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PREFACE 

In February 1985 a small international meeting of scientists 

took place at the recreation resort of the Polish Academy of Sci­

ences in Mogilany, near Cracow, Poland. The initiative for holding 

the workshop came from a working meeting on mathematical immunology 

and related topics at the International Institute for Applied Sys­

tems Analysis in Laxenburg, Austria, in November 1983. In addition 

to representatives of IIASA, delegates of the IIASA National Member 

Organizations (NMO) of Czechoslovakia, Italy, and the soviet Union 

took part in that working meeting. The participants came to the 

conclusion that IIASA could play an important role in facilitating 

the development of research in this field. The first step that they 

recommended to I IASA was to organize a workshop on mathematical 

immunology. The purpose of the workshop was to review the progress 

that has been made in applying mathematics to problems in immunology 

and to explore ways in which further progress might be achieved, 

especially by more efficient interactions between scientists working 

in mathematical and experimental immunology. Some National Member 

Organizations contributed to the success of the workshop by nominat­

ing further participants working in this or related fields. For 

instance, thanks to a suggestion of the British NMO, the meeting 

also included analyses of the interactions between the immune state 

of a population and epidemiological phenomena. 

There were 33 participants at Mogilany from 11 countries, 

namely Canada, Czechoslovakia, Federal Republic of Germany, Hungary, 

Japan, Netherlands, Poland, Sweden, united Kingdom, USA, and USSR. 

This volume is a selection of the papers presented at the meeting. 

Most of the papers in this collection consider problems at the 

cellular or higher levels of organization. Cellular immunology is a 

discipline that· might sometimes seem to lack a widely accepted 

theoretical basis, apart from the essential tenet of clonal selec­

tion and the generally agreed existence of T cells and B cells. The 

controversial nature of many aspects of cellular immunology, 

together with the rapid progress currently being made, makes it one 

of the most exciting areas of science today. It is important to 

note that all cellular immunologists, including those of both the 

experimental and the mathematical varieties, are theoretical immu­

nologists. The design of each new experiment is a theoretical task 

and is based on a theoretical view of the immune system, which for 

most immunologists is a rapidly evolving function of time. 
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Some experimental cellular immunologists are still skeptical 

concerning the role to be played by mathematics in immunology . 

There seems however to be a trend towards widespread acceptance of a 

role for mathematics in this field. The phenomena encompassed by 

cellular immunology are already so numerous, and often so confusing, 

that there is also a growing willingness on the part of many experi­

mentalists to welcome professional model builders to the discipline. 

In fact, there is no choice; it would be irresponsible of us to fail 

to utilize the tools of mathematics and the powerful modern com­

puters that have become available, and which so far have not been 

utilized in this area to the extent that they might be. This is due 

largely to the very limited contacts between investigators in 

experimental and mathematical immunology. The Mogilany meeting was 

successful in this respect because scientists of both of these 

groups participated and explored possibilities for closer collabo­

ration. 

In this volume we have a collection of papers giving a repre­

sentative picture of important problems of mathematical immunology. 

The introductory chapter gives a brief overview of the various 

levels at which the immune system can be studied and points out 

some of the main ways in which the application of mathematics has 

been important. We hope this will help the contributions made at 

Mogilany to be seen in a wider context. 

The Mogilany meeting was jointly sponsored by the International 

Institute for Applied Systems Analysis, the Polish Academy of Sciences, 

and the Institute of Control and Systems Engineering of the Academy 

of Mining and Metallurgy, Cracow, Poland. 

G. W. Hoffmann 
Los Alamos 

T. Hraba 
Prague 

October 1985 
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PART I 

OVERVIEW 



THE STRUCTURE OF MATHEMATICAL IMMUNOLOGY 

G. W. Hoffmann 
Departments of Physics and Microbiologyl 

University of British Columbia 
Vancouver, B.C., Canada V6T lW5 

and 
Theoretical Biology and Biophysics 

Los Alamos National Laboratory 
Los Alamos, NM 87545, U.S.A. 

and 

T. Hraba 
Institute of Molecular Genetics 

Czechoslovak Academy of Sciences 
142 20 Prague, Czechoslovakia 

Mathematical immunology is a young (some might even say imma­

ture) but nevertheless wide-ranging discipline. In order to put the 

papers of this book into a broader context, we here give a brief, 

necessarily sketchy, overview of some of the main areas of mathema­

tical immunology, not all of which were represented at the Mogilany 

conference. A more comprehensive overview of the range of the 

subject may be gained from the collective contents of several mono­

graphs and collections of papers on mathematical immunology (1-6). 

Within the immune system there are events at many different 

levels. Table I gives these levels with some examples of processes 

that take place at each of them. At least some events at each level 

have been subjected to mathematical analysis. 

Perhaps the most fundamental interaction that has been treated 

mathematically is the interaction of antigen and antibody (5), an 

event at the molecular level in our hierarchy. The paper of ~aba et 

al. (page 224) belongs to this category. It is concerned with a 

computer program for the evaluation of a radio-immune assay for the 

determination of circulating immune complexes. A very difficult 

aspect of the modelling of the interactions between antigen and 

antibodies is the spectrum of affinities in a given normal serum. 

This has been studied in detail by the Italian group (7). 

Permanent address 
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TABLE I 

THE VARIOUS LEVELS OF PROCESSES IN THE IMMUNE SYSTEM 

Level 

Molecular 

Cellular 

Intercellular 

Organism 

Population 

Processes 

Antigen-antibody interactions 
Complement binding 

Antigen-cell interactions 
Antibody mediated cell lysis or cytotoxicity 
Immunoglobulin binding to cellular Fc receptors 
Complement binding to cellular receptors 
Complement cascade 
Antigen-antibody-cell interactions (IgE) 

Antigen presenting cell-lymphocyte interactions 
T cell-B cell interactions 
T cell-T cell interactions 
Cellular cytotoxicity 
Cell adherence 

Cellular population dynamics of immunocytes 
Network regulatory phenomena 
Immunity to infections 
Tumor immunity 
Transplantation immunity and tolerance 
Allergic diseases 
Autoimmune diseases 
Acquired immune deficiency 

Immunological aspects of epidemiology 

The cellular level concerns interactions between single cells 

and molecules. The molecules involved can be antibody, antigen, or 

specific or nonspecific factors produced by lymphocytes and macro­

phages. Detailed thermodynamic and kinetic models have been 

developed, and the contributions of the Los Alamos group have been 

particularly important. For example, the success of mathematical 

models in both qualitatively and quantitatively accounting for 

bell-shaped histamine release curves is one of the most elegant 

achievements of mathematical immunology to date (8). 
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Events at the single cell level were described at Mogilany by 

Ince (page 229), who is concerned with the electrophysiology of 

macrophages. Ince points out that the role of ion channels in the 

cells of the immune system is poorly understood, but he nevertheless 

is optimistic that such studies will eventually contribute to our 

understanding of host defence mechanisms. 

The next level is intercellular; that is, it concerns the 

interactions of cells with cells. An example of such events is the 

interaction between killer cells and their targets; these interac­

tions have been nicely modelled by Perelson and Macken (9). Further 

examples have been provided by Bell and Bongrand, who have been 

active in calculations of the forces involved in cell adhesion (10). 

The results obtained from cell adhesion studies are vi tally 

important for Mohler and coworkers, who are developing models of 

lymphocyte migration or IItraffic ll (see page 208). Experimentalists 

working on lymphocyte traffic collect dozens of experimental facts 

and numbers, each of which will become more meaningful when placed 

in the context of a comprehensive mathematical model. 

Perhaps the most challenging problem of mathematical immunol­

ogy, and the problem that is widely regarded as central to the 

field, is the task of describing the immune response itself in 

mathematical form. We would like to have a model that accounts for 

the various idiosyncracies of the system. Mathematical models that 

aim to do this are usually formulated as sets of differential equa­

tions that simulate the population dynamics of the various cells 

(helper T cells, suppressor T cells, B cells, etc.) and of molecules 

(antigens, antibodies, etc.). Many workers have tackled this 

problem. There has, however, been alack 0 f convergence in the 

approaches taken by various investigators. The difficulty lies in 

the fact that each investigator is both theorist (he reviews the 

literature and then makes a set of postulates about the system) and 

modeller (he then models what he has decided are the essential fea­

tures of the system). There are almost as many sets of postulates 

as there are investigators, so it is no wonder that the mathematical 

models are as notable for their diversity as for anything else, and 

no IIstandard model ll has emerged. This problem is thoroughly dis­

cussed by Jilek and Prikrylova (page 8) and by Hoffmann, Cooper­

Willis, and Chow (page 15), who propose a systematic approach toward 

resolving the difficulty. 
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The overall state of immunity of an organism (the organismal 

level in our hierarchy) can be the sum of several types of immune 

reactions: the production of antibodies of various immunoglobulin 

classes, delayed hypersensitivity, and other types of cell-mediated 

immune reactions, and especially the cooperati ve and suppressi ve 

activity of T cells. Some of these components can be antagonistic 

in their biological effects. For example, lymphoid cells from a 

mouse manifesting transplantation immunity transfer this immune 

state to non-immune recipients. On the other hand, antibodies in 

sera of the same donors cause immunological enhancement, that is, 

prolongation of graft survival. Such effects are not well under­

stood, and there is much experimental and modelling work to be done 

before such complexities are unravelled. 

A good starting point for a theory of immune responses and 

immune responsiveness is a description of the immune system reper­

toire. The T cell repertoire is particularly important for the 

regulation of immune responses, and Droge (page 32) describes a 

quasi-quantitative model of that repertoire. 

Several authors describe immune response models consisting of 

sets of differential equations. Prikrylova presents a detailed 

model of T-dependent antibody responses (page 44). Hraba and Dolezal 

describe a system for the study of immunological tolerance (page 

53) . The development of th€:ir model has been characterized by a 

close interplay between the mathematical modelling and the planning 

of experiments. 

Marchuk, Asachenkov, Belykh, and Zuev's paper (page 64) is 

concerned with the course of infectious diseases and the immune 

response. Their analysis, which is mathematically one of the more 

difficult ones, primarily treats immunity to viruses. 

Models of tumor immunity and of tumor escape are described by 

Michelson (page 82) and by de Boer and Hogenweg (page 120). Tumor 

escape in the first model is due to antigenic modulation. The 

second model omits antigenic modulation, and tumor escape is 

ascribed to the initial size of the tumor and to its antigenicity. 

Hoffmann, Cooper-willis, and Chow describe events that occur at 

the organismal level, that is, what happens when two immune systems 

react to each other. They describe a new symmetry relationship for 

such interactions, namely that the antibodies in an A anti-B serum 

are complementary to (have shapes that fit) the antibodies of a B 

anti-A serum (page 15). 
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The final level in our hierarchy of interactions concerns the 

relationship between epidemiology and the degree of immunity of 

individuals in a population. Anderson's contribution to this area 

(page 142) deals with immunology to parasites, while McLean (page 

171) develops a model that she applies to the influence of immunity 

on the epidemiology of measles in developing countries. Finally, 

Yashin and Vaupel discuss the complexities for epidemiology result­

ing from inherent heterogeneity in populations (page 198). 
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PART II 

REGULATION 



SOME NOTES ON MATHEMATICAL MODELLING OF THE IMMUNE RESPONSE 

Milos J!lek and Daniela PrikrYlova 
Institute of Microbiology, Czechoslovak Academy of Sciences, 
142 20 Prague 4, Czechoslovakia 

"Although the majority of theories in immunology have been non­

mathematical, there are a variety of quantitative questions whose sol­

utions require mathematical analysis and mathematically formulated models" 

(Bell and Perelson 1978). It is necessary to subjoin that not only 

quantitative but many qualitative questions, too, require appropriate 

mathematical solutions (e. g., by the use of kinetic logic - see Prikry­

lova and Kurka 1984). 

Mathematical models have been used in immunology since its beginning. 

However, the history of mathematical modelling of the course of the immune 

response and of its regulation is relatively short (not longer than 20 

years). During this not very long time several hundreds of papers concern­

ing the construction of mathematical models of the course of the immune 

response, mathematical analysis of these models and their computer simula­

tion, comparison of properties of models and simulation results with 

experimental data have been published (see, e. g., reviews given by Bell 

and Perelson 1978, Mohler et al. 1980, DeLisi 1983). 

Although mathematical modelling has not penetrated till now into the 

consciousness of the general immunological public it seems to be one of 

the most progressi ve and most perspecti ve approaches of modern immunology. 

The convocation of this workshop shows that there are some problems 

associated with this activity and that the confusion and vagueness of some 

concepts leads to misunderstanding between theoretical (or mathematical) 

and experimental immunologists. Some of these problems will be discused 

in the present contribution. 
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Possibilities and limitations of mathematical modelling and computer 
simulation of the immune response 

There are three essential restrictions on the possibility of mathe­

matical mod ell ing and simulation of the immune response: contemporary 

immunological knowledge, available mathematical apparatus, and available 

computer systems. 

Knowledge on the immune system is the basis on which any mathematical 

model of the immune system has to be built. Every model regards only a 

part of the real system. The quality of the model depends on the delimi tation 

of this part (i. e., on the choice of system elements involved in the model) 

and on accepted assumptions concerning the immune response (i. e., on 

their choice within the framework of knowledge of the system). 

The immune response is a very complex biological process, and, there­

fore, a considerable complexity of its mathematical model may be expected 

whatever kind of mathematical apparatus (e. g., systems of differential 

equations, stochastic processes, methods of mathematical logic, etc.) 

shall be used. However, the solving of complex models is very difficult 

and sometimes does not lead to satisfactory solution (e. g., when the 

model consists of a system of many differential or integral-differential 

equations, the problem of existence of the solution and its uniqueness 

is as a rule either unsolvable or solvable very strenuously, and "information 

on the qualitative properties of the model can only be surmised from 

numerical examples" (Merrill 1980); such information is, of course, highly 

incomplete, and the success of modelling than depends on the quality af 

choice of sets of parameter values and initial data. Therefore, the search 

for the simplest possible model is a general feature of the modelling of 

any biological process. On the other hand, however, the danger of over­

simplification is not negligible (omitting of some important components 

of the modelled process). 

Since a very complex process is modelled and simulated, also the 

choice of a sui table computation system must be carefully considered 

since insufficient hardware and/or software makes the use of the model 

very difficult. 
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Choice of assumptions (axioms) of the model with regard to the purpose 
of modelling 

Mathematical models are constructed on the basis of accepted assump­

tions concerning the modelled reality. However, these assumptions are 

usually simplifying to a certain extent, and by the choice of assumptions 

we may define that part of the reality (or that part of knowledge of the 

reality) which is to be studied. 

A model in which its elements represent molecules has, of course, 

properties different from those of a model in which its elements repre­

sent cells, in spite of the fact that both of them are models of pro­

cesses which occur during the immune response. 

As the model represents always only a part of the modelled reality 

it is important to distinguish between internal control (i. e., inter­

relations between components of the modelled system) and various exter­

nal influences which can be stated explicitly (by the choice of appro­

priate parameter values). 

Choice of adequate mathematical apparatus 

The course 9f the immune response may be considered to be a realiz­

ation of a stochastic process (e. g., differentiation and proliferation 

process of cells participating in the immune response may be modelled 

by any non-homogeneous multitype birth-and-death process, etc.). However, 

most mathematical models in immunology are deterministic (systems of 

differential or integral-differential equations are the most frequently 

used mathematical approximations to appropriate stochastic processes), 

as the use of stochastic processes as models of such a complex process 

as the immune response leads to considerable difficulties. But, when 

using deterministic approaches, we lose information concerning the vari­

ability of the process under study. This variability is usually not 

negl igible and, sometimes, it may be of great interest; therefore the 

Monte Carlo simulation should be used at least in some cases. 
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Models of system behaviour and models of system structure 

There are two basic properties of any system under study: Behaviour 

of the system, i. e., dependence of response~ (outputs) on stimuli 

(inputs), and structure of the system, i. e., arrangement of elements 

of the system and their interrelations and interactions (let us mention 

that elements of the system may be - on another level of resolution -

held and studied as particular systems). 

Behaviour of the system may be sometimes modelled irrespective of 

its structure (e. g., the course of the immune response measured by the 

number of antibody forming cells or the amount of antibodies in sera may 

be well approximated by any polynom); the first model of the immune re­

sponse (Hege and Cole 1966) is of this type (the model consists of the 

relationship between antibody and antibody forming cells, without pro­

found immunological motivation of this relationship). 

Most contemporary models (since the models of Bell 1970, and J!lek 

and ~terzl 1970) may be classified as models of the system, emanating 

from hypotheses concerning the structure of the system. The testing of 

the similarity between the structure of a modelled real system and the 

structure of its model is done by comparing the behaviour of the two sys­

tems. Search for critical points of the model in which disagreement bet­

ween the behaviour of the two systems occurs leads to the planning of 

new experimental studies, formulation of higher-precision hypotheses 

concerning the immune response, and to development of the model. 

Models of experiments and models-theories 

Mathematical models in immunology may be classified also from another 

point of view than in preceding sections: 

One group comprises mathematical models of experimental methods 

(e. g., DeLisi and Bell 1974 developed a model of hemolytic plaque forma­

tion). The substance of these models is a precise mathematical formulation 

of (more or less) known facts, and they are based on known (e. g., physi­

co-chemical) laws. The purpose of these models is the elucidation of the 

functioning of modelled experimental methods and facilitation of design 
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of experiments (e. g., in the choice of optimal exposure time, etc.). 

Another group represents mathematical models of some partial events 

and processes (e. g., Bell 1978 developed a model of the molecular 

bridging between cells). 

A third group involves mathematical models of the regulation of the 

immune response or of its substantial parts (models of humoral immune re­

sponse, models of cellular immune response, etc.). These models are based 

on hypotheses concerning the structure of the immune system, the function 

of its individual components and their mutual relationships and interac­

tions during the immune response. 

Comparison of simulation results with incomplete experimental data 

While results of the simulation of the course of the immune response 

have mostly continuous character, experimental data are usually collected 

at discrete instants (very often at one or at a few instants only, e.g., 

on the 5th day after last immunization); the model may suggest any other 

interpretation of experimental results than experimental data suggest at 

first sight, and it also facilitates the planning of new experiments con­

cerning the modelled reality. 

This is not a specific feature of immunological experiments; let us 

hear a general account of this matter: 

"The principal difficulty attached to the mathematical analysis of 

physiological and medical systems stems from the mismatch between the 

complexity of the processes in question and the limited data available 

from such systems, especially from in vivo studies. These limitations 

are essentially problems of measurement. 1) There are restrictions on 

the number of variables and parameters ..• Uncertainty will occur in such 

measurement if the assumptions built into the model are not appropriate. 

Also the frequency of measurement is restricted, for example, where blood 

sampling is involved. 2) Many measurements are severely corrupted by 

noice, due to experimental error or unwanted physiological disturbances. 

3) •.. there are some variables ... for which scales of measurement are 

not clearly defined and only qualitative concepts are available." (Cobelli 

et al. 1984) 
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Cooperation and responsibility of different experts in construction of 
the model 

Assumptions of mathematical models of the immune response should be 

based on contemporary immunological knowledge. It is evident that formu­

lation of these assumptions may not be done by the mathematician alone; 

it would be probably best if the whole mathematical model was done by the 

immunologist alone - however, few immunologists are sufficiently mathe­

matically erudite. 

Mathematical model of the immune response represents sometimes the 

work of one author, but in many cases it results from the cooperation of 

a team of authors - experts in different branches (biologist, mathema­

tician, computer scientist, etc.). It is self-evident within the frames 

of the specialization of labour. 

Sometimes, however, the competence and responsibility of individual 

coworkers is not clearly delimited, .and the result of such cooperation 

is unfortunately stigmatized by evident misunderstanding: the mathemati­

cian does not formulate biological assumptions correctly, the biologist 

does not catechize the adequateness of mathematical assumptions and 

mathematical formulations (e. g., of differential equations forming the 

model), the part of the paper written by the mathematician does not cor­

respond to the part written by the biologist (or vice versa), etc. 

It follows that the immunologist participating in the construction 

of a mathematical model of the immune response should be able to at least 

read a mathematically formulated model (of course, it is not necessary 

for him to know details of the appropriate mathematical theory). 

Interpretation and extrapolation of the attained results of modelling 
and simulation 

By interpretation of a mathematical model and its simulation is 

meant their translation (inclusive of all consequences) into the natural 

language • Interpretation belongs undoubtedly to the most difficult ac­

tivities when using mathematical models of biological processes. If the 

model results from cooperation of mathematicians and biologists, the 
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interpretation is one of the most important roles of biologists, while 

mathematicians' role is to call biologists' attention to possible con­

sequencies of the model and to look after the adequacy of the translation 

into the natural language. 

Extrapolation of results of modelling and simulation into the as 

yet experimentally uninvestigated region of reality may suggest design 

of new experimental studies aimed at testing whether the model represents 

reality adequately even in the region into which the extrapolation is 

made. Extrapolation must not be held as substitution for unexecuted ex­

periments (as was expected by some workers at the beginning of the era 

of mathematical models in immunology); this follows from the simplifying 

assumptions underlying the basis of mathematical models. 

The enumeration of problems given above is by no means complete, 

and appropriate comments do not pretend to being absolutely correct. We 

only wanted to mention some problems discussed at our institute and on 

seminars on mathematics and biology we had organized in Prague - prob­

lems which seem to be of some importance when trying to construct good 

mathematical models of the immune response. 
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SUMMARY 

A view is offered on how we might collectively and perhaps 

objectively judge which of a variety of theories of regulation are 

the best, and thus decide which theories should be adopted as 

standard models for more detailed work. A new theoretical symmetry 

relationship is then presented for pairs of anti-sera of the type A 

anti-B and B anti-A, together with experimental evidence validating 

the relationship. The evidence includes a new phenomenon relevant 

to transplantation immunology, that we call "reverse enhancement". 

ON THE EVALUATION OF COMPETING THEORIES OF IMMUNOREGULATION 

In an essay accompanying the invitation to attend this meeting, 

Asachenkov wrote that "The individual models of theoretical 

immunology develop relatively independently. This isolation ~s one 

of the main reasons why these models do not influence actively 

enough research on experimental and clinical immunology". We 

believe that Asachenkov has here made an important and valuable 

observation. Immunology is a very complex field, with a fluid 

theoretical basis. Each theorist is able to select a subset of the 

experimental data, make a set of postulates, and construct a 

mathematical model relevant to that subset, often calling it "a 

first step" towards a more comprehensive model. There is however so 

far very little evidence of a consensus developing from the various 

"first steps". Our occasional meetings seem to be too brief and too 

few and far between, to permit the very extensive discussions to 

occur, that might lead to some convergence in the model-building 

process. In view of this serious and seemingly persistent 

situation, we must ask what needs to be done. 

An IIASA theoretical immunology project could certainly be a 

key step towards achieving the desired convergence, and this meeting 
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could therefore be the beginning of a new phase in mathematical and 

theoretical immunology. In addition, we feel it might be worthwhile 

to think about whether an overall strategy can be devised, 

particularly with respect to systematically evaluating the merits 

and demerits of various models of immune regulation. 

Can we jointly formulate a "theory of theories", that might 

help us to collectively and as objectively as possible reach a 

consensus as to which theories are best? If that were possible, we 

could then perhaps focus much of our collective efforts and talents 

on the analysis of the "standard models". 

It might be possible to first reach agreement on a set of 

criteria, according to which theories of the immune response could 

be evaluated. 

the following: 

Such a set is easily formulated, and might include 

I • Simplicity (Economy) in the Set of Postulates. This criterion 

is a statement of the Principle of Occam's Razor: "Other 

things being equal, a simple theory is preferable to a complex 

one". Simplicity is often notoriously difficult to define, and 

often exists mainly in the eye of the beholder, but attempts to 

assess the relative complexity of various models could 

certainly be made. Theorists are likely to differ with 

experimentalists in the assessment of what is, and what is not, 

simple. 

2. Scope, Explanatory Power (Number and Diversity of Phenomena). 

3. 

The theory should obviously be as complete as possible. A 

group of theoretical immunologists might like to assemble a 

catalogue of phenomena, which it feels an adequate theory of 

immunoregulation should ideally be able to account for. 

Predictive Power. Some experimentalists seem to subscribe to 

the view that this is the main or even the only criterion by 

which theories should be judged. "Sure", we once heard an 

experimental colleague say condescendingly, "theories are 

useful providing they lead to new experiments, to testable 

predictions". The implication was that the theories are 

otherwise useless. Our colleague seemed to have forgotten that 

Darwin's theory of evolution, perhaps the most influential of 

all theories in the natural sciences, was very strong in its 

explanatory power, and much weaker in its predictive power. 

Predictive power is nevertheless obviously very important. 



17 

Paradoxes. The phenomena, on which it LS particularly 

important to concentrate our efforts, are the anomalies or 

paradoxes; phenomena which are not satisfactorily accommodated 

within the popular current theoretical framework(s). A 

scientific paradox formally exists when a theory is 

sufficiently complete, such that we can predict from the theory 

what should happen in a certain situation, but we 

experimentally observe a different result. The experimental 

result is then a paradox within that particular theoretical 

framework. The crucial roles that paradoxes can play in the 

development of science are exemplified by the Michelson-Morley 

experiment, which was a prelude to the theory of relativity, 

and the "Ultra-violet catastrophe" of black body radiation, 

which was a prelude to the development of quantum theory. 

At present there is no well-defined, consensus view on how the 

immune system is regulated, and various people with various 

theories consider various phenomena to be paradoxes. The 

phenomena that are explicitly described as paradoxes deserve 

particular attention, because they might be very important 

clues, pointing to aspects of the system that are being widely 

viewed in quite the wrong way. We are presently assembling a 

volume entitled "Paradoxes in Immunology" (1) which we hope 

will be useful in giving model builders a collection of 

particularly puzzling results. Twenty-seven immunologists (or 

groups of immunologists) describe phenomena, mostly 

immunoregulatory phenomena, that are difficult or impossible to 

understand within the current theoretical picture. Usually 

people discuss in print that which they understand. In this 

volume of paradoxes the authors take the opportunity to discuss 

phenomena they do not understand, which for constructing new 

models is much more challenging and potentially more useful. 

Such paradoxes might permit us to very efficiently select the 

better or best among alternative theories. 

5. Rigor. The route from a set of postulates to demonstrating 

explanatory power, including the elucidation of paradoxes, and 

to making testable predictions, can be more or, alternatively, 

less rigorous. The more mathematical the route, the more 

rigorous it is, in general. The more rigorous it is, the 

better the theory, we would all concur. However, our feeling 

is that it is better to concentrate initially on scope and 
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subsequently on rigor, rather than being very concerned about 

rigor in the early stages of the development of a model. 

Thank you for your patience in listening to these general 

remarks, which some of you might consider to be self-understood Or 

even trivial. Whether trivial or not, we suggest that if an IIASA 

project in theoretical immunology is to be successful, the various 

models should be systematically subjected to comparative analyses 

along lines similar to those sketched above. We feel that extensive 

and systematic comparative evaluations of various models have not 

been made in the past, and that this is the main reason for the 

existence of the problem described by Asachenkov. A general 

framework, similar to the one we have outlined, might make it easier 

for us all to be perhaps a little less polite about each other's 

models, and thus accelerate our progress towards an adequate model 

of immunoregulation. An IIASA project in theoretical immunology 

could then contribute a great deal towards correcting the deficiency 

described by Asachenkov, and for that reason, among others, we 

strongly support the idea of such a project. 

We now turn to some real science. 

ON THE PRESENT STATUS OF IDIOTYPIC NETWORK THEORIES OF 
IMMUNOREGULATION. 

The development of a theory of regulation of the immune system 

based on Niels Jerne's network hypothesis (2) is a great challenge 

for theoretical immunologists. Models of the network have been 

developed mainly by Richter (3), Ivanov, Janenko, Fontalin and 

Nesterenko (4), Herzenberg, Black and Herzenberg (5) and ourselves 

(6-8). 

Jerne himself recognized from the outset the need for a 

mathematically precise formulation of what was a revolutionary 

vision, but a rather fuzzy theory, with regard to the details. As 

formulated by Jerne, the theory simply started from the view that 

the V regions of antibodies and the specific cellular receptors 

constitute a network of specifically recognizing and recognized 

components. Jerne then postulated that there were both specific 

stimulatory and suppressive interactions between V regions. But he 

conceded that "The weakness of this incipient network theory lies in 

its lack of precision ..• This leaves an ambiguity in the answer to 
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the question whether the relations between two sets is suppressive 

or stimulatory, or partly one and partly the other, and thus permits 

us to postulate interactions that suit our explanatory needs", (2); 

and further, "To become meaningful, a more explicit formulation of 

the network and its functional features and parameters would be 

needed •••• Questions as to the degree of stability of network 

modulations induced by antigen cannot be solved intuitively, as 

intuition is an unreliable substitute for mathematical 

demonstration" ( 9) • 

The explicit models with a mathematical component that have now 

been published include the asymmetric network models of Richter (1) 

and Ivanov et al. (3), and the symmetric model by ourselves (6,10). 

The asymmetric model of Herzenberg ~ ~l. has no mathematical 

underpinning. We have criticized the other models, mainly on the 

basis of the assumed asymmetry (6,10). Spouge recently contributed 

a new analytic treatment of the complexity-stability problem in the 

context of the symmetric theory (11), which had previously been 

analysed only using numerical techniques (7,10). 

A NEW SYMMETRY RELATIONSHIP FOR IMMUNE SYSTEM NETWORKS 

We here describe a simple new phenomenon, which can be 

understood without invoking any mathematics. 

The symmetrical network theory is partly based On an 

experimentally well-established symmetry relationship, which we 

could call the "first symmetry" of immune system network theory. 

The first symmetry is the fact that if an idiotype P is recognized 

by a particular "anti-idiotype" Q, then P is simultaneously an 

anti-idiotype of the idiotype Q. This symmetry, which is 

illustrated in figure 1, has been demonstrated for both stimulation 

and killing (12,13). Consequences of first symmetry are that there 

is no fundamental regulatory distinction between para topes and 

idiotopes as originally defined by Jerne, and the "internal image" 

is functionally identical with the "anti-idiotypic set". 

First symmetry refers to interactions within a single immune 

system network. We will now derive a second symmetry, that concerns 

the interactions between two different immune system networks. It 

was discovered in the course of trying to understand an intriguing 

paradox that has attracted much attention, known as the "I-J 

paradox" (14-17). We will not attempt to review the I-J 
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Fig.l. The first symmetry of immune system network theory. If 
idiotype P is anti-idiotypic to Q, this implies that idiotype Q is 
anti-idiotypic to P, and vice-versa. Stimulation (solid arrow), 
inhibition (broken line) and killing (jagged line) can all be 
bidirectional. 

phenomenology in any detail. Suffice it to say that the paradox 

arose when molecular genetic studies showed that the genes for 

certain protein molecules, that seem to playa key role in 

immunoregulation, are not found in the part of the DNA where they 

had been expected on the basis of genetic studies. In line with the 

ideas of Schrader (18) and Tada (19), we considered the possibility 

that anti-I-J antibodies might have anti-ant i-self specificity. 

That idea led us to a new symmetry relationship. 

The theoretical result is derived by considering reciprocal 

immunizations with lymphoid cells of two strains of mice, A and B. 

This procedure amounts to confronting two immune system networks 

with each other. The set of cell-surface antigens expressed by A 

but not by B will be denoted by ~, and the corresponding set of 

antigens expressed by B but not by A will be denoted by b. When 

lymphoid cells from A are injected into a B animal, the A cells that 

recognize £ antigens in the host are stimulated and proliferate, 

while A cells of other specificities are not stimulated. There are 

then two sets of foreign entities that can be recognized by B, 

namely the a set of antigens, and the A anti-£ receptors. Thus the 

immune response of B to A has two components, namely B anti-~ 

(conventional anti-foreign) and B anti-(A anti-£), which is 

anti-anti-self. Similarly, the immune response of an animal A to B 

lymphoid cells consists of the two components A anti-b (or anti­

foreign) and A anti-(B anti-~) (or anti-anti-self), as shown in 

figure 2. 



21 

0 9 
Qf) 

A anti-Q B anli -2, 

As response 10 B: B's response 10 A: 

A anli-b ~B anli-a 

A anlHB anli-2,) B anli-(Aanti-~) 

Fig. 2. The second symmetry of immune system networks. For two 
genetically dissimilar individuals A and B, the total immune 
response of A to B is complementary to the total immune response of 
B to A, when (and only when) anti-ant i-self responses are included 
in the analysis. 

It follows that the anti-foreign response 1n B is precisely 

complementary to the anti-ant i-self response in A, and the 

anti-foreign response in A is complementary to the anti-ant i-self 

response in B. Consequently the total response of A to B is 

complementary to the total response of B to A. 

is anti-(B anti-A). 

In short, A anti-B 

We tested the validity of the above hypothetical "second 

symmetry" using the three H-2 congenic strains C57BL/lO ("BlO"), 

BlO.D2 and BlO.BR. We raised three reciprocal pairs of anti-sera: 

BIO anti BIO.BR and BlO.BR anti-BlO; BlO.D2 anti BlO.BR, and BIO.BR 

anti BlO.D2; and finally, BlO anti BlO.D2 and BlO.D2 anti BlO. The 

anti-sera had cytotoxic titres against lymph node cells of the 

immunizing strain of at least 100. Typical inhibition results are 

shown in figure 3. We refer to the target cells as strain "B" and 

the lytic serum as A anti-B. For instance, in the first panel of 

fig. 3, A = BIO.BR and B = BlO. The important result was that we 

could inhibit the killing of the target cells by first mixing the 

lytic A anti-B serum with the reciprocal B anti-A serum. This was 

true even when the B anti-A serum was absorbed with A cells. 

Classically, of course, we would expect such an absorbed serum to 

have no specific activity at all. The negative controls for the 

inhibition are normal (non-immune) B serum, normal A serum, A anti-B 

and A anti-B absorbed B. We note that strong inhibition by B anti-A 

was observed in 5 of the 6 cases, with some inhibition in the sixth 

case. We also observed that a little inhibitory activity was 
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Fig. 3. Experimental tests of second symmetry using 6 BlO congenic 
hyperimmune antisera. The antisera were raised with 6 to 9 weekly 
injections of 10 7 spleen cells. In each of the panels, one of the 
sera, denoted by "A anti-B" was used as the lytic serum, to kill 
cells of strain "B". In each case the killing was inhibited by B 
anti-A serum, either absorbed against A cells (gluteraldehyde fixed) 
or not absorbed. The control sera were A anti-B, A anti-B absorbed 
B, sera from unimmunized A ("normal A") and sera from unimmunized B 
(llnormal B"). Figure continued on next page. 
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present in several of the normal B sera. (This last aspect has not 

been investigated in any detail. It raises the interesting question 

of whether there is an anti-ant i-self component in immune responses 

also to environmental antigens, and if so, why?) 

The strains B10, B10.BR and B10.D2 are identical except for the 

H-2 complex. Similar results to those of figs. 3 and 4 were 

obtained in a study involving the three completely unrelated strains 

SJL, C57BL/6 and CBA. 

Antibody is responsible for both the lytic and the inhibitory 

properties of the anti-sera, since absorption with goat anti-mouse 

immunoglobulin coupled to sepharose 4B removes both activities 

(Table 1). 

Table 1 

Lytic and Inhibitory Activities of Anti-sera before and after 

Absorption with Anti-Ig or Immunogen 

Serum Absorption As lytic serum: 

% lysis 

Experiment 1 

CBA anti-B6 

CBA anti-B6 

CBA anti-B6 

Experiment 2 

SJL anti-CBA 

Goat anti-mouse Ig 

B6 spleen cells 

SJL anti-CBA Goat anti-mouse Ig 

SJL anti-CBA CBA spleen cells 

of target cells 

42.2 

0.0 

0.0 

78.7 

0.0 

0.0 

As inhibitor of lysis 

by reciprocal serum: 

% inhibition 

99.8 

0.0 

95.6 

54.9 

0.0 

76.1 

The two components of the antibody response are seen to be separated 

by absorption against lymphoid tissue of the immunizing strain, 

which removes the lytic but not the inhibitory activity of the 

antiserum. The simplest explanation for all these findings is, we 

believe, that the inhibition is indeed due to the presence in the B 

anti-A serum of B anti-A-anti-b (anti-anti-self) antibodies. 
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THE RELEVANCE OF SECOND SYMMETRY TO TRANSPLANTATION IMMUNOLOGY: 
REVERSE ENHANCEMENT. 

If antibodies in a B anti-A serum inhibit A anti-B antibodies 

in vitro, it is obviously possible that they should inhibit an A 

anti-B response also in vivo. We showed that this is indeed the 

case by demonstrating that, for instance, CBA anti-SJL immune serum 

absorbed with SJL cells causes an enhancement of the survival of CBA 

skin grafts on SJL mice, as shown in figure 4(a). The results shown 

in figures 4(b) and 4(c) prove that the enhancing effect of the 

immune absorbed serum is specific. In the experiment of figure 4(b) 

the graft donor and recipients were interchanged, so that the donors 

were SJL mice, and the recipients were CBA. There was then no 

significant graft enhancement. In the experiment of figure 4(a) the 

survival of an irrelevant ("3rd party") graft is shown to be not 

enhanced by the serum. 

Completely analogous results were obtained with an SJL anti-CBA 

serum absorbed with CBA Cells, as shown in figure 5. 

The degree of specificity seen in these experiments was greater 

than that seen with the in vitro assay, where a lot of 

cross-reactivity was very often seen with third party antisera 

(results not shown). The only speculation we can offer that might 

be a step towards accounting for this difference, is that the in 

vivo effects could perhaps involve a different slice of the antibody 

affinity spectrum than the in ~ assay, and the in ~ effects 

can consequently be more specific. That is, however, clearly an 

incomplete rationale. 

It has been known for a long time that hyperimmune serum can 

enhance the survival of various transplanted tissues in a wide 

variety of species (reviewed by Carpenter, d'Apice and Abbas (20), 

Voisin (21) and Morris (22). In the previous work however 

("conventional enhancement", figure 11) antiserum directed against 

the graft gave enhanced graft survival, while here we used antiserum 

made in the graft donor strain against recipient lymphoid cells, and 

then absorbed with the same immunizing type of cells. Since the 

Converse serum is used, we call this phenomenon "reverse 

enhancement" (fig. 6). 
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Fig. 4. (a) Enhancement of the survival of CBA grafts on SJL mice 
with CBA anti-SJL immune serum absorbed with SJL lymphoid cells. 
The control group of mice shown here (dashed line) received no 
serum, the experimental group received 5 ~l immune absorbed serum 
on each of the days -4, -1 and 0 relative to grafting. The immune 
serum was raised with injections of 10 7 spleen and thymus cells at 
weekly intervals for 6 to 9 weeks. There were 5 to 8 mice in each 
group. (b) First specificity control. The CBA anti-SJL immune 
absorbed serum caused no enhancement of SJL grafts on CBA mice, that 
is, grafts in the opposite direction. Group with serum, solid line; 
group without serum, dashed line. (c) Second specificity control 
for the CBA anti-SJL immune absorbed serum. No enhancement is 
observed of an irrelevant graft, BIO.D2, on an SJL mouse. 
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B anti - A immune serum 
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Fig. 6. The difference between conventional enhancement and 
reverse enhancement. 

