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DIETARY GUIDELINES FOR AMERICANS, 2010

Key Recommendations for Each Area of the Guidelines:

Adequate Nutrients Within Calorie Needs

a. Consume a variety of nutrient-dense foods and beverages
within and among the basic food groups while choosing
foods that limit the intake of saturated and trans fats,
cholesterol, added sugars, salt, and alcohol.

b. Meet recommended intakes by adopting a balanced
eating pattern, such as the USDA Food Patterns or the
DASH Eating Plan.

Weight Management

a. To maintain body weight in a healthy range, balance cal-
ories from foods and beverages with calories expended.

b. To prevent gradual weight gain over time, make small
decreases in food and beverage calories and increase
physical activity.

Physical Activity

a. Engage in regular physical activity and reduce sedentary
activities to promote health, psychological well-being,
and a healthy body weight.

b. Achieve physical fitness by including cardiovascular
conditioning, stretching exercises for flexibility, and re-
sistance exercises or calisthenics for muscle strength and
endurance.

Food Groups to Encourage

a. Consume a sufficient amount of fruits and vegetables
while staying within energy needs. Two cups of fruit
and 2% cups of vegetables per day are recommended
for a reference 2,000-Calorie intake, with higher or lower
amounts depending on the calorie level.

b. Choose a variety of fruits and vegetables each day. In
particular, select from all five vegetable subgroups (dark
green, orange, legumes, starchy vegetables, and other
vegetables) several times a week.

c. Consume 3 or more ounce-equivalents of whole-grain
products per day, with the rest of the recommended
grains coming from enriched or whole-grain products.

d. Consume 3 cups per day of fat-free or low-fat milk or
equivalent milk products.

Fats

a. Consume less than 10% of Calories from saturated fatty
acids and less than 300 mg/day of cholesterol, and keep
trans fatty acid consumption as low as possible.

b. Keep total fat intake between 20% and 35% of calories,
with most fats coming from sources of polyunsaturated
and monounsaturated fatty acids, such as fish, nuts, and
vegetable oils.

c. Choose foods that are lean, low-fat, or fat-free, and limit

intake of fats and oils high in saturated and/or trans fatty
acids.

Carbohydrates

a. Choose fiber-rich fruits, vegetables, and whole grains
often.

b. Choose and prepare foods and beverages with little
added sugars or caloric sweeteners, such as amounts
suggested by the USDA Food Patterns and the DASH
Eating Plan.

c. Reduce the incidence of dental caries by practicing good
oral hygiene and consuming sugar- and starch-containing
foods and beverages less frequently.

Sodium and Potassium

a. Consume less than 2,300 mg of sodium (approximately
1 tsp of salt) per day.

b. Consume potassium-rich foods, such as fruits and
vegetables.

Alcoholic Beverages

a. Those who choose to drink alcoholic beverages should
do so sensibly and in moderation—defined as the con-
sumption of up to one drink per day for women and up
to two drinks per day for men.

b. Alcoholic beverages should not be consumed by some
individuals, including those who cannot restrict their
alcohol intake, women of childbearing age who may be-
come pregnant, pregnant and lactating women, children
and adolescents, individuals taking medications that can
interact with alcohol, and those with specific medical
conditions.

c. Alcoholic beverages should be avoided by individuals
engaging in activities that require attention, skill, or coor-
dination, such as driving or operating machinery.

Food Safety

a. To avoid microbial foodborne illness, clean hands, food
contact surfaces, and fruits and vegetables; separate raw,
cooked, and ready-to-eat foods; cook foods to a safe tem-
perature; and refrigerate perishable food promptly and
defrost foods properly. Meat and poultry should not be
washed or rinsed.

b. Avoid unpasteurized milk and products made from
unpasteurized milk or juices and raw or partially cooked
eggs, meat, or poultry.

There are additional key recommendations for specific
population groups. You can access all the Guidelines on
the web at www.healthierus.gov/dietaryguidelines.

Data from U.S. Department of Agriculture and U.S. Department of Health and Human Services. 2010. Dietary Guidelines for Americans, 2010. 6th edn. www.healthierus.gov/

dietaryguidelines.
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From the Dietary Reference Intakes series. Copyright © 2011 by the National Academy of Sciences. Reprinted with permission by the National Academy of Sciences. Courtesy of the National Academies Press, Washington, DC.
2 UL = The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could
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¢ As ce-tocopherol; applies to any form of supplemental cc-tocopherol.
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Preface

General Approach and Mathematical Level

This text was designed for a one-semester course that covers the essential topics
needed for a fundamental understanding of basic statistics and its applications in
the fields of engineering and the sciences. A balance between theory and application
is maintained throughout the text. Coverage of analytical tools in statistics is
enhanced with the use of calculus when discussion centers on rules and concepts in
probability. Students using this text should have the equivalent of the completion
of one semester of differential and integral calculus. Linear algebra would be helpful
but not necessary if the instructor chooses not to include Section 7.11 on multiple
linear regression using matrix algebra.

Class projects and case studies are presented throughout the text to give the
student a deeper understanding of real-world usage of statistics. Class projects
provide the opportunity for students to work alone or in groups to gather their
own experimental data and draw inferences using the data. In some cases, the
work conducted by the student involves a problem whose solution will illustrate
the meaning of a concept and/or will provide an empirical understanding of an
important statistical result. Case studies provide commentary to give the student
a clear understanding in the context of a practical situation. The comments we
affectionately call “Pot Holes” at the end of each chapter present the big pic-
ture and show how the chapters relate to one another. They also provide warn-
ings about the possible misuse of statistical techniques presented in the chapter.
A large number of exercises are available to challenge the student. These exer-
cises deal with real-life scientific and engineering applications. The many data
sets associated with the exercises are available for download from the website
http://www.pearsonhighered.com/mathstatsresources.

Content and Course Planning

This textbook contains nine chapters. The first two chapters introduce the notion
of random variables and their properties, including their role in characterizing data
sets. Fundamental to this discussion is the distinction, in a practical sense, between
populations and samples.

In Chapter 3, both discrete and continuous random variables are illustrated
with examples. The binomial, Poisson, hypergeometric, and other useful discrete
distributions are discussed. In addition, continuous distributions include the nor-

ix
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mal, gamma, and exponential. In all cases, real-life scenarios are given to reveal
how these distributions are used in practical engineering problems.

The material on specific distributions in Chapter 3 is followed in Chapter 4 by
practical topics such as random sampling and the types of descriptive statistics
that convey the center of location and variability of a sample. Examples involv-
ing the sample mean and sample variance are included. Following the introduc-
tion of central tendency and variability is a substantial amount of material dealing
with the importance of sampling distributions. Real-life illustrations highlight how
sampling distributions are used in basic statistical inference. Central Limit type
methodology is accompanied by the mechanics and purpose behind the use of the
normal, Student ¢, x2, and f distributions, as well as examples that illustrate their
use. Students are exposed to methodology that will be brought out again in later
chapters in the discussions of estimation and hypothesis testing. This fundamental
methodology is accompanied by illustration of certain important graphical meth-
ods, such as stem-and-leaf and box-and-whisker plots. Chapter 4 presents the first
of several case studies involving real data.

Chapters 5 and 6 complement each other, providing a foundation for the solu-
tion of practical problems in which estimation and hypothesis testing are employed.
Statistical inference involving a single mean and two means, as well as one and two
proportions, is covered. Confidence intervals are displayed and thoroughly dis-
cussed; prediction intervals and tolerance intervals are touched upon. Problems
with paired observations are covered in detail.

In Chapter 7, the basics of simple linear regression (SLR) and multiple linear
regression (MLR) are covered in a depth suitable for a one-semester course. Chap-
ters 8 and 9 use a similar approach to expose students to the standard methodology
associated with analysis of variance (ANOVA). Although regression and ANOVA
are challenging topics, the clarity of presentation, along with case studies, class
projects, examples, and exercises, allows students to gain an understanding of the
essentials of both.

In the discussion of rules and concepts in probability, the coverage of analytical
tools is enhanced through the use of calculus. Though the material on multiple
linear regression in Chapter 7 covers the essential methodology, students are not
burdened with the level of matrix algebra and relevant manipulations that they
would confront in a text designed for a two-semester course.

Computer Software

Case studies, beginning in Chapter 4, feature computer printout and graphical
material generated using both SAS® and MINITAB®. The inclusion of the com-
puter reflects our belief that students should have the experience of reading and
interpreting computer printout and graphics, even if the software in the text is not
that which is used by the instructor. Exposure to more than one type of software
can broaden the experience base for the student. There is no reason to believe that
the software used in the course will be that which the student will be called upon
to use in a professional setting.
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Instructor’s Solutions Manual. This resource contains worked-out solutions to all
text exercises and is available for download from Pearson’s Instructor Resource
Center at www.pearsonhighered.com/irc.

Student’s Solutions Manual. ISBN-10: 0-321-78399-9; ISBN-13: 978-0-321-78399-
8. This resource contains complete solutions to selected exercises. It is available
for purchase from MyPearsonStore at www.mypearsonstore.com, or ask your local
representative for value pack options.

PowerPoint® Lecture Slides. These slides include most of the figures and tables
from the text. Slides are available for download from Pearson’s Instructor Resource
Center at www.pearsonhighered.com/irc.

Looking for more comprehensive coverage for a two-semester course? See the more
comprehensive book Probability and Statistics for Engineers and Scientists, 9th
edition, by Walpole, Myers, Myers, and Ye (ISBN-10: 0-321-62911-6; ISBN-13:
978-0-321-62911-1).
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Chapter 1

Introduction to Statistics
and Probability

1.1 Overview: Statistical Inference, Samples, Populations,
and the Role of Probability

Beginning in the 1980s and continuing into the 21st century, a great deal of at-
tention has been focused on improvement of quality in American industry. Much
has been said and written about the Japanese “industrial miracle,” which began
in the middle of the 20th century. The Japanese were able to succeed where we
and other countries had failed—namely, to create an atmosphere that allows the
production of high-quality products. Much of the success of the Japanese has
been attributed to the use of statistical methods and statistical thinking among
management personnel.

Use of Scientific Data

The use of statistical methods in manufacturing, development of food products,
computer software, energy sources, pharmaceuticals, and many other areas involves
the gathering of information or scientific data. Of course, the gathering of data
is nothing new. It has been done for well over a thousand years. Data have
been collected, summarized, reported, and stored for perusal. However, there is a
profound distinction between collection of scientific information and inferential
statistics. It is the latter that has received rightful attention in recent decades.
The offspring of inferential statistics has been a large “toolbox” of statistical
methods employed by statistical practitioners. These statistical methods are de-
signed to contribute to the process of making scientific judgments in the face of
uncertainty and variation. The product density of a particular material from a
manufacturing process will not always be the same. Indeed, if the process involved
is a batch process rather than continuous, there will be not only variation in ma-
terial density among the batches that come off the line (batch-to-batch variation),
but also within-batch variation. Statistical methods are used to analyze data from
a process such as this one in order to gain more sense of where in the process
changes may be made to improve the quality of the process. In this process, qual-
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ity may well be defined in relation to closeness to a target density value in harmony
with what portion of the time this closeness criterion is met. An engineer may be
concerned with a specific instrument that is used to measure sulfur monoxide in
the air during pollution studies. If the engineer has doubts about the effectiveness
of the instrument, there are two sources of variation that must be dealt with.
The first is the variation in sulfur monoxide values that are found at the same
locale on the same day. The second is the variation between values observed and
the true amount of sulfur monoxide that is in the air at the time. If either of these
two sources of variation is exceedingly large (according to some standard set by
the engineer), the instrument may need to be replaced. In a biomedical study of a
new drug that reduces hypertension, 85% of patients experienced relief, while it is
generally recognized that the current drug, or “old” drug, brings relief to 80% of pa-
tients that have chronic hypertension. However, the new drug is more expensive to
make and may result in certain side effects. Should the new drug be adopted? This
is a problem that is encountered (often with much more complexity) frequently by
pharmaceutical firms in conjunction with the FDA (Federal Drug Administration).
Again, the consideration of variation needs to be taken into account. The “85%”
value is based on a certain number of patients chosen for the study. Perhaps if the
study were repeated with new patients the observed number of “successes” would
be 75%! It is the natural variation from study to study that must be taken into
account in the decision process. Clearly this variation is important, since variation
from patient to patient is endemic to the problem.

Variability in Scientific Data

In the problems discussed above the statistical methods used involve dealing with
variability, and in each case the variability to be studied is that encountered in
scientific data. If the observed product density in the process were always the
same and were always on target, there would be no need for statistical methods.
If the device for measuring sulfur monoxide always gives the same value and the
value is accurate (i.e., it is correct), no statistical analysis is needed. If there
were no patient-to-patient variability inherent in the response to the drug (i.e.,
it either always brings relief or not), life would be simple for scientists in the
pharmaceutical firms and FDA and no statistician would be needed in the decision
process. Statistics researchers have produced an enormous number of analytical
methods that allow for analysis of data from systems like those described above.
This reflects the true nature of the science that we call inferential statistics, namely,
using techniques that allow us to go beyond merely reporting data to drawing
conclusions (or inferences) about the scientific system. Statisticians make use of
fundamental laws of probability and statistical inference to draw conclusions about
scientific systems. Information is gathered in the form of samples, or collections
of observations. The process of sampling will be introduced in this chapter, and
the discussion continues throughout the entire book.

Samples are collected from populations, which are collections of all individ-
uals or individual items of a particular type. At times a population signifies a
scientific system. For example, a manufacturer of computer boards may wish to
eliminate defects. A sampling process may involve collecting information on 50
computer boards sampled randomly from the process. Here, the population is all
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computer boards manufactured by the firm over a specific period of time. If an
improvement is made in the computer board process and a second sample of boards
is collected, any conclusions drawn regarding the effectiveness of the change in pro-
cess should extend to the entire population of computer boards produced under
the “improved process.” In a drug experiment, a sample of patients is taken and
each is given a specific drug to reduce blood pressure. The interest is focused on
drawing conclusions about the population of those who suffer from hypertension.

Often, it is very important to collect scientific data in a systematic way, with
planning being high on the agenda. At times the planning is, by necessity, quite
limited. We often focus only on certain properties or characteristics of the items or
objects in the population. Each characteristic has particular engineering or, say,
biological importance to the “customer,” the scientist or engineer who seeks to learn
about the population. For example, in one of the illustrations above the quality
of the process had to do with the product density of the output of a process. An
engineer may need to study the effect of process conditions, temperature, humidity,
amount of a particular ingredient, and so on. He or she can systematically move
these factors to whatever levels are suggested according to whatever prescription
or experimental design is desired. However, a forest scientist who is interested
in a study of factors that influence wood density in a certain kind of tree cannot
necessarily design an experiment. This case may require an observational study
in which data are collected in the field but factor levels can not be preselected.
Both of these types of studies lend themselves to methods of statistical inference.
In the former, the quality of the inferences will depend on proper planning of the
experiment. In the latter, the scientist is at the mercy of what can be gathered.
For example, it is sad if an agronomist is interested in studying the effect of rainfall
on plant yield and the data are gathered during a drought.

The importance of statistical thinking by managers and the use of statistical
inference by scientific personnel is widely acknowledged. Research scientists gain
much from scientific data. Data provide understanding of scientific phenomena.
Product and process engineers learn a great deal in their off-line efforts to improve
the process. They also gain valuable insight by gathering production data (on-
line monitoring) on a regular basis. This allows them to determine necessary
modifications in order to keep the process at a desired level of quality.

There are times when a scientific practitioner wishes only to gain some sort of
summary of a set of data represented in the sample. In other words, inferential
statistics is not required. Rather, a set of single-number statistics or descriptive
statistics is helpful. These numbers give a sense of center of the location of
the data, variability in the data, and the general nature of the distribution of
observations in the sample. Though no specific statistical methods leading to
statistical inference are incorporated, much can be learned. At times, descriptive
statistics are accompanied by graphics. Modern statistical software packages allow
for computation of means, medians, standard deviations, and other single-
number statistics as well as production of graphs that show a “footprint” of the
nature of the sample, including histograms, stem-and-leaf plots, scatter plots, dot
plots, and box plots.
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The Role of Probability

From this chapter to Chapter 3, we deal with fundamental notions of probability.
A thorough grounding in these concepts allows the reader to have a better under-
standing of statistical inference. Without some formalism of probability theory,
the student cannot appreciate the true interpretation from data analysis through
modern statistical methods. It is quite natural to study probability prior to study-
ing statistical inference. Elements of probability allow us to quantify the strength
or “confidence” in our conclusions. In this sense, concepts in probability form a
major component that supplements statistical methods and helps us gauge the
strength of the statistical inference. The discipline of probability, then, provides
the transition between descriptive statistics and inferential methods. Elements of
probability allow the conclusion to be put into the language that the science or
engineering practitioners require. An example follows that will enable the reader
to understand the notion of a P-value, which often provides the “bottom line” in
the interpretation of results from the use of statistical methods.

Example 1.1:| Suppose that an engineer encounters data from a manufacturing process in which
100 items are sampled and 10 are found to be defective. It is expected and antic-
ipated that occasionally there will be defective items. Obviously these 100 items
represent the sample. However, it has been determined that in the long run, the
company can only tolerate 5% defective in the process. Now, the elements of prob-
ability allow the engineer to determine how conclusive the sample information is
regarding the nature of the process. In this case, the population conceptually
represents all possible items from the process. Suppose we learn that if the process
is acceptable, that is, if it does produce items no more than 5% of which are de-
fective, there is a probability of 0.0282 of obtaining 10 or more defective items in
a random sample of 100 items from the process. This small probability suggests
that the process does, indeed, have a long-run rate of defective items that exceeds
5%. In other words, under the condition of an acceptable process, the sample in-
formation obtained would rarely occur. However, it did occur! Clearly, though, it
would occur with a much higher probability if the process defective rate exceeded
5% by a significant amount. o |

From this example it becomes clear that the elements of probability aid in the
translation of sample information into something conclusive or inconclusive about
the scientific system. In fact, what was learned likely is alarming information to the
engineer or manager. Statistical methods, which we will actually detail in Chapter
6, produced a P-value of 0.0282. The result suggests that the process very likely
is not acceptable. The concept of a P-value is dealt with at length in succeeding
chapters. The example that follows provides a second illustration.

Example 1.2:] Often the nature of the scientific study will dictate the role that probability and
deductive reasoning play in statistical inference. FExercise 5.28 on page 221 provides
data associated with a study conducted at Virginia Tech on the development of a
relationship between the roots of trees and the action of a fungus. Minerals are
transferred from the fungus to the trees and sugars from the trees to the fungus.
Two samples of 10 northern red oak seedlings were planted in a greenhouse, one
containing seedlings treated with nitrogen and the other containing seedlings with
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no nitrogen. All other environmental conditions were held constant. All seedlings
contained the fungus Pisolithus tinctorus. More details are supplied in Chapter 5.
The stem weights in grams were recorded after the end of 140 days. The data are
given in Table 1.1.

Table 1.1: Data Set for Example 1.2
No Nitrogen Nitrogen

0.32 0.26

0.53 0.43

0.28 0.47

0.37 0.49

0.47 0.52

0.43 0.75

0.36 0.79

0.42 0.86

0.38 0.62

0.43 0.46
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Figure 1.1: A dot plot of stem weight data.

In this example there are two samples from two separate populations. The
purpose of the experiment is to determine if the use of nitrogen has an influence
on the growth of the roots. The study is a comparative study (i.e., we seek to
compare the two populations with regard to a certain important characteristic). Tt
is instructive to plot the data as shown in the dot plot of Figure 1.1. The o values
represent the “nitrogen” data and the x values represent the “no-nitrogen” data.

Notice that the general appearance of the data might suggest to the reader
that, on average, the use of nitrogen increases the stem weight. Four nitrogen ob-
servations are considerably larger than any of the no-nitrogen observations. Most
of the no-nitrogen observations appear to be below the center of the data. The
appearance of the data set would seem to indicate that nitrogen is effective. But
how can this be quantified? How can all of the apparent visual evidence be summa-
rized in some sense? As in the preceding example, the fundamentals of probability
can be used. The conclusions may be summarized in a probability statement or
P-value. We will not show here the statistical inference that produces the summary
probability. As in Example 1.1, these methods will be discussed in Chapter 6. The
issue revolves around the “probability that data like these could be observed” given
that nitrogen has no effect, in other words, given that both samples were generated
from the same population. Suppose that this probability is small, say 0.03. That
would certainly be strong evidence that the use of nitrogen does indeed influence
(apparently increases) average stem weight of the red oak seedlings. . |
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How Do Probability and Statistical Inference Work Together?

It is important for the reader to understand the clear distinction between the
discipline of probability, a science in its own right, and the discipline of inferen-
tial statistics. As we have already indicated, the use or application of concepts in
probability allows real-life interpretation of the results of statistical inference. As a
result, it can be said that statistical inference makes use of concepts in probability.
One can glean from the two examples above that the sample information is made
available to the analyst and, with the aid of statistical methods and elements of
probability, conclusions are drawn about some feature of the population (the pro-
cess does not appear to be acceptable in Example 1.1, and nitrogen does appear
to influence average stem weights in Example 1.2). Thus for a statistical problem,
the sample along with inferential statistics allows us to draw conclu-
sions about the population, with inferential statistics making clear use
of elements of probability. This reasoning is inductive in nature. Now as we
move into Section 1.4 and beyond, the reader will note that, unlike what we do
in our two examples here, we will not focus on solving statistical problems. Many
examples will be given in which no sample is involved. There will be a population
clearly described with all features of the population known. Then questions of im-
portance will focus on the nature of data that might hypothetically be drawn from
the population. Thus, one can say that elements in probability allow us to
draw conclusions about characteristics of hypothetical data taken from
the population, based on known features of the population. This type of
reasoning is deductive in nature. Figure 1.2 shows the fundamental relationship
between probability and inferential statistics.

Probability

i

Population Sample

N_ S

Statistical Inference

Figure 1.2: Fundamental relationship between probability and inferential statistics.

Now, in the grand scheme of things, which is more important, the field of
probability or the field of statistics? They are both very important and clearly are
complementary. The only certainty concerning the pedagogy of the two disciplines
lies in the fact that if statistics is to be taught at more than merely a “cookbook”
level, then the discipline of probability must be taught first. This rule stems from
the fact that nothing can be learned about a population from a sample until the
analyst learns the rudiments of uncertainty in that sample. For example, consider
Example 1.1. The question centers around whether or not the population, defined
by the process, is no more than 5% defective. In other words, the conjecture is that
on the average 5 out of 100 items are defective. Now, the sample contains 100
items and 10 are defective. Does this support the conjecture or refute it? On the
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surface it would appear to be a refutation of the conjecture because 10 out of 100
seem to be “a bit much.” But without elements of probability, how do we know?
Only through the study of material in future chapters will we learn the conditions
under which the process is acceptable (5% defective). The probability of obtaining
10 or more defective items in a sample of 100 is 0.0282.

We have given two examples where the elements of probability provide a sum-
mary that the scientist or engineer can use as evidence on which to build a decision.
The bridge between the data and the conclusion is, of course, based on foundations
of statistical inference, distribution theory, and sampling distributions discussed in
future chapters.

1.2 Sampling Procedures; Collection of Data

In Section 1.1 we discussed very briefly the notion of sampling and the sampling
process. While sampling appears to be a simple concept, the complexity of the
questions that must be answered about the population or populations necessitates
that the sampling process be very complex at times. While the notion of sampling
is discussed in a technical way in Chapter 4, we shall endeavor here to give some
common-sense notions of sampling. This is a natural transition to a discussion of
the concept of variability.

Simple Random Sampling

The importance of proper sampling revolves around the degree of confidence with
which the analyst is able to answer the questions being asked. Let us assume that
only a single population exists in the problem. Recall that in Example 1.2 two
populations were involved. Simple random sampling implies that any particular
sample of a specified sample size has the same chance of being selected as any
other sample of the same size. The term sample size simply means the number of
elements in the sample. Obviously, a table of random numbers can be utilized in
sample selection in many instances. The virtue of simple random sampling is that
it aids in the elimination of the problem of having the sample reflect a different
(possibly more confined) population than the one about which inferences need to be
made. For example, a sample is to be chosen to answer certain questions regarding
political preferences in a certain state in the United States. The sample involves
the choice of, say, 1000 families, and a survey is to be conducted. Now, suppose it
turns out that random sampling is not used. Rather, all or nearly all of the 1000
families chosen live in an urban setting. It is believed that political preferences
in rural areas differ from those in urban areas. In other words, the sample drawn
actually confined the population and thus the inferences need to be confined to the
“limited population,” and in this case confining may be undesirable. If, indeed,
the inferences need to be made about the state as a whole, the sample of size 1000
described here is often referred to as a biased sample.

As we hinted earlier, simple random sampling is not always appropriate. Which
alternative approach is used depends on the complexity of the problem. Often, for
example, the sampling units are not homogeneous and naturally divide themselves
into nonoverlapping groups that are homogeneous. These groups are called strata,
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and a procedure called stratified random sampling involves random selection of a
sample within each stratum. The purpose is to be sure that each of the strata
is neither over- nor underrepresented. For example, suppose a sample survey is
conducted in order to gather preliminary opinions regarding a bond referendum
that is being considered in a certain city. The city is subdivided into several ethnic
groups which represent natural strata. In order not to disregard or overrepresent
any group, separate random samples of families could be chosen from each group.

Experimental Design

The concept of randomness or random assignment plays a huge role in the area
of experimental design, which was introduced very briefly in Section 1.1 and
is an important staple in almost any area of engineering or experimental science.
This will also be discussed at length in Chapter 8. However, it is instructive to
give a brief presentation here in the context of random sampling. A set of so-
called treatments or treatment combinations becomes the populations to be
studied or compared in some sense. An example is the nitrogen versus no-nitrogen
treatments in Example 1.2. Another simple example would be placebo versus active
drug, or in a corrosion fatigue study we might have treatment combinations that
involve specimens that are coated or uncoated as well as conditions of low or high
humidity to which the specimens are exposed. In fact, there are four treatment
or factor combinations (i.e., 4 populations), and many scientific questions may be
asked and answered through statistical and inferential methods. Consider first
the situation in Example 1.2. There are 20 diseased seedlings involved in the
experiment. It is easy to see from the data themselves that the seedlings are
different from each other. Within the nitrogen group (or the no-nitrogen group)
there is considerable variability in the stem weights. This variability is due to
what is generally called the experimental unit. This is a very important concept
in inferential statistics, in fact one whose description will not end in this chapter.
The nature of the variability is very important. If it is too large, stemming from
a condition of excessive nonhomogeneity in experimental units, the variability will
“wash out” any detectable difference between the two populations. Recall that in
this case that did not occur.

The dot plot in Figure 1.1 and P-value indicated a clear distinction between
these two conditions. What role do those experimental units play in the data-
taking process itself? The common-sense and, indeed, quite standard approach is
to assign the 20 seedlings or experimental units randomly to the two treat-
ments or conditions. In the drug study, we may decide to use a total of 200
available patients, patients that clearly will be different in some sense. They are
the experimental units. However, they all may have the same chronic condition
for which the drug is a potential treatment. Then in a so-called completely ran-
domized design, 100 patients are assigned randomly to the placebo and 100 to
the active drug. Again, it is these experimental units within a group or treatment
that produce the variability in data results (i.e., variability in the measured result),
say blood pressure, or whatever drug efficacy value is important. In the corrosion
fatigue study, the experimental units are the specimens that are the subjects of
the corrosion.
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Why Assign Experimental Units Randomly?

What is the possible negative impact of not randomly assigning experimental units
to the treatments or treatment combinations? This is seen most clearly in the
case of the drug study. Among the characteristics of the patients that produce
variability in the results are age, gender, and weight. Suppose merely by chance
the placebo group contains a sample of people that are predominately heavier than
those in the treatment group. Perhaps heavier individuals have a tendency to have
a higher blood pressure. This clearly biases the result, and indeed, any result
obtained through the application of statistical inference may have little to do with
the drug and more to do with differences in weights among the two samples of
patients.

We should emphasize the attachment of importance to the term variability.
Excessive variability among experimental units “camouflages” scientific findings.
In future sections, we attempt to characterize and quantify measures of variability.
In sections that follow, we introduce and discuss specific quantities that can be
computed in samples; the quantities give a sense of the nature of the sample with
respect to center of location of the data and variability in the data. A discussion
of several of these single-number measures serves to provide a preview of what
statistical information will be important components of the statistical methods
that are used in future chapters. These measures that help characterize the nature
of the data set fall into the category of descriptive statistics. This material is
a prelude to a brief presentation of pictorial and graphical methods that go even
further in characterization of the data set. The reader should understand that the
statistical methods illustrated here will be used throughout the text. In order to
offer the reader a clearer picture of what is involved in experimental design studies,
we offer Example 1.3.

Example 1.3:1 A corrosion study was made in order to determine whether coating an aluminum
metal with a corrosion retardation substance reduced the amount of corrosion.
The coating is a protectant that is advertised to minimize fatigue damage in this
type of material. Also of interest is the influence of humidity on the amount of
corrosion. A corrosion measurement can be expressed in thousands of cycles to
failure. Two levels of coating, no coating and chemical corrosion coating, were
used. In addition, the two relative humidity levels are 20% relative humidity and
80% relative humidity.

The experiment involves four treatment combinations that are listed in the table
that follows. There are eight experimental units used, and they are aluminum
specimens prepared; two are assigned randomly to each of the four treatment
combinations. The data are presented in Table 1.2.

The corrosion data are averages of two specimens. A plot of the averages is
pictured in Figure 1.3. A relatively large value of cycles to failure represents a
small amount of corrosion. As one might expect, an increase in humidity appears
to make the corrosion worse. The use of the chemical corrosion coating procedure
appears to reduce corrosion. . |

In this experimental design illustration, the engineer has systematically selected
the four treatment combinations. In order to connect this situation to concepts
with which the reader has been exposed to this point, it should be assumed that the
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Table 1.2: Data for Example 1.3

Average Corrosion in

Coating Humidity Thousands of Cycles to Failure
Uncoated 20% 975
80% 350
Chemical Corrosion 20% 1750
80% 1550
2000 -
wn Coating
S
g
S
O 1000}
(0]
g
(]
E
Uncoated
0 L 1
0 20% 80%

Humidity

Figure 1.3: Corrosion results for Example 1.3.

conditions representing the four treatment combinations are four separate popula-
tions and that the two corrosion values observed for each population are important
pieces of information. The importance of the average in capturing and summariz-
ing certain features in the population will be highlighted in Section 4.2. While we
might draw conclusions about the role of humidity and the impact of coating the
specimens from the figure, we cannot truly evaluate the results from an analyti-
cal point of view without taking into account the wvariability around the average.
Again, as we indicated earlier, if the two corrosion values for each treatment com-
bination are close together, the picture in Figure 1.3 may be an accurate depiction.
But if each corrosion value in the figure is an average of two values that are widely
dispersed, then this variability may, indeed, truly “wash away” any information
that appears to come through when one observes averages only. The foregoing
example illustrates these concepts:

(1) random assignment of treatment combinations (coating, humidity) to experi-
mental units (specimens)

(2) the use of sample averages (average corrosion values) in summarizing sample
information

(3) the need for consideration of measures of variability in the analysis of any
sample or sets of samples
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1.3 Discrete and Continuous Data

Statistical inference through the analysis of observational studies or designed ex-
periments is used in many scientific areas. The data gathered may be discrete
or continuous, depending on the area of application. For example, a chemical
engineer may be interested in conducting an experiment that will lead to condi-
tions where yield is maximized. Here, of course, the yield may be in percent or
grams/pound, measured on a continuum. On the other hand, a toxicologist con-
ducting a combination drug experiment may encounter data that are binary in
nature (i.e., the patient either responds or does not).

Great distinctions are made between discrete and continuous data in the prob-
ability theory that allow us to draw statistical inferences. Often applications of
statistical inference are found when the data are count data. For example, an en-
gineer may be interested in studying the number of radioactive particles passing
through a counter in, say, 1 millisecond. Personnel responsible for the efficiency
of a port facility may be interested in the properties of the number of oil tankers
arriving each day at a certain port city. In Chapter 3, several distinct scenarios,
leading to different ways of handling data, are discussed for situations with count
data.

Special attention even at this early stage of the textbook should be paid to some
details associated with binary data. Applications requiring statistical analysis of
binary data are voluminous. Often the measure that is used in the analysis is
the sample proportion. Obviously the binary situation involves two categories.
If there are n units involved in the data and x is defined as the number that
fall into category 1, then n — x fall into category 2. Thus, x/n is the sample
proportion in category 1, and 1 — x/n is the sample proportion in category 2. In
the biomedical application, 50 patients may represent the sample units, and if 20
out of 50 experienced an improvement in a stomach ailment (common to all 50)
after all were given the drug, then % = 0.4 is the sample proportion for which
the drug was a success and 1 — 0.4 = 0.6 is the sample proportion for which the
drug was not successful. Actually the basic numerical measurement for binary
data is generally denoted by either 0 or 1. For example, in our medical example, a
successful result is denoted by a 1 and a nonsuccess by a 0. As a result, the sample
proportion is actually a sample mean of the ones and zeros. For the successful
category,

a:1+:c2+~-~+a:50_1+1+0+-~-+0+1_@_04
50 - 50 50 T

1.4 Probability: Sample Space and Events

Sample Space

In the study of statistics, we are concerned basically with the presentation and
interpretation of chance outcomes that occur in a planned study or scientific
investigation. For example, we may record the number of accidents that occur
monthly at the intersection of Driftwood Lane and Royal Oak Drive, hoping to
justify the installation of a traffic light; we might classify items coming off an as-
sembly line as “defective” or “nondefective”; or we may be interested in the volume
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of gas released in a chemical reaction when the concentration of an acid is varied.
Hence, the statistician is often dealing with either numerical data, representing
counts or measurements, or categorical data, which can be classified according
to some criterion.

We shall refer to any recording of information, whether it be numerical or
categorical, as an observation. Thus, the numbers 2, 0, 1, and 2, representing
the number of accidents that occurred for each month from January through April
during the past year at the intersection of Driftwood Lane and Royal Oak Drive,
constitute a set of observations. Similarly, the categorical data N, D, N, N, and
D, representing the items found to be defective or nondefective when five items are
inspected, are recorded as observations.

Statisticians use the word experiment to describe any process that generates
a set of data. A simple example of a statistical experiment is the tossing of a coin.
In this experiment, there are only two possible outcomes, heads or tails. Another
experiment might be the launching of a missile and observing of its velocity at
specified times. The opinions of voters concerning a new sales tax can also be
considered as observations of an experiment. We are particularly interested in the
observations obtained by repeating the experiment several times. In most cases, the
outcomes will depend on chance and, therefore, cannot be predicted with certainty.
If a chemist runs an analysis several times under the same conditions, he or she will
obtain different measurements, indicating an element of chance in the experimental
procedure. Even when a coin is tossed repeatedly, we cannot be certain that a given
toss will result in a head. However, we know the entire set of possibilities for each
toss.

The set of all possible outcomes of a statistical experiment is called the sample
space and is represented by the symbol S.

Each outcome in a sample space is called an element or a member of the
sample space, or simply a sample point. If the sample space has a finite number
of elements, we may list the members separated by commas and enclosed in braces.
Thus, the sample space S, of possible outcomes when a coin is flipped, may be
written

S={H,T},

where H and T correspond to heads and tails, respectively.

Example 1.4:

Consider the experiment of tossing a die. If we are interested in the number that
shows on the top face, the sample space is

S1=1{1,2,3,4,5,6}.
If we are interested only in whether the number is even or odd, the sample space
is simply

Sy = {even, odd}. )
Example 1.4 illustrates the fact that more than one sample space can be used to

describe the outcomes of an experiment. In this case, S7 provides more information
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than S5. If we know which element in S occurs, we can tell which outcome in S
occurs; however, a knowledge of what happens in S5 is of little help in determining
which element in S; occurs. In general, it is desirable to use the sample space that
gives the most information concerning the outcomes of the experiment. In some
experiments, it is helpful to list the elements of the sample space systematically by
means of a tree diagram.

Example 1.5:1 Suppose that three items are selected at random from a manufacturing process.
Each item is inspected and classified defective, D, or nondefective, N. To list the
elements of the sample space providing the most information, we construct the tree
diagram of Figure 1.4. Now, the various paths along the branches of the tree give
the distinct sample points. Starting with the first path, we get the sample point
DDD, indicating the possibility that all three items inspected are defective. As we
proceed along the other paths, we see that the sample space is

S ={DDD, DDN, DND, DNN, NDD, NDN, NND, NNN}.

M |
First Second Third  Sample
ltem ltem ltem Point
D DDD
D<
D < N DDN
D DND
N<
N DNN
D NDD
D<
N < N NDN
D NND
N<
N NNN

Figure 1.4: Tree diagram for Example 1.5.

Sample spaces with a large or infinite number of sample points are best de-
scribed by a statement or rule method. For example, if the possible outcomes
of an experiment are the set of cities in the world with a population over 1 million,
our sample space is written

S ={z | x is a city with a population over 1 million},

which reads “S is the set of all z such that x is a city with a population over 1
million.” The vertical bar is read “such that.” Similarly, if S'is the set of all points
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(z,y) on the boundary or the interior of a circle of radius 2 with center at the
origin, we write the rule

S={(z,y) | 2 +y*> < 4}.

Whether we describe the sample space by the rule method or by listing the
elements will depend on the specific problem at hand. The rule method has practi-
cal advantages, particularly for many experiments where listing becomes a tedious
chore.

Consider the situation of Example 1.5 in which items from a manufacturing
process are either D, defective, or N, nondefective. There are many important
statistical procedures called sampling plans that determine whether or not a “lot”
of items is considered satisfactory. One such plan involves sampling until k& defec-
tives are observed. Suppose the experiment is to sample items randomly until one
defective item is observed. The sample space for this case is

S={D,ND,NND,NNND,...}.

For any given experiment, we may be interested in the occurrence of certain events
rather than in the occurrence of a specific element in the sample space. For in-
stance, we may be interested in the event A that the outcome when a die is tossed is
divisible by 3. This will occur if the outcome is an element of the subset A = {3,6}
of the sample space Sy in Example 1.4. As a further illustration, we may be inter-
ested in the event B that the number of defectives is greater than 1 in Example
1.5. This will occur if the outcome is an element of the subset

B={DDN,DND,NDD,DDD}

of the sample space S.

To each event we assign a collection of sample points, which constitute a subset
of the sample space. That subset represents all of the elements for which the event
is true.

Definition 1.2: ’An event is a subset of a sample space.

Example 1.6:‘ Given the sample space S = {t | t > 0}, where ¢ is the life in years of a certain

electronic component, then the event A that the component fails before the end of
the fifth year is the subset A = {t | 0 <t < 5}. A

It is conceivable that an event may be a subset that includes the entire sample
space S or a subset of S called the null set and denoted by the symbol ¢, which
contains no elements at all. For instance, if we let A be the event of detecting a
microscopic organism with the naked eye in a biological experiment, then A = ¢.
Also, if

B = {x | = is an even factor of 7},

then B must be the null set, since the only possible factors of 7 are the odd numbers
1 and 7.
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Definition 1.3:

Consider an experiment where the smoking habits of the employees of a man-
ufacturing firm are recorded. A possible sample space might classify an individual
as a nonsmoker, a light smoker, a moderate smoker, or a heavy smoker. Let the
subset of smokers be some event. Then all the nonsmokers correspond to a different
event, also a subset of S, which is called the complement of the set of smokers.

The complement of an event A with respect to S is the subset of all elements
of S that are not in A. We denote the complement of A by the symbol A’.

Example 1.7:‘ Let R be the event that a red card is selected from an ordinary deck of 52 playing

cards, and let S be the entire deck. Then R’ is the event that the card selected
from the deck is not a red card but a black card. A

Example 1.8:‘ Consider the sample space

Definition 1.4:

S = {book, cell phone, mp3, paper, stationery, laptop}.

Let A = {book, stationery, laptop, paper}. Then the complement of 4 is A" =
{cell phone, mp3}. o |

We now consider certain operations with events that will result in the formation
of new events. These new events will be subsets of the same sample space as the
given events. Suppose that A and B are two events associated with an experiment.
In other words, A and B are subsets of the same sample space S. For example, in
the tossing of a die we might let A be the event that an even number occurs and
B the event that a number greater than 3 shows. Then the subsets A = {2,4,6}
and B = {4,5,6} are subsets of the same sample space

S =1{1,2,3,4,5,6}.

Note that both A and B will occur on a given toss if the outcome is an element of
the subset {4, 6}, which is just the intersection of A and B.

The intersection of two events A and B, denoted by the symbol A N B, is the
event containing all elements that are common to A and B.

Example 1.9:‘ Let E be the event that a person selected at random in a classroom is majoring

in engineering, and let F' be the event that the person is female. Then E N F is
the event of all female engineering students in the classroom. A

Example 1.10:‘ Let V = {a,e,i,0,u} and C = {l,r,s,t}; then it follows that V N C = ¢. That is,

V and C have no elements in common and, therefore, cannot both simultaneously
occur. A

For certain statistical experiments it is by no means unusual to define two
events, A and B, that cannot both occur simultaneously. The events A and B are
then said to be mutually exclusive. Stated more formally, we have the following
definition:
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Definition 1.5: | Two events A and B are mutually exclusive, or disjoint, if AN B = ¢, that
is, if A and B have no elements in common.

