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Preface 

Mathematical physics was brought into existence by the development of 
mechanics. It originated in the study of the planetary motions and of the falling of 
heavy bodies, which led Newton to formulate the fundamental laws  
of mechanics, as early as 1687. Even though the mechanics of continuous media, 
first as solid mechanics, and later as fluid mechanics, is a more recent development, 
its roots can be found in Isaac Newton’s “Philosophiae naturalis principia 
mathematica” (Mathematical Principles of Natural Philosophy), several pages of 
which are dedicated to the falling streams of liquid. 

Applications of fluid mechanics to irrigation problems date back to Antiquity, 
but the subject gained a key status during the industrial revolution. Energetics was 
vital to the development of knowledge-demanding, specialized industrial areas such 
as fluid supply, heat engineering, secondary energy production or propulsion. Either 
as a carrier of sensible heat or as the core of energy production processes, fluid is 
ubiquitous in all the high-technology industries of the century: aeronautics, 
aerospace, automotive, industrial combustion, thermal or hydroelectric power plants, 
processing industries, national defense, thermal and acoustic environment, etc. 

Depending on the target audience, there are various approaches to fluid 
mechanics. Covering this diversity is what we are striving for in this book. 

Whatever the degree of difficulty of the approached subject, it is important for 
the reader to reflect on it while being fully aware of the laws to be written in one 
form or another. Various approaches to fluid mechanics are illustrated by examples 
in this book.  

First of all, the student will have the opportunity to handle simplified tools, 
providing him/her with a convenient first approach of the subject. On the other hand, 
the practitioner will be provided with elementary dimensioning means.  
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x     Fluid Mechanics 

Other problems may justify or require a more complex approach, involving more 
significant theoretical knowledge, in particular of calculus. This is once again a 
point on which students and practitioners who already master these subjects can 
converge.  

A third approach, which is essential for today’s physics, especially when dealing 
with problems that are too complex to be accurately solved by simple calculations, 
resorts to numerical methods. This book illustrates these remarks.  

Problem resolution relies in each chapter on reviews of fundamental notions. 
These reviews are not exhaustive, and the reader may find it useful to go back to 
textbooks for knowledge consolidation. Nevertheless, certain proofs referring to 
important points are resumed. As already mentioned, what matters is that the reader 
has a good grasp of what he/she writes.  

Given that we target wide audiences, the deduction or review of general 
equations can be found in the appendices, to avoid the book becoming too 
cumbersome.  

The attempt to effectively address audiences with widely varied levels of 
knowledge, expertise or experience in the field may seem an impossible task.  

Drawing on their experience of teaching all these categories of audiences, the 
authors felt motivated and encouraged to engage in this daring enterprise. 

This volume gathers examples of relatively simple approaches to academic 
problems as well as practical ones. In principle, this work is accessible to all 
potential readers.  

The first chapter recalls the basis of dynamics by focusing on the mechanics of 
point power. Both the state of fluidity, as well as the main properties of fluids are 
defined. The problems for writing force, surface and volume when applied to a fluid 
volume, are discussed. Finally, a strategy for resolving problems in mechanics is 
approached from a general point of view.  

The second chapter covers fluid in equilibrium. The study of incompressible 
fluid statics under simple forces of gravity or hydrostatics, is completed by that of 
other forces derived from a potential, such as inertia forces. Compressible fluid 
statics are also covered.  

The third chapter is dedicated to describing flows. The Eulerian vision is favored 
here. The geometric elements of kinematics are defined. The geometry of flows is 
established, based on the data of a flow’s Eulerian speed. This chapter also provides 
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the opportunity for a first physics principle to be outlined and developed: the 
principle of continuity.  

The first chapter examines the structure of surface forces. This is also where one 
will find a definition of perfect fluids where the action of viscosity can be 
overlooked. The fourth chapter is dedicated to processing these flows, in which the 
Bernoulli theorem is central. Although this theorem is limited by the underlying 
hypotheses, its strength is observed in how easily one can obtain pertinent orders of 
magnitude in a large range of phenomena.  

When the speed of a fluid varies significantly in a confined space, which is an 
instance of the barrier between fluids and solids, viscosity becomes a major 
phenomenon. This is particularly found in pipelines and all components of a 
hydraulic circuit. In such a situation, one is often only concerned with the loss of 
mechanical energy that results from fluid friction. This ‘head loss’ will be calculated 
in the fifth chapter.  

As a general rule, propulsion studies result from a momentum exchange between 
fluid and a wall. Euler’s theorems apply to both perfect flows and viscous fluids and 
allow one to determine, with a simple knowledge of kinematic fluid passing through 
boundaries, the resulting moments of a system of forces when applied to a fluid. The 
sixth chapter will demonstrate how this powerful tool can be applied to determine 
different types of thrusting. 

This work is aimed at students enrolled in engineering schools and technical 
colleges or in University Bachelors or Masters programs. It is also meant to be 
useful to the professionals whose activity requires knowledge or mastery of tools 
related to fluid mechanics.  

Michel LEDOUX 
Abdelkhalak EL HAMI 

November 2016  
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1 

Mechanics and Fluid 

1.1. Introduction 

The mechanics of fluids is a type of mechanics: it looks at the movement of 
matter when under the influence of forces. Matter here is in the “fluid state”.  