Reverse enhancement is potentially of importance for clinical 

immunology. There has recently been much interest in the use of 

xenogeneic organ transplants. Reverse enhancement might help to 

improve the success of such transplants. A xenogeneic organ donor 

could be made immune to tissue of the organ recipient, and then 

immune-absorbed serum from the donor could be injected into the 

organ recipient, near the time of the organ transplant. The same 

might be true in the case of at least some transplants from 

allogeneic donors. We have found that anti-anti-self antibody 

activity is produced equally efficiently when heavily irradiated 

(2000 rad) lymphoid spleen cells are used as immunogen. This 

suggests that radiation could be used to inactivate any pathogens 

resident in the graft recipient tissue sample, prior to that tissue 

sample being used to raise the required antiserum in the graft donor. 

Our results using both in vitro and an in vivo assay system are 

consistent with the idea that the injection of allogeneic lymphoid 

cells routinely leads to the production of anti-ant i-self antibodies 

in parallel with anti-foreign antibodies. The production of 

anti-ant i-self antibodies is obviously of great advantage to the 

individual, since such antibodies cause a negative selection of 

anti-self clones and of clones that cross-react with both foreign 

and self antigens. The remaining anti-foreign antibodies cannot 

then cross-react with self. This constitutes a fail-safe mechanism, 

which ensures adequate specificity of immune responses to structures 

that are similar to self antigens. Thus we have a clear cut role 



29 

for network regulation in helping the immune system to discriminate 

between self and nonself. 

Ramseier and Lindenmann (23) and subsequently Binz and Wigzell 

(24) have previously shown that "anti-recognition structure" 

antibodies (that have anti-anti-self specificity in some of their 

experiments) can be produced with Fl and parental inbred animals, 

when the experiments are designed in such a way as to exclude the 

possibility of a conventional anti-foreign (i.e. anti-alloantigen) 

response. Our results show that appreciable amounts of 

anti-anti-self antibodies are routinely present in allo-antisera 

raised against completely unrelated strains, and their presence can 

be detected using quite simple assay systems. 

We finally reiterate that the two new phenomena we have 

described, namely second symmetry and reverse enhancement, were 

discovered in the course of attempts to understand the I-J paradox. 

We feel that this illustrates the value of identifying the paradoxes 

in cellular immunology, and focussing attention on them, even if one 

does not necessarily resolve the paradoxes. 
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The usefullness of mathematical equations as an adequate descrip­

tion for certain immunological phenomena is occasionally recognized 

even by experimentalists (see 1,2). A well known example is the mathe­

matical treatment of antigen-antibody interactions and a more recent 

example is the paper by Matis et al. (3). Some theoretical implications 

of this and several related papers shall be discussed in this commen­

tary. These considerations lead to a mathematical description of the 

T cell specificity repertoire. 

For the purpose of this paper I shall distinguish the follow-

ing groups of antigens: the self-antigens will be divided into self­

major-histocompatibility antigens (self-MHA) and conventional self 

antigens (self-CA); and the foreign antigens will be divided similarly 

into foreign (allogeneic) MHA and foreign CA. The CA are defined as 

antigens which are not MHA and which are recognized by T cells only 

in combination with MHA. 

I. Suppression of clonal proliferation by superoptimal concentrations 

of antigen.-Stimulation of T cell clones with intermediate affinity 

for self antigen as a predictable consequence. 

The term "high dose tolerance" describes the well known phenomenon 

that high doses of antigen often induce a state of specific unrespon­

siveness. The antigen-dose-response curve in these cases has a clear­

cut maximum. Two independent studies (3,4) now showed a similar dose­

response curve for the proliferative response of antigen-specific 
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T cell clones against antigen pulsed antigen presenting cells (APC). 

The experiments of Matis et al. (3) showed, moreover, that a given 

T cell clone can be stimulated by two different antigens, and that 

optimal stimulation is obtained with different concentrations of these 

two crossreactive antigens. For example, a concentration of 0.24 M 

pigeon cytochrome C was found to stimulate optimal proliferative re­

sponses in a given experimental situation whereas the concentration 

of 0.24 M tobacco hornworm moth cytochrome C was already inhibitory (3). 

The most obvious interpretation is that these antigens have different 

affinities to the antigen receptors of the clone. This pattern of re­

sponses of a single clone against two different antigens will certain­

ly have its mirror image in the stimulatory effects of a given antigen 

on two different T cell clones. One can expect that a relatively 

high concentration of a given antigen will suppress a clone that 

bears receptors with high affinity to this antigen, but will stimulate 

cells with comparably lower (i.e. intermediate) affinity for this an­

tigen. As the T cell system is always facing syngeneic APC with high 

concentrations of self antigen, one can expect that the stimulation of 

T cells with intermediate affinity to self antigens will be constantly 

occurring in vivo. This is indeed a very strong prediction, unless 

other mechanisms interfere with this process. The autologous MLR in 

vitro (5-8) and the intrathyrnic (10-13) and postthyrnic (14,15) proli­

feration of the T cell population or the development of self-H-2 spe­

cific CTL from nude mouse bone marrow cells (16) may be visible con­

sequences of this phenomenon. A selective stimulation of T cells with 

intermediate affinities to self antigens has already been proposed to 

constitute the major force that generates the T cell repertoire (17-

19). The generation of the T cell repertoire resembles according to 

this concept a heteroclitic immune response: most of the selected cells 

will have only intermediate affinity to the selecting antigen (i.e. 

self antigens) but high affinity to one or the other foreign antigen 

(i.e. a virus), against which they will eventually defend the organism. 

II. Evidence that the T cell receptor recognizes antigen complexes 

consisting of one CA and one MHA molecule each. 

Several laboratories have been able with the help of monoclonal 

antisera to identify structurally related clonotypic molecules on 
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T cells, which were subsequently shown to be the antigen receptors 

(20-24). These structures are disulfide-bridged heterodimers con­

sisting of two chains with molecular weights of about 40 kd. Important­

ly, these receptors molecules were shown to be responsible for bind­

ing simultaneously conventional antigen (CA) and major histocompati­

bilityantigen (MHA) (23). 

In support of the conclusion that a single receptor binds simul­

taneously both, CA and MBA molecules, Matis et al. (3) have found 

that T cell proliferation is a function of the product of the con­

centrations of CA and MHA molecules. Accordingly, DNA synthesis 

has been found to be inhibited by an excess of either CA or MBA mole­

cules. The mass action law predicts that the product of the concen­

trations of CA and MBA is proportional to the concentration of (hypo­

thetical) complexes of CA and MHA. Therefore, this observation suggests 

(even though it does not prove) that the T cell receptor recognizes 

antigen complexes consisting of one CA and one MHA molecule each. 

III. Experimental evidence suggesting that T cell receptors recog­

nize unaltered MBA determinants on the CA/MBA complex. 

The phenomenon that foreign CA determinants such as virus par­

ticles are recognized by T cells preferentially or exclusively in 

combination with self-MHA has been described many years ago and has 

been termed "self-restriction" (25). Self-restriction applies also 

to T cell tolerance of self-CA (26). It was also pointed out (25) that 

the phenomenon of self-MBA restriction may be based either upon the 

recognition of newly formed "neoantigenic determinants" which are formed 

by the interaction of CA and MBA ("altered self model"), or upon the 

recognition of unmodified determinants on both types of antigens 

("dual recognition"). The experiments discussed in the previous section 

were not designed to distinguish between these two recognition modes. 

However, recognition in a pure "altered self" mode appears to be 

very unlikely in the view of several sets of observations (25,27-35). 

All these observations showed in essence that animals which have been 

depleted of alloreactive cells with specificity for a given allogeneic 

haplotype recognize CA better in the context of self-MBA than in the 
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context of MHA of the allogeneic haplotype. These observations indi­

cated that the self-restrictedness (Le. the preference for self-MHA) 

exists not only at the level of the activated effector T cells but al­

ready at the level of the precursor T cell repertoire before deliberate 

immunization. Recent evidence indicated that this applies also to nor­

mal animals (36). If the T cell population recognizes a foreign CA de­

terminant (which it has not experienced before) preferentially in the 

context of self-MHA determinants, we must conclude that this self-MHA/ 

CA complex must have something in common with the MHA determinants in 

the selecting environment before the encounter with this foreign CA 

determinant. In so far, there must be a component of "dual recognition" 

(see (37)). The T cell receptor must recognize usually unaltered self­

MHA in complex with CA determinants. The combined conclusion from this 

and the preceding section is, therefore, that two distinct binding re­

gions on a single T cell receptor usually recognize unaltered determi­

nants on the CA and MHA molecules, respectively. This does not exclude 

that the same combination(s) of binding regions may occasionally acco­

modate foreign MHA or chemically modified MHA molecules also in an 

"altered self mode" as suggested by the crossreactivity patterns of 

cloned T cell lines (38-40). 

IV. Theoretical conclusions from the available experimental information. 

The combined information of the previous sections leads to several 

theoretical conclusions, which are illustrated graphically in Fig.l. 

I shall first corne back to the main point of section I that the T cell 

system is constantly confronted with large numbers of autologous (syn­

geneic) APC, which are expected to stimulate T cells with intermediate 

affinity to self antigens into proliferation. The graphs a and b in 

Fig.l illustrate the situation that cells with intermediate affinity 

to self antigens will optimally be driven into proliferation and there­

fore constitute a high relative frequency in the repertoire, whereas 

T cells with very low or very high affinity to self-antigens will be 

poorly stimulated and therefore be represented with a relatively low 

frequency in the T cell repertoire (see section I). The intensity of 

the shading illustrates the relative frequency of the T cells with the 

corresponding affinity. This probability profile will apply to the 

affinity to self-MHA (Fig.la) and also to the affinity to self-CA 
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(Fig.1b). 

The main pOints of sections II. and III were i) that T cells re­

cognize complexes of CA and MHA and ii) that two distinct binding 

regions on a single T cell receptor recognize unaltered determinants 

on the CA and MHA molecules, respectively. In order to appreciate these 

points, it may be useful to compare the T cell receptor with the B cell 

receptor. The B cell receptor is known to bind antigen also with two 

binding regions, namely with the V regions of the immunoglobulin heavy 

and light chains, respectively. The major difference between T cell 

and B cell receptors may simply be that one of the two binding regions 

of the T cell receptor has been selected to recognize MHA determinants. 

Two points which are established for interactions between antigen and 

immunoglobulin molecules are expected to apply also to receptor-ligand 

interactions on the T cell: i) the consequence of a receptor-ligand 

interaction will depend exclusively on the affinity of the total inter­

action irrespective of how much the individual V-region contributes to 

the total binding energy, and ii) the total affinity is approximately 

the product of the affinities at the individual binding regions. (The 

binding energies at the two binding regions contribute approximately 

additively to the total binding energy.) The total affinity of the 

T cell receptor for the MHA/CA complex will be, therefore, approximate­

ly the product of the affinities of its two binding regions for the 

MHA and CA determinants, respectively: 

Atotal = ~. ACA ' 
It is reasonable to assume that the selection for intermediate 

affinity to self antigen (see section I) is also based on this total 

affinity of the receptor: 

Pselection = f (Atotal) = f (Aself-MHA . Aself-CA)' 
This equation simply states that all cells with a given constant pro-

duct of affinities to self MHA and self CA, respectively, will have 

the same probability to be stimulated and selected by syngeneic APC, 

irrespective of the individual affinities of their binding regions for 

self MHA or for self CA. In Fig.1c, I have therefore plotted all T 

cells with all possible combinations of binding regions according to 

their affinities to self-MHA determinants (ordinate) and affinities to 

self-CA determinants (abscissa) on a logarithmic two-dimensional pro­

bability plot. It is easy to see that all points with a given constant 

total affinity to self antigens (i.e. with a given constant product of 

the individual affinities to self-MHA and self-CA determinants) are 

located on a straight diagonal line as shown in Fig.1c. Cells with 
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intermediate affinities are, therefore, located on a diagonal band as 

illustrated by the shaded area in Fig.lc. Cells in the lower left 

corner of this two-dimensional probability plot have only a weak total 

affinity to complex self antigens and are therefore not adequately 

stimulated by autologous APC; and cells in the upper right corner have 

a high total affinity and are therefore also not stimulated or even 

rendered unresponsive (see Section I). The entire mature T cell reper­

toire may, therefore, be located on such a diagonal band. 

The shaded area in Fig.lc illustrates only the probability distri­

bution for the selection process and does not take into account the 

two dimensional frequency distribution of receptors in the original 

specificity repertoire. The relative frequency (P . . 1) of a certain 
or~g~na 

type of cells in the original repertoire multiplied with the probabili-

ty (Pselection) that this type of cells will be stimulated and selected 

into the mature repertoire is expected to give the relative frequency 

in the mature T cell specificity repertoire: 

Pmature = Poriginal . Pselection· 
For the purpose of this paper it may be useful to assume that the 

original repertoire before the selection process is practically ran­

dom. How would a random repertoire of receptors be distributed in 

the two-dimensional log-plot according to the affinities to self-MHA 

(ordinate) and to self-CA (abscissa)? The probability distribution 

with respect to the affinity for MHA determinants should be relatively 

simple and is schematically illustrated in Fig.ld: most receptors of 

a random repertoire are expected to have only low affinity to a given 

self-MHA (i.e. the probability for low affinity receptors is high), 

whereas receptors with high affinity to self-MHA determinants should 

be relatively infrequent (low probability of receptors with high af­

finity to self-MHA). Moreover, there should be a final upper limit 

for the affinity to self-MHA, because even the best fitting receptor 

would have only a final maximum affinity. The probability distribution 

profile for the affinity to self-CA is slightly more complicated 

(Fig.le). In contrast to self-MHA, there are many self-CA determinants. 

The selection process (see Section I) is expected to operate accord­

ing to the affinity to the best fitting self-antigen. For example, 

a receptor with high affinity to the best fitting self-antigen should 

be rendered tolerant. One can, therefore, expect that most of the re­

ceptors in a random repertoire will have intermediate or even rela­

tively high affinity to the best fitting self-CA and only relatively 

few receptors will have low affinity to the best fitting self-CA 

(Fig.le). On the other hand, few receptors will have very high af-
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finity to self-CA and there is again an upper threshold for the af­

finity to self-CA, since even the best fitting receptor has only a 

maximum affinity. One can therefore predict a bell-shaped distribu­

tion profile as schematically shown in Fig.1e. The distribution pro­

files in Fig.1d and Fig.1e are essentially mirror images of the affi­

nity distribution profiles of a random pool of antigens in relation 

to different populations of antibodies. If a random pool of antigens 

is facing only one or a few antibodies, one can expect that most in­

teractions have low affinity and that only few antigens bind with 

high affinity to these antibodies. However, if there are many anti­

bodies (as it is the case in the immune system) every antigen is 

likely to find an antibody with intermediate or high affinity to 

this antigen, and only few antigens will bind with very low or ex­

tremely high affinity to the best fitting antibody. The latter dis­

tribution would correspond to Fig.1e. Fig.1f describes the resulting 

two-dimensional distribution profile of a random repertoire of recep­

tors in frequency contour lines according to their affinities to 

self-MHA, on the one hand, and self-CA, on the other hand. If this 

repertoire is subjected to a selection process with the probability 

distribution according to Fig.1c, one obtains the probability distri­

bution shown in Fig.1h. This is expected to describe essentially the 

precursor frequency distribution of T cells in the mature repertoire. 

The graphs f,c and h in Fig.2 correspond to Fig.1f,c and hand 

show some special examples to illustrate the shaping of the reper­

toire: the cells in the circled areas 1,2, and 3 are chosen to have 

the same relative frequency in the original repertoire, i.e. they are 

located on the same probability contour line in Fig.2f. The cells in 

areas 1 and 3 have practically 0% chance to be selected into the ma­

ture repertoire, whereas cells in area 2 will be optimally selected 

and appear in the mature repertoire with a finite probability (Figs. 

2c and h). The cells in the circles 2 and 4, on the other hand, have 

the same probability to be selected into the repertoire. However, there 

are more cells in the original repertoire in area 4 than in area 2 

(Fig.2f), and the mature repertoire will therefore also contain more 

cells in area 4 than in area 2 (Fig.2h). 

One of the remarkable features of the expected mature repertoire 

(Fig.1h) is that typically self-restricted (SR) and alloreactive (Al 

T cells are located on two ends of one continuous spectrum of T cells 

with an unknown degree of overlap. T cell receptors with high affini­

ty to typically foreign CA (i.e. with low affinity for self-CAl are 

located in the left end of this diagonal band (Fig.1h), and these 
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T cells are expected (according to Fig.1h) to have a relatively high 

affinity to a given foreign CA in one binding region and a relatively 

high affintiy to self-MHA in the other binding site: these are 

typically self-restricted cells. On the other hand, the original ran­

dom repertoire is expected to contain also binding sites with relative­

ly high affinity to foreign (allogeneic) MHA determinants. Because of 

the well-known crossreactivity between allelic variants of MHA, one can 

expect that these binding sites have low or intermediate affinity to 

self-MHA. The mature repertoire is expected to contain receptors with 

low or intermediate affinities to self-MHA in the intermediate range 

and lower end of the diagonal band (Fig.1h); and these receptors are 

expected (according to Fig.1h) to have a second binding region with 

intermediate or high affinity to self-CA determinants including non­

polymorphic CA determinants which are also present on allogeneic cells. 

These receptors are, therefore, expected to have one binding region 

with relatively high affinity to one or another allogeneic MHA deter­

minant and a second binding region with relatively high affinity to 

non-polymorphic CA determinants which are also expressed on allogeneic 

cells. This leads to the conclusion that alloreactive T cells use in­

deed both binding regions to recognize the allogeneic cells. 

The degree of self-restrictedness of an immune response against a 

given antigen will be determined by the ratio of "self-restricted" 

versus "allo-restricted" cells that are activated by this antigen. The 

probability profile in Fig.1h makes the prediction that the degree of 

self-restrictedness will be different for different antigens; and it 

will be the lower the more the antigen under test crossreacts with 

self-CA. 

VI. Final conclusions 

There is a good chance that the T cell repertoire will eventually 

be described (and precursor frequencies be calculated) by a simple 

probability function of the affinity to self-antigens and of the con­

centration of these antigens on the surface of autologous antigen pre­

senting cells. This probability function will depend firstly on the 

shape of the original germ line repertoire of T cell receptors and 

secondly, on the selection which is provided by stimulatory and inhi­

bitory processes which operate constantly in the T cell system. 
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MATHEMATICAL MODELLING OF THE IMMUNE RESPONSE: 
A MODEL OF THE PROLIFERATION CONTROL 

Daniela P~ikrylov~ 
Institute of Microbiology, Czechoslovak Academy of Sciences 
142 20 Prague 4, Czechoslovakia 

The successful immune response to given antigen is manifested by elim­

ination of antigen; generation of antibody forming cells and production of 

antibody (if humoral response) or cytotoxic cells (if cellular immunity); 

and generation of memory cells. Memory cells remain in the organism after 

primary response, and they prove that the secondary response is more effi­

cient. Such a process is the result of an intricate interaction within the 

multicomponent immune system. Although at the present time all major compo­

nents (cell populations) which take part in the immune response are prob­

ably known, the question how these components interact during the course 

of the immune response has not been solved satisfactorily yet. In our 

model we have tried to formulate the relations between cell populations 

taking part in the immune response, which seemed to be substantial for its 

proper function. 

The models which have been constructed in our department are based 

upon the assumption of two differentiation stages of cells (Sercarz and 

Coons 1962, Sterzl 1962). After first antigenic stimulus the immunocom­

petent cell is changed into an immunologically activated cell. This ac­

tivated cell is changed into a plasma cell forming antibody against given 

antigen if challenged with antigen again, or proliferates and after prolif­

eration it changes into a memory cell which is different from the immuno­

competent cell. 

These models (Jflek and Sterzl 1970, 1971, 1973, Jllek and Klein 

1979, Klein et al. 1980, 1982, P~ikrylova et al. 1984) were constructed 

for antigens which are rapidly metabolized (e. g., sheep red blood cells) 

where the binding of antigen with antibody during the primary response 

is negligible, and the description of behaviour of the antigen by expo­

nential function suits well. These models involved the assumption that 

the proliferation of immunologically activated cells stops after certain 
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number of generations (J{lek and Sterzl 1970, 1971, 1973, J{lek and Klein 

1979) or that the generation time extends (Klein et al. 1980, 1982). 

In our present model the control of proliferation activity during 

the course of immune response is involved (the previous models are ex­

tended to include the population of T helper cells - growth factor pro­

ducers). In this model the interaction between T cell and B cell subsets 

is mediated by a growth factor, and the presence of the growth factor 

(which is produced in the presence of a satisfactory antigen concentra­

tion) is necessary for proliferation of participating cells. 

To extend the model to include other kinds of antigen than are 

rapidly eliminated (as assumed formerly) it was necessary to include 

the assumption of participation of antibody in the elimination of the 

antigen during the course of the immune response. The logical correctness 

of arrangement of such a complex model was tested by the method of kinetic 

logic (P~ikrylova and K~rka 1984) showing possible transition and final 

states of the system. 

Mathematical model 

The model is based on the following assumptions: 

1) Cells: 

Macrophages (Mf) - remain constant, produce IL 1 after antigenic stimulation. 

T helpers - enter the system as Hx precursors, after antigenic stimulus 

they change into Ha sensitive to the second signal (IL 1, GF). GF (growth 

factor) effects a change of H into the proliferating H , while IL 1 
a y 

effects a direct change of Ha into Hz; Hy after repeated antigenic signal 

become Hz producing GF. 

B cells enter the system as precursors X, after antigenic stimulation 

they become A sensitive to the second signal (GF), thus changing into 

proliferating Y, which after repeated antigenic signal change into Ab 

producing Z cells. Without meeting the antigen again, and in absence of 

sufficient amount of GF, Y cells become memory cells M. 

2) Signals: 

Antigen (Ag) 

i) external information labeling the cell which take part in immune 

response; 
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ii) signal to the final differentiation (after proliferation and decrease 

of GF concentration). 

lh-l - initiates the lymphocyte response via stimulation of Hx to become 

Hz and to produce GF. 

GF - signal for Hy and Y to proliferate. 

Antibody (Ab) - participate in elimination of the antigen. 

The control of the immune response depends on the absolute amounts 

of elements engaged in it (i. e., cells, antigen, cell products) as well 

as on their interrelations. 

To model decision steps we have used particular switching functions. 

Differential equations 
, 

Hx = I - Hx(fx + Ix/Hxo) x , 
Ha = Hxfx - H f a a 
, 

Hy = Hafafg + H/ Clyf p - m ) - f y ( 1 - f ») y p , 
H = Ha f a(1 - fg) + Hyf/1 - f ) - m H z p z z , 
X = Ix - X(f x + Ix/XO) 
, 

Y = Xf x + Y[ Clyf p - m ) - ( 1 - f ») y p , 
Z = (Y+M)fy(l - fp) - m Z z , 
M = Y ( 1 - fy)(l - f ) + M[Cl/p - mm) - f (1 - fp») p y 

(IL1) = lifs (miH a + mif)IL1 

(GF) = If Hz [mf(H a + Hy + Y + M) + mif)GF 

(Ag) = (la kmabAb)Ag 

(Ab) = Ib Z (m b + mabAg)Ab 

SWitching functions 

Functions which approximate the changing probabilities of the 

realization of differentiation or proliferation signals were used in 

the standard form: P(Q} = Q2/(1 + Q2). p(Q(t)}dt is the probability 

that appropriate event occurs during the interval (t, t + dt). 

fx = P{Ag/(qxCHx + Ha + Hy + X + Y + M)]} refers to the transition from 

Hx to Hy or from X to Y, respectively 
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fy = P{Ag/[qy(HX + Ha + Hy + X + Y + M)]} refers to the transition from 

Hy to Hz or Y to Z, respectively 

fa = P{GF/(qa IL1 )} refers to the 

that transition from Ha to Hy or 

fg = P{[IL1 + GF)/[qiHa + qg(Ha + 

from Ha to Hy or Hz 

transition from Ha to 

Hz will be realized 

Hy + Y + M)]} refers 

Hy under condition 

to the transition 

fp = P{GF/[qpmax(c, Ag)(H a + Hy + Y + M)]} refers to the proliferating 

fraction of appropriate cells 

fs = P{Ag/[qs(H x + Ha + X + Y + M)]} refers to the production of IL1 by 

macrophages 

Parameters 

Ix ••. rate of precursors supply, ly' la (>0) ••. proliferation rates, Ii' 

If' lb··· rates of production, my, mz ' mm.·. death rates, mi , mf , mab , 

k ..• binding rates, mif , mb , la «0) ••. decay rates, qx' qy' qa' qg' qi' 

qp' qs' c •.. parameters of switching functions where qx represents effi­

ciency of Ag presentation, qy' qs represent efficiency of Ag signal, qa' 

qg' qi represent sensitivity to signals, qp represents relation between 

GF and Ag. 

Estimation of parameter values 

lx' ly' Ib' my, mz ' mm' mb were chosen on the basis of experimental find­

ings from the literature; Ii' If' mi , mf , mif were extrapolated from our 

experiments; la' mab , k were tested within the broad spectra of values, 

and qx' qy' qs' qa' qg' qi' qp were set during simulation runs. 

Examples 

The course of the primary response as well as that of the secondary 

response was simulated by the numerical integration of the system of dif­

ferential equations. An example of computer simulation result is given 

in Fig. 2. In this example following parameter values were used: 

Ix = my = qx = qy = 0.001, ly = 0.05, Ib = 0.002, mz = 0.02, mm = 2x10-5 , 

mb = 0.005, Ii = 0.09, If = qa = qg = qi = 0.1, mi = mf = 0.07, mif = 
= 0.007, la = -0.002, mab = 0.9, k = 2, qs = 1x10-4 qp = c = 0.01. 

Initial values: Ag = Hx = X = 1, Ha = Hy = Hz = Y = Z = M = IL1 = GF = 
= Ab = O. All rate constants are related to used time scale and have 

dimension h- 1 . 
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Fig. 2. Primary and secondary responses. The simulated course of the number 
of antibody forming cells (Z), memory cells (M), amount (in arbitrary 
units) of antigen (Ag) and antibody (Ab). 

Another manifestation of the immune system is immunological toler­

ance. Because the tolerance could be proved either by different mechan­

ism than the immune response (e. g., suppression) or by the same arrange­

ment but in particular conditions, we have tried whether it is possible 

to simulate tolerance in our model of the course of immune response. The 

results are given in Fig. 3 (low dose tolerance) and Fig. 4 (high dose 

tolerance). 
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Fig. 3. Low dose tolerance. The simulated course of the number of pre­
cursors ex), antibody forming cells (Z), memory cells (M), and amount 
(in arbitrary units) of antigen (AgO = 0.001; la = -0.005). 

The results of computer simulation of this model indicate agreement 

with the present knowledge of the course of immune response. In a wide 

range of sets of parameters, during simulated immune response the antigen 

is eliminated, antibody forming cells and antibody are raised, and after 

primary response the memory cells remain in the system; the maximum of 

the secondary response is higher and is reached earlier than the maximum 
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Fig. 4. High dO.se tolerance. The simulated course of the number of pre­
cursors (X), proliferating cells (Y), antibody forming cells (Z), and 
amount (in arbitrary units) of antigen (AgO = 200; la = 0). 

of the primary response. Furthermore, this mathematical model allows us 

to simulate low dose as well as high dose tolerance. These results indi­

cate that special mechanisms (e. g., suppression mediated by suppressor 

cells) need not be the determining factor in immunological tolerance. 

(Similar conclusion results from the work of De Boer et al. 1985). 
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This model could serve, e. g., for testing the mode of influence 

an individual component might exert on other elements of the system as 

well as for desining experiments which could elucidate these interrela­

tionships. 
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1. Experimental Background and the First Mathematical Model 

Our mathematical model of immunological tolerance to human serum 

albumin (HSA) in chickens [1, 2J was formulated on experimental evi­

dence suggesting that the major mechanism underlying the inhibition of 

~ti-HSA antibody production in tolerant chickens was B cell tolerance 

[3, 4J. The relevant experiments were carried out in chickens of homo­

geneous inbred lines and that made possible lymphoid cell transfers 

among the syngeneic experimental birds. The existence of suppressor 

cells induced in tolerant chickens was not proved by these cell trans­

fers. This finding suggested a direct inhibition of immunocompetent 

cells (ICC) by the tolerizing administration of antigen. The inhibi­

tion was apparently irreversible, as escape from tolerance was not 

observed in the spleen cells of tolerant birds transferred to non-reac­

tive recipients. In contrast to the situation in mammals tolerant to 

xenogeneic serum proteins, neonatal thymectomy did not detectably in­

fluence tolerance to HSA in chickens. On the other side, neonatal 

bursectomy increased and prolonged substantially the tolerance in 

chickens. From these and other findings we concluded that T cells do 

not play any substantial role in this tolerant state and that the major 

mechanism operating there is clonal deletion or irreversible inactiva­

tion of B lymphocytes. 

The basic assumption for our mathematical model was that HSA in-
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jected early after hatching induced an irreversible inhibition of 

B cells and that the escape from tolerance was due to the spontaneous, 

antigen-independent maturation of new B lymphocytes from stem cells. 

However, the escape from tolerance calculated according to this mathe­

matical model was much faster than the escape observed experimentally. 

At the time, when our mathematical model was formulated, we observed 

that anti-HSA antibody production induced in tolerant chickens by 

a cross-reactive antigen (bovine serum albumin - BSA) was much more 

intensive than after challenge with the tolerated antigen. The rate 

of the faster recovery from tolerance observed after BSA challenge 

agreed well with the calculated data. This finding suggested that also 

in chickens, the kinetics of B cell tolerance can be detected by immu­

nization with cross-reactive antigens. There were a reasonable agree­

ment between the calculated values of the duration of tolerance induced 

in chickens by different doses of HSA and the anti-HSA antibody produc­

tion umuced by BSA challenge in experiments carried out according to 

these predictions [5]. We also compared experimental data of other re­

search groups on B cell tolerance kinetics in adult mice with the rates 

of recovery from tolerance calculated according to our model and we ob­

served a good correspondence between them [6, 7]. 

2. Prevous Attempts to Improve the Model 

Our experimental evidence did not support the T cell involvement 

in tolerance to HSA in chickens and it did not seem probable that some 

mechanism at the level of individual B cells could account for the 

different anti-HSA antibody production in tolerant chickens after chal­

lenge with HSA or BSA. Therefore, we suggested as possible explanation 

of this situation either interaction between B cells and macrophages 

or between B cells of different specifity reacting with HSA [4, 6]. 

However, our experimental data did not agree with the first explana­

tion, because there was observed neither a lack of collaborative acti­

vity nor a suppressive activity of macrophages from tolerant birds. 

Furthermore, the rate of recovery from tolerance calculated according 

to our mathematical model under assumption that antibody production 

could occur only when two B cell clones reactive to different antigenic 

determinants of the tolerated antigen were present was still much 

faster than the recovery observed in the experiments [8]. In consequence, 

we attempted to include T helper (Th ) cell tolerance in our mathematical 
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model. The first version of this model was presented at the internatio­

nal symposium "Stromal and T Cell regulation of Haemopoietic Stem Cells" 

held in Moscow in March 1984, and later published in [8]. Here we pre­

sent a more developed version of this model and discuss in greater de­

tail its implications for the understanding of the mechanism(s) operat­

ing in chickens made tolerant by the injection of HSA on the day of 

hatching. 

3. Present Modification of the Mathematical Model 

In the present version of our model, two lymphocyte categories 

specifically reactive to HSA are considered: 

(i) B lymphocytes, precur sors of antibody producing cells; 

(ii) Th lymphocytes; their interaction with HSA specific B cells is 

considered a necessary condition of antibody production. 

In both these cell categories two developmental compartments are 

anticipated: 

(i) the immature ICC compartment: I cells in the case of B lymphocytes 

and J cells in the case of Th lymphocytes (immature Th cells were 

not included in the previous version of our model [8]); 

(ii) the mature ICC compartment: X cells in the case of B, and U cells 

in the case of Th cells (U cells were called Y cells in the pre­

vious version of our model). 

There is ample evidence that immature B cells are more susceptible 

to tolerance induction than the mature ones, and a similar situation 

seems to exist also in T lymphocytes [9]. In our model we anticipate 

that the higher susceptibility of immature Band Th cells (I and J cells) 

is responsible for the relatively easy induction of tolerance to HSA in 

newly hatched chickens. We assume that at the time of hatching only im­

mature ICC - both Band Th , i.e. I and J cells, are present in chickens 

and that mature ICC differentiate only after hatching. The presence of 

mature ICC, which are less susceptible to tolerance induction, is as­

sumed to be the reason of the resistance to tolerance induction ob­

served in older chickens. The transition from the immature to the ma­

ture cell compartment and the differentiation of immature lymphocytes 

from precursor cells lacking immunocompetence are spontaneous processes 

which are not dependent on action of antigen. 

The sizes of I and X cell compartments of B cells are described by 
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the following differential equations: 

dI ( t) / d t tI [IE - I(t») - Ma(t) I(t), 

dX( t) / dt ( 2) 

where I(t) and X(t) are the numbers of I and X cells at time t, tI and 

tx are the rates of maturation of I into X cells and death of X cells, 

respectively. The quantity aCt) is the rate of irreversible inactiva­

tion of X cells by antigen and analogously Ma(t) that of I cells with 

M > 1; aCt) = aoexp(-At), where a o depends on the amount of antigen 

injected and A is the rate constant of its non-immune elimination. 

From the steady-state considerations in the absence of antigen, i.e. 

a o = 0, it simply follows that tI IE = tx XE with index E denoting the 

steady-state values. 

The following values of parameters were used during simulation 

runs (index 0 denotes the initial values): Io = IE = 50, Xo = 0, 

XE = 100, M = 5, and a o = 2.4, A = 0.72, tI = 0.2, tx = 0.1 (all 

in days-1). Denote Xc(t) the number of X cells in the controls at time 

t, which is obtained as the solution of the model equations (1)-(2) 

with a o = O. Then 

100[X(t)/Xc (t») ( 3 ) 

is the percent measure of X cell recovery from tolerance. 

The sizes of J and U cell compartments are quite analogously de­

scribed by the following differential equations: 

dJ ( t) / dt t J [J E - J(t») - P aCt) J(t), (4 ) 

dU ( t) / d t t J J ( t) - tu U ( t) - N a ( t) U ( t) , ( 5 ) 

where J(t) and U(t) are the numbers of J and U cells at time t, t J and 

tu are the rates of maturation of J into U cells and death of U cells, 

respectively. Again, in the steady-state one has t J J E = tu UE . Val­

ues of J O = 100, Uo = 0, UE = 100, P = 50, N = 5, and t J = 0.2 
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-1 
and various tu (both in days ) together with values of J E correspond-

ing to the steady state equation were used during simulation runs. 

The fairly high value of J O was assumed to describe the relatively 

fast maturation of T cell reactivity shortly after hatching. The 

percent recovery from tolerance was then measured as 

( 6 ) 

where Uc is defined by equations (4)-(5) by setting a o O. 

Because the escape from tolerance of B cells is much faster than 

that of Th cells, the latter becomes the limiting factor in the reco­

very of immune reactivity to the tolerated antigen. When B cells 

escaped already from tolerance .and Th cells are not yet reactive to 

the tolerated antigen, the challenge of the tolerant animal with 

a cross-reactive antigen can detect the recovered B cell reactivity. 

This is due to the fact that Th cells reactive to epitopes of the 

cross-reactive antigen, which are different from those shared with the 

tolerated one, can cooperate with B cells reactive to the tolerated 

antigen and help them to produce antibodies. 

The dynamics of tolerance computed according to the present model 

were compared with the relative numbers of anti-HSA antibody forming 

cells in spleens of tolerant chickens challenged with HSA at the age 

of 2, 4, or 6 weeks. In these experiments, tolerance was induced by 

one injection of 100 mg HSA administered on the day of hatching [10]. 

These experimental values are compared with the computed curves of 

recovery from tolerance for different Th lifespans in Fig. 1. Curves 

a, b, c, and d depict the r l time courses for U cell lifespans t = 
U -1 

= 0.02, 0.01, 0.007, and 0.004 (days ) and the corresponding values 

of J E = 10, 5, 3.5, and 2. The experimental values (depicted as black 

circles) agree best with the curve c for the U cell lifespan 145 days. 

This value, however, seems too high, especially for the young indivi­

duals. 

As there were described at least two types of antigen specific Th 

cells collaborating with B cells in antibody production to the same 

antigen [llJ, the mathematical model was further modified by the as­

sumption of the activity in anti-HSA antibody formation of two Th cell 

populations of the same size and lifespan. In this case the percent 

recovery from tolerance is measured as 
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t (dayS) 
50 

Fig. 1. Comparison of r 1 curves with experimental data 

(7) 

The curves a, b, c, and d depicted in Fig. 2 give the r 2 time 
-1) courses for U cell lifespans tu = 0.03,0.0225, 0.02, and 0.015 (days 

and the corresponding values of J E = 15,11..25,10, and 7.5. Recovery 

from tolerance computed according to this modification of the model was 

substantially slower than in the first one given by r 1 • Experimental 

data fitted best the curve c for the U cell lifespan 45 days. 

4. Discussion 

There is a substantial difference between our model and most mathe­

matical models of antibody production. These models simulate the proli­

ferative and differentiative processes of antibody formation, they start 

with mature ICC, i.e. the stages corresponding to our X and U cell 
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Fig. 2. Comparison of r 2 curves with experimental data 

compartments, and they do not include the immature ICC and their anti­

gen-independent maturation. Our model ends,where the models of antibody 

production start. It studies the recovery of immune reactivity in tole­

rant animals and assumes that X and U cells appearing in tolerant ani­

mals react to the tolerated antigen in the same way as the corresponding 

cells in normal animals do. Therefore, it is not necessary to model the 

process of antibody pr'Oduction after antigen challenge, as we can estimate from 

the relative intensity of antibody production in tolerant animals (com­

pared with control animals) the relative number of mature ICC at time 

of challenge [7J. 

The advantage of our model is that it was developd in mutual inter­

action with experimental work. It was not only a valuable tool in the 

evaluation of hypotheses based on the obtained experimantal data, but 

it was also a source of suggestions for further experiments. The modi­

fied version, which includes Th cells, seems to be able to explain the 

observed kinetics of tolerance to HSA in chickens satisfactorily, al­

though the available data do not allow yet to choose one of the proposed 

situations as the probable one. This conclusion motivated us to recon-
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sider experimental evidence for T cell involvement in antibody produc­

tion to HSA in chickens and to look for some explanation of the absence 

of a detectable effect of thymectomy on tolerance to this antigen. 

Experiments are going on aimed to clarify these questions. 

Our model assumes as the major mechanism of tolerance induction 

the direct inactivation of ICC by antigen. However, other mechanisms 

were observed to cause or participate in effecting the specific inhi­

bition of immune reactions in immunological tolerance [12]. An impor­

tant role seems to be played by suppressor cells. At present, there 

is also discussed a hypothesis attributing tolerance induction to an 

isolated antigen action on ICC, unaccompanied by the "second" signal, 

which is assumed to be interleukin-2 [13]. We intend to develop alter­

native models of tolerance which would include these and other possi­

bili ties. 
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INFECTIOUS DISEASE IMMUNITY, TUMOR IMMUNITY 
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1. INTRODUCTION 

At present the problems of immunity attract steady attention of the 

scientists from many countries. Such interest is not occasional. The 

proper functioning of the immune system is one of the necessary con­

ditions of the viability of man. The functions of this system are 

numerous. It defends the organism from various infectious agents like 

bacteria and viruses, provides the destruction of mutant, in particu­

lar, cancer cells. Disturbances in the functioning of the immune sys­

tem lead to various pathologies, for instance, the autoimmune and 

allergic diseases. It is also a well-known fact that immunity is one 

of the basic obstacles on the way of successful solution of the trans­

plantation of the organs and tissues. 