Example 1.11:/ A cable television company offers programs on eight different channels, three
of which are affiliated with ABC, two with NBC, and one with CBS. The other
two are an educational channel and the ESPN sports channel. Suppose that a
person subscribing to this service turns on a television set without first selecting
the channel. Let A be the event that the program belongs to the NBC network and
B the event that it belongs to the CBS network. Since a television program cannot
belong to more than one network, the events A and B have no programs in common.
Therefore, the intersection A N B contains no programs, and consequently the
events A and B are mutually exclusive. A

Often one is interested in the occurrence of at least one of two events associated
with an experiment. Thus, in the die-tossing experiment, if

A={2,4,6} and B = {4,5,6},

we might be interested in either A or B occurring or both A and B occurring. Such
an event, called the union of A and B, will occur if the outcome is an element of
the subset {2,4,5,6}.

Definition 1.6: | The union of the two events A and B, denoted by the symbol AU B, is the event
containing all the elements that belong to A or B or both.

Example 1.12:‘ Let A={a,b,c} and B = {b,¢,d, e}; then AU B = {a,b,c,d,e}. - |

Example 1.13:‘ Let P be the event that an employee selected at random from an oil drilling
company smokes cigarettes. Let () be the event that the employee selected drinks
alcoholic beverages. Then the event P U @ is the set of all employees who either
drink or smoke or do both. o |

Example 1.14:| If M = {z|3 <2z <9} and N = {y| 5 <y < 12}, then

MUN={z]|3<z<12}. 1

The relationship between events and the corresponding sample space can be

illustrated graphically by means of Venn diagrams. In a Venn diagram we let

the sample space be a rectangle and represent events by circles drawn inside the
rectangle. Thus, in Figure 1.5, we see that

AN B = regions 1 and 2,
BN C = regions 1 and 3,
AUC = regions 1, 2, 3,4, 5, and 7,
B'N A= regions 4 and 7,
ANBNC = region 1,
(AUB)NC' = regions 2, 6, and 7,
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Figure 1.5: Events represented by various regions.

and so forth.

In Figure 1.6, we see that events A, B, and C are all subsets of the sample
space S. It is also clear that event B is a subset of event A; event B N C has no
elements and hence B and C are mutually exclusive; event A N C has at least one
element; and event AU B = A. Figure 1.6 might, therefore, depict a situation
where we select a card at random from an ordinary deck of 52 playing cards and
observe whether the following events occur:

A: the card is red,
B: the card is the jack, queen, or king of diamonds,
C': the card is an ace.

Clearly, the event A N C consists of only the two red aces.

Figure 1.6: Events of the sample space S.

Several results that follow from the foregoing definitions, which may easily be
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verified by means of Venn diagrams, are as follows:

18
1. ANe = ¢.
2. AU¢ = A.
3. AnA =¢.
4. AUA = S.
5. 8" = ¢.
Exercises

1.1 List the elements of each of the following sample
spaces:

(a) the set of integers between 1 and 50 divisible by 8;

(b) the set S = {x | 2® 4+ 42 — 5 = 0};

(c) the set of outcomes when a coin is tossed until a
tail or three heads appear;

(d) the set S = {z | = is a continent};

(e) theset S={z |2z —4>0and z < 1}.

1.2 Use the rule method to describe the sample space
S consisting of all points in the first quadrant inside a
circle of radius 3 with center at the origin.

1.3 Which of the following events are equal?

(a) A={1,3}

(b) B ={z |  is a number on a die};

() C={x|a*—4z+3 =0}

(d) D = {z | = is the number of heads when six coins
are tossed}.

1.4 Two jurors are selected from 4 alternates to serve
at a murder trial. Using the notation A; As, for exam-
ple, to denote the simple event that alternates 1 and 3
are selected, list the 6 elements of the sample space S.

1.5 An experiment consists of tossing a die and then
flipping a coin once if the number on the die is even. If
the number on the die is odd, the coin is flipped twice.
Using the notation 4H, for example, to denote the out-
come that the die comes up 4 and then the coin comes
up heads, and 3HT to denote the outcome that the die
comes up 3 followed by a head and then a tail on the
coin, construct a tree diagram to show the 18 elements
of the sample space S.

1.6 For the sample space of Exercise 1.5,

(a) list the elements corresponding to the event A that
a number less than 3 occurs on the die;

(b) list the elements corresponding to the event B that

6. ¢/ =S.

7. (A" = A.

8. (ANB) = A'UB.
9. (AUB) = A'nB.

two tails occur;
(c) list the elements corresponding to the event A’;
(d) list the elements corresponding to the event A’ N B;
(e) list the elements corresponding to the event AU B.

1.7 The resumés of two male applicants for a college
teaching position in chemistry are placed in the same
file as the resumés of two female applicants. Two po-
sitions become available, and the first, at the rank of
assistant professor, is filled by selecting one of the four
applicants at random. The second position, at the rank
of instructor, is then filled by selecting at random one
of the remaining three applicants. Using the notation
MsFy, for example, to denote the simple event that
the first position is filled by the second male applicant
and the second position is then filled by the first female
applicant,

(a) list the elements of a sample space S

(b) list the elements of S corresponding to event A that
the position of assistant professor is filled by a male
applicant;

(c) list the elements of S corresponding to event B that
exactly one of the two positions is filled by a male
applicant;

(d) list the elements of S corresponding to event C' that
neither position is filled by a male applicant;

(e) list the elements of S corresponding to the event
AN B;

(f) list the elements of S corresponding to the event
AUC,

(g) construct a Venn diagram to illustrate the intersec-
tions and unions of the events A, B, and C.

1.8 An engineering firm is hired to determine if cer-

tain waterways in Virginia are safe for fishing. Samples

are taken from three rivers.

(a) List the elements of a sample space S, using the
letters F for safe to fish and N for not safe to fish.

(b) List the elements of S corresponding to event E
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that at least two of the rivers are safe for fishing.
(c) Define an event that has as its elements the points

{FFF,NFF,FFN,NFN}.

1.9 Construct a Venn diagram to illustrate the pos-
sible intersections and unions for the following events
relative to the sample space consisting of all automo-
biles made in the United States.

F': Four door, S: Sun roof, P: Power steering.

1.10 Exercise and diet are being studied as possi-
ble substitutes for medication to lower blood pressure.
Three groups of subjects will be used to study the ef-
fect of exercise. Group 1 is sedentary, while group 2
walks and group 3 swims for 1 hour a day. Half of each
of the three exercise groups will be on a salt-free diet.
An additional group of subjects will not exercise or re-
strict their salt, but will take the standard medication.
Use Z for sedentary, W for walker, S for swimmer, Y
for salt, N for no salt, M for medication, and F' for
medication free.

(a) Show all of the elements of the sample space S.

(b) Given that A is the set of nonmedicated subjects
and B is the set of walkers, list the elements of
AUB.

(c) List the elements of AN B.

1.11 If S = {0,1,2,3,4,5,6,7,8,9} and A =
{072747658}7 B = {173757779}7 C = {2737475}, and

= {1,6, 7}, list the elements of the sets correspond-
ing to the following events:

1.12 If S={z |0<z <12}, M ={z |1 <z <9},
and N = {z | 0 < z < 5}, find

(a) M UN;
(b) M N N;
(c) M'NN'.
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1.13 Let A, B, and C be events relative to the sam-
ple space S. Using Venn diagrams, shade the areas
representing the following events:

(a) (AN B)"
(b) (AUB)’;
(¢) (ANC)UB.

1.14 Which of the following pairs of events are mutu-
ally exclusive?

(a) A golfer scoring the lowest 18-hole round in a 72-
hole tournament and losing the tournament.

(b) A poker player getting a flush (all cards in the same
suit) and 3 of a kind on the same 5-card hand.

(¢) A mother giving birth to a baby girl and a set of
twin daughters on the same day.

(d) A chess player losing the last game and winning the
match.

1.15 Suppose that a family is leaving on a summer
vacation in their camper and that M is the event that
they will experience mechanical problems, 7T is the
event that they will receive a ticket for committing a
traffic violation, and V' is the event that they will ar-
rive at a campsite with no vacancies. Referring to the
Venn diagram of Figure 1.7, state in words the events
represented by the following regions:

a) region 5;
b) region 3;

(c

d) regions 4 and 7 together;

(
(b)

) regions 1 and 2 together;
(d)
)

(e) regions 3, 6, 7, and 8 together.

1.16 Referring to Exercise 1.15 and the Venn diagram
of Figure 1.7, list the numbers of the regions that rep-
resent the following events:

(a) The family will experience no mechanical problems
and will not receive a ticket for a traffic violation
but will arrive at a campsite with no vacancies.

(b) The family will experience both mechanical prob-
lems and trouble in locating a campsite with a va-
cancy but will not receive a ticket for a traffic vio-
lation.

(c) The family will either have mechanical trouble or
arrive at a campsite with no vacancies but will not
receive a ticket for a traffic violation.

(d) The family will not arrive at a campsite with no
vacancies.
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M 4 T
5 7
1
2 3
6
8
Vv

Figure 1.7: Venn diagram for Exercises 1.15 and 1.16.

1.5 Counting Sample Points

Definition 1.7:

Theorem 1.1:

Frequently, we are interested in a sample space that contains as elements all possible
orders or arrangements of a group of objects. For example, we may want to know
how many different arrangements are possible for sitting 6 people around a table,
or we may ask how many different orders are possible for drawing 2 lottery tickets
from a total of 20. The different arrangements are called permutations.

A permutation is an arrangement of all or part of a set of objects.

Consider the three letters a, b, and c¢. The possible permutations are abc, acb,
bac, bca, cab, and cba. Thus, we see that there are 6 distinct arrangements.

The number of permutations of n objects is n!.

The number of permutations of the four letters a, b, ¢, and d will be 4! = 24.
Now consider the number of permutations that are possible by taking two letters
at a time from four. These would be ab, ac, ad, ba, be, bd, ca, cb, cd, da, db, and
dc. Consider that we have two positions to fill, with n; = 4 choices for the first
and then ns = 3 choices for the second, for a total of

ning = (4)(3) =12
permutations. In general, n distinct objects taken r at a time can be arranged in
nn—1)n-2)---(n—r+1)
ways. We represent this product by the symbol

n!

i)

As a result, we have the theorem that follows.
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Theorem 1.2:

The number of permutations of n distinct objects taken r at a time is

Example 1.15:] In one year, three awards (research, teaching, and service) will be given to a class

Solution:

of 25 graduate students in a statistics department. If each student can receive at
most one award, how many possible selections are there?
Since the awards are distinguishable, it is a permutation problem. The total
number of sample points is

25! 25!

5P = 35—y = g =~ (29)(24)(28) = 13800, r

Example 1.16:‘ A president and a treasurer are to be chosen from a student club consisting of 50

Solution:

people. How many different choices of officers are possible if
(a) there are no restrictions;

b

c

d
a

—~

A will serve only if he is president;

—

B and C will serve together or not at all;

D and F will not serve together?

)
)
)
)

—_

The total number of choices of officers, without any restrictions, is

50!
s0P = 8 (50)(49) = 2450.

(b) Since A will serve only if he is president, we have two situations here: (i) A is
selected as the president, which yields 49 possible outcomes for the treasurer’s
position, or (ii) officers are selected from the remaining 49 people without A,
which has the number of choices 49 P> = (49)(48) = 2352. Therefore, the total
number of choices is 49 + 2352 = 2401.

(¢) The number of selections when B and C' serve together is 2. The number of
selections when both B and C are not chosen is 43 P> = 2256. Therefore, the
total number of choices in this situation is 2 + 2256 = 2258.

(d) The number of selections when D serves as an officer but not E is (2)(48) =
96, where 2 is the number of positions D can take and 48 is the number of
selections of the other officer from the remaining people in the club except
E. The number of selections when E serves as an officer but not D is also
(2)(48) = 96. The number of selections when both D and E are not chosen
is 48P = 2256. Therefore, the total number of choices is (2)(96) + 2256 =
2448. This problem also has another short solution: Since D and E can only
serve together in 2 ways, the answer is 2450 — 2 = 2448. . |

Permutations that occur by arranging objects in a circle are called circular
permutations. Two circular permutations are not considered different unless
corresponding objects in the two arrangements are preceded or followed by a dif-
ferent object as we proceed in a clockwise direction. For example, if 4 people are
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playing bridge, we do not have a new permutation if they all move one position in
a clockwise direction. By considering one person in a fixed position and arranging
the other three in 3! ways, we find that there are 6 distinct arrangements for the
bridge game.

Theorem 1.3:

The number of permutations of n objects arranged in a circle is (n — 1)!. ‘

So far we have considered permutations of distinct objects. That is, all the
objects were completely different or distinguishable. Obviously, if the letters b and
c are both equal to x, then the 6 permutations of the letters a, b, and ¢ become
axx, arr, rar, rax, rera, and rxxa, of which only 3 are distinct. Therefore, with 3
letters, 2 being the same, we have 3!/2! = 3 distinct permutations. With 4 different
letters a, b, ¢, and d, we have 24 distinct permutations. If we let a = b = z and
c=d =y, we can list only the following distinct permutations: zxzyy, ryry, yrry,
yyxx, ryyx, and yryxr. Thus, we have 4!/(2! 2!) = 6 distinct permutations.

Theorem 1.4:

The number of distinct permutations of n things of which n, are of one kind, ng
of a second kind, ..., ng of a kth kind is

n!
nilng! - ng!’

Example 1.17:

Solution:

In a college football training session, the defensive coordinator needs to have
10 players standing in a row. Among these 10 players, there are 1 freshman,
2 sophomores, 4 juniors, and 3 seniors. How many different ways can they be
arranged in a row if only their class level will be distinguished?

Directly using Theorem 1.4, we find that the total number of arrangements is
10!
TR R

o |

Often we are concerned with the number of ways of partitioning a set of n
objects into r subsets called cells. A partition has been achieved if the intersection
of every possible pair of the r subsets is the empty set ¢ and if the union of all
subsets gives the original set. The order of the elements within a cell is of no
importance. Consider the set {a, e, i, o, u}. The possible partitions into two cells
in which the first cell contains 4 elements and the second cell 1 element are

{(a,e,i,0), (u)},{(a,i,0,u), ()}, {(e, 4, 0,u), (a)},{(a, €,0,u), (i)}, {(a, €, 3, u), (0) }.

We see that there are 5 ways to partition a set of 4 elements into two subsets, or
cells, containing 4 elements in the first cell and 1 element in the second.
The number of partitions for this illustration is denoted by the symbol

5 5!
(4,1) “ono
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where the top number represents the total number of elements and the bottom
numbers represent the number of elements going into each cell. We state this more
generally in Theorem 1.5.

Theorem 1.5:| The number of ways of partitioning a set of n objects into r cells with n; elements

in the first cell, no elements in the second, and so forth, is

< n > n!
- )
N1, M2,y ey Ty nilng! - n,!

where ny +ns + -+ +n, = n.

Example 1.18:] In how many ways can 7 graduate students be assigned to 1 triple and 2 double
hotel rooms during a conference?
Solution: The total number of possible partitions would be

|
< 7 >_’7;|_210.
3.2.2) " 31212l F

In many problems, we are interested in the number of ways of selecting r objects
from n without regard to order. These selections are called combinations. A
combination is actually a partition with two cells, the one cell containing the r
objects selected and the other cell containing the (n —r) objects that are left. The
number of such combinations, denoted by

( " ), is usually shortened to (n>’
rn—r r

since the number of elements in the second cell must be n — r.

Theorem 1.6:| The number of combinations of n distinct objects taken r at a time is

()= me

Example 1.19:/ A young boy asks his mother to get 5 Game-Boy™ cartridges from his collection
of 10 arcade and 5 sports game cartridges. How many ways are there that his
mother can get 3 arcade and 2 sports game cartridges?

Solution: The number of ways of selecting 3 cartridges from 10 is

10 10!
- —120.
( 3 ) 3! (10 — 3)!

The number of ways of selecting 2 cartridges from 5 is

5 5!
= — = 1
(2> arg 10

Hence for the total we have (120)(10) = 1200 ways. A
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How many different letter arrangements can be made from the letters in the word

Solution: Using the same argument as in the discussion for Theorem 1.6, in this example we
can actually apply Theorem 1.5 to obtain

10
3,3,2,1,1

7 10!
31312010 1!

= 50,400.

Here we have 10 total letters, with 2 letters (S, T') appearing 3 times each, letter
I appearing twice, and letters A and C' appearing once each. Or this result can be
obtained directly by using Theorem 1.4. A

Exercises

1.17 Registrants at a large convention are offered 6
sightseeing tours on each of 3 days. In how many
ways can a person arrange to go on a sightseeing tour
planned by this convention?

1.18 In a medical study, patients are classified in 8
ways according to whether they have blood type AB™,
AB™, AY, A=, BT, B=, O", or O™, and also accord-
ing to whether their blood pressure is low, normal, or
high. Find the number of ways in which a patient can
be classified.

1.19 Students at a private liberal arts college are clas-
sified as being freshmen, sophomores, juniors, or se-
niors, and also according to whether they are male or
female. Find the total number of possible classifica-
tions for the students of that college.

1.20 A California study concluded that following 7
simple health rules can extend a man’s life by 11 years
on the average and a woman’s life by 7 years. These
7 rules are as follows: no smoking, get regular exer-
cise, use alcohol only in moderation, get 7 to 8 hours
of sleep, maintain proper weight, eat breakfast, and do
not eat between meals. In how many ways can a person
adopt 5 of these rules to follow

(a) if the person presently violates all 7 rules?

(b) if the person never drinks and always eats break-
fast?

1.21 A developer of a new subdivision offers a
prospective home buyer a choice of 4 designs, 3 differ-
ent heating systems, a garage or carport, and a patio or
screened porch. How many different plans are available
to this buyer?

1.22 A drug for the relief of asthma can be purchased

from 5 different manufacturers in liquid, tablet, or
capsule form, all of which come in regular and extra
strength. How many different ways can a doctor pre-
scribe the drug for a patient suffering from asthma?

1.23 In a fuel economy study, each of 3 race cars is
tested using 5 different brands of gasoline at 7 test sites
located in different regions of the country. If 2 drivers
are used in the study, and test runs are made once un-
der each distinct set of conditions, how many test runs
are needed?

1.24 In how many different ways can a true-false test
consisting of 9 questions be answered?

1.25 A witness to a hit-and-run accident told the po-
lice that the license number contained the letters RLH
followed by 3 digits, the first of which was a 5. If
the witness cannot recall the last 2 digits, but is cer-
tain that all 3 digits are different, find the maximum
number of automobile registrations that the police may
have to check.

1.26 (a) In how many ways can 6 people be lined up
to get on a bus?

(b) If 3 specific persons, among 6, insist on following
each other, how many ways are possible?

(c) If 2 specific persons, among 6, refuse to follow each
other, how many ways are possible?

1.27 A contractor wishes to build 9 houses, each dif-
ferent in design. In how many ways can he place these
houses on a street if 6 lots are on one side of the street
and 3 lots are on the opposite side?

1.28 (a) How many distinct permutations can be
made from the letters of the word COLUMNS?
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(b) How many of these permutations start with the let-
ter M?

1.29 In how many ways can 4 boys and 5 girls sit in
a row if the boys and girls must alternate?

1.30 (a) How many three-digit numbers can be
formed from the digits 0, 1, 2, 3, 4, 5, and 6 if
each digit can be used only once?

(b) How many of these are odd numbers?

(c) How many are greater than 3307

1.31 In a regional spelling bee, the 8 finalists consist
of 3 boys and 5 girls. Find the number of sample points
in the sample space S for the number of possible orders
at the conclusion of the contest for

(a) all 8 finalists;
(b) the first 3 positions.

1.32 Four married couples have bought 8 seats in the
same row for a concert. In how many different ways
can they be seated

1.6 Probability of an Event
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(a) with no restrictions?
(b) if each couple is to sit together?

(c) if all the men sit together to the right of all the
women?

1.33 Find the number of ways that 6 teachers can
be assigned to 4 sections of an introductory psychol-
ogy course if no teacher is assigned to more than one
section.

1.34 Three lottery tickets for first, second, and third
prizes are drawn from a group of 40 tickets. Find the
number of sample points in S for awarding the 3 prizes
if each contestant holds only 1 ticket.

1.35 In how many ways can 5 different trees be
planted in a circle?

1.36 In how many ways can 3 oaks, 4 pines, and 2
maples be arranged along a property line if one does
not distinguish among trees of the same kind?

1.37 How many ways are there that no two students
will have the same birth date in a class of size 607

Perhaps it was humankind’s unquenchable thirst for gambling that led to the early
development of probability theory. In an effort to increase their winnings, gam-
blers called upon mathematicians to provide optimum strategies for various games
of chance. Some of the mathematicians providing these strategies were Pascal,
Leibniz, Fermat, and James Bernoulli. As a result of this development of prob-
ability theory, statistical inference, with all its predictions and generalizations,
has branched out far beyond games of chance to encompass many other fields as-
sociated with chance occurrences, such as politics, business, weather forecasting,
and scientific research. For these predictions and generalizations to be reasonably
accurate, an understanding of basic probability theory is essential.

What do we mean when we make the statement “John will probably win the
tennis match,” or “I have a fifty-fifty chance of getting an even number when a
die is tossed,” or “The university is not likely to win the football game tonight,”
or “Most of our graduating class will likely be married within 3 years”? In each
case, we are expressing an outcome of which we are not certain, but owing to past
information or from an understanding of the structure of the experiment, we have
some degree of confidence in the validity of the statement.

Throughout the remainder of this chapter, we consider only those experiments
for which the sample space contains a finite number of elements. The likelihood of
the occurrence of an event resulting from such a statistical experiment is evaluated
by means of a set of real numbers, called weights or probabilities, ranging from 0
to 1. To every point in the sample space we assign a probability such that the sum
of all probabilities is 1. If we have reason to believe that a certain sample point is
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quite likely to occur when the experiment is conducted, the probability assigned
should be close to 1. On the other hand, a probability closer to 0 is assigned to a
sample point that is not likely to occur. In many experiments, such as tossing a
fair coin or a balanced die, all the sample points have the same chance of occurring
and are assigned equal probabilities. For points outside the sample space, that is,
for simple events that cannot possibly occur, we assign a probability of 0.

To find the probability of an event A, we sum all the probabilities assigned to
the sample points in A. This sum is called the probability of A and is denoted
by P(A).

The probability of an event A is the sum of the weights of all sample points in
A. Therefore,

0<P(A)<1, P(¢)=0, and P(S)=1.

Furthermore, if Ay, Ay, As, ... is a sequence of mutually exclusive events, then

P(AyUA;UA3U--+) = P(Ay) + P(Ag) + P(A3) + -+ .

Example 1.21:
Solution:

A coin is tossed twice. What is the probability that at least 1 head occurs?
The sample space for this experiment is

S ={HH,HT,TH,TT}.

If the coin is balanced, each of these outcomes is equally likely to occur. Therefore,
we assign a probability of w to each sample point. Then 4w =1, or w =1/4. If A
represents the event of at least 1 head occurring, then

A:{HH,HT,TH}andP(A):i+i+i:% |

Example 1.22:‘

Solution:

A die is loaded in such a way that an even number is twice as likely to occur as
an odd number. If F is the event that a number less than 4 occurs on a single toss
of the die, find P(E).

The sample space is S = {1,2,3,4,5,6}. We assign a probability of w to each
odd number and a probability of 2w to each even number. Since the sum of the
probabilities must be 1, we have 9w = 1, or w = 1/9. Hence, probabilities of 1/9
and 2/9 are assigned to each odd and even number, respectively. Therefore,

1 2 1 4
If the sample space for an experiment contains N elements, all of which are
equally likely to occur, we assign a probability equal to 1/N to each of the N
points. The probability of any event A containing n of these N sample points is

then the ratio of the number of elements in A to the number of elements in S.
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If an experiment can result in any one of IV different equally likely outcomes,
and if exactly n of these outcomes correspond to event A, then the probability of
event A is

Example 1.23:‘ A statistics class for engineers consists of 25 industrial, 10 mechanical, 10 elec-

Solution:

trical, and 8 civil engineering students. If a person is randomly selected by the
instructor to answer a question, find the probability that the student chosen is
(a) an industrial engineering major and (b) a civil engineering or an electrical
engineering major.

Denote by I, M, E, and C' the students majoring in industrial, mechanical, electri-
cal, and civil engineering, respectively. The total number of students in the class
is 53, all of whom are equally likely to be selected.

(a) Since 25 of the 53 students are majoring in industrial engineering, the prob-
ability of event I, selecting an industrial engineering major at random, is

25
P(I)=—.
(1) =73
(b) Since 18 of the 53 students are civil or electrical engineering majors, it follows
that
18
P(CUFE)=—.
( )= =3 1

1.7 Additive Rules

Often it is easiest to calculate the probability of some event from known prob-
abilities of other events. This may well be true if the event in question can be
represented as the union of two other events or as the complement of some event.
Several important laws that frequently simplify the computation of probabilities
follow. The first, called the additive rule, applies to unions of events.

Theorem 1.7:

If A and B are two events, then

P(AUB)=P(A)+ P(B)— P(ANB).

Proof:

Consider the Venn diagram in Figure 1.8. The P(A U B) is the sum of the prob-
abilities of the sample points in A U B. Now P(A) + P(B) is the sum of all
the probabilities in A plus the sum of all the probabilities in B. Therefore, we
have added the probabilities in (A N B) twice. Since these probabilities add up
to P(A N B), we must subtract this probability once to obtain the sum of the
probabilities in A U B. o |
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Figure 1.8: Additive rule of probability.

Corollary 1.2:

If A and B are mutually exclusive, then

P(AUB) = P(A) + P(B).

Corollary 1.1 is an immediate result of Theorem 1.7, since if A and B are
mutually exclusive, AN B = 0 and then P(AN B) = P(¢) = 0. In general, we can
write Corollary 1.2.

Corollary 1.3:

If Ay, Ao, ..., A, are mutually exclusive, then

P(A1UAsU---UAy,) = P(A) + P(Ay) + -+ P(Ay).

A collection of events { Ay, As, ..., A, } of a sample space S is called a partition
of S'if Ay, Ao, ..., A, are mutually exclusive and A1 UAs U---U A, = 5. Thus,
we have

Theorem 1.8:

If Ay, As, ..., A, is a partition of sample space S, then

P(AjUAyU---UA,) =P(A1) + P(A3) +---+ P(A,) = P(S) = 1.

As one might expect, Theorem 1.7 extends in an analogous fashion.

For three events A, B, and C,

P(AUBUC) = P(A)+ P(B)+ P(C)
—P(ANB)—-PANC)—PBNC)+P(ANBNC).

Example 1.24: ‘ John is going to graduate from an industrial engineering department in a university

by the end of the semester. After being interviewed at two companies he likes,
he assesses that his probability of getting an offer from company A is 0.8, and
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his probability of getting an offer from company B is 0.6. If he believes that
the probability that he will get offers from both companies is 0.5, what is the
probability that he will get at least one offer from these two companies?

Using the additive rule, we have

P(AUB) = P(A)+ P(B)— P(ANB) = 0.8+ 0.6 — 0.5 = 0.9. |

Example 1.25:

Solution:

What is the probability of getting a total of 7 or 11 when a pair of fair dice is
tossed?

Let A be the event that 7 occurs and B the event that 11 comes up. Now, a total
of 7 occurs for 6 of the 36 sample points, and a total of 11 occurs for only 2 of the
sample points. Since all sample points are equally likely, we have P(A) = 1/6 and
P(B) = 1/18. The events A and B are mutually exclusive, since a total of 7 and
11 cannot both occur on the same toss. Therefore,

1 1 2
P(AUB)=P(A)+PB)==-+—=—.
(AUB) = P(4) + P(B) = £ + 7= = =
This result could also have been obtained by counting the total number of points

for the event AU B, namely 8, and writing

8 2
PAUB) = = = — = -,
N 36 9 N

Theorem 1.7 and its three corollaries should help the reader gain more insight
into probability and its interpretation. Corollaries 1.1 and 1.2 suggest the very
intuitive result dealing with the probability of occurrence of at least one of a number
of events, no two of which can occur simultaneously. The probability that at least
one occurs is the sum of the probabilities of occurrence of the individual events.
The third corollary simply states that the highest value of a probability (unity) is

assigned to the entire sample space S.

Example 1.26:

Solution:

If the probabilities are, respectively, 0.09, 0.15, 0.21, and 0.23 that a person
purchasing a new automobile will choose the color green, white, red, or blue, what
is the probability that a given buyer will purchase a new automobile that comes in
one of those colors?

Let G, W, R, and B be the events that a buyer selects, respectively, a green,
white, red, or blue automobile. Since these four events are mutually exclusive, the
probability is

P(GUWURUB)=P(G)+ P(W)+ P(R) + P(B)
=0.09+0.15+ 0.21 + 0.23 = 0.68. F
Often it is more difficult to calculate the probability that an event occurs than
it is to calculate the probability that the event does not occur. Should this be the
case for some event A, we simply find P(A’) first and then, using Theorem 1.9,
find P(A) by subtraction.
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Theorem 1.9:| If A and A’ are complementary events, then

P(A)+ P(A)) = 1.

Proof: Since AU A’ = S and the sets A and A’ are disjoint,

1= P(S) = P(AUA’) = P(A) + P(A"). 1

Example 1.27:‘ If the probabilities that an automobile mechanic will service 3, 4, 5, 6, 7, or 8 or
more cars on any given workday are, respectively, 0.12, 0.19, 0.28, 0.24, 0.10, and
0.07, what is the probability that he will service at least 5 cars on his next day at
work?
Solution: Let E be the event that at least 5 cars are serviced. Now, P(E) = 1 — P(E'),
where E’ is the event that fewer than 5 cars are serviced. Since

P(E')=0.12+0.19 = 0.31,
it follows from Theorem 1.9 that

P(E)=1-0.31=0.69. 1

Example 1.28:] Suppose the manufacturer’s specifications for the length of a certain type of com-
puter cable are 2000 £ 10 millimeters. In this industry, it is known that short cable
is just as likely to be defective (not meeting specifications) as long cable. That is,
the probability of randomly producing a cable with length exceeding 2010 millime-
ters is equal to the probability of producing a cable with length smaller than 1990
millimeters. The probability that the production procedure meets specifications is
known to be 0.99.

(a) What is the probability that a cable selected randomly is too long?

(b) What is the probability that a randomly selected cable is longer than 1990
millimeters?

Solution: Let M be the event that a cable meets specifications. Let S and L be the events
that the cable is too short and too long, respectively. Then

(a) P(M)=0.99 and P(S) = P(L) = (1—0.99)/2 = 0.005.
(b) Denoting by X the length of a randomly selected cable, we have

P(1990 < X < 2010) = P(M) = 0.99.
Since P(X > 2010) = P(L) = 0.005,
P(X >1990) = P(M) + P(L) = 0.995.
This also can be solved by using Theorem 1.9:
P(X >1990) + P(X < 1990) = 1.

Thus, P(X >1990) = 1 — P(S) = 1 — 0.005 = 0.995. -1
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Exercises

1.38 Suppose that in a college senior class of 500 stu-
dents it is found that 210 smoke, 258 drink alcoholic
beverages, 216 eat between meals, 122 smoke and drink
alcoholic beverages, 83 eat between meals and drink
alcoholic beverages, 97 smoke and eat between meals,
and 52 engage in all three of these bad health practices.
If a member of this senior class is selected at random,
find the probability that the student

(a) smokes but does not drink alcoholic beverages;

(b) eats between meals and drinks alcoholic beverages
but does not smoke;

(c) neither smokes nor eats between meals.

1.39 Find the errors in each of the following state-
ments:

(a) The probabilities that an automobile salesperson
will sell 0, 1, 2, or 3 cars on any given day in Febru-
ary are, respectively, 0.19, 0.38, 0.29, and 0.15.

(b) The probability that it will rain tomorrow is 0.40,
and the probability that it will not rain tomorrow
is 0.52.

(¢) The probabilities that a printer will make 0, 1, 2,
3, or 4 or more mistakes in setting a document are,
respectively, 0.19,0.34, —0.25,0.43, and 0.29.

(d) On a single draw from a deck of playing cards, the
probability of selecting a heart is 1/4, the probabil-
ity of selecting a black card is 1/2, and the proba-
bility of selecting both a heart and a black card is
1/8.

1.40 An automobile manufacturer is concerned about
a possible recall of its best-selling four-door sedan. If
there were a recall, there is a probability of 0.25 of a
defect in the brake system, 0.18 of a defect in the trans-
mission, 0.17 of a defect in the fuel system, and 0.40 of
a defect in some other area.
(a) What is the probability that the defect is in the
brakes or the fueling system if the probability of
defects in both systems simultaneously is 0.157

(b) What is the probability that there are no defects
in either the brakes or the fueling system?

1.41 The probability that an American industry will
locate in Shanghai, China, is 0.7, the probability that
it will locate in Beijing, China, is 0.4, and the proba-
bility that it will locate in either Shanghai or Beijing or
both is 0.8. What is the probability that the industry
will locate

(a) in both cities?

(b) in neither city?
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1.42 From past experience, a stockbroker believes
that under present economic conditions a customer will
invest in tax-free bonds with a probability of 0.6, will
invest in mutual funds with a probability of 0.3, and
will invest in both tax-free bonds and mutual funds
with a probability of 0.15. At this time, find the prob-
ability that a customer will invest

(a) in either tax-free bonds or mutual funds;
(b) in neither tax-free bonds nor mutual funds.

1.43 A box contains 500 envelopes, of which 75 con-
tain $100 in cash, 150 contain $25, and 275 contain
$10. An envelope may be purchased for $25. What is
the sample space for the different amounts of money?
Assign probabilities to the sample points and then find
the probability that the first envelope purchased con-
tains less than $100.

1.44 1If 3 books are picked at random from a shelf con-
taining 5 novels, 3 books of poems, and a dictionary,
what is the probability that

(a) the dictionary is selected?
(b) 2 novels and 1 book of poems are selected?

1.45 In a high school graduating class of 100 stu-
dents, 54 studied mathematics, 69 studied history, and
35 studied both mathematics and history. If one of
these students is selected at random, find the proba-
bility that

(a) the student took mathematics or history;

(b) the student did not take either of these subjects;

(c) the student took history but not mathematics.

1.46 Dom’s Pizza Company uses taste testing and

statistical analysis of the data prior to marketing any

new product. Consider a study involving three types

of crusts (thin, thin with garlic and oregano, and thin

with bits of cheese). Dom’s is also studying three

sauces (standard, a new sauce with more garlic, and

a new sauce with fresh basil).

(a) How many combinations of crust and sauce are in-
volved?

(b) What is the probability that a judge will get a plain
thin crust with a standard sauce for his first taste
test?

1.47 According to Consumer Digest (July/August
1996), the probable location of personal computers
(PCs) in the home is as follows:
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Adult bedroom: 0.03
Child bedroom:  0.15
Other bedroom: 0.14
Office or den: 0.40
Other rooms: 0.28

(a) What is the probability that a PC is in a bedroom?
(b) What is the probability that it is not in a bedroom?

(c) Suppose a household is selected at random from
households with a PC; in what room would you
expect to find a PC?

1.48 Interest centers around the life of an electronic
component. Suppose it is known that the probabil-
ity that the component survives for more than 6000
hours is 0.42. Suppose also that the probability that
the component survives no longer than 4000 hours is
0.04.

(a) What is the probability that the life of the compo-
nent is less than or equal to 6000 hours?

(b) What is the probability that the life is greater than
4000 hours?

1.49 Consider the situation of Exercise 1.48. Let A
be the event that the component fails a particular test
and B be the event that the component displays strain
but does not actually fail. Event A occurs with prob-
ability 0.20, and event B occurs with probability 0.35.

(a) What is the probability that the component does
not fail the test?

(b) What is the probability that the component works
perfectly well (i.e., neither displays strain nor fails
the test)?

(c) What is the probability that the component either
fails or shows strain in the test?

1.50 Factory workers are constantly encouraged to
practice zero tolerance when it comes to accidents in
factories. Accidents can occur because the working en-
vironment or conditions themselves are unsafe. On the
other hand, accidents can occur due to carelessness
or so-called human error. In addition, the worker’s
shift, 7:00 A.M.~3:00 P.M. (day shift), 3:00 p.M.~11:00
P.M. (evening shift), or 11:00 P.M.—7:00 A.M. (graveyard
shift), may be a factor. During the last year, 300 acci-
dents have occurred. The percentages of the accidents
for the condition combinations are as follows:

Unsafe Human
Shift Conditions Error
Day 5% 32%
Evening 6% 25%
Graveyard 2% 30%

If an accident report is selected randomly from the 300
reports,

(a) what is the probability that the accident occurred
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on the graveyard shift?

(b) what is the probability that the accident occurred
due to human error?

(c) what is the probability that the accident occurred
due to unsafe conditions?

(d) what is the probability that the accident occurred
on either the evening or the graveyard shift?

1.51 Consider the situation of Example 1.27 on page
30.

(a) What is the probability that no more than 4 cars
will be serviced by the mechanic?

(b) What is the probability that he will service fewer
than 8 cars?

(c) What is the probability that he will service either
3 or 4 cars?

1.52 Interest centers around the nature of an oven
purchased at a particular department store. It can be
either a gas or an electric oven. Consider the decisions
made by six distinct customers.

(a) Suppose that the probability is 0.40 that at most
two of these individuals purchase an electric oven.
What is the probability that at least three purchase
the electric oven?

(b) Suppose it is known that the probability that all
six purchase the electric oven is 0.007 while 0.104 is
the probability that all six purchase the gas oven.
What is the probability that at least one of each
type is purchased?

1.53 It is common in many industrial areas to use
a filling machine to fill boxes full of product. This oc-
curs in the food industry as well as other areas in which
the product is used in the home (for example, deter-
gent). These machines are not perfect, and indeed they
may A, fill to specification, B, underfill, and C', overfill.
Generally, the practice of underfilling is that which one
hopes to avoid. Let P(B) = 0.001 while P(A) = 0.990.

(a) Give P(C).
(b) What is the probability that the machine does not
underfill?

(c) What is the probability that the machine either
overfills or underfills?

1.54 Consider the situation of Exercise 1.53. Suppose
50,000 boxes of detergent are produced per week and
suppose also that those underfilled are “sent back,”
with customers requesting reimbursement of the pur-
chase price. Suppose also that the cost of production
is known to be $4.00 per box while the purchase price
is $4.50 per box.

(a) What is the weekly profit under the condition of no
defective boxes?
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(b) What is the loss in profit expected due to under-
filling?

1.55 As the situation of Exercise 1.53 might suggest,
statistical procedures are often used for control of qual-
ity (i.e., industrial quality control). At times, the
weight of a product is an important variable to con-
trol. Specifications are given for the weight of a certain
packaged product, and a package is rejected if it is ei-
ther too light or too heavy. Historical data suggest that
0.95 is the probability that the product meets weight
specifications whereas 0.002 is the probability that the
product is too light. For each single packaged product,
the manufacturer invests $20.00 in production and the

purchase price for the consumer is $25.00.

(a) What is the probability that a package chosen ran-
domly from the production line is too heavy?

(b) For each 10,000 packages sold, what profit is re-
ceived by the manufacturer if all packages meet
weight specification?

(c) Assuming that all defective packages are rejected
and rendered worthless, how much is the profit re-
duced on 10,000 packages due to failure to meet
weight specification?

1.56 Prove that

P(A' NB')=1+P(ANB) — P(A) — P(B).

1.8 Conditional Probability, Independence, and the

Product Rule

One very important concept in probability theory is conditional probability. In
some applications, the practitioner is interested in the probability structure under
certain restrictions. For instance, in epidemiology, rather than studying the chance
that a person from the general population has diabetes, it might be of more interest
to know this probability for a distinct group such as Asian women in the age range
of 35 to 50 or Hispanic men in the age range of 40 to 60. This type of probability
is called a conditional probability.

Conditional Probability

The probability of an event B occurring when it is known that some event A
has occurred is called a conditional probability and is denoted by P(B|A). The
symbol P(B|A) is usually read “the probability that B occurs given that A occurs”
or simply “the probability of B, given A.”

Consider the event B of getting a perfect square when a die is tossed. The die
is constructed so that the even numbers are twice as likely to occur as the odd
numbers. Based on the sample space S = {1,2,3,4,5,6}, with probabilities of
1/9 and 2/9 assigned, respectively, to the odd and even numbers, the probability
of B occurring is 1/3. Now suppose that it is known that the toss of the die
resulted in a number greater than 3. We are now dealing with a reduced sample
space A = {4,5,6}, which is a subset of S. To find the probability that B occurs,
relative to the space A, we must first assign new probabilities to the elements of
A proportional to their original probabilities such that their sum is 1. Assigning a
probability of w to the odd number in A and a probability of 2w to the two even
numbers, we have 5w = 1, or w = 1/5. Relative to the space A, we find that B
contains the single element 4. Denoting this event by the symbol B|A, we write

B|A = {4}, and hence

P(B|A) = %
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This example illustrates that events may have different probabilities when consid-
ered relative to different sample spaces.
We can also write
2 2/9 P(ANDB)
PBA)=-=—"—=———=

(Bl4) 5 5/9 P(A) 7
where P(AN B) and P(A) are found from the original sample space S. In other
words, a conditional probability relative to a subspace A of S may be calculated
directly from the probabilities assigned to the elements of the original sample space

S.

