\sin x-\cos x}{1-\sin x \cos x}
\end{aligned}
$$

59. Answers will vary. 61. Answers will vary. 63. Answers will vary.
60. a. $d^{2}=(20+x \cos \theta)^{2}+(20-x \sin \theta)^{2}$

$$
\begin{aligned}
& =400+40 x \cos \theta+x^{2} \cos ^{2} \theta+400-40 x \sin \theta+x^{2} \sin ^{2} \theta \\
& =800+40 x(\cos \theta-\sin \theta)+x^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =800+40 x(\cos \theta-\sin \theta)+x^{2}
\end{aligned}
$$

b. $\approx 42.2 \mathrm{ft}$
67. a. $h=\sqrt{\cot x+\tan x}$;

$$
h \approx 3.76
$$

b. $\cot x+\tan x=\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}$

$$
=\frac{\cos ^{2} x+\sin ^{2} x}{\sin x \cos x}
$$

$$
=\frac{1}{\sin x \cos x}
$$

$$
=\csc x \sec x
$$

$$
h=\sqrt{\csc x \sec x}
$$

$$
h \approx 3.76 ; \text { yes }
$$

69. $D^{2}=400+40 x \cos \theta+x^{2}$

$$
D \approx 40.5 \mathrm{ft}
$$

71. $\sin \alpha=\cos \theta$ 73. Answers will vary.
72. $\left(\sin ^{2} x+\cos ^{2} x\right)^{2}=(1)^{2}=1$
73. about 1148 ft 79. $\sin \theta=\frac{-63}{65}, \csc \theta=\frac{65}{-63}$,
$\cos \theta=\frac{-16}{65}, \sec \theta=\frac{65}{-16}, \tan \theta=\frac{63}{16}, \cot \theta=\frac{16}{63}$
74.

Exercises 5.2, pp. 225-229

1. false; QII 3. repeat; opposite 5. Answers will vary.
2. $\frac{\sqrt{2}-\sqrt{6}}{4}$
3. $\frac{\sqrt{2}-\sqrt{6}}{4}$
4. a. $\cos \left(45^{\circ}+30^{\circ}\right)=\cos 45^{\circ} \cos 30^{\circ}-\sin 45^{\circ} \sin 30^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}$
b. $\cos \left(120^{\circ}-45^{\circ}\right)=\cos 120^{\circ} \cos 45^{\circ}+\sin 120^{\circ} \sin 45^{\circ}=$ $\frac{-\sqrt{2}+\sqrt{6}}{4}=\frac{\sqrt{6}-\sqrt{2}}{4}$
5. $\cos (5 \theta) \quad$ 15. $\frac{\sqrt{3}}{2} \quad$ 17. $\frac{-16}{65} \quad$ 19. $\sin 33^{\circ} \quad$ 21. $\cot \left(\frac{\pi}{12}\right)$
6. $\cos \left(\frac{\pi}{3}+\theta\right)$ 25. $\sin (8 x)$
7. $\tan (3 \theta)$
8. 1 31. $\sqrt{3}$
9. a. $\frac{-304}{425}$
b. $\frac{-304}{297}$
10. $\frac{\sqrt{6}+\sqrt{2}}{4}$
11. $\frac{\sqrt{6}+\sqrt{2}}{4}$
12. $-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3} \quad$ 41. $-\sqrt{3}$
13. a. $\sin \left(45^{\circ}-30^{\circ}\right)=\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}$
b. $\sin \left(135^{\circ}-120^{\circ}\right)=\sin 135^{\circ} \cos 120^{\circ}-\cos 135^{\circ} \sin 120^{\circ}$

$$
\begin{aligned}
& =\left(\frac{\sqrt{2}}{2}\right)\left(-\frac{1}{2}\right)-\left(\frac{-\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{-\sqrt{2}}{4}+\frac{\sqrt{6}}{4} \\
& =\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

45. $\frac{-\sqrt{2}-\sqrt{6}}{4}$
46. a. $\frac{319}{481}$ b. $\frac{480}{481}$
c. $-\frac{319}{360}$
47. a. $\frac{3416}{4505} \quad$ b. $\frac{-1767}{4505} \quad$ c. $\frac{3416}{2937}$
48. a. $\frac{12+5 \sqrt{3}}{26}$ b. $\frac{12 \sqrt{3}-5}{26}$ c. $\frac{12+5 \sqrt{3}}{12 \sqrt{3}-5}$
49. $\left(90^{\circ}-\alpha\right)+\theta+\left(90^{\circ}-\beta\right)=180^{\circ}$ a. $\frac{247}{265} \quad$ b. $\frac{96}{265} \quad$ c. $\frac{247}{96}$
50. $\sin (\pi-\alpha)=\sin \pi \cos \alpha-\cos \pi \sin \alpha$

$$
\begin{aligned}
& =0-(-1) \sin \alpha \\
& =\sin \alpha
\end{aligned}
$$

57. $\cos \left(x+\frac{\pi}{4}\right)=\cos x \cos \left(\frac{\pi}{4}\right)-\sin x \sin \left(\frac{\pi}{4}\right)=$
$\cos x\left(\frac{\sqrt{2}}{2}\right)-\sin x\left(\frac{\sqrt{2}}{2}\right)=\frac{\sqrt{2}}{2}(\cos x-\sin x)$
58. $\tan \left(x+\frac{\pi}{4}\right)=\frac{\tan x+\tan \left(\frac{\pi}{4}\right)}{1-\tan x \tan \left(\frac{\pi}{4}\right)}=\frac{\tan x+1}{1-\tan x}=\frac{1+\tan x}{1-\tan x}$
59. $\cos (\alpha+\beta)+\cos (\alpha-\beta)=$
$\cos \alpha \cos \beta-\sin \alpha \sin \beta+\cos \alpha \cos \beta+\underline{\sin \alpha \sin \beta}=$ $2 \cos \alpha \cos \beta$
60. $\cos (2 t)=\cos (t+t)$

$$
\begin{aligned}
& =\cos t \cos t-\sin t \sin t \\
& =\cos ^{2} t-\sin ^{2} t
\end{aligned}
$$

65. $\sin (3 t)=\sin (2 t+t)$
$=\sin (2 t) \cos t+\cos (2 t) \sin t$
$=2 \sin t \cos t \cos t+\left(\cos ^{2} t-\sin ^{2} t\right) \sin t$
$=2 \sin t \cos ^{2} t+\sin t \cos ^{2} t-\sin ^{3} t$
$=3 \sin t \cos ^{2} t-\sin ^{3} t$
$=3 \sin t\left(1-\sin ^{2} t\right)-\sin ^{3} t$
$=3 \sin t-3 \sin ^{3} t-\sin ^{3} t$
$=-4 \sin ^{3} t+3 \sin t$
66. $\cos \left(x-\frac{\pi}{4}\right)=\cos x \cos \left(\frac{\pi}{4}\right)+\sin x \sin \left(\frac{\pi}{4}\right)$
$=\cos x\left(\frac{\sqrt{2}}{2}\right)+\sin x\left(\frac{\sqrt{2}}{2}\right)$
$=\frac{\sqrt{2}}{2}(\cos x+\sin x)$
67. $F=\frac{W k}{c} \frac{1-\sqrt{3}}{1+\sqrt{3}}$
68. $R=\frac{\cos s \cos t}{\bar{\omega} C \sin (s+t)}$

$$
\begin{aligned}
& =\frac{\cos s \cos t}{\bar{\omega} C(\sin s \cos t+\cos s \sin t)} \\
& =\frac{\cos s \cos t \frac{1}{\cos s \cos t}}{\bar{\omega} C(\sin s \cos t+\cos s \sin t) \frac{1}{\cos s \cos t}}
\end{aligned}
$$

$$
=\frac{1}{\bar{\omega} C\left(\frac{\sin s \cos t}{\cos s \cos t}+\frac{\cos s \sin t}{\cos s \cos t}\right)}
$$

$$
=\frac{1}{\bar{\omega} C(\tan s+\tan t)}
$$

73. $\frac{A}{B}=\frac{\sin \theta \cos \left(90^{\circ}-\theta\right)}{\cos \theta \sin \left(90^{\circ}-\theta\right)}$

$$
\begin{aligned}
\frac{A}{B} & =\frac{\sin \theta\left(\cos 90^{\circ} \cos \theta+\sin 90^{\circ} \sin \theta\right)}{\cos \theta\left(\sin 90^{\circ} \cos \theta-\cos 90^{\circ} \sin \theta\right)} \\
& =\frac{\sin \theta(0+\sin \theta)}{\cos \theta(\cos \theta-0)} \\
& =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\
& =\tan ^{2} \theta
\end{aligned}
$$

75. verified using sum identity for sine
76. $\frac{f(x+h)-f(x)}{h}=\frac{\sin (x+h)-\sin x}{h}$

$$
\begin{aligned}
& =\frac{\sin x \cos h+\cos x \sin h-\sin x}{h}=\frac{\sin x \cos h-\sin x+\cos x \sin h}{h} \\
& =\frac{\sin x(\cos h-1)+\cos x \sin h}{h}=\sin x\left(\frac{\cos h-1}{h}\right)+\cos x\left(\frac{\sin h}{h}\right)
\end{aligned}
$$

79. $\frac{-\sqrt{2}}{2}$ 81. $\frac{1}{2}$
80. $D=d$, so $D^{2}=d^{2}$, and

$$
\begin{aligned}
D^{2}= & (\cos \alpha-\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2} \\
= & \cos ^{2} \alpha-2 \cos \alpha \cos \beta+\cos ^{2} \beta+\sin ^{2} \alpha- \\
& 2 \sin \alpha \sin \beta+\sin ^{2} \beta \\
= & 2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta \\
d^{2}= & \sin ^{2}(\alpha-\beta)+[\cos (\alpha-\beta)-1]^{2} \\
= & \sin ^{2}(\alpha-\beta)+\cos ^{2}(\alpha-\beta)-2 \cos (\alpha-\beta)+1 \\
= & 2-2 \cos (\alpha-\beta) \\
D^{2}= & d^{2} \operatorname{so} \\
2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta & =2-2 \cos (\alpha-\beta) \\
\frac{-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta}{-2} & =\frac{-2 \cos (\alpha-\beta)}{-2} \\
\cos \alpha \cos \beta+\sin \alpha \sin \beta & =\cos (\alpha-\beta)
\end{aligned}
$$

85. $\sin t=\frac{3}{4}, \cos t=\frac{\sqrt{7}}{4}, \tan t=\frac{3}{\sqrt{7}}$
86.

89.

Mid-Chapter Check, p. 230

1. $\cos ^{2} x-\cot ^{2} x=-\cos ^{2} x \cot ^{2} x$ $\cos ^{2} x-\frac{\cos ^{2} x}{\sin ^{2} x}=$
$\cos ^{2} x\left(1-\frac{1}{\sin ^{2} x}\right)=$
$\cos ^{2} x\left(1-\csc ^{2} x\right)=$
$\cos ^{2} x\left(-\cot ^{2} x\right)=$
2. $\quad 1-\sin ^{4} t=\left(1+\sin ^{2} t\right) \cos ^{2} t$
$\left(1+\sin ^{2} t\right)\left(1-\sin ^{2} t\right)=$
$\left(1+\sin ^{2} t\right) \cos ^{2} t=$
3. $\frac{2 \sin x}{\sec x}-\frac{\cos x}{\csc x}=\cos x \sin x$
$\underline{2 \sin x \csc x-\cos x \sec x}$

$$
\sec x \csc x
$$

$$
\begin{aligned}
& \frac{2(1)-1}{\sec x \csc x}= \\
& \frac{1}{\sec x \csc x}= \\
& \cos x \sin x=
\end{aligned}
$$

4. $\frac{1-\cos t}{\cos t}+\frac{\sec t-1}{\sec t}=\sec t-\cos t$

$$
\frac{(\sec t-1)+(1-\cos t)}{\cos t \sec t}=
$$

$$
\sec t-\cos t=
$$

5. $1+\sec ^{2} x=\tan ^{2} x$
$1+\sec ^{2} 0=\tan ^{2} 0$
$1+1^{2}=0^{2}$ $1+1=0$

$$
2=0 \text { False }
$$

6. $\cos ^{2} \frac{\pi}{6}=\sin ^{2} \frac{\pi}{6}-1$

$$
\begin{aligned}
\left(\frac{\sqrt{3}}{2}\right)^{2} & =\left(\frac{1}{2}\right)^{2}-1 \\
\frac{3}{4} & =\frac{1}{4}-1 \\
\frac{3}{4} & =-\frac{3}{4} ; \text { false }
\end{aligned}
$$

7. $\cos (4 \alpha)$
8. $\sin \left(\frac{7 \pi}{12} t\right)$
9. a. $\frac{56}{65}$
b. $\frac{63}{65} \quad$ c. $-\frac{56}{33}$
10. a. $\frac{456}{5785}$
b. $\frac{-3193}{5785}$
c. $\frac{456}{5767}$

Reinforcing Basic Concepts, p. 230
Exercise 1. For α,
$a \approx 34 \mathrm{~mm}$
$b \approx 18.5 \mathrm{~mm}$

$$
\begin{aligned}
34^{2}+18.5^{2} & =h^{2} \\
\sqrt{1498.25} & =h \\
38.7 & \approx h
\end{aligned}
$$

38.5 vs $38.7 ; 0.5 \%$

For β

$$
\begin{aligned}
& a \approx 34 \mathrm{~mm} \\
& b \approx 23.5 \mathrm{~mm} \\
& 34^{2}+23.5^{2}=h^{2} \\
& \sqrt{1708.25}=h \\
& 41.3 \approx h
\end{aligned}
$$

41.5 vs $41.3 ; 0.4 \%$

Exercise 2. $\cos \alpha=\frac{34}{38.5} ; \cos \beta=\frac{34}{41.5}$;

$$
\sin \alpha=\frac{18.5}{38.5} ; \sin \beta=\frac{23.5}{41.5}
$$

$\left(\frac{18.5}{38.5}\right)^{2}+\left(\frac{34}{38.5}\right)^{2} \approx 1 ;\left(\frac{34}{41.5}\right)^{2}+\left(\frac{23.5}{41.5}\right)^{2} \approx 1 ;$
Their sum is very close to 1 .
Exercise 3. yes, yes Exercise 4. verified

Exercises 5.3, pp. 235-239

1. sum; $\alpha=\beta$ 3. $2 x ; x$ 5. Answers will vary
2. $\sin (2 \theta)=\frac{-120}{169}, \cos (2 \theta)=\frac{119}{169}, \tan (2 \theta)=\frac{-120}{119}$
3. $\sin (2 \theta)=\frac{-720}{1681}, \cos (2 \theta)=\frac{-1519}{1681}, \tan (2 \theta)=\frac{720}{1519}$
4. $\sin (2 \theta)=\frac{2184}{7225}, \cos (2 \theta)=\frac{6887}{7225}, \tan (2 \theta)=\frac{2184}{6887}$
5. $\sin (2 \theta)=\frac{-5280}{5329}, \cos (2 \theta)=\frac{721}{5329}, \tan (2 \theta)=\frac{-5280}{721}$
6. $\sin (2 \theta)=\frac{-24}{25}, \cos (2 \theta)=\frac{7}{25}, \tan (2 \theta)=\frac{-24}{7}$
7. $\sin \theta=\frac{4}{5}, \cos \theta=\frac{3}{5}, \tan \theta=\frac{4}{3}$
8. $\sin \theta=\frac{21}{29}, \cos \theta=\frac{20}{29}, \tan \theta=\frac{21}{20}$
9. $\sin (3 \theta)=\sin (2 \theta+\theta)$

$$
\begin{aligned}
& =\sin (2 \theta) \cos \theta+\cos (2 \theta) \sin \theta \\
& =(2 \sin \theta \cos \theta) \cos \theta+\left(1-2 \sin ^{2} \theta\right) \sin \theta \\
& =2 \sin \theta \cos ^{2} \theta+\sin \theta-2 \sin ^{3} \theta \\
& =2 \sin \theta\left(1-\sin ^{2} \theta\right)+\sin \theta-2 \sin ^{3} \theta \\
& =2 \sin \theta-2 \sin ^{3} \theta+\sin \theta-2 \sin ^{3} \theta \\
& =3 \sin \theta-4 \sin ^{3} \theta
\end{aligned}
$$

23
23. $\frac{1}{4}$ 25. $\frac{\sqrt{2}}{2}$
27. 1
29. $4.5 \sin (6 x)$
31. $\frac{1}{8}-\frac{1}{8} \cos (4 x)$
33. $\frac{9}{8}+\frac{3}{2} \cos (2 x)+\frac{3}{8} \cos (4 x)$
35. $\frac{5}{8}-\frac{7}{8} \cos (2 x)+\frac{3}{8} \cos (4 x)-\frac{1}{8} \cos (2 x) \cos (4 x)$
37. $\sin \theta=\frac{\sqrt{2-\sqrt{2}}}{2}, \cos \theta=\frac{\sqrt{2+\sqrt{2}}}{2}, \tan \theta=\sqrt{2}-1$
39. $\sin \theta=\frac{\sqrt{2-\sqrt{3}}}{2}, \cos \theta=\frac{\sqrt{2+\sqrt{3}}}{2}, \tan \theta=2-\sqrt{3}$
41. $\sin \theta=\frac{\sqrt{2+\sqrt{2}}}{2}, \cos \theta=\frac{\sqrt{2-\sqrt{2}}}{2}, \tan \theta=\sqrt{2}+1$
43. $\sin \theta=\frac{\sqrt{2+\sqrt{2}}}{2}, \cos \theta=\frac{\sqrt{2-\sqrt{2}}}{2}, \tan \theta=\sqrt{2}+1$
45. $\frac{\sqrt{2-\sqrt{2+\sqrt{2}}}}{2}$
47. $\frac{\sqrt{2-\sqrt{2+\sqrt{3}}}}{2}$
49. $\cos 15^{\circ}$
51. $\tan 2 \theta$ 53. $\tan x$
55. $\sin \left(\frac{\theta}{2}\right)=\frac{3}{\sqrt{13}}, \cos \left(\frac{\theta}{2}\right)=\frac{2}{\sqrt{13}}, \tan \left(\frac{\theta}{2}\right)=\frac{3}{2}$
57. $\sin \left(\frac{\theta}{2}\right)=\frac{3}{\sqrt{10}}, \cos \left(\frac{\theta}{2}\right)=\frac{1}{\sqrt{10}}, \tan \left(\frac{\theta}{2}\right)=3$
59. $\sin \left(\frac{\theta}{2}\right)=\frac{7}{\sqrt{74}}, \cos \left(\frac{\theta}{2}\right)=\frac{5}{\sqrt{74}}, \tan \left(\frac{\theta}{2}\right)=\frac{7}{5}$
61. $\sin \left(\frac{\theta}{2}\right)=\frac{1}{\sqrt{226}}, \cos \left(\frac{\theta}{2}\right)=\frac{15}{\sqrt{226}}, \tan \left(\frac{\theta}{2}\right)=\frac{1}{15}$
63. $\sin \left(\frac{\theta}{2}\right)=\frac{5}{\sqrt{29}}, \cos \left(\frac{\theta}{2}\right)=\frac{-2}{\sqrt{29}}, \tan \left(\frac{\theta}{2}\right)=-\frac{5}{2}$
65. $\frac{2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x}=\frac{\sin (2 x)}{\cos (2 x)}$

$$
=\tan (2 x)
$$

67. $(\sin x+\cos x)^{2}=\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x$

$$
\begin{aligned}
& =\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x \\
& =1+2 \sin x \cos x \\
& =1+\sin (2 x)
\end{aligned}
$$

69. $\cos (8 \theta)=\cos (2 \cdot 4 \theta)$

$$
=\cos ^{2}(4 \theta)-\sin ^{2}(4 \theta)
$$

71. $\frac{\cos (2 \theta)}{\sin ^{2} \theta}=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta}$

$$
\begin{aligned}
& =\frac{\cos ^{2} \theta}{\sin ^{2} \theta}-\frac{\sin ^{2} \theta}{\sin ^{2} \theta} \\
& =\cot ^{2} \theta-1
\end{aligned}
$$

73. $\tan (2 \theta)=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

$$
\begin{aligned}
& =\frac{(2 \tan \theta) \frac{1}{\tan \theta}}{\left(1-\tan ^{2} \theta\right) \frac{1}{\tan \theta}} \\
& =\frac{2}{\frac{1}{\tan \theta}-\tan \theta} \\
& =\frac{2}{\cot \theta-\tan \theta}
\end{aligned}
$$

75. $2 \csc (2 x)=\frac{2}{\sin (2 x)}$

$$
\begin{aligned}
& =\frac{2}{2 \sin x \cos x} \\
& =\frac{1}{\sin x \cos x} \\
& =\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x} \\
& =\frac{\sin ^{2} x}{\sin x \cos x}+\frac{\cos ^{2} x}{\sin x \cos x} \\
& =\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x} \\
& =\tan x+\cot x
\end{aligned}
$$

77. $\cos ^{2}\left(\frac{x}{2}\right)-\sin ^{2}\left(\frac{x}{2}\right)=\cos \left(2 \cdot \frac{x}{2}\right)$
78. $1-4 \sin ^{2} \theta+4 \sin ^{4} \theta=\left(1-2 \sin ^{2} \theta\right)^{2}$

$$
\begin{aligned}
& =[\cos (2 \theta)]^{2} \\
& =\cos ^{2}(2 \theta) \\
& =1-\sin ^{2}(2 \theta)
\end{aligned}
$$

81. $\sin ^{2} \alpha+(1-\cos \alpha)^{2}=\sin ^{2} \alpha+1-2 \cos \alpha+\cos ^{2} \alpha$ $=\sin ^{2} \alpha+\cos ^{2} \alpha+1-2 \cos \alpha=1+1-2 \cos \alpha=2-2 \cos \alpha$ $=2(1-\cos \alpha)=4\left(\frac{1-\cos \alpha}{2}\right)=4 \sin ^{2}\left(\frac{\alpha}{2}\right)=\left[2 \sin \left(\frac{\alpha}{2}\right)\right]^{2}$
82. $\sin (2 \alpha)=\sin (\alpha+\alpha)$

$$
\begin{aligned}
& =\sin \alpha \cos \alpha+\cos \alpha \sin \alpha \\
& =\sin \alpha \cos \alpha+\sin \alpha \cos \alpha \\
& =2 \sin \alpha \cos \alpha
\end{aligned}
$$

$$
\tan (\alpha+\beta)=\tan (\alpha+\alpha)
$$

$$
\begin{aligned}
& =\frac{\tan \alpha+\tan \alpha}{1-\tan \alpha \tan \alpha} \\
& =\tan (2 \alpha)=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}
\end{aligned}
$$

85. a. $\mathcal{M}=\frac{2}{\sqrt{2-\sqrt{3}}}, \mathcal{M} \approx 3.9$
b. $\mathcal{M}=\frac{2}{\sqrt{2-\sqrt{2}}}, \mathcal{M} \approx 2.6 \quad$ c. $\theta=60^{\circ}$
86. $d(t)=\left|6 \sin \left(\frac{\pi t}{60}\right)\right|$

$$
=\left|6 \sin \left(\frac{1}{2} \cdot \frac{\pi t}{30}\right)\right|
$$

$$
=\left|6\left(\pm \sqrt{\frac{1-\cos \left(\frac{\pi t}{30}\right)}{2}}\right)\right|
$$

$$
=6 \sqrt{\frac{1-\cos \left(\frac{\pi t}{30}\right)}{2}}
$$

$$
=\sqrt{36 \frac{1-\cos \left(\frac{\pi t}{30}\right)}{2}}
$$

$$
=\sqrt{18\left[1-\cos \left(\frac{\pi t}{30}\right)\right]}
$$

89. A. $\sin \left(2 \theta-90^{\circ}\right)+1$
$=\sin (2 \theta) \cos 90^{\circ}-\cos (2 \theta) \sin 90^{\circ}+1$
$=0-\cos (2 \theta)+1$
$=1-\cos (2 \theta)$
B. $2 \sin ^{2} \theta=\sin ^{2} \theta+\sin ^{2} \theta$

$$
\begin{aligned}
& =1-\cos ^{2} \theta+\sin ^{2} \theta \\
& =1-\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& =1-\cos (2 \theta)
\end{aligned}
$$

C. $1+\sin ^{2} \theta-\cos ^{2} \theta=1-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$

$$
=1-\cos (2 \theta)
$$

D. $1-\cos (2 \theta)=1-\cos (2 \theta)$
91. a. $\approx 0.9659 ; \approx 0.9659$

$$
\text { b. } \begin{aligned}
\left(\frac{\sqrt{2+\sqrt{3}}}{2}\right)^{2} & \stackrel{?}{=}\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)^{2} \\
\frac{2+\sqrt{3}}{4} & \stackrel{?}{=} \frac{6+2 \sqrt{12}+2}{16} \\
\frac{2+\sqrt{3}}{4} & \stackrel{?}{=} \frac{8+4 \sqrt{3}}{16} \\
\frac{2+\sqrt{3}}{4} & =\frac{2+\sqrt{3}}{4}
\end{aligned}
$$

93. $\quad \cos 15^{\circ}=\frac{\sqrt{2+\sqrt{3}}}{2}$

$$
\begin{aligned}
\cos 7.5^{\circ} & =\frac{\sqrt{2+\sqrt{2+\sqrt{3}}}}{2} \\
\cos 3.75^{\circ} & =\frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}{2} \approx 0.9979 \\
\cos 1.875^{\circ} & =\frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}}{2} \approx 0.9995
\end{aligned}
$$

They are getting close to 1 .
95. $\sin ^{2} x+\cos ^{2} x=1, \tan ^{2} x+1=\sec ^{2} x, 1+\cot ^{2} x=\csc ^{2} x$
97. about $19.3 \mathrm{ft} \quad$ 99. $y=26 \sin \left[\frac{\pi}{6}(x-4)\right]+84$

