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 Data from U.S. Department of Agriculture and U.S. Department of Health and Human Services. 2010.  Dietary Guidelines for Americans, 2010.  6th edn.  www.healthierus.gov/
dietaryguidelines .     

  Adequate Nutrients Within Calorie Needs 
   a.   Consume a variety of nutrient-dense foods and beverages 

within and among the basic food groups while choosing 
foods that limit the intake of saturated and  trans  fats, 
cholesterol, added sugars, salt, and alcohol.  

   b.   Meet recommended intakes by adopting a balanced 
eating pattern, such as the USDA Food Patterns or the 
DASH Eating Plan.   

  Weight Management 
   a.   To maintain body weight in a healthy range, balance cal-

ories from foods and beverages with calories  expended.  

   b.   To prevent gradual weight gain over time, make small 
decreases in food and beverage calories and increase 
physical activity.   

  Physical Activity 
   a.   Engage in regular physical activity and reduce sedentary 

activities to promote health, psychological well-being, 
and a healthy body weight.  

   b.   Achieve physical fitness by including cardiovascular 
conditioning, stretching exercises for flexibility, and re-
sistance exercises or calisthenics for muscle strength and 
endurance.   

  Food Groups to Encourage 
   a.   Consume a sufficient amount of fruits and vegetables 

while staying within energy needs. Two cups of fruit 
and 2½ cups of vegetables per day are recommended 
for a reference 2,000-Calorie intake, with higher or lower 
amounts depending on the calorie level.  

   b.   Choose a variety of fruits and vegetables each day. In 
particular, select from all five vegetable subgroups (dark 
green, orange, legumes, starchy vegetables, and other 
vegetables) several times a week.  

   c.   Consume 3 or more ounce-equivalents of whole-grain 
products per day, with the rest of the recommended 
grains coming from enriched or whole-grain products.  

   d.   Consume 3 cups per day of fat-free or low-fat milk or 
equivalent milk products.   

  Fats 
   a.   Consume less than 10% of Calories from saturated fatty 

acids and less than 300 mg/day of cholesterol, and keep 
 trans  fatty acid consumption as low as possible.  

   b.   Keep total fat intake between 20% and 35% of calories, 
with most fats coming from sources of polyunsaturated 
and monounsaturated fatty acids, such as fish, nuts, and 
vegetable oils.  

   c.   Choose foods that are lean, low-fat, or fat-free, and limit 
intake of fats and oils high in saturated and/or  trans  fatty 
acids.   

  Carbohydrates 
   a.   Choose fiber-rich fruits, vegetables, and whole grains 

often.  

   b.   Choose and prepare foods and beverages with little 
added sugars or caloric sweeteners, such as amounts 
suggested by the USDA Food Patterns and the DASH 
Eating Plan.  

   c.   Reduce the incidence of dental caries by practicing good 
oral hygiene and consuming sugar- and starch-containing 
foods and beverages less frequently.   

  Sodium and Potassium 
   a.   Consume less than 2,300 mg of sodium (approximately 

1 tsp of salt) per day.  

   b.   Consume potassium-rich foods, such as fruits and 
 vegetables.   

  Alcoholic Beverages 
   a.   Those who choose to drink alcoholic beverages should 

do so sensibly and in moderation—defined as the con-
sumption of up to one drink per day for women and up 
to two drinks per day for men.  

   b.   Alcoholic beverages should not be consumed by some 
individuals, including those who cannot restrict their 
alcohol intake, women of childbearing age who may be-
come pregnant, pregnant and lactating women, children 
and adolescents, individuals taking medications that can 
interact with alcohol, and those with specific medical 
conditions.  

   c.   Alcoholic beverages should be avoided by individuals 
engaging in activities that require attention, skill, or coor-
dination, such as driving or operating machinery.   

  Food Safety 
   a.   To avoid microbial foodborne illness, clean hands, food 

contact surfaces, and fruits and vegetables; separate raw, 
cooked, and ready-to-eat foods; cook foods to a safe tem-
perature; and refrigerate perishable food promptly and 
defrost foods properly. Meat and poultry should not be 
washed or rinsed.  

   b.   Avoid unpasteurized milk and products made from 
unpasteurized milk or juices and raw or partially cooked 
eggs, meat, or poultry.   

 There are additional key recommendations for specific 
population groups. You can access all the Guidelines on 
the web at  www.healthierus.gov/dietaryguidelines . 
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  TOLERABLE UPPER INTAKE LEVELS (UL 
a
 )    

                           
  Infants                          

 0–6 mo    600   ND e   1,000  ND  ND  ND  ND  ND 
 7–12 mo    600   ND  1,500  ND  ND  ND  ND  ND 

  Children                          
 1–3 y    600    400  2,500    200  10   30    300  1.0 
 4–8 y    900    650  3,000    300  15   40    400  1.0 

  Males, Females                  
 9–13 y  1,700  1,200  4,000    600  20   60    600  2.0 
 14–18 y  2,800  1,800  4,000    800  30   80    800  3.0 
 19–70 y  3,000  2,000  4,000  1,000  35  100  1,000  3.5 
 �70 y  3,000  2,000  4,000  1,000  35  100  1,000  3.5 

  Pregnancy                          
 �18 y  2,800  1,800  4,000    800  30   80    800  3.0 
 19–50 y  3,000  2,000  4,000  1,000  35  100  1,000  3.5 

  Lactation                          
 �18 y2,800  1,800  4,000  4,000     30  80  800  3.0    
 19–50 y  3,000  2,000  4,000  1,000  35  100  1,000  3.5 
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Vitamins

                                             
  Infants                                            

 0–6 mo  ND  1,000  ND  0.7  ND  40  ND  ND  ND  ND  ND   45  ND   4 
 7–12 mo  ND  1,500  ND  0.9  ND  40  ND  ND  ND  ND  ND   60  ND   5 

  Children                                           
 1–3 y   3  2500   1,000  1.3    200  40   65   2    300  0.2  3   90  ND   7 
 4–8 y   6  2500   3,000  2.2    300  40  110   3    600  0.3  3  150  ND  12 

  Males, Females                                          
 9–13 y  11  3,000   5,000  10    600  40  350   6  1,100  0.6  4  280  ND  23 
 14–18 y  17  3,000   8,000  10    900  45  350   9  1,700  1.0  4  400  ND  34 
 19–50 y  20  2,500  10,000  10  1,100  45  350  11  2,000  1.0  4  400  1.8  40 
 51–70 y     2,000                                     
 70 y  20  2,000  10,000  10  1,100  45  350  11  2,000  1.0  3  400  1.8  40 

  Pregnancy                                          
 �18y  17  3,000   8,000  10    900  45  350   9  1,700  1.0  3.5  400  ND  34 
 19–50 y  20  2,500  10,000  10  1,100  45  350  11  2,000  1.0  3.5  400  ND  40 

  Lactation                                          
 �18y  17  3,000   8,000  10    900  45  350   9  1,700  1.0  4  400  ND  34 
 19–50 y  20  2,500  10,000  10  1,100  45  350  11  2,000  1.0  4  400  ND  40 
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 From the Dietary Reference Intakes series. Copyright © 2011 by the National Academy of Sciences. Reprinted with permission by the National Academy of Sciences. Courtesy of the  National Academies Press, Washington, DC.  
   a  UL � The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could 
not be established for vitamin K, thiamin, riboflavin, vitamin B 12 , pantothenic acid, biotin, or carotenoids. In the absence of ULs, extra caution may be warranted in consuming levels above recommended intakes.  
   b  As preformed vitamin A only.  
   c  As �-tocopherol; applies to any form of supplemental �-tocopherol.  
   d  The ULs for vitamin E, niacin, and folate apply to synthetic forms obtained from supplements, fortified foods, or a combination of the two.  
   e  ND � Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.  
   f  The ULs for magnesium represent intake from a pharmacological agent only and do not include intake from food and water.  
   g  Although vanadium in food has not been shown to cause adverse effects in humans, there is no justification for adding vanadium to food, and vanadium supplements should be used with caution. The UL is based on adverse effects 
in laboratory animals, and this data could be used to set a UL for adults but not children and adolescents.  
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Preface

General Approach and Mathematical Level

This text was designed for a one-semester course that covers the essential topics
needed for a fundamental understanding of basic statistics and its applications in
the fields of engineering and the sciences. A balance between theory and application
is maintained throughout the text. Coverage of analytical tools in statistics is
enhanced with the use of calculus when discussion centers on rules and concepts in
probability. Students using this text should have the equivalent of the completion
of one semester of differential and integral calculus. Linear algebra would be helpful
but not necessary if the instructor chooses not to include Section 7.11 on multiple
linear regression using matrix algebra.

Class projects and case studies are presented throughout the text to give the
student a deeper understanding of real-world usage of statistics. Class projects
provide the opportunity for students to work alone or in groups to gather their
own experimental data and draw inferences using the data. In some cases, the
work conducted by the student involves a problem whose solution will illustrate
the meaning of a concept and/or will provide an empirical understanding of an
important statistical result. Case studies provide commentary to give the student
a clear understanding in the context of a practical situation. The comments we
affectionately call “Pot Holes” at the end of each chapter present the big pic-
ture and show how the chapters relate to one another. They also provide warn-
ings about the possible misuse of statistical techniques presented in the chapter.
A large number of exercises are available to challenge the student. These exer-
cises deal with real-life scientific and engineering applications. The many data
sets associated with the exercises are available for download from the website
http://www.pearsonhighered.com/mathstatsresources.

Content and Course Planning

This textbook contains nine chapters. The first two chapters introduce the notion
of random variables and their properties, including their role in characterizing data
sets. Fundamental to this discussion is the distinction, in a practical sense, between
populations and samples.

In Chapter 3, both discrete and continuous random variables are illustrated
with examples. The binomial, Poisson, hypergeometric, and other useful discrete
distributions are discussed. In addition, continuous distributions include the nor-
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mal, gamma, and exponential. In all cases, real-life scenarios are given to reveal
how these distributions are used in practical engineering problems.

The material on specific distributions in Chapter 3 is followed in Chapter 4 by
practical topics such as random sampling and the types of descriptive statistics
that convey the center of location and variability of a sample. Examples involv-
ing the sample mean and sample variance are included. Following the introduc-
tion of central tendency and variability is a substantial amount of material dealing
with the importance of sampling distributions. Real-life illustrations highlight how
sampling distributions are used in basic statistical inference. Central Limit type
methodology is accompanied by the mechanics and purpose behind the use of the
normal, Student t, χ2, and f distributions, as well as examples that illustrate their
use. Students are exposed to methodology that will be brought out again in later
chapters in the discussions of estimation and hypothesis testing. This fundamental
methodology is accompanied by illustration of certain important graphical meth-
ods, such as stem-and-leaf and box-and-whisker plots. Chapter 4 presents the first
of several case studies involving real data.

Chapters 5 and 6 complement each other, providing a foundation for the solu-
tion of practical problems in which estimation and hypothesis testing are employed.
Statistical inference involving a single mean and two means, as well as one and two
proportions, is covered. Confidence intervals are displayed and thoroughly dis-
cussed; prediction intervals and tolerance intervals are touched upon. Problems
with paired observations are covered in detail.

In Chapter 7, the basics of simple linear regression (SLR) and multiple linear
regression (MLR) are covered in a depth suitable for a one-semester course. Chap-
ters 8 and 9 use a similar approach to expose students to the standard methodology
associated with analysis of variance (ANOVA). Although regression and ANOVA
are challenging topics, the clarity of presentation, along with case studies, class
projects, examples, and exercises, allows students to gain an understanding of the
essentials of both.

In the discussion of rules and concepts in probability, the coverage of analytical
tools is enhanced through the use of calculus. Though the material on multiple
linear regression in Chapter 7 covers the essential methodology, students are not
burdened with the level of matrix algebra and relevant manipulations that they
would confront in a text designed for a two-semester course.

Computer Software

Case studies, beginning in Chapter 4, feature computer printout and graphical
material generated using both SAS R© and MINITAB R©. The inclusion of the com-
puter reflects our belief that students should have the experience of reading and
interpreting computer printout and graphics, even if the software in the text is not
that which is used by the instructor. Exposure to more than one type of software
can broaden the experience base for the student. There is no reason to believe that
the software used in the course will be that which the student will be called upon
to use in a professional setting.
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Supplements

Instructor’s Solutions Manual. This resource contains worked-out solutions to all
text exercises and is available for download from Pearson’s Instructor Resource
Center at www.pearsonhighered.com/irc.

Student’s Solutions Manual. ISBN-10: 0-321-78399-9; ISBN-13: 978-0-321-78399-
8. This resource contains complete solutions to selected exercises. It is available
for purchase from MyPearsonStore at www.mypearsonstore.com, or ask your local
representative for value pack options.

PowerPoint R© Lecture Slides. These slides include most of the figures and tables
from the text. Slides are available for download from Pearson’s Instructor Resource
Center at www.pearsonhighered.com/irc.

Looking for more comprehensive coverage for a two-semester course? See the more
comprehensive book Probability and Statistics for Engineers and Scientists, 9th
edition, by Walpole, Myers, Myers, and Ye (ISBN-10: 0-321-62911-6; ISBN-13:
978-0-321-62911-1).
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Chapter 1

Introduction to Statistics
and Probability

1.1 Overview: Statistical Inference, Samples, Populations,
and the Role of Probability

Beginning in the 1980s and continuing into the 21st century, a great deal of at-
tention has been focused on improvement of quality in American industry. Much
has been said and written about the Japanese “industrial miracle,” which began
in the middle of the 20th century. The Japanese were able to succeed where we
and other countries had failed—namely, to create an atmosphere that allows the
production of high-quality products. Much of the success of the Japanese has
been attributed to the use of statistical methods and statistical thinking among
management personnel.

Use of Scientific Data

The use of statistical methods in manufacturing, development of food products,
computer software, energy sources, pharmaceuticals, and many other areas involves
the gathering of information or scientific data. Of course, the gathering of data
is nothing new. It has been done for well over a thousand years. Data have
been collected, summarized, reported, and stored for perusal. However, there is a
profound distinction between collection of scientific information and inferential
statistics. It is the latter that has received rightful attention in recent decades.

The offspring of inferential statistics has been a large “toolbox” of statistical
methods employed by statistical practitioners. These statistical methods are de-
signed to contribute to the process of making scientific judgments in the face of
uncertainty and variation. The product density of a particular material from a
manufacturing process will not always be the same. Indeed, if the process involved
is a batch process rather than continuous, there will be not only variation in ma-
terial density among the batches that come off the line (batch-to-batch variation),
but also within-batch variation. Statistical methods are used to analyze data from
a process such as this one in order to gain more sense of where in the process
changes may be made to improve the quality of the process. In this process, qual-
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ity may well be defined in relation to closeness to a target density value in harmony
with what portion of the time this closeness criterion is met. An engineer may be
concerned with a specific instrument that is used to measure sulfur monoxide in
the air during pollution studies. If the engineer has doubts about the effectiveness
of the instrument, there are two sources of variation that must be dealt with.
The first is the variation in sulfur monoxide values that are found at the same
locale on the same day. The second is the variation between values observed and
the true amount of sulfur monoxide that is in the air at the time. If either of these
two sources of variation is exceedingly large (according to some standard set by
the engineer), the instrument may need to be replaced. In a biomedical study of a
new drug that reduces hypertension, 85% of patients experienced relief, while it is
generally recognized that the current drug, or “old” drug, brings relief to 80% of pa-
tients that have chronic hypertension. However, the new drug is more expensive to
make and may result in certain side effects. Should the new drug be adopted? This
is a problem that is encountered (often with much more complexity) frequently by
pharmaceutical firms in conjunction with the FDA (Federal Drug Administration).
Again, the consideration of variation needs to be taken into account. The “85%”
value is based on a certain number of patients chosen for the study. Perhaps if the
study were repeated with new patients the observed number of “successes” would
be 75%! It is the natural variation from study to study that must be taken into
account in the decision process. Clearly this variation is important, since variation
from patient to patient is endemic to the problem.

Variability in Scientific Data

In the problems discussed above the statistical methods used involve dealing with
variability, and in each case the variability to be studied is that encountered in
scientific data. If the observed product density in the process were always the
same and were always on target, there would be no need for statistical methods.
If the device for measuring sulfur monoxide always gives the same value and the
value is accurate (i.e., it is correct), no statistical analysis is needed. If there
were no patient-to-patient variability inherent in the response to the drug (i.e.,
it either always brings relief or not), life would be simple for scientists in the
pharmaceutical firms and FDA and no statistician would be needed in the decision
process. Statistics researchers have produced an enormous number of analytical
methods that allow for analysis of data from systems like those described above.
This reflects the true nature of the science that we call inferential statistics, namely,
using techniques that allow us to go beyond merely reporting data to drawing
conclusions (or inferences) about the scientific system. Statisticians make use of
fundamental laws of probability and statistical inference to draw conclusions about
scientific systems. Information is gathered in the form of samples, or collections
of observations. The process of sampling will be introduced in this chapter, and
the discussion continues throughout the entire book.

Samples are collected from populations, which are collections of all individ-
uals or individual items of a particular type. At times a population signifies a
scientific system. For example, a manufacturer of computer boards may wish to
eliminate defects. A sampling process may involve collecting information on 50
computer boards sampled randomly from the process. Here, the population is all
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computer boards manufactured by the firm over a specific period of time. If an
improvement is made in the computer board process and a second sample of boards
is collected, any conclusions drawn regarding the effectiveness of the change in pro-
cess should extend to the entire population of computer boards produced under
the “improved process.” In a drug experiment, a sample of patients is taken and
each is given a specific drug to reduce blood pressure. The interest is focused on
drawing conclusions about the population of those who suffer from hypertension.

Often, it is very important to collect scientific data in a systematic way, with
planning being high on the agenda. At times the planning is, by necessity, quite
limited. We often focus only on certain properties or characteristics of the items or
objects in the population. Each characteristic has particular engineering or, say,
biological importance to the “customer,” the scientist or engineer who seeks to learn
about the population. For example, in one of the illustrations above the quality
of the process had to do with the product density of the output of a process. An
engineer may need to study the effect of process conditions, temperature, humidity,
amount of a particular ingredient, and so on. He or she can systematically move
these factors to whatever levels are suggested according to whatever prescription
or experimental design is desired. However, a forest scientist who is interested
in a study of factors that influence wood density in a certain kind of tree cannot
necessarily design an experiment. This case may require an observational study
in which data are collected in the field but factor levels can not be preselected.
Both of these types of studies lend themselves to methods of statistical inference.
In the former, the quality of the inferences will depend on proper planning of the
experiment. In the latter, the scientist is at the mercy of what can be gathered.
For example, it is sad if an agronomist is interested in studying the effect of rainfall
on plant yield and the data are gathered during a drought.

The importance of statistical thinking by managers and the use of statistical
inference by scientific personnel is widely acknowledged. Research scientists gain
much from scientific data. Data provide understanding of scientific phenomena.
Product and process engineers learn a great deal in their off-line efforts to improve
the process. They also gain valuable insight by gathering production data (on-
line monitoring) on a regular basis. This allows them to determine necessary
modifications in order to keep the process at a desired level of quality.

There are times when a scientific practitioner wishes only to gain some sort of
summary of a set of data represented in the sample. In other words, inferential
statistics is not required. Rather, a set of single-number statistics or descriptive
statistics is helpful. These numbers give a sense of center of the location of
the data, variability in the data, and the general nature of the distribution of
observations in the sample. Though no specific statistical methods leading to
statistical inference are incorporated, much can be learned. At times, descriptive
statistics are accompanied by graphics. Modern statistical software packages allow
for computation of means, medians, standard deviations, and other single-
number statistics as well as production of graphs that show a “footprint” of the
nature of the sample, including histograms, stem-and-leaf plots, scatter plots, dot
plots, and box plots.
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The Role of Probability

From this chapter to Chapter 3, we deal with fundamental notions of probability.
A thorough grounding in these concepts allows the reader to have a better under-
standing of statistical inference. Without some formalism of probability theory,
the student cannot appreciate the true interpretation from data analysis through
modern statistical methods. It is quite natural to study probability prior to study-
ing statistical inference. Elements of probability allow us to quantify the strength
or “confidence” in our conclusions. In this sense, concepts in probability form a
major component that supplements statistical methods and helps us gauge the
strength of the statistical inference. The discipline of probability, then, provides
the transition between descriptive statistics and inferential methods. Elements of
probability allow the conclusion to be put into the language that the science or
engineering practitioners require. An example follows that will enable the reader
to understand the notion of a P -value, which often provides the “bottom line” in
the interpretation of results from the use of statistical methods.

Example 1.1: Suppose that an engineer encounters data from a manufacturing process in which
100 items are sampled and 10 are found to be defective. It is expected and antic-
ipated that occasionally there will be defective items. Obviously these 100 items
represent the sample. However, it has been determined that in the long run, the
company can only tolerate 5% defective in the process. Now, the elements of prob-
ability allow the engineer to determine how conclusive the sample information is
regarding the nature of the process. In this case, the population conceptually
represents all possible items from the process. Suppose we learn that if the process
is acceptable, that is, if it does produce items no more than 5% of which are de-
fective, there is a probability of 0.0282 of obtaining 10 or more defective items in
a random sample of 100 items from the process. This small probability suggests
that the process does, indeed, have a long-run rate of defective items that exceeds
5%. In other words, under the condition of an acceptable process, the sample in-
formation obtained would rarely occur. However, it did occur! Clearly, though, it
would occur with a much higher probability if the process defective rate exceeded
5% by a significant amount.

From this example it becomes clear that the elements of probability aid in the
translation of sample information into something conclusive or inconclusive about
the scientific system. In fact, what was learned likely is alarming information to the
engineer or manager. Statistical methods, which we will actually detail in Chapter
6, produced a P -value of 0.0282. The result suggests that the process very likely
is not acceptable. The concept of a P-value is dealt with at length in succeeding
chapters. The example that follows provides a second illustration.

Example 1.2: Often the nature of the scientific study will dictate the role that probability and
deductive reasoning play in statistical inference. Exercise 5.28 on page 221 provides
data associated with a study conducted at Virginia Tech on the development of a
relationship between the roots of trees and the action of a fungus. Minerals are
transferred from the fungus to the trees and sugars from the trees to the fungus.
Two samples of 10 northern red oak seedlings were planted in a greenhouse, one
containing seedlings treated with nitrogen and the other containing seedlings with
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no nitrogen. All other environmental conditions were held constant. All seedlings
contained the fungus Pisolithus tinctorus. More details are supplied in Chapter 5.
The stem weights in grams were recorded after the end of 140 days. The data are
given in Table 1.1.

Table 1.1: Data Set for Example 1.2

No Nitrogen Nitrogen
0.32 0.26
0.53 0.43
0.28 0.47
0.37 0.49
0.47 0.52
0.43 0.75
0.36 0.79
0.42 0.86
0.38 0.62
0.43 0.46

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Figure 1.1: A dot plot of stem weight data.

In this example there are two samples from two separate populations. The
purpose of the experiment is to determine if the use of nitrogen has an influence
on the growth of the roots. The study is a comparative study (i.e., we seek to
compare the two populations with regard to a certain important characteristic). It
is instructive to plot the data as shown in the dot plot of Figure 1.1. The ◦ values
represent the “nitrogen” data and the × values represent the “no-nitrogen” data.

Notice that the general appearance of the data might suggest to the reader
that, on average, the use of nitrogen increases the stem weight. Four nitrogen ob-
servations are considerably larger than any of the no-nitrogen observations. Most
of the no-nitrogen observations appear to be below the center of the data. The
appearance of the data set would seem to indicate that nitrogen is effective. But
how can this be quantified? How can all of the apparent visual evidence be summa-
rized in some sense? As in the preceding example, the fundamentals of probability
can be used. The conclusions may be summarized in a probability statement or
P-value. We will not show here the statistical inference that produces the summary
probability. As in Example 1.1, these methods will be discussed in Chapter 6. The
issue revolves around the “probability that data like these could be observed” given
that nitrogen has no effect, in other words, given that both samples were generated
from the same population. Suppose that this probability is small, say 0.03. That
would certainly be strong evidence that the use of nitrogen does indeed influence
(apparently increases) average stem weight of the red oak seedlings.
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How Do Probability and Statistical Inference Work Together?

It is important for the reader to understand the clear distinction between the
discipline of probability, a science in its own right, and the discipline of inferen-
tial statistics. As we have already indicated, the use or application of concepts in
probability allows real-life interpretation of the results of statistical inference. As a
result, it can be said that statistical inference makes use of concepts in probability.
One can glean from the two examples above that the sample information is made
available to the analyst and, with the aid of statistical methods and elements of
probability, conclusions are drawn about some feature of the population (the pro-
cess does not appear to be acceptable in Example 1.1, and nitrogen does appear
to influence average stem weights in Example 1.2). Thus for a statistical problem,
the sample along with inferential statistics allows us to draw conclu-
sions about the population, with inferential statistics making clear use
of elements of probability. This reasoning is inductive in nature. Now as we
move into Section 1.4 and beyond, the reader will note that, unlike what we do
in our two examples here, we will not focus on solving statistical problems. Many
examples will be given in which no sample is involved. There will be a population
clearly described with all features of the population known. Then questions of im-
portance will focus on the nature of data that might hypothetically be drawn from
the population. Thus, one can say that elements in probability allow us to
draw conclusions about characteristics of hypothetical data taken from
the population, based on known features of the population. This type of
reasoning is deductive in nature. Figure 1.2 shows the fundamental relationship
between probability and inferential statistics.

Population Sample

Probability

Statistical Inference

Figure 1.2: Fundamental relationship between probability and inferential statistics.

Now, in the grand scheme of things, which is more important, the field of
probability or the field of statistics? They are both very important and clearly are
complementary. The only certainty concerning the pedagogy of the two disciplines
lies in the fact that if statistics is to be taught at more than merely a “cookbook”
level, then the discipline of probability must be taught first. This rule stems from
the fact that nothing can be learned about a population from a sample until the
analyst learns the rudiments of uncertainty in that sample. For example, consider
Example 1.1. The question centers around whether or not the population, defined
by the process, is no more than 5% defective. In other words, the conjecture is that
on the average 5 out of 100 items are defective. Now, the sample contains 100
items and 10 are defective. Does this support the conjecture or refute it? On the
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surface it would appear to be a refutation of the conjecture because 10 out of 100
seem to be “a bit much.” But without elements of probability, how do we know?
Only through the study of material in future chapters will we learn the conditions
under which the process is acceptable (5% defective). The probability of obtaining
10 or more defective items in a sample of 100 is 0.0282.

We have given two examples where the elements of probability provide a sum-
mary that the scientist or engineer can use as evidence on which to build a decision.
The bridge between the data and the conclusion is, of course, based on foundations
of statistical inference, distribution theory, and sampling distributions discussed in
future chapters.

1.2 Sampling Procedures; Collection of Data

In Section 1.1 we discussed very briefly the notion of sampling and the sampling
process. While sampling appears to be a simple concept, the complexity of the
questions that must be answered about the population or populations necessitates
that the sampling process be very complex at times. While the notion of sampling
is discussed in a technical way in Chapter 4, we shall endeavor here to give some
common-sense notions of sampling. This is a natural transition to a discussion of
the concept of variability.

Simple Random Sampling

The importance of proper sampling revolves around the degree of confidence with
which the analyst is able to answer the questions being asked. Let us assume that
only a single population exists in the problem. Recall that in Example 1.2 two
populations were involved. Simple random sampling implies that any particular
sample of a specified sample size has the same chance of being selected as any
other sample of the same size. The term sample size simply means the number of
elements in the sample. Obviously, a table of random numbers can be utilized in
sample selection in many instances. The virtue of simple random sampling is that
it aids in the elimination of the problem of having the sample reflect a different
(possibly more confined) population than the one about which inferences need to be
made. For example, a sample is to be chosen to answer certain questions regarding
political preferences in a certain state in the United States. The sample involves
the choice of, say, 1000 families, and a survey is to be conducted. Now, suppose it
turns out that random sampling is not used. Rather, all or nearly all of the 1000
families chosen live in an urban setting. It is believed that political preferences
in rural areas differ from those in urban areas. In other words, the sample drawn
actually confined the population and thus the inferences need to be confined to the
“limited population,” and in this case confining may be undesirable. If, indeed,
the inferences need to be made about the state as a whole, the sample of size 1000
described here is often referred to as a biased sample.

As we hinted earlier, simple random sampling is not always appropriate. Which
alternative approach is used depends on the complexity of the problem. Often, for
example, the sampling units are not homogeneous and naturally divide themselves
into nonoverlapping groups that are homogeneous. These groups are called strata,
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and a procedure called stratified random sampling involves random selection of a
sample within each stratum. The purpose is to be sure that each of the strata
is neither over- nor underrepresented. For example, suppose a sample survey is
conducted in order to gather preliminary opinions regarding a bond referendum
that is being considered in a certain city. The city is subdivided into several ethnic
groups which represent natural strata. In order not to disregard or overrepresent
any group, separate random samples of families could be chosen from each group.

Experimental Design

The concept of randomness or random assignment plays a huge role in the area
of experimental design, which was introduced very briefly in Section 1.1 and
is an important staple in almost any area of engineering or experimental science.
This will also be discussed at length in Chapter 8. However, it is instructive to
give a brief presentation here in the context of random sampling. A set of so-
called treatments or treatment combinations becomes the populations to be
studied or compared in some sense. An example is the nitrogen versus no-nitrogen
treatments in Example 1.2. Another simple example would be placebo versus active
drug, or in a corrosion fatigue study we might have treatment combinations that
involve specimens that are coated or uncoated as well as conditions of low or high
humidity to which the specimens are exposed. In fact, there are four treatment
or factor combinations (i.e., 4 populations), and many scientific questions may be
asked and answered through statistical and inferential methods. Consider first
the situation in Example 1.2. There are 20 diseased seedlings involved in the
experiment. It is easy to see from the data themselves that the seedlings are
different from each other. Within the nitrogen group (or the no-nitrogen group)
there is considerable variability in the stem weights. This variability is due to
what is generally called the experimental unit. This is a very important concept
in inferential statistics, in fact one whose description will not end in this chapter.
The nature of the variability is very important. If it is too large, stemming from
a condition of excessive nonhomogeneity in experimental units, the variability will
“wash out” any detectable difference between the two populations. Recall that in
this case that did not occur.

The dot plot in Figure 1.1 and P-value indicated a clear distinction between
these two conditions. What role do those experimental units play in the data-
taking process itself? The common-sense and, indeed, quite standard approach is
to assign the 20 seedlings or experimental units randomly to the two treat-
ments or conditions. In the drug study, we may decide to use a total of 200
available patients, patients that clearly will be different in some sense. They are
the experimental units. However, they all may have the same chronic condition
for which the drug is a potential treatment. Then in a so-called completely ran-
domized design, 100 patients are assigned randomly to the placebo and 100 to
the active drug. Again, it is these experimental units within a group or treatment
that produce the variability in data results (i.e., variability in the measured result),
say blood pressure, or whatever drug efficacy value is important. In the corrosion
fatigue study, the experimental units are the specimens that are the subjects of
the corrosion.
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Why Assign Experimental Units Randomly?

What is the possible negative impact of not randomly assigning experimental units
to the treatments or treatment combinations? This is seen most clearly in the
case of the drug study. Among the characteristics of the patients that produce
variability in the results are age, gender, and weight. Suppose merely by chance
the placebo group contains a sample of people that are predominately heavier than
those in the treatment group. Perhaps heavier individuals have a tendency to have
a higher blood pressure. This clearly biases the result, and indeed, any result
obtained through the application of statistical inference may have little to do with
the drug and more to do with differences in weights among the two samples of
patients.

We should emphasize the attachment of importance to the term variability.
Excessive variability among experimental units “camouflages” scientific findings.
In future sections, we attempt to characterize and quantify measures of variability.
In sections that follow, we introduce and discuss specific quantities that can be
computed in samples; the quantities give a sense of the nature of the sample with
respect to center of location of the data and variability in the data. A discussion
of several of these single-number measures serves to provide a preview of what
statistical information will be important components of the statistical methods
that are used in future chapters. These measures that help characterize the nature
of the data set fall into the category of descriptive statistics. This material is
a prelude to a brief presentation of pictorial and graphical methods that go even
further in characterization of the data set. The reader should understand that the
statistical methods illustrated here will be used throughout the text. In order to
offer the reader a clearer picture of what is involved in experimental design studies,
we offer Example 1.3.

Example 1.3: A corrosion study was made in order to determine whether coating an aluminum
metal with a corrosion retardation substance reduced the amount of corrosion.
The coating is a protectant that is advertised to minimize fatigue damage in this
type of material. Also of interest is the influence of humidity on the amount of
corrosion. A corrosion measurement can be expressed in thousands of cycles to
failure. Two levels of coating, no coating and chemical corrosion coating, were
used. In addition, the two relative humidity levels are 20% relative humidity and
80% relative humidity.

The experiment involves four treatment combinations that are listed in the table
that follows. There are eight experimental units used, and they are aluminum
specimens prepared; two are assigned randomly to each of the four treatment
combinations. The data are presented in Table 1.2.

The corrosion data are averages of two specimens. A plot of the averages is
pictured in Figure 1.3. A relatively large value of cycles to failure represents a
small amount of corrosion. As one might expect, an increase in humidity appears
to make the corrosion worse. The use of the chemical corrosion coating procedure
appears to reduce corrosion.

In this experimental design illustration, the engineer has systematically selected
the four treatment combinations. In order to connect this situation to concepts
with which the reader has been exposed to this point, it should be assumed that the
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Table 1.2: Data for Example 1.3

Average Corrosion in
Coating Humidity Thousands of Cycles to Failure

Uncoated
20% 975

80% 350

Chemical Corrosion
20% 1750

80% 1550

0
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Humidity
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Figure 1.3: Corrosion results for Example 1.3.

conditions representing the four treatment combinations are four separate popula-
tions and that the two corrosion values observed for each population are important
pieces of information. The importance of the average in capturing and summariz-
ing certain features in the population will be highlighted in Section 4.2. While we
might draw conclusions about the role of humidity and the impact of coating the
specimens from the figure, we cannot truly evaluate the results from an analyti-
cal point of view without taking into account the variability around the average.
Again, as we indicated earlier, if the two corrosion values for each treatment com-
bination are close together, the picture in Figure 1.3 may be an accurate depiction.
But if each corrosion value in the figure is an average of two values that are widely
dispersed, then this variability may, indeed, truly “wash away” any information
that appears to come through when one observes averages only. The foregoing
example illustrates these concepts:

(1) random assignment of treatment combinations (coating, humidity) to experi-
mental units (specimens)

(2) the use of sample averages (average corrosion values) in summarizing sample
information

(3) the need for consideration of measures of variability in the analysis of any
sample or sets of samples
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1.3 Discrete and Continuous Data

Statistical inference through the analysis of observational studies or designed ex-
periments is used in many scientific areas. The data gathered may be discrete
or continuous, depending on the area of application. For example, a chemical
engineer may be interested in conducting an experiment that will lead to condi-
tions where yield is maximized. Here, of course, the yield may be in percent or
grams/pound, measured on a continuum. On the other hand, a toxicologist con-
ducting a combination drug experiment may encounter data that are binary in
nature (i.e., the patient either responds or does not).

Great distinctions are made between discrete and continuous data in the prob-
ability theory that allow us to draw statistical inferences. Often applications of
statistical inference are found when the data are count data. For example, an en-
gineer may be interested in studying the number of radioactive particles passing
through a counter in, say, 1 millisecond. Personnel responsible for the efficiency
of a port facility may be interested in the properties of the number of oil tankers
arriving each day at a certain port city. In Chapter 3, several distinct scenarios,
leading to different ways of handling data, are discussed for situations with count
data.

Special attention even at this early stage of the textbook should be paid to some
details associated with binary data. Applications requiring statistical analysis of
binary data are voluminous. Often the measure that is used in the analysis is
the sample proportion. Obviously the binary situation involves two categories.
If there are n units involved in the data and x is defined as the number that
fall into category 1, then n − x fall into category 2. Thus, x/n is the sample
proportion in category 1, and 1− x/n is the sample proportion in category 2. In
the biomedical application, 50 patients may represent the sample units, and if 20
out of 50 experienced an improvement in a stomach ailment (common to all 50)
after all were given the drug, then 20

50 = 0.4 is the sample proportion for which
the drug was a success and 1 − 0.4 = 0.6 is the sample proportion for which the
drug was not successful. Actually the basic numerical measurement for binary
data is generally denoted by either 0 or 1. For example, in our medical example, a
successful result is denoted by a 1 and a nonsuccess by a 0. As a result, the sample
proportion is actually a sample mean of the ones and zeros. For the successful
category,

x1 + x2 + · · ·+ x50

50
=

1 + 1 + 0 + · · ·+ 0 + 1

50
=

20

50
= 0.4.

1.4 Probability: Sample Space and Events

Sample Space

In the study of statistics, we are concerned basically with the presentation and
interpretation of chance outcomes that occur in a planned study or scientific
investigation. For example, we may record the number of accidents that occur
monthly at the intersection of Driftwood Lane and Royal Oak Drive, hoping to
justify the installation of a traffic light; we might classify items coming off an as-
sembly line as “defective” or “nondefective”; or we may be interested in the volume
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of gas released in a chemical reaction when the concentration of an acid is varied.
Hence, the statistician is often dealing with either numerical data, representing
counts or measurements, or categorical data, which can be classified according
to some criterion.

We shall refer to any recording of information, whether it be numerical or
categorical, as an observation. Thus, the numbers 2, 0, 1, and 2, representing
the number of accidents that occurred for each month from January through April
during the past year at the intersection of Driftwood Lane and Royal Oak Drive,
constitute a set of observations. Similarly, the categorical data N, D, N, N, and
D, representing the items found to be defective or nondefective when five items are
inspected, are recorded as observations.

Statisticians use the word experiment to describe any process that generates
a set of data. A simple example of a statistical experiment is the tossing of a coin.
In this experiment, there are only two possible outcomes, heads or tails. Another
experiment might be the launching of a missile and observing of its velocity at
specified times. The opinions of voters concerning a new sales tax can also be
considered as observations of an experiment. We are particularly interested in the
observations obtained by repeating the experiment several times. In most cases, the
outcomes will depend on chance and, therefore, cannot be predicted with certainty.
If a chemist runs an analysis several times under the same conditions, he or she will
obtain different measurements, indicating an element of chance in the experimental
procedure. Even when a coin is tossed repeatedly, we cannot be certain that a given
toss will result in a head. However, we know the entire set of possibilities for each
toss.

Definition 1.1: The set of all possible outcomes of a statistical experiment is called the sample
space and is represented by the symbol S.

Each outcome in a sample space is called an element or a member of the
sample space, or simply a sample point. If the sample space has a finite number
of elements, we may list the members separated by commas and enclosed in braces.
Thus, the sample space S, of possible outcomes when a coin is flipped, may be
written

S = {H,T},
where H and T correspond to heads and tails, respectively.

Example 1.4: Consider the experiment of tossing a die. If we are interested in the number that
shows on the top face, the sample space is

S1 = {1, 2, 3, 4, 5, 6}.
If we are interested only in whether the number is even or odd, the sample space
is simply

S2 = {even, odd}.
Example 1.4 illustrates the fact that more than one sample space can be used to

describe the outcomes of an experiment. In this case, S1 provides more information
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than S2. If we know which element in S1 occurs, we can tell which outcome in S2

occurs; however, a knowledge of what happens in S2 is of little help in determining
which element in S1 occurs. In general, it is desirable to use the sample space that
gives the most information concerning the outcomes of the experiment. In some
experiments, it is helpful to list the elements of the sample space systematically by
means of a tree diagram.

Example 1.5: Suppose that three items are selected at random from a manufacturing process.
Each item is inspected and classified defective, D, or nondefective, N. To list the
elements of the sample space providing the most information, we construct the tree
diagram of Figure 1.4. Now, the various paths along the branches of the tree give
the distinct sample points. Starting with the first path, we get the sample point
DDD, indicating the possibility that all three items inspected are defective. As we
proceed along the other paths, we see that the sample space is

S = {DDD, DDN, DND, DNN, NDD, NDN, NND, NNN}.

D

N

D

N

D

N

D DDD

N DDN
D DND

N DNN

D NDD

N NDN
D NND

N NNN

First
Item

Second
Item

Third
Item

Sample
Point

Figure 1.4: Tree diagram for Example 1.5.

Sample spaces with a large or infinite number of sample points are best de-
scribed by a statement or rule method. For example, if the possible outcomes
of an experiment are the set of cities in the world with a population over 1 million,
our sample space is written

S = {x | x is a city with a population over 1 million},
which reads “S is the set of all x such that x is a city with a population over 1
million.” The vertical bar is read “such that.” Similarly, if S is the set of all points
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(x, y) on the boundary or the interior of a circle of radius 2 with center at the
origin, we write the rule

S = {(x, y) | x2 + y2 ≤ 4}.

Whether we describe the sample space by the rule method or by listing the
elements will depend on the specific problem at hand. The rule method has practi-
cal advantages, particularly for many experiments where listing becomes a tedious
chore.

Consider the situation of Example 1.5 in which items from a manufacturing
process are either D, defective, or N , nondefective. There are many important
statistical procedures called sampling plans that determine whether or not a “lot”
of items is considered satisfactory. One such plan involves sampling until k defec-
tives are observed. Suppose the experiment is to sample items randomly until one
defective item is observed. The sample space for this case is

S = {D,ND,NND,NNND, . . . }.

Events

For any given experiment, we may be interested in the occurrence of certain events
rather than in the occurrence of a specific element in the sample space. For in-
stance, we may be interested in the event A that the outcome when a die is tossed is
divisible by 3. This will occur if the outcome is an element of the subset A = {3, 6}
of the sample space S1 in Example 1.4. As a further illustration, we may be inter-
ested in the event B that the number of defectives is greater than 1 in Example
1.5. This will occur if the outcome is an element of the subset

B = {DDN,DND,NDD,DDD}

of the sample space S.
To each event we assign a collection of sample points, which constitute a subset

of the sample space. That subset represents all of the elements for which the event
is true.

Definition 1.2: An event is a subset of a sample space.

Example 1.6: Given the sample space S = {t | t ≥ 0}, where t is the life in years of a certain
electronic component, then the event A that the component fails before the end of
the fifth year is the subset A = {t | 0 ≤ t < 5}.

It is conceivable that an event may be a subset that includes the entire sample
space S or a subset of S called the null set and denoted by the symbol φ, which
contains no elements at all. For instance, if we let A be the event of detecting a
microscopic organism with the naked eye in a biological experiment, then A = φ.
Also, if

B = {x | x is an even factor of 7},
then B must be the null set, since the only possible factors of 7 are the odd numbers
1 and 7.



1.4 Probability: Sample Space and Events 15

Consider an experiment where the smoking habits of the employees of a man-
ufacturing firm are recorded. A possible sample space might classify an individual
as a nonsmoker, a light smoker, a moderate smoker, or a heavy smoker. Let the
subset of smokers be some event. Then all the nonsmokers correspond to a different
event, also a subset of S, which is called the complement of the set of smokers.

Definition 1.3: The complement of an event A with respect to S is the subset of all elements
of S that are not in A. We denote the complement of A by the symbol A′.

Example 1.7: Let R be the event that a red card is selected from an ordinary deck of 52 playing
cards, and let S be the entire deck. Then R′ is the event that the card selected
from the deck is not a red card but a black card.

Example 1.8: Consider the sample space

S = {book, cell phone, mp3, paper, stationery, laptop}.

Let A = {book, stationery, laptop, paper}. Then the complement of A is A′ =
{cell phone, mp3}.

We now consider certain operations with events that will result in the formation
of new events. These new events will be subsets of the same sample space as the
given events. Suppose that A and B are two events associated with an experiment.
In other words, A and B are subsets of the same sample space S. For example, in
the tossing of a die we might let A be the event that an even number occurs and
B the event that a number greater than 3 shows. Then the subsets A = {2, 4, 6}
and B = {4, 5, 6} are subsets of the same sample space

S = {1, 2, 3, 4, 5, 6}.

Note that both A and B will occur on a given toss if the outcome is an element of
the subset {4, 6}, which is just the intersection of A and B.

Definition 1.4: The intersection of two events A and B, denoted by the symbol A ∩ B, is the
event containing all elements that are common to A and B.

Example 1.9: Let E be the event that a person selected at random in a classroom is majoring
in engineering, and let F be the event that the person is female. Then E ∩ F is
the event of all female engineering students in the classroom.

Example 1.10: Let V = {a, e, i, o, u} and C = {l, r, s, t}; then it follows that V ∩C = φ. That is,
V and C have no elements in common and, therefore, cannot both simultaneously
occur.

For certain statistical experiments it is by no means unusual to define two
events, A and B, that cannot both occur simultaneously. The events A and B are
then said to be mutually exclusive. Stated more formally, we have the following
definition:
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Definition 1.5: Two events A and B are mutually exclusive, or disjoint, if A ∩ B = φ, that
is, if A and B have no elements in common.

Example 1.11: A cable television company offers programs on eight different channels, three
of which are affiliated with ABC, two with NBC, and one with CBS. The other
two are an educational channel and the ESPN sports channel. Suppose that a
person subscribing to this service turns on a television set without first selecting
the channel. Let A be the event that the program belongs to the NBC network and
B the event that it belongs to the CBS network. Since a television program cannot
belong to more than one network, the events A and B have no programs in common.
Therefore, the intersection A ∩ B contains no programs, and consequently the
events A and B are mutually exclusive.

Often one is interested in the occurrence of at least one of two events associated
with an experiment. Thus, in the die-tossing experiment, if

A = {2, 4, 6} and B = {4, 5, 6},

we might be interested in either A or B occurring or both A and B occurring. Such
an event, called the union of A and B, will occur if the outcome is an element of
the subset {2, 4, 5, 6}.

Definition 1.6: The union of the two events A and B, denoted by the symbol A∪B, is the event
containing all the elements that belong to A or B or both.

Example 1.12: Let A = {a, b, c} and B = {b, c, d, e}; then A ∪B = {a, b, c, d, e}.

Example 1.13: Let P be the event that an employee selected at random from an oil drilling
company smokes cigarettes. Let Q be the event that the employee selected drinks
alcoholic beverages. Then the event P ∪ Q is the set of all employees who either
drink or smoke or do both.

Example 1.14: If M = {x | 3 < x < 9} and N = {y | 5 < y < 12}, then

M ∪N = {z | 3 < z < 12}.
The relationship between events and the corresponding sample space can be

illustrated graphically by means of Venn diagrams. In a Venn diagram we let
the sample space be a rectangle and represent events by circles drawn inside the
rectangle. Thus, in Figure 1.5, we see that

A ∩B = regions 1 and 2,

B ∩ C = regions 1 and 3,

A ∪ C = regions 1, 2, 3, 4, 5, and 7,

B′ ∩A = regions 4 and 7,

A ∩B ∩ C = region 1,

(A ∪B) ∩ C ′ = regions 2, 6, and 7,
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Figure 1.5: Events represented by various regions.

and so forth.
In Figure 1.6, we see that events A, B, and C are all subsets of the sample

space S. It is also clear that event B is a subset of event A; event B ∩ C has no
elements and hence B and C are mutually exclusive; event A ∩ C has at least one
element; and event A ∪ B = A. Figure 1.6 might, therefore, depict a situation
where we select a card at random from an ordinary deck of 52 playing cards and
observe whether the following events occur:

A: the card is red,

B: the card is the jack, queen, or king of diamonds,

C: the card is an ace.

Clearly, the event A ∩ C consists of only the two red aces.

A

B C

S

Figure 1.6: Events of the sample space S.

Several results that follow from the foregoing definitions, which may easily be
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verified by means of Venn diagrams, are as follows:

1. A ∩ φ = φ.

2. A ∪ φ = A.

3. A ∩A′ = φ.

4. A ∪A′ = S.

5. S′ = φ.

6. φ′ = S.

7. (A′)′ = A.

8. (A ∩B)′ = A′ ∪B′.

9. (A ∪B)′ = A′ ∩B′.

Exercises

1.1 List the elements of each of the following sample
spaces:

(a) the set of integers between 1 and 50 divisible by 8;

(b) the set S = {x | x2 + 4x− 5 = 0};
(c) the set of outcomes when a coin is tossed until a

tail or three heads appear;

(d) the set S = {x | x is a continent};
(e) the set S = {x | 2x− 4 ≥ 0 and x < 1}.

1.2 Use the rule method to describe the sample space
S consisting of all points in the first quadrant inside a
circle of radius 3 with center at the origin.

1.3 Which of the following events are equal?

(a) A = {1, 3};
(b) B = {x | x is a number on a die};
(c) C = {x | x2 − 4x+ 3 = 0};
(d) D = {x | x is the number of heads when six coins

are tossed}.

1.4 Two jurors are selected from 4 alternates to serve
at a murder trial. Using the notation A1A3, for exam-
ple, to denote the simple event that alternates 1 and 3
are selected, list the 6 elements of the sample space S.

1.5 An experiment consists of tossing a die and then
flipping a coin once if the number on the die is even. If
the number on the die is odd, the coin is flipped twice.
Using the notation 4H, for example, to denote the out-
come that the die comes up 4 and then the coin comes
up heads, and 3HT to denote the outcome that the die
comes up 3 followed by a head and then a tail on the
coin, construct a tree diagram to show the 18 elements
of the sample space S.

1.6 For the sample space of Exercise 1.5,

(a) list the elements corresponding to the event A that
a number less than 3 occurs on the die;

(b) list the elements corresponding to the event B that

two tails occur;

(c) list the elements corresponding to the event A′;
(d) list the elements corresponding to the event A′∩B;

(e) list the elements corresponding to the event A∪B.

1.7 The resumés of two male applicants for a college
teaching position in chemistry are placed in the same
file as the resumés of two female applicants. Two po-
sitions become available, and the first, at the rank of
assistant professor, is filled by selecting one of the four
applicants at random. The second position, at the rank
of instructor, is then filled by selecting at random one
of the remaining three applicants. Using the notation
M2F1, for example, to denote the simple event that
the first position is filled by the second male applicant
and the second position is then filled by the first female
applicant,

(a) list the elements of a sample space S;

(b) list the elements of S corresponding to event A that
the position of assistant professor is filled by a male
applicant;

(c) list the elements of S corresponding to event B that
exactly one of the two positions is filled by a male
applicant;

(d) list the elements of S corresponding to event C that
neither position is filled by a male applicant;

(e) list the elements of S corresponding to the event
A ∩B;

(f) list the elements of S corresponding to the event
A ∪ C;

(g) construct a Venn diagram to illustrate the intersec-
tions and unions of the events A, B, and C.

1.8 An engineering firm is hired to determine if cer-
tain waterways in Virginia are safe for fishing. Samples
are taken from three rivers.

(a) List the elements of a sample space S, using the
letters F for safe to fish and N for not safe to fish.

(b) List the elements of S corresponding to event E
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that at least two of the rivers are safe for fishing.

(c) Define an event that has as its elements the points

{FFF,NFF, FFN,NFN}.

1.9 Construct a Venn diagram to illustrate the pos-
sible intersections and unions for the following events
relative to the sample space consisting of all automo-
biles made in the United States.

F : Four door, S : Sun roof, P : Power steering.

1.10 Exercise and diet are being studied as possi-
ble substitutes for medication to lower blood pressure.
Three groups of subjects will be used to study the ef-
fect of exercise. Group 1 is sedentary, while group 2
walks and group 3 swims for 1 hour a day. Half of each
of the three exercise groups will be on a salt-free diet.
An additional group of subjects will not exercise or re-
strict their salt, but will take the standard medication.
Use Z for sedentary, W for walker, S for swimmer, Y
for salt, N for no salt, M for medication, and F for
medication free.

(a) Show all of the elements of the sample space S.

(b) Given that A is the set of nonmedicated subjects
and B is the set of walkers, list the elements of
A ∪B.

(c) List the elements of A ∩B.

1.11 If S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and A =
{0, 2, 4, 6, 8}, B = {1, 3, 5, 7, 9}, C = {2, 3, 4, 5}, and
D = {1, 6, 7}, list the elements of the sets correspond-
ing to the following events:

(a) A ∪ C;

(b) A ∩B;

(c) C′;
(d) (C′ ∩D) ∪B;

(e) (S ∩ C)′;
(f) A ∩ C ∩D′.

1.12 If S = {x | 0 < x < 12}, M = {x | 1 < x < 9},
and N = {x | 0 < x < 5}, find
(a) M ∪N ;

(b) M ∩N ;

(c) M ′ ∩N ′.

1.13 Let A, B, and C be events relative to the sam-
ple space S. Using Venn diagrams, shade the areas
representing the following events:

(a) (A ∩B)′;
(b) (A ∪B)′;
(c) (A ∩ C) ∪B.

1.14 Which of the following pairs of events are mutu-
ally exclusive?

(a) A golfer scoring the lowest 18-hole round in a 72-
hole tournament and losing the tournament.

(b) A poker player getting a flush (all cards in the same
suit) and 3 of a kind on the same 5-card hand.

(c) A mother giving birth to a baby girl and a set of
twin daughters on the same day.

(d) A chess player losing the last game and winning the
match.

1.15 Suppose that a family is leaving on a summer
vacation in their camper and that M is the event that
they will experience mechanical problems, T is the
event that they will receive a ticket for committing a
traffic violation, and V is the event that they will ar-
rive at a campsite with no vacancies. Referring to the
Venn diagram of Figure 1.7, state in words the events
represented by the following regions:

(a) region 5;

(b) region 3;

(c) regions 1 and 2 together;

(d) regions 4 and 7 together;

(e) regions 3, 6, 7, and 8 together.

1.16 Referring to Exercise 1.15 and the Venn diagram
of Figure 1.7, list the numbers of the regions that rep-
resent the following events:

(a) The family will experience no mechanical problems
and will not receive a ticket for a traffic violation
but will arrive at a campsite with no vacancies.

(b) The family will experience both mechanical prob-
lems and trouble in locating a campsite with a va-
cancy but will not receive a ticket for a traffic vio-
lation.

(c) The family will either have mechanical trouble or
arrive at a campsite with no vacancies but will not
receive a ticket for a traffic violation.

(d) The family will not arrive at a campsite with no
vacancies.
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Figure 1.7: Venn diagram for Exercises 1.15 and 1.16.

1.5 Counting Sample Points

Frequently, we are interested in a sample space that contains as elements all possible
orders or arrangements of a group of objects. For example, we may want to know
how many different arrangements are possible for sitting 6 people around a table,
or we may ask how many different orders are possible for drawing 2 lottery tickets
from a total of 20. The different arrangements are called permutations.

Definition 1.7: A permutation is an arrangement of all or part of a set of objects.

Consider the three letters a, b, and c. The possible permutations are abc, acb,
bac, bca, cab, and cba. Thus, we see that there are 6 distinct arrangements.

Theorem 1.1: The number of permutations of n objects is n!.

The number of permutations of the four letters a, b, c, and d will be 4! = 24.
Now consider the number of permutations that are possible by taking two letters
at a time from four. These would be ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, and
dc. Consider that we have two positions to fill, with n1 = 4 choices for the first
and then n2 = 3 choices for the second, for a total of

n1n2 = (4)(3) = 12

permutations. In general, n distinct objects taken r at a time can be arranged in

n(n− 1)(n− 2) · · · (n− r + 1)

ways. We represent this product by the symbol

nPr =
n!

(n− r)!
.

As a result, we have the theorem that follows.
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Theorem 1.2: The number of permutations of n distinct objects taken r at a time is

nPr =
n!

(n− r)!
.

Example 1.15: In one year, three awards (research, teaching, and service) will be given to a class
of 25 graduate students in a statistics department. If each student can receive at
most one award, how many possible selections are there?

Solution : Since the awards are distinguishable, it is a permutation problem. The total
number of sample points is

25P3 =
25!

(25− 3)!
=

25!

22!
= (25)(24)(23) = 13,800.

Example 1.16: A president and a treasurer are to be chosen from a student club consisting of 50
people. How many different choices of officers are possible if

(a) there are no restrictions;

(b) A will serve only if he is president;

(c) B and C will serve together or not at all;

(d) D and E will not serve together?

Solution : (a) The total number of choices of officers, without any restrictions, is

50P2 =
50!

48!
= (50)(49) = 2450.

(b) Since A will serve only if he is president, we have two situations here: (i) A is
selected as the president, which yields 49 possible outcomes for the treasurer’s
position, or (ii) officers are selected from the remaining 49 people without A,
which has the number of choices 49P2 = (49)(48) = 2352. Therefore, the total
number of choices is 49 + 2352 = 2401.

(c) The number of selections when B and C serve together is 2. The number of
selections when both B and C are not chosen is 48P2 = 2256. Therefore, the
total number of choices in this situation is 2 + 2256 = 2258.

(d) The number of selections when D serves as an officer but not E is (2)(48) =
96, where 2 is the number of positions D can take and 48 is the number of
selections of the other officer from the remaining people in the club except
E. The number of selections when E serves as an officer but not D is also
(2)(48) = 96. The number of selections when both D and E are not chosen
is 48P2 = 2256. Therefore, the total number of choices is (2)(96) + 2256 =
2448. This problem also has another short solution: Since D and E can only
serve together in 2 ways, the answer is 2450− 2 = 2448.

Permutations that occur by arranging objects in a circle are called circular
permutations. Two circular permutations are not considered different unless
corresponding objects in the two arrangements are preceded or followed by a dif-
ferent object as we proceed in a clockwise direction. For example, if 4 people are
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playing bridge, we do not have a new permutation if they all move one position in
a clockwise direction. By considering one person in a fixed position and arranging
the other three in 3! ways, we find that there are 6 distinct arrangements for the
bridge game.

Theorem 1.3: The number of permutations of n objects arranged in a circle is (n− 1)!.

So far we have considered permutations of distinct objects. That is, all the
objects were completely different or distinguishable. Obviously, if the letters b and
c are both equal to x, then the 6 permutations of the letters a, b, and c become
axx, axx, xax, xax, xxa, and xxa, of which only 3 are distinct. Therefore, with 3
letters, 2 being the same, we have 3!/2! = 3 distinct permutations. With 4 different
letters a, b, c, and d, we have 24 distinct permutations. If we let a = b = x and
c = d = y, we can list only the following distinct permutations: xxyy, xyxy, yxxy,
yyxx, xyyx, and yxyx. Thus, we have 4!/(2! 2!) = 6 distinct permutations.

Theorem 1.4: The number of distinct permutations of n things of which n1 are of one kind, n2

of a second kind, . . . , nk of a kth kind is

n!

n1!n2! · · ·nk!
.

Example 1.17: In a college football training session, the defensive coordinator needs to have
10 players standing in a row. Among these 10 players, there are 1 freshman,
2 sophomores, 4 juniors, and 3 seniors. How many different ways can they be
arranged in a row if only their class level will be distinguished?

Solution : Directly using Theorem 1.4, we find that the total number of arrangements is

10!

1! 2! 4! 3!
= 12,600.

Often we are concerned with the number of ways of partitioning a set of n
objects into r subsets called cells. A partition has been achieved if the intersection
of every possible pair of the r subsets is the empty set φ and if the union of all
subsets gives the original set. The order of the elements within a cell is of no
importance. Consider the set {a, e, i, o, u}. The possible partitions into two cells
in which the first cell contains 4 elements and the second cell 1 element are

{(a, e, i, o), (u)}, {(a, i, o, u), (e)}, {(e, i, o, u), (a)}, {(a, e, o, u), (i)}, {(a, e, i, u), (o)}.

We see that there are 5 ways to partition a set of 4 elements into two subsets, or
cells, containing 4 elements in the first cell and 1 element in the second.

The number of partitions for this illustration is denoted by the symbol(
5

4, 1

)
=

5!

4! 1!
= 5,
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where the top number represents the total number of elements and the bottom
numbers represent the number of elements going into each cell. We state this more
generally in Theorem 1.5.

Theorem 1.5: The number of ways of partitioning a set of n objects into r cells with n1 elements
in the first cell, n2 elements in the second, and so forth, is(

n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr!
,

where n1 + n2 + · · ·+ nr = n.

Example 1.18: In how many ways can 7 graduate students be assigned to 1 triple and 2 double
hotel rooms during a conference?

Solution : The total number of possible partitions would be(
7

3, 2, 2

)
=

7!

3! 2! 2!
= 210.

In many problems, we are interested in the number of ways of selecting r objects
from n without regard to order. These selections are called combinations. A
combination is actually a partition with two cells, the one cell containing the r
objects selected and the other cell containing the (n− r) objects that are left. The
number of such combinations, denoted by(

n

r, n− r

)
, is usually shortened to

(
n

r

)
,

since the number of elements in the second cell must be n− r.

Theorem 1.6: The number of combinations of n distinct objects taken r at a time is(
n

r

)
=

n!

r!(n− r)!
.

Example 1.19: A young boy asks his mother to get 5 Game-BoyTM cartridges from his collection
of 10 arcade and 5 sports game cartridges. How many ways are there that his
mother can get 3 arcade and 2 sports game cartridges?

Solution : The number of ways of selecting 3 cartridges from 10 is(
10

3

)
=

10!

3! (10− 3)!
= 120.

The number of ways of selecting 2 cartridges from 5 is(
5

2

)
=

5!

2! 3!
= 10.

Hence for the total we have (120)(10) = 1200 ways.
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Example 1.20: How many different letter arrangements can be made from the letters in the word
STATISTICS?

Solution : Using the same argument as in the discussion for Theorem 1.6, in this example we
can actually apply Theorem 1.5 to obtain(

10

3, 3, 2, 1, 1

)
=

10!

3! 3! 2! 1! 1!
= 50,400.

Here we have 10 total letters, with 2 letters (S, T ) appearing 3 times each, letter
I appearing twice, and letters A and C appearing once each. Or this result can be
obtained directly by using Theorem 1.4.

Exercises

1.17 Registrants at a large convention are offered 6
sightseeing tours on each of 3 days. In how many
ways can a person arrange to go on a sightseeing tour
planned by this convention?

1.18 In a medical study, patients are classified in 8
ways according to whether they have blood type AB+,
AB−, A+, A−, B+, B−, O+, or O−, and also accord-
ing to whether their blood pressure is low, normal, or
high. Find the number of ways in which a patient can
be classified.

1.19 Students at a private liberal arts college are clas-
sified as being freshmen, sophomores, juniors, or se-
niors, and also according to whether they are male or
female. Find the total number of possible classifica-
tions for the students of that college.

1.20 A California study concluded that following 7
simple health rules can extend a man’s life by 11 years
on the average and a woman’s life by 7 years. These
7 rules are as follows: no smoking, get regular exer-
cise, use alcohol only in moderation, get 7 to 8 hours
of sleep, maintain proper weight, eat breakfast, and do
not eat between meals. In how many ways can a person
adopt 5 of these rules to follow

(a) if the person presently violates all 7 rules?

(b) if the person never drinks and always eats break-
fast?

1.21 A developer of a new subdivision offers a
prospective home buyer a choice of 4 designs, 3 differ-
ent heating systems, a garage or carport, and a patio or
screened porch. How many different plans are available
to this buyer?

1.22 A drug for the relief of asthma can be purchased

from 5 different manufacturers in liquid, tablet, or
capsule form, all of which come in regular and extra
strength. How many different ways can a doctor pre-
scribe the drug for a patient suffering from asthma?

1.23 In a fuel economy study, each of 3 race cars is
tested using 5 different brands of gasoline at 7 test sites
located in different regions of the country. If 2 drivers
are used in the study, and test runs are made once un-
der each distinct set of conditions, how many test runs
are needed?

1.24 In how many different ways can a true-false test
consisting of 9 questions be answered?

1.25 A witness to a hit-and-run accident told the po-
lice that the license number contained the letters RLH
followed by 3 digits, the first of which was a 5. If
the witness cannot recall the last 2 digits, but is cer-
tain that all 3 digits are different, find the maximum
number of automobile registrations that the police may
have to check.

1.26 (a) In how many ways can 6 people be lined up
to get on a bus?

(b) If 3 specific persons, among 6, insist on following
each other, how many ways are possible?

(c) If 2 specific persons, among 6, refuse to follow each
other, how many ways are possible?

1.27 A contractor wishes to build 9 houses, each dif-
ferent in design. In how many ways can he place these
houses on a street if 6 lots are on one side of the street
and 3 lots are on the opposite side?

1.28 (a) How many distinct permutations can be
made from the letters of the word COLUMNS?
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(b) How many of these permutations start with the let-
ter M?

1.29 In how many ways can 4 boys and 5 girls sit in
a row if the boys and girls must alternate?

1.30 (a) How many three-digit numbers can be
formed from the digits 0, 1, 2, 3, 4, 5, and 6 if
each digit can be used only once?

(b) How many of these are odd numbers?

(c) How many are greater than 330?

1.31 In a regional spelling bee, the 8 finalists consist
of 3 boys and 5 girls. Find the number of sample points
in the sample space S for the number of possible orders
at the conclusion of the contest for

(a) all 8 finalists;

(b) the first 3 positions.

1.32 Four married couples have bought 8 seats in the
same row for a concert. In how many different ways
can they be seated

(a) with no restrictions?

(b) if each couple is to sit together?

(c) if all the men sit together to the right of all the
women?

1.33 Find the number of ways that 6 teachers can
be assigned to 4 sections of an introductory psychol-
ogy course if no teacher is assigned to more than one
section.

1.34 Three lottery tickets for first, second, and third
prizes are drawn from a group of 40 tickets. Find the
number of sample points in S for awarding the 3 prizes
if each contestant holds only 1 ticket.

1.35 In how many ways can 5 different trees be
planted in a circle?

1.36 In how many ways can 3 oaks, 4 pines, and 2
maples be arranged along a property line if one does
not distinguish among trees of the same kind?

1.37 How many ways are there that no two students
will have the same birth date in a class of size 60?

1.6 Probability of an Event

Perhaps it was humankind’s unquenchable thirst for gambling that led to the early
development of probability theory. In an effort to increase their winnings, gam-
blers called upon mathematicians to provide optimum strategies for various games
of chance. Some of the mathematicians providing these strategies were Pascal,
Leibniz, Fermat, and James Bernoulli. As a result of this development of prob-
ability theory, statistical inference, with all its predictions and generalizations,
has branched out far beyond games of chance to encompass many other fields as-
sociated with chance occurrences, such as politics, business, weather forecasting,
and scientific research. For these predictions and generalizations to be reasonably
accurate, an understanding of basic probability theory is essential.

What do we mean when we make the statement “John will probably win the
tennis match,” or “I have a fifty-fifty chance of getting an even number when a
die is tossed,” or “The university is not likely to win the football game tonight,”
or “Most of our graduating class will likely be married within 3 years”? In each
case, we are expressing an outcome of which we are not certain, but owing to past
information or from an understanding of the structure of the experiment, we have
some degree of confidence in the validity of the statement.

Throughout the remainder of this chapter, we consider only those experiments
for which the sample space contains a finite number of elements. The likelihood of
the occurrence of an event resulting from such a statistical experiment is evaluated
by means of a set of real numbers, called weights or probabilities, ranging from 0
to 1. To every point in the sample space we assign a probability such that the sum
of all probabilities is 1. If we have reason to believe that a certain sample point is
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quite likely to occur when the experiment is conducted, the probability assigned
should be close to 1. On the other hand, a probability closer to 0 is assigned to a
sample point that is not likely to occur. In many experiments, such as tossing a
fair coin or a balanced die, all the sample points have the same chance of occurring
and are assigned equal probabilities. For points outside the sample space, that is,
for simple events that cannot possibly occur, we assign a probability of 0.

To find the probability of an event A, we sum all the probabilities assigned to
the sample points in A. This sum is called the probability of A and is denoted
by P (A).

Definition 1.8: The probability of an event A is the sum of the weights of all sample points in
A. Therefore,

0 ≤ P (A) ≤ 1, P (φ) = 0, and P (S) = 1.

Furthermore, if A1, A2, A3, . . . is a sequence of mutually exclusive events, then

P (A1 ∪A2 ∪A3 ∪ · · · ) = P (A1) + P (A2) + P (A3) + · · · .

Example 1.21: A coin is tossed twice. What is the probability that at least 1 head occurs?
Solution : The sample space for this experiment is

S = {HH,HT, TH, TT}.

If the coin is balanced, each of these outcomes is equally likely to occur. Therefore,
we assign a probability of ω to each sample point. Then 4ω = 1, or ω = 1/4. If A
represents the event of at least 1 head occurring, then

A = {HH,HT, TH} and P (A) =
1

4
+

1

4
+

1

4
=

3

4
.

Example 1.22: A die is loaded in such a way that an even number is twice as likely to occur as
an odd number. If E is the event that a number less than 4 occurs on a single toss
of the die, find P (E).

Solution : The sample space is S = {1, 2, 3, 4, 5, 6}. We assign a probability of w to each
odd number and a probability of 2w to each even number. Since the sum of the
probabilities must be 1, we have 9w = 1, or w = 1/9. Hence, probabilities of 1/9
and 2/9 are assigned to each odd and even number, respectively. Therefore,

E = {1, 2, 3} and P (E) =
1

9
+

2

9
+

1

9
=

4

9
.

If the sample space for an experiment contains N elements, all of which are
equally likely to occur, we assign a probability equal to 1/N to each of the N
points. The probability of any event A containing n of these N sample points is
then the ratio of the number of elements in A to the number of elements in S.
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Definition 1.9: If an experiment can result in any one of N different equally likely outcomes,
and if exactly n of these outcomes correspond to event A, then the probability of
event A is

P (A) =
n

N
.

Example 1.23: A statistics class for engineers consists of 25 industrial, 10 mechanical, 10 elec-
trical, and 8 civil engineering students. If a person is randomly selected by the
instructor to answer a question, find the probability that the student chosen is
(a) an industrial engineering major and (b) a civil engineering or an electrical
engineering major.

Solution : Denote by I, M , E, and C the students majoring in industrial, mechanical, electri-
cal, and civil engineering, respectively. The total number of students in the class
is 53, all of whom are equally likely to be selected.

(a) Since 25 of the 53 students are majoring in industrial engineering, the prob-
ability of event I, selecting an industrial engineering major at random, is

P (I) =
25

53
.

(b) Since 18 of the 53 students are civil or electrical engineering majors, it follows
that

P (C ∪ E) =
18

53
.

1.7 Additive Rules

Often it is easiest to calculate the probability of some event from known prob-
abilities of other events. This may well be true if the event in question can be
represented as the union of two other events or as the complement of some event.
Several important laws that frequently simplify the computation of probabilities
follow. The first, called the additive rule, applies to unions of events.

Theorem 1.7: If A and B are two events, then

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof : Consider the Venn diagram in Figure 1.8. The P (A ∪ B) is the sum of the prob-
abilities of the sample points in A ∪ B. Now P (A) + P (B) is the sum of all
the probabilities in A plus the sum of all the probabilities in B. Therefore, we
have added the probabilities in (A ∩ B) twice. Since these probabilities add up
to P (A ∩ B), we must subtract this probability once to obtain the sum of the
probabilities in A ∪B.
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A BA � B

S

Figure 1.8: Additive rule of probability.

Corollary 1.1: If A and B are mutually exclusive, then

P (A ∪B) = P (A) + P (B).

Corollary 1.1 is an immediate result of Theorem 1.7, since if A and B are
mutually exclusive, A∩B = 0 and then P (A∩B) = P (φ) = 0. In general, we can
write Corollary 1.2.

Corollary 1.2: If A1, A2, . . . , An are mutually exclusive, then

P (A1 ∪A2 ∪ · · · ∪An) = P (A1) + P (A2) + · · ·+ P (An).

A collection of events {A1, A2, . . . , An} of a sample space S is called a partition
of S if A1, A2, . . . , An are mutually exclusive and A1 ∪ A2 ∪ · · · ∪ An = S. Thus,
we have

Corollary 1.3: If A1, A2, . . . , An is a partition of sample space S, then

P (A1 ∪A2 ∪ · · · ∪An) = P (A1) + P (A2) + · · ·+ P (An) = P (S) = 1.

As one might expect, Theorem 1.7 extends in an analogous fashion.

Theorem 1.8: For three events A, B, and C,

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C).

Example 1.24: John is going to graduate from an industrial engineering department in a university
by the end of the semester. After being interviewed at two companies he likes,
he assesses that his probability of getting an offer from company A is 0.8, and
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his probability of getting an offer from company B is 0.6. If he believes that
the probability that he will get offers from both companies is 0.5, what is the
probability that he will get at least one offer from these two companies?

Solution : Using the additive rule, we have

P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.8 + 0.6− 0.5 = 0.9.

Example 1.25: What is the probability of getting a total of 7 or 11 when a pair of fair dice is
tossed?

Solution : Let A be the event that 7 occurs and B the event that 11 comes up. Now, a total
of 7 occurs for 6 of the 36 sample points, and a total of 11 occurs for only 2 of the
sample points. Since all sample points are equally likely, we have P (A) = 1/6 and
P (B) = 1/18. The events A and B are mutually exclusive, since a total of 7 and
11 cannot both occur on the same toss. Therefore,

P (A ∪B) = P (A) + P (B) =
1

6
+

1

18
=

2

9
.

This result could also have been obtained by counting the total number of points
for the event A ∪B, namely 8, and writing

P (A ∪B) =
n

N
=

8

36
=

2

9
.

Theorem 1.7 and its three corollaries should help the reader gain more insight
into probability and its interpretation. Corollaries 1.1 and 1.2 suggest the very
intuitive result dealing with the probability of occurrence of at least one of a number
of events, no two of which can occur simultaneously. The probability that at least
one occurs is the sum of the probabilities of occurrence of the individual events.
The third corollary simply states that the highest value of a probability (unity) is
assigned to the entire sample space S.

Example 1.26: If the probabilities are, respectively, 0.09, 0.15, 0.21, and 0.23 that a person
purchasing a new automobile will choose the color green, white, red, or blue, what
is the probability that a given buyer will purchase a new automobile that comes in
one of those colors?

Solution : Let G, W , R, and B be the events that a buyer selects, respectively, a green,
white, red, or blue automobile. Since these four events are mutually exclusive, the
probability is

P (G ∪W ∪R ∪B) = P (G) + P (W ) + P (R) + P (B)

= 0.09 + 0.15 + 0.21 + 0.23 = 0.68.

Often it is more difficult to calculate the probability that an event occurs than
it is to calculate the probability that the event does not occur. Should this be the
case for some event A, we simply find P (A′) first and then, using Theorem 1.9,
find P (A) by subtraction.
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Theorem 1.9: If A and A′ are complementary events, then

P (A) + P (A′) = 1.

Proof : Since A ∪A′ = S and the sets A and A′ are disjoint,

1 = P (S) = P (A ∪A′) = P (A) + P (A′).

Example 1.27: If the probabilities that an automobile mechanic will service 3, 4, 5, 6, 7, or 8 or
more cars on any given workday are, respectively, 0.12, 0.19, 0.28, 0.24, 0.10, and
0.07, what is the probability that he will service at least 5 cars on his next day at
work?

Solution : Let E be the event that at least 5 cars are serviced. Now, P (E) = 1 − P (E′),
where E′ is the event that fewer than 5 cars are serviced. Since

P (E′) = 0.12 + 0.19 = 0.31,

it follows from Theorem 1.9 that

P (E) = 1− 0.31 = 0.69.

Example 1.28: Suppose the manufacturer’s specifications for the length of a certain type of com-
puter cable are 2000 ± 10 millimeters. In this industry, it is known that short cable
is just as likely to be defective (not meeting specifications) as long cable. That is,
the probability of randomly producing a cable with length exceeding 2010 millime-
ters is equal to the probability of producing a cable with length smaller than 1990
millimeters. The probability that the production procedure meets specifications is
known to be 0.99.

(a) What is the probability that a cable selected randomly is too long?

(b) What is the probability that a randomly selected cable is longer than 1990
millimeters?

Solution : Let M be the event that a cable meets specifications. Let S and L be the events
that the cable is too short and too long, respectively. Then

(a) P (M) = 0.99 and P (S) = P (L) = (1− 0.99)/2 = 0.005.

(b) Denoting by X the length of a randomly selected cable, we have

P (1990 ≤ X ≤ 2010) = P (M) = 0.99.

Since P (X ≥ 2010) = P (L) = 0.005,

P (X ≥ 1990) = P (M) + P (L) = 0.995.

This also can be solved by using Theorem 1.9:

P (X ≥ 1990) + P (X < 1990) = 1.

Thus, P (X ≥ 1990) = 1− P (S) = 1− 0.005 = 0.995.
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Exercises

1.38 Suppose that in a college senior class of 500 stu-
dents it is found that 210 smoke, 258 drink alcoholic
beverages, 216 eat between meals, 122 smoke and drink
alcoholic beverages, 83 eat between meals and drink
alcoholic beverages, 97 smoke and eat between meals,
and 52 engage in all three of these bad health practices.
If a member of this senior class is selected at random,
find the probability that the student

(a) smokes but does not drink alcoholic beverages;

(b) eats between meals and drinks alcoholic beverages
but does not smoke;

(c) neither smokes nor eats between meals.

1.39 Find the errors in each of the following state-
ments:

(a) The probabilities that an automobile salesperson
will sell 0, 1, 2, or 3 cars on any given day in Febru-
ary are, respectively, 0.19, 0.38, 0.29, and 0.15.

(b) The probability that it will rain tomorrow is 0.40,
and the probability that it will not rain tomorrow
is 0.52.

(c) The probabilities that a printer will make 0, 1, 2,
3, or 4 or more mistakes in setting a document are,
respectively, 0.19, 0.34,−0.25, 0.43, and 0.29.

(d) On a single draw from a deck of playing cards, the
probability of selecting a heart is 1/4, the probabil-
ity of selecting a black card is 1/2, and the proba-
bility of selecting both a heart and a black card is
1/8.

1.40 An automobile manufacturer is concerned about
a possible recall of its best-selling four-door sedan. If
there were a recall, there is a probability of 0.25 of a
defect in the brake system, 0.18 of a defect in the trans-
mission, 0.17 of a defect in the fuel system, and 0.40 of
a defect in some other area.

(a) What is the probability that the defect is in the
brakes or the fueling system if the probability of
defects in both systems simultaneously is 0.15?

(b) What is the probability that there are no defects
in either the brakes or the fueling system?

1.41 The probability that an American industry will
locate in Shanghai, China, is 0.7, the probability that
it will locate in Beijing, China, is 0.4, and the proba-
bility that it will locate in either Shanghai or Beijing or
both is 0.8. What is the probability that the industry
will locate

(a) in both cities?

(b) in neither city?

1.42 From past experience, a stockbroker believes
that under present economic conditions a customer will
invest in tax-free bonds with a probability of 0.6, will
invest in mutual funds with a probability of 0.3, and
will invest in both tax-free bonds and mutual funds
with a probability of 0.15. At this time, find the prob-
ability that a customer will invest

(a) in either tax-free bonds or mutual funds;

(b) in neither tax-free bonds nor mutual funds.

1.43 A box contains 500 envelopes, of which 75 con-
tain $100 in cash, 150 contain $25, and 275 contain
$10. An envelope may be purchased for $25. What is
the sample space for the different amounts of money?
Assign probabilities to the sample points and then find
the probability that the first envelope purchased con-
tains less than $100.

1.44 If 3 books are picked at random from a shelf con-
taining 5 novels, 3 books of poems, and a dictionary,
what is the probability that

(a) the dictionary is selected?

(b) 2 novels and 1 book of poems are selected?

1.45 In a high school graduating class of 100 stu-
dents, 54 studied mathematics, 69 studied history, and
35 studied both mathematics and history. If one of
these students is selected at random, find the proba-
bility that

(a) the student took mathematics or history;

(b) the student did not take either of these subjects;

(c) the student took history but not mathematics.

1.46 Dom’s Pizza Company uses taste testing and
statistical analysis of the data prior to marketing any
new product. Consider a study involving three types
of crusts (thin, thin with garlic and oregano, and thin
with bits of cheese). Dom’s is also studying three
sauces (standard, a new sauce with more garlic, and
a new sauce with fresh basil).

(a) How many combinations of crust and sauce are in-
volved?

(b) What is the probability that a judge will get a plain
thin crust with a standard sauce for his first taste
test?

1.47 According to Consumer Digest (July/August
1996), the probable location of personal computers
(PCs) in the home is as follows:
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Adult bedroom: 0.03
Child bedroom: 0.15
Other bedroom: 0.14
Office or den: 0.40
Other rooms: 0.28

(a) What is the probability that a PC is in a bedroom?

(b) What is the probability that it is not in a bedroom?

(c) Suppose a household is selected at random from
households with a PC; in what room would you
expect to find a PC?

1.48 Interest centers around the life of an electronic
component. Suppose it is known that the probabil-
ity that the component survives for more than 6000
hours is 0.42. Suppose also that the probability that
the component survives no longer than 4000 hours is
0.04.

(a) What is the probability that the life of the compo-
nent is less than or equal to 6000 hours?

(b) What is the probability that the life is greater than
4000 hours?

1.49 Consider the situation of Exercise 1.48. Let A
be the event that the component fails a particular test
and B be the event that the component displays strain
but does not actually fail. Event A occurs with prob-
ability 0.20, and event B occurs with probability 0.35.

(a) What is the probability that the component does
not fail the test?

(b) What is the probability that the component works
perfectly well (i.e., neither displays strain nor fails
the test)?

(c) What is the probability that the component either
fails or shows strain in the test?

1.50 Factory workers are constantly encouraged to
practice zero tolerance when it comes to accidents in
factories. Accidents can occur because the working en-
vironment or conditions themselves are unsafe. On the
other hand, accidents can occur due to carelessness
or so-called human error. In addition, the worker’s
shift, 7:00 A.M.–3:00 P.M. (day shift), 3:00 P.M.–11:00
P.M. (evening shift), or 11:00 P.M.–7:00 A.M. (graveyard
shift), may be a factor. During the last year, 300 acci-
dents have occurred. The percentages of the accidents
for the condition combinations are as follows:

Unsafe Human
Shift Conditions Error

Day 5% 32%
Evening 6% 25%
Graveyard 2% 30%

If an accident report is selected randomly from the 300
reports,

(a) what is the probability that the accident occurred

on the graveyard shift?

(b) what is the probability that the accident occurred
due to human error?

(c) what is the probability that the accident occurred
due to unsafe conditions?

(d) what is the probability that the accident occurred
on either the evening or the graveyard shift?

1.51 Consider the situation of Example 1.27 on page
30.

(a) What is the probability that no more than 4 cars
will be serviced by the mechanic?

(b) What is the probability that he will service fewer
than 8 cars?

(c) What is the probability that he will service either
3 or 4 cars?

1.52 Interest centers around the nature of an oven
purchased at a particular department store. It can be
either a gas or an electric oven. Consider the decisions
made by six distinct customers.

(a) Suppose that the probability is 0.40 that at most
two of these individuals purchase an electric oven.
What is the probability that at least three purchase
the electric oven?

(b) Suppose it is known that the probability that all
six purchase the electric oven is 0.007 while 0.104 is
the probability that all six purchase the gas oven.
What is the probability that at least one of each
type is purchased?

1.53 It is common in many industrial areas to use
a filling machine to fill boxes full of product. This oc-
curs in the food industry as well as other areas in which
the product is used in the home (for example, deter-
gent). These machines are not perfect, and indeed they
may A, fill to specification, B, underfill, and C, overfill.
Generally, the practice of underfilling is that which one
hopes to avoid. Let P (B) = 0.001 while P (A) = 0.990.

(a) Give P (C).

(b) What is the probability that the machine does not
underfill?

(c) What is the probability that the machine either
overfills or underfills?

1.54 Consider the situation of Exercise 1.53. Suppose
50,000 boxes of detergent are produced per week and
suppose also that those underfilled are “sent back,”
with customers requesting reimbursement of the pur-
chase price. Suppose also that the cost of production
is known to be $4.00 per box while the purchase price
is $4.50 per box.

(a) What is the weekly profit under the condition of no
defective boxes?
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(b) What is the loss in profit expected due to under-
filling?

1.55 As the situation of Exercise 1.53 might suggest,
statistical procedures are often used for control of qual-
ity (i.e., industrial quality control). At times, the
weight of a product is an important variable to con-
trol. Specifications are given for the weight of a certain
packaged product, and a package is rejected if it is ei-
ther too light or too heavy. Historical data suggest that
0.95 is the probability that the product meets weight
specifications whereas 0.002 is the probability that the
product is too light. For each single packaged product,
the manufacturer invests $20.00 in production and the

purchase price for the consumer is $25.00.

(a) What is the probability that a package chosen ran-
domly from the production line is too heavy?

(b) For each 10,000 packages sold, what profit is re-
ceived by the manufacturer if all packages meet
weight specification?

(c) Assuming that all defective packages are rejected
and rendered worthless, how much is the profit re-
duced on 10,000 packages due to failure to meet
weight specification?

1.56 Prove that

P (A′ ∩B′) = 1 + P (A ∩B)− P (A)− P (B).

1.8 Conditional Probability, Independence, and the
Product Rule

One very important concept in probability theory is conditional probability. In
some applications, the practitioner is interested in the probability structure under
certain restrictions. For instance, in epidemiology, rather than studying the chance
that a person from the general population has diabetes, it might be of more interest
to know this probability for a distinct group such as Asian women in the age range
of 35 to 50 or Hispanic men in the age range of 40 to 60. This type of probability
is called a conditional probability.

Conditional Probability

The probability of an event B occurring when it is known that some event A
has occurred is called a conditional probability and is denoted by P (B|A). The
symbol P (B|A) is usually read “the probability that B occurs given that A occurs”
or simply “the probability of B, given A.”

Consider the event B of getting a perfect square when a die is tossed. The die
is constructed so that the even numbers are twice as likely to occur as the odd
numbers. Based on the sample space S = {1, 2, 3, 4, 5, 6}, with probabilities of
1/9 and 2/9 assigned, respectively, to the odd and even numbers, the probability
of B occurring is 1/3. Now suppose that it is known that the toss of the die
resulted in a number greater than 3. We are now dealing with a reduced sample
space A = {4, 5, 6}, which is a subset of S. To find the probability that B occurs,
relative to the space A, we must first assign new probabilities to the elements of
A proportional to their original probabilities such that their sum is 1. Assigning a
probability of w to the odd number in A and a probability of 2w to the two even
numbers, we have 5w = 1, or w = 1/5. Relative to the space A, we find that B
contains the single element 4. Denoting this event by the symbol B|A, we write
B|A = {4}, and hence

P (B|A) = 2

5
.
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This example illustrates that events may have different probabilities when consid-
ered relative to different sample spaces.

We can also write

P (B|A) = 2

5
=

2/9

5/9
=

P (A ∩B)

P (A)
,

where P (A ∩ B) and P (A) are found from the original sample space S. In other
words, a conditional probability relative to a subspace A of S may be calculated
directly from the probabilities assigned to the elements of the original sample space
S.

Definition 1.10: The conditional probability of B, given A, denoted by P (B|A), is defined by

P (B|A) = P (A ∩B)

P (A)
, provided P (A) > 0.

As an additional illustration, suppose that our sample space S is the population
of adults in a small town who have completed the requirements for a college degree.
We shall categorize them according to gender and employment status. The data
are given in Table 1.3.

Table 1.3: Categorization of the Adults in a Small Town

Employed Unemployed Total
Male
Female

460
140

40
260

500
400

Total 600 300 900

One of these individuals is to be selected at random for a tour throughout the
country to publicize the advantages of establishing new industries in the town. We
shall be concerned with the following events:

M: a man is chosen,

E: the one chosen is employed.

Using the reduced sample space E, we find that

P (M |E) =
460

600
=

23

30
.

Let n(A) denote the number of elements in any set A. Using this notation,
since each adult has an equal chance of being selected, we can write

P (M |E) =
n(E ∩M)

n(E)
=

n(E ∩M)/n(S)

n(E)/n(S)
=

P (E ∩M)

P (E)
,

where P (E ∩M) and P (E) are found from the original sample space S. To verify
this result, note that

P (E) =
600

900
=

2

3
and P (E ∩M) =

460

900
=

23

45
.
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Hence,

P (M |E) =
23/45

2/3
=

23

30
,

as before.

Example 1.29: The probability that a regularly scheduled flight departs on time is P (D) = 0.83;
the probability that it arrives on time is P (A) = 0.82; and the probability that it
departs and arrives on time is P (D ∩A) = 0.78. Find the probability that a plane
(a) arrives on time, given that it departed on time, and (b) departed on time, given
that it has arrived on time.

Solution : Using Definition 1.10, we have the following.

(a) The probability that a plane arrives on time, given that it departed on time,
is

P (A|D) =
P (D ∩A)

P (D)
=

0.78

0.83
= 0.94.

(b) The probability that a plane departed on time, given that it has arrived on
time, is

P (D|A) = P (D ∩A)

P (A)
=

0.78

0.82
= 0.95.

The notion of conditional probability provides the capability of reevaluating the
idea of probability of an event in light of additional information, that is, when it
is known that another event has occurred. The probability P (A|B) is an updating
of P (A) based on the knowledge that event B has occurred. In Example 1.29, it
is important to know the probability that the flight arrives on time. One is given
the information that the flight did not depart on time. Armed with this additional
information, one can calculate the more pertinent probability P (A|D′), that is,
the probability that it arrives on time, given that it did not depart on time. In
many situations, the conclusions drawn from observing the more important condi-
tional probability change the picture entirely. In this example, the computation of
P (A|D′) is

P (A|D′) =
P (A ∩D′)
P (D′)

=
0.82− 0.78

0.17
= 0.24.

As a result, the probability of an on-time arrival is diminished severely in the
presence of the additional information.

Example 1.30: The concept of conditional probability has countless uses in both industrial and
biomedical applications. Consider an industrial process in the textile industry in
which strips of a particular type of cloth are being produced. These strips can be
defective in two ways, length and nature of texture. For the case of the latter, the
process of identification is very complicated. It is known from historical information
on the process that 10% of strips fail the length test, 5% fail the texture test, and
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only 0.8% fail both tests. If a strip is selected randomly from the process and a
quick measurement identifies it as failing the length test, what is the probability
that it is texture defective?

Solution : Consider the events

L: length defective, T : texture defective.

Given that the strip is length defective, the probability that this strip is texture
defective is given by

P (T |L) = P (T ∩ L)

P (L)
=

0.008

0.1
= 0.08.

Thus, knowing the conditional probability provides considerably more information
than merely knowing P (T ).

Independent Events

In the die-tossing experiment discussed on page 33, we note that P (B|A) = 2/5
whereas P (B) = 1/3. That is, P (B|A) �= P (B), indicating that B depends on
A. Now consider an experiment in which 2 cards are drawn in succession from an
ordinary deck, with replacement. The events are defined as

A: the first card is an ace,

B: the second card is a spade.

Since the first card is replaced, our sample space for both the first and the second
draw consists of 52 cards, containing 4 aces and 13 spades. Hence,

P (B|A) = 13

52
=

1

4
and P (B) =

13

52
=

1

4
.

That is, P (B|A) = P (B). When this is true, the events A and B are said to be
independent.

Although conditional probability allows for an alteration of the probability of an
event in the light of additional material, it also enables us to understand better the
very important concept of independence or, in the present context, independent
events. In the airport illustration in Example 1.29, P (A|D) differs from P (A).
This suggests that the occurrence of D influenced A, and this is certainly expected
in this illustration. However, consider the situation where we have events A and
B and

P (A|B) = P (A).

In other words, the occurrence of B had no impact on the chance of occurrence of
A. Here the occurrence of A is independent of the occurrence of B. The importance
of the concept of independence cannot be overemphasized. It plays a vital role in
material in virtually all chapters in this book and in all areas of applied statistics.
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Definition 1.11: Two events A and B are independent if and only if

P (B|A) = P (B) or P (A|B) = P (A),

assuming the existences of the conditional probabilities. Otherwise, A and B are
dependent.

The condition P (B|A) = P (B) implies that P (A|B) = P (A), and conversely.
For the card-drawing experiments, where we showed that P (B|A) = P (B) = 1/4,
we also can see that P (A|B) = P (A) = 1/13.

The Product Rule, or the Multiplicative Rule

Multiplying the formula in Definition 1.10 by P (A), we obtain the following im-
portant multiplicative rule (or product rule), which enables us to calculate
the probability that two events will both occur.

Theorem 1.10: If in an experiment the events A and B can both occur, then

P (A ∩B) = P (A)P (B|A), provided P (A) > 0.

Thus, the probability that both A and B occur is equal to the probability that
A occurs multiplied by the conditional probability that B occurs, given that A
occurs. Since the events A∩B and B ∩A are equivalent, it follows from Theorem
1.10 that we can also write

P (A ∩B) = P (B ∩A) = P (B)P (A|B).

In other words, it does not matter which event is referred to as A and which event
is referred to as B.

Example 1.31: Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If
2 fuses are selected at random and removed from the box in succession without
replacing the first, what is the probability that both fuses are defective?

Solution : We shall let A be the event that the first fuse is defective and B the event that the
second fuse is defective; then we interpret A ∩ B as the event that A occurs and
then B occurs after A has occurred. The probability of first removing a defective
fuse is 1/4; then the probability of removing a second defective fuse from the
remaining 4 is 4/19. Hence,

P (A ∩B) =

(
1

4

)(
4

19

)
=

1

19
.

If, in Example 1.31, the first fuse is replaced and the fuses thoroughly rear-
ranged before the second is removed, then the probability of a defective fuse on the
second selection is still 1/4; that is, P (B|A) = P (B) and the events A and B are
independent. When this is true, we can substitute P (B) for P (B|A) in Theorem
1.10 to obtain the following special multiplicative rule.
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Theorem 1.11: Two events A and B are independent if and only if

P (A ∩B) = P (A)P (B).

Therefore, to obtain the probability that two independent events will both occur,
we simply find the product of their individual probabilities.

Example 1.32: A small town has one fire engine and one ambulance available for emergencies. The
probability that the fire engine is available when needed is 0.98, and the probability
that the ambulance is available when called is 0.92. In the event of an injury
resulting from a burning building, find the probability that both the ambulance
and the fire engine will be available, assuming they operate independently.

Solution : Let A and B represent the respective events that the fire engine and the ambulance
are available. Then

P (A ∩B) = P (A)P (B) = (0.98)(0.92) = 0.9016.

Example 1.33: An electrical system consists of four components as illustrated in Figure 1.9. The
system works if components A and B work and either of the components C or D
works. The reliability (probability of working) of each component is also shown
in Figure 1.9. Find the probability that (a) the entire system works and (b)
component C does not work, given that the entire system works. Assume that the
four components work independently.

Solution : In this configuration of the system, A, B, and the subsystem C and D constitute
a serial circuit system, whereas the subsystem C and D itself is a parallel circuit
system.

(a) Clearly the probability that the entire system works can be calculated as
follows:

P [A ∩B ∩ (C ∪D)] = P (A)P (B)P (C ∪D) = P (A)P (B)[1− P (C ′ ∩D′)]
= P (A)P (B)[1− P (C ′)P (D′)]
= (0.9)(0.9)[1− (1− 0.8)(1− 0.8)] = 0.7776.

The equalities above hold because of the independence among the four com-
ponents.

(b) To calculate the conditional probability in this case, notice that

P =
P (the system works but C does not work)

P (the system works)

=
P (A ∩B ∩ C ′ ∩D)

P (the system works)
=

(0.9)(0.9)(1− 0.8)(0.8)

0.7776
= 0.1667.

The multiplicative rule can be extended to more than two-event situations.
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A B

C

D

0.9 0.9

0.8

0.8

Figure 1.9: An electrical system for Example 1.33.

Theorem 1.12: If, in an experiment, the events A1, A2, . . . , Ak can occur, then

P (A1 ∩A2 ∩ · · · ∩Ak)

= P (A1)P (A2|A1)P (A3|A1 ∩A2) · · ·P (Ak|A1 ∩A2 ∩ · · · ∩Ak−1).

If the events A1, A2, . . . , Ak are independent, then

P (A1 ∩A2 ∩ · · · ∩Ak) = P (A1)P (A2) · · ·P (Ak).

The property of independence stated in Theorem 1.11 can be extended to deal
with more than two events. Consider, for example, the case of three events A, B,
and C. It is not sufficient to only have that P (A ∩B ∩C) = P (A)P (B)P (C) as a
definition of independence among the three. Suppose A = B and C = φ, the null
set. Although A∩B∩C = φ, which results in P (A∩B∩C) = 0 = P (A)P (B)P (C),
events A and B are not independent. Hence, we have the following definition.

Definition 1.12: A collection of events A = {A1, . . . , An} are mutually independent if for any
subset of A, Ai1 , . . . , Aik , for k ≤ n, we have

P (Ai1 ∩ · · · ∩Aik) = P (Ai1) · · ·P (Aik).

Exercises

1.57 If R is the event that a convict committed armed
robbery and D is the event that the convict sold drugs,
state in words what probabilities are expressed by

(a) P (R|D);

(b) P (D′|R);

(c) P (R′|D′).

1.58 In an experiment to study the relationship of hy-
pertension and smoking habits, the following data are
collected for 180 individuals:

Moderate Heavy
Nonsmokers Smokers Smokers

H 21 36 30
NH 48 26 19

where H and NH in the table stand for Hypertension
and Nonhypertension, respectively. If one of these indi-
viduals is selected at random, find the probability that
the person is

(a) experiencing hypertension, given that the person is
a heavy smoker;

(b) a nonsmoker, given that the person is experiencing
no hypertension.
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1.59 In USA Today (Sept. 5, 1996), the results of a
survey involving the use of sleepwear while traveling
were listed as follows:

Male Female Total
Underwear 0.220 0.024 0.244
Nightgown 0.002 0.180 0.182
Nothing 0.160 0.018 0.178
Pajamas 0.102 0.073 0.175
T-shirt 0.046 0.088 0.134
Other 0.084 0.003 0.087

(a) What is the probability that a traveler is a female
who sleeps in the nude?

(b) What is the probability that a traveler is male?

(c) Assuming the traveler is male, what is the proba-
bility that he sleeps in pajamas?

(d) What is the probability that a traveler is male if
the traveler sleeps in pajamas or a T-shirt?

1.60 A manufacturer of a flu vaccine is concerned
about the quality of its flu serum. Batches of serum are
processed by three different departments having rejec-
tion rates of 0.10, 0.08, and 0.12, respectively. The in-
spections by the three departments are sequential and
independent.

(a) What is the probability that a batch of serum sur-
vives the first departmental inspection but is re-
jected by the second department?

(b) What is the probability that a batch of serum is
rejected by the third department?

1.61 The probability that a vehicle entering the Lu-
ray Caverns has Canadian license plates is 0.12; the
probability that it is a camper is 0.28; and the proba-
bility that it is a camper with Canadian license plates
is 0.09. What is the probability that

(a) a camper entering the Luray Caverns has Canadian
license plates?

(b) a vehicle with Canadian license plates entering the
Luray Caverns is a camper?

(c) a vehicle entering the Luray Caverns does not have
Canadian plates or is not a camper?

1.62 For married couples living in a certain suburb,
the probability that the husband will vote on a bond
referendum is 0.21, the probability that the wife will
vote on the referendum is 0.28, and the probability that
both the husband and the wife will vote is 0.15. What
is the probability that

(a) at least one member of a married couple will vote?

(b) a wife will vote, given that her husband will vote?

(c) a husband will vote, given that his wife will not
vote?

1.63 The probability that a doctor correctly diag-
noses a particular illness is 0.7. Given that the doctor
makes an incorrect diagnosis, the probability that the
patient files a lawsuit is 0.9. What is the probability
that the doctor makes an incorrect diagnosis and the
patient sues?

1.64 The probability that an automobile being filled
with gasoline also needs an oil change is 0.25; the prob-
ability that it needs a new oil filter is 0.40; and the
probability that both the oil and the filter need chang-
ing is 0.14.

(a) If the oil has to be changed, what is the probability
that a new oil filter is needed?

(b) If a new oil filter is needed, what is the probability
that the oil has to be changed?

1.65 In 1970, 11% of Americans completed four years
of college; 43% of them were women. In 1990, 22% of
Americans completed four years of college; 53% of them
were women (Time, Jan. 19, 1996).

(a) Given that a person completed four years of college
in 1970, what is the probability that the person was
a woman?

(b) What is the probability that a woman finished four
years of college in 1990?

(c) What is the probability that a man had not finished
college in 1990?

1.66 Before the distribution of certain statistical soft-
ware, every fourth compact disk (CD) is tested for ac-
curacy. The testing process consists of running four
independent programs and checking the results. The
failure rates for the four testing programs are, respec-
tively, 0.01, 0.03, 0.02, and 0.01.

(a) What is the probability that a CD was tested and
failed any test?

(b) Given that a CD was tested, what is the probability
that it failed program 2 or 3?

(c) In a sample of 100, how many CDs would you ex-
pect to be rejected?

(d) Given that a CD was defective, what is the proba-
bility that it was tested?

1.67 A town has two fire engines operating indepen-
dently. The probability that a specific engine is avail-
able when needed is 0.96.

(a) What is the probability that neither is available
when needed?

(b) What is the probability that a fire engine is avail-
able when needed?

1.68 Pollution of the rivers in the United States has
been a problem for many years. Consider the following
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events:

A : the river is polluted,

B : a sample of water tested detects pollution,

C : fishing is permitted.

Assume P (A) = 0.3, P (B|A) = 0.75, P (B|A′) = 0.20,
P (C|A∩B) = 0.20, P (C|A′∩B) = 0.15, P (C|A∩B′) =
0.80, and P (C|A′ ∩B′) = 0.90.

(a) Find P (A ∩B ∩ C).

(b) Find P (B′ ∩ C).

(c) Find P (C).

(d) Find the probability that the river is polluted, given
that fishing is permitted and the sample tested did
not detect pollution.

1.69 A circuit system is given in Figure 1.10. Assume
the components fail independently.

(a) What is the probability that the entire system
works?

(b) Given that the system works, what is the probabil-
ity that component A is not working?

1.70 Suppose the diagram of an electrical system is
as given in Figure 1.11. What is the probability that
the system works? Assume the components fail inde-
pendently.

1.71 In the situation of Exercise 1.69, it is known that
the system does not work. What is the probability that
component A also does not work?

A B

C D E

0.7 0.7

0.8 0.8 0.8

Figure 1.10: Diagram for Exercise 1.69.

DA

B

C

0.90.95

0.7

0.8

Figure 1.11: Diagram for Exercise 1.70.

1.9 Bayes’ Rule

Bayesian statistics is a collection of tools that is used in a special form of statistical
inference which applies in the analysis of experimental data in many practical
situations in science and engineering. Bayes’ rule is one of the most important
rules in probability theory.

Total Probability

Let us now return to the illustration of Section 1.8, where an individual is being
selected at random from the adults of a small town to tour the country and publicize
the advantages of establishing new industries in the town. Suppose that we are
now given the additional information that 36 of those employed and 12 of those
unemployed are members of the Rotary Club. We wish to find the probability of
the event A that the individual selected is a member of the Rotary Club. Referring
to Figure 1.12, we can write A as the union of the two mutually exclusive events
E∩A and E′∩A. Hence, A = (E∩A)∪ (E′∩A), and by Corollary 1.1 of Theorem
1.7, and then Theorem 1.10, we can write

P (A) = P [(E ∩A) ∪ (E′ ∩A)] = P (E ∩A) + P (E′ ∩A)

= P (E)P (A|E) + P (E′)P (A|E′).
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E �E A

E � A

E � � A

Figure 1.12: Venn diagram for the events A, E, and E′.

The data of Section 1.8, together with the additional data given above for the set
A, enable us to compute

P (E) =
600

900
=

2

3
, P (A|E) =

36

600
=

3

50
,

and

P (E′) =
1

3
, P (A|E′) =

12

300
=

1

25
.

If we display these probabilities by means of the tree diagram of Figure 1.13, where
the first branch yields the probability P (E)P (A|E) and the second branch yields
the probability P (E′)P (A|E′), it follows that

P (A) =

(
2

3

)(
3

50

)
+

(
1

3

)(
1

25

)
=

4

75
.

E

E’

P(A E)=3/50|

P(A E’)=1/25|

A

A’

P(E)P(A E)|

P(E’)P(A E’)|

P(
E)

=2
/3

P(E’)=1/3

Figure 1.13: Tree diagram for the data on page 34, using additional information
given above.

A generalization of the foregoing illustration to the case where the sample space
is partitioned into k subsets is covered by the following theorem, sometimes called
the theorem of total probability or the rule of elimination.
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Theorem 1.13: If the events B1, B2, . . . , Bk constitute a partition of the sample space S such that
P (Bi) �= 0 for i = 1, 2, . . . , k, then for any event A of S,

P (A) =
k∑

i=1

P (Bi ∩A) =
k∑

i=1

P (Bi)P (A|Bi).

A

B1

B2

B3

B4 B5

…

Figure 1.14: Partitioning the sample space S.

Proof : Consider the Venn diagram of Figure 1.14. The event A is seen to be the union of
the mutually exclusive events

B1 ∩A, B2 ∩A, . . . , Bk ∩A;

that is,

A = (B1 ∩A) ∪ (B2 ∩A) ∪ · · · ∪ (Bk ∩A).

Using Corollary 1.2 of Theorem 1.7 and Theorem 1.10, we have

P (A) = P [(B1 ∩A) ∪ (B2 ∩A) ∪ · · · ∪ (Bk ∩A)]

= P (B1 ∩A) + P (B2 ∩A) + · · ·+ P (Bk ∩A)

=
k∑

i=1

P (Bi ∩A)

=
k∑

i=1

P (Bi)P (A|Bi).

Example 1.34: In a certain assembly plant, three machines, B1, B2, and B3, make 30%, 45%, and
25%, respectively, of the products. It is known from past experience that 2%, 3%,
and 2% of the products made by each machine, respectively, are defective. Now,
suppose that a finished product is randomly selected. What is the probability that
it is defective?

Solution : Consider the following events:
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A: the product is defective,

B1: the product is made by machine B1,

B2: the product is made by machine B2,

B3: the product is made by machine B3.

Applying the rule of elimination, we can write

P (A) = P (B1)P (A|B1) + P (B2)P (A|B2) + P (B3)P (A|B3).

Referring to the tree diagram of Figure 1.15, we find that the three branches give
the probabilities

P (B1)P (A|B1) = (0.3)(0.02) = 0.006,

P (B2)P (A|B2) = (0.45)(0.03) = 0.0135,

P (B3)P (A|B3) = (0.25)(0.02) = 0.005,

and hence

P (A) = 0.006 + 0.0135 + 0.005 = 0.0245.

B1 AP(A B1) = 0.02|

B2

P(B2) = 0.45 AP(A B2) = 0.03|

B3

A

P(A B3) = 0.02|

P

(B

1
) =

0.
3

P(B
3 ) =

0.25

Figure 1.15: Tree diagram for Example 1.34.

Bayes’ Rule

Instead of asking for P (A) in Example 1.34, by the rule of elimination, suppose
that we now consider the problem of finding the conditional probability P (Bi|A).
In other words, suppose that a product was randomly selected and it is defective.
What is the probability that this product was made by machine Bi? Questions of
this type can be answered by using the following theorem, called Bayes’ rule:
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Theorem 1.14: (Bayes’ Rule) If the events B1, B2, . . . , Bk constitute a partition of the sample
space S such that P (Bi) �= 0 for i = 1, 2, . . . , k, then for any event A in S such
that P (A) �= 0,

P (Br|A) =
P (Br ∩A)
k∑

i=1

P (Bi ∩A)

=
P (Br)P (A|Br)
k∑

i=1

P (Bi)P (A|Bi)

for r = 1, 2, . . . , k.

Proof : By the definition of conditional probability,

P (Br|A) = P (Br ∩A)

P (A)
,

and then using Theorem 1.13 in the denominator, we have

P (Br|A) = P (Br ∩A)
k∑

i=1

P (Bi ∩A)

=
P (Br)P (A|Br)
k∑

i=1

P (Bi)P (A|Bi)

,

which completes the proof.

Example 1.35: With reference to Example 1.34, if a product was chosen randomly and found to
be defective, what is the probability that it was made by machine B3?

Solution : Using Bayes’ rule to write

P (B3|A) = P (B3)P (A|B3)

P (B1)P (A|B1) + P (B2)P (A|B2) + P (B3)P (A|B3)
,

and then substituting the probabilities calculated in Example 1.34, we have

P (B3|A) = 0.005

0.006 + 0.0135 + 0.005
=

0.005

0.0245
=

10

49
.

In view of the fact that a defective product was selected, this result suggests that
it probably was not made by machine B3.

Example 1.36: A manufacturing firm employs three analytical plans for the design and devel-
opment of a particular product. For cost reasons, all three are used at varying
times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products,
respectively. The defect rate is different for the three procedures as follows:

P (D|P1) = 0.01, P (D|P2) = 0.03, P (D|P3) = 0.02,

where P (D|Pj) is the probability of a defective product, given plan j. If a random
product was observed and found to be defective, which plan was most likely used
and thus responsible?

Solution : From the statement of the problem

P (P1) = 0.30, P (P2) = 0.20, and P (P3) = 0.50,
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we must find P (Pj |D) for j = 1, 2, 3. Bayes’ rule (Theorem 1.14) shows

P (P1|D) =
P (P1)P (D|P1)

P (P1)P (D|P1) + P (P2)P (D|P2) + P (P3)P (D|P3)

=
(0.30)(0.01)

(0.3)(0.01) + (0.20)(0.03) + (0.50)(0.02)
=

0.003

0.019
= 0.158.

Similarly,

P (P2|D) =
(0.03)(0.20)

0.019
= 0.316 and P (P3|D) =

(0.02)(0.50)

0.019
= 0.526.

The conditional probability of a defect given plan 3 is the largest of the three; thus
a defective for a random product is most likely the result of the use of plan 3.

Exercises

1.72 Police plan to enforce speed limits by using radar
traps at four different locations within the city limits.
The radar traps at each of the locations L1, L2, L3,
and L4 will be operated 40%, 30%, 20%, and 30% of
the time. If a person who is speeding on her way to
work has probabilities of 0.2, 0.1, 0.5, and 0.2, respec-
tively, of passing through these locations, what is the
probability that she will receive a speeding ticket?

1.73 In a certain region of the country it is known
from past experience that the probability of selecting
an adult over 40 years of age with cancer is 0.05. If
the probability of a doctor correctly diagnosing a per-
son with cancer as having the disease is 0.78 and the
probability of incorrectly diagnosing a person without
cancer as having the disease is 0.06, what is the prob-
ability that an adult over 40 years of age is diagnosed
as having cancer?

1.74 If the person in Exercise 1.72 received a speed-
ing ticket on her way to work, what is the probability
that she passed through the radar trap located at L2?

1.75 Referring to Exercise 1.73, what is the probabil-
ity that a person diagnosed as having cancer actually
has the disease?

1.76 A regional telephone company operates three
identical relay stations at different locations. During a
one-year period, the number of malfunctions reported
by each station and the causes are shown below.

Station A B C
Problems with electricity supplied 2 1 1
Computer malfunction 4 3 2
Malfunctioning electrical equipment 5 4 2
Caused by other human errors 7 7 5

Suppose that a malfunction was reported and it was
found to be caused by other human errors. What is
the probability that it came from station C?

1.77 Suppose that the four inspectors at a film fac-
tory are supposed to stamp the expiration date on each
package of film at the end of the assembly line. John,
who stamps 20% of the packages, fails to stamp the
expiration date once in every 200 packages; Tom, who
stamps 60% of the packages, fails to stamp the expira-
tion date once in every 100 packages; Jeff, who stamps
15% of the packages, fails to stamp the expiration date
once in every 90 packages; and Pat, who stamps 5% of
the packages, fails to stamp the expiration date once
in every 200 packages. If a customer complains that
her package of film does not show the expiration date,
what is the probability that it was inspected by John?

1.78 Denote by A, B, and C the events that a grand
prize is behind doors A, B, and C, respectively. Sup-
pose you randomly picked a door, say A. The game
host opened a door, say B, and showed there was no
prize behind it. Now the host offers you the option
of either staying at the door that you picked (A) or
switching to the remaining unopened door (C). Use
probability to explain whether you should switch or
not.

1.79 A paint-store chain produces and sells latex and
semigloss paint. Based on long-range sales, the proba-
bility that a customer will purchase latex paint is 0.75.
Of those that purchase latex paint, 60% also purchase
rollers. But only 30% of semigloss paint buyers pur-
chase rollers. A randomly selected buyer purchases a
roller and a can of paint. What is the probability that
the paint is latex?
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Review Exercises

1.80 A truth serum has the property that 90% of the
guilty suspects are properly judged while, of course,
10% of the guilty suspects are improperly found inno-
cent. On the other hand, innocent suspects are mis-
judged 1% of the time. If the suspect was selected
from a group of suspects of which only 5% have ever
committed a crime, and the serum indicates that he is
guilty, what is the probability that he is innocent?

1.81 An allergist claims that 50% of the patients she
tests are allergic to some type of weed. What is the
probability that

(a) exactly 3 of her next 4 patients are allergic to
weeds?

(b) none of her next 4 patients is allergic to weeds?

1.82 By comparing appropriate regions of Venn dia-
grams, verify that

(a) (A ∩B) ∪ (A ∩B′) = A;

(b) A′ ∩ (B′ ∪ C) = (A′ ∩B′) ∪ (A′ ∩ C).

1.83 The probabilities that a service station will
pump gas into 0, 1, 2, 3, 4, or 5 or more cars during
a certain 30-minute period are 0.03, 0.18, 0.24, 0.28,
0.10, and 0.17, respectively. Find the probability that
in this 30-minute period

(a) more than 2 cars receive gas;

(b) at most 4 cars receive gas;

(c) 4 or more cars receive gas.

1.84 A large industrial firm uses three local motels to
provide overnight accommodations for its clients. From
past experience it is known that 20% of the clients are
assigned rooms at the Ramada Inn, 50% at the Sher-
aton, and 30% at the Lakeview Motor Lodge. If the
plumbing is faulty in 5% of the rooms at the Ramada
Inn, in 4% of the rooms at the Sheraton, and in 8% of
the rooms at the Lakeview Motor Lodge, what is the
probability that

(a) a client will be assigned a room with faulty
plumbing?

(b) a person with a room having faulty plumbing was
assigned accommodations at the Lakeview Motor
Lodge?

1.85 The probability that a patient recovers from a
delicate heart operation is 0.8. What is the probability
that

(a) exactly 2 of the next 3 patients who have this op-
eration survive?

(b) all of the next 3 patients who have this operation
survive?

1.86 In a certain federal prison, it is known that 2/3
of the inmates are under 25 years of age. It is also
known that 3/5 of the inmates are male and that 5/8
of the inmates are female or 25 years of age or older.
What is the probability that a prisoner selected at ran-
dom from this prison is female and at least 25 years
old?

1.87 A shipment of 12 television sets contains 3 de-
fective sets. In how many ways can a hotel purchase
5 of these sets and receive at least 2 of the defective
sets?

1.88 A certain federal agency employs three consult-
ing firms (A, B, and C) with probabilities 0.40, 0.35,
and 0.25, respectively. From past experience it is
known that the probabilities of cost overruns for the
firms are 0.05, 0.03, and 0.15, respectively. Suppose a
cost overrun is experienced by the agency.

(a) What is the probability that the consulting firm
involved is company C?

(b) What is the probability that it is company A?

1.89 A manufacturer is studying the effects of cook-
ing temperature, cooking time, and type of cooking oil
on making potato chips. Three different temperatures,
4 different cooking times, and 3 different oils are to be
used.

(a) What is the total number of combinations to be
studied?

(b) How many combinations will be used for each type
of oil?

(c) Discuss why permutations are not an issue in this
exercise.

1.90 Consider the situation in Exercise 1.89, and sup-
pose that the manufacturer can try only two combina-
tions in a day.

(a) What is the probability that any given set of two
runs is chosen?

(b) What is the probability that the highest tempera-
ture is used in either of these two combinations?

1.91 A certain form of cancer is known to be found
in women over 60 with probability 0.07. A blood test
exists for the detection of the disease, but the test is
not infallible. In fact, it is known that 10% of the time
the test gives a false negative (i.e., the test incorrectly
gives a negative result) and 5% of the time the test
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gives a false positive (i.e., incorrectly gives a positive
result). If a woman over 60 is known to have taken
the test and received a favorable (i.e., negative) result,
what is the probability that she has the disease?

1.92 A producer of a certain type of electronic com-
ponent ships to suppliers in lots of twenty. Suppose
that 60% of all such lots contain no defective compo-
nents, 30% contain one defective component, and 10%
contain two defective components. A lot is picked, two
components from the lot are randomly selected and
tested, and neither is defective.

(a) What is the probability that zero defective compo-
nents exist in the lot?

(b) What is the probability that one defective exists in
the lot?

(c) What is the probability that two defectives exist in
the lot?

1.93 A construction company employs two sales engi-
neers. Engineer 1 does the work of estimating cost for
70% of jobs bid by the company. Engineer 2 does the
work for 30% of jobs bid by the company. It is known
that the error rate for engineer 1 is such that 0.02 is the
probability of an error when he does the work, whereas
the probability of an error in the work of engineer 2 is
0.04. Suppose a bid arrives and a serious error occurs
in estimating cost. Which engineer would you guess
did the work? Explain and show all work.

1.94 In the field of quality control, the science of
statistics is often used to determine if a process is “out
of control.” Suppose the process is, indeed, out of con-
trol and 20% of items produced are defective.

(a) If three items arrive off the process line in succes-
sion, what is the probability that all three are de-
fective?

(b) If four items arrive in succession, what is the prob-
ability that three are defective?

1.95 An industrial plant is conducting a study to de-
termine how quickly injured workers are back on the
job following injury. Records show that 10% of all in-
jured workers are admitted to the hospital for treat-
ment and 15% are back on the job the next day. In
addition, studies show that 2% are both admitted for
hospital treatment and back on the job the next day.

If a worker is injured, what is the probability that the
worker will either be admitted to a hospital or be back
on the job the next day or both?

1.96 A firm is accustomed to training operators who
do certain tasks on a production line. Those operators
who attend the training course are known to be able to
meet their production quotas 90% of the time. New op-
erators who do not take the training course only meet
their quotas 65% of the time. Fifty percent of new op-
erators attend the course. Given that a new operator
meets her production quota, what is the probability
that she attended the program?

1.97 During bad economic times, industrial workers
are dismissed and are often replaced by machines. The
history of 100 workers whose loss of employment is at-
tributable to technological advances is reviewed. For
each of these individuals, it is determined if he or she
was given an alternative job within the same company,
found a job with another company in the same field,
found a job in a new field, or has been unemployed for
1 year. In addition, the union status of each worker is
recorded. The following table summarizes the results.

Union Nonunion
Same Company
New Company (same field)
New Field
Unemployed

40
13
4
2

15
10
11
5

(a) If the selected worker found a job with a new com-
pany in the same field, what is the probability that
the worker is a union member?

(b) If the worker is a union member, what is the prob-
ability that the worker has been unemployed for a
year?

1.98 Group Project: Give each student a bag of
chocolate M&Ms. Divide the students into groups of 5
or 6. Calculate the relative frequency distribution for
color of M&Ms for each group.

(a) What is your estimated probability of randomly
picking a yellow? a red?

(b) Redo the calculations for the whole classroom. Did
the estimates change?

(c) Do you believe there is an equal number of each
color in a process batch? Discuss.



Chapter 2

Random Variables, Distributions,
and Expectations

2.1 Concept of a Random Variable

Statistics is concerned with making inferences about populations and population
characteristics. Experiments are conducted with results that are subject to chance.
The testing of a number of electronic components is an example of a statistical
experiment, a term that is used to describe any process by which several chance
observations are generated. It is often important to allocate a numerical description
to the outcome. For example, the sample space giving a detailed description of each
possible outcome when three electronic components are tested may be written

S = {NNN,NND,NDN,DNN,NDD,DND,DDN,DDD},

where N denotes nondefective and D denotes defective. One is naturally concerned
with the number of defectives that occur. Thus, each point in the sample space will
be assigned a numerical value of 0, 1, 2, or 3. These values are, of course, random
quantities determined by the outcome of the experiment. They may be viewed as
values assumed by the random variable X , the number of defective items when
three electronic components are tested.

Definition 2.1: A random variable is a variable that associates a real number with each element
in the sample space.

We shall use a capital letter, say X, to denote a random variable and its correspond-
ing small letter, x in this case, for one of its values. In the electronic component
testing illustration above, we notice that the random variable X assumes the value
2 for all elements in the subset

E = {DDN,DND,NDD}

of the sample space S. That is, each possible value of X represents an event that
is a subset of the sample space for the given experiment.

49
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Example 2.1: Two balls are drawn in succession without replacement from an urn containing 4
red balls and 3 black balls. The possible outcomes and the values y of the random
variable Y , where Y is the number of red balls, are

Sample Space y
RR 2
RB 1
BR 1
BB 0

Example 2.2: A stockroom clerk returns three safety helmets at random to three steel mill
employees who had previously checked them. If Smith, Jones, and Brown, in that
order, receive one of the three hats, list the sample space for the possible orders
of returning the helmets, and find the value m of the random variable M that
represents the number of correct matches.

Solution : If S, J , and B stand for Smith’s, Jones’s, and Brown’s helmets, respectively, then
the possible arrangements in which the helmets may be returned and the number
of correct matches are

Sample Space m
SJB 3
SBJ 1
BJS 1
JSB 1
JBS 0
BSJ 0

In each of the two preceding examples, the sample space contains a finite number
of elements. On the other hand, when a die is thrown until a 5 occurs, we obtain
a sample space with an unending sequence of elements,

S = {F,NF,NNF,NNNF, . . . },

where F and N represent, respectively, the occurrence and nonoccurrence of a 5.
But even in this experiment, the number of elements can be equated to the number
of whole numbers so that there is a first element, a second element, a third element,
and so on, and in this sense can be counted.

Definition 2.2: If a sample space contains a finite number of possibilities or an unending sequence
with as many elements as there are whole numbers, it is called a discrete sample
space.

When the random variable is categorical in nature, it is often called a dummy
variable. A good illustration is the case in which the random variable is binary in
nature, as shown in the following example.

Example 2.3: Consider the simple experiment in which components are arriving from the pro-
duction line and they are stipulated to be defective or not defective. Define the
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random variable X by

X =

{
1, if the component is defective,

0, if the component is not defective.

Clearly the assignment of 1 or 0 is arbitrary though quite convenient. This will
become clear in later chapters. The random variable for which 0 and 1 are chosen
to describe the two possible values is called a Bernoulli random variable.

Further illustrations of random variables appear in the following examples.

Example 2.4: Statisticians use sampling plans to either accept or reject batches or lots of
material. Suppose one of these sampling plans involves sampling independently 10
items from a lot of 100 items in which 12 are defective.

Let X be the random variable defined as the number of items found defec-
tive in the sample of 10. In this case, the random variable takes on the values
0, 1, 2, . . . , 9, 10.

Example 2.5: Suppose a sampling plan involves sampling items from a process until a defective
is observed. The evaluation of the process will depend on how many consecutive
nondefective items are observed. In that regard, letX be a random variable defined
by the number of items observed before a defective is found. With N a nondefective
and D a defective, the outcomes in the sample space are D given X = 1, ND given
X = 2, NND given X = 3, and so on.

Example 2.6: Interest centers around the proportion of people who respond to a certain mail
order solicitation. Let X be that proportion. X is a random variable that takes
on all values x for which 0 ≤ x ≤ 1.

Example 2.7: Let X be the random variable defined by the waiting time, in hours, between
successive speeders spotted by a radar unit. The random variable X takes on all
values x for which x ≥ 0.

The outcomes of some statistical experiments may be neither finite nor count-
able. Such is the case, for example, when one conducts an investigation measuring
the distances that a certain make of automobile will travel over a prescribed test
course on 5 liters of gasoline. Assuming distance to be a variable measured to any
degree of accuracy, then clearly we have an infinite number of possible distances
in the sample space that cannot be equated to the number of whole numbers. Or,
if one were to record the length of time for a chemical reaction to take place, once
again the possible time intervals making up our sample space would be infinite in
number and uncountable. We see now that all sample spaces need not be discrete.

Definition 2.3: If a sample space contains an infinite number of possibilities equal to the number
of points on a line segment, it is called a continuous sample space.

A random variable is called a discrete random variable if its set of possible
outcomes is countable. The random variables in Examples 2.1 to 2.5 are discrete
random variables. But a random variable whose set of possible values is an entire
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interval of real numbers is not discrete. When a random variable can take on
values on a continuous scale, it is called a continuous random variable. Often
the possible values of a continuous random variable are precisely the same values
that are contained in the continuous sample space. Obviously, the random variables
described in Examples 2.6 and 2.7 are continuous random variables.

In most practical problems, continuous random variables represent measured
data, such as all possible heights, weights, temperatures, distances, or life periods,
whereas discrete random variables represent count data, such as the number of
defectives in a sample of k items or the number of highway fatalities per year in
a given state. Note that the random variables Y and M of Examples 2.1 and 2.2
both represent count data, Y the number of red balls and M the number of correct
hat matches.

2.2 Discrete Probability Distributions

A discrete random variable assumes each of its values with a certain probability.
In the case of tossing a coin three times, the variable X, representing the number
of heads, assumes the value 2 with probability 3/8, since 3 of the 8 equally likely
sample points result in two heads and one tail. If one assumes equal weights for the
simple events in Example 2.2, the probability that no employee gets back the right
helmet, that is, the probability that M assumes the value 0, is 1/3. The possible
values m of M and their probabilities are

m 0 1 3

P(M = m) 1
3

1
2

1
6

Note that the values of m exhaust all possible cases and hence the probabilities
add to 1.

Frequently, it is convenient to represent all the probabilities of the values of a
random variable X by a formula. Such a formula would necessarily be a function
of the numerical values x that we shall denote by f(x), g(x), r(x), and so forth.
Therefore, we write f(x) = P (X = x); that is, f(3) = P (X = 3). The set of
ordered pairs (x, f(x)) is called the probability mass function, probability
function, or probability distribution of the discrete random variable X.

Definition 2.4: The set of ordered pairs (x, f(x)) is a probability mass function, probability
function, or probability distribution of the discrete random variable X if, for
each possible outcome x,

1. f(x) ≥ 0,

2.
∑
x
f(x) = 1,

3. P (X = x) = f(x).

Example 2.8: A shipment of 20 similar laptop computers to a retail outlet contains 3 that are
defective. If a school makes a random purchase of 2 of these computers, find the
probability distribution for the number of defectives.
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Solution : Let X be a random variable whose values x are the possible numbers of defective
computers purchased by the school. Then x can only take the numbers 0, 1, and
2. Now

f(0) = P (X = 0) =

(
3
0

)(
17
2

)(
20
2

) =
68

95
, f(1) = P (X = 1) =

(
3
1

)(
17
1

)(
20
2

) =
51

190
,

f(2) = P (X = 2) =

(
3
2

)(
17
0

)(
20
2

) =
3

190
.

Thus, the probability distribution of X is
x 0 1 2

f(x) 68
95

51
190

3
190

Example 2.9: If a car agency sells 50% of its inventory of a certain foreign car equipped with
side airbags, find a formula for the probability distribution of the number of cars
with side airbags among the next 4 cars sold by the agency.

Solution : Since the probability of selling an automobile with side airbags is 0.5, the 24 = 16
points in the sample space are equally likely to occur. Therefore, the denominator
for all probabilities, and also for our function, is 16. To obtain the number of
ways of selling 3 cars with side airbags, we need to consider the number of ways
of partitioning 4 outcomes into two cells, with 3 cars with side airbags assigned
to one cell and the model without side airbags assigned to the other. This can be
done in

(
4
3

)
= 4 ways. In general, the event of selling x models with side airbags

and 4− x models without side airbags can occur in
(
4
x

)
ways, where x can be 0, 1,

2, 3, or 4. Thus, the probability distribution f(x) = P (X = x) is

f(x) =
1

16

(
4

x

)
, for x = 0, 1, 2, 3, 4.

There are many problems where we may wish to compute the probability that
the observed value of a random variable X will be less than or equal to some real
number x. Writing F (x) = P (X ≤ x) for every real number x, we define F (x) to
be the cumulative distribution function of the random variable X.

Definition 2.5: The cumulative distribution function F (x) of a discrete random variable X
with probability distribution f(x) is

F (x) = P (X ≤ x) =
∑
t≤x

f(t), for −∞ < x < ∞.

For the random variable M , the number of correct matches in Example 2.2, we
have

F (2) = P (M ≤ 2) = f(0) + f(1) =
1

3
+

1

2
=

5

6
.

The cumulative distribution function of M is

F (m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, for m < 0,
1
3 , for 0 ≤ m < 1,
5
6 , for 1 ≤ m < 3,

1, for m ≥ 3.
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One should pay particular notice to the fact that the cumulative distribution func-
tion is a monotone nondecreasing function defined not only for the values assumed
by the given random variable but for all real numbers.

Example 2.10: Find the cumulative distribution function of the random variable X in Example
2.9. Using F (x), verify that f(2) = 3/8.

Solution : Direct calculations of the probability distribution of Example 2.9 give f(0)= 1/16,
f(1) = 1/4, f(2)= 3/8, f(3)= 1/4, and f(4)= 1/16. Therefore,

F (0) = f(0) =
1

16
,

F (1) = f(0) + f(1) =
5

16
,

F (2) = f(0) + f(1) + f(2) =
11

16
,

F (3) = f(0) + f(1) + f(2) + f(3) =
15

16
,

F (4) = f(0) + f(1) + f(2) + f(3) + f(4) = 1.

Hence,

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for x < 0,
1
16 , for 0 ≤ x < 1,
5
16 , for 1 ≤ x < 2,
11
16 , for 2 ≤ x < 3,
15
16 , for 3 ≤ x < 4,

1 for x ≥ 4.

Now

f(2) = F (2)− F (1) =
11

16
− 5

16
=

3

8
.

It is often helpful to look at a probability distribution in graphic form. One
might plot the points (x, f(x)) of Example 2.9 to obtain Figure 2.1. By joining
the points to the x axis either with a dashed or with a solid line, we obtain a
probability mass function plot. Figure 2.1 makes it easy to see what values of X
are most likely to occur, and it also indicates a perfectly symmetric situation in
this case.

Instead of plotting the points (x, f(x)), we more frequently construct rectangles,
as in Figure 2.2. Here the rectangles are constructed so that their bases of equal
width are centered at each value x and their heights are equal to the corresponding
probabilities given by f(x). The bases are constructed so as to leave no space
between the rectangles. Figure 2.2 is called a probability histogram.

Since each base in Figure 2.2 has unit width, P (X = x) is equal to the area
of the rectangle centered at x. Even if the bases were not of unit width, we could
adjust the heights of the rectangles to give areas that would still equal the proba-
bilities of X assuming any of its values x. This concept of using areas to represent
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x

f (x )

0 1 2 3 4

1/16

2/16

3/16

4/16

5/16

6/16

Figure 2.1: Probability mass function plot.

0 1 2 3 4
x

f (x )

1/16

2/16

3/16

4/16

5/16

6/16

Figure 2.2: Probability histogram.

probabilities is necessary for our consideration of the probability distribution of a
continuous random variable.

The graph of the cumulative distribution function of Example 2.10, which ap-
pears as a step function in Figure 2.3, is obtained by plotting the points (x, F (x)).

Certain probability distributions are applicable to more than one physical situa-
tion. The probability distribution of Example 2.10, for example, also applies to the
random variable Y , where Y is the number of heads when a coin is tossed 4 times,
or to the random variable W , where W is the number of red cards that occur when
4 cards are drawn at random from a deck in succession with each card replaced and
the deck shuffled before the next drawing. Special discrete distributions that can
be applied to many different experimental situations will be considered in Chapter
3.

F(x)

x

1/4

1/2

3/4

1

0 1 2 3 4

Figure 2.3: Discrete cumulative distribution function.

2.3 Continuous Probability Distributions

A continuous random variable has a probability of 0 of assuming exactly any of its
values. Consequently, its probability distribution cannot be given in tabular form.
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At first this may seem startling, but it becomes more plausible when we consider a
particular example. Let us discuss a random variable whose values are the heights
of all people over 21 years of age. Between any two values, say 163.5 and 164.5
centimeters, or even 163.99 and 164.01 centimeters, there are an infinite number
of heights, one of which is 164 centimeters. The probability of selecting a person
at random who is exactly 164 centimeters tall and not one of the infinitely large
set of heights so close to 164 centimeters that you cannot humanly measure the
difference is remote, and thus we assign a probability of 0 to the event. This is not
the case, however, if we talk about the probability of selecting a person who is at
least 163 centimeters but not more than 165 centimeters tall. Now we are dealing
with an interval rather than a point value of our random variable.

We shall concern ourselves with computing probabilities for various intervals of
continuous random variables such as P (a < X < b), P (W ≥ c), and so forth. Note
that when X is continuous,

P (a < X ≤ b) = P (a < X < b) + P (X = b) = P (a < X < b).

That is, it does not matter whether we include an endpoint of the interval or not.
This is not true, though, when X is discrete.

Although the probability distribution of a continuous random variable cannot
be presented in tabular form, it can be stated as a formula. Such a formula would
necessarily be a function of the numerical values of the continuous random variable
X and as such will be represented by the functional notation f(x). In dealing with
continuous variables, f(x) is usually called the probability density function, or
simply the density function, of X. Since X is defined over a continuous sample
space, it is possible for f(x) to have a finite number of discontinuities. However,
most density functions that have practical applications in the analysis of statistical
data are continuous and their graphs may take any of several forms, some of which
are shown in Figure 2.4. Because areas will be used to represent probabilities and
probabilities are positive numerical values, the density function must lie entirely
above the x axis.

(a) (b) (c) (d)

Figure 2.4: Typical density functions.

A probability density function is constructed so that the area under its curve
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bounded by the x axis is equal to 1 when computed over the range of X for which
f(x) is defined. Should this range of X be a finite interval, it is always possible
to extend the interval to include the entire set of real numbers by defining f(x) to
be zero at all points in the extended portions of the interval. In Figure 2.5, the
probability that X assumes a value between a and b is equal to the shaded area
under the density function between the ordinates at x = a and x = b, and from
integral calculus is given by

P (a < X < b) =

∫ b

a

f(x) dx.

a b
x

f(x)

Figure 2.5: P (a < X < b).

Definition 2.6: The function f(x) is a probability density function (pdf) for the continuous
random variable X, defined over the set of real numbers, if

1. f(x) ≥ 0, for all x ∈ R,

2.
∫∞
−∞ f(x) dx = 1,

3. P (a < X < b) =
∫ b

a
f(x) dx.

Example 2.11: Suppose that the error in the reaction temperature, in ◦C, for a controlled labora-
tory experiment is a continuous random variable X having the probability density
function

f(x) =

{
x2

3 , −1 < x < 2,

0, elsewhere.

.

(a) Verify that f(x) is a density function.

(b) Find P (0 < X ≤ 1).

Solution : We use Definition 2.6.