The human immune system can be represented as a collection of the lym­

phoid organs and tissues. With the help of the complex recognition 

mechanisms which distinguish "self" and "non-self" cells, the immune 

system produces cells and molecules that bind and destroy the "foreig­

ner". The production of such a kind of defending cells and molecules 

called the immune response. In the realization of the immune response 

there take part at least three populations of the cells: T- and B-lym­

phocytes and macrophages. Each of those populations is specialized on 

the carrying out some particular functions. 

The problems of mathematical modelling in immunology were considered 

at the IFIP International Conference in Wurzburg, West Germany, 1977; 

at the Conference on Systems Theory in Immunology in Rome, Italy, 1978; 

at the Complex Systems Modelling Workshop in Novosibirsk, USSR, 1978; 

at the IFIP Conference on Optimization in Warsaw, Poland, 1979; at the 

conference on Mathematical Modelling in Immunology and Medicine in 

Moscow, USSR, 1982. All these evidently promoted the growth of popula­

rity and prestige of this relatively new field of investigation. 

Let us enumerate some problems in which, in our opinion, the interna­

tional cooperation should be effective. 
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1. The development of the mathematical models of the immune processes 

various levels of detalization for more deep and more exact descrip­

tion of the immune and respective experimental approaches. 

Z. The investigation of the mathematical models for infectious diseases 

especially their chronic forms. Searching for more effective ways of 

treatment on the basis of immune processes control. 

3. Detailed specification of the models of the separate parts and 

mechanisms of the immune response and respective experimental approa­

ches, their comparison with experimental results and usage of these 

models for the design of experiments. This will economize time and 

materials, help to choose the most appropriate plan of the experiment 

and will guarantee the representativeness of the experimental data in 

a short time. 

4. the development of methods for clinical and laboratory data proces­

sing ahd analysis as well as data from immunological experiment. For 

solution of particular problems such as evaluation of the effective­

ness of the various methods of treatment, forecasting of disease 

dynamics. Development of the identification and parameter estimation 

techniques for the immunological process and infectious diseases 

based on the available experimental data. 

5. Coordination of the efforts in the field of software development 

in order to save time and resources and facilitate the usage of the 

software for different groups of scientists. 

Z. INFECTIOUS DISEASE AND IMMUNE RESPONSE 

In modern medical literature / 3 / the infectious disease is regarded 

as "mapping of interrelations between the members of biocenosis, one 

of which due to pathogenity mechanism is able to exist in another one, 

and the latter is able to contract to pathogenic action due to the 

defence mechanism". 

It is known that it is immune system that is one of the main systems 

of body's defence from infection. The essense of immune response to 

the invasion of genetically different substances (antigen) including 

disease stimulants is to produce the specific material substances 

(antibody molecules or cell-killers) which are able to neutralize 

these antigens. More detailed, for antigen of given type ( e.g., 

influenza or hepatitis viruses) in an organism there always exist 

so-called immunocompetent cells (small lymphocytes) which are able 

to recognize and react to the given antigen, this only. Thus, each 

concrete antigen is rigorously specific to its immunocompetent cells. 
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The interaction of an antigen with the receptors of such cell stimu­

lates the latter to proliferation and differentiation. As the result, 

after 6-9 divisions there appears a population of plasma cells, the 

main function of which is to produce antibody molecules specific to 

the given antigen. Antibodies bind antigen that caused their formation 

and promote the further removing of antigen from the body. 

We examined above a humoral immune response with responsibility of 

B-lymphocytes. The same scheme has a cellular immune response with 

responsibility of T-lymphocytes. Unlike humoral immune response, during 

cellular one there form cell-killers which are able to destroy the 

cells of their own organism damaged by antigen. Let us also note that 

T-lymphocytes can help B-lymphocytes in the development of humoral 

response. During infectious diseases, especially viral diseases, we 

can observe both forms of immune response, and what's more, antibodies 

neutralize antigen in blood and other liquids of organism, while 

killers destroy antigen in tissues of organ-target. 

Thus, an infectious disease can be considered as a conflict between 

pathogenic antigen and immune system of an organism. 

2.1. MATHEMATICAL MODEL OF INFECTIOUS DISEASE 

Simplifying the above scheme of immune response, we can turn to the 

following system of equations which was suggested by G.I.Marchuk in 

1975 / 13 / and was called the simplest mathematical model of infec­

tious disease: 

j: = (f - r F) V , 

j; ..Ie-f(F , (1) 

;; = {rm}d F(t-,)V(t-l'j -/"c (C-C*) ~ 
Jm 
JT=r:5 V-Jim m , 

with initial conditions at 

Here 

V(Oj=: VO)O, F(O)=Fo~O, C(O)={'°2-07 m(O)=mo ~O. 
V(t/- concentration (quantity) of antigen which is able 

to multiply and damage organ-target; 

F(tj- concentration (quantity) of antibodies. Antibodies 

are considered as material substrates of immune 
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system (antibodies themselves, receptors of immuno­

competent cells, etc.); 

[(t)- concentration (quantity) of plasma cells which are 

able to perceive antigenic stimulus and to produce 

antibodies in response to the latter; 

r.n(tj- relative characteristic of organ-target damage; 

J(rn)- continuous non-increasing function which describes 

the disfunction of immune system due to considerable 

organ damage: 1(0)= i, 0$ J'(m).5 i, [(1)=0. 

In the frames of model (1) the disease process is described as follows. 

At some moment t = to=O the initial doze of viruses penet­

rates into the body where it starts to multiply in the cells of organ­

target and to injure the latter. Some part of viruses meets receptors 

of immunocompetent cells that leads to their stimulation. After time 

r plasma cells appear in the organism. These cells produce antibo­

dies which bind and neutralize viruses. If the organ was damaged se­

riously enough, then the total state of an organism aggravates that 

leads to the decreasing the effectiveness of immune response. 

For the given model there have been proved the theorems of global 

existance and uniqueness of solution, its positive invariance. There 

have been also determined the conditions of asymptotic stability of 

stationary solutions of two types, one of which is interpreted as a 

healthy state of an organism, and another - as a chronic form of the 

disease. 

The numerical experiments permitted distinguishing qualitatively diffe­

rent types of solutions which were interpreted as subclinical, acute 

with recovery, chronic and lethal forms of the disease. 

The examination of the model solution properties leads to a number of 

biological conclusions. In particular, it occured that chronic forms 

of the disease appear in the process of weak stimulation of immune 

system, and one of the treatment methods is the disease aggravation 

(increase of virus concentration in an organism).The method causing 

such aggravation was suggested. It is injection of non-multiplying 

non-pathogenic antigen (biostimulant). On this basis the model of 

treatment was constructed / 13 /. 

The different modifications of the model were used for the description 

of mixed infections, hyper toxic forms of disease, and temperature 

reaction of an organism during the immune response as well as for ve­

rifying the hypotheses for effect mechanism of stimulator of antibody 
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production, for interpretation of clinical and laboratory data at 

some infectious diseases (viral hepatitis, influenza, etc.). 

2.2. MATHEMATICAL MODEL OF ANTIVIRAL IMMUNE RESPONSE 

Immune response to stimulants of viral infections in the organism, 

such as influenza, measles, poliomyelitis, viral hepatitis and others, 

includes two types: humoral response when the system of B-Iymphocytes 

produces antibodies, and cellular response, when cytotoxic T-Iympho­

cyte-effectors accumulate in the organism. It is cellular response 

that secures the defense of the organism. Antibodies neutralize viral 

particles circulating in blood but they are not capable of freeing the 

organism from infection since virions multiply inside the cells sensi­

tive to the given virus. Antibodies do not penetrate inside the cells. 

Cytotoxic lymphocyte-effectors which have accumulated after the immune 

response, detect cells affected by the virus and kill them, in their 

role as killers of cells of the host organism. Thus antiviral immune 

response of the cellular type seems to be of autoimmune nature. This, 

however, is not to be confused with the real autoimmune reaction. The 

latter involves pathological reactions of the immune system against 

normal (unchanged) cells or normal cellular antigenic substances. By 

their antiviral immunity lymphocyte-killers destroy the cells of the 

host organism affected by the virus. Apparently, this is the only way 

to clean the organism from viruses. 
Based on these facts and modern immunological knowledge of viral infec­

tion dynamics we distinguish the following main variables: 

'4(tJ- concentration of "free" viruses (viral particles freely 

circulating in the body) which are capable of multiplying 

in the cells of the organ sensitive to a given type of 

viruses; 

r1v~~ concentration of stimulated macrophages which have inter­

acted with free viruses; 

HE(t)- concentration 'of T-Iymphocyte-helpers, participating in a 

cellular type of immune response; 

£(t)- concentration of T-cell-effectors (killers); 

B~)- concentration of immunocompetent B-Iymphocytes capable of 

adopting the stimulation signal from stimulated macrophages 

and helpers (T-Iymphocytes taking part in a 

humoral response); 

P(tJ- concentration of plasma cells (antibody producents); 

F(tj - concentration of antibodies; 



69 

Cv(fJ- concentration of organ's cells infected with viruses; 

m(t) - non-functioning part of the organ damaged by viruses. 

Now we introduce the following assumptions: 

1. The quantities of "virgin" macrophages in the body M and of 

organ's cells c are considered constant and sufficiently large 

for the increase in stimulated macro phages f1v and in infected 

cells Cv to be proportional to the quantity of free viruses Vl 
2. The adoption of a stimulation signal by lymphocytes leads after a 

certain period of time necessary for their division and proliferation 

to the formation of the terminal cells' clone. To stimulate helpers 

a single signal from Mv is necessary and the double one (from 

t1v 
B 

and a corresponding helper) for the stimulation of 

cells. 

E and 

3. Part of the formed clone of terminal cells can be stimulated to 

form a new clone under a corresponding signal. The remaining part 

executes other immune functions such as help at stimulation, killers' 

effect and antibody production. 

4. The living cycle of the lymphocyte-helpers HE and HB is 

over after the interaction with lymphocytes E and B respecti­

vely (after helping E and B lymphocytes). 

5. During a certain period of time infected cells C v execute their 

normal function. Their death is due either to the development of 

irreversible viral infection or to their elimination by effectors E 
The damaged mass of the organ is therefore the value of cells killed 

by viruses plus the value of cells killed by lymphocyte-effectors. 

According to these assumptions we constructed /9/ the mathematical 

model of antiviral immune response which has the form: 

clVYdt = ~f Cv E + "-Z CV -"3 1"1 v.; - "-y II; F -.:fs l.j Cv , 

dHiJt == r1(; Hilt - ci. 7 Mv, 

dHo/clt= "g [fCm) ~(i-~)- ~(t)] -"-~ Pz(t)-d,o (I-IE-f-f;), 

dHo/di = "-11. [t(m) ~ (t -'HB) -~ (t)1 -rilz f?, (t) -drs (Ha -;-r;), 
clE/ dt ) (2) = .,( 1'/ [r (m 1.15 ~ (t -~ ) - Pz (Ij] - fi'G (v E - «/7 ( E -E~ ) , 

dB/ dt= d/s [1'(m).i/ 9 ~ (t-'d) -fy(eJ]- d zo (B- 8*), 

d'j dt= rizd1(m)I.Z2 Py (t-Z"B)1 !7(23 (P-P*), 

dFj di= ti2'! P - d zs ~ F - d.Z6 F, 
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d{, ift = «27 C"f - U<zg Cv E - ol.Z9 CV 1 

dm/df = 0(30 Cv E + ~31 Cv - U<32 m, 

fl(t)= HvI-lE, Pz (t}=fVlvf-iIEE, fj (t)=Mv/-IB , Py(t)=t1v I-lBB. 

It can be easily seen that the stationary model solution corresponding 

to the healthy body state is the following: 

* ~ v;. = M == Co = m -= 0 H = HE H8 = H T V 1/ 1 IE , 8, 

E=E~, P=P*, B=8*, F=dZyP*/ol.ZG=F*. 
( 3 ) 

As before / 9 / we are interested in simulating the entirely natural 

situation - the infection of a healthy body with a small dose of free 

viruses V;O at time t = to= 0 . This means that the system 

is in a stationary state (3) before infection, i.e. at I: < tt} , 
but at t ~ to the in fection with a small dose V.f (ttl) = V/ 
takes place. Other components at f: = to reserve their stationary 

values. 

For the system (2) we have proved the theorems of global (i.e. for 

all t ~ to ) existence of the unique solution and its 

non-negativity and have derived the stability condition for solution 

(3). A simple numerical analysis showed that this model reproduces 

the main forms of the disease, i.e. subclinical, acute with recovery, 

chronic and lethal forms. We use this model for simulating the disease 

course under the immunodeficiencies of different types. While the 

analysis of this model is not finished we are going to expand it 

introducing a specific organ (liver, lungs) rather than the abstract 

one as we have now and the local places (lymph nodes) where the immune 

response is developed. Thus our model will acquire the immuno-physio­

logical meaning. 

3. ESTIMATION OF THE MODEL COEFFICIENTS 

Let us consider the model to be a system of ordinary differential 

equations 

dxjdf: =: f (xU), rI.) , ( 4 ) 

t£[0,7]. 
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t 
where :x (t) 6 R n is vector of state variables, 0< E R is vector 

of coefficients or parameters. The peculiarity of model (4) is that 

it is linear with respect to ~ 

Let trajectory of the model variables be obtained by the experiments 

with animals or clinical observations. It means that there is a set 

of epochs of time 

X_I X X X Z 
and values of variables measured at these epochs are -l 1:0 , it. , .. " ~J 

I f the experiment is carried out with a group of m animals, there 

is a group of .traje~tor~es Xm.=[ X'. l= i 2 m) in which the 
'_[" l 7 ' I ~'O'J" 

trajectory X - Xi"'X"i 10", :X:~AI j corresponds to the observation of 

the i-th animal. The experiments are carried out, of course, with 

animals of a single strain and therefore we can consider the set of 

trajectories )(e as the result of I-times repeated experiment with 

one organism. 

The result of experiment can be not a set of trajectories but a set of 

, i. e. X"::- f Xti 1 i =I 2 rn l. , , .. " I 

performing the experiment 

t. E: g independent values of variables for 

t ~ e} . This case takes place while 

way. At the moment of time t =0 a group of in the following 

m=Lmt 
1GB 

moment t = to 
animals receive the same quantity of antigen. At 

are measured. As 

> 0 the model state variables on m-to animals 

the animals die in consequence of the measurements, 

a group of m - mto survives. Then the measurements are repeated at 

the moments of time If., i Z , .•• ,tN 

3.1. APPLICATION OF AOJOINT EQUATIONS FOR ESTIMATING THE MODEL 

PARAMETERS 

Let the model of the process under investigation be represented by the 

system of ordinary differential equations (4). Let X == Xi (~-) 
denote the known solution of equation (4) with initial values 

x(t.IJ)=Xo. We shall call it an undisturbed solution of equation 

( 4 ) • 

Assume that: - statistical errors in measuring have been removed and 

we deal with the preliminary processing data; - within the limits of 

the given accuracy 

Xt :::Xt(C<-+EI.Y.r:J.), tEB, 

where E. > 0 - a small parameter; 
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Xt (0(- +E.ori) _ a true or. disturbed solution of equation (4) with 

initial values X (1°) = X Q • 

It is necessary to estimate model parameters so that 

where 

Let us represent the disturbed solution in the following way: 

(6 ) 

If we substitute (6) in (4), compare terms with identical degrees of 

the small parameter and limit oneself by the terms of only the first 

order we shall get: 

d/(X,Z") r 
J:x: dX 

Jx(O)=o, t€lo,TJ, 

The equation conjugated to (7) has the form: 

J' fI (il :::: O. 

The function ?(t) will be determined below. 

Innerly multiplying (7) and (8) by d'ff and 

(7) 

(8 ) 

J'x. respectively, 

adding together and integrating the result with respect to time on 

o ~ t ~ T we obtain: 

< dX, p > = - < dfl, J.f (J:X~ J ) trJ. > (9 ) 

Let us choose I' (t) for 1. ~ I .. $ 17 in the form of: 

to = /, . o. ~ 17 
(10 ) 
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Then 

where 

T 17 

Yj = ~ ,?;; • tl ;=IJ "., C. 

o 

We s haIl fin d the v a ria t ion 0 f c 0 e f fie i e n t s J cI j 7 / = i, .. '7 t fro m 

the following condition: 

where 

.J\ 4,. = 

F = ( t X (&1. ), ''', t x ( -#N ) ) T, 

J X (#r ) = ( t~. (t!;.) == X -I,.. (.i) 

If; i, .0,. '+' i, #r 
e 

~ K, ~(' 
I 

~ IC, 11" 
l 

-r 17, fl.,.. , n) tl,.. 
'fe 

(l2 ) 

, =1 17 #..,. G8.! 
''''?, /, 

If undisturbed, real process state differs considerably from the true 

one, then the above algorithm could be considered as the first appro­

ximation to the solution of reverse problem. After finding the varia-
~ 

tion of coefficients Jd.,j 
calculations having taken 

ficients. 

.:. - I 2 t , d - ) !,...., .• , ...... 

o{1.= d. + J'ti 
we can repeat the 

as the vector of coef-

3.2. STOCHASTIC MODEL FOR THE DESCRIPTION OF DISTURBED MOTION 

According to the idea given in section 3.1. let us consider undistur­

bed state to correspond to ::Jet (ol) = :x (I, elJ while the observed 

or disturbed one is realized in the model (4) with 0< = 0<- + J'.J(t) 
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where a function of time. Considering i-th real 

trajectory we assume that 

x/ = :x:~ (0<- + 10</ ) 1 t E [ ~ T ] , 

As Xi = f X t ' tEe to: / 2 
" , ~,J '1·7 

m! 
8 

we consider the realization 

of random process given on the set then the function set 

t E [0 T] i -= I, 2, 0 0 OJ t' S , , 
is also a set of realizations of some random process 

Thus we come to the following stochastic model for the description of 

disturbed state of the system: 

tE:[OT1. 
1 

(13 ) 

For all these let us consider, just like in section 3.1., the distur­

bances to be small. To underline this fact we should denote the 

disturbed motion as ~CtC and rewrite the model (13) as follows: 

€ 
where X 0 is fixed, c) 0 is a small parameter, W E Q ,Q 
a sample space of random process 

Random disturbances in the right side of (14) we shall call small ones 

if with small E> 0 
confidence level: 

is close to X t (",-) with a high 

tim P [ 
E~O 

-!JUp I xi - xt (~) I > d J - 0 
ost~ T 

for any J>O 
This equality means that with small random disturbances the process 

(14) realizations with probability close to 1 are in the vicinity of 

undisturbed trajectory 

preted as formal entry 

common law ::Jet (~-J 

X t (o{) The equality can be inter-

of assumption that observed trajectories have 

To construct the model (14) let us take 

into consideration the fact that random deviations ~t :X t {d'J 
are short-lived that means they are caused by fast random variable. 

Therefore in equation (13) assume 
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where ft is random process with values in 

a small parameter. In this case 

dx C/ (E - ) / cli = f X t , at + 1 %- ' tE [t',TJ. 

E>O 

(15 ) 

Parameter E in the right side of the model takes into account 

the division of variables into fast and slow. In fact, introduce a 

new variable 
XC 

t 

to pass to a new time S ~ ';Ie 

cib{/clt = c f (1//", 

. Then from (15) we find that 

is 

Multiplier in the right side of this system shows that the state 

variables are slow. The observed trajectories formerly assumed to be 

homogeneous. In the model (15) it means that the disturbances have 

unsystematic character, i.e. E ft = 0 for all t . Moreover, 

since random variable is fast let us consider that for arbitrary 

T > 0 J' > 0 and :x ERn are uni formly on t 
t-tr 

p~ 15 [(x, cl-+ fS/. )Js -T{(-;)c, ·n/>t i"'0,(16) 
t: C 

I nth i s cas e a c cor din g- to / 1 B / we can s how t hat wit h ~ Up E I; ( -'C, ft)1 ~oO 
for any T)L7, J'>O. t 

!tin P ! ~Up I :JC: - Xt (orl{ > t ~ -= O. 
E~(J 1i~'UT 

Thus, the model (15) describes small random deviations of disturbed 

state from undisturbed -::x:: t- (.Z) 

The condition (16) is fulfilled, e.g., when at r -'> -

CO V (ft , f t + t') -~ 0 

Such assumption is natural 

is the fast variable. So, 

and it confirms with 

cov (fr, It+'C) 
the fact that 

subsides fast enough 

provided C > T where T is a characteristic time of slow 

variable change. Strictly speaking, we can consider the process ft 
to fulfil strong mixing condition /lB/ with coefficient of mixing 

~ (1:') which subsides fast with growth of , 

Then taking account of the assumptions concerning the right side of 

the model (4) and according to /lB/ we can prove the following: 

Theorem. Let components of vector-function f (:x:, If) have continu-
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ous bounded through the whole space first and second partial deriva­

tives. Assume that the random process ft: with values in Rt' has 

with probability 1 the piece-wise continuous trajectories and fulfil 

strong mixing condition with coefficient r(r) such that 

cD L/. 
J 7:"[0(£)] S d, < 00 

() 

and 
-5f.1.p E It (::c, ft) 13 < M < 00 . 

:l=,i 
Then the process 

when c: _ 0 converges weakly on interval - () -] L ) I 

(17) 

to Gaussian 

Markov process 

tial equations 
i'tO which satisfies the system of linear differen-

W ooL" where ~ is Gaussian process with independent increments, zero 

is a square matrix. 

where f c' ( X, 01 ) 

f (X, at.) and X 

and :>c d 
respectively. 

(19 ) 

are the elements of vectors 

Thus, assuming only division of variables in the system into fast and 

slaw we obtained that with essential difference of characteristic 

times of variable changes the process of deviations X/ - Xt- (at) 

can be considered as Gaussian Markov random process which satisfies 

equation 
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Equation (20) determines correspondence between the set of real 

(random) trajectories of the model variables and the solution Xi (<<). 
It allows to solve the problem of filtering the fast random variable 

~t and to estimate the vector of the model parameters. 

3.3. ESTIMATION OF THE MODEL PARAMETERS WITH MAXIMUM LIKELIHOOD 

METHOD 

Using adduced results and according to /20/ let us examine the statis­

tic estimation of the model parameters based on the principle of 

maximum likelihood. 

So, we have the model as a system of ordinary differential equations 

x (tJ)='f, , cE[OT] , 

where X t (at J is a solution 0 f the problem (21), 

vector of unknown parameters. The vector-function 

( 21) 

is a 

is 

linear with respect to ~ and its elements have continuous limited 

through the whole space first and second partial derivatives on 

XE R n 

As a result of experiment or clinical observations the ensemble )(rn 
of real trajectories of the model state variable~ has been obtained. 

The ensemble X m we consider as given on {l the set of reali-

zations of random process I x: t E [~ T] J . It is assumed 

that vector r:i exists such that 

Xi 

The solution 

the observed 

of the system 

- [ 
(0</ = E XI: 

:Xt(~) 
trajectories 

( 21 ) , i. e. 

as 

tElo T] , . 

we consider as undisturbed motion, and 

the result of small random disturbances 

dxc;lcl/ = f( x:~, .:x:C=x 
c) () 

where 1t 
Eft '= 0, 

-fC 
where J ~ 

t 

is random process with the values in such that 

is the i-th component of vector and the values 
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~ ;~. ,; j = I, 2, .... I' form a matrix of disturbances intensivities 

Taking into account the results cited above we have the system of 

linear differential equations for deviation JX-t = xi - :Xi: (cr): 

ddxl ( -; -) (I • ".r:-1.11 = A xi (al :I ~ o'Xi -+ IA-t Vc (22) 

To simplify, let us assume ~ to be diagonal. Then, taking into 

account linearity of the right side with respect to coefficients and 

the expression (21), we can write the model for deviations (22) as 

follows: 

d !x/olt' + f3(Xi ('[}}f!WJ. 
1:' (23) 

where Ii is a matrix with elements v' C i 'i (3 (:JC) is 

such that 

VVt is Winer process with increment covariation I dt I - an 

indentity matrix. 

Denote M t = E SXt 
technique cited in /11/ 

equations: 

Rt =- COV (dXi , tXt) 

we can find that ~t and 

. Then using the 

R t satisfy 

d ~/dt = A (::JC~ (cl), ;j) 1'1, , 

J ~I:/ dl = A (x, (.T/, i}Rt + Ri AYxt (~7, dJ+ {' ({ r, 1:), (24) 

where the matrix elements {' (~~ I, f) have the forms 

[1./(rJ,r, tJ=t'(Xt(~JJ r(!i(Xt(tI)})T, f= r1 r1 

Here t l(:x.) is the i-th row of the matrix 

the vector « and the matrix diagonal r 
the density function 

p ( X rn r 0(, r ) . 

B(:le:) . To estimate 

at a set Xrn write 

As the process t :Jet is Markov one, then for a single trajectory 

we have ~ 

p ( Xi (Ii, r) = .n e ( J X t . I J X t . ; 01., r ). t=, t &-1 

And since we assume the trajectories to be independent, then 
... # . . 

p (X,., I Ii, r) = .n n p ( t x;. I cfx:.: j ti., r), 
{., 1"' I r' 
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where is a deviation vector of the i-th trajectory for the 

moment of time t . From equation (23) it follows that the conditio-

nal densities under the product sign are Gaussian ones: 

p (!x/ I d xf 'd. r) = 
d 1)-1 I , 

L 

where l'1i _, and Ri_' are determined by equations (24) on interval 

[ 1:;j_I, f/l ( with /ni tial c~nditions 
i'-1; = J' X " =::x: t, -:x:.L . ( ae) 

'J-I il -f t;-I ';-1 , R.L = 0 
l: <I- f • 

We can obtain parameters estimates from the condition minimum of the 

function /S/: 

c::p (~, r) = - tn P ( X mid, r) . 
If not a set of trajectories )(m is given, but a set of independent 

values X' ,then the problem becomes simple as far as for each 

e po c h 0 f tim e t E fl , /V( t ' R I: can be f 0 u n d fro m e qua t ion s 

(24) at interval [0, T] with initial conditions 

Mo =0 , Ro =0 

It means that Mt =0 for all t E [0, TJ In this case the 

estimates of parameters 0( r minimize the following function 

Now assume that the state variables are determined with an error, i.e. 

as the result of measurements we obtain a sum: 

t E g , 
where 'It is Gaussian white noise; E? t = 0 
where S t is a diagonal matrix. In this case 

should be substituted in (25) instead of /(t 

; COV ( 7t, 'l f )= Sf, 
the matrix Rt. +S~ 

S -t can be inde-

pendent on time. M?re often the measurements are such that the mean­
""L square error Qt of deviation of measurement of the i-th state 

variable constitutes several percent of the measuring value, i.e. 

t'=I,Z A/ - }"', , 
where 1< t' 100% is a measurement error. 
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COMPARISON OF STOCHASTIC MODELS FOR TUMOR ESCAPE 

Seth Michelson 

Department of Radiation Medicine and Biology Research 

Rhode Island Hospital 

593 Eddy Street 
Providence, RI 02902 U.S.A. 

In a previous presentation (Michelson, 1983), a stochastic com­

partment model describing antigenic modulation as an intragenerational 

tumor escape route was developed. In order to distinguish that model 
from a Darwinian selection mechanism, a second, intergenerational 

model has been developed. 

Each model results in a single first-order, semi-linear, non­
homogeneous partial differential equation (PDE) for the time dependent 

bivariate probability generating function, G(s,Zjt). From each PDE, 

two systems of ordinary differential equations (ODE's) describing the 

first and second order statistical moments for the random population 
sizes are derived. 

Because of limitations in describing individual birth potentials 

as a time dependent deterministic function, solution of the ODE sys­
tems is hampered. A simulation system is therefore derived. The 
details of the system design are discussed, with the major emphasis 
directed toward modeling, realistically, the dynamics of cell popula­
tion growth. Initial results depicting tumor growth in interferon 
treated melanoma patients are presented, and indicate that this simu­

lation can effectively mimic the observed experimental data. 
The theoretical aspects of the possible mechanisms for each model 

are discussed. The phenomena of modulatory "bounce" and early 

"sanctuary" are defined. 

1.0 INTRODUCTION 

In a classic study, Boyse and his colleagues (1967) discovered 

that certain antigenic structures can be modified by exposure to an 

acti\e immune response in ~i!~. They experimented with congenic 
strains of mice, i.e., mice genetically identical except at one gene­

tic locus. One such strain is termed TL-positive and the other is 
termed TL-negative, indicating the presence or absence of TL antigens 

on normal thymocytes and leukemia cells. Boyse was able to pass TL-
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positive thymocytes and leukemia cells through sensitized TL-negative 
hosts. The cells retrieved from the passages became "TL-negative 

like," i.e., the surface concentration of the TL antigen was decreased 

to imperceptible levels. Furthermore, the antigen was found to re­
appear if these cells were further passed back through their original 

hosts. Boyse has termed this phenomenon "modulation." The experimen­

tal results further show that the time required for the modulatory 

response would indicate that the mechanism is intragenerational. 

~ ~itro experiments have been performed using T-cells as the 

immunogenic responders (Wolf ~ ~~, 1977), and Old and colleagues 
(Old et ~~, 1968) were able to induce modulation in the TL antigen 

system first used by Boyse by employing anti-TL antibody as the trig­

gering agent in vitro. 

In normal, resting cells TL antigens appear to be in an equilib­
rium state, undergoing metabolic turnover with a characteristic half­

life (Liang and Cohen, 1977). In a series of experiments Liang and 

Cohen (1977) demonstrate that this half-life is significantly reduced 

by the presence of anti-TL antibody. They found through cytotoxicity 
assays, absorption assays, and immunofluorescence assays that the rate 

of antigen degradation increased, while the synthesis and shedding 

rates for the antigen remained approximately the same. Clearly, some 
resistance to lytic programming must exist, and this resistance may 

well be a characteristic of the particular cell line and a measure of 
line adaptability. 

There is evidence that modulation acts as an active escape route 
in the therapeutic milieu as well. This may be especially true in the 

case of monoclonal antibody serotherapy (Levy and Miller, 1983). In 

particular, Ritz and his co-workers (1981) report on four patient 
histories in which monoclonal antibodies directed against common acute 

lymphoblastic leukemia antigen (CALLA) resulted in transitory thera­
peutic responses followed almost immediately by the emergence of a 

resistant subpopulation. The dynamics of the response preclude an 

intergenerational selection mechanism. 
The data cited above are all indicative of intragenerational 

escape forms. However, other data exist that implicate an advanta­
geous, stable genetic mutation (i.e., a Darwinian selection mechanism) 

as the escape route. MacDougall and his associates (1983) were able 

to develop an NK resistant subline of the K562 NK target cells by 
depleting the target population of effector-target conjugates; the 
resultant sublines could be cloned to establish partially resistant 
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subclone~. The resistant phenotype, which remained sensitive to 

antibody-complement lysis, ADCC, and effector T cells, remained NK 

resistant for over 1 year. 

Kimber and Moore (1984) found similar results in their experiments 
selecting K562 targets. They observed that the cell clones maintained 

their resistance to NK recognition and lysis for over a full year in 

continuous culture. They concluded that one of two mechanisms must 

account for the acquired populational resistance. Either the NK cells 

are not able to recognize and conjugate with the surface target struc­

tures and are, therefore, unable to program the K562 target population 

for the lytic event, or the target cells are somehow resistant to the 

NK cytotoxic factors used in the programming stage. It is possible, 

then, for a cell to be recognized, but not programmed for ei ther lysis 

or modulation. For the purposes of this research, we define "effec­
tive recognition" as the act of recognition, conjugation, and program­

ming of target cells. 

2.0 MODEL DEVELOPMENT 

2.1 Assumptions 
In the following theoretical development, a number of biological 

assumptions are made. Each of these assumptions carries with it 
implications for the mathematical development. 

1. Each cell in the initial clone is equally nourished, and there 
does not exist any form of spatial hindrance to either the acquisition 

of nutrients or the access of immune effectors. Therefore, the 1 ife­
length, mutation rate, recognition probability, modulatory capacity, 
and death rate for each cell are independently and identically dis­

tributed probability distributions. 

2. The lifelength of each cell is distributed in accordance with a 
gamma distribution (Harris, 1951). 

3. The GO phase of the cell cycle is ignored in an initial clone 
and, furthermore, the recognition capacity of the immune effectors is 

not affected by the cycle state of the target cells. 
4. The initial anti-tumor response can be described entirely as a 

phenomenological recognition function, representing the numbers, 

activity, efficiency, and specificity for target structures of the 

immune effector elements. 
The first assumption sets the framework for the theoretical 

development of a stochastic model. Assumptions 2 and 3 are used in 
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the development of a Monte Carlo simulation (Michelson, 1985). By 

ignoring GO and cycle specificity, and by assuming a gamma distribu­

tion for the lifelengths of the cells, a pipeline simulation is 

derived that represents both cell cycle kinetics and interactions 
between the targets and effector elements. The final assumption 

simplifies these interactions by circumventing immunologic feedback 

within the initial anti-tumor response. 

2.2 Model Overview: Modulation 

The model assumes two compartments. The first is the highly 

immunogenic compartment, and the second is the poorly immunogenic 

compartment. Cells in these compartments are considered homogeneous 

with respect to their target structure concentrations. They have 
randomly distributed lifelengths which are distributed in accordance 

with a gamma distribution (Harris, 1951). Cells divide and produce 

two daughters with the same immunogenic characteristics as the origi­
nal parent. 

Migration and death are specified as functions of immune recogni­

tion. However, cells may also die due to non-immune causes, and this 

is described by a constant hazard rate. It is assumed that these 
transition rates can be described as probabilities, conditioning upon 
the phenomenon of the immune response. 

The model is presented schematically in Figure 1. Immunogenic 
migration is represented in the figure by a+ and a-. Death due to 

programming by the immune effectors is represented by the parameters 
~+ and ~-. Death due to non-immunogenic hazards is represented by the 
parameters /)+ and /) -. The age dependent branching process is repre­

sented by the parameters p+ and P-. The hazard of immunogenic recog­

nition is represented as the efferent interface between the immune 
system and the target tumor. The dashed line represents the immu­
nologic feedback mechanism based on the afferent recognition of immu­

nogenicity levels in the host. This section of the system dynamics is 
ignored (see Assumption 4 above). 

2.3 Definition of Symbols and Terms: Modulation 

Define: 

Pn,m(t) = Probability there are n immunogenic cells and m non­
immunogenic cells at time t. 
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GCs,z;t) = Bivariate probability generating function for the joint 

populations. 

M+Ct) = The first factoral moment, i.e., the mean number of immu­

nogenic cells at time t. 

M-Ct) = The first factorial moment, i.e., the mean number of non­

immunogenic cells at time t. 

M2 +Ct) = The second factorial moment of the immunogenic com­

partment at time t. 

M2 -Ct) = The second factoral moment of the non-immunogenic com­

partment at time t. 

M2 0Ct) = The product moment between the two compartments at time 

t. 

Ignoring terms of oC~t), the transition probabilities required for 

the theoretical development of this model are defined as: 

a+Ct;t O) t = Prob [immunogenic cell is recognized and emigrates 

to the non-immunogenic compartment CLe., modulates) in the interval 

Ct,t + ~t) given a recognition event at time to]' 

].l+Ct;tO) ~ t = Prob [immunogenic cell is recognized and dies in the 

interval Ct,t + ~ t), given a recognition event at time to]' 

o+~t = Prob [immunogenic cell dies due to non-immunogenic causes 

in the interval Ct,t + ~ t)]. 

p+Ct) ~t = Prob [immunogenic cell divides in the interval Ct,t + 

~t) and produces two daughters, both of which are immunogenic]. 

a-Ct;t O) ~t = Prob [non-immunogenic cell is not recognized and 

immigrates in the interval (t,t + ~t), given a recognition event at 

time to]. 

].l-(t;tO) ~ t = Prob [non-immunogenic cell is recognized and dies in 

the interval (t,t + ~ t), gi ven a recognition event at time to]' 

o-~t = Prob [immunogenic cell dies due to non-immunogenic causes 

in the interval Ct,t + ~ t)]. 

p-(t)~ t = Prob [non-immunogenic cell divides in the interval (t,t 

+ ~t) and produces two daughters, both of which are non-immunogenic]. 

2.4 Model Analysis: Modulation 

The analysis of this type of model is based on the development of 

Kolmogorov-Chapman differential equations for the population proba­

bility function Pn,m(t). It is similar to the analysis performed by 

Parasarathy and Mayilswami (1981). The birth-death approach of 

Kendall (1948) and Stephanopaulos and Fredrickson (1981) is used in 

this development, and the transition probabilities describe integer 
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jumps in the joint population states. We assume for immunogenic cells 

that the probability of death due to immune recognition and program­

ming, in a small interval (t,t + 6t), is given by )J+(t;t O) 6t + o(6t). 

We further assume that death due to non-immunogenic causes in the same 
small interval is given by 5+6t + o(6t). We also assume that the 

probability of migration in a similarly small interval is given by 

o.+(t;tO) 6t + o(6t). The probability a cell divides in the same small 

interval is given by p+(t) 6t + o(6t). We further assume that in a 

small 6t, the probability of two transitions occurring is exceedingly 

small, i.e., O(6t). We assume that similar transition probabilities 

exist for the non-immunogenic transitions also. 

2.4.1 Typical Difference Equation 

P (t+ At) -
n,tn 

(n + 1 ) P ( t ) \l+ ( t ; tAt + 
n+l,tn 0 

(n-l)P (t) p+(t) At 
n-l,tn 

+ 

(n+l)P (t)o+At 
n+l,tn 

+ 

(m+l)P (t) \l-(t;t o ) At 
n,tn+l 

(m+ 1) P 1 1 (t) a - ( t ; to) At 
n- ,tn+ 

(m-l)P l(t)P-(t) At 
n,tn-

(m+l)P l(t)o.-tJJ; 
n,tn+ 

P (t)[l- ( n[ \l+(t;t o n,tn 

+ 

+ 

+ 

+ 

+ 

+ 
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(n+l )[P n+1 ,m(t) j/(t;tO ) + Pn+1,m(t) <5+ + 

P n+l ,m-l (t) a+(t;to )] 

(n-l )Pn-l ,m(t) p+(t) + (m+l )[Pn,m+l (t) ll-(t;tO ) + 

Pn,m+l(t) <5- + Pn-1,m+l(t) a-(t;to )] + 

(m-l)Pn,m_l(t) p-(t) - Pn,m(t)[n(ll+(t;t O ) + 

<5+ + a+(t;t O ) + p+(t)) + m(ll-(t;t O) + <5- + 

a-(t;tO ) + p-(t))] 

2.4.2 Bivariate Probability Generating Function (PGF) 

Multiply dPn,m(t)/dt by the dummy variables sn and zm (where sand 
z take values between 0 and 1), and then sum the differential equa­

tions over the ranges n=O to infinity and m=O to infinity. If we 
define 

00 00 

G(s,z,t) = r r Pn,m(t)snzm 
o 0 

we may then derive 

CiG ( s • z • t ) / at • [0- s )( II + ( t) + <5 + _ 

(z-s) a+(t)] aG/ as + 

[(l-z)( )J- (t) + 15- - p-(t)z) + 

It is possible from this partial differential equation to derive 

expressions for the first and second factorial moments in the form of 

ordinary differential equation systems. 

