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Preface to Third Edition 
Several modifications have been incorporated into the text in the light of recent 
advances in some aspects of the subject. Further information on the interesting 
phenomenon of cavitation has been included and a new section on the optimum 
design of a pump inlet together with a worked example have been added which 
take into account recently published data on cavitation limitations. The chapter on 
three-dimensional Jlows in axial turbomachines has been extended; in particular the 
section concerning the constant specijic mass Jlow design of a turbine nozzle has 
been clarified and now includes the flow equations for a following rotor row. Some 
minor alterations on the definition of blade shapes were needed so I have taken the 
opportunity of including a simplified version of the parabolic arc camber line as 
used for some low camber blading. 

Despite careful proof reading a number of errors still managed to elude me in the 
second edition. I am most grateful to those readers who have detected errors and 
communicated with me about them. 

In order to assist the reader I have (at last) added a list of symbols used in the 
text. 

S.L.D. 

xi 



Preface to the Fourth Edition 
It is now twenty years since the third edition of this book was published and in 
that period many advances have been made to the art and science of turboma- 
chinery design. Knowledge of the flow processes within turbomachines has increased 
dramatically resulting in the appearance of new and innovative designs. Some of 
the long-standing, apparently intractable, problems such as surge and rotating stall 
have begun to yield to new methods of control. New types of flow machine have 
made their appearance (e.g. the Wells turbine and the axi-fuge compressor) and 
some changes have been made to established design procedures. Much attention 
is now being given to blade and flow passage design using computational fluid 
dynamics (CFD) and this must eventually bring forth further design and flow effi- 
ciency improvements. However, the fundamentals do not change and this book is 
still concerned with the basics of the subject as well as looking at new ideas. 

The book was originally perceived as a text for students taking an Honours degree 
in engineering which included turbomachines as well as assisting those undertaking 
more advanced postgraduate courses in the subject. The book was written for engi- 
neers rather than mathematicians. Much stress is laid on physical concepts rather 
than mathematics and the use of specialised mathematical techniques is mostly kept 
to a minimum. The book should continue to be of use to engineers in industry 
and technological establishments, especially as brief reviews are included on many 
important aspects of turbomachinery giving pointers to more advanced sources of 
information. For those loolung towards the wider reaches of the subject area some 
interesting reading is contained in the bibliography. It might be of interest to know 
that the third edition was published in four languages. 

A fairly large number of additions and extensions have been included in the 
book from the new material mentioned as well as “tidying up” various sections 
no longer to my liking. Additions include some details of a new method of fan 
blade design, the determination of the design point efficiency of a turbine stage, 
sections on centrifugal stresses in turbine blades and blade cooling, control of flow 
instabilities in axial-flow compressors, design of the Wells turbine, consideration of 
rothalpy conservation in impellers (and rotors), defining and calculating the optimum 
efficiency of inward flow turbines and comparison with the nominal design. A 
number of extensions of existing topics have been included such as updating and 
extending the treatment and application of diffuser research, effect of prerotation 
of the flow in centrifugal compressors and the use of backward swept vanes on 
their performance, also changes in the design philosophy concerning the blading of 
axial-flow compressors. The original chapter on radial flow turbines has been split 
into two chapters; one dealing with radial gas turbines with some new extensions 
and the other on hydraulic turbines. In a world striving for a ‘greener’ future it was 
felt that there would now be more than just a little interest in hydraulic turbines. It 
is a subject that is usually included in many mechanical engineering courses. This 
chapter includes a few new ideas which could be of some interest. 



x Preface to the Fourth Edition 

A large number of illustrative examples have been included in the text and many 
new problems have been added at the end of most chapters (answers are given at the 
end of the book)! It is planned to publish a new supplementary text called Solutions 
Manual, hopefully, shortly after this present text book is due to appear, giving the 
complete and detailed solutions of the unsolved problems. 

S. Lawrence Dixon 
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Introduction: Dimensional 
Analysis: Similitude 
If you have known one you have known all. (TERENCE, Phonnio.) 

Definition of a turbomachine 
We classify as turbomachines all those devices in which energy is transferred 

either to, or from, a continuously flowing fluid by the dynamic action of one or 
more moving blade rows. The word turbo or turbinis is of Latin origin and implies 
that which spins or whirls around. Essentially, a rotating blade row, a rotor or an 
impelZer changes the stagnation enthalpy of the fluid moving through it by either 
doing positive or negative work, depending upon the effect required of the machine. 
These enthalpy changes are intimately linked with the pressure changes occumng 
simulataneously in the fluid. 

The definition of a turbomachine as stated above, is rather too general for the 
purposes of this book as it embraces open turbomachines such as propellers, wind 
turbines and unshrouded fans, all of which influence the state of a not readily 
quantifiable flow of a fluid. The subject fluid mechanics, thermodynamics of turbo- 
machinery, therefore, is limited to machines enclosed by a closely fitting casing or 
shroud through which a readily measurable quantity of fluid passes in unit time. 
The subject of open turbomachines is covered by the classic text of Glauert (1959) 
or by Duncan et al. (1970), the elementary treatment of propellers by general fluid 
mechanics textbooks such as Streeter and Wylie (1979) or Massey (1979), and the 
important, still developing subject of wind turbines, by Freris (1990). 

Two main categories of turbomachine are identified: firstly, those which absorb 
power to increase the fluid pressure or head (ducted fans, compressors and pumps); 
secondly, those that produce power by expanding fluid to a lower pressure or head 
(hydraulic, steam and gas turbines). Figure 1.1 shows, in a simple diagrammatic 
form, a selection of the many different varieties of turbomachine encountered in 
practice. The reason that so many different types of either pump (compressor) or 
turbine are in use is because of the almost infinite range of service requirements. 
Generally speaking, for a given set of operating requirements there is one type of 
pump or turbine best suited to provide optimum conditions of operation. This point 
is discussed more fully in the section of this chapter concerned with specific speed. 

Turbomachines are further categorised according to the nature of the flow path 
through the passages of the rotor. When the path of the through-flow is wholly or mainly 
parallel to the axis of rotation, the device is termed an axialflow turbomachine (e.g. 

1 



2 Fluid Mechanics, Thermodynamics of Turbomachinery 

FIG. 1 .l. Diagrammatic form of various types of turbomachine. 

Figure l.l(a) and (e)). When the path of the through-jow is wholly or mainly in a plane 
perpendicular to the rotation axis, the device is termed a radialflow turbomachine (e.g. 
Figure 1. l(c)). More detailed sketches of radial flow machines are given in Figures 7.1, 
7.2, 8.2 and 8.3. Mixedpow turbomachines are widely used. The term mixedjow in 
this context refers to the direction of the through-flow at rotor outlet when both radial 
and axial velocity components are present in significant amounts. Figure 1.1 (b) shows 
a mixed flow pump and Figure 1.1 (d) a mixed flow hydraulic turbine. 

One further category should be mentioned. All turbomachines can be classified 
as either impulse or reaction machines according to whether pressure changes are 
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absent or present respectively in the flow through the rotor. In an impulse machine 
all the pressure change takes place in one or more nozzles, the fluid being directed 
onto the rotor. The Pelton wheel, Figure 1.1 (f), is an example of an impulse turbine. 

The main purpose of this book is to examine, through the laws of fluid mechanics 
and thermodynamics, the means by which the energy transfer is achieved in the 
chief types of turbomachine, together with the differing behaviour of individual 
types in operation. Methods of analysing the flow processes differ depending upon 
the geometrical configuration of the machine, on whether the fluid can be regarded 
as incompressible or not, and whether the machine absorbs or produces work. As 
far as possible, a unified treatment is adopted so that machines having similar 
configurations and function are considered together. 

Units and dimensions 
The International System of Units, SI (le Systkme International d'UnitCs) 

is a unified self-consistent system of measurement units based on the MKS 
(metre-kilogram-second) system. It is a simple, logical system based upon decimal 
relationships between units making it easy to use. The most recent detailed 
description of SI has been published in 1986 by Hh4SO. For an explanation of 
the relationshlp between, and use of, physical quantities, units and numerical values 
see Quantities, Units and Symbols, published by The Royal Society (1975) or refer 

Great Britain was the first of the English-speaking countries to begin, in the 
1960s, the long process of abandoning the old Imperial System of Units in favour 
of the International System of Units, and was soon followed by Canada, Australia, 
New Zealand and South Africa. In the USA a ten year voluntary plan of conversion 
to SI units was commenced in 1971. In 1975 US President Ford signed the Metric 
Conversion Act which coordinated the metrication of units, but did so without 
specifying a schedule of conversion. Industries heavily involved in international 
trade (cars, aircraft, food and drink) have, however, been quick to change to SI for 
obvious economic reasons, but others have been reluctant to change. 

SI has now become established as the only system of units used for teaching 
engineering in colleges, schools and universities in most industrialised countries 
throughout the world. The Imperial System was derived arbitrarily and has no 
consistent numerical base, making it confusing 'and difficult to learn. In this book 
all numerical problems involving units are performed in metric units as this is more 
convenient than attempting to use a mixture of the two systems. However, it is 
recognised that some problems exist as a result of the conversion to SI units. One 
of these is that many valuable papers and texts written prior to 1969 contain data 
in the old system of units and would need converting to SI units. A brief summary 
of the conversion factors between the more frequently used Imperial units and SI 
units is given in Appendix 1 of this book. 

Some SI units 

to IS0  31/0-1981. 

The SI basic units used in fluid mechanics and thermodynamics are the metre 
(m), kilogram (kg), second ( s )  and thermodynamic temperature (K). All the other 
units used in this book are derived from these basic units. The unit offorce is the 
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newton (N), defined as that force which, when applied to a mass of lkilogram, 
gives an acceleration to the mass of 1 m/s2. The recommended unit of pressure is 
the pascal (Pa) which is the pressure produced by a force of 1 newton uniformly 
distributed over an area of 1 square metre. Several other units of pressure are in wide- 
spread use, however, foremost of these being the bar. Much basic data concerning 
properties of substances (steam and gas tables, charts, etc.) have been prepared in SI 
units with pressure given in bars and it is acknowledged that this alternative unit of 
pressure will continue to be used for some time as a matter of expediency. It is noted 
that 1 bar equals Id Pa (i.e. 1d N/m2), roughly the pressure of the atmosphere at 
sea level, and is perhaps an inconveniently large unit for pressure in the field of 
turbomachinery anyway! In this book the convenient size of the kilopascal (kPa) is 
found to be the most useful multiple of the recommended unit and is extensively 
used in most calculations and examples. 

In SI the units of all forms of energy are the same as for work. The unit of energy 
is the joule (J) which is the work done when a force of 1 newton is displaced through 
a distance of 1 metre in the direction of the force, e.g. kinetic energy ( imc2)  has the 
dimensions kg x m2/s2; however, 1 kg = 1 N s2/m from the definition of the newton 
given above. Hence, the units of kinetic energy must be Nm = J upon substituting 
dimensions. 

The watt (W) is the unit of power; when 1 watt is applied for 1 second to a system 
the input of energy to that system is 1 joule (Le. 1 J). 

The hertz (Hz) is the number of repetitions of a regular Occurrence in 1 second. 
Instead of writing c/s for cycles/sec, Hz is used instead. 

The unit of thermodynamic temperature is the kelvin (K), written without the 
sign, and is the fraction U273.16 of the thermodynamic temperature of the triple 
point of water. The degree Celsius ("C) is equal to the unit kelvin. Zero on the 
Celsius scale is the temperature of the ice point (273.15 K). Specific heat capacity, 
or simply specific heat, is expressed as J/kg K or as J/kg"C. 

Dynamic viscosity, dimensions ML-' T-' , has the SI units of pascal seconds, i.e. 

M kg N.s2 
LT m.s m.2s 

- = P a s .  - - 

Hydraulic engineers find it convenient to express pressure in terms of head of a 
liquid. The static pressure at any point in a liquid at rest is, relative to the pressure 
acting on the free surface, proportional to the vertical distance of the free surface 
above that point. The head H is simply the height of a column of the liquid which 
can be supported by this pressure. If p is the mass density (kg/m3) and g the local 
gravitational acceleration (m/s2), then the static pressure p (relative to atmospheric 
pressure) is p = p g H ,  where H is in metres and p is in pascals (or N/m2). This is 
left for the student to verify as a simple exercise. 

Dimensional analysis and performance laws 

The widest comprehension of the general behaviour of all turbomachines is, 
without doubt, obtained from dimensional analysis. This is the formal procedure 
whereby the group of variables representing some physical situation is reduced 



Introduction: Dimensional Analysis: Similitude 5 

into a smaller number of dimensionless groups. When the number of indepen- 
dent variables is not too great, dimensional analysis enables experimental relations 
between variables to be found with the greatest economy of effort. Dimensional 
analysis applied to turbomachines has two further important uses: (a) prediction 
of a prototype’s performance from tests conducted on a scale model (similitude); 
(b) determination of the most suitable type of machme, on the basis of maximum 
efficiency, for a specified range of head, speed and flow rate. Several methods of 
constructing non-dimensional groups have been described by Douglas et al. (1995) 
and by Shames (1992) among other authors. The subject of dimensional analysis was 
made simple and much more interesting by Edward Taylor (1974) in his comprehen- 
sive account of the subject. It is assumed here that the basic techniques of forming 
non-dimensional groups have already been acquired by the student. 

Adopting the simple approach of elementary thermodynamics, an imaginary enve- 
lope (called a control surjiace) of fixed shape, position and orientation is drawn 
around the turbomachine (Figure 1.2). Across this boundary, fluid flows steadily, 
entering at station 1 and leaving at station 2. As well as the flow of fluid there 
is a flow of work across the control surface, transmitted by the shaft either to, or 
from, the machine. For the present all details of the flow within the machine can 
be ignored and only externally observed features such as shaft speed, flow rate, 
torque and change in fluid properties across the machine need be considered. To be 
specific, let the turbomachine be a pump (although the analysis could apply to other 
classes of turbomachine) driven by an electric motor. The speed of rotation N ,  can 
be adjusted by altering the current to the motor; the volume flow rate Q, can be 
independently adjusted by means of a throttle valve. For fixed values of the set Q 
and N ,  all other variables such as torque t, head H ,  are thereby established. The 
choice of Q and N as control variables is clearly arbitrary and any other pair of 
independent variables such as t and H could equally well have been chosen. The 
important point to recognise is, that there are for this pump, N O  control variables. 

If the fluid flowing is changed for another of different density p ,  and viscosity 
p, the performance of the machine will be affected. Note, also, that for a turbo- 
machine handling compressible fluids, other Juid properties are important and are 
discussed later. 

So far we have considered only one particular turbomachine, namely a pump of 
a given size. To extend the range of this discussion, the effect of the geometric 

FIG. 1.2. Turbomachine considered as a control volume. 
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variables on the performance must now be included. The size of machine is char- 
acterised by the impeller diameter D, and the shape can be expressed by a number 
of length ratios, l , / D ,  12/D, etc. 

Incompressible fluid analysis 

The performance of a turbomachine can now be expressed in terms of the control 
variables, geometric variables and fluid properties. For the hydraulic pump it is 
convenient to regard the net energy transfer g H ,  the efficiency q, and power supplied 
P ,  as dependent variables and to write the three functional relationships as 

(1.la) 

( l . lb)  

(1.lc) 

By the procedure of dimensional analysis using the three primary dimensions, mass, 
length and time, or alternatively, using three of the independent variables we can 
form the dimensionless groups. The latter, more direct procedure, requires that the 
variables selected, p, N ,  D, do not of themselves form a dimensionless group. The 
selection of p, N ,  D as common factors avoids the appearance of special fluid terms 
(e.g. p, Q )  in more than one group and allows g H ,  q and P to be made explicit. 
Hence the three relationships reduce to the following easily verified forms. 

Energy transfer coefficient, sometimes called head coefficient 

Power coefficient 

(1.2a) 

(1.2b) 

(1.2c) 

The non-dimensional group Q/(ND3)  is a volumetric flow coefficient and 
p N @ / p  is a form of Reynolds number, Re. In axial flow turbomachines, an 
alternative to Q/(ND3)  which is frequently used is the velocity (or flow) coefficient 
4 = c,/U where U is blade tip speed and c, the average axial velocity. Since 

Q = c, x flow area cc c,D2 

and UccND.  

then 
Q cx 

ND3 U 
- cc -. 
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Because of the large number of independent groups of variables on the right-hand 
side of eqns. (1.2), those relationships are virtually worthless unless certain terms 
can be discarded. In a family of geometrically similar machines l l / D ,  12/D are 
constant and may be eliminated forthwith. The kinematic viscosity, u = p / p  is 
very small in turbomachines handling water and, although speed, expressed by ND, 
is low the Reynolds number is correspondingly high. Experiments confirm that 
effects of Reynolds number on the performance are small and may be ignored in a 
first approximation. The functional relationships for geometrically similar hydraulic 
turbomachines are then, 

(1.3a) 

(1.3b) 

(1 .3~)  

This is as far as the reasoning of dimensional analysis alone can be taken; the actual 
fomz of the functions f 4 ,  f 5  and f6 must be ascertained by experiment. 

One relation between @, 4, q and k may be immediately stated. For a pump the 
net hydraulic power, PN equals pQgH which is the minimum shaft power required 
in the absence of all losses. No real process of power conversion is free of losses and 
the actual shaft power P must be larger than P N .  We define pump efficiency (more 
precise definitions of efficiency are stated in Chapter 2) q = P N / P  = p Q g H / P .  
Therefore 

Thus f 6  may be derived from f 4  and f s  since k = @@/q. For a turbine the net 
hydraulic power P N  supplied is greater than the actual shaft power delivered by 
the machine and the efficiency q = P / P N .  This can be rewritten as k = q@@ by 
reasoning similar to the above considerations. 

Performance characteristics 
The operating condition of a turbomachine will be dynamically similar at two 

different rotational speeds if all fluid velocities at corresponding points within the 
machine are in the same direction and proportional to the blade speed. If two 
points, one on each of two different head-flow characteristics, represent dynamically 
similar operation of the machine, then the non-dimensional groups of the variables 
involved, ignoring Reynolds number effects, may be expected to have the same 
numerical value for both points. On this basis, non-dimensional presentation of 
performance data has the important practical advantage of collapsing into virtually 
a single curve, results that would otherwise require a multiplicity of curves if plotted 
dimensionally . 

Evidence in support of the foregoing assertion is provided in Figure 1.3 which 
shows experimental results obtained by the author (at the University of Liverpool) 
on a simple centrifugal laboratory pump. Within the normal operating range of 
this pump, 0.03 < Q / ( N D 3 )  < 0.06, very little systematic scatter is apparent which 
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might be associated with a Reynolds number effect, for the range of speeds 2500 5 
N 5 5000revhin. For smaller flows, Q / ( N D 3 )  < 0.025, the flow became unsteady 
and the manometer readings of uncertain accuracy but, nevertheless, dynamically 
similar conditions still appear to hold true. Examining the results at high flow rates 
one is struck by a marked systematic deviation away from the “single-curve’’ law 
at increasing speed. This effect is due to cavitation, a high speed phenomenon of 
hydraulic machines caused by the release of vapour bubbles at low pressures, which 
is discussed later in this chapter. It will be clear at this stage that under cavitating 
flow conditions, dynamical similarity is not possible. 

FIG. 1.3. Dimensionless head-volume characteristic of a centrifugal pump. 

FIG. 1.4. Extrapolation of characteristic curves for dynamically similar conditions at 
N = 3500 rev/min. 
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The non-dimensional results shown in Figure 1.3 have, of course, been obtained 
for a particular pump. They would also be approximately valid for a range of 
different pump sizes so long as all these pumps are geometrically similar and cavi- 
tation is absent. Thus, neglecting any change in performance due to change in 
Reynolds number, the dynamically similar results in Figure 1.3 can be applied to 
predicting the dimensional performance of a given pump for a series of required 
speeds. Figure 1.4 shows such a dimensional presentation. It will be clear from the 
above discussion that the locus of dynamically similar points in the H - Q  field lies 
on a parabola since H varies as N 2  and Q varies as N .  

Variable geometry turbomachines 
The efficiency of a fixed geometry machine, ignoring Reynolds number effects, 

is a unique function of flow coefficient. Such a dependence is shown by line (b) 
in Figure 1.5. Clearly, off-design operation of such a machine is grossly inefficient 
and designers sometimes resort to a variable geometry machine in order to obtain 
a better match with changing flow conditions. Figure 1.6 shows a sectional sketch 
of a mixed-flow pump in which the impeller vane angles may be varied during 
pump operation. (A similar arrangement is used in Kaplan turbines, Figure 1.1.) 
Movement of the vanes is implemented by cams driven from a servomotor. In some 
very large installations involving many thousands of kilowatts and where operating 

FIG. 1.5. Different efficiency curves for a given machine obtained with various blade 
settings. 

FIG. 1.6. Mixed-flow pump incorporating mechanism for adjusting blade setting. 
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conditions fluctuate, sophisticated systems of control may incorporate an electronic 
computer. 

The lines (a) and (c) in Figure 1.5 show the efficiency curves at other blade 
settings. Each of these curves represents, in a sense, a different constant geometry 
machine. For such a variable geometry pump the desired operating line intersects 
the points of maximum efficiency of each of these curves. 

Introducing the additional variable B into eqn. (1.3) to represent the setting of the 
vanes, we can write 

(1 5 )  

Alternatively, with B = f3(4, q) = f4(4, II.), B can be eliminated to give a new 
functional dependence 

II. = fl(4, B);  q = f2(47 B). 

Thus, efficiency in a variable geometry pump is a function of both flow coefficient 
and energy transfer coefficient. 

Specific speed 

The pump or hydraulic turbine designer is often faced with the basic problem 
of deciding what type of turbomachine will be the best choice for a given duty. 
Usually the designer will be provided with some preliminary design data such as 
the head H ,  the volume flow rate Q and the rotational speed N when a pump design 
is under consideration. When a turbine preliminary design is being considered the 
parameters normally specified are the shaft power P,  the head at turbine entry H 
and the rotational speed N .  A non-dimensional parameter called the spec$c speed, 
N, ,  referred to and conceptualised as the shape number, is often used to facilitate 
the choice of the most appropriate machne. This new parameter is derived from the 
non-dimensional groups defined in eqn. (1.3) in such a way that the characteristic 
diameter D of the turbomachine is eliminated. The value of N ,  gives the designer 
a guide to the type of machine that will provide the normal requirement of high 
efficiency at the design condition. 

For any one hydraulic turbomachine with fired geometry there is a unique rela- 
tionship between efficiency and flow coefficient if Reynolds number effects are 
negligible and cavitation absent. As is suggested by any one of the curves in 
Figure 1.5, the efficiency rises to a maximum value as the flow coefficient is 
increased and then gradually falls with further increase in 6. This optimum effi- 
ciency q = qmax, is used to identify a unique value 6 = $1 and corresponding unique 
values of II. = 1/11 and ? = ?I .  Thus, 

-- - 41 = constant, Q 
N D 3  

-- - 1/11 = constant, gH 
N 2 D 2  

(1.7a) 

(1.7b) 

(1 .7~)  
P 

pN3 D5 
-- - P1 = constant. 
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It is a simple matter to combine any pair of these expressions in such a way as to 
eliminate the diameter. For a pump the customary way of eliminating D is to divide 
@;I2 by $;I4. Thus 

where N ,  is called the speciJic speed. The term specific speed is justified to the 
extent that N ,  is directly proportional to N .  In the case of a turbine the power 
speciJic speed N,,, is more useful and is defined by, 

Both eqns. (1.8) and (1.9) are dimensionless. It is always safer and less confusing 
to calculate specific speed in one or other of these forms rather than dropping the 
factors g and p which would make the equations dimensional and any values of 
specific speed obtained using them would then depend upon the choice of the units 
employed. The dimensionless form of N ,  (and N s p )  is the only one used in this 
book. Another point arises from the fact that the rotational speed, N ,  is expressed 
in the units of revolutions per unit of time so that although N, is dimensionless, 
numerical values of specific speed need to be thought of as revs. Alternative versions 
of eqns. (1.8) and (1.9) in radians are also in common use and are written 

Qrn Q,, = ~ 

( g H ) 5 / 4  ’ 

(1.8a) 

(1.9a) 

There is a simple connection between N ,  and N,,  (and between 52, and Q,p). By 
dividing eqn. (1.9) by eqn. (1.8) we obtain 

From the definition of hydraulic efficiency, for a pump we obtain: 

Nsp Qsp 1 
Ns Q, Jv ’  

- -- - 

and, for a turbine we obtain: 

(1.9b) 

(1 .9~)  

Remembering that specific speed, as defined above, is at the point of maximum 
efficiency of a turbomachine, it becomes a parameter of great importance in selecting 
the type of machine required for a given duty. The maximum efficiency condition 
replaces the condition of geometric similarity, so that any alteration in specific 
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FIG. 1.7. Range of pump impellers of equal inlet area. 

speed implies that the machine design changes. Broadly speaking, each different 
class of machine has its optimum efficiency within its own fairly narrow range of 
specific speed. 

For a pump, eqn. (1.8) indicates, for constant speed N ,  that N ,  is increased by an 
increase in Q and decreased by an increase in H .  From eqn. (1.7b) it is observed 
that H ,  at a constant speed N ,  increased with impeller diameter D. Consequently, 
to increase N ,  the entry area must be made large and/or the maximum impeller 
diameter small. Figure 1.7 shows a range of pump impellers varying from the axial- 
flow type, through mixed flow to a centrifugal- or radial-flow type. The size of 
each inlet is such that they all handle the same volume flow Q. Likewise, the head 
developed by each impeller (of different diameter D )  is made equal by adjusting 
the speed of rotation N .  Since Q and H are constant, then N ,  varies with N alone. 
The most noticeable feature of this comparison is the large change in size with 
specific speed. Since a higher specific speed implies a smaller machine, for reasons 
of economy, it is desirable to select the highest possible specific speed consistent 
with good efficiency. 

Cavitation 
In selecting a hydraulic turbomachine for a given head H and capacity Q, it is 

clear from the definition of specific speed, eqn. (1 A), that the highest possible value 
of N, should be chosen because of the resulting reduction in size, weight and cost. 
On this basis a turbomachine could be made extremely small were it not for the 
corresponding increase in the fluid velocities. For machines handling liquids the 
lower limit of size is dictated by the phenomenon of cavitation. 

Cavitation is the boiling of a liquid at normal temperature when the static pres- 
sure is made sufficiently low. It may occur at the entry to pumps or at the exit 
from hydraulic turbines in the vicinity of the moving blades. The dynamic action 
of the blades causes the static pressure to reduce locally in a region which is 
already normally below atmospheric pressure and cavitation can commence. The 
phenomenon is accentuated by the presence of dissolved gases which are released 
with a reduction in pressure. 

For the purpose of illustration consider a centrifugal pump operating at constant 
speed and capacity. By steadily reducing the inlet pressure head a point is reached 
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when streams of small vapour bubbles appear within the liquid and close to solid 
surfaces. This is called cavitation inception and commences in the regions of lowest 
pressure. These bubbles are swept into regions of hgher pressure where they 
collapse. This condensation occurs suddenly, the liquid surrounding the bubbles 
either hitting the walls or adjacent liquid. The pressure wave produced by bubble 
collapse (with a magnitude of the order 400MPa) momentarily raises the pres- 
sure level in the vicinity and the action ceases. The cycle then repeats itself and 
the frequency may be as high as 25 kHz (Shepherd 1956). The repeated action of 
bubbles collapsing near solid surfaces leads to the well-known cavitation erosion. 

The collapse of vapour cavities generates noise over a wide range of 
frequencies - up to 1 MHz has been measured (Pearsall 1972) i.e. so-called 
“white noise”. Apparently it is the collapsing smaller bubbles which cause the 
higher frequency noise and the larger cavities the lower frequency noise. Noise 
measurement can be used as a means of detecting cavitation (Pearsall 1966/7). 
Pearsall and McNulty (1968) have shown experimentally that there is a relationship 
between cavitation noise levels and erosion damage on cylinders and concludes that 
a technique could be developed for predicting the occurrence of erosion. 

Up to this point no detectable deterioration in performance has occurred. However, 
with further reduction in inlet pressure, the bubbles increase both in size and number, 
coalescing into pockets of vapour which affects the whole field of flow. This growth 
of vapour cavities is usually accompanied by a sharp drop in pump performance 
as shown conclusively in Figure 1.3 (for the 5000rev/min test data). It may seem 
surprising to learn that with this large change in bubble size, the solid surfaces 
are much less likely to be damaged than at inception of cavitation. The avoidance 
of cavitation inception in conventionally designed machines can be regarded as 
one of the essential tasks of both pump and turbine designers. However, in certain 
recent specialised applications pumps have been designed to operate under super- 
cavitating conditions. Under these conditions large size vapour bubbles are formed 
but, bubble collapse takes place downstream of the impeller blades. An example of 
the specialised application of a supercavitating pump is the fuel pumps of rocket 
engines for space vehicles where size and mass must be kept low at all costs. Pearsall 
(1966) has shown that the supercavitating principle is most suitable for axial flow 
pumps of high specific speed and has suggested a design technique using methods 
similar to those employed for conventional pumps. 

Pearsall (1966) was one of the first to show that operating in the supercavitating 
regime was practicable for axial flow pumps and he proposed a design technique to 
enable this mode of operation to be used. A detailed description was later published 
(Pearsall 1973), and the cavitation performance was claimed to be much better than 
that of conventional pumps. Some further details are given in Chapter 7 of this book. 

Cavitation limits 

In theory cavitation commences in a liquid when the static pressure is reduced to 
the vapour pressure corresponding to the liquid’s temperature. However, in practice, 
the physical state of the liquid will determine the pressure at which cavitation starts 
(Pearsall 1972). Dissolved gases come out of solution as the pressure is reduced 
forming gas cavities at pressures in excess of the vapour pressure. Vapour cavitation 
requires the presence of nuclei - submicroscopic gas bubbles or solid non-wetted 
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particles - in sufficient numbers. It is an interesting fact that in the absence of such 
nuclei a liquid can withstand negative pressures (i.e. tensile stresses)! Perhaps the 
earliest demonstration of this phenomenon was that performed by Osborne Reynolds 
(1882) before a learned society. He showed how a column of mercury more than 
twice the height of the barometer could be (and was) supported by the internal cohe- 
sion (stress) of the liquid. More recently Ryley (1980) devised a simple centrifugal 
apparatus for students to test the tensile strength of both plain, untreated tap water 
in comparison with water that had been filtered and then de-aerated by boiling. 
Young (1989) gives an extensive literature list covering many aspects of cavitation 
including the tensile strength of liquids. At room temperature the theoretical tensile 
strength of water is quoted as being as hgh  as 1OOOatm (100MPa)! Special pre- 
treatment (i.e. rigorous filtration and pre-pressurization) of the liquid is required to 
obtain this state. In general the liquids flowing through turbomachines will contain 
some dust and dissolved gases and under these conditions negative pressure do 
not arise. 

A useful parameter is the available suction head at entry to a pump or at exit 
from a turbine. This is usually referred to as the net positive suction head, NPSH, 
defined as 

H ,  = ( P o  - P u ) / ( P g )  (1.10) 

where po and pu are the absolute stagnation and vapour pressures, respectively, at 
pump inlet or at turbine outlet. 

To take into account the effects of cavitation, the performance laws of a hydraulic 
turbomachine should include the additional independent variable H , .  Ignoring the 
effects of Reynolds number, the performance laws of a constant geometry hydraulic 
turbomachine are then dependent on two groups of variable. Thus, the efficiency, 

rl = .f(& N s s )  (1.11) 

where the suction speczjic speed N ,  = N Q ' / 2 / ( g H , ) 3 / 4 ,  determines the effect of 
cavitation, and 4 = Q/(ND3) ,  as before. 

It is known from experiment that cavitation inception occurs for an almost 
constant value of N ,  for all pumps (and, separately, for all turbines) designed 
to resist cavitation. This is because the blade sections at the inlet to these pumps 
are broadly similar (likewise, the exit blade sections of turbines are similar) and it 
is the shape of the low pressure passages which influences the onset of cavitation. 

Using the alternative definition of suction specific speed QSs = Q Q ' / 2 / ( g H s ) 1 / 2 ,  
where S2 is the rotational speed in rads, Q is the volume flow in m3/s and g H , ,  is 
in m2/s2, it has been shown empirically (Wislicehus 1947) that 

Q,, 2 3.0 (rad) (1.12a) 

for pumps, and 

Q,, 2: 4.0 (rad) (1.12b) 

for turbines. 
Pearsall (1973) described a supercavitating pump with a cavitation performance 

much better that of conventional pumps. For this pump suction specific speeds, Q,, 
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up to 9.0 were readily obtained and, it was claimed, even better values might be 
possible, but at the cost of reduced head and efficiency. It is likely that supercavi- 
tating pumps will be increasingly used in the search for hgher speeds, smaller sizes 
and lower costs. 

Compressible gas flow relations 

Stagnation properties 

In turbomachmes handling compressible fluids, large changes in flow velocity 
occur across the stages as a result of pressure changes caused by the expansion or 
compression processes. For any point in the flow it is convenient to combine the 
energy terms together. The enthalpy, h, and the kinetic energy, $c2 are combined 
and the result is called the stagnation enthalpy, 

hi) = h + $2. 

The stagnation enthalpy is constant in a flow process that does not involve 
a work transfer or a heat transfer even though irreversible processes may be 
present. In Figure 1.8, point 1 represents the actual or static state of a fluid in 
an enthalpy-entropy diagram with enthalpy, hl at pressure p i  and entropy SI. The 
fluid velocity is c1. The stagnation state is represented by the point 01 brought 
about by an irreversible deceleration. For a reversible deceleration the stagnation 
point would be at point 01s and the state change would be called isentropic. 

FIG. 1.8. The static state (point I) ,  the stagnation (point 01) and the isentropic stagna- 
tion (point 01s) of a fluid. 
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Stagnation temperature and pressure 

If the fluid is a perfect gas, then h = C,T, where C ,  = yR/(y - l),  so that the 
stagnation temperature can be defined as 

To = T + ;c2/C, ,  

( 1.1 3a) 

where the Mach number, M = c /a  = c/,/yRT. 

Chapter 2), is 
The Gibb’s relation, derived from the second law of thermodynamics (see 

1 

P 
Tds = dh - -dp. 

If the flow is brought to rest both adiabatically and isentropically (i.e. ds = 0), then, 
using the above Gibb’s relation, 

dP dh = C,dT = -RT 
P 

so that 

Integrating, we obtain 

In p = In constant + - lnT, 
Y - 1  

and so, 

(1.13b) 

From the gas law density, p = p/(RT), we obtain po/p = (po/p)(T/To) and hence, 

(1.13~) 

Compressible fluid analysis 

The application of dimensional analysis to compressible fluids increases, not unex- 
pectedly, the complexity of the functional relationships obtained in comparison with 
those already found for incompressible fluids. Even if the fluid is regarded as a 
perfect gas, in addition to the previously used fluid properties, two further char- 
acteristics are required; these are aol, the stagnation speed of sound at entry to 
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the machine and y, the ratio of specific heats C,/C,. In the following analysis the 
compressible fluids under discussion are either perfect gases, or else, dry vapours 
approximating in behaviour to a perfect gas. 

Another choice of variables is usually preferred when appreciable density changes 
occur across the machine. Instead of volume flow rate Q, the mass flow rate r)r is 
used; likewise for the head change H ,  the isentropic stagnation enthalpy change 
Ahos is employed. 

The choice of this last variable is a significant one for, in an ideal and adiabatic 
process, A h s  is equal to the work done by unit mass of fluid. Thts will be discussed 
still further in Chapter 2. Since heat transfer from the casings of turbomachines 
is, in general, of negligible magnitude compared with the flux of energy through 
the machine, temperature on its own may be safely excluded as a fluid variable. 
However, temperature is an easily observable characteristic and, for a perfect gas, 
can be easily introduced at the last by means of the equation of state, p / p  = RT, 
where R = Ro/m = C ,  - C, ,  m being the molecular weight of the gas and Ro = 
8.3 14 W/(kg mol K) is the Universal gas constant. 

The performance parameters Ahos, q and P for a turbomachine handling a 
compressible flow, are expressed functionally as: 

( 1.14a) 

Because po and a0 change through a turbomachine, values of these fluid variables 
are selected at inlet, denoted by subscript 1. Equation (1.14a) express three separate 
functional relationships, each of which consists of eight variables. Again, selecting 
pol, N ,  D as common factors each of these three relationships may be reduced to 
five dimensionless groups, 

(1.14b) 

Alternatively, the flow coefficient 4 = m/(polND3)  can be written as 4 = 
ri2/(polmlD2). As N D  is proportional to blade speed, the group NDlml is regarded 
as a blade Mach number. 

For a machine handling a perfect gas a different set of functional relationships is 
often more useful. These may be found either by selecting the appropriate variables 
for a perfect gas and working through again from first principles or, by means 
of some rather straightforward transformations, rewriting eqn. (1.14b) to give more 
suitable groups. The latter procedure is preferred here as it provides a useful exercise. 

As a concrete example consider an adiabatic compressor handling a perfect gas. 
The isentropic stagnation enthalpy rise can now be written C,(Tozs - Tal) for the 
perfect gas. This compression process is illustrated in Figure 1.9a where the stag- 
nation state point changes at constant entropy between the stagnation pressures 
pol and p02. The equivalent process for a turbine is shown in Figure 1.9b. Using 
the adiabatic isentropic relationship p / p Y  = constant, together with p / p  = RT,  the 
expression 
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FIG. 1.9. The ideal adiabatic change in stagnation conditions across a turbomachine. 

is obtained. Hence A h s  = C , T o l [ ( p 0 2 / ~ 0 1 ) ( ~ - ' ) / ~  - 11. Since C ,  = y R / ( y  - 1) 
and u& = yRTol, then 

Ah&1 0: f (P02/POl) .  

The flow coefficient can now be more conveniently expressed as 

mRTol - mJ(RTo1) 
~01aolD~ pol J ( ~ R T ~ ~  ID* D2 POI JY . 

,. C,ATo AT0 

POlN3D5 (POlD2(ND)1(Nm2 (NO)2 To1 . 

- - - m 

As m = pal@(ND), the power coefficient may be written 

- ---- mC,ATo 
- - - - P P =  

Collecting together all these newly formed non-dimensional groups and inserting 
them in eqn. (1.14b) gives 

, R e , y  . (1.15) 

The justification for dropping y from a number of these groups is simply that it 
already appears separately as an independent variable. 

For a machine of a specific size and handling a single gas it has become 
customary, in industry at least, to delete y ,  R, and D from eqn. (1.15) and similar 
expressions. If, in addition, the machine operates at high Reynolds numbers (or over 
a small speed range), Re can also be dropped. Under these conditions eqn. (1.15) 
becomes 

1 PO2 AT0 mJ(RTo1) N D  
PO1 To1 D2 POI ' JW-01) 
- ,?L-=f  { 

(1.16) 

Note that by omitting the diameter D and gas constant R, the independent variables 
in eqn. (1.16) are no longer dimensionless. 

Figures 1.10 and 1.11 represent typical performance maps obtained from 
compressor and turbine test results. In both figures the pressure ratio across the whole 

Po2 AT0 mJTo1 N 
POI To1 Po1 JTOl 
-?l, __ = f  { -3 -}. 
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FIG. 1 .lo. Overall characteristic of a compressor. 

FIG. 1.1 1. Overall characteristic of a turbine. 
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machine is plotted as a function of riz(,/Tol)/pol for fixed values of N / ( J T o l ) ,  
this being a customary method of presentation. Notice that for both machines 
subscript 1 is used to denote conditions as inlet. One of the most striking features 
of these performance characteristics is the rather weak dependence of the turbine 
performance upon N / J T o l  contrasting with the strong dependence shown by the 
compressor on this parameter. 

For the compressor, efficient operation at constant N/JTol  lies to the right of 
the line marked “surge”. A discussion of the phenomenon of surge is included in 
Chapter 5; in brief, for multistage compressors it commences approximately at the 
point (for constant N / , / T o l )  where the pressure ratio flattens out to its maximum 
value. The surge line denotes the limit of stable operation of a compressor, unstable 
operation being characterised by a severe oscillation of the mass flow rate through 
the machine. The choked regions of both the compressor and turbine characteristics 
may be recognised by the vertical portions of the constant speed lines. No further 
increase in m(,/Tol)/pol is possible since the Mach number across some section 
of the machine has reached unity and the flow is said to be choked. 

The inherent unsteadiness of the flow within 
turbomachines 

A fact often ignored by turbomachinery designers, or even unknown to students, 
is that turbomachines can only work the way they do because of unsteady flow 
effects taking place within them. The fluid dynamic phenomena that are associated 
with the unsteady flow in turbomachines has been examined by Greitzer (1986) in 
a discourse which was intended to be an introduction to the subject but actually 
extended far beyond the technical level of this book! Basically Greitzer, and others 
before him, in considering the fluid mechanical process taking place on a fluid 
particle in an isentropic flow, deduced that stagnation enthalpy of the particle can 
change only if the $ow is unsteady. Dean (1959) appears to have been the first 
to record that without an unsteadyjow inside a turbomachine, no work transfer 
can take place. Paradoxically, both at the inlet to and outlet from the machine the 
conditions are such that the flow can be considered as steady. 

A physical situation considered by Greitzer is the axial compressor rotor as 
depicted in Figure 1.12a. The pressure field associated with the blades is such that 
the pressure increases from the suction surface ( S )  to the pressure surface (P). This 
pressure field moves with the blades and, to an observer situated at the point * (in the 
absolute frame of reference), a pressure that varies with time would be recorded, 
as shown in Figure 1.12b. Thus, fluid particles passing through the rotor would 
experience a positive pressure increase with time (i.e. ap/at > 0). From this fact it 
can then be shown that the stagnation enthalpy of the fluid particle also increases 
because of the unsteadiness of the flow, i.e. 

where D/Dt is the rate of change following the fluid particle. 
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FIG. 1.12. Measuring unsteady pressure field of an axial compressor rotor. (a) Pressure 
is measured at point * on the casing. (b) Fluctuating pressure measured at point *. 
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Kogakusha. 

Problems 

1. A fan operating at 1750rev/min at a volume flow rate of 4.25 m3/s develops a head 
of 153mm measured on a water-filled U-tube manometer. It is required to build a larger, 
geometrically similar fan which will deliver the same head at the same efficiency as the 
existing fan, but at a speed of 1440rev/min. Calculate the volume flow rate of the larger fan. 

2. An axial flow fan 1.83 m diameter is designed to run at a speed of 1400rev/min with an 
average axial air velocity of 12.2 d s .  A quarter scale model has been built to obtain a check 
on the design and the rotational speed of the model fan is 4200rev/min. Determine the axial 
air velocity of the model so that dynamical similarity with the full-scale fan is preserved. 
The effects of Reynolds number change may be neglected. 

A sufficiently large pressure vessel becomes available in which the complete model can 
be placed and tested under conditions of complete similarity. The viscosity of the air is 
independent of pressure and the temperature is maintained constant. At what pressure must 
the model be tested? 

3. A water turbine is to be designed to produce 27 M W  when running at 93.7 rev/min 
under a head of 16.5m. A model turbine with an output of 37.5kW is to be tested under 
dynamically similar conditions with a head of 4.9m. Calculate the model speed and scale 
ratio. Assuming a model efficiency of 88%, estimate the volume flow rate through the model. 

It is estimated that the force on the thrust bearing of the full-size machine will be 7.0 GN. 
For what thrust must the model bearing be designed? 

4. Derive the non-dimensional groups that are normally used in the testing of gas turbines 
and compressors. 

A compressor has been designed for normal atmospheric conditions (101.3 kPa and 15°C). 
In order to economise on the power required it is being tested with a throttle in the entry 
duct to reduce the entry pressure. The characteristic curve for its normal design speed of 
4000rev/min is being obtained on a day when the ambient temperature is 20°C. At what 
speed should the compressor be run? At the point on the characteristic curve at which the 
mass flow would normally be 58 kg/s the entry pressure is 55 kPa. Calculate the actual rate 
of mass flow during the test. 

Describe, with the aid of sketches, the relationship between geometry and specific speed 
for pumps. 



Basic Thermodynamics, 
Fluid Mechanics: 
Definitions of Efficiency 
Take your choice of those that can best aid your action. (SHAKESPEARE, 
Coriolanus.) 

Introduction 
Rns chapter summarises the basic physical laws of fluid mechanics and ther- 

modynamics, developing them into a form suitable for the study of turbomachines. 
Following this, some of the more important and commonly used expressions for the 
efficiency of compression and expansion flow processes are given. 

(1) the continuity offlow equation; 
(2) the first law of thermodynamics and the steady flow energy equation; 
(3) the momentum equation; 
(4) the second law of thermodynamics. 

All of these laws are usually covered in first-year university engineering and tech- 
nology courses, so only the briefest discussion and analysis is give here. Some 
fairly recent textbooks dealing comprehensively with these laws are those written 
by Cengel and Boles (1994), Douglas, Gasiorek and Swaf!ield (1995), Rogers and 
Mayhew (1992) and Reynolds and Perkins (1977). It is worth remembering that 
these laws are completely general; they are independent of the nature of the fluid 
or whether the fluid is compressible or incompressible. 

The laws discussed are: 

The equation of continuity 

Consider the flow of a fluid with density p, through the element of area dA, 
during the time interval dt. Refemng to Figure 2.1, if c is the stream velocity the 
elementary mass is dm = pcdtdA cos 8, where 8 is the angle subtended by the normal 
of the area element to the stream direction. The velocity component perpendicular 
to the area dA is c,, = ccos8 and so dm = pc,dAdr. The elementary rate of mass 
flow is therefore 

23 



24 Fluid Mechanics, Thermodynamics of Turbomachinery 

FIG. 2.1. Flow across an element of area. 

Most analyses in this book are limited to one-dimensional steady flows where 
the velocity and density are regarded as constant across each section of a duct 
or passage. If A1 and A2 are the flow areas at stations 1 and 2 along a passage 
respectively, then 

m = PlCnIAl = P Z C ~ ~ A ~  = w ~ A ,  (2.2) 

since there is no accumulation of fluid within the control volume. 

The first law of thermodynamics - internal energy 

TheJirst law of thermodynamics states that if a system is taken through a complete 
cycle during which heat is supplied and work is done, then 

( d e  - dW) = 0, (2.3) 

where f dQ represents the heat supplied to the system during the cycle and f dW the 
work done by the system during the cycle. The units of heat and work in eqn. (2.3) 
are taken to be the same. 

During a change of state from 1 to 2, there is a change in the property internal 

f 

energy, 

E2 - E1 = ( d e  - dW). (2.4) I’ 
For an infinitesimal change of state 

dE = dQ - dW. (2.4a) 

The steady flow energy equation 

Many textbooks, e.g. Cengel and Boles (1994), demonstrate how the first law of 
thermodynamics is applied to the steady flow of fluid through a control volume so 
that the steady flow energy equation is obtained. It is unprofitable to reproduce this 
proof here and only the final result is quoted. Figure 2.2 shows a control volume 
representing a turbomachine, through which fluid passes at a steady rate of mass 



2 volume 
m 
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a blade in a compressor or turbine cascade caused by the deflection or acceleration 
of fluid passing the blades. 

Considering a system of mass m, the sum of all the body and surface forces acting 
on m along some arbitrary direction x is equal to the time rate of change of the total 
x-momentum of the system, i.e. 

d 
dt 

CF,  = -(mc,). (2.9) 

For a control volume where fluid enters steadily at a uniform velocity c,l and leaves 
steadily with a uniform velocity cx2, then 

(2.9a) 

Equation (2.9a) is the one-dimensional form of the steady flow momentum equation. 

Euler‘s equation of motion 

C F ,  = h ( C X 2  - c,1) 

It can be shown for the steady flow of fluid through an elementary control volume 
that, in the absence of all shear forces, the relation 

(2.10) 1 
-dp + cdc + gdz  = 0 
P 

is obtained. This is Euler’s equation of motion for one-dimensional flow and is 
derived from Newton’s second law. By shear forces being absent we mean there 
is neither friction nor shaft work. However, it is not necessary that heat transfer 
should also be absent. 

Bernoulli’s equation 

The one-dimensional form of Euler’s equation applies to a control volume whose 
thickness is infinitesimal in the stream direction (Figure 2.3). Integrating this equa- 
tion in the stream direction we obtain 

(2.10a) 
1 

-dp + T ( c ~  - c:) + g(z2 - ~ 1 )  = 0 L2 : 

FIG. 2.3. Control volume in a streaming fluid. 
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which is Bernoulli’s equation. For an incompressible fluid, p is constant and 
eqn. (2.10a) becomes 

(2. lob) 

where stagnation pressure is po = p + $ p C 2 .  

and describes the quantity z + po/ (pg) .  Thus eqn. (2.10b) becomes 
When dealing with hydraulic turbomachines, the term head H occurs frequently 

H 2 - H 1  = O .  (2.10c) 

If the fluid is a gas or vapour, the change in gravitational potential is generally 
negligible and eqn. (2. loa) is then 

(2.1od) 

Now, if the gas or vapour is subject to only a small pressure change the fluid density 
is sensibly constant and 

Po2 = pol = Po,  (2.1oe) 

i.e. the stagnation pressure is constant (this is also true for a compressible isentropic 
process). 

Moment of momentum 

In dynamics much useful information is obtained by employing Newton’s second 
law in the form where it applies to the moments of forces. This form is of central 
importance in the analysis of the energy transfer process in turbomachines. 

For a system of mass m, the vector sum of the moments of all external forces 
acting on the system about some arbitrary axis A-A fixed in space is equal to the 
time rate of change of angular momentum of the system about that axis, i.e. 

d 
rA = m-((rce), dt 

(2.1 1) 

where r is distance of the mass centre from the axis of rotation measured along the 
normal to the axis and ce the velocity component mutually perpendicular to both 
the axis and radius vector r .  

For a control volume the law of moment of momentum can be obtained. Figure 2.4 
shows the control volume enclosing the rotor of a generalised turbomachine. 
Swirling fluid enters the control volume at radius rl with tangential velocity cel 
and leaves at radius r 2  with tangential velocity c02. For one-dimensional steady 
flow 

TA = h(r2Ca - rlc@l) (2.1 la) 

which states that, the sum of the moments of the external forces acting on fluid 
temporarily occupying the control volume is equal to the net time rate of efflux of 
angular momentum from the control volume. 
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FIG. 2.4. Control volume for a generalised turbomachine. 

Euler‘s pump and turbine equations 

For a pump or compressor rotor running at angular velocity 0, the rate at which 

(2.12) 

the rotor does work on the fluid is 

~ A Q  = m(U2ce2 - uice i ) ,  

where the blade speed U = Qr.  
Thus the work done on the fluid per unit mass or specific work, is 

w c  T A 0  
AWc = - = - = U2cm - U ~ C O ~  > 0. 

This equation is referred to as Euler’s pump equation. 

reversed. Thus, the specific work is 

(2.12a) 
m m 

For a turbine the fluid does work on the rotor and the sign for work is then 

(2.12b) ci.It A W  1 -  - - = Ulcel - U2cm > 0. 
m 

Equation (2.12b) will be referred to as Euler’s turbine equation. 

Defining rothalpy 

In a compressor or pump the specific work done on the fluid equals the rise in 

(2.12c) 

stagnation enthalpy. Thus, combining eqns. (2.8) and (2.12a), 

A W ~  = W c / m  = u2cm - Uicel = h2 - hi. 

This relationship is true for steady, adiabatic and irreversible flow in compressor or 
in pump impellers. After some rearranging of eqn. (2.12~) and writing h = h + kc2, 
then 

(2.12d) 

According to the above reasoning a new function I has been defined having the 
same value at exit from the impeller as at entry. The function I has acquired the 

1 2  hl + $C;  - Ulcel = h2 + Z C ~  - U ~ C O ~  = I .  
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widely used name rothalpy, a contraction of rotational stagnation enthalpy, and is 
a fluid mechanical property of some importance in the study of relative flows in 
rotating systems. As the value of rothalpy is apparently* unchanged between entry 
and exit of the impeller it is deduced that it must be constant along the flow lines 
between these two stations. Thus, the rothalpy can be written generally as 

I = h + $c’ - U C ~ .  (2.12e) 

The same reasoning can be applied to the thermomechanical flow through a 
turbine with the same result. 

The second law of thermodynamics - entropy 

The second law of thermodynamics, developed rigorously in many modem ther- 
modynamic textbooks, e.g. Cengel and Boles (1994), Reynolds and Perkins (1977), 
Rogers and Mayhew (1992), enables the concept of entropy to be introduced and 
ideal thermodynamic processes to be defined. 

An important and useful corollary of the second law of thermodynamics, known as 
the Inequality ofClausius, states that for a system passing through a cycle involving 
heat exchanges, 

E- - 5 0, (2.13) 

where dQ is an element of heat transferred to the system at an absolute temperature 
T .  If all the processes in the cycle are reversible then dQ = dQR and the equality 
in eqn. (2.13) holds true, i.e. 

The property called entropy, for a finite change of state, is then defined as 

For an incremental change of state 

~ Q R  dS=mds=---, 
T 

(2.13a) 

(2.14) 

(2.14a) 

where m is the mass of the system. 

experiences a change of state from condition 1 at entry to 2 at exit, 
With steady one-dimensional flow through a control volume in which the fluid 

(2.15) 

* A discussion of recent investigations into the conditions required for the conservation of rothalpy 
is deferred until Chapter 7. 
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If the process is adiabatic, dQ = 0, then 

s2 2 SI. (2.16) 

If the process is reversible as well, then 

s2 = SI. (2.16a) 

Thus, for a flow which is adiabatic, the ideal process will be one in which the 
entropy remains unchanged during the process (the condition of isentropy). 

Several important expressions can be obtained using the above definition of 
entropy. For a system of mass m undergoing a reversible process dQ = d& = mTds 
and dW = dWR = mpdv. In the absence of motion, gravity and other effects the 
first law of thermodynamics, eqn. (2.4a) becomes 

Tds = du + pdv. (2.17) 

With h = u + pv then dh = du + pdv + vdp and eqn. (2.17) then gives 

Tds = dh - vdp. (2.18) 

Definitions of efficiency 

A large number of efficiency definitions are included in the literature of turboma- 
chines and most workers in this field would agree there are too many. In this book 
only those considered to be important and useful are included. 

Efficiency of turbines 

Turbines are designed to convert the available energy in a flowing fluid into useful 
mechanical work delivered at the coupling of the output shaft. The efficiency of this 
process, the overall efJiciency qo, is a performance factor of considerable interest to 
both designer and user of the turbine. Thus, 

mechanical energy available at coupling of output shaft in unit time 
maximum energy difference possible for the fluid in unit time 

. rlo = 

Mechanical energy losses occur between the turbine rotor and the output shaft 
coupling as a result of the work done against friction at the bearings, glands, etc. 
The magnitude of this loss as a fraction of the total energy transferred to the rotor is 
difficult to estimate as it varies with the size and individual design of turbomachine. 
For small machines (several kilowatts) it may amount to 5% or more, but for 
medium and large machines this loss ratio may become as little as 1%. A detailed 
consideration of the mechanical losses in turbomachines is beyond the scope of this 
book and is not pursued further. 

The isentropic eficiency q, or hydraulic eficiency v h  for a turbine is, in broad 
terms, 

mechanical energy supplied to the rotor in unit time 
maximum energy difference possible for the fluid in unit time. %(or q h )  = 
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Comparing the above definitions it is easily deduced that the mechanical efJiciency 
qm, which is simply the ratio of shaft power to rotor power, is 

qm = qo/qr (or V O / W ) .  

In the following paragraphs the various definitions of hydraulic and adiabatic effi- 
ciency are discussed in more detail. 

For an incremental change of state through a turbomachine the steady flow energy 
equation, eqn. (2.5), can be written 

dQ - dW, = h[dh + id(c2) + gdz]. 

From the second law of thermodynamics 

d Q < h T d s = h  dh- -dp  . ( 3 
Eliminating dQ between these two equations and rearranging 

(2.19) 

For a turbine expansion, noting W ,  = W t  > 0, integrate eqn. (2.19) from the initial 
state 1 to the final state 2, 

(2.20) 

For a reversible adiabatic process, Tds = 0 = dh - dp/p. The incremental 
maximum work output is then 

dWXm = -h[dh + id(c2) + gdz] 

Hence, the overall maximum work output between initial state 1 and final state 2 is 

1 1 1 

Wxm =h/ 2 [dh+2d(c2)+gdz 

= h[(hOl - h02s) + g(z1 - z2)l (2.20a) 

where the subscript s in eqn. (2.20a) denotes that the change of state between 1 and 
2 is isentropic. 

For an incompressible fluid, in the absence of friction, the maximum work output 
from the turbine (ignoring frictional losses) is 

Wx- = h g [ H 1  - H21, (2.20b) 

where gH = p/p + ;c2 + gz. 

Steam and gas turbines 

Figure 2.5a shows a Mollier diagram representing the expansion process through an 
adiabatic turbine. Line 1-2 represents the actual expansion and line 1-2s the ideal 
or reversible expansion. The fluid velocities at entry to and at exit from a turbine 



32 Fluid Mechanics, Thermodynamics of Turbomachinery 

FIG. 2.5. Enthalpy-entropy diagrams for turbines and compressors. 

may be quite high and the corresponding kinetic energies may be significant. On the 
other hand, for a compressible fluid the potential energy terms are usually negligible. 
Hence the actual turbine rotor speciJic work 

1 2  2 AWx = Wx/h = hl - h ~ 2  = (hi - h2) + Z(cI - ~ 2 )  

Similarly, the ideal turbine rotor specific work between the same two pressures is 

1 2  2 AWmm = W x m / m  = h l  - ho~r  = (hl - ha) + ~ ( c 1  - ~ 2 ~ ) .  

In Figure 2.5a the actual turbine workh i t  mass of fluid is the stagnation enthalpy 
change between state points 01 and 02 which lie on the stagnation pressure lines pol 
and p02 respectively. The ideal turbine work per unit mass of fluid is the stagnation 
enthalpy change during the isentropic process between the same two pressures. The 
kinetic energy of the fluid at the end of the ideal process ick is not, however, the 
same as that at the end of the actual process icz. This may be adduced as follows. 
Taking for simplicity a perfect gas, then h = C,T and p / p  = RT. Consider the 
constant pressure line p2 (Figure 2.5a); as T2 > Tzs then pzs > pz. From continuity 
m/A = pc and since we are dealing with the same area, c2 > ch, and the kinetic 
energy terms are not equal. The difference in practice is usually negligible and often 
ignored. 

There are several ways of expressing efficiency, the choice of definition depending 
largely upon whether the exit kinetic energy is usefully employed or is wasted. An 
example where the exhaust kinetic energy is not wasted is from the last stage of 
an aircraft gas turbine where it contributes to the jet propulsive thrust. Likewise, 
the exit kinetic energy from one stage of a multistage turbine where it is used in 
the next stage, provides another example. For these two cases the turbine and stage 
adiabatic efficiency 7, is the total-to-total efficiency and is defined as 

(2.21) qrr = AW.r/AWx- = ( h o l -  h o 2 ) / ( h o 1 -  hm) .  
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If the difference between the inlet and outlet kinetic energies is small, i.e. icf  + i c i ,  
then 

r l r t  = (hl - h2)/(hl - h2s) (2.21a) 

When the exhaust kinetic energy is not usefully employed and entirely wasted, 
the relevant adiabatic efficiency is the total-to-static efficiency qts. In this case the 
ideal turbine work is that obtained between state points 01 and 2s. Thus 

(2.22) 

If the difference between inlet and outlet kinetic energies is small, eqn. (2.22) 
becomes 

(2.22a) 

A situation where the outlet kinetic energy is wasted is a turbine exhausting directly 
to the surroundings rather than through a diffuser. For example, auxiliary turbines 
used in rockets often do not have exhaust diffusers because the disadvantages of 
increased mass and space utilisation are greater than the extra propellant required 
as a result of reduced turbine efficiency. 

Hydraulic turbines 

When the working fluid is a liquid, the turbine hydraulic efficiency r)h, is defined 
as the work supplied by the rotor in unit time divided by the hydrodynamic energy 
difference of the fluid per unit time, i.e. 

A w, - A W X  
)7h=-- 

AWX- g(H1 -H2)' 

Efficiency of compressors and pumps 

(2.23) 

The isentropic efficiency qc of a compressor or the hydraulic efficiency of a pump 
is broadly defined as, 

useful (hydrodynamic) energy input to fluid in unit time 
power input to rotor qc(or q h )  = 

The power input to the rotor (or impeller) is always less than the power supplied 
at the coupling because of external energy losses in the bearings and glands, etc. 
Thus, the overall efficiency of the compressor or pump is 

useful (hydrodynamic) energy input to fluid in unit time 
power input to coupling of shaft 170 = 

Hence the mechanical efficiency is 
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In eqn. (2.19), for a compressor or pump process, replace -dWx with dWc and 
rearrange the inequality to give the incremental work input 

(2.24) 

The student should carefully check the fact that the rhs of this inequality is positive, 
working from eqn. (2.19) 

For a complete adiabatic compression process going from state 1 to state 2, the 
overall work input rate is 

1 W C  2 lit [12 + 5(c2 1 2  - c l )  2 + g(z2 - zl)  . (2.25) 

For the corresponding reversible adiabatic compression process, noting that Tds = 
0 = dh - dp/p, the minimum work input rate is 

I 1 
WCmin = m [dh + Tdc2 + gdz = m[(hoa - hol) + g(z2 - ZI )I. (2.26) 

From the steady flow energy equation, for an adiabatic process in a compressor 

(2.27) W c  = h(b2 - hol). 

Figure 2.5b shows a Mollier diagram on which the actual compression process 
is represented by the state change 1-2 and the corresponding ideal process by 
1-2s. For an adiabatic compressor the only meaningful efficiency is the total-to-total 
efficiency which is 

minimum adiabatic work input per unit time 
" = actual adiabatic work input to rotor per unit time 

- ho2s - hol 

ho2 - hol 
- (2.28) 

If the difference between inlet and outlet kinetic energies is small, kc: + k.2' and 

(2.28a) 

For incompressible flow, eqn. (2.25) gives 

A w p  = W p / h  2 [(p2 - PI)/P + ;(c; - c:) + ~ Z Z  - Z I ) ~  1 g[H2 - H11. 

For the ideal case with no fluid friction 

AWp- = gW2 -HI]. (2.29) 

For a pump the hydraulic efficiency is defined as 

(2.30) 
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Small stage or polytropic efficiency 

The isentropic efJiciency described in the preceding section, although fundamen- 
tally valid, can be misleading if used for comparing the efficiencies of turbomachines 
of differing pressure ratios. Now any turbomachine may be regarded as being 
composed of a large number of very small stages irrespective of the actual number 
of stages in the machine. If each small stage has the same efficiency, then the 
isentropic efficiency of the whole machine will be different from the small stage 
efficiency, the difference depending upon the pressure ratio of the machine. This 
perhaps rather surprising result is a manifestation of a simple thermodynamic effect 
concealed in the expression for isentropic efficiency and is made apparent in the 
following argument. 

Compression process 

Figure 2.6 shows an enthalpy-entropy diagram on which adiabatic compression 
between pressures p1 and p2 is represented by the change of state between points 1 
and 2. The corresponding reversible process is represented by the isentropic line 1 
to 2s. It is assumed that the compression process may be divided up into a large 
number of small stages of equal efficiency q p .  For each small stage the actual work 
input is SW and the corresponding ideal work in the isentropic process is 6 W ~ n .  
With the notation of Figure 2.6, 

- - ... SWmin hxs - hl - hys - hx 
‘IF=--- ~ SW hx - h l  h, - hx 

- - 

Since each small stage has the same efficiency, then qF = ( X S W ~ , , / X S W )  is also 
true. 

FIG. 2.6. Compression process by small stages. 
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From the relation Tds = dh - vdp, for a constant pressure process (i3h/as),, = T. 
This means that the higher the fluid temperature the greater is the slope of the 
constant pressure-lines on the Mollier diagram. For a gas where h is a function 
of T, constant pressure lines diverge and the slope of the line p2 is greater than 
the slope of line p1 at the same value of entropy. At equal values of T, constant 
pressure lines are of equal slope as indicated in Figure 2.6. For the special case 
of a perfect gas (where C, is constant), C,(dT/ds) = T for a constant pressure 
process. Integrating this expression results in the equation for a constant pressure 
line, s = C, log T + constant. 

Returning now to the more general case, since 

m w  = ((h* - h l )  + (hy - h*) + . . - }  = (h2 - h, ) ,  

then 

t l p  = [ ( h x s  - hl )  + (h, - Ax) + . . .I/(h2 - hl). 

9c = (h2s - hl)/(h2 - hl). 

The adiabatic efficiency of the whole compression process is 

Because of the divergence of the constant pressure lines 

I(h,-hl)+(h,-h*)+.. .} > (h2s-h1), 

i.e. 

c 6 w ~ n  > w ~ n .  
Therefore, 

9, > 9 c .  

Thus, for a compression process the isentropic efficiency of the machine is less than 
the small stage efficiency, the difference being dependent upon the divergence of 
the constant pressure lines. Although the foregoing discussion has been in terms of 
static states it can be regarded as applying to stagnation states if the inlet and outlet 
kinetic energies from each stage are equal. 

Small stage efficiency for a perfect gas 

An explicit relation can be readily derived for a perfect gas (C, is constant) 
between small stage efficiency, the overall isentropic efficiency and pressure ratio. 
The analysis is for the limiting case of an infinitesimal compressor stage in which 
the incremental change in pressure is d p  as indicated in Figure 2.7. For the actual 
process the incremental enthalpy rise is dh and the corresponding ideal enthalpy 
rise is &is.  

The polytropic efficiency for the small stage is 

(2.3 1) 

since for an isentropic process Tds = 0 = dhi, - wdp. 
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FIG. 2.7. Incremental change of state in a compression process. 

Substituting 2, = RT/p in eqn. (2.31), then 

R T d p  
Q P  = --- c, P d T  

dT - ( V - l ) d P  
T Y l l P  p 

and hence 

(2.32) - ~- - 

as 

Integrating eqn. (2.32) across the whole compressor and taking equal efficiency for 
each infinitesimal stage gives, 

C ,  = yR/(y - 1). 

(Y- - l ) lVpY "=(a) Tl . (2.33) 

Now the isentropic efficiency for the whole compression process is 

rlc = (T2s - T1 )/(T2 - T1) (2.34) 

if it is assumed that the velocities at inlet and outlet are equal. 
For the ideal compression process put q ,  = 1 in eqn. (2.32) and so obtain 

( Y - l ) / Y  
"=(E?) T1 (2.35) 

which is also obtainable from pvy = constant and pv = RT. Substituting eqns. (2.33) 
and (2.35) into eqn. (2.34) results in the expression 

(Y-1 ) l Y  

v c =  [(;) -l]/[(;)--l]. (2.36) 
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FIG. 2.8. Relationship between isentropic (overall) efficiency, pressure ratio and small 
stage (polytropic) efficiency for a compressor ( y  = 1.4). 

Values of “overall” isentropic efficiency have been calculated using eqn. (2.36) for a 
range of pressure ratio and different values of q p ,  and are plotted in Figure 2.8. This 
figure amplifies the observation made earlier that the isentropic efficiency of a finite 
compression process is less than the efficiency of the small stages. Comparison of 
the isentropic efficiency of two machines of different pressure ratios is not a valid 
procedure since, for equal polytropic efficiency, the compressor with the highest 
pressure ratio is penalised by the hidden thermodynamic effect. 

The term polytropic used above arises in the context of a reversible compressor 
compressing a gas from the same initial state to the same final state as the irreversible 
adiabatic compressor but obeying the relation pv” = constant. The index n is called 
the polytropic index. Since an increase in entropy occurs for the change of state in 
both compressors, for the reversible compressor this is only possible if there is a 
reversible heat transfer dQR = Tds. Proceeding farther, it follows that the value of 
the index n must always exceed that of y. This is clear from the following argument. 
For the polytropic process, 

dQR = du + pdv. 

C U  

R 
= -d(pv) + pdv. 

Using pv” = constant and Cu = R / ( y  - l) ,  after some manipulation the expres- 
sion dQR = (y  - n ) / ( y  - 1)pdv is derived. For a compression process dv < 0 and 
dQR > 0 then n > y. For an expansion process dv > 0, dQR < 0 and again n > y. 

EXAMPLE 2.1. An axial flow air compressor is designed to provide an overall 
total-to-total pressure ratio of 8 to 1. At inlet and outlet the stagnation temperatures 
are 300K and 586.4K, respectively. 

Determine the overall total-to-total efficiency and the polytropic efficiency for the 
compressor. Assume that y for air is 1.4. 
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Solution. From eqn. (2.28), substituting h = CpT, the efficiency can be written 
as, 

( Y - l ) / Y  

81/3.5 - 1 

586.4/300 - 1 
= 0.85. - - Tozc - To1 - - (9 - l  

‘IC = 
To2 - To1 T02/T01 - 1 

From eqn. (2.33), taking logs of both sides and re-arranging, we get, 

1 In 8 
= 0.8865 Y - 1 In (P02/P01) - _  - x  ‘Ip = - y ln(To2/Tol) 3.5 In 1.9547 

Turbine polytropic efficiency 

A similar analysis to the compression process can be applied to a perfect gas 
expanding through an adiabatic turbine. For the turbine the appropriate expressions 
for an expansion, from a state 1 to a state 2, are 

a p ( Y - l ) l Y  
“=(E) TI (2.37) 

(2.38) ‘I t  = [l - (;)Qp(’-”i’] / [ 1 -  (;3(’7 - . 