(a) Obviously, f(x) ≥ 0. To verify condition 2 in Definition 2.6, we have∫ ∞

−∞
f(x) dx =

∫ 2

−1

x2

3
dx =

x3

9

∣∣∣∣2
−1

=
8

9
+

1

9
= 1.
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(b) Using formula 3 in Definition 2.6, we obtain

P (0 < X ≤ 1) =

∫ 1

0

x2

3
dx =

x3

9

∣∣∣∣1
0

=
1

9
.

Definition 2.7: The cumulative distribution function F (x) of a continuous random variable
X with density function f(x) is

F (x) = P (X ≤ x) =

∫ x

−∞
f(t) dt, for −∞ < x < ∞.

As an immediate consequence of Definition 2.7, one can write the two results

P (a < X < b) = F (b)− F (a)

and

f(x) =
dF (x)

dx
,

if the derivative exists.

Example 2.12: For the density function of Example 2.11, find F (x), and use it to evaluate
P (0 < X ≤ 1).

Solution : For −1 < x < 2,

F (x) =

∫ x

−∞
f(t) dt =

∫ x

−1

t2

3
dt =

t3

9

∣∣∣∣x
−1

=
x3 + 1

9
.

Therefore,

F (x) =

⎧⎪⎨⎪⎩
0, x < −1,
x3+1

9 , −1 ≤ x < 2,

1, x ≥ 2.

The cumulative distribution function F (x) is expressed in Figure 2.6. Now

P (0 < X ≤ 1) = F (1)− F (0) =
2

9
− 1

9
=

1

9
,

which agrees with the result obtained by using the density function in Example
2.11.

Example 2.13: The Department of Energy (DOE) puts projects out on bid and generally estimates
what a reasonable bid should be. Call the estimate b. The DOE has determined
that the density function of the winning (low) bid is

f(y) =

{
5
8b ,

2
5b ≤ y ≤ 2b,

0, elsewhere.

Find F (y) and use it to determine the probability that the winning bid is less than
the DOE’s preliminary estimate b.
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f (x )

x
0 2�1 1

0.5

1.0

Figure 2.6: Continuous cumulative distribution function.

Solution : For 2b/5 ≤ y ≤ 2b,

F (y) =

∫ y

2b/5

5

8b
dy =

5t

8b

∣∣∣∣y
2b/5

=
5y

8b
− 1

4
.

Thus,

F (y) =

⎧⎪⎨⎪⎩
0, y < 2

5b,
5y
8b − 1

4 ,
2
5b ≤ y < 2b,

1, y ≥ 2b.

To determine the probability that the winning bid is less than the preliminary bid
estimate b, we have

P (Y ≤ b) = F (b) =
5

8
− 1

4
=

3

8
.

Exercises

2.1 Classify the following random variables as dis-
crete or continuous:

X: the number of automobile accidents per year
in Virginia.

Y : the length of time to play 18 holes of golf.

M : the amount of milk produced yearly by a par-
ticular cow.

N : the number of eggs laid each month by a hen.

P : the number of building permits issued each
month in a certain city.

Q: the weight of grain produced per acre.

2.2 An overseas shipment of 5 foreign automobiles
contains 2 that have slight paint blemishes. If an
agency receives 3 of these automobiles at random, list
the elements of the sample space S, using the letters B
and N for blemished and nonblemished, respectively;
then to each sample point assign a value x of the ran-
dom variable X representing the number of automo-
biles with paint blemishes purchased by the agency.

2.3 Let W be a random variable giving the number
of heads minus the number of tails in three tosses of a
coin. List the elements of the sample space S for the
three tosses of the coin and to each sample point assign
a value w of W .
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2.4 A coin is flipped until 3 heads in succession oc-
cur. List only those elements of the sample space that
require 6 or less tosses. Is this a discrete sample space?
Explain.

2.5 Determine the value c so that each of the follow-
ing functions can serve as a probability distribution of
the discrete random variable X:

(a) f(x) = c(x2 + 4), for x = 0, 1, 2, 3;

(b) f(x) = c
(
2
x

)(
3

3−x

)
, for x = 0, 1, 2.

2.6 The shelf life, in days, for bottles of a certain
prescribed medicine is a random variable having the
density function

f(x) =

{
20,000

(x+100)3
, x > 0,

0, elsewhere.

Find the probability that a bottle of this medicine will
have a shell life of

(a) at least 200 days;

(b) anywhere from 80 to 120 days.

2.7 The total number of hours, measured in units of
100 hours, that a family runs a vacuum cleaner over a
period of one year is a continuous random variable X
that has the density function

f(x) =

⎧⎨
⎩
x, 0 < x < 1,

2− x, 1 ≤ x < 2,

0, elsewhere.

Find the probability that over a period of one year, a
family runs their vacuum cleaner

(a) less than 120 hours;

(b) between 50 and 100 hours.

2.8 The proportion of people who respond to a certain
mail-order solicitation is a continuous random variable
X that has the density function

f(x) =

{
2(x+2)

5
, 0 < x < 1,

0, elsewhere.

(a) Show that P (0 < X < 1) = 1.

(b) Find the probability that more than 1/4 but fewer
than 1/2 of the people contacted will respond to
this type of solicitation.

2.9 A shipment of 7 television sets contains 2 defec-
tive sets. A hotel makes a random purchase of 3 of the
sets. If x is the number of defective sets purchased by
the hotel, find the probability distribution of X. Ex-
press the results graphically as a probability histogram.

2.10 An investment firm offers its customers munici-
pal bonds that mature after varying numbers of years.
Given that the cumulative distribution function of T ,
the number of years to maturity for a randomly se-
lected bond, is

F (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t < 1,
1
4
, 1 ≤ t < 3,

1
2
, 3 ≤ t < 5,

3
4
, 5 ≤ t < 7,

1, t ≥ 7,

find

(a) P (T = 5);

(b) P (T > 3);

(c) P (1.4 < T < 6);

(d) P (T ≤ 5 | T ≥ 2).

2.11 The probability distribution of X, the number
of imperfections per 10 meters of a synthetic fabric in
continuous rolls of uniform width, is given by

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

Construct the cumulative distribution function of X.

2.12 The waiting time, in hours, between successive
speeders spotted by a radar unit is a continuous ran-
dom variable with cumulative distribution function

F (x) =

{
0, x < 0,

1− e−8x, x ≥ 0.

Find the probability of waiting less than 12 minutes
between successive speeders

(a) using the cumulative distribution function of X;

(b) using the probability density function of X.

2.13 Find the cumulative distribution function of the
random variable X representing the number of defec-
tives in Exercise 2.9. Then using F (x), find

(a) P (X = 1);

(b) P (0 < X ≤ 2).

2.14 Construct a graph of the cumulative distribution
function of Exercise 2.13.

2.15 Consider the density function

f(x) =

{
k
√
x, 0 < x < 1,

0, elsewhere.

(a) Evaluate k.

(b) Find F (x) and use it to evaluate

P (0.3 < X < 0.6).
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2.16 Three cards are drawn in succession from a deck
without replacement. Find the probability distribution
for the number of spades.

2.17 From a box containing 4 dimes and 2 nickels,
3 coins are selected at random without replacement.
Find the probability distribution for the total T of the
3 coins. Express the probability distribution graphi-
cally as a probability histogram.

2.18 Find the probability distribution for the number
of jazz CDs when 4 CDs are selected at random from
a collection consisting of 5 jazz CDs, 2 classical CDs,
and 3 rock CDs. Express your results by means of a
formula.

2.19 The time to failure in hours of an important
piece of electronic equipment used in a manufactured
DVD player has the density function

f(x) =

{
1

2000
exp(−x/2000), x ≥ 0,

0, x < 0.

(a) Find F (x).

(b) Determine the probability that the component (and
thus the DVD player) lasts more than 1000 hours
before the component needs to be replaced.

(c) Determine the probability that the component fails
before 2000 hours.

2.20 A cereal manufacturer is aware that the weight
of the product in the box varies slightly from box
to box. In fact, considerable historical data have al-
lowed the determination of the density function that
describes the probability structure for the weight (in
ounces). Letting X be the random variable weight, in
ounces, the density function can be described as

f(x) =

{
2
5
, 23.75 ≤ x ≤ 26.25,

0, elsewhere.

(a) Verify that this is a valid density function.

(b) Determine the probability that the weight is
smaller than 24 ounces.

(c) The company desires that the weight exceeding 26
ounces be an extremely rare occurrence. What is
the probability that this rare occurrence does ac-
tually occur?

2.21 An important factor in solid missile fuel is the
particle size distribution. Significant problems occur if
the particle sizes are too large. From production data
in the past, it has been determined that the particle
size (in micrometers) distribution is characterized by

f(x) =

{
3x−4, x > 1,

0, elsewhere.

(a) Verify that this is a valid density function.

(b) Evaluate F (x).

(c) What is the probability that a random particle
from the manufactured fuel exceeds 4 micrometers?

2.22 Measurements of scientific systems are always
subject to variation, some more than others. There
are many structures for measurement error, and statis-
ticians spend a great deal of time modeling these errors.
Suppose the measurement error X of a certain physical
quantity is decided by the density function

f(x) =

{
k(3− x2), −1 ≤ x ≤ 1,

0, elsewhere.

(a) Determine k that renders f(x) a valid density func-
tion.

(b) Find the probability that a random error in mea-
surement is less than 1/2.

(c) For this particular measurement, it is undesirable
if the magnitude of the error (i.e., |x|) exceeds 0.8.
What is the probability that this occurs?

2.23 Based on extensive testing, it is determined by
the manufacturer of a washing machine that the time
Y (in years) before a major repair is required is char-
acterized by the probability density function

f(y) =

{
1
4
e−y/4, y ≥ 0,

0, elsewhere.

(a) Critics would certainly consider the product a bar-
gain if it is unlikely to require a major repair before
the sixth year. Comment on this by determining
P (Y > 6).

(b) What is the probability that a major repair occurs
in the first year?

2.24 The proportion of the budget for a certain type
of industrial company that is allotted to environmental
and pollution control is coming under scrutiny. A data
collection project determines that the distribution of
these proportions is given by

f(y) =

{
5(1− y)4, 0 ≤ y ≤ 1,

0, elsewhere.

(a) Verify that the above is a valid density function.

(b) What is the probability that a company chosen at
random expends less than 10% of its budget on en-
vironmental and pollution controls?

(c) What is the probability that a company selected
at random spends more than 50% of its budget on
environmental and pollution controls?
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2.25 Suppose a certain type of small data processing
firm is so specialized that some have difficulty making
a profit in their first year of operation. The probabil-
ity density function that characterizes the proportion
Y that make a profit is given by

f(y) =

{
ky4(1− y)3, 0 ≤ y ≤ 1,

0, elsewhere.

(a) What is the value of k that renders the above a
valid density function?

(b) Find the probability that at most 50% of the firms
make a profit in the first year.

(c) Find the probability that at least 80% of the firms
make a profit in the first year.

2.26 Magnetron tubes are produced on an automated
assembly line. A sampling plan is used periodically to
assess quality of the lengths of the tubes. This mea-
surement is subject to uncertainty. It is thought that
the probability that a random tube meets length spec-
ification is 0.99. A sampling plan is used in which the
lengths of 5 random tubes are measured.

(a) Show that the probability function of Y , the num-
ber out of 5 that meet length specification, is given
by the following discrete probability function:

f(y) =
5!

y!(5− y)!
(0.99)y(0.01)5−y,

for y = 0, 1, 2, 3, 4, 5.

(b) Suppose random selections are made off the line
and 3 are outside specifications. Use f(y) above ei-
ther to support or to refute the conjecture that the
probability is 0.99 that a single tube meets specifi-
cations.

2.27 Suppose it is known from large amounts of his-
torical data that X, the number of cars that arrive at
a specific intersection during a 20-second time period,
is characterized by the following discrete probability
function:

f(x) = e−6 6
x

x!
, for x = 0, 1, 2, . . . .

(a) Find the probability that in a specific 20-second
time period, more than 8 cars arrive at the
intersection.

(b) Find the probability that only 2 cars arrive.

2.28 On a laboratory assignment, if the equipment is
working, the density function of the observed outcome,
X, is

f(x) =

{
2(1− x), 0 < x < 1,

0, otherwise.

(a) Calculate P (X ≤ 1/3).

(b) What is the probability that X will exceed 0.5?

(c) Given that X ≥ 0.5, what is the probability that
X will be less than 0.75?

2.4 Joint Probability Distributions

Our study of random variables and their probability distributions in the preced-
ing sections was restricted to one-dimensional sample spaces, in that we recorded
outcomes of an experiment as values assumed by a single random variable. There
will be situations, however, where we may find it desirable to record the simulta-
neous outcomes of several random variables. For example, we might measure the
amount of precipitate P and volume V of gas released from a controlled chemical
experiment, giving rise to a two-dimensional sample space consisting of the out-
comes (p, v), or we might be interested in the hardness H and tensile strength T
of cold-drawn copper, resulting in the outcomes (h, t). In a study to determine the
likelihood of success in college based on high school data, we might use a three-
dimensional sample space and record for each individual his or her aptitude test
score, high school class rank, and grade-point average at the end of freshman year
in college.

If X and Y are two discrete random variables, the probability distribution for
their simultaneous occurrence can be represented by a function with values f(x, y)
for any pair of values (x, y) within the range of the random variables X and Y . It
is customary to refer to this function as the joint probability distribution of
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X and Y .
Hence, in the discrete case,

f(x, y) = P (X = x, Y = y);

that is, the values f(x, y) give the probability that outcomes x and y occur at
the same time. For example, if an 18-wheeler is to have its tires serviced and X
represents the number of miles these tires have been driven and Y represents the
number of tires that need to be replaced, then f(30000, 5) is the probability that
the tires are used over 30,000 miles and the truck needs 5 new tires.

Definition 2.8: The function f(x, y) is a joint probability distribution or probability mass
function of the discrete random variables X and Y if

1. f(x, y) ≥ 0, for all (x, y),

2.
∑
x

∑
y
f(x, y) = 1,

3. P (X = x, Y = y) = f(x, y).

For any region A in the xy plane, P [(X,Y ) ∈ A] =
∑∑

A

f(x, y).

Example 2.14: Two ballpoint pens are selected at random from a box that contains 3 blue pens,
2 red pens, and 3 green pens. If X is the number of blue pens selected and Y is
the number of red pens selected, find

(a) the joint probability function f(x, y),

(b) P [(X,Y ) ∈ A], where A is the region {(x, y)|x+ y ≤ 1}.
Solution : The possible pairs of values (x, y) are (0, 0), (0, 1), (1, 0), (1, 1), (0, 2), and (2, 0).

(a) Now, f(0, 1), for example, represents the probability that a red and a green
pen are selected. The total number of equally likely ways of selecting any 2
pens from the 8 is

(
8
2

)
= 28. The number of ways of selecting 1 red from 2

red pens and 1 green from 3 green pens is
(
2
1

)(
3
1

)
= 6. Hence, f(0, 1) = 6/28

= 3/14. Similar calculations yield the probabilities for the other cases, which
are presented in Table 2.1. Note that the probabilities sum to 1. In Chapter
3, it will become clear that the joint probability distribution of Table 2.1 can
be represented by the formula

f(x, y) =

(
3
x

)(
2
y

)(
3

2−x−y

)(
8
2

) ,

for x = 0, 1, 2; y = 0, 1, 2; and 0 ≤ x+ y ≤ 2.

(b) The probability that (X,Y ) fall in the region A is

P [(X,Y ) ∈ A] = P (X + Y ≤ 1) = f(0, 0) + f(0, 1) + f(1, 0)

=
3

28
+

3

14
+

9

28
=

9

14
.
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Table 2.1: Joint Probability Distribution for Example 2.14

x Row
f(x, y) 0 1 2 Totals

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14 0 3

7

2 1
28 0 0 1

28

Column Totals 5
14

15
28

3
28 1

When X and Y are continuous random variables, the joint density function
f(x, y) is a surface lying above the xy plane, and P [(X,Y ) ∈ A], where A is any
region in the xy plane, is equal to the volume of the right cylinder bounded by the
base A and the surface.

Definition 2.9: The function f(x, y) is a joint probability density function of the continuous
random variables X and Y if

1. f(x, y) ≥ 0, for all (x, y),

2.
∫∞
−∞

∫∞
−∞ f(x, y) dx dy = 1,

3. P [(X,Y ) ∈ A] =
∫ ∫

A
f(x, y) dx dy, for any region A in the xy plane.

Example 2.15: A privately owned business operates both a drive-in facility and a walk-in facility.
On a randomly selected day, let X and Y , respectively, be the proportions of the
time that the drive-in and the walk-in facilities are in use, and suppose that the
joint density function of these random variables is

f(x, y) =

{
2
5 (2x+ 3y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0, elsewhere.

(a) Verify condition 2 of Definition 2.9.

(b) Find P [(X,Y ) ∈ A], where A = {(x, y) | 0 < x < 1
2 ,

1
4 < y < 1

2}.
Solution : (a) The integration of f(x, y) over the whole region is∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy =

∫ 1

0

∫ 1

0

2

5
(2x+ 3y) dx dy

=

∫ 1

0

(
2x2

5
+

6xy

5

)∣∣∣∣x=1

x=0

dy

=

∫ 1

0

(
2

5
+

6y

5

)
dy =

(
2y

5
+

3y2

5

)∣∣∣∣1
0

=
2

5
+

3

5
= 1.
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(b) To calculate the probability, we use

P [(X,Y ) ∈ A] = P

(
0 < X <

1

2
,
1

4
< Y <

1

2

)
=

∫ 1/2

1/4

∫ 1/2

0

2

5
(2x+ 3y) dx dy

=

∫ 1/2

1/4

(
2x2

5
+

6xy

5

)∣∣∣∣x=1/2

x=0

dy =

∫ 1/2

1/4

(
1

10
+

3y

5

)
dy

=

(
y

10
+

3y2

10

)∣∣∣∣1/2
1/4

=
1

10

[(
1

2
+

3

4

)
−
(
1

4
+

3

16

)]
=

13

160
.

Given the joint probability distribution f(x, y) of the discrete random variables
X and Y , the probability distribution g(x) of X alone is obtained by summing
f(x, y) over all the values of Y at each value of x. Similarly, the probability
distribution h(y) of Y alone is obtained by summing f(x, y) over the values of
X. We define g(x) and h(y) to be the marginal distributions of X and Y ,
respectively. When X and Y are continuous random variables, summations are
replaced by integrals. We can now make the following general definition.

Definition 2.10: The marginal distributions of X alone and of Y alone are

g(x) =
∑
y

f(x, y) and h(y) =
∑
x

f(x, y)

for the discrete case, and

g(x) =

∫ ∞

−∞
f(x, y) dy and h(y) =

∫ ∞

−∞
f(x, y) dx

for the continuous case.

The term marginal is used here because, in the discrete case, the values of g(x)
and h(y) are just the marginal totals of the respective columns and rows when the
values of f(x, y) are displayed in a rectangular table.

Example 2.16: Show that the column and row totals of Table 2.1 give the marginal distribution
of X alone and of Y alone.

Solution : For the random variable X, we see that

g(0) = f(0, 0) + f(0, 1) + f(0, 2) =
3

28
+

3

14
+

1

28
=

5

14
,

g(1) = f(1, 0) + f(1, 1) + f(1, 2) =
9

28
+

3

14
+ 0 =

15

28
,

and

g(2) = f(2, 0) + f(2, 1) + f(2, 2) =
3

28
+ 0 + 0 =

3

28
,
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which are just the column totals of Table 2.1. In a similar manner we could show
that the values of h(y) are given by the row totals. In tabular form, these marginal
distributions may be written as follows:

x 0 1 2

g(x) 5
14

15
28

3
28

y 0 1 2

h(y) 15
28

3
7

1
28

Example 2.17: Find g(x) and h(y) for the joint density function of Example 2.15.
Solution : By definition,

g(x) =

∫ ∞

−∞
f(x, y) dy =

∫ 1

0

2

5
(2x+ 3y) dy =

(
4xy

5
+

6y2

10

)∣∣∣∣y=1

y=0

=
4x+ 3

5
,

for 0 ≤ x ≤ 1, and g(x) = 0 elsewhere. Similarly,

h(y) =

∫ ∞

−∞
f(x, y) dx =

∫ 1

0

2

5
(2x+ 3y) dx =

2(1 + 3y)

5
,

for 0 ≤ y ≤ 1, and h(y) = 0 elsewhere.
The fact that the marginal distributions g(x) and h(y) are indeed the proba-

bility distributions of the individual variables X and Y alone can be verified by
showing that the conditions of Definition 2.4 or Definition 2.6 are satisfied. For
example, in the continuous case∫ ∞

−∞
g(x) dx =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dy dx = 1,

and

P (a < X < b) = P (a < X < b,−∞ < Y < ∞)

=

∫ b

a

∫ ∞

−∞
f(x, y) dy dx =

∫ b

a

g(x) dx.

In Section 2.1, we stated that the value x of the random variable X represents
an event that is a subset of the sample space. If we use the definition of conditional
probability as stated in Chapter 1,

P (B|A) = P (A ∩B)

P (A)
, provided P (A) > 0,

where A and B are now the events defined by X = x and Y = y, respectively, then

P (Y = y | X = x) =
P (X = x, Y = y)

P (X = x)
=

f(x, y)

g(x)
, provided g(x) > 0,

where X and Y are discrete random variables.
It is not difficult to show that the function f(x, y)/g(x), which is strictly a func-

tion of y with x fixed, satisfies all the conditions of a probability distribution. This
is also true when f(x, y) and g(x) are the joint density and marginal distribution,
respectively, of continuous random variables. As a result, it is extremely important
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that we make use of the special type of distribution of the form f(x, y)/g(x) in
order to be able to effectively compute conditional probabilities. This type of dis-
tribution is called a conditional probability distribution; the formal definition
follows.

Definition 2.11: Let X and Y be two random variables, discrete or continuous. The conditional
distribution of the random variable Y given that X = x is

f(y|x) = f(x, y)

g(x)
, provided g(x) > 0.

Similarly, the conditional distribution of X given that Y = y is

f(x|y) = f(x, y)

h(y)
, provided h(y) > 0.

If we wish to find the probability that the discrete random variable X falls between
a and b when it is known that the discrete variable Y = y, we evaluate

P (a < X < b | Y = y) =
∑

a<x<b

f(x|y),

where the summation extends over all values of X between a and b. When X and
Y are continuous, we evaluate

P (a < X < b | Y = y) =

∫ b

a

f(x|y) dx.

Example 2.18: Referring to Example 2.14, find the conditional distribution of X, given that
Y = 1, and use it to determine P (X = 0 | Y = 1).

Solution : We need to find f(x|y), where y = 1. First, we find that

h(1) =

2∑
x=0

f(x, 1) =
3

14
+

3

14
+ 0 =

3

7
.

Now

f(x|1) = f(x, 1)

h(1)
=

(
7

3

)
f(x, 1), x = 0, 1, 2.

Therefore,

f(0|1) =
(
7

3

)
f(0, 1) =

(
7

3

)(
3

14

)
=

1

2
, f(1|1) =

(
7

3

)
f(1, 1) =

(
7

3

)(
3

14

)
=

1

2
,

f(2|1) =
(
7

3

)
f(2, 1) =

(
7

3

)
(0) = 0,

and the conditional distribution of X, given that Y = 1, is
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x 0 1 2

f(x|1) 1
2

1
2 0

Finally,

P (X = 0 | Y = 1) = f(0|1) = 1

2
.

Therefore, if it is known that 1 of the 2 pens selected is red, we have a probability
equal to 1/2 that the other pen is not blue.

Example 2.19: The joint density for the random variables (X,Y ), where X is the temperature
change and Y is the proportion of the spectrum that shifts for a certain atomic
particle, is

f(x, y) =

{
10xy2, 0 < x < y < 1,

0, elsewhere.

(a) Find the marginal densities g(x), h(y), and the conditional density f(y|x).
(b) Find the probability that the spectrum shifts more than half of the total

observations, given that the temperature is increased by 0.25 unit.

Solution : (a) By definition,

g(x) =

∫ ∞

−∞
f(x, y) dy =

∫ 1

x

10xy2 dy

=
10

3
xy3

∣∣∣∣y=1

y=x

=
10

3
x(1− x3), 0 < x < 1,

h(y) =

∫ ∞

−∞
f(x, y) dx =

∫ y

0

10xy2 dx = 5x2y2
∣∣x=y

x=0
= 5y4, 0 < y < 1.

Now

f(y|x) = f(x, y)

g(x)
=

10xy2

10
3 x(1− x3)

=
3y2

1− x3
, 0 < x < y < 1.

(b) Therefore,

P

(
Y >

1

2

∣∣∣∣ X = 0.25

)
=

∫ 1

1/2

f(y | x = 0.25) dy =

∫ 1

1/2

3y2

1− 0.253
dy =

8

9
.

Example 2.20: Given the joint density function

f(x, y) =

{
x(1+3y2)

4 , 0 < x < 2, 0 < y < 1,

0, elsewhere,

find g(x), h(y), f(x|y), and evaluate P ( 14 < X < 1
2 | Y = 1

3 ).
Solution : By the definition of the marginal density, for 0 < x < 2,

g(x) =

∫ ∞

−∞
f(x, y) dy =

∫ 1

0

x(1 + 3y2)

4
dy

=

(
xy

4
+

xy3

4

)∣∣∣∣y=1

y=0

=
x

2
,
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and for 0 < y < 1,

h(y) =

∫ ∞

−∞
f(x, y) dx =

∫ 2

0

x(1 + 3y2)

4
dx

=

(
x2

8
+

3x2y2

8

)∣∣∣∣x=2

x=0

=
1 + 3y2

2
.

Therefore, using the conditional density definition, for 0 < x < 2,

f(x|y) = f(x, y)

h(y)
=

x(1 + 3y2)/4

(1 + 3y2)/2
=

x

2
,

and

P

(
1

4
< X <

1

2

∣∣∣∣ Y =
1

3

)
=

∫ 1/2

1/4

x

2
dx =

3

64
.

Statistical Independence

If f(x|y) does not depend on y, as is the case for Example 2.20, then f(x|y) = g(x)
and f(x, y) = g(x)h(y). The proof follows by substituting

f(x, y) = f(x|y)h(y)

into the marginal distribution of X. That is,

g(x) =

∫ ∞

−∞
f(x, y) dy =

∫ ∞

−∞
f(x|y)h(y) dy.

If f(x|y) does not depend on y, we may write

g(x) = f(x|y)
∫ ∞

−∞
h(y) dy.

Now ∫ ∞

−∞
h(y) dy = 1,

since h(y) is the probability density function of Y . Therefore,

g(x) = f(x|y) and then f(x, y) = g(x)h(y).

It should make sense to the reader that if f(x|y) does not depend on y, then of
course the outcome of the random variable Y has no impact on the outcome of the
random variable X. In other words, we say that X and Y are independent random
variables. We now offer the following formal definition of statistical independence.
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Definition 2.12: Let X and Y be two random variables, discrete or continuous, with joint proba-
bility distribution f(x, y) and marginal distributions g(x) and h(y), respectively.
The random variables X and Y are said to be statistically independent if and
only if

f(x, y) = g(x)h(y)

for all (x, y) within their range.

The continuous random variables of Example 2.20 are statistically indepen-
dent, since the product of the two marginal distributions gives the joint density
function. This is obviously not the case, however, for the continuous variables of
Example 2.19. Checking for statistical independence of discrete random variables
requires a more thorough investigation, since it is possible to have the product of
the marginal distributions equal to the joint probability distribution for some but
not all combinations of (x, y). If you can find any point (x, y) for which f(x, y)
is defined such that f(x, y) �= g(x)h(y), the discrete variables X and Y are not
statistically independent.

Example 2.21: Show that the random variables of Example 2.14 are not statistically independent.
Proof : Let us consider the point (0, 1). From Table 2.1 we find the three probabilities

f(0, 1), g(0), and h(1) to be

f(0, 1) =
3

14
,

g(0) =
2∑

y=0

f(0, y) =
3

28
+

3

14
+

1

28
=

5

14
,

h(1) =

2∑
x=0

f(x, 1) =
3

14
+

3

14
+ 0 =

3

7
.

Clearly,

f(0, 1) �= g(0)h(1),

and therefore X and Y are not statistically independent.
All the preceding definitions concerning two random variables can be general-

ized to the case of n random variables. Let f(x1, x2, . . . , xn) be the joint probability
function of the random variables X1, X2, . . . , Xn. The marginal distribution of X1,
for example, is

g(x1) =
∑
x2

· · ·
∑
xn

f(x1, x2, . . . , xn)

for the discrete case, and

g(x1) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x1, x2, . . . , xn) dx2 dx3 · · · dxn
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for the continuous case. We can now obtain joint marginal distributions such
as g(x1, x2), where

g(x1, x2) =

⎧⎨⎩
∑
x3

· · ·∑
xn

f(x1, x2, . . . , xn) (discrete case),∫∞
−∞ · · · ∫∞

−∞ f(x1, x2, . . . , xn) dx3 dx4 · · · dxn (continuous case).

We could consider numerous conditional distributions. For example, the joint con-
ditional distribution of X1, X2, and X3, given that X4 = x4, X5 = x5, . . . , Xn =
xn, is written

f(x1, x2, x3 | x4, x5, . . . , xn) =
f(x1, x2, . . . , xn)

g(x4, x5, . . . , xn)
,

where g(x4, x5, . . . , xn) is the joint marginal distribution of the random variables
X4, X5, . . . , Xn.

A generalization of Definition 2.12 leads to the following definition for the mu-
tual statistical independence of the variables X1, X2, . . . , Xn.

Definition 2.13: Let X1, X2, . . . , Xn be n random variables, discrete or continuous, with
joint probability distribution f(x1, x2, . . . , xn) and marginal distribution
f1(x1), f2(x2), . . . , fn(xn), respectively. The random variablesX1, X2, . . . , Xn are
said to be mutually statistically independent if and only if

f(x1, x2, . . . , xn) = f1(x1)f2(x2) · · · fn(xn)

for all (x1, x2, . . . , xn) within their range.

Example 2.22: Suppose that the shelf life, in years, of a certain perishable food product packaged
in cardboard containers is a random variable whose probability density function is
given by

f(x) =

{
e−x, x > 0,

0, elsewhere.

Let X1, X2, and X3 represent the shelf lives for three of these containers selected
independently and find P (X1 < 2, 1 < X2 < 3, X3 > 2).

Solution : Since the containers were selected independently, we can assume that the random
variables X1, X2, and X3 are statistically independent, having the joint probability
density

f(x1, x2, x3) = f(x1)f(x2)f(x3) = e−x1e−x2e−x3 = e−x1−x2−x3 ,

for x1 > 0, x2 > 0, x3 > 0, and f(x1, x2, x3) = 0 elsewhere. Hence

P (X1 < 2, 1 < X2 < 3, X3 > 2) =

∫ ∞

2

∫ 3

1

∫ 2

0

e−x1−x2−x3 dx1 dx2 dx3

= (1− e−2)(e−1 − e−3)e−2 = 0.0372.
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What Are Important Characteristics of Probability Distributions
and Where Do They Come From?

This is an important point in the text to provide the reader with a transition into
the next three chapters. We have given illustrations in both examples and exercises
of practical scientific and engineering situations in which probability distributions
and their properties are used to solve important problems. These probability dis-
tributions, either discrete or continuous, were introduced through phrases like “it is
known that” or “suppose that” or even in some cases “historical evidence suggests
that.” These are situations in which the nature of the distribution and even a good
estimate of the probability structure can be determined through historical data,
data from long-term studies, or even large amounts of planned data. However, not
all probability functions and probability density functions are derived from large
amounts of historical data. There are a substantial number of situations in which
the nature of the scientific scenario suggests a distribution type. For example,
when independent repeated observations are binary in nature (e.g., defective or
not, survive or not, allergic or not) with value 0 or 1, the distribution covering
this situation is called the binomial distribution and the probability function is
known and will be demonstrated in its generality in Chapter 3.

A second part of this transition to material in future chapters deals with the
notion of population parameters or distributional parameters. We will
discuss later in this chapter the notions of a mean and variance and provide a
vision for the concepts in the context of a population. Indeed, the population mean
and variance are easily found from the probability function for the discrete case
or the probability density function for the continuous case. These parameters and
their importance in the solution of many types of real-world problems will provide
much of the material in Chapters 4 through 9.

Exercises

2.29 Determine the values of c so that the follow-
ing functions represent joint probability distributions
of the random variables X and Y :

(a) f(x, y) = cxy, for x = 1, 2, 3; y = 1, 2, 3;

(b) f(x, y) = c|x− y|, for x = −2, 0, 2; y = −2, 3.

2.30 If the joint probability distribution of X and Y
is given by

f(x, y) =
x+ y

30
, for x = 0, 1, 2, 3; y = 0, 1, 2,

find

(a) P (X ≤ 2, Y = 1);

(b) P (X > 2, Y ≤ 1);

(c) P (X > Y );

(d) P (X + Y = 4).

(e) Find the marginal distribution of X; of Y .

2.31 From a sack of fruit containing 3 oranges, 2 ap-
ples, and 3 bananas, a random sample of 4 pieces of
fruit is selected. If X is the number of oranges and Y
is the number of apples in the sample, find

(a) the joint probability distribution of X and Y ;

(b) P [(X,Y ) ∈ A], where A is the region that is given
by {(x, y) | x+ y ≤ 2};

(c) P (Y = 0 | X = 2);

(d) the conditional distribution of y, given X = 2.

2.32 A fast-food restaurant operates both a drive-
through facility and a walk-in facility. On a randomly
selected day, let X and Y , respectively, be the propor-
tions of the time that the drive-through and walk-in
facilities are in use, and suppose that the joint density
function of these random variables is

f(x, y) =

{
2
3
(x+ 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0, elsewhere.
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(a) Find the marginal density of X.

(b) Find the marginal density of Y .

(c) Find the probability that the drive-through facility
is busy less than one-half of the time.

2.33 A candy company distributes boxes of choco-
lates with a mixture of creams, toffees, and cordials.
Suppose that the weight of each box is 1 kilogram, but
the individual weights of the creams, toffees, and cor-
dials vary from box to box. For a randomly selected
box, let X and Y represent the weights of the creams
and the toffees, respectively, and suppose that the joint
density function of these variables is

f(x, y) =

{
24xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x+ y ≤ 1,

0, elsewhere.

(a) Find the probability that in a given box the cordials
account for more than 1/2 of the weight.

(b) Find the marginal density for the weight of the
creams.

(c) Find the probability that the weight of the toffees
in a box is less than 1/8 of a kilogram if it is known
that creams constitute 3/4 of the weight.

2.34 Let X and Y denote the lengths of life, in years,
of two components in an electronic system. If the joint
density function of these variables is

f(x, y) =

{
e−(x+y), x > 0, y > 0,

0, elsewhere,

find P (0 < X < 1 | Y = 2).

2.35 Let X denote the reaction time, in seconds, to
a certain stimulus and Y denote the temperature (◦F)
at which a certain reaction starts to take place. Sup-
pose that two random variables X and Y have the joint
density

f(x, y) =

{
4xy, 0 < x < 1, 0 < y < 1,

0, elsewhere.

Find

(a) P (0 ≤ X ≤ 1
2
and 1

4
≤ Y ≤ 1

2
);

(b) P (X < Y ).

2.36 Each rear tire on an experimental airplane is
supposed to be filled to a pressure of 40 pounds per
square inch (psi). Let X denote the actual air pressure
for the right tire and Y denote the actual air pressure
for the left tire. Suppose that X and Y are random
variables with the joint density function

f(x, y) =

{
k(x2 + y2), 30 ≤ x < 50, 30 ≤ y < 50,

0, elsewhere.

(a) Find k.

(b) Find P (30 ≤ X ≤ 40 and 40 ≤ Y < 50).

(c) Find the probability that both tires are underfilled.

2.37 Let X denote the diameter of an armored elec-
tric cable and Y denote the diameter of the ceramic
mold that makes the cable. Both X and Y are scaled
so that they range between 0 and 1. Suppose that X
and Y have the joint density

f(x, y) =

{
1
y
, 0 < x < y < 1,

0, elsewhere.

Find P (X + Y > 1/2).

2.38 The amount of kerosene, in thousands of liters,
in a tank at the beginning of any day is a random
amount Y from which a random amount X is sold dur-
ing that day. Suppose that the tank is not resupplied
during the day so that x ≤ y, and assume that the
joint density function of these variables is

f(x, y) =

{
2, 0 < x ≤ y < 1,

0, elsewhere.

(a) Determine if X and Y are independent.

(b) Find P (1/4 < X < 1/2 | Y = 3/4).

2.39 Let X denote the number of times a certain nu-
merical control machine will malfunction: 1, 2, or 3
times on any given day. Let Y denote the number of
times a technician is called on an emergency call. Their
joint probability distribution is given as

x
f(x, y) 1 2 3

y
1
3
5

0.05
0.05
0.00

0.05
0.10
0.20

0.10
0.35
0.10

(a) Evaluate the marginal distribution of X.

(b) Evaluate the marginal distribution of Y .

(c) Find P (Y = 3 | X = 2).

2.40 Suppose that X and Y have the following joint
probability distribution:

x
f(x, y) 2 4

1 0.10 0.15
y 3 0.20 0.30

5 0.10 0.15

(a) Find the marginal distribution of X.

(b) Find the marginal distribution of Y .
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2.41 Given the joint density function

f(x, y) =

{ 6−x−y
8

, 0 < x < 2, 2 < y < 4,

0, elsewhere,

find P (1 < Y < 3 | X = 1).

2.42 A coin is tossed twice. Let Z denote the number
of heads on the first toss and W the total number of
heads on the 2 tosses. If the coin is unbalanced and a
head has a 40% chance of occurring, find

(a) the joint probability distribution of W and Z;

(b) the marginal distribution of W ;

(c) the marginal distribution of Z;

(d) the probability that at least 1 head occurs.

2.43 Determine whether the two random variables of
Exercise 2.40 are dependent or independent.

2.44 Determine whether the two random variables of
Exercise 2.39 are dependent or independent.

2.45 Let X, Y , and Z have the joint probability den-
sity function

f(x, y, z) =

{
kxy2z, 0 < x, y < 1, 0 < z < 2,

0, elsewhere.

(a) Find k.

(b) Find P (X < 1
4
, Y > 1

2
, 1 < Z < 2).

2.46 The joint density function of the random vari-
ables X and Y is

f(x, y) =

{
6x, 0 < x < 1, 0 < y < 1− x,

0, elsewhere.

(a) Show that X and Y are not independent.

(b) Find P (X > 0.3 | Y = 0.5).

2.47 Determine whether the two random variables of
Exercise 2.35 are dependent or independent.

2.48 The joint probability density function of the ran-
dom variables X, Y , and Z is

f(x, y, z) =

{
4xyz2

9
, 0 < x, y < 1, 0 < z < 3,

0, elsewhere.

Find

(a) the joint marginal density function of Y and Z;

(b) the marginal density of Y ;

(c) P ( 1
4
< X < 1

2
, Y > 1

3
, 1 < Z < 2);

(d) P (0 < X < 1
2
| Y = 1

4
, Z = 2).

2.49 Determine whether the two random variables of
Exercise 2.36 are dependent or independent.

2.5 Mean of a Random Variable

We can refer to the population mean of the random variable X or the mean
of the probability distribution of X and write it as μx, or simply as μ when it
is clear to which random variable we refer. It is also common among statisticians
to refer to this mean as the mathematical expectation, or the expected value of
the random variable X, and denote it as E(X).

Assuming that one fair coin was tossed twice, we find that the sample space for
our experiment is

S = {HH,HT, TH, TT}.

Denote by X the number of heads. Since the 4 sample points are all equally likely,
it follows that

P (X = 0) = P (TT ) =
1

4
, P (X = 1) = P (TH) + P (HT ) =

1

2
,

and

P (X = 2) = P (HH) =
1

4
,
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where a typical element, say TH, indicates that the first toss resulted in a tail
followed by a head on the second toss. Now, these probabilities are just the relative
frequencies for the given events in the long run. Therefore,

μ = E(X) = (0)

(
1

4

)
+ (1)

(
1

2

)
+ (2)

(
1

4

)
= 1.

This result means that a person who tosses 2 coins over and over again will, on the
average, get 1 head per toss.

Definition 2.14: Let X be a random variable with probability distribution f(x). The mean, or
expected value, of X is

μ = E(X) =
∑
x

xf(x)

if X is discrete, and

μ = E(X) =

∫ ∞

−∞
xf(x) dx

if X is continuous.

Example 2.23: A lot containing 7 components is sampled by a quality inspector; the lot contains
4 good components and 3 defective components. A sample of 3 is taken by the
inspector. Find the expected value of the number of good components in this
sample.

Solution : Let X represent the number of good components in the sample. The probability
distribution of X is

f(x) =

(
4
x

)(
3

3−x

)(
7
3

) , x = 0, 1, 2, 3.

Simple calculations yield f(0) = 1/35, f(1) = 12/35, f(2) = 18/35, and f(3) =
4/35. Therefore,

μ = E(X) = (0)

(
1

35

)
+ (1)

(
12

35

)
+ (2)

(
18

35

)
+ (3)

(
4

35

)
=

12

7
= 1.7.

Thus, if a sample of size 3 is selected at random over and over again from a lot
of 4 good components and 3 defective components, it will contain, on average, 1.7
good components.

Example 2.24: A salesperson for a medical device company has two appointments on a given
day. At the first appointment, he believes that he has a 70% chance to make the
deal, from which he can earn $1000 commission if successful. On the other hand,
he thinks he only has a 40% chance to make the deal at the second appointment,
from which, if successful, he can make $1500. What is his expected commission
based on his own probability belief? Assume that the appointment results are
independent of each other.
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Solution : First, we know that the salesperson, for the two appointments, can have 4 possible
commission totals: $0, $1000, $1500, and $2500. We then need to calculate their
associated probabilities. By independence, we obtain

f($0) = (1− 0.7)(1− 0.4) = 0.18, f($2500) = (0.7)(0.4) = 0.28,

f($1000) = (0.7)(1− 0.4) = 0.42, and f($1500) = (1− 0.7)(0.4) = 0.12.

Therefore, the expected commission for the salesperson is

E(X) = ($0)(0.18) + ($1000)(0.42) + ($1500)(0.12) + ($2500)(0.28)

= $1300.
Examples 2.23 and 2.24 are designed to allow the reader to gain some insight

into what we mean by the expected value of a random variable. In both cases the
random variables are discrete. We follow with an example involving a continuous
random variable, where an engineer is interested in the mean life of a certain
type of electronic device. This is an illustration of a time to failure problem that
occurs often in practice. The expected value of the life of a device is an important
parameter for its evaluation.

Example 2.25: Let X be the random variable that denotes the life in hours of a certain electronic
device. The probability density function is

f(x) =

{
20,000
x3 , x > 100,

0, elsewhere.

Find the expected life of this type of device.
Solution : Using Definition 2.14, we have

μ = E(X) =

∫ ∞

100

x
20, 000

x3
dx =

∫ ∞

100

20, 000

x2
dx = 200.

Therefore, we can expect this type of device to last, on average, 200 hours.
Now let us consider a new random variable g(X), which depends on X; that

is, each value of g(X) is determined by the value of X. For instance, g(X) might
be X2 or 3X − 1, and whenever X assumes the value 2, g(X) assumes the value
g(2). In particular, if X is a discrete random variable with probability distribution
f(x), for x = −1, 0, 1, 2, and g(X) = X2, then

P [g(X) = 0] = P (X = 0) = f(0),

P [g(X) = 1] = P (X = −1) + P (X = 1) = f(−1) + f(1),

P [g(X) = 4] = P (X = 2) = f(2),

and so the probability distribution of g(X) may be written

g(x) 0 1 4
P [g(X) = g(x)] f(0) f(−1) + f(1) f(2)

By the definition of the expected value of a random variable, we obtain

μg(X) = E[g(x)] = 0f(0) + 1[f(−1) + f(1)] + 4f(2)

= (−1)2f(−1) + (0)2f(0) + (1)2f(1) + (2)2f(2) =
∑
x

g(x)f(x).
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This result is generalized in Theorem 2.1 for both discrete and continuous random
variables.

Theorem 2.1: Let X be a random variable with probability distribution f(x). The expected
value of the random variable g(X) is

μg(X) = E[g(X)] =
∑
x

g(x)f(x)

if X is discrete, and

μg(X) = E[g(X)] =

∫ ∞

−∞
g(x)f(x) dx

if X is continuous.

Example 2.26: Suppose that the number of cars X that pass through a car wash between 4:00
P.M. and 5:00 P.M. on any sunny Friday has the following probability distribution:

x 4 5 6 7 8 9

P (X = x) 1
12

1
12

1
4

1
4

1
6

1
6

Let g(X) = 2X−1 represent the amount of money, in dollars, paid to the attendant
by the manager. Find the attendant’s expected earnings for this particular time
period.

Solution : By Theorem 2.1, the attendant can expect to receive

E[g(X)] = E(2X − 1) =

9∑
x=4

(2x− 1)f(x)

= (7)

(
1

12

)
+ (9)

(
1

12

)
+ (11)

(
1

4

)
+ (13)

(
1

4

)
+ (15)

(
1

6

)
+ (17)

(
1

6

)
= $12.67.

Example 2.27: Let X be a random variable with density function

f(x) =

{
x2

3 , −1 < x < 2,

0, elsewhere.

Find the expected value of g(X) = 4X + 3.
Solution : By Theorem 2.1, we have

E(4X + 3) =

∫ 2

−1

(4x+ 3)x2

3
dx =

1

3

∫ 2

−1

(4x3 + 3x2) dx = 8.

We shall now extend our concept of mathematical expectation to the case of
two random variables X and Y with joint probability distribution f(x, y).
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Definition 2.15: Let X and Y be random variables with joint probability distribution f(x, y). The
mean, or expected value, of the random variable g(X,Y ) is

μg(X,Y ) = E[g(X,Y )] =
∑
x

∑
y

g(x, y)f(x, y)

if X and Y are discrete, and

μg(X,Y ) = E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dx dy

if X and Y are continuous.

Generalization of Definition 2.15 for the calculation of mathematical expecta-
tions of functions of several random variables is straightforward.

Example 2.28: Let X and Y be the random variables with joint probability distribution indicated
in Table 2.1 on page 64. Find the expected value of g(X,Y ) = XY . The table is
reprinted here for convenience.

x Row
f(x, y) 0 1 2 Totals

0 3/28 9/28 3/28 15/28

y 1 3/14 3/14 0 3/7

2 1/28 0 0 1/28

Column Totals 5/14 15/28 3/28 1

Solution : By Definition 2.15, we write

E(XY ) =
2∑

x=0

2∑
y=0

xyf(x, y)

= (0)(0)f(0, 0) + (0)(1)f(0, 1)

+ (1)(0)f(1, 0) + (1)(1)f(1, 1) + (2)(0)f(2, 0)

= f(1, 1) =
3

14
.

Example 2.29: Find E(Y/X) for the density function

f(x, y) =

{
x(1+3y2)

4 , 0 < x < 2, 0 < y < 1,

0, elsewhere.

Solution : We have

E

(
Y

X

)
=

∫ 1

0

∫ 2

0

y(1 + 3y2)

4
dx dy =

∫ 1

0

y + 3y3

2
dy =

5

8
.
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Note that if g(X,Y ) = X in Definition 2.15, we have

E(X) =

⎧⎨⎩
∑
x

∑
y
xf(x, y) =

∑
x
xg(x) (discrete case),∫∞

−∞
∫∞
−∞ xf(x, y) dy dx =

∫∞
−∞ xg(x) dx (continuous case),

where g(x) is the marginal distribution of X. Therefore, in calculating E(X) over
a two-dimensional space, one may use either the joint probability distribution of
X and Y or the marginal distribution of X. Similarly, we define

E(Y ) =

⎧⎨⎩
∑
y

∑
x
yf(x, y) =

∑
y
yh(y) (discrete case),∫∞

−∞
∫∞
−∞ yf(x, y) dx dy =

∫∞
−∞ yh(y) dy (continuous case),

where h(y) is the marginal distribution of the random variable Y .

Exercises

2.50 The probability distribution of the discrete ran-
dom variable X is

f(x) =

(
3

x

)(
1

4

)x (
3

4

)3−x

, x = 0, 1, 2, 3.

Find the mean of X.

2.51 The probability distribution of X, the number
of imperfections per 10 meters of a synthetic fabric in
continuous rolls of uniform width, is given in Exercise
2.11 on page 60 as

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

Find the average number of imperfections per 10 me-
ters of this fabric.

2.52 A coin is biased such that a head is three times
as likely to occur as a tail. Find the expected number
of tails when this coin is tossed twice.

2.53 Find the mean of the random variable T repre-
senting the total of the three coins in Exercise 2.17 on
page 61.

2.54 In a gambling game, a woman is paid $3 if she
draws a jack or a queen and $5 if she draws a king or
an ace from an ordinary deck of 52 playing cards. If
she draws any other card, she loses. How much should
she pay to play if the game is fair?

2.55 By investing in a particular stock, a person can
make a profit in one year of $4000 with probability 0.3
or take a loss of $1000 with probability 0.7. What is
this person’s expected gain?

2.56 Suppose that an antique jewelry dealer is inter-
ested in purchasing a gold necklace for which the prob-
abilities are 0.22, 0.36, 0.28, and 0.14, respectively, that
she will be able to sell it for a profit of $250, sell it for
a profit of $150, break even, or sell it for a loss of $150.
What is her expected profit?

2.57 The density function of coded measurements of
the pitch diameter of threads of a fitting is

f(x) =

{
4

π(1+x2)
, 0 < x < 1,

0, elsewhere.

Find the expected value of X.

2.58 Two tire-quality experts examine stacks of tires
and assign a quality rating to each tire on a 3-point
scale. Let X denote the rating given by expert A and
Y denote the rating given by B. The following table
gives the joint distribution for X and Y .

y
f(x, y) 1 2 3

1 0.10 0.05 0.02
x 2 0.10 0.35 0.05

3 0.03 0.10 0.20

Find μX and μY .

2.59 The density function of the continuous random
variable X, the total number of hours, in units of 100
hours, that a family runs a vacuum cleaner over a pe-
riod of one year, is given in Exercise 2.7 on page 60



80 Chapter 2 Random Variables, Distributions, and Expectations

as

f(x) =

⎧⎨
⎩
x, 0 < x < 1,

2− x, 1 ≤ x < 2,

0, elsewhere.

Find the average number of hours per year that families
run their vacuum cleaners.

2.60 If a dealer’s profit, in units of $5000, on a new
automobile can be looked upon as a random variable
X having the density function

f(x) =

{
2(1− x), 0 < x < 1,

0, elsewhere,

find the average profit per automobile.

2.61 Assume that two random variables (X,Y ) are
uniformly distributed on a circle with radius a. Then
the joint probability density function is

f(x, y) =

{
1

πa2 , x2 + y2 ≤ a2,

0, otherwise.

Find μX , the expected value of X.

2.62 Find the proportion X of individuals who can be
expected to respond to a certain mail-order solicitation
if X has the density function

f(x) =

{
2(x+2)

5
, 0 < x < 1,

0, elsewhere.

2.63 Let X be a random variable with the following
probability distribution:

x −3 6 9
f(x) 1/6 1/2 1/3

Find μg(X), where g(X) = (2X + 1)2.

2.64 Suppose that you are inspecting a lot of 1000
light bulbs, among which 20 are defectives. You choose
two light bulbs randomly from the lot without replace-
ment. Let

X1 =

{
1, if the 1st light bulb is defective,

0, otherwise,

X2 =

{
1, if the 2nd light bulb is defective,

0, otherwise.

Find the probability that at least one light bulb chosen
is defective. [Hint: Compute P (X1 +X2 = 1).]

2.65 A large industrial firm purchases several new
word processors at the end of each year, the exact num-
ber depending on the frequency of repairs in the previ-
ous year. Suppose that the number of word processors,
X, purchased each year has the following probability
distribution:

x 0 1 2 3
f(x) 1/10 3/10 2/5 1/5

If the cost of the desired model is $1200 per unit and
at the end of the year a refund of 50X2 dollars will be
issued, how much can this firm expect to spend on new
word processors during this year?

2.66 The hospitalization period, in days, for patients
following treatment for a certain type of kidney disor-
der is a random variable Y = X + 4, where X has the
density function

f(x) =

{
32

(x+4)3
, x > 0,

0, elsewhere.

Find the average number of days that a person is hos-
pitalized following treatment for this disorder.

2.67 Suppose that X and Y have the following joint
probability function:

x
f(x, y) 2 4

1 0.10 0.15
y 3 0.20 0.30

5 0.10 0.15

(a) Find the expected value of g(X,Y ) = XY 2.

(b) Find μX and μY .

2.68 Referring to the random variables whose joint
probability distribution is given in Exercise 2.31 on
page 72,

(a) find E(X2Y − 2XY );

(b) find μX − μY .

2.69 In Exercise 2.19 on page 61, a density function
is given for the time to failure of an important compo-
nent of a DVD player. Find the mean number of hours
to failure of the component and thus the DVD player.

2.70 Let X and Y be random variables with joint
density function

f(x, y) =

{
4xy, 0 < x, y < 1,

0, elsewhere.

Find the expected value of Z =
√
X2 + Y 2.



2.6 Variance and Covariance of Random Variables 81

2.71 Exercise 2.21 on page 61 dealt with an impor-
tant particle size distribution characterized by

f(x) =

{
3x−4, x > 1,

0, elsewhere.

(a) Plot the density function.

(b) Give the mean particle size.

2.72 Consider the information in Exercise 2.20 on
page 61. The problem deals with the weight in ounces
of the product in a cereal box, with

f(x) =

{
2
5
, 23.75 ≤ x ≤ 26.25,

0, elsewhere.

(a) Plot the density function.

(b) Compute the expected value, or mean weight, in
ounces.

(c) Are you surprised at your answer in (b)? Explain
why or why not.

2.73 Consider Exercise 2.24 on page 61.

(a) What is the mean proportion of the budget allo-
cated to environmental and pollution control?

(b) What is the probability that a company selected
at random will have allocated to environmental
and pollution control a proportion that exceeds the
population mean given in (a)?

2.74 In Exercise 2.23 on page 61, the distribution of
times before a major repair of a washing machine was
given as

f(y) =

{
1
4
e−y/4, y ≥ 0,

0, elsewhere.

What is the population mean of the times to repair?

2.75 In Exercise 2.11 on page 60, the distribution of
the number of imperfections per 10 meters of synthetic
fabric is given by

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

(a) Plot the probability function.

(b) Find the expected number of imperfections,
E(X) = μ.

(c) Find E(X2).

2.6 Variance and Covariance of Random Variables

The mean, or expected value, of a random variable X is of special importance in
statistics because it describes where the probability distribution is centered. By
itself, however, the mean does not give an adequate description of the shape of the
distribution. We also need to characterize the variability in the distribution. In
Figure 2.7, we have the histograms of two discrete probability distributions that
have the same mean, μ = 2, but differ considerably in variability, or the dispersion
of their observations about the mean.

1 2 3 0 1 2 3 4
x

(a) (b)

x

Figure 2.7: Distributions with equal means and unequal dispersions.
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The most important measure of variability of a random variable X is obtained
by applying Theorem 2.1 with g(X) = (X − μ)2. The quantity is referred to as
the variance of the random variable X or the variance of the probability
distribution of X and is denoted by Var(X) or the symbol σ2

X , or simply by σ2

when it is clear to which random variable we refer.

Definition 2.16: Let X be a random variable with probability distribution f(x) and mean μ. The
variance of X is

σ2 = E[(X − μ)2] =
∑
x

(x− μ)2f(x), if X is discrete, and

σ2 = E[(X − μ)2] =

∫ ∞

−∞
(x− μ)2f(x) dx, if X is continuous.

The positive square root of the variance, σ, is the standard deviation of X.

The quantity x−μ in Definition 2.16 is called the deviation of an observation
from its mean. Since the deviations are squared and then averaged, σ2 will be much
smaller for a set of x values that are close to μ than it will be for a set of values
that vary considerably from μ.

Example 2.30: Let the random variable X represent the number of automobiles that are used for
official business purposes on any given workday. The probability distribution for
company A [Figure 2.7(a)] is

x 1 2 3
f(x) 0.3 0.4 0.3

and that for company B [Figure 2.7(b)] is

x 0 1 2 3 4
f(x) 0.2 0.1 0.3 0.3 0.1

Show that the variance of the probability distribution for company B is greater
than that for company A.

Solution : For company A, we find that

μA = E(X) = (1)(0.3) + (2)(0.4) + (3)(0.3) = 2.0,

and then

σ2
A =

3∑
x=1

(x− 2)2 = (1− 2)2(0.3) + (2− 2)2(0.4) + (3− 2)2(0.3) = 0.6.

For company B, we have

μB = E(X) = (0)(0.2) + (1)(0.1) + (2)(0.3) + (3)(0.3) + (4)(0.1) = 2.0,

and then

σ2
B =

4∑
x=0

(x− 2)2f(x)

= (0− 2)2(0.2) + (1− 2)2(0.1) + (2− 2)2(0.3)

+ (3− 2)2(0.3) + (4− 2)2(0.1) = 1.6.
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Clearly, the variance of the number of automobiles that are used for official business
purposes is greater for company B than for company A.

An alternative and preferred formula for finding σ2, which often simplifies the
calculations, is stated in the following theorem and its proof is left to the reader.

Theorem 2.2: The variance of a random variable X is

σ2 = E(X2)− μ2.

Example 2.31: Let the random variable X represent the number of defective parts for a machine
when 3 parts are sampled from a production line and tested. The following is the
probability distribution of X.

x 0 1 2 3
f(x) 0.51 0.38 0.10 0.01

Using Theorem 2.2, calculate σ2.
Solution : First, we compute

μ = (0)(0.51) + (1)(0.38) + (2)(0.10) + (3)(0.01) = 0.61.

Now,

E(X2) = (0)(0.51) + (1)(0.38) + (4)(0.10) + (9)(0.01) = 0.87.

Therefore,

σ2 = 0.87− (0.61)2 = 0.4979.

Example 2.32: The weekly demand for bottled water, in thousands of liters, from a local chain of
efficiency stores is a continuous random variable X having the probability density

f(x) =

{
2(x− 1), 1 < x < 2,

0, elsewhere.

Find the mean and variance of X.
Solution : Calculating E(X) and E(X2), we have

μ = E(X) = 2

∫ 2

1

x(x− 1) dx =
5

3

and

E(X2) = 2

∫ 2

1

x2(x− 1) dx =
17

6
.

Therefore,

σ2 =
17

6
−
(
5

3

)2

=
1

18
.

At this point, the variance or standard deviation has meaning only when we
compare two or more distributions that have the same units of measurement.



84 Chapter 2 Random Variables, Distributions, and Expectations

Therefore, we could compare the variances of the distributions of contents, mea-
sured in liters, of bottles of orange juice from two companies, and the larger value
would indicate the company whose product was more variable or less uniform. It
would not be meaningful to compare the variance of a distribution of heights to
the variance of a distribution of aptitude scores.

We shall now extend our concept of the variance of a random variable X to
include random variables related to X. For the random variable g(X), the variance
is denoted by σ2

g(X) and is calculated by means of the following theorem.

Theorem 2.3: Let X be a random variable with probability distribution f(x). The variance of
the random variable g(X) is

σ2
g(X) = E{[g(X)− μg(X)]

2} =
∑
x

[g(x)− μg(X)]
2f(x)

if X is discrete, and

σ2
g(X) = E{[g(X)− μg(X)]

2} =

∫ ∞

−∞
[g(x)− μg(X)]

2f(x) dx

if X is continuous.

Proof : Since g(X) is itself a random variable with mean μg(X) and probability distribution
f(x), as indicated in Theorem 2.1, the result follows directly from Definition 2.16
that

σ2
g(X) = E{[g(X)− μg(X)]}.

Now, applying Theorem 2.1 again to the random variable [g(X)−μg(X)]
2 completes

the proof.

Example 2.33: Calculate the variance of g(X) = 2X + 3, where X is a random variable with
probability distribution

x 0 1 2 3

f(x) 1
4

1
8

1
2

1
8

Solution : First, we find the mean of the random variable 2X+3. According to Theorem 2.1,

μ2X+3 = E(2X + 3) =

3∑
x=0

(2x+ 3)f(x) = 6.

Now, using Theorem 2.3, we have

σ2
2X+3 = E{[(2X + 3)− μ2x+3]

2} = E[(2X + 3− 6)2]

= E(4X2 − 12X + 9) =
3∑

x=0

(4x2 − 12x+ 9)f(x) = 4.

Example 2.34: Let X be a random variable having the density function given in Example 2.27
on page 77. Find the variance of the random variable g(X) = 4X + 3.
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Solution : In Example 2.27, we found that μ4X+3 = 8. Now, using Theorem 2.3,

σ2
4X+3 = E{[(4X + 3)− 8]2} = E[(4X − 5)2]

=

∫ 2

−1

(4x− 5)2
x2

3
dx =

1

3

∫ 2

−1

(16x4 − 40x3 + 25x2) dx =
51

5
.

If g(X,Y ) = (X−μX)(Y −μY ), where μX = E(X) and μY = E(Y ), Definition
2.15 yields an expected value called the covariance of X and Y , which we denote
by σXY or Cov(X,Y ).

Definition 2.17: Let X and Y be random variables with joint probability distribution f(x, y). The
covariance of X and Y is

σXY = E[(X − μX)(Y − μY )] =
∑
x

∑
y

(x− μX)(y − μy)f(x, y)

if X and Y are discrete, and

σXY = E[(X − μX)(Y − μY )] =

∫ ∞

−∞

∫ ∞

−∞
(x− μX)(y − μy)f(x, y) dx dy

if X and Y are continuous.

The covariance between two random variables is a measure of the nature of the
association between the two. If large values of X often result in large values of Y
or small values of X result in small values of Y , positive X−μX will often result in
positive Y −μY and negative X−μX will often result in negative Y −μY . Thus, the
product (X − μX)(Y − μY ) will tend to be positive. On the other hand, if large X
values often result in small Y values, the product (X−μX)(Y −μY ) will tend to be
negative. The sign of the covariance indicates whether the relationship between two
dependent random variables is positive or negative. WhenX and Y are statistically
independent, it can be shown that the covariance is zero (see Corollary 2.5). The
converse, however, is not generally true. Two variables may have zero covariance
and still not be statistically independent. Note that the covariance only describes
the linear relationship between two random variables. Therefore, if a covariance
between X and Y is zero, X and Y may have a nonlinear relationship, which means
that they are not necessarily independent.

The alternative and preferred formula for σXY is stated by Theorem 2.4 and
the proof of the theorem is left to the reader.

Theorem 2.4: The covariance of two random variables X and Y with means μX and μY , respec-
tively, is given by

σXY = E(XY )− μXμY .

Example 2.35: Example 2.14 on page 63 describes a situation involving the number of blue pens
X and the number of red pens Y selected from a box. Two pens are selected at
random from a box, and the following is the joint probability distribution:
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x
f(x, y) 0 1 2 h(y)

0 3/28 9/28 3/28 15/28

y 1 3/14 3/14 0 3/7

2 1/28 0 0 1/28

g(x) 5/14 15/28 3/28 1

Find the covariance of X and Y .
Solution : From Example 2.28, we see that E(XY ) = 3/14. Now

μX =

2∑
x=0

xg(x) = (0)

(
5

14

)
+ (1)

(
15

28

)
+ (2)

(
3

28

)
=

3

4
,

and

μY =
2∑

y=0

yh(y) = (0)

(
15

28

)
+ (1)

(
3

7

)
+ (2)

(
1

28

)
=

1

2
.

Therefore,

σXY = E(XY )− μXμY =
3

14
−
(
3

4

)(
1

2

)
= − 9

56
.

Example 2.36: The fraction X of male runners and the fraction Y of female runners who compete
in marathon races are described by the joint density function

f(x, y) =

{
8xy, 0 ≤ y ≤ x ≤ 1,

0, elsewhere.

Find the covariance of X and Y .
Solution : We first compute the marginal density functions. They are

g(x) =

{
4x3, 0 ≤ x ≤ 1,

0, elsewhere,

and

h(y) =

{
4y(1− y2), 0 ≤ y ≤ 1,

0, elsewhere.

From these marginal density functions, we compute

μX = E(X) =

∫ 1

0

4x4 dx =
4

5
and μY =

∫ 1

0

4y2(1− y2) dy =
8

15
.

From the joint density function given above, we have

E(XY ) =

∫ 1

0

∫ 1

y

8x2y2 dx dy =
4

9
.
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Then

σXY = E(XY )− μXμY =
4

9
−
(
4

5

)(
8

15

)
=

4

225
.

Although the covariance between two random variables does provide informa-
tion regarding the nature of the linear relationship, the magnitude of σXY does
not indicate anything regarding the strength of the relationship, since σXY is not
scale-free. Its magnitude will depend on the units used to measure both X and Y .
There is a scale-free version of the covariance called the correlation coefficient
that is used widely in statistics.

Definition 2.18: Let X and Y be random variables with covariance σXY and standard deviations
σX and σY , respectively. The correlation coefficient of X and Y is

ρXY =
σXY

σXσY

.

It should be clear to the reader that ρXY is free of the units of X and Y . The
correlation coefficient satisfies the inequality −1 ≤ ρXY ≤ 1. It assumes a value of
zero when σXY = 0. Where there is an exact linear dependency, say Y ≡ a+ bX,
ρXY = 1 if b > 0 and ρXY = −1 if b < 0. (See Exercise 2.86.) The correlation
coefficient is the subject of more discussion in Chapter 7, where we deal with linear
regression.

Example 2.37: Find the correlation coefficient between X and Y in Example 2.35.
Solution : Since

E(X2) = (02)

(
5

14

)
+ (12)

(
15

28

)
+ (22)

(
3

28

)
=

27

28

and

E(Y 2) = (02)

(
15

28

)
+ (12)

(
3

7

)
+ (22)

(
1

28

)
=

4

7
,

we obtain

σ2
X =

27

28
−
(
3

4

)2

=
45

112
and σ2

Y =
4

7
−
(
1

2

)2

=
9

28
.

Therefore, the correlation coefficient between X and Y is

ρXY =
σXY

σXσY
=

−9/56√
(45/112)(9/28)

= − 1√
5
.

Example 2.38: Find the correlation coefficient of X and Y in Example 2.36.
Solution : Because

E(X2) =

∫ 1

0

4x5 dx =
2

3
and E(Y 2) =

∫ 1

0

4y3(1− y2) dy = 1− 2

3
=

1

3
,

we conclude that

σ2
X =

2

3
−
(
4

5

)2

=
2

75
and σ2

Y =
1

3
−
(

8

15

)2

=
11

225
.
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Hence,

ρXY =
4/225√

(2/75)(11/225)
=

4√
66

.

Note that although the covariance in Example 2.37 is larger in magnitude (dis-
regarding the sign) than that in Example 2.38, the relationship of the magnitudes
of the correlation coefficients in these two examples is just the reverse. This is
evidence that we cannot look at the magnitude of the covariance to decide on how
strong the relationship is.

Exercises

2.76 Use Definition 2.16 on page 82 to find the vari-
ance of the random variable X of Exercise 2.55 on page
79.

2.77 The random variable X, representing the num-
ber of errors per 100 lines of software code, has the
following probability distribution:

x 2 3 4 5 6
f(x) 0.01 0.25 0.4 0.3 0.04

Using Theorem 2.2 on page 83, find the variance of X.

2.78 Suppose that the probabilities are 0.4, 0.3, 0.2,
and 0.1, respectively, that 0, 1, 2, or 3 power failures
will strike a certain subdivision in any given year. Find
the mean and variance of the random variable X repre-
senting the number of power failures striking this sub-
division.

2.79 A dealer’s profit, in units of $5000, on a new
automobile is a random variable X having the density
function given in Exercise 2.60 on page 80. Find the
variance of X.

2.80 The proportion of people who respond to a cer-
tain mail-order solicitation is a random variable X hav-
ing the density function given in Exercise 2.62 on page
80. Find the variance of X.

2.81 The total number of hours, in units of 100 hours,
that a family runs a vacuum cleaner over a period of
one year is a random variable X having the density
function given in Exercise 2.59 on page 79. Find the
variance of X.

2.82 Referring to Exercise 2.62 on page 80, find σ2
g(X)

for the function g(X) = 3X2 + 4.

2.83 The length of time, in minutes, for an airplane
to obtain clearance for takeoff at a certain airport is a
random variable Y = 3X− 2, where X has the density
function

f(x) =

{
1
4
e−x/4, x > 0

0, elsewhere.

Find the mean and variance of the random variable Y .

2.84 Find the covariance of the random variables X
and Y of Exercise 2.36 on page 73.

2.85 For the random variables X and Y whose joint
density function is given in Exercise 2.32 on page 72,
find the covariance.

2.86 Given a random variable X, with standard de-
viation σX , and a random variable Y = a + bX, show
that if b < 0, the correlation coefficient ρXY = −1, and
if b > 0, ρXY = 1.

2.87 Consider the situation in Exercise 2.75 on page
81. The distribution of the number of imperfections
per 10 meters of synthetic fabric is given by

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

Find the variance and standard deviation of the num-
ber of imperfections.

2.88 For a laboratory assignment, if the equipment is
working, the density function of the observed outcome
X is

f(x) =

{
2(1− x), 0 < x < 1,

0, otherwise.

Find the variance and standard deviation of X.

2.89 For the random variables X and Y in Exercise
2.31 on page 72, determine the correlation coefficient
between X and Y .

2.90 Random variables X and Y follow a joint distri-
bution

f(x, y) =

{
2, 0 < x ≤ y < 1,

0, otherwise.

Determine the correlation coefficient between X and
Y .
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2.7 Means and Variances of Linear Combinations of
Random Variables

We now develop some useful properties that will simplify the calculations of means
and variances of random variables that appear in later chapters. These properties
will permit us to deal with expectations in terms of other parameters that are
either known or easily computed. All the results that we present here are valid
for both discrete and continuous random variables. Proofs are given only for the
continuous case. We begin with a theorem and two corollaries that should be,
intuitively, reasonable to the reader.

Theorem 2.5: If a and b are constants, then

E(aX + b) = aE(X) + b.

Proof : By the definition of expected value,

E(aX + b) =

∫ ∞

−∞
(ax+ b)f(x) dx = a

∫ ∞

−∞
xf(x) dx+ b

∫ ∞

−∞
f(x) dx.

The first integral on the right is E(X) and the second integral equals 1. Therefore,
we have

E(aX + b) = aE(X) + b.

Corollary 2.1: Setting a = 0, we see that E(b) = b.

Corollary 2.2: Setting b = 0, we see that E(aX) = aE(X).

Example 2.39: Applying Theorem 2.5 to the discrete random variable h(X) = 2X − 1, rework
Example 2.26 on page 77.

Solution : According to Theorem 2.5, we can write

E(2X − 1) = 2E(X)− 1.

Now

μ = E(X) =

9∑
x=4

xf(x)

= (4)

(
1

12

)
+ (5)

(
1

12

)
+ (6)

(
1

4

)
+ (7)

(
1

4

)
+ (8)

(
1

6

)
+ (9)

(
1

6

)
=

41

6
.

Therefore,

μ2X−1 = (2)

(
41

6

)
− 1 = $12.67,

as before.
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For the addition or subtraction of two functions of the random variable X, we
have the following theorem to compute its mean. The proof of the theorem is left
to the reader.

Theorem 2.6: The expected value of the sum or difference of two or more functions of a random
variable X is the sum or difference of the expected values of the functions. That
is,

E[g(X)± h(X)] = E[g(X)]± E[h(X)].

Example 2.40: Let X be a random variable with probability distribution as follows:
x 0 1 2 3

f(x) 1
3

1
2 0 1

6

Find the expected value of Y = (X − 1)2.
Solution : Applying Theorem 2.6 to the function Y = (X − 1)2, we can write

E[(X − 1)2] = E(X2 − 2X + 1) = E(X2)− 2E(X) + E(1).

From Corollary 2.1, E(1) = 1, and by direct computation,

E(X) = (0)

(
1

3

)
+ (1)

(
1

2

)
+ (2)(0) + (3)

(
1

6

)
= 1 and

E(X2) = (0)

(
1

3

)
+ (1)

(
1

2

)
+ (4)(0) + (9)

(
1

6

)
= 2.

Hence,

E[(X − 1)2] = 2− (2)(1) + 1 = 1.

Example 2.41: The weekly demand for a certain drink, in thousands of liters, at a chain of
convenience stores is a continuous random variable g(X) = X2 +X − 2, where X
has the density function

f(x) =

{
2(x− 1), 1 < x < 2,

0, elsewhere.

Find the expected value of the weekly demand for the drink.
Solution : By Theorem 2.6, we write

E(X2 +X − 2) = E(X2) + E(X)− E(2).

From Corollary 2.1, E(2) = 2, and by direct integration,

E(X) =

∫ 2

1

2x(x− 1) dx =
5

3
and E(X2) =

∫ 2

1

2x2(x− 1) dx =
17

6
.

Now

E(X2 +X − 2) =
17

6
+

5

3
− 2 =

5

2
,
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so the average weekly demand for the drink from this chain of efficiency stores is
2500 liters.

Suppose that we have two random variables X and Y with joint probability
distribution f(x, y). Two additional properties that will be very useful in succeed-
ing chapters involve the expected values of the sum, difference, and product of
these two random variables. First, however, let us give a theorem on the expected
value of the sum or difference of functions of the given variables. This, of course, is
merely an extension of Theorem 2.6. The proof follows from the use of Definition
2.15 and will be left to the reader.

Theorem 2.7: The expected value of the sum or difference of two or more functions of the
random variables X and Y is the sum or difference of the expected values of the
functions. That is,

E[g(X,Y )± h(X,Y )] = E[g(X,Y )]± E[h(X,Y )].

Corollary 2.3: Setting g(X,Y ) = g(X) and h(X,Y ) = h(Y ), we see that

E[g(X)± h(Y )] = E[g(X)]± E[h(Y )].

Corollary 2.4: Setting g(X,Y ) = X and h(X,Y ) = Y , we see that

E[X ± Y ] = E[X]± E[Y ].

If X represents the daily production of some item from machine A and Y the
daily production of the same kind of item from machine B, then X +Y represents
the total number of items produced daily by both machines. Corollary 2.4 states
that the average daily production for both machines is equal to the sum of the
average daily production of each machine.

Theorem 2.8: Let X and Y be two independent random variables. Then

E(XY ) = E(X)E(Y ).

Proof : By Definition 2.15,

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyf(x, y) dx dy.

Since X and Y are independent, we may write

f(x, y) = g(x)h(y),

where g(x) and h(y) are the marginal distributions ofX and Y , respectively. Hence,

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyg(x)h(y) dx dy =

∫ ∞

−∞
xg(x) dx

∫ ∞

−∞
yh(y) dy

= E(X)E(Y ).
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Corollary 2.5: Let X and Y be two independent random variables. Then σXY = 0.

Proof : The proof can be carried out using Theorems 2.4 and 2.8, and Definition 2.14.

Example 2.42: It is known that the ratio of gallium to arsenide does not affect the functioning
of gallium-arsenide wafers, which are the main components of some microchips.
Let X denote the ratio of gallium to arsenide and Y denote the functional wafers
retrieved during a 1-hour period. X and Y are independent random variables with
the joint density function

f(x, y) =

{
x(1+3y2)

4 , 0 < x < 2, 0 < y < 1,

0, elsewhere.

Show that E(XY ) = E(X)E(Y ), as Theorem 2.8 suggests.
Solution : By definition,

E(XY ) =

∫ 1

0

∫ 2

0

x2y(1 + 3y2)

4
dx dy =

5

6
, E(X) =

4

3
, and E(Y ) =

5

8
.

Hence,

E(X)E(Y ) =

(
4

3

)(
5

8

)
=

5

6
= E(XY ).

We conclude this section by proving one theorem and presenting several corol-
laries that are useful for calculating variances or standard deviations.

Theorem 2.9: If X and Y are random variables with joint probability distribution f(x, y) and
a, b, and c are constants, then

σ2
aX+bY+c = a2σ2

X + b2σ2
Y + 2abσXY .

Proof : By definition, σ2
aX+bY+c = E{[(aX + bY + c)− μaX+bY+c]

2}. Now

μaX+bY+c = E(aX + bY + c) = aE(X) + bE(Y ) + c = aμX + bμY + c,

by using Corollary 2.4 followed by Corollary 2.2. Therefore,

σ2
aX+bY+c = E{[a(X − μX) + b(Y − μY )]

2}
= a2E[(X − μX)

2] + b2E[(Y − μY )
2] + 2abE[(X − μX)(Y − μY )]

= a2σ2
X + b2σ2

Y + 2abσXY .

Using Theorem 2.9, we have the following corollaries.
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Corollary 2.6: Setting b = 0, we see that

σ2
aX+c = a2σ2

X = a2σ2.

Corollary 2.7: Setting a = 1 and b = 0, we see that

σ2
X+c = σ2

X = σ2.

Corollary 2.8: Setting b = 0 and c = 0, we see that

σ2
aX = a2σ2

X = a2σ2.

Corollaries 2.6 and 2.7 state that the variance is unchanged if a constant is
added to or subtracted from a random variable. The addition or subtraction of
a constant simply shifts the values of X to the right or to the left but does not
change their variability. However, if a random variable is multiplied or divided by
a constant, then Corollaries 2.6 and 2.8 state that the variance is multiplied or
divided by the square of the constant.

Corollary 2.9: If X and Y are independent random variables, then

σ2
aX+bY = a2σ2

X + b2σ2
Y .

The result stated in Corollary 2.9 is obtained from Theorem 2.9 by invoking
Corollary 2.5.

Corollary 2.10: If X and Y are independent random variables, then

σ2
aX−bY = a2σ2

X + b2σ2
Y .

Corollary 2.10 follows when b in Corollary 2.9 is replaced by −b. Generalizing
to a linear combination of n independent random variables, we have Corollary 2.11.

Corollary 2.11: If X1, X2, . . . , Xn are independent random variables, then

σ2
a1X1±a2X2±···±anXn

= a21σ
2
X1

+ a22σ
2
X2

+ · · ·+ a2nσ
2
Xn

.

Example 2.43: If X and Y are random variables with variances σ2
X = 2 and σ2

Y = 4 and covariance
σXY = −2, find the variance of the random variable Z = 3X − 4Y + 8.

Solution :
σ2
Z = σ2

3X−4Y+8 = σ2
3X−4Y (by Corollary 2.6)

= 9σ2
X + 16σ2

Y − 24σXY (by Theorem 2.9)

= (9)(2) + (16)(4)− (24)(−2) = 130.
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Example 2.44: Let X and Y denote the amounts of two different types of impurities in a batch
of a certain chemical product. Suppose that X and Y are independent random
variables with variances σ2

X = 2 and σ2
Y = 3. Find the variance of the random

variable Z = 3X − 2Y + 5.
Solution :

σ2
Z = σ2

3X−2Y+5 = σ2
3X−2Y (by Corollary 2.6)

= 9σ2
x + 4σ2

y (by Corollary 2.10)

= (9)(2) + (4)(3) = 30.

Exercises

2.91 Suppose that a grocery store purchases 5 car-
tons of skim milk at the wholesale price of $1.20 per
carton and retails the milk at $1.65 per carton. After
the expiration date, the unsold milk is removed from
the shelf and the grocer receives a credit from the dis-
tributor equal to three-fourths of the wholesale price.
If the probability distribution of the random variable
X, the number of cartons that are sold from this lot,
is

x 0 1 2 3 4 5

f(x) 1
15

2
15

2
15

3
15

4
15

3
15

find the expected profit.

2.92 Repeat Exercise 2.83 on page 88 by applying
Theorem 2.5 and Corollary 2.6.

2.93 If a random variable X is defined such that

E[(X − 1)2] = 10 and E[(X − 2)2] = 6,

find μ and σ2.

2.94 The total time, measured in units of 100 hours,
that a teenager runs her hair dryer over a period of one
year is a continuous random variable X that has the
density function

f(x) =

⎧⎨
⎩
x, 0 < x < 1,

2− x, 1 ≤ x < 2,

0, elsewhere.

Use Theorem 2.6 to evaluate the mean of the random
variable Y = 60X2 + 39X, where Y is equal to the
number of kilowatt hours expended annually.

2.95 Use Theorem 2.7 to evaluate E(2XY 2 − X2Y )
for the joint probability distribution shown in Table
2.1 on page 64.

2.96 If X and Y are independent random variables
with variances σ2

X = 5 and σ2
Y = 3, find the variance

of the random variable Z = −2X + 4Y − 3.

2.97 Repeat Exercise 2.96 if X and Y are not inde-
pendent and σXY = 1.

2.98 Suppose that X and Y are independent random
variables with probability densities and

g(x) =

{
8
x3 , x > 2,

0, elsewhere,

and

h(y) =

{
2y, 0 < y < 1,

0, elsewhere.

Find the expected value of Z = XY .

2.99 Consider Review Exercise 2.117 on page 97. The
random variables X and Y represent the number of ve-
hicles that arrive at two separate street corners during
a certain 2-minute period in the day. The joint distri-
bution is

f(x, y) =

(
1

4(x+y)

)(
9

16

)
,

for x = 0, 1, 2, . . . and y = 0, 1, 2, . . . .

(a) Give E(X), E(Y ), Var(X), and Var(Y ).

(b) Consider Z = X + Y , the sum of the two. Find
E(Z) and Var(Z).

2.100 Consider Review Exercise 2.106 on page 95.
There are two service lines. The random variables X
and Y are the proportions of time that line 1 and line
2 are in use, respectively. The joint probability density
function for (X,Y ) is given by

f(x, y) =

{
3
2
(x2 + y2), 0 ≤ x, y ≤ 1,

0, elsewhere.

(a) Determine whether or not X and Y are indepen-
dent.
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(b) It is of interest to know something about the pro-
portion of Z = X + Y , the sum of the two propor-
tions. Find E(X + Y ). Also find E(XY ).

(c) Find Var(X), Var(Y ), and Cov(X,Y ).

(d) Find Var(X + Y ).

2.101 The length of time Y , in minutes, required to
generate a human reflex to tear gas has the density
function

f(y) =

{
1
4
e−y/4, 0 ≤ y < ∞,

0, elsewhere.

(a) What is the mean time to reflex?

(b) Find E(Y 2) and Var(Y ).

2.102 A manufacturing company has developed a
machine for cleaning carpet that is fuel-efficient be-
cause it delivers carpet cleaner so rapidly. Of inter-
est is a random variable Y , the amount in gallons per
minute delivered. It is known that the density function
is given by

f(y) =

{
1, 7 ≤ y ≤ 8,

0, elsewhere.

(a) Sketch the density function.

(b) Give E(Y ), E(Y 2), and Var(Y ).

Review Exercises

2.103 A tobacco company produces blends of to-
bacco, with each blend containing various proportions
of Turkish, domestic, and other tobaccos. The propor-
tions of Turkish and domestic in a blend are random
variables with joint density function (X = Turkish and
Y = domestic)

f(x, y) =

{
24xy, 0 ≤ x, y ≤ 1, x+ y ≤ 1,

0, elsewhere.

(a) Find the probability that in a given box the Turkish
tobacco accounts for over half the blend.

(b) Find the marginal density function for the propor-
tion of the domestic tobacco.

(c) Find the probability that the proportion of Turk-
ish tobacco is less than 1/8 if it is known that the
blend contains 3/4 domestic tobacco.

2.104 An insurance company offers its policyholders
a number of different premium payment options. For a
randomly selected policyholder, let X be the number of
months between successive payments. The cumulative
distribution function of X is

F (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if x < 1,

0.4, if 1 ≤ x < 3,

0.6, if 3 ≤ x < 5,

0.8, if 5 ≤ x < 7,

1.0, if x ≥ 7.

(a) What is the probability mass function of X?

(b) Compute P (4 < X ≤ 7).

2.105 Two electronic components of a missile system
work in harmony for the success of the total system.

Let X and Y denote the life in hours of the two com-
ponents. The joint density of X and Y is

f(x, y) =

{
ye−y(1+x), x, y ≥ 0,

0, elsewhere.

(a) Give the marginal density functions for both ran-
dom variables.

(b) What is the probability that the lives of both com-
ponents will exceed 2 hours?

2.106 A service facility operates with two service
lines. On a randomly selected day, let X be the pro-
portion of time that the first line is in use whereas Y
is the proportion of time that the second line is in use.
Suppose that the joint probability density function for
(X,Y ) is

f(x, y) =

{
3
2
(x2 + y2), 0 ≤ x, y ≤ 1,

0, elsewhere.

(a) Compute the probability that neither line is busy
more than half the time.

(b) Find the probability that the first line is busy more
than 75% of the time.

2.107 Let the number of phone calls received by a
switchboard during a 5-minute interval be a random
variable X with probability function

f(x) =
e−22x

x!
, for x = 0, 1, 2, . . . .

(a) Determine the probability that X equals 0, 1, 2, 3,
4, 5, and 6.

(b) Graph the probability mass function for these val-
ues of x.
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(c) Determine the cumulative distribution function for
these values of X.

2.108 An industrial process manufactures items that
can be classified as either defective or not defective.
The probability that an item is defective is 0.1. An
experiment is conducted in which 5 items are drawn
randomly from the process. Let the random variable X
be the number of defectives in this sample of 5. What
is the probability mass function of X?

2.109 The life span in hours of an electrical compo-
nent is a random variable with cumulative distribution
function

F (x) =

{
1− e−

x
50 , x > 0,

0, eleswhere.

(a) Determine its probability density function.

(b) Determine the probability that the life span of such
a component will exceed 70 hours.

2.110 Pairs of pants are being produced by a particu-
lar outlet facility. The pants are checked by a group of
10 workers. The workers inspect pairs of pants taken
randomly from the production line. Each inspector is
assigned a number from 1 through 10. A buyer selects
a pair of pants for purchase. Let the random variable
X be the inspector number.

(a) Give a reasonable probability mass function for X.

(b) Plot the cumulative distribution function for X.

2.111 The shelf life of a product is a random variable
that is related to consumer acceptance. It turns out
that the shelf life Y in days of a certain type of bakery
product has a density function

f(y) =

{
1
2
e−y/2, 0 ≤ y < ∞,

0, elsewhere.

What fraction of the loaves of this product stocked to-
day would you expect to be sellable 3 days from now?

2.112 Passenger congestion is a service problem in
airports. Trains are installed within the airport to re-
duce the congestion. With the use of the train, the
time X in minutes that it takes to travel from the main
terminal to a particular concourse has density function

f(x) =

{
1
10
, 0 ≤ x ≤ 10,

0, elsewhere.

(a) Show that the above is a valid probability density
function.

(b) Find the probability that the time it takes a pas-
senger to travel from the main terminal to the con-
course will not exceed 7 minutes.

2.113 Impurities in a batch of final product of a
chemical process often reflect a serious problem. From
considerable plant data gathered, it is known that the
proportion Y of impurities in a batch has a density
function given by

f(y) =

{
10(1− y)9, 0 ≤ y ≤ 1,

0, elsewhere.

(a) Verify that the above is a valid density function.

(b) A batch is considered not sellable and then not
acceptable if the percentage of impurities exceeds
60%. With the current quality of the process, what
is the percentage of batches that are not
acceptable?

2.114 The time Z in minutes between calls to an elec-
trical supply system has the probability density func-
tion

f(z) =

{
1
10
e−z/10, 0 < z < ∞,

0, elsewhere.

(a) What is the probability that there are no calls
within a 20-minute time interval?

(b) What is the probability that the first call comes
within 10 minutes of opening?

2.115 A chemical system that results from a chemical
reaction has two important components among others
in a blend. The joint distribution describing the pro-
portions X1 and X2 of these two components is given
by

f(x1, x2) =

{
2, 0 < x1 < x2 < 1,

0, elsewhere.

(a) Give the marginal distribution of X1.

(b) Give the marginal distribution of X2.

(c) What is the probability that component propor-
tions produce the results X1 < 0.2 and X2 > 0.5?

(d) Give the conditional distribution fX1|X2
(x1|x2).

2.116 Consider the situation of Review Exercise
2.115. But suppose the joint distribution of the two
proportions is given by

f(x1, x2) =

{
6x2, 0 < x2 < x1 < 1,

0, elsewhere.

(a) Give the marginal distribution fX1(x1) of the pro-
portion X1 and verify that it is a valid density
function.

(b) What is the probability that proportion X2 is less
than 0.5, given that X1 is 0.7?
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2.117 Consider the random variables X and Y that
represent the number of vehicles that arrive at two sep-
arate street corners during a certain 2-minute period.
These street corners are fairly close together so it is im-
portant that traffic engineers deal with them jointly if
necessary. The joint distribution of X and Y is known
to be

f(x, y) =
9

16
· 1

4(x+y)
,

for x = 0, 1, 2, . . . and y = 0, 1, 2, . . . .

(a) Are the two random variables X and Y indepen-
dent? Explain why or why not.

(b) What is the probability that during the time pe-
riod in question less than 4 vehicles arrive at the
two street corners?

2.118 The behavior of series of components plays a
huge role in scientific and engineering reliability prob-
lems. The reliability of the entire system is certainly
no better than that of the weakest component in the
series. In a series system, the components operate in-
dependently of each other. In a particular system con-
taining three components, the probabilities of meeting
specifications for components 1, 2, and 3, respectively,
are 0.95, 0.99, and 0.92. What is the probability that
the entire system works?

2.119 Another type of system that is employed in en-
gineering work is a group of parallel components or a
parallel system. In this more conservative approach,
the probability that the system operates is larger than
the probability that any component operates. The sys-
tem fails only when all components fail. Consider a sit-
uation in which there are 4 independent components in
a parallel system with probability of operation given by

Component 1: 0.95; Component 2: 0.94;

Component 3: 0.90; Component 4: 0.97.

What is the probability that the system does not fail?

2.120 Consider a system of components in which
there are 5 independent components, each of which
possesses an operational probability of 0.92. The sys-
tem does have a redundancy built in such that it does
not fail if 3 out of the 5 components are operational.
What is the probability that the total system is oper-
ational?

2.121 Project: Take 5 class periods to observe the
shoe color of individuals in class. Assume the shoe
color categories are red, white, black, brown, and other.
Complete a frequency table for each color category.

(a) Estimate and interpret the meaning of the proba-
bility distribution.

(b) What is the estimated probability that in the next
class period a randomly selected student will be
wearing a red or a white pair of shoes?

2.122 Referring to the random variables whose joint
probability density function is given in Exercise 2.38
on page 73, find the average amount of kerosene left in
the tank at the end of the day.

2.123 Assume the length X, in minutes, of a particu-
lar type of telephone conversation is a random variable
with probability density function

f(x) =

{
1
5
e−x/5, x > 0,

0, elsewhere.

(a) Determine the mean length E(X) of this type of
telephone conversation.

(b) Find the variance and standard deviation of X.

(c) Find E[(X + 5)2].

2.124 Suppose it is known that the life X of a par-
ticular compressor, in hours, has the density function

f(x) =

{
1

900
e−x/900, x > 0,

0, elsewhere.

(a) Find the mean life of the compressor.

(b) Find E(X2).

(c) Find the variance and standard deviation of the
random variable X.

2.125 Referring to the random variables whose joint
density function is given in Exercise 2.32 on page 72,

(a) find μX and μY ;

(b) find E[(X + Y )/2].

2.126 Show that Cov(aX, bY ) = ab Cov(X,Y ).

2.127 Consider Exercise 2.58 on page 79. Can it be
said that the ratings given by the two experts are in-
dependent? Explain why or why not.

2.128 A company’s marketing and accounting de-
partments have determined that if the company mar-
kets its newly developed product, the contribution of
the product to the firm’s profit during the next 6
months will be described by the following:

Profit Contribution Probability

−$5, 000
$10, 000
$30, 000

0.2
0.5
0.3

What is the company’s expected profit?
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2.129 In a support system in the U.S. space program,
a single crucial component works only 85% of the time.
In order to enhance the reliability of the system, it is
decided that 3 components will be installed in parallel
such that the system fails only if they all fail. Assume
the components act independently and that they are
equivalent in the sense that all 3 of them have an 85%
success rate. Consider the random variable X as the
number of components out of 3 that fail.

(a) Write out a probability function for the random
variable X.

(b) What is E(X) (i.e., the mean number of compo-
nents out of 3 that fail)?

(c) What is Var(X)?

(d) What is the probability that the entire system is
successful?

(e) What is the probability that the system fails?

(f) If the desire is to have the system be successful
with probability 0.99, are three components suffi-
cient? If not, how many are required?

2.130 It is known through data collection and con-
siderable research that the amount of time in seconds
that a certain employee of a company is late for work
is a random variable X with density function

f(x) =

{
3

(4)(503)
(502 − x2), −50 ≤ x ≤ 50,

0, elsewhere.

In other words, he not only is slightly late at times,
but also can be early to work.

(a) Find the expected value of the time in seconds that
he is late.

(b) Find E(X2).

(c) What is the standard deviation of the amount of
time he is late?

2.131 A delivery truck travels from point A to point
B and back using the same route each day. There are
four traffic lights on the route. Let X1 denote the num-
ber of red lights the truck encounters going from A to
B and X2 denote the number encountered on the re-
turn trip. Data collected over a long period suggest
that the joint probability distribution for (X1, X2) is
given by

x2

x1 0 1 2 3 4

0 0.01 0.01 0.03 0.07 0.01
1 0.03 0.05 0.08 0.03 0.02
2 0.03 0.11 0.15 0.01 0.01
3 0.02 0.07 0.10 0.03 0.01
4 0.01 0.06 0.03 0.01 0.01

(a) Give the marginal density of X1.

(b) Give the marginal density of X2.

(c) Give the conditional density distribution of X1

given X2 = 3.

(d) Give E(X1).

(e) Give E(X2).

(f) Give E(X1 | X2 = 3).

(g) Give the standard deviation of X1.

2.132 A convenience store has two separate locations
where customers can be checked out as they leave.
These locations each have two cash registers and two
employees who check out customers. Let X be the
number of cash registers being used at a particular time
for location 1 and Y the number being used at the same
time for location 2. The joint probability function is
given by

y

x 0 1 2

0 0.12 0.04 0.04
1 0.08 0.19 0.05
2 0.06 0.12 0.30

(a) Give the marginal density of both X and Y as well
as the probability distribution of X given Y = 2.

(b) Give E(X) and Var(X).

(c) Give E(X | Y = 2) and Var(X | Y = 2).

2.133 As we shall illustrate in Chapter 7, statistical
methods associated with linear and nonlinear models
are very important. In fact, exponential functions are
often used in a wide variety of scientific and engineering
problems. Consider a model that is fit to a set of data
involving measured values k1 and k2 and a certain re-
sponse Y to the measurements. The model postulated
is

Ŷ = eb0+b1k1+b2k2 ,

where Ŷ denotes the estimated value of Y, k1 and
k2 are fixed values, and b0, b1, and b2 are estimates
of constants and hence are random variables. Assume
that these random variables are independent and use
the approximate formula for the variance of a nonlinear
function of more than one variable. Give an expression

for Var(Ŷ ). Assume that the means of b0, b1, and b2
are known and are β0, β1, and β2, and assume that the
variances of b0, b1, and b2 are known and are σ2

0 , σ
2
1 ,

and σ2
2 .

2.134 Consider Review Exercise 2.113 on page 96. It
involved Y , the proportion of impurities in a batch,
and the density function is given by

f(y) =

{
10(1− y)9, 0 ≤ y ≤ 1,

0, elsewhere.
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(a) Find the expected percentage of impurities.

(b) Find the expected value of the proportion of quality
material (i.e., find E(1− Y )).

(c) Find the variance of the random variable Z = 1−Y .

2.135 Project: Let X = number of hours each stu-
dent in the class slept the night before. Create a dis-
crete variable by using the following arbitrary intervals:
X < 3, 3 ≤ X < 6, 6 ≤ X < 9, and X ≥ 9.

(a) Estimate the probability distribution for X.

(b) Calculate the estimated mean and variance for X.

2.8 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

The material in this chapter is extremely fundamental in nature. We focused on
general characteristics of a probability distribution and defined important quanti-
ties or parameters that characterize the general nature of the system. The mean of
a distribution reflects central tendency, and the variance or standard deviation
reflects variability in the system. In addition, covariance reflects the tendency for
two random variables to “move together” in a system. These important parameters
will remain fundamental to all that follows in this text.

The reader should understand that the distribution type is often dictated by
the scientific scenario. However, the parameter values often need to be estimated
from scientific data. For example, in the case of Review Exercise 2.124, the manu-
facturer of the compressor may know (material that will be presented in Chapter
3) from experience and knowledge of the type of compressor that the nature of the
distribution is as indicated in the exercise. The mean μ would not be known but
estimated from experimentation on the machine. Though the parameter value of
900 is given as known here, it will not be known in real-life situations without the
use of experimental data.
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Chapter 3

Some Probability Distributions

3.1 Introduction and Motivation

No matter whether a discrete probability distribution is represented graphically by
a histogram, in tabular form, or by means of a formula, the behavior of a random
variable is described. Often, the observations generated by different statistical ex-
periments have the same general type of behavior. Consequently, discrete random
variables associated with these experiments can be described by essentially the
same probability distribution and therefore can be represented by a single formula.
In fact, one needs only a handful of important probability distributions to describe
many of the discrete random variables encountered in practice.

Such a handful of distributions describe several real-life random phenomena.
For instance, in a study involving testing the effectiveness of a new drug, the num-
ber of cured patients among all the patients who use the drug approximately follows
a binomial distribution (Section 3.2). In an industrial example, when a sample of
items selected from a batch of production is tested, the number of defective items
in the sample usually can be modeled as a hypergeometric random variable (Sec-
tion 3.3). In a statistical quality control problem, the experimenter will signal a
shift of the process mean when observational data exceed certain limits. The num-
ber of samples required to produce a false alarm follows a geometric distribution,
which is a special case of the negative binomial distribution (Section 3.4). On the
other hand, the number of white cells from a fixed amount of an individual’s blood
sample is usually random and may be described by a Poisson distribution (Section
3.5). In this chapter, we present these commonly used distributions with various
examples.

3.2 Binomial and Multinomial Distributions

An experiment often consists of repeated trials, each with two possible outcomes
that may be labeled success or failure. One obvious application deals with the
testing of items as they come off an assembly line, where each trial may indicate
a defective or a nondefective item. We may choose to define either outcome as a
success. The process is referred to as a Bernoulli process. Each trial is called a

101
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Bernoulli trial. Observe that, for example, if one is drawing cards from a deck,
the probabilities for repeated trials change if the cards are not replaced. That is,
the probability of selecting a heart on the first draw is 1/4, but on the second
draw it is a conditional probability having a value of 13/51 or 12/51, depending
on whether a heart appeared on the first draw: this, then, would no longer be
considered a set of Bernoulli trials.

The Bernoulli Process

Strictly speaking, the Bernoulli process must possess the following properties:

1. The experiment consists of repeated trials.

2. Each trial results in an outcome that may be classified as a success or a failure.

3. The probability of success, denoted by p, remains constant from trial to trial.

4. The repeated trials are independent.

Consider the set of Bernoulli trials where three items are selected at random
from a manufacturing process, inspected, and classified as defective or nondefective.
A defective item is designated a success. The number of successes is a random
variable X assuming integral values from 0 through 3. The eight possible outcomes
and the corresponding values of X are

Outcome NNN NDN NND DNN NDD DND DDN DDD

x 0 1 1 1 2 2 2 3

Since the items are selected independently and we assume that the process produces
25% defectives, we have

P (NDN) = P (N)P (D)P (N) =

(
3

4

)(
1

4

)(
3

4

)
=

9

64
.

Similar calculations yield the probabilities for the other possible outcomes. The
probability distribution of X is therefore

x 0 1 2 3

f(x) 27
64

27
64

9
64

1
64

Binomial Distribution

The number X of successes in n Bernoulli trials is called a binomial random
variable. The probability distribution of this discrete random variable is called
the binomial distribution, and its values will be denoted by b(x;n, p) since they
depend on the number of trials and the probability of a success on a given trial.
Thus, for the probability distribution of X, the number of defectives is

P (X = 2) = f(2) = b

(
2; 3,

1

4

)
=

9

64
.

Let us now generalize the above illustration to yield a formula for b(x;n, p).
That is, we wish to find a formula that gives the probability of x successes in
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n trials for a binomial experiment. First, consider the probability of x successes
and n − x failures in a specified order. Since the trials are independent, we can
multiply all the probabilities corresponding to the different outcomes. Each success
occurs with probability p and each failure with probability q = 1 − p. Therefore,
the probability for the specified order is pxqn−x. We must now determine the
total number of sample points in the experiment that have x successes and n− x
failures. This number is equal to the number of partitions of n outcomes into
two groups with x in one group and n − x in the other and is written

(
n
x

)
, as

introduced in Section 1.5. Because these partitions are mutually exclusive, we add
the probabilities of all the different partitions to obtain the general formula, or
simply multiply pxqn−x by

(
n
x

)
.

Binomial
Distribution

A Bernoulli trial can result in a success with probability p and a failure with
probability q = 1−p. Then the probability distribution of the binomial random
variable X, the number of successes in n independent trials, is

b(x;n, p) =

(
n

x

)
pxqn−x, x = 0, 1, 2, . . . , n.

Note that when n = 3 and p = 1/4, the probability distribution of X, the number
of defectives, may be written as

b

(
x; 3,

1

4

)
=

(
3

x

)(
1

4

)x(
3

4

)3−x

, x = 0, 1, 2, 3,

rather than in the tabular form on page 102.

Example 3.1: The probability that a certain kind of component will survive a shock test is 3/4.
Find the probability that exactly 2 of the next 4 components tested survive.

Solution : Assuming that the tests are independent and p = 3/4 for each of the 4 tests, we
obtain

b

(
2; 4,

3

4

)
=

(
4

2

)(
3

4

)2(
1

4

)2

=

(
4!

2! 2!

)(
32

44

)
=

27

128
.

Where Does the Name Binomial Come From?

The binomial distribution derives its name from the fact that the n + 1 terms in
the binomial expansion of (q+p)n correspond to the various values of b(x;n, p) for
x = 0, 1, 2, . . . , n. That is,

(q + p)n =

(
n

0

)
qn +

(
n

1

)
pqn−1 +

(
n

2

)
p2qn−2 + · · ·+

(
n

n

)
pn

= b(0;n, p) + b(1;n, p) + b(2;n, p) + · · ·+ b(n;n, p).

Since p+ q = 1, we see that

n∑
x=0

b(x;n, p) = 1,
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a condition that must hold for any probability distribution.
Frequently, we are interested in problems where it is necessary to find P (X < r)

or P (a ≤ X ≤ b). Binomial sums

B(r;n, p) =
r∑

x=0

b(x;n, p)

are given in Table A.1 of the Appendix for n = 1, 2, . . . , 20 for selected values of p
from 0.1 to 0.9. We illustrate the use of Table A.1 with the following example.

Example 3.2: The probability that a patient recovers from a rare blood disease is 0.4. If 15
people are known to have contracted this disease, what is the probability that (a)
at least 10 survive, (b) from 3 to 8 survive, and (c) exactly 5 survive?

Solution : Let X be the number of people who survive.

(a) P (X ≥ 10) = 1− P (X < 10) = 1−
9∑

x=0

b(x; 15, 0.4) = 1− 0.9662

= 0.0338

(b) P (3 ≤ X ≤ 8) =
8∑

x=3

b(x; 15, 0.4) =
8∑

x=0

b(x; 15, 0.4)−
2∑

x=0

b(x; 15, 0.4)

= 0.9050− 0.0271 = 0.8779

(c) P (X = 5) = b(5; 15, 0.4) =
5∑

x=0

b(x; 15, 0.4)−
4∑

x=0

b(x; 15, 0.4)

= 0.4032− 0.2173 = 0.1859

Example 3.3: A large chain retailer purchases a certain kind of electronic device from a manu-
facturer. The manufacturer indicates that the defective rate of the device is 3%.

(a) The inspector randomly picks 20 items from a shipment. What is the proba-
bility that there will be at least one defective item among these 20?

(b) Suppose that the retailer receives 10 shipments in a month and the inspector
randomly tests 20 devices per shipment. What is the probability that there
will be exactly 3 shipments each containing at least one defective device among
the 20 that are selected and tested from the shipment?

Solution : (a) Denote by X the number of defective devices among the 20. Then X follows
a b(x; 20, 0.03) distribution. Hence,

P (X ≥ 1) = 1− P (X = 0) = 1− b(0; 20, 0.03)

= 1− (0.03)0(1− 0.03)20−0 = 0.4562.

(b) In this case, each shipment can either contain at least one defective item or
not. Hence, testing of each shipment can be viewed as a Bernoulli trial with
p = 0.4562 from part (a). Assuming independence from shipment to shipment
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and denoting by Y the number of shipments containing at least one defective
item, Y follows another binomial distribution b(y; 10, 0.4562). Therefore,

P (Y = 3) =

(
10

3

)
0.45623(1− 0.4562)7 = 0.1602.

Areas of Application

From Examples 3.1 through 3.3, it should be clear that the binomial distribution
finds applications in many scientific fields. An industrial engineer is keenly inter-
ested in the “proportion defective” in an industrial process. Often, quality control
measures and sampling schemes for processes are based on the binomial distribu-
tion. This distribution applies to any industrial situation where an outcome of a
process is dichotomous and the results of the process are independent, with the
probability of success being constant from trial to trial. The binomial distribution
is also used extensively for medical and military applications. In both fields, a
success or failure result is important. For example, “cure” or “no cure” is impor-
tant in pharmaceutical work, and “hit” or “miss” is often the interpretation of the
result of firing a guided missile.

Since the probability distribution of any binomial random variable depends only
on the values assumed by the parameters n, p, and q, it would seem reasonable
to assume that the mean and variance of a binomial random variable also depend
on the values assumed by these parameters. Indeed, this is true, and in the proof
of Theorem 3.1 we derive general formulas that can be used to compute the mean
and variance of any binomial random variable as functions of n, p, and q.

Theorem 3.1: The mean and variance of the binomial distribution b(x;n, p) are
μ = np and σ2 = npq.

Proof : Let the outcome on the jth trial be represented by a Bernoulli random variable
Ij , which assumes the values 0 and 1 with probabilities q and p, respectively.
Therefore, in a binomial experiment the number of successes can be written as the
sum of the n independent indicator variables. Hence,

X = I1 + I2 + · · ·+ In.

The mean of any Ij is E(Ij) = (0)(q) + (1)(p) = p. Therefore, using Corollary 2.4
on page 91, the mean of the binomial distribution is

μ = E(X) = E(I1) + E(I2) + · · ·+ E(In) = p+ p+ · · ·+ p︸ ︷︷ ︸
n terms

= np.

The variance of any Ij is σ
2
Ij

= E(I2j )−p2 = (0)2(q)+(1)2(p)−p2 = p(1−p) = pq.
Extending Corollary 2.11 to the case of n independent Bernoulli variables gives the
variance of the binomial distribution as

σ2
X = σ2

I1 + σ2
I2 + · · ·+ σ2

In = pq + pq + · · ·+ pq︸ ︷︷ ︸
n terms

= npq.
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Example 3.4: It is conjectured that an impurity exists in 30% of all drinking wells in a certain
rural community. In order to gain some insight into the true extent of the problem,
it is determined that some testing is necessary. It is too expensive to test all of the
wells in the area, so 10 are randomly selected for testing.

(a) Using the binomial distribution, what is the probability that exactly 3 wells
have the impurity, assuming that the conjecture is correct?

(b) What is the probability that more than 3 wells are impure?

Solution : (a) We require

b(3; 10, 0.3) =
3∑

x=0

b(x; 10, 0.3)−
2∑

x=0

b(x; 10, 0.3) = 0.6496− 0.3828 = 0.2668.

(b) In this case, P (X > 3) = 1− 0.6496 = 0.3504.
There are solutions in which the computation of binomial probabilities may

allow us to draw a scientific inference about a population after data are collected.
An illustration is given in the next example.

Example 3.5: Consider the situation of Example 3.4. The notion that 30% of the wells are
impure is merely a conjecture put forth by the area water board. Suppose 10 wells
are randomly selected and 6 are found to contain the impurity. What does this
imply about the conjecture? Use a probability statement.

Solution : We must first ask: “If the conjecture is correct, is it likely that we would find 6 or
more impure wells?”

P (X ≥ 6) =

10∑
x=0

b(x; 10, 0.3)−
5∑

x=0

b(x; 10, 0.3) = 1− 0.9527 = 0.0473.

As a result, it is very unlikely (4.7% chance) that 6 or more wells would be found
impure if only 30% of all are impure. This casts considerable doubt on the conjec-
ture and suggests that the impurity problem is much more severe.

As the reader should realize by now, in many applications there are more than
two possible outcomes. To borrow an example from the field of genetics, the color of
guinea pigs produced as offspring may be red, black, or white. Often the “defective”
or “not defective” dichotomy is truly an oversimplification in engineering situations.
Indeed, there are often more than two categories that characterize items or parts
coming off an assembly line.

Multinomial Experiments and the Multinomial Distribution

The binomial experiment becomes a multinomial experiment if we let each
trial have more than two possible outcomes. The classification of a manufactured
product as being light, heavy, or acceptable and the recording of accidents at a
certain intersection according to the day of the week constitute multinomial exper-
iments. The drawing of a card from a deck with replacement is also a multinomial
experiment if the 4 suits are the outcomes of interest.

In general, if a given trial can result in any one of k possible outcomes E1, E2, . . . ,
Ek with probabilities p1, p2, . . . , pk, then the multinomial distribution will give
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the probability that E1 occurs x1 times, E2 occurs x2 times, . . . , and Ek occurs
xk times in n independent trials, where

x1 + x2 + · · ·+ xk = n.

We shall denote this joint probability distribution by

f(x1, x2, . . . , xk; p1, p2, . . . , pk, n).

Clearly, p1 + p2 + · · · + pk = 1, since the result of each trial must be one of the k
possible outcomes.

To derive the general formula, we proceed as in the binomial case. Since the
trials are independent, any specified order yielding x1 outcomes for E1, x2 for
E2, . . . , xk for Ek will occur with probability px1

1 px2
2 · · · pxk

k . The total number of
orders yielding similar outcomes for the n trials is equal to the number of partitions
of n items into k groups with x1 in the first group, x2 in the second group, . . . ,
and xk in the kth group. This can be done in(

n

x1, x2, . . . , xk

)
=

n!

x1!x2! · · ·xk!

ways. Since all the partitions are mutually exclusive and occur with equal proba-
bility, we obtain the multinomial distribution by multiplying the probability for a
specified order by the total number of partitions.

Multinomial
Distribution

If a given trial can result in the k outcomes E1, E2, . . . , Ek with probabilities
p1, p2, . . . , pk, then the probability distribution of the random variables X1, X2,
. . . , Xk, representing the number of occurrences for E1, E2, . . . , Ek in n inde-
pendent trials, is

f(x1, x2, . . . , xk; p1, p2, . . . , pk, n) =

(
n

x1, x2, . . . , xk

)
px1
1 px2

2 · · · pxk

k ,

with
k∑

i=1

xi = n and
k∑

i=1

pi = 1.

The multinomial distribution derives its name from the fact that the terms of
the multinomial expansion of (p1 + p2 + · · · + pk)

n correspond to all the possible
values of f(x1, x2, . . . , xk; p1, p2, . . . , pk, n).

Example 3.6: The complexity of arrivals and departures of planes at an airport is such that
computer simulation is often used to model the “ideal” conditions. For a certain
airport with three runways, it is known that in the ideal setting the following are
the probabilities that the individual runways are accessed by a randomly arriving
commercial jet:

Runway 1: p1 = 2/9,
Runway 2: p2 = 1/6,
Runway 3: p3 = 11/18.

What is the probability that 6 randomly arriving airplanes are distributed in the
following fashion?
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Runway 1: 2 airplanes,
Runway 2: 1 airplane,
Runway 3: 3 airplanes

Solution : Using the multinomial distribution, we have

f

(
2, 1, 3;

2

9
,
1

6
,
11

18
, 6

)
=

(
6

2, 1, 3

)(
2

9

)2(
1

6

)1(
11

18

)3

=
6!

2! 1! 3!
· 2

2

92
· 1
6
· 11

3

183
= 0.1127.

Exercises

3.1 A random variable X that assumes the values
x1, x2, . . . , xk is called a discrete uniform random vari-
able if its probability mass function is f(x) = 1

k
for all

of x1, x2, . . . , xk and 0 otherwise. Find the mean and
variance of X.

3.2 In a certain city district, the need for money to
buy drugs is stated as the reason for 75% of all thefts.
Find the probability that among the next 5 theft cases
reported in this district,

(a) exactly 2 resulted from the need for money to buy
drugs;

(b) at most 3 resulted from the need for money to buy
drugs.

3.3 An employee is selected from a staff of 10 to su-
pervise a certain project by means of a tag selected at
random from a box containing 10 tags numbered from
1 to 10. Find the formula for the probability distribu-
tion of X representing the number on the tag that is
drawn. What is the probability that the number drawn
is less than 4?

3.4 According to Chemical Engineering Progress
(November 1990), approximately 30% of all pipework
failures in chemical plants are caused by operator error.

(a) What is the probability that out of the next 20
pipework failures at least 10 are due to operator
error?

(b) What is the probability that no more than 4 out of
20 such failures are due to operator error?

(c) Suppose that, for a particular plant, out of the ran-
dom sample of 20 such failures, exactly 5 are due
to operator error. Do you feel that the 30% figure
stated above applies to this plant? Comment.

3.5 One prominent physician claims that 70% of those
with lung cancer are chain smokers. If his assertion is
correct,

(a) find the probability that of 10 such patients re-
cently admitted to a hospital, fewer than half are

chain smokers;

(b) find the probability that of 20 such patients re-
cently admitted to a hospital, fewer than half are
chain smokers.

3.6 According to a study published by a group of Uni-
versity of Massachusetts sociologists, approximately
60% of the Valium users in the state of Massachusetts
first took Valium for psychological problems. Find the
probability that among the next 8 users from this state
who are interviewed,

(a) exactly 3 began taking Valium for psychological
problems;

(b) at least 5 began taking Valium for problems that
were not psychological.

3.7 In testing a certain kind of truck tire over rugged
terrain, it is found that 25% of the trucks fail to com-
plete the test run without a blowout. Of the next 15
trucks tested, find the probability that

(a) from 3 to 6 have blowouts;

(b) fewer than 4 have blowouts;

(c) more than 5 have blowouts.

3.8 A traffic control engineer reports that 75% of the
vehicles passing through a checkpoint are from within
the state. What is the probability that fewer than 4 of
the next 9 vehicles are from out of state?

3.9 The probability that a patient recovers from a
delicate heart operation is 0.9. What is the probabil-
ity that exactly 5 of the next 7 patients having this
operation survive?

3.10 The percentage of wins for the Chicago Bulls
basketball team going into the playoffs for the 1996–97
season was 87.7. Round the 87.7 to 90 in order to use
Table A.1.

(a) What was the probability that the Bulls would
sweep (4-0) the initial best-of-7 playoff series?
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(b) What was the probability that the Bulls would win
the initial best-of-7 playoff series?

(c) What very important assumption is made in an-
swering parts (a) and (b)?

3.11 It is known that 60% of mice inoculated with a
serum are protected from a certain disease. If 5 mice
are inoculated, find the probability that

(a) none contracts the disease;

(b) fewer than 2 contract the disease;

(c) more than 3 contract the disease.

3.12 Suppose that airplane engines operate indepen-
dently and fail with probability equal to 0.4. Assuming
that a plane makes a safe flight if at least one-half of its
engines run, determine whether a 4-engine plane or a 2-
engine plane has the higher probability for a successful
flight.

3.13 As a student drives to school, he encounters a
traffic signal. This traffic signal stays green for 35 sec-
onds, yellow for 5 seconds, and red for 60 seconds. As-
sume that the student goes to school each weekday
between 8:00 and 8:30 A.M. Let X1 be the number of
times he encounters a green light, X2 be the number
of times he encounters a yellow light, and X3 be the
number of times he encounters a red light. Find the
joint distribution of X1, X2, and X3.

3.14 (a) In Exercise 3.7, how many of the 15 trucks
would you expect to have blowouts?

(b) What is the variance of the number of blowouts ex-
perienced by the 15 trucks? What does that mean?

3.15 According to USA Today (March 18, 1997), of 4
million workers in the general workforce, 5.8% tested
positive for drugs. Of those testing positive, 22.5%
were cocaine users and 54.4% marijuana users.

(a) What is the probability that of 10 workers testing
positive, 2 are cocaine users, 5 are marijuana users,
and 3 are users of other drugs?

(b) What is the probability that of 10 workers testing
positive, all are marijuana users?

(c) What is the probability that of 10 workers testing
positive, none is a cocaine user?

3.16 A safety engineer claims that only 40% of all
workers wear safety helmets when they eat lunch at
the workplace. Assuming that this claim is right, find
the probability that 4 of 6 workers randomly chosen
will be wearing their helmets while having lunch at the
workplace.

3.17 Suppose that for a very large shipment of
integrated-circuit chips, the probability of failure for
any one chip is 0.10. Assuming that the assumptions
underlying the binomial distributions are met, find the
probability that at most 3 chips fail in a random sample
of 20.

3.18 Assuming that 6 in 10 automobile accidents are
due mainly to a speed violation, find the probabil-
ity that among 8 automobile accidents, 6 will be due
mainly to a speed violation

(a) by using the formula for the binomial distribution;

(b) by using Table A.1.

3.19 If the probability that a fluorescent light has a
useful life of at least 800 hours is 0.9, find the proba-
bilities that among 20 such lights

(a) exactly 18 will have a useful life of at least 800
hours;

(b) at least 15 will have a useful life of at least 800
hours;

(c) at least 2 will not have a useful life of at least 800
hours.

3.20 A manufacturer knows that on average 20% of
the electric toasters produced require repairs within 1
year after they are sold. When 20 toasters are ran-
domly selected, find appropriate numbers x and y such
that

(a) the probability that at least x of them will require
repairs is less than 0.5;

(b) the probability that at least y of them will not re-
quire repairs is greater than 0.8.

3.3 Hypergeometric Distribution

The simplest way to view the distinction between the binomial distribution of
Section 3.2 and the hypergeometric distribution is to note the way the sampling is
done. The types of applications for the hypergeometric are very similar to those
for the binomial distribution. We are interested in computing probabilities for the
number of observations that fall into a particular category. But in the case of the
binomial distribution, independence among trials is required. As a result, if that
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distribution is applied to, say, sampling from a lot of items (deck of cards, batch
of production items), the sampling must be done with replacement of each item
after it is observed. On the other hand, the hypergeometric distribution does not
require independence and is based on sampling done without replacement.

Applications for the hypergeometric distribution are found in many areas, with
heavy use in acceptance sampling, electronic testing, and quality assurance. Ob-
viously, in many of these fields, testing is done at the expense of the item being
tested. That is, the item is destroyed and hence cannot be replaced in the sample.
Thus, sampling without replacement is necessary. A simple example with playing
cards will serve as our first illustration.

If we wish to find the probability of observing 3 red cards in 5 draws from an
ordinary deck of 52 playing cards, the binomial distribution of Section 3.2 does not
apply unless each card is replaced and the deck reshuffled before the next draw is
made. To solve the problem of sampling without replacement, let us restate the
problem. If 5 cards are drawn at random, we are interested in the probability of
selecting 3 red cards from the 26 available in the deck and 2 black cards from the 26
available in the deck. There are

(
26
3

)
ways of selecting 3 red cards, and for each of

these ways we can choose 2 black cards in
(
26
2

)
ways. Therefore, the total number

of ways to select 3 red and 2 black cards in 5 draws is the product
(
26
3

)(
26
2

)
. The

total number of ways to select any 5 cards from the 52 that are available is
(
52
5

)
.

Hence, the probability of selecting 5 cards without replacement of which 3 are red
and 2 are black is given by(

26
3

)(
26
2

)(
52
5

) =
(26!/3! 23!)(26!/2! 24!)

52!/5! 47!
= 0.3251.

In general, we are interested in the probability of selecting x successes from
the k items labeled successes and n − x failures from the N − k items labeled
failures when a random sample of size n is selected from N items. This is known
as a hypergeometric experiment, that is, one that possesses the following two
properties:

1. A random sample of size n is selected without replacement from N items.

2. Of the N items, k may be classified as successes and N − k are classified as
failures.

The number X of successes of a hypergeometric experiment is called a hyper-
geometric random variable. Accordingly, the probability distribution of the
hypergeometric variable is called the hypergeometric distribution, and its val-
ues are denoted by h(x;N,n, k), since they depend on the number of successes k
in the set N from which we select n items.

Hypergeometric Distribution in Acceptance Sampling

Like the binomial distribution, the hypergeometric distribution finds applications
in acceptance sampling, where lots of materials or parts are sampled in order to
determine whether or not the entire lot is accepted.
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Example 3.7: A particular part that is used as an injection device is sold in lots of 10. The
producer deems a lot acceptable if no more than one defective is in the lot. A
sampling plan involves random sampling and testing 3 of the parts out of 10. If
none of the 3 is defective, the lot is accepted. Comment on the utility of this plan.

Solution : Let us assume that the lot is truly unacceptable (i.e., that 2 out of 10 parts are
defective). The probability that the sampling plan finds the lot acceptable is

P (X = 0) =

(
2
0

)(
8
3

)(
10
3

) = 0.467.

Thus, if the lot is truly unacceptable, with 2 defective parts, this sampling plan
will allow acceptance roughly 47% of the time. As a result, this plan should be
considered faulty.

Let us now generalize in order to find a formula for h(x;N,n, k). The total
number of samples of size n chosen from N items is

(
N
n

)
. These samples are

assumed to be equally likely. There are
(
k
x

)
ways of selecting x successes from the

k that are available, and for each of these ways we can choose the n− x failures in(
N−k
n−x

)
ways. Thus, the total number of favorable samples among the

(
N
n

)
possible

samples is given by
(
k
x

)(
N−k
n−x

)
. Hence, we have the following definition.

Hypergeometric
Distribution

The probability distribution of the hypergeometric random variableX, the num-
ber of successes in a random sample of size n selected from N items of which k
are labeled success and N − k labeled failure, is

h(x;N,n, k) =

(
k
x

)(
N−k
n−x

)(
N
n

) , max{0, n− (N − k)} ≤ x ≤ min{n, k}.

The range of x can be determined by the three binomial coefficients in the
definition, where x and n−x are no more than k and N−k, respectively, and both
of them cannot be less than 0. Usually, when both k (the number of successes)
and N − k (the number of failures) are larger than the sample size n, the range of
a hypergeometric random variable will be x = 0, 1, . . . , n.

Example 3.8: Lots of 40 components each are deemed unacceptable if they contain 3 or more
defectives. The procedure for sampling a lot is to select 5 components at random
and to reject the lot if a defective is found. What is the probability that exactly 1
defective is found in the sample if there are 3 defectives in the entire lot?

Solution : Using the hypergeometric distribution with n = 5, N = 40, k = 3, and x = 1, we
find the probability of obtaining 1 defective to be

h(1; 40, 5, 3) =

(
3
1

)(
37
4

)(
40
5

) = 0.3011.

Once again, this plan is not desirable since it detects a bad lot (3 defectives) only
about 30% of the time.
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Theorem 3.2: The mean and variance of the hypergeometric distribution h(x;N,n, k) are

μ =
nk

N
and σ2 =

N − n

N − 1
· n · k

N

(
1− k

N

)
.

The proof for the mean is shown in Appendix A.12.

Example 3.9: Let us now reinvestigate Example 2.4 on page 51. The purpose of this example
was to illustrate the notion of a random variable and the corresponding sample
space. In the example, we have a lot of 100 items of which 12 are defective. What
is the probability that in a sample of 10, 3 are defective?

Solution : Using the hypergeometric probability function, we have

h(3; 100, 10, 12) =

(
12
3

)(
88
7

)(
100
10

) = 0.08.

Example 3.10: Find the mean and variance of the random variable of Example 3.8.
Solution : Since Example 3.8 was a hypergeometric experiment with N = 40, n = 5, and

k = 3, by Theorem 3.2, we have

μ =
(5)(3)

40
=

3

8
= 0.375,

and

σ2 =

(
40− 5

39

)
(5)

(
3

40

)(
1− 3

40

)
= 0.3113.

Taking the square root of 0.3113, we find that σ = 0.558.

Relationship to the Binomial Distribution

In this chapter, we discuss several important discrete distributions that have wide
applicability. Many of these distributions relate nicely to each other. The beginning
student should gain a clear understanding of these relationships. There is an
interesting relationship between the hypergeometric and the binomial distribution.
As one might expect, if n is small compared toN , the nature of theN items changes
very little in each draw. So a binomial distribution can be used to approximate
the hypergeometric distribution when n is small compared to N . In fact, as a rule
of thumb, the approximation is good when n/N ≤ 0.05.

Thus, the quantity k/N plays the role of the binomial parameter p. As a
result, the binomial distribution may be viewed as a large-population version of the
hypergeometric distribution. The mean and variance then come from the formulas

μ = np =
nk

N
and σ2 = npq = n · k

N

(
1− k

N

)
.

Comparing these formulas with those of Theorem 3.2, we see that the mean is the
same but the variance differs by a correction factor of (N − n)/(N − 1), which is
negligible when n is small relative to N .
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Example 3.11: A manufacturer of automobile tires reports that among a shipment of 5000 sent to
a local distributor, 1000 are slightly blemished. If one purchases 10 of these tires at
random from the distributor, what is the probability that exactly 3 are blemished?

Solution : Since N = 5000 is large relative to the sample size n = 10, we shall approximate the
desired probability by using the binomial distribution. The probability of obtaining
a blemished tire is 0.2. Therefore, the probability of obtaining exactly 3 blemished
tires is

h(3; 5000, 10, 1000) ≈ b(3; 10, 0.2) = 0.8791− 0.6778 = 0.2013.

The exact probability is h(3; 5000, 10, 1000) = 0.2015.

Exercises

3.21 To avoid detection at customs, a traveler places
6 narcotic tablets in a bottle containing 9 vitamin
tablets that are similar in appearance. If the customs
official selects 3 of the tablets at random for analysis,
what is the probability that the traveler will be arrested
for illegal possession of narcotics?

3.22 From a lot of 10 missiles, 4 are selected at ran-
dom and fired. If the lot contains 3 defective missiles
that will not fire, what is the probability that

(a) all 4 will fire?

(b) at most 2 will not fire?

3.23 A company is interested in evaluating its cur-
rent inspection procedure for shipments of 50 identical
items. The procedure is to take a sample of 5 and
pass the shipment if no more than 2 are found to be
defective. What proportion of shipments with 20% de-
fectives will be accepted?

3.24 What is the probability that a waitress will
refuse to serve alcoholic beverages to only 2 minors
if she randomly checks the IDs of 5 among 9 students,
4 of whom are minors?

3.25 Among 150 IRS employees in a large city, only
30 are women. If 10 of the employees are chosen at
random to provide free tax assistance for the residents
of this city, use the binomial approximation to the hy-
pergeometric distribution to find the probability that
at least 3 women are selected.

3.26 A manufacturing company uses an acceptance
scheme on items from a production line before they
are shipped. The plan is a two-stage one. Boxes of 25
items are readied for shipment, and a sample of 3 items
is tested for defectives. If any defectives are found, the
entire box is sent back for 100% screening. If no defec-

tives are found, the box is shipped.

(a) What is the probability that a box containing 3
defectives will be shipped?

(b) What is the probability that a box containing only
1 defective will be sent back for screening?

3.27 Suppose that the manufacturing company of Ex-
ercise 3.26 decides to change its acceptance scheme.
Under the new scheme, an inspector takes 1 item at
random, inspects it, and then replaces it in the box;
a second inspector does likewise. Finally, a third in-
spector goes through the same procedure. The box is
not shipped if any of the three inspectors find a de-
fective. Answer the questions in Exercise 3.26 for this
new plan.

3.28 It is estimated that 4000 of the 10,000 voting
residents of a town are against a new sales tax. If 15
eligible voters are selected at random and asked their
opinion, what is the probability that at most 7 favor
the new tax?

3.29 Biologists doing studies in a particular environ-
ment often tag and release animals in order to estimate
the size of a population or the prevalence of certain
features in the population. Ten animals of a certain
population thought to be extinct (or near extinction)
are caught, tagged, and released in a certain region.
After a period of time, a random sample of 15 of this
type of animal is selected in the region. What is the
probability that 5 of those selected are tagged if there
are 25 animals of this type in the region?

3.30 Find the probability of being dealt a bridge hand
of 13 cards containing 5 spades, 2 hearts, 3 diamonds,
and 3 clubs.

3.31 A government task force suspects that some
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manufacturing companies are in violation of federal
pollution regulations with regard to dumping a certain
type of product. Twenty firms are under suspicion but
not all can be inspected. Suppose that 3 of the firms
are in violation.

(a) What is the probability that inspection of 5 firms
will find no violations?

(b) What is the probability that the plan above will
find two violations?

3.32 A large company has an inspection system for
the batches of small compressors purchased from ven-
dors. A batch typically contains 15 compressors. In the
inspection system, a random sample of 5 is selected and

all are tested. Suppose there are 2 faulty compressors
in the batch of 15.

(a) What is the probability that for a given sample
there will be 1 faulty compressor?

(b) What is the probability that inspection will dis-
cover both faulty compressors?

3.33 Every hour, 10,000 cans of soda are filled by a
machine; of these, 300 cans are underfilled. Each hour,
a sample of 30 cans is randomly selected and the num-
ber of ounces of soda per can is checked. Denote by X
the number of cans selected that are underfilled. Find
the probability that at least 1 underfilled can will be
among those sampled.

3.4 Negative Binomial and Geometric Distributions

Let us consider an experiment where the properties are the same as those listed for
a binomial experiment, with the exception that the trials will be repeated until a
fixed number of successes occur. Therefore, instead of the probability of x successes
in n trials, where n is fixed, we are now interested in the probability that the kth
success occurs on the xth trial. Experiments of this kind are called negative
binomial experiments.

As an illustration, consider the use of a drug that is known to be effective
in 60% of the cases where it is used. The drug will be considered a success if
it is effective in bringing some degree of relief to the patient. We are interested
in finding the probability that the fifth patient to experience relief is the seventh
patient to receive the drug during a given week. Designating a success by S and a
failure by F , a possible order of achieving the desired result is SFSSSFS, which
occurs with probability

(0.6)(0.4)(0.6)(0.6)(0.6)(0.4)(0.6) = (0.6)5(0.4)2.

We could list all possible orders by rearranging the F ’s and S’s except for the last
outcome, which must be the fifth success. The total number of possible orders is
equal to the number of partitions of the first 6 trials into two groups with 2 failures
assigned to the one group and 4 successes assigned to the other group. This can
be done in

(
6
4

)
= 15 mutually exclusive ways. Hence, if X represents the outcome

on which the fifth success occurs, then

P (X = 7) =

(
6

4

)
(0.6)5(0.4)2 = 0.1866.

What Is the Negative Binomial Random Variable?

The number X of trials required to produce k successes in a negative binomial
experiment is called a negative binomial random variable, and its probability
distribution is called the negative binomial distribution. Since its probabilities
depend on the number of successes desired and the probability of a success on a
given trial, we shall denote them by b∗(x; k, p). To obtain the general formula
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for b∗(x; k, p), consider the probability of a success on the xth trial preceded by
k − 1 successes and x − k failures in some specified order. Since the trials are
independent, we can multiply all the probabilities corresponding to each desired
outcome. Each success occurs with probability p and each failure with probability
q = 1− p. Therefore, the probability for the specified order ending in success is

pk−1qx−kp = pkqx−k.

The total number of sample points in the experiment ending in a success, after the
occurrence of k−1 successes and x−k failures in any order, is equal to the number
of partitions of x−1 trials into two groups with k−1 successes corresponding to one
group and x−k failures corresponding to the other group. This number is specified
by the term

(
x−1
k−1

)
, each mutually exclusive and occurring with equal probability

pkqx−k. We obtain the general formula by multiplying pkqx−k by
(
x−1
k−1

)
.

Negative
Binomial

Distribution

If repeated independent trials can result in a success with probability p and
a failure with probability q = 1 − p, then the probability distribution of the
random variable X, the number of the trial on which the kth success occurs, is

b∗(x; k, p) =
(
x− 1

k − 1

)
pkqx−k, x = k, k + 1, k + 2, . . . .

Example 3.12: In an NBA (National Basketball Association) championship series, the team that
wins four games out of seven is the winner. Suppose that teams A and B face each
other in the championship games and that team A has probability 0.55 of winning
a game over team B.

(a) What is the probability that team A will win the series in 6 games?

(b) What is the probability that team A will win the series?

(c) If teams A and B were facing each other in a regional playoff series, which
is decided by winning 3 out of 5 games, what is the probability that team A
would win the series?

Solution : (a) b∗(6; 4, 0.55) =
(
5
3

)
0.554(1− 0.55)6−4 = 0.1853

(b) P (team A wins the championship series) is

b∗(4; 4, 0.55) + b∗(5; 4, 0.55) + b∗(6; 4, 0.55) + b∗(7; 4, 0.55)
= 0.0915 + 0.1647 + 0.1853 + 0.1668 = 0.6083.

(c) P (team A wins the playoff) is

b∗(3; 3, 0.55) + b∗(4; 3, 0.55) + b∗(5; 3, 0.55)
= 0.1664 + 0.2246 + 0.2021 = 0.5931.

The negative binomial distribution derives its name from the fact that each
term in the expansion of pk(1 − p)−k corresponds to the values of b∗(x; k, p) for
x = k, k + 1, k + 2, . . . . If we consider the special case of the negative binomial
distribution where k = 1, we have a probability distribution for the number of
trials required for a single success. An example would be the tossing of a coin until
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a head occurs. We might be interested in the probability that the first head occurs
on the fourth toss. The negative binomial distribution reduces to the form

b∗(x; 1, p) = pqx−1, x = 1, 2, 3, . . . .

Since the successive terms constitute a geometric progression, it is customary to
refer to this special case as the geometric distribution and denote its values by
g(x; p).

Geometric
Distribution

If repeated independent trials can result in a success with probability p and
a failure with probability q = 1 − p, then the probability distribution of the
random variable X, the number of the trial on which the first success occurs, is

g(x; p) = pqx−1, x = 1, 2, 3, . . . .

Example 3.13: For a certain manufacturing process, it is known that, on the average, 1 in every
100 items is defective. What is the probability that the fifth item inspected is the
first defective item found?

Solution : Using the geometric distribution with x = 5 and p = 0.01, we have

g(5; 0.01) = (0.01)(0.99)4 = 0.0096.

Example 3.14: At a busy time, a telephone exchange is very near capacity, so callers have difficulty
placing their calls. It may be of interest to know the number of attempts necessary
in order to make a connection. Suppose that we let p = 0.05 be the probability
of a connection during a busy time. We are interested in knowing the probability
that 5 attempts are necessary for a successful call.