This chapter is approached from the perspective of the foundations of the 
mechanics of point power. It will also later define what fluid is and which of this 
matter’s main characteristics are useful to know. These characteristics shall then be 
brought to “life” in later chapters. 

1.1.1. Mechanics: what to remember 

1.1.1.1. Who is afraid of mechanics? 

For some curious reason, this branch of physics appears frightening to many 
students, a curse that thermodynamics also shares. Somewhat recoiled from, the 
mechanical engineer occupies a special place in the academic world. Some people 
even wonder whether mechanical engineers are actually physicists who have a 
strong handle on mathematics, or are in fact mathematicians lost among physicists. 
These classifications have not been made any simpler by the addition of digital 
calculations. 

It cannot be stressed enough that the appearance of mechanics gave birth to 
mathematical physics. 

By pairing movement with mathematics, the Neoplanitician, Galileo, created 
kinematics. And then, with a stroke of genius, although perhaps slightly mythically, 
Isaac Newton created dynamics by incorporating the fall of an apple and the Moon’s 
trajectory into one vision. 

Fluid Mechanics: Analytical Methods, First Edition. Michel Ledoux and Abdelkhalak El Hami..
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2     Fluid Mechanics 

Descartes must not be left out of this Pantheon of emerging physics, for he 
created momentum, was engaged in heated debates with Newton and Leibnitz on 
this subject as well as others, and discovered kinetic energy through “life force”. 
Leibnitz and Newton were also the precursors to the differential approach in 
mechanics.  

1.1.1.2. Principles to remember 

Like a game of chess, the starting rules of mechanics are the simplest. And, like 
a game of chess, not all paths lead to an easy victory.  

a) Remember that a position vector rr  is defined as a vector that links the 
starting point to another point in space. The coordinates of rr  are evidently the 
point’s three coordinates: 

( ),r r x y z=r r  [1.1] 

By definition, the point’s speed is the derivative of the position vector in relation 
to the time:  

d rV
dt

=
rr

 [1.2] 

which, when passing, accelerates the position vector’s second derivative:  

²
²

dV d r
dt dt

Γ = =
r rr

 [1.3] 

Remember that a vector is derived with regard to a scalar by deriving its 
components:  

( ) ( ) ( ), , ; , ,d r dx dy dzr x t y t z t
dt dt dt dt

⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

r
r  [1.4] 

b) In 1687, Isaac Newton’s Philosophiae Naturalis Principia Mathematica 
outlined three laws, which indeed can be reduced into two: 

1) The principle of inertia; 

2) Fundamental dynamics law; 

3) The principle of action and reaction. 
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Mechanics and Fluid     3 

Let us take these three principles further: 

Law no. 2. Let us begin with the fundamental dynamics principle, when applied 
to a constant mass (m) material point:  

The acceleration that a body undergoes in an inertial frame of reference is 
proportional to the resulting forces that it undergoes, and is inversely proportional 
to its mass. 

In modern notation (the notion of the vector was acquired in the 20th Century), 
this is written as: 

dVm F
dt

=
r

r
 [1.5] 

NOTE: Vectorial notation reminds us that a given speed contains three pieces of 
information: a direction (instantaneous movement support), a route and an hourly 
speed. A speed cannot be reduced to the datum of –1m.s . A speed vector not only 
tells me that my car is traveling at 1130 .V km hr−=  (hourly speed), but it also tells 
me that I am on a highway between Paris and Rome (direction) and that I am going 
from Paris to Rome (route). However, I would still need the position vector rr  to tell 
me where the next exit is.  

Therefore, an acceleration is also a vector, and there is no reason why it is not 
collinear to the speed. Central acceleration in a circular movement is (or should be) 
known to all secondary school students.  

Law no. 1. The principle of inertia was actually discovered by Galileo: In the 
absence of an external force, all material points continue in a uniform, straight-
lined movement. 

NOTE: This is what Captain Haddock realizes in the “Explorers on the Moon”, the 
illustrated Tintin adventure story by the famous Belgian author, Hergé. 

This principle of inertia is in fact a consequence of the fundamental dynamics 
principle. If the result of forces applied to a material point is zero, then: 

0F ≡
rr

 [1.6] 
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and:  

0dVm
dt

=
r

r
 [1.7] 

which implies: V Cte≡
rr

 [1.8] 

It means a uniform straight-lined movement.  

Law no. 3. If the first principle can be reduced to the second, the third principle 
of action and reaction is independent: Every body A exerting a force ABF

r
 on a body 

B undergoes a force BAF
r

 of equal intensity, but in the opposite direction, exerted by 
body B: 

AB BAF F= −
r r

 [1.9] 

When solving a problem, to write that every force has an equal and opposite 
reaction is to write something new with regard to the fundamental dynamics 
principle.  

These principles have been rewritten in various different forms, which lead to 
equations that are often much more directly applicable. A few of these equations are 
given in the following sections.  

1.1.2. Momentum theorem 

We can rewrite the fundamental dynamics principle by noting that mass is 
invariable: 

dV d dpm mV
dt dt dt

= =
r rr

 [1.10] 

A momentum vector has also been introduced:  

p mV=
rr  [1.11] 

And the fundamental dynamics principle is also found to be rewritten in terms of 
momentum:  

dpm F
dt

=
r r

 [1.12] 
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In the course of mechanics, it is demonstrated that this equation applies in 
material points to the center of a group’s mass, whether it is continuous or 
discontinuous and alterable or otherwise. m  is therefore replaced by the total mass 
of the system’s points and F

r
 then represents the resultant of the forces applied to 

these points. This is what constitutes the center of mass theorem. 