The derivation of these expressions is left as an exercise for the student. “Overall” 
isentropic efficiencies have been calculated for a range of pressure ratio and different 
polytropic efficiencies and are shown in Figure 2.9. The most notable feature of these 
results is that, in contrast with a compression process, for an expansion, isentropic 
efficiency exceeds small stage efficiency. 

FIG. 2.9. Turbine isentropic efficiency against pressure ratio for various polytropic effi- 
ciencies ( y  = 1.4). 
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Reheat factor 

The foregoing relations obviously cannot be applied to steam turbines as vapours 
do not in general obey the gas laws. It is customary in steam turbine practice to 
use a reheat factor RH as a measure of the inefficiency of the complete expansion. 
Referring to Figure 2.10, the expansion process through an adiabatic turbine from 
state 1 to state 2 is shown on a Mollier diagram, split into a number of small stages. 
The reheat factor is defined as 

RH = [ ( h ~  - hxs) + (hx - h y s )  + . . .I/(h1 - h2s)  = (zAhis) / (hl  - h2s)- 

Due to the gradual divergence of the constant pressure lines on a Mollier chart, RH 
is always greater than unity. The actual value of RH for a large number of stages 
will depend upon the position of the expansion line on the Mollier chart and the 
overall pressure ratio of the expansion. In normal steam turbine practice the value of 
RH is usually between 1.03 and 1.08. For an isentropic expansion in the superheated 
region with pv” = constant, the tables of Rogers and Mayhew (1995) give a value 
for n = 1.3. Assuming this value for n is valid, the relationship between reheat 
factor and pressure ratio for various fixed values of the polytropic efficiency has 
been calculated and is shown in Figure 2.11. 

Now since the isentropic efficiency of the turbine is 

hl - h2 hl - h2 CAhi, 
hl - h b  CAhi, hl - h b  

-.- v t = - -  - 

FIG. 2.10. Mollier diagram showing expansion process through a turbine split up into a 
number of small stages. 
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then 

‘7t = ‘ I p R H  (2.39) 

which establishes the connection between polytropic efficiency, reheat factor and 
turbine isentropic efficiency. 

Nozzle efficiency 

In a large number of turbomachinery components the flow process can be regarded 
as a purely nozzle flow in which the fluid receives an acceleration as a result of a 
drop in pressure. Such a nozzle flow occurs at entry to all turbomachines and in the 
stationary blade rows in turbines. In axial machines the expansion at entry is assisted 
by a row of stationary blades (called guide vanes in compressors and nozzles in 
turbines) which direct the fluid on to the rotor with a large swirl angle. Centrifugal 
compressors and pumps, on the other hand, often have no such provision for flow 
guidance but there is still a velocity increase obtained from a contraction in entry 
flow area. 

FIG. 2.1 1. Relationship between reheat factor, pressure ratio and polytropic efficiency 
(n = 1.3). 
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FIG. 2.12. Mollier diagrams for the flow processes through a nozzle and a diffuser: 
(a) nozzle; (b) diffuser. 

Figure 2.12a shows the process on a Mollier diagram, the expansion proceeding 
from state 1 to state 2. It is assumed that the process is steady and adiabatic such 
that Lq-,l = h02. 

According to Horlock (1966), the most frequently used definition of nozzle effi- 
ciency, q N  is, the ratio of the final kinetic energy per unit mass to the maximum 
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theoretical kinetic energy per unit mass obtained by an isentropic expansion to the 
same back pressure, i.e. 

I]N = <ic~>/<ic is>  = (hol - h2)/(h01 - h2s ) .  (2.40) 

Nozzle efficiency is sometimes expressed in terms of various loss or other coeffi- 
cients. An enthalpy loss coefficient for the nozzle can be defined as 

<N = (h2 - h 2 s ) / ( i C : ) ,  (2.41) 

and, also, a velocity coefficient for the nozzle, 

K N  = C Z / C ~ .  (2.42) 

It is easy to show that these definitions are related to one another by 

(2.43) 

EXAMPLE 2.2. G n  enters the nozzles of a turbine stage at a stagnation pressure 
and temper I e of <.Obar and 1200K and leaves with a velocity of 5 7 2 d s  and 
at a static pressure of 2.36 bar. Determine the nozzle efficiency assuming the gas 
has the average properties over the temperature range of the expansion of C ,  = 
1.160WkgK and y = 1.33. 

2 
I]N = 1/(1 + < N >  = KN- 

SoEution. From eqns. (2.40) and (2.35) the nozzle efficiency becomes 

Assuming adiabatic flow (To2 = Tol): 
1 2  T2 = To2 - 7c2/CP = 1200 - x 572'/1160 = 1059K, 

and thus 

0.1 175 
= 0.9576. 

1 - (2.36/4)0.33/1.33 0.12271 ~ 

- - 
1 - 1059/1200 

V N  = 

Diffusers 
A diffuser is a component of a fluid flow system designed to reduce the flow 

velocity and thereby increase the fluid pressure. All turbomachines and many other 
flow systems incorporate a diffuser (e.g. closed circuit wind tunnels, the duct 
between the compressor and burner of a gas turbine engine, the duct at exit from a 
gas turbine connected to the jet pipe, the duct following the impeller of a centrifugal 
compressor, etc.). Turbomachinery flows are, in general, subsonic (M < 1) and the 
diffuser can be represented as a channel diverging in the direction of flow (see 
Figure 2.13). 

The basic diffuser is a geometrically simple device with a rather long history of 
investigation by many researchers. The long timespan of the research is an indicator 
that the fluid mechanical processes within it are complex, the research rather more 
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FIG. 2.1 3. Some subsonic diffuser geometries and their parameters: (a) two-dimensional; 
(b) conical; (c) annular. 

difficult than might be anticipated, and some aspects of the flow processes are still 
not filly understood. There is now a vast literature about the flow in diffusers and 
their performance. Only a few of the more prominent investigations are referenced 
here. A noteworthy and recommended reference, however, which reviews many 
diverse and recondite aspects of diffuser design and flow phenomena is that of 
Kline and Johnson (1986). 

The primary fluid mechanical problem of the diffusion process is caused by the 
tendency of the boundary layers to separate from the diffuser walls if the rate 
of diffusion is too rapid. The result of too rapid diffusion is always large losses 
in stagnation pressure. On the other hand, if the rate of diffusion is too low, the 
fluid is exposed to an excessive length of wall and fluid friction losses become 
predominant. Clearly, there must be an optimum rate of diffusion between these 
two extremes for which the losses are minimised. Test results from many sources 
indicate that an included angle of about 20 = 7 degrees gives the optimum recovery 
for both two-dimensional and conical diffusers. 
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Diffuser performance parameters 

The diffusion process can be represented on a Mollier diagram, Figure 2.12b, 
by the change of state from point 1 to point 2, and the corresponding changes in 
pressure and velocity from p1 and c1 to p2 and c2. The actual performance of a 
diffuser can be expressed in several different ways: 

(1) as the ratio of the actual enthalpy change to the isentropic enthalpy change; 
(2) as the ratio of an actual pressure rise coefficient to an ideal pressure rise co- 

efficient. 

For steady and adiabatic flow in stationary passages, hol = h02, so that 

(2.44a) 

For the equivalent reversible adiabatic process from state point 1 to state point 2s, 

(2.44b) 

1 2  2 h2 - hl = z(cl - c 2 ) .  

(h2s - hl = z ( C 1  - C 2 J .  
1 2  2 

A difSuser eficiency, QD, also called the dif iser  effectiveness, can be defined as 

00 = (h2s - hl)/(h2 - h l )  = - &)/(c: - (2.45a) 

In a low speed flow or a flow in which the density p can be considered nearly 
constant, 

h2s - hl = ( P 2  - P l ) / P  

so that the diffuser efficiency can be written 

QD = 2(P2 - p l ) / { p ( c :  - ci). (2.45b) 

Equation (2.45a) can be expressed entirely in terms of pressure differences, by 
writing 

h2 - h2s = (h2 - h l )  - (h2s - hl)  

= ;(c: - c;) - (P2  - P l ) / P  = (Po1 - P02) /P ,  

then, with eqn. (2.45a), 
1 - - (h2s - h l )  

(h2s - h l )  - (h2s - h2) 
QD = 

1 - (h2s - h2)/(h2s - h l )  

1 + (Po1 - P02) / (P2  - P l ) '  
(2.46) 

1 - - 

Alternative expressions for diffuser performance 

(1) A pressure rise coeficient C ,  can be defined: 

c, = (P2 - P1)/41, (2.47a) 

where q1 = ipc:. 

as 
For an incompressible flow through the diffuser the energy equation can be written 
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where the loss in total pressure, Apo = pol - p02. Also, using the continuity equa- 
tion across the diffuser, clAl = c2A2, we obtain 

~ 1 1 ~ 2  = &/Ai = AR, (2.49) 

where AR is the area ratio of the diffuser. 

that the ideal pressure rise coeficient is 
From eqn. (2.48), by setting Apo to zero and with eqn. (2.49), it is easy to show 

(2.47b) 

Thus, eqn. (2.48) can be rewritten as 

Cp = Cpi - APO/ql. (2.50) 

Using the definition given in eqn. (2.46), then the diffuser efficiency (referred to as 
the diffuser effectiveness by Sovran and Klomp (1967)), is 

VD = Cp/Cpi- (2.5 1)  

(2) A total pressure recovery factor, p02/p01, is sometimes used as an indicator 
of the performance of diffusers. From eqn. (2.45a), the diffuser efficiency can be 
written 

For the isentropic process 1-2s: 

For the constant temperature process 01 -02, Tds = -dp/p which, when combined 
with the gas law, p/p = RT, gives ds = -Rdp/p: 

:. As = Rln - . (9 
For the constant pressure process 2s-2, Tds = dh = CpdT, 

:. As = Cpln - , (3 
Equating these expressions for the entropy increase and using R/Cp = ( y  - l) /y,  
then 
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FIG. 2.14. Variation of diffuser efficiency with static pressure ratio for constant values of 
total pressure recovery factor ( y  = 1.4). 

Substituting these two expressions into eqn. (2.52): 

( p 2 / p ] ) ( y - l ) I y  - 1 

r(P01/P02)(P2/PI)I(y-1)/y - 1. 
QD = (2.53) 

The variation of ‘10 as a function of the static pressure ratio, p 2 / p I ,  for specific 
values of the total pressure recovery factor, p02/p01, is shown in Figure 2.14. 

Some remarks on diffuser performance 

It was pointed out by Sovran and Klomp (1967) that the uniformity or steadiness 
of the flow at the diffuser exit is as important as the reduction in flow velocity (or 
the static pressure rise) produced. This is particularly so in the case of a compressor 
located at the diffuser exit since the compressor performance is sensitive to non- 
uniformities in velocity in its inlet flow. Figure 2.15, from Sovran and Klomp (1967), 
shows the occurrence of flow unsteadiness and/or non-uniform flow at the exit from 
two-dimensional diffusers (correlated originally by Kline, Abbott and Fox 1959). 
Four different flow regimes exist, three of which have steady or reasonably steady 
flow. The region of “no appreciable stall” is steady and uniform. The region marked 
“large transitory stall” is unsteady and non-uniform, while the “fully-developed’’ and 
“jet flow” regions are reasonably steady but very non-uniform. 

The line marked a-a will be of interest in turbomachinery applications. However, 
a sharply marked transition does not exist and the definition of an appropriate line 
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FIG. 2.15. Flow regime chart for two-dimensional diffusers (adapted from Sovran and 
Klomp 1967). 

FIG. 2.16. Typical diffuser performance curves for a two-dimensional diffuser, with 
L/W, = 8.0 (adapted from Kline et a/. 1959). 
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involves a certain degree of arbitrariness and subjectivity on the occurrence of “first 
Stall”. 

Figure 2.16 shows typical performance curves for a rectangular diffuser with a 
fixed sidewall to length ratio, L/W1 = 8.0, given in Kline et al. (1959). On the line 
labelled C,,  points numbered 1, 2 and 3 are shown. These same numbered points 
are redrawn onto Figure 2.15 to show where they lie in relation to the various 
flow regimes. Inspection of the location of point 2 shows that optimum recovery at 
constant length occurs slightly above the line marked “no appreciable stall”. The 
performance of the diffuser between points 2 and 3 in Figure 2.16 is shows a very 
significant deterioration and is in the regime of large amplitude, very unsteady flow. 

Maximum pressure recovery 

From an inspection of eqn. (2.46) it will be observed that when diffuser effi- 
ciency VD is a maximum, the total pressure loss is a minimum for a given rise in 
static pressure. Another optimum problem is the requirement of maximum pressure 
recovery for a given diffuser length in the flow direction regardless of the area 
ratio A, = A2/A1. This may seem surprising but, in general, this optimum condi- 
tion produces a different diffuser geometry from that needed for optimum efficiency. 
This can be demonstrated by means of the following considerations. 

From eqn. (2.51), taking logs of both sides and differentiating, we get: 
a a a 

-((In VD) = -(In C,) - -(In C,i). ae ae ae 
Setting the L.H.S to zero for the condition of maximurn VD, then 

1 ac, 1 ac,, 
c, ae c,i ae 

- (2.54) 

Thus, at the maximum efficiency the fractional rate of increase of C, with a change 
in I9 is equal to the fractional rate of increase of C,i with a change in 8. At this 
point C, is positive and, by definition, both CPi  and a C , / 8  are also positive. 
Equation (2.54) shows that aC,/M > 0 at the maximurn efficiency point. Clearly, 
C ,  cannot be at its maximum when 90 is at its peak value! What happens is 
that C ,  continues to increase until aC,/% = 0, as can be seen from the curves in 
Figure 2.16. 

Now, upon differentiating eqn. (2.50) with respect to 8 and setting the lhs to zero, 
the condition for maximum C ,  is obtained, namely 

ac,, a 
- = ~ ( A P 0 / 4 1 ) .  ae 

Thus, as the diffuser angle is increased beyond the divergence which gave maximum 
efficiency, the actual pressure rise will continue to rise until the additional losses 
in total pressure balance the theoretical gain in pressure recovery produced by the 
increased area ratio. 

Diffuser design calculation 

The performance of a conical diffuser has been chosen for this purpose using data 
presented by Sovran and Klomp (1967). This is shown in Figure 2.17 as contour 
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FIG. 2.17. Performance chart for conical diffusers, l3, Z 0.02. (adapted from Sovran and 
Klomp 1967). 

plots of C ,  in terms of the geometry of the diffuser, L/Rl and the area ratio AR. 
Two optimum diffuser lines, useful for design purposes, were added by the authors. 
The first is the line C*p, the locus of points which defines the diffuser area ratio 
AR, producing the maximum pressure recovery for a prescribed non-dimensional 
length, L/RI. The second is the line C y ,  the locus of points defining the diffuser 
non-dimensional length, producing the maximum pressure recovery at a prescribed 
area ratio. 

EXAMPLE 2.3. Design a conical diffuser to give maximum pressure recovery in a 
non-dimensional length N/R1 = 4.66 using the data given in Figure 2.17. 

Solution. From the graph, using log-linear scaling, the appropriate value of C ,  
is 0.6 and the corresponding value of AR is 2.13. From eqn. (2.47b), C,i = 1 
-(1/2. 13*) = 0.78. Hence, ~0 = 0.6/0.78 = 0.77. 

Transposing the expression given in Figure 2.13b, the included cone angle can 
be found: 

28 = 2tan-'{(A;' - l)/(L/Rl)} = 11.26deg. 
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EXAMPLE 2.4. Design a conical diffuser to give maximum pressure recovery at a 
prescribed area ratio AR = 1.8 using the data given in Figure 2.17. 

Solution. From the graph, C ,  = 0.6 and N/R1 = 7.85 (using log-linear scaling). 
Thus, 

28 = 2tar1-'{(1.8'.~ - 1)/7.85) = 5deg. 
2 C,i = 1 - (1/1.8 ) = 0.69 and ~j-0 = 0.6/0.69 = 0.87. 

Analysis of a non-uniform diffuser flow 

The actual pressure recovery produced by a diffuser of optimum geometry is 
known to be strongly affected by the shape of the velocity profile at inlet. A large 
reduction in the pressure rise which might be expected from a diffuser can result 
from inlet flow non-uniformities (e.g. wall boundary layers and, possibly, wakes 
from a preceding row of blades). Sovran and Klomp (1967) presented an incom- 
pressible flow analysis which helps to explain how this deterioration in performance 
occurs and some of the main details of their analysis are included in the following 
account. 

The mass-averaged total pressure po at any cross-section of a diffuser can be 
obtained by integrating over the section area. For symmetrical ducts with straight 
centre lines the static pressure can be considered constant, as it is normally. Thus, 

(2.55) 

The average axial velocity U and the average dynamic pressure 4 at a section are 

Substituting into eqn. (2.55), 

= p + ; 1 ( ; )3  dA = P + ff4, 

where (Y is the kinetic energy flux coefficient of the velocity profile, i.e. 

(2.56) 

(2.57) 

where 7 is the mean square of the velocity in the cross-section and Q = A U ,  i.e. 
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From eqn. (2.56) the change in static pressure in found as 

P2 - PI = (alql - azq2) - (Fo1 - F02). (2.58) 

From eqn. (2.51), with eqns. (2.47a) and (2.47b), the diffuser efficiency (or diffuser 
effectiveness) can now be written: 

Substituting eqn. (2.58) into the above expression, 

(2.59) 

where tir is the total pressure loss coefficient for the whole diffuser, i.e. 

m = (701 - Poz)/q1. (2.60) 

Equation (2.59) is particularly useful as it enables the separate effects due the 
changes in the velocity profile and total pressure losses on the diffuser effectiveness 
to be found. The first term in the equation gives the reduction in caused by 
insuficientjow diffusion. The second term gives the reduction in VD produced by 
viscous effects and represents ineficientjow diffusion. An assessment of the relative 
proportion of these effects on the effectiveness requires the accurate measurement 
of both the inlet and exit velocity profiles as well as the static pressure rise. Such 
complete data is seldom derived by experiments. However, Sovran and Klomp 
(1967) made the observation that there is a widely held belief that fluid mechanical 
losses are the primary cause of poor performance in diffusers. One of the important 
conclusions they drew from their work was that it is the thickening of the inlet 
boundary layer which is primarily responsible for the reduction in V D .  Thus, it is 
insuficient flow diffusion rather than ineficient flow diffusion which is often the 
cause of poor performance. 

Some of the most comprehensive tests made of diffuser performance were those 
of Stevens and Williams (1980) who included traverses of the flow at inlet and at 
exit as well as careful measurements of the static pressure increase and total pressure 
loss in low speed tests on annular diffusers. In the following worked example, to 
illustrate the preceding theoretical analysis, data from this source has been used. 

EWLE 2.5. An annular diffuser with an area ratio, AR = 2.0 is tested at low 
speed and the results obtained give the following data: 

at entry, a1 = 1.059, B1 = 0.109 

at exit, a2 = 1.543, BZ = 0.364, C, = 0.577 

Determine the diffuser efficiency. 

NB B1 and B2 are the fractions of the area blocked by the wall boundary layers 
at inlet and exit (displacement thicknesses) and are included only to illustrate the 
profound effect the diffusion process has on boundary layer thickening. 
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Solution. From eqns. (2.47a) and (2.58): 

= 1.059 - 1.543/4 - 0.09 = 0.583. 

Using eqn. (2.59) directly, 

~0 = C,/Cp; = C,/(l - 1/Ai) = 0.583/0.75 

:. VD = 0.7777. 

Stevens and Williams observed that an incipient transitory stall was in evidence 
on the diffuser outer wall which affected the accuracy of the results. So, it is not 
surprising that a slight mismatch is evident between the above calculated result and 
the measured result. 
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Problems 
1. For the adiabatic expansion of a perfect gas through a turbine, show that the overall 

efficiency q, and small stage efficiency q p  are related by 

qr = (1 - &+)/ (1  - E ) ,  

where E = r("")'y, and r is the expansion pressure ratio, y is the ratio of specific heats. 
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An axial flow turbine has a small stage efficiency of 86%, an overall pressure ratio of 4.5 
to 1 and a mean value of y equal to 1.333. Calculate the overall turbine efficiency. 

2. Air is expanded in a multi-stage axial flow turbine, the pressure drop across each stage 
being very small. Assuming that air behaves as a perfect gas with ratio of specific heats y, 
derive pressure-temperature relationships for the following processes: 

(i) reversible adiabatic expansion; 
(ii) irreversible adiabatic expansion, with small stage efficiency q p ;  

(iii) reversible expansion in which the heat loss in each stage is a constant fraction k of the 

(iv) reversible expansion in which the heat loss is proportional to the absolute temperature T. 

If the entry temperature is 1 100 K, and the pressure ratio across the turbine is 6 to 1, calculate 
the exhaust temperatures in each of these three cases. Assume that y is 1.333, that q p  = 0.85, 
and that k = 0.1. 

3. A multi-stage high-pressure steam turbine is supplied with steam at a stagnation pressure 
of 7MPa. and a stagnation temperature of 500°C. The corresponding specific enthalpy is 
3410Mkg. The steam exhausts from the turbine at a stagnation pressure of 0.7MPa, the 
steam having been in a superheated condition throughout the expansion. It can be assumed 
that the steam behaves like a perfect gas over the range of the expansion and that y = 1.3. 
Given that the turbine flow process has a small-stage efficiency of 0.82, determine. 
(i) the temperature and specific volume at the end of the expansion; 

(ii) the reheat factor. 
The specific volume of superheated steam is represented by pv = 0.231(h - 1943), where 
p is in kPa, z1 is in m3kg and h is in Mkg. 

4. A 20MW back-pressure turbine receives steam at 4MPa and 300"C, exhausting from 
the last stage at 0.35 MPa. The stage efficiency is 0.85, reheat factor 1.04 and external losses 
2% of the actual sentropic enthalpy drop. Determine the rate of steam flow. 

At the exit from the first stage nozzles the steam velocity is 244m/s, specific volume 
68.6 dm3kg, mean diameter 762 mm and steam exit angle 76 deg measured from the axial 
direction. Determine the nozzle exit height of this stage. 

5. Steam is supplied to the first stage of a five stage pressure-compounded steam turbine 
at a stagnation pressure of 1.5 MPa and a stagnation temperature of 350°C. The steam leaves 
the last stage at a stagnation pressure of 7.0kPa with a corresponding dryness fraction of 
0.95. By using a Mollier chart for steam and assuming that the stagnation state point locus 
is a straight line joining the initial and final states, determine 

(i) the stagnation conditions between each stage assuming that each stage does the same 

(ii) the total-to-total efficiency of each stage; 
(iii) the overall total-to-total efficiency and total-to-static efficiency assuming the steam enters 

the condenser with a velocity of 200ds ;  
(iv) the reheat factor based upon stagnation conditions. 

enthalpy drop in that stage; 

Sketch the first three processes on a T ,  s diagram. 

amount of work; 



Two-dimensional Cascades 
Let us first understand the facts and then we may seek the causes. (ARISTOTLE.) 

Introduction 
The operation of any turbomachine is directly dependent upon changes in the 

working fluid’s angular momentum as it crosses individual blade rows. A deeper 
insight of turbomachinery mechanics may be gained from consideration of the flow 
changes and forces exerted within these individual blade rows. In this chapter the 
flow past two-dimensional blade cascades is examined. 

A review of the many different types of cascade tunnel, which includes low-speed, 
high-speed, intermittent blowdown and suction tunnels, etc. is given by Sieverding 
(1985). The range of Mach number in axial-flow turbomachines can be considered 
to extend from M = 0.2 to 2.5 (of course, if we also include fans then the lower 
end of the range is very low). Two main types of cascade tunnel are: 

(1) low-speed, operating in the range 20-6Ods; and 
(2) high-speed, for the compressible flow range of testing. 

A typical low-speed, continuous running, cascade tunnel is shown in Figure 3.l(a). 
The linear cascade of blades comprises a number of identical blades, equally spaced 
and parallel to one another. A suction slot is situated on the ceiling of the tunnel 
just before the cascade to allow the controlled removal of the tunnel boundary layer. 
Carefully controlled suction is usually provided on the tunnel sidewalls immediately 
upstream of the cascade so that two-dimensional, constant axial velocity flow can 
be achieved. 

Figure 3.1 b shows the test section of a cascade facility for transonic and moderate 
supersonic inlet velocities. The upper wall is slotted and equipped for suction, 
allowing operation in the transonic regime. The flexible section of the upper wall 
allows for a change of geometry so that a convergent-divergent nozzle is formed, 
thus allowing the flow to expand supersonically upstream of the cascade. 

To obtain truly two-dimensional flow would require a cascade of infinite extent. 
Of necessity cascades must be limited in size, and careful design is needed to ensure 
that at least the central regions (where flow measurements are made) operate with 
approximately two-dimensional flow. 

For axial flow machines of high hub-tip ratio, radial velocities are negligible and, 
to a close approximation, the flow may be described as two-dimensional. The flow in 
a cascade is then a reasonable model of the flow in the machine. With lower hub-tip 
radius ratios, the blades of a turbomachine will normally have an appreciable amount 

55 
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FIG. 3.1. Compressor cascade wind tunnels. (a) Conventional low-speed, continuous 
running cascade tunnel (adapted from Carter et a/. 1950). (b) Transonidsupersonic 

cascade tunnel (adapted from Sieverding 1985). 

of twist along their length, the amount depending upon the sort of “vortex design” 
chosen (see Chapter 6) .  However, data obtained from two-dimensional cascades can 
still be of value to a designer requiring the performance at discrete blade sections 
of such blade rows. 

Cascade nomenclature 
A cascade blade profile can be conceived as a curved camber line upon which a 

pro$le thickness distribution is symmetrically superimposed. Referring to Figure 3.2 
the camber line y(x)  and profile thickness f ( x )  are shown as functions of the distance 
x along the blade chord 1. In British practice the shape of the camber line is usually 
either a circular arc or a parabolic arc defined by the maximum camber b located at 
distance a from the leading edge of the blade. The profile thickness distribution may 
be that of a standard aerofoil section but, more usually, is one of the sections specif- 
ically developed by the various research establishments for compressor or turbine 
applications. Blade camber and thickness distributions are generally presented as 
tables of y / l  and t / l  against x / l .  Some examples of these tables are quoted by 
Horlock (1958, 1966). Summarising, the useful parameters for describing a cascade 
blade are: camber line shape, b / l ,  u / l ,  type of thickness distribution and maximum 
thickness to chord ratio, tma/Z. 
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FIG. 3.2. Compressor cascade and blade notation. 

With the blades arranged in cascade, two important additional geometric variables 
which define the cascade are the space-chord ratio SA and the stagger angle 6, 
which is the angle between the chord line and a reference direction perpendicular 
to the cascadefront. Throughout the remainder of this book, all fluid and blade 
angles are referred to this perpendicular so as to avoid the needless complication 
arising from the use of other reference directions. However, custom dies hard; in 
steam turbine practice, blade and flow angles are conventionally measured from the 
tangential direction (i.e. parallel to the cascade front). Despite this, it is better to 
avoid ambiguity of meaning by adopting the single reference direction already given. 

The blades angles at entry to and at exit from the cascade are denoted by a; and 
a; respectively. A most useful blade parameter is the camber angle 8 which is the 
change in angle of the camber line between the leading and trailing edges and equals 
a', - a; in the notation of Figure 3.2. For circular arc camber lines the stagger angle 
is 6 = ;(a; + a;). For parabolic arc camber lines of low camber (i.e. small b / l )  as 
used in some compressor cascades, the inlet and outlet blade angles are 

bll a; = 6 +tan-' Jc a; = 6 - tan-' 
(a l l  l2 ( I  - a/Z)2 

the equation approximating for the parabolic arc being Y = X { A ( X  - 1) + B Y }  
where X = x / l ,  Y = y/E. A ,  B are two arbitrary constants which can be solved 
with the conditions that at x = a, y = b and dy1d.x = 0. The exact general equation 
of a parabolic arc camber line which has been used in the design of highly cambered 
turbine blades is dealt with by Dunham (1974). 

Analysis of cascade forces 

The fluid approaches the cascade from far upstream with velocity c1 at an angle 
a1 and leaves far downstream of the cascade with velocity c2 at an angle a2. In 
the following analysis the fluid is assumed to be incompressible and the flow to be 
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steady. The assumption of steady flow is valid for an isolated cascade row but, in a 
turbomachine, relative motion between successive blade rows gives rise to unsteady 
flow effects. As regards the assumption of incompressible flow, the majority of 
cascade tests are conducted at fairly low Mach numbers (e.g. 0.3 on compressor 
cascades) when compressibility effects are negligible. Various techniques are avail- 
able for correlating incompressible and compressible cascades; a brief review is 
given by Csanady (1964). 

A portion of an isolated blade cascade (for a compressor) is shown in Figure 3.3. 
The forces X and Y are exerted by unit depth of blade upon the fluid, exactly equal 
and opposite to the forces exerted by the fluid upon unit depth of blade. A control 
surface is drawn with end boundaries far upstream and downstream of the cascade 
and with side boundaries coinciding with the median stream lines. 

Applying the principle of continuity to a unit depth of span and noting the assump- 
tion of incompressibility, yields 

c1 cosa1 = c2 cosa2 = cx. (3.1) 

The momentum equation applied in the x and y directions with constant axial 
velocity gives, 

x = (P2 - Pl)& 

y = PSCX(C,l - cy217 

(3.2) 

(3.3) 

or 

Y = psc,(tana1 - tana2) (3.3a) 

Equations (3.1) and (3.3) are completely valid for a flow incurring total pressure 
losses in the cascade. 

FIG. 3.3. Forces and velocities in a blade cascade. 
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Energy losses 

A real fluid crossing the cascade experiences a loss in total pressure Apo due to 
skin friction and related effects. Thus 

APO PI - p 2  1 2 2 - + -(c* - c2). 
P P 2 

(3.4) 

Noting that c: - ci = (c;~ + c,') - (c;~ + c,') = (cyl + cy2)(cyl - cy2), substitute 
eqns. (3.2) and (3.3) into eqn. (3.4) to derive the relation, 

APO 1 - = -(-x + Y tanff,), 
P PS 

(3.5) 

where 

tana, = ;(tanal + tanffz). (3.6) 

A non-dimensional form of eqn. (3.5) is often useful in presenting the results of 
cascade tests. Several forms of total pressure-loss coefficient can be defined of 
which the most popular are, 

(3.7b) 

Using again the same reference parameter, a pressure rise coefficient C ,  and a 
tangential force coefficient C f  may be defined 

P 2 -  P1 x -- 
- ;psc,2' CP = 

2 p c x  
Y 

using eqns. (3.2) and (3.3a). 
Substituting these coefficients into eqn. (3.5) to give, after some rearrangement, 

(3.10) c, = Cf tana, - z'. 

Lift and drag 
A mean velocity c, is defined as 

c, = cx/ cosff,, (3.1 1) 

where a, is itself defined by eqn. (3.6). Considering unit depth of a cascade blade, 
a lift force L acts in a direction perpendicular to c, and a drag force D in a direction 
parallel to c,. Figure 3.4 shows L and D as the reaction forces exerted by the blade 
upon the fluid. 
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FIG. 3.4. Lift and drag forces exerted by a cascade blade (of unit span) upon the fluid. 

FIG. 3.5. Axial and tangential forces exerted by unit span of a blade upon the fluid. 

Experimental data are often presented in terms of lift and drag when the data may 
be of greater use in the form of tangential force and total pressure loss. The lift and 
drag forces can be resolved in terms of the axial and tangential forces. Refemng to 
Figure 3.5, 

L = X sinam + Y COSam,  (3.12) 

D = Ysincr, -X'COS(Y,. (3.13) 

From eqn. (3.5) 

D = ~ ~ ~ a , ( Y t a n a ,  -X)=SAPOCOSCY~.  (3.14) 

Rearranging eqn. (3.14) for X and substituting into eqn. (3.12) gives, 

L = (Y tan a, - SAPO) sin a, + Y cos a, 

= Y sec a, - SAPO sin 01, 

= pscz(tanal - tana2)seca, -sAposina,, (3.15) 

after using eqn. (3.9). 
Lift and drag coefficients may be introduced as 

(3.16a) 
L 

CL = j--- +;' ' 

;pC;1. 
(3.16b) 

D 
C D  = - 
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Using eqn. (3.14) together with eqn. (3.7), 

(3.17) 

With eqn. (3.15) 

S 
= 2- cosa,(tanal - tana2) - CD tana,. (3.18) 

1 

Alternatively, employing eqns. (3.9) and (3.17), 

S sin h, 
CL = -cosa, 1 (Cf -e7) (3.19) 

Within the normal range of operation in a cascade, values of CD are very much less 
than CL. As a, is unlikely to exceed 60deg, the quantity CD tana, in eqn. (3.18) 
can be dropped, resulting in the approximation, 

L C L  . 2sec2a, Cf 2 _ -  - ( m a l  - tana2) = - sec a,. _ -  - 
D C D  - e  e (3.20) 

Circulation and lift 
The lift of a single isolated aerofoil for the ideal case when D = 0 is given by 

the Kutta-Joukowski theorem 

L = prc, (3.21) 

where c is the relative velocity between the aerofoil and the fluid at infinity and r is 
the circulation about the aerofoil. This theorem is of fundamental importance in the 
development of the theory of aerofoils (for further information see Glauert (1959). 

In the absence of total pressure losses, the lift force per unit span of a blade in 
cascade, using eqn. (3.15), is 

(3.22) 

Now the circulation is the contour integral of velocity around a closed curve. For 
the cascade blade the circulation is 

r = s(cyl - cy2). (3.23) 

Combining eqns. (3.22) and (3.23), 

L = pn,. (3.24) 

As the spacing between the cascade blades is increased without limit (i.e. 
s += oo), the inlet and outlet velocities to the cascade, c1 and c2, becomes equal in 
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magnitude and direction. Thus c1 = c2 = c and eqn. (3.24) becomes identical with 
the Kutta-Joukowski theorem obtained for an isolated aerofoil. 

Efficiency of a compressor cascade 

The efficiency VD of a compressor blade cascade can be defined in the same way 
as diffuser efficiency; this is the ratio of the actual static pressure rise in the cascade 
to the maximum pbsible theoretical pressure rise (i.e. with Apo = 0). Thus, 

P2 - P1 
I]D= 1 &.: - 4 

= I -  APO 
p.,2 tana,(tanal - tana2)' 

Inserting eqns. (3.7) and (3.9) into the above equation, 

(3.25) 

Equation (3.20) can be written as </Cf = (sec2 a,)CD/Ct which when substituted 
into eqn. (3.25) gives 

(3.26) 

Assuming a constant lift-drag ratio, eqn. (3.26) can be differentiated with respect 
to am to give the optimum mean flow angle for maximum efficiency. Thus, 

ar]D 4cDcOskim 
= 0, -- - 

h m  cLsin2kim 

so that 

therefore 

(3.27) 

This simple analysis suggests that maximum efficiency of a compressor cascade is 
obtained when the mean flow angle is 45 deg, but ignores changes in the ratio CD/CL 
with varying am. Howell (1945) calculated the effect of having a specified variation 
of CD/CL upon cascade efficiency, comparing it with the case when CD/CL is 
constant. Figure 3.6 shows the results of this calculation as well as the variation of 
CD/CL with am. The graph shows that V D ~ ~  is at an optimum angle only a little less 
than 45 deg but that the curve is rather flat for a rather wide change in am. Howell 
suggested that value of am rather less than the optimum could well be chosen with 
little sacrifice in efficiency, and with some benefit with regard to power-weight ratio 
of compressors. In Howell's calculations, the drag is an estimate based on cascade 
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FIG. 3.6. Efficiency variation with average flow angle (adapted from Howell 1945). 

experimental data together with an allowance for wall boundary-layer losses and 
“secondary-flow’’ losses. 

Performance of two-dimensional cascades 
From the relationships developed earlier in this chapter it is apparent that the 

effects of a cascade may be completely deduced if the flow angles at inlet and 
outlet together with the pressure loss coefficient are known. However, for a given 
cascade only one of these quantities may be arbitrarily specified, the other two 
being fixed by the cascade geometry and, to a lesser extent, by the Mach number 
and Reynolds number of the flow. For a given family of geometrically similar 
cascades the performance may be expressed functionally as, 

<, a2 = @ I ,  MI,  Re), * (3.28) 

where < is the pressure loss coefficient, eqn. (3.7), M1 is the inlet Mach number 
= ~l/(yRT1)’/~, Re is the inlet Reynolds number = p l c l l / p  based on blade chord 
length. 

Despite numerous attempts it has not been found possible to determine, accurately, 
cascade performance characteristics by theoretical means alone and the experimental 
method still remains the most reliable technique. An account of the theoretical 
approach to the problem lies outside the scope of this book, however, a useful 
summary of the subject is given by Horlock (1958). 

The cascade wind tunnel 
The basis of much turbomachinery research and development derives from the 

cascade wind tunnel, e.g. Figure 3.1 (or one of its numerous variants), and a brief 
description of the basic aerodynamic design is given below. A more complete 
description of the cascade tunnel is given by Carter et al. (1950) including many of 
the research techniques developed. 
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FIG. 3.7. Streamline flow through cascades (adapted from Carter et al. 1950). 

In a well-designed cascade tunnel it is most important that the flow near the 
central region of the cascade blades (where the flow measurements are made) is 
approximately two-dimensional. This effect could be achieved by employing a large 
number of long blades, but an excessive amount of power would be required to 
operate the tunnel. With a tunnel of more reasonable size, aerodynamic difficulties 
become apparent and arise from the tunnel wall boundary layers interacting with 
the blades. In particular, and as illustrated in Figure 3.7a, the tunnel wall boundary 
layer mingles with the end blade boundary layer and, as a consequence, this blade 
stalls resulting in a non-uniform flow field. 

Stalling of the end blade may be delayed by applying a controlled amount of 
suction to a slit just upstream of the blade, and sufficient to remove the tunnel wall 
boundary layer (Figure 3.7b). Without such boundary-layer removal the effects of 
flow interference can be quite pronounced. They become most pronounced near the 
cascade “stalling point” (defined later) when any small disturbance of the upstream 
flow field precipitates stall on blades adjacent to the end blade. Instability of this type 
has been observed in compressor cascades and can affect every blade of the cascade. 
It is usually characterised by regular, periodic “cells” of stall crossing rapidly from 
blade to blade; the term propagating stall is often applied to the phenomenon. Some 
discussion of the mechanism of propagating stall is given in Chapter 6.  

The boundary layers on the walls to which the blade roots are attached, generate 
secondary vorticity in passing through the blades which may produce substantial 
secondaryflows. The mechanism of this phenomenon has been discussed at some 
length by Carter (1948), Horlock (1958) and many others and a brief explanation 
is included in Chapter 6. 
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FIG. 3.8. Contraction of streamlines due to boundary layer thickening (adapted from 
Carter et al. 1950). 

In a compressor cascade the rapid increase in pressure across the blades causes 
a marked thickening of the wall boundary layers and produces an effective 
contraction of the flow, as depicted in Figure 3.8. A contraction coeficient, used 
as a measure of the boundary-layer growth through the cascade, is defined by 
plcl cos al/(p2c2 cos a2). Carter et al. (1950) quotes values of 0.9 for a good tunnel 
dropping to 0.8 in normal high-speed tunnels and even less in bad cases. These are 
values for compressor cascades; with turbine cascades slightly higher values can 
be expected. 

Because of the contraction of the main through-flow, the theoretical pressure rise 
across a compressor cascade, even allowing for losses, is never achieved. This will 
be evident since a contraction (in a subsonic flow) accelerates the fluid, which is in 
conflict with the diffuser action of the cascade. 

To counteract these effects it is customary (in Great Britain) to use at least seven 
blades in a compressor cascade, each blade having a minimum aspect ratio (blade 
span-chord length) of 3. With seven blades, suction is desirable in a compressor 
cascade but it is not usual in a turbine cascade. In the United States much lower 
aspect ratios are commonly employed in compressor cascade testing, the technique 
being the almost complete removal of tunnel wall boundary layers from all four 
walls using a combination of suction slots and perforated end walls to which suction 
is applied. 

Cascade test results 
The basic cascade performance data in low-speed flows are obtained from 

measurements of total pressure, flow angle and velocity taken across one or more 
complete pitches of the cascade, the plane of measurement being about half a 
chord downstream of the trailing edge plane. The literature on instrumentation 
is very extensive as are the various measurement techniques employed and 
the student is referred to the works of Horlock (1958), Bryer and Pankhurst 
(1971), Sieverding (1975, 1985). The publication by Bryer and Pankhurst for 
deriving air speed and flow direction is particularly instructive and recommended, 
containing as it does details of the design and construction of various instruments 
used in cascade tunnel measurements as well as their general principles and 
performance details. 
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FIG. 3.9. Some combination pressure probes (adapted from Bryer and Pankhurst 1971): 
(a) claw probe; (b) chamfered tube probe; (c) wedge probe. 

Some representative combination pressure probes are shown in Figure 3.9. These 
types are frequently used for pitchwise traversing across blade cascades but, because 
of their small size, they are also used for interstage (radial) flow traversing in 
compressors. For the measurement of flow direction in conditions of severe trans- 
verse total pressure gradients, as would be experienced during the measurement of 
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FIG. 3.1 0. Apparent flow angle variation measured by three different combination probes 
traversed across a transverse variation of total pressure (adapted from Bryer and 

Pankhurst 1971 ). 

blade cascade flows, quite substantial errors in the measurement of flow direction 
do arise. Figure 3.10 indicates the apparent flow angle variation measured by these 
same three types of pressure probe when traversed across a transverse gradient of 
total pressure caused by a compressor stator blade. It is clear that the wedge probe 
is the least affected by the total pressure gradient. An investigation by Dixon (1978) 
did confirm that all pressure probe instruments are subject to this type of directional 
error when traversed across a total pressure variation such as a blade wake. 

An extensive bibliography on all types of measurement in fluid flow is given 
by Dowden (1972). Figure 3.11 shows a typical cascade test result from a traverse 
across 2 blade pitches taken by Todd (1947) at an inlet Mach number of 0.6. It is 
observed that a total pressure deficit occurs across the blade row arising from the 
fluid friction on the blades. The fluid deflection is not uniform and is a maximum at 
each blade trailing edge on the pressure side of the blades. From such test results, 
average values of total pressure loss and fluid outlet angle are found (usually on a 
mass flow basis). The use of terms like “total pressure loss” and “fluid outlet angle” 
in the subsequent discussion will signify these average values. 

Similar tests performed for a range of fluid inlet angles, at the same inlet Mach 
number M I  and Reynolds number Re, enables the complete performance of the 
cascade to be determined (at that M I  and Re). So as to minimise the amount of 
testing required, much cascade work is performed at low inlet velocities, but at a 
Reynolds number greater than the “critical” value. This critical Reynolds number Re, 
is approximately 2 x 1 6  based on inlet velocity and blade chord. With Re > Re,, 
total pressure losses and fluid deflections are only slightly dependent on changes 
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FIG. 3.1 1. A sample plot of inlet and outlet stagnation pressures and fluid outlet angle 
(adapted from Todd 1947). 

in Re. Mach number effects are negligible when M I  < 0.3. Thus, the performance 
laws, eqn. (3.28), for this flow simplify to, 

<9 a2 = f(a1). (3.28a) 

There is a fundamental difference between the flows in turbine cascades and those 
in compressor cascades which needs emphasising. A fluid flowing through a channel 
in which the mean pressure is falling (mean flow is accelerating) experiences a 
relatively small total pressure loss in contrast with the mean flow through a channel 
in which the pressure is rising (diffusing flow) when losses may be high. This 
characteristic difference in flow is reflected in turbine cascades by a wide range of 
low loss performance and in compressor cascades by a rather narrow range. 

Compressor cascade performance 

A typical set of low-speed compressor cascade results (Howell 1942) for a blade 
cascade of specified geometry, is shown in Figure 3.12. These results are presented 
in the form of a pressure loss coefficient Apo/ ( ;pc : )  and fluid deflection E= 
a1 - a2 against incidence i = a1 - u; (refer to Figure. 3.2 for nomenclature). Note 
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FIG. 3.12. Compressor cascade characteristics (Howell 1942). (By courtesy of the 
Controller of H.M.S.O., Crown copyright reserved). 

that from eqn. (3.7), ~ p o / ( i p ~ : )  = <cos2 at. There is a pronounced increase in 
total pressure loss as the incidence rises beyond a certain value and the cascade 
is stalled in this region. The precise incidence at which stalling occurs is difficult 
to define and a stall point is arbitrarily specified as the incidence at which the 
total pressure loss is twice the minimum loss in total pressure. Physically, stall is 
characterised (at positive incidence) by the flow separating from the suction side of 
the blade surfaces. With decreasing incidence, total pressure losses again rise and a 
“negative incidence” stall point can also be defined as above. The working range is 
conventionally defined as the incidence range between these two limits at which the 
losses are twice the minimum loss. Accurate knowledge of the extent of the working 
range, obtained from two-dimensional cascade tests, is of great importance when 
attempting to assess the suitability of blading for changing conditions of operation. 
A reference incidence angle can be most conveniently defined either at the mid- 
point of the worlung range or, less precisely, at the minimum loss condition. These 
two conditions do not necessarily give the same reference incidence. 

From such cascade test results the projile losses through compressor blading of 
the same geometry may be estimated. To these losses estimates of the annulus 
skin friction losses and other secondary losses must be added, and from which the 
efficiency of the compressor blade row may be determined. Howell (1945) suggested 
that these losses could be estimated using the following drag coefficients. For the 
annulus walls loss, 

CD, = 0.02s/H (3.29a) 

and for the so-called “secondary” loss, 

CD, = 0.018Cz (3.29b) 

where s, H are the blade pitch and blade length respectively, and CL the blade lift 
coefficient. Calculations of this type were made by Howell and others to estimate 
the efficiency of a complete compressor stage. A worked example to illustrate the 
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FIG. 3.13. Losses in a compressor stage (Howell 1945). (Courtesy of the Institution of 
Mechanical Engineers). 

details of the method is given in Chapter 5. Figure 3.13 shows the variation of stage 
efficiency with flow coefficient and it is of particular interest to note the relative 
magnitude of the profile losses in comparison with the overall losses, especially at 
the design point. 

Cascade performance data to be easily used, are best presented in some condensed 
form. Several methods of empirically correlating low-speed performance data have 
been developed in Great Britain. Howell’s correlation (1942) relates the performance 
of a cascade to its performance at a “nominal” condition defined at 80% of the 
stalling deflection. Carter (1950) has referred performance to an optimum incidence 
given by the highest lift-drag ratio of the cascade. In the United States, the National 
Advisory Committee for Aeronautics (NACA), now called the National Aeronautics 
and Space Administration (NASA), systematically tested whole families of different 
cascade geometries, in particular, the widely used NACA 65 Series (Hemg ef al. 
1957). The data on the NACA 65 Series has been usefully summarised by Felix 
(1957) where the performance of a fixed geometry cascade can be more readily 
found. A concise summary is also given by Horlock (1958). 

Turbine cascade performance 

Figure 3.14 shows results obtained by Ainley (1948) from two sets of turbine 
cascade blades, impulse and “reaction”. The term “reaction” is used here to denote, 
in a qualitative sense, that the fluid accelerates through the blade row and thus 
experiences a pressure drop during its passage. There is no pressure change across an 
impulse blade row. The performance is expressed in the form L = A p o / ( p o z  - p2)  
and a2 against incidence. 

From these results it is observed that: 
(a) the reaction blades have a much wider range of low loss performance than the 

impulse blades, a result to be expected as the blade boundary layers are subjected 
to a favourable pressure gradient, 
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FIG. 3.1 4. Variation in profile loss with incidence for typical turbine blades (adapted from 
Ainley 1948). 

(b) the fluid outlet angle a2 remains relatively constant over the whole range of 
incidence in contrast with the compressor cascade results. 

For turbine cascade blades, a method of correlation is given by Ainley and Math- 
ieson (195 1) which enables the performance of a gas turbine to be predicted with an 
estimated tolerance of within 2% on peak efficiency. In Chapter 4 a rather different 
approach, using a method attributed to Soderberg, is outlined. While being possibly 
slightly less accurate than Ainley’s correlation, Soderberg ’s method employs fewer 
parameters and is rather easier to apply. 

Compressor cascade correlations 

Many experimental investigations have confinned that the efficient performance 
of compressor cascade blades is limited by the growth and separation of the blade 
surface boundary layers. One of the aims of cascade research is to establish the 
generalised loss characteristics and stall limits of conventional blades. This task 
is made difficult because of the large number of factors which can influence the 
growth of the blade surface boundary layers, viz. surface velocity distribution, blade 
Reynolds number, inlet Mach number, free-stream turbulence and unsteadiness, 
and surface roughness. From the analysis of experimental data several correlation 
methods have been evolved which enable the first-order behaviour of the blade 
losses and limiting fluid deflection to be predicted with sufficient accuracy for engi- 
neering purposes. 

LIEBLEIN. The correlation of Lieblein (1959), NASA (1965) is based on the 
experimental observation that a large amount of velocity diffusion on blade surfaces 



72 Fluid Mechanics, Thennodynamics of Turbomachinery 

tends to produce thick boundary layers and eventual flow separation. Lieblein states 
the general hypothesis that in the region of minimum loss, the wake thickness 
and consequently the magnitude of the loss in total pressure, is proportional to 
the diffusion in velocity on the suction-surface of the blade in that region. The 
hypothesis is based on the consideration that the boundary layer on the suction- 
surface of conventional compressor blades contributes the largest share of the blade 
wake. Therefore, the suction-surface velocity distribution becomes the main factor 
in determining the total pressure loss. 

Figure 3.15 shows a typical velocity distribution derived from surface pressure 
measurements on a compressor cascade blade in the region of minimum loss. The 
diffusion in velocity may be expressed as the ratio of maximum suction-surface 

FIG. 3.15. Compressor cascade blade surface velocity distribution. 

FIG. 3.16. Model variation in velocity in a plane normal to axial direction. 
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velocity to outlet velocity, cm,,,/c2. Lieblein found a correlation between the diffu- 
sion ratio C , , , ~ / C ~  and the wake momentum-thickness to chord ratio, 92/1 at the 
reference incidence (mid-point of working range) for American NACA 65-(Alo) and 
British C.4 circular-arc blades. The wake momentum-thickness, with the parameters 
of the flow model in Figure 3.16 is defined as 

sJ v 
92 = lp v (1 - e) dY. (3.30) 

The Lieblein correlation, with his data points removed for clarity, is closely fitted 
by the mean curve in Figure 3.17. This curve represents the equation 

(3.31) - 92 = o.W/ { 1 - 1.171n (y)} 
1 

which may be more convenient to use in calculating results. It will be noticed that for 
the limiting case when ( & / l )  -+ 00, the corresponding upper limit for the diffusion 
ratio C , , , ~ / C ~  is 2.35. The practical limit of efficient operation would correspond 
to a diffusion ratio of between 1.9 and 2.0. 

Losses are usually expressed in terms of the stagnation pressure loss coefficient 
w = Ape/ ( i p c : )  or < = Ape/ ( ipc: )  as well as the drag coefficient C D .  Lieblein 
and Roudebush ( 1956) have demonstrated the simplified relationship between 
momentum-thickness ratio and total pressure loss coefficient, valid for unstalled 
blades, 

- 

1 cos2 a, 
(3.32) - 

w = 2 ( ? )  (;> zQ2. 

FIG. 3.1 7.  Mean variation of wake momentum-thicknesdchord ratio with suction-surface 
diffusion ratio at reference incidence condition for NACA 65 - (CloAlo)10 blades and 

British C.4 circular-arc blades (adapted from Lieblein ( 1  959)). 
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Combining this relation with eqns. (3.7) and (3.17) the following useful results can 
be obtained: 

C D  = 55 (S) ___ cos3 01, =2(:> (“““)J=5(;)c0s 3 am. 
1 cos2 cy, cos cy2 

(3.33) 

The correlation given above assumes a knowledge of suction-surface velocities in 
order that total pressure loss and stall limits can be estimated. As this data may be 
unavailable it is necessary to establish an equivalent diffusion ratio, approximately 
equal to c,,,,/c~, that can be easily calculated from the inlet and outlet conditions 
of the cascade. An empirical correlation was established by Lieblein (1959) between 
a circulation parameter defined by f(r) = rcoscyl/(lcl) and cm,,,/cl at the refer- 
ence incidence, where the ideal circulation r = s(cyl - cy2), using eqn. (3.23). The 
correlation obtained is the simple linear relation. 

(3.34) cmaX,,/c1 = 1.12 + 0.6 i f ( r )  

which applies to both NACA 65-(Alo) and C.4 circular arc blades. Hence, the 
equivalent diffusion ratio, after substituting for r and simplifying, is 

At incidence angles greater than reference incidence, Lieblein found that the 
following correlation was adequate: 

1 { 1.12 + k(i  - i,f)‘.43 + 0.61 cos2cyl(tancy1 - tancy2) 
cos cy2 D -- 

es - coscy1 
(3.36) 

where k = 0.01 17 for the NACA 65-(Alo) blades and k = 0.007 for the C.4 circular 
arc blades. 

The expressions given above are still very widely used as a means of estimating 
total pressure loss and the unstalled range of operation of blades commonly 
employed in subsonic axial compressors. The method has been modified and 
extended by Swann to include the additional losses caused by shock waves in 
transonic compressors. The discussion of transonic compressors is outside the scope 
of this text and is not included. 

HOWELL. The low-speed correlation of Howell (1942) has been widely used by 
designers of axial compressors and is based on a nominal condition such that the 
deflection E* is 80% of the stalling deflection, E, (Figure 3.12). Choosing E* = 0.86, 
as the design condition represents a compromise between the ultraconservative and 
the overoptimistic! Howell found that the nominal deflections of various compressor 
cascades are, primarily, a function of the space-chord ratio s / l ,  the nominal fluid 
outlet angle cy; and the Reynolds number Re 

(3.37) 

It is important to note that the correlation (which is really a correlation of stalling 
deflection, E, = 1.25~*) is virtually independent of blade camber 0 in the normal 
range of choice of this parameter (20” < 0 < 40”). Figure 3.18 shows the variation of 

E* = f ( s / l ,  cy;, Re).  
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FIG. 3.18. Variation of nominal deflection with nominal outlet angle for several 
spacekhord ratios (adapted from Howell 1945). 

E* found by Howell (1945) against a; for several space-chord ratios. The depen- 
dence on Reynolds number is small for Re > 3 x 16, based on blade chord. 

An approximating formula to the data given in Figure 3.18, which was quoted by 
Howell and frequently found to be useful in preliminary performance estimation, is 
the tangent-difference rule: 

tan a; - tan a; = 
1.55 

1 + 1.5s/Z 
(3.38) 

which is applicable in the range 0 5 a; 5 40". 

Fluid deviation 

The difference between the fluid and blade inlet angles at cascade inlet is under the 
arbitrary control of the designer. At cascade outlet however, the difference between 
the fluid and blade angles, called the deviation 6, is a function of blade camber, blade 
shape, space-chord ratio and stagger angle. Refemng to Figure 3.2, the deviation 
6 = a2 - a; is drawn as positive; almost without exception it is in such a direction 
that the deflection of the fluid is reduced. The deviation may be of considerable 
magnitude and it is important that an accurate estimate is made of it. Re-examining 
Figure 3.11 again, it will be observed that the fluid receives its maximum guidance 
on the pressure side of the cascade channel and that this diminishes almost linearly 
towards the suction side of the channel. 

Howell used an empirical rule to relate nominal deviation 6* to the camber and 
space-chord ratio, 

6* = m6(s/l)", (3.39) 

where n = i for compressor cascades and n = 1 for compressor inlet guide vanes. 
The value of m depends upon the shape of the camber line and the blade setting. 
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For a compressor cascade (i.e. diffusing flow), 

m = 0.23(2~/1)~  + a;/500, (3.40a) 

where a is the distance of maximum camber from the leading edge. For the inlet 
guide vanes, which are essentially turbine nozzles (i.e. accelerating flow), 

(3.40b) 

EXAMPLE 3.1. A compressor cascade has a space-chord ratio of unity and blade 
inlet and outlet angles of 50deg and 20deg respectively. If the blade camber line is 
a circular arc (i.e. all = 50%) and the cascade is designed to operate at Howell's 
nominal condition, determine the fluid deflection, incidence and ideal lift coefficient 
at the design point. 

m = constant = 0.19 

Solution. The camber, 8 = a; - ai = 30deg. As a first approximation put a; = 
20deg in eqn. (3.40) to give m = 0.27 and, using eqn. (3.39), S* = 0.27 x 30 = 
8.1 deg. As a better approximation put a; = 28.1 deg in eqn. (3.40) giving m = 
0.2862 and 6* = 8.6deg. Thus, a; = 28.6deg is sufficiently accurate. 

From Figure 3.16, with s/ l  = 1.0 and a; = 28.6deg obtain E* = a: - a; = 
21 deg. Hence a; = 49.6deg and the nominal incidence i* = a: - a', = -0.4deg. 

The ideal lift coefficient is found by setting CD = 0 in eqn. (3.18), 

CL = 2(s/l)cosa,(tana, - tana2). 

Putting a1 = a:, a 2  = a; and noting tana; = i(tana; + tans;) obtain a; = 
40.75 deg and C i  = 2(1.172 - 0.545)0.758 + 0.95. 

In conclusion it will be noted that the estimated deviation is one of the most 
important quantities for design purposes, as small errors in it are reflected in large 
changes in deflection and thus, in predicted performance. 

Off-design performance 

To obtain the performance of a given cascade at conditions removed from the 
design point, generalised performance curves of Howell (1942) shown in Figure 3.19 
may be used. If the nominal deflection E* and nominal incidence i* are known the 
off-design performance (deflection, total pressure loss coefficient) of the cascade at 
any other incidence is readily calculated. 

EXAMPLE 3.2. In the previous exercise, with a cascade of s/ l  = 1.0, u; = 50deg 

Determine the off-design performance of this cascade at an incidence i = 3.8 deg. 

Solution. Referring to Figure 3.19 and with ( i  - i*)/&* = 0.2 obtain CD + 0.017, 
E / & *  = 1.15. Thus, the off-design deflection, E = 24.1 deg. 

From eqn. (3.17), the total pressure loss coefficient is, 

and u; = 20deg the nominal conditions were E* = 21 deg and i* = -0.4deg. 

< = Apol  (ip.2) = C o / [ ( ~ / l ) c o ~ ~ ~ , l .  

Now a1 = a; + i = 53.8 deg, also a2 = a1 - E = 29.7 deg, therefore, 

a, = tan-' { 4 (tan a1 + tan a*)} = tan-' {0.969] = 44.1 deg, 
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FIG. 3.19. The off-design performance of a compressor cascade (Howell 1942). (By 
courtesy of the Controller of H.M.S.O., Crown copyright reserved). 

hence 

< = 0.017/0.7193 = 0.0458. 

The tangential lift force coefficient, eqn. (3.9), is 
1 2  C f  = (p2 - p ~ ) / ( z p ~ , )  = 2 ( t a n ~ l  - tan~i2) = 1.596. 

The diffuser efficiency, eqn. (3.25), is 

~0 = 1 - < / ( C f  tanam) = 1 - 0.0458/(1.596 x 0.969) = 97%. 

It is worth nothing, from the representative data contained in the above exercise, 
that the validity of the approximation in eqn. (3.20) is amply justified. 

Howell’s correlation, clearly, is a simple and fairly direct method of assessing 
the performance of a given cascade for a range of inlet flow angles. The data can 
also be used for solving the more complex inverse problem, namely, the selection 
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of a suitable cascade geometry when the fluid deflection is given. For this case, if 
the previous me,thod of a nominal design condition is used, mechanically unsuit- 
able space-chord ratios are a possibility. The space-chord ratio may, however, be 
determined to some extent by the mechanical layout of the compressor, the design 
incidence then only fprtuitously coinciding with the nominal incidence. The design 
incidence is therefore somewhat arbitrary and some designers, ignoring nominal 
design conditions, may select an incidence best suited to the operating conditions 
under which the compressor will run. For instance, a negative design incidence may 
be chosen so that at reduced flow rates a positive incidence condition is approached. 

Mach number effects 

High-speed cascade characteristics are similar to those at low speed until the crit- 
ical Mach number M ,  is reached, after which the performance declines. Figure 3.20, 
taken from Howell (1942) illustrates for a particular cascade tested at varying Mach 
number and fixed incidence, the drastic decline in pressure rise coefficient up to the 
maximum Mach number at entry M,, when the cascade is fully choked. When the 
cascade is choked, no further increase in mass flow through the cascade is possible. 
The definition of inlet critical Mach number is less precise, but one fairly satis- 
factory definition (Horlock 1958) is that the maximum local Mach number in the 
cascade has reached unity. 

Howell attempted to correlate the decrease in both efficiency and deflection in the 
range of inlet Mach numbers, M ,  2 M 5 M, and these are shown in Figure 3.21. 
By employing this correlation, curves similar to that in Figure 3.20 may be found 
for each incidence. 

One of the principal aims of high-speed cascade testing is to obtain data for 
determining the values of M ,  and M,. Howell (1945) indicates how, for a typical 
cascade, M ,  and M, vary with incidence (Figure 3.22) 

FIG. 3.20. Variation of cascade pressure rise coefficient with inlet Mach number (Howell 
1942). (By courtesy of the Controller of H.M.S.O., Crown copyright reserved). 
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FIG. 3.21. Variation of efficiency and deflection with Mach number (adapted from Howell 
1 942). 

FIG. 3.22. Dependence of critical and maximum Mach numbers upon incidence (Howell 
1945). (By courtesy of the Institution of Mechanical Engineers). 
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Fan blade design (McKenzie) 

The cascade tests and design methods evolved by Howell, Carter and others, 
which were described earlier, established the basis of British axial compressor 
design. However, a number of empirical factors had to be introduced into the 
methods in order to correlate actual compressor performance with the performance 
predicted from cascade data. The system has been in use for many years and has 
been gradually modified and improved during this time. 

McKenzie (1980) has described work done at Rolls-Royce to further develop the 
correlation of cascade and compressor performance. The work was done on a low- 
speed four-stage compressor with 50 per cent reaction blading of constant section. 
The compressor hub to tip radius ratio was 0.8 and a large number of combinations 
of stagger and camber was tested. 

McKenzie pointed out that the deviation rule originated by Howell (1945), i.e. 
eqns. (3.39) and (3.40a) with n = 0.5, was developed from cascade tests performed 
without sidewall suction. Earlier in this chapter it was explained that the consequent 
thickening of the sidewall boundary layers caused a contraction of the main through- 
flow (Figure 3.8), resulting in a reduced static pressure rise across the cascade and 
an increased air deflection. Rolls-Royce conducted a series of tests on C5 profiles 
with circular arc camber lines using a number of wall suction slots to control the 
axial velocity ratio (AVR). The deviation angles at mid-span with an AVR of unity 
were found to be significantly greater than those given by eqn. (3.39). 

From cascade tests McKenzie derived the following rule for the deviation angle: 

(3.41) 

where 6 and 8 are in degrees. From the results a relationship between the blade 
stagger angle ( and the vector mean flow angle CY, was obtained: 

s = (1.1 + o . ~ ~ B ) ( s / z ) ~ / ~  

tan( = tan~~, - 0.213, (3.42) 

where tan CY,,, is defined by eqn. (3.6). The significance of eqn. (3.42) is, that if the 
air inlet and outlet angles (a1 and  CY^ respectively) are specified, then the stagger 
angle for maximum eficiency can be determined, assuming that a C5 profile (or a 
similar profile such as C4) on a circular arc camber line is being considered. Of 
course, the camber angle 8 and the pitchkhord ratio s/Z still need to be determined. 

In a subsequent paper McKenzie (1988) gave a graph of efficiency in terms of 
C p i  and s/Z, which was an improved presentation of the correlation given in his 
earlier paper. The ideal static pressure rise coefficient is defined as 

(3.43) 

McKenzie's efficiency correlation is shown in Figure 3.23, where the ridge line of 
optimum efficiency is given by 

(3.44) 

EXAMPLE 3.3. At the midspan of a proposed fan stator blade the inlet and outlet 
air angles are to be  CY^ = 58' and a2 = 44'. Using the data and correlation of 
McKenzie, determine a suitable blade camber and space-chord ratio. 

s / l  = 9 x (0.567 - C p i )  
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FIG. 3.23. Efficiency correlation (adapted from McKenzie 1988). 

Solution. From eqn. (3.6) the vector mean flow angle is found, 

tana, = ;(tanal + tana2) = 1.2830. 

From eqn. (3.42) we get the stagger angle, 

tan6 = tana, - 0.213 = 1.0700. 

Thus, a, = 52.066' and 6 = 46.937'. 
From eqn. (3.43), assuming that AVR = 1.0, we find 

2 COsaI 
Cpi = 1 - (-) = 0.4573. 

cos a 2  

Using the optimum efficiency correlation, eqn. (3.44), 

S / l  = 9 x (0.567 - 0.4573), 

:_ s/ l  = 0.9872. 

To determine the blade camber we combine 

6 = cy2 - a; = a2 - 6 - 812 

with eqn. (3.41), to get 

6 - a2 + l . l ( . ~ / l ) ' / ~  46.937 - 44 + 1.1 x 0.9957 - 8 =  - 
0.5 - 0.3 1 (s/ l)II3 0.5 - 0.31 x 0.9957 

:. 8 = 21.08'. 

According to McKenzie the correlation gives, for high stagger designs, peak effi- 
ciency conditions well removed from stall and is in good agreement with earlier fan 
blade design methods. 

Turbine cascade correlation (Ainley) 
Ainley and Mathieson (1951) published a method of estimating the performance 

of an axial flow turbine and the method has been widely used ever since. In essence 
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the total pressure loss and gas efflux angle for each row of a turbine stage is 
determined at a single reference diameter and under a wide range of inlet condi- 
tions. This reference diameter was taken as the arithmetic mean of the rotor and 
stator rows inner and outer diameters. Dunham and Came (1970) gathered together 
details of several improvements to the method of Ainley and Mathieson which 
gave better performance prediction for small turbines than did the original method. 
When the blading is competently designed the revised method appears to give reli- 
able predictions of efficiency to within 2% over a wide range of designs, sizes and 
operating conditions. 

Total pressure loss correlations 

The overall total pressure loss is composed of three parts, viz. (i) profile loss, 
(ii) secondary loss, and (iii) tip clearance loss. 

(i) A profile loss coefficient is defined as the loss in stagnation pressure across 
the blade row or cascade, divided by the difference between stagnation and static 
pressures at blade outlet; i.e. 

(3.45) Po1 - Po2 
Po2 - P2 

Y ,  = 

In the Ainley method, profile loss is determined initially at zero incidence (i = 0). 
At any other incidence the profile loss ratio Yp/YP( ;=o)  is assumed to be defined by 
a unique function of the incidence ratio i / i s  (Figure 3.24), where is is the stalling 
incidence. This is defined as the incidence at which Yp/YP( ;=o)  = 2.0. 

Ainley and Mathieson correlated the profile losses of turbine blade rows against 
spacekhord ratio s / l ,  fluid outlet angle 4 2 ,  blade maximum thicknesskhord ratio t / l  

FIG. 3.24. Variation of profile loss with incidence for typical turbine blading (adapted 
from Ainley and Mathieson 1951). 
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(Vl = 0.2 Re = 2x10’; Me0.6) 

FIG. 3.25. Profile loss coefficients of turbine nozzle and impulse blades at zero inci- 
dence ( t / l =  20%; Re = 2 x IO5; M < 0.6) (adapted from Ainley and Mathieson 1951). 

and blade inlet angle. The variation of Y p ( ; d )  against s / l  is shown in Figure 3.25 
for nozzles and impulse blading at various flow outlet angles. The sign convention 
used for flow angles in a turbine cascade is indicated in Figure 3.27. For other types 
of blading intermediate between nozzle blades and impulse blades the following 
expression is employed: 

2 a1 la2 

Y,(i=O) = { Yp(al=o) + (2) [Yp(al=cr2) - Yp(&0)I} ($) (3.46) 

where all the Y,’s are taken at the same spacekhord ratio and flow outlet angle. 
If rotor blades are being considered, put 382 for a1 and 83 for a2. Equation (3.46) 
includes a correction for the effect of thickness-chord ratio and is valid in the 
range 0.15 2 t / l  5 0.25. If the actual blade has a t / l  greater or less than the limits 
quoted, Ainley recommends that the loss should be taken as equal to a blade having 
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t/Z either 0.25 or 0.15. By substituting a1 = a 2  and t/Z = 0.2 in eqn. (3.46), the 
zero incidence loss coefficient for the impulse blades Y p ( m 1 = 4  given in Figure 3.25 
is recovered. Similarly, with a1 = 0 at t / l  = 0.2 in eqn. (3.46) gives Y p ( a l = ~ )  of 
Figure 3.25. 

A feature of the losses given in Figure 3.25 is that, compared with the impulse 
blades, the nozzle blades have a much lower loss coefficient. This trend confirms 
the results shown in Figure 3.14, that flow in which the mean pressure is falling 
has a lower loss coefficient than a flow in which the mean pressure is constant 
or increasing. 