Solution : Using the geometric distribution with x = 5 and p = 0.05 yields

P (X = x) = g(5; 0.05) = (0.05)(0.95)4 = 0.041.
Quite often, in applications dealing with the geometric distribution, the mean

and variance are important. For example, in Example 3.14, the expected number
of calls necessary to make a connection is quite important. The following theorem
states without proof the mean and variance of the geometric distribution.

Theorem 3.3: The mean and variance of a random variable following the geometric distribution
are

μ =
1

p
and σ2 =

1− p

p2
.

Applications of Negative Binomial and Geometric Distributions

Areas of application for the negative binomial and geometric distributions become
obvious when one focuses on the examples in this section and the exercises devoted
to these distributions at the end of Section 3.5. In the case of the geometric
distribution, Example 3.14 depicts a situation where engineers or managers are
attempting to determine how inefficient a telephone exchange system is during
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busy times. Clearly, in this case, trials occurring prior to a success represent a
cost. If there is a high probability of several attempts being required prior to
making a connection, then plans should be made to redesign the system.

Applications of the negative binomial distribution are similar in nature. Sup-
pose attempts are costly in some sense and are occurring in sequence. A high
probability of needing a “large” number of attempts to experience a fixed number
of successes is not beneficial to the scientist or engineer. Consider the scenarios of
Review Exercises 3.109 and 3.110. In Review Exercise 3.110, the oil driller defines
a certain level of success from sequentially drilling in different locations for oil. If
only 6 attempts have been made at the point where the second success is experi-
enced, the profits appear to dominate substantially the investment incurred by the
drilling.

3.5 Poisson Distribution and the Poisson Process

Experiments yielding numerical values of a random variable X, the number of
outcomes occurring during a given time interval or in a specified region, are called
Poisson experiments. The given time interval may be of any length, such as a
minute, a day, a week, a month, or even a year. For example, a Poisson experiment
can generate observations for the random variable X representing the number of
telephone calls received per hour by an office, the number of days school is closed
due to snow during the winter, or the number of games postponed due to rain
during a baseball season. The specified region could be a line segment, an area,
a volume, or perhaps a piece of material. In such instances, X might represent
the number of field mice per acre, the number of bacteria in a given culture, or
the number of typing errors per page. A Poisson experiment is derived from the
Poisson process and possesses the following properties.

Properties of the Poisson Process

1. The number of outcomes occurring in one time interval or specified region of
space is independent of the number that occur in any other disjoint time in-
terval or region. In this sense we say that the Poisson process has no memory.

2. The probability that a single outcome will occur during a very short time
interval or in a small region is proportional to the length of the time interval
or the size of the region and does not depend on the number of outcomes
occurring outside this time interval or region.

3. The probability that more than one outcome will occur in such a short time
interval or fall in such a small region is negligible.

The number X of outcomes occurring during a Poisson experiment is called a
Poisson random variable, and its probability distribution is called the Poisson
distribution. The mean number of outcomes is computed from μ = λt, where
t is the specific “time,” “distance,” “area,” or “volume” of interest. Since the
probabilities depend on λ, the rate of occurrence of outcomes, we shall denote
them by p(x;λt). The derivation of the formula for p(x;λt), based on the three
properties of a Poisson process listed above, is beyond the scope of this book. The
following formula is used for computing Poisson probabilities.
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Poisson
Distribution

The probability distribution of the Poisson random variable X, representing
the number of outcomes occurring in a given time interval or specified region
denoted by t, is

p(x;λt) =
e−λt(λt)x

x!
, x = 0, 1, 2, . . . ,

where λ is the average number of outcomes per unit time, distance, area, or
volume and e = 2.71828 . . . .

Table A.2 contains Poisson probability sums,

P (r;λt) =
r∑

x=0

p(x;λt),

for selected values of λt ranging from 0.1 to 18.0. We illustrate the use of this table
with the following two examples.

Example 3.15: During a laboratory experiment, the average number of radioactive particles pass-
ing through a counter in 1 millisecond is 4. What is the probability that 6 particles
enter the counter in a given millisecond?

Solution : Using the Poisson distribution with x = 6 and λt = 4 and referring to Table A.2,
we have

p(6; 4) =
e−446

6!
=

6∑
x=0

p(x; 4)−
5∑

x=0

p(x; 4) = 0.8893− 0.7851 = 0.1042.

Example 3.16: Ten is the average number of oil tankers arriving each day at a certain port. The
facilities at the port can handle at most 15 tankers per day. What is the probability
that on a given day tankers have to be turned away?

Solution : Let X be the number of tankers arriving each day. Then, using Table A.2, we have

P (X > 15) = 1− P (X ≤ 15) = 1−
15∑
x=0

p(x; 10) = 1− 0.9513 = 0.0487.

Like the binomial distribution, the Poisson distribution is used for quality con-
trol, quality assurance, and acceptance sampling. In addition, certain important
continuous distributions used in reliability theory and queuing theory depend on
the Poisson process. Some of these distributions are discussed and developed later
in the chapter. The proof of the following theorem concerning the Poisson random
variable is given in Appendix A.13.

Theorem 3.4: Both the mean and the variance of the Poisson distribution p(x;λt) are λt.

Nature of the Poisson Probability Function

Like so many discrete and continuous distributions, the form of the Poisson distri-
bution becomes more and more symmetric, even bell-shaped, as the mean grows
large. Figure 3.1 illustrates this, showing plots of the probability function for



3.5 Poisson Distribution and the Poisson Process 119

μ = 0.1, μ = 2, and μ = 5. Note the nearness to symmetry when μ becomes
as large as 5. A similar condition exists for the binomial distribution, as will be
illustrated later in the text.
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Figure 3.1: Poisson density functions for different means.

Approximation of Binomial Distribution by a Poisson Distribution

It should be evident from the three principles of the Poisson process that the
Poisson distribution is related to the binomial distribution. Although the Poisson
usually finds applications in space and time problems, as illustrated by Examples
3.15 and 3.16, it can be viewed as a limiting form of the binomial distribution. In
the case of the binomial, if n is quite large and p is small, the conditions begin to
simulate the continuous space or time implications of the Poisson process. The in-
dependence among Bernoulli trials in the binomial case is consistent with principle
2 of the Poisson process. Allowing the parameter p to be close to 0 relates to prin-
ciple 3 of the Poisson process. Indeed, if n is large and p is close to 0, the Poisson
distribution can be used, with μ = np, to approximate binomial probabilities. If
p is close to 1, we can still use the Poisson distribution to approximate binomial
probabilities by interchanging what we have defined to be a success and a failure,
thereby changing p to a value close to 0.

Theorem 3.5: Let X be a binomial random variable with probability distribution b(x;n, p).

When n → ∞, p → 0, and np
n→∞−→ μ remains constant,

b(x;n, p)
n→∞−→ p(x;μ).

Example 3.17: In a certain industrial facility, accidents occur infrequently. It is known that the
probability of an accident on any given day is 0.005 and accidents are independent
of each other.
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(a) What is the probability that in any given period of 400 days there will be an
accident on one day?

(b) What is the probability that there are at most three days with an accident?

Solution : Let X be a binomial random variable with n = 400 and p = 0.005. Thus, np = 2.
Using the Poisson approximation,

(a) P (X = 1) = e−221 = 0.271 and

(b) P (X ≤ 3) =
3∑

x=0
e−22x/x! = 0.857.

Example 3.18: In a manufacturing process where glass products are made, defects or bubbles
occur, occasionally rendering the piece undesirable for marketing. It is known
that, on average, 1 in every 1000 of these items produced has one or more bubbles.
What is the probability that a random sample of 8000 will yield fewer than 7 items
possessing bubbles?

Solution : This is essentially a binomial experiment with n = 8000 and p = 0.001. Since
p is very close to 0 and n is quite large, we shall approximate with the Poisson
distribution using

μ = (8000)(0.001) = 8.

Hence, if X represents the number of bubbles, we have

P (X < 7) =
6∑

x=0

b(x; 8000, 0.001) ≈ p(x; 8) = 0.3134.

Exercises

3.34 A scientist inoculates mice, one at a time, with
a disease germ until he finds 2 that have contracted the
disease. If the probability of contracting the disease is
1/6, what is the probability that 8 mice are required?

3.35 Three people toss a fair coin and the odd one
out pays for coffee. If the coins all turn up the same,
they are tossed again. Find the probability that fewer
than 4 tosses are needed.

3.36 According to a study published by a group of
University of Massachusetts sociologists, about two-
thirds of the 20 million persons in this country who
take Valium are women. Assuming this figure to be a
valid estimate, find the probability that on a given day
the fifth prescription written by a doctor for Valium is

(a) the first prescribing Valium for a woman;

(b) the third prescribing Valium for a woman.

3.37 An inventory study determines that, on aver-
age, demands for a particular item at a warehouse are
made 5 times per day. What is the probability that on
a given day this item is requested

(a) more than 5 times?

(b) not at all?

3.38 On average, 3 traffic accidents per month occur
at a certain intersection. What is the probability that
in any given month at this intersection

(a) exactly 5 accidents will occur?

(b) fewer than 3 accidents will occur?

(c) at least 2 accidents will occur?

3.39 The probability that a student pilot passes the
written test for a private pilot’s license is 0.7. Find the
probability that a given student will pass the test

(a) on the third try;

(b) before the fourth try.

3.40 A certain area of the eastern United States is,
on average, hit by 6 hurricanes a year. Find the prob-
ability that in a given year that area will be hit by

(a) fewer than 4 hurricanes;
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(b) anywhere from 6 to 8 hurricanes.

3.41 On average, a textbook author makes two word-
processing errors per page on the first draft of her text-
book. What is the probability that on the next page
she will make

(a) 4 or more errors?

(b) no errors?

3.42 The probability that a student at a local high
school fails the screening test for scoliosis (curvature
of the spine) is known to be 0.004. Of the next 1875
students at the school who are screened for scoliosis,
find the probability that

(a) fewer than 5 fail the test;

(b) 8, 9, or 10 fail the test.

3.43 Suppose that, on average, 1 person in 1000
makes a numerical error in preparing his or her income
tax return. If 10,000 returns are selected at random
and examined, find the probability that 6, 7, or 8 of
them contain an error.

3.44 Find the mean and variance of the random vari-
able X in Exercise 3.43, representing the number of
persons among 10,000 who make an error in preparing
their income tax returns.

3.45 Find the mean and variance of the random vari-
able X in Exercise 3.40, representing the number of
hurricanes per year to hit a certain area of the eastern
United States.

3.46 Changes in airport procedures require consid-
erable planning. Arrival rates of aircraft are impor-
tant factors that must be taken into account. Suppose
small aircraft arrive at a certain airport, according to
a Poisson process, at the rate of 6 per hour. Thus, the
Poisson parameter for arrivals over a period of hours is
μ = 6t.

(a) What is the probability that exactly 4 small air-
craft arrive during a 1-hour period?

(b) What is the probability that at least 4 arrive during
a 1-hour period?

(c) If we define a working day as 12 hours, what is
the probability that at least 75 small aircraft ar-
rive during a working day?

3.47 An automobile manufacturer is concerned about
a fault in the braking mechanism of a particular model.
The fault can, on rare occasions, cause a catastrophe at
high speed. The distribution of the number of cars per
year that will experience the catastrophe is a Poisson
random variable with λ = 5.

(a) What is the probability that at most 3 cars per year

will experience a catastrophe?

(b) What is the probability that more than 1 car per
year will experience a catastrophe?

3.48 Consider Exercise 3.42. What is the mean num-
ber of students who fail the test?

3.49 The number of customers arriving per hour at a
certain automobile service facility is assumed to follow
a Poisson distribution with mean λ = 7.

(a) Compute the probability that more than 10 cus-
tomers will arrive in a 2-hour period.

(b) What is the mean number of arrivals during a
2-hour period?

3.50 A company purchases large lots of a certain kind
of electronic device. A method is used that rejects a
lot if 2 or more defective units are found in a random
sample of 100 units.

(a) What is the mean number of defective units found
in a sample of 100 units if the lot is 1% defective?

(b) What is the variance?

3.51 The probability that a person will die when he
or she contracts a virus infection is 0.001. Of the next
4000 people infected, what is the mean number who
will die?

3.52 Potholes on a highway can be a serious problem
and are in constant need of repair. With a particular
type of terrain and make of concrete, past experience
suggests that there are, on the average, 2 potholes per
mile after a certain amount of usage. It is assumed
that the Poisson process applies to the random vari-
able “number of potholes.”

(a) What is the probability that no more than one pot-
hole will appear in a section of 1 mile?

(b) What is the probability that no more than 4 pot-
holes will occur in a given section of 5 miles?

3.53 For a certain type of copper wire, it is known
that, on the average, 1.5 flaws occur per millimeter.
Assuming that the number of flaws is a Poisson random
variable, what is the probability that no flaws occur in
a certain portion of wire of length 5 millimeters? What
is the mean number of flaws in a portion of length 5
millimeters?

3.54 It is known that 3% of people whose luggage
is screened at an airport have questionable objects in
their luggage. What is the probability that a string of
15 people pass through screening successfully before an
individual is caught with a questionable object? What
is the expected number of people to pass through be-
fore an individual is stopped?
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3.55 Hospital administrators in large cities anguish
about traffic in emergency rooms. At a particular hos-
pital in a large city, the staff on hand cannot accom-
modate the patient traffic if there are more than 10
emergency cases in a given hour. It is assumed that
patient arrival follows a Poisson process, and historical
data suggest that, on the average, 5 emergencies arrive
per hour.

(a) What is the probability that in a given hour the
staff cannot accommodate the patient traffic?

(b) What is the probability that more than 20 emer-
gencies arrive during a 3-hour shift?

3.56 Computer technology has produced an environ-
ment in which robots operate with the use of micro-
processors. The probability that a robot fails during
any 6-hour shift is 0.10. What is the probability that
a robot will operate through at most 5 shifts before it
fails?

3.6 Continuous Uniform Distribution

One of the simplest continuous distributions in all of statistics is the continuous
uniform distribution. This distribution is characterized by a density function
that is “flat,” and thus the probability is uniform in a closed interval, say [A, B].
Although applications of the continuous uniform distribution are not as abundant
as those for other distributions discussed in this chapter, it is appropriate for the
novice to begin this introduction to continuous distributions with the uniform
distribution.

Uniform
Distribution

The density function of the continuous uniform random variable X on the in-
terval [A, B] is

f(x;A,B) =

{
1

B−A , A ≤ x ≤ B,

0, elsewhere.

The density function forms a rectangle with base B−A and constant height 1
B−A .

As a result, the uniform distribution is often called the rectangular distribution.
Note, however, that the interval may not always be closed: [A,B]. It can be (A,B)
as well. The density function for a uniform random variable on the interval [1, 3]
is shown in Figure 3.2.

x

f (x )

0 31

1
2

Figure 3.2: The density function for a random variable on the interval [1, 3].

Probabilities are simple to calculate for the uniform distribution because of the
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simple nature of the density function. However, note that the application of this
distribution is based on the assumption that the probability of falling in an interval
of fixed length within [A, B] is constant.

Example 3.19: Suppose that a large conference room at a certain company can be reserved for
no more than 4 hours. Both long and short conferences occur quite often. In fact,
it can be assumed that the length X of a conference has a uniform distribution on
the interval [0, 4].

(a) What is the probability density function?

(b) What is the probability that any given conference lasts at least 3 hours?

Solution : (a) The appropriate density function for the uniformly distributed random vari-
able X in this situation is

f(x) =

{
1
4 , 0 ≤ x ≤ 4,

0, elsewhere.

(b) P [X ≥ 3] =
∫ 4

3
1
4 dx = 1

4 .

Theorem 3.6: The mean and variance of the uniform distribution are

μ =
A+B

2
and σ2 =

(B −A)2

12
.

The proofs of the theorems are left to the reader. See Exercise 3.57 on page 135.

3.7 Normal Distribution

The most important continuous probability distribution in the entire field of statis-
tics is the normal distribution. Its graph, called the normal curve, is the
bell-shaped curve of Figure 3.3, which approximately describes many phenomena
that occur in nature, industry, and research. For example, physical measurements
in areas such as meteorological experiments, rainfall studies, and measurements
of manufactured parts are often more than adequately explained with a normal
distribution. In addition, errors in scientific measurements are extremely well ap-
proximated by a normal distribution. In 1733, Abraham DeMoivre developed the
mathematical equation of the normal curve. It provided a basis on which much
of the theory of inductive statistics is founded. The normal distribution is of-
ten referred to as the Gaussian distribution, in honor of Karl Friedrich Gauss
(1777–1855), who also derived its equation from a study of errors in repeated mea-
surements of the same quantity.

A continuous random variable X having the bell-shaped distribution of Figure
3.3 is called a normal random variable. The mathematical equation for the
probability distribution of the normal variable depends on the two parameters μ
and σ, its mean and standard deviation, respectively. Hence, we denote the values
of the density of X by n(x;μ, σ).
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x
μ

σ

Figure 3.3: The normal curve.

Normal
Distribution

The density of the normal random variable X, with mean μ and variance σ2, is

n(x;μ, σ) =
1√
2πσ

e−
1

2σ2 (x−μ)2 , −∞ < x < ∞,

where π = 3.14159 . . . and e = 2.71828 . . . .

Once μ and σ are specified, the normal curve is completely determined. For exam-
ple, if μ = 50 and σ = 5, then the ordinates n(x; 50, 5) can be computed for various
values of x and the curve drawn. In Figure 3.4, we have sketched two normal curves
having the same standard deviation but different means. The two curves are iden-
tical in form but are centered at different positions along the horizontal axis.

x

1 �   2σ σ

1 2μμ

Figure 3.4: Normal curves with μ1 < μ2 and σ1 = σ2.

In Figure 3.5, we have sketched two normal curves with the same mean but
different standard deviations. This time we see that the two curves are centered
at exactly the same position on the horizontal axis, but the curve with the larger
standard deviation is lower and spreads out farther. Remember that the area under
a probability curve must be equal to 1, and therefore the more variable the set of
observations, the lower and wider the corresponding curve will be.

Figure 3.6 shows two normal curves having different means and different stan-
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1 �   2
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2

μ μ

σ

σ

Figure 3.5: Normal curves with μ1 = μ2 and σ1 < σ2.

dard deviations. Clearly, they are centered at different positions on the horizontal
axis and their shapes reflect the two different values of σ.

x

1

2

2μ1μ

σ

σ

Figure 3.6: Normal curves with μ1 < μ2 and σ1 < σ2.

Based on inspection of Figures 3.3 through 3.6 and examination of the first
and second derivatives of n(x;μ, σ), we list the following properties of the normal
curve:

1. The mode, which is the point on the horizontal axis where the curve is a
maximum, occurs at x = μ.

2. The curve is symmetric about a vertical axis through the mean μ.

3. The curve has its points of inflection at x = μ± σ; it is concave downward if
μ− σ < X < μ+ σ and is concave upward otherwise.

4. The normal curve approaches the horizontal axis asymptotically as we proceed
in either direction away from the mean.

5. The total area under the curve and above the horizontal axis is equal to 1.
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Theorem 3.7: The mean and variance of n(x;μ, σ) are μ and σ2, respectively. Hence, the
standard deviation is σ.

The proof of the theorem is left to the reader.
Many random variables have probability distributions that can be described

adequately by the normal curve once μ and σ2 are specified. In this chapter, we
shall assume that these two parameters are known, perhaps from previous inves-
tigations. Later, we shall make statistical inferences when μ and σ2 are unknown
and have been estimated from the available experimental data.

We pointed out earlier the role that the normal distribution plays as a reason-
able approximation of scientific variables in real-life experiments. There are other
applications of the normal distribution that the reader will appreciate as he or she
moves on in the book. The normal distribution finds enormous application as a
limiting distribution. Under certain conditions, the normal distribution provides a
good continuous approximation to the binomial and hypergeometric distributions.
The case of the approximation to the binomial is covered in Section 3.10. In Chap-
ter 4, the reader will learn about sampling distributions. It turns out that the
limiting distribution of sample averages is normal. This provides a broad base
for statistical inference that proves very valuable to the data analyst interested in
estimation and hypothesis testing.

In Section 3.8, examples demonstrate the use of tables of the normal distribu-
tion. Section 3.9 follows with examples of applications of the normal distribution.

3.8 Areas under the Normal Curve

The curve of any continuous probability distribution or density function is con-
structed so that the area under the curve bounded by the two ordinates x = x1

and x = x2 equals the probability that the random variable X assumes a value
between x = x1 and x = x2. Thus, for the normal curve in Figure 3.7,

P (x1 < X < x2) =

∫ x2

x1

n(x;μ, σ) dx =
1√
2πσ

∫ x2

x1

e−
1

2σ2 (x−μ)2dx

is represented by the area of the shaded region.
In Figures 3.4, 3.5, and 3.6 we saw how the normal curve is dependent on

the mean and the standard deviation of the distribution under investigation. The
area under the curve between any two ordinates must then also depend on the
values μ and σ. This is evident in Figure 3.8, where we have shaded regions cor-
responding to P (x1 < X < x2) for two curves with different means and variances.
P (x1 < X < x2), where X is the random variable describing distribution A, is
indicated by the shaded area below the curve of A. If X is the random variable de-
scribing distribution B, then P (x1 < X < x2) is given by the entire shaded region.
Obviously, the two shaded regions are different in size; therefore, the probability
associated with each distribution will be different for the two given values of X.

There are many types of statistical software that can be used in calculating
areas under the normal curve. The difficulty encountered in solving integrals of
normal density functions necessitates the tabulation of normal curve areas for quick
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xx1 x2μ

Figure 3.7: P (x1 < X < x2) = area of the shaded region.

x
x1 x2

A

B

Figure 3.8: P (x1 < X < x2) for different normal curves.

reference. However, it would be a hopeless task to attempt to set up separate tables
for every conceivable value of μ and σ. Fortunately, we are able to transform all
the observations of any normal random variable X into a new set of observations
of a normal random variable Z with mean 0 and variance 1. This can be done by
means of the transformation

Z =
X − μ

σ
.

Whenever X assumes a value x, the corresponding value of Z is given by z =
(x − μ)/σ. Therefore, if X falls between the values x = x1 and x = x2, the
random variable Z will fall between the corresponding values z1 = (x1 − μ)/σ and
z2 = (x2 − μ)/σ. Consequently, we may write

P (x1 < X < x2) =
1√
2πσ

∫ x2

x1

e−
1

2σ2 (x−μ)2dx =
1√
2π

∫ z2

z1

e−
1
2 z

2

dz

=

∫ z2

z1

n(z; 0, 1) dz = P (z1 < Z < z2),

where Z is seen to be a normal random variable with mean 0 and variance 1.

Definition 3.1: The distribution of a normal random variable with mean 0 and variance 1 is called
a standard normal distribution.

The original and transformed distributions are illustrated in Figure 3.9. Since
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all the values of X falling between x1 and x2 have corresponding z values between
z1 and z2, the area under the X-curve between the ordinates x = x1 and x = x2 in
Figure 3.9 equals the area under the Z-curve between the transformed ordinates
z = z1 and z = z2.

x
μx1 x2

σ

σ

z
0z1 z2

� 1

Figure 3.9: The original and transformed normal distributions.

We have now reduced the required number of tables of normal-curve areas to
one, that of the standard normal distribution. Table A.3 indicates the area under
the standard normal curve corresponding to P (Z < z) for values of z ranging from
−3.49 to 3.49. To illustrate the use of this table, let us find the probability that Z is
less than 1.74. First, we locate a value of z equal to 1.7 in the left column; then we
move across the row to the column under 0.04, where we read 0.9591. Therefore,
P (Z < 1.74) = 0.9591. To find a z value corresponding to a given probability, the
process is reversed. For example, the z value leaving an area of 0.2148 under the
curve to the left of z is seen to be −0.79.

Example 3.20: Given a standard normal distribution, find the area under the curve that lies

(a) to the right of z = 1.84 and

(b) between z = −1.97 and z = 0.86.

Solution : See Figure 3.10 for the specific areas.

(a) The area in Figure 3.10(a) to the right of z = 1.84 is equal to 1 minus the
area in Table A.3 to the left of z = 1.84, namely, 1− 0.9671 = 0.0329.

(b) The area in Figure 3.10(b) between z = −1.97 and z = 0.86 is equal to the
area to the left of z = 0.86 minus the area to the left of z = −1.97. From
Table A.3 we find the desired area to be 0.8051− 0.0244 = 0.7807.

Example 3.21: Given a standard normal distribution, find the value of k such that

(a) P (Z > k) = 0.3015 and

(b) P (k < Z < −0.18) = 0.4197.
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z
0 1.84

(a)

z
�1.97 0 0.86

(b)

Figure 3.10: Areas for Example 3.20.

Solution : Distributions and the desired areas are shown in Figure 3.11.

(a) In Figure 3.11(a), we see that the k value leaving an area of 0.3015 to the
right must then leave an area of 0.6985 to the left. From Table A.3 it follows
that k = 0.52.

(b) From Table A.3 we note that the total area to the left of −0.18 is equal to
0.4286. In Figure 3.11(b), we see that the area between k and −0.18 is 0.4197,
so the area to the left of k must be 0.4286 − 0.4197 = 0.0089. Hence, from
Table A.3, we have k = −2.37.

x
0 k

(a)

0.3015
x

k −0.18
(b)

0.4197

Figure 3.11: Areas for Example 3.21.

Example 3.22: Given a random variable X having a normal distribution with μ = 50 and σ = 10,
find the probability that X assumes a value between 45 and 62.

Solution : The z values corresponding to x1 = 45 and x2 = 62 are

z1 =
45− 50

10
= −0.5 and z2 =

62− 50

10
= 1.2.

Therefore,

P (45 < X < 62) = P (−0.5 < Z < 1.2).
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x
0�0.5 1.2

Figure 3.12: Area for Example 3.22.

P (−0.5 < Z < 1.2) is shown by the area of the shaded region in Figure 3.12. This
area may be found by subtracting the area to the left of the ordinate z = −0.5
from the entire area to the left of z = 1.2. Using Table A.3, we have

P (45 < X < 62) = P (−0.5 < Z < 1.2) = P (Z < 1.2)− P (Z < −0.5)

= 0.8849− 0.3085 = 0.5764.

Example 3.23: Given that X has a normal distribution with μ = 300 and σ = 50, find the
probability that X assumes a value greater than 362.

Solution : The normal probability distribution with the desired area shaded is shown in
Figure 3.13. To find P (X > 362), we need to evaluate the area under the normal
curve to the right of x = 362. This can be done by transforming x = 362 to the
corresponding z value, obtaining the area to the left of z from Table A.3, and then
subtracting this area from 1. We find that

z =
362− 300

50
= 1.24.

Hence,

P (X > 362) = P (Z > 1.24) = 1− P (Z < 1.24) = 1− 0.8925 = 0.1075.

x
300 362

 � 50σ

Figure 3.13: Area for Example 3.23.
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If the random variable has a normal distribution, the z values corresponding to
x1 = μ− 2σ and x2 = μ+ 2σ are easily computed to be

z1 =
(μ− 2σ)− μ

σ
= −2 and z2 =

(μ+ 2σ)− μ

σ
= 2.

Hence,

P (μ− 2σ < X < μ+ 2σ) = P (−2 < Z < 2) = P (Z < 2)− P (Z < −2)

= 0.9772− 0.0228 = 0.9544.

Using the Normal Curve in Reverse

Sometimes, we are required to find the value of z corresponding to a specified
probability that falls between values listed in Table A.3 (see Example 3.24). For
convenience, we shall always choose the z value corresponding to the tabular prob-
ability that comes closest to the specified probability.

The preceding two examples were solved by going first from a value of x to
a z value and then computing the desired area. In Example 3.24, we reverse the
process and begin with a known area or probability, find the z value, and then
determine x by rearranging the formula

z =
x− μ

σ
to give x = σz + μ.

Example 3.24: Given a normal distribution with μ = 40 and σ = 6, find the value of x that has

(a) 45% of the area to the left and

(b) 14% of the area to the right.

x
40
(a)

σ = 6 σ = 6

0.45
x

40
(b)

0.14

Figure 3.14: Areas for Example 3.24.
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Solution : (a) An area of 0.45 to the left of the desired x value is shaded in Figure 3.14(a).
We require a z value that leaves an area of 0.45 to the left. From Table A.3
we find P (Z < −0.13) = 0.45, so the desired z value is −0.13. Hence,

x = (6)(−0.13) + 40 = 39.22.

(b) In Figure 3.14(b), we shade an area equal to 0.14 to the right of the desired
x value. This time we require a z value that leaves 0.14 of the area to the
right and hence an area of 0.86 to the left. Again, from Table A.3, we find
P (Z < 1.08) = 0.86, so the desired z value is 1.08 and

x = (6)(1.08) + 40 = 46.48.

3.9 Applications of the Normal Distribution

Some of the many problems for which the normal distribution is applicable are
treated in the following examples. The use of the normal curve to approximate
binomial probabilities is considered in Section 3.10.

Example 3.25: A certain type of storage battery lasts, on average, 3.0 years with a standard
deviation of 0.5 year. Assuming that battery life is normally distributed, find the
probability that a given battery will last less than 2.3 years.

Solution : First construct a diagram such as Figure 3.15, showing the given distribution of
battery lives and the desired area. To find P (X < 2.3), we need to evaluate the
area under the normal curve to the left of 2.3. This is accomplished by finding the
area to the left of the corresponding z value. Hence, we find that

z =
2.3− 3

0.5
= −1.4,

and then, using Table A.3, we have

P (X < 2.3) = P (Z < −1.4) = 0.0808.

x
32.3

 � 0.5σ

Figure 3.15: Area for Example 3.25.

x
800778 834

 � 40σ

Figure 3.16: Area for Example 3.26.

Example 3.26: An electrical firm manufactures light bulbs that have a life, before burn-out, that
is normally distributed with mean equal to 800 hours and a standard deviation of
40 hours. Find the probability that a bulb burns between 778 and 834 hours.
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Solution : The distribution of light bulb life is illustrated in Figure 3.16. The z values corre-
sponding to x1 = 778 and x2 = 834 are

z1 =
778− 800

40
= −0.55 and z2 =

834− 800

40
= 0.85.

Hence,

P (778 < X < 834) = P (−0.55 < Z < 0.85) = P (Z < 0.85)− P (Z < −0.55)

= 0.8023− 0.2912 = 0.5111.

Example 3.27: In an industrial process, the diameter of a ball bearing is an important measure-
ment. The buyer sets specifications for the diameter to be 3.0 ± 0.01 cm. The
implication is that no part falling outside these specifications will be accepted. It
is known that in the process the diameter of a ball bearing has a normal distribu-
tion with mean μ = 3.0 and standard deviation σ = 0.005. On average, how many
manufactured ball bearings will be scrapped?

Solution : The distribution of diameters is illustrated by Figure 3.17. The values correspond-
ing to the specification limits are x1 = 2.99 and x2 = 3.01. The corresponding z
values are

z1 =
2.99− 3.0

0.005
= −2.0 and z2 =

3.01− 3.0

0.005
= +2.0.

Hence,

P (2.99 < X < 3.01) = P (−2.0 < Z < 2.0).

From Table A.3, P (Z < −2.0) = 0.0228. Due to symmetry of the normal distribu-
tion, we find that

P (Z < −2.0) + P (Z > 2.0) = 2(0.0228) = 0.0456.

As a result, it is anticipated that, on average, 4.56% of manufactured ball bearings
will be scrapped.

x
3.02.99 3.01

σ = 0.005

0.02280.0228

Figure 3.17: Area for Example 3.27.

x
1.5001.108 1.892

σ = 0.2

0.025 0.025

Figure 3.18: Specifications for Example 3.28.

Example 3.28: Gauges are used to reject all components for which a certain dimension is not
within the specification 1.50 ± d. It is known that this measurement is normally
distributed with mean 1.50 and standard deviation 0.2. Determine the value d
such that the specifications “cover” 95% of the measurements.
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Solution : From Table A.3 we know that

P (−1.96 < Z < 1.96) = 0.95.

Therefore,

1.96 =
(1.50 + d)− 1.50

0.2
,

from which we obtain

d = (0.2)(1.96) = 0.392.

An illustration of the specifications is shown in Figure 3.18.

Example 3.29: A certain machine makes electrical resistors having a mean resistance of 40 ohms
and a standard deviation of 2 ohms. Assuming that the resistance follows a normal
distribution and can be measured to any degree of accuracy, what percentage of
resistors will have a resistance exceeding 43 ohms?

Solution : A percentage is found by multiplying the relative frequency by 100%. Since the
relative frequency for an interval is equal to the probability of a value falling in the
interval, we must find the area to the right of x = 43 in Figure 3.19. This can be
done by transforming x = 43 to the corresponding z value, obtaining the area to
the left of z from Table A.3, and then subtracting this area from 1. We find

z =
43− 40

2
= 1.5.

Therefore,

P (X > 43) = P (Z > 1.5) = 1− P (Z < 1.5) = 1− 0.9332 = 0.0668.

Hence, 6.68% of the resistors will have a resistance exceeding 43 ohms.

x
40 43

� 2.0σ

Figure 3.19: Area for Example 3.29.

x
40 43.5

 � 2.0σ

Figure 3.20: Area for Example 3.30.

Example 3.30: Find the percentage of resistances exceeding 43 ohms for Example 3.29 if resistance
is measured to the nearest ohm.

Solution : This problem differs from that in Example 3.29 in that we now assign a measure-
ment of 43 ohms to all resistors whose resistances are greater than 42.5 and less
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than 43.5. We are actually approximating a discrete distribution by means of a
continuous normal distribution. The required area is the region shaded to the right
of 43.5 in Figure 3.20. We now find that

z =
43.5− 40

2
= 1.75.

Hence,

P (X > 43.5) = P (Z > 1.75) = 1− P (Z < 1.75) = 1− 0.9599 = 0.0401.

Therefore, 4.01% of the resistances exceed 43 ohms when measured to the nearest
ohm. The difference 6.68% − 4.01% = 2.67% between this answer and that of
Example 3.29 represents all those resistance values greater than 43 and less than
43.5 that are now being recorded as 43 ohms.

Exercises

3.57 Given a continuous uniform distribution, show
that

(a) μ = A+B
2

and

(b) σ2 = (B−A)2

12
.

3.58 Suppose X follows a continuous uniform distri-
bution from 1 to 5. Determine the conditional proba-
bility P (X > 2.5 | X ≤ 4).

3.59 The daily amount of coffee, in liters, dispensed
by a machine located in an airport lobby is a random
variable X having a continuous uniform distribution
with A = 7 and B = 10. Find the probability that
on a given day the amount of coffee dispensed by this
machine will be

(a) at most 8.8 liters;

(b) more than 7.4 liters but less than 9.5 liters;

(c) at least 8.5 liters.

3.60 Find the value of z if the area under a standard
normal curve

(a) to the right of z is 0.3622;

(b) to the left of z is 0.1131;

(c) between 0 and z, with z > 0, is 0.4838;

(d) between −z and z, with z > 0, is 0.9500.

3.61 Given a standard normal distribution, find the
area under the curve that lies

(a) to the left of z = −1.39;

(b) to the right of z = 1.96;

(c) between z = −2.16 and z = −0.65;

(d) to the left of z = 1.43;

(e) to the right of z = −0.89;

(f) between z = −0.48 and z = 1.74.

3.62 Given a standard normal distribution, find the
value of k such that

(a) P (Z > k) = 0.2946;

(b) P (Z < k) = 0.0427;

(c) P (−0.93 < Z < k) = 0.7235.

3.63 Given the normally distributed variable X with
mean 18 and standard deviation 2.5, find

(a) P (X < 15);

(b) the value of k such that P (X < k) = 0.2236;

(c) the value of k such that P (X > k) = 0.1814;

(d) P (17 < X < 21).

3.64 Given a normal distribution with μ = 30 and
σ = 6, find

(a) the normal curve area to the right of x = 17;

(b) the normal curve area to the left of x = 22;

(c) the normal curve area between x = 32 and x = 41;

(d) the value of x that has 80% of the normal curve
area to the left;

(e) the two values of x that contain the middle 75% of
the normal curve area.

3.65 A soft-drink machine is regulated so that it dis-
charges an average of 200 milliliters per cup. If the
amount of drink is normally distributed with a stan-
dard deviation equal to 15 milliliters,
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(a) what fraction of the cups will contain more than
224 milliliters?

(b) what is the probability that a cup contains between
191 and 209 milliliters?

(c) how many cups will probably overflow if 230-
milliliter cups are used for the next 1000 drinks?

(d) below what value do we get the smallest 25% of the
drinks?

3.66 The loaves of rye bread distributed to local
stores by a certain bakery have an average length of 30
centimeters and a standard deviation of 2 centimeters.
Assuming that the lengths are normally distributed,
what percentage of the loaves are

(a) longer than 31.7 centimeters?

(b) between 29.3 and 33.5 centimeters in length?

(c) shorter than 25.5 centimeters?

3.67 A research scientist reports that mice will live an
average of 40 months when their diets are sharply re-
stricted and then enriched with vitamins and proteins.
Assuming that the lifetimes of such mice are normally
distributed with a standard deviation of 6.3 months,
find the probability that a given mouse will live

(a) more than 32 months;

(b) less than 28 months;

(c) between 37 and 49 months.

3.68 The finished inside diameter of a piston ring is
normally distributed with a mean of 10 centimeters and
a standard deviation of 0.03 centimeter.

(a) What proportion of rings will have inside diameters
exceeding 10.075 centimeters?

(b) What is the probability that a piston ring will have
an inside diameter between 9.97 and 10.03 centime-
ters?

(c) Below what value of inside diameter will 15% of the
piston rings fall?

3.69 A lawyer commutes daily from his suburban
home to his midtown office. The average time for a
one-way trip is 24 minutes, with a standard deviation
of 3.8 minutes. Assume the trip times to be normally
distributed.

(a) What is the probability that a trip will take at least
1/2 hour?

(b) If the office opens at 9:00 A.M. and the lawyer leaves
his house at 8:45 A.M. daily, what percentage of the
time is he late for work?

(c) If he leaves the house at 8:35 A.M. and coffee is
served at the office from 8:50 A.M. until 9:00 A.M.,
what is the probability that he misses coffee?

(d) Find the length of time above which we find the
slowest 15% of the trips.

(e) Find the probability that 2 of the next 3 trips will
take at least 1/2 hour.

3.70 In the November 1990 issue of Chemical Engi-
neering Progress, a study discussed the percent purity
of oxygen from a certain supplier. Assume that the
mean was 99.61 with a standard deviation of 0.08. As-
sume that the distribution of percent purity was ap-
proximately normal.

(a) What percentage of the purity values would you
expect to be between 99.5 and 99.7?

(b) What purity value would you expect to exceed ex-
actly 5% of the population?

3.71 The average life of a certain type of small motor
is 10 years with a standard deviation of 2 years. The
manufacturer replaces free all motors that fail while
under guarantee. If she is willing to replace only 3% of
the motors that fail, how long a guarantee should be
offered? Assume that the lifetime of a motor follows a
normal distribution.

3.72 The heights of 1000 students are normally dis-
tributed with a mean of 174.5 centimeters and a stan-
dard deviation of 6.9 centimeters. Assuming that the
heights are recorded to the nearest half-centimeter,
how many of these students would you expect to have
heights

(a) less than 160.0 centimeters?

(b) between 171.5 and 182.0 centimeters inclusive?

(c) equal to 175.0 centimeters?

(d) greater than or equal to 188.0 centimeters?

3.73 The tensile strength of a certain metal compo-
nent is normally distributed with a mean of 10,000 kilo-
grams per square centimeter and a standard deviation
of 100 kilograms per square centimeter. Measurements
are recorded to the nearest 50 kilograms per square
centimeter.

(a) What proportion of these components exceed
10,150 kilograms per square centimeter in tensile
strength?

(b) If specifications require that all components have
tensile strength between 9800 and 10,200 kilograms
per square centimeter inclusive, what proportion of
pieces would we expect to scrap?

3.74 The weights of a large number of miniature poo-
dles are approximately normally distributed with a
mean of 8 kilograms and a standard deviation of 0.9
kilogram. If measurements are recorded to the nearest
tenth of a kilogram, find the fraction of these poodles
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with weights

(a) over 9.5 kilograms;

(b) of at most 8.6 kilograms;

(c) between 7.3 and 9.1 kilograms inclusive.

3.75 The IQs of 600 applicants to a certain college
are approximately normally distributed with a mean
of 115 and a standard deviation of 12. If the college

requires an IQ of at least 95, how many of these stu-
dents will be rejected on the basis of IQ, regardless of
their other qualifications? Note that IQs are recorded
to the nearest integers.

3.76 If a set of observations is normally distributed,
what percent of these differ from the mean by

(a) more than 1.3σ?

(b) less than 0.52σ?

3.10 Normal Approximation to the Binomial

Probabilities associated with binomial experiments are readily obtainable from the
formula b(x;n, p) of the binomial distribution or from Table A.1 when n is small.
In addition, binomial probabilities are readily available in many computer software
packages. However, it is instructive to learn the relationship between the binomial
and the normal distribution. In Section 3.5, we illustrated how the Poisson dis-
tribution can be used to approximate binomial probabilities when n is quite large
and p is very close to 0 or 1. Both the binomial and the Poisson distributions
are discrete. The first application of a continuous probability distribution to ap-
proximate probabilities over a discrete sample space was demonstrated in Example
3.30, where the normal curve was used. The normal distribution is often a good
approximation to a discrete distribution when the latter takes on a symmetric bell
shape. From a theoretical point of view, some distributions converge to the normal
as their parameters approach certain limits. The normal distribution is a conve-
nient approximating distribution because the cumulative distribution function is
so easily tabled. The binomial distribution is nicely approximated by the normal
in practical problems when one works with the cumulative distribution function.
We now state a theorem that allows us to use areas under the normal curve to
approximate binomial properties when n is sufficiently large.

Theorem 3.8: If X is a binomial random variable with mean μ = np and variance σ2 = npq,
then the limiting form of the distribution of

Z =
X − np√

npq
,

as n → ∞, is the standard normal distribution n(z; 0, 1).

It turns out that the normal distribution with μ = np and σ2 = np(1− p) not
only provides a very accurate approximation to the binomial distribution when
n is large and p is not extremely close to 0 or 1 but also provides a fairly good
approximation even when n is small and p is reasonably close to 1/2.

To illustrate the normal approximation to the binomial distribution, we first
draw the histogram for b(x; 15, 0.4) and then superimpose the particular normal
curve having the same mean and variance as the binomial variable X. Hence, we



138 Chapter 3 Some Probability Distributions

draw a normal curve with

μ = np = (15)(0.4) = 6 and σ2 = npq = (15)(0.4)(0.6) = 3.6.

The histogram of b(x; 15, 0.4) and the corresponding superimposed normal curve,
which is completely determined by its mean and variance, are illustrated in Figure
3.21.

110 1 2 3 4 5 6 7 8 9 13 15
x

Figure 3.21: Normal approximation of b(x; 15, 0.4).

The exact probability that the binomial random variable X assumes a given
value x is equal to the area of the bar whose base is centered at x. For example, the
exact probability that X assumes the value 4 is equal to the area of the rectangle
with base centered at x = 4. Using Table A.1, we find this area to be

P (X = 4) = b(4; 15, 0.4) = 0.1268,

which is approximately equal to the area of the shaded region under the normal
curve between the two ordinates x1 = 3.5 and x2 = 4.5 in Figure 3.22. Converting
to z values, we have

z1 =
3.5− 6

1.897
= −1.32 and z2 =

4.5− 6

1.897
= −0.79.

If X is a binomial random variable and Z a standard normal variable, then

P (X = 4) = b(4; 15, 0.4) ≈ P (−1.32 < Z < −0.79)

= P (Z < −0.79)− P (Z < −1.32) = 0.2148− 0.0934 = 0.1214.

This agrees very closely with the exact value of 0.1268.
The normal approximation is most useful in calculating binomial sums for large

values of n. Referring to Figure 3.22, we might be interested in the probability
that X assumes a value from 7 to 9 inclusive. The exact probability is given by

P (7 ≤ X ≤ 9) =
9∑

x=0

b(x; 15, 0.4)−
6∑

x=0

b(x; 15, 0.4)

= 0.9662− 0.6098 = 0.3564,
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110 1 2 3 4 5 6 7 8 9 13 15
x

Figure 3.22: Normal approximation of b(x; 15, 0.4) and
9∑

x=7
b(x; 15, 0.4).

which is equal to the sum of the areas of the rectangles with bases centered at
x = 7, 8, and 9. For the normal approximation, we find the area of the shaded
region under the curve between the ordinates x1 = 6.5 and x2 = 9.5 in Figure 3.22.
The corresponding z values are

z1 =
6.5− 6

1.897
= 0.26 and z2 =

9.5− 6

1.897
= 1.85.

Now,

P (7 ≤ X ≤ 9) ≈ P (0.26 < Z < 1.85) = P (Z < 1.85)− P (Z < 0.26)

= 0.9678− 0.6026 = 0.3652.

Once again, the normal curve approximation provides a value that agrees very
closely with the exact value of 0.3564. The degree of accuracy, which depends on
how well the curve fits the histogram, will increase as n increases. This is particu-
larly true when p is not very close to 1/2 and the histogram is no longer symmetric.
Figures 3.23 and 3.24 show the histograms for b(x; 6, 0.2) and b(x; 15, 0.2), respec-
tively. It is evident that a normal curve would fit the histogram considerably better
when n = 15 than when n = 6.

0 1
x

2 3 4 5 6

Figure 3.23: Histogram for b(x; 6, 0.2).

0
x

1 2 3 4 5 6 7 8 9 11 13 15

Figure 3.24: Histogram for b(x; 15, 0.2).

In our illustrations of the normal approximation to the binomial, it became
apparent that if we seek the area under the normal curve to the left of, say, x, it
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is more accurate to use x+0.5. This is a correction to accommodate the fact that
a discrete distribution is being approximated by a continuous distribution. The
correction +0.5 is called a continuity correction. The foregoing discussion leads
to the following formal normal approximation to the binomial.

Normal
Approximation to

the Binomial
Distribution

Let X be a binomial random variable with parameters n and p. For large n, X
has approximately a normal distribution with μ = np and σ2 = npq = np(1−p)
and

P (X ≤ x) =

x∑
k=0

b(k;n, p)

≈ area under normal curve to the left of x+ 0.5

= P

(
Z ≤ x+ 0.5− np√

npq

)
,

and the approximation will be good if np and n(1− p) are greater than or equal
to 5.

As we indicated earlier, the quality of the approximation is quite good for large
n. If p is close to 1/2, a moderate or small sample size will be sufficient for a
reasonable approximation. We offer Table 3.1 as an indication of the quality of the
approximation. Both the normal approximation and the true binomial cumulative
probabilities are given. Notice that at p = 0.05 and p = 0.10, the approximation
is fairly crude for n = 10. However, even for n = 10, note the improvement for
p = 0.50. On the other hand, when p is fixed at p = 0.05, note the improvement
of the approximation as we go from n = 20 to n = 100.

Example 3.31: The probability that a patient recovers from a rare blood disease is 0.4. If 100
people are known to have contracted this disease, what is the probability that fewer
than 30 survive?

Solution : Let the binomial variable X represent the number of patients who survive. Since
n = 100, we should obtain fairly accurate results using the normal-curve approxi-
mation with

μ = np = (100)(0.4) = 40 and σ =
√
npq =

√
(100)(0.4)(0.6) = 4.899.

To obtain the desired probability, we have to find the area to the left of x = 29.5.
The z value corresponding to 29.5 is

z =
29.5− 40

4.899
= −2.14,

and the probability of fewer than 30 of the 100 patients surviving is given by the
shaded region in Figure 3.25. Hence,

P (X < 30) ≈ P (Z < −2.14) = 0.0162.

Example 3.32: A multiple-choice quiz has 200 questions, each with 4 possible answers of which
only 1 is correct. What is the probability that sheer guesswork yields from 25 to
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Table 3.1: Normal Approximation and True Cumulative Binomial Probabilities

p = 0.05, n = 10 p = 0.10, n = 10 p = 0.50, n = 10
r Binomial Normal Binomial Normal Binomial Normal
0 0.5987 0.5000 0.3487 0.2981 0.0010 0.0022
1 0.9139 0.9265 0.7361 0.7019 0.0107 0.0136
2 0.9885 0.9981 0.9298 0.9429 0.0547 0.0571
3 0.9990 1.0000 0.9872 0.9959 0.1719 0.1711
4 1.0000 1.0000 0.9984 0.9999 0.3770 0.3745
5 1.0000 1.0000 0.6230 0.6255
6 0.8281 0.8289
7 0.9453 0.9429
8 0.9893 0.9864
9 0.9990 0.9978

10 1.0000 0.9997
p = 0.05

n = 20 n = 50 n = 100
r Binomial Normal Binomial Normal Binomial Normal
0 0.3585 0.3015 0.0769 0.0968 0.0059 0.0197
1 0.7358 0.6985 0.2794 0.2578 0.0371 0.0537
2 0.9245 0.9382 0.5405 0.5000 0.1183 0.1251
3 0.9841 0.9948 0.7604 0.7422 0.2578 0.2451
4 0.9974 0.9998 0.8964 0.9032 0.4360 0.4090
5 0.9997 1.0000 0.9622 0.9744 0.6160 0.5910
6 1.0000 1.0000 0.9882 0.9953 0.7660 0.7549
7 0.9968 0.9994 0.8720 0.8749
8 0.9992 0.9999 0.9369 0.9463
9 0.9998 1.0000 0.9718 0.9803

10 1.0000 1.0000 0.9885 0.9941

0�2.14
x

 � 1σ

Figure 3.25: Area for Example 3.31.

0 1.16 2.71
x

 � 1σ

Figure 3.26: Area for Example 3.32.

30 correct answers for the 80 of the 200 problems about which the student has no
knowledge?

Solution : The probability of guessing a correct answer for each of the 80 questions is p = 1/4.
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If X represents the number of correct answers resulting from guesswork, then

P (25 ≤ X ≤ 30) =
30∑

x=25

b(x; 80, 1/4).

Using the normal curve approximation with

μ = np = (80)

(
1

4

)
= 20

and

σ =
√
npq =

√
(80)(1/4)(3/4) = 3.873,

we need the area between x1 = 24.5 and x2 = 30.5. The corresponding z values
are

z1 =
24.5− 20

3.873
= 1.16 and z2 =

30.5− 20

3.873
= 2.71.

The probability of correctly guessing from 25 to 30 questions is given by the shaded
region in Figure 3.26. From Table A.3 we find that

P (25 ≤ X ≤ 30) =
30∑

x=25

b(x; 80, 0.25) ≈ P (1.16 < Z < 2.71)

= P (Z < 2.71)− P (Z < 1.16) = 0.9966− 0.8770 = 0.1196.

Exercises

3.77 A process for manufacturing an electronic com-
ponent yields items of which 1% are defective. A qual-
ity control plan is to select 100 items from the process,
and if none are defective, the process continues. Use
the normal approximation to the binomial to find

(a) the probability that the process continues given the
sampling plan described;

(b) the probability that the process continues even if
the process has gone bad (i.e., if the frequency
of defective components has shifted to 5.0% defec-
tive).

3.78 A process yields 10% defective items. If 100
items are randomly selected from the process, what
is the probability that the number of defectives

(a) exceeds 13?

(b) is less than 8?

3.79 The probability that a patient recovers from a
delicate heart operation is 0.9. Of the next 100 patients
having this operation, what is the probability that

(a) between 84 and 95 inclusive survive?

(b) fewer than 86 survive?

3.80 Researchers at George Washington University
and the National Institutes of Health claim that ap-
proximately 75% of people believe “tranquilizers work
very well to make a person more calm and relaxed.” Of
the next 80 people interviewed, what is the probability
that

(a) at least 50 are of this opinion?

(b) at most 56 are of this opinion?

3.81 A company produces component parts for an en-
gine. Parts specifications suggest that 95% of items
meet specifications. The parts are shipped to cus-
tomers in lots of 100.

(a) What is the probability that more than 2 items in
a given lot will be defective?

(b) What is the probability that more than 10 items in
a lot will be defective?
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3.82 A pharmaceutical company knows that approx-
imately 5% of its birth-control pills have an ingredient
that is below the minimum strength, thus rendering
the pill ineffective. What is the probability that fewer
than 10 in a sample of 200 pills will be ineffective?

3.83 Statistics released by the National Highway
Traffic Safety Administration and the National Safety
Council show that on an average weekend night, 1 out
of every 10 drivers on the road is drunk. If 400 drivers
are randomly checked next Saturday night, what is the
probability that the number of drunk drivers will be

(a) less than 32?

(b) more than 49?

(c) at least 35 but less than 47?

3.84 A drug manufacturer claims that a certain drug
cures a blood disease, on the average, 80% of the time.
To check the claim, government testers use the drug on
a sample of 100 individuals and decide to accept the
claim if 75 or more are cured.

(a) What is the probability that the claim will be re-
jected when the cure probability is, in fact, 0.8?

(b) What is the probability that the claim will be ac-
cepted by the government when the cure probabil-
ity is as low as 0.7?

3.85 The serum cholesterol level X in 14-year-old
boys has approximately a normal distribution with

mean 170 and standard deviation 30.

(a) Find the probability that the serum cholesterol
level of a randomly chosen 14-year-old boy exceeds
230.

(b) In a middle school there are 300 14-year-old boys.
Find the probability that at least 8 boys have a
serum cholesterol level that exceeds 230.

3.86 A common practice of airline companies is to
sell more tickets for a particular flight than there are
seats on the plane, because customers who buy tickets
do not always show up for the flight. Suppose that
the percentage of no-shows at flight time is 2%. For
a particular flight with 197 seats, a total of 200 tick-
ets were sold. What is the probability that the airline
overbooked this flight?

3.87 A telemarketing company has a special letter-
opening machine that opens and removes the contents
of an envelope. If the envelope is fed improperly into
the machine, the contents of the envelope may not be
removed or may be damaged. In this case, the machine
is said to have “failed.”

(a) If the machine has a probability of failure of 0.01,
what is the probability of more than 1 failure oc-
curring in a batch of 20 envelopes?

(b) If the probability of failure of the machine is 0.01
and a batch of 500 envelopes is to be opened, what
is the probability that more than 8 failures will
occur?

3.11 Gamma and Exponential Distributions

Although the normal distribution can be used to solve many problems in engineer-
ing and science, there are still numerous situations that require different types of
density functions. Two such density functions, the gamma and exponential
distributions, are discussed in this section.

It turns out that the exponential distribution is a special case of the gamma dis-
tribution. Both find a large number of applications. The exponential and gamma
distributions play an important role in both queuing theory and reliability prob-
lems. Time between arrivals at service facilities and time to failure of component
parts and electrical systems often are nicely modeled by the exponential distribu-
tion. The relationship between the gamma and the exponential allows the gamma
to be used in similar types of problems. More details and illustrations will be
supplied later in the section.

The gamma distribution derives its name from the well-known gamma func-
tion, studied in many areas of mathematics. Before we proceed to the gamma
distribution, let us review this function and some of its important properties.
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Definition 3.2: The gamma function is defined by

Γ(α) =

∫ ∞

0

xα−1e−x dx, for α > 0.

The following are a few simple properties of the gamma function.

(a) Γ(n) = (n− 1)(n− 2) · · · (1)Γ(1), for a positive integer n.

To see the proof, integrating by parts with u = xα−1 and dv = e−x dx, we obtain

Γ(α) = −e−x xα−1
∣∣∞
0

+

∫ ∞

0

e−x(α− 1)xα−2 dx = (α− 1)

∫ ∞

0

xα−2e−x dx,

for α > 1, which yields the recursion formula

Γ(α) = (α− 1)Γ(α− 1).

The result follows after repeated application of the recursion formula. Using this
result, we can easily show the following two properties.

(b) Γ(n) = (n− 1)! for a positive integer n.

(c) Γ(1) = 1.

Furthermore, we have the following property of Γ(α), which is left for the reader
to verify.

(d) Γ(1/2) =
√
π.

The following is the definition of the gamma distribution.

Gamma
Distribution

The continuous random variable X has a gamma distribution, with param-
eters α and β, if its density function is given by

f(x;α, β) =

{
1

βαΓ(α)x
α−1e−x/β , x > 0,

0, elsewhere,

where α > 0 and β > 0.

Graphs of several gamma distributions are shown in Figure 3.27 for certain
specified values of the parameters α and β. The special gamma distribution for
which α = 1 is called the exponential distribution.

Exponential
Distribution

The continuous random variable X has an exponential distribution, with
parameter β, if its density function is given by

f(x;β) =

{
1
β e

−x/β , x > 0,

0, elsewhere,

where β > 0.

The following theorem and corollary give the mean and variance of the gamma and
exponential distributions.
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Figure 3.27: Gamma distributions.

Theorem 3.9: The mean and variance of the gamma distribution are

μ = αβ and σ2 = αβ2.

The proof of this theorem is found in Appendix A.14.

Corollary 3.1: The mean and variance of the exponential distribution are

μ = β and σ2 = β2.

Relationship to the Poisson Process

We shall pursue applications of the exponential distribution and then return to the
gamma distribution. The most important applications of the exponential distribu-
tion are situations where the Poisson process applies (see Section 3.5). The reader
should recall that the Poisson process allows for the use of the discrete distribu-
tion called the Poisson distribution. Recall that the Poisson distribution is used to
compute the probability of specific numbers of “events” during a particular period
of time or span of space. In many applications, the time period or span of space
is the random variable. For example, an industrial engineer may be interested in
modeling the time T between arrivals at a congested intersection during rush hour
in a large city. An arrival represents the Poisson event.

The relationship between the exponential distribution (often called the negative
exponential) and the Poisson process is quite simple. In Section 3.5, the Poisson
distribution was developed as a single-parameter distribution with parameter λ,
where λ may be interpreted as the mean number of events per unit “time.” Con-
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sider now the random variable described by the time required for the first event
to occur. Using the Poisson distribution, we find that the probability of no events
occurring in the span up to time t is given by

p(0;λt) =
e−λt(λt)0

0!
= e−λt.

We can now make use of the above and let X be the time to the first Poisson
event. The probability that the length of time until the first event will exceed x is
the same as the probability that no Poisson events will occur in x. The latter, of
course, is given by e−λx. As a result,

P (X > x) = e−λx.

Thus, the cumulative distribution function for X is given by

P (0 ≤ X ≤ x) = 1− e−λx.

Now, in order that we may recognize the presence of the exponential distribution,
we differentiate the cumulative distribution function above to obtain the density
function

f(x) = λe−λx,

which is the density function of the exponential distribution with λ = 1/β.

Applications of the Exponential and Gamma Distributions

In the foregoing, we provided the foundation for the application of the exponential
distribution in “time to arrival” or time to Poisson event problems. We will illus-
trate some applications here and then proceed to discuss the role of the gamma
distribution in these modeling applications. Notice that the mean of the exponen-
tial distribution is the parameter β, the reciprocal of the parameter in the Poisson
distribution. The reader should recall that it is often said that the Poisson distri-
bution has no memory, implying that occurrences in successive time periods are
independent. The important parameter β is the mean time between events. In
reliability theory, where equipment failure often conforms to this Poisson process,
β is called mean time between failures. Many equipment breakdowns do follow
the Poisson process, and thus the exponential distribution does apply. Other ap-
plications include survival times in biomedical experiments and computer response
time.

In the following example, we show a simple application of the exponential dis-
tribution to a problem in reliability. The binomial distribution also plays a role in
the solution.

Example 3.33: Suppose that a system contains a certain type of component whose time, in years,
to failure is given by T . The random variable T is modeled nicely by the exponential
distribution with mean time to failure β = 5. If 5 of these components are installed
in different systems, what is the probability that at least 2 are still functioning at
the end of 8 years?
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Solution : The probability that a given component is still functioning after 8 years is given
by

P (T > 8) =
1

5

∫ ∞

8

e−t/5 dt = e−8/5 ≈ 0.2.

Let X represent the number of components functioning after 8 years. Then using
the binomial distribution, we have

P (X ≥ 2) =
5∑

x=2

b(x; 5, 0.2) = 1−
1∑

x=0

b(x; 5, 0.2) = 1− 0.7373 = 0.2627.

There are exercises in Chapter 2 where the reader has already encountered
the exponential distribution. Some of the other applications will be found in the
exercises and review exercises at the end of this chapter.

The Memoryless Property and Its Effect on the Exponential Distribution

The types of applications of the exponential distribution in reliability and compo-
nent or machine lifetime problems are influenced by the memoryless (or lack-of-
memory) property of the exponential distribution. For example, in the case of,
say, an electronic component where lifetime has an exponential distribution, the
probability that the component lasts, say, t hours, that is, P (X ≥ t), is the same
as the conditional probability

P (X ≥ t0 + t | X ≥ t0).

So if the component “makes it” to t0 hours, the probability of lasting an additional
t hours is the same as the probability of lasting t hours. There is no “punishment”
through wear that may have ensued for lasting the first t0 hours. Thus, the expo-
nential distribution is more appropriate when the memoryless property is justified.
But if the failure of the component is a result of gradual or slow wear (as in me-
chanical wear), then the exponential does not apply and the gamma distribution
may be more appropriate.

The importance of the gamma distribution lies in the fact that it defines a
family of which other distributions are special cases. But the gamma itself has
important applications in waiting time and reliability theory. Whereas the expo-
nential distribution describes the time until the occurrence of a Poisson event (or
the time between Poisson events), the time (or space) occurring until a specified
number of Poisson events occur is a random variable whose density function is
described by the gamma distribution. This specific number of events is the param-
eter α in the gamma density function. Thus, it becomes easy to understand that
when α = 1, the special case of the exponential distribution occurs. The gamma
density can be developed from its relationship to the Poisson process in much the
same manner as we developed the exponential density. The details are left to the
reader. The following is a numerical example of the use of the gamma distribution
in a waiting-time application.

Example 3.34: Suppose that telephone calls arriving at a particular switchboard follow a Poisson
process with an average of 5 calls coming per minute. What is the probability that
up to a minute will elapse by the time 2 calls have come in to the switchboard?
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Solution : The Poisson process applies, with time until 2 Poisson events following a gamma
distribution with β = 1/5 and α = 2. Denote by X the time in minutes that
transpires before 2 calls come. The required probability is given by

P (X ≤ 1) =

∫ 1

0

1

β2
xe−x/β dx = 25

∫ 1

0

xe−5x dx = 1− e−5(1 + 5) = 0.96.

While the origin of the gamma distribution deals in time (or space) until the
occurrence of α Poisson events, there are many instances where a gamma distri-
bution works very well even though there is no clear Poisson structure. This is
particularly true for survival time problems in both engineering and biomedical
applications.

Example 3.35: In a biomedical study with rats, a dose-response investigation is used to determine
the effect of the dose of a toxicant on their survival time. The toxicant is one that
is frequently discharged into the atmosphere from jet fuel. For a certain dose of
the toxicant, the study determines that the survival time, in weeks, has a gamma
distribution with α = 5 and β = 10. What is the probability that a rat survives
no longer than 60 weeks?

Solution : Let the random variable X be the survival time (time to death). The required
probability is

P (X ≤ 60) =
1

β5

∫ 60

0

xα−1e−x/β

Γ(5)
dx.

The integral above can be solved through the use of the incomplete gamma
function, which becomes the cumulative distribution function for the gamma dis-
tribution. This function is written as

F (x;α) =

∫ x

0

yα−1e−y

Γ(α)
dy.

If we let y = x/β, so x = βy, we have

P (X ≤ 60) =

∫ 6

0

y4e−y

Γ(5)
dy,

which is denoted as F (6; 5) in the table of the incomplete gamma function in
Appendix A.11. Note that this allows a quick computation of probabilities for the
gamma distribution. Indeed, for this problem, the probability that the rat survives
no longer than 60 days is given by

P (X ≤ 60) = F (6; 5) = 0.715.

Example 3.36: It is known, from previous data, that the length of time in months between
customer complaints about a certain product is a gamma distribution with α = 2
and β = 4. Changes were made to tighten quality control requirements. Following
these changes, 20 months passed before the first complaint. Does it appear as if
the quality control tightening was effective?

Solution : Let X be the time to the first complaint, which, under conditions prior to the
changes, followed a gamma distribution with α = 2 and β = 4. The question
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centers around how rare X ≥ 20 is, given that α and β remain at values 2 and 4,
respectively. In other words, under the prior conditions is a “time to complaint”
as large as 20 months reasonable? Thus, following the solution to Example 3.35,

P (X ≥ 20) = 1− 1

βα

∫ 20

0

xα−1e−x/β

Γ(α)
dx.

Again, using y = x/β, we have

P (X ≥ 20) = 1−
∫ 5

0

ye−y

Γ(2)
dy = 1− F (5; 2) = 1− 0.96 = 0.04,

where F (5; 2) = 0.96 is found from Table A.11.
As a result, we could conclude that the conditions of the gamma distribution

with α = 2 and β = 4 are not supported by the data that an observed time to
complaint is as large as 20 months. Thus, it is reasonable to conclude that the
quality control work was effective.

Example 3.37: Consider Exercise 2.23 on page 61. Based on extensive testing, it is determined
that the time Y in years before a major repair is required for a certain washing
machine is characterized by the density function

f(y) =

{
1
4e

−y/4, y ≥ 0,

0, elsewhere.

Note that Y is an exponential random variable with μ = 4 years. The machine is
considered a bargain if it is unlikely to require a major repair before the sixth year.
What is the probability P (Y > 6)? What is the probability that a major repair is
required in the first year?

Solution : Consider the cumulative distribution function F (y) for the exponential distribution,

F (y) =
1

β

∫ y

0

e−t/β dt = 1− e−y/β .

Then

P (Y > 6) = 1− F (6) = e−3/2 = 0.2231.

Thus, the probability that the washing machine will require major repair after year
six is 0.223. Of course, it will require repair before year six with probability 0.777.
Thus, one might conclude the machine is not really a bargain. The probability
that a major repair is necessary in the first year is

P (Y < 1) = 1− e−1/4 = 1− 0.779 = 0.221.

3.12 Chi-Squared Distribution

Another very important special case of the gamma distribution is obtained by
letting α = v/2 and β = 2, where v is a positive integer. The result is called the
chi-squared distribution. The distribution has a single parameter, v, called the
degrees of freedom.
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Chi-Squared
Distribution

The continuous random variable X has a chi-squared distribution, with v
degrees of freedom, if its density function is given by

f(x; v) =

{
1

2v/2Γ(v/2)
xv/2−1e−x/2, x > 0,

0, elsewhere,

where v is a positive integer.

The chi-squared distribution plays a vital role in statistical inference. It has
considerable applications in both methodology and theory. While we do not discuss
applications in detail in this chapter, it is important to understand that Chapters 4
and 5 contain important applications. The chi-squared distribution is an important
component of statistical hypothesis testing and estimation.

Topics dealing with sampling distributions, analysis of variance, and nonpara-
metric statistics involve extensive use of the chi-squared distribution.

Theorem 3.10: The mean and variance of the chi-squared distribution are

μ = v and σ2 = 2v.

Exercises

3.88 In a certain city, the daily consumption of water
(in millions of liters) follows approximately a gamma
distribution with α = 2 and β = 3. If the daily capac-
ity of that city is 9 million liters of water, what is the
probability that on any given day the water supply is
inadequate?

3.89 If a random variable X has the gamma distribu-
tion with α = 2 and β = 1, find P (1.8 < X < 2.4).

3.90 Suppose that the time, in hours, required to
repair a heat pump is a random variable X having
a gamma distribution with parameters α = 2 and
β = 1/2. What is the probability that on the next
service call

(a) at most 1 hour will be required to repair the heat
pump?

(b) at least 2 hours will be required to repair the heat
pump?

3.91 Find the mean and variance of the daily water
consumption in Exercise 3.88.

3.92 In a certain city, the daily consumption of elec-
tric power, in millions of kilowatt hours, is a random
variable X having a gamma distribution with mean
μ = 6 and variance σ2 = 12.

(a) Find the values of α and β.

(b) Find the probability that on any given day the daily
power consumption will exceed 12 million kilowatt
hours.

3.93 The length of time for one individual to be
served at a cafeteria is a random variable having an ex-
ponential distribution with a mean of 4 minutes. What
is the probability that a person will be served in less
than 3 minutes on at least 4 of the next 6 days?

3.94 The life, in years, of a certain type of electrical
switch has an exponential distribution with an average
life β = 2. If 100 of these switches are installed in dif-
ferent systems, what is the probability that at most 30
fail during the first year?

3.95 In a biomedical research study, it was deter-
mined that the survival time, in weeks, of an animal
subjected to a certain exposure of gamma radiation has
a gamma distribution with α = 5 and β = 10.

(a) What is the mean survival time of a randomly se-
lected animal of the type used in the experiment?

(b) What is the standard deviation of survival time?

(c) What is the probability that an animal survives
more than 30 weeks?
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3.96 The lifetime, in weeks, of a certain type of tran-
sistor is known to follow a gamma distribution with
mean 10 weeks and standard deviation

√
50 weeks.

(a) What is the probability that a transistor of this
type will last at most 50 weeks?

(b) What is the probability that a transistor of this
type will not survive the first 10 weeks?

3.97 Computer response time is an important appli-
cation of the gamma and exponential distributions.
Suppose that a study of a certain computer system
reveals that the response time, in seconds, has an ex-
ponential distribution with a mean of 3 seconds.

(a) What is the probability that response time exceeds
5 seconds?

(b) What is the probability that response time exceeds
10 seconds?

3.98 The number of automobiles that arrive at a cer-
tain intersection per minute has a Poisson distribution
with a mean of 5. Interest centers around the time that
elapses before 10 automobiles appear at the intersec-
tion.

(a) What is the probability that more than 10 auto-
mobiles appear at the intersection during any given
minute of time?

(b) What is the probability that more than 2 minutes
elapse before 10 cars arrive?

3.99 Consider the information in Exercise 3.98.

(a) What is the probability that more than 1 minute
elapses between arrivals?

(b) What is the mean number of minutes that elapse
between arrivals?

Review Exercises

3.100 During a manufacturing process, 15 units are
randomly selected each day from the production line to
check the percent defective. From historical informa-
tion it is known that the probability of a defective unit
is 0.05. Any time 2 or more defectives are found in the
sample of 15, the process is stopped. This procedure
is used to provide a signal in case the probability of a
defective has increased.

(a) What is the probability that on any given day the
production process will be stopped? (Assume 5%
defective.)

(b) Suppose that the probability of a defective has in-
creased to 0.07. What is the probability that on
any given day the production process will not be
stopped?

3.101 An automatic welding machine is being consid-
ered for use in a production process. It will be consid-
ered for purchase if it is successful on 99% of its welds.
Otherwise, it will not be considered efficient. A test is
to be conducted with a prototype that is to perform
100 welds. The machine will be accepted if it misses
no more than 3 welds.

(a) What is the probability that a good machine will
be rejected?

(b) What is the probability that an inefficient machine
with 95% welding success will be accepted?

3.102 Service calls come to a maintenance center ac-
cording to a Poisson process, and on average, 2.7 calls
are received per minute. Find the probability that

(a) no more than 4 calls come in any minute;

(b) fewer than 2 calls come in any minute;

(c) more than 10 calls come in a 5-minute period.

3.103 An electronics firm claims that the proportion
of defective units from a certain process is 5%. A buyer
has a standard procedure of inspecting 15 units selected
randomly from a large lot. On a particular occasion,
the buyer found 5 items defective.

(a) What is the probability of this occurrence, given
that the claim of 5% defective is correct?

(b) What would be your reaction if you were the buyer?

3.104 An electronic switching device occasionally
malfunctions, but the device is considered satisfactory
if it makes, on average, no more than 0.20 error per
hour. A particular 5-hour period is chosen for testing
the device. If no more than 1 error occurs during the
time period, the device will be considered satisfactory.

(a) What is the probability that a satisfactory device
will be considered unsatisfactory on the basis of the
test? Assume a Poisson process.

(b) What is the probability that a device will be ac-
cepted as satisfactory when, in fact, the mean num-
ber of errors is 0.25? Again, assume a Poisson pro-
cess.

3.105 A company generally purchases large lots of a
certain kind of electronic device. A method is used
that rejects a lot if 2 or more defective units are found
in a random sample of 100 units.

(a) What is the probability of rejecting a lot that is 1%
defective?
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(b) What is the probability of accepting a lot that is
5% defective?

3.106 Imperfections in computer circuit boards and
computer chips lend themselves to statistical treat-
ment. For a particular type of board, the probability
of a diode failure is 0.03 and the board contains 200
diodes.

(a) What is the mean number of failures among the
diodes?

(b) What is the variance?

(c) The board will work if there are no defective diodes.
What is the probability that a board will work?

3.107 The potential buyer of a particular engine re-
quires (among other things) that the engine start suc-
cessfully 10 consecutive times. Suppose the probability
of a successful start is 0.990. Let us assume that the
outcomes of attempted starts are independent.

(a) What is the probability that the engine is accepted
after only 10 starts?

(b) What is the probability that 12 attempted starts
are made during the acceptance process?

3.108 The acceptance scheme for purchasing lots con-
taining a large number of batteries is to test no more
than 75 randomly selected batteries and to reject a lot
if a single battery fails. Suppose the probability of a
failure is 0.001.

(a) What is the probability that a lot is accepted?

(b) What is the probability that a lot is rejected on the
20th test?

(c) What is the probability that it is rejected in 10 or
fewer trials?

3.109 An oil drilling company ventures into various
locations, and its success or failure is independent from
one location to another. Suppose the probability of a
success at any specific location is 0.25.

(a) What is the probability that the driller drills at 10
locations and has 1 success?

(b) The driller will go bankrupt if it drills 10 times be-
fore the first success occurs. What are the driller’s
prospects for bankruptcy?

3.110 Consider the information in Review Exercise
3.109. The drilling engineer feels that the driller will
“hit it big” if the second success occurs on or before
the sixth attempt. What is the probability that the
driller will hit it big?

3.111 It is known by researchers that 1 in 100 people
carries a gene that leads to the inheritance of a certain
chronic disease. In a random sample of 1000 individ-

uals, what is the probability that fewer than 7 indi-
viduals carry the gene? Use a Poisson approximation.
Again, using the approximation, what is the approxi-
mate mean number of people out of 1000 carrying the
gene?

3.112 A production process produces electronic com-
ponent parts. It is presumed that the probability of a
defective part is 0.01. During a test of this presump-
tion, 500 parts are sampled randomly and 15 defectives
are observed.

(a) What is your response to the presumption that the
process is 1% defective? Be sure that a computed
probability accompanies your comment.

(b) Under the presumption of a 1% defective process,
what is the probability that only 3 parts will be
found defective?

(c) Do parts (a) and (b) again using the Poisson ap-
proximation.

3.113 A production process outputs items in lots of
50. Sampling plans exist in which lots are pulled aside
periodically and exposed to a certain type of inspec-
tion. It is usually assumed that the proportion defec-
tive is very small. It is important to the company that
lots containing defectives be a rare event. The current
inspection plan is to periodically sample randomly 10
out of the 50 items in a lot and, if none are defective,
to perform no intervention.

(a) Suppose in a lot chosen at random, 2 out of 50 are
defective. What is the probability that at least 1
in the sample of 10 from the lot is defective?

(b) From your answer to part (a), comment on the
quality of this sampling plan.

(c) What is the mean number of defects found out of
10 items sampled?

3.114 Consider the situation of Review Exercise
3.113. It has been determined that the sampling plan
should be extensive enough that there is a high prob-
ability, say 0.9, that if as many as 2 defectives exist in
the lot of 50 being sampled, at least 1 will be found
in the sampling. With these restrictions, how many of
the 50 items should be sampled?

3.115 National security requires that defense technol-
ogy be able to detect incoming projectiles or missiles.
To make the defense system successful, multiple radar
screens are required. Suppose that three independent
screens are to be operated and the probability that any
one screen will detect an incoming missile is 0.8. Ob-
viously, if no screens detect an incoming projectile, the
system is untrustworthy and must be improved.

(a) What is the probability that an incoming missile
will not be detected by any of the three screens?
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(b) What is the probability that the missile will be de-
tected by only one screen?

(c) What is the probability that it will be detected by
at least two out of three screens?

3.116 Suppose it is important that the overall missile
defense system be as near perfect as possible.

(a) Assuming the quality of the screens is as indicated
in Review Exercise 3.115, how many are needed
to ensure that the probability that a missile gets
through undetected is 0.0001?

(b) Suppose it is decided to stay with only 3 screens
and attempt to improve the screen detection abil-
ity. What must the individual screen effectiveness
(i.e., probability of detection) be in order to achieve
the effectiveness required in part (a)?

3.117 Go back to Review Exercise 3.113(a). Re-
compute the probability using the binomial distribu-
tion. Comment.

3.118 There are two vacancies in a certain university
statistics department. Five individuals apply. Two
have expertise in linear models, and one has exper-
tise in applied probability. The search committee is
instructed to choose the two applicants randomly.

(a) What is the probability that the two chosen are
those with expertise in linear models?

(b) What is the probability that of the two chosen, one
has expertise in linear models and one has expertise
in applied probability?

3.119 The manufacturer of a tricycle for children has
received complaints about defective brakes in the prod-
uct. According to the design of the product and consid-
erable preliminary testing, it had been determined that
the probability of the kind of defect in the complaint
was 1 in 10,000 (i.e., 0.0001). After a thorough investi-
gation of the complaints, it was determined that during
a certain period of time, 200 products were randomly
chosen from production and 5 had defective brakes.

(a) Comment on the “1 in 10,000” claim by the man-
ufacturer. Use a probabilistic argument. Use the
binomial distribution for your calculations.

(b) Repeat part (a) using the Poisson approximation.

3.120 Group Project: Divide the class into two
groups of approximately equal size. The students in
group 1 will each toss a coin 10 times (n1) and count
the number of heads obtained. The students in group 2
will each toss a coin 40 times (n2) and again count the
number of heads. The students in each group should
individually compute the proportion of heads observed,
which is an estimate of p, the probability of observing
a head. Thus, there will be a set of values of p1 (from

group 1) and a set of values p2 (from group 2). All of
the values of p1 and p2 are estimates of 0.5, which is
the true value of the probability of observing a head
for a fair coin.

(a) Which set of values is consistently closer to 0.5, the
values of p1 or p2? Consider the proof of Theorem
3.1 on page 105 with regard to the estimates of the
parameter p = 0.5. The values of p1 were obtained
with n = n1 = 10, and the values of p2 were ob-
tained with n = n2 = 40. Using the notation of the
proof, the estimates are given by

p1 =
x1

n1
=

I1 + · · ·+ In1

n1
,

where I1, . . . , In1 are 0s and 1s and n1 = 10, and

p2 =
x2

n2
=

I1 + · · ·+ In2

n2
,

where I1, . . . , In2 , again, are 0s and 1s and n2 = 40.

(b) Referring again to Theorem 3.1, show that

E(p1) = E(p2) = p = 0.5.

(c) Show that σ2
p1 =

σ2
X1

n1
is 4 times the value of

σ2
p2 =

σ2
X2

n2
. Then explain further why the values

of p2 from group 2 are more consistently closer to
the true value, p = 0.5, than the values of p1 from
group 1.

3.121 According to a study published by a group of
sociologists at the University of Massachusetts, approx-
imately 49% of the Valium users in the state of Mas-
sachusetts are white-collar workers. What is the prob-
ability that between 482 and 510, inclusive, of the next
1000 randomly selected Valium users from this state
are white-collar workers?

3.122 The exponential distribution is frequently ap-
plied to the waiting times between successes in a Pois-
son process. If the number of calls received per hour
by a telephone answering service is a Poisson random
variable with parameter λ = 6, we know that the time,
in hours, between successive calls has an exponential
distribution with parameter β =1/6. What is the prob-
ability of waiting more than 15 minutes between any
two successive calls?

3.123 A manufacturer of a certain type of large ma-
chine wishes to buy rivets from one of two manufac-
turers. It is important that the breaking strength of
each rivet exceed 10,000 psi. Two manufacturers (A
and B) offer this type of rivet and both have rivets
whose breaking strength is normally distributed. The
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mean breaking strengths for manufacturers A and B
are 14,000 psi and 13,000 psi, respectively. The stan-
dard deviations are 2000 psi and 1000 psi, respectively.
Which manufacturer will produce, on the average, the
fewest number of defective rivets?

3.124 A certain type of device has an advertised fail-
ure rate of 0.01 per hour. The failure rate is constant
and the exponential distribution applies.

(a) What is the mean time to failure?

(b) What is the probability that 200 hours will pass
before a failure is observed?

3.125 In a chemical processing plant, it is important
that the yield of a certain type of batch product stay
above 80%. If it stays below 80% for an extended pe-
riod of time, the company loses money. Occasional
defective batches are of little concern. But if several
batches per day are defective, the plant shuts down
and adjustments are made. It is known that the yield
is normally distributed with standard deviation 4%.

(a) What is the probability of a “false alarm” (yield
below 80%) when the mean yield is 85%?

(b) What is the probability that a batch will have a
yield that exceeds 80% when in fact the mean yield
is 79%?

3.126 For an electrical component with a failure rate
of once every 5 hours, it is important to consider the
time that it takes for 2 components to fail.

(a) Assuming that the gamma distribution applies,
what is the mean time that it takes for 2 compo-
nents to fail?

(b) What is the probability that 12 hours will elapse
before 2 components fail?

3.127 The elongation of a steel bar under a particu-
lar load has been established to be normally distributed
with a mean of 0.05 inch and σ = 0.01 inch. Find the
probability that the elongation is

(a) above 0.1 inch;

(b) below 0.04 inch;

(c) between 0.025 and 0.065 inch.

3.128 A controlled satellite is known to have an error
(distance from target) that is normally distributed with
mean zero and standard deviation 4 feet. The manu-
facturer of the satellite defines a success as a launch in
which the satellite comes within 10 feet of the target.
Compute the probability that the satellite fails.

3.129 A technician plans to test a certain type of
resin developed in the laboratory to determine the na-
ture of the time required before bonding takes place.

It is known that the mean time to bonding is 3 hours
and the standard deviation is 0.5 hour. It will be con-
sidered an undesirable product if the bonding time is
either less than 1 hour or more than 4 hours. Com-
ment on the utility of the resin. How often would its
performance be considered undesirable? Assume that
time to bonding is normally distributed.

3.130 The average rate of water usage (thousands of
gallons per hour) by a certain community is known
to involve the lognormal distribution with parameters
μ = 5 and σ = 2. It is important for planning purposes
to get a sense of periods of high usage. What is the
probability that, for any given hour, 50,000 gallons of
water are used?

3.131 For Review Exercise 3.130, what is the mean
of the average water usage per hour in thousands of
gallons?

3.132 In Exercise 3.96 on page 151, the lifetime of
a transistor is assumed to have a gamma distribution
with mean 10 weeks and standard deviation

√
50 weeks.

Suppose that the gamma distribution assumption is in-
correct. Assume that the distribution is normal.

(a) What is the probability that a transistor will last
at most 50 weeks?

(b) What is the probability that a transistor will not
survive for the first 10 weeks?

(c) Comment on the difference between your results
here and those found in Exercise 3.96 on page 151.

3.133 Consider now Review Exercise 2.114 on page
96. The density function of the time Z in minutes be-
tween calls to an electrical supply store is given by

f(z) =

{
1
10
e−z/10, 0 < z < ∞,

0, elsewhere.

(a) What is the mean time between calls?

(b) What is the variance in the time between calls?

(c) What is the probability that the time between calls
exceeds the mean?

3.134 Consider Review Exercise 3.133. Given the as-
sumption of the exponential distribution, what is the
mean number of calls per hour? What is the variance
in the number of calls per hour?

3.135 In a human factor experimental project, it has
been determined that the reaction time of a pilot to a
visual stimulus is normally distributed with a mean of
1/2 second and standard deviation of 2/5 second.

(a) What is the probability that a reaction from the
pilot takes more than 0.3 second?

(b) What reaction time is exceeded 95% of the time?
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3.136 The length of time between breakdowns of an
essential piece of equipment is important in the de-
cision as to whether to use auxiliary equipment. An
engineer thinks that the best model for time between
breakdowns of a generator is the exponential distribu-
tion with a mean of 15 days.

(a) If the generator has just broken down, what is the
probability that it will break down in the next 21
days?

(b) What is the probability that the generator will op-
erate for 30 days without a breakdown?

3.137 The length of time, in seconds, that a computer
user takes to read his or her e-mail is distributed as a
lognormal random variable with μ = 1.8 and σ2 = 4.0.

(a) What is the probability that a user reads e-mail for
more than 20 seconds? More than a minute?

(b) What is the probability that a user reads e-mail for
a length of time that is equal to the mean of the
underlying lognormal distribution?

3.138 Group Project: Have groups of students ob-
serve the number of people who enter a specific coffee
shop or fast-food restaurant over the course of an hour,

beginning at the same time every day, for two weeks.
The hour should be a time of peak traffic at the shop
or restaurant. The data collected will be the number
of customers who enter the shop in each half hour of
time. Thus, two data points will be collected each day.
Let us assume that the random variable X, the num-
ber of people entering each half hour, follows a Poisson
distribution. The students should calculate the sam-
ple mean and variance of X using the 28 data points
collected.

(a) What evidence indicates that the Poisson distribu-
tion assumption may or may not be correct?

(b) Given that X is Poisson, what is the distribution of
T , the time between arrivals into the shop during
a half hour period? Give a numerical estimate of
the parameter of that distribution.

(c) Give an estimate of the probability that the time
between two arrivals is less than 15 minutes.

(d) What is the estimated probability that the time
between two arrivals is more than 10 minutes?

(e) What is the estimated probability that 20 minutes
after the start of data collection not one customer
has appeared?

3.13 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

The discrete distributions discussed in this chapter occur with great frequency in
engineering and the biological and physical sciences. The exercises and examples
certainly suggest this. Industrial sampling plans and many engineering judgments
are based on the binomial and Poisson distributions as well as on the hypergeo-
metric distribution. While the geometric and negative binomial distributions are
used to a somewhat lesser extent, they also find applications. In particular, a neg-
ative binomial random variable can be viewed as a mixture of Poisson and gamma
random variables, which are also discussed in this chapter.

Despite the rich heritage that these distributions find in real life, they can be
misused unless the scientific practitioner is prudent and cautious. Of course, any
probability calculation for the distributions discussed in this chapter is made under
the assumption that the parameter value is known. Real-world applications often
result in a parameter value that may “move around” due to factors that are difficult
to control in the process or because of interventions in the process that have not
been taken into account.

For the continuous distribution case, one of the biggest misuses of statistics
is the assumption of an underlying normal distribution in carrying out a type of
statistical inference when indeed the distribution is not normal. The reader will
be exposed to tests of hypotheses in Chapters 6 through 9 in which the normality
assumption is made. In addition, however, the reader will be reminded that there
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are tests of goodness of fit discussed in Chapter 6 that allow for checks on data
to determine if the normality assumption is reasonable.

Similar warnings should be conveyed regarding assumptions that are often made
concerning other distributions, apart from the normal. This chapter has presented
examples in which one is required to calculate probabilities to failure of a certain
item or the probability that one observes a complaint during a certain time period.
Assumptions are made concerning a certain distribution type as well as values of
parameters of the distributions. Note that parameter values (for example, the
value of β for the exponential distribution) were given in the example problems.
However, in real-life problems, parameter values must be estimates from real-life
experience or data.



Chapter 4

Sampling Distributions and
Data Descriptions

4.1 Random Sampling

The outcome of a statistical experiment may be recorded either as a numerical
value or as a descriptive representation. When a pair of dice is tossed and the total
is the outcome of interest, we record a numerical value. However, if the students
of a certain school are given blood tests and the type of blood is of interest, then a
descriptive representation might be more useful. A person’s blood can be classified
in 8 ways: AB, A, B, or O, each with a plus or minus sign, depending on the
presence or absence of the Rh antigen.

In this chapter, we focus on sampling from distributions or populations and
study such important quantities as the sample mean and sample variance, which
will be of vital importance in future chapters. In addition, we attempt to give the
reader an introduction to the role that the sample mean and variance will play
in statistical inference in later chapters. The use of modern high-speed computers
allows the scientist or engineer to greatly enhance his or her use of formal statistical
inference with graphical techniques. Much of the time, formal inference appears
quite dry and perhaps even abstract to the practitioner or to the manager who
wishes to let statistical analysis be a guide to decision-making.

Populations and Samples

We begin this section by discussing the notions of populations and samples. Both
are mentioned in a broad fashion in Chapter 1. However, much more needs to be
presented about them here, particularly in the context of the concept of random
variables. The totality of observations with which we are concerned, whether their
number be finite or infinite, constitutes what we call a population. There was a
time when the word population referred to observations obtained from statistical
studies about people. Today, statisticians use the term to refer to observations
relevant to anything of interest, whether it be groups of people, animals, or all
possible outcomes from some complicated biological or engineering system.

157
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Definition 4.1: A population consists of the totality of the observations with which we are
concerned.

The number of observations in the population is defined to be the size of the
population. If there are 600 students in the school whom we classified according
to blood type, we say that we have a population of size 600. The numbers on
the cards in a deck, the heights of residents in a certain city, and the lengths of
fish in a particular lake are examples of populations with finite size. In each case,
the total number of observations is a finite number. The observations obtained by
measuring the atmospheric pressure every day, from the past on into the future,
or all measurements of the depth of a lake, from any conceivable position, are
examples of populations whose sizes are infinite. Some finite populations are so
large that in theory we assume them to be infinite. For example, this is true in
the case of the population of lifetimes of a certain type of storage battery being
manufactured for mass distribution throughout the country.

Each observation in a population is a value of a random variable X having some
probability distribution f(x). If one is inspecting items coming off an assembly line
for defects, then each observation in the population might be a value 0 or 1 of the
Bernoulli random variable X with probability distribution

b(x; 1, p) = pxq1−x, x = 0, 1

where 0 indicates a nondefective item and 1 indicates a defective item. Of course,
it is assumed that p, the probability of any item being defective, remains constant
from trial to trial. In the blood-type experiment, the random variable X represents
the type of blood and is assumed to take on values from 1 to 8. Each student is
given one of the values of the discrete random variable. The lives of the storage
batteries are values assumed by a continuous random variable having perhaps a
normal distribution. When we refer hereafter to a “binomial population,” a “nor-
mal population,” or, in general, the “population f(x),” we shall mean a population
whose observations are values of a random variable having a binomial distribution,
a normal distribution, or the probability distribution f(x). Hence, the mean and
variance of a random variable or probability distribution are also referred to as the
mean and variance of the corresponding population.

In the field of statistical inference, statisticians are interested in arriving at con-
clusions concerning a population when it is impossible or impractical to observe the
entire set of observations that make up the population. For example, in attempting
to determine the average length of life of a certain brand of light bulb, it would
be impossible to test all such bulbs if we are to have any left to sell. Exorbitant
costs can also be a prohibitive factor in studying an entire population. Therefore,
we must depend on a subset of observations from the population to help us make
inferences concerning that population. This brings us to consider the notion of
sampling.

Definition 4.2: A sample is a subset of a population.

If our inferences from the sample to the population are to be valid, we must
obtain samples that are representative of the population. All too often we are
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tempted to choose a sample by selecting the most convenient members of the
population. Such a procedure may lead to erroneous inferences concerning the
population. Any sampling procedure that produces inferences that consistently
overestimate or consistently underestimate some characteristic of the population is
said to be biased. To eliminate any possibility of bias in the sampling procedure,
it is desirable to choose a random sample in the sense that the observations are
made independently and at random.

In selecting a random sample of size n from a population f(x), let us define the
random variable Xi, i = 1, 2, . . . , n, to represent the ith measurement or sample
value that we observe. The random variables X1, X2, . . . , Xn will then constitute
a random sample from the population f(x) with numerical values x1, x2, . . . , xn if
the measurements are obtained by repeating the experiment n independent times
under essentially the same conditions. Because of the identical conditions under
which the elements of the sample are selected, it is reasonable to assume that the n
random variablesX1, X2, . . . , Xn are independent and that each has the same prob-
ability distribution f(x). That is, the probability distributions of X1, X2, . . . , Xn

are, respectively, f(x1), f(x2), . . . , f(xn), and their joint probability distribution
is f(x1, x2, . . . , xn) = f(x1)f(x2) · · · f(xn). The concept of a random sample is
described formally by the following definition.

Definition 4.3: Let X1, X2, . . . , Xn be n independent random variables, each having the same
probability distribution f(x). Define X1, X2, . . . , Xn to be a random sample of
size n from the population f(x) and write its joint probability distribution as

f(x1, x2, . . . , xn) = f(x1)f(x2) · · · f(xn).

If one makes a random selection of n = 8 storage batteries from a manufacturing
process that has maintained the same specification throughout and records the
length of life for each battery, with the first measurement x1 being a value of X1,
the second measurement x2 a value of X2, and so forth, then x1, x2, . . . , x8 are
the values of the random sample X1, X2, . . . , X8. If we assume the population of
battery lives to be normal, the possible values of any Xi, i = 1, 2, . . . , 8, will be
precisely the same as those in the original population, and hence Xi has the same
normal distribution as X.

4.2 Some Important Statistics

Our main purpose in selecting random samples is to elicit information about the
unknown population parameters. Suppose, for example, that we wish to arrive at
a conclusion concerning the proportion of coffee-drinkers in the United States who
prefer a certain brand of coffee. It would be impossible to question every coffee-
drinking American in order to compute the value of the parameter p representing
the population proportion. Instead, a large random sample is selected and the
proportion p̂ of people in this sample favoring the brand of coffee in question is
calculated. The value p̂ is now used to make an inference concerning the true
proportion p.

Now, p̂ is a function of the observed values in the random sample; since many
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random samples are possible from the same population, we would expect p̂ to vary
somewhat from sample to sample. That is, p̂ is a value of a random variable that
we represent by P . Such a random variable is called a statistic.

Definition 4.4: Any function of the random variables constituting a random sample is called a
statistic.

Location Measures of a Sample: The Sample Mean, Median, and Mode

In Chapter 2 we introduced the two parameters μ and σ2, which are the mean and
the variability of a probability distribution. These are constant population param-
eters and are in no way affected or influenced by the observations of a random
sample. We shall, however, define some important statistics that describe corre-
sponding measures of a random sample. The most commonly used statistics for
measuring the center of a set of data are the mean, median, and mode. Suppose
X1 assumes the value x1, X2 assumes the value x2, and so forth. Let

X̄ =
1

n

n∑
i=1

Xi

represent the sample mean of the n random variables. The three measurements of
location are defined as follows.

(a) The sample mean, denoted by x̄, is

x̄ =
1

n

n∑
i=1

xi.

The term sample mean is applied to both the statistic X̄ and its computed
value x̄.

(b) Given that the observations in a sample are x1, x2, . . . , xn, arranged in in-
creasing order of magnitude, with x1 being the smallest and xn the largest,
then the sample median, denoted by x̃, is

x̃ =

{
x(n+1)/2, if n is odd,
1
2 (xn/2 + xn/2+1), if n is even.

The sample median is also a location measure that shows the middle value of
the sample.

(c) The sample mode is the value of the sample that occurs most often. If the
highest frequency is shared by multiple values, then there are multiple modes.

Example 4.1: Suppose a data set consists of the following observations:

0.32 0.53 0.28 0.37 0.47 0.43 0.36 0.42 0.38 0.43.

The sample mode is 0.43, since this value occurs more than any other value.
As we suggested in Chapter 2, a measure of location or central tendency in a

sample does not by itself give a clear indication of the nature of the sample. Thus,
a measure of variability in the sample must also be considered.
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Variability Measures of a Sample: The Sample Variance, Standard Deviation,
and Range

The variability in a sample displays how the observations spread out from the
average. The reader is referred to Chapter 2 for more discussion. It is possible to
have two sets of observations with the same mean or median that differ considerably
in the variability of their measurements about the average.

Consider the following measurements, in liters, for two samples of orange juice
bottled by companies A and B:

Sample A 0.97 1.00 0.94 1.03 1.06
Sample B 1.06 1.01 0.88 0.91 1.14

Both samples have the same mean, 1.00 liter. It is obvious that company A
bottles orange juice with a more uniform content than company B. We say that
the variability, or the dispersion, of the observations from the average is less for
sample A than for sample B. Therefore, in buying orange juice, we can feel more
confident that the bottle we select will be close to the advertised average if we buy
from company A.

At this point, we shall introduce several measures of sampling variability. Let
X1, . . . , Xn represent n random variables.

(a) Sample variance:

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2. (4.2.1)

The computed value of S2 for a given sample is denoted by s2. Note that
S2 is essentially defined to be the average of the squares of the deviations of the
observations from their mean. The reason for using n− 1 as a divisor rather than
the more obvious choice n will become apparent in Chapter 5.

Example 4.2: A comparison of coffee prices at 4 randomly selected grocery stores in San Diego
showed increases from the previous month of 12, 15, 17, and 20 cents for a 1-pound
bag. Find the variance of this random sample of price increases.

Solution : Calculating the sample mean, we get

x̄ =
12 + 15 + 17 + 20

4
= 16 cents.

Therefore,

s2 =
1

3

4∑
i=1

(xi − 16)2 =
(12− 16)2 + (15− 16)2 + (17− 16)2 + (20− 16)2

3

=
(−4)2 + (−1)2 + (1)2 + (4)2

3
=

34

3
.

Whereas the expression for the sample variance best illustrates that S2 is a
measure of variability, an alternative expression does have some merit and thus
the reader should be aware of it. The following theorem contains this expression.
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Theorem 4.1: If S2 is the variance of a random sample of size n, we may write

S2 =
1

n(n− 1)

⎡⎣n n∑
i=1

X2
i −

(
n∑

i=1

Xi

)2
⎤⎦ .

Proof : By definition,

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 =
1

n− 1

n∑
i=1

(X2
i − 2X̄Xi + X̄2)

=
1

n− 1

[
n∑

i=1

X2
i − 2X̄

n∑
i=1

Xi + nX̄2

]
.

The sample standard deviation and the sample range are defined below.

(b) Sample standard deviation:

S =
√
S2,

where S2 is the sample variance.

(c) Sample range:

R = Xmax −Xmin,

where Xmax denotes the largest of the Xi values and Xmin the smallest.

Example 4.3: Find the variance of the data 3, 4, 5, 6, 6, and 7, representing the number of trout
caught by a random sample of 6 fishermen on June 19, 1996, at Lake Muskoka.

Solution : We find that
6∑

i=1

x2
i = 171,

6∑
i=1

xi = 31, and n = 6. Hence,

s2 =
1

(6)(5)
[(6)(171)− (31)2] =

13

6
.

Thus, the sample standard deviation s =
√

13/6 = 1.47 and the sample range is
7− 3 = 4.

Exercises

4.1 Define suitable populations from which the fol-
lowing samples are selected:

(a) Persons in 200 homes in the city of Richmond are
called on the phone and asked to name the candi-
date they favor for election to the school board.

(b) A coin is tossed 100 times and 34 tails are recorded.

(c) Two hundred pairs of a new type of tennis shoe
were tested on the professional tour and, on aver-

age, lasted 4 months.

(d) On five different occasions it took a lawyer 21, 26,
24, 22, and 21 minutes to drive from her suburban
home to her midtown office.

4.2 The lengths of time, in minutes, that 10 patients
waited in a doctor’s office before receiving treatment
were recorded as follows: 5, 11, 9, 5, 10, 15, 6, 10, 5,
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and 10. Treating the data as a random sample, find

(a) the mean;

(b) the median;

(c) the mode.

4.3 A random sample of employees from a local man-
ufacturing plant pledged the following donations, in
dollars, to the United Fund: 100, 40, 75, 15, 20, 100,
75, 50, 30, 10, 55, 75, 25, 50, 90, 80, 15, 25, 45, and
100. Calculate

(a) the mean;

(b) the mode.

4.4 According to ecology writer Jacqueline Killeen,
phosphates contained in household detergents pass
right through our sewer systems, causing lakes to turn
into swamps that eventually dry up into deserts. The
following data show the amount of phosphates per load
of laundry, in grams, for a random sample of various
types of detergents used according to the prescribed
directions:

Laundry Phosphates per Load
Detergent (grams)
A&P Blue Sail 48
Dash 47
Concentrated All 42
Cold Water All 42
Breeze 41
Oxydol 34
Ajax 31
Sears 30
Fab 29
Cold Power 29
Bold 29
Rinso 26

For the given phosphate data, find

(a) the mean;

(b) the median;

(c) the mode.

4.5 Considering the data in Exercise 4.2, find

(a) the range;

(b) the standard deviation.

4.6 The numbers of tickets issued for traffic violations
by 8 state troopers during the Memorial Day weekend
are 5, 4, 7, 7, 6, 3, 8, and 6.

(a) If these values represent the number of tickets is-

sued by a random sample of 8 state troopers from
Montgomery County in Virginia, define a suitable
population.

(b) If the values represent the number of tickets issued
by a random sample of 8 state troopers from South
Carolina, define a suitable population.

4.7 For the data of Exercise 4.4, calculate the vari-
ance using the formula

(a) of form (4.2.1);

(b) in Theorem 4.1.

4.8 The tar contents of 8 brands of cigarettes selected
at random from the latest list released by the Federal
Trade Commission are as follows: 7.3, 8.6, 10.4, 16.1,
12.2, 15.1, 14.5, and 9.3 milligrams. Calculate

(a) the mean;

(b) the variance.

4.9 The grade-point averages of 20 college seniors se-
lected at random from a graduating class are as follows:

3.2 1.9 2.7 2.4 2.8
2.9 3.8 3.0 2.5 3.3
1.8 2.5 3.7 2.8 2.0
3.2 2.3 2.1 2.5 1.9

Calculate the standard deviation.

4.10 (a) Show that the sample variance is unchanged
if a constant c is added to or subtracted from each
value in the sample.

(b) Show that the sample variance becomes c2 times
its original value if each observation in the sample
is multiplied by c.

4.11 Verify that the variance of the sample 4, 9, 3,
6, 4, and 7 is 5.1, and using this fact, along with the
results of Exercise 4.10, find

(a) the variance of the sample 12, 27, 9, 18, 12, and 21;

(b) the variance of the sample 9, 14, 8, 11, 9, and 12.

4.12 In the 2004-05 football season, University of
Southern California had the following score differences
for the 13 games it played:

11 49 32 3 6 38 38 30 8 40 31 5 36

Find

(a) the mean score difference;

(b) the median score difference.
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4.3 Sampling Distributions

The field of statistical inference is basically concerned with generalizations and
predictions. For example, we might claim, based on the opinions of several people
interviewed on the street, that in a forthcoming election 60% of the eligible voters
in the city of Detroit favor a certain candidate. In this case, we are dealing with
a random sample of opinions from a very large finite population. As a second il-
lustration we might state that the average cost to build a residence in Charleston,
South Carolina, is between $330,000 and $335,000, based on the estimates of 3
contractors selected at random from the 30 now building in this city. The popu-
lation being sampled here is again finite but very small. Finally, let us consider a
soft-drink machine designed to dispense, on average, 240 milliliters per drink. A
company analyst who computes the mean of 40 drinks obtains x̄ = 236 milliliters
and, on the basis of this value, decides that the machine is still dispensing drinks
with an average content of μ = 240 milliliters. The 40 drinks represent a sam-
ple from the infinite population of possible drinks that will be dispensed by this
machine.

Inference about the Population from Sample Information

In each of the examples above, we computed a statistic from a sample selected from
the population, and from this statistic we made various statements concerning the
values of population parameters that may or may not be true. The company official
made the decision that the soft-drink machine dispenses drinks with an average
content of 240 milliliters, even though the sample mean was 236 milliliters, because
he knows from sampling theory that, if μ = 240 milliliters, such a sample value
could easily occur. In fact, if he ran similar tests, say every hour, he would expect
the values of the statistic x̄ to fluctuate above and below μ = 240 milliliters. Only
when the value of x̄ is substantially different from 240 milliliters will the company
analyst initiate action to adjust the machine.

Since a statistic is a random variable that depends only on the observed sample,
it must have a probability distribution.

Definition 4.5: The probability distribution of a statistic is called a sampling distribution.

The sampling distribution of a statistic depends on the distribution of the pop-
ulation, the size of the samples, and the method of choosing the samples. In the
remainder of this chapter we study several of the important sampling distribu-
tions of frequently used statistics. Applications of these sampling distributions to
problems of statistical inference are considered throughout most of the remaining
chapters. The probability distribution of X̄ is called the sampling distribution
of the mean.

What Is the Sampling Distribution of X̄?

We should view the sampling distributions of X̄ and S2 as the mechanisms from
which we will be able to make inferences on the parameters μ and σ2. The sam-
pling distribution of X̄ with sample size n is the distribution that results when
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an experiment is conducted over and over (always with sample size n) and
the many values of X̄ result. This sampling distribution, then, describes the
variability of sample averages around the population mean μ. In the case of the
soft-drink machine, knowledge of the sampling distribution of X̄ arms the analyst
with the knowledge of a “typical” discrepancy between an observed x̄ value and
true μ. The same principle applies in the case of the distribution of S2. The sam-
pling distribution produces information about the variability of s2 values around
σ2 in repeated experiments.

4.4 Sampling Distribution of Means and
the Central Limit Theorem

The first important sampling distribution to be considered is that of the mean
X̄. Suppose that a random sample of n observations is taken from a normal
population with mean μ and variance σ2. Each observation Xi, i = 1, 2, . . . , n, of
the random sample will then have the same normal distribution as the population
being sampled. It can be shown that

X̄ =
1

n
(X1 +X2 + · · ·+Xn)

has a normal distribution with mean

μX̄ =
1

n
(μ+ μ+ · · ·+ μ︸ ︷︷ ︸

n terms

) = μ and variance σ2
X̄ =

1

n2
(σ2 + σ2 + · · ·+ σ2︸ ︷︷ ︸

n terms

) =
σ2

n
.

If we are sampling from a population with unknown distribution, either finite
or infinite, the sampling distribution of X̄ will still be approximately normal with
mean μ and variance σ2/n, provided that the sample size is large. This amazing
result is an immediate consequence of the following theorem, called the Central
Limit Theorem. Figure 4.1 shows just how amazing this theorem is.

The Central Limit Theorem

Theorem 4.2: Central Limit Theorem: If X̄ is the mean of a random sample of size n taken
from a population with mean μ and finite variance σ2, then the limiting form of
the distribution of

Z =
X̄ − μ

σ/
√
n
,

as n → ∞, is the standard normal distribution n(z; 0, 1).

The normal approximation for X̄ will generally be good if n ≥ 30, provided
the population distribution is not terribly skewed. If n < 30, the approximation is
good only if the population is not too different from a normal distribution and, as
stated above, if the population is known to be normal, the sampling distribution



166 Chapter 4 Sampling Distributions and Data Descriptions

of X̄ will follow a normal distribution exactly, no matter how small the size of the
samples.

The sample size n = 30 is a guideline to use for the Central Limit Theorem.
However, as the statement of the theorem implies, the presumption of normality
on the distribution of X̄ becomes more accurate as n grows larger. In fact, Figure
4.1 illustrates how the theorem works. It shows how the distribution of X̄ becomes
closer to normal as n grows larger, beginning with the clearly nonsymmetric distri-
bution of an individual observation (n = 1), i.e., the population. It also illustrates
that the mean of X̄ remains μ for any sample size and the variance of X̄ gets
smaller as n increases.

μ

Large n (near normal)

Small to moderate n

n = 1 (population)

Figure 4.1: Illustration of the Central Limit Theorem (distribution of X̄ for n = 1,
small to moderate n, and large n).

The following example shows the use of the Central Limit Theorem to find the
probability of X̄ values.

Example 4.4: An electrical firm manufactures light bulbs that have a length of life that is
approximately normally distributed, with mean equal to 800 hours and a standard
deviation of 40 hours. Find the probability that a random sample of 16 bulbs will
have an average life of less than 775 hours.

Solution : The sampling distribution of X̄ will be approximately normal, with μX̄ = 800 and
σX̄ = 40/

√
16 = 10, where the sample standard deviation is used to estimate the

population standard deviation. The desired probability is given by the area of the
shaded region in Figure 4.2.

Corresponding to x̄ = 775, we find that

z =
X̄ − μ

s/
√
n

=
775− 800

10
= −2.5,

and therefore

P (X̄ < 775) = P (Z < −2.5) = 0.0062,

where the probability of Z < −2.5 is taken from Table A.3 in the Appendix.
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x
775 800

σ x = 10

Figure 4.2: Area for Example 4.4.

Inferences on the Population Mean

One very important application of the Central Limit Theorem is the determination
of reasonable values of the population mean μ. Topics such as hypothesis testing,
estimation, quality control, and many others make use of the Central Limit Theo-
rem. The following example illustrates the use of the Central Limit Theorem with
regard to its relationship with μ, the mean of the population, although the formal
application to the foregoing topics is relegated to future chapters.

In the following case study, an inference is drawn that makes use of the sampling
distribution of X̄. In this simple illustration, μ and σ are both known. The
Central Limit Theorem and the general notion of sampling distributions are often
used to produce evidence about some important aspect of a distribution such as
a parameter of the distribution. In the case of the Central Limit Theorem, the
parameter of interest is the mean μ. The inference made concerning μ may take
one of many forms. Often there is a desire on the part of the analyst that the data
(in the form of x̄) support (or not) some predetermined conjecture concerning the
value of μ. The use of what we know about the sampling distribution can contribute
to answering this type of question. In this case study, the concept of hypothesis
testing leads to a formal objective that we will highlight in future chapters.

Case Study 4.1: Automobile Parts: An important manufacturing process produces cylindrical
component parts for the automotive industry. It is important that the process
produce parts having a mean diameter of 5.0 millimeters. The engineer involved
conjectures that the population mean is 5.0 millimeters. An experiment is con-
ducted in which 100 parts produced by the process are selected randomly and the
diameter measured on each. It is known that the population standard deviation
is σ = 0.1 millimeter. The experiment indicates a sample average diameter of
x̄ = 5.027 millimeters. Does this sample information appear to support or refute
the engineer’s conjecture?

Solution : This example reflects the kind of problem often posed and solved with hypothesis
testing machinery introduced in future chapters. We will not use the formality
associated with hypothesis testing here, but we will illustrate the principles and
logic used.
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Whether the data support or refute the conjecture depends on the probability
that data similar to those obtained in this experiment (x̄ = 5.027) can readily
occur when in fact μ = 5.0 (Figure 4.3). In other words, how likely is it that
one can obtain x̄ ≥ 5.027 with n = 100 if the population mean is μ = 5.0? If
this probability suggests that x̄ = 5.027 is not unreasonable, the conjecture is not
refuted. If the probability is quite low, one can certainly argue that the data do not
support the conjecture that μ = 5.0. The probability that we choose to compute
is given by P (|X̄ − 5| ≥ 0.027).

x
4.973 5.0275.0

Figure 4.3: Area for Case Study 4.1.

In other words, if the mean μ is 5, what is the chance that X̄ will deviate by
as much as 0.027 millimeter?

P (|X̄ − 5| ≥ 0.027) = P (X̄ − 5 ≥ 0.027) + P (X̄ − 5 ≤ −0.027)

= 2P

(
X̄ − 5

0.1/
√
100

≥ 2.7

)
.

Here we are simply standardizing X̄ according to the Central Limit Theorem. If
the conjecture μ = 5.0 is true, X̄−5

0.1/
√
100

should follow N(0, 1). Thus,

2P

(
X̄ − 5

0.1/
√
100

≥ 2.7

)
= 2P (Z ≥ 2.7) = 2(0.0035) = 0.007.

Therefore, one would expect by chance that an x̄ would be 0.027 millimeter from
the mean in only 7 in 1000 experiments. As a result, this experiment with x̄ = 5.027
certainly does not give supporting evidence to the conjecture that μ = 5.0. In fact,
it strongly refutes the conjecture!

Example 4.5: Traveling between two campuses of a university in a city via shuttle bus takes,
on average, 28 minutes with a standard deviation of 5 minutes. In a given week,
a bus transported passengers 40 times. What is the probability that the average
transport time, i.e., the average for 40 trips, was more than 30 minutes? Assume
the mean time is measured to the nearest minute.
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Solution : In this case, μ = 28 and σ = 5. We need to calculate the probability P (X̄ > 30)
with n = 40. Since the time is measured on a continuous scale to the nearest
minute, an x̄ greater than 30 is equivalent to x̄ ≥ 30.5. Hence,

P (X̄ > 30) = P

(
X̄ − 28

5/
√
40

≥ 30.5− 28

5/
√
40

)
= P (Z ≥ 3.16) = 0.0008.

There is only a slight chance that the average time of one bus trip will exceed 30
minutes. An illustrative graph is shown in Figure 4.4.

x30.528.0

Figure 4.4: Area for Example 4.5.

Sampling Distribution of the Difference between Two Means

The illustration in Case Study 4.1 deals with notions of statistical inference on a
single mean μ. The engineer was interested in supporting a conjecture regarding
a single population mean. A far more important application involves two popula-
tions. A scientist or engineer may be interested in a comparative experiment in
which two manufacturing methods, 1 and 2, are to be compared. The basis for
that comparison is μ1 − μ2, the difference in the population means.

Suppose that we have two populations, the first with mean μ1 and variance
σ2
1 , and the second with mean μ2 and variance σ2

2 . Let the statistic X̄1 represent
the mean of a random sample of size n1 selected from the first population, and
the statistic X̄2 represent the mean of a random sample of size n2 selected from
the second population, independent of the sample from the first population. What
can we say about the sampling distribution of the difference X̄1 − X̄2 for repeated
samples of size n1 and n2? According to Theorem 4.2, the variables X̄1 and X̄2

are both approximately normally distributed with means μ1 and μ2 and variances
σ2
1/n1 and σ2

2/n2, respectively. This approximation improves as n1 and n2 increase.
By choosing independent samples from the two populations we ensure that the
variables X̄1 and X̄2 will be independent, and we can conclude, based on the
material in Chapter 2, that X̄1 − X̄2 is approximately normally distributed with
mean

μX̄1−X̄2
= μX̄1

− μX̄2
= μ1 − μ2
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and variance

σ2
X̄1−X̄2

= σ2
X̄1

+ σ2
X̄2

=
σ2
1

n1
+

σ2
2

n2
.

The Central Limit Theorem can be easily extended to the two-sample, two-population
case.

Theorem 4.3: If independent samples of size n1 and n2 are drawn at random from two pop-
ulations with means μ1 and μ2 and variances σ2

1 and σ2
2 , respectively, then the

sampling distribution of the differences of means, X̄1 − X̄2, is approximately nor-
mally distributed with mean and variance given by

μX̄1−X̄2
= μ1 − μ2 and σ2

X̄1−X̄2
=

σ2
1

n1
+

σ2
2

n2
.

Hence,

Z =
(X̄1 − X̄2)− (μ1 − μ2)√

(σ2
1/n1) + (σ2

2/n2)

is approximately a standard normal variable.

If both n1 and n2 are greater than or equal to 30, the normal approximation
for the distribution of X̄1 − X̄2 is very good when the underlying distributions
are not too far away from normal. However, even when n1 and n2 are less than
30, the normal approximation is reasonably good except when the populations are
decidedly nonnormal. Of course, if both populations are normal, then X̄1− X̄2 has
a normal distribution no matter what the sizes of n1 and n2 are.

The utility of the sampling distribution of the difference between two sample
averages is very similar to that described in Case Study 4.1 on page 167 for the case
of a single mean. Case Study 4.2 that follows focuses on the use of the difference
between two sample means to support (or not) the conjecture that two population
means are the same.

Case Study 4.2: Paint Drying Time: Two independent experiments are run in which two dif-
ferent types of paint are compared. Eighteen specimens are painted using type A,
and the drying time, in hours, is recorded for each. The same is done with type
B. The population standard deviations are both known to be 1.0 hour.

Assuming that the mean drying time is equal for the two types of paint, find
P (X̄A− X̄B > 1.0), where X̄A and X̄B are average drying times for samples of size
nA = nB = 18.

Solution : From the sampling distribution of X̄A − X̄B , we know that the distribution is
approximately normal with mean

μX̄A−X̄B
= μA − μB = 0

and variance

σ2
X̄A−X̄B

=
σ2
A

nA
+

σ2
B

nB
=

1

18
+

1

18
=

1

9
.
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μA − μB = 0 1.0

             = √1/9
XA
 – XB

σ

XA – XB

Figure 4.5: Area for Case Study 4.2.

The desired probability is given by the shaded region in Figure 4.5. Corre-
sponding to the value X̄A − X̄B = 1.0, we have

z =
1− (μA − μB)√

1/9
=

1− 0√
1/9

= 3.0;

so

P (Z > 3.0) = 1− P (Z < 3.0) = 1− 0.9987 = 0.0013.

What Do We Learn from Case Study 4.2?

The machinery in the calculation is based on the presumption that μA = μB .
Suppose, however, that the experiment is actually conducted for the purpose of
drawing an inference regarding the equality of μA and μB , the two population
mean drying times. If the two averages differ by as much as 1 hour (or more),
this clearly is evidence that would lead one to conclude that the population mean
drying time is not equal for the two types of paint, because the probability of such
a result is very low if the means are indeed equal. On the other hand, suppose
that the difference in the two sample averages is as small as, say, 15 minutes. If
μA = μB,

P [(X̄A − X̄B) > 0.25 hour] = P

(
X̄A − X̄B − 0√

1/9
>

3

4

)

= P

(
Z >

3

4

)
= 1− P (Z < 0.75)

= 1− 0.7734 = 0.2266.

Since this probability is not low, one would conclude that a difference in sample
means of 15 minutes can happen by chance (i.e., it happens frequently even though
μA = μB). As a result, that type of difference in average drying times certainly is
not a clear signal that μA �= μB.
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As we indicated earlier, a more detailed formalism regarding this and other
types of statistical inference (e.g., hypothesis testing) will be supplied in future
chapters. The Central Limit Theorem and sampling distributions discussed in the
next three sections will also play a vital role.

More on Sampling Distribution of Means—Normal Approximation to
the Binomial Distribution

Section 3.10 presented the normal approximation to the binomial distribution at
length. Conditions were given on the parameters n and p for which the distribution
of a binomial random variable can be approximated by the normal distribution.
Examples and exercises reflected the importance of the concept of the “normal
approximation.” It turns out that the Central Limit Theorem sheds even more
light on how and why this approximation works. We certainly know that a binomial
random variable is the number X of successes in n independent trials, where the
outcome of each trial is binary. We also illustrated in Chapter 1 that the proportion
computed in such an experiment is an average of a set of 0s and 1s. Indeed, while
the proportion X/n is an average, X is the sum of this set of 0s and 1s, and both
X and X/n are approximately normal if n is sufficiently large. Of course, from
what we learned in Chapter 3, we know that there are conditions on n and p that
affect the quality of the approximation, namely np ≥ 5 and nq ≥ 5.

Exercises

4.13 If all possible samples of size 16 are drawn from
a normal population with mean equal to 50 and stan-
dard deviation equal to 5, what is the probability that a
sample mean X̄ will fall in the interval from μX̄−1.9σX̄

to μX̄ −0.4σX̄? Assume that the sample means can be
measured to any degree of accuracy.

4.14 A certain type of thread is manufactured with a
mean tensile strength of 78.3 kilograms and a standard
deviation of 5.6 kilograms. How is the variance of the
sample mean changed when the sample size is

(a) increased from 64 to 196?

(b) decreased from 784 to 49?

4.15 A soft-drink machine is regulated so that the
amount of drink dispensed averages 240 milliliters with
a standard deviation of 15 milliliters. Periodically, the
machine is checked by taking a sample of 40 drinks
and computing the average content. If the mean of the
40 drinks is a value within the interval μX̄ ± 2σX̄ , the
machine is thought to be operating satisfactorily; oth-
erwise, adjustments are made. In Section 4.3, the com-
pany analyst found the mean of 40 drinks to be x̄ = 236
milliliters and concluded that the machine needed no
adjustment. Was this a reasonable decision?

4.16 The heights of 1000 students are approximately
normally distributed with a mean of 174.5 centimeters
and a standard deviation of 6.9 centimeters. Suppose
200 random samples of size 25 are drawn from this pop-
ulation and the means recorded to the nearest tenth of
a centimeter. Determine

(a) the mean and standard deviation of the sampling
distribution of X̄;

(b) the number of sample means that fall between 172.5
and 175.8 centimeters inclusive;

(c) the number of sample means falling below 172.0
centimeters.

4.17 The random variable X, representing the num-
ber of cherries in a cherry puff, has the following prob-
ability distribution:

x 4 5 6 7
P (X = x) 0.2 0.4 0.3 0.1

(a) Find the mean μ and the variance σ2 of X.

(b) Find the mean μX̄ and the variance σ2
X̄ of the mean

X̄ for random samples of 36 cherry puffs.

(c) Find the probability that the average number of
cherries in 36 cherry puffs will be less than 5.5.

4.18 If a certain machine makes electrical resistors
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having a mean resistance of 40 ohms and a standard
deviation of 2 ohms, what is the probability that a
random sample of 36 of these resistors will have a com-
bined resistance of more than 1458 ohms?

4.19 The average life of a bread-making machine is 7
years, with a standard deviation of 1 year. Assuming
that the lives of these machines follow approximately
a normal distribution, find

(a) the probability that the mean life of a random sam-
ple of 9 such machines falls between 6.4 and 7.2
years;

(b) the value of x to the right of which 15% of the
means computed from random samples of size 9
would fall.

4.20 The amount of time that a drive-through bank
teller spends on a customer is a random variable with
a mean μ = 3.2 minutes and a standard deviation
σ = 1.6 minutes. If a random sample of 64 customers
is observed, find the probability that their mean time
at the teller’s window is

(a) at most 2.7 minutes;

(b) more than 3.5 minutes;

(c) at least 3.2 minutes but less than 3.4 minutes.

4.21 In a chemical process, the amount of a certain
type of impurity in the output is difficult to control
and is thus a random variable. Speculation is that the
population mean amount of the impurity is 0.20 gram
per gram of output. It is known that the standard
deviation is 0.1 gram per gram. An experiment is con-
ducted to gain more insight regarding the speculation
that μ = 0.2. The process is run on a lab scale 50
times and the sample average x̄ turns out to be 0.23
gram per gram. Comment on the speculation that the
mean amount of impurity is 0.20 gram per gram. Make
use of the Central Limit Theorem in your work.

4.22 The distribution of heights of a certain breed of
terrier has a mean of 72 centimeters and a standard de-
viation of 10 centimeters, whereas the distribution of
heights of a certain breed of poodle has a mean of 28
centimeters with a standard deviation of 5 centimeters.
Assuming that the sample means can be measured to
any degree of accuracy, find the probability that the
sample mean for a random sample of heights of 64 ter-
riers exceeds the sample mean for a random sample of
heights of 100 poodles by at most 44.2 centimeters.

4.23 Consider Case Study 4.2 on page 170. Suppose
18 specimens were used for each type of paint in an
experiment and x̄A− x̄B , the actual difference in mean
drying time, turned out to be 1.0.

(a) Does this seem to be a reasonable result if the
two population mean drying times truly are equal?

Make use of the result in the solution to Case Study
4.2.

(b) If someone did the experiment 10,000 times un-
der the condition that μA = μB , in how many of
those 10,000 experiments would there be a differ-
ence x̄A − x̄B that was as large as (or larger than)
1.0?

4.24 Two different box-filling machines are used to fill
cereal boxes on an assembly line. The critical measure-
ment influenced by these machines is the weight of the
product in the boxes. Engineers are quite certain that
the variance of the weight of product is σ2 = 1 ounce.
Experiments are conducted using both machines with
sample sizes of 36 each. The sample averages for ma-
chines A and B are x̄A = 4.5 ounces and x̄B = 4.7
ounces. Engineers are surprised that the two sample
averages for the filling machines are so different.

(a) Use the Central Limit Theorem to determine

P (X̄B − X̄A ≥ 0.2)

under the condition that μA = μB .

(b) Do the aforementioned experiments seem to, in any
way, strongly support a conjecture that the popu-
lation means for the two machines are different?
Explain using your answer in (a).

4.25 The chemical benzene is highly toxic to hu-
mans. However, it is used in the manufacture of many
medicine dyes, leather, and coverings. Government
regulations dictate that for any production process in-
volving benzene, the water in the output of the process
must not exceed 7950 parts per million (ppm) of ben-
zene. For a particular process of concern, the water
sample was collected by a manufacturer 25 times ran-
domly and the sample average x̄ was 7960 ppm. It is
known from historical data that the standard deviation
σ is 100 ppm.

(a) What is the probability that the sample average in
this experiment would exceed the government limit
if the population mean is equal to the limit? Use
the Central Limit Theorem.

(b) Is an observed x̄ = 7960 in this experiment firm
evidence that the population mean for the process
exceeds the government limit? Answer your ques-
tion by computing

P (X̄ ≥ 7960 | μ = 7950).

Assume that the distribution of benzene concentra-
tion is normal.

4.26 Two alloys A and B are being used to manufac-
ture a certain steel product. An experiment needs to
be designed to compare the two in terms of maximum
load capacity in tons (the maximum weight that can
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be tolerated without breaking). It is known that the
two standard deviations in load capacity are equal at
5 tons each. An experiment is conducted in which 30
specimens of each alloy (A and B) are tested and the
results recorded as follows:

x̄A = 49.5, x̄B = 45.5; x̄A − x̄B = 4.

The manufacturers of alloy A are convinced that this
evidence shows conclusively that μA > μB and strongly
supports the claim that their alloy is superior. Man-
ufacturers of alloy B claim that the experiment could
easily have given x̄A − x̄B = 4 even if the two popula-
tion means are equal. In other words, “the results are
inconclusive!”

(a) Make an argument that manufacturers of alloy B
are wrong. Do it by computing

P (X̄A − X̄B > 4 | μA = μB).

(b) Do you think these data strongly support alloy A?

4.27 Consider the situation described in Example 4.4
on page 166. Do these results prompt you to question
the premise that μ = 800 hours? Give a probabilis-
tic result that indicates how rare an event X̄ ≤ 775 is
when μ = 800. On the other hand, how rare would it
be if μ truly were, say, 760 hours?

4.5 Sampling Distribution of S2

In the preceding section we learned about the sampling distribution of X̄. The
Central Limit Theorem allowed us to make use of the fact that

X̄ − μ

σ/
√
n

tends toward N(0, 1) as the sample size grows large. Sampling distributions of
important statistics allow us to learn information about parameters. Usually, the
parameters are the counterpart to the statistics in question. For example, if an
engineer is interested in the population mean resistance of a certain type of resistor,
the sampling distribution of X̄ will be exploited once the sample information is
gathered. On the other hand, if the variability in resistance is to be studied,
clearly the sampling distribution of S2 will be used in learning about the parametric
counterpart, the population variance σ2.

If a random sample of size n is drawn from a normal population with mean μ
and variance σ2, and the sample variance is computed, we obtain a value of the
statistic S2.

Theorem 4.4: If S2 is the variance of a random sample of size n taken from a normal population
having the variance σ2, then the statistic

χ2 =
(n− 1)S2

σ2
=

n∑
i=1

(Xi − X̄)2

σ2

has a chi-squared distribution with v = n− 1 degrees of freedom.

The values of the random variable χ2 are calculated from each sample by the
formula

χ2 =
(n− 1)s2

σ2
.

The probability that a random sample produces a χ2 value greater than some
specified value is equal to the area under the curve to the right of this value. It is
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customary to let χ2
α represent the χ2 value above which we find an area of α. This

is illustrated by the shaded region in Figure 4.6.

0
χ

χ

2  

2

α

α

Figure 4.6: The chi-squared distribution.

Table A.5 gives values of χ2
α for various values of α and v. The areas, α, are

the column headings; the degrees of freedom, v, are given in the left column; and
the table entries are the χ2 values. Hence, the χ2 value with 7 degrees of freedom,
leaving an area of 0.05 to the right, is χ2

0.05 = 14.067. Owing to lack of symmetry,
we must also use the tables to find χ2

0.95 = 2.167 for v = 7.
Exactly 95% of a chi-squared distribution lies between χ2

0.975 and χ2
0.025. A χ2

value falling to the right of χ2
0.025, i.e., greater than χ2

0.025, is not likely to occur
unless our assumed value of σ2 is too small. Similarly, a χ2 value falling to the left
of χ2

0.975 is unlikely unless our assumed value of σ2 is too large. In other words, it
is possible to have a χ2 value to the left of χ2

0.975 or to the right of χ2
0.025 when σ2

is correct, but if this should occur, it is more probable that the assumed value of
σ2 is in error.

Example 4.6: A manufacturer of car batteries guarantees that the batteries will last, on average,
3 years with a standard deviation of 1 year. If five of these batteries have lifetimes
of 1.9, 2.4, 3.0, 3.5, and 4.2 years, should the manufacturer still be convinced that
the batteries have a standard deviation of 1 year? Assume that the battery lifetime
follows a normal distribution.

Solution : We first find the sample variance using Theorem 4.1,

s2 =
(5)(48.26)− (15)2

(5)(4)
= 0.815.

Then

χ2 =
(4)(0.815)

1
= 3.26

is a value from a chi-squared distribution with 4 degrees of freedom. Since 95%
of the χ2 values with 4 degrees of freedom fall between 0.484 and 11.143, the
computed value with σ2 = 1 is reasonable, and therefore the manufacturer has no
reason to suspect that the standard deviation is other than 1 year.
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Degrees of Freedom as a Measure of Sample Information

The statistic

n∑
i=1

(Xi − μ)2

σ2

has a χ2-distribution with n degrees of freedom. Note also Theorem 4.4, which
indicates that the random variable

(n− 1)S2

σ2
=

n∑
i=1

(Xi − X̄)2

σ2

has a χ2-distribution with n−1 degrees of freedom. The reader may also recall that
the term degrees of freedom, used in this identical context, is discussed in Chapter
3.

Although the proof of Theorem 4.4 was not given, the reader can view Theorem
4.4 as indicating that when μ is not known and one considers the distribution of

n∑
i=1

(Xi − X̄)2

σ2
,

there is 1 less degree of freedom, or a degree of freedom is lost in the estimation
of μ (i.e., when μ is replaced by x̄). In other words, there are n degrees of free-
dom, or independent pieces of information, in the random sample from the normal
distribution. When the data (the values in the sample) are used to compute the
mean, there is 1 less degree of freedom in the information used to estimate σ2.

4.6 t-Distribution

In Section 4.4, we discussed the utility of the Central Limit Theorem. Its applica-
tions revolve around inferences on a population mean or the difference between two
population means. Use of the Central Limit Theorem and the normal distribution
is certainly helpful in this context. However, it was assumed that the population
standard deviation is known. This assumption may not be unreasonable in situ-
ations where the engineer is quite familiar with the system or process. However,
in many experimental scenarios, assuming knowledge of σ is certainly no more
reasonable than assuming knowledge of the population mean μ. Often, in fact, an
estimate of σ must be supplied by the same sample information that produced the
sample average x̄. As a result, a natural statistic to consider to deal with inferences
on μ is

T =
X̄ − μ

S/
√
n
,

since S is the sample analog to σ. If the sample size is small, the values of S2 fluc-
tuate considerably from sample to sample (see Exercise 4.34 on page 191) and the
distribution of T deviates appreciably from that of a standard normal distribution.
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If the sample size is large enough, say n ≥ 30, the distribution of T does not
differ considerably from the standard normal. However, for n < 30, it is useful to
deal with the exact distribution of T . In developing the sampling distribution of T ,
we shall assume that our random sample was selected from a normal population.
We can then write

T =
(X̄ − μ)/(σ/

√
n)√

S2/σ2
=

Z√
V/(n− 1)

,

where

Z =
X̄ − μ

σ/
√
n

has the standard normal distribution and

V =
(n− 1)S2

σ2

has a chi-squared distribution with v = n−1 degrees of freedom. In sampling from
normal populations, we can show that X̄ and S2 are independent, and consequently
so are Z and V . The following theorem gives the definition of a random variable
T as a function of Z (standard normal) and χ2. For completeness, the density
function of the t-distribution is given.

Theorem 4.5: Let Z be a standard normal random variable and V a chi-squared random variable
with v degrees of freedom. If Z and V are independent, then the distribution of
the random variable T , where

T =
Z√
V/v

,

is given by the density function

h(t) =
Γ[(v + 1)/2]

Γ(v/2)
√
πv

(
1 +

t2

v

)−(v+1)/2

, −∞ < t < ∞.

This is known as the Student t-distribution with v degrees of freedom.

From the foregoing and the theorem above we have the following corollary.

Corollary 4.1: Let X1, X2, . . . , Xn be independent random variables that are all normal with
mean μ and standard deviation σ. Let

X̄ =
1

n

n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

Then the random variable T = X̄−μ
S/

√
n
has a Student t-distribution with v = n− 1

degrees of freedom. This will often be referred to as merely the t-distribution.
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What Does the t-Distribution Look Like?

The distribution of T is similar to the distribution of Z in that they both are
symmetric about a mean of zero. Both distributions are bell shaped, but the t-
distribution is more variable, owing to the fact that the T -values depend on the
fluctuations of two quantities, X̄ and S2, whereas the Z-values depend only on the
changes in X̄ from sample to sample. The distribution of T differs from that of Z
in that the variance of T depends on the sample size n and is always greater than
1. Only when the sample size n → ∞ will the two distributions become the same.
In Figure 4.7, we show the relationship between a standard normal distribution
(v = ∞) and t-distributions with 2 and 5 degrees of freedom. The percentage
points of the t-distribution are given in Table A.4.

�2 �1 0 1 2

v � 2

v � �

v � 5

Figure 4.7: The t-distribution curves for v = 2, 5,
and ∞.

t
t1�  � �t t0

ααα

Figure 4.8: Symmetry property (about 0) of the
t-distribution.

It is customary to let tα represent the t-value above which we find an area equal
to α. Hence, the t-value with 10 degrees of freedom leaving an area of 0.025 to
the right is t = 2.228. Since the t-distribution is symmetric about a mean of zero,
we have t1−α = −tα; that is, the t-value leaving an area of 1− α to the right and
therefore an area of α to the left is equal to the negative t-value that leaves an area
of α in the right tail of the distribution (see Figure 4.8). That is, t0.95 = −t0.05,
t0.99 = −t0.01, and so forth.

Example 4.7: The t-value with v = 14 degrees of freedom that leaves an area of 0.025 to the
left, and therefore an area of 0.975 to the right, is

t0.975 = −t0.025 = −2.145.

Example 4.8: Find P (−t0.025 < T < t0.05).
Solution : Since t0.05 leaves an area of 0.05 to the right, and −t0.025 leaves an area of 0.025

to the left, we find a total area of

1− 0.05− 0.025 = 0.925

between −t0.025 and t0.05. Hence

P (−t0.025 < T < t0.05) = 0.925.
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Example 4.9: Find k such that P (k < T < −1.761) = 0.045 for a random sample of size 15

selected from a normal distribution and T = X−μ
s/

√
n
.

t
0k − t0.005

0.045

Figure 4.9: The t-values for Example 4.9.