NOTE: It goes without saying that we do not intend to write a “digest” here on the 
course of fluid mechanics. 

It would be impossible to attempt to reproduce a complete mechanics course. 
However, we must insist upon the consequences of these principles which will be 
directly applied when establishing fluid mechanics theorems. We will build upon the 
mechanics of point power, and if the reader deems it necessary, they can refer to a 
dedicated textbook to study system mechanics, which constitutes a more complex 
domain. Furthermore, in the appendix, we can find a reminder of fluid mechanics 
equations for a continuous fluid system. This script will be used when demonstrating 
Euler’s first theorem.  

We observe that while mass becomes variable with speed, it is this expression 
that remains valid in particular mechanics. This is also the case for relativist 
dynamics. 

1.1.3. Kinetic energy theorem 

Forced movement implies work. Here we will give mechanics an energetic 
dimension. The work of a force F

r
when applied to a material point during a time dt  

provides calculated work from the force and this point’s small movement d rr : 

.dW F d r=
r r  [1.13] 

d rr  is a small vector, which indicates not only the small distance traveled, but 
also the carrying line of this movement or direction, and the movement’s route. It is 
linked to speed by:  

d r V dt=
rr  [1.14] 

Remember the dynamic relation: 

dVF m
dt

=
r

r
 [1.15] 
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The work is written as: 

.dVdW m V dt
dt

=
r

r
 [1.16] 

It can be observed that  

² . 2. .dV dV V dVV
dt dt dt

= =
r r r

r
 [1.17] 

Finally, it becomes: 

² ²
2 2
m dV dmVdW dt

dt
= =  [1.18] 

The work performed has helped to increase the quantity ²
2

mV carried by the 

material point. This is how kinetic energy appears:  

²
2C

mVE =  [1.19] 

1.1.4. Forces deriving from a potential 

In a frame of reference Oxyz , where Oz  is vertical, the force of gravity GF
r

 
applied to a mass of 1m kg= will have the following components:  

0GxF =  [1.20.a] 

0GyF =  [1.20.b] 

GzF g= −  [1.20.c] 

Furthermore, the operating gradient is defined by associating the vector grad f
r

 
with a function ( ),f x y z  by: 

( )
x

grad f
x
φ∂=

∂

r
 [1.21.a] 
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( )
y

grad f
y
φ∂=

∂

r
 [1.21.b] 

( )
z

grad f
z
φ∂=

∂

r
 [1.21.c] 

Therefore, GF
r

 can be written in the form of a gradient: 

G GF grad φ= −
rr

 [1.22] 

which, by definition, implies the following about the gradient: 

0G
GxF

x
φ∂

= − =
∂

 [1.23.a] 

0G
GyF

x
φ∂

= − =
∂

 [1.23.b] 

G
GzF g

x
φ∂

= − = −
∂

 [1.23.c] 

By identifying: 

G gz Cteφ = +  [1.24] 

Therefore, it can be said that GF
r

 is derived from the potential .Gφ  It is worth at 
least being aware of this. 

In general terms, it is said that a force F
r

is derived from a potential ( ), ,x y zφ  
when  

F grad φ= −
rr

 [1.25] 

This property is not universal: in particular, friction forces or electromagnetic 
forces are not derived from a potential.  
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1.1.5. Conserving the energy of a material point 

The work performed by a force derived from a potential during a time period of 
d t  is written as: 

. .dW F d r grad d rφ= = −
rr r r  [1.26] 

By developing the scalar product, this can be rewritten in the Cartesian form: 

.dW grad d r dx dy dz
x y z
φ φ φφ ∂ ∂ ∂= − = + +

∂ ∂ ∂

r r  [1.27] 

The exact total differential is seen to appear φ  on the time dt , meaning the 
variation dφ  between the starting point at t  and the arrival point at t dt+ : 

dW dφ= −  [1.28] 

By coupling the equations together, we obtain: 

CdW dE dφ= = −  [1.29] 

which can be rewritten as: 

0CdE dφ+ =  [1.30] 

Thus, the total energy appears: 

T CE E φ= +  [1.31] 

Sum of the kinetic energy and the potential energy, which is conserved when the 
material point is moving.  

NOTE: Remember that when part or all of the forces is or are not derived from a 
potential, the mechanical energy of the material point is not conserved. The 
mechanical work of the forces which is not derived from a potential is generally 
transformed into another form of energy. Thus, friction transforms mechanical 
energy into thermal energy. This enters into the domain of thermodynamics. The 
mechanical energy (work) is no longer conserved, but the first principle applies to 
the two forms of energy: work and heat. 
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These relations for the material point recalled here have been extended into finite 
volumes of matter. Curious readers may refer to more elaborate mechanical courses. 
The aim of this chapter lies in the need for the readers to place themselves within the 
framework of a basic general culture of mechanics. 

All of the notions that have been recalled here will be useful when we begin 
interpreting Bernoulli’s theorem. 