Exercises 5.4, pp. 243-245

1. product; sum; sum; difference
2. $\frac{1}{16} v^{2} \sin \theta \cos \theta$; range; air resistance 5. Answers will vary.
3. $\frac{1}{2}[\cos (12 \theta)-\cos (4 \theta)]$ 9. $\sin 5 t-\sin 2 t$
4. $\cos (1540 \pi t)+\cos (2418 \pi t)$ 13. $\sin (2 x)+\sin (4 y)$
5. $\frac{1+\sqrt{3}}{2}$
6. $\frac{\sqrt{2}}{4}$
7. $2 \cos \left(\frac{13}{2} h\right) \cos \left(\frac{5}{2} h\right)$
8. $2 \cos x \sin \left(\frac{3}{8} x\right)$
9. $-2 \sin (1072 \pi t) \sin (375 \pi t)$
10. $2 \sin (3 x+3 y) \cos (-2 y)$
11. $\frac{\sqrt{6}}{2}$
12. $\frac{-\sqrt{2}}{2}$
13. $\frac{\sin m+\sin n}{\cos m+\cos n}=\frac{2 \sin \left(\frac{m+n}{2}\right) \cos \left(\frac{m-n}{2}\right)}{2 \cos \left(\frac{m+n}{2}\right) \cos \left(\frac{m-n}{2}\right)}$

$$
\begin{aligned}
& =\frac{\sin \left(\frac{m+n}{2}\right)}{\cos \left(\frac{m+n}{2}\right)} \\
& =\tan \left(\frac{m+n}{2}\right)
\end{aligned}
$$

33. $\frac{2 \sin 2 t \cos t-\sin 3 t}{\cos t}=\frac{2\left[\frac{1}{2}(\sin 3 t+\sin t)\right]-\sin 3 t}{\cos t}$

$$
\begin{aligned}
& =\frac{\sin 3 t+\sin t-\sin 3 t}{\cos t} \\
& =\frac{\sin t}{\cos t} \\
& =\tan t
\end{aligned}
$$

35. $\frac{2 \cos 2 t}{\sin 3 t-\sin t}=\frac{2 \cos 2 t}{2 \cos 2 t \sin t}$

$$
\begin{aligned}
& =\frac{1}{\sin t} \\
& =\csc t
\end{aligned}
$$

37. $\frac{\sin (120 \pi t)+\sin (80 \pi t)}{\cos (120 \pi t)-\cos (80 \pi t)}=\frac{2 \underline{\sin (100 \pi t) \cos (20 \pi t)}}{-2 \underline{\sin (100 \pi t) \sin (20 \pi t)}}$

$$
\begin{aligned}
& =-\frac{\cos (20 \pi t)}{\sin (20 \pi t)} \\
& =-\cot (20 \pi t)
\end{aligned}
$$

39. $\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]=\sin \alpha \sin \beta$
40. $-\frac{1}{4}=-\frac{1}{4}$, verified \quad 43. $y(t)=2 \cos (2174 \pi t) \cos (780 \pi t)$
41. $\cos [2 \pi(1209) t]+\cos [2 \pi(941) t]$; the 类 key
42. a. $288-144 \sqrt{2} \mathrm{ft} \approx 84.3 \mathrm{ft}$ b. $288-144 \sqrt{2} \mathrm{ft} \approx 84.3 \mathrm{ft}$
43. $y=4 \sin (1.1 x) \cos (0.6 t)$
44. $(\sin a \sin b) \sin c=\frac{1}{2}[\cos (a-b)-\cos (a+b)] \sin c$
$=\frac{1}{2}[\cos (a-b)(\sin c)-\cos (a+b)(\sin c)]$
$=\frac{1}{2}\left\{\frac{1}{2}[\sin (a-b-c)-\sin (a-b+c)]-\frac{1}{2}[\sin (a+b+c)\right.$
$-\sin (a+b-c)]\}$
$=\frac{1}{4}[\sin (a+b-c)+\sin (b+c-a)+\sin (c+a-b)$
$-\sin (a+b+c)]$
45. Y_{1} is increasing; Y_{2} is defined on $(0, \pi)$.
46. $\left(\frac{16}{65}\right)^{2}+\left(\frac{63}{65}\right)^{2}=\frac{256}{4225}+\frac{3969}{4225}=\frac{4225}{4225}=1$,
$\tan \theta=\frac{63}{16} ; \sec \theta=\frac{65}{16}$

$$
\begin{array}{r}
1+\left(\frac{63}{16}\right)^{2}=\left(\frac{65}{16}\right)^{2} \\
1+\frac{3969}{256}=\frac{4225}{256} \\
\frac{256}{256}+\frac{3969}{256}=\frac{4225}{256}
\end{array}
$$

57. $\frac{\sqrt{2}-\sqrt{6}}{4}$

Summary and Concept Review, pp. 246-248

1. $\frac{\csc ^{2} x\left(1-\cos ^{2} x\right)}{\tan ^{2} x}=\frac{\csc ^{2} x \sin ^{2} x}{\tan ^{2} x}$

$$
\begin{aligned}
& =\frac{1}{\tan ^{2} x} \\
& =\cot ^{2} x
\end{aligned}
$$

2. $\frac{\cot x}{\sec x}-\frac{\csc x}{\tan x}=\cot x \frac{1}{\sec x}-\cot x \csc x$

$$
=\cot x \cos x-\cot x \csc x
$$

$$
=\cot x(\cos x-\csc x)
$$

3. $\frac{\sin ^{4} x-\cos ^{4} x}{\sin x \cos x}=\frac{\left(\sin ^{2} x-\cos ^{2} x\right)\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin x \cos x}$

$$
=\frac{\left(\sin ^{2} x-\cos ^{2} x\right)(1)}{\sin x \cos x}
$$

$$
=\frac{\sin x \sin x}{\sin x \cos x}-\frac{\cos x \cos x}{\sin x \cos x}
$$

$$
=\frac{\sin x}{\cos x}-\frac{\cos x}{\sin x}
$$

$$
=\tan x-\cot x
$$

4. $\frac{(\sin x+\cos x)^{2}}{\sin x \cos x}=\frac{\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x}{\sin x \cos x}$

$$
\begin{aligned}
& =\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x}+\frac{2 \sin x \cos x}{\sin x \cos x} \\
& =\frac{1}{\sin x \cos x}+2 \\
& =\csc x \sec x+2
\end{aligned}
$$

5. a. $\cos 75^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}$
b. $\tan \left(\frac{\pi}{12}\right)=\frac{\sqrt{3}-1}{1+\sqrt{3}}=\frac{(\sqrt{3}-1)^{2}}{2}=2-\sqrt{3}$
6. a. $\tan 15^{\circ}=\frac{\sqrt{3}-1}{1+\sqrt{3}}=\frac{(\sqrt{3}-1)^{2}}{2}=2-\sqrt{3}$
b. $\sin \left(\frac{-\pi}{12}\right)=\frac{\sqrt{2}-\sqrt{6}}{4} \quad$ 7. a. $\cos 180^{\circ}=-1 \quad$ b. $\sin 120^{\circ}=\frac{\sqrt{3}}{2}$
7. a. $\cos x \quad$ b. $\sin \left(\frac{5 x}{8}\right)$ 9. a. $\cos 1170^{\circ}=\cos 90^{\circ}=0$
b. $\sin \left(\frac{57 \pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \quad$ 10. a. $\cos \left(\frac{x}{8}\right)=\sin \left(\frac{\pi}{2}-\frac{x}{8}\right)$
b. $\sin \left(x-\frac{\pi}{12}\right)=\cos \left(\frac{7 \pi}{12}-x\right)$
8. $\tan \left(45^{\circ}-30^{\circ}\right)=\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}}$

$$
\begin{aligned}
= & \frac{1-\frac{\sqrt{3}}{3}}{1+1 \cdot \frac{\sqrt{3}}{3}}=\frac{1-\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}=\frac{\frac{3-\sqrt{3}}{3}}{\frac{3+\sqrt{3}}{3}} \\
= & \frac{3-\sqrt{3}}{3} \frac{3}{3+\sqrt{3}}=\frac{3-\sqrt{3}}{3+\sqrt{3}}=\frac{\sqrt{3}(\sqrt{3}-1)}{\sqrt{3}(\sqrt{3}+1)}=\frac{\sqrt{3}-1}{\sqrt{3}+1} \\
& \tan \left(135^{\circ}-120^{\circ}\right)=\frac{\tan 135^{\circ}-\tan 120^{\circ}}{1+\tan 135^{\circ} \tan 120^{\circ}} \\
= & \frac{-1+\sqrt{3}}{1+(-1)(-\sqrt{3})}=\frac{\sqrt{3}-1}{1+\sqrt{3}}=\frac{\sqrt{3}-1}{\sqrt{3}+1}
\end{aligned}
$$

12. $\cos \left(x+\frac{\pi}{6}\right)+\cos \left(x-\frac{\pi}{6}\right)=\sqrt{3} \cos x$

$$
\begin{aligned}
& =\cos x \cos \left(\frac{\pi}{6}\right)-\sin x \sin \left(\frac{\pi}{6}\right)+\cos x \cos \left(\frac{\pi}{6}\right)+\sin x \sin \left(\frac{\pi}{6}\right) \\
& =2 \cos x \cos \left(\frac{\pi}{6}\right)+0=2 \cos x\left(\frac{\sqrt{3}}{2}\right)=\sqrt{3} \cos x
\end{aligned}
$$

13. a. $\sin (2 \theta)=2\left(\frac{-84}{85}\right)\left(\frac{13}{85}\right)=\frac{-2184}{7225}$

$$
\begin{aligned}
& \cos (2 \theta)=\left(\frac{13}{85}\right)^{2}-\left(\frac{84}{85}\right)^{2}=\frac{-6887}{7225} \\
& \tan (2 \theta)=\frac{2184}{-7225}\left(\frac{7225}{-6887}\right)=\frac{2184}{6887}
\end{aligned}
$$

b. $\sin (2 \theta)=2\left(\frac{-20}{29}\right)\left(\frac{-21}{29}\right)=\frac{840}{841}$

$$
\begin{aligned}
\cos (2 \theta) & =\left(\frac{-21}{29}\right)^{2}-\left(\frac{-20}{29}\right)^{2}=\frac{441-400}{841}=\frac{41}{841} \\
\tan (2 \theta) & =\frac{2\left(\frac{20}{21}\right)}{1-\left(\frac{20}{21}\right)^{2}}=\frac{840}{41}
\end{aligned}
$$

14. a. $\sin \theta=\frac{21}{29}, \cos \theta=\frac{-20}{29}, \tan \theta=-\frac{21}{20}$,
b. $\sin \theta=\frac{7}{25}$ or $\sin \theta=\frac{24}{25}, \cos \theta=\frac{-24}{25}$ or $\cos \theta=\frac{-7}{25}, \tan \theta=\frac{-7}{24}$
or $\tan \theta=\frac{-24}{7} \quad$ 15. a. $\cos 45^{\circ}=\frac{\sqrt{2}}{2} \quad$ b. $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
15. a. $\sin 67.5=\sqrt{\frac{1-\cos 135^{\circ}}{2}}=\sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}}=\sqrt{\frac{2+\sqrt{2}}{4}}$

$$
=\frac{\sqrt{2+\sqrt{2}}}{2}
$$

$\cos 67.5=\sqrt{\frac{1+\cos 135^{\circ}}{2}}=\sqrt{\frac{1-\frac{\sqrt{2}}{2}}{2}}=\sqrt{\frac{2-\sqrt{2}}{4}}$

$$
=\frac{\sqrt{2-\sqrt{2}}}{2}
$$

$$
\text { b. } \sin \left(\frac{5 \pi}{8}\right)=\sqrt{\frac{1-\cos \left(\frac{5 \pi}{4}\right)}{2}}=\sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}}=\sqrt{\frac{2+\sqrt{2}}{4}}
$$

$$
=\frac{\sqrt{2+\sqrt{2}}}{2}
$$

$$
\begin{aligned}
\cos \left(\frac{5 \pi}{8}\right) & =-\sqrt{\frac{1+\cos \left(\frac{5 \pi}{4}\right)}{2}}=-\sqrt{\frac{1-\frac{\sqrt{2}}{2}}{2}}=-\sqrt{\frac{2-\sqrt{2}}{4}} \\
& =-\frac{\sqrt{2-\sqrt{2}}}{2}
\end{aligned}
$$

17. a. $\sin \left(\frac{\theta}{2}\right)=\sqrt{\frac{1-24 / 25}{2}}=\sqrt{\frac{25-24}{50}}=+\frac{1}{5 \sqrt{2}}, \frac{\theta}{2}$ in QII

$$
\cos \left(\frac{\theta}{2}\right)=-\sqrt{\frac{1+24 / 25}{2}}=-\sqrt{\frac{25+24}{50}}
$$

$$
=-\sqrt{\frac{49}{50}}=\frac{-7}{5 \sqrt{2}}, \frac{\theta}{2} \text { in } \mathrm{QII}
$$

b. $\sin \left(\frac{\theta}{2}\right)=-\sqrt{\frac{1-56 / 65}{2}}=-\sqrt{\frac{65-56}{130}}$
$=-\sqrt{\frac{9}{130}}=\frac{-3}{\sqrt{130}}, \frac{\theta}{2}$ in QIV
$\cos \left(\frac{\theta}{2}\right)=\sqrt{\frac{1+56 / 65}{2}}=\sqrt{\frac{65+56}{130}}=\sqrt{\frac{121}{130}}=+\frac{11}{\sqrt{130}}, \frac{\theta}{2}$ in QIV
18. a. $A=12^{2} \sin \left(\frac{30^{\circ}}{2}\right) \cos \left(\frac{30^{\circ}}{2}\right)=144 \sqrt{\frac{1-\cos 30^{\circ}}{2}} \sqrt{\frac{1+\cos 30^{\circ}}{2}}$

$$
\begin{aligned}
& =144 \sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}} \sqrt{\frac{1+\frac{\sqrt{3}}{2}}{2}}=144 \sqrt{\frac{2-\sqrt{3}}{4}} \sqrt{\frac{2+\sqrt{3}}{4}} \\
& =\frac{144 \sqrt{4-3}}{4}=36 \mathrm{~cm}^{2} ; \text { yes }
\end{aligned}
$$

19. $\frac{1}{2}[\sin (-6 t)-\sin (12 t)]$ 20. $\frac{1}{2}\left[\cos \left(-\frac{2 \pi}{3} t\right)-\cos (2 \pi t)\right]$
20. $2 \cos (2 t) \cos (-t)$
21. $2 \cos \left(\frac{t}{8}\right) \sin \left(-\frac{5}{16} t\right)$
22. $-1-\frac{\sqrt{3}}{2}$
23. $-\frac{\sqrt{2}}{2}$
24. $\frac{\cos (3 \alpha)-\cos \alpha}{\cos (3 \alpha)+\cos \alpha}=\frac{-2 \sin (2 \alpha) \sin \alpha}{2 \cos (2 \alpha) \cos \alpha}$

$$
\begin{aligned}
& =\frac{-2 \sin ^{2} \alpha}{\cos ^{2} \alpha-\sin ^{2} \alpha}=\frac{2 \sin ^{2} \alpha}{\sin ^{2} \alpha-\cos ^{2} \alpha} \\
& =\frac{2 \sin ^{2} \alpha}{1-2 \cos ^{2} \alpha}=\frac{2 \tan ^{2} \alpha}{\sec ^{2} \alpha-2}
\end{aligned}
$$

Mixed Review, pp. 248-249

1. $\sin (-\theta) \tan (-\theta)+\cos \theta=(-\sin \theta)(-\tan \theta)+\cos \theta$

$$
\begin{aligned}
& =\sin \theta \tan \theta+\cos \theta \\
& =\frac{\sin ^{2} \theta}{\cos \theta}+\cos \theta \\
& =\frac{\sin ^{2} \theta}{\cos \theta}+\frac{\cos ^{2} \theta}{\cos \theta} \\
& =\frac{1}{\cos \theta}=\sec \theta=\sec (-\theta)
\end{aligned}
$$

3. $\sqrt{3}+2$ 5. $\cos \left[2\left(\frac{\pi}{12}\right)\right]=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
4. $\frac{1-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{\tan ^{2} \theta}=\frac{1-\cos (2 \theta)}{\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)}}=1-\cos (2 \theta) \frac{1+\cos (2 \theta)}{\frac{1-\cos (2 \theta)}{1}}$

$$
=1+\cos (2 \theta)
$$

9. $\sin \left(\frac{x}{2}\right)=\frac{-2}{\sqrt{5}} ; \cos \left(\frac{x}{2}\right)=\frac{1}{\sqrt{5}}$
10. $\sin (2 \alpha)=\sin (\alpha+\alpha)=\sin \alpha \cos \alpha+\sin \alpha \cos \alpha$

$$
=2 \sin \alpha \cos \alpha
$$

$$
=\cos ^{2} \alpha-\sin ^{2} \alpha
$$

13. $\frac{-\sqrt{3} \sqrt{2-\sqrt{2}}}{2}$
14. $\frac{1+\sqrt{2}}{4}$
15. $\sin (\alpha+\beta) \sin (\alpha-\beta)=(\sin \alpha \cos \beta+\cos \alpha \sin \beta)$

$$
(\sin \alpha \cos \beta-\cos \alpha \sin \beta)
$$

$=\sin ^{2} \alpha \cos ^{2} \beta-\cos ^{2} \alpha \sin ^{2} \beta$
$=\sin ^{2} \alpha\left(1-\sin ^{2} \beta\right)-\left(1-\sin ^{2} \alpha\right) \sin ^{2} \beta$
$=\sin ^{2} \alpha-\sin ^{2} \alpha \sin ^{2} \beta-\sin ^{2} \beta+\sin ^{2} \alpha \sin ^{2} \beta$
$=\sin ^{2} \alpha-\sin ^{2} \beta$
19. $R=\frac{1}{16} v^{2} \sin \theta \cos \theta=\frac{1}{2} \cdot \frac{1}{16} v^{2}(2) \sin \theta \cos \theta$

$$
=\frac{1}{32} v^{2} \sin (2 \theta)
$$

Practice Test, p. 249

1. $\begin{aligned} \frac{(\csc x-\cot x)(\csc x+\cot x)}{\sec x} & =\cos x \\ \frac{\csc ^{2} x+\csc x \cot x-\csc x \cot x-\cot ^{2} x}{\sec x} & =\end{aligned}$

$$
\begin{array}{r}
\frac{\csc ^{2} x-\cot ^{2} x}{\sec x}=\frac{\left(1+\cot ^{2} x\right)-\cot ^{2} x}{\sec x}= \\
\frac{1}{\sec x}= \\
\cos x=
\end{array}
$$

2. $\frac{\sin ^{3} x-\cos ^{3} x}{1+\cos x \sin x}=\sin x-\cos x$
$\frac{(\sin x-\cos x)\left(\sin ^{2} x+\sin x \cos x+\cos ^{2} x\right)}{1+\cos x \sin x}=$
$\frac{(\sin x-\cos x)(1+\sin x \cos x)}{1+\cos x \sin x}=$
$1+\cos x \sin x$
$\sin x-\cos x=$
3. $\sin \theta=\frac{-55}{73}, \sec \theta=\frac{73}{48}, \cot \theta=\frac{-48}{55}, \tan \theta=\frac{-55}{48}$,
$\csc \theta=\frac{-73}{55}$
4. $\frac{\sqrt{3}-1}{\sqrt{3}+1} \quad$ 5. $\frac{\sqrt{2}}{2} \quad$ 6. $\frac{-\sqrt{2}}{2}$
5. $\sin \left(x+\frac{\pi}{4}\right)-\sin \left(x-\frac{\pi}{4}\right)=\sqrt{2} \cos x$

$$
\begin{aligned}
\sin \left(\frac{\pi}{4}\right) \cos x+\sin \left(\frac{\pi}{4}\right) \cos x & = \\
2 \sin \left(\frac{\pi}{4}\right) \cos x & = \\
2 \frac{\sqrt{2}}{2} \cos x & = \\
\sqrt{2} \cos x & =
\end{aligned}
$$

8. $\sin \theta=\frac{15}{17}, \cos \theta=\frac{8}{17}, \tan \theta=\frac{15}{8} \quad$ 9. $\frac{-\sqrt{3}}{2}$
9. $\frac{1}{\sqrt{37}} ; \frac{6}{\sqrt{37}}$
10. $20 \sqrt{2-\sqrt{2}}$
11. $\frac{\sqrt{6}-\sqrt{2}}{4} \approx 0.2588 ; \frac{\sqrt{6}+\sqrt{2}}{4}$
$=0.9659$
12. $\frac{\tan \theta+\cot \theta}{\sin \theta \cos \theta}=\csc ^{2} \theta \sec ^{2} \theta$

$$
\frac{\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}}{\sin \theta \cos \theta}=
$$

$$
\frac{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}}{\sin \theta \cos \theta}=
$$

$$
\frac{1}{\sin \theta \cos \theta} \frac{1}{\sin \theta \cos \theta}=
$$

$$
\begin{aligned}
& \frac{1}{\sin ^{2} \theta} \frac{1}{\cos ^{2} \theta}= \\
& \csc ^{2} \theta \sec ^{2} \theta=
\end{aligned}
$$

14. $-1\left(2 \cos ^{4} \theta-3 \cos ^{2} \theta+1\right)=$ $-1\left(\cos ^{2} \theta-1\right)\left(2 \cos ^{2} \theta-1\right)=$ $\left(1-\cos ^{2} \theta\right)\left(2 \cos ^{2} \theta-1\right)=$ $\sin ^{2} \theta \cos ^{2}(2 \theta)=$
15. $\frac{3-\sqrt{3}}{3+\sqrt{3}}$ or $\frac{\sqrt{3}-1}{\sqrt{3}+1} \quad$ 16. $\frac{\sqrt{2}}{2}$
16. $x=-35, y=-12, r=37$
$\sin (2 \theta)=\frac{840}{1369}, \cos (2 \theta)=\frac{1081}{1369}, \tan (2 \theta)=\frac{840}{1081}$
17. $\frac{\csc ^{2} x-2}{2 \cot ^{2} x-\csc ^{2} x}=1$

$$
\begin{aligned}
\frac{1+\cot ^{2} x-2}{2 \cot ^{2} x-\left(1+\cot ^{2} x\right)} & = \\
\frac{\cot ^{2} x-1}{2 \cot ^{2} x-1-\cot ^{2} x} & = \\
\frac{\cot ^{2} x-1}{\cot ^{2} x-1} & = \\
1 & =
\end{aligned}
$$

19. a. The " 0 " (zero) was pressed. b. $y(t)=2 \cos (2277 \pi t) \cos (395 \pi t)$
20. $y_{a}+y_{h}=2 \sin \left(800 \pi t-\frac{\pi}{2}\right) \cos \frac{\pi}{2}=0$

Strengthening Core Skills, pp. 250-251

1. $\sin ^{2} x+\cos ^{2} x=1$

$$
\begin{aligned}
\frac{\sin ^{2} x}{\sin ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x} & =\frac{1}{\sin ^{2} x} \\
1+\cot ^{2} x & =\csc ^{2} x \\
\sin ^{2} x+\cos ^{2} x & =1 \\
\frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\cos ^{2} x} & =\frac{1}{\cos ^{2} x} \\
\tan ^{2} x+1 & =\sec ^{2} x
\end{aligned}
$$

2. $\cos (\alpha+\beta)=\cos (\alpha+\alpha)=\cos \alpha \cos \alpha-\sin \alpha \sin \alpha$

$$
\begin{aligned}
& =\cos ^{2} \alpha-\sin ^{2} \alpha \\
& =\cos ^{2} \alpha-\left(1-\cos ^{2} \alpha\right) \\
& =2 \cos ^{2} \alpha-1 \\
& =\cos ^{2} \alpha-\sin ^{2} \alpha \\
& =\left(1-\sin ^{2} \alpha\right)-\sin ^{2} \alpha \\
& =1-2 \sin ^{2} \alpha
\end{aligned}
$$

Cumulative Review Chapters 1-5, p. 252
1.

Angles	Sides
$\alpha=30^{\circ}$	$a=20 \mathrm{~m}$
$\beta=60^{\circ}$	$b=20 \sqrt{3} \mathrm{~m}$
$\gamma=90^{\circ}$	$c=40 \mathrm{~m}$

3. $\sin ^{2} x+\cos ^{2} x=1 ; 1+\cot ^{2} x=\csc ^{2} x ; \tan ^{2} x+1=\sec ^{2} x$
4. about $15.7 \mathrm{ft} / \mathrm{sec}$
5.