Solution : From Table A.4 we note that 1.761 corresponds to t0.05 when v = 14. Therefore,
−t0.05 = −1.761. Since k in the original probability statement is to the left of
−t0.05 = −1.761, let k = −tα. Then, from Figure 4.9, we have

0.045 = 0.05− α, or α = 0.005.

Hence, from Table A.4 with v = 14,

k = −t0.005 = −2.977 and P (−2.977 < T < −1.761) = 0.045.

Example 4.10: A chemical engineer claims that the population mean yield of a certain batch
process is 500 grams per liter of raw material. To check this claim he samples 25
batches each month. If the computed t-value falls between −t0.05 and t0.05, he is
satisfied with this claim. What conclusion should he draw from a sample that has
a mean x̄ = 518 grams per liter and a sample standard deviation s = 40 grams?
Assume the distribution of yields to be approximately normal.

Solution : From Table A.4 we find that t0.05 = 1.711 for 24 degrees of freedom. Therefore, the
engineer can be satisfied with his claim if a sample of 25 batches yields a t-value
between −1.711 and 1.711. If μ = 500, then

t =
518− 500

40/
√
25

= 2.25,

a value well above 1.711. The probability of obtaining a t-value, with v = 24, equal
to or greater than 2.25 is approximately 0.02. If μ > 500, the value of t computed
from the sample is more reasonable. Hence, the engineer is likely to conclude that
the process produces a better product than he thought.

What Is the t-Distribution Used For?

The t-distribution is used extensively in problems that deal with inference about
the population mean (as illustrated in Example 4.10) or in problems that involve
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comparative samples (i.e., in cases where one is trying to determine if means from
two samples are significantly different). The use of the distribution will be extended
in Chapters 5, 6, and 7. The reader should note that use of the t-distribution for
the statistic

T =
X̄ − μ

S/
√
n

requires that X1, X2, . . . , Xn be normal. The use of the t-distribution and the
sample size consideration do not relate to the Central Limit Theorem. The use
of the standard normal distribution rather than T for n ≥ 30 merely implies that
S is a sufficiently good estimator of σ in this case. In chapters that follow the
t-distribution finds extensive usage.

4.7 F -Distribution

We have motivated the t-distribution in part by its application to problems in which
there is comparative sampling (i.e., a comparison between two sample means). For
example, some of our examples in future chapters will take a more formal approach:
a chemical engineer collects data on two catalysts, a biologist collects data on
two growth media, or a chemist gathers data on two methods of coating material
to inhibit corrosion. While it is of interest to let sample information shed light
on two population means, it is often the case that a comparison of variability is
equally important, if not more so. The F -distribution finds enormous application
in comparing sample variances. Applications of the F -distribution are found in
problems involving two or more samples.

The statistic F is defined to be the ratio of two independent chi-squared random
variables, each divided by its number of degrees of freedom. Hence, we can write

F =
U/v1
V/v2

,

where U and V are independent random variables having chi-squared distributions
with v1 and v2 degrees of freedom, respectively. We shall now state the sampling
distribution of F .

Theorem 4.6: Let U and V be two independent random variables having chi-squared distribu-
tions with v1 and v2 degrees of freedom, respectively. Then the distribution of the

random variable F = U/v1

V/v2
is given by the density function

h(f) =

{
Γ[(v1+v2)/2](v1/v2)

v1/2

Γ(v1/2)Γ(v2/2)
f(v1/2)−1

(1+v1f/v2)(v1+v2)/2 , f > 0,

0, f ≤ 0.

This is known as the F-distribution with v1 and v2 degrees of freedom (d.f.).

We will make considerable use of the random variable F in future chapters. How-
ever, the density function will not be used and is given only for completeness;
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instead, we will take F values from Table A.6 in the Appendix. The curve of the
F -distribution depends not only on the two parameters v1 and v2 but also on the
order in which we state them. Once these two values are given, we can identify the
curve. Typical F -distributions are shown in Figure 4.10.

f
0

d.f. � (6, 10)

d.f. � (10, 30)

Figure 4.10: Typical F -distributions.

f
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Figure 4.11: Illustration of the fα for the F -
distribution.

Let fα be the f -value above which we find an area equal to α. This is illustrated
by the shaded region in Figure 4.11. Table A.6 gives values of fα only for α = 0.05
and α = 0.01 for various combinations of the degrees of freedom v1 and v2. Hence,
the f -value with 6 and 10 degrees of freedom, leaving an area of 0.05 to the right,
is f0.05 = 3.22. By means of the following theorem, Table A.6 can also be used to
find values of f0.95 and f0.99. The proof is left for the reader.

Theorem 4.7: Writing fα(v1, v2) for fα with v1 and v2 degrees of freedom, we obtain

f1−α(v1, v2) =
1

fα(v2, v1)
.

Thus, the f -value with 6 and 10 degrees of freedom, leaving an area of 0.95 to the
right, is

f0.95(6, 10) =
1

f0.05(10, 6)
=

1

4.06
= 0.246.

The F -Distribution with Two Sample Variances

Suppose that random samples of size n1 and n2 are selected from two normal
populations with variances σ2

1 and σ2
2 , respectively. From Theorem 4.4, we know

that

χ2
1 =

(n1 − 1)S2
1

σ2
1

and χ2
2 =

(n2 − 1)S2
2

σ2
2

are random variables having chi-squared distributions with v1 = n1 − 1 and v2 =
n2 − 1 degrees of freedom. Furthermore, since the samples are selected at random,
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we are dealing with independent random variables. Then, using Theorem 4.6 with
χ2
1 = U and χ2

2 = V , we obtain the following result.

Theorem 4.8: If S2
1 and S2

2 are the variances of independent random samples of size n1 and n2

taken from normal populations with variances σ2
1 and σ2

2 , respectively, then

F =
S2
1/σ

2
1

S2
2/σ

2
2

=
σ2
2S

2
1

σ2
1S

2
2

has an F -distribution with v1 = n1 − 1 and v2 = n2 − 1 degrees of freedom.

Example 4.11: A statistics department at one university gives qualifying exams for its graduate
students. The qualifying exams consist of two parts: theory and applications. The
following data summary is for student scores on these two exams in one year.

Exam n x̄ s
Theory
Application

16
16

76.2
88.3

13.6
7.5

Assuming normality on both samples, is it reasonable to believe that variances
for the scores of both subjects are equal?

Solution : Suppose both variances, denoted respectively by σ2
1 and σ2

2 , are the same. Using
Theorem 4.8, we conclude that

F =
S2
1/σ

2
1

S2
2/σ

2
2

=
S2
1

S2
2

follows an F -distribution with degrees of freedom 15 and 15. Based on the data,
we compute

f =
13.62

7.52
= 3.288.

From Table A.6, we find out that f0.05;15,15 = 2.33, which means that the prob-
ability of S2

1/S
2
2 being larger than 2.33 is only 5%. Since our observed f -value is

3.288, which is larger than 2.33, it would not be reasonable to assume that the
variances for the scores of both subjects are equal.

What Is the F -Distribution Used For?

We answered this question, in part, at the beginning of this section. The F -
distribution is used in two-sample situations to draw inferences about the pop-
ulation variances. This involves the application of Theorem 4.8. However, the
F -distribution can also be applied to many other types of problems involving sam-
ple variances. In fact, the F -distribution is called the variance ratio distribution.
As an illustration, consider Case Study 4.2, in which two paints, A and B, were
compared with regard to mean drying time. The normal distribution applies nicely
(assuming that σA and σB are known). However, suppose that there are three types
of paints to compare, say A, B, and C. We wish to determine if the population
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means are equivalent. Suppose that important summary information from the
experiment is as follows:

Paint Sample Mean Sample Variance Sample Size

A X̄A = 4.5 s2A = 0.20 10

B X̄B = 5.5 s2B = 0.14 10

C X̄C = 6.5 s2C = 0.11 10

The problem centers around whether or not the sample averages (x̄A, x̄B , x̄C)
are far enough apart. The implication of “far enough apart” is very important.
It would seem reasonable that if the variability between sample averages is larger
than what one would expect by chance, the data do not support the conclusion that
μA = μB = μC . Whether these sample averages could have occurred by chance
depends on the variability within samples, as quantified by s2A, s

2
B , and s2C .

An analysis that involves all of the data would attempt to determine if the
variability between the sample averages and the variability within the samples
could have occurred jointly if in fact the populations have a common mean. Notice
that the key to this analysis centers around the two following sources of variability:

(1) Variability within samples (between observations in distinct samples)

(2) Variability between samples (between sample averages)

Clearly, if the variability in (1) is considerably larger than that in (2), there will
be considerable overlap in the sample data, a signal that the data could all have
come from a common distribution.

4.8 Graphical Presentation

Often the end result of a statistical analysis is the estimation of parameters of a
postulated model. This is natural for scientists and engineers since they often
deal in modeling. A statistical model is not deterministic but, rather, must entail
some probabilistic aspects. A model form is often the foundation of assumptions
that are made by the analyst. For example, the scientist in Example 1.2 may wish
to draw some level of distinction between the nitrogen and no-nitrogen populations
through the sample information. The analysis may require a certain model for
the data, for example, that the two samples come from normal or Gaussian
distributions. See Chapter 3 for a discussion of the normal distribution.

Obviously, the user of statistical methods cannot generate sufficient information
or experimental data to characterize the population totally. But sets of data are
often used to learn about certain properties of the population. Scientists and engi-
neers are accustomed to dealing with data sets. The importance of characterizing
or summarizing the nature of collections of data should be obvious. Often a sum-
mary of a collection of data via a graphical display can provide insight regarding
the system from which the data were taken.

In this section, the role of sampling and the display of data for enhancement of
statistical inference is explored in detail. We introduce some simple but often
effective displays that complement the study of statistical populations.
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Scatter Plot

At times the model postulated may take on a somewhat complicated form. Con-
sider, for example, a textile manufacturer who designs an experiment where cloth
specimens that contain various percentages of cotton are produced. Consider the
data in Table 4.1.

Table 4.1: Tensile Strength

Cotton Percentage Tensile Strength

15 7, 7, 9, 8, 10
20 19, 20, 21, 20, 22
25 21, 21, 17, 19, 20
30 8, 7, 8, 9, 10

Five cloth specimens are manufactured for each of the four cotton percentages.
In this case, both the model for the experiment and the type of analysis used
should take into account the goal of the experiment and important input from
the textile scientist. Some simple graphics can shed important light on the clear
distinction between the samples. See Figure 4.12; the sample means and variability
are depicted nicely in the scatter plot.
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Figure 4.12: Scatter plot of tensile strength and cotton percentages.

One possible goal of this experiment is simply to determine which cotton per-
centages are truly distinct from the others. In other words, as in the case of the
nitrogen/no-nitrogen data, for which cotton percentages are there clear distinctions
between the populations or, more specifically, between the population means? In
this case, perhaps a reasonable model is that each sample comes from a normal
distribution. Here the goal is very much like that of the nitrogen/no-nitrogen data
except that more samples are involved. The formalism of the analysis involves
notions of hypothesis testing discussed in Chapter 6. Incidentally, this formality
is perhaps not necessary in light of the diagnostic plot. But does this describe
the real goal of the experiment and hence the proper approach to data analysis?
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It is likely that the scientist anticipates the existence of a maximum population
mean tensile strength in the range of cotton concentration in the experiment. Here
the analysis of the data should revolve around a different type of model, one that
postulates a type of structure relating the population mean tensile strength to the
cotton concentration. In other words, a model may be written

μt,c = β0 + β1C + β2C
2,

where μt,c is the population mean tensile strength, which varies with the amount
of cotton in the product C. The implication of this model is that for a fixed cotton
level, there is a population of tensile strength measurements and the population
mean is μt,c. This type of model, called a regression model, is discussed in Chap-
ter 7. The functional form is chosen by the scientist. At times the data analysis
may suggest that the model be changed. Then the data analyst “entertains” a
model that may be altered after some analysis is done. The use of an empirical
model is accompanied by estimation theory, where β0, β1, and β2 are estimated
by the data. Further, statistical inference can then be used to determine model
adequacy.

Two points become evident from the two data illustrations here: (1) The type
of model used to describe the data often depends on the goal of the experiment;
and (2) the structure of the model should take advantage of nonstatistical scientific
input. A selection of a model represents a fundamental assumption upon which
the resulting statistical inference is based.

It will become apparent throughout the book how important graphics can be.
Often, plots can illustrate information that allows the results of the formal statisti-
cal inference to be better communicated to the scientist or engineer. At times, plots
or exploratory data analysis can teach the analyst something not retrieved from
the formal analysis. Almost any formal analysis requires assumptions that evolve
from the model of the data. Graphics can nicely highlight violation of assump-
tions that would otherwise go unnoticed. Throughout the book, graphics are used
extensively to supplement formal data analysis. The following sections reveal some
graphical tools that are useful in exploratory or descriptive data analysis.

Stem-and-Leaf Plot

Statistical data, generated in large masses, can be very useful for studying the
behavior of the distribution if presented in a combined tabular and graphic display
called a stem-and-leaf plot.

To illustrate the construction of a stem-and-leaf plot, consider the data of Table
4.2, which specifies the “life” of 40 similar car batteries recorded to the nearest tenth
of a year. The batteries are guaranteed to last 3 years. First, split each observation
into two parts consisting of a stem and a leaf such that the stem represents the
digit preceding the decimal and the leaf corresponds to the decimal part of the
number. In other words, for the number 3.7, the digit 3 is designated the stem and
the digit 7 is the leaf. The four stems 1, 2, 3, and 4 for our data are listed vertically
on the left side in Table 4.3; the leaves are recorded on the right side opposite the
appropriate stem value. Thus, the leaf 6 of the number 1.6 is recorded opposite
the stem 1; the leaf 5 of the number 2.5 is recorded opposite the stem 2; and so
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forth. The number of leaves recorded opposite each stem is summarized under the
frequency column.

Table 4.2: Car Battery Life

2.2 4.1 3.5 4.5 3.2 3.7 3.0 2.6
3.4 1.6 3.1 3.3 3.8 3.1 4.7 3.7
2.5 4.3 3.4 3.6 2.9 3.3 3.9 3.1
3.3 3.1 3.7 4.4 3.2 4.1 1.9 3.4
4.7 3.8 3.2 2.6 3.9 3.0 4.2 3.5

Table 4.3: Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1
2
3
4

69
25669
0011112223334445567778899
11234577

2
5
25
8

The stem-and-leaf plot of Table 4.3 contains only four stems and consequently
does not provide an adequate picture of the distribution. To remedy this problem,
we need to increase the number of stems in our plot. One simple way to accomplish
this is to write each stem value twice and then record the leaves 0, 1, 2, 3, and 4
opposite the appropriate stem value where it appears for the first time, and the
leaves 5, 6, 7, 8, and 9 opposite this same stem value where it appears for the second
time. This modified double-stem-and-leaf plot is illustrated in Table 4.4, where the
stems corresponding to leaves 0 through 4 have been coded by the symbol � and
the stems corresponding to leaves 5 through 9 by the symbol ·.

Table 4.4: Double-Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1·
2�
2·
3�
3·
4�
4·

69
2
5669
001111222333444
5567778899
11234
577

2
1
4

15
10
5
3

In any given problem, we must decide on the appropriate stem values. This
decision is made somewhat arbitrarily, although we are guided by the size of our
sample. Usually, we choose between 5 and 20 stems. The smaller the number of
data available, the smaller is our choice for the number of stems. For example, if
the data consist of numbers from 1 to 21 representing the number of people in a
cafeteria line on 40 randomly selected workdays and we choose a double-stem-and-
leaf plot, the stems will be 0�, 0·, 1�, 1·, and 2� so that the smallest observation
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1 has stem 0� and leaf 1, the number 18 has stem 1· and leaf 8, and the largest
observation 21 has stem 2� and leaf 1. On the other hand, if the data consist of
numbers from $18,800 to $19,600 representing the best possible deals on 100 new
automobiles from a certain dealership and we choose a single-stem-and-leaf plot,
the stems will be 188, 189, 190, . . . , 196 and the leaves will now each contain two
digits. A car that sold for $19,385 would have a stem value of 193 and the two-digit
leaf 85. Multiple-digit leaves belonging to the same stem are usually separated by
commas in the stem-and-leaf plot. Decimal points in the data are generally ignored
when all the digits to the right of the decimal represent the leaf. Such was the
case in Tables 4.3 and 4.4. However, if the data consist of numbers ranging from
21.8 to 74.9, we might choose the digits 2, 3, 4, 5, 6, and 7 as our stems so that a
number such as 48.3 would have a stem value of 4 and a leaf of 8.3.

The stem-and-leaf plot represents an effective way to summarize data. Another
way is through the use of the frequency distribution, where the data, grouped
into different classes or intervals, can be constructed by counting the leaves be-
longing to each stem and noting that each stem defines a class interval. In Table
4.3, the stem 1 with 2 leaves defines the interval 1.0–1.9 containing 2 observations;
the stem 2 with 5 leaves defines the interval 2.0–2.9 containing 5 observations; the
stem 3 with 25 leaves defines the interval 3.0–3.9 with 25 observations; and the
stem 4 with 8 leaves defines the interval 4.0–4.9 containing 8 observations. For the
double-stem-and-leaf plot of Table 4.4, the stems define the seven class intervals
1.5–1.9, 2.0–2.4, 2.5–2.9, 3.0–3.4, 3.5–3.9, 4.0–4.4, and 4.5–4.9 with frequencies 2,
1, 4, 15, 10, 5, and 3, respectively.

Histogram

Dividing each class frequency by the total number of observations, we obtain the
proportion of the set of observations in each of the classes. A table listing relative
frequencies is called a relative frequency distribution. The relative frequency
distribution for the data of Table 4.2, showing the midpoint of each class interval,
is given in Table 4.5.

Table 4.5: Relative Frequency Distribution of Battery Life

Class Class Frequency, Relative
Interval Midpoint f Frequency
1.5–1.9 1.7 2 0.050
2.0–2.4 2.2 1 0.025
2.5–2.9 2.7 4 0.100
3.0–3.4 3.2 15 0.375
3.5–3.9 3.7 10 0.250
4.0–4.4 4.2 5 0.125
4.5–4.9 4.7 3 0.075

The information provided by a relative frequency distribution in tabular form is
easier to grasp if presented graphically. Using the midpoint of each interval and the
corresponding relative frequency, we construct a relative frequency histogram
(Figure 4.13).
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Figure 4.13: Relative frequency histogram.

Many continuous frequency distributions can be represented graphically by the
characteristic bell-shaped curve of Figure 4.14. Graphical tools such as what we see
in Figures 4.13 and 4.14 aid in the characterization of the nature of the population.

0

f (x )

Battery Life (years)
1 2 3 4 5 6

Figure 4.14: Estimating frequency distribution.

A distribution is said to be symmetric if it can be folded along a vertical axis
so that the two sides coincide. A distribution that lacks symmetry with respect to
a vertical axis is said to be skewed. The distribution illustrated in Figure 4.15(a)
is said to be skewed to the right since it has a long right tail and a much shorter left
tail. In Figure 4.15(b) we see that the distribution is symmetric, while in Figure
4.15(c) it is skewed to the left.

If we rotate a stem-and-leaf plot counterclockwise through an angle of 90◦,
we observe that the resulting columns of leaves form a picture that is similar
to a histogram. Consequently, if our primary purpose in looking at the data is to
determine the general shape or form of the distribution, it will seldom be necessary
to construct a relative frequency histogram.
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(a) (b) (c)

Figure 4.15: Skewness of data.

Box-and-Whisker Plot or Box Plot

Another display that is helpful for reflecting properties of a sample is the box-
and-whisker plot. This plot encloses the interquartile range of the data in a box
that has the median displayed within. The interquartile range has as its extremes
the 75th percentile (upper quartile) and the 25th percentile (lower quartile). In
addition to the box, “whiskers” extend, showing extreme observations in the sam-
ple. For reasonably large samples, the display shows center of location, variability,
and the degree of asymmetry.

In addition, a variation called a box plot can provide the viewer with infor-
mation regarding which observations may be outliers. Outliers are observations
that are considered to be unusually far from the bulk of the data. There are many
statistical tests that are designed to detect outliers. Technically, one may view
an outlier as being an observation that represents a “rare event” (there is a small
probability of obtaining a value that far from the bulk of the data). The concept
of outliers resurfaces in Chapter 7 in the context of regression analysis.

The visual information in the box-and-whisker plot or box plot is not intended
to be a formal test for outliers. Rather, it is viewed as a diagnostic tool. While the
determination of which observations are outliers varies with the type of software
that is used, one common procedure is to use a multiple of the interquartile
range. For example, if its distance from the box exceeds 1.5 times the interquartile
range (in either direction), an observation may be labeled an outlier.

Example 4.12: Nicotine content was measured in a random sample of 40 cigarettes. The data are
displayed in Table 4.6.

Table 4.6: Nicotine Data for Example 4.12

1.09 1.92 2.31 1.79 2.28 1.74 1.47 1.97
0.85 1.24 1.58 2.03 1.70 2.17 2.55 2.11
1.86 1.90 1.68 1.51 1.64 0.72 1.69 1.85
1.82 1.79 2.46 1.88 2.08 1.67 1.37 1.93
1.40 1.64 2.09 1.75 1.63 2.37 1.75 1.69
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1.0 1.5 2.0 2.5

Nicotine

Figure 4.16: Box-and-whisker plot for Example 4.12.

The decimal point is 1 digit(s) to the left of the |

7 | 2

8 | 5

9 |

10 | 9

11 |

12 | 4

13 | 7

14 | 07

15 | 18

16 | 3447899

17 | 045599

18 | 2568

19 | 0237

20 | 389

21 | 17

22 | 8

23 | 17

24 | 6

25 | 5

Figure 4.17: Stem-and-leaf plot for the nicotine data.

Figure 4.16 shows the box-and-whisker plot of the data, depicting the obser-
vations 0.72 and 0.85 as mild outliers in the lower tail, whereas the observation
2.55 is a mild outlier in the upper tail. In this example, the interquartile range
is 0.365, and 1.5 times the interquartile range is 0.5475. Figure 4.17 provides a
stem-and-leaf plot of the data.

Exercises

4.28 For a chi-squared distribution, find

(a) χ2
0.005 when v = 5;

(b) χ2
0.05 when v = 19;

(c) χ2
0.01 when v = 12.

4.29 For a chi-squared distribution, find
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(a) χ2
0.025 when v = 15;

(b) χ2
0.01 when v = 7;

(c) χ2
0.05 when v = 24.

4.30 For a chi-squared distribution, find χ2
α such that

(a) P (X2 > χ2
α) = 0.01 when v = 21;

(b) P (X2 < χ2
α) = 0.95 when v = 6;

(c) P (χ2
α < X2 < 23.209) = 0.015 when v = 10.

4.31 For a chi-squared distribution, find χ2
α such that

(a) P (X2 > χ2
α) = 0.99 when v = 4;

(b) P (X2 > χ2
α) = 0.025 when v = 19;

(c) P (37.652 < X2 < χ2
α) = 0.045 when v = 25.

4.32 The scores on a placement test given to college
freshmen for the past five years are approximately nor-
mally distributed with a mean μ = 74 and a variance
σ2 = 8. Would you still consider σ2 = 8 to be a valid
value of the variance if a random sample of 20 students
who take the placement test this year obtain a value of
s2 = 20?

4.33 Assume the sample variances to be continuous
measurements. Find the probability that a random
sample of 25 observations, from a normal population
with variance σ2 = 6, will have a sample variance S2

(a) greater than 9.1;

(b) between 3.462 and 10.745.

4.34 Show that the variance of S2 for random sam-
ples of size n from a normal population decreases as
n becomes large. [Hint: First find the variance of
(n− 1)S2/σ2.]

4.35 (a) Find P (T < 2.365) when v = 7.

(b) Find P (T > 1.318) when v = 24.

(c) Find P (−1.356 < T < 2.179) when v = 12.

(d) Find P (T > −2.567) when v = 17.

4.36 (a) Find t0.025 when v = 14.

(b) Find −t0.10 when v = 10.

(c) Find t0.995 when v = 7.

4.37 Given a random sample of size 24 from a normal
distribution, find k such that

(a) P (−2.069 < T < k) = 0.965;

(b) P (k < T < 2.807) = 0.095;

(c) P (−k < T < k) = 0.90.

4.38 (a) Find P (−t0.005 < T < t0.01) for v = 20.

(b) Find P (T > −t0.025).

4.39 A manufacturing firm claims that the batter-
ies used in its electronic games will last an average of
30 hours. To maintain this average, 16 batteries are
tested each month. If the computed t-value falls be-
tween −t0.025 and t0.025, the firm is satisfied with its
claim. What conclusion should the firm draw from a
sample that has a mean of x̄ = 27.5 hours and a stan-
dard deviation of s = 5 hours? Assume the distribution
of battery lives to be approximately normal.

4.40 A maker of a certain brand of low-fat cereal bars
claims that the average saturated fat content is 0.5
gram. In a random sample of 8 cereal bars of this
brand, the saturated fat content was 0.6, 0.7, 0.7, 0.3,
0.4, 0.5, 0.4, and 0.2. Would you agree with the claim?
Assume a normal distribution.

4.41 For an F -distribution, find

(a) f0.05 with v1 = 7 and v2 = 15;

(b) f0.05 with v1 = 15 and v2 = 7:

(c) f0.01 with v1 = 24 and v2 = 19;

(d) f0.95 with v1 = 19 and v2 = 24;

(e) f0.99 with v1 = 28 and v2 = 12.

4.42 Construct a box-and-whisker plot of these data,
which represent the lifetimes, in hours, of fifty 40-watt,
110-volt internally frosted incandescent lamps taken
from forced life tests:

919 1196 785 1126 936 918
1156 920 948 1067 1092 1162
1170 929 950 905 972 1035
1045 855 1195 1195 1340 1122
938 970 1237 956 1102 1157
978 832 1009 1157 1151 1009
765 958 902 1022 1333 811

1217 1085 896 958 1311 1037
702 923

4.43 Consider the following measurements of the
heat-producing capacity of the coal produced by two
mines (in millions of calories per ton):

Mine 1: 8260 8130 8350 8070 8340
Mine 2: 7950 7890 7900 8140 7920 7840

Can it be concluded that the two population variances
are equal?

4.44 Pull-strength tests on 10 soldered leads for a
semiconductor device yield the following results, in
pounds of force required to rupture the bond:

19.8 12.7 13.2 16.9 10.6
18.8 11.1 14.3 17.0 12.5

Another set of 8 leads was tested after encapsulation
to determine whether the pull strength had been in-
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creased by encapsulation of the device, with the fol-
lowing results:

24.9 22.8 23.6 22.1 20.4 21.6 21.8 22.5

Comment on the evidence available concerning equal-
ity of the two population variances.

Review Exercises

4.45 The following data represent the length of life,
in seconds, of 50 fruit flies subject to a new spray in a
controlled laboratory experiment:

17 20 10 9 23 13 12 19 18 24
12 14 6 9 13 6 7 10 13 7
16 18 8 13 3 32 9 7 10 11
13 7 18 7 10 4 27 19 16 8
7 10 5 14 15 10 9 6 7 15

Construct a box-and-whisker plot and comment on the
nature of the sample. Compute the sample mean and
sample standard deviation.

4.46 In testing for carbon monoxide in a certain
brand of cigarette, the data, in milligrams per
cigarette, were coded by subtracting 12 from each ob-
servation. Use the results of Exercise 4.10 on page 163
to find the sample standard deviation for the carbon
monoxide content of a random sample of 15 cigarettes
of this brand if the coded measurements are 3.8, −0.9,
5.4, 4.5, 5.2, 5.6, 2.7, −0.1, −0.3, −1.7, 5.7, 3.3, 4.4,
−0.5, and 1.9.

4.47 If S2
1 and S2

2 represent the variances of indepen-
dent random samples of size n1 = 8 and n2 = 12,
taken from normal populations with equal variances,
find P (S2

1/S
2
2 < 4.89).

4.48 If the number of hurricanes that hit a certain
area of the eastern United States per year is a random
variable having a Poisson distribution with μ = 6, find
the probability that this area will be hit by

(a) exactly 15 hurricanes in 2 years;

(b) at most 9 hurricanes in 2 years.

4.49 The following data represent the length of life in
years, measured to the nearest tenth, of 30 similar fuel
pumps:

2.0 3.0 0.3 3.3 1.3 0.4
0.2 6.0 5.5 6.5 0.2 2.3
1.5 4.0 5.9 1.8 4.7 0.7
4.5 0.3 1.5 0.5 2.5 5.0
1.0 6.0 5.6 6.0 1.2 0.2

Construct a box-and-whisker plot. Comment on the
outliers in the data.

4.50 If S2
1 and S2

2 represent the variances of indepen-
dent random samples of size n1 = 25 and n2 = 31,
taken from normal populations with variances σ2

1 = 10

and σ2
2 = 15, respectively, find

P (S2
1/S

2
2 > 1.26).

4.51 Consider Example 4.12 on page 189. Comment
on any outliers.

4.52 The breaking strength X of a certain rivet used
in a machine engine has a mean 5000 psi and stan-
dard deviation 400 psi. A random sample of 36 rivets
is taken. Consider the distribution of X̄, the sample
mean breaking strength.

(a) What is the probability that the sample mean falls
between 4800 psi and 5200 psi?

(b) What sample n would be necessary in order to have

P (4900 < X̄ < 5100) = 0.99?

4.53 A taxi company tests a random sample of 10
steel-belted radial tires of a certain brand and records
the following tread wear: 48,000, 53,000, 45,000,
61,000, 59,000, 56,000, 63,000, 49,000, 53,000, and
54,000 kilometers. The marketing claim for the tires
is that, on the average, the tires last for 53,000 kilome-
ters of use. In your answer, compute

t =
x̄− 53, 000

s/
√
10

and determine from Table A.4 (with 9 degrees of free-
dom) whether the computed t-value is reasonable or
appears to be a rare event.

4.54 Two distinct solid fuel propellants, type A and
type B, are being considered for a space program activ-
ity. Burning rates of the propellant are crucial. Ran-
dom samples of 20 specimens of the two propellants
are taken with sample means 20.5 cm/sec for propel-
lant A and 24.50 cm/sec for propellant B. It is gen-
erally assumed that the variability in burning rate is
roughly the same for the two propellants and is given
by a population standard deviation of 5 cm/sec. As-
sume that the burning rates for the propellants are
approximately normal and hence make use of the Cen-
tral Limit Theorem. Nothing is known about the two
population mean burning rates, and it is hoped that
this experiment might shed some light on them.

(a) If, indeed, μA = μB , what is P (X̄B − X̄A ≥ 4.0)?
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(b) Use your answer in (a) to shed some light on the
proposition that μA = μB .

4.55 The concentration of an active ingredient in the
output of a chemical reaction is strongly influenced by
the catalyst that is used in the reaction. It is believed
that when catalyst A is used, the population mean
concentration exceeds 65%. The standard deviation
is known to be σ = 5%. A sample of outputs from 30
independent experiments gives the average concentra-
tion of x̄A = 64.5%.

(a) Does this sample information with an average con-
centration of x̄A = 64.5% provide disturbing in-
formation that perhaps μA is not 65%, but less
than 65%? Support your answer with a probability
statement.

(b) Suppose a similar experiment is done with the use
of another catalyst, catalyst B. The standard devi-
ation σ is still assumed to be 5% and x̄B turns out
to be 70%. Comment on whether or not the sample
information on catalyst B strongly suggests that
μB is truly greater than μA. Support your answer
by computing

P (X̄B − X̄A ≥ 5.5 | μB = μA).

(c) Under the condition that μA = μB = 65%, give the
approximate distribution of the following quantities
(with mean and variance of each). Make use of the
Central Limit Theorem.

i)X̄B ;
ii)X̄A − X̄B ;

iii) X̄A−X̄B

σ
√

2/30
.

4.56 From the information in Review Exercise 4.55,
compute (assuming μB = 65%) P (X̄B ≥ 70).

4.57 Given a normal random variable X with mean
20 and variance 9, and a random sample of size n taken
from the distribution, what sample size n is necessary
in order that

P (19.9 ≤ X̄ ≤ 20.1) = 0.95?

4.58 In Chapter 5, the concept of parameter esti-
mation will be discussed at length. Suppose X is a
random variable with mean μ and variance σ2 = 1.0.
Suppose also that a random sample of size n is to be
taken and x̄ is to be used as an estimate of μ. When
the data are taken and the sample mean is measured,
we wish it to be within 0.05 unit of the true mean with

probability 0.99. That is, we want there to be a good
chance that the computed x̄ from the sample is “very
close” to the population mean (wherever it is!), so we
wish

P (|X̄ − μ| > 0.05) = 0.99.

What sample size is required?

4.59 Suppose a filling machine is used to fill cartons
with a liquid product. The specification that is strictly
enforced for the filling machine is 9 ± 1.5 oz. If any car-
ton is produced with weight outside these bounds, it is
considered by the supplier to be defective. It is hoped
that at least 99% of cartons will meet these specifica-
tions. With the conditions μ = 9 and σ = 1, what
proportion of cartons from the process are defective?
If changes are made to reduce variability, what must
σ be reduced to in order to meet specifications with
probability 0.99? Assume a normal distribution for
the weight.

4.60 Consider the situation in Review Exercise 4.59.
Suppose a considerable effort is conducted to “tighten”
the variability in the system. Following the effort, a
random sample of size 40 is taken from the new assem-
bly line and the sample variance is s2 = 0.188 ounces2.
Do we have strong numerical evidence that σ2 has been
reduced below 1.0? Consider the probability

P (S2 ≤ 0.188 | σ2 = 1.0),

and give your conclusion.

4.61 Group Project: The class should be divided
into groups of four people. The four students in each
group should go to the college gym or a local fit-
ness center. The students should ask each person who
comes through the door his or her height in inches.
Each group will then divide the height data by gender
and work together to answer the following questions.

(a) Construct a histogram for each gender of the data.
Based on these plots, do the data appear to follow
a normal distribution?

(b) Use the estimated sample variance as the true vari-
ance for each gender. Assume that the population
mean height for male students is actually 3 inches
more than that of female students. What is the
probability that the average height of the male stu-
dents will be 4 inches more than that of the female
students in your sample?

(c) What factors could render these results misleading?
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4.9 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

The Central Limit Theorem is one of the most powerful tools in all of statistics, and
even though this chapter is relatively short, it contains a wealth of fundamental
information about tools that will be used throughout the balance of the text.

The notion of a sampling distribution is one of the most important fundamental
concepts in all of statistics, and the student at this point in his or her training
should gain a clear understanding of it before proceeding beyond this chapter. All
chapters that follow will make considerable use of sampling distributions. Suppose
one wants to use the statistic X̄ to draw inferences about the population mean
μ. This will be done by using the observed value x̄ from a single sample of size
n. Then any inference made must be accomplished by taking into account not
just the single value but rather the theoretical structure, or distribution of all x̄
values that could be observed from samples of size n. Thus, the concept of
a sampling distribution comes to the surface. This distribution is the basis for the
Central Limit Theorem. The t, χ2, and F-distributions are also used in the context
of sampling distributions. For example, the t-distribution, pictured in Figure 4.7,
represents the structure that occurs if all of the values of x̄−μ

s/
√
n
are formed, where

x̄ and s are taken from samples of size n from a n(x;μ, σ) distribution. Similar
remarks can be made about χ2 and F , and the reader should not forget that the
sample information forming the statistics for all of these distributions is the normal.
So it can be said that where there is a t, F, or χ2, the source was a sample
from a normal distribution.

The three distributions described above may appear to have been introduced in
a rather self-contained fashion with no indication of what they are about. However,
they will appear in practical problem-solving throughout the balance of the text.

Now, there are three things that one must bear in mind, lest confusion set in
regarding these fundamental sampling distributions:

(i) One cannot use the Central Limit Theorem unless σ is known. When σ is not
known, it should be replaced by s, the sample standard deviation, in order to
use the Central Limit Theorem.

(ii) The T statistic is not a result of the Central Limit Theorem and x1, x2, . . . , xn

must come from a n(x;μ, σ) distribution in order for x̄−μ
s/

√
n
to be a t-distribution;

s is, of course, merely an estimate of σ.

(iii) While the notion of degrees of freedom is new at this point, the concept
should be very intuitive, since it is reasonable that the nature of the distri-
bution of S and also t should depend on the amount of information in the
sample x1, x2, . . . , xn.



Chapter 5

One- and Two-Sample
Estimation Problems

5.1 Introduction

In previous chapters, we emphasized sampling properties of the sample mean and
variance. We also emphasized displays of data in various forms. The purpose of
these presentations is to build a foundation that allows us to draw conclusions about
the population parameters from experimental data. For example, the Central Limit
Theorem provides information about the distribution of the sample mean X̄. The
distribution involves the population mean μ. Thus, any conclusions concerning μ
drawn from an observed sample average must depend on knowledge of this sampling
distribution. Similar comments apply to S2 and σ2. Clearly, any conclusions we
draw about the variance of a normal distribution will likely involve the sampling
distribution of S2.

In this chapter, we begin by formally outlining the purpose of statistical in-
ference. We follow this by discussing the problem of estimation of population
parameters. We confine our formal developments of specific estimation proce-
dures to problems involving one and two samples.

5.2 Statistical Inference

In Chapter 1, we discussed the general philosophy of formal statistical inference.
Statistical inference consists of those methods by which one makes inferences or
generalizations about a population. The trend today is to distinguish between the
classical method of estimating a population parameter, whereby inferences are
based strictly on information obtained from a random sample selected from the
population, and the Bayesian method, which utilizes prior subjective knowledge
about the probability distribution of the unknown parameters in conjunction with
the information provided by the sample data. Throughout most of this chapter,
we shall use classical methods to estimate unknown population parameters such as
the mean, the proportion, and the variance by computing statistics from random

195
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samples and applying the theory of sampling distributions, much of which was
covered in Chapter 4.

Statistical inference may be divided into two major areas: estimation and
tests of hypotheses. We treat these two areas separately, dealing with theory
and applications of estimation in this chapter and hypothesis testing in Chapter
6. To distinguish clearly between the two areas, consider the following examples.
A candidate for public office may wish to estimate the true proportion of voters
favoring him by obtaining opinions from a random sample of 100 eligible voters.
The fraction of voters in the sample favoring the candidate could be used as an
estimate of the true proportion in the population of voters. A knowledge of the
sampling distribution of a proportion enables one to establish the degree of accuracy
of such an estimate. This problem falls in the area of estimation.

Now consider the case in which one is interested in finding out whether brand
A floor wax is more scuff-resistant than brand B floor wax. He or she might
hypothesize that brandA is better than brandB and, after proper testing, accept or
reject this hypothesis. In this example, we do not attempt to estimate a parameter,
but instead we try to arrive at a correct decision about a prestated hypothesis.
Once again we are dependent on sampling theory and the use of data to provide
us with some measure of accuracy for our decision.

5.3 Classical Methods of Estimation

A point estimate of some population parameter θ is a single value θ̂ of a statistic
Θ̂. For example, the value x̄ of the statistic X̄, computed from a sample of size n,
is a point estimate of the population parameter μ. Similarly, p̂ = x/n is a point
estimate of the true proportion p for a binomial experiment.

An estimator is not expected to estimate the population parameter without
error. We do not expect X̄ to estimate μ exactly, but we certainly hope that it is
not far off. For a particular sample, it is possible to obtain a closer estimate of μ
by using the sample median X̃ as an estimator. Consider, for instance, a sample
consisting of the values 2, 5, and 11 from a population whose mean is 4 but is
supposedly unknown. We would estimate μ to be x̄ = 6, using the sample mean
as our estimate, or x̃ = 5, using the sample median as our estimate. In this case,
the estimator X̃ produces an estimate closer to the true parameter than does the
estimator X̄. On the other hand, if our random sample contains the values 2, 6,
and 7, then x̄ = 5 and x̃ = 6, so X̄ is the better estimator. Not knowing the true
value of μ, we must decide in advance whether to use X̄ or X̃ as our estimator.

Unbiased Estimator

What are the desirable properties of a “good” decision function that would influ-
ence us to choose one estimator rather than another? Let Θ̂ be an estimator whose
value θ̂ is a point estimate of some unknown population parameter θ. Certainly, we
would like the sampling distribution of Θ̂ to have a mean equal to the parameter
estimated. An estimator possessing this property is said to be unbiased.
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Definition 5.1: A statistic Θ̂ is said to be an unbiased estimator of the parameter θ if

μΘ̂ = E(Θ̂) = θ.

Example 5.1: If a sample X1, . . . , Xn has an unknown population mean μ, then the sample mean
X̄ is an unbiased estimator for μ.

Solution : This result can be easily shown as

E(X̄) = E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) =
1

n

n∑
i=1

μ = μ.

This means that the sample mean is always unbiased to the population mean.

Example 5.2: Show that S2 is an unbiased estimator of the parameter σ2.
Solution : One can show that (see Exercise 5.10)

n∑
i=1

(Xi − X̄)2 =
n∑

i=1

(Xi − μ)2 − n(X̄ − μ)2.

Now

E(S2) = E

[
1

n− 1

n∑
i=1

(Xi − X̄)2

]

=
1

n− 1

[
n∑

i=1

E(Xi − μ)2 − nE(X̄ − μ)2

]
=

1

n− 1

(
n∑

i=1

σ2
Xi

− nσ2
X̄

)
.

However,

σ2
Xi

= σ2, for i = 1, 2, . . . , n, and σ2
X̄ =

σ2

n
.

Therefore,

E(S2) =
1

n− 1

(
nσ2 − n

σ2

n

)
= σ2.

This result shows that the sample variance is always unbiased to the population
variance σ2.

Although S2 is an unbiased estimator of σ2, S, on the other hand, is usually a
biased estimator of σ, with the bias becoming insignificant for large samples. This
example illustrates why we divide by n − 1 rather than n when the variance is
estimated.

Variance of a Point Estimator

If Θ̂1 and Θ̂2 are two unbiased estimators of the same population parameter θ, we
want to choose the estimator whose sampling distribution has the smaller variance.
Hence, if σ2

θ̂1
< σ2

θ̂2
, we say that Θ̂1 is a more efficient estimator of θ than Θ̂2.



198 Chapter 5 One- and Two-Sample Estimation Problems

Definition 5.2: If we consider all possible unbiased estimators of some parameter θ, the one with
the smallest variance is called the most efficient estimator of θ.

Figure 5.1 illustrates the sampling distributions of three different estimators,
Θ̂1, Θ̂2, and Θ̂3, all estimating θ. It is clear that only Θ̂1 and Θ̂2 are unbiased,
since their distributions are centered at θ. The estimator Θ̂1 has a smaller variance
than Θ̂2 and is therefore more efficient. Hence, our choice for an estimator of θ,
among the three considered, would be Θ̂1.

θ

θ̂

�2
^

�1
^

�3
^

Figure 5.1: Sampling distributions of different estimators of θ.

For normal populations, one can show that both X̄ and X̃ are unbiased estima-
tors of the population mean μ, but the variance of X̄ is smaller than the variance
of X̃. Thus, both estimates x̄ and x̃ will, on average, equal the population mean
μ, but x̄ is likely to be closer to μ for a given sample, and thus X̄ is more efficient
than X̃.

Interval Estimation

Even the most efficient unbiased estimator is unlikely to estimate the population
parameter exactly. It is true that estimation accuracy increases with large samples,
but there is still no reason we should expect a point estimate from a given sample
to be exactly equal to the population parameter it is supposed to estimate. There
are many situations in which it is preferable to determine an interval within which
we would expect to find the value of the parameter. Such an interval is called an
interval estimate.

An interval estimate of a population parameter θ is an interval of the form
θ̂L < θ < θ̂U , where θ̂L and θ̂U depend on the value of the statistic Θ̂ for a
particular sample and also on the sampling distribution of Θ̂. For example, a
random sample of SAT verbal scores for students in the entering freshman class
might produce an interval from 530 to 550, within which we expect to find the
true average of all SAT verbal scores for the freshman class. The values of the
endpoints, 530 and 550, will depend on the computed sample mean x̄ and the
sampling distribution of X̄. As the sample size increases, we know that σ2

X̄
= σ2/n

decreases, and consequently our estimate is likely to be closer to the parameter μ,
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resulting in a shorter interval. Thus, the interval estimate indicates, by its length,
the accuracy of the point estimate. An engineer will gain some insight into the
population proportion defective by taking a sample and computing the sample
proportion defective. But an interval estimate might be more informative.

Interpretation of Interval Estimates

Since different samples will generally yield different values of Θ̂ and, therefore,
different values for θ̂L and θ̂U , these endpoints of the interval are values of corre-
sponding random variables Θ̂L and Θ̂U . From the sampling distribution of Θ̂ we
shall be able to determine Θ̂L and Θ̂U such that P (Θ̂L < θ < Θ̂U ) is equal to any
positive fractional value we care to specify. If, for instance, we find Θ̂L and Θ̂U

such that

P (Θ̂L < θ < Θ̂U ) = 1− α,

for 0 < α < 1, then we have a probability of 1−α of selecting a random sample that
will produce an interval containing θ. The interval θ̂L < θ < θ̂U , computed from
the selected sample, is called a 100(1 − α)% confidence interval, the fraction
1 − α is called the confidence coefficient or the degree of confidence, and
the endpoints, θ̂L and θ̂U , are called the lower and upper confidence limits.
Thus, when α = 0.05, we have a 95% confidence interval, and when α = 0.01, we
obtain a wider 99% confidence interval. The wider the confidence interval is, the
more confident we can be that the interval contains the unknown parameter. Of
course, it is better to be 95% confident that the average life of a certain television
transistor is between 6 and 7 years than to be 99% confident that it is between 3
and 10 years. Ideally, we prefer a short interval with a high degree of confidence.
Sometimes, restrictions on the size of our sample prevent us from achieving short
intervals without sacrificing some degree of confidence.

In the sections that follow, we pursue the notions of point and interval esti-
mation, with each section presenting a different special case. The reader should
notice that while point and interval estimation represent different approaches to
gaining information regarding a parameter, they are related in the sense that con-
fidence interval estimators are based on point estimators. In the following section,
for example, we will see that X̄ is a very reasonable point estimator of μ. As a
result, the important confidence interval estimator of μ depends on knowledge of
the sampling distribution of X̄.

5.4 Single Sample: Estimating the Mean

The sampling distribution of X̄ is centered at μ, and in most applications the
variance is smaller than that of any other unbiased estimators of μ. Thus, the
sample mean x̄ will be used as a point estimate for the population mean μ. Recall
that σ2

X̄
= σ2/n, so a large sample will yield a value of X̄ that comes from a

sampling distribution with a small variance. Hence, x̄ is likely to be a very accurate
estimate of μ when n is large.
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Let us now consider the interval estimate of μ. If our sample is selected from
a normal population or, failing this, if n is sufficiently large, we can establish a
confidence interval for μ by considering the sampling distribution of X̄.

According to the Central Limit Theorem, we can expect the sampling distribu-
tion of X̄ to be approximately normal with mean μX̄ = μ and standard deviation
σX̄ = σ/

√
n. Writing zα/2 for the z-value above which we find an area of α/2

under the normal curve, we can see from Figure 5.2 that

P (−zα/2 < Z < zα/2) = 1− α,

where

Z =
X̄ − μ

σ/
√
n
.

Hence,

P

(
−zα/2 <

X̄ − μ

σ/
√
n

< zα/2

)
= 1− α.

z

1 −

−z
α /2 0 z

α /2

α /2
α /2

α

Figure 5.2: P (−zα/2 < Z < zα/2) = 1− α.

Multiplying each term in the inequality by σ/
√
n and then subtracting X̄ from each

term and multiplying by −1 (reversing the sense of the inequalities), we obtain

P

(
X̄ − zα/2

σ√
n
< μ < X̄ + zα/2

σ√
n

)
= 1− α.

A random sample of size n is selected from a population whose variance σ2 is known,
and the mean x̄ is computed to give the 100(1−α)% confidence interval below. It
is important to emphasize that we have invoked the Central Limit Theorem above.
As a result, it is important to note the conditions for applications that follow.

Confidence
Interval on μ, σ2

Known

If x̄ is the mean of a random sample of size n from a population with known
variance σ2, a 100(1− α)% confidence interval for μ is given by

x̄− zα/2
σ√
n
< μ < x̄+ zα/2

σ√
n
,

where zα/2 is the z-value leaving an area of α/2 to the right.
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For small samples selected from nonnormal populations, we cannot expect our
degree of confidence to be accurate. However, for samples of size n ≥ 30, with
the shape of the distributions not too skewed, sampling theory guarantees good
results.

Clearly, the values of the random variables Θ̂L and Θ̂U , defined in Section 5.3,
are the confidence limits

θ̂L = x̄− zα/2
σ√
n

and θ̂U = x̄+ zα/2
σ√
n
.

Different samples will yield different values of x̄ and therefore produce different
interval estimates of the parameter μ, as shown in Figure 5.3. The dot at the
center of each interval indicates the position of the point estimate x̄ for that random
sample. Note that all of these intervals are of the same width, since their widths
depend only on the choice of zα/2 once x̄ is determined. The larger the value we
choose for zα/2, the wider we make all the intervals and the more confident we
can be that the particular sample selected will produce an interval that contains
the unknown parameter μ. In general, for a selection of zα/2, 100(1 − α)% of the
intervals will cover μ.
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Figure 5.3: Interval estimates of μ for different samples.

Example 5.3: The average zinc concentration recovered from a sample of measurements taken
in 36 different locations in a river is found to be 2.6 grams per milliliter. Find
the 95% and 99% confidence intervals for the mean zinc concentration in the river.
Assume that the population standard deviation is 0.3 gram per milliliter.

Solution : The point estimate of μ is x̄ = 2.6. The z-value leaving an area of 0.025 to the
right, and therefore an area of 0.975 to the left, is z0.025 = 1.96 (Table A.3). Hence,
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the 95% confidence interval is

2.6− (1.96)

(
0.3√
36

)
< μ < 2.6 + (1.96)

(
0.3√
36

)
,

which reduces to 2.50 < μ < 2.70. To find a 99% confidence interval, we find the
z-value leaving an area of 0.005 to the right and 0.995 to the left. From Table A.3
again, z0.005 = 2.575, and the 99% confidence interval is

2.6− (2.575)

(
0.3√
36

)
< μ < 2.6 + (2.575)

(
0.3√
36

)
,

or simply

2.47 < μ < 2.73.

We now see that a longer interval is required to estimate μ with a higher degree of
confidence.

The 100(1−α)% confidence interval provides an estimate of the accuracy of our
point estimate. If μ is actually the center value of the interval, then x̄ estimates
μ without error. Most of the time, however, x̄ will not be exactly equal to μ and
the point estimate will be in error. The size of this error will be the absolute value
of the difference between μ and x̄, and we can be 100(1− α)% confident that this
difference will not exceed zα/2

σ√
n
. We can readily see this if we draw a diagram of

a hypothetical confidence interval, as in Figure 5.4.

x μ

Error

x �z σ σn x � z n/2α /2α
/ /

Figure 5.4: Error in estimating μ by x̄.

Theorem 5.1: If x̄ is used as an estimate of μ, we can be 100(1− α)% confident that the error
will not exceed zα/2

σ√
n
.

In Example 5.3, we are 95% confident that the sample mean x̄ = 2.6 differs
from the true mean μ by an amount less than (1.96)(0.3)/

√
36 = 0.1 and 99%

confident that the difference is less than (2.575)(0.3)/
√
36 = 0.13.

Frequently, we wish to know how large a sample is necessary to ensure that
the error in estimating μ will be less than a specified amount e. By Theorem 5.1,
we must choose n such that zα/2

σ√
n
= e. Solving this equation gives the following

formula for n.
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Theorem 5.2: If x̄ is used as an estimate of μ, we can be 100(1− α)% confident that the error
will not exceed a specified amount e when the sample size is

n =
(zα/2σ

e

)2

.

When solving for the sample size, n, we round all fractional values up to the
next whole number. By adhering to this principle, we can be sure that our degree
of confidence never falls below 100(1− α)%.

Strictly speaking, the formula in Theorem 5.2 is applicable only if we know
the variance of the population from which we select our sample. Lacking this
information, we could take a preliminary sample of size n ≥ 30 to provide an
estimate of σ. Then, using s as an approximation for σ in Theorem 5.2, we could
determine approximately how many observations are needed to provide the desired
degree of accuracy.

Example 5.4: How large a sample is required if we want to be 95% confident that our estimate
of μ in Example 5.3 is off by less than 0.05?

Solution : The population standard deviation is σ = 0.3. Then, by Theorem 5.2,

n =

[
(1.96)(0.3)

0.05

]2
= 138.3.

Therefore, we can be 95% confident that a random sample of size 139 will provide
an estimate x̄ differing from μ by an amount less than 0.05.

One-Sided Confidence Bounds

The confidence intervals and resulting confidence bounds discussed thus far are
two-sided (i.e., both upper and lower bounds are given). However, there are many
applications in which only one bound is sought. For example, if the measurement
of interest is tensile strength, the engineer receives better information from a lower
bound only. This bound communicates the worst-case scenario. On the other
hand, if the measurement is something for which a relatively large value of μ is not
profitable or desirable, then an upper confidence bound is of interest. An example
would be a case in which inferences need to be made concerning the mean mercury
concentration in a river. An upper bound is very informative in this case.

One-sided confidence bounds are developed in the same fashion as two-sided
intervals. However, the source is a one-sided probability statement that makes use
of the Central Limit Theorem:

P

(
X̄ − μ

σ/
√
n

< zα

)
= 1− α.

One can then manipulate the probability statement much as before and obtain

P (μ > X̄ − zασ/
√
n) = 1− α.
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Similar manipulation of P
(

X̄−μ
σ/

√
n
> −zα

)
= 1− α gives

P (μ < X̄ + zασ/
√
n) = 1− α.

As a result, the upper and lower one-sided bounds follow.

One-Sided
Confidence

Bounds on μ, σ2

Known

If X̄ is the mean of a random sample of size n from a population with variance
σ2, the one-sided 100(1− α)% confidence bounds for μ are given by

upper one-sided bound: x̄+ zασ/
√
n;

lower one-sided bound: x̄− zασ/
√
n.

Example 5.5: In a psychological testing experiment, 25 subjects are selected randomly and their
reaction time, in seconds, to a particular stimulus is measured. Past experience
suggests that the variance in reaction times to these types of stimuli is 4 sec2 and
that the distribution of reaction times is approximately normal. The average time
for the subjects is 6.2 seconds. Give an upper 95% bound for the mean reaction
time.

Solution : The upper 95% bound is given by

x̄+ zασ/
√
n = 6.2 + (1.645)

√
4/25 = 6.2 + 0.658

= 6.858 seconds.

Hence, we are 95% confident that the mean reaction time is less than 6.858
seconds.

The Case of σ Unknown

Frequently, we must attempt to estimate the mean of a population when the vari-
ance is unknown. The reader should recall learning in Chapter 4 that if we have a
random sample from a normal distribution, then the random variable

T =
X̄ − μ

S/
√
n

has a Student t-distribution with n − 1 degrees of freedom. Here S is the sample
standard deviation. In this situation, with σ unknown, T can be used to construct
a confidence interval on μ. The procedure is the same as that with σ known except
that σ is replaced by S and the standard normal distribution is replaced by the
t-distribution. Referring to Figure 5.5, we can assert that

P (−tα/2 < T < tα/2) = 1− α,

where tα/2 is the t-value with n−1 degrees of freedom, above which we find an area
of α/2. Because of symmetry, an equal area of α/2 will fall to the left of −tα/2.
Substituting for T , we write

P

(
−tα/2 <

X̄ − μ

S/
√
n

< tα/2

)
= 1− α.
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Multiplying each term in the inequality by S/
√
n, and then subtracting X̄ from

each term and multiplying by −1, we obtain

P

(
X̄ − tα/2

S√
n
< μ < X̄ + tα/2

S√
n

)
= 1− α.

For a particular random sample of size n, the mean x̄ and standard deviation s are
computed and the following 100(1− α)% confidence interval for μ is obtained.

t

1 −

−t
α 2 0 t

α 2

α /2
α /2

α

Figure 5.5: P (−tα/2 < T < tα/2) = 1− α.

Confidence
Interval on μ, σ2

Unknown

If x̄ and s are the mean and standard deviation of a random sample from a
normal population with unknown variance σ2, a 100(1−α)% confidence interval
for μ is

x̄− tα/2
s√
n
< μ < x̄+ tα/2

s√
n
,

where tα/2 is the t-value with v = n − 1 degrees of freedom, leaving an area of
α/2 to the right.

We have made a distinction between the cases of σ known and σ unknown in
computing confidence interval estimates. We should emphasize that for σ known
we exploited the Central Limit Theorem, whereas for σ unknown we made use
of the sampling distribution of the random variable T . However, the use of the t-
distribution is based on the premise that the sampling is from a normal distribution.
As long as the distribution is approximately bell shaped, confidence intervals can
be computed when σ2 is unknown by using the t-distribution and we may expect
very good results.

Computed one-sided confidence bounds for μ with σ unknown are as the reader
would expect, namely

x̄+ tα
s√
n

and x̄− tα
s√
n
.

They are the upper and lower 100(1 − α)% bounds, respectively. Here tα is the
t-value having an area of α to the right.

Example 5.6: The contents of seven similar containers of sulfuric acid are 9.8, 10.2, 10.4, 9.8,
10.0, 10.2, and 9.6 liters. Find a 95% confidence interval for the mean contents of
all such containers, assuming an approximately normal distribution.
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Solution : The sample mean and standard deviation for the given data are

x̄ = 10.0 and s = 0.283.

Using Table A.4, we find t0.025 = 2.447 for v = 6 degrees of freedom. Hence, the
95% confidence interval for μ is

10.0− (2.447)

(
0.283√

7

)
< μ < 10.0 + (2.447)

(
0.283√

7

)
,

which reduces to 9.74 < μ < 10.26.

Concept of a Large-Sample Confidence Interval

Often statisticians recommend that even when normality cannot be assumed, σ is
unknown, and n ≥ 30, s can replace σ and the confidence interval

x̄± zα/2
s√
n

may be used. This is often referred to as a large-sample confidence interval. The
justification lies only in the presumption that with a sample as large as 30 and
the population distribution not too skewed, s will be very close to the true σ and
thus the Central Limit Theorem prevails. It should be emphasized that this is only
an approximation and the quality of the result becomes better as the sample size
grows larger.

Example 5.7: Scholastic Aptitude Test (SAT) mathematics scores of a random sample of 500
high school seniors in the state of Texas are collected, and the sample mean and
standard deviation are found to be 501 and 112, respectively. Find a 99% confidence
interval on the mean SAT mathematics score for seniors in the state of Texas.

Solution : Since the sample size is large, it is reasonable to use the normal approximation.
Using Table A.3, we find z0.005 = 2.575. Hence, a 99% confidence interval for μ is

501± (2.575)

(
112√
500

)
= 501± 12.9,

which yields 488.1 < μ < 513.9.

5.5 Standard Error of a Point Estimate

We have made a rather sharp distinction between the goal of a point estimate
and that of a confidence interval estimate. The former supplies a single number
extracted from a set of experimental data, and the latter provides an interval that
is reasonable for the parameter, given the experimental data; that is, 100(1− α)%
of such computed intervals “cover” the parameter.

These two approaches to estimation are related to each other. The common
thread is the sampling distribution of the point estimator. Consider, for example,
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the estimator X̄ of μ with σ known. We indicated earlier that a measure of the
quality of an unbiased estimator is its variance. The variance of X̄ is

σ2
X̄ =

σ2

n
.

Thus, the standard deviation of X̄, or standard error of X̄, is σ/
√
n. Simply put,

the standard error of an estimator is its standard deviation. For X̄, the computed
confidence limit

x̄± zα/2
σ√
n

is written as x̄± zα/2 s.e.(x̄),

where “s.e.” is the “standard error.” The important point is that the width of the
confidence interval on μ is dependent on the quality of the point estimator through
its standard error. In the case where σ is unknown and sampling is from a normal
distribution, s replaces σ and the estimated standard error s/

√
n is involved. Thus,

the confidence limits on μ are as follows.

Confidence
Limits on μ, σ2

Unknown

x̄± tα/2
s√
n
= x̄± tα/2 s.e.(x̄)

Again, the confidence interval is no better (in terms of width) than the quality of
the point estimate, in this case through its estimated standard error. Computer
packages often refer to estimated standard errors simply as “standard errors.”

As we move to more complex confidence intervals, there is a prevailing notion
that widths of confidence intervals become shorter as the quality of the correspond-
ing point estimate becomes better, although it is not always quite as simple as we
have illustrated here. It can be argued that a confidence interval is merely an
augmentation of the point estimate to take into account the precision of the point
estimate.

5.6 Prediction Intervals

The point and interval estimations of the mean in Sections 5.4 and 5.5 provide
good information about the unknown parameter μ of a normal distribution or a
nonnormal distribution from which a large sample is drawn. Sometimes, other
than the population mean, the experimenter may also be interested in predicting
the possible value of a future observation. For instance, in quality control, the
experimenter may need to use the observed data to predict a new observation. A
process that produces a metal part may be evaluated on the basis of whether the
part meets specifications on tensile strength. On certain occasions, a customer may
be interested in purchasing a single part. In this case, a confidence interval on the
mean tensile strength does not capture the required information. The customer
requires a statement regarding the uncertainty of a single observation. This type
of requirement is nicely fulfilled by the construction of a prediction interval.

It is quite simple to obtain a prediction interval for the situations we have
considered so far. Assume that the random sample comes from a normal population
with unknown mean μ and known variance σ2. A natural point estimator of a
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new observation is X̄. It is known, from Section 4.4, that the variance of X̄ is
σ2/n. However, to predict a new observation, not only do we need to account
for the variation due to estimating the mean, but also we should account for the
variation of a future observation. From the assumption, we know that the
variance of the random error in a new observation is σ2. The development of a
prediction interval is best illustrated by beginning with a normal random variable
x0 − x̄, where x0 is the new observation and x̄ comes from the sample. Since x0

and x̄ are independent, we know that

z =
x0 − x̄√
σ2 + σ2/n

=
x0 − x̄

σ
√
1 + 1/n

is n(z; 0, 1). As a result, if we use the probability statement

P (−zα/2 < Z < zα/2) = 1− α

with the z-statistic above and place x0 in the center of the probability statement,
we have the following event occurring with probability 1− α:

x̄− zα/2σ
√
1 + 1/n < x0 < x̄+ zα/2σ

√
1 + 1/n.

Computation of the prediction interval is formalized as follows.

Prediction
Interval of a

Future
Observation, σ2

Known

For a normal distribution of measurements with unknown mean μ and known
variance σ2, a 100(1− α)% prediction interval of a future observation x0 is

x̄− zα/2σ
√
1 + 1/n < x0 < x̄+ zα/2σ

√
1 + 1/n,

where zα/2 is the z-value leaving an area of α/2 to the right.

Example 5.8: Due to the decrease in interest rates, the First Citizens Bank received a lot of
mortgage applications. A recent sample of 50 mortgage loans resulted in an average
loan amount of $257,300. Assume a population standard deviation of $25,000. For
the next customer who fills out a mortgage application, find a 95% prediction
interval for the loan amount.

Solution : The point prediction of the next customer’s loan amount is x̄ = $257,300. The
z-value here is z0.025 = 1.96. Hence, a 95% prediction interval for the future loan
amount is

257,300− (1.96)(25,000)
√

1 + 1/50 < x0 < 257,300 + (1.96)(25,000)
√
1 + 1/50,

which gives the interval ($207,812.43, $306,787.57).
The prediction interval provides a good estimate of the location of a future

observation, which is quite different from the estimate of the sample mean value.
It should be noted that the variation of this prediction is the sum of the variation
due to an estimation of the mean and the variation of a single observation. However,
as in the past, we first consider the case with known variance. It is also important
to deal with the prediction interval of a future observation in the situation where
the variance is unknown. Indeed a Student t-distribution may be used in this case,
as described in the following result. The normal distribution is merely replaced by
the t-distribution.
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Prediction
Interval of a

Future
Observation, σ2

Unknown

For a normal distribution of measurements with unknown mean μ and unknown
variance σ2, a 100(1− α)% prediction interval of a future observation x0 is

x̄− tα/2s
√
1 + 1/n < x0 < x̄+ tα/2s

√
1 + 1/n,

where tα/2 is the t-value with v = n − 1 degrees of freedom, leaving an area of
α/2 to the right.

One-sided prediction intervals can also be constructed. Upper prediction bounds
apply in cases where focus must be placed on future large observations. Concern
over future small observations calls for the use of lower prediction bounds. The
upper bound is given by

x̄+ tαs
√

1 + 1/n

and the lower bound by

x̄− tαs
√
1 + 1/n.

Example 5.9: A meat inspector has randomly selected 30 packs of 95% lean beef. The sample
resulted in a mean of 96.2% with a sample standard deviation of 0.8%. Find a 99%
prediction interval for the leanness of a new pack. Assume normality.

Solution : For v = 29 degrees of freedom, t0.005 = 2.756. Hence, a 99% prediction interval for
a new observation x0 is

96.2− (2.756)(0.8)

√
1 +

1

30
< x0 < 96.2 + (2.756)(0.8)

√
1 +

1

30
,

which reduces to (93.96, 98.44).

Use of Prediction Limits for Outlier Detection

To this point in the text very little attention has been paid to the concept of
outliers, or aberrant observations. The majority of scientific investigators are
keenly sensitive to the existence of outlying observations or so-called faulty or
“bad” data. It is certainly of interest here since there is an important relationship
between outlier detection and prediction intervals.

It is convenient for our purposes to view an outlying observation as one that
comes from a population with a mean that is different from the mean that governs
the rest of the sample of size n being studied. The prediction interval produces a
bound that “covers” a future single observation with probability 1− α if it comes
from the population from which the sample was drawn. As a result, a methodol-
ogy for outlier detection involves the rule that an observation is an outlier if
it falls outside the prediction interval computed without including the
questionable observation in the sample. As a result, for the prediction inter-
val of Example 5.9, if a new pack of beef is measured and its leanness is outside
the interval (93.96, 98.44), that observation can be viewed as an outlier.
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5.7 Tolerance Limits

As discussed in Section 5.6, the scientist or engineer may be less interested in esti-
mating parameters than in gaining a notion about where an individual observation
or measurement might fall. Such situations call for the use of prediction intervals.
However, there is yet a third type of interval that is of interest in many applica-
tions. Once again, suppose that interest centers around the manufacturing of a
component part and specifications exist on a dimension of that part. In addition,
there is little concern about the mean of the dimension. But unlike in the scenario
in Section 5.6, one may be less interested in a single observation and more inter-
ested in where the majority of the population falls. If process specifications are
important, the manager of the process is concerned about long-range performance,
not the next observation. One must attempt to determine bounds that, in some
probabilistic sense, “cover” values in the population (i.e., the measured values of
the dimension).

One method of establishing the desired bounds is to determine a confidence
interval on a fixed proportion of the measurements. This is best motivated by
visualizing a situation in which we are doing random sampling from a normal
distribution with known mean μ and variance σ2. Clearly, a bound that covers the
middle 95% of the population of observations is

μ± 1.96σ.

This is called a tolerance interval, and indeed its coverage of 95% of measured
observations is exact. However, in practice, μ and σ are seldom known; thus, the
user must apply

x̄± ks.

Now, of course, the interval is a random variable, and hence the coverage of a
proportion of the population by the interval is not exact. As a result, a 100(1−γ)%
confidence interval must be used since x̄ ± ks cannot be expected to cover any
specified proportion all the time. As a result, we have the following definition.

Tolerance Limits For a normal distribution of measurements with unknown mean μ and unknown
standard deviation σ, tolerance limits are given by x̄ ± ks, where k is de-
termined such that one can assert with 100(1 − γ)% confidence that the given
limits contain at least the proportion 1− α of the measurements.

Table A.7 gives values of k for 1 − α = 0.90, 0.95, 0.99; γ = 0.05, 0.01; and
selected values of n from 2 to 300.

Example 5.10: Consider Example 5.9. With the information given, find a tolerance interval that
gives two-sided 95% bounds on 90% of the distribution of packages of 95% lean
beef. Assume the data came from an approximately normal distribution.

Solution : Recall from Example 5.9 that n = 30, the sample mean is 96.2%, and the sample
standard deviation is 0.8%. From Table A.7, k = 2.14. Using

x̄± ks = 96.2± (2.14)(0.8),
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we find that the lower and upper bounds are 94.5 and 97.9.
We are 95% confident that the above range covers the central 90% of the dis-

tribution of 95% lean beef packages.

Distinction among Confidence Intervals, Prediction Intervals,
and Tolerance Intervals

It is important to reemphasize the difference among the three types of intervals dis-
cussed and illustrated in the preceding sections. The computations are straightfor-
ward, but interpretation can be confusing. In real-life applications, these intervals
are not interchangeable because their interpretations are quite distinct.

In the case of confidence intervals, one is attentive only to the population
mean. For example, Exercise 5.11 on page 213 deals with an engineering process
that produces shearing pins. A specification will be set on Rockwell hardness,
below which a customer will not accept any pins. Here, a population parameter
must take a backseat. It is important that the engineer know where the majority
of the values of Rockwell hardness are going to be. Thus, tolerance limits should be
used. Surely, when tolerance limits on any process output are tighter than process
specifications, that is good news for the process manager.

It is true that the tolerance limit interpretation is somewhat related to the
confidence interval. The 100(1−α)% tolerance interval on, say, the proportion 0.95
can be viewed as a confidence interval on the middle 95% of the corresponding
normal distribution. One-sided tolerance limits are also relevant. In the case of
the Rockwell hardness problem, it is desirable to have a lower bound of the form
x̄ − ks such that there is 99% confidence that at least 99% of Rockwell hardness
values will exceed the computed value.

Prediction intervals are applicable when it is important to determine a bound
on a single value. The mean is not the issue here, nor is the location of the
majority of the population. Rather, the location of a single new observation is
required.

Case Study 5.1: Machine Quality: A machine produces metal pieces that are cylindrical in shape.
A sample of these pieces is taken, and the diameters are found to be 1.01, 0.97,
1.03, 1.04, 0.99, 0.98, 0.99, 1.01, and 1.03 centimeters. Use these data to calculate
three interval types and draw interpretations that illustrate the distinction between
them in the context of the system. For all computations, assume an approximately
normal distribution. The sample mean and standard deviation for the given data
are x̄ = 1.0056 and s = 0.0246.

(a) Find a 99% confidence interval on the mean diameter.

(b) Compute a 99% prediction interval on a measured diameter of a single metal
piece taken from the machine.

(c) Find the 99% tolerance limits that will contain 95% of the metal pieces pro-
duced by this machine.

Solution : (a) The 99% confidence interval for the mean diameter is given by

x̄± t0.005s/
√
n = 1.0056± (3.355)(0.0246/3) = 1.0056± 0.0275.
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Thus, the 99% confidence bounds are 0.9781 and 1.0331.

(b) The 99% prediction interval for a future observation is given by

x̄± t0.005s
√

1 + 1/n = 1.0056± (3.355)(0.0246)
√

1 + 1/9,

with the bounds being 0.9186 and 1.0926.

(c) From Table A.7, for n = 9, 1− γ = 0.99, and 1− α = 0.95, we find k = 4.550
for two-sided limits. Hence, the 99% tolerance limits are given by

x̄+ ks = 1.0056± (4.550)(0.0246),

with the bounds being 0.8937 and 1.1175. We are 99% confident that the
tolerance interval from 0.8937 to 1.1175 will contain the central 95% of the
distribution of diameters produced.

This case study illustrates that the three types of limits can give appreciably dif-
ferent results even though they are all 99% bounds. In the case of the confidence
interval on the mean, 99% of such intervals cover the population mean diameter.
Thus, we say that we are 99% confident that the mean diameter produced by the
process is between 0.9781 and 1.0331 centimeters. Emphasis is placed on the mean,
with less concern about a single reading or the general nature of the distribution
of diameters in the population. In the case of the prediction limits, the bounds
0.9186 and 1.0926 are based on the distribution of a single “new” metal piece
taken from the process, and again 99% of such limits will cover the diameter of
a new measured piece. On the other hand, the tolerance limits, as suggested in
the previous section, give the engineer a sense of where the “majority,” say the
central 95%, of the diameters of measured pieces in the population reside. The
99% tolerance limits, 0.8937 and 1.1175, are numerically quite different from the
other two bounds. If these bounds appear alarmingly wide to the engineer, it re-
flects negatively on process quality. On the other hand, if the bounds represent a
desirable result, the engineer may conclude that a majority (95% in this case) of
the diameters are in a desirable range. Again, a confidence interval interpretation
may be used: namely, 99% of such calculated bounds will cover the middle 95% of
the population of diameters.

Exercises

5.1 A UCLA researcher claims that the life span of
mice can be extended by as much as 25% when the
calories in their diet are reduced by approximately 40%
from the time they are weaned. The restricted diet
is enriched to normal levels by vitamins and protein.
Assuming that it is known from previous studies that
σ = 5.8 months, how many mice should be included
in our sample if we wish to be 99% confident that the
mean life span of the sample will be within 2 months
of the population mean for all mice subjected to this
reduced diet?

5.2 An electrical firm manufactures light bulbs that
have a length of life that is approximately normally
distributed with a standard deviation of 40 hours. If
a sample of 30 bulbs has an average life of 780 hours,
find a 96% confidence interval for the population mean
of all bulbs produced by this firm.

5.3 Many cardiac patients wear an implanted pace-
maker to control their heartbeat. A plastic connec-
tor module mounts on the top of the pacemaker. As-
suming a standard deviation of 0.0015 inch and an ap-
proximately normal distribution, find a 95% confidence
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interval for the mean of the depths of all connector
modules made by a certain manufacturing company.
A random sample of 75 modules has an average depth
of 0.310 inch.

5.4 The heights of a random sample of 50 college stu-
dents showed a mean of 174.5 centimeters and a stan-
dard deviation of 6.9 centimeters.

(a) Construct a 98% confidence interval for the mean
height of all college students.

(b) What can we assert with 98% confidence about the
possible size of our error if we estimate the mean
height of all college students to be 174.5 centime-
ters?

5.5 A random sample of 100 automobile owners in the
state of Virginia shows that an automobile is driven on
average 23,500 kilometers per year with a standard de-
viation of 3900 kilometers. Assume the distribution of
measurements to be approximately normal.

(a) Construct a 99% confidence interval for the aver-
age number of kilometers an automobile is driven
annually in Virginia.

(b) What can we assert with 99% confidence about the
possible size of our error if we estimate the aver-
age number of kilometers driven by car owners in
Virginia to be 23,500 kilometers per year?

5.6 How large a sample is needed in Exercise 5.2 if we
wish to be 96% confident that our sample mean will be
within 10 hours of the true mean?

5.7 How large a sample is needed in Exercise 5.3 if we
wish to be 95% confident that our sample mean will be
within 0.0005 inch of the true mean?

5.8 An efficiency expert wishes to determine the av-
erage time that it takes to drill three holes in a certain
metal clamp. How large a sample will she need to be
95% confident that her sample mean will be within 15
seconds of the true mean? Assume that it is known
from previous studies that σ = 40 seconds.

5.9 Regular consumption of presweetened cereals con-
tributes to tooth decay, heart disease, and other degen-
erative diseases, according to studies conducted by Dr.
W. H. Bowen of the National Institute of Health and
Dr. J. Yudben, Professor of Nutrition and Dietetics at
the University of London. In a random sample con-
sisting of 20 similar single servings of Alpha-Bits, the
average sugar content was 11.3 grams with a standard
deviation of 2.45 grams. Assuming that the sugar con-
tents are normally distributed, construct a 95% con-
fidence interval for the mean sugar content for single
servings of Alpha-Bits.

5.10 For a random sample X1, . . . , Xn, show that

n∑
i=1

(Xi − μ)2 =

n∑
i=1

(Xi − X̄)2 + n(X̄ − μ)2.

5.11 A random sample of 12 shearing pins is taken
in a study of the Rockwell hardness of the pin head.
Measurements on the Rockwell hardness are made for
each of the 12, yielding an average value of 48.50 with
a sample standard deviation of 1.5. Assuming the mea-
surements to be normally distributed, construct a 90%
confidence interval for the mean Rockwell hardness.

5.12 The following measurements were recorded for
the drying time, in hours, of a certain brand of latex
paint:

3.4 2.5 4.8 2.9 3.6
2.8 3.3 5.6 3.7 2.8
4.4 4.0 5.2 3.0 4.8

Assuming that the measurements represent a random
sample from a normal population, find a 95% predic-
tion interval for the drying time for the next trial of
the paint.

5.13 Referring to Exercise 5.5, construct a 99% pre-
diction interval for the kilometers traveled annually by
an automobile owner in Virginia.

5.14 Consider Exercise 5.9. Compute a 95% predic-
tion interval for the sugar content of the next single
serving of Alpha-Bits.

5.15 A random sample of 25 tablets of buffered as-
pirin contains, on average, 325.05 mg of aspirin per
tablet, with a standard deviation of 0.5 mg. Find the
95% tolerance limits that will contain 90% of the tablet
contents for this brand of buffered aspirin. Assume
that the aspirin content is normally distributed.

5.16 Referring to Exercise 5.11, construct a 95% tol-
erance interval containing 90% of the measurements.

5.17 In a study conducted by the Zoology department
at Virginia Tech, fifteen samples of water were collected
from a certain station in the James River in order to
gain some insight regarding the amount of orthophos-
phorus in the river. The concentration of the chemical
is measured in milligrams per liter. Let us suppose
that the mean at the station is not as important as the
upper extreme of the distribution of the concentration
of the chemical at the station. Concern centers around
whether the concentration at the extreme is too large.
Readings for the fifteen water samples gave a sample
mean of 3.84 milligrams per liter and a sample stan-
dard deviation of 3.07 milligrams per liter. Assume
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that the readings are a random sample from a nor-
mal distribution. Calculate a prediction interval (up-
per 95% prediction limit) and a tolerance limit (95%
upper tolerance limit that exceeds 95% of the popula-
tion of values). Interpret both; that is, tell what each
communicates about the upper extreme of the distri-
bution of orthophosphorus at the sampling station.

5.18 Consider the situation of Case Study 5.1 on page
211. Estimation of the mean diameter, while impor-
tant, is not nearly as important as trying to pin down
the location of the majority of the distribution of di-
ameters. Find the 95% tolerance limits that contain
95% of the diameters.

5.19 Consider the situation of Case Study 5.1 with
a larger sample of metal pieces. The diameters are as
follows: 1.01, 0.97, 1.03, 1.04, 0.99, 0.98, 1.01, 1.03,
0.99, 1.00, 1.00, 0.99, 0.98, 1.01, 1.02, 0.99 centime-
ters. Once again the normality assumption may be
made. Do the following and compare your results to
those of the case study. Discuss how they are different
and why.

(a) Compute a 99% confidence interval on the mean
diameter.

(b) Compute a 99% prediction interval on the next di-
ameter to be measured.

(c) Compute a 99% tolerance interval for coverage of
the central 95% of the distribution of diameters.

5.20 A type of thread is being studied for its ten-
sile strength properties. Fifty pieces were tested under
similar conditions, and the results showed an average

tensile strength of 78.3 kilograms and a standard devi-
ation of 5.6 kilograms. Assuming a normal distribution
of tensile strengths, give a lower 95% prediction limit
on a single observed tensile strength value. In addi-
tion, give a lower 95% tolerance limit that is exceeded
by 99% of the tensile strength values.

5.21 Refer to Exercise 5.20. Why are the quantities
requested in the exercise likely to be more important to
the manufacturer of the thread than, say, a confidence
interval on the mean tensile strength?

5.22 Refer to Exercise 5.20 again. Suppose that spec-
ifications by a buyer of the thread are that the tensile
strength of the material must be at least 62 kilograms.
The manufacturer is satisfied if at most 5% of the man-
ufactured pieces have tensile strength less than 62 kilo-
grams. Is there cause for concern? Use a one-sided 99%
tolerance limit that is exceeded by 95% of the tensile
strength values.

5.23 Consider the drying time measurements in Ex-
ercise 5.12. Suppose the 15 observations in the data
set are supplemented by a 16th value of 6.9 hours. In
the context of the original 15 observations, is the 16th
value an outlier? Show work.

5.24 Consider the data in Exercise 5.11. Suppose the
manufacturer of the shearing pins insists that the Rock-
well hardness of the product be less than or equal to
44.0 only 5% of the time. What is your reaction? Use
a tolerance limit calculation as the basis for your judg-
ment.

5.8 Two Samples: Estimating the Difference
between Two Means

If we have two populations with means μ1 and μ2 and variances σ2
1 and σ2

2 , re-
spectively, a point estimator of the difference between μ1 and μ2 is given by the
statistic X̄1 − X̄2. Therefore, to obtain a point estimate of μ1 − μ2, we shall select
two independent random samples, one from each population, of sizes n1 and n2,
and compute x̄1−x̄2, the difference of the sample means. Clearly, we must consider
the sampling distribution of X̄1 − X̄2.

According to Theorem 4.3, we can expect the sampling distribution of X̄1− X̄2

to be approximately normal with mean μX̄1−X̄2
= μ1 − μ2 and standard deviation

σX̄1−X̄2
=
√
σ2
1/n1 + σ2

2/n2. Therefore, we can assert with a probability of 1− α
that the standard normal variable

Z =
(X̄1 − X̄2)− (μ1 − μ2)√

σ2
1/n1 + σ2

2/n2
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will fall between −zα/2 and zα/2. Referring once again to Figure 5.2 on page 200,
we write

P (−zα/2 < Z < zα/2) = 1− α.

Substituting for Z, we state equivalently that

P

(
−zα/2 <

(X̄1 − X̄2)− (μ1 − μ2)√
σ2
1/n1 + σ2

2/n2

< zα/2

)
= 1− α,

which leads to the following 100(1− α)% confidence interval for μ1 − μ2.

Confidence
Interval for

μ1 − μ2, σ
2
1 and

σ2
2 Known

If x̄1 and x̄2 are means of independent random samples of sizes n1 and n2

from populations with known variances σ2
1 and σ2

2 , respectively, a 100(1− α)%
confidence interval for μ1 − μ2 is given by

(x̄1 − x̄2)− zα/2

√
σ2
1

n1
+

σ2
2

n2
< μ1 − μ2 < (x̄1 − x̄2) + zα/2

√
σ2
1

n1
+

σ2
2

n2
,

where zα/2 is the z-value leaving an area of α/2 to the right.

The degree of confidence is exact when samples are selected from normal popula-
tions. For nonnormal populations, the Central Limit Theorem allows for a good
approximation for reasonable size samples.

Variances Unknown but Equal

Consider the case where σ2
1 and σ2

2 are unknown. If σ2
1 = σ2

2 = σ2, we obtain a
standard normal variable of the form

Z =
(X̄1 − X̄2)− (μ1 − μ2)√

σ2[(1/n1) + (1/n2)]
.

According to Theorem 4.4, the two random variables

(n1 − 1)S2
1

σ2
and

(n2 − 1)S2
2

σ2

have chi-squared distributions with n1 − 1 and n2 − 1 degrees of freedom, respec-
tively. Furthermore, they are independent chi-squared variables, since the random
samples were selected independently. Consequently, their sum

V =
(n1 − 1)S2

1

σ2
+

(n2 − 1)S2
2

σ2
=

(n1 − 1)S2
1 + (n2 − 1)S2

2

σ2

has a chi-squared distribution with v = n1 + n2 − 2 degrees of freedom.
Since the preceding expressions for Z and V can be shown to be independent,

it follows from Theorem 4.5 that the statistic

T =
(X̄1 − X̄2)− (μ1 − μ2)√

σ2[(1/n1) + (1/n2)]

/√
(n1 − 1)S2

1 + (n2 − 1)S2
2

σ2(n1 + n2 − 2)
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has the t-distribution with v = n1 + n2 − 2 degrees of freedom.
A point estimate of the unknown common variance σ2 can be obtained by

pooling the sample variances. Denoting the pooled estimator by S2
p , we have the

following.

Pooled Estimate
of Variance S2

p =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

Substituting S2
p in the T statistic, we obtain the less cumbersome form

T =
(X̄1 − X̄2)− (μ1 − μ2)

Sp

√
(1/n1) + (1/n2)

.

Using the T statistic, we have

P (−tα/2 < T < tα/2) = 1− α,

where tα/2 is the t-value with n1 + n2 − 2 degrees of freedom, above which we find
an area of α/2. Substituting for T in the inequality, we write

P

[
−tα/2 <

(X̄1 − X̄2)− (μ1 − μ2)

Sp

√
(1/n1) + (1/n2)

< tα/2

]
= 1− α.

After the usual mathematical manipulations, the difference of the sample means
x̄1 − x̄2 and the pooled variance are computed and then the following 100(1−α)%
confidence interval for μ1 − μ2 is obtained. The value of s2p is easily seen to be a
weighted average of the two sample variances s21 and s22, where the weights are the
degrees of freedom.

Confidence
Interval for

μ1 − μ2, σ
2
1 = σ2

2

but Both
Unknown

If x̄1 and x̄2 are the means of independent random samples of sizes n1 and n2,
respectively, from approximately normal populations with unknown but equal
variances, a 100(1− α)% confidence interval for μ1 − μ2 is given by

(x̄1 − x̄2)− tα/2sp

√
1

n1
+

1

n2
< μ1 − μ2 < (x̄1 − x̄2) + tα/2sp

√
1

n1
+

1

n2
,

where sp is the pooled estimate of the population standard deviation and tα/2
is the t-value with v = n1 + n2 − 2 degrees of freedom, leaving an area of α/2
to the right.

Example 5.11: The article “Macroinvertebrate Community Structure as an Indicator of Acid
Mine Pollution,” published in the Journal of Environmental Pollution, reports on
an investigation undertaken in Cane Creek, Alabama, to determine the relationship
between selected physiochemical parameters and different measures of macroinver-
tebrate community structure. One facet of the investigation was an evaluation of
the effectiveness of a numerical species diversity index to indicate aquatic degrada-
tion due to acid mine drainage. Conceptually, a high index of macroinvertebrate
species diversity should indicate an unstressed aquatic system, while a low diversity
index should indicate a stressed aquatic system.
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Two independent sampling stations were chosen for this study, one located
downstream from the acid mine discharge point and the other located upstream.
For 12 monthly samples collected at the downstream station, the species diversity
index had a mean value x̄1 = 3.11 and a standard deviation s1 = 0.771, while
10 monthly samples collected at the upstream station had a mean index value
x̄2 = 2.04 and a standard deviation s2 = 0.448. Find a 90% confidence interval for
the difference between the population means for the two locations, assuming that
the populations are approximately normally distributed with equal variances.

Solution : Let μ1 and μ2 represent the population means, respectively, for the species diversity
indices at the downstream and upstream stations. We wish to find a 90% confidence
interval for μ1 − μ2. Our point estimate of μ1 − μ2 is

x̄1 − x̄2 = 3.11− 2.04 = 1.07.

The pooled estimate, s2p, of the common variance, σ2, is

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
=

(11)(0.7712) + (9)(0.4482)

12 + 10− 2
= 0.417.

Taking the square root, we obtain sp = 0.646. Using α = 0.1, we find in Table A.4
that t0.05 = 1.725 for v = n1+n2− 2 = 20 degrees of freedom. Therefore, the 90%
confidence interval for μ1 − μ2 is

1.07− (1.725)(0.646)

√
1

12
+

1

10
< μ1 − μ2 < 1.07 + (1.725)(0.646)

√
1

12
+

1

10
,

which simplifies to 0.593 < μ1 − μ2 < 1.547.

Unknown and Unequal Variances

Let us now consider the problem of finding an interval estimate of μ1 − μ2 when
the unknown population variances are not likely to be equal. The statistic most
often used in this case is

T ′ =
(X̄1 − X̄2)− (μ1 − μ2)√

(S2
1/n1) + (S2

2/n2)
,

which has approximately a t-distribution with v degrees of freedom, where

v =
(s21/n1 + s22/n2)

2

[(s21/n1)2/(n1 − 1)] + [(s22/n2)2/(n2 − 1)]
.

Since v is seldom an integer, we round it down to the nearest whole number. The
above estimate of the degrees of freedom is called the Satterthwaite approximation
(Satterthwaite, 1946, in the Bibliography).

Using the statistic T ′, we write

P (−tα/2 < T ′ < tα/2) ≈ 1− α,

where tα/2 is the value of the t-distribution with v degrees of freedom, above which
we find an area of α/2. Substituting for T ′ in the inequality and following the
same steps as before, we state the final result.
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Confidence
Interval for

μ1 − μ2, σ
2
1 �= σ2

2

and Both
Unknown

If x̄1 and s21 and x̄2 and s22 are the means and variances of independent random
samples of sizes n1 and n2, respectively, from approximately normal populations
with unknown and unequal variances, an approximate 100(1 − α)% confidence
interval for μ1 − μ2 is given by

(x̄1 − x̄2)− tα/2

√
s21
n1

+
s22
n2

< μ1 − μ2 < (x̄1 − x̄2) + tα/2

√
s21
n1

+
s22
n2

,

where tα/2 is the t-value with

v =
(s21/n1 + s22/n2)

2

[(s21/n1)2/(n1 − 1)] + [(s22/n2)2/(n2 − 1)]

degrees of freedom, leaving an area of α/2 to the right.

Note that the expression for v above involves random variables, and thus v is
an estimate of the degrees of freedom. In applications, this estimate will not result
in a whole number, and thus the analyst must round down to the nearest integer
to achieve the desired confidence.

Before we illustrate the above confidence interval with an example, we should
point out that all the confidence intervals on μ1 − μ2 are of the same general form
as those on a single mean; namely, they can be written as

point estimate ± tα/2 ŝ.e.(point estimate)

or

point estimate ± zα/2 s.e.(point estimate).

For example, in the case where σ1 = σ2 = σ, the estimated standard error of
x̄1 − x̄2 is sp

√
1/n1 + 1/n2. For the case where σ2

1 �= σ2
2 ,

ŝ.e.(x̄1 − x̄2) =

√
s21
n1

+
s22
n2

.

Example 5.12: A study was conducted by the Department of Zoology at Virginia Tech to es-
timate the difference in the amounts of the chemical orthophosphorus measured
at two different stations on the James River. Orthophosphorus was measured in
milligrams per liter. Fifteen samples were collected from station 1, and 12 samples
were obtained from station 2. The 15 samples from station 1 had an average or-
thophosphorus content of 3.84 milligrams per liter and a standard deviation of 3.07
milligrams per liter, while the 12 samples from station 2 had an average content of
1.49 milligrams per liter and a standard deviation of 0.80 milligram per liter. Find
a 95% confidence interval for the difference in the true average orthophosphorus
contents at these two stations, assuming that the observations came from normal
populations with different variances.

Solution : For station 1, we have x̄1 = 3.84, s1 = 3.07, and n1 = 15. For station 2, x̄2 = 1.49,
s2 = 0.80, and n2 = 12. We wish to find a 95% confidence interval for μ1 − μ2.
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Since the population variances are assumed to be unequal, we can only find an
approximate 95% confidence interval based on the t-distribution with v degrees of
freedom, where

v =
(3.072/15 + 0.802/12)2

[(3.072/15)2/14] + [(0.802/12)2/11]
= 16.3 ≈ 16.

Our point estimate of μ1 − μ2 is

x̄1 − x̄2 = 3.84− 1.49 = 2.35.

Using α = 0.05, we find in Table A.4 that t0.025 = 2.120 for v = 16 degrees of
freedom. Therefore, the 95% confidence interval for μ1 − μ2 is

2.35− 2.120

√
3.072

15
+

0.802

12
< μ1 − μ2 < 2.35 + 2.120

√
3.072

15
+

0.802

12
,

which simplifies to 0.60 < μ1 − μ2 < 4.10. Hence, we are 95% confident that the
interval from 0.60 to 4.10 milligrams per liter contains the difference of the true
average orthophosphorus contents for these two locations.

When two population variances are unknown, the assumption of equal variances
or unequal variances may be precarious.

5.9 Paired Observations

At this point, we shall consider estimation procedures for the difference of two
means when the samples are not independent and the variances of the two popu-
lations are not necessarily equal. The situation considered here deals with a very
special experimental condition, namely that of paired observations. Unlike in the
situations described earlier, the conditions of the two populations are not assigned
randomly to experimental units. Rather, each homogeneous experimental unit re-
ceives both population conditions; as a result, each experimental unit has a pair
of observations, one for each population. For example, if we run a test on a new
diet using 15 individuals, the weights before and after going on the diet form the
information for our two samples. The two populations are “before” and “after,”
and the experimental unit is the individual. Obviously, the observations in a pair
have something in common. To determine if the diet is effective, we consider the
differences d1, d2, . . . , dn in the paired observations. These differences are the val-
ues of a random sample D1, D2, . . . , Dn from a population of differences that we
shall assume to be normally distributed with mean μD = μ1 −μ2 and variance σ2

D.
We estimate σ2

D by s2d, the variance of the differences that constitute our sample.
The point estimator of μD is given by D̄.

Tradeoff between Reducing Variance and Losing Degrees of Freedom

Comparing the confidence intervals obtained with and without pairing makes ap-
parent that there is a tradeoff involved. Although pairing should indeed reduce
variance and hence reduce the standard error of the point estimate, the degrees of
freedom are reduced by reducing the problem to a one-sample problem. As a result,
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the tα/2 point attached to the standard error is adjusted accordingly. Thus, pair-
ing may be counterproductive. This would certainly be the case if one experienced
only a modest reduction in variance (through σ2

D) by pairing.
Another illustration of pairing involves choosing n pairs of subjects, with each

pair having a similar characteristic such as IQ, age, or breed, and then selecting
one member of each pair at random to yield a value of X1, leaving the other
member to provide the value of X2. In this case, X1 and X2 might represent
the grades obtained by two individuals of equal IQ when one of the individuals is
assigned at random to a class using the conventional lecture approach while the
other individual is assigned to a class using programmed materials.

A 100(1− α)% confidence interval for μD can be established by writing

P (−tα/2 < T < tα/2) = 1− α,

where T = D̄−μD

Sd/
√
n
and tα/2, as before, is a value of the t-distribution with n − 1

degrees of freedom.
It is now a routine procedure to replace T by its definition in the inequality

above and carry out the mathematical steps that lead to the following 100(1−α)%
confidence interval for μ1 − μ2 = μD.

Confidence
Interval for

μD = μ1 − μ2 for
Paired

Observations

If d̄ and sd are the mean and standard deviation, respectively, of the normally
distributed differences of n random pairs of measurements, a 100(1− α)% con-
fidence interval for μD = μ1 − μ2 is

d̄− tα/2
sd√
n
< μD < d̄+ tα/2

sd√
n
,

where tα/2 is the t-value with v = n − 1 degrees of freedom, leaving an area of
α/2 to the right.

Example 5.13: A study was undertaken at Virginia Tech to determine if fire can be used as a
viable management tool to increase the amount of forage available to deer during
the critical months in late winter and early spring. Calcium is a required element
for plants and animals. The amount taken up and stored in plants is closely
correlated to the amount present in the soil. It was hypothesized that a fire may
change the calcium levels present in the soil and thus affect the amount available
to deer. A large tract of land in the Fishburn Forest was selected for a prescribed
burn. Soil samples were taken from 12 plots of equal area just prior to the burn
and analyzed for calcium. Postburn calcium levels were analyzed from the same
plots. These values, in kilograms per plot, are presented in Table 5.1.

Construct a 95% confidence interval for the mean difference in calcium levels
in the soil prior to and after the prescribed burn. Assume the distribution of
differences in calcium levels to be approximately normal.

Solution : In this problem, we wish to find a 95% confidence interval for the mean difference
in calcium levels between the preburn and postburn. Since the observations are
paired, we define μPreburn − μPostburn = μD. The sample size is n = 12, the point es-
timate of μD is d̄ = 40.58, and the sample standard deviation, sd, of the differences
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Table 5.1: Data for Example 5.13

Calcium Level (kg/plot) Calcium Level (kg/plot)
Plot Preburn Postburn Plot Preburn Postburn
1
2
3
4
5
6

50
50
82
64
82
73

9
18
45
18
18
9

7
8
9

10
11
12

77
54
23
45
36
54

32
9

18
9
9
9

is

sd =

√√√√ 1

n− 1

n∑
i=1

(di − d̄)2 = 15.791.

Using α = 0.05, we find in Table A.4 that t0.025 = 2.201 for v = n−1 = 11 degrees
of freedom. Therefore, the 95% confidence interval is

40.58− (2.201)

(
15.791√

12

)
< μD < 40.58 + (2.201)

(
15.791√

12

)
,

or simply 30.55 < μD < 50.61, from which we can conclude that there is significant
difference in calcium levels between the soil prior and post to the prescribed burns.
Hence there is significant reduction in the level of calcium after the burn.

Exercises

5.25 A study was conducted to determine if a cer-
tain treatment has any effect on the amount of metal
removed in a pickling operation. A random sample of
100 pieces was immersed in a bath for 24 hours without
the treatment, yielding an average of 12.2 millimeters
of metal removed and a sample standard deviation of
1.1 millimeters. A second sample of 200 pieces was
exposed to the treatment, followed by the 24-hour im-
mersion in the bath, resulting in an average removal
of 9.1 millimeters of metal with a sample standard de-
viation of 0.9 millimeter. Compute a 98% confidence
interval estimate for the difference between the popu-
lation means. Does the treatment appear to reduce the
mean amount of metal removed?

5.26 Two kinds of thread are being compared for
strength. Fifty pieces of each type of thread are tested
under similar conditions. Brand A has an average ten-
sile strength of 78.3 kilograms with a standard devi-
ation of 5.6 kilograms, while brand B has an average
tensile strength of 87.2 kilograms with a standard de-
viation of 6.3 kilograms. Construct a 95% confidence
interval for the difference of the population means.

5.27 Two catalysts in a batch chemical process are
being compared for their effect on the output of the
process reaction. A sample of 12 batches was prepared
using catalyst 1, and a sample of 10 batches was pre-
pared using catalyst 2. The 12 batches for which cat-
alyst 1 was used in the reaction gave an average yield
of 85 with a sample standard deviation of 4, and the
10 batches for which catalyst 2 was used gave an aver-
age yield of 81 and a sample standard deviation of 5.
Find a 90% confidence interval for the difference be-
tween the population means, assuming that the pop-
ulations are approximately normally distributed with
equal variances.

5.28 In a study conducted at Virginia Tech on the
development of ectomycorrhizal, a symbiotic relation-
ship between the roots of trees and a fungus, in which
minerals are transferred from the fungus to the trees
and sugars from the trees to the fungus, 20 northern
red oak seedlings exposed to the fungus Pisolithus tinc-
torus were grown in a greenhouse. All seedlings were
planted in the same type of soil and received the same
amount of sunshine and water. Half received no ni-
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trogen at planting time, to serve as a control, and the
other half received 368 ppm of nitrogen in the form
NaNO3. The stem weights, in grams, at the end of 140
days were recorded as follows:

No Nitrogen Nitrogen
0.32 0.26
0.53 0.43
0.28 0.47
0.37 0.49
0.47 0.52
0.43 0.75
0.36 0.79
0.42 0.86
0.38 0.62
0.43 0.46

Construct a 95% confidence interval for the difference
in the mean stem weight between seedlings that re-
ceive no nitrogen and those that receive 368 ppm of
nitrogen. Assume the populations to be normally dis-
tributed with equal variances.

5.29 The following data represent the length of time,
in days, to recovery for patients randomly treated with
one of two medications to clear up severe bladder in-
fections:

Medication 1 Medication 2
n1 = 14 n2 = 16
x̄1 = 17 x̄2 = 19
s21 = 1.5 s22 = 1.8

Find a 99% confidence interval for the difference μ2−μ1

in the mean recovery times for the two medications, as-
suming normal populations with equal variances.

5.30 An experiment reported in Popular Science
compared fuel economies for two types of similarly
equipped diesel mini-trucks. Let us suppose that 12
Volkswagen and 10 Toyota trucks were tested in 90-
kilometer-per-hour steady-paced trials. If the 12 Volks-
wagen trucks averaged 16 kilometers per liter with a
standard deviation of 1.0 kilometer per liter and the 10
Toyota trucks averaged 11 kilometers per liter with a
standard deviation of 0.8 kilometer per liter, construct
a 90% confidence interval for the difference between the
average kilometers per liter for these two mini-trucks.
Assume that the distances per liter for the truck mod-
els are approximately normally distributed with equal
variances.

5.31 A taxi company is trying to decide whether to
purchase brand A or brand B tires for its fleet of taxis.
To estimate the difference in the two brands, an exper-
iment is conducted using 12 of each brand. The tires
are run until they wear out. The results are

Brand A: x̄1 = 36,300 kilometers,
s1 = 5000 kilometers.

Brand B: x̄2 = 38,100 kilometers,
s2 = 6100 kilometers.

Compute a 95% confidence interval for μA − μB as-
suming the populations to be approximately normally
distributed. You may not assume that the variances
are equal.

5.32 Referring to Exercise 5.31, find a 99% confidence
interval for μ1 − μ2 if tires of the two brands are as-
signed at random to the left and right rear wheels of
8 taxis and the following distances, in kilometers, are
recorded:

Taxi Brand A Brand B
1 34,400 36,700
2 45,500 46,800
3 36,700 37,700
4 32,000 31,100
5 48,400 47,800
6 32,800 36,400
7 38,100 38,900
8 30,100 31,500

Assume that the differences of the distances are ap-
proximately normally distributed.

5.33 The federal government awarded grants to the
agricultural departments of 9 universities to test the
yield capabilities of two new varieties of wheat. Each
variety was planted on a plot of equal area at each
university, and the yields, in kilograms per plot, were
recorded as follows:

University

Variety 1 2 3 4 5 6 7 8 9
1 38 23 35 41 44 29 37 31 38
2 45 25 31 38 50 33 36 40 43

Find a 95% confidence interval for the mean difference
between the yields of the two varieties, assuming the
differences of yields to be approximately normally dis-
tributed. Explain why pairing is necessary in this prob-
lem.

5.34 The following data represent the running times
of films produced by two motion-picture companies.

Company Time (minutes)
I 103 94 110 87 98
II 97 82 123 92 175 88 118

Compute a 90% confidence interval for the difference
between the average running times of films produced by
the two companies. Assume that the running-time dif-
ferences are approximately normally distributed with
unequal variances.
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5.35 Fortune magazine (March 1997) reported the to-
tal returns to investors for the 10 years prior to 1996
and also for 1996 for 431 companies. The total returns
for 9 of the companies and the S&P 500 are listed
below. Find a 95% confidence interval for the mean
change in percent return to investors.

Total Return
to Investors

Company 1986–96 1996

Coca-Cola 29.8% 43.3%
Mirage Resorts 27.9% 25.4%
Merck 22.1% 24.0%
Microsoft 44.5% 88.3%
Johnson & Johnson 22.2% 18.1%
Intel 43.8% 131.2%
Pfizer 21.7% 34.0%
Procter & Gamble 21.9% 32.1%
Berkshire Hathaway 28.3% 6.2%
S&P 500 11.8% 20.3%

5.36 An automotive company is considering two
types of batteries for its automobile. Sample infor-
mation on battery life is collected for 20 batteries of
type A and 20 batteries of type B. The summary
statistics are x̄A = 32.91, x̄B = 30.47, sA = 1.57,
and sB = 1.74. Assume the data on each battery are
normally distributed and assume σA = σB .

(a) Find a 95% confidence interval on μA − μB .

(b) Draw a conclusion from (a) that provides insight
into whether A or B should be adopted.

5.37 Two different brands of latex paint are being
considered for use. Fifteen specimens of each type of
paint were selected, and the drying times, in hours,
were as follows:

Paint A Paint B
3.5 2.7 3.9 4.2 3.6 4.7 3.9 4.5 5.5 4.0
2.7 3.3 5.2 4.2 2.9 5.3 4.3 6.0 5.2 3.7
4.4 5.2 4.0 4.1 3.4 5.5 6.2 5.1 5.4 4.8

Assume the drying time is normally distributed with
σA = σB . Find a 95% confidence interval on μB − μA,
where μA and μB are the mean drying times.

5.38 Two levels (low and high) of insulin doses are
given to two groups of diabetic rats to check the insulin-
binding capacity, yielding the following data:

Low dose: n1 = 8 x̄1 = 1.98 s1 = 0.51
High dose: n2 = 13 x̄2 = 1.30 s2 = 0.35

Assume that the variances are equal. Give a 95% con-
fidence interval for the difference in the true average
insulin-binding capacity between the two samples.

5.10 Single Sample: Estimating a Proportion

A point estimator of the proportion p in a binomial experiment is given by the
statistic P̂ = X/n, where X represents the number of successes in n trials. There-
fore, the sample proportion p̂ = x/n will be used as the point estimate of the
parameter p.

If the unknown proportion p is not expected to be too close to 0 or 1, we can
establish a confidence interval for p by considering the sampling distribution of
P̂ . Designating a failure in each binomial trial by the value 0 and a success by
the value 1, the number of successes, x, can be interpreted as the sum of n values
consisting only of 0 and 1s, and p̂ is just the sample mean of these n values. Hence,
by the Central Limit Theorem, for n sufficiently large, P̂ is approximately normally
distributed with mean

μ
̂P = E(P̂ ) = E

(
X

n

)
=

np

n
= p

and variance

σ2
̂P
= σ2

X/n =
σ2
X

n2
=

npq

n2
=

pq

n
.

Therefore, we can assert that

P (−zα/2 < Z < zα/2) = 1− α, with Z =
P̂ − p√
pq/n

,



224 Chapter 5 One- and Two-Sample Estimation Problems

and zα/2 is the value above which we find an area of α/2 under the standard normal
curve.

For a random sample of size n, the sample proportion p̂ = x/n is computed, and
the following approximate 100(1−α)% confidence intervals for p can be obtained.

Large-Sample
Confidence

Intervals for p

If p̂ is the proportion of successes in a random sample of size n and q̂ = 1 − p̂,
an approximate 100(1 − α)% confidence interval for the binomial parameter p
is given by

p̂− zα/2

√
p̂q̂

n
< p < p̂+ zα/2

√
p̂q̂

n
,

where zα/2 is the z-value leaving an area of α/2 to the right.

When n is small and the unknown proportion p is believed to be close to 0 or to
1, the confidence-interval procedure established here is unreliable and, therefore,
should not be used. To be on the safe side, one should require both np̂ and nq̂
to be greater than or equal to 5. The methods for finding a confidence interval
for the binomial parameter p are also applicable when the binomial distribution
is being used to approximate the hypergeometric distribution, that is, when n is
small relative to N , as illustrated by Example 5.14.

Example 5.14: In a random sample of n = 500 families owning television sets in the city of Hamil-
ton, Canada, it is found that x = 340 subscribe to HBO. Find a 95% confidence
interval for the actual proportion of families with television sets in this city that
subscribe to HBO.

Solution : The point estimate of p is p̂ = 340/500 = 0.68. Using Table A.3, we find that
z0.025 = 1.96. Therefore, the 95% confidence interval for p is

0.68− 1.96

√
(0.68)(0.32)

500
< p < 0.68 + 1.96

√
(0.68)(0.32)

500
,

which simplifies to 0.6391 < p < 0.7209.

Theorem 5.3: If p̂ is used as an estimate of p, we can be 100(1 − α)% confident that the error
will not exceed zα/2

√
p̂q̂/n.

In Example 5.14, we are 95% confident that the sample proportion p̂ = 0.68
differs from the true proportion p by an amount not exceeding 0.04.

Choice of Sample Size

Let us now determine how large a sample is necessary to ensure that the error in
estimating p will be less than a specified amount e. By Theorem 5.3, we must
choose n such that zα/2

√
p̂q̂/n = e.
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Theorem 5.4: If p̂ is used as an estimate of p, we can be 100(1 − α)% confident that the error
will be less than a specified amount e when the sample size is approximately

n =
z2α/2p̂q̂

e2
.

Theorem 5.4 is somewhat misleading in that we must use p̂ to determine the
sample size n, but p̂ is computed from the sample. If a crude estimate of p can
be made without taking a sample, this value can be used to determine n. Lacking
such an estimate, we could take a preliminary sample of size n ≥ 30 to provide
an estimate of p. Using Theorem 5.4, we could determine approximately how
many observations are needed to provide the desired degree of accuracy. Note that
fractional values of n are rounded up to the next whole number.

Example 5.15: How large a sample is required if we want to be 95% confident that our estimate
of p in Example 5.14 is within 0.02 of the true value?

Solution : Let us treat the 500 families as a preliminary sample, providing an estimate p̂ =
0.68. Then, by Theorem 5.4,

n =
(1.96)2(0.68)(0.32)

(0.02)2
= 2089.8 ≈ 2090.

Therefore, if we base our estimate of p on a random sample of size 2090, we can be
95% confident that our sample proportion will not differ from the true proportion
by more than 0.02.

Occasionally, it will be impractical to obtain an estimate of p to be used for
determining the sample size for a specified degree of confidence. If this happens,
an upper bound for n is established by noting that p̂q̂ = p̂(1 − p̂), which must
be at most 1/4, since p̂ must lie between 0 and 1. This fact may be verified by
completing the square. Hence

p̂(1− p̂) = −(p̂2 − p̂) =
1

4
−
(
p̂2 − p̂+

1

4

)
=

1

4
−
(
p̂− 1

2

)2

,

which is always less than 1/4 except when p̂ = 1/2, and then p̂q̂ = 1/4. Therefore,
if we substitute p̂ = 1/2 into the formula for n in Theorem 5.4 when, in fact, p
actually differs from l/2, n will turn out to be larger than necessary for the specified
degree of confidence; as a result, our degree of confidence will increase.

Theorem 5.5: If p̂ is used as an estimate of p, we can be at least 100(1 − α)% confident that
the error will not exceed a specified amount e when the sample size is

n =
z2α/2

4e2
.

Example 5.16: How large a sample is required if we want to be at least 95% confident that our
estimate of p in Example 5.14 is within 0.02 of the true value?
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Solution : Unlike in Example 5.15, we shall now assume that no preliminary sample has been
taken to provide an estimate of p. Consequently, we can be at least 95% confident
that our sample proportion will not differ from the true proportion by more than
0.02 if we choose a sample of size

n =
(1.96)2

(4)(0.02)2
= 2401.

Comparing the results of Examples 5.15 and 5.16, we see that information
concerning p, provided by a preliminary sample or from experience, enables us to
choose a smaller sample while maintaining our required degree of accuracy.

5.11 Two Samples: Estimating the Difference between
Two Proportions

Consider the problem where we wish to estimate the difference between two bino-
mial parameters p1 and p2. For example, p1 might be the proportion of smokers
with lung cancer and p2 the proportion of nonsmokers with lung cancer, and the
problem is to estimate the difference between these two proportions. First, we
select independent random samples of sizes n1 and n2 from the two binomial pop-
ulations with means n1p1 and n2p2 and variances n1p1q1 and n2p2q2, respectively;
then we determine the numbers x1 and x2 of people in each sample with lung can-
cer and form the proportions p̂1 = x1/n and p̂2 = x2/n. A point estimator of the

difference between the two proportions, p1 − p2, is given by the statistic P̂1 − P̂2.
Therefore, the difference of the sample proportions, p̂1 − p̂2, will be used as the
point estimate of p1 − p2.

We use concepts identical to those covered in Section 5.8 in the discussion of
the confidence interval for the difference μ1 − μ2. Note that the Z statistic for
μ1 − μ2 has an equivalent in the case of p1 − p2, namely,

Z =
(P̂1 − P̂2)− (p1 − p2)√

p1q1/n1 + p2q2/n2

.

As a result, we have the Large Sample Confidence Interval for p1 − p2.

Large-Sample
Confidence
Interval for

p1 − p2

If p̂1 and p̂2 are the proportions of successes in random samples of sizes n1 and
n2, respectively, q̂1 = 1 − p̂1, and q̂2 = 1 − p̂2, an approximate 100(1 − α)%
confidence interval for the difference of two binomial parameters, p1 − p2, is
given by

(p̂1 − p̂2)− zα/2

√
p̂1q̂1
n1

+
p̂2q̂2
n2

< p1 − p2 < (p̂1 − p̂2) + zα/2

√
p̂1q̂1
n1

+
p̂2q̂2
n2

,

where zα/2 is the z-value leaving an area of α/2 to the right.

Example 5.17: A certain change in a process for manufacturing component parts is being con-
sidered. Samples are taken from both the existing and the new process so as
to determine if the new process results in an improvement. If 75 of 1500 items



Exercises 227

from the existing process are found to be defective and 80 of 2000 items from the
new process are found to be defective, find a 90% confidence interval for the true
difference in the proportion of defectives between the existing and the new process.

Solution : Let p1 and p2 be the true proportions of defectives for the existing and new pro-
cesses, respectively. Hence, p̂1 = 75/1500 = 0.05 and p̂2 = 80/2000 = 0.04, and
the point estimate of p1 − p2 is

p̂1 − p̂2 = 0.05− 0.04 = 0.01.

Using Table A.3, we find z0.05 = 1.645. Therefore, substituting into the formula,
with

1.645

√
(0.05)(0.95)

1500
+

(0.04)(0.96)

2000
= 0.0117,

we find the 90% confidence interval to be −0.0017 < p1 − p2 < 0.0217. Since the
interval contains the value 0, there is no reason to believe that the new process
produces a significant decrease in the proportion of defectives over the existing
method.

Up to this point, all confidence intervals presented were of the form

point estimate ± K s.e.(point estimate),

where K is a constant (either t or normal percent point). This form is valid when
the parameter is a mean, a difference between means, a proportion, or a difference
between proportions, due to the symmetry of the t- and Z-distributions.

Exercises

5.39 In a random sample of 1000 homes in a certain
city, it is found that 228 are heated by oil. Find 99%
confidence intervals for the proportion of homes in this
city that are heated by oil.

5.40 Compute 95% confidence intervals for the pro-
portion of defective items in a process when it is found
that a sample of size 100 yields 8 defectives.

5.41 (a) A random sample of 200 voters in a town is
selected, and 114 are found to support an annexa-
tion suit. Find the 96% confidence interval for the
proportion of the voting population favoring the
suit.

(b) What can we assert with 96% confidence about the
possible size of our error if we estimate the propor-
tion of voters favoring the annexation suit to be
0.57?

5.42 A manufacturer of MP3 players conducts a set
of comprehensive tests on the electrical functions of its
product. All MP3 players must pass all tests prior to

being sold. Of a random sample of 500 MP3 players, 15
failed one or more tests. Find a 90% confidence interval
for the proportion of MP3 players from the population
that pass all tests.

5.43 A new rocket-launching system is being consid-
ered for deployment of small, short-range rockets. The
existing system has p = 0.8 as the probability of a suc-
cessful launch. A sample of 40 experimental launches
is made with the new system, and 34 are successful.

(a) Construct a 95% confidence interval for p.

(b) Would you conclude that the new system is better?

5.44 A geneticist is interested in the proportion of
African males who have a certain minor blood disor-
der. In a random sample of 100 African males, 24 are
found to be afflicted.

(a) Compute a 99% confidence interval for the propor-
tion of African males who have this blood disorder.

(b) What can we assert with 99% confidence about the
possible size of our error if we estimate the propor-
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tion of African males with this blood disorder to be
0.24?

5.45 How large a sample is needed if we wish to be
96% confident that our sample proportion in Exercise
5.41 will be within 0.02 of the true fraction of the vot-
ing population?

5.46 How large a sample is needed if we wish to be
99% confident that our sample proportion in Exercise
5.39 will be within 0.05 of the true proportion of homes
in the city that are heated by oil?

5.47 How large a sample is needed in Exercise 5.40 if
we wish to be 98% confident that our sample propor-
tion will be within 0.05 of the true proportion defec-
tive?

5.48 How large a sample is needed to estimate the
percentage of citizens in a certain town who favor hav-
ing their water fluoridated if one wishes to be at least
99% confident that the estimate is within 1% of the
true percentage?

5.49 A study is to be made to estimate the propor-
tion of residents of a certain city and its suburbs who
favor the construction of a nuclear power plant near
the city. How large a sample is needed if one wishes to
be at least 95% confident that the estimate is within
0.04 of the true proportion of residents who favor the
construction of the nuclear power plant?

5.50 Ten engineering schools in the United States
were surveyed. The sample contained 250 electrical en-

gineers, 80 being women, and 175 chemical engineers,
40 being women. Compute a 90% confidence interval
for the difference between the proportions of women in
these two fields of engineering. Is there a significant
difference between the two proportions?

5.51 A certain geneticist is interested in the propor-
tion of males and females in the population who have
a minor blood disorder. In a random sample of 1000
males, 250 are found to be afflicted, whereas 275 of
1000 females tested appear to have the disorder. Com-
pute a 95% confidence interval for the difference be-
tween the proportions of males and females who have
the blood disorder.

5.52 In the study Germination and Emergence of
Broccoli, conducted by the Department of Horticulture
at Virginia Tech, a researcher found that at 5◦C, 10
broccoli seeds out of 20 germinated, while at 15◦C, 15
out of 20 germinated. Compute a 95% confidence in-
terval for the difference between the proportions of ger-
mination at the two different temperatures and decide
if there is a significant difference.

5.53 A clinical trial was conducted to determine if a
certain type of inoculation has an effect on the inci-
dence of a certain disease. A sample of 1000 rats was
kept in a controlled environment for a period of 1 year,
and 500 of the rats were given the inoculation. In the
group not inoculated, there were 120 incidences of the
disease, while 98 of the rats in the inoculated group
contracted it. If p1 is the probability of incidence of
the disease in uninoculated rats and p2 the probability
of incidence in inoculated rats, compute a 90% confi-
dence interval for p1 − p2.

5.12 Single Sample: Estimating the Variance

If a sample of size n is drawn from a normal population with variance σ2 and
the sample variance s2 is computed, we obtain a value of the statistic S2. This
computed sample variance is used as a point estimate of σ2. Hence, the statistic
S2 is called an estimator of σ2.

An interval estimate of σ2 can be established by using the statistic

X2 =
(n− 1)S2

σ2
.

According to Theorem 4.4, the statistic X2 has a chi-squared distribution with
n− 1 degrees of freedom when samples are chosen from a normal population. We
may write (see Figure 5.6)

P (χ2
1−α/2 < X2 < χ2

α/2) = 1− α,

where χ2
1−α/2 and χ2

α/2 are values of the chi-squared distribution with n−1 degrees

of freedom, leaving areas of 1−α/2 and α/2, respectively, to the right. Substituting
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for X2, we write

P

[
χ2
1−α/2 <

(n− 1)S2

σ2
< χ2

α/2

]
= 1− α.

0 �
2
1�

�
2

�
2/2

1 � α

α /2α

/2α

/2α

Figure 5.6: P (χ2
1−α/2 < X2 < χ2

α/2) = 1− α.

Dividing each term in the inequality by (n − 1)S2 and then inverting each term
(thereby changing the sense of the inequalities), we obtain

P

[
(n− 1)S2

χ2
α/2

< σ2 <
(n− 1)S2

χ2
1−α/2

]
= 1− α.

For a random sample of size n from a normal population, the sample variance s2

is computed, and the following 100(1−α)% confidence interval for σ2 is obtained.

Confidence
Interval for σ2

If s2 is the variance of a random sample of size n from a normal population, a
100(1− α)% confidence interval for σ2 is

(n− 1)s2

χ2
α/2

< σ2 <
(n− 1)s2

χ2
1−α/2

,

where χ2
α/2 and χ2

1−α/2 are χ2-values with v = n−1 degrees of freedom, leaving

areas of α/2 and 1− α/2, respectively, to the right.

An approximate 100(1 − α)% confidence interval for σ is obtained by taking
the square root of each endpoint of the interval for σ2.

Example 5.18: The following are the weights, in decagrams, of 10 packages of grass seed dis-
tributed by a certain company: 46.4, 46.1, 45.8, 47.0, 46.1, 45.9, 45.8, 46.9, 45.2,
and 46.0. Find a 95% confidence interval for the variance of the weights of all such
packages of grass seed distributed by this company, assuming a normal population.



230 Chapter 5 One- and Two-Sample Estimation Problems

Solution : First we find

s2 =

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

n(n− 1)

=
(10)(21,273.12)− (461.2)2

(10)(9)
= 0.286.

To obtain a 95% confidence interval, we choose α = 0.05. Then, using Table
A.5 with v = 9 degrees of freedom, we find χ2

0.025 = 19.023 and χ2
0.975 = 2.700.

Therefore, the 95% confidence interval for σ2 is

(9)(0.286)

19.023
< σ2 <

(9)(0.286)

2.700
,

or simply 0.135 < σ2 < 0.953.

Exercises

5.54 A random sample of 20 students yielded a mean
of x̄ = 72 and a variance of s2 = 16 for scores on a
college placement test in mathematics. Assuming the
scores to be normally distributed, construct a 98% con-
fidence interval for σ2.

5.55 A manufacturer of car batteries claims that the
batteries will last, on average, 3 years with a variance
of 1 year. If 5 of these batteries have lifetimes of 1.9,
2.4, 3.0, 3.5, and 4.2 years, construct a 95% confidence
interval for σ2 and decide if the manufacturer’s claim

that σ2 = 1 is valid. Assume the population of battery
lives to be approximately normally distributed.

5.56 Construct a 99% confidence interval for σ2 in
Case Study 5.1 on page 211.

5.57 Construct a 95% confidence interval for σ2 in
Exercise 5.9 on page 213.

5.58 Construct a 90% confidence interval for σ in Ex-
ercise 5.11 on page 213.

Review Exercises

5.59 According to the Roanoke Times, in a particu-
lar year McDonald’s sold 42.1% of the market share
of hamburgers. A random sample of 75 burgers sold
resulted in 28 of them being from McDonald’s. Use
material in Section 5.10 to determine if this informa-
tion supports the claim in the Roanoke Times.

5.60 It is claimed that a new diet will reduce a per-
son’s weight by 4.5 kilograms on average in a period
of 2 weeks. The weights of 7 women who followed this
diet were recorded before and after the 2-week period.
Test the claim about the diet by computing a 95% con-
fidence interval for the mean difference in weights. As-
sume the differences of weights to be approximately
normally distributed.

Woman Weight Before Weight After
1 58.5 60.0
2 60.3 54.9
3 61.7 58.1
4 69.0 62.1
5 64.0 58.5
6 62.6 59.9
7 56.7 54.4

5.61 A health spa claims that a new exercise pro-
gram will reduce a person’s waist size by 2 centimeters
on average over a 5-day period. The waist sizes, in
centimeters, of 6 men who participated in this exercise
program are recorded before and after the 5-day period
in the following table:
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Man Waist Size Before Waist Size After
1
2
3
4
5
6

90.4
95.5
98.7

115.9
104.0
85.6

91.7
93.9
97.4

112.8
101.3
84.0

By computing a 95% confidence interval for the mean
reduction in waist size, determine whether the health
spa’s claim is valid. Assume the distribution of differ-
ences in waist sizes before and after the program to be
approximately normal.

5.62 The Department of Civil Engineering at Virginia
Tech compared a modified (M-5 hr) assay technique for
recovering fecal coliforms in stormwater runoff from an
urban area to a most probable number (MPN) tech-
nique. A total of 12 runoff samples were collected and
analyzed by the two techniques. Fecal coliform counts
per 100 milliliters are recorded in the following table.

Sample MPN Count M-5 hr Count
1
2
3
4
5
6
7
8
9

10
11
12

2300
1200
450
210
270
450
154
179
192
230
340
194

2010
930
400
436

4100
2090
219
169
194
174
274
183

Construct a 90% confidence interval for the difference
in the mean fecal coliform counts between the M-5 hr
and the MPN techniques. Assume that the count dif-
ferences are approximately normally distributed.

5.63 An experiment was conducted to determine
whether surface finish has an effect on the endurance
limit of steel. There is a theory that polishing in-
creases the average endurance limit (for reverse bend-
ing). From a practical point of view, polishing should
not have any effect on the standard deviation of the
endurance limit, which is known from numerous en-
durance limit experiments to be 4000 psi. An ex-
periment was performed on 0.4% carbon steel using
both unpolished and polished smooth-turned speci-
mens. The data are given below. Find a 95% con-
fidence interval for the difference between the popu-
lation means for the two methods, assuming that the
populations are approximately normally distributed.

Endurance Limit (psi)

Polished Unpolished
0.4% Carbon 0.4% Carbon

85,500 82,600
91,900 82,400
89,400 81,700
84,000 79,500
89,900 79,400
78,700 69,800
87,500 79,900
83,100 83,400

5.64 An anthropologist is interested in the proportion
of individuals in two Indian tribes with double occipi-
tal hair whorls. Suppose that independent samples are
taken from each of the two tribes, and it is found that
24 of 100 Indians from tribe A and 36 of 120 Indians
from tribe B possess this characteristic. Construct a
95% confidence interval for the difference pB − pA be-
tween the proportions of these two tribes with occipital
hair whorls.

5.65 A manufacturer of electric irons produces these
items in two plants. Both plants have the same suppli-
ers of small parts. A saving can be made by purchasing
thermostats for plant B from a local supplier. A sin-
gle lot was purchased from the local supplier, and a
test was conducted to see whether or not these new
thermostats were as accurate as the old. The ther-
mostats were tested on tile irons on the 550◦F setting,
and the actual temperatures were read to the nearest
0.1◦F with a thermocouple. The data are as follows:

New Supplier (◦F)
530.3 559.3 549.4 544.0 551.7 566.3
549.9 556.9 536.7 558.8 538.8 543.3
559.1 555.0 538.6 551.1 565.4 554.9
550.0 554.9 554.7 536.1 569.1

Old Supplier (◦F)
559.7 534.7 554.8 545.0 544.6 538.0
550.7 563.1 551.1 553.8 538.8 564.6
554.5 553.0 538.4 548.3 552.9 535.1
555.0 544.8 558.4 548.7 560.3

Find 95% confidence intervals for σ2
1/σ

2
2 and for σ1/σ2,

where σ2
1 and σ2

2 are the population variances of the
thermostat readings for the new and old suppliers, re-
spectively.

5.66 It is argued that the resistance of wire A is
greater than the resistance of wire B. An experiment
on the wires shows the results (in ohms) given here. As-
suming equal variances, what conclusions do you draw?
Justify your answer.
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Wire A Wire B
0.140 0.135
0.138 0.140
0.143 0.136
0.142 0.142
0.144 0.138
0.137 0.140

5.67 A survey was done with the hope of comparing
salaries of chemical plant managers employed in two
areas of the country, the northern and west central re-
gions. An independent random sample of 300 plant
managers was selected from each of the two regions.
These managers were asked their annual salaries. The
results are as follows

North West Central

x̄1 = $102,300 x̄2 = $98,500
s1 = $5700 s2 = $3800

(a) Construct a 99% confidence interval for μ1 − μ2,
the difference in the mean salaries.

(b) What assumption did you make in (a) about the
distribution of annual salaries for the two regions?
Is the assumption of normality necessary? Why or
why not?

(c) What assumption did you make about the two vari-
ances? Is the assumption of equality of variances
reasonable? Explain!

5.68 Consider Review Exercise 5.67. Let us assume
that the data have not been collected yet and that pre-
vious statistics suggest that σ1 = σ2 = $4000. Are
the sample sizes in Review Exercise 5.67 sufficient to
produce a 95% confidence interval on μ1 −μ2 having a
width of only $1000? Show all work.

5.69 A labor union is becoming defensive about gross
absenteeism by its members. The union leaders had
always claimed that, in a typical month, 95% of its
members were absent less than 10 hours. The union
decided to check this by monitoring a random sample
of 300 of its members. The number of hours absent
was recorded for each of the 300 members. The results
were x̄ = 6.5 hours and s = 2.5 hours. Use the data to
respond to this claim, using a one-sided tolerance limit
and choosing the confidence level to be 99%. Be sure
to interpret what you learn from the tolerance limit
calculation.

5.70 A random sample of 30 firms dealing in wireless
products was selected to determine the proportion of
such firms that have implemented new software to im-
prove productivity. It turned out that 8 of the 30 had
implemented such software. Find a 95% confidence in-
terval on p, the true proportion of such firms that have
implemented new software.

5.71 Refer to Review Exercise 5.70. Suppose there is
concern about whether the point estimate p̂ = 8/30
is accurate enough because the confidence interval
around p is not sufficiently narrow. Using p̂ as the
estimate of p, how many companies would need to be
sampled in order to have a 95% confidence interval with
a width of only 0.05?

5.72 A manufacturer turns out a product item that is
labeled either “defective” or “not defective.” In order
to estimate the proportion defective, a random sam-
ple of 100 items is taken from production, and 10 are
found to be defective. Following implementation of a
quality improvement program, the experiment is con-
ducted again. A new sample of 100 is taken, and this
time only 6 are found to be defective.

(a) Give a 95% confidence interval on p1 − p2, where
p1 is the population proportion defective before im-
provement and p2 is the proportion defective after
improvement.

(b) Is there information in the confidence interval
found in (a) that would suggest that p1 > p2? Ex-
plain.

5.73 A machine is used to fill boxes with product
in an assembly line operation. Much concern centers
around the variability in the number of ounces of prod-
uct in a box. The standard deviation in weight of prod-
uct is known to be 0.3 ounce. An improvement is im-
plemented, after which a random sample of 20 boxes is
selected and the sample variance is found to be 0.045
ounce2. Find a 95% confidence interval on the variance
in the weight of the product. Does it appear from the
range of the confidence interval that the improvement
of the process enhanced quality as far as variability is
concerned? Assume normality on the distribution of
weights of product.

5.74 A consumer group is interested in comparing
operating costs for two different types of automobile
engines. The group is able to find 15 owners whose
cars have engine type A and 15 whose cars have engine
type B. All 30 owners bought their cars at roughly the
same time, and all have kept good records for a cer-
tain 12-month period. In addition, these owners drove
roughly the same number of miles. The cost statistics
are ȳA = $87.00/1000 miles, ȳB = $75.00/1000 miles,
sA = $5.99, and sB = $4.85. Compute a 95% confi-
dence interval to estimate μA − μB , the difference in
the mean operating costs. Assume normality and equal
variances.

5.75 A group of human factor researchers are con-
cerned about reaction to a stimulus by airplane pilots
in a certain cockpit arrangement. An experiment was
conducted in a simulation laboratory, and 15 pilots
were used with average reaction time of 3.2 seconds
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with a sample standard deviation of 0.6 second. It is
of interest to characterize the extreme (i.e., worst-case
scenario). To that end, do the following:

(a) Give a particular important one-sided 99% confi-
dence bound on the mean reaction time. What
assumption, if any, must you make on the distribu-
tion of reaction times?

(b) Give a 99% one-sided prediction interval and give
an interpretation of what it means. Must you make
an assumption about the distribution of reaction
times to compute this bound?

(c) Compute a one-sided tolerance bound with 99%
confidence that involves 95% of reaction times.
Again, give an interpretation and assumptions
about the distribution, if any. (Note: The one-
sided tolerance limit values are also included in Ta-
ble A.7.)

5.76 A certain supplier manufactures a type of rub-
ber mat that is sold to automotive companies. The
material used to produce the mats must have certain
hardness characteristics. Defective mats are occasion-
ally discovered and rejected. The supplier claims that
the proportion defective is 0.05. A challenge was made
by one of the clients who purchased the mats, so an ex-
periment was conducted in which 400 mats were tested
and 17 were found defective.

(a) Compute a 95% two-sided confidence interval on
the proportion defective.

(b) Compute an appropriate 95% one-sided confidence
interval on the proportion defective.

(c) Interpret both intervals from (a) and (b) and com-
ment on the claim made by the supplier.

5.13 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

The concept of a large-sample confidence interval on a population parameter is
often confusing to the beginning student. It is based on the notion that even when
σ is unknown and one is not convinced that the distribution being sampled is
normal, a confidence interval on μ can be computed from

x̄ ± zα/2
s√
n
.

In practice, this formula is often used when the sample is too small. The genesis of
this large sample interval is, of course, the Central Limit Theorem (CLT), under
which normality is not necessary in practice. Here the CLT requires a known σ,
of which s is only an estimate. Thus, n must be at least as large as 30 and the
underlying distribution must be close to symmetric, in which case the interval
remains an approximation.

There are instances in which the appropriateness of the practical application
of material in this chapter depends very much on the specific context. One very
important illustration is the use of the t-distribution for the confidence interval
on μ when σ is unknown. Strictly speaking, the use of the t-distribution requires
that the distribution sampled from be normal. However, it is well known that
any application of the t-distribution is reasonably insensitive (i.e., robust) to the
normality assumption. This represents one of those fortunate situations which
occur often in the field of statistics in which a basic assumption does not hold and
yet “everything turns out all right!”

It is our experience that one of the most serious misuses of statistics in practice
evolves from confusion about distinctions in the interpretation of the types of
statistical intervals. Thus, the subsection in this chapter where differences among
the three types of intervals are discussed is important. It is very likely that in
practice the confidence interval is heavily overused. That is, it is used when
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there is really no interest in the mean; rather, the question is “Where is the next
observation going to fall?” or often, more importantly, “Where is the large bulk of
the distribution?” These are crucial questions that are not answered by computing
an interval on the mean.

The interpretation of a confidence interval is often misunderstood. It is tempt-
ing to conclude that the parameter falls inside the interval with probability 0.95.
A confidence interval merely suggests that if the experiment is conducted and data
are observed again and again, about 95% of such intervals will contain the true
parameter. Any beginning student of practical statistics should be very clear on
the difference among these statistical intervals.

Another potential serious misuse of statistics centers around the use of the χ2-
distribution for a confidence interval on a single variance. Again, normality of the
distribution from which the sample is drawn is assumed. Unlike the use of the
t-distribution, the use of the χ2 test for this application is not robust to the

normality assumption (i.e., the sampling distribution of (n−1)S2

σ2 deviates far
from χ2 if the underlying distribution is not normal).



Chapter 6

One- and Two-Sample
Tests of Hypotheses

6.1 Statistical Hypotheses: General Concepts

Often, the problem confronting the scientist or engineer is not so much the es-
timation of a population parameter, as discussed in Chapter 5, but rather the
formation of a data-based decision procedure that can produce a conclusion about
some scientific system. For example, a medical researcher may decide on the basis
of experimental evidence whether coffee drinking increases the risk of cancer in
humans; an engineer might have to decide on the basis of sample data whether
there is a difference between the accuracy of two kinds of gauges; or a sociologist
might wish to collect appropriate data to enable him or her to decide whether
a person’s blood type and eye color are independent variables. In each of these
cases, the scientist or engineer postulates or conjectures something about a system.
In addition, each must make use of experimental data and make a decision based
on the data. In each case, the conjecture can be put in the form of a statistical
hypothesis. Procedures that lead to the acceptance or rejection of statistical hy-
potheses such as these comprise a major area of statistical inference. First, let us
define precisely what we mean by a statistical hypothesis.