(ii) The secondary losses arise from complex three-dimensional flows set up as 
a result of the end wall boundary layers passing through the cascade. There is 
substantial evidence that the end wall boundary layers are convected inwards along 
the suction-surface of the blades as the main flow passes through the blade row, 
resulting in a serious mal-distribution of the flow, with losses in stagnation pressure 
often a significant fraction of the total loss. Ainley found that secondary losses could 
be represented by 

C D s  = hcL2/(s/l> (3.47) 

where h is parameter which is a function of the flow acceleration through the blade 
row. From eqn. (3.17), together with the definition of Y ,  eqn. (3.45) for incompress- 
ible flow, CD = Y ( s / l )  cos3 a,/ cos2  CY^, hence 

(3.48) 

where Z is the blade aerodynamic loading coefficient. Dunham (1970) subsequently 
found that this equation was not correct for blades of low aspect ratio, as in small 
turbines. He modified Ainley’s result to include a better correlation with aspect ratio 
and at the same time simplified the flow acceleration parameter. The correlation, 
given by Dunham and Came (1970), is 

Y ,  = 0.0334 (k) (-) cos a 2  Z 
cos a1’ 

(3.49) 

and this represents a significant improvement in the prediction of secondary losses 
using Ainley’s method. 

Recently, more advanced methods of predicting losses in turbine blade rows have 
been suggested which take into account the thickness of the entering boundary layers 
on the annulus walls. Came (1973) measured the secondary flow losses on one end 
wall of several turbine cascades for various thicknesses of inlet boundary layer. He 
correlated his own results, and those of several other investigators, and obtained a 
modified form of Dunham’s earlier result, viz., 

+0.009’) (-) cos a 2  z - Y1 
H COS ai’ 

(3.50) 

which is the net secondary loss coefficient for one end wall only and where Y1 is 
a mass-averaged inlet boundary layer total pressure loss coefficient. It is evident 
that the increased accuracy obtained by use of eqn. (3.50) requires the additional 
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effort of calculating the wall boundary layer development. In initial calculations of 
performance it is probably sufficient to use the earlier result of Dunham and Came, 
eqn. (3.49), to achieve a reasonably accurate result. 

(iii) The tip clearance loss coefficient Yk depends upon the blade loading 2 and 
the size and nature of the clearance gap k. Dunham and Came presented an amended 
version of Ainley's original result for Yk: 

(3.51) 

where B = 0.5 for a plain tip clearance, 0.25 for shrouded tips. 

Reynolds number correction 

Ainley and Mathieson (1 95 1) obtained their data for a mean Reynolds number of 
2 x lo5 based on the mean chord and exit flow conditions from the turbine state. 
They recommended for lower Reynolds numbers, down to 5 x 104, that a correction 
be made to stage efficiency according to the rough rule: 

(1 - qrr) o< Re-'I5. 

Dunham and Came (1970) gave an optional correction whch is applied directly to 
the sum of the profile and secondary loss coefficients for a blade row using the 
Reynolds number appropriate to that row. The rule is: 

Y ,  + Y ,  a Re-'I5. 

Flow outlet angle from a turbine cascade 

It was pointed out by Ainley (1948) that the method of defining deviation angle 
as adopted in several well-known compressor cascade correlations had proved to 
be impracticable for turbine blade cascade. In order to predict fluid outlet angle a2, 
steam turbine designers had made much use of the simple empirical rule that 

a2 = cos-1 o/s (3 S2a) 

where 0 is the opening at the throat, depicted in Figure 3.26, and s is the pitch. This 
widely used rule gives a very good approximation to measured pitchwise averaged 
flow angles when the outlet Mach number is at or close to unity. However, at low 
Mach numbers substantial variations have been found between the rule and observed 
flow angles. Ainley and Mathieson (1951) recommended that for low outlet Mach 
numbers 0 < A 4 2  0.5, the following rule be used: 

a2 =  COS-' O / s )  + 4s/e (deg) (3.52b) 

where f(c0s-l O / s )  = -11.15 + 1.154cos-' O/s and e = j2/(8z) is the mean 
radius of curvature of the blade suction surface between the throat and the trailing 
edge. At a gas outlet Mach number of unity Ainley and Mathieson assumed, for a 
turbine blade row, that 

 CY^ = Ar/A,,* (3.52~) 
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FIG. 3.26. Details near turbine cascade exit showing ”throat“ and suction-surface 
curvature parameters. 

where At is the passage throat area and An2 is the annulus area in the reference 
plane downstream of the blades. If the annulus walls at the ends of the cascade 
are not flared then eqn. (3.52~) is the same as eqn. (3.52a). Between M Z  = 0.5 and 
M2 = 1.0 a linear variation of a2 can be reasonably assumed in the absence of any 
other data. 

Comparison of the profile loss in a cascade and in a 
turbine stage 

The aerodynamic efficiency of an axial-flow turbine is significantly less than that 
predicted from measurements made on equivalent cascades operating under steady 
flow conditions. The importance of flow unsteadiness originating from the wakes 
of a preceding blade row was studied by Lopatitiskii et al. (1969) who reported 
that the rotor blade profile loss was (depending on blade geometry and Reynolds 
number) between two and four times greater than that for an equivalent cascade 
operating with the same flow. Hodson (1984) made an experimental investigation 
of the rotor to stator interaction using a large-scale, low-speed turbine, comparing the 
results with those of a rectilinear cascade of identical geometry. Both tunnels were 
operated at a Reynolds number of 3.15 x 16. Hodson reported that the turbine 
rotor midspan profile loss was approximately 50 per cent higher than that of the 
rectilinear cascade. Measurements of the shear stress showed that as a stator wake 
is convected through a rotor blade passage, the laminar boundary layer on the 
suction surface undergoes transition in the vicinity of the wake. The 50 per cent 
increase in profile loss was caused by the time-dependent transitional nature of the 
boundary layers. The loss increase was largely independent of spacing between the 
rotor and the stator. 

In a turbine stage the interaction between the two rows can be split into two parts: 
(a) the effects of the potential flow; and (b) the effects due to wake interactions. 
The effects of the potential influence extend upstream and downstream and decay 
exponentially with a length scale typically of the order of the blade chord or pitch. 
Some aspects of these decay effects are studied in Chapter 6 under the heading 
“Actuator Disc Approach”. In contrast, blade wakes are convected downstream of 
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the blade row with very little mixing with the mainstream flow. The wakes tend to 
persist even where the blade rows of a turbomachine are very widely spaced. 

A designer usually assumes that the blade rows of an axial-flow turbomachine 
are sufficiently far apart that the flow is steady in both the stationary and rotating 
frames of reference. The flow in a real machine, however, is unsteady both as a 
result of the relative motion of the blade wakes between the blade rows and the 
potential influence. In modem turbomachines, the spacing between the blade rows 
is typically of the order of 1/4 to 1/2 of a blade chord. As attempts are made to 
make turbomachines more compact and blade loadings are increased, then the levels 
of unsteadiness will increase. 

The earlier Russian results showed that the losses due to flow unsteadiness were 
greater in turbomachines of high reaction and low Reynolds number, With such 
designs, a larger proportion of the blade suction surface would have a laminar 
boundary layer and would then exhibit a correspondingly greater profile loss as a 
result of the wake-induced boundary layer transition. 

Optimum space-chord ratio of turbine blades (Zweifel) 

It is worth pondering a little upon the effect of the space-chord ratio in turbine 
blade rows as this is a factor strongly affecting efficiency. Now if the spacing 
between blades is made small, the fluid then tends to receive the maximum amount 
of guidance from the blades, but the friction losses will be very large. On the 
other hand, with the same blades spaced well apart, friction losses are small but, 
because of poor fluid guidance, the losses resulting from flow separation are high. 
These considerations led Zweifel (1945) to formulate his criterion for the optimum 
space-chord ratio of blading having large deflection angles. Essentially, Zweifel’s 
criterion is simply that the ratio (&-) of the actual to an “ideal” tangential blade 
loading, has a certain constant value for minimum losses. The tangential blade loads 
are obtained from the real and ideal pressure distributions on both blade surfaces, 
as described below. 

Figure 3.27 indicates a typical pressure distribution around one blade in a turbine 
cascade, curves P and S corresponding to the pressure (or concave) side and suction 
(convex) side respectively. The pressures are projected parallel to the cascade front 
so that the area enclosed between the curves S and P represents the actual tangential 
blade load per unit span, 

y = P S C A C y 2  + cy1 ), (3.53) 

cf. eqn. (3.3) for a compressor cascade. 
It is instructive to examine the pressures along the blade surfaces. Assuming 

incompressible flow the static inlet pressure is p1 = po - ipc:; if losses are also 
ignored the outlet static pressure p2 = po - kpci. The pressure on the P side 
remains high at first (po being the maximum, attained only at the stagnation point), 
then falls sharply to p2. On the S side there is a rapid decrease in static pressure 
from the leading edge, but it may even rise again towards the trailing edge. The 
closer the blade spacing s the smaller the load Y becomes (eqn. (3.53)). Conversely, 
wide spacing implies an increased load with pressure rising on the P side and falling 



88 Fluid Mechanics, Thermodynamics of Turbomachinery 

FIG. 3.27. Pressure distribution around a turbine cascade blade (after Zweifel 1945). 

on the S side. Now, whereas the static pressure can never rise above po on the P 
surface, very low pressures are possible, at least in theory on the S surface. However, 
the pressure rise towards the trailing edge is limited in practice if flow separation 
is to be avoided, which implies that the load carried by the blade is restricted. 

To give some idea of blade load capacity, the real pressure distribution is 
compared with an ideal pressure distribution giving a maximum load Y i d  without risk 
of fluid separation on the S surface. Upon reflection, one sees that these conditions 
for the ideal load are fulfilled by po acting over the whole P surface and p2 acting 
over the whole S surface. With this ideal pressure distribution (which cannot, of 
course, be realised), the tangential load per unit span is, 

(3.54) y . - 1  Id - Z@,b 2 

$T = Y / Y i d  = 2(s/b)cos2 (YZ(tanal + tan(Y2) 

and, therefore, 

(3.55) 

after combining eqns. (3.53) and (3.54) together with angles defined by the geometry 
of Figure 3.27. 

Zweifel found from a number of experiments on turbine cascades that for 
minimum losses the value of $T was approximately 0.8. Thus, for specified inlet and 
outlet angles the optimum space-chord ratio can be estimated. However, according 
to Horlock (1966). Zweifel’s criterion predicts optimum space-chord ratio for the 
data of Ainley only for outlet angles of 60 to 70deg. At other outlet angles it does 
not give an accurate estimate of optimum space-chord ratio. 
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Problems 
1. Experimental compressor cascade results suggest that the stalling lift coefficient of a 

cascade blade may be expressed as 

CL (2) 3 = 2.2 

where c1 and c2 are the entry and exit velocities. Find the stalling inlet angle for a compressor 
cascade of space-chord ratio unity if the outlet air angle is 30deg. 

2. Show, for a turbine cascade, using the angle notation of Figure 3.27, that the lift 
coefficient is 

CL = 2(s/l)(tana1 + tanaZ)COSa, + C ~ t a n a ,  

where tana, = i(tana2 - t a n a ~ )  and C D  = Drag/(;pc,’l). 
A cascade of turbine nozzle vanes has a blade inlet angle a; = Odeg, a blade outlet angle 

a; of 65.5 deg, a chord length 1 of 45 mm and an axial chord b of 32 mm. The flow entering 
the blades is tc, have zero incidence and an estimate of the deviation angle based upon similar 
cascades is that S will be about 1.5 deg at low outlet Mach number. If the blade load ratio $T 

defined by eqn. (3.55) is to be 0.85, estimate a suitable space-chord ratio for the cascade. 
Determine the drag and lift coefficients for the cascade given that the profile loss coefficient 

3. A compressor cascade is to be designed for the following conditions: 

Nominal fluid outlet angle a; = 30deg 
Cascade camber angle 9 = 30deg 

Circular arc camberline al l  = 0.5 
Pitchkhord ratio s / l  = 1.0 

Using Howell’s curves and his formula for nominal deviation, determine the nominal inci- 
dence, the actual deviation for an incidence of +2.7 deg and the approximate lift coefficient 
at this incidence. 

4. A compressor cascade is built with blades of circular arc camber line, a space/chord 
ratio of 1.1 and blade angles of 48 and 21 deg at inlet and outlet. Test data taken from 
the cascade shows that at zero incidence (i = 0) the deviation 6 = 8.2deg and the total 
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pressure loss coefficient 0 = Ap0/(;pCl2) = 0.015. At positive incidence over a limited 
range (0 6 i 6 6") the variation of both 6 and T3 for this particular cascade can be represented 
with sufficient accuracy by linear approximations, viz. 

d6 dz 
- =0.06, - =0.001 
di di 

where i is in degrees. 
For a flow incidence of 5.0 deg determine 

(i) the flow angles at inlet and outlet; 
(ii) the diffuser efficiency of the cascade; 

(iii) the static pressure rise of air with a velocity S o d s  normal to the plane of the cascade. 

Assume density of air is 1.2 kg/m3. 
5. (a) A cascade of compressor blades is to be designed to give an outlet air angle a 2  

of 30deg for an inlet air angle al of 50deg measured from the normal to the plane of the 
cascade. The blades are to have a parabolic arc camber line with all  = 0.4 (Le. the fractional 
distance along the chord to the point of maximum camber). Determine the spacdchord 
ratio and blade outlet angle if the cascade is to operate at zero incidence and nominal 
conditions. You may assume the linear approximation for nominal deflection of Howell's 
cascade correlation: 

E* = (16 - 0.2a;)(3 - s / l )  deg 

as well as the formula for nominal deviation: 

S* = b.23  ( y)2 + g] B,/ i  deg. 

(b) The spacelchord ratio is now changed to 0.8, but the blade angles remain as they are 
in part (a) above. Determine the lift coefficient when the incidence of the flow is 2.Odeg. 
Assume that there is a linear relationship between E / € *  and ( i  - i*)/c* over a limited region, 
viz. at (i - i*)/c* = 0.2, E / € *  = 1.15 and at i = i*, € / E *  = 1. In this region take CD = 0.02. 

6. (a) Show that the pressure rise coefficient C ,  = A p / ( i p ~ : )  of a compressor cascade 
is related to the diffuser efficiency qD and the total pressure loss coefficient t by the 
following expressions: 

C ,  = qo(1 - sec2 a 2 /  sec2 a11 = 1 - (set' a 2  + <)/ sec2 a1 

t = APo/(;pc:)  

a1, a 2  = flow angles at cascade inlet and outlet. 

(b) Determine a suitable maximum inlet flow angle of a compressor cascade having a 
spacdchord ratio 0.8 and a 2  = 30deg when the diffusion factor D is to be limited to 0.6. 
The definition of diffusion factor which should be used is the early Lieblein formula (1956). 

(c) The stagnation pressure loss derived from flow measurements on the above cascade is 
149 Pa when the inlet velocity c1 is 100ds at an air density p of 1.2 kg/m3. Determine the 
values of 
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(i) pressure rise; 
(ii) diffuser efficiency; 

(iii) drag and lift coefficients. 
7 (a) A set of circular arc fan blades, camber 0 = 8 deg, are to be tested in a cascade wind 

tunnel at a spacekhord ratio, s / l  = 1.5, with a stagger angle { = 68 deg. Using McKenzie’s 
method of correlation and assuming optimum conditions at an axial velocity ratio of unity, 
obtain values for the air inlet and outlet angles. 

(b) Assuming the values of the derived air angles are correct and that the cascade has an 
effective lifvdrag ratio of 18, determine 

(i) the coefficient of lift of the blades; 
(ii) the efficiency of the cascade (treating it as a diffuser). 



Axial-flo w Turbines: 
Two-dimensional Theory 
Power is more certainly retained by wary measures than by daring counsels. 
(TACITUS, Annals.) 

Introduction 
The simplest approach to the study of axial-flow turbines (and also axial-flow 

compressors) is to assume that the flow conditions prevailing at the mean radius 
fully represent the flow at all other radii. This two-dimensional analysis at the pitch- 
line can provide a reasonable approximation to the actual flow, if the ratio of blade 
height to mean radius is small. When this ratio is large, however, as in the final stages 
of a steam turbine or, in the first stages of an axial compressor, a three-dimensional 
analysis is required. Some important aspects of three-dimensional flows in axial 
turbomachines are discussed in Chapter 6. Two further assumptions are, that radial 
velocities are zero, and that the flow is invariant along the circumferential direction 
(i.e. there are no “blade-to-blade” flow variations). 

In this chapter the presentation of the analysis has been devised with compressible 
flow effects in mind. This approach is then applicable to both steam and gas turbines 
provided that, in the former case, the steam condition remains wholly within the 
vapour phase (i.e. superheat region). Much early work concerning flows in steam 
turbine nozzles and blade rows are reported in Stodola (1945), Kearton (1958) and 
Horlock (1960). 

Velocity diagrams of the axial turbine stage 
The axial turbine stage comprises a row of fixed guide vanes or nozzles (often 

called a stator row) and a row of moving blades or buckets (a rotor row). Fluid 
enters the stator with absolute velocity c1 at angle cq and accelerates to an absolute 
velocity c2 at angle a2 (Figure 4.1). All angles are measured from the axial (x) direc- 
tion. The sign convention is such that angles and velocities as drawn in Figure 4.1 
will be taken as positive throughout this chapter. From the velocity diagram, the 
rotor inlet relative velocity w2, at an angle 82 ,  is found by subtracting, vectorially, 
the blade speed U from the absolute velocity c2. The relative flow within the rotor 
accelerates to velocity w3 at an angle 83 at rotor outlet; the corresponding absolute 
flow ( c 3 , ( ~ 3 )  is obtained by adding, vectorially, the blade speed U to the relative 
velocity w3. 

93 
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FIG. 4.1. Turbine stage velocity diagrams. 

The continuity equation for uniform, steady flow is, 

PlAlcxl = ~2A2c.x~ = ~ 4 3 ~ x 3 .  

In two-dimensional theory of turbomachines it is usually assumed, for simplicity, 
that the axial velocity remains constant i.e. c,l = c,2 = c,3 = c,. 

This must imply that, 

plA1 = h A 2  = P 4 3  = constant. (4.1) 

Thermodynamics of the axial turbine stage 

The work done on the rotor by unit mass of fluid, the specific work, equals the 
stagnation enthalpy drop incurred by the fluid passing through the stage (assuming 
adiabatic flow), or, 

(4.2) 

In eqn. (4.2) the absolute tangential velocity components ( cy )  are added, so as 
to adhere to the agreed sign convention of Figure 4.1. As no work is done in the 
nozzle row, the stagnation enthalpy across it remains constant and 

AW = W/h = l ~ l  - h 3  = ZJ(cy2  + ~ ~ 3 ) .  

h o 1 =  h o 2 .  (4.3) 

Writing ho = h + t(c: + c;) and using eqn. (4.3) in eqn. (4.2) we obtain, 

h o 2  - h 3  = ( h 2  - h 3 )  + &2y2 - C’Y,) = U ( C y 2  + c y 3 ) ,  
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hence, 

(h2 - h3) + ; ( c y 2  + c y 3 ) [ ( c y 2  - u) - ( c y 3  + u>l = 0. 

It is observed from the velocity triangles of Figure 4.1 that cy2 - U = wy2, cy3 + 
U = wY3 and cy2 + cy3 = wy2 + wy3. Thus, 

2 2 
(h2 - h3) + $ (wy2 - wy3) = 0. 

Add and subtract ic: to the above equation 

h2 + ;wi = h3 + ;~l or h02re1 = h03rel. (4.4) 

Thus, we have proved that the relative stagnation enthalpy, bel = h + ;w2, remains 
unchanged through the rotor of an axial turbomachine. It is implicitly assumed that 
no radial shift of the streamlines occurs in this flow. In a rudial flow machine a 
more general analysis is necessary (see Chapter 7) which takes account of the blade 
speed change between rotor inlet and outlet. 

A Mollier diagram showing the change of state through a complete turbine stage, 
including the effects of irreversibility, is given in Figure 4.2. 

Through the nozzles, the state point moves from 1 to 2 and the static pressure 
decreases from p1 to p2. In the rotor row, the absolute static pressure reduces (in 
general) from p2 to p3. It is important to note that the conditions contained in 
eqns. (4.2)-(4.4) are all satisfied in the figure. 

FIG. 4.2. Mollier diagram for a turbine stage. 
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Stage losses and efficiency 

In Chapter 2 various ldefinitions of efficiency for complete turbomachines were 
given. For a turbine stage the total-to-total efficiency is, 

actual work output 
ideal work output when operating to same back pressure rlrr  = . 

= (hol - h o 3 > / ( h o l  - ho3ss) .  

At the entry and exit of a normal stage the flow conditions (absolute velocity and 
= c3, flow angle) are identical, i.e. c1 = c3 and a1 = a3. If it is assumed that 

which is a reasonable approximation, the total-to-total efficiency becomes. 

I)tt = (hl - h3)/(hl - h3ss) 

(hl - h3)/{(hl - h3) + (h3 - h3s)  + (h3s - h3ss)) .  (4.5) 

Now the slope of a constant pressure line on a Mollier diagram is (ahlas), = T ,  
obtained from eqn. (2.18). Thus, for a finite change of enthaply in a constant pressure 
process, Ah + T A s  and, therefore, 

h3s - h3ss + T 3 ( S 3 s  - S3ss)v (4.6a) 

h2 - h2s + T 2 ( ~ 2  - ~ 2 ) .  (4.6b) 

Noting, from Figure 4.2, that ~3~ - = s2 - szsr the last two equations can be 
combined to give 

h3s - h3ss = (T3/T2)(h2 - ha) .  (4.7) 

The effects of irreversibility through the stator and rotor are expressed by 
the differences in static enthalpies, (h2 - h b )  and (h3 - h 3 )  respectively. Non- 
dimensional enthalpy "loss" coefficients can be defined in terms of the exit kinetic 
energy from each blade row. Thus, for the nozzle row, 

(4.8a) 1 2  h2 - h2s 3c2<N. 

For the rotor row, 

(4.8b) 1 2  h3 - h3s = 7w3<R. 

Combining eqns. (4.7) and (4.8) with eqn. (4.5) gives 

When the exit velocity is not recovered (in Chapter 2, examples of such cases are 
quoted) a total-to-static efficiency for the stage is used. 

r]rs = (hOl - hO3)/(hOl - h3ss)  

<RW; 4- < N C ; T ~ / T ~  -I- C: -' 
= [ l +  2(hl - h3) I '  

where, as before, it is assumed that c1 = c3. 

(4.10) 
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In initial calculations or, in cases where the static temperature drop through the 
rotor is not large, the temperature ratio T3/T2 is set equal to unity, resulting in the 
more convenient approximations, 

(4.9a) 

(4. loa) 

So that estimates can be made of the efficiency of a proposed turbine stage as part 
of the preliminary design process, some means of determining the loss coefficients 
is required. Several methods for doing this are available with varying degrees of 
complexity. The blade row method proposed by Soderberg (1949) and reported 
by Horlock (1966), although old, is still remarkably valid despite its simplicity. 
Ainley and Mathieson (1952) correlated the profile loss coefficients for nozzle blades 
(which give 100% expansion) and impulse blades (which give 0% expansion) against 
flow deflection and pitchkhord ratio for stated values of Reynolds number and 
Mach number. Details of their method are given in Chapter 3.  For blading between 
impulse and reaction the profile loss is derived from a combination of the impulse 
and reaction profile losses (see eqn. (3.42)). Horlock (1966) has given a detailed 
comparison between these two methods of loss prediction. A refinement of the 
Ainley and Mathieson prediction method was later published by Dunham and Came 
(1970). 

Various other methods of predicting the efficiency of axial flow turbines have 
been devised such as those of Craig and Cox (1971), Kacker and Okapuu (1982) 
and Wilson (1987). It was Wilson who, tellingly, remarked that despite the emer- 
gence of “computer programs of great power and sophistication”, and “generally 
incorporating computational fluid dynamics”, that these have not yet replaced the 
preliminary design methods mentioned above. It is, clearly, essential for a design 
to converge as closely as possible to an optimum configuration using preliminary 
design methods before carrying out the final design refinements using computational 
fluid dynamics. 

Soderberg’s correlation 

One method of obtaining design data on turbine blade losses is to assemble 
information on the overall efficiencies of a wide variety of turbines, and from this 
calculate the individual blade row losses. This system was developed by Soderberg 
(1949) from a large number of tests performed on steam turbines and on cascades, 
and extended to fit data obtained from small turbines with very low aspect ratio 
blading (small height-chord). Soderberg’s method was intended only for turbines 
conforming to the standards of “good design”, as discussed below. The method was 
used by Stenning (1953) to whom reference can be made. 

A paper by Horlock (1960) has critically reviewed several different and widely 
used methods of obtaining design data for turbines. His paper confirms the claim 
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FIG. 4.3. Soderberg’s correlation of turbine blade loss coefficient with fluid deflection 
(adapted from Horlock (1960). 

made for Soderberg’s correlation that, although based on relatively few parameters, 
it is of comparable accuracy with the best of the other methods. 

Soderberg found that for the optimum space-chord ratio, turbine blade losses 
(with “full admission” to the complete annulus) could be correlated with space- 
chord ratio, blade aspect ratio, blade thickness-chord ratio and Reynolds number. 
Soderberg used ZweifeZ’s criterion (see Chapter 3 )  to obtain the optimum space- 
chord ratio of turbine cascades based upon the cascade geometry. Zweifel suggested 
that the aerodynamic load coefficient $T should be approximately 0.8. Following 
the notation of Figure 4.1 

$T = 0.8 = 2(~/b) ( tan~l  + tan(~2)  cos2 CQ. (4.11) 

The optimum space-chord ratio may be obtained from eqn. (4.11) for specified 
values of 011 and a2. 

For turbine blade rows operating at this load coefficient, with a Reynolds number 
of 105 and aspect ratio H / b  = blade heighdaxial chord) of 3, the “nominal” loss 
coefficient <* is a simple function of the fluid deflection angle E = a1 + a2, for 
a given thickness-chord ratio (tmax/Z). Values of <* are drawn in Figure 4.3 as 
a function of deflection E, for several ratios of rma/Z. A frequently used analyt- 
ical simplification of this correlation (for t,/Z = 0.2), which is useful in initial 
performance calculations, is 

<* = 0.04+0.06 - . (4.12) ( 1kI2 

This expression fits Soderberg’s curve (for tma/l = 0.2) quite well for E 2 120”, 
but is less accurate at higher deflections. For turbine rows operating at zero inci- 
dence, which is the basis of Soderberg’s correlation, the fluid deflection is little 
different from the blading deflection since, for turbine cascades, deviations are 
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usually small. Thus, for a nozzle row, E = EN = a; +a\ and for a rotor row, 
E = E R  = /?; + 

If the aspect ratio H/b  is other than 3, a correction to the nominal loss coefficient 
<* is made as follows: 

for nozzles, 

can be used (the prime refemng to the actual blade angles). 

1 + <1 = (1 + <*)(0.993 + 0.021b/H), (4.13a) 

for rotors, 

1 + (1 = (1 + <*)(0.975 + 0.075b/H), (4.13b) 

where {I is the loss coefficient at a Reynolds number of lo5. 
A further correction can be made if the Reynolds number is different from lo5. 

As used in this section, Reynolds number is based upon exit velocity c 2  and the 
hydraulic mean diameter D h  at the throat section. 

Re = P2C2Dh/CL9 (4.14) 

where 

(N.B. Hydraulic mean diameter = 4 x flow area + wetted perimeter.) 
The Reynolds number correction is 

(4.15) 

Soderberg’s method of loss prediction gives turbine efficiencies with an error of 
less than 3% over a wide range of Reynolds number and aspect ratio when additional 
corrections are included to allow for tip leakage and disc friction. An approximate 
correction for tip clearance may be incorporated by the simple expedient of multi- 
plying the final calculated stage efficiency by the ratio of “blade” area to total area 
(i.e. “blade” area + clearance area). 

Types of axial turbine design 

The process of choosing the best turbine design for a given application usually 
involves juggling several parameters which may be of equal importance, for instance, 
rotor angular velocity, weight, outside diameter, efficiency, so that the final design 
lies within acceptable limits for each parameter. In consequence, a simple presen- 
tation can hardly do justice to the real problem. However, a consideration of the 
factors affecting turbine efficiency for a simplified case can provide a useful guide 
to the designer. 

Consider the problem of selecting an axial turbine design for which the mean 
blade speed U ,  the specific work AW, and the axial velocity e,, have already been 
selected. The upper limit of blade speed is limited by stress; the limit on blade tip 
speed is roughly 450 m / s  although some experimental turbines have been operated 
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at higher speeds. The axial velocity is limited by flow area considerations. It is 
assumed that the blades are sufficiently short to treat the flow as two-dimensional. 

The specific work done is 

AW = U(cY2 + ~ ~ 3 ) .  

With AW, U and c, fixed the only remaining parameter required to completely 
define the velocity triangles is cY2, since 

cY3 = AW/U-cY2. (4.16) 

For different values of cy2 the velocity triangles can be constructed, the loss 
coefficients determined and ‘ Itf ,  qts calculated. In Shapiro et al. (1957) Stenning 
considered a family of turbines each having a flow coefficient c,/U = 0.4, blade 
aspect ratio H / b  = 3 and Reynolds number Re = 105, and calculated ‘ I t t ,  ‘Ifs for 
stage loading factors AW/U2 of 1, 2 and 3 using Soderberg’s correlation. The 
results of this calculation are shown in Figure 4.4. It will be noted that these results 
relate to blading efficiency and make no allowance for losses due to tip clearance 
and disc friction. 

EXAMPLE 4.1. Verify the peak value of the total to static efficiency qts shown 
in Figure 4.4 for the curve marked AW/U2 = 1, using Soderberg’s correlation and 
the same data used by Stenning in Shapiro et al. (1957). 

Solution. From eqn. (4. loa): 

1 G?w: + zjvc; + c: - = 1 +  
‘ I ts  2AW 

FIG. 4.4. Variation of efficiency with (cy2/U) for several values of stage loading factor 
A W / U 2  (adapted from Shapiro et al. 1957). 
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As AW = U2 = U(cy2 + Cy3) then as cy2 = U ,  cy3 = 0, 

4 = c,/U = cot 012 = 0.4, hence 012 = 68.2 deg. 

The velocity triangles are symmetrical, so that 012 = 83. Also, CR = CN = 012 = 
68.2", 

:. t = 0.04 x (1 + 1.5 x 0.6822) = 0.0679, 

= 1 + @2(< sec2 8 3  + 0.5) 

= 1 + 0.42 x (0.0679 x 2.69282 + 0.5) 

= 1 + 0.16 x (0.49235 + O S ) ,  

:. qrs = 0.863. 

This value appears to be the same as the peak value of the efficiency curve 
AW/U2 = 1.0, in Figure 4.4. 

Stage reaction 

The classification of different types of axial turbine is more conveniently described 
by the degree ofreaction or reaction ratio R,  of each stage rather than by the ratio 
cy2/U. As a means of description the term reaction has certain inherent advantages 
which become apparent later. Several definitions of reaction are available; the clas- 
sical definition is given as the ratio of the static pressure drop in the rotor to the 
static pressure drop in the stage. However, it is more useful to define the reaction 
ratio as the static enthalpy drop in the rotor to the static enthalpy drop in the stage 
because it then becomes, in effect, a statement of the stage flow geometry Thus, 

If the stage is normal (i.e. c1 = c3) then, 

R = (h2 - h3)/(h01 - h3). (4.18) 

Using eqn. (4.4), h2 - h3 = i(w; - w:) and eqn. (4.18) becomes, 

Assuming constant axial velocity through the stage 

since, upon referring to Figure 4.1, it is seen that 

c y 2  = wY2 + U and cy3 = wy3 - U .  

(4.19) 

(4.20) 

(4.21) 
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Thus, 

CX 

2u R = -((tan83 - tan82) (4.22a) 

or 

(4.22b) 1 cx 
2 2u 

R = - + -(tan83 - tan(~2), 

after using eqn. (4.21). 

cases are discussed below in more detail. 

Zero reaction stage 

If 83 = 8 2 ,  the reaction is zero; if 83 = a2 the reaction is 50%. These two special 

From the definition of reaction, when R = 0, eqn. (4.18) indicates that h2 = h3 and 
eqn. (4.22a) that 8 2  = 83. The Mollier diagram and velocity triangles corresponding 
to these conditions are sketched in Figure 4.5. Now as hOzrel = h03rel and h2 = h3 for 
R = 0 it must follow, therefore, that w2 = w3. It will be observed from Figure 4.5 
that, because of irreversibility, there is a pressure drop through the rotor row. The 
zero reaction stage is not the same thing as an impulse stage; in the latter case there 
is, by definition, no pressure drop through the rotor. The Mollier diagram for an 
impulse stage is shown in Figure 4.6 where it is seen that the enthalpy increases 

FIG. 4.5. Velocity diagram and Mollier diagram for a zero reaction turbine stage. 

FIG. 4.6. Mollier diagram for an impulse turbine stage. 
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FIG. 4.7. Velocity diagram and Mollier diagram for a 50% reaction turbine stage. 

through the rotor. The implication is clear from eqn. (4.18); the reaction is negative 
for the impulse turbine stage when account is taken of the irreversibility. 

50 per cent reaction stage 

The combined velocity diagram for this case is symmetrical as can be seen from 
Figure 4.7, since 83 = ( ~ 2 .  Because of the symmetry it is at once obvious that 8 2  = 
( ~ 3 ,  also. Now with R = i, eqn. (4.18) implies that the enthalpy drop in the nozzle 
row equals the enthalpy drop in the rotor, or 

hl - h2 = h2 - h3. (4.23) 

Figure 4.7 has been drawn with the same values of c,, U and AW, as in Figure 4.5 
(zero reaction case), to emphasise the difference in flow geometry between the 50% 
reaction and zero reaction stages. 

Diffusion within blade rows 
Any diffusion of the flow through turbine blade rows is particularly undesirable 

and must, at the design stage, be avoided at all costs. This is because the adverse 
pressure gradient (arising from the flow diffusion) coupled with large amounts of 
fluid deflection (usual in turbine blade rows), makes boundary-layer separation more 
than merely possible, with the result that large scale losses arise. A compressor 
blade row, on the other hand, is designed to cause the fluid pressure to rise in the 
direction of flow, i.e. an adverse pressure gradient. The magnitude of this gradient 
is strictly controlled in a compressor, mainly by having a fairly limited amount of 
fluid deflection in each blade row. 

The comparison of the profile losses given in Figure 3.14 is illustrative of the 
undesirable result of negative “reaction” in a turbine blade row. The use of the term 
reaction here needs qualifying as it was only defined with respect to a complete stage. 
From eqn. (4.22a) the ratio R / @  can be expressed for a single row of blades if the 
flow angles are known. The original data provided with Figure 3.14 gives the blade 
inlet angles for impulse and reaction blades as 45.5 and 18.9 deg respectively. Thus, 
the flow angles can be found from Figure 3.14 for the range of incidence given, and 
R / 4  can be calculated. For the reaction blades R / 4  decreases as incidence increases 
going from 0.36 to 0.25 as i changes from 0 to 10deg. The impulse blades, which it 
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FIG. 4.8. Velocity diagram for 100% reaction turbine stage. 

will be observed have a dramatic increase in blade profile loss, has R/#  decreasing 
from zero to -0.25 in the same range of incidence. 

It was shown above that negative values of reaction indicated diffusion of the 
rotor relative velocity (i.e. for R < 0, w3 < w2). A similar condition which holds 
for diffusion of the nozzle absolute velocity is, that if R > 1, c2 < c1. 

Substituting tan83 = tanq  + U / c ,  into eqn. (4.22b) gives 

(4.22~) 

Thus, when a3 = a2, the reaction is unity (also c2 = c3). The velocity diagram for 
R = 1 is shown in Figure 4.8 with the same values of cx, U and A W  used for R = 0 
and R = 4. It will be apparent that if R exceeds unity, then c2 < c1 (i.e. nozzle flow 
diffusion). 

CX 

2 u  
R = 1 + -((tanag - tana2). 

EXAMPLE 4.2. A single-stage gas turbine operates at its design condition with 
an axial absolute flow at entry and exit from the stage. The absolute flow angle at 
nozzle exit is 70 deg. At stage entry the total pressure and temperature are 3 1 1 kPa 
and 850°C respectively. The exhaust static pressure is 100kPa, the total-to-static 
efficiency is 0.87 and the mean blade speed is 5 0 0 d s .  

Assuming constant axial velocity through the stage, determine 

(i) the specific work done; 
(ii) the Mach number leaving the nozzle; 

(iii) the axial velocity; 
(iv) the total-to-total efficiency; 
(v) the stage reaction. 

Take C ,  = 1.148kJ/(kg0C) and y = 1.33 for the gas. 

Solution. (i) From eqn. (4. lo), total-to-static efficiency is 

h o 1 -  ho3 - A W  
- 

hol - h3ss hol(1 - (p3/pOl)‘’-’)’’) * 
Bts = 

Thus, the specific work is 

AW = tltsCpT01{1 - (p3/p01)(y-1)”) 

= 0.87 x 1148 x 1123 x (1 - (1/3.11)0.248) 

= 276kJkg. 
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(ii) At nozzle exit the Mach number is 

M2 = C ~ / ( Y R T ~ ) ~ ' ~  

and it is necessary to solve the velocity diagram to find c2 and hence to determine 
7-2. 

AS cY3 = 0, AW = UcY2 

A W  276x 103 
= 5 5 2 d ~  - - 

500 
c,2 = - 

U 
c2 = cY2/ sin a 2  = 588 d s .  

Refemng to Figure 4.2, across the nozzle hol  = ho2 = h2 + ici, thus 

1 2  T2 = To1 - Zc2/Cp = 973K. 

Hence, M2 = 0.97 with yR = ( y  - l)Cp. 
(iii) The axial velocity, c, = c2 cos a 2  = 200 d s .  

After some rearrangement, 
1 2  (iv) Vr r  = AW/(hol - h3ss - 3 ~ 3 ) -  

= 1.0775. 
1 1  e: 1 2od  - - 

qtr qts 2AW 0.87 2 x 276 x lo3 

Therefore qrr = 0.93. 
(v) Using eqn. (4.22a), the reaction is 

R = $(~,/U)(tanB3 - tan82). 

From the velocity diagram, tan 8 3  = U/c ,  and tan 8 2  = tan a 2  - U/c ,  

R = 1 - i(~,/U)tana2 = 1 - 200 x 0.2745/1000 

= 0.45 1. 

EXAMPLE 4.3. Verify the assumed value of total-to-static efficiency in the above 
example using Soderberg's correlation method. The average blade aspect ratio for 
the stage H / b  = 5.0, the maximum blade thickness-chord ratio is 0.2 and the 
average Reynolds number, defined by eqn. (4.14), is 1 6 .  

Solution. The approximation for total-to-static efficiency, eqn. (4. loa), is used 
and can be rewritten as 

1 <R(W3/V2 + Mc2/u )2  + ( C , / V 2  - = 1 +  
VfS 2AW/U2 

The loss coefficients <R and ( N ,  uncorrected for the effects of blade aspect ratio, 
are determined using eqn. (4.12) which requires a knowledge of flow turning angle 
E for each blade row. 

For the nozzles, a1 = 0 and a 2  = 70deg, thus EN = 70deg. 

<; = 0.04(1 + 1.5 x 0.72) = 0.0694. 
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Correcting for aspect ratio with eqn. (4.13a), 

( ~ 1  = 1.0694(0.993 + 0.02115) - 1 = 0.0666. 

For the rotor, tan82 = (cy2 - U ) / c ,  = (552 - 500)/200 = 0.26, 

:_ 8 2  = 14.55 deg. 

Therefore, 

tan83 = U/c, = 2.5, 

and 8 3  = 68.2deg. 

Therefore ER = 8 2  + 8 3  = 82.75 deg, 

(i = 0.04(1 + 1.5 x 0.82752) = 0.0812. 

Correcting for aspect ratio with eqn. (4.13b) 

= 1.0812(0.975 + 0.075/5) - 1 = 0.0712. 

The velocity ratios are: 

2 (5>'= 1 + ($) = 1.16 

2 2 

= 1.382; (;) = 0.16 
500 

and the stage loading factor is, 

AW cY2 552 
u2 u 500 

- - - 1.104 

Therefore 

1 
v i s  2 x 1.104 

0.0712 x 1.16 + 0.0666 x 1.382 + 0.16 _ -  - I +  

= 1 + 0.1515 

... = 0.869. 

This result is very close to the valuehassumed in the first example. 
It is not too difficult to include the temperature ratio T3/T2 implicit in the more 

exact eqn. (4.10) in order to see how little effect the correction will have. To calcu- 
late T3 

AW + 276,000 + 20,000 
T3 = To1 - = 1123 - 

CP 1148 
= 865 K. 

T3/T2 = 865/973 = 0.89. 
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Therefore 
0.0712 x 1.16 + 0.89 x 0.0666 x 1.382 + 0.16 

- = 1 +  
V I S  2 x 1.104 
1 

= 1 + 0.1468. 

:. qrs = 0.872. 

Choice of reaction and effect on efficiency 

In Figure 4.4 the total-to-total and total-to-static efficiencies are shown plotted 
against cy2/U for several values of stage loading factor AW/U2. These curves 
can now easily be replotted against the degree of reaction R instead of c,2/U. 
Equation (4.22~) can be rewritten as R = 1 + (cy3 - cy2)/(2U) and cy3 eliminated 
using eqn. (4.16) to give 

A W  cy2 
2u2 u '  R = l + - - -  (4.24) 

The replotted curves are shown in Figure 4.9 as presented by Shapiro et al. (1957). 
In the case of total-to-static efficiency, it is at once apparent that this is optimised, 
at a given blade loading, by a suitable choice of reaction. When AW/U2 = 2, the 
maximum value of qts occurs with approximately zero reaction. With lighter blade 
loading, the optimum qrs is obtained with higher reaction ratios. When AW/U2 > 2, 
the highest value of qrs attainable without rotor relative flow diffusion occumng, is 
obtained with R = 0. 

From Figure 4.4, for a fixed value of AW/U2, there is evidently only a relatively 
small changes in total-to-total efficiency (compared with qts), for a wide range of 

FIG. 4.9. Influence of reaction on total-to-static efficiency with fixed values of stage 
loading factor. 
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possible designs. Thus qtr is not greatly affected by the choice of reaction. However, 
the maximum value of qtr decreases as the stage loading factor increases. To obtain 
high total-to-total efficiency, it is therefore necessary to use the highest possible 
value of blade speed consistent with blade stress limitations (i.e. to reduce A W/U2). 

Design point efficiency of a turbine stage 

The performance of a turbine stage in terms of its efficiency is calculated for 
several types of design, i.e. 50 per cent reaction, zero reaction and zero exit flow 
angle, using the loss correlation method of Soderberg described earlier. These are 
most usefully presented in the form of carpet plots of stage loading coefficient, $, 
and flow coefficient, 4. 

(1) Total-to-total efficiency of 50 per cent reaction stage 

In a multistage turbine the total-to-total efficiency is the relevant performance 
criterion, the kinetic energy at stage exit being recovered in the next stage. After 
the last stage of a multistage turbine, or a single-stage turbine, the kinetic energy in 
the exit flow would be recovered in a diffuser or used for another purpose (e.g. as 
a contribution to the propulsive thrust). 

From eqn. (4.9a), where it has already been assumed that c1 = c3 and T3 = T2, 
we have: 

where A W = $U2 and, for 50 per cent reaction, wg = c2 and <R = <N = < 

as tan83 = ($ + 1)/(24) and tan82 = ($ - 1)/(24). 
From the above expressions the performance chart, shown in Figure 4.10, was 

derived for specified values of $ and 4. From this chart it can be seen that the peak 
total-to-total efficiency, qrf ,  is obtained at very low values of 4 and $. As indicated 
in a survey by Kacker and Okapuu (1982), most aircraft gas turbine designs will 
operate with flow coefficients in the range, 0.5 6 $ 6 1.5, and values of stage 
loading coefficient in the range, 0.8 6 $ 6 2.8. 

(2) Total-to-total efficiency of a zero reaction stage 

The degree of reaction will normally vary along the length of the blade depending 
upon the type of design that is specified. The performance for R = 0 represents a 
limit, lower values of reaction are possible but undesirable as they would give rise 
to large losses in efficiency. For R < 0, w3 < w2, which means the relative flow 
decelerates across the rotor. 
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FIG. 4.1 0. Design point total-to-total efficiency and deflection angle contours for a turbine 
stage of 50 per cent reaction. 

Referring to Figure 4.5, for zero reaction 8 2  = 83, and from eqn. (4.21) 

tana2 = l / @ +  tan82 and tana3 = tan83 - l/@. 

Also, $ = A W / U 2  = @(tana2 + tan(~3)  = 4(tm82 + tm83) = 24tan82, 

$ 
24 

:. tan 8 2  = -. 

Thus, using the above expressions: 

tma2 = ( $ / 2  + 1)/4 and tana3 = ($/2 - l)/#. 

From these expressions the flow angles can be calculated if values for $ and 4 are 
specified. From an inspection of the velocity diagram, 

c2 =c,secar2, h e n c e c ~ = ~ ~ ( l + t a n ~ a 2 ) = ~ : [ 1 + ( 1 1 / / 2 + 1 ) ~ / ~ ~ ] ,  

w3 =c,secB3, hence~:=c:( l+tan~fi3)=~:[1+($/2q5)~] .  

Substituting the above expressions into eqn. (4.9a): 

1 w: + LVc; 
- = l +  2$U2 ’ r lrr  

- rltr 1 = 1 + L 2$ { 5R [m. + ( 92] + ( N  [m: + (1 + ;) 2] } . 
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FIG. 4.1 1. Design point total-to-total efficiency and rotor flow deflection angle for a zero 
reaction turbine stage. 

The performance chart shown in Figure 4.11 has been derived using the above 
expressions. This is similar in its general form to Figure 4.10 for 50 per cent reac- 
tion, with the highest efficiencies being obtained at the lowest values of $ and $, 
except that higher efficiencies are obtained at higher values of the stage loading but 
at reduced values of the flow coefficient. 

(3) Total-to-static efficiency of stage with axial velocity at exit 

A single-stage axial turbine will have axial flow at exit and the most appropriate 
efficiency is usually total-to-static. To calculate the performance, eqn. (4.10a) is 
used: 

1 
- = 1 +  
‘I ts 2AW 

(CRWi + CNC; + .:I 

$2 

21cI 
= 1 + -(<Rsec2p3 +<Nsec2a2+ 1). 

With axial flow at exit, c1 = c3 = c,, and from the velocity diagram, Figure 4.12, 

tanp3 = u/c,, tan82 = tana2 - tanp3, 

sec 83 = 1 + tan2 8 3  = 1 + I/@~, 
sec2a2 = 1 + tan2a2 = I + (+/$I2, 

2 

1 1 
. - = 1 + - M 1  + $2) + <N(!h2 + $2) + $21. 24 
. .  

‘Irs 
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FIG. 4.12. Velocity diagram for turbine stage with axial exit flow. 

FIG. 4.13. Total-to-total efficiency contours for a stage with axial flow at exit. 

Specifying 9, +, the unknown values of the loss coefficients, <R and < N ,  can be 
derived using Soderberg's correlation, eqn. (4.12), in which 

EN = ( ~ 2  = tm-'(+/#) and ER = 8 2  + 83 = tan-'(l/@) + tan-'[(+ - l)/#]. 

From the above expressions the performance chart, Figure 4.13, has been derived. 
An additional limitation is imposed on the performance chart because of the reac- 

tion which must remain greater than or, in the limit, equal to zero. From eqn. (4.22a), 

9 1c. R = -(tan83 - tan82) = 1 - -. 
2 2 

Thus at the limit, R = 0, the stage loading coefficient, 1c. = 2. 
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Maximum total-to-static efficiency of a reversible 
turbine stage 

When blade losses and exit kinetic energy loss are included in the definition of 
efficiency, we have shown, eqn. (4.10a), that the efficiency is 

In the case of the ideal (or reversible) turbine stage the only loss is due to the 
exhaust kinetic energy and then the total-to-static efficiency is 

since AW = hol - h03ss = U(cY2 + cY3) and ‘3ss 
The maximum value of qrs is obtained when 

(4.25a) 

1 2  - h3ss = ic3. 
the exit velocity c3 is nearly a 

minimum for given turbine stage operating conditions (R, 4 and 012). On first thought 
it may appear obvious that maximum ‘Ifs will be obtained when c3 is absolutely 
axial (i.e. 013 = 0”) but this is incorrect. By allowing the exit flow to have some 
counterswirl (i.e. 013 > 0 deg) the work done is increased for only a relatively small 
increase in the exit kinetic energy loss. Two analyses are now given to show how 
the total-to-static efficiency of the ideal turbine stage can be optimised for specified 
conditions. 

Substituting cy2 = c, tan 012, cy3 = c, tan 013, c3 = c,/ cos 013 and 4 = c,/U into 
eqn. (4.25), leads to 

[ 2(tana2 4(1 + tan2 + tanas) a3) 1 ‘Its = 1 + (4.25b) 

i.e. qts = fn (4, a2, a3). 

(i) To find the optimum ‘Ifs when R and 4 are specified 

From eqn. (4.22~) the nozzle flow outlet angle 012 can be expressed in terms of 

(4.26) 

R,  4 and ( ~ 3  a~ 

tan012 = tan013 + 2(1 - R ) / @ .  

Substituting into eqn. (4.25b) 

42(1 + tan2a3) I-’. 
’I” = [ + 4(4tana3 + 1 - R )  

Differentiating this expression with respect to tan 013, and equating the result to zero, 

taI12013+2ktan013- 1 = o  
where k = (1 - R)/$J. This quadratic equation has the solution 

tan013 = -k + J(k2 + 1) (4.27) 
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the value of a3 being the optimum flow outlet angle from the stage when R and 4 
are specified. From eqn. (4.26), k = (tan2 - tan a3)/2 which when substituted into 
eqn. (4.27) and simplified gives 

tan a3 = cot 012 = tan(n/2 - 4. 

Hence, the exact result that 

a 3  = n /2  - a 2 .  

The corresponding idealised qtsmax and R are 

qtsmax = [ I +  (4/2)cota21-' 

R = 1 - 4(tana2 - ~ 0 t ~ t 2 ) / 2 .  

(ii) To find the optimum qfs  when a2 and 4 are specified 

(4.28a) 

Differentiating eqn. (4.25b) with respect to tan a3 and equating the result to zero, 

2 tan a3+2tana2tana3-  1 = O .  

Solving this quadratic, the relevant root is 

tan a 3  = sec a 2  - tan a2. 

Using simple trignometric relations this simplifies still further to 

a 3  = (TI2 - a2)/2. 

Substituting this expression for a3 into eqn. (4.25b) the idealised maximum qrs 
is obtained 

qrsmax = 11 + +(seca2 - tana2)l-l. (4.2 8 b) 

The corresponding expressions for the degree of reaction R and stage loading coef- 
ficient A W/U2 are 

1 R = 1 - 4(tana2 - j: seca2) 

AW c2 
- 4 sec a 2  = - 

U2 U 
-- (4.29) 

It is interesting that in this analysis the exit swirl angle a3 is only half that of the 
constant reaction case. The difference is merely the outcome of the two different 
sets of constraints used for the two analyses. 

For both analyses, as the flow coefficient is reduced towards zero, 012 approaches 
1712 and a3 approaches zero. Thus, for such high nozzle exit angle turbine stages, 
the appropriate blade loading factor for maximum qrs can be specified if the reaction 
is known (and conversely). For a turbine stage of 50% reaction (and with a3 

Odeg) the appropriate velocity diagram shows that AW/U2 + 1 for maximum qrs. 
Similarly, a turbine stage of zero reaction (which is an impulse stage for ideal, 
reversible flow) has a blade loading factor AW/U2 + 2 for maximum qrs. 
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FIG. 4.14. Total-to-static efficiency of a 50% reaction axial flow turbine stage (adapted 
from Horlock 1966). 

Calculations of turbine stage performance have been made by Horlock (1966) 
both for the reversible and irreversible cases with R = 0 and 50%. Figure 4.14 
shows the effect of blade losses, determined with Soderberg’s correlation, on the 
total-to-static efficiency of the turbine stage for the constant reaction of 50%. It 
is evident that exit losses become increasingly dominant as the flow coefficient is 
increased. 

Stresses in turbine rotor blades 
Although this chapter is primarily concerned with the fluid mechanics and ther- 

modynamics of turbines, some consideration of stresses in rotor blades is needed 
as these can place restrictions on the allowable blade height and annulus flow area, 
particularly in high temperature, high stress situations. Only a very brief outline 
is attempted here of a very large subject which is treated at much greater length 
by Horlock (1966), in texts dealing with the mechanics of solids, e.g. Den Hartog 
(1952), Timoshenko (1957), and in specialised discourses, e.g. Japiske (1986) and 
Smith (1986). The stresses in turbine blades arise from centrifugal loads, from 
gas bending loads and from vibrational effects caused by non-constant gas loads. 
Although the centrifugal stress produces the biggest contribution to the total stress, 
the vibrational stress is very significant and thought to be responsible for fairly 
common vibratory fatigue failures (Smith 1986). The direct and simple approach 
to blade vibration is to “tune” the blades so that resonance does not occur in the 
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operating range of the turbine. This means obtaining a blade design in which none 
of its natural frequencies coincides with any excitation frequency. The subject is 
complex, interesting but outside of the scope of the present text. 

Centrifugal stresses 

Consider a blade rotating about an axis 0 as shown in Figure 4.15. For an element 
of the blade of length dr at radius r, at a rotational speed i2 the elemetary centrifugal 
load dF, is given by, 

dF, = -Q2rdm, 

where dm = p,Adr and the negative sign accounts for the direction of the stress 
gradient (i.e. zero stress at the blade tip to a maximum at the blade root). 

= -Q2rdr. dcc - dFc - -  - 
P m  P ~ A  

FIG. 4.15. Centrifugal forces acting on rotor blade element. 
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For blades with a constant cross-sectional area, we get 

ac = Q 2  r d r =  f 1 -  (4.30a) 

A rotor blade is usually tapered both in chord and in thickness from root to tip 
such that the area ratio A,/& is between 113 and 114. For such a blade taper it is 
often assumed that the blade stress is reduced to 2/3 of the value obtained for an 
untapered blade. A blade stress taper factor can be defined as: 

- l  Pm u2 2 [ (32]* 

stress at root of tapered blade 
stress at root of untapered blade 

K =  

Thus, for tapered blades 

_ -  ac - KU: [1 - (a)’] . (4.30b) 

Values of the taper factor K quoted by Emmert (1950), are shown in Figure 4.16 
for various taper geometries. 

Typical data for the allowable stresses of commonly used alloys are shown in 
Figure 4.17 for the “1OOO hr rupture life” limit with maximum stress allowed plotted 
as a function of blade temperature. It can be seen that in the temperature range 
900- 1100 K, nickel or cobalt alloys are likely to be suitable and for temperatures 
up to about 1300 K molybdenum alloys would be needed. 

By means of blade cooling techniques it is possible to operate with turbine 
entry temperatures up to 1650-1700K, according to Le Grivb (1986). Further 
detailed information on one of the many alloys used for gas turbines blades is 
shown in Figure 4.18. This material is Inconel, a nickel-based alloy containing 13% 
chromium, 6% iron, with a little manganese, silicon and copper. Figure 4.18 shows 
the influence of the “rupture life” and also the “percentage creep”, which is the 

Pm 2 

FIG. 4.16. Effect of tapering on centrifugal stress at blade root (adapted from Emmert 
1950). 
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FIG. 4.17. Maximum allowable stress for various alloys (1000 hr rupture life) (adapted 
from Freeman 1955). 

FIG. 4.18. Properties of lnconel 713 Cast (adapted from Balje 1981). 
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elongation strain at the allowable stress and temperature of the blade. To enable 
operation at high temperatures and for long life of the blades, the creep strength 
criterion is the one usually applied by designers. 

An estimate of the average rotor blade temperature Tb can be made using the 
approximation, 

Tb = T2 + 0.85w;/(2Cp), (4.31) 

i.e. 85% temperature recovery of the inlet relative kinetic energy. 

EXAMPLE 4.4. Combustion gases enter the first stage of a gas turbine at a stag- 
nation temperature and pressure of 1200 K and 4.0 bar. The rotor blade tip diameter 
is 0.75 m, the blade height is 0.12 m and the shaft speed is 10 500 rev/min. At the 
mean radius the stage operates with a reaction of 50 per cent, a flow coefficient of 
0.7 and a stage loading coefficient of 2.5. 

Determine: 

(1) the relative and absolute flow angles for the stage; 
(2) the velocity at nozzle exit; 
(3) the static temperature and pressure at nozzle exit assuming a nozzle efficiency 

of 0.96 and the mass flow; 
(4) the rotor blade root stress assuming the blade is tapered with a stress taper factor 

K of 213 and the blade material density is 8000 kg/m2; 
(5) the approximate mean blade temperature; 
(6) taking only the centrifugal stress into account suggest a suitable alloy from the 

information provided which could be used to withstand 1000hr of operation. 

Solution. (1) The stage loading is 

+ = Aho/U2 = (wY3 + wY2)IU = +(tan83 + tm82). 

From eqn. (4.20) the reaction is 

R = m a n  83 - tan 82112. 

Adding and subtracting these two expressions, we get 

tan 83 = (+I2 + R)/#J and tan 8 2  = ($12 - R I l 4 .  
Substituting values of +, 4 and R into the preceding equations we obtain 

83 = 68.2", 82 = 46.98" 

and for similar triangles (Le. 50% reaction) 

 CY^ = 83 and a3 = 8 2  

(2) At the mean radius, r, = (0.75 - 0.12)/2 = 0.315 m, the blade speed is 
Urn = S2r, = (10500/30) x n x 0.315 = 1099.6 x 0.315 = 346.36ds. The axial 
velocity c, = c$U, = 0.5 x 346.36 = 242.45m/s and the velocity of the gas at 
nozzle exit is, c2 = cx/ cos a 2  = 242.451 cos 68.2 = 652.86 m / s .  
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(3) To determine the conditions at nozzle exit, we have 

1 2  T2 = To2 - ?c2 /C ,  = 1200 - 652.862/(2 x 1160) = 1016.3 K 

From eqn. (2.40), the nozzle efficiency is 

h01- h2 - 

ho1 - h2s 

1 - T2/7-01 

1 - (P2/P01)y-1)’y 
- V N  = 

= I -  - T2/T01 = 1 - (1 - 1016.3/12OQ)/0.96 = 0.84052 (;) (v-L”y 

V N  

The mass flow is found from the continuity equation: 

x 0.2375 x 242.45 = 39.1 kg/s 
. . m  = ( 1.986 x lo5 ) 

287.8 x 1016.3 

(4) For a tapered blade, eqn. (4.30b) gives 

a, 2 412.32 [l - (OSI) ’ ]  - - - -  - x -  = 30463.5 m2/s2 
Prn 3 2 0.75 

where U ,  = 1099.6 x 0.375 = 412.3 m/s. 
The density of the blade material is taken to be 8OOO kg/m3 and so the root stress is 

a, = 8OOO x 30463.5 = 2.437 x 10’ N/m2 = 243.7 MPa 

(5) The approximate average mean blade temperature is 

Tb = 1016.3 + 0.85 X (242.45/ ~ 0 ~ 4 6 . 9 7 5 ) ~ / ( 2  X 1160) 

= 1016.3 + 46.26 = 1062.6K 

(6)  The data in Figure 4.17 suggests that for this moderate root stress, cobalt or 
nickel alloys would not withstand a lifespan of 1OOOhr to rupture and the use of 
molybdenum would be necessary. However, it would be necessary to take account 
of bending and vibratory stresses and the decision about the choice of a suitable 
blade material would be decided on the outcome of these calculations. 

Inspection of the data for Inconel 713 cast alloy, Figure 4.18, suggests that it 
might be a better choice of blade material as the temperature-stress point of the 
above calculation is to the left of the line marked creep strain of 0.2% in 1OOOhr. 
Again, account must be taken of the additional stresses due to bending and vibration. 

Design is a process of trial and error; changes in the values of some of the 
parameters can lead to a more viable solution. In the above case (with bending and 
vibrational stresses included) it might be necessary to reduce one or more of the 
values chosen, e.g. 
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(1) the rotational speed, 
(2) the inlet stagnation temperature, 
(3) the flow area. 

NB. The combination of values for II. and q5 at R = 0.5 used in this example were 
selected from data given by Wilson (1987) and correspond to an optimum total-to- 
total efficiency of 9 1.9%. 

Turbine blade cooling 

In the gas turbine industry there has been a continuing trend towards higher 
turbine inlet temperatures, either to give increased specific thrust (thrust per unit 
air mass flow) or to reduce the specific fuel consumption. The highest allowable 
gas temperature at entry to a turbine with uncooled blades is 1250-1300K while, 
with blade cooling systems, a range of gas temperatures up to 1800 K or so may be 
employed, depending on the nature of the cooling system. 

Various types of cooling system for gas turbines have been considered in the past 
and a number of these are now in use. Wilde (1977) reviewed the progress in blade 
cooling techniques. He also considered the broader issues involving the various 
technical and design factors influencing the best choice of turbine inlet temperature 
for future turbofan engines. Le Grivb (1986) reviewed types of cooling system, 
outlining their respective advantages and drawbacks, and summarising important 
analytical considerations concerning their aerodynamics and heat transfer. 

The system of blade cooling most commonly employed in aircraft gas turbines 
is where some cooling air is bled off from the exit stage of the high-pressure 
compressor and carried by ducts to the guide vanes and rotor of the high-pressure 
turbine. It was observed by Le Grivb that the cooling air leaving the compressor 
might be at a temperature of only 400 to 450K less than the maximum allowable 
blade temperature of the turbine. Figure 4.19 illustrates a high-pressure turbine rotor 
blade, cut away to show the intricate labyrinth of passages through which the cooling 
air passes before it is vented to the blade surface via the rows of tiny holes along 
and around the leading edge of the blade. Ideally, the air emerges with little velocity 
and form a film of cool air around the blade surface (hence the term “film cooling”), 
insulating it from the hot gases. This type of cooling system enables turbine entry 
temperatures up to 1800 K to be used. 

There is a rising thermodynamic penalty incurred with blade cooling systems as 
the turbine entry temperature rises, e.g. energy must be supplied to pressurise the 
air bled off from the compressor. Figure 4.21 is taken from Wilde (1977) showing 
how the net turbine efficiency decreases with increasing turbine entry temperature. 
Several in-service gas turbine engines are included in the graph. Wilde did question 
whether turbine entry temperatures greater than 1600 K could really be justified in 
turbofan engines because of the effect on the internal aerodynamic efficiency and 
specific fuel consumption. 

Turbine flow characteristics 
An accurate knowledge of the flow characteristics of a turbine is of considerable 

practical importance as, for instance, in the matching of flows between a compressor 
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FIG. 4.19. Cooled HP turbine rotor blade showing the cooling passages (courtesy of 
Rolls-Royce pic). 

FIG. 4.20. Turbine thermal efficiency vs inlet gas temperature (adapted from le Grives 
1 986). 

and turbine of a jet engine. When a turbine can be expected to operate close to its 
design incidence (i.e. in the low loss region) the turbine characteristics can be 
reduced to a single curve. Figure 4.21, due to Mallinson and Lewis (1948), shows a 
comparison of typical characteristics for one, two and three stages plotted as turbine 
overall pressure ratio pon/poI against a mass flow coefficient rit(JTol)/poI. There 
is a noticeable tendency for the characteristic to become more ellipsoidal as the 
number of stages is increased. At a given pressure ratio the mass flow coefficient, 
or “swallowing capacity” tends to decrease with the addition of further stages to 
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the turbine. One of the earliest attempts to assess the flow variation of a multistage 
turbine is credited to Stodola (1945), who formulated the much used “ellipse law”. 
The curve labelled “multistage” in Figure 4.21 is in agreement with the “ellipse 
law” expression 

(4.32) m(JTol)/poI = k[l - (Pon/PoI)211’2, 

where k is a constant. 
This expression has been used for many years in steam turbine practice, but an 

accurate estimate of the variation in swallowing capacity with pressure ratio is of 
even greater importance in gas turbine technology. Whereas the average condensing 
steam turbine, even at part-load, operates at very high pressure ratios, some gas 
turbines may work at rather low pressure ratios, making flow matching with a 
compressor a difficult problem. The constant value of swallowing capacity, reached 
by the single-stage turbine at a pressure ratio a little above 2, and the other turbines 
at progressively higher pressure ratios, is associated with choking (sonic) conditions 
in the turbine stator blades. 

Flow characteristics of a multistage turbine 

Several derivations of the ellipse law are available in the literature. The derivation 
given below is a slightly amplified version of the proof given by Horlock (1958). A 
more general method has been given by Egli (1936) which takes into consideration 
the effects when operating outside the normal low loss region of the blade rows. 

Consider a turbine comprising a large number of normal stages, each of 50% 
reaction; then, refemng to the velocity diagram of Figure 4.22a, c1 = c3 = w2 and 
c2 = w3. If the blade speed is maintained constant and the mass flow is reduced, the 

FIG. 4.21. Turbine flow characteristics (after Mallinson and Lewis 1948). 



Axial-flow Turbines: Two-dimensional Theory 1 23 

FIG. 4.22. Change in turbine stage velocity diagram with mass flow at constant blade 
speed. 

fluid angles at exit from the rotor (83) and nozzles ( (~2)  will remain constant and 
the velocity diagram then assumes the form shown in Figure 4.22b. The turbine, 
if operated in this manner, will be of low efficiency, as the fluid direction at inlet 
to each blade row is likely to produce a negative incidence stall. To maintain high 
efficiency the fluid inlet angles must remain fairly close to the design values. It is 
therefore assumed that the turbine operates at its highest efficiency at all of-design 
conditions and, by implication, the blade speed is changed in direct proportion to the 
axial velocity. The velocity triangles are similar at off-design flows but of different 
scale. 

Now the work done by unit mass of fluid through one stage is U(cY2 + cy3) so 
that, assuming a perfect gas, 

C,ATo = C,AT = Uc,(tan(~2 + tana3) 

and, therefore, 

AT a c i .  

Denoting design conditions by subscript d, then 

2 AT 
-=  (2)  (4.33) 
A Td 

for equal values of cx /U .  
From the continuity equation, at off-design, lir = pAcx = p1AlcX1, and at design, 

h d  = PdACd = plAlcxI, hence 

(4.34) 

Consistent with the assumed mode of turbine operation, the polytropic efficiency 
is taken to be constant at off-design conditions and, from eqn. (2.37), the relationship 

cx - pd cxl p d  m 
cxd 6’ Cxld p md 
- ----- - - 
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between temperature and pressure is therefore, 

T/pSp(y-l)/y = constant. 

Combined with p / p  = RT the above expression gives, on eliminating p, p/T" = 
constant, hence 

= 
pd 

(4.35) 

where n = y / {qp (y  - I )}  - 1. 

(4.35) gives, with little error, 
For an infinitesimal temperature drop eqn. (4.33) combined with eqns. (4.34) and 

dT 

Integrating eqn. (4.36), 

(4.36) 

where K is an arbitrary constant. 
To establish a value for K it is noted that if the turbine entry temperature is 

constant Td = Ti and T = Ti  also. 
Thus, K = [ l  - ( I j t / ~ i d ) ~ ] T : " + '  and 

(;)"+I- 1 = [ ($)2n+1 - l ] .  (4.37) 

Equation (4.37) can be rewritten in terms of pressure ratio since T/TI = 
( p / p ~ ) S p ( Y - ' ) / y .  As 2n + 1 = 2 y / [ q p ( y  - l)] - 1 then, 

(4.38a) 

With qp = 0.9 and y = 1.3 the pressure ratio index is about 1.8; thus the approxi- 
mation is often used 

(4.38b) 

which is ellipse law of a multistage turbine. 

The Wells turbine 

Introduction 

Numerous methods for extracting energy from the motion of sea-waves have 
been proposed and investigated since the late 1970s. The problem is in finding an 



Axial-flow Turbines: Two-dimensional Theory 1 25 

FIG. 4.23. Arrangement of Wells turbine and oscillating water column (adapted from 
Raghunathan et al. 1995). 

efficient and economical means of converting an oscillating flow of energy into 
a unidirectional rotary motion for driving an electrical generator. A novel solu- 
tion of this problem is the Wells turbine (Wells 1976), a version of the axial-flow 
turbine. For countries surrounded by the sea, such as the British Isles and Japan to 
mention just two, or with extensive shorelines, wave energy conversion is an attrac- 
tive proposition. Energy conversion systems based on the oscillating water column 
and the Wells turbine have been installed at several locations (Islay in Scotland 
and at Trivandrum in India). Figure 4.23 shows the arrangement of a turbine and 
generator together with the oscillating column of sea-water. The cross-sectional area 
of the plenum chamber is made very large compared to the flow area of the turbine 
so that a substantial air velocity through the turbine is attained. 

One version of the Wells turbine consists of a rotor with about eight uncumbered 
aerofoil section blades set at a stagger angle of ninety degrees (i.e. with their chord 
lines lying in the plane of rotation). A schematic diagram of such a Wells turbine 
is shown in Figure 4.24. At first sight the arrangement might seem to be a highly 
improbable means of energy conversion. However, once the blades have attained 
design speed the turbine is capable of producing a time-averaged positive power 
output from the cyclically reversing airflow with a fairly high efficiency. According 
to Raghunathan et al. (1995) peak efficiencies of 65% have been measured at the 
experimental wave power station on Islay. The results obtained from a theoretical 
analysis by Gat0 and Fa lcb  (1984) showed that fairly high values of the mean effi- 
ciency, of the order 70-80%, may be attained in an oscillating flow “with properly 
designed Wells turbines”. 

Principle of operation 

Figure 4.25(a) shows a blade in motion at the design speed U in a flow with an 
upward, absolute axial velocity c1. It can be seen that the relative velocity w1 is 
inclined to the chordline of the blade at an angle CY. According to classical aerofoil 
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FIG. 4.24. Schematic of a Wells turbine (adapted from Raghunathan et al. 1995). 

theory, an isolated aerofoil at an angle of incidence a! to a free stream will generate 
a lift force L normal to the direction of the free stream. In a viscous fluid the aerofoil 
will also experience a drag force D in the direction of the free stream. These lift 
and drag forces can be resolved into the components of force X and Y as indicated 
in Figure 4.25a, i.e. 