9. $\cos ^{2}\left(\frac{\alpha}{2}\right)=\frac{\sec \alpha+2+\cos \alpha}{2 \sec \alpha+2}$
$=\frac{\sec \alpha+2+\cos \alpha}{2 \sec \alpha+2} \frac{\cos \alpha}{\cos \alpha}$
$=\frac{1+2 \cos \alpha+\cos ^{2} \alpha}{2+2 \cos \alpha}$
$=\frac{(1+\cos \alpha)(1+\cos \alpha)}{2(1+\cos \alpha)}$
$=\frac{(1+\cos \alpha)}{2} ;$ let $\alpha=2 \theta$
11. $\sin (2 x)=2 \sin x \cos x$
$\cos (2 x)=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x$
13. $\sin 195^{\circ}=\frac{\sqrt{2}-\sqrt{6}}{4}$

$$
\cos 195^{\circ}=\frac{-\sqrt{2}-\sqrt{6}}{4}
$$

15. a. just over 15 hr b. April 15 to September 1 or 2
16. $\cot x\left(\tan x-\frac{\sin x}{\cos ^{3} x}\right)=\tan ^{2} x$

$$
\begin{aligned}
1-\frac{\cos x}{\sin x} \frac{\sin x}{\cos ^{3} x} & = \\
1-\frac{1}{\cos ^{2} x} & = \\
1-\sec ^{2} x & = \\
\tan ^{2} x & =
\end{aligned}
$$

19. about 1034 km

CHAPTER 6

Exercises 6.1, pp. 262-266

1. second; one 3. $(-11,-2),(-5,0),(1,2),(19,4)$ 5. False, answers will vary. 7. one-to-one 9. one-to-one 11. not a function
2. one-to-one 15. not one-to-one, fails horizontal line test: $x=-3$ and $x=3$ are paired with $y=1 \quad$ 17. not one-to-one, $y=7$ is paired with $x=-2$ and $x=2 \quad$ 19. one-to-one $\quad 21$. one-to-one 23. not one-to-one; $p(t)>5$, corresponds to two x-values 25. one-to-one 27. one-to-one
3. $f^{-1}(x)=\{(1,-2),(4,-1),(5,0),(9,2),(15,5)\}$
4. $v^{-1}(x)=\{(3,-4),(2,-3),(1,0),(0,5),(-1,12),(-2,21),(-3,32)\}$
5. $f^{-1}(x)=x-5 \quad$ 35. $p^{-1}(x)=\frac{-5}{4} x \quad$ 37. $f^{-1}(x)=\frac{x-3}{4}$
6. $\mathrm{Y}_{1}^{-1}=x^{3}+4$ 41. $f^{-1}(x)=x^{3}+2$
7. $f^{-1}(x)=\sqrt[3]{x-1}$
8. $f^{-1}(x)=\frac{8}{x}-2$ 47. $f^{-1}(x)=\frac{x}{1-x}$
9. a. $x \geq-5, y \geq 0 \quad$ b. $f^{-1}(x)=\sqrt{x}-5, x \geq 0, y \geq-5$
10. a. $x>3, y>0 \quad$ b. $v^{-1}(x)=\sqrt{\frac{8}{x}}+3, x>0, y>3$
11. a. $x \geq-4, y \geq-2$ b. $p^{-1}(x)=\sqrt{x+2}-4, x \geq-2, y \geq-4$
12. $(f \circ g)(x)=x,(g \circ f)(x)=x \quad$ 57. $(f \circ g)(x)=x,(g \circ f)(x)=x$
13. $(f \circ g)(x)=x,(g \circ f)(x)=x \quad$ 61. $(f \circ g)(x)=x,(g \circ f)(x)=x$
14. $f^{-1}(x)=\frac{x+5}{3}$ 65. $f^{-1}(x)=2 x+5 \quad$ 67. $f^{-1}(x)=2 x+6$
15. $f^{-1}(x)=\sqrt[3]{x-3} \quad$ 71. $f^{-1}(x)=\frac{x^{3}-1}{2} \quad$ 73. $f^{-1}(x)=2 \sqrt[3]{x}+1$
16. $f^{-1}(x)=\frac{x^{2}-2}{3}, x \geq 0 ; y \in\left[-\frac{2}{3}, \infty\right)$
17. $p^{-1}(x)=\frac{x^{2}}{4}+3, x \geq 0 ; y \in[3, \infty)$
18. $v^{-1}(x)=\sqrt{x-3}, x \geq 3 ; y \in[0, \infty)$
19.

83.

85.

89.

91.

D: $x \in(0, \infty), R: y \in(-\infty, \infty)$; D: $x \in(-\infty, \infty), R: y \in(0, \infty)$
93.
 D: $x \in(-\infty, 4], R: y \in(-\infty, 4]$; $D: x \in(-\infty, 4], R: y \in(-\infty, 4]$
95. a. $31.5 \mathrm{~cm} \quad$ b. The result is 80 cm . It gives the distance of the projector from the screen. 97. a. $-63.5^{\circ} \mathrm{F}$ b. $f^{-1}(x)=\frac{-2}{7}(x-59)$; independent: temperature, dependent: altitude c. $22,000 \mathrm{ft}$
99. a. 144 ft b. $f^{-1}(x)=\frac{\sqrt{x}}{4}$, independent: distance fallen, dependent: time fallen \quad c. $7 \mathrm{sec} \quad$ 101. a. $28,260 \mathrm{ft}^{3} \quad$ b. $f^{-1}(x)=\sqrt[3]{\frac{3 x}{\pi}}$,
independent: volume, dependent: height c. 9 ft 103. Answers will vary. 105. d
107. $\tan ^{2} \theta-\sin ^{2} \theta=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\frac{\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta}$

$$
\begin{aligned}
& =\frac{\sin ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta} \\
& =\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\left(1-\cos ^{2} \theta\right) \\
& =\tan ^{2} \theta \sin ^{2} \theta
\end{aligned}
$$

109. $y=2 \sin \left(x-\frac{\pi}{4}\right), y=2 \cos \left(x-\frac{3 \pi}{4}\right)$
110. Yes: $3777 \mathrm{~m}>3428 \mathrm{~m}$

Exercises 6.2, p. 277-282

1. horizontal; line; one; one 3. $[-1,1] ;\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
2. $\cos ^{-1}\left(\frac{1}{5}\right) ~ 7 . ~ 0 ; \frac{1}{2} ;-\frac{\pi}{6} ;-\frac{\pi}{2}$ 9. $\frac{\pi}{4}$ 11. $\frac{\pi}{2}$
$\begin{array}{llll}\text { 13. } 1.0956,62.8^{\circ} & \text { 15. } 0.3876,22.2^{\circ} & \text { 17. } \frac{\sqrt{2}}{2} & \text { 19. } \frac{\pi}{3}\end{array}$
3. 45°
4. 0.8205
$\begin{array}{lll}\text { 25. } 0 ; \frac{\sqrt{3}}{2} ; 120^{\circ} ; \pi & \text { 27. } \frac{\pi}{3} & \text { 29. } \pi\end{array}$
5. $1.4352 ; 82.2^{\circ}$
6. $0.7297 ; 41.8^{\circ}$ 35. $\frac{\pi}{4}$
7. 0.5560
8. $-\frac{\sqrt{2}}{2}$
9. $\frac{3 \pi}{4}$
10. $0 ;-\sqrt{3} ; 30^{\circ} ; \sqrt{3} ; \frac{\pi}{3}$
11. $-\frac{\pi}{6}$
12. $\frac{\pi}{3}$
13. $-1.1170,-64.0^{\circ}$
14. $0.9441,54.1^{\circ}$
15. $-\frac{\pi}{6}$
16. $\frac{\sqrt{3}}{3}$
17. $\sqrt{2}$
18. 120°
19. cannot evaluate $\tan \left(\frac{\pi}{2}\right)$
20. $\csc \frac{\pi}{4}=\sqrt{2}>1$, not in domain of $\sin ^{-1} x$
21. $\sin \theta=\frac{3}{5}, \cos \theta=\frac{4}{5}, \tan \theta=\frac{3}{4}$
22. $\sin \theta=\frac{\sqrt{x^{2}-36}}{x}, \cos \theta=\frac{6}{x}, \tan \theta=\frac{\sqrt{x^{2}-36}}{6}$
23. $\frac{24}{25}$

24. $\frac{\sqrt{5}}{3}$

25. $\frac{\sqrt{25-9 x^{2}}}{3 x}$

26. $\sqrt{\frac{12}{12+x^{2}}} \sum_{\sqrt{12}}^{\sqrt{12+x^{2}}} \sqrt{x}$
27. $0 ; 2 ; 30^{\circ} ;-1$
28. $\frac{\pi}{6}$
29. $\frac{\pi}{6}$
30. 80.1° 85. 67.8°
31. a. $F_{N} \approx 2.13 \mathrm{~N} ; F_{N} \approx 1.56 \mathrm{~N} \quad$ b. $\theta \approx 63^{\circ}$ for $F_{N}=1 \mathrm{~N}, \theta \approx 24.9^{\circ}$ for $F_{N}=2 \mathrm{~N} \quad 89 . \approx 30^{\circ}$
32. $\theta \approx 72.3^{\circ}$; straight line distance; $\approx 157.5 \mathrm{yd}$
33. a. $\theta=\tan ^{-1}\left(\frac{75}{d}\right)-\tan ^{-1}\left(\frac{50}{d}\right)$ b. $d \in(39.2,95.7)$
34. a. $\theta=\tan ^{-1}\left(\frac{94}{x}\right)-\tan ^{-1}\left(\frac{70}{x}\right)$ b. $\theta \approx 8.4^{\circ}$ at $d \approx 81.1 \mathrm{ft}$
35. a. $\theta \approx 15.5^{\circ} ; \theta \approx 0.2705 \mathrm{rad} \quad$ b. $\approx 29 \mathrm{mi}$
36. a. 413.6 ft away \quad b. $-503 \mathrm{ft} \quad$ c. $\approx 651.2 \mathrm{ft}$
37. $\sin (2 \theta)=\frac{84}{85}$
38. about 5 miles per hour
39. $\sin \theta=\frac{12}{13}, \cos \theta=\frac{5}{13}, \tan \theta=\frac{12}{5}$

Mid-Chapter Check, p. 282-283

1. implicit, explicit
2. not one-to-one, $y=5$ is paired with $x=-3$ and $x=-2$
3. $f^{-1}(x)=\{(-14,-3),(-8,-1),(10,5),(-11,-2),(-2,1)\}$
4. $f(x)=2 \sqrt[3]{x+1}+3 \quad\left(f \circ f^{-1}\right)(x)=f\left[f^{-1}(x)\right]$

$$
\begin{array}{rlrl}
y=2 \sqrt[3]{x+1}+3 & & =2 \sqrt[3]{\left(\frac{x-3}{2}\right)^{3}-1+1}+3 \\
x=2 \sqrt[3]{y+1}+3 & & =2\left(\frac{x-3}{2}\right)+3 \\
\frac{x-3}{2}=\sqrt[3]{y+1} & =x-3+3 \\
\left(\frac{x-3}{2}\right)^{3}-1=y=f^{-1}(x) & =x \checkmark \\
\begin{array}{rlrl}
\left(f^{-1} \circ f\right)(x) & =f^{-1}[f(x)] & \\
& =\left(\frac{2 \sqrt[3]{x+1}+3-3}{2}\right)^{3}-1 & \\
& =(\sqrt[3]{x+1})^{3}-1 \\
& =x+1-1 \\
& =x \checkmark
\end{array}
\end{array}
$$

5. a. $g(x)$ fails the horizontal line test \quad b. $D=[-3, \infty)$

$$
\text { c. } y=x-1, D=[-2, \infty), R=[-3, \infty)
$$

6. The domain of $y=\sin x$ is restricted to $\left[-90^{\circ}, 90\right]$ to create a one-to-one function.
7. a. $\sec ^{-1}(\sqrt{2})=\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}$
b. $\csc ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$
8. a. $\frac{\pi}{6} \quad$ b. $\cos \left(\frac{7 \pi}{6}\right)=\cos \left(\frac{5 \pi}{6}\right) ; \cos ^{-1}\left[\cos \left(\frac{5 \pi}{6}\right)\right]=\left(\frac{5 \pi}{6}\right)$
9. a. 0.9 b. 1.2
10. a. $\theta=\tan ^{-1}\left(\frac{13}{84}\right), \cos \theta=\frac{84}{85}$

b. $\theta=\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+49}}\right), \sec \theta=\frac{\sqrt{x^{2}+49}}{7}$

Reinforcing Basic Concepts, p. 283-284

Exercise 1: a. $D=(-\infty,-1] \cup[1, \infty), R=\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$ b. $D=[-1,1], R=[0, \pi]$

Exercise 2: a. $D=(-\infty, \infty), R=(0, \pi)$
b. $D=[-1,1], R=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Exercises 6.3, pp. 291-295

1. principal; $[0,2 \pi)$; real \quad 3. $\frac{\pi}{4} ; \frac{\pi}{4} ; \frac{3 \pi}{4} ; \frac{\pi}{4}+2 \pi k ; \frac{3 \pi}{4}+2 \pi k$
2. Answers will vary. 7. a. QIV b. 2 roots 9. a. QIV b. 2 roots
3.

$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o s } \theta}$	$\boldsymbol{\operatorname { t a n } \theta}$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	und.
$\frac{2 \pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$
$\frac{5 \pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$
π	0	-1	0
$\frac{7 \pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{4 \pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$

13. $\frac{\pi}{4}$
14. $-\frac{\pi}{4}$
15. $\frac{\pi}{6}$
16. $-\frac{\pi}{3}$
17. π
18. $\frac{\pi}{3}$
19. $\frac{\pi}{6}$
20. $\frac{5 \pi}{6}$
21. $\frac{\pi}{6}, \frac{5 \pi}{6}$
22. $\frac{2 \pi}{3}, \frac{5 \pi}{3}$
23. $\frac{3 \pi}{4}, \frac{7 \pi}{4}$
24. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
25. $\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
26. $\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
27. $\frac{\pi}{2}, \frac{3 \pi}{2}$
28. $\theta=1.2310+2 \pi k$ or $5.0522+2 \pi k$
29. $x=\frac{\pi}{2}+\pi k$ or $\frac{\pi}{6}+2 \pi k$ or $\frac{5 \pi}{6}+2 \pi k$
30. $x=\frac{2 \pi}{3}+2 \pi k$ or $\frac{4 \pi}{3}+2 \pi k$ or $1.4455+2 \pi k$ or $4.8377+2 \pi k$
31. $x=\frac{\pi}{6}+\pi k$ or $\frac{5 \pi}{6}+\pi k \quad$ 51. $x=\frac{5 \pi}{4}+2 \pi k$ or $\frac{7 \pi}{4}+2 \pi k$
32. $x=\frac{3 \pi}{4}+2 \pi k$ or $\frac{5 \pi}{4}+2 \pi k \quad$ 55. $x=\frac{3 \pi}{4}+\pi k$
33. $x=\frac{\pi}{3}+\pi k$ or $\frac{2 \pi}{3}+\pi k \quad$ 59. $x=\frac{3 \pi}{8}+\frac{\pi}{2} k \quad$ 61. $x=3 \pi+6 \pi k$
34. $x=\frac{\pi}{2}+\pi k \quad$ 65. $x=\frac{\pi}{6}+\frac{\pi}{3} k$ or $\frac{\pi}{12}+\pi k$ or $\frac{5 \pi}{12}+\pi k$
35. a. $x \approx 1.2310$ b. $x \approx 1.2310+2 \pi k, 5.0522+2 \pi k$
36. a. $x \approx 1.2094$ b. $x \approx 1.2094+2 \pi k, 5.0738+2 \pi k$
37. a. $\theta \approx 0.3649$ b. $\theta \approx 0.3649+\pi k, 1.2059+\pi k$
38. a. $\theta \approx 0.8861$ b. $\theta \approx 0.8861+\pi k, 2.2555+\pi k$
39. $x=\frac{\pi}{6}+\pi k$ or $\frac{5 \pi}{6}+\pi k \quad$ 77. $x=\frac{2 \pi}{9}+\frac{4 \pi}{3} k$ or $\frac{10 \pi}{9}+\frac{4 \pi}{3} k$
40. $\theta=\frac{\pi}{2} k \quad$ 81. $\theta \approx 0.3398+2 \pi k$ or $2.8018+2 \pi k$
41. $x \approx 0.7290$ 85. $x \approx 2.6649$ 87. $x \approx 0.4566$
42. 22.1° and 67.9° 91. 0°; the ramp is horizontal.
43. 30.7°; smaller 95. $\alpha=35^{\circ}, \beta \approx 25.5^{\circ}$
44. $k \approx 1.36, \alpha \approx 20.6^{\circ}$ 99. a. 7 in . b. $\approx 1.05 \mathrm{in}$. and $\approx 5.24 \mathrm{in}$.
45. 1.1547 103. $\frac{\pi}{2}+\pi k$, explanations will vary.
46. QIII: $\cos \theta=-\frac{5}{13}, \sec \theta=-\frac{13}{5}, \sin \theta=-\frac{12}{13}$,
$\csc \theta=-\frac{13}{12}, \tan \theta=\frac{12}{5}, \cot \theta=\frac{5}{12}$
47. $\theta=\tan ^{-1}\left(\frac{-12}{100}\right) \approx-6.8^{\circ}$
48. $y=\sec \left(x-\frac{\pi}{4}\right), y=\csc \left(x+\frac{\pi}{4}\right)$

Exercises 6.4, pp. 302-306

1. $\sin ^{2} x+\cos ^{2} x=1 ; 1+\tan ^{2} x=\sec ^{2} x ; 1+\cot ^{2} x=\csc ^{2} x$
2. factor; grouping 5. Answers will vary.
$\begin{array}{llll}\text { 7. } \frac{\pi}{12}, \frac{5 \pi}{12} & \text { 9. } 0 & \text { 11. } 0.4456,1.1252 & \text { 13. } \frac{\pi}{4}, \frac{5 \pi}{4}, \frac{\pi}{6}, \frac{5 \pi}{6}\end{array}$
3. $\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}, 0.8411,5.4421 \quad$ 17. $\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
$\begin{array}{ll}\text { 19. } \frac{\pi}{6}, \frac{5 \pi}{6}, 0.7297,2.4119 & \text { 21. } \frac{2 \pi}{3}\end{array}$
4. $\frac{\pi}{9}+\frac{2 \pi}{3} k, \frac{5 \pi}{9}+\frac{2 \pi}{3} k ; k=0,1,2 \quad$ 25. $\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
5. $P=12 ; x=3 ; x=11 \quad$ 29. $P=24 ; x \approx 0.4909, x \approx 5.5091$
6. $\frac{\pi}{12}, \frac{17 \pi}{12} \quad$ 33. $0.3747,5.9085,2.7669,3.5163$
7. $\frac{\pi}{2}\left(\frac{3 \pi}{2}\right.$ is extraneous $)$
8. $\frac{3 \pi}{4}, \frac{7 \pi}{4} \quad$ 39. $\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{13 \pi}{12}, \frac{17 \pi}{12}$
9. I. a. $\left(\frac{5}{2}, \frac{5}{2}\right)$ b. $D=\sqrt{12.5}, \theta=\frac{\pi}{4}, y=\frac{\sqrt{12.5}-x \cos \left(\frac{\pi}{4}\right)}{\sin \left(\frac{\pi}{4}\right)}$ c. verified
II. a. $(2,4)$ b. $D=2 \sqrt{5}, \theta \approx 1.1071, y=\frac{2 \sqrt{5}-x \cos 1.1071}{\sin 1.1071}$
c. verified
III. a. $(1, \sqrt{3})$ b. $D=2, \theta=\frac{\pi}{3}, y=\frac{2-x \cos \left(\frac{\pi}{3}\right)}{\sin \left(\frac{\pi}{3}\right)}$ c. verified
10. $\mathbf{a} .2500 \pi \mathrm{ft}^{3} \approx 7853.98 \mathrm{ft}^{3} \quad$ b. $\approx 7824.09 \mathrm{ft}^{3}$ c. $\theta \approx 78.5^{\circ}$
11. a. $\approx 78.53 \mathrm{~m}^{3} / \mathrm{sec}$
b. during the months of August, September,

October, and November 47. a. $\approx \$ 3554.52$ b. during the months of May, June, July, and August 49. a. ≈ 12.67 in. b. during the months of April, May, June, July, and August 51. a. ≈ 8.39 gal b. approx. day 214 to $\begin{array}{llll}\text { day } 333 & \text { 53. } \mathbf{a} .68 \mathrm{bpm} & \text { b. } \approx 176.2 \mathrm{bpm} & \text { c. from about } 4.6 \mathrm{~min} \text { to } 7.4 \mathrm{~min}\end{array}$ 55. a. $y=19 \cos \left(\pi-\frac{\pi}{6} x\right)+53 \quad$ b. $y=-21 \sin \left(\frac{2 \pi}{365} x\right)+29$
57. a. $L \approx 25.5 \mathrm{~cm}$. b. $\theta \approx 38.9^{\circ}$ or 33.4°, depending on what side you consider the base.
59. $\theta=\tan ^{-1}\left(\frac{x}{6}\right), \cos \theta=\frac{6}{\sqrt{x^{2}+6}}$

61. $\frac{\sqrt{6}+\sqrt{2}}{4}, \frac{\sqrt{6}-\sqrt{2}}{4}$
63. $\theta \approx 4.56^{\circ}$

Summary and Concept Review, pp. 306-309

1. no 2. no 3. yes 4. $f^{-1}(x)=\frac{x-2}{-3} \quad$ 5. $f^{-1}(x)=\sqrt{x+2}$
2. $f^{-1}(x)=x^{2}+1 ; x \geq 0$
3. $f(x): D: x \in[-4, \infty)$, $R: y \in[0, \infty)$;
$f^{-1}(x): D: x \in[0, \infty)$,
$R: y \in[-4, \infty)$

4. $f(x): D: x \in(-\infty, \infty)$, $R: y \in(-\infty, \infty)$; $f^{-1}(x): D:(-\infty, \infty)$, $R: y \in(-\infty, \infty)$

5. $f(x): D: x \in(-\infty, \infty)$, $R: y \in(0, \infty)$;
$f^{-1}(x): D: x \in(0, \infty)$, $R: y \in(-\infty, \infty)$

6. a. $\$ 3.05$ b. $f^{-1}(t)=\frac{t-2}{0.15}, f^{-1}(3.05)=7$ c. 12 days
7. $\frac{\pi}{4}$ or 45°
8. $\frac{\pi}{6}$ or 30°
9. $\frac{5 \pi}{6}$ or 150°
10. 1.3431 or 77.0°
11. 1.0956 or 62.8°
12. 0.5054 or 29.0°
13. $\frac{1}{2}$
14. $\frac{\pi}{4}$
15. undefined
16. 1.0245
17. 60° 22. $\frac{3 \pi}{4}$
18. $\sin \theta=\frac{35}{37}$
19. $\tan \theta=\frac{\sqrt{49-9 x^{2}}}{3 x} \quad$ 25. $\cot \theta=\frac{9}{x} \quad$ 26. $\theta=\cos ^{-1}\left(\frac{x}{5}\right)$
20. $\theta=\sec ^{-1}\left(\frac{x}{7 \sqrt{3}}\right)$ 28. $\theta=\sin ^{-1}\left(\frac{x}{4}\right)+\frac{\pi}{6}$
21. a. $\frac{\pi}{4} \quad$ b. $\frac{\pi}{4}, \frac{3 \pi}{4} \quad$ c. $x=\frac{\pi}{4}+2 \pi k$ or $\frac{3 \pi}{4}+2 \pi k, k \in \mathbb{Z}$
22. a. $\frac{2 \pi}{3}$ b. $\frac{2 \pi}{3}, \frac{4 \pi}{3} \quad$ c. $\frac{2 \pi}{3}+2 \pi k$ or $\frac{4 \pi}{3}+2 \pi k, k \in \mathbb{Z}$
23. a. $-\frac{\pi}{3} \quad$ b. $\frac{2 \pi}{3}, \frac{5 \pi}{3}$ c. $\frac{2 \pi}{3}+\pi k, k \in \mathbb{Z}$
24. \mathbf{a}. ≈ 1.1102 b. $\approx 1.1102,5.1729 \quad$ c. $\approx 1.1102+2 \pi k$ or $5.1729+2 \pi k, k \in \mathbb{Z} \quad$ 33. $\mathbf{a} . \approx 0.3376 \quad$ b. $\approx 0.3376,1.2332,3.4792$, $4.3748 \quad$ c. $\approx 0.3376+\pi k$ or $1.2332+\pi k, k \in \mathbb{Z} \quad$ 34. a. ≈ 0.3614 b. $\approx 0.3614,2.7802 \quad$ c. $\approx 0.3614+2 \pi k$ or $2.7802+2 \pi k, k \in \mathbb{Z}$
25. $\theta \approx 1.1547$
26. $x=\frac{\pi}{12}, \frac{5 \pi}{12}$
27. $x \approx 0.7297,2.4119 ; x=\frac{\pi}{6}, \frac{5 \pi}{6}$
28. $x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{11 \pi}{6} \quad$ 39. $x=\frac{\pi}{2} \quad$ 40. $P=12 ; x \approx 2.6931, x \approx 9.3069$
29. $P=6 ; x=0, x=\frac{9}{2} \quad$ 42. \mathbf{a}. $\approx 43(1000)=\$ 43,000$
b. April through August

Mixed Review, pp. 309-310

1. a. $f^{-1}(x)=\sqrt{\frac{1}{x}}-2$ b. $D: x>0, R: y>-2 \quad$ c. verified
2. $x=\frac{7 \pi}{6}, \frac{11 \pi}{6} \quad 5$.

3. $x \approx 0.4103 ; x \approx 4.9230$ 9. a. $x \in[1, \infty), y \in[2, \infty)$;
b. $g^{-1}(x)=(x-2)^{2}+1, x \in[2, \infty), y \in[1, \infty)$; c. Answers will vary.
4. $\frac{3 \pi}{4}$ or 135°
5. $\frac{\pi}{3}$ or 60°
6. $\theta=\csc ^{-1}\left(\frac{x}{2 \sqrt{2}}\right)+\frac{\pi}{4}$
7. $\theta \approx 15.7^{\circ}$
8. $\theta=\frac{7 \pi}{6}+2 \pi k, \frac{11 \pi}{6}+2 \pi k ; k \in Z$

Practice Test, pp. 310-311

1. $f(x)=x^{3}$ is a one-to-one function, $f(x)=x^{2}$ is not.
2. a. $A \approx 39.27 \mathrm{~cm}^{2}$ b. $A^{-1}(t)=\frac{2 t}{r^{2}}$; we obtain $t=\frac{\pi}{4}$
3.
4. $y \approx 1.2310$

$D: x \in[-1,1], R: y \in[0, \pi]$
5. $y=30^{\circ}$ 6. $f(x)=\frac{1}{2} \quad$ 7. $y=30^{\circ}$
6. $y=0.8523 \mathrm{rad}$ or $y=48.8^{\circ} \quad$ 9. $y=78.5^{\circ}$ or $\frac{157 \pi}{360} \mathrm{rad}$
7. $y=\frac{7 \pi}{24} \mathrm{rad}$ or 52.5°
8.

12.