2.5 Moments With Respect to Time 
2.5.1 Mean 

Define at s=1, z=1: 
M+(t) = dG/ds 

M-(t) = dG/dz 

as the first factorial moments of the populations in the respective 
compartments. By definition, these are the expected values of the 
compartmental population sizes as functions of time. We may then 
derive: 
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+ a (t) -
+ + 

p (t»M (t) + a-(t)M (t) 

dM (t)/dt - -( ],J-(t) + cf+ a (t) -

p-(t»M- (t) + a+(t)M+ (t) 

This forms a 2 X 2 Ordinary Differential Equation system, with the 
initial conditions 

M+ (0) = 1 

M- (0) = O. 

These conditions correspond to the situation in which a single 

cell becomes malignant at an arbitrary time (which we call zero) and 
that it is initially immunogenic to the host. 

2.5.2 Second Factorial Moments 
Define at 5=1 and z=1, 

M + 2 (t) = d2 [G(s,z,t)]/ds2 

M -2 (t) = d2 [G(s,z,t)]/dz2 

M 0 2 (t) = d2 [G(s,z,t)]/dsdz 
as the second factorial moments of the two respective populations, and 
the product moment between the two populations. 

Then it can be derived as above, 

where 

dM 2+ (t)/dt - p+(t)M + (t) - 2 e+(t)M2+ (t) + 

a-(t) M20 (t) 

dM 2- (t)/dt - p -(t)M (t) - 2 e-(t)M2- (t) + 

a+(t)M 20 

dM 0 (t)/dt _ -[ 
2 

+ + a (t)M 2 

(4) 

e+(t;t o ) - (u+(t;to ) + 6+ + a+(t;t 0) - P+(t» 

and similarly for B -(t;~) 

If we supply the initial conditions 
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M20 (0) = 0 

then we have a well-defined 3 X 3 Ordinary Differential Equation 
System for the second factorial moments and the product moment as a 

function of time. 

2.6 Model Overview: Darwinian Selection 
If an inter generational escape route were to exist, there must 

also exist some sort of mutation rate for surface target structure 
alteration during mitosis. The mutation rate is expressed as a proba­
bility that a cell resulting from mitosis has a different immunologic 
character than its parent. The change in character is assumed to be 
the result of some alteration in the concentration of the surface 

target structure. Because we assume these rates are very small, Le., 

it is more likely that a cell remains like its parent than it changes, 
we specify these mutation rates in our model as 1 - 0+, and 1 - a 
Here 0+ is the probability that an immunogenic parent yields an immu­
nogenic daughter at mitosis, and a-is the probability that a non­

immunogenic parent yields a non-immunogenic daughter at mitosis. 
The model is based upon essentially the same biological and mathe­

matical assumptions described above. The only difference between the 
two models is the specification of intercompartmental communication. 
In this model, the only way a cell can enter the alternate compartment 
is if its surface structure, and hence its "immunogenicity," is 
altered as a result of mitosis. The essential points concerning 
death, immune recognition, cycle kinetics, etc., remain unchanged. 

The model is then represented as in Figure 2. As described above, 
the interactions between the immune system and the tumor are through 
the effector elements of the system only. Therefore, the affector arm 
of the immune system is represented by a dashed line in Figure 2. 
Death, both from immune and non-immune causes is represented by the 
parameters 

as described above. Reproductive parameters p+(t) and p -Ct) are also 
as described above. The inter compartment communications are now 
represented by the parameters 0+ and 0-. 
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2.7 Definition of Symbols and Terms: Darwinian Selection 

To facilitate the understanding of the model and to allow for easy 

comparisons between the two escape routes, the mathematical notations 

and parameter definitions as defined above remain intact in this 
derivation. If we define: 

1-0+ = Prob [dividing immunogenic cell produces one immunogenic 
offspring). 

1-0- = Prob [dividing non-immunogenic cell produces one non­

immunogen i c offspr ing). 

The definitions are now complete for this derivation. 

2.8 Model Analysis: Darwinian Selection 

As in the previous case, the analysis of this type of model is 

based on the development of Kolmogorov-Chapman differential equations 

for the populational probability function Pn,mCt). The same mathe­
matical assumptions we employed above in the derivation of the intra­

generational models, especially those used to define the transition 

probabilities, are assumed here. 

2.8.1 Typical Difference Equation 

+ 
(n+l)Pn+l ,m(t) IJ (t;to ) lit + 

+ 
(n+l)Pn+l,m(t)o lit + 

(m+l)P let) IJ-(t;to )lI~ + n,m+ 

(m+I)P let) o-llt + n,m+ 

(m-I)P (t)p-(t)(o-)2 lit + 
n,m-l 
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(m+1)P 2 1 (t)p-(t) (1 - 0) 211t + 
n- ,m+ 

P (t)[l - ( n[ \I+(t;t ) + p+(t) + 6+] lit) + 
n,m 0 

( m [ \1- (t; to ) + p - ( t) + 6 -] llt)] 

+ o(llt) 

2.8.2 Bivariate Probability Generating Function (PGF) 

Performing a similar analysis as that above provides us with our 

differential equations for each Pn,m(t). Multiply dPn,m(t)/dt by the 

dummy variables sn and zm, where sand z are between 0 and 1 and, as 

above, derive the same double sum from n=O to infinity and from m=O to 

infinity. If we again define 

c>ooo n m 
G(s,z,t) = L L Pn m(t)s z 

o 0 ' 

we may then derive 

3G(s,z,t)/at 

+ 

52 (1 - o-t - z]aG/az • 

Note: 5 2 (0 )2+ 25Z( 0)(1 _ 0) + z2(1 _ 0)2. 

(5( 0) + z(1 - 0»2 

Therefore, 

+ 



95 

a G/Ot [(1-s)( / (t) + 0+) + 

[(1-z)( lJ-(t) + 0-) + 

z)] ~/oz. 

It is possible from this partial differential equation to derive 

expressions for the first and second factorial moments in the form of 

ordinary differential equation systems for our inter generational 

model. 

2.9 Moments With Respect to Time 

2.9.1 Mean 

Define at s=1, z=1: 
M+(t) = dG/ds 

M-(t) = dG/ds 

as the first factorial moments of the populations in the respective 
compartments. By definition, these are the expected values of the 

populational random variables as a function of time. Then, 

dM +( t) / d t - M + (t)[ - ( lJ + (t) + 0+ ) + 

p + ( t)( 2 (0+) - 1)] + M- ( t) 2 (1 - cr ) p - (t). 

dM-(t)/dt - M-(t)[-( lJ-(t) + 0-) + 

p - ( t )( 2 (0- ) - 1)] + M+ ( t) 2 (1 - 0+ ) P + (t). 

This forms a 2 X 2 Ordinary Differential Equation system, with the 

initial conditions 
M+(O) = 1 

M-(O) = 1 
These conditions correspond to the situation in which a single 

cell becomes malignant at an arbitrary time we call zero, and that it 

is initially immunogenic to the host. 

2.9.2 Second Factorial Moments 

Define at s=1 and z=1 
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M20 (t) = d [G(s,z,t)J/dsdz 

as the second factorial moments of the two respective populations, and 
the product moment between the two populations. 

Then it can be derived as above, 

dM 2+ /dt .. p+(t)2(0+j M+(t) + 2M/ (t)[-( )J+(t) + 

15+) + P+(t)( 2(0+) - 1)] + 4 M20 (t)(1 - (o-»p-(t) 

dM 2- /dt - p-(t)2(0- j W(t) + 2M 2- (t)[-( )J-(t) + 

15-) + p-(t)( 2(0-) - 1)] + 4M ° (t)(1 - (o+»p+(t) 
2 

dM20 (t)/dt .. 2 p+(t)(o+)(1 - o+)M+(t) + 

2p- (t)(o-)(1 - 0- )M" (t) + 2(1 - 0+) pi:t)M 2+ (t) 

+ 7(1 - 0-)p""(t)M 2- (t) + M20(t)[[-()J+(t) 

+ 15+) + P + ( t )( 2 (0+ ) - 1)] + [- ( )J - ( t) + 15- ) 

+ p - ( t )( 2 (0 - ) - 1)]] 

If we supply the initial conditions 

M20 (0) = 0 

then we have a well-defined 3 X 3 Ordinary Differential Equation 

System for the second factorial moments and the product moment as 

functions of time. 

2.10 Modulatory "Bounce" and Early Sanctuary 
Modulation, by its very nature, is reversible. Individual cells 

which intragenerationally escape the anti-tumor response, will demodu­
late as a function of their recognition status. If a cell has been 

effectively recognized (Le., been recognized, conjugated with, and 
programmed for modulation or lysis), it will react by either modu­

lating or dying. 

Clearly, recognition of a target cell by an immune effector is a 
function of the response level and the target's immunogenicity. If we 

assume that in the face of an overwhelming response (e.g., an in vitro 

modulation experiment), the loss of cells from the immunogenic com-
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partment can be approximated by an exponential decay function, then, 

as a first approximation, we can assume that the hazard for recogni­

tion and modulation is a constant, K,. Then, the conditional (transi­
tion) probability that a cell will be recognized and modulate, given a 
recognition probability, f(tjt O)' is 

K,f(tjtO) lit + o(lIt). 

Similarly, a cell will begin demodulating once it has not been 
effectively recognized. The probability that it is not recognized is 

a function of the immune response levels, as well as the cell's "immu­

nogenicity." Define the immunogenicity of any cell to be the percen­

tage of its original surface concentration of target structures. We 
call that fractional scale S. If the loss of cells from the non­
immunogenic compartment may also be approximated by an exponential 

decay function (with constant hazard rate, K2), the probability that a 

cell demodulates in any small interval, 6. t, is given by 

K 2 (, - S f (t j to» lit + 0(6. t ) . 
Given these expressions for the transition probabilities (see 

Figure 3), and assuming that immediate transitions exist between the 
compartments, there exists a point in time at which f(t;t O) assumes a 

value such that any cell which has modulated is as likely to demodu-
A 

late as it is to remodulate. This value, f, is given by the solution 
of 

K,f(t;tO) 6.t + o(lIt) = K2 (, - S f(t;tO» 6.t o(6.t) 
or, ignoring terms of o(6.t), 

A 

f = K2/(K, + S K2 ) 6.t. 
We define modulatory "bounce" as the phenomenon of individual 

cells demodulating and remodulating to and from immune sanctuary. If 
A 

the hazard for recognition achieves a level above f, the system is 
said to be in a "modulatory" mode. By this we mean that on an indi­

vidual level, a cell is more likely to be recognized and modulate than 
it is to be not recognized and demodulate. On the other hand, if the 

A 

hazard of recognition does not achieve a level as great as f, the 
system is said to be in a "demodulatory" mode. 

A 

The derivation of f has depended on the assumption that the 
transition from compartment to compartment is immediate, and that the 

cells do not traverse a spectrum of immunogenicity when demodulating. 
This supposition is addressed in a more complete discussion below. 

However, even in that more complete model, the transitioning, or 

"bouncing", from compartment to compartment is characteristically 

intragenerational. Cells escaping intergenerationally only alter 
their immunogenic character at mitosis; and, as discussed below, this 
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type of transition must attain sanctuary early in the clonal evolution 

of the tumor. 

3.0 DISCUSSION 

3.1 Escape Profile 
Our research has been based on two questions: How and why do 

tumor cells escape the immunogenic defenses in healthy animals? And, 

more specifically, Is there any observable difference in escaped 

tumors that we can exploit to give us some insight into the original 

escape mechanism employed by the tumor? 
The early research of Boyse and his colleagues, Esmon and Little, 

Ritz and his co-workers, and Liang and Cohen, indicate that the modu­

lating tumor cells, while kept under immunogenic pressures, are able 

to maintain their "non-immunogenic" character. As Liang and Cohen 

pointed out, these cells are not completely devoid of their surface 

(target) structures. But they do maintain surface concentrations so 
low that the probability of an immune effector element recognizing 

them as foreign is substantially decreased (i.e., they remain non­
immunogenic). Fenyo and her colleagues (1968) observed in their 

virally induced tumors antigenic concentrations as low as 10% of 

normal. Young and Hakomori (1980), in their experiments, observed 

tumors with only 50% of the target antigen on their surfaces. 
If the tumor cells escape by employing the intragenerational 

escape routes implicated in the Boyse type experiments, and if they 

need escape from only an initial (i.e., primary) response wave, and if 

the host does not mount a secondary immune response, then we may 
hypothesize that the initial transition to the non-immunogenic state 

is easily reversed when the immune response subsides. The resultant 

tumor, then, will emerge as an immunogenic clone. Why the host does 
not mount a secondary response or continue with some level of resis­
tance in the primary response are matters for speculation beyond the 

scope of this research. However, if future research is pursued, these 
types of immune responses must be considered. 

Suppose, on the other hand, that the escape route followed by t.he 
tumor is primarily intergenerational. In other words, a beneficial 
Darwinian style mutation occurs during some early mitosis. In our 

development, we have assumed that this type of mutation results in an 

alteration (decrease) in the concentration of the surface target 
structures. The result of this mutation is the development of "non­

immunogenic" offspring. If we apply the same theoretical constraints 
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to the immune response that we just mentioned, then one can expect 

that the initially escaping tumor cells are more likely to be non­

immunogenic, and that safe and early sanctuary should result in a non­

immunogenic tumor. 
The details of the two escape mechanisms are discussed in greater 

detail below. However, it may prove instructive to study these two 

scenarios further. 

Individual realizations from a series of simulations were plotted 
using the SASGRAPH facility at UCLA/OAC. Each plot is given as popu­

lation size versus time. The actual population in each compartment in 
each realization was stored at the end of each simulated day. The 

results show that our simulations stopped in one of three states. The 
realizations either went extinct, escaped (according to our stopping 

rule), or the simulated time expired. The three classes are depicted 
throughout the plots (see Figures 4 to 15). 

These curves were generated by the realizations which were gene­
rated in our simulation of interferon activation experiments conducted 

by Golub ~ ~h (1982a, 1982b). The levels of response and the 
dynamics of the various arms of the effector response are described 

elsewhere (Michelson, 1985). However, the main points for this dis­
cussion are included in the figures. Figures 4 to 9 represent intra­
generational escape profiles. The tumor cells are escaping to the 10% 
immunogenicity level, and have an antigenic half-life of 12 hours. 

In escaping populations, Figures 6 and 7 and even in populations 

that exceeded our simulation time limit, Figures 8 and 9, the tumors 

that eventually grew were immunogenic in character. The ability to 
"bounce" between the immunogenic and non-immunogenic compartments (see 

arrows on these figures) was fundamental to the escape. In popula­

tions that went extinct, Figures 4 and 5, even though transitory 

growth in the non-immunogenic compartment is observed, minimal modula-
tory "bounce" is still recognizable. Therefore, in intra genera-
tionally escaping populations, with a single, primary, anti-tumor 

response wave, any tumor that does escape will eventually return to 
its immunogenic character. Furthermore, modulatory "bounce," while a 

necessary process for escape, is not a sufficient one. 

Consider Figures 10 to 15. These figures represent the three 
classes of escape profile generated by realizations of simulations of 

intergenerationally escaping tumors. 

In these instances, escaping populations, represented by Figures 

12 and 13, result in essentially non-immunogenic tumors. The escape 
is facilitated by an early mutation to a non-immunogenic sanctuary. 
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However, as in the case of modulatory "bounce," this escape route 
proved to be necessary but not sufficient for escape (see arrows in 

Figures 10 and 11). The concomitant growth of an immunogenic subpopu­

lation in the escaping tumors is the result of a late mutation suf­

fered by a dividing non-immunogenic parent. Early reversion to an 

immunogenic character, one which might have occurred during the height 

of the immune response, is less likely to establish a flourishing 
immunogenic colony within the tumor. 

Clearly, these experiments are simplistic. However, if we know 
something of a tumor's escape mechanism, these results can give us 

some insight into type of tumor we can expect to observe. 

Before we discuss the implications of modulatory "bounce" and 

"early sanctuary," it may be instructive to speculate upon the types 

of tumors we should expect to see under more realistic circumstances. 

Suppose that rather than assuming these cells grow in an unin­

hibited spatial conglomeration, we assume that the tumor takes on a 

spherical shape, so that access to the core cells is sterically hin­

dered. Then, in an intragenerationally escaping tumor, we would 

expect that those cells freed of immune interactions would revert to 
their original immunogenic character. We should expect that a cross 

section of the tumor would be "immunogenically anular." Non­
immunogenic cells should occupy the outer shell, while the core would 

be mostly made up of immunogenic cells. However, there may also exist 

isolated foci of non-immunogenic cells occupying the spaces around any 
angiogenically induced blood supply points. 

Cells that escape intergenerationally should present a more com­

plete mosaic of cellular distribution. Selective pressures should 
insure that non-immunogenic cells will continue to make up the outer 

shell of the solid tumor. However, a conglomerate of immunogenic and 
non-immunogenic cells should make up the tumor core. Because early 
escape was probably based in the non-immunogenic compartment, the 
interior should be composed, on the most part, of non-immunogenic 

cells. Within this non-immunogenic volume, a random (Poisson) distri­

bution of immunogenic foci should exist. The intensity of the random 

mutation process should correspond to the distribution of immunogenic 
foci. 

In and of themselves, these theoretical results are intellectually 
stimulating. But consider them within the context of autograft 

experiments which date back to the late 1950's (Grace and Kondo, 
1958), A number of experiments were conducted in which tumor grafts 
from terminally ill patients were re-implanted into the patient at 
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sites distant from the original resection (Nadler and Moore, 1965; 

Kioke, et ~~, 1963; Grace, ~ a1., 1961). The motivation for these 

studies was the observation that surgery could inadvertently spread 

fragments of the primary or metastatic lesions within the patient, 

resulting in new, malignant foci. The investigators wondered whether 

this dispersion could account for an actual relapse to the disease 
state. 

What they found is that even in patients with actively growing 

disease, either autografts of solid tumor fragments, or saline-based 

innocula were usually rejected. The rejection rates ranged from 87.5~ 

(14/16) to 86.6~ (71/82). Additionally, in autologous graft experi­

ments, Kioke and his colleagues found that tumor takes occurred only 

when solid fragments were used as the graft. Tumor homogenates were 

routinely rejected. 

Suppose we consider these data within the context of our theoreti­

cal results. Suppose that the tumor grafts were derived from an 

intergenerationally escaping clone. If our suppositions about the 
three dimensional structure of the solid tumor are correct, then any 

solid graft to a remote site should present a stable, non-immunogenic 

surface to the host defenses. However, unless the mutation rate is 
rather high (e.g., 5~), the tumor innocula should also be stably non­

immunogenic. 

Now, suppose that the tumor grafts were originally derived from an 

intragenerationally escaping clone. Then the surface of any solid 

tumor graft, while not stably non-immunogenic, will remain non­

immunogenic as long as an adequate immune pressure is maintained. 

However, an immunogenic face might be part of the graft. This face 
could either revert to the non-immunogenic state, or cause a rejection 

of the graft. Secondly, when tumor cells are extracted, minced, and 
resuspended in a saline innoculum, cells of the immunogenic center 

become accessible to the elements of the immune system. Further, it 

is not clear whether these experimental manipulations affect the non­
immunogenic character of the surface cells. It is possible that they 

can cause some demodulation as well. 

The fact that both innocula and solid grafts were routinely rejec­

ted, and that no case of innocula-based transfer ever resulted in a 
tumor take, would seem to imply that these tumors originally escaped 

intragenerationally. However, it might also be true that local immu­

nosuppressive agents (e.g., the T-suppressors as observed by Kripke 
and Fisher [1982], and Gransten et a1. [1984]) are actively protecting 
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the tumor cells at their original site. Further study into this 
possibility should be pursued. 

3.2 Escape Mechanisms 

We have just described two types of escaping populations and their 

immunogenic escape profiles. In this section, we will discuss the 

actual escape mechanisms employed by these populations and the poten­
tial clinical ramifications they may post. 

Recall that we defined the phenomenon of modulatory "bounce" 

above. The "bounce" resulted from the fact that a modulated cell is 

less immunogenic than it was originally. Therefore, the probability 
that it will be recognized in any small interval, of length lit, is 

proportionately decreased. As a first approximation, we used a linear 

proportionality constant that represented the decreased concentration 
of surface target structures. By assuming that an instantaneous 

transition between the immunogenic and non-immunogenic states existed, 

we were able to derive a value for the recognition probability level, 
f, at which a single cell was as likely to modulate as it was to 

demodulate. Recall that the value of f was given by 

f = K2 / (K 1 + S K2 ) 

From this definition, we defined two modes of activity for intra­
generationally escaping cells. The first, the modulatory mode, was 

observed when the probability of recognition attained a level greater 

than f during any similar interval. 

Because we assumed that K1, K2 , and S were inherently defined as 
characteristics of our tumor populations, we were able to derive a 

single theoretical value for r. However, suppose the demodulatory 
process is a gradual renewal of target structure concentrations. Then 

for cells to return to their original status, they must traverse a 
spectrum of increasing immunogenicity (much like our simulated cells 

do in the parallel pipe model [Michelson, 1985]). Then, at any point 

during the return journey, we can associate a unique surface concen­
tration parameter (between 0 and 1) with each individual cell. 

As a function of these surface concentrations, then, cells that 

are less likely to be recognized for a given level of f(t;t O) are in a 
demodulatory mode. The more immunogenic cells, however, may be in a 

modulatory mode. Therefore, cells may "bounce" back and forth between 

these modes as the recognition function and surface concentrations 
traverse their respective spectra. 

In the entire discussion above, we have completely ignored the 

inherent capacity of each cell to survive in a hostile environment. 

If we define "adaptability," v, to be the ratio of the probability 



116 

that a cell, once recognized, will modulate versus the probability it 

will die, our simulation results showed that the more adaptable a 

tumor clone is, the more likely it is to survive and escape. 

These two phenomena, working together, determine whether an intra­

generationally escaping tumor clone wi 11 avoid the immune response, 
develop an active, growing tumor, and display the three-dimensional 

characteristics hypothesized above. 

For intergenerationally escaping tumors, the escape mechanism is 

much simpler to describe. If a cell, early in the tumor's evolution, 

can attain immunologic sanctuary, then the tumor is more likely to 

escape the host defenses. And, except for random foci of immunogenic 

character, the escaping clone will be predominantly non-immunogenic. 

The way a tumor escapes may eventually impact the effectivity of 

various immunotherapeutics. Consider, first, intragenerationally 

escaping tumors. If a tumor clone is small enough so that we can 

ignore any stereo-geometric sanctuary, then it is possible for a 
clinical regimen to be designed so that we may take advantage of the 

modulatory "bounce" phenomenon. 

Two therapeutic options present themsel ves. Firstly, treatments 

could be timed and dosed so that the level of recognition activity at 

the tumor site (as a function of effector numbers, specificity, etc.) 
is maintained at levels just below our theoretical threshold f for 

extended periods of time. This strategy attempts to maintain a con­

tinuous demodulatory mode for the individual cells, forcing them to 

bouhce back to their immunogenic state once they have modulated. At 
each subsequent recognition, the cells would again be forced to either 
modulate or die. 

The second therapeutic option also takes advantage of modulatory 

"bounce." In this scenario, the active immunological agents are 

infused in bolus doses at pre-determined time points. The periods for 
these injections are determined so that they coincide with the peak 

"bounce back" times of the non-immunogenic cells. Again, the popula­

tion as a whole will be forced to remodulate or die. 

Adaptability may be a determining factor in the choice of the 

eventual course of treatment. If a clone appears to be very adaptable 
(i.e., v « 1.0), then we would probably want to "hit" the cells as 

many times as possible during the treatment period. Then the cells, 

which have only a small chance of dying on each "hit," will be "hit" 

so often that, by sheer numbers alone, they will eventually lyse. The 
best way to accomplish this would be to maintain the recognition 

levels just below our theoretical threshold, r. In other words, we 
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would want to employ the first treatment strategy. 

On the other hand, if the cells prove less adaptable (Le., v> 
1.0), the second therapeutic option may prove to be the therapy of 

choice. In this scenario, if cells are not modulating as often as 

they are being killed, many large, single doses of the anti-tumor, or 

immunoactivating, agent may be a more efficient treatment schedule. 

Consider, now, tumors which escape intergenerationally. Clearly, 

cells attaining immunologic sanctuary during the tumor's evolution can 

not be given any respite from the hostile immunologic pressures. 

Furthermore, as discussed in greater detail below, an intergene­

rationally escaping tumor clone must be "hit" hard and "hit" early. 
Once a cell has escaped to the (stable) non-immunogenic state, the 

chances of completely destroying the tumor are poor. 

Therefore, if cells escaping intergenerationally are to be 
treated, it must be assumed that they are stably non-immunogenic. 

Even therapeutic strategies which are designed to prophylactically 
guard against the spread of metastases should be designed with this 

consideration in mind. And because of these obvious constraints, 

immunotherapy directed against these types of tumors may prove to be 

wholly ineffective. 
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ABSTRACT 

A relatively detailed model of 

T-lymphocyte interactions has 

experimentally described 

been developed. In this 

macrophage 

model we 

investigate the immune response to tumors that differ in antigenicity 

and/or in initial size. Having deliberately omitted from the model 

tumor escape mechanisms (e. g. suppression, antigenic modulation or 

heterogeneity), we study the circumstances that nevertheless 

progressive tumor growth. 

lead to 

The model behavior shows that: (1) tumor antigenicity can best be 

defined in terms of helper T cell reactivity; (2) small differences in 

the availability of HTL (*) markedly influe~ce tumor rejectability; (3) 

compared with the impact of macrophages, the impact of CTL increases 

more with increasing tumor antigenicity; and (4) 

tolerance are intrinsic to this model. 

sneaking through and 

HTL have a large impact on the model behavior (i.e. the immune 

response) because there are self-reinforcements in the HTL activation 

and proliferation process. Interestingly, unresponsiveness (tolerance) 

evolves in this model, despite the presence of these 

self-reinforcements and the absence of negative interactions (e. g. 

suppression). Tolerance is caused by a proliferation threshold that 

comes into existence when T-Iymphocyte effectors are made short-lived. 

We discuss the advantages of using numerical integration combined with 

numerical phase state analysis. Stable steady states in this model do 

exist but are of minor importance. 

ABBREVIATIONS: ANGRY cytotoxic macrophage(s), 
cell(s), CTL cytotoxic T-Iymphocyte(s), CTLP 
helper T-Iymphocyte(s), HTLP HTL-precursor(s), 
interleukin 2, MAF macrophage activating 
macrophage(s), NK natural killer cell(s). 

APC antigen presenting 
CTL-precursor(s), HTL 
IFN interferon, IL 2 
factor, MPH normal 
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INTRODUCTION 

Immune reactions usually involve interactions between a large number of 

cell types. Mathematical models in immunology are however normally 

simplifications, representing only part of the available immunological 

data. Two types of model simplifications should be distinguished: 

those imposed by the modelling formalism (and the method of analysing 

the model) and those imposed for reasons of informatic minimalization. 

In order to obtain insight into the dynamics of complex systems, the 

former type of simplification should be minimized, 

type should be maximized. 

Models that incorporate only part of 

whereas the latter 

the data, i.e. 

cell-interactions experimentally known to exist, exhibit behavior that 

corresponds to experimentally known phenomena. The investigation of 

the relationships between the set of incorporated interactions (i.e. 

the micro level) and the model behavior (i.e. the macro level) [1] 

provides insight into the role of the various processes that are 

involved in immune reactions. Moreover, it is possible to pinpoint the 

"key interactions" responsible for generating a specific phenomenon if 

all redundant interactions are removed, i.e. a model is simplified 

(e.g. [2]). 

Here we investigate immune responses to tumors, i.e. antigens 

capable of endless replication. Many different effector cells are 

known to playa role in the immune resistance to tumors: e.g. NK cells, 

B cells, helper T cells, cytotoxic T cells and macrophages [3]. Our 

model specifies only a subset of these cells (i.e. helper and cytotoxic 

T cells and macrophages), and only one compartment is taken into 

consideration. The interactions between the incorporated cell types 

are however specified in a relatively "knowledge oriented" way. 

Interestingly, the behavior of the model is diverse, and corresponds to 

a number of phenomena described experimentally. 

We have incorporated the following data in the model (Bee 

Table 1 and Fig. 1): a) small tumors grow exponentially [4], large ones 

linearly; b) T-Iymphocytes and macrophages can become cytotoxic towards 

tumor cells [3); c) macrophages process tumor cell debris (which 

accumulates upon normal tumor cell death and upon tumor cell lysis), 

and present the processed tumor associated antigens in an antigenic 

form [5]; d) HTLP activation requires antigen presentation, whereas 

CTLP activation does not [6] ; 

proliferation (in response to IL2) 

e) 

[7 , 

CTL 

8) , 

and HTL are capable of 

whereas macrophages are not 

[9]; f) CTLP maturation into the CTL stage requires the presence 
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Table 1. FORMAL REPRESENTATION OF THE MODEL 

APC (MPH + ANGRY)*DEBRIS/(KMD + DEBRIS) 
FACTOR HTL*APC/(KMP + APC) 
INFLAM H*FACTOR/(KMF + FACTOR) 
dCTLP/dt II + Il*INFLAM - A*CTLP*TUMOR - EL*CTLP 
dHTLP/dt 12 + I2*INFLAM - A*HTLP*APC - EL*HTLP 
dMPH/dt 13 + I3*INFLAM - A*MPH*FACTOR - EM*MPH 
dPCTLP/dt= A*CTLP*TUMOR - A*PCTLP*FACTOR - EL*PCTLP 
dCTL/dt A*PCTLP*FACTOR + P*CTL*FACTOR/(KMF + FACTOR) - DL*CTL 
dHTL/dt A*HTLP*APC + P*HTL*FACTOR/(KMF + FACTOR) - DL*HTL 
dANGRY/dt= A*MPH*FACTOR - DM*FACTOR 
dTUMOR/dt= R*TUMOR/(I+TUMOR/KR) - KILL*(ANGRY+CTL)*TUMOR/(KMK + TUMOR) 
dDEBRIS/dt=-ED*DEBRIS + D*TUMOR + KILL*(ANGRY+CTL)*TUMOR/(KMK + TUMOR) 

Table 1. The cell interactions specified by the model. Tumor cell 
killing is effected by two effector cells: cytotoxic T-Iymphocytes 
(CTL) and cytotoxic macrophages (ANGRY). CTL precursors (CTLP) require 
both activation by antigen (TUMOR) and stimulation by lymphoid factor 
(FACTOR) before they transform into cytotoxic effector cells, which are 
capable of proliferation. Transformation of macrophages (MPH) into 
their cytotoxic effectors (ANGRY) is caused by lymphoid factors 
(FACTOR) released by activated helper T cells (HTL) upon restimulation 
of the latter by antigen presenting cells (APC). Only HTL produce 
lymphoid factors; the different factors are assumed to be kinetically 
identical and are combined into one variable (FACTOR). HTL precursors 
(HTLP) become activated (effectors) upon interaction with APC. 
Effector T-Iymphocytes (CTL, HTL) proliferate in response to 
interleukin 2 (FACTOR); effector macrophages on the other hand can only 
be formed from their precursors. The influx of precursors is increased 
with INFLAM during an inflammation reaction. The intensity of the 
inflammation reaction depends on the concentration of lymphoid factors 
(FACTOR). Effector restimulation (KMP), proliferation stimulation 
(KMF) and tumor cell killing (KMK) [49] follow conventional 
Michaelis-Menten kinetics. ~ ~ 

> 8B~/e 

Figure 1. The interactions 
incorporated in the model. 

~ PCTLP ~ 
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8 
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Table 2. PARAMETER SETTING OF THE MODEL 

A 10- 3 activation rate per cell per day 
D 0.1 DEBRIS generation rate units per cell per day 
DL 0.02 or 0.2 lymphocyte effector decay per day 
DM 1.0 cytotoxic macrophage decay per day 
ED 2.0 debris decay per day 
EL 0.02 lymphocyte precursor efflux per day 
EM 0.05 normal macrophage efflux per day 
H 9.0 inflammation constant 
11 1.0 or 200 CTLP influx cells per day 
12 0.01 to 1000 HTLP influx cells per day 
13 125000 macrophage influx cells per day 
KILL 10.0 
KMD 10 7 

killing capacity cells per cell per day 
presentation saturation units 

KMF 50.0 factor saturation units 
KMK 10 5 
KMP 10 3 

killi ng saturation cells 
restimulation saturation cells 

KR 10 9 growth rate saturation cells 
P 1.0 proliferation rate cells per cell per day 
R 1.0 tumor growth rate cells per cell per day 

Table 2. The parameter setting of the model is based upon experimental 
data concerning the immune resistance of DBA/2 mice to the SL2 tumor 
after the tumor has been injected into the peritoneal cavity of the 
mice [20]. The parameter values were discussed previously in more 
detail [14]. The degree of tumor antigenicity is defined as the number 
of lymphocyte precursors that can be activated upon introduction of the 
tumor, i.e. antigenicity corresponds to T-Iymphocyte influx (11 and 
12). In order to represent different tumors 11 and 12 are varied. We 
study the effect of T-Iymphocyte effector longevity (DL) by changing it 
10-fold. 

of a lymphoid differentiation factor [10, 11]; and g) upon antigenic 

restimulation HTL produce lymphoid factors: 

[7, 8], T cell differentiation factor [10, 

factor (MAF, IFN) [12], and factors inducing 

T cell growth factor (IL2) 

11], macrophage activating 

an inflammation reaction 

[ 13] • This model is an extension of models described in more detail 

previously [14, 15]. Here HTL are restimulated by APC (instead of by 

TUMOR) and CTL induction requires the presence of HTL-derived 

differentiation factors. 

For the informatic minimalization reasons mentioned above, only 

stimulating (positive) 

model. Suppressor cells 

interactions have been incorporated in our 

(of T cell or of macrophage origin [16, 17]) 

however "down regulate" anti-tumor immune responses (i.e. influence 

them negatively). In order to investigate whether the failure of 

immune responses hinges upon suppression and/or other tumor escape 

mechanisms (e. g. antigenic heterogeneity [ 18] or modulation [ 19, 

Michelson: this volume]) we have omitted these mechanisms. 
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The experimental system upon which this model and its parameter 

setting (Table 2) are based on the ascitic growth of the SL2 tumor in 

the peritoneal cavity of DBA/2 mice [20, 211. In this paper we 

describe (theoretical) experiments with tumors that differ in 

antigenicity. 

initial sizes 

To this end we define the degree of antigenicity as the 

of the T-Iymphocyte precursor populations that can be 

activated upon introduction of that antigen. 

It turns out that (minimal differences in) tumor antigenicity 

can determine whether rejection or progressive tumor growth occurs 

(Fig. 4), i.e. can determine the failure of the response. Progressive 

tumor growth can either be accompanied by an ever increasing 

T-Iymphocyte response (Fig. 3 and 8c) or by a constant and very limited 

reaction (Fig. 8a). Suppression, which is absent, is thus redundant 

for the failure of the response. 

METHODS 

We investigate our model by introducing tumors of varying antigenicity 

and/or tumors in various initial doses. These model immune systems 

provide a more advantageous environment for experimenting than do wet 

immune systems because a) all variables are easily observable, and b) 

the system structure can be manipulated easily (i.e. the impact of 

different processes can be studied through their incorporation or 

omittance). 

The model is formulated in ordinary differential equations. 

APC, FACTOR and the inflammation reaction 

of quasi steady state variables. The 

are incorporated in 

model is studied by 

the form 

means 0'£ 
numerical integration (i.e. by simulation). Analytical methods would 

put more severe constraints on the complexity of the model immune 

system. Furthermore analytical methods usually concentrate on the 

existence of 

interest. 

steady states, which are not necessarily of prime 

The power of the simulation method is augmented by static 

analysis of the state space. We obtain insight into the qualitative 

differences in the model behaviour by static (graphical) analysis. We 

reduce the 9-D state space of the model (there are 9 variables) to 

various 3-D or 2-D state spaces by making 

assumptions for the other (6 or 7) variables. It 

quasi steady state 

turns out that such 

state spaces with O-isoclines provide a valuable tool for the 
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interpretation of the model behavior. For instance, specific phenomena 

can be related to specific forms (folds) of the O-isocline planes. 

The model is investigated by means of GRIND [22]. GRIND 

performs numerical searches for O-isoclines; it integrates by means of 

ROW4A [23], which is a robust integrator for the analysis of stiff 

systems of ordinary differential equations. 

RESULTS AND CONCLUSIONS 

antigenicity. In Fig. 2 the model immune system is challenged with a 

tumor consisting of one cell and having an antigenicity corresponding 

to 11=1.0 (CTLP=50) and 12=0.2 (HTLP=10). In Fig. 3 the same system is 

challenged with a tumor of equal size but 

antigenic (i.e. 11=1.0 and 12=0.1 (HTLP=5». 

is rejected, whereas the latter (Fig. 3) 

which is slightly less 

The former tumor (Fig. 2) 

grows in an uncontrolled 

manner. We therefore conclude that minimal differences in HTLP 

reactivity (here 5 cells, see Fig. 4) can markedly influence tumor 

rejectability. 

The immune reactions to these two tumors are very similar up 

till day 10. 

activation, 

At day 10, the CTLP have been transformed into PCTLP by 

the PCTLP remain constant (the availability of 

differentiation factor limits their maturation into the CTL stage), 

some DEBRIS has accumulated, HTL induction has just started, and a few 

hundred ANGRY macrophages have been induced. In comparison to the 

"progressive growth" case (Fig. 2), the TUMOR is 1% smaller in the 

rejection case (Fig. 3), DEBRIS is 6% larger, ANGRY and HTL are about 

twice as large, and PCTLP is roughly equal. Note that the initial (at 

day zero) HTLP populations also differ by a factor two. HTL 

proliferation is a self-reinforcing process because these cells produce 

their own growth factor (IL2). The difference in the HTL numbers of 

the two immune reactions therefore increases (up till day 15, when the 

tumor is rejected). Moreover, HTL activation is also self-reinforcing: 

HTLP activation requires the accumulation of DEBRIS, the HTL thus 

generated induce ANGRY macrophages, which in turn increase the 

'iccumulation of DEBRIS by lysing tumor cells. In addition, the 

production of IL2 and MAF (FACTOR) increases upon an increase in 

DEBRIS, since HTL depend on antigen presentation for restimulation. 

These self-reinforcements in the HTL dynamics explain why minor changes 

in HTLP reactivity have a major impact on tumor rejectability. 
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10 
TIME IN DAYS 

MPH 

ANGRY 

HTL 

CTL 
CTLP 

Figure 2. The rejection of a tumor of an antigenicity correponding to 
11=1.0 (CTLP=50) and 12=0.2 (HTLP=10) introduced as a single cell into 
a non-immunized system (day 0). Parameters as in Table 2, DL=0.02. 

~ __________________________________________ ~~~ ___________ MPH 

ANGRY 

___ --~L------------------------------------PCTLP 
HTL 

CTL 

10 
TIME IN DAYS 

Figure 3. The progressive growth of a tumor corresponding to I1=1.0 
(CTLP=50) and I2=0.1 (HTLP=5) introduced as a single cell at day O. 
Parameters as in Table 2, DL=0.02. 
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The general relation between antigenicity and rejectability is 

depicted in Fig. 4. The figure shows that weakly antigenic tumors 

cannot be rejected whatever their initial size, whereas tumors that are 

slightly more antigenic can be rejected even if they are introduced in 

a large dose. Hundred-fold variations in CTLP reactivity do not change 

the form and position of the graph in Fig. 4. As was concluded before 

for our previous models [14], tumor antigenicity can thus best be 

defined as helper T cell reactivity. Experimentally tumor antigenicity 

is usually defined as the size of the largest rejectable tumor, which 

is in our analysis a very insensitive parameter. 