X = Lcosa + Dsina,  

Y = L S ~ ~ C X  - DCOSU. 

(4.39) 

(4.40) 

The student should note, in particular, that the force Y acts in the direction of blade 
motion, giving positive work production. 

For a symmetrical aerofoil, the direction of the tangential force Y is the same for 
both positive and negative values of a!, as indicated in Figure 4.25b. If the aerofoils 
are secured to a rotor drum to form a turbine row, as in Figure 4.24, they will 
always rotate in the direction of the positive tangential force regardless of whether 
the air is approaching from above or below. With a time-varying, bi-directional air 
flow the torque produced will fluctuate cyclically but can be smoothed to a large 
extent by means of a high inertia rotorlgenerator. 

It will be observed from the velocity diagrams that a residual swirl velocity is 
present for both directions of flow. It was suggested by Raghunathan et al. (1995) 
that the swirl losses at turbine exit can be reduced by the use of guide vanes. 
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FIG. 4.25. Velocity and force vectors acting on a blade of a Wells turbine in motion: 
(a) upward absolute flow onto blade moving at speed U ;  (b) downward absolute flow 
onto blade moving at speed U. 

Two-dimensional flow analysis 

The performance of the Wells turbine can be predicted by means of blade element 
theory. In this analysis the turbine annulus is considered to be made up of a series of 
concentric elementary rings, each ring being treated separately as a two-dimensional 
cascade. 
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The power output from an elementary ring of area 2nrdr  is given by 

dW = ZU dy, 

where Z is the number of blades and the tangential force on each blade element is 

dY = C,(;pw:Z)dr. 

The axial force acting on the blade elements at radius r is ZdX, where 

dX = Cx(ipw:l)dr, 

and where Cx, C ,  are the axial and tangential force coefficients. Now the axial force 
on all the blade elements at radius r can be equated to the pressure force acting on 
the elementary ring: 

2 x 4 ~ 1  - p2)dr = ZC,(;pw;l)dr, 

. (PI - P2) - z c x l  
- .. 

ipc: 2nr sin2 ( ~ 1 '  

where w1 = cJsincr1. 
An expression for the efficiency can now be derived from a consideration of all 

the power losses and the power output. The power lost due to the drag forces is 
dWf = w1 dD, where 

dD = ZCD( ipw;Z)dr 

and the power lost due to exit kinetic energy is given by 

dwk = ( : C ; ) d r i z ,  

where driz = 2nrpcx dr and c2 is the absolute velocity at exit. Thus, the aerodynamic 
efficiency, defined as power outputlpower input, can now be written as 

The predictions for non-dimensional pressure drop p* and aerodynamic efficiency q 
determined by Raghunathan et al. (1995) are shown in Figure 4.26a and b, respec- 
tively, together with experimental results for comparison. 

Design and performance variables 

The primary input for the design of a Wells turbine is the air power based upon the 
pressure amplitude (p1 - p2)  and the volume flow rate Q at turbine inlet. The perfor- 
mance indicators are the pressure drop, power and efficiency and their variation with 
the flow rate. The aerodynamic design and consequent performance is a function of 
several variables which have been listed by Raghunathan. In non-dimensional form 
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FIG. 4.26. Comparison of theory with experiment for the Wells turbine: ___ theory 
- - - - -  experiment (adapted from Raghunathan 1995). (a) Non-dimensional pressure 
drop vs flow coefficient; (b) Efficiency vs flow coefficient. 

these are: 
flow coefficient 4 = cx/u  

212 

IrDt(l + v>' 
AR = blade lengthkhord 

solidity at mean radius 0 = 

hubhip ratio v = Dh/Dt 
blade aspect ratio 
blade tip clearance ratio = &/Dt 
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and also blade thickness ratio, turbulence level at inlet to turbine, frequency of waves 
and the relative Mach number. It was observed by Raghunathan et al. (1987) that 
the Wells turbine has a characteristic feature which makes it significantly different 
from most turbomachines: the absolute velocity of the flow is only a (small) fraction 
of the relative velocity. It is theoretically possible for transonic flow conditions to 
occur in the relative flow resulting in additional losses due to shock waves and an 
interaction with the boundary layers leading to flow separation. The effects of the 
variables listed above on the performance of the Wells turbine have been considered 
by Raghunathan (1995) and a summary of some of the main findings is given below. 

Effect of $ow coeficient 

The flow coefficient 4 is a measure of the angle of incidence of the flow and the 
aerodynamic forces developed are critically dependent upon this parameter. Typical 
results based on predictions and experiments of the non-dimensional pressure drop 
p* = Ap/(pw2D:) and efficiency are shown in Figure 4.26. For a Wells turbine 
a linear relationshp exists between pressure drop and the flowrate (Figure 4.26a) 
and this fact can be employed when making a match between a turbine and an 
oscillating water column which also has a similar characteristic. 

The aerodynamic efficiency Q (Figure 4.26b) is shown to increase up to a certain 
value, after which it decreases, because of boundary layer separation. 

Effect of blade solidity 

The solidity is a measure of the blockage offered by the blades to the flow of air 
and is an important design variable. The pressure drop across the turbine is, clearly, 
proportional to the axial force acting on the blades. An increase of solidity increases 
the axial force and likewise the pressure drop. Figure 4.27 shows how the variations 
of peak efficiency and pressure drop are related to the amount of the solidity. 

Raghunathan gives correlations between pressure drop and efficiency with 
solidity: 

where the subscript 0 refers to values for a two-dimensional isolated aerofoil 
(a = 0). A correlation between pressure drop and solidity (for a > 0) was also 
expressed as 

where A is a constant. 

Effect of hub to tip ratio 

The hub/tip ratio u is an important parameter as it controls the volume flow rate 
through the turbine but also influences the stall conditions, the tip leakage and, most 
importantly, the ability of the turbine to run up to operating speed. Values of u < 0.6 
are recommended for design. 
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FIG. 4.27. Variation of peak efficiency and non-dimensional pressure drop (in 
comparison to the values for an isolated aerofoil) vs solidity: - - - pressure ~ 

efficiency (adapted from Raghunathan et al. 1995). 

FIG. 4.28. Self-starting capability of the Wells turbine (adapted from Raghunathan 
et a/. 1995). 
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The starting behaviour of the Wells turbine 

When a Wells turbine is started from rest the incoming relative flow will be at 
90 degrees to the rotor blades. According to the choice of the design parameters 
the blades could be severely stalled and, consequentially, the tangential force Y 
will be small and the acceleration negligible. In fact, if and when this situation 
occurs the turbine may only accelerate up to a speed much lower than the design 
operational speed, a phenomenon called crawling. The problem can be avoided 
either by choosing a suitable combination of hubhip ratio and solidity values at the 
design stage or, by some other means such as incorporating a starter drive. Values 
of hubhip ratio and solidity which have been found to allow self-starting of the 
Wells turbine are indicated in Figure 4.28. 
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Problems 
1. Show, for an axial flow turbine stage, that the relative stagnation enthalpy across the 

rotor row does not change. Draw an enthalpy-entropy diagram for the stage labelling all 
salient points. 

Stage reaction for a turbine is defined as the ratio of the static enthalpy drop in the rotor 
to that in the stage. Derive expressions for the reaction in terms of the flow angles and draw 
velocity triangles for reactions of zero, 0.5 and 1.0. 

2. (a) An axial flow turbine operating with an overall stagnation pressure of 8 to 1 has a 
polytropic efficiency of 0.85. Determine the total-to-total efficiency of the turbine. 

(b) If the exhaust Mach number of the turbine is 0.3, determine the total-to-static efficiency. 
(c) If, in addition, the exhaust velocity of the turbine is 160m/s, determine the inlet total 

temperature. 
Assume for the gas that Cp = 1.175 kJ/(kg K) and R = 0.287 kJ/(kg K). 

3. The mean blade radii of the rotor of a mixed flow turbine are 0.3 m at inlet and 0.1 m 
at outlet. The rotor rotates at 20,000 rev/min and the turbine is required to produce 430 kW. 
The flow velocity at nozzle exit is 700m/s and the flow direction is at 70" to the meridional 
plane. 

Determine the absolute and relative flow angles and the absolute exit velocity if the gas 
flow is 1 kg/s and the velocity of the through-flow is constant through the rotor. 
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4. In a Parson's reaction turbine the rotor blades are similar to the stator blades but with 
the angles measured in the opposite direction. The efflux angle relative to each row of blades 
is 70 deg from the axial direction, the exit velocity of steam from the stator blades is 160 m/s, 
the blade speed is 152.5 m/s and the axial velocity is constant. Determine the specific work 
done by the steam per stage. 

A turbine of 80% internal efficiency consists of ten such stages as described above and 
receives steam from the stop valve at 1.5MPa and 300°C. Determine, with the aid of a 
Mollier chart, the condition of the steam at outlet from the last stage. 

5. Values of pressure @Pa) measured at various stations of a zero-reaction gas turbine 
stage, all at the mean blade height, are shown in the table given below. 

Stagnation pressure Static pressure 

Nozzle entry 414 Nozzle exit 207 
Nozzle exit 400 Rotor exit 200 

The mean blade speed is 291 m/s, inlet stagnation temperature 1100 K, and the flow angle 
at nozzle exit is 7Odeg measured from the axial direction. Assuming the magnitude and 
direction of the velocities at entry and exit of the stage are the same, determine the total- 
to-total efficiency of the stage. Assume a perfect gas with C ,  = 1.148kJ/(kg0C) and y = 
1.333. 
6. In a certain axial flow turbine stage the axial velocity c, is constant. The absolute 

velocities entering and leaving the stage are in the axial direction. If the flow coefficient 
c,/U is 0.6 and the gas leaves the stator blades at 68.2deg from the axial direction, calcu- 
late: 

(i) the stage loading factor, A W / U 2 ;  
(ii) the flow angles relative to the rotor blades; 

(iii) the degree of reaction; 
(iv) the total-to-total and total-to-static efficiencies. 

The Soderberg loss correlation, eqn. (4.12) should be used. 
7. An axial flow gas turbine stage develops 3.36 MW at a mass flow rate of 27.2 kg/s. At 

the stage entry the stagnation pressure and temperature are 772 kPa and 727"C, respectively. 
The static pressure at exit from the nozzle is 482kF'a and the corresponding absolute flow 
direction is 72" to the axial direction. Assuming the axial velocity is constant across the 
stage and the gas enters and leaves the stage without any absolute swirl velocity, deter- 
mine: 
(1) the nozzle exit velocity; 
(2) the blade speed; 
(3) the total-to-static efficiency; 
(4) the stage reaction. 
The Soderberg correlation for estimating blade row losses should be used. For the gas assume 
that Cp = 1.148 kJ/(kg K) and R = 0.287 kJ/(kg K). 

8. Derive an approximate expression for the total-to-total efficiency of a turbine stage in 
terms of the enthalpy loss coefficients for the stator and rotor when the absolute velocities 
at inlet and outlet are not equal. 

A steam turbine stage of high hub/tip ratio is to receive steam at a stagnation pressure and 
temperature of 1.5 MPa and 325°C respectively. It is designed for a blade speed of 200 m/s 



Axial-flow Turbines: Two-dimensional Theory 1 35 

and the following blade geometry was selected: 

Nozzles Rotor 

Inlet angle, deg 0 48 
Outlet angle, deg 70.0 56.25 
Spacelchord ratio, sll 0.42 - 

Blade lengthlaxid chord ratio, H l b  2.0 2.1 
Max. thicknesslaxid chord 0.2 0.2 

The deviation angle of the flow from the rotor row is known to be 3 deg on the evidence 
of cascade tests at the design condition. In the absence of cascade data for the nozzle row, 
the designer estimated the deviation angle from the approximation 0.198slZ where 8 is the 
blade camber in degrees. Assuming the incidence onto the nozzles is zero, the incidence onto 
the rotor 1.04deg and the axial velocity across the stage is constant, determine: 

(i) the axial velocity; 
(ii) the stage reaction and loading factor; 

(iii) the approximate total-to-total stage efficiency on the basic of Soderberg's loss correla- 

(iv) by means of a large steam chart (Mollier diagram) the stagnation temperature and 

9. (a) A single-stage axial flow turbine is to be designed for zero reaction without any 
absolute swirl at rotor exit. At nozzle inlet the stagnation pressure and temperature of the 
gas are 424 kPa and 1100 K. The static pressure at the mean radius between the nozzle row 
and rotor entry is 217 kPa and the nozzle exit flow angle is 70". 

Sketch an appropriate Mollier diagram (or a T-s diagram) for this stage allowing for the 
effects of losses and sketch the corresponding velocity diagram. Hence, using Soderberg's 
correlation to calculate blade row losses, determine for the mean radius, 
(1) the nozzle exit velocity, 
(2) the blade speed, 
(3) the total-to-static efficiency. 

tion, assuming Reynolds number effects can be ignored; 

pressure at stage exit. 

(b) Verify for this turbine stage that the total-to-total efficiency is given by 

2 1 1  
q r r  qrs 
- - - - - ($) 

where 4 = c x / U .  Hence, determine the value of the total-to-total efficiency. 
Assume for the gas that C, = 1.15kJ/(kgK) and y = 1.333. 

10. (a) Prove that the centrifugal stress at the root of an untapered blade attached to the 
drum of an axial flow turbomachine is given by 

where pm = density of blade material, N = rotational speed of drum and A, = area of the 
flow annulus. 

(b) The preliminary design of an axial-flow gas turbine stage with stagnation conditions at 
stage entry of pol = 400 ma ,  Tol = 850 K, is to be based upon the following data applicable 
to the mean radius: 

Flow angle at nozzle exit, a2 = 63.8 deg 
Reaction, R = 0.5 
Flow coefficient, c x / U m  = 0.6 



136 Fluid Mechanics, Thermodynamics of Turbomachinery 

Static pressure at stage exit, p3 = 200kPa 
Estimated total-to-static efficiency, qrs = 0.85. 

Assuming that the axial velocity is unchanged across the stage, determine: 
(1) the specific work done by the gas; 
(2) the blade speed; 
(3) the static temperature at stage exit. 

(c) The blade material has a density of 7850 kg/m3 and the maximum allowable stress 
in the rotor blade is 120MPa. Taking into account only the centrifugal stress, assuming 
untapered blades and constant axial velocity at all radii, determine for a mean flow rate of 
15 kg/s: 
(1) the rotor speed (rev/min); 
(2) the mean diameter; 
(3) the hubhip radius ratio. 
For the gas assume that C p  = 1050J/(kgK) and R = 287 J/(kgK). 

with axial discharge from the rotor blades directly to the atmosphere. 
11. The design of a single-stage axial-flow turbine is to be based on constant axial velocity 

The following design values have been specified: 

Mass flow rate 16.0 kg/s 
Initial stagnation temperature, To1 llOOK 
Initial stagnation pressure, pol 
Density of blading material, P,,, 
Maximum allowable centrifugal stress at blade root, 
Nozzle profile loss coefficient, YP = (pol - po2)/(pm - p2)  
Taper factor for blade stressing, K 

In addition the following may be assumed 

230 kN/m2 
7850 kg/m3 
1.7 x 108N/m2 
0.06 
0.75 

Atmospheric pressure, p3 102 kPa 
Ratio of specific heats, y 
Specific heat at constant pressure, Cp 

1.333 
1150 J/(kg K) 

In the design calculations values of the parameters at the mean radius are as follows: 

Stage loading coefficient, 9 = A W / U 2  1.2 
Flow coefficient, q5 = c,/U 0.35 
Isentropic velocity ratio, U/co 0.61 
where co = dW01 - h ) I  

Determine: 
(1) the velocity triangles at the mean radius; 
(2) the required annulus area (based on the density at the mean radius); 
(3) the maximum allowable rotational speed; 
(4) the blade tip speed and the hubltip radius ratio. 



CHAPTER 5 

Axial-flo w 
Fans 

Compressors and 

A solemn, strange and mingled air, ’t was sad by fits, by starts was wild. 
(W. COLLINS, The Passions.) 

Introduction 
The idea of using a form of reversed turbine as an axial compressor is as old as 

the reaction turbine itself. It is recorded by Stoney (1937) that Sir Charles Parsons 
obtained a patent for such an arrangement as early as 1884. However, simply 
reversing a turbine for use as a compressor gives efficiencies which are, according to 
Howell (1945), less than 40% for machines of high pressure ratio. Parsons actually 
built a number of these machines (circa 1900), with blading based upon improved 
propeller sections. The machines were used for blast furnace work, operating with 
delivery pressures between 10 and 100Wa. The efficiency attained by these early, 
low pressure compressors was about 55%; the reason for this low efficiency is now 
attributed to blade stall. A high pressure ratio compressor (550 Wa delivery pressure) 
was also built by Parsons but is reported by Stoney to have “run into difficulties”. 
The design, comprising two axial compressors in series, was abandoned after many 
trials, the flow having proved to be unstable (presumably due to compressor surge). 
As a result of low efficiency, axial compressors were generally abandoned in favour 
of multistage centrifugal compressors with their higher efficiency of 70-80%. 

It was not until 1926 that any further development on axial compressors was 
undertaken when A. A. Griffith outlined the basic principles of his aerofoil theory 
of compressor and turbine design. The subsequent history of the axial compressor 
is closely linked with that of the aircraft gas turbine and has been recorded by 
Cox (1946) and Constant (1945). The work of the team under Griffith at the Royal 
Aircraft Establishment, Farnborough, led to the conclusion (confirmed later by rig 
tests) that efficiencies of at least 90% could be achieved for ‘small’ stages, i.e. low 
pressure ratio stages. 

The early difficulties associated with the development of axial-flow compres- 
sors stemmed mainly from the fundamentally different nature of the flow process 
compared with that in axial-flow turbines. Whereas in the axial turbine the flow 
relative to each blade row is accelerated, in axial compressors it is decelerated. 
It is now widely known that although a fluid can be rapidly accelerated through a 
passage and sustain a small or moderate loss in total pressure the same is not true for 
a rapid deceleration. In the latter case large losses would arise as a result of severe 
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stall caused by a large adverse pressure gradient. So as to limit the total pressure 
losses during flow diffusion it is necessary for the rate of deceleration (and turning) 
in the blade passages to be severely restricted. (Details of these restrictions are 
outlined in Chapter 3 in connection with the correlations of Lieblein and Howell.) 
It is mainly because of these restrictions that axial compressors need to have many 
stages for a given pressure ratio compared with an axial turbine which needs only a 
few. Thus, the reversed turbine experiment tried by Parsons was doomed to a low 
operating efficiency. 

The performance of axial compressors depends upon their usage category. 
Carchedi and Wood (1982) described the design and development of a single-shaft 
15-stage axial-flow compressor which provided a 12 to 1 pressure ratio at a mass 
flow of 27.3 kg/s for a 6MW industrial gas turbine. The design was based on 
subsonic flow and the compressor was fitted with variable stagger stator blades to 
control the position of the low-speed surge line. In the field of aircraft gas turbines, 
however, the engine designer is more concerned with muximising the work done 
per stage while retaining an acceptable level of overall performance. Increased stage 
loading almost inevitably leads to some aerodynamic constraint. This constraint will 
be increased Mach number, possibly giving rise to shock-induced boundary layer 
separation or increased losses arising from poor diffusion of the flow. Wennerstrom 
(1990) has outlined the history of highly loaded axial-flow compressors with special 
emphasis on the importance of reducing the number of stages and the ways that 
improved performance can be achieved. Since about 1970 a significant and special 
change occurred with respect to one design feature of the axial compressor and 
that was the introduction of low aspect ratio blading. It was not at all obvious why 
blading of large chord would produce any performance advantage, especially as the 
trend was to try to make engines more compact and lighter by using high aspect 
ratio blading. Wennerstrom (1989) has reviewed the increased usage of low aspect 
ratio blading in aircraft axial-flow compressors and reported on the high loading 
capability, high efficiency and good range obtained with this type of blading. One 
early application was an axial-flow compressor that achieved a pressure ratio of 
12.1 in only five stages, with an isentropic efficiency of 81.9% and an 11% stall 
margin. The blade tip speed was 457 m/s and the flow rate per unit frontal area was 
192.5 kg/s/m2. It was reported that the mean aspect ratio ranged from a “high” of 1.2 
in the first stage to less than 1.0 in the last three stages. A related later development 
pursued by the US Air Force was an alternative inlet stage with a rotor mean aspect 
ratio of 1.32 which produced, at design, a pressure ratio of 1.912 with an isentropic 
efficiency of 85.4% and an 11% stall margin. A maximum efficiency of 90.9% was 
obtained at a pressure ratio of 1.804 and lower rotational speed. 

The flow within an axial-flow compressor is exceedingly complex which is one 
reason why research and development on compressors has proliferated over the 
years. In the following pages a very simplified and basic study is made of this 
compressor so that the student can grasp the essentials. 

Two-dimensional analysis of the compressor stage 

The analysis in this chapter is simplified (as it was for axial turbines) by assuming 
the flow is two-dimensional. This approach can be justified if the blade height is 
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small compared with the mean radius. Again, as for axial turbines, the flow is 
assumed to be invariant in the circumferential direction and that no spanwise (radial) 
velocities occur. Some of the three-dimensional effects of axial turbomachines are 
considered in Chapter 6. 

To illustrate the layout of an axial compressor, Figure 5.l(a) shows a sectional 
drawing of the three-shaft compressor system of the Rolls-Royce RE321 1 gas-turbine 
engine. The very large blade on the left is part of the fan rotor which is on one shaft; 
this is followed by two, six-stage compressors of the “core” engine, each on its own 
shaft. A compressor stage is defined as a rotor blade row followed by a stator blade 
row. Figure 5.lb shows some of the blades of the first stage of the low-pressure 
compressor opened out into a plane array. The rotor blades (black) are fixed to the 

FIG. 5.1. Axial-flow compressor and blading arrays. (a) Section of the compression 
system of the RB211 -535E4 gas-turbine engine (courtesy of Rolls-Royce plc). 

(b) Development of the first stage-blade rows and inlet guide vanes. 
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rotor drum and the stator blades are fixed to the outer casing. The blades upstream 
of the first rotor row are inlet guide vanes. These are not considered to be a part of 
the first stage and are treated separately. Their function is quite different from the 
other blade rows since, by directing the flow away from the axial direction, they act 
to accelerafe the flow rather than diffuse it. Functionally, inlet guide vanes are the 
same as turbine nozzles; they increase the kinetic energy of the flow at the expense 
of the pressure energy. 

Velocity diagrams of the compressor stage 

The velocity diagrams for the stage are given in Figure 5.2 and the convention 
is adopted ~ o u g h o u t  this chapter of accepting all angles and swirl velocities in 
this figure as positive. As for axial turbine stages, a n o m l  compressor stage is 
one where the absolute velocities and flow directions at stage outlet are the same 
as at stage inlet. The flow from a previous stage (or from the guide vanes) has a 
velocity c1 and direction al; substracting vectorially the blades speed U gives the 
inlet relative velocity w1 at angle B1 (the axial direction is the datum for all angles). 
Relative to the blades of the rotor, the flow is turned to the direction 82 at outlet with 
a relative velocity w2. Clearly, by adding vectorially the blade speed U on to w2 
gives the absolute velocity from the rotor, c2 at angle 012. The stator blades deflect 
the flow towards the axis and the exit velocity is c3 at angle a3. For the normal 
stage cg = c1 and a3 = 011. It will be noticed that as drawn in Figure 5.2, both the 

FIG. 5.2. Velocity diagrams for a compressor stage. 
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relative velocity in the rotor and the absolute velocity in the stator are diffused. It 
will be shown later in this chapter, that the relative amount of diffusion of kinetic 
energy in the rotor and stator rows, significantly influences the stage efficiency. 

Thermodynamics of the compressor stage 

The specific work done by the rotor on the fluid, from the steady flow energy 

(5.1) 

equation (assuming adiabatic flow) and momentum equation is 

AW = W,/h = h02 - hol = U(cY2 - ~ ~ 1 ) .  

In Chapter 4 it was proved for all axial turbomachines that &l = h + i w 2  is 
constant in the rotor. Thus, 

hl + +w: = h2 + ;w;. (5.2) 

This is a valid result as long as there is no radial shift of the streamlines across the 
rotor (i.e. U1 = U2). 

Across the stator, h0 is constant, and 

h2 + +c; = h3 + ;c:. (5.3) 

The compression process for the complete stage is represented on a Mollier diagram 
in Figure 5.3, which is generalised to include the effects of irreversibility. 

FIG. 5.3. Mollier diagram for an axial compressor stage. 
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Stage loss relationships and efficiency 

From eqns. (5.1) and (5.3) the actual work performed by the rotor on unit mass 
of fluid is A W = ha3 - hl. The reversible or minimum work required to attain the 
same final stagnation pressure as the real process is, 

AWmin = h 3 s s  - 

= ( h 3  - hl - ( h 3 s  - h 3 s s )  - (h03 - h03s) 

A w  - (T03/T2)(h2 - h2s)  - (T03/T3)(h3 - h3s) ,  

using the approximation that Ah = TAs.  

temperature level and therefore, to a close approximation. 
The temperature rise in a compressor stage is only a small fraction of the absolute 

AWmin = AW - (h2 - h a ) -  (h3 - (5.4) 

Again, because of the small stage temperature rise, the density change is also small 
and it is reasonable to assume incompressibility for the fluid. This approximation is 
applied only to the stage and a mean stage density is implied; across a multistage 
compressor an appreciable density change can be expected. 

The enthalpy losses in eqn. (5.4) can be expressed as stagnation pressure losses 
as follows. As h2 = h 3  then, 

since po - p = ipc2 for an incompressible fluid. 
Along the isentrope 2 - 3, in Figure 5.3, Tds = 0 = dh - (l/p)dp, and so, 

h3s - h2 = (p3  - P2)/P.  (5.6) 

Thus, subtracting eqn. (5.6) from eqn. (5.5) 

h3 - h3s = (PO2 - p03>/P = (l/P)ApOstator. (5.7) 

Similarly, for the rotor, 

h2 - ha = (polre1 - ~ 0 2 r e l ) / ~  = (l/P)Aporotor. (5 .8)  

The total-to-total stage efficiency is, 

(5.9) 
. APOstator + APorotor - 1 -  

P ( h 3  - hl) 

It is to be observed that eqn. (5.9) also has direct application to pumps and fans. 



Axial-flow Compressors and Fans 143 

Reaction ratio 

For the case of incompressible and reversible flow it is permissible to define the 
reaction R,  as the ratio of static pressure rise in the rotor to the static pressure rise 
in the stage 

If the flow is both compressible and irreversible a more general definition of R is 
the ratio of the rotor static enthalpy rise to the stage static enthalpy rise, 

From eqn. (5.2), h2 - hl = i(w: - w;). For normal stages (c1 = c3), h3 - hl  = 
hJ3 - hJl = U(cy2 - cyl). Substituting into eqn. (5.10b) 

(5.10c) 

where it is assumed that c, is constant across the stage. From Figure 5.2, cy2 = 
U - wy2 and cyl = U - wyl so that cy2 - cyl = wyl - wy2. Thus, 

where 

An alternative useful expression for reaction can be found in terms of the fluid 
outlet angles from each blade row in a stage. With wyl = U - cyl, eqn. (5.1 1) gives, 

(5.13) R = i + (tan82 - tana1)cX/(2U). 

Both expressions for reaction given above may be derived on a basis of incompress- 
ible, reversible flow, together with the definition of reaction in eqn. (5.10a). 

Choice of reaction 
The reaction ratio is a design parameter which has an important influence on stage 

efficiency. Stages having 50% reaction are widely used as the adverse (retarding) 
pressure gradient through the rotor and stator rows is equally shared. This choice 
of reaction minimises the tendency of the blade boundary layers to separate from 
the solid surfaces, thus avoiding large stagnation pressure losses. 

If R = 0.5, then a1 = 8 2  from eqn. (5.13), and the velocity diagram is symmet- 
rical. The stage enthalpy rise is equally distributed between the rotor and stator rows. 
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FIG. 5.4. Asymmetry of velocity diagrams for reactions greater or less than 50%. 

If R > 0.5 then 8 2  > a1 and the velocity diagram is skewed to the right as shown 
in Figure 5.4a. The static enthalpy rise in the rotor exceeds that in the stator (this 
is also true for the static pressure rise). 

If R < 0.5 then 82 < a1 and the velocity diagram is skewed to the lefr as indi- 
cated in Figure 5.4b. Clearly, the stator enthalpy (and pressure) rise exceeds that in 
the rotor. 

In axial turbines the limitation on stage work output is imposed by rotor blade 
stresses but, in axial compressors, stage performance is limited by Mach number 
considerations. If Mach number effects could be ignored, the permissible tempera- 
ture rise, based on incompressible flow cascasde limits, increases with the amount of 
reaction. With a limit of 0.7 on the allowable Mach number, the temperature rise and 
efficiency are at a maximum with a reaction of 50%, according to Horlock (1958). 

Stage loading 

The stage loading factor I) is another important design parameter of a compressor 
stage and is one which strongly affects the off-design performance characteristics. 
It is defined by 

(5.14a) h o 3  - hol  - cy2  - cy1 - 
I)= u2 U 

With cy2 = U - wy2 this becomes, 

I) = 1 - Manu1 + tan82), (5.14b) 

where q5 = c,/U is called theflow coefficient. 
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The stage loading factor may also be expressed in terms of the lift and drag 
coefficients for the rotor. From Figure 3.5, replacing am with Brn, the tangential 
blade force on the moving blades per unit span is, 

Y = LcosB, + DsinB, 

where tan Brn = (tan B1 + tan Bz).  
Now CL = L/( ipwi l )  hence substituting for L above, 

Y = ~ ~ c , z c L  secprn(l + tanBrnCD/CL). (5.15) 

The work done by each moving blade per second is Y U  and is transferred to the 
fluid through one blade passage during that period. Thus, Y U = p~c,(h03 - hol). 

Therefore, the stage loading factor may now be written 

(5.16) 

Substituting eqn. (5.15) in eqn. (5.16) the final result is 

+ = (4/2) sec Brn(l/S)(CL -I- CD tan B m ) .  (5.17) 

In Chapter 3 ,  the approximate analysis indicated that maximum efficiency is obtained 
when the mean flow angle is 45 deg. The corresponding optimum stage loading factor 
at Brn = 45 deg is, 

+opt = (4/.J2)(W(CL + CD). (5.18) 

Since CD << CL in the normal low loss operating range, it is permissible to drop 
CD from eqn. (5.18). 

Simplified off-design performance 

Horlock (1958) has considered how the stage loading behaves with varying flow 
coefficient, 4 and how this off-design performance is influenced by the choice of 
design conditions. Now cascade data suggests that fluid outlet angles 8 2  (for the 
rotor) and a1 (= a3) for the stator, do not change appreciably for a range of incidence 
up to the stall point. The simplication may therefore be made that, for a given stage, 

(5.19) tan a1 + tan 82 = t = constant. 

Inserting this expression into eqn. (5.14b) gives 

+ = 1 - 4t. (5.20a) 

An inspection of eqns. (5.20a) and (5.14a) indicates that the stagnation enthalpy 
rise of the stage increases as the mass flow is reduced, when running at constant 
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FIG. 5.5. Simplified off-design performance of a compressor stage (adapted from Horlock 
1958). 

rotational speed, provided t is positive. The effect is shown in Figure 5.5, where $ 
is plotted against 4 for several values of t .  

Writing $ = $d and 4 = f#Jd for conditions at the design point, then 

$d = 1 - 4 d f .  (5.20b) 

The values of $d and @d chosen for a particular stage design, determines the value of 
t. Thus t is fixed without regard to the degree of reaction and, therefore, the variation 
of stage loading at off-design conditions is not dependent on the choice of design 
reaction. However, from eqn. (5.13) it is apparent that, except for the case of 50% 
reaction when ( ~ 1  = 82, the reaction does change away from the design point. For 
design reactions exceeding 50% (82 > a r l ) ,  the reaction decreases towards 50% as 
4 decreases; conversely, for design reactions less than 50% the reaction approaches 
50% with diminishmg flow coefficient. 

If t is eliminated between eqns. (5.20a) and (5.20b) the following expression results, 

(5.21) 

This equation shows that, for a given design stage loading $d,  the fractional change 
in stage loading corresponding to a fractional change in flow coefficient is always 
the same, independent of the stage reaction. In Figure 5.6 it is seen that heavily 
loaded stages ($d + 1) are the most flexible producing little variation of $ with 
change of 4. Lightly loaded stages ($d + 0) produce large changes in $ with 
changing 4. Data from cascade tests show that $d is limited to the range 0.3 to 0.4 
for the most efficient operation and so substantial variations of $ can be expected 
away from the design point. 

In order to calculate the pressure rise at off-design conditions the variation of 
stage efficiency with flow coefficient is required. For an ideal stage (no losses) the 
pressure rise in incompressible flow is given by 

$ 1 4 1 - $ d  

$d $d 4 d  ( $d ) ' _ -  _ _ _  ~ - 

Ah A p  e=,,=-@ (5.22) 
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FIG. 5.6. Effect of design stage loading ( 1 C r d )  on simplified off-design performance 
characteristics (adapted from Horlock 1958). 

Stage pressure rise 

Consider first the ideal compressor stage which has no stagnation pressure losses. 
Across the rotor row p h l  is constant and so 

(5.23a) 1 2  
P2 - P1 = T P ( W ,  - w;>. 

P3 - P2 = T P ( C ;  - .:I. 

Across the stator row PO is constant and so 

(5.23 b) 

Adding together the pressure rise for each row and considering a normal stage 
(c3 = cl), gives 

1 

(P3 - P1 )2/P = (c: - w;> + (w: - .:I. (5.24) 

For either velocity triangle (Figure 5.2), the cosine rule gives c2 - U2 + w2 = 
2Uw cos(n/2 - j?) or 

(5.25) 2 2 2  c - w = u - 2 u w y .  

2(P3 - P l ) / P  = ( U 2  - 2UWy2) - (U2 - 2UWyl) 
= 2U(Wy* - wy2). 

Substituting eqn. (5.25) into the stage pressure rise, 

Again, refemng to the velocity diagram, wyl - wy2 = cy2 - cyl and 

( P 3  - P l ) / P  = U(Cy2 - C y l )  = h3 - hl .  (5.26) 

It is noted that, for an isentropic process, Tds  = 0 = dh - ( l /p)dp and therefore, 
Ah = (l /p)Ap. 
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The pressure rise in a real stage (involving irreversible processes) can be deter- 
mined if the stage efficiency is known. Defining the stage efficiency qs as the ratio 
of the isentropic enthalpy rise to the actual enthalpy rise corresponding to the same 
finite pressure change, (cf. Figure 2.7), this can be written as 

Thus, 

( l /p )Ap = qsAh = qSUAc,. (5.27) 

If c1 = c3, then qs is a very close approximation of the total-to-total efficiency 
qtf.  Although the above expressions are derived for incompressible flow they are, 
nevertheless, a valid approximation for compressible flow if the stage temperature 
(and pressure) rise is small. 

Pressure ratio of a multistage compressor 

It is possible to apply the preceding analysis to the determination of multistage 
compressor pressure ratios. The procedure requires the calculation of pressure and 
temperature changes for a single stage, the stage exit conditions enabling the density 
at entry to the following stage to be found. This calculation is repeated for each stage 
in turn until the required final conditions are satisfied. However, for compressors 
having identical stages it is more convenient to resort to a simple compressible flow 
analysis. An illustrative example is given below. 

EXAMPLE 5.1. A multistage axial compressor is required for compressing air 
at 293K, through a pressure ratio of 5 to 1.  Each stage is to be 50% reaction 
and the mean blade speed 275m/s, flow coefficient 0.5, and stage loading factor 
0.3, are taken, for simplicity, as constant for all stages. Determine the flow angles 
and, the number of stages required if the stage efficiency is 88.8%. Take C ,  = 
1.005 kJ/(kg"C) and y = 1.4 for air. 

Solution. From eqn. (5.14a) the stage load factor can be written as, 

+ = 4(tanB1 - tan82). 

From eqn. (5.11) the reaction is 

4 
2 R = -(tan81 +tan/%). 

Solving for tan81 and tan82 gives 

Pi = ( R  + @/2)/4 and tan82 = ( R  - +/2)/4. 

Calculating 81 and 8 2  and observing for R = 0.5 that the velocity diagram is 
symmetrical, 

81 = a2 = 52.45 deg and 82 = a1 = 35 deg. 
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Writing the stage load factor as @ = CpATo/U2, then the stage stagnation 
temperature rise is, 

AT0 = qU2/Cp = 0.3 x 2752/1005 = 22.5”C. 

It is reasonable to take the stage efficiency as equal to the polytropic efficiency since 
the stage temperature rise of an axial compressor is small. Denoting compressor inlet 
and outlet conditions by subscripts I and II respectively then, from eqn. (2.33), 

(Y-1 ) / S P Y  
% = I + -  = (E) 
To1 To1 

where N is the required number of stages. Thus 

293 ( Y -  1 ) / S P Y  

N = [(E) A To 22.5 
- I] = -[51/3.11 - 13 = 8.86. 

A suitable number of stages is therefore 9. 
The overall efficiency is found from eqn. (2.36). 

- - [51/3.5 - 1]/[5’/3.1’ - 11 = 86.3%. 

Estimation of compressor stage efficiency 

In eqn. (5.9) the amount of the actual stage work (hQ3 - h Q l )  can be found from 
the velocity diagram. The losses in total pressure may be estimated from cascade 
data. This data is incomplete however, as it only takes account of the blade profile 
loss. Howell (1945) has subdivided the total losses into three categories as shown 
in Figure 3.11. 

(i) Profile losses on the blade surfaces. 
(ii) Skin friction losses on the annulus walls. 

(iii) “Secondary” losses by which he meant all losses not included in (i) and (ii) 

In performance estimates of axial compressor and fan stages the overall drag 

above. 

coefficient for the blades of each row is obtained from 

using the empirical values given in Chapter 3. 
Although the subject matter of this chapter is primarily concerned with two- 

dimensional flows, there is an interesting three-dimensional aspect which cannot 
be ignored. In multistage axial compressors the annulus wall boundary layers 
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FIG. 5.7. Axial velocity profiles in a compressor (Howell 1945). (Courtesy of the 
Institution of Mechanical Engineers). 

rapidly thicken through the first few stages and the axial velocity profile becomes 
increasingly peaked. This effect is illustrated in Figure 5.7, from the experimental 
results of Howell (1945), which shows axial velocity traverses through a four-stage 
compressor. Over the central region of the blade, the axial velocity is higher than 
the mean value based on the through flow. The mean blade section (and most of 
the span) will, therefore, do less work than is estimated from the velocity triangles 
based on the mean axial velocity. In theory it would be expected that the tip and 
root sections would provide a compensatory effect because of the low axial velocity 
in these regions. Due to stalling of these sections (and tip leakage) no such work 
increase actually occurs, and the net result is that the work done by the whole blade 
is below the design figure. Howell (1945) suggested that the stagnation enthalpy 
rise across a stage could be expressed as 

ho3 - hol = h-u(cy2 - C y l A  (5.29) 

where h is a “work done”. For multistage compressors Howell recommended for k a 
mean value of 0.86. Using a similar argument for axial turbines, the increase in axial 
velocity at the pitch-line gives an increase in the amount of work done, which is then 
roughly cancelled out by the loss in work done at the blade ends. Thus, for turbines, 
no “work done” factor is required as a correction in performance calculations. 

Other workers have suggested that h should be high at entry (0.96) where the 
annulus wall boundary layers are thin, reducing progressively in the later stages 
of the compressor (0.85). Howell (1950) has given mean “work done” factors for 
compressors with varying numbers of stages, as in Figure 5.9. For a four-stage 
compressor the value of h would be 0.9 which would be applied to all four stages. 

Smith (1970) commented upon the rather pronounced deterioration of compressor 
performance implied by the example given in Figure 5.7 and suggested that things 
are not so bad as suggested. As an example of modem practice he gave the axial 
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FIG. 5.8. Traverse measurements obtained from a 12-stage compressor (Smith 1970). 
(Courtesy of the Elsevier Publishing Co). 

FIG. 5.9. Mean work done factor in compressors (Howell and Bonham 1950). (Courtesy 
of the Institution of Mechanical Engineers). 

velocity distributions through a twelve-stage axial compressor, Figure 5.8(a). This 
does illustrate that rapid changes in velocity distribution still occur in the first few 
stages, but that the profile settles down to a fairly constant shape thereafter. This 
phenomenon has been referred to as ultimate steady pow. 

Smith also provided curves of the spanwise variation in total temperature, 
Figure 5.8(b), which shows the way losses increase from midpassage towards 
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the annulus walls. An inspection of this figure shows also that the excess total 
temperature near the end walls increases in magnitude and extent as the flow 
passes through the compressor. Work on methods of predicting annulus wall 
boundary layers in turbomachines and their effects on performance are being 
actively pursued in many countries. Although rather beyond the scope of this 
textbook, it may be worth mentioning two papers for students wishing to advance 
their studies further. Mellor and Balsa (1972) offer a mathematical flow model 
based on the pitchwise-averaged turbulent equations of motion for predicting axial 
flow compressor performance whilst Daneshyar et al. (1972) review and compare 
different existing methods for predicting the growth of annulus wall boundary layers 
in turbomachines. 

EXAMPLE 5.2. The last stage of an axial flow compressor has a reaction of 50% 
at the design operating point. The cascade characteristics, which correspond to each 
row at the mean radius of the stage, are shown in Figure 3.12. These apply to a 
cascade of circular arc camber line blades at a space-chord ratio 0.9, a blade inlet 
angle of 44.5deg and a blade outlet angle of -0.5deg. The blade height-chord 
ratio is 2.0 and the work done factor can be taken as 0.86 when the mean radius 
relative incidence ( i  - i * ) / E *  is 0.4 (the operating point). 

For this operating condition, determine 

(i) the nominal incidence i* and nominal deflection E * ;  
(ii) the inlet and outlet flow angles for the rotor; 

(iii) the flow coefficient and stage loading factor; 
(iv) the rotor lift coefficient; 
(v) the overall drag coefficient of each row; 

(vi) the stage efficiency. 

The density at entrance to the stage is 3.5kg/m3 and the mean radius blade 
speed is 2 4 2 d s .  Assuming the density across the stage is constant and ignoring 
compressibility effects, estimate the stage pressure rise. 

In the solution given below the relativeflow onto the rotor is considered. The 
notation used for flow angles is the same as for Figure 5.2. For blade angles, p' is 
therefore used instead of a' for the sake of consistency. 

Solution. (i) The nominal deviation is found using eqns. (3.39) and (3.40). With 
= 44.5" - (-0.5") = 45" and the spacekhord ratio, s/Z = the camber 8 = p', - 

0.9, then 

s* = i0.23 + ~ ; / ~ O O ] ~ ( S / Z ) ~ / ~  

But B* 2 -  - 6* + p; = 6* - 0.5 

. .  . 6* = [0.23 + (6' + p;)/500] x 45 x (0.9)'/* 

= [0.229 + 6*/500] x 42.69 = 9.776 + 0.0854 6* 

:. 6* = 10.69" 

... p; = 6* + 
2 10.2" 

= 10.69 - 0.5 
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The nominal deflection E* = 0 . 8 ~ ~ ~  and, from Figure 3.12, E,, = 37.5". Thus, 
E* = 30" and the nominal incidence is 

i* = S; + E* - B', 
= 10.2 + 30 - 44.5 = -4.3". 

(ii) At the operating point i = 0 . 4 ~ *  + i* = 7.7". Thus, the actual inlet flow 
angle is 

= + i = 52.2'. 

From Figure 3.12 at i = 7.7", the deflection E = 37.5" and the flow outlet angle is 

8 2  = B1 - E = 14.7". 

(iii) From Figure 5.2, U = c,l(tana1 + tanB1) = cX2(tana2 + tan82). For c, = 
constant across the stage and R = 0.5 

= a 2  = 52.2" and 8 2  = a1 = 14.7" 

and the flow coefficient is 
CX 1 
U tana~ +tan/% 

q j = - =  = 0.644. 

The stage loading factor, + = Aho/U2 = hqj(tana2 - tanal) using eqn. (5.29). 
Thus, with h = 0.86, 

+ = 0.568. 

(iv) The lift coefficient can be obtained using eqn. (3.18) 

CL = 2(s/l)cosBrn(tanB1 - W82)  

ignoring the small effect of the drag coefficient. Now tanDrn = (tan/$ + tanB2)/2. 
Hence /Im = 37.8" and so 

CL = 2 x 0.9 x 0.7902 x 1.027 = 1.46. 

(v) Combining eqns. (3.7) and (3.17) the drag coefficient is 

CD = s (*) ~ cos3 B~ 
z zpw; cos2B1 . 

Again using Figure 3.12 at i = 7.7", the profile total pressure loss coefficient 
A p ~ / ( i p w i )  = 0.032, hence the profile drag coefficient for the blades of either 
row is 

C D ~  = 0.9 x 0.032 x 0.79023/0.61292 = 0.038. 

Taking account of the annulus wall drag coefficient CD, and the secondary loss 
drag coefficient CD, 

CD, = 0.02(s/Z)(Z/H) = 0.02 x 0.9 x 0.5 = 0.009 

CD, = 0.018C; = 0.018 x 1.46* = 0.038. 
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Thus, the overall drag coefficient, C D  = CD, + C D ~  + C D ~  = 0.084 and this 
applies to each row of blades. If the reaction had been other than 0.5 the drag 
coefficients for each blade row would have been computed separately. 

(vi) The total-to-total stage efficiency, using eqn. (5.9) can be written as 

(Z‘R + Z‘S’sw2 = I -  C A Pol ( ; P.,’ ) 

11ru2 211r/42 211r 
= I -  J A P o l P  

rlrt = 1 - 

where <R and <S are the overall total pressure loss coefficients for the rotor and 
stator rows respectively. From eqn. (3.17) 

cS = ( l / S ) c D  sec3 CY,. 

Thus, with <s = <R 

Vrr = 1 - 
4 2 c D ( l / s >  
II. cos3 CY, 

0.W2 x 0.084 
0.568 x 0.79033 x 0.9 

= I -  = 0.862. 

From eqn. (5.27), the pressure rise across the stage is 

A p  = qrt$pU2 = 0.862 x 0.568 x 3.5 x 2422 

= 100kF’a. 

Stall and surge phenomena in compressors 

Casing treatment 

It was discovered in the late 1960s that the stall of a compressor could be delayed 
to a lower mass flow by a suitable treatment of the compressor casing. Given the 
right conditions this can be of great benefit in extending the range of stall-free 
operation. Numerous investigations have since been carried out on different types 
of casing configurations under widely varying flow conditions to demonstrate the 
range of usefulness of the treatment. 

Greitzer et al. (1979) observed that two types of stall could be found in a 
compressor blade row, namely, “blade stall” or “wall stall”. Blade stall is, roughly 
speaking, a two-dimensional type of stall where a significant part of the blade has 
a large wake leaving the blade suction surface. Wall stall is a stall connected with 
the boundary layer on the outer casing. Figure 5.10 illustrates the two types of stall. 
Greitzer et al. found that the response to casing treatment depended conspicuously 
upon the type of stall encountered. 

The influence of a grooved casing treatment on the stall margin of a model axial 
compressor rotor was investigated experimentally. Two rotor builds of different 
blade solidities, (T, (chordspace ratio) but with all the other parameters identical, 
were tested. Greitzer emphasised that the motive behind the use of different solidities 
was simply a convenient way to change the type of stall from a blade stall to a wall 
stall and that the benefit of casing treatment was unrelated to the amount of solidity 
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FIG. 5.1 0. Compressor stall inception (adapted from Greitzer et a/. 1979). 

FIG. 5.1 1. Position and appearance of casing treatment insert (adapted from Greitzer 
et a/. 1979). 

of the blade row. The position of the casing treatment insert in relation to the rotor 
blade row is shown in Figure 5.1 l a  and the appearance of the grooved surface 
used is illustrated in Figure 5.11b. The grooves, described as "axial skewed" and 
extending over the middle 44% of the blade, have been used in a wide variety of 
compressors. 

As predicted from their design study, the high solidity blading (a = 2) resulted in 
the production of a wall stall, while the low solidity (0 = 1) blading gave a blade 
stall. Figure 5.12 shows the results obtained for non-dimensionalised wall static 
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FIG. 5.12. Effects of casing treatment and solidity on compressor characteristics 
(adapted from Greitzer et al. 1979 and data points removed for clarity). 

pressure rise, A p / ( i p U 2 ) ,  across the rotor plotted against the mean radius flow 
coefficient, 4 = C J U ,  for the four conditions tested. The extreme left end of each 
curve represents the onset of stall. It can be seen that there is a marked difference 
in the curves for the two solidities. For the high solidity configuration there is 
a higher static peak pressure rise and the decline does not occur until 4 is much 
lower than the low solidity configuration. However, the most important difference in 
performance is the change in the stall point with and without the casing treatment. 
It can be seen that with the grooved casing a substantial change in the range of 
c$ occurred with the high solidity blading. However, for the low solidity blading 
there is only a marginal difference in range. The shape of the performance curve is 
significantly affected for the high solidity rotor blades, with a substantial increase 
in the peak pressure rise brought about by the grooved casing treatment. 

The conclusion reached by Greitzer er al. (1979) is that casing treatment is highly 
effective in delaying the onset of stall when the compressor row is more prone to 
wall stall than blade stall. However, despite this advantage casing treatment has not 
been generally adopted in industry. The major reason for this ostensible rejection 
of the method appears to be that a performance penalty is attached to it. The more 
effective the casing treatment, the more the stage efficiency is reduced. 

Smith and Cumsty (1984) made an extensive series of experimental investigations 
to try to discover the reasons for the effectiveness of casing treatment and the 
underlying causes for the loss in compressor efficiency. At the simplest level it was 
realised that the slots provide a route for fluid to pass from the pressure surface 
to the suction surface allowing a small proportion of the flow to be recirculated. 
The approaching boundary layer fluid tends to have a high absolute swirl and is, 
therefore, suitably orientated to enter the slots. Normally, with a smooth wall the 
high swirl would cause energy to be wasted but, with the casing treatment, the flow 
entering the slot is turned and reintroduced back into the main flow near the blade’s 
leading edge with its absolute swirl direction reversed. The re-entrant flow has, in 
effect, flowed upstream along the slot to a lower pressure region. 
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Rotating stall and surge 

A salient feature of a compressor performance map, such as Figure 1.10, is the limit 
to stable operation known as the surge line. This limit can be reached by reducing the 
mass flow (with a throttle valve) whilst the rotational speed is maintained constant. 

When a compressor goes into surge the effects are usually quite dramatic. Gener- 
ally, an increase in noise level is experienced, indicative of a pulsation of the air 
flow and of mechanical vibration. Commonly, there are a small number of predomi- 
nant frequencies superimposed on a high background noise. The lowest frequencies 
are usually associated with a Helmholtz-type ofresonance of the flow through the 
machine, with the inlet andor outlet volumes. The higher frequencies are known 
to be due to rotating stall and are of the same order as the rotational speed of the 
impeller. 

Rotating stall is a phenomenon of axial-compressor flow which has been the 
subject of many detailed experimental and theoretical investigations and the matter 
is still not fully resolved. An early survey of the subject was given by Emmons 
et al. (1959). Briefly, when a blade row (usually the rotor of a compressor reaches 
the “stall point”, the blades instead of all stalling together as might be expected, stall 
in separate patches and these stall patches, moreover, travel around the compressor 
annulus (Le. they rotate). 

That stall patches must propagate from blade to blade has a simple physical 
explanation. Consider a portion of a blade row, as illustrated in Figure 5.13 to be 
affected by a stall patch. This patch must cause a partial obstruction to the flow 
which is deflected on both sides of it. Thus, the incidence of the flow on to the blades 
on the right of the stall cell is reduced but, the incidence to the left is increased. 
As these blades are already close to stalling, the net effect is for the stall patch to 
move to the left; the motion is then self-sustaining. 

There is a strong practical reason for the wide interest in rotating stall. Stall 
patches travelling around blade rows load and unload each blade at some frequency 
related to the speed and number of the patches. This frequency may be close to 
a natural frequency of blade vibration and there is clearly a need for accurate 
prediction of the conditions producing such a vibration. Several cases of blade 
failure due to resonance induced by rotating stall have been reported, usually with 
serious consequences to the whole compressor. 

FIG. 5.13. Model illustrating mechanism of stall cell propagation: partial blockage due to 
stall patch deflects flow, increasing incidence to the left and decreasing incidence to 

the right. 
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FIG. 5.14. Stability of operation of a compressor (adapted from Horlock 1958). 

It is possible to distinguish between surge and propagating stall by the unsteadi- 
ness, or otherwise, of the total mass flow. The characteristic of stall propagation is 
that the flow passing through the annulus, summed over the whole area, is steady 
with time; the stall cells merely redistribute the flow over the annulus. Surge, on the 
other hand, involves an axial oscillation of the total mass flow, a condition highly 
detrimental to efficient compressor operation. 

The conditions determining the point of surge of a compressor have not yet been 
completely determined satisfactorily. One physical explanation of this breakdown 
of the flow is given by Horlock (1958). 

Figure 5.14 shows a constant rotor speed compressor characteristic (C) of pres- 
sure ratio plotted against flow coefficient. A second set of curves ( T I ,  T2, etc.) are 
superimposed on this figure showing the pressure loss characteristics of the throttle 
for various fixed throttle positions. The intersection of curves T with compressor 
curve C denotes the various operating points of the combination. A state ofjlow 
stability exists if the throttle curves at the point of intersection have a greater 
(positive) slope than the compressor curve. That this is so may be illustrated as 
follows. Consider the operating point at the intersection of T2 with C. If a small 
reduction of flow should momentarily occur, the compressor will produce a greater 
pressure rise and the throttle resistance will fall. The flow rate must, of necessity, 
increase so that the original operating point is restored. A similar argument holds 
if the flow is temporarily augmented, so that the flow is completely stable at this 
operating condition. 

If, now, the operating point is at point U, unstable operation is possible. A small 
reduction in flow will cause a greater reduction in compressor pressure ratio than the 
corresponding pressure ratio across the throttle. As a consequence of the increased 
resistance of the throttle, the flow will decrease even further and the operating point 
U is clearly unstable. By inference, neutral stability exists when the slopes of the 
throttle pressure loss curves equal the compressor pressure rise curve. 

Tests on low pressure ratio compressors appear to substantiate this explanation 
of instability. However, for high rotational speed multistage compressors the above 
argument does not seem sufficient to describe surging. With high speeds no stable 
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operation appears possible on constant speed curves of positive slope and surge 
appears to occur when this slope is zero or even a little negative. A more complete 
understanding of surge in multistage compressors is only possible from a detailed 
study of the individual stages performance and their interaction with one another. 

Control of flow instabilities 

Important and dramatic advances have been made in recent years in the under- 
standing and controlling of surge and rotating stall. Both phenomena are now 
regarded as the mature forms of the natural oscillatory modes of the compression 
system (see Moore and Greizer 1986). The flow model they considered predicts 
that an initial disturbance starts with a very small amplitude but quickly grows 
into a large amplitude form. Thus, the stability of the compressor is equivalent to 
the stability of these small amplitude waves that exist just prior to stall or surge 
(Haynes et al. 1994). Only a very brief outline can be given of the advances in the 
understanding of these unstable flows and the means now available for controlling 
them. Likewise only a few of the many papers written on these topics are cited. 

Epstein et al. (1989) first suggested that surge and rotating stall could be prevented 
by using active feedback control to damp the hydrodynamic disturbances while they 
were still of small amplitude. Active suppression of surge was subsequently demon- 
strated on a centrifugal compressor by Ffowcs Williams and Huang (1989), also 
by Pinsley e t a l .  (1991) and on an axial compressor by Day (1993). Shortly after 
this Paduano et al. (1993) demonstrated active suppression of rotating stall in a 
single-stage low-speed axial compressor. By damping the small amplitude waves 
rotating about the annulus prior to stall, they increased the stable flow range of 
the compressor by 25%. The control scheme adopted comprised a circumferential 
array of hot wires just upstream of the compressor and a set of 12 individually 
actuated vanes upstream of the rotor used to generate the rotating disturbance struc- 
ture required for control. Haynes et al. (1994), using the same control scheme as 
Paduano et al., actively stabilised a three-stage, low-speed axial compressor and 
obtained an 8% increase in the operating flow range. 

Gysling and Greitzer ( 1995) employed a different strategy using aeromechanical 
feedback to suppress the onset of rotating stall in a low-speed axial compressor. 
Figure 5.15 shows a schematic of the aeromechanical feedback system they used. 
An auxiliary injection plenum chamber is fed by a high pressure source so that high 
momentum air is injected upsteam towards the compressor rotor. The amount of 
air injected at a given circumferential position is governed by an array of locally 
reacting reed valves able to respond to perturbations in the static pressure upstream 
of the compressor. The reeds valves, which were modelled as mass-spring-dampers, 
regulated the amount of high-pressure air injected into the face of the compressor. 
The cantilevered reeds were designed to deflect upward to allow an increase of the 
injected flow, whereas a downward deflection decreases the injection. 

A qualitative explanation of the stabilising mechanism has been given by Gysling 
and Greitzer (1995): 

Consider a disturbance to an initally steady, axisymmetricflow, which causes a 
small decrease in axial velocity in one region of the compressor annulus. In this 
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FIG. 5.1 5. Schematic of the aeromechanical feedback system used to suppress the 
onset of rotating stall (adapted from Gysling and Greitzer 1995). 

region, the static pressure in the potential Jrow jield upstream of the compressor 
will increase. The increase in static pressure defects the reed valves in that 
region, increasing the amount of high momentum fuid injected and, hence, the 
local mass f o w  and pressure rise across the compressor. The net result is an 
increase in pressure rise across the compressor in the region of decreased axial 
velocity. The feedback thus serves to add a negative component to the real part 
of the compressor pressure rise versus mass $ow transfer function. 

Only a small amount (4%) of the overall mass flow through the compressor was used 
for aeromechanical feedback, enabling the stall flow coefficient of the compression 
system to bc reduced by 10% compared to the stalling flow coefficient with the 
same amount of steady-state injection. 

It is claimed that the research appears to be the first demonstration of dynamic 
control of rotating stall in an axial compressor using aeromechanical feedback. 

Axial-flow ducted fans 
In essence, an axial-flow fan is simply a single-stage compressor of low pressure 

(and temperature) rise, so that much of the foregoing theory of this chapter is valid 
for this class of machine. However, because of the high space-chord ratio used in 
many axial fans, a simplified theoretical approach based on isolated aerofoil theory 
is  often used. This method can be of use in the design of ventilating fans (usually of 
high space-chord) in which aerodynamic interference between adjacent blades can 
be assumed negligible. Attempts have been made to extend the scope of isolated 
aerofoil theory to less widely spaced blades by the introduction of an inte~erence 
factor; for instance, the ratio k of the lift force of a single blade in a cascade to the 



Axial-flow Compressors and Fans 161 

FIG. 5.16. Weinig’s results for lift ratio of a cascade of thin flat plates, showing 
dependence on stagger angle and spacekhord ratio (adapted from Wislicenus (1 947). 

FIG. 5.17. Two simple types of axial-flow fan and their associated velocity diagrams 
(after Van Niekerk 1958). 
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lift force of a single isolated blade. As a guide to the degree of this interference, 
the exact solution obtained by Weinig (1935) and used by Wislicenus (1947) for 
a row of thin flat plates is of value and is shown in Figure 5.16. This illustrates 
the dependence of k on space-chord ratio for several stagger angles. The rather 
pronounced effect of stagger for moderate space-chord ratios should be noted as 
well as the asymptotic convergence of k towards unity for higher space-chord ratios. 

Two simple types of axial-flow fan are shown in Figure 5.17 in which the inlet 
and outlet flows are entirely axial. In the first type (a), a set of guide vanes provide a 
contra-swirl and the flow is restored to the axial direction by the rotor. In the second 
type (b), the rotor imparts swirl in the direction of blade motion and the flow is 
restored to the axial direction by the action of outlet straighteners (or outlet guide 
vanes). The theory and design of both the above types of fan have been investigated 
by Van Niekerk (1958) who was able to formulate expressions for calculating the 
optimum sizes and fan speeds using blade element theory. 

Blade element theory 

A blade element at a given radius can be defined as an aerofoil of vanishingly 
small span. In fan-design theory it is commonly assumed that each such element 
operates as a two-dimensional aerofoil, behaving completely independently of condi- 
tions at any other radius. Now the forces impressed upon the fluid by unit span of 
a single stationary blade have been considered in some detail already, in Chapter 3. 
Considering an element ofa rotor blade dr, at radius r, the elementary axial and 
tangential forces, dX and dY respectively, exerted on the fluid are, refemng to 
Figure 3.5, 

dX = (L sin B,,, - D cos B,,,)dr, 

dY = ( L  cos Bm + D sin /3,)dr, 

(5.30) 

(5.31) 

+ tan 8 2 )  and L, D are the lift and drag on unit span of a where tan j?, = ;{tan 
blade. 

Writing tan y = D/L = CD/CL then, 

dX = L(sin #?, - tan y cos B,,,)dr. 

Introducing the lift coefficient CL = L/(ipwil) for the rotor blade (cf. eqn. (3.16a)) 
into the above expression and rearranging, 

pc,lCLdr sin(B, - y)  dx= 
2 cos2 pm cosy 

(5.32) 

where c, = w, cos /3,. 

the elementary torque is 
The torque exerted by one blade element at radius r is rd Y. If there are 2 blades 

d t  = rZdY 
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after using eqn. (5.31). Substituting for L and rearranging, 

pc;iZCLrdr cos(/?, - y)  
d t  = (5.33) 

2 cos2 /?, cosy 

Now the work done by the rotor in unit time equals the product of the stagnation 
enthalpy rise and the mass flow rate; for the elementary ring of area 2nrdr, 

Rd t  = (C,ATo)dm, (5.34) 

where R is the rotor angular velocity and the element of mass flow, d h  = pcX2nrdr. 
Substituting eqn. (5.33) into eqn. (5.34), then 

(5.35) 

where s = 2nr/Z. Now the static temperature rise equals the stagnation temperature 
rise when the velocity is unchanged across the fan; this, in fact, is the case for both 
types of fan shown in Figure 5.17. 

The increase in static pressure of the whole of the fluid crossing the rotor row 
may be found by equating the total axial force on all the blade elements at radius 
r with the product of static pressure rise and elementary area 2nrdr, or 

ZdX = (p2 - p1)2nrdr. 

Using eqn. (5.32) and rearranging, 

P C , ~ I  sin(/?, - Y> 
2 s cos2 /?, cos y P2 - P1 = CL (5.36) 

Note that, so far, all the above expressions are applicable to both types of fan shown 
in Figure 5.17. 

Blade element efficiency 

Consider the fan type shown in Figure 5.17a fitted with guide vanes at inlet. The 
pressure rise across this fan is equal to the rotor pressure rise (p2 - p1) minus the 
drop in pressure across the guide vanes (p, - p l ) .  The ideal pressure rise across 
the fan is given by the product of density and C,ATo. Fan designers define a blade 
element efficiency 

(5.37) 

The drop in static pressure across the guide vanes, assumingfnctionless flow for 
simplicity, is 

(5.38) 

Now since the change in swirl velocity across the rotor is equal and opposite to the 
swirl produced by the guide vanes, the work done per unit mass flow, C,ATo is 
equal to U C , ~ .  Thus the second term in eqn. (5.37) is 

qb = ( ( p 2  - PI) - (Pc - PI )}/(PcpATO). 

1 2  2 1 2  Pe - PI = ? P ( C ~  - c,) = ZPC,~. 

(Pe - Pl)/(PC,ATO) = Cyl/(2U). (5.39) 
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Combining eqns. (5.35), (5.36) and (5.39) in eqn. (5.37), then 

7)b = (cx /u )  tan(& - y)  - c y l / ( 2 u ) .  (5.40a) 

The foregoing exercise can be repeated for the second type of fan having outlet 
straightening vanes and, assuming frictionless flow through the “straighteners”, the 
rotor blade element efficiency becomes, 

(5.40b) 

Some justification for ignoring the losses occurring in the guide vanes is found 
by observing that the ratio of guide vane pressure change to rotor pressure rise is 
normally small in ventilating fans. For example, in the first type of fan 

7)b = (cx/u> tan(brn - y )  -k c y 2 / ( 2 u ) .  

( P e  - P 1  Y ( P 2  - P 1 )  + (iPC’,l ) / ( P U C Y l )  = C y l / 2 ( U ) ,  

the tangential velocity cyl being rather small compared with the blade speed U .  

Lift coefficient of a fan aerofoil 
For a specified blade element geometry, blade speed and lift/drag ratio the temper- 

ature and pressure rises can be determined if the lift coefficient is known. An 
estimate of lift coefficient is most easily obtained from two-dimensional aerofoil 
potential flow theory. Glauert (1959) shows for isolated aerofoils of small camber 
and thickness, that 

CL = 2n sin x, (5.41) 

FIG. 5.18. Method suggested by Wislicenus (1947) for obtaining the zero lift line of 
cambered aerofoils. 
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where x is the angle between the flow direction and line of Zero lifi of the aerofoil. 
For an isolated, cambered aerofoil Wislicenus (1947) suggested that the zero lift line 
may be found by joining the trailing edge point with the point of maximum camber 
as depicted in Figure 5.18a. For fan blades experiencing some interference effects 
from adjacent blades, the modified lift coefficient of a blade may be estimated by 
assuming that Weinig’s results for flat plates (Figure 5.15) are valid for the slightly 
cambered, finite thickness blades, and 

CL = 2nk sin x. (5.4 1 a) 

When the vanes overlap (as they may do at sections close to the hub), Wisli- 
cenus suggested that the zero lift line may be obtained by the line connecting the 
trailing edge point with the maximum camber of that portion of blade which is not 
overlapped (Figure 5.18b). 

The extension of both blade element theory and cascade data to the design of 
complete fans is discussed in considerable detail by Wallis (1961). 
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Problems 

(Note: In questions 1 to 4 and 8 take R = 287 J/(kg"C) and y = 1.4.) 
1. An axial flow compressor is required to deliver 50 kg/s of air at a stagnation pressure 

of 500kPa. At inlet to the first stage the stagnation pressure is l00kF'a and the stagnation 
temperature is 23°C. The hub and tip diameters at this location are 0.436 m and 0.728 m. At 
the mean radius, which is constant through all stages of the compressor, the reaction is 0.50 
and the absolute air angle at stator exit is 28.8deg for all stages. The speed of the rotor is 
8000rev/min. Determine the number of similar stages needed assuming that the polytropic 
efficiency is 0.89 and that the axial velocity at the mean radius is constant through the stages 
and equal to 1.05 times the average axial velocity. 

2. Derive an expression for the degree of reaction of an axial compressor stage in terms 
of the flow angles relative to the rotor and the flow coefficient. 

Data obtained from early cascade tests suggested that the limit of efficient working of an 
axial-flow compressor stage occurred when 

(i) a relative Mach number of 0.7 on the rotor is reached; 
(ii) the flow coefficient is 0.5; 

(iii) the relative flow angle at rotor outlet is 30deg measured from the axial direction; 
(iv) the stage reaction is 50%. 

Find the limiting stagnation temperature rise which would be obtained in the first stage 
of an axial compressor working under the above conditions and compressing air at an inlet 
stagnation temperature of 289 K. Assume the axial velocity is constant across the stage. 
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3. Each stage of an axial flow compressor is of 0.5 reaction, has the same mean blade speed 
and the same flow outlet angle of 30deg relative to the blades. The mean flow coefficient is 
constant for all stages at 0.5. At entry to the first stage the stagnation temperature is 278 K, 
the stagnation pressure 101.3 H a ,  the static pressure is 87.3 kPa and the flow area 0.372 m2. 
Using compressible flow analysis determine the axial velocity and the mass flow rate. 

Determine also the shaft power needed to drive the compressor when there are 6 stages 
and the mechanical efficiency is 0.99. 

4. A sixteen-stage axial flow compressor is to have a pressure ratio of 6.3. Tests have 
shown that a stage total-to-total efficiency of 0.9 can be obtained for each of the first six 
stages and 0.89 for each of the remaining ten stages. Assuming constant work done in each 
stage and similar stages find the compressor overall total-to-total efficiency. For a mass 
flow rate of 40 kg/s determine the power required by the compressor. Assume an inlet total 
temperature of 288 K. 
5. At a particular operating condition an axial flow compressor has a reaction of 0.6, a 

flow coefficient of 0.5 and a stage loading, defined as A b / U 2  of 0.35. If the flow exit angles 
for each blade row may be assumed to remain unchanged when the mass flow is throttled, 
determine the reaction of the stage and the stage loading when the air flow is reduced by 
10% at constant blade speed. Sketch the velocity triangles for the two conditions. 

Comment upon the likely behaviour of the flow when further reductions in air mass flow 
are made. 

6.  The proposed design of a compressor rotor blade row is for 59 blades with a circular 
arc camber line. At the mean radius of 0.254m the blades are specified with a camber 
of 30deg, a stagger of 40deg and a chord length of 30mm. Determine, using Howell’s 
correlation method, the nominal outlet angle, the nominal deviation and the nominal inlet 
angle. The tangent difference approximation, proposed by Howell for nominal conditions 
(0 < a; < 407, can be used: 

- tans; = 1.55/(1 + 1.5~/Z). 