$\cos \theta=\frac{33}{65}$
13. a. $\cos ^{-1}\left(\frac{-\sqrt{2}}{2}\right)=\frac{3 \pi}{4}$
b. $x=\frac{3 \pi}{4}, \frac{5 \pi}{4}$
c. $x=\frac{3 \pi}{4}+2 \pi k$ or $\frac{5 \pi}{4}+2 \pi k, k \in \mathbb{Z}$
14. a. $\frac{\pi}{6} \quad$ b. $x=\frac{\pi}{6}, \frac{11 \pi}{6} \quad$ c. $x=\frac{\pi}{6}+2 \pi k$ or $\frac{11 \pi}{6}+2 \pi k, k \in \mathrm{Z}$
15. a. $x \approx 0.1922$ b. $x \approx 0.1922,1.3786,3.3338,4.5202$
c. $x \approx 0.1922+\pi k$ or $1.3786+\pi k, k \in \mathbb{Z}$
16. a. $x \approx 0.9204$ b. $x \approx 0.9204,2.2212,4.0620,5.3628$
c. $x \approx 0.9204+\pi k$ or $2.2212+\pi k, k \in \mathbb{Z}$
17. $x \approx-1.6875,-0.3413,1.1321,2.8967$
$\begin{array}{ll}\text { 18. } x & \approx 0.9671,2.6110,3.4538 \\ \text { 19. } x=0, \pi, \frac{7 \pi}{6}, \frac{11 \pi}{6}\end{array}$
20. $x=\frac{7 \pi}{12}, \frac{11 \pi}{12}, \frac{19 \pi}{12}, \frac{23 \pi}{12} \quad$ 21. $x=\frac{\pi}{2}, \frac{3 \pi}{2} ; x \approx 3.3090,6.1157$
22. $x=\frac{5 \pi}{6}, \frac{11 \pi}{6}$
23. a. 6 or $\$ 6,000$
b. January through July
24. $x \in \mathrm{R}, y \in[-3, \infty)$; graph of f is a parabola (hence not one-to-one); $x \in[2, \infty) ; f^{-1}(x)=\sqrt{x+3}+2, x \in[-3, \infty), y \in[2, \infty)$.
25. $-\frac{1}{2}$

Strengthening Core Skills, pp. 312-313

Exercise 1: $x \in(0.6025,2.5391)$
Exercise 2: $x \in[0,0.7945] \cup[4.4415,2 \pi]$
Exercise 3: $x \in[0,2.6154] \cup[9.3847,12]$
Exercise 4: $x \in(67.3927,202.6073)$

Cumulative Review Chapters, 1-6, pp. 313-314

1. $\sin \theta=\frac{84}{85}, \csc \theta=\frac{85}{84}, \cos \theta=\frac{-13}{85}, \sec \theta=\frac{-85}{13}, \tan \theta=\frac{-84}{13}$, $\cot \theta=\frac{-13}{84} \quad$ 3. a. 56.335° b. 0.9832 5. about 474 ft
2. $x=\frac{\pi}{2}, \frac{3 \pi}{2}, 2 \pi+\sin ^{-1}\left(-\frac{1}{6}\right) \approx 6.1157$,

$$
\pi-\sin ^{-1}\left(-\frac{1}{6}\right) \approx 3.3090 \quad \text { 9. } 50.89 \mathrm{~km} / \mathrm{hr} \quad \text { 11. } \frac{\sqrt{3}}{2}
$$

13. a. $Y_{1}=48.778 \sin (0.213 x-1.106)+51.642$ b. about 83.2%
14. $x \in(1,5) \quad$ 17. $\frac{99}{101}$
15. $\frac{\cos x+1}{\tan ^{2} x}=\frac{\cos x}{\sec x-1}$

$$
\begin{aligned}
& =\frac{\cos x(\sec x+1)}{(\sec x-1)(\sec x+1)} \\
& =\frac{1+\cos x}{\sec ^{2} x-1} \\
& =\frac{1+\cos x}{\tan ^{2} x}
\end{aligned}
$$

CHAPTER 7

Exercises 7.1, pp. 324-329

1. ambiguous 3. I; II 5. Answers will vary. 7. $a \approx 8.98$ 9. $C \approx 49.2^{\circ} \quad$ 11. $C \approx 21.4^{\circ} \quad$ 13. $\angle C=78^{\circ}, b \approx 109.5 \mathrm{~cm}$, $c \approx 119.2 \mathrm{~cm}$ 15. $\angle C=90^{\circ}, a=10 \mathrm{in} ., c=20 \mathrm{in}$.
2.

21. $\angle A=57^{\circ}, b \approx 49.5 \mathrm{~km}, c \approx 17.1 \mathrm{~km}$
23.

25. a. 10 cm b. 0 c. 2 d. 1
27. not possible 29. $B=60^{\circ}, C=90^{\circ}, b=12.9 \sqrt{3} \mathrm{mi}$
31. $A \approx 39^{\circ}, B \approx 82^{\circ}, a \approx 42.6 \mathrm{mi}$ or $A \approx 23^{\circ}, B \approx 98^{\circ}, a \approx 26.4 \mathrm{mi}$
33. $A \approx 39^{\circ}, B \approx 82^{\circ}, a \approx 42.6 \mathrm{ft}$ or $A \approx 23^{\circ}, B \approx 98^{\circ}, a \approx 26.4 \mathrm{ft}$
35. not possible 37. $A \approx 80.0^{\circ}, B \approx 38.0^{\circ}, b \approx 1.8 \times 10^{25} \mathrm{mi}$
39. $A_{1} \approx 19.3^{\circ}, A_{2} \approx 160.7^{\circ}, 48^{\circ}+160.7^{\circ}>180^{\circ}$; no second solution possible 41. $C_{1} \approx 71.3^{\circ}, C_{2} \approx 108.7^{\circ}, 57^{\circ}+108.7^{\circ}<180^{\circ}$; two $\begin{array}{lll}\text { solutions possible } & \text { 43. not possible, } \sin A>1 & \text { 45. } \frac{\sqrt{2}}{2}\end{array}$
47. 34.6 million miles or 119.7 million miles 49 . a. No \quad b. $\approx 3.9 \mathrm{mi}$
51. $V \leftrightarrow S=41.7 \mathrm{~km}, V \leftrightarrow P=80.8 \mathrm{~km}$
53. a. No b. about 201.5 ft c. $\approx 15 \mathrm{sec}$
55. Two triangles

Angles	Sides
$A_{1} \approx 41.1^{\circ}$	$a=12 \mathrm{~cm}$
$B=26^{\circ}$	$b=8 \mathrm{~cm}$
$C_{1} \approx 112.9^{\circ}$	$c_{1} \approx 16.8 \mathrm{~cm}$

Angles	Sides
$A_{2} \approx 138.9^{\circ}$	$a=12 \mathrm{~cm}$
$B=26^{\circ}$	$b=8 \mathrm{~cm}$
$C_{2} \approx 15.1^{\circ}$	$c_{2} \approx 4.8 \mathrm{~cm}$

57.

Angles	Sides
$A_{1} \approx 47.0^{\circ}$	$a=9 \mathrm{~cm}$
$B_{1} \approx 109.0^{\circ}$	$b_{1} \approx 11.6 \mathrm{~cm}$
$C \approx 24^{\circ}$	$c=5 \mathrm{~cm}$

Angles	Sides
$A_{2} \approx 133.0^{\circ}$	$a=9 \mathrm{~cm}$
$B_{2}=23.0^{\circ}$	$b_{2}=4.8 \mathrm{~cm}$
$C \approx 24^{\circ}$	$c=5 \mathrm{~cm}$

59. $a \approx 33.7 \mathrm{ft}, c \approx 22.3 \mathrm{ft}$ 61. Rhymes to Tarryson: 61.7 km , Sexton to Tarryson: $52.6 \mathrm{~km} \quad 63 . \approx 3.2 \mathrm{mi}$ 65. $h \approx 161.9 \mathrm{yd}$
60. angle $=90^{\circ}$; sides $\approx 9.8 \mathrm{~cm}, 11 \mathrm{~cm}$; diameter $\approx 11 \mathrm{~cm}$; it is a right triangle. 69. a. about 3187 m b. about $2613 \mathrm{~m} \quad$ c. about 2368 m 71.

$$
\sqrt{3}=\frac{\sin 60^{\circ}}{\sin 30^{\circ}} ; \sqrt{2}=\frac{\sin 90^{\circ}}{\sin 45^{\circ}}
$$

73. $A=19^{\circ}, B=31^{\circ}, C=130^{\circ}, a=45 \mathrm{~cm}, b \approx 71.2 \mathrm{~cm}, c \approx 105.8 \mathrm{~cm}$ 75. $\approx 12,564 \mathrm{mph}$
74. $\tan ^{2} x-\sin ^{2} x=\tan ^{2} x \sin ^{2} x$

$$
\frac{\sin ^{2} x}{\cos ^{2} x}-\sin ^{2} x=
$$

$$
\frac{\sin ^{2} x}{\cos ^{2} x}-\frac{\sin ^{2} x \cos ^{2} x}{\cos ^{2} x}=
$$

$$
\frac{\sin ^{2} x-\sin ^{2} x \cos ^{2} x}{\cos ^{2} x}=
$$

$$
\frac{\sin ^{2} x\left(1-\cos ^{2} x\right)}{\cos ^{2} x}=
$$

$$
\frac{\sin ^{2} x \sin ^{2} x}{\cos ^{2} x}=
$$

$$
\sin ^{2} x \frac{\sin ^{2} x}{\cos ^{2} x}=
$$

$$
\sin ^{2} x \tan ^{2} x=
$$

79. $x=\frac{\pi}{6}, \frac{5 \pi}{6} \quad$ 81. $y=2 \tan \left(\frac{1}{2} x-\frac{\pi}{2}\right)$

Exercises 7.2, pp. 337-342

1. cosines 3. Pythagorean 5. $B \approx 33.1^{\circ}, C \approx 129.9^{\circ}, a \approx 19.8 \mathrm{~m}$; law of sines 7. yes 9. no 11. yes 13. verified 15. $B \approx 41.4^{\circ}$ 17. $a \approx 7.24$ 19. $A \approx 41.6^{\circ}$ 21. $A \approx 120.4^{\circ}, B \approx 21.6^{\circ}, c \approx 53.5 \mathrm{~cm}$ 23. $A \approx 23.8^{\circ}, C \approx 126.2^{\circ}, b \approx 16 \mathrm{mi}$
2.

27. $A \approx 137.9^{\circ}, B \approx 15.6^{\circ}, C \approx 26.5^{\circ}$
29. $A \approx 119.3^{\circ}, B \approx 41.5^{\circ}, C=19.2^{\circ}$
31.

33. $A \approx 139.7^{\circ}, B \approx 23.7^{\circ}, C \approx 16.6^{\circ}$
35. $C \approx 86.3^{\circ} \quad$ 37. about 1688 mi
39. It cannot be constructed (available length $\approx 10,703.6 \mathrm{ft}$)
41. $P \approx 27.7^{\circ}$; heading 297.7° 43. 1678.2 mi
45. $P \approx 22.4 \mathrm{~cm}, A=135^{\circ}, B \approx 23.2^{\circ}, C \approx 21.8^{\circ}$
47. $A \approx 20.6^{\circ}, B \approx 15.3^{\circ}, C \approx 144.1^{\circ}$ 49. 58.78 cm
51. $a=13 \quad A \approx 133.2^{\circ} \quad$ 53. $33.7^{\circ}, 150 \mathrm{ft}^{2}$

$$
\begin{array}{ll}
b=5 & B \approx 16.3^{\circ} \\
c=\sqrt{82} & C \approx 30.5^{\circ}
\end{array}
$$

55. a. $0.65=65 \%$ b. $\$ 1,950,000$ 57. about $483,529 \mathrm{~km}^{2}$
56. $387+502=889<902$ 61. (1) $a^{2}=b^{2}+c^{2}-2 b c \cos A$
(2) $b^{2}=a^{2}+c^{2}-2 a c \cos B$, use substitution for a^{2} and
(2) becomes $b^{2}=\left(b^{2}+c^{2}-2 b c \cos A\right)+c^{2}-2 a c \cos B$.

Then $0=2 c^{2}-2 b c \cos A-2 a c \cos B, \& b c \cos A+$
$2 a c \cos B=\& c^{2}, b \cos A+a \cos B=c$.
63. $\theta=\frac{\pi}{6}$ 65. Divide by $\cos x: \tan ^{2} x+1=\sec ^{2} x$; divide by $\sin x$: $1+\cot ^{2} x=\csc ^{2} x \quad$ 67. $\sin 75^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4}$

Mid-Chapter Check, p. 342-343

1. $\sin B=\frac{b \sin A}{a} \quad$ 2. $\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
2. $a \approx 129 \mathrm{~m}, B \approx 86.5^{\circ}, C \approx 62.5^{\circ}$
3. $A \approx 42.3^{\circ}, B \approx 81.5^{\circ}, C \approx 56.2^{\circ}$
4. $A=44^{\circ}$
$a=2.1 \mathrm{~km}$
5. $A \approx 18.5^{\circ}$
$a=70 \mathrm{yd}$
$B \approx 68.1^{\circ} \quad b \approx 2.8 \mathrm{~km} \quad B \approx 134.5^{\circ} \quad b \approx 157.1 \mathrm{yd}$
$C \approx 67.9^{\circ} \quad c=2.8 \mathrm{~km} \quad C=27^{\circ} \quad c=100 \mathrm{yd}$
or
$A=44^{\circ} \quad a=2.1 \mathrm{~km}$
$B \approx 23.9^{\circ} \quad b \approx 1.2 \mathrm{~km}$ $C \approx 112.1^{\circ} \quad c=2.8 \mathrm{~km}$
6. about 60.7 ft 8. 169 m 9. $\alpha \approx 49.6^{\circ} ; \beta \approx 92.2^{\circ} ; \gamma \approx 38.2^{\circ}$ 10. 9.4 mi

Reinforcing Basic Concepts, pp. 343

Angles	Sides
$A=35^{\circ}$	$a=11.6 \mathrm{~cm}$
$B \approx 81.5^{\circ}$	$a=20 \mathrm{~cm}$
$C \approx 63.5^{\circ}$	$c=18 \mathrm{~cm}$

Very close.

Exercises 7.3, pp. 355-359

1. scalar 3. directed; line 5. Answers will vary.
2.

15.

13.

17. Terminal point: $(5,-1)$, length: $\sqrt{53}$
19. Terminal point: $(-1,1)$, length: $\sqrt{34}$
21. a.

b. $\sqrt{73}$
b. $\sqrt{29}$ c. 68.2°
c. 20.6°
25. $\langle-10.9,5.1\rangle$ 27. $\langle 106,-92.2\rangle$ 29. $\langle-9.7,-2.6\rangle$
31. a. $\langle-1,9\rangle$
b. $\langle 5,-3\rangle$

23. a.

I

2. For $\angle A=35^{\circ}, a \approx 10.3$ For $\angle A=50^{\circ}, a \approx 14.2$ For $\angle A=70^{\circ}, a \approx 19.1$; yes, very close
c. $\langle-0.5,15\rangle$

33. a. $\langle 8,4\rangle$

c. $\langle 15.5,5\rangle$

35. a. $\langle-3,6\rangle$

c. $\langle-6.5,10\rangle$

d. $\langle 8,-9\rangle$

b. $\langle 6,-8\rangle$

d. $\langle 5,-14\rangle$

b. $\langle-5,-2\rangle$

d. $\langle-6,-6\rangle$

37. True 39. False 41. True
43. $\mathbf{u}+\mathbf{v}=\langle 8,6\rangle$
$\mathbf{u}-\mathbf{v}=\langle-6,2\rangle$

47. $\mathbf{u}+\mathbf{v}=\langle-3,-6\rangle$ $\mathbf{u}-\mathbf{v}=\langle-7,0\rangle$

51. $\mathbf{p}=-3.2 \mathbf{i}-5.7 \mathbf{j}$ $|\mathbf{p}| \approx 6.54$

45. $\mathbf{u}+\mathbf{v}=\langle-9,-6\rangle$ $\mathbf{u}-\mathbf{v}=\langle 7,0\rangle$

49. $\mathbf{u}=8 \mathbf{i}+15 \mathbf{j}$ $|\mathbf{u}|=17$

53. a.

b. $\mathbf{v}=\langle-11.5,-3.3\rangle$
c. $\mathbf{v}=-11.5 \mathbf{i},-3.3 \mathbf{j}$
55. a.

b. $\mathbf{w}=\langle 2.5,9.2\rangle$
c. $\mathbf{w}=2.5 \mathbf{i}+9.2 \mathbf{j}$
57. a. $\mathbf{p}=-2 \mathbf{i}+2 \mathbf{j} ;|\mathbf{p}|=2 \sqrt{2}, \theta=135^{\circ}$
b. $\mathbf{q}=6 \mathbf{i}-8 \mathbf{j} ;|\mathbf{q}|=10, \theta=306.9^{\circ}$
c. $\mathbf{r}=-2 \mathbf{i}+1.5 \mathbf{j} ;|\mathbf{r}|=2.5, \theta=143.1^{\circ}$
d. $\mathbf{s}=10 \mathbf{i}-13 \mathbf{j} ;|\mathbf{s}| \approx 16.4, \theta=307.6^{\circ}$
59. a. $\mathbf{p}=2 \sqrt{2} \mathbf{i}+2 \mathbf{j} ;|\mathbf{p}| \approx 3.5, \theta=35.3^{\circ}$
b. $\mathbf{q}=8 \sqrt{ } \mathbf{2} \mathbf{i}+12 \mathbf{j} ;|\mathbf{q}| \approx 16.5, \theta \approx 46.7^{\circ}$
c. $\mathbf{r}=5.5 \sqrt{2} \mathbf{i}+6.5 \mathbf{j} ;|\mathbf{r}| \approx 10.1, \theta \approx 39.9^{\circ}$
d. $\mathbf{s}=11 \sqrt{2} \mathbf{i}+17 \mathbf{j} ;|\mathbf{s}| \approx 23.0, \theta \approx 47.5^{\circ}$
61. a. $\mathbf{p}=8 \mathbf{i}+4 \mathbf{j} ;|\mathbf{p}| \approx 8.9, \theta \approx 26.6^{\circ}$
b. $\mathbf{q}=16 \mathbf{i}+4 \mathbf{j} ;|\mathbf{q}| \approx 16.5, \theta \approx 14.0^{\circ}$
c. $\mathbf{r}=18 \mathbf{i}+8 \mathbf{j} ;|\mathbf{r}| \approx 19.7, \theta \approx 24.0^{\circ}$
d. $\mathbf{s}=20 \mathbf{i}+4 \mathbf{j} ;|\mathbf{s}| \approx 20.4, \theta \approx 11.3^{\circ}$
63. $\left\langle\frac{7}{25}, \frac{24}{25}\right\rangle$, verified 65. $\left\langle\frac{-20}{29}, \frac{21}{29}\right\rangle$, verified
67. $\frac{20}{29} \mathbf{i}-\frac{21}{29} \mathbf{j}$, verified
69. $\frac{7}{25} \mathbf{i}+\frac{24}{25} \mathbf{j}$, verified
71. $\left\langle-\frac{13}{\sqrt{178}}, \frac{3}{\sqrt{178}}\right\rangle$, verified $73 . \frac{6}{\sqrt{157}} \mathbf{i}+\frac{11}{\sqrt{157}} \mathbf{j}$, verified
75. $\approx 4.48\left\langle\frac{5}{\sqrt{29}}, \frac{2}{\sqrt{29}}\right\rangle \approx\langle 4.16,1.66\rangle$
77. $\approx 5.83\left\langle\frac{8}{\sqrt{73}}, \frac{-3}{\sqrt{73}}\right\rangle \approx\langle 5.46,-2.05\rangle \quad$ 79. $\approx 14.4 \quad$ 81. $\approx 24.3^{\circ}$
83. hor. comp. $\approx 79.9 \mathrm{ft} / \mathrm{sec}$; vert. comp. $\approx 60.2 \mathrm{ft} / \mathrm{sec}$
85. heading 68.2° at 266.7 mph 87. $\approx(82.10 \mathrm{~cm}, 22.00 \mathrm{~cm})$
89. $1\langle a, b\rangle=\langle 1 a, 1 b\rangle=\langle a, b\rangle$
91. $\langle a, b\rangle-\langle c, d\rangle=\langle a-c, b-d\rangle=\langle a+(-c), b+(-d)\rangle$
$=\langle a, b\rangle+\langle-c,-d\rangle=\langle a, b\rangle+-\mathbf{1}\langle c, d\rangle=\mathbf{u}+(-1 \mathbf{v})$
93. $(c k) \mathbf{u}=\langle c k a, c k b\rangle=c\langle k a, k b\rangle=c(k \mathbf{u})$
$c(k \mathbf{u})=\langle c k a, c k b\rangle=\langle k c a, k c b\rangle=k\langle c a, c b\rangle=k(c \mathbf{u})$
95. $\mathbf{u}+(-\mathbf{u})=\langle a, b\rangle+\langle-a,-b\rangle=\langle a-a, b-b\rangle=\langle 0,0\rangle$
97. $(c+k) \mathbf{u}=(c+k)\langle a, b\rangle=\langle(c+k) a,(c+k) b\rangle=$
$\langle c a+k a, c b+k b\rangle=\langle c a, c b\rangle+\langle k a, k b\rangle=c \mathbf{u}+k \mathbf{u}$
99. $\langle 1,3\rangle+\langle 3,3\rangle+\langle 4,-1\rangle+\langle 2,-4\rangle+\langle-4,-3\rangle+\langle-6,2\rangle=\langle 0,0\rangle$
101. Answers will vary, one possibility: $0^{\circ}, 81.4^{\circ},-34^{\circ}$.
103. $2 \sec ^{2} \theta=\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}$

$$
=\frac{1-\sin \theta}{(1+\sin \theta)(1-\sin \theta)}+\frac{1+\sin \theta}{(1-\sin \theta)(1+\sin \theta)}
$$

$$
=\frac{2}{1-\sin ^{2} \theta}
$$

$$
=\frac{2}{\cos ^{2} \theta}
$$

$$
=2 \sec ^{2} \theta
$$

105. $\sin x=\frac{5}{13}, \csc x=\frac{13}{5}, \cos x=\frac{12}{13}, \sec x=\frac{13}{12}, \tan x=\frac{5}{12}$,
$\cot x=\frac{12}{5} \quad$ 107. a. $y=2 \sin \left(x+\frac{\pi}{4}\right)$
b. $y=2 \cos \left(x-\frac{\pi}{4}\right)$

Exercises 7.4, pp. 369-373

1. equilibrium; zero 3. orthogonal 5. Answers will vary.
2. $\langle 6,8\rangle \quad$ 9. $\langle-5,10\rangle \quad$ 11. $-6 \mathbf{i}-8 \mathbf{j} \quad$ 13. $-2.2 \mathbf{i}+0.4 \mathbf{j}$
3. $\langle-11.48,-9.16\rangle$ 17. $\langle-24,-27\rangle$ 19. $\left|\mathbf{F}_{3}\right| \approx 3336.8 ; \theta \approx 268.5^{\circ}$
4. 37.16 kg 23. 644.49 lb 25. $2606.74 \mathrm{~kg} \quad$ 27. approx. 286.79 lb 29. approx. 43.8° 31. $1125 \mathrm{~N}-\mathrm{m}$ 33. approx. 957.0 ft 35. approx. $64,951.90 \mathrm{ft}-\mathrm{lb}$ 37. approx. 451.72 lb 39. approx. $2819.08 \mathrm{~N}-\mathrm{m}$ 41. $800 \mathrm{ft}-\mathrm{lb}$ 43. $118 \mathrm{ft}-\mathrm{lb}$ 45. verified 4 . verified 49. a. 29
$\begin{array}{lllllll}\text { b. } 45^{\circ} & \text { 51. a. } 0 & \text { b. } 90^{\circ} & \text { 53. a. } 1 & \text { b. } 89.4^{\circ} & \text { 55. yes } & \text { 57. no }\end{array}$
$\begin{array}{lllll}\text { 59. yes 61. } 3.68 & \text { 63. }-4 & \text { 65. } 3.17 & \text { 67. a. }\langle 3.73,1.40\rangle\end{array}$
b. $\mathbf{u}_{1}=\langle 3.73,1.40\rangle, \mathbf{u}_{2}=\langle-1.73,4.60\rangle$ 69. a. $\langle-0.65,0.11\rangle$
b. $\mathbf{u}_{1}=\langle-0.65,0.11\rangle, \mathbf{u}_{2}=\langle-1.35,-8.11\rangle \quad$ 71. a. $10.54 \mathbf{i}+1.76 \mathbf{j}$
b. $\mathbf{u}_{1}=10.54 \mathbf{i}+1.76 \mathbf{j}, \mathbf{u}_{2}=-0.54 \mathbf{i}+3.24 \mathbf{j} \quad$ 73. a. projectile is about

375 ft away, and 505.52 ft high b. approx. 1.27 sec and 12.26 sec
75. a. projectile is about 424.26 ft away, and 280.26 ft high b. approx.
2.44 sec and 6.40 sec 77. about $74.84 \mathrm{ft} ; t \approx 3.9-1.2=2.7 \mathrm{sec}$
79. $\mathbf{w} \cdot(\mathbf{u}+\mathbf{v})=\langle e, f\rangle \cdot\langle a+c, b+d\rangle$
$=e(a+c)+f(b+d)=e a+e c+f b+f d$
$=(e a+f b)+(e c+f d)$
$=\langle e, f\rangle \cdot\langle a, b\rangle+\langle e, f\rangle \cdot\langle c, d\rangle$
$=\mathbf{w} \cdot \mathbf{u}+\mathbf{w} \cdot \mathbf{v}$
81. $\mathbf{0} \cdot \mathbf{u}=\langle 0,0\rangle \cdot\langle a, b\rangle=0(a)+0(b)=0$
$\mathbf{u} \cdot \mathbf{0}=\langle a, b\rangle \cdot\langle 0,0\rangle=a(0)+b(0)=0$
83. $\theta \approx 56.9^{\circ}$; answers will vary.
85.

Angles	Sides
$A \approx 25.1^{\circ}$	$a \approx 25.98 \mathrm{~cm}$
$B \approx 34.9^{\circ}$	$b=53 \mathrm{~cm}$
$C=120^{\circ}$	$c=35 \mathrm{~cm}$

87.

Domain: $[-1,1]$
89. $\sin 15^{\circ}=\frac{1}{2} \sqrt{2-\sqrt{3}}, \cos 75^{\circ}=\frac{1}{2} \sqrt{2-\sqrt{3}}$; they are identical.

Summary and Concept Review pp. 373-376
1.

Angles	Sides
$A=36^{\circ}$	$a \approx 205.35 \mathrm{~cm}$
$B=21^{\circ}$	$b \approx 125.20 \mathrm{~cm}$
$C=123^{\circ}$	$c=293 \mathrm{~cm}$

2.

Angles	Sides
$A=28^{\circ}$	$a \approx 140.59 \mathrm{yd}$
$B=10^{\circ}$	$b=52 \mathrm{yd}$
$C=142^{\circ}$	$c \approx 184.36 \mathrm{yd}$

3. approx. 41.84 ft
4. approx. 20.2° and 159.8°
5.