Weakly antigenic tumors that escape (e.g. Fig. 3) do not however 

evoke weaker immune reactions. At day 24 of the simulation shown in 

Fig. 3 all effector populations are larger than the maximum populations 

reached in the rejection case (Fig. 2). However, because the tumor is 

large ()10 9 cells) at that time these effectors have little effect. 

These results are in close correpondance with the data of Lannin et al. 

[24], who show that the T-Iymphocyte response to a fibrosarcoma is "too 

little and too slow" for tumor rejection. 

Helper T cells play a crucial role in the immune reaction of the 

model. Helper reactivity for instance determines tumor rejectability 

(Fig. 4). Moreover, otherwise lethal tumors can be rejected when the 

ANTIGENICITY 

O~~~3~5~r~}L~3~5~1~.n-~3~5~1~.r-Lt3~5~w~~13~5~W3 
HELPEA INFLUX 

Figure 4. The relation 
between tumor rejectability 
(i.e. the size of the largest 
rejectable tumor) and tumor 
antigenicity (i.e. HTLP 
reactivity). The tumors range 
in antigenicity from I2=0.01 
(HTLP=0.5) to I2=1000 
(HTLP=50,000). Parameters as 
in Table 2, DL=0.02. 
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model is previously immunized with that 

HTL numbers [14]. In addition, adoptive 

tumor, due to an increase in 

transfer of 5 HTL at day zero 

enables the current model to reject the lethal tumor of Fig. 3. The 

effect that HTL have on the model behavior is depicted in Fig. 5. At 

low HTL numbers (i.e. at the back of the cube) the ANGRY isocline lies 

entirely below the TUMOR'=O isocline, whereas at high HTL numbers (at 

the front) the largest part of the ANGRY isocline lies above the TUMOR 

TUMOR 10 9 TUMOR 10 9 

10 9 1000 0 

ANGRY HTL 

10 6 100 

10 J 
10 

1 
1 109 

TUMOR 

TUMOR 10 9 

Figure 5. Phase portrait of the model challenged with the tumor of 
Fig. 3 (rejection). Assuming eTLP, HTLP, MPH, peTLP, eTL and DEBRIS at 
their respective (positive) quasi steady state values, we depict the 
TUMOR'=O (A), the ANGRY'=O (B) and the HTL'=O (e) isocline planes. The 
arrows indicate the local direction of trajectories. In Fg. 5d ANGRY 
is also in quasi steady state, ~he region corresponding to TUMOR'(O 
(tumor regression) is shaded in that figure. Parameters as in Table 2, 
11=1.0, 12=0.2, DL=0.02. 
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at the front there is a large region in which 

ANGRY increases (which corresponds to tumor 

regression). At the back however trajectories never ascend into the 

TUMOR'<O region because ANGRY numbers cannot become large enough there. 

Tumor rejection is hence impossible at low HTL numbers. In the 2-D 

phase portrait (Fig. 5d), where ANGRY is at quasi steady state, it is 

evident that tumor regression (i.e. the shaded region) is only possible 

at high HTL numbers. The figure (5b, d) also shows that the macrophage 

response cannot grow infinitely large, so large tumors always increase 

(large tumor trajectories move to the right along the horizontal part 

of the ANGRY isocline (Fig. 5b)). 

effector switch. 

macrophage response [2) the 

[15) because it can become 

In contrast to the "precursor bound" 

T-lymphocyte response is "proliferative" 

infinitely large by repeated T-Iymphocyte 

proliferation. Tumors that are too large to be rejected by macrophages 

can therefore be rejected by the CTL population if the latter 

proliferates (provided the tumor population does 

capita growth rate than the CTL population). 

not have a faster per 

However, for the tumor 

depicted in Fig. 3, CTL proliferation into a large effector population 

takes such a long time that the tumor meanwhile has killed the mouse. 

(Since mice die from tumors of about 10 8 cells [25), we stop the 

simulations around that size). Highly antigenic tumors on 

hand correspond, by definition, to large T-Iymphocyte 

populations, which require fewer cell divisions (i.e. less 

the other 

precursor 

time) to 

reach the size required for tumor rejection. In Fig. 6 we show such a 

case. Note that smaller doses of this highly antigenic tumor (i.e. 

11=200, 12=10) would easily be rejected by the ANGRY macrophages. 

About 108 CTL and 10 7 HTL are present at the time of tumor 

rejection (day 10). For both populations this roughly corresponds to a 

10,000-fold increase (T-Iymphocyte populations are reported to be able 

to expand to this extent [26)). After the rejection of the tumor, 

proliferation however continues because a large amount of DEBRIS has 

accumulated; DEBRIS is removed relatively slowly. The removal of 

DEBRIS upon phagocytosis by macrophages has been omitted from this 

model for simplicity. Moreover, we have ignored absorption of IL2 by 

the proliferating cells; if IL2 absorbtion were incorporated the IL2 

concentration would decrease faster after tumor rejection. Prolonged 

proliferation after tumor rejection is probably unrealistic. 

In general however, this result (i.e. the predominance of CTL in 

reactions to large highly antigenic tumors) does correspond to the 

experimental data. Ishii et al. [27) show that the T-lymphocyte 

infiltrate of methylcholanthrene-induced sarcomas increases with 
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dose would 
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The rejection of an highly antigenic tumor, i.e. 11=200 
and 12=10 (HTLP=500). A large graft of this tumor (10 7 
introduced at day 0 into a non-immunized system (a smaller 

be rejected by macrophages). Parameters as in Table 2, 

increasing antigenicity of the tumor, whereas the macrophage infiltrate 

remains grossly equal. 

the immune resistance 

CTL are reported to playa significant role in 

to virus-induced, i.e. highly antigenic, tumors 

[3 ]. The current model also accounts for the experimental fact that 

immunization mainly increases the T-lymphocyte part of the anti-tumor 

immune response [28] • Immunization increases the number of 

T-lymphocytes, which consequently require fewer cell divisions (i.e. 

less time) to become abundant. 

Fig. 7 shows the TUMOR'=O isocline plane in a TUMOR, HTL, and 
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Figure 7. Phase portrait 
of the model. In a TUMOR, 
CTL, HTL state space we 

109 depict the TUMOR'=O iso- 10 
cline plane. CTLP, HTLP, 
MPH, PCTLP, ANGRY and en 
DEBRIS are assumed to be 
in (positive) quasi steady 
state. The arrows indi-
cate the local direction 
of trajectories. The form 
and the position of this 
plane are independent of 
tumor antigenicity (1. e. 
II and 12) because both T 
lymphocyte effectors (HTL 
and CTL) are part of the 
state space. The figure 
thus represents all tumors 
studied hitherto. Para-
meters as in Table 2, 
DL=0.02. 

TUMOR 10 9 

CTL state space (ANGRY and all other variables are in quasi steady 

state). At high HTL numbers (and hence high ANGRY numbers) 

intermediate sized tumors regress (i.e. in the central valley), larger 

tumors however only decrease at high CTL numbers (i.e. above the 

plane). 

sneaking through and low zone tolerance. -- --- Although most of the 

parameters of the model were taken from the literature, see Ref. [14], 

several had to be filled in arbitrarily. The lifespans of the 

activated T-lymphocytes (HTL, CT1, PCTLP) are amongst the parameters 

that were chosen arbitrarily. Experimentally these cells are known to 

be short-lived as effector cells but they are also known to be 

long-lived as "memory" cells. The processes that determine 

T-lymphocyte longevity are largely unknown [29]. In the previous 

simulations (Fig. 2-7) the rate of T-lymphocyte effector decay was 

(simply) chosen identical to that of their precursors (i.e. 50 days). 

In this section however we choose to make the T-lymphocyte effectors 

(HTL, CTL) short-lived (5 days); all other parameters are left the 

same. 

The longevity of T-lymphocyte effectors has a profound effect on 

the model behavior. An example is illustrated in Fig. S. This tumor 

(having an antigenicity corresponding to 11=1.0, 12=0.3) grows 

progressively (i.e. 

dose (e.g. 

intermediate 

cell, 

doses 

sneaks through) when it is introduced in a small 

Fig. Sa), it is rejected when introduced in 

(e.g. 10 4 cells, Fig. Sb), and it grows 
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Figure 8. The sneaking through phenomenon. A tumor corresponding to 
11=1.0 and 12=0.3 is introduced as a single cell (A), in a dose of 10 4 
cells (B), and in a dose of 105 cells (C). Only the intermediate sized 
tumor can be rejected (B). Parameters as in Table 2, DL=0.2. 
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109 
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Figure 9. Phase portrait of the sneaking through phenomenon. All 
variables not depicted in the figure are assumed to be at quasi steady 
state. The HTL'=O isocline separates the state space into distinct 
regions of HTL increase; the HTL'<O region is shaded in Fig. 9b. The 
arrows indicate the local direction of trajectories. 

progressively again (i.e. breaks through) when it is introduced in a 

large dose (e. g. 10 5 cells, Fig. 8c). Such behavior is known 

experimentally as the sneaking through phenomenon: the progressive 

growth of initially 

are rej ected [30]. 

small tumors in circumstances where larger tumors 

tumor enhances the Immunization with the same 

sneaking through behavior of the model (i.e. increases the range of 

tumor doses in which sneaking through occurs) [15], which is in 

agreement with the experimental data [31]. 

The progressive growth of the tumor introduced in a large dose 

(Fig. 8c) is accompanied by an ever increasing immune reaction 

involving extensive T-Iymphocyte proliferation. The progressive growth 

phase of the initially small tumor (Fig. 8a) by contrast, corresponds 

to a constant response of limited magnitude. Expansion of the antigen 

(the tumor) does not result in an increase of the immune response. 

This is known experimentally as tolerance or unresponsiveness. In this 

model sneaking through thus corresponds to low zone tolerance, i. e. 

tolerance arising upon the introduction of very small doses of antigen 

[32,33]. Prehn [30] argued that sneaking through could not be due to 

(low zone) tolerance because experimentally it was known to be enhanced 
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by immunization [31]. The present form of sneaking through however is 

enhanced by immunization and does correspond to low zone tolerance. 

The process whereby sneaking through (tolerance) evolves in this 

model can be revealed by examination of the phase plots in Fig. 9. The 

figure shows that HTL populations increase when they are small, 

decrease at intermediate HTL numbers (shaded in 9b), and increase again 

at large HTL numbers. Thus although the HTL population is capable of 

infinite growth it first has to bridge a region in which it decreases. 

We define the minimum size of the HTL population required for 

continuous increase by proliferation as the proliferation threshold. 

The proliferation threshold corresponds to the HTL'=Q isocline that is 

Situated at high HTL numbers. If effector cells are long-lived, the 

proliferation threshold, and hence sneaking through behavior, is absent 

(Fig. 5c, d). 

HTL proliferation depends on the IL2 concentration (i.e. depends 

on the size of the HTL populations), and is thus a self-reinforcing 

process. 

HTL. It 

exceeds 

increase. 

HTL decay however is independent of the presence of other 

is therefore evident (if the maximum proliferation rate 

the decay rate) that large (stimulated) HTL populations 

Small HTL populations, on the other hand, produce only a 

little IL2, and, as a consequence, proliferate slowly. If these cells 

are short-lived, the slow proliferation rate will be outweighed by the 

decay rate. This corresponds to population decrease. 

In this model tolerance is thus intrinsic to the kinetics of IL2 

production. Small doses of antigen induce low IL2 concentrations 

because few effectors are activated. As a consequence these effectors 

decay without much proliferation. By the time the antigen has grown 

large enough to be able to activate a large number of precursors 

concomittantly (i.e. large enough to induce high IL2 concentrations), 

the precursor population has been reduced considerably due to the 

previous activations. If activation of the remaining precursor 

population is insufficient to generate an effector population larger 

than the proliferation threshold, the system is unresponsive 

(tolerant). Precursor depletion (here by activation) thus disables the 

system to such an extent that it is never again able to mount immune 

responses to that antigen. Precursor depletion was previously shown to 

be responsible for sneaking through in precursor bound models (i.e. 

systems that specify proliferation as a "once only" occurence) [2]. 

The proliferation threshold makes the current proliferative 

T-Iymphocyte system precursor bound when it is slowly activated. 

These results are in close correspondence with recent 

experimental data [34, 35], which show that immunological activation in 
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the absence of IL2 results in tolerance. In fact, it has been 

repeatedly shown that antigenic stimulation (signal 1) in the absence 

of helper T cell factors (signal 2) results in tolerance [36, 37, 38]. 

We show here that the absence of signal 2 (FACTOR) can be caused by 

slow activation, and, moreover, that a high turnover rate of effector 

cells suffices for the generation of tolerance. 

DISCUSSION 

methodology. In this paper we have concentrated on the dynamic 

behavior of the model, and not on the existence of steady states. We 

have shown that small differences in the model's initial state can 

markedly influence the dynamic behavior. For instance, the 

(artificial) introduction of 5 HTL at day zero (i.e. adoptive transfer) 

changes the progressive tumor-growth behavior into tumor rejection 

behavior~ In addition, the results on sneaking through show that the 

initial antigen dose can be of crucial importance for the outcome of 

the immune response (this is in fact one of the most interesting 

results). 

Furthermore it is 

simulations whenever the 

dynamically 

tumor becomes 

important that 

smaller than 

we stop the 

one cell (Le. 

tumor rejection) and whenever it grows too large (which corresponds to 

death of the host). For instance, the immune reactions to the tumors 

of Fig. 2 and 3 have a stable equilibrium at CTL=7050, ANGRY=2950, and 

HTL=4876, TUMOR=1.3 and HTL=2551, TUMOR=2.5 respectively. Both steady 

states are however only reached (a) after an unrealistically long time 

(>100,000 years), and (b) either via extremely small (Fig. 2, after 

"tumor rejection") or via extremely large (Fig. 3, after day 20) tumor 

sizes. These steady states are very similar (they differ by a factor 

two in HTL and TUMOR numbers upon a 2-fold change in antigenicity), but 

the corresponding dynamic behavior of the model is very different (i.e. 

rejection versus progressive tumor growth). It thus turns out that 

biologically meaningful results could only be obtained by studying the 

dynamic behavior; the steady states of 

(biological) importance. 

these models are of minor 

Numerical integration (simulation) is the only tool available 

for this sort of "dynamical" analysis of complex models. One of the 

disadvantages of numerical integration is the large parameter and state 

space that have to be investigated. The (numerical) steady state 
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analysis that we perform (by means of O-isoclines) however structurizes 

this large search space. Moreover, we show that the number of 

dimensions of state spaces can be reduced (by making quasi steady state 

assumptions) with preservation of 

the O-isocline plot to the model 

an interpretable correspondance of 

behavior. Thus, the combination of 

numerical integration and graphical analysis of O-isoclines enables us 

to study the interesting (dynamical) properties of relatively large 

models without "getting lost" in confusingly large parameter and state 

spaces. 

compartimentalization. In this model we consider only one 

compartment, i.e. the peritoneal cavity of a DBA/2 mouse. For 

macrophages this is a reasonable assumption because these cells 

probably do not recirculate. Macrophages enter the tissue compartment 

(e.g. the peritoneal cavity) from the blood compartment, and they are 

reported to die (although this remains uncertain) in the lymph node 

draining the tissue compartment [39]. T-Iymphocytes on the other hand 

do recirculate, and moreover they do so rapidly [40]. However, because 

T-Iymphocytes recirculate rapidly t~e populations in the model can also 

be considered to represent the total T-Iymphocyte populations (i.e. 

those of the whole body), since all T-Iymphocytes then travel through 

the peritoneal cavity often. If T-Iymphocytes do indeed recirculate 

rapidly, increased T-Iymphocyte influx (i.e. inflammation) becomes of 

minor importance. INFLAM in that case however incorporates the 

increased production of T-Iymphocyte precursor cells after an antigenic 

stimulation [41]. 

antigenicity. The relationship between tumor rejectability and 

tumor antigenicity, as depicted in Fig. 4, remains similar if effectors 

are made short-lived. For instance, a tumor corresponding to 12=0.2 

cannot be rejected whatever its size (if DL=0.2), whereas the tumor of 

Fig. 8 (12=0.3) can·be rejected when it is large. If introduced in 

small doses the latter tumor will however sneak through (Fig. 8a). 

Thus, although the form of the curve of the largest rejectable tumor 

(Fig. 4) remains the same, it is no longer true that tumors that are 

smaller than the largest rejectable tumor are also rejected. 

It is important to note that the ascitic SL2 tumor 

(about one division every 16 hours) [20]. The fact that 

grows fast 

the model's 

immune response is "too slow" for tumor rejection may therefore depend 

on a fast growth rate of the tumor. The form of the relation between 

tumor rejectability and tumor antigenicity however remains the same for 

slow growing (e.g. R=0.1) tumors. The curve is shifted to the left, 

i.e. to tumors with a lower degree of antigenicity. However small 

doses of slow growing tumors, which can be rejected in large doses, 
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rapidly reach a stable equilibrium (i.e. exhibit tumor dormancy [42]). 

This occurs independently of T-Iymphocyte longevity. Sneaking through 

of slow growing tumors is thus absent for this particular parameter 

setting; however it does occur for other parameter values. CTL are 

more important in the reaction to slow growing tumors that to fast 

growing tumors because they have more time for proliferation. 

implications of interactions. This model deviates from a 

related model investigated previously [14, 15] in two interactions: 

here (1) HTL restimulation depends on APC (formerly on TUMOR), and (2) 

CTLP differentiation depends on HTL (formerly independent). We have 

studied both models 

study of various 

using 

models 

multi-model fixed-parameter 

role of the interactions 

an almost identical parameter setting. The 

for a fixed set of parameters (i.e. the 

approach [2]), provides insight into the 

that are varied. Alternatively, a set of 

different models can be studied for "externally equivalent" parameter 

values, see Refs. [43, 44]. The behavior of the current model differs 

from that of the previous model in that it shows the continued 

T-Iymphocyte proliferation after tumor rejection. This is due to the 

incorporation of HTL restimulation by APC instead of by TUMOR. The 

incorporation of HTL factors required for the differentiation of CTLP 

seems to have little effect. 

CTL proliferation is incorporated at the effector stage. We 

have also studied models that incorporate CTL proliferation at the 

intermediate non-cytotoxic stage. These proliferating cells mature 

(terminally) into the cytotoxic effector stage upon the release of 

HTL-derived differentiation factors [45]. The incorporation of these 

interactions influences the system behavior markedly: CTL populations 

no longer grow infinitely large because they mature into non-dividing 

effectors at some stage of the immune response. This can lead to 

"exhaustive terminal differentiation" [46] which corresponds to the 

theoretically described "overmaturation" [47, 48]: this results in 

reduced immune 

zone tolerance 

responses in the case of high doses of antigen. Low 

(e.g. sneaking through) however remains unaffected by 

the incorporation of terminal differentiation [45]. 

tolerance. We have shown above that in this proliferative 

model, in which no negative (e.g. suppressive) interactions were 

incorporated, unresponsiveness evolves when T-Iymphocyte precursor 

of tumors this generates the cells become depleted. In the case 

sneaking through phenomenon. In the case of antigens that do not 

expand infinitely (e.g. an allogenic organ graft) this corresponds to a 

stable equilibrium between the organ at its normal size and an immune 

reaction of very limited magnitude [45]. Such a tolerance state 



138 

evolves in low zone circumstances (like sneaking through evolves here) 

and in "neonatal" circumstances, i. e. in immature immune systems. 

Depletion of helper T cell precursors and the course of IL2 production 

determine whether tolerance or a vigorous immune reaction develops. 
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INTRODUCTION 

Upon invading a host organism, parasitic. species invariably trigger 

the defence mechanisms of the immune system. In vertebrate hosts, the 

system comprises of cells, antibodies, amplification factors and 

specialized organs. The im.~une system sometimes enables the host to 

regulate parasitic abundance and to build up a degree of acquired 

resistance to reinfection. However, in the case of most parasitic 

protozoa and helminths, the degree of acquired immunity illicited by 

infection is variable, and not so solid as that induced by many viruses 

or bacteria. In endemic areas of the world parasitic infections 

therefore tend to be persistent in character, where the human 

inhabitants are repeatedly exposed to reinfection and may harbour 

par a sit e s for the m a j 0 r i t Y 0 f the i r I i v e s • The m a j 0 r helm i nth 

infections of man (the intestinal nemotodes, the schistosome flukes and 

the filarial worms) are particularly remarkable in this sense, since 

man appears unable to develop fully protective immunity, despite 

repeated exposure to high levels of infection. In part, this is 

thought to be a consequence of the antigenic complexity of parasi tic 

worms, and thei r often complex developmental cycles wi thin the human 

host. Each developmental stage may express different surface or 

excretory antigens. As a consequence of this complexity, it is usually 

difficult to relate particular antigenic components of the parasite, to 

the generation of the immune response. Many problems surround the 

identification of antigens, which elicit protective responses and 

antigens with no apparent role in resistance (i.e between functional or 

non-functional antigens) (Wakelin, 1984). 

Ev idence of acquired immunity in man to helminth infection, is 
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largely circumstantial in nature. The observation that average worm 

burdens tend to be lower in adults than children (age-intensity of 

infection profiles are often convex in forms) (Figs. 1, 2 and 3) is 

often quoted as evidence for immunity. The inference is that acquired 

resistance, built up from past exposure to infection in childhood, 

reduces parasite establishment, fecundity and survival in adults. 

However, similar patterns of change in the intensity of infection with 

age, could equally arise from age-related changes in contact with 

infection, given that adult parasite life expectancy is thought to be 

much less than human life expectancy (a few years as opposed to a few 

decades). Whether or not such patterns result from acquired immunity 

or age-related contact processes, is a matter of some controversy at 

present (Warren, 1978; Anderson and May, 1985). 

both factors play important roles. 

It is probable that 

Laboratory studies of mammalian host-helminth parasite systems, 

clearly indicate that immunological responses can reduce parasite 

establishments, survival or fecundity in a manner dependent on the 

degree of antigenic stimulation (parasite load) (Wakelin, 1984). 
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Figure 1. Age-intensity of infection (egg output/gram faeces) profiles 
for high and low transmission areas with endemic Schistosoma mansoni 
infection (data from Siongok et al., 1976; Abdel-Wahab et al., 1980). 
Convex patterns of change wi~age are more commonly associated with 
areas of high transmission. 
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Figure 2. Similar to Figure 1 but recording changes in hookworm 
infection with age in areas of high and low transmission (data from 
Pesigan et al., 1958; Carr, 1926). 
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Figure 3. Similar to Figure 1 but recording the changes in Ascaris 
lumbricoides (roundworm) infection (mean worm burden) from a set of 
fishing villages in Southern India and some rural villages in Burma 
(data from Elkins, Haswell-Elkins and Anderson, 1985; Hlaing, 1985). 
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Despite the lack of firm evidence at present, it appears highly likely 

that similar responses play an important role in regulating helminth 

parasite abundance and transmission within human communities (Cohen and 

Warren, 1982). 

This paper explores the role of acquired immunity, in regulating 

helminth parasite transmission and population growth, by means of the 

construction and analysis of simple mathematical models. Particular 

emphasis is placed on the influence of immunity on the patterns of 

change in mean worm load with the age of the host, variability in 

immunocompetence or exposure to infection within human communities ana 

th e impac t of control measures on herd immun i ty • The paper is 

organised as follows. The first section, outlines the basic 

mathematical framework describing the parasite's dynamics and 

transmission in the absence of acquired resistance. The second, third 

and fourth sections, consider more complex models in which acquired 

immunity is dependent on the accumulated degree of exposure to 

infection. The fifth section examines the influence of age-related 

changes in contact with infection, and the sixth section explores the 

impact of heterogenity in exposure or immunological competance. After 

a brief discussion of age-related changes in parasite distributions 

with human communities, the final two sections examine the impact of 

control measures (chemotherapy and vaccination) on parasite 

transmission and herd immunity. 

MATHEMATICAL MODELS 

1) Deterministic Framework 

Despite the volume of published work on the epidemiology of 

parasitic infections, relatively few attempts have been made to 

construct models of the transmission dynamics of helminth parasites. 

Early work includes the studies of Kositzin (1934), Hairston (1965), 

Macdonald (1965), Ley ton (1968) and Tallis and Ley ton (1969). More 

recently, a small but growing body of literature has focused on 

deterministic models for both directly and indirectly transmitted 

infections, and their use in the design of control programmes based on 

chemotherpeutic treatment (see Anderson, 1982; Anderson and May 1982, 

1985). 

A description of the temporal dynamics of parasite population 
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g row t h, wit h i n h urn a n c omm u nit i e s, can beg i v e n i n term s 0 f 0 n e 

variable, M(t,a); the mean adult worm burden in people of age a, at 

time t. The details of the parasites transmission via the segments of 

the life cycle (e.g. snail, insect vector or free-living infective 

stage) not involving man, may be 'collapsed' into a single non-linear 

partial differential equation for M(a,t). This simplifying assumption 

follows from the observation that the durations of stay of the 

parasite, in the free-living environment or in the snail or insect 

vector (ranging from a few days to a few weeks) are typically much 

shorter than adult parasite life expectancy in man (ranging from 1 to 

many years (see Anderson and May, 1982». Mathematical models for 

helminth transmission, are usually based on a 'density' framework (the 

density of parasites within a host), as opposed to the 'prevalence' 

framework (the proportion of hosts infected) widely adopted for viral 

and bacterial infections. The mean, M(a,t), is simply a summary 

statistic of the full probability distribution of parasite numbers per 

person with a given community. These distributions are typically 

highly aggregated in form where the numerical value of the variance 

greatly exceeds that of the mean (the negative binomial probability 

distribution is a good model of observed patterns). The distribution 

of parasites is clearly important with respect to the net severity of 

density-dependent constraints acting to suppress parasite survival or 

fecundity within the host. In addition, the morbidity induced by 

infection is invariably proportional to worm load. 

Within a deterministic framework, the distribution of parasite 

numbers per host can be mirrored by making a phenomological assumption, 

where the distribution is taken to be fixed and negative binomial in 

form, independent of the values of the rate parameters that control 

parasite and host population growth and the functional dependencies of 

the major variables (see Anderson and May, 1978; May and Anderson, 

1978). Ideally, a full stochastic framework should be employed, but 

these models have proved difficult to investigate by analytical means, 

due to the non-lineari ties that arise from density-dependent 

constraints on parasite population growth within individual hosts. In 

the absence of acquired immunity a simple deterministic model of 

changes in M(a,t) with respect to host age a, and time t is as follows: 

~ M/?> t + ~ M/~ a = /\ (t) - r M ( 1 ) 

where 

1\ (t) = (Ro/",/L) 

Here /\ (t) denotes 

~~ (a) M( t, a) f(M,k, z )da 
o 

the rate of host infection as a function of 

(2 ) 

the 

basic reproductive rate of the parasite (the average number of 
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offspring produced by a female parasite that attains reproductive 

maturity in the absence of density dependent constraints), Ro' the age 

specifi~ survival rate of the host (= man), l(a), where life expectancy 

L = (l(a) da, the death rate of the adult parasite, tA ' (life 
" expectancy A = l//,,-) and the density dependent fecundity rate of the 

adult parasite denoted by the function f(M,k,z) (Anderson and May, 

1982). With the assumptions that the distribution of worms per person 

is fixed and negative binomial in form with clumping parameter k 

(varies inversely with the degree of parasite contagion) and that the 

per capi ta parasi te fecundi ty decays exporentially wi th increases in 

worm load, the function f is of the form; 

f(M,k,z) = (1 + (l-z) M/kJ-(k+l) (3) 

Here z exp (-b), where b denotes the severity of decrease in 

fecundity as worm burden rises. The model contains five major 

biological assumptions, namely; (1) the parasites are distributed in a 

negative binomial manner with clumping parameter k independent of host 

age; (2) parasite mortality is constant and independent of parasite or 

host age, or worm load; (3) regulation of parasite transmission results 

from density dependent constraints on fecundity; (4) the rate of 

infection (A (t» is independent of host age and (5) the human host is 

unable to acquire immunity to infection. 

At equilibrium (where C M/ot = 0) eqn. (1) reduces to a simple 

differential equation for M(a) 

dM/da = j\ fA M( a) (4 ) 

with solution 

M(a) (A/fA- )(l-e-f'a) (5 ) 

where "" 
/I. = (Ro,,«)/L ll(a) M(a) f(M,k,z)da 

" If the life expectancy of the parasite is short in relation to that 

of its human host (A«L), the mean worm burden rises rapidly as host 

age increases to reach a plateau (~/r) such that the mean worm 

burden, M(a), in the majority of age classes, is essentially equal to 
* the mean worm burden of the total population, M. As such a good 

estimate of A is given by: 
* * Ro M f(M ,k,z) 

where 

M* = (R l/(k+1) - lJ (k/(l-z») 
o 

(b) 

(7) 

Given that the worms are distributed in a negative binomial manner, the 

prevalence of infection (= proportion infected) Pta) is simply: 

Pta) = 1- (l+M(a)/k)-k (8 ) 

The model defined by eqns. (5) and (8) has proved useful in studies 
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~f the epidemiology and transmission dynamics of certain directly 

~ransmitted intestinal nematode infections (such as Ascaris) where 

~bserved changes in worm load with age exhibit a rapid rise to a stable 

~lateau as age increases (Anderson and May, 1982; Croll et al., 1981). 

~ore generally, however, observed profiles of changes in worm burden 

~ith human age, exhibit convex patterns where the average worm burden 

rises to a peak in the child to teenage classes, and declines in the 

~lder age groups (Figs. 1, 2 and 3). Such patterns are thought to 

ar i se as a consequence of two factors, namely; acquired immuni ty to 

infection in the older age classes, and age related changes in contact 

"oiith infective stages (or infected vectors) (Anderson and May, 1985; 

iiarren, 1978). 

2) Acquired Immunity 

Current understanding of immunity to helminth infection is largely 

based on experimental work involving laboratory host (rats or mice) -

parasite systems. Laboratory studies reveal that rodent, canid and 

primate species, are able to mount immune responses to helminth 

invasion. In contrast to many viral, bacterial and protozoan 

infections, however, such responses provide only partial protection to 

reinfection following an initial exposu·re. The immune responses 

elici ted by helminths tend to be canplex and involve both antibOdy 

activity and cellular sensitization (Wakelin, 1984). With respect to 

the major parasites of man, current evidence suggests that people 

living in endemic areas are repeatedly exposed to infection such that a 

new born child will harbour worms for the majority of its life. 

Immunological responses to invasion are detectable, but they appear to 

be unable to provide fully protective immunity (= sterile immunity). 

They are thought to reduce parasite establishment, survival and 

fecundity in a manner related to the degree and duration of past 

exposure to infection (Wakelin, 1984). Laboratory studies involving 

the repeated exposure (= trickle infection) of rodent hosts to various 

helminth species (nematodes and digeneans) reveal that acquired 

resistance to infection builds up slowly over long periods of time 

(Crombie and Anderson, 1985; Anderson and Cranbie, 1985). 

Recent research has provided a starting point for the development 

of a mathematical framework to help explore the impact of acquired 

immunity on the transmission dynamics of helminth species (Anderson and 

May, 1985a, 1985b; Anderson 1985). The work is based on models which 

incorporate the assumption that the rates of parasite establishment or 
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survival within the host are dependent on the accumulated past 

experience of infection. The general form of these models can be 

expressed as follows (where M(a,t) is as defined in eqn. (1»; 

~ M/~t + d M/21a F['M(a,t») - G(M(a,t»)M (9) 

Here the functions F and G denote respectively, the per capita rates of 

parasite establishment (per host) and mortality (per parasite). The 

variable M records the accumulated sum of past experience of infection 

in a host of age a, at time t, where 

H(a,t) = SA M(a' ,t-(a-a' »da' (10) 
• 

At equilibrium (a M/~ t=O) eqn. (9) reduces to a differential equation 

for changes in mean worm burden with age; 

F[M(a») - G[H(a»)M (11) 

.. 
{ M(a' )da' 
• 

dM/da 

where 

M(a) 

The 

immuni ty 

principal features 

to helminths can be 

of current understanding of acquired 

crudely captured by a model in which the 

rate of extablishment of new parasites and death of adult parasites are 

linear functions of the accumulated average experience of infection 

(Anderson and May, 1985). These assumptions can be represented as 

follows: 
/' _.s;,CA-"") ... ') ( _tt;(a-A 

of 

F[M(a») 

G[M( a») 

= /\ [1- A t J\ e da' -
]i" -dj '" -cr') 

= I" + Y M(a')e da' 
o 

E ,tM(a')e 
D 

da') ( 12) 

(13) 

Here A denotes the per capita rate of infection. It is a function 

the average fecundity of mature worms, infective stage life 

expectancy or infected vector life expectancy, host density and the 

probability of host contact with infective stages or infected vectors 

(Anderson and May, 1982). In eqn. (12) the parameters ~ and 6 record 

the strengths of acquired immunity as it acts to decrease parasite 

establishement due either to exposure to infection (A) or to adult 

parasite burden (& ). The terms 1/0 1 , and 1/6'2 reflect the average 

duration of the 'immunological memory' of past exposure and past worm 

loads respectively (if "i; = 0, memory is life-long; if 0i =C:>() 
memory is absent). In eqn. (13) 1/1-" denotes adult parasite life 

expectancy in naive hosts, denotes the severity of rise in worm death 

rate as the accumulated experience of infection increases and 1/0 3 

denotes the memory duration of past experience relevant to the immuno­

logically mediated reduction in parasite survival within the host. 

An understanding of the equilibrium properties of this canplex 

model is facilitated by considering a special case in which acquired 

immunity is assumed to simply act to reduce parasite establishment in a 

manner dependent on past worm loads (i. e 6: > 0, A = ~ = 0). Unaer 
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these conditions the mean worm burden at equilibrium in host of age a, 

M(a) is given by the solution of eqn. (11) as follows: 

Case 1 

For (t-6)2 > 4£;/\; 

M(a) = A + (AI>. )[(Pl+6" )eP, a - (P2+6 )ep:z a ] (14 ) 

PI P2 

where 

A = /\6 1(6f' + eA), A ([ft-d']2 - 4 G,t\ ) 1/2 , 
PI = (>'-ft-d')/2 

and P2 = - (A + f' +6' ) 12 • 
A 

The infection rate A may be defined as J\ CM where C is a 

transmission coefficient and M is the mean worm burden in the whole 

population; M = f~M(a) e- a/L da where L is human life expectancy (it is 
G 

assumed that human survival decays exponentially with parameter IlL). 

By integration of eqn. (14) we get 

M /\ (l/L+ d' )1 [(l/L+f' ) (l/L+ d) + 6/\ ] 

Thus 

;\ (d'+l/L){f' +l/L){R -1)/6 (15) o 
where Ro is the basic reproductive rate of the parasite (see eqn. (2». 

The maximum worm load, M(a), is attained in age class a' where 

a' = (l/A) In([r-d'+>"]/[p-d'-A]) (16 ) 

and 
M (a') = /\ M (..0 ) [l + (ft - If' _). ) (,... - d' + A) (.\ -I" - If' ) 12). ] 

.>.. 2 1"-4'->-

given that M(OO ) ~ (;\6' )/[ tfju. + e/\ ] 

From eqn. (16) it can be seen that adult worm life expectancy 

(1//4) is a major determinant of the age (a') at which the maximum worm 

load is attained (Fig. 4) 

Case 2 

For (I" -6' )2 < 4 £;A ; 

M( a) A + e - ("... + 6" ) a/2 r: 1\ sin ( a e ) [1 

l8 2 

- A(e +6 )]-Acos{ae )} 

21\ 2 

(17 ) 

where 

[46/\ 

For life long immunological memory (6' 0) eqn. (14) simplifies to: 

-f<ajz 
M{a) ~ [e (IS) 

X 
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where , 
>.. = [I" 2 - 4~1\ ]1/2. 

Alternatively if memory is non-existent, (d'"~..o ) eqn. (14) reduces to 

M(a) :C= ~[l - e- ..... a ] (19) 
I" . 

The assumptlon of a linear dependency of F(M) on the accumulated 

sum of past experiences is clearly a crude approximation. r'or 

instances if c is large, the situation can arise in which the net rate 

of infection, F(M), is negative in value. This can be interpreted as a 

very severe acquired response which reduces the rate of parasite 

establishment to zero and, in addition, increases the net death rate of 

adult worms (the negative value of F(M) is added to the mortality rate 

rM). This problem, however, only arises in situations where (}t_6")2 

< 4~1\ (i.e case 2). For ~ !. it can be shown that F(M) ). 0, for any 

value of M. 

The equilibrium model (eqns (14) and (17) for the age-worm load 

distribution (= age-intensity pro[ile of infection) is able to mimic a 

wide range of patterns in the way the average worm burden, M(a), varies 

with age, a. These patterns include monotonic increase in M(a) to a 

stable plateau1 M(a) peaking within childhood, teenage or early adult 
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age groups, and then declining; and damped oscillations in intensity 

(for case 2) (Fig. 5). The shapes of these curves are very reminiscent 

of observed trends (Figs. 1, 2 and 3) for various plausible values of 

e, 6', I'- and~. They are determined by the interaction of the intensity 

of transmission (1'-), the acquired immunological response (e), the 

duration of the memory of past experience (l/D) and the life expectancy 

of the parasite (l/~ ). For a given severity of acquired response (c 

constant) the worm burden curve tends to be convex-rising to a peak and 

then declining at older ages - if memory is long (l/if large), and/or 

transmission is intense (A large), and/or worm life expectancy is long. 

Monotonic growth to a stable plateau in older age classes arises if ~ 

is very small (little acquired immunity) or if large (short memory). 

These predictions are in qualitative agreement with observed trends: a 

decline in M(a) in older age groups is more apparent in areas of 

intense as opposed to light transmission (Fig. 1). Furthermore, the 

age of peak intensity of parasitic infection appears to be positively 

correlated with such crude estimates of parasite longevity. that are 

available (short for the roundworm Ascaris lumbricoides and the 

whipworm Trichuris trichuria (~ 1 year), medium for hookworms - Necator 

americanus and Ancylostoma duodenale (2-3 years) and schistosomes -

Schistosoma mansoni, S. haematobium and S. japonicium (- 3-5 years) and 

long for the filarial nemotodes - Onchocerca volvulus (8-12 years) 

(Anderson and May, 1985). 

3) Immunity Dependent on Past Exposure to Infection 

A somewhat simpler model arises if it is assumed that acquired 

immunity is dependent on past exposure to infection, as opposed to past 

experience of worm burdens. This assumption is captured in the 

function F (M(a» (see eqn (12» with €. = 0 and A >0. Given that c 
in eqn (13) is set to zero, the model adopts the form (at equilibrium, 

where 

" J M/;) t=O) , 

dM/da = 1\ [1-

with solution 

A (I' e -D( a-a' ) da' 1 - I'M 
o 

M( a) = I'- [(l-e-pa)(l+ ~) -
r )-,_d' 

As a -;:> 00 

M( .... ) ¢. [1- ~ 1 
d'" 

A/'.fA (l-e -d'a) 1 

6' V. - tf) 

The maximum worm load occurs in age class a' 
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where 

a' 1 In [1+ J'".-tf] 

( I'" - tf' ) -;;;A 

For the infection rate to remain positive at all ages the following 

constraint must be satisfied: 

o < A/\ I 6' < 1 

The pristine infection rate, 1\, (realised in the absence of immunity) 

is a function of the basic reproductive rate of the parasite, Ro' 

where: 

1\ = [(l/L+6 )IA] [l-l/R] 
o 

The age intensity curve patterns generated by the model, are 

broadly similar to those created by the model in which acquired 

immunity was assumed to depend on worm burden as opposed to exposure. 