Determine the nominal lift coefficient given that the blade drag coefficient Co = 0.017. 
Using the data for relative deflection given in Figure 3.17, determine the flow outlet 

angle and lift coefficient when the incidence i = 1.8 deg. Assume that the drag coefficient is 
unchanged from the previous value. 

7. The preliminary design of an axial flow compressor is to be based upon a simplified 
consideration of the mean diameter conditions. Suppose that the stage characteristics of a 
repeating stage of such a design are as follows: 

Stagnation temperature rise 25°C 
Reaction ratio 0.6 
Flow coefficient 0.5 
Blade speed 275 m / s  

The gas compressed is air with a specific heat at constant pressure of l.005kJ/(kg°C). 
Assuming constant axial velocity across the stage and equal absolute velocities at inlet and 
outlet, determine the relative flow angles for the rotor. 

Physical limitations for this compressor dictate that the spacekhord ratio is unity at the 
mean diameter. Using Howell’s correlation method, determine a suitable camber at the mid- 
height of the rotor blades given that the incidence angle is zero. Use the tangent difference 
approximation: 

t..Bi = 1.55/(1 + 1.5s/Z) 
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for nominal conditions and the data of Figure 3.17 for finding the design deflection. (Hinr. 
Use several trial values of 0 to complete the solution,) 

8. Air enters an axial flow compressor with a stagnation pressure and temperature of 
100 kPa and 293 K, leaving at a stagnation pressure of 600 kPa. The hub and tip diameters 
at entry to the Arst stage are 0.3m and 0.5m. The flow Mach number after the inlet guide 
vanes is 0.7 at the mean diameter. At this diameter, which can be assumed constant for all 
the compressor stages, the reaction is 50%, the axial velocity to mean blade speed ratio is 
0.6 and the absolute flow angle is 30 deg at the exit from all stators. The type of blading used 
for this compressor is designated “free-vortex’’ the axial velocity is constant for each stage. 

Assuming isentropic flow through the inlet guide vanes and a small stage efficiency of 
0.88, determine: 
(1) the air velocity at exit from the IGVs at the mean radius; 
(2) the air mass flow and rotational speed of the compressor; 
(3) the specific work done in each stage; 
(4) the overall efficiency of the compressor; 
(5) the number of compressor stages required and the power needed to drive the compressor; 
(6) consider the implications of rounding the number of stages to an integer value if the 

pressure ratio must be maintained at 6 for the same values of blade speed and flow 
coefficient. 

NB. In the following problems on axial-flow fans the medium is air for which the density is 
taken to be i.2kg/m3. 

9. (a) The volume flow rate through an axial-flow fan fitted with inlet guide vanes is 
2.5 m3/s and the rotational speed of the rotor is 2604rev/min. The rotor blade tip radius is 
23cm and the root radius is 1Ocm. Given that the stage static pressure increase is 325Pa 
and the blade element efficiency is 0.80, determine the angle of the flow leaving the guide 
vanes at the tip, mean and root radii. 

(b) A diffuser is fitted at exit to the fan with an area ratio of 2.5 and an effectiveness of 
0.82. Determine the overall increase in static pressure and the air velocity at diffuser exit. 

10. The rotational speed of a four-bladed axial-flow fan is 2900rev/min. At the mean 
radius of 16.5cm the rotor blades operate at CL = 0.8 with CD = 0.045. The inlet guide 
vanes produce a flow angle of 20” to the axial direction and the axial velocity through the 
stage is constant at 20m/s. 

For the mean radius, determine: 
(1) the rotor relative flow angles; 
(2) the stage efficiency; 
(3) the rotor static pressure increase; 
(4) the size of the blade chord needed for this duty. 

11. A diffuser is fitted to the axial fan in the previous problem which has an efficiency 
of 70% and an area ratio of 2.4. Assuming that the flow at entry to the diffuser is uniform 
and axial in direction, and the losses in the entry section and the guide vanes are negligible, 
determine: 
(1) the static pressure rise and the pressure recovery factor of the diffuser; 
(2) the loss in total pressure in the diffuser; 
(3) the overall efficiency of the fan and diffuser. 



CHAPTER 6 

Three-dimensional Flows in 
Axial Turbomachines 
It cost much labour and many days before all these things were brought to 
perfection. (DEFOE, Robinson Crusoe.) 

Introduction 
IrJ CHAPTERS 4 and 5 the fluid motion through the blade rows of axial turboma- 

chines was assumed to be two-dimensional in the sense that radial (i.e. spanwise) 
velocities did not exist. This is a not unreasonable assumption for axial turboma- 
chines of high hub-tip ratio. However, with hub-tip ratios less than about 415, radial 
velocities through a blade row may become appreciable, the consequent redistribu- 
tion of mass flow (with respect to radius) seriously affecting the outlet velocity 
profile (and flow angle distribution). It is the temporary imbalance between the 
strong centrifugal forces exerted on the fluid and radial pressures restoring equi- 
librium which is responsible for these radial flows. Thus, to an observer travelling 
with a fluid particle, radial motion will continue until sufficient fluid is transported 
(radially) to change the pressure distribution to that necessary for equilibrium. The 
flow in an annular passage in which there is no radial component of velocity, 
whose streamlines lie in circular, cylindrical surfaces and which is axisymmetric, is 
commonly known as radial equilibrium flow. 

An analysis called the radial equilibrium method, widely used for three- 
dimensional design calculations in axial compressors and turbines, is based upon 
the assumption that any radial flow which may occur, is completed within a blade 
row, the flow outside the row then being in radial equilibrium. Figure 6.1 illustrates 
the nature of this assumption. The other assumption that the flow is axisymmetric 
implies that the effect of the discrete blades is not transmitted to the flow. 

Theory of radial equilibrium 

Consider a small element of fluid of mass dm, shown in Figure 6.2, of unit depth 
and subtending an angle de at the axis, rotating about the axis with tangential 
velocity, co at radius r. The element is in radial equilibrium so that the pressure 
forces balance the centrifugal forces; 

( p  + dp)(r + dr)dO - prde - ( p  + idp)drdQ = dmci/r. 

169 
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FIG. 6.1. Radial equilibrium flow through a rotor blade row. 

FIG. 6.2. A fluid element in radial equilibrium (cr = 0). 

Writing dm = prdedr and ignoring terms of the second order of smallness the 
above equation reduces to, 

(6.1) 

If the swirl velocity Ce and density are known functions of radius, the radial pressure 
variation along the blade length can be determined, 

1 dP - 4 _ _  - - 
p d r  r ’  

Ptip - Proot = POT. (6.2a) 1: 2dr 

1: 2dr 

For an incompressible fluid 

Ptip - Proot = P “07. (6.2b) 

The stagnation enthalpy is written (with c, = 0) 

hil = h + + (c; + c;) (6.3) 

therefore, 
& dh dc, dce 

- + c,- + ce-. (6.4) _ -  - 
dr dr dr dr 
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The thermodynamic relation Tds = dh - (l /p)dp can be similarly written 

ds dh l d p  
dr  dr p dr  

T -  = - - 

Combining eqns. (6.1), (6.4) and (6.5), eliminating dpldr  and dhldr, the radial 
equilibrium equation may be obtained, 

dho ds dcx CQ d _ _  T -  = cx- + ---(rce). 
dr dr dr r dr 

If the stagnation enthalpy ho and entropy s remain the same at all radii, dho/dr = 
ds/dr = 0, eqn. (6.6) becomes, 

dcx CQ d 
cx- + --(rc~) = 0. 

dr r dr  
(6.6a) 

Equation (6.6a) will hold for the flow between the rows of an adiabatic, reversible 
(ideal) turbomachine in which rotor rows either deliver or receive equal work at 
all radii. Now if the flow is incompressible, instead of eqn. (6.3) use po = p + 
kp(c,’ + c i )  to obtain 

1 dpo 1 d p  dcx dce + Cx- + ce-. 

Combining eqns. (6.1) and (6.7), then 

1 dpo dcx CQ d -- - - cx- + --(rce). 
P dr dr r dr 

-- - -_ - 
p dr p dr dr dr (6.7) 

Equation (6.8) clearly reduces to eqn. (6.6a) in a turbomachine in which equal work 
is delivered at all radii and the total pressure losses across a row are uniform with 
radius. 

Equation (6.6a) may be applied to two sorts of problem as follows: (i) the design 
(or indirect) problem - in which the tangential velocity distribution is specified and 
the axial velocity variation is found, or (ii) the direct problem - in which the swirl 
angle distribution is specified, the axial and tangential velocities being determined. 

The indirect problem 

1. Free-vortex flow 

This is a flow where the product of radius and tangential velocity remains constant 
(Le. rco = K ,  a constant). The term “vortex-free’’ might be more appropriate as the 
vorticity (to be precise we mean axial vorticity component) is then zero. 

Consider an element of an ideal inviscid fluid rotating about some fixed axis, 
as indicated in Figure. 6.3. The circulation r, is defined as the line integral of 
velocity around a curve enclosing an area A,  or r = $ cds. The Vorticity at a point 
is defined as, the limiting value of circulation 6 r  divided by area 6A, as 6A becomes 
vanishingly small. Thus vorticity, o = dr/dA. 
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FIG. 6.3. Circulation about an element of fluid. 

For the element shown in Figure 6.3, cr = 0 and 

d r  = (ce + dce)(r + dr)dQ - cord@ 

= (2  + :) rdQdr 

ignoring the product of small terms. Thus, o = dr/dA = (l/r)d(rcg)/dr. If the 
vorticity is zero, d(rce)/dr is also zero and, therefore, rce is constant with radius. 

Putting rce = constant in eqn. (6.6a), then dc,/dr = 0 and so cx = a constant. 
This information can be applied to the incompressible flow through a free-vortex 
compressor or turbine stage, enabling the radial variation in flow angles, reaction 
and work to be found. 

Compressor stage. Consider the case of a compressor stage in which reel = K1 
before the rotor and rcm = K2 after the rotor, where K 1, K2 are constants. The work 
done by the rotor on unit mass of fluid is 

AW = U(ce2 - eel) = Clr(K2/r - Kl/r) 

= constant. 

Thus, the work done is equal at all radii. 
The relative flow angles (see Figure 5.2) entering and leaving the rotor are 

U Clr - Kl/ r  
CX CX 

U Qr - K2/r 
CX C X  

in which c,l = cx2 = c, for incompressible flow. 

tanp1=-- tana1= 

t anp2=- - tana2=  

In Chapter 5, reaction in an axial compressor is defined by 

static enthalpy rise in the rotor 
static enthalpy rise in the stage' 

R =  
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For a normal stage (a1 = a3) with c, constant across the stage, the reaction was 
shown to be 

CX 

2 u  R = -(tan 81 + tan 82). (5.1 1) 

Substituting values of tan81 and tan82 into eqn. (5.11), the reaction becomes 

k 
r 2  ' 

R = 1 - -  (6.9) 

where 

k = ( K I  + K2)/(2Q). 

It will be clear that as k is positive, the reaction increases from root to tip. Likewise, 
from eqn. (6.1) we observe that as ci/r is always positive (excepting cg = 0), so 
static pressure increases from root to tip. For the free-vortex flow rcg  = K ,  the 
static pressure variation is obviously p / p  = constant - K/(2r2) upon integrating 
eqn. (6.1). 

EXAMPLE 6.1. An axial flow compressor stage is designed to give free-vortex 
tangential velocity distributions for all radii before and after the rotor blade row. 
The tip diameter is constant and 1.0m; the hub diameter is 0.9m and constant for 
the stage. At the rotor tip the flow angles are as follows 

Absolute inlet angle, a1 = 30deg. 
Relative inlet angle, 81 = 60deg. 
Absolute outlet angle, a2 = 60deg. 
Relative outlet angle, 8 2  = 30deg. 

Determine, 

(i) the axial velocity; 
(ii) the mass flow rate; 

(iii) the power absorbed by the stage; 
(iv) the flow angles at the hub; 
(v) the reaction ratio of the stage at the hub; 

given that the rotational speed of the rotor is 6000rev/min and the gas density is 
1.5 kg/m3 which can be assumed constant for the stage. It can be further assumed 
that stagnation enthalpy and entropy are constant before and after the rotor row for 
the purpose of simplifying the calculations. 

Solution. (i) The rotational speed, Q = 21rN/60 = 628.4rads. 
Therefore blade tip speed, U, = firt = 3 14.2 m/s and blade speed at hub, uh = 

From the velocity diagram for the stage (e.g. Figure 5.2), the blade tip speed is 
Qrh = 2 8 2 . 5 d ~ .  

Ut = ~,(tan60" + tm30") = ~ ~ ( 4 3  + 1/43) .  

Therefore c, = 136m/s, constant at all radii by eqn. (6.6a). 
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(ii) The rate of mass flow, f i  = n(r," - ri)pc, 

= ~ ( 0 . 5 ~  -8.45*)1.5 x 136 = 30.4kg/s. 

(iii) The power absorbed by the stage, 

W c  = fiUt(Cm - C e l t )  

= mU,c,(tana2f - tana1,) 

= 30.4 x 314.2 x 136(43 - 1/43)  

= 1.5MW. 

(iv) At inlet to the rotor tip, 

C e l t  = C,  t a n ~ l  = 136/J3 = 78.6 d s .  

The absolute flow is a free-vortex, r c g  = constant. 
Therefore C e l h  = c o l f ( r t / r h )  = 78.6 x 0.5/0.45 = 87.3 d s .  
At outlet to the rotor tip, 

car = C, tana2 = 136 x 4 3  = 2 3 5 . 6 d ~ .  

Therefore Ce;?h = c m t ( r f / r h )  = 235.6 x 0.5/0.45 = 262ds .  
The flow angles at the hub are, 

tanal = c e l h / c x  = 87.3/136 = 0.642, 

tanp1 = U h / C x  - 

tanQ2 = c @ 2 h / c ,  = 2621136 = 1.928, 

tan82 = U h / C ,  - tana2 = 0.152. 

= 1.436, 

Thus a1 = 32.75", p1 = 55.15", a2 = 62.6, 8 2  = 8.64" at the hub. 
(v) The reaction at the hub can be found by several methods. With eqn. (6.9) 

R = 1 - k / r2  

and noticing that, from symmetry of the velocity triangles, 

R = 0.5 at r = r , ,  then k = 0 3 ; .  

Therefore R h  = 1 - 0.5(0.5/0.45)2 = 0.382. 

The velocity triangles will be asymmetric and similar to those in Figure 5.4(b). 
The simplicity of the flow under free-vortex conditions is, superficially, very 

attractive to the designer and many compressors have been designed to conform to 
this flow. (Constant (1945, 1953) may be consulted for an account of early British 
compressor design methods.) Figure 6.4 illustrates the variation of fluid angles and 
Mach numbers of a typical compressor stage designed for free-vortex flow. Charac- 
teristic of this flow are the large fluid deflections near the inner wall and high Mach 
numbers near the outer wall, both effects being deleterious to efficient performance. 
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FIG. 6.4. Variation of fluid angles and Mach numbers of a free-vortex compressor stage 
with radius (adapted from Howell 1945). 

A further serious disadvantage is the large amount of rotor twist from root to tip 
which adds to the expense of blade manufacture. 

Many types of vortex design have been proposed to overcome some of the disad- 
vantages set by free-vortex design and several of these are compared by Horlock 
(1958). Radial equilibrium solutions for the work and axial velocity distributions of 
some of these vortex flows in an axial compressor stage are given below. 

2. Forced vortex 

This is sometimes called “solid-body” rotation because C8 varies directly with r .  

With eqn. (6.6a) 
At entry to the rotor assume hol is constant and c8l = K l r .  

!! (5) = - K 1 - ( K l r 2 )  d 
dr dr 

and, after integrating, 

c,l = constant - 2 K : r 2 .  (6.10) 

After the rotor c& = K2r and b2 - bl = U(ce2 - eel) = Q(K2 - K l ) r 2 .  Thus, as 
the work distribution is non-uniform, the radial equilibrium equation in the form 
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eqn. (6.6) is required for the flow after the rotor. 

d 
dr dr dr  
- = 2i2(K2 - Kl)r = - ($) + K2-(K2r2). d h o 2  

After rearranging and integrating 

c,2 = constant - 2[Kz  - Q(K2 - K1)lr2. (6.1 1) 

The constants of integration in eqns. (6.10) and (6.11) can be found from the conti- 
nuity of mass flow, i.e. 

= lhr* c,lrdr = lhrt cx2rdr, 
2nP 

which applies to the assumed incompressible flow. 

3. General whirl distribution 

The tangential velocity distribution is given by 

c ~ 1  = urn - b/r (before rotor), 

cm = urn + b/r (after rotor). 

(6.12) 

(6.13a) 

(6.13b) 

The distribution of work for all values of the index n is constant with radius so that 
if lQl is uniform, h is also uniform with radius. From eqns. (6.13) 

AW = lQ2 - hol = U(c02 - C O ~ )  = 2bQ. (6.14) 

Selecting different values of n gives several of the tangential velocity distributions 
commonly used in compressor design. With n = 0, or zero power blading, it leads 
to the so-called “exponential” type of stage design (included as an exercise at the 
end of this chapter). With n = 1, or $rst power blading, the stage design is called 
(incorrectly, as it transpires later) “constant reaction”. 

First power stage design. For a given stage temperature rise the discussion in 
Chapter 5 would suggest the choice of 50% reaction at all radii for the highest 
stage efficiency. With swirl velocity distributions 

cB1 = ar - b/r, c02 = ar + b/r (6.15) 

before and after the rotor respectively, and rewriting the expression for reaction, 
eqn. (5.11), as 

(6.16) CX 

2u 
R = 1 - -(tanal + tanaz), 

then, using eqn. (6.15), 

R = 1 - a/S2 = constant. (6.17) 

Implicit in eqn. (6.16) is the assumption that the axial velocity across the rotor 
remains constant which, of course, is tantamount to ignoring radial equilibrium. 
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The axial velocity must change in crossing the rotor row so that eqn. (6.17) is only 
a crude approximation at the best. Just how crude is this approximation will be 
indicated below. 

Assuming constant stagnation enthalpy at entry to the stage, integrating 
eqn. (6.6a), the axial velocity distributions before and after the rotor are 

(6.18a) 

(6.18b) 

2 cxl = constant - 4 4  $zr2 - b In r), 

cx2 2 = constant - 4 4  iar 2 + b In r), 

More conveniently, these expressions can be written non-dimensionally as, 

(6.19a) 

(6.19b) 

in which U t  = Rr, is the tip blade speed. The constants A I ,  A2 are not entirely 
arbitrary as the continuity equation, eqn. (6.12), must be satisfied. 

EXAMPLE 6.2. As an illustration consider a single stage of an axial-flow air 
compressor of hub-tip ratio 0.4 with a nominally constant reaction (i.e. according to 
eqn. (6.17)) of 50%. Assuming incompressible, inviscid flow, a blade tip speed of 
300 d s ,  a blade tip diameter of 0.6 m, and a stagnation temperature rise of 16.1 "C, 
determine the radial equilibrium values of axial velocity before and after the rotor. 
The axial velocity far upstream of the rotor at the casing is 12Ods. Take C ,  for 
air as 1.005 kJ/(kg"C). 

Solution: The constants in eqn. (6.19) can be easily determined. From eqn. (6.17) 

2u/R = 2(1 - R )  = 1.0. 

Combining eqns. (6.14) and (6.17) 

C ,  . AT0 - - A W  - b _ -  
ur,' 2R2(1 - R)r,' 2U,2(1 - R )  

1005 x 16.1 
3002 

= 0.18. - - 

The inlet axial velocity distribution is completely specified and the constant A1 
solved. From eqn. (6.19a) 

At r = r,, cxl /U,  = 0.4 and hence A1 = 0.66. 
Although an explicit solution for A2 can be worked out from eqn. (6.19b) and 

eqn. (6.12), it is far speedier to use a semigraphical procedure. For an arbitrarily 
selected value of A*, the distribution of cX2/Ur is known. Values of ( r / r , )  . (cX2/Ut)  
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FIG. 6.5. Solution of exit axial-velocity profile for a first power stage. 

and ( r / r t ) .  ( c x l / U t )  are plotted against r/rt  and the areas under these curves 
compared. New values of A2 are then chosen until eqn. (6.12) is satisfied. This 
procedure is quite rapid and normally requires only two or three attempts to give 
a satisfactory solution. Figure 6.5 shows the final solution of cX2/Ut obtained after 
three attempts. The solution is, 

( g ) 2 = 0 . 5 6 -  [i (k)2+0.1Sln(:)]. 

It is illuminating to calculate the actual variation in reaction taking account of 
the change in axial velocity. From eqn. (5.10~) the true reaction across a normal 
stage is, 

w: - w; 
2 U ( m  - eel)' 

R’ = 

From the velocity triangles, Figure 5.2, 
2 2  w: - W ;  = (we1 + we2)(wei - ~ 0 2 )  + (cX1 - ~ ~ 2 ) .  

As we1 + we2 = 2U - (cel + c02> and wq1 - wq2 = c02 - eel, 

2 u  2U(ce2 - cei ). 

2 2  cxl - cx2 cO1 f c62 + R ’ = l -  

For the first power swirl distribution, eqn. (6.15), 
2 2  R ’ = 1 - - +  a Cxl  - cx2 

52 452b ’ 
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From the radial equilibrium solution in eqns. (6.19), after some rearrangement, 

where 
AW C ,  AT0 $ - - -  - ' -  U: Q2r; . 

In the above example, 1 - a/Q = k, $t = 0.18 

R' = 0.778 + ln(r/rt). 

The true reaction variation is shown in Figure 6.5 and it is evident that eqn. (6.17) 
is invalid as a result of axial velocity changes. 

The direct problem 

The flow angle variation is specified in the direct problem and the radial equi- 
librium equation enables the solution of c, and ce to be found. The general radial 
equilibrium equation can be written in the form 

&Q ds ci dc 
dr  dr  r dr 
_ -  T-  = - +c- 

c2sin2a dc + C- 
r d r '  

-- - 

as cg = csina.  
If both %/dr and ds/dr are zero, eqn. (6.20) integrated gives 

dr 
log c = - sin2 a- + constant J r  

or, if c = c, at r = r,, then 

- C =exp(-Jisin2a:). 
Cm 

If the flow angle a is held constant, eqn. (6.21) simplifies still further, 

-sin2a _ -  --  
Cm Cxm C h  

(6.20) 

(6.21) 

(6.22) 

The vortex distribution represented by eqn. (6.22) is frequently employed in practice 
as untwisted blades are relatively simple to manufacture. 

The general solution of eqn. (6.20) can be found by introducing a suitable inre- 
grating factor into the equation. Multiplying throughout by exp[2 sin2 udr/r] it 
follows that 
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After integrating and inserting the limit c = c, at r = r,, then 

c2 exp b I r  sin2 adr/r] - cf exp [z Irrn sin2 adr/r] 

= 2 6 (2 - T $ )  exp [2 / sin2 adr/r] dr. (6.23) 

Particular solutions of eqn. (6.23) can be readily obtained for simple radial distri- 
butions of a, ho and s. Two solutions are considered here in which both 2dh~/dr  = 
kci/rm and ds/dr = 0, k being an arbitrary constant 

(i) Let a = 2 sin2 a. Then exp[2 sin2 adrlr]  = P and, hence 

(;)2 (;)O = + l+a [(;)'+a- 11 

Equation (6.22) is obtained immediately from this result with k = 0. 
(ii) Let br/rm = 2sin2a. Then, 

2 
C exp(br/r,) - c i  exp(b) = (kcf/r,) 

and eventually, 

(6.23a) 

(6.23b) 

Compressible flow through a fixed blade row 

In the blade rows of high-performance gas turbines, fluid velocities approaching, 
or even exceeding, the speed of sound are quite normal and compressibility effects 
may no longer be ignored. A simple analysis is outlined below for the inviscid flow 
of a perfect gas through afired row of blades which, nevertheless, can be extended 
to the flow through moving blade rows. 

The radial equilibrium equation, eqn. (6.6), applies to compressible flow as well 
as incompressible flow. With constant stagnation enthalpy and constant entropy, a 
free-vortex flow therefore implies uniform axial velocity downstream of a blade row, 
regardless of any density changes incurred in passing through the blade row. In fact, 
for high-speed flows there must be a density change in the blade row which implies 
a streamline shift as shown in Figure 6.1. This may be illustrated by considering 
the free-vortex flow of a perfect gas as follows. In radial equilibrium, 

I d p  c i  K 2  
p dr r r3 

- - withcg= K/r. 

For reversible adiabatic flow of a perfect gas, p = Ep'fY, where E is 
constant. Thus 

J p-'lydp = E K ~  r-3dr + constant, J 
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therefore 

[ 
( y2; 1)  Ert2] ’’(’-’) 

p = constant- - - (6.24) 

For this free-vortex flow the pressure, and therefore the density also, must be larger at 
the casing than at the hub. The density difference from hub to tip may be appreciable 
in a high-velocity, high-swirl angle flow. If the fluid is without swirl at entry to the 
blades the density will be uniform. Therefore, from continuity of mass flow there 
must be a redistribution of fluid in its passage across the blade row to compensate 
for the changes in density. Thus, for this blade row, the continuity equation is, 

m = plAlc,l = 2~rc,2 lhr‘ mrdr, 

where p2 is the density of the swirling flow, obtainable from eqn. (6.24). 

(6.25) 

Constant specific mass flow 

Although there appears to be no evidence that the redistribution of the flow across 
blade rows is a source of inefficiency, it has been suggested by Horlock (1966) that 
the radial distribution of Cg for each blade row is chosen so that the product of axial 
velocity and density is constant with radius, i.e. 

(6.26) 

where subscript m denotes conditions at r = r,. This constant specific m a s s ~ o w  
design is the logical choice when radial equilibrium theory is applied to compressible 
flows as the assumption that cr = 0 is then likely to be realised. 

Solutions may be determined by means of a simple numerical procedure and, as 
an illustration of one method, a turbine stage is considered here. It is convenient 
to assume that the stagnation enthalpy is uniform at nozzle entry, the entropy is 
constant throughout the stage and the fluid is a perfect gas. At nozzle exit under 
these conditions the equation of radial equilibrium, eqn. (6.20), can be written as 

driz/dA = pc, = pc cos a! = pmc, cos a, = constant 

dclc = - sin2 adrlr .  (6.27) 

From eqn. (6.1), nothing that at constant entropy the acoustic velocity a = 
J(dP/dP),  

a 2 d p  c2 
p dr r 

:_ dplp  = M 2  sin2 a!dr/r 

where the flow Mach number 

(6.28) 

M = c/a = c/ , / (yRT).  (6.28a) 

The isentropic relation between temperature and density for a perfect gas is 

T / T m  = (P/Pm)v-l 
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which after logarithmic differentiation gives 

dT/T = (v - l)dp/p. (6.29) 

Using the above set of equations the procedure for determining the nozzle exit 
flow is as follows. Starting at r = r,, values of c,, am, T ,  and p, are assumed to 
be known. For a small finite interval Ar, the changes in velocity Ac, density Ap,  
and temperature AT can be computed using eqns. (6.27), (6.28) and (6.29) respec- 
tively. Hence, at the new radius r = r, + Ar the velocity c = c, + Ac, the density 
p = p ,  + A p  and temperature T = T ,  + AT are obtained. The corresponding flow 
angle a and Mach number M can now be determined from eqns. (6.26) and (6.28a) 
respectively. Thus, all parameters of the problem are known at radius r = r, + Ar.  
This procedure is repeated for further increments in radius to the casing and again 
from the mean radius to the hub. 

Figure 6.6 shows the distributions of flow angle and Mach number computed 
with this procedure for a turbine nozzle blade row of 0.6 hubhip radius ratio. The 
input data used was a, = 70.4deg and M = 0.907 at the mean radius. Air was 
assumed at a stagnation pressure of 859 H a  and a stagnation temperature of 465 K. 
A remarkable feature of these results is the almost uniform swirl angle which is 
obtained. 

With the nozzle exit flow fully determined the flow at rotor outlet can now be 
computed by a similar procedure. The procedure is a little more complicated than 
that for the nozzle row because the specific work done by the rotor is not uniform 
with radius. Across the rotor, using the notation of Chapter 4, 

ho2 - h03 = U(ce2 + ~ 0 3 )  (6.30) 

FIG. 6.6. Flow angle and Mach number distributions with radius of a nozzle blade row 
designed for constant specific mass flow. 
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and hence the gradient in stagnation enthalpy after the rotor is 

dh,3/dr = -d[U(ce2 + c03)]/dr = -d(Uc~:!)/dr - d(Uc3 sin q ) / d r .  

After differentiating the last term, 

-dh, = d( Uc02) + U(c sin adr / r  + sin adc + c cos ada )  (6.30a) 

the subscript 3 having now been dropped. 
From eqn. (6.20) the radial equilibrium equation applied to the rotor exit flow is 

dh, = c2 sin2 ad r l r  + cdc. (6.30b) 

After logarithmic differentiation of pc cos a = constant, 

dp/p + dc/c = tan a da. (6.31) 

Eliminating successively dh, between eqns. (6.30a) and (6.30b), dp/p between 
eqns. (6.28) and (6.31) and finally da from the resulting equations gives 

(6.32) 

where M ,  = M cos a = c cos a/J(yRT) and the static temperature 

T = T3 = To3 - c:/(2CP) 

= ~ 0 2  - [ ~ ( c e 2  + ce3) + ;c:l/cp. (6.33) 

The verification of eqn. (6.32) is left as an exercise for the diligent student. 
Provided that the exit flow angle a3 at r = r, and the mean rotor blade speeds 

are specified, the velocity distribution, etc., at rotor exit can be readily computed 
from these equations. 

Off-design performance of a stage 

A turbine stage is considered here although, with some minor modifications, the 

Assuming the flow is at constant entropy, apply the radial equilibrium equation, 
analysis can be made applicable to a compressor stage. 

eqn. (6.6), to the flow on both sides of the rotor, then 

Therefore 

Substituting ce3 = cx3 tan& - R r  into the above equation, then, after some simpli- 
fication, 

d 
dr r dr  

de13 cx3 = cx3- + - tanp3-(rc,3 tanB3) 

- 2QcX3 tan 83. (6.34) 
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In a particular problem the quantities cx2, cm, 83 are known functions of radius 
and S2 can be specified. Equation (6.34) is thus a first order differential equation in 
which cx3 is unknown and may best be solved, in the general case, by numerical 
iteration. This procedure requires a guessed value of cx3 at the hub and, by applying 
eqn. (6.34) to a small interval of radius Ar, a new value of cx3 at radius r h  + Ar is 
found. By repeating this calculation for successive increments of radius a complete 
velocity profile cx3 can be determined. Using the continuity relation 

lhr' cx3rdr = [ cx2rdr, 

this initial velocity distribution can be integrated and a new, more accurate, estimate 
of cx3 at the hub then found. Using this value of cx3 the step-by-step procedure is 
repeated as described and again checked by continuity. This iterative process is 
normally rapidly convergent and, in most cases, three cycles of the calculation 
enables a sufficiently accurate exit velocity profile to be found. 

The off-design performance may be obtained by making the approximation that 
the rotor relative exit angle 83 and the nozzle exit angle a 2  remain constant at a 
particular radius with a change in mass flow. This approximation is not unrealistic 
as cascade data (see Chapter 3) suggest that fluid angles at outlet from a blade row 
alter very little with change in incidence up to the stall point. 

Although any type of flow through a stage may be successfully treated using this 
method, rather more elegant solutions in closed form can be obtained for a few 
special cases. One such case is outlined below for a free-vortex turbine stage whilst 
other cases are already covered by eqns. (6.21)-(6.23). 

Free-vortex turbine stage 

Suppose, for simplicity, a free-vortex stage is considered where, at the design 
point, the flow at rotor exit is completely axial (i.e. without swirl). At stage entry 
the flow is again supposed completely axial and of constant stagnation enthalpy hl. 
Free-vortex conditions prevail at entry to the rotor, rca = rc,2 tanaz = constant. 
The problem is to find how the axial velocity distribution at rotor exit varies as the 
mass flow is altered away from the design value. 

At off-design conditions the relative rotor exit angle 8 3  is assumed to remain 
equal to the value at the design mass flow (* denotes design conditions). Thus, 
refemng to the velocity triangles in Figure 6.7, at off-design conditions the swirl 
velocity c03 is evidently non-zero, 

~ 0 3  = cx3 tan83 - U 

= cx3 tan8; - fir. 

At the design condition, cG3 = 0 and so 

c* x3 tang; = fir. 

Combining eqns. (6.35) and (6.36) 

(6.35) 

(6.36) 

(6.37) 



Three-dimensional Flows in Axial Turbomachines 1 85 

FIG. 6.7. Design and off-design velocity triangles for a free-vortex turbine stage. 

The radial equilibrium equation at rotor outlet gives 

- = cx3- + --(rc03) = -Q-(rc03), (6.38) 

after combining with eqn. (6.33), nothing that dh~2/dr = 0 and that (d/dr)(rca) = 0 
at all mass flows. From eqn. (6.37), 

dCx3 c03 d d 
dr  dr  r dr  dr  

dh03 

c03 cx3 Q +  - = Q-, re03 = Qr2 (2 - I ) ,  

which when substituted into eqn. (6.38) gives, 

- - - - [  dr  c:3 (2; ) cx3 dr  ] 

r c:3 

r2 dcX3 
''13 - Q2 2r ~ - 1 +T- . 

After rearranging, 

-d(Q2r2) 
(e:: + Q2r*)' 

(6.39) dcx3 - - 
cx3 - C:~ 

Equation (6.39) is immediately integrated in the form 

(6.40) 

where c,3 = cx3, at r = r,. Equation (6.40) is more conveniently expressed in a 
nondimensional form by introducing flow coefficients 9 = cX3/Um, 9* = c : ~ / U ,  

c,3 - c;3 - c:f + Q 2 r i  
cX3, - cz3 e:,' + Q2r2 

- 
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FIG. 6.8. Off-design rotor exit flow coefficients. 

and @,,, = ~ ~ 3 , , , / l J , , , .  Thus, 

(6.40a) 

If r, is the mean radius then cX3,,, + c,l and, therefore, @,,, provides an approximate 
measure of the overall flow coefficient for the machine (N.B. cXl is uniform). 

The results of this analysis are shown in Figure 6.8 for a representative design 
flow coefficient @* = 0.8 at several different off-design flow coefficients @,,,, with 
r/rm = 0.8 at the hub and r/rm = 1.2 at the tip. It is apparent for values of @,,, < @*, 
that cx3 increases from hub to tip; conversely for @, > @*, cX3 decreases towards 
the tip. 

The foregoing analysis is only a special case of the more general analysis of free- 
vortex turbine and compressor flows (Horlock and Dixon 1966) in which rotor exit 
swirl, rci3 is constant (at design conditions), is included. However, from Horlock 
and Dixon, it is quite clear that even for fairly large values of CY;,,,, the value of @ 
is little different from the value found when CY: = 0, all other factors being equal. 
In Figure 6.8 values of @ are shown when CY;,,, = 3 1.4" at @,,, = 0.4(@* = 0.8) for 
comparison with the results obtained when a; = 0. 

It should be noted that the rotor efflux flow at off-design conditions is not a free 
vortex. 

@ / @ - I  - @*2 + 1 - 
@ m / P  - 1 @*2 + (r/rrn)2 ' 

Actuator disc approach 

In the radial equilibrium design method it was assumed that all radial motion 
took place within the blade row. However, in most turbomachines of low hub-tip 
ratio, appreciable radial velocities can be measured outside the blade row. Figure 6.9, 
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FIG. 6.9. Variation of the distribution in axial velocity through a row of guide vanes 
(adapted from Hawthorne and Horlock 1962). 

taken from a review paper by Hawthorne and Horlock (1 962), shows the distribution 
of the axial velocity component at various axial distances upstream and downstream 
of an isolated row of stationary inlet guide vanes. This figure clearly illustrates the 
appreciable redistribution of flow in regions outside of the blade row and that radial 
velocities must exist in these regions. For the flow through a single row of rotor 
blades, the variation in pressure (near the hub and tip) and variation in axial velocity 
(near the hub) both as functions of axial position, are shown in Figure 6.10, also 
taken from Hawthome and Horlock. Clearly, radial equilibrium is not established 
entirely within the blade row. 

A more accurate form of three-dimensional flow analysis than radial equilibrium 
theory is obtained with the ucruufor disc concept. The idea of an actuator disc is 
quite old and appears to have been first used in the theory of propellers; it has 
since evolved into a fairly sophisticated method of analysing flow problems in 
turbomachinery. To appreciate the idea of an actuator disc, imagine that the axial 
width of each blade row is shrunk while, at the same time, the space-chord ratio, 
the blade angles and overall length of machine are maintained constant. As the 
deflection through each blade row for a given incidence is, apart from Reynolds 
number and Mach number effects (cf. Chapter 3 on cascades), fixed by the cascade 
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FIG. 6.10. (a) Pressure variation in the neighbourhood of a rotating blade row. (b) Axial 
velocity at the hub in the neighbourhood of a rotating blade row (adapted from 
Hawthorne and Horlock 1962). 

geometry, a blade row of reduced width may be considered to affect the flow in 
exactly the same way as the original row. In the limit as the axial width vanishes, the 
blade row becomes, conceptually, a plane discontinuity of tangential velocity - the 
actuator disc. Note that while the tangential velocity undergoes an abrupt change in 
direction, the axial and radial velocities are continuous across the disc. 
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FIG. 6.11. The actuator disc assumption (after Horlock 1958). 

An isolated actuator disc is depicted in Figure 6.1 1 with radial equilibrium estab- 
lished at fairly large axial distances from the disc. An approximate solution to the 
velocity fields upstream and downstream of the actuator can be found in terms 
of the axial velocity distributions, far upstream and fur downstream of the disc. 
The detailed analysis exceeds the scope of this book, involving the solution of the 
equations of motion, the equation of continuity and the satisfaction of boundary 
conditions at the walls and disc. The form of the approximate solution is of consid- 
erable interest and is quoted below. 

For convenience, conditions far upstream and far downstream of the disc are 
denoted by subscripts 00 1 and 002 respectively (Figure 6.11). Actuator disc theory 
proves that at the disc (x = 0), at any given radius, the axial velocity is equal to the 
mean of the axial velocities at 001 and 002 at the same radius, or 

C d l  = C d 2  = ~ ( C X O o l +  1 CXOo2). (6.41) 

Subscripts 01 and 02 denote positions immediately upstream and downstream 
respectively of the actuator disc. Equation (6.41) is known as the mean-value rule. 

In the downstream flow field (x 2 0), the difference in axial velocity at some 
position (x, rA) to that at position (x = 00, rA) is conceived as a velocity perturbation. 
Refemng to Figure 6.12, the axial velocity perturbation at the disc (x = 0, rA) is 

FIG. 6.12. Variation in axial velocity with axial distance from the actuator disc. 
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denoted by A0 and at position (x ,  rA) by A. The important result of actuator disc 
theory is that velocity perturbations decay exponentially away from the disc. This 
is also true for the upstream flow field (x  5 0). The result obtained for the decay 
rate is 

A/Ao = 1 - exp[rxx/(r, - rdl ,  (6.42) 

where the minus and plus signs above apply to the flow regions x 2 0 and 
x 5 0 respectively. Equation (6.42) is often called the settling-rate rule. Since 
cxl = cdl + A, cx2 = cd2 - A and noting that A0 = i ( c x m ~  - cxm2), eqns. (6.41) 
and (6.42) combine to give, 

(6.43a) 

(6.43b) 

At the disc, x = 0, eqns. (6.43) reduce to eqn. (6.41). It is of particular interest to 
note, in Figures 6.9 and 6.10, how closely isolated actuator disc theory compares 
with experimentally derived results. 

1 
Cxl = Cxml - ~ ( c x m l  - cxm2)exP[~x/(rr - rh)l, 

1 
c12 = cxm2 + T(cxm1 - Cxm2)exp[-xx/(r1 - rh)]. 

Blade row interaction effects 
The spacing between consecutive blade rows in axial turbomachines is usually 

sufficiently small for mutual flow interactions to occur between the rows. This 
interference may be calculated by an extension of the results obtained from isolated 
actuator disc theory. As an illustration, the simplest case of two actuator discs 
situated a distance S apart from one another is considered. The extension to the case 
of a large number of discs is given in Hawthorne and Harlock (1962). 

Consider each disc in turn as though it were in isolation. Referring to Figure 6.13, 
disc A, located at x = 0, changes the far upstream velocity cxml to cxm2 far down- 
stream. Let us suppose for simplicity that the effect of disc B, located at x = 6, 
exactly cancels the effect of disc A (i.e. the velocity far upstream of disc B is cxm2 
which changes to cx,l far downstream). Thus, for disc A in isolation, 

where 1x1 denotes modulus of x and H = r, - rh. 
For disc B in isolation, 

x 2 0, (6.45) 

(6.46) 

(6.47) 

Now the combined effect of the two discs is most easily obtained by extracting 
from the above four equations the velocity perturbations appropriate to a given 
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FIG. 6.13. Interaction between two closely spaced actuator discs. 

region and adding these to the related radial equilibrium velocity. For x 5 0, and to 
cxml the perturbation velocities from eqns. (6.44) and (6.46). 

1 
cx = C x x l  - - ( C x x l  - cxm2) 2 

{exp [Y] -exp [ -Tr Ix H - 61 I}. (6.48) 

For the region 0 5 x 2 6, 

cx = c x x 2  + - 1 (Cxml  - cxm2 1 { exp [ T] + exp [ -Tr L- "1 } . (6.49) 
2 

For the region x 2 6, 

1 
cx = Cx,l + -(Cx,1 - cx302) 2 

{exp [TI -exp [ -Tr Ix H - 61 I}. (6.50) 

Figure 6.13 indicates the variation of axial velocity when the two discs are 
regarded as isolated and when they are combined. It can be seen from the above 
equations that as the gap between these two discs is increased, so the perturba- 
tions tend to vanish. Thus in turbomachines where 6 / r ,  is fairly small ( e g  the front 
stages of aircraft axial compressors or the rear stages of condensing steam turbines), 
interference effects are strong and one can infer that the simpler radial equilibrium 
analysis is then inadequate. 

Computer-aided methods of solving the through-flow 
problem 

Although actuator disc theory has given a better understanding of the complicated 
meridional (the radial-axial plane) through-flow problem in turbomachines of simple 
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geometry and flow conditions, its application to the design of axial-flow compressors 
has been rather limited. The extensions of actuator disc theory to the solution of 
the comple? three-dimensional, compressible flows in comprLssors with varying 
hub and tip radii and non-uniform total pressure distributions were found to have 
become too unwieldy in practice. In recent years advanced computational methods 
have been successfully evolved for predicting the meridional compressible flow in 
turbomachines with flared annulus walls. 

Reviews of numerical methods used to analyse the flow in turbomachines have 
been given by Gostelow et al. (1969), Japikse (1976), Macchi (1985) and Whitfield 
and Baines (1990) among many others. The literature on computer-aided methods 
of solving flow problems is now extremely extensive and no attempt is made here 
to summarise the progress. The real flow in a turbomachine is three-dimensional, 
unsteady, viscous and is usually compressible, if not transonic or even supersonic. 
According to Macchi the solution of the full equations of motion with the actual 
boundary conditions of the turbomachine is still beyond the capabilities of the most 
powerful modem computers. The best fully three-dimensional methods available are 
still only simplifications of the real flow. 

Through-flow methods 

In any of the so-called through-$ow methods the equations of motion to be solved 
are simplified. First, the flow is taken to be steady in both the absolute and relative 
frames of reference. Secondly, outside of the blade rows the flow is assumed to 
be axisymmetric, which means that the effects of wakes from an upstream blade 
row are understood to have “mixed out” so as to give uniform circumferential 
conditions. Within the blade rows the effects of the blades themselves are modelled 
by using a passage averaging technique or an equivalent process. Clearly, with these 
major assumptions, solutions obtained with these through-flow methods can be only 
approximations to the real flow. As a step beyond this Stow (1985) has outlined the 
ways, supported by equations, of including the viscous flow effects into the flow 
calculations. 

Three of the most widely used techniques for solving through-flow problems are: 

(1) Streamline curvature, which is based on an iterative procedure, is described in 
some detail by Macchi (1985) and earlier by Smith (1966). It is the oldest and 
most widely used method for solving the through-flow problem in axial-flow 
turbomachines and has with the intrinsic capability of being able to handle 
variously shaped boundaries with ease. The method is widely used in the gas 
turbine industry. 

(2) Matrix through-flow or finite difference solutions (Marsh 1968), where computa- 
tions of the radial equilibrium flow field are made at a number of axial locations 
within each blade row as well as at the leading and trailing edges and outside 
of the blade row. An illustration of a typical computing mesh for a single blade 
row is shown in Figure 6.14. 

(3) Time-marching (Denton 1985), where the computation starts from some 
assumed flow field and the governing equations are marched forward with time. 
The method, although slow because of the large number of iterations needed to 
reach a convergent solution, can be used to solve both subsonic and supersonic 
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FIG. 6.14. Typical computational mesh for a single blade row (adapted from 
Macchi 1985). 

flow. With the present design trend towards highly loaded blade rows, which 
can include patches of supersonic flow, this design method has considerable 
merit. 

All three methods solve the same equations of fluid motion, energy and state 
for an axisymmetric flow through a turbomachine with varying hub and tip radii 
and therefore lead to the same solution. In the first method the equation for the 
meridional velocity c, = (c: + c;)l/* in a plane (at x = x,) contain terms involving 
both the slope and curvature of the meridional streamlines which are estimated by 
using a polynominal curve-fitting procedure through points of equal stream function 
on neighbouring planes at (x, - dx) and (x, + dx). The major source of difficulty 
is in accurately estimating the curvature of the streamlines. In the second method a 
grid of calculating points is formed on which the stream function is expressed as a 
quasi-linear equation. A set of corresponding finite difference equations are formed 
which are then solved at all mesh points of the grid. A more detailed description of 
these methods is rather beyond the scope and intention of the present text. 

Secondary flows 

No account of three-dimensional motion in axial turbomachines would be 
complete without giving, at least, a brief description of secondary flow. When a 
fluid particle possessing rotation is turned (e.g. by a cascade) its axis of rotation is 
deflected in a manner analogous to the motion of a gyroscope, i.e. in a direction 
perpendicular to the direction of turning. The result of turning the rotation (or 
vorticity) vector is the formation of seconduryjows. The phenomenon must occur 
to some degree in all turbomachines but is particularly in evidence in axial-flow 
compressors because of the thick boundary layers on the annulus walls. This case 
has been discussed in some detail by Horlock (1958), Preston (1953), Carter (1948) 
and many other writers. 
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FIG. 6.15. Secondary vorticity produced by a row of guide vanes. 

Consider the flow at inlet to the guide vanes of a compressor to be completely 
axial and with a velocity profile as illustrated in Figure 6.15. This velocity profile 
is non-uniform as a result of friction between the fluid and the wall; the vorticity 
of this boundary layer is normal to the approach velocity c1 and of magnitude 

(6.51) dc 1 

dz 
0 1  = -, 

where z is distance from the wall. 
The direction of 01 follows from the right-hand screw rule and it will be observed 

that w1 is in opposite directions on the two annulus walls. This vector is turned by 
the cascade, thereby generating secondary vorticio parallel to the outlet stream 
direction. If the deflection angle E is not large, the magnitude of the secondary 
vorticity w, is, approximately, 

(6.52) 

A swirling motion of the cascade exit flow is associated with the vorticity w,, as 
shown in Figure 6.16, which is in opposite directions for the two wall boundary 
layers. This secondary flow will be the integrated effect of the distribution of 
secondary vorticity along the blade length. 

Now if the variation of c1 with z is known or can be predicted, then the distri- 
bution of w, along the blade can be found using eqn. (6.52). By considering the 
secondary flow to be small perturbation of the two-dimensional flow from the vanes, 
the flow angle distribution can be calculated using a series solution developed by 
Hawthorne (1955). The actual analysis lies outside the scope (and purpose) of this 
book, however. Experiments on cascade show excellent agreement with these calcu- 
lations provided there are but small viscous effects and no flow separations. Such 
a comparison has been given by Horlock (1963) and a typical result is shown in 
Figure 6.17. It is clear that the flow is overturned near the walls and underturned 

dCl 
dz 

w, = - 2 E - .  
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FIG. 6.1 6. Secondary flows at exit from a blade passage (viewed in upstream direction). 

FIG. 6.17. Exit air angle from inlet guide vanes (adapted from Horlock 1963). 

some distance away from the walls. It is known that this overturning is a source of 
inefficiency in compressors as it promotes stalling at the blade extremities. 
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Problems 
1. Derive the radial equilibrium equation for an incompressible fluid flowing with axisym- 

metric swirl through an annular duct. 
Air leaves the inlet guide vanes of an axial flow compressor in radial equilibrium and 

with a free-vortex tangenital velocity distribution. The absolute static pressure and static 
temperature at the hub, radius 0.3m, are 94.5kPa and 293K respectively. At the casing, 
radius 0.4 m, the absolute static pressure is 96.5 kPa. Calculate the flow angles at exit from 
the vanes at the hub and casing when the inlet absolute stagnation pressure is 101.3kPa. 
Assume the fluid to be inviscid and incompressible. (Take R = 0.287 kJ/(kg"C) for air.). 

2. A gas turbine stage has an initial absolute pressure of 350kPa and a temperature 
of 565°C with negligible initial velocity. At the mean radius, 0.36m, conditions are as 
follows: 

Nozzle exit flow angle 
Nozzle exit absolute static pressure 

68 deg 
207 kPa 

Stage reaction 0.2 

Determine the flow coefficient and stage loading factor at the mean radius and the reaction 
at the hub, radius 0.31 m, at the design speed of 8000rev/min, given that stage is to have a 
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free vortex swirl at this speed. You may assume that losses are absent. Comment upon the 
results you obtain. 

(Take C,  = 1.148kJ(kg0C) and y = 1.33.) 

3. Gas enters the nozzles of an axial flow turbine stage with uniform total pressure at a 
uniform velocity c1 in the axial direction and leaves the nozzles at a constant flow angle a2 
to the axial direction. The absolute flow leaving the rotor c3 is completely axial at all radii. 

Using radial equilibrium theory and assuming no losses in total pressure show that 

where U, is the mean blade speed, 
cBm2 is the tangential velocity component at nozzle exit at the mean radius r = r,. 

(Note: The approximate c3 = c ,  at r = r, is used to derive the above expression.) 
4. Gas leaves an untwisted turbine nozzle at an angle LY to the axial direction and in radial 

equilibrium. Show that the variation in axial velocity from root to tip, assuming total pressure 
is constant, is given by 

rsin* 
LY =constant. 

Determine the axial velocity at a radius of 0.6 m when the axial velocity is 100 m / s  at a 

5. The flow at the entrance and exit of an axial-flow compressor rotor is in radial equilib- 
radius of 0.3 m. The outlet angle LY is 45 deg. 

rium. The distributions of the tangential components of absolute velocity with radius are: 

cel = ar - b/r ,  before the rotor, 

C Q ~  = ar + b/r ,  after the rotor, 

where a and b are constants. What is the variation of work done with radius? Deduce expres- 
sions for the axial velocity distributions before and after the rotor, assuming incompressible 
flow theory and that the radial gradient of stagnation pressure is zero. 

At the mean radius, r = 0.3 m, the stage loading coefficient, flr = A W j U ?  is 0.3, the 
reaction ratio is 0.5 and the mean axial velocity is 150 m / s .  The rotor speed is 7640 rev/min. 
Determine the rotor flow inlet and outlet angles at a radius of 0.24m given that the hub-tip 
ratio is 0.5. Assume that at the mean radius the axial velocity remained unchanged ( c , ~  = c,2 

at r = 0.3m). 
(Note: A W  is the specific work and U, the blade tip speed.) 

6. An axial-flow turbine stage is to be designed for free-vortex conditions at exit from 
the nozzle row and for zero swirl at exit from the rotor. The gas entering the stage has a 
stagnation temperature of 1000 K, the mass flow rate is 32 kg/s, the root and tip diameters 
are 0.56 m and 0.76 m respectively, and the rotor speed is 8000 rev/min. At the rotor tip the 
stage reaction is 50% and the axial velocity is constant at 183ds .  The velocity of the gas 
entering the stage is equal to that leaving. 

(i) the maximum velocity leaving the nozzles; 
(ii) the maximum absolute Mach number in the stage; 

(iii) the root section reaction; 
(iv) the power output of the stage; 
(v) the stagnation and static temperatures at stage exit. 
(Take R = 0.287 kJ/(kg"C) and C ,  = 1.147 H/(kg"C).) 

Determine: 
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7. The rotor blades of an axial-flow turbine stage are l00mm long and are designed to 
receive gas at an incidence of 3deg from a nozzle row. A free-vortex whirl distribution is 
to be maintained between nozzle exit and rotor entry. At rotor exit the absolute velocity is 
150 m/s in the axial direction at all radii. The deviation is 5 deg for the rotor blades and zero 
for the nozzle blades at all radii. At the hub, radius 200mm, the conditions are as follows: 

Nozzle outlet angle 70 deg 
Rotor blade speed 180 m/s 
Gas speed at nozzle exit 450m/s 

Assuming that the axial velocity of the gas is constant across the stage, determine 

(i) the nozzle outlet angle at the tip; 
(ii) the rotor blade inlet angles at hub and tip; 

(iii) the rotor blade outlet angles at hub and tip; 
(iv) the degree of reaction at root and tip. 

Why is it essential to have a positive reaction in a turbine stage? 
8. The rotor and stator of an isolated stage in an axial-flow turbomachine are to be repre- 

sented by two actuator discs located at axial positions x = 0 and x = S respectively. The 
hub and tip diameters are constant and the hub-tip radius ratio r h / r r  is 0.5. The rotor disc 
considered on its own has an axial velocity of 100 m/s far upstream and 150 m / s  downstream 
at a constant radius r = 0.75,. The stator disc in isolation has an axial velocity of 1 5 O d s  
far upstream and 1OOm/s far downstream at radius r = 0.75rr. Calculate and plot the axial 
velocity variation between -0.5 < x / r t  < 0.6 at the given radius for each actuator disc in 
isolation and for the combined discs when 

(i) 6 = O.lrr, (ii) 6 = 0.25rr, (iii) 6 = r,. 



Centrifugal Pumps, Fans and 
Compressors 
And to thy speed add wings. (MILTON, Paradise Lost.) 

Introduction 
This chapter is concerned with the elementary flow analysis and preliminary 

design of radial-frow work-absorbing turbomachines comprising pumps, fans and 
compressors. The major part of the discussion is centred around the compressor 
since the basic action of all these machines is, in most respects, the same. 

Turbomachines employing centrifugal effects for increasing fluid pressure have 
been in use for more than a century. The earliest machines using this principle 
were, undoubtedly, hydraulic pumps followed later by ventilating fans and blowers. 
Cheshire (1945) recorded that a centrifugal compressor was incorporated in the build 
of the whittle turbojet engine. 

For the record, the first success@ test fright of an aircrafr powered by a 
turbojet engine was on August 27, 1939 at Marienebe Airjield, Waruemunde, 
Germany (Gas Turbine News (1989). The engine, designed by Hans von Ohain, 
incorporated an axial $ow compressor. The Whittle turbojet engine, with the 
centrifugal compressor, was first frown on May 15, 1941 at Cranwell, England 
(see Hawthorne 1978). 

Development of the centrifugal compressor continued into the mid- 1950s but, long 
before this, it had become abundantly clear (Campbell and Talbert 1945, Moult and 
Pearson 195 1 that for the increasingly larger engines required for aircraft propulsion 
the axial flow compressor was preferred. Not only was the frontal area (and drag) 
smaller with engines using axial compressors but also the efficiency for the same 
duty was better by as much as 3 or 4%. However, at very low air mass flow rates 
the efficiency of axial compressors drops sharply, blading is small and difficult to 
make accurately and the advantage lies with the centrifugal compressor. 

In the mid-1960s the need for advanced military helicopters powered by small gas 
turbine engines provided the necessary impetus for further rapid development of the 
centrifugal compressor. The technological advances made in this sphere provided 
a spur to designers in a much wider field of existing centrifugal compressor appli- 
cations, e.g. in small gas turbines for road vehicles and commercial helicopters as 
well as for diesel engine turbochargers, chemical plant processes, factory workshop 
air supplies and large-scale air-conditioning plant, etc. 

199 
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Centrifugal compressors were the reasoned choice for refrigerating plants and 
compression-type heat pumps used in district heating schemes described by Hess 
(1985). These compressors with capacities ranging from below 1 MW up to nearly 
30 M W  were preferred because of their good economy, low maintenance and abso- 
lute reliability. Dean (1973) quoted total-to-static efficiencies of 80-84 per cent for 
small single-stage centrifugal compressors with pressure ratios of between 4 and 6. 
Higher pressure ratios than this have been achleved in single stages, but at reduced 
efficiency and a very limited airflow range (i.e. up to surge). For instance, Schorr 
et al. (1971) designed and tested a single-stage centrifugal compressor which gave 
a pressure ratio of 10 at an efficiency of 72 per cent but having an airflow range of 
only 10 per cent at design speed. 

Came (1978) described a design procedure and the subsequent testing of a 6.5 
pressure ratio centrifugal compressor incorporating 30 deg back swept vanes, giving 
an isentropic total-to-total efficiency for the impeller of over 85 per cent. The overall 
total-to-total efficiency for the stage was 76.5 per cent and, with a stage pressure 
ratio of 6.8 a surge margin of 15 per cent was realised. The use of back swept 
vanes and the avoidance of high vane loading were factors believed to have given 
a significant improvement in performance compared to an earlier unswept vane 
design. 

Palmer and Watennan (1995) gave some details of an advanced two-stage 
centrifugal compressor used in a helicopter engine with a pressure ratio of 14, a 
mass flow rate of 3.3 kg/s and an overall total-to-total efficiency of 80 per cent. Both 
stages employed back swept vanes (approximately 47 deg) with a low aerodynamic 
loading achieved by having a relatively large number of vanes (19 full vanes and 
19 splitter vanes). 

An interesting and novel compressor is the “axi-fuge”, a mixed flow design with a 
high efficiency potential, described by Wiggins (1986) and giving on test a pressure 
ratio of 6.5 at an isentropic efficiency (undefined) of 84 per cent. Essentially, the 
machine has a typical short centrifugal compressor annulus but actually contains 
six stages of rotor and stator blades similar to those of an axial compressor. The 
axi-fuge is claimed to have the efficiency and pressure ratio of an axial compressor 
of many stages but retains the compactness and structural simplicity of a centrifugal 
compressor. 

Some definitions 

Most of the pressure-increasing turbomachines in use are of the radial-flow type 
and vary from fans that produce pressure rises equivalent to a few millimetres of 
water to pumps producing heads of many hundreds of metres of water. The term 
pump is used when referring to machines that increase the pressure of a flowing 
liquid. The ternfun is used for machines imparting only a small increase in pressure 
to a flowing gas. In this case the pressure rise is usually so small that the gas can 
be considered as being incompressible. A compressor gives a substantial rise in 
pressure to a flowing gas. For purposes of definition, the boundary between fans 
and compressors is often taken as that where the density ratio across the machine is 
1.05. Sometimes, but more rarely nowadays, the term blower is used instead of fan. 
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A centrifugal compressor or pump consists essentially of a rotating impeller 
followed by diffuser. Figure 7.1 shows diagrammatically the various elements of 
a centrifugal compressor. Fluid is drawn in through the inlet casing into the eye of 
the impeller. The function of the impeller is to increase the energy level of the fluid 
by whirling it outwards, thereby increasing the angular momentum of the fluid. Both 
the static pressure and the velocity are increased within the impeller. The purpose 
of the diffuser is to convert the kinetic energy of the fluid leaving the impeller into 
pressure energy. This process can be accomplished by free diffusion in the annular 
space surrounding the impeller or, as indicated in Figure 7.1, by incorporating a row 
of fixed diffuser vanes which allows the diffuser to be made very much smaller. 
Outside the diffuser is a scroll or volute whose function is to collect the flow from 
the diffuser and deliver it to the outlet pipe. Often, in low-speed compressors and 
pump applications where simplicity and low cost count for more than efficiency, 
the volute follows immediately after the impeller. 

The hub is the curved surface of revolution of the impeller a - b; the shroud is 
the curved surface c - d forming the outer boundary to the flow of fluid. Impellers 
may be enclosed by having the shroud attached to the vane ends (called shrouded 
impellers) or unenclosed with a small clearance gap between the vane ends and 
the stationary wall. Whether or not the impeller is enclosed the surface, c - d is 
generally called the shroud. Shrouding an impeller has the merit of eliminating 

FIG. 7.1. Centrifugal compressor stage and velocity diagrams at impeller entry and exit. 
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FIG. 7.2. Radial-flow pump and velocity triangles. 

tip leakage losses but at the same time increases friction losses. NACA tests have 
demonstrated that shrouding of a single impeller appears to be detrimental at high 
speeds and beneficial at low speeds. At entry to the impeller the relative flow has a 
velocity w1 at angle /?I to the axis of rotation. This relative flow is turned into the 
axial direction by the inducer section or rotating guide vanes as they are sometimes 
called. The inducer starts at the eye and usually finishes in the region where the 
flow is beginning to turn into the radial direction. Some compressors of advanced 
design extend the inducer well into the radial flow region apparently to reduce the 
amount of relative diffusion. 

To simplify manufacture and reduce cost, many fans and pumps are confined 
to a two-dimensional radial section as shown in Figure 7.2. With this arrangement 
some loss in efficiency can be expected. For the purpose of greatest utility, relations 
obtained in this chapter are generally in terms of the three-dimensional compressor 
configuration. 

Theoretical analysis of a centrifugal compressor 

The flow through a compressor stage is a highly complicated, three-dimensional 
motion and a full analysis presents many problems of the highest order of difficulty. 
However, we can obtain approximate solutions quite readily by simplifying the flow 
model. We adopt the so-called one-dimensional approach which assumes that the 
fluid conditions are uniform over certain flow cross-sections. These cross-sections 
are conveniently taken immediately before and after the impeller as well as at inlet 
and exit of the entire machine. Where inlet vanes are used to give prerotation to the 
fluid entering the impeller, the one-dimensional treatment is no longer valid and an 
extension of the analysis is then required (see Chapter 6). 
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FIG. 7.3. Mollier diagram for the complete centrifugal compressor stage. 

Inlet casing 

The fluid is accelerated from velocity co to velocity c1 and the static pressure falls 
from po to p1 as indicated in Figure 7.3. Since the stagnation enthalpy is constant 
in steady, adiabatic flow without shaft work then hm = bl or, 

1 2  ho + ;c; = hl + TC1. 

Some efficiency definitions appropriate to this process are stated in Chapter 2. 

I m pel le r 

The general three-dimensional motion has components of velocity c,, ce, and c, 

Thus, from eqn. (2.12e), the rothalpy is 
respectively in the radial, tangential and axial directions and c2 = c; + c i  + c,”. 

z = h + i < C f  + c8’ + c,’ - 2Uce). 

Adding and subtracting i U 2  this becomes 

z = h + $ { ( U  - ce>* + cf + c,” - U2} .  (7.1) 
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From the velocity- triangle, Figure 7.1, U - ce = we and tdgether with d = c,’ + 
we2 + cz, eqn. (7.1) becomes 

I = h + ; ( W 2 - U )  2 

or 
1 2  

I = h o r e l - z u  7 

since 

b e l  1 h + ;w’. 

Since I1 = 12 across the impeller, then 

The above expression provides the reason why the static enthalpy rise in a 
centrifugal compressor is so large compared with a single-stage axial compressor. 
On the right-hand side of eqn. (7.2), the second term k(w5 - wt), is the contribution 
from the diffusion of relative velocity and was obtained for axial compressors also. 
The first term, ; (Ui  - U:),  is the contribution due to the centrifugal action which 
is zero if the streamlines remain at the same radii before and after the impeller. 

The relation between state points 1 and 2 in Figure 7.3 can be easily traced with 
the aid of eqn. (7.2) 

Referring to Figure 7.1, and in particular the inlet velocity diagram, the absolute 
flow has no whirl component or angular momentum and c~l = 0. In centrifugal 
compressors and pumps this is the normal situation where the flow is free to enter 
axially. For such a flow the specific work done on the fluid, from eqn. (2.12c), is 
written as 

(7.3a) A W  = U-2~02 = b 2  - bl 

in the case of compressors, and 

A W  = U 2 ~ 0 2  = gHi (7.3b) 

in the case of pumps, where Hi (the “ideal” head) is the total head rise across 
the pump excluding all internal losses. In high pressure ratio compressors it may 
be necessary to impart peroration to the flow entering the impeller as a means of 
reducing a high relative inlet velocity. The effects of high relative velocity at the 
impeller inlet are experienced as Mach number effects in compressors and cavitation 
effects in pumps. The usual method of establishing prerotation requires the installa- 
tion of a row of inlet guide vanes upstream of the impeller, the location depending 
upon the type of inlet. Unless contrary statements are made it will be assumed for 
the remainder of this chapter that there is no prerotation (i.e. cel = 0). 

Conservation of rothalpy 

A cornerstone of the analysis of steady, relative flows in rotating systems has, for 
many years, been the immutable nature of the fluid mechanical property rothalpy. 
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The conditions under which the rothalpy of a fluid is conserved in the flow through 
impellers and rotors have been closely scrutinised by several researchers. Lyman 
(1993) reviewed the equations and physics governing the constancy of rothalpy in 
turbomachine fluid flows and found that an increase in rothalpy was possible for 
steady, viscous flow without heat transfer or body forces. He proved mathematically 
that the rothalpy increase was generated mainly by the fluid friction acting on the 
stationary shroud of the compressor considered. From his analysis, and put in the 
simplest terms, he deduced that: 

(7.4) 

where W f  = h ( Z 2  - Zl) = n.r.W dA is the power loss due to fluid friction on the 
stationary shroud, n is a unit normal vector, t is a viscous stress tensor, W is the 
relative velocity vector and dA is an element of the surface area. Lyman did not 
give any numerical values in support of his analysis. 

In the discussion of Lyman’s paper, Moore disclosed that earlier viscous flow 
calculations of the flow in centrifugal flow compressors (see Moore et al. 1984) 
of the power loss in a centrifugal compressor had shown a rothalpy production 
amounting to 1.2 per cent of the total work input. This was due to the shear work 
done at the impeller shroud and it was acknowledged to be of the same order 
of magnitude as the work done overcoming disc friction on the back face of the 
impeller. Often disc friction is ignored in preliminary design calculations. 

A later, careful, order-of-magnitude investigation by Bosman and Jadayel ( 1996) 
showed that the change in rothalpy through a centrifugal compressor impeller would 
be negligible under typical operating conditions. They also believed that it was not 
possible to accuratezy calculate the change in rothalpy because the effects due to 
inexact turbulence modelling and truncation error in computation would far exceed 
those due to non-conservation of rothalpy. 

ho2 - ho1 = (Uce)2 - (Uce)1 + w f /k 

Diffuser 

The fluid is decelerated adiabatically from velocity c2 to a velocity c3, the static 
pressure rising from p2 to p3 as shown in Figure 7.3. As the volute and outlet 
diffuser involve some further deceleration it is convenient to group the whole 
diffusion together as the change of state from p i n t  2 to point 3.  As the stagna- 
tion enthalpy in steady adiabatic flow without shaft work is constant, ho2 = ho3 or 
h2 + 5.2’ = h3 + kc:. The process 2 to 3 in Figure 7.3 is drawn as irreversible, there 
being a loss in stagnation pressure p02 - po3 during the process. 

Inlet velocity limitations 

The inlet eye is an important critical region in centrifugal pumps and compressors 
requiring careful consideration at the design stage. Lf the relative velocity of the inlet 
flow is too large in pumps, cavitation may result with consequent blade erosion or 
even reduced performance. In compressors large relative velocities can cause an 
increase in the impeller total pressure losses. In high-speed centrifugal compressors 
Mach number effects may become important with high relative velocities in the 
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inlet. By suitable sizing of the eye the maximum relative velocity, or some related 
parameter, can be minimised to give the optimum inlet flow conditions. As an 
illustration the following analysis shows a simple optimisation procedure for a low- 
speed compressor based upon incompressible flow theory. 

For the inlet geometry shown in Figure 7.1, the absolute eye velocity is assumed 
to be uniform and axial. The inlet relative velocity is w1 = (c:~ + U2)’/’ which is 
clearly a maximum at the inducer tip radius r,l. The volume flow rate is 

(7.5) 2 2 2 2 2 1 / 2  . Q = CxlAl = r(rS1 - r h l ) ( w s l  - Q rsl) 

It is worth noticing that with both Q and rhl fixed: 

(i) if r,l is made large then. from continuity, the axial velocity is low but the blade 

(ii) if r,l is made small the blade speed is small but the axial velocity is high. 
speed is high, 

Both extremes produce large relative velocities and there must exist some 

For maximum volume flow, differentiate eqn. (7.5) with respect to r,l (keeping 
optimum radius r,l for which the relative velocity is a minimum. 

wsl constant) and equate to zero, 

After simplifying, 

2 :. 2 ~ 2 ~  = kU,, ,  

where k = 1 - (rhl/r,l)’ and U,1 = Qr,l. Hence, the optimum inlet velocity coef- 
ficient is 

4 = cxl/Usl cotpsl = (k /2) ’ / ’ .  (7.6) 

Equation (7.6) specifies the optimum conditions for the inlet velocity triangles in 
terms of the hubhip radius ratio. For typical values of this ratio (;.e. 0.3 < rhl/rsl 

< 0.6) the optimum relative flow angle at the inducer tip Bsl lies between 56 deg 
and 60 deg. 