Angles	Sides
$A=35^{\circ}$	$a=67 \mathrm{~cm}$
$B_{1} \approx 64.0^{\circ}$	$b=105 \mathrm{~cm}$
$C_{1} \approx 81.0^{\circ}$	$c_{1} \approx 115.37 \mathrm{~cm}$

Angles	Sides
$A=35^{\circ}$	$a=67 \mathrm{~cm}$
$B_{2} \approx 116.0^{\circ}$	$b=105 \mathrm{~cm}$
$C_{2} \approx 29.0^{\circ}$	$c_{2} \approx 56.63 \mathrm{~cm}$

6. no; 36° 7. approx. 36.9° 8. approx. 385.5 m
7. $133.2^{\circ}, 30.1^{\circ}$, and 16.7° 10. $85,570.7 \mathrm{~m}^{2}$
8.

12. $-8 \mathbf{i}+3 \mathbf{j} ;|\mathbf{u}| \approx 8.54 ; \theta \approx 159.4^{\circ}$
13. horiz. comp. ≈ 11.08, vertical comp. ≈ 14.18
14. $\langle-4,-2\rangle ;|2 \mathbf{u}+\mathbf{v}| \approx 4.47, \theta \approx 206.6^{\circ}$
15. $\frac{7}{\sqrt{193}} \mathbf{i}+\frac{12}{\sqrt{193}} \mathbf{j}$
16. QII; since the x-component is negative and the y-component is positive. 17. $\frac{1}{6} \mathrm{mi}$ 18. approx. 19.7° 19. $\langle-25,-123\rangle$ 20. approx. -0.87 21. 4 22. $\mathbf{p} \cdot \mathbf{q}=-6 ; \theta \approx 97.9^{\circ}$ 23. $4340 \mathrm{ft}-\mathrm{lb} \quad$ 24. approx. 417.81 lb 25. approx. $8156.77 \mathrm{ft}-\mathrm{lb} \quad$ 26. a. $x \approx 269.97 \mathrm{ft} ; y \approx 285.74 \mathrm{ft}$
b. approx. 0.74 sec

Mixed Review pp. 376-377
1.

Angles	Sides
$A=41^{\circ}$	$a \approx 13.44 \mathrm{in}$.
$B=27^{\circ}$	$b \approx 9.30 \mathrm{in}$.
$C=112^{\circ}$	$c=19 \mathrm{in}$.

Area $\approx 57.9 \mathrm{in}^{2}$
3. $x \approx 16.09, y \approx 13.50$ 5. approx. $176.15 \mathrm{ft} \quad$ 7. approx. 793.70 mph ; heading 28.2°
9. One solution possible since side $a>$ side b

Angles	Sides
$A=31^{\circ}$	$a=36 \mathrm{~m}$
$B \approx 20.1^{\circ}$	$b=24 \mathrm{~m}$
$C \approx 128.9^{\circ}$	$c \approx 54.4 \mathrm{~m}$

11. No; barely touches ("tangent") at 30°
12. a. $3865 \mathrm{mi} \quad$ b. 2384 mi
13. $\approx 13.1^{\circ}$ 17. $\operatorname{comp}_{v} u \approx-0.87, \operatorname{proj}_{\mathbf{v}} \mathbf{u} \approx \frac{-38}{53} \mathbf{i}+\frac{26}{53} \mathbf{j}$
14. $(2,-1)$

Practice Test pp. 377-379

1. 6.58 mi 2. 137.18 ft
2.

Angles	Sides (in.)
$A_{1} \approx 58.8^{\circ}$	$a=15$
$B=20^{\circ}$	$b=6$
$C_{1} \approx 101.2^{\circ}$	$c_{1} \approx 17.21$

Angles	Sides (in.)
$A_{2} \approx 121.2^{\circ}$	$a=15$
$B=20^{\circ}$	$b=6$
$C_{2} \approx 38.8^{\circ}$	$c_{2} \approx 11.0$

4. a. No b. 2.66 mi 5. a. No b. 1 c. 8.43 sec 6. a. 2.30 mi b. 7516.5 ft 7. $A \approx 438,795 \mathrm{mi}^{2}, P \approx 61.7^{\circ}$, $B \approx 61.2^{\circ}, M \approx 57.1^{\circ}$ 8. speed $\approx 73.36 \mathrm{mph}$, bearing $\approx 47.8^{\circ}$ 9. $\theta \approx 36.5^{\circ} \quad$ 10. 63.48 cm to the right and 130.05 cm down from the initial point on the ceiling 11. $\left|\mathbf{F}_{3}\right| \approx 212.94 \mathrm{~N}, \theta \approx 251.2^{\circ}$
5. a. $\theta \approx 42.5^{\circ} \quad$ b. proj$_{\mathbf{v}} \mathbf{u}=\langle-2.4,7.2\rangle$
c. $\mathbf{u}_{1}=\langle-2.4,7.2\rangle, \mathbf{u}_{2}=\langle-6.6,-2.2\rangle$
6. $104.53 \mathrm{ft} ; 3.27 \mathrm{sec} \quad$ 14. $C=\cos ^{-1}\left(\frac{c^{2}-a^{2}-b^{2}}{-2 a b}\right)$
7. a. $\langle-20,6\rangle$
b. $2 \sqrt{109}$
8. $\frac{5}{\sqrt{61}} \mathbf{i}+\frac{6}{\sqrt{61}} \mathbf{j}$
9. $\langle-6.6,4.6\rangle$
10. a. $W=p x \cos 15^{\circ}$ b. approx. $1545 \mathrm{ft}-\mathrm{lb}$
11. a. approx. 61.3°
b. $47 \mathrm{ft}-\mathrm{lb}$
12. $\approx 2,414,300 \mathrm{mi}^{2}$

Strengthening Core Skills p. 380
Exercise 1: $664.46 \mathrm{lb}, 640.86 \mathrm{lb} \quad$ Exercise 2: $106.07 \mathrm{lb}, 106.07 \mathrm{lb}$ Exercise 3: yes

Cumulative Review Chapters 1-7, pp. 381-382

1. $20 \sqrt{3}, 40,60^{\circ}, 90^{\circ} \quad$ 3. $t=\frac{\cos ^{-1}\left(\frac{D}{A}\right)-C}{B}$
2. QIV, $\sin \theta=\frac{-3}{5} ; \cos \theta=\frac{4}{5} ; \tan \theta=\frac{-3}{4} ; \csc \theta=-\frac{5}{3} ; \sec \theta=\frac{5}{4}$; $\cot \theta=-\frac{4}{3}$
3. a. $\sin (2 \alpha)=2 \sin \alpha \cos \alpha \quad$ b. $\sin \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{2}}$
c. $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
4. $\cos 19^{\circ} \approx 0.94, \quad \cos 125^{\circ} \approx-0.58$
5. $D(t)=5.704 \sin (0.511 t-1.835)+12.189$
a. about 14.7 hr b. $t \approx 4.6$ to $t \approx 8.7$, approx. April 18 to August 22
6. $\frac{2 \cos ^{2} \theta}{\csc ^{2} \theta}+\frac{2 \sin ^{2} \theta}{\sec ^{2} \theta}=\frac{2 \cos ^{2} \theta \sec ^{2} \theta+2 \sin ^{2} \theta \csc ^{2} \theta}{\csc ^{2} \theta \sec ^{2} \theta}=4 \sin ^{2} \theta \cos ^{2} \theta$

$$
=(2 \sin \theta \cos \theta)^{2}=\sin ^{2}(2 \theta)
$$

15. $\angle A=37^{\circ}, a \approx 33 \mathrm{~cm} ; \angle B \approx 34.4^{\circ}, b=31 \mathrm{~cm} ; \angle C \approx 108.6^{\circ}$, $c=52 \mathrm{~cm}$ 17. about 422.5 lb 19. $\theta \approx 70^{\circ}$

CHAPTER 8

Exercises 8.1, pp. 390-394

$\begin{array}{llllll}\text { 1. } 3-2 i & \text { 3. } 2 ; 3 \sqrt{2} & \text { 5. (b) is correct. } & \text { 7. a. } 4 i & \text { b. } 7 i & \text { c. } 3 \sqrt{3}\end{array}$ $\begin{array}{llllll}\text { d. } 6 \sqrt{2} & \text { 9. a. }-3 i \sqrt{2} & \text { b. }-5 i \sqrt{2} & \text { c. } 15 i & \text { d. } 6 i & \text { 11. a. } i \sqrt{19}\end{array}$
b. $i \sqrt{31}$
c. $\frac{2 \sqrt{3}}{5} i$
d. $\frac{3 \sqrt{2}}{8} i$
13. a. $1+i ; a=1, b=1$
b. $2+\sqrt{3} i ; a=2, b=\sqrt{3} \quad$ 15. a. $4+2 i ; a=4, b=2$
b. $2-\sqrt{2} i ; a=2, b=-\sqrt{2} \quad$ 17. a. $5+0 i ; a=5, b=0$
b. $0+3 i ; a=0, b=3 \quad$ 19. a. $18 i ; a=0, b=18$
b. $\frac{\sqrt{2}}{2} i ; a=0, b=\frac{\sqrt{2}}{2} \quad$ 21. a. $4+5 \sqrt{2} i ; a=4, b=5 \sqrt{2}$
b. $-5+3 \sqrt{3} i ; a=-5, b=3 \sqrt{3}$
23. a. $\frac{7}{4}+\frac{7 \sqrt{2}}{8} i ; a=\frac{7}{4}, b=\frac{7 \sqrt{2}}{8} \quad$ b. $\frac{1}{2}+\frac{\sqrt{10}}{2} i ; a=\frac{1}{2}, b=\frac{\sqrt{10}}{2}$
25. a. $19+i$ b. $2-4 i \quad$ c. $9+10 \sqrt{3} i \quad$ 27. a. $-3+2 i \quad$ b. 8
$\begin{array}{llll}\text { c. } 2-8 i & \text { 29. a. } 2.7+0.2 i & \text { b. } 15+\frac{1}{12} i & \text { c. }-2-\frac{1}{8} i\end{array}$
31. a. 15 b. 16 33. a. $-21-35 i \quad$ b. $-42-18 i$
35. a. $-12-5 i \quad$ b. $1+5 i \quad$ 37. a. $4-5 i ; 41 \quad$ b. $3+i \sqrt{2} ; 11$
39. a. $-7 i ; 49$ b. $\frac{1}{2}+\frac{2}{3} i ; \frac{25}{36} \quad$ 41. a. 41 b. 74 43. a. 11 b. $\frac{17}{36}$
45. a. $-5+12 i \quad$ b. $-7-24 i \quad$ 47. a. $-21-20 i \quad$ b. $7+6 \sqrt{2} i$
49. no 51. yes 53. yes 55. yes 57. yes 59. Answers will vary.
61. a. 1
b. -1
c. $-i$
d. i 63. a. $\frac{2}{7} i$
b. $\frac{-4}{5} i$
65. a. $\frac{21}{13}-\frac{14}{13} i$
b. $\frac{-10}{13}-\frac{15}{13} i$
67. a. $1-\frac{3}{4} i \quad$ b. $-1-\frac{2}{3} i$
69. a. $\sqrt{13}$ b. 5 c. $\sqrt{11} \quad$ 71. $A+B=10 \quad A B=40$
73. $7-5 i \Omega \quad$ 75. $25+5 i \mathrm{~V} \quad$ 77. $\frac{7}{4}+i \Omega \quad$ 79. a. $(x+6 i)(x-6 i)$
b. $(m+i \sqrt{3})(m-i \sqrt{3})$ c. $(n+2 i \sqrt{3})(n-2 i \sqrt{3})$
d. $(2 x+7 i)(2 x-7 i) \quad$ 81. $-8-6 i \quad$ 83. $\theta=62.7^{\circ}$
85. $\frac{\cos ^{2} \theta}{1-\sin \theta}=\frac{1-\sin ^{2} \theta}{1-\sin \theta}$

$$
=\frac{(1+\sin \theta)(1-\sin \theta)}{1-\sin \theta}
$$

$=1+\sin \theta$
87.

Angles	Sides
$A=32^{\circ}$	$a \approx 138.4 \mathrm{~m}$
$B \approx 106.8^{\circ}$	$b=250 \mathrm{~m}$
$C \approx 41.2^{\circ}$	$c=172 \mathrm{~m}$

Exercises 8.2, pp. 403-406

1. modulus; argument 3. multiply; add
2. $2\left(\cos 240^{\circ}+i \sin 240^{\circ}\right), z$ is in QIII
3. $z_{2}=z_{1}+z_{3}$

$$
\text { 9. } z_{2}=z_{1}+z_{3}
$$

11. $2 \sqrt{2}\left(\cos 225^{\circ}+i \sin 225^{\circ}\right)$
13. $10\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)$
15. $6\left[\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right]$
17. $8\left[\cos \left(\frac{11 \pi}{6}\right)+i \sin \left(\frac{11 \pi}{6}\right)\right]$
19. $10 \operatorname{cis}\left[\tan ^{-1}\left(\frac{6}{8}\right)\right] ; 10 \operatorname{cis} 36.9^{\circ}$
21. $13 \operatorname{cis}\left[180^{\circ}+\tan ^{-1}\left(\frac{12}{5}\right)\right] ; 13 \operatorname{cis} 247.4^{\circ}$
23. $18.5 \operatorname{cis}\left[\tan ^{-1}\left(\frac{17.5}{6}\right)\right] ; 18.5 \operatorname{cis} 1.2405$
25. $2 \sqrt{34}$ cis $\left[\pi+\tan ^{-1}\left(-\frac{5}{3}\right)\right] ; 2 \sqrt{34}$ cis 2.1112
27. $r=2, \theta=\frac{\pi}{4}$

$$
z=2 \operatorname{cis}\left(\frac{\pi}{4}\right)
$$

$$
=\sqrt{2}+\sqrt{2} i
$$

29. $r=4 \sqrt{3}, \theta=\frac{\pi}{3}$

$$
z=4 \sqrt{3} \operatorname{cis}\left(\frac{\pi}{3}\right)
$$

$$
=2 \sqrt{3}+6 i
$$

31. $r=17, \theta=\tan ^{-1}\left(\frac{15}{8}\right)$
$z=17 \operatorname{cis}\left[\tan ^{-1}\left(\frac{15}{8}\right)\right]$
$=17\left(\frac{8}{17}+\frac{15}{17} i\right)=8+15 i$

33. $r=6, \theta=\pi-\tan ^{-1}\left(\frac{5}{\sqrt{11}}\right)$
$z=6 \operatorname{cis}\left[\pi-\tan ^{-1} \frac{5}{\sqrt{11}}\right]$
$=6\left(-\frac{\sqrt{11}}{6}+\frac{5}{6} i\right)=-\sqrt{11}+5 i$

35. $r_{1}=2 \sqrt{2}, \quad r_{2}=3 \sqrt{2}, \quad \theta_{1}=135^{\circ}, \quad \theta_{2}=45^{\circ}$;
$z=z_{1} z_{2}=-12+0 i \Rightarrow r=12, \quad \theta=180^{\circ}$;
$r_{1} r_{2}=2 \sqrt{2}(3 \sqrt{2})=12 \checkmark$
$\theta_{1}+\theta_{2}=135^{\circ}+45^{\circ}=180^{\circ} \checkmark$
37. $r_{1}=2, r_{2}=2, \theta_{1}=30^{\circ}, \theta_{2}=60^{\circ}$;
$z=\frac{z_{1}}{z_{2}}=\frac{\sqrt{3}}{2}-\frac{1}{2} i \Rightarrow r=1, \theta=-30^{\circ} ; \frac{r_{1}}{r_{2}}=\frac{2}{2}=1 \checkmark$
$\theta_{1}-\theta_{2}=30^{\circ}-60^{\circ}=-30^{\circ} \checkmark$
39. $z_{1} z_{2}=-24+0 i, \frac{z_{1}}{z_{2}}=-\frac{4}{3}+\frac{4 \sqrt{3}}{3} i$
41. $z_{1} z_{2}=21 \sqrt{3}-21 i, \frac{z_{1}}{z_{2}}=\frac{\sqrt{3}}{7}+\frac{1}{7} i$
43. $z_{1} z_{2}=-10.84+12.04 i, \frac{z_{1}}{z_{2}}=-1.55-4.76 i$
45. $z_{1} z_{2}=0+40 i, \frac{z_{1}}{z_{2}}=\frac{5 \sqrt{3}}{4}+\frac{5}{4} i$
47. $z_{1} z_{2}=-10-10 \sqrt{3} i, \frac{z_{1}}{z_{2}}=\frac{-5}{2}+0 i$
49. $z_{1} z_{2}=-2.93+8.5 i, \frac{z_{1}}{z_{2}}=2.29+3.28 i$
51. verified; verified, $u^{2}+v^{2}+w^{2}=u v+u w+v w$
$(1+4 \sqrt{3} i)+(97+20 \sqrt{3} i)+(-39+60 \sqrt{3} i)$
$=(17+12 \sqrt{3} i)+(-3+16 \sqrt{3} i)+(45+56 \sqrt{3} i)$,
$59+84 \sqrt{3} i=59+84 \sqrt{3} i$
53. a. $V(t)=170 \sin (120 \pi t)$
b.

\boldsymbol{t}	$\boldsymbol{V}(\boldsymbol{t})$
0	0
0.001	62.6
0.002	116.4
0.003	153.8
0.004	169.7
0.005	161.7
0.006	131.0
0.007	81.9
0.008	21.3

c. $t \approx 0.00257 \mathrm{sec}$
55. a. $17 \operatorname{cis} 28.1^{\circ} \quad$ b. $51 \mathrm{~V} \quad$ 57. a. $8.60 \operatorname{cis} 324.5^{\circ} \quad$ b. 15.48 V
59. a. 13 cis 22.6° b. 22.1 V
61. $I=2 \operatorname{cis} 30^{\circ} ; Z=5 \sqrt{2} \operatorname{cis} 45^{\circ} ; V=10 \sqrt{2} \operatorname{cis} 75^{\circ}$
63. $I=\sqrt{13} \operatorname{cis} 326.3^{\circ} ; Z=\frac{17}{4} \operatorname{cis} 61.9^{\circ} ; V=\frac{17 \sqrt{13}}{4} \operatorname{cis} 28.2^{\circ}$
65. $V=4 \operatorname{cis} 60^{\circ} ; Z=4 \sqrt{2} \operatorname{cis} 315^{\circ} ; I=\frac{\sqrt{2}}{2} \operatorname{cis} 105^{\circ}$
67. $V=5 \operatorname{cis} 306.9^{\circ} ; Z=8.5 \operatorname{cis} 61.9^{\circ} ; I=\frac{10}{17} \operatorname{cis} 245^{\circ}$
69. $\frac{\sqrt{65} \operatorname{cis} 29.7^{\circ}}{4}$ 71. verified
73. $z_{2}=\frac{24}{5}-\frac{7}{5} i, z_{3}=-\frac{24}{5}+\frac{7}{5} i$
75. $\frac{5 \pi}{24}, \frac{13 \pi}{24}, \frac{29 \pi}{24}, \frac{37 \pi}{24}$
77. a. $\frac{1+\cos \alpha}{1-\cos \alpha}=\left(\frac{1+\cos \alpha}{1-\cos \alpha}\right) \frac{\sec \alpha}{\sec \alpha}=\frac{\sec \alpha+1}{\sec \alpha-1}$
79. approx. 2.70 mi

Exercises 8.3, pp. 411-414

1. $r^{5}[\cos (5 \theta)+i \sin (5 \theta)]$; De Moivre's 3. complex 5. $z_{5}=2 \operatorname{cis} 366^{\circ}=2 \operatorname{cis} 6^{\circ}, z_{6}=2 \operatorname{cis} 438^{\circ}=2 \operatorname{cis} 78^{\circ}$, $z_{7}=2$ cis $510^{\circ}=2$ cis 150°; Answers will vary.
2. $r=3 \sqrt{2} ; n=4 ; \theta=45^{\circ} ;-324$ 9. $r=2 ; n=3 ; \theta=120^{\circ} ; 8$
3. $r=1 ; n=5 ; \theta=-60^{\circ} ; \frac{1}{2}+\frac{\sqrt{3}}{2} i \quad$ 13. $r=1 ; n=6 ; \theta=-45^{\circ} ; i$
4. $r=4 ; n=3 ; \theta=330^{\circ} ;-64 i$
5. $r=\frac{\sqrt{2}}{2} ; n=5 ; \theta=135^{\circ} ; \frac{1}{8}-\frac{1}{8} i$
6. verified 21. verified 23. verified 25. verified
7. $r=1 ; n=5 ; \theta=0^{\circ}$; roots: $1,0.3090 \pm 0.9511 i,-0.8090 \pm 0.5878 i$
8. $r=243 ; n=5 ; \theta=0^{\circ}$; roots: $3,0.9271 \pm 2.8532 i,-2.4271 \pm 1.7634 i$
9. $r=27 ; n=3 ; \theta=270^{\circ}$; roots: $3 i, \frac{-3 \sqrt{3}}{2}-\frac{3}{2} i, \frac{3 \sqrt{3}}{2}-\frac{3}{2} i$
10. $2,0.6180 \pm 1.9021 i,-1.6180 \pm 1.1756 i$
11. $\frac{3 \sqrt{3}}{2}+\frac{3}{2} i,-\frac{3 \sqrt{3}}{2}+\frac{3}{2} i,-3 i$
12. $1.1346+0.1797 i, 0.1797+1.1346 i,-1.0235+0.5215 i$,
$-0.8123-0.8123 i, 0.5215-1.0235 i$
13. $x=1,-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$. These are the same results as in Example 3 .
14. $r=16 ; n=4 ; \theta=120^{\circ}$; roots: $\sqrt{3}+i,-1+\sqrt{3} i,-\sqrt{3}-i, 1-\sqrt{3} i$ 43. $r=7 \sqrt{2} ; n=4 ; \theta=225^{\circ}$; roots: $0.9855+1.4749 i,-1.4749+$ $0.9855 i,-0.9855-1.4749 i, 1.4749 i-0.9855 i$
15. $D=-4, z_{0}=8^{\frac{1}{5}}$ cis $45^{\circ}, z_{1}=8^{\frac{1}{5}} \mathrm{cis} 165^{\circ}, z_{2}=8^{\frac{1}{5}} \mathrm{cis} 285^{\circ}$, $z_{0}=8^{\frac{1}{6}}$ cis $75^{\circ}, z_{1}=8^{\frac{1}{6}}$ cis $195^{\circ}, z_{2}=8^{\frac{1}{6}}$ cis $315^{\circ} \quad$ 47. verified
16. a. numerator: $-117+44 j$, denominator: $-21+72 j \quad$ b. $1+\frac{4}{3} j$
c. verified
17. Answers will vary.
18. $-7-24 i$
19. $z \approx-2.7320, z \approx 0.7320, z=2$.

Note: Using sum and difference identities, all three solutions can actually be given in exact form: $-1-\sqrt{3},-1+\sqrt{3}, 2$.
57. a. $I=4+i$, b. $(3-2 i)(4+i)=$
$12+3 i-8 i-2 i^{2}=12-5 i+2=14-5 i \checkmark$
59. $\frac{\tan ^{2} x}{\sec x+1}=\frac{1-\cos x}{\cos x}, \frac{\sec ^{2} x-1}{\sec x+1}=\frac{(\sec x+1)(\sec x-1)}{\sec x+1}=$
$\sec x-1=\frac{1}{\cos x}-\frac{\cos x}{\cos x}=\frac{1-\cos x}{\cos x}$
61.

Angles	Sides
$A=30^{\circ}$	$a=2 \sqrt{3}$
$B=60^{\circ}$	$b=6$
$C=90^{\circ}$	$c=4 \sqrt{3}$

Mid-Chapter Check, p. 414

1. sum 4 , product 13 ; both yield real numbers. 2. i
2. $(1+2 i)^{2}-2(1+2 i)+5=0$

$$
\begin{aligned}
1+4 i+4 i^{2}-2-4 i+5 & =0 \\
1+(-4)-2+5 & =0 \\
0 & =0
\end{aligned}
$$

4. a. QII, $8 \operatorname{cis} 120^{\circ}$ b. QIII, 15 cis 216.9°
5. a. $3+3 i \quad$ b. $3-\sqrt{3} i \quad$ 6. $z_{1} z_{2}=20 \operatorname{cis} 210^{\circ}$
6. $\frac{z_{1}}{z_{2}}=\frac{3 \sqrt{2}}{10} \operatorname{cis}\left(\frac{7 \pi}{12}\right)$
7. $128-128 i \quad$ 9. $2 \mathrm{cis}\left(36^{\circ}+72^{\circ} k\right)$
8. $z_{0}=9, z_{1}=-\frac{9}{2}+\frac{9 \sqrt{3}}{2} i, z_{2}=-\frac{9}{2}-\frac{9 \sqrt{3}}{2} i$

Reinforcing Basic Concepts, p. 415

Exercise 1: The product yields a new complex number rotated 180° counterclockwise, 270° counterclockwise, or 360° counterclockwise (for i^{4} the result would be coterminal), all on a central circle of radius $|z|$.

Exercise 2: verified; $-3+2 i,-2-3 i, 3-2 i$
Exercise 3: a. $|z|=1, \theta=45^{\circ}$
b. $-\sqrt{2}+\sqrt{2} i,-2,-\sqrt{2}-\sqrt{2} i,-2 i, \sqrt{2}-\sqrt{2} i, 2, \sqrt{2}+\sqrt{2} i$

Exercise 4: a. any point on the unit circle b. $-\frac{1}{2}+\frac{\sqrt{3}}{2} i$
c. $-\sqrt{3}-i, \sqrt{3}-i$

Exercises 8.4, pp. 428-431

1. polar 3. II; IV 5. To plot the point (r, θ) start at the origin or pole and move $|r|$ units out along the polar axis. Then move counterclockwise an angle measure of θ. You should be r units straight out from the pole in a direction of θ from the positive polar axis. If r is negative, final resting place for the point (r, θ) will be 180° from θ.
2.

9.

13.

15. $\left(4, \frac{\pi}{2}\right)$
17. $\left(4 \sqrt{2}, \frac{\pi}{4}\right)$
19. $\left(8, \frac{2 \pi}{3}\right)$
21. $\left(4 \sqrt{2}, \frac{3 \pi}{4}\right)$
11.