The only major difference, is that the linear dependence of infection 

rate on past exposure, is unable to generate oscillatory fluctuations 

in average worm load with changes in host age. 

4) More Complex Immunity Functions 

As mentioned is section 2, the assumption of a linear dependency of 

the rate of infection (F), on the accumulated past experience of 

infection (M) or exposure to infection (A), is only a crude approxi­

mation. It has the merit of facilitating analytical studies of the 

equilibrium age distribution of M(a), but the disadvantage of creating 

negative infection rates if the value of E is too large. This latter 

problem can be overcome by assuming that the function F[M(a)] adopts a 

slightly more complex form where, for example: 

" 
F[M(a)l = A 1[1 + Y fe-d'(a-a' )M(a') a'l (20) 

Numerical studies of the equilibrium model (dMldt=O) defined by 

eqn. (9) (with F(M) as given in eqn. (20) and G(M) as specified in eqn 

(13) with 'I = 0), reveal that the revised model yields patterns of 

change in M(a) with age, a, broad similar to those described for the 

simpler models (eqn (12» in the previous sections (Fig. 6) 

5) Age Dependent Transmission 

Convex patterns of change in average worm load wi th host age may 

arise from age related changes in the force of infection (/\). For 

schistosome infections of man, for example, transmission results from 
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human contact with aquatic infective stages of the parasite (the 

cercaria) which are released from the snail intermediate host. It 

often appears that human contact with water in endemic areas, changes 

with age, such that young children and the older adult age groups have 

low water contact patterns (Dalton and Poole, 197B). It appears 

probable that many of the observed convex patterns of change in M(a) 

with age, arise from a combination of age-related contact with 

infection and acquired immunity. 

The models described in the previous sections can be easily 

modified to encorporate age dependent rates of infection, by replacing 

the /\ term in equations (12) and (20) with a function A (a) • Under 

these circumstances, the equilibrium age distribution of infection may 

adopt a wide variety of patterns, depending on the functional form of 

/I. (a) and the values of the parameter controlling the acquired 

immunological response to infection. A variety of patterns derived by 

numerical stUdies of the model (eqn (9), with 6 M/~t = 0, F(M) as 

defined in eqn. (20) and G(M) =1" ) are displayed in Figs. 7 and B. 

As illustrated in Fig. 6, age dependent rates of infection can act to 
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shift the maximum mean load to an older, or younger age class, than 

would be the case for constant A (g i ven that A (a) adopts a maximum 

value ina different age class that that in which M( a) is maximum in 

the absence of age dependency in the force of infection). At present, 

little is known about the manner in which A changes with age for the 

major helminth infections of man. For a given infection, it appears 

probable, however, that the pattern of change in A with age will vary 

in different human communities, depending on the prevailing social, 

behavioural and environmental conditions. 

6) Genetic Variability in Immunological Responsiveness 

Observed distributions of parasites are highly aggregated with most 

people harbouring few worms, and a few people harbouring the majority 

of parasites. Often greater that 70% of the worms are harboured by 

less than 15% of a community. Recent research suggests that, for 

certain helminth infections, these 'wormy people' are predisposed to 

this state by as yet undetermined genetic, behavioural or social 

factors (Schad and Anderson, 1985). Laboratory studies of animal 

models suggest that host genetics is an important determinant of 

immunological responsiveness to helminth invasion (Wakelin, 1984). 

There is little reason to suppose that human populations are different. 

The model of acquired immunity can be extended, to encompass 

variability in the way different groups of individuals within a 

community, either 

where eo and 6' 

differences where 

respond to parasitic invasion (genetically based 

vary) or are exposed to infection (behavioural 

;\ varies). For example, if their are n different 

groups of people, (wi th parameter values Ai' e i' 6' i' _and JA i in 
group i), under the linear assumption for the function F(M) (with A 

and r set to zero) the equilibrium age distribution of mean worm 

burdens, Mi (a), 

dMi(a)/da 

in group i is given by: 
A .[l-~. ('M.(a')e-cr.(a-a')da'l 

1 1. 1 
- 1'\Mi(a) (21) 

The range of patterns of change with age, in the overall mean worm 

b~rden in age class a, within the total population, M(a), (where M(a) = 
*,Mi(a) fi and fi denotes the fraction of the age class in group i) 

that can be generated by such 'heterogeneous models' is bewilderingly 

large. A few special cases are considered below. 

a) No Immuni ty 

Consider the simplest case in which the population is homogeneous 
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with respect to contact with infection and immunological 

responsiveness, and where acquired immunity is absent. The equilibrium 

age distribtion of worm loads, M(a), in age class a is given by the 

solution of a simple immigration - death process where 

M(a) = (A/I') [l-e-..... al (22) 

A stochastic model of this process reveals that the probability of 

observ i ng j worms in a person of age a, P j (a), is distributed as a 

Poisson variate with probability generating function (p,g,f.), Tr(z,a), 

given by: 

nr(z,a) = exp[(z-l)M(a)l (23) 

The expectation (E[j,al) and variance of j(Vtj,al) in age class a 

are simply: 

EU,al = V{j,al M(a) (24) 

The distribution of parasites in the total population, 

(irrespective of host age) is a mixture of Poisson distributions with 

p.g.f. H(z) where: 

H(z) = {'''[7T(z,a)e- a / L /Llda (25) 
" and L denotes human life expectancy. Equation (25) is based upon the 

assumption that human survival decays exponentially with age at a 

constant rate l/L (Type II survivorship). The mean and variance of 

this distribution are given by: 

and 

E { j I }.. / (f" + 1 /L ) 

VUI E[jl[ E[jl 

(21" L+l) 

(26) 

The distribution is aggregated or contagious in form, since V{jl > 
E[jl • The variance to mean ratio (V[jl/E[jl) rises linearly with the 

mean, with slope 1/(21" L+l) and an intercept of unity. Since parasite 

life expectancy (1/1"-) is always much less than that of its host (L) 

the slope is much smaller that unity in value. In other words, the 

parasi tes are not highly aggregated in their distribution wi thin the 

total host population. Within each age class the parasites are of 

course randomly distributed. 

For a non-homogeneous host population, the situation is somewhat 

different. Consider a simple case in which the host population 

consists of two groups (1 and 2), who constitute fractions fl and f2 of 

the total population (where fl + f2 = 1). It is assumed that the 

infection rates and parasite death rates differ in the two groups with 

values /\1' /\2 and il'l' "2· The p.g.f. for the probability of 

observing j parasite& in a host of age a 5 7T (z,a) is now: 
7T I"\,{<»(,.-I) M .. { .. ) (Z.-I 

( z , a ) = fl e + f.2 e w l, bY'{. (27) 



160 

Mi(a) = [Ai/.#i 1 [l-e-P~a]. (28).The mean and variance of the 

distribution of parasites are: 

(29) 

(3U) 

The distribution within an age class is aggregated in form with a 

variance to mean ratio greater than unity in value. 

The p.g.f. of the probability of observing j parasites irrespective 

of the age of the host, H(z) is as defined by eqn. (25) where 7f(z,a) 

is given by eqn. (27). The mean and variance of this distribution are: 

E[ j 1 
f l " 1 

+ f2 "2 (31 ) 

and 
(.# 1 +l/L) ( r 2+l/L ) 

V[ j 1 

f
,
", ['''' +r f2" 2 ! ''', j [E[i1l 2 

(JA l+l/L) (2,. l+l/L) (,... 2+ l/L ) (2,.. 2+l/L) (n) 

If ;'A » IlL (as is normally the case for helminth parasites) eqn 

(32) simplifies to: 

V[jl = f l f 2 ["1 - "2]2 (33) 

"'1 1"2 
from which it is clear that for appropriate combinations of parameter 

values, v[j 1 » E[ j 1. In other words the distribution can be highly 

overdispersed in character. The overall conclusion to be drawn is that 

hetrogenei ty in infection rates, (" i) and parasite death rates, (/4 i) 

can result in overdispersed distribution of parasite numbers per host, 

not only within the total population, but also within each age class. 

In certain instances, these distributions can be highly aggregated in 

character (as often observed in natural situations). 

b) With ACquired Immunity 

Taking the homogeneous case first, consider a model in which the 

infection rate, F(M), declines linearly as the sum of past experiences 

of infection increases (M), where the memory component of the immunity 

is life-long (t5' = 0) and given that I" 2 > 4el\. 

The mean worm burden at age a, M(a) is as defined in eqn(lB). 

Assuming that the parasites are randomly distributed in anyone age 

class, then the p.g.f. of the probability distribution of observing j 

parasites in a host, irrespective of age, H(z) is again as defined in 

eqn (25). The mean and variance of this distribution can be derived in 
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the usual way from eqn (25) where, for example, 

E[jJ = 1\ I[L(~ - ~ + l)(~+ ~ + l)) 

2 2 L 2 2 L , 
given that >. = [ft2 4~") 

(34) 

The general conclusion to emerge is that for the homogeneous case, 

acquired immunity can act to enhance the degree of overdispersion of 

the parasites, within the total host population, when compared with the 

patterns generated by models with no immunity (see eqn 26). Note, 

however, that within each age class, with or without immunity, the 

distribution is taken to be Poisson in form. The reason why immunity 

can generate more pronounced overdispersion, is simply related to its 

ability to create greater variability in the average worm loads in 

different age classes (i.e convex age intensity curves) when compared 

with the montonic growth patterns arising from the simple 

immigration-death process (no immunity). 

For the heterogeneous case, we again arrive at a mixture of Poisson 

variates, for the probability distribution of parasite numbers per host 

within each age class. If their are n types of people (each with 

differing infection rates and immunological competences), then the 

p.g.f, T,f(z,a) for the distribution within an age class is: 
7T(z a) = '£ f.eMda)(Z-I) (35) 

, i.=1 1 

from which the mean and variance can be derived. For two groups E[jJ 

and V[jJ are as defined in eqns (29) and (30). 

The infection rates for each group (" I and A 2) (see eqn (21)) are 

given by the relationship: 

A i = Roi (JA i + I/L)M, (36) 

where Roi is the basic reproductive rate of the parasite in host group 

i and M is the overall mean worm burden (over all age classes and types 

of people). More precisely - ~ r- -aiL M = (f. (fIlL) D Mi (a) e da (37 ) 

The solution of eqn (21) for the two group case (n = 2) can easily 

be derived to yield expressions for MI(a) and M2 (a). However, insights 

into the impact of heterogeneity on the dynamics of the parasite 

population, are not easily obtained by inspection of these results. A 

few simple numerical examples help to clarify some of the main 

properties of the model. First note that in the absence of 

heterogeneity, the simple acquired immunity model, predicts a 

distribution of parasites per host in each age class of the population 

which is random (= Poisson) in form. 

Over all age classes, the distribution will be overdispersed or 

aggregated as a consequence of sampling from a mixture of Poisson 
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distributions (see eqns 25). In section 1 it was assumed that this 

distribution was negative binomial in nature (see eqns (1) - (3). The 

heterogeneous model, however, allows us to determine this distribution 

as a function of the different population parameters of the parasite 

within the various groups of people in the community (either within an 

age class or throughout the total population). 

Consider first, heterogeneity in exposure to infection between the 

two groups. We assume that all the parameter values (i.e j4 i' £ i and 

6' i) are the same excepting the basic reproductive rates of the 

parasite (Roi ) in the two groups. Different Roi values lead to 

different infection rates (the Ai'S, see eqn (36». An example of 

patterns of change in mean worm burden with age in group 1 (M l (a», 

group 2 (M 2 (a» and the overall mean worm burden M(a) is displayed in 

~ for given values of fl and f2 (the fractions of the population in 

groups 1 and 2). Note how the overall mean, M(a), can mask trends in a 

small fraction of wormy people (high /\ ) if the maj od ty of the 

population have a low exposure rate (low A ), and vice versa (Fig 9). 

By making the infection rates different in each group, but constant 

within a group we have assumed that one group (with a high A ) is pre­

disposed to heavy infection (in this case as a result of· behavioural, 

social or spatial factors influencing contact with infective stages). 

Similar patterns arise if we hold A constant for both groups, but vary 

the immunological responsiveness between groups (either via €: , 6" or 

)k ). For example, a high ~ value would denote 'good responders' and a 

low c value 'poor responders' (Fig. 9). Predisposition in this case, 

arises from genetic heterogeneity in immunological (or non specific) 

responsiveness. This type of analysis can easily be extended to n 

different groups of people, who vary in either their exposure to 

infection or their abilities to acquire immunity. 

7) Age Related Changes in Parasite Aggregation 

A measure of the degree of parasite overdispersion within an age 

class is provided by the negative binomial parameter, k(a). The value 

of k(a) varies inversely with the degree of parasite contagion and, for 

the two group case, is defined as: 

k(a) Ml(aH l + M2 (a)f2 (38) 
~--~~~~~~2 
f l f 2 [M l (a)-M2 (a)] 

where f, and f'2. denote the fractions in group 1 and 2, and M, (a) and 
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M2 (a) are the mean worm burdens at age a. More generally k(a) is 

defined as: 

k(a) M(a)2![v(a)-M(a)] 

where M(a) is the overall mean worm burden at age a (over all groups) 

and V(a) is the overall variance. 

Heterogeneity in contact with infection or immunolog ical 

responsiveness, can generate age-related changes in the degree of 

parasite contagion within the population, even though the parameters 

"i' € i' ~ i and r i are independent of age. 
Observed changes in k with age, tend to be convex in form with high 

degrees of clumping in young and old age groups (small k values) and 

lower levels in the teenage and young adult groups (Elkins, Elkins and 

Anderson, 1985). Patterns of this type can be generated by the 

heterogeneous acquired immunity model, although other factors such as 

age-related changes in contact with infection may also create similar 

trends. 

8) Parasite Control by Mass Chemotherapy 

Helminth control in developing countries may be achieved by a 

variety of methods which include mass chemotherapy, improved education, 

santitation and hygiene or, in the case of indirectly transmitted 

infections, by vector control. The availability of cheap, safe and 

effect i ve drugs for the majori ty of the major helminth parasites of 

man, has resulted in the widescale adopted of mass chemotherapy in many 

areas of the world. 

Chemotherapy acts to increase the death rate, f" , of the adult 

parasites in a manner related to the frequency, intensity and efficacy 

of drug treatment. For example, if a proportion p of the population 

are treated by a drug with efficacy h (defined as the proportion of the 

worm population within an individual that is killed by a single 

treatment) then the extra death rate imposed by the treatment g, over a 

time interval A t is defined as g = - In( I-ph)! A t (Anderson, 1981). 

The per capita death rate of the parasite, ~ , under mass chemotherapy 

where treatment is administered randomly wi thin the population (each 

individual has an equal probability of treatment in any given time 

interval) is given by ;:. = fA +g where r is the natural mortality rate 

of the parasite. To eradicate the parasite, it is necessary to reduce 

the basic reproductive rate of the parasite to less than unity in value 

(R D < 1). For the simple acquired immunity model (eqns (14) and (17», 
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this can be achieved provided the rise in the death rate of the 

paras i te is sufficient to reduce the basic reproductive rate of the 

parasite (Ro) below unity in value (Anderson, 1981). More precisely, 

if ?' is the parasite death rate in the absence of treatment, andfl ' 

the death rate in the treated community, to eradicate the infection 

,..' / "" > Ro (given that l/L » 1/1"). 
Most commonly eradication is not the aim. Community chemotherapy 

is usually employed to simply reduce the incidence of disease morbidity 

arising from infection. As such, the frequency and intensity of 

anthelmintic application is invariable less than that required to 

reduce Ro to less than uni ty in value. One worry under these 

circumstances, concerns the impact of low to moderate levels of mass 

chemotherpay on the degree of herd immunity to helminth infection, 

prevailing within the treated community. Under certain circumstances, 

it seems likely that mass drug treatment can effectively act to reduce 

the degree of herd immunity below the level pertaining prior to the 

introduction of control measures. 

This point is illustrated in Fig 10 where the consequences of 

gradually increasing the parasite death rate (by chemotherapy), are 

displayed in the context of changes in the equilibrium age-mean worm 

burden profiles (generated by eqn. (14)). Note that moderate to high 

levels of treatment, can raise the mean worm burdens in adult age 

classes above the levels pertaining prior to control. Fortunately, 

however, helminth parasites are more commonly a cause of morbidity in 

young children as opposed to adults, and thus the problem illustrated 

in Fig 10 may be of limited relevance in practice. 

9) Parasite control by Vaccination 

Helmi nth parasite vaccines are unavailable at present, although 

much current research is focused towards their development. Given that 

naturally acquired infections do not generate fully protective or 

sterile immunity in man, it appears probable that helminth vaccines 

(when developed), will only provide partial and perhaps short lived 

protection against parasitic invasion. 

A crude model of the impact of vaccination can be formulated as 

follows. Suppose individuals of age a are inoculated with parasite 

antigen (perhaps produced by genetic engineering techniques) which 

triggers immunity in a ~anner linearly related to the accumulated sum 

of inoculated antigen. Let the quantity of antigen inoculated at age 
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Figure 10. The impact of mass chemotherapy on the equilibrium age­
intensity profile of infection. The predictions are generated by 
equation (14) in the main text. Mass chemotherapy is assumed to act to 
increase the death rate, ~ , of the adult parasites. Parameter values, 
6' = 0, ~ = 0.005, I" = variable. In the bottom line at a = BO, ~ = 

0.25 (no control); in the second from bottom line at a = 80, ~ = 0.33 
(light control); in the second from top line at a 80, J-I = 0.5 
(moderate control) and in the top line at a = 80, I'" 0.75 (intense 
control). 

a, be V(a), where the units of V are defined as units of whole 

parasites in the context of their ability to trigger acquired immunity. 

A simple extension of the model defined ineqn (14)d gives (at 

equilibrium), <l. 

dM/da = i\ [1- e ([V(a') + M(a')] -d"(a-a' )da'] - j.I. M (39) 
o 

This equation contains the assumption that the vaccine acts to 

reduce parasite establishment in a manner linearly dependent on the sum 

of past inoculations of antigen, where the strength of the acquired 

response triggered by antigen quantity v, is identical to that 

generated by M adult worms. Furthermore, the duration of 

'immunological memory', 1/ ~ triggered by either M worms, or a quantity 

V of inoculated antigen is assumed to be identical. 

Under type II human survivorship (exponential decay with parameter 

l/L, where L is human life expectancy) the net infection rate in eqn 

(39), is given by 

A = (1/L +,{) (l/L 
(Eo f _<:I·IL 1 

+,.u) Ro[l- 6 £Vie < ] -1 

(l+,{L) 

(40) 
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where Vi is the per capita quantity of antigen administered to 

i n d i v i d u a 1 sin ag e cIa s s a i • Toe r a d i cat e the i n f e c t ion, i tis 

necessary to reduce the value of to zero in value. To achieve this, 

the following condition must be satisfied. 

Ro[l - Eo f- Vi-a/Ll<l (41) 

(l+4'L) • 

If individuals are vaccinated at random, (irrespective of age) at a 

rate T with a constant quantity of antigen then the eradication 

criteria is defined as (assuming that 6'fA »l/L) 

(42) 

Here the quantitycV/d'" denotes the 'strength' of the vaccine with 

respect to the quantity of antigen inoculated (V), the effectiveness of 

the antigen in stimulating a protective immunolog ical response (€) and 

the average duration of the immunolog ical memory (1/ d') • If the 

vaccine 'strength' is low, the rate of vaccination (~) must be high to 

achieve eradication. 

CONCLUSIONS 

The models described in this paper, are clearly very crude mimics 

of the known complexity of immunological responses to helminth 

pdrasi tic infections. Although they generate a variety of 

epidemiological patterns that are similar to those actually observed, 

predi ctions must remain tentative at present, until improved 

understanding of acquired immunity in man can result in model 

refinement and extension. The main purpose of this theoretical study, 

is to highlight some of the possible population-level implication of 

immunity to helminth invasion. 

Of particular interest in 

heterogeneity in immunological 

this respect, is the 

competance or exposure 

analysis of 

to infection. 

The recent demonstration of predisposition to light or heavy helminth 

infection in human communities (caused by as yet, unidentified genetic, 

social or behavioural mechanisms) suggests that real populations are 

indeed heterogeneous with respect to contact with infective stages, or 

in their ability to mount effective immunological responses against 

parasite invasion. (Schad and Anderson, 1985; Anderson and Medley, 

1985). It therefore seems highly probable that observed change in mean 

worm load with age mask interests trends in individuals or groups of 

people. Much information is lost by immediate recourse to average 
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trends in intensity of infection. The models suggest that very complex 

patterns of change in worm load with age can arise, perhaps involving 

oscillatory fluctuations. Longitudinal studies of individual patients 

(both 'wormy' and 'non-wormy' people) could therefore be of great value 

in assessing the nature and importance of acquired immunity. 

Theoretical study also provides some useful guidelines concerning 

the impact of control measures on parasite transmission. Most 

importantly, the analyses suggest that mass chemotherpay, at a level 

less than that required for eradication, may raise worm burdens in 

older age classes over the levels pertaining prior to control if 

acquired 

growth. 

immuni ty is an important constraint on parasite population 

More generally, the models enable criteria to be established, 

define the frequency and intensity of control (whether which 

chemotherapy or vaccination) required to eliminate parasite 

transmission within a given community. 
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Abstract 

The majority of the mathematical literature concerned with disease 
dynamics is concerned with transmission in populations of fixed size 
where net births balance net deaths. The current generation of models 
do not take account of case fatalities nor of positive population 
growth rates and are therefore of limited use to aid in data 
interpretation or for the design of optimal control policies in 
developing areas. A deterministic model for the epidemiology of an 
infectious disease which induces lifelong immunity is described. The 
model allows for age dependent case fatality rates and for population 
growth. Both equilibrium and dynamical results are discussed; the 
former in connection with the estimation of disease parameters from 
published data, and the latter with reference to the investigation of 
the possible effects of different vaccination strateg ies. Measles is 
used as an example throughout, and reference is made to the available 
data on the epidemiology of measles in tropical regions. 

Introduction 

Vaccine preventable, infectious diseases were responsible for the 

death of more than five million children in 1983 (Henderson, 1984). 

Most of these deaths occurred in countries whose demography is 

characterised by comparatively rapid growth of the population. These 

mortality figures have triggered extensive immunization initiatives by 

international agencies such as the World Health Organisation. To 

facilitate the design and to investigate the effect of different 

vaccination strateg ies, a mathematical model has been developed to 

mirror events in such countries. The two properties which distinguish 
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the model from previously published studies are a positive population 

growth rate, and an increased death rate associated with infection; 

properties which are specifically excluded from most pre-existing 

mathematical models for the dynamics of directly transmitted diseases. 

The five million deaths mentioned above were caused by six 

diseases, namely; measles, pertussis, polio, tetanus, tuberculosis and 

diptheria. Throughout this body of work measles has been used as an 

example of a vacci ne preventable, di rectly transmi tted disease. The 

great severity of measles (one half of the above mentioned deaths were 

as a result of measles (Henderson, 1984» means that its epidemiology 

is reasonably well documented at least in more developed areas. This is 

partly as a result of vaccination campaigns which often generate 

complimentary epidemiological study programmes. More rarely, some 

surveys were conducted before vaccination was introduced. The 

availability of empirical data is, however, less than satisfactory in 

the majority of tropical regions. Although there are studies that 

compare well with the serological surveys collected by Black (Black, 

1959), there are none to compare with the long term case notification 

records for measles in the U.K. and the U.S.A. (Anderson, Grenfell & 

May 1984). 

Interpretation of Serological Profiles 

As stated above the current generation of models are not ideally 

suited to the interpretation and analysis of data collected in 

developing areas (that is in situations where there are appreciable 

case fatalities and the total population is not constant). One example 

of their inapplicability is in the interpretation of serological 

profiles. If there are no case fatalities, the serological profile is a 

true record of the proportions at each age that have experienced the 

disease. As such it can be used to gain information on transmission 

rates and on the basic reproductive rate (the average number of 

secondary cases generated by one primary case in a susceptible 

popUlation (Anderson & May, 1982». If however, the transition from 

susceptible to immune status incurs an increased risk of death, the 

serolog ical profile becomes only a record of those who have survived 

the disease. The heightened death rate concommitant with experiencing 

the disease must therefore be taken into account when using serological 

profiles as sources of infol~ation on the force of transmission within 

a defined population. 
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serological Profiles from Various Countries 

Insights into the different epidemiological patterns of measles in 

the U.S. and in various countries of the southern hemisphere may be 

gained by examination of serological profiles (the proportion 

seropositive in different age classes). The five serological profiles 

illustrated in figure 1 are all taken from unvaccinated communities. 

a) New Haven U.S. 1958 
100~-------------------------, 

o~~-r~~~~~~~~~~~~ 
o 20 

b) Dakar Senegal 1957 c) Vellore India 1973 

,vv 

~ 

" 
:I. V' • 2( o 20 

d) Paraguay 1971 e) Bangkok Thailand 1967 
.~~ 

~ 

20 "2C 

age in years ,. 

Figure 1. Serological profiles from different countries. Data are from 
(a) Black, 1959; (b) Boue, 1964; (c) John & Jesudos, 1973; (d) 
Golubjatnikov, 1971; (e) Ueda et aI, 1967. 
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The most obvious difference is the younger average age at infection in 

tropical countries when compared with developed areas. Most striking is 

the profile from Dakar with 100% of the population seropositive by age 

two years. There is also a general trend for lower average ages at 

infection in urban than in rural communi ties. Since case fatalities 

will act to reduce the observed rate of increase of seropositives with 

age (i.e. the steepness of the slope of the serological profile), 

differences in ages at attack between developing and developed areas 

are even greater than suggested in figure 1. 

Severe Measles 

It is not only the epidemiological patterns that differ between 

developed and less developed countries. In many children, the clinical 

manifestations are substantially different from those seen in children 

in the more developed countries. The symptoms, which have been given 

the name severe measles, were first documented by Morley (Morley, 1962; 

Morley, 1974). After development of the normal red rash, there is a 

subsequent darkening to a deeper red or even violet colour. This is 

followed by desquamation much more extensive than that seen in European 

and North American children. At the same time, similiar reactions on 

other epithelial surfaces 

laryngitis, bronchopneumonia, 

produce; conjunctivitis, sore mouth, 

and diarrhoea. It is the diarrhoea that 

is most dangerous for children whose nutrition may already be poor, and 

who cannot easily survive weight loss of the order of 10% typically 

associated with infection. 

Synopsis of Subseguent Sections 

The paper is arranged as follows. First, the mathematical model and 

its parameters are described. The remaining subject matter is split 

into two broad categories of statics and dynamics. In the statics 

section the first question examined is the interpretation of 

serological profiles in the presence of a disease related death rate. 

After a brief note on the connection between disease related death 

rates and case fatality rates, the framework constructed in the first 

sub-section is used to derive equilibrium results for the basic 

reproductive rate Ro' the average age at infection A, and the critical 

vaccination level for eradication pc. The final section considers the 
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temporal behaviour of the model and examines the results of numerical 

simulations of changes in disease prevalence under different 

vaccination strategies. 

~H 

CIa 
oY 
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?>Z 

~a 
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Description of the Model 

8M(a,t) ( A(a,t)+ f'A(a) )X(a,t) 

A(a,t)X(a,t) «(j+ p.(a»H(a,t) 

o-H(a,t) ( 1f + 0'( a) + ~ a) ) Y ( a, t) 

1S'Y( a,t) 1--\( a) Z ( a, t ) 

The definitions of the compartments or states M-X-H-Y-Z are as 

follows: 

(3 ) 

(4) 

(5) 

M infants protected from infection by the presence of maternal 

antibodies 

X indiviuals susceptible to infection 

H infected, but not yet infectious individuals 

Y infectious individuals 

Z immunes - it has been assumed that immunity is lifelong. 

A further definition N(a,t) - the total population of age a at time 

t, can be made and since; 

N(a,t)=M(a,t)+X(a,t)+H(a,t)+Y(a,t)+Z(a,t) 

the dynamics of the total population are described by: 
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- f-'-(a)N(a,t) oU a) Y( a,t) 

Scheme of Basic System 

M 
N 

(6 ) 

Figure 2. Scheme of flows between compartments in the model. Note in 
particular that the total population N loses individuals at a higher 
rate from the Y compartment than from the others. 

The definition of the per capita force of infection }..(a,t) is: 

}..(a,t) oJ~ ~(a,a')Y(a' ,t)da' (7 ) 

oJoON(a' ,t)da' 

The model structure is completed by giving boundary conditions 

along the lines a=O,t>t and t=to,a>O 

M(O,t) = ~(a)N(~,t)da o 
X(O,t) H(O,t) Y(O,t) Z(O,t) 0 

ie all infants are born with maternal antibodies, 

and the quantities 

M(a,to ) , x(a,to ) , H(a,to ) , Y(a,to ) and z(a,to ) 

are all fixed, that is the system is completely described at time to' 

The model parameters are summarised in table 1. 

The Parameter ~(a,a' ) 

In classical non-age structured deterministic models, (Bailey, 

1975), individuals move from the susceptible to the infected state at 

rate rXY. That is at a rate proportional to the product of the number 

of susceptible and the number of infectious individuals (the so called 

'mass action' assumption) • The constant of proportionali ty 
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Table 1 
Summary of Models Parameters 

parameter biological age dependent type of data range of 
interpretation /independent measured from values 

S rate of loss lndependent serolog ical 2 - 5 
of maternal surveys of 
antibodies young age 

classes which 
exclude known 
cases 

fA( a) background dependent demographic 0 - .15 
death rate tables 

A(a,t) per capita dependent serolog ical 0 - 1.8 
rate of surveys and 
acquisition age specific 
of infection case 

notifications 
(J" I/O"" is the independent clinical 73 - 45 

mean incub- observations ie I/O- is 
ation period 5 - 8 days 

'If l/~ is the independent cllnlCal. ~1 - bU 

mean duration observations ie l/!' is 
of infectious- 4 - 6 days 
ness 

cc..(a) disease related dependent case fatality 0 - 25 
death rate rates 

~ represents the combination of two biological quantities; firstly the 

Jegree of contact between infectious and susceptible individuals, and 

secondly the probability that contact between an infectious and a 

susceptible individual will result in infection. The function ~(a,a') 

is exactly analogous to the constant ~, with the extension that the 

two components mentioned above are deemed dependent on the ages of the 

infectious and susceptible individuals. So ~ (a,a') combines the 

following two quantities; the degree of close contact between 

susceptible people of age a and infectious people of age a', and the 

propens i ty for a susceptible person aged a to develop the infection 

after exposure to an infectious person aged a'. This study follows 

previous work on age structured epidemic models (Schenzle, 1984; 

Anderson & May, 1985) in dividing a lifetime into n discrete age 

classes and assuming that,. for susceptible individuals in the ith age 

class and infectious individuals in the jth age class, ~ (a,a') is a 

constant with value ~ij. Thus ~(a,a') is a step function which can be 

represented by an n by n matrix of constants. The two components of 

(a,a') are far too complex to measure directly, but using the 

definition of the force of A(a,t) it is possible to find values for 

the pij by an indirect method. 
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Ai (t) = A(a,t) !(ai-l,ail 
then by definition 

n 

A1·(t) :=~.Y.(t) .fu: 1J J 
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o jN (a, t )da 
aj 

where YJ.(t) =.JY(a',t)da'. As already mentioned above under the 
Gr , 

assumption that each Ai (t) is equal to a constant Ai' it is possible 

to estimate the Ai from age prevalance data. Having measured the A i 
from the data, a set of y. are calculated from the equilibrium age 

J 
distribution for Y(a) derived from the assumption that3>./C}t =0. If the 

g .. matrix is then restricted to having only n elements, these r 1 J 
J!' 1'···' ~n are trivially derived by algebraic methods from the 

AI' ••• ' An and the Yl, ••• ,Y n • The distillation of ).,(a,t) into n 

discrete functions A.(t) can be extended to the disease related death 
1 

rate ()«(a) as follows. 

0( 1 for 0 < a < a l 

0(,( a ) 

<Xn for a n- l < a < 00 

Where the age classes are the same as those over which ~(a,a') is 

constant. 

The Model at Equilibrium Statics 

The work in this section is based upon the assumption that over a 

long time span the force of infection A(a,t) will remain approximately 

constant at any given age. This is equivalent to assuming that the age 

distribution of the infective individuals is stable. Although not 

analytically proven as yet, this assumption is supported by numerical 

results discussed in the dynamics section. On the basis of this 

assumption, all time derivatives can be set to zero resulting in a 

system of ordinary differential equations describing the equilibrium 

age distribution of the system. Subsequently it is possible to derive a 

method for estimating the force of infection from age-prevelance data. 

In addi tion such epidemiolog ical measures as 



179 

the average age at infection A, the critical vaccination proportion Pc 

and the basic reproductive rate Ro can be expressed in terms of the 

model's parameters. 

The Extended Model 

The first aim was to be able to measure the force of infection from 

available age prevelance data. Such data take two forms: the first 

being serological profiles (proportion seropositive by age); and the 

second being cumulative percentages of cases by age. Both of these are 

measures, not of the numbers in each state at a given age, but of the 

proportions of the total population in each state at a given age. These 
#to ,.. ,..,.. ,.. 

proportions are named M, X, H, Y and Z. That is 

~(a,t) M(a,t) etc. 

N(a,t) 

As the rate of change of the total population N(a,t) is governed not 

only by population size, but also by the number of individuals in the 

infectious state (equn 6), straightforward division of equations I 
,.. " through 5 will give a set of equations for M to Z whose right hand ,.. 

sides all contain terms involving products of Y(a,t) and whichever 

variable is under consideration. This seems to make the problem much 

more difficult. However, the introduction of a 6th state, 'excess 

deaths', allows the definition of a different but related set of 

proportions which serve to clarify the problem. Conceptually this sixth 

class represents those individuals who have died as a result of 

contracting the disease and who would not have died from some other 

cause. The numbers in this class at age a and time t, E(a,t), are 

therefore described by the equation 

a E + a E <X,.( a) Y (a, t) ~ ( a) E (a, t) (8 ) 

3a at 
It is now possible to define a new 'would-be' total population 

W(a,t) N(a,t) + E(a,t) 

That is, the total living population plus those who are dead as a 

result of the infection. This total population W(a,t) obeys the 

following 

OW + 

~a 

partial 

aw 
?>t 

differential equation. 

- '" (a)W(a,t) 

The new extended system is summarised in figure 3. 

(9 ) 



180 

Scheme of Extended System 

M 
N 

w 

x H z 

Figure 3. Scheme of flows between compartments in the extended model. 
By defining a new compartment E, and an alternative total population W, 
a situation is achieved where losses from the 'total' population Ware 
at a uniform rate from each compartment. 

Definition of the 'd Variables 

We now define a complete new set of variables 

M' (a,t) '= M(a,t) X' (a,t) '= X(a,t) H' (a,t) 

Y' (a, t) 

W(a,t) 

Y(a,t) 

W(a,t) 

W(a,t) 

Z'(a,t) '= Z(a,t) 

W(a,t) 

E' (a,t) 

and note the partial differential equations governing 

aM' + aM' -SM'(a,t) 

()a h 
1>X' + oX' 6M'(a,t) A(a,t)X' (a,t) 

~a ot 
oH' + 'C) H' ,A( a, t) X' ( a, t) erH' (a,t) 

oa at 

oY' + oY' erH' (a,t) ( IS' + ex( a) )Y' (a,t) 

oa at 

OZ' + oZ' ((Y' (a,t) 

oa at 

~' + dE' oda)Y' (a,t) 

aa at 

H(a,t) 

W(a,t) 

E(a,t) 

W(a,t) 

their dynamics. 

(1U) 

(11 ) 

(12 ) 

(13 ) 

(14 ) 

(15 ) 
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The boundary conditions are as follows; 

M' (O,t) 1 

X' (O,t) H' (O,t) = y' (O,t) = z' (O,t) = E' (O,t) = a 
and the initial condition may be trivially derived from the initial 

condition specified for equations 1 to 5 with the additional 

specification of E(a,to ). 

Under the assumption that A(a,t) and ~(a) are constant over given 

age ranges and that ~A(a,t)/~t 0, the equilibrium values of this set 

of equations are easily found by solving the related piecewise-linear 

ordinary differential equations which are obtained when the time 

derivatives in equations 10-15 are set to zero. This then gives 

expressions for the age distributions of each of the states at 

equilibrium in terms of the model's parameters. 

Relationship between the 'd and the -d Variables 

It then remains only to clarify the relationship between these 'd 

variables and the quantities which are of epidemiological interest, 

the Ad variables. 

Since 

and 

N(a,t) 

E(a,t) 

'" M(a,t) 

W(a,t) - E(a,t) 

W(a,t) E' (a) 

M(a,t) M(a,t) 

N(a,t) W(a,t)-E(a,t) 

and similiarly for X, H, Y and Z. 

M(a,t) M' (a) 

W(a,t) (l-E' (a» (l-E'(a» 

From serological profiles, the proportion susceptible at each age, 

~(a),is known. Having derived an algebraic expression for ~(a) in terms 

of the model parameters, if all the parameters other than the force of 

infection are known, it takes only an application of a root-finding 

algorithm to the function 
/' 

F(") X(a)(l-E'(a» - X'(a) 

to obtain the age-specific values for the force of infection, the Ai. 

The Calculation of the O(.j_ 

Clearly the magnitude of E' (a) governs the extent by which this 

estimated value of the force of infection differs from the value that 

would be obtained using a method that does not take account of case 

fatalities. Since 



E' ( a) = JOC:( a' ) Y' ( a' ) da ' 
o 
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this in turn depends upon the magnitude of «(a), which is determined 

by the case fatality rate. Given a set of age specific case fatalities 

Pl,P2, ... ,Pn for age classes 0 - al,a l - a2 , ... ,an_ l -00 

a set of disease-related death rates for these same age classes 

derived in the following way. The parameter Pj represents 

proportion of those people aged between a j _ l and a j leaving 

infectious state, who go into the excess death state. 

That is, Clj 
ajiJ o£',Y(a)da 

A' J 
J ~ 15 + DC ,) Y (a) da 

Clj., J 
so 

~, J--
(l-Pj) 

0(, 
--J-
( t+O( j) 

are 

the 

the 

For the younger age clasties where the case fatality rate can be as 

high as 26% (Aaby, 1983) taking account of death from disease can alter 

the estimated force of infection by as much as 17% when compared with 

estimates derived from methods which ignore disease related deaths. 

Since so much of interest in the study of the dynamics of measles in 

less developed countries occurs in the first few years of life, such an 

underestimation of the force of infection at these young ages is of 

considerable practical relevance. 

Demography, Definitions and an Approximation 

In the following analysis a reduced system is considered for the 

sake of clarity. The maternal-antibody protected class is dropped and 

the boundary condition altered to 

X ( 0 , t ) = f': ( a) N ( a, t ) da o 
to accomodate this change. Consideration is restricted to the case 

where there is only one age class and the mortality functions ~(a) and 

0<. (a) are constants. Before deriving expressions for other 

epidemiological parameters, various definitions help clarify the 

following analyses. The total number of susceptibles and infectives are 

denoted by X(t)and Y(t) respectively, and the total population is 

denoted N(t). Following May and Anderson (1985) a further definition is 

made thus: 

B N( t) 
N(O,t) 

That is B is the reciprocal of the average birth rate. 
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In order to investigate epidemiological parameters such as the 

average age at infection, it will be necessary to note a few pertinent 

results from the theory of mathematical demography (Pollard, 1973). The 

'would be' population W(a,t) which obeys equation number 9 can be 

thought of as undergoing an age structured birth-death process if we 

make the following alteration to the fertility function. 