1.2. The “fluid state” 

The term “fluid state” refers here to the way in which all of the states of matter 
used to be understood: solid, liquid, gas and plasma, a classification that has been 
recognized more recently.  

In this group, fluid mechanics applies to the last three of these “states”. 

Solid mechanics deals with alterable and unalterable elastic solids with a blurred 
boundary and a few creep or pasty rheology problems.  

NOTE: It is important not to confuse this expression, which can be traced back to the 
oldest “fluid state”, with the notion of “state in thermodynamics”, which relates to a 
set of thermodynamic variables which we will discuss later.  

When approached from the mechanics perspective, this “fluid state” prompts us 
to:  

a) define this state in terms of its nature, its physical qualities and its movements; 

b) describe the forces that can be applied to a fluid: what are they and how are 
they written? 

1.2.1. Fluid properties 

1.2.1.1. The first property of fluid is its continuity  

Physically, continuity signifies that fluid density, regardless of how small it may 
be, contains matter. This allows a density to be defined, like the ratio of a small fluid 
density dm  to the small volume dω  that it occupies: 

dm
d

ρ
ω

=  [1.32] 
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For those who like mathematics, we observe that physical continuity connects a 
notion of continuity for the mass occupying a given volume. This mass ( )dm d ω  
also has a derivative called density. In mathematical terms, the expression is: 

0
: lim

d Vol

dmexists such that
d

ρ ρ
ω→

=  [1.33] 

NOTE: Herein lies a paradox. The mechanical engineer attributes this continuity 
property to fluid. We know that at the smallest scale of physics, matter is not 
continuous. Moreover, if there was no fluid discontinuity at the molecular level, we 
would not be able to determine its essential properties: possible compressibility, 
existence of pressure and temperature, thermal conduction and matter diffusivity 
when mixed.  

A paradox is merely a poorly asked question. There are at least six or seven 
orders of magnitude (powers of 10) between the molecular phenomena and the 
mechanics of a fluids physicist. Admittedly, continuity is just a modeling tool, but it 
is robust. At the pipeline level, everything happens “as if” the fluid was continuous.  

1.2.1.2. Compressibility 

Density has been defined as a local property. There are many cases where  
this value of ρ  is constant in all fluids. Therefore, it can be said that fluid is 
incompressible. This will be our definition of incompressibility here. Incompressible 
is synonymous with .Cteρ =   

There are other cases where the density varies from one fluid point to another. 
Therefore, it can be said that fluid is compressible. This situation is mainly 
concerned with gas. But the compressibility of liquids may cause certain problems: 
there is writing on static fluids at the deepest pits of the Pacific Ocean and there are 
acoustics in liquids (without fluid compressibility, there is no possibility of sound 
being disseminated). 

Determining density, according to its parameters, relates to thermodynamics. All 
of a fluid state’s thermodynamic variables are linked in its equation of state. 
Subsequently, for a gas, we will need this equation of state. As the equation for so-
called perfect gases is the one that is commonly used, we will use it too. 
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This equation links the three thermodynamic variables: pressure p, molar volume 
molM  or density p, absolute temperature T, expressed in Kelvin. 

This is most often written for a mole (remember that the mole is defined by the 
number of molecules it contains, namely the Avogadro number 236,022.10N = ):  

molpV RT=  [1.34] 

Here R  is the universal constant of perfect gases, the value of which is 
1 18,3144621 . .R J mol K− −= . In light of the level of precision of the models, for the 

examples used in this book, we will choose 1 18,31 . .R J mol K− −= . (Some authors 

use 1 18,315 . .R J mol K− −= .) 

In mechanics, where the approach is more based on mass, an alternative 
expression is preferred, which directly uses density as a thermodynamic variable. 
Therefore, the fluid’s molar mass M  needs to be brought in.  

Noting that 

mol

M
V

ρ =  [1.35] 

We obtain the following state equation: 

mol
pMpV RT
ρ

= =  [1.36] 

molpV rT=  [1.37] 

with Rr
M

=  [1.38] 

NOTE: When the ideal-gas law i is written under this form, r  is no longer a 
universal constant. It depends on the nature of the fluid. 
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NOTE: They are called perfect gases because the equation is simple. No gas is 
intrinsically perfect. This equation is verified by all low-pressure gases. This relation 
was brought about by the works of Boyle, Mariotte and Charles in earlier times.  

“Low-pressure” is a relative expression which may be translated as “any pressure 
lower than 100 bars in a generous approximation, or 10 bars if one prefers to be 
pedantic”. When looking at compressible fluid problems, we will see that this is a 
highly acceptable hypothesis.  

No fluid is intrinsically incompressible. Contrastingly, a gas can be attributed 
with an incompressibility property. Incompressible is a synonym of Cteρ = , as  
is written above. If a flow’s conditions are such that ρ  varies very little, then 

Cteρ =  is physically pertinent. Furthermore, we will also see the evolution of 
pressure strongly coupled with speed. For flows with a relatively weak speed, the 
pressures vary relatively little and density can easily be deemed a constant. This 
considerably simplifies the analysis process.  

NOTE: For a gas in which the speed scale that establishes a barrier between 
“incompressible” flows and a “strongly coupled compressible” flow is defined based 
on the speed of sound in the fluid. Once again, it is in fact the flow that is either 
“incompressible” or “compressible”.  