Definition 6.1: A statistical hypothesis is an assertion or conjecture concerning one or more
populations.

The truth or falsity of a statistical hypothesis is never known with absolute
certainty unless we examine the entire population. This, of course, would be im-
practical in most situations. Instead, we take a random sample from the population
of interest and use the data contained in this sample to provide evidence that either
supports or does not support the hypothesis. Evidence from the sample that is
inconsistent with the stated hypothesis leads to a rejection of the hypothesis.

235
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The Role of Probability in Hypothesis Testing

It should be made clear to the reader that the decision procedure must include an
awareness of the probability of a wrong conclusion. For example, suppose that the
hypothesis postulated by the engineer is that the fraction defective p in a certain
process is 0.10. The experiment is to observe a random sample of the product
in question. Suppose that 100 items are tested and 12 items are found defective.
It is reasonable to conclude that this evidence does not refute the condition that
the binomial parameter p = 0.10, and thus it may lead one not to reject the
hypothesis. However, it also does not refute p = 0.12 or perhaps even p = 0.15.
As a result, the reader must be accustomed to understanding that rejection of a
hypothesis implies that the sample evidence refutes it. Put another way,
rejection means that there is a small probability of obtaining the sample
information observed when, in fact, the hypothesis is true. For example,
for our proportion-defective hypothesis, a sample of 100 revealing 20 defective items
is certainly evidence for rejection. Why? If, indeed, p = 0.10, the probability of
obtaining 20 or more defectives is approximately 0.002. With the resulting small
risk of a wrong conclusion, it would seem safe to reject the hypothesis that
p = 0.10. In other words, rejection of a hypothesis tends to all but “rule out” the
hypothesis. On the other hand, it is very important to emphasize that acceptance
or, rather, failure to reject does not rule out other possibilities. As a result, the
firm conclusion is established by the data analyst when a hypothesis is rejected.

The Null and Alternative Hypotheses

The structure of hypothesis testing will be formulated with the use of the term
null hypothesis, which refers to any hypothesis we wish to test and is denoted
by H0. The rejection of H0 leads to the acceptance of an alternative hypoth-
esis, denoted by H1. An understanding of the different roles played by the null
hypothesis (H0) and the alternative hypothesis (H1) is crucial to one’s understand-
ing of the rudiments of hypothesis testing. The alternative hypothesis H1 usually
represents the question to be answered or the theory to be tested, and thus its spec-
ification is crucial. The null hypothesis H0 nullifies or opposes H1 and is often the
logical complement to H1. As the reader gains more understanding of hypothesis
testing, he or she should note that the analyst arrives at one of the two following
conclusions:

reject H0 in favor of H1 because of sufficient evidence in the data or

fail to reject H0 because of insufficient evidence in the data.

Note that the conclusions do not involve a formal and literal “accept H0.” The
statement of H0 often represents the “status quo” in opposition to the new idea,
conjecture, and so on, stated in H1, while failure to reject H0 represents the proper
conclusion. In our binomial example, the practical issue may be a concern that
the historical defective probability of 0.10 no longer is true. Indeed, the conjecture
may be that p exceeds 0.10. We may then state

H0: p = 0.10,

H1: p > 0.10.
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Now 12 defective items out of 100 does not refute p = 0.10, so the conclusion is
“fail to reject H0.” However, if the data produce 20 out of 100 defective items,
then the conclusion is “reject H0” in favor of H1: p > 0.10.

Though the applications of hypothesis testing are quite abundant in scientific
and engineering work, perhaps the best illustration for a novice lies in the predica-
ment encountered in a jury trial. The null and alternative hypotheses are

H0: defendant is not guilty,

H1: defendant is guilty.

The indictment comes because of suspicion of guilt. The hypothesis H0 (the status
quo) stands in opposition to H1 and is maintained unless H1 is supported by
evidence “beyond a reasonable doubt.” However, “failure to reject H0” in this case
does not imply innocence, but merely that the evidence was insufficient to convict.
So the jury does not necessarily accept H0 but fails to reject H0.

6.2 Testing a Statistical Hypothesis

To illustrate the concepts used in testing a statistical hypothesis about a popula-
tion, we present the following example. A certain type of cold vaccine is known to
be only 25% effective after a period of 2 years. To determine if a new and some-
what more expensive vaccine is superior in providing protection against the same
virus for a longer period of time, suppose that 20 people are chosen at random and
inoculated. (In an actual study of this type, the participants receiving the new
vaccine might number several thousand. The number 20 is being used here only
to demonstrate the basic steps in carrying out a statistical test.) If more than 8 of
those receiving the new vaccine surpass the 2-year period without contracting the
virus, the new vaccine will be considered superior to the one presently in use. The
requirement that the number exceed 8 is somewhat arbitrary but appears reason-
able in that it represents a modest gain over the 5 people who could be expected to
receive protection if the 20 people had been inoculated with the vaccine already in
use. We are essentially testing the null hypothesis that the new vaccine is equally
effective after a period of 2 years as the one now commonly used. The alternative
hypothesis is that the new vaccine is in fact superior. This is equivalent to testing
the hypothesis that the binomial parameter for the probability of a success on a
given trial is p = 1/4 against the alternative that p > 1/4. This is usually written
as follows:

H0: p = 0.25,

H1: p > 0.25.

The Test Statistic

The test statistic on which we base our decision is X, the number of individuals
in our test group who receive protection from the new vaccine for a period of at
least 2 years. The possible values of X, from 0 to 20, are divided into two groups:
those numbers less than or equal to 8 and those greater than 8. All possible scores
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greater than 8 constitute the critical region. The last number that we observe
in passing into the critical region is called the critical value. In our illustration,
the critical value is the number 8. Therefore, if x > 8, we reject H0 in favor of the
alternative hypothesis H1. If x ≤ 8, we fail to reject H0. This decision criterion is
illustrated in Figure 6.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x

Do not reject H0
(p � 0.25)

Reject H0
(p 	 0.25)

Figure 6.1: Decision criterion for testing p = 0.25 versus p > 0.25.

The Probability of a Type I Error

The decision procedure just described could lead to either of two wrong conclusions.
For instance, the new vaccine may be no better than the one now in use (H0 true)
and yet, in this particular randomly selected group of individuals, more than 8
surpass the 2-year period without contracting the virus. We would be committing
an error by rejecting H0 in favor of H1 when, in fact, H0 is true. Such an error is
called a type I error.

Definition 6.2: Rejection of the null hypothesis when it is true is called a type I error.

A second kind of error is committed if 8 or fewer of the group surpass the 2-year
period successfully and we are unable to conclude that the vaccine is better when
it actually is better (H1 true). Thus, in this case, we fail to reject H0 when in fact
H0 is false. This is called a type II error.

Definition 6.3: Nonrejection of the null hypothesis when it is false is called a type II error.

In testing any statistical hypothesis, there are four possible situations that
determine whether our decision is correct or in error. These four situations are
summarized in Table 6.1.

Table 6.1: Possible Situations for Testing a Statistical Hypothesis

H0 is true H0 is false
Do not reject H0 Correct decision Type II error

Reject H0 Type I error Correct decision

The probability of committing a type I error, also called the level of signif-
icance, is denoted by the Greek letter α. In our illustration, a type I error will
occur when more than 8 individuals inoculated with the new vaccine surpass the
2-year period without contracting the virus and researchers conclude that the new
vaccine is better when it is actually equivalent to the one in use. Hence, if X is



6.2 Testing a Statistical Hypothesis 239

the number of individuals who remain free of the virus for at least 2 years,

α = P (type I error) = P

(
X > 8 when p =

1

4

)
=

20∑
x=9

b

(
x; 20,

1

4

)

= 1−
8∑

x=0

b

(
x; 20,

1

4

)
= 1− 0.9591 = 0.0409.

We say that the null hypothesis, p = 1/4, is being tested at the α = 0.0409 level of
significance. Sometimes the level of significance is called the size of the test. A
critical region of size 0.0409 is very small, and therefore it is unlikely that a type
I error will be committed. Consequently, it would be most unusual for more than
8 individuals to remain immune to a virus for a 2-year period using a new vaccine
that is essentially equivalent to the one now on the market.

The Probability of a Type II Error

The probability of committing a type II error, denoted by β, is impossible to com-
pute unless we have a specific alternative hypothesis. If we test the null hypothesis
that p = 1/4 against the alternative hypothesis that p = 1/2, then we are able
to compute the probability of not rejecting H0 when it is false. We simply find
the probability of obtaining 8 or fewer in the group that surpass the 2-year period
when p = 1/2. In this case,

β = P (type II error) = P

(
X ≤ 8 when p =

1

2

)
=

8∑
x=0

b

(
x; 20,

1

2

)
= 0.2517.

This is a rather high probability, indicating a test procedure in which it is quite
likely that we shall reject the new vaccine when, in fact, it is superior to what is
now in use. Ideally, we like to use a test procedure for which the type I and type
II error probabilities are both small.

It is possible that the director of the testing program is willing to make a type
II error if the more expensive vaccine is not significantly superior. In fact, the only
time he wishes to guard against the type II error is when the true value of p is at
least 0.7. If p = 0.7, this test procedure gives

β = P (type II error) = P (X ≤ 8 when p = 0.7)

=
8∑

x=0

b(x; 20, 0.7) = 0.0051.

With such a small probability of committing a type II error, it is extremely unlikely
that the new vaccine would be rejected when it was 70% effective after a period of
2 years. As the alternative hypothesis approaches unity, the value of β diminishes
to zero.
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The Role of α, β, and Sample Size

Let us assume that the director of the testing program is unwilling to commit a
type II error when the alternative hypothesis p = 1/2 is true, even though we have
found the probability of such an error to be β = 0.2517. It is always possible to
reduce β by increasing the size of the critical region. For example, consider what
happens to the values of α and β when we change our critical value to 7 so that
all scores greater than 7 fall in the critical region and those less than or equal to
7 fall in the nonrejection region. Now, in testing p = 1/4 against the alternative
hypothesis that p = 1/2, we find that

α =

20∑
x=8

b

(
x; 20,

1

4

)
= 1−

7∑
x=0

b

(
x; 20,

1

4

)
= 1− 0.8982 = 0.1018

and

β =
7∑

x=0

b

(
x; 20,

1

2

)
= 0.1316.

By adopting a new decision procedure, we have reduced the probability of com-
mitting a type II error at the expense of increasing the probability of committing
a type I error. For a fixed sample size, a decrease in the probability of one error
will usually result in an increase in the probability of the other error. Fortunately,
the probability of committing both types of error can be reduced by
increasing the sample size. Consider the same problem using a random sample
of 100 individuals. If more than 36 of the group surpass the 2-year period, we
reject the null hypothesis that p = 1/4 and accept the alternative hypothesis that
p > 1/4. The critical value is now 36. All possible scores above 36 constitute the
critical region, and all possible scores less than or equal to 36 fall in the acceptance
region.

To determine the probability of committing a type I error, we shall use the
normal curve approximation with

μ = np = (100)

(
1

4

)
= 25 and σ =

√
npq =

√
(100)(1/4)(3/4) = 4.33.

Referring to Figure 6.2, we need the area under the normal curve to the right of
x = 36.5. The corresponding z-value is

z =
36.5− 25

4.33
= 2.66.

From Table A.3 we find that

α = P (type I error) = P

(
X > 36 when p =

1

4

)
≈ P (Z > 2.66)

= 1− P (Z < 2.66) = 1− 0.9961 = 0.0039.

If H0 is false and the true value of H1 is p = 1/2, we can determine the
probability of a type II error using the normal curve approximation with

μ = np = (100)(1/2) = 50 and σ =
√
npq =

√
(100)(1/2)(1/2) = 5.
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xμ = 25 36.5

σ = 4.33

α

Figure 6.2: Probability of a type I error.

The probability of a value falling in the nonrejection region when H0 is false and
H1 is true, with p = 1/2, is given by the area of the shaded region to the left of
x = 36.5 in Figure 6.3. The two normal distributions in the figure show the null
hypothesis on the left and the alternative hypothesis on the right. The z-value
corresponding to x = 36.5 is

z =
36.5− 50

5
= −2.7.

x
25 36.5 50

σ = 4.33 σ = 5

H0
H1

Figure 6.3: Probability of a type II error.

Therefore,

β = P (type II error) = P

(
X ≤ 36 when p =

1

2

)
≈ P (Z < −2.7) = 0.0035.
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Obviously, the type I and type II errors will rarely occur if the experiment consists
of 100 individuals.

The illustration above underscores the strategy of the scientist in hypothesis
testing. After the null and alternative hypotheses are stated, it is important to
consider the sensitivity of the test procedure. By this we mean that there should
be a determination, for a fixed α, of a reasonable value for the probability of
wrongly accepting H0 (i.e., the value of β) when the true situation represents some
important deviation from H0. A value for the sample size can usually be determined
for which there is a reasonable balance between the values of α and β computed
in this fashion. The vaccine problem provides an illustration.

Illustration with a Continuous Random Variable

The concepts discussed here for a discrete population can be applied equally well
to continuous random variables. Consider the null hypothesis that the average
weight of male students in a certain college is 68 kilograms against the alternative
hypothesis that it is unequal to 68. That is, we wish to test

H0: μ = 68,

H1: μ �= 68.

The alternative hypothesis allows for the possibility that μ < 68 or μ > 68.
A sample mean that falls close to the hypothesized value of 68 would be consid-

ered evidence in favor ofH0. On the other hand, a sample mean that is considerably
less than or more than 68 would be evidence inconsistent with H0 and therefore
favoring H1. The sample mean is the test statistic in this case. A critical region
for the test statistic might arbitrarily be chosen to be the two intervals x̄ < 67
and x̄ > 69. The nonrejection region will then be the interval 67 ≤ x̄ ≤ 69. This
decision criterion is illustrated in Figure 6.4.

67 68 69
x

Reject H0
(  � 68)

Reject H0
(   � 68)

Do not reject H0
(   � 68)μ μμ 
 


Figure 6.4: Critical region (in blue).

Let us now use the decision criterion of Figure 6.4 to calculate the probabilities
of committing type I and type II errors when testing the null hypothesis that
μ = 68 kilograms against the alternative that μ �= 68 kilograms.

Assume the standard deviation of the population of weights to be σ = 3.6. For
large samples, we may substitute s for σ if no other estimate of σ is available.
Our decision statistic, based on a random sample of size n = 36, will be X̄, the
most efficient estimator of μ. From the Central Limit Theorem, we know that
the sampling distribution of X̄ is approximately normal with standard deviation
σX̄ = σ/

√
n = 3.6/6 = 0.6.
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The probability of committing a type I error, or the level of significance of our
test, is equal to the sum of the areas that have been shaded in each tail of the
distribution in Figure 6.5. Therefore,

α = P (X̄ < 67 when μ = 68) + P (X̄ > 69 when μ = 68).

x
67  � 68 69

/2
μ

α /2α

Figure 6.5: Critical region for testing μ = 68 versus μ �= 68.

The z-values corresponding to x̄1 = 67 and x̄2 = 69 when H0 is true are

z1 =
67− 68

0.6
= −1.67 and z2 =

69− 68

0.6
= 1.67.

Therefore,

α = P (Z < −1.67) + P (Z > 1.67) = 2P (Z < −1.67) = 0.0950.

Thus, 9.5% of all samples of size 36 would lead us to reject μ = 68 kilograms when,
in fact, it is true. To reduce α, we have a choice of increasing the sample size
or widening the fail-to-reject region. Suppose that we increase the sample size to
n = 64. Then σX̄ = 3.6/8 = 0.45. Now

z1 =
67− 68

0.45
= −2.22 and z2 =

69− 68

0.45
= 2.22.

Hence,

α = P (Z < −2.22) + P (Z > 2.22) = 2P (Z < −2.22) = 0.0264.

The reduction in α is not sufficient by itself to guarantee a good testing proce-
dure. We must also evaluate β for various alternative hypotheses. If it is important
to reject H0 when the true mean is some value μ ≥ 70 or μ ≤ 66, then the prob-
ability of committing a type II error should be computed and examined for the
alternatives μ = 66 and μ = 70. Because of symmetry, it is only necessary to
consider the probability of not rejecting the null hypothesis that μ = 68 when the
alternative μ = 70 is true. A type II error will result when the sample mean x̄ falls
between 67 and 69 when H1 is true. Therefore, referring to Figure 6.6, we find
that

β = P (67 ≤ X̄ ≤ 69 when μ = 70).
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67 68 69 70 71
x

H0 H1

Figure 6.6: Probability of type II error for testing μ = 68 versus μ = 70.

The z-values corresponding to x̄1 = 67 and x̄2 = 69 when H1 is true are

z1 =
67− 70

0.45
= −6.67 and z2 =

69− 70

0.45
= −2.22.

Therefore,

β = P (−6.67 < Z < −2.22) = P (Z < −2.22)− P (Z < −6.67)

= 0.0132− 0.0000 = 0.0132.

If the true value of μ is the alternative μ = 66, the value of β will again be
0.0132. For all possible values of μ < 66 or μ > 70, the value of β will be even
smaller when n = 64, and consequently there would be little chance of not rejecting
H0 when it is false.

The probability of committing a type II error increases rapidly when the true
value of μ approaches, but is not equal to, the hypothesized value. Of course, this
is usually the situation where we do not mind making a type II error. For example,
if the alternative hypothesis μ = 68.5 is true, we do not mind committing a type
II error by concluding that the true answer is μ = 68. The probability of making
such an error will be high when n = 64. Referring to Figure 6.7, we have

β = P (67 ≤ X̄ ≤ 69 when μ = 68.5).

The z-values corresponding to x̄1 = 67 and x̄2 = 69 when μ = 68.5 are

z1 =
67− 68.5

0.45
= −3.33 and z2 =

69− 68.5

0.45
= 1.11.

Therefore,

β = P (−3.33 < Z < 1.11) = P (Z < 1.11)− P (Z < −3.33)

= 0.8665− 0.0004 = 0.8661.



6.2 Testing a Statistical Hypothesis 245

67 68 6968.5
x

H0 H1

Figure 6.7: Type II error for testing μ = 68 versus μ = 68.5.

One very important concept that relates to error probabilities is the notion of
the power of a test.

Definition 6.4: The power of a test is the probability of rejecting H0 given that a specific alter-
native is true.

The power of a test can be computed as 1 − β. Often different types of
tests are compared by contrasting power properties. Consider the previous
illustration, in which we were testing H0 : μ = 68 and H1 : μ �= 68. As before,
suppose we are interested in assessing the sensitivity of the test. The test is gov-
erned by the rule that we do not reject H0 if 67 ≤ x̄ ≤ 69. We seek the capability
of the test to properly reject H0 when indeed μ = 68.5. We have seen that the
probability of a type II error is given by β = 0.8661. Thus, the power of the test
is 1 − 0.8661 = 0.1339. In a sense, the power is a more succinct measure of how
sensitive the test is for detecting differences between a mean of 68 and a mean of
68.5. In this case, if μ is truly 68.5, the test as described will properly reject H0

only 13.39% of the time. However, if μ = 70, the power of the test is 0.99, a very
satisfying value. From the foregoing, it is clear that to produce a desirable power
(say, greater than 0.8), one must either increase α or increase the sample size.

So far in this chapter, much of the discussion of hypothesis testing has focused
on foundations and definitions. In the sections that follow, we get more specific
and put hypotheses in categories as well as discuss tests of hypotheses on various
parameters of interest. We begin by drawing the distinction between a one-sided
and a two-sided hypothesis.

One- and Two-Tailed Tests

A test of any statistical hypothesis where the alternative is one sided, such as

H0: θ = θ0,

H1: θ > θ0
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or perhaps

H0: θ = θ0,

H1: θ < θ0,

is called a one-tailed test. Earlier in this section, we referred to the test statistic
for a hypothesis. Generally, the critical region for the alternative hypothesis θ > θ0
lies in the right tail of the sampling distribution of the test statistic when the null
hypothesis is true, while the critical region for the alternative hypothesis θ < θ0 lies
entirely in the left tail. (In a sense, the inequality symbol points in the direction
of the critical region.) A one-tailed test was used in the vaccine experiment to test
the hypothesis p = 1/4 against the one-sided alternative p > 1/4 for the binomial
distribution.

A test of any statistical hypothesis where the alternative is two sided, such as

H0: θ = θ0,

H1: θ �= θ0,

is called a two-tailed test, since the critical region is split into two parts, often
having equal probabilities, in each tail of the distribution of the test statistic. The
alternative hypothesis θ �= θ0 states that either θ < θ0 or θ > θ0. A two-tailed
test was used to test the null hypothesis that μ = 68 kilograms against the two-
sided alternative μ �= 68 kilograms in the example of the continuous population of
student weights.

How Are the Null and Alternative Hypotheses Chosen?

The null hypothesis H0 will often be stated using the equality sign. With this
approach, it is clear how the probability of type I error is controlled: just as
shown in the preceding examples. However, there are situations in which “do
not reject H0” implies that the parameter θ might be any value defined by the
natural complement to the alternative hypothesis. For example, in the vaccine
example, where the alternative hypothesis is H1: p > 1/4, it is quite possible that
nonrejection of H0 cannot rule out a value of p less than 1/4. Clearly though, in
the case of one-tailed tests, the statement of the alternative is the most important
consideration.

Whether one sets up a one-tailed or a two-tailed test will depend on the con-
clusion to be drawn if H0 is rejected. The location of the critical region can be
determined only after H1 has been stated. For example, in testing a new drug, one
sets up the hypothesis that it is no better than similar drugs now on the market and
tests this against the alternative hypothesis that the new drug is superior. Such
an alternative hypothesis will result in a one-tailed test with the critical region
in the right tail. However, if we wish to compare a new teaching technique with
the conventional classroom procedure, the alternative hypothesis should allow for
the new approach to be either inferior or superior to the conventional procedure.
Hence, the test is two-tailed with the critical region divided equally so as to fall in
the extreme left and right tails of the distribution of our statistic.
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Example 6.1: A manufacturer of a certain brand of rice cereal claims that the average saturated
fat content does not exceed 1.5 grams per serving. State the null and alternative
hypotheses to be used in testing this claim and determine where the critical region
is located.

Solution : The manufacturer’s claim should be rejected only if μ is greater than 1.5 milligrams
and should not be rejected if μ is less than or equal to 1.5 milligrams. We test

H0: μ = 1.5,

H1: μ > 1.5.

Nonrejection of H0 does not rule out values less than 1.5 milligrams. Since we
have a one-tailed test, the greater than symbol indicates that the critical region
lies entirely in the right tail of the distribution of our test statistic X̄.

Example 6.2: A real estate agent claims that 60% of all private residences being built today are
3-bedroom homes. To test this claim, a large sample of new residences is inspected;
the proportion of these homes with 3 bedrooms is recorded and used as the test
statistic. State the null and alternative hypotheses to be used in this test and
determine the location of the critical region.

Solution : If the test statistic were substantially higher or lower than p = 0.6, we would reject
the agent’s claim. Hence, we should make the hypothesis

H0: p = 0.6,

H1: p �= 0.6.

The alternative hypothesis implies a two-tailed test with the critical region divided
equally in both tails of the distribution of P̂ , our test statistic.

6.3 The Use of P -Values for Decision Making
in Testing Hypotheses

In testing hypotheses in which the test statistic is discrete, the critical region may
be chosen arbitrarily and its size determined. If α is too large, it can be reduced
by making an adjustment in the critical value. It may be necessary to increase the
sample size to offset the decrease that occurs automatically in the power of the
test.

Preselection of a Significance Level

The preselection of a significance level α has its roots in the philosophy that the
maximum risk of making a type I error should be controlled. However, this ap-
proach does not account for values of test statistics that are “close” to the critical
region. Suppose, for example, in the illustration withH0: μ = 10 versusH1: μ �= 10,
a value of z = 1.87 is observed; strictly speaking, with α = 0.05, the value is not
significant. But the risk of committing a type I error if one rejects H0 in this
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case could hardly be considered severe. In fact, in a two-tailed scenario, one can
quantify this risk as

P = 2P (Z > 1.87 when μ = 10) = 2(0.0307) = 0.0614.

As a result, 0.0614 is the probability of obtaining a value of z as large as or larger
(in magnitude) than 1.87 when in fact μ = 10. Although this evidence against H0

is not as strong as that which would result from rejection at an α = 0.05 level, it
is important information to the user. Indeed, continued use of α = 0.05 or 0.01 is
only a result of what standards have been passed down through the generations.
The P-value approach has been adopted extensively by users of applied
statistics. The approach is designed to give the user an alternative (in terms
of a probability) to a mere “reject” or “do not reject” conclusion. The P -value
computation also gives the user important information when the z-value falls well
into the ordinary critical region. For example, if z is 2.73, it is informative for the
user to observe that

P = 2(0.0032) = 0.0064,

and thus the z-value is significant at a level considerably less than 0.05. It is
important to know that under the condition of H0, a value of z = 2.73 is an
extremely rare event. That is, a value at least that large in magnitude would only
occur 64 times in 10,000 experiments.

A Graphical Demonstration of a P-Value

One very simple way of explaining a P -value graphically is to consider two distinct
samples. Suppose that two materials are being considered for coating a particular
type of metal in order to inhibit corrosion. Specimens are obtained, and one
collection is coated with material 1 and one collection coated with material 2. The
sample sizes are n1 = n2 = 10, and corrosion is measured in percent of surface
area affected. The hypothesis is that the samples came from common distributions
with mean μ = 10. Let us assume that the population variance is 1.0. Then we
are testing

H0: μ1 = μ2 = 10.

Let Figure 6.8 represent a point plot of the data; the data are placed on the
distribution stated by the null hypothesis. Let us assume that the “×” data refer to
material 1 and the “◦” data refer to material 2. Now it seems clear that the data do
refute the null hypothesis. But how can this be summarized in one number? The
P-value can be viewed as simply the probability of obtaining these data
given that both samples come from the same distribution. Clearly, this
probability is quite small, say 0.00000001! Thus, the small P -value clearly refutes
H0, and the conclusion is that the population means are significantly different.

Use of the P -value approach as an aid in decision-making is quite natural, and
nearly all computer packages that provide hypothesis-testing computation print
out P -values along with values of the appropriate test statistic. The following is a
formal definition of a P -value.
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 � 10μ

Figure 6.8: Data that are likely generated from populations having two different
means.

Definition 6.5: A P -value is the lowest level (of significance) at which the observed value of the
test statistic is significant.

How Does the Use of P-Values Differ from Classic Hypothesis Testing?

It is tempting at this point to summarize the procedures associated with testing,
say, H0: θ = θ0. However, the student who is a beginner in this area should un-
derstand that there are differences in approach and philosophy between the classic
fixed α approach that is climaxed with either a “reject H0” or a “do not reject H0”
conclusion and the P -value approach. In the latter, no fixed α is determined and
conclusions are drawn on the basis of the size of the P -value in harmony with the
subjective judgment of the engineer or scientist. While modern computer software
will output P -values, nevertheless it is important that readers understand both
approaches in order to appreciate the totality of the concepts. Thus, we offer a
brief list of procedural steps for both the classical and the P -value approach.

Approach to
Hypothesis

Testing with
Fixed Probability
of Type I Error

1. State the null and alternative hypotheses.
2. Choose a fixed significance level α.
3. Choose an appropriate test statistic and establish the critical region based
on α.
4. Reject H0 if the computed test statistic is in the critical region. Otherwise,
do not reject.
5. Draw scientific or engineering conclusions.

Significance
Testing (P -Value

Approach)

1. State null and alternative hypotheses.
2. Choose an appropriate test statistic.
3. Compute the P -value based on the computed value of the test statistic.
4. Use judgment based on the P -value and knowledge of the scientific system
in deciding whether or not to reject H0.

In later sections of this chapter and chapters that follow, many examples and
exercises emphasize the P -value approach to drawing scientific conclusions.
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Exercises

6.1 Suppose that an allergist wishes to test the hy-
pothesis that at least 30% of the public is allergic to
some cheese products. Explain how the allergist could
commit

(a) a type I error;

(b) a type II error.

6.2 A sociologist is concerned about the effectiveness
of a training course designed to get more drivers to use
seat belts in automobiles.

(a) What hypothesis is she testing if she commits a
type I error by erroneously concluding that the
training course is ineffective?

(b) What hypothesis is she testing if she commits a
type II error by erroneously concluding that the
training course is effective?

6.3 A large manufacturing firm is being charged with
discrimination in its hiring practices.

(a) What hypothesis is being tested if a jury commits
a type I error by finding the firm guilty?

(b) What hypothesis is being tested if a jury commits
a type II error by finding the firm guilty?

6.4 A fabric manufacturer believes that the propor-
tion of orders for raw material arriving late is p = 0.6.
If a random sample of 10 orders shows that 3 or fewer
arrived late, the hypothesis that p = 0.6 should be
rejected in favor of the alternative p < 0.6. Use the
binomial distribution.

(a) Find the probability of committing a type I error
if the true proportion is p = 0.6.

(b) Find the probability of committing a type II error
for the alternatives p = 0.3, p = 0.4, and p = 0.5.

6.5 Repeat Exercise 6.4 but assume that 50 orders are
selected and the critical region is defined to be x ≤ 24,
where x is the number of orders in the sample that
arrived late. Use the normal approximation.

6.6 The proportion of adults living in a small town
who are college graduates is estimated to be p = 0.6.
To test this hypothesis, a random sample of 15 adults
is selected. If the number of college graduates in the
sample is anywhere from 6 to 12, we shall not reject
the null hypothesis that p = 0.6; otherwise, we shall
conclude that p 
= 0.6.

(a) Evaluate α assuming that p = 0.6. Use the bino-
mial distribution.

(b) Evaluate β for the alternatives p = 0.5 and p = 0.7.

(c) Is this a good test procedure?

6.7 Repeat Exercise 6.6 but assume that 200 adults
are selected and the fail-to-reject region is defined to
be 110 ≤ x ≤ 130, where x is the number of college
graduates in our sample. Use the normal approxima-
tion.

6.8 In Relief from Arthritis published by Thorsons
Publishers, Ltd., John E. Croft claims that over 40%
of those who suffer from osteoarthritis receive measur-
able relief from an ingredient produced by a particular
species of mussel found off the coast of New Zealand.
To test this claim, the mussel extract is to be given to
a group of 7 osteoarthritic patients. If 3 or more of
the patients receive relief, we shall not reject the null
hypothesis that p = 0.4; otherwise, we shall conclude
that p < 0.4.

(a) Evaluate α, assuming that p = 0.4.

(b) Evaluate β for the alternative p = 0.3.

6.9 A dry cleaning establishment claims that a new
spot remover will remove more than 70% of the spots
to which it is applied. To check this claim, the spot
remover will be used on 12 spots chosen at random. If
fewer than 11 of the spots are removed, we shall not
reject the null hypothesis that p = 0.7; otherwise, we
shall conclude that p > 0.7.

(a) Evaluate α, assuming that p = 0.7.

(b) Evaluate β for the alternative p = 0.9.

6.10 Repeat Exercise 6.9 but assume that 100 spots
are treated and the critical region is defined to be
x > 82, where x is the number of spots removed.

6.11 Repeat Exercise 6.8 but assume that 70 patients
are given the mussel extract and the critical region is
defined to be x < 24, where x is the number of os-
teoarthritic patients who receive relief.

6.12 A random sample of 400 voters in a certain city
are asked if they favor an additional 4% gasoline sales
tax to provide badly needed revenues for street repairs.
If more than 220 but fewer than 260 favor the sales tax,
we shall conclude that 60% of the voters are for it.

(a) Find the probability of committing a type I error
if 60% of the voters favor the increased tax.

(b) What is the probability of committing a type II er-
ror using this test procedure if actually only 48%
of the voters are in favor of the additional gasoline
tax?

6.13 Suppose, in Exercise 6.12, we conclude that 60%
of the voters favor the gasoline sales tax if more than
214 but fewer than 266 voters in our sample favor it.
Show that this new critical region results in a smaller
value for α at the expense of increasing β.
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6.14 A manufacturer has developed a new fishing
line, which the company claims has a mean breaking
strength of 15 kilograms with a standard deviation of
0.5 kilogram. To test the hypothesis that μ = 15 kilo-
grams against the alternative that μ < 15 kilograms, a
random sample of 50 lines will be tested. The critical
region is defined to be x̄ < 14.9.

(a) Find the probability of committing a type I error
when H0 is true.

(b) Evaluate β for the alternatives μ = 14.8 and μ =
14.9 kilograms.

6.15 A soft-drink machine at a steak house is reg-
ulated so that the amount of drink dispensed is ap-
proximately normally distributed with a mean of 200
milliliters and a standard deviation of 15 milliliters.
The machine is checked periodically by taking a sam-
ple of 9 drinks and computing the average content. If
x̄ falls in the interval 191 < x̄ < 209, the machine is
thought to be operating satisfactorily; otherwise, we
conclude that μ 
= 200 milliliters.

(a) Find the probability of committing a type I error
when μ = 200 milliliters.

(b) Find the probability of committing a type II error
when μ = 215 milliliters.

6.16 Repeat Exercise 6.15 for samples of size n = 25.

Use the same critical region.

6.17 A new curing process developed for a certain
type of cement results in a mean compressive strength
of 5000 kilograms per square centimeter with a stan-
dard deviation of 120 kilograms per square centimeter.
To test the hypothesis that μ = 5000 against the al-
ternative that μ < 5000, a random sample of 50 pieces
of cement is tested. The critical region is defined to be
x̄ < 4970.

(a) Find the probability of committing a type I error
when H0 is true.

(b) Evaluate β for the alternatives μ = 4970 and
μ = 4960.

6.18 If we plot the probabilities of failing to reject H0

corresponding to various alternatives for μ (including
the value specified by H0) and connect all the points
by a smooth curve, we obtain the operating charac-
teristic curve of the test criterion, or the OC curve.
Note that the probability of failing to reject H0 when it
is true is simply 1−α. Operating characteristic curves
are widely used in industrial applications to provide a
visual display of the merits of the test criterion. With
reference to Exercise 6.15, find the probabilities of fail-
ing to reject H0 for the following 9 values of μ and plot
the OC curve: 184, 188, 192, 196, 200, 204, 208, 212,
and 216.

6.4 Single Sample: Tests Concerning a Single Mean

In this section, we formally consider tests of hypotheses on a single population
mean. Many of the illustrations from previous sections involved tests on the mean,
so the reader should already have insight into some of the details that are outlined
here.

Tests on a Single Mean (Variance Known)

We should first describe the assumptions on which the experiment is based. The
model for the underlying situation centers around an experiment with X1, X2, . . . ,
Xn representing a random sample from a distribution with mean μ and variance
σ2 > 0. Consider first the hypothesis

H0: μ = μ0,

H1: μ �= μ0.

The appropriate test statistic should be based on the random variable X̄. In
Chapter 4, the Central Limit Theorem was introduced, which essentially states
that despite the distribution of X, the random variable X̄ has approximately a
normal distribution with mean μ and variance σ2/n for reasonably large sample
sizes. So, μX̄ = μ and σ2

X̄
= σ2/n. We can then determine a critical region based
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on the computed sample average, x̄. It should be clear to the reader by now that
there will be a two-tailed critical region for the test.

Standardization of X̄

It is convenient to standardize X̄ and formally involve the standard normal
random variable Z, where

Z =
X̄ − μ

σ/
√
n
.

We know that under H0, the Central Limit Theorem states that μX̂ = μ0,
√
n(X̄−

μ0)/σ follows an n(x; 0, 1) distribution. Hence Z will fall between the critical values
−zα/2 and zα/2 with a probability of 1− α. The expression

P

(
−zα/2 <

X̄ − μ0

σ/
√
n

< zα/2

)
= 1− α

can be used to write an appropriate nonrejection region. The reader should keep
in mind that, formally, the critical region is designed to control α, the probability
of a type I error. It should be obvious that a two-tailed signal of evidence is needed
to support H1. Thus, given a computed value x̄, the formal test involves rejecting
H0 if the computed test statistic z falls in the critical region described next.

Test Procedure
for a Single Mean

(Variance
Known)

z =
x̄− μ0

σ/
√
n

> zα/2 or z =
x̄− μ0

σ/
√
n

< −zα/2

If −zα/2 < z < zα/2, do not reject H0. Rejection of H0, of course, implies
acceptance of the alternative hypothesis μ �= μ0. With this definition of the
critical region, it should be clear that there will be probability α of rejecting H0

(falling into the critical region) when, indeed, μ = μ0.

Although it is easier to understand the critical region written in terms of z,
we can write the same critical region in terms of the computed average x̄. The
following can be written as an identical decision procedure:

reject H0 if x̄ < a or x̄ > b,

where

a = μ0 − zα/2
σ√
n
, b = μ0 + zα/2

σ√
n
.

Hence, for a significance level α, the critical values of the random variable z and x̄
are both depicted in Figure 6.9.

Tests of one-sided hypotheses on the mean involve the same statistic described
in the two-sided case. The difference, of course, is that the critical region is only
in one tail of the standard normal distribution. For example, suppose that we seek
to test

H0: μ = μ0,

H1: μ > μ0.
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Figure 6.9: Critical region for the alternative hypothesis μ �= μ0.

The signal that favorsH1 comes from large values of z. Thus, rejection ofH0 results
when the computed z > zα. Obviously, if the alternative is H1: μ < μ0, the critical
region is entirely in the lower tail and thus rejection results from z < −zα. Although
in a one-sided testing case the null hypothesis can be written as H0 : μ ≤ μ0 or
H0: μ ≥ μ0, it is usually written as H0: μ = μ0.

The following two examples illustrate tests on means for the case in which σ is
known.

Example 6.3: A random sample of 100 recorded deaths in the United States during the past
year showed an average life span of 71.8 years. Assuming a population standard
deviation of 8.9 years, does this seem to indicate that the mean life span today is
greater than 70 years? Use a 0.05 level of significance.

Solution : 1. H0: μ = 70 years.

2. H1: μ > 70 years.

3. α = 0.05.

4. Critical region: z > 1.645, where z = x̄−μ0

σ/
√
n
.

5. Computations: x̄ = 71.8 years, σ = 8.9 years, and hence z = 71.8−70
8.9/

√
100

= 2.02.

6. Decision: Reject H0 and conclude that the mean life span today is greater
than 70 years.

The P -value corresponding to z = 2.02 is given by the area of the shaded region
in Figure 6.10.

Using Table A.3, we have

P = P (Z > 2.02) = 0.0217.

As a result, the evidence in favor of H1 is even stronger than that suggested by a
0.05 level of significance.

Example 6.4: Amanufacturer of sports equipment has developed a new synthetic fishing line that
the company claims has a mean breaking strength of 8 kilograms with a standard
deviation of 0.5 kilogram. Test the hypothesis that μ = 8 kilograms against the
alternative that μ �= 8 kilograms if a random sample of 50 lines is tested and found
to have a mean breaking strength of 7.8 kilograms. Use a 0.01 level of significance.
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z
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P

Figure 6.10: P -value for Example 6.3.

z
−2.83 0 2.83

P /2 P /2

Figure 6.11: P -value for Example 6.4.

Solution : 1. H0: μ = 8 kilograms.

2. H1: μ �= 8 kilograms.

3. α = 0.01.

4. Critical region: z < −2.575 and z > 2.575, where z = x̄−μ0

σ/
√
n
.

5. Computations: x̄ = 7.8 kilograms, n = 50, and hence z = 7.8−8
0.5/

√
50

= −2.83.

6. Decision: Reject H0 and conclude that the average breaking strength is not
equal to 8.

Since the test in this example is two tailed, the desired P -value is twice the
area of the shaded region in Figure 6.11 to the left of z = −2.83. Therefore, using
Table A.3, we have

P = P (|Z| > 2.83) = 2P (Z < −2.83) = 0.0046,

which allows us to reject the null hypothesis that μ = 8 kilograms at a level of
significance smaller than 0.01.

Relationship to Confidence Interval Estimation

The reader should realize by now that the hypothesis-testing approach to statistical
inference in this chapter is very closely related to the confidence interval approach in
Chapter 5. Confidence interval estimation involves computation of bounds within
which it is “reasonable” for the parameter in question to lie. For the case of a
single population mean μ with σ2 known, the structure of both hypothesis testing
and confidence interval estimation is based on the random variable

Z =
X̄ − μ

σ/
√
n
.

It turns out that the testing of H0: μ = μ0 against H1: μ �= μ0 at a significance level
α is equivalent to computing a 100(1− α)% confidence interval on μ and rejecting
H0 if μ0 is outside the confidence interval. If μ0 is inside the confidence interval,
the hypothesis is not rejected. The equivalence is very intuitive and quite simple to



6.4 Single Sample: Tests Concerning a Single Mean 255

illustrate. Recall that with an observed value x̄, failure to reject H0 at significance
level α implies that

−zα/2 ≤ x̄− μ0

σ/
√
n

≤ zα/2,

which is equivalent to

x̄− zα/2
σ√
n
≤ μ0 ≤ x̄+ zα/2

σ√
n
.

The equivalence of confidence interval estimation to hypothesis testing extends
to differences between two means, variances, ratios of variances, and so on. As a
result, the student of statistics should not consider confidence interval estimation
and hypothesis testing as separate forms of statistical inference.

Tests on a Single Sample (Variance Unknown)

One would certainly suspect that tests on a population mean μ with σ2 unknown,
like confidence interval estimation, should involve use of the Student t-distribution.
Strictly speaking, the application of Student t for both confidence intervals and
hypothesis testing is developed under the following assumptions. The random
variables X1, X2, . . . , Xn represent a random sample from a normal distribution
with unknown μ and σ2. Then the random variable

√
n(X̄ − μ)/S has a Student

t-distribution with n−1 degrees of freedom. The structure of the test is identical to
that for the case of σ known, with the exception that the value σ in the test statistic
is replaced by the computed estimate S and the standard normal distribution is
replaced by a t-distribution.

The t-Statistic
for a Test on a

Single Mean
(Variance
Unknown)

For the two-sided hypothesis

H0: μ = μ0,

H1: μ �= μ0,

we reject H0 at significance level α when the computed t-statistic

t =
x̄− μ0

s/
√
n

exceeds tα/2,n−1 or is less than −tα/2,n−1.

The reader should recall from Chapters 4 and 5 that the t-distribution is symmetric
around the value zero. Thus, this two-tailed critical region applies in a fashion
similar to that for the case of known σ. For the two-sided hypothesis at significance
level α, the two-tailed critical regions apply. For H1: μ > μ0, rejection results when
t > tα,n−1. For H1: μ < μ0, the critical region is given by t < −tα,n−1.

Example 6.5: The Edison Electric Institute has published figures on the number of kilowatt hours
used annually by various home appliances. It is claimed that a vacuum cleaner uses
an average of 46 kilowatt hours per year. If a random sample of 12 homes included
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in a planned study indicates that vacuum cleaners use an average of 42 kilowatt
hours per year with a sample standard deviation of 11.9 kilowatt hours, does this
suggest at the 0.05 level of significance that vacuum cleaners use, on average, less
than 46 kilowatt hours annually? Assume the population of kilowatt hours to be
normal.

Solution : 1. H0: μ = 46 kilowatt hours.

2. H1: μ < 46 kilowatt hours.

3. α = 0.05.

4. Critical region: t < −1.796, where t = x̄−μ0

s/
√
n
with 11 degrees of freedom.

5. Computations: x̄ = 42 kilowatt hours, s = 11.9 kilowatt hours, and n = 12.
Hence,

t =
42− 46

11.9/
√
12

= −1.16, P = P (T < −1.16) ≈ 0.135.

6. Decision: Do not reject H0 and conclude that the average number of kilowatt
hours used annually by home vacuum cleaners is not significantly less than
46.

Comment on the Single-Sample t-Test

Comments regarding the normality assumption are worth emphasizing at this
point. We have indicated that when σ is known, the Central Limit Theorem
allows for the use of a test statistic or a confidence interval which is based on Z,
the standard normal random variable. Strictly speaking, of course, the Central
Limit Theorem, and thus the use of the standard normal distribution, does not
apply unless σ is known. In Chapter 4, the development of the t-distribution was
given. There we pointed out that normality on X1, X2, . . . , Xn was an underlying
assumption. Thus, strictly speaking, the Student’s t-tables of percentage points for
tests or confidence intervals should not be used unless it is known that the sample
comes from a normal population. In practice, σ can rarely be assumed to be known.
However, a very good estimate may be available from previous experiments. Many
statistics textbooks suggest that one can safely replace σ by s in the test statistic

z =
x̄− μ0

σ/
√
n

when n ≥ 30 with a bell-shaped population and still use the Z-tables for the
appropriate critical region. The implication here is that the Central Limit Theorem
is indeed being invoked and one is relying on the fact that s ≈ σ. Obviously, when
this is done, the results must be viewed as approximate. Thus, a computed P -
value (from the Z-distribution) of 0.15 may be 0.12 or perhaps 0.17, or a computed
confidence interval may be a 93% confidence interval rather than a 95% interval
as desired. Now what about situations where n ≤ 30? The user cannot rely on s
being close to σ, and in order to take into account the inaccuracy of the estimate,
the confidence interval should be wider or the critical value larger in magnitude.
The t-distribution percentage points accomplish this but are correct only when the
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sample is from a normal distribution. Of course, normal probability plots can be
used to ascertain some sense of the deviation from normality in a data set.

For small samples, it is often difficult to detect deviations from a normal dis-
tribution. (Goodness-of-fit tests are discussed in a later section of this chapter.)
For bell-shaped distributions of the random variables X1, X2, . . . , Xn, the use of
the t-distribution for tests or confidence intervals is likely to produce quite good
results. When in doubt, the user should resort to nonparametric procedures.

Annotated Computer Printout for Single-Sample t-Test

It should be of interest for the reader to see an annotated computer printout
showing the result of a single-sample t-test. Suppose that an engineer is interested
in testing the bias in a pH meter. Data are collected on a neutral substance (pH
= 7.0). A sample of the measurements is taken, with the data as follows:

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08

It is, then, of interest to test

H0: μ = 7.0,

H1: μ �= 7.0.

In this illustration, we use the computer package MINITAB to illustrate the anal-
ysis of the data set above. Notice the key components of the printout shown in
Figure 6.12. The mean ȳ is 7.0250, StDev is simply the sample standard devia-
tion s = 0.044, and SE Mean is the estimated standard error of the mean and is
computed as s/

√
n = 0.0139. The t-value is the ratio

(7.0250− 7)/0.0139 = 1.80.

pH-meter

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08

MTB > Onet ’pH-meter’; SUBC> Test 7.

One-Sample T: pH-meter Test of mu = 7 vs not = 7

Variable N Mean StDev SE Mean 95% CI T P

pH-meter 10 7.02500 0.04403 0.01392 (6.99350, 7.05650) 1.80 0.106

Figure 6.12: MINITAB printout for one-sample t-test for pH meter.

The P -value of 0.106 suggests results that are inconclusive. There is no evi-
dence suggesting a strong rejection of H0 (based on an α of 0.05 or 0.10), yet one
certainly cannot confidently conclude that the pH meter is unbiased.
Notice that the sample size of 10 is rather small. An increase in sample size (per-
haps another experiment) may sort things out. A discussion regarding appropriate
sample size appears in Section 6.6.
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6.5 Two Samples: Tests on Two Means

The reader should now understand the relationship between tests and confidence
intervals, and can rely on details supplied by the confidence interval material in
Chapter 5. Tests concerning two means represent a set of very important analytical
tools for the scientist or engineer. The experimental setting is very much like that
described in Section 5.8. Two independent random samples of sizes n1 and n2,
respectively, are drawn from two populations with means μ1 and μ2 and variances
σ2
1 and σ2

2 . We know that the random variable

Z =
(X̄1 − X̄2)− (μ1 − μ2)√

σ2
1/n1 + σ2

2/n2

has a standard normal distribution. Here we are assuming that n1 and n2 are
sufficiently large that the Central Limit Theorem applies. Of course, if the two
populations are normal, the statistic above has a standard normal distribution
even for small n1 and n2. Obviously, if we can assume that σ1 = σ2 = σ, the
statistic above reduces to

Z =
(X̄1 − X̄2)− (μ1 − μ2)

σ
√
1/n1 + 1/n2

.

The two statistics above serve as a basis for the development of the test procedures
involving two means. The equivalence between tests and confidence intervals, along
with the technical detail involving tests on one mean, allows a simple transition to
tests on two means.

The two-sided hypothesis on two means can be written generally as

H0: μ1 − μ2 = d0.

Obviously, the alternative can be two sided or one sided. Again, the distribu-
tion used is the distribution of the test statistic under H0. Values x̄1 and x̄2 are
computed and, for σ1 and σ2 known, the test statistic is given by

z =
(x̄1 − x̄2)− d0√
σ2
1/n1 + σ2

2/n2

,

with a two-tailed critical region in the case of a two-sided alternative. That is,
reject H0 in favor of H1: μ1 −μ2 �= d0 if z > zα/2 or z < −zα/2. One-tailed critical
regions are used in the case of the one-sided alternatives. The reader should, as
before, study the test statistic and be satisfied that for, say, H1: μ1 − μ2 > d0, the
signal favoring H1 comes from large values of z. Thus, the upper-tailed critical
region applies.

Unknown but Equal Variances

The more prevalent situations involving tests on two means are those in which
variances are unknown. If the scientist involved is willing to assume that both
distributions are normal and that σ1 = σ2 = σ, the pooled t-test (often called the
two-sample t-test) may be used. The test statistic (see Section 5.8) is given by the
following test procedure.
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Two-Sample
Pooled t-Test

For the two-sided hypothesis

H0: μ1 = μ2,

H1: μ1 �= μ2,

we reject H0 at significance level α when the computed t-statistic

t =
(x̄1 − x̄2)− d0

sp
√

1/n1 + 1/n2

,

where

s2p =
s21(n1 − 1) + s22(n2 − 1)

n1 + n2 − 2
,

exceeds tα/2,n1+n2−2 or is less than −tα/2,n1+n2−2.

Recall from Chapter 5 that the degrees of freedom for the t-distribution are a
result of pooling of information from the two samples to estimate σ2. One-sided
alternatives suggest one-sided critical regions, as one might expect. For example,
for H1: μ1 − μ2 > d0, reject H1: μ1 − μ2 = d0 when t > tα,n1+n2−2.

Example 6.6: An experiment was performed to compare the abrasive wear of two different lami-
nated materials. Twelve pieces of material 1 were tested by exposing each piece to
a machine measuring wear. Ten pieces of material 2 were similarly tested. In each
case, the depth of wear was observed. The samples of material 1 gave an average
(coded) wear of 85 units with a sample standard deviation of 4, while the samples
of material 2 gave an average of 81 with a sample standard deviation of 5. Can
we conclude at the 0.05 level of significance that the abrasive wear of material 1
exceeds that of material 2 by more than 2 units? Assume the populations to be
approximately normal with equal variances.

Solution : Let μ1 and μ2 represent the population means of the abrasive wear for material 1
and material 2, respectively.

1. H0: μ1 − μ2 = 2.

2. H1: μ1 − μ2 > 2.

3. α = 0.05.

4. Critical region: t > 1.725, where t = (x̄1−x̄2)−d0

sp
√

1/n1+1/n2

with v = 20 degrees of

freedom.

5. Computations:

x̄1 = 85, s1 = 4, n1 = 12,

x̄2 = 81, s2 = 5, n2 = 10.
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Hence

sp =

√
(11)(16) + (9)(25)

12 + 10− 2
= 4.478,

t =
(85− 81)− 2

4.478
√
1/12 + 1/10

= 1.04,

P = P (T > 1.04) ≈ 0.16. (See Table A.4.)

6. Decision: Do not reject H0. We are unable to conclude that the abrasive wear
of material 1 exceeds that of material 2 by more than 2 units.

Unknown but Unequal Variances

There are situations where the analyst is not able to assume that σ1 = σ2. Recall
from Section 5.8 that, if the populations are normal, the statistic

T ′ =
(X̄1 − X̄2)− d0√
s21/n1 + s22/n2

has an approximate t-distribution with approximate degrees of freedom

v =
(s21/n1 + s22/n2)

2

(s21/n1)2/(n1 − 1) + (s22/n2)2/(n2 − 1)
.

As a result, the test procedure is to not reject H0 when

−tα/2,v < t′ < tα/2,v,

with v given as above. Again, as in the case of the pooled t-test, one-sided alterna-
tives suggest one-sided critical regions. The test procedures developed above are
summarized in Table 6.3.

Paired Observations

A study of the two-sample t-test or confidence interval on the difference between
means should suggest the need for an experimental design. Recall the discussion
of experimental units in Chapter 5, where it was suggested that the conditions of
the two populations (often referred to as the two treatments) should be assigned
randomly to the experimental units. This is done to avoid biased results due to
systematic differences between experimental units. In other words, in hypothesis-
testing jargon, it is important that any significant difference found between means
be due to the different conditions of the populations and not due to the exper-
imental units in the study. For example, consider Exercise 5.28 in Section 5.9.
The 20 seedlings play the role of the experimental units. Ten of them are to be
treated with nitrogen and 10 not treated with nitrogen. It may be very important
that this assignment to the “nitrogen” and “no-nitrogen” treatments be random
to ensure that systematic differences between the seedlings do not interfere with a
valid comparison between the means.
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In Example 6.6, time of measurement is the most likely choice for the experi-
mental unit. The 22 pieces of material should be measured in random order. We
need to guard against the possibility that wear measurements made close together
in time might tend to give similar results. Systematic (nonrandom) differences
in experimental units are not expected. However, random assignments guard
against the problem.

References to planning of experiments, randomization, choice of sample size,
and so on, will continue to influence much of the development in Chapter 8. Any
scientist or engineer whose interest lies in analysis of real data should study this
material. The pooled t-test is extended in Chapter 8 to cover more than two means.

Testing of two means can be accomplished when data are in the form of paired
observations, as discussed in Chapter 5. In this pairing structure, the conditions
of the two populations (treatments) are assigned randomly within homogeneous
units (pairs). Computation of the confidence interval for μ1 − μ2 in the situation
with paired observations is based on the random variable

T =
D̄ − μD

Sd/
√
n
,

where D̄ and Sd are random variables representing the sample mean and standard
deviation of the differences of the observations in the experimental units. As in the
case of the pooled t-test, the assumption is that the observations from each popu-
lation are normal. This two-sample problem is essentially reduced to a one-sample
problem by using the computed differences d1, d2, . . . , dn. Thus, the hypothesis
reduces to

H0: μD = d0.

The computed test statistic is then given by

t =
d− d0
sd/

√
n
.

Critical regions are constructed using the t-distribution with n− 1 degrees of free-
dom.

Problem of Interaction in a Paired t-Test

Not only will the case study that follows illustrate the use of the paired t-test but
the discussion will shed considerable light on the difficulties that arise when there
is an interaction between the treatments and the experimental units in the paired
t structure. The concept of interaction will be an important issue in Chapter 8.

There are some types of statistical tests in which the existence of interaction
results in difficulty. The paired t-test is one such example. In Section 5.9, the paired
structure was used in the computation of a confidence interval on the difference
between two means, and the advantage in pairing was revealed for situations in
which the experimental units are homogeneous. The pairing results in a reduction
in σD, the standard deviation of a difference Di = X1i − X2i, as discussed in
Section 5.9. If interaction exists between treatments and experimental units, the
advantage gained in pairing may be substantially reduced.
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In order to demonstrate how interaction influences Var(D) and hence the quality
of the paired t-test, it is instructive to revisit the ith difference given by Di = X1i−
X2i = (μ1 − μ2) + (ε1 − ε2), where X1i and X2i are taken on the ith experimental
unit. If the pairing unit is homogeneous, the errors in X1i and in X2i should be
similar and not independent. We noted in Chapter 5 that the positive covariance
between the errors results in a reduced Var(D). Thus, the size of the difference in
the treatments and the relationship between the errors in X1i and X2i contributed
by the experimental unit will tend to allow a significant difference to be detected.

Case Study 6.1: Blood Sample Data: In a study conducted in the Forestry and Wildlife De-
partment at Virginia Tech, J. A. Wesson examined the influence of the drug suc-
cinylcholine on the circulation levels of androgens in the blood. Blood samples
were taken from wild, free-ranging deer immediately after they had received an
intramuscular injection of succinylcholine administered using darts and a capture
gun. A second blood sample was obtained from each deer 30 minutes after the
first sample, after which the deer was released. The levels of androgens at time of
capture and 30 minutes later, measured in nanograms per milliliter (ng/mL), for
15 deer are given in Table 6.2.

Assuming that the populations of androgen levels at time of injection and 30
minutes later are normally distributed, test at the 0.05 level of significance whether
the androgen concentrations are altered after 30 minutes.

Table 6.2: Data for Case Study 6.1

Androgen (ng/mL)
Deer At Time of Injection 30 Minutes after Injection di

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

2.76
5.18
2.68
3.05
4.10
7.05
6.60
4.79
7.39
7.30
11.78
3.90
26.00
67.48
17.04

7.02
3.10
5.44
3.99
5.21

10.26
13.91
18.53
7.91
4.85

11.10
3.74

94.03
94.03
41.70

4.26
−2.08
2.76
0.94
1.11
3.21
7.31
13.74
0.52

−2.45
−0.68
−0.16
68.03
26.55
24.66

Solution : Let μ1 and μ2 be the average androgen concentration at the time of injection and
30 minutes later, respectively. We proceed as follows:

1. H0: μ1 = μ2 or μD = μ1 − μ2 = 0.

2. H1: μ1 �= μ2 or μD = μ1 − μ2 �= 0.

3. α = 0.05.
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4. Critical region: t < −2.145 and t > 2.145, where t = d−d0

sD/
√
n

with v = 14

degrees of freedom.

5. Computations: The sample mean and standard deviation for the di are

d = 9.848 and sd = 18.474.

Therefore,

t =
9.848− 0

18.474/
√
15

= 2.06.

6. Though the t-statistic is not significant at the 0.05 level, from Table A.4,

P = P (|T | > 2.06) ≈ 0.06.

As a result, there is some evidence that there is a difference in mean circulating
levels of androgen.

The assumption of no interaction would imply that the effect on androgen
levels of the deer is roughly the same in the data for both treatments, i.e., at the
time of injection of succinylcholine and 30 minutes following injection. This can
be expressed with the two factors switching roles; for example, the difference in
treatments is roughly the same across the units (i.e., the deer). There certainly are
some deer/treatment combinations for which the no interaction assumption seems
to hold, but there is hardly any strong evidence that the experimental units are
homogeneous. However, the nature of the interaction and the resulting increase in
Var(D̄) appear to be dominated by a substantial difference in the treatments.

Annotated Computer Printout for Paired t-Test

Figure 6.13 displays a SAS computer printout for a paired t-test using the data
of Case Study 6.1. Notice that the printout looks like that for a single sample
t-test and, of course, that is exactly what is accomplished, since the test seeks to
determine if d is significantly different from zero.

Analysis Variable : Diff

N Mean Std Error t Value Pr > |t|

---------------------------------------------------------

15 9.8480000 4.7698699 2.06 0.0580

---------------------------------------------------------

Figure 6.13: SAS printout of paired t-test for data of Case Study 6.1.

Summary of Test Procedures

As we complete the formal development of tests on population means, we offer
Table 6.3, which summarizes the test procedure for the cases of a single mean and
two means. Notice the approximate procedure when distributions are normal and
variances are unknown but not assumed to be equal. This statistic was introduced
in Chapter 5.
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Table 6.3: Tests Concerning Means

H0 Value of Test Statistic H1 Critical Region

μ = μ0 z =
x̄− μ0

σ/
√
n
; σ known

μ < μ0

μ > μ0

μ �= μ0

z < −zα
z > zα
z < −zα/2 or z > zα/2

μ = μ0
t =

x̄− μ0

s/
√
n
; v = n− 1,

σ unknown

μ < μ0

μ > μ0

μ �= μ0

t < −tα
t > tα
t < −tα/2 or t > tα/2

μ1 − μ2 = d0
z =

(x̄1 − x̄2)− d0√
σ2
1/n1 + σ2

2/n2

;

σ1 and σ2 known

μ1 − μ2 < d0
μ1 − μ2 > d0
μ1 − μ2 �= d0

z < −zα
z > zα
z < −zα/2 or z > zα/2

μ1 − μ2 = d0

t =
(x̄1 − x̄2)− d0

sp
√

1/n1 + 1/n2

;

v = n1 + n2 − 2,
σ1 = σ2 but unknown,

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

μ1 − μ2 < d0
μ1 − μ2 > d0
μ1 − μ2 �= d0

t < −tα
t > tα
t < −tα/2 or t > tα/2

μ1 − μ2 = d0

t′ =
(x̄1 − x̄2)− d0√
s21/n1 + s22/n2

;

v =
(s21/n1 + s22/n2)

2

(s21/n1)2

n1−1 +
(s22/n2)2

n2−1

,

σ1 �= σ2 and unknown

μ1 − μ2 < d0
μ1 − μ2 > d0
μ1 − μ2 �= d0

t′ < −tα
t′ > tα
t′ < −tα/2 or t′ > tα/2

μD = d0
paired
observations

t =
d− d0
sd/

√
n
;

v = n− 1

μD < d0
μD > d0
μD �= d0

t < −tα
t > tα
t < −tα/2 or t > tα/2

6.6 Choice of Sample Size for Testing Means

In Section 6.2, we demonstrated how the analyst can exploit relationships among
the sample size, the significance level α, and the power of the test to achieve
a certain standard of quality. In most practical circumstances, the experiment
should be planned, with a choice of sample size made prior to the data-taking
process if possible. The sample size is usually determined to achieve good power
for a fixed α and fixed specific alternative. This fixed alternative may be in the
form of μ−μ0 in the case of a hypothesis involving a single mean or μ1−μ2 in the
case of a problem involving two means. Specific cases will provide illustrations.

Suppose that we wish to test the hypothesis

H0 : μ = μ0,

H1 : μ > μ0,

with a significance level α, when the variance σ2 is known. For a specific alternative,
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say μ = μ0 + δ, the power of our test is shown in Figure 6.14 to be

1− β = P (X̄ > a when μ = μ0 + δ).

Figure 6.14 shows that the α probability of a Type I error corresponds to a value
(a in the figure) of the sample mean. If the sample mean is below this value,
the null hypothesis cannot be rejected. But, there is a probability of β that the
specific alternative hypothesis would give a sample mean less than a—this is the
probability of a Type II error.

x
aμ0 μ0 δ

αβ
+

Figure 6.14: Testing μ = μ0 versus μ = μ0 + δ.

Therefore,

β = P (X̄ < a when μ = μ0 + δ)

= P

[
X̄ − (μ0 + δ)

σ/
√
n

<
a− (μ0 + δ)

σ/
√
n

when μ = μ0 + δ

]
.

Under the alternative hypothesis μ = μ0 + δ, the statistic

X̄ − (μ0 + δ)

σ/
√
n

is the standard normal variable Z. So

β = P

(
Z <

a− μ0

σ/
√
n

− δ

σ/
√
n

)
= P

(
Z < zα − δ

σ/
√
n

)
,

from which we conclude that

−zβ = zα − δ
√
n

σ
,

and hence

Choice of sample size: n =
(zα + zβ)

2σ2

δ2
,

a result that is also true when the alternative hypothesis is μ < μ0.
In the case of a two-tailed test, we obtain the power 1 − β for a specified

alternative when

n ≈ (zα/2 + zβ)
2σ2

δ2
.
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6.7 Graphical Methods for Comparing Means

In Chapter 4, considerable attention was directed to displaying data in graphical
form, such as stem-and-leaf plots and box-and-whisker plots. Many computer
software packages produce graphical displays. As we proceed to other forms of
data analysis (e.g., regression analysis and analysis of variance), graphical methods
become even more informative.

Graphical aids cannot be used as a replacement for the test procedure itself.
Certainly, the value of the test statistic indicates the proper type of evidence in
support of H0 or H1. However, a pictorial display provides a good illustration and
is often a better communicator of evidence to the beneficiary of the analysis. Also,
a picture will often clarify why a significant difference was found. Failure of an
important assumption may be exposed by a summary type of graphical tool.

For the comparison of means, side-by-side box-and-whisker plots provide a
telling display. The reader should recall that these plots display the 25th per-
centile, the 75th percentile, and the median in a data set. In addition, the whiskers
display the extremes in a data set. Consider Exercise 6.40 at the end of this sec-
tion. Plasma ascorbic acid levels were measured in two groups of pregnant women,
smokers and nonsmokers. Figure 6.15 shows the box-and-whisker plots for both
groups of women. Two things are very apparent. Taking into account variability,
there appears to be a negligible difference in the sample means. In addition, the
variability in the two groups appears to be somewhat different. Of course, the
analyst must keep in mind the rather sizable differences between the sample sizes
in this case.

Nonsmoker Smoker
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Figure 6.15: Two box-and-whisker plots of plasma
ascorbic acid in smokers and nonsmokers.
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Figure 6.16: Two box-and-whisker plots of
seedling data.

Consider Exercise 5.28 in Section 5.9. Figure 6.16 shows the multiple box-and-
whisker plot for the data on 20 seedlings, half given nitrogen and half not given
nitrogen. The display reveals a smaller variability for the group that did not receive
nitrogen. In addition, the lack of overlap of the box plots suggests a significant
difference between the mean stem weights for the two groups. It would appear



6.7 Graphical Methods for Comparing Means 267

that the presence of nitrogen increases the stem weights and perhaps increases the
variability in the weights.

There are no certain rules of thumb regarding when two box-and-whisker plots
give evidence of significant difference between the means. However, a rough guide-
line is that if the 25th percentile line for one sample exceeds the median line for
the other sample, there is strong evidence of a difference between means.

More emphasis is placed on graphical methods in a real-life case study presented
later in this chapter.

Annotated Computer Printout for Two-Sample t-Test

Consider once again Exercise 5.28 on page 221, where seedling data under condi-
tions of nitrogen and no nitrogen were collected. Test

H0: μNIT = μNON,

H1: μNIT > μNON,

where the population means indicate mean weights. Figure 6.17 is an annotated
computer printout generated using the SAS package. Notice that sample standard
deviation and standard error are shown for both samples. The t-statistics under the
assumption of equal variance and unequal variance are both given. From the box-
and-whisker plot of Figure 6.16 it would certainly appear that the equal variance
assumption is violated. A P -value of 0.0229 suggests a conclusion of unequal means.
This concurs with the diagnostic information given in Figure 6.17. Incidentally,
notice that t and t′ are equal in this case, since n1 = n2.

TTEST Procedure

Variable Weight

Mineral N Mean Std Dev Std Err

No nitrogen 10 0.3990 0.0728 0.0230

Nitrogen 10 0.5650 0.1867 0.0591

Variances DF t Value Pr > |t|

Equal 18 2.62 0.0174

Unequal 11.7 2.62 0.0229

Test the Equality of Variances

Variable Num DF Den DF F Value Pr > F

Weight 9 9 6.58 0.0098

Figure 6.17: SAS printout for two-sample t-test.
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Exercises

6.19 In a research report, Richard H. Weindruch of
the UCLA Medical School claims that mice with an
average life span of 32 months will live to be about 40
months old when 40% of the calories in their diet are
replaced by vitamins and protein. Is there any reason
to believe that μ < 40 if 64 mice that are placed on
this diet have an average life of 38 months with a stan-
dard deviation of 5.8 months? Use a P -value in your
conclusion.

6.20 A random sample of 64 bags of white cheddar
popcorn weighed, on average, 5.23 ounces with a stan-
dard deviation of 0.24 ounce. Test the hypothesis
that μ = 5.5 ounces against the alternative hypoth-
esis, μ < 5.5 ounces, at the 0.05 level of significance.

6.21 An electrical firm manufactures light bulbs that
have a lifetime that is approximately normally dis-
tributed with a mean of 800 hours and a standard de-
viation of 40 hours. Test the hypothesis that μ = 800
hours against the alternative, μ 
= 800 hours, if a ran-
dom sample of 30 bulbs has an average life of 788 hours.
Use a P -value in your answer.

6.22 In the American Heart Association journal Hy-
pertension, researchers report that individuals who
practice Transcendental Meditation (TM) lower their
blood pressure significantly. If a random sample of 225
male TM practitioners meditate for 8.5 hours per week
with a standard deviation of 2.25 hours, does that sug-
gest that, on average, men who use TM meditate more
than 8 hours per week? Quote a P -value in your con-
clusion.

6.23 Test the hypothesis that the average content of
containers of a particular lubricant is 10 liters if the
contents of a random sample of 10 containers are 10.2,
9.7, 10.1, 10.3, 10.1, 9.8, 9.9, 10.4, 10.3, and 9.8 liters.
Use a 0.01 level of significance and assume that the
distribution of contents is normal.

6.24 The average height of females in the freshman
class of a certain college has historically been 162.5 cen-
timeters with a standard deviation of 6.9 centimeters.
Is there reason to believe that there has been a change
in the average height if a random sample of 50 females
in the present freshman class has an average height of
165.2 centimeters? Use a P -value in your conclusion.
Assume the standard deviation remains the same.

6.25 It is claimed that automobiles are driven on av-
erage more than 20,000 kilometers per year. To test
this claim, 100 randomly selected automobile own-
ers are asked to keep a record of the kilometers they
travel. Would you reject this claim if the random sam-
ple showed an average of 23,500 kilometers and a stan-
dard deviation of 3900 kilometers? Use a P -value in
your conclusion.

6.26 According to a dietary study, high sodium intake
may be related to ulcers, stomach cancer, and migraine
headaches. The human requirement for salt is only 220
milligrams per day, which is surpassed in most single
servings of ready-to-eat cereals. If a random sample
of 20 similar servings of a certain cereal has a mean
sodium content of 244 milligrams and a standard devi-
ation of 24.5 milligrams, does this suggest at the 0.05
level of significance that the average sodium content for
a single serving of such cereal is greater than 220 mil-
ligrams? Assume the distribution of sodium contents
to be normal.

6.27 A study at the University of Colorado at Boul-
der shows that running increases the percent resting
metabolic rate (RMR) in older women. The average
RMR of 30 elderly women runners was 34.0% higher
than the average RMR of 30 sedentary elderly women,
and the standard deviations were reported to be 10.5
and 10.2%, respectively. Was there a significant in-
crease in RMR of the women runners over the seden-
tary women? Assume the populations to be approxi-
mately normally distributed with equal variances. Use
a P -value in your conclusions.

6.28 According to Chemical Engineering, an impor-
tant property of fiber is its water absorbency. The aver-
age percent absorbency of 25 randomly selected pieces
of cotton fiber was found to be 20 with a standard de-
viation of 1.5. A random sample of 25 pieces of acetate
yielded an average percent of 12 with a standard devi-
ation of 1.25. Is there strong evidence that the popula-
tion mean percent absorbency is significantly higher for
cotton fiber than for acetate? Assume that the percent
absorbency is approximately normally distributed and
that the population variances in percent absorbency
for the two fibers are the same. Use a significance level
of 0.05.

6.29 Past experience indicates that the time required
for high school seniors to complete a standardized test
is a normal random variable with a mean of 35 min-
utes. If a random sample of 20 high school seniors took
an average of 33.1 minutes to complete this test with a
standard deviation of 4.3 minutes, test the hypothesis,
at the 0.05 level of significance, that μ = 35 minutes
against the alternative that μ < 35 minutes.

6.30 A random sample of size n1 = 25, taken from a
normal population with a standard deviation σ1 = 5.2,
has a mean x̄1 = 81. A second random sample of size
n2 = 36, taken from a different normal population with
a standard deviation σ2 = 3.4, has a mean x̄2 = 76.
Test the hypothesis that μ1 = μ2 against the alterna-
tive, μ1 
= μ2. Quote a P -value in your conclusion.
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6.31 A manufacturer claims that the average ten-
sile strength of thread A exceeds the average tensile
strength of thread B by at least 12 kilograms. To test
this claim, 50 pieces of each type of thread were tested
under similar conditions. Type A thread had an aver-
age tensile strength of 86.7 kilograms with a standard
deviation of 6.28 kilograms, while type B thread had
an average tensile strength of 77.8 kilograms with a
standard deviation of 5.61 kilograms. Test the manu-
facturer’s claim using a 0.05 level of significance.

6.32 Amstat News (December 2004) lists median
salaries for associate professors of statistics at research
institutions and at liberal arts and other institutions
in the United States. Assume that a sample of 200
associate professors from research institutions has an
average salary of $70,750 per year with a standard de-
viation of $6000. Assume also that a sample of 200 as-
sociate professors from other types of institutions has
an average salary of $65,200 with a standard deviation
of $5000. Test the hypothesis that the mean salary
for associate professors in research institutions is $2000
higher than for those in other institutions. Use a 0.01
level of significance.

6.33 A study was conducted to see if increasing the
substrate concentration has an appreciable effect on
the velocity of a chemical reaction. With a substrate
concentration of 1.5 moles per liter, the reaction was
run 15 times, with an average velocity of 7.5 micro-
moles per 30 minutes and a standard deviation of 1.5.
With a substrate concentration of 2.0 moles per liter,
12 runs were made, yielding an average velocity of 8.8
micromoles per 30 minutes and a sample standard de-
viation of 1.2. Is there any reason to believe that this
increase in substrate concentration causes an increase
in the mean velocity of the reaction of more than 0.5
micromole per 30 minutes? Use a 0.01 level of signifi-
cance and assume the populations to be approximately
normally distributed with equal variances.

6.34 A study was made to determine if the subject
matter in a physics course is better understood when a
lab constitutes part of the course. Students were ran-
domly selected to participate in either a 3-semester-
hour course without labs or a 4-semester-hour course
with labs. In the section with labs, 11 students made
an average grade of 85 with a standard deviation of 4.7,
and in the section without labs, 17 students made an
average grade of 79 with a standard deviation of 6.1.
Would you say that the laboratory course increases the
average grade by as much as 8 points? Use a P -value in
your conclusion and assume the populations to be ap-
proximately normally distributed with equal variances.

6.35 To find out whether a new serum will arrest
leukemia, 9 mice, all with an advanced stage of the

disease, are selected. Five mice receive the treatment
and 4 do not. Survival times, in years, from the time
the experiment commenced are as follows:

Treatment 2.1 5.3 1.4 4.6 0.9
No Treatment 1.9 0.5 2.8 3.1

At the 0.05 level of significance, can the serum be said
to be effective? Assume the two populations to be nor-
mally distributed with equal variances.

6.36 Engineers at a large automobile manufacturing
company are trying to decide whether to purchase
brand A or brand B tires for the company’s new mod-
els. To help them arrive at a decision, an experiment
is conducted using 12 of each brand. The tires are run
until they wear out. The results are as follows:

Brand A : x̄1 = 37,900 kilometers,

s1 = 5100 kilometers.

Brand B : x̄2 = 39,800 kilometers,

s2 = 5900 kilometers.

Test the hypothesis that there is no difference in the
average wear of the two brands of tires. Assume the
populations to be approximately normally distributed
with equal variances. Use a P -value.

6.37 In Exercise 5.30 on page 222, test the hypoth-
esis that the fuel economy of Volkswagen mini-trucks,
on average, exceeds that of similarly equipped Toyota
mini-trucks by 4 kilometers per liter. Use a 0.10 level
of significance.

6.38 A UCLA researcher claims that the average life
span of mice can be extended by as much as 8 months
when the calories in their diet are reduced by approx-
imately 40% from the time they are weaned. The re-
stricted diets are enriched to normal levels by vitamins
and protein. Suppose that a random sample of 10 mice
is fed a normal diet and has an average life span of 32.1
months with a standard deviation of 3.2 months, while
a random sample of 15 mice is fed the restricted diet
and has an average life span of 37.6 months with a
standard deviation of 2.8 months. Test the hypothesis,
at the 0.05 level of significance, that the average life
span of mice on this restricted diet is increased by 8
months against the alternative that the increase is less
than 8 months. Assume the distributions of life spans
for the regular and restricted diets are approximately
normal with equal variances.

6.39 The following data represent the running times
of films produced by two motion-picture companies:

Company Time (minutes)
1 102 86 98 109 92
2 81 165 97 134 92 87 114

Test the hypothesis that the average running time of
films produced by company 2 exceeds the average run-
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ning time of films produced by company 1 by 10 min-
utes against the one-sided alternative that the differ-
ence is less than 10 minutes. Use a 0.1 level of sig-
nificance and assume the distributions of times to be
approximately normal with unequal variances.

6.40 In a study conducted at Virginia Tech, the
plasma ascorbic acid levels of pregnant women were
compared for smokers versus nonsmokers. Thirty-two
women in the last three months of pregnancy, free of
major health disorders and ranging in age from 15 to
32 years, were selected for the study. Prior to the col-
lection of 20 mL of blood, the participants were told to
avoid breakfast, forgo their vitamin supplements, and
avoid foods high in ascorbic acid content. From the
blood samples, the following plasma ascorbic acid val-
ues were determined, in milligrams per 100 milliliters:

Plasma Ascorbic Acid Values
Nonsmokers Smokers
0.97 1.16 0.48
0.72 0.86 0.71
1.00 0.85 0.98
0.81 0.58 0.68
0.62 0.57 1.18
1.32 0.64 1.36
1.24 0.98 0.78
0.99 1.09 1.64
0.90 0.92
0.74 0.78
0.88 1.24
0.94 1.18

Is there sufficient evidence to conclude that there is a
difference between plasma ascorbic acid levels of smok-
ers and nonsmokers? Assume that the two sets of data
came from normal populations with unequal variances.
Use a P -value.

6.41 A study was conducted by the Department of
Zoology at Virginia Tech to determine if there is a
significant difference in the density of organisms at
two different stations located on Cedar Run, a sec-
ondary stream in the Roanoke River drainage basin.
Sewage from a sewage treatment plant and overflow
from the Federal Mogul Corporation settling pond en-
ter the stream near its headwaters. The following data
give the density measurements, in number of organisms
per square meter, at the two collecting stations:

Number of Organisms per Square Meter
Station 1 Station 2

5030 4980 2800 2810
13,700 11,910 4670 1330
10,730 8130 6890 3320
11,400 26,850 7720 1230

860 17,660 7030 2130
2200 22,800 7330 2190
4250 1130

15,040 1690

Can we conclude, at the 0.05 level of significance, that
the average densities at the two stations are equal?
Assume that the observations come from normal pop-
ulations with different variances.

6.42 Five samples of a ferrous-type substance were
used to determine if there is a difference between a
laboratory chemical analysis and an X-ray fluorescence
analysis of the iron content. Each sample was split into
two subsamples and the two types of analysis were ap-
plied. Following are the coded data showing the iron
content analysis:

Sample
Analysis 1 2 3 4 5
X-ray 2.0 2.0 2.3 2.1 2.4
Chemical 2.2 1.9 2.5 2.3 2.4

Assuming that the populations are normal, test at the
0.05 level of significance whether the two methods of
analysis give, on the average, the same result.

6.43 According to published reports, practice under
fatigued conditions distorts mechanisms that govern
performance. An experiment was conducted using 15
college males, who were trained to make a continu-
ous horizontal right-to-left arm movement from a mi-
croswitch to a barrier, knocking over the barrier co-
incident with the arrival of a clock sweephand at the
6 o’clock position. The absolute value of the differ-
ence between the time, in milliseconds, that it took to
knock over the barrier and the time for the sweephand
to reach the 6 o’clock position (500 msec) was recorded.
Each participant performed the task five times under
prefatigue and postfatigue conditions, and the sums of
the absolute differences for the five performances were
recorded.

Absolute Time Differences
Subject Prefatigue Postfatigue

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

158
92
65
98
33
89

148
58

142
117
74
66

109
57
85

91
59

215
226
223
91
92

177
134
116
153
219
143
164
100

An increase in the mean absolute time difference when
the task is performed under postfatigue conditions
would support the claim that practice under fatigued
conditions distorts mechanisms that govern perfor-
mance. Assuming the populations to be normally dis-
tributed, test this claim.
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6.44 In a study conducted by the Department of Hu-
man Nutrition and Foods at Virginia Tech, the follow-
ing data were recorded on sorbic acid residuals, in parts
per million, in ham immediately after being dipped in
a sorbate solution and after 60 days of storage:

Sorbic Acid Residuals in Ham
Slice Before Storage After Storage
1
2
3
4
5
6
7
8

224
270
400
444
590
660

1400
680

116
96

239
329
437
597
689
576

Assuming the populations to be normally distributed,
is there sufficient evidence, at the 0.05 level of signifi-
cance, to say that the length of storage influences sorbic
acid residual concentrations?

6.45 A taxi company manager is trying to decide
whether the use of radial tires instead of regular
belted tires improves fuel economy. Twelve cars were
equipped with radial tires and driven over a prescribed
test course. Without changing drivers, the same cars
were then equipped with regular belted tires and driven
once again over the test course. The gasoline consump-
tion, in kilometers per liter, was recorded as follows:

Kilometers per Liter
Car Radial Tires Belted Tires
1 4.2 4.1
2 4.7 4.9
3 6.6 6.2
4 7.0 6.9
5 6.7 6.8
6 4.5 4.4
7 5.7 5.7
8 6.0 5.8
9 7.4 6.9
10 4.9 4.7
11 6.1 6.0
12 5.2 4.9

Can we conclude that cars equipped with radial tires
give better fuel economy than those equipped with
belted tires? Assume the populations to be normally
distributed. Use a P -value in your conclusion.

6.46 In Review Exercise 5.60 on page 230, use the t-
distribution to test the hypothesis that the diet reduces
a woman’s weight by 4.5 kilograms on average against
the alternative hypothesis that the mean difference in
weight is less than 4.5 kilograms. Use a P -value.

6.47 How large a sample is required in Exercise 6.20
if the power of the test is to be 0.90 when the true
mean is 5.20? Assume that σ = 0.24.

6.48 If the distribution of life spans in Exercise 6.19 is

approximately normal, how large a sample is required
if the probability of committing a type II error is to be
0.1 when the true mean is 35.9 months? Assume that
σ = 5.8 months.

6.49 How large a sample is required in Exercise 6.24
if the power of the test is to be 0.95 when the true av-
erage height differs from 162.5 by 3.1 centimeters? Use
α = 0.02.

6.50 How large should the samples be in Exercise 6.31
if the power of the test is to be 0.95 when the true dif-
ference between thread types A and B is 8 kilograms?

6.51 How large a sample is required in Exercise 6.22
if the power of the test is to be 0.8 when the true
mean meditation time exceeds the hypothesized value
by 1.2σ? Use α = 0.05.

6.52 Nine subjects were used in an experiment to de-
termine if exposure to carbon monoxide has an impact
on breathing capability. The data were collected by
personnel in the Health and Physical Education De-
partment at Virginia Tech and were analyzed in the
Statistics Consulting Center at Hokie Land. The sub-
jects were exposed to breathing chambers, one of which
contained a high concentration of CO. Breathing fre-
quency measures were made for each subject for each
chamber. The subjects were exposed to the breath-
ing chambers in random sequence. The data give the
breathing frequency, in number of breaths taken per
minute. Make a one-sided test of the hypothesis that
mean breathing frequency is the same for the two en-
vironments. Use α = 0.05. Assume that breathing
frequency is approximately normal.

Subject With CO Without CO
1 30 30
2 45 40
3 26 25
4 25 23
5 34 30
6 51 49
7 46 41
8 32 35
9 30 28

6.53 A study was conducted at the Department of
Veterinary Medicine at Virginia Tech to determine if
the “strength” of a wound from surgical incision is af-
fected by the temperature of the knife. Eight dogs
were used in the experiment. “Hot” and “cold” in-
cisions were made on the abdomen of each dog, and
the strength was measured. The resulting data appear
below.
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Dog Knife Strength
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8

Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold

5120
8200

10, 000
8600

10, 000
9200

10, 000
6200

10, 000
10, 000
7900
5200
510
885

1020
460

(a) Write an appropriate hypothesis to determine if
there is a significant difference in strength between
the hot and cold incisions.

(b) Test the hypothesis using a paired t-test. Use a
P -value in your conclusion.

6.54 For testing

H0: μ = 14,

H1: μ 
= 14,

an α = 0.05 level t-test is being considered. What sam-
ple size is necessary in order for the probability to be
0.1 of falsely failing to reject H0 when the true popula-
tion mean differs from 14 by 0.5? From a preliminary
sample we estimate σ to be 1.25.

6.8 One Sample: Test on a Single Proportion

Tests of hypotheses concerning proportions are required in many areas. Politicians
are certainly interested in knowing what fraction of the voters will favor them in
the next election. All manufacturing firms are concerned about the proportion of
defective items when a shipment is made. Gamblers depend on a knowledge of the
proportion of outcomes that they consider favorable.

We shall consider the problem of testing the hypothesis that the proportion
of successes in a binomial experiment equals some specified value. That is, we
are testing the null hypothesis H0 that p = p0, where p is the parameter of the
binomial distribution. The alternative hypothesis may be one of the usual one-sided
or two-sided alternatives:

p < p0, p > p0, or p �= p0.

The appropriate random variable on which we base our decision criterion is
the binomial random variable X, although we could just as well use the statistic
p̂ = X/n. Values of X that are far from the mean μ = np0 will lead to the rejection
of the null hypothesis. Because X is a discrete binomial variable, it is unlikely that
a critical region can be established whose size is exactly equal to a prespecified
value of α. For this reason it is preferable, in dealing with small samples, to base
our decisions on P -values. To test the hypothesis

H0: p = p0,

H1: p < p0,

we use the binomial distribution to compute the P -value

P = P (X ≤ x when p = p0).

The value x is the number of successes in our sample of size n. If this P -value is
less than or equal to α, our test is significant at the α level and we reject H0 in



6.8 One Sample: Test on a Single Proportion 273

favor of H1. Similarly, to test the hypothesis

H0: p = p0,

H1: p > p0,

at the α-level of significance, we compute

P = P (X ≥ x when p = p0)

and reject H0 in favor of H1 if this P -value is less than or equal to α. Finally, to
test the hypothesis

H0: p = p0,

H1: p �= p0,

at the α-level of significance, we compute

P = 2P (X ≤ x when p = p0) if x < np0

or

P = 2P (X ≥ x when p = p0) if x > np0

and reject H0 in favor of H1 if the computed P -value is less than or equal to α.
The steps for testing a null hypothesis about a proportion against various al-

ternatives using the binomial probabilities of Table A.1 are as follows:

Testing a
Proportion

(Small Samples)

1. H0: p = p0.
2. One of the alternatives H1: p < p0, p > p0, or p �= p0.
3. Choose a level of significance equal to α.
4. Test statistic: Binomial variable X with p = p0.
5. Computations: Find x, the number of successes, and compute the appropri-
ate P -value.
6. Decision: Draw appropriate conclusions based on the P -value.

Example 6.7: A builder claims that heat pumps are installed in 70% of all homes being con-
structed today in the city of Richmond, Virginia. Would you agree with this claim
if a random survey of new homes in this city showed that 8 out of 15 had heat
pumps installed? Use a 0.10 level of significance.

Solution : 1. H0: p = 0.7.

2. H1: p �= 0.7.

3. α = 0.10.

4. Test statistic: Binomial variable X with p = 0.7 and n = 15.

5. Computations: x = 8 and np0 = (15)(0.7) = 10.5. Therefore, from Table A.1,
the computed P -value is

P = 2P (X ≤ 8 when p = 0.7) = 2

8∑
x=0

b(x; 15, 0.7) = 0.2622 > 0.10.
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6. Decision: Do not reject H0. Conclude that there is insufficient reason to
doubt the builder’s claim.

In Section 3.2, we saw that binomial probabilities can be obtained from the
actual binomial formula or from Table A.1 when n is small. For large n, approxi-
mation procedures are required. When the hypothesized value p0 is very close to 0
or 1, the Poisson distribution, with parameter μ = np0, may be used. However, the
normal curve approximation, with parameters μ = np0 and σ2 = np0q0, is usually
preferred for large n and is very accurate as long as p0 is not extremely close to 0
or to 1. If we use the normal approximation, the z-value for testing p = p0 is
given by

z =
x− np0√
np0q0

=
p̂− p0√
p0q0/n

,

which is a value of the standard normal variable Z. Hence, for a two-tailed test
at the α-level of significance, the critical region is z < −zα/2 or z > zα/2. For the
one-sided alternative p < p0, the critical region is z < −zα, and for the alternative
p > p0, the critical region is z > zα.

6.9 Two Samples: Tests on Two Proportions

Situations often arise where we wish to test the hypothesis that two proportions
are equal. For example, we might want to show evidence that the proportion of
doctors who are pediatricians in one state is equal to the proportion in another
state. A person may decide to give up smoking only if he or she is convinced that
the proportion of smokers with lung cancer exceeds the proportion of nonsmokers
with lung cancer.

In general, we wish to test the null hypothesis that two proportions, or bino-
mial parameters, are equal. That is, we are testing p1 = p2 against one of the
alternatives p1 < p2, p1 > p2, or p1 �= p2. Of course, this is equivalent to testing
the null hypothesis that p1 − p2 = 0 against one of the alternatives p1 − p2 < 0,
p1 − p2 > 0, or p1 − p2 �= 0. The statistic on which we base our decision is the
random variable P̂1 − P̂2. Independent samples of sizes n1 and n2 are selected at
random from two binomial populations and the proportions of successes P̂1 and P̂2

for the two samples are computed.
In our construction of confidence intervals for p1 and p2 we noted, for n1 and n2

sufficiently large, that the point estimator P̂1 minus P̂2 was approximately normally
distributed with mean

μ
̂P1− ̂P2

= p1 − p2

and variance

σ2
̂P1− ̂P2

=
p1q1
n1

+
p2q2
n2

.

Therefore, our critical region(s) can be established by using the standard normal
variable

Z =
(P̂1 − P̂2)− (p1 − p2)√

p1q1/n1 + p2q2/n2

.
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When H0 is true, we can substitute p1 = p2 = p and q1 = q2 = q (where p and
q are the common values) in the preceding formula for Z to give the form

Z =
P̂1 − P̂2√

pq(1/n1 + 1/n2)
.

To compute a value of Z, however, we must estimate the parameters p and q that
appear in the radical. Upon pooling the data from both samples, the pooled
estimate of the proportion p is

p̂ =
x1 + x2

n1 + n2
,

where x1 and x2 are the numbers of successes in each of the two samples. Substi-
tuting p̂ for p and q̂ = 1− p̂ for q, the z-value for testing p1= p2 is determined
from the formula

z =
p̂1 − p̂2√

p̂q̂(1/n1 + 1/n2)
.

The critical regions for the appropriate alternative hypotheses are set up as before,
using critical points of the standard normal curve. Hence, for the alternative
p1 �= p2 at the α-level of significance, the critical region is z < −zα/2 or z > zα/2.
For a test where the alternative is p1 < p2, the critical region is z < −zα, and
when the alternative is p1 > p2, the critical region is z > zα.

Example 6.8: A vote is to be taken among the residents of a town and the surrounding county
to determine whether a proposed chemical plant should be constructed. The con-
struction site is within the town limits, and for this reason many voters in the
county believe that the proposal will pass because of the large proportion of town
voters who favor the construction. To determine if there is a significant difference
in the proportions of town voters and county voters favoring the proposal, a poll is
taken. If 120 of 200 town voters favor the proposal and 240 of 500 county residents
favor it, would you agree that the proportion of town voters favoring the proposal is
higher than the proportion of county voters? Use an α = 0.05 level of significance.

Solution : Let p1 and p2 be the true proportions of voters in the town and county, respectively,
favoring the proposal.

1. H0: p1 = p2.

2. H1: p1 > p2.

3. α = 0.05.

4. Critical region: z > 1.645.

5. Computations:

p̂1 =
x1

n1
=

120

200
= 0.60, p̂2 =

x2

n2
=

240

500
= 0.48, and

p̂ =
x1 + x2

n1 + n2
=

120 + 240

200 + 500
= 0.51.
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Therefore,

z =
0.60− 0.48√

(0.51)(0.49)(1/200 + 1/500)
= 2.9,

P = P (Z > 2.9) = 0.0019.

6. Decision: Reject H0 and agree that the proportion of town voters favoring
the proposal is higher than the proportion of county voters.

Exercises

6.55 A marketing expert for a pasta-making company
believes that 40% of pasta lovers prefer lasagna. If 9
out of 20 pasta lovers choose lasagna over other pastas,
what can be concluded about the expert’s claim? Use
a 0.05 level of significance.

6.56 Suppose that, in the past, 40% of all adults fa-
vored capital punishment. Do we have reason to be-
lieve that the proportion of adults favoring capital pun-
ishment has increased if, in a random sample of 15
adults, 8 favor capital punishment? Use a 0.05 level of
significance.

6.57 A new radar device is being considered for a cer-
tain missile defense system. The system is checked by
experimenting with aircraft in which a kill or a no kill
is simulated. If, in 300 trials, 250 kills occur, accept or
reject, at the 0.04 level of significance, the claim that
the probability of a kill with the new system does not
exceed the 0.8 probability of the existing device.

6.58 It is believed that at least 60% of the residents
in a certain area favor an annexation suit by a neigh-
boring city. What conclusion would you draw if only
110 in a sample of 200 voters favored the suit? Use a
0.05 level of significance.

6.59 A fuel oil company claims that one-fifth of the
homes in a certain city are heated by oil. Do we have
reason to believe that fewer than one-fifth are heated
by oil if, in a random sample of 1000 homes in this city,
136 are heated by oil? Use a P -value in your conclu-
sion.

6.60 At a certain college, it is estimated that at most
25% of the students ride bicycles to class. Does this
seem to be a valid estimate if, in a random sample of
90 college students, 28 are found to ride bicycles to
class? Use a 0.05 level of significance.

6.61 In a winter of an epidemic flu, the parents of

2000 babies were surveyed by researchers at a well-
known pharmaceutical company to determine if the
company’s new medicine was effective after two days.
Among 120 babies who had the flu and were given the
medicine, 29 were cured within two days. Among 280
babies who had the flu but were not given the medicine,
56 recovered within two days. Is there any significant
indication that supports the company’s claim of the
effectiveness of the medicine?

6.62 In a controlled laboratory experiment, scientists
at the University of Minnesota discovered that 25% of
a certain strain of rats subjected to a 20% coffee bean
diet and then force-fed a powerful cancer-causing chem-
ical later developed cancerous tumors. Would we have
reason to believe that the proportion of rats developing
tumors when subjected to this diet has increased if the
experiment were repeated and 16 of 48 rats developed
tumors? Use a 0.05 level of significance.

6.63 In a study to estimate the proportion of resi-
dents in a certain city and its suburbs who favor the
construction of a nuclear power plant, it is found that
63 of 100 urban residents favor the construction while
only 59 of 125 suburban residents are in favor. Is there
a significant difference between the proportions of ur-
ban and suburban residents who favor construction of
the nuclear plant? Make use of a P -value.

6.64 In a study on the fertility of married women con-
ducted by Martin O’Connell and Carolyn C. Rogers
for the Census Bureau in 1979, two groups of childless
married women aged 25 to 29 were selected at random,
and each was asked if she eventually planned to have
a child. One group was selected from among women
married less than two years and the other from among
women married five years. Suppose that 240 of the
300 women married less than two years planned to
have children some day compared to 288 of the 400
women married five years. Can we conclude that the
proportion of women married less than two years who
planned to have children is significantly higher than
the proportion of women married five years? Make use
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of a P -value.

6.65 An urban community would like to show that
the incidence of breast cancer is higher in their area
than in a nearby rural area. (PCB levels were found to
be higher in the soil of the urban community.) If it is
found that 20 of 200 adult women in the urban com-
munity have breast cancer and 10 of 150 adult women
in the rural community have breast cancer, can we con-
clude at the 0.05 level of significance that breast cancer
is more prevalent in the urban community?

6.66 Group Project: The class should be divided
into pairs of students for this project. Suppose it is
conjectured that at least 25% of students at your uni-
versity exercise for more than two hours a week. Col-
lect data from a random sample of 50 students. Ask
each student if he or she works out for at least two
hours per week. Then do the computations that allow
either rejection or nonrejection of the above conjecture.
Show all work and quote a P -value in your conclusion.

6.10 Goodness-of-Fit Test

Throughout this chapter, we have been concerned with the testing of statistical
hypotheses about single population parameters such as μ and p. Now we shall
consider a test to determine if a population has a specified theoretical distribution.
The test is based on how good a fit we have between the frequency of occurrence
of observations in an observed sample and the expected frequencies obtained from
the hypothesized distribution.

To illustrate, we consider the tossing of a die. We hypothesize that the die
is honest, which is equivalent to testing the hypothesis that the distribution of
outcomes is the discrete uniform distribution

f(x) =
1

6
, x = 1, 2, . . . , 6.

Suppose that the die is tossed 120 times and each outcome is recorded. Theoret-
ically, if the die is balanced, we would expect each face to occur 20 times. The
results are given in Table 6.4.

Table 6.4: Observed and Expected Frequencies of 120 Tosses of a Die

Face: 1 2 3 4 5 6
Observed 20 22 17 18 19 24
Expected 20 20 20 20 20 20

By comparing the observed frequencies with the corresponding expected fre-
quencies, we must decide whether these discrepancies are likely to occur as a result
of sampling fluctuations and the die is balanced or whether the die is not honest
and the distribution of outcomes is not uniform. It is common practice to refer
to each possible outcome of an experiment as a cell. In our illustration, we have
6 cells. The appropriate statistic on which we base our decision criterion for an
experiment involving k cells is defined by the following.
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Goodness-of-Fit
Test

A goodness-of-fit test between observed and expected frequencies is based on
the quantity

χ2 =
k∑

i=1

(oi − ei)
2

ei
,

where χ2 is a value of a random variable whose sampling distribution is approx-
imated very closely by the chi-squared distribution with v = k − 1 degrees of
freedom. The symbols oi and ei represent the observed and expected frequen-
cies, respectively, for the ith cell.

The number of degrees of freedom associated with the chi-squared distribution
used here is equal to k − 1, since there are only k − 1 freely determined cell fre-
quencies. That is, once k − 1 cell frequencies are determined, so is the frequency
for the kth cell.

If the observed frequencies are close to the corresponding expected frequencies,
the χ2-value will be small, indicating a good fit. If the observed frequencies differ
considerably from the expected frequencies, the χ2-value will be large and the fit
is poor. A good fit leads to the acceptance of H0, whereas a poor fit leads to its
rejection. The critical region will, therefore, fall in the right tail of the chi-squared
distribution. For a level of significance equal to α, we find the critical value χ2

α

from Table A.5, and then χ2 > χ2
α constitutes the critical region. The decision

criterion described here should not be used unless each of the expected
frequencies is at least equal to 5. This restriction may require the combining
of adjacent cells, resulting in a reduction in the number of degrees of freedom.

From Table 6.4, we find the χ2-value to be

χ2 =
(20− 20)2

20
+

(22− 20)2

20
+

(17− 20)2

20

+
(18− 20)2

20
+

(19− 20)2

20
+

(24− 20)2

20
= 1.7.

Using Table A.5, we find χ2
0.05 = 11.070 for v = 5 degrees of freedom. Since 1.7

is less than the critical value, we fail to reject H0. We conclude that there is
insufficient evidence that the die is not balanced.

As a second illustration, let us test the hypothesis that the frequency distri-
bution of battery lives given in Table 4.5 on page 187 may be approximated by
a normal distribution with mean μ = 3.5 and standard deviation σ = 0.7. The
expected frequencies for the 7 classes (cells), listed in Table 6.5, are obtained by
computing the areas under the hypothesized normal curve that fall between the
various class boundaries.

For example, the z-values corresponding to the boundaries of the fourth class
are

z1 =
2.95− 3.5

0.7
= −0.79 and z2 =

3.45− 3.5

0.7
= −0.07.
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Table 6.5: Observed and Expected Frequencies of Battery Lives, Assuming Normality

Class Boundaries oi ei
1.45−1.95
1.95−2.45
2.45−2.95

2
1
4

⎫⎬⎭ 7
0.5
2.1
5.9

⎫⎬⎭ 8.5

2.95−3.45
3.45−3.95

15
10

10.3
10.7

3.95−4.45
4.45−4.95

5
3

}
8

7.0
3.5

}
10.5

From Table A.3 we find the area between z1 = −0.79 and z2 = −0.07 to be

area = P (−0.79 < Z < −0.07) = P (Z < −0.07)− P (Z < −0.79)

= 0.4721− 0.2148 = 0.2573.

Hence, the expected frequency for the fourth class is

e4 = (0.2573)(40) = 10.3.

It is customary to round these frequencies to one decimal.
The expected frequency for the first class interval is obtained by using the total

area under the normal curve to the left of the boundary 1.95. For the last class
interval, we use the total area to the right of the boundary 4.45. All other expected
frequencies are determined by the method described for the fourth class. Note that
we have combined adjacent classes in Table 6.5 where the expected frequencies are
less than 5 (a rule of thumb in the goodness-of-fit test). Consequently, the total
number of intervals is reduced from 7 to 4, resulting in v = 3 degrees of freedom.
The χ2-value is then given by

χ2 =
(7− 8.5)2

8.5
+

(15− 10.3)2

10.3
+

(10− 10.7)2

10.7
+

(8− 10.5)2

10.5
= 3.05.

Since the computed χ2-value is less than χ2
0.05 = 7.815 for 3 degrees of freedom,

we have no reason to reject the null hypothesis and conclude that the normal
distribution with μ = 3.5 and σ = 0.7 provides a good fit for the distribution of
battery lives.

The chi-squared goodness-of-fit test is an important resource, particularly since
so many statistical procedures in practice depend, in a theoretical sense, on the
assumption that the data gathered come from a specific type of distribution. As
we have already seen, the normality assumption is often made. In the chapters
that follow, we shall continue to make normality assumptions in order to provide
a theoretical basis for certain tests and confidence intervals.

There are tests in the literature that are more powerful than the chi-squared test
for testing normality. One such test is called Geary’s test. This test is based on a
very simple statistic which is a ratio of two estimators of the population standard
deviation σ. Suppose that a random sample X1, X2, . . . , Xn is taken from a normal
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distribution, N(μ, σ). Consider the ratio

U =

√
π/2

n∑
i=1

|Xi − X̄|/n√
n∑

i=1

(Xi − X̄)2/n

.

The reader should recognize that the denominator is a reasonable estimator of σ
whether the distribution is normal or not. The numerator is a good estimator of σ
if the distribution is normal but may overestimate or underestimate σ when there
are departures from normality. Thus, values of U differing considerably from 1.0
represent the signal that the hypothesis of normality should be rejected.

For large samples, a reasonable test is based on approximate normality of U .
The test statistic is then a standardization of U , given by

Z =
U − 1

0.2661/
√
n
.

Of course, the test procedure involves the two-sided critical region. We compute
a value of z from the data and do not reject the hypothesis of normality when

−zα/2 < Z < zα/2.

A paper dealing with Geary’s test is cited in the Bibliography (Geary, 1947).

6.11 Test for Independence (Categorical Data)

The chi-squared test procedure discussed in Section 6.10 can also be used to test
the hypothesis of independence of two variables of classification. Suppose that
we wish to determine whether the opinions of the voting residents of the state of
Illinois concerning a new tax reform proposal are independent of their levels of
income. Members of a random sample of 1000 registered voters from the state
of Illinois are classified as to whether they are in a low, medium, or high income
bracket and whether or not they favor the tax reform. The observed frequencies
are presented in Table 6.6, which is known as a contingency table.

Table 6.6: 2 × 3 Contingency Table

Income Level
Tax Reform Low Medium High Total
For 182 213 203 598
Against 154 138 110 402
Total 336 351 313 1000

A contingency table with r rows and c columns is referred to as an r × c table
(“r × c” is read “r by c”). The row and column totals in Table 6.6 are called
marginal frequencies. Our decision to accept or reject the null hypothesis, H0,
of independence between a voter’s opinion concerning the tax reform and his or
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her level of income is based upon how good a fit we have between the observed
frequencies in each of the 6 cells of Table 6.6 and the frequencies that we would
expect for each cell under the assumption that H0 is true. To find these expected
frequencies, let us define the following events:

L: A person selected is in the low-income level.

M : A person selected is in the medium-income level.

H: A person selected is in the high-income level.

F : A person selected is for the tax reform.

A: A person selected is against the tax reform.

By using the marginal frequencies, we can list the following probability esti-
mates:

P (L) =
336

1000
, P (M) =

351

1000
, P (H) =

313

1000
,

P (F ) =
598

1000
, P (A) =

402

1000
.

Now, if H0 is true and the two variables are independent, we should have

P (L ∩ F ) = P (L)P (F ) =

(
336

1000

)(
598

1000

)
,

P (L ∩A) = P (L)P (A) =

(
336

1000

)(
402

1000

)
,

P (M ∩ F ) = P (M)P (F ) =

(
351

1000

)(
598

1000

)
,

P (M ∩A) = P (M)P (A) =

(
351

1000

)(
402

1000

)
,

P (H ∩ F ) = P (H)P (F ) =

(
313

1000

)(
598

1000

)
,

P (H ∩A) = P (H)P (A) =

(
313

1000

)(
402

1000

)
.

The expected frequencies are obtained by multiplying each cell probability by
the total number of observations. As before, we round these frequencies to one
decimal. Thus, the expected number of low-income voters in our sample who favor
the tax reform is estimated to be(

336

1000

)(
598

1000

)
(1000) =

(336)(598)

1000
= 200.9

when H0 is true. The general rule for obtaining the expected frequency of any cell
is given by the following formula:

expected frequency =
(column total)× (row total)

grand total
.

The expected frequency for each cell is recorded in parentheses beside the actual
observed value in Table 6.7. Note that the expected frequencies in any row or
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column add up to the appropriate marginal total. In our example, we need to
compute only two expected frequencies in the top row of Table 6.7 and then find
the others by subtraction. The number of degrees of freedom associated with the
chi-squared test used here is equal to the number of cell frequencies that may be
filled in freely when we are given the marginal totals and the grand total, and in
this illustration that number is 2. A simple formula providing the correct number
of degrees of freedom is

v = (r − 1)(c− 1).

Table 6.7: Observed and Expected Frequencies

Income Level
Tax Reform Low Medium High Total
For
Against
Total

182 (200.9)
154 (135.1)

336

213 (209.9)
138 (141.1)

351

203 (187.2)
110 (125.8)

313

598
402
1000

Hence, for our example, v = (2− 1)(3− 1) = 2 degrees of freedom. To test the
null hypothesis of independence, we use the following decision criterion.

Test for
Independence

Calculate

χ2 =
∑
i

(oi − ei)
2

ei
,

where the summation extends over all rc cells in the r × c contingency table.

If χ2 > χ2
α with v = (r − 1)(c − 1) degrees of freedom, reject the null hypothesis

of independence at the α-level of significance; otherwise, fail to reject the null
hypothesis.

Applying this criterion to our example, we find that

χ2 =
(182− 200.9)2

200.9
+

(213− 209.9)2

209.9
+

(203− 187.2)2

187.2

+
(154− 135.1)2

135.1
+

(138− 141.1)2

141.1
+

(110− 125.8)2

125.8
= 7.85,

P ≈ 0.02.

From Table A.5 we find that χ2
0.05 = 5.991 for v = (2 − 1)(3 − 1) = 2 degrees of

freedom. The null hypothesis is rejected and we conclude that a voter’s opinion
concerning the tax reform and his or her level of income are not independent.

It is important to remember that the statistic on which we base our decision
has a distribution that is only approximated by the chi-squared distribution. The
computed χ2-values depend on the cell frequencies and consequently are discrete.
The continuous chi-squared distribution seems to approximate the discrete sam-
pling distribution of χ2 very well, provided that the number of degrees of freedom
is greater than 1. In a 2 × 2 contingency table, where we have only 1 degree of
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freedom, a correction called Yates’ correction for continuity is applied. The
corrected formula then becomes

χ2(corrected) =
∑
i

(|oi − ei| − 0.5)2

ei
.

If the expected cell frequencies are large, the corrected and uncorrected results
are almost the same. When the expected frequencies are between 5 and 10, Yates’
correction should be applied. For expected frequencies less than 5, the Fisher-Irwin
exact test should be used. A discussion of this test may be found in Basic Concepts
of Probability and Statistics by Hodges and Lehmann (2005; see the Bibliography).
The Fisher-Irwin test may be avoided, however, by choosing a larger sample.

6.12 Test for Homogeneity

When we tested for independence in Section 6.11, a random sample of 1000 vot-
ers was selected and the row and column totals for our contingency table were
determined by chance. Another type of problem for which the method of Section
6.11 applies is one in which either the row or the column totals are predetermined.
Suppose, for example, that we decide in advance to select 200 Democrats, 150
Republicans, and 150 Independents from the voters of the state of North Carolina
and record whether they are for a proposed abortion law, against it, or undecided.
The observed responses are given in Table 6.8.

Table 6.8: Observed Frequencies

Political Affiliation
Abortion Law Democrat Republican Independent Total
For
Against
Undecided
Total

82
93
25
200

70
62
18
150

62
67
21
150

214
222
64
500

Now, rather than test for independence, we test the hypothesis that the popu-
lation proportions within each row are the same. That is, we test the hypothesis
that the proportions of Democrats, Republicans, and Independents favoring the
abortion law are the same; the proportions of each political affiliation against the
law are the same; and the proportions of each political affiliation that are unde-
cided are the same. We are basically interested in determining whether the three
categories of voters are homogeneous with respect to their opinions concerning
the proposed abortion law. Such a test is called a test for homogeneity.

Assuming homogeneity, we again find the expected cell frequencies by multi-
plying the corresponding row and column totals and then dividing by the grand
total. The analysis then proceeds using the same chi-squared statistic as before.
We illustrate this process for the data of Table 6.8 in the following example.

Example 6.9: Referring to the data of Table 6.8, test the hypothesis that opinions concerning
the proposed abortion law are the same within each political affiliation. Use a 0.05
level of significance.
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Solution : 1. H0: For each opinion, the proportions of Democrats, Republicans, and Inde-
pendents are the same.

2. H1: For at least one opinion, the proportions of Democrats, Republicans, and
Independents are not the same.

3. α = 0.05.

4. Critical region: χ2 > 9.488 with v = 4 degrees of freedom.

5. Computations: Using the expected cell frequency formula on page 281, we
need to compute 4 cell frequencies. All other frequencies are found by sub-
traction. The observed and expected cell frequencies are displayed in Table
6.9.

Table 6.9: Observed and Expected Frequencies

Political Affiliation
Abortion Law Democrat Republican Independent Total
For
Against
Undecided
Total

82 (85.6)
93 (88.8)
25 (25.6)

200

70 (64.2)
62 (66.6)
18 (19.2)

150

62 (64.2)
67 (66.6)
21 (19.2)

150

214
222
64
500

Now,

χ2 =
(82− 85.6)2

85.6
+

(70− 64.2)2

64.2
+

(62− 64.2)2

64.2

+
(93− 88.8)2

88.8
+

(62− 66.6)2

66.6
+

(67− 66.6)2

66.6

+
(25− 25.6)2

25.6
+

(18− 19.2)2

19.2
+

(21− 19.2)2

19.2
= 1.53.

6. Decision: Do not reject H0. There is insufficient evidence to conclude that
the proportions of Democrats, Republicans, and Independents differ for each
stated opinion.

Testing for Several Proportions

The chi-squared statistic for testing for homogeneity is also applicable when testing
the hypothesis that k binomial parameters have the same value. This is, therefore,
an extension of the test presented in Section 6.9 for determining differences between
two proportions to a test for determining differences among k proportions. Hence,
we are interested in testing the null hypothesis

H0 : p1 = p2 = · · · = pk

against the alternative hypothesis, H1, that the population proportions are not all
equal. To perform this test, we first observe independent random samples of size
n1, n2, . . . , nk from the k populations and arrange the data in a 2 × k contingency
table, Table 6.10.
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Table 6.10: k Independent Binomial Samples

Sample: 1 2 · · · k
Successes x1 x2 · · · xk

Failures n1 − x1 n2 − x2 · · · nk − xk

Depending on whether the sizes of the random samples were predetermined or
occurred at random, the test procedure is identical to the test for homogeneity or
the test for independence. Therefore, the expected cell frequencies are calculated as
before and substituted, together with the observed frequencies, into the chi-squared
statistic

χ2 =
∑
i

(oi − ei)
2

ei
,

with

v = (2− 1)(k − 1) = k − 1

degrees of freedom.
By selecting the appropriate upper-tail critical region of the form χ2 > χ2

α, we
can now reach a decision concerning H0.

Example 6.10: In a shop study, a set of data was collected to determine whether or not the
proportion of defectives produced was the same for workers on the day, evening,
and night shifts. The data collected are shown in Table 6.11.

Table 6.11: Data for Example 6.10

Shift: Day Evening Night
Defectives 45 55 70
Nondefectives 905 890 870

Use a 0.025 level of significance to determine if the proportion of defectives is the
same for all three shifts.

Solution : Let p1, p2, and p3 represent the true proportions of defectives for the day, evening,
and night shifts, respectively.

1. H0: p1 = p2 = p3.

2. H1: p1, p2, and p3 are not all equal.

3. α = 0.025.

4. Critical region: χ2 > 7.378 for v = 2 degrees of freedom.

5. Computations: Corresponding to the observed frequencies o1 = 45 and o2 =
55, we find

e1 =
(950)(170)

2835
= 57.0 and e2 =

(945)(170)

2835
= 56.7.
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Table 6.12: Observed and Expected Frequencies

Shift: Day Evening Night Total
Defectives
Nondefectives

45 (57.0)
905 (893.0)

55 (56.7)
890 (888.3)

70 (56.3)
870 (883.7)

170
2665

Total 950 945 940 2835

All other expected frequencies are found by subtraction and are displayed in
Table 6.12.

Now

χ2 =
(45− 57.0)2

57.0
+

(55− 56.7)2

56.7
+

(70− 56.3)2

56.3

+
(905− 893.0)2

893.0
+

(890− 888.3)2

888.3
+

(870− 883.7)2

883.7
= 6.29,

P ≈ 0.04.

6. Decision: We do not reject H0 at α = 0.025. Nevertheless, with the above
P -value computed, it would certainly be dangerous to conclude that the pro-
portion of defectives produced is the same for all shifts.

Often a complete study involving the use of statistical methods in hypothesis
testing can be illustrated for the scientist or engineer using both test statistics,
complete with P -values and statistical graphics. The graphics supplement the
numerical diagnostics with pictures that show intuitively why the P -values appear
as they do, as well as how reasonable (or not) the operative assumptions are.

6.13 Two-Sample Case Study

In this section, we consider a study involving a thorough graphical and formal anal-
ysis, along with annotated computer printout and conclusions. In a data analysis
study conducted by personnel at the Statistics Consulting Center at Virginia Tech,
two different materials, alloy A and alloy B, were compared in terms of breaking
strength. Alloy B is more expensive, but it should certainly be adopted if it can
be shown to be stronger than alloy A. The consistency of performance of the two
alloys should also be taken into account.

Random samples of beams made from each alloy were selected, and strength
was measured in units of 0.001-inch deflection as a fixed force was applied at both
ends of the beam. Twenty specimens were used for each of the two alloys. The
data are given in Table 6.13.

It is important that the engineer compare the two alloys. Of concern is average
strength and reproducibility. Figure 6.18 shows two box-and-whisker plots on
the same graph. The box-and-whisker plots suggest that there is similar, albeit
somewhat different, variability of deflection for the two alloys. However, it seems
that the mean deflection for alloy B is significantly smaller, suggesting, at least
graphically, that alloy B is stronger. The sample means and standard deviations
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Table 6.13: Data for Two-Sample Case Study

Alloy A Alloy B
88 82 87 75 81 80
79 85 90 77 78 81
84 88 83 86 78 77
89 80 81 84 82 78
81 85 80 80
83 87 78 76
82 80 83 85
79 78 76 79

are

ȳA = 83.55, sA = 3.663; ȳB = 79.70, sB = 3.097.

The SAS printout for the PROC TTEST is shown in Figure 6.19. The F -test
suggests no significant difference in variances with P = 0.4709 (for the F -test in
testing equal variances, the reader is referred to Walpole et al., 2011), and the
two-sample t-statistic for testing

H0: μA = μB ,

H1: μA > μB

(t = 3.59, P = 0.0009) rejects H0 in favor of H1 and thus confirms what the
graphical information suggests. Here we use the t-test that pools the two-sample
variances together in light of the results of the F -test. On the basis of this analysis,
the adoption of alloy B would seem to be in order.

Alloy A Alloy B

75

80

85

90

D
ef

le
ct

io
n

Figure 6.18: Box-and-whisker plots for both alloys.
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The TTEST Procedure

Alloy N Mean Std Dev Std Err

Alloy A 20 83.55 3.6631 0.8191

Alloy B 20 79.7 3.0967 0.6924

Variances DF t Value Pr > |t|

Equal 38 3.59 0.0009

Unequal 37 3.59 0.0010

Equality of Variances

Num DF Den DF F Value Pr > F

19 19 1.40 0.4709

Figure 6.19: Annotated SAS printout for alloy data.

Statistical Significance and Engineering or Scientific Significance

While the statistician may feel quite comfortable with the results of the comparison
between the two alloys in the case study above, a dilemma remains for the engineer.
The analysis demonstrated a statistically significant improvement with the use
of alloy B. However, is the difference found really worth pursuing, since alloy
B is more expensive? This illustration highlights a very important issue often
overlooked by statisticians and data analysts—the distinction between statistical
significance and engineering or scientific significance. Here the average difference
in deflection is ȳA − ȳB = 0.00385 inch. In a complete analysis, the engineer must
determine if the difference is sufficient to justify the extra cost in the long run.
This is an economic and engineering issue. The reader should understand that a
statistically significant difference merely implies that the difference in the sample
means found in the data could hardly have occurred by chance. It does not imply
that the difference in the population means is profound or particularly significant
in the context of the problem. For example, in Section 6.4, an annotated computer
printout was used to show evidence that a pH meter was, in fact, biased. That
is, it does not demonstrate a mean pH of 7.00 for the material on which it was
tested. But the variability among the observations in the sample is very small.
The engineer may decide that the small deviations from 7.0 render the pH meter
adequate.

Exercises

6.67 A machine is supposed to mix peanuts, hazel-
nuts, cashews, and pecans in the ratio 5:2:2:1. A can
containing 500 of these mixed nuts was found to have
269 peanuts, 112 hazelnuts, 74 cashews, and 45 pecans.
At the 0.05 level of significance, test the hypothesis
that the machine is mixing the nuts in the ratio 5:2:2:1.

6.68 The grades in a statistics course for a particular
semester were as follows:

Grade A B C D F
f 14 18 32 20 16

Test the hypothesis, at the 0.05 level of significance,
that the distribution of grades is uniform.

6.69 A die is tossed 180 times with the following re-
sults:

x 1 2 3 4 5 6

f 28 36 36 30 27 23
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Is this a balanced die? Use a 0.01 level of significance.

6.70 Three marbles are selected from an urn con-
taining 5 red marbles and 3 green marbles. After the
number X of red marbles is recorded, the marbles are
replaced in the urn and the experiment repeated 112
times. The results obtained are as follows:

x 0 1 2 3

f 1 31 55 25

Test the hypothesis, at the 0.05 level of significance,
that the recorded data may be fitted by the hypergeo-
metric distribution h(x; 8, 3, 5), x = 0, 1, 2, 3.

6.71 A coin is tossed until a head occurs and the num-
ber X of tosses recorded. After repeating the experi-
ment 256 times, we obtained the following results:

x 1 2 3 4 5 6 7 8

f 136 60 34 12 9 1 3 1

Test the hypothesis, at the 0.05 level of significance,
that the observed distribution of X may be fitted by
the geometric distribution g(x; 1/2), x = 1, 2, 3, . . . .

6.72 The following scores represent the final exami-
nation grades for an elementary statistics course:

23 60 79 32 57 74 52 70 82
36 80 77 81 95 41 65 92 85
55 76 52 10 64 75 78 25 80
98 81 67 41 71 83 54 64 72
88 62 74 43 60 78 89 76 84
48 84 90 15 79 34 67 17 82
69 74 63 80 85 61

Test the goodness of fit between the observed class fre-
quencies and the corresponding expected frequencies of
a normal distribution with μ = 65 and σ = 21, using a
0.05 level of significance.

6.73 For Exercise 4.49 on page 192, test the good-
ness of fit between the observed class frequencies and
the corresponding expected frequencies of a normal dis-
tribution with μ = 1.8 and σ = 0.4, using a 0.01 level
of significance.

6.74 In an experiment to study the dependence of hy-
pertension on smoking habits, the following data were
taken on 180 individuals:

Non- Moderate Heavy
smokers Smokers Smokers

Hypertension 21 36 30
No hypertension 48 26 19

Test the hypothesis that the presence or absence of hy-
pertension is independent of smoking habits. Use a
0.05 level of significance.

6.75 A random sample of 90 adults is classified ac-
cording to gender and the number of hours of television
watched during a week:

Gender
Male Female

Over 25 hours 15 29
Under 25 hours 27 19

Use a 0.01 level of significance and test the hypothesis
that the time spent watching television is independent
of whether the viewer is male or female.

6.76 A random sample of 200 married men, all re-
tired, was classified according to education and number
of children:

Number of Children
Education 0–1 2–3 Over 3

Elementary 14 37 32
Secondary 19 42 17
College 12 17 10

Test the hypothesis, at the 0.05 level of significance,
that the size of a family is independent of the level of
education attained by the father.

6.77 A criminologist conducted a survey to determine
whether the incidence of certain types of crime varied
from one part of a large city to another. The particular
crimes of interest were assault, burglary, larceny, and
homicide. The following table shows the numbers of
crimes committed in four areas of the city during the
past year.

Type of Crime
District Assault Burglary Larceny Homicide

1 162 118 451 18
2 310 196 996 25
3 258 193 458 10
4 280 175 390 19

Can we conclude from these data at the 0.01 level of
significance that the occurrence of these types of crime
is dependent on the city district?

6.78 According to a Johns Hopkins University study
published in the American Journal of Public Health,
widows live longer than widowers. Consider the fol-
lowing survival data collected on 100 widows and 100
widowers following the death of a spouse:

Years Lived Widow Widower

Less than 5 25 39
5 to 10 42 40
More than 10 33 21

Can we conclude at the 0.05 level of significance that
the proportions of widows and widowers are equal with
respect to the different time periods that a spouse sur-
vives after the death of his or her mate?
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6.79 The following responses concerning the standard
of living at the time of an independent opinion poll
of 1000 households versus one year earlier seem to be
in agreement with the results of a study published in
Across the Board (June 1981):

Standard of Living
Somewhat Not as

Period Better Same Good Total

1980: Jan. 72 144 84 300
May 63 135 102 300
Sept. 47 100 53 200

1981: Jan. 40 105 55 200

Test the hypothesis that the proportions of households
within each standard of living category are the same
for each of the four time periods. Use a P -value.

6.80 A college infirmary conducted an experiment to
determine the degree of relief provided by three cough
remedies. Each cough remedy was tried on 50 students
and the following data recorded:

Cough Remedy
NyQuil Robitussin Triaminic

No relief 11 13 9
Some relief 32 28 27
Total relief 7 9 14

Test the hypothesis that the three cough remedies are
equally effective. Use a P -value in your conclusion.

6.81 To determine current attitudes about prayer in
public schools, a survey was conducted in four Vir-
ginia counties. The following table gives the attitudes
of 200 parents from Craig County, 150 parents from
Giles County, 100 parents from Franklin County, and
100 parents from Montgomery County:

County
Attitude Craig Giles Franklin Mont.

Favor 65 66 40 34
Oppose 42 30 33 42
No opinion 93 54 27 24

Test for homogeneity of attitudes among the four coun-
ties concerning prayer in the public schools. Use a P -
value in your conclusion.

6.82 A survey was conducted in Indiana, Kentucky,
and Ohio to determine the attitude of voters concern-
ing school busing. A poll of 200 voters from each of
these states yielded the following results:

Voter Attitude
Do Not

State Support Support Undecided

Indiana 82 97 21
Kentucky 107 66 27
Ohio 93 74 33

At the 0.05 level of significance, test the null hypothe-
sis that the proportions of voters within each attitude
category are the same for each of the three states.

6.83 A survey was conducted in two Virginia cities
to determine voter sentiment about two gubernatorial
candidates in an upcoming election. Five hundred vot-
ers were randomly selected from each city and the fol-
lowing data were recorded:

City
Voter Sentiment Richmond Norfolk
Favor A
Favor B
Undecided

204
211
85

225
198
77

At the 0.05 level of significance, test the null hypoth-
esis that proportions of voters favoring candidate A,
favoring candidate B, and undecided are the same for
each city.

6.84 In a study to estimate the proportion of married
women who regularly watch soap operas, it is found
that 52 of 200 married women in Denver, 31 of 150 mar-
ried women in Phoenix, and 37 of 150 married women
in Rochester watch at least one soap opera. Use a 0.05
level of significance to test the hypothesis that there
is no difference among the true proportions of married
women who watch soap operas in these three cities.

Review Exercises

6.85 State the null and alternative hypotheses to be
used in testing the following claims and determine gen-
erally where the critical region is located:

(a) The mean snowfall at Lake George during the
month of February is 21.8 centimeters.

(b) No more than 20% of the faculty at the local uni-
versity contributed to the annual giving fund.

(c) On the average, children attend schools within 6.2
kilometers of their homes in suburban St. Louis.

(d) At least 70% of next year’s new cars will be in the
compact and subcompact category.

(e) The proportion of voters favoring the incumbent in
the upcoming election is 0.58.

(f) The average rib-eye steak at the Longhorn Steak
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house weighs at least 340 grams.

6.86 A geneticist is interested in the proportions of
males and females in a population who have a cer-
tain minor blood disorder. In a random sample of 100
males, 31 are found to be afflicted, whereas only 24 of
100 females tested have the disorder. Can we conclude
at the 0.01 level of significance that the proportion of
men in the population afflicted with this blood disorder
is significantly greater than the proportion of women
afflicted?

6.87 A study was made to determine whether more
Italians than Americans prefer white champagne to
pink champagne at weddings. Of the 300 Italians
selected at random, 72 preferred white champagne,
and of the 400 Americans selected, 70 preferred white
champagne. Can we conclude that a higher proportion
of Italians than Americans prefer white champagne at
weddings? Use a 0.05 level of significance.

6.88 Consider the situation of Exercise 6.52 on page
271. Along with breathing frequency, oxygen consump-
tion in mL/kg/min was also measured.

Subject With CO Without CO

1 26.46 25.41
2 17.46 22.53
3 16.32 16.32
4 20.19 27.48
5 19.84 24.97
6 20.65 21.77
7 28.21 28.17
8 33.94 32.02
9 29.32 28.96

It is conjectured that oxygen consumption should be
higher in an environment relatively free of CO. Do a
significance test and discuss the conjecture.

6.89 In a study analyzed by the Statistics Consult-
ing Center at Virginia Tech, a group of subjects was
asked to complete a certain task on the computer. The
response measured was the time to completion. The
purpose of the experiment was to test a set of facilita-
tion tools developed by the Department of Computer
Science at the university. There were 10 subjects in-
volved. With a random assignment, five were given a
standard procedure using Fortran language for comple-
tion of the task. The other five were asked to do the
task with the use of the facilitation tools. The data on
the completion times for the task are given here.

Group 1 Group 2
(Standard Procedure) (Facilitation Tool)

161 132
169 162
174 134
158 138
163 133

Assuming that the population distributions are nor-
mal and variances are the same for the two groups,
support or refute the conjecture that the facilitation
tools increase the speed with which the task can be
accomplished.

6.90 State the null and alternative hypotheses to be
used in testing the following claims, and determine gen-
erally where the critical region is located:

(a) At most, 20% of next year’s wheat crop will be
exported to the Soviet Union.

(b) On the average, American homemakers drink 3
cups of coffee per day.

(c) The proportion of college graduates in Virginia this
year who majored in the social sciences is at least
0.15.

(d) The average donation to the American Lung Asso-
ciation is no more than $10.

(e) Residents in suburban Richmond commute, on the
average, 15 kilometers to their place of employ-
ment.

6.91 If one can containing 500 nuts is selected at ran-
dom from each of three different distributors of mixed
nuts and there are, respectively, 345, 313, and 359
peanuts in each of the cans, can we conclude at the 0.01
level of significance that the mixed nuts of the three
distributors contain equal proportions of peanuts?

6.92 A study was made to determine whether there
is a difference between the proportions of parents in
the states of Maryland (MD), Virginia (VA), Georgia
(GA), and Alabama (AL) who favor placing Bibles in
the elementary schools. The responses of 100 parents
selected at random in each of these states are recorded
in the following table:

State
Preference MD VA GA AL

Yes 65 71 78 82
No 35 29 22 18

Can we conclude that the proportions of parents who
favor placing Bibles in the schools are the same for
these four states? Use a 0.01 level of significance.

6.93 A study was conducted at the Virginia-
Maryland Regional College of Veterinary Medicine
Equine Center to determine if the performance of a
certain type of surgery on young horses had any effect
on certain kinds of blood cell types in the animal. Fluid
samples were taken from each of six foals before and af-
ter surgery. The samples were analyzed for the number
of postoperative white blood cell (WBC) leukocytes.
A preoperative measure of WBC leukocytes was also
taken. The data are given as follows:
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Foal Presurgery* Postsurgery*

1 10.80 10.60
2 12.90 16.60
3 9.59 17.20
4 8.81 14.00
5 12.00 10.60
6 6.07 8.60

*All values × 10−3.

Use a paired sample t-test to determine if there is a sig-
nificant change in WBC leukocytes with the surgery.

6.94 A study was conducted at the Department of
Health and Physical Education at Virginia Tech to de-
termine if 8 weeks of training truly reduces the choles-
terol levels of the participants. A treatment group con-
sisting of 15 people was given lectures twice a week
on how to reduce cholesterol level. Another group of
18 people of similar age was randomly selected as a
control group. All participants’ cholesterol levels were
recorded at the end of the 8-week program and are
listed below.

Treatment:
129 131 154 172 115 126 175 191
122 238 159 156 176 175 126

Control:
151 132 196 195 188 198 187 168 115
165 137 208 133 217 191 193 140 146

Can we conclude, at the 5% level of significance, that
the average cholesterol level has been reduced due to
the program? Make the appropriate test on means.

6.95 In a study conducted by the Department of Me-
chanical Engineering and analyzed by the Statistics
Consulting Center at Virginia Tech, steel rods supplied
by two different companies were compared. Ten sam-
ple springs were made out of the steel rods supplied by
each company, and the “bounciness” was studied. The
data are as follows:

Company A:
9.3 8.8 6.8 8.7 8.5 6.7 8.0 6.5 9.2 7.0
Company B:
11.0 9.8 9.9 10.2 10.1 9.7 11.0 11.1 10.2 9.6

Can you conclude that there is virtually no difference

in means between the steel rods supplied by the two
companies? Use a P -value to reach your conclusion.
Should variances be pooled here?

6.96 In a study conducted by the Water Resources
Center and analyzed by the Statistics Consulting Cen-
ter at Virginia Tech, two different wastewater treat-
ment plants were compared. Plant A is located where
the median household income is below $22,000 a year,
and plant B is located where the median household
income is above $60,000 a year. The amount of waste-
water treated at each plant (thousands of gallons/day)
was randomly sampled for 10 days. The data are as
follows:

Plant A:
21 19 20 23 22 28 32 19 13 18

Plant B:
20 39 24 33 30 28 30 22 33 24

Can we conclude, at the 5% level of significance, that
the average amount of wastewater treated at the plant
in the high-income neighborhood is more than that
treated at the plant in the low-income area? Assume
normality.

6.97 The following data show the numbers of defects
in 100,000 lines of code in two versions of a particular
type of software program, one developed in the United
States and one in Japan. Is there enough evidence
to claim that there is a significant difference between
the programs developed in the two countries? Test on
means. Should variances be pooled?

U.S. 48 39 42 52 40 48 52 52
54 48 52 55 43 46 48 52

Japan 50 48 42 40 43 48 50 46
38 38 36 40 40 48 48 45

6.98 Studies show that the concentration of PCBs is
much higher in malignant breast tissue than in normal
breast tissue. If a study of 50 women with breast cancer
reveals an average PCB concentration of 22.8 × 10−4

gram, with a standard deviation of 4.8 × 10−4 gram, is
the mean concentration of PCBs less than 24 × 10−4

gram?

6.14 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

One of the easiest ways to misuse statistics relates to the final scientific conclusion
drawn when the analyst does not reject the null hypothesis H0. In this text, we
have attempted to make clear what the null hypothesis means and what the al-
ternative means, and to stress that, in a large sense, the alternative hypothesis is
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much more important. Put in the form of an example, if an engineer is attempt-
ing to compare two gauges using a two-sample t-test, and H0 is “the gauges are
equivalent” while H1 is “the gauges are not equivalent,” not rejecting H0 does
not lead to the conclusion of equivalent gauges. In fact, a case can be made for
never writing or saying “accept H0”! Not rejecting H0 merely implies insufficient
evidence. Depending on the nature of the hypothesis, a lot of possibilities are still
not ruled out.

In Chapter 5, we considered the case of the large-sample confidence interval
using

z =
x̄− μ

s/
√
n
.

In hypothesis testing, replacing σ by s for n < 30 is risky. If n ≥ 30 and the
distribution is not normal but somehow close to normal, the Central Limit Theorem
is being called upon and one is relying on the fact that with n ≥ 30, s ≈ σ. Of
course, any t-test is accompanied by the concomitant assumption of normality. As
in the case of confidence intervals, the t-test is relatively robust to normality.

Most of the chapters in this text include discussions whose purpose is to relate
the chapter in question to other material that will follow. The topics of estimation
and hypothesis testing are both used in a major way in nearly all of the techniques
that fall under the umbrella of “statistical methods.” This will be readily noted
by students who advance to Chapters 7 through 9.
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Chapter 7

Linear Regression

7.1 Introduction to Linear Regression

Often, in practice, one is called upon to solve problems involving sets of variables
when it is known that there exists some inherent relationship among the variables.
For example, in an industrial situation it may be known that the tar content in the
outlet stream in a chemical process is related to the inlet temperature. It may be
of interest to develop a method of prediction, that is, a procedure for estimating
the tar content for various levels of the inlet temperature from experimental infor-
mation. Now, of course, it is highly likely that for many example runs in which
the inlet temperature is the same, say 130◦C, the outlet tar content will not be the
same. This is much like what happens when we study several automobiles with
the same engine volume. They will not all have the same gas mileage. Houses in
the same part of the country that have the same square footage of living space
will not all be sold for the same price. Tar content, gas mileage (mpg), and the
price of houses (in thousands of dollars) are natural dependent variables, or
responses, in these three scenarios. Inlet temperature, engine volume (cubic feet),
and square feet of living space are, respectively, natural independent variables,
or regressors. A reasonable form of a relationship between the response Y and
the regressor x is the linear relationship

Y = β0 + β1x,

where, of course, β0 is the intercept and β1 is the slope. The relationship is
illustrated in Figure 7.1.