N(O,t) =j:ta)N(a,t)da f~da) (l-E' (a) )W(a,t)da 
o 0 

if we define 

iii (a) m(a) (l-E' (a» 

we have 00 
N(O,t) =Jiii(a)W(a,t)da. 

D 
But since 

W(O,t) N(O,t) 

we have 
GO 

W(O,t) :Jiii(a)W(a,t)da (16 ) 

It is well known (Pollard, 1973) that under the conditions defined 

by equations 9 and 16 the 'would be' population settles to a stable age 

distribution with overall growth at rate r, where r satisfies the Euler 

relation 

o 
fffi(a)e-(?+ t-')ada 1 

and the stable age distribution is given by 

W(a,t) = W(O,t)e-(?+ ,.-.)a 

The total population N(t) also grows at rate r. 
Since 

N(a,t) 

dN( t) 

dt 

Hence 

N(t) 

W(a,t) - E(a,t) 

J-"bN(a,t) da 

o ~t 

W(a,t)(l - E'(a» 

rN( t) 

( 17) 

Next the equilibrium value of X(t) is found and then an 

approximation to the 

X(t) = ~(a,t)da 
o 

equilibrium value 

W(O,t) 

(?+r+ A ) 

of Y(t) is derived. 

(]B) 

An approximation to the equilibrium value of Y'(a) is now derived. The 

equilibrium value of Y'(a) in terms of the model parameters is as 

follows: 

y' (a) _~ {->.a -(~+cx.)a -CS'"a -(l5'+CIC.)a} _"_"'__ e - e - ..::e ___ -_e::-___ _ 

(O"-A) (~+cx->.) (~+DI.-C5") 

I f terms of order of mag ni tude e - a- a and e - IS a are dropped this 

expression simplifies to: 



y' (a) = AX' (a) 

( ~ +0( ) 

and therefore 

Y(t) = >'X(t) 

(lS+O<) 
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(19) 

The necessary tools are now available to derive expressions for the 

equilibrium values of three important epidemiological quantities, 

namely, the average age at infection A, the basic reproductive rate Ro ' 

and the critical proportion to be vaccinated for eradication, pc. 

The Average Age at Infection 

thus 

The average age at infection 

A =.. ra A ( a) X ( a , t) da 

oM( a)X (a, t) da 

X(a,t) W(a,t)X' (a) 

A 

is defined as follows: 

1 

Consideration of the relative sizes of r, ~ and A leads to the relation 

A = 1 
A 

This relationship (noted in previous works on age structured epidemic 

models (Anderson & May, 1985» is of interest because of its 

implications for the effect of vaccination programmes. When the force 

of infection is lowered as a result of vaccination, the average age at 

infection will rise. In a situation where the risk of serious disease 

resulting from infection is at its highest in the young age groups, 

this effect of immunisation is obviously beneficial. 

The Basic Reproductive Rate 

The basic reproductive rate Ro represents the number of new cases 

that will arise if a single infectious individual is introduced into a 

totally susceptible population. The effective reproductive rate R is 

the number of new cases that will arise as a result of the introduction 
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of one more infectious individual into a population containing 

susceptible and immune individuals. The quantities are related in the 

following manner (see Anderson & May 1983) 

R Ro ~ 
N 

In a situation where the total human population is static, at 

equilibrium the reproductive rate R is equal to 1. In this model, 

however, where the force of infection A(a,t) is a function of the 

proportion of the population that are infectious and the total 

population is growing, in order for the disease to remain at 

equilibrium the number of infectious individuals must increase at the 

same rate as the total population. An individual is on average 

infectious for time l/(~~). So at the start of his infectious period 

the total population is (equn 17) 

N(O)ert 

and at the end it is 

N(O)er(t+l/(~~» 

i.e. the total population increases by a factor e 
r/(lS+oc.) 

disease to remain at equilibrium 

R 

so at equilibrium 

R = N(t)er/(~~) 
o x( t) 

[N ( t) e r / (l{ + 0( ) (r+ p + >. ) l/w ( 0 , t) 

but 

W(O,t) N(O,t) 

and 

N(t) B 
N(O,t) 

where B is the reciprocal of the average birth rate. 

Hence, 

Hence for the 

The interest in this result lies in comparing values of Ro for 

industrialized and developing countries. In developing countries the 

average age at infection is low, but the high birth rate and consequent 

low value of B balances this, yielding the surprising result that Ro is 

no greater in developing countries than in developed regions. Some 

numerical values for Ro are shown in table 2 to illustrate this point. 
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In calculating these values the term er/(6~) has been ignored (since 
e r / (t +oc.) = 1) 

Table 2 
Examples of Values for Ro 

country Year A B Ro Reference for value 

Chile 1962 3.4 42.5 12 .5 Ristori et aI, 1962 

US 1965 5 68.3 13.7 Collins, 1929 

Ghana 1960-68 2.5 30.6 12.2 Morley, 1969 

Kenya 1974 3.5 26.1 7.5 W.H.O., 1979 

India 1976 3 35.3 ll.8 Bhau et aI, 1976 

Senegal 1964 1.8 31.1 17.3 Boue 1964 

N.B. all values for B are calculated from: u.s. Agency for 

International Development, 1977 

The Critical Vaccination Proportion 

of A 

To conclude the the statics section, the proportion of the 

population that need be vaccinated in order to achieve eradication of 

an infection is derived, first from the definition of the force of 

infection, and then with a heuristic argument. 

When there is only one age class, the definition of the force of 

infection is 

A =~~(t) 
N(t) 

Where ~ is a constant determined by factors that will not be affected 

by vaccination 

AN(t) 

y(t) 

!!(l"+oU 

Ao 

substituting equn 19 for Y(t) 

where Ao represents the average age at infection before vaccination is 

introduced. Now suppose a fraction p of each cohort is successfully 

immunized at birth. The force of infection under these circumstances is 

still defined as: 

A= ~~(t) 
N(t) 
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that is «I 

A ~6W(O,t) [~J e-(r+~+A )ada]X' (0) 

N (t) ( 2S' +0( ) 

but the initial condition has changed from X'(O)=1 to X'(O)=(I-p) 

A p6W(O,t)~or:-(r+~+~)ada] (l-p) 

N ( t) ( ~ +0{. ) 

so 

(l-p) = N( t) ( I! +cX.) 

W(O,t) (je-(r+f"I+ A )ada ] ~ 
o 

now at eradication 

and 

so 

p = Pc' ).. = 0 

JIO 

N(t) = W(t) W(O,t) [f e-(r+fA )ada ] 

( ~ +«. ) 
~ 

A 
-0 
B 

o 

The critical vaccination proportion for eradication is therefore 

Pc = I - ~o 
B 

This same result is achieved by the following heuristic argument. In 

order to eradicate the disease the effective reproductive rate R must 

be reduced so that R < e r /( l{ +tl( ). That is 
R X(t) < e r /( '6 +CI( ) 
0--

N(t) 

but X(t)/N(t) cannot be greater than (l-p), that is the proportion of 

the population that are susceptible is at most all those who are not 

vaccinated. So the eradication criterion becomes 

r/( If+o<.) 
e 

p > I _ er /( If +0<.. ) 

Ro 

P > I - A SO 

p = I - A 
c BO = I - I 

R 
o 

As discussed above B/Ao is approximately constant. This has the 

very important implication that the proportion of each cohort that 

needs to be immunized to eradicate measles in developing countries is 



188 

the same as that neccessary for eradication in developed countries (see 

Dietz, 1975 and Anderson & May 1982, 1983). 

Temporal Behaviour of the Model Dynamics 

Whilst results based on condi tions at equi librium are useful for 

investigating such questions as cri tical vaccination levels required 

for eradication, a true picture of the temporal behaviour of the model 

can only be achieved by numerical solution of the system of partial 

differential equations. Results from such numerical work are presented 

here, using as an example data which reflect the situation in West 

Africa. All model parameters were derived from published data 

(Abdurrahman et aI, 1982; Aaby et aI, 1983; Boue, 1964; Billewicz & 

McGregor, 1981). 

Using a step length of three days, Euler's method was used to solve 

the equations (1-5) along the characteristic lines t = a + constant. 

The initial conditions were set by 

(i) solving the ordinary differential equations obtained by dropping 

time derivatives, 

(ii) transforming these solutions so that they conformed to the stable 

age distribution determined by the age specific vital rates, and then 

(iii) perturbing the whole system by a shift of 40% of the susceptible 

class into the immune class. The perturbation allows the investigation 

oft h e d y n am i c s 0 f the s y stem as i t ret urn s toe qui 1 i b r i urn , i n 

particular the investigation of the effect of different levels of 

vaccination. 

Observed Patterns 

In the early 1960's before measles vaccines were used, Morley 

recorded annual cycles in admissions to the general hospital in Ilesha, 

West Nigeria (Morley, 1962). Similiar patterns have been recorded in 

The Cameroun for the early 1970's after initiation of a control 

programme (Guyer & McBean, 1981)(figure 4). Studies of the effects of 

measles immunization programs (Guyer & McBean, 1981; Helmholz & Seck, 

1975) show the expected fall in incidence levels and also an upward 

shift in the age distribution of cases. As the highest case fatality 
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rates occur in the very young age classes, this is very encourag ing 

from the point of view of reducing child mortality. 

A Measles In Nigeria 
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Figure 4. Annual measles epidemics in West Africa. (al Admissions to 
Ilesha general hospital 1958-1961. Morley, 1962. (bl Reported cases in 
Cameroun 1971-1975. Guyer & McBean, 1981. 

The Age Distribution of Cases 

The first result to be extracted from the investigation of the 

dynamical behaviour of the system was a check on the assumption that 

the age distribution of infectious individuals is indeed stable. A 

simulation run of 25 years without vaccination was performed, and the 
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age distributions of the infectives at time 0, 10 and 25 years were 

compared. As can be seen in figure 5 they are practically identical. 

This result backs up the equilibrium assumption which underpinned the 

work in the statics section. 

Stable Age Profile of Infectives 
0.0003 .-----______________ ~ 

IZ2l '-0 

Figure 5. Age distribution of cases at three different points in time. 
Results from a simulation run with no vaccination. This result backs up 
the assumption that i».(a,t)IOt = 0 which is essential for the work in 
the statics section. 

Comparison of Four Different Levels of Vaccination 

In this section the results of four different levels of vaccination 

are compared. The simulation was run for two years before introducing 

vaccination of each cohort at age exactly nine months. The levels of 

vaccination compared are 0% 50% 70% and 95% of susceptibles. Figure 6 

illustrates the temporal behaviour of the model when no vaccination is 

applied. The number of cases oscillates with period just under 1 year, 

and quickly returns to equilibrium. Comparison of the profile at the 

start and at time 15 years gives further evidence of the stability of 

the age profile of infectives when there is no vaccination. 

A good way to consider the effect of vaccination is to look at the 

shape of the serological profile as it changes through time. In figure 

7 the shape of the serological profile with no vaccination and with 95% 

vaccination can be compared. Before continuing it should be stressed 

that an individual may appear as immune in the serological profile for 
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Figure 6. Oscilatory behaviour of the model without vaccination. 

Figure 7. Serological profiles with (al no vaccination and (bl 
95% vaccination. 
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anyone of three reasons; namely, protection by maternal antibodies, 

natural immunity after surviving the disease or vaccine-induced 

immunity. The trough running diagonally across figure 7(b) presents a 

nice illustration of the effect of herd immunity. The cohort with a low 

proportion immune who cause this trough are aged 14 and 15 at time 15 

years. They were therefore aged 1 and 2 when vaccination was started. 

That is they were the last two cohorts not to be vaccinated. However 

even though they were not vaccinated themselves, they have received 

protection as a result of the drop in the force of infection which 

follows the introduction of mass immunization. Therefore they, as a 

cohort, have less natural immunity than their older peers, and less 

vaccine induced-immunity than the younger individuals. A second point 

to note from figure 7(b) is that the level of immunity in the 

vaccinated cohorts is not as high as 95%. This is because with the rate 

of loss of maternal antibodies used in these simulations, at age 9 

months 12% of each cohort are still protected by maternal antibodies. 

Vaccination of a child that still has maternal antibodies does not 

induce a protective response. Hence vaccination of 95% of each cohort 

is equivalent to effective vaccination of only 84%. This illustrates a 

major dilemma - the earlier you vaccinate the more vaccine you waste on 

individuals who are still protected by maternal antibodies, but the 

later you vaccinate the less effect vaccination has. 

In figure 8 the distribution of cases after 15 years at each of the 

vaccination levels, is illustrated. It shows a definite trend of 

increasing age at infection with increasing vaccination levels, as 

predicted by the equilibrium investigations, and recorded in the field. 

The most important effect of this will be reduced disease related 

mortali ty. 

Turning 

9(a), (b), 

finally to the consideration of case fatalities, figures 

(c) and (d) illustrate the numbers in the excess deaths 

class, through time at vaccination coverage levels of 0%, 50%, 70% & 

95% respectively. It should be recalled that this class measures those 

who have died as a result of the disease who would not have died from 

some other cause. So individuals enter the class at a rate determined 

by the number of cases and the age-specific case fatality rates, and 

leave it at an age-specific rate equal to the death rate as applied to 

living members of the community. So in figure 9 (a) there is a sharp 

rise up to age 2.5 years as a result of the large numbers of cases and 

high case fatality rates in the young age classes. The graph then falls 

off, as the child mortality rate from other causes comes into play. 
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Distribution by Age of Total Cases 
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Figure 8. Comparison of the distribution by age of the total number of 
cases at different vaccination levels. The rise at two years old in the 
95% vaccination curve occurs as a result of an increase in the number 
of susceptibles. This is due to the waning of maternal antibodies in 
individuals who were still protected by maternal antibodies at age 9 
months and were therefore not successfully vaccinated. 

Figure 9. Excess deaths under different vaccination regimes. (al no 
vaccination (b) vaccination of 50% of 9 month olds (c) vaccination of 
70% of 9 month olds (d) vaccination of 95% of 9 month olds. 
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Discussion and Conclusions 

In considering the limitations of this model one particular problem 

is of special relevance. The removal of case fatalities from the 

infectious state results in a shortening of the average infectious 

period from 1/ '6 to 1/( '1f + fI... ). Since deaths which are counted in the 

calculation of case fatality rates occur anything up to one month after 

the onset of measles symptoms, the reduction in average duration of 

infectiousness which occurs in the current model is probably a poor 

reflection of what actually happens. This problem could be approached 

by introducing yet another compartment, namely an intermediate state 

between leaving the infectious state and joining the immune or excess 

death states. This compartment would represent those no longer 

infectious, but still at risk as a result of having had the disease. 

Losses from the population as a result of case fatalities would then be 

removed from this compartment, (rather than from the infectious 

compartment) leaving the average duration of infection as 1/ 'l5 • 
The most important conclusion to be drawn from this work is that 

the proportion of each cohort that needs to be vaccinated in order to 

eradicate the disease is no greater in developing than in 

industrialized countries. This leaves two problems to be overcome if 

effective vaccination campaigns and eventual eradication are to be 

achieved. The first of these is inadequate infrastructure, leading to 

vaccine waste through breakdown of the cold-chain and other practical 

problems in the organisation of vaccination campaigns. This is not a 

problem upon which this work can shed any light. The second of the two 

difficulties is the so-called 'window' problem briefly mentioned in the 

last section. In a situation where a significant number of cases occur 

before the age at which all individuals have lost their maternally 

derived antibodies, there is no age at which a whole cohort can be 

successfully vaccinated. A choice must therefore be made as to whether 

to vaccinate after maternal antibodies have waned and risk high 

mortality from cases in the very young, or to vaccinate at an earlier 

age and waste vaccine on individuals who do not seroconvert because 

they are sti 11 protected by maternal antibodies. An evaluation of a 

measles vaccination campaign in Yaounde (McBean, 1976) revealed that 

only 17% of vaccine doses resulted in protection of a child, whilst the 

other 83% were wasted as a result of these two problems. Since 

vaccination will act to shift the age distribution of cases upwards, 

this second problem should be alleviated as vaccination begins to have 

its effect. The average age at infection will rise and the age span 
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during which vaccination is best administered will broaden. 

Finally, although eradication will only be achieved as a result of 

huge efforts to overcome practical difficulties, so as to immunise more 

than 95% of each cohort, reductions in mortality - a result of the 

shift in the age distribution of cases - should be achieved by much 

lower levels of immunisation coverage. 
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1. INTRODUCTION 

Measurement and Estimation in 
Heterogeneous Populations 

A.I Ya.shin 
J.w. Va.upel 

International Institute for Applied Systems Analysis 
Laxenburg. Austria 

Individuals differ in their susceptibility to various causes of morbidity and mortality. 
Epidemiologists are accustomed to thinking about this heterogeneity in terms of "risk fac­
tors" and "relative risks". Some of the heterogeneity among individuals is genetic in ori­
gin and some is acquired as a result of individual behaviour (like cigarette smoking) or 
environmental exposure (to. say. water pollution). The levels of the risks faced by an 
individual change over time as the individual ages. changes his behaviour and is exposed to 
different conditions. 

Many biological. medical. and epidemiological studies focus on measuring various risk 
factors and on linking these factors to observed rates of disease and death. Analyzing 
how mortality depends on blood pressure. on alcohol consumption or on education level is 
clearly important. 

Heterogeneity analysis. broadly defined. is concerned with understanding the dynam­
ics of the evolution of some hazard rate (like the incidence of mortality) in a popUlation 
whose members differ in their susceptibility or frailty. Sometimes all the relevant risk 
factors are observed and the task is to sort out their importance; the method of regres­
sion analysis developed by Cox [1.2] is frequently used for this purpose. Very often. 
however. the variables and processes that are observed. Le .. for which data are available. 
represent only a portion of the relevant risk factors. 

Such hidden heterogeneity is usually ignored· in biomedical and epidemiological stu­
dies. Recent research. however. indicates that hidd.en factors can have a major and often 
surprising impact on the dynamics of mortality and morbidity (see [3.4.5.6] for exam­
ples). Furthermore. it has been shown by Ridder and Verbakel [7] that ignoring hidden 
heterogeneity leads to biased estimates of the importance of observed risk factors. if 
standard methods such as Cox's partial likelihood approach or maximum likelihood 
approaches are used. The principal focus of heterogeneity analysis. narrowly defined. is 
to develop methods that appropriately account for the effects of hidden heterogeneity on 
the dynamics of mortality and morbidity. 

Even if a risk factor is unobserved in some study. information about it may be avail­
able from previous studies. A key question thus is. "How can this ancillary information be 
used in measurement and estimation?". In this paper we survey some recent research in 
heterogeneity analysis that addresses this question. 
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2. A 5Il1PLE lIODEL OF HETEROGENEITY 

Mathematically the simplest case of heterogeneity in mortality can be represented in 
terms of the properties of the probability distributions of two random variables (T.Z). 

where T is interpreted as a death time and Z as "frailty"or "relative risk". The variable 
Z can be interpreted as arising from a biological. environmental. or social economical fac­
tor that influences mortality. The joint distribution function for T and Z will be specified 
if. for instance. both the conditional distribution function for T given Z and the distribu­
tion of Z are known. 

Assume that the conditional distribution function of T given Z can be represented in 
the form 

I 

-J J,l(% .Z)dz. 
peT :SO t ! Z) = 1 - e 0 

where f.I.(:Z: .Z) can be interpreted as an age-specific mortality rate for individuals with 
frailty Z. If ji,(:z:) characterizes the unconditional distribution function by the equality 

I 

- J'jj.(%)dz. 
peT :SO t) = 1 - e 0 

then the following relationship holds between f.I.(:Z: .Z) and "iii..:z:) 

'Pi,:z:) =E(f.I.(:Z:.Z)! T >:z:) . 

Various applications of this formula were analyzed in [4.5]. 

S. CONSTANT HETEROGENEITY 

(1) 

Assume that f.I.(:Z: .Z) = Z f,I.(:z:) and that Z is a random variable with the Gamma distribu­
tion function F(>".k). Recall that the distribution density in this case ! (z). is given by 
the following formula 

!(Z)=>..t z t-1e -A:/f(k) . 

By applying formula (1) to this case. it was shown in [3} and [4] that 

ji,(:z:) = f.I.(:z:)z(:z:) 

where 

z (:z:) = __ --"1c'--__ 
% 

>.. + J f,l.(u. )d.u. 
o 

This formula for z(:z:) (which can be interpreted as the average frailty among those who 
survive) indicates that average frailty decreases with age. as the result of selection. It 
turns out that this property is true in general. i.e. for an arbitrary-distributed non­
negative dsk factor. More exactly. for the derivative of z(:z:) we have 

d.Z(:z:) 2 
d.:z: = -f.l.(:Z:)U,,(:z:) < 0 • 

where ~(:z:) is the conditional variance of z among the individuals in the population who 
are alive at time :z:. 
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4. WHEN HETEROGENEITY EVOLVES OVER TIllE 

It turns out that even if the mortality rate is influenced by a stochastic process Zt. 

the relationship between Ii.(t) and IJ.{t.Zt) is the same as in (1) 

(2) 

For some particular forms of stochastic processes the conditional mathematical expecta­
tion on the right-hand side of (2) can be calculated. 

Assume for instance that Zt is the finite-state continuous-time jumping Markov pro­

cess with the transition intensities qtj(t) and initial probabilities 7') (O).i = 1.N. Then. 

N 
ji.{t) = 2: l-'(t.i}71"t (t) • (3) 

t=l 

where 71"( (t) are the solutions of the following equations [8] 

d71"( (t) N IN 1 --- = L: qj(t}71"j(t) + 71"(t} L: l-'(t.i)71"j(t) - JJ.{t.i) .71"(0) • 
dt j=l =1 

(4) 

Assume now that I-'(t .Zt) can be represented in the form 

(5) 

where Zt = yt-. and the stochastic process yt satisfies the following stochastic differential 
equation 

(6) 

where Yo is a normally distributed random variable with the mean 7I'l0 and variance "10' It 
turns out that in this case the following formula for Ii.(t) is true [9] 

where 7I'lt and "It are the solutions of the following nonlinear equations 

d7l'lt 
-;it = a.o(t) + a.l(t)7I'lt -271'lt"ltl-'(t) • rno 

d"lt z z 
"dt=2a.1(t)"lt +b (t) -2"1tl-'(t) • "10 . 

(7) 

(8) 

(9) 

Equations (8) and (9) are nonlinear ordinary differential equations that can be solved 
numerically if the coefficients a. o(t). a.1 (t). b (t). I-'(t} are specified. 

5. lIEASURElIENTS AND ESTIIIATION 

Suppose that the mortality rate depends on some observed vector of covariates 
:z: = (:z:l ••..• :z:t) and can be represented in the form 

lJ.{a.t.:z:} = Ao(t}eQ':r: . 

Such a form of the hazard rate is commonly used to implement Cox's partial likelihood 
approach for the estimation of the parameters a. 

If one has information about death times of n individuals in the cohort and the covari­
ates related to these individuals. then Cox suggested maximizing the function 
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to get the parameter estimates, where Ri is the set of the individuals at risk at time ft. 
In practice, however, not all factors that influence the mortality rate are observed. 

What kind of effects can one expect from these hidden influential variables and processes 
on the parameter estimation? The answer to this question depends on what is known about 
the unobservables. 

Assume, for instance, that the mortality rate for an individual depends not only on an 
observed vector of covariates % but also from some unobserved stochastic process Zt. 

Suppose ~(a.,t,%,Zt) can be represented in the form 

~a,t,%,Zt) = Xo(t)eQ'%Zt ' 

where Zt is a finite-state continuous-time Markov process with the transition intensities 
qij(a.,t) depending on the unknown parameter vector a. = (a.1' ... ,aj:)' Another model for 
~a.,t ,% ,Zt) can be specified when Zt = III and lit satisfy equation (6) with unknown param­
eters in the coefficients a.o(a.,t), a.1(a.,t), b(a,t). 

The right-hand side of equations (4), (8) and (9) will also depend on the parameters a 
and produce the solutions Trj(a,t), mt(a.), and i't(a.) 

a Tri (a.,t) N I N 1 
at = I:: qji(a.,t)Trla,t) + Tri(a.,t) II:: ~a.,t,j)Trj(a,t) - ~(a.,t,i)l ' (4') 

/=1 j=1 

am, (a.) 
at = a.o(a.,t) + a.1(a.,t)m t (a) - 2~(a.,t)i'(a,t)mt (a.) (8') 

(9') 

For both of these cases one can write the likelihood function in the form 

~ 
n - j;>(%,Q)d.:r. 

L = I1 ~ti ,a.)e 0 (10) 
'=1 

where t" i = 1, ... ,n are the observed death times for individuals. Note that jL(t,a.) can be 
specified in terms of Trj(t,a.), given by the equations (4) or in terms of mt(a.) and i't(a.) 

given by equations (8') and (9'). 

6. ]lORE INFOR1IATION ABOUT HIDDEN PROCESSES 

Sometimes not only data about death but also some additional measurements of the 
influential processes are available. In this case again the maximum likelihood procedure 
can be used for parameter estimation. The form of the likelihood function should depend 
not only on the mortality data but also on the data about observable variables. 

If Zt is finite-state jumping Markov process with transition coefficient q'j (a.,t), and 
T1,T2, ... are the times when the state of this process is observed, then for the likelihood 
function one still has formula (10) where 

N 
jj(a,t) = I:: Tri (a.,t)~ (a,t) 

i=l 

and Tri (a, t) satisfies equation (4') on the intervals [Tj: ,Tj: +1[, with the initial conditions 
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where Xt is the state of the process Zt observed at time Tt . 

If the process Yt from equation (6) can be observed in discrete times T1.Tz •...• then 
for the likelihood function one can write formula (10) where 

~t.a) = ~(t.a)(ml(a) + 7t(a» 

and me and 7e are the solutions of the following system of nonlinear equations (S') and (9'). 
These equations should be solved on the time interval [T,. T, +1[, with the initial conditions 
m!i' 7T(. defining from the equalities 

? HIDDEN HETEROGENEITY IN LONGITUDINAL DATA 

Suppose one needs to analyze survival data for a certain popUlation such that the 
duration of life for any individual in the cohort is the functional of the two-component 
process Z(t) =X(t).y(t). Let the data which are available consist of the results of meas­
urements of component X(t) at some fixed times for the population cohort consisting of 11. 

individuals. Let X,(t 1) •...• X,(tt) be data related to the i-th individual. Assume that both 
measured and unmeasured processes influence the mortality rate and this impact is speci­
fied as a quadratic form of both X(t) and Yet). that is 

, y' (Qll(t) Q1Z(t)}[X(t)} 
p.(t.X(t).y(t» = (X (t) (t» QZ1(t): Qzz(t) yet) + #Io(t) 

where Qll(t). QZ2(t) are positive-definite symmetric matrices and 

Note that one can always find the vector-function F and function G. such that the mortal­
ity rate ~(t.X. Y) can be represented in the form 

p.(t,x.Y) = (Y -F)'Q22(t}(Y -F) + G 

where F and G are the functions of t and X 

Assume that the problem is to estimate the elements of the matrix Q on the base of 
data X, (t 1 AT,) •...• Ai (tt A T,). i = r:n. where T, are the observed death times and 

Q = [Qll Q121 . Q21 Q22 
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Note that some parameters specifying the evolution of the process y(t) might also be 
known. 

Assume that processes X(t) and y(t) are the solutions of the following linear stochas­
tic differential equations 

d[y(t)] = 'l[a01(t)] + [a11(t) a1z(t)] [y(t)]l]dt + [b(t)jd[Witj 
lx(t) aoz(t) azz(t) Cl:zz(t) ix(t) lB(t) W 2t 

where Qu and WZt are vector-valued Wiener processes. independent of initial values 
X(O).Y(O). and b(t).B(t) are matrices having the appropriate sizes. 

For notational simplicity. we will omit index i related to some particular individual in 
the notations related to Xi (t). 

Let i(t) denote the vector X(t 1).X(t Z) •••• ,x(tj (t». where 

tj(t) = sup It".: t". < t I . 

Define the conditional survival function S(t .:i) with the help of the equality 

s(t.i) =P(T >tli(t» 

and let 

The problem is to find the form of ji,(t.i (t». 

The following theorem about the form of ji,(t.i (t» is true. 

Theorem. Let the processes X(t) and y(t) be defined as above. Then ji.(t.i (t» can be 
represented in the form 

ji.{t • .i(t» = (m'(t) -F'(t • .i»Q(t)(m(t) -F(t • .i» + Sp(Q(t)7(t» + ~o(t) 

[m 1(t)} where m(t) = mz(t) [
711 (t) 7 1Z(t)}. . 

7(t) = 7Z1 (t) 7zz(t) on the mtervals tj :!!: t < tj +1 satlsfy the equa-

tions 

dm(t) 
dt = ao(t) + a(t)m(t) -27(t)Q(t)m(t) 

d~~t) = a. (t)7(t) + 7(t)a.* (t) + b(t )b* (t) - 27(t)Q(t)7(t) 

where 
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At time tJ • j = l ..... k. the initial values for these equations are 

"'1 (tj) = "'1 (tr) + 712(tr)7221(tr)Q(tj ) - "'2(tr» 

The proof of this theorem can be done using for instance the approach developed in 
[10]. 

B. ESTDIATION OF UNKNOWN PARAMETERS IN THE CASE OF PARTLY OBSERVED ST()­
CHASTIC PROCESSES 

If the unknown parameters not only represent the mortality rate but also character­
ize the coefficients of the stochastic processes that influence mortality and are partly 
observed. then there is one more opportunity to extract information about parameters by 
including some additional terms in the likelihood ratio function. 

In the case of heterogeneity in longitudinal data as described above. the uncertainty 
(unknown parameters) invalues only the coefficients of the mortality function 
Q(a.t). Jl,o(a.t). The likelihood function in the case of the data concerned with n individu­
als will look as before 
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Stallard [11] noticed that if the unknown parameters also indicate the probabilistic 
characteristics of the partly observed process, then the likelihood function should 
include the additional term related to these observed components. Taking into account 
this remark the formula for the likelihood function takes the form [11] 

I, 
11 -J J'(a,u,:c(u»ctu 

L = n f.l.{a,t1.'% (tt»e 0 

t=1 

If ~ {1 x I "'7t22(tr, a) I 2exp z[A;(tj )-m1.2(tj,a,%(tr)] 
J=O 

x 7t-12(tr, a) [A; (tJ ) - m1. 2(tr, a '%1. (tr)]} , 

where the equations for m and "'7 are given in the previous section. 

9. CONCLUSION 

Nearly all biomedical and epidemiological studies of the influence of risk factors on 
the dynamics of mortality and morbidity have ignored unobserved risk factors. Sometimes 
the effects of hidden heterogeneity are small and can be ignored, but in many cases hid­
den heterogeneity can substantially alter risk dynamics and can result in biased parame­
ter estimates. This paper has presented some approaches for taking the effects of hid­
den heterogeneity into account, with emphasis on cases where ancillary information from 
previous studies is available. Some first efforts have been made to apply some of these 
approaches in epidemiological research [12,13] but the field is still fresh and largely 
unplowed. 
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Abstract 

ON MIGRATORY LYMPHOCYTE MODELS' 

R. R. Mohler 2 , Z. Farooqi and T. Heilig 
Department of Electrical and Computer Engineering 

Oregon State University 
Corvallis, OR 97331 

Linear time-delay models are developed and compared to other 

models for the circulation of lymphocytes throughout the immune system. 

A building-block synthesis of the lymphatic system is presented. The 

models mimick experimental tracer data for rats, but more extensive 

data is needed to do a good job of parameter estimation. 

1 • INTRODUCTION 

This paper attempts to describe the dynamic behavior of circulat­

ing lymphocytes as a base for the understanding of the organ~distrib­

uted immune function. In particular new mathematical models are pre­

sented, simulated and compared to other models in their ability to 

mimick experimental tracer data for rats. 

It is intended that the development of such a model will be used 

for predictive purposes in experimental planning. Eventually such 

modelling, analysis and experimentation may have an impact on tumor 

control, cancer and immunology in general. In the long run, such re­

search could relate system control theory to effective immunotherapy 

and chemotherapy. Radiation and chemotherapy adversely affects the 

immune response in a manner which may be similar to pollutant effects. 

Systemic immune research could help explain such effects and provide a 

base for improved treatment. 

Research sponsored by NSF Grant No. ECS~8215724. 

2 NAVELEX Professor of Electrical and Computer Engineering, Naval 
Postgraduate School, Monterey, CA 93943 during 1984-85. 
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An excellent introduction to immunology is given by Roitt [1], 

and a treatment of more detailed aspects of its theory is edited by 

Bell, et al [2]. An overview of mathematical system theory in immu­

nology and in disease control is given by Mohler, Bruni and Gandolfi 

[3] and by Marchuk [4] and [5], respectively. 

Lymphocyte migration to a site of infection and preferential ~ym­

phocyte "homing" have been a factor for growth of interest in circula­

tion of lymphocytes. See Roitt [1] and deSousa [6]. These being 

relatively long-lived cells a portion of them recirculates. Experi­

ments have been done to look at the quantitative aspects of this 

recirculating pool. The data for the present paper was obtained from 

one such experiment, Smith and Ford [7]. 

Apparently, there is a need to better understand migratory 

patterns of immune mechanisms. A preliminary, three-compartment, 

humoral model is studied by Mohler, et al [3], [8], [9]. The present 

analysis studies only lymphocyte migration which is basic to the 

humoral process but includes mostly thymus-derived T cells. Also in­

cluded here are twelve compartments and extensive experimental data. 

2. EXPERIMENTAL SUMMARY 

Details of the experiment from which the data is derived are 

given by Smith and Ford [7]. Briefly, the data were taken from a uni­

form strain of rats as near to the natural physiological state as 

possible. Lymphocytes were taken from the thoracic duct of a donor, 

radioactively labelled in vitro, passaged from blood to lymph in an 

intermediate rat and finally injected into a series of recipients for 

examination at thirteen time points from one minute to one day. 

Thirteen tissues were examined from sacrificed rats at each time. 

To better understand the system dimensions, it is interesting to 

note that 180 rats (AO female) were used in the experiment with blood 

sampled and cells injected on the venous side of the right heart. The 

total pool of recirculating lymphocytes number about 1.2(10)9 with 

about 40(10)6/hour circulating through the thoracic duct and other 

efferent lymphatics each (see Fig. 1). The coeliac LN weigh only 

about 8 mg out of a total LN weight of 700 to 800 mg. 

At 1, 2 and 5 minutes after injection most of the labelled cells 

are in blood, lungs and liver, [7]. Concentrations in these compart­

ments subsided during the ensuing 25 minutes as more cells entered the 
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spleen, lymph nodes and Peyer's patches where they peaked between 

and 18 hours. The migratory pattern of lymphocytes is summarized in 

Fig. 1 with experimental data compared to model-simulated data in 

Figs. 2 to 4 for spleen, bone marrow and lungs which exemplify the 

other organs. 

Figure 1. Lymphocyte Circulation 

3. CIRCULATORY LYMPHOCYTE 

The models studied here consist of separate compartments and 

states for blood, bone marrow, lungs, liver, spleen, lymph nodes, 

Peyer's patches, gut and miscellaneous tissues. The lymph nodes were 

further broken down into mesenteric, coeliac, subcutaneous, right and 

left popliteal, and deep and superficial cervical lymph nodes for 

certain data collection. 

Each of these organs can be treated as separate compartments with 

a percent of lymphocytes in that organ as its state. Many of the 

lymph nodes serve very similar functions and bear the same relation to 

blood and other organs so that they can be lumped together into a 

single compartment labeled subcutaneous lymph nodes. This was done 

with popliteal LN, deep and superficial cervical LN. They form the 

SCLN in Fig. 1. This compartment has been divided into two subcom-
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partments, one of which drains the miscellaneous tissues and the other 

does not. 

The most common approach to compartmental models assumes lumped 

time-invariant linearity with diffusions proportional to the concen­

tration differences between the compartments. A slight generalization 

of this leads to the nonlinear, time-variant linear and time-invariant 

models derived by Mohler, Farooqi and Heilig [aJ. 

Here a new linear model is presented which considers time delays 

in the transport of lymphocytes between certain compartments. The 

state equations which evolve are given as follows: 

Cl1 X 12(t) - 81 x 1(t) 

Cl2 x 12(t) - 82 x 2(t) - Y2 x 2(t-'2) 

Cl3 x 12(t) - 83 x 3(t) - Y3 x 3(t-'3) 

Cl4 x 12(t) ~ 84 x 4(t) - Y4 x 4(t-'4) 

Cl5 x 12(t) - 85 x5(t) - Y5 x 5(t-'5) 

X 1 (t ) 

x2(t) 

x 3 ( t ) 

x 4 ( t ) 

x5(t) 

x6(t) 

x7(t) 

xa(t) 

Cl6 x 12(t) + 87 x 7(t) + Y7 x 7(t-'7) - 86 x 6(t) - Y6 x 6(t-'6) 

Cl7 x 12(t) - 87 x 7(t) - Y7 x 7(t-'7) 

Clax12(t) + 8gxg(t) + Ygxg(t-,g) + 810x10(t) + 

Y10 x 10(t-'10) - 8a x a(t) - Yaxa(t-,a) 

xg(t) Clgx12(t) - 8gxg(t) - Ygxg(t-,g) 

X10(t) Cl10 x 12(t) - 810 x 10(t) - Y10 x 10(t-'10) 

X11(t) 84 x 4(t) + Y4 x 4(t-Q) - 811 x 11(t) - Y11 x 11(t-'11) 

x12(t) -(X1(t) + X2(t) + x3(t) + X5(t)) - (Cl4 + Cl6 + Cl7 + Cla 

+ Clg + Cl10)x12(t) + 86 x 6(t) + 8a xa(t) + B11 x 11(t) 

+ Y6 x 6(t-'6) + Yaxa(t-,a) + Y11 x 11(t-'11) 

x13(t) = x5(t) + x6(t) 

The subscripts refer to the following: 

lungs 7 miscellaneous tissues 

2 bone marrow a mesenteric LN 

3 spleen 9 gut 

4 liver 10 Peyer's Patches 

5 SCLN with efferent lymphatics 11 coeliac LN 

6 SCLN with other tissues 12 blood 

13 = SCLN, Total 
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The parameters (1i' 8i' Yi Ci=l, 12) represent directional permeabil1-

ties that are proportional to flow rates in the various circulatory 

vessels and organs in different regions of the body. '1 (1=2, ••• 11) 

represent discrete time delays in different organs. In all compart­

ments other than the lungs and the blood there are two components to 

the output, one consisting of those lymphocytes that enter the com­

partment and are just 'flushed out' and the other consisting of those 

that stay in the compartment for some time before leaving it. The 

average period of this sojourn is the basis of time delays in this 

model. 

The values of the parameters used are seen in Table I. 

i 1 2 3 4 5 6 7 8 9 10 11 

(1i 1.0 .01 .1 .3 .016 .005 .05 .006 .02 .012 

IIi .8 .015 .0007 .3 .0001 .008 .002 .0006 .03 .001 0.7 

Yi - .004 .0075 .0005 .0027 .0065 .0004 .0035 .0005 .0023 .001 

'i - 250 60 60 180 150 300 150 150 180 180 

Table I. Model Parametric Values 

The simulation results for spleen, bone marrow and lungs are compared 

with the experimental data in Figs. 2-4. 

shown in Fig. 5 . 
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In general the fit of the model is quite close to the data. The 

state equations used here are time~invariant, linear, delay differen-

tial equations. It is interesting to compare the results obtained 

here with those in [8J, which are reproduced here for the sake of con~ 

venience. The present model gives a better approximation to the real 

system than the two previous linear models. 