23. $\left(3 \sqrt{2}, \frac{-5 \pi}{4}\right),\left(-3 \sqrt{2}, \frac{7 \pi}{4}\right),\left(3 \sqrt{2}, \frac{11 \pi}{4}\right),\left(-3 \sqrt{2}, \frac{-\pi}{4}\right)$
25. $\left(2, \frac{5 \pi}{6}\right),\left(2, \frac{-7 \pi}{6}\right),\left(2, \frac{17 \pi}{6}\right),\left(-2, \frac{-\pi}{6}\right)$
27. C 29. C 31. D
33. $B \quad$ 35. $D \quad$ 37. $\left(8,180^{\circ}\right)$ or $(8, \pi)$ 39. $\left(4 \sqrt{2}, 45^{\circ}\right)$ or $\left(4 \sqrt{2}, \frac{\pi}{4}\right)$
41. $\left(10,45^{\circ}\right)$ or $\left(10, \frac{\pi}{4}\right)$ 43. $\left(13,247.4^{\circ}\right)$ or $(13,4.3176)$
45. $(4 \sqrt{2}, 4 \sqrt{2})$
47. $(-2 \sqrt{2}, 2 \sqrt{2})$ 49. $(\sqrt{3}, 1)$
51. $\left(\frac{5 \sqrt{2}}{2}, \frac{5 \sqrt{2}}{2}\right)$
53. $r=5$ 55. $r^{2} \sin 2 \theta=6$ 57. $\tan \theta=3 r \cos \theta+1$ or $r=\frac{\tan \theta-1}{3 \cos \theta}$
59. $r^{2}=\cos 2 \theta$
61. $x^{2}+y^{2}=6 x$
63. $x=2$
65. $x^{2}+y^{2}=x-1$
67. $y=-\frac{1}{2} x^{2}+\frac{1}{2}$
69.

71.

77.

83.

73.

79.

85.

87.

89.

91.

93. $\left(\frac{4 \sqrt{3}+3 \sqrt{2}}{2}, \frac{4+3 \sqrt{2}}{2}\right) ;(3 \sqrt{2}, 3 \sqrt{2}) ;(4 \sqrt{3}, 4)$; yes $M=\left(\frac{3 \sqrt{2}+4 \sqrt{3}}{2}, \frac{3 \sqrt{2}+4}{2}\right)$
95. $r=4+4 \cos \theta$

97. $r=4 \cos (5 \theta)$

99. $r^{2}=16 \cos (2 \theta)$

101. $r=4 \sin \theta$

103. a; this is a circle through $\left(6,0^{\circ}\right)$ symmetric about the polar axis 105. g ; this is a circle through $\left(6, \frac{\pi}{2}\right)$ symmetric about $\theta=\frac{\pi}{2}$.
107. f; this is a limaçon symmetric about $\theta=\frac{\pi}{2}$ with an inner loop. Thus $a<b$.
109. b; this is a cardioid symmetric about $\theta=\frac{\pi}{2} \operatorname{through}\left(6, \frac{3 \pi}{2}\right)$.
111. $r^{2}=7200^{2} \sin (2 \theta) \quad$ 113. $r=15 \cos (5 \theta)$ or $r=15 \sin (5 \theta)$
115. $\pi ; \pi ; \pi$; Answers will vary.
117. Consider $r=a \sqrt{\cos (2 \theta)}$ and $r=-a \sqrt{\cos (2 \theta)}$; both satisfy $r^{2}=a^{2} \cos (2 \theta)$. Thus, (r, θ) and $(-r, \theta)$ will both be on the curve. The same is true with $a \sqrt{\sin (2 \theta)}$ and $-a \sqrt{\sin (2 \theta)}$. 119. 9π units 2

$$
\text { 121. } \begin{aligned}
\frac{1+\sin x}{\cos x} & =\frac{(1+\sin x)(1-\sin x)}{\cos x(1-\sin x)} \\
& =\frac{1-\sin ^{2} x}{\cos x(1-\sin x)} \\
& =\frac{\cos ^{2} x}{\cos x(1-\sin x)} \\
& =\frac{\cos x}{1-\sin x}
\end{aligned}
$$

123. $\left|z_{1}\right|=\sqrt{226}<\sqrt{250}=\left|z_{2}\right| \quad$ 125. $L \approx 115.0 \mathrm{~m}$

Exercises 8.5, pp. 439-443

1. parameter 3. direction 5. Answers will vary.
2. a. parabola with vertex at $(2,-1)$
b. $y=x^{2}-4 x+3$
b. $y=x \pm 2 \sqrt{x}+1$

3. a. power function with $p=-2$
b. $y=\frac{25}{x^{2}}, x \neq 0$

b. $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

4. a. Lissajous figure
b. $y=6 \cos \left[\frac{1}{2} \sin ^{-1}\left(\frac{x}{4}\right)\right]$

5. $x=t, y=3 t-2 ; x=\frac{1}{3} t, y=t-2 ; x=\cos t, y=3 \cos t-2$
6. $x=t, y=(t+3)^{2}+1 ; x=t-3, y=t^{2}+1 ; x=\tan t-3$, $y=\sec ^{2} t, t \neq \frac{(2 k+1) \pi}{2}, k \in \mathbb{Z}$
7. $x=t, y=\tan ^{2}(t-2)+1, t \neq \pi k+\frac{\pi}{2}+2, k \in \mathbb{Z} ; x=t+2$, $y=\sec ^{2} t, t \neq\left(k+\frac{1}{2}\right) \pi, k \in \mathbb{Z} ; x=\tan ^{-1} t+2, y=t^{2}+1$
8. verified
9. a.

b. x-intercepts: $t=0, x=10, y=0$ and $t=\pi, x=-6, y=0$; y-intercepts: $t \approx 1.757, x=0, y \approx 6.5$ and $t \approx 4.527, x=0, y \approx-6.5$; minimum x-value is -8.1 ; maximum x-value is 10 ; minimum y-value is -9.5 ; the maximum y-value is 9.5
10. a.

b. x-intercepts none, y-intercepts none; no minimum or maximum x-values; minimum y-value is -4 and maximum y-value is 4
11. a.

b. x-intercepts: $t=0, x=2, y=0$ and $t \approx 4.493, x \approx-9.2, y=0$; infinitely many others; y-intercepts: $t \approx 2.798, x=0, y \approx 5.9$ and $t \approx 6.121, x=0, y \approx-12.4$; infinitely many others; no minimum or maximum values for x or y
12. a.

b. no x-intercepts; y-intercept is $t=0, x=0, y=2$; no minimum or maximum x-values; minimum y-value is 2 ; maximum y-value is 4
13. a.

b. x-intercepts: $t=0, x=4, y=0$ and $t=\pi, x=-4, y=0$; y-intercepts: $t=\frac{\pi}{2}, x=0, y=8$ and $t=\frac{3 \pi}{2}, x=0, y=-8$; minimum and maximum x-values are approx. ± 5.657; minimum and maximum y-values are ± 8
14.

width 12 and length 16 ; including the endpoint $t=2 \pi$, the graph crosses itself two times from 0 to 2π.
39.

width 10 and length 14 ; including the endpoint $t=2 \pi$, the graph crosses itself nine times from 0 to 2π.
41.

width 20 and length 20 ; including the endpoint $t=4 \pi$, the graph crosses itself 23 times from 0 to 4π.
43. The maximum value (as the graph swells to a peak) is at
$(x, y)=\left(a, \frac{b}{2}\right)$. The minimum value (as the graph dips to the valley)
is at $(x, y)=\left(-a, \frac{-b}{2}\right)$.
45. a. The curve is approaching $y=2$ as t approaches $\frac{3 \pi}{2}$, but $\cot \left(\frac{3 \pi}{2}\right)$ is undefined, and the trig form seems to indicate a hole at $t=\frac{3 \pi}{2}, x=0, y=2$. The algebraic form does not have this problem and shows a maximum defined at $t=0, x=0, y=2$.
b. As $|t| \rightarrow \infty, y(t) \rightarrow 0 \quad$ c. The maximum value occurs at $(0,2 k)$.
47. a. Yes b. Yes c. $\approx 0.82 \mathrm{ft}$ 49. No, the kick is short.
51. The electron is moving left and downward.
53. $\left(t, \frac{6 t}{17}-\frac{6}{17}, \frac{13 t}{17}+\frac{21}{17}\right)$ 55. Inconsistent, no solutions
57. $x=1.22475^{t}$

$$
y=0.25 t^{2}-2 t
$$

The parametric equations fit the data very well.

59. Answers will vary.
61. 13.1 mph . at heading 327.8°
63. $\cos 105^{\circ}=\frac{\sqrt{2}-\sqrt{6}}{4}$
65. No triangles are possible.

Summary and Concept Review, pp. 444-446
$\begin{array}{lllll}\text { 1. } 6 \sqrt{2} i & \text { 2. } 24 \sqrt{3} i & \text { 3. }-2+\sqrt{2} i & \text { 4. } 3 \sqrt{2} i & \text { 5. } i\end{array}$ 6. $21+20 i$
$\begin{array}{llll}\text { 7. }-2+i & \text { 8. }-5+7 i & \text { 9. } 13 & \text { 10. }-20-12 i\end{array}$
11. $(5 i)^{2}-9=-34 \quad(-5 i)^{2}-9=-34$
$25 i^{2}-9=-34 \quad 25 i^{2}-9=-34$
$-25-9=-34 \checkmark \quad-25-9=-34 \checkmark$
12. $(2+i \sqrt{5})^{2}-4(2+i \sqrt{5})+9=0$
$4+4 i \sqrt{5}+5 i^{2}-8-4 i \sqrt{5}+9=0$ $5+(-5)=0 \checkmark$

$$
(2-i \sqrt{5})^{2}-4(2-i \sqrt{5})+9=0
$$

$$
4-4 i \sqrt{5}+5 i^{2}-8+4 i \sqrt{5}+9=0
$$

$$
5+(-5)=0 \checkmark
$$

13. $2\left(\cos 240^{\circ}+i \sin 240^{\circ}\right)$
14. $3+3 i$
15.

16. $z_{1} z_{2}=16 \operatorname{cis}\left(\frac{5 \pi}{12}\right) ; \frac{z_{1}}{z_{2}}=4 \operatorname{cis}\left(\frac{\pi}{12}\right)$
17. $2 \sqrt{3}+2 j$ 18. $|Z| \approx 10.44 ; \theta \approx 16.7^{\circ}, 10.44$ cis 16.7°
19. $-16-16 \sqrt{3} i$
20. verified 21. $\frac{5 \sqrt{3}}{2}+\frac{5}{2} i,-\frac{5 \sqrt{3}}{2}+\frac{5}{2} i,-5 i$
22. $6,-3 \pm 3 i \sqrt{3}$
23. $2-2 i,-2 \pm 2 i$
24. $1 \pm 2 i,-1 \pm 2 i$
25. verified
26.

27.

28.

29.

30. $y=-2(x+4)^{2}+3$
31. $y=(-1 \pm \sqrt{x})^{2}$
32. $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$

33. Answers will vary. 34. $x \in[-4,4]: y \in[-8,8]$

Mixed Review, pp. 446-447
$\begin{array}{lllll}\text { 1. a. } 8 i \sqrt{2} & \text { b. }-3-4 i & \text { c. } \frac{3}{2}+\frac{3}{2} i & \text { d. } 7 & \text { 3. b. } x=-i, x=7 i\end{array}$
5. -4096 7. $Z \approx 13.33\left(\cos 25.8^{\circ}+i \sin 25.8^{\circ}\right), V_{R L C} \approx 86.6 \mathrm{~V}$
9. a. $\left(-\frac{7}{4}, \frac{7 \sqrt{3}}{4}\right)$
b. $(2 \sqrt{2}, 2 \sqrt{2})$

11. $r=5 \sin (7 \theta)$
13. $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
15. verified 17. $x^{2}+y^{2}=9$
19. $1, i,-1,-i, \pm \frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2} i$

Practice Test, p. 448

1. $-\frac{4}{3} \pm \frac{i \sqrt{5}}{3}$
2. $-i$ 3. a. 1
b. $i \sqrt{3}$
c. 1
3. $-\frac{3}{2}+\frac{3}{2} i$
4. 34
5. $(2-3 i)^{2}-4(2-3 i)+13=0$

$$
-5-12 i-8+12 i+13=0
$$

$$
0=0 \checkmark
$$

7. $2 \operatorname{cis}\left(\frac{\pi}{24}\right)$ 8. $48 \sqrt{2}$ cis 75°; verified
8. $Z \approx 18.6$ cis $14.6^{\circ}, V_{R L C} \approx 46.5 \mathrm{~V} \quad$ 10. $-8-8 \sqrt{3} i$ 11. verified
9. $\frac{5 \sqrt{3}}{2}+\frac{5}{2} i,-\frac{5 \sqrt{3}}{2}+\frac{5}{2} i,-5 i$
10. $2.3039 \pm 1.5192 i,-2.3039 \pm 1.5192 i$
11.

15.

16.

17. ellipse; $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$

18. parabola; $x=(y-5)^{2}+1$

19. max: $y=8$; min: $y=0 ; P=8 \pi$

20. The ball is 0.43 ft above the ground at $x=165 \mathrm{ft}$, and will likely go into the goal.

Strengthening Core Skills, pp. 449-451
Exercise 1: $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$;
$\sin (\alpha-\beta)=\cos \alpha \sin \beta-\sin \alpha \cos \beta$
Exercise 2: a. $z_{1} z_{2}=\operatorname{cis} 525^{\circ}$
b. $z_{1}=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i, z_{2}=\frac{1}{2}-\frac{\sqrt{3}}{2} i, z_{1} z_{2}=\frac{-\sqrt{2}-\sqrt{6}}{4}+\frac{\sqrt{6}-\sqrt{2}}{4} i$
c. $\cos 525^{\circ}=\frac{-\sqrt{2}-\sqrt{6}}{4}, \sin 525^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}$ d. verified
e. verified Exercise 3: $-\frac{\sqrt{3}}{2}+\frac{3}{2} i \quad$ Exercise 4: $8 i$

Exercise 5: - 80.21-11.27i
Cumulative Review Chapters 1-8, pp. 451-452

1. $\frac{5 \pi}{6}+k \pi, k \in Z$
2. $x=1+6 k ; k \in Z$
$x=3+6 k ; k \in Z$
3. $h \approx 2307 \mathrm{~m}$
4. $\sin (2 t)=\frac{-120}{169}$,
$\cos (2 t)=\frac{119}{169}$
5.

15. $\theta=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$
17. $\alpha=392^{\circ}, \beta \approx 7.0001$
19. $A \approx 39.3 \mathrm{ft}^{2}$
21. about 128 yd 23. $2 \cos ^{2} \theta-1,1-2 \sin ^{2} \theta$
25. $\sin \left(\frac{\pi}{24}\right)$
27. No, it is not detected.
29. $z^{4}=-8+8 \sqrt{3} i$

APPENDIX I

Exercises AI-A, pp. A-9-A-13

1. $b^{x} ; b ; b ; x$ 3. $a ; 1$ 5. False; for $|b|<1$ and $x_{2}>x_{1}, b^{x_{2}}<b^{x_{1}}$, so function is decreasing 7. 40,000; 5000; 20,000; $27,589.162$ 9. 500 ; 1.581; 2.321; 221.168
2. 10,$000 ; 1975.309 ; 1487.206 ; 1316.872$
3. increasing
4. decreasing

5. up 2

6. reflect across y-axis

7. left 3

8. reflect across y-axis, up 3

9. left 1 , down 3

10. right 2

11. up 1

12. down 2

13. e 35. a
14. b 39. 2.718282
15. 7.389056
16. 4.481689
17. 4.113250
18.

49.

51.

53. 3 55. $\frac{3}{2}$ 57. $-\frac{1}{3}$ 59. 4 61. -3 63. 3 65. 2 67. -2
69. 2 71. 3
73. a. $1732,3000,5196,9000$
b. yes c. as $t \rightarrow \infty, P \rightarrow \infty$

75. No, they will have to wait about 10 min . 77. a. $\$ 100,000 \quad$ b. 3 yr 79. a. $\approx \$ 86,806$ b. 3 yr 81. a. $\$ 40$ million b. $7 \mathrm{yr} \quad$ 83. 32% transparent 85.17% transparent $87 . \approx \$ 32,578$ 89. a. 8 g
$\begin{array}{llll}\text { b. } 48 \mathrm{~min} & \text { 91. } \frac{1}{5} & 93.75 & 95.9 .5 \times 10^{-7} \text {; answers will vary }\end{array}$ 97. a. $\frac{\Delta y}{\Delta x}=0.3842,0.056,0.011,0.003$; the rate of growth seems to be approaching zero b. 16,608 c. Yes, the secant lines are becoming virtually horizontal.

Exercises AI-B, pp. A-22-A-26

1. $\log _{b} x$; b; b; greater 3. $(1,0) ; 0$ 5. 5 ; answers will vary 7. $2^{3}=8$ $\begin{array}{lllll}\text { 9. } 7^{-1}=\frac{1}{7} & \text { 11. } 9^{0}=1 & \text { 13. } 8^{\frac{1}{3}}=2 & \text { 15. } 2^{1}=2 & \text { 17. } 7^{2}=49\end{array}$
$\begin{array}{lll}\text { 19. } 10^{2}=100 & \text { 21. } e^{4} \approx 54.598 & \text { 23. } \log _{4} 64=3\end{array} \quad$ 25. $\log _{3} \frac{1}{9}=-2$
2. $0=\log _{e} 1$
3. $\log _{\frac{1}{3}} 27=-3$
4. $\log 1000=3$ 33. $\log \frac{1}{100}=-2$
5. $\log _{4} 8=\frac{3}{2}$
6. $\log _{4} \frac{1}{8}=\frac{-3}{2}$
7. 1
8. 2
9. 1 45. $\frac{1}{2}$
10. -2 49. -2 51. 1.6990
11. $0.4700 \quad$ 55. $5.4161 \quad$ 57. 0.7841
12. shift up 3
13. shift right 2 , up 3

14. shift left 1

15. II 69. VI 71. V 73. $x \in(-\infty,-1) \cup(3, \infty)$ 75. $x \in\left(\frac{3}{2}, \infty\right)$ 77. $x \in(-3,3)$ 79. $\mathrm{pH} \approx 4.1$; acid 81. \mathbf{a}. ≈ 4.7 b. ≈ 4.9
16. about 3.2 times 85. a. ≈ 2.4 b. ≈ 1.2 87. a. 20 dB b. 120 dB 89. about 3162 times 91. $6,194 \mathrm{~m} \quad$ 93. a. about 5434 m
b. 4000 m 95. a. 2225 items b. 2732 items c. $\$ 117,000$
d. verified 97. a. about 58.6 cfm b. about $1605 \mathrm{ft}^{2}$ 99. a. 95%
b. 67% c. 39% 101. ≈ 4.3; acid 103. Answers will vary. a. 0 dB
b. $90 \mathrm{~dB} \quad$ c. $15 \mathrm{~dB} \quad$ d. $120 \mathrm{~dB} \quad$ e. $100 \mathrm{~dB} \quad$ f. $140 \mathrm{~dB} \quad$ 105. a. $\frac{-2}{3}$ b. $\frac{-3}{2} \quad$ c. $\frac{-5}{2}$

Mid-Chapter Check, p. A-26

1. a. $\frac{2}{3}=\log _{27} 9$ b. $\frac{5}{4}=\log _{81} 243$ 2. a. $8^{\frac{5}{3}}=32$ b. $1296^{0.25}=6$
$\begin{array}{lllll}\text { 3. a. } x=5 & \text { b. } b=\frac{5}{4} & \text { 4. a. } x=3 & \text { b. } b=5 & \text { 5. a. } \$ 71,191.41\end{array}$
b. 6 yr 6. $F(x)=4 \cdot 5^{x-3}+2$ 7. a. 129° b. 5 min
2. a. $4=\log _{3} 81$, verified b. $4 \approx \ln 54.598$, verified 9. a. $27^{\frac{2}{3}}=9$, verified b. $e^{1.4} \approx 4.0552$, verified $\quad \mathbf{1 0} . \approx 7.9$ times more intense

Reinforcing Basic Concepts, pp. A-26-A-27

Exercise 1: about 158 times
Exercise 2: about 501 times
Exercise 3: about 12,589 times

Exercise 4: about 398 times
Exercise 5: about 39,811 times

Exercises AI-C, pp. A-39-A-43

$\begin{array}{llll}\text { 1. } e & \text { 3. extraneous 5. } 2.316566275 & \text { 7. } x \approx 29.964 & \text { 9. } x \approx 1.778\end{array}$ 11. $x \approx 2.200$ 13. $x \approx 1.260$ 15. $x=\ln \frac{65}{4}+2, x \approx 4.7881$
17. $x=\log (78)-5, x \approx-3.1079$ 19. $x=-\frac{\ln 2.32}{0.75}, x \approx-1.1221$
21. $x=e^{\frac{8}{3}}-4, x \approx 10.3919$ 23. $x=5-10^{1.25}, x \approx-12.7828$
25. $x=\frac{e^{0.4}-5}{2}, x \approx-1.7541 \quad$ 27. $\ln \left(2 x^{2}-14 x\right) \quad$ 29. $\log \left(x^{2}-1\right)$
31. $\log _{3} 4$ 33. $\log \left(\frac{x}{x+1}\right)$ 35. $\ln \left(\frac{x-5}{x}\right)$ 37. $\ln (x-2)$ 39. $\log _{2} 42$
41. $\log _{5}(x-2)$ 43. $(x+2) \log 8$ 45. $(2 x-1) \ln 5 \quad$ 47. $\frac{1}{2} \log 22$
49. $4 \log _{5} 3 \quad$ 51. $3 \log a+\log b \quad$ 53. $\ln x+\frac{1}{4} \ln y \quad$ 55. $2 \ln x-\ln y$
57. $\frac{1}{2}[\log (x-2)-\log x]$
59. $\ln 7+\ln x+\frac{1}{2} \ln (3-4 x)-\ln 2-3 \ln (x-1)$
61. $\frac{\ln 60}{\ln 7} ; 2.104076884 \quad$ 63. $\frac{\ln 152}{\ln 5} ; 3.121512475$
65. $\frac{\log 1.73205}{\log 3} ; 0.499999576$ 67. $\frac{\log 0.125}{\log 0.5} ; 3$
69. $f(x)=\frac{\log (x)}{\log (3)} ; f(5) \approx 1.4650 ; f(15) \approx 2.4650 ; f(45) \approx 3.4650$; outputs increase by $1 ; f\left(3^{3} \cdot 5\right)=4.465$
71. $h(x)=\frac{\log (x)}{\log (9)} ; h(2) \approx 0.3155 ; h(4) \approx 0.6309 ; h(8) \approx 0.9464$; outputs are multiples of $0.3155 ; h\left(2^{4}\right)=4(0.3155) \approx 1.2619$
$\begin{array}{lll}\text { 73. } x=32 & \text { 75. } x=6.4 & \text { 77. } x=20,-5 \text { is extraneous }\end{array}$
79. $x=2,-\frac{5}{2}$ is extraneous 8 81. $x=0$ 83. $x=\frac{5}{2}$ 85. $x=\frac{2}{3}$
87. $x=\frac{3}{2}$ 89. $x=\frac{-19}{9} \quad$ 91. $x=\frac{e^{2}-63}{9}$
93. $x=2 ;-9$ is extraneous 95. $x=3 e^{3}-\frac{1}{2} ; x \approx 59.75661077$
97. no solution 99. $t=-\frac{1}{2}$; -4 is extraneous
101. $x=2+\sqrt{3}, x=2-\sqrt{3}$ is extraneous
103. $x=\frac{\ln 231}{\ln 7}-2 ; x \approx 0.7968 \quad$ 105. $x=\frac{\ln 128,965}{3 \ln 5}+\frac{2}{3} ; x \approx 3.1038$
107. $x=\frac{\ln 2}{\ln 3-\ln 2} ; x \approx 1.7095$ 109. $x=\frac{\ln 9-\ln 5}{2 \ln 5-\ln 9} ; x \approx 0.5753$
111. $x \approx 46.2$ 113. $t=\frac{\ln \left(\frac{\frac{C}{p}-1}{a}\right)}{-k}, t \approx 55.45$
115. a. 30 fish b. about 37 months 117. about 3.2 cmHg
119. about 50.2 min 121. $\$ 15,641$ 123. $6 \mathrm{hr}, 18.0 \%$
125. $M_{f}=52.76$ tons 127. a. 26 planes b. 9 days
129. a. $\log _{3} 4+\log _{3} 5=2.7268$ b. $\log _{3} 4-\log _{3} 5=-0.203$
c. $2 \log _{3} 5=2.9298$ 131. a. d b. e c. b d. f e. a f. c
133. $x=0.69314718$ 135. a. $(f \circ g)(x)=3^{\left(\log _{3} x+2\right)-2}=3^{\log _{3} x}=x$;
$(g \circ f)(x)=\log _{3}\left(3^{x-2}\right)+2=x-2+2=x$
b. $(f \circ g)(x)=e^{(\ln x+1)-1}=e^{\ln x}=x$;
$(g \circ f)(x)=\ln e^{x-1}+1=x-1+1=x$
137. a. $y=e^{x \ln 2}=e^{\ln 2^{x}}=2^{x}$;
$y=2^{x} \Rightarrow \ln y=x \ln 2, e^{\ln y}=e^{x \ln 2} \Rightarrow y=e^{x \ln 2}$
b. $y=b^{x}, \ln y=x \ln b, e^{\ln y}=e^{x \ln b}, y=e^{x r}$ for $r=\ln b$
139. Answers will vary.