The conditional probability of B, given A, denoted by P(B|A), is defined by

P(ANB)

P(B|A) = W7

provided P(A) > 0.

As an additional illustration, suppose that our sample space S is the population
of adults in a small town who have completed the requirements for a college degree.
We shall categorize them according to gender and employment status. The data
are given in Table 1.3.

Table 1.3: Categorization of the Adults in a Small Town

Employed Unemployed Total

Male 460 40 500
Female 140 260 400
Total 600 300 900

One of these individuals is to be selected at random for a tour throughout the
country to publicize the advantages of establishing new industries in the town. We
shall be concerned with the following events:

M: a man is chosen,
E: the one chosen is employed.

Using the reduced sample space E, we find that

460 23

Let n(A) denote the number of elements in any set A. Using this notation,
since each adult has an equal chance of being selected, we can write
n(ENM) n(ENnM)/n(S) P(ENM)

PUMIE) == = " a@®/m©)  — PE)

where P(E N M) and P(E) are found from the original sample space S. To verify
this result, note that
600 2 460 23
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Hence,

23/45 23

P<M|E): 2/3 —%,

as before.

Example 1.29:‘ The probability that a regularly scheduled flight departs on time is P(D) = 0.83;

Solution:

the probability that it arrives on time is P(A) = 0.82; and the probability that it
departs and arrives on time is P(D N A) = 0.78. Find the probability that a plane
(a) arrives on time, given that it departed on time, and (b) departed on time, given
that it has arrived on time.

Using Definition 1.10, we have the following.

(a) The probability that a plane arrives on time, given that it departed on time,
is

P(DNA)  0.78

P(A|D) = = = 0.94.
(4D) P(D) 0.83
(b) The probability that a plane departed on time, given that it has arrived on
time, is
P(DNA) 0.78
P(D|A) = = = 0.95.
(Dl4) P(A) 0.82

o |

The notion of conditional probability provides the capability of reevaluating the
idea of probability of an event in light of additional information, that is, when it
is known that another event has occurred. The probability P(A|B) is an updating
of P(A) based on the knowledge that event B has occurred. In Example 1.29, it
is important to know the probability that the flight arrives on time. One is given
the information that the flight did not depart on time. Armed with this additional
information, one can calculate the more pertinent probability P(A|D’), that is,
the probability that it arrives on time, given that it did not depart on time. In
many situations, the conclusions drawn from observing the more important condi-

tional probability change the picture entirely. In this example, the computation of
P(A|D') is

P(ANn D) 0.82 — 0.78
PAID) = =55 = g =02t

As a result, the probability of an on-time arrival is diminished severely in the
presence of the additional information.

Example 1.30:

The concept of conditional probability has countless uses in both industrial and
biomedical applications. Consider an industrial process in the textile industry in
which strips of a particular type of cloth are being produced. These strips can be
defective in two ways, length and nature of texture. For the case of the latter, the
process of identification is very complicated. It is known from historical information
on the process that 10% of strips fail the length test, 5% fail the texture test, and
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only 0.8% fail both tests. If a strip is selected randomly from the process and a
quick measurement identifies it as failing the length test, what is the probability
that it is texture defective?

Consider the events

L: length defective, T texture defective.

Given that the strip is length defective, the probability that this strip is texture
defective is given by

P(TNL)  0.008

P(L) 01 = 0.08.

P(T|L) =

Thus, knowing the conditional probability provides considerably more information
than merely knowing P(T). o |

Independent Events

In the die-tossing experiment discussed on page 33, we note that P(B|A) = 2/5
whereas P(B) = 1/3. That is, P(B|A) # P(B), indicating that B depends on
A. Now consider an experiment in which 2 cards are drawn in succession from an
ordinary deck, with replacement. The events are defined as

A: the first card is an ace,
B: the second card is a spade.

Since the first card is replaced, our sample space for both the first and the second
draw consists of 52 cards, containing 4 aces and 13 spades. Hence,
13 1 13 1
P(BJA) = i and P(B)= i
That is, P(B|A) = P(B). When this is true, the events A and B are said to be
independent.

Although conditional probability allows for an alteration of the probability of an
event in the light of additional material, it also enables us to understand better the
very important concept of independence or, in the present context, independent
events. In the airport illustration in Example 1.29, P(A|D) differs from P(A).
This suggests that the occurrence of D influenced A, and this is certainly expected
in this illustration. However, consider the situation where we have events A and
B and

P(A|B) = P(A).

In other words, the occurrence of B had no impact on the chance of occurrence of
A. Here the occurrence of A is independent of the occurrence of B. The importance
of the concept of independence cannot be overemphasized. It plays a vital role in
material in virtually all chapters in this book and in all areas of applied statistics.
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Definition 1.11:

Two events A and B are independent if and only if
P(B|A)=P(B) or P(A|B)= P(A),

assuming the existences of the conditional probabilities. Otherwise, A and B are
dependent.

The condition P(B|A) = P(B) implies that P(A|B) = P(A), and conversely.
For the card-drawing experiments, where we showed that P(B|A) = P(B) = 1/4,
we also can see that P(A|B) = P(A) =1/13.

The Product Rule, or the Multiplicative Rule

Multiplying the formula in Definition 1.10 by P(A), we obtain the following im-
portant multiplicative rule (or product rule), which enables us to calculate
the probability that two events will both occur.

Theorem 1.10:

If in an experiment the events A and B can both occur, then
P(ANB) = P(A)P(B|A), provided P(A) > 0.

Thus, the probability that both A and B occur is equal to the probability that
A occurs multiplied by the conditional probability that B occurs, given that A
occurs. Since the events AN B and BN A are equivalent, it follows from Theorem
1.10 that we can also write

P(ANB) = P(BN A) = P(B)P(A|B).

In other words, it does not matter which event is referred to as A and which event
is referred to as B.

Example 1.31:‘ Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If

Solution:

2 fuses are selected at random and removed from the box in succession without
replacing the first, what is the probability that both fuses are defective?

We shall let A be the event that the first fuse is defective and B the event that the
second fuse is defective; then we interpret A N B as the event that A occurs and
then B occurs after A has occurred. The probability of first removing a defective
fuse is 1/4; then the probability of removing a second defective fuse from the
remaining 4 is 4/19. Hence,

1 4 1
P(ANB) = <4) (19> - L
If, in Example 1.31, the first fuse is replaced and the fuses thoroughly rear-
ranged before the second is removed, then the probability of a defective fuse on the
second selection is still 1/4; that is, P(B|A) = P(B) and the events A and B are
independent. When this is true, we can substitute P(B) for P(B|A) in Theorem
1.10 to obtain the following special multiplicative rule.
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Theorem 1.11:| Two events A and B are independent if and only if

P(ANB) = P(A)P(B).

Therefore, to obtain the probability that two independent events will both occur,
we simply find the product of their individual probabilities.

Example 1.32:1 A small town has one fire engine and one ambulance available for emergencies. The
probability that the fire engine is available when needed is 0.98, and the probability
that the ambulance is available when called is 0.92. In the event of an injury
resulting from a burning building, find the probability that both the ambulance
and the fire engine will be available, assuming they operate independently.

Solution: Let A and B represent the respective events that the fire engine and the ambulance
are available. Then

P(AN B) = P(A)P(B) = (0.98)(0.92) = 0.9016. y

Example 1.33:1 An electrical system consists of four components as illustrated in Figure 1.9. The
system works if components A and B work and either of the components C' or D
works. The reliability (probability of working) of each component is also shown
in Figure 1.9. Find the probability that (a) the entire system works and (b)
component C' does not work, given that the entire system works. Assume that the
four components work independently.

Solution: In this configuration of the system, A, B, and the subsystem C' and D constitute
a serial circuit system, whereas the subsystem C' and D itself is a parallel circuit
system.

(a) Clearly the probability that the entire system works can be calculated as
follows:

P[ANBN (CuD)|=PA)PB)P(CUD)=P(A)P(B)[1 - P(C'nD")]
= P(A)P(B)[1 - P(C")P(D’)]
=(0.9)(0.9)[1 — (1 — 0.8)(1 — 0.8)] = 0.7776.
The equalities above hold because of the independence among the four com-
ponents.

(b) To calculate the conditional probability in this case, notice that

p_ P(the system works but C' does not work)

P(the system works)
P(ANBNC'ND)  (0.9)(0.9)(1 - 0.8)(0.8)

= = = 0.1667.
P(the system works) 0.7776 1

The multiplicative rule can be extended to more than two-event situations.
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0.8
C
0.9 0.9
A B
0.8
D

Figure 1.9: An electrical system for Example 1.33.

Theorem 1.12:| If, in an experiment, the events Ay, As, ..., Ax can occur, then

P(AiNAyn---NAg)
= P(A1)P(A3]A1)P(A3|A1 N Ay) - P(AR|A1 N As - N Ag_q).

If the events Ay, Ao, ..., A are independent, then

P(A1NAsN -+ N Ay) = P(A1)P(As) - - P(Ay).

The property of independence stated in Theorem 1.11 can be extended to deal
with more than two events. Consider, for example, the case of three events A, B,
and C. Tt is not sufficient to only have that P(ANBNC) = P(A)P(B)P(C) as a
definition of independence among the three. Suppose A = B and C' = ¢, the null
set. Although ANBNC = ¢, which results in P(ANBNC) =0 = P(A)P(B)P(C),
events A and B are not independent. Hence, we have the following definition.

Definition 1.12: | A collection of events A = {A;1,...,A,} are mutually independent if for any
subset of A, A;,,..., A;,, for k <n, we have

P(A;,n---NA;)=P(Ai) - P(A;,).

Exercises

1.57 If Ris the event that a convict committed armed Moderate Heavy

robbery and D is the event that the convict sold drugs, Nonsmokers  Smokers  Smokers

state in words what probabilities are expressed by H 21 36 30

(a) P(R|D); NH 48 2 19

(b) P(D'|R)7' where H and N H in the table stand for Hypertension
PN and Nonhypertension, respectively. If one of these indi-

(c) P(R'|D"). viduals is selected at random, find the probability that

the person is
1.58 In an experiment to study the relationship of hy- (a) experiencing hypertension, given that the person is
pertension and smoking habits, the following data are a heavy smoker;

collected for 180 individuals: (b) a nonsmoker, given that the person is experiencing

no hypertension.
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1.59 In USA Today (Sept. 5, 1996), the results of a
survey involving the use of sleepwear while traveling
were listed as follows:

Male Female Total
Underwear  0.220 0.024 0.244
Nightgown  0.002 0.180 0.182
Nothing 0.160 0.018 0.178
Pajamas 0.102 0.073 0.175
T-shirt 0.046 0.088 0.134
Other 0.084 0.003 0.087

(a) What is the probability that a traveler is a female
who sleeps in the nude?

(b) What is the probability that a traveler is male?

(c) Assuming the traveler is male, what is the proba-
bility that he sleeps in pajamas?

(d) What is the probability that a traveler is male if
the traveler sleeps in pajamas or a T-shirt?

1.60 A manufacturer of a flu vaccine is concerned
about the quality of its flu serum. Batches of serum are
processed by three different departments having rejec-
tion rates of 0.10, 0.08, and 0.12, respectively. The in-
spections by the three departments are sequential and
independent.
(a) What is the probability that a batch of serum sur-
vives the first departmental inspection but is re-
jected by the second department?

(b) What is the probability that a batch of serum is
rejected by the third department?

1.61 The probability that a vehicle entering the Lu-
ray Caverns has Canadian license plates is 0.12; the
probability that it is a camper is 0.28; and the proba-
bility that it is a camper with Canadian license plates
is 0.09. What is the probability that

(a) a camper entering the Luray Caverns has Canadian
license plates?

(b) a vehicle with Canadian license plates entering the
Luray Caverns is a camper?

(c) a vehicle entering the Luray Caverns does not have
Canadian plates or is not a camper?

1.62 For married couples living in a certain suburb,
the probability that the husband will vote on a bond
referendum is 0.21, the probability that the wife will
vote on the referendum is 0.28, and the probability that
both the husband and the wife will vote is 0.15. What
is the probability that

(a) at least one member of a married couple will vote?
(b) a wife will vote, given that her husband will vote?

(c) a husband will vote, given that his wife will not
vote?
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1.63 The probability that a doctor correctly diag-
noses a particular illness is 0.7. Given that the doctor
makes an incorrect diagnosis, the probability that the
patient files a lawsuit is 0.9. What is the probability
that the doctor makes an incorrect diagnosis and the
patient sues?

1.64 The probability that an automobile being filled

with gasoline also needs an oil change is 0.25; the prob-

ability that it needs a new oil filter is 0.40; and the

probability that both the oil and the filter need chang-

ing is 0.14.

(a) If the oil has to be changed, what is the probability
that a new oil filter is needed?

(b) If a new oil filter is needed, what is the probability
that the oil has to be changed?

1.65 In 1970, 11% of Americans completed four years

of college; 43% of them were women. In 1990, 22% of

Americans completed four years of college; 53% of them

were women (Time, Jan. 19, 1996).

(a) Given that a person completed four years of college
in 1970, what is the probability that the person was
a woman?

(b) What is the probability that a woman finished four
years of college in 19907

(c) What is the probability that a man had not finished
college in 19907

1.66 Before the distribution of certain statistical soft-

ware, every fourth compact disk (CD) is tested for ac-

curacy. The testing process consists of running four

independent programs and checking the results. The

failure rates for the four testing programs are, respec-

tively, 0.01, 0.03, 0.02, and 0.01.

(a) What is the probability that a CD was tested and
failed any test?

(b) Given that a CD was tested, what is the probability
that it failed program 2 or 37

(¢) In a sample of 100, how many CDs would you ex-
pect to be rejected?

(d) Given that a CD was defective, what is the proba-
bility that it was tested?

1.67 A town has two fire engines operating indepen-

dently. The probability that a specific engine is avail-

able when needed is 0.96.

(a) What is the probability that neither is available
when needed?

(b) What is the probability that a fire engine is avail-
able when needed?

1.68 Pollution of the rivers in the United States has
been a problem for many years. Consider the following
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events:
A the river is polluted,
B: a sample of water tested detects pollution,
C': fishing is permitted.
Assume P(A) = 0.3, P(B|A) = 0.75, P(B|A") = 0.20,
P(C|AnB) = 0.20, P(C|A’'NB) = 0.15, P(C|ANB’) =
0.80, and P(C|A’ N B’) = 0.90.
(a) Find P(ANBNCQC).
(b) Find P(B' N C).
(c¢) Find P(C).
(d) Find the probability that the river is polluted, given

that fishing is permitted and the sample tested did
not detect pollution.
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1.69 A circuit system is given in Figure 1.10. Assume

the components fail independently.

(a) What is the probability that the entire system
works?

(b) Given that the system works, what is the probabil-
ity that component A is not working?

1.70 Suppose the diagram of an electrical system is
as given in Figure 1.11. What is the probability that
the system works? Assume the components fail inde-
pendently.

1.71 In the situation of Exercise 1.69, it is known that
the system does not work. What is the probability that
component A also does not work?

0.7 0.7 0.7
A B B
0.95 0.9
A D
0.8 0.8 0.8 0.8
C D E C

Figure 1.10: Diagram for Exercise 1.69.

1.9 Bayes’ Rule

Figure 1.11: Diagram for Exercise 1.70.

Bayesian statistics is a collection of tools that is used in a special form of statistical
inference which applies in the analysis of experimental data in many practical
situations in science and engineering. Bayes’ rule is one of the most important

rules in probability theory.

Total Probability

Let us now return to the illustration of Section 1.8, where an individual is being
selected at random from the adults of a small town to tour the country and publicize
the advantages of establishing new industries in the town. Suppose that we are
now given the additional information that 36 of those employed and 12 of those
unemployed are members of the Rotary Club. We wish to find the probability of
the event A that the individual selected is a member of the Rotary Club. Referring
to Figure 1.12, we can write A as the union of the two mutually exclusive events

ENnAand E'NA. Hence, A =

(ENA)U

(E'NA), and by Corollary 1.1 of Theorem

1.7, and then Theorem 1.10, we can write

P(A) =

P(ENA)U

(E' N A)] = P(ENA) + P(E' N A)

— P(E)P(A|E) + P(E')P(A|E").
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Figure 1.12: Venn diagram for the events A, E, and E’.

The data of Section 1.8, together with the additional data given above for the set
A, enable us to compute

P(E) =g =3, PUAIE) = o= 2
900 3 600 50
and
, 1 , 12 1
P(E):§, P(A\E):ﬁzﬁ.
If we display these probabilities by means of the tree diagram of Figure 1.13, where
the first branch yields the probability P(E)P(A|E) and the second branch yields

the probability P(E')P(A|E’), it follows that
2 3 1 1 4
PA =)= =)= =
@=()(@) () (5) ==

P(AIE)=3/50

A
® P(E)P(AIE)

PAE)=1/25 ' EIPAIE)

Figure 1.13: Tree diagram for the data on page 34, using additional information
given above.

A generalization of the foregoing illustration to the case where the sample space
is partitioned into k subsets is covered by the following theorem, sometimes called
the theorem of total probability or the rule of elimination.
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Theorem 1.13:| If the events By, Bs, ..., By constitute a partition of the sample space S such that

P(B;) #0fori=1,2,...,k, then for any event A of S,

k k
P(A) =) P(BinA)=> P(B)P(AB).

i=1 i=1

Bs
B,

B,

Figure 1.14: Partitioning the sample space S.

Proof: Consider the Venn diagram of Figure 1.14. The event A is seen to be the union of
the mutually exclusive events
BiNA, BonNA, ..., BpNA;
that is,
A=(BiNA)U(ByNA)U---U(ByNA).
Using Corollary 1.2 of Theorem 1.7 and Theorem 1.10, we have
P(A)=P[(BiNA)U(BaNA)U---U (BN A)
=P(B1NA)+P(B2NA)+---+P(B,NA)

k

=> P(B;NA)

i=1

k
=>_P(B)P(A|B). a

Example 1.34:‘ In a certain assembly plant, three machines, By, Bs, and B3, make 30%, 45%, and
25%, respectively, of the products. It is known from past experience that 2%, 3%,
and 2% of the products made by each machine, respectively, are defective. Now,
suppose that a finished product is randomly selected. What is the probability that
it is defective?

Solution: Consider the following events:
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A: the product is defective,
Bi: the product is made by machine By,
Bs: the product is made by machine Bs,
Bs: the product is made by machine Bs.

Applying the rule of elimination, we can write
P(A) = P(B\)P(A|B) + P(B2)P(A|By) + P(B)P(A|By).

Referring to the tree diagram of Figure 1.15, we find that the three branches give
the probabilities

P(By)P(A|By) = (0.3)(0.02) = 0.006,

P(By)P(A|B,) = (0.45)(0.03) = 0.0135,
P(Bs3)P(A|Bs) = (0.25)(0.02) = 0.005,

and hence
P(A) = 0.006 + 0.0135 + 0.005 = 0.0245. A

P(AIB,) =0.02 A

®

P(B,)=0.45 P(AIB,)=0.03 A

@

A

®

3 P(AlIB;) = 0.02

Figure 1.15: Tree diagram for Example 1.34.

Instead of asking for P(A) in Example 1.34, by the rule of elimination, suppose
that we now consider the problem of finding the conditional probability P(B;|A).
In other words, suppose that a product was randomly selected and it is defective.
What is the probability that this product was made by machine B;? Questions of
this type can be answered by using the following theorem, called Bayes’ rule:
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Theorem 1.14:| (Bayes’ Rule) If the events By, Bo, ..., By constitute a partition of the sample

space S such that P(B;) # 0 for i« = 1,2,...,k, then for any event A in S such
that P(A) # 0,

P(B,|A) = kP(BT n4) _ kP(BT)P(A|BT) forr=1,2,... k.
>, P(BinA) > P(Bi)P(A|B;)
i=1 i=1

Proof: By the definition of conditional probability,

P(B, N A)

P(B,14) = =5

and then using Theorem 1.13 in the denominator, we have

P(B,NA P(B,)P(A|B,
p(BA) = PB0A)_ PBPAIB)
> P(BinA) 3 P(Bi)P(A|B)
i=1 i=1
which completes the proof. A

Example 1.35:] With reference to Example 1.34, if a product was chosen randomly and found to
be defective, what is the probability that it was made by machine B3?
Solution: Using Bayes’ rule to write

P(B3)P(A|B3)

PO = BB PAIB) + P(Bo) P(A|B) + P(Bs) PAIB)’

and then substituting the probabilities calculated in Example 1.34, we have

P(Bs|A) 0.005 ~0.005 10
30,006 +0.0135 +0.005  0.0245 49"

In view of the fact that a defective product was selected, this result suggests that
it probably was not made by machine Bs. A

Example 1.36:/ A manufacturing firm employs three analytical plans for the design and devel-
opment of a particular product. For cost reasons, all three are used at varying
times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products,
respectively. The defect rate is different for the three procedures as follows:

P(D|P)) =0.01,  P(D|P,) =003,  P(D|Ps)=0.02,

where P(D|P;) is the probability of a defective product, given plan j. If a random
product was observed and found to be defective, which plan was most likely used
and thus responsible?

Solution: From the statement of the problem

P(P)) =030, P(P)) =020, and P(Ps)=0.50,
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we must find P(P;|D) for j = 1,2,3. Bayes’ rule (Theorem 1.14) shows
P(P1)P(D|Py) + P(P)P(D|P,) + P(Ps)P(D|Ps)
(0.30)(0.01) 0.003
= = = 0.158.
(0.3)(0.01) + (0.20)(0.03) + (0.50)(0.02)  0.019
Similarly,
(0.03)(0.20) (0.02)(0.50)
P(P|D) = ——*~ =0.316 and P(P3|D) = —————= = 0.526.
(F2ID) 0.019 and P(F5|D) 0.019
The conditional probability of a defect given plan 3 is the largest of the three; thus
a defective for a random product is most likely the result of the use of plan 3. _ll
Exercises

1.72 Police plan to enforce speed limits by using radar
traps at four different locations within the city limits.
The radar traps at each of the locations L1, Lo, Ls,
and L4 will be operated 40%, 30%, 20%, and 30% of
the time. If a person who is speeding on her way to
work has probabilities of 0.2, 0.1, 0.5, and 0.2, respec-
tively, of passing through these locations, what is the
probability that she will receive a speeding ticket?

1.73 In a certain region of the country it is known
from past experience that the probability of selecting
an adult over 40 years of age with cancer is 0.05. If
the probability of a doctor correctly diagnosing a per-
son with cancer as having the disease is 0.78 and the
probability of incorrectly diagnosing a person without
cancer as having the disease is 0.06, what is the prob-
ability that an adult over 40 years of age is diagnosed
as having cancer?

1.74 If the person in Exercise 1.72 received a speed-
ing ticket on her way to work, what is the probability
that she passed through the radar trap located at La?

1.75 Referring to Exercise 1.73, what is the probabil-
ity that a person diagnosed as having cancer actually
has the disease?

1.76 A regional telephone company operates three
identical relay stations at different locations. During a
one-year period, the number of malfunctions reported
by each station and the causes are shown below.

Station A B C
Problems with electricity supplied 2 1 1
Computer malfunction 4 3 2
Malfunctioning electrical equipment 5 4 2
Caused by other human errors 7T 7 5

Suppose that a malfunction was reported and it was
found to be caused by other human errors. What is
the probability that it came from station C?

1.77 Suppose that the four inspectors at a film fac-
tory are supposed to stamp the expiration date on each
package of film at the end of the assembly line. John,
who stamps 20% of the packages, fails to stamp the
expiration date once in every 200 packages; Tom, who
stamps 60% of the packages, fails to stamp the expira-
tion date once in every 100 packages; Jeff, who stamps
15% of the packages, fails to stamp the expiration date
once in every 90 packages; and Pat, who stamps 5% of
the packages, fails to stamp the expiration date once
in every 200 packages. If a customer complains that
her package of film does not show the expiration date,
what is the probability that it was inspected by John?

1.78 Denote by A, B, and C the events that a grand
prize is behind doors A, B, and C, respectively. Sup-
pose you randomly picked a door, say A. The game
host opened a door, say B, and showed there was no
prize behind it. Now the host offers you the option
of either staying at the door that you picked (A) or
switching to the remaining unopened door (C'). Use
probability to explain whether you should switch or
not.

1.79 A paint-store chain produces and sells latex and
semigloss paint. Based on long-range sales, the proba-
bility that a customer will purchase latex paint is 0.75.
Of those that purchase latex paint, 60% also purchase
rollers. But only 30% of semigloss paint buyers pur-
chase rollers. A randomly selected buyer purchases a
roller and a can of paint. What is the probability that
the paint is latex?
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1.80 A truth serum has the property that 90% of the
guilty suspects are properly judged while, of course,
10% of the guilty suspects are improperly found inno-
cent. On the other hand, innocent suspects are mis-
judged 1% of the time. If the suspect was selected
from a group of suspects of which only 5% have ever
committed a crime, and the serum indicates that he is
guilty, what is the probability that he is innocent?

1.81 An allergist claims that 50% of the patients she
tests are allergic to some type of weed. What is the
probability that

(a) exactly 3 of her next 4 patients are allergic to
weeds?

(b) none of her next 4 patients is allergic to weeds?

1.82 By comparing appropriate regions of Venn dia-
grams, verify that

(a) (ANB)U(ANB') = A4;
(b)y AN(B'UC)=(ANB)YUu(A NnQO).

1.83 The probabilities that a service station will
pump gas into 0, 1, 2, 3, 4, or 5 or more cars during
a certain 30-minute period are 0.03, 0.18, 0.24, 0.28,
0.10, and 0.17, respectively. Find the probability that
in this 30-minute period

(a) more than 2 cars receive gas;
(b) at most 4 cars receive gas;
(c) 4 or more cars receive gas.

1.84 A large industrial firm uses three local motels to
provide overnight accommodations for its clients. From
past experience it is known that 20% of the clients are
assigned rooms at the Ramada Inn, 50% at the Sher-
aton, and 30% at the Lakeview Motor Lodge. If the
plumbing is faulty in 5% of the rooms at the Ramada
Inn, in 4% of the rooms at the Sheraton, and in 8% of
the rooms at the Lakeview Motor Lodge, what is the
probability that

(a) a client will be assigned a room with faulty
plumbing?

(b) a person with a room having faulty plumbing was
assigned accommodations at the Lakeview Motor
Lodge?

1.85 The probability that a patient recovers from a
delicate heart operation is 0.8. What is the probability
that

(a) exactly 2 of the next 3 patients who have this op-
eration survive?
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(b) all of the next 3 patients who have this operation
survive?

1.86 In a certain federal prison, it is known that 2/3
of the inmates are under 25 years of age. It is also
known that 3/5 of the inmates are male and that 5/8
of the inmates are female or 25 years of age or older.
What is the probability that a prisoner selected at ran-
dom from this prison is female and at least 25 years
old?

1.87 A shipment of 12 television sets contains 3 de-
fective sets. In how many ways can a hotel purchase
5 of these sets and receive at least 2 of the defective
sets?

1.88 A certain federal agency employs three consult-
ing firms (A, B, and C') with probabilities 0.40, 0.35,
and 0.25, respectively. From past experience it is
known that the probabilities of cost overruns for the
firms are 0.05, 0.03, and 0.15, respectively. Suppose a
cost overrun is experienced by the agency.

(a) What is the probability that the consulting firm
involved is company C?

(b) What is the probability that it is company A?

1.89 A manufacturer is studying the effects of cook-
ing temperature, cooking time, and type of cooking oil
on making potato chips. Three different temperatures,
4 different cooking times, and 3 different oils are to be
used.

(a) What is the total number of combinations to be
studied?

(b) How many combinations will be used for each type
of 0il?

(c) Discuss why permutations are not an issue in this
exercise.

1.90 Consider the situation in Exercise 1.89, and sup-
pose that the manufacturer can try only two combina-
tions in a day.

(a) What is the probability that any given set of two
runs is chosen?

(b) What is the probability that the highest tempera-
ture is used in either of these two combinations?

1.91 A certain form of cancer is known to be found
in women over 60 with probability 0.07. A blood test
exists for the detection of the disease, but the test is
not infallible. In fact, it is known that 10% of the time
the test gives a false negative (i.e., the test incorrectly
gives a negative result) and 5% of the time the test
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gives a false positive (i.e., incorrectly gives a positive
result). If a woman over 60 is known to have taken
the test and received a favorable (i.e., negative) result,
what is the probability that she has the disease?

1.92 A producer of a certain type of electronic com-
ponent ships to suppliers in lots of twenty. Suppose
that 60% of all such lots contain no defective compo-
nents, 30% contain one defective component, and 10%
contain two defective components. A lot is picked, two
components from the lot are randomly selected and
tested, and neither is defective.

(a) What is the probability that zero defective compo-
nents exist in the lot?

(b) What is the probability that one defective exists in
the lot?

(c) What is the probability that two defectives exist in
the lot?

1.93 A construction company employs two sales engi-
neers. Engineer 1 does the work of estimating cost for
70% of jobs bid by the company. Engineer 2 does the
work for 30% of jobs bid by the company. It is known
that the error rate for engineer 1 is such that 0.02 is the
probability of an error when he does the work, whereas
the probability of an error in the work of engineer 2 is
0.04. Suppose a bid arrives and a serious error occurs
in estimating cost. Which engineer would you guess
did the work? Explain and show all work.

1.94 In the field of quality control, the science of
statistics is often used to determine if a process is “out
of control.” Suppose the process is, indeed, out of con-
trol and 20% of items produced are defective.

(a) If three items arrive off the process line in succes-
sion, what is the probability that all three are de-
fective?

(b) If four items arrive in succession, what is the prob-
ability that three are defective?

1.95 An industrial plant is conducting a study to de-
termine how quickly injured workers are back on the
job following injury. Records show that 10% of all in-
jured workers are admitted to the hospital for treat-
ment and 15% are back on the job the next day. In
addition, studies show that 2% are both admitted for
hospital treatment and back on the job the next day.

Chapter 1 Introduction to Statistics and Probability

If a worker is injured, what is the probability that the
worker will either be admitted to a hospital or be back
on the job the next day or both?

1.96 A firm is accustomed to training operators who
do certain tasks on a production line. Those operators
who attend the training course are known to be able to
meet their production quotas 90% of the time. New op-
erators who do not take the training course only meet
their quotas 65% of the time. Fifty percent of new op-
erators attend the course. Given that a new operator
meets her production quota, what is the probability
that she attended the program?

1.97 During bad economic times, industrial workers
are dismissed and are often replaced by machines. The
history of 100 workers whose loss of employment is at-
tributable to technological advances is reviewed. For
each of these individuals, it is determined if he or she
was given an alternative job within the same company,
found a job with another company in the same field,
found a job in a new field, or has been unemployed for
1 year. In addition, the union status of each worker is
recorded. The following table summarizes the results.

Union Nonunion

Same Company 40 15
New Company (same field) 13 10
New Field 4 11
Unemployed 2 5

(a) If the selected worker found a job with a new com-
pany in the same field, what is the probability that
the worker is a union member?

(b) If the worker is a union member, what is the prob-
ability that the worker has been unemployed for a
year?

1.98 Group Project: Give each student a bag of

chocolate M&Ms. Divide the students into groups of 5

or 6. Calculate the relative frequency distribution for

color of M&Ms for each group.

(a) What is your estimated probability of randomly
picking a yellow? a red?

(b) Redo the calculations for the whole classroom. Did
the estimates change?

(¢) Do you believe there is an equal number of each
color in a process batch? Discuss.
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Random Variables, Distributions,
and Expectations

2.1 Concept of a Random Variable

Definition 2.1:

Statistics is concerned with making inferences about populations and population
characteristics. Experiments are conducted with results that are subject to chance.
The testing of a number of electronic components is an example of a statistical
experiment, a term that is used to describe any process by which several chance
observations are generated. It is often important to allocate a numerical description
to the outcome. For example, the sample space giving a detailed description of each
possible outcome when three electronic components are tested may be written

S ={NNN,NND,NDN,DNN,NDD, DND, DDN, DDD},

where N denotes nondefective and D denotes defective. One is naturally concerned
with the number of defectives that occur. Thus, each point in the sample space will
be assigned a numerical value of 0, 1, 2, or 3. These values are, of course, random
quantities determined by the outcome of the experiment. They may be viewed as
values assumed by the random wvariable X, the number of defective items when
three electronic components are tested.

A random variable is a variable that associates a real number with each element
in the sample space.

We shall use a capital letter, say X, to denote a random variable and its correspond-
ing small letter, z in this case, for one of its values. In the electronic component
testing illustration above, we notice that the random variable X assumes the value
2 for all elements in the subset

E ={DDN,DND,NDD}

of the sample space S. That is, each possible value of X represents an event that
is a subset of the sample space for the given experiment.

49
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Example 2.1:

Two balls are drawn in succession without replacement from an urn containing 4
red balls and 3 black balls. The possible outcomes and the values y of the random
variable Y, where Y is the number of red balls, are

Sample Space y

RR 2
RB 1
BR 1
BB 0

Example 2.2:

Solution:

Definition 2.2:

A stockroom clerk returns three safety helmets at random to three steel mill
employees who had previously checked them. If Smith, Jones, and Brown, in that
order, receive one of the three hats, list the sample space for the possible orders
of returning the helmets, and find the value m of the random variable M that
represents the number of correct matches.

If S, J, and B stand for Smith’s, Jones’s, and Brown’s helmets, respectively, then
the possible arrangements in which the helmets may be returned and the number
of correct matches are

Sample Space m
SJB 3

SBJ 1
1

1

0

BJS
JSB
JBS
BSJ 0 r

In each of the two preceding examples, the sample space contains a finite number
of elements. On the other hand, when a die is thrown until a 5 occurs, we obtain
a sample space with an unending sequence of elements,

S ={F,NF,NNF,NNNF,...},

where ' and N represent, respectively, the occurrence and nonoccurrence of a 5.
But even in this experiment, the number of elements can be equated to the number
of whole numbers so that there is a first element, a second element, a third element,
and so on, and in this sense can be counted.

If a sample space contains a finite number of possibilities or an unending sequence
with as many elements as there are whole numbers, it is called a discrete sample

space.

When the random variable is categorical in nature, it is often called a dummy
variable. A good illustration is the case in which the random variable is binary in
nature, as shown in the following example.

Example 2.3: ‘

Consider the simple experiment in which components are arriving from the pro-
duction line and they are stipulated to be defective or not defective. Define the
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random variable X by

X = 1, if the component is defective,
~ 0, if the component is not defective.

Clearly the assignment of 1 or 0 is arbitrary though quite convenient. This will

become clear in later chapters. The random variable for which 0 and 1 are chosen

to describe the two possible values is called a Bernoulli random variable. _l
Further illustrations of random variables appear in the following examples.

Example 2.4:

Statisticians use sampling plans to either accept or reject batches or lots of
material. Suppose one of these sampling plans involves sampling independently 10
items from a lot of 100 items in which 12 are defective.

Let X be the random variable defined as the number of items found defec-
tive in the sample of 10. In this case, the random variable takes on the values
0,1,2,...,9,10. o |

Example 2.5:

Suppose a sampling plan involves sampling items from a process until a defective
is observed. The evaluation of the process will depend on how many consecutive
nondefective items are observed. In that regard, let X be a random variable defined
by the number of items observed before a defective is found. With N a nondefective
and D a defective, the outcomes in the sample space are D given X = 1, ND given
X =2, NND given X = 3, and so on. A

Example 2.6:‘ Interest centers around the proportion of people who respond to a certain mail

order solicitation. Let X be that proportion. X is a random variable that takes
on all values x for which 0 < z < 1. o |

Example 2.7:‘ Let X be the random variable defined by the waiting time, in hours, between

Definition 2.3:

successive speeders spotted by a radar unit. The random variable X takes on all
values x for which x > 0. o |

The outcomes of some statistical experiments may be neither finite nor count-
able. Such is the case, for example, when one conducts an investigation measuring
the distances that a certain make of automobile will travel over a prescribed test
course on 5 liters of gasoline. Assuming distance to be a variable measured to any
degree of accuracy, then clearly we have an infinite number of possible distances
in the sample space that cannot be equated to the number of whole numbers. Or,
if one were to record the length of time for a chemical reaction to take place, once
again the possible time intervals making up our sample space would be infinite in
number and uncountable. We see now that all sample spaces need not be discrete.

If a sample space contains an infinite number of possibilities equal to the number

of points on a line segment, it is called a continuous sample space.

A random variable is called a discrete random variable if its set of possible
outcomes is countable. The random variables in Examples 2.1 to 2.5 are discrete
random variables. But a random variable whose set of possible values is an entire
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interval of real numbers is not discrete. When a random variable can take on
values on a continuous scale, it is called a continuous random variable. Often
the possible values of a continuous random variable are precisely the same values
that are contained in the continuous sample space. Obviously, the random variables
described in Examples 2.6 and 2.7 are continuous random variables.

In most practical problems, continuous random variables represent measured
data, such as all possible heights, weights, temperatures, distances, or life periods,
whereas discrete random variables represent count data, such as the number of
defectives in a sample of k items or the number of highway fatalities per year in
a given state. Note that the random variables Y and M of Examples 2.1 and 2.2
both represent count data, Y the number of red balls and M the number of correct
hat matches.

2.2 Discrete Probability Distributions

A discrete random variable assumes each of its values with a certain probability.
In the case of tossing a coin three times, the variable X, representing the number
of heads, assumes the value 2 with probability 3/8, since 3 of the 8 equally likely
sample points result in two heads and one tail. If one assumes equal weights for the
simple events in Example 2.2, the probability that no employee gets back the right
helmet, that is, the probability that M assumes the value 0, is 1/3. The possible
values m of M and their probabilities are
m [0 1
PM=m)|[ L+ 1 1

Note that the values of m exhaust all possible cases and hence the probabilities
add to 1.

Frequently, it is convenient to represent all the probabilities of the values of a
random variable X by a formula. Such a formula would necessarily be a function
of the numerical values x that we shall denote by f(z), g(z), r(z), and so forth.
Therefore, we write f(x) = P(X = x); that is, f(3) = P(X = 3). The set of
ordered pairs (x, f(z)) is called the probability mass function, probability
function, or probability distribution of the discrete random variable X.

3
1

The set of ordered pairs (z, f(x)) is a probability mass function, probability
function, or probability distribution of the discrete random variable X if, for

Definition 2.4:
each possible outcome z,
L f(z) >0,
2 L f@) =1,
3. P(X =z) = f(x)
Example 2.8:

A shipment of 20 similar laptop computers to a retail outlet contains 3 that are
defective. If a school makes a random purchase of 2 of these computers, find the
probability distribution for the number of defectives.
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Solution:

Let X be a random variable whose values x are the possible numbers of defective
computers purchased by the school. Then = can only take the numbers 0, 1, and
2. Now

220) 95’ (220) 190’
_BE) 3
f(Q)—P(X—Q) (220) _@'
Thus, the probability distribution of X is
T ‘ 0 1 2
f(x) ' % 15910 % —

Example 2.9:

Solution:

Definition 2.5:

If a car agency sells 50% of its inventory of a certain foreign car equipped with
side airbags, find a formula for the probability distribution of the number of cars
with side airbags among the next 4 cars sold by the agency.

Since the probability of selling an automobile with side airbags is 0.5, the 2% = 16
points in the sample space are equally likely to occur. Therefore, the denominator
for all probabilities, and also for our function, is 16. To obtain the number of
ways of selling 3 cars with side airbags, we need to consider the number of ways
of partitioning 4 outcomes into two cells, with 3 cars with side airbags assigned
to one cell and the model without side airbags assigned to the other. This can be
done in (g): 4 ways. In general, the event of selling x models with side airbags
and 4 — x models without side airbags can occur in (i) ways, where = can be 0, 1,
2, 3, or 4. Thus, the probability distribution f(z) = P(X = z) is

1 /4
= — f =0,1,2,3,4.
ro) =5 (1) fore=oa.2s J

There are many problems where we may wish to compute the probability that
the observed value of a random variable X will be less than or equal to some real
number z. Writing F(z) = P(X < x) for every real number z, we define F(z) to
be the cumulative distribution function of the random variable X.

The cumulative distribution function F(z) of a discrete random variable X
with probability distribution f(z) is

F(z)=P(X <x)=)» f(t), for —oo<z< o0

t<zx

For the random variable M, the number of correct matches in Example 2.2, we
have

F(2) = P(M <2) = f(0)+ f(1) =

W
DO —
(@)}

The cumulative distribution function of M is

0, form <0,

1

= <
Fm)={ % for0<m <1,

%, for 1 <m <3,

1, form > 3.
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One should pay particular notice to the fact that the cumulative distribution func-
tion is a monotone nondecreasing function defined not only for the values assumed
by the given random variable but for all real numbers.

Example 2.10:‘ Find the cumulative distribution function of the random variable X in Example
2.9. Using F'(z), verify that f(2) = 3/8.
Solution: Direct calculations of the probability distribution of Example 2.9 give f(0)= 1/16,
f(1) =1/4, f(2)=3/8, f(3)=1/4, and f(4)= 1/16. Therefore,

F(0)= f(0) = 1.

FQ) = £0)+ 1) = 1,

F(2) = f0) + f0) + £2) = 75,

F(3) = £(0) + F(1) + £(2) + 13) = 1.