If the relationship is exact, then it is a deterministic relationship between
two scientific variables and there is no random or probabilistic component to it.
However, in the examples listed above, as well as in countless other scientific and
engineering phenomena, the relationship is not deterministic (i.e., a given x does
not always give the same value for Y ). As a result, important problems here
are probabilistic in nature since the relationship above cannot be viewed as being
exact. The concept of regression analysis deals with finding the best relationship
between Y and x, quantifying the strength of that relationship, and using methods
that allow for prediction of the response values given values of the regressor x.

295
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x

Y

} β0

Y =

0
+

β

β

1
x

Figure 7.1: A linear relationship; β0: intercept; β1: slope.

In many applications, there will be more than one regressor (i.e., more than
one independent variable that helps to explain Y ). For example, in the case
where the response is the price of a house, one would expect the age of the house
to contribute to the explanation of the price, so in this case the multiple regression
structure might be written

Y = β0 + β1x1 + β2x2,

where Y is price, x1 is square footage, and x2 is age in years. The resulting
analysis is termed multiple regression, while the analysis of the single regressor
case is called simple regression. As a second illustration of multiple regression,
a chemical engineer may be concerned with the amount of hydrogen lost from
samples of a particular metal when the material is placed in storage. In this case,
there may be two inputs, storage time x1 in hours and storage temperature x2

in degrees centigrade. The response would then be hydrogen loss Y in parts per
million.

In this chapter, we first deal with the topic of simple linear regression,
treating the case of a single regressor variable in which the relationship between
y and x is linear. Then we turn to the case of more than one regressor variable.
Denote a random sample of size n by the set {(xi, yi); i = 1, 2, . . . , n}. If additional
samples were taken using exactly the same values of x, we should expect the y values
to vary. Hence, the value yi in the ordered pair (xi, yi) is a value of some random
variable Yi.

7.2 The Simple Linear Regression (SLR) Model
and the Least Squares Method

We have already confined the terminology regression analysis to situations in which
relationships among variables are not deterministic (i.e., not exact). In other words,
there must be a random component to the equation that relates the variables.
This random component takes into account considerations that are not being mea-
sured or, in fact, are not understood by the scientists or engineers. Indeed, in most
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applications of regression, the linear equation, say Y = β0 + β1x, is an approxima-
tion that is a simplification of something unknown and much more complicated.
For example, in our illustration involving the response Y= tar content and x =
inlet temperature, Y = β0 + β1x is likely a reasonable approximation that may be
operative within a confined range on x. More often than not, the models that are
simplifications of more complicated and unknown structures are linear in nature
(i.e., linear in the parameters β0 and β1 or, in the case of the model involving the
price, size, and age of the house, linear in the parameters β0, β1, and β2). These
linear structures are simple and empirical in nature and are thus called empirical
models.

An analysis of the relationship between Y and x requires the statement of a
statistical model. A model is often used by a statistician as a representation of
an ideal that essentially defines how we perceive that the data were generated by
the system in question. The model must include the set {(xi, yi); i = 1, 2, . . . , n}
of data involving n pairs of (x, y) values. One must bear in mind that the value yi
depends on xi via a linear structure that also has the random component involved.
The basis for the use of a statistical model relates to how the random variable
Y moves with x and the random component. The model also includes what is
assumed about the statistical properties of the random component. The statistical
model for simple linear regression is given below.

Simple Linear
Regression Model

The response Y is related to the independent variable x through the equation

Y = β0 + β1x+ ε.

In the above, β0 and β1 are unknown intercept and slope parameters, respectively,
and ε is a random variable that is assumed to be distributed with E(ε) = 0 and
Var(ε) = σ2. The quantity σ2 is often called the error variance or residual variance.
Normal distribution of ε, n(x; 0, σ2), is also commonly assumed.

From the model above, several things become apparent. The quantity Y is
a random variable since ε is random. The value x of the regressor variable is
not random and, in fact, is measured with negligible error. The quantity ε, often
called a random error or random disturbance, has constant variance. This
portion of the assumptions is often called the homogeneous variance assump-
tion. The presence of this random error, ε, keeps the model from becoming simply
a deterministic equation. Now, the fact that E(ε) = 0 implies that at a specific
x the y-values are distributed around the true, or population, regression line
y = β0 + β1x. If the model is well chosen (i.e., there are no additional important
regressors and the linear approximation is good within the ranges of the data),
then positive and negative errors around the true regression are reasonable. We
must keep in mind that in practice β0 and β1 are not known and must be estimated
from data. In addition, the model described above is conceptual in nature. As a
result, we never observe the actual ε values in practice and thus we can never draw
the true regression line (but we assume it is there). We can only draw an estimated
line. Figure 7.2 depicts the nature of hypothetical (x, y) data scattered around a
true regression line for a case in which only n = 5 observations are available. Let
us emphasize that what we see in Figure 7.2 is not the line that is used by the
scientist or engineer. Rather, the picture merely describes what the assumptions
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mean! The regression that the user has at his or her disposal will now be described.

x

y

ε1

ε2 ε3

ε4
ε5

“True’’ Regression Line
E(Y) β 0 β 1x= +

Figure 7.2: Hypothetical (x, y) data scattered around the true regression line for
n = 5.

The Fitted Regression Line

An important aspect of regression analysis is, very simply, to estimate the parame-
ters β0 and β1 (i.e., estimate the so-called regression coefficients). The method
of estimation will be discussed in the next section. Suppose we denote the esti-
mates b0 for β0 and b1 for β1. Then the estimated or fitted regression line is
given by

ŷ = b0 + b1x,

where ŷ is the predicted or fitted value. Obviously, the fitted line is an estimate
of the true regression line. We expect that the fitted line should be closer to the
true regression line when a large amount of data are available. In the following
example, we illustrate the fitted line for a real-life pollution study.

One of the more challenging problems confronting the water pollution control
field is presented by the tanning industry. Tannery wastes are chemically complex.
They are characterized by high values of chemical oxygen demand, volatile solids,
and other pollution measures. Consider the experimental data in Table 7.1, which
were obtained from 33 samples of chemically treated waste in a study conducted
at Virginia Tech. Readings on x, the percent reduction in total solids, and y, the
percent reduction in chemical oxygen demand, were recorded.

The data of Table 7.1 are plotted in a scatter diagram in Figure 7.3. From
an inspection of this scatter diagram, it can be seen that the points closely follow a
straight line, indicating that the assumption of linearity between the two variables
appears to be reasonable.
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Table 7.1: Measures of Reduction in Solids and Oxygen Demand

Solids Reduction, Oxygen Demand Solids Reduction, Oxygen Demand
x (%) Reduction, y (%) x (%) Reduction, y (%)

3
7

11
15
18
27
29
30
30
31
31
32
33
33
34
36
36

5
11
21
16
16
28
27
25
35
30
40
32
34
32
34
37
38

36
37
38
39
39
39
40
41
42
42
43
44
45
46
47
50

34
36
38
37
36
45
39
41
40
44
37
44
46
46
49
51
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Figure 7.3: Scatter diagram with regression lines.

The fitted regression line and a hypothetical true regression line are shown on
the scatter diagram of Figure 7.3.

Another Look at the Model Assumptions

It may be instructive to revisit the simple linear regression model presented previ-
ously and discuss in a graphical sense how it relates to the so-called true regression.
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Let us expand on Figure 7.2 by illustrating not merely where the εi fall on a graph
but also what the implication is of the normality assumption on the εi.

Suppose we have a simple linear regression with n = 6 evenly spaced values of x
and a single y-value at each x. Consider the graph in Figure 7.4. This illustration
should give the reader a clear representation of the model and the assumptions
involved. The line in the graph is the true regression line. The points plotted
are actual (y, x) points which are scattered about the line. Each point is on its
own normal distribution with the center of the distribution (i.e., the mean of y)
falling on the line. This is certainly expected since E(Y ) = β0 + β1x. As a result,
the true regression line goes through the means of the response, and the
actual observations are on the distribution around the means. Note also that all
distributions have the same variance, which we referred to as σ2. Of course, the
deviation between an individual y and the point on the line will be its individual
ε value. This is clear since

yi − E(Yi) = yi − (β0 + β1xi) = εi.

Thus, at a given x, Y and the corresponding ε both have variance σ2.

x

Y

x1 x2 x3 x4 x5 x6

Y |x =    0 +    1x

μ
β β

Figure 7.4: Individual observations around true regression line.

Note also that we have written the true regression line here as μY |x = β0+β1x
in order to reaffirm that the line goes through the mean of the Y random variable.

The Method of Least Squares

In this section, we discuss the method of fitting an estimated regression line to
the data. This is tantamount to the determination of estimates b0 for β0 and b1
for β1. This of course allows for the computation of predicted values from the
fitted line ŷ = b0 + b1x and other types of analyses and diagnostic information
that will ascertain the strength of the relationship and the adequacy of the fitted
model. Before we discuss the method of least squares estimation, it is important
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to introduce the concept of a residual. A residual is essentially an error in the fit
of the model ŷ = b0 + b1x.

Residual:
Error in Fit

Given a set of regression data {(xi, yi); i = 1, 2, . . . , n} and a fitted model, ŷi =
b0 + b1xi, the ith residual ei is given by

ei = yi − ŷi, i = 1, 2, . . . , n.

Obviously, if a set of n absolute residuals is large, then the fit of the model is
not good. Small residuals are a sign of a good fit. Another interesting relationship
which is useful at times is the following:

yi = b0 + b1xi + ei.

The use of the above equation should result in clarification of the distinction be-
tween the residuals, ei, and the conceptual model errors, εi. One must bear in
mind that whereas the εi are not observed, the ei not only are observed but also
play an important role in the total analysis.

Figure 7.5 depicts the line fit to this set of data, namely ŷ = b0 + b1x, and the
line reflecting the model μY |x = β0 + β1x. Now, of course, β0 and β1 are unknown
parameters. The fitted line is an estimate of the line produced by the statistical
model. Keep in mind that the line μY |x = β0 + β1x is not known.

x

y

μ βY |x = 0 β1+ x

y = b0 + b1x(xi , yi ) ^

ei
iε

Figure 7.5: Comparing εi with the residual, ei.

We shall find b0 and b1, the estimates of β0 and β1, so that the sum of the
squares of the residuals is a minimum. The residual sum of squares is often called
the sum of squares of the errors about the regression line and is denoted by SSE.
This minimization procedure for estimating the parameters is called the method
of least squares. Hence, we shall find b0 and b1 so as to minimize

SSE =
n∑

i=1

e2i =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − b0 − b1xi)
2.

Differentiating SSE with respect to b0 and b1, we have

∂(SSE)

∂b0
= −2

n∑
i=1

(yi − b0 − b1xi),
∂(SSE)

∂b1
= −2

n∑
i=1

(yi − b0 − b1xi)xi.
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Setting the partial derivatives equal to zero and rearranging the terms, we obtain
the equations (called the normal equations)

nb0 + b1

n∑
i=1

xi =
n∑

i=1

yi, b0

n∑
i=1

xi + b1

n∑
i=1

x2
i =

n∑
i=1

xiyi,

which may be solved simultaneously to yield computing formulas for b0 and b1.

Estimating the
Regression
Coefficients

Given the sample {(xi, yi); i = 1, 2, . . . , n}, the least squares estimates b0 and b1
of the regression coefficients β0 and β1 are computed from the formulas

b1 =

n
n∑

i=1

xiyi −
(

n∑
i=1

xi

)(
n∑

i=1

yi

)
n

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
and

b0 =

n∑
i=1

yi − b1
n∑

i=1

xi

n
= ȳ − b1x̄.

The calculations of b0 and b1, using the data of Table 7.1, are illustrated by the
following example.

Example 7.1: Estimate the regression line for the pollution data of Table 7.1.
Solution : 33∑

i=1

xi = 1104,
33∑
i=1

yi = 1124,
33∑
i=1

xiyi = 41,355,
33∑
i=1

x2
i = 41,086

Therefore,

b1 =
(33)(41,355)− (1104)(1124)

(33)(41,086)− (1104)2
= 0.903643 and

b0 =
1124− (0.903643)(1104)

33
= 3.829633.

Thus, the estimated regression line is given by

ŷ = 3.8296 + 0.9036x.

Using the regression line of Example 7.1, we would predict a 31% reduction in
the chemical oxygen demand when the reduction in the total solids is 30%. The
31% reduction in the chemical oxygen demand may be interpreted as an estimate
of the population mean μY |30 or as an estimate of a new observation when the
reduction in total solids is 30%. Such estimates, however, are subject to error.
Even if the experiment were controlled so that the reduction in total solids was
30%, it is unlikely that we would measure a reduction in the chemical oxygen
demand exactly equal to 31%. In fact, the original data recorded in Table 7.1 show
that measurements of 25% and 35% were recorded for the reduction in oxygen
demand when the reduction in total solids was kept at 30%.
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What Is Good about Least Squares?

It should be noted that the least squares criterion is designed to provide a fitted line
that results in a “closeness” between the line and the plotted points. One should
remember that the residuals are the empirical counterpart to the ε values. Figure
7.6 illustrates a set of residuals. One should note that the fitted line has predicted
values as points on the line and hence the residuals are vertical deviations from
points to the line. As a result, the least squares procedure produces a line that
minimizes the sum of squares of vertical deviations from the points to the
line.

x

y

ŷ = b 0+ b 1x

Figure 7.6: Residuals as vertical deviations.

Exercises

7.1 A study was conducted at Virginia Tech to de-
termine if certain static arm-strength measures have
an influence on the “dynamic lift” characteristics of an
individual. Twenty-five individuals were subjected to
strength tests and then were asked to perform a weight-
lifting test in which weight was dynamically lifted over-
head. The data are given here.

(a) Estimate β0 and β1 for the linear regression curve
μY |x = β0 + β1x.

(b) Find a point estimate of μY |30.
(c) Plot the residuals versus the x’s (arm strength).

Comment.

Arm Dynamic
Individual Strength, x Lift, y

1
2
3
4
5
6
7
8
9

10

17.3
19.3
19.5
19.7
22.9
23.1
26.4
26.8
27.6
28.1

71.7
48.3
88.3
75.0
91.7

100.0
73.3
65.0
75.0
88.3

(cont.)
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Arm Dynamic
Individual Strength, x Lift, y

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

28.2
28.7
29.0
29.6
29.9
29.9
30.3
31.3
36.0
39.5
40.4
44.3
44.6
50.4
55.9

68.3
96.7
76.7
78.3
60.0
71.7
85.0
85.0
88.3

100.0
100.0
100.0
91.7

100.0
71.7

7.2 The grades of a class of 9 students on a midterm
report (x) and on the final examination (y) are as fol-
lows:

x 77 50 71 72 81 94 96 99 67
y 82 66 78 34 47 85 99 99 68

(a) Estimate the linear regression line.

(b) Estimate the final examination grade of a student
who received a grade of 85 on the midterm report.

7.3 The amounts of a chemical compound y that dis-
solved in 100 grams of water at various temperatures
x were recorded as follows:

x (◦C) y (grams)
0

15
30
45
60
75

8
12
25
31
44
48

6
10
21
33
39
51

8
14
24
28
42
44

(a) Find the equation of the regression line.

(b) Graph the line on a scatter diagram.

(c) Estimate the amount of chemical that will dissolve
in 100 grams of water at 50◦C.

7.4 The following data were collected to determine
the relationship between pressure and the correspond-
ing scale reading for the purpose of calibration.

Pressure, x (lb/sq in.) Scale Reading, y
10 13
10 18
10 16
10 15
10 20
50 86
50 90
50 88
50 88
50 92

(a) Find the equation of the regression line.

(b) The purpose of calibration in this application is to
estimate pressure from an observed scale reading.
Estimate the pressure for a scale reading of 54 using
x̂ = (54− b0)/b1.

7.5 A study was made on the amount of converted
sugar in a certain process at various temperatures. The
data were coded and recorded.

(a) Estimate the linear regression line.

(b) Estimate the mean amount of converted sugar pro-
duced when the coded temperature is 1.75.

(c) Plot the residuals versus temperature. Comment.

Temperature, x Converted Sugar, y
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

8.1
7.8
8.5
9.8
9.5
8.9
8.6

10.2
9.3
9.2

10.5

7.6 In a certain type of metal test specimen, the nor-
mal stress on a specimen is known to be functionally
related to the shear resistance. A data set of coded ex-
perimental measurements on the two variables is given
here.

(a) Estimate the regression line μY |x = β0 + β1x.

(b) Estimate the shear resistance for a normal stress of
24.5.
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Normal Stress, x Shear Resistance, y
26.8 26.5
25.4 27.3
28.9 24.2
23.6 27.1
27.7 23.6
23.9 25.9
24.7 26.3
28.1 22.5
26.9 21.7
27.4 21.4
22.6 25.8
25.6 24.9

7.7 The following is a portion of a classic data set
called the “pilot plot data” in Fitting Equations to
Data by Daniel and Wood, published in 1971. The
response y is the acid content of material produced by
titration, whereas the regressor x is the organic acid
content produced by extraction and weighing.

y x y x
76
62
66
58
88

123
55

100
75

159

70
37
82
88
43

109
48

138
164
28

(a) Plot the data; does it appear that a simple linear
regression will be a suitable model?

(b) Fit a simple linear regression; estimate a slope and
intercept.

(c) Graph the regression line on the plot in (a).

7.8 A mathematics placement test is given to all en-
tering freshmen at a small college. A student who re-
ceives a grade below 35 is denied admission to the regu-
lar mathematics course and placed in a remedial class.
The placement test scores and the final grades for 20
students who took the regular course were recorded.

(a) Plot a scatter diagram.

(b) Find the equation of the regression line to predict
course grades from placement test scores.

(c) Graph the line on the scatter diagram.

(d) If 60 is the minimum passing grade, which place-
ment test score should be the cutoff below which
students in the future should be denied admission
to this course?

Placement Test Course Grade
50 53
35 41
35 61
40 56
55 68
65 36
35 11
60 70
90 79
35 59
90 54
80 91
60 48
60 71
60 71
40 47
55 53
50 68
65 57
50 79

7.9 A study was made by a retail merchant to deter-
mine the relation between weekly advertising expendi-
tures and sales.

Advertising Costs ($) Sales ($)
40 385
20 400
25 395
20 365
30 475
50 440
40 490
20 420
50 560
40 525
25 480
50 510

(a) Plot a scatter diagram.

(b) Find the equation of the regression line to predict
weekly sales from advertising expenditures.

(c) Estimate the weekly sales when advertising costs
are $35.

(d) Plot the residuals versus advertising costs. Com-
ment.

7.10 The following data are the selling prices z of a
certain make and model of used car w years old. Fit a
curve of the form μz|w = γδw by means of the nonlin-
ear sample regression equation ẑ = cdw. [Hint: Write
ln ẑ = ln c+ (ln d)w = b0 + b1w.]
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w (years) z (dollars) w (years) z (dollars)
1 6350 3 5395
2 5695 5 4985
2 5750 5 4895

7.11 The thrust of an engine (y) is a function of ex-
haust temperature (x) in ◦F when other important
variables are held constant. Consider the following
data.

y x y x
4300 1760 4010 1665
4650 1652 3810 1550
3200 1485 4500 1700
3150 1390 3008 1270
4950 1820

(a) Plot the data.

(b) Fit a simple linear regression to the data and plot
the line through the data.

7.12 A study was done to study the effect of ambi-
ent temperature x on the electric power consumed by
a chemical plant y. Other factors were held constant,
and the data were collected from an experimental pilot
plant.

y (BTU) x (◦F) y (BTU) x (◦F)
250 27 265 31
285 45 298 60
320 72 267 34
295 58 321 74

(a) Plot the data.

(b) Estimate the slope and intercept in a simple linear
regression model.

(c) Predict power consumption for an ambient temper-
ature of 65◦F.

7.13 A study of the amount of rainfall and the quan-
tity of air pollution removed produced the data given
here.

Daily Rainfall, Particulate Removed,
x (0.01 cm) y (μg/m3)

4.3 126
4.5 121
5.9 116
5.6 118
6.1 114
5.2 118
3.8 132
2.1 141
7.5 108

(a) Find the equation of the regression line to pre-
dict the amount of particulate removed from the
amount of daily rainfall.

(b) Estimate the amount of particulate removed when
the daily rainfall is x = 4.8 units.

7.14 A professor in the School of Business in a uni-
versity polled a dozen colleagues about the number of
professional meetings they attended in the past five
years (x) and the number of papers they submitted
to refereed journals (y) during the same period. The
summary data are given as follows:

n = 12, x̄ = 4, ȳ = 12,
n∑

i=1

x2
i = 232,

n∑
i=1

xiyi = 318.

Fit a simple linear regression model between x and y by
finding out the estimates of intercept and slope. Com-
ment on whether attending more professional meetings
would result in publishing more papers.

7.3 Inferences Concerning the Regression Coefficients

In addition to the assumptions that the error term in the model

Yi = β0 + β1xi + εi

is a random variable with mean 0 and constant variance σ2, suppose that we make
the further assumption that ε1, ε2, . . . , εn are independent from run to run in the
experiment. This provides a foundation for finding the means and variances for
the estimators of β0 and β1.

It is important to remember that our values of b0 and b1, based on a given
sample of n observations, are only estimates of true parameters β0 and β1. If the
experiment is repeated over and over again, each time using the same fixed values
of x, the resulting estimates of β0 and β1 will most likely differ from experiment
to experiment. These different estimates may be viewed as values assumed by the
random variables B0 and B1, while b0 and b1 are specific realizations.
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Since the values of x remain fixed, the values of B0 and B1 depend on the vari-
ations in the values of y or, more precisely, on the values of the random variables,
Y1, Y2, . . . , Yn. The distributional assumptions imply that the Yi, i = 1, 2, . . . , n,
are also independently distributed, with mean μY |xi

= β0 + β1xi and equal vari-
ances σ2; that is,

σ2
Y |xi

= σ2 for i = 1, 2, . . . , n.

Mean and Variance of Estimators

In what follows, we show that the estimator B1 is unbiased for β1 and demonstrate
the variances of both B0 and B1. This will begin a series of developments that
lead to hypothesis testing and confidence interval estimation on the intercept and
slope.

Since the estimator

B1 =

n∑
i=1

(xi − x̄)(Yi − Ȳ )

n∑
i=1

(xi − x̄)2
=

n∑
i=1

(xi − x̄)Yi

n∑
i=1

(xi − x̄)2

is of the form
n∑

i=1

ciYi, where

ci =
xi − x̄

n∑
i=1

(xi − x̄)2
, i = 1, 2, . . . , n,

we may conclude that B1 has the mean

μB1 =

n∑
i=1

(xi − x̄)(β0 + β1xi)

n∑
i=1

(xi − x̄)2
= β1,

and variance

σ2
B1

=

n∑
i=1

(xi − x̄)2σ2
Yi[

n∑
i=1

(xi − x̄)2
]2 =

σ2

n∑
i=1

(xi − x̄)2
,

respectively.
It can also be shown that the random variable B0 is normally distributed with

mean μB0 = β0 and variance σ2
B0

=

n∑
i=1

x2
i

n
n∑

i=1

(xi − x̄)2
σ2.

From the foregoing results, it is apparent that the least squares estimators for
β0 and β1 are both unbiased estimators.
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Partition of Total Variability and Estimation of σ2

To draw inferences on β0 and β1, it becomes necessary to arrive at an estimate
of the parameter σ2 appearing in the two preceding variance formulas for B0 and
B1. The parameter σ2, the model error variance, reflects random variation or
experimental error variation around the regression line. In much of what follows,
it is advantageous to use the notation

Sxx =
n∑

i=1

(xi − x̄)2, Syy =
n∑

i=1

(yi − ȳ)2, Sxy =
n∑

i=1

(xi − x̄)(yi − ȳ).

Now we may write the error sum of squares as follows:

SSE =

n∑
i=1

(yi − b0 − b1xi)
2 =

n∑
i=1

[(yi − ȳ)− b1(xi − x̄)]2

=

n∑
i=1

(yi − ȳ)2 − 2b1

n∑
i=1

(xi − x̄)(yi − ȳ) + b21

n∑
i=1

(xi − x̄)2

= Syy − 2b1Sxy + b21Sxx = Syy − b1Sxy,

the final step following from the fact that b1 = Sxy/Sxx.

Theorem 7.1: An unbiased estimate of σ2 is

s2 =
SSE

n− 2
=

n∑
i=1

(yi − ŷi)
2

n− 2
=

Syy − b1Sxy

n− 2
.

The proof of Theorem 7.1 is left to the reader.

The Estimator of σ2 as a Mean Squared Error

One should observe the result of Theorem 7.1 in order to gain some intuition about
the estimator of σ2. The parameter σ2 measures variance or squared deviations
between Y values and their mean given by μY |x (i.e., squared deviations between
Y and β0 + β1x). Of course, β0 + β1x is estimated by ŷ = b0 + b1x. Thus, it
would make sense that the variance σ2 is best depicted as a squared deviation of
the typical observation yi from the estimated mean, ŷi, which is the corresponding
point on the fitted line. Thus, (yi − ŷi)

2 values reveal the appropriate variance,
much like the way (yi − ȳ)2 values measure variance when one is sampling in a
nonregression scenario. In other words, ȳ estimates the mean in the latter simple
situation, whereas ŷi estimates the mean of yi in a regression structure. Now, what
about the divisor n−2? In future sections, we shall note that these are the degrees
of freedom associated with the estimator s2 of σ2. Whereas in the standard normal
i.i.d. scenario, one degree of freedom is subtracted from n in the denominator and
a reasonable explanation is that one parameter is estimated, namely the mean μ
by, say, ȳ, in the regression problem, two parameters are estimated, namely
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β0 and β1 by b0 and b1. Thus, the important parameter σ2, estimated by

s2 =
n∑

i=1

(yi − ŷi)
2/(n− 2),

is called a mean squared error, depicting a type of mean (division by n− 2) of
the squared residuals.

Aside from merely estimating the linear relationship between x and Y for pur-
poses of prediction, the experimenter may also be interested in drawing certain
inferences about the slope and intercept. In order to allow for the testing of hy-
potheses and the construction of confidence intervals on β0 and β1, one must be
willing to make the further assumption that each εi, i = 1, 2, . . . , n, is normally dis-
tributed. This assumption implies that Y1, Y2, . . . , Yn are also normally distributed,
each with probability distribution n(yi;β0 + β1xi, σ).

Since B1 follows a normal distribution, it turns out that under the normality
assumption, a result very much analogous to that given in Theorem 4.4 allows
us to conclude that (n − 2)S2/σ2 is a chi-squared variable with n − 2 degrees of
freedom, independent of the random variable B1. Theorem 4.5 then assures us
that the statistic

T =
(B1 − β1)/(σ/

√
Sxx)

S/σ
=

B1 − β1

S/
√
Sxx

has a t-distribution with n− 2 degrees of freedom. The statistic T can be used to
construct a 100(1− α)% confidence interval for the coefficient β1.

Confidence Interval
for β1

A 100(1 − α)% confidence interval for the parameter β1 in the regression line
μY |x = β0 + β1x is

b1 − tα/2
s√
Sxx

< β1 < b1 + tα/2
s√
Sxx

,

where tα/2 is a value of the t-distribution with n− 2 degrees of freedom.

Example 7.2: Find a 95% confidence interval for β1 in the regression line μY |x = β0+β1x, based
on the pollution data of Table 7.1.

Solution : From the results given in Example 7.1 we find that Sxx = 4152.18 and Sxy =
3752.09. In addition, we find that Syy = 3713.88. Recall that b1 = 0.903643.
Hence,

s2 =
Syy − b1Sxy

n− 2
=

3713.88− (0.903643)(3752.09)

31
= 10.4299.

Therefore, taking the square root, we obtain s = 3.2295. Using Table A.4, we find
t0.025 ≈ 2.045 for 31 degrees of freedom. Therefore, a 95% confidence interval for
β1 is

0.903643− (2.045)(3.2295)√
4152.18

< β < 0.903643 +
(2.045)(3.2295)√

4152.18
,
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which simplifies to

0.8012 < β1 < 1.0061.

Hypothesis Testing on the Slope

To test the null hypothesis H0 that β1 = β10 against a suitable alternative, we
again use the t-distribution with n − 2 degrees of freedom to establish a critical
region and then base our decision on the value of

t =
b1 − β10

s/
√
Sxx

.

The method is illustrated by the following example.

Example 7.3: Using the estimated value b1 = 0.903643 of Example 7.1, test the hypothesis that
β1 = 1.0 against the alternative that β1 < 1.0.

Solution : The hypotheses are H0: β1 = 1.0 and H1: β1 < 1.0. So

t =
0.903643− 1.0

3.2295/
√
4152.18

= −1.92,

with n− 2 = 31 degrees of freedom (P ≈ 0.03).
Decision: The t-value is significant at the 0.03 level, suggesting strong evidence

that β1 < 1.0.
One important t-test on the slope is the test of the hypothesis

H0: β1 = 0 versus H1: β1 �= 0.

When the null hypothesis is not rejected, the conclusion is that there is no signifi-
cant linear relationship between E(y) and the independent variable x. The plot of
the data for Example 7.1 would suggest that a linear relationship exists. However,
in some applications in which σ2 is large and thus considerable “noise” is present in
the data, a plot, while useful, may not produce clear information for the researcher.
Rejection of H0 above implies that a significant linear regression exists.

Figure 7.7 displays a MINITAB printout showing the t-test for

H0: β1 = 0 versus H1: β1 �= 0,

for the data of Example 7.1. Note the regression coefficient (Coef), standard error
(SE Coef), t-value (T), and P -value (P). The null hypothesis is rejected. Clearly,
there is a significant linear relationship between mean chemical oxygen demand
reduction and solids reduction. Note that the t-statistic is computed as

t =
coefficient

standard error
=

b1

s/
√
Sxx

.

The failure to reject H0: β1 = 0 suggests that there is no linear relationship
between Y and x. Figure 7.8 is an illustration of the implication of this result.
It may mean that changing x has little impact on changes in Y , as seen in (a).
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Regression Analysis: COD versus Per_Red

The regression equation is COD = 3.83 + 0.904 Per_Red

Predictor Coef SE Coef T P

Constant 3.830 1.768 2.17 0.038

Per_Red 0.90364 0.05012 18.03 0.000

S = 3.22954 R-Sq = 91.3% R-Sq(adj) = 91.0%

Analysis of Variance

Source DF SS MS F P

Regression 1 3390.6 3390.6 325.08 0.000

Residual Error 31 323.3 10.4

Total 32 3713.9

Figure 7.7: MINITAB printout for t-test for data of Example 7.1.

x
(a)

y

x
(b)

y

Figure 7.8: The hypothesis H0: β1 = 0 is not rejected.

However, it may also indicate that the true relationship is nonlinear, as indicated
by (b).

When H0: β1 = 0 is rejected, there is an implication that the linear term in x
residing in the model explains a significant portion of variability in Y . The two
plots in Figure 7.9 illustrate possible scenarios. As depicted in (a) of the figure,
rejection of H0 may suggest that the relationship is, indeed, linear. As indicated
in (b), it may suggest that while the model does contain a linear effect, a better
representation may be found by including a polynomial (perhaps quadratic) term
(i.e., terms that supplement the linear term).
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x
(a)

y

x
(b)

y

Figure 7.9: The hypothesis H0: β1 = 0 is rejected.

Statistical Inference on the Intercept

Confidence intervals and hypothesis testing on the coefficient β0 may be established
from the fact that B0 is also normally distributed. It is not difficult to show that

T =
B0 − β0

S

√
n∑

i=1

x2
i /(nSxx)

has a t-distribution with n− 2 degrees of freedom from which we may construct a
100(1− α)% confidence interval for β0.

Confidence Interval
for β0

A 100(1 − α)% confidence interval for the parameter β0 in the regression line
μY |x = β0 + β1x is

b0 − tα/2
s√
nSxx

√√√√ n∑
i=1

x2
i < β0 < b0 + tα/2

s√
nSxx

√√√√ n∑
i=1

x2
i ,

where tα/2 is a value of the t-distribution with n− 2 degrees of freedom.

To test the null hypothesis H0 that β0 = β00 against a suitable alternative,
we can use the t-distribution with n − 2 degrees of freedom to establish a critical
region and then base our decision on the value of

t =
b0 − β00

s

√
n∑

i=1

x2
i /(nSxx)

.

Example 7.4: Using the estimated value b0 = 3.829633 of Example 7.1, test the hypothesis that
β0 = 0 at the 0.05 level of significance against the alternative that β0 �= 0.
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Solution : The hypotheses are H0: β0 = 0 and H1: β0 �= 0. So

t =
3.829633− 0

3.2295
√
41,086/[(33)(4152.18)]

= 2.17,

with 31 degrees of freedom. Thus, P = P -value ≈ 0.038 and we conclude that
β0 �= 0. Note that this is merely Coef/StDev, as we see in the MINITAB printout
in Figure 7.7. The SE Coef is the standard error of the estimated intercept.

A Measure of Quality of Fit: Coefficient of Determination

Note in Figure 7.7 that an item denoted by R-Sq is given with a value of 91.3%.
This quantity, R2, is called the coefficient of determination. This quantity is
a measure of the proportion of variability in the response explained by
the fitted model. In Section 7.5, we shall introduce the notion of an analysis-
of-variance approach to hypothesis testing in regression. The analysis-of-variance

approach makes use of the error sum of squares SSE =
n∑

i=1

(yi − ŷi)
2 and the

total corrected sum of squares SST =
n∑

i=1

(yi − ȳi)
2. The latter represents the

variation in the response values that ideally would be explained by the model. The
SSE value is the variation in the response due to error, or variation unexplained.
Clearly, if SSE = 0, all variation is explained. The quantity that represents
variation explained is SST − SSE. The R2 is

Coeff. of determination: R2 = 1− SSE

SST
.

Note that if the fit is perfect, all residuals are zero, and thus R2 = 1.0. But if SSE
is only slightly smaller than SST , R2 ≈ 0. Note from the printout in Figure 7.7
that the coefficient of determination suggests that the model fit to the data explains
91.3% of the variability observed in the response, the reduction in chemical oxygen
demand.

Figure 7.10 provides an illustration of a good fit (R2 ≈ 1.0) in plot (a) and a
poor fit (R2 ≈ 0) in plot (b).

Pitfalls in the Use of R2

Analysts quote values of R2 quite often, perhaps due to its simplicity. However,
there are pitfalls in its interpretation. The reliability of R2 is a function of the
size of the regression data set and the type of application. Clearly, 0 ≤ R2 ≤ 1
and the upper bound is achieved when the fit to the data is perfect (i.e., all of
the residuals are zero). What is an acceptable value for R2? This is a difficult
question to answer. A chemist, charged with doing a linear calibration of a high-
precision piece of equipment, certainly expects to experience a very high R2-value
(perhaps exceeding 0.99), while a behavioral scientist, dealing in data impacted
by variability in human behavior, may feel fortunate to experience an R2 as large
as 0.70. An experienced model fitter senses when a value is large enough, given
the situation confronted. Clearly, some scientific phenomena lend themselves to
modeling with more precision than others.
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x

y

y

ŷ

(a) R2 ≈ 1.0

x

y

y
ŷ

(b) R2 ≈ 0

Figure 7.10: Plots depicting a very good fit and a poor fit.

The R2 criterion is dangerous to use for comparing competing models for the
same data set. Adding additional terms to the model (e.g., an additional regressor)
decreases SSE and thus increases R2 (or at least does not decrease it). This implies
that R2 can be made artificially high by an unwise practice of overfitting (i.e., the
inclusion of too many model terms). Thus, the inevitable increase in R2 enjoyed
by adding an additional term does not imply the additional term was needed. In
fact, the simple model may be superior for predicting response values. Suffice it
to say at this point that one should not subscribe to a model selection process that
solely involves the consideration of R2.

7.4 Prediction

There are several reasons for building a linear regression. One, of course, is to
predict response values at one or more values of the independent variable. In this
section, the focus is on errors associated with prediction.

The equation ŷ = b0 + b1x may be used to predict or estimate the mean
response μY |x0

at x = x0, where x0 is not necessarily one of the prechosen values,
or it may be used to predict a single value y0 of the variable Y0, when x = x0. We
would expect the error of prediction to be higher in the case of a single predicted
value than in the case where a mean is predicted. This, then, will affect the width
of our intervals for the values being predicted.

Suppose that the experimenter wishes to construct a confidence interval for
μY |x0

. We shall use the point estimator Ŷ0 = B0 + B1x0 to estimate μY |x0
=

β0 + β1x. It can be shown that the sampling distribution of Ŷ0 is normal with
mean

μY |x0
= E(Ŷ0) = E(B0 +B1x0) = β0 + β1x0 = μY |x0
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and variance

σ2
Ŷ0

= σ2
B0+B1x0

= σ2
Ȳ+B1(x0−x̄) = σ2

[
1

n
+

(x0 − x̄)2

Sxx

]
,

the latter following from the fact that Cov(Ȳ , B1) = 0. Thus, a 100(1 − α)%
confidence interval on the mean response μY |x0

can now be constructed from the
statistic

T =
Ŷ0 − μY |x0

S
√
1/n+ (x0 − x̄)2/Sxx

,

which has a t-distribution with n− 2 degrees of freedom.

Confidence Interval
for μY |x0

A 100(1− α)% confidence interval for the mean response μY |x0
is

ŷ0 − tα/2s

√
1

n
+

(x0 − x̄)2

Sxx
< μY |x0

< ŷ0 + tα/2s

√
1

n
+

(x0 − x̄)2

Sxx
,

where tα/2 is a value of the t-distribution with n− 2 degrees of freedom.

Example 7.5: Using the data of Table 7.1 on page 299, construct 95% confidence limits for the
mean response μY |x0

.
Solution : From the regression equation we find for, say, x0 = 20% solids reduction,

ŷ0 = 3.829633 + (0.903643)(20) = 21.9025.

In addition, x̄ = 33.4545, Sxx = 4152.18, s = 3.2295, and t0.025 ≈ 2.045 for 31
degrees of freedom. Therefore, a 95% confidence interval for μY |20 is

21.9025− (2.045)(3.2295)

√
1

33
+

(20− 33.4545)2

4152.18
< μY |20

< 21.9025 + (2.045)(3.2295)

√
1

33
+

(20− 33.4545)2

4152.18
,

or simply 20.1071 < μY |20 < 23.6979.
Repeating the previous calculations for each of several different values of x0,

one can obtain the corresponding confidence limits on each μY |x0
. Figure 7.11

displays the data points, the estimated regression line, and the upper and lower
confidence limits on the mean of Y |x.

In Example 7.5, we are 95% confident that the population mean reduction in
chemical oxygen demand is between 20.1071% and 23.6979% when solids reduction
is 20%.

Prediction Interval

Another type of interval that is often misinterpreted and confused with that given
for μY |x is the prediction interval for a future observed response. Actually, in
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x

y

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

5

10

15

20

25

30

35

40

45
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Figure 7.11: Confidence limits for the mean value of Y |x.

many instances, the prediction interval is more relevant to the scientist or engineer
than the confidence interval on the mean. In the tar content and inlet temperature
example cited in Section 7.1, there would certainly be interest not only in estimating
the mean tar content at a specific temperature but also in constructing an interval
that reflects the error in predicting a future observed amount of tar content at the
given temperature.

To obtain a prediction interval for any single value y0 of the variable Y0, it
is necessary to estimate the variance of the differences between the ordinates ŷ0,
obtained from the computed regression lines in repeated sampling when x = x0,
and the corresponding true ordinate y0. We can think of the difference ŷ0 − y0 as
a value of the random variable Ŷ0 − Y0, whose sampling distribution can be shown
to be normal with mean

μŶ0−Y0
= E(Ŷ0 − Y0) = E[B0 +B1x0 − (β0 + β1x0 + ε0)] = 0

and variance

σ2
Ŷ0−Y0

= σ2
B0+B1x0−ε0 = σ2

Ȳ+B1(x0−x̄)−ε0
= σ2

[
1 +

1

n
+

(x0 − x̄)2

Sxx

]
.

Thus, a 100(1 − α)% prediction interval for a single predicted value y0 can be
constructed from the statistic

T =
Ŷ0 − Y0

S
√
1 + 1/n+ (x0 − x̄)2/Sxx

,

which has a t-distribution with n− 2 degrees of freedom.

Prediction Interval
for y0

A 100(1− α)% prediction interval for a single response y0 is given by

ŷ0 − tα/2s

√
1 +

1

n
+

(x0 − x̄)2

Sxx
< y0 < ŷ0 + tα/2s

√
1 +

1

n
+

(x0 − x̄)2

Sxx
,

where tα/2 is a value of the t-distribution with n− 2 degrees of freedom.
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Clearly, there is a distinction between the concept of a confidence interval and
the prediction interval described previously. The interpretation of the confidence
interval is identical to that described for all confidence intervals on population pa-
rameters discussed throughout the book. Indeed, μY |x0

is a population parameter.
The computed prediction interval, however, represents an interval that has a prob-
ability equal to 1 − α of containing not a parameter but a future value y0 of the
random variable Y0.

Example 7.6: Using the data of Table 7.1, construct a 95% prediction interval for y0 when
x0 = 20%.

Solution : We have n = 33, x0 = 20, x̄ = 33.4545, ŷ0 = 21.9025, Sxx = 4152.18, s = 3.2295,
and t0.025 ≈ 2.045 for 31 degrees of freedom. Therefore, a 95% prediction interval
for y0 is

21.9025− (2.045)(3.2295)

√
1 +

1

33
+

(20− 33.4545)2

4152.18
< y0

< 21.9025 + (2.045)(3.2295)

√
1 +

1

33
+

(20− 33.4545)2

4152.18
,

which simplifies to 15.0585 < y0 < 28.7464.
Figure 7.12 shows another plot of the chemical oxygen demand reduction data,

with both the confidence interval on the mean response and the prediction interval
on an individual response plotted. The plot reflects a much tighter interval around
the regression line in the case of the mean response.
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Figure 7.12: Confidence and prediction intervals for the chemical oxygen demand
reduction data; inside bands indicate the confidence limits for the mean responses
and outside bands indicate the prediction limits for the future responses.
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Exercises

7.15 With reference to Exercise 7.1 on page 303,

(a) evaluate s2;

(b) test the hypothesis that β1 = 0 against the alter-
native that β1 
= 0 at the 0.05 level of significance
and interpret the resulting decision.

7.16 With reference to Exercise 7.2 on page 304,

(a) evaluate s2;

(b) construct a 95% confidence interval for β0;

(c) construct a 95% confidence interval for β1.

7.17 With reference to Exercise 7.5 on page 304,

(a) evaluate s2;

(b) construct a 95% confidence interval for β0;

(c) construct a 95% confidence interval for β1.

7.18 With reference to Exercise 7.6 on page 304,

(a) evaluate s2;

(b) construct a 99% confidence interval for β0;

(c) construct a 99% confidence interval for β1.

7.19 With reference to Exercise 7.3 on page 304,

(a) evaluate s2;

(b) construct a 99% confidence interval for β0;

(c) construct a 99% confidence interval for β1.

7.20 Test the hypothesis that β0 = 10 in Exercise 7.8
on page 305 against the alternative that β0 < 10. Use
a 0.05 level of significance.

7.21 Test the hypothesis that β1 = 6 in Exercise 7.9
on page 305 against the alternative that β1 < 6. Use a
0.025 level of significance.

7.22 Using the value of s2 found in Exercise 7.16(a),
construct a 95% confidence interval for μY |85 in Exer-
cise 7.2 on page 304.

7.23 With reference to Exercise 7.6 on page 304, use
the value of s2 found in Exercise 7.18(a) to compute

(a) a 95% confidence interval for the mean shear resis-
tance when x = 24.5;

(b) a 95% prediction interval for a single predicted
value of the shear resistance when x = 24.5.

7.24 Using the value of s2 found in Exercise 7.17(a),
graph the regression line and the 95% confidence bands
for the mean response μY |x for the data of Exercise 7.5
on page 304.

7.25 Using the value of s2 found in Exercise 7.17(a),
construct a 95% confidence interval for the amount of
converted sugar corresponding to x = 1.6 in Exercise
7.5 on page 304.

7.26 With reference to Exercise 7.3 on page 304, use
the value of s2 found in Exercise 7.19(a) to compute

(a) a 99% confidence interval for the average amount
of chemical that will dissolve in 100 grams of water
at 50◦C;

(b) a 99% prediction interval for the amount of chemi-
cal that will dissolve in 100 grams of water at 50◦C.

7.27 Consider the regression of mileage for certain au-
tomobiles, measured in miles per gallon (mpg) on their
weight in pounds (wt). The data are from Consumer
Reports (April 1997). Part of the SAS output from the
procedure is shown in Figure 7.13.

(a) Estimate the mileage for a vehicle weighing 4000
pounds.

(b) Suppose that Honda engineers claim that, on aver-
age, the Civic (or any other model weighing 2440
pounds) gets more than 30 mpg. Based on the re-
sults of the regression analysis, would you believe
that claim? Why or why not?

(c) The design engineers for the Lexus ES300 targeted
18 mpg as being ideal for this model (or any other
model weighing 3390 pounds), although it is ex-
pected that some variation will be experienced. Is
it likely that this target value is realistic? Discuss.

7.28 There are important applications in which, due
to known scientific constraints, the regression line
must go through the origin (i.e., the intercept must
be zero). In other words, the model should read

Yi = β1xi + εi, i = 1, 2, . . . , n,

and only a simple parameter requires estimation. The
model is often called the regression through the
origin model.

(a) Show that the least squares estimator of the slope
is

b1 =

(
n∑

i=1

xiyi

)/(
n∑

i=1

x2
i

)
.

(b) Show that σ2
B1

= σ2

/(
n∑

i=1

x2
i

)
.

(c) Show that b1 in part (a) is an unbiased estimator
for β1. That is, show E(B1) = β1.
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7.29 Use the data set

y x

7
50

100
40
70

2
15
30
10
20

(a) Plot the data.

(b) Fit a regression line through the origin.

(c) Plot the regression line on the graph with the data.

(d) Give a general formula (in terms of the yi and the
slope b1) for the estimator of σ2.

(e) Give a formula for Var(ŷi), i = 1, 2, . . . , n, for this
case.

(f) Plot 95% confidence limits for the mean response
on the graph around the regression line.

7.30 For the data in Exercise 7.29, find a 95% predic-
tion interval at x = 25.

Root MSE 1.48794 R-Square 0.9509

Dependent Mean 21.50000 Adj R-Sq 0.9447

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 44.78018 1.92919 23.21 <.0001

WT 1 -0.00686 0.00055133 -12.44 <.0001

MODEL WT MPG Predict LMean UMean Lpred Upred Residual

GMC 4520 15 13.7720 11.9752 15.5688 9.8988 17.6451 1.22804

Geo 2065 29 30.6138 28.6063 32.6213 26.6385 34.5891 -1.61381

Honda 2440 31 28.0412 26.4143 29.6681 24.2439 31.8386 2.95877

Hyundai 2290 28 29.0703 27.2967 30.8438 25.2078 32.9327 -1.07026

Infiniti 3195 23 22.8618 21.7478 23.9758 19.2543 26.4693 0.13825

Isuzu 3480 21 20.9066 19.8160 21.9972 17.3062 24.5069 0.09341

Jeep 4090 15 16.7219 15.3213 18.1224 13.0158 20.4279 -1.72185

Land 4535 13 13.6691 11.8570 15.4811 9.7888 17.5493 -0.66905

Lexus 3390 22 21.5240 20.4390 22.6091 17.9253 25.1227 0.47599

Lincoln 3930 18 17.8195 16.5379 19.1011 14.1568 21.4822 0.18051

Figure 7.13: SAS printout for Exercise 7.27.

7.5 Analysis-of-Variance Approach

Often the problem of analyzing the quality of the estimated regression line is han-
dled by an analysis-of-variance (ANOVA) approach: a procedure whereby the
total variation in the dependent variable is subdivided into meaningful compo-
nents that are then observed and treated in a systematic fashion. The analysis
of variance, discussed in Chapter 8, is a powerful resource that is used for many
applications.

Suppose that we have n experimental data points in the usual form (xi, yi) and
that the regression line is estimated. In our estimation of σ2 in Section 7.3, we
established the identity

Syy = b1Sxy + SSE.

An alternative and perhaps more informative formulation is

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi)
2.

We have achieved a partitioning of the total corrected sum of squares of y
into two components that should convey particular meaning to the experimenter.
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We shall indicate this partitioning symbolically as

SST = SSR+ SSE.

The first component on the right, SSR, is called the regression sum of squares,
and it reflects the amount of variation in the y-values explained by the model,
in this case the postulated straight line. The second component is the familiar
error sum of squares, which reflects variation about the regression line.

Suppose that we are interested in testing the hypothesis

H0: β1 = 0 versus H1: β1 �= 0,

where the null hypothesis says essentially that the model is μY |x = β0. That is, the
variation in Y results from chance or random fluctuations which are independent of
the values of x. This condition is reflected in Figure 7.10(b). Under the conditions
of this null hypothesis, it can be shown that SSR/σ2 and SSE/σ2 are values of
independent chi-squared variables with 1 and n−2 degrees of freedom, respectively,
and SST/σ2 is also a value of a chi-squared variable with n−1 degrees of freedom.
To test the hypothesis above, we compute

f =
SSR/1

SSE/(n− 2)
=

SSR

s2

and reject H0 at the α-level of significance when f > fα(1, n− 2).
The computations are usually summarized by means of an analysis-of-variance

table, such as Table 7.2. It is customary to refer to the various sums of squares
divided by their respective degrees of freedom as the mean squares.

Table 7.2: Analysis of Variance for Testing β1 = 0

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Regression
Error

SSR
SSE

1
n− 2

SSR
s2 = SSE

n−2

SSR
s2

Total SST n− 1

When the null hypothesis is rejected, that is, when the computed F -statistic
exceeds the critical value fα(1, n − 2), we conclude that there is a significant
amount of variation in the response accounted for by the postulated
model, the straight-line function. If the F -statistic is in the fail-to-reject
region, we conclude that the data did not reflect sufficient evidence to support the
model postulated.

In Section 7.3, a procedure was given whereby the statistic

T =
B1 − β10

S/
√
Sxx

is used to test the hypothesis

H0: β1 = β10 versus H1: β1 �= β10,
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where T follows the t-distribution with n − 2 degrees of freedom. The hypothesis
is rejected if |t| > tα/2 for an α-level of significance. It is interesting to note that
in the special case in which we are testing

H0: β1 = 0 versus H1: β1 �= 0,

the value of our T -statistic becomes

t =
b1

s/
√
Sxx

,

and the hypothesis under consideration is identical to that being tested in Table
7.2. Namely, the null hypothesis states that the variation in the response is due
merely to chance. The analysis of variance uses the F -distribution rather than
the t-distribution. For the two-sided alternative, the two approaches are identical.
This we can see by writing

t2 =
b21Sxx

s2
=

b1Sxy

s2
=

SSR

s2
,

which is identical to the f -value used in the analysis of variance. The basic relation-
ship between the t-distribution with v degrees of freedom and the F -distribution
with 1 and v degrees of freedom is

t2 = f(1, v).

Of course, the t-test allows for testing against a one-sided alternative while the
F -test is restricted to testing against a two-sided alternative.

Annotated Computer Printout for Simple Linear Regression

Consider again the chemical oxygen demand reduction data of Table 7.1. Fig-
ures 7.14 and 7.15 show more complete annotated computer printouts, again with
MINITAB software. The t-ratio column indicates tests for null hypotheses of zero
values on the parameter. The term “Fit” denotes ŷ-values, often called fitted
values. The term “SE Fit” is used in computing confidence intervals on mean
response. The item R2 is computed as (SSR/SST ) × 100 and signifies the pro-
portion of variation in y explained by the straight-line regression. Also shown
are confidence intervals on the mean response and prediction intervals on a new
observation.
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The regression equation is COD = 3.83 + 0.904 Per_Red
Predictor Coef SE Coef T P
Constant 3.830 1.768 2.17 0.038
Per_Red 0.90364 0.05012 18.03 0.000

S = 3.22954 R-Sq = 91.3% R-Sq(adj) = 91.0%
Analysis of Variance

Source DF SS MS F P
Regression 1 3390.6 3390.6 325.08 0.000
Residual Error 31 323.3 10.4
Total 32 3713.9

Obs Per_Red COD Fit SE Fit Residual St Resid
1 3.0 5.000 6.541 1.627 -1.541 -0.55
2 36.0 34.000 36.361 0.576 -2.361 -0.74
3 7.0 11.000 10.155 1.440 0.845 0.29
4 37.0 36.000 37.264 0.590 -1.264 -0.40
5 11.0 21.000 13.770 1.258 7.230 2.43
6 38.0 38.000 38.168 0.607 -0.168 -0.05
7 15.0 16.000 17.384 1.082 -1.384 -0.45
8 39.0 37.000 39.072 0.627 -2.072 -0.65
9 18.0 16.000 20.095 0.957 -4.095 -1.33
10 39.0 36.000 39.072 0.627 -3.072 -0.97
11 27.0 28.000 28.228 0.649 -0.228 -0.07
12 39.0 45.000 39.072 0.627 5.928 1.87
13 29.0 27.000 30.035 0.605 -3.035 -0.96
14 40.0 39.000 39.975 0.651 -0.975 -0.31
15 30.0 25.000 30.939 0.588 -5.939 -1.87
16 41.0 41.000 40.879 0.678 0.121 0.04
17 30.0 35.000 30.939 0.588 4.061 1.28
18 42.0 40.000 41.783 0.707 -1.783 -0.57
19 31.0 30.000 31.843 0.575 -1.843 -0.58
20 42.0 44.000 41.783 0.707 2.217 0.70
21 31.0 40.000 31.843 0.575 8.157 2.57
22 43.0 37.000 42.686 0.738 -5.686 -1.81
23 32.0 32.000 32.746 0.567 -0.746 -0.23
24 44.0 44.000 43.590 0.772 0.410 0.13
25 33.0 34.000 33.650 0.563 0.350 0.11
26 45.0 46.000 44.494 0.807 1.506 0.48
27 33.0 32.000 33.650 0.563 -1.650 -0.52
28 46.0 46.000 45.397 0.843 0.603 0.19
29 34.0 34.000 34.554 0.563 -0.554 -0.17
30 47.0 49.000 46.301 0.881 2.699 0.87
31 36.0 37.000 36.361 0.576 0.639 0.20
32 50.0 51.000 49.012 1.002 1.988 0.65
33 36.0 38.000 36.361 0.576 1.639 0.52

Figure 7.14: MINITAB printout of simple linear regression for chemical oxygen
demand reduction data; part I.
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Obs Fit SE Fit 95% CI 95% PI
1 6.541 1.627 ( 3.223, 9.858) (-0.834, 13.916)
2 36.361 0.576 (35.185, 37.537) (29.670, 43.052)
3 10.155 1.440 ( 7.218, 13.092) ( 2.943, 17.367)
4 37.264 0.590 (36.062, 38.467) (30.569, 43.960)
5 13.770 1.258 (11.204, 16.335) ( 6.701, 20.838)
6 38.168 0.607 (36.931, 39.405) (31.466, 44.870)
7 17.384 1.082 (15.177, 19.592) (10.438, 24.331)
8 39.072 0.627 (37.793, 40.351) (32.362, 45.781)
9 20.095 0.957 (18.143, 22.047) (13.225, 26.965)
10 39.072 0.627 (37.793, 40.351) (32.362, 45.781)
11 28.228 0.649 (26.905, 29.551) (21.510, 34.946)
12 39.072 0.627 (37.793, 40.351) (32.362, 45.781)
13 30.035 0.605 (28.802, 31.269) (23.334, 36.737)
14 39.975 0.651 (38.648, 41.303) (33.256, 46.694)
15 30.939 0.588 (29.739, 32.139) (24.244, 37.634)
16 40.879 0.678 (39.497, 42.261) (34.149, 47.609)
17 30.939 0.588 (29.739, 32.139) (24.244, 37.634)
18 41.783 0.707 (40.341, 43.224) (35.040, 48.525)
19 31.843 0.575 (30.669, 33.016) (25.152, 38.533)
20 41.783 0.707 (40.341, 43.224) (35.040, 48.525)
21 31.843 0.575 (30.669, 33.016) (25.152, 38.533)
22 42.686 0.738 (41.181, 44.192) (35.930, 49.443)
23 32.746 0.567 (31.590, 33.902) (26.059, 39.434)
24 43.590 0.772 (42.016, 45.164) (36.818, 50.362)
25 33.650 0.563 (32.502, 34.797) (26.964, 40.336)
26 44.494 0.807 (42.848, 46.139) (37.704, 51.283)
27 33.650 0.563 (32.502, 34.797) (26.964, 40.336)
28 45.397 0.843 (43.677, 47.117) (38.590, 52.205)
29 34.554 0.563 (33.406, 35.701) (27.868, 41.239)
30 46.301 0.881 (44.503, 48.099) (39.473, 53.128)
31 36.361 0.576 (35.185, 37.537) (29.670, 43.052)
32 49.012 1.002 (46.969, 51.055) (42.115, 55.908)
33 36.361 0.576 (35.185, 37.537) (29.670, 43.052)

Figure 7.15: MINITAB printout of simple linear regression for chemical oxygen
demand reduction data; part II.
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7.6 Test for Linearity of Regression:
Data with Repeated Observations

In certain kinds of experimental situations, the researcher has the capability of
obtaining repeated observations on the response for each value of x. Although it is
not necessary to have these repetitions in order to estimate β0 and β1, nevertheless
repetitions enable the experimenter to obtain quantitative information concerning
the appropriateness of the model. In fact, if repeated observations are generated,
the experimenter can make a significance test to aid in determining whether or not
the model is adequate.

Let us select a random sample of n observations using k distinct values of x,
say x1, x2, . . . , xn, such that the sample contains n1 observed values of the random
variable Y1 corresponding to x1, n2 observed values of Y2 corresponding to x2, . . . ,

nk observed values of Yk corresponding to xk. Of necessity, n =
k∑

i=1

ni.

We define

yij = the jth value of the random variable Yi,

yi. = Ti. =

ni∑
j=1

yij ,

ȳi. =
Ti.

ni
.

Hence, if n4 = 3 measurements of Y were made corresponding to x = x4, we would
indicate these observations by y41, y42, and y43. Then

Ti. = y41 + y42 + y43.

Concept of Lack of Fit

The error sum of squares consists of two parts: the amount due to the variation
between the values of Y within given values of x and a component that is normally
called the lack-of-fit contribution. The first component reflects mere random
variation, or pure experimental error, while the second component is a measure
of the systematic variation brought about by higher-order terms. In our case, these
are terms in x other than the linear, or first-order, contribution. Note that in
choosing a linear model we are essentially assuming that this second component
does not exist and hence our error sum of squares is completely due to random
errors. If this should be the case, then s2 = SSE/(n− 2) is an unbiased estimate
of σ2. However, if the model does not adequately fit the data, then the error sum
of squares is inflated and produces a biased estimate of σ2. Whether or not the
model fits the data, an unbiased estimate of σ2 can always be obtained when we
have repeated observations simply by computing

s2i =

ni∑
j=1

(yij − ȳi.)
2

ni − 1
, i = 1, 2, . . . , k,
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for each of the k distinct values of x and then pooling these variances to get

s2 =

k∑
i=1

(ni − 1)s2i

n− k
=

k∑
i=1

ni∑
j=1

(yij − ȳi.)
2

n− k
.

The numerator of s2 is a measure of the pure experimental error. A compu-
tational procedure for separating the error sum of squares into the two components
representing pure error and lack of fit is as follows:

Computation of
Lack-of-Fit Sum of

Squares

1. Compute the pure error sum of squares

k∑
i=1

ni∑
j=1

(yij − ȳi.)
2.

This sum of squares has n − k degrees of freedom associated with it, and the
resulting mean square is our unbiased estimate s2 of σ2.
2. Subtract the pure error sum of squares from the error sum of squares SSE,
thereby obtaining the sum of squares due to lack of fit. The degrees of freedom
for lack of fit are obtained by simply subtracting (n− 2)− (n− k) = k − 2.

The computations required for testing hypotheses in a regression problem with
repeated measurements on the response may be summarized as shown in Table
7.3.

Table 7.3: Analysis of Variance for Testing Linearity of Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square Computed f

Regression SSR 1 SSR SSR
s2

Error SSE n− 2

Lack of fit
{
SSE − SSE (pure)

SSE (pure)

{
k − 2

n − k

SSE−SSE(pure)
k−2

SSE−SSE(pure)
s2(k−2)

Pure error s2 =
SSE(pure)

n−k

Total SST n− 1

Figures 7.16 and 7.17 display the sample points for the “correct model” and
“incorrect model” situations. In Figure 7.16, where the μY |x fall on a straight line,
there is no lack of fit when a linear model is assumed, so the sample variation
around the regression line is a pure error resulting from the variation that occurs
among repeated observations. In Figure 7.17, where the μY |x clearly do not fall on
a straight line, the lack of fit from erroneously choosing a linear model accounts
for a large portion of the variation around the regression line, supplementing the
pure error.
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x

Y

μ Y x
=β0 + β1x

|

x 1 x 2 x 3 x 4 x 5 x 6

Figure 7.16: Correct linear model with no lack-of-
fit component.

x

Y

μ Y x
=β 0 + β1x

|

x 1 x 2 x 3 x 4 x 5 x 6

Figure 7.17: Incorrect linear model with lack-of-fit
component.

What Is the Importance of Detecting Lack of Fit?

The concept of lack of fit is extremely important in applications of regression
analysis. In fact, the need to construct or design an experiment that will account
for lack of fit becomes more critical as the problem and the underlying mechanism
involved become more complicated. Surely, one cannot always be certain that one’s
postulated structure, in this case the linear regression model, is correct or even
an adequate representation. The following example shows how the error sum of
squares is partitioned into the two components representing pure error and lack of
fit. The adequacy of the model is tested at the α-level of significance by comparing
the lack-of-fit mean square divided by s2 with fα(k − 2, n− k).

Example 7.7: Observations of the yield of a chemical reaction taken at various temperatures
were recorded in Table 7.4. Estimate the linear model μY |x = β0 + β1x and test
for lack of fit.

Table 7.4: Data for Example 7.7

y (%) x (◦C) y (%) x (◦C)
77.4 150 88.9 250
76.7 150 89.2 250
78.2 150 89.7 250
84.1 200 94.8 300
84.5 200 94.7 300
83.7 200 95.9 300

Solution : Results of the computations are shown in Table 7.5. The partitioning of the
total variation in this manner reveals a significant variation accounted for by the
linear model and an insignificant amount of variation due to lack of fit. Thus, the
experimental data do not seem to suggest the need to consider terms higher than
first order in the model, and the null hypothesis is not rejected.
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Table 7.5: Analysis of Variance on Yield-Temperature Data

Source of Sum of Degrees of Mean
Variation Squares Freedom Square Computed f P-Values

Regression
Error

Lack of fit
Pure error

Total

509.2507
3.8660
1.2060
2.6600

513.1167

1
10
2
8
11

509.2507

0.6030
0.3325

1531.58

1.81

<0.0001

0.2241
{ {

Annotated Computer Printout for Test for Lack of Fit

Figure 7.18 is an annotated computer printout showing analysis of the data of
Example 7.7 with SAS. Note the “LOF” with 2 degrees of freedom, representing the
quadratic and cubic contribution to the model, and the P -value of 0.22, suggesting
that the linear (first-order) model is adequate.

Dependent Variable: yield

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 510.4566667 170.1522222 511.74 <.0001

Error 8 2.6600000 0.3325000

Corrected Total 11 513.1166667

R-Square Coeff Var Root MSE yield Mean

0.994816 0.666751 0.576628 86.48333

Source DF Type I SS Mean Square F Value Pr > F

temperature 1 509.2506667 509.2506667 1531.58 <.0001

LOF 2 1.2060000 0.6030000 1.81 0.2241

Figure 7.18: SAS printout, showing analysis of data of Example 7.7.

Exercises

7.31 Test for linearity of regression in Exercise 7.3 on
page 304. Use a 0.05 level of significance. Comment.

7.32 Test for linearity of regression in Exercise 7.8 on
page 305. Comment.

7.33 Suppose we have a linear equation through the
origin (Exercise 7.28) μY |x = βx.

(a) Estimate the regression line passing through the
origin for the following data:

x 0.5 1.5 3.2 4.2 5.1 6.5
y 1.3 3.4 6.7 8.0 10.0 13.2

(b) Suppose it is not known whether the true regres-
sion should pass through the origin. Estimate the
linear model μY |x = β0 + β1x and test the hypoth-
esis that β0 = 0, at the 0.10 level of significance,
against the alternative that β0 
= 0.

7.34 Use an analysis-of-variance approach to test the
hypothesis that β1 = 0 against the alternative hypoth-
esis β1 
= 0 in Exercise 7.5 on page 304 at the 0.05 level
of significance.

7.35 Organophosphate (OP) compounds are used as
pesticides. However, it is important to study their ef-
fect on species that are exposed to them. In the lab-
oratory study Some Effects of Organophosphate Pesti-
cides on Wildlife Species, by the Department of Fish-
eries and Wildlife at Virginia Tech, an experiment was
conducted in which different dosages of a particular OP
pesticide were administered to 5 groups of 5 mice (Per-
omyscus leucopus). The 25 mice were females of simi-
lar age and condition. One group received no chemical.
The basic response y was a measure of activity in the
brain. It was postulated that brain activity would de-
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crease with an increase in OP dosage. Use the provided
data to do the following.

(a) Find the least squares estimates of β0 and β1 using
the model

Yi = β0 + β1xi + εi, i = 1, 2, . . . , 25.

(b) Construct an analysis-of-variance table in which
the lack of fit and pure error have been separated.
Determine if the lack of fit is significant at the 0.05
level. Interpret the results.

Dose, x (mg/kg Activity, y
Animal body weight) (moles/liter/min)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

0.0
0.0
0.0
0.0
0.0
2.3
2.3
2.3
2.3
2.3
4.6
4.6
4.6
4.6
4.6
9.2
9.2
9.2
9.2
9.2

18.4
18.4
18.4
18.4
18.4

10.9
10.6
10.8
9.8
9.0

11.0
11.3
9.9
9.2

10.1
10.6
10.4
8.8

11.1
8.4
9.7
7.8
9.0
8.2
2.3
2.9
2.2
3.4
5.4
8.2

7.36 Transistor gain between emitter and collector in
an integrated circuit device (hFE) is related to two
variables (Myers, Montgomery, and Anderson-Cook,
2009) that can be controlled at the deposition pro-
cess, emitter drive-in time (x1, in minutes) and emitter
dose (x2, in ions × 1014). Fourteen samples were ob-
served following deposition, and the resulting data are
shown in the following table. We will consider linear re-
gression models using gain as the response and emitter
drive-in time or emitter dose as the regressor variable.

(a) Determine if emitter drive-in time influences gain
in a linear relationship. That is, test H0: β1 = 0,
where β1 is the slope of the regressor variable.

(b) Do a lack-of-fit test to determine if the linear rela-
tionship is adequate. Draw conclusions.

(c) Determine if emitter dose influences gain in a linear
relationship. Which regressor variable is the better
predictor of gain?

x1 (drive-in x2 (dose, y (gain,
Obs. time, min) ions ×1014) or hFE)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

195
255
195
255
255
255
255
195
255
255
255
255
255
340

4.00
4.00
4.60
4.60
4.20
4.10
4.60
4.30
4.30
4.00
4.70
4.30
4.72
4.30

1004
1636
852

1506
1272
1270
1269
903

1555
1260
1146
1276
1225
1321

7.37 The following data are a result of an investiga-
tion as to the effect of reaction temperature x on per-
cent conversion of a chemical process y. (See Myers,
Montgomery, and Anderson-Cook, 2009.) Fit a simple
linear regression, and use a lack-of-fit test to determine
if the model is adequate. Discuss.

Temperature Conversion
Observation (◦C), x (%), y

1
2
3
4
5
6
7
8
9

10
11
12

200
250
200
250
189.65
260.35
225
225
225
225
225
225

43
78
69
73
48
78
65
74
76
79
83
81

7.38 Heat treating is often used to carburize metal
parts such as gears. The thickness of the carburized
layer is considered an important feature of the gear,
and it contributes to the overall reliability of the part.
Because of the critical nature of this feature, a lab test
is performed on each furnace load. The test is a de-
structive one, where an actual part is cross sectioned
and soaked in a chemical for a period of time. This
test involves running a carbon analysis on the surface
of both the gear pitch (top of the gear tooth) and the
gear root (between the gear teeth). The data provided
are the results of the pitch carbon-analysis test for 19
parts.

(a) Fit a simple linear regression relating the pitch car-
bon analysis y against soak time. Test H0: β1 = 0.

(b) If the hypothesis in part (a) is rejected, determine
if the linear model is adequate.
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Soak Time Pitch Soak Time Pitch
0.58 0.013 1.17 0.021
0.66 0.016 1.17 0.019
0.66 0.015 1.17 0.021
0.66 0.016 1.20 0.025
0.66 0.015 2.00 0.025
0.66 0.016 2.00 0.026
1.00 0.014 2.20 0.024
1.17 0.021 2.20 0.025
1.17 0.018 2.20 0.024
1.17 0.019

7.39 A regression model is desired relating tempera-
ture and the proportion of impurities passing through
solid helium. Temperature is listed in degrees centi-
grade. The data are as follows:

Temperature (◦C) Proportion of Impurities
−260.5 0.425
−255.7 0.224
−264.6 0.453
−265.0 0.475
−270.0 0.705
−272.0 0.860
−272.5 0.935
−272.6 0.961
−272.8 0.979
−272.9 0.990

(a) Fit a linear regression model.

(b) Does it appear that the proportion of impurities
passing through helium increases as the tempera-
ture approaches −273 degrees centigrade?

(c) Find R2.

(d) Based on the information above, does the linear
model seem appropriate? What additional infor-
mation would you need to better answer that ques-
tion?

7.40 It is of interest to study the effect of population
size in various cities in the United States on ozone con-
centrations. The data consist of the 1999 population
in millions and the amount of ozone present per hour
in ppb (parts per billion). The data are as follows.

Ozone (ppb/hour), y Population, x
126 0.6
135 4.9
124 0.2
128 0.5
130 1.1
128 0.1
126 1.1
128 2.3
128 0.6
129 2.3

(a) Fit the linear regression model relating ozone con-
centration to population. Test H0 : β1 = 0 using
the ANOVA approach.

(b) Do a test for lack of fit. Is the linear model appro-

priate based on the results of your test?

(c) Test the hypothesis of part (a) using the pure mean
square error in the F-test. Do the results change?
Comment on the advantage of each test.

7.41 Evaluating nitrogen deposition from the atmo-
sphere is a major role of the National Atmospheric
Deposition Program (NADP), a partnership of many
agencies. NADP is studying atmospheric deposition
and its effect on agricultural crops, forest surface wa-
ters, and other resources. Nitrogen oxides may affect
the ozone in the atmosphere and the amount of pure
nitrogen in the air we breathe. The data are as follows:

Year Nitrogen Oxide
1978 0.73
1979 2.55
1980 2.90
1981 3.83
1982 2.53
1983 2.77
1984 3.93
1985 2.03
1986 4.39
1987 3.04
1988 3.41
1989 5.07
1990 3.95
1991 3.14
1992 3.44
1993 3.63
1994 4.50
1995 3.95
1996 5.24
1997 3.30
1998 4.36
1999 3.33

(a) Plot the data.

(b) Fit a linear regression model and find R2.

(c) What can you say about the trend in nitrogen oxide
across time?

7.42 For a particular variety of plant, researchers
wanted to develop a formula for predicting the quan-
tity of seeds (in grams) as a function of the density of
plants. They conducted a study with four levels of the
factor x, the number of plants per plot. Four replica-
tions were used for each level of x. The data are as
follows:

Plants per Plot, Quantity of Seeds, y
x (grams)
10 12.6 11.0 12.1 10.9
20 15.3 16.1 14.9 15.6
30 17.9 18.3 18.6 17.8
40 19.2 19.6 18.9 20.0

Is a simple linear regression model adequate for ana-
lyzing this data set?



330 Chapter 7 Linear Regression

7.7 Diagnostic Plots of Residuals:
Graphical Detection of Violation of Assumptions

Plots of the raw data can be extremely helpful in determining the nature of the
model that should be fit to the data when there is a single independent variable.
We have attempted to illustrate this in the foregoing. Detection of proper model
form is, however, not the only benefit gained from diagnostic plotting. As in much
of the material associated with significance testing in Chapter 6, plotting methods
can illustrate and detect violation of assumptions. The reader should recall that
much of what is illustrated in this chapter requires assumptions made on the model
errors, the εi. In fact, we assume that the εi are independent N(0, σ) random
variables. Now, of course, the εi are not observed. However, the ei = yi − ŷi, the
residuals, are the error in the fit of the regression line and thus serve to mimic the
εi. Thus, the general complexion of these residuals can often highlight difficulties.
Ideally, of course, the plot of the residuals is as depicted in Figure 7.19. That is,
they should truly show random fluctuations around a value of zero.
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Figure 7.19: Ideal residual plot.
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Figure 7.20: Residual plot depicting heterogeneous
error variance.

Nonhomogeneous Variance

Homogeneous variance is an important assumption made in regression analysis.
Violations can often be detected through the appearance of the residual plot. In-
creasing error variance with an increase in the regressor variable is a common con-
dition in scientific data. Large error variance produces large residuals, and hence
a residual plot like the one in Figure 7.20 is a signal of nonhomogeneous variance.
More discussion regarding these residual plots and information regarding different
types of residuals appears later in this chapter, where we deal with multiple linear
regression.

Normal Probability Plotting

The assumption that the model errors are normal is made when the data analyst
deals in either hypothesis testing or confidence interval estimation. Again, the
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numerical counterparts to the εi, namely the residuals, are subjects of diagnos-
tic plotting to detect any extreme violations. To diagnose the normality of the
residuals, normal quantile-quantile plots and normal probability plots can be used.
These plots on residuals can be found in Walpole et al. (2011).

7.8 Correlation

The constant ρ (rho) is called the population correlation coefficient and plays
a major role in many bivariate data analysis problems. It is important for the
reader to understand the physical interpretation of this correlation coefficient and
the distinction between correlation and regression. The term regression still has
meaning here. In fact, the straight line given by μY |x = β0 + β1x is still called
the regression line as before, and the estimates of β0 and β1 are identical to those
given in Section 7.2. The value of ρ is 0 when β1 = 0, which results when there
essentially is no linear regression; that is, the regression line is horizontal and any
knowledge of X is useless in predicting Y. Since σ2

Y ≥ σ2 as the variance in the
response is the addition of the variance in X and the error, we must have ρ2 ≤ 1
and hence −1 ≤ ρ ≤ 1. Values of ρ = ±1 only occur when σ2 = 0, in which case
we have a perfect linear relationship between the two variables. Thus, a value of ρ
equal to +1 implies a perfect linear relationship with a positive slope, while a value
of ρ equal to −1 results from a perfect linear relationship with a negative slope. It
might be said, then, that sample estimates of ρ close to unity in magnitude imply
good correlation, or linear association, between X and Y, whereas values near
zero indicate little or no correlation.

To obtain a sample estimate of ρ, recall from Section 7.3 that the error sum of
squares is

SSE = Syy − b1Sxy.

Dividing both sides of this equation by Syy and replacing Sxy by b1Sxx, we obtain
the relation

b21
Sxx

Syy
= 1− SSE

Syy
.

The value of b21Sxx/Syy is zero when b1 = 0, which will occur when the sample
points show no linear relationship. Since Syy ≥ SSE, we conclude that b21Sxx/Sxy

must be between 0 and l. Consequently, b1
√
Sxx/Syy must range from −1 to +1,

negative values corresponding to lines with negative slopes and positive values to
lines with positive slopes. A value of −1 or +1 will occur when SSE = 0, but this
is the case where all sample points lie in a straight line. Hence, a perfect linear
relationship appears in the sample data when b1

√
Sxx/Syy = ±1. Clearly, the

quantity b1
√

Sxx/Syy, which we shall henceforth designate as r, can be used as an
estimate of the population correlation coefficient ρ. It is customary to refer to the
estimate r as the Pearson product-moment correlation coefficient or simply
the sample correlation coefficient.

Correlation
Coefficient

The measure ρ of linear association between two variables X and Y is estimated
by the sample correlation coefficient r, where

r = b1

√
Sxx

Syy
=

Sxy√
SxxSyy

.
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For values of r between −1 and +1 we must be careful in our interpretation.
For example, values of r equal to 0.3 and 0.6 only mean that we have two positive
correlations, one somewhat stronger than the other. It is wrong to conclude that
r = 0.6 indicates a linear relationship twice as good as that indicated by the value
r = 0.3. On the other hand, if we write

r2 =
S2
xy

SxxSyy
=

SSR

Syy
,

then r2, which is usually referred to as the sample coefficient of determination,
represents the proportion of the variation of Syy explained by the regression of Y
on x, namely SSR. That is, r2 expresses the proportion of the total variation in
the values of the variable Y that can be accounted for or explained by a linear
relationship with the values of the random variable X. Thus, a correlation of 0.6
means that 0.36, or 36%, of the total variation of the values of Y in our sample is
accounted for by a linear relationship with values of X.

Example 7.8: It is important that scientific researchers in the area of forest products be able
to study correlation among the anatomy and mechanical properties of trees. For
the study Quantitative Anatomical Characteristics of Plantation Grown Loblolly
Pine (Pinus taeda L.) and Cottonwood (Populus deltoides Bart. Ex Marsh.) and
Their Relationships to Mechanical Properties, conducted by the Department of
Forestry and Forest Products at Virginia Tech, 29 loblolly pines were randomly
selected for investigation. Table 7.6 shows the resulting data on the specific gravity
in grams/cm3 and the modulus of rupture in kilopascals (kPa). Compute and
interpret the sample correlation coefficient.

Table 7.6: Data on 29 Loblolly Pines for Example 7.8

Specific Gravity, Modulus of Rupture, Specific Gravity, Modulus of Rupture,
x (g/cm3) y (kPa) x (g/cm3) y (kPa)

0.414 29,186 0.581 85,156
0.383 29,266 0.557 69,571
0.399 26,215 0.550 84,160
0.402 30,162 0.531 73,466
0.442 38,867 0.550 78,610
0.422 37,831 0.556 67,657
0.466 44,576 0.523 74,017
0.500 46,097 0.602 87,291
0.514 59,698 0.569 86,836
0.530 67,705 0.544 82,540
0.569 66,088 0.557 81,699
0.558 78,486 0.530 82,096
0.577 89,869 0.547 75,657
0.572 77,369 0.585 80,490
0.548 67,095

Solution : From the data we find that

Sxx = 0.11273, Syy = 11,807,324,805, Sxy = 34,422.27572.
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Therefore,

r =
34,422.27572√

(0.11273)(11,807,324,805)
= 0.9435.

A correlation coefficient of 0.9435 indicates a good linear relationship between X
and Y. Since r2 = 0.8902, we can say that approximately 89% of the variation in
the values of Y is accounted for by a linear relationship with X.

A test of the special hypothesis ρ = 0 versus an appropriate alternative is
equivalent to testing β1 = 0 for the simple linear regression model, and therefore
the procedures of Section 7.5 using either the t-distribution with n − 2 degrees of
freedom or the F -distribution with 1 and n− 2 degrees of freedom are applicable.
However, if one wishes to avoid the analysis-of-variance procedure and compute
only the sample correlation coefficient, it can be verified that the t-value

t =
b1

s/
√
Sxx

can also be written as

t =
r
√
n− 2√
1− r2

,

which, as before, is a value of the statistic T having a t-distribution with n − 2
degrees of freedom.

Example 7.9: For the data of Example 7.8, test the hypothesis that there is no linear association
among the variables.

Solution : 1. H0: ρ = 0.

2. H1: ρ �= 0.

3. α = 0.05.

4. Critical region: t < −2.052 or t > 2.052.

5. Computations: t = 0.9435
√
27√

1−0.94352
= 14.79, P < 0.0001.

6. Decision: Reject the hypothesis of no linear association.

7.9 Simple Linear Regression Case Study

In the manufacture of commercial wood products, it is important to estimate the
relationship between the density of a wood product and its stiffness. A relatively
new type of particleboard is being considered that can be formed with considerably
more ease than the accepted commercial product. It is necessary to know at what
density the stiffness is comparable to that of the well-known, well-documented
commercial product. A study of these properties was done by Terrance E. Con-
ners: Investigation of Certain Mechanical Properties of a Wood-Foam Composite
(Master’s Thesis, Department of Forestry and Wildlife Management, University
of Massachusetts). Thirty particleboards were produced at densities ranging from
roughly 8 to 26 pounds per cubic foot, and the stiffness was measured in pounds
per square inch. Table 7.7 shows the data.

It is necessary for the data analyst to focus on an appropriate fit to the data
and use inferential methods discussed in this chapter. Hypothesis testing on the
slope of the regression, as well as confidence or prediction interval estimation, may
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Table 7.7: Density and Stiffness for 30 Particleboards

Density, x Stiffness, y Density, x Stiffness, y
9.50
9.80
8.30
8.60
7.00

17.40
15.20
16.70
15.00
14.80
25.60
24.40
19.50
22.80
19.80

14,814.00
14,007.00
7573.00
9714.00
5304.00

43,243.00
28,028.00
49,499.00
26,222.00
26,751.00
96,305.00
72,594.00
32,207.00
70,453.00
38,138.00

8.40
11.00
9.90
6.40
8.20

15.00
16.40
15.40
14.50
13.60
23.40
23.30
21.20
21.70
21.30

17,502.00
19,443.00
14,191.00
8076.00

10,728.00
25,319.00
41,792.00
25,312.00
22,148.00
18,036.00

104,170.00
49,512.00
48,218.00
47,661.00
53,045.00
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Figure 7.21: Scatter plot of the wood density data.

5 10 15 20 25
−20,000

−10,000

0

10,000

20,000

30,000

40,000

Density

R
es

id
ua

l s

Figure 7.22: Residual plot for the wood density
data.

well be appropriate. We begin by demonstrating a simple scatter plot of the raw
data with a simple linear regression superimposed. Figure 7.21 shows this plot.

The simple linear regression fit to the data produced the fitted model

ŷ = −25,433.739 + 3884.976x (R2 = 0.7975),

and the residuals were computed. Figure 7.22 shows the residuals plotted against
the measurements of density. This is hardly an ideal or healthy set of residuals.
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They do not show a random scatter around a value of zero. In fact, clusters of
positive and negative values suggest that a curvilinear trend in the data should be
investigated.

Exercises

7.43 Compute and interpret the correlation coeffi-
cient for the following grades of 6 students selected at
random:

Mathematics grade 70 92 80 74 65 83

English grade 74 84 63 87 78 90

7.44 Use the data of Exercise 7.1 on page 303 to do
the followings.

(a) Calculate r.

(b) Test the hypothesis that ρ = 0 against the alterna-
tive that ρ 
= 0 at the 0.05 level of significance.

7.45 With reference to Exercise 7.13 on page 306, as-
sume a bivariate normal distribution for x and y.

(a) Calculate r.

(b) Test the null hypothesis that ρ = −0.5 against the
alternative that ρ < −0.5 at the 0.025 level of sig-
nificance.

(c) Determine the percentage of the variation in the
amount of particulate removed that is due to
changes in the daily amount of rainfall.

7.46 Test the hypothesis that ρ = 0 in Exercise 7.43
against the alternative that ρ 
= 0. Use a 0.05 level of
significance.

7.47 The following data were obtained in a study of
the relationship between the weight and chest size of
infants at birth.

Weight (kg) Chest Size (cm)
2.75 29.5
2.15 26.3
4.41 32.2
5.52 36.5
3.21 27.2
4.32 27.7
2.31 28.3
4.30 30.3
3.71 28.7

(a) Calculate r.

(b) Test the null hypothesis that ρ = 0 against the al-
ternative that ρ > 0 at the 0.01 level of significance.

(c) What percentage of the variation in infant chest
sizes is explained by difference in weight?

7.10 Multiple Linear Regression and
Estimation of the Coefficients

In most research problems where regression analysis is applied, more than one
independent variable is needed in the regression model. The complexity of most
scientific mechanisms is such that in order to be able to predict an important
response, a multiple regression model is needed. When this model is linear in
the coefficients, it is called a multiple linear regression model. For the case of
k independent variables x1, x2, . . . , xk, the mean of Y |x1, x2, . . . , xk is given by the
multiple linear regression model

μY |x1,x2,...,xk
= β0 + β1x1 + · · ·+ βkxk,

and the estimated response is obtained from the sample regression equation

ŷ = b0 + b1x1 + · · ·+ bkxk,

where each regression coefficient βi is estimated by bi from the sample data using
the method of least squares. As in the case of a single independent variable, the
multiple linear regression model can often be an adequate representation of a more
complicated structure within certain ranges of the independent variables.
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Similar least squares techniques can also be applied for estimating the coeffi-
cients when the linear model involves, say, powers and products of the independent
variables. For example, when k = 1, the experimenter may believe that the means
μY |x do not fall on a straight line but are more appropriately described by the
polynomial regression model

μY |x = β0 + β1x+ β2x
2 + · · ·+ βrx

r,

and the estimated response is obtained from the polynomial regression equation

ŷ = b0 + b1x+ b2x
2 + · · ·+ brx

r.

Confusion arises occasionally when we speak of a polynomial model as a linear
model. However, statisticians normally refer to a linear model as one in which the
parameters occur linearly, regardless of how the independent variables enter the
model. An example of a nonlinear model is the exponential relationship

μY |x = αβx,

whose response is estimated by the regression equation

ŷ = abx.

There are many phenomena in science and engineering that are inherently non-
linear in nature, and when the true structure is known, an attempt should certainly
be made to fit the actual model. The literature on estimation by least squares of
nonlinear models is voluminous. The nonlinear models discussed in this chapter
deal with nonideal conditions in which the analyst is certain that the response and
hence the response model error are not normally distributed but, rather, have a
binomial or Poisson distribution. These situations do occur extensively in practice.

A student who wants a more general account of nonlinear regression should
consult Classical and Modern Regression with Applications by Myers (1990; see
the Bibliography).

In this section, we obtain the least squares estimators of the parameters β0, β1, . . . , βk

by fitting the multiple linear regression model

μY |x1,x2,...,xk
= β0 + β1x1 + · · ·+ βkxk

to the data points

{(x1i, x2i, . . . , xki, yi); i = 1, 2, . . . , n and n > k},
where yi is the observed response to the values x1i, x2i, . . . , xki of the k independent
variables x1, x2, . . . , xk. Each observation (x1i, x2i, . . . , xki, yi) is assumed to satisfy
the following equation.

Multiple Linear
Regression Model

yi = β0 + β1x1i + β2x2i + · · ·+ βkxki + εi

or

yi = ŷi + ei = b0 + b1x1i + b2x2i + · · ·+ bkxki + ei,

where εi and ei are the random error and residual, respectively, associated with
the response yi and fitted value ŷi.
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As in the case of simple linear regression, it is assumed that the εi are independent
and identically distributed with mean 0 and common variance σ2.

In using the concept of least squares to arrive at estimates b0, b1, . . . , bk, we
minimize the expression

SSE =

n∑
i=1

e2i =

n∑
i=1

(yi − b0 − b1x1i − b2x2i − · · · − bkxki)
2.

Differentiating SSE in turn with respect to b0, b1, . . . , bk and equating to zero, we
generate the set of k + 1 normal equations for multiple linear regression.

Normal Estimation
Equations for

Multiple Linear
Regression

nb0 + b1

n∑
i=1

x1i + b2

n∑
i=1

x2i + · · · + bk

n∑
i=1

xki =
n∑

i=1

yi

b0

n∑
i=1

x1i + b1

n∑
i=1

x2
1i + b2

n∑
i=1

x1ix2i + · · · + bk

n∑
i=1

x1ixki =

n∑
i=1

x1iyi

...
...

...
...

...

b0

n∑
i=1

xki + b1

n∑
i=1

xkix1i+ b2

n∑
i=1

xkix2i + · · · + bk

n∑
i=1

x2
ki =

n∑
i=1

xkiyi

These equations can be solved for b0, b1, b2, . . . , bk by any appropriate method for
solving systems of linear equations. Most statistical software can be used to obtain
numerical solutions of the above equations.

Example 7.10: A study was done on a diesel-powered light-duty pickup truck to see if humidity, air
temperature, and barometric pressure influence emission of nitrous oxide (in ppm).
Emission measurements were taken at different times, with varying experimental
conditions. The data are given in Table 7.8. The model is

μY |x1,x2,x3
= β0 + β1x1 + β2x2 + β3x3,

or, equivalently,

yi = β0 + β1x1i + β2x2i + β3x3i + εi, i = 1, 2, . . . , 20.

Fit this multiple linear regression model to the given data and then estimate the
amount of nitrous oxide emitted for the conditions where humidity is 50%, tem-
perature is 76◦F, and barometric pressure is 29.30.

Solution : The solution of the set of estimating equations yields the unique estimates

b0 = −3.507778, b1 = −0.002625, b2 = 0.000799, b3 = 0.154155.

Therefore, the regression equation is

ŷ = −3.507778− 0.002625x1 + 0.000799x2 + 0.154155x3.

For 50% humidity, a temperature of 76◦F, and a barometric pressure of 29.30, the
estimated amount of nitrous oxide emitted is

ŷ = −3.507778− 0.002625(50.0) + 0.000799(76.0) + 0.1541553(29.30)

= 0.9384 ppm.
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Table 7.8: Data for Example 7.10

Nitrous Humidity, Temp., Pressure, Nitrous Humidity, Temp., Pressure,
Oxide, y x1 x2 x3 Oxide, y x1 x2 x3

0.90
0.91
0.96
0.89
1.00
1.10
1.15
1.03
0.77
1.07

72.4
41.6
34.3
35.1
10.7
12.9
8.3
20.1
72.2
24.0

76.3
70.3
77.1
68.0
79.0
67.4
66.8
76.9
77.7
67.7

29.18
29.35
29.24
29.27
29.78
29.39
29.69
29.48
29.09
29.60

1.07
0.94
1.10
1.10
1.10
0.91
0.87
0.78
0.82
0.95

23.2
47.4
31.5
10.6
11.2
73.3
75.4
96.6
107.4
54.9

76.8
86.6
76.9
86.3
86.0
76.3
77.9
78.7
86.8
70.9

29.38
29.35
29.63
29.56
29.48
29.40
29.28
29.29
29.03
29.37

Source: Charles T. Hare, “Light-Duty Diesel Emission Correction Factors for Ambient Conditions,” EPA-600/2-77-
116. U.S. Environmental Protection Agency.

Polynomial Regression

Now suppose that we wish to fit the polynomial equation

μY |x = β0 + β1x+ β2x
2 + · · ·+ βrx

r

to the n pairs of observations {(xi, yi); i = 1, 2, . . . , n}. Each observation, yi,
satisfies the equation

yi = β0 + β1xi + β2x
2
i + · · ·+ βrx

r
i + εi

or

yi = ŷi + ei = b0 + b1xi + b2x
2
i + · · ·+ brx

r
i + ei,

where r is the degree of the polynomial and εi and ei are again the random error
and residual associated with the response yi and fitted value ŷi, respectively. Here,
the number of pairs, n, must be at least as large as r+1, the number of parameters
to be estimated.

Notice that the polynomial model can be considered a special case of the more
general multiple linear regression model, where we set x1 = x, x2 = x2, . . . , xr = xr.
The normal equations assume the same form as those given on page 337. They are
then solved for b0, b1, b2, . . . , br.

Example 7.11: Given the data
x 0 1 2 3 4 5 6 7 8 9
y 9.1 7.3 3.2 4.6 4.8 2.9 5.7 7.1 8.8 10.2

fit a regression curve of the form μY |x = β0 + β1x+ β2x
2 and then estimate μY |2.

Solution : From the data given, we find that

10b0+ 45b1+ 285b2 = 63.7,

45b0+ 285b1+ 2025b2 = 307.3,

285b0+ 2025b1+ 15,333b2 = 2153.3.
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Solving these normal equations, we obtain

b0 = 8.698, b1 = −2.341, b2 = 0.288.

Therefore,

ŷ = 8.698− 2.341x+ 0.288x2.

When x = 2, our estimate of μY |2 is

ŷ = 8.698− (2.341)(2) + (0.288)(22) = 5.168.

Example 7.12: The data in Table 7.9 represent the percent of impurities that resulted for various
temperatures and sterilizing times during a reaction associated with the manufac-
turing of a certain beverage. Estimate the regression coefficients in the polynomial
model

yi = β0 + β1x1i + β2x2i + β11x
2
1i + β22x

2
2i + β12x1ix2i + εi,

for i = 1, 2, . . . , 18.

Table 7.9: Data for Example 7.12

Sterilizing Temperature, x1 (◦C)
Time, x2 (min) 75 100 125

15

20

25

14.05
14.93
16.56
15.85
22.41
21.66

10.55
9.48
13.63
11.75
18.55
17.98

7.55
6.59
9.23
8.78
15.93
16.44

Solution : Using the normal equations, we obtain

b0 = 56.4411, b1 = −0.36190, b2 = −2.75299,

b11 = 0.00081, b22 = 0.08173, b12 = 0.00314,

and our estimated regression equation is
ŷ = 56.4411− 0.36190x1 − 2.75299x2 + 0.00081x2

1 + 0.08173x2
2 + 0.00314x1x2.

Many of the principles and procedures associated with the estimation of poly-
nomial regression functions fall into the category of response surface methodol-
ogy, a collection of techniques that have been used quite successfully by scientists
and engineers in many fields. The x2

i are called pure quadratic terms, and the
xixj (i �= j) are called interaction terms. Such problems as selecting a proper
experimental design, particularly in cases where a large number of variables are
in the model, and choosing optimum operating conditions for x1, x2, . . . , xk are
often approached through the use of these methods. For an extensive discussion,
the reader is referred to Response Surface Methodology: Process and Product Opti-
mization Using Designed Experiments by Myers, Montgomery, and Anderson-Cook
(2009; see the Bibliography).
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Exercises

7.48 In Applied Spectroscopy, the infrared reflectance
spectra properties of a viscous liquid used in the elec-
tronics industry as a lubricant were studied. The de-
signed experiment consisted of testing the effect of
band frequency x1 and film thickness x2 on optical den-
sity y using a Perkin-Elmer Model 621 infrared spec-
trometer.

y x1 x2

0.231
0.107
0.053
0.129
0.069
0.030
1.005
0.559
0.321
2.948
1.633
0.934

740
740
740
805
805
805
980
980
980

1235
1235
1235

1.10
0.62
0.31
1.10
0.62
0.31
1.10
0.62
0.31
1.10
0.62
0.31

(From Pacansky, England, and Wattman, 1986.)
Estimate the multiple linear regression equation

ŷ = b0 + b1x1 + b2x2.

7.49 A set of experimental runs was made to deter-
mine a way of predicting cooking time y at various
values of oven width x1 and flue temperature x2. The
coded data were recorded as follows:

y x1 x2

6.40
15.05
18.75
30.25
44.85
48.94
51.55
61.50

100.44
111.42

1.32
2.69
3.56
4.41
5.35
6.20
7.12
8.87
9.80

10.65

1.15
3.40
4.10
8.75

14.82
15.15
15.32
18.18
35.19
40.40

Estimate the multiple linear regression equation

μY |x1,x2
= β0 + β1x1 + β2x2.

7.50 An experiment was conducted to determine if
the weight of an animal can be predicted after a given
period of time on the basis of the initial weight of the
animal and the amount of feed that was eaten. Use the
data, measured in kilograms, to do the followings.

(a) Fit a multiple regression equation of the form

μY |x1,x2
= β0 + β1x1 + β2x2.

(b) Predict the final weight of an animal having an ini-
tial weight of 35 kilograms that is given 250 kilo-
grams of feed.

Final Initial Feed
Weight, y Weight, x1 Weight, x2

95
77
80

100
97
70
50
80
92
84

42
33
33
45
39
36
32
41
40
38

272
226
259
292
311
183
173
236
230
235

7.51 The following data represent the chemistry
grades for a random sample of 12 freshmen at a cer-
tain college along with their scores on an intelligence
test administered while they were still seniors in high
school. The number of class periods missed is also
given.

Chemistry Test Classes
Student Grade, y Score, x1 Missed, x2

1
2
3
4
5
6
7
8
9

10
11
12

85
74
76
90
85
87
94
98
81
91
76
74

65
50
55
65
55
70
65
70
55
70
50
55

1
7
5
2
6
3
2
5
4
3
1
4

(a) Fit a multiple linear regression equation of the form
ŷ = b0 + b1x1 + b2x2.

(b) Estimate the chemistry grade for a student who has
an intelligence test score of 60 and missed 4 classes.

7.52 An experiment was conducted on a new model
of a particular make of automobile to determine the
stopping distance at various speeds. The following data
were recorded.

Speed, v (km/hr) 35 50 65 80 95 110

Stopping Distance, d (m) 16 26 41 62 88 119

(a) Fit a multiple regression curve of the form μD|v =

β0 + β1v + β2v
2.

(b) Estimate the stopping distance when the car is
traveling at 70 kilometers per hour.

7.53 The electric power consumed each month by a
chemical plant is thought to be related to the average
ambient temperature x1, the number of days in the
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month x2, the average product purity x3, and the tons
of product produced x4. The past year’s historical data
are available and are presented here.

y x1 x2 x3 x4

240
236
290
274
301
316
300
296
267
276
288
261

25
31
45
60
65
72
80
84
75
60
50
38

24
21
24
25
25
26
25
25
24
25
25
23

91
90
88
87
91
94
87
86
88
91
90
89

100
95

110
88
94
99
97
96

110
105
100
98

(a) Fit a multiple linear regression model using the
above data set.

(b) Predict power consumption for a month in which
x1 = 75◦F, x2 = 24 days, x3 = 90%, and x4 = 98
tons.

7.54 The following is a set of coded experimental data
on the compressive strength of a particular alloy at var-
ious values of the concentration of some additive:

Concentration, Compressive
x Strength, y

10.0
15.0
20.0
25.0
30.0

25.2
29.8
31.2
31.7
29.4

27.3
31.1
32.6
30.1
30.8

28.7
27.8
29.7
32.3
32.8

(a) Estimate the quadratic regression equation μY |x =

β0 + β1x+ β2x
2.

(b) Test for lack of fit of the model.

7.55 An experiment was conducted in order to de-
termine if cerebral blood flow in human beings can be
predicted from arterial oxygen tension (millimeters of
mercury). Fifteen patients participated in the study,
and the following data were collected:

Blood Flow, Arterial Oxygen
y Tension, x

84.33 603.40
87.80 582.50
82.20 556.20
78.21 594.60
78.44 558.90
80.01 575.20
83.53 580.10
79.46 451.20
75.22 404.00
76.58 484.00
77.90 452.40

(cont.)

Blood Flow, Arterial Oxygen
y Tension, x

78.80 448.40
80.67 334.80
86.60 320.30
78.20 350.30

Estimate the quadratic regression equation

μY |x = β0 + β1x+ β2x
2.

7.56 The following data are given:

x 0 1 2 3 4 5 6

y 1 4 5 3 2 3 4

(a) Fit the cubic model μY |x = β0+β1x+β2x
2+β3x

3.

(b) Predict Y when x = 2.

7.57 (a) Fit a multiple regression equation of the
form μY |x = β0 + β1x1 + β2x

2 to the data of Ex-
ample 7.7 on page 326.

(b) Estimate the yield of the chemical reaction for a
temperature of 225◦C.

7.58 The following data reflect information from 17
U.S. Navy hospitals at various sites around the world.
The regressors are workload variables, that is, items
that result in the need for personnel in a hospital. A
brief description of the variables is as follows:

y = monthly labor-hours,

x1 = average daily patient load,

x2 = monthly X-ray exposures,

x3 = monthly occupied bed-days,

x4 = eligible population in the area/1000,

x5 = average length of patient’s stay, in days.

Site x1 x2 x3 x4 x5 y

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

15.57
44.02
20.42
18.74
49.20
44.92
55.48
59.28
94.39

128.02
96.00

131.42
127.21
252.90
409.20
463.70
510.22

2463
2048
3940
6505
5723

11,520
5779
5969
8461

20,106
13,313
10,771
15,543
36,194
34,703
39,204
86,533

472.92
1339.75
620.25
568.33

1497.60
1365.83
1687.00
1639.92
2872.33
3655.08
2912.00
3921.00
3865.67
7684.10

12,446.33
14,098.40
15,524.00

18.0
9.5

12.8
36.7
35.7
24.0
43.3
46.7
78.7

180.5
60.9

103.7
126.8
157.7
169.4
331.4
371.6

4.45
6.92
4.28
3.90
5.50
4.60
5.62
5.15
6.18
6.15
5.88
4.88
5.50
7.00

10.75
7.05
6.35

566.52
696.82

1033.15
1003.62
1611.37
1613.27
1854.17
2160.55
2305.58
3503.93
3571.59
3741.40
4026.52

10,343.81
11,732.17
15,414.94
18,854.45

The goal here is to produce an empirical equation that
will estimate (or predict) personnel needs for naval hos-
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pitals. Estimate the multiple linear regression equation

μY |x1,x2,x3,x4,x5

= β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5.

7.59 An experiment was conducted to study the size
of squid eaten by sharks and tuna. The regressor vari-
ables are characteristics of the beaks of the squid. The
data are given as follows:

x1 x2 x3 x4 x5 y

1.31
1.55
0.99
0.99
1.01
1.09
1.08
1.27
0.99
1.34
1.30
1.33
1.86
1.58
1.97
1.80
1.75
1.72
1.68
1.75
2.19
1.73

1.07
1.49
0.84
0.83
0.90
0.93
0.90
1.08
0.85
1.13
1.10
1.10
1.47
1.34
1.59
1.56
1.58
1.43
1.57
1.59
1.86
1.67

0.44
0.53
0.34
0.34
0.36
0.42
0.40
0.44
0.36
0.45
0.45
0.48
0.60
0.52
0.67
0.66
0.63
0.64
0.72
0.68
0.75
0.64

0.75
0.90
0.57
0.54
0.64
0.61
0.51
0.77
0.56
0.77
0.76
0.77
1.01
0.95
1.20
1.02
1.09
1.02
0.96
1.08
1.24
1.14

0.35
0.47
0.32
0.27
0.30
0.31
0.31
0.34
0.29
0.37
0.38
0.38
0.65
0.50
0.59
0.59
0.59
0.63
0.68
0.62
0.72
0.55

1.95
2.90
0.72
0.81
1.09
1.22
1.02
1.93
0.64
2.08
1.98
1.90
8.56
4.49
8.49
6.17
7.54
6.36
7.63
7.78

10.15
6.88

In the study, the regressor variables and response con-
sidered are

x1 = rostral length, in inches,

x2 = wing length, in inches,

x3 = rostral to notch length, in inches,

x4 = notch to wing length, in inches,

x5 = width, in inches,

y = weight, in pounds.

Estimate the multiple linear regression equation

μY |x1,x2,x3,x4,x5

= β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5.

7.60 An engineer at a semiconductor company wants
to model the relationship between the gain or hFE of
a device (y) and three parameters: emitter-RS (x1),
base-RS (x2), and emitter-to-base-RS (x3). The data
are presented here are from Myers, Montgomery, and
Anderson-Cook, 2009.

(a) Fit a multiple linear regression to the data.

(b) Predict hFE when x1 = 14, x2 = 220, and x3 = 5.

x1, x2, x3, y,
Emitter-RS Base-RS E-B-RS hFE

14.62
15.63
14.62
15.00
14.50
15.25
16.12
15.13
15.50
15.13
15.50
16.12
15.13
15.63
15.38
15.50

226.0
220.0
217.4
220.0
226.5
224.1
220.5
223.5
217.6
228.5
230.2
226.5
226.6
225.6
234.0
230.0

7.000
3.375
6.375
6.000
7.625
6.000
3.375
6.125
5.000
6.625
5.750
3.750
6.125
5.375
8.875
4.000

128.40
52.62

113.90
98.01

139.90
102.60
48.14

109.60
82.68

112.60
97.52
59.06

111.80
89.09

171.90
66.80

7.61 A study was performed on a type of bearing
to find the relationship of amount of wear y to x1 =
oil viscosity and x2 = load. The following data were
obtained.

y x1 x2 y x1 x2

193
172
113

1.6
22.0
33.0

851
1058
1357

230
91

125

15.5
43.0
40.0

816
1201
1115

(Data from Myers, Montgomery, and Anderson-Cook,
2009.)

(a) Estimate the unknown parameters of the multiple
linear regression equation

μY |x1,x2
= β0 + β1x1 + β2x2.

(b) Predict wear when oil viscosity is 20 and load is
1200.

7.62 Eleven student teachers took part in an evalu-
ation program designed to measure teacher effective-
ness and determine what factors are important. The
response measure was a quantitative evaluation of the
teacher. The regressor variables were scores on four
standardized tests given to each teacher. The data are
as follows:

y x1 x2 x3 x4

410
569
425
344
324
505
235
501
400
584
434

69
57
77
81
0

53
77
76
65
97
76

125
131
141
122
141
152
141
132
157
166
141

59.00
31.75
80.50
75.00
49.00
49.35
60.75
41.25
50.75
32.25
54.50

55.66
63.97
45.32
46.67
41.21
43.83
41.61
64.57
42.41
57.95
57.90
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Estimate the multiple linear regression equation

μY |x1,x2,x3,x4
= β0 + β1x1 + β2x2 + β3x3 + β4x4.

7.63 The personnel department of a certain industrial
firm used 12 subjects in a study to determine the rela-
tionship between job performance rating (y) and scores
on four tests. Use the data provided here to estimate
the regression coefficients in the model

ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4.

y x1 x2 x3 x4

11.2 56.5 71.0 38.5 43.0
14.5 59.5 72.5 38.2 44.8
17.2 69.2 76.0 42.5 49.0
17.8 74.5 79.5 43.4 56.3
19.3 81.2 84.0 47.5 60.2
24.5 88.0 86.2 47.4 62.0
21.2 78.2 80.5 44.5 58.1
16.9 69.0 72.0 41.8 48.1
14.8 58.1 68.0 42.1 46.0
20.0 80.5 85.0 48.1 60.3
13.2 58.3 71.0 37.5 47.1
22.5 84.0 87.2 51.0 65.2

7.11 Inferences in Multiple Linear Regression

The means and variances of the estimators b0, b1, . . . , bk are readily obtained under
certain assumptions on the random errors ε1, ε2, . . . , εk that are identical to those
made in the case of simple linear regression. When we assume these errors to be
independent, each with mean 0 and variance σ2, it can be shown that b0, b1, . . . , bk
are, respectively, unbiased estimators of the regression coefficients β0, β1, . . . , βk.
In addition, the variances of the b’s are obtained through the elements of the inverse
of the A matrix. Note that the off-diagonal elements of A = X′X represent sums
of products of elements in the columns of X, while the diagonal elements of A
represent sums of squares of elements in the columns of X. The inverse matrix,
A−1, apart from the multiplier σ2, represents the variance-covariance matrix
of the estimated regression coefficients. That is, the elements of the matrix A−1σ2

display the variances of b0, b1, . . . , bk on the main diagonal and covariances on the
off-diagonal. For example, in a k = 2 multiple linear regression problem, we might
write

(X′X)−1 =

⎡⎣c00 c01 c02
c10 c11 c12
c20 c21 c22

⎤⎦
with the elements below the main diagonal determined through the symmetry of
the matrix. Then we can write

σ2
bi = ciiσ

2, i = 0, 1, 2,

σbibj = Cov(bi, bj)= cijσ
2, i �= j.

Of course, the estimates of the variances and hence the standard errors of these
estimators are obtained by replacing σ2 with the appropriate estimate obtained
through experimental data. An unbiased estimate of σ2 is once again defined in
terms of the error sum of squares, which is computed using the formula established
in Theorem 7.2. In the theorem, we are making the assumptions on the εi described
above.
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Theorem 7.2: For the linear regression equation

y = Xβ + ε,

an unbiased estimate of σ2 is given by the error or residual mean square

s2 =
SSE

n− k − 1
, where SSE =

n∑
i=1

e2i =
n∑

i=1

(yi − ŷi)
2.

We can see that Theorem 7.2 represents a generalization of Theorem 7.1 for the
simple linear regression case. The proof is left for the reader. As in the simpler
linear regression case, the estimate s2 is a measure of the variation in the prediction
errors or residuals.

The error and regression sums of squares take on the same form and play the
same role as in the simple linear regression case. In fact, the sum-of-squares identity

n∑
i=1

(yi − ȳ)2 =

n∑
i=1

(ŷi − ȳ)2 +

n∑
i=1

(yi − ŷi)
2

continues to hold, and we retain our previous notation, namely

SST = SSR+ SSE,

with

SST =

n∑
i=1

(yi − ȳ)2 = total sum of squares

and

SSR =
n∑

i=1

(ŷi − ȳ)2 = regression sum of squares.

There are k degrees of freedom associated with SSR, and, as always, SST has
n− 1 degrees of freedom. Therefore, after subtraction, SSE has n− k− 1 degrees
of freedom. Thus, our estimate of σ2 is again given by the error sum of squares
divided by its degrees of freedom. All three of these sums of squares will appear
on the printouts of most multiple regression computer packages. Note that the
condition n > k in Section 7.10 guarantees that the degrees of freedom of SSE
cannot be negative.

Analysis of Variance in Multiple Regression

The partition of the total sum of squares into its components, the regression and
error sums of squares, plays an important role. An analysis of variance can
be conducted to shed light on the quality of the regression equation. A useful
hypothesis that determines if a significant amount of variation is explained by the
model is

H0: β1 = β2 = β3 = · · · = βk = 0.
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The analysis of variance involves an F -test which can be summarized via a table
as follows:

Source Sum of Squares Degrees of Freedom Mean Squares F

Regression SSR k MSR = SSR
k f = MSR

MSE

Error SSE n− (k + 1) MSE = SSE
n−(k+1)

Total SST n− 1

This test is an upper-tailed test. Rejection of H0 implies that the regression
equation differs from a constant. That is, at least one regressor variable is
important. However, this and other tests of hypotheses considered later require
that the errors εi be normally distributed in the multiple linear regression model.

Further utility of the mean square error (or residual mean square) lies in its
use in hypothesis testing and confidence interval estimation. In addition, the mean
square error plays an important role in situations where the scientist is searching
for the best from a set of competing models. Many model-building criteria involve
the statistic s2.

A knowledge of the distributions of the individual coefficient estimators enables
the experimenter to construct confidence intervals for the coefficients and to test
hypotheses about them. Since the bj (j = 0, 1, 2, . . . , k) are normally distributed
with mean βj and variance cjjσ

2, we can use the statistic

t =
bj − βj0

s
√
cjj

with n − k − 1 degrees of freedom to test hypotheses and construct confidence
intervals on βj . For example, if we wish to test

H0: βj = βj0,

H1: βj �= βj0,

we compute the above t-statistic and do not reject H0 if −tα/2 < t < tα/2, where
tα/2 has n− k − 1 degrees of freedom.

Individual t-Tests for Variable Screening

The t-test most often used in multiple regression is the one that tests the impor-
tance of individual coefficients (i.e., H0: βj = 0 against the alternative H1: βj �= 0).
These tests often contribute to what is termed variable screening, where the ana-
lyst attempts to arrive at the most useful model (i.e., the choice of which regressors
to use). It should be emphasized here that if a coefficient is found insignificant (i.e.,
the hypothesis H0: βj = 0 is not rejected), the conclusion drawn is that the vari-
able is insignificant (i.e., explains an insignificant amount of variation in y), in the
presence of the other regressors in the model.



346 Chapter 7 Linear Regression

Exercises

7.64 For the data of Exercise 7.49 on page 340, esti-
mate σ2.

7.65 For the data of Exercise 7.48 on page 340, esti-
mate σ2.

7.66 Obtain estimates of the variances and the co-
variance of the estimators b1 and b2 of Exercise 7.48
on page 340.

7.67 For the data of Exercise 7.53 on page 340, esti-
mate σ2.

7.68 For the model of Exercise 7.55 on page 341, test
the hypothesis that β2 = 0 at the 0.05 level of signifi-
cance against the alternative that β2 
= 0.

7.69 Referring to Exercise 7.53 on page 340, find the
estimate of

(a) σ2
b2
;

(b) Cov(b1, b4).

7.70 For the model of Exercise 7.49 on page 340, test
the hypothesis that β1 = 2 against the alternative that
β1 
= 2. Use a P-value in your conclusion.

7.71 For the model of Exercise 7.48 on page 340, test
the hypothesis that β1 = 0 at the 0.05 level of signifi-
cance against the alternative that β1 
= 0.

7.72 For Exercise 7.54 on page 341, construct a 90%
confidence interval for the mean compressive strength
when the concentration is x = 19.5 and a quadratic
model is used.

7.73 Using the data of Exercise 7.48 on page 340 and
the estimate of σ2 from Exercise 7.65, compute 95%
confidence intervals for the predicted response and the
mean response when x1 = 900 and x2 = 1.00.

7.74 Consider the following data from Exercise 7.61
on page 342.

y (wear) x1 (oil viscosity) x2 (load)
193 1.6 851
230 15.5 816
172 22.0 1058
91 43.0 1201
113 33.0 1357
125 40.0 1115

(a) Estimate σ2 using multiple regression of y on x1

and x2.

(b) Compute predicted values, a 95% confidence inter-
val for mean wear, and a 95% prediction interval
for observed wear if x1 = 20 and x2 = 1000.

7.75 Using the data of Exercise 7.53 on page 340 and
the estimate of σ2 from Exercise 7.67, compute 95%
confidence intervals for the predicted response and the
mean response when x1 = 75, x2 = 24, x3 = 90, and
x4 = 98.

7.76 Use the data from Exercise 7.60 on page 342.

(a) Estimate σ2 using the multiple regression of y on
x1, x2, and x3.

(b) Compute a 95% prediction interval for the ob-
served gain with the three regressors at x1 = 15.0,
x2 = 220.0, and x3 = 6.0.

7.77 Using the data from Exercise 7.74, test the fol-
lowing at the 0.05 level.

(a) H0: β1 = 0 versus H1: β1 
= 0;

(b) H0: β2 = 0 versus H1: β2 
= 0.

(c) Do you have any reason to believe that the model
in Exercise 7.74 should be changed? Why or why
not?

Review Exercises

7.78 With reference to Exercise 7.8 on page 305, con-
struct

(a) a 95% confidence interval for the average course
grade of students who score 35 on the placement
test;

(b) a 95% prediction interval for the course grade of a
student who scored 35 on the placement test.

7.79 The Statistics Consulting Center at Virginia
Tech analyzed data on normal woodchucks for the De-

partment of Veterinary Medicine. The variables of in-
terest were body weight in grams and heart weight in
grams. It was desired to develop a linear regression
equation in order to determine if there is a signifi-
cant linear relationship between heart weight and total
body weight. Use heart weight as the independent vari-
able and body weight as the dependent variable and
fit a simple linear regression using the following data.
In addition, test the hypothesis H0 : β1 = 0 versus
H1: β1 
= 0. Draw conclusions.
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Body Weight (grams) Heart Weight (grams)
4050
2465
3120
5700
2595
3640
2050
4235
2935
4975
3690
2800
2775
2170
2370
2055
2025
2645
2675

11.2
12.4
10.5
13.2
9.8

11.0
10.8
10.4
12.2
11.2
10.8
14.2
12.2
10.0
12.3
12.5
11.8
16.0
13.8

7.80 The amounts of solids removed from a particu-
lar material when exposed to drying periods of different
lengths are as shown.

x (hours) y (grams)
4.4 13.1 14.2
4.5 9.0 11.5
4.8 10.4 11.5
5.5 13.8 14.8
5.7 12.7 15.1
5.9 9.9 12.7
6.3 13.8 16.5
6.9 16.4 15.7
7.5 17.6 16.9
7.8 18.3 17.2

(a) Estimate the linear regression line.

(b) Test at the 0.05 level of significance whether the
linear model is adequate.

7.81 With reference to Exercise 7.9 on page 305, con-
struct

(a) a 95% confidence interval for the average weekly
sales when $45 is spent on advertising;

(b) a 95% prediction interval for the weekly sales when
$45 is spent on advertising.

7.82 An experiment was designed for the Department
of Materials Engineering at Virginia Tech to study hy-
drogen embrittlement properties based on electrolytic
hydrogen pressure measurements. The solution used
was 0.1 N NaOH, and the material was a certain type
of stainless steel. The cathodic charging current den-
sity was controlled and varied at four levels. The effec-
tive hydrogen pressure was observed as the response.
The data follow.

Charging Current Effective
Density, x Hydrogen

Run ( mA/cm2) Pressure, y (atm)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0.5
0.5
0.5
0.5
1.5
1.5
1.5
2.5
2.5
2.5
2.5
3.5
3.5
3.5
3.5

86.1
92.1
64.7
74.7

223.6
202.1
132.9
413.5
231.5
466.7
365.3
493.7
382.3
447.2
563.8

(a) Run a simple linear regression of y against x.

(b) Compute the pure error sum of squares and make
a test for lack of fit.

(c) Does the information in part (b) indicate a need
for a model in x beyond a first-order regression?
Explain.

7.83 The following data represent the chemistry
grades for a random sample of 12 freshmen at a cer-
tain college along with their scores on an intelligence
test administered while they were still seniors in high
school.

Test Chemistry
Student Score, x Grade, y

1
2
3
4
5
6
7
8
9

10
11
12

65
50
55
65
55
70
65
70
55
70
50
55

85
74
76
90
85
87
94
98
81
91
76
74

(a) Compute and interpret the sample correlation co-
efficient.

(b) State necessary assumptions on random variables.

(c) Test the hypothesis that ρ = 0.5 against the alter-
native that ρ > 0.5. Use a P-value in the conclu-
sion.

7.84 The Washington Times business section in
March of 1997 listed 21 different used computers and
printers and their sale prices. Also listed was the aver-
age hover bid. Partial results from regression analysis
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using SAS software are shown in Figure 7.23 on page
350.

(a) Explain the difference between the confidence in-
terval on the mean and the prediction interval.

(b) Explain why the standard errors of prediction vary
from observation to observation.

(c) Which observation has the lowest standard error of
prediction? Why?

7.85 Consider the vehicle data from Consumer Re-
ports in Figure 7.24 on page 351. The data include
weight (in tons), mileage (in miles per gallon), and
drive ratio. A regression model was fitted relating
weight x to mileage y. A partial SAS printout in Fig-
ure 7.24 shows some of the results of that regression
analysis, and Figure 7.25 on page 352 gives a plot of
the residuals and weight for each vehicle.

(a) From the analysis and the residual plot, does it ap-
pear that an improved model might be found by
using a transformation? Explain.

(b) Fit the model by replacing weight with log weight.
Comment on the results.

(c) Fit a model by replacing mpg with gallons per 100
miles traveled, as mileage is often reported in other
countries. Which of the three models is preferable?
Explain.

7.86 Observations on the yield of a chemical reaction
taken at various temperatures were recorded as follows:

x (◦C) y (%) x (◦C) y (%)
150 75.4 150 77.7
150 81.2 200 84.4
200 85.5 200 85.7
250 89.0 250 89.4
250 90.5 300 94.8
300 96.7 300 95.3

(a) Plot the data.

(b) Does it appear from the plot as if the relationship
is linear?

(c) Fit a simple linear regression and test for lack of
fit.

(d) Draw conclusions based on your result in (c).

7.87 Physical fitness testing is an important aspect
of athletic training. A common measure of the mag-
nitude of cardiovascular fitness is the maximum vol-
ume of oxygen uptake during strenuous exercise. A
study was conducted on 24 middle-aged men to de-
termine the influence on oxygen uptake of the time
required to complete a two-mile run. Oxygen uptake
was measured with standard laboratory methods as the
subjects performed on a treadmill. The work was pub-
lished in “Maximal Oxygen Intake Prediction in Young
and Middle Aged Males,” Journal of Sports Medicine

9, 1969, 17–22. The data are as follows:

y, Maximum x, Time
Subject Volume of O2 in Seconds

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

42.33
53.10
42.08
50.06
42.45
42.46
47.82
49.92
36.23
49.66
41.49
46.17
46.18
43.21
51.81
53.28
53.29
47.18
56.91
47.80
48.65
53.67
60.62
56.73

918
805
892
962
968
907
770
743

1045
810
927
813
858
860
760
747
743
803
683
844
755
700
748
775

(a) Estimate the parameters in a simple linear regres-
sion model.

(b) Does the time it takes to run two miles have a sig-
nificant influence on maximum oxygen uptake? Use
H0: β1 = 0 versus H1: β1 
= 0.

(c) Plot the residuals on a graph against x and com-
ment on the appropriateness of the simple linear
model.

7.88 Consider the fictitious set of data shown below,
where the line through the data is the fitted simple
linear regression line. Sketch a residual plot.

x

y
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7.89 Consider a 2nd-order response surface model
that contains the linear, pure quadratic and cross-
product terms as follows:

yi = β0 + β1x1i + β2x2i + β11x
2
1i

+ β22x
2
2i + β12x1ix2i + εi.

Fit the model above to the following data, and suggest
any model editing that may be needed.

x1 x2 y

−1
−1
−1
0
0
0
1
1
1

−1
0
1

−1
0
1

−1
0
1

35.38
38.42
42.15
36.52
45.27
53.22
37.18
48.25
55.07

7.90 A study was conducted to determine whether
lifestyle changes could replace medication in reducing
blood pressure among hypertensives. The factors con-
sidered were a healthy diet with an exercise program,
the typical dosage of medication for hypertension, and
no intervention. The pretreatment body mass index
(BMI) was also calculated because it is known to affect
blood pressure. The response considered in this study
was change in blood pressure. The variable “group”
had the following levels.

1 = Healthy diet and an exercise program

2 = Medication

3 = No intervention

(a) Fit an appropriate model using the data below.
Does it appear that exercise and diet could be effec-
tively used to lower blood pressure? Explain your
answer from the results.

(b) Would exercise and diet be an effective alternative
to medication?

(Hint: You may wish to form the model in more than
one way to answer both of these questions.)

Change in
Blood Pressure Group BMI

−32
−21
−26
−16
−11
−19
−23
−5
−6
5

−11
14

1
1
1
1
2
2
2
2
3
3
3
3

27.3
22.1
26.1
27.8
19.2
26.1
28.6
23.0
28.1
25.3
26.7
22.3

7.91 Show that in choosing the so-called best subset
model from a series of candidate models, choosing the
model with the smallest s2 is equivalent to choosing
the model with the smallest R2

adj.

7.92 Case Study: Consider the data set for Exercise
7.58, page 341 (hospital data), repeated here.

Site x1 x2 x3 x4 x5 y

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

15.57
44.02
20.42
18.74
49.20
44.92
55.48
59.28
94.39

128.02
96.00

131.42
127.21
252.90
409.20
463.70
510.22

2463
2048
3940
6505
5723

11,520
5779
5969
8461

20,106
13,313
10,771
15,543
36,194
34,703
39,204
86,533

472.92
1339.75
620.25
568.33

1497.60
1365.83
1687.00
1639.92
2872.33
3655.08
2912.00
3921.00
3865.67
7684.10

12,446.33
14,098.40
15,524.00

18.0
9.5

12.8
36.7
35.7
24.0
43.3
46.7
78.7

180.5
60.9

103.7
126.8
157.7
169.4
331.4
371.6

4.45
6.92
4.28
3.90
5.50
4.60
5.62
5.l5
6.18
6.15
5.88
4.88
5.50
7.00

10.75
7.05
6.35

566.52
696.82

1033.15
1003.62
1611.37
1613.27
1854.17
2160.55
2305.58
3503.93
3571.59
3741.40
4026.52

10,343.81
11,732.17
15,414.94
18,854.45

(a) The SAS PROC REG outputs provided in Figures
7.26 and 7.27 on pages 353 and 354 supply a con-
siderable amount of information. Goals are to do
outlier detection and eventually determine which
model terms are to be used in the final model.

(b) Often the role of a single regressor variable is not
apparent when it is studied in the presence of sev-
eral other variables. This is due to multicollinear-
ity. With this in mind, comment on the importance
of x2 and x3 in the full model as opposed to their
importance in a model in which they are the only
variables.

(c) Comment on what other analyses should be run.

(d) Run appropriate analyses and write your conclu-
sions concerning the final model.

7.93 Project: This project can be done in groups or
by individuals. Each person or group must find a set of
data, preferably from (but not restricted to) their field
of study. The data need to fit the regression framework
with a regression variable x and a response variable y.
Carefully make the assignment as to which variable is x
and which y. It may be necessary to consult a journal
or periodical from your field if you do not have other
research data available.

(a) Plot y versus x. Comment on the relationship as
seen from the plot.

(b) Fit an appropriate regression model from the data.
Use simple linear regression or fit a polynomial
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model to the data. Comment on measures of qual-
ity.

(c) Plot residuals as illustrated in the text. Check pos-

sible violation of assumptions. Show graphically
a plot of confidence intervals on a mean response
plotted against x. Comment.

R-Square Coeff Var Root MSE Price Mean
0.967472 7.923338 70.83841 894.0476

Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 59.93749137 38.34195754 1.56 0.1345
Buyer 1.04731316 0.04405635 23.77 <.0001

Predict Std Err Lower 95% Upper 95% Lower 95% Upper 95%
product Buyer Price Value Predict Mean Mean Predict Predict
IBM PS/1 486/66 420MB 325 375 400.31 25.8906 346.12 454.50 242.46 558.17
IBM ThinkPad 500 450 625 531.23 21.7232 485.76 576.70 376.15 686.31
IBM Think-Dad 755CX 1700 1850 1840.37 42.7041 1750.99 1929.75 1667.25 2013.49
AST Pentium 90 540MB 800 875 897.79 15.4590 865.43 930.14 746.03 1049.54
Dell Pentium 75 1GB 650 700 740.69 16.7503 705.63 775.75 588.34 893.05
Gateway 486/75 320MB 700 750 793.06 16.0314 759.50 826.61 641.04 945.07
Clone 586/133 1GB 500 600 583.59 20.2363 541.24 625.95 429.40 737.79
Compaq Contura 4/25 120MB 450 600 531.23 21.7232 485.76 576.70 376.15 686.31
Compaq Deskpro P90 1.2GB 800 850 897.79 15.4590 865.43 930.14 746.03 1049.54
Micron P75 810MB 800 675 897.79 15.4590 865.43 930.14 746.03 1049.54
Micron P100 1.2GB 900 975 1002.52 16.1176 968.78 1036.25 850.46 1154.58
Mac Quadra 840AV 500MB 450 575 531.23 21.7232 485.76 576.70 376.15 686.31
Mac Performer 6116 700MB 700 775 793.06 16.0314 759.50 826.61 641.04 945.07
PowerBook 540c 320MB 1400 1500 1526.18 30.7579 1461.80 1590.55 1364.54 1687.82
PowerBook 5300 500MB 1350 1575 1473.81 28.8747 1413.37 1534.25 1313.70 1633.92
Power Mac 7500/100 1GB 1150 1325 1264.35 21.9454 1218.42 1310.28 1109.13 1419.57
NEC Versa 486 340MB 800 900 897.79 15.4590 865.43 930.14 746.03 1049.54
Toshiba 1960CS 320MB 700 825 793.06 16.0314 759.50 826.61 641.04 945.07
Toshiba 4800VCT 500MB 1000 1150 1107.25 17.8715 1069.85 1144.66 954.34 1260.16
HP Laser jet III 350 475 426.50 25.0157 374.14 478.86 269.26 583.74
Apple Laser Writer Pro 63 750 800 845.42 15.5930 812.79 878.06 693.61 997.24

Figure 7.23: SAS printout, showing partial analysis of data of Review Exercise 7.84.
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Obs Model WT MPG DR_RATIO
1 Buick Estate Wagon 4.360 16.9 2.73
2 Ford Country Squire Wagon 4.054 15.5 2.26
3 Chevy Ma libu Wagon 3.605 19.2 2.56
4 Chrysler LeBaron Wagon 3.940 18.5 2.45
5 Chevette 2.155 30.0 3.70
6 Toyota Corona 2.560 27.5 3.05
7 Datsun 510 2.300 27.2 3.54
8 Dodge Omni 2.230 30.9 3.37
9 Audi 5000 2.830 20.3 3.90

10 Volvo 240 CL 3.140 17.0 3.50
11 Saab 99 GLE 2.795 21.6 3.77
12 Peugeot 694 SL 3.410 16.2 3.58
13 Buick Century Special 3.380 20.6 2.73
14 Mercury Zephyr 3.070 20.8 3.08
15 Dodge Aspen 3.620 18.6 2.71
16 AMC Concord D/L 3.410 18.1 2.73
17 Chevy Caprice Classic 3.840 17.0 2.41
18 Ford LTP 3.725 17.6 2.26
19 Mercury Grand Marquis 3.955 16.5 2.26
20 Dodge St Regis 3.830 18.2 2.45
21 Ford Mustang 4 2.585 26.5 3.08
22 Ford Mustang Ghia 2.910 21.9 3.08
23 Macda GLC 1.975 34.1 3.73
24 Dodge Colt 1.915 35.1 2.97
25 AMC Spirit 2.670 27.4 3.08
26 VW Scirocco 1.990 31.5 3.78
27 Honda Accord LX 2.135 29.5 3.05
28 Buick Skylark 2.570 28.4 2.53
29 Chevy Citation 2.595 28.8 2.69
30 Olds Omega 2.700 26.8 2.84
31 Pontiac Phoenix 2.556 33.5 2.69
32 Plymouth Horizon 2.200 34.2 3.37
33 Datsun 210 2.020 31.8 3.70
34 Fiat Strada 2.130 37.3 3.10
35 VW Dasher 2.190 30.5 3.70
36 Datsun 810 2.815 22.0 3.70
37 BMW 320i 2.600 21.5 3.64
38 VW Rabbit 1.925 31.9 3.78

R-Square Coeff Var Root MSE MPG Mean
0.817244 11.46010 2.837580 24.76053

Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 48.67928080 1.94053995 25.09 <.0001
WT -8.36243141 0.65908398 -12.69 <.0001

Figure 7.24: SAS printout, showing partial analysis of data of Review Exercise 7.85.
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Plot of Resid*WT. Symbol used is ’*’.

Resid |
8 +

|
|
|
|
| * *

6 +
|
|
|
| *
|

4 + *
|
|
|
| *
| *

2 + *
| * *
| *
| * * *
| * * *
| * * * *

0 +-----------------*---*------------------------------------------*------------------------
|
| * * * *
|
| *
|

-2 + *
| * * *
|
| *
|
| *

-4 + *
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Figure 7.25: SAS printout, showing residual plot of Review Exercise 7.85.
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Dependent Variable: y
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 5 490177488 98035498 237.79 <.0001
Error 11 4535052 412277
Corrected Total 16 494712540

Root MSE 642.08838 R-Square 0.9908
Dependent Mean 4978.48000 Adj R-Sq 0.9867
Coeff Var 12.89728

Parameter Estimates
Parameter Standard

Variable Label DF Estimate Error t Value Pr > |t|
Intercept Intercept 1 1962.94816 1071.36170 1.83 0.0941
x1 Average Daily Patient Load 1 -15.85167 97.65299 -0.16 0.8740
x2 Monthly X-Ray Exposure 1 0.05593 0.02126 2.63 0.0234
x3 Monthly Occupied Bed Days 1 1.58962 3.09208 0.51 0.6174
x4 Eligible Population in the 1 -4.21867 7.17656 -0.59 0.5685

Area/100
x5 Average Length of Patients 1 -394.31412 209.63954 -1.88 0.0867

Stay in Days

Figure 7.26: SAS output for Review Exercise 7.92; part I.
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Dependent Predicted Std Error
Obs Variable Value Mean Predict 95% CL Mean 95% CL Predict
1 566.5200 775.0251 241.2323 244.0765 1306 -734.6494 2285
2 696.8200 740.6702 331.1402 11.8355 1470 -849.4275 2331
3 1033 1104 278.5116 490.9234 1717 -436.5244 2644
4 1604 1240 268.1298 650.3459 1831 -291.0028 2772
5 1611 1564 211.2372 1099 2029 76.6816 3052
6 1613 2151 279.9293 1535 2767 609.5796 3693
7 1854 1690 218.9976 1208 2172 196.5345 3183
8 2161 1736 468.9903 703.9948 2768 -13.8306 3486
9 2306 2737 290.4749 2098 3376 1186 4288
10 3504 3682 585.2517 2394 4970 1770 5594
11 3572 3239 189.0989 2823 3655 1766 4713
12 3741 4353 328.8507 3630 5077 2766 5941
13 4027 4257 314.0481 3566 4948 2684 5830
14 10344 8768 252.2617 8213 9323 7249 10286
15 11732 12237 573.9168 10974 13500 10342 14133
16 15415 15038 585.7046 13749 16328 13126 16951
17 18854 19321 599.9780 18000 20641 17387 21255

Std Error Student
Obs Residual Residual Residual -2-1 0 1 2
1 -208.5051 595.0 -0.350 | | |
2 -43.8502 550.1 -0.0797 | | |
3 -70.7734 578.5 -0.122 | | |
4 363.1244 583.4 0.622 | |* |
5 46.9483 606.3 0.0774 | | |
6 -538.0017 577.9 -0.931 | *| |
7 164.4696 603.6 0.272 | | |
8 424.3145 438.5 0.968 | |* |
9 -431.4090 572.6 -0.753 | *| |
10 -177.9234 264.1 -0.674 | *| |
11 332.6011 613.6 0.542 | |* |
12 -611.9330 551.5 -1.110 | **| |
13 -230.5684 560.0 -0.412 | | |
14 1576 590.5 2.669 | |***** |
15 -504.8574 287.9 -1.753 | ***| |
16 376.5491 263.1 1.431 | |** |
17 -466.2470 228.7 -2.039 | ****| |

Figure 7.27: SAS output for Review Exercise 7.92; part II.



Chapter 8

One-Factor Experiments: General

8.1 Analysis-of-Variance Technique and the Strategy of
Experimental Design

In the estimation and hypothesis testing material covered in Chapters 5 and 6, we
were restricted in each case to considering no more than two population parameters.
Such was the case, for example, in testing for the equality of two population means
using independent samples from normal populations with common but unknown
variance, where it was necessary to obtain a pooled estimate of σ2. This material
dealing in two-sample inference represents a special case of what we call the one-
factor problem. For example, in Exercise 6.35 on page 269, the survival time was
measured for two samples of mice, where one sample received a new serum for
leukemia treatment and the other sample received no treatment. In this case, we
say that there is one factor, namely treatment, and the factor is at two levels.
If several competing treatments were being used in the sampling process, more
samples of mice would be necessary. In this case, the problem would involve one
factor with more than two levels and thus more than two samples.

In the k > 2 sample problem, it will be assumed that there are k samples from
k populations. One very common procedure used to deal with testing population
means is called the analysis of variance, or ANOVA.