1.2.2. Forces applied to a fluid 

This section will respond to various questions: how do forces applied to a finite 
volume of fluid occur? What are these forces and how are they written?  

1.2.2.1. Surface forces, volume forces 

Let us begin with a fluid domain D contained within a closed surface .S   

The “exterior” of this domain D will apply two types of forces: 

Remote forces which in principle have an application point at all points in the 
domain D . These are volume forces. As a general rule, they are written per mass 
unit, VF

r
.  

There are contact forces between the external fluid of D  and the internal fluid of 
.D  These forces are localized all over the surface .S  These are surface forces. 
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Figure 1.1. Surface forces, volume forces 

1.2.2.2. Volume force scripts 

a) As a general rule, volume forces are written per mass unit, VF
r

.  

These forces are expressed per volume unit as ,VFρ
r

 and the forces applied to a 
small basic volume dω  are written as: 

VdF F dρ ω=
r r

 [1.39] 

b) These volume forces may be “remote” forces, which results in a force field. 
There are different origins at play here: forces of gravity, which are the most 
frequent, electrostatic forces and electromagnetic forces. Another type of force will 
occur when the reference frame, where the problem’s equations are written, is no 
longer inertial (or Galilean). 

It is now known that inertia forces appear.  

NOTE: Remember that in Newtonian mechanics, an inertial or Galilean frame (they 
will be used as synonyms here) is a reference frame in a uniform straight-lined 
movement (meaning in inertial movement, in the sense of Newton’s first law) with 
respect to an absolute frame. In an inertial frame, Newton’s second law, along with 
the absolute frame, applies.  

c) The same as for some inertia forces; some remote forces can be derived from a 
potential.  

In this case, a function Vφ  will be defined as: 

V VF grad φ= −
rr

 [1.40] 
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In general, a potential is defined by force nature. If all volume forces are derived 
from a potential, then the resulting volume forces will also be derived from a 
potential. This potential function will be the sum at each point in the potential’s 
space of each force. Warning: if just one of the volume forces is not derived from a 
potential, then the result will not derive from a potential. 

Forces of gravity and electrostatic forces are derived from a potential. 
Electromagnetic forces are not derived from a potential (they are derived from a 
“vector potential”). Inertia forces, which result from an accelerated translation or a 
uniform rotation, may be derived from a potential. Examples of this will be given in 
Chapter 2. 

d) Note on calculating inertia forces: Generally, when it comes to a frame with a 

translation given by a vector ( )OO' t
→

 and a rotation defined by the rotation vector 

Ω
r

, the inertia force scripts take a complex form. Although we will not be using this 
expression in all of its complexity here, we will remind the reader of it anyhow.  

For a material point of mass m , the inertia force will be:  

inert relF m= − Γ
r r

 [1.41] 

relΓ
r

 is calculated based on the different relative movements of the point and the 
frames. 

By appointing ,O' x' y' z' , which is the non-inertial frame where we will solve 
the problem, where ,O x y z  is the Galilean frame against which the frame 

,O' x' y' z'  moves and r'r  is the position vector of our material point written in the 

frame ,O' x' y' z' , we express relΓ
r

: 

( )² 2 '
²rel

d OO' d r' dr r'
dt dt dt

ΩΓ = + Ω ∧ + Ω ∧ Ω ∧ + ∧
rrr r rr r r  [1.42] 

1.2.2.3. Surface force scripts 

We will discuss two approaches here:  

a basic approach, which is sufficient for grasping various problems, and with 
which all readers of this book should be immediately familiar;  

a more complete approach, which we will particularly need for the chapter 
dedicated to boundary layers, where more complex formulation is required. 

www.ebook3000.com

http://www.ebook3000.org


Mechanics and Fluid     15 

dFn = p dS

dF  =  dS

dS

dF

n  

Figure 1.2. Surface forces: normal forces, tangential forces 

a) Simplified approach  

Remember that surface forces are applied from the exterior to the fluid contained 
within the field, by the fluid immediately in contact with the “internal” fluid at the  
“S level”.  

That being so, dS  is an elementary surface of this surface S  and nr  the unitary 
normal vector to dS . 

NOTE: Remember that this unitary vector is carried by the normal force to dS  and 
has a norm equal to 1. Conventionally, this unitary vector is always directed toward 
the exterior of D , whose purpose is to satisfy the integral vectorial relations.  

Two components can generally be distinguished in the surface force dF
r

 applied 
to a surface :dS  

a normal component carried by nr  and directed toward the interior, ndF
r

; 

a tangential component dFτ

r
, which is perpendicular to nr , and a tangent to .dS  

These two components have an intensity which is proportional to .dS  Thus, two 
finite parameters are defined, the pressure p  and the tangential stress τ  such as: 

ndF p dS=  [1.43.a] 

dF dSτ τ=  [1.43.b] 
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NOTE: The definition of the given pressure must be carefully accepted. In certain 
instances, the normal component of the volume forces contains terms resulting from 
the viscosity that is, in principle, reserved for the tangential forces in the previous 
script. Nevertheless, this will be a pertinent vision for the majority of the 
applications expanded upon in this book.  

b) These forces are a result of the molecular nature of fluid matter  

The pressure forces, which are normal to S, result from an exchange of 
momentum, due to the collision of molecules from the internal and external fluids. 
This collision is localized to the previously defined S  interface. Should a gas 
interact with a solid wall, such as in a piston for example, which will be familiar to 
the thermodynamicist, the molecule shocks determine the pressure. Boltzmann 
modeled this type of mechanics and, in so doing, was able to theoretically establish 
the law of perfect gases.  