FA)=fO0)+ )+ 2+ fB)+f(4) =1

Hence,

=

for x <0,
for0<z<1,
forl <z<?2,
for2 <z <3,
for 3 <z < 4,
for x > 4.

|5 SI2 Sle 5]

[=2]

Ll e g

Now

11 5 3
F@) =F@) - F(1) = 1c— 1o = 5 ,

It is often helpful to look at a probability distribution in graphic form. One
might plot the points (x, f(x)) of Example 2.9 to obtain Figure 2.1. By joining
the points to the z axis either with a dashed or with a solid line, we obtain a
probability mass function plot. Figure 2.1 makes it easy to see what values of X
are most likely to occur, and it also indicates a perfectly symmetric situation in
this case.

Instead of plotting the points (x, f(x)), we more frequently construct rectangles,
as in Figure 2.2. Here the rectangles are constructed so that their bases of equal
width are centered at each value x and their heights are equal to the corresponding
probabilities given by f(z). The bases are constructed so as to leave no space
between the rectangles. Figure 2.2 is called a probability histogram.

Since each base in Figure 2.2 has unit width, P(X = x) is equal to the area
of the rectangle centered at z. Even if the bases were not of unit width, we could
adjust the heights of the rectangles to give areas that would still equal the proba-
bilities of X assuming any of its values x. This concept of using areas to represent
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f(x) f(x)
/16 . 6/16 -
5161 i 516
4/16 - T i 7 4/16 |
316} | | ! 316}
2116 i i i 2116}
AL | | | ’ ier
| | | | |
0 1 2 3 rat 0 1 2 3 4 x
Figure 2.1: Probability mass function plot. Figure 2.2: Probability histogram.

probabilities is necessary for our consideration of the probability distribution of a
continuous random variable.

The graph of the cumulative distribution function of Example 2.10, which ap-
pears as a step function in Figure 2.3, is obtained by plotting the points (z, F/(x)).

Certain probability distributions are applicable to more than one physical situa-
tion. The probability distribution of Example 2.10, for example, also applies to the
random variable Y, where Y is the number of heads when a coin is tossed 4 times,
or to the random variable W, where W is the number of red cards that occur when
4 cards are drawn at random from a deck in succession with each card replaced and
the deck shuffled before the next drawing. Special discrete distributions that can
be applied to many different experimental situations will be considered in Chapter
3.

F(x)

3/4
1/2

1/4

Figure 2.3: Discrete cumulative distribution function.

2.3 Continuous Probability Distributions

A continuous random variable has a probability of 0 of assuming ezactly any of its
values. Consequently, its probability distribution cannot be given in tabular form.
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At first this may seem startling, but it becomes more plausible when we consider a
particular example. Let us discuss a random variable whose values are the heights
of all people over 21 years of age. Between any two values, say 163.5 and 164.5
centimeters, or even 163.99 and 164.01 centimeters, there are an infinite number
of heights, one of which is 164 centimeters. The probability of selecting a person
at random who is exactly 164 centimeters tall and not one of the infinitely large
set of heights so close to 164 centimeters that you cannot humanly measure the
difference is remote, and thus we assign a probability of 0 to the event. This is not
the case, however, if we talk about the probability of selecting a person who is at
least 163 centimeters but not more than 165 centimeters tall. Now we are dealing
with an interval rather than a point value of our random variable.

We shall concern ourselves with computing probabilities for various intervals of
continuous random variables such as P(a < X < b), P(W > ¢), and so forth. Note
that when X is continuous,

Pla<X<b)=Pla<X<b)+P(X=0=Pla<X<b).
That is, it does not matter whether we include an endpoint of the interval or not.
This is not true, though, when X is discrete.

Although the probability distribution of a continuous random variable cannot
be presented in tabular form, it can be stated as a formula. Such a formula would
necessarily be a function of the numerical values of the continuous random variable
X and as such will be represented by the functional notation f(z). In dealing with
continuous variables, f(x) is usually called the probability density function, or
simply the density function, of X. Since X is defined over a continuous sample
space, it is possible for f(x) to have a finite number of discontinuities. However,
most density functions that have practical applications in the analysis of statistical
data are continuous and their graphs may take any of several forms, some of which
are shown in Figure 2.4. Because areas will be used to represent probabilities and
probabilities are positive numerical values, the density function must lie entirely
above the z axis.

(b) () (d)

Figure 2.4: Typical density functions.

A probability density function is constructed so that the area under its curve



2.3 Continuous Probability Distributions 57

Definition 2.6:

bounded by the z axis is equal to 1 when computed over the range of X for which
f(z) is defined. Should this range of X be a finite interval, it is always possible
to extend the interval to include the entire set of real numbers by defining f(z) to
be zero at all points in the extended portions of the interval. In Figure 2.5, the
probability that X assumes a value between a and b is equal to the shaded area
under the density function between the ordinates at x = a and = b, and from
integral calculus is given by

b
P(a<X<b):/ f(z) dx.
f(x) “

a b

Figure 2.5: P(a < X < b).

The function f(x) is a probability density function (pdf) for the continuous
random variable X, defined over the set of real numbers, if

1. f(x) >0, for all x € R,

2. [% flz) do =1,

3. Pla< X <b)= f:f(x) dx.

Example 2.11:‘ Suppose that the error in the reaction temperature, in °C, for a controlled labora-

tory experiment is a continuous random variable X having the probability density
function

0, elsewhere.

ﬂ@:{f,—4<x<z

(a) Verify that f(z) is a density function.
(b) Find P(0 < X < 1).

Solution: We use Definition 2.6.

(a) Obviously, f(x) > 0. To verify condition 2 in Definition 2.6, we have

&S] 2 2 3

X X

d = —d = —

/_OO f(@) dv /_1 3 o 9

8 1
=-4-=1
979
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(b) Using formula 3 in Definition 2.6, we obtain

1

1.2 3
1
P(0<X§1):/ D=2 =2
0o 3 9 . |
Definition 2.7: | The cumulative distribution function F(z) of a continuous random variable
X with density function f(z) is
F(:r):P(Xgm):/ f(t) dt, for —oo <z < o0.
As an immediate consequence of Definition 2.7, one can write the two results
Pla< X <b)=F(b)— F(a)
and IF ()
x
f(ZL') - dx )
if the derivative exists.
Example 2.12:‘ For the density function of Example 2.11, find F(z), and use it to evaluate
PO< X <1).
Solution: For —1 < x < 2,
v i 3" S41
F(m):/ £0) dt:/ LA P e
Lo 13 914 9
Therefore,
0, T < —1,
Flz) =24+ 1<z <2,
1, x> 2
The cumulative distribution function F(z) is expressed in Figure 2.6. Now
PO<X<1)=F()-F(0) = 2 1.1
- 9 9 9
which agrees with the result obtained by using the density function in Example
2.11. o |

Example 2.13:| The Department of Energy (DOE) puts projects out on bid and generally estimates
what a reasonable bid should be. Call the estimate b. The DOE has determined
that the density function of the winning (low) bid is

>, Eb<y <2,

fly) = {8”’

0, elsewhere.

Find F(y) and use it to determine the probability that the winning bid is less than
the DOE’s preliminary estimate b.
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f(x)
1.0

Figure 2.6: Continuous cumulative distribution function.

Solution: For 2b/5 <y < 20,

roy- [ Za-B L
2b/5 8b 8b 2b/5 8b 4
Thus,
0, y<%b,
Fly) =33 -1, 2b<y<2b
1, y > 2b.

To determine the probability that the winning bid is less than the preliminary bid

estimate b, we have

Exercises

2.1 Classify the following random variables as dis-
crete or continuous:

X: the number of automobile accidents per year
in Virginia.
Y: the length of time to play 18 holes of golf.

M: the amount of milk produced yearly by a par-
ticular cow.

N: the number of eggs laid each month by a hen.

P: the number of building permits issued each
month in a certain city.

Q: the weight of grain produced per acre.

2.2 An overseas shipment of 5 foreign automobiles
contains 2 that have slight paint blemishes. If an
agency receives 3 of these automobiles at random, list
the elements of the sample space S, using the letters B
and N for blemished and nonblemished, respectively;
then to each sample point assign a value z of the ran-
dom variable X representing the number of automo-
biles with paint blemishes purchased by the agency.

2.3 Let W be a random variable giving the number
of heads minus the number of tails in three tosses of a
coin. List the elements of the sample space S for the
three tosses of the coin and to each sample point assign
a value w of W.
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2.4 A coin is flipped until 3 heads in succession oc-
cur. List only those elements of the sample space that
require 6 or less tosses. Is this a discrete sample space?
Explain.

2.5 Determine the value ¢ so that each of the follow-
ing functions can serve as a probability distribution of
the discrete random variable X:

(a) f(z) = c(x® +4), for  =0,1,2,3;
(b) f(z)=c(?)(,>,), for z =0,1,2.

2.6 The shelf life, in days, for bottles of a certain
prescribed medicine is a random variable having the
density function

20,000

ﬂm:{wﬂww >0,

0, elsewhere.

Find the probability that a bottle of this medicine will
have a shell life of

(a) at least 200 days;

(b) anywhere from 80 to 120 days.

2.7 The total number of hours, measured in units of
100 hours, that a family runs a vacuum cleaner over a
period of one year is a continuous random variable X
that has the density function

x, 0<z <1,
fley=<2—2z, 1<z<2,
0, elsewhere.

Find the probability that over a period of one year, a
family runs their vacuum cleaner

(a) less than 120 hours;
(b) between 50 and 100 hours.

2.8 The proportion of people who respond to a certain
mail-order solicitation is a continuous random variable
X that has the density function

M 0 <x< 1
fl@)y=q.° 7 " '
0, elsewhere.

(a) Show that P(0 < X < 1) =1.

(b) Find the probability that more than 1/4 but fewer
than 1/2 of the people contacted will respond to
this type of solicitation.

2.9 A shipment of 7 television sets contains 2 defec-
tive sets. A hotel makes a random purchase of 3 of the
sets. If = is the number of defective sets purchased by
the hotel, find the probability distribution of X. Ex-
press the results graphically as a probability histogram.

2.10 An investment firm offers its customers munici-
pal bonds that mature after varying numbers of years.
Given that the cumulative distribution function of T',
the number of years to maturity for a randomly se-
lected bond, is

0, t<1,
3, 1<t<3,
Ft)y=141, 3<t<5,
3 5<t<T,
1, t>17,
find
(a) P(T = 5);
(b) P(T" > 3);
(¢) P14 < T <6);
(A P(T<5|T>2)

2.11 The probability distribution of X, the number
of imperfections per 10 meters of a synthetic fabric in
continuous rolls of uniform width, is given by
z | 0 1 2 3 4
f(z) 1041 037 0.16 0.05 0.01

Construct the cumulative distribution function of X.

2.12 The waiting time, in hours, between successive
speeders spotted by a radar unit is a continuous ran-
dom variable with cumulative distribution function

0, z <0,
F@)_{1764ﬂ x> 0.

Find the probability of waiting less than 12 minutes
between successive speeders

(a) using the cumulative distribution function of X;
(b) using the probability density function of X.

2.13 Find the cumulative distribution function of the
random variable X representing the number of defec-
tives in Exercise 2.9. Then using F(z), find

(a) P(X =1);
(b) P(0 < X <2).

2.14 Construct a graph of the cumulative distribution
function of Exercise 2.13.

2.15 Consider the density function

f(x):{k\/:i 0<z<l,

0, elsewhere.

(a) Evaluate k.
(b) Find F(z) and use it to evaluate

P(0.3 < X <0.6).
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2.16 Three cards are drawn in succession from a deck
without replacement. Find the probability distribution
for the number of spades.

2.17 From a box containing 4 dimes and 2 nickels,
3 coins are selected at random without replacement.
Find the probability distribution for the total T" of the
3 coins. Express the probability distribution graphi-
cally as a probability histogram.

2.18 Find the probability distribution for the number
of jazz CDs when 4 CDs are selected at random from
a collection consisting of 5 jazz CDs, 2 classical CDs,
and 3 rock CDs. Express your results by means of a
formula.

2.19 The time to failure in hours of an important
piece of electronic equipment used in a manufactured
DVD player has the density function

1
_ [ 5000 exp(—/2000), = >0,
= {7 020

(a) Find F(x).

(b) Determine the probability that the component (and
thus the DVD player) lasts more than 1000 hours
before the component needs to be replaced.

(c) Determine the probability that the component fails
before 2000 hours.

2.20 A cereal manufacturer is aware that the weight
of the product in the box varies slightly from box
to box. In fact, considerable historical data have al-
lowed the determination of the density function that
describes the probability structure for the weight (in
ounces). Letting X be the random variable weight, in
ounces, the density function can be described as

2, 23.75<2<26.25
— 59 = = )
/(@) {0, elsewhere.

(a) Verify that this is a valid density function.

(b) Determine the probability that the weight is
smaller than 24 ounces.

(c) The company desires that the weight exceeding 26
ounces be an extremely rare occurrence. What is
the probability that this rare occurrence does ac-
tually occur?

2.21 An important factor in solid missile fuel is the
particle size distribution. Significant problems occur if
the particle sizes are too large. From production data
in the past, it has been determined that the particle
size (in micrometers) distribution is characterized by

Fla) = {31‘_4, z>1,

0, elsewhere.
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(a) Verify that this is a valid density function.
(b) Evaluate F(x).

(c) What is the probability that a random particle
from the manufactured fuel exceeds 4 micrometers?

2.22 Measurements of scientific systems are always
subject to variation, some more than others. There
are many structures for measurement error, and statis-
ticians spend a great deal of time modeling these errors.
Suppose the measurement error X of a certain physical
quantity is decided by the density function

o) = {5

(a) Determine k that renders f(z) a valid density func-
tion.

—-1<z<1,
elsewhere.

(b) Find the probability that a random error in mea-
surement is less than 1/2.

(c) For this particular measurement, it is undesirable
if the magnitude of the error (i.e., |x|) exceeds 0.8.
What is the probability that this occurs?

2.23 Based on extensive testing, it is determined by
the manufacturer of a washing machine that the time
Y (in years) before a major repair is required is char-
acterized by the probability density function

1 —y/4
1€ )

fly) = {07

(a) Critics would certainly consider the product a bar-
gain if it is unlikely to require a major repair before
the sixth year. Comment on this by determining
P(Y > 6).

(b) What is the probability that a major repair occurs
in the first year?

y >0,
elsewhere.

2.24 The proportion of the budget for a certain type
of industrial company that is allotted to environmental
and pollution control is coming under scrutiny. A data
collection project determines that the distribution of
these proportions is given by

_[50-y)t 0<y<l,
H) = {O, elsewhere.

(a) Verify that the above is a valid density function.

(b) What is the probability that a company chosen at
random expends less than 10% of its budget on en-
vironmental and pollution controls?

(c) What is the probability that a company selected
at random spends more than 50% of its budget on
environmental and pollution controls?
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2.25 Suppose a certain type of small data processing
firm is so specialized that some have difficulty making
a profit in their first year of operation. The probabil-
ity density function that characterizes the proportion
Y that make a profit is given by

ky*(1—y)®, 0<y<1,

fly) = {07

(a) What is the value of k that renders the above a
valid density function?

(b) Find the probability that at most 50% of the firms
make a profit in the first year.

(c) Find the probability that at least 80% of the firms
make a profit in the first year.

elsewhere.

2.26 Magnetron tubes are produced on an automated
assembly line. A sampling plan is used periodically to
assess quality of the lengths of the tubes. This mea-
surement is subject to uncertainty. It is thought that
the probability that a random tube meets length spec-
ification is 0.99. A sampling plan is used in which the
lengths of 5 random tubes are measured.

(a) Show that the probability function of Y, the num-
ber out of 5 that meet length specification, is given
by the following discrete probability function:

5! Y 5—y
= m(o.gg) (0.01)°7Y,

fory=0,1,2,3,4,5.

(b) Suppose random selections are made off the line
and 3 are outside specifications. Use f(y) above ei-
ther to support or to refute the conjecture that the
probability is 0.99 that a single tube meets specifi-
cations.

2.27 Suppose it is known from large amounts of his-
torical data that X, the number of cars that arrive at
a specific intersection during a 20-second time period,
is characterized by the following discrete probability
function:

xT
@)= fora=o012,...

(a) Find the probability that in a specific 20-second
time period, more than 8 cars arrive at the
intersection.

(b) Find the probability that only 2 cars arrive.

2.28 On a laboratory assignment, if the equipment is
working, the density function of the observed outcome,
X, is

21—-2z), 0<z<1,
0, otherwise.

) ={

(a) Calculate P(X < 1/3).
(b) What is the probability that X will exceed 0.57

(c) Given that X > 0.5, what is the probability that
X will be less than 0.757

2.4 Joint Probability Distributions

Our study of random variables and their probability distributions in the preced-
ing sections was restricted to one-dimensional sample spaces, in that we recorded
outcomes of an experiment as values assumed by a single random variable. There
will be situations, however, where we may find it desirable to record the simulta-
neous outcomes of several random variables. For example, we might measure the
amount of precipitate P and volume V' of gas released from a controlled chemical
experiment, giving rise to a two-dimensional sample space consisting of the out-
comes (p,v), or we might be interested in the hardness H and tensile strength T'
of cold-drawn copper, resulting in the outcomes (h,t). In a study to determine the
likelihood of success in college based on high school data, we might use a three-
dimensional sample space and record for each individual his or her aptitude test
score, high school class rank, and grade-point average at the end of freshman year
in college.

If X and Y are two discrete random variables, the probability distribution for
their simultaneous occurrence can be represented by a function with values f(x,y)
for any pair of values (z,y) within the range of the random variables X and Y. It
is customary to refer to this function as the joint probability distribution of
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Definition 2.8:

X and Y.
Hence, in the discrete case,

flz,y) = P(X =2,Y =y);

that is, the values f(x,y) give the probability that outcomes z and y occur at
the same time. For example, if an 18-wheeler is to have its tires serviced and X
represents the number of miles these tires have been driven and Y represents the
number of tires that need to be replaced, then f(30000,5) is the probability that
the tires are used over 30,000 miles and the truck needs 5 new tires.

The function f(x,y) is a joint probability distribution or probability mass
function of the discrete random variables X and Y if

1. f(z,y) >0, for all (z,y),
2. 22 flay) =1,
@y
3. P(X =x,Y =y) = f(z,y).
For any region A in the xy plane, P[(X,Y) € A] =>_>" f(z,y).
A

Example 2.14:‘ Two ballpoint pens are selected at random from a box that contains 3 blue pens,

Solution:

2 red pens, and 3 green pens. If X is the number of blue pens selected and Y is
the number of red pens selected, find

(a) the joint probability function f(z,y),

(b) P[(X,Y) € A], where A is the region {(z,y)|r +y < 1}.
The possible pairs of values (z,y) are (0,0), (0,1), (1,0), (1,1), (0,2), and (2,0).

(a) Now, f(0,1), for example, represents the probability that a red and a green
pen are selected. The total number of equally likely ways of selecting any 2
pens from the 8 is (g) = 28. The number of ways of selecting 1 red from 2
red pens and 1 green from 3 green pens is (3)(3) = 6. Hence, f(0,1) = 6/28
= 3/14. Similar calculations yield the probabilities for the other cases, which
are presented in Table 2.1. Note that the probabilities sum to 1. In Chapter
3, it will become clear that the joint probability distribution of Table 2.1 can
be represented by the formula

3y (2 3
(:v) (y) (27x7y)
G
2
forxr=0,1,2,y=0,1,2;and 0 <z +y < 2.
(b) The probability that (X,Y") fall in the region A is

flz,y) =

P[(X,Y)e A]=P(X+Y <1)=f(0,0)+ f(0,1) + f(1,0)
3 3 9 9

RECRY!

28 14°
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Table 2.1: Joint Probability Distribution for Example 2.14

T Row
f(z,y) 0 1 2 | Totals
0 3 9 3 15
28 28 28 28
3 3 3
o P B
2 55 0 0 38
5 15 3
Column Totals | 3 355 35 ‘ 1

o |

When X and Y are continuous random variables, the joint density function

f(x,y) is a surface lying above the xy plane, and P[(X,Y) € A], where A is any

region in the xy plane, is equal to the volume of the right cylinder bounded by the
base A and the surface.

Definition 2.9: | The function f(x,y) is a joint probability density function of the continuous
random variables X and Y if

1. f(z,y) >0, for all (z,y),
2. [7, ff‘;o flz,y) de dy =1,

3. P[(X,Y) = [ [, f(z,y) dz dy, for any region A in the zy plane.

Example 2.15:‘ A privately owned business operates both a drive-in facility and a walk-in facility.
On a randomly selected day, let X and Y, respectively, be the proportions of the
time that the drive-in and the walk-in facilities are in use, and suppose that the
joint density function of these random variables is

) 22z +3y), 0<2<1,0<y<1,
T,Yy) =
Y 0, elsewhere.

(a) Verify condition 2 of Definition 2.9.
(b) Find P[(X,Y) € A], where A ={(z,y) | 0<z < 3,3 <y< i}

Solution: (a) The integration of f(x,y) over the whole region is

/ / flx,y) da:dy—// (22 + 3y) dx dy
29; Gxy
= d
Lo 6y 2y 3y?
p— — —_— d f— — [——
[ Ge3)o-(3+%)
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(b) To calculate the probability, we use

11 1
P[(X,Y)e A]=P 0<X<2 4<Y<2>

12 172 4
/ / —(2z + 3y) dx dy
1 o O

/1/2 (2x2 ny) r=1/2
JE— Jr —Z
i \5 5

dy:/ (er) dy
32 1/2
_ <y+y>
1010 /1,

_ (L, L.3)]_1
10 [\2 4 4 16/ 160 N

Given the joint probability distribution f(z,y) of the discrete random variables
X and Y, the probability distribution g(x) of X alone is obtained by summing
f(x,y) over all the values of Y at each value of x. Similarly, the probability
distribution h(y) of Y alone is obtained by summing f(z,y) over the values of
X. We define g(z) and h(y) to be the marginal distributions of X and Y,
respectively. When X and Y are continuous random variables, summations are
replaced by integrals. We can now make the following general definition.

Definition 2.10: | The marginal distributions of X alone and of Y alone are
=> f(z,y) and h(y Zf (z,y)
Yy

for the discrete case, and

/ flz,y) dy and h(y / f(z,y) d

for the continuous case.

The term marginal is used here because, in the discrete case, the values of g(z)
and h(y) are just the marginal totals of the respective columns and rows when the
values of f(x,y) are displayed in a rectangular table.

Example 2.16:‘ Show that the column and row totals of Table 2.1 give the marginal distribution
of X alone and of Y alone.
Solution: For the random variable X, we see that

3 3 1 5

9(0) = £(0,0) + £(0,1) + £(0,2) = %14 TR T 1
9(1) = FL0)+ J(L1) + [(1,2) = oL+ 22 +0= 2,

and

9(2):f(2,0)+f(2,1)+f(2,2):238+0+O,%
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which are just the column totals of Table 2.1. In a similar manner we could show
that the values of h(y) are given by the row totals. In tabular form, these marginal
distributions may be written as follows:

z [0 1 2 y |0 1 2
5 15 3 15 3 1
9(x) ‘ 1 28 3% h(y) ‘ ® 7 1

Example 2.17:‘ Find g(z) and h(y) for the joint density function of Example 2.15.
Solution: By definition,

y=1

e} 1
2 dxy Gy 4x+3
- ) dy= [ Z(2z+3y)dy=(—Z+ L ,
[ sean= [ Seosaa- (B2 50)) -2
for 0 <z <1, and g(x) = 0 elsewhere. Similarly,
>~ 19 2143
Y) =/ f(z,y) dx:/ (22 +3y) dz = M,
PSS 0 9 5
for 0 <y <1, and h(y) = 0 elsewhere. .

The fact that the marginal distributions g(z) and h(y) are indeed the proba-
bility distributions of the individual variables X and Y alone can be verified by
showing that the conditions of Definition 2.4 or Definition 2.6 are satisfied. For
example, in the continuous case

/_Zg(:c) dxz/_i/_if(x,y) dy dz =1,

Pla<X<b=Pla<X<b-x<Y <)

// fxydyda:—/ g(x) dx.

In Section 2.1, we stated that the value x of the random variable X represents
an event that is a subset of the sample space. If we use the definition of conditional
probability as stated in Chapter 1,

and

P(AN B)

P(BIA) = =5

, provided P(A) > 0,
where A and B are now the events defined by X = x and Y = y, respectively, then

PY=y|X=2)= ), provided g(x) > 0,

PX =YY=y flzy
P(X =x) g(x)

where X and Y are discrete random variables.

It is not difficult to show that the function f(x,y)/g(x), which is strictly a func-
tion of y with x fixed, satisfies all the conditions of a probability distribution. This
is also true when f(z,y) and g(z) are the joint density and marginal distribution,
respectively, of continuous random variables. As a result, it is extremely important
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that we make use of the special type of distribution of the form f(z,y)/g(z) in
order to be able to effectively compute conditional probabilities. This type of dis-
tribution is called a conditional probability distribution; the formal definition
follows.

Definition 2.11: |Let X and Y be two random variables, discrete or continuous. The conditional
distribution of the random variable Y given that X = z is

fz.y)
9(x)

Similarly, the conditional distribution of X given that Y =y is

f(z,y)
h(y)

If we wish to find the probability that the discrete random variable X falls between
a and b when it is known that the discrete variable Y = y, we evaluate

flylz) = , provided g(z) > 0.

, provided h(y) > 0.

f(zly) =

Pla<X<b|Y=y)= Z f(zly),
a<z<b

where the summation extends over all values of X between ¢ and b. When X and
Y are continuous, we evaluate

b
P(a<X<b|Y:y):/ f(zly) dx.

Example 2.18:| Referring to Example 2.14, find the conditional distribution of X, given that
Y =1, and use it to determine P(X =0 | Y =1).
Solution: We need to find f(x|y), where y = 1. First, we find that

2

h(1)=> flz,1) = %+%+0:;
=0
Now
F(z]1) = fi(;gl)l) - (;) f(z,1), ==0,1,2.
Therefore,

rom = (3) o= (3) (%) =5 sam=(3) ran=(3) (5) - 5
rem = (3) sen=(3) 0 =0

and the conditional distribution of X, given that Y =1, is
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z |0 1 2
Jan 3 50
Finally,
1
P(X =0 Y:l):f(O\l):i.
Therefore, if it is known that 1 of the 2 pens selected is red, we have a probability
equal to 1/2 that the other pen is not blue. A

Example 2.19:/ The joint density for the random variables (X,Y), where X is the temperature
change and Y is the proportion of the spectrum that shifts for a certain atomic

particle, is
fla,y) = {

(a) Find the marginal densities g(x), h(y), and the conditional density f(y|z).

(b) Find the probability that the spectrum shifts more than half of the total
observations, given that the temperature is increased by 0.25 unit.

10xy?, O0<z<y<l,
0, elsewhere.

Solution: (a) By definition,

[e%s} 1
g(z) 2/_ f(z,y) dy:/ 10zy” dy

1 =t
= —Ozy?’ :—Oz(lfx?’), 0<z<l,
37 T3
oo ( y .
h(y) :/ f(z,y) dx :/ 10zy? dx = 5x2y? z;z =5yt 0<y <1
—o00 0
Now
; 10zy? 312
f(ylx):f(xy): = y3,0<x<y<1.

o@)  Da(l-29) 1-s
(b) Therefore,

1 1 2

3y 8
= .2 = _— = —.
fly | x=025) dy //21_0.253 dy =g

P<Y>1‘X:O.25>:
2 1 ) i

1/2

Example 2.20:| Given the joint density function

””(1%3?’2), 0<z<2 0<y<l,
fla,y) =
0, elsewhere,

find g(z), h(y), f(x]y), and evaluate P(; < X < 5 | Y = 1).
Solution: By the definition of the marginal density, for 0 < z < 2,

%) 193 2
9(93):/7 f(z,y) dy:/o wdﬂ/

3\ |v=1
_ (Y
4 4

T
a0
y=0 2
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and for 0 <y < 1,

h(y)

oo Q.I 2
[ f(.y) d:cz/0 ) g,

2 3222\ |
—(N 3 )

=0

L1432
-

Therefore, using the conditional density definition, for 0 < z < 2,

flay) o(1+3y%)/4 =
h(y) (L+3y2)/2 27

f(zly) =
and

1/2
P<1<X<1‘Y_1>_/ de:i.

Statistical Independence

If f(x|y) does not depend on y, as is the case for Example 2.20, then f(z|y) = g(x)
and f(z,y) = g(x)h(y). The proof follows by substituting

f(@,y) = f(zly)h(y)

into the marginal distribution of X. That is,
o@) = [ty dy= [ falnhty) du

If f(xz|y) does not depend on y, we may write

g(a) = faly) [~ bio) dy
Now
/ T hy) dy =1,

—00

since h(y) is the probability density function of Y. Therefore,

9(x) = f(xly) and then f(z,y) = g(x)h(y).

It should make sense to the reader that if f(x|y) does not depend on y, then of
course the outcome of the random variable Y has no impact on the outcome of the
random variable X. In other words, we say that X and Y are independent random
variables. We now offer the following formal definition of statistical independence.
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Definition 2.12:
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Let X and Y be two random variables, discrete or continuous, with joint proba-
bility distribution f(x,y) and marginal distributions g(x) and h(y), respectively.
The random variables X and Y are said to be statistically independent if and
only if

f(z,y) = g(x)h(y)

for all (x,y) within their range.

The continuous random variables of Example 2.20 are statistically indepen-
dent, since the product of the two marginal distributions gives the joint density
function. This is obviously not the case, however, for the continuous variables of
Example 2.19. Checking for statistical independence of discrete random variables
requires a more thorough investigation, since it is possible to have the product of
the marginal distributions equal to the joint probability distribution for some but
not all combinations of (z,y). If you can find any point (x,y) for which f(z,y)
is defined such that f(z,y) # g(x)h(y), the discrete variables X and Y are not
statistically independent.

Example 2.21:‘ Show that the random variables of Example 2.14 are not statistically independent.
Proof: Let us consider the point (0,1). From Table 2.1 we find the three probabilities

£(0,1), g(0), and h(1) to be

3
10 =,

2
3 3 1 5
9(0)*;}f(0,y)*2*8+ﬁ+%*ﬂ,

2 3 3 3
h(l):Zf(m,l)zﬂ—l—ﬂ—i—O:?.
x=0

Clearly,
f(0,1) # g(0)R(1),

and therefore X and Y are not statistically independent. o |

All the preceding definitions concerning two random variables can be general-
ized to the case of n random variables. Let f(x1,xa, ..., x,) be the joint probability
function of the random variables X1, X5, ..., X,,. The marginal distribution of X7,
for example, is

g(xy) :Z"'Zf(xlal'%“'axn)

Tn

for the discrete case, and

g(iﬁl):/ / f(x1,29,. .., 2,) dog dxg---dxy,
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Definition 2.13:

for the continuous case. We can now obtain joint marginal distributions such
as g(x1,x2), where

Yoo flr, e, 2p) (discrete case),

g(x1’x2) = 2 Tn 0o
f_oo e f_oo f(z1,29,...,2y,) dos dry---dx, (continuous case).

We could consider numerous conditional distributions. For example, the joint con-
ditional distribution of X;, X5, and X3, given that Xy = x4, X5 = z5,..., X, =
T, 18 written

flz1,za,. .. 2p)
g(xa4, x5, ..., Xn)

f($1,l’2,1'3 |x4,x57...,mn): 5
where g(x4,5,...,2,) is the joint marginal distribution of the random variables
Xy, X5, ..., X,

A generalization of Definition 2.12 leads to the following definition for the mu-
tual statistical independence of the variables X1, X5,..., X,,.

Let Xi,Xo,...,X, be n random variables, discrete or continuous, with
joint probability distribution f(z1,22,...,2,) and marginal distribution
fi(z1), fa(za), ..., fu(x,), respectively. The random variables X1, Xo, ..., X, are
said to be mutually statistically independent if and only if

f(xy, w0, x,) = fi(2y) fa(x2) - -+ fru(2n)

for all (zq,xs,...,x,) within their range.

Example 2.22:‘ Suppose that the shelf life, in years, of a certain perishable food product packaged

Solution:

in cardboard containers is a random variable whose probability density function is
given by

0, elsewhere.

@) = {e_”, x>0,

Let X7, X5, and X3 represent the shelf lives for three of these containers selected
independently and find P(X; < 2,1 < X5 < 3, X35 > 2).

Since the containers were selected independently, we can assume that the random
variables X1, X5, and X3 are statistically independent, having the joint probability
density

f(z1,m2,23) = f(21) f(22) f(23) = € Tle” ™€ = e "1 772775,

for 1 > 0, 29 > 0, 3 > 0, and f(x1,x9,23) = 0 elsewhere. Hence

00 3 2
P(X;1<2,1<X5<3,X5>2)= / / / e TrTT27E dyy dxo dus
2 J1 Jo

=(1—e?) (et —e?)e?=0.0372.
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What Are Important Characteristics of Probability Distributions
and Where Do They Come From?

Exercises

This is an important point in the text to provide the reader with a transition into
the next three chapters. We have given illustrations in both examples and exercises
of practical scientific and engineering situations in which probability distributions
and their properties are used to solve important problems. These probability dis-
tributions, either discrete or continuous, were introduced through phrases like “it is
known that” or “suppose that” or even in some cases “historical evidence suggests
that.” These are situations in which the nature of the distribution and even a good
estimate of the probability structure can be determined through historical data,
data from long-term studies, or even large amounts of planned data. However, not
all probability functions and probability density functions are derived from large
amounts of historical data. There are a substantial number of situations in which
the nature of the scientific scenario suggests a distribution type. For example,
when independent repeated observations are binary in nature (e.g., defective or
not, survive or not, allergic or not) with value 0 or 1, the distribution covering
this situation is called the binomial distribution and the probability function is
known and will be demonstrated in its generality in Chapter 3.

A second part of this transition to material in future chapters deals with the
notion of population parameters or distributional parameters. We will
discuss later in this chapter the notions of a mean and variance and provide a
vision for the concepts in the context of a population. Indeed, the population mean
and variance are easily found from the probability function for the discrete case
or the probability density function for the continuous case. These parameters and
their importance in the solution of many types of real-world problems will provide
much of the material in Chapters 4 through 9.

2.29 Determine the values of ¢ so that the follow-
ing functions represent joint probability distributions
of the random variables X and Y:

(a) f(z,y) = czxy, for v =1,2,3;y=1,2,3;
(b) f(‘T?y) = C|{L‘ - y|7 for x = _27072v Yy = _273

2.30 If the joint probability distribution of X and Y
is given by

flz,y) = , forz=0,1,2,3; y=10,1,2,

(X+Y =4).

2.31 From a sack of fruit containing 3 oranges, 2 ap-
ples, and 3 bananas, a random sample of 4 pieces of
fruit is selected. If X is the number of oranges and Y
is the number of apples in the sample, find

(a) the joint probability distribution of X and Y7

(b) P[(X,Y) € A], where A is the region that is given
by {(z,y) | z +y < 2};

(c) P(Y =0 X =2);

(d) the conditional distribution of y, given X = 2.

2.32 A fast-food restaurant operates both a drive-
through facility and a walk-in facility. On a randomly
selected day, let X and Y, respectively, be the propor-
tions of the time that the drive-through and walk-in
facilities are in use, and suppose that the joint density
function of these random variables is

2(z+2y), 0<2<1,0<y<l,
0, elsewhere.

f(:w):{
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(a) Find the marginal density of X.
(b) Find the marginal density of Y.

(c) Find the probability that the drive-through facility
is busy less than one-half of the time.

2.33 A candy company distributes boxes of choco-
lates with a mixture of creams, toffees, and cordials.
Suppose that the weight of each box is 1 kilogram, but
the individual weights of the creams, toffees, and cor-
dials vary from box to box. For a randomly selected
box, let X and Y represent the weights of the creams
and the toffees, respectively, and suppose that the joint
density function of these variables is

flx,y) = {(2)4:”‘%

0<z<1,0<y<l,z+y<l
elsewhere.

(a) Find the probability that in a given box the cordials
account for more than 1/2 of the weight.

(b) Find the marginal density for the weight of the
creams.

(c) Find the probability that the weight of the toffees
in a box is less than 1/8 of a kilogram if it is known
that creams constitute 3/4 of the weight.

2.34 Let X and Y denote the lengths of life, in years,
of two components in an electronic system. If the joint
density function of these variables is

6—(Z+y)’

f(:r,y):{o’
find PO< X <1|Y =2).

x>0, y>0,
elsewhere,

2.35 Let X denote the reaction time, in seconds, to
a certain stimulus and Y denote the temperature (°F)
at which a certain reaction starts to take place. Sup-
pose that two random variables X and Y have the joint
density

_JAry, 0<a <l 0<y <1,
flz,y) = {0’ elsewhere.
Find
) PO<X<landl<Y<?)
2 4 2
(b) P(X <Y).

2.36 Each rear tire on an experimental airplane is
supposed to be filled to a pressure of 40 pounds per
square inch (psi). Let X denote the actual air pressure
for the right tire and Y denote the actual air pressure
for the left tire. Suppose that X and Y are random
variables with the joint density function

E(z? +4?), 30<x <50, 30 <y < 50,
F@y) = (=" +v7) < y
0, elsewhere.
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(a) Find k.
(b) Find P(30 < X <40 and 40 <Y < 50).
(c) Find the probability that both tires are underfilled.

2.37 Let X denote the diameter of an armored elec-
tric cable and Y denote the diameter of the ceramic
mold that makes the cable. Both X and Y are scaled
so that they range between 0 and 1. Suppose that X
and Y have the joint density

Lo o<e<y<i
— E )
@ y) {O, elsewhere.

Find P(X +Y > 1/2).

2.38 The amount of kerosene, in thousands of liters,
in a tank at the beginning of any day is a random
amount Y from which a random amount X is sold dur-
ing that day. Suppose that the tank is not resupplied
during the day so that z < y, and assume that the
joint density function of these variables is

2, O0<z <y <],
f@,y) = {0, elsewhere.

(a) Determine if X and Y are independent.
(b) Find P(1/4 < X < 1/2 | Y = 3/4).

2.39 Let X denote the number of times a certain nu-
merical control machine will malfunction: 1, 2, or 3
times on any given day. Let Y denote the number of
times a technician is called on an emergency call. Their
joint probability distribution is given as

X
fla.y) T 2 3
1 0.05 0.05 0.10
Y 3 0.05 0.10 0.35
5 0.00 0.20 0.10

(a) Evaluate the marginal distribution of X.
(b) Evaluate the marginal distribution of Y.
(c) Find P(Y =3 | X = 2).

2.40 Suppose that X and Y have the following joint
probability distribution:

T
fay) 2T
1 0.10 0.15
Y 3 0.20 0.30
5 0.10 0.15

(a) Find the marginal distribution of X.
(b) Find the marginal distribution of Y.
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2.41 Given the joint density function

6—xz—y

flzy) = {07 ’

0<z<?2, 2<y<4,
elsewhere,

find PO<Y <3| X =1).

2.42 A coin is tossed twice. Let Z denote the number
of heads on the first toss and W the total number of
heads on the 2 tosses. If the coin is unbalanced and a
head has a 40% chance of occurring, find

(a) the joint probability distribution of W and Z;
(b) the marginal distribution of W;

(¢) the marginal distribution of Z;

(d) the probability that at least 1 head occurs.

2.43 Determine whether the two random variables of
Exercise 2.40 are dependent or independent.

2.44 Determine whether the two random variables of
Exercise 2.39 are dependent or independent.

2.45 Let X, Y, and Z have the joint probability den-
sity function

kxy’z, 0<z,y<1, 0<z<2,
0, elsewhere.

flz,y,2) :{

(a) Find k.

(b) Find P(X < 1,V > 1,1 < Z <2).

2.46 The joint density function of the random vari-
ables X and Y is

flz,y) = {gx’

0<z<1,0<y<l-—um,
elsewhere.

(a) Show that X and Y are not independent.
(b) Find P(X > 0.3 | Y = 0.5).

2.47 Determine whether the two random variables of
Exercise 2.35 are dependent or independent.

2.48 The joint probability density function of the ran-
dom variables X, Y, and Z is

do92® g < gy<1,0<z<3
flaz) = o e my <l |
0, elsewhere.

Find
(a) the joint marginal density function of Y and Z;

(b) the marginal density of Y
() P(3<X<3, Y>1 1<Z<2)
(dPO<X<i|Y=1% Z=2)

2.49 Determine whether the two random variables of
Exercise 2.36 are dependent or independent.

2.5 Mean of a Random Variable

We can refer to the population mean of the random variable X or the mean
of the probability distribution of X and write it as p,, or simply as p when it
is clear to which random variable we refer. It is also common among statisticians
to refer to this mean as the mathematical expectation, or the expected value of
the random variable X, and denote it as E(X).

Assuming that one fair coin was tossed twice, we find that the sample space for

our experiment is

S={HH HT,TH,TT}.

Denote by X the number of heads. Since the 4 sample points are all equally likely,

it follows that
P(X =

and

0)=P(IT) = |, P(X=

1) = P(TH) + P(HT) = %
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Definition 2.14:

where a typical element, say T H, indicates that the first toss resulted in a tail
followed by a head on the second toss. Now, these probabilities are just the relative
frequencies for the given events in the long run. Therefore,

1= E(X) = (0) (i) +(1) <;) + @) (i) —1

This result means that a person who tosses 2 coins over and over again will, on the
average, get 1 head per toss.