The analysis of variance is certainly not a new technique to the reader who
has followed the material on regression theory. We used the analysis-of-variance
approach to partition the total sum of squares into a portion due to regression and
a portion due to error.

Suppose in an industrial experiment that an engineer is interested in how the
mean absorption of moisture in concrete varies among 5 different concrete aggre-
gates. The samples are exposed to moisture for 48 hours. It is decided that 6
samples are to be tested for each aggregate, requiring a total of 30 samples to be
tested. The data are recorded in Table 8.1.

The model for this situation may be set up as follows. There are 6 observations
taken from each of 5 populations with means μ1, μ2, . . . , μ5, respectively. We may

355
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Table 8.1: Absorption of Moisture in Concrete Aggregates

Aggregate: 1 2 3 4 5

551 595 639 417 563
457 580 615 449 631
450 508 511 517 522
731 583 573 438 613
499 633 648 415 656
632 517 677 555 679

Total 3320 3416 3663 2791 3664 16,854
Mean 553.33 569.33 610.50 465.17 610.67 561.80

wish to test

H0: μ1 = μ2 = · · · = μ5,

H1: At least two of the means are not equal.

In addition, we may be interested in making individual comparisons among these
5 population means.

In the analysis-of-variance procedure, it is assumed that whatever variation ex-
ists among the aggregate averages is attributed to (1) variation in absorption among
observations within aggregate types and (2) variation among aggregate types, that
is, due to differences in the chemical composition of the aggregates. The within-
aggregate variation is, of course, brought about by various causes. Perhaps
humidity and temperature conditions were not kept entirely constant throughout
the experiment. It is possible that there was a certain amount of heterogeneity in
the batches of raw materials that were used. At any rate, we shall consider the
within-sample variation to be chance or random variation. Part of the goal of
the analysis of variance is to determine if the differences among the 5 sample means
are what we would expect due to random variation alone or, rather, due to varia-
tion beyond merely random effects, i.e., differences in the chemical composition of
the aggregates.

Many pointed questions appear at this stage concerning the preceding problem.
For example, how many samples must be tested for each aggregate? This is a
question that continually haunts the practitioner. In addition, what if the within-
sample variation is so large that it is difficult for a statistical procedure to detect
the systematic differences? Can we systematically control extraneous sources of
variation and thus remove them from the portion we call random variation? We
shall attempt to answer these and other questions in the following sections.

In Chapters 5 and 6, the notions of estimation and testing for the two-sample
case were covered against the important backdrop of the way the experiment is
conducted. This discussion falls into the broad category of design of experiments.
For example, for the pooled t-test discussed in Chapter 6, it is assumed that the
factor levels (treatments in the mice example) are assigned randomly to the exper-
imental units (mice). The notion of experimental units was discussed in Chapters
5 and 6 and illustrated through examples. Simply put, experimental units are the



8.2 One-Way Analysis of Variance: Completely Randomized Design 357

units (mice, patients, concrete specimens, time) that provide the heterogene-
ity that leads to experimental error in a scientific investigation. The random
assignment eliminates bias that could result with systematic assignment. The goal
is to distribute uniformly among the factor levels the risks brought about by the
heterogeneity of the experimental units. Random assignment best simulates the
conditions that are assumed by the model. In Section 8.5, we discuss blocking
in experiments. The notion of blocking was presented in Chapters 5 and 6, when
comparisons between means were accomplished with pairing, that is, the division
of the experimental units into homogeneous pairs called blocks. The factor levels
or treatments are then assigned randomly within blocks. The purpose of blocking is
to reduce the effective experimental error. In this chapter, we naturally extend the
pairing to larger block sizes, with analysis of variance being the primary analytical
tool.

8.2 One-Way Analysis of Variance (One-Way ANOVA):
Completely Randomized Design

Random samples of size n are selected from each of k populations. The k differ-
ent populations are classified on the basis of a single criterion such as different
treatments or groups. Today the term treatment is used generally to refer to
the various classifications, whether they be different aggregates, different analysts,
different fertilizers, or different regions of the country.

Assumptions and Hypotheses in One-Way ANOVA

It is assumed that the k populations are independent and normally distributed
with means μ1, μ2, . . . , μk and common variance σ2. As indicated in Section 8.1,
these assumptions are made more palatable by randomization. We wish to derive
appropriate methods for testing the hypothesis

H0: μ1 = μ2 = · · · = μk,

H1: At least two of the means are not equal.

Let yij denote the jth observation from the ith treatment and arrange the data as
in Table 8.2. Here, Yi. is the total of all observations in the sample from the ith
treatment, ȳi. is the mean of all observations in the sample from the ith treatment,
Y.. is the total of all nk observations, and ȳ.. is the mean of all nk observations.

Model for One-Way ANOVA

Each observation may be written in the form

Yij = μi + εij ,

where εij measures the deviation of the jth observation of the ith sample from the
corresponding treatment mean. The εij-term represents random error and plays
the same role as the error terms in the regression models. An alternative and
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Table 8.2: k Random Samples

Treatment: 1 2 · · · i · · · k
y11 y21 · · · yi1 · · · yk1
y12 y22 · · · yi2 · · · yk2
...

...
...

...
y1n y2n · · · yin · · · ykn

Total Y1. Y2. · · · Yi. · · · Yk. Y..

Mean ȳ1. ȳ2. · · · ȳi. · · · ȳk. ȳ..

preferred form of this equation is obtained by substituting μi = μ+ αi, subject to

the constraint
k∑

i=1

αi = 0. Hence, we may write

Yij = μ+ αi + εij ,

where μ is just the grand mean of all the μi, that is,

μ =
1

k

k∑
i=1

μi,

and αi is called the effect of the ith treatment.
The null hypothesis that the k population means are equal, against the alter-

native that at least two of the means are unequal, may now be replaced by the
equivalent hypothesis

H0: α1 = α2 = · · · = αk = 0,

H1: At least one of the αi is not equal to zero.

Resolution of Total Variability into Components

Our test will be based on a comparison of two independent estimates of the common
population variance σ2. These estimates will be obtained by partitioning the total
variability of our data, designated by the double summation

k∑
i=1

n∑
j=1

(yij − ȳ..)
2,

into two components.

Theorem 8.1: Sum-of-Squares Identity

k∑
i=1

n∑
j=1

(yij − ȳ..)
2 = n

k∑
i=1

(ȳi. − ȳ..)
2 +

k∑
i=1

n∑
j=1

(yij − ȳi.)
2

It will be convenient in what follows to identify the terms of the sum-of-squares
identity by the following notation:
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Three Important
Measures of
Variability

SST =

k∑
i=1

n∑
j=1

(yij − ȳ..)
2 = total sum of squares,

SSA = n
k∑

i=1

(ȳi. − ȳ..)
2 = treatment sum of squares,

SSE =
k∑

i=1

n∑
j=1

(yij − ȳi.)
2 = error sum of squares.

The sum-of-squares identity can then be represented symbolically by the equation

SST = SSA+ SSE.

The identity above expresses how between-treatment and within-treatment
variation add to the total sum of squares. However, much insight can be gained by
investigating the expected value of both SSA and SSE. Eventually, we shall
develop variance estimates that formulate the ratio to be used to test the equality
of population means.

Theorem 8.2:
E(SSA) = (k − 1)σ2 + n

k∑
i=1

α2
i

The proof of the theorem is left to the reader.
If H0 is true, an estimate of σ2, based on k− 1 degrees of freedom, is provided

by this expression:

Treatment Mean
Square s21 =

SSA

k − 1

If H0 is true and thus each αi in Theorem 8.2 is equal to zero, we see that

E

(
SSA

k − 1

)
= σ2,

and s21 is an unbiased estimate of σ2. However, if H1 is true, we have

E

(
SSA

k − 1

)
= σ2 +

n

k − 1

k∑
i=1

α2
i ,

and s21 estimates σ2 plus an additional positive term, which measures variation due
to the systematic effects.

A second and independent estimate of σ2, based on k(n−1) degrees of freedom,
is the following formula:

Error Mean
Square s2 =

SSE

k(n− 1)
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It is instructive to point out the importance of the expected values of the mean
squares. In the next section, we discuss the use of an F-ratio with the treatment
mean square residing in the numerator. It turns out that when H1 is true, the
presence of the condition E(s21) > E(s2) suggests that the F-ratio be used in the
context of a one-sided upper-tailed test. That is, when H1 is true, we would
expect the numerator s21 to exceed the denominator.

Use of F-Test in ANOVA

The estimate s2 is unbiased regardless of the truth or falsity of the null hypothesis.
It is important to note that the sum-of-squares identity has partitioned not only
the total variability of the data, but also the total number of degrees of freedom.
That is,

nk − 1 = k − 1 + k(n− 1).

F-Ratio for Testing Equality of Means

When H0 is true, the ratio f = s21/s
2 is a value of the random variable F having the

F-distribution with k−1 and k(n−1) degrees of freedom (see Theorem 4.8). Since
s21 overestimates σ2 when H0 is false, we have a one-tailed test with the critical
region entirely in the right tail of the distribution.

The null hypothesis H0 is rejected at the α-level of significance when

f > fα[k − 1, k(n− 1)].

Another approach, the P-value approach, suggests that the evidence in favor of
or against H0 is

P = P{f [k − 1, k(n− 1)] > f}.

The computations for an analysis-of-variance problem are usually summarized in
tabular form, as shown in Table 8.3.

Table 8.3: Analysis of Variance for the One-Way ANOVA

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Treatments SSA k − 1 s21 =
SSA

k − 1

s21
s2

Error SSE k(n− 1) s2 =
SSE

k(n− 1)

Total SST kn− 1

Example 8.1: Test the hypothesis μ1 = μ2 = · · · = μ5 at the 0.05 level of significance for the
data of Table 8.1 on absorption of moisture by various types of cement aggregates.
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Solution : The hypotheses are

H0: μ1 = μ2 = · · · = μ5,

H1: At least two of the means are not equal,

with α = 0.05.

Critical region: f > 2.76 with v1 = 4 and v2 = 25 degrees of freedom. The
sum-of-squares computations give

SST = 209,377, SSA = 85,356,

SSE = 209,377− 85,356 = 124,021.

These results and the remaining computations are exhibited in Figure 8.1 in the
SAS ANOVA procedure.

The GLM Procedure

Dependent Variable: moisture

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 85356.4667 21339.1167 4.30 0.0088

Error 25 124020.3333 4960.8133

Corrected Total 29 209376.8000

R-Square Coeff Var Root MSE moisture Mean

0.407669 12.53703 70.43304 561.8000

Source DF Type I SS Mean Square F Value Pr > F

aggregate 4 85356.46667 21339.11667 4.30 0.0088

Figure 8.1: SAS output for the analysis-of-variance procedure.

Decision: Reject H0 and conclude that the aggregates do not have the same mean
absorption. The P-value for f = 4.30 is 0.0088, which is smaller than 0.05.

In addition to the ANOVA, a box plot was constructed for each aggregate. The
plots are shown in Figure 8.2. From these plots it is evident that the absorption
is not the same for all aggregates. In fact, it appears as if aggregate 4 stands out
from the rest. A more formal analysis showing this result will appear in Exercise
8.21 on page 372.

During experimental work, one often loses some of the desired observations.
Experimental animals may die, experimental material may be damaged, or human
subjects may drop out of a study. The previous analysis for equal sample size will
still be valid if we slightly modify the sum of squares formulas. We now assume
the k random samples to be of sizes n1, n2, . . . , nk, respectively.

Sum of Squares,
Unequal Sample

Sizes
SST =

k∑
i=1

ni∑
j=1

(yij − ȳ..)
2, SSA =

k∑
i=1

ni(ȳi. − ȳ..)
2, SSE = SST − SSA
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Figure 8.2: Box plots for the absorption of moisture in concrete aggregates.

The degrees of freedom are then partitioned as before: N − 1 for SST, k − 1 for

SSA, and N − 1− (k − 1) = N − k for SSE, where N =
k∑

i=1

ni.

Example 8.2: Part of a study conducted at Virginia Tech was designed to measure serum al-
kaline phosphatase activity levels (in Bessey-Lowry units) in children with seizure
disorders who were receiving anticonvulsant therapy under the care of a private
physician. Forty-five subjects were found for the study and categorized into four
drug groups:

G-1: Control (not receiving anticonvulsants and having no history of seizure
disorders)

G-2: Phenobarbital

G-3: Carbamazepine

G-4: Other anticonvulsants

From blood samples collected from each subject, the serum alkaline phosphatase
activity level was determined and recorded as shown in Table 8.4. Test the hypoth-
esis at the 0.05 level of significance that the average serum alkaline phosphatase
activity level is the same for the four drug groups.
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Table 8.4: Serum Alkaline Phosphatase Activity Level

G-1 G-2 G-3 G-4
49.20
44.54
45.80
95.84
30.10
36.50
82.30
87.85
105.00
95.22

97.50
105.00
58.05
86.60
58.35
72.80
116.70
45.15
70.35
77.40

97.07
73.40
68.50
91.85

106.60
0.57
0.79
0.77
0.81

62.10
94.95

142.50
53.00

175.00
79.50
29.50
78.40

127.50

110.60
57.10

117.60
77.71

150.00
82.90

111.50

Solution : With the level of significance at 0.05, the hypotheses are

H0: μ1 = μ2 = μ3 = μ4,

H1: At least two of the means are not equal.

Critical region: f > 2.836, from interpolating in Table A.6.
Computations: Y1. = 1460.25, Y2. = 440.36, Y3. = 842.45, Y4. = 707.41, and
Y.. = 3450.47. The analysis of variance is shown in the MINITAB output of
Figure 8.3.

One-way ANOVA: G-1, G-2, G-3, G-4

Source DF SS MS F P

Factor 3 13939 4646 3.57 0.022

Error 41 53376 1302

Total 44 67315

S = 36.08 R-Sq = 20.71% R-Sq(adj) = 14.90%

Individual 95% CIs For Mean Based on

Pooled StDev

Level N Mean StDev --+---------+---------+---------+-------

G-1 20 73.01 25.75 (----*-----)

G-2 9 48.93 47.11 (-------*-------)

G-3 9 93.61 46.57 (-------*-------)

G-4 7 101.06 30.76 (--------*--------)

--+---------+---------+---------+-------

30 60 90 120

Pooled StDev = 36.08

Figure 8.3: MINITAB analysis of data in Table 8.4.
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Decision: Reject H0 and conclude that the average serum alkaline phosphatase
activity levels for the four drug groups are not all the same. The calculated P-
value is 0.022.

In concluding our discussion on the analysis of variance for the one-way classifi-
cation, we state the advantages of choosing equal sample sizes rather than unequal
sample sizes. The first advantage is that the f-ratio is insensitive to slight de-
partures from the assumption of equal variances for the k populations when the
samples are of equal size. Second, the choice of equal sample sizes minimizes the
probability of committing a type II error.

8.3 Tests for the Equality of Several Variances

Although the f-ratio obtained from the analysis-of-variance procedure is insensitive
to departures from the assumption of equal variances for the k normal populations
when the samples are of equal size, we may still prefer to exercise caution and
run a preliminary test for homogeneity of variances. Such a test would certainly
be advisable in the case of unequal sample sizes if there was a reasonable doubt
concerning the homogeneity of the population variances. Suppose, therefore, that
we wish to test the null hypothesis

H0: σ2
1 = σ2

2 = · · · = σ2
k

against the alternative

H1: The variances are not all equal.

The test that we shall use, called Bartlett’s test, is based on a statistic whose
sampling distribution provides exact critical values when the sample sizes are equal.
These critical values for equal sample sizes can also be used to yield highly accurate
approximations to the critical values for unequal sample sizes.

First, we compute the k sample variances s21, s
2
2, . . . , s

2
k from samples of size

n1, n2, . . . , nk, with
k∑

i=1

ni = N . Second, we combine the sample variances to give

the pooled estimate

s2p =
1

N − k

k∑
i=1

(ni − 1)s2i .

Now

b =
[(s21)

n1−1(s22)
n2−1 · · · (s2k)nk−1]1/(N−k)

s2p

is a value of a random variable B having the Bartlett distribution. For the
special case where n1 = n2 = · · · = nk = n, we reject H0 at the α-level of
significance if

b < bk(α;n),
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where bk(α;n) is the critical value leaving an area of size α in the left tail of the
Bartlett distribution. Table A.8 gives the critical values, bk(α;n), for α = 0.01 and
0.05; k = 2, 3, . . . , 10; and selected values of n from 3 to 100.

When the sample sizes are unequal, the null hypothesis is rejected at the α-level
of significance if

b < bk(α;n1, n2, . . . , nk),

where

bk(α;n1, n2, . . . , nk) ≈ n1bk(α;n1) + n2bk(α;n2) + · · ·+ nkbk(α;nk)

N
.

As before, all the bk(α;ni) for sample sizes n1, n2, . . . , nk are obtained from Table
A.8.

Example 8.3: Use Bartlett’s test to test the hypothesis at the 0.01 level of significance that the
population variances of the four drug groups of Example 8.2 are equal.

Solution : We have the hypotheses

H0: σ2
1 = σ2

2 = σ2
3 = σ2

4 ,

H1: The variances are not equal,

with α = 0.01.

Critical region: Referring to Example 8.2, we have n1 = 20, n2 = 9, n3 = 9, n4 = 7,
N = 45, and k = 4. Therefore, we reject when

b < b4(0.01; 20, 9, 9, 7)

≈ (20)(0.8586) + (9)(0.6892) + (9)(0.6892) + (7)(0.6045)

45
= 0.7513.

Computations: First compute

s21 = 662.862, s22 = 2219.781, s23 = 2168.434, s24 = 946.032,

and then

s2p =
(19)(662.862) + (8)(2219.781) + (8)(2168.434) + (6)(946.032)

41
= 1301.861.

Now

b =
[(662.862)19(2219.781)8(2168.434)8(946.032)6]1/41

1301.861
= 0.8557.

Decision: Do not reject the hypothesis, and conclude that the population variances
of the four drug groups are not significantly different.

Although Bartlett’s test is most often used for testing of homogeneity of vari-
ances, other methods are available. A method due to Cochran provides a compu-
tationally simple procedure, but it is restricted to situations in which the sample
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sizes are equal. Cochran’s test is particularly useful for detecting if one variance
is much larger than the others. The statistic that is used is

G =
largest S2

i

k∑
i=1

S2
i

,

and the hypothesis of equality of variances is rejected if g > gα, where the value of
gα is obtained from Table A.9.

To illustrate Cochran’s test, let us refer again to the data of Table 8.1 on
moisture absorption in concrete aggregates. Were we justified in assuming equal
variances when we performed the analysis of variance in Example 8.1? We find
that

s21 = 12,134, s22 = 2303, s23 = 3594, s24 = 3319, s25 = 3455.

Therefore,

g =
12,134

24,805
= 0.4892,

which does not exceed the table value g0.05 = 0.5065. Hence, we conclude that the
assumption of equal variances is reasonable.

Exercises

8.1 Six different machines are being considered for use
in manufacturing rubber seals. The machines are being
compared with respect to tensile strength of the prod-
uct. A random sample of four seals from each machine
is used to determine whether the mean tensile strength
varies from machine to machine. The following are the
tensile-strength measurements in kilograms per square
centimeter × 10−1:

Machine
1 2 3 4 5 6

17.5 16.4 20.3 14.6 17.5 18.3
16.9 19.2 15.7 16.7 19.2 16.2
15.8 17.7 17.8 20.8 16.5 17.5
18.6 15.4 18.9 18.9 20.5 20.1

Perform the analysis of variance at the 0.05 level of sig-
nificance and indicate whether or not the mean tensile
strengths differ significantly for the six machines.

8.2 The data in the following table represent the num-
ber of hours of relief provided by five different brands
of headache tablets administered to 25 subjects expe-
riencing fevers of 38◦C or more. Perform the analysis
of variance and test the hypothesis at the 0.05 level
of significance that the mean number of hours of relief
provided by the tablets is the same for all five brands.
Discuss the results.

Tablet
A B C D E
5.2 9.1 3.2 2.4 7.1
4.7 7.1 5.8 3.4 6.6
8.1 8.2 2.2 4.1 9.3
6.2 6.0 3.1 1.0 4.2
3.0 9.1 7.2 4.0 7.6

8.3 In an article “Shelf-Space Strategy in Retailing,”
published in Proceedings: Southern Marketing Associa-
tion, the effect of shelf height on the supermarket sales
of canned dog food is investigated. An experiment was
conducted at a small supermarket for a period of 8 days
on the sales of a single brand of dog food, referred to
as Arf dog food, involving three levels of shelf height:
knee level, waist level, and eye level. During each day,
the shelf height of the canned dog food was randomly
changed on three different occasions. The remaining
sections of the gondola that housed the given brand
were filled with a mixture of dog food brands that were
both familiar and unfamiliar to customers in this par-
ticular geographic area. Sales, in hundreds of dollars,
of Arf dog food per day for the three shelf heights are
given. Based on the data, is there a significant differ-
ence in the average daily sales of this dog food based
on shelf height? Use a 0.01 level of significance.
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Shelf Height
Knee Level Waist Level Eye Level

77 88 85
82 94 85
86 93 87
78 90 81
81 91 80
86 94 79
77 90 87
81 87 93

8.4 Immobilization of free-ranging white-tailed deer
by drugs allows researchers the opportunity to closely
examine the deer and gather valuable physiological in-
formation. In the study Influence of Physical Restraint
and Restraint Facilitating Drugs on Blood Measure-
ments of White-Tailed Deer and Other Selected Mam-
mals, conducted at Virginia Tech, wildlife biologists
tested the “knockdown” time (time from injection to
immobilization) of three different immobilizing drugs.
Immobilization, in this case, is defined as the point
where the animal no longer has enough muscle control
to remain standing. Thirty male white-tailed deer were
randomly assigned to each of three treatments. Group
A received 5 milligrams of liquid succinylcholine chlo-
ride (SCC); group B received 8 milligrams of powdered
SCC; and group C received 200 milligrams of phency-
clidine hydrochloride. Knockdown times, in minutes,
were recorded. Perform an analysis of variance at the
0.01 level of significance and determine whether or not
the average knockdown time for the three drugs is the
same.

Group
A B C
11
5

14
7

10
7

23
4

11
11

10
7

16
7
7
5

10
10
6

12

4
4
6
3
5
6
8
3
7
3

8.5 The mitochondrial enzyme NADPH:NAD trans-
hydrogenase of the common rat tapeworm (Hy-
menolepiasis diminuta) catalyzes hydrogen in the
transfer from NADPH to NAD, producing NADH.
This enzyme is known to serve a vital role in the
tapeworm’s anaerobic metabolism, and it has recently
been hypothesized that it may serve as a proton ex-
change pump, transferring protons across the mito-
chondrial membrane. A study on Effect of Various
Substrate Concentrations on the Conformational Vari-
ation of the NADPH:NAD Transhydrogenase of Hy-
menolepiasis diminuta, conducted at Bowling Green

State University, was designed to assess the ability of
this enzyme to undergo conformation or shape changes.
Changes in the specific activity of the enzyme caused
by variations in the concentration of NADP could be
interpreted as supporting the theory of conformational
change. The enzyme in question is located in the in-
ner membrane of the tapeworm’s mitochondria. Tape-
worms were homogenized, and through a series of cen-
trifugations, the enzyme was isolated. Various con-
centrations of NADP were then added to the isolated
enzyme solution, and the mixture was then incubated
in a water bath at 56◦C for 3 minutes. The enzyme
was then analyzed on a dual-beam spectrophotometer,
and the results shown were calculated, with the specific
activity of the enzyme given in nanomoles per minute
per milligram of protein. Test the hypothesis at the
0.01 level that the average specific activity is the same
for the four concentrations.

NADP Concentration (nm)
0 80 160 360

11.01 11.38 11.02 6.04 10.31
12.09 10.67 10.67 8.65 8.30
10.55 12.33 11.50 7.76 9.48
11.26 10.08 10.31 10.13 8.89

9.36

8.6 A study measured the sorption (either absorption
or adsorption) rates of three different types of organic
chemical solvents. These solvents are used to clean in-
dustrial fabricated-metal parts and are potential haz-
ardous waste. Independent samples from each type
of solvent were tested, and their sorption rates were
recorded as a mole percentage. (See McClave, Diet-
rich, and Sincich, 1997.)

Aromatics Chloroalkanes Esters
1.06 0.95 1.58 1.12 0.29 0.43 0.06
0.79 0.65 1.45 0.91 0.06 0.51 0.09
0.82 1.15 0.57 0.83 0.44 0.10 0.17
0.89 1.12 1.16 0.43 0.55 0.53 0.17
1.05 0.61 0.34 0.60

Is there a significant difference in the mean sorption
rates for the three solvents? Use a P-value for your
conclusions. Which solvent would you use?

8.7 It has been shown that the fertilizer magnesium
ammonium phosphate, MgNH4PO4, is an effective sup-
plier of the nutrients necessary for plant growth. The
compounds supplied by this fertilizer are highly solu-
ble in water, allowing the fertilizer to be applied di-
rectly on the soil surface or mixed with the growth
substrate during the potting process. A study on the
Effect of Magnesium Ammonium Phosphate on Height
of Chrysanthemums was conducted at George Mason
University to determine a possible optimum level of
fertilization, based on the enhanced vertical growth re-
sponse of the chrysanthemums. Forty chrysanthemum



368 Chapter 8 One-Factor Experiments

seedlings were divided into four groups, each containing
10 plants. Each was planted in a similar pot containing
a uniform growth medium. To each group of plants an
increasing concentration of MgNH4PO4, measured in
grams per bushel, was added. The four groups of plants
were grown under uniform conditions in a greenhouse
for a period of four weeks. The treatments and the re-
spective changes in heights, measured in centimeters,
are shown next.

Treatment
50 g/bu 100 g/bu 200 g/bu 400 g/bu
13.2 12.4 16.0 12.6 7.8 14.4 21.0 14.8
12.8 17.2 14.8 13.0 20.0 15.8 19.1 15.8
13.0 14.0 14.0 23.6 17.0 27.0 18.0 26.0
14.2 21.6 14.0 17.0 19.6 18.0 21.1 22.0
15.0 20.0 22.2 24.4 20.2 23.2 25.0 18.2

Can we conclude at the 0.05 level of significance that

different concentrations of MgNH4PO4 affect the av-
erage attained height of chrysanthemums? How much
MgNH4PO4 appears to be best?

8.8 For the data set in Exercise 8.7, use Bartlett’s test
to check whether the variances are equal. Use α = 0.05.

8.9 Use Bartlett’s test at the 0.01 level of significance
to test for homogeneity of variances in Exercise 8.5 on
page 367.

8.10 Use Cochran’s test at the 0.01 level of signifi-
cance to test for homogeneity of variances in Exercise
8.4 on page 367.

8.11 Use Bartlett’s test at the 0.05 level of signifi-
cance to test for homogeneity of variances in Exercise
8.6 on page 367.

8.4 Multiple Comparisons

The analysis of variance is a powerful procedure for testing the homogeneity of
a set of means. However, if we reject the null hypothesis and accept the stated
alternative—that the means are not all equal—we still do not know which of the
population means are equal and which are different.

Often it is of interest to make several (perhaps all possible) paired compar-
isons among the treatments. Actually, a paired comparison may be viewed as a
simple contrast, namely, a test of

H0: μi − μj = 0,

H1: μi − μj �= 0,

for all i �= j. Making all possible paired comparisons among the means can be very
beneficial when particular complex contrasts are not known a priori. For example,
in the aggregate data of Table 8.1, suppose that we wish to test

H0: μ1 − μ5 = 0,

H1: μ1 − μ5 �= 0.

The test is developed through use of an F, t, or confidence interval approach. Using
t, we have

t =
ȳ1. − ȳ5.

s
√
2/n

,

where s is the square root of the mean square error and n = 6 is the sample size per
treatment. Using the mean square error from Figure 8.1 as the common variance,
we have

t =
553.33− 610.67√
4960.8133

√
1/3

= −1.41.

The P-value for the t-test with 25 degrees of freedom is 0.17. Thus, there is not
sufficient evidence to reject H0.
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Relationship between T and F

In the foregoing, we displayed the use of a pooled t-test along the lines of that
discussed in Chapter 6. The pooled estimate was taken from the mean squared
error in order to enjoy the degrees of freedom that are pooled across all five samples.
In addition, we have tested a contrast. The reader should note that if the t-value
is squared, the result is exactly of the same form as the value of f for a test on a
contrast, discussed in the preceding section. In fact,

f =
(ȳ1. − ȳ5.)

2

s2(1/6 + 1/6)
=

(553.33− 610.67)2

4961(1/3)
= 1.988,

which, of course, is t2.

Confidence Interval Approach to a Paired Comparison

It is straightforward to solve the same problem of a paired comparison (or a con-
trast) using a confidence interval approach. Clearly, if we compute a 100(1− α)%
confidence interval on μ1 − μ5, we have

ȳ1. − ȳ5. ± tα/2s

√
2

6
,

where tα/2 is the upper 100(1 − α/2)% point of a t-distribution with 25 degrees
of freedom (degrees of freedom coming from s2). This straightforward connection
between hypothesis testing and confidence intervals should be obvious from dis-
cussions in Chapters 5 and 6. The test of the simple contrast μ1 − μ5 involves
no more than observing whether or not the confidence interval above covers zero.
Substituting the numbers, we have as the 95% confidence interval

(553.33− 610.67)± 2.060
√
4961

√
1

3
= −57.34± 83.77.

Thus, since the interval covers zero, the contrast is not significant. In other words,
we do not find a significant difference between the means of aggregates 1 and 5.

Experiment-wise Error Rate

Serious difficulties occur when the analyst attempts to make many or all pos-
sible paired comparisons. For the case of k means, there will be, of course,
r = k(k − 1)/2 possible paired comparisons. Assuming independent comparisons,
the experiment-wise error rate or family error rate (i.e., the probability of
false rejection of at least one of the hypotheses) is given by 1 − (1 − α)r, where
α is the selected probability of a type I error for a specific comparison. Clearly,
this measure of experiment-wise type I error can be quite large. For example, even
if there are only 6 comparisons, say, in the case of 4 means, and α = 0.05, the
experiment-wise rate is

1− (0.95)6 ≈ 0.26.
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When many paired comparisons are being tested, there is usually a need to make
the effective contrast on a single comparison more conservative. That is, with the
confidence interval approach, the confidence intervals would be much wider than
the ±tα/2s

√
2/n used for the case where only a single comparison is being made.

Tukey’s Test

There are several standard methods for making paired comparisons that sustain
the credibility of the type I error rate. We shall discuss and illustrate two of them
here. The first one, called Tukey’s procedure, allows formation of simultaneous
100(1− α)% confidence intervals for all paired comparisons. The method is based
on the studentized range distribution. The appropriate percentile point is a function
of α, k, and v = degrees of freedom for s2. A list of upper percentage points for
α = 0.05 is shown in Table A.10. The method of paired comparisons by Tukey
involves finding a significant difference between means i and j (i �= j) if |ȳi. − ȳj.|
exceeds q(α, k, v)

√
s2

n .

Tukey’s procedure is easily illustrated. Consider a hypothetical example where
we have 6 treatments in a one-factor completely randomized design, with 5 obser-
vations taken per treatment. Suppose that the mean square error taken from the
analysis-of-variance table is s2 = 2.45 (24 degrees of freedom). The sample means
are in ascending order:

ȳ2. ȳ5. ȳ1. ȳ3. ȳ6. ȳ4.
14.50 16.75 19.84 21.12 22.90 23.20.

With α = 0.05, the value of q(0.05, 6, 24) is 4.37. Thus, all absolute differences are
to be compared to

4.37

√
2.45

5
= 3.059.

As a result, the following represent means found to be significantly different using
Tukey’s procedure:

4 and 1, 4 and 5, 4 and 2, 6 and 1, 6 and 5,
6 and 2, 3 and 5, 3 and 2, 1 and 5, 1 and 2.

Where Does the α-Level Come From in Tukey’s Test?

We briefly alluded to the concept of simultaneous confidence intervals being
employed for Tukey’s procedure. The reader will gain a useful insight into the
notion of multiple comparisons if he or she gains an understanding of what is
meant by simultaneous confidence intervals.

In Chapter 5, we saw that if we compute a 95% confidence interval on, say,
a mean μ, then the probability that the interval covers the true mean μ is 0.95.
However, as we have discussed, for the case of multiple comparisons, the effective
probability of interest is tied to the experiment-wise error rate, and it should be
emphasized that the confidence intervals of the type ȳi. − ȳj. ± q(α, k, v)s

√
1/n

are not independent since they all involve s and many involve the use of the same
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averages, the ȳi.. Despite the difficulties, if we use q(0.05, k, v), the simultaneous
confidence level is controlled at 95%. The same holds for q(0.01, k, v); namely, the
confidence level is controlled at 99%. In the case of α = 0.05, there is a probability
of 0.05 that at least one pair of measures will be falsely found to be different (false
rejection of at least one null hypothesis). In the α = 0.01 case, the corresponding
probability will be 0.01.

Although we only discussed Tukey’s test in multiple comparison procedures,
there are many other tests available.

Exercises

8.12 The study Loss of Nitrogen Through Sweat by
Preadolescent Boys Consuming Three Levels of Dietary
Protein was conducted by the Department of Human
Nutrition and Foods at Virginia Tech to determine per-
spiration nitrogen loss at various dietary protein levels.
Twelve preadolescent boys ranging in age from 7 years,
8 months to 9 years, 8 months, all judged to be clini-
cally healthy, were used in the experiment. Each boy
was subjected to one of three controlled diets in which
29, 54, or 84 grams of protein were consumed per day.
The following data represent the body perspiration ni-
trogen loss, in milligrams, during the last two days of
the experimental period:

Protein Level
29 Grams 54 Grams 84 Grams

190 318 390
266 295 321
270 271 396

438 399
402

(a) Perform an analysis of variance at the 0.05 level
of significance to show that the mean perspiration
nitrogen losses at the three protein levels are dif-
ferent.

(b) Use Tukey’s test to determine which protein levels
are significantly different from each other in mean
nitrogen loss.

8.13 The purpose of the study The Incorporation of
a Chelating Agent into a Flame Retardant Finish of a
Cotton Flannelette and the Evaluation of Selected Fab-
ric Properties, conducted at Virginia Tech, was to eval-
uate the use of a chelating agent as part of the flame-
retardant finish of cotton flannelette by determining
its effects upon flammability after the fabric is laun-
dered under specific conditions. Two baths were pre-
pared, one with carboxymethyl cellulose and one with-
out. Twelve pieces of fabric were laundered 5 times in
bath I, and 12 other pieces of fabric were laundered 10
times in bath I. This procedure was repeated using 24
additional pieces of cloth in bath II. After the wash-
ings the lengths of fabric that burned and the burn

times were measured. For convenience, let us define
the following treatments:

Treatment 1: 5 launderings in bath I,

Treatment 2: 5 launderings in bath II,

Treatment 3: 10 launderings in bath I,

Treatment 4: 10 launderings in bath II.

Burn times, in seconds, were recorded as follows:

Treatment
1 2 3 4

13.7
23.0
15.7
25.5
15.8
14.8
14.0
29.4
9.7

14.0
12.3
12.3

6.2
5.4
5.0
4.4
5.0
3.3

16.0
2.5
1.6
3.9
2.5
7.1

27.2
16.8
12.9
14.9
17.1
13.0
10.8
13.5
25.5
14.2
27.4
11.5

18.2
8.8

14.5
14.7
17.1
13.9
10.6
5.8
7.3

17.7
18.3
9.9

(a) Perform an analysis of variance, using a 0.01 level of
significance, and determine whether there are any
significant differences among the treatment means.

(b) Use Tukey’s test, with a 0.05 level of significance,
to test whether treatment levels are different from
each other.

8.14 An investigation was conducted to determine
the source of reduction in yield of a certain chemical
product. It was known that the loss in yield occurred in
the mother liquor, that is, the material removed at the
filtration stage. It was thought that different blends
of the original material might result in different yield
reductions at the mother liquor stage. The data below
on the percent reductions for 3 batches of each of 4
preselected blends were obtained.

(a) Perform an analysis of variance at the α = 0.05
level of significance.

(b) Use Tukey’s test to determine which blends differ.



372 Chapter 8 One-Factor Experiments

Blend
1 2 3 4

25.6 25.2 20.8 31.6
24.3 28.6 26.7 29.8
27.9 24.7 22.2 34.3

8.15 Use Tukey’s test, with a 0.05 level of signifi-
cance, to analyze the means of the five different brands
of headache tablets in Exercise 8.2 on page 366.

8.16 The following data are values of pressure (psi)
in a torsion spring for several settings of the angle be-
tween the legs of the spring in a free position:

Angle (◦)
67 71 75 79 83
83 84 86 87 89 90
85 85 87 87 90 92

85 88 88 90
86 88 88 91
86 88 89
87 90

Compute a one-way analysis of variance for this exper-
iment and state your conclusion concerning the effect
of angle on the pressure in the spring. (From Hicks and
Turner, 1999.)

8.17 In the study An Evaluation of the Removal
Method for Estimating Benthic Populations and Diver-
sity, conducted by Virginia Tech on the Jackson River,
5 different sampling procedures were used to determine
the species counts. Twenty samples were selected at
random, and each of the 5 sampling procedures was
repeated 4 times. The species counts were recorded as
follows:

Sampling Procedure
Substrate

Deple- Modified Removal Kick-
tion Hess Surber Kicknet net
85
55
40
77

75
45
35
67

31
20
9

37

43
21
15
27

17
10
8

15

(a) Is there a significant difference in the average
species counts for the different sampling proce-
dures? Use a P-value in your conclusion.

(b) Use Tukey’s test with α = 0.05 to find which sam-

pling procedures differ.

8.18 The following table gives tensile strengths (in
deviations from 340) for wires taken from nine cables
to be used for a high-voltage network. Each cable is
made from 12 wires. We want to know whether the
mean strengths of the wires in the nine cables are the
same. If the cables are different, which ones differ? Use
a P-value in your analysis of variance.

Cable Tensile Strength

1 5 −13 −5 −2 −10 −6 −5 0 −3 2 −7 −5
2 −11 −13 −8 8 −3 −12 −12 −10 5 −6 −12 −10
3 0 −10 −15 −12 −2 −8 −5 0 −4 −1 −5 −11
4 −12 4 2 10 −5 −8 −12 0 −5 −3 −3 0
5 7 1 5 0 10 6 5 2 0 −1 −10 −2
6 1 0 −5 −4 −1 0 2 5 1 −2 6 7
7 −1 0 2 1 −4 2 7 5 1 0 −4 2
8 −1 0 7 5 10 8 1 2 −3 6 0 5
9 2 6 7 8 15 11 −7 7 10 7 8 1

(From A. Hald, Statistical Theory with Engineering
Applications, John Wiley & Sons, New York, 1952)

8.19 It is suspected that the environmental tempera-
ture at which batteries are activated affects their life.
Thirty homogeneous batteries were tested, six at each
of five temperatures, and the data are shown below
(activated life in seconds). Analyze and interpret the
data.

Temperature (◦C)
0 25 50 75 100
55 60 70 72 65
55 61 72 72 66
57 60 72 72 60
54 60 68 70 64
54 60 77 68 65
56 60 77 69 65

(From Hicks and Turner, 1999.)

8.20 Do Tukey’s test for paired comparisons for the
data of Exercise 8.6 on page 367. Discuss the results.

8.21 The printout in Figure 8.4 on page 373 gives in-
formation on Tukey’s test, using PROC GLM in SAS,
for the aggregate data in Example 8.1. Give conclu-
sions regarding paired comparisons using Tukey’s test
results.

8.5 Concept of Blocks and the
Randomized Complete Block Design

In Section 8.1, we discussed the idea of blocking, that is, isolating sets of experi-
mental units that are reasonably homogeneous and randomly assigning treatments
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The GLM Procedure

Tukey’s Studentized Range (HSD) Test for moisture

NOTE: This test controls the Type I experimentwise error rate, but

it generally has a higher Type II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 25

Error Mean Square 4960.813

Critical Value of Studentized Range 4.15336

Minimum Significant Difference 119.43

Means with the same letter are not significantly different.

Tukey Grouping Mean N aggregate

A 610.67 6 5

A

A 610.50 6 3

A

B A 569.33 6 2

B A

B A 553.33 6 1

B

B 465.17 6 4

Figure 8.4: SAS printout for Exercise 8.21.

to these units. This is an extension of the “pairing” concept discussed in Chapters
5 and 6, and it is done to reduce experimental error, since the units in a block have
more common characteristics than units in different blocks.

The reader should not view blocks as a second factor, although this is a tempting
way of visualizing the design. In fact, the main factor (treatments) still carries the
major thrust of the experiment. Experimental units are still the source of error,
just as in the completely randomized design. We merely treat sets of these units
more systematically when blocking is accomplished. In this way, we say there are
restrictions in randomization. Before we turn to a discussion of blocking, let us
look at two examples of a completely randomized design. The first example
is a chemical experiment designed to determine if there is a difference in mean
reaction yield among four catalysts. The data are shown in Table 8.5. Samples
of materials to be tested are drawn from the same batches of raw materials, while
other conditions, such as temperature and concentration of reactants, are held
constant. In this case, the time of day for the experimental runs might represent
the experimental units, and if the experimenter believed that there could possibly
be a slight time effect, he or she would randomize the assignment of the catalysts
to the runs to counteract the possible trend. As a second example of such a design,
consider an experiment to compare four methods of measuring a particular physical
property of a fluid substance. Suppose the sampling process is destructive; that is,
once a sample of the substance has been measured by one method, it cannot be
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measured again by any of the other methods. If it is decided that five measurements
are to be taken for each method, then 20 samples of the material are selected from
a large batch at random and are used in the experiment to compare the four
measuring methods. The experimental units are the randomly selected samples.
Any variation from sample to sample will appear in the error variation, as measured
by s2 in the analysis.

Table 8.5: Yield of Reaction

Control Catalyst 1 Catalyst 2 Catalyst 3

50.7 54.1 52.7 51.2
51.5 53.8 53.9 50.8
49.2 53.1 57.0 49.7
53.1 52.5 54.1 48.0
52.7 54.0 52.5 47.2

ȳ0. = 51.44 ȳ1. = 53.50 ȳ2. = 54.04 ȳ3. = 49.38

What Is the Purpose of Blocking?

If the variation due to heterogeneity in experimental units is so large that the
sensitivity with which treatment differences are detected is reduced due to an
inflated value of s2, a better plan might be to “block off” variation due to these
units and thus reduce the extraneous variation to that accounted for by smaller
or more homogeneous blocks. For example, suppose that in the previous catalyst
illustration it is known a priori that there definitely is a significant day-to-day
effect on the yield and that we can measure the yield for four catalysts on a
given day. Rather than assign the four catalysts to the 20 test runs completely at
random, we choose, say, five days and run each of the four catalysts on each day,
randomly assigning the catalysts to the runs within days. In this way, the day-
to-day variation is removed from the analysis, and consequently the experimental
error, which still includes any time trend within days, more accurately represents
chance variation. Each day is referred to as a block.

The most straightforward of the randomized block designs is one in which we
randomly assign each treatment once to every block. Such an experimental layout
is called a randomized complete block (RCB) design, each block constituting
a single replication of the treatments.

A typical layout for the randomized complete block design using 3 measure-
ments in 4 blocks is as follows:

Block 1 Block 2 Block 3 Block 4

t2
t1
t3

t1
t3
t2

t3
t2
t1

t2
t1
t3

The t’s denote the assignment to blocks of each of the 3 treatments. Of course, the
true allocation of treatments to units within blocks is done at random. Once the
experiment has been completed, the data can be recorded in the following 3 × 4
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array:

Treatment Block: 1 2 3 4

1 y11 y12 y13 y14
2 y21 y22 y23 y24
3 y31 y32 y33 y34

where y11 represents the response obtained by using treatment 1 in block l, y12
represents the response obtained by using treatment 1 in block 2, . . . , and y34
represents the response obtained by using treatment 3 in block 4.

Let us now generalize and consider the case of k treatments assigned to b blocks.
The data may be summarized as shown in the k × b rectangular array of Table
8.6. It will be assumed that the yij , i = 1, 2, . . . , k and j = 1, 2, . . . , b, are values
of independent random variables having normal distributions with mean μij and
common variance σ2.

Table 8.6: k × b Array for the RCB Design

Block

Treatment 1 2 · · · j · · · b Total Mean

1 y11 y12 · · · y1j · · · y1b T1. ȳ1.
2 y21 y22 · · · y2j · · · y2b T2. ȳ2.
...

...
...

...
...

...
...

i yi1 yi2 · · · yij · · · yib Ti. ȳi.
...

...
...

...
...

...
...

k yk1 yk2 · · · ykj · · · ykb Tk. ȳk.

Total T.1 T.2 · · · T.j · · · T.b T..

Mean ȳ.1 ȳ.2 · · · ȳ.j · · · ȳ.b ȳ..

Let μi. represent the average (rather than the total) of the b population means
for the ith treatment. That is,

μi. =
1

b

b∑
j=1

μij , for i = 1, . . . , k.

Similarly, the average of the population means for the jth block, μ.j , is defined by

μ.j =
1

k

k∑
i=1

μij , for j = 1, . . . , b

and the average of the bk population means, μ, is defined by

μ =
1

bk

k∑
i=1

b∑
j=1

μij .

To determine if part of the variation in our observations is due to differences among
the treatments, we consider the following test:

Hypothesis of
Equal Treatment

Means

H0: μ1. = μ2. = · · · = μk. = μ,

H1: The μi. are not all equal.
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Model for the RCB Design

Each observation may be written in the form

yij = μij + εij ,

where εij measures the deviation of the observed value yij from the population
mean μij . The preferred form of this equation is obtained by substituting

μij = μ+ αi + βj ,

where αi is, as before, the effect of the ith treatment and βj is the effect of the jth
block. It is assumed that the treatment and block effects are additive. Hence, we
may write

yij = μ+ αi + βj + εij .

Notice that the model resembles that of the one-way classification, the essential
difference being the introduction of the block effect βj . The basic concept is much
like that of the one-way classification except that we must account in the analysis
for the additional effect due to blocks, since we are now systematically controlling
variation in two directions. If we now impose the restrictions that

k∑
i=1

αi = 0 and
b∑

j=1

βj = 0,

then

μi. =
1

b

b∑
j=1

(μ+ αi + βj) = μ+ αi, for i = 1, . . . , k,

and

μ.j =
1

k

k∑
i=1

(μ+ αi + βj) = μ+ βj , for j = 1, . . . , b.

The null hypothesis that the k treatment means μi. are equal, and therefore equal
to μ, is now equivalent to testing the hypothesis

H0: α1 = α2 = · · · = αk = 0,

H1: At least one of the αi is not equal to zero.

Each of the tests on treatments will be based on a comparison of independent
estimates of the common population variance σ2. These estimates will be obtained
by splitting the total sum of squares of our data into three components by means
of the following identity. The proof is left to the reader.
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Theorem 8.3: Sum-of-Squares Identity

k∑
i=1

b∑
j=1

(yij − ȳ..)
2 = b

k∑
i=1

(ȳi. − ȳ..)
2 + k

b∑
j=1

(ȳ.j − ȳ..)
2

+
k∑

i=1

b∑
j=1

(yij − ȳi. − ȳ.j + ȳ..)
2

Using Theorem 8.3, we can denote the following terms.

The sum-of-squares identity may be presented symbolically by the equation

SST = SSA+ SSB + SSE,

where

SST =

k∑
i=1

b∑
j=1

(yij − ȳ..)
2 = total sum of squares,

SSA = b
k∑

i=1

(ȳi. − ȳ..)
2 = treatment sum of squares,

SSB = k
b∑

j=1

(ȳ.j − ȳ..)
2 = block sum of squares,

SSE =
k∑

i=1

b∑
j=1

(yij − ȳi. − ȳ.j + ȳ..)
2 = error sum of squares.

Following the procedure outlined in Theorem 8.2, where we interpreted the
sums of squares as functions of the independent random variables Y11, Y12, . . . , Ykb,
we can show that the expected values of the treatment, block, and error sums of
squares are given by

E(SSA) = (k − 1)σ2 + b
k∑

i=1

α2
i , E(SSB) = (b− 1)σ2 + k

b∑
j=1

β2
j ,

E(SSE) = (b− 1)(k − 1)σ2.

As in the case of the one-factor problem, we have the treatment mean square

s21 =
SSA

k − 1
.

If the treatment effects α1 = α2 = · · · = αk = 0, s21 is an unbiased estimate of σ2.
However, if the treatment effects are not all zero, we have the following:

Expected
Treatment Mean

Square
E

(
SSA

k − 1

)
= σ2 +

b

k − 1

k∑
i=1

α2
i
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In this case, s21 overestimates σ2. A second estimate of σ2, based on b− 1 degrees
of freedom, is

s22 =
SSB

b− 1
.

The estimate s22 is an unbiased estimate of σ2 if the block effects β1 = β2 = · · · =
βb = 0. If the block effects are not all zero, then

E

(
SSB

b− 1

)
= σ2 +

k

b− 1

b∑
j=1

β2
j ,

and s22 will overestimate σ2. A third estimate of σ2, based on (k−1)(b−1) degrees
of freedom and independent of s21 and s22, is

s2 =
SSE

(k − 1)(b− 1)
,

which is unbiased regardless of the truth or falsity of either null hypothesis.
To test the null hypothesis that the treatment effects are all equal to zero, we

compute the ratio f1 = s21/s
2, which is a value of the random variable F1 having

an F-distribution with k − 1 and (k − 1)(b − 1) degrees of freedom when the null
hypothesis is true. The null hypothesis is rejected at the α-level of significance
when

f1 > fα[k − 1, (k − 1)(b− 1)].

In practice, we first compute SST , SSA, and SSB and then, using the sum-
of-squares identity, obtain SSE by subtraction. The degrees of freedom associated
with SSE are also usually obtained by subtraction; that is,

(k − 1)(b− 1) = kb− 1− (k − 1)− (b− 1).

The computations in an analysis-of-variance problem for a randomized complete
block design may be summarized as shown in Table 8.7.

Table 8.7: Analysis of Variance for the Randomized Complete Block Design

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Treatments SSA k − 1 s21 =
SSA

k − 1
f1 =

s21
s2

Blocks SSB b− 1 s22 =
SSB

b− 1

Error SSE (k − 1)(b− 1) s2 =
SSE

(k − 1)(b− 1)

Total SST kb− 1
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Example 8.4: Four different machines, M1, M2, M3, and M4, are being considered for the
assembling of a particular product. It was decided that six different operators
would be used in a randomized block experiment to compare the machines. The
machines were assigned in a random order to each operator. The operation of
the machines requires physical dexterity, and it was anticipated that there would
be a difference among the operators in the speed with which they operated the
machines. The amounts of time (in seconds) required to assemble the product are
shown in Table 8.8.

Table 8.8: Time, in Seconds, to Assemble Product

Operator

Machine 1 2 3 4 5 6 Total

1 42.5 39.3 39.6 39.9 42.9 43.6 247.8
2 39.8 40.1 40.5 42.3 42.5 43.1 248.3
3 40.2 40.5 41.3 43.4 44.9 45.1 255.4
4 41.3 42.2 43.5 44.2 45.9 42.3 259.4

Total 163.8 162.1 164.9 169.8 176.2 174.1 1010.9

Test the hypothesis H0, at the 0.05 level of significance, that the machines
perform at the same mean rate of speed.

Solution : The hypotheses are

H0: α1 = α2 = α3 = α4 = 0 (machine effects are zero),

H1: At least one of the αi is not equal to zero.

The sum-of-squares formulas shown on page 377 and the degrees of freedom
are used to produce the analysis of variance in Table 8.9. The value f = 3.34 is
significant at P = 0.048. If we use α = 0.05 as at least an approximate yardstick,
we conclude that the machines do not perform at the same mean rate of speed.

Table 8.9: Analysis of Variance for the Data of Table 8.8

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Machines 15.93 3 5.31 3.34
Operators 42.09 5 8.42
Error 23.84 15 1.59

Total 81.86 23

Interaction between Blocks and Treatments

Another important assumption that is implicit in writing the model for a random-
ized complete block design is that the treatment and block effects are additive.
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Figure 8.5: Population means for (a) additive results and (b) interacting effects.

This is equivalent to stating that

μij − μij′ = μi′j − μi′j′ or μij − μi′j = μij′ − μi′j′ ,

for every value of i, i′, j, and j′. That is, the difference between the population
means for blocks j and j′ is the same for every treatment and the difference between
the population means for treatments i and i′ is the same for every block. The
parallel lines of Figure 8.5(a) illustrate a set of mean responses for which the
treatment and block effects are additive, whereas the intersecting lines of Figure
8.5(b) show a situation in which treatment and block effects are said to interact.

Exercises

8.22 Three varieties of potatoes are being compared
for yield. The experiment is conducted by assigning
each variety at random to one of 3 equal-size plots at
each of 4 different locations. The following yields for
varieties A, B, and C, in 100 kilograms per plot, were
recorded:

Location 1 Location 2 Location 3 Location 4

B : 13
A : 18
C : 12

C : 21
A : 20
B : 23

C : 9
B : 12
A : 14

A : 11
C : 10
B : 17

Perform a randomized complete block analysis of vari-
ance to test the hypothesis that there is no difference in
the yielding capabilities of the 3 varieties of potatoes.
Use a 0.05 level of significance. Draw conclusions.

8.23 Four kinds of fertilizer f1, f2, f3, and f4 are used
to study the yield of beans. The soil is divided into
3 blocks, each containing 4 homogeneous plots. The
yields in kilograms per plot and the corresponding
treatments are as follows:

Block 1 Block 2 Block 3

f1 = 42.7
f3 = 48.5
f4 = 32.8
f2 = 39.3

f3 = 50.9
f1 = 50.0
f2 = 38.0
f4 = 40.2

f4 = 51.1
f2 = 46.3
f1 = 51.9
f3 = 53.5

Conduct an analysis of variance at the 0.05 level of sig-
nificance using the randomized complete block model.

8.24 The following data represent the final grades ob-
tained by 5 students in mathematics, English, French,
and biology:

Subject

Student Math English French Biology

1 68 57 73 61
2 83 94 91 86
3 72 81 63 59
4 55 73 77 66
5 92 68 75 87

Test the hypothesis that the courses are of equal dif-
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ficulty. Use a P-value in your conclusions and discuss
your findings.

8.25 The following data are the percents of foreign
additives measured by 5 analysts for 3 similar brands
of strawberry jam, A, B, and C:

Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5

B: 2.7
C: 3.6
A: 3.8

C: 7.5
A: 1.6
B: 5.2

B: 2.8
A: 2.7
C: 6.4

A: 1.7
B: 1.9
C: 2.6

C: 8.1
A: 2.0
B: 4.8

Perform a randomized complete block analysis of vari-
ance to test the hypothesis, at the 0.05 level of signifi-
cance, that the percent of foreign additives is the same
for all 3 brands of jam. Which brand of jam appears
to have fewer additives?

8.26 A nuclear power facility produces a vast amount
of heat, which is usually discharged into aquatic sys-
tems. This heat raises the temperature of the aquatic
system, resulting in a greater concentration of chloro-
phyll a, which in turn extends the growing season. To
study this effect, water samples were collected monthly
at 3 stations for a period of 12 months. Station A is lo-
cated closest to a potential heated water discharge, sta-
tion C is located farthest away from the discharge, and
station B is located halfway between stations A and
C. The concentrations of chlorophyll a were recorded.
Perform an analysis of variance and test the hypoth-
esis, at the 0.05 level of significance, that there is no
difference in the mean concentrations of chlorophyll a
at the 3 stations.

Station

Month A B C

January
February
March
April
May
June
July
August
September
October
November
December

9.867
14.035
10.700
13.853
7.067

11.670
7.357
3.358
4.210
3.630
2.953
2.640

3.723
8.416

20.723
9.168
4.778
9.145
8.463
4.086
4.233
2.320
3.843
3.610

4.410
11.100
4.470
8.010

34.080
8.990
3.350
4.500
6.830
5.800
3.480
3.020

8.27 In a study on The Periphyton of the South River,
Virginia: Mercury Concentration, Productivity, and
Autotropic Index Studies, conducted by the Depart-
ment of Environmental Sciences and Engineering at
Virginia Tech, the total mercury concentration in pe-
riphyton total solids was measured at 6 different sta-
tions on 6 different days. Determine whether the mean
mercury content is significantly different between the
stations by using the following recorded data. Use a
P -value and discuss your findings.

Station

Date CA CB El E2 E3 E4

April 8 0.45 3.24 1.33 2.04 3.93 5.93
June 23 0.10 0.10 0.99 4.31 9.92 6.49
July 1 0.25 0.25 1.65 3.13 7.39 4.43
July 8 0.09 0.06 0.92 3.66 7.88 6.24
July 15 0.15 0.16 2.17 3.50 8.82 5.39
July 23 0.17 0.39 4.30 2.91 5.50 4.29

8.28 Organic arsenicals are used by forestry person-
nel as silvicides. The amount of arsenic that the body
takes in when exposed to these silvicides is a major
health problem. It is important that the amount of
exposure be determined quickly so that a field worker
with a high level of arsenic can be removed from the
job. In an experiment reported in the paper “A Rapid
Method for the Determination of Arsenic Concentra-
tions in Urine at Field Locations,” published in the
American Industrial Hygiene Association Journal (Vol.
37, 1976), urine specimens from 4 forest service per-
sonnel were divided equally into 3 samples each so that
each individual’s urine could be analyzed for arsenic by
a university laboratory, by a chemist using a portable
system, and by a forest-service employee after a brief
orientation. The arsenic levels, in parts per million,
were recorded for this problem. Perform an analysis of
variance and test the hypothesis, at the 0.05 level of
significance, that there is no difference in the arsenic
levels for the 3 methods of analysis.

Analyst

Individual Employee Chemist Laboratory

1 0.05 0.05 0.04
2 0.05 0.05 0.04
3 0.04 0.04 0.03
4 0.15 0.17 0.10

8.29 In a study conducted by the Department of
Health and Physical Education at Virginia Tech, 3 di-
ets were assigned for a period of 3 days to each of 6
subjects in a randomized complete block design. The
subjects, playing the role of blocks, were assigned the
following 3 diets in a random order:

Diet 1: mixed fat and carbohydrates,
Diet 2: high fat,
Diet 3: high carbohydrates.

At the end of the 3-day period, each subject was put
on a treadmill and the time to exhaustion, in seconds,
was measured.

Subject

Diet 1 2 3 4 5 6

1
2
3

84
91

122

35
48
53

91
71

110

57
45
71

56
61
91

45
61

122
Perform an analysis of variance, separating out the
diet, subject, and error sum of squares. Use a P -value
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to determine if there are significant differences among
the diets, using the preceeding recorded data.

8.30 In the paper “Self-Control and Therapist Con-
trol in the Behavioral Treatment of Overweight
Women,” published in Behavioral Research and Ther-
apy (Volume 10, 1972), two reduction treatments and
a control treatment were studied for their effects on
the weight change of obese women. The two reduc-
tion treatments were a self-induced weight reduction
program and a therapist-controlled reduction program.
Each of 10 subjects was assigned to one of the 3
treatment programs in a random order and measured
for weight loss. The following weight changes were
recorded:

Treatment

Subject Control Self-induced Therapist

1
2
3
4
5
6
7
8
9

10

1.00
3.75
0.00

−0.25
−2.25
−1.00
−1.00
3.75
1.50
0.50

−2.25
−6.00
−2.00
−1.50
−3.25
−1.50

−10.75
−0.75
0.00

−3.75

−10.50
−13.50

0.75
−4.50
−6.00
4.00

−12.25
−2.75
−6.75
−7.00

Perform an analysis of variance and test the hypothesis,
at the 0.01 level of significance, that there is no differ-
ence in the mean weight losses for the 3 treatments.
Which treatment was best?

8.31 Scientists in the Department of Plant Pathol-
ogy at Virginia Tech devised an experiment in which
5 different treatments were applied to 6 different lo-
cations in an apple orchard to determine if there were
significant differences in growth among the treatments.
Treatments 1 through 4 represent different herbicides
and treatment 5 represents a control. The growth
period was from May to November in 1982, and the
amounts of new growth, measured in centimeters, for
samples selected from the 6 locations in the orchard
were recorded as follows:

Locations

Treatment 1 2 3 4 5 6

1 455 72 61 215 695 501
2 622 82 444 170 437 134
3 695 56 50 443 701 373
4 607 650 493 257 490 262
5 388 263 185 103 518 622

Perform an analysis of variance, separating out the
treatment, location, and error sum of squares. De-

termine if there are significant differences among the
treatment means. Quote a P-value.

8.32 An experiment was conducted to compare three
types of coating materials for copper wire. The purpose
of the coating is to eliminate flaws in the wire. Ten dif-
ferent specimens of length 5 millimeters were randomly
assigned to receive each coating, and the thirty speci-
mens were subjected to an abrasive type process. The
number of flaws was measured for each, and the results
are as follows:

Material
1 2 3

6 8 4 5 3 3 5 4 12 8 7 14
7 7 9 6 2 4 4 5 18 6 7 18
7 8 4 3 8 5

Suppose it is assumed that the Poisson process applies
and thus the model is Yij = μi + εij , where μi is the
mean of a Poisson distribution and σ2

Yij
= μi.

(a) Do an appropriate transformation on the data and
perform an analysis of variance.

(b) Determine whether or not there is sufficient evi-
dence to choose one coating material over the other.
Show whatever findings suggest a conclusion.

(c) Do a plot of the residuals and comment.

(d) Give the purpose of your data transformation.

(e) What additional assumption is made here that may
not have been completely satisfied by your trans-
formation?

(f) Comment on (e) after doing a normal probability
plot of the residuals.

8.33 In the book Design of Experiments for the Qual-
ity Improvement, published by the Japanese Standards
Association (1989), a study on the amount of dye
needed to get the best color for a certain type of fabric
was reported. The three amounts of dye, (1/3)% wof
((1/3)% of the weight of a fabric), 1% wof, and 3%
wof, were each administered at two different plants.
The color density of the fabric was then observed four
times for each level of dye at each plant.

Amount of Dye
(1/3)% 1% 3%

Plant 1 5.2 6.0 12.3 10.5 22.4 17.8
5.9 5.9 12.4 10.9 22.5 18.4

Plant 2 6.5 5.5 14.5 11.8 29.0 23.2
6.4 5.9 16.0 13.6 29.7 24.0

Perform an analysis of variance to test the hypothesis,
at the 0.05 level of significance, that there is no dif-
ference in the color density of the fabric for the three
levels of dye. Consider plants to be blocks.
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8.6 Random Effects Models

Throughout this chapter, we deal with analysis-of-variance procedures in which
the primary goal is to study the effect on some response of certain fixed or prede-
termined treatments. Experiments in which the treatments or treatment levels are
preselected by the experimenter as opposed to being chosen randomly are called
fixed effects experiments. For the fixed effects model, inferences are made only
on those particular treatments used in the experiment.

It is often important that the experimenter be able to draw inferences about
a population of treatments by means of an experiment in which the treatments
used are chosen randomly from the population. For example, a biologist may
be interested in whether or not there is significant variance in some physiological
characteristic due to animal type. The animal types actually used in the experiment
are then chosen randomly and represent the treatment effects. A chemist may be
interested in studying the effect of analytical laboratories on the chemical analysis
of a substance. She is not concerned with particular laboratories but rather with
a large population of laboratories. She might then select a group of laboratories
at random and allocate samples to each for analysis. The statistical inference
would then involve (1) testing whether or not the laboratories contribute a nonzero
variance to the analytical results and (2) estimating the variance between and
within laboratories.

Model and Assumptions for Random Effects Model

The one-way random effects model is written like the fixed effects model but
with the terms taking on different meanings. The response yij = μ + αi + εij is
now a value of the random variable

Yij = μ+Ai + εij , with i = 1, 2, . . . , k and j = 1, 2, . . . , n,

where the Ai are independently and normally distributed with mean 0 and variance
σ2
α and are independent of the εij . As for the fixed effects model, the εij are also

independently and normally distributed with mean 0 and variance σ2. Note that

for a random effects experiment, the constraint that
k∑

i=1

αi = 0 no longer applies.

Theorem 8.4: For the one-way random effects analysis-of-variance model,

E(SSA) = (k − 1)σ2 + n(k − 1)σ2
α and E(SSE) = k(n− 1)σ2.

Table 8.10 shows the expected mean squares for both a fixed effects and a
random effects experiment. The computations for a random effects experiment are
carried out in exactly the same way as for a fixed effects experiment. That is,
the sum-of-squares, degrees-of-freedom, and mean-square columns in an analysis-
of-variance table are the same for both models.

For the random effects model, the hypothesis that the treatment effects are all
zero is written as follows:
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Table 8.10: Expected Mean Squares for the One-Factor Experiment

Source of Degrees of Mean Expected Mean Squares

Variation Freedom Squares Fixed Effects Random Effects

Treatments k − 1 s21 σ2 +
n

k − 1

∑
i

α2
i σ2 + nσ2

α

Error k(n− 1) s2 σ2 σ2

Total nk − 1

Hypothesis for a
Random Effects

Experiment

H0: σ2
α = 0,

H1: σ2
α �= 0.

This hypothesis says that the different treatments contribute nothing to the
variability of the response. It is obvious from Table 8.10 that s21 and s2 are both
estimates of σ2 when H0 is true and that the ratio

f =
s21
s2

is a value of the random variable F having the F-distribution with k−1 and k(n−1)
degrees of freedom. The null hypothesis is rejected at the α-level of significance
when

f > fα[k − 1, k(n− 1)].

In many scientific and engineering studies, interest is not centered on the F-
test. The scientist knows that the random effect is, indeed, significant. What is
more important is estimation of the various variance components. This produces a
ranking in terms of what factors produce the most variability and by how much. In
the present context, it may be of interest to quantify how much larger the single-
factor variance component is than that produced by chance (random variation).

Estimation of Variance Components

Table 8.10 can also be used to estimate the variance components σ2 and σ2
α.

Since s21 estimates σ2 + nσ2
α and s2 estimates σ2,

σ̂2 = s2, σ̂2
α =

s21 − s2

n
.

Example 8.5: The data in Table 8.11 are coded observations on the yield of a chemical process,
using five batches of raw material selected randomly. Show that the batch variance
component is significantly greater than zero and obtain its estimate.

Solution : The total, batch, and error sums of squares are, respectively,

SST = 194.64, SSA = 72.60, and SSE = 194.64− 72.60 = 122.04.
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Table 8.11: Data for Example 8.5

Batch: 1 2 3 4 5

9.7
5.6
8.4
7.9
8.2
7.7
8.1

10.4
9.6
7.3
6.8
8.8
9.2
7.6

15.9
14.4
8.3
12.8
7.9
11.6
9.8

8.6
11.1
10.7
7.6
6.4
5.9
8.1

9.7
12.8
8.7

13.4
8.3

11.7
10.7

Total 55.6 59.7 80.7 58.4 75.3 329.7

Table 8.12: Analysis of Variance for Example 8.5

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Batches 72.60 4 18.15 4.46
Error 122.04 30 4.07

Total 194.64 34

These results, with the remaining computations, are shown in Table 8.12.
The f-ratio is significant at the α = 0.05 level, indicating that the hypothesis of

a zero batch component is rejected. An estimate of the batch variance component
is

σ̂2
α =

18.15− 4.07

7
= 2.01.

Note that while the batch variance component is significantly different from
zero, when gauged against the estimate of σ2, namely σ̂2 = MSE = 4.07, it
appears as if the batch variance component is not appreciably large.

If the result using the formula for σ2
α appears negative (i.e., when s21 is smaller

than s2), σ̂2
α is then set to zero. This is a biased estimator. In order to have

a better estimator of σ2
α, a method called restricted (or residual) maximum

likelihood (REML) is commonly used (see Harville, 1977, in the Bibliography).
Such an estimator can be found in many statistical software packages. The details
for this estimation procedure are beyond the scope of this text.

8.7 Case Study for One-Way Experiment

Case Study 8.1: Chemical Analysis: Personnel in the Chemistry Department of Virginia Tech
were called upon to analyze a data set that was produced to compare 4 different
methods of analysis of aluminum in a certain solid igniter mixture. To get a broad
range of analytical laboratories involved, 5 laboratories were used in the experiment
as blocks. These laboratories were selected because they are generally adept in
doing these types of analyses. Twenty samples of igniter material containing 2.70%
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aluminum were assigned randomly, 4 to each laboratory, and directions were given
on how to carry out the chemical analysis using all 4 methods. The data retrieved
are shown in Table 8.13.

Table 8.13: Data Set for Case Study 8.1

Laboratory

Method 1 2 3 4 5 Mean

A 2.67 2.69 2.62 2.66 2.70 2.668
B 2.71 2.74 2.69 2.70 2.77 2.722
C 2.76 2.76 2.70 2.76 2.81 2.758
D 2.65 2.69 2.60 2.64 2.73 2.662

The laboratories are not considered as random effects since they were not se-
lected randomly from a larger population of laboratories. The data were analyzed
as a randomized complete block design. Plots of the data were sought to determine
if an additive model of the type

yij = μ+mi + lj + εij

is appropriate: in other words, a model with additive effects. The randomized
block is not appropriate when interaction between laboratories and methods ex-
ists. Consider the plot shown in Figure 8.6. Although this plot is a bit difficult to
interpret because each point is a single observation, there appears to be no appre-
ciable interaction between methods and laboratories. A more complete discussion
of the concept of interaction will be given in Chapter 9.
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Figure 8.6: Interaction plot for data of Case Study 8.1.

Residual Plots

Residual plots were used as diagnostic indicators regarding the homogeneous vari-
ance assumption. Figure 8.7 shows a plot of residuals against analytical methods.
The variability depicted in the residuals seems to be remarkably homogeneous.
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Figure 8.7: Plot of residuals against method for the data of Case Study 8.1.

The residual plots show no difficulty with either the assumption of normal
errors or the assumption of homogeneous variance. SAS PROC GLM was used
to conduct the analysis of variance. Figure 8.8 on page 388 shows the annotated
computer printout.

The computed f- and P-values do indicate a significant difference between an-
alytical methods. This analysis can be followed by a multiple comparison analysis
to determine where the differences are among the methods.

Exercises

8.34 An experiment is conducted in which 4 treat-
ments are to be compared in 5 blocks. The data are
given below.

Block
Treatment 1 2 3 4 5

1 12.8 10.6 11.7 10.7 11.0
2 11.7 14.2 11.8 9.9 13.8
3 11.5 14.7 13.6 10.7 15.9
4 12.6 16.5 15.4 9.6 17.1

(a) Assuming a random effects model, test the hypoth-
esis, at the 0.05 level of significance, that there is
no difference between treatment means.

(b) Compute estimates of the treatment and block vari-
ance components.

8.35 Testing patient blood samples for HIV antibod-
ies, a spectrophotometer determines the optical den-
sity of each sample. Optical density is measured as the
absorbance of light at a particular wavelength. The
blood sample is positive if it exceeds a certain cutoff
value that is determined by the control samples for that
run. Researchers are interested in comparing the lab-
oratory variability for the positive control values. The
data represent positive control values for 10 different

runs at 4 randomly selected laboratories.

Laboratory
Run 1 2 3 4

1 0.888 1.065 1.325 1.232
2 0.983 1.226 1.069 1.127
3 1.047 1.332 1.219 1.051
4 1.087 0.958 0.958 0.897
5 1.125 0.816 0.819 1.222
6 0.997 1.015 1.140 1.125
7 1.025 1.071 1.222 0.990
8 0.969 0.905 0.995 0.875
9 0.898 1.140 0.928 0.930
10 1.018 1.051 1.322 0.775

(a) Write an appropriate model for this experiment.

(b) Estimate the laboratory variance component and
the variance within laboratories.

8.36 Five pours of metals have had 5 core samples
each analyzed for the amount of a trace element. The
data for the 5 randomly selected pours are given here.

(a) The intent is that the pours be identical. Thus,
test that the “pour” variance component is zero.
Draw conclusions.
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The GLM Procedure

Class Level Information

Class Levels Values

Method 4 A B C D

Lab 5 1 2 3 4 5

Number of Observations Read 20

Number of Observations Used 20

Dependent Variable: Response

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 7 0.05340500 0.00762929 42.19 <.0001

Error 12 0.00217000 0.00018083

Corrected Total 19 0.05557500

R-Square Coeff Var Root MSE Response Mean

0.960954 0.497592 0.013447 2.702500

Source DF Type III SS Mean Square F Value Pr > F

Method 3 0.03145500 0.01048500 57.98 <.0001

Lab 4 0.02195000 0.00548750 30.35 <.0001

Observation Observed Predicted Residual

1 2.67000000 2.66300000 0.00700000

2 2.71000000 2.71700000 -0.00700000

3 2.76000000 2.75300000 0.00700000

4 2.65000000 2.65700000 -0.00700000

5 2.69000000 2.68550000 0.00450000

6 2.74000000 2.73950000 0.00050000

7 2.76000000 2.77550000 -0.01550000

8 2.69000000 2.67950000 0.01050000

9 2.62000000 2.61800000 0.00200000

10 2.69000000 2.67200000 0.01800000

11 2.70000000 2.70800000 -0.00800000

12 2.60000000 2.61200000 -0.01200000

13 2.66000000 2.65550000 0.00450000

14 2.70000000 2.70950000 -0.00950000

15 2.76000000 2.74550000 0.01450000

16 2.64000000 2.64950000 -0.00950000

17 2.70000000 2.71800000 -0.01800000

18 2.77000000 2.77200000 -0.00200000

19 2.81000000 2.80800000 0.00200000

20 2.73000000 2.71200000 0.01800000

Figure 8.8: SAS printout for data of Case Study 8.1.
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(b) Show a complete ANOVA along with an estimate
of the within-pour variance.

Pour
Core 1 2 3 4 5
1 0.98 0.85 1.12 1.21 1.00
2 1.02 0.92 1.68 1.19 1.21
3 1.57 1.16 0.99 1.32 0.93
4 1.25 1.43 1.26 1.08 0.86
5 1.16 0.99 1.05 0.94 1.41

8.37 A data set shows the effect of 4 operators, chosen
randomly, on the output of a particular machine.

Operator
1 2 3 4

175.4 168.5 170.1 175.2
171.7 162.7 173.4 175.7
173.0 165.0 175.7 180.1
170.5 164.1 170.7 183.7

(a) Perform a random effects analysis of variance at
the 0.05 level of significance.

(b) Compute an estimate of the operator variance com-

ponent and the experimental error variance compo-
nent.

8.38 A textile company weaves a certain fabric on a
large number of looms. The managers would like the
looms to be homogeneous so that their fabric is of uni-
form strength. It is suspected that there may be sig-
nificant variation in strength among looms. Consider
the following data for 4 randomly selected looms. Each
observation is a determination of strength of the fabric
in pounds per square inch.

Loom
1 2 3 4
99 97 94 93
97 96 95 94
97 92 90 90
96 98 92 92

(a) Write a model for the experiment.

(b) Does the loom variance component differ signifi-
cantly from zero?

(c) Comment on the managers’ suspicion.

Review Exercises

8.39 An analysis was conducted by the Statistics
Consulting Center at Virginia Tech in conjunction with
the Department of Forestry. A certain treatment was
applied to a set of tree stumps in which the chemical
Garlon was used with the purpose of regenerating the
roots of the stumps. A spray was used with four lev-
els of Garlon concentration. After a period of time,
the height of the shoots was observed. Perform a one-
factor analysis of variance on the following data. Test
to see if the concentration of Garlon has a significant
impact on the height of the shoots. Use α = 0.05.

Garlon Level
1 2 3 4

2.87 2.31 3.27 2.66 2.39 1.91 3.05 0.91
3.91 2.04 3.15 2.00 2.89 1.89 2.43 0.01

8.40 Consider the aggregate data of Example 8.1.
Perform Bartlett’s test, at level α = 0.1, to determine
if there is heterogeneity of variance among the aggre-
gates.

8.41 A company that stamps gaskets out of sheets of
rubber, plastic, and cork wants to compare the mean
number of gaskets produced per hour for the three
types of material. Two randomly selected stamping
machines are chosen as blocks. The data represent the
number of gaskets (in thousands) produced per hour.
The data are given below. In addition, the printout

analysis is given in Figure 8.9 on page 390.

Material
Machine Cork Rubber Plastic

A 4.31 4.27 4.40 3.36 3.42 3.48 4.01 3.94 3.89
B 3.94 3.81 3.99 3.91 3.80 3.85 3.48 3.53 3.42

(a) Why would the stamping machines be chosen as
blocks?

(b) Plot the six means for machine and material com-
binations.

(c) Is there a single material that is best?

(d) Is there an interaction between treatments and
blocks? If so, is the interaction causing any seri-
ous difficulty in arriving at a proper conclusion?
Explain.

8.42 Four laboratories are being used to perform
chemical analysis. Samples of the same material are
sent to the laboratories for analysis as part of a study
to determine whether or not they give, on the average,
the same results. Use the data set provided to do the
following.

Laboratory

A B C D

58.7 62.7 55.9 60.7
61.4 64.5 56.1 60.3
60.9 63.1 57.3 60.9
59.1 59.2 55.2 61.4
58.2 60.3 58.1 62.3
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(a) Run Bartlett’s test to show that the within-
laboratory variances are not significantly different
at the α = 0.05 level of significance.

(b) Perform the analysis of variance and give conclu-
sions concerning the laboratories.

(c) Do a normal probability plot of residuals.

The GLM Procedure
Dependent Variable: gasket

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 1.68122778 0.33624556 76.52 <.0001
Error 12 0.05273333 0.00439444
Corrected Total 17 1.73396111
R-Square Coeff Var Root MSE gasket Mean
0.969588 1.734095 0.066291 3.822778

Source DF Type III SS Mean Square F Value Pr > F
material 2 0.81194444 0.40597222 92.38 <.0001
machine 1 0.10125000 0.10125000 23.04 0.0004
material*machine 2 0.76803333 0.38401667 87.39 <.0001
Level of Level of ------------gasket-----------
material machine N Mean Std Dev
cork A 3 4.32666667 0.06658328
cork B 3 3.91333333 0.09291573
plastic A 3 3.94666667 0.06027714
plastic B 3 3.47666667 0.05507571
rubber A 3 3.42000000 0.06000000
rubber B 3 3.85333333 0.05507571

Level of ------------gasket-----------
material N Mean Std Dev
cork 6 4.12000000 0.23765521
plastic 6 3.71166667 0.26255793
rubber 6 3.63666667 0.24287171

Level of ------------gasket-----------
machine N Mean Std Dev
A 9 3.89777778 0.39798800
B 9 3.74777778 0.21376259

Figure 8.9: SAS printout for Review Exercise 8.41.

8.43 A study is conducted to compare gas
mileage for 3 competing brands of gasoline. Four
different automobile models of varying size are ran-
domly selected. The data, in miles per gallon, fol-
low. The order of testing is random for each model.

(a) Discuss the need for the use of more than a
single model of car.

(b) Consider the ANOVA from the SAS printout in
Figure 8.10 on page 391. Does brand of gaso-
line matter?

(c) Which brand of gasoline would you select?
Consult the result of Tukey’s test.

Gasoline Brand

Model A B C
A 32.4 35.6 38.7
B 28.8 28.6 29.9
C 36.5 37.6 39.1
D 34.4 36.2 37.9
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The GLM Procedure
Dependent Variable: MPG

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 153.2508333 30.6501667 24.66 0.0006
Error 6 7.4583333 1.2430556
Corrected Total 11 160.7091667

R-Square Coeff Var Root MSE MPG Mean
0.953591 3.218448 1.114924 34.64167

Source DF Type III SS Mean Square F Value Pr > F
Model 3 130.3491667 43.4497222 34.95 0.0003
Brand 2 22.9016667 11.4508333 9.21 0.0148

Tukey’s Studentized Range (HSD) Test for MPG

NOTE: This test controls the Type I experimentwise error rate, but
it generally has a higher Type II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 6
Error Mean Square 1.243056
Critical Value of Studentized Range 4.33920
Minimum Significant Difference 2.4189

Means with the same letter are not significantly different.
Tukey Grouping Mean N Brand

A 36.4000 4 C
A

B A 34.5000 4 B
B
B 33.0250 4 A

Figure 8.10: SAS printout for Review Exercise 8.43.

8.44 In a study that was analyzed for person-
nel in the Department of Biochemistry at Virginia
Tech, three diets were given to groups of rats in or-
der to study the effect of each on dietary residual
zinc in the bloodstream. Five pregnant rats were
randomly assigned to each diet group, and each
was given the diet on day 22 of pregnancy. The
amount of zinc in parts per million was measured.
Use the data to determine if there is a significant
difference in residual dietary zinc among the three
diets. Use α = 0.05. Perform a one-way analysis
of variance.

Diet 1: 1 0.50 0.42 0.65 0.47 0.44
Diet 2: 2 0.42 0.40 0.73 0.47 0.69
Diet 3: 3 1.06 0.82 0.72 0.72 0.82

8.45 An experiment was conducted to compare
three types of paint for evidence of differences in
their wearing qualities. They were exposed to
abrasive action and the time in hours until abra-
sion was noticed was observed. Six specimens were
used for each type of paint. The data are as fol-
lows.

Paint Type
1 2 3

158 97 282 515 264 544 317 662 213
315 220 115 525 330 525 536 175 614

(a) Do an analysis of variance to determine if the
evidence suggests that wearing quality differs
for the three paints. Use a P-value in your con-
clusion.
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(b) If significant differences are found, characterize
what they are. Is there one paint that stands
out? Discuss your findings.

(c) Do whatever graphical analysis you need to de-
termine if assumptions used in (a) are valid.
Discuss your findings.

(d) Suppose it is determined that the data for each
treatment follow an exponential distribution.
Does this suggest an alternative analysis? If so,
do the alternative analysis and give findings.

8.46 Four different locations in the northeast
were used for collecting ozone measurements in
parts per million. Amounts of ozone were collected
for 5 samples at each location.

(a) Is there sufficient information here to suggest
that there are differences in the mean ozone
levels across locations? Be guided by a P-value.

(b) If significant differences are found in (a), char-
acterize the nature of the differences. Use what-
ever methods you have learned.

Location
1 2 3 4

0.09 0.15 0.10 0.10
0.10 0.12 0.13 0.07
0.08 0.17 0.08 0.05
0.08 0.18 0.08 0.08
0.11 0.14 0.09 0.09

8.47 Group Project: It is of interest to deter-
mine which type of sports ball can be thrown the
longest distance. The competition involves a ten-
nis ball, a baseball, and a softball. Divide the class
into teams of five individuals. Each team should
design and conduct a separate experiment. Each
team should also analyze the data from its own
experiment. For a given team, each of the five in-
dividuals will throw each ball (after sufficient arm
warmup). The experimental response will be the
distance (in feet) that the ball is thrown. The data
for each team will involve 15 observations.
Important points:

(a) This is not a competition among teams. The
competition is among the three types of sports
balls. One would expect that the conclusion
drawn by each team would be similar.

(b) Each team should be gender mixed.

(c) The experimental design for each team should
be a randomized complete block design. The
five individuals throwing are the blocks.

(d) Be sure to incorporate the appropriate random-
ization in conducting the experiment.

(e) The results should contain a description of the
experiment with an ANOVA table complete
with a P -value and appropriate conclusions.
Use graphical techniques where appropriate.
Use multiple comparisons where appropriate.
Draw practical conclusions concerning differ-
ences between the ball types. Be thorough.

8.8 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

As in other procedures covered in previous chapters, the analysis of variance is
reasonably robust to the normality assumption but less robust to the homogeneous
variance assumption. Also we note here that Bartlett’s test for equal variance is
extremely nonrobust to normality.

This is a pivotal chapter in that it is essentially an “entry level” point for im-
portant topics such as design of experiments and analysis of variance. Chapter 9
will concern itself with the same topics, but the expansion will be to more than one
factor, with the total analysis further complicated by the interpretation of inter-
action among factors. There are times when the role of interaction in a scientific
experiment is more important than the role of the main factors (main effects). The
presence of interaction results in even more emphasis placed on graphical displays.
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Factorial Experiments
(Two or More Factors)

9.1 Introduction

Consider a situation where it is of interest to study the effects of two factors, A
and B, on some response. For example, in a chemical experiment, we would like to
vary simultaneously the reaction pressure and reaction time and study the effect
of each on the yield. In a biological experiment, it is of interest to study the effects
of drying time and temperature on the amount of solids (percent by weight) left
in samples of yeast. As in Chapter 8, the term factor is used in a general sense to
denote any feature of the experiment such as temperature, time, or pressure that
may be varied from trial to trial. We define the levels of a factor to be the actual
values used in the experiment.

For each of these cases, it is important to determine not only if each of the two
factors has an influence on the response, but also if there is a significant interaction
between the two factors. As far as terminology is concerned, the experiment de-
scribed here is a two-factor experiment and the experimental design may be either
a completely randomized design, in which the various treatment combinations are
assigned randomly to all the experimental units, or a randomized complete block
design, in which factor combinations are assigned randomly within blocks. In the
case of the yeast example, the various treatment combinations of temperature and
drying time would be assigned randomly to the samples of yeast if we were using
a completely randomized design.

Many of the concepts studied in Chapter 8 are extended in this chapter to two
and three factors. The main thrust of this material is the use of the completely
randomized design with a factorial experiment. A factorial experiment in two
factors involves experimental trials (or a single trial) with all factor combinations.
For example, in the temperature-drying-time example with, say, 3 levels of each
and n = 2 runs at each of the 9 combinations, we have a two-factor factorial
experiment in a completely randomized design. Neither factor is a blocking factor;
we are interested in how each influences percent solids in the samples and whether
or not they interact. The biologist would have available 18 physical samples of

393
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material which are experimental units. These would then be assigned randomly to
the 18 combinations (9 treatment combinations, each duplicated).

Before we launch into analytical details, sums of squares, and so on, it may
be of interest for the reader to observe the obvious connection between what we
have described and the situation with the one-factor problem. Consider the yeast
experiment. Explanation of degrees of freedom aids the reader or the analyst in
visualizing the extension. We should initially view the 9 treatment combinations
as if they represented one factor with 9 levels (8 degrees of freedom). Thus, an
initial look at degrees of freedom gives

Treatment combinations 8
Error 9
Total 17

Main Effects and Interaction

The experiment could be analyzed as described in the above table. However, the
F-test for combinations would probably not give the analyst the information he or
she desires, namely, that which considers the role of temperature and drying time.
Three drying times have 2 associated degrees of freedom; three temperatures have
2 degrees of freedom. The main factors, temperature and drying time, are called
main effects. The main effects represent 4 of the 8 degrees of freedom for factor
combinations. The additional 4 degrees of freedom are associated with interaction
between the two factors. As a result, the analysis involves

Combinations 8
Temperature 2
Drying time 2
Interaction 4

Error 9
Total 17

Recall from Chapter 8 that factors in an analysis of variance may be viewed
as fixed or random, depending on the type of inference desired and how the levels
were chosen. Here we must consider fixed effects, random effects, and even cases
where effects are mixed. Most attention will be directed toward expected mean
squares when we advance to these topics. In the following section, we focus on the
concept of interaction.

9.2 Interaction in the Two-Factor Experiment

In the randomized block model discussed previously, it was assumed that one
observation on each treatment is taken in each block. If the model assumption is
correct, that is, if blocks and treatments are the only real effects and interaction
does not exist, the expected value of the mean square error is the experimental
error variance σ2. Suppose, however, that there is interaction occurring between
treatments and blocks as indicated by the model

yij = μ+ αi + βj + (αβ)ij + εij
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of Section 8.5. The expected value of the mean square error is then given as

E

[
SSE

(b− 1)(k − 1)

]
= σ2 +

1

(b− 1)(k − 1)

k∑
i=1

b∑
j=1

(αβ)2ij .

The treatment and block effects do not appear in the expected mean square error,
but the interaction effects do. Thus, if there is interaction in the model, the
mean square error reflects variation due to experimental error plus an interaction
contribution, and for this experimental plan, there is no way of separating them.

Interaction and the Interpretation of Main Effects

From an experimenter’s point of view it should seem necessary to arrive at a
significance test on the existence of interaction by separating true error variation
from that due to interaction. The main effects, A and B, take on a different
meaning in the presence of interaction. In the previous biological example, the
effect that drying time has on the amount of solids left in the yeast might very well
depend on the temperature to which the samples are exposed. In general, there
could be experimental situations in which factor A has a positive effect on the
response at one level of factor B, while at a different level of factor B the effect of
A is negative. We use the term positive effect here to indicate that the yield or
response increases as the levels of a given factor increase according to some defined
order. In the same sense, a negative effect corresponds to a decrease in response
for increasing levels of the factor.

Consider, for example, the following data on temperature (factor A at levels t1,
t2, and t3 in increasing order) and drying time d1, d2, and d3 (also in increasing
order). The response is percent solids. These data are completely hypothetical
and given to illustrate a point.

B

A d1 d2 d3 Total

t1 4.4 8.8 5.2 18.4
t2 7.5 8.5 2.4 18.4
t3 9.7 7.9 0.8 18.4

Total 21.6 25.2 8.4 55.2

Clearly the effect of temperature on percent solids is positive at the low drying
time d1 but negative for high drying time d3. This clear interaction between
temperature and drying time is obviously of interest to the biologist, but, based
on the totals of the responses for temperatures t1, t2, and t3, the temperature
sum of squares, SSA, will yield a value of zero. We say then that the presence of
interaction is masking the effect of temperature. Thus, if we consider the average
effect of temperature, averaged over drying time, there is no effect. This then
defines the main effect. But, of course, this is likely not what is pertinent to the
biologist.

Before drawing any final conclusions resulting from tests of significance on the
main effects and interaction effects, the experimenter should first observe
whether or not the test for interaction is significant. If interaction is
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not significant, then the results of the tests on the main effects are meaningful.
However, if interaction should be significant, then only those tests on the main
effects that turn out to be significant are meaningful. Nonsignificant main effects
in the presence of interaction might well be a result of masking and dictate the
need to observe the influence of each factor at fixed levels of the other.

A Graphical Look at Interaction

The presence of interaction as well as its scientific impact can be interpreted nicely
through the use of interaction plots. The plots clearly give a pictorial view of
the tendency in the data to show the effect of changing one factor as one moves
from one level to another of a second factor. Figure 9.1 illustrates the strong
temperature by drying time interaction. The interaction is revealed in nonparallel
lines.
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Figure 9.1: Interaction plot for temperature–drying time data.

The relatively strong temperature effect on percent solids at the lower dry-
ing time is reflected in the steep slope at d1. At the middle drying time d2 the
temperature has very little effect, while at the high drying time d3 the negative
slope illustrates a negative effect of temperature. Interaction plots such as this set
give the scientist a quick and meaningful interpretation of the interaction that is
present. It should be apparent that parallelism in the plots signals an absence
of interaction.

Need for Multiple Observations

Interaction and experimental error are separated in the two-factor experiment only
if multiple observations are taken at the various treatment combinations. For max-
imum efficiency, there should be the same number n of observations at each com-
bination. These should be true replications, not just repeated measurements. For
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example, in the yeast illustration, if we take n = 2 observations at each combina-
tion of temperature and drying time, there should be two separate samples and not
merely repeated measurements on the same sample. This allows variability due to
experimental units to appear in “error,” so the variation is not merely measurement
error.

9.3 Two-Factor Analysis of Variance

To present general formulas for the analysis of variance of a two-factor experiment
using repeated observations in a completely randomized design, we shall consider
the case of n replications of the treatment combinations determined by a levels of
factor A and b levels of factor B. The observations may be classified by means of a
rectangular array where the rows represent the levels of factor A and the columns
represent the levels of factor B. Each treatment combination defines a cell in our
array. Thus, we have ab cells, each cell containing n observations. Denoting the
kth observation taken at the ith level of factor A and the jth level of factor B by
yijk, Table 9.1 shows the abn observations.

Table 9.1: Two-Factor Experiment with n Replications

B

A 1 2 · · · b Total Mean

1 y111 y121 · · · y1b1 Y1.. ȳ1..
y112 y122 · · · y1b2
...

...
...

y11n y12n · · · y1bn
2 y211 y221 · · · y2b1 Y2.. ȳ2..

y212 y222 · · · y2b2
...

...
...

y21n y22n · · · y2bn
...

...
...

...
...

...
a ya11 ya21 · · · yab1 Ya.. ȳa..

ya12 ya22 · · · yab2
...

...
...

ya1n ya2n · · · yabn
Total Y.1. Y.2. · · · Y.b. Y...

Mean ȳ.1. ȳ.2. · · · ȳ.b. ȳ...

The observations in the (ij)th cell constitute a random sample of size n from a
population that is assumed to be normally distributed with mean μij and variance
σ2. All ab populations are assumed to have the same variance σ2. Let us define
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the following useful symbols, some of which are used in Table 9.1:

Yij. = sum of the observations in the (ij)th cell,

Yi.. = sum of the observations for the ith level of factor A,

Y.j. = sum of the observations for the jth level of factor B,

Y... = sum of all abn observations,

ȳij. = mean of the observations in the (ij)th cell,

ȳi.. = mean of the observations for the ith level of factor A,

ȳ.j. = mean of the observations for the jth level of factor B,

ȳ... = mean of all abn observations.

Unlike in the one-factor situation covered at length in Chapter 8, here we are
assuming that the populations, where n independent identically distributed ob-
servations are taken, are combinations of factors. Also we will assume throughout
that an equal number (n) of observations are taken at each factor combination. In
cases in which the sample sizes per combination are unequal, the computations are
more complicated but the concepts are transferable.

Model and Hypotheses for the Two-Factor Problem

Each observation in Table 9.1 may be written in the form

yijk = μij + εijk,

where εijk measures the deviations of the observed yijk values in the (ij)th cell
from the population mean μij . If we let (αβ)ij denote the interaction effect of the
ith level of factor A and the jth level of factor B, αi the effect of the ith level of
factor A, βj the effect of the jth level of factor B, and μ the overall mean, we can
write

μij = μ+ αi + βj + (αβ)ij ,

and then

yijk = μ+ αi + βj + (αβ)ij + εijk,

on which we impose the restrictions

a∑
i=1

αi = 0,

b∑
j=1

βj = 0,

a∑
i=1

(αβ)ij = 0,

b∑
j=1

(αβ)ij = 0.

The three hypotheses to be tested are as follows:

1. H ′
0: α1 = α2 = · · · = αa = 0,

H ′
1: At least one of the αi is not equal to zero.

2. H
′′
0 : β1 = β2 = · · · = βb = 0,

H
′′
1 : At least one of the βj is not equal to zero.
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3. H
′′′
0 : (αβ)11 = (αβ)12 = · · · = (αβ)ab = 0,

H
′′′
1 : At least one of the (αβ)ij is not equal to zero.

We warned the reader about the problem of masking of main effects when inter-
action is a heavy contributor in the model. It is recommended that the interaction
test result be considered first. The interpretation of the main effect test follows,
and the nature of the scientific conclusion depends on whether interaction is found.
If interaction is ruled out, then hypotheses 1 and 2 above can be tested and the
interpretation is quite simple. However, if interaction is found to be present, the
interpretation can be more complicated, as we have seen from the discussion of the
drying time and temperature in the previous section. In what follows, the structure
of the tests of hypotheses 1, 2, and 3 will be discussed. Interpretation of results
will be incorporated in the discussion of the analysis in Example 9.1.

The tests of the hypotheses above will be based on a comparison of independent
estimates of σ2 provided by splitting the total sum of squares of our data into four
components by means of the following identity.

Partitioning of Variability in the Two-Factor Case

Theorem 9.1: Sum-of-Squares Identity

a∑
i=1

b∑
j=1

n∑
k=1

(yijk − ȳ...)
2 = bn

a∑
i=1

(ȳi.. − ȳ...)
2 + an

b∑
j=1

(ȳ.j. − ȳ...)
2

+ n

a∑
i=1

b∑
j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)
2 +

a∑
i=1

b∑
j=1

n∑
k=1

(yijk − ȳij.)
2

Symbolically, we write the sum-of-squares identity as

SST = SSA+ SSB + SS(AB) + SSE,

where SSA and SSB are called the sums of squares for the main effects A and
B, respectively, SS(AB) is called the interaction sum of squares for A and B, and
SSE is the error sum of squares. The degrees of freedom are partitioned according
to the identity

abn− 1 = (a− 1) + (b− 1) + (a− 1)(b− 1) + ab(n− 1).

Formation of Mean Squares

If we divide each of the sums of squares on the right side of the sum-of-squares
identity by its corresponding number of degrees of freedom, we obtain the four
statistics

S2
1 =

SSA

a− 1
, S2

2 =
SSB

b− 1
, S2

3 =
SS(AB)

(a− 1)(b− 1)
, S2 =

SSE

ab(n− 1)
.

All of these variance estimates are independent estimates of σ2 under the condition
that there are no effects αi, βj , and, of course, (αβ)ij . If we interpret the sums of
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squares as functions of the independent random variables y111, y112, . . . , yabn, it is
not difficult to verify that

E(S2
1) = E

[
SSA

a− 1

]
= σ2 +

nb

a− 1

a∑
i=1

α2
i ,

E(S2
2) = E

[
SSB

b− 1

]
= σ2 +

na

b− 1

b∑
j=1

β2
j ,

E(S2
3) = E

[
SS(AB)

(a− 1)(b− 1)

]
= σ2 +

n

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(αβ)2ij ,

E(S2) = E

[
SSE

ab(n− 1)

]
= σ2,

from which we immediately observe that all four estimates of σ2 are unbiased when
H ′

0, H
′′
0 , and H

′′′
0 are true.

To test the hypothesis H ′
0, that the effects of factors A are all equal to zero, we

compute the following ratio:

F-Test for
Factor A f1 =

s21
s2

,

which is a value of the random variable F1 having the F-distribution with a− 1
and ab(n−1) degrees of freedom when H

′
0 is true. The null hypothesis is rejected

at the α-level of significance when f1 > fα[a− 1, ab(n− 1)].

Similarly, to test the hypothesis H
′′
0 that the effects of factor B are all equal to

zero, we compute the following ratio:

F-Test for
Factor B f2 =

s22
s2

,

which is a value of the random variable F2 having the F-distribution with b− 1
and ab(n− 1) degrees of freedom when H

′′
0 is true. This hypothesis is rejected

at the α-level of significance when f2 > fα[b− 1, ab(n− 1)].

Finally, to test the hypothesis H
′′′
0 , that the interaction effects are all equal to zero,

we compute the following ratio:

F-Test for
Interaction f3 =

s23
s2

,

which is a value of the random variable F3 having the F-distribution with
(a − 1)(b − 1) and ab(n − 1) degrees of freedom when H

′′′
0 is true. We con-

clude that, at the α-level of significance, interaction is present when f3 >
fα[(a− 1)(b− 1), ab(n− 1)].

As indicated in Section 9.2, it is advisable to interpret the test for interaction
before attempting to draw inferences on the main effects. If interaction is not sig-
nificant, there is certainly evidence that the tests on main effects are interpretable.
Rejection of hypothesis 1 on page 398 implies that the response means at the levels
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of factor A are significantly different, while rejection of hypothesis 2 implies a simi-
lar condition for the means at levels of factor B. However, a significant interaction
could very well imply that the data should be analyzed in a somewhat different
manner—perhaps observing the effect of factor A at fixed levels of factor
B, and so forth.

The computations in an analysis-of-variance problem, for a two-factor experi-
ment with n replications, are usually summarized as in Table 9.2.

Table 9.2: Analysis of Variance for the Two-Factor Experiment with n Replications

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Main effect:

A SSA a− 1 s21 = SSA
a−1 f1 =

s21
s2

B SSB b− 1 s22 = SSB
b−1 f2 =

s22
s2

Two-factor
interactions:

AB SS(AB) (a− 1)(b− 1) s23 = SS(AB)
(a−1)(b−1) f3 =

s23
s2

Error SSE ab(n− 1) s2 = SSE
ab(n−1)

Total SST abn− 1

Example 9.1: In an experiment conducted to determine which of 3 different missile systems is
preferable, the propellant burning rate for 24 static firings was measured. Four dif-
ferent propellant types were used. The experiment yielded duplicate observations
of burning rates at each combination of the treatments.

The data, after coding, are given in Table 9.3. Test the following hypotheses:
(a) H

′
0: there is no difference in the mean propellant burning rates when different

missile systems are used, (b) H
′′
0 : there is no difference in the mean propellant

burning rates of the 4 propellant types, (c) H
′′′
0 : there is no interaction between

the different missile systems and the different propellant types.

Table 9.3: Propellant Burning Rates

Missile Propellant Type

System b1 b2 b3 b4

a1 34.0 30.1 29.8 29.0
32.7 32.8 26.7 28.9

a2 32.0 30.2 28.7 27.6
33.2 29.8 28.1 27.8

a3 28.4 27.3 29.7 28.8
29.3 28.9 27.3 29.1

Solution : 1. (a) H
′
0: α1 = α2 = α3 = 0.
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(b) H
′′
0 : β1 = β2 = β3 = β4 = 0.

(c) H
′′′
0 : (αβ)11 = (αβ)12 = · · · = (αβ)34 = 0.

2. (a) H
′
1: At least one of the αi is not equal to zero.

(b) H
′′
1 : At least one of the βj is not equal to zero.

(c) H
′′′
1 : At least one of the (αβ)ij is not equal to zero.

The sum-of-squares formula is used as described in Theorem 9.1. The analysis
of variance is shown in Table 9.4.

Table 9.4: Analysis of Variance for the Data of Table 9.3

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Missile system 14.52 2 7.26 5.84
Propellant type 40.08 3 13.36 10.75
Interaction 22.16 6 3.69 2.97
Error 14.91 12 1.24

Total 91.68 23

The reader is directed to a SAS GLM Procedure (General Linear Models) for
analysis of the burning rate data in Figure 9.2. Note how the “model” (11 degrees of
freedom) is initially tested and the system, type, and system by type interaction are
tested separately. The F-test on the model (P = 0.0030) is testing the accumulation
of the two main effects and the interaction.

(a) Reject H
′
0 and conclude that different missile systems result in different mean

propellant burning rates. The P -value is approximately 0.0169.

(b) Reject H
′′
0 and conclude that the mean propellant burning rates are not the

same for the four propellant types. The P -value is approximately 0.0010.

(c) Interaction is barely insignificant at the 0.05 level, but the P -value of approx-
imately 0.0513 would indicate that interaction must be taken seriously.

At this point we should draw some type of interpretation of the interaction. It
should be emphasized that statistical significance of a main effect merely implies
that marginal means are significantly different. However, consider the two-way
table of averages in Table 9.5.

Table 9.5: Interpretation of Interaction

b1 b2 b3 b4 Average

a1 33.35 31.45 28.25 28.95 30.50
a2 32.60 30.00 28.40 27.70 29.68
a3 28.85 28.10 28.50 28.95 28.60

Average 31.60 29.85 28.38 28.53

It is apparent that more important information exists in the body of the table—
trends that are inconsistent with the trend depicted by marginal averages. Table
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The GLM Procedure

Dependent Variable: rate

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 11 76.76833333 6.97893939 5.62 0.0030

Error 12 14.91000000 1.24250000

Corrected Total 23 91.67833333

R-Square Coeff Var Root MSE rate Mean

0.837366 3.766854 1.114675 29.59167

Source DF Type III SS Mean Square F Value Pr > F

system 2 14.52333333 7.26166667 5.84 0.0169

type 3 40.08166667 13.36055556 10.75 0.0010

system*type 6 22.16333333 3.69388889 2.97 0.0512

Figure 9.2: SAS printout of the analysis of the propellant rate data of Table 9.3.

9.5 certainly suggests that the effect of propellant type depends on the system
being used. For example, for system 3 the propellant-type effect does not appear
to be important, although it does have a large effect if either system 1 or system
2 is used. This explains the “significant” interaction between these two factors.
More will be revealed subsequently concerning this interaction.

Graphical Analysis for the Two-Factor Problem of Example 9.1

Many of the same types of graphical displays that were suggested in the one-factor
problems certainly apply in the two-factor case. Two-dimensional plots of cell
means or treatment combination means can provide insight into the presence of
interactions between the two factors. In addition, a plot of residuals against fitted
values may well provide an indication of whether or not the homogeneous variance
assumption holds. Often, of course, a violation of the homogeneous variance as-
sumption involves an increase in the error variance as the response numbers get
larger. As a result, this plot may point out the violation.

Figure 9.3 shows the plot of cell means in the case of the missile system pro-
pellant illustration in Example 9.1. Notice how graphically (in this case) the lack
of parallelism shows through. Note the flatness of the part of the figure showing
the propellant effect for system 3. This illustrates interaction among the factors.
Figure 9.4 shows the plot of residuals against fitted values for the same data. There
is no apparent sign of difficulty with the homogeneous variance assumption.

Example 9.2: An electrical engineer is investigating a plasma etching process used in semicon-
ductor manufacturing. It is of interest to study the effects of two factors, the C2F6

gas flow rate (A) and the power applied to the cathode (B). The response is the
etch rate. Each factor is run at 3 levels, and 2 experimental runs on etch rate are
made for each of the 9 combinations. The setup is that of a completely randomized
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Figure 9.3: Plot of cell means for data of Example 9.1. Numbers represent missile
systems.
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Figure 9.4: Residual plot of data of Example 9.1.

design. The data are given in Table 9.6. The etch rate is in A◦/min.
The levels of the factors are in ascending order, with level 1 being the lowest

level and level 3 being the highest.

(a) Show an analysis of variance table and draw conclusions, beginning with the
test on interaction.

(b) Do tests on main effects and draw conclusions.

Solution : A SAS output is given in Figure 9.5. From the output we learn the following.

(a) The P-value for the test of interaction is 0.4485. We can conclude that there
is no significant interaction.
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Table 9.6: Data for Example 9.2

Power Supplied
C2F6 Flow Rate 1 2 3

1 288 488 670
360 465 720

2 385 482 692
411 521 724

3 488 595 761
462 612 801

The GLM Procedure

Dependent Variable: etchrate

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 8 379508.7778 47438.5972 61.00 <.0001

Error 9 6999.5000 777.7222

Corrected Total 17 386508.2778

R-Square Coeff Var Root MSE etchrate Mean

0.981890 5.057714 27.88767 551.3889

Source DF Type III SS Mean Square F Value Pr > F

c2f6 2 46343.1111 23171.5556 29.79 0.0001

power 2 330003.4444 165001.7222 212.16 <.0001

c2f6*power 4 3162.2222 790.5556 1.02 0.4485

Figure 9.5: SAS printout for Example 9.2.

(b) There is a significant difference in mean etch rate based on the level of power to
the cathode. Tukey’s test revealed that the etch rate for level 3 is significantly
higher than that for level 2 and the rate for level 2 is significantly higher than
that for level 1. See Figure 9.6(a). There is also a significant difference in
mean etch rate for the 3rd C2F6 flow rate from the 1st and 2nd C2F6 flow
rates. Tukey’s test shows that the mean etch rate for level 3 is significantly
higher than those for levels 1 and 2 and there is no significant difference in
the mean etch rate between the flow rate levels 1 and 2. See Figure 9.6(b).
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Tukey Grouping Mean N power

A 728.00 6 3

B 527.17 6 2

C 399.00 6 1

(a)

Tukey Grouping Mean N c2f6

A 619.83 6 3

B 535.83 6 2

B

C 498.50 6 1

(b)

Figure 9.6: SAS output for Example 9.2. (a) Tukey’s test on power; (b) Tukey’s test on gas flow rate.

Exercises

9.1 An experiment was conducted to study the effects
of temperature and type of oven on the life of a particu-
lar component. Four types of ovens and 3 temperature
levels were used in the experiment. Twenty-four pieces
were assigned randomly, two to each combination of
treatments, and the following results recorded.

Oven

Temperature (◦F) O1 O2 O3 O4

500 227 214 225 260
221 259 236 229

550 187 181 232 246
208 179 198 273

600 174 198 178 206
202 194 213 219

Using a 0.05 level of significance, test the hypothesis
that

(a) different temperatures have no effect on the life of
the component;

(b) different ovens have no effect on the life of the com-
ponent;

(c) the type of oven and temperature do not interact.

9.2 To ascertain the stability of vitamin C in reconsti-
tuted frozen orange juice concentrate stored in a refrig-
erator for a period of up to one week, the study Vitamin
C Retention in Reconstituted Frozen Orange Juice was
conducted by the Department of Human Nutrition and
Foods at Virginia Tech. Three types of frozen orange
juice concentrate were tested using 3 different time pe-
riods. The time periods refer to the number of days
from when the orange juice was blended until it was
tested. The results, in milligrams of ascorbic acid per
liter, were recorded. Use a 0.05 level of significance to
test the hypothesis that

(a) there is no difference in ascorbic acid contents
among the different brands of orange juice concen-
trate;

(b) there is no difference in ascorbic acid contents for
the different time periods;

(c) the brands of orange juice concentrate and the
number of days from the time the juice was blended
until it was tested do not interact.

Time (days)
Brand 0 3 7

Richfood 52.6 54.2 49.4 49.2 42.7 48.8
49.8 46.5 42.8 53.2 40.4 47.6

Sealed-Sweet 56.0 48.0 48.8 44.0 49.2 44.0
49.6 48.4 44.0 42.4 42.0 43.2

Minute Maid 52.5 52.0 48.0 47.0 48.5 43.3
51.8 53.6 48.2 49.6 45.2 47.6

9.3 Three strains of rats were studied under 2 envi-
ronmental conditions for their performance in a maze
test. The error scores for the 48 rats were recorded.

Strain
Environment Bright Mixed Dull

Free 28 12 33 83 101 94
22 23 36 14 33 56
25 10 41 76 122 83
36 86 22 58 35 23

Restricted 72 32 60 89 136 120
48 93 35 126 38 153
25 31 83 110 64 128
91 19 99 118 87 140

Use a 0.01 level of significance to test the hypothesis
that

(a) there is no difference in error scores for different
environments;

(b) there is no difference in error scores for different
strains;

(c) the environments and strains of rats do not inter-
act.

9.4 Corrosion fatigue in metals has been defined as
the simultaneous action of cyclic stress and chemical
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attack on a metal structure. A widely used technique
for minimizing corrosion fatigue damage in aluminum
involves the application of a protective coating. A
study conducted by the Department of Mechanical En-
gineering at Virginia Tech used 3 different levels of hu-
midity (Low: 20–25% relative humidity; Medium: 55–
60% relative humidity; High: 86–91% relative humid-
ity) and 3 types of surface coatings (Uncoated: no coat-
ing; Anodized: sulfuric acid anodic oxide coating; Con-
version: chromate chemical conversion coating). The
corrosion fatigue data, expressed in thousands of cycles
to failure, were recorded as follows:

Relative Humidity
Coating Low Medium High

Uncoated
361
466

1069

469
937

1357

314
244
261

522
739
134

1344
1027
1011

1216
1097
1011

Anodized
114

1236
533

1032
92

211

322
306
68

471
130
398

78
387
130

466
107
327

Conversion
130
841

1595

1482
529
754

252
105
847

874
755
573

586
402
846

524
751
529

(a) Perform an analysis of variance with α = 0.05 to
test for significant main and interaction effects.

(b) Use Tukey’s multiple-range test at the 0.05 level
of significance to determine which humidity levels
result in different corrosion fatigue damage.

9.5 To determine which muscles need to be subjected
to a conditioning program in order to improve one’s
performance on the flat serve used in tennis, a study
was conducted by the Department of Health, Physi-
cal Education and Recreation at Virginia Tech. Five
different muscles

1: anterior deltoid 4: middle deltoid

2: pectoralis major 5: triceps

3: posterior deltoid

were tested on each of 3 subjects, and the experiment
was carried out 3 times for each treatment combina-
tion. The electromyographic data, recorded during the
serve, are presented here.

Muscle

Subject 1 2 3 4 5

1 32 5 58 10 19
59 1.5 61 10 20
38 2 66 14 23

2 63 10 64 45 43
60 9 78 61 61
50 7 78 71 42

3 43 41 26 63 61
54 43 29 46 85
47 42 23 55 95

Use a 0.01 level of significance to test the hypothesis
that

(a) different subjects have equal electromyographic
measurements;

(b) different muscles have no effect on electromyo-
graphic measurements;

(c) subjects and types of muscle do not interact.

9.6 An experiment was conducted to determine
whether additives increase the adhesiveness of rubber
products. Sixteen products were made with the new
additive and another 16 without the new additive. The
observed adhesiveness was as recorded below.

Temperature (◦C)

50 60 70 80

2.3 3.4 3.8 3.9
Without Additive 2.9 3.7 3.9 3.2

3.1 3.6 4.1 3.0
3.2 3.2 3.8 2.7

4.3 3.8 3.9 3.5
With Additive 3.9 3.8 4.0 3.6

3.9 3.9 3.7 3.8
4.2 3.5 3.6 3.9

Perform an analysis of variance to test for significant
main and interaction effects.

9.7 The extraction rate of a certain polymer is known
to depend on the reaction temperature and the amount
of catalyst used. An experiment was conducted at four
levels of temperature and five levels of the catalyst, and
the extraction rate was recorded in the following table.

Amount of Catalyst

0.5% 0.6% 0.7% 0.8% 0.9%

50◦C 38 45 57 59 57
41 47 59 61 58

60◦C 44 56 70 73 61
43 57 69 72 58

70◦C 44 56 70 73 61
47 60 67 61 59

80◦C 49 62 70 62 53
47 65 55 69 58

Perform an analysis of variance. Test for significant
main and interaction effects.

9.8 In Myers, Montgomery, and Anderson-Cook
(2009), a scenario is discussed involving an auto
bumper plating process. The response is the thickness
of the material. Factors that may impact the thickness
include amount of nickel (A) and pH (B). A two-factor
experiment is designed. The plan is a completely ran-
domized design in which the individual bumpers are
assigned randomly to the factor combinations. Three
levels of pH and two levels of nickel content are involved
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in the experiment. The thickness data, in cm × 10−3,
are as follows:

Nickel Content pH

(grams) 5 5.5 6

18 250 211 221
195 172 150
188 165 170

10 115 88 69
165 112 101
142 108 72

(a) Display the analysis-of-variance table with tests for
both main effects and interaction. Show P-values.

(b) Give engineering conclusions. What have you
learned from the analysis of the data?

(c) Show a plot that depicts either a presence or an
absence of interaction.

9.9 An engineer is interested in the effects of cutting
speed and tool geometry on the life in hours of a ma-
chine tool. Two cutting speeds and two different ge-
ometries are used. Three experimental tests are ac-
complished at each of the four combinations. The data
are as follows.

Tool Cutting Speed
Geometry Low High

1 22 28 20 34 37 29
2 18 15 16 11 10 10

(a) Show an analysis-of-variance table with tests on in-
teraction and main effects.

(b) Comment on the effect that interaction has on the
test on cutting speed.

(c) Do secondary tests that will allow the engineer to
learn the true impact of cutting speed.

(d) Show a plot that graphically displays the interac-
tion effect.

9.10 Two factors in a manufacturing process for an
integrated circuit are studied in a two-factor experi-
ment. The purpose of the experiment is to learn their
effect on the resistivity of the wafer. The factors are
implant dose (2 levels) and furnace position (3 levels).
Experimentation is costly so only one experimental run
is made at each combination. The data are as follows.

Dose Position

1 15.5 14.8 21.3
2 27.2 24.9 26.1

It is to be assumed that no interaction exists between
these two factors.

(a) Write the model and explain terms.

(b) Show the analysis-of-variance table.

(c) Explain the 2 “error” degrees of freedom.

(d) Use Tukey’s test to do multiple-comparison tests on
furnace position. Explain what the results show.

9.11 A study was done to determine the impact of
two factors, method of analysis and the laboratory do-
ing the analysis, on the level of sulfur content in coal.
Twenty-eight coal specimens were randomly assigned
to 14 factor combinations, the structure of the experi-
mental units represented by combinations of seven lab-
oratories and two methods of analysis with two speci-
mens per factor combination. The data, expressed in
percent of sulfur, are as follows:

Method

Laboratory 1 2
1 0.109 0.105 0.105 0.108
2 0.129 0.122 0.127 0.124
3 0.115 0.112 0.109 0.111
4 0.108 0.108 0.117 0.118
5 0.097 0.096 0.110 0.097
6 0.114 0.119 0.116 0.122
7 0.155 0.145 0.164 0.160

(The data are taken from G. Taguchi, “Signal to
Noise Ratio and Its Applications to Testing Material,”
Reports of Statistical Application Research, Union of
Japanese Scientists and Engineers, Vol. 18, No. 4,
1971.)

(a) Do an analysis of variance and show results in an
analysis-of-variance table.

(b) Is interaction significant? If so, discuss what it
means to the scientist. Use a P-value in your con-
clusion.

(c) Are the individual main effects, laboratory, and
method of analysis statistically significant? Discuss
what is learned and let your answer be couched in
the context of any significant interaction.

(d) Do an interaction plot that illustrates the effect of
interaction.

(e) Do a test comparing methods 1 and 2 at laboratory
1 and do the same test at laboratory 7. Comment
on what these results illustrate.

9.12 In an experiment conducted in the Civil Engi-
neering Department at Virginia Tech, growth of a cer-
tain type of algae in water was observed as a function
of time and the dosage of copper added to the water.
The data are as follows. Response is in units of algae.

Time in Days

Copper 5 12 18

1 0.30 0.37 0.25
0.34 0.36 0.23
0.32 0.35 0.24

2 0.24 0.30 0.27
0.23 0.32 0.25
0.22 0.31 0.25

3 0.20 0.30 0.27
0.28 0.31 0.29
0.24 0.30 0.25



9.4 Three-Factor Experiments 409

(a) Do an analysis of variance and show the analysis-
of-variance table.

(b) Comment concerning whether the data are suffi-
cient to show a time effect on algae concentration.

(c) Do the same for copper content. Does the level of
copper impact algae concentration?

(d) Comment on the results of the test for interaction.
How is the effect of copper content influenced by
time?

9.13 In Myers, Classical and Modern Regression with
Applications (1990), an experiment is described in
which the Environmental Protection Agency seeks to
determine the effect of two water treatment methods
on magnesium uptake. Magnesium levels in grams per
cubic centimeter (cc) are measured, and two different
time levels are incorporated into the experiment. The
data are as follows:

Treatment
Time (hr) 1 2

1 2.19 2.15 2.16 2.03 2.01 2.04
2 2.01 2.03 2.04 1.88 1.86 1.91

(a) Do an interaction plot. What is your impression?

(b) Do an analysis of variance and show tests for the
main effects and interaction.

(c) Give your findings regarding how time and treat-
ment influence magnesium uptake.

(d) Fit the appropriate regression model with treat-
ment as a categorical variable. Include interaction
in the model.

(e) Is interaction significant in the regression model?

9.14 Consider the data set in Exercise 9.12 and an-
swer the following questions.

(a) Both factors, copper and time, are quantitative in
nature. As a result, a regression model may be of
interest. Describe what might be an appropriate
model using x1 = copper content and x2 = time.

Fit the model to the data, showing regression coef-
ficients and a t-test on each.

(b) Fit the model

Y = β0 + β1x1 + β2x2 + β12x1x2

+ β11x
2
1 + β22x

2
2 + ε,

and compare it to the one you chose in (a). Which
is more appropriate? Use R2

adj as a criterion.

9.15 The purpose of the study The Incorporation of
a Chelating Agent into a Flame Retardant Finish of a
Cotton Flannelette and the Evaluation of Selected Fab-
ric Properties, conducted at Virginia Tech, was to eval-
uate the use of a chelating agent as part of the flame
retardant finish of cotton flannelette by determining its
effect upon flammability after the fabric is laundered
under specific conditions. There were two treatments
at two levels. Two baths were prepared, one with car-
boxymethyl cellulose (bath I) and one without (bath
II). Half of the fabric was laundered 5 times and half
was laundered 10 times. There were 12 pieces of fab-
ric in each bath/number of launderings combination.
After the washings, the lengths of fabric that burned
and the burn times were measured. Burn times (in
seconds) were recorded as follows:

Launderings Bath I Bath II

5

10

13.7
25.5
14.0
14.0
27.2
14.9
10.8
14.2

23.0
15.8
29.4
12.3
16.8
17.1
13.5
27.4

15.7
14.8
9.7

12.3
12.9
13.0
25.5
11.5

6.2
4.4

16.0
3.9

18.2
14.7
10.6
17.7

5.4
5.0
2.5
2.5
8.8

17.1
5.8

18.3

5.0
3.3
1.6
7.1

14.5
13.9
7.3
9.9

(a) Perform an analysis of variance. Is there a signifi-
cant interaction term?

(b) Are there main effect differences? Discuss.

9.4 Three-Factor Experiments

In this section, we consider an experiment with three factors, A, B, and C, at a, b,
and c levels, respectively, in a completely randomized experimental design. Assume
again that we have n observations for each of the abc treatment combinations. We
shall proceed to outline significance tests for the three main effects and interactions
involved. It is hoped that the reader can then use the description given here to
generalize the analysis to k > 3 factors.
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Model for the
Three-Factor
Experiment

The model for the three-factor experiment is

yijkl = μ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijkl,

i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , c; and l = 1, 2, . . . , n, where αi,
βj , and γk are the main effects and (αβ)ij , (αγ)ik, and (βγ)jk are the two-
factor interaction effects that have the same interpretation as in the two-factor
experiment.

The term (αβγ)ijk is called the three-factor interaction effect, a term that
represents a nonadditivity of the (αβ)ij over the different levels of the factor C.
As before, the sum of all main effects is zero and the sum over any subscript of the
two- and three-factor interaction effects is zero. In many experimental situations,
these higher-order interactions are insignificant and their mean squares reflect only
random variation, but we shall outline the analysis in its most general form.

Again, in order that valid significance tests can be made, we must assume that
the errors are values of independent and normally distributed random variables,
each with mean 0 and common variance σ2.

The general philosophy concerning the analysis is the same as that discussed for
the one- and two-factor experiments. The sum of squares is partitioned into eight
terms, each representing a source of variation from which we obtain independent
estimates of σ2 when all the main effects and interaction effects are zero. If the
effects of any given factor or interaction are not all zero, then the mean square
will estimate the error variance plus a component due to the systematic effect in
question.

Sum of Squares
for a

Three-Factor
Experiment

SSA = bcn
a∑

i=1

(ȳi... − ȳ....)
2 SS(AB) = cn

∑
i

∑
j

(ȳij.. − ȳi... − ȳ.j.. + ȳ....)
2

SSB = acn

b∑
j=1

(ȳ.j.. − ȳ....)
2 SS(AC) = bn

∑
i

∑
k

(ȳi.k. − ȳi... − ȳ..k. + ȳ....)
2

SSC = abn
c∑

k=1

(ȳ..k. − ȳ....)
2 SS(BC) = an

∑
j

∑
k

(ȳ.jk. − ȳ.j.. − ȳ..k. + ȳ....)
2

SS(ABC) = n
∑
i

∑
j

∑
k

(ȳijk. − ȳij.. − ȳi.k. − ȳ.jk. + ȳi... + ȳ.j.. + ȳ..k. − ȳ....)
2

SST =
∑
i

∑
j

∑
k

∑
l

(yijkl − ȳ....)
2 SSE =

∑
i

∑
j

∑
k

∑
l

(yijkl − ȳijk.)
2

Although we emphasize interpretation of annotated computer printout in this
section rather than being concerned with laborious computation of sums of squares,
we do offer the following as the sums of squares for the three main effects and
interactions. Notice the obvious extension from the two- to three-factor problem.
The averages in the formulas follow from what is given in the two-factor problem.

The computations in an analysis-of-variance table for a three-factor problem
with n replicated runs at each factor combination are summarized in Table 9.7.

For the three-factor experiment with a single experimental run per combina-
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Table 9.7: ANOVA for the Three-Factor Experiment with n Replications

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Main effect:

A SSA a− 1 s21 f1 =
s21
s2

B SSB b− 1 s22 f2 =
s22
s2

C SSC c− 1 s23 f3 =
s23
s2

Two-factor interaction:

AB SS(AB) (a− 1)(b− 1) s24 f4 =
s24
s2

AC SS(AC) (a− 1)(c− 1) s25 f5 =
s25
s2

BC SS(BC) (b− 1)(c− 1) s26 f6 =
s26
s2

Three-factor interaction:

ABC SS(ABC) (a− 1)(b− 1)(c− 1) s27 f7 =
s27
s2

Error SSE abc(n− 1) s2

Total SST abcn− 1

tion, we may use the analysis of Table 9.7 by setting n = 1 and using the ABC
interaction sum of squares for SSE. In this case, we are assuming that the (αβγ)ijk
interaction effects are all equal to zero so that

E

[
SS(ABC)

(a− 1)(b− 1)(c− 1)

]
= σ2 +

n

(a− 1)(b− 1)(c− 1)

a∑
i=1

b∑
j=1

c∑
k=1

(αβγ)2ijk = σ2.

That is, SS(ABC) represents variation due only to experimental error. Its mean
square thereby provides an unbiased estimate of the error variance. With n = 1
and SSE = SS(ABC), the error sum of squares is found by subtracting the sums
of squares of the main effects and two-factor interactions from the total sum of
squares.

Example 9.3: In the production of a particular material, three variables are of interest: A, the
operator effect (three operators): B, the catalyst used in the experiment (three
catalysts); and C, the washing time of the product following the cooling process
(15 minutes and 20 minutes). Three runs were made at each combination of factors.
It was felt that all interactions among the factors should be studied. The coded
yields are in Table 9.8. Perform an analysis of variance to test for significant effects.

Solution : Table 9.9 shows an analysis of variance of the data given above. None of the
interactions show a significant effect at the α = 0.05 level. However, the P-value
for BC is 0.0610; thus, it should not be ignored. The operator and catalyst effects
are significant, while the effect of washing time is not significant.
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Table 9.8: Data for Example 9.3

Washing Time, C
15 Minutes 20 Minutes
Catalyst, B Catalyst, B

Operator, A 1 2 3 1 2 3
1 10.7 10.3 11.2 10.9 10.5 12.2

10.8 10.2 11.6 12.1 11.1 11.7
11.3 10.5 12.0 11.5 10.3 11.0

2 11.4 10.2 10.7 9.8 12.6 10.8
11.8 10.9 10.5 11.3 7.5 10.2
11.5 10.5 10.2 10.9 9.9 11.5

3 13.6 12.0 11.1 10.7 10.2 11.9
14.1 11.6 11.0 11.7 11.5 11.6
14.5 11.5 11.5 12.7 10.9 12.2

Table 9.9: ANOVA for a Three-Factor Experiment in a Completely Randomized Design

Source df Sum of Squares Mean Square F-Value P-Value

A
B
AB
C
AC
BC
ABC
Error

Total

2
2
4
1
2
2
4
36
53

13.98
10.18
4.77
1.19
2.91
3.63
4.91
21.61
63.19

6.99
5.09
1.19
1.19
1.46
1.82
1.23
0.60

11.64
8.48
1.99
1.97
2.43
3.03
2.04

0.0001
0.0010
0.1172
0.1686
0.1027
0.0610
0.1089

Impact of Interaction BC

More should be discussed regarding Example 9.3, particularly about dealing with
the effect that the interaction between catalyst and washing time is having on the
test on the washing time main effect (factor C). Recall our discussion in Section
9.2. Illustrations were given of how the presence of interaction could change the
interpretation that we make regarding main effects. In Example 9.3, the BC
interaction is significant at approximately the 0.06 level. Consider, however, the
two-way table of means in Table 9.10.

It is clear why washing time was found not to be significant. A non-thorough
analyst may get the impression that washing time can be eliminated from any
future study in which yield is being measured. However, it is obvious how the
effect of washing time changes from a negative effect for the first catalyst to what
appears to be a positive effect for the third catalyst. If we merely focus on the
data for catalyst 1, a simple comparison between the means at the two washing
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Table 9.10: Two-Way Table of Means for Example 9.3

Washing Time, C

Catalyst, B 15 min 20 min

1 12.19 11.29
2 10.86 10.50
3 11.09 11.46

Means 11.38 11.08

times will produce a simple t-statistic:

t =
12.19− 11.29√

0.6(2/9)
= 2.5,

which is significant at a level less than 0.02. Thus, an important negative effect
of washing time for catalyst 1 might very well be ignored if the analyst makes the
incorrect broad interpretation of the insignificant F-ratio for washing time.

Pooling in Multifactor Models

We have described the three-factor model and its analysis in the most general
form by including all possible interactions in the model. Of course, there are
many situations where it is known a priori that the model should not contain
certain interactions. We can then take advantage of this knowledge by combining
or pooling the sums of squares corresponding to negligible interactions with the
error sum of squares to form a new estimator for σ2 with a larger number of degrees
of freedom. For example, in a metallurgy experiment designed to study the effect
on film thickness of three important processing variables, suppose it is known
that factor A, acid concentration, does not interact with factors B and C. The
sums of squares SSA, SSB, SSC, and SS(BC) are computed using the methods
described earlier in this section. The mean squares for the remaining effects will
now all independently estimate the error variance σ2. Therefore, we form our new
mean square error by pooling SS(AB), SS(AC), SS(ABC), and SSE, along
with the corresponding degrees of freedom. The resulting denominator for the
significance tests is then the mean square error given by

s2 =
SS(AB) + SS(AC) + SS(ABC) + SSE

(a− 1)(b− 1) + (a− 1)(c− 1) + (a− 1)(b− 1)(c− 1) + abc(n− 1)
.

Computationally, of course, one obtains the pooled sum of squares and the pooled
degrees of freedom by subtraction once SST and the sums of squares for the existing
effects are computed. The analysis-of-variance table would then take the form of
Table 9.11.

Factorial Experiments in Blocks

In this chapter, we have assumed that the experimental design used is a com-
pletely randomized design. By interpreting the levels of factor A in Table 9.11 as
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Table 9.11: ANOVA with Factor A Noninteracting

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Main effect:

A SSA a− 1 s21 f1 =
s21
s2

B SSB b− 1 s22 f2 =
s22
s2

C SSC c− 1 s23 f3 =
s23
s2

Two-factor interaction:

BC SS(BC) (b− 1)(c− 1) s24 f4 =
s24
s2

Error SSE Subtraction s2

Total SST abcn− 1

different blocks, we then have the analysis-of-variance procedure for a two-factor
experiment in a randomized block design. For example, if we interpret the opera-
tors in Example 9.3 as blocks and assume no interaction between blocks and the
other two factors, the analysis of variance takes the form of Table 9.12 rather than
that of Table 9.9. The reader can verify that the mean square error is also

s2 =
4.77 + 2.91 + 4.91 + 21.61

4 + 2 + 4 + 36
= 0.74,

which demonstrates the pooling of the sums of squares for the nonexisting inter-
action effects. Note that factor B, catalyst, has a significant effect on yield.

Table 9.12: ANOVA for a Two-Factor Experiment in a Randomized Block Design

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f P-Value

Blocks 13.98 2 6.99
Main effect:
B 10.18 2 5.09 6.88 0.0024
C 1.18 1 1.18 1.59 0.2130

Two-factor interaction:
BC 3.64 2 1.82 2.46 0.0966

Error 34.21 46 0.74

Total 63.19 53

Example 9.4: An experiment was conducted to determine the effects of temperature, pressure,
and stirring rate on product filtration rate. This was done in a pilot plant. The
experiment was run at two levels of each factor. In addition, it was decided that
two batches of raw materials should be used, where batches were treated as blocks.
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Eight experimental runs were made in random order for each batch of raw materials.
It is thought that all two-factor interactions may be of interest. No interactions
with batches are assumed to exist. The data appear in Table 9.13. “L” and “H”
imply low and high levels, respectively. The filtration rate is in gallons per hour.

(a) Show the complete ANOVA table. Pool all “interactions” with blocks into
error.

(b) What interactions appear to be significant?

(c) Create plots to reveal and interpret the significant interactions. Explain what
the plot means to the engineer.

Table 9.13: Data for Example 9.4

Batch 1

Low Stirring Rate High Stirring Rate

Temp. Pressure L Pressure H Temp. Pressure L Pressure H
L 43 49 L 44 47
H 64 68 H 97 102

Batch 2

Low Stirring Rate High Stirring Rate

Temp. Pressure L Pressure H Temp. Pressure L Pressure H
L 49 57 L 51 55
H 70 76 H 103 106

Solution : (a) The SAS printout is given in Figure 9.7.

(b) As seen in Figure 9.7, the temperature by stirring rate (strate) interaction
appears to be highly significant. The pressure by stirring rate interaction
also appears to be significant. Incidentally, if one were to do further pooling
by combining the insignificant interactions with error, the conclusions would
remain the same and the P-value for the pressure by stirring rate interaction
would become stronger, namely 0.0517.

(c) The main effects for both stirring rate and temperature are highly significant,
as shown in Figure 9.7. A look at the interaction plot of Figure 9.8(a) shows
that the effect of stirring rate is dependent upon the level of temperature. At
the low level of temperature the stirring rate effect is negligible, whereas at
the high level of temperature stirring rate has a strong positive effect on mean
filtration rate. In Figure 9.8(b), the interaction between pressure and stirring
rate, though not as pronounced as that of Figure 9.8(a), still shows a slight
inconsistency of the stirring rate effect across pressure.
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Source DF Type III SS Mean Square F Value Pr > F

batch 1 175.562500 175.562500 177.14 <.0001

pressure 1 95.062500 95.062500 95.92 <.0001

temp 1 5292.562500 5292.562500 5340.24 <.0001

pressure*temp 1 0.562500 0.562500 0.57 0.4758

strate 1 1040.062500 1040.062500 1049.43 <.0001

pressure*strate 1 5.062500 5.062500 5.11 0.0583

temp*strate 1 1072.562500 1072.562500 1082.23 <.0001

pressure*temp*strate 1 1.562500 1.562500 1.58 0.2495

Error 7 6.937500 0.991071

Corrected Total 15 7689.937500

Figure 9.7: ANOVA for Example 9.4, batch interaction pooled with error.
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(a) Temperature versus stirring rate.
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(b) Pressure versus stirring rate.

Figure 9.8: Interaction plots for Example 9.4.

Exercises

9.16 Consider an experimental situation involving
factors A, B, and C, where we assume a three-way
fixed effects model of the form yijkl = μ + αi + βj +
γk+(βγ)jk+εijkl. All other interactions are considered
to be nonexistent or negligible. The data are presented
here.

B1 B2

C1 C2 C3 C1 C2 C3

A1 4.0 3.4 3.9 4.4 3.1 3.1
4.9 4.1 4.3 3.4 3.5 3.7

A2 3.6 2.8 3.1 2.7 2.9 3.7
3.9 3.2 3.5 3.0 3.2 4.2

A3 4.8 3.3 3.6 3.6 2.9 2.9
3.7 3.8 4.2 3.8 3.3 3.5

A4 3.6 3.2 3.2 2.2 2.9 3.6
3.9 2.8 3.4 3.5 3.2 4.3

(a) Perform a test of significance on the BC interaction
at the α = 0.05 level.