8ecause of the nature of the radiolabeling process mostly T~cells 

were studied in the experiment by Smith and Ford [7J. 8-cells and T~ 

cells do not experience the same time delays in different compartments. 

For example, the time delays for 8~cells are much larger for B-cells 

than T-cells in the lymph nodes. In this paper lymphocytes have been 

treated as one broad category of cells and have not been separated 

into T- and 8-cells. Time~delays in the model are thus approximations 

for the broad category and not for one of the sub-categories. This 

will have to wait until data is available on T~cells and B-cells 

separately. That will also result in a better fit to the real system. 

For instance, then two delay terms could be used in the equations for 

SCLN, one term for T-cells and one for 8-cells. Thus more statistical 

data needs to be collected for a more complete model of lymphocyte 

recirculation. 

While the nonlinear model seems to mimick lymphocyte circulation 

most accurately, the time-delay linear model does approximate the fol­

lowing experimental results. After a rapid lymphocyte exchange with 

the lungs during the first couple minutes after injection, the level 

of blood lymphocytes decreases for the next hour with a half life of 

approximately 16 minutes. As lymphocytes return to blood 

(particularly from spleen), the exponential decay ceases between 1 and 

2.5 hours after injection followed by a slow rise to near equilibrium 

at 6 hours onward. Localization of lymphocytes in the liver is some­

what similar to blood in its time response, but has a slower terminal 

decay of approximately a 24-minute half life. Approximately 40 per~ 

cent of the injected lymphocytes are found in the spleen at the 30 

minute mark. This is followed by a decay mode of approximately 300-

minute half life. LN lymphocytes gradually build up to almost 60 per-

cent in about 18 hours. MLN and SCLN responses have similar shape. 

Peyer's patch level builds up to about 7 percent in about 1.5 hours. 

Modeling of the liver is particularly complicated due apparently to 

three independent phenomena involving the lymphocyte migration. 
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First, there is intravascular pooling similar to lungs which results 

in rapid initial response. Then there is genuine recirculation blood 

to liver to coeliac LN, to thoracic duct and back to blood again. 

Finally, there is an accumulation of dying cells in liver which in­

volves only about 1% to 2% of the total population per day. Still, 

the latter can be a substantial part of the liver response itself. 

This may very well account for the long term error which was found 

between the model simulation and certain other compartments such as 

liver. 

4. LYMPH NODE MODEL 

Lymph nodes are the only lymphoid organs placed in the course of 

lymphatic vessels. While tonsils, spleen and thymus have only 

efferent lymphatics, lymph nodes have both afferent and efferent lymph 

vessels [10J. Generally, lymph nodes are the entrance port for 

lymphocytes crossing from blood to lymph. As shown in Fig. 1, 

lymphatic vessels collect cells which leave the blood in tissue. Con­

sequently, these cells are passed through a chain of lymph nodes prior 

to their return to blood via the thoracic duct. In some cases, 

lymphocytes seem to find their way into lymph by direct entry to lymph 

nodes. 

Based on information available in the literature [11 J, [12J lymph 

node lymphocyte pathways may be represented by Fig. 5. While lymph 

nodes are conventionally divided into superficial cortex, deep cortex 

and medulla, these regions merge into one another with no clear 

boundaries. Thus, they are inappropriate compartments for studies 

which rely on tracer measurements. Both T and B cells enter the lymph 

node by crossing walls of the high endothelial venules, HEV. T cells 

either remain in the paracortex surrounding the HEV or move to nearby 

paracortical nodules. Meanwhile, B cells (of the lymphocyte popula­

tion) migrate to primary follicles and to lymphocyte corona in the 

superficial cortex [12J. 

A detailed derivation of the lymph node model will be given in 

another publication. Briefly, however, the model is of form identical 

to that above comprising a linear time-delay set of ordinary 
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differential equations. For each node (whether subcutaneous, 

mesenteric, coeliac or whatever), the basic model takes the following 

form: 

nh x 12(t) - Bhxh(t) 

ns x 12(t) - Bsxs(t) 

ni[Xh(t) - Xh(t-'i)] 

nixh(t-'i) - Bi2 x i2(t) 

Xh(t) 

XS(t) 

xi1(t) 

xi2(t) 

Xp 1 (t) 

Xp 2(t) 

(1-f p )np x i2(t) + fqnpxi2(t-,P) - Bp xp 1(t) 

= f pnp[Xi2(t) - Xi2(t-,p)] 

Xf1(t) = (1-f p )nf x i(t) + fpnf(xi-'f) - Bf xf1(t) 

Xf2(t) fpnf[Xi(t) - Xi(t-'f)] 

xm(t) nmxp 1(t) - Bmxm(t) 

Here, subscripts refer to the following: 

h high endothelial walls, 

s = superficial sinuses, 

interfollicular interstitum, 

p paracortical nodules, 

f follicular nodes, 

m = medullary sinuses. 

fp is the fraction of delayed cells in paracortical nodules and 

follicular nodes. As before, the parameters depend on appropriate 

lymph or blood flow rates, compartmental volumes and resistances. 

While a few of the parameters such as for high endothelial walls 

(HEW) and medullary sinuses are reasonably well determined, the same 

is not true for cortex parameters. Unfortunately, experimental 

results are extremely limited. 

Fig. 6 shows a comparison of the model simulation, with the 

various compartmental p'opulations summed up, relative to the previous 

experimental results of Smith and Ford [7J. It was found that this 

total lymph node response is very insensitive with respect to changes 

in the time delays 'i' 'P' 'f. The corresponding simulated responses 

for the various lymph node compartments are given in Figs. 7 and 8. 

Labelled lymphocyte population was broken down in T and B cells for 

the medullary sinuses, Since separate relative values of nm and Bm are 

available for T and B cells. 
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After injection of labelled thoracic-duct cells, there is a steep 

rise in population during the first sixty minutes, corresponding to 

the exponential fall in blood. When the concentration in blood 

reaches equilibrium, the rise slows significantly, but is maintained 

until 12 hours after injection. Then a slow descent continues toward 

equilibrium about 24 hours after injection. The simulation matches 

the data quite accurately. 

The population of HEW cells rises sharply after injection to 

reach a peak only 20 minutes later. Then a steep decline results in 

an approximate equilibrium value of 1% after only two hours. This is 

consistent with qualitative descriptions [12]. The peak in the para­

cortex is reached only slightly before that of the total lymph node 

population - about 10 hours after injection. It would be expected to 

be similar since a majority reside in the paracortex. Inspecting the 

interfollicular-intestitium region of the cortex, an initial sharp 

rise to a peak at 90 minutes is observed which is followed by an expo~ 

nential decay toward equilibrium after about three hours. The uptake 

in paracortical nodules - reaching maxima at 11 and 20 hours, 

respectively. 

Medullar sinuses show a small population increase at about two 

hours after injection reaching a first peak at four hours, followed by 

a second peak about eight hours later. The latter is due to the re­

lease of cells from the paracortical nodes. 

5. COMPARTMENTAL IMMUNE MODEL 

The review here follows that of Mohler, Bruni and Gandolfi [3]. 

While the above discussion deals with lymphocyte circulation, the 

long~range interest is in total immune circulation and at the same 

time its time response to antigen stimulation. Here, a preliminary 

humoral model is reviewed as an indication of complicated experiments 

which will be required. 

The qualitative aspects of lymphocyte traffic and their relevance 

to certain mechanisms of immunoregulation has attracted much 

attention, particularly emphasized recently by De Lis! [13J, Bell 

[14], and Sprent [15J; though none of these references presents a 

mathematical model. However, Hammond [16J developed a mathematical 

model for the circulatory lymphocytes in the spleen using marginal 

zone, white pulp, and red pulp as compartments. 
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A compartmentation of the immune system according to the most 

relevant organs includes bone marrow, blood, spleen, thymus, lymph, 

and lymph nodes, and gut-associated lymphoid tissue (GALT). GALT 

includes the tonsils, small intestinal Peyer's patches, appendix, and 

peritoneal cavity. Bone marrow is the source of multipotential stem 

cells or precursor cells for the immune process. Spleen and lymph 

nodes are important locations of antibody-antigen reactions. Blood 

and lymph are important transport media but also represent significant 

storage of cells and molecules. Stem cells migrate from bone marrow 

to thymus and spleen, back via blood to GALT and lymph and back to 

blood again. 

For keeping the model as tractable as possible and for lack of 

consistent experimental data, not all details of the migration 

patterns are taken into account, but more refined models are being 

developed. In what follows, the basic assumptions are: 

1) The GALT compartment is neglected since one of the most 

significant roles of GALT is for generation of a particular class of 

antibodies, IgA, which is not considered in this paper. 

2) Plasma cells (fully differentiated lymphocytes) and antigens 

do not recirculate in the blood compartment. 

3) T cells and macrophages are assumed to be present in suf­

ficient quantity to induce the normal immune response, but their 

dynamics are neglected, and consequently the thymus is neglected. 

4) The product of antibody-antigen reaction, that is, the immune 

complex, is assumed to be removed shortly after it is formed. Conse­

quently, the immune complex density is not considered. 

5) No distinction according to different classes of antibodies 

is made here. 

The state equations for the multi compartmental model are 

presented in this section assuming that during the migration of 

lymphocytes and molecules, the process dynamics to varying degrees may 

be approximated throughout the compartments similar to the single~com­

partment B model derived in [3J. Here an explanation of notations is 

in order. The first subscript on the variables 1, 2, 3, 4 refers to 

immunocompetent cells, plasma cells, antibody and antigens, 

respectively. The second subscripts b, s, 1, 0, stands for blood, 

spleen, lymph and lymph nodes, and external compartments, 

respectively. 
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Then the immune system is approximated by appropriate initial 

states and 

dX'b 
~ = a'bsx,s + alblx" - (a'Sb + a"b + a,Ob)x'b + v, 

where akji denotes the transfer rate coefficient of material k to jth 

compartment from ith compartment. Other parameters in the model are 

defined above and by 

Pss,Ps' 

Pds,Pd' 

probability that antigen stimulates cell, in the spleen 

and lymph node, respectively; 

probability that an ICC differentiates into a plasma 

cell in spleen and lymph node, respectively. 

These probability terms are approximated in [3] as appropriate for 

spleen and lymph. 

conditions. 

Antigen stimulation is introduced by initial 

A simulation of the compartmental model for mouse injected with a 

common experimental antigen, sheep red blood cells (SRBC), is present­

ed in [3]. A comparison of the model simulation with the experimental 

data for a mouse with an inoperative spleen and a healthy mouse is 
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given in [3J. The major differences between the simulation and the 

experimental antibody level, seem to be from a switchover in antibody 

class which the model neglects. 

A sensitivity analysis of the models and simulation shows the 

following: 

1) removal of the spleen results in an attenuation of antibody 

production by about a factor of three; 

2) k is a most critical parameter, while c cannot be dropped in 

most cases, it need not be estimated accurately; 

3) ps, a, a', ~1' and ~4 are somewhat critical with the other 

parameters of less significance in defining model dynamics. 

It should be noted that the humoral immune system involves 

relatively fast and relatively slow modes of response creating a very 

stiff process with interesting numerical integration problems for the 

computer simulation if association and dissociation are considered. 

Conventional Runge~Kutta integration algorithms were not found 

effective unless instant equilibrium in association and dissociation 

are assumed. An adaptive Gear [17J algorithm, however, was found to 

be very effective. 

Following [18J, [19J, conditions of compartmental accessibility 

may be derived which are necessary for a minimum model realization 

from input~output tracer data. It is readily seen from standard 

linear system controllability and observability conditions for the 

tracer dynamics that the blood compartment is excellent for tracer 

insertion and observation. The spleen or the lymph, however, are not 

recommended as single compartments of accessibility as a consequence 

of the relatively small particle migration from spleen to lymph 

directly. 

It is obvious that future mOdels should consider switchover. 

Also, memory cells have been shown to recirculate throughout the 

lymphoid system, playing key role in immunity and enhanced secondary 

response. Time delays in certain organs (such as for B cells in 

spleen) are significant. Conceptually, it is not difficult to include 

these complications with the compartmental model shown above. 

However, there is a lack of consistent data to determine key para-

meters for such a model at this time. Special problem analyses may 

very well require subcompartmentation of spleen and lymph nodes. For 

example, certain tumors develop at specific nodes and T-B-M~ inter~ 



222 

actions occurring for only a short period of time take place in the 

white pulp compartment of the spleen. Also, the lungs receive a high 

concentration of lymphocytes early in the response, and are important 

in the early removal of antigen. An intensified program of collabo­

ration between analysts and experimenters is necessary to better 

understand these processes. 

6. CONCLUSION 

It is seen that linear time-delay differential equations mimick 

the experimental data for lymphocyte distribution of rats within the 

accuracy of the data available. Unfortunately more extensive data is 

required to do an adequate job of parameter estimation, and such data 

is not readily obtained. This is particularly true for the lymph node 

compartments presented here as a building~block synthesis of the 

lymphatic system. Eventually, it is hoped that data will be available 

to check models for dynamic behavior of antibodies and antigen as well 

as T and B lymphocytes. Such a model is reviewed in Section 5. 
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Employment of the optimal mathematical procedure for determining a standard curve 

is. essential for a proper evaluation of laboratory tests. These test results arethen 

frequently calculated with the use of a standard curve, which expresses the relation­

ship between the dose and response. This approach is also used in a liquid phase ra­

dioimnunoassay which employes binding of iodinated (125 I ) Clq as a measure of the 

presence of immunological complexes in serum samples. The present work describes our 

approach for calculation of the predicted variance - which is a rational for giving 

weights to empirical points composing the standard curve. 

THE RADIOIMMUNOASSAY DOSE - RESPONSE CURVE 

Fourteen of twenty-two curves reflecting the relationship between the dose (stand­

ardized human IgG aggregates) and response (fraction of 125I ' C1q bound) showed sig­

moidal shape. Furthermore, in eight tests the standard curves were partly sigmoidal 

but did not reach the upper or lower asmptote. Our test result curves are described 

by the following formula: 

a - d 

( Xl )b 
1+ -c 

+ d 

where Y1 - response, Xl - dose, a - upper asymptote, d - lower asymptote, 

b - slope, c - midpoint. 

The amount of 125I ' C1q precipitated by trichloroacid is used as a measure of the 

total precipitable amount of Clq (B ). Mathematically this represents the upper 
max 

asymptote. The lower asymptote is approximated by the value of O. The response 

seen at different concentrations of standard aggregates can be expressed as the frac-

tion of B max 

y 
Y1 

(2) 
a 

where Y1 - response, a - upper asymptote. 

The logistic transformation of Y at different ranges of response (Y 1 ... YM) makes 

the dose-response curve linear. Therefore the curve can be plotted with the use of 
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the linear least squares method. This enables the calculation of the two other para­

meters of the sigmoidal curve - slope and midpoint (Gaines Das and Tydeman, 1982; 

Laughton and Miles, 1977). 

Gaines Das and Tydeman (1982) recently offered several possibilities of the log­

istic transformation. In our test the transformation described by the following 

formula was the most suitable: 

y 

x 

log (y 0 100) 
log 

2 - log (Y 0 100) 

log (Xl) 

With this transformation the dose - response regression varied from 0.94 -0.99 . 

THE PREDICTED VARIANCE CALCULATION 

(3) 

(4) 

In Clq radioimmunoassay the empirical variance did not simply follow the magni­

tude of responseo This called for applying a weighted - procedure to the variance 

calculation according to the formula: 

N 
Y; (I) 

-2 t - N 0 Y 1 

VAR(Y) 1=1 

(N - 1) oy2 
1 

(5) 

where: 

N 
Y N t Y 1 (I) 

1=1 
(6) 

The relation between predicted variance VAR(Y) versus Y predicted (y) is expressed 

by the equation given by Rodbard and Hutt (1974): 

where: 

10 

2 
(aox + 13) 1 + 10 

a - slope, 13 - intercept, a 1 = a 2 0 

(7) 

(8) 

The significance of the various terms of the equation depends upon the characteris­

tic of the test which is under study. 

As in other test systems (Chen et al., 1980) aO - is represented by the variance 

of negative control [CONTR(-) 1: 

aO = VAR [CONTR(-)1 (9 ) 
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a 1 - can be calculated as a difference between the variance of Bmax and variance of 

negative control. 

VAR(Bmax} - VAR [CONTR(-} ] (10) 

The predicted weighted variances at different points along the standard curve ei­

ther when calculated with one as an exponent equaling [VAR(Y} = aO + a1Y] or two as 

an exponent equaling [VAR(Y} = aO + a 2y2] are from 1.1 to 3.0 and from 1.2 to 5.0 

times higher as compared to the empirical variances respectively. Therefore, we look­

ed for the exponent which when used for predicted variance estimation could secure 

the optimal fittness between predicted and empirical variance. This was achived when 

the following formulas were employed. 

( 11 ) 

where: 

1 M 
M L VAR[Y(J}] 

J=l 

IP2 { 

M 
M L VAR[Y(J}] 

J=l 
VAR[CONTR(-}] 

if a 1 < 0 

The predicted variances calculated with the IP2 exponent fits better to the em­

prical values than do the calculations based on the assumption of either constant 

linear or quadratic proportionality between variance and the response as it is seen 

from Table 1. 

WEIGHTING AND DETERMINATION OF THE FINAL RESULT 

Knowing the predicted variance of previously suggested formulas (11), allowed a 

determination of weights calculation. Similarly, we employed the known procedure 

(Rodbard and Hutt, 1974) for determination of the regression of curve parameters, 

with allowance for the weights of particular measurements at the specific standard 

curve points, based upon the iterative method described by the formulae: 

Y (J) 

W (J) 

L(J,I} 

2 

10 
1 + 10[a.·X(J} + 8] 

t 2(J}.[l _ t(J}]2 

VAR[Y (J) ] 

Y(J,I} - t(J} 
a.·X(J} + 8 + 0 --

Y(J}o[l-Y(J}] lnl0 

(12) 

( 13) 

(14 ) 
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The slope of the weighted regression line - a, intercept point with the axis of 

ordinates - S, and correlation coefficient - r, are determined by means of the 

method of least squares for weighted linear regression with repetitions. At the end 

of the procedure the content of immunological complexes in sera is calculated. This 

content in the serum investigated is expressed by the formula: 

C 

Y-8 
10 (l (15) 

where Y - response for the serum under investigation expressed by the transforma­

tion described in formula (3), a - slope, S - intercept. 

To make all the calculations possible a computer program was written in FORTRAN 

which is described in details elsewhere (~aba et al., 1986). 

CONCLUSION 

Twelve tests were evaluated with the use of the above procedure and by that des­

cribed by Gaines Das and Tydeman (1982). The standard curves were plotted with the 

use of two methods. From these curves the results were read, which corresponded to 

the B/Bmax fractions ranging from 0.05 to 0.9. The differences in reading, when two 

curves were used, were negligible at the lower range of fractions from 0.05 to 0.7 . 

There was some difference at higher BIB range (>0.7), however, small and statis-max 
tically non-significant [to.05 (22) = 2.074, 0.031 ~ ts ~ 0.360]. 

This comparison gives credit to our presently described approach to the predictive 

variance calculation. Calculated predictive variance can be further used in the it­

erative method of weighted regression curve determination. 

SUMMARY 

Statistical evaluation of the liquid phase radioimmunoassay, which employes bind­

ing of labelled Clq (125r •C1q ) as a measure of the presence of immunological com­

plexes in serum samples, was made. 

The curve representing the relationship between the dose (standardized human rgG 

aggregates) and response (fraction of 125r •C1q ) was sigmoidal or partly sigmoidal 

and after logistic transformation was linear and could be plotted with the use of the 

least squares method. This allowed calculation of the two other parameters of the 

sigmoidal curve (slope and midpoint) . 

A procedure for calculating predictive variance was worked out. This procedure uses 

the relation between the higher value of two evaluated variances - the variance of 

Bmax and the variance of negative control - and the mean empirical variance of the 

response to different doses of standard aggregates, for a calculation of the exponent 

for Y predicted. The predictive variance was further used for weighting of points of 

a standard curve. 
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TABLE 

Options of predicted Statistical significance of difference 

variance N.S. 0.05 

aO + a 1 y
IP2 14 1 

aO + a1 y 8 7 

aO + a 2 Y 2 
7 8 

The statistical evaluation (Student- t test for pairs) of differences between 

empirical and predicted variances (calculated according to the listed formulas) 

in 15 independent experiments. 
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Introduction 

In most cells there is a transmembrane potential difference, 

called a resting membrane potential (about -70 mV) arising from the 

unequal distributions of ions across the cell membrane and the 

selective permeability of the cell membrane for the various ion 

species. In nerve and muscle cells a sudden change in the ionic 

permeability of the membrane causes a rapid all-or-nothing change in 

membrane potential called an action potential. In nerve cells the 

action potential forms the basic information-carrying signal and in 

muscles cells it evokes cell contraction (27). 

In 1952, on the basis of electrophysiolgical experiments on the 

giant axon of the squid, Hodgkin and Huxley formulated a series of 

equations to describe the membrane conductance changes underlying the 

occurrence of the action potential (15). These equations, called the 

Hodgkin-Huxley equations, are still applied in the field of membrane 

electrophysiology and are consistent with the notion that changes in 

the membrane conductance giving rise to the action potential are the 

result of the collective behavior of individual transmembrane proteins 

called ion channels, which can be in either a conducting or in a 

non-conducting state. The existence of such ion channels was recently 

established by the use of the patch clamp technique introduced by 

Neher and Sackmann (14,36). This technique makes it possible to 

measure tran~membrane currents passing through individual ion channels 

as they open and close (i.e. as they change from a conducting to a 

non-conducting state). Analysis of the kinetics of channel activity 

has led to the development of mathematical models representing the 

behavior of ion channels (1,3,4,17). This means that for membrane 

electrophysiological studies, mathematical models can be applied to 

macroscopic membrane conductance changes as well as to the underlying 

activity of single i8n channels. The results from such mathematical 
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considerations provide a theoretical basis for the analysis of 

membrane electrophysiological phenonmena leading to predictions that 

can be verified experimentally. 

Phagocytic cells form an important part of the host-defence 

system due to their ability to recognize, phagocytose, kill and digest 

invading pathogens. There are two lines of phagocytes, one 

polymorphonuclear and the other mononuclear. Both cell lines originate 

in the bone marrow and later enter the blood circulation. The 

mononuclear phagocytes in the circulation, called monocytes, migrate 

to the tissues, where they mature into macrophages (41). Besides their 

capacity to endocytose (i.e. phagocytose and pinocytose) 

micro-organisms, fluid, cell debris, foreign bodies and tumor cells, 

macrophages can produce a wide array of humoral factors. Recent 

investigations concerning the characteristics and physiology of 

mononuclear phagocytes have been reported in the proceedings of the 

IVth International Conference on Mononuclear Phagocytes (40). 

Macrophages have numerous surface receptors supplying them with 

information about their environment and enabling them to interact with 

other cells, micro-organisms and humoral factors. Most of the 

above-mentioned functions are receptor-mediated, and the binding of 

ligands to macrophages is the first step in the activation of these 

cells. Since transmembrane electrical currents carried by ions are 

known to form an important link between ligand-receptor interaction 

and the activation of cell functions in many other cell types, it is 

conceivable that the same is the case for mononuclear phagocytes. 

Before this point can be investigated, however, the resting 

electrophysiological properties of mononuclear phagocytes need to be 

defined. For this purpose mononuclear phagocytes of human origin, i.e. 

peripheral blood monocytes, were used. In vitro culture of human 

monocytes for periods longer than one week results in increased cell 

size and differentiation of these monocytes into macrophage-like 

cells. Such cultured human monocytes were used for the experiments 

reported here. 

This paper gives a brief review of work done on the 

characterization of some basic electrophysiological properties of 

cultured human monocytes, mathematical models being used to support 

experimental results. Since the two main techniques for electrical 

measurements on single cells are based on microelectrode and patch 

clamp measurements, the use of these methods in the study of 

mononuclear phagocytes are dis~ussed separetely. 
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measurements intracellular 

In characterizing membrane electrophysiological properties of 

mononuclear phagocytes it is important to first establish the value of 

the resting membrane potential of these cells. Conventionally, 

membrane potential measurements are made with saline-filled 

open-tipped glass pipettes (called microelectrodes) with a tip 

diameter smaller than 0.2 ~m. Impalement of a cell with this kind of 

electrode provides 

measurement of the 

an intracellular measuring 

transmembrane potential 

point, allowing 

(Fig. 1 A) . Such 

measurements in macrophages have shown that endocytosis of latex beads 

(26) and exposure to substances that induce chemotaxis (11) (i.e., 

directed cell movement along a concentration gradient of a 

chemoattractant) causes changes in the membrane potential. In alveolar 

macrophages changes in the membrane potential precede the production 

of super oxide by these cells (2). Macrophages can show free-running 

oscillatory membrane potential changes, which have been found to arise 

from modulation of the membrane conductance for potassium caused by 

cyclic changes in intracellular concentration of calcium ions 

(7,12,19,37,38). Action potentials have also been described in 

cultured human monocytes (33). 

Penetration of small cells with microelectrodes can inflict 

damage on the cell, leading to unreliable measurements. Until 

recently, ~easurement of a sustained potential over 

after microelectrode penetration was seen as an 

a given period 

indication that 

transmembrane microelectrode induced leakages had not occurred and its 

value was taken as the value of the pre-impalement membrane potential. 

Nevertheless, values obtained in small cells can suffer from 

inaccuracy due to a transmembrane shunt arising from the hydration . 
mantle (estimated to be about 100 A thick) surrounding the 

intracellular microelectrode (Fig. 1A). If the resistance Rs of this 

shunt (about 100 Mohm) is less than or of the same order of magnitude 

as the membrane resistance Rm (as is the case for small cells), the 

pre-impalement resting membrane potential will be underestimated 

and a source of error introduced into measurements (14,25,28). 

A method to estimate the pre-impalement membrane potential of 

small cells that takes into account the presence of the microelectrode 

induced transmembrane shunt, was introduced by Lassen et al., who 

worked with ascites tumor cells (28). Using a microelectrode with a 



232 

fast response time (i.e., Te = Re Ce < 0.1 msec), these authors 

measured the fast potential transient occuring in the initial 

milliseconds after microelectrode entry into the cell. A schematic 

representation of an intracellular microelectrode measurement with an 

equivalent circuit superimposed on it is shown in Fig. 1A. Prior to 

cell impalement (and the introduction of Rs) the membrane capacitance 

Cm is charged up to the resting membrane potential (Em). When the 

microelectrode is driven into the cell and Rs introduced, the charged 

Cm will discharge from Em to a new steady state potential level (Es) 

with a time course determined by the time constants of the impaled 

membrane (including the shunt components) and of the microelectrode. 

The ability of the voltage amplifier to detect this discharge is 

limited by the response time of the microelectrode (T e ). If, however, 

the time constant of the microelectrode is sufficiently smaller than 

that of the cell membrane, the discharge of Em upon the introduction 

of Rs by the microelectrode can be measured. Small microelectrode 

time constants can be achieved by the use of an electronic technique 

called capacitance compensation. Under these conditions the potential 

transient recorded by the voltage amplifier in the initial 

milliseconds after micro electrode penetration is characterized by a 

rapid negative-going potential transient reaching a peak value (Ep) 

and followed by a slower depolarizing (positive-going) transient 

caused by the discharge of Cm' to a steady state potential Es (Fig. 

1B). The best approximation of Em directly measurable by a 

microelectrode is therefore Ep. 

To assess the usefulness of fast potential transient measurements 

in the estimation of pre-impalement resting membrane potentials, an 

analytical expression for the fast potential transient is needed. 

Application of Kirchoff's laws to the circuit illustrated in Fig. 1A 

gives the following differential equation 

(Ve ) measured by the amplifier upon 

microelectrode and the instantaneous 

resistance Rs at time t=O: 

TmTe 2 + (Tm + Tc + BTe l 
dt dt 

+ BV e 

for the potential transient 

cell penetration by a 

introduction of the shunt 

( 1 ) 
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in which Tm = Rm Cm' Te = ReCe' Tc = Rm Ce ' B = (Rs + Rm)/Rs, Ed is a 

diffusion potential, and Rs is the resistance of the microelectrode 

induced shunt. A peak potential Ep is reached when dVe!dt=O. In the 

steady state situation (i.e., t_oo) eq. 1 reduces to: 

(2) 

and shows the influence of microelectrode-induced components (Rs and 

Ed) on steady state potential measurements. On this basis it can be 

concluded that steady state potential measurements can only give a 

reliable measure of the pre-impalement resting membrane potential when 

Rs »Rm' 

o 

E [my) 

-20 

-40 

A 

Ep 

B 

t----t 

10ms 

Fig.1. Microelectrode measurements on single cells. (A) The 
introduction of a microelectrode into a cell induces a transmembrane 
shunt. The microelectrode has a tip resistance Re and an electrode 
capacitance Ceo The hydration mantle surrounding the electrode 
provides a transmembrane shunt with a resistance R . The unequal ionic 
concentrations across the shunt also produce a diffusion potential Ed' 
The electric parameters of the cell include the resting membrane 
potential Em' a membrane resistance Rm, and capacitance Cm. (B) When 
Rm is of the same order of magnitude or larger than Rs a peaked 
potential transient is seen during the initial milliseconds after 
microelectrode entry into the cell. The potential transient rapidly 
reaches a peak potential E and is followed by a slower 
positive-going transient to a Eteady state potential Es' Provided the 
time constant of the electrode is sufficiently small, E will provide 
a good measure of the pre-impalement resting membrane pgtential of the 
cell. 
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However close the approximation of Em' the value of Ep will 

always be an underestimation of the pre-impalement resting potential 

because of the change in potential across Cm while Ce charges up. 

Analysis of equation (1) shows that when microelectrodes are used with 

timeconstants of less than 0.1 ms, Ep ' although an underestimation, 

provides a good estimate of the pre-implament membrane potential of 

cells as small as macrophages. Experimental evidence that Ep is an 

accurate measure of Em within 10 mV was provided by experiments in 

which membrane potential measurement with the patch clamp technique 

was combined with intracellular microelectrode impalement (24). Patch 

clamp measurements do not suffer from the ill effects of an Rs and 

allow the measurement of Em prior to cell penetration by the 

microelectrode. 

Impalement transients measured in mononuclear phagocytes of 

various origin revealed that Ep was more negative than the sustained 

potential Es. This observation led to the conclusion that the 

pre-impalement membrane potential of mononuclear phagocytes is more 

negative than had previously been assumed on the basis of sustained 

potential measurements (25). 
The values of the resting membrane potentials of cultured human 

monocytes as determined by peak potential measurements lie between -30 
and -50 mV (24,25,37). These values are less negative than those 

usually reported for nerve and muscle cells (around -70 mV), which 

suggests that the ionic basis of the resting membrane potential of 

cultured human monocytes differs from that usually asssociated with 

nerve or muscle cells. 

The knowledge that the peak potential is a good measure of the 

resting membrane potential led us to use the constant field equation 

(13,16) to investigate the ionic basis of the resting membrane 

potential of cultured human monocytes. This equation rests on the 

assumption that there is a linear potential decline across the cell 

membrane, and relates the resting membrane potential to the intra- and 

extracellular concentrations of monovalent ions and the permeability 

of the cell membrane for them. The constant field equation is given 

by: 

RT PKK e + PNaNae + PClCl i 
In (3) 

F PKK i + PNaNai + PClCl e 
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in which Em is the resting membrane potential, R the gas constant, T 

the temperature in K, F is Faraday's constant, and Ke' Na e , and Cl e 

the extracellular and Ki , Nai' and Cli the intracellular 

concentrations of K+, Na+ and Cl-, respectively. PK, PNa , and PCl give 

the permeability of the cell membrane to K+, Na+, and Cl- ions, 

respectively. 

To find out whether this equation adequately describes the 

ionic basis of the resting membrane potential of cultured human 

monocytes, values of its parameters were determined. First, the 

intracellular concentrations of K+, Na+, and Cl- were determined 

biochemically in terms of the mean cell size, water content, and the 

K+, Na+, and Cl- contents of monocytes in suspension. The 

experimentally obtained values for Ki , Nai' and Cli in human monocytes 

were 130, 30, and 120 mM, respectively. Next, determination of 

membrane potentials by measurement of Ep under various extracellular 

ionic conditions gave values for PNa/PK and PC1/PK, of 0.05 and 0.33, 

respectively. 

-60 

Em (mVl 

-40 

-20 

X-)(-X-)t-)C-)t)to)( .. )0t.~~xxx Nae 
0-0_ x 

10 100 
extracellular concentration (mM 1 

Fig 2. Calculations of the resting membrane potential of cultured 
human monocytes as a function of the extracellular concentration of 
mo~ovalent ions (K , N~e' and Cle ). Three curves are shown for each of 
whlch the concen~ratlon of a different ion type (indicated next to 
each curve) is varied (indicated on the x axis), and, using the 
constant field equation, the resting membrane potential (E ) was 
calculated (y axis). Values for the parameters used in th~ the 
constant field equation were obtained experimentally and were 121, 21, 
106 mM for Ki , Nai' and Cli' respectively, and 0.05 and 0.23 for 
PNa/PK and PC1/~K' respectively. 
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With these values for PNa ! PK, PCl /PK, Ki, Nai' and Cl i , Em 

was calculated with the constant field equation (eq. 3) for three 

experiments, in each of which one of the ionic concentrations was 

varied and the remaining ionic concentrations were kept constant. The 

results of these calculations are shown in Fig.2. Experiments in which 

Ke' Nae , and Cle were varied by 

for these ions showed good 

theoretically derived curves 

using membrane-impermeable substitutes 

agreement (within 10 mV) with the 

shown in Fig. 2 (21). The results of 

these studies revealed that the main difference between the ionic 

basis of the 

and that of 

intracellular 

resting membrane potential of cultured human monocytes 

nerve and muscle cells is the relatively high 

chloride concentration in the former combined with a 

membrane permeability to chloride close to that of potassium. The use 

of fast potential transient recordings to determine the resting 

membrane potential and the description of this potential by the 

constant field equation show the usefulness of mathematical 

descriptions in the characterization of the resting membrane 

electrophysiological properties of cultured human monocytes. 

Patch clamp measurements of single ion channel activity 

The limitations imposed on electrophysiological investigation 

of single cells by the presence of a microelectrode-induced shunt were 

abolished by the introduction of the patch clamp technique by Neher 

and Sakmann (14,36,39). Because a discussion of the many aspects of 

this powerful technique would take us beyond the scope of this paper, 

the reader is referred to the literature (14,18,39). 

The patch clamp technique has recently been applied to 

mononuclear phagocytes (9,10,22-24,44,45). In brief, patch clamp 

measurements are performed with saline-filled fire-polished suction 

glass micro-pipettes (patch electrode) w~th slightly larger tip 

diameters (1 to 5 ~m) than those of microelectrodes. The patch 

electrode is placed on the surface 

to it, which seals off a patch 

extracellular environment (Fig. 

of the cell and suction is applied 

of the cell membrane from the 

3A). Under suitable conditions the 

seal can have a resistance in the the giga ohm range and is therefore 

referred to as a giga seal. This seal provides favorable electrical 

conditions for the measurement of currents, and sensitive current 

amplifiers can detect currents flowing through single ion channels. 
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Quantal changes in current are observed when the ion channels open and 

close. If a number of such transmembrane proteins are present under 

the patch, step-like current fluctuations are measured (Fig. 3B). 

Control of the kinetics of the alternating behavior of the opening and 

closing channel is provided by, e.g., the membrane potential or 

specific ligands (such as acetycholine). Ligand-receptor binding can 

therefore be investigated in great detail with the patch clamp 

technique (4). 

The cumulative effects of channel activity over the entire cell 

membrane can also be measured with the patch clamp technique by 

breaking the membrane patch; this is done by applying an extra suction 

pulse. In a whole-cell configuration of this kind the macroscopic 

transmembrane currents can be measured (14). Thus, patch clamp 

measurements can be used to investigate the dependence of macroscopic 

membrane currents on the activity of single ion channels (31,34). 
Combination of patch clamp and micro electrode measurements in 

cultured human monocytes revealed correlation between changes in the 

micro electrode-measured membrane potential and enhanced channel 

activity measured with a patch electrode in the same cell (24). 

A B 

20 m. 100 ms 

110 pA 110 pA 

c o 

Fig 3. Single ionic channel measurements measurements performed in 
cultured human monocytes by use of the patch clamp technique. (A) A 
schematic representation of a patch clamp measurement shows how ionic 
channel activity can be measured without disrupting the cell. (B) When 
more than one channel is present under the patch step-like curent 
changes are measured. (C) Under certain conditions the noise produced 
by ions passing through the open channel is registered. (D) Due to the 
presence of more than one closed or open state in channels, 
burst-like opening of the channel can sometimes be observed. 
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Mean channel open and close times and the probability that a 

channel will be in a particular state under a number of conditions, 

can be used to construct models of the kinetics of channel activity. 

The observation that the binding of IgG (a sub-class of 

immunoglobulins) to its membrane receptor forms an ion channel (43) 

and that extracellular IgG stimulates the ability of human monocytes 

to kill micro-organisms intracellularly (30) are examples of the 

possiblities offered by patch clamp measurements for the study of the 

function of receptor-ligand binding in cells of the host-defence 

system. 

Single channel measurements can also provide information 

concerning the movement of ions through an ion channel. As can be seen 

in Fig. 3C, enhanced noise levels are sometimes observed when an ion 

channel is open. These fluctuations occur as a result of the passage 

of ions through the channel and could reflect fluctuations in channel 

structure (29). Fluctuation analysis of such noise signals could 

provide additional information on the kinetics of ion channel activity 

(29). Analysis of the membrane noise of whole cells, for example, can 

be used to obtain information about the kinectic parameters of 

membrane conductance changes (42). 

Analysis of the conditions that determine the kinectics of 

channel activity can provide information about the mechanisms by 

which the state of the channel is changed. For example, the use of 

Markov processes to describe the kinetics of channel behavior (3,17) 

has confirmed the general opinion that an ion channel forms a 

transmembrane tunnel in which there are a number of gates that can 

close or open. Such models predict a phenomenon called bursting 

sometimes seen in single channel activity (Fig. 3D) (4). 

A related application of single channel measurement that is 

also relevant to the study of host-defence mechanisms is the finding 

that pathogens such as Neisseria gonorrhoeae and Neisseria 

meningitidis (32) and toxins such as diphtheria toxin (6) incorporate 

ion channels called porins into the membrane of host cells. It is 

speculated that such pathogens incorporate porins into host cells to 

affect their permeability thereby enabling the pathogen to enter the 

host cell (32). Thus various types of transmembrane proteins involved 

in host defence mechanisms seem to have ion channel-like structures. 

Electrophysiological techniques provide a tool for the study of the 

kinetics of such proteins. 
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Discussion 

This brief review has shown some applications of mathematical 

models for the description of membrane electrophysiological processes 

in macrophages. Patch clamp measurements can provide detailed 

information concerning membrane events and provide an ideal basis for 

mathematical models of molecular mechanisms. Recent application of the 

patch clamp technique to cells involved in the host defence system has 

identified ion channel activity in human T lymphocytes (5,35) and 

monocytes (10,23,24) as well as in mouse peritoneal macrophages 

(44,45) and spleen macrophages (9) and mouse B lymphocytes (8). The 

precise role of such ion channels in the functional activity of these 

cells is poorly understood, but further research should provide 

information about relationships between the functioning of cells 

involved in host defence and membrane electrophysiological 

processes. Such studies can be 

theoretical models of the 

mechanisms. 
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