Let X be a random variable with probability distribution f(z). The mean, or
expected value, of X is

p=E(X) =3 af(x)
if X is discrete, and

u:E(X):/ xf(x) dx

— 00

if X is continuous.

Example 2.23:] A lot containing 7 components is sampled by a quality inspector; the lot contains

Solution:

4 good components and 3 defective components. A sample of 3 is taken by the
inspector. Find the expected value of the number of good components in this
sample.

Let X represent the number of good components in the sample. The probability
distribution of X is

x=0,1,2,3.

Simple calculations yield f(0) = 1/35, f(1) = 12/35, f(2) = 18/35, and f(3) =
4/35. Therefore,

j= B(X) = (0) (;5) + (1) (;j) +(2) (;i) +(3) <;5) . 172 17

Thus, if a sample of size 3 is selected at random over and over again from a lot
of 4 good components and 3 defective components, it will contain, on average, 1.7
good components. A

Example 2.24:

A salesperson for a medical device company has two appointments on a given
day. At the first appointment, he believes that he has a 70% chance to make the
deal, from which he can earn $1000 commission if successful. On the other hand,
he thinks he only has a 40% chance to make the deal at the second appointment,
from which, if successful, he can make $1500. What is his expected commission
based on his own probability belief? Assume that the appointment results are
independent of each other.
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Solution:
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First, we know that the salesperson, for the two appointments, can have 4 possible
commission totals: $0, $1000, $1500, and $2500. We then need to calculate their
associated probabilities. By independence, we obtain

£(30) = (1 —0.7)(1—0.4) = 0.18,  f($2500) = (0.7)(0.4) = 0.28,
£($1000) = (0.7)(1 — 0.4) = 0.42, and f($1500) = (1 — 0.7)(0.4) = 0.12.

Therefore, the expected commission for the salesperson is

E(X) = ($0)(0.18) 4+ ($1000)(0.42) + ($1500)(0.12) + ($2500)(0.28)

= $1300. A

Examples 2.23 and 2.24 are designed to allow the reader to gain some insight

into what we mean by the expected value of a random variable. In both cases the

random variables are discrete. We follow with an example involving a continuous

random variable, where an engineer is interested in the mean life of a certain

type of electronic device. This is an illustration of a time to failure problem that

occurs often in practice. The expected value of the life of a device is an important
parameter for its evaluation.

Example 2.25:

Solution:

Let X be the random variable that denotes the life in hours of a certain electronic
device. The probability density function is

Fa) = 20900 2 > 100,
0, elsewhere.

Find the expected life of this type of device.
Using Definition 2.14, we have

20,000 20, 000
u:E(X):/ T d;v:/ —— dx = 200.
100 € 100 &

Therefore, we can expect this type of device to last, on average, 200 hours. A
Now let us consider a new random variable g(X), which depends on X; that

is, each value of g(X) is determined by the value of X. For instance, g(X) might
be X2 or 3X — 1, and whenever X assumes the value 2, g(X) assumes the value
9(2). In particular, if X is a discrete random variable with probability distribution
f(x), for x = —1,0,1,2, and g(X) = X?, then

Plg(X) = 0] = P(X = 0) = £(0),

Plg(X) =1] = P(X = 1) + P(X = 1) = f(=1) + f(1),

Plg(X) = 4] = P(X =2) = f(2),
and so the probability distribution of g(X) may be written

g(x) | 0 1 4
Plo(X) = g@)] | FO) F-1)+ 1) F@)
By the definition of the expected value of a random variable, we obtain
tgx) = Elg(x)] = 0£(0) + 1[f(=1) + f(1)] + 4/(2)

= (=1 f(=1) + (0*£(0) + (> F(1) + (2)*f(2) = D _ () f(x).
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This result is generalized in Theorem 2.1 for both discrete and continuous random
variables.

Theorem 2.1:| Let X be a random variable with probability distribution f(z). The expected

value of the random variable g(X) is
Lg(x) = Elg(X)] =Y g(a)f(x)
if X is discrete, and

oty = Elg(x0)) = [ T @) /(@) de

— 00

if X is continuous.

Example 2.26:‘ Suppose that the number of cars X that pass through a car wash between 4:00
p.M. and 5:00 P.M. on any sunny Friday has the following probability distribution:

x ‘ 4 5 6 7 8 9

PX=2) % & I 1 & %
Let g(X) = 2X —1 represent the amount of money, in dollars, paid to the attendant
by the manager. Find the attendant’s expected earnings for this particular time

period.
Solution: By Theorem 2.1, the attendant can expect to receive

9

E[g(X)] = E2X —1) =Y (2r - 1) f(2)

z=4

(g o (8 ant) s )
+ (15) <é) + (17) <é> = $12.67. i

Example 2.27:] Let X be a random variable with density function

3
0, elsewhere.

f(x):{$ -l<z<2,

Find the expected value of g(X) = 4X + 3.
Solution: By Theorem 2.1, we have

2 4 2 1 2
E(4X+3):/ Mdm:f/ (42 4 32?) dx = 8.
1 3 3/ 1

We shall now extend our concept of mathematical expectation to the case of
two random variables X and Y with joint probability distribution f(z,y).
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Definition 2.15: | Let X and Y be random variables with joint probability distribution f(z,y). The
mean, or expected value, of the random variable g(X,Y") is

poxy) = Elg(X, V)] =YY gz, y)f(z,y)
z oy
if X and Y are discrete, and

poixny = FlgCx V= [ [ gte.pstey) do ay

if X and Y are continuous.

Generalization of Definition 2.15 for the calculation of mathematical expecta-
tions of functions of several random variables is straightforward.

Example 2.28:‘ Let X and Y be the random variables with joint probability distribution indicated
in Table 2.1 on page 64. Find the expected value of g(X,Y) = XY. The table is
reprinted here for convenience.

x Row
flz,y) 0 1 2 Totals
0 3/28  9/28 3/28 | 15/28
y 1 3/14 3/14 0 | 3/7
2 1/28 0 0 | 1/28
Column Totals | 5/14 15/28 3/28 1

Solution: By Definition 2.15, we write

2 2
B(XY) =YY ayf(x,y)
=0 y=0
= (0)(0)£(0,0) + (0)(1)£(0,1)
+ (1)(0)£(1,0) + (1)(1) £(1,1) + (2)(0) f(2,0)
3

:f(]-vl):ﬂ 1

Example 2.29:| Find E(Y/X) for the density function

””(1%3?’2), 0<z<2 0<y<l,
fla,y) =
0, elsewhere.

Solution: We have

Y b7 y(1+3y?) Ly +3y° 5
El — = B — = = —.
(X> /0 /0 . W /0 5 W=3
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Note that if g(X,Y)

ZZﬂﬂ%MZ
f_ f_

79

= X in Definition 2.15, we have

2 29(z)
xfxy)dyda:—foo

(discrete case),

xzg(z) dz  (continuous case),

where g(z) is the marginal distribution of X. Therefore, in calculating E(X) over
a two-dimensional space, one may use either the joint probability distribution of
X and Y or the marginal distribution of X. Similarly, we define

ZZM@@
ff

ZWU
nyM@—L

(discrete case),

yh(y) dy

(continuous case),

where h(y) is the marginal distribution of the random variable Y.

Exercises

2.50 The probability distribution of the discrete ran-
dom variable X is

x 3—x
)G () aoraa

Find the mean of X.

2.51 The probability distribution of X, the number
of imperfections per 10 meters of a synthetic fabric in
continuous rolls of uniform width, is given in Exercise
2.11 on page 60 as
z | 0 1 2 3 4
) 1041 037 016 005 0.01

Find the average number of imperfections per 10 me-
ters of this fabric.

2.52 A coin is biased such that a head is three times
as likely to occur as a tail. Find the expected number
of tails when this coin is tossed twice.

2.53 Find the mean of the random variable T repre-
senting the total of the three coins in Exercise 2.17 on
page 61.

2.54 In a gambling game, a woman is paid $3 if she
draws a jack or a queen and $5 if she draws a king or
an ace from an ordinary deck of 52 playing cards. If
she draws any other card, she loses. How much should
she pay to play if the game is fair?

2.55 By investing in a particular stock, a person can
make a profit in one year of $4000 with probability 0.3
or take a loss of $1000 with probability 0.7. What is
this person’s expected gain?

2.56 Suppose that an antique jewelry dealer is inter-
ested in purchasing a gold necklace for which the prob-
abilities are 0.22, 0.36, 0.28, and 0.14, respectively, that
she will be able to sell it for a profit of $250, sell it for
a profit of $150, break even, or sell it for a loss of $150.
What is her expected profit?

2.57 The density function of coded measurements of
the pitch diameter of threads of a fitting is

4
f(x) _ m, << 17
0, elsewhere.

Find the expected value of X.

2.58 Two tire-quality experts examine stacks of tires
and assign a quality rating to each tire on a 3-point
scale. Let X denote the rating given by expert A and
Y denote the rating given by B. The following table
gives the joint distribution for X and Y.

Y

flay) [ 1 2 3
I [ 010 005 002

x| 2 (010 035 0.05
3 1003 010 0.20

Find px and py.

2.59 The density function of the continuous random
variable X, the total number of hours, in units of 100
hours, that a family runs a vacuum cleaner over a pe-
riod of one year, is given in Exercise 2.7 on page 60
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as
x, 0<z <1,

flx)y=<2—2, 1<x<2,

0, elsewhere.

Find the average number of hours per year that families
run their vacuum cleaners.

2.60 If a dealer’s profit, in units of $5000, on a new
automobile can be looked upon as a random variable
X having the density function

0<ax <1,
elsewhere,

fay = {30

find the average profit per automobile.

2.61 Assume that two random variables (X,Y’) are
uniformly distributed on a circle with radius a. Then
the joint probability density function is

flay) = {zm TV S
Y= 0, otherwise.

Find px, the expected value of X.

2.62 Find the proportion X of individuals who can be
expected to respond to a certain mail-order solicitation
if X has the density function

2(z+2)
£ =1,

0<z<l,
elsewhere.

2.63 Let X be a random variable with the following
probability distribution:
z | -3 6 9
@) | 1/6 1/2 1/3
Find py(x), where g(X) = (2X +1)%.

2.64 Suppose that you are inspecting a lot of 1000
light bulbs, among which 20 are defectives. You choose
two light bulbs randomly from the lot without replace-
ment. Let

1, if the 1st light bulb is defective,
X1 = .
0, otherwise,
X, — 1, if the 2nd light bulb is defective,
700, otherwise.

Find the probability that at least one light bulb chosen
is defective. [Hint: Compute P(X; + X2 =1).]

2.65 A large industrial firm purchases several new
word processors at the end of each year, the exact num-
ber depending on the frequency of repairs in the previ-
ous year. Suppose that the number of word processors,
X, purchased each year has the following probability
distribution:
z | 0 1 2 3
f(z) ] 1/10 3/10 2/5 1/5

If the cost of the desired model is $1200 per unit and
at the end of the year a refund of 50X? dollars will be
issued, how much can this firm expect to spend on new
word processors during this year?

2.66 The hospitalization period, in days, for patients
following treatment for a certain type of kidney disor-
der is a random variable Y = X + 4, where X has the
density function

32
flz) = {(z+4>3’ z >0,

0, elsewhere.

Find the average number of days that a person is hos-
pitalized following treatment for this disorder.

2.67 Suppose that X and Y have the following joint
probability function:

X
flz,y) | 2 4
1 [0.10 015
y| 3 ]020 030
5 1010 0.15

(a) Find the expected value of g(X,Y) = XY?2.
(b) Find px and py.

2.68 Referring to the random variables whose joint
probability distribution is given in Exercise 2.31 on
page 72,

(a) find E(X?Y —2XY);

(b) find pux — py -

2.69 In Exercise 2.19 on page 61, a density function
is given for the time to failure of an important compo-
nent of a DVD player. Find the mean number of hours
to failure of the component and thus the DVD player.

2.70 Let X and Y be random variables with joint
density function

dry, O0<z, y<l1,
0, elsewhere.

f(w,y):{

Find the expected value of Z = /X2 + Y2,



2.6 Variance and Covariance of Random Variables

2.71 Exercise 2.21 on page 61 dealt with an impor-
tant particle size distribution characterized by

374,

@) = {5

(a) Plot the density function.
(b) Give the mean particle size.

z>1,
elsewhere.

2.72 Consider the information in Exercise 2.20 on
page 61. The problem deals with the weight in ounces
of the product in a cereal box, with

2

= 5 ’

@ ={;

(a) Plot the density function.

(b) Compute the expected value, or mean weight, in
ounces.

23.75 < x < 26.25,
elsewhere.

(c) Are you surprised at your answer in (b)? Explain
why or why not.

2.73 Consider Exercise 2.24 on page 61.

(a) What is the mean proportion of the budget allo-
cated to environmental and pollution control?

81

(b) What is the probability that a company selected
at random will have allocated to environmental
and pollution control a proportion that exceeds the
population mean given in (a)?

2.74 In Exercise 2.23 on page 61, the distribution of

times before a major repair of a washing machine was

given as
1, —y/4
{Ze ’
0,

What is the population mean of the times to repair?

y >0,
elsewhere.

f(y)

2.75 In Exercise 2.11 on page 60, the distribution of
the number of imperfections per 10 meters of synthetic
fabric is given by
z | 0o 1 2 3 4
f(x) [ 041 037 016 0.05 0.01

(a) Plot the probability function.

(b) Find the expected number of imperfections,

E(X) = p.
(c) Find E(X?).

2.6 Variance and Covariance of Random Variables

The mean, or expected value, of a random variable X is of special importance in
statistics because it describes where the probability distribution is centered. By
itself, however, the mean does not give an adequate description of the shape of the
distribution. We also need to characterize the variability in the distribution. In
Figure 2.7, we have the histograms of two discrete probability distributions that
have the same mean, p = 2, but differ considerably in variability, or the dispersion
of their observations about the mean.

o ]

=

|
|
|
|
|
|
|
|
|
|
|
X > X

(b)

Figure 2.7: Distributions with equal means and unequal dispersions.
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The most important measure of variability of a random variable X is obtained
by applying Theorem 2.1 with g(X) = (X — u)?. The quantity is referred to as
the variance of the random variable X or the variance of the probability
distribution of X and is denoted by Var(X) or the symbol 6%, or simply by o2
when it is clear to which random variable we refer.

Definition 2.16: |Let X be a random variable with probability distribution f(z) and mean u. The
variance of X is

o2 = EB[(X — p)? = Z(m — )2 f(z), if X is discrete, and

o’ =E[(X —p)? = / (x — p)?f(x) da, if X is continuous.

— 00

The positive square root of the variance, o, is the standard deviation of X.

The quantity x—p in Definition 2.16 is called the deviation of an observation
from its mean. Since the deviations are squared and then averaged, o will be much
smaller for a set of x values that are close to u than it will be for a set of values
that vary considerably from pu.

Example 2.30:| Let the random variable X represent the number of automobiles that are used for
official business purposes on any given workday. The probability distribution for
company A [Figure 2.7(a)] is

r |1 2 3
f(z) 03 04 03

and that for company B [Figure 2.7(b)] is

z |0 1 2 3 4
)] 02 01 03 03 01

Show that the variance of the probability distribution for company B is greater
than that for company A.
Solution: For company A, we find that

A = B(X) = (1)(0.3) + (2)(0.4) + (3)(0.3) = 2.0,

3
Z z— (1—2)2(0.3) + (2 — 2)%(0.4) + (3 — 2)%(0.3) = 0.6.

For company B, we have
pp = E(X) = (0)(0.2) + (1)(0.1) + (2)(0.3) + (3)(0.3) + (4)(0.1) = 2.0,
and then

4
= foZ
(

—2)%(0.2) + (1 —2)%(0.1) + (2 — 2)%(0.3)
+ (3 —2)%(0.3) + (4 — 2)%(0.1) = 1.6.
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Clearly, the variance of the number of automobiles that are used for official business

purposes is greater for company B than for company A. . |
An alternative and preferred formula for finding o2, which often simplifies the

calculations, is stated in the following theorem and its proof is left to the reader.

Theorem 2.2:| The variance of a random variable X is

o? = B(X?) — u®.

Example 2.31:] Let the random variable X represent the number of defective parts for a machine
when 3 parts are sampled from a production line and tested. The following is the
probability distribution of X.
z | 0 1 2 3
fx) | 0.51 0.38 0.10 0.01
Using Theorem 2.2, calculate 2.
Solution: First, we compute

= (0)(0.51) + (1)(0.38) + (2)(0.10) + (3)(0.01) = 0.61.
Now,
E(X?) = (0)(0.51) + (1)(0.38) + (4)(0.10) + (9)(0.01) = 0.87.
Therefore,

0? =0.87 — (0.61)* = 0.4979. 1

Example 2.32:] The weekly demand for bottled water, in thousands of liters, from a local chain of
efficiency stores is a continuous random variable X having the probability density

f(2) = {Q(m—l), l<z<2,

10, elsewhere.

Find the mean and variance of X.
Solution: Calculating F(X) and E(X?), we have

2
/L:E(X):Q/ z(xfl)dng
1
and
2 17
E(Xz):2/ 22 (z —1) doe = —.
1 6
Therefore,
, 17 (5\* 1
oc'=——-z) = —.
6 \3 13 r

At this point, the variance or standard deviation has meaning only when we
compare two or more distributions that have the same units of measurement.
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Theorem 2.3:

Proof:
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Therefore, we could compare the variances of the distributions of contents, mea-
sured in liters, of bottles of orange juice from two companies, and the larger value
would indicate the company whose product was more variable or less uniform. It
would not be meaningful to compare the variance of a distribution of heights to
the variance of a distribution of aptitude scores.

We shall now extend our concept of the variance of a random variable X to
include random Variables related to X. For the random variable g(X), the variance
is denoted by 0 X) and is calculated by means of the following theorem.

Let X be a random variable with probability distribution f(z). The variance of
the random variable g(X) is

02 x) = E{l9(X) — pgex0)?} = Z — tg(x)2f ()

if X is discrete, and

o0

o2 ) = B{l9(X) — igx))?} = / l9(&) — g0 2 (2) do

— 00

if X is continuous.

Since g(X) is itself a random variable with mean p14(xy and probability distribution
f(x), as indicated in Theorem 2.1, the result follows directly from Definition 2.16
that

JEQI(X) = E{[Q(X) - Mg(x)}}.

Now, applying Theorem 2.1 again to the random variable [g(X) — 4 X)]2 completes
the proof. o |

Example 2.33:‘ Calculate the variance of g(X) = 2X + 3, where X is a random variable with

Solution:

probability distribution

~

—

8

~—
= O
®

N= | DN
®

First, we find the mean of the random variable 2X + 3. According to Theorem 2.1,

3

poxis = E(2X +3) =Y (2x+3)f(x) =6.
=0

Now, using Theorem 2.3, we have

03x s = E{[(2X +3) = p2ssys]’} = B[(2X +3 — 6)°]

3
2 _ 2 _ =
E(4X? - 12X +9) Z (42% — 122+ 9) f(x) = 4. r

Example 2.34:

Let X be a random variable having the density function given in Example 2.27
on page 77. Find the variance of the random variable g(X) = 4X + 3.
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Solution: In Example 2.27, we found that psx 13 = 8. Now, using Theorem 2.3,

ixys = B{[(4X +3) — 8]} = E[(4X —5)?]

)
-1 -1 1

Ifg(X,Y) = (X —pux)(Y —puy), where ux = E(X) and uy = E(Y), Definition
2.15 yields an expected value called the covariance of X and Y, which we denote
by oy or Cov(X,Y).

2 2 2
1 1
:/ (4:“5)2% dzzg/ (162* — 402° 4 2522) do =L

Definition 2.17: |Let X and Y be random variables with joint probability distribution f(z,y). The
covariance of X and Y is

oxy = B[(X = px)(Y —pi)] = DD (@ — px)(y — py) f (2, 9)
z oy
if X and Y are discrete, and

T = BIX = i)Y = )] = [ h / (@ )y — ) ) e dy

if X and Y are continuous.

The covariance between two random variables is a measure of the nature of the
association between the two. If large values of X often result in large values of Y
or small values of X result in small values of Y, positive X — 5 will often result in
positive Y — iy and negative X — uy will often result in negative Y — u1,.. Thus, the
product (X — px)(Y — py) will tend to be positive. On the other hand, if large X
values often result in small Y values, the product (X — pux)(Y — uy) will tend to be
negative. The sign of the covariance indicates whether the relationship between two
dependent random variables is positive or negative. When X and Y are statistically
independent, it can be shown that the covariance is zero (see Corollary 2.5). The
converse, however, is not generally true. Two variables may have zero covariance
and still not be statistically independent. Note that the covariance only describes
the linear relationship between two random variables. Therefore, if a covariance
between X and Y is zero, X and Y may have a nonlinear relationship, which means
that they are not necessarily independent.

The alternative and preferred formula for oy, is stated by Theorem 2.4 and
the proof of the theorem is left to the reader.

Theorem 2.4:| The covariance of two random variables X and Y with means uy and p, , respec-

tively, is given by

oxy = BE(XY) — pixpiy.

Example 2.35:] Example 2.14 on page 63 describes a situation involving the number of blue pens
X and the number of red pens Y selected from a box. Two pens are selected at
random from a box, and the following is the joint probability distribution:
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X
flz,y) | O 1 2 h(y)
0 3/28  9/28 3/28 | 15/28
y 1 3/14  3/14 0 3/7
2 1/28 0 0 1/28
g(x) | 5/14 15/28 3/28 i

Find the covariance of X and Y.
Solution: From Example 2.28, we see that F(XY) = 3/14. Now

o = gxm) ~0(5)+0(5)+@ () -3

and

oy = éyh@) ~0 ()0 (3)+@ (%) -5

Therefore,

3 3 1 9
Oy = BQXY) =ity = 77 = <4) (2> =56 r

Example 2.36:| The fraction X of male runners and the fraction Y of female runners who compete
in marathon races are described by the joint density function

~ J8xzy, 0<y<x<1,
fa,y) = {0, elsewhere.

Find the covariance of X and Y.
Solution: We first compute the marginal density functions. They are

(@) = 4:53, 0<x<1,
9\E) = 0, elsewhere,

and

_ [y, 0<y<1,
hy) = {O, elsewhere.

From these marginal density functions, we compute
! 4 ! 8

ux = BE(X) = / 4z* dr = = and py :/ 42 (1 — ) dy = —.

0 5 0 15

From the joint density function given above, we have

1 1 4
E(XY) = / / 8x?y? da dy = —.
0 Yy 9
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Then

4 4 8 4
o = B0 s =5~ (5) (55) = a5 1

Although the covariance between two random variables does provide informa-
tion regarding the nature of the linear relationship, the magnitude of oy, does
not indicate anything regarding the strength of the relationship, since oy, is not
scale-free. Its magnitude will depend on the units used to measure both X and Y.
There is a scale-free version of the covariance called the correlation coefficient
that is used widely in statistics.

Definition 2.18: |Let X and Y be random variables with covariance oy, and standard deviations
oy and oy, respectively. The correlation coefficient of X and Y is

Oxvy

Ox0y

Pxy =

It should be clear to the reader that py, is free of the units of X and Y. The
correlation coefficient satisfies the inequality —1 < py, < 1. It assumes a value of
zero when oy, = 0. Where there is an exact linear dependency, say ¥ = a + bX,
Pxy = 1if b > 0and pyxy = —1if b < 0. (See Exercise 2.86.) The correlation
coefficient is the subject of more discussion in Chapter 7, where we deal with linear
regression.

Example 2.37:/ Find the correlation coefficient between X and Y in Example 2.35.

Solution: Since
w0 (Z) e (32 (3)

2 20 (3\'_ 45 o, 4 (1N 9
ST 4/ 7112 Y =7 2/ T 28

Therefore, the correlation coefficient between X and Y is

Xy *9/56 1

and

we obtain

YT ooy T J@5/112)(9/28) V5 a

Example 2.38:‘ Find the correlation coefficient of X and Y in Example 2.36.
Solution: Because

1 1
2
E(X2):/O da? dr = 3 and E(Yz):/0 Wrl—y)dy=1-3=-,

we conclude that

2 [4\* 2 1 $\? 11
2 = — — — = — 2 = — — —_ = —
XT3 <5) 75 nd oy =3 (15) 925"
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Hence,

4/225 4

P = e (11)225) V66

Note that although the covariance in Example 2.37 is larger in magnitude (dis-
regarding the sign) than that in Example 2.38, the relationship of the magnitudes
of the correlation coefficients in these two examples is just the reverse. This is
evidence that we cannot look at the magnitude of the covariance to decide on how

strong the relationship is.

Exercises

2.76 Use Definition 2.16 on page 82 to find the vari-
ance of the random variable X of Exercise 2.55 on page
79.

2.77 The random variable X, representing the num-
ber of errors per 100 lines of software code, has the
following probability distribution:
z | 2 3 4 5 6
f@) [001 025 04 03 004

Using Theorem 2.2 on page 83, find the variance of X.

2.78 Suppose that the probabilities are 0.4, 0.3, 0.2,
and 0.1, respectively, that 0, 1, 2, or 3 power failures
will strike a certain subdivision in any given year. Find
the mean and variance of the random variable X repre-
senting the number of power failures striking this sub-
division.

2.79 A dealer’s profit, in units of $5000, on a new
automobile is a random variable X having the density
function given in Exercise 2.60 on page 80. Find the
variance of X.

2.80 The proportion of people who respond to a cer-
tain mail-order solicitation is a random variable X hav-
ing the density function given in Exercise 2.62 on page
80. Find the variance of X.

2.81 The total number of hours, in units of 100 hours,
that a family runs a vacuum cleaner over a period of
one year is a random variable X having the density
function given in Exercise 2.59 on page 79. Find the
variance of X.

2.82 Referring to Exercise 2.62 on page 80, find 0'3()()
for the function g(X) = 3X? + 4.

2.83 The length of time, in minutes, for an airplane
to obtain clearance for takeoff at a certain airport is a
random variable Y = 3X — 2, where X has the density
function

iefz/4,

@ = {3

x>0
elsewhere.

Find the mean and variance of the random variable Y.

2.84 Find the covariance of the random variables X
and Y of Exercise 2.36 on page 73.

2.85 For the random variables X and Y whose joint
density function is given in Exercise 2.32 on page 72,
find the covariance.

2.86 Given a random variable X, with standard de-
viation ox, and a random variable Y = a + bX, show
that if b < 0, the correlation coefficient pxy = —1, and
1fb>07 Pxy = 1.

2.87 Consider the situation in Exercise 2.75 on page
81. The distribution of the number of imperfections
per 10 meters of synthetic fabric is given by

z | 0 1 2 3 4
f(z) [ 041 037 0.6 0.05 0.01

Find the variance and standard deviation of the num-
ber of imperfections.

2.88 For a laboratory assignment, if the equipment is
working, the density function of the observed outcome

Xis
_[2(1-=x), O<z<1,
f@) = {0, otherwise.

Find the variance and standard deviation of X.

2.89 For the random variables X and Y in Exercise
2.31 on page 72, determine the correlation coefficient
between X and Y.

2.90 Random variables X and Y follow a joint distri-
bution

2, O<z <y <],
@,y) = {O, otherwise.

Determine the correlation coefficient between X and
Y.
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2.7 Means and Variances of Linear Combinations of
Random Variables

We now develop some useful properties that will simplify the calculations of means
and variances of random variables that appear in later chapters. These properties
will permit us to deal with expectations in terms of other parameters that are
either known or easily computed. All the results that we present here are valid
for both discrete and continuous random variables. Proofs are given only for the
continuous case. We begin with a theorem and two corollaries that should be,
intuitively, reasonable to the reader.

Theorem 2.5:| If a and b are constants, then

E(aX +b) =aE(X) +b.

Proof: By the definition of expected value,

o0

E(aX+b):/ (az + b) () da:za/ixf(x) dx+b/°;f(x) da.

—00 —

The first integral on the right is F(X) and the second integral equals 1. Therefore,
we have

E(aX 4+ b) = aBE(X) + b. A

Corollary 2.1: ’ Setting a = 0, we see that F(b) = b. ‘

Corollary 2.2: ’ Setting b = 0, we see that E(aX) = aE(X). ‘

Example 2.39:‘ Applying Theorem 2.5 to the discrete random variable h(X) = 2X — 1, rework
Example 2.26 on page 77.
Solution: According to Theorem 2.5, we can write

B(2X —1) =2B(X) — 1.

() r(E) 0 (1)) s () o)
Therefore,
pax—1 = (2) (461> —1=$12.67,

as before. M |
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For the addition or subtraction of two functions of the random variable X, we
have the following theorem to compute its mean. The proof of the theorem is left
to the reader.

Theorem 2.6:| The expected value of the sum or difference of two or more functions of a random

variable X is the sum or difference of the expected values of the functions. That
is,

Elg(X) £ h(X)] = E[g(X)] £ E[R(X)].

Example 2.40:| Let X be a random variable with probability distribution as follows:
x |0 1 3

2
f@ s 40 g
Find the expected value of Y = (X — 1)2.
Solution: Applying Theorem 2.6 to the function Y = (X — 1)2, we can write

E[(X —1)?]=B(X*-2X +1) = B(X?) —2E(X) + E(1).
From Corollary 2.1, E(1) = 1, and by direct computation,

B(X) = (0) (;) + () (;) +(2)0) +(3) (é) — 1 and

B(X2) = (0) (;) () <;) +(4)(0) + (9) (é) —2

Hence,

E[(X-1)?=2-(2)(1)+1=1. A

Example 2.41:] The weekly demand for a certain drink, in thousands of liters, at a chain of
convenience stores is a continuous random variable g(X) = X2 + X — 2, where X
has the density function

o) = {2@—1), l<z<2,

0, elsewhere.

Find the expected value of the weekly demand for the drink.
Solution: By Theorem 2.6, we write

E(X?+X —2)=FE(X?) + BE(X) - E(2).

From Corollary 2.1, E(2) = 2, and by direct integration,

° 5 ? 17
E(X):/ 2x(x —1) dx:§and E(XQ):/ 222 (x — 1) dxzz.
1 1
Now
17 5 )
2 — = — _— = —
B(X?+X-2)=F+2-2=2,
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Theorem 2.7:

Corollary 2.3:

Corollary 2.4:

so the average weekly demand for the drink from this chain of efficiency stores is
2500 liters. o |

Suppose that we have two random variables X and Y with joint probability
distribution f(z,y). Two additional properties that will be very useful in succeed-
ing chapters involve the expected values of the sum, difference, and product of
these two random variables. First, however, let us give a theorem on the expected
value of the sum or difference of functions of the given variables. This, of course, is
merely an extension of Theorem 2.6. The proof follows from the use of Definition
2.15 and will be left to the reader.

The expected value of the sum or difference of two or more functions of the
random variables X and Y is the sum or difference of the expected values of the
functions. That is,

Elg(X,)Y)£hX,Y)] = E[g(X,Y)] £ E[L(X,Y)].

Setting g(X,Y) = ¢g(X) and h(X,Y) = h(Y), we see that

Elg(X) £ h(Y)] = E[g(X)] + E[R(Y)].

Setting ¢(X,Y) = X and h(X,Y) =Y, we see that

E[X Y] = E[X] + E[Y].

If X represents the daily production of some item from machine A and Y the
daily production of the same kind of item from machine B, then X 4+ Y represents
the total number of items produced daily by both machines. Corollary 2.4 states
that the average daily production for both machines is equal to the sum of the
average daily production of each machine.

Theorem 2.8:

Let X and Y be two independent random variables. Then

E(XY) = E(X)E(Y).

Proof:

By Definition 2.15,

(oo} [ee]
E(XY) =/ / zyf(z,y) dz dy.
— 00 — 00
Since X and Y are independent, we may write

[z, y) = g(x)h(y),

where g(z) and h(y) are the marginal distributions of X and Y, respectively. Hence,

Bev) = [ [ agont) ddy = [ agla) do [ nty) dy
— BX)E(Y), - -
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Corollary 2.5: ’ Let X and Y be two independent random variables. Then o, = 0.

Proof:

The proof can be carried out using Theorems 2.4 and 2.8, and Definition 2.14. _li

Example 2.42:‘ It is known that the ratio of gallium to arsenide does not affect the functioning

Solution:

of gallium-arsenide wafers, which are the main components of some microchips.
Let X denote the ratio of gallium to arsenide and Y denote the functional wafers
retrieved during a 1-hour period. X and Y are independent random variables with
the joint density function

w, 0<z<2 0<y<l,
flz,y) =
0, elsewhere.

Show that F(XY) = E(X)E(Y), as Theorem 2.8 suggests.
By definition,

1 2 2 2
1 4
E(XY) = TYAEY) gy =2 Bx) = & and B(Y) = 2.
1 6 3 g
0 0
Hence,

E(X)E(Y) = (g) (g) = g = B(XY). |

We conclude this section by proving one theorem and presenting several corol-
laries that are useful for calculating variances or standard deviations.

Theorem 2.9:

If X and Y are random variables with joint probability distribution f(x,y) and
a, b, and ¢ are constants, then

2 2 2 12 2
Oaxibyte =0 0% + b0, +2aboxy.

Proof:

By definition, 02y v, = E{[(aX +bY + ¢) — pax+by+c|*}. Now
tax+by+e = E(aX +bY +¢) =aE(X) +bE(Y) + ¢ = apx + buy + ¢,

by using Corollary 2.4 followed by Corollary 2.2. Therefore,

02X+bY+c = E{[a(X — px) +b(Y — py)]*}
= A’E[(X — px)’] + *E[(Y — py)*] + 2abE[(X — pux ) (Y — )]
=a’0% + 0202 + 2aboyy . -
Using Theorem 2.9, we have the following corollaries. R
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Corollary 2.6:| Setting b = 0, we see that

2 _ 2.2 _ 2 2
Oaxie =00y =a’c".

Corollary 2.7:| Setting a =1 and b = 0, we see that

2 _ 2 _ 2
Oxyic=0x =0".

Corollary 2.8:| Setting b =0 and ¢ = 0, we see that

Corollaries 2.6 and 2.7 state that the variance is unchanged if a constant is
added to or subtracted from a random variable. The addition or subtraction of
a constant simply shifts the values of X to the right or to the left but does not
change their variability. However, if a random variable is multiplied or divided by
a constant, then Corollaries 2.6 and 2.8 state that the variance is multiplied or
divided by the square of the constant.

Corollary 2.9:| If X and Y are independent random variables, then

2 2 2 2 2
OgX+by — @ Ok +b Oy-

The result stated in Corollary 2.9 is obtained from Theorem 2.9 by invoking
Corollary 2.5.

Corollary 2.10:| If X and Y are independent random variables, then

2 2 2 2 2
OaX—bY_aUx+bay'

Corollary 2.10 follows when b in Corollary 2.9 is replaced by —b. Generalizing
to a linear combination of n independent random variables, we have Corollary 2.11.

Corollary 2.11: If X1, Xo,..., X, are independent random variables, then

2 2 2 2 2 2 2
Oy X1+as Xottan X, — 010X, T a30%x, +---+a,0% .

Example 2.43:| If X and Y are random variables with variances 02 = 2 and 02 = 4 and covariance
0xy = —2, find the variance of the random variable Z = 3X — 4Y + 8.

Solution:
otutron O’% = J§X74Y+8 = U§X74Y (by COrOllary 2.6)

=902 + 1602 — 240y (by Theorem 2.9)
= (9)(2) + (16)(4) — (24)(-2) = 130. 1



94 Chapter 2 Random Variables, Distributions, and Fxpectations

Example 2.44:

Let X and Y denote the amounts of two different types of impurities in a batch

of a certain chemical product. Suppose that X and Y are independent random

variables with variances o2

variable Z = 3X — 2Y + 5.

= 2 and 02 = 3. Find the variance of the random

Solution:
0% =03x_oy45 = Os3x_ay  (by Corollary 2.6)
=90 + 4o, (by Corollary 2.10)
— (9)(2) + (4)(3) = 30. ¥
Exercises

2.91 Suppose that a grocery store purchases 5 car-
tons of skim milk at the wholesale price of $1.20 per
carton and retails the milk at $1.65 per carton. After
the expiration date, the unsold milk is removed from
the shelf and the grocer receives a credit from the dis-
tributor equal to three-fourths of the wholesale price.
If the probability distribution of the random variable
X, the number of cartons that are sold from this lot,
is

c |0 1 2 3 4 5
f@) |5 & & 1 5 i

find the expected profit.

2.92 Repeat Exercise 2.83 on page 88 by applying
Theorem 2.5 and Corollary 2.6.

2.93 If a random variable X is defined such that
E[(X —1)’] =10 and E[(X —2)*] =6,
find p and o2

2.94 The total time, measured in units of 100 hours,
that a teenager runs her hair dryer over a period of one
year is a continuous random variable X that has the
density function

z, 0<z <1,
fley=<2—2, 1<z<2,
0, elsewhere.

Use Theorem 2.6 to evaluate the mean of the random
variable Y = 60X? 4 39X, where Y is equal to the
number of kilowatt hours expended annually.

2.95 Use Theorem 2.7 to evaluate E(2XY? — X?Y)
for the joint probability distribution shown in Table
2.1 on page 64.

2.96 If X and Y are independent random variables
with variances 0% = 5 and o2 = 3, find the variance
of the random variable Z = —2X +4Y — 3.

2.97 Repeat Exercise 2.96 if X and Y are not inde-
pendent and oxy = 1.

2.98 Suppose that X and Y are independent random
variables with probability densities and

8
OEE
0, elsewhere,
and
2y, 0<y<1,
hy) =
W) {0, elsewhere.

Find the expected value of Z = XY

2.99 Consider Review Exercise 2.117 on page 97. The
random variables X and Y represent the number of ve-
hicles that arrive at two separate street corners during
a certain 2-minute period in the day. The joint distri-

bution is
1 9
flz,y) = (m) (175) )

forr=0,1,2,... and y=0,1,2,....

(a) Give E(X), E(Y), Var(X), and Var(Y).

(b) Consider Z = X + Y, the sum of the two. Find
E(Z) and Var(Z).

2.100 Consider Review Exercise 2.106 on page 95.
There are two service lines. The random variables X
and Y are the proportions of time that line 1 and line
2 are in use, respectively. The joint probability density
function for (X,Y) is given by

Sa? 7). 0<w y<1
—J2 oo oY=
flz,y) = {07 elsewhere.

(a) Determine whether or not X and Y are indepen-
dent.



Review Ezxercises

(b) It is of interest to know something about the pro-
portion of Z = X +Y, the sum of the two propor-
tions. Find E(X +Y). Also find E(XY).

(¢) Find Var(X), Var(Y), and Cov(X,Y).
(d) Find Var(X +Y).

2.101 The length of time Y, in minutes, required to
generate a human reflex to tear gas has the density
function

lo—y/4

fly) = {6‘

(a) What is the mean time to reflex?

, 0<y <o,
elsewhere.

Review Exercises

2.103 A tobacco company produces blends of to-
bacco, with each blend containing various proportions
of Turkish, domestic, and other tobaccos. The propor-
tions of Turkish and domestic in a blend are random
variables with joint density function (X = Turkish and
Y = domestic)
_ J24xy, 0<z,y<1, z+y<1,

J(@,y) = {O, elsewhere.
(a) Find the probability that in a given box the Turkish

tobacco accounts for over half the blend.

(b) Find the marginal density function for the propor-
tion of the domestic tobacco.

(c) Find the probability that the proportion of Turk-
ish tobacco is less than 1/8 if it is known that the
blend contains 3/4 domestic tobacco.

2.104 An insurance company offers its policyholders
a number of different premium payment options. For a
randomly selected policyholder, let X be the number of
months between successive payments. The cumulative
distribution function of X is

0, if x <1,
04, ifl1<z<3,
F(z) =406, if3<z<5,
0.8, ifb<xz<T,
1.0, ifz>T7.

(a) What is the probability mass function of X7
(b) Compute P(4 < X <7).

2.105 Two electronic components of a missile system
work in harmony for the success of the total system.

95

(b) Find E(Y?) and Var(Y).

2.102 A manufacturing company has developed a
machine for cleaning carpet that is fuel-efficient be-
cause it delivers carpet cleaner so rapidly. Of inter-
est is a random variable Y, the amount in gallons per
minute delivered. It is known that the density function

is given by
1,
fly) = {0

(a) Sketch the density function.
(b) Give E(Y), E(Y?), and Var(Y).

7T<y<8,
elsewhere.

Let X and Y denote the life in hours of the two com-
ponents. The joint density of X and Y is

ye*y(lﬂﬂ)7

flz,y) = {07

(a) Give the marginal density functions for both ran-
dom variables.

(b) What is the probability that the lives of both com-
ponents will exceed 2 hours?

z,y >0,
elsewhere.

2.106 A service facility operates with two service
lines. On a randomly selected day, let X be the pro-
portion of time that the first line is in use whereas Y’
is the proportion of time that the second line is in use.
Suppose that the joint probability density function for
(X,Y) is

3.2, 2
(x4 3 0 S €T, S 17
fla,y) = 2@+ Y
0, elsewhere.
(a) Compute the probability that neither line is busy
more than half the time.

(b) Find the probability that the first line is busy more
than 75% of the time.

2.107 Let the number of phone calls received by a
switchboard during a 5-minute interval be a random
variable X with probability function

672 T

fz) = ,

x!

forz=0,1,2,....

(a) Determine the probability that X equals 0, 1, 2, 3,
4,5, and 6.

(b) Graph the probability mass function for these val-
ues of x.
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(c) Determine the cumulative distribution function for
these values of X.