Optimum design of a pump inlet 

As discussed in Chapter 1, cavitation commences in a flowing liquid when the 
decreasing local static pressure becomes approximately equal to the vapour pressure, 
pv.  To be more precise, it is necessary to assume that gas cavitation is negligible 
and that sufficient nuclei exist in the liquid to initiate vapour cavitation. 

The pump considered in the following analysis is again assumed to have the 
flow geometry shown in Figure 7.1. Immediately upstream of the impeller blades 
the static pressure is p1 = pol - +pc,l where pol is the stagnation pressure and 
cxl is the axial velocity. In the vicinity of the impeller blades leading edges on the 
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suction surfaces there is normally a rapid velocity increase which produces a further 
decrease in pressure. At cavitation inception the dynamic action of the blades causes 
the local pressure to reduce such that p = p,, = p1 - 0b(1/2pw;), The parameter 
Ob which is the blade cavitation coeficient corresponding to the cavitation inception 
point, depends upon the blade shape and the flow incidence angle. For conventional 
pumps (see Pearsall 1972) operating normally this coefficient lies in the range 0.2 < 
Ob < 0.4. Thus, at cavitation inception. 

1 2  P1 = Po1 - ZW,, = PV + Ob<+Pw:) 
1 2  1 2  1 2  . .  ' gHs = (POI - pv)/P = 'c2 2 1 1  + mb(Tw1) = Zcxl(l + Ob) + TObU,, 

where H, is the net positive suction head introduced earlier and it is implied that 
this is measured at the shroud radius r = r,l. 

To obtain the optimum inlet design conditions consider the suction specific 
speed defined as Q,, = QQ1/2/(gHs)3/4, where 52 = U , ~ / r , ~  and Q = c,lA1 = 
Irkr,: c,l . Thus, 

where 4 = cx l /Us l .  To obtain the condition of maximum Q,, eqn. (7.7) is differ- 
entiated with respect to @ and the result set equal to zero. From this procedure the 
optimum conditions are found: 

(7.8a) 

( 7 . 8 ~ )  

EXAMPLE 7.1. The inlet of a centrifugal pump of the type shown in Figure 7.1 is 
to be designed for optimum conditions when the flow rate of water is 25 dm3/s and 
the impeller rotational speed is 1450 rev/min. The maximum suction specific speed 
Q,, = 3.0(rad) and the inlet eye radius ratio is to be 0.3. Determine 

(i) the blade cavitation coefficient, 
(ii) the shroud diameter at the eye, 

(iii) the eye axial velocity, and 
(iv) the NPSH. 

Solution. (i) From eqn. (7.8c), 

ai( 1 + ob) = (3.42 k)2/Q:s = 0.1196 

with k = 1 - ( rh l / r s l )2  = 1 - 0.32 = 0.91. Solving iteratively (e.g. using the 
Newton-Raphson approximation), Ob = 0.3030. 

(ii) As Q = Irkr:lcxl and c,l = 4Qr,l 
then r:l = Q/(rkQ@) and Q = 1450n/30 = 151.84rads. 
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From eqn. (7.8a), 4 = {0.303/(2 x 1.303)}0.5 = 0.3410, 

:. r:l = 0..025/(n x 0.91 x 151.84 x 0.341) = 1.689 x low4, 

:. r , ~  = 0.05528 m. 

The required diameter of the eye is 110.6 mm. 
(iii) cxl = 4S2rsl = 0.341 x 151.84 x 0.05528 = 2.862ds.  
(iv) From eqn. (7.8b), 

H, = - 0.750t,~x~ 0.75 x 0.303 x 2.8622 
= 1.632m. - 

PP2 9.81 x 0.3412 

Optimum design of a centrifugal compressor inlet 

To obtain high efficiencies from high pressure ratio compressors it is necessary 
to limit the relative Mach number at the eye. 

The flow area at the eye can be written as 
2 A1 = nr:lk, where k = 1 - (rhl/r,l) . 

Hence A1 = nkUfl /s t2  (7.9) 

with Usl = strsl. 

With uniform axial velocity the continuity equation is ri? = plAlc,l. 

Us]  = w,1 sin#?,1, then, using eqn. (7.9), 
Noting from the inlet velocity diagram (Figure 7.1) that cxl = w,l c0sj3~1 and 

(7.10) 

For a perfect gas it is most convenient to express the static density p1 in terms of 
the stagnation temperature To1 and stagnation pressure pol because these parameters 
are usually constant at entry to the compressor. Now, 

P -  P T o  
Po Po T 
- _ _  - 

With C,To = C,T + ;e2 and C ,  = y R / ( y  - 1) 

Y-1 2 a; M = -  then - = 1 + 2  TO 
T a2 

where the Mach number, M = c / ( ~ R T ) ' / ~  = c/a,  a0 and a being the stagnation and 
local (static) speeds of sound. For isentropic flow, 

Y / ( Y - 1 )  L ( k )  Po 

Thus, 
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where 

The absolute Mach number M I  and the relative Mach number Mrl  are defined as 

M1 = c,l/al = Mrl  C O S B ~ ~  and wS1 = M r l a l .  

Using these relations together with eqn. (7.10) 

Since q l / a l  = [l + i(y - 1)My]1'2 and a01 = (yRTol)'12 the above equation is 
rearranged to give 

M ) ,  sin2 pSl cos pSl 
- - (7.1 1) 

mQ2 
X k Y P O l  (YRTOl ) l I 2  1 / ( ~ - 1 ) + 3 / 2  [ 1 + ; ( y  - 1)M?, cos2 PSI] 

This equation is extremely useful and can be used in a number of different ways. 
For a particular gas and known inlet conditions one can specify values of y, R,  pol 
and To1 and obtain m Q 2 / k  as a function of Mrl and & I .  By specifying a particular 
value of M,1 as a limit, the optimum value of pSl for maximum mass flow can be 
found. A graphical procedure is the simplest method of optimising B S l  as illustrated 
below. 

Taking as an example air, with y = 1.4, eqn. (7.1 1) becomes 

(7.1 la) 

The rhs of eqn. (7.1 la) is plotted in Figure 7.4 as a function of Bsl for Mrl = 0.8 
and 0.9. These curves are a maximum at PSI = 60deg (approximately). 

Shepherd (1956) considered a more general approach to the design of the 
compressor inlet which included the effect of a free-vortex prewhirl or prerotation. 
The effect of prewhirl on the mass flow function is easily determined as follows. 
From the velocity triangles in Figure 7.5, 

c1 = c,/cosa1 = WI cosg,/  cosa1, 

Also, 

and 

(7.11b) 
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FIG. 7.4. Variation of mass flow function for the inducer of a centrifugal compressor with 
and without guide vanes ( y  = 1.4). For comparison both velocity triangles are drawn to 

scale for Mrl = 0.9 the peak values or curves. 

FIG. 7.5. Effect of free-vortex prewhirl vanes upon relative velocity at impeller inlet. 
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Thus, using the relations developed earlier for Tol/Tl, pol/p1 and pol/pl, we obtain 

(7.12) - ms22 M), cos3 p1 (tan p1 + tan a1 )2  - f (Mr1) = 
y-1 +Z IL 3 '  

nkpola& (1 + * M ; l  cos2 p1/ cos2 a1 
2 

Substituting y = 1.4 for air into eqn. (7.12) we get: 

~~m M ; ~  cos3 p1 (tan p1 + tan a1 )* 

nkpolai, (1 + ;iwfl c o ~ ~ ~ 1 / c o s ~ ~ 1 ) 4 '  
f (Mr1)  = - - (7.12a) 

The rhs of eqn. (7.12a) is plotted in Figure 7.4 with als = 30deg for Mrl = 0.8 and 
0.9, showing that the peak values of mQ2/k are significantly increased and occur 
at much lower values of ,!?I. 

EXAMPLE 7.2. The inlet of a centrifugal compressor is fitted with free-vortex guide 
vanes to provide a positive prewhirl of 30deg at the shroud. The inlet hub/shroud 
radius ratio is 0.4 and a requirement of the design is that the relative Mach number 
does not exceed 0.9. The air mass flow is 1 kg/s, the stagnation pressure and temper- 
ature are 101.3 kPa and 288 K. For air take R = 287 J/(kg K) and y = 1.4. 

Assuming optimum conditions at the shroud, determine: 

(1) the rotational speed of the impeller; 
(2) the inlet static density downstream of the guide vanes at the shroud and the 

(3) the inducer tip diameter and velocity. 
axial velocity; 

SoEufion. (1) From Figure 7.4, the peak value of f (M,1) = 0.4307 at a 
relative flow angle #I1 = 49.4deg. The constants needed are a01 = J(yRTo1) = 
340.2m/s, pol = pol/(RTol) = 1.2255 kg/m3 and k = 1 - 0.42 = 0.84. Thus, from 
eqn. (7.12a), R2 = nfkpola& = 5.4843 x lo7. Hence, 

Q = 7405.6radh and N = 70718rev/min. 
1.2255 

- = 0.98464 kg/m3. Pol 

2 ~ 5  - 1.069732.5 (2) P1 = 
[ 1 + f (M,1 cos B1 )2] 

The axial velocity is determined from eqn. (7.1 lb): 

5.4843 x lo7 
x x 0.84 x 0.98464 x 3.0418' 

- - 3 3  a2m 
(w1 cos,!?1) = c, = 

nkpl(tanB1 + 
= 6.9388 x lo6, 

:. C, = 190.73 d s .  

m 
(3) A1 = ~ = nkr,:, 

P1 cx 
m 1 

- = 2.0178 x . . rsl = - - . 2  

nplc,k 71 x 0.98464 x 190.73 x 0.84 
:. r,l = 0.04492 m and d,l = 8.984 cm, 

U = RrSl = 7405.6 x 0.04492 = 332.7ds. 
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Use of prewhirl at entry to impeller 

Introducing positive prewhirl (i.e. in the direction of impeller rotation) can give a 
significant reduction of the inlet Mach number M,1 but, as seen from eqn. (2.12c), 
it reduces the specific work done on the gas. As will be seen later, it is necessary 
to increase the blade tip speed to maintain the same level of impeller pressure ratio 
as was obtained without prewhirl. 

hewhirl is obtained by fitting guide vanes upstream of the impeller. One arrange- 
ment for doing this is shown in Figure 7.5a. The velocity triangles, Figure 7.5b 
and c, show how the guide vanes reduce the relative inlet velocity. Guide vanes are 
designed to produce either a free-vortex or a forced-vortex velocity distribution. In 
Chapter 6 it was shown that for a free-vortex flow the axial velocity c, is constant 
(in the ideal flow) with the tangential velocity cg varying inversely with the radius. 
It was shown by Wallace et al. (1975) that the use of free-vortex prewhirl vanes 
leads to a significant increase in incidence angle at low inducer radius ratios. The 
use of some forced-vortex velocity distribution does alleviate this problem. Some of 
the effects resulting from the adoption of various forms of forced-vortex of the type 

ce = A  (;)n 

have been reviewed by Whitfield and Baines (1990). Figure 7.6a shows, for a 
particular case in which alS = 30 deg, f i ls  = 60 deg and fiiS = 60 deg, the effect 
of prewhirl on the variation of the incidence angle, i = 61 - fii with radius ratio, 
r/r lS,  for various whirl distributions. Figure 7.6b shows the corresponding varia- 
tions of the absolute flow angle, al. It is apparent that a high degree of prewhirl 
vane twist is required for either a free-vortex design or for the quadratic (n = 2) 
design. The advantage of the quadratic design is the low variation of incidence with 
radius, whereas it is evident that the free-vortex design produces a wide variation of 
incidence. Wallace ef al. (1975) adopted the simple untwisted blade shape (n = 0) 
which proved to be a reasonable compromise. 

FIG. 7.6. Effect of prewhirl vanes on flow angle and incidence for alS = 30 deg, 
pls = 60 deg and p;, = 60 deg. (a) Incidence angle. (b) Inducer flow angle. 
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Slip factor 

Introduction 

Even under ideal (frictionless) conditions the relative flow leaving the impeller 
of a compressor or pump will receive less than perfect guidance from the vanes and 
the flow is said to slip. If the impeller could be imagined as being made with an 
infinite number of infinitesimally thin vanes, then an ideal flow would be perfectly 
guided by the vanes and would leave the impeller at the vane angle. Figure 7.7 
compares the relative flow angle, 8 2 ,  obtained with a finite number of vanes, with 
the vane angle, 8;. A slip factor may be defined as 

(7.13a) 

where ce2 is the tangential component of the absolute velocity and related to the 
relative flow angle 82. The hypothetical tangential velocity component cb is related 
to the vane angle 8;. The slip velocity is given by cos = cL2 - C82 so that the slip 
factor can be written as 

a=1--. 

ce2 
( T = -  

c;:! ’ 

(7.13b) 

The slip factor is a vital piece of information needed by pump and compressor 
designers (also by designers of radial turbines) as its accurate estimation enables the 
correct value of the energy transfer between impeller and fluid to be made. Various 
attempts to determine values of slip factor have been made and numerous research 
papers concerned solely with this topic have been published. Wiesner (1967) has 
given an extensive review of the various expressions used for determining slip 
factors. Most of the expressions derived relate to radially vaned impellers (8; = 0) 
or to mixed flow designs, but some are given for backward swept vane (b s v) 
designs. All of these expressions are derived from inviscid flow theory even though 
the real flow is far from ideal. However, despite this lack of realism in the flow 
modelling, the fact remains that good results are still obtained with the various 
theories. 

C8S 

c b  

FIG. 7.7. Actual and hypothetical velocity diagrams at exit from an impeller with back 
swept vanes. 
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The relative eddy concept 

Suppose that an irrotational and frictionless fluid flow is possible which passes 
through an impeller. If the absolute flow enters the impeller without spin, then at 
outlet the spin of the absolute flow must still be zero. The impeller itself has an 
angular velocity S2 so that, relative to the impeller, the fluid has an angular velocity 
of -Q; this is the termed the relative eddy. A simple explanation for the slip effect 
in an impeller is obtained from the idea of a relative eddy. 

At outlet from the impeller the relative flow can be regarded as a through-flow 
on which is superimposed a relative eddy. The net effect of these two motions is 
that the average relative flow emerging from the impeller passages is at an angle to 
the vanes and in a direction opposite to the blade motion, as indicated in Figure 7.8. 
This is the basis of the various theories of slip. 

Slip factor correlations 

One of the earliest and simplest expressions for the slip factor was obtained by 
Stodola (1927). Referring to Figure 7.9 the slip velocity, cos = c h  - ce;?. is consid- 
ered to be the product of the relative eddy and the radius d / 2  of a circle which 
can be inscribed within the channel. Thus cos = Qd/2.  If the number of vanes is 
denoted by Z then an approximate expression, d 2: (2rrr2/Z) cos si can be written 
if Z is not small. Since S2 = U2/r2 then 

nu2 cos p; 
( 7 . 1 3 ~ )  

Z Cos = 

Now as c h  = U2 - cr2 tan j?; the Stodola slip factor becomes 

(7.14) ce2 0 = - = 1 -  ces 
4 2  u2 - cr2 tan s; 

or, 

(7.15) ( Z l Z )  cos s; 
1 -&tans; 

a = l -  

where 4 2  = cr2/U2. 

FIG. 7.8. (a) Relative eddy without any throughflow. (b) Relative flow at impeller exit 
(throughflow added to relative eddy). 
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FIG. 7.9. Flow model for Stodola slip factor. 

A number of more refined (mathematically exact) solutions have been evolved 
of which the most well known are those of Busemann, discussed at some length 
by Wislicenus (1947) and Stanitz (1952) mentioned earlier. The volume of mathe- 
matical work required to describe these theories is too extensive to justify inclusion 
here and only a brief outline of the results is presented. 

Busemann’s theory applies to the special case of two-dimensional vanes curved 
as logarithmic spirals as shown in Figure 7.10 Considering the geometry of the vane 
element shown it should be an easy task for the student to prove that, 

y = tan B’ ln(rZ/rl) (7.17a) 

FIG. 7.10. Logarithmic spiral vane. Vane angle p’ is constant for all radii. 
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that the ratio of vane length to equivalent blade pitch is 

_ -  1 - In(:) 
s 2lrcosB) 

and that the equivalent pitch is 

(7.17b) 

The equi-angular or logarithmic spiral is the simplest form of radial vane system 
and has been frequently used for pump impellers in the past. The Busemann slip 
factor can be written as 

O B =  (A-BhmBB;)/(1 --htanBB;), (7.16) 

where both A and B are functions of r21r-1, and Z. For typical pump and 
compressor impellers the dependence of A and B on r2/r1 is negligible when the 
equivalent Z/s exceeds unity. From eqn. (7.17b) the requirement for Z/s 2 1, is that 
the radius ratio must be sufficiently large, i.e. 

r2/r1 2 exp (2lr cos p’/Z). (7.17~) 

This criterion is often applied to other than logarithmic spiral vanes and then is 
used instead of p’. Radius ratios of typical centrifugal pump impeller vanes normally 
exceed the above limit. For instance, blade outlet angles of impellers are usually 
in the range 50 < /?; < 70 deg with between 5 and 12 vanes. Taking representative 
values of p; = 60 deg and Z = 8 the rhs of eqn. (7.17~) is equal to 1.48 which is 
not particularly large for a pump. 

So long as these criteria are obeyed the value of B is constant and practically 
equal to unity for all conditions. Similarly, the value of A is independent of the 
radius ratio r2/r1 and depends on and Z only. Values of A given by Csanady 
(1960) are shown in Figure 7.1 1 and may also be interpreted as the value of for 
zero through flow (42 = 0). 

The exact solution of Busemann makes it possible to check the validity of approx- 
imate methods of calculation such as the Stodola expression. By putting 42 = 0 in 
eqns. (7.15) and (7.16) a comparison of the Stodola and Busemann slip factors at 
the zero through flow condition can be made. The Stodola value of slip comes close 
to the exact correction if the vane angle is within the range 50 < &, < 70 deg and 
the number of vanes exceeds 6. 

Stanitz (1952) applied relaxation methods of calculation to solve the potential 
flow field between the blades (blade-to-blade solution) of eight impellers with blade 
tip angles /?; varying between 0 and 45 deg. His main conclusions were that the 
computed slip velocity cos was independent of vane angle j?; and depended only 
on blade spacing (number of blades). He also found that compressibility effects did 
not affect the slip factor. Stanitz’s expression for slip velocity is, 

cos = 0.63U2r/Z (7.18) 

and the corresponding slip factor a, using eqn. (7.14) is 
0.63nlZ 

a , = l -  
1 -42tanp;’ 

(7.18a) 
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FIG. 7.1 1. Head correction factors for centrifugal impellers (adapted from Csanady 
(1 960)). 

For radial vaned impellers this becomes a, = 1 - 0.63n/Z but is often written for 
convenience and initial approximate calculations as a, = 1 - 2/Z. 

Ferguson (1963) has usefully compiled values of slip factor found from several 
theories for a number of blade angles and blade numbers and compared them with 
known experimental values. He found that for pumps, with j3; between 60 deg and 
70 deg, the Busemann or Stodola slip factors gave fairly good agreement with 
experimental results. For radial vaned impellers on the other hand, the Stanitz 
expression, eqn. (7.18a) agreed very well with experimental observations. For inter- 
mediate values of p; the Busemann slip factor gave the most consistent agreement 
with experiment. 

Wiesner (1967) reviewed all the available methods for calculating values of slip 
factor and compared them with values obtained from tests. He concluded from 
all the material presented that Busemann’s procedure was still the most generally 
applicable predictor for determining the basic slip factor of centripetal impellers. 
Wiesner obtained the following simple empirical expression for the slip velocity: 

(7.19a) u2.JcOsB; 
c8s = 2 0 . 7  . 

and the corresponding slip factor 

.Jcosj3; /ZOJ 
aw=l- (7.19b) 

which, according to Wiesner, fitted the Busemann results “extremely well over the 
whole range of practical blade angles and number of blades”. 

(1 - & tanpi)’ 
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given by the empirical expression: 
The above equation is applicable to a limiting mean radius ratio for the impeller 

E = ( " )  = e x p (  -8.16 cos 6; 
r2 lim Z 

(7 .19~)  

For values of rl/r2 > E the slip factor is determined from the empirical expression: 

(7.19d) 

Head increase of a centrifugal pump 

The actual delivered head H measured as the head difference between the inlet 
and outlet flanges of the pump and sometimes called the manometric head, is less 
than the ideal head Hi defined by eqn. (7.3b) by the amount of the internal losses. 
The hydraulic efficiency of the pump is defined as 

H gH 
H i  U2ce2 

q h = - = - .  

From the velocity triangles of Figure 7.2 

ce2 = u2 - cr2 tan 8 2 .  
Therefore H = qh U;( 1 - & tan 82 )/g 

(7.20) 

(7.20a) 

where 42 = cr2/U2 and 8 2  is the actual averaged relative flow angle at impeller 
outlet. 

With the definition of slip factor, (T = ce2/cL2, H can, more usefully, be directly 
related to the impeller vane outlet angle, as 

H = qhaUz(1 - 42 m8;)/g. (7.20b) 

In general, centrifugal pump impellers have between five and twelve vanes inclined 
backwards to the direction of rotation, as suggested in Figure 7.2, with a vane tip 
angle ph of between 50 and 70 deg. A knowledge of blade number, and 42 
(usually small and of the order 0.1) generally enables a to be found using the 
Busemann formula. The effect of slip, it should be noted, causes the relative flow 
angle 82 to become larger than the vane tip angle f i b .  

EXAMPLE 7.3 A centrifugal pump delivers 0.1 m3/s of water at a rotational speed 
of 1200 rev/min. The impeller has seven vanes which lean backwards to the direction 
of rotation such that the vane tip angle 8; is 50deg. The impeller has an external 
diameter of 0.4m, an internal diameter of 0.2m and an axial width of 31.7mm. 
Assuming that the diffuser efficiency is 51.5%, that the impeller head losses are 
10% of the ideal head rise and that the diffuser exit is 0.15 m in diameter, estimate 
the slip factor, the manometric head and the hydraulic efficiency. 
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Solution. Equation (7.16) is used for estimating the slip factor. Since 
exp(2rr cos /?; / Z )  = exp(2rr x 0.643/7) = 1.78, is less than r 2 / q  = 2, then B = 1 
and A 2: 0.77, obtained by replotting the values of A given in Figure 7.1 1 for 
/?; = 50 deg and interpolating. 

The vane tip speed, U2 = rrND2/60 = rr x 1200 x 0.4/60 = 25.13ds. 

The radial velocity, c,2 = Q/(7rD&) = O.l/(n x 0.4 x 0.0317) 

= 2.51 m / s .  

Hence the Busemann slip factor is 

OB = (0.77 - 0.1 x 1.192)/(1 - 0.1 x 1.192) = 0.739. 

Hydraulic losses occur in the impeller and in the diffuser. The kinetic energy leaving 
the diffuser is not normally recovered and must contribute to the total loss, H L .  From 
inspection of eqn. (2.45b), the loss in head in the diffuser is (1 - qo)(ci - c:)/(2g). 
The head loss in the impeller is 0.1 x Uzce;?/g and the exit head loss is c:/(2g). 
Summing the losses, 

H L  = 0.485(~; - ~:)/(2g) + 0.1 x Uzcez/g + ~:/(2g). 

Determining the velocities and heads needed, 

~ 0 2  = O B U ~ ( ~  - & tan/?;) = 0.739 x 25.13 x 0.881 = 1 6 . 3 5 d ~ .  

H i  = U2ce;?/g = 25.13 x 16.35/9.81 = 41.8m. 

c;/(2g) = (16.352 + 2.512)/19.62 = 13.96m. 

~3 = 4Q/(nd2) = 0 . 4 / ( ~  x 0.152) = 5.65 m / s .  

Therefore ci/(2g) = 1.63 m. 

Therefore H L  = 4.18 + 0.485(13.96 - 1.63) + 1.63 = 11.8m. 

The manometric head is 

H = H i  - H L  = 41.8 - 11.8 = 30.0m 

and the hydraulic efficiency 

q h  = H / H i  = 71.7%. 

Performance of centrifugal compressors 

Determining the pressure ratio 

Consider a centrifugal compressor having zero inlet swirl, compressing a perfect 
gas. With the usual notation the energy transfer is 

A W  = W,/m = h02 - h ~ l  = UZC~;?. 
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The overall or total-to-total efficiency qc is 

ho3is - hol - CpTOl(T03ss/TO1 - 1) - rlc = 
h 3  - ho1 h02 - hl 

= CpTOl(T03ss/TOl - 1)/(u2c02). 

Now the overall pressure ratio is 

Y/(Y - 1 1 

Po I 

(7.21) 

(7.22) 

Substituting eqn. (7.21) into eqn. (7.22) and noting that CpTol = yRTol/(y - 1) = 
a&/ (y  - 11, the pressure ratio becomes 

yl(y-1) 1 PO3 [ (y  - l)flcu2cr2 ma2 -=  I +  
Po 1 d l  

From the velocity triangle at impeller outlet (Figure 7.1) 

& = cr2/u2 = (tans;! + tanp2l-l 

and, therefore, 

(7.23) 

(7.24a) 

This formulation is useful if the flow angles can be specified. Alternatively, and 
more usefully, as c02 = 0cL2 = a(U2 - cr2 tan &), then 

(7.24b) 

where Mu = Uz/aol, is now defined as a blade Mach number. 
It is of interest to calculate the variation of the pressure ratio of a radially 

vaned (pi = 0) centrifugal air compressor to show the influence of blade speed 
and efficiency on the performance. With y = 1.4 and (T = 0.9 (Le. using the Stanitz 
slip factor, (T = 1 - 1.98/2 and assuming Z = 20, the results evaluated are shown 
in Figure 7.12. It is clear that both the efficiency and the blade speed have a strong 
effect on the pressure ratio. In the 1970s the limit on blade speed due centrifugal 
stress was about 500 m/s and efficiencies seldom exceeded 80 per cent giving, with a 
slip factor of 0.9, radial vanes and an inlet temperature of 288 K, a pressure ratio just 
above 5. In recent years significant improvements in the performance of centrifugal 
compressors have been obtained, brought about by the development of computer- 
aided design and analysis techniques. According to Whitfield and Baines (1990) 
the techniques employed consist of “a judicious mix of empirical correlations and 
detailed modelling of the flow physics”. It is possible to use these computer packages 
and arrive at a design solution without any real appreciation of the flow phenomena 
involved. In all compressors the basic flow process is one of diffusion; boundary 
layers are prone to separate and the flow is extremely complex. With separated 
wakes in the flow, unsteady flow downstream of the impeller can occur. It must 
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FIG. 7.1 2. Variation of pressure ratio with blade speed for a radial-bladed compressor 
(fl! = 0) at various values of efficiency. 

be stressed that a broad understanding of the flow processes within a centrifugal 
compressor is still a vital requirement for the more advanced student and for the 
further progress of new design methods. 

A characteristic of all high performance compressors is that as the design pressure 
ratio has increased, so the range of mass flow between surge and choking has 
diminished. In the case of the centrifugal compressor, choking can occur when the 
Mach number entering the diffuser passages is just in excess of unity. This is a 
severe problem which is aggravated by shock-induced separation of the boundary 
layers on the vanes which worsens the problem of flow blockage. 

Effect of backswept vanes 

Came (1978) and Whitfield and Baines (1990) have commented upon the trend 
towards the use of higher pressure ratios from single-stage compressors leading to 
more highly stressed impellers. The increasing use of back swept vanes and higher 
blade tip speeds result in higher direct stress in the impeller and bending stress in 
the non-radial vanes. However, new methods of computing the stresses in impellers 
are being implemented (Calvert and Swinhoe 1977), capable of determining both 
the direct and the bending stresses caused by impeller rotation. 

The effect of using back swept impeller vanes on the pressure ratio is shown in 
Figure 7.13 for a range of blade Mach number. It is evident that the use of back 
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FIG. 7.13. Variation of pressure ratio vs blade Mach number of a centrifugal compressor 
for selected back sweep angles ( y  = 1.4, qc = 0.8, CJ = 0.9, & = 0.375). 

sweep of the vanes at a given blade speed causes a loss in pressure ratio. In order to 
maintain a given pressure ratio it would be necessary to increase the design speed 
which, it has been noted already, increases the blade stresses. 

With high blade tip speeds the absolute flow leaving the impeller may have a 
Mach number well in excess of unity. As this Mach number can be related to the 
Mach number at entry to the diffuser vanes, it is of some advantage to be able to 
calculate the former. 

Assuming a perfect gas the Mach number at impeller exit M2 can be written as 

(7.25) 
2 

M 2  2 -  - 2 2 - - . T 2 . - - - -  - cf To1 T2 - c; To1 
a2 To1 af ail T2 ’ 

since ai, = yRTol and a; = yRT2. 
Refemng to the outlet velocity triangle, Figure (7.7) 

e; = c;2 + C i 2  = c;2 + (acL2)2, 

e h  = u2 - cr2 tan &, 
where 

(z)2 = & + a 2 ( 1  -&tan&)2. (7.26) 

From eqn. (7.2), assuming that rothalpy remains essentially constant, 
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Constant 

A 
B 

1 2  1 1 1 
:. h2 = (hl + -w1 - -u;> + - ( U ;  2 - w;) = /qll + - ( U ;  2 - w;) 2 2 

p2 (degrees) 
0 15 30 45 
0.975 0.8922 0.7986 0.676 
0.2 0.199 0.1975 0.1946 

hence, 

since hol = c , T O ~  = a&/ (y  - 1). 
From the exit velocity triangle, Figure 7.7, 

(7.28) 

Substituting eqns. (7.26), (7.27) and (7.28) into eqn. (7.25), we get: 

Mi [ d ( 1  -42tan8;)2+4;] 
(7.29) M ;  = 2 '  

1 + ; ( Y  - l)M,{ 1-4 ;  p - 4 1  -42w3;>] 1 

Although eqn. (7.29) at first sight looks complicated it reduces into an easily 
managed form when constant values are inserted. Assuming the same values used 
previously, i.e. y = 1.4, o = 0.9, 42 = 0.375 and /?; = 0, 15,30 and 45 deg, the 
solution for M2 can be written as 

(7.29a) A M ,  

M 2  = J(i + BM$ 

where the constants A and B are as shown in Table 7.1, and, from which the curves 
of M2 against M u  in Figure 7.14 have been calculated. 

According to Whitfield and Baines (1990) the two most important aerodynamic 
parameters at impeller exit are the magnitude and direction of the absolute Mach 
number M2. If M2 has too high a value, the process of efficient flow deceleration 
within the diffuser itself is made more difficult leading to high friction losses as well 
as the increased possibility of shock losses. If the flow angle a 2  is large the flow 
path in the vaneless diffuser will be excessively long resulting in high friction losses 

TABLE 7.1. Constants used to evaluate IM2 
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FIG. 7.14. Variation of impeller exit Mach number vs blade Mach number of a centrifugal 
compressor for selected back sweep angles ( y  = 1.4, (T = 0.9, 42 = 0.375). 

and possible stall and flow instability. Several researchers (eg. Rodgers and Sapiro 
1972) have shown that the optimum flow angle is in the range 60" < 012 < 70". 

Backswept vanes give a reduction of the impeller discharge Mach number, M2,  at 
any given tip speed. A designer making the change from radial vanes to back swept 
vanes will incur a reduction in the design pressure ratio if the vane tip speed remains 
the same. To recover the original pressure ratio the designer is forced to increase the 
blade tip speed which increases the discharge Mach number. Fortunately, it turns 
out that this increase in M2 is rather less than the reduction obtained by the use of 
backs weep. 

Illustrative Exercise. Consider a centrifugal compressor design which assumes 
the previous design data (Figures 7.13 and 7.14), together with S; = 0" and a blade 
speed such that Mu = 1.6. From Figure 7.13 the pressure ratio at this point is 6.9 
and, from Figure 7.14, the value of M2 = 1.27. Choosing an impeller with a back 
sweep angle, B; = 30", the pressure ratio is 5.0 from Figure 7.13 at the same value 
of Mu. So, to restore the original pressure ratio of 6.9 the blade Mach number must 
be increased to Mu = 1.8. At this new condition a value of M2 = 1.125 is obtained 
from Figure 7.14, a significant reduction from the original value. 
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The absolute flow angle can now be found from the exit velocity triangle, 
Figure 7.7: 

With CT = 0.9, 42 = 0.375 then, for 
with 
range. 

Kinetic energy leaving the impeller 

= o", the value of a2 = 67.38". Similarly, 
= 30°, the value of 012 = 62", i.e. both values of a2 are within the prescribed 

According to Van den Braembussche (1985) "the kinetic energy available at the 
diffuser inlet easily amounts to more than 50 per cent of the total energy added by 
the impeller". From the foregoing analysis it is not so difficult to determine whether 
or not this statement is true. If the magnitude of the kinetic energy is so large then 
the importance of efficiently converting this energy into pressure energy can be 
appreciated. The conversion of the kinetic energy to pressure energy is considered 
in the following section on diffusers. 

The fraction of the kinetic energy at impeller exit to the specific work input is 

(7.30) 1 2  r E  = ~ c ~ / A W ,  

where 

= ( z ) 2 ( % . z ) .  2 

Define the total-to-total efficiency of the impeller as 

(7.31) 

h02 - ho1 h02 - hol  AW 

where p r  is the total-to-total pressure ratio across the impeller, then 

(7.33) 

Substituting eqns. (7.30), (7.31) and (7.32) into eqn. (7.30) we get 

1 
( M 2 / M U ) 2  1 + - ( p ! y - ' ) ' y  - 1) 

2 4 1  -&tanBB;)[l+ i ( y -  1)M;I' 
r E  = WJ; - - i T I 1  1 (7.34) 

2a(l  -&tan&) 
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Exercise. Determine rE assuming that & = 0, (I = 0.9, q~ = 0.8, pr = 4 and 
y = 1.4. 
N B. It is very convenient to assume that Figures 7.13 and 7.14 can be used 

to derive the values of the Mach numbers M u  and M2. From Figure 7.13 we get 
Mu = 1.3 and from Figure 7.14, M2 = 1.096. Substituting values into eqn. (7.34), 

Calculations of r~ at other pressure ratios and sweepback angles show that its value 
remains about 0.51 provided that (I and ql do not change. 

EXAMPLE 7.4. Air at a stagnation temperature of 22°C enters the impeller of a 
centrifugal compressor in the axial direction. The rotor, which has 17 radial vanes, 
rotates at 15,000 rev/min. The stagnation pressure ratio between diffuser outlet and 
impeller inlet is 4.2 and the overall efficiency (total-to-total) is 83%. Determine the 
impeller tip radius and power required to drive the compressor when the mass flow 
rate is 2 kg/s and the mechanical efficiency is 97%. Given that the air density at 
impeller outlet is 2 kg/m3 and the axial width at entrance to the diffuser is 11 mm, 
determine the absolute Mach number at that point. Assume that the slip factor 
(I, = 1 - 2/Z, where Z is the number of vanes. 

(For air take y = 1.4 and R = 0.287 kJ/(kg K).) 

Solution. From eqn. (7.la) the specific work is 
2 AW = h02 - hol = U ~ C Q ~  = p,U2 

since c ~ l  = 0. Combining eqns. (7.20) and (7.21) with the above and rearranging 
gives 

c T rb-l)/Y - 1) 

u s q c  

p 01( u; = 

wherer=p03/po1=4.2; C p  = yR/ (y -  1)=1.005kJ/kg k ;a ,= l  -2/17=0.8824. 

1005 x 295(4.2°.286 - 1) 
0.8824 x 0.83 

Therefore U: = = 20.5 x 104. 

Therefore U2 = 452rn/s. 
The rotational speed is 

i2 = 15, OOO x 2n/60 = 1570rad/s. 

Thus, the impeller tip radius is 

r, = U2/R = 45211570 = 0.288 m. 

The actual shaft power is obtained from 

Watt = W c / q m  = hAW/qm = 2 x 0.8824 x 4522/0.97 

= 373 kW. 
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Although the absolute Mach number at the impeller tip can be obtained almost 
directly from eqn. (7.28) it may be instructive to find it from 

2 2 112 where c2 = (CQ2 + c,2) 

c,2 = liz/(p22rrrtb2) = 2/(2 x 2rr x 0.288 x 0.01 1 )  = 50.3 m / s  

ce2 = 0, U2 = 400 m / ~ .  

Therefore 

Since 

c2 = J(40O2 + 50.32) = 402.5 m / s .  

h02 = hol + AW 

h2 = hol + AW - ;c:. 

Therefore T2 = To1 + (AW - ;c2)/Cp = 295 + (18.1 - 8.1)104/1005 

= 394.5 K. 

Hence, 
402.5 

M2 = = 1.01. 
J(402 x 394.5) 

The diffuser system 

Centrifugal compressors and pumps are, in general, fitted with either a vaneless 
or a vaned diffuser to transform the kinetic energy at impeller outlet into static 
pressure. 

Vaneless diffusers 

The simplest concept of diffusion in a radial flow machine is one where the swirl 
velocity is reduced by an increase in radius (conservation of angular momentum) and 
the radial velocity component is controlled by the radial flow area. From continuity, 
since m = PAC, = 2nrbpc,, where b is the width of passage, then 

(7.30) 

Assuming the flow is frictionless in the diffuser, the angular momentum is constant 
and CQ = ce2r2/r. Now the tangential velocity component CQ is usually very much 
larger than the radial velocity component c,; therefore, the ratio of inlet to outlet 
diffuser velocities cz/c3 is approximately r3/r2. Clearly, to obtain useful reduc- 
tions in velocity, vaneless diffusers must be large. This may not be a disadvantage 
in industrial applications where weight and size may be of secondary importance 
compared with the cost of a vaned diffuser. A factor in favour of vaneless diffusers 
is the wide operating range obtainable, vaned diffusers being more sensitive to flow 
variation because of incidence effects. 

For a parallel-walled radial diffuser in incompressible flow, the continuity of mass 
flow equation requires that rc, is constant. Assuming that rce remains constant, then 
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the absolute flow angle a2 = tan-'(c~/c,) is also constant as the fluid is diffused 
outwards. Under these conditions the flow path is a logarirhmic spiral. The relation- 
ship between the change in the circumferential angle A0 and the radius ratio of the 
flow in the diffuser can be found from consideration of an element of the flow geom- 
etry shown in Figure 7.15. For an increment in radius dr  we have, rd0  = dr tan  CY^ 
which, upon integration, gives: 

A0 = 03 - e2 = t a n ~ ~ ~  In (:)- (7.31) 

Values of A0 are shown in Figure 7.16 plotted against r 3 / ~  for several values of 
(YZ. It can be readily seen that when ( ~ 2  > 70", rather long flow paths are implied, 
friction losses will be significant and the diffuser efficiency will be low. 

Vaned diffusers 

In the vaned diffuser the vanes are used to remove the swirl of the fluid at a 
higher rate than is possible by a simple increase in radius, thereby reducing the 
length of flow path and diameter. The vaned diffuser is advantageous where small 
size is important. 

There is a clearance between the impeller and vane leading edges amounting to 
about 0.0402 for pumps and between 0.102 to 0.202 for compressors. This space 

FIG. 7.15. Element of flow path in radial diffuser. 
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FIG. 7.1 6. Flow path data for paralled-walled radial diffuser (incompressible flow). 

constitutes a vaneless diffuser and its functions are (i) to reduce the circumferential 
pressure gradient at the impeller tip, (ii) to smooth out velocity variations between 
the impeller tip and vanes, and (iii) to reduce the Mach number (for compressors) 
at entry to the vanes. 

The flow follows an approximately logarithmic spiral path to the vanes after 
which it is constrained by the diffuser channels. For rapid diffusion the axis of 
the channel is straight and tangential to the spiral as shown. The passages are 
generally designed on the basis of simple channel theory with an equivalent angle 
of divergence of between 8deg and 12deg to control separation. (See remarks in 
Chapter 2 on straightwalled diffuser efficiency.) 

In many applications of the centrifugal compressor, size is important and the 
outside diameter must be minimised. With a vaned diffuser the channel length can 
be crucial when considering the final size of the compressor. Clements and Artt 
(1988) considered this and performed a series of experiments aimed at determining 
the optimum diffuser channel length to width ratio, L/W.  They found that, on the 
compressor they tested, increasing L/W.  beyond 3.7 did not produce any improve- 
ment in the performance, the pressure gradient at that point having reached zero. 
Another significant result found by them was that the pressure gradient in the diffuser 
channel when L/W > 2.13 was no greater than that which could be obtained in a 
vaneless diffuser. Hence, removing completely that portion of the diffuser after this 
point would yield the same pressure recovery as with the full diffuser. 

The number of diffuser vanes can also have a direct bearing on the efficiency 
and surge margin of the compressor. It is now widely accepted that surge occurs at 
higher flow rates when vaned diffusers are used than when a simple vaneless diffuser 
design is adopted. Came and Herbert (1980) quoted an example where a reduction 
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of the number of diffuser vanes from 29 to 13 caused a significant improvement in 
the surge margin. Generally, it is accepted that it is better to have fewer diffuser 
vanes than impeller iranes in order to achieve a wide range of surge-free flow. 

With several adjacent diffuser passages sharing the gas from one impeller passage, 
the uneven velocity distribution from that passage results in alternate diffuser 
passages being either starved or choked. This is an unstable situation leading to 
flow reversal in the passages and to surge of the compressor. When the number of 
diffuser passages is less than the number of impeller passages a more uniform total 
flow results. 

Choking in a compressor stage 

When the through flow velocity in a passage reaches the speed of sound at some 
cross-section, the flow chokes. For the stationary inlet passage this means that no 
further increase in mass flow is possible, either by decreasing the back pressure or 
by increasing the rotational speed. Now the choking behaviour of rotating passages 
differs from that of stationary passages, making separate analyzes for the inlet, 
impeller and diffuser a necessity. For each component a simple, one-dimensional 
approach is used assuming that all flow processes are adiabatic and that the fluid is 
a perfect gas. 

Inlet 

Choking takes place when c2 = a2 = yRT. Since ho = h + $c2, then C,To = 
C,T + $yRT and 

2 - 1  T 
- = ( I + $ - )  =- 
TO y +  1 '  

Assuming the flow in the inlet is isentropic, 

and when c = a, M = 1, so that 

1/b-1)  

(7.32) 

(7.33) 

Substituting eqns. (7.31), (7.32) into the continuity equation, m / A  = pc = 
~ ( Y R T ~ ~ ,  then 

(7.34) 

Thus, since p ~ ,  a0 refer to inlet stagnation conditions which remain unchanged, the 
mass flow rate at choking is constant. 
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Impeller 

In the rotating impeller passages, flow conditions are referred to the factor I = 
h + i ( w 2  - U 2 ) ,  which is constant according to eqn. (7.2). At the impeller inlet 
and for the special case c ~ l  = 0, note that I1 = hl + %? = hol. When choking 
occurs in the impeller passages it is the relative veloczty w which equals the 
speed of sound at some section. Now w2 = u2 = yRT and To1 = T + ( yRT/2Cp) - 
( u 2 / 2 C P  ), therefore 

(7.34) 

Assuming isentropic flow, p / p ~ l  = ( T / T O ~ ) ' / ( ~ - ' ) .  Using the continuity equation, 

(7.36) 

If chocking occurs in the rotating passages, eqn. (7.36) indicates that the mass flow 
is dependent on the blade speed. As the speed of rotation is increased the compressor 
can accept a greater mass flow, unless choking occurs in some other component of 
the compressor. That the choking flow in an impeller can vary, depending on blade 
speed, may seem at first rather surprising; the above analysis gives the reason for 
the variation of the choking limit of a compressor. 

Difiser 

The relation for the choking flow, eqn. (7.34) holds for the diffuser passages, 
it being noted that stagnation conditions now refer to the diffuser and not the 
inlet. Thus 

(7.37) 

Clearly, stagnation conditions at diffuser inlet are dependent on the impeller 
process. To find how the choking mass flow limit is affected by blade speed it 
is necessary to refer back to inlet stagnation conditions. 

Assuming a radial bladed impeller of efficiency qi then, 

7'02s - To1 = qi(T02 - Tal) = qiaUi/Cp.  

Hence 
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and 

T02/T01 = tl + aU;/(C,Tol)]. 

Now 

therefore, 

In this analysis it should be noted that the diffuser process has been assumed to 
be isentropic but the impeller has not. Eqn. (7.38) indicates that the choking mass 
flow can be varied by changing the impeller rotational speed. 
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Problems 
NOTE. In problems 2 to 6 assume y and R are 1.4 and 287J/(kg”C) respectively. In 

problems 1 to 4 assume the stagnation pressure and stagnation temperature at compressor 
entry are 101.3 kPa and 288 K respectively.) 

1. A cheap radial-vaned centrifugal fan is required to provide a supply of pressurised air 
to a furnace. The specification requires that the fan produce a total pressure rise equivalent 
to 7.5 cm of water at a volume flow rate of 0.2 m3/s. The fan impeller is fabricated from 30 
thin sheet metal vanes, the ratio of the passage width to circumferential pitch at impeller exit 
being specified as 0.5 and the ratio of the radial velocity to blade tip speed as 0.1. 

Assuming that the overall isentropic efficiency of the fan is 0.75 and that the slip can be 
estimated from Stanitz’s expression, eqn. (7.18a), determine 
(1) the vane tip speed; 
(2) the rotational speed and diameter of the impeller; 
(3) the power required to drive the fan if the mechanical efficiency is 0.95; 
(4) the specific speed. 

For air assume the density is l.2kg/m3. 
2. The air entering the impeller of a centrifugal compressor has an absolute axial velocity 

of 100 d s .  At rotor exit the relative air angle measured from the radial direction is 26“ 36, 
the radial component of velocity is 1 2 0 d s  and the tip speed of the radial vanes is 5 0 0 d s .  
Determine the power required to drive the compressor when the air flow rate is 2.5 kg/s and 
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the mechanical efficiency is 95%. If the radius ratio of the impeller eye is 0.3, calculate 
a suitable inlet diameter assuming the inlet flow is incompressible. Determine the overall 
total pressure ratio of the compressor when the total-to-total efficiency is 80%, assuming the 
velocity at exit from the diffuser is negligible. 

3. A centrifugal compressor has an impeller tip speed of 366 m/s .  Determine the absolute 
Mach number of the flow leaving the radial vanes of the impeller when the radial component 
of velocity at impeller exit is 30.5 m / s  and the slip factor is 0.90. Given that the flow area at 
impeller exit is 0.1 m2 and the total-to-total efficiency of the impeller is 90%, determine the 
mass flow rate. 

4. The eye of a centrifugal compressor has a hubhip radius ratio of 0.4, a maximum 
relative flow Mach number of 0.9 and an absolute flow which is uniform and completely 
axial. Determine the optimum speed of rotation for the condition of maximum mass flow 
given that the mass flow rate is 4.536 kg/s. Also, determine the outside diameter of the eye 
and the ratio of axial velocityhlade speed at the eye tip. Figure 7.4 may be used to assist 
the calculations. 

5. An experimental centrifugal compressor is fitted with free-vortex guide vanes in order 
to reduce the relative air speed at inlet to the impeller. At the outer radius of the eye, air 
leaving the guide-vanes has a velocity of 91.5 m/s at 20 deg to the axial direction. Determine 
the inlet relative Mach number, assuming frictionless flow through the guide vanes, and the 
impeller total-to-total efficiency. 

Other details of the compressor and its operating conditions are: 

Impeller enpy,tip diameter, 0.457 m 
Impeller exit tip diameter, 0.762 m 
Slip factor 0.9 
Radial component of velocity at im ller exit, 53 .4ds  
Rotational speed of im ller, 11 d e v l m i n  
Static pressure at impeKr exit, 223 kPa (abs.) 

6. A centrifugal compressor has an impeller with 21 vanes, which are radial at exit, a 
vaneless diffuser and no inlet guide vanes. At inlet the stagnation pressure is l00kPa abs. 
and the stagnation temperature is 300K. 

(i) Given that the mass flow rate is 2.3 kg/s, the impeller tip speed is 500 m / s  and the 
mechanical efficiency is 96%, determine the driving power on the shaft. Use eqn. (7.18a) 
for the slip factor. 

(ii) Determine the total and static pressures at diffuser exit when the velocity at that position 
is lOOm/s. The total to total efficiency is 82%. 

(iii) The reaction, which may be defined as for an axial flow compressor by eqn. (5.10b), 
is 0.5, the absolute flow speed at impeller entry is 150m/s and the diffuser efficiency 
is 84%. Determine the total and static pressures, absolute Mach number and radial 
component of velocity at the impeller exit. 

(iv) Determine the total-to-total efficiency for the impeller. 
(v) Estimate the inletloutlet radius ratio for the diffuser assuming the conservation of angular 

(vi) Find a suitable rotational speed for the impeller given an impeller tip width of 6mm. 
7. A centrifugal pump is used to raise water against a static head of 18.0m. The suction 

and delivery pipes, both 0.15 m diameter, have respectively, friction head losses amounting to 
2.25 and 7.5 times the dynamic head. The impeller, which rotates at 1450 rev/min, is 0.25 m 
diameter with 8 vanes, radius ratio 0.45, inclined backwards at = 60deg. The axial width 
of the impeller is designed so as to give constant radial velocity at all radii and is 20mm 
at impeller exit. Assuming an hydraulic efficiency of 0.82 and an overall efficiency of 0.72, 
determine 

momentum. 
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(i) the volume flow rate; 
(ii) the slip factor using Busemann's method; 

(iii) the impeller vane inlet angle required for zero incidence angle; 
(iv) the power required to drive the pump. 

8. A centrifugal pump delivers 50 dm3/s of water at an impeller speed of 1450 revlmin. 
The impeller has eight vanes inclined backwards to the direction of rotation with an angle at 
the tip of ,5" = 60". The diameter of the impeller is twice the diameter of the shroud at inlet 
and the magnitude of the radial component of velocity at impeller exit is equal to that of 
the axial component of velocity at the inlet. The impeller entry is designed for the optimum 
flow condition to resist cavitation (see eqn. (7.8)), has a radius ratio of 0.35 and the blade 
shape corresponds to a well tested design giving a cavitation coefficient a b  = 0.3. 

Assuming that the hydraulic efficiency is 70 per cent and the mechanical efficiency is 
90 per cent, determine: 
(1) the diameter of the inlet; 
( 2 )  the net positive suction head; 
(3) the impeller slip factor using Wiesner's formula; 
(4) the head developed by the pump; 
( 5 )  the power input. 

Also calculate values for slip factor using the equations of Stodola and Busemann, 
comparing the answers obtained with the result found from Wiesner's equation. 

9. (a) Write down the advantages and disadvantages of using free-vortex guide vanes 
upstream of the impeller of a high pressure ratio centrifugal compressor. What other sorts of 
guide vanes can be used and how do they compare with free-vortex vanes? 

(b) The inlet of a centrifugal air compressor has a shroud diameter of 0.2m and a hub 
diameter of 0.105 m. Free-vortex guide vanes are fitted in the duct upstream of the impeller 
so that the flow on the shroud at the impeller inlet has a relative Mach number, M r I  = 1.0, 
an absolute flow angle of a1 = 20" and a relative flow angle = 55". At inlet the stagnation 
conditions are 288 K and 1 6  Pa. 

(1) the rotational speed of the impeller; 
(2) the air mass flow. 

point slip factor of 0.9. Assuming an impeller efficiency of 0.9, determine: 
(1) the shaft power input; 
(2) the impeller pressure ratio. 

Assuming frictionless flow into the inlet, determine: 

(c) At exit from the radially vaned impeller, the vanes have a radius of 0.16 m and a design 



CHAPTER 8 

Radial Flow Gas Turbines 
I like work; it fascinates me, I can sit and look at it for hours. (JEROME 
K. JEROME, Three Men in a Boat.) 

Introduction 
The radial flow turbine has had a long history of development being first conceived 

for the purpose of producing hydraulic power over 170 years ago. A French engineer, 
Fourneyron, developed the first commercially successful hydraulic turbine (c .  1830) 
and this was of the radial-outflow type. A radial-injow type of hydraulic turbine 
was built by Francis and Boyden in the U.S.A. (c. 1847) which gave excellent 
results and was highly regarded. This type of machine is now known as the Francis 
turbine, a simplified arrangement of it being shown in Figure 1.1. It will be observed 
that the flow path followed is from the radial direction to what is substantially an 
axial direction. A flow path in the reverse direction (radial-outflow), for a single 
stage turbine anyway, creates several problems one of which (discussed later) is 
low specific work. However, as pointed out by Shepherd (1956) radial-outflow 
steam turbines comprising many stages have received considerable acceptance in 
Europe. Figure 8.1 from Kearton (195 l) ,  shows diagrammatically the Ljungstrom 
steam turbine which, because of the tremendous increase in specific volume of 
steam, makes the radial-outflow flow path virtually imperative. A unique feature of 
the Ljungstroom turbine is that it does not have any stationary blade rows. The two 
rows of blades comprising each of the stages rotate in opposite directions so that 
they can both be regarded as rotors. 

The inward-flow radial (IFR) turbine covers tremendous ranges of power, rates of 
mass flow and rotational speeds, from very large Francis turbines used in hydroelec- 
tric power generation and developing hundreds of megawatts down to tiny'closed 
cycle gas turbines for space power generation of a few kilowatts. 

The IFR turbine has been, and continues to be, used extensively for powering 
automotive turbocharges, aircraft auxiliary power units, expansion units in gas lique- 
faction and other cryogenic systems and as a component of the small (1OkW) gas 
turbines used for space power generation (Anon. 1971). It has been considered 
for primary power use in automobiles and in helicopters. According to Huntsman 
(1992), studies at Rolls-Royce have shown that a cooled, high efficiency IFR turbine 
could offer significant improvement in performance as the gas generator turbine of a 
high technology turboshaft engine. What is needed to enable this type of application 
are some small improvements in current technology levels! However, designers of 
this new required generation of IFk turbines face considerable problems, particularly 

236 
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FIG. 8.1. Ljungstrom type outward flow radial turbine (adapted from Kearton(2)). 

in the development of advanced techniques of rotor cooling or of ceramic, shock- 
resistant rotors. 

As indicated later in this chapter, over a limited range of specific speed, LFR 
turbines provide an efficiency about equal to that of the best axial-flow turbines. 
The significant advantages offered by the IFR turbine compared with the axial-flow 
turbine is the greater amount of work that can be obtained per stage, the ease of 
manufacture and its superior ruggedness. 

Types of inward flow radial turbine 

In the centripetal turbine energy is transferred from the fluid to the rotor in passing 
from a large radius to a small radius. For the production of positive work the product 
of Uce at entry to the rotor must be greater than UCQ at rotor exit (eqn. (2.12b)). 
This is usually arranged by imparting a large component of tangential velocity at 
rotor entry, using single or multiple nozzles, and allowing little or no swirl in the 
exit absolute flow. 

Cantilever turbine 

Figure 8.2a shows a cantilever IFX turbine where the blades are limited to the 
region of the rotor tip, extending from the rotor in the axial direction. In practice 
the cantilever blades are usually of the impulse type (Le. low reaction), by which 
it is implied that there is little change in relative velocity at inlet and outlet of the 
rotor. There is no fundamental reason why the blading should not be of the reaction 
type. However, the resulting expansion through the rotor would require an increase 
in flow area. This extra flow area is extremely difficult to accommodate in a small 
radial distance, especially as the radius decreases through the rotor row. 

Aerodynamically, the cantilever turbine is similar to an axial-impulse turbine and 
can even be designed by similar methods. Figure 8.2b shows the velocity triangles 
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FIG. 8.2. Arrangement of cantilever turbine and velocity triangles at the design point. 

at rotor inlet and outlet. The fact that the flow is radially inwards hardly alters the 
design procedure because the blade radius ratio ~ / r 3  is close to unity anyway. 

The 90 degree IFR turbine 

Because of its higher structural strength compared with the cantilever turbine, the 
90 degree IFR turbine is the preferred type. Figure 8.3 shows a typical layout of a 
90 degree IFR turbine; the inlet blade angle is generally made zero, a fact dictated 
by the material strength and often high gas temperature. The rotor vanes are subject 
to high stress levels caused by the centrifugal force field, together with a pulsating 
and often unsteady gas flow at high temperatures. Despite possible performance 
gains the use of non-radial (or swept) vanes is generally avoided, mainly because 
of the additional stresses which arise due to bending. Nevertheless, despite this 
difficulty, Meitner and Glassman (1983) have considered designs using sweptback 
vanes in assessing ways of increasing the work output of IFR turbines. 

From station 2 the rotor vanes extend radially inward and turn the flow into the 
axial direction. The exit part of the vanes, called the exducer, is curved to remove 
most if not all of the absolute tangential component of velocity. The 90 degree 
IFR turbine or centripetal turbine is very similar in appearance to the centrifugal 
compressor of Chapter 7 but with the flow direction and blade motion reversed. 

The fluid discharging from the turbine rotor may have a considerable velocity 
c3 and an axial diffuser (see Chapter 2) would normally be incorporated to recover 
most of the kinetic energy, $c;, which would otherwise be wasted. In hydraulic 
turbines (discussed in Chapter 9) a diffuser is invariably used and is called the 
draught tube. 

In Figure 8.3 the velocity triangles are drawn to suggest that the inlet relative 
velocity, w2, is radially inward, i.e. zero incidence flow, and the absolute flow 
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FIG. 8.3. Layout and velocity diagrams for a 90 deg inward flow radial turbine at the 
nominal design point. 

at rotor exit, c3, is axial. This configuration of the velocity triangles, popular with 
designers for many years, is called the nominal design condition and will be consid- 
ered in some detail in the following pages. Following this the so-called optimum 
eficiency design will be explained. 

Thermodynamics of the 90 deg IFR turbine 

The complete adiabatic expansion process for a turbine comprising a nozzle blade 
row, a radial rotor followed by a diffuser corresponding to the layout of Figure 8.3, 
is represented by the Mollier diagram shown in Figure 8.4. In the turbine, frictional 
processes cause the entropy to increase in all components and these irreversibilities 
are implied in Figure 8.4. 

Across the nozzle blades the stagnation enthalpy is assumed constant, / ~ l  = h02 
and, therefore, the static enthalpy drop is, 

(8.1) 

corresponding to the static pressure change from p1 to the lower pressure p2. The 
ideal enthalpy change (hl - hz,) is between these same two pressures but at constant 
entropy. 

In Chapter 7 it was shown that the rothalpy, I = bel - $ U 2 ,  is constant for an 
adiabatic irreversible flow process, relative to a rotating component. For the rotor 

1 2  2 hl - h2 = 5(c2 - cl) 
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FIG. 8.4. Mollier diagram for a 9Odeg inward flow radial turbine and diffuser (at the 
design point). 

of the 90 deg IFR turbine, 

I 2  1 2  
h02 re1 - 2 u2 = h03 re1 - 5 u3 

Thus, as hOrel = h + i w 2 ,  

(8.2) 

In this analysis the reference point 2 (Figure 8.3) is taken to be at the inlet radius 
r2 of the rotor (the blade tip speed U2 = Qr2). This implies that the nozzle irre- 
versibilities are lumped together with any friction losses occumng in the annular 
space between nozzle exit and rotor entry (usually scroll losses are included as well). 

Across the diffuser the stagnation enthalpy does not change, h 3  = b, but the 
static enthalpy increases as a result of the velocity diffusion. Hence, 

(8.3) 

1 2  2 h2 - h3 = 3[(U2 - U2) - (w; - w:)] 

1 2  2 h4 - h3 = 3(c3 - c4) 

The specific work done by the fluid on the rotor is 

A W  = hol - h ~ 3  = U ~ C Q ~  - U3~03  (8.4) 

As hoi = h02, 

1 2  2 A W  = h 2  - h 3  = h2 - h3 + Z ( C ~  - ~ 3 )  

= +[(u; - u:) - (w; - w:) + (c; - c;)] (8.4a) 

after substituting eqn. (8.2). 
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Basic design of the rotor 

Each term in eqn. (8.4a) makes a contribution to the specific work done on the 
rotor. A significant contribution comes from the first term, namely i ( U i  - U:), 
and is the main reason why the inward flow turbine has such an advantage over 
the outward flow turbine where the contribution from this term would be negative. 
For the axial flow turbine, where U2 = U1, of course no contribution to the specific 
work is obtained from this term. For the second term in eqn. (8.4a) a positive 
contribution to the specific work is obtained when w3 > w2. In fact, accelerating 
the relative velocity through the rotor is a most useful aim of the designer as this 
is conducive to achieving a low loss flow. The third term in eqn. (8.4a) indicates 
that the absolute velocity at rotor inlet should be larger than at rotor outlet so as to 
increase the work input to the rotor. With these considerations in mind the general 
shape of the velocity diagram shown in Figure 8.3 results. 

Nominal Design 

The nominal design is defined by a relative flow of zero incidence at rotor inlet 
(i.e. w2 = c , ~ )  and an absolute flow at rotor exit which is axial (i.e. c3 = c,.). Thus, 
from eqn. (8.4), with c03 = 0 and ~ $ 2  = U2, the specific work for the nominal design 
is simply 

A W  = U z .  (8.4b) 

EXAMPLE 8.1. The rotor of an IFR turbine, which is designed to operate at the 
nominal condition, is 23.76cm in diameter and rotates at 38 140rev/min. At the 
design point the absolute flow angle at rotor entry is 72deg. The rotor mean exit 
diameter is one half of the rotor diameter and the relative velocity at rotor exit is 
twice the relative velocity at rotor inlet. 

Determine the relative contributions to the specific work of each of the three 
terms in eqn. (8.4a). 

Solution. The blade tip speed is U2 = rrND2/60 = IT x 38 140 x 0.2376160 = 

Refemng toFigure 8.3, w2 = U2 cot ( ~ 2  = 154.17 d s ,  andc2 = U2 sin  CY^ =498.9 d s .  
474.5 d s .  

2 c: = wi - U i  = (2 x 154.17)2 - (i x 474.5)2 = 38786m2/s . 

2 2 Hence, (U; - U;)=U;(l - 1/4)=168863m2/s , w: - wi=3 x wi=71 305m2/s 
and ci - c: = 210 115 m2/s2. Thus, summing the values of the three terms and 
dividing by two, we get A W  = 225 142m2/s . 

The fractional inputs from each of the three terms are: for the U 2  terms, 0.375; 
for the w2 terms, 0.158; for the c2 terms, 0.467. 

Finally, as a numerical check, the specific work is, A W  = U i  = 474S2 = 225 150 
m2/s2 which, apart from some rounding erors, agrees with the above computations. 

2 
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Spouting velocity 

The term spouting velocity co (originating from hydraulic turbine practice) is 
defined as that velocity which has an associated kinetic energy equal to the isen- 
tropic enthalpy drop from turbine inlet stagnation pressure pol to the final exhaust 
pressure. The exhaust pressure here can have several interpretations depending upon 
whether total or static conditions are used in the related efficiency definition and 
upon whether or not a diffuser is included with the turbine. Thus, when no diffuser 
is used 

;c: = h o l  - ho3ss (8.5a) 

(8.5b) 

for the total and static cases respectively. 

kinetic energy, and with ce;? = U2, 
In an ideal (frictionless) radial turbine with complete recovery of the exhaust 

AW = U; = 

U 2  . - = 0.707 . .  
CO 

At the best efficiency point of actual (frictional) 90 deg IFR turbines it is found that 
this velocity ratio is, generally, in the range 0.68 < U ~ / Q  < 0.71. 

Nominal design point efficiency 

Referring to Figure 8.4, the total-to-static efficiency in the absence of a diffuser, 
is defined as 

The passage enthalpy losses can be expressed as a fraction (<) of the exit kinetic 
energy relative to the nozzle row and the rotor, i.e. 

(8.7a) 

(8.7b) 

for the rotor and nozzles respectively. It is noted that for a constant pressure process, 
ds = dh/T,  hence the approximation, 

h3s - h3ss (h2 - h ) ( T 3 / T 2 )  

Substituting for the enthalpy losses in eqn. (8.6), 
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From the design point velocity triangles, Figure 8.3, 

c2 = U ~ C O S ~ C ~ ~ , W ~  = U ~ C O S ~ C ~ ~ , C ~  = u3cotp3,  A W  = u;. 
Thus substituting all these expressions in eqn. (8.8) and noting that U3 = U2r3/r2, 
then 

Usually r3 and 8 3  are taken to apply at the arithmetic mean radius, i.e. r3 = 4(r3t + 
r3h). The temperature ratio (T3/T2) in eqn. (8.9) can be obtained as follows. 

At the nominal design condition, refemng to the velocity triangles of Figure 8.3, 
w: - U: = c:, and so eqn. (8.2) can be rewritten as 

(8.2a) 

This particular relationship, in the form 1 2  = h02rel - i U :  = ho3 can be easily iden- 
tified in Figure 8.4. 

Again, referring to the velocity triangles, w2 = U2 cot a2 and c3 = U3 cot 83, a 
useful alternative form to eqn. (8.2a) is obtained, 

1 2  2 2  h2 - h3 = ?(U2 - w2 + c3). 

h2 - 123 = ~ u ; [ ( I  - cot2a2) + (r3/r2)cot283], (8.2b) 

where U3 is written as U2r3/r2. For a perfect gas the temperature ratio T3/T2 can 
be easily found. Substituting h = C,T = yRT/(y - 1) in eqn. (8.2b) 

where a2 = (yRT2)1/2 is the sonic velocity at temperature Tz. 

numerical value of qts and so it is often ignored in calculations. Thus, 
Generally this temperature ratio will only have a very minor effect upon the 

is the expression normally used to determine the total-to-static efficiency. An alter- 
native form for q r s  can be obtained by rewriting eqn. (8.6) as 

hol - ho3 - (hol - h3ss) - (ho3 - h3) - (h3 - h3s) - (h3s - h3ss) - V t s  = 
hol - h3ss (hol - h3ss) 

where the spouting velocity co is defined by, 
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which can be obtained as follows. Writing 
A simple connection exists between total-to-total and total-to-static efficiency 

A W  = u,2 = VtsAWis = ‘ ~ t s ( h ~ l  - h3ss)  

then, 

1 - - AW 

4 ‘It t  = AWis - &$ 1 --__ 
‘ I ts  2AW 

. _ -  1 1  4 - .. 
rlts rlts 2AW 

(8.12) 

EXAMPLE 8.2. Performance data from the CAV type 01 radial turbine (Benson 
el al. 1968) operating at a pressure ratio pol/p3 of 1.5 with zero incidence relative 
flow onto the rotor, is presented in the following form: 

ms(deg. K)’12 

N/JTol  = 2410, (rev/min)/(deg. K)1/2 

lizJTol/pol = 1.44 x 

r/pol = 4.59 x m3 

where r is the torque, corrected for bearing friction loss. The principal dimensions 
and angles, etc. are given as follows: 

Rotor inlet diameter, 
Rotor inlet width, 
Rotor mean outlet diameter, 
Rotor outlet annulus width, 
Rotor inlet angle, 
Rotor outlet angle, 
Number of rotor blades, 
Nozzle outlet diameter, 
Nozzle outlet angle, 
Nozzle blade number. 

72.5 mm 

34.4 mm 
20.1 mm 
0 deg 

53 deg 
10 
74.1 mm 
80 deg 
15 

7.14 mm 

The turbine is “cold tested” with air heated to 400 K (to prevent condensation erosion 
of the blades). At nozzle outlet an estimate of the flow angle is given as 71 deg and 
the corresponding enthalpy loss coefficient is stated to be 0.065. Assuming that the 
absolute flow at rotor exit is without swirl and uniform, and the relative flow leaves 
the rotor without any deviation, determine the total-to-static and overall efficiencies 
of the turbine, the rotor enthalpy loss coefficient and the rotor relative velocity ratio. 

Solution. The data given is obtained from an actual turbine test and, even though 
the bearing friction loss has been corrected, there is an additional reduction in 
the specific work delivered due to disk friction and tip leakage losses, etc. The 
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rotor speed N = 2410.\/400 = 48 200 rev/min, the rotor tip speed U2 = nND2/6O = 
1 8 3 d s  and hence the specific work done by the rotor AW = U i  = 33.48kJkg. 
The corresponding isentropic total-to-static enthalpy drop is 

hi - h3ss = CpToi[l - ( P ~ / P O ~ ) ( ~ - ~ ) / ~ I  

= 1.005 x 400[1 - (1/1.5)1/3.5] = 43.97kJkg 

Thus, the total-to-static efficiency is 

The actual specific work output to the shaft, after allowing for the bearing friction 
loss, is 

= 4.59 x 

= 32.18kJkg 

x 2410 x n x 400/(30 x 1.44 x 

Thus, the turbine overall total-to-static efficiency is 

By rearranging eqn. (8.9a) the rotor enthalpy loss coefficient can be obtained: 

2 . 2  
<R = {2(l/qts - 1) - <N cosec2 a2}(r2/r3av) s1n p3av - cos2 B3av 

= {2(1/0.7613 - 1) - 0.065 x 1.1186) x 4.442 x 0.6378 

0.3622 

= 1.208 

At rotor exit c3 is assumed to be uniform and axial. From the velocity triangles, 
Figure 8.3, 

ignoring blade to blade velocity variations. Hence, 

(8.13) 
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The lowest value of this relative velocity ratio occurs when 7-3 is least, i.e. r3 = 
r3h = (34.4 - 20.1)/2 = 7.15mm, so that 

= 0.475 x 2.904[0.4152 + 0.75362]1/2 = 1.19. 
( 2 ) M n  

The relative velocity ratio corresponding to the mean exit radius is, 

- = 0.475 x 2.904[1 + 0.75362]'/2 = 1.73. W3av 

W2av 

It is worth commenting that higher total-to-static efficiencies have been obtained 
in other small radial turbines operating at higher pressure ratios. Rodgers (1969) has 
suggested that total-to-static efficiencies in excess of 90% for pressure ratios up to 
five to one can be attained. Nusbaum and Kofskey (1969) reported an experimental 
value of 88.8% for a small radial turbine (fitted with an outlet diffuser, admittedly!) 
at a pressure ratio po, /p4  of 1.763. In the design point exercise given above the high 
rotor enthalpy loss coefficient and the corresponding relatively low total-to-static 
efficiency may well be related to the low relative velocity ratio determined on the 
hub. Matters are probably worse than this as the calculation is based only on a simple 
one-dimensional treatment. In determining velocity ratios across the rotor, account 
should also be taken of the effect of blade to blade velocity variation (outlined in this 
chapter) as well as viscous effects. The number of vanes in the rotor (ten) may be 
insufficient on the basis of Jamieson's theory* (1955) which suggests 18 vanes (i.e. 
Z ~ n  = 2rr tana2). For this turbine, at lower nozzle exit angles, eqn. (8.13) suggests 
that the relative velocity ratio becomes even less favourable despite the fact that the 
Jamieson blade spacing criterion is being approached. (For Z = 10, the optimum 
value of 012 is about 58deg.) 