It can be demonstrated that the pressure in a fluid point is isotropic. It does not 
depend on the orientation of the surface dS  given by nr . 

 

Figure 1.3. On the interface between the two fluids, the pressure is continuous 

It also demonstrates that the pressure is continuous on the interface between the 
two fluids 1 and 2. That is, 12p  is the pressure applied by fluid 1 onto fluid 2, at the 
level of an elementary surface ,dS  and 21p  the pressure applied by fluid 2 onto 
fluid 1. At the level of ,dS  the law of action and reaction implies that the action of 1 
on 2 is equal and opposite to the action of 2 on 1, in terms of intensity: 

12 21 12 21;p dS p dS p p= =  [1.44] 
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Therefore, the pressure is continuous throughout the boundary between fluid 1 
and fluid 2.  

The tangential forces result from the so-called viscosity phenomenon. This 
phenomenon was brought to light by the Couette flow experience in its most basic 
form. This experience, which we will not describe here, allows us to demonstrate 
that for a flow that is parallel to a flat solid plate, where the speed ( )u y  varies in a 
linear way with the distance y  to the wall, the tangential stress τ  applied by this 
wall onto the fluid is “most frequently” given by: 

( )du y
dy

τ μ=  [1.45] 

( )du y
dy

is very often appointed by the “speed gradient”, which is a misnomer. 

The correct term is shearing. 

NOTE: “Speed gradient” is a misnomer because ( )u y  is a vector component. We 
will see that the speed can be derived from a potential, but only when there is zero 
viscosity! In kinematics, an operator .V grad V

rv v
 will appear, which is only a means 

of facilitating the script. 

y

w =  dV/dy

dF = w dS dS
 

Figure 1.4. Shearing and stress: Newton’s law 

Rheology is the name given to the study of the relationship between stress and 
shearing. 
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The linear relationship between stress and shearing [1.45] is fulfilled by the 
majority of fluid currents, gases or liquids (water, oils, etc.). Therefore, it can be said 
that fluids fulfill Newton’s law or that the fluid is “Newtonian”. 

μ is therefore defined as dynamic viscosity. It is important to retain this adjective 
as kinematic viscosity is also defined as the ratio of dynamic viscosity to density. 
The range of this definition will be discussed further on:  

μν
ρ

=  [1.46] 

“Pure” fluids are generally Newtonian. Once the fluid is “charged”, meaning 
when it becomes a solid particle carrier, the rheological behavior becomes more 
complex and the linear relationship between stress and shearing becomes invalid.  

Different models have led to expressions of these elements, some of which are 
more complex and some less complex (some have been found to be comprised of 
three lines of equations). 

In this instance, we will use a form proposed by Oswald-De Waele: 

( ) n
du y

k
dy

τ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 [1.47] 

where k  is a viscosity coefficient.  

Examples include non-Newtonian fluids, both of this type and others. 

Some fluids are “memorized”, such as the so-called Bingham fluids, which can 
be modeled by:  

( )
0

du y
k

dy
τ τ= +  [1.48] 

where 0τ  is a residual stress. 

Some fluids have a rheology that varies in time: these are called thixotropic 
fluids.  
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NOTE: In practice, the most common non-Newtonian fluids are blood (which 
contains approximately 45% of solid extract), gels and products (purées, soups) 
made in the agri-foodstuffs industry. A fluid’s memory can also be experienced 
when we turn a spoon around in a good traditional soup.  

c) Scripts developed from tangential stresses. Stresses tensor 

This is indeed an oversimplified description. Writing the script correctly requires 
the stresses tensor ijσ  to be defined. 

NOTE: The ijσ  are actually components of SdF
r

 that relate to the three privileged 
directions, written as i . This indicates that the tension on any surface can be 
expressed according to the known tensions for the three privileged surfaces dS. 

Therefore, the force SdF
r

 will be written based on a tension τr  such as 

SdF dSτ=
r r . 

The ith component of ,τr  iτ  will be written as:  

i ij jnτ σ=  [1.49] 

ijσ  depends on the fluid’s rheology. For a Newtonian fluid, the linearity 
between stresses and shearing leads to the expression:  

ji
ij

j i

uu
µ divV

x x
σ η

⎛ ⎞∂∂
= + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

r
  [1.50] 

where µ  is the dynamic viscosity that we have already seen, which is an essential 
parameter, and η  is the so-called “volume” viscosity, which may be linked to µ . 

1.2.2.4. Surface forces and usual units 

It is recommended that all digital applications are performed in the MKS (meter, 
kilogram, second) system or the SI system. When using any formula, the parameters 
must be expressed in SI. We will follow this rule for all of the examples dealt with 
in this work.  

The major parameters in fluid mechanics are always pressure and viscosity. For 
this reason, beyond legal units, alternative forms have been used to indicate these  
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parameters. We should know all of the different expressions of these parameters in 
different technical fields.  

a) Pressure units. 

A pressure is the ratio of a force on a surface. In Newtonian terms, it can be 
expressed as a meter squared, written as 2.N m− . A specific unit, the Pascal, has 
been defined and written as Pa . 