2.108 An industrial process manufactures items that
can be classified as either defective or not defective.
The probability that an item is defective is 0.1. An
experiment is conducted in which 5 items are drawn
randomly from the process. Let the random variable X
be the number of defectives in this sample of 5. What
is the probability mass function of X7

2.109 The life span in hours of an electrical compo-
nent is a random variable with cumulative distribution
function

1-— e_%, x>0,
0, eleswhere.

Fa) = {

(a) Determine its probability density function.

(b) Determine the probability that the life span of such
a component will exceed 70 hours.

2.110 Pairs of pants are being produced by a particu-
lar outlet facility. The pants are checked by a group of
10 workers. The workers inspect pairs of pants taken
randomly from the production line. Each inspector is
assigned a number from 1 through 10. A buyer selects
a pair of pants for purchase. Let the random variable
X be the inspector number.

(a) Give a reasonable probability mass function for X.
(b) Plot the cumulative distribution function for X.

2.111 The shelf life of a product is a random variable
that is related to consumer acceptance. It turns out
that the shelf life Y in days of a certain type of bakery
product has a density function

= {3 0 v<cs
0, elsewhere.

What fraction of the loaves of this product stocked to-
day would you expect to be sellable 3 days from now?

2.112 Passenger congestion is a service problem in
airports. Trains are installed within the airport to re-
duce the congestion. With the use of the train, the
time X in minutes that it takes to travel from the main
terminal to a particular concourse has density function

&, 0<2<10
—Jio V==
1) {0, elsewhere.

(a) Show that the above is a valid probability density
function.

(b) Find the probability that the time it takes a pas-
senger to travel from the main terminal to the con-
course will not exceed 7 minutes.

2.113 Impurities in a batch of final product of a
chemical process often reflect a serious problem. From
considerable plant data gathered, it is known that the
proportion Y of impurities in a batch has a density
function given by

_[10( =y 0<y<l,
f) = {0, elsewhere.

(a) Verify that the above is a valid density function.

(b) A batch is considered not sellable and then not
acceptable if the percentage of impurities exceeds
60%. With the current quality of the process, what
is the percentage of batches that are not
acceptable?

2.114 The time Z in minutes between calls to an elec-
trical supply system has the probability density func-
tion

1 _—2/10
b)

e ={y

(a) What is the probability that there are no calls
within a 20-minute time interval?

(b) What is the probability that the first call comes
within 10 minutes of opening?

0< 2z < o0,
elsewhere.

2.115 A chemical system that results from a chemical
reaction has two important components among others
in a blend. The joint distribution describing the pro-
portions X; and X5 of these two components is given
by

27 0<1‘1<I2<1,
0, elsewhere.

[, 32) :{

(a) Give the marginal distribution of Xj.

(b) Give the marginal distribution of X5.

(c) What is the probability that component propor-
tions produce the results X; < 0.2 and X2 > 0.57

(d) Give the conditional distribution fx,|x, (z1|z2).

2.116 Consider the situation of Review Exercise
2.115. But suppose the joint distribution of the two
proportions is given by

f(:r " )_ 6&22, O<CC2<CIZ'1<1,

b 0, elsewhere.

(a) Give the marginal distribution fx, (z1) of the pro-
portion X, and verify that it is a valid density
function.

(b) What is the probability that proportion X is less
than 0.5, given that X; is 0.77
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2.117 Consider the random variables X and Y that
represent the number of vehicles that arrive at two sep-
arate street corners during a certain 2-minute period.
These street corners are fairly close together so it is im-
portant that traffic engineers deal with them jointly if
necessary. The joint distribution of X and Y is known
to be

1
f(%y)zﬁ'm7

forr=0,1,2,... and y=0,1,2,....
(a) Are the two random variables X and Y indepen-
dent? Explain why or why not.

(b) What is the probability that during the time pe-
riod in question less than 4 vehicles arrive at the
two street corners?

2.118 The behavior of series of components plays a
huge role in scientific and engineering reliability prob-
lems. The reliability of the entire system is certainly
no better than that of the weakest component in the
series. In a series system, the components operate in-
dependently of each other. In a particular system con-
taining three components, the probabilities of meeting
specifications for components 1, 2, and 3, respectively,
are 0.95, 0.99, and 0.92. What is the probability that
the entire system works?

2.119 Another type of system that is employed in en-
gineering work is a group of parallel components or a
parallel system. In this more conservative approach,
the probability that the system operates is larger than
the probability that any component operates. The sys-
tem fails only when all components fail. Consider a sit-
uation in which there are 4 independent components in
a parallel system with probability of operation given by

Component 2: 0.94;
Component 4: 0.97.

Component 1: 0.95;
Component 3: 0.90;

What is the probability that the system does not fail?

2.120 Consider a system of components in which
there are 5 independent components, each of which
possesses an operational probability of 0.92. The sys-
tem does have a redundancy built in such that it does
not fail if 3 out of the 5 components are operational.
What is the probability that the total system is oper-
ational?

2.121 Project: Take 5 class periods to observe the
shoe color of individuals in class. Assume the shoe
color categories are red, white, black, brown, and other.
Complete a frequency table for each color category.

(a) Estimate and interpret the meaning of the proba-
bility distribution.
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(b) What is the estimated probability that in the next
class period a randomly selected student will be
wearing a red or a white pair of shoes?

2.122 Referring to the random variables whose joint
probability density function is given in Exercise 2.38
on page 73, find the average amount of kerosene left in
the tank at the end of the day.

2.123 Assume the length X, in minutes, of a particu-
lar type of telephone conversation is a random variable
with probability density function

Le=2/5 x>0,

fay = {3

(a) Determine the mean length E(X) of this type of
telephone conversation.

elsewhere.

(b) Find the variance and standard deviation of X.
(c) Find E[(X + 5)2].

2.124 Suppose it is known that the life X of a par-
ticular compressor, in hours, has the density function

fay = { g -

1 e—x/goo’

0, elsewhere.

(a) Find the mean life of the compressor.

(b) Find E(X?).

(c) Find the variance and standard deviation of the
random variable X.

2.125 Referring to the random variables whose joint
density function is given in Exercise 2.32 on page 72,

(a) find px and py;
(b) find E[(X +Y)/2].

2.126 Show that Cov(aX,bY) = ab Cov(X,Y).

2.127 Consider Exercise 2.58 on page 79. Can it be
said that the ratings given by the two experts are in-
dependent? Explain why or why not.

2.128 A company’s marketing and accounting de-
partments have determined that if the company mar-
kets its newly developed product, the contribution of
the product to the firm’s profit during the next 6
months will be described by the following:

Profit Contribution Probability
—$5, 000 0.2
$10, 000 0.5
$30, 000 0.3

What is the company’s expected profit?
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2.129 In a support system in the U.S. space program,
a single crucial component works only 85% of the time.
In order to enhance the reliability of the system, it is
decided that 3 components will be installed in parallel
such that the system fails only if they all fail. Assume
the components act independently and that they are
equivalent in the sense that all 3 of them have an 85%
success rate. Consider the random variable X as the
number of components out of 3 that fail.

(a) Write out a probability function for the random
variable X.

(b) What is E(X) (i.e., the mean number of compo-
nents out of 3 that fail)?

(c) What is Var(X)?

(d) What is the probability that the entire system is
successful?

(e) What is the probability that the system fails?

(f) If the desire is to have the system be successful
with probability 0.99, are three components suffi-
cient? If not, how many are required?

2.130 It is known through data collection and con-
siderable research that the amount of time in seconds
that a certain employee of a company is late for work
is a random variable X with density function

3 2 2
0, elsewhere.
In other words, he not only is slightly late at times,
but also can be early to work.

(a) Find the expected value of the time in seconds that
he is late.

(b) Find E(X?).
(c) What is the standard deviation of the amount of
time he is late?

2.131 A delivery truck travels from point A to point
B and back using the same route each day. There are
four traffic lights on the route. Let X; denote the num-
ber of red lights the truck encounters going from A to
B and X»> denote the number encountered on the re-
turn trip. Data collected over a long period suggest
that the joint probability distribution for (X1, X5) is
given by

€2
T1 0 1 2 3 4
0 0.01 0.01 003 0.07 0.01
1 003 0.05 0.08 0.03 0.02
2 0.03 0.11 0.15 0.01 0.01
3 0.02 0.07r 0.10 0.03 0.01
4 001 0.06 0.03 0.01 0.01

(a) Give the marginal density of X;.

(b) Give the marginal density of Xo.

(c) Give the conditional density distribution of X
given Xo = 3.

(d) Give E(X1).

(e) Give E(X2).

(f) Give E(Xl ‘ X2 = 3)

(g) Give the standard deviation of X;.

2.132 A convenience store has two separate locations
where customers can be checked out as they leave.
These locations each have two cash registers and two
employees who check out customers. Let X be the
number of cash registers being used at a particular time
for location 1 and Y the number being used at the same
time for location 2. The joint probability function is
given by

Y
T 0 1 2
0 0.12 0.04 0.04
1 008 0.19 0.05
2 0.06 0.12 0.30

(a) Give the marginal density of both X and Y as well
as the probability distribution of X given Y = 2.

(b) Give E(X) and Var(X).
(c) Give E(X | Y =2) and Var(X | Y = 2).

2.133 As we shall illustrate in Chapter 7, statistical
methods associated with linear and nonlinear models
are very important. In fact, exponential functions are
often used in a wide variety of scientific and engineering
problems. Consider a model that is fit to a set of data
involving measured values ki1 and k2 and a certain re-
sponse Y to the measurements. The model postulated
is

V — ebo+b1k1+b2k27
where Y denotes the estimated value of Y, k1 and
ko are fixed values, and b, b1, and by are estimates
of constants and hence are random variables. Assume
that these random variables are independent and use
the approximate formula for the variance of a nonlinear
function of more than one variable. Give an expression
for Var(f/). Assume that the means of bo, b1, and be
are known and are 3y, £1, and B2, and assume that the
variances of bg, by, and by are known and are of, o2,
and o3.

2.134 Consider Review Exercise 2.113 on page 96. It
involved Y, the proportion of impurities in a batch,
and the density function is given by

o= {009

0<y<l1,
elsewhere.
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(a) Find the expected percentage of impurities. 2.135 Project: Let X = number of hours each stu-
(b) Find the expected value of the proportion of quality ~dent in the class slept the night before'. Create a dis-
material (i.c., find E(1 —Y)). crete variable by using the following arbitrary intervals:

X<3,3<X<6,6<X<9,and X >9.
(a) Estimate the probability distribution for X.
(b) Calculate the estimated mean and variance for X.

(¢) Find the variance of the random variable Z = 1-Y.

2.8 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

The material in this chapter is extremely fundamental in nature. We focused on
general characteristics of a probability distribution and defined important quanti-
ties or parameters that characterize the general nature of the system. The mean of
a distribution reflects central tendency, and the variance or standard deviation
reflects variability in the system. In addition, covariance reflects the tendency for
two random variables to “move together” in a system. These important parameters
will remain fundamental to all that follows in this text.

The reader should understand that the distribution type is often dictated by
the scientific scenario. However, the parameter values often need to be estimated
from scientific data. For example, in the case of Review Exercise 2.124, the manu-
facturer of the compressor may know (material that will be presented in Chapter
3) from experience and knowledge of the type of compressor that the nature of the
distribution is as indicated in the exercise. The mean p would not be known but
estimated from experimentation on the machine. Though the parameter value of
900 is given as known here, it will not be known in real-life situations without the
use of experimental data.
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Chapter 3

Some Probability Distributions

3.1

Introduction and Motivation

No matter whether a discrete probability distribution is represented graphically by
a histogram, in tabular form, or by means of a formula, the behavior of a random
variable is described. Often, the observations generated by different statistical ex-
periments have the same general type of behavior. Consequently, discrete random
variables associated with these experiments can be described by essentially the
same probability distribution and therefore can be represented by a single formula.
In fact, one needs only a handful of important probability distributions to describe
many of the discrete random variables encountered in practice.

Such a handful of distributions describe several real-life random phenomena.
For instance, in a study involving testing the effectiveness of a new drug, the num-
ber of cured patients among all the patients who use the drug approximately follows
a binomial distribution (Section 3.2). In an industrial example, when a sample of
items selected from a batch of production is tested, the number of defective items
in the sample usually can be modeled as a hypergeometric random variable (Sec-
tion 3.3). In a statistical quality control problem, the experimenter will signal a
shift of the process mean when observational data exceed certain limits. The num-
ber of samples required to produce a false alarm follows a geometric distribution,
which is a special case of the negative binomial distribution (Section 3.4). On the
other hand, the number of white cells from a fixed amount of an individual’s blood
sample is usually random and may be described by a Poisson distribution (Section
3.5). In this chapter, we present these commonly used distributions with various
examples.

3.2 Binomial and Multinomial Distributions

An experiment often consists of repeated trials, each with two possible outcomes
that may be labeled success or failure. One obvious application deals with the
testing of items as they come off an assembly line, where each trial may indicate
a defective or a nondefective item. We may choose to define either outcome as a
success. The process is referred to as a Bernoulli process. Each trial is called a

101
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Bernoulli trial. Observe that, for example, if one is drawing cards from a deck,
the probabilities for repeated trials change if the cards are not replaced. That is,
the probability of selecting a heart on the first draw is 1/4, but on the second
draw it is a conditional probability having a value of 13/51 or 12/51, depending
on whether a heart appeared on the first draw: this, then, would no longer be
considered a set of Bernoulli trials.

The Bernoulli Process

Strictly speaking, the Bernoulli process must possess the following properties:
1. The experiment consists of repeated trials.
2. Each trial results in an outcome that may be classified as a success or a failure.
3. The probability of success, denoted by p, remains constant from trial to trial.
4. The repeated trials are independent.

Consider the set of Bernoulli trials where three items are selected at random
from a manufacturing process, inspected, and classified as defective or nondefective.
A defective item is designated a success. The number of successes is a random
variable X assuming integral values from 0 through 3. The eight possible outcomes
and the corresponding values of X are

Outcome | NNN NDN NND DNN NDD DND DDN DDD
T 0 1 1 1 2 2 2 3

Since the items are selected independently and we assume that the process produces
25% defectives, we have

P(NDN) = P(N)P(D)P(N) = (Z) (i) (‘D _ 634

Similar calculations yield the probabilities for the other possible outcomes. The
probability distribution of X is therefore

c [0 1 2
9

fa) | &

3
1
64

[}

4

Binomial Distribution

The number X of successes in n Bernoulli trials is called a binomial random
variable. The probability distribution of this discrete random variable is called
the binomial distribution, and its values will be denoted by b(z;n, p) since they
depend on the number of trials and the probability of a success on a given trial.
Thus, for the probability distribution of X, the number of defectives is

P(X =2) = f(2) = b (2;3,31) -2

Let us now generalize the above illustration to yield a formula for b(z;n,p).
That is, we wish to find a formula that gives the probability of x successes in
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n trials for a binomial experiment. First, consider the probability of x successes
and n — z failures in a specified order. Since the trials are independent, we can
multiply all the probabilities corresponding to the different outcomes. Each success
occurs with probability p and each failure with probability ¢ = 1 — p. Therefore,
the probability for the specified order is p*¢"~*. We must now determine the
total number of sample points in the experiment that have x successes and n — x
failures. This number is equal to the number of partitions of n outcomes into
two groups with z in one group and n — z in the other and is written (1), as
introduced in Section 1.5. Because these partitions are mutually exclusive, we add
the probabilities of all the different partitions to obtain the general formula, or

simply multiply p”¢"~* by (7).

Binomial A Bernoulli trial can result in a success with probability p and a failure with
Distribution  probability ¢ = 1 —p. Then the probability distribution of the binomial random
variable X, the number of successes in n independent trials, is

b(w;n,p) = (Z)pxq"_””, z=0,1,2,...,n.

Note that when n = 3 and p = 1/4, the probability distribution of X, the number
of defectives, may be written as

1 3\ /1\"/3\* "
o(2) Q) R Q) e

rather than in the tabular form on page 102.

Example 3.1:] The probability that a certain kind of component will survive a shock test is 3/4.
Find the probability that exactly 2 of the next 4 components tested survive.
Solution: Assuming that the tests are independent and p = 3/4 for each of the 4 tests, we

OO E

Where Does the Name Binomial Come From?

The binomial distribution derives its name from the fact that the n + 1 terms in
the binomial expansion of (¢4 p)™ correspond to the various values of b(x;n, p) for
x=0,1,2,...,n. That is,

(g+p)" = (8) q" + (T)pq”_l + (Z)qu"_Q +ot (Z)p"

=b(0;m,p) + b(1;n,p) +b(2;n,p) + -+ b(n;n,p).

Since p + g = 1, we see that

En: b(x;n,p) =1,
=0
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a condition that must hold for any probability distribution.
Frequently, we are interested in problems where it is necessary to find P(X < r)
or P(a < X <b). Binomial sums

B(r;n,p) benp

are given in Table A.1 of the Appendix for n = 1,2,...,20 for selected values of p
from 0.1 to 0.9. We illustrate the use of Table A.1 with the following example.

Example 3.2:] The probability that a patient recovers from a rare blood disease is 0.4. If 15
people are known to have contracted this disease, what is the probability that (a)
at least 10 survive, (b) from 3 to 8 survive, and (c) exactly 5 survive?

Solution: Let X be the number of people who survive.

9
(@) P(X>10)=1-P(X <10)=1-> b(x;15,0.4) = 1 — 0.9662

=0
= 0.0338
8 8 2
(b) PB<X <8)=> b(x;15,04) = > b(x;15,0.4) — »_ b(x;15,0.4)
r=3 x=0 x=0

= 0.9050 — 0.0271 = 0.8779

4
(c) P(X =5) =b(5;15,0.4) bew 0.4) = > b(x;15,0.4)
=0

=0.4032 — 0.2173 = 0.1859 . |

Example 3.3:‘ A large chain retailer purchases a certain kind of electronic device from a manu-
facturer. The manufacturer indicates that the defective rate of the device is 3%.

(a) The inspector randomly picks 20 items from a shipment. What is the proba-
bility that there will be at least one defective item among these 207

(b) Suppose that the retailer receives 10 shipments in a month and the inspector
randomly tests 20 devices per shipment. What is the probability that there
will be exactly 3 shipments each containing at least one defective device among
the 20 that are selected and tested from the shipment?

Solution: (a) Denote by X the number of defective devices among the 20. Then X follows
a b(z;20,0.03) distribution. Hence,

P(X>1)=1-P(X =0)=1-5(0;20,0.03)
=1-1(0.03)(1 - 0.03)*7% = 0.4562.
(b) In this case, each shipment can either contain at least one defective item or

not. Hence, testing of each shipment can be viewed as a Bernoulli trial with
p = 0.4562 from part (a). Assuming independence from shipment to shipment
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and denoting by Y the number of shipments containing at least one defective
item, Y follows another binomial distribution b(y; 10, 0.4562). Therefore,

10
PY =3)= ( 3 >0.45623(1 —0.4562)" = 0.1602.

Areas of Application

From Examples 3.1 through 3.3, it should be clear that the binomial distribution
finds applications in many scientific fields. An industrial engineer is keenly inter-
ested in the “proportion defective” in an industrial process. Often, quality control
measures and sampling schemes for processes are based on the binomial distribu-
tion. This distribution applies to any industrial situation where an outcome of a
process is dichotomous and the results of the process are independent, with the
probability of success being constant from trial to trial. The binomial distribution
is also used extensively for medical and military applications. In both fields, a
success or failure result is important. For example, “cure” or “no cure” is impor-
tant in pharmaceutical work, and “hit” or “miss” is often the interpretation of the
result of firing a guided missile.

Since the probability distribution of any binomial random variable depends only
on the values assumed by the parameters n, p, and ¢, it would seem reasonable
to assume that the mean and variance of a binomial random variable also depend
on the values assumed by these parameters. Indeed, this is true, and in the proof
of Theorem 3.1 we derive general formulas that can be used to compute the mean
and variance of any binomial random variable as functions of n, p, and gq.

Theorem 3.1:

The mean and variance of the binomial distribution b(z;n,p) are
= np and 0% = npq.

Proof:

Let the outcome on the jth trial be represented by a Bernoulli random variable
I;, which assumes the values 0 and 1 with probabilities ¢ and p, respectively.
Therefore, in a binomial experiment the number of successes can be written as the
sum of the n independent indicator variables. Hence,

X=L+I+ - +1,.

The mean of any I; is E(I;) = (0)(¢) + (1)(p) = p. Therefore, using Corollary 2.4
on page 91, the mean of the binomial distribution is
p=EX)=E0L)+E)+---+E(,)=p+p+---+p=np.
n terms
The variance of any I; is 07 = E(I7) —p* = (0)*(q) + (1)*(p) —p* = p(1 - p) = pq.

Extending Corollary 2.11 to the case of n independent Bernoulli variables gives the
variance of the binomial distribution as

0% =07 + 07,4+ +0L, =pq+pq+ -+ pg=npg.

n terms 1
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Example 3.4:| It is conjectured that an impurity exists in 30% of all drinking wells in a certain
rural community. In order to gain some insight into the true extent of the problem,
it is determined that some testing is necessary. It is too expensive to test all of the
wells in the area, so 10 are randomly selected for testing.

(a) Using the binomial distribution, what is the probability that exactly 3 wells
have the impurity, assuming that the conjecture is correct?

(b) What is the probability that more than 3 wells are impure?
Solution: (a) We require ,
b(3;10,0.3) = Z b(x;10,0.3) — Z b(x;10,0.3) = 0.6496 — 0.3828 = 0.2668.

=0 z=0

(b) In this case, P(X > 3) =1 — 0.6496 = 0.3504. A

There are solutions in which the computation of binomial probabilities may
allow us to draw a scientific inference about a population after data are collected.
An illustration is given in the next example.

Example 3.5:/ Consider the situation of Example 3.4. The notion that 30% of the wells are
impure is merely a conjecture put forth by the area water board. Suppose 10 wells
are randomly selected and 6 are found to contain the impurity. What does this
imply about the conjecture? Use a probability statement.

Solution: We must first ask: “If the conjecture is correct, is it likely that we would find 6 or
more impure wells?”
10 5
P(X >6)=> b(x;10,0.3) = > b(x;10,0.3) = 1 — 0.9527 = 0.0473.
=0 z=0

As a result, it is very unlikely (4.7% chance) that 6 or more wells would be found
impure if only 30% of all are impure. This casts considerable doubt on the conjec-
ture and suggests that the impurity problem is much more severe. A

As the reader should realize by now, in many applications there are more than
two possible outcomes. To borrow an example from the field of genetics, the color of
guinea pigs produced as offspring may be red, black, or white. Often the “defective”
or “not defective” dichotomy is truly an oversimplification in engineering situations.
Indeed, there are often more than two categories that characterize items or parts
coming off an assembly line.

Multinomial Experiments and the Multinomial Distribution

The binomial experiment becomes a multinomial experiment if we let each
trial have more than two possible outcomes. The classification of a manufactured
product as being light, heavy, or acceptable and the recording of accidents at a
certain intersection according to the day of the week constitute multinomial exper-
iments. The drawing of a card from a deck with replacement is also a multinomial
experiment if the 4 suits are the outcomes of interest.

In general, if a given trial can result in any one of k possible outcomes F1, s, . . .,
E), with probabilities py, po, ..., pg, then the multinomial distribution will give
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the probability that F; occurs z; times, Fy occurs xo times, ..., and Ej occurs
T times in n independent trials, where

1+ 2o+ -+ 2 =N
We shall denote this joint probability distribution by

f(xla'r27" '7xk;p1ap2a"'apk7n)'

Clearly, p1 + p2 + -+ + pr = 1, since the result of each trial must be one of the k
possible outcomes.

To derive the general formula, we proceed as in the binomial case. Since the
trials are independent, any specified order yielding x; outcomes for F;, x5 for
Es, ...,z for By will occur with probability pi*p5? - --py*. The total number of
orders yielding similar outcomes for the n trials is equal to the number of partitions
of n items into k groups with x; in the first group, z2 in the second group, ...,

and x in the kth group. This can be done in

< n ) n!
T1,T9, ..., Tk z1la! o oxy!

ways. Since all the partitions are mutually exclusive and occur with equal proba-
bility, we obtain the multinomial distribution by multiplying the probability for a
specified order by the total number of partitions.

Multinomial
Distribution

If a given trial can result in the k& outcomes Fy, Es,..., E; with probabilities
P1,P2,-- -, Pk, then the probability distribution of the random variables X7, Xo,
..., Xy, representing the number of occurrences for Fi, Es, ..., E} in n inde-
pendent trials, is

n

T T2 T
)p1 D™ Py
L1y L2y Tk

f(xth?"'7xk;p17p27"'apk7n) = <
with

k k
Zmi =n and Zpi =1.
i=1 i=1

The multinomial distribution derives its name from the fact that the terms of
the multinomial expansion of (p; + pa + -+ - + px)™ correspond to all the possible

values of f(x1,Za,..., Tk D1,D2s -« Py N).

Example 3.6:

The complexity of arrivals and departures of planes at an airport is such that
computer simulation is often used to model the “ideal” conditions. For a certain
airport with three runways, it is known that in the ideal setting the following are
the probabilities that the individual runways are accessed by a randomly arriving
commercial jet:

Runway 1: p; =2/9,

Runway 2: py =1/6,

Runway 3: p3 =11/18.
What is the probability that 6 randomly arriving airplanes are distributed in the
following fashion?
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Runway 1: 2 airplanes,
Runway 2: 1 airplane,
Runway 3: 3 airplanes
Solution: Using the multinomial distribution, we have
2 1 3
2111 6 2 1 11
2,1,3; -, =, — = = = ey
f( ’ ’3’9’6’ 18’6> (2,1,3) (9) <6) <18)
6! 22 1 113
=—— — .- . — =0.1127.
211131 92 6 183 0 ! o |
Exercises

3.1 A random variable X that assumes the values
T1,T2,..., %k is called a discrete uniform random vari-
able if its probability mass function is f(z) = % for all
of x1,x2,...,2, and 0 otherwise. Find the mean and

variance of X.

3.2 In a certain city district, the need for money to
buy drugs is stated as the reason for 75% of all thefts.
Find the probability that among the next 5 theft cases
reported in this district,

(a) exactly 2 resulted from the need for money to buy
drugs;

(b) at most 3 resulted from the need for money to buy
drugs.

3.3 An employee is selected from a staff of 10 to su-
pervise a certain project by means of a tag selected at
random from a box containing 10 tags numbered from
1 to 10. Find the formula for the probability distribu-
tion of X representing the number on the tag that is
drawn. What is the probability that the number drawn
is less than 47

3.4 According to Chemical FEngineering Progress

(November 1990), approximately 30% of all pipework

failures in chemical plants are caused by operator error.

(a) What is the probability that out of the next 20
pipework failures at least 10 are due to operator
error?

(b) What is the probability that no more than 4 out of
20 such failures are due to operator error?

(c) Suppose that, for a particular plant, out of the ran-
dom sample of 20 such failures, exactly 5 are due
to operator error. Do you feel that the 30% figure
stated above applies to this plant? Comment.

3.5 One prominent physician claims that 70% of those

with lung cancer are chain smokers. If his assertion is

correct,

(a) find the probability that of 10 such patients re-
cently admitted to a hospital, fewer than half are

chain smokers;

(b) find the probability that of 20 such patients re-
cently admitted to a hospital, fewer than half are
chain smokers.

3.6 According to a study published by a group of Uni-
versity of Massachusetts sociologists, approximately
60% of the Valium users in the state of Massachusetts
first took Valium for psychological problems. Find the
probability that among the next 8 users from this state
who are interviewed,

(a) exactly 3 began taking Valium for psychological
problems;

(b) at least 5 began taking Valium for problems that
were not psychological.

3.7 In testing a certain kind of truck tire over rugged
terrain, it is found that 25% of the trucks fail to com-
plete the test run without a blowout. Of the next 15
trucks tested, find the probability that

(a) from 3 to 6 have blowouts;
(b) fewer than 4 have blowouts;
(c) more than 5 have blowouts.

3.8 A traffic control engineer reports that 75% of the
vehicles passing through a checkpoint are from within
the state. What is the probability that fewer than 4 of
the next 9 vehicles are from out of state?

3.9 The probability that a patient recovers from a
delicate heart operation is 0.9. What is the probabil-
ity that exactly 5 of the next 7 patients having this
operation survive?

3.10 The percentage of wins for the Chicago Bulls
basketball team going into the playoffs for the 1996-97
season was 87.7. Round the 87.7 to 90 in order to use
Table A.1.

(a) What was the probability that the Bulls would
sweep (4-0) the initial best-of-7 playoff series?
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(b) What was the probability that the Bulls would win
the initial best-of-7 playoff series?

(c) What very important assumption is made in an-
swering parts (a) and (b)?

3.11 It is known that 60% of mice inoculated with a
serum are protected from a certain disease. If 5 mice
are inoculated, find the probability that

(a) none contracts the disease;
(b) fewer than 2 contract the disease;
(c) more than 3 contract the disease.

3.12 Suppose that airplane engines operate indepen-
dently and fail with probability equal to 0.4. Assuming
that a plane makes a safe flight if at least one-half of its
engines run, determine whether a 4-engine plane or a 2-
engine plane has the higher probability for a successful
flight.

3.13 As a student drives to school, he encounters a
traffic signal. This traffic signal stays green for 35 sec-
onds, yellow for 5 seconds, and red for 60 seconds. As-
sume that the student goes to school each weekday
between 8:00 and 8:30 A.M. Let X; be the number of
times he encounters a green light, X2 be the number
of times he encounters a yellow light, and X3 be the
number of times he encounters a red light. Find the
joint distribution of X, X2, and X3.

3.14 (a) In Exercise 3.7, how many of the 15 trucks
would you expect to have blowouts?

(b) What is the variance of the number of blowouts ex-
perienced by the 15 trucks? What does that mean?

3.15 According to USA Today (March 18, 1997), of 4
million workers in the general workforce, 5.8% tested
positive for drugs. Of those testing positive, 22.5%
were cocaine users and 54.4% marijuana users.

(a) What is the probability that of 10 workers testing
positive, 2 are cocaine users, 5 are marijuana users,
and 3 are users of other drugs?

(b) What is the probability that of 10 workers testing
positive, all are marijuana users?
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(c) What is the probability that of 10 workers testing
positive, none is a cocaine user?

3.16 A safety engineer claims that only 40% of all
workers wear safety helmets when they eat lunch at
the workplace. Assuming that this claim is right, find
the probability that 4 of 6 workers randomly chosen
will be wearing their helmets while having lunch at the
workplace.

3.17 Suppose that for a very large shipment of
integrated-circuit chips, the probability of failure for
any one chip is 0.10. Assuming that the assumptions
underlying the binomial distributions are met, find the
probability that at most 3 chips fail in a random sample
of 20.

3.18 Assuming that 6 in 10 automobile accidents are
due mainly to a speed violation, find the probabil-
ity that among 8 automobile accidents, 6 will be due
mainly to a speed violation

(a) by using the formula for the binomial distribution;
(b) by using Table A.1.

3.19 If the probability that a fluorescent light has a
useful life of at least 800 hours is 0.9, find the proba-
bilities that among 20 such lights

(a) exactly 18 will have a useful life of at least 800
hours;

(b) at least 15 will have a useful life of at least 800
hours;

(c) at least 2 will not have a useful life of at least 800
hours.

3.20 A manufacturer knows that on average 20% of
the electric toasters produced require repairs within 1
year after they are sold. When 20 toasters are ran-
domly selected, find appropriate numbers = and y such
that

(a) the probability that at least = of them will require
repairs is less than 0.5;

(b) the probability that at least y of them will not re-
quire repairs is greater than 0.8.

3.3 Hypergeometric Distribution

The simplest way to view the distinction between the binomial distribution of
Section 3.2 and the hypergeometric distribution is to note the way the sampling is
done. The types of applications for the hypergeometric are very similar to those
for the binomial distribution. We are interested in computing probabilities for the
number of observations that fall into a particular category. But in the case of the
binomial distribution, independence among trials is required. As a result, if that
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distribution is applied to, say, sampling from a lot of items (deck of cards, batch
of production items), the sampling must be done with replacement of each item
after it is observed. On the other hand, the hypergeometric distribution does not
require independence and is based on sampling done without replacement.

Applications for the hypergeometric distribution are found in many areas, with
heavy use in acceptance sampling, electronic testing, and quality assurance. Ob-
viously, in many of these fields, testing is done at the expense of the item being
tested. That is, the item is destroyed and hence cannot be replaced in the sample.
Thus, sampling without replacement is necessary. A simple example with playing
cards will serve as our first illustration.

If we wish to find the probability of observing 3 red cards in 5 draws from an
ordinary deck of 52 playing cards, the binomial distribution of Section 3.2 does not
apply unless each card is replaced and the deck reshuffled before the next draw is
made. To solve the problem of sampling without replacement, let us restate the
problem. If 5 cards are drawn at random, we are interested in the probability of
selecting 3 red cards from the 26 available in the deck and 2 black cards from the 26

available in the deck. There are (236) ways of selecting 3 red cards, and for each of

these ways we can choose 2 black cards in (226) ways. Therefore, the total number
of ways to select 3 red and 2 black cards in 5 draws is the product (%) (%’). The
total number of ways to select any 5 cards from the 52 that are available is (552).
Hence, the probability of selecting 5 cards without replacement of which 3 are red
and 2 are black is given by

D)%) (261/31231)(26!/21241)
(3()5;)2) = 521751471 = U321

In general, we are interested in the probability of selecting x successes from
the k items labeled successes and n — x failures from the N — k items labeled
failures when a random sample of size n is selected from IV items. This is known
as a hypergeometric experiment, that is, one that possesses the following two
properties:

1. A random sample of size n is selected without replacement from N items.

2. Of the N items, k may be classified as successes and N — k are classified as
failures.

The number X of successes of a hypergeometric experiment is called a hyper-
geometric random variable. Accordingly, the probability distribution of the
hypergeometric variable is called the hypergeometric distribution, and its val-
ues are denoted by h(z; N, n, k), since they depend on the number of successes k
in the set IV from which we select n items.

Hypergeometric Distribution in Acceptance Sampling

Like the binomial distribution, the hypergeometric distribution finds applications
in acceptance sampling, where lots of materials or parts are sampled in order to
determine whether or not the entire lot is accepted.



3.3 Hypergeometric Distribution 111

Example 3.7:

Solution:

A particular part that is used as an injection device is sold in lots of 10. The
producer deems a lot acceptable if no more than one defective is in the lot. A
sampling plan involves random sampling and testing 3 of the parts out of 10. If
none of the 3 is defective, the lot is accepted. Comment on the utility of this plan.
Let us assume that the lot is truly unacceptable (i.e., that 2 out of 10 parts are
defective). The probability that the sampling plan finds the lot acceptable is

2\ (8
(o) (s)
0
(5)
Thus, if the lot is truly unacceptable, with 2 defective parts, this sampling plan
will allow acceptance roughly 47% of the time. As a result, this plan should be
considered faulty. . |

Let us now generalize in order to find a formula for h(z; N,n, k). The total
number of samples of size n chosen from N items is (ZZ ) These samples are

= 0.467.

P(X=0)=

assumed to be equally likely. There are (];) ways of selecting x successes from the
k that are available, and for each of these ways we can choose the n — x failures in

(JZ :f) ways. Thus, the total number of favorable samples among the (17\{ ) possible
N—k

n—x

samples is given by (i)( ) Hence, we have the following definition.

Hypergeometric
Distribution

The probability distribution of the hypergeometric random variable X, the num-
ber of successes in a random sample of size n selected from N items of which &
are labeled success and N — k labeled failure, is

() )
()

h(x; N,n, k) = max{0,n — (N — k)} < < min{n, k}.

The range of x can be determined by the three binomial coefficients in the
definition, where x and n — x are no more than k and N — k, respectively, and both
of them cannot be less than 0. Usually, when both & (the number of successes)
and N — k (the number of failures) are larger than the sample size n, the range of
a hypergeometric random variable will be x = 0,1,...,n.

)

Example 3.8:‘

Solution:

Lots of 40 components each are deemed unacceptable if they contain 3 or more
defectives. The procedure for sampling a lot is to select 5 components at random
and to reject the lot if a defective is found. What is the probability that exactly 1
defective is found in the sample if there are 3 defectives in the entire lot?

Using the hypergeometric distribution with n =5, N =40, k = 3, and x = 1, we
find the probability of obtaining 1 defective to be

3\ (37
(1) (%)
10
(5)
Once again, this plan is not desirable since it detects a bad lot (3 defectives) only
about 30% of the time. A

h(1;40,5,3) = = 0.3011.




112 Chapter 3 Some Probability Distributions

Theorem 3.2:| The mean and variance of the hypergeometric distribution h(x; N, n, k) are

N N-1 N N

MZ@and(ﬂ:N_n n-k(l—k>.

The proof for the mean is shown in Appendix A.12.

Example 3.9:] Let us now reinvestigate Example 2.4 on page 51. The purpose of this example
was to illustrate the notion of a random variable and the corresponding sample
space. In the example, we have a lot of 100 items of which 12 are defective. What
is the probability that in a sample of 10, 3 are defective?

Solution: Using the hypergeometric probability function, we have

(12) (88)
h(3;100,10,12) = ﬁ =0.08. r
10

Example 3.10:| Find the mean and variance of the random variable of Example 3.8.
Solution: Since Example 3.8 was a hypergeometric experiment with N = 40, n = 5, and
k = 3, by Theorem 3.2, we have

6)3) _3

=-——=-=0.375
H="50 ~8 ’
and
40 -5 3 3
2
={——)O)(— 1——) =0.3113.
7 ( 39 )( )(40)( 40)
Taking the square root of 0.3113, we find that ¢ = 0.558. o |

Relationship to the Binomial Distribution

In this chapter, we discuss several important discrete distributions that have wide
applicability. Many of these distributions relate nicely to each other. The beginning
student should gain a clear understanding of these relationships. There is an
interesting relationship between the hypergeometric and the binomial distribution.
As one might expect, if n is small compared to N, the nature of the N items changes
very little in each draw. So a binomial distribution can be used to approximate
the hypergeometric distribution when n is small compared to N. In fact, as a rule
of thumb, the approximation is good when n/N < 0.05.

Thus, the quantity k/N plays the role of the binomial parameter p. As a
result, the binomial distribution may be viewed as a large-population version of the
hypergeometric distribution. The mean and variance then come from the formulas

k k k
ﬂ:npz% and02:npq:n-ﬁ <1—N).
Comparing these formulas with those of Theorem 3.2, we see that the mean is the
same but the variance differs by a correction factor of (N —n)/(N — 1), which is
negligible when n is small relative to N.
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Example 3.11:/ A manufacturer of automobile tires reports that among a shipment of 5000 sent to
a local distributor, 1000 are slightly blemished. If one purchases 10 of these tires at
random from the distributor, what is the probability that exactly 3 are blemished?

Solution: Since N = 5000 is large relative to the sample size n = 10, we shall approximate the
desired probability by using the binomial distribution. The probability of obtaining
a blemished tire is 0.2. Therefore, the probability of obtaining exactly 3 blemished

tires is

h(3;5000, 10, 1000) = b(3; 10,0.2) = 0.8791 — 0.6778 = 0.2013.

The exact probability is 2(3;5000, 10, 1000) = 0.2015. 1

Exercises

3.21 To avoid detection at customs, a traveler places
6 narcotic tablets in a bottle containing 9 vitamin
tablets that are similar in appearance. If the customs
official selects 3 of the tablets at random for analysis,
what is the probability that the traveler will be arrested
for illegal possession of narcotics?

3.22 From a lot of 10 missiles, 4 are selected at ran-
dom and fired. If the lot contains 3 defective missiles
that will not fire, what is the probability that

(a) all 4 will fire?
(b) at most 2 will not fire?

3.23 A company is interested in evaluating its cur-
rent inspection procedure for shipments of 50 identical
items. The procedure is to take a sample of 5 and
pass the shipment if no more than 2 are found to be
defective. What proportion of shipments with 20% de-
fectives will be accepted?

3.24 What is the probability that a waitress will
refuse to serve alcoholic beverages to only 2 minors
if she randomly checks the IDs of 5 among 9 students,
4 of whom are minors?

3.25 Among 150 IRS employees in a large city, only
30 are women. If 10 of the employees are chosen at
random to provide free tax assistance for the residents
of this city, use the binomial approximation to the hy-
pergeometric distribution to find the probability that
at least 3 women are selected.

3.26 A manufacturing company uses an acceptance
scheme on items from a production line before they
are shipped. The plan is a two-stage one. Boxes of 25
items are readied for shipment, and a sample of 3 items
is tested for defectives. If any defectives are found, the
entire box is sent back for 100% screening. If no defec-

tives are found, the box is shipped.

(a) What is the probability that a box containing 3
defectives will be shipped?

(b) What is the probability that a box containing only
1 defective will be sent back for screening?

3.27 Suppose that the manufacturing company of Ex-
ercise 3.26 decides to change its acceptance scheme.
Under the new scheme, an inspector takes 1 item at
random, inspects it, and then replaces it in the box;
a second inspector does likewise. Finally, a third in-
spector goes through the same procedure. The box is
not shipped if any of the three inspectors find a de-
fective. Answer the questions in Exercise 3.26 for this
new plan.