Mach number relations 
Assuming the fluid is a perfect gas, expressions can be deduced for the important 

Mach numbers in the turbine. At nozzle outlet the absolute Mach number at the 
nominal design point is, 

c2 u2 

a2 a2 
M2 = - = - coseca2. 

Now, T2 = To1 - c2/(2C,) = To1 - $2 cosec' 4 C P .  

(8.14) 

* Included in a later part of this Chapter. 
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At rotor outlet the relative Mach number at the design point is defined by, 

M - - = -  w3 r3 u2 cosec 8 3 .  r3 - 
a3 r2a3 

Now, 
2 1 2  h3 = hol - (U2 + 7 ~ 3 )  = hol - ( U i  + $ U i  cot2 83) 

= ho1 - u; [ 1 + ; (; cot B 3 )  

Loss coefficients in 90 deg IFR turbines 

There are a number of ways of representing the losses in the passages of 90deg 
LFR turbines and these have been listed and inter-related by Benson (1970). As well 
as the nozzle and rotor passage losses there is, in addition, a loss at rotor entry at 
off-design conditions. This occurs when the relative flow entering the rotor is at 
some angle of incidence to the radial vanes so that it can be called an incidence 
loss. It is often referred to as a “shock loss” but this can be a rather misleading 
term because, usually, there is no shock wave. 

(i) Nozzle loss coefficients 

The enthalpy loss coefficient, which normally includes the inlet scroll losses, has 

(8.16) 

already been defined and is, 

<N = (h2 - h 2 s ) / ( ; C ; ) .  

Also in use is the velocity coeficient, 

d)N = c2/c2s (8.17) 

and the stagnation pressure loss coeficient, 

Y N  = (Pol - P 0 2 ) / ( P 0 2  - P 2 )  

which can be related, approximately, to <N by 

Y N  2: < N ( l +  ;yM;)  

Since, hol = h2 + icf = h2s + ;c :~ ,  then h2 - hfs = ;(ck - c:) and 

(8.18a) 

(8.1 8b) 

(8.19) 
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Practical values of 4~ for well-designed nozzle rows in normal operation are usually 
in the range 0.90 6 #N 6 0.97. 

(ii) Rotor loss coefficients 

At either the design condition (Figure 8.4), or at the off-design condition dealt 
with later (Figure 8.5), the rotor passage friction losses can be expressed in terms 
of the following coefficients. 

The enthalpy loss coefficient is, 

<R = (h3 - h3s) / ( iwz) .  

The velocity coefficient is, 

(8.20) 

$R = W3/W3s  (8.21) 

which is related to CR by 

(8.22) 

The normal range of 4 for well-designed rotors is approximately, 0.70 < 4~ < 0.85. 

Optimum efficiency considerations 

According to Abidat et al. (1992) the understanding of incidence effects on the 
rotors of radial and mixed flow turbines is very limited. Normally, IFR turbines are 
made with radial vanes in order to reduce bending stresses. In most flow analyses 
that have been published of the IFR turbine, including all earlier editions of this text, 
it was assumed that the average relative flow at entry to the rotor was radial, i.e. the 
incidence of the relative flow approaching the radial vanes was zero. The following 
discussion of the flow model will show that this is an over-simplification and the flow 
angle for optimum efficiency is significantly different from zero incidence. Rohlik 
(1975) had asserted that “there is some incidence angle that provides optimum $ow 
conditions at the rotor-blade leading edge. This angle has a value sometimes as high 
as 40” with a radial blade.” 

The flow approaching the rotor is assumed to be in the radial plane with a velocity 
c2 and flow angle a2 determined by the geometry of the nozzles or volute. Once the 
fluid enters the rotor the process of work extraction proceeds rapidly with reduction 
in the magnitude of the tangential velocity component and blade speed as the flow 
radius decreases. Corresponding to these velocity changes there is a high blade 
loading and an accompanying large pressure gradient across the passage from the 
pressure side to the suction side (Figure 8.5a). 

With the rotor rotating at angular velocity SZ and the entering flow assumed to 
be irrotational, a counter-rotating vortex (or relative eddy) is created in the relative 
flow, whose magnitude is -SZ, which conserves the irrotational state. The effect 
is virtually the same as that described earlier for the flow leaving the impeller of 
a centrifugal compressor, but in reverse (see Chapter 7 under the heading “Slip 
factor”). As a result of combining the incoming irrotational flow with the relative 
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FIG. 8.5. Optimum flow condition at inlet to the rotor. (a) Streamline flow at rotor inlet; p 
is for pressure surface, s is for suction surface. (b) Velocity diagram for the pitchwise 

averaged flow. 

eddy, the relative velocity on the pressure (or trailing) surface of the vane is reduced. 
Similarly, on the suction (or leading) surface of the vane it is seem that the relative 
velocity is increased. Thus, a static pressure gradient exists across the vane passage 
in agreement with the reasoning of the preceding paragraph. 

Figure 8.5b indicates the average relative velocity w2, entering the rotor at angle 
8 2  and giving optimum flow conditions at the vane leading edge. As the rotor vanes 
in IFR turbines are assumed to be radial, the angle 82 is an angle of incidence, and 
as drawn it is numerically positive. Depending upon the number of rotor vanes this 
angle may be between 20 and 40 degrees. The static pressure gradient across the 
passage causes a streamline shift of the flow towards the suction surface. Stream- 
function analyzes of this flow condition show that the streamline pattern properly 
locates the inlet stagnation point on the vane leading edge so that this streamline is 
approximately radial (see Figure 8.5a). It is reasoned that only at this flow condi- 
tion will the fluid move smoothly into the rotor passage. Thus, it is the averaged 
relative flow that is at an angle of incidence 82 to the vane. Whitfield and Baines 
( 1990) have comprehensively reviewed computational methods used in determining 
turbomachinery flows, including streamfunction methods. 
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Wilson and Jansen (1965) appear to have been the first to note that the optimum 
angle of incidence was virtually identical to the angle of “slip” of the flow leaving 
the impeller of a radially bladed centrifugal compressor with the same number of 
vanes as the turbine rotor. Following Whitfield and Baines (1990), an incidence 
factor, h, is defined, analogous to the slip factor used in centrifugal compressors: 

h = CQ2/U2. 

The slip factor most often used in determining the flow angle at rotor inlet is that 
devised by Stanitz (1952) for radial vaned impellers, so for the incidence factor 

A = 1 - 0 . 6 3 ~ / Z  RZ 1 - 212. (7.18a) 

Thus, from the geometry of Figure 8Sb, we obtain 

tan82 = (2/ZW2/crn2. (8.23) 

In order to determine the relative flow angle, 8 2 ,  we need to know, at least, the values 
of the flow coefficient, & = cm2/U2 and the vane number Z.  A simple method of 
determining the minimum number of vanes needed in the rotor, due to Jamieson 
(1955), is given later in this chapter. However, in the next section an optimum 
efficiency design method devised by Whitfield (1990) provides an alternative way 
for deriving 82. 

Design for optimum efficiency 

Whitfield (1990) presented a general one-dimensional design procedure for the 
IFR turbine in which, initially, only the required power output is specified. The 
specific power output is given: 

(8.24) 

and, from this a non-dimensional power ratio, S, is defined: 

S = AW/hol = 1 - T03/TOI. (8.25) 

The power ratio is related to the overall pressure ratio through the total-to-static 
efficiency: 

(8.26) 

If the power output, mass flow rate and inlet stagnation temperature are specified, 
then S can be directly calculated but, if only the output power is known, then an 
iterative procedure must be followed. 

Whitfield (1990) chose to develop his procedure in terms of the power ratio S 
and evolved a new non-dimensional design method. At a later stage of the design 
when the rate of mass flow and inlet stagnation temperature can be quantified, then 
the actual gas velocities and turbine size can be determined. Only the first part of 
Whitfield’s method dealing with the rotor design is considered in this chapter. 
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Solution of Whitfield's design problem 

At the design point it is usually assumed that the fluid discharges from the rotor 
in the axial direction so that with CQ3 = 0, the specific work is 

A W  = U2ce2 

and, combining this with eqns. (8.24) and (8.25), we obtain, 

u2c82/ail = s/(Y - 1 ), (8.27) 

where a01 = ( ~ R T O ~ ) ' / ~  is the speed of sound corresponding to the temperature Tot. 

(8.28) 

Now, from the velocity triangle at rotor inlet, Figure 8.5b, 

u2 - cQ2 = cm2 tan 8 2  = tan 821 tan ff2. 

Multiplying both sides of eqn. (8.28) by CQ2/&, we get 

2 u2cQ2/cm2 - & / 4 2  - tan ff2  tan 8 2  = 0. 
b 

But, 
~zce2/c;, = (~2ce2/c;) sec2a; = c(1 +tan 2 2  a,>, 

which can be written as a quadratic equation for tancq: 

t an2u2(~  - 1) - btana2 + c = 0, 

where, for economy of writing, c = U ~ C Q ~ / C ;  and b = tanB2. Solving for tana2, 

tma2 = (b f J[b2 + 4c(l - c)]}/[~(c - l)]. (8.29) 

For a real solution to exist the radical must be greater than, or equal to, zero; 
i.e. b2 + 4c( 1 - c )  2 0. Taking the zero case and rearranging the terns, another 
quadratic equation is found, namely 

c2 - c - b2/4 = 0. 

Hence, solving for c, 

c =  ( 1 * J 1 + b 2 ) / 2 =  $ ( l * s e c B 2 ) = U 2 ~ ~ 2 / ~ ; .  (8.30) 

From eqn. (8.29) and then eqn. (8.30), the corresponding solution for tana2 is 

tana2 = b/[2(c - l ) ]  = tan82/(-1 f sec82). 

The correct choice between these two solutions will give a value for 012 > 0, thus: 

tanff2 = (8.31) 
1 - cos 8 2  

It is easy to see from Table 8.1 that a simple numerical relation exists between these 
two parameters, namely 

sin 8 2  

a 2  = 90 - 8212. (8.31a) 
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TABLE 8.1. Variation of a2 for several 
values of p2. 

8 2  (deg) 10 20 30 40 

85 80 75 70 

From eqns. (8.27) and (8.30), after some rearranging, a minimum stagnation Mach 
number at rotor inlet can be found: 

and the inlet Mach number can be determined using the equation 

(8.32) 

(8.33) 

assuming that To2 = T o ] ,  the flow through'the stator is adiabatic. 
Now, from eqn. (8.28) 

1 _ -  - GX? 

u2 1+tan82/tanff2 

After rearranging eqn. (8.31) to give 

tanB21tana2 = sec82 - 1 (8.34) 

and combining these equations, 

co2/u2 = cos82 = 1 - 212. (8.35) 

Equation (8.35) is a direct relationship between the number of rotor blades and the 
relative flow angle at inlet to the rotor. Also, from eqn. (8.31a), 

c0s2a2=c0s(180-~2)=-c0s#32 

so that, from the identity cos 2a2 = 2 cos2 a 2  - 1, we get the result: 

cos2 a 2  = (1 - cos /32)/2 = 1/z,  (8.31b) 

using also eqn. (8.35). 

EXAMPLE 8.3. An JFR turbine with 12 vanes is required to develop 230 kW from 
a supply of dry air available at a stagnation temperature of 1050 K and a flow rate of 
1 kg/s. Using the optimum efficiency design method and assuming a total-to-static 
efficiency of 0.81, determine: 

(1) the absolute and relative flow angles at rotor inlet; 
(2) the overall pressure ratio, pollp3, 
(3) the rotor tip speed and the inlet absolute Mach number. 
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Solution. (1) From the gas tables, e.g. Rogers and Mayhew (1995), at To1 = 
1050K, we can find values for C,= 1.1502kJkgK and y= 1.333. Using eqn. (8.25), 

S = AW/(C ,To l )  = 230/(1.15 x 1050) = 0.2. 

From Whitfield’s eqn. (8.31b), 

c0s2a2 = 1/Z = 0.083333, :. a2 = 73.22 deg 

and, from eqn. (8.31a), 8 2  = 2(90 - az) = 33.56 deg. 

(2) Rewriting eqn. (8.26), 

Y / ( Y - 1 )  4 

E = (1 - t) Po1 P3 
= (1 - &) = 0.32165, :. !!! = 3.109. 

(3) Using eqn. (8.32), 

0.2 2 x 0.8333 
M i 2  = (”> -- - X = 0.5460 

2 cos 8 2  

y - 1 1 +cos82 0.333 1 +0.8333 

... M02 = 0.7389. 

Using eqn. (8.33), 

0.546 
1 - (0.333/2) x 0.546 

= 0.6006 :. M2 = 0.775. - M i  = Mi2 - 
1 - i(y - 1)Mi2 

To find the rotor tip speed, substitute eqn. (8.35) into eqn. (8.27) to obtain: 

S (3) cos 82 = - 
Y-1 

where a01 = 4- = 41.333 x 287 1050 = 633.8 m/s, and To2 = To1 is assumed. 

Criterion for minimum number of blades 
The following simple analysis of the relative flow in a radially bladed rotor is 

of considerable interest as it illustrates an important fundamental point concerning 
blade spacing. From elementary mechanics, the radial and transverse components 
of acceleration, f r  and f r  respectively, of a particle moving in a radial plane 
(Figure 8.6a) are: 

f r  = lii - Q2r 

f r  = r f i  + 2 ~ w  

(8.36a) 

(8.36b) 
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FIG. 8.6. Flow models used in analysis of minimum number of blades. 

where w is the radial velocity, W = (dw)/(dt) = w(ih)/(ar) (for steady flow), SZ is 
the angular velocity and h = dSZ/dt is set equal to zero. 

Applying Newton’s second law of motion to a fluid element (as shown in 
Figure 6.2) of unit depth, ignoring viscous forces, but putting c, = w, the radial 
equation of motion is, 

(p + dp)(r + &)de - prd0 - pdrde = - f ,dm 

where the elementary mass d m  = prdodr. After simplifying and substituting for f , 
from eqn. (8.25a), the following result is obtained, 

(8.37) 
1 ap ih 
p ar ar 
_ _  + w- = Q2r. 

Integrating eqn. (8.37) with respect to r obtains 

p / p  + i w2 - $ u2 = constant (8.38) 

which is merely the inviscid form of eqn. (8.2). 
The torque transmitted to the rotor by the fluid manifests itself as a pressure 

difference across each radial vane. Consequently, there must be a pressure gradient 
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in the tangential direction in the space between the vanes. Again, consider the 
element of fluid and apply Newton’s second law of motion in the tangential direction 

dp.dr = f ,dm = 2Qw(prdBdr). 

Hence, 

(8.39) 

which establishes the magnitude of the tangential pressure gradient. Differentiating 
eqn. (8.38) with respect to 8, 

Thus, combining eqns. (8.39) and (8.40) gives, 

= -2% 
aw 
ae - 

(8.40) 

(8.41) 

This result establishes the important fact that the radial velocity is not uniform 
across the passage as is frequently assumed. As a consequence of this fact the 
radial velocity on one side of a passage is lower than on the other side. Jamieson 
(1 953 ,  who originated this method, conceived the idea of determining the minimum 
number of blades based upon these velocity considerations. 

Let the mean radial velocity be tiT and the angular space between two adjacent 
blades be A0 = 2r /Z  where Z is the number of blades. The maximum and minimum 
radial velocities are, therefore, 

(8.42a) 

(8.42b) 

- w,, = w + i A w  = w + QrAe 
- wmin = w - ~ A w  = W - QrAe 

using eqn. (8.41). 
Making the reasonable assumption that the radial velocity should not drop below 

zero, (see Figure 8.6b), then the limiting case occurs at the rotor tip, r = r2 with 
wmin = 0. From eqn. (8.42b) with U2 = Qr2, the minimum number of rotor blades is 

zfin = 2ru2/w;? (8.43a) 

At the design condition, U2 = W2 tana2, hence 

Z ~ , ,  = 2 r  tan 1x2 (8.43b) 

Jamieson’s result, eqn. (8.43b), is plotted in Figure 8.7 and shows that a large 
number of rotor vanes are required, especially for high absolute flow angles at 
rotor inlet. In practice a large number of vanes are not used for several reasons, 
e.g. excessive flow blockage at rotor exit, a disproportionally large “wetted” surface 
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FIG. 8.7. Flow angle at rotor inlet as a function of the number of rotor vanes. 

area causing high friction losses, and the weight and inertia of the rotor become 
relatively high. 

Some experimental tests reported by Hiett and Johnston (1964) are of interest 
in connection with the analysis presented above. With a nozzle outlet angle 012 = 
77 deg and a 12 vane rotor, a total-to-static efficiency vts = 0.84 was measured at 
the optimum velocity ratio U~/CO.  For that magnitude of flow angle, eqn. (8.43b) 
suggests 27 vanes would be required in order to avoid reverse flow at the rotor tip. 
However, a second test with the number of vanes increased to 24 produced a gain 
in efficiency of only 1%. Hiett and Johnston suggested that the criterion for the 
optimum number of vanes might not simply be the avoidance of local flow reversal 
but might require a compromise between total pressure losses from this cause and 
friction losses based upon rotor and blade surface areas. 

Glassman (1976) preferred to use an empirical relationship between Z and ( ~ 2 ,  

namely 

(8.44) 
IT z = -(110 - 012)tan012, 
30 

as he also considered Jamieson’s result, eqn. (8.43b), gave too many vanes in the 
rotor. Glassman’s result, which gives far fewer vanes than Jamieson’s is plotted in 
Figure 8.7. Whitfield’s result given in eqn. (8.31b), is not too dissimilar from the 
result given by Glassman’s equation, at least for low vane numbers. 

Design considerations for rotor exit 

Several decisions need to be made regarding the design of the rotor exit. The flow 
angle 8 3 ,  the meridional velocity to blade tip speed ratio, ~, , ,3/U2,  the shroud tip to 
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rotor tip radius ratio, r3s/r2, and the exit hub to shroud radius ratio, u = r 3 h / ~ ~ ,  all 
have to be considered. It is assumed that the absolute flow at rotor exit is entirely 
axial so that the relative velocity can be written: 

2 2  2 w3 = cm3 + u3. 
If values of cm3/U2 and r3av/r2 can be chosen, then the exit flow angle variation 
can be found for all radii. From the rotor exit velocity diagram in Figure 8.3, 

(8.45) 

The meridional velocity cm3 should be kept small in order to minimise the exhaust 
energy loss, unless an exhaust diffuser is fitted to the turbine. 

Rodgers and Geiser (1987) correlated attainable efficiency levels of IFR turbines 
against the blade tip speedspouting velocity ratio, U ~ / C O ,  and the axial exit flow 
coefficient, cm3/U2, and their result is shown in Figure 8.8. From this figure it can 
be seen that peak efficiency values are obtained with velocity ratios close to 0.7 and 
with values of exit flow coefficient between 0.2 and 0.3. 

Rohlik (1968) suggested that the ratio of mean rotor exit radius to rotor inlet 
radius, r3av/r2, should not exceed 0.7 to avoid excessive curvature of the shroud. 
Also, the exit hub to shroud radius ratio, r3h/qs, should not be less than 0.4 because 
of the likelihood of flow blockage caused by closely spaced vanes. Based upon the 
metal thickness alone it is easily shown that, 

em3 r3av r3 
- = ~ cot /?3av = - cot 83. 
u2 r2 r2 

(277r3h /z ) cos /?3h > t3h 9 

where t3h is the vane thickness at the hub. It is also necessary to allow more than 
this thickness because of the boundary layers on each vane. Some of the rather 
limited test data available on the design of the rotor exit, comes from Rodgers and 
Geiser (1987), and concerns the effect of rotor radius ratio and blade solidity on 
turbine efficiency (see Figure 8.9). It is the relative efficiency variation, q/qOpt, that 
is depicted as a function of the rotor inlet radiudexit roor mean square radius ratio, 

FIG. 8.8. Correlation of attainable efficiency levels of IFR turbines against velocity ratios 
(adapted from Rodgers and Geiser 1987). 
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FIG. 8.9. Effects of vane solidity and rotor radius ratio on the efficiency ratio of the IFR 
turbine (adapted from Rodgers and Geiser 1987). 

r ~ / r 3 ~ ~ ,  for various values of a blade solidity parameter, ZL/D2 (where L is the 
length of the blade along the mean meridion). This radius ratio is related to the 
rotor exit hub to shroud ratio, v, by 

r3ms - - '3. ( 1 ; v2) ' I 2  

r2 r2 

From Figure 8.9, for ~/r3, , , ,~ ,  a value between 1.6 and 1.8 appears to be the 
optimum. 

Rohlik (1968) suggested that the ratio of the relative velocity at the mean exit 
radius to the inlet relative velocity, ~ 3 ~ ~ 1 ~ 2 ,  should be sufficiently high to assure a 
low total pressure loss. He gave ~ 3 ~ ~ 1 ~ 2  a value of 2.0. The relative velocity at the 
shroud tip will be greater than that at the mean radius depending upon the radius 
ratio at rotor exit. 

EWLE 8.4. Given the following data for an IFR turbine: 

cm3/U2 = 0.25, v = 0.4,1-3~/r2 = 0.7 and w ~ ~ V / W Z  = 2.0, 

determine the ratio of the relative velocity ratio, W ~ ~ / W Z  at the shroud. 

Solution. As W ~ ~ I C , , , ~  = sec B3s and W ~ ~ ~ I C , , , ~  = sec B3av, then 

w3s secB3s 

~ 3 a v  secB3av 
r3av r3av r3av r3s 

~ = i(1 + v) = 0.7 and - = -- = 0.7 x 0.7 = 0.49. 
r3s r2 r3s r2 

-- - 
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From eqn. (8.45): 

c,3 7-2 0.25 
cot B3av = - - = - = 0.5102 

U2 r3av 0.49 
c,3 r2 0.25 

c0tB3~ = -- - - - = 0.3571 
U2 1-3~ 0.7 

... 83av = 62.97 deg 

:. B3s = 70.35 deg 

0.4544 
0.3363 

- - x 2 = -  x 2 = 2.702. . ~ 3 s  - ~ 3 s  ~ 3 a v  - secB3s 
w2 ~ a v  w2 secB3av 
- -- ~ . .  

The relative velocity ratio will increase progressively from the hub to the shroud. 

EXAMPLE 8.5. Using the data and results given in the examples 8.3 and 8.4 
together with the additional information that 

(a) the static pressure at rotor exit is lOOkPa, and 
(b) the nozzle enthalpy loss coefficient, <N = 0.06, determine: 

(1) the diameter of the rotor and its speed of rotation; 
(2) the vane width to diameter ratio, b2/D2 at rotor inlet. 

Solution. (1) The rate of mass flow is given by 

From eqn. (8.25), To3 = Tol(1 - S) = 1050 x 0.8 = 840K. 

= 840 - 0.252 x 538.1*/(2 x 1150.2). 

Hence, T3 = 832.1 K. 
Substituting values into the mass flow equation above, 

1 = [105/(287 x 832.1)] x 0.25 x 538.1 x 0.72 x r x (1 - 0.42)r,2 

:. t-22 = 0.01373 and rz = 0.1172m, 

:. R = U2/r2 = 4591.3 rads (N = 43 843 rev/min). 

:. 0 2  = 0.2343m 

(2) The rate of mass flow equation is now written as 

m = &cm2A2, where A2 = 2nr2b2 = 4rr;(bz/D2) 

m b2 - - - 
D2 43r&cm2r~' 

Solving for the absolute velocity at rotor inlet and its components, 

C Q ~  = S C p T ~ ~ / U 2  = 0.2 x 1150.2 x 1050/538.1 = 448 .9m/~ ,  
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cm2 = c @ / t a n ~ 2  = 448.913.3163 = 135.4ds, 

c2 = ce2/ sina2 = 448.910.9574 = 468.8 mls. 

To obtain a value for the static density, p2, we need to determine T2 and p2: 

To2 - T b  - c;(l + f ~ )  468.82 x 1.06 
= 0.096447 - - - . .  To2 2CpTo2 2 x 1150.2 x 1050 

( Y - l ) / Y  
= 1 - 0.09645 = 0.90355 

Ylb -1 )  
. .  = 0.903554 = 0.66652 

PO 1 

:. p2 = 3.109 x lo5 x 0.66652 = 2.0722 x lo5 Pa 

1 ( 287 x 954.5 ) 1 
- = 0.0566. 

4 x JC 2.0722 x 105 135.4 x 0.01373 ~ 

Incidence losses 
At off-design conditions of operation with the fluid entering the rotor at a relative 

flow angle, 82 ,  different from the optimum relative flow angle, B2,0pt, an addi- 
tional loss due to an effective angle of incidence, i2  = 8 2  - 82,0pt, will be incurred. 
Operationally, off-design conditions can arise from changes in 

(a) the rotational speed of the rotor, 
(b) the rate of mass flow, 
(c) the setting angle of the stator vanes. 

Because of its inertia the speed of the rotor can change only relatively slowly, 
whereas the flow rate can change very rapidly, as it does in the pulsating flow of 
turbomachine turbines. The time required to alter the stator vane setting angle will 
also be relatively long. 

Futral and Wasserbauer (1965) defined the incidence loss as equal to the kinetic 
energy corresponding to the component of velocity normal to the rotor vane at inlet. 
This may be made clearer by referring to the Mollier diagram and velocity diagrams 
of Figure 8.10. Immediately before entering the rotor the relative velocity is w2’. 
Immediately ufrer entering the rotor the relative velocity is changed, hypothetically, 
to w2. Clearly, in reality this change cannot take place so abruptly and will require 
some finite distance for it to occur. Nevertheless, it is convenient to consider that the 
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FIG. 8.10. (a) Simple flow model of the relative velocity vector (1) immediately before 
entry to the rotor, (2) immediately after entry to the rotor. (b) Mollier diagram indicating 
the corresponding entropy increase, (~3, - %So, and enthalpy 'loss", (b - br) as a 

constant pressure process resulting from non-optimum flow incidence. 

change in velocity occurs suddenly, at one radius and is the basis of the so-called 
"shock loss model" used at one time to estimate the incidence loss. 

The method used by NASA to evaluate the incidence loss was described by 
Meitner and Glassman (1980) and (1983) and was based upon a re-evaluation of 
the experimental data of Kofskey and Nusbaum (1972). They adopted the following 
equation devised originally by Roelke (1973) to evaluate the incidence losses in 
axial flow turbines: 

Ahi = h2 - h21 = iw;(l - COS" i2). (8.46) 

Based upon data relating to six stators and one rotor, they found values for the 
exponent n which depended upon whether the incidence was positive or negative. 
With the present angle convention, 

n = 2.5 fo r i  > 0 and n = 1.75 for i < 0. 

Figure 8.1 1 shows the variation of the incidence loss function (1 - cos" i)  for a 
range of the incidence angle i using the appropriate values of n. 
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FIG. 8.1 1. Variation of incidence loss function at rotor inlet as a function of the incidence 
angle. 

EXAMPLE 8.6(a): For the IFR turbine described in Example 8.3, and using the 
data and results in Example 8.4 and 8.5, deduce a value for the rotor enthalpy loss 
coefficient, { R ,  at the optimum efficiency flow condition. 

(b) The rotor speed of rotation is now reduced so that the relative flow enters the 
rotor radially (i.e. at the nominal flow condition). Assuming that the enthalpy loss 
coefficients, (N and ( R  remain the same, determine the total-to-static efficiency of 
the turbine for this off-design condition. 

Solution. (a) From eqn. @.lo), solving for { R ,  

2 2  
<R = [(I - %s)Co - c3 - ~ N c ~ l / w ~ .  

We need to find values for CO, c3, w3 and c2. 
From the data, 

~3 = c,3 = 0.25 x 538.1 = 134.5ds. 

~ 3 ~ "  = 2 ~ 2  = 2~,2/ COS 8 2  = 2 x 135.41 COS 33.560 = 324.97 m / ~ .  

+c; = AW/q t s  = 230 x 103/0.81 = 283.95 x lo3 

~2 = 468.8ds.  

:. <R = (2 x 283.95 x lo3 x 0.19 - 134.52 - 0.06 x 468.82)/324.972 

= 76,6241105,605 

= 0.7256. 
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(b) Modifying the simplified expression for vt,, eqn. (&lo), to include the incidence 
loss term given above, 

vrs = 1 - [c: + < N c i  + <Rwi + (1 - cosn i2)wZ]/c:. 

As noted earlier, eqn. (8.10) is an approximation which ignores the weak effect of 
the temperature ratio T3/T2 upon the value of qtS. In this expression w2 = c,2, the 
relative velocity at rotor entry, i = = -33.56 deg. and n = 1.75. Hence, 
(1 - 33.56) = 0.2732. 

:. vlS = 1 - [134.52 + 0.06 x 468.82 

+ 0.7256 x 324.972 + 0.2732 x 135.42]/567 900 

= 1 - [18090+ 13186+76627+5008]/567900 

:. vts = 0.801. 

This example demonstrates that the efficiency reduction when operating at the 
nominal design state is only one per cent and shows the relative insensitivity of 
the IFR turbine to operating at this off-design condition. At other off-design condi- 
tions the inlet relative velocity w2 could be much bigger and the incidence loss 
correspondingly larger. 

Significance and application of specific speed 

The concept of specific speed N ,  has already been discussed in Chapter 1 and 
some applications of it have been made already. Specific speed is extensively used 
to describe turbomachinery operating requirements in terms of shaft speed, volume 
flow rate and ideal specific work (alternatively, power developed is used instead of 
specific work). Originally, specific speed was applied almost exclusively to incom- 
pressible flow machines as a tool in the selection of the optimum type and size of 
unit. Its application to units handling compressible fluids was somewhat inhibited, 
due, it would appear, to the fact that volume flow rate changes through the machine, 
which raised the awkward question of which flow rate should be used in the specific 
speed definition. According to Balje (1981), the significant volume flow rate which 
should be used for turbines is that in the rotor exit, Q3. This has now been widely 
adopted by many authorities. 

Wood (1963) found it useful to factorise the basic definition of the specific speed 
equation, eqn. (1.8), in terms of the geometry and flow conditions within the radial- 
inflow turbine. Adopting the non-dimensional form of specific speed, in order to 
avoid ambiguities, 

(8.47) 

where N is in reds, Q3 is in m 3 / s  and the isentropic total-to-total enthalpy drop 
A b s  (from turbine inlet to exhaust) is in J/kg (Le. m2/s2). 
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For the 90 deg IFR turbine, writing U2 = nND2 and A h ,  = eqn. (8.47) can 
be factorised as follows: 

(8.48) 

For the ideal 90 deg. IFR turbine and with co2 = Uz, it was shown earlier that the 
blade speed to spouting velocity ratio, U2/c0 = 1 / 4 2  = 0.707. Substituting this 
value into eqn. (8.34), 

(8.48a) 

i.e. specific speed is directly proportional to the square root of the volumetric flow 
coefficient. 

To obtain some physical significance from eqns. (8.47) and (8.48a), define a 
rotor disc area Ad = nD;/4 and assume a uniform axial rotor exit velocity c3 so 
that Q3 = A3c3, then as 

Hence, 

or, 

11’ 11’ 
Q , = 2 . 1 1  (:) (2) , (rad) 

(8.48 b) 

(8.48~) 

In an early study of IFR turbine design for maximum efficiency, Rohlik (1968) 
specified that the ratio of the rotor shroud diameter to rotor inlet diameter should be 
limited to a maximum value of 0.7 to avoid excessive shroud curvature and that the 
exit hub to shroud tip ratio was limited to a minimum of 0.4 to avoid excess hub 
blade blockage and loss. Using this as data, an upper limit for A3/Ad can be found, 

= (2) [ 1 - (2) ’1 = 0.7’ x (1 - 0.16) = 0.41 
Ad 

Figure 8.12 shows the relationship between Q., the exhaust energyfactor ( C ~ / C O ) ~  

and the area ratio A3/Ad based upon eqn. (8.48~). According to Wood (1963), the 



Radial Flow Gas Turbines 265 

FIG. 8.12. Specific speed function for a 90 deg inward flow radial turbine (adapted from 
Wood 1963). 

FIG. 8.13. Specific speed-efficiency characteristics for various turbines (adapted from 
Wood 1963). 

limits for the exhaust energy factor in gas turbine practice are 0.04 < ( c ~ / c o ) ~  < 
0.30, the lower value being apparently a flow stability limit. 

The numerical value of specific speed provides a general index of flow capacity 
relative to work output. Low values of QS are associated with relatively small 
flow passage area and high values with relatively large flow passage areas. Specific 
speed has also been widely used as a general indication of achievable efficiency. 
Figure 8.13 presents a broad correlation of maximum efficiencies for hydraulic and 
compressible fluid turbines as functions of specific speed. These efficiencies apply 
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to favourable design conditions with high values of flow Reynolds number, efficient 
diffusers and low leakage losses at the blade tips. It is seen that over a limited range 
of specific speed the best radial-flow turbines match the best axial-flow turbine 
efficiency, but from '& = 0.03 to 10, no other form of turbine handling compressible 
fluids can exceed the peak performance capability of the axial turbine. 

Over the fairly limited range of specific speed (0.3 5 Qs < 1.0) that the IFR 
turbine can produce a high efficiency, but it is difficult to find a decisive performance 
advantage in favour of either the axial flow turbine or the radial-flow turbine. New 
methods of fabrication enable the blades of small axial-flow turbines to be cast 
integrally with the rotor so that both types of turbine can operate at about the same 
blade tip speed. Wood (1963) compared the relative merits of axial and radial gas 
turbines at some length. In general, although weight, bulk and diameter are greater 
for radial than axial turbines, the differences are not so large and mechanical design 
compatibility can reverse the difference in a complete gas turbine power plant. The 
NASA nuclear Brayton cycle space power studies were all been made with 90 deg 
IFR turbines rather than with axial flow turbines. 

The design problems of a small axial-flow turbine were discussed by Dunham and 
Panton (1973) who studied the cold performance measurements made on a single- 
shaft turbine of 13cm diameter, about the same size as the IFR turbines tested by 
NASA. Tests had been performed with four different rotors to try and determine the 
effects of aspect ratio, trailing edge thickness, Reynolds number and tip-clearance. 
One turbine build achieved a total-to-total efficiency of 90 per cent, about equal to 
that of the best IFR turbine. However, because of the much higher outlet velocity, 
the total-to-static efficiency of the axial turbine gave a less satisfactory value (84 per 
cent) than the IFR type which could be decisive in some applications. They also 
confirmed that the axial turbine tip-clearance were comparatively large, losing two 
per cent efficiency for every one per cent increase in clearance. The tests illustrated 
one major design problem of a small axial turbine which was the extreme thinness 
of the blade trailing edges needed to achieve the efficiencies stated. 

Optimum design selection of 90 deg IFR turbines 

Rohlik (1968) has examined analytically the performance of 90 deg inward flow 
radial turbines in order to determine optimum design geometry for various appli- 
cations as characterised by specific speed. His procedure, which extends an earlier 
treatment of Balje (1981) and Wood (1963) was used to determine the design point 
losses and corresponding efficiencies for various combinations of nozzle exit flow 
angle a2, rotor diameter ratio and rotor blade entry height to exit diameter 
ratio, b2/D3av. The losses taken into account in the calculations are those associ- 
ated with, 

(i) nozzle blade row boundary layers, 
(ii) rotor passage boundary layers, 

(iii) rotor blade tip clearance, 
(iv) disc windage (on the back surface of the rotor), 
(v) kinetic energy loss at exit. 
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FIG. 8.14. Calculated performance of 90deg IFR turbine (adapted from Rohlick 1968). 

A mean-flowpath analysis was used and the passage losses were based upon the 
data of Stewart et al. (1960). The main constraints in the analysis were: 

(a) W3av/W2 = 2.0 
(b) ce3 = 0 
(c) 8 2  = #J2.0pt ,  i.e. zero incidence 
(d) r3,/r2 = 0.7 
(e) r3h/r3, = 0.4. 

Figure 8.14 shows the variation in total-to-static efficiency with specific speed 
(52,) for a selection of nozzle exit flow angles, a2. For each value of a2 a hatched 
area is drawn, inside of which the various diameter ratios are varied. The envelope of 
maximum qts is bounded by the constraints D3h/D3, = 0.4 in all cases and D3,/D2 = 
0.7 for 52, 3 0.58 in these hatched regions. This envelope is the optimum geometry 
curve and has a peak qts of 0.87 at 52, = 0.58 rad. An interesting comparison is 
made by Rohlik with the experimental results obtained by Kofskey and Wasserbauer 
(1966) on a single 90 deg IFR turbine rotor operated with several nozzle blade row 
configurations. The peak value of qts from this experimental investigation also turned 
out to be 0.87 at a slightly higher specific speed, QS = 0.64rad. 

The distribution of losses for optimum geometry over the specific speed range 
is shown in Figure 8.15. The way the loss distributions change is a result of the 
changing ratio of flow to specific work. At low a, all friction losses are rela- 
tively large because of the high ratios of surface area to flow area. At high 52, the 
high velocities at turbine exit cause the kinetic energy leaving loss to predominate. 
Figure 8.16 shows several meridional plane sections at three values of specific speed 
corresponding to the curve of maximum total-to-static efficiency. The ratio of nozzle 
exit height to rotor diameter, b2/D2, is shown in Figure 8.17, the general rise of this 
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FIG. 8.1 5. Distribution of losses along envelope of maximum total-to-static efficiency 
(adapted from Rohlik 1968). 

FIG. 8.16. Sections of radial turbines of maximum static efficiency (adapted from Rohlik 
1 968). 

FIG. 8.1 7. Variation in blade speedspouting velocity ratio ( U 2 / ~ )  and nozzle blade 
heighthotor inlet diameter (&/&) corresponding to maximum total-to-static efficiency 

with specific speed (adapted from Rohlik 1968). 
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ratio with increasing Qs reflecting the increase in nozzle flow area* accompanying 
the larger flow rates of higher specific speed. Figure 8.17 also shows the variation 
of U ~ / C O  with Qs along the curve of maximum total-to-static efficiency. 

Clearance and windage losses 

A clearance gap must exist between the rotor vanes and the shroud. Because 
of the pressure difference between the pressure and suction surfaces of a vane, a 
leakage flow occurs through the gap introducing a loss in efficiency of the turbine. 
The minimum clearance is usually a compromise between manufacturing difficulty 
and aerodynamic requirements. Often, the minimum clearance is determined by 
the differential expansion and cooling of components under transient operating 
conditions which can compromise the steady state operating condition. According to 
Rohlik (1968) the loss in specific work as a result of gap leakage can be determined 
with the simple proportionality: 

A k  = Aho(c/ba,) (8.49) 

where Ah, is the turbine specific work uncorrected for clearance or windage losses 
and c/bav is the ratio of the gap to average vane height (i.e. b,, = i(b2 + b3)). 
A constant axial and radial gap, c = 0.25 mm, was used in the analytical study 
of Rohlik quoted earlier. According to Rodgers (1969) extensive development on 
small gas turbines has shown that it is difficult to maintain clearances less than about 
0.4 mm. One consequence of this is that as small gas turbines are made progressively 
smaller the relative magnitude of the clearance loss must increase. 

The non-dimensional power loss due to windage on the back of the rotor has 
been given by Shepherd (1956) in the form: 

APWf/(pzQ3D~) = constant x Re-'I5 

where Q is the rotational speed of the rotor and Re is a Reynolds number. Rohlik 
(1968) used this expression to calculate the loss in specific work due to windage, 

Ahw = 0.56p2D;(U2/100)3/(rit Re) (8.50) 

where m is the total rate of mass flow entering the turbine and the Reynolds number 
is defined by Re = U2D2/v2, v2 being the kinematic viscosity of the gas corre- 
sponding to the static temperature T2 at nozzle exit. 

Pressure ratio limits of the 90 deg IFR turbine 

Every turbine type has pressure ratio limits, which are reached when the flow 
chokes. Choking usually occurs when the absolute flow at rotor exit reaches sonic 
velocity. (It can also occur when the relative velocity within the rotor reaches sonic 
conditions.) In the following analysis it is assumed that the turbine first chokes when 

* The ratio b2/D2 is also affected by the pressure ratio and this has not been shown 
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the absolute exit velocity c3 reaches the speed of sound. It is also assumed that c3 
is without swirl and that the fluid is a perfect gas. 

For simplicity it is also assumed that the diffuser efficiency is 100% so that, 
refemng to Figure 8.4, TM,, = T03ss(p03 = p ~ ) .  Thus, the turbine total-to-total 
efficiency is, 

TO1 - TO3 
TO1 - T03ss 

' I t  = 

The expression for the spouting velocity, now becomes 

is substituted into eqn. (8.51) to give, 

1 2CpT03 -___ 'It  = 
1 - (T03ss/TO1) 4 . 

(8.51) 

(8.52) 

The stagnation pressure ratio across the turbine stage is given by po3/po1 = 
(T03ss/Tol substituting this into eqn. (8.52) and rearranging, the exhaust 
energy factor is, 

therefore, 

(8.53) 

(8.54) 

With further manipulation of eqn. (8.53) and using eqn. (8.54) the stagnation pres- 
sure ratio is expressed explicitly as 

- (c3/co>2 + r;(v - 1)M;7Ir1/[1 + ;(Y - w;1 . (8.55) 

Wood (1963) has calculated the pressure ratio (pol/p03) using this expression, with 
' I t  = 0.9, y = 1.4 and for M3 = 0.7 and 1.0. The result is shown in Figure 8.14. In 
practice, exhaust choking effectively occurs at nominal values of M3 + 0.7 (instead 
of at the ideal value of M3 = 1.0) due to non-uniform exit flow. 

The kinetic energy ratio ( c ~ / c o ) ~  has a first order effect on the pressure ratio 
limits of single stage turbines. The effect of any exhaust swirl present would be to 
lower the limits of choking pressure ratio. 

It has been observed by Wood that high pressure ratios tend to compel the use of 
lower specific speeds. This assertion can be demonstrated by means of Figure 8.12 
taken together with Figure 8.18. In Figure 8.12, for a given value of A3/Ad, R, 

(E) ( y - l ) / y  - 
(c3/c0)2 - [ $ ( y  - I)M:(l - 'Ir)1/[1 + +(y  - 1)M:I 
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FIG. 8.18. Pressure ratio limit function for a turbine (Wood 1963) (By courtesy of the 
American Society of Mechanical Engineers). 

increases with ( c ~ / c o ) *  increasing. From Figure 8.18, (pol/p03) decreases with 
increasing values of ( c ~ / c o ) * .  Thus, for a given value of ( c ~ / c o ) ~ ,  the specific speed 
must decrease as the design pressure ratio is increased. 

Cooled 90 deg IFR turbines 

The incentive to use higher temperatures in the basic Brayton gas turbine cycle is 
well known and arises from a desire to increase cycle efficiency and specific work 
output. In all gas turbines designed for high efficiency a compromise is necessary 
between the turbine inlet temperature desired and the temperature which can be 
tolerated by the turbine materials used. This problem can be minimised by using 
an auxiliary supply of cooling air to lower the temperature of the highly stressed 
parts of the turbine exposed to the high temperature gas. Following the successful 
application of blade cooling techniques to axial flow turbines (see, for example, 
Horlock 1966 or Fullagar 1973), methods of cooling small radial gas turbines have 
been developed. 

According to Rodgers (1969) the most practical method of cooling small radial 
turbines is by film (or veil) cooling, Figure 8.19, where cooling air is impinged on 
the rotor and vane tips. The main problem with this method of cooling being its 
relatively low cooling effectiveness, defined by 

(8.56) To1 - ( T m  + ATo) 
To1 - (Tot + AT01 

E =  
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FIG. 8.19. Cross section of film-cooled radial turbine. 

where T,,, is the rotor metal temperature, 

AT0 = i U ; / C p ,  is half the drop in stagnation temperature of the 

gas as a result of doing work on the rotor, 

Tkis the stagnation temperature of the cooling air. 

Rodgers refers to tests which indicate the possibility of obtaining E = 0.30 at the 
rotor tip section with a cooling flow of approximately 10% of the main gas flow. 
Since the cool and hot streams rapidly mix, effectiveness decreases with distance 
from the point of impingement. A model study of the heat transfer aspects of 
film-cooled radial flow gas turbines is given by Metzger and Mitchell (1966). 
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Problems 
1. A small inward radial flow gas turbine, comprising a ring of nozzle blades, a radial- 

vaned rotor and an axial diffuser, operates at the nominal design point with a total-to-total 
efficiency of 0.90. At turbine entry the stagnation pressure and temperature of the gas is 
400 kPa and 1,140 K. The flow leaving the turbine is diffused to a pressure of 100 kPa and 
has negligible final velocity. Given that the flow is just choked at nozzle exit, determine the 
impeller peripheral speed and the flow outlet angle from the nozzles. 

For the gas assume y = 1.333 and R = 287 J/(kg "C). 
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2. The mass flow rate of gas through the turbine given in Problem No. 1 is 3.1 kg/s, the 
ratio of the rotor axial widthhotor tip radius (bZ/r2) is 0.1 and the nozzle isentropic velocity 
ratio (&) is 0.96. Assuming that the space between nozzle exit and rotor entry is negligible 
and ignoring the effects of blade blockage, determine: 

(i) the static pressure andstatic temperature at nozzle exit; 
(ii) the rotor tip diameter and rotational speed; 

(iii) the power transmitted assuming a mechanical efficiency of 93.5%. 
3. A radial turbine is proposed as the gas expansion element of a nuclear powered Brayton 

cycle space power system. The pressure and temperature conditions through the stage at the 
design point are to be as follows: 

Upstream of nozzles, 

Nozzle exit, 

Rotor exit, 

The ratio of rotor exit mean diameter to rotor inlet tip diameter is chosen as 0.49 and the 
required rotational speed as 24,000 revlmin. Assuming the relative flow at rotor inlet is radial 
and the absolute flow at rotor exit is axial, determine: 

pol = 699kPa, To1 = 1,145 K; 

p2 = 527.2 kPa, T2 = 1,029 K; 

p3 = 384.7 kPa, T 3  = 914.5 K, To3 = 924.7 K. 

(i) the total-to-static efficiency of the turbine; 
(ii) the rotor diameter; 

(iii) the implied enthalpy loss coefficients for the nozzles and rotor row. 

The gas employed in this cycle is a mixture of helium and xenon with a molecular 
weight of 39.94 and a ratio of specific heats of 5/3. The universal gas constant is, RO = 
8.314 M/(kg-mol K). 

4. A film-cooled radial inflow turbine is to be used in a high performance open Brayton 
cycle gas turbine. The rotor is made of a material able to withstand a temperature of 1145 K at 
a tip speed of 600 m/s for short periods of operation. Cooling air is supplied by the compressor 
which operates at a stagnation pressure ratio of 4 to 1, with an isentropic efficiency of 80%, 
when air is admitted to the compressor at a stagnation temperature of 288 K. Assuming that 
the effectiveness of the film cooling is 0.30 and the cooling air temperature at turbine entry 
is the same as that at compressor exit, determine the maximum permissible gas temperature 
at entry to the turbine. 

Take y = 1.4 for the air. Take y = 1.333 for the gas entering the turbine. Assume R = 
287 J/(kg K) in both cases. 

5. The radial inflow turbine in Problem 8.3 is designed for a specific speed QS of 0.55 
(rad). Determine: 

(1) the volume flow rate and the turbine power output; 
(2) the rotor exit hub and tip diameters; 
(3) the nozzle exit flow angle and the rotor inlet passage widwdiameter ratio, bZ/DZ, 

6. An inward flow radial gas turbine with a rotor diameter of 23.76cm is designed to 
operate with a gas mass flow of l.Okg/s at a rotational speed of 38 140rev/min. At the 
design condition the inlet stagnation pressure and temperature are to be 300 kPa and 727°C. 
The turbine is to be “cold tested in a laboratory where an air supply is available only at the 
stagnation conditions of 200kPa and 102°C. 

(a) Assuming dynamically similar conditions between those of the laboratory and the 
projected design determine, for the “cold” test, the equivalent mass flow rate and the speed 
of rotation. Assume the gas properties are the same as for air. 
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(b) Using property tables for air, determine the Reynolds numbers for both the hot and 
cold running conditions. The Reynolds number is defined in this context as: 

Re = polND2//L0l 

where pol and pol are the stagnation density and stagnation viscosity of the air, N is the 
rotational speed (rev/s) and D is the rotor diameter. 

7. For the radial flow turbine described in the previous question and operating at the 
prescribed "hot" design point condition, the gas leaves the exducer directly to the atmosphere 
at a pressure of 100kPa and without swirl. The absolute flow angle at rotor inlet is 72" to 
the radial direction. The relative velocity w3 at the the mean radius of the exducer (which is 
one half of the rotor inlet radius rz) is twice the rotor inlet relative velocity w2. The nozzle 
enthalpy loss coefficient, qN = 0.06. 

Assuming the gas has the properties of air with an average value of y = 1.34 (this temper- 
ature range) and R = 287 J/kg K, determine: 

(1) the total-to-static efficiency of the turbine; 
(2) the static temperature and pressure at the rotor inlet; 
(3) the axial width of the passage at inlet to the rotor; 
(4) the absolute velocity of the flow at exit from the exducer; 
(5) the rotor enthalpy loss coefficient; 
(6) the radii of the exducer exit given that the radius ratio at that location is 0.4. 

8. One of the early space power systems built and tested for NASA was based on the 
Brayton cycle and incorporated an IFR turbine as the gas expander. Some of the data available 
concerning the turbine are as follows: 

Total-to total pressure ratio (turbine inlet to turbine exit), 

Total-to-static pressure ratio, 

pollp03 = 1.560 

~ 0 1 1 ~ 3  = 1.613 

Total temperature at turbine entry, To1 = 1083K 

Total pressure at inlet to turbine, To, = 91 kPa 

Shaft power output (measured on a dynamometer) P,,, = 22.03 kW 

Bearing and seal friction torque (a separate test), 

Rotor diameter, D2 = 15.29cm 

~f = 0.0794Nm 

Absolute flow angle at rotor inlet, = 72" 

Absolute flow angle at rotor exit, f f3  = 0" 

The hub to shroud radius ratio at rotor exit, 

Ratio of blade speed to jet speed, 

(CO based on total-to-static pressure ratio) 

rhlr, = 0.35 

v = U ~ / C O  = 0.6958 

For reasons of crew safety, an inert gas argon ( R  = 208.2 J/(kg K), ratio of specific heats, 
y = 1.667) was used in the cycle. The turbine design scheme was based on the concept of 
optimum efficiency. 

Determine, for the design point: 

(1) the rotor vane tip speed; 
(2) the static pressure and temperature at rotor exit; 
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(3) the gas exit velocity and mass flow rate; 
(4) the shroud radius at rotor exit; 
(5) the relative flow angle at rotor inlet; 
(6) the specific speed. 

NB. The volume flow rate to be used in the definition of the specific speed is based on the 
rotor exit conditions. 



Hydraulic Turbines 
Hear ye not the hum of mighty workings? (KEATS, Sonnet No. 74). 
The power of water has changed more in this world than emperors or kings. 
(Leonard0 da Vinci). 

Introduction 
To put this chapter into perspective some idea of the scale of hydropower devel- 

opment in the world might be useful before delving into the intricacies of hydraulic 
turbines. A very detailed and authoritative account of virtually every aspect of 
hydropower is given by Raabe (1985) and this brief introduction serves merely to 
illustrate a few aspects of a very extensive subject. 

Hydropower is the longest established source for the generation of electric power 
which, starting in 1880 as a small dc generating plant in Wisconsin, USA, developed 
into an industrial size plant following the demonstration of the economic transmis- 
sion of high voltage ac at the Frankfurt Exhibition in 1891. Hydropower now has a 
worldwide yearly growth rate of about five per cent (i.e. doubling in size every 15 
years). In 1980 the worldwide installed generating capacity was 460 GW according 
to the United Nations (1981) so, by the year 2000, at the above growth rate this 
should have risen to a figure of about 1220GW. The main areas with potential for 
growth are China, Latin America and Africa. 

Table 9.1 is an extract of data quoted by Raabe (1985) of the distribution of 
harnessed and harnessable potential of some of the countries with the biggest usable 
potential of hydro power. From this list it is seen that the People’s Republic of 
China, the country with the largest harnessable potential in the world had, in 1974, 
harnessed only 4.22 per cent of this. According to Cotillon (1978), with growth 
rates of 14.2 per cent up to 1985 and then with a growth rate of eight per cent, the 
PRC should have harnessed about 26 per cent of its harvestable potential by the 
year 2000. This would need the installation of nearly 4600MW per annum of new 
hydropower plant, and a challenge to the makers of turbines around the world! One 
scheme in the PRC, under construction since 1992 and scheduled for completion 
in 2009, is the Xanxia (Three Gorges) project on the Yangtse which has a planned 
installed capacity of 25 000 M W ,  and which would make it the biggest hydropower 
plant in the world. 

Features of hydropower plants 

The initial cost of hydropower plants may be much higher than those of thermal 
power plants. However, the present value of total costs (which includes those of 
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278 Fluid Mechanics, Thermodynamics of Turbomachinery 

TABLE 9.1. Distribution of harnessed and harnessable potential of hydroelectric power. 

Country Usable potential, Amount of potential Percentage of usable 
TWh used, TWh potential 

1 China (PRC) 
2 Former USSR 
3 USA 
4 Zaire 
5 Canada 
6 Brazil 
7 Malaysia 
8 Columbia 
9 India 

Sum 1-9 
Other countries 
Total 

1320 
1095 
701.5 
660 
535.2 
519.3 
320 
300 
280 

5731 
407 1 
9802.4 

55.6 
180 
277.7 

4.3 
25 1 
126.9 

1.25 
13.8 
46.87 

907.4 
843 

1750.5 

4.22 
16.45 
39.6 
0.65 

46.9 
24.45 
0.39 
4.6 

16.7 
15.83 
20.7 
17.8 

TABLE 9.2. Features of hydroelectric powerplants. 

Advantages Disadvantages 

Technology is relatively simple and 
proven. High efficiency. Long useful 
life. No thermal phenomena apart 
from those in bearings and generator. 
Small operating, maintenance and 
replacement costs. 
No air pollution. No thermal pollution of 
water. 

Number of favourable sites limited and 
only available in some countries. Problems 
with cavitation and water hammer. 

High initial cost especially for low head 
plants compared with thermal power plants. 
Inundation of the reservoirs and displace- 
ment of the population. Loss of arable 
land. Facilitates sedimentation upstream 
and erosion downstream of a barrage. 

fuel) is, in general, lower in hydropower plants. Raabe (1985) listed the various 
advantages and disadvantages of hydropower plants and a brief summary of these 
is given in Table 9.2. 

Hydraulic turbines 

Early history of hydraulic turbines 

The hydraulic turbine has a long period of development, its oldest and simplest 
form being the waterwheel, first used in ancient Greece and subsequently adopted 
throughout medieval Europe for the grinding of grain, etc. It was a French engi- 
neer, Benoit Fourneyron, who developed the first commercially successful hydraulic 
turbine (circa 1830). Later Fourneyron built turbines for industrial purposes that 
achieved a speed of 2300rev/min, developing about 50kW at an efficiency of over 
80 per cent. 
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The American engineer James B. Francis designed the first radial-injow hydraulic 
turbine which became widely used, gave excellent results and was highly regarded. 
In its original form it was used for heads of between 10 and 100m. A simplified 
form of this turbine is shown in Figure 1.ld. It will be observed that the flow path 
followed is essentially from a radial direction to an axial direction. 

The Pelton wheel turbine, named after its American inventor Lester A. Pelton, was 
brought into use in the second half of the nineteenth century. This is an impulse 
turbine in which water is piped at high pressure to a nozzle where it expands 
completely to atmospheric pressure. The emerging jet impacts onto the blades (or 
buckets) of the turbine producing the required torque and power output. A simplified 
diagram of a Pelton wheel turbine is shown in Figure 1.lf. The head of water used 
originally was between about 90 m and 900 m (modem versions operate up to heads 
of 2000 m). 

The increasing need for more power during the early years of the twentieth century 
also led to the invention of a turbine suitable for small heads of water, i.e. 3 m  to 
9 m, in river locations where a dam could be built. It was in 1913 that Viktor Kaplan 
revealed his idea of the propeller (or Kaplan) turbine, see Figure l . le,  which acts 
like a ship’s propeller but in reverse At a later date Kaplan improved his turbine 
by means of swivelable blades which improved the efficiency of the turbine in 
accordance with the prevailing conditions (Le. the available flow rate and head). 

Flow regimes for maximum efficiency 

Although there are a large number of turbine types in use, only the three mentioned 
above and variants of them are considered in this book. The efficiencies of the three 
types are shown in Figure 9.1 as functions of the power specific speed, Rsp which 
from eqn. (1.9), is 

(9.1) 

where P is the power delivered by the shaft, H E  is the effective head at turbine 
entry and R is the rotational speed in rads. 

R r n  
(gHE)5’4 

a s p  = 

FIG. 9.1. Typical design point efficiencies of Pelton, Francis and Kaplan turbines. 
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TABLE 9.3. Operating ranges of hydraulic turbines. 

Pelton turbine Francis turbine Kaplan turbine 

Specific speed (rad) 0.05 - 0.4 0.4 - 2.2 1.8 - 5.0 
Head (m) 100- 1770 20-900 6-70 
Maximum power (Mw)  500 800 300 
Optimum efficiency, per cent 90 95 94 
Regulation method Needle valve and Stagger angle of Stagger angle of rotor 

deflector plate guide vanes bades 

NE3. Values shown in the table are only a rough guide and are subject to change. 

The regimes of these turbine types are of some significance to the designer as they 
indicate the most suitable choice of machine for an application once the specific 
speed has been determined. In general low specific speed machines correspond 
to low volume flow rates and high heads, whereas high specific speed machines 
correspond to high volume flow rates and low heads. Table 9.3 summarises the 
normal operating ranges for the specific speed, the effective head, the maximum 
power and best efficiency for each type of turbine. 

According to the experience of Sulzer Hydro Ltd., of Zurich, the application ranges 
of the various types of turbines and turbine pumps (including some not mentioned 

FIG. 9.2. Application ranges for various types of hydraulic turbomachines, as a plot of 
0 vs H with lines of constant power determined assuming q0 = 0.8. (Courtesy Sulzer 

Hydro Ltd., Zurich). 
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here) are plotted in Figure 9.2 on a In Q vs In H diagram, and reflect the present state 
of the art of hydraulic turbomachinery design. Also in Figure 9.2 lines of constant 
power output are conveniently shown and have been calculated as the product qpgQH,  
where the efficiency q is accorded the value of 0.8 throughout the chart. 

Capacity of large Francis turbines 

The size and capacity of some of the recently built Francis turbines is a source of 
wonder, they seem so enormous! The size and weight of the runners cause special 
problems getting them to the site, especially when rivers have to be crossed and the 
bridges are inadequate. 

The largest installation now in North America is at La Grande on James Bay 
in eastern Canada where 22 units each rated at 333MW have a total capacity of 
7326 MW. For the record, the Itaipu hydroelectric plant on the Paran6 river (between 
Brazil and Paraguay), dedicated in 1982, has the greatest capacity of 12 870 MW in 
full operation (with a planned value of 21 500MW) using 18 Francis turbines each 
sized at over 700MW. 

The efficiency of large Francis turbines has gradually risen over the years and 
now is about 95 per cent. An historical review of this progress has been given 
by Dane1 (1959). There seems to be little prospect of much further improvement 
in efficiency as skin friction, tip leakage and exit kinetic energy from the diffuser 
now apparently account for the remaining losses. Raabe (1985) has given much 
attention to the statistics of the world’s biggest turbines. It would appear at the 
present time that the largest hydroturbines in the world are the three vertical shaft 
Francis turbines installed at Grand Coulee 111 on the Columbia River, Washington, 
USA. Each of these leviathans has been uprated to 800 MW, with the delivery 
(or effective) head, H = 87 m, N = 85.7 rev/min, the runner having a diameter of 
D = 9.26 m and weighing 450 ton. Using this data in eqn. (9.1) it is easy to calculate 
that the power specific speed is 1.74 rad. 

The Pelton turbine 
This is the only hydraulic turbine of the impulse type now in common use. It 

is an efficient machine and it is particularly suited to high head applications. The 
rotor consists of a circular disc with a number of blades (usually called “buckets”) 
spaced around the periphery. One or more nozzles are mounted in such a way that 
each nozzle directs its jet along a tangent to the circle through the centres of the 
buckets. There is a “splitter” or ridge which splits the oncoming jet into two equal 
streams so that, after flowing round the inner surface of the bucket, the two streams 
depart from the bucket in a direction nearly opposite to that of the incoming jet. 

Figure. 9.3 shows the runner of a Pelton turbine and Figure 9.4 shows a six- 
jet vertical axis Pelton turbine. Considering one jet impinging on a bucket, the 
appropriate velocity diagram is shown in Figure 9.5. The jet velocity at entry is c1 
and the blade speed is U so that the relative velocity at entry is w1 = c1 - U .  At exit 
from the bucket one half of the jet stream flows as shown in the velocity diagram, 
leaving with a relative velocity w2 and at an angle 82 to the original direction of 
flow. From the velocity diagram the much smaller absolute exit velocity c2 can be 
determined. 
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FIG. 9.3. Pelton turbine runner (Courtesy Sulzer Hydro Ltd, Zurich). 

FIG. 9.4. Six-jet vertical shaft Pelton turbine, horizontal section. Power rating 174.4 MW, 
runner diameter 4.1 rn, speed 300 revhin, head 587rn. (Courtesy Sulzer Hydro Ltd., 

Zurich). 
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FIG. 9.5. The Pelton wheel showing the jet impinging onto a bucket and the relative 
and absolute velocities of the flow (only one-half of the emergent velocity diagram is 

shown). 

From Euler’s turbine equation, eqn. (2.12b), the specific work done by the water is 

AW = Ulc,gl - U ~ C O ~ .  

For the Pelton turbine, U1 = U2 = U ,  c,g1 = c1 so we get 

AW = U [ U  + ~1 - ( U  + ~2 COS 823 = U(Wl - ~2 COS 82) 

in which the value of c02 < 0, as defined in Figure 9.5, i.e. e02 = U + w2 cos 82.  
The effect of friction on the fluid flowing inside the bucket will cause the relative 

velocity at outlet to be less than the value at inlet. Writing w2 = kwl, where k < 1, 
then, 

(9.2) 

An efficiency V R  for the runner can be defined as the specific work done A W divided 
by the incoming kinetic energy, i.e. 

A W = Uwl(1 - k COS 82) = U ( C ~  - U ) (  1 - k COS 82).  

V R =  Aw/(ic;)  (9.3) 

= 2U(q - U ) (  1 - k cos p2)/c: 

... V R  = 2V( 1 - V)( 1 - k cos 82) (9.4) 

where the blade speed to jet speed ratio, u = U / q .  

the blade speed ratio, i.e. 
In order to find the optimum efficiency, differentiate eqn. (9.4) with respect to 

d V R  d -- - 2-(u - u2>(1 - kcosB2) 
du du 

= 2(1 - 2u)(l - kcos82)  = 0. 

Therefore, the maximum efficiency of the runner occurs when u = 0.5, Le. U = 
q / 2 .  Hence, 

(9.5) VRmax = (1 - k cos 82)/2- 
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FIG. 9.6. Theoretical variation of runner efficiency for a Pelton wheel with blade speed 
to jet speed ratio for several values of friction factor k .  

Figure. 9.6 shows the variation of the runner efficiency with blade speed ratio for 
assumed values of k = 0.8,0.9 and 1.0 with 8 2  = 165 deg. In practice the value of 
k is usually found to be between 0.8 and 0.9. 

A simple hydroelectric scheme 

The layout of a Pelton turbine hydroelectric scheme is shown in Figure 9.7. The 
water is delivered from a constant level reservoir at an elevation ZR (above sea 
level) and flows via a pressure tunnel to the penstock head, down the penstock to 
the turbine nozzles emerging onto the buckets as a high speed jet. In order to reduce 
the deleterious effects of large pressure surges, a surge tank is connected to the flow 
close to the penstock head which acts so as to damp out transients. The elevation 
of the nozzles is ZN and the gross head, H G  = ZR - ZN . 

Controlling the speed of the Pelton turbine 

The Pelton turbine is usually directly coupled to an electrical generator which 
must run at synchronous speed. With large size hydroelectric schemes supplying 
electricity to a national grid it is essential for both the voltage and the frequency 
to closely match the grid values. To ensure that the turbine runs at constant speed 
despite any load changes which may occur, the rate of flow Q is changed. A spear (or 
needle) valve, Figure 9.8a, whose position is controlled by means of a servomecha- 
nism, is moved axially within the nozzle to alter the diameter of the jet. This works 
well for very gradual changes in load. However, when a sudden loss in load occurs 
a more rapid response is needed. This is accomplished by temporarily deflecting 
the jet with a deflector plate so that some of the water does not reach the buckets, 
Figure 9.8b. This acts to prevent overspeeding and allows time for the slower acting 
spear valve to move to a new position. 

It is vital to ensure that the spear valve does move slowly as a sudden reduction 
in the rate of flow could result in serious damage to the system from pressure surges 
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FIG. 9.7. Pelton turbine hydroelectric scheme. 

FIG. 9.8. Methods of regulating the speed of a Pelton turbine: (a) with a spear (or needle) 
valve; (b) with a deflector plate. 

(called “water hammer”). If the spear valve did close quickly, all the kinetic energy 
of the water in the penstock would be absorbed by the elasticity of the supply 
pipeline (penstock) and the water, creating very large stresses which would reach 
their greatest intensity at the turbine inlet where the pipeline is already heavily 
stressed. The surge chamber, shown in Figure 9.7, has the function of absorbing 
and dissipating some of the pressure and energy fluctuations created by too rapid a 
closure of the needle valve. 



286 Fluid Mechanics, Thermodynamics of Turbomachinery 

Sizing the penstock 

It is shown in elementary textbooks on fluid mechanics, e.g. Shames (1992), 
Douglas et al. (1995), that the loss in head with incompressible, steady, turbulent 
flow in pipes of circular cross-section is given by Darcy’s equation: 

where f is the friction factor, 1 is the length of the pipe, d is the pipe diameter and 
V is the mass average velocity of the flow in the pipe. It is assumed, of course, that 
the pipe is running full. The value of the friction factor has been determined for 
various conditions of flow and pipe surface roughness and the results are usually 
presented in what is called a “Moody diagram”. This diagram gives values of f as 
a function of pipe Reynolds number for varying levels of relative roughness of the 
pipe wall. 

The penstock (the pipeline bringing the water to the turbine) is long and of large 
diameter and this can add significantly to the total cost of a hydroelectric power 
scheme. Using Darcy’s equation it is easy to calculate a suitable pipe diameter for 
such a scheme if the friction factor is known and an estimate can be made of the 
allowable head loss. Logically, this head loss would be determined on the basis of 
the cost of materials, etc. needed for a large diameter pipe and compared with the 
value of the useful energy lost from having too small a pipe. A commonly used 
compromise for the loss in head in the supply pipes is to allow Hf < 0 . 1 H ~ .  

A summary of various factors on which the “economic diameter” of a pipe can 
be determined is given by Raabe (1985). 

From eqn. (9.6), substituting for the velocity, V = 4Q/(nd2) ,  we get 

32fl Q2 
Hf = (T) 2’ (9.7) 

EAMPLE 9.1. Water is supplied to a turbine at the rate Q = 2.272 m3/s by a single 
penstock 300m long. The allowable head loss due to friction in the pipe amounts 
to 20 m. Determine the diameter of the pipe if the friction factor f = 0.1. 

Solution. Rearranging eqn. (9.7): 

d 5 =-(--) 3 2 f l  Q = 32 x 0.01 x 300 
gHf 9.81 x 20 

= 0.2559 

d = 0.7614m. 

Energy losses in the Pelton turbine 

Having accounted for the energy loss due to friction in the penstock, the energy 
losses in the rest of the hydroelectric scheme must now be considered. The effective 
head, HE, (or delivered head) at entry to the turbine is the gross head minus the 
friction head loss, Hf ,  i.e. 

H E  = HG - Hf = ZR - ZN - Hf 
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and the spouting (or ideal) velocity, CO,  is 

The pipeline friction loss H f  is regarded as an external loss and is not included in 
the losses attributed to the turbine system. The efficiency of the turbine is measured 
against the ideal total head H E .  