(b) Perform tests of significance on the main effects A,
B, and C using a pooled mean square error at the
α = 0.05 level.

9.17 The data provided are measurements from an
experiment conducted using three factors A, B, and
C, all fixed effects.

(a) Perform tests of significance on all interactions at
the α = 0.05 level.

(b) Perform tests of significance on the main effects at
the α = 0.05 level.

(c) Give an explanation of how a significant interaction
has masked the effect of factor C.
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C1 C2 C3

B1 B2 B3 B1 B2 B3 B1 B2 B3

A1 15.0 14.8 15.9 16.8 14.2 13.2 15.8 15.5 19.2
18.5 13.6 14.8 15.4 12.9 11.6 14.3 13.7 13.5
22.1 12.2 13.6 14.3 13.0 10.1 13.0 12.6 11.1

A2 11.3 17.2 16.1 18.9 15.4 12.4 12.7 17.3 7.8
14.6 15.5 14.7 17.3 17.0 13.6 14.2 15.8 11.5
18.2 14.2 13.4 16.1 18.6 15.2 15.9 14.6 12.2

9.18 The method of X-ray fluorescence is an impor-
tant analytical tool for determining the concentration
of material in solid missile propellants. In the paper
An X-ray Fluorescence Method for Analyzing Polybu-
tadiene Acrylic Acid (PBAA) Propellants (Quarterly
Report, RK-TR-62-1, Army Ordinance Missile Com-
mand, 1962), it is postulated that the propellant mix-
ing process and analysis time have an influence on the
homogeneity of the material and hence on the accu-
racy of X-ray intensity measurements. An experiment
was conducted using 3 factors: A, the mixing condi-
tions (4 levels); B, the analysis time (2 levels); and
C, the method of loading propellant into sample hold-
ers (hot and room temperature). The following data,
which represent the weight percent of ammonium per-
chlorate in a particular propellant, were recorded.

Method of Loading, C
Hot Room Temp.

A B1 B2 B1 B2

1 38.62 38.45 39.82 39.82
37.20 38.64 39.15 40.26
38.02 38.75 39.78 39.72

2 37.67 37.81 39.53 39.56
37.57 37.75 39.76 39.25
37.85 37.91 39.90 39.04

3 37.51 37.21 39.34 39.74
37.74 37.42 39.60 39.49
37.58 37.79 39.62 39.45

4 37.52 37.60 40.09 39.36
37.15 37.55 39.63 39.38
37.51 37.91 39.67 39.00

(a) Perform an analysis of variance with α = 0.01 to
test for significant main and interaction effects.

(b) Discuss the influence of the three factors on the
weight percent of ammonium perchlorate. Let your
discussion involve the role of any significant inter-
action.

9.19 Corrosion fatigue in metals has been defined as
the simultaneous action of cyclic stress and chemical
attack on a metal structure. In the study Effect of Hu-
midity and Several Surface Coatings on the Fatigue Life
of 2024-T351 Aluminum Alloy, conducted by the De-
partment of Mechanical Engineering at Virginia Tech,
a technique involving the application of a protective
chromate coating was used to minimize corrosion fa-
tigue damage in aluminum. Three factors were used

in the investigation, with 5 replicates for each treat-
ment combination: coating, at 2 levels, and humidity
and shear stress, both with 3 levels. The fatigue data,
recorded in thousands of cycles to failure, are presented
here.

(a) Perform an analysis of variance with α = 0.01 to
test for significant main and interaction effects.

(b) Make a recommendation for combinations of the
three factors that would result in low fatigue dam-
age.

Shear Stress (psi)

Coating Humidity 13,000 17,00020,000

Uncoated Low
(20–25% RH)

4580
10,126
1341
6414
3549

5252
897

1465
2694
1017

361
466

1069
469
937

Medium
(50–60% RH)

2858
8829

10,914
4067
2595

799
3471
685
810

3409

314
244
261
522
739

High
(86–91% RH)

6489
5248
6816
5860
5901

1862
2710
2632
2131
2470

1344
1027
663

1216
1097

Chromated Low
(20–25% RH)

5395
2768
1821
3604
4106

4035
2022
914

2036
3524

130
841

1595
1482
529

Medium
(50–60% RH)

4833
7414

10,022
7463

21,906

1847
1684
3042
4482
996

252
105
847
874
755

High
(86–91% RH)

3287
5200
5493
4145
3336

1319
929

1263
2236
1392

586
402
846
524
751

9.20 For a study of the hardness of gold dental fill-
ings, five randomly chosen dentists were assigned com-
binations of three methods of condensation and two
types of gold. The hardness was measured. (See
Hoaglin, Mosteller, and Tukey, 1991.) Let the den-
tists play the role of blocks. The data are presented
here.

(a) State the appropriate model with the assumptions.

(b) Is there a significant interaction between method
of condensation and type of gold filling material?
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(c) Is there one method of condensation that seems to
be best? Explain.

Type

Dentist Method Gold Foil Goldent

1 1 792 824
2 772 772
3 782 803

2 1 803 803
2 752 772
3 715 707

3 1 715 724
2 792 715
3 762 606

4 1 673 946
2 657 743
3 690 245

5 1 634 715
2 649 724
3 724 627

9.21 Electronic copiers make copies by gluing black
ink on paper, using static electricity. Heating and glu-
ing the ink on the paper comprise the final stage of
the copying process. The gluing power during this fi-
nal process determines the quality of the copy. It is
postulated that temperature, surface state of the glu-
ing roller, and hardness of the press roller influence the
gluing power of the copier. An experiment is run with
treatments consisting of a combination of these three
factors at each of three levels. The following data show
the gluing power for each treatment combination. Per-
form an analysis of variance with α = 0.05 to test for
significant main and interaction effects.

Surface
State of Hardness of the
Gluing Press Roller
Roller 20 40 60

Low Soft 0.52 0.44 0.54 0.52 0.60 0.55
Temp. 0.57 0.53 0.65 0.56 0.78 0.68

Medium 0.64 0.59 0.79 0.73 0.49 0.48
0.58 0.64 0.79 0.78 0.74 0.50

Hard 0.67 0.77 0.58 0.68 0.55 0.65
0.74 0.65 0.57 0.59 0.57 0.58

Medium Soft 0.46 0.40 0.31 0.49 0.56 0.42
Temp. 0.58 0.37 0.48 0.66 0.49 0.49

Medium 0.60 0.43 0.66 0.57 0.64 0.54
0.62 0.61 0.72 0.56 0.74 0.56

Hard 0.53 0.65 0.53 0.45 0.56 0.66
0.66 0.56 0.59 0.47 0.71 0.67

High Soft 0.52 0.44 0.54 0.52 0.65 0.49
Temp. 0.57 0.53 0.65 0.56 0.65 0.52

Medium 0.53 0.65 0.53 0.45 0.49 0.48
0.66 0.56 0.59 0.47 0.74 0.50

Hard 0.43 0.43 0.48 0.31 0.55 0.65
0.47 0.44 0.43 0.27 0.57 0.58

9.22 Consider the data set in Exercise 9.21. Con-
struct an interaction plot for any two-factor interaction
that is significant.

9.23 Consider combinations of three factors in the re-
moval of dirt from standard loads of laundry. The first
factor is the brand of the detergent, X, Y , or Z. The
second factor is the type of detergent, liquid or powder.
The third factor is the temperature of the water, hot
or warm. The experiment was replicated three times.
Response is percent dirt removal. The data are as fol-
lows:

Brand Type Temperature

X Powder Hot 85 88 80
Warm 82 83 85

Liquid Hot 78 75 72
Warm 75 75 73

Y Powder Hot 90 92 92
Warm 88 86 88

Liquid Hot 78 76 70
Warm 76 77 76

Z Powder Hot 85 87 88
Warm 76 74 78

Liquid Hot 60 70 68
Warm 55 57 54

(a) Are there significant interaction effects at the α =
0.05 level?

(b) Are there significant differences between the three
brands of detergent?

(c) Which combination of factors would you prefer to
use?

9.24 A scientist collects experimental data on the ra-
dius of a propellant grain, y, as a function of powder
temperature, extrusion rate, and die temperature. Re-
sults of the three-factor experiment are as follows:

Powder Temp

150 190
Die Temp Die Temp

Rate 220 250 220 250

12 82 124 88 129
24 114 157 121 164

Resources are not available to make repeated experi-
mental trials at the eight combinations of factors. It
is believed that extrusion rate does not interact with
die temperature and that the three-factor interaction
should be negligible. Thus, these two interactions may
be pooled to produce a 2 d.f. “error” term.

(a) Do an analysis of variance that includes the three
main effects and two two-factor interactions. De-
termine what effects influence the radius of the pro-
pellant grain.

(b) Construct interaction plots for the powder temper-
ature by die temperature and powder temperature
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by extrusion rate interactions.

(c) Comment on the consistency in the appearance of
the interaction plots and the tests on the two in-
teractions in the ANOVA.

9.25 In the book Design of Experiments for the Qual-
ity Improvement, published by the Japanese Standards
Association (1989), a study is reported on the extrac-
tion of polyethylene by using a solvent and how the
amount of gel (proportion) is influenced by three fac-
tors: the type of solvent, extraction temperature, and
extraction time. A factorial experiment was designed,
and the following data were collected on proportion of
gel.

Time
Solvent Temp. 4 8 16
Ethanol 120 94.0 94.0 93.8 94.2 91.1 90.5

80 95.3 95.1 94.9 95.3 92.5 92.4

Toluene 120 94.6 94.5 93.6 94.1 91.1 91.0
80 95.4 95.4 95.6 96.0 92.1 92.1

(a) Do an analysis of variance and determine what fac-
tors and interactions influence the proportion of
gel.

(b) Construct an interaction plot for any two-factor in-
teraction that is significant. In addition, explain
what conclusion can be drawn from the presence of
the interaction.

(c) Do a normal probability plot of residuals and com-
ment.

Review Exercises

9.26 The Statistics Consulting Center at Virginia
Tech was involved in analyzing a set of data taken by
personnel in the Human Nutrition and Foods Depart-
ment in which it was of interest to study the effects
of flour type and percent sweetener on certain physical
attributes of a type of cake. All-purpose flour and cake
flour were used, and the percent sweetener was varied
at four levels. The following data show information
on specific gravity of cake samples. Three cakes were
prepared at each of the eight factor combinations.

Sweetener Flour
Concentration All-Purpose Cake

0
50
75

100

0.90 0.87 0.90
0.86 0.89 0.91
0.93 0.88 0.87
0.79 0.82 0.80

0.91 0.90 0.80
0.88 0.82 0.83
0.86 0.85 0.80
0.86 0.85 0.85

(a) Treat the analysis as a two-factor analysis of vari-
ance. Test for differences between flour type. Test
for differences between sweetener concentration.

(b) Discuss the effect of interaction, if any. Give P-
values on all tests.

9.27 An experiment was conducted in the Depart-
ment of Food Science at Virginia Tech in which it was
of interest to characterize the texture of certain types of
fish in the herring family. The effect of sauce types used
in preparing the fish was also studied. The response in
the experiment was “texture value,” measured with a
machine that sliced the fish product. Do the following
using the provided data on texture values:

(a) Perform an ANOVA. Determine whether or not
there is an interaction between sauce type and fish
type.

(b) Based on your results from part (a) and on F-tests
on main effects, determine if there is a significant

difference in texture due to sauce types, and deter-
mine whether there is a significant difference due
to fish types.

Fish Type
Unbleached Bleached

Sauce Type Menhaden Menhaden Herring
Sour Cream 27.6

47.8
53.8

57.4
71.1

64.0
66.5
53.8

66.9
66.8

107.0
110.4
83.1

83.9
93.4

Wine Sauce 49.8
11.8
16.1

31.0
35.1

48.3
54.6
41.8

62.2
43.6

88.0
108.2
105.2

95.2
86.7

9.28 A study was made to determine if humidity con-
ditions have an effect on the force required to pull apart
pieces of glued plastic. Three types of plastic were
tested using 4 different levels of humidity. The results,
in kilograms, are as follows:

Humidity

Plastic Type 30% 50% 70% 90%

A 39.0 33.1 33.8 33.0
42.8 37.8 30.7 32.9

B 36.9 27.2 29.7 28.5
41.0 26.8 29.1 27.9

C 27.4 29.2 26.7 30.9
30.3 29.9 32.0 31.5

(a) Assuming a fixed effects experiment, perform an
analysis of variance and test the hypothesis of no
interaction between humidity and plastic type at
the 0.05 level of significance.

(b) Using only plastics A and B and the value of s2

from part (a), once again test for the presence of
interaction at the 0.05 level of significance.



420 Chapter 9 Factorial Experiments (Two or More Factors)

9.29 Personnel in the Materials Engineering Depart-
ment at Virginia Tech conducted an experiment to
study the effects of environmental factors on the sta-
bility of a certain type of copper-nickel alloy. The basic
response was the fatigue life of the material. The fac-
tors are level of stress and environment. The data are
as follows:

Stress Level

Environment Low Medium High

Dry 11.08 13.12 14.18
Hydrogen 10.98 13.04 14.90

11.24 13.37 15.10
High 10.75 12.73 14.15
Humidity 10.52 12.87 14.42
(95%) 10.43 12.95 14.25

(a) Do an analysis of variance to test for interaction
between the factors. Use α = 0.05.

(b) Based on part (a), do an analysis on the two main
effects and draw conclusions. Use a P-value ap-
proach in drawing conclusions.

9.30 In the experiment of Review Exercise 9.26, cake
volume was also used as a response. The units are cu-
bic inches. Test for interaction between factors and dis-
cuss main effects. Assume that both factors are fixed
effects.

Sweetener Flour
Concentration All-Purpose Cake

0
50
75

100

4.48 3.98 4.42
3.68 5.04 3.72
3.92 3.82 4.06
3.26 3.80 3.40

4.12 4.92 5.10
5.00 4.26 4.34
4.82 4.34 4.40
4.32 4.18 4.30

9.31 A control valve needs to be very sensitive to the
input voltage, thus generating a good output voltage.
An engineer turns the control bolts to change the in-
put voltage. The book SN-Ratio for the Quality Eval-
uation, published by the Japanese Standards Associa-
tion (1988), described a study on how these three fac-
tors (relative position of control bolts, control range
of bolts, and input voltage) affect the sensitivity of a
control valve. The factors and their levels are shown
below. The data show the sensitivity of a control valve.

Factor A, relative position of control bolts:
center −0.5, center, and center +0.5

Factor B, control range of bolts:
2, 4.5, and 7 (mm)

Factor C, input voltage:
100, 120, and 150 (V)

Perform an analysis of variance with α = 0.05 to test
for significant main and interaction effects. Draw con-
clusions.

C
A B C1 C2 C3

A1 B1 151 135 151 135 151 138
A1 B2 178 171 180 173 181 174
A1 B3 204 190 205 190 206 192
A2 B1 156 148 158 149 158 150
A2 B2 183 168 183 170 183 172
A2 B3 210 204 211 203 213 204
A3 B1 161 145 162 148 163 148
A3 B2 189 182 191 184 192 183
A3 B3 215 202 216 203 217 205

9.32 Exercise 9.25 on page 419 describes an experi-
ment involving the extraction of polyethylene through
use of a solvent.

Time
Solvent Temp. 4 8 16
Ethanol 120

80
94.0 94.0
95.3 95.1

93.8 94.2
94.9 95.3

91.1 90.5
92.5 92.4

Toluene 120
80

94.6 94.5
95.4 95.4

93.6 94.1
95.6 96.0

91.1 91.0
92.1 92.1

(a) Do a different sort of analysis on the data. Fit an
appropriate regression model with a solvent cate-
gorical variable, a temperature term, a time term, a
temperature by time interaction, a solvent by tem-
perature interaction, and a solvent by time interac-
tion. Do t-tests on all coefficients and report your
findings.

(b) Do your findings suggest that different models are
appropriate for ethanol and toluene, or are they
equivalent apart from the intercepts? Explain.

(c) Do you find any conclusions here that contradict
conclusions drawn in your solution of Exercise 9.25?
Explain.

9.33 In the book SN-Ratio for the Quality Evalua-
tion, published by the Japanese Standards Association
(1988), a study on how tire air pressure affects the ma-
neuverability of an automobile was described. Three
different tire air pressures were compared on three dif-
ferent driving surfaces. The three air pressures were
both left- and right-side tires inflated to 6 kgf/cm2,
left-side tires inflated to 6 kgf/cm2 and right-side tires
inflated to 3 kgf/cm2, and both left- and right-side tires
inflated to 3 kgf/cm2. The three driving surfaces were
asphalt, dry asphalt, and dry cement. The turning ra-
dius of a test vehicle was observed twice for each level
of tire pressure on each of the three different driving
surfaces. Perform an analysis of variance of the data.
Comment on the interpretation of the main and inter-
action effects.

Tire Air Pressure
Driving Surface 1 2 3
Asphalt 44.0 25.5 34.2 37.2 27.4 42.8
Dry Asphalt 31.9 33.7 31.8 27.6 43.7 38.2
Dry Cement 27.3 39.5 46.6 28.1 35.5 34.6
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9.34 The manufacturer of a certain brand of freeze-
dried coffee hopes to shorten the process time without
jeopardizing the integrity of the product. The process
engineer wants to use 3 temperatures for the drying
chamber and 4 drying times. The current drying time
is 3 hours at a temperature of −15◦C. The flavor re-
sponse is an average of scores of 4 professional judges.
The score is on a scale from 1 to 10, with 10 being the
best. The data are as shown in the following table.

Temperature
Time −20◦C −15◦C −10◦C
1 hr 9.60 9.63 9.55 9.50 9.40 9.43
1.5 hr 9.75 9.73 9.60 9.61 9.55 9.48
2 hr 9.82 9.93 9.81 9.78 9.50 9.52
3 hr 9.78 9.81 9.80 9.75 9.55 9.58

(a) What type of model should be used? State assump-
tions.

(b) Analyze the data appropriately.

(c) Write a brief report to the vice-president in charge
and make a recommendation for future manufac-
turing of this product.

9.35 To ascertain the number of tellers needed during
peak hours of operation, data were collected by an ur-
ban bank. Four tellers were studied during three busy

times: (1) weekdays between 10:00 and 11:00 A.M., (2)
weekday afternoons between 2:00 and 3:00 P.M., and (3)
Saturday mornings between 11:00 A.M. and 12:00 noon.
An analyst chose four randomly selected times within
each of the three time periods for each of the four teller
positions over a period of months, and the numbers of
customers serviced were observed. The data are as fol-
lows:

Time Period
Teller 1 2 3

1 18 24 17 22 25 29 23 32 29 30 21 34
2 16 11 19 14 23 32 25 17 27 29 18 16
3 12 19 11 22 27 33 27 24 25 20 29 15
4 11 9 13 8 10 7 19 8 11 9 17 9

It is assumed that the number of customers served is a
Poisson random variable.

(a) Discuss the danger in doing a standard analysis of
variance on the data above. What assumptions, if
any, would be violated?

(b) Construct a standard ANOVA table that includes
F-tests on main effects and interactions. If interac-
tions and main effects are found to be significant,
give scientific conclusions. What have we learned?
Be sure to interpret any significant interaction. Use
your own judgment regarding P-values.

9.5 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

One of the most confusing issues in the analysis of factorial experiments resides in
the interpretation of main effects in the presence of interaction. The presence of a
relatively large P-value for a main effect when interactions are clearly present may
tempt the analyst to conclude “no significant main effect.” However, one must
understand that if a main effect is involved in a significant interaction, then the
main effect is influencing the response. The nature of the effect is inconsistent
across levels of other effects.

In light of what is communicated in the preceding paragraph, there is danger
of a substantial misuse of statistics when one employs a multiple comparison test
on main effects in the clear presence of interaction among the factors.

One must be cautious in the analysis of a factorial experiment when the as-
sumption of a completely randomized design is made when in fact complete ran-
domization is not carried out. For example, it is common to encounter factors that
are very difficult to change. As a result, factor levels may need to be held with-
out change for long periods of time throughout the experiment. A temperature
factor is a common example. Moving temperature up and down in a randomization
scheme is a costly plan, and most experimenters will refuse to do it. Experimental
designs with restrictions in randomization are quite common and are called split
plot designs. They are beyond the scope of the book, but presentations are found
in Montgomery (2008a).
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Table A.1 Binomial Probability Sums
r∑

x=0
b(x;n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

1 0 0.9000 0.8000 0.7500 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0 0.8100 0.6400 0.5625 0.4900 0.3600 0.2500 0.1600 0.0900 0.0400 0.0100
1 0.9900 0.9600 0.9375 0.9100 0.8400 0.7500 0.6400 0.5100 0.3600 0.1900
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 0.7290 0.5120 0.4219 0.3430 0.2160 0.1250 0.0640 0.0270 0.0080 0.0010
1 0.9720 0.8960 0.8438 0.7840 0.6480 0.5000 0.3520 0.2160 0.1040 0.0280
2 0.9990 0.9920 0.9844 0.9730 0.9360 0.8750 0.7840 0.6570 0.4880 0.2710
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 0 0.6561 0.4096 0.3164 0.2401 0.1296 0.0625 0.0256 0.0081 0.0016 0.0001
1 0.9477 0.8192 0.7383 0.6517 0.4752 0.3125 0.1792 0.0837 0.0272 0.0037
2 0.9963 0.9728 0.9492 0.9163 0.8208 0.6875 0.5248 0.3483 0.1808 0.0523
3 0.9999 0.9984 0.9961 0.9919 0.9744 0.9375 0.8704 0.7599 0.5904 0.3439
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0 0.5905 0.3277 0.2373 0.1681 0.0778 0.0313 0.0102 0.0024 0.0003 0.0000
1 0.9185 0.7373 0.6328 0.5282 0.3370 0.1875 0.0870 0.0308 0.0067 0.0005
2 0.9914 0.9421 0.8965 0.8369 0.6826 0.5000 0.3174 0.1631 0.0579 0.0086
3 0.9995 0.9933 0.9844 0.9692 0.9130 0.8125 0.6630 0.4718 0.2627 0.0815
4 1.0000 0.9997 0.9990 0.9976 0.9898 0.9688 0.9222 0.8319 0.6723 0.4095
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

6 0 0.5314 0.2621 0.1780 0.1176 0.0467 0.0156 0.0041 0.0007 0.0001 0.0000
1 0.8857 0.6554 0.5339 0.4202 0.2333 0.1094 0.0410 0.0109 0.0016 0.0001
2 0.9842 0.9011 0.8306 0.7443 0.5443 0.3438 0.1792 0.0705 0.0170 0.0013
3 0.9987 0.9830 0.9624 0.9295 0.8208 0.6563 0.4557 0.2557 0.0989 0.0159
4 0.9999 0.9984 0.9954 0.9891 0.9590 0.8906 0.7667 0.5798 0.3446 0.1143
5 1.0000 0.9999 0.9998 0.9993 0.9959 0.9844 0.9533 0.8824 0.7379 0.4686
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 0 0.4783 0.2097 0.1335 0.0824 0.0280 0.0078 0.0016 0.0002 0.0000
1 0.8503 0.5767 0.4449 0.3294 0.1586 0.0625 0.0188 0.0038 0.0004 0.0000
2 0.9743 0.8520 0.7564 0.6471 0.4199 0.2266 0.0963 0.0288 0.0047 0.0002
3 0.9973 0.9667 0.9294 0.8740 0.7102 0.5000 0.2898 0.1260 0.0333 0.0027
4 0.9998 0.9953 0.9871 0.9712 0.9037 0.7734 0.5801 0.3529 0.1480 0.0257
5 1.0000 0.9996 0.9987 0.9962 0.9812 0.9375 0.8414 0.6706 0.4233 0.1497
6 1.0000 0.9999 0.9998 0.9984 0.9922 0.9720 0.9176 0.7903 0.5217
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table A.1 (continued) Binomial Probability Sums
r∑

x=0
b(x;n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

8 0 0.4305 0.1678 0.1001 0.0576 0.0168 0.0039 0.0007 0.0001 0.0000
1 0.8131 0.5033 0.3671 0.2553 0.1064 0.0352 0.0085 0.0013 0.0001
2 0.9619 0.7969 0.6785 0.5518 0.3154 0.1445 0.0498 0.0113 0.0012 0.0000
3 0.9950 0.9437 0.8862 0.8059 0.5941 0.3633 0.1737 0.0580 0.0104 0.0004
4 0.9996 0.9896 0.9727 0.9420 0.8263 0.6367 0.4059 0.1941 0.0563 0.0050
5 1.0000 0.9988 0.9958 0.9887 0.9502 0.8555 0.6846 0.4482 0.2031 0.0381
6 0.9999 0.9996 0.9987 0.9915 0.9648 0.8936 0.7447 0.4967 0.1869
7 1.0000 1.0000 0.9999 0.9993 0.9961 0.9832 0.9424 0.8322 0.5695
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9 0 0.3874 0.1342 0.0751 0.0404 0.0101 0.0020 0.0003 0.0000
1 0.7748 0.4362 0.3003 0.1960 0.0705 0.0195 0.0038 0.0004 0.0000
2 0.9470 0.7382 0.6007 0.4628 0.2318 0.0898 0.0250 0.0043 0.0003 0.0000
3 0.9917 0.9144 0.8343 0.7297 0.4826 0.2539 0.0994 0.0253 0.0031 0.0001
4 0.9991 0.9804 0.9511 0.9012 0.7334 0.5000 0.2666 0.0988 0.0196 0.0009
5 0.9999 0.9969 0.9900 0.9747 0.9006 0.7461 0.5174 0.2703 0.0856 0.0083
6 1.0000 0.9997 0.9987 0.9957 0.9750 0.9102 0.7682 0.5372 0.2618 0.0530
7 1.0000 0.9999 0.9996 0.9962 0.9805 0.9295 0.8040 0.5638 0.2252
8 1.0000 1.0000 0.9997 0.9980 0.9899 0.9596 0.8658 0.6126
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0 0.3487 0.1074 0.0563 0.0282 0.0060 0.0010 0.0001 0.0000
1 0.7361 0.3758 0.2440 0.1493 0.0464 0.0107 0.0017 0.0001 0.0000
2 0.9298 0.6778 0.5256 0.3828 0.1673 0.0547 0.0123 0.0016 0.0001
3 0.9872 0.8791 0.7759 0.6496 0.3823 0.1719 0.0548 0.0106 0.0009 0.0000
4 0.9984 0.9672 0.9219 0.8497 0.6331 0.3770 0.1662 0.0473 0.0064 0.0001
5 0.9999 0.9936 0.9803 0.9527 0.8338 0.6230 0.3669 0.1503 0.0328 0.0016
6 1.0000 0.9991 0.9965 0.9894 0.9452 0.8281 0.6177 0.3504 0.1209 0.0128
7 0.9999 0.9996 0.9984 0.9877 0.9453 0.8327 0.6172 0.3222 0.0702
8 1.0000 1.0000 0.9999 0.9983 0.9893 0.9536 0.8507 0.6242 0.2639
9 1.0000 0.9999 0.9990 0.9940 0.9718 0.8926 0.6513

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 0 0.3138 0.0859 0.0422 0.0198 0.0036 0.0005 0.0000
1 0.6974 0.3221 0.1971 0.1130 0.0302 0.0059 0.0007 0.0000
2 0.9104 0.6174 0.4552 0.3127 0.1189 0.0327 0.0059 0.0006 0.0000
3 0.9815 0.8389 0.7133 0.5696 0.2963 0.1133 0.0293 0.0043 0.0002
4 0.9972 0.9496 0.8854 0.7897 0.5328 0.2744 0.0994 0.0216 0.0020 0.0000
5 0.9997 0.9883 0.9657 0.9218 0.7535 0.5000 0.2465 0.0782 0.0117 0.0003
6 1.0000 0.9980 0.9924 0.9784 0.9006 0.7256 0.4672 0.2103 0.0504 0.0028
7 0.9998 0.9988 0.9957 0.9707 0.8867 0.7037 0.4304 0.1611 0.0185
8 1.0000 0.9999 0.9994 0.9941 0.9673 0.8811 0.6873 0.3826 0.0896
9 1.0000 1.0000 0.9993 0.9941 0.9698 0.8870 0.6779 0.3026

10 1.0000 0.9995 0.9964 0.9802 0.9141 0.6862
11 1.0000 1.0000 1.0000 1.0000 1.0000
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Table A.1 (continued) Binomial Probability Sums
r∑

x=0
b(x;n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

12 0 0.2824 0.0687 0.0317 0.0138 0.0022 0.0002 0.0000
1 0.6590 0.2749 0.1584 0.0850 0.0196 0.0032 0.0003 0.0000
2 0.8891 0.5583 0.3907 0.2528 0.0834 0.0193 0.0028 0.0002 0.0000
3 0.9744 0.7946 0.6488 0.4925 0.2253 0.0730 0.0153 0.0017 0.0001
4 0.9957 0.9274 0.8424 0.7237 0.4382 0.1938 0.0573 0.0095 0.0006 0.0000
5 0.9995 0.9806 0.9456 0.8822 0.6652 0.3872 0.1582 0.0386 0.0039 0.0001
6 0.9999 0.9961 0.9857 0.9614 0.8418 0.6128 0.3348 0.1178 0.0194 0.0005
7 1.0000 0.9994 0.9972 0.9905 0.9427 0.8062 0.5618 0.2763 0.0726 0.0043
8 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256
9 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109

10 1.0000 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410
11 1.0000 0.9998 0.9978 0.9862 0.9313 0.7176
12 1.0000 1.0000 1.0000 1.0000 1.0000

13 0 0.2542 0.0550 0.0238 0.0097 0.0013 0.0001 0.0000
1 0.6213 0.2336 0.1267 0.0637 0.0126 0.0017 0.0001 0.0000
2 0.8661 0.5017 0.3326 0.2025 0.0579 0.0112 0.0013 0.0001
3 0.9658 0.7473 0.5843 0.4206 0.1686 0.0461 0.0078 0.0007 0.0000
4 0.9935 0.9009 0.7940 0.6543 0.3530 0.1334 0.0321 0.0040 0.0002
5 0.9991 0.9700 0.9198 0.8346 0.5744 0.2905 0.0977 0.0182 0.0012 0.0000
6 0.9999 0.9930 0.9757 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001
7 1.0000 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009
8 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065
9 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342

10 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339
11 1.0000 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787
12 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458
13 1.0000 1.0000 1.0000 1.0000 1.0000

14 0 0.2288 0.0440 0.0178 0.0068 0.0008 0.0001 0.0000
1 0.5846 0.1979 0.1010 0.0475 0.0081 0.0009 0.0001
2 0.8416 0.4481 0.2811 0.1608 0.0398 0.0065 0.0006 0.0000
3 0.9559 0.6982 0.5213 0.3552 0.1243 0.0287 0.0039 0.0002
4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000
5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004
6 0.9998 0.9884 0.9617 0.9067 0.6925 0.3953 0.1501 0.0315 0.0024 0.0000
7 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.0002
8 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 0.0015
9 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092

10 1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441
11 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584
12 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154
13 1.0000 0.9999 0.9992 0.9932 0.9560 0.7712
14 1.0000 1.0000 1.0000 1.0000 1.0000
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Table A.1 (continued) Binomial Probability Sums
r∑

x=0
b(x;n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

15 0 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000
1 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000
2 0.8159 0.3980 0.2361 0.1268 0.0271 0.0037 0.0003 0.0000
3 0.9444 0.6482 0.4613 0.2969 0.0905 0.0176 0.0019 0.0001
4 0.9873 0.8358 0.6865 0.5155 0.2173 0.0592 0.0093 0.0007 0.0000
5 0.9978 0.9389 0.8516 0.7216 0.4032 0.1509 0.0338 0.0037 0.0001
6 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008
7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000
8 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003
9 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022

10 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127
11 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556
12 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841
13 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510
14 1.0000 0.9995 0.9953 0.9648 0.7941
15 1.0000 1.0000 1.0000 1.0000

16 0 0.1853 0.0281 0.0100 0.0033 0.0003 0.0000
1 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000
2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001
3 0.9316 0.5981 0.4050 0.2459 0.0651 0.0106 0.0009 0.0000
4 0.9830 0.7982 0.6302 0.4499 0.1666 0.0384 0.0049 0.0003
5 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000
6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002
7 0.9999 0.9930 0.9729 0.9256 0.7161 0.4018 0.1423 0.0257 0.0015 0.0000
8 1.0000 0.9985 0.9925 0.9743 0.8577 0.5982 0.2839 0.0744 0.0070 0.0001
9 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005

10 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033
11 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170
12 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684
13 0.9999 0.9979 0.9817 0.9006 0.6482 0.2108
14 1.0000 0.9997 0.9967 0.9739 0.8593 0.4853
15 1.0000 0.9997 0.9967 0.9719 0.8147
16 1.0000 1.0000 1.0000 1.0000
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Table A.1 (continued) Binomial Probability Sums
r∑

x=0
b(x;n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

17 0 0.1668 0.0225 0.0075 0.0023 0.0002 0.0000
1 0.4818 0.1182 0.0501 0.0193 0.0021 0.0001 0.0000
2 0.7618 0.3096 0.1637 0.0774 0.0123 0.0012 0.0001
3 0.9174 0.5489 0.3530 0.2019 0.0464 0.0064 0.0005 0.0000
4 0.9779 0.7582 0.5739 0.3887 0.1260 0.0245 0.0025 0.0001
5 0.9953 0.8943 0.7653 0.5968 0.2639 0.0717 0.0106 0.0007 0.0000
6 0.9992 0.9623 0.8929 0.7752 0.4478 0.1662 0.0348 0.0032 0.0001
7 0.9999 0.9891 0.9598 0.8954 0.6405 0.3145 0.0919 0.0127 0.0005
8 1.0000 0.9974 0.9876 0.9597 0.8011 0.5000 0.1989 0.0403 0.0026 0.0000
9 0.9995 0.9969 0.9873 0.9081 0.6855 0.3595 0.1046 0.0109 0.0001

10 0.9999 0.9994 0.9968 0.9652 0.8338 0.5522 0.2248 0.0377 0.0008
11 1.0000 0.9999 0.9993 0.9894 0.9283 0.7361 0.4032 0.1057 0.0047
12 1.0000 0.9999 0.9975 0.9755 0.8740 0.6113 0.2418 0.0221
13 1.0000 0.9995 0.9936 0.9536 0.7981 0.4511 0.0826
14 0.9999 0.9988 0.9877 0.9226 0.6904 0.2382
15 1.0000 0.9999 0.9979 0.9807 0.8818 0.5182
16 1.0000 0.9998 0.9977 0.9775 0.8332
17 1.0000 1.0000 1.0000 1.0000

18 0 0.1501 0.0180 0.0056 0.0016 0.0001 0.0000
1 0.4503 0.0991 0.0395 0.0142 0.0013 0.0001
2 0.7338 0.2713 0.1353 0.0600 0.0082 0.0007 0.0000
3 0.9018 0.5010 0.3057 0.1646 0.0328 0.0038 0.0002
4 0.9718 0.7164 0.5187 0.3327 0.0942 0.0154 0.0013 0.0000
5 0.9936 0.8671 0.7175 0.5344 0.2088 0.0481 0.0058 0.0003
6 0.9988 0.9487 0.8610 0.7217 0.3743 0.1189 0.0203 0.0014 0.0000
7 0.9998 0.9837 0.9431 0.8593 0.5634 0.2403 0.0576 0.0061 0.0002
8 1.0000 0.9957 0.9807 0.9404 0.7368 0.4073 0.1347 0.0210 0.0009
9 0.9991 0.9946 0.9790 0.8653 0.5927 0.2632 0.0596 0.0043 0.0000

10 0.9998 0.9988 0.9939 0.9424 0.7597 0.4366 0.1407 0.0163 0.0002
11 1.0000 0.9998 0.9986 0.9797 0.8811 0.6257 0.2783 0.0513 0.0012
12 1.0000 0.9997 0.9942 0.9519 0.7912 0.4656 0.1329 0.0064
13 1.0000 0.9987 0.9846 0.9058 0.6673 0.2836 0.0282
14 0.9998 0.9962 0.9672 0.8354 0.4990 0.0982
15 1.0000 0.9993 0.9918 0.9400 0.7287 0.2662
16 0.9999 0.9987 0.9858 0.9009 0.5497
17 1.0000 0.9999 0.9984 0.9820 0.8499
18 1.0000 1.0000 1.0000 1.0000
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Table A.1 (continued) Binomial Probability Sums
r∑

x=0
b(x;n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

19 0 0.1351 0.0144 0.0042 0.0011 0.0001
1 0.4203 0.0829 0.0310 0.0104 0.0008 0.0000
2 0.7054 0.2369 0.1113 0.0462 0.0055 0.0004 0.0000
3 0.8850 0.4551 0.2631 0.1332 0.0230 0.0022 0.0001
4 0.9648 0.6733 0.4654 0.2822 0.0696 0.0096 0.0006 0.0000
5 0.9914 0.8369 0.6678 0.4739 0.1629 0.0318 0.0031 0.0001
6 0.9983 0.9324 0.8251 0.6655 0.3081 0.0835 0.0116 0.0006
7 0.9997 0.9767 0.9225 0.8180 0.4878 0.1796 0.0352 0.0028 0.0000
8 1.0000 0.9933 0.9713 0.9161 0.6675 0.3238 0.0885 0.0105 0.0003
9 0.9984 0.9911 0.9674 0.8139 0.5000 0.1861 0.0326 0.0016

10 0.9997 0.9977 0.9895 0.9115 0.6762 0.3325 0.0839 0.0067 0.0000
11 1.0000 0.9995 0.9972 0.9648 0.8204 0.5122 0.1820 0.0233 0.0003
12 0.9999 0.9994 0.9884 0.9165 0.6919 0.3345 0.0676 0.0017
13 1.0000 0.9999 0.9969 0.9682 0.8371 0.5261 0.1631 0.0086
14 1.0000 0.9994 0.9904 0.9304 0.7178 0.3267 0.0352
15 0.9999 0.9978 0.9770 0.8668 0.5449 0.1150
16 1.0000 0.9996 0.9945 0.9538 0.7631 0.2946
17 1.0000 0.9992 0.9896 0.9171 0.5797
18 0.9999 0.9989 0.9856 0.8649
19 1.0000 1.0000 1.0000 1.0000

20 0 0.1216 0.0115 0.0032 0.0008 0.0000
1 0.3917 0.0692 0.0243 0.0076 0.0005 0.0000
2 0.6769 0.2061 0.0913 0.0355 0.0036 0.0002
3 0.8670 0.4114 0.2252 0.1071 0.0160 0.0013 0.0000
4 0.9568 0.6296 0.4148 0.2375 0.0510 0.0059 0.0003
5 0.9887 0.8042 0.6172 0.4164 0.1256 0.0207 0.0016 0.0000
6 0.9976 0.9133 0.7858 0.6080 0.2500 0.0577 0.0065 0.0003
7 0.9996 0.9679 0.8982 0.7723 0.4159 0.1316 0.0210 0.0013 0.0000
8 0.9999 0.9900 0.9591 0.8867 0.5956 0.2517 0.0565 0.0051 0.0001
9 1.0000 0.9974 0.9861 0.9520 0.7553 0.4119 0.1275 0.0171 0.0006

10 0.9994 0.9961 0.9829 0.8725 0.5881 0.2447 0.0480 0.0026 0.0000
11 0.9999 0.9991 0.9949 0.9435 0.7483 0.4044 0.1133 0.0100 0.0001
12 1.0000 0.9998 0.9987 0.9790 0.8684 0.5841 0.2277 0.0321 0.0004
13 1.0000 0.9997 0.9935 0.9423 0.7500 0.3920 0.0867 0.0024
14 1.0000 0.9984 0.9793 0.8744 0.5836 0.1958 0.0113
15 0.9997 0.9941 0.9490 0.7625 0.3704 0.0432
16 1.0000 0.9987 0.9840 0.8929 0.5886 0.1330
17 0.9998 0.9964 0.9645 0.7939 0.3231
18 1.0000 0.9995 0.9924 0.9308 0.6083
19 1.0000 0.9992 0.9885 0.8784
20 1.0000 1.0000 1.0000
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Table A.2 Poisson Probability Sums
r∑

x=0
p(x;μ)

μ

r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066
1 0.9953 0.9825 0.9631 0.9384 0.9098 0.8781 0.8442 0.8088 0.7725
2 0.9998 0.9989 0.9964 0.9921 0.9856 0.9769 0.9659 0.9526 0.9371
3 1.0000 0.9999 0.9997 0.9992 0.9982 0.9966 0.9942 0.9909 0.9865
4 1.0000 1.0000 0.9999 0.9998 0.9996 0.9992 0.9986 0.9977
5 1.0000 1.0000 1.0000 0.9999 0.9998 0.9997
6 1.0000 1.0000 1.0000

μ

r 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0 0.3679 0.2231 0.1353 0.0821 0.0498 0.0302 0.0183 0.0111 0.0067
1 0.7358 0.5578 0.4060 0.2873 0.1991 0.1359 0.0916 0.0611 0.0404
2 0.9197 0.8088 0.6767 0.5438 0.4232 0.3208 0.2381 0.1736 0.1247
3 0.9810 0.9344 0.8571 0.7576 0.6472 0.5366 0.4335 0.3423 0.2650
4 0.9963 0.9814 0.9473 0.8912 0.8153 0.7254 0.6288 0.5321 0.4405
5 0.9994 0.9955 0.9834 0.9580 0.9161 0.8576 0.7851 0.7029 0.6160

6 0.9999 0.9991 0.9955 0.9858 0.9665 0.9347 0.8893 0.8311 0.7622
7 1.0000 0.9998 0.9989 0.9958 0.9881 0.9733 0.9489 0.9134 0.8666
8 1.0000 0.9998 0.9989 0.9962 0.9901 0.9786 0.9597 0.9319
9 1.0000 0.9997 0.9989 0.9967 0.9919 0.9829 0.9682

10 0.9999 0.9997 0.9990 0.9972 0.9933 0.9863

11 1.0000 0.9999 0.9997 0.9991 0.9976 0.9945
12 1.0000 0.9999 0.9997 0.9992 0.9980
13 1.0000 0.9999 0.9997 0.9993
14 1.0000 0.9999 0.9998
15 1.0000 0.9999
16 1.0000
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Table A.2 (continued) Poisson Probability Sums
r∑

x=0
p(x;μ)

μ

r 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

0 0.0041 0.0025 0.0015 0.0009 0.0006 0.0003 0.0002 0.0001 0.0001
1 0.0266 0.0174 0.0113 0.0073 0.0047 0.0030 0.0019 0.0012 0.0008
2 0.0884 0.0620 0.0430 0.0296 0.0203 0.0138 0.0093 0.0062 0.0042
3 0.2017 0.1512 0.1118 0.0818 0.0591 0.0424 0.0301 0.0212 0.0149
4 0.3575 0.2851 0.2237 0.1730 0.1321 0.0996 0.0744 0.0550 0.0403
5 0.5289 0.4457 0.3690 0.3007 0.2414 0.1912 0.1496 0.1157 0.0885

6 0.6860 0.6063 0.5265 0.4497 0.3782 0.3134 0.2562 0.2068 0.1649
7 0.8095 0.7440 0.6728 0.5987 0.5246 0.4530 0.3856 0.3239 0.2687
8 0.8944 0.8472 0.7916 0.7291 0.6620 0.5925 0.5231 0.4557 0.3918
9 0.9462 0.9161 0.8774 0.8305 0.7764 0.7166 0.6530 0.5874 0.5218

10 0.9747 0.9574 0.9332 0.9015 0.8622 0.8159 0.7634 0.7060 0.6453

11 0.9890 0.9799 0.9661 0.9467 0.9208 0.8881 0.8487 0.8030 0.7520
12 0.9955 0.9912 0.9840 0.9730 0.9573 0.9362 0.9091 0.8758 0.8364
13 0.9983 0.9964 0.9929 0.9872 0.9784 0.9658 0.9486 0.9261 0.8981
14 0.9994 0.9986 0.9970 0.9943 0.9897 0.9827 0.9726 0.9585 0.9400
15 0.9998 0.9995 0.9988 0.9976 0.9954 0.9918 0.9862 0.9780 0.9665

16 0.9999 0.9998 0.9996 0.9990 0.9980 0.9963 0.9934 0.9889 0.9823
17 1.0000 0.9999 0.9998 0.9996 0.9992 0.9984 0.9970 0.9947 0.9911
18 1.0000 0.9999 0.9999 0.9997 0.9993 0.9987 0.9976 0.9957
19 1.0000 1.0000 0.9999 0.9997 0.9995 0.9989 0.9980
20 0.9999 0.9998 0.9996 0.9991

21 1.0000 0.9999 0.9998 0.9996
22 1.0000 0.9999 0.9999
23 1.0000 0.9999
24 1.0000
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Table A.2 (continued) Poisson Probability Sums
r∑

x=0
p(x;μ)

μ

r 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0

0 0.0000 0.0000 0.0000
1 0.0005 0.0002 0.0001 0.0000 0.0000
2 0.0028 0.0012 0.0005 0.0002 0.0001 0.0000 0.0000
3 0.0103 0.0049 0.0023 0.0011 0.0005 0.0002 0.0001 0.0000 0.0000
4 0.0293 0.0151 0.0076 0.0037 0.0018 0.0009 0.0004 0.0002 0.0001
5 0.0671 0.0375 0.0203 0.0107 0.0055 0.0028 0.0014 0.0007 0.0003

6 0.1301 0.0786 0.0458 0.0259 0.0142 0.0076 0.0040 0.0021 0.0010
7 0.2202 0.1432 0.0895 0.0540 0.0316 0.0180 0.0100 0.0054 0.0029
8 0.3328 0.2320 0.1550 0.0998 0.0621 0.0374 0.0220 0.0126 0.0071
9 0.4579 0.3405 0.2424 0.1658 0.1094 0.0699 0.0433 0.0261 0.0154

10 0.5830 0.4599 0.3472 0.2517 0.1757 0.1185 0.0774 0.0491 0.0304

11 0.6968 0.5793 0.4616 0.3532 0.2600 0.1848 0.1270 0.0847 0.0549
12 0.7916 0.6887 0.5760 0.4631 0.3585 0.2676 0.1931 0.1350 0.0917
13 0.8645 0.7813 0.6815 0.5730 0.4644 0.3632 0.2745 0.2009 0.1426
14 0.9165 0.8540 0.7720 0.6751 0.5704 0.4657 0.3675 0.2808 0.2081
15 0.9513 0.9074 0.8444 0.7636 0.6694 0.5681 0.4667 0.3715 0.2867

16 0.9730 0.9441 0.8987 0.8355 0.7559 0.6641 0.5660 0.4677 0.3751
17 0.9857 0.9678 0.9370 0.8905 0.8272 0.7489 0.6593 0.5640 0.4686
18 0.9928 0.9823 0.9626 0.9302 0.8826 0.8195 0.7423 0.6550 0.5622
19 0.9965 0.9907 0.9787 0.9573 0.9235 0.8752 0.8122 0.7363 0.6509
20 0.9984 0.9953 0.9884 0.9750 0.9521 0.9170 0.8682 0.8055 0.7307

21 0.9993 0.9977 0.9939 0.9859 0.9712 0.9469 0.9108 0.8615 0.7991
22 0.9997 0.9990 0.9970 0.9924 0.9833 0.9673 0.9418 0.9047 0.8551
23 0.9999 0.9995 0.9985 0.9960 0.9907 0.9805 0.9633 0.9367 0.8989
24 1.0000 0.9998 0.9993 0.9980 0.9950 0.9888 0.9777 0.9594 0.9317
25 0.9999 0.9997 0.9990 0.9974 0.9938 0.9869 0.9748 0.9554

26 1.0000 0.9999 0.9995 0.9987 0.9967 0.9925 0.9848 0.9718
27 0.9999 0.9998 0.9994 0.9983 0.9959 0.9912 0.9827
28 1.0000 0.9999 0.9997 0.9991 0.9978 0.9950 0.9897
29 1.0000 0.9999 0.9996 0.9989 0.9973 0.9941
30 0.9999 0.9998 0.9994 0.9986 0.9967

31 1.0000 0.9999 0.9997 0.9993 0.9982
32 1.0000 0.9999 0.9996 0.9990
33 0.9999 0.9998 0.9995
34 1.0000 0.9999 0.9998
35 1.0000 0.9999

36 0.9999
37 1.0000
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0 z

Area

Table A.3 Areas under the Normal Curve

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

−3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
−3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
−3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
−3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
−3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

−2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
−2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
−1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
−0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
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Table A.3 (continued) Areas under the Normal Curve

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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0 t
α

αTable A.4 Critical Values of the t-Distribution

α

v 0.40 0.30 0.20 0.15 0.10 0.05 0.025

1 0.325 0.727 1.376 1.963 3.078 6.314 12.706
2 0.289 0.617 1.061 1.386 1.886 2.920 4.303
3 0.277 0.584 0.978 1.250 1.638 2.353 3.182
4 0.271 0.569 0.941 1.190 1.533 2.132 2.776
5 0.267 0.559 0.920 1.156 1.476 2.015 2.571

6 0.265 0.553 0.906 1.134 1.440 1.943 2.447
7 0.263 0.549 0.896 1.119 1.415 1.895 2.365
8 0.262 0.546 0.889 1.108 1.397 1.860 2.306
9 0.261 0.543 0.883 1.100 1.383 1.833 2.262

10 0.260 0.542 0.879 1.093 1.372 1.812 2.228

11 0.260 0.540 0.876 1.088 1.363 1.796 2.201
12 0.259 0.539 0.873 1.083 1.356 1.782 2.179
13 0.259 0.538 0.870 1.079 1.350 1.771 2.160
14 0.258 0.537 0.868 1.076 1.345 1.761 2.145
15 0.258 0.536 0.866 1.074 1.341 1.753 2.131

16 0.258 0.535 0.865 1.071 1.337 1.746 2.120
17 0.257 0.534 0.863 1.069 1.333 1.740 2.110
18 0.257 0.534 0.862 1.067 1.330 1.734 2.101
19 0.257 0.533 0.861 1.066 1.328 1.729 2.093
20 0.257 0.533 0.860 1.064 1.325 1.725 2.086

21 0.257 0.532 0.859 1.063 1.323 1.721 2.080
22 0.256 0.532 0.858 1.061 1.321 1.717 2.074
23 0.256 0.532 0.858 1.060 1.319 1.714 2.069
24 0.256 0.531 0.857 1.059 1.318 1.711 2.064
25 0.256 0.531 0.856 1.058 1.316 1.708 2.060

26 0.256 0.531 0.856 1.058 1.315 1.706 2.056
27 0.256 0.531 0.855 1.057 1.314 1.703 2.052
28 0.256 0.530 0.855 1.056 1.313 1.701 2.048
29 0.256 0.530 0.854 1.055 1.311 1.699 2.045
30 0.256 0.530 0.854 1.055 1.310 1.697 2.042

40 0.255 0.529 0.851 1.050 1.303 1.684 2.021
60 0.254 0.527 0.848 1.045 1.296 1.671 2.000

120 0.254 0.526 0.845 1.041 1.289 1.658 1.980
∞ 0.253 0.524 0.842 1.036 1.282 1.645 1.960
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Table A.4 (continued) Critical Values of the t-Distribution

α

v 0.02 0.015 0.01 0.0075 0.005 0.0025 0.0005

1 15.894 21.205 31.821 42.433 63.656 127.321 636.578
2 4.849 5.643 6.965 8.073 9.925 14.089 31.600
3 3.482 3.896 4.541 5.047 5.841 7.453 12.924
4 2.999 3.298 3.747 4.088 4.604 5.598 8.610
5 2.757 3.003 3.365 3.634 4.032 4.773 6.869

6 2.612 2.829 3.143 3.372 3.707 4.317 5.959
7 2.517 2.715 2.998 3.203 3.499 4.029 5.408
8 2.449 2.634 2.896 3.085 3.355 3.833 5.041
9 2.398 2.574 2.821 2.998 3.250 3.690 4.781

10 2.359 2.527 2.764 2.932 3.169 3.581 4.587

11 2.328 2.491 2.718 2.879 3.106 3.497 4.437
12 2.303 2.461 2.681 2.836 3.055 3.428 4.318
13 2.282 2.436 2.650 2.801 3.012 3.372 4.221
14 2.264 2.415 2.624 2.771 2.977 3.326 4.140
15 2.249 2.397 2.602 2.746 2.947 3.286 4.073

16 2.235 2.382 2.583 2.724 2.921 3.252 4.015
17 2.224 2.368 2.567 2.706 2.898 3.222 3.965
18 2.214 2.356 2.552 2.689 2.878 3.197 3.922
19 2.205 2.346 2.539 2.674 2.861 3.174 3.883
20 2.197 2.336 2.528 2.661 2.845 3.153 3.850

21 2.189 2.328 2.518 2.649 2.831 3.135 3.819
22 2.183 2.320 2.508 2.639 2.819 3.119 3.792
23 2.177 2.313 2.500 2.629 2.807 3.104 3.768
24 2.172 2.307 2.492 2.620 2.797 3.091 3.745
25 2.167 2.301 2.485 2.612 2.787 3.078 3.725

26 2.162 2.296 2.479 2.605 2.779 3.067 3.707
27 2.158 2.291 2.473 2.598 2.771 3.057 3.689
28 2.154 2.286 2.467 2.592 2.763 3.047 3.674
29 2.150 2.282 2.462 2.586 2.756 3.038 3.660
30 2.147 2.278 2.457 2.581 2.750 3.030 3.646

40 2.123 2.250 2.423 2.542 2.704 2.971 3.551
60 2.099 2.223 2.390 2.504 2.660 2.915 3.460

120 2.076 2.196 2.358 2.468 2.617 2.860 3.373
∞ 2.054 2.170 2.326 2.432 2.576 2.807 3.290
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0 2
χ

α

αTable A.5 Critical Values of the Chi-Squared Distribution

α

v 0.995 0.99 0.98 0.975 0.95 0.90 0.80 0.75 0.70 0.50

1 0.04393 0.03157 0.03628 0.03982 0.00393 0.0158 0.0642 0.102 0.148 0.455
2 0.0100 0.0201 0.0404 0.0506 0.103 0.211 0.446 0.575 0.713 1.386
3 0.0717 0.115 0.185 0.216 0.352 0.584 1.005 1.213 1.424 2.366
4 0.207 0.297 0.429 0.484 0.711 1.064 1.649 1.923 2.195 3.357
5 0.412 0.554 0.752 0.831 1.145 1.610 2.343 2.675 3.000 4.351

6 0.676 0.872 1.134 1.237 1.635 2.204 3.070 3.455 3.828 5.348
7 0.989 1.239 1.564 1.690 2.167 2.833 3.822 4.255 4.671 6.346
8 1.344 1.647 2.032 2.180 2.733 3.490 4.594 5.071 5.527 7.344
9 1.735 2.088 2.532 2.700 3.325 4.168 5.380 5.899 6.393 8.343

10 2.156 2.558 3.059 3.247 3.940 4.865 6.179 6.737 7.267 9.342

11 2.603 3.053 3.609 3.816 4.575 5.578 6.989 7.584 8.148 10.341
12 3.074 3.571 4.178 4.404 5.226 6.304 7.807 8.438 9.034 11.340
13 3.565 4.107 4.765 5.009 5.892 7.041 8.634 9.299 9.926 12.340
14 4.075 4.660 5.368 5.629 6.571 7.790 9.467 10.165 10.821 13.339
15 4.601 5.229 5.985 6.262 7.261 8.547 10.307 11.037 11.721 14.339

16 5.142 5.812 6.614 6.908 7.962 9.312 11.152 11.912 12.624 15.338
17 5.697 6.408 7.255 7.564 8.672 10.085 12.002 12.792 13.531 16.338
18 6.265 7.015 7.906 8.231 9.390 10.865 12.857 13.675 14.440 17.338
19 6.844 7.633 8.567 8.907 10.117 11.651 13.716 14.562 15.352 18.338
20 7.434 8.260 9.237 9.591 10.851 12.443 14.578 15.452 16.266 19.337

21 8.034 8.897 9.915 10.283 11.591 13.240 15.445 16.344 17.182 20.337
22 8.643 9.542 10.600 10.982 12.338 14.041 16.314 17.240 18.101 21.337
23 9.260 10.196 11.293 11.689 13.091 14.848 17.187 18.137 19.021 22.337
24 9.886 10.856 11.992 12.401 13.848 15.659 18.062 19.037 19.943 23.337
25 10.520 11.524 12.697 13.120 14.611 16.473 18.940 19.939 20.867 24.337

26 11.160 12.198 13.409 13.844 15.379 17.292 19.820 20.843 21.792 25.336
27 11.808 12.878 14.125 14.573 16.151 18.114 20.703 21.749 22.719 26.336
28 12.461 13.565 14.847 15.308 16.928 18.939 21.588 22.657 23.647 27.336
29 13.121 14.256 15.574 16.047 17.708 19.768 22.475 23.567 24.577 28.336
30 13.787 14.953 16.306 16.791 18.493 20.599 23.364 24.478 25.508 29.336

40 20.707 22.164 23.838 24.433 26.509 29.051 32.345 33.66 34.872 39.335
50 27.991 29.707 31.664 32.357 34.764 37.689 41.449 42.942 44.313 49.335
60 35.534 37.485 39.699 40.482 43.188 46.459 50.641 52.294 53.809 59.335
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Table A.5 (continued) Critical Values of the Chi-Squared Distribution

α

v 0.30 0.25 0.20 0.10 0.05 0.025 0.02 0.01 0.005 0.001

1 1.074 1.323 1.642 2.706 3.841 5.024 5.412 6.635 7.879 10.827
2 2.408 2.773 3.219 4.605 5.991 7.378 7.824 9.210 10.597 13.815
3 3.665 4.108 4.642 6.251 7.815 9.348 9.837 11.345 12.838 16.266
4 4.878 5.385 5.989 7.779 9.488 11.143 11.668 13.277 14.860 18.466
5 6.064 6.626 7.289 9.236 11.070 12.832 13.388 15.086 16.750 20.515

6 7.231 7.841 8.558 10.645 12.592 14.449 15.033 16.812 18.548 22.457
7 8.383 9.037 9.803 12.017 14.067 16.013 16.622 18.475 20.278 24.321
8 9.524 10.219 11.030 13.362 15.507 17.535 18.168 20.090 21.955 26.124
9 10.656 11.389 12.242 14.684 16.919 19.023 19.679 21.666 23.589 27.877

10 11.781 12.549 13.442 15.987 18.307 20.483 21.161 23.209 25.188 29.588

11 12.899 13.701 14.631 17.275 19.675 21.920 22.618 24.725 26.757 31.264
12 14.011 14.845 15.812 18.549 21.026 23.337 24.054 26.217 28.300 32.909
13 15.119 15.984 16.985 19.812 22.362 24.736 25.471 27.688 29.819 34.527
14 16.222 17.117 18.151 21.064 23.685 26.119 26.873 29.141 31.319 36.124
15 17.322 18.245 19.311 22.307 24.996 27.488 28.259 30.578 32.801 37.698

16 18.418 19.369 20.465 23.542 26.296 28.845 29.633 32.000 34.267 39.252
17 19.511 20.489 21.615 24.769 27.587 30.191 30.995 33.409 35.718 40.791
18 20.601 21.605 22.760 25.989 28.869 31.526 32.346 34.805 37.156 42.312
19 21.689 22.718 23.900 27.204 30.144 32.852 33.687 36.191 38.582 43.819
20 22.775 23.828 25.038 28.412 31.410 34.170 35.020 37.566 39.997 45.314

21 23.858 24.935 26.171 29.615 32.671 35.479 36.343 38.932 41.401 46.796
22 24.939 26.039 27.301 30.813 33.924 36.781 37.659 40.289 42.796 48.268
23 26.018 27.141 28.429 32.007 35.172 38.076 38.968 41.638 44.181 49.728
24 27.096 28.241 29.553 33.196 36.415 39.364 40.270 42.980 45.558 51.179
25 28.172 29.339 30.675 34.382 37.652 40.646 41.566 44.314 46.928 52.619

26 29.246 30.435 31.795 35.563 38.885 41.923 42.856 45.642 48.290 54.051
27 30.319 31.528 32.912 36.741 40.113 43.195 44.140 46.963 49.645 55.475
28 31.391 32.620 34.027 37.916 41.337 44.461 45.419 48.278 50.994 56.892
29 32.461 33.711 35.139 39.087 42.557 45.722 46.693 49.588 52.335 58.301
30 33.530 34.800 36.250 40.256 43.773 46.979 47.962 50.892 53.672 59.702

40 44.165 45.616 47.269 51.805 55.758 59.342 60.436 63.691 66.766 73.403
50 54.723 56.334 58.164 63.167 67.505 71.420 72.613 76.154 79.490 86.660
60 65.226 66.981 68.972 74.397 79.082 83.298 84.58 88.379 91.952 99.608
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0 f

α

α

Table A.6 Critical Values of the F-Distribution

f0.05(v1, v2)

v1

v2 1 2 3 4 5 6 7 8 9

1 161.448 199.500 215.707 224.583 230.162 233.986 236.768 238.883 240.5433
2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385
3 10.128 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812
4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999
5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772

6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099
7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.725 3.686
8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388
9 5.117 4.256 3.863 3.633 3.482 3.373 3.293 3.230 3.179

10 4.964 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020

11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896
12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796
13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714
14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646
15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588

16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538
17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494
18 4.414 3.555 3.160 2.928 2.773 2.661 2.578 2.510 2.456
19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423
20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.392

21 4.325 3.467 3.072 2.840 2.685 2.573 2.488 2.420 2.366
22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342
23 4.279 3.422 3.028 2.795 2.640 2.528 2.442 2.375 2.320
24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.300
25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337 2.282

26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.265
27 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.305 2.250
28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.236
29 4.183 3.328 2.934 2.701 2.545 2.432 2.356 2.278 2.223
30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.226 2.211

40 4.085 3.232 2.839 2.606 2.449 2.339 2.249 2.180 2.124
60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040

120 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.959
∞ 3.841 2.996 2.605 2.372 2.214 2.099 2.010 1.938 1.880
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Table A.6 (continued) Critical Values of the F-Distribution

f0.05(v1, v2)

v1

v2 10 12 15 20 24 30 40 60 120 ∞
1 241.882 243.906 245.950 248.013 249.052 250.095 251.143 252.196 253.253 254.314
2 19.396 19.413 19.429 19.446 19.454 19.462 19.471 19.479 19.487 19.496
3 8.786 8.745 8.703 8.660 8.639 8.617 8.594 8.572 8.549 8.526
4 5.964 5.912 5.858 5.803 5.774 5.746 5.717 5.688 5.658 5.628
5 4.735 4.678 4.619 4.558 4.527 4.496 4.464 4.431 4.398 4.365

6 4.060 4.000 3.938 3.874 3.841 3.808 3.774 3.740 3.705 3.669
7 3.637 3.575 3.511 3.445 3.410 3.376 3.340 3.304 3.267 3.230
8 3.347 3.284 3.218 3.150 3.115 3.079 3.043 3.005 2.967 2.928
9 3.137 3.073 3.006 2.936 2.900 2.864 2.826 2.787 2.748 2.707

10 2.978 2.913 2.845 2.774 2.737 2.700 2.661 2.621 2.580 2.538

11 2.854 2.788 2.719 2.646 2.609 2.570 2.531 2.490 2.448 2.404
12 2.753 2.687 2.617 2.544 2.505 2.466 2.429 2.384 2.341 2.296
13 2.671 2.602 2.533 2.459 2.420 2.380 2.339 2.297 2.252 2.206
14 2.602 2.534 2.463 2.388 2.349 2.308 2.266 2.223 2.178 2.131
15 2.544 2.475 2.403 2.328 2.288 2.247 2.204 2.160 2.114 2.066

16 2.494 2.425 2.352 2.276 2.235 2.194 2.151 2.106 2.059 2.010
17 2.450 2.381 2.308 2.230 2.190 2.148 2.104 2.058 2.011 1.960
18 2.412 2.342 2.269 2.191 2.150 2.107 2.063 2.017 1.968 1.917
19 2.378 2.308 2.234 2.155 2.114 2.071 2.026 1.980 1.930 1.878
20 2.348 2.278 2.203 2.124 2.082 2.039 1.994 1.946 1.896 1.843

21 2.321 2.250 2.176 2.096 2.054 2.010 1.965 1.916 1.866 1.812
22 2.297 2.229 2.151 2.071 2.028 1.984 1.938 1.889 1.838 1.783
23 2.275 2.204 2.128 2.048 2.005 1.961 1.914 1.865 1.813 1.757
24 2.255 2.183 2.108 2.027 1.984 1.939 1.892 1.842 1.790 1.733
25 2.236 2.165 2.089 2.007 1.964 1.919 1.872 1.822 1.768 1.711

26 2.220 2.148 2.072 1.990 1.946 1.901 1.853 1.803 1.749 1.691
27 2.204 2.132 2.058 1.974 1.930 1.884 1.836 1.785 1.731 1.672
28 2.190 2.118 2.041 1.959 1.915 1.869 1.820 1.769 1.714 1.654
29 2.177 2.104 2.027 1.945 1.901 1.854 1.806 1.754 1.698 1.638
30 2.165 2.092 2.015 1.932 1.887 1.841 1.792 1.740 1.683 1.622

40 2.077 2.003 1.924 1.839 1.793 1.744 1.693 1.637 1.577 1.509
60 1.993 1.917 1.836 1.748 1.700 1.649 1.594 1.534 1.467 1.389

120 1.910 1.834 1.750 1.659 1.608 1.554 1.495 1.429 1.352 1.254
∞ 1.831 1.752 1.666 1.570 1.517 1.459 1.394 1.318 1.221 1.000
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Table A.6 (continued) Critical Values of the F-Distribution

f0.01(v1, v2)

v1

v2 1 2 3 4 5 6 7 8 9

1 4052.181 4999.500 5403.352 5624.583 5763.650 5858.986 5928.356 5981.070 6022.473
2 98.503 99.000 99.166 99.249 99.299 99.333 99.356 99.374 99.388
3 34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345
4 21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659
5 16.258 13.274 12.060 11.392 10.967 10.672 10.455 10.289 10.158

6 13.745 10.925 9.780 9.148 8.746 8.466 8.260 8.102 7.976
7 12.246 9.547 8.451 7.847 7.460 7.191 6.993 6.840 6.719
8 11.259 8.649 7.591 7.006 6.632 6.371 6.178 6.029 5.911
9 10.561 8.022 6.992 6.422 6.057 5.802 5.613 5.467 5.351

10 10.044 7.559 6.552 5.994 5.636 5.386 5.200 5.057 4.942

11 9.646 7.206 6.217 5.668 5.316 5.069 4.886 4.744 4.632
12 9.330 6.927 5.953 5.412 5.064 4.821 4.640 4.499 4.388
13 9.074 6.701 5.739 5.205 4.862 4.620 4.441 4.302 4.191
14 8.862 6.515 5.564 5.035 4.694 4.456 4.278 4.140 4.030
15 8.683 6.359 5.417 4.893 4.556 4.318 4.142 4.004 3.895

16 8.531 6.226 5.292 4.773 4.437 4.202 4.026 3.890 3.780
17 8.400 6.112 5.185 4.669 4.336 4.102 3.927 3.791 3.682
18 8.285 6.013 5.092 4.579 4.248 4.015 3.841 3.705 3.597
19 8.185 5.926 5.010 4.500 4.171 3.939 3.765 3.631 3.523
20 8.096 5.849 4.938 4.431 4.103 3.871 3.699 3.564 3.457

21 8.017 5.780 4.874 4.369 4.042 3.812 3.640 3.506 3.398
22 7.945 5.719 4.817 4.313 3.988 3.758 3.587 3.453 3.346
23 7.881 5.664 4.765 4.264 3.939 3.710 3.539 3.406 3.299
24 7.823 5.614 4.718 4.218 3.895 3.667 3.496 3.363 3.256
25 7.770 5.568 4.675 4.177 3.855 3.627 3.458 3.324 3.217

26 7.721 5.527 4.637 4.140 3.818 3.591 3.421 3.288 3.182
27 7.677 5.488 4.601 4.106 3.785 3.558 3.388 3.256 3.149
28 7.636 5.453 4.568 4.074 3.754 3.528 3.358 3.226 3.120
29 7.598 5.420 4.538 4.045 3.725 3.499 3.330 3.198 3.092
30 7.562 5.390 4.510 4.018 3.699 3.473 3.304 3.173 3.067

40 7.314 5.179 4.313 3.828 3.514 3.291 3.124 2.993 2.888
60 7.077 4.977 4.126 3.649 3.339 3.119 2.953 2.823 2.718

120 6.851 4.787 3.949 3.480 3.174 2.956 2.792 2.663 2.559
∞ 6.635 4.605 3.782 3.319 3.017 2.802 2.639 2.511 2.407
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Table A.6 (continued) Critical Values of the F-Distribution

f0.01(v1, v2)

v1

v2 10 12 15 20 24 30 40 60 120 ∞
1 6055.847 6106.321 6157.285 6208.730 6234.631 6260.649 6286.782 6313.030 6339.391 6365.864
2 99.399 99.416 99.433 99.449 99.458 99.466 99.474 99.483 99.491 99.499
3 27.229 27.052 26.872 26.690 26.598 26.505 26.411 26.316 26.221 26.125
4 14.546 14.374 14.198 14.020 13.929 13.838 13.745 13.652 13.558 13.463
5 10.051 9.888 9.722 9.553 9.466 9.379 9.291 9.202 9.112 9.020

6 7.874 7.718 7.559 7.396 7.313 7.229 7.143 7.057 6.969 6.880
7 6.620 6.469 6.314 6.155 6.074 5.992 5.908 5.824 5.737 5.650
8 5.814 5.667 5.515 5.359 5.279 5.198 5.116 5.032 4.946 4.859
9 5.256 5.111 4.962 4.808 4.729 4.649 4.567 4.483 4.398 4.311

10 4.849 4.706 4.558 4.405 4.327 4.247 4.165 4.082 3.996 3.909

11 4.539 4.397 4.251 4.099 4.021 3.941 3.860 3.776 3.690 3.602
12 4.296 4.155 4.010 3.858 3.780 3.701 3.619 3.535 3.449 3.361
13 4.100 3.960 3.815 3.664 3.587 3.507 3.425 3.341 3.255 3.165
14 3.939 3.800 3.656 3.505 3.427 3.348 3.266 3.181 3.094 3.004
15 3.805 3.666 3.522 3.372 3.294 3.214 3.132 3.047 2.959 2.868

16 3.691 3.553 3.409 3.259 3.181 3.101 3.018 2.933 2.845 2.753
17 3.593 3.455 3.312 3.162 3.084 3.003 2.920 2.835 2.746 2.653
18 3.508 3.371 3.227 3.077 2.999 2.919 2.835 2.749 2.660 2.566
19 3.434 3.297 3.153 3.003 2.925 2.844 2.761 2.674 2.584 2.489
20 3.368 3.231 3.088 2.938 2.859 2.778 2.695 2.608 2.517 2.421

21 3.310 3.173 3.030 2.880 2.801 2.720 2.636 2.548 2.457 2.360
22 3.258 3.121 2.978 2.827 2.749 2.667 2.583 2.495 2.403 2.305
23 3.211 3.074 2.931 2.781 2.702 2.620 2.535 2.447 2.354 2.256
24 3.168 3.031 2.889 2.738 2.659 2.577 2.492 2.403 2.310 2.211
25 3.129 2.993 2.850 2.699 2.620 2.538 2.453 2.363 2.270 2.169

26 3.094 2.958 2.815 2.664 2.585 2.503 2.417 2.327 2.233 2.131
27 3.062 2.926 2.782 2.632 2.552 2.470 2.384 2.294 2.198 2.097
28 3.032 2.896 2.753 2.602 2.522 2.440 2.354 2.263 2.167 2.064
29 3.005 2.868 2.726 2.574 2.495 2.412 2.335 2.234 2.138 2.034
30 2.979 2.843 2.726 2.549 2.469 2.386 2.299 2.208 2.111 2.006

40 2.801 2.665 2.522 2.369 2.288 2.203 2.114 2.019 1.917 1.804
60 2.632 2.496 2.352 2.198 2.115 2.028 1.936 1.836 1.726 1.601

120 2.472 2.336 2.192 2.035 1.950 1.860 1.763 1.656 1.533 1.381
∞ 2.321 2.185 2.039 1.878 1.791 1.696 1.592 1.473 1.325 1.000
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Table A.7 Tolerance Factors for Normal Distributions

Two-Sided Intervals One-Sided Intervals
γ = 0.05 γ = 0.01 γ = 0.05 γ = 0.01
1 − α 1 − α 1 − α 1 − α

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
2 32.019 37.674 48.430 160.193 188.491 242.300 20.581 26.260 37.094 103.029 131.426 185.617
3 8.380 9.916 12.861 18.930 22.401 29.055 6.156 7.656 10.553 13.995 17.170 23.896
4 5.369 6.370 8.299 9.398 11.150 14.527 4.162 5.144 7.042 7.380 9.083 12.387
5 4.275 5.079 6.634 6.612 7.855 10.260 3.407 4.203 5.741 5.362 6.578 8.939
6 3.712 4.414 5.775 5.337 6.345 8.301 3.006 3.708 5.062 4.411 5.406 7.335
7 3.369 4.007 5.248 4.613 5.488 7.187 2.756 3.400 4.642 3.859 4.728 6.412
8 3.136 3.732 4.891 4.147 4.936 6.468 2.582 3.187 4.354 3.497 4.285 5.812
9 2.967 3.532 4.631 3.822 4.550 5.966 2.454 3.031 4.143 3.241 3.972 5.389

10 2.839 3.379 4.433 3.582 4.265 5.594 2.355 2.911 3.981 3.048 3.738 5.074
11 2.737 3.259 4.277 3.397 4.045 5.308 2.275 2.815 3.852 2.898 3.556 4.829
12 2.655 3.162 4.150 3.250 3.870 5.079 2.210 2.736 3.747 2.777 3.410 4.633
13 2.587 3.081 4.044 3.130 3.727 4.893 2.155 2.671 3.659 2.677 3.290 4.472
14 2.529 3.012 3.955 3.029 3.608 4.737 2.109 2.615 3.585 2.593 1.189 4.337
15 2.480 2.954 3.878 2.945 3.507 4.605 2.068 2.566 3.520 2.522 3.102 4.222
16 2.437 2.903 3.812 2.872 3.421 4.492 2.033 2.524 3.464 2.460 3.028 4.123
17 2.400 2.858 3.754 2.808 3.345 4.393 2.002 2.486 3.414 2.405 2.963 4.037
18 2.366 2.819 3.702 2.753 3.279 4.307 1.974 2.453 3.370 2.357 2.905 3.960
19 2.337 2.784 3.656 2.703 3.221 4.230 1.949 2.423 3.331 2.314 2.854 3.892
20 2.310 2.752 3.615 2.659 3.168 4.161 1.926 2.396 3.295 2.276 2.808 1.832
25 2.208 2.631 3.457 2.494 2.972 3.904 1.838 2.292 3.158 2.129 2.633 3.001
30 2.140 2.549 3.350 2.385 2.841 3.733 1.777 2.220 3.064 2.030 2.516 3.447
35 2.090 2.490 3.272 2.306 2.748 3.611 1.732 2.167 2.995 1.957 2.430 3.334
40 2.052 2.445 3.213 2.247 2.677 3.518 1.697 2.126 2.941 1.902 2.364 3.249
45 2.021 2.408 3.165 2.200 2.621 3.444 1.669 2.092 2.898 1.857 2.312 3.180
50 1.996 2.379 3.126 2.162 2.576 3.385 1.646 2.065 2.863 1.821 2.269 3.125
60 1.958 2.333 3.066 2.103 2.506 3.293 1.609 2.022 2.807 1.764 2.202 3.038
70 1.929 2.299 3.021 2.060 2.454 3.225 1.581 1.990 2.765 1.722 2.153 2.974
80 1.907 2.272 2.986 2.026 2.414 3.173 1.559 1.965 2.733 1.688 2.114 2.924
90 1.889 2.251 2.958 1.999 2.382 3.130 1.542 1.944 2.706 1.661 2.082 2.883

100 1.874 2.233 2.934 1.977 2.355 3.096 1.527 1.927 2.684 1.639 2.056 2.850
150 1.825 2.175 2.859 1.905 2.270 2.983 1.478 1.870 2.611 1.566 1.971 2.741
200 1.798 2.143 2.816 1.865 2.222 2.921 1.450 1.837 2.570 1.524 1.923 2.679
250 1.780 2.121 2.788 1.839 2.191 2.880 1.431 1.815 2.542 1.496 1.891 2.638
300 1.767 2.106 2.767 1.820 2.169 2.850 1.417 1.800 2.522 1.476 1.868 2.608
∞ 1.645 1.960 2.576 1.645 1.960 2.576 1.282 1.645 2.326 1.282 1.645 2.326
Adapted from C. Eisenhart, M. W. Hastay, and W. A. Wallis, Techniques of Statistical Analysis, Chapter 2, McGraw-
Hill Book Company, New York, 1947.
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Table A.8 Critical Values for Bartlett’s Test

bk(0.01;n)

Number of Populations, k

n 2 3 4 5 6 7 8 9 10

3 0.1411 0.1672
4 0.2843 0.3165 0.3475 0.3729 0.3937 0.4110
5 0.3984 0.4304 0.4607 0.4850 0.5046 0.5207 0.5343 0.5458 0.5558

6 0.4850 0.5149 0.5430 0.5653 0.5832 O.5978 0.6100 0.6204 0.6293
7 0.5512 0.5787 0.6045 0.6248 0.6410 0.6542 0.6652 0.6744 0.6824
8 0.6031 0.6282 0.6518 0.6704 0.6851 0.6970 0.7069 0.7153 0.7225
9 0.6445 0.6676 0.6892 0.7062 0.7197 0.7305 0.7395 0.7471 0.7536

10 0.6783 0.6996 0.7195 0.7352 0.7475 0.7575 0.7657 0.7726 0.7786

11 0.7063 0.7260 0.7445 0.7590 0.7703 0.7795 0.7871 0.7935 0.7990
12 0.7299 0.7483 0.7654 0.7789 0.7894 0.7980 0.8050 0.8109 0.8160
13 0.7501 0.7672 0.7832 0.7958 0.8056 0.8135 0.8201 0.8256 0.8303
14 0.7674 0.7835 0.7985 0.8103 0.8195 0.8269 0.8330 0.8382 0.8426
15 0.7825 0.7977 0.8118 0.8229 0.8315 0.8385 0.8443 0.8491 0.8532

16 0.7958 0.8101 0.8235 0.8339 0.8421 0.8486 0.8541 0.8586 0.8625
17 0.8076 0.8211 0.8338 0.8436 0.8514 0.8576 0.8627 0.8670 0.8707
18 0.8181 0.8309 0.8429 0.8523 0.8596 0.8655 0.8704 0.8745 0.8780
19 0.8275 0.8397 0.8512 0.8601 0.8670 0.8727 0.8773 0.8811 0.8845
20 0.8360 0.8476 0.8586 0.8671 0.8737 0.8791 0.8835 0.8871 0.8903

21 0.8437 0.8548 0.8653 0.8734 0.8797 0.8848 0.8890 0.8926 0.8956
22 0.8507 0.8614 0.8714 0.8791 0.8852 0.8901 0.8941 0.8975 0.9004
23 0.8571 0.8673 0.8769 0.8844 0.8902 0.8949 0.8988 0.9020 0.9047
24 0.8630 0.8728 0.8820 0.8892 0.8948 0.8993 0.9030 0.9061 0.9087
25 0.8684 0.8779 0.8867 0.8936 0.8990 0.9034 0.9069 0.9099 0.9124

26 0.8734 0.8825 0.8911 0.8977 0.9029 0.9071 0.9105 0.9134 0.9158
27 0.8781 0.8869 0.8951 0.9015 0.9065 0.9105 0.9138 0.9166 0.9190
28 0.8824 0.8909 0.8988 0.9050 0.9099 0.9138 0.9169 0.9196 0.9219
29 0.8864 0.8946 0.9023 0.9083 0.9130 0.9167 0.9198 0.9224 0.9246
30 0.8902 0.8981 0.9056 0.9114 0.9159 0.9195 0.9225 0.9250 0.9271

40 0.9175 0.9235 0.9291 0.9335 0.9370 0.9397 0.9420 0.9439 0.9455
50 0.9339 0.9387 0.9433 0.9468 0.9496 0.9518 0.9536 0.9551 0.9564
60 0.9449 0.9489 0.9527 0.9557 0.9580 0.9599 0.9614 0.9626 0.9637
80 0.9586 0.9617 0.9646 0.9668 0.9685 0.9699 0.9711 0.9720 0.9728

100 0.9669 0.9693 0.9716 0.9734 0.9748 0.9759 0.9769 0.9776 0.9783

Table 1 from “On the Determination of Critical Values for Bartlett’s Test,” by Danny D. Dyer
and Jerome P. Keating, Vol 75, No. 370 (Jun., 1980), pp.313–319. Reprinted with permission
from The Journal of the American Statistical Association. Copyright 1980 by the American
Statistical Association. All rights reserved.
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Table A.8 (continued) Critical Values for Bartlett’s Test

bk(0.05;n)

Number of Populations, k

n 2 3 4 5 6 7 8 9 10

3 0.3123 0.3058 0.3173 0.3299
4 0.4780 0.4699 0.4803 0.4921 0.5028 0.5122 0.5204 0.5277 0.5341
5 0.5845 0.5762 0.5850 0.5952 0.6045 0.6126 0.6197 0.6260 0.6315

6 0.6563 0.6483 0.6559 0.6646 0.6727 0.6798 0.6860 0.6914 0.6961
7 0.7075 0.7000 0.7065 0.7142 0.7213 0.7275 0.7329 0.7376 0.7418
8 0.7456 0.7387 0.7444 0.7512 0.7574 0.7629 0.7677 0.7719 0.7757
9 0.7751 0.7686 0.7737 0.7798 0.7854 0.7903 0.7946 0.7984 0.8017

10 0.7984 0.7924 0.7970 0.8025 0.8076 0.8121 0.8160 0.8194 0.8224

11 0.8175 0.8118 0.8160 0.8210 0.8257 0.8298 0.8333 0.8365 0.8392
12 0.8332 0.8280 0.8317 0.8364 0.8407 0.8444 0.8477 0.8506 0.8531
13 0.8465 0.8415 0.8450 0.8493 0.8533 0.8568 0.8598 0.8625 0.8648
14 0.8578 0.8532 0.8564 0.8604 0.8641 0.8673 0.8701 0.8726 0.8748
15 0.8676 0.8632 0.8662 0.8699 0.8734 0.8764 0.8790 0.8814 0.8834

16 0.8761 0.8719 0.8747 0.8782 0.8815 0.8843 0.8868 0.8890 0.8909
17 0.8836 0.8796 0.8823 0.8856 0.8886 0.8913 0.8936 0.8957 0.8975
18 0.8902 0.8865 0.8890 0.8921 0.8949 0.8975 0.8997 0.9016 0.9033
19 0.8961 0.8926 0.8949 0.8979 0.9006 0.9030 0.9051 0.9069 0.9086
20 0.9015 0.8980 0.9003 0.9031 0.9057 0.9080 0.9100 0.9117 0.9132

21 0.9063 0.9030 0.9051 0.9078 0.9103 0.9124 0.9143 0.9160 0.9175
22 0.9106 0.9075 0.9095 0.9120 0.9144 0.9165 0.9183 0.9199 0.9213
23 0.9146 0.9116 0.9135 0.9159 0.9182 0.9202 0.9219 0.9235 0.9248
24 0.9182 0.9153 0.9172 0.9195 0.9217 0.9236 0.9253 0.9267 0.9280
25 0.9216 0.9187 0.9205 0.9228 0.9249 0.9267 0.9283 0.9297 0.9309

26 0.9246 0.9219 0.9236 0.9258 0.9278 0.9296 0.9311 0.9325 0.9336
27 0.9275 0.9249 0.9265 0.9286 0.9305 0.9322 0.9337 0.9350 0.9361
28 0.9301 0.9276 0.9292 0.9312 0.9330 0.9347 0.9361 0.9374 0.9385
29 0.9326 0.9301 0.9316 0.9336 0.9354 0.9370 0.9383 0.9396 0.9406
30 0.9348 0.9325 0.9340 0.9358 0.9376 0.9391 0.9404 0.9416 0.9426

40 0.9513 0.9495 0.9506 0.9520 0.9533 0.9545 0.9555 0.9564 0.9572
50 0.9612 0.9597 0.9606 0.9617 0.9628 0.9637 0.9645 0.9652 0.9658
60 0.9677 0.9665 0.9672 0.9681 0.9690 0.9698 0.9705 0.9710 0.9716
80 0.9758 0.9749 0.9754 0.9761 0.9768 0.9774 0.9779 0.9783 0.9787

100 0.9807 0.9799 0.9804 0.9809 0.9815 0.9819 0.9823 0.9827 0.9830
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Table A.9 Critical Values for Cochran’s Test

α = 0.01

n

k 2 3 4 5 6 7 8 9 10 11 17 37 145 ∞
2 0.9999 0.9950 0.9794 0.9586 0.9373 0.9172 0.8988 0.8823 0.8674 0.8539 0.7949 0.7067 0.6062 0.5000
3 0.9933 0.9423 0.8831 0.8335 0.7933 0.7606 0.7335 0.7107 0.6912 0.6743 0.6059 0.5153 0.4230 0.3333
4 0.9676 0.8643 0.7814 0.7212 0.6761 0.6410 0.6129 0.5897 0.5702 0.5536 0.4884 0.4057 0.3251 0.2500

5 0.9279 0.7885 0.6957 0.6329 0.5875 0.5531 0.5259 0.5037 0.4854 0.4697 0.4094 0.3351 0.2644 0.2000
6 0.8828 0.7218 0.6258 0.5635 0.5195 0.4866 0.4608 0.4401 0.4229 0.4084 0.3529 0.2858 0.2229 0.1667
7 0.8376 0.6644 0.5685 0.5080 0.4659 0.4347 0.4105 0.3911 0.3751 0.3616 0.3105 0.2494 0.1929 0.1429

8 0.7945 0.6152 0.5209 0.4627 0.4226 0.3932 0.3704 0.3522 0.3373 0.3248 0.2779 0.2214 0.1700 0.1250
9 0.7544 0.5727 0.4810 0.4251 0.3870 0.3592 0.3378 0.3207 0.3067 0.2950 0.2514 0.1992 0.1521 0.1111
10 0.7175 0.5358 0.4469 0.3934 0.3572 0.3308 0.3106 0.2945 0.2813 0.2704 0.2297 0.1811 0.1376 0.1000

12 0.6528 0.4751 0.3919 0.3428 0.3099 0.2861 0.2680 0.2535 0.2419 0.2320 0.1961 0.1535 0.1157 0.0833
15 0.5747 0.4069 0.3317 0.2882 0.2593 0.2386 0.2228 0.2104 0.2002 0.1918 0.1612 0.1251 0.0934 0.0667
20 0.4799 0.3297 0.2654 0.2288 0.2048 0.1877 0.1748 0.1646 0.1567 0.1501 0.1248 0.0960 0.0709 0.0500

24 0.4247 0.2871 0.2295 0.1970 0.1759 0.1608 0.1495 0.1406 0.1338 0.1283 0.1060 0.0810 0.0595 0.0417
30 0.3632 0.2412 0.1913 0.1635 0.1454 0.1327 0.1232 0.1157 0.1100 0.1054 0.0867 0.0658 0.0480 0.0333
40 0.2940 0.1915 0.1508 0.1281 0.1135 0.1033 0.0957 0.0898 0.0853 0.0816 0.0668 0.0503 0.0363 0.0250

60 0.2151 0.1371 0.1069 0.0902 0.0796 0.0722 0.0668 0.0625 0.0594 0.0567 0.0461 0.0344 0.0245 0.0167
120 0.1225 0.0759 0.0585 0.0489 0.0429 0.0387 0.0357 0.0334 0.0316 0.0302 0.0242 0.0178 0.0125 0.0083
∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reproduced from C. Eisenhart, M. W. Hastay, and W. A. Wallis, Techniques of Statistical Analysis, Chapter 15, McGraw-
Hill Book Company, New, York, 1947.
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Table A.9 (continued) Critical Values for Cochran’s Test

α = 0.05

n

k 2 3 4 5 6 7 8 9 10 11 17 37 145 ∞
2 0.9985 0.9750 0.9392 0.9057 0.8772 0.8534 0.8332 0.8159 0.8010 0.7880 0.7341 0.6602 0.5813 0.5000
3 0.9669 0.8709 0.7977 0.7457 0.7071 0.6771 0.6530 0.6333 0.6167 0.6025 0.5466 0.4748 0.4031 0.3333
4 0.9065 0.7679 0.6841 0.6287 0.5895 0.5598 0.5365 0.5175 0.5017 0.4884 0.4366 0.3720 0.3093 0.2500

5 0.8412 0.6838 0.5981 0.5441 0.5065 0.4783 0.4564 0.4387 0.4241 0.4118 0.3645 0.3066 0.2513 0.2000
6 0.7808 0.6161 0.5321 0.4803 0.4447 0.4184 0.3980 0.3817 0.3682 0.3568 0.3135 0.2612 0.2119 0.1667
7 0.7271 0.5612 0.4800 0.4307 0.3974 0.3726 0.3535 0.3384 0.3259 0.3154 0.2756 0.2278 0.1833 0.1429

8 0.6798 0.5157 0.4377 0.3910 0.3595 0.3362 0.3185 0.3043 0.2926 0.2829 0.2462 0.2022 0.1616 0.1250
9 0.6385 0.4775 0.4027 0.3584 0.3286 0.3067 0.2901 0.2768 0.2659 0.2568 0.2226 0.1820 0.1446 0.1111
10 6.6020 0.4450 0.3733 0.3311 0.3029 0.2823 0.2666 0.2541 0.2439 0.2353 0.2032 0.1655 0.1308 0.1000

12 0.5410 0.3924 0.3264 0.2880 0.2624 0.2439 0.2299 0.2187 0.2098 0.2020 0.1737 0.1403 0.1100 0.0833
15 0.4709 0.3346 0.2758 0.2419 0.2195 0.2034 0.1911 0.1815 0.1736 0.1671 0.1429 0.1144 0.0889 0.0667
20 0.3894 0.2705 0.2205 0.1921 0.1735 0.1602 0.1501 0.1422 0.1357 0.1303 0.1108 0.0879 0.0675 0.0500

24 0.3434 0.2354 0.1907 0.1656 0.1493 0.1374 0.1286 0.1216 0.1160 0.1113 0.0942 0.0743 0.0567 0.0417
30 0.2929 0.1980 0.1593 0.1377 0.1237 0.1137 0.1061 0.1002 0.0958 0.0921 0.0771 0.0604 0.0457 0.0333
40 0.2370 0.1576 0.1259 0.1082 0.0968 0.0887 0.0827 0.0780 0.0745 0.0713 0.0595 0.0462 0.0347 0.0250

60 0.1737 0.1131 0.0895 0.0765 0.0682 0.0623 0.0583 0.0552 0.0520 0.0497 0.0411 0.0316 0.0234 0.0167
120 0.0998 0.0632 0.0495 0.0419 0.0371 0.0337 0.0312 0.0292 0.0279 0.0266 0.0218 0.0165 0.0120 0.0083
∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A.10 Upper Percentage Points of the Studentized Range Distribution: q(0.05; k, v)

Degrees of Number of Treatments, k

Freedom, v 2 3 4 5 6 7 8 9 10

1 18.0 27.0 32.8 37.2 40.5 43.1 15.1 47.1 49.1
2 6.09 8.33 9.80 10.89 11.73 12.43 13.03 13.54 13.99
3 4.50 5.91 6.83 7.51 8.04 8.47 8.85 9.18 9.46
4 3.93 5.04 5.76 6.29 6.71 7.06 7.35 7.60 7.83
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99

6 3.46 4.34 4.90 5.31 5.63 5.89 6.12 6.32 6.49
7 3.34 4.16 4.68 5.06 5.35 5.59 5.80 5.99 6.15
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92
9 3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74
10 3.15 3.88 4.33 4.66 4.91 5.12 5.30 5.46 5.60

11 3.11 3.82 4.26 4.58 4.82 5.03 5.20 5.35 5.49
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40
13 3.06 3.73 4.15 4.46 4.69 4.88 5.05 5.19 5.32
14 3.03 3.70 4.11 4.41 4.65 4.83 4.99 5.13 5.25
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20

16 3.00 3.65 4.05 4.34 4.56 4.74 4.90 5.03 5.15
17 2.98 3.62 4.02 4.31 4.52 4.70 4.86 4.99 5.11
18 2.97 3.61 4.00 4.28 4.49 4.67 4.83 4.96 5.07
19 2.96 3.59 3.98 4.26 4.47 4.64 4.79 4.92 5.04
20 2.95 3.58 3.96 4.24 4.45 4.62 4.77 4.90 5.01

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92
30 2.89 3.48 3.84 4.11 4.30 4.46 4.60 4.72 4.83
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.74
60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65
120 2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.47 4.56
∞ 2.77 3.32 3.63 3.86 4.03 4.17 4.29 4.39 4.47
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Table A.11 The Incomplete Gamma Function: F (x;α) =
∫ x

0
1

Γ(α)y
α−1e−y dy

α

x 1 2 3 4 5 6 7 8 9 10

1 0.6320 0.2640 0.0800 0.0190 0.0040 0.0010 0.0000 0.0000 0.0000 0.0000
2 0.8650 0.5940 0.3230 0.1430 0.0530 0.0170 0.0050 0.0010 0.0000 0.0000
3 0.9500 0.8010 0.5770 0.3530 0.1850 0.0840 0.0340 0.0120 0.0040 0.0010
4 0.9820 0.9080 0.7620 0.5670 0.3710 0.2150 0.1110 0.0510 0.0210 0.0080
5 0.9930 0.9600 0.8750 0.7350 0.5600 0.3840 0.2380 0.1330 0.0680 0.0320

6 0.9980 0.9830 0.9380 0.8490 0.7150 0.5540 0.3940 0.2560 0.1530 0.0840
7 0.9990 0.9930 0.9700 0.9180 0.8270 0.6990 0.5500 0.4010 0.2710 0.1700
8 1.0000 0.9970 0.9860 0.9580 0.9000 0.8090 0.6870 0.5470 0.4070 0.2830
9 0.9990 0.9940 0.9790 0.9450 0.8840 0.7930 0.6760 0.5440 0.4130

10 1.0000 0.9970 0.9900 0.9710 0.9330 0.8700 0.7800 0.6670 0.5420

11 0.9990 0.9950 0.9850 0.9620 0.9210 0.8570 0.7680 0.6590
12 1.0000 0.9980 0.9920 0.9800 0.9540 0.9110 0.8450 0.7580
13 0.9990 0.9960 0.9890 0.9740 0.9460 0.9000 0.8340
14 1.0000 0.9980 0.9940 0.9860 0.9680 0.9380 0.8910
15 0.9990 0.9970 0.9920 0.9820 0.9630 0.9300

A.12 Proof of Mean of the Hypergeometric Distribution
To find the mean of the hypergeometric distribution, we write

E(X) =
n∑

x=0

x

(
k
x

)(
N−k
n−x

)(
N
n

) = k
n∑

x=1

(k − 1)!

(x− 1)!(k − x)!
·
(
N−k
n−x

)(
N
n

)
= k

n∑
x=1

(
k−1
x−1

)(
N−k
n−x

)(
N
n

) .

Since (
N − k

n− 1− y

)
=

(
(N − 1)− (k − 1)

n− 1− y

)
and

(
N

n

)
=

N !

n!(N − n)!
=

N

n

(
N − 1

n− 1

)
,

letting y = x− 1, we obtain

E(X) = k

n−1∑
y=0

(
k−1
y

)(
N−k

n−1−y

)(
N
n

)
=

nk

N

n−1∑
y=0

(
k−1
y

)(
(N−1)−(k−1)

n−1−y

)(
N−1
n−1

) =
nk

N
,

since the summation represents the total of all probabilities in a hypergeometric experiment when N−1
items are selected at random from N − 1, of which k − 1 are labeled success.
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A.13 Proof of Mean and Variance of the Poisson Distribution
Let μ = λt.

E(X) =

∞∑
x=0

x · e
−μμx

x!
=

∞∑
x=1

x · e
−μμx

x!
= μ

∞∑
x=1

e−μμx−1

(x− 1)!
.

Since the summation in the last term above is the total probability of a Poisson random variable with
mean μ, which can be easily seen by letting y = x− 1, it equals 1. Therefore, E(X) = μ. To calculate
the variance of X, note that

E[X(X − 1)] =
∞∑
x=0

x(x− 1)
e−μμx

x!
= μ2

∞∑
x=2

e−μμx−2

(x− 2)!
.

Again, letting y = x − 2, the summation in the last term above is the total probability of a Poisson
random variable with mean μ. Hence, we obtain

σ2 = E(X2)− [E(X)]2 = E[X(X − 1)] + E(X)− [E(X)]2 = μ2 + μ− μ2 = μ = λt.

A.14 Proof of Mean and Variance of the Gamma Distribution
To find the mean and variance of the gamma distribution, we first calculate

E(Xk) =
1

βαΓ(α)

∫ ∞

0

xα+k−1e−x/β dx =
βk+αΓ(α+ k)

βαΓ(α)

∫ ∞

0

xα+k−1e−x/β

βk+αΓ(α+ k)
dx,

for k = 0, 1, 2, . . . . Since the integrand in the last term above is a gamma density function with
parameters α+ k and β, it equals 1. Therefore,

E(Xk) = βkΓ(k + α)

Γ(α)
.

Using the recursion formula of the gamma function from page 144, we obtain

μ = β
Γ(α+ 1)

Γ(α)
= αβ and σ2 = E(X2)− μ2 = β2Γ(α+ 2)

Γ(α)
− μ2 = β2α(α+ 1)− (αβ)2 = αβ2.



Appendix B
Answers to Odd-Numbered
Non-Review Exercises

Chapter 1

1.1 (a) S = {8, 16, 24, 32, 40, 48}
(b) S = {−5, 1}
(c) S = {T,HT,HHT,HHH}
(d) S ={Africa, Antarctica, Asia, Australia,

Europe, North America, South America}
(e) S = φ

1.3 A = C

1.5 Using the tree diagram, we obtain

S = {1HH, 1HT , 1TH, 1TT , 2H, 2T , 3HH,
3HT , 3TH, 3TT , 4H, 4T , 5HH, 5HT , 5TH,
5TT , 6H, 6T}

1.7 (a) S = {M1M2,M1F1,M1F2,M2M1,M2F1,
M2F2, F1M1, F1M2, F1F2, F2M1, F2M2,
F2F1}

(b) A = {M1M2,M1F1,M1F2,M2M1,M2F1,
M2F2}

(c) B = {M1F1,M1F2,M2F1,M2F2, F1M1,
F1M2, F2M1, F2M2}

(d) C = {F1F2, F2F1}
(e) A ∩B = {M1F1,M1F2,M2F1,M2F2}
(f) A ∪ C = {M1M2,M1F1,M1F2,M2M1,

M2F1,M2F2, F1F2, F2F1}
1.11 (a) {0, 2, 3, 4, 5, 6, 8}

(b) φ, the null set

(c) {0, 1, 6, 7, 8, 9}
(d) {1, 3, 5, 6, 7, 9}
(e) {0, 1, 6, 7, 8, 9}
(f) {2, 4}

1.15 (a) The family will experience mechanical
problems but will receive no ticket for a
traffic violation and will not arrive at a
campsite that has no vacancies.

(b) The family will receive a traffic ticket and
arrive at a campsite that has no vacancies
but will not experience mechanical prob-
lems.

(c) The family will experience mechanical
problems and will arrive at a campsite that
has no vacancies.

(d) The family will receive a traffic ticket but
will not arrive at a campsite that has no
vacancies.

(e) The family will not experience mechanical
problems.

1.17 18

1.19 8

1.21 48

1.23 210

1.25 72

1.27 362,880

1.29 2880

1.31 (a) 40,320; (b) 336

1.33 360

1.35 24

1.37 365P60

1.39 (a) Sum of the probabilities exceeds 1.

(b) Sum of the probabilities is less than 1.

(c) A negative probability

(d) Probability of both a heart and a black card
is zero.

455
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1.41 (a) 0.3; (b) 0.2

1.43 S = {$10, $25, $100}; P (10) = 11
20 , P (25) = 3

10 ,

P (100) = 15
100 ;

17
20

1.45 (a) 22/25; (b) 3/25; (c) 17/50

1.47 (a) 0.32; (b) 0.68; (c) office or den

1.49 (a) 0.8; (b) 0.45; (c) 0.55

1.51 (a) 0.31; (b) 0.93; (c) 0.31

1.53 (a) 0.009; (b) 0.999; (c) 0.01

1.55 (a) 0.048; (b) $50,000; (c) $12,500

1.57 (a) The probability that a convict who sold
drugs also committed armed robbery.

(b) The probability that a convict who com-
mitted armed robbery did not sell drugs.

(c) The probability that a convict who did not
sell drugs also did not commit armed rob-
bery.

1.59 (a) 0.018; (b) 0.614; (c) 0.166; (d) 0.479

1.61 (a) 9/28; (b) 3/4; (c) 0.91

1.63 0.27

1.65 (a) 0.43; (b) 0.12; (c) 0.90

1.67 (a) 0.0016; (b) 0.9984

1.69 (a) 0.75112; (b) 0.2045

1.71 0.588

1.73 0.0960

1.75 0.40625

1.77 0.1124

1.79 0.857

Chapter 2

2.1 Discrete; continuous; continuous; discrete; dis-
crete; continuous

2.3 Sample Space w
HHH 3
HHT 1
HTH 1
THH 1
HTT −1
THT −1
TTH −1
TTT −3

2.5 (a) 1/30; (b) 1/10

2.7 (a) 0.68; (b) 0.375

2.9 x 0 1 2

f(x) 2
7

4
7

1
7

2.11

F (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, for x < 0,
0.41, for 0 ≤ x < 1,
0.78, for 1 ≤ x < 2,
0.94, for 2 ≤ x < 3,
0.99, for 3 ≤ x < 4,
1, for x ≥ 4

2.13

F (x) =

⎧⎪⎨⎪⎩
0, for x < 0,
2
7 , for 0 ≤ x < 1,
6
7 , for 1 ≤ x < 2,
1, for x ≥ 2

(a) 4/7; (b) 5/7

2.15 (a) 3/2; (b) F (x) =

⎧⎨⎩0, x < 0

x3/2, 0 ≤ x < 1
1, x ≥ 1

; 0.3004

2.17 t 20 25 30

P (T = t) 1
5

3
5

1
5

2.19 (a)

F (x) =

{
0, x < 0,
1− exp(−x/2000), x ≥ 0

(b) 0.6065; (c) 0.6321

2.21 (b)

F (x) =

{
0, x < 1,

1− x−3, x ≥ 1

(c) 0.0156

2.23 (a) 0.2231; (b) 0.2212

2.25 (a) k = 280; (b) 0.3633; (c) 0.0563

2.27 (a) 0.1528; (b) 0.0446

2.29 (a) 1/36; (b) 1/15

2.31 (a) x
f(x, y) 0 1 2 3

0 0 3/70 9/70 3/70
y 1 2/70 18/70 18/70 2/70

2 3/70 9/70 3/70 0
(b) 1/2 (c) 3/10 (d) 3/10, 3/5, 1/10

2.33 (a) 1/16; (b) g(x) = 12x(1− x)2, for 0 ≤ x ≤ 1;
(c) 1/4

2.35 (a) 3/64; (b) 1/2

2.37 0.6534
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2.39 (a) x 1 2 3
g(x) 0.10 0.35 0.55

(b) y 1 2 3
h(y) 0.20 0.50 0.30

(c) 0.2857

2.41 5/8

2.43 Independent

2.45 (a) 3; (b) 21/512

2.47 Independent

2.49 Dependent

2.51 0.88

2.53 25¢
2.55 $500

2.57 (ln 4)/π

2.59 100 hours

2.61 0

2.63 209

2.65 $1855

2.67 (a) 35.2; (b) μX = 3.20, μY = 3.00

2.69 2000 hours

2.71 (b) 3/2 micrometers

2.73 (a) 1/6; (b) (5/6)5

2.75 (b) 0.88; (c) 1.62

2.77 0.74

2.79 1/18; in terms of actual profit, the variance is
1
18 (5000)

2

2.81 1/6

2.83 μY = 10; σ2
Y = 144

2.85 −0.0062

2.87 σ2
X = 0.8456, σX = 0.9196

2.89 −1/
√
5

2.91 $0.80

2.93 μ = 7/2, σ2 = 15/4

2.95 3/14

2.97 52

2.99 (a) E(X) = E(Y ) = 1/3 and Var(X) =
Var(Y ) = 4/9; (b) E(Z) = 2/3 and Var(Z) =
8/9

2.101 (a) 4; (b) 32; 16

Chapter 3

3.1 μ =
1

k

k∑
i=1

xi, σ
2 =

1

k

k∑
i=1

(xi − μ)2

3.3 f(x) = 1
10 , for x = 1, 2, . . . , 10, and f(x) = 0

elsewhere; 3/10

3.5 (a) 0.0474; (b) 0.0171

3.7 (a) 0.7073; (b) 0.4613; (c) 0.1484

3.9 0.1240

3.11 (a) 0.0778; (b) 0.3370; (c) 0.0870

3.13 f(x1, x2, x3) =

(
n

x1, x2, x3

)
0.35x10.05x20.60x3

3.15 (a) 0.0749; (b) 0.0023; (c) 0.0782

3.17 0.8670

3.19 (a) 0.2852; (b) 0.9887; (c) 0.6083

3.21 53/65

3.23 0.9517

3.25 0.3222

3.27 (a) 0.6815; (b) 0.1153

3.29 0.2315

3.31 (a) 0.3991; (b) 0.1316

3.33 0.599

3.35 63/64

3.37 (a) 0.3840; (b) 0.0067

3.39 (a) 0.0630; (b) 0.9730

3.41 (a) 0.1429; (b) 0.1353

3.43 0.2657

3.45 μ = 6, σ2 = 6

3.47 (a) 0.2650; (b) 0.9596

3.49 (a) 0.8243; (b) 14

3.51 4

3.53 5.53× 10−4; μ = 7.5

3.55 (a) 0.0137; (b) 0.0830



458 Appendix B Answers to Odd-Numbered Non-Review Exercises

3.59 (a) 0.6; (b) 0.7; (c) 0.5

3.61 (a) 0.0823; (b) 0.0250; (c) 0.2424;
(d) 0.9236; (e) 0.8133; (f) 0.6435

3.63 (a) 0.1151; (b) 16.1; (c) 20.275; (d) 0.5403

3.65 (a) 0.0548; (b) 0.4514; (c) 23 cups;
(d) 189.95 milliliters

3.67 (a) 0.8980; (b) 0.0287; (c) 0.6080

3.69 (a) 0.0571; (b) 99.11%; (c) 0.3974;
(d) 27.952 minutes; (e) 0.0092

3.71 6.24 years

3.73 (a) 0.0401; (b) 0.0244

3.75 26 students

3.77 (a) 0.3085; (b) 0.0197

3.79 (a) 0.9514; (b) 0.0668

3.81 (a) 0.8749; (b) 0.0059

3.83 (a) 0.0778; (b) 0.0571; (c) 0.6811

3.85 (a) 0.0228; (b) 0.3974

3.87 (a) 0.01686; (b) 0.0582

3.89 2.8e−1.8 − 3.4e−2.4 = 0.1545

3.91 μ = 6; σ2 = 18

3.93
6∑

x=4

(
6

x

)
(1− e−3/4)x(e−3/4)6−x = 0.3968

3.95 (a) μ = αβ = 50; (b) σ2 = αβ2 = 500;

σ =
√
500; (c) 0.815

3.97 (a) 0.1889; (b) 0.0357

3.99 (a) e−5; (b) β = 0.2

Chapter 4

4.1 (a) Responses of all people in Richmond who
have a telephone;

(b) Outcomes for a large or infinite number of
tosses of a coin;

(c) Length of life of such tennis shoes when
worn on the professional tour;

(d) All possible time intervals for this lawyer
to drive from her home to her office.

4.3 (a) 53.75; (b) 75 and 100

4.5 (a) Range is 10; (b) s = 3.307

4.7 (a) 61.15; (b) 61.15

4.9 s = 0.585

4.11 (a) 45.9; (b) 5.1

4.13 0.3159

4.15 Yes

4.17 (a) μ = 5.3; σ2 = 0.81

(b) μX̄ = 5.3; σ2
X̄ = 0.0225

(c) 0.9082

4.19 (a) 0.6898; (b) 7.35

4.21 The speculation that the mean amount is 0.20 is
not likely to be true.

4.23 (a) The chance that the difference in mean dry-
ing time is larger than 1.0 is 0.0013; (b) 13

4.25 (a) 1/2; (b) 0.3085

4.27 P (X̄ ≤ 775 | μ = 760) = 0.9332

4.29 (a) 27.488; (b) 18.475; (c) 36.415

4.31 (a) 0.297; (b) 32.852; (c) 46.928

4.33 (a) 0.05; (b) 0.94

4.35 (a) 0.975; (b) 0.10; (c) 0.875; (d) 0.99

4.37 (a) 2.500; (b) 1.319; (c) 1.714

4.39 The claim is valid.

4.41 (a) 2.71; (b) 3.51; (c) 2.92;
(d) 0.47; (e) 0.34

4.43 The F -ratio is 1.44. The variances are not sig-
nificantly different.

Chapter 5

5.1 56

5.3 0.3097 < μ < 0.3103

5.5 (a) 22,496 < μ < 24,504; (b) error ≤ 1004

5.7 35

5.9 10.15 < μ < 12.45

5.11 47.722 < μ < 49.278

5.13 (13,075, 33,925)

5.15 323.946 to 326.154
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5.17 Upper prediction limit: 9.42;
upper tolerance limit: 11.72

5.19 (a) (0.9876, 1.0174)

(b) (0.9411, 1.0639)

(c) (0.9334, 1.0716)

5.21 Since the manufacturer would be more interested
in the mean tensile strength for future products,
it is conceivable that prediction interval and tol-
erance interval may be more interesting than just
a confidence interval.

5.23 Yes, the value of 6.9 is outside of the prediction
interval.

5.25 2.80 < μ1 − μ2 < 3.40

5.27 0.69 < μ1 − μ2 < 7.31

5.29 0.70 < μ1 − μ2 < 3.30

5.31 −6536 < μ1 − μ2 < 2936

5.33 −0.74 < μ1 − μ2 < 6.30

5.35 −6.92 < μ1 − μ2 < 36.70

5.37 0.54652 < μB − μA < 1.69348

5.39 0.194 < p < 0.262

5.41 (a) 0.498 < p < 0.642; (b) error ≤ 0.072

5.43 (a) 0.739 < p < 0.961; (b) no

5.45 2576

5.47 160

5.49 601

5.51 −0.0136 < pF − pM < 0.0636

5.53 0.0011 < p1 − p2 < 0.0869

5.55 0.293 < σ2 < 6.736; valid claim

5.57 3.472 < σ2 < 12.804

Chapter 6

6.1 (a) Conclude that less than 30% of the public
is allergic to some cheese products when, in
fact, 30% or more is allergic.

(b) Conclude that at least 30% of the public is
allergic to some cheese products when, in
fact, less than 30% is allergic.

6.3 (a) The firm is not guilty.

(b) The firm is guilty.

6.5 (a) 0.0559

(b) β = 0.0017; β = 0.00968; β = 0.5557

6.7 (a) 0.1286

(b) β = 0.0901; β = 0.0708

(c) The probability of a type I error is some-
what large.

6.9 (a) α = 0.0850; (b) β = 0.3410

6.11 (a) α = 0.1357; (b) β = 0.2578

6.13 α = 0.0094; β = 0.0122

6.15 (a) α = 0.0718; (b) β = 0.1151

6.17 (a) α = 0.0384; (b) β = 0.5; β = 0.2776

6.19 z = −2.76; yes, μ < 40 months;
P -value = 0.0029

6.21 z = −1.64; P -value = 0.10

6.23 t = 0.77; fail to reject H0.

6.25 z = 8.97; yes, μ > 20, 000 kilometers;
P -value < 0.001

6.27 t = 12.72; P -value < 0.0005; reject H0.

6.29 t = −1.98; P -value = 0.0312; reject H0.

6.31 z = −2.60; conclude μA − μB ≤ 12 kilograms.

6.33 t = 1.50; there is not sufficient evidence to con-
clude that the increase in substrate concentra-
tion would cause an increase in the mean velocity
of more than 0.5 micromole per 30 minutes.

6.35 t = 0.70; there is not sufficient evidence to sup-
port the conclusion that the serum is effective.

6.37 t = 2.55; reject H0: μ1 − μ2 > 4 kilometers.

6.39 t
′
= 0.22; fail to reject H0.

6.41 t
′
= 2.76; reject H0.

6.43 t = −2.53; reject H0; the claim is valid.

6.45 t = 2.48; P -value < 0.02; reject H0.

6.47 n = 6

6.49 n = 78.28 ≈ 79

6.51 n = 5

6.53 (a) H0: Mhot −Mcold = 0,
H1: Mhot −Mcold 
= 0

(b) paired t, t = 0.99; P -value > 0.30; fail to
reject H0.

6.55 P -value = 0.4044 (with a one-tailed test); the
claim is not refuted.

6.57 z = 1.44; fail to reject H0.
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6.59 z = −5.06 with P -value ≈ 0; conclude that fewer
than one-fifth of the homes are heated by oil.

6.61 z = 0.93 with P -value = P (Z > 0.93) = 0.1762;
there is not sufficient evidence to conclude that
the new medicine is effective.

6.63 z = 2.36 with P -value = 0.0182; yes, the differ-
ence is significant.

6.65 z = 1.10 with P -value = 0.1357; we do not have
sufficient evidence to conclude that breast cancer
is more prevalent in the urban community.

6.67 χ2 = 10.14; reject H0, the ratio is not 5:2:2:1.

6.69 χ2 = 4.47; there is not sufficient evidence to
claim that the die is unbalanced.

6.71 χ2 = 3.125; do not reject H0 : geometric distri-
bution.

6.73 χ2 = 5.19; do not reject H0: normal distribution.

6.75 χ2 = 5.47; do not reject H0.

6.77 χ2 = 124.59; yes, occurrence of these types of
crime is dependent on the city district.

6.79 χ2 = 5.92 with P -value = 0.4332; do not reject
H0.

6.81 χ2 = 31.17 with P -value < 0.0001; attitudes are
not homogeneous.

6.83 χ2 = 1.84; do not reject H0.

Chapter 7

7.1 (a) b0 = 64.529, b1 = 0.561

(b) ŷ = 81.4

7.3 (a) ŷ = 5.8254 + 0.5676x

(c) ŷ = 34.205 at 50◦C

7.5 (a) ŷ = 6.4136 + 1.8091x

(b) ŷ = 9.580 at temperature 1.75

7.7 (b) ŷ = 31.709 + 0.353x

7.9 (b) ŷ = 343.706 + 3.221x

(c) ŷ = $456 at advertising costs = $35

7.11 (b) ŷ = −1847.633 + 3.653x

7.13 (a) ŷ = 153.175− 6.324x

(b) ŷ = 123 at x = 4.8 units

7.15 (a) s2 = 176.4

(b) t = 2.04; fail to reject H0: β1 = 0.

7.17 (a) s2 = 0.40

(b) 4.324 < β0 < 8.503

(c) 0.446 < β1 < 3.172

7.19 (a) s2 = 6.626

(b) 2.684 < β0 < 8.968

(c) 0.498 < β1 < 0.637

7.21 t = −2.24; reject H0 and conclude β < 6.

7.23 (a) 24.438 < μY |24.5 < 27.106

(b) 21.88 < y0 < 29.66

7.25 7.81 < μY |1.6 < 10.81

7.27 (a) 17.1812 mpg

(b) No, the 95% confidence interval on mean
mpg is (27.95, 29.60).

(c) Miles per gallon will likely exceed 18.

7.29 (b) ŷ = 3.4156x

7.31 The f -value for testing the lack of fit is 1.58, and
the conclusion is that H0 is not rejected. Hence,
the lack-of-fit test is insignificant.

7.33 (a) ŷ = 2.003x

(b) t = 1.40, fail to reject H0.

7.35 (a) b0 = 10.812, b1 = −0.3437

(b) f = 0.43; the regression is linear.

7.37 f = 1.71 and P -value = 0.2517; the regression is
linear.

7.39 (a) P̂ = −11.3251− 0.0449T

(b) yes

(c) R2 = 0.9355

(d) yes

7.41 (b) N̂ = −175.9025 + 0.0902Y ; R2 = 0.3322

7.43 r = 0.240

7.45 (a) r = −0.979

(b) P -value = 0.0530; do not rejectH0 at 0.025
level.

(c) 95.8%

7.47 (a) r = 0.784

(b) Reject H0 and conclude that ρ > 0.

(c) 61.5%

7.49 ŷ = 0.5800 + 2.7122x1 + 2.0497x2

7.51 (a) ŷ = 27.547 + 0.922x1 + 0.284x2
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(b) ŷ = 84 at x1 = 60 and x2 = 4

7.53 (a) ŷ = −102.7132 + 0.6054x1 + 8.9236x2 +
1.4374x3 + 0.0136x4

(b) ŷ = 287.6

7.55 ŷ = 141.6118− 0.2819x+ 0.0003x2

7.57 (a) ŷ = 56.4633 + 0.1525x− 0.00008x2

(b) ŷ = 86.7% when temperature is at 225◦C

7.59 ŷ = −6.5122+1.9994x1−3.6751x2+2.5245x3+
5.1581x4 + 14.4012x5

7.61 (a) ŷ = 350.9943− 1.2720x1 − 0.1539x2

(b) ŷ = 140.9

7.63 ŷ = 3.3205 + 0.4210x1 − 0.2958x2 + 0.0164x3 +
0.1247x4

7.65 0.1651

7.67 242.72

7.69 (a) σ̂2
B2

= 28.0955; (b) σ̂B1B4
= −0.0096

7.71 t = 5.91 with P -value = 0.0002. Reject H0 and
claim that β1 
= 0.

7.73 0.4516 < μY |x1=900,x2=1 < 1.2083
and −0.1640 < y0 < 1.8239

7.75 263.7879 < μY |x1=75,x2=24,x3=90,x4=98 <
311.3357 and 243.7175 < y0 < 331.4062

7.77 (a) t = −1.09 with P -value = 0.3562

(b) t = −1.72 with P -value = 0.1841

(c) Yes; not sufficient evidence to show that x1
and x2 are significant.

Chapter 8

8.1 f = 0.31; not sufficient evidence to support the
hypothesis that there are differences among the
6 machines.

8.3 f = 14.52; yes, the difference is significant.

8.5 f = 8.38; the average specific activities differ
significantly.

8.7 f = 2.25; not sufficient evidence to support
the hypothesis that the different concentrations
of MgNH4PO4 significantly affect the attained
height of chrysanthemums.

8.9 b = 0.79 > b4(0.01, 4, 4, 4, 9) = 0.4939. Do not
reject H0. There is not sufficent evidence to
claim that variances are different.

8.11 b = 0.7822 < b4(0.05, 9, 8, 15) = 0.8055. The
variances are significantly different.

8.13 (a) P -value < 0.0001, significant

(b) for contrast 1 vs. 2, P -value < 0.0001,
significantly different; for contrast 3 vs. 4,
P -value = 0.0648, not significantly differ-
ent

8.15 Results of Tukey’s tests are given below.

ȳ4. ȳ3. ȳ1. ȳ5. ȳ2.
2.98 4.30 5.44 6.96 7.90

8.17 (a) P -value = 0.0121; yes, there is a significant
difference.

(b) Substrate
Modified Removal

Depletion Hess Kicknet Surber Kicknet

8.19 f = 70.27 with P -value < 0.0001; reject H0.

x̄0 x̄25 x̄100 x̄75 x̄50
55.167 60.167 64.167 70.500 72.833

Temperature is important; both 75◦ and 50◦(C)
yielded batteries with significantly longer acti-
vated life.

8.21 The mean absorption is significantly lower for ag-
gregate 4 than for aggregates 3 and 5. However,
aggregates 1 and 2 are not significantly different
from other three aggregates when we compare
them pairwisely.

8.23 f(fertilizer) = 6.11; there is significant difference
among the fertilizers.

8.25 f = 5.99; percent of foreign additives is not the
same for all three brands of jam; brand A

8.27 P -value < 0.0001; significant

8.29 P -value = 0.0023; significant

8.31 P -value = 0.1250; not significant

8.33 P -value < 0.0001; f = 122.37; the amount of dye
has an effect on the color density of the fabric.

8.35 (a) yij = μ + Ai + εij , Ai ∼ n(x; 0, σα),
εij ∼ n(x; 0, σ)

(b) σ̂2
α = 0 (the estimated variance component

is −0.00027); σ̂2 = 0.0206

8.37 (a) f = 14.9; operators differ significantly.

(b) σ̂2
α = 28.91; s2 = 8.32

Chapter 9

9.1 (a) f = 8.13; significant

(b) f = 5.18; significant
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(c) f = 1.63; insignificant

9.3 (a) f = 14.81; significant

(b) f = 9.04; significant

(c) f = 0.61; insignificant

9.5 (a) f = 34.40; significant

(b) f = 26.95; significant

(c) f = 20.30; significant

9.7 Test for effect of temperature: f1 = 10.85 with
P -value = 0.0002;
Test for effect of amount of catalyst: f2 = 46.63
with P -value < 0.0001;
Test for effect of interaction: f = 2.06 with P -
value = 0.074.

9.9 (a)
Source of Sum of Mean
Variation df Squares Squares f P
Cutting speed
Tool geometry
Interaction
Error
Total

1
1
1
8

11

12.000
675.000
192.000
72.667

951.667

12.000
675.000
192.000

9.083

1.32
74.31
21.14

0.2836
< 0.0001

0.0018

(b) The interaction effect masks the effect of
cutting speed.

(c) ftool geometry=1 = 16.51 and P -value =
0.0036;
ftool geometry=2 = 5.94 and P -value =
0.0407

9.11 (a)
Source of Sum of Mean
Variation df Squares Squares f P
Method
Laboratory
Interaction
Error
Total

1
6
6

14
27

0.000104
0.008058
0.000198
0.000222
0.008582

0.000104
0.001343
0.000033
0.000016

6.57
84.70
2.08

0.0226
< 0.0001

0.1215

(b) The interaction is not significant.

(c) Both main effects are significant.

(e) flaboratory=1 = 0.01576 and P -value =
0.9019; no significant difference between
the methods in laboratory 1;
flaboratory=7 = 9.081 and P -value =
0.0093

9.13 (b)

Source of Sum of Mean
Variation df Squares Squares f P
Time
Treatment
Interaction
Error
Total

1
1
1
8

11

0.060208
0.060208
0.000008
0.003067
0.123492

0.060208
0.060208
0.000008
0.000383

157.07
157.07

.02

< 0.0001
< 0.0001

0.8864

(c) Both time and treatment influence the
magnesium uptake significantly, although
there is no significant interaction between
them.

(d) Y = μ+βTTime+βZZ +βTZTime Z + ε,
where Z = 1 when treatment = 1 and
Z = 0 when treatment = 2

(e) f = 0.02 with P -value = 0.8864; the inter-
action in the model is insignificant.

9.15 (a) Interaction is significant at a level of 0.05,
with P -value of 0.0166.

(b) Both main effects are significant.

9.17 (a) AB: f = 3.83; significant;
AC: f = 3.79; significant;
BC: f = 1.31; not significant;
ABC: f = 1.63; not significant

(b) A: f = 0.54; not significant;
B: f = 6.85; significant;
C: f = 2.15; not significant

(c) The differences in the means of the mea-
surements for the three levels of C are not
consistent across levels of A.

9.19 (a) Stress: f = 45.96 with P -value < 0.0001;
coating: f = 0.05 with P -value = 0.8299;
humidity: f = 2.13 with P -value = 0.1257;
coating × humidity:
f = 3.41 with P -value = 0.0385;
coating × stress:
f = 0.08 with P -value = 0.9277;
humidity × stress:
f = 3.15 with P -value = 0.0192;
coating × humidity × stress:
f = 1.93 with P -value = 0.1138

(b) The best combination appears to be un-
coated, medium humidity, and a stress level
of 20,000 psi.

9.21 Effect f P
Temperature
Surface
HRC
T× S
T×HRC
S×HRC
T× S×HRC

14.22
6.70
1.67
5.50
2.69
5.41
3.02

< 0.0001
0.0020
0.1954
0.0006
0.0369
0.0007
0.0051

9.23 (a) Yes; brand × type; brand× temperature

(b) Yes

(c) Brand Y , powdered detergent, hot temper-
ature

9.25 (a)
Effect f P

Time 543.53 < 0.0001
Temp 209.79 < 0.0001
Solvent 4.97 0.0457
Time× Temp 2.66 0.1103
Time× Solvent 2.04 0.1723
Temp× Solvent 0.03 0.8558
Time× Temp× Solvent 6.22 0.0140

Although three two-way interactions are
shown to be insignificant, they may be
masked by the significant three-way inter-
action.
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Acceptance sampling, 110
Additive rule, 27
Analysis of variance (ANOVA), 355

one-factor, 357
table, 320
three-factor, 409
two-factor, 397

Approximation
binomial to hypergeometric, 112
normal to binomial, 137
Poisson to binomial, 119

Bartlett’s test, 364
Bayes’ rule, 41, 44, 45
Bayesian methodology, 195
Bernoulli

process, 101, 102
random variable, 51
trial, 102

Bias, 159
Binomial distribution, 72, 103, 110, 112

mean of, 105
variance of, 105

Blocks, 357
Box plot, 3, 189

Central limit theorem, 165, 170
Chi-squared distribution, 149, 150
Cochran’s test, 366
Coefficient of determination, 313, 332
Combination, 23
Complement of an event, 15
Completely randomized design, 8, 357
Conditional distribution, 67

joint, 71
Conditional probability, 33–38, 44–46
Confidence

coefficient, 199
degree of, 199

limits, 199, 201
Confidence interval, 199, 200, 211, 233

for difference of two means, 215, 216, 218
for difference of two proportions, 226
of large sample, 206
for paired observations, 220
for single mean, 200–202, 205
one-sided, 203, 204

for single proportion, 224
for single variance, 229
for standard deviation, 229

Contingency table, 280
marginal frequency, 280

Continuity correction, 140
Continuous distribution

chi-squared, 149
exponential, 144
gamma, 144
normal, 123
uniform, 122

Correlation coefficient, 87
Pearson product-moment, 331
population, 331
sample, 331

Covariance, 81, 85
Cumulative distribution function, 53, 58

Degrees of freedom, 149, 174, 176
Satterthwaite approximation of, 217

Descriptive statistics, 3, 9
Design of experiment

blocking, 372
completely randomized, 373
randomized block, 374

Deviation, 82
Discrete distribution

binomial, 101, 102
geometric, 114, 116
hypergeometric, 109, 110

463
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multinomial, 101, 107
negative binomial, 114, 115
Poisson, 117, 118

Distribution
binomial, 72, 101–103, 126, 137
chi-squared, 149, 150
continuous uniform, 122
exponential, 143, 144
gamma, 143, 144
Gaussian, 123, 183
geometric, 101, 114, 116
hypergeometric, 109–111, 126
multinomial, 101, 106, 107
negative binomial, 101, 114, 115
normal, 123, 124, 137, 183, 184
Poisson, 101, 117, 118
skewed, 188
standard normal, 127
symmetric, 188
t-, 176, 177
variance ratio, 182

Distributional parameter, 72
Dot plot, 3, 8

Error
in estimating the mean, 202
experimental, 357
sum of squares, 308
type I, 238
type II, 239

Estimate
of single mean, 199

Estimation, 196
difference of two sample means, 214
paired observations, 219
proportion, 223
of single variance, 228
two proportions, 226

Estimator, 196
efficient, 197, 198
point, 196, 198, 199
unbiased, 196–198

Event, 11, 14
Expectation, mathematical, 74, 77, 78
Expected mean squares, ANOVA model, 383
Expected value, 75–78
Experiment-wise error rate, 369
Experimental error, 357

Experimental unit, 9, 394
Exponential distribution, 143, 144

mean of, 144
memoryless property of, 147
relationship to Poisson process, 145
variance of, 144

F -distribution, 180–182
Factor, 355
Factorial experiment, 393

in blocks, 413
factor, 355
interaction, 394
level, 355
main effects, 394
masking effects, 395
pooling mean squares, 413
three-factor ANOVA, 409
treatment, 355
two-factor ANOVA, 397

Fixed effects experiment, 383

Gamma distribution, 143, 144
mean of, 144
relationship to Poisson process, 145
variance of, 144

Gamma function, 143
incomplete, 148

Gaussian distribution, 123, 183
Geometric distribution, 114, 116

mean of, 116
variance of, 116

Goodness-of-fit test, 156, 277, 278

Histogram, 187
probability, 54

Hypergeometric distribution, 109–111
mean of, 112
variance of, 112

Hypothesis, 236
alternative, 236
null, 236
statistical, 235
testing, 236, 237

Independence, 33, 36–39
statistical, 69–71

Inferential statistics, 1
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Interaction, 394
Interquartile range, 189
Intersection of events, 15
Interval estimate, 198, 199

Lack of fit, 324
Least squares method, 301
Level of significance, 238, 239
Linear regression

ANOVA, 319
coefficient of determination, 313
correlation, 331
dependent variable, 295
empirical model, 297
error sum of squares, 320
fitted line, 298
fitted value, 321
independent variable, 295
lack of fit, 324
mean response, 300, 314
multiple, 296, 335
normal equation, 302
through the origin, 318
overfitting, 314
prediction, 314
prediction interval, 315, 316
pure experimental error, 324, 325
random error, 297
regression coefficient, 298
regressor, 295
residual, 301
statistical model, 297
test of linearity, 324
total sum of squares, 319

Marginal distribution, 65, 69, 70
joint, 71

Masking effect, 395
Maximum likelihood estimation

residual, 385
restricted, 385

Mean, 74–76, 78, 184
Mean squares, 320
Mode, normal distribution, 125
Multinomial distribution, 106, 107
Multiple comparison test, 368

experiment-wise error rate, 369
Tukey’s, 370

Multiple linear regression, 335
ANOVA, 344
inference, 343
normal equations, 337
polynomial, 338
variable screening, 345
variance-covariance matrix, 343

Multiplicative rule, 37
Mutually exclusive events, 16

Negative binomial distribution, 114, 115
Negative binomial experiment, 114
Negative exponential distribution, 145
Normal distribution, 123, 124

mean of, 126
normal curve, 123–126
standard, 127
standard deviation of, 126
variance of, 126

Normal equations for linear regression, 337

Observational study, 3
OC curve, 251
One-factor experiment, 355
One-sided confidence bound, 203
One-way ANOVA, 357

grand mean, 358
treatment, 357
treatment effect, 358

Outlier, 189, 209

P-value, 4, 247–249
Paired observations, 219
Parameter, 99
Permutation, 20

circular, 21
Plot

box, 189
stem-and-leaf, 185

Point estimate, 196, 199
standard error, 206

Points of inflection, normal distribution, 125
Poisson distribution, 101, 117, 118

mean of, 118
variance of, 118

Poisson experiment, 117
Poisson process, 117, 145

relationship to gamma distribution, 145



466 INDEX

Polynomial regression, 336, 338
Pooled estimate of variance, 216
Pooled sample variance, 216
Population, 2, 4, 157, 158

mean of, 158
parameter, 72
size of, 158
variance of, 158

Power of a test, 245
Prediction interval, 207, 208, 211

for future observation, 208, 209
one-sided, 209

Probability, 25, 26
additive rule, 27
of an event, 25
mass function, 52

Probability density function, 56, 57
joint, 64

Probability distribution, 52
conditional, 67
continuous, 55
discrete, 52
joint, 62, 70
marginal, 65
mean of, 74
variance of, 82

Probability function, 52
Probability mass function, 52

joint, 63
Product rule, 37

R2, 313
Random effects experiment, variance components,

384
Random effects model, 383
Random sample, 159

simple, 7
Random sampling, 157
Random variable, 49

Bernoulli, 51, 105
binomial, 102, 105
continuous, 52
continuous uniform, 122
discrete, 51, 52
discrete uniform, 108
hypergeometric, 101, 110
mean of, 74, 77
multinomial, 106, 107

negative binomial, 114
normal, 123
Poisson, 117, 118
population mean of, 74
variance of, 82, 84

Randomized complete block design, 374
Rectangular distribution, 122
Regression, 185
Relative frequency, 187
Residual, 301, 330
Response surface methodology, 339
Rule method, 13
Rule of elimination, 42, 44

Sample, 1, 2, 157, 158
biased, 7
mean, 3, 157, 160, 184
median, 3, 160
mode, 160
random, 159
standard deviation, 3, 162
variance, 157, 161

Sample size, 7
in estimating a mean, 203
in estimating a proportion, 224
in hypothesis testing, 265

Sample space, 11
continuous, 51
discrete, 50
partition, 28

Sampling distribution, 164
of mean, 164, 165

Satterthwaite approximation of degrees of freedom,
217

Scatter plot, 3
Significance level, 247
Single proportion test, 272
Standard deviation, 82, 83
Standard error of mean, 207
Standard normal distribution, 127
Statistic, 160
Statistical independence, 69–71
Statistical inference, 3, 157, 195
Stem-and-leaf plot, 3, 185–187
Sum of squares

error, 308, 320
identity, 358, 377, 399
lack-of-fit, 325
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regression, 320
total, 313
treatment, 359, 377

t-distribution, 176–180
Test statistic, 237
Tests for equality of variances, 364

Bartlett’s, 364
Cochran’s, 366

Tests of hypotheses, 184, 196, 235
choice of sample size, 264
critical region, 238
critical value, 238
goodness-of-fit, 156, 277, 278
one-tailed, 245, 246
P -value, 247, 249
paired observations, 260
single proportion, 272
single sample, 251
single sample, variance known, 251
single sample, variance unknown, 255
size of test, 239
test for homogeneity, 283
test for independence, 280
test for several proportions, 284
test statistics, 242
on two means, 258
two means with unknown and unequal vari-

ances, 260
two means with unknown but equal variances,

258
two-tailed, 245, 246

Tolerance interval, 210, 211
Tolerance limits, 210

one-sided, 211
Total probability, 41, 42
Treatment

negative effect, 395
positive effect, 395

Tree diagram, 13
Tukey’s test, 370

Unbiased estimator, 197
Uniform distribution, 122
Union of events, 16

Variability, 8, 9, 82, 160, 180, 183
between/within samples, 183

Variance, 81–83
Variance ratio distribution, 182
Venn diagram, 16
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