Exercises AI-D, pp. A-52-A-57

1. Compound 3. $Q_{0} e^{-r t}$ 5. Answers will vary. 7. $\$ 4896$ 9. 250% 11. $\$ 2152.47$ 13. 5.25 yr 15. 80% 17. 4 yr 19. 16 yr
2. $\$ 7561.33$ 23. about 5 yr 25. 7.5 yr 27. no 29. a. no b. 9.12% 31. 7.9 yr 33. 7.5 yr 35. a. no b. 9.4% 37. a. no b. approx 13,609 euros 39. No; $\$ 234,612.01$ 41. about 7 yr
3. 23 yr 45. a. no b. $\$ 302.25 \quad$ 47. a. $t=\frac{A-P}{p r} \quad$ b. $p=\frac{A}{1+r t}$
4. a. $r=n\left(\sqrt[n t]{\frac{A}{p}}-1\right)$ b. $t=\frac{\ln \left(\frac{A}{p}\right)}{n \ln \left(1+\frac{r}{n}\right)}$ 51. $\mathbf{a .} Q_{0}=\frac{Q(t)}{e^{r t}}$
b. $t=\frac{\ln \left(\frac{Q(t)}{Q_{0}}\right)}{r}$ 53. $\$ 709.74$ 55. a. 5.78% b. $91.67 \mathrm{hr} \quad$ 57. 0.65 g 59. 816 yr 61 . about 12.4% 63. $\$ 17,027,502.21$ 65. 7.93%

Summary and Concept Review, pp. A-57-A-60

1.

2.

3.

4. 2 5. -2 6. $\frac{5}{2} \quad$ 7. 12.1 yr 8. $3^{2}=9 \quad$ 9. $5^{-3}=\frac{1}{125}$
10. $e^{3.7612} \approx 43$ 11. $\log _{5} 25=2$ 12. $\ln 0.7788 \approx-0.25$
13. $\log _{3} 81=4 \quad$ 14. 5 15. $-1 \quad$ 16. $\frac{1}{2}$
17.

18.

19.

20. $x \in\left(-\frac{3}{2}, \infty\right)$ 21. $x \in(-\infty, 0) \cup(6, \infty)$ 22. a. $4.79 \quad$ b. $10^{7.3} I_{0}$
23. a. $x=e^{32}$
b. $x=10^{2.38} \quad$ c. $x=\ln 9.8$
d. $x=\frac{1}{2} \log 7$
24. a. $x=\frac{\ln 4}{0.5}, x \approx 2.7726$ b. $x=\frac{\ln 19}{0.2}, x \approx 6.3938$
c. $x=\frac{10^{3}}{3}, x \approx 33.3333$ d. $x=e^{-2.75}, x \approx 0.0639 \quad$ 25. a. $\ln 42$
$\begin{array}{lllll}\text { b. } \log _{9} 30 & \text { c. } \ln \left(\frac{x+3}{x-1}\right) & \text { d. } \log \left(x^{2}+x\right) & \text { 26. a. } 2 \log _{5} 9 & \text { b. } 2 \log _{7} 4\end{array}$
c. $(2 x-1) \ln 5 \quad$ d. $(3 x+2) \ln 10 \quad$ 27. a. $\ln x+\frac{1}{4} \ln y$
b. $\frac{1}{3} \ln p+\ln q \quad$ c. $\frac{5}{3} \log x+\frac{4}{3} \log y-\frac{5}{2} \log x-\frac{3}{2} \log y$
d. $\log 4+\frac{5}{3} \log p+\frac{4}{3} \log q-\frac{3}{2} \log p-\log q$ 28. a. $\frac{\log 45}{\log 6} \approx 2.215$
b. $\frac{\log 128}{\log 3} \approx 4.417 \quad$ c. $\frac{\ln 124}{\ln 2} \approx 6.954 \quad$ d. $\frac{\ln 0.42}{\ln 5} \approx-0.539$
$\begin{array}{llll}\text { 29. } x=\frac{\ln 7}{\ln 2} & \text { 30. } x=\frac{\ln 5}{\ln 3}-1 & \text { 31. } x=\frac{2}{1-\ln 3} & \text { 32. } x \approx 6.389\end{array}$
33. $x=5 ;-2$ is extraneous
34. $x=4.25$
35. a. 17.77%
b. 23.98 days
36. 38.6 cmHg
37. 18.5%
38. Almost, she needs
$\$ 42.15$ more.
39. a. no
b. $\$ 268.93$
40. 55.0%

Mixed Review, pp. A-60-A-61

1. a. $\frac{\log 30}{\log 2} \approx 4.9069$
b. -1.5
c. $\frac{1}{3}$
2. a. $2 \log _{10} 20$
b. $0.05 x$
c. $(x-3) \ln 2$
3.

7.

b. $e^{0.45}=0.15 x$
c. $10^{7}=0.1 \times 10^{8}$
11. a. $\left(-\infty,-\frac{1}{2}\right) \cup(2, \infty)$
b. $(-\infty, 2) \cup(2, \infty)$
13. $6+\log 2$
15. $\frac{9}{4}+\frac{\sqrt{129}}{4}$
17. $I \approx 6.3 \times 10^{17}$ 19. $1.6 \mathrm{~m}, 1.28 \mathrm{~m}, 1.02 \mathrm{~m}, 0.82 \mathrm{~m}, 0.66 \mathrm{~m}, 0.52 \mathrm{~m}$

Practice Test, pp. A-61-A-62

1. $3^{4}=81 \quad$ 2. $\log _{25} 5=\frac{1}{2} \quad$ 3. $\frac{5}{2} \log _{b} x+3 \log _{b} y-\log _{b} z$
2. $\log _{b} \frac{m \sqrt{n^{3}}}{\sqrt{p}}$
3. $x=10$
4. $x=\frac{-5}{3}$
5. 2.68
6. -1.24
7.

10.

11. a. 4.19 b. -0.81
12. $\mathrm{D}=(2, \infty), \mathrm{R}=(-\infty, \infty)$;
$f^{-1}(x)=e^{x+3}+2, \mathrm{D}=(-\infty, \infty), \mathrm{R}=(2, \infty)$
13. $x=1+\frac{\ln 89}{\ln 3} \quad$ 14. $x=1, x=-5$ is extraneous 15. $\approx 5 \mathrm{yr}$
16. $\approx 8.7 \mathrm{yr}$ 17. 19.1 months 18. 7% compounded semi-annually 19. a. no b. $\$ 54.09$ 20. a. 10.2 lb b. 19 weeks

Strengthening Core Skills, pp. A-63-A-64

Exercise 1: Answers will vary.
Exercise 2: a. $\log \left(x^{2}+3 x\right)$ b. $\ln \left(x^{2}-4\right) \quad$ c. $\log \frac{x}{x+3}$
Exercise 3: Answers will vary.
Exercise 4: a. $x \log 3$ b. $5 \ln x \quad$ c. $(3 x-1) \ln 2$

INDEX

A

AAS triangles, 317
Absolute value, of complex numbers, 392
AC circuits, 401
Accumulated value
of annuities, $\mathrm{A}-48$
explanation of, A-45
Acute angles
explanation of, 3, 73
trigonometric functions of, 47
Acute triangles, 10
Addition, of complex numbers, 386
Algebra
historical background of, 10
natural connections between study of trigonometry and, 383
of vectors, 350
to verify identities, 32-33
Algebraic methods
to find inverse functions, 256-258
to solve trigonometric equations, 295-296
Alpha (α), 2
Alternating current, 393
Ambiguous case
applications of, 321-322
explanation of, 318-319
method to solve, 320-321
scaled drawings and, 319-320
Amplitude
on graphing calculator, 144-145
of sine and cosine functions, 141
variable, 196-197
Angle measure
in degrees, 2-3, 107
explanation of, 38
in radians, 90-93, 107, 125
Angle reduction formulas, 229
Angles
acute, 3, 73
complementary, 2
coterminal, 3-4, 8, 75
of depression, 63, 64, 66
of elevation, 63, 66
explanation of, 2
obtuse, 3
positive, 3
quadrantal, 27
reference, 71-73, 80, 86
right, 2
of rotation, 64-66
standard, 22, 85, 91-92
straight, 2
supplementary, 2
Angular velocity, 99-101, 126
Annuities, A-48 - A-49
Arc
reference, 117, 129-130
subtended, 97-98
Arc length
explanation of, 97
formula for, 98, 125
Area
of circle, 101
of circular sector, 101-102
of parallelograms, 76
of regular polygon, 36, 147, 163, 164
of triangles, $8,61-62,218,249$, 333-336, 374
between $y=\sin (B t)$ and t-axis, 178
Aristarchus of Samos, 84
Aryabhata, 46
ASA triangles, 317
Associations, A-75
Average value, 141, 168

B

Base-change formula, A-17
Base- e exponential functions, A-4 - A-6
Beats, 250
Best-fit curve, A-78
$\operatorname{Beta}(\beta), 2$
Binomial cubes, 392
Brewster's law of optics, 228

C

Calculators. See Graphing calculators
Capacitive reactance, 401
Cardano, Girolamo, 392
Central circle, 90, 108
Change-of-base formula, A-33 - A-34
Circles
area of, 101
central, 90, 108
explanation of, A-86
involute of, 77
radius of, 326
unit, 108-114, 122, 127
Circular functions, 112. See also Trigonometric functions
Circular sector
area of, 101-102
formula for area of, 125

Circumference, of unit circle, 108
Circumscribed polygons, 163
Coefficients
of friction, 163
tangent and cotangent functions and, 156-159
Cofunction identities, 223
Cofunctions, 49-50, 305
Coincident line, 22-23
Coincident vectors, 351
Common logarithms, A-15 - A-16
Complementary angles, 2
Complements, 49-50
Complex conjugates, 387
Complex numbers
absolute value of, 392
addition and subtraction of, 386
applications of, 400-402
cube of, 404
division of, 389, 398
explanation of, 385, 444
geometric connections in multiplying and dividing, 398
on graphing calculator, 390, 402, 411
graphs of, 394-395
multiplication of, 387-389, 398
in standard form, 385-386
in trigonometric form, 395-402, 444-445
Complex plane
equilateral triangles in, 404
explanation of, 395
Compositions
inverse trigonometric functions to evaluate, 272-273, 275
transformations via, 197-198
Compound interest
explanation of, A-44-A-46
on graphing calculator, 51-52, A-47
Compound interest formula,

$$
\mathrm{A}-45-\mathrm{A}-46
$$

Compressions, A-68 - A-69
Cone, volume of, 304
Conjugates, to verify identities, 213-214
Continuously compounded interest,

$$
\mathrm{A}-46-\mathrm{A}-47
$$

Coordinate plane
explanation of, 22-26, 39
right triangles and, 48-49
Cosecant function
applications of, 184-185
characteristics of, 139-140, 152

Cosecant function-Cont.
graphs of, 139-141, 150-152, 191
importance of, 167
inverse, 273-274
values of, 48, 120
Cosine
difference identity for, 220
double-angle identities for, 231-232
explanation of, 46, 47, 49
formulas to find, 30
inverse function properties for, 270-271, 275
law of, 329-333, 374
sum and difference identities for, 220-225, 251, 449-450
sum identity for, 220
tripple-angle formula for, 325
Cosine function
amplitude of, 141
applications of, 148, 183
graphs of, 139-141, 190-191
inverse, 269-278
period and, 142-143
values of, 48
Cotangent, 275
Cotangent function
characteristics of, 155-156
coefficient and, 156-159
graphs of, 155, 191
importance of, 167
inverse, 273-274
period of, 157-158
values of, 48, 120, 155
Coterminal angles
applications of, 75
explanation of, 3-4
formula for, 8
Critical points
explanation of, 201
sinusoidal models and, 201-205
trigonometric models created from, 201-205
Cubes
binomial, 392
of complex numbers, 404
Cubic equations, 413
Cubic functions, 157
Curves
best-fit, A-78
cycloid, 435-436
families of polar, $\mathrm{A}-86-\mathrm{A}-87$
parametric, 432-433
Cycloids, 435-436
Cylinders, 304

D

Dampening factor, 189
Decimal degrees
explanation of, 3
formula for converting to, 8
on graphing calculator, 94

Decimal equivalents, 166-167
Degrees
angle measurement in, 91, 107
converting between radians and, 92-93
decimal, 3
Demographics, A-1
De Moivre's theorem
to check solutions to polynomial equations, 407-408
explanation of, 406-407, 445
proof of, A-85
Dependent systems, 448-449
Depression, angles of, 63, 64, 66
Descartes, René, 384, 441
Difference formula for cosine, 229
Distance formula
explanation of, 281, 329, A-80 - A-81
in polar coordinates, 429
surface, 69
use of, 84-85
Division, of complex numbers, 389, 398-399
Domains
of exponential functions, $\mathrm{A}-2, \mathrm{~A}-3$, A-5
of inverse functions, 257, 258, 260, 283-284
of logarithmic functions, A-18
of trigonometric functions as functions of real numbers, 118
Dot products
angle between two vectors and, 364
explanation of, 363-364, 375-376
properties of, 365
Double-angle formula, 232
Double-angle identities
explanation of, 231-232, 247, 251
power reduction identities and, 233-234, 251

E

Elevation, angles of, 63, 66
Equations. See also specific types of equations
cubic, 413
exponential, A-6 - A-9, A-29, A-36-A-37
logarithmic, A-28-A-30, A-34 - A-37
logistics, A-37-A-38, A-62 - A-63
parametric, 432-438, 446
in polar form, 419-423
polynomial, 407-408
present value, A-45
regression, 205-206
in shifted form, 171, 172
sinusoidal, 171-172
solved graphically, A-72 - A-73
in standard form, 171, 172
that are not identities, 214-215
with transformations, 297-298
trigonometric, 284-290, 295-301, 308, 311-312
written from graphs, 143-144
Equilateral triangles
in complex plane, 404
explanation of, 11
height of, 17
Equilibriant, 360
Equilibrium
force to maintain, 228
static, 380
vectors and, 359-360
Equivalent vectors, 345
Euclid, 2
Euler, Leonhard, 384, 450
Euler's formula, 450-451
Even function, 139
Exponential equations
explanation of, A-6, A-28
on graphing calculator, A-8 - A-9
logarithmic form and, A-13-A-15
method to solve, A-29, A-36-A-37, A-59
uniqueness property to solve, A-6 - A-7
Exponential form
conversions between logarithmic form and, A-15
explanation of, A-14, A-30 - A-31
Exponential functions
applications of, A-7 - A-8
base-e, A-4-A-6
evaluation of, A-2
explanation of, $\mathrm{A}-1-\mathrm{A}-2, \mathrm{~A}-8, \mathrm{~A}-57$
inverse of, A-13 (See also Logarithmic functions)
Exponential growth/decay, A-49 - A-51
Extraneous roots, A-34

F

Factoring, to solve trigonometric equations, 296
Folium of Descartes, 441
Foot-pounds, 362
Force, 279, 351
Force vectors, 351, 352, 363
Formulas/formula applications
absolute value of complex number, 392
alternative form for law of cosines, 339
angle between intersecting lines, 76
angle reduction, 229
arc length, 97-98
area of circular sector, 125
area of parallelogram, 76
area of regular polygon, 36, 147
area of triangles, 8,218
bacteria growth, $\mathrm{A}-11$
base-change, A-17
Brewster's law, 228
change-of-base, $\mathrm{A}-33$ - A-34
compound interest, A-45 - A-46
converting from DMS to decimal degrees, 8
cosine of angle, 30
cube of complex number, 404
discriminant of cubic equation, 413
distance, 69, 218, 281, 329, 429, A-80 - A-81
double-angle, 232
equation of line in trigonometric form, 303
equilateral triangles in complex plane, 404
Euler's, 450-451
exponential growth, A-49
Folium of Descartes, 441
force and equilibrium, 228
forensics-estimating time of death, A-41
golf swings, 293
habersine, 36, 104
half-angle, 234-235
heat flow, 280
height of building, 69
height of equilateral triangle, 17
height of object calculated from distance, 54, 163
height of projected image, 264
Heron's, 335-336, A-84
horsepower for electric winch, 96
hydrostatics, surface tension and contact angles, 147
illuminance of surface, 59
logistic growth, A-41
magnitude of vector in three dimensions, 357
Malus's law, 237
midpoint formula in polar coordinates, 429
mortgage payment, $\mathrm{A}-55$
normal force, 279
number of daytime hours, 178
orbiting distance north or south of equator, 186
pH level, A-23
polynomial approximation of inverse sine, 123
position of image reflected from spherical lens, 163
power reduction, 233
projectile range, 293
Pythagorean triples to points on unit circle, 116
radius of circumscribed circle, 326
radius of sphere, 264
relationship between coefficient, frequency and period, 186
relationships in right triangle, 17
simple interest, A-44
sine of angle between two sides of triangle, 59
spinners with numbers, A-11
supersonic speeds, sound barrier, and Mach numbers, 237
time for investment to double, A-23
torque applied by wrench, 96
triple-angle formula for sine, 325
unique coterminal angle, 8
unit sphere, 115
velocity, 99-100
versine function, 36
Witch of Agnesi, 441
Four-leaf rose, 425
45-45-90 triangles
application of, 6, 20, 21
area of, 8
explanation of, 4, 5
Frequency, 180-181
Friction, coefficients of, 163
Functions. See also Inverse functions; Inverse trigonometric functions; Trigonometric functions; specific functions
of an acute angle, 46-47
composition of, A-81-A-83
even, 139
exponential, A-57
hyperbolic trigonometric, 219
logarithmic, $\mathrm{A}-14-\mathrm{A}-18$, A-57-A-58
one-to-one, 254-255, 257, 306
periodic, 135-136
power, A-6
transcendental, A-13
transformations as composition of, 197-198
wrapping, 131
Fundamental identities. See also Identities
explanation of, 31-32, 40
identity families and, 251
trigonometric equations and, 289-290
use of algebra to verify, 32-33
writing trigonometric functions in terms of other functions using, 34-35
Fundamental trigonometric identities, 32, 212
Future value, A-48

G

Gamma (γ), 2
Gauss, Carl Friedrich, 384
General function, A-71
Geometric sequences, A-48
Geometry, 10
Golden ratio, 164
Graphical tests, 215-216
Graphing calculator features
storage and recall, 67

TABLE, 276, 303, 323, 379
template, 411
window size, 301-302
Zeros Method, 311
ZoomSto/ZoomRcl on, 254
Graphing calculators
ambiguous case on, 323
amplitudes and periods on, 144-145
asymptotes on, 159
beats on, 250
complex numbers on, 390, 402, 411
compound interest on, 51-52, A-47
cycloids on, 435-436
decimal degree and radian conversions on, 94
exponential equations on, $\mathrm{A}-8-\mathrm{A}-9$
functions of angle on, 27-28
identities on, 215-216, 242
inverse functions on, 261, 276
law of cosines on, 336-337
logarithms on, $\mathrm{A}-15-\mathrm{A}-16, \mathrm{~A}-18$, A-30, A-36
parametric equations on, 437-439
polar and rectangular coordinates on, 427
projectile motion on, 379-380
range of sine θ and cosine $\theta, 42-43$
regression on, 189, A-76 - A-79
roots on, 175-176
signs, quadrants, and reference arcs on, 129-130
to solve equations, $\mathrm{A}-72-\mathrm{A}-73$
sum and difference formulas on, 225
tangent and cotangent functions on, 159
trigonometric equations on, 290, 298, 300-302
trigonometric functions on, 27-28, 173, 311-312
trigonometric graphs on, 243
unit circles on, 113-114
vectors on, 354, 368-369
x-intercepts on, 175-176
zeroes on, 159, 175-176
Graphs
of complex numbers, 394-395
of cosecant function, 139-141, 150-152, 191
of cosine function, 139-143, 190-191
of cotangent function, 155, 191
of cycloids, 435-436
of exponential functions, $\mathrm{A}-2-\mathrm{A}-4$, A-6
of function and its inverse, 258-260
of logarithmic functions, A-16-A-17
of one-to-one functions, 254,255
orientation of, 433
parametric, 438-439
of polar equations, 421-426
of secant function, 150-152, 191

Graphs-Cont.
of sine function, 134-139, 141-143, 190-191
of tangent function, 153-154, 191
transformations of general functions on, $\mathrm{A}-69$ - $\mathrm{A}-71$
of trigonometric functions, 312
vertical and horizontal reflections of, A-67-A-68
vertical and horizontal shifts of, A-65 - A-66
vertically stretching/compressing, A-68 - A-69
vertical translations of, 168-169
writing equations from, 143-144
of $y=A \tan (B t)$ and $y=A \cot (B t)$, 156-159
of $y=\cot t, 155$
of $y=\tan t, 153-154$
Gunter, Edmund, 49

H

Half-angle formulas, 234-235
Half-angle identities, 233-234, 247, 251
Harmonic motion
explanation of, 180
sound waves and, 180-182
springs and, 180
Haversine formula, 36, 104
Heron's formula, 335-336, A-84
Hipparchus of Nicea, 46
Horizontal component, of vector, 345-347, 360
Horizontal line test, 254-255, 260
Horizontal reflections, A-67 - A-68
Horizontal translations, 169-171, 173-175, A-66
Horizontal unit vectors, 350
Hyperbolic trigonometric functions, 219
Hypocycloid with four cusps, 436
Hypotenuse, 4, A-80

I

Identities. See also specific identities algebra use to verify, 32-33 applications of, 241-242
cofunction, 223
connections and relationships in, 250-251
creating new, 43-44
double-angle, 231-232, 247, 251
due to symmetry, 212
equations that are not, 214-215
explanation of, 31-32
fundamental, 31-35, 40
on graphing calculator, 215-216, 242
half-angle, 233-234, 247, 251
identifying families of, 32
multiple-angle, 232, 414
power reduction, 233-234
product-to-sum, 239-241, 244, 248, 251
Pythagorean, 31, 32, 37, 212, 231, 250, 251
ratio, 32, 212, 250, 251
reciprocal, 32, 212, 250, 251
to solve trigonometric equations, 289-290, 297
sum and difference, 220-225, 246, 251, 449-450
sum-to-product, 240, 241, 248
verification of, 50, 212-214, 224, 230, 244, 246
Illumination, of surface, 59, 164
Imaginary numbers. See also Complex numbers
applications for, 393
explanation of, 384, 385
Imaginary unit, 384, 388, 415
Impedance, 401, 402, 405
Initial side, of coterminal angles, 3-4
Interest
applications involving, A-48-A-49, A-59 - A-60
compound, A-44-A-46, A-48-A-49
compounded continuously, A-46-A-47
simple, A-44
Intersection of graphs method, A-30
Inverse cotangent function, 273-274
Inverse functions
algebraic method to find, 256-258
applications of, 260-261, 275-276
domains of, 257, 258, 260, 283-284
explanation of, 254-256, 306
on graphing calculator, 261, 276
graphs of, 258-260
one-to-one functions and, 256, 306
principal roots and, 285-286
properties of, 275
verification of, 258
Inverse secant function, 273-275
Inverse sine function, 123, 266-269
Inverse tangent function, 271
Inverse trigonometric functions
applications of, 275-276, 307
cosecant, 273-274
cosine, 269-270
domains of, 257, 258, 260, 283-284
to evaluate compositions, 272-273, 275
secant, cosecant, and cotangent, 273-274
sine, 123, 266-269
summary of, 275, 307
tangent, 271
Involute of circle, 77
Irrational numbers, A-5

Latitude, 98
Law of cosines
alternative form for, 339
applications of, 332-333
explanation of, 329, 374
SAS triangles and, 329-331
scaled drawings and, 343
SSS triangles and, 331-332
Law of sines
ambiguous case and, 318-321
applications of, 321-322
explanation of, 316-318, 373
scaled drawings and, 343
Lemiscates, A-87
Limaçons, 426, A-86
Linear association, A-75
Linear combination, 350
Linear scales, A-26 - A-27
Linear velocity, 99-101, 126
Line of best fit, A-76 - A-77
Lines
angle between intersecting, 76
secant, 165
tangent, 164
Lissajous figure, 432
Logarithmic equations
explanation of, A-28
method to solve, A-28, A-30,
A-34 - A-37, A-59
Logarithmic form
conversions between exponential and, A-15
explanation of, A-14, A-30 - A-31
Logarithmic functions
characteristics of, A-17
domain of, $\mathrm{A}-18$
explanation of, $\mathrm{A}-14-\mathrm{A}-15$, A-57-A-58
graphs of, A-16 - A-17
Logarithmic scales, A-26 - A-27
Logarithms
applications of, $\mathrm{A}-19-\mathrm{A}-22$, A-38 - A-39
common, $\mathrm{A}-15-\mathrm{A}-16$
explanation of, A-57 - A-58
on graphing calculators, $\mathrm{A}-15-\mathrm{A}-16$, A-18
natural, A-15-A-16
origin of term, A-14
properties of, A-28-A-34, A-58 - A-59, A-63 - A-64
uniqueness property of, A-34-A-35
value of, $\mathrm{A}-16$
Logistic equations
explanation of, A-37-A-38
on graphing calculator, A-62 - A-63
Logistic growth, A-37
Logistic growth formula, A-41
Longitude, 98

M

Magnitude, of vector, 346-347, 354, 357, 368-369
Malus's law, 237
Midpoint formula, 429
Minutes, 3
Motion, projectile, 242, 367-368, 379-380
Muir, Thomas, 90
Multiple-angle identities, 232, 414
Multiplication
of complex numbers, 387-389, 398-399
scalar, 348

N

Napier, John, A-14
Natural exponential function, A-5
Natural logarithms, A-15 - A-16
Negative angles, 3
Negative association, A-74 - A-75
Newton-meters, 362
Newton's law of cooling, A-7 - A-8
Newtons (N), 279
Nonlinear association, A-75
Nonrigid transformations, A-70
Normal force, 279
Notation. See Symbols/notation
nth roots theorem, 408-410, 445
Numbers
complex, 384-390, 444 (See also Complex numbers)
$e, \mathrm{~A}-5$
imaginary, 384, 385, 393
irrational, A-5
real, 117-121

0

Oblique triangles
explanation of, 316, 373
law of sines and, 316-322
Obtuse angles, 3
Obtuse triangles, 10
One-to-one functions
explanation of, 254, 306
exponential functions as, A-6
identification of, 254-255, 260
inverse of, 256, 306
restricting domain to create, 257
Ordered pairs, 256
Orientation, of graphs, 433
Orthogonal components, 360, 366-367