The pascal represents a very weak pressure. Expressed in water height (see 
Chapter 2), it is of a 1 0,1Pa mmCE≈  nature. Here, CE  signifies a water column. 
Other units have been defined for the technical dialogue. By using a barometer, we 
can give a pressure value in liquid “height”.  

Thus, a standardized atmosphere corresponds to a “mercury” pressure of 
76h cm= . Knowing that the mercury density is 313600 .kg mρ −= , the pressure in 

Pascal units will be: 

51 13600*9,81*0,76 1,013.10atm gh Paρ= = =  [1.51] 

The atmosphere emerges at practically 100 000 Pa . In industrial practice, 1.3%  
seems to be unchanged, and in this way, the bar is defined by: 

51 10bar Pa=  [1.52] 

We can incidentally find some old units that are not commonly used nowadays. 
The reader may find it useful to remind themselves of these by way of reading an 
older publication.  

The CGS (centimeter, gram, second) system has defined some other units. The 
force unit is the dyne, 51 10dyne N−= . The result is a pressure unit, the dyne per 
centimeter squared or barye:  

5

4

101 0,1
10

Nbarye Pa
−

−= =  [1.53] 

We can also cite another old unit, the pièze ( pz ), which is inherited from the 

MTS (meter, ton, second) system: 31 10pz Pa= . We will also notice the hectopièze, 
which was the pressure unit still used by furnace manufacturers in the middle of the 
20th Century. 1 1hpz bar= . 
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Lastly, it should be noted that the millibar appeared in certain domestic 
barometers.  

NOTE: We note that on a good quality barometer, the mercury centimeter scale must 
lag behind the millibar scale. 

b) Viscosity units 

There is more than just historical interest in having a knowledge of viscosity 
units in MKSA (SI) and CGS systems, considering that we can still come across 
data (particularly in handbooks) that stems from this system. Furthermore, when a 
viscosity is given, it is rarely indicated whether the viscosity is dynamic or 
kinematic. Nothing more than the unit is given.  

Dynamic viscosity has the following dimension: 1 1ML T− − . 

Kinematic viscosity has the following dimension: 1²L T − . 

Historically, the names were given in the CGS system.  

The dynamic viscosity unit is the Poise: 1 11 1 . .poise kg cm s− −= k . 

The kinematic viscosity unit is stokes: 2 11 1 .stk cm s−= . 

The names in MKSA (SI) system were derived from the CGS system. 

The dynamic viscosity unit is the Poiseuille: 1 11 1 . .Pl kg m s− −= . 

The kinematic viscosity unit is myriastokes: 2 11 1 .myriastokes m s−= . 

In principle, myriastokes should appear in an official document. Therefore, it is 
necessary to know it. Although it is not always known, “Myria” is the significant 
prefix 410 . The myriastokes is not very commonly used, as 1².m s−

 tends to be the 
preferred usage. 

It is important to know the following conversion: 

1 10 ; 1 10poiseuille poises Pl ps= =  

There is a very important sub-multiple of the poise, that is, the centipoise.  

In fact, it is 31 10cps Pl−= , which is the order of magnitude of water viscosity.  
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1.2.2.5. Perfect fluids. Real fluids 

Studying the aforementioned surface forces at this stage allows us to establish a 
deep insight into fluid dynamics. 

In the simplified presentation, we will break down the normal and tangential 
components.  

There are then three types of situations involved: 
In fluid statics, there are no tangential components on the surface forces. Only 

pressure forces occur.  

In fluid dynamics, we find two different cases: 

1) The tangential components either do not exist or are negligible. In this 
instance, they would be perfect fluid dynamics.  

2) The tangential components need to be taken into account. In this instance, 
they must be real fluid dynamics.  

Just as accounting for the fluid’s compressibility depends on the problem in 
question, there is no intrinsically perfect or real fluid. We have seen that viscosity 
forces are linked to the speed “gradients”. If these “gradients” are weak, then so are 
the viscosity forces. Nevertheless, perfect fluid is associated with the notion of zero 
viscosity, even though they are never intrinsically associated!  

NOTE: It is not the fluid that is perfect, but the problem. The term “perfection” is just 
the expression of the physicist’s satisfaction with such a simplified problem. 

1.3. How to broach a question in fluid mechanics 

1.3.1. The different approaches of fluid mechanics 

Three approaches may be considered for a fluid mechanics problem:  

1) The “table corner” solution, which is the most basic and the fastest, not 
necessarily the least formative for the budding or not-quite-so budding physicist.  

2) The complete equation, the simplification of these equations depending on the 
proposed problem and the analytical approach. This approach will be adopted when 
dealing with problems further on.  

3) The digital approach. This will not be exempt from a prior simplification of 
the equations in question, whether the calculation means are technically limited or 
the modeling is vital, as in the case of turbulence. 
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1.3.2. Strategies for arriving at a reasoned solution 

1.3.2.1. The project of this book : give methods 

This book is first and foremost addressed to students, readers who wish to learn, 
and as such are subject to assessment. We would like to dissuade this type of reader 
from approaching this work as they would a recipe book. 

The examples to be dealt with herein are formalized and complete, in keeping 
with the “academic” spirit. In principle, they have a solution and all of the elements 
(data, tables) are provided to avoid wasting time on external research.  