3.28 It is estimated that 4000 of the 10,000 voting
residents of a town are against a new sales tax. If 15
eligible voters are selected at random and asked their
opinion, what is the probability that at most 7 favor
the new tax?

3.29 Biologists doing studies in a particular environ-
ment often tag and release animals in order to estimate
the size of a population or the prevalence of certain
features in the population. Ten animals of a certain
population thought to be extinct (or near extinction)
are caught, tagged, and released in a certain region.
After a period of time, a random sample of 15 of this
type of animal is selected in the region. What is the
probability that 5 of those selected are tagged if there
are 25 animals of this type in the region?

3.30 Find the probability of being dealt a bridge hand
of 13 cards containing 5 spades, 2 hearts, 3 diamonds,
and 3 clubs.

3.31 A government task force suspects that some
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manufacturing companies are in violation of federal
pollution regulations with regard to dumping a certain
type of product. Twenty firms are under suspicion but
not all can be inspected. Suppose that 3 of the firms
are in violation.

(a) What is the probability that inspection of 5 firms
will find no violations?

(b) What is the probability that the plan above will
find two violations?

3.32 A large company has an inspection system for
the batches of small compressors purchased from ven-
dors. A batch typically contains 15 compressors. In the
inspection system, a random sample of 5 is selected and

Chapter 3 Some Probability Distributions

all are tested. Suppose there are 2 faulty compressors
in the batch of 15.

(a) What is the probability that for a given sample
there will be 1 faulty compressor?

(b) What is the probability that inspection will dis-
cover both faulty compressors?

3.33 Every hour, 10,000 cans of soda are filled by a
machine; of these, 300 cans are underfilled. Each hour,
a sample of 30 cans is randomly selected and the num-
ber of ounces of soda per can is checked. Denote by X
the number of cans selected that are underfilled. Find
the probability that at least 1 underfilled can will be
among those sampled.

3.4 Negative Binomial and Geometric Distributions

Let us consider an experiment where the properties are the same as those listed for
a binomial experiment, with the exception that the trials will be repeated until a
fized number of successes occur. Therefore, instead of the probability of x successes
in n trials, where n is fixed, we are now interested in the probability that the kth
success occurs on the xth trial. Experiments of this kind are called negative
binomial experiments.

As an illustration, consider the use of a drug that is known to be effective
in 60% of the cases where it is used. The drug will be considered a success if
it is effective in bringing some degree of relief to the patient. We are interested
in finding the probability that the fifth patient to experience relief is the seventh
patient to receive the drug during a given week. Designating a success by S and a
failure by F', a possible order of achieving the desired result is SFSSSF'S, which
occurs with probability

(0.6)(0.4)(0.6)(0.6)(0.6)(0.4)(0.6) = (0.6)5(0.4)>.

We could list all possible orders by rearranging the F’s and S’s except for the last
outcome, which must be the fifth success. The total number of possible orders is
equal to the number of partitions of the first 6 trials into two groups with 2 failures
assigned to the one group and 4 successes assigned to the other group. This can
be done in (i) = 15 mutually exclusive ways. Hence, if X represents the outcome

on which the fifth success occurs, then

6

PX=17)= <4> (0.6)°(0.4)* = 0.1866.

What Is the Negative Binomial Random Variable?

The number X of trials required to produce k successes in a negative binomial
experiment is called a negative binomial random variable, and its probability
distribution is called the negative binomial distribution. Since its probabilities
depend on the number of successes desired and the probability of a success on a
given trial, we shall denote them by b*(x;k,p). To obtain the general formula
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for b*(x;k,p), consider the probability of a success on the zth trial preceded by
k — 1 successes and x — k failures in some specified order. Since the trials are
independent, we can multiply all the probabilities corresponding to each desired
outcome. Each success occurs with probability p and each failure with probability
q = 1 — p. Therefore, the probability for the specified order ending in success is
pkfqufkp _ pkquk'

The total number of sample points in the experiment ending in a success, after the
occurrence of k— 1 successes and x — k failures in any order, is equal to the number
of partitions of x—1 trials into two groups with k£—1 successes corresponding to one
group and x — k failures corresponding to the other group. This number is specified
by the term (ij% each mutually exclusive and occurring with equal probability

pFq**. We obtain the general formula by multiplying p*q*~* by (ij)

Negative If repeated independent trials can result in a success with probability p and
Binomial a failure with probability ¢ = 1 — p, then the probability distribution of the
Distribution random variable X, the number of the trial on which the kth success occurs, is

-1
b* (x5 k,p) = (i 1)1)’“61””"“, r=kk+1,k+2,....

Example 3.12:] In an NBA (National Basketball Association) championship series, the team that
wins four games out of seven is the winner. Suppose that teams A and B face each
other in the championship games and that team A has probability 0.55 of winning
a game over team B.

(a) What is the probability that team A will win the series in 6 games?
(b) What is the probability that team A will win the series?

(c) If teams A and B were facing each other in a regional playoff series, which
is decided by winning 3 out of 5 games, what is the probability that team A
would win the series?
Solution: (a) b*(6;4,0.55) = (2)0.554(1 —0.55)67* = 0.1853

(b) P(team A wins the championship series) is

b*(4;4,0.55) 4 b*(5:4,0.55) + b*(6;4, 0.55) + b*(7; 4,0.55)
= 0.0915 + 0.1647 + 0.1853 + 0.1668 = 0.6083.

(¢) P(team A wins the playoff) is

b*(3;3,0.55) 4+ b*(4; 3,0.55) + b*(5; 3,0.55)
= 0.1664 + 0.2246 + 0.2021 = 0.5931. A
The negative binomial distribution derives its name from the fact that each
term in the expansion of p*(1 — p)~* corresponds to the values of b*(x;k,p) for
x=k k+1,k+2,.... If we consider the special case of the negative binomial
distribution where k£ = 1, we have a probability distribution for the number of
trials required for a single success. An example would be the tossing of a coin until
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a head occurs. We might be interested in the probability that the first head occurs
on the fourth toss. The negative binomial distribution reduces to the form

b*(2;1,p) = pg” b, x=1,2,3,....

Since the successive terms constitute a geometric progression, it is customary to
refer to this special case as the geometric distribution and denote its values by

g(z;p).

Geometric  If repeated independent trials can result in a success with probability p and
Distribution  a failure with probability ¢ = 1 — p, then the probability distribution of the
random variable X, the number of the trial on which the first success occurs, is

glz;p) =pg* ™, r=1,2,3,....

Example 3.13:1 For a certain manufacturing process, it is known that, on the average, 1 in every
100 items is defective. What is the probability that the fifth item inspected is the
first defective item found?

Solution: Using the geometric distribution with x =5 and p = 0.01, we have

9(5;0.01) = (0.01)(0.99)* = 0.0096. 1

Example 3.14:1 At a busy time, a telephone exchange is very near capacity, so callers have difficulty
placing their calls. It may be of interest to know the number of attempts necessary
in order to make a connection. Suppose that we let p = 0.05 be the probability
of a connection during a busy time. We are interested in knowing the probability
that 5 attempts are necessary for a successful call.

Solution: Using the geometric distribution with z =5 and p = 0.05 yields

P(X =) = ¢(5;0.05) = (0.05)(0.95)* = 0.041. o |

Quite often, in applications dealing with the geometric distribution, the mean

and variance are important. For example, in Example 3.14, the expected number

of calls necessary to make a connection is quite important. The following theorem
states without proof the mean and variance of the geometric distribution.

Theorem 3.3:| The mean and variance of a random variable following the geometric distribution

are

Applications of Negative Binomial and Geometric Distributions

Areas of application for the negative binomial and geometric distributions become
obvious when one focuses on the examples in this section and the exercises devoted
to these distributions at the end of Section 3.5. In the case of the geometric
distribution, Example 3.14 depicts a situation where engineers or managers are
attempting to determine how inefficient a telephone exchange system is during
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busy times. Clearly, in this case, trials occurring prior to a success represent a
cost. If there is a high probability of several attempts being required prior to
making a connection, then plans should be made to redesign the system.

Applications of the negative binomial distribution are similar in nature. Sup-
pose attempts are costly in some sense and are occurring in sequence. A high
probability of needing a “large” number of attempts to experience a fixed number
of successes is not beneficial to the scientist or engineer. Consider the scenarios of
Review Exercises 3.109 and 3.110. In Review Exercise 3.110, the oil driller defines
a certain level of success from sequentially drilling in different locations for oil. If
only 6 attempts have been made at the point where the second success is experi-
enced, the profits appear to dominate substantially the investment incurred by the
drilling.

3.5 Poisson Distribution and the Poisson Process

Experiments yielding numerical values of a random variable X, the number of
outcomes occurring during a given time interval or in a specified region, are called
Poisson experiments. The given time interval may be of any length, such as a
minute, a day, a week, a month, or even a year. For example, a Poisson experiment
can generate observations for the random variable X representing the number of
telephone calls received per hour by an office, the number of days school is closed
due to snow during the winter, or the number of games postponed due to rain
during a baseball season. The specified region could be a line segment, an area,
a volume, or perhaps a piece of material. In such instances, X might represent
the number of field mice per acre, the number of bacteria in a given culture, or
the number of typing errors per page. A Poisson experiment is derived from the
Poisson process and possesses the following properties.

Properties of the Poisson Process

1. The number of outcomes occurring in one time interval or specified region of
space is independent of the number that occur in any other disjoint time in-
terval or region. In this sense we say that the Poisson process has no memory.

2. The probability that a single outcome will occur during a very short time
interval or in a small region is proportional to the length of the time interval
or the size of the region and does not depend on the number of outcomes
occurring outside this time interval or region.

3. The probability that more than one outcome will occur in such a short time
interval or fall in such a small region is negligible.

The number X of outcomes occurring during a Poisson experiment is called a
Poisson random variable, and its probability distribution is called the Poisson
distribution. The mean number of outcomes is computed from p = At, where
t is the specific “time,” “distance,” “area,” or “volume” of interest. Since the
probabilities depend on A, the rate of occurrence of outcomes, we shall denote
them by p(x; At). The derivation of the formula for p(x; At), based on the three
properties of a Poisson process listed above, is beyond the scope of this book. The
following formula is used for computing Poisson probabilities.
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Poisson  The probability distribution of the Poisson random variable X, representing
Distribution  the number of outcomes occurring in a given time interval or specified region
denoted by ¢, is
e_>‘t( )\t)x
p(x; At) = — r=0,1,2,...,
x!

where A is the average number of outcomes per unit time, distance, area, or
volume and e = 2.71828.. . ..

Table A.2 contains Poisson probability sums,

P(r; At) pr)\t

for selected values of At ranging from 0.1 to 18.0. We illustrate the use of this table
with the following two examples.

Example 3.15:] During a laboratory experiment, the average number of radioactive particles pass-
ing through a counter in 1 millisecond is 4. What is the probability that 6 particles
enter the counter in a given millisecond?

Solution: Using the Poisson distribution with z = 6 and At = 4 and referring to Table A.2,
we have
—446
p(64) Zp (2:4) Z (z;4) = 0.8893 — 0.7851 = 0.1042.
=0 o |

Example 3.16:‘ Ten is the average number of oil tankers arriving each day at a certain port. The
facilities at the port can handle at most 15 tankers per day. What is the probability
that on a given day tankers have to be turned away?

Solution: Let X be the number of tankers arriving each day. Then, using Table A.2, we have

15

P(X>15)=1-P(X <15)=1- Zp(x; 10) =1 —0.9513 = 0.0487.

=0 o |

Like the binomial distribution, the Poisson distribution is used for quality con-
trol, quality assurance, and acceptance sampling. In addition, certain important
continuous distributions used in reliability theory and queuing theory depend on
the Poisson process. Some of these distributions are discussed and developed later
in the chapter. The proof of the following theorem concerning the Poisson random
variable is given in Appendix A.13.

Theorem 3.4: | Both the mean and the variance of the Poisson distribution p(x; At) are At.

Nature of the Poisson Probability Function

Like so many discrete and continuous distributions, the form of the Poisson distri-
bution becomes more and more symmetric, even bell-shaped, as the mean grows
large. Figure 3.1 illustrates this, showing plots of the probability function for
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pw =01, 4 =2, and 4 = 5. Note the nearness to symmetry when p becomes
as large as 5. A similar condition exists for the binomial distribution, as will be
illustrated later in the text.

1.0 0.30 0.30
- w=od ) u=2 u=5s
0.75
0.20 0.20
X 05 S S .
0.10 0.10
0.25
0 —|— X 0 X 0 X
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Figure 3.1: Poisson density functions for different means.

Approximation of Binomial Distribution by a Poisson Distribution

Theorem 3.5:

It should be evident from the three principles of the Poisson process that the
Poisson distribution is related to the binomial distribution. Although the Poisson
usually finds applications in space and time problems, as illustrated by Examples
3.15 and 3.16, it can be viewed as a limiting form of the binomial distribution. In
the case of the binomial, if n is quite large and p is small, the conditions begin to
simulate the continuous space or time implications of the Poisson process. The in-
dependence among Bernoulli trials in the binomial case is consistent with principle
2 of the Poisson process. Allowing the parameter p to be close to 0 relates to prin-
ciple 3 of the Poisson process. Indeed, if n is large and p is close to 0, the Poisson
distribution can be used, with p© = np, to approximate binomial probabilities. If
p is close to 1, we can still use the Poisson distribution to approximate binomial
probabilities by interchanging what we have defined to be a success and a failure,
thereby changing p to a value close to 0.

Let X be a binomial random variable with probability distribution b(z;n,p).
When n — oo, p — 0, and np s 1 remains constant,

b(z;n,p) "= pla; p).

Example 3.17:

In a certain industrial facility, accidents occur infrequently. It is known that the
probability of an accident on any given day is 0.005 and accidents are independent
of each other.
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(a) What is the probability that in any given period of 400 days there will be an

accident on one day?

(b) What is the probability that there are at most three days with an accident?

Solution: Let X be a binomial random variable with n = 400 and p = 0.005. Thus, np = 2.
Using the Poisson approximation,

(a) P(X =1)=e22! =0.271 and

(b) P(X <3) =
=0

3
e=22% /x| = 0.857.

Example 3.18:‘ In a manufacturing process where glass products are made, defects or bubbles

occur, occasionally rendering the piece undesirable for marketing.

It is known

that, on average, 1 in every 1000 of these items produced has one or more bubbles.
What is the probability that a random sample of 8000 will yield fewer than 7 items

possessing bubbles?
Solution:

This is essentially a binomial experiment with n = 8000 and p = 0.001. Since

p is very close to 0 and n is quite large, we shall approximate with the Poisson

distribution using

M:

(8000)(0.001) = 8.

Hence, if X represents the number of bubbles, we have

6

P(X <T) =" b(x;8000,0.001) ~ p(;8) = 0.3134.

z=0

Exercises

3.34 A scientist inoculates mice, one at a time, with
a disease germ until he finds 2 that have contracted the
disease. If the probability of contracting the disease is
1/6, what is the probability that 8 mice are required?

3.35 Three people toss a fair coin and the odd one
out pays for coffee. If the coins all turn up the same,
they are tossed again. Find the probability that fewer
than 4 tosses are needed.

3.36 According to a study published by a group of
University of Massachusetts sociologists, about two-
thirds of the 20 million persons in this country who
take Valium are women. Assuming this figure to be a
valid estimate, find the probability that on a given day
the fifth prescription written by a doctor for Valium is

(a) the first prescribing Valium for a woman;
(b) the third prescribing Valium for a woman.

3.37 An inventory study determines that, on aver-
age, demands for a particular item at a warehouse are
made 5 times per day. What is the probability that on
a given day this item is requested

(a) more than 5 times?
(b) not at all?

3.38 On average, 3 traffic accidents per month occur
at a certain intersection. What is the probability that
in any given month at this intersection

(a) exactly 5 accidents will occur?
(b) fewer than 3 accidents will occur?
(c) at least 2 accidents will occur?

3.39 The probability that a student pilot passes the
written test for a private pilot’s license is 0.7. Find the
probability that a given student will pass the test

(a) on the third try;

(b) before the fourth try.

3.40 A certain area of the eastern United States is,
on average, hit by 6 hurricanes a year. Find the prob-
ability that in a given year that area will be hit by

(a) fewer than 4 hurricanes;
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(b) anywhere from 6 to 8 hurricanes.

3.41 On average, a textbook author makes two word-
processing errors per page on the first draft of her text-
book. What is the probability that on the next page
she will make

(a) 4 or more errors?
(b) no errors?

3.42 The probability that a student at a local high
school fails the screening test for scoliosis (curvature
of the spine) is known to be 0.004. Of the next 1875
students at the school who are screened for scoliosis,
find the probability that

(a) fewer than 5 fail the test;
(b) 8,9, or 10 fail the test.

3.43 Suppose that, on average, 1 person in 1000
makes a numerical error in preparing his or her income
tax return. If 10,000 returns are selected at random
and examined, find the probability that 6, 7, or 8 of
them contain an error.

3.44 Find the mean and variance of the random vari-
able X in Exercise 3.43, representing the number of
persons among 10,000 who make an error in preparing
their income tax returns.

3.45 Find the mean and variance of the random vari-
able X in Exercise 3.40, representing the number of
hurricanes per year to hit a certain area of the eastern
United States.

3.46 Changes in airport procedures require consid-
erable planning. Arrival rates of aircraft are impor-
tant factors that must be taken into account. Suppose
small aircraft arrive at a certain airport, according to
a Poisson process, at the rate of 6 per hour. Thus, the
Poisson parameter for arrivals over a period of hours is
n = 6t.

(a) What is the probability that exactly 4 small air-

craft arrive during a 1-hour period?

(b) What is the probability that at least 4 arrive during
a 1-hour period?

(c) If we define a working day as 12 hours, what is
the probability that at least 75 small aircraft ar-
rive during a working day?

3.47 An automobile manufacturer is concerned about
a fault in the braking mechanism of a particular model.
The fault can, on rare occasions, cause a catastrophe at
high speed. The distribution of the number of cars per
year that will experience the catastrophe is a Poisson
random variable with A = 5.

(a) What is the probability that at most 3 cars per year
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will experience a catastrophe?

b) What is the probability that more than 1 car per
y
year will experience a catastrophe?

3.48 Consider Exercise 3.42. What is the mean num-
ber of students who fail the test?

3.49 The number of customers arriving per hour at a
certain automobile service facility is assumed to follow
a Poisson distribution with mean A\ = 7.

(a) Compute the probability that more than 10 cus-
tomers will arrive in a 2-hour period.

(b) What is the mean number of arrivals during a
2-hour period?

3.50 A company purchases large lots of a certain kind
of electronic device. A method is used that rejects a
lot if 2 or more defective units are found in a random
sample of 100 units.

(a) What is the mean number of defective units found
in a sample of 100 units if the lot is 1% defective?

(b) What is the variance?

3.51 The probability that a person will die when he
or she contracts a virus infection is 0.001. Of the next
4000 people infected, what is the mean number who
will die?

3.52 Potholes on a highway can be a serious problem
and are in constant need of repair. With a particular
type of terrain and make of concrete, past experience
suggests that there are, on the average, 2 potholes per
mile after a certain amount of usage. It is assumed
that the Poisson process applies to the random vari-
able “number of potholes.”

(a) What is the probability that no more than one pot-
hole will appear in a section of 1 mile?

(b) What is the probability that no more than 4 pot-
holes will occur in a given section of 5 miles?

3.53 For a certain type of copper wire, it is known
that, on the average, 1.5 flaws occur per millimeter.
Assuming that the number of flaws is a Poisson random
variable, what is the probability that no flaws occur in
a certain portion of wire of length 5 millimeters? What
is the mean number of flaws in a portion of length 5
millimeters?

3.54 It is known that 3% of people whose luggage
is screened at an airport have questionable objects in
their luggage. What is the probability that a string of
15 people pass through screening successfully before an
individual is caught with a questionable object? What
is the expected number of people to pass through be-
fore an individual is stopped?



122

3.55 Hospital administrators in large cities anguish
about traffic in emergency rooms. At a particular hos-
pital in a large city, the staff on hand cannot accom-
modate the patient traffic if there are more than 10
emergency cases in a given hour. It is assumed that
patient arrival follows a Poisson process, and historical
data suggest that, on the average, 5 emergencies arrive
per hour.

(a) What is the probability that in a given hour the
staff cannot accommodate the patient traffic?

Chapter 3 Some Probability Distributions

(b) What is the probability that more than 20 emer-
gencies arrive during a 3-hour shift?

3.56 Computer technology has produced an environ-
ment in which robots operate with the use of micro-
processors. The probability that a robot fails during
any 6-hour shift is 0.10. What is the probability that
a robot will operate through at most 5 shifts before it
fails?

3.6 Continuous Uniform Distribution

One of the simplest continuous distributions in all of statistics is the continuous
uniform distribution. This distribution is characterized by a density function
that is “flat,” and thus the probability is uniform in a closed interval, say [A, BJ.
Although applications of the continuous uniform distribution are not as abundant
as those for other distributions discussed in this chapter, it is appropriate for the
novice to begin this introduction to continuous distributions with the uniform

distribution.

Uniform

Distribution  terval [A, B] is

f(x;A,B)—{

The density function of the continuous uniform random variable X on the in-

1
B_A> ASI’SB,

0, elsewhere.

The density function forms a rectangle with base B— A and constant height

1
B—-A"

As a result, the uniform distribution is often called the rectangular distribution.
Note, however, that the interval may not always be closed: [A, B]. It can be (A, B)
as well. The density function for a uniform random variable on the interval [1, 3]

is shown in Figure 3.2.

£(x)

0

T g S —-

wWFk—-———-——-

Figure 3.2: The density function for a random variable on the interval [1, 3].

Probabilities are simple to calculate for the uniform distribution because of the
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simple nature of the density function. However, note that the application of this
distribution is based on the assumption that the probability of falling in an interval
of fixed length within [A, B] is constant.

Example 3.19:

Solution:

Theorem 3.6:

Suppose that a large conference room at a certain company can be reserved for
no more than 4 hours. Both long and short conferences occur quite often. In fact,
it can be assumed that the length X of a conference has a uniform distribution on
the interval [0, 4].

(a) What is the probability density function?
(b) What is the probability that any given conference lasts at least 3 hours?

(a) The appropriate density function for the uniformly distributed random vari-
able X in this situation is

1 o<z<4
— 4’ —_ —_ b
/(@) { 0, elsewhere.
(b) P[X >3] = [, L de=1. iy

The mean and variance of the uniform distribution are

_A+B 2_(B—A)2
M_72 and o =

The proofs of the theorems are left to the reader. See Exercise 3.57 on page 135.

3.7 Normal Distribution

The most important continuous probability distribution in the entire field of statis-
tics is the mormal distribution. Its graph, called the normal curve, is the
bell-shaped curve of Figure 3.3, which approximately describes many phenomena
that occur in nature, industry, and research. For example, physical measurements
in areas such as meteorological experiments, rainfall studies, and measurements
of manufactured parts are often more than adequately explained with a normal
distribution. In addition, errors in scientific measurements are extremely well ap-
proximated by a normal distribution. In 1733, Abraham DeMoivre developed the
mathematical equation of the normal curve. It provided a basis on which much
of the theory of inductive statistics is founded. The normal distribution is of-
ten referred to as the Gaussian distribution, in honor of Karl Friedrich Gauss
(1777-1855), who also derived its equation from a study of errors in repeated mea-
surements of the same quantity.

A continuous random variable X having the bell-shaped distribution of Figure
3.3 is called a normal random variable. The mathematical equation for the
probability distribution of the normal variable depends on the two parameters pu
and o, its mean and standard deviation, respectively. Hence, we denote the values
of the density of X by n(z; u,0).
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t------l(---

Figure 3.3: The normal curve.

Normal  The density of the normal random variable X, with mean p and variance o2, i

Distribution

S

1

2ro

S ()2
n(x;p, o) = e @ o < p < o0,

where m = 3.14159... and e = 2.71828 . ...

Once p and o are specified, the normal curve is completely determined. For exam-
ple, if © = 50 and o = 5, then the ordinates n(x; 50, 5) can be computed for various
values of z and the curve drawn. In Figure 3.4, we have sketched two normal curves
having the same standard deviation but different means. The two curves are iden-
tical in form but are centered at different positions along the horizontal axis.

Hy Ha

Figure 3.4: Normal curves with p; < ps and oy = os.

In Figure 3.5, we have sketched two normal curves with the same mean but
different standard deviations. This time we see that the two curves are centered
at exactly the same position on the horizontal axis, but the curve with the larger
standard deviation is lower and spreads out farther. Remember that the area under
a probability curve must be equal to 1, and therefore the more variable the set of
observations, the lower and wider the corresponding curve will be.

Figure 3.6 shows two normal curves having different means and different stan-
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Hy = H2

Figure 3.5: Normal curves with pu; = po and o1 < 09.

dard deviations. Clearly, they are centered at different positions on the horizontal
axis and their shapes reflect the two different values of o.

|
|
|
|
|
|
i
|
Hi Hz
Figure 3.6: Normal curves with u; < po and o7 < 09.

Based on inspection of Figures 3.3 through 3.6 and examination of the first
and second derivatives of n(x; u, o), we list the following properties of the normal
curve:

1. The mode, which is the point on the horizontal axis where the curve is a
maximum, occurs at r = p.

2. The curve is symmetric about a vertical axis through the mean p.

3. The curve has its points of inflection at = p 4 o7 it is concave downward if
u—o0 <X < pu+ o and is concave upward otherwise.

4. The normal curve approaches the horizontal axis asymptotically as we proceed
in either direction away from the mean.

5. The total area under the curve and above the horizontal axis is equal to 1.
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Theorem 3.7:| The mean and variance of n(z;u,o) are u and o2, respectively. Hence, the

standard deviation is o.

The proof of the theorem is left to the reader.

Many random variables have probability distributions that can be described
adequately by the normal curve once p and o2 are specified. In this chapter, we
shall assume that these two parameters are known, perhaps from previous inves-
tigations. Later, we shall make statistical inferences when p and o2 are unknown
and have been estimated from the available experimental data.

We pointed out earlier the role that the normal distribution plays as a reason-
able approximation of scientific variables in real-life experiments. There are other
applications of the normal distribution that the reader will appreciate as he or she
moves on in the book. The normal distribution finds enormous application as a
limiting distribution. Under certain conditions, the normal distribution provides a
good continuous approximation to the binomial and hypergeometric distributions.
The case of the approximation to the binomial is covered in Section 3.10. In Chap-
ter 4, the reader will learn about sampling distributions. It turns out that the
limiting distribution of sample averages is normal. This provides a broad base
for statistical inference that proves very valuable to the data analyst interested in
estimation and hypothesis testing.

In Section 3.8, examples demonstrate the use of tables of the normal distribu-
tion. Section 3.9 follows with examples of applications of the normal distribution.

3.8 Areas under the Normal Curve

The curve of any continuous probability distribution or density function is con-
structed so that the area under the curve bounded by the two ordinates © = x;
and x = o equals the probability that the random variable X assumes a value
between x = x; and = = x3. Thus, for the normal curve in Figure 3.7,

*2 ]. T2 1 2
Pl < X <ux9) = / n(z;p, o) doe = / e 22Ty
o1 2n0 Jz,
is represented by the area of the shaded region.

In Figures 3.4, 3.5, and 3.6 we saw how the normal curve is dependent on
the mean and the standard deviation of the distribution under investigation. The
area under the curve between any two ordinates must then also depend on the
values p and o. This is evident in Figure 3.8, where we have shaded regions cor-
responding to P(z1 < X < z3) for two curves with different means and variances.
P(z1 < X < x2), where X is the random variable describing distribution A, is
indicated by the shaded area below the curve of A. If X is the random variable de-
scribing distribution B, then P(z; < X < x3) is given by the entire shaded region.
Obviously, the two shaded regions are different in size; therefore, the probability
associated with each distribution will be different for the two given values of X.

There are many types of statistical software that can be used in calculating
areas under the normal curve. The difficulty encountered in solving integrals of
normal density functions necessitates the tabulation of normal curve areas for quick
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Definition 3.1:
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Figure 3.7: P(z1 < X < ) = area of the shaded region.

Xy X5

Figure 3.8: P(x; < X < x9) for different normal curves.

reference. However, it would be a hopeless task to attempt to set up separate tables
for every conceivable value of p and o. Fortunately, we are able to transform all
the observations of any normal random variable X into a new set of observations
of a normal random variable Z with mean 0 and variance 1. This can be done by
means of the transformation
z-X_r
o

Whenever X assumes a value z, the corresponding value of Z is given by z =
(x — p)/o. Therefore, if X falls between the values x = 1 and & = g, the
random variable Z will fall between the corresponding values z; = (z1 — )/ and
29 = (g — p)/o. Consequently, we may write

! / ) e 5T gy = L / i e 3% dz
270 J, Vo Jz,

zZ2
= / n(z;0,1) dz = P(z1 < Z < z3),

21

P(JZ1<X<JI2)=

where Z is seen to be a normal random variable with mean 0 and variance 1.

The distribution of a normal random variable with mean 0 and variance 1 is called
a standard normal distribution.

The original and transformed distributions are illustrated in Figure 3.9. Since
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all the values of X falling between x; and x5 have corresponding z values between
z1 and zs, the area under the X-curve between the ordinates © = x1 and z = z5 in
Figure 3.9 equals the area under the Z-curve between the transformed ordinates
z =z and z = zo.
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|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
0

X4 Xy U Z 22
Figure 3.9: The original and transformed normal distributions.

We have now reduced the required number of tables of normal-curve areas to
one, that of the standard normal distribution. Table A.3 indicates the area under
the standard normal curve corresponding to P(Z < z) for values of z ranging from
—3.49 to 3.49. To illustrate the use of this table, let us find the probability that Z is
less than 1.74. First, we locate a value of z equal to 1.7 in the left column; then we
move across the row to the column under 0.04, where we read 0.9591. Therefore,
P(Z < 1.74) = 0.9591. To find a z value corresponding to a given probability, the
process is reversed. For example, the z value leaving an area of 0.2148 under the
curve to the left of z is seen to be —0.79.

Example 3.20:‘ Given a standard normal distribution, find the area under the curve that lies

(a) to the right of z = 1.84 and
(b) between z = —1.97 and z = 0.86.

Solution: See Figure 3.10 for the specific areas.

(a) The area in Figure 3.10(a) to the right of z = 1.84 is equal to 1 minus the
area in Table A.3 to the left of z = 1.84, namely, 1 — 0.9671 = 0.0329.

(b) The area in Figure 3.10(b) between z = —1.97 and z = 0.86 is equal to the
area to the left of 2 = 0.86 minus the area to the left of 2 = —1.97. From
Table A.3 we find the desired area to be 0.8051 — 0.0244 = 0.7807. o |

Example 3.21:‘ Given a standard normal distribution, find the value of k such that

(a) P(Z > k) =0.3015 and
(b) P(k < Z < —0.18) = 0.4197.
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Figure 3.10: Areas for Example 3.20.

Solution: Distributions and the desired areas are shown in Figure 3.11.

(a) In Figure 3.11(a), we see that the k value leaving an area of 0.3015 to the
right must then leave an area of 0.6985 to the left. From Table A.3 it follows
that k = 0.52.

(b) From Table A.3 we note that the total area to the left of —0.18 is equal to
0.4286. In Figure 3.11(b), we see that the area between k and —0.18 is 0.4197,
so the area to the left of k£ must be 0.4286 — 0.4197 = 0.0089. Hence, from

Table A.3, we have k = —2.37. . |

I

I

I

I

I

I

I

I

I

I

:

" 03015 0.4197]

0 k X K —0.18 X

(a) (b)

Figure 3.11: Areas for Example 3.21.

Example 3.22:‘ Given a random variable X having a normal distribution with p = 50 and o = 10,
find the probability that X assumes a value between 45 and 62.
Solution: The z values corresponding to x1 = 45 and x5 = 62 are
~45-50 05 and 20 — 62 —50
T ST

1.2.

21

Therefore,
P45 < X <62)=P(-0.5< Z < 1.2).
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-0.5 1.2

Figure 3.12: Area for Example 3.22.

P(—0.5 < Z < 1.2) is shown by the area of the shaded region in Figure 3.12. This
area may be found by subtracting the area to the left of the ordinate z = —0.5
from the entire area to the left of z = 1.2. Using Table A.3, we have

P45 <X <62)=P(-05<Z<12)=P(Z<1.2)-P(Z < —-0.5)
= 0.8849 — 0.3085 = 0.5764. |

Example 3.23:‘ Given that X has a normal distribution with y = 300 and ¢ = 50, find the
probability that X assumes a value greater than 362.

Solution: The normal probability distribution with the desired area shaded is shown in
Figure 3.13. To find P(X > 362), we need to evaluate the area under the normal
curve to the right of z = 362. This can be done by transforming z = 362 to the
corresponding z value, obtaining the area to the left of z from Table A.3, and then
subtracting this area from 1. We find that

L 362 — 300
- 50

=1.24.

Hence,

P(X >362) = P(Z >124) =1— P(Z < 1.24) = 1 — 0.8925 = 0.1075.

300 362

Figure 3.13: Area for Example 3.23.
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If the random variable has a normal distribution, the z values corresponding to
x1 = p — 20 and z9 = p + 20 are easily computed to be
~90) — 2) —
Lm0 g, E20)
o o

=2

Hence,

Plp—20 <X <p+20)=P(-2<72<2)=PZ<2)—P(Z<-2)
=0.9772 — 0.0228 = 0.9544.

Using the Normal Curve in Reverse

Sometimes, we are required to find the value of z corresponding to a specified
probability that falls between values listed in Table A.3 (see Example 3.24). For
convenience, we shall always choose the z value corresponding to the tabular prob-
ability that comes closest to the specified probability.

The preceding two examples were solved by going first from a value of x to
a z value and then computing the desired area. In Example 3.24, we reverse the
process and begin with a known area or probability, find the z value, and then
determine x by rearranging the formula

T—H

z= to give x =02+ L.
o

Example 3.24:‘ Given a normal distribution with p = 40 and o = 6, find the value of x that has
(a) 45% of the area to the left and
(b) 14% of the area to the right.

(b)

Figure 3.14: Areas for Example 3.24.
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Solution: (a) An area of 0.45 to the left of the desired x value is shaded in Figure 3.14(a).
We require a z value that leaves an area of 0.45 to the left. From Table A.3
we find P(Z < —0.13) = 0.45, so the desired z value is —0.13. Hence,

z = (6)(—0.13) 4 40 = 39.22.
(b) In Figure 3.14(b), we shade an area equal to 0.14 to the right of the desired
x value. This time we require a z value that leaves 0.14 of the area to the

right and hence an area of 0.86 to the left. Again, from Table A.3, we find
P(Z < 1.08) = 0.86, so the desired z value is 1.08 and

z = (6)(1.08) + 40 = 46.48. A

Applications of the Normal Distribution

Some of the many problems for which the normal distribution is applicable are
treated in the following examples. The use of the normal curve to approximate
binomial probabilities is considered in Section 3.10.

Example 3.25:1 A certain type of storage battery lasts, on average, 3.0 years with a standard

deviation of 0.5 year. Assuming that battery life is normally distributed, find the
probability that a given battery will last less than 2.3 years.

Solution: First construct a diagram such as Figure 3.15, showing the given distribution of
battery lives and the desired area. To find P(X < 2.3), we need to evaluate the
area under the normal curve to the left of 2.3. This is accomplished by finding the
area to the left of the corresponding z value. Hence, we find that

2.3 —
B33y,
0.5

and then, using Table A.3, we have

z

P(X <2.3)=P(Z < —1.4) = 0.0808. .

- ——— =

2.3 778 800 834

Figure 3.15: Area for Example 3.25. Figure 3.16: Area for Example 3.26.

Example 3.26:1 An electrical firm manufactures light bulbs that have a life, before burn-out, that

is normally distributed with mean equal to 800 hours and a standard deviation of
40 hours. Find the probability that a bulb burns between 778 and 834 hours.
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Solution: The distribution of light bulb life is illustrated in Figure 3.16. The z values corre-
sponding to x1 = 778 and x5 = 834 are

_ 4—
TS0 g and = B0 g5

A1 40 40

Hence,

P(778 < X < 834) = P(—0.55 < Z < 0.85) = P(Z < 0.85) — P(Z < —0.55)
= 0.8023 — 0.2912 = 0.5111. 1

Example 3.27 :‘ In an industrial process, the diameter of a ball bearing is an important measure-
ment. The buyer sets specifications for the diameter to be 3.0 + 0.01 cm. The
implication is that no part falling outside these specifications will be accepted. It
is known that in the process the diameter of a ball bearing has a normal distribu-
tion with mean p = 3.0 and standard deviation o = 0.005. On average, how many
manufactured ball bearings will be scrapped?

Solution: The distribution of diameters is illustrated by Figure 3.17. The values correspond-
ing to the specification limits are r1 = 2.99 and x5 = 3.01. The corresponding z
values are

2.99 — 3.0
=20 90and = o 200
A1 0.005 0 and 22 0.005

.01 —3.
30 30=+2.0.

Hence,
P(2.99 < X <3.01) = P(-2.0< Z <2.0).

From Table A.3, P(Z < —2.0) = 0.0228. Due to symmetry of the normal distribu-
tion, we find that
P(Z < —2.0)+ P(Z > 2.0) = 2(0.0228) = 0.0456.

As a result, it is anticipated that, on average, 4.56% of manufactured ball bearings
will be scrapped. A

2.99 3.0 3.01 1.108 1.500 1.892

Figure 3.17: Area for Example 3.27. Figure 3.18: Specifications for Example 3.28.

Example 3.28:] Gauges are used to reject all components for which a certain dimension is not
within the specification 1.50 + d. It is known that this measurement is normally
distributed with mean 1.50 and standard deviation 0.2. Determine the value d
such that the specifications “cover” 95% of the measurements.
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Solution: From Table A.3 we know that
P(—1.96 < Z < 1.96) = 0.95.

Therefore,

(1.50 + d) — 1.50
0.2 ’

1.96 =

from which we obtain
d=(0.2)(1.96) = 0.392.

An illustration of the specifications is shown in Figure 3.18. . |

Example 3.29:1 A certain machine makes electrical resistors having a mean resistance of 40 ohms
and a standard deviation of 2 ohms. Assuming that the resistance follows a normal
distribution and can be measured to any degree of accuracy, what percentage of
resistors will have a resistance exceeding 43 ohms?

Solution: A percentage is found by multiplying the relative frequency by 100%. Since the
relative frequency for an interval is equal to the probability of a value falling in the
interval, we must find the area to the right of x = 43 in Figure 3.19. This can be
done by transforming x = 43 to the corresponding z value, obtaining the area to
the left of z from Table A.3, and then subtracting this area from 1. We find

43 — 40
z = =

1.5.
5 )

Therefore,
P(X >43)=P(Z>15)=1—P(Z < 1.5) =1-0.9332 = 0.0668.

Hence, 6.68% of the resistors will have a resistance exceeding 43 ohms. A

40 43 40 43.5

Figure 3.19: Area for Example 3.29. Figure 3.20: Area for Example 3.30.

Example 3.30:| Find the percentage of resistances exceeding 43 ohms for Example 3.29 if resistance
is measured to the nearest ohm.

Solution: This problem differs from that in Example 3.29 in that we now assign a measure-

ment of 43 ohms to all resistors whose resistances are greater than 42.5 and less
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than 43.5. We are actually approximating a discrete distribution by means of a
continuous normal distribution. The required area is the region shaded to the right
of 43.5 in Figure 3.20. We now find that

43.5 — 40
2= —"

= 1.75.
2

Hence,
P(X >435)=P(Z > 1.75)=1— P(Z < 1.75) =1 — 0.9599 = 0.0401.

Therefore, 4.01% of the resistances exceed 43 ohms when measured to the nearest
ohm. The difference 6.68% — 4.01% = 2.67% between this answer and that of
Example 3.29 represents all those resistance values greater than 43 and less than

43.5 that are now being recorded as 43 ohms. . |

Exercises

3.57 Given a continuous uniform distribution, show
that

(a) p=

2 _ (B—A)?
(b) 0% = =5~

ALB and

3.58 Suppose X follows a continuous uniform distri-
bution from 1 to 5. Determine the conditional proba-
bility P(X > 2.5 | X <4).

3.59 The daily amount of coffee, in liters, dispensed
by a machine located in an airport lobby is a random
variable X having a continuous uniform distribution
with A = 7 and B = 10. Find the probability that
on a given day the amount of coffee dispensed by this
machine will be

(a) at most 8.8 liters;
(b) more than 7.4 liters but less than 9.5 liters;
(c) at least 8.5 liters.

3.60 Find the value of z if the area under a standard
normal curve

(a) to the right of z is 0.3622;

(b) to the left of z is 0.1131;

(c) between 0 and z, with z > 0, is 0.4838;
(d) between —z and z, with z > 0, is 0.9500.

3.61 Given a standard normal distribution, find the
area under the curve that lies

(a) to the left of z = —1.39;
(b) to the right of z = 1.96;
(c) between z = —2.16 and z = —0.65;

(d) to the left of z = 1.43;
(e) to the right of z = —0.89;
(f) between z = —0.48 and z = 1.74.

3.62 Given a standard normal distribution, find the
value of k£ such that

(a) P(Z > k) = 0.2946;
(b) P(Z < k) = 0.0427;
(c) P(—0.93 < Z < k) = 0.7235.