P

Parabola of best fit, A-78
Parallelogram method, 353
Parallelograms, 76
Parameter, 432
Parametric equations
applications of, 436-438
dependent systems and, 448-449
explanation of, 432, 446
on graphing calculator, 437-439
graphs of, 432-433, 435-436
in rectangular form, 434
Parent function, A-70
Pasteur, Louis, 166
Perimeter
of regular polygon, 163, 164
of trapezoid, 339
Period formula
origin of, 149
for sine and cosine, 142
for tangent and cotangent, 157-158
Periodic functions, 135-136
Periods
on graphing calculator, 144-145
of sine and cosine functions, 142-143
of tangent and cotangent functions, 157-158
Phase angle, 401
$\pi, \mathrm{A}-5$
Polar axis, 416
Polar-axis symmetry, 424
Polar coordinates
converting between rectangular coordinates and, 418-421
explanation of, 416, 445-446
expressing point in, 417-418
on graphing calculator, 427
plotting points using, 416-417
Polar coordinate system, 416
Polar curves, A-86 - A-87
Polar equations
graphs of, 421-424
symmetry for graphs of, 424-426
Polar form
conversions between rectangular form and, 418-420
explanation of, 416
Polar graphs
families of, 424-427
r-value analysis and, 421-423, 425, 446
symmetry and families of, 424-427
Polar symmetry, 424
Polygons
area of regular, 36,147
circumscribed, 163
Polynomial approximation, of inverse sine, 123
Polynomial equations, checking solutions to, 407-408
Position vectors, 345-346
Positive angles, 3
Positive association, A-74 - A-75
Power functions, A-6
Power property of logarithms, A-31 - A-33
Power reduction formula, 233

Power reduction identities, 233-234, 251
Present value equation, A-45
Principal roots
approximation of, 287, 288
explanation of, 284-285
inverse functions and, 285-286
Product property of logarithms,

$$
\mathrm{A}-31-\mathrm{A}-33
$$

Product-to-sum identities
derivation of, 239-241
explanation of, 244, 248, 251
Projectile motion, 242, 367-368, 379-380
Projectiles
explanation of, 282, 436-437
height of, 367-368
range of, 293, 371
Protractors, 2, 107
Ptolemy, 46
Pythagorean identities, 31-32, 37, 212, 231, 250, 251, 334
Pythagorean theorem
explanation of, 4, A-80
historical background of, 10
use of, 20, 55, 56, 350
Pythagorean triples, 116

Q

Quadrantal angles, 27
Quadrantal points, of circle, 108
Quadrants, 26
Quadratic regression, A-77 - A-79
Quotient property of logarithms,

$$
\mathrm{A}-31-\mathrm{A}-33
$$

R

Radians
angle measure in, 90-93, 107, 125
converting between degrees and, 92-93
explanation of, 90, 107
Radius
of circle, 108
of sphere, 264
Range
of projectile, 293, 371, 379
of sine θ and cosine $\theta, 42-43$
Ratio identities, 32, 212, 250, 251
Ratios
of coordinates of points, 23-24
trigonometric, 22-26, 46-48
Real numbers
for any function value, 120-121
trigonometry of, 117-121, 127, 131
Real roots, 288-289
Reciprocal identities, 32, 212, 250, 251
Rectangles, reference, 138, 140-141
Rectangular coordinates
conversions between polar coordinates and, 418-421
on graphing calculator, 427

Rectangular form
conversions between polar form and, 418-420
conversions between trigonometric form and, 396-397
explanation of, 395
parametric equations in, 434
Reference angles
explanation of, 71-72, 80
exploration of, 86
method to find, 72-73
of vector, 368-369
Reference arcs, 117, 129-130
Reference rectangle
explanation of, 138
graphs of cosine function and, 140-141
Reflections, A-67 -A-68
Regression
explanation of, A-74
on graphing calculator, 189, A-76-A-79
linear, A-76
quadratic, A-77 - A-79
sinusoidal, 205-206
Regular polygon, area of, 36, 147, 163
Resistance, 401
Resultant vectors, 348
Right angles, 2
Right triangles
applications of, 20-21, 66
coordinate plane and, 48-49
explanation of, 4-6, 10
finding function values using, 47
relationships in, 17
solutions given one angle and one side, 54-56
solutions given two sides, 56
Rigid transformations, A-70
Roots
extraneous, A-34
on graphing calculator, 175-176
principal, 284-285
real, 288-289
trigonometric equations and, 284-286
Roses, A-86
Rotation
angles of, 64-66
unit circle and, 110-112
Rule of fourths, 146, 170
r-value analysis
explanation of, 421
polar graphs and, 421-423, 425

S

SAS triangles
explanation of, 317
law of cosines and, 329-331
Scalar multiplication, 348

Scaled drawings
ambiguous case and, 319-320
laws of sine and cosine and, 343
Scaling the data, A-77
Scatter plots
best-fit curve on, A-78
explanation of, A-74
linear/nonlinear associations and, A-75
positive/negative association and,

$$
\mathrm{A}-74-\mathrm{A}-75
$$

Secant function
characteristics of, 152
graphs of, 150-152, 191
importance of, 167
inverse, 273-275
values of, 48,120
Secant line, 165
Seconds, 3
Sector, area of, 101-102
Shifted form, 171, 172
Sign analysis, 26
Similar triangles, 13-14
Simple harmonic motion. See Harmonic motion
Simple interest, A-44
Simple interest formula, A-44
Sine
double-angle identities for, 231-232, 251
explanation of, 46, 47
inverse function properties for, 268-269, 275
law of, 316-322, 373
sum and difference identities for, 222-224, 251
Sine function
amplitude of, 141
applications of, 148, 182
characteristics of, 136
graphs of, 134-139, 190-191
inverse, 123, 266-269
period and, 142-143
values of, 48, 55, 120, 136-137
Sinking fund, A-49
Sinusoidal cycles, 201
Sinusoidal equations
characteristics of, 172
explanation of, 171
Sinusoidal models
applications for, 182-183
critical points and, 201-205
from data using regression, 205-206
Sinusoidal pattern, 168
Sinusoidal regression, 205-206
Snell's law, 293
Sound waves, 180-182, 241-242, 250
Sphere, radius of, 264
Spiral of Archimedes, 77, 431
Springs, 180
Square roots, principle, 384

SSA triangles
explanation of, 317
method to solve, 318-321
SSS triangles
explanation of, 317
law of cosines and, 29, 331-332
Standard angles
explanation of, 22, 85
identification of, 166
radian measure of, 91-92
standard values associated with, 167
Standard form, of complex numbers, 385-386
Standard position, of angles, 22
Standard values, 166, 167
Static equilibrium, 380
Static trigonometry, 63-66, 80
Straight angles, 2
Stretching, basic graph, A-68 - A-69
Substitution, to verify complex roots, 388
Subtended arc, 97-98
Subtraction
of complex numbers, 386
of vectors, 348
Sum and difference identities
for cosine, 220-222, 251
on graphing calculator, 225
key concepts on, 246, 449-450
for sine and tangent, 222-224, 251
to verify identities, 224
Sum-to-product identities, 240, 241, 248
Supplementary angles, 2
Symbols/notation
for angles, 2
composition of functions, A-82-A-83
for degrees, 91
$e, \mathrm{~A}-5$
$\pi, \mathrm{A}-5$
vector, 344
Symmetry
finding function values using, 134-136
identities due to, 212
polar graphs and, 424-427
unit circles and, 109-112

T

Tangent
double-angle identities for, 231-232
explanation of, 37, 46, 47
inverse function properties for, 271, 275
sum and difference identities for, 222-224
Tangent function
applications of, 183-184
characteristics of, 155-156
coefficient and, 156-159
graphs of, 101, 153-154
inverse, 271
period of, 157-158
values of, 48, 120, 154
Tangent lines, 164
Terminal side, of coterminal angles, 3-4
Theta (θ), 2
30-60-90 triangles
applications of, 20
area of, 8
explanation of, 4,5
finding length of sides of, 5-6
Thomson, James, 90
Tidal motion, 196-197
Transcendental function, A-13
Transformations
of basic graph, A-65-A-71
as composition of functions, 197-198
of general function, A-69 - A-71
to graph exponential functions, $\mathrm{A}-4$, A-6
to graph logarithmic functions, $\mathrm{A}-17$
nonrigid, A-70
rigid, $\mathrm{A}-70$
solving equations involving, 297-298
of trigonometric graphs, 137-138, 168-175, 192
Transformed function, A-70
Translations
horizontal, 169-171, 173-175, A-66
vertical, 168-169, 173-175, A-65
Trapezoids, perimeter, 339
Triangles
AAS, 317
acute, 10
area of, 8, 61-62, 218, 249, 333-336, 374
ASA, 317
classification of, 10-11
equilateral, 11, 17
explanation of, 4
45-45-90, 4-6, 8
oblique, 316-322, 373
obtuse, 10
properties of, 11-12, 38, 317
right, 4-6, 8, 10, 17, 20-21
SAS, 317, 329-330
similar, 13-14
SSA, 317-321
SSS, 317, 331-332
30-60-90, 4-6, 8
Trigonometric applications. See also Applications index;
Formulas/formula applications
modeling length of shadow, 184-185
modeling movement of light beam, 183-184
simple harmonic motion, 180-182
sinusoidal models, 182-183

Trigonometric equation models
from critical points, 201-205
data and sinusoidal regression and, 205-206
Trigonometric equations
algebraic methods to solve, 295-296
applications of, 298-301, 308
explanation of, 284, 308
on graphing calculator, 290
inverse functions and principle roots and, 285-286
rewritten in simpler form, 303
roots and, 284-285
solutions to, 286-289, 308
transformations in, 297-298
trigonometric identities and, 289-290
trigonometric identities to solve, 289-290
Trigonometric form
complex numbers in, 394-402, 444-445
conversions between rectangular form to, 396-397
equations of line in, 303
explanation of, 395
vector components in, 346-347
Trigonometric functions. See also Inverse trigonometric functions; specific trigonometric functions
of any angle, 25, 73-75
domain of, 118
evaluation of, 25-27, 73, 74, 113
finding values of, 119-120
on graphing calculator, 27-28, 311-312
graphs of, 312
hyperbolic, 219
periodic behavior of, 311
point $P(x, y)$ and, 22-26
points on unit circle and, 112-113
quadrantal angles and, 27
signs of, 26
transformation of, 172, 173
written in terms of other functions, 34-35
Trigonometric graphs. See also Graphs; specific trigonometric functions
applications of, 193
on graphing calculator, 243
transformations of, 137-138, 168-175, 192
Trigonometric identities
fundamental, 32, 212
to solve trigonometric equations, 289-290
Trigonometric ratios
point $P(x, y)$ and, 22-26
values of, 46-48
Trigonometry
basic concepts of, 166-167
coordinate plane and, 39
natural connections between study of algebra and, 383
of real numbers, 117-121, 127, 131
of right triangles, 46-50
static, 63-66, 80
Triple-angle formula for cosine, 325

U

Uniqueness property
to solve exponential equations, A-6 - A-7
to solve logarithmic equations, A-34-A-35
Unit circles
circumference of, 108
explanation of, 108-109, 122, 126
on graphing calculator, 113-114
graphs of, 113-114
points on, 108-110, 112-113
Pythagorean triples and, 116
special triangles and, 109-112
symmetry and, 109-112
trigonometric functions and points on, 112-113
wrapping function and, 131
Unit sphere, 115
Unit vectors, 350, 351, 364
$\mathrm{u} \cdot \mathrm{v}=\operatorname{comp}_{\mathrm{v}} \mathrm{ux}|\mathrm{v}|, \mathrm{A}-84-\mathrm{A}-85$

V

Variable amplitude, 196-197
Vector projection, 360, 365-366
Vectors
algebraic, 350-351
applications of, 351-354, 362-363, 375-376
coincident, 351
component of u along v : comp $_{v} u$, 360-362
dot products and angle between, 363-365
equilibrium and, 359-360
equivalent, 345
explanation of, 344, 374-375
force, 351, 352, 363
on graphing calculator, 354, 368-369
horizontal and vertical components of, 345-347, 360
magnitude of, 346-347, 354, 357, 368-369
notation and geometry of, 344-345
operations on, 347-349
orthogonal components and, 365-367
position, 345-346
projectile height and, 367-368
properties of, 349
rectangular coordinate system and, 345-347
resultant, 348

Vectors-Cont.
static equilibrium and, 380 summary of, 373-376
unit, 350, 351, 364
Velocity
angular, 99-101, 126
linear, 99-101, 126
Versine function, 36
Vertical-axis symmetry, 424
Vertical component, of vector, 345-347, 360
Vertical reflections, A-67

Vertical shift, 168
Vertical stretches, A-69
Vertical translations, 168-169, 173-174, A-65
Vertical unit vectors, 350
Vertices, 2
Voltage, 401

W

Witch of Agnesi, 441
Work, 362-363
Wrapping function, 131

X

x-intercepts, 175-176
Z
Zero, on graphing calculator, 159, 175-176

マ Fundamental Identities

$$
\begin{array}{lr}
\sec \theta=\frac{1}{\cos \theta} & \tan \theta=\frac{\sin \theta}{\cos \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \cot \theta=\frac{\cos \theta}{\sin \theta} \\
\cot \theta=\frac{1}{\tan \theta} &
\end{array}
$$

－Cofunction Identities

$$
\begin{array}{ll}
\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta & \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta \\
\tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta & \cot \left(\frac{\pi}{2}-\theta\right)=\tan \theta \\
\sec \left(\frac{\pi}{2}-\theta\right)=\csc \theta & \csc \left(\frac{\pi}{2}-\theta\right)=\sec \theta
\end{array}
$$

Pythagorean Identities
Identities due to Symmetry

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin (-\theta)=-\sin \theta \\
& \tan ^{2} \theta+1=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

∇ Sum and Difference Identities

$$
\begin{aligned}
& \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
& \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
& \tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}
\end{aligned}
$$

マ Half－Angle Identities

$$
\begin{aligned}
\sin \left(\frac{\theta}{2}\right) & = \pm \sqrt{\frac{1-\cos \theta}{2}} \\
\cos \left(\frac{\theta}{2}\right) & = \pm \sqrt{\frac{1+\cos \theta}{2}} \\
\tan \left(\frac{\theta}{2}\right) & =\frac{1-\cos \theta}{\sin \theta} \\
& =\frac{\sin \theta}{1+\cos \theta}
\end{aligned}
$$

－Product－to－Sum Identities

$$
\begin{aligned}
& \sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] \\
& \cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)] \\
& \cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)] \\
& \sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]
\end{aligned}
$$

$\boldsymbol{\nabla}$ Sum－to－Product Identities
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
－Area of a Triangle
Area $=\frac{1}{2} b c \sin A$

$$
\begin{aligned}
& \sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right) \\
& \sin \alpha-\sin \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right) \\
& \cos \alpha+\cos \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right) \\
& \cos \alpha-\cos \beta=-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)
\end{aligned}
$$

∇ Law of Cosines

マ Power Reduction Identities

$$
\begin{aligned}
& \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2} \\
& \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \\
& \tan ^{2} \theta=\frac{1-\cos 2 \theta}{1+\cos 2 \theta}
\end{aligned}
$$

$a^{2}=b^{2}+c^{2}-2 b c \cos$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$\boldsymbol{\nabla}$ Special Triangles and Special Angles

$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	$\csc \boldsymbol{\theta}$	$\sec \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o t } \boldsymbol { \theta }}$
$0^{\circ}=0$	0	1	0	-	1	-
$30^{\circ}=\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	2	$\frac{2}{\sqrt{3}}$	$\sqrt{3}$
$45^{\circ}=\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$60^{\circ}=\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2}{\sqrt{3}}$	2	$\frac{1}{\sqrt{3}}$
$90^{\circ}=\frac{\pi}{2}$	1	0	-	1	-	0

－Degree and Radian Conversions

$$
\text { degrees to radians: multiply by } \frac{\pi}{180^{\circ}} \text { (degrees cancel) }
$$

$$
\text { radians to degrees: multiply by } \frac{180^{\circ}}{\pi} \text { (radians cancel) }
$$

－Triangle Classifications

By Angle Measure

By Side Length

－Trigonometry and the Coordinate Plane
For $P(x, y)$ a point on the terminal side of an angle θ in standard position：
$\cos \theta=\frac{x}{r}$
$\sin \theta=\frac{y}{r}$
$\tan \theta=\frac{y}{x}, x \neq 0$
$\sec \theta=\frac{r}{x}, x \neq 0$
$\csc \theta=\frac{r}{y}, y \neq 0$
$\cot \theta=\frac{x}{y}, y \neq 0$

－Right Triangle Trigonometry

For right $\triangle A B C$ with indicated sides adjacent and opposite to acute angle θ ：
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$
$\sin \theta=\frac{\text { opp }}{\text { hyp }}$
$\tan \theta=\frac{\text { opp }}{\text { adj }}$
$\sec \theta=\frac{\text { hyp }}{\text { adj }}$
$\csc \theta=\frac{\text { hyp }}{\text { opp }}$
$\cot \theta=\frac{\text { adj }}{\text { opp }}$

Trigonometric Functions of a Real Number
For any real number t and point $P(x, y)$ on the unit circle associated with t
$\cos t=x$
$\sec t=\frac{1}{;} ; x \neq 0$
$\sin t=y$
$\csc t=\frac{1}{y} ; y \neq 0$
$\tan t=\frac{y}{x} ; x \neq 0$
$\cot t=\frac{x}{y} ; y \neq 0$

- Special Constants

$\pi \approx 3.1416$	$\frac{\pi}{2} \approx 1.5708$	$\frac{\pi}{3} \approx 1.0472$	$\frac{\pi}{4} \approx 0.7854$	$\frac{\pi}{6} \approx 0.5236$	$\frac{\pi}{12} \approx 0.2618$
$e \approx 2.7183$	$\sqrt{2} \approx 1.4142$	$\sqrt{3} \approx 1.7321$	$\frac{\sqrt{2}}{2} \approx 0.7071$	$\frac{\sqrt{3}}{2} \approx 0.8660$	$\frac{\sqrt{3}}{3} \approx 0.5774$

∇ Arcs and Sectors

For a circle of radius r and angle θ in radians:

$$
\text { arc length: } s=r \theta
$$

$$
\text { area of sector: } A=\frac{1}{2} r^{2} \theta
$$

V Graphs of the Trigonometric Functions

Domain: $t \in(-\infty, \infty)$
Range: $\sin t \in[-1,1]$

Domain: $t \in(-\infty, \infty)$
Range: $\cos t \in[-1,1]$

Domain: $t \neq \frac{\pi}{2}(2 k+1) ; k \in Z$ Range: $\tan t \in \mathrm{R}$
$\boldsymbol{\nabla}$ Transformations of Basic Trig Graphs

マ The Inverse Trigonometric Functions
For $y=\sin t$ with $t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $y \in[1,1]$, the inverse function is $y=\sin ^{-1} t$, where $t \in[1,1]$ and $y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
For $y=\cos t$ with $t \in[0, \pi]$ and $y \in[1,1]$, the inverse function is $y=\cos ^{-1} t$, where $t \in[1,1]$ and $y \in[0, \pi]$.
For $y=\tan t$ with $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $y \in \mathrm{R}$, the inverse function is $y=\tan ^{-1} t$, where $t \in \mathrm{R}$ and $y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$
\begin{aligned}
& \text { Given Function } \\
& \text { Transformation of } \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}) \\
& y=f(x) \\
& \underset{\uparrow}{\substack{A f}} \underset{\substack{\text { horizontal shift, opposite } \\
\text { direction of sign }}}{ } \quad \begin{array}{l}
\text { vertical shift, same } \\
\text { direction as sign }
\end{array} \\
& \text { north/south reflections; } \\
& \text { direction of sign } \\
& \text { direction as sign } \\
& \text { For } y=A \sin \left[B\left(x \pm \frac{C}{B}\right)\right] \pm D \text { we have: amplitude: }|A| \text {, period: } \frac{2 \pi}{B} \text {, horizontal shift: } \frac{C}{B} \text {, vertical shift: } D
\end{aligned}
$$

- Commonly used, small case Greek letters

α	alpha	β	beta	γ	gamma	δ	delta	ϵ	epsilon
ζ	zeta	θ	theta	λ	lambda	μ	mu	π	pi

∇ Complex Numbers z $=\mathbf{a}+b i$

Absolute Value Trigonometric Form

$$
|z|=\sqrt{a^{2}+b^{2}} \quad z=r(\cos \theta+i \sin \theta)
$$

Products and Quotients
$z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$
distance from $(0,0)$ to (a, b)

$$
\text { where } r=|z|
$$

Powers and DeMMoivres Theorem Roots and the nth Roots Theorem
$z^{n}=r^{n}(\cos n \theta+i \sin n \theta)$ for positive integers $n \quad \sqrt[n]{z}=\sqrt[n]{r}\left(\cos \frac{\theta+2 \pi k}{n}+i \sin \frac{\theta+2 \pi k}{n}\right)$ for $k=0,1,2, \ldots, n-1$

V Vectors and the Dot Product

For a position vector, $\mathbf{v}=\langle a, b\rangle$ and angle θ as shown, $a=|\mathbf{v}| \cos \theta$ and $b=|\mathbf{v}| \sin \theta$, where $\theta_{r}=\tan ^{-1}\left|\frac{b}{a}\right|$ and $|\mathbf{v}|=\sqrt{a^{2}+b^{2}}$.

- For any nonzero vector $\mathbf{v}=\langle a, b\rangle=a \mathbf{i}+b \mathbf{j}$, the vector $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}$ is a unit vector in the same direction as \mathbf{v}.

Given the vectors $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle$, their dot product is denoted $\mathbf{u} \cdot \mathbf{v}$ and is

- Logarithms and Logarithmic Properties

$$
\begin{array}{ccc}
y=\log _{b} x \Leftrightarrow b^{y}=x & \log _{b} b=1 & \log _{b} 1=0 \\
\log _{b} b^{x}=x & b^{\log _{b} x}=x & \log _{c} x=\frac{\log _{b} x}{\log _{b} c} \\
\log _{b} M N=\log _{b} M+\log _{b} N & \log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N & \log _{b} M^{P}=P \cdot \log _{b} M
\end{array}
$$

- Applications of Exponentials and Logarithms

$$
\begin{array}{ccc}
A \rightarrow \text { amount accumulated } & P \rightarrow \text { initial deposit, } \mathcal{P} \rightarrow \text { periodic payment } & n \rightarrow \text { compounding periods/year } \\
r \rightarrow \text { interest rate per year } & R \rightarrow \text { interest rate per time period }\left(\frac{r}{n}\right) & t \rightarrow \text { time in years }
\end{array}
$$

Interest Compounded \boldsymbol{n} Times per Year
Interest Compounded Continuously

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Accumulated Value of an Annuity

$$
A=\frac{\mathcal{P}}{R}\left[(1+R)^{n t}-1\right]
$$

$$
A=P e^{r t}
$$

Payments Required to Accumulate Amount A

$$
\mathcal{P}=\frac{A R}{(1+R)^{n t}-1}
$$

Topics from Algebra

- Special Product

$$
\begin{array}{cc}
(a+b)^{2}=a^{2}+2 a b+b^{2} & (a-b)^{2}=a^{2}-2 a b+b^{2} \\
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} & (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}
\end{array}
$$

$$
(x+c)(x+d)=x^{2}+(c+d) x+c d
$$

$$
(a x+c)(b x+d)=a b x^{2}+(a d+b c) x+c d
$$

- Special Factorizations

$$
\begin{array}{cc}
a^{2}+2 a b+b^{2}=(a+b)^{2} & a^{2}-2 a b+b^{2}=(a-b)^{2} \\
x^{2}+(c+d) x+c d=(x+c)(x+d) & a b x^{2}+(a d+b c) x+c d=(a x+c)(b x+d) \\
a^{2}-b^{2}=(a+b)(a-b) & a^{2}+b^{2} \text { is prime over the real numbers } \\
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) & a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{array}
$$

$\boldsymbol{\nabla}$ Formulas from Plane Geometry: $\mathbf{P} \rightarrow$ perimeter, $\mathbf{C} \rightarrow$ circumference, $\boldsymbol{A} \rightarrow$ area

Triangle
Sum of angles
$A+B+C=180$

Trapezoid

$$
A=\frac{h}{2}(a+b)
$$

Right Triangle Pythagorean Theoren

Circle

$$
\begin{gathered}
A=\pi r^{2} \\
C=2 \pi r=\pi d
\end{gathered}
$$

Regular Polygon
$P=n$
a
a

$$
A=\frac{a}{2} P
$$

Triangle

$$
A=\frac{1}{2} b h
$$

$\boldsymbol{\nabla}$ Formulas from Solid Geometry: $\mathbf{S} \rightarrow$ surface area, $\boldsymbol{V} \rightarrow$ volume

Rectangular Solid	Cube	Right Circular Cylinder
$V=l w h$	$V=s^{3}$	$V=\pi r^{2} h$
$S=l w+l h+w h$	$S=6 s^{2}$	$S=2 \pi r(r+h)$
Right Circular Cone	Right Square Pyramid	Sphere
$V=\frac{1}{3} \pi r^{2} h$	$V=\frac{1}{3} s^{2} h$	$V=\frac{4}{3} \pi r^{3}$
$S=\pi r\left(r+\sqrt{r^{2}+h^{2}}\right)$	$S=s^{2}+s \sqrt{s^{2}+4 h^{2}}$	$S=4 \pi r^{2}$

$\boldsymbol{\nabla}$ Formulas from Analytical Geometry: $P_{1} \rightarrow\left(x_{1}, y_{1}\right), P_{2} \rightarrow\left(x_{2}, y_{2}\right)$

$$
\begin{aligned}
& \text { Distance between } \boldsymbol{P}_{1} \text { and } \boldsymbol{P}_{2} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

Equation of Line Containing P_{1} and P_{2}

$$
\begin{gathered}
\text { Point-Slope Form } \\
y-y_{1}=m\left(x-x_{1}\right) \\
\text { Parallel Lines }
\end{gathered}
$$

Slope of Line Containing P_{1} and P_{2}

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Equation of Line Containing P_{1} and P_{2}

$$
\text { Slope-Intercept Form (slope } m, y \text {-intercept } b \text {) }
$$

$$
=m x+b, \text { where } b=y_{1}-m x
$$

Perpendicular Lines

Dependent (Coincident) Lines Slopes and y-Intercepts Are Equal: $m_{1}=m_{2}, b_{1}=b_{2}$

[^0]: -

[^1]: Clears the home screen, places cursor in upper left position Displays THIS PRGM SOLVES
 Displays SSS TRIANGLES
 Displays USING THE LAW
 Displays OF COSINES
 Pauses execution, allows user to view results until ENTER is pressed