NOTE: This method could be criticized within the framework of a certain pedagogy, 
but research efficiency with regard to time management is also a relevant strategy.  

This publication is also aimed at professionals called upon to resolve concrete 
problems in a professional space, which the student is also destined to do.  

In real life, problems may be incomplete or poorly asked. There is often much 
data that remains to be found.  

The following lines attempt to provide an analysis grid that will help readers 
tackle any problem. Having no intention to revolutionize pedagogical concepts, the 
methodology presented here results from common sense. It is also implicit to any 
exceptionally gifted student, to whom there is no need to explain this.  

Quite the contrary, once this methodology has been integrated, it will become 
unconscious and will instead constitute a simple task of reasoning for the young (or 
not quite so young) fluid mechanical engineer.  

1.3.2.2. What to do when faced with a problem 

Before doing anything else, know the physical situation. This reflective activity 
can be aligned with the plan of this publication.  

Then, identify the principles to be written and the laws of the course that are 
applicable to this situation, including the declensions. This step will enable us to 
avoid multiple scripts of the same physics law, as well as scripts of inadequate laws.  

Recognizing the physical situation is generally a simple operation resulting from 
common sense.  
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NOTE: For those using this book, the division of this work by chapter has already 
been anticipated. Therefore, Any practitioner faced with a problem will be able to 
refer to a chapter in the following book that is best able to help them.  

a) you are faced with an immobile fluid: you are dealing with fluid statics 
(Chapter 2). 

b) You are given Eulerian characteristics of a flow and you need to find this 
flow’s structure: You are dealing with fluid kinematics (Chapter 3). 

c) The fluid flows. 

Is the fluid compressible or incompressible: is it a gas or a liquid? Which types 
of pressure are at play? What are the speeds at play in the flow? If it is compressible, 
then we must continue with the procedure. Otherwise, we can go directly to the 
chapter dedicated to compressible flows.  

Is it perfect, is it real: what can we say about its viscosity? What do we know 
about the flow? 

If there is zero viscosity and there are no notable speed “gradients”, then we have 
access to the simple solution for perfect fluids dynamics (Chapter 4). 

Or, we could be dealing with a pipeline, or something closer to a significant wall. 
In this instance, we are in the field of real fluids. 

So then, what is our objective? To calculate the loss of energy in a pipeline: 
using well-delineated methods to calculate charge losses will suffice (Chapter 5). 
Or, is the problem more complex than this? In this case, we need to take a closer 
look at the flow’s structure and understand all types of boundary layers (external, 
internal and jets). 

Perhaps a global approach regarding a system’s thrusts (Euler’s theorem 
application) will suffice. In such a case, a chapter dedicated to thrust and propulsion 
will help us.  

Beyond that, in each type of situation, we examine the data we have about the 
problem and before doing anything else, we ask ourselves what we are looking for. 

With regard to writing equations, there is one absolute rule which must always 
reign: all scripts relate to a principle. We must remain conscious of what we are 
writing.  

The numerous examples that are processed in the following chapters are aimed at 
helping the reader.  
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1.4. Conclusion 

This introductory chapter has put fluid mechanics back into the general 
framework of the initial concepts for all kinds of mechanics. 

Matter continuously requires a particular approach that led us to specifically 
formulate the forces applied to matter in this state.  

We also wanted to give the reader a larger strategical framework to solve 
problems, whether they occur in an academic realm or in a more open industrial 
realm.  

We must now return to how these principles are implemented. To do this, in the 
following chapters, we will need to divide problems according to the analytical 
framework detailed above. The chapters are divided into the logical segments 
imposed by this reflection: fluid statics, fluid kinematics, perfect fluid dynamics, 
real fluid dynamics, broached from various angles; the technical approach to charge 
loss, the global approach to thrusting, a more analytical approach to flows at 
borders. After this, we will be able to concentrate on the specifics of compressible 
flows and then use a digital approach to broach the complexity of flows. 



2 

Immobile Fluid 

2.1. Introduction 

The chapter on fluid statics is constituted by the study of immobile fluids. This 
situation is found every time the system of forces applied to each fluid element is 
equivalent to a zero force. In what follows from our knowledge of fluid statics, there 
are two types of problem that mobilize: 

1) Determining the interface’s position, which involves researching the pressure 
distribution of a fluid group at certain points. This invokes applying the fundamental 
theorem of fluid statics.  

2) Calculating the thrusts exerted on a simple or complex surface.  

2.1.1. The fundamental theorem of fluid statics 

The surface forces are reduced to the normal components (as a general rule, 
tangential components are determined by the velocity field). It is shown that the 
pressure in one point of a fluid at equilibrium is isotropic (it does not depend on the 
nr  of the d S  surface in question). 

There is only one physics principle written on this, which can be outlined thus: 
“if a fluid domain is immobile, the resultant forces applied on it are zero”. Beyond 
that, this principle can be written in various forms in different hypothesis 
frameworks.  

NOTE.– This fundamental statics principle is actually a particular case of 
Newton’s first principle, or the principle of inertia, when the fluid’s velocity is zero.  
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In the absence of a force, the movement remains unchanged. If the fluid is initially 
immobile, it continues to have no movement.  

a) Hydrostatics 

The study of hydrostatics is based on two hypotheses