3.63 Given the normally distributed variable X with
mean 18 and standard deviation 2.5, find

(a) P(X < 15);

(b) the value of k such that P(X < k) = 0.2236;
(c) the value of k such that P(X > k) = 0.1814;
(d) P(17T < X < 21).

3.64 Given a normal distribution with g = 30 and

o =6, find

(a) the normal curve area to the right of x = 17;

(b) the normal curve area to the left of x = 22;

(c) the normal curve area between z = 32 and = = 41;

(d) the value of = that has 80% of the normal curve
area to the left;

(e) the two values of = that contain the middle 75% of
the normal curve area.

3.65 A soft-drink machine is regulated so that it dis-
charges an average of 200 milliliters per cup. If the
amount of drink is normally distributed with a stan-
dard deviation equal to 15 milliliters,
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(a) what fraction of the cups will contain more than
224 milliliters?

(b) what is the probability that a cup contains between
191 and 209 milliliters?

(c) how many cups will probably overflow if 230-
milliliter cups are used for the next 1000 drinks?

(d) below what value do we get the smallest 25% of the
drinks?

3.66 The loaves of rye bread distributed to local
stores by a certain bakery have an average length of 30
centimeters and a standard deviation of 2 centimeters.
Assuming that the lengths are normally distributed,
what percentage of the loaves are

(a) longer than 31.7 centimeters?
(b) between 29.3 and 33.5 centimeters in length?
(c) shorter than 25.5 centimeters?

3.67 A research scientist reports that mice will live an
average of 40 months when their diets are sharply re-
stricted and then enriched with vitamins and proteins.
Assuming that the lifetimes of such mice are normally
distributed with a standard deviation of 6.3 months,
find the probability that a given mouse will live

(a) more than 32 months;
(b) less than 28 months;
(c) between 37 and 49 months.

3.68 The finished inside diameter of a piston ring is
normally distributed with a mean of 10 centimeters and
a standard deviation of 0.03 centimeter.

(a) What proportion of rings will have inside diameters
exceeding 10.075 centimeters?

(b) What is the probability that a piston ring will have
an inside diameter between 9.97 and 10.03 centime-
ters?

(c) Below what value of inside diameter will 15% of the
piston rings fall?

3.69 A lawyer commutes daily from his suburban
home to his midtown office. The average time for a
one-way trip is 24 minutes, with a standard deviation
of 3.8 minutes. Assume the trip times to be normally
distributed.

(a) What is the probability that a trip will take at least
1/2 hour?

(b) If the office opens at 9:00 A.M. and the lawyer leaves
his house at 8:45 A.M. daily, what percentage of the
time is he late for work?

(c) If he leaves the house at 8:35 A.M. and coffee is
served at the office from 8:50 A.M. until 9:00 A.M.,
what is the probability that he misses coffee?

Chapter 3 Some Probability Distributions

(d) Find the length of time above which we find the
slowest 15% of the trips.

(e) Find the probability that 2 of the next 3 trips will
take at least 1/2 hour.

3.70 In the November 1990 issue of Chemical Engi-
neering Progress, a study discussed the percent purity
of oxygen from a certain supplier. Assume that the
mean was 99.61 with a standard deviation of 0.08. As-
sume that the distribution of percent purity was ap-
proximately normal.

(a) What percentage of the purity values would you
expect to be between 99.5 and 99.77

(b) What purity value would you expect to exceed ex-
actly 5% of the population?

3.71 The average life of a certain type of small motor
is 10 years with a standard deviation of 2 years. The
manufacturer replaces free all motors that fail while
under guarantee. If she is willing to replace only 3% of
the motors that fail, how long a guarantee should be
offered? Assume that the lifetime of a motor follows a
normal distribution.

3.72 The heights of 1000 students are normally dis-
tributed with a mean of 174.5 centimeters and a stan-
dard deviation of 6.9 centimeters. Assuming that the
heights are recorded to the nearest half-centimeter,
how many of these students would you expect to have
heights

(a) less than 160.0 centimeters?

(b) between 171.5 and 182.0 centimeters inclusive?
(c) equal to 175.0 centimeters?

(d) greater than or equal to 188.0 centimeters?

3.73 The tensile strength of a certain metal compo-
nent is normally distributed with a mean of 10,000 kilo-
grams per square centimeter and a standard deviation
of 100 kilograms per square centimeter. Measurements
are recorded to the nearest 50 kilograms per square
centimeter.

(a) What proportion of these components exceed
10,150 kilograms per square centimeter in tensile
strength?

(b) If specifications require that all components have
tensile strength between 9800 and 10,200 kilograms
per square centimeter inclusive, what proportion of
pieces would we expect to scrap?

3.74 The weights of a large number of miniature poo-
dles are approximately normally distributed with a
mean of 8 kilograms and a standard deviation of 0.9
kilogram. If measurements are recorded to the nearest
tenth of a kilogram, find the fraction of these poodles
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with weights

requires an IQ of at least 95, how many of these stu-

(a) over 9.5 kilograms; dents will be rejected on the basis of 1Q, regardless of

(b) of at most 8.6 kilograms;

their other qualifications? Note that I1Qs are recorded
to the nearest integers.

(c) between 7.3 and 9.1 kilograms inclusive.

3.76 If a set of observations is normally distributed,

3.75 The IQs of 600 applicants to a certain college what percent of these differ from the mean by
are approximately normally distributed with a mean (a) more than 1.3¢7?

of 115 and a standard deviation of 12. If the college

(b) less than 0.5207

3.10 Normal Approximation to the Binomial

Theorem 3.8:

Probabilities associated with binomial experiments are readily obtainable from the
formula b(x;n,p) of the binomial distribution or from Table A.1 when n is small.
In addition, binomial probabilities are readily available in many computer software
packages. However, it is instructive to learn the relationship between the binomial
and the normal distribution. In Section 3.5, we illustrated how the Poisson dis-
tribution can be used to approximate binomial probabilities when n is quite large
and p is very close to 0 or 1. Both the binomial and the Poisson distributions
are discrete. The first application of a continuous probability distribution to ap-
proximate probabilities over a discrete sample space was demonstrated in Example
3.30, where the normal curve was used. The normal distribution is often a good
approximation to a discrete distribution when the latter takes on a symmetric bell
shape. From a theoretical point of view, some distributions converge to the normal
as their parameters approach certain limits. The normal distribution is a conve-
nient approximating distribution because the cumulative distribution function is
so easily tabled. The binomial distribution is nicely approximated by the normal
in practical problems when one works with the cumulative distribution function.
We now state a theorem that allows us to use areas under the normal curve to
approximate binomial properties when n is sufficiently large.

If X is a binomial random variable with mean ;@ = np and variance 0% = npq,
then the limiting form of the distribution of

X —np
Vg

as n — 00, is the standard normal distribution n(z;0, 1).

7 =

It turns out that the normal distribution with x4 = np and 02 = np(1 — p) not
only provides a very accurate approximation to the binomial distribution when
n is large and p is not extremely close to 0 or 1 but also provides a fairly good
approximation even when n is small and p is reasonably close to 1/2.

To illustrate the normal approximation to the binomial distribution, we first
draw the histogram for b(x;15,0.4) and then superimpose the particular normal
curve having the same mean and variance as the binomial variable X. Hence, we
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draw a normal curve with
p=mnp = (15)(0.4) = 6 and 0% = npq = (15)(0.4)(0.6) = 3.6.

The histogram of b(x;15,0.4) and the corresponding superimposed normal curve,
which is completely determined by its mean and variance, are illustrated in Figure

71 S
A1\

012 3 456 7 809 11 13 15

X

Figure 3.21: Normal approximation of b(x;15,0.4).

The exact probability that the binomial random variable X assumes a given
value x is equal to the area of the bar whose base is centered at x. For example, the
exact probability that X assumes the value 4 is equal to the area of the rectangle
with base centered at x = 4. Using Table A.1, we find this area to be

P(X =4) = b(4;15,0.4) = 0.1268,

which is approximately equal to the area of the shaded region under the normal
curve between the two ordinates x1 = 3.5 and zo = 4.5 in Figure 3.22. Converting
to z values, we have

35-6
T 1897

45-6

— 132 d - — —0.79.
an 2= g7

Z1

If X is a binomial random variable and Z a standard normal variable, then

P(X =4) =b(4;15,0.4) ~ P(—1.32 < Z < —0.79)
= P(Z < —0.79) — P(Z < —1.32) = 0.2148 — 0.0934 = 0.1214.

This agrees very closely with the exact value of 0.1268.

The normal approximation is most useful in calculating binomial sums for large
values of n. Referring to Figure 3.22, we might be interested in the probability
that X assumes a value from 7 to 9 inclusive. The exact probability is given by

9 6
P(T<X <9)=) b(x;15,04) = Y b(z;15,04)
=0 =0

= 0.9662 — 0.6098 = 0.3564,
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X
0123 456 7 829 11 13 15

9
Figure 3.22: Normal approximation of b(z;15,0.4) and > b(x;15,0.4).
r="T

which is equal to the sum of the areas of the rectangles with bases centered at
x =17, 8, and 9. For the normal approximation, we find the area of the shaded
region under the curve between the ordinates x; = 6.5 and x5 = 9.5 in Figure 3.22.
The corresponding z values are

656 9.5 6

1397 =0.26 and 2z, = 1397 = 1.85.

21

Now,

P(T< X <9)~ P(0.26 < Z < 1.85) = P(Z < 1.85) — P(Z < 0.26)
— 0.9678 — 0.6026 = 0.3652.

Once again, the normal curve approximation provides a value that agrees very
closely with the exact value of 0.3564. The degree of accuracy, which depends on
how well the curve fits the histogram, will increase as n increases. This is particu-
larly true when p is not very close to 1/2 and the histogram is no longer symmetric.
Figures 3.23 and 3.24 show the histograms for b(z;6,0.2) and b(x; 15,0.2), respec-
tively. It is evident that a normal curve would fit the histogram considerably better
when n = 15 than when n = 6.

— X ! ! L x

0

Figure 3.23: Histogram for b(x;6,0.2).

1

2

3 4 5 6 61Ié(l32'réé%8é 11 13 15
Figure 3.24: Histogram for b(x;15,0.2).

In our illustrations of the normal approximation to the binomial, it became
apparent that if we seek the area under the normal curve to the left of, say, x, it
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is more accurate to use x + 0.5. This is a correction to accommodate the fact that
a discrete distribution is being approximated by a continuous distribution. The
correction 40.5 is called a continuity correction. The foregoing discussion leads
to the following formal normal approximation to the binomial.

Normal
Approximation to
the Binomial
Distribution

Let X be a binomial random variable with parameters n and p. For large n, X
has approximately a normal distribution with p = np and 0? = npg = np(1 —p)
and

P(X <xz) = > b(kin,p)
k=0

Q

area under normal curve to the left of  + 0.5
x+0.5— np)
Vv 1pq

and the approximation will be good if np and n(1 — p) are greater than or equal
to 5.

= P(Zg

As we indicated earlier, the quality of the approximation is quite good for large
n. If pis close to 1/2, a moderate or small sample size will be sufficient for a
reasonable approximation. We offer Table 3.1 as an indication of the quality of the
approximation. Both the normal approximation and the true binomial cumulative
probabilities are given. Notice that at p = 0.05 and p = 0.10, the approximation
is fairly crude for n = 10. However, even for n = 10, note the improvement for
p = 0.50. On the other hand, when p is fixed at p = 0.05, note the improvement
of the approximation as we go from n = 20 to n = 100.

Example 3.31:

Solution:

The probability that a patient recovers from a rare blood disease is 0.4. If 100
people are known to have contracted this disease, what is the probability that fewer
than 30 survive?

Let the binomial variable X represent the number of patients who survive. Since
n = 100, we should obtain fairly accurate results using the normal-curve approxi-
mation with

= np = (100)(0.4) = 40 and o = \/npq = /(100)(0.4)(0.6) = 4.899.

To obtain the desired probability, we have to find the area to the left of z = 29.5.
The z value corresponding to 29.5 is
~29.5—-40

=-2.14
4.899 ’

and the probability of fewer than 30 of the 100 patients surviving is given by the
shaded region in Figure 3.25. Hence,

P(X <30) ~ P(Z < —2.14) = 0.0162. 1

Example 3.32:

A multiple-choice quiz has 200 questions, each with 4 possible answers of which
only 1 is correct. What is the probability that sheer guesswork yields from 25 to
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Table 3.1: Normal Approximation and True Cumulative Binomial Probabilities

p=20.05, n=10

p=0.10, n =10

p=20.50, n=10

7 Binomial Normal Binomial Normal Binomial Normal
0 0.5987 0.5000 0.3487 0.2981 0.0010 0.0022
1 0.9139 0.9265 0.7361 0.7019 0.0107 0.0136
2 0.9885 0.9981 0.9298 0.9429 0.0547 0.0571
3 0.9990 1.0000 0.9872 0.9959 0.1719 0.1711
4 1.0000 1.0000 0.9984 0.9999 0.3770 0.3745
5 1.0000 1.0000 0.6230 0.6255
6 0.8281 0.8289
7 0.9453 0.9429
8 0.9893 0.9864
9 0.9990 0.9978
10 1.0000 0.9997
p=0.05
n =20 n =50 n = 100
r Binomial Normal Binomial Normal Binomial Normal
0 0.3585 0.3015 0.0769 0.0968 0.0059 0.0197
1 0.7358 0.6985 0.2794 0.2578 0.0371 0.0537
2 0.9245 0.9382 0.5405 0.5000 0.1183 0.1251
3 0.9841 0.9948 0.7604 0.7422 0.2578 0.2451
4 0.9974 0.9998 0.8964 0.9032 0.4360 0.4090
5 0.9997 1.0000 0.9622 0.9744 0.6160 0.5910
6 1.0000 1.0000 0.9882 0.9953 0.7660 0.7549
7 0.9968 0.9994 0.8720 0.8749
8 0.9992 0.9999 0.9369 0.9463
9 0.9998 1.0000 0.9718 0.9803
10 1.0000 1.0000 0.9885 0.9941

ofF—-———————————— —

-2.14

Figure 3.25: Area for Example 3.31.

of-——--— - ———

Figure 3.26: Area for Example 3.32.

30 correct answers for the 80 of the 200 problems about which the student has no

knowledge?

Solution: The probability of guessing a correct answer for each of the 80 questions is p = 1/4.
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If X represents the number of correct answers resulting from guesswork, then
30
P(25 < X <30) = Y b(x;80,1/4).
r=25
Using the normal curve approximation with
1
= np = (80) <4> =20
and
o= +/npqg=+/(80)(1/4)(3/4) = 3.873,
we need the area between x1; = 24.5 and x5 = 30.5. The corresponding z values
are
24.5 — 20 30.5 — 20
EYTE MR T T e
The probability of correctly guessing from 25 to 30 questions is given by the shaded
region in Figure 3.26. From Table A.3 we find that
30
P(25 < X <30) = Y b(x:80,0.25) ~ P(1.16 < Z < 2.71)
=25
= P(Z <2.71)— P(Z < 1.16) = 0.9966 — 0.8770 = 0.1196. 1
Exercises

3.77 A process for manufacturing an electronic com-

ponent yields items of which 1% are defective. A qual-

ity control plan is to select 100 items from the process,
and if none are defective, the process continues. Use
the normal approximation to the binomial to find

(a) the probability that the process continues given the
sampling plan described;

(b) the probability that the process continues even if
the process has gone bad (i.e., if the frequency
of defective components has shifted to 5.0% defec-
tive).

3.78 A process yields 10% defective items. If 100
items are randomly selected from the process, what
is the probability that the number of defectives

(a) exceeds 137

(b) is less than 87

3.79 The probability that a patient recovers from a
delicate heart operation is 0.9. Of the next 100 patients
having this operation, what is the probability that

(a) between 84 and 95 inclusive survive?
(b) fewer than 86 survive?

3.80 Researchers at George Washington University
and the National Institutes of Health claim that ap-
proximately 75% of people believe “tranquilizers work
very well to make a person more calm and relaxed.” Of
the next 80 people interviewed, what is the probability
that

(a) at least 50 are of this opinion?
(b) at most 56 are of this opinion?

3.81 A company produces component parts for an en-

gine. Parts specifications suggest that 95% of items

meet specifications. The parts are shipped to cus-

tomers in lots of 100.

(a) What is the probability that more than 2 items in
a given lot will be defective?

(b) What is the probability that more than 10 items in
a lot will be defective?
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3.82 A pharmaceutical company knows that approx-
imately 5% of its birth-control pills have an ingredient
that is below the minimum strength, thus rendering
the pill ineffective. What is the probability that fewer
than 10 in a sample of 200 pills will be ineffective?

3.83 Statistics released by the National Highway
Traffic Safety Administration and the National Safety
Council show that on an average weekend night, 1 out
of every 10 drivers on the road is drunk. If 400 drivers
are randomly checked next Saturday night, what is the
probability that the number of drunk drivers will be

(a) less than 327
(b) more than 497
(c) at least 35 but less than 477

3.84 A drug manufacturer claims that a certain drug
cures a blood disease, on the average, 80% of the time.
To check the claim, government testers use the drug on
a sample of 100 individuals and decide to accept the
claim if 75 or more are cured.

(a) What is the probability that the claim will be re-
jected when the cure probability is, in fact, 0.87

(b) What is the probability that the claim will be ac-
cepted by the government when the cure probabil-
ity is as low as 0.77

3.85 The serum cholesterol level X in 14-year-old
boys has approximately a normal distribution with
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mean 170 and standard deviation 30.

(a) Find the probability that the serum cholesterol
level of a randomly chosen 14-year-old boy exceeds
230.

(b) In a middle school there are 300 14-year-old boys.
Find the probability that at least 8 boys have a
serum cholesterol level that exceeds 230.

3.86 A common practice of airline companies is to
sell more tickets for a particular flight than there are
seats on the plane, because customers who buy tickets
do not always show up for the flight. Suppose that
the percentage of no-shows at flight time is 2%. For
a particular flight with 197 seats, a total of 200 tick-
ets were sold. What is the probability that the airline
overbooked this flight?

3.87 A telemarketing company has a special letter-
opening machine that opens and removes the contents
of an envelope. If the envelope is fed improperly into
the machine, the contents of the envelope may not be
removed or may be damaged. In this case, the machine
is said to have “failed.”

(a) If the machine has a probability of failure of 0.01,
what is the probability of more than 1 failure oc-
curring in a batch of 20 envelopes?

(b) If the probability of failure of the machine is 0.01
and a batch of 500 envelopes is to be opened, what
is the probability that more than 8 failures will
occur?

3.11 Gamma and Exponential Distributions

Although the normal distribution can be used to solve many problems in engineer-
ing and science, there are still numerous situations that require different types of
density functions. Two such density functions, the gamma and exponential
distributions, are discussed in this section.

It turns out that the exponential distribution is a special case of the gamma dis-
tribution. Both find a large number of applications. The exponential and gamma
distributions play an important role in both queuing theory and reliability prob-
lems. Time between arrivals at service facilities and time to failure of component
parts and electrical systems often are nicely modeled by the exponential distribu-
tion. The relationship between the gamma and the exponential allows the gamma

to be used in similar types of problems.

supplied later in the section.

More details and illustrations will be

The gamma distribution derives its name from the well-known gamma func-
tion, studied in many areas of mathematics. Before we proceed to the gamma
distribution, let us review this function and some of its important properties.
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Definition 3.2: | The gamma function is defined by

INa) = / e du, for a > 0.
0

The following are a few simple properties of the gamma function.
(a) T'(n) = (n—1)(n—2)---(1)I'(1), for a positive integer n.

To see the proof, integrating by parts with © = 2! and dv = e~ dx, we obtain
o o0 o0
N(a)=—e" a:o‘_l‘o —|—/ e la—12"? de = (o — 1)/ % 2e™" dx,
0 0

for a« > 1, which yields the recursion formula
Na)=(a—1)I'(a—1).
The result follows after repeated application of the recursion formula. Using this
result, we can easily show the following two properties.
(b) T'(n) = (n — 1)! for a positive integer n.
(c) I'(1) = 1.

Furthermore, we have the following property of I'(«), which is left for the reader
to verify.

(d) I(1/2) = V7.

The following is the definition of the gamma distribution.

Gamma  The continuous random variable X has a gamma distribution, with param-
Distribution  eters v and 3, if its density function is given by

_1__ge—lg=w/B .

=

0, elsewhere,

where o > 0 and S > 0.

Graphs of several gamma distributions are shown in Figure 3.27 for certain
specified values of the parameters o and . The special gamma distribution for
which o = 1 is called the exponential distribution.

Fxponential The continuous random variable X has an exponential distribution, with
Distribution  parameter [, if its density function is given by

Le—=z/B 0
) . /36 , x>0,
;) =
Sz ) { 0, elsewhere,
where 8 > 0.

The following theorem and corollary give the mean and variance of the gamma and
exponential distributions.
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Theorem 3.9:

f(x)
1.0
o=1
B=1
0.5
o=2
B=1 oa=4
p=1
1 1 1 ] X
0 1 2 3 4 5 6

Figure 3.27: Gamma distributions.

Corollary 3.1:

The mean and variance of the gamma distribution are

pu=af and o2 = af>

The proof of this theorem is found in Appendix A.14.

The mean and variance of the exponential distribution are

pw=pand 0% = B2

Relationship to the Poisson Process

We shall pursue applications of the exponential distribution and then return to the
gamma distribution. The most important applications of the exponential distribu-
tion are situations where the Poisson process applies (see Section 3.5). The reader
should recall that the Poisson process allows for the use of the discrete distribu-
tion called the Poisson distribution. Recall that the Poisson distribution is used to
compute the probability of specific numbers of “events” during a particular period
of time or span of space. In many applications, the time period or span of space
is the random variable. For example, an industrial engineer may be interested in
modeling the time T" between arrivals at a congested intersection during rush hour
in a large city. An arrival represents the Poisson event.

The relationship between the exponential distribution (often called the negative
exponential) and the Poisson process is quite simple. In Section 3.5, the Poisson
distribution was developed as a single-parameter distribution with parameter A,
where A may be interpreted as the mean number of events per unit “time.” Con-
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sider now the random wvariable described by the time required for the first event
to occur. Using the Poisson distribution, we find that the probability of no events
occurring in the span up to time ¢ is given by

—At M\ 0
p(0; xt) = 20 0(| ) =e M

We can now make use of the above and let X be the time to the first Poisson
event. The probability that the length of time until the first event will exceed x is
the same as the probability that no Poisson events will occur in . The latter, of
course, is given by e . As a result,

P(X >z)=e ",
Thus, the cumulative distribution function for X is given by
P(O§X§x):1—e_)‘x.

Now, in order that we may recognize the presence of the exponential distribution,
we differentiate the cumulative distribution function above to obtain the density
function

fla) = e,

which is the density function of the exponential distribution with A = 1/8.

Applications of the Exponential and Gamma Distributions

In the foregoing, we provided the foundation for the application of the exponential
distribution in “time to arrival” or time to Poisson event problems. We will illus-
trate some applications here and then proceed to discuss the role of the gamma
distribution in these modeling applications. Notice that the mean of the exponen-
tial distribution is the parameter (3, the reciprocal of the parameter in the Poisson
distribution. The reader should recall that it is often said that the Poisson distri-
bution has no memory, implying that occurrences in successive time periods are
independent. The important parameter  is the mean time between events. In
reliability theory, where equipment failure often conforms to this Poisson process,
S is called mean time between failures. Many equipment breakdowns do follow
the Poisson process, and thus the exponential distribution does apply. Other ap-
plications include survival times in biomedical experiments and computer response
time.

In the following example, we show a simple application of the exponential dis-
tribution to a problem in reliability. The binomial distribution also plays a role in
the solution.

Example 3.33:

Suppose that a system contains a certain type of component whose time, in years,
to failure is given by T'. The random variable 7" is modeled nicely by the exponential
distribution with mean time to failure 8 = 5. If 5 of these components are installed
in different systems, what is the probability that at least 2 are still functioning at
the end of 8 years?
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Solution: The probability that a given component is still functioning after 8 years is given
by

1 o
P(T >38) = 5/ e 5 dt =e 5 = 0.2.
8

Let X represent the number of components functioning after 8 years. Then using
the binomial distribution, we have
5 1
P(X >2)=> b(x;5,0.2) =1- > b(x;5,0.2) = 1 - 0.7373 = 0.2627.

r= x=0
There are exercises in Chapter 2 where the reader has already encountered
the exponential distribution. Some of the other applications will be found in the
exercises and review exercises at the end of this chapter.

The Memoryless Property and Its Effect on the Exponential Distribution

The types of applications of the exponential distribution in reliability and compo-
nent or machine lifetime problems are influenced by the memoryless (or lack-of-
memory) property of the exponential distribution. For example, in the case of,
say, an electronic component where lifetime has an exponential distribution, the
probability that the component lasts, say, ¢ hours, that is, P(X > t), is the same
as the conditional probability

P(X >to+1t | X > to).

So if the component “makes it” to tg hours, the probability of lasting an additional
t hours is the same as the probability of lasting ¢ hours. There is no “punishment”
through wear that may have ensued for lasting the first ¢y hours. Thus, the expo-
nential distribution is more appropriate when the memoryless property is justified.
But if the failure of the component is a result of gradual or slow wear (as in me-
chanical wear), then the exponential does not apply and the gamma distribution
may be more appropriate.

The importance of the gamma distribution lies in the fact that it defines a
family of which other distributions are special cases. But the gamma itself has
important applications in waiting time and reliability theory. Whereas the expo-
nential distribution describes the time until the occurrence of a Poisson event (or
the time between Poisson events), the time (or space) occurring until a specified
number of Poisson events occur is a random variable whose density function is
described by the gamma distribution. This specific number of events is the param-
eter a in the gamma density function. Thus, it becomes easy to understand that
when « = 1, the special case of the exponential distribution occurs. The gamma
density can be developed from its relationship to the Poisson process in much the
same manner as we developed the exponential density. The details are left to the
reader. The following is a numerical example of the use of the gamma distribution
in a waiting-time application.

Example 3.34:] Suppose that telephone calls arriving at a particular switchboard follow a Poisson
process with an average of 5 calls coming per minute. What is the probability that
up to a minute will elapse by the time 2 calls have come in to the switchboard?
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The Poisson process applies, with time until 2 Poisson events following a gamma
distribution with 8 = 1/5 and o« = 2. Denote by X the time in minutes that
transpires before 2 calls come. The required probability is given by

1 1
1 :
P(X<1)= / @xe_l/’g dx = 25/ re ™ dr =1— e °(1 4+ 5) = 0.96.
0 0

While the origin of the gamma distribution deals in time (or space) until the
occurrence of o Poisson events, there are many instances where a gamma distri-
bution works very well even though there is no clear Poisson structure. This is
particularly true for survival time problems in both engineering and biomedical
applications.

Example 3.35:

Solution:

In a biomedical study with rats, a dose-response investigation is used to determine
the effect of the dose of a toxicant on their survival time. The toxicant is one that
is frequently discharged into the atmosphere from jet fuel. For a certain dose of
the toxicant, the study determines that the survival time, in weeks, has a gamma
distribution with a = 5 and § = 10. What is the probability that a rat survives
no longer than 60 weeks?

Let the random variable X be the survival time (time to death). The required
probability is

1 60 xa—le—w/,@

The integral above can be solved through the use of the incomplete gamma
function, which becomes the cumulative distribution function for the gamma dis-
tribution. This function is written as

z  a—1_—y
y* e
F(x;« :/ — dy.
(2; ) T
If we let y = z/f3, so x = By, we have

6y467y
P(X < 60) = dy,
(X < 60) /0r<5> y

which is denoted as F(6;5) in the table of the incomplete gamma function in
Appendix A.11. Note that this allows a quick computation of probabilities for the
gamma distribution. Indeed, for this problem, the probability that the rat survives
no longer than 60 days is given by

P(X < 60) = F(6;5) = 0.715. r

Example 3.36:‘

Solution:

It is known, from previous data, that the length of time in months between
customer complaints about a certain product is a gamma distribution with a = 2
and g = 4. Changes were made to tighten quality control requirements. Following
these changes, 20 months passed before the first complaint. Does it appear as if
the quality control tightening was effective?

Let X be the time to the first complaint, which, under conditions prior to the
changes, followed a gamma distribution with @ = 2 and g = 4. The question
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centers around how rare X > 20 is, given that o and § remain at values 2 and 4,
respectively. In other words, under the prior conditions is a “time to complaint”
as large as 20 months reasonable? Thus, following the solution to Example 3.35,

1 20 xa—le—x/ﬁ
P(X >20)=1 5a /0 o) dz.
Again, using y = 2/, we have
P(XZQO):lf/ Y gy —1— F(5:2) = 1 — 0.96 = 0.04,
o I'(2)

where F'(5;2) = 0.96 is found from Table A.11.

As a result, we could conclude that the conditions of the gamma distribution
with a = 2 and 8 = 4 are not supported by the data that an observed time to
complaint is as large as 20 months. Thus, it is reasonable to conclude that the

quality control work was effective. . |

Example 3.37:] Consider Exercise 2.23 on page 61. Based on extensive testing, it is determined
that the time Y in years before a major repair is required for a certain washing
machine is characterized by the density function

1) = {/ vz 0

0, elsewhere.

Note that Y is an exponential random variable with g = 4 years. The machine is
considered a bargain if it is unlikely to require a major repair before the sixth year.
What is the probability P(Y > 6)? What is the probability that a major repair is
required in the first year?

Solution: Consider the cumulative distribution function F'(y) for the exponential distribution,

1 Y
F(y) = f/ e B dt=1—eY/8,
B Jo
Then
P(Y >6) =1— F(6) = e~%/? = 0.2231.
Thus, the probability that the washing machine will require major repair after year
six is 0.223. Of course, it will require repair before year six with probability 0.777.

Thus, one might conclude the machine is not really a bargain. The probability
that a major repair is necessary in the first year is

PY <1)=1-eY*=1-0.779=0.221.

3.12 Chi-Squared Distribution

Another very important special case of the gamma distribution is obtained by
letting @ = v/2 and 8 = 2, where v is a positive integer. The result is called the
chi-squared distribution. The distribution has a single parameter, v, called the
degrees of freedom.
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Chi-Squared
Distribution

1 .
Flasv) = § TR
0,

where v is a positive integer.

The continuous random variable X has a chi-squared distribution, with v
degrees of freedom, if its density function is given by

1)/271671’/27 x>0,

elsewhere,

The chi-squared distribution plays a vital role in statistical inference. It has
considerable applications in both methodology and theory. While we do not discuss
applications in detail in this chapter, it is important to understand that Chapters 4
and 5 contain important applications. The chi-squared distribution is an important
component of statistical hypothesis testing and estimation.

Topics dealing with sampling distributions, analysis of variance, and nonpara-
metric statistics involve extensive use of the chi-squared distribution.

Theorem 3.10:

The mean and variance of the chi-squared distribution are

pu=uvand o2 = 2v.

Exercises

3.88 In a certain city, the daily consumption of water
(in millions of liters) follows approximately a gamma
distribution with o = 2 and 8 = 3. If the daily capac-
ity of that city is 9 million liters of water, what is the
probability that on any given day the water supply is
inadequate?

3.89 If a random variable X has the gamma distribu-
tion with « =2 and 8 =1, find P(1.8 < X < 2.4).

3.90 Suppose that the time, in hours, required to
repair a heat pump is a random variable X having
a gamma distribution with parameters a« = 2 and
B = 1/2. What is the probability that on the next
service call

(a) at most 1 hour will be required to repair the heat
pump?

(b) at least 2 hours will be required to repair the heat
pump?

3.91 Find the mean and variance of the daily water
consumption in Exercise 3.88.

3.92 In a certain city, the daily consumption of elec-
tric power, in millions of kilowatt hours, is a random
variable X having a gamma distribution with mean
4t = 6 and variance o2 = 12.

(a) Find the values of o and .

(b) Find the probability that on any given day the daily
power consumption will exceed 12 million kilowatt
hours.

3.93 The length of time for one individual to be
served at a cafeteria is a random variable having an ex-
ponential distribution with a mean of 4 minutes. What
is the probability that a person will be served in less
than 3 minutes on at least 4 of the next 6 days?

3.94 The life, in years, of a certain type of electrical
switch has an exponential distribution with an average
life 8 = 2. If 100 of these switches are installed in dif-
ferent systems, what is the probability that at most 30
fail during the first year?

3.95 In a biomedical research study, it was deter-
mined that the survival time, in weeks, of an animal
subjected to a certain exposure of gamma radiation has
a gamma distribution with @ = 5 and g8 = 10.

(a) What is the mean survival time of a randomly se-
lected animal of the type used in the experiment?

(b) What is the standard deviation of survival time?

(c) What is the probability that an animal survives
more than 30 weeks?
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3.96 The lifetime, in weeks, of a certain type of tran-
sistor is known to follow a gamma distribution with
mean 10 weeks and standard deviation v/50 weeks.

(a) What is the probability that a transistor of this
type will last at most 50 weeks?

(b) What is the probability that a transistor of this
type will not survive the first 10 weeks?

3.97 Computer response time is an important appli-
cation of the gamma and exponential distributions.
Suppose that a study of a certain computer system
reveals that the response time, in seconds, has an ex-
ponential distribution with a mean of 3 seconds.

(a) What is the probability that response time exceeds
5 seconds?

(b) What is the probability that response time exceeds
10 seconds?

Review Exercises

3.100 During a manufacturing process, 15 units are
randomly selected each day from the production line to
check the percent defective. From historical informa-
tion it is known that the probability of a defective unit
is 0.05. Any time 2 or more defectives are found in the
sample of 15, the process is stopped. This procedure
is used to provide a signal in case the probability of a
defective has increased.

(a) What is the probability that on any given day the
production process will be stopped? (Assume 5%
defective.)

(b) Suppose that the probability of a defective has in-
creased to 0.07. What is the probability that on
any given day the production process will not be
stopped?

3.101 An automatic welding machine is being consid-
ered for use in a production process. It will be consid-
ered for purchase if it is successful on 99% of its welds.
Otherwise, it will not be considered efficient. A test is
to be conducted with a prototype that is to perform
100 welds. The machine will be accepted if it misses
no more than 3 welds.

(a) What is the probability that a good machine will
be rejected?

(b) What is the probability that an inefficient machine
with 95% welding success will be accepted?

3.102 Service calls come to a maintenance center ac-
cording to a Poisson process, and on average, 2.7 calls
are received per minute. Find the probability that

(a) no more than 4 calls come in any minute;
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3.98 The number of automobiles that arrive at a cer-
tain intersection per minute has a Poisson distribution
with a mean of 5. Interest centers around the time that
elapses before 10 automobiles appear at the intersec-
tion.

(a) What is the probability that more than 10 auto-
mobiles appear at the intersection during any given
minute of time?

(b) What is the probability that more than 2 minutes
elapse before 10 cars arrive?

3.99 Consider the information in Exercise 3.98.

(a) What is the probability that more than 1 minute
elapses between arrivals?

(b) What is the mean number of minutes that elapse
between arrivals?

(b) fewer than 2 calls come in any minute;
(c) more than 10 calls come in a 5-minute period.

3.103 An electronics firm claims that the proportion
of defective units from a certain process is 5%. A buyer
has a standard procedure of inspecting 15 units selected
randomly from a large lot. On a particular occasion,
the buyer found 5 items defective.

(a) What is the probability of this occurrence, given
that the claim of 5% defective is correct?

(b) What would be your reaction if you were the buyer?

3.104 An electronic switching device occasionally
malfunctions, but the device is considered satisfactory
if it makes, on average, no more than 0.20 error per
hour. A particular 5-hour period is chosen for testing
the device. If no more than 1 error occurs during the
time period, the device will be considered satisfactory.

(a) What is the probability that a satisfactory device
will be considered unsatisfactory on the basis of the
test? Assume a Poisson process.

(b) What is the probability that a device will be ac-
cepted as satisfactory when, in fact, the mean num-
ber of errors is 0.257 Again, assume a Poisson pro-
cess.

3.105 A company generally purchases large lots of a
certain kind of electronic device. A method is used
that rejects a lot if 2 or more defective units are found
in a random sample of 100 units.

(a) What is the probability of rejecting a lot that is 1%
defective?
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(b) What is the probability of accepting a lot that is
5% defective?

3.106 Imperfections in computer circuit boards and
computer chips lend themselves to statistical treat-
ment. For a particular type of board, the probability
of a diode failure is 0.03 and the board contains 200
diodes.

(a) What is the mean number of failures among the
diodes?

(b) What is the variance?

(¢) The board will work if there are no defective diodes.
What is the probability that a board will work?

3.107 The potential buyer of a particular engine re-
quires (among other things) that the engine start suc-
cessfully 10 consecutive times. Suppose the probability
of a successful start is 0.990. Let us assume that the
outcomes of attempted starts are independent.

(a) What is the probability that the engine is accepted
after only 10 starts?

(b) What is the probability that 12 attempted starts
are made during the acceptance process?

3.108 The acceptance scheme for purchasing lots con-
taining a large number of batteries is to test no more
than 75 randomly selected batteries and to reject a lot
if a single battery fails. Suppose the probability of a
failure is 0.001.

(a) What is the probability that a lot is accepted?

(b) What is the probability that a lot is rejected on the
20th test?

(c) What is the probability that it is rejected in 10 or
fewer trials?

3.109 An oil drilling company ventures into various
locations, and its success or failure is independent from
one location to another. Suppose the probability of a
success at any specific location is 0.25.

(a) What is the probability that the driller drills at 10
locations and has 1 success?

(b) The driller will go bankrupt if it drills 10 times be-
fore the first success occurs. What are the driller’s
prospects for bankruptcy?

3.110 Consider the information in Review Exercise
3.109. The drilling engineer feels that the driller will
“hit it big” if the second success occurs on or before
the sixth attempt. What is the probability that the
driller will hit it big?

3.111 It is known by researchers that 1 in 100 people
carries a gene that leads to the inheritance of a certain
chronic disease. In a random sample of 1000 individ-

Chapter 3 Some Probability Distributions

uals, what is the probability that fewer than 7 indi-
viduals carry the gene? Use a Poisson approximation.
Again, using the approximation, what is the approxi-
mate mean number of people out of 1000 carrying the
gene?

3.112 A production process produces electronic com-
ponent parts. It is presumed that the probability of a
defective part is 0.01. During a test of this presump-
tion, 500 parts are sampled randomly and 15 defectives
are observed.

(a) What is your response to the presumption that the
process is 1% defective? Be sure that a computed
probability accompanies your comment.

(b) Under the presumption of a 1% defective process,
what is the probability that only 3 parts will be
found defective?

(c) Do parts (a) and (b) again using the Poisson ap-
proximation.

3.113 A production process outputs items in lots of
50. Sampling plans exist in which lots are pulled aside
periodically and exposed to a certain type of inspec-
tion. It is usually assumed that the proportion defec-
tive is very small. It is important to the company that
lots containing defectives be a rare event. The current
inspection plan is to periodically sample randomly 10
out of the 50 items in a lot and, if none are defective,
to perform no intervention.

(a) Suppose in a lot chosen at random, 2 out of 50 are
defective. What is the probability that at least 1
in the sample of 10 from the lot is defective?

(b) From your answer to part (a), comment on the
quality of this sampling plan.

(c) What is the mean number of defects found out of
10 items sampled?

3.114 Consider the situation of Review FExercise
3.113. It has been determined that the sampling plan
should be extensive enough that there is a high prob-
ability, say 0.9, that if as many as 2 defectives exist in
the lot of 50 being sampled, at least 1 will be found
in the sampling. With these restrictions, how many of
the 50 items should be sampled?

3.115 National security requires that defense technol-
ogy be able to detect incoming projectiles or missiles.
To make the defense system successful, multiple radar
screens are required. Suppose that three independent
screens are to be operated and the probability that any
one screen will detect an incoming missile is 0.8. Ob-
viously, if no screens detect an incoming projectile, the
system is untrustworthy and must be improved.

(a) What is the probability that an incoming missile
will not be detected by any of the three screens?
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(b) What is the probability that the missile will be de-
tected by only one screen?

(c) What is the probability that it will be detected by
at least two out of three screens?

3.116 Suppose it is important that the overall missile
defense system be as near perfect as possible.

(a) Assuming the quality of the screens is as indicated
in Review Exercise 3.115, how many are needed
to ensure that the probability that a missile gets
through undetected is 0.00017

(b) Suppose it is decided to stay with only 3 screens
and attempt to improve the screen detection abil-
ity. What must the individual screen effectiveness
(i.e., probability of detection) be in order to achieve
the effectiveness required in part (a)?

3.117 Go back to Review Exercise 3.113(a). Re-
compute the probability using the binomial distribu-
tion. Comment.

3.118 There are two vacancies in a certain university
statistics department. Five individuals apply. Two
have expertise in linear models, and one has exper-
tise in applied probability. The search committee is
instructed to choose the two applicants randomly.

(a) What is the probability that the two chosen are
those with expertise in linear models?

(b) What is the probability that of the two chosen, one
has expertise in linear models and one has expertise
in applied probability?

3.119 The manufacturer of a tricycle for children has
received complaints about defective brakes in the prod-
uct. According to the design of the product and consid-
erable preliminary testing, it had been determined that
the probability of the kind of defect in the complaint
was 1 in 10,000 (i.e., 0.0001). After a thorough investi-
gation of the complaints, it was determined that during
a certain period of time, 200 products were randomly
chosen from production and 5 had defective brakes.

(a) Comment on the “1 in 10,000” claim by