The nozzle velocity coefficient, K N ,  is 

actual velocity at nozzle exit 
spouting velocity at nozzle exit 

c1 

co 
- - K N  = - 

Values of K N  are normally around 0.98 to 0.99. 
Other energy losses occur in the nozzles and also because of windage and friction 

of the turbine wheel. Let the loss in head in the nozzle be A H N  then the head 
available for conversion into power is 

(9.8) H E  - A H N  = ~ : / ( 2 g ) .  

energy at nozzle exit c: 
energy at nozzle inlet 2 g H ~  

-- nozzle efficiency, I ] N  = - (9.9) 

Equation (2.23) is an expression for the hydraulic efficiency of a turbine which, in 
the present notation and using eqns. (9.3) and (9.9), becomes 

(9.10) 

The efficiency v R  only represents the effectiveness of converting the kinetic energy 
of the jet into the mechanical energy of the runner. Further losses occur as a result 
of bearing friction and “windage” losses inside the casing of the runner. In large 
Pelton turbines efficiencies of around 90 per cent may be achieved but, in smaller 
units, a much lower efficiency is usually obtained. 

The overall efficiency 

In Chapter 2 the overall efficiency was defined as 

mechanical energy available at output shaft in unit time 
maximum energy difference possible for the fluid in unit time vo = 

170 = v m v h  = % n v R v N  

where qm is the mechanical efficiency. 
The external losses, bearing friction and windage, are chiefly responsible for 

the energy deficit between the runner and the shaft. An estimate of the effect of 
the windage loss can be made using the following simple flow model in which 
the specific energy loss is assumed to be proportional to the square of the blade 
speed, i.e. 

loss/unit mass flow = K U =  

where K is a dimensionless constant of proportionality. 
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The overall efficiency can now be written as 

KU2 
?Jo = g H E  - -qh- -=?Jh-2K g H ,  (:)2 (A) A W  - KU2 

... 170 = V R ~ N  - ~ K ? J N V ~  = ?JN(?JR - 2Kv2). (9.11) 

Hence, the mechanicaf efficiency is, 

?Jm = 1 - 2Kv2/?J~.  (9.12) 

It can be seen that according to eqn. (9.12), as the speed ratio is reduced towards 
zero, the mechanical efficiency increases and approaches unity. As there must be 
some bearing friction at all speeds, however small, an additional term is needed in 
the loss equation of the form Aci + kU2, where A is another dimensionless constant. 
The solution of this is left for the student to solve. 

The variation of the overall efficiency based upon eqn. (9.11) is shown in 
Figure 9.9 for several values of K .  It is seen that the peak efficiency: 

(1) is progressively reduced as the value of K is increased; 
(2) occurs at lower values of v than the optimum determined for the runner. 

Thus, this evaluation of overall efficiency demonstrates the reason why experimental 
results obtained of the performance of Pelton turbines always yields a peak efficiency 
at a value of u < 0.5. 

Typical performance of a Pelton turbine under conditions of consfanf head and 
speed is shown in Figure 9.10 in the form of the variation of overall efficiency 
against load ratio. As result of a change in the load the output of the turbine must 
then be regulated by a change in the setting of the needle valve in order to keep the 
turbine speed constant. The observed almost constant value of the efficiency over 
most of the load range is the result of the hydraulic losses reducing in proportion to 
the power output. However, as the load ratio is reduced to even lower values, the 
windage and bearing friction losses, which have not diminished, assume a relatively 
greater importance and the overall efficiency rapidly diminishes towards zero. 

FIG. 9.9. Variation of overall efficiency of a Pelton turbine with speed ratio for several 
values of windage coefficient, K. 
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FIG. 9.10. Pelton turbine overall efficiency variation with load under constant head and 
constant speed conditions. 

EXAMPLE 9.2. A Pelton turbine is driven by two jets, generating 4.0MW at 
375rev/min. The effective head at the nozzles is 200 m of water and the nozzle 
velocity coefficient, K N  = 0.98. The axes of the jets are tangent to a circle 1.5 m in 
diameter. The relative velocity of the flow across the buckets is decreased by 15 per 
cent and the water is deflected through an angle of 165deg. 

Neglecting bearing and windage losses, determine: 

(1) the runner efficiency; 
(2) the diameter of each jet; 
(3) the power specific speed. 

Solution. (1) The blade speed is: 

U = n r  = (375 x rr/30) x 1.5/2 

= 39.27 x 1.5/2 = 29.45 d~. 
The jet speed is: 

c1 = K N ~  = 0.98 x ,/(2 x 9.81 x 200) = 61.39ds 

:. v = U / C ~  = 0.4798. 

The efficiency of the runner is obtained from eqn. (9.4): 
QR = 2 x 0.4798 x (1 - 0.4798)(1 - 0.85 x COS 165”) 

= 0.9090. 

(2) The “theoretical” power is Pm = P / ~ R  = 4.0/0.909 = 4.40MW where Pm = 
PgQHe 

:. Q = Ph/ (pgH, )  = 4.4 x 106/(9810 x 200) = 2.243 m3/s. 

Each jet must have a flow area of, 
Q 

2c 1 
A; = - = 2.243/(2 x 61.39) = 0.01827m2. 

:_ d; = 0.1525 m. 
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(3) Substituting into eqn. (9.1), the power specific speed is, 

112 4.0 x lo6 
SZ,, = 39.27 x ( 103 ) /(9.81 x 200)5/4 

= 0.190rad. 

Reaction turbines 
The primary features of the reaction turbine are: 

only part of the overall pressure drop has occurred up to turbine entry, the 
remaining pressure drop takes place in the turbine itself; 
the flow completely fills all of the passages in the runner, unlike the Pelton 
turbine where, for each jet, only one or two of the buckets at a time are in 
contact with the water; 
pivotable guide vanes are used to control and direct the flow; 
a draft tube is normally added on to the turbine exit; it is considered as an 
integral part of the turbine. 

The pressure of the water gradually decreases as it flows through the runner and 
it is the reaction from this pressure change which earns this type of turbine its 
appellation. 

The Francis turbine 
The majority of Francis turbines are arranged so that the axis is vertical (some 

smaller machines can have horizontal axes). Figure 9.1 1 illustrates a section through 
a vertical shaft Francis turbine with a runner diameter of 5 m, a head of 110 m and 
a power rating of nearly 200MW. Water enters via a spiral casing called a volute or 
scroll which surrounds the runner. The area of cross-section of the volute decreases 
along the flow path in such a way that the flow velocity remains constant. From 
the volute the flow enters a ring of stationary guide vanes which direct it onto the 
runner at the most appropriate angle. 

In flowing through the runner the angular momentum of the water is reduced 
and work is supplied to the turbine shaft. At the design condition the absolute flow 
leaves the runner axially (although a small amount of swirl may be countenanced) 
into the druj? tube and, finally, the flow enters the tail race. It is essential that the 
exit of the draft tube is submerged below the level of the water in the tail race in 
order that the turbine remains full of water. The draft tube also acts as a diffuser; 
by careful design it can ensure maximum recovery of energy through the turbine 
by significantly reducing the exit kinetic energy. 

Figure. 9.12 shows a section through part of a Francis turbine together with the 
velocity triangles at inlet to and exit from the runner at mid-blade height. At inlet 
to the guide vanes the flow is in the radiavtangential plane, the absolute velocity is 
c1 and the absolute flow angle is 011. Thus, 

a1 = tan-'(cBl/crl 1. (9.13) 
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FIG. 9.1 1. Vertical shaft Francis turbine: runner diameter 5 m, head 1 10 m, power 200 MW 
(courtesy Sulzer Hydro Ltd, Zurich). 

The flow is turned to angle a2 and velocity c2, the absolute condition of the flow 
at entry to the runner. By vector subtraction the relative velocity at entry to the 
runner is found, i.e. w2 = c2 - U2. The relative flow angle 8 2  at inlet to the runner 
is defined as 

8 2  = tan-’ [(c02 - U 2 ) / C r 2 ]  . (9.14) 

Further inspection of the velocity diagrams in Figure 9.12 reveals that the direction 
of the velocity vectors approaching both guide vanes and runner blades are tangential 
to the camber lines at the leading edge of each row. This is the ideal flow condition 
for “shockless” low loss entry, although an incidence of a few degrees may be 
beneficial to output without a significant extra loss penalty. At vane outlet some 
deviation from the blade outlet angle is to be expected (see Chapter 3). For these 
reasons, in all problems concerning the direction of flow, it is clear that it is the 
angle of the fluid flow which is important and not the vane angle as is often quoted 
in other texts. 

At outlet from the runner the flow plane is simplified as though it was actually in 
the radidtangential plane. This simplification will not affect the subsequent analysis 
of the flow but it must be conceded that some component of velocity in the axial 
direction does exist at runner outlet. 

The water leaves the runner with a relative flow angle 83 and a relative flow 
velocity w3. The absolute velocity at runner exit is found by vector addition, i.e. 
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FIG. 9.12. Sectional sketch of blading for a Francis turbine showing velocity diagrams 
at runner inlet and exit. 

c3 = w3 + U3. The relative flow angle, 8 3 ,  at runner exit is given by 

8 3  = tan-' [ ( c e 3  + u 3 ) / C r 3 ]  . (9.15) 

In this equation it is assumed that some residual swirl velocity C Q ~  is present ( c , 3  is 
the radial velocity at exit from the runner). In most simple analyses of the Francis 
turbine it is assumed that there is no exit swirl. Detailed investigations have shown 
that some extra counter-swir2 (Le. acting so as to increase Ace ) at the runner exit 
does increase the amount of work done by the fluid without a significant reduction 
in turbine efficiency. 

When a Francis turbine is required to operate at part load, the power output 
is reduced by swivelling the guide vanes to restrict the flow, i.e. Q is reduced, 
while the blade speed is maintained constant. Figure. 9.13 compares the velocity 
triangles at full load and at part load from which it will be seen that the relative 
flow at runner entry is at a high incidence and at runner exit the absolute flow has 
a large component of swirl. Both of these flow conditions give rise to high head 
losses. Figure. 9.14 shows the variation of hydraulic efficiency for several types of 
turbine, including the Francis turbine, over the full load range at constant speed and 
constant head. 
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FIG. 9.1 3. Comparison of velocity triangles for a Francis turbine for full load and at part 
load operation. 

FIG. 9.14. Variation of hydraulic efficiency for various types of turbine over a range of 
loading, at constant speed and constant head. 

It is of interest to note the effect that swirling flow has on the performance 
of the following diffuser. The results of an extensive experimental investigation 
made by McDonald et al. (1971), showed that swirling inlet flow does not affect 
the performance of conical diffusers which are well designed and give unsepa- 
rated or only slightly separated flow when the flow through them is entirely axial. 
Accordingly, part load operation of the turbine is unlikely to give adverse diffuser 
performance. 
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Basic equations 

Euler's turbine equation, eqn. (2.12b), in the present notation, is written as 

AW = U ~ C Q ~  - U ~ C Q ~ .  (9.16) 

If the flow at runner exit is without swirl then the equation reduces to 

AW = U 2 ~ 2 .  (9.16a) 

The effective head for all reaction turbines, H E ,  is the total head available at the 
turbine inlet relative to the su$ace of the tailrace. At entry to the runner the energy 
available is equal to the sum of the kinetic, potential and pressure energies, i.e. 

+ ;e; + gz2, (9.17) 

where AHN is the loss of head due to friction in the volute and guide vanes and 
p2 is the absolute static pressure at inlet to the runner. 

At runner outlet the energy in the water is further reduced by the amount of 
specific work AW and by friction work in the runner, gAHR and this remaining 
energy equals the sum of the pressure potential and kinetic energies, i.e. 

P2 - P a  g(HE - A H N )  = ~ 

P 

g ( H E  - AHN - A H R )  - AW = kc: + p 3 / p  - p a l p  4- gZ3 (9.18) 

where p3 is the absolute static pressure at runner exit. 
By differencing eqns. (9.17) and (9.18), the specific work is obtained 

A w  = (PO2 - PO3)/P - gAHR + g(z2 - z3) (9.19) 

where p02 and po3 are the absolute total pressures at runner inlet and exit. 
Figure 9.15 shows the draft tube in relation to a vertical-shaft Francis turbine. The 

most important dimension in this diagram is the vertical distance ( z  = 23) between the 

FIG. 9.15. Location of draft tube in relation to vertical shaft Francis turbine. 
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exit plane of the runner and the free surface of the tailrace. The energy equation 
between the exit of the runner and the tailrace can now be written as 

(9.20) P3/P i C z  -I- gZ - gAHDT = i C z  + Pa/P, 

where A H D T  is the loss in head in the draft tube and c4 is the exit velocity. 
The hydraulic efficiency is given by 

A W  U2ce2 - U3ce3 q H = - -  - 
gHE gHE 

and, if ce3 = 0, then 

(9.21) 

(9.2 1 a) 

The overall efficiency is given by qo = q m q ~ .  For large machines the mechanical 
losses are relatively small and qrn a 100 per cent and so qo 

For the Francis turbine the ratio of the runner speed to the spouting velocity, 
v = U / C O ,  is not as critical for high efficiency operation as it is for the Pelton 
turbine and, in practice, it lies within a fairly wide range, i.e. 0.6 < u < 0.9. In 
most applications of Francis turbines the turbine drives an alternator and its speed 
must be maintained constant. The regulation at part load operation is achieved by 
varying the angle of the guide vanes. The guide vanes are pivoted and, by means of 
a gearing mechanism, the setting can be adjusted to the optimum angle. However, 
operation at part load causes a whirl velocity component to be set up downstream of 
the runner causing a reduction in efficiency. The strength of the vortex can be such 
that cavitation can occur along the axis of the draft tube (see remarks on cavitation 
later in this chapter). 

Q H .  

EXAMPLE 9.3. In a vertical-shaft Francis turbine the available head at the inlet 
flange of the turbine is 150m and the vertical distance between the runner and 
the tailrace is 2.0 m. The runner tip speed is 35 d s ,  the meridional velocity of the 
water through the runner is constant and equal to 10.5 d s ,  the flow leaves the runner 
without whirl and the velocity at exit from the draft tube is 3 . 5 d s .  The hydraulic 
energy losses estimated for the turbine are as follows: 

A H N  = 6.0m, A H R  = 10.0m, A H D T  = 1.0m. 

Determine: 

(1) the pressure head (relative to the tailrace) at inlet to and at exit from the runner; 
(2) the flow angles at runner inlet and at guide vane exit; 
(3) the hydraulic efficiency of the turbine. 

If the flow discharged by the turbine is 20m3/s and the power specific speed of the 
turbine is 0.8 (rad), determine the speed of rotation and the diameter of the runner. 

Solution. From eqn. (9.20) 
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NB. The head H3 is relative to the tailrace. 

(3S2 - 10S2) 
2 x 9.81 

... H3 = + 1 - 2 = -6.0m, 

i.e. the pressure at runner outlet is below atmospheric pressure, a matter of some 
importance when we come to consider the subject of cavitation later in this chapter. 
From eqn. (9.18), 

H2 = HE - AHN - c;/(2g) = 150 - 6 - 38.732/(2 x 9.81) = 67.22m. 

From eqn. (9.18), 
1 2  A w  = g(HE - AHN - AHR-~)  - - gH3 

= 9.81 x (150 - 6 - 10 - 2) - 10S2/2 + 9.81 x 6 = 1298.7m2/s2 

= AWIU2 = 1298.7135 = 37.1 m / s  ... 

(r2 =tan-' (2)  = tan-' 

p2 = tan-' (2)  = tan-' 

(z) = 74.2 deg 

( 37':0<35) = 11.31 deg. 

The hydraulic efficiency is 

AW 

gHE 
qH=-- - 1298.7/(9.81 x 150) = 0.8826. 

From the definition of the power specific speed, eqn. (9.1), 

n s p ( g H ~ ) ~ ' ~  0.8 X 9114 
= 45.24 rads. - n= - 

JQAW J20 x 1298.7 

Thus, the rotational speed is N = 432 rev/min and the runner diameter is 

0 2  = 2U2/52 = 70145.24 = 1.547 m. 

The Kaplan turbine 

This type of turbine evolved from the need to generate power from much lower 
pressure heads than are normally employed with the Francis turbine. To satisfy 
large power demands very large volume flow rates need to be accommodated in the 
Kaplan turbine, i.e. the product QHE is large. The overall flow configuration is from 
radial to axial. Figure 9.16 is a part sectional view of a Kaplan turbine in which the 
flow enters from a volute into the inlet guide vanes which impart a degree of swirl 
to the flow determined by the needs of the runner. The flow leaving the guide vanes 
is forced by the shape of the passage into an axial direction and the swirl becomes 
essentially a free vortex, i.e. 

rce = a constant. 
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FIG. 9.16. Part section of a Kaplan turbine in situ (courtesy Sulzer Hydro Ltd, Zurich). 

The vanes of the runner are similar to those of an axial-flow turbine rotor but 
designed with a twist suitable for the free-vortex flow at entry and an axial flow 
at outlet. Because of the very h g h  torque that must be transmitted and the large 
length of the blades, strength considerations impose the need for large blade chords. 
As a result, pitchkhord ratios of 1.0 to 1.5 are commonly used by manufacturers 
and, consequently, the number of blades is small, usually 4, 5 or 6. The Kaplan 
turbine incorporates one essential feature not found in other turbine rotors and that 
is the setting of the stagger angle can be controlled. At part load operation the 
setting angle of the runner vanes is adjusted automatically by a servo mechanism to 
maintain optimum efficiency conditions. This adjustment requires a complementary 
adjustment of the inlet guide vane stagger angle in order to maintain an absolute 
axial flow at exit from the runner. 

Basic equations 

Most of the equations presented for the Francis turbine also apply to the Kaplan 
(or propeller) turbine, apart from the treatment of the runner. Figure 9.17 shows 
the velocity triangles and part section of a Kaplan turbine drawn for the mid-blade 
height. At exit from the runner the flow is shown leaving the runner without a whirl 
velocity, i.e. c03 = 0 and constant axial velocity. The theory of free-vortex flows was 
expounded in Chapter 6 and the main results as they apply to an incompressible fluid 
are given here. The runner blades will have a fairly high degree of twist, the amount 
depending upon the strength of the circulation function K and the magnitude of the 
axial velocity. Just upstream of the runner the flow is assumed to be a free-vortex 
and the velocity components are accordingly: 

C Q ~  = K/r  c, = a constant. 

The relations for the flow angles are 

tan82 = U/cx - tan(r2 = S2r/cX - K/(rc,) 

tan83 = U/cx = Br/c,. 

(9.22a) 

(9.22b) 
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FIG. 9.17. Section of a Kaplan turbine and velocity diagrams at inlet to and exit from the 
runner. 

EXAMPLE 9.4. A small-scale Kaplan turbine has a power output of 8 M W ,  an 
available head at turbine entry of 13.4m and a rotational speed of 200rev/min. The 
inlet guide vanes have a length of 1.6 m and the diameter at the trailing edge surface 
is 3.1 m. The runner diameter is 2.9m and the hub to tip ratio is 0.4. 

Assuming the hydraulic efficiency is 92 per cent and the runner design is “free- 
vortex”, determine: 

(1) the radial and tangential components of velocity at exit from the guide vanes; 
(2) the component of axial velocity at the runner; 
(3) the absolute and relative flow angles upstream and downstream of the runner at 

the hub, mid-radius and tip. 

Solution. As P = VHpgQHE, then the volume flow rate is 

Q = P/(vHpgHE) = 8 X 106/(0.92 X 9810 X 13.4) = 66.15m/s2 

:_ c,1 = Q/(217rlL) = 66.15/(217 x 1.55 x 1.6) = 4.245m/s2 

cx2 = 
4Q = 4 x 66.15/(17 x 2.92 x 0.84) = 11.922m/s2. 

17D;~(1 - u2) 

As the specific work done is A W  = U2ce2 and T ~ H  = AW/(gHE), then at the tip 

VHgHE 0.92 X 9.81 X 13.4 
ca=-- - = 3.892m/~, 

u2 30.37 

where the blade tip speed is, U2 = QD2/2 = (200 x 17/30) x 2.9/2 = 30.37ds 

cel = ce2r;?/rl = 3.892 x 1.45/1.55 = 3.725m/s2 

a1 = tan-’ (z)  =tan-’ (=) = 41.26 deg. 
3.725 
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TABLE 9.4. Calculated values of flow angles for 
Example 9.4. 

Ratio rlr, 
Parameter 0.4 0.7 1 .0 

ce2 ~ J s  9.955 5.687 3.982 
tan a2 0.835 0.4772 0.334 
a2 (de& 39.86 25.51 18.47 
UIG2 1.019 1.7832 2.547 
82 (de& 10.43 52.56 65.69 
83 (W 45.54 60.72 68.57 

FIG. 9.18. Calculated variation of flow angles for Kaplan turbine of Example 9.4. 

Values a2, 8 2  and 83 shown in Table 9.4 have been derived from the following 
relations: 

a2=m-' (E) =tan-'(--) ce2t rt 
cx2 F- 

) 8 2  = tan-' (5 - tana2) = tan-' (2: - tana2 

83 = tan-' (tx2) = tan-' (--) U2r r . 
cx2 rt 

cx2 rt 

Finally, Figure 9.18 illustrates the variation of the flow angles, from which the large 
amount of blade twist mentioned earlier can be inferred. 

Effect of size on turbomachine efficiency 

Despite careful attention to detail at the design stage and during manufacture 
it is a fact that small turbomachines always have lower efficiencies than larger 
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geometrically similar machines. The primary reason for this is that it is not possible 
to establish perfect dynamical similarity between turbomachines of different size. 
In order to obtain this condition, each of the the dimensionless terms in eqn. (1.2) 
would need to be the same for all sizes of a machine. 

To illustrate this consider a family of turbomachines where the loading term, + = g H / N 2 D 2  is the same and the Reynolds number, Re = N P / v  is the same for 
every size of machine, then 

gH N 2 D 4  gHD2 +Re2 = N2D2. 7 - - - 
V 2  

must be the same for the whole family. Thus, for a given fluid (u is a constant), 
a reduction in size D must be followed by an increase in the head H .  A turbine 
model of f the size of a prototype would need to be tested with a head 64 times that 
required by the prototype! Fortunately, the effect on the model efficiency caused by 
changing the Reynolds number is not large. In practice, models are normally tested 
at conveniently low heads and an empirical correction is applied to the efficiency. 

With model testing other factors effect the results. Exact geometric similarity 
cannot be achieved for the following reasons: 

(a) the blades in the model will probably be relatively thicker than in the prototype; 
(b) the relative surface roughness for the model blades will be greater; 
(c) leakage losses around the blade tips of the model will be relatively greater as a 

result of increased relative tip clearances. 

Various simple corrections have been devised (see Addison 1964) to allow for the 
effects of size (or scale) on the efficiency. One of the simplest and best known is 
that due to Moody and Zowski (1969), also reported by Addison (1964) and Massey 
(1979), which as applied to the efficiency of reaction turbines is 

(9.23) 

where the subscripts p ,  m refer to prototype and model, and the index n is in 
the range 0.2 to 0.25. From comparison of field tests of large units with model 
tests, Moody and Zowski concluded that the best value for n was approximately 
0.2 rather than 0.25 and for general application this is the value used. However, 
Addison (1964) reported tests done on a full-scale Francis turbine and a model made 
to a scale of 1 to 4.54 which gave measured values of the maximum efficiencies of 
0.85 and 0.90 for the model and full-scale turbines, respectively, which agreed very 
well with the ratio computed with n = 0.25 in the Moody formula! 

EXAMPLE 9.5. A model of a Francis turbine is built to a scale of 1/5 of full 
size and when tested it developed a power output of 3 kW under a head of 1.8 m of 
water, at a rotational speed of 360rev/min and a flow rate of 0.215 m3/s. Estimate the 
speed, flow rate and power of the full-scale turbine when working under dynamically 
similar conditions with a head of 60m of water. 

By making a suitable correction for scale effects, determine the efficiency and 
the power of the full-size turbine. Use Moody’s formula and assume n = 0.25. 
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Solution. From the group $I = we get: 

N ,  = N m ( D m / D , ) ( H , / H , ) 0 . 5  = (360/5)(60/1.8)”’ = 415.7rev/min. 

From the group $ = Q / ( N D 3 )  we get: 

Q ,  = Q m ( N , / N m ) ( D , / D m ) 3  = 0.215 x (360/415.7) x 53 = 23.27m3/s. 

Lastly, from the group = P / ( p N 3 D 5 )  we get: 

P p =  Pm(Np/Nm)3(Dp/Dm)5= 3 x (415.7)3 x 55= 14430kW = 14.43MW. 

This result has still to be corrected to allow for scale effects. First we must calculate 
the efficiency of the model turbine. The efficiency is found from 

q m  = P / ( p Q g H )  = 3 x 103/(103 x 0.215 x 9.81 x 1.8) = 0.79. 

Using Moody’s formula the efficiency of the prototype is determined: 

(1 - I],) = (1 - I ] ~ )  x 0.2°.25 = 0.21 x 0.6687 

hence 

I], = 0.8596. 

The corresponding power is found by an adjustment of the original power obtained 
under dynamically similar conditions, i.e. 

Corrected P ,  = 14.43 x 0.8596/0.79 = 15.7MW. 

Cavitation 
A description of the phenomenon of cavitation, mainly with regard to pumps, was 

given in Chapter 1. In hydraulic turbines, where reliability, long life and efficiency 
are all so very important, the effects of cavitation must be considered. Two types 
of cavitation may be in evidence, 

(a) on the suction surfaces of the runner blades at outlet which can cause severe 

(b) a twisting “rope-type” cavity that appears in the draft tube at off-design operating 

Cavitation in hydraulic turbines can occur on the suction surfaces of the runner 
blades where the dynamic action of the blades acting on the fluid creates low 
pressure zones in a region where the static pressure is already low. Cavitation will 
commence when the local static pressure is less than the vapour pressure of the 
water, i.e. where the head is low, the velocity is high and the elevation, z ,  of the 
turbine is set too high above the tailrace. For a turbine with a horizontal shaft the 
lowest pressure will be located in the upper part of the runner, which could be of 
major significance in large machines. Fortunately, the runners of large machines are, 

blade erosion; and 

conditions. 
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in general, made so that their shafts are orientated vertically, lessening the problem 
of cavitation occurrence. 

The cavitation performance of hydraulic turbines can be correlated with the 
Thoma coefficient, o, defined as 

(9.24) 

where H s  is the net positive suction head (NPSH), the amount of head needed to 
avoid cavitation, the difference in elevation, z ,  is defined in Figure 9.15 and pv is the 
vapour pressure of the water. The Thoma coefficient was, strictly, originally defined 
in connection with cavitation in turbines and its use in pumps is not appropriate (see 
Yedidiah 1981). It is to be shown that u represents the fraction of the available head 
H E  which is unavailable for the production of work. A large value of CT means that a 
smaller part of the available head can be utilised. In a pump, incidentally, there is no 
direct connection between the developed head and its suction capabilities, provided 
that cavitation does not occur, which is why the use of the Thoma coefficient is not 
appropriate for pumps. 

From the energy equation, eqn. (9.20), this can be rewritten as 

(9.25) 

so that when p3 = pv, then H s  is equal to the rhs of eqn. (9.24). 
Figure 9.19 shows a widely used correlation of the Thoma coefficient plotted 

against specific speed for Francis and Kaplan turbines, approximately defining the 
boundary between no cavitation and severe cavitation. In fact, there exists a wide 
range of critical values of u for each value of specific speed and type of turbine 
due to the individual cavitation characteristics of the various runner designs. The 
curves drawn are meant to assist preliminary selection procedures. An alternative 
method for avoiding cavitation is to perform tests on a model of a particular turbine 
in which the value of p3 is reduced until cavitation occurs or, a marked decrease in 
efficiency becomes apparent. This performance reduction would correspond to the 
production of large-scale cavitation bubbles. The pressure at which cavitation erosion 
occurs will actually be at some higher value than that at whch the performance 
reduction starts. 

For the centre-line cavitation that appears downstream of the runner at off-design 
operating conditions, oscillations of the cavity can cause severe vibration of the 
draft tube. Young reported some results of a “corkscrew” cavity rotating at 4Hz. 
Air injected into the flow both stabilizes the flow and cushions the vibration. 

EXAMPLE 9.6. Using the data in Example 9.3 and given that the atmospheric 
pressure is 1.013 bar and the water is at 25T ,  determine the NPSH for the turbine. 
Hence, using Thoma’s coefficient and the data shown in Figure 9.19, determine 
whether cavitation is likely to occur. Also using the data of Wislicenus verify the 
result. 

Solution. From tables of fluid properties, e.g. Rogers and Mayhew (1995), or 
using the data of Figure 9.20, the vapour pressure for water corresponding to a 
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FIG. 9.1 9. Variation of critical cavitation coefficient with non-dimensional specific speed 
for Francis and Kaplan turbines (adapted from Moody and Zowski 1969). 

FIG. 9.20. Vapour pressure of water as head (m) versus temperature. 
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temperature of 25°C is 0.03166bar. From the definition of NPSH, eqn. (9.24), we 
obtain: 

z = (1.013 - 0.03166) x 105/(9810) - 2 = 8.003m. Pa - Pu 
Pg 

H s -  

Thus, Thoma's coefficient is, a = H s / H ~  = 8.003/150 = 0.05336. 
At the value of asp = 0.8 given as data, the value of the critical Thoma coefficient 

a, corresponding to this is 0.09 from Figure 9.19. From the fact that a < a,, then 
the turbine will cavitate. 

From the definition of the suction specific speed 

44.9 x 20112 - - = 200.8/26.375 = 7.613. 
QQ'/2 

( ~ H s ) ~ / ~  (9.81 x 8.003)3/4 Qss = 

According to eqn. (l.l2b), when Q ~ s  exceeds 4.0 (rad) then cavitation can occur, 
giving further confirmation of the above conclusion. 

Connection between Thoma's coefficient, suction specific speed and 
specific speed 

The definitions of suction specific speed and specific speed are 

Combining and using eqn. (9.24), we get: 

(9.26) 

Exercise. Verify the value of Thoma's coefficient in the earlier example using 
the values of power specific speed, efficiency and suction specific speed given or 
derived. 

We use as data Q ~ s  = 7.613, a s p  = 0.8 and QH = 0.896 so that, from eqn. (1.9c), 

Qs = Q s p / , / q ~  = 0.8/,/0.896 = 0.8452 

:. a = (0.8452/7.613)4/3 = 0.05336. 

Avoiding cavitation 

By rearranging eqn. (9.24) and putting a = a,, a critical value of z can be derived 
on the boundary curve between cavitation and no cavitation. Thus, 

- acHE = (101.3 - 3.17)/9.81 - 0.09 x 150 = -3.5 m. P a  - P u  z = z , = -  
Pg 

This means that the turbine would need to be submerged at a depth of 3.5m or 
more below the surface of the tailwater and, for a Francis turbine, would lead to 
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problems with regard to construction and maintenance. Equation (9.24) shows that 
the greater the available head H E  at which a turbine operates, the lower it must be 
located relative to the surface of the tailrace. 

Sonoluminescence 

The collapse of vapour cavities generates both noise and flashes of light (called 
sonoluminescence). Young (1989) has given an extended and interesting review of 
experiments on sonoluminescence from hydrodynamic cavitation and its causes. 
The phenomenon has also been reported by Pearsall(l974) who considered that the 
collapse of the cavity was so rapid that very high pressures and temperatures were 
created. Temperatures as high as 10 000 K have been suggested. Shock waves with 
pressure differences of 4000 atm have been demonstrated in the liquid following the 
collapse of a cavity. The effect of the thermal and pressure shocks on any material 
in close proximity causes mechanical failure, i.e. erosion damage. 

Light has been reported in large energy distributions in field installations. An 
example again quoted by Young is that of the easily visible light observed at night 
in the tailrace at Boulder Dam, USA. This occurs when sudden changes of load 
necessitate the release of large quantities of high-pressure water into an energy- 
dissipating structure. Under these conditions the water cavitates severely. In a further 
example, Young mentions the light (observed at night) from the tailrace of the 
hydroelectric power station at Erochty, Scotland. The luminescence appeared for 
up to ten seconds shortly after the relief valve was opened and was seen as a blue 
shimmering light stretching over an area of the water surface for several square 
metres. 
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Problems 
1. A generator is driven by a small, single-jet Pelton turbine designed to have a power 

specific speed S2sp = 0.20. The effective head at nozzle inlet is 120m and the nozzle velocity 
coefficient is 0.985. The runner rotates at 880rev/min, the turbine overall efficiency is 88 per 
cent and the mechanical efficiency is 96 per cent. 

If the blade speed to jet speed ratio, u = 0.47, determine: 

(1) the shaft power output of the turbine; 
(2) the volume flow rate; 
(3) the ratio of the wheel diameter to jet diameter. 

2. (a) Water is to be supplied to the Pelton wheel of a hydroelectric power plant by a pipe 
of uniform diameter, 400m long, from a reservoir whose surface is 200m vertically above 
the nozzles. The required volume flow of water to the Pelton wheel is 30m3/s. If the pipe 
skin friction loss is not to exceed 10% of the available head and f = 0.0075, determine the 
minimum pipe diameter. 

(b) You are required to select a suitable pipe diameter from the available range of stock 
sizes to satisfy the criteria given. The range of diameters (m) available are: 1.6, 1.8, 2.0, 2.2, 
2.4, 2.6, 2.8. For the diameter you have selected, determine: 

(1) the friction head loss in the pipe; 
(2) the nozzle exit velocity assuming no friction losses occur in the nozzle and the water 

(3) the total power developed by the turbine assuming that its efficiency is 75% based upon 
leaves the nozzle at atmospheric pressure; 

the energy available at turbine inlet. 

3. A multi-jet Pelton turbine with a wheel 1.47m diameter, operates under an effective 
head of 200m at nozzle inlet and uses 4m3/s of water. Tests have proved that the wheel 
efficiency is 88 per cent and the velocity coefficient of each nozzle is 0.99. 

Assuming that the turbine operates at a blade speed to jet speed ratio of 0.47, determine: 

(1) the wheel rotational speed; 
(2) the power output and the power specific speed; 
(3) the bucket friction coefficient given that the relative flow is deflected 165"; 
(4) the required number of nozzles if the ratio of the jet diameter to mean diameter of the 

wheel is limited to a maximum value of 0.1 13. 

4. A four-jet Pelton turbine is supplied by a reservoir whose surface is at an elevation of 
500m above the nozzles of the turbine. The water flows through a single pipe 600m long, 
0.75m diameter, with a friction coefficient f = 0.0075. Each nozzle provides a jet 75mm 
diameter and the nozzle velocity coefficient K N  = 0.98. The jets impinge on the buckets of 
the wheel at a radius of 0.65m and are deflected (relative to the wheel) through an angle 
of 160deg. Fluid friction within the buckets reduces the relative velocity by 15 per cent. 
The blade speed to jet speed ratio, u = 0.48 and the mechanical efficiency of the turbine is 
98 per cent. 
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Calculate, using an iterative process, the loss of head in the pipeline and hence, determine 
for the turbine: 

(1) the speed of rotation; 
(2) the overall efficiency (based on the effective head); 
(3) the power output; 
(4) the percentage of the energy available at turbine inlet which is lost as kinetic energy at 

turbine exit. 

5. A Francis turbine operates at its maximum efficiency point at qo = 0.94, corresponding 
to a power specific speed of 0.9 rad. The effective head across the turbine is 160 m and the 
speed required for electrical generation is 750revhn.  The runner tip speed is 0.7 times the 
spouting velocity, the absolute flow angle at runner entry is 72 deg from the radial direction 
and the absolute flow at runner exit is without swirl. 

Assuming there are no losses in the guide vanes and the mechanical efficiency is 100 per 
cent, determine: 

( 1 )  the turbine power and the volume flow rate; 
(2) the runner diameter; 
(3) the magnitude of the tangential component of the absolute velocity at runner inlet; 
(4) the axial length of the runner vanes at inlet. 

6. The power specific speed of a 4 MW Francis turbine is 0.8, and the hydraulic efficiency 
can be assumed to be 90 per cent. The head of water supplied to the turbine is 100m. The 
runner vanes are radial at inlet and their internal diameter is three-quarters of the external 
diameter. The meridional velocities at runner inlet and outlet are equal to 25 and 30 per cent, 
respectively, of the spouting velocity. 

Determine: 

(1) the rotational speed and diameter of the runner; 
(2) the flow angles at outlet from the guide vanes and at runner exit; 
(3) the widths of the runner at inlet and at exit. 

Blade thickness effects can be neglected. 

7. (a) Review, briefly, the phenomenon of cavitation in hydraulic turbines and indicate 
the places where it is likely to occur. Describe the possible effects it can have upon turbine 
operation and the turbine’s structural integrity. What strategies can be adopted to alleviate 
the onset of cavitation? 

(b) A Francis turbine is to be designed to produce 27 MW at a shaft speed of 94 rev/min 
under an effective head of 27.8 m. Assuming that the optimum hydraulic efficiency is 92 per 
cent and the runner tip speed to jet speed ratio is 0.69, determine: 

(1) the power specific speed; 
(2) the volume flow rate; 
(3) the impeller diameter and blade tip speed. 

(c) A 1/10 scale model is to be constructed in order to verify the performance targets of 
the prototype turbine and to determine its cavitation limits. The head of water available for 
the model tests is 5.0 m. When tested under dynamically similar conditions as the prototype, 
the net positive suction head H s  of the model is 1.35111. 

Determine for the model: 

(1) the speed and the volume flow rate; 
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(2)  the power output, corrected using Moody’s equation to allow for scale effects (assume 

(3) the suction specific speed Qss. 

a value for n = 0.2); 

(d) The prototype turbine operates in water at 30°C when the barometric pressure is 95 Wa. 
Determine the necessary depth of submergence of that part of the turbine mostly likely to be 
prone to cavitation. 

8. The preliminary design of a turbine for a new hydro-electric power scheme has under 
consideration a veitical-shaft Francis turbine with a hydraulic power output of 200MW 
under an effective head of 110 m. For this particular design a specific speed, Qs = 0.9 (rad), 
is selected for optimum efficiency. At runner inlet the ratio of the absolute velocity to 
the spouting velocity is 0.77, the absolute flow angle is 68deg and the ratio of the blade 
speed to the spouting velocity is 0.6583. At runner outlet the absolute flow is to be without 
swirl. 

Determine: 

( 1 )  the hydraulic efficiency of the rotor; 
(2) the rotational speed and diameter of the rotor; 
(3) the volume flow rate of water; 
(4) the axial length of the vanes at inlet. 

9. A Kaplan turbine designed with a shapefactor (power specific speed) of 3.0(rad), a 
runner tip diameter of 4.4 m and a hub diameter of 2.0 m, operates with a net head of 20 m 
and a shaft speed of 150rev/min. The absolute flow at runner exit is axial. Assuming that 
the hydraulic efficiency is 90% and the mechanical efficiency is 99%, determine: 

(1) the volume flow rate and shaft power output; 
(2) the relative flow angles at the runner inlet and outlet at the hub, the mean radius and at 

the tip. 



Conversion of British and US 
Units to SI Units 

Length 
1 inch 
1 foot 

Area 
1 in2 
1 ft2 

Volume 
I in3 
1 ft3 

1 gall (UK) 
1 gall (US) 

Velocity 
1 ft/s 
1 mileh 

Mass 
1 Ib 
1 ton (UK) 
1 ton (US) 

Density 
1 Ib/ft3 
1 siug/ft3 

Force 
= 0.0254 m 1 Ibf = 4.448 N 
= 0.3048 m 1 ton f (UK) = 9.964kN 

Pressure 
= 6.452 x m2 1 Ibf/in2 = 6.895 kPa 
= 0.09290 m2 

= 16.39cm3 
= 28.32 dm3 
= 0.02832 m3 
= 4.546 dm3 
= 3.785 dm3 

= 0.3048 m/s  
= 0.447 m / s  

= 0.4536 kg 
= 1016kg 
= 907.2 kg 

= 16.02 kg/m3 
= 515.4kg/m3 

Some other units in use 
1 tonne = 1OOOkg 

1 ft H20 = 2.989kPa 
1 in Hg = 3.386kPa 
I bar = 100.0kPa 
1 atm = 101.3kPa 

Energy 
1 ft lbf 
1 Btu = 1.055 kJ 

= 1.356 J 

Specifc energy 
1 ft 1bfAb 
1 Btu/lb = 2.326kJkg 

= 2.989 J/kg 

Specifc heat capacity 
1 ft lbf/(lb"F) 
1 ft lbf/(slug "F) 
1 Btu/(lb O F )  = 4.188kJ/(kg°C) 

= 5.38 J/(kg"C) 
= 0.167 J/(kg"C) 

Power 
1 hP = 0.7457 kW 

lTWh = 1 0 6 m  
= 3.6 1 0 9 ~ ~  
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Answers to Problems 
Chapter I 

1. 6.277 m3/s. 
2. 9.15 m / s ;  5.33 atmospheres. 
3. 551 rev/min, 1:10.8; 0.8865 m3/s; 17.85MN. 
4. 4,035 rev/min; 3 1.22 kg/s. 

Chapter 2 

1. 88.1 per cent. 
2. (1) 703.1 K; (2) 751.9 K; (3) 669 K. 
3. (1) 500K, 0.313m3/kg; (2) 1.045. 
4. 49.2 kg/s; 24 111111. 
5. (1) 620kPa, 274°C; 240kPa, 201°C; 85 kPa, 126'C; 26kPa, q = 0.988; 7kPa, 

= 0 - 95; (2) 0.619, 0.655, 0.699, 0.721, 0.750; (3) 0.739, 0.724; (4) 1.075. 

Chapter 3 

1. 49.8deg. 
2. 0.767; C o  = 0.048, C L  = 2.245. 
3. -1.17 deg., 9.5deg, 1.11. 
4. (1) 53 deg and 29.5 deg; (2) 0.962; (3) 2.079 kN/m2. 
5. (a) s/l = 1.0, a; = 24.8 deg; (b) C L  = 0.82. 
6. (b) 57.8deg; (c) (1) 3.579kPa; (2) 0.96; (3) 0.0218, 1.075. 
7. (a) a1 = 73.2", a 2  = 68.1", (b) (1) C L  = 0.696, (2) ~0 = 0.8824 

Chapter 4 

2. (a) 88 per cent; (b) 86.17 per cent, (c) 1170.6K 
3. cy2 = 70 deg., 8 2  = 7.02 deg., a 3  = 18.4 deg., 8 3  = 50.37 deg. 
4. 22.62 kJkg; 420 H a ,  177°C. 
5. 90.2 per cent. 
6. (1) 1.50; (2) 39.9deg, 59deg; (3) 0.25; (4) 90.5 and 81.6 per cent. 
7. (1) 488m/s; (2) 266.1 m / s ;  (3) 0.83; (4) 0.128. 
8. (1) 213.9ds; (2) 0.10, 2.664; (3) 0.872; (4) 269"C, 0.90Mpa. 
9. (a) (1) 601.9 m/s ;  (2) 282.8 m / s ;  (3) 79.8 per cent. (b) 89.23 per cent. 

10. (b) (1) 130.9 kJkg; (2) 301.6 m/s; (3) 707.6 K (c) (1) 10,200 revlmin; (2) 0.565 m 

11. (2) 0.2166m'; (3) 8,74Orev/min. (4) 450.7m/s, 0.846. 
(3) 0.845. 
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Chapter 5 

1. 14 stages. 
2. 30.35"C. 
3. 132.1 d s ,  56.1 kg/s; 1O.OMW. 
4. 86.5 per cent; 9.27MW. 
5. 0.59, 0.415. 
6. 33.5 deg, 8.5 deg, 52.9 deg; 0.827; 34.5 deg, 0.997. 
7. 56.9deg, 41 deg; 21.8deg. 
8. (1) 229.3 d s ;  (2) 23.47 kg/s, 15,796rev/min; (3) 33.614 Hkg; (4) 84.7 per cent; 

(5) 5.856 stages, 0.789 MW; (6) With six stages and the same loading, the pres- 
sure ratio is then 6.209. However, to maintain a pressure ratio of 6.0, the specific 
work must be decreased to 32.81 H k g  which requires an absolute flow angle 
CY, to change from 30" to 30.26". With five stages and a pressure ratio of six 
the weight and cost would be lower but the stage loading would increase to 
39.37 H/kg which would require CY, to be changed to 28.08 deg. 

9. (a) 16.22deg., 22.08deg., 33.79deg. (b) 467.2Pa, 7.42ds. 
10. (1) PI = 70.79", 8 2  = 68.24 deg.; (2) 83.96 per cent; (3) 399.3 Pa; (4) 7.144 cm. 
11. (1) 141.1 Pa, 0.588; (2) 60.48Pa; (3) 70.14 per cent. 

Chapter 6 

1. 55 and 47deg. 2. 0.602, 1.38, -0.08 (i.e. implies large losses near hub) 
4. 70.7 m/s. 5. Work done is constant at all radii; 

c , ~  = kl - 2a2[r2 - 2(b/a)lnr] 

c$ = k2 - 2a2[r2 + 2(b/a) In r] 

PI = 43.2 deg, 8 2  = 10.4 deg . 

6. (1) 469.3ds; (2) 0.798; (3) 0.079; (4) 3.244MW; (5) 911.6K, 897K. 
7. (1) 62deg; (2) 55.3 and 1.5deg; (3) 45.2 and 66deg, (4) -0.175, 0.477. 
8. See "Solutions Manual". 

Chapter 7 

1. (1) 27.9ds; (2) 882rev/min, 0.604m; (3) 182 W; (4) 0.333 (rad) 
2. 579kW; 169mm; 5.273. 
3. 0.8778; 5.62 kgls. 
4. 24,430 rev/min; 0.203 m, 0.5844. 
5. 0.7324, 90.84 per cent. 
6. (1) 542.5kW; (2) 536 and 519kPa; (3) 608.2 and 244kPa, 1.22, 193.2ds; 

7. (1) 29.4dm3/s; (2) 0.781; (3) 77.7deg; (4) 7.8kW. 
8. (1) 14.11 cm; (2) 2.635 m; (3) 0.7664; (4) 17.73 m; (5) 13.8kW; as = 0.722, 

9. (a) See text. (b) (1) 32,214rev/min; (2) 5.246kg/s; (c) (1) 1.254MW; (2) 6.997. 

(4) 0.899; (5) 0.22; (6) 31,77Orev/min. 

CTB = 0.752. 
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Chapter 8 

1. 587.4 d s ,  73.88 deg. 
2. (1) 203.8 kPa, 977 K; (2) 0.40m, 28,046rev/min; (3) 1 MW. 
3. (1) 90.54 per cent; (2) 0.2694m; (3) 0.05316, 0.2009. 
4. 1594K. 
5. (1) 2.159m3/s, 500kW; (2) 0.0814m and 0.1826m; (3) 77deg, 0.0995. 
6. (a) 1.089 kg/s, 23,356rev/min; (b) 9.063 x lo5, 1.879 x lo6. 
7. (1) 81.82 per cent; (2) 890K, 184.3kPa; (3) 1.206cm; (4) 196.3ds; (5) 0.492; 

8. (1) 308.24 d s ;  (2) 56.42 kPa, 915.4 K; (3) 113.2 m/s, 0.2765 kg/s; (4) 5.472 cm; 
(6) rs3 = 6.59cm, rh3 = 2.636cm. 

(5) 28.34 deg; (6) 0.7385 rad. 

Chapter 9 

1. (1) 224 kW; (2) 0.2162 rn3/s; (3) 6.423 
2. (a) 2.138111; (2) For d = 2.2rn, (1) 17.32m; (2) 59.87ds, 40.3MW 
3. (1) 378.7rev/min; (2) 6.906MW, 0.252 (rad); (3) 0.793; (4) 3 
4. Head loss in pipeline is 17.8 m. (1) 672.2 rev/min; (2) 84.5 per cent; (3) 6.735 M W ;  

5. (1) 12.82 MW, 8.69 m3/s; (2) 1.0 m; (3) 37.6 d s ;  (4) 0.226 rn 
6. (1) 663.2revhin; (2) 69.55deg., 59.2deg; (3) 0.152111 and 0,169m. 
7. (b) (1) 1.459rad; (2) 107.6m3/s; (3) 3.153111, 15.52ds; (c) (1) 398.7revhi1-1, 

0.456 m3/s; (2) 20.6 kW (uncorrected), 19.55 kW (corrected); (3) 4.06 (rad); (d) 
z = 1.748m 

(4) 2.59 per cent. 

8. (a) (1) 0.94; (2) 115.2 rev/min, 5.068 m; (3) 197.2 m3/s; (4) 0.924 m. 
9. (1) 11.4m3/s, 19.47MW; (2) At hub, mean and tip radii the flow angles (deg) 

are as follows: Inlet 25.81, 62.99, 72.59; Outlet 59.55, 69.83, 75.04. 
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Index 
Actuator disc: 

theory 186-91 
blade row interaction effects 190 
comparison with radial equilibrium 

theory 187 
concept of 187 
mean-value rule 189 
plane of discontinuity 188 
settling-rate rule 190 

theory 61-2, 162-5 
zero lift line 164 

Aerofoil: 

Ainley and Mathieson correlation 

Aspect ratio of cascade blade 65 
Axial flow compressors Ch. 5. 

casing treatment 154-6 
choice of reaction 143 
control of flow instabilities 159 
direct problem 179 - 80 
estimation of stage efficiency 149-54 
flow coefficient 144 
low aspect ratio blades 138 
multistage pressure ratio 148-9 
normal stage 140 
off-design stage performance 183-4 
reaction of stage 143 
simplified off-design stage performance 

stability 154-60 
stability criterion 158 
stage loading 144-5 
stage loss relationships 142 
stage pressure rise 147-8 
stage velocity diagrams 140 
total-to-total efficiency 142 
velocity profile changes through stages 

work done factor 150-1 

70- 1, 
81 -7 

145-6 

150-2 

Axial flow ducted fans 160 et seq. 
Axial flow turbines, two dimensional analysis 

Ch. 4 
Soderberg’s loss correlation 97-9, 100 
stage losses and efficiency 96-7 

thermodynamics of stage 94-5 
types of design 99 
velocity diagrams 93-4 

Basic thermodynamics Ch. 2 
Basic units in SI 3 
Bernoulli’s equation 26, 27 
Blade: 

angles 57 
cavitation coefficient 207 
criterion for minimum number 253 
efficiency 163 -4 
element theory 162 et seq. 
interference factor 160-2 
Mach number 17 
profile loss coefficient 71 
row interaction 190- 1 
surface velocity distribution 72 
zero lift line 165 

effect on secondary losses (turbine 

separation 44 
stall control in a cascade 

Boundary layer 

blade) 84-5 

63-5 

Camber line 56 
Cascade, two-dimensional Ch. 3 

blade chord 56 
camber angle 57 
circulation and lift 61 
choking 78-9 
definition of stall point 69 
deviation angle 75 
drag coefficient 60- 1 
efficiency 62 
flow measurement instrumentation 

forces exerted 57-8 
lift coefficient 60- 1 
Mach number effects 
negative incidence stall 69 
nomenclature used 56 
off-design performance 76 et seq. 
operating problems 63 

65-8 

315 



316 Index 
Cascade, two-dimensional Ch. 3 - (continued) Circulation 61, 171 

performance law 63 
pressure rise coefficient 59 
profile losses 69 
profile thickness distribution 56 
reference incidence angle 69 
space-chord ratio 57 
stagger angle 57 
stall point 6 9 .  
tangential force coefficient 59 
test results 67 et seq. 
turbine correlation (Ainley) 81 et seq. 
wind tunnel 56, 63 
working range of flow incidence 69 

Cavitation 8-12, 301-4 
avoidance 304 
corkscrew type 302 
effect on pump performance 8 
erosion caused by 13, 301 
inception 12- 13 
limits 13 
net positive suction head 14 
pump inlet 206-7 
tensile stress in liquids 14 
Thoma’s coefficient 302, 304 
vapour formation 14 
vapour pressure 302-4 

Centrifugal compressor Ch. 7 
choking of stage 230 et seq. 
condition for maximum flow 205 et seq. 
conservation of rothalpy 204 
diffuser 201, 205, 227-30 
effect of prewhirl 209-10, 211, 212 
effect of backswept vanes 221-5 
impeller 203 -4 
inducer section 202, 210 
inlet analysis 208- 11 
inlet casing 203 
kinetic energy leaving impeller 225-7 
limitations of single stage 205-6 
Mach number at impeller exit 223-4 
pressure ratio 219-22 
scroll 201 
slip factor 213-18 
uses 199-200 
use of prewhirl 212 
vaned diffusers 228-30 
vaneless diffusers 227-8 
volute 201 

head increase 28-9 
Centrifugal pump characteristics 7-9 

Choked flow 19,20 

Coefficient of 
cavitation 207, 303 
contraction 65 
drag 60-1 
energy transfer 6 
flow 6 
head 6 
lift 60-1 
power 6 
pressure rise 59 
profile loss 82 
pressure loss 68 
tangential force 59 
total pressure loss 59 
volumetric flow 6 

Compressible fluid analysis 16-20 
Compressible flow through fixed row 

Compressible gas flow relations 
Compressor: 

180-1 
15- 16 

control of instabilities 159-60 
fluctuating pressure in blade rows 

losses in a stage 70 
off-design performance 145-6 
pressure ratio of a multistage 
reaction ratio 143-4 
stage loading 144-5, 148 
stage losses and efficiency 142 
stage pressure rise 147-8 
stage thermodynamics 141 
stage velocity diagrams 140 
stall and surge 

Compressor cascade 
characteristics 69-70 
equivalent diffusion ratio 74 
Howell’s correlation 68-70, 74-9 
Lieblein’s correlation 71 -4 
Mach number effects 78-9 
McKenzie’s correlation 80- 1 
off-design performance 76-8 
performance 68,71-9 
wake momentum thickness ratio 73 
ultimate steady flow 151 
work done factor 150- 1 

20, 
21 

148-9 

19, 137, 154-6 

Constant specific mass flow 181-3 
Continuity equation 23 -4 
Control surface 5 
Control variables 5 
Corresponding points 7 
Cosine Rule 147 



Index 317 
Deflection of fluid 

definition 68 
nominal 69,70 

Design point efficiency (IFR) 
at nominal design point 242 et seq. 

Deviation of fluid 75 
Diffusers 43 et seq. 

analysis with a non-uniform flow 
conical and annular 44 
design calculation 49-5 1 
effectiveness 46 
ideal pressure rise coefficient 46 
maximum pressure recovery 49 
two-dimensional 44 
optimum diffusion rate 44 
optimum efficiency 49 
stall limits 48 

in compressor blades 71 -4 
in turbine blades 103 
optimum rate 49, 137-8 

Dimensional analysis 4-5 
Dimensional similarity 6-7 
Dimensions 3 
Direct problem 179-80 
Drag 59-60, 126 
Draft tube 290, 294, 301 
Dynamically similar conditions 7 

51 - 

Diffusion: 

Efficiency definitions 
compressor cascade 62-3 
compressors and pumps 33, 34 
definitions of 30 ef  seq. 
diffuser 45 
hydraulic turbine 30, 33 
isentropic 30 
maximum total-to-static 100, 112-4 
mechanical 31,33 
nozzle 41, 43 
overall 30 
overall isentropic 38 
polytropic or small stage 35-9 
total-to-static (turbine) 33 
total-to-total (turbine) 32-3 
turbine 30 

Energy transfer coefficient 6 
Entropy 29 
Equivalent diffusion ratio 74 
Euler’s equation of motion 26 
Euler’s pump equation 28 
Euler’s turbine equation 28 

Exducer 238 
Exercises on 

logarithmic spiral vanes 216 
radial flow turbine 244 
turbine polytropic efficiency 39 
units 4 

-53 
Fans: 

aerofoil lift coefficient 162-3, 164-5 
blade element theory 
centrifugal 200 
ducted, axial-flow 160 et seq. 

First law of thermodynamics 
First power stage design 176-9 
Flow coefficient 6 
Flow instabilities, control of 159-60 
Fluid properties 5 
Force, definition of 3 -4 
Forced vortex design 175-6 
Francis turbine 2, 279, 302, 303 

162 et seq. 

23, 24 

capacity of 28 1 
vertical shaft type 291, 294, 295 

Free-vortex flow 171 et seq. 

General whirl distribution 176 
Geometric variables 6 
Geometrical similarity 7 
Grand Coulee large turbines 281 

Head 4, 5 
coefficient 6 
effective 286 
gross 286 
loss in penstock 286 

Heat transfer sign convention 24 
Helmholtz type resonance 157 
Hertz, unit of frequency 4 
Howell 

correlation method 74-9 
deviation rule 75 - 6 
Mach number effects 78-9 
off-design performance 76-8 
tangent difference rule 75 

Hydraulic mean diameter 99 
Hydraulic turbines, Ch. 9 
Hydropower plant 

features 277-8 
largest 281 
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Illustrative examples 
annular diffuser 52-3 
axial compressor 38-9, 148-9, 152-4, 

axial turbine 43, 100-1, 104-7, 118-20 
centrifugal compressor stage 21 1, 226-7 
centrifugal pump 202-8, 218-9 
compressor cascade 76-8 
compressor cascade off-design 77 
conical diffuser 50-1 
fan blade design 80-1 
Francis turbine 295-6 
free-vortex flow 173-4 
multistage axial compressor 148-9 
Pelton turbine 289-90 
Penstock diameter 286 
radial flow gas turbine 241, 24-6, 

scale effects (Francis turbine) 300-1 
three dimensional flow 173-4, 177-9 

for centrifugal compressor 203-4 

173-4, 177-9 

252-3, 259-60, 262-3 

Impeller analysis 

Impulse turbomachines 2 
Impulse blading 70-1 
Impulse turbine stage 102 
Incidence angle 68 

loss 260 et seq. 
nominal 68 
optimum 70 
reference 68 

Inducer 202 
Inequality of Clausius 29 
Interaction effect of closely spaced blade 

Internal energy 24 
Isolated actuator disc 189 

rows 191 

Joule, unit of energy 4 

Kaplan turbine 2, 9, 279, 280, 296-9 
Kelvin, unit (thermodynamic temperature) 4 
Kinematic viscosity 7 
Kutta-Joukowski theorem 61 

Lieblein correlation 7 1-4 
Lift 59-60,61, 126 

coefficient 60, 76, 145, 153, 162, 164-5 
relation to circulation 61 

Lift to d;ag ratio 61, 62-3 
Ljungstrom steam turbine 236-7 

Logarithmic spiral 215, 216, 229 
Loss coefficients in IFR turbine 247-8 

Mach number 
blade 17 
critical 78 
eye of centrifugal compressor 206 
impeller exit 222-5 
inlet to a cascade 67-8 
radial flow turbine 246-7 
relative 209 

Manometric head of a pump 2 18 
Mass flow rate 17 
Matrix through-flow computation 192 
Mixed flow turbomachines 2 
Mollier diagram: 

axial compressor stage 141 
axial turbine stage 95 
centrifugal compressor stage 203 
compressors and turbines 32 
inward flow radial turbine 240 

moment of 27 
one-dimensional equation of 23, 25 

Momentum: 

National Advisory Committee for 
Aeronautics (NACA) 70, 73 

National Aeronautics and Space 
Administration (NASA) 70, 71 

National Gas Turbine Establishment 
(NGTE) 137 

Net energy transfer 6 
Net hydraulic power 7 
Net positive suction head 
Newton, unit of force 4 
Newton’s second law of motion 25 
Number of impeller blades in IFR turbine 

Nominal conditions 69, 74-6 
Nozzle efficiency 41 et seq. 

14, 302 

253-6 

Off-design operation of IFR turbine 
et seq. 

Off-design performance of compressor 
cascade 76-8 

One-dimensional flow 24 
Optimum efficiency 
IFR turbine 248 et seq. 
variable geometry turbomachine 9 

260 
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Radial flow turbines, Ch. 8 

basic design of rotor 241 -2 
cantilever type 237-8 
criterion for number of vanes 253-6 
cooled 271-2 
effect of specific speed 267-8 
inward flow types 237-9 
Mach number relations 246-7 
nominal design point efficiency 242-6 
nozzle loss coefficients 247-8 
optimum design selection 266-9 
optimum flow considerations 248 et 

rotor loss coefficients 248 
velocity triangles 238, 239 

blade 70-1 
compressor stage 143-4, 172-3, 176 
effect on efficiency 107-8 
fifty per cent 103 
true value 179 
turbine stage 101-4, 290 
zero value 102-3 

seq. 

Reaction 

Reheat factor 40 
Relative eddy 214 
Reynolds number 

critical value 67 
Rotating stall 157 

cause 157-8 
control 159-60 

Rothalpy 29, 204-5 
Royal Aircraft Establishment (RAE) 137 
Royal Society 3 

Optimum space-chord ratio 87-8 
Optimum design selection (IFR turbines) 

Overall performance 
26 et seq. 

compressor characteristic 18-20 
turbine characteristic 18-20 

Pascal, unit of pressure 4 
Pelton wheel turbine 2, 3, 279, 280-90 

energy losses 286 
nozzle efficiency 287 
overall efficiency 287-8 
speed control 284 

Penstock 285 
diameter 286 

Perfect gas 16, 17 
Performance characteristics of 

turbomachines 7 
Pitch-Iine analysis assumption 

axial compressor 138-9 
axial turbine 93 

Polytropic index 38 
Power coefficient 6, 18, 301 
Prerotation, effect on performance 209- 12 
Pressure head 4 
Pressure ratio limits of centripetal turbine 

Pressure recovery factor 46 
Pressure rise coefficient 45 
Primary dimensions 6 
Profile losses in compressor blading 69 
Profile thickness 56 
Propagating stall 64 
Pump: 

269-71 

centrifugal 
efficiency 7 
head increase 218-9 
inlet, optimum design 206-8 
mixed flow 2, 9, 12 
simplified impeller design 202 
supercavitating 14, 15 
vane angle 215-6 

7-9, 200, 201, 206-8, 218-9 

Radial equilibrium 
direct problem 179-80 
equation, theory 169 et seq. 
forced vortex 175-6 
free-vortex 171 -5 
general whirl distribution 176-9 

Radial flow 169 
Radial flow compressors and pumps, Ch. 7 

Scroll 201, 290 
Second law of thermodynamics 
Secondary flow 64 

losses 84-5 
vorticity 64 

gyroscope analogy 193 
overturning due to 194 

23, 29 

Secondary flows 193-5 

Shroud 201, 238 
Shape number 10 
SI units 3-4 
Similitude 6 et seq. 
Slip: 

definition 214 
factor 213-18 
in IFR turbines 248-50 
velocity 214 
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Soderberg’s correlation 71, 97, 105 
aspect ratio correlation 98-9 
Reynolds number correction 99 

Sonoluminescence 305 
Specific speed 10 

application and significance 257 et seq. 
highest possible value 12 
power specific speed 11 
suction 14 

Specific work 28 
Spouting velocity 242 
Stage loading factor 

Stagger angle 57, 161-2 
Stagnation properties: 

enthalpy 15, 17 
pressure and temperature 16 

Stall and surge phenomena 
propagating stall 64 
rotating stall 157-9 
wall and blade 156 

100, 106, 107, 108, 
144-5 

154 et seq. 

Stall at negative incidence 69 
Steady flow, 

energy equation 24 
momentum equation 23 
moment of momentum equation 27 

Stodola’s ellipse law 122, 124 
Streamline curvature 192 
Supercavitation 14 
Surge, definition 20 
Surge Occurrence 137, 157-9 
Systkme International d’Unit6s (SI) units 

3-4. 310 

Temperature 4, 16, 17 
Thoma’s coefficient 302 
Three dimensional flow in axial turbomachines, pressure ratio limits 

Ch. 6 specific speed application 257-60, 

et seq. Turbomachine: 
Three Gorges project 277 as a control volume 5 
Through-flow problem 192 definition of 1 
Total pressure 10SS correlation (Ainky) 82-4 
Transitory flow in diffusers 48 Two-dimensional analysis 
Turbine (axial flow): 

Three dimensional flow in turbine stage 186 263-4 

Two-dimensional cascades, Ch. 3 

axial compressors, pumps and fans , 
blade cooling 120- 1 Ch. 5 
blade materials 116-9 axial turbines, Ch. 4 
blade speed limit 99 
centrifugal stress in rotor blades 
choking mass flow 19, 20 Ultimate steady flow 151 
diffusion in blade rows 103-4 Unsteady flow 20 

114-20 

ellipse law 122, 124 
flow characteristics 19, 122 
normal stage definition 96 
reversible stage 112-4 
stage losses and efficiency 96-99 
stage reaction 101 -4, 107 
stage thermodynamics 94 er seq. 
taper factor of blades 116 
thermal efficiency 121 
types of design 99 et seq. 
velocity diagrams of stage 93-4, 

102-3, 104, 111, 123 
Turbine cascade (2 dimensional) 

Ainley’s correlation 70-1, 81-7 
Dunham and Came improvements 

flow outlet angle 85-6 
loss comparison with turbine stage 

optimum space to chord ratio 
Reynolds number correction 85 
tip clearance loss coefficient 85 

cantilever type 237-8 
centripetal (IFR) type 236 et seq. 
clearance and windage losses 269 
cooled 271-2 
cooling effectiveness 271 
diffuser 238-9 
exhaust energy factor 264 
Francis type 2, 279, 302, 303 
incidence losses 260-6 
loss coefficients (90deg IFR) 247-8 
number of impeller blades 
optimum design selection 
optimum geometry 
outward flow type 

84-5 

86-7 
87-8 

Turbine (radial flow): 
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Well’s turbine 124 et seq. 

blade aspect ratio 129 
design and performance variables 

flow coefficient (effect of) 130 
hub to tip ratio (effect of) 130 
operating principle 125 
solidity 129, 130 
starting behaviour 131 -2 
two-dimensional flow analysis 127-8 
velocity and force diagrams 127 

128-31 

Whittle turbojet engine 199 
Work-done factor 150 
Work transfer sign convention 25 

Units 
Imperial (English) 3 
SI (Systkme International d’UnitCs) 

3-4 
Universal gas constant 17, 274 

Vapour cavities 13, 305 
Vapour pressure of water 
Velocity coefficients 247 
Velocity perturbations 190 
Volute (see Scroll) 
Vortex design 
Vortex free 17 1 -5 
Vorticity 172 

14, 302-4 

56, 171 let seq. 

secondary 64, 194 

Watt, unit of power 4 

Zero lift line 164-5 
Zero reaction turbine stage 102-3 
Zweifel criterion 87 - 8 



List of Symbols 

area 
sonic velocity, position of maximum camber 
passage width, maximum camber 
tangential force coefficient 
lift and drag coefficients 
specific heat at constant pressure, pressure coefficient, pressure rise 
coefficient 
ideal pressure rise coefficient 
specific heat at constant volume 
axial and tangential force coefficients 
absolute velocity 
spouting velocity 
drag force, diameter 
equivalent diffusion ratio 
hydraulic mean diameter 
energy, specific energy 
centrifugal force in blade 
acceleration, friction factor 
gravitational acceleration 
head, blade height 
effective head 
head loss fue to friction 
gross head 
net positive suction head (NPSH) 
specific enthalpy 
rothalpy 
incidence angle 
constants 
nozzle velocity coefficient 
lift force, length of diffuser wall 
blade chord length, pipe length 
Mach number 
mass, molecular ‘weight’ 
rotational speed, axial length of diffuser 
specific speed (rev) 
power specific speed (rev) 
suction specific speed (rev) 
number of stages, polytropic index 
pressure 



List of Symbols xv 

P a  
Pv 

4 
R 
Re 
RH 
Ro 
r 
S 

T 
t 
U 

v, v 
W 
AW 

X 
x, y. z 
Y 

Q 

S 

U 

W 

Yid  
yk 
YP 
YS z 

a! 

B 
r 
Y 
6 

< 
rl 
0 

A. 
CL 

P 

E 

e 

v 

0 

a b  

0, 

T 

atmospheric pressure 
vapour pressure 
heat transfer, volume flow rate 
dryness fraction 
reaction, specific gas constant 
Reynolds number 
reheat factor 
universal gas constant 
radius 
entropy, power ratio 
blade pitch, specific entropy 
temperature 
time, thickness 
blade speed, internal energy 
specific internal energy 
volume, specific volume 
work transfer 
specific work transfer 
relative velocity 
axial force 
Cartesian coordinate directions 
tangential force, actual tangential blade load per unit span 
ideal tangential blade load per unit span 
tip clearance loss coefficient 
profile loss coefficient 
net secondary loss coefficient 
number of blades, Ainley blade loading parameter 

absolute flow angle 
relative flow angle 
circulation 
ratio of specific heats 
deviation angle 
fluid deflection angle, cooling effectiveness 
enthalpy loss coefficient, total pressure loss coefficient 
efficiency 
minimum opening at cascade exit 
blade camber angle, wake momentum thickness 
profile loss coefficient 
dynamic viscosity 
kinematic viscosity, blade stagger angle, velocity ratio 
density 
slip factor, solidity 
blade cavitation coefficient 
Thoma’s coefficient, centrifugal stress 
torque 



xvi Fluid Mechanics, Thermodynamics of Turbomachinery 

flow coefficient, velocity ratio 
stage loading factor 
speed of rotation (rads) 
specific speed (rad) 
power specific speed (rad) 
suction specific speed (rad) 
vorticity 
stagnation pressure loss coefficient 

Subscripts 

av 

D 
e 
h 
i 
id 
is 
m 
N 
n 

P 
R 
r 
re1 

c 

0 

S 

ss 
t 

x ,  y ,  z 
21 

e 

average 
compressor, critical 
diffuser 
exit 
hydraulic, hub 
inlet, impeller 
ideal 
isentropic 
mean, meridional, mechanical, material 
nozzle 
normal component 
stagnation property, overall 
polytropic, constant pressure 
reversible process, rotor 
radial 
relative 
isentropic, stall condition 
stage isentropic 
turbine, tip, transverse 
velocity 
Cartesian coordinate components 
tangential 

Superscript 

time rate of change 
average 
blade angle (as distinct from flow angle) 

* nominal condition 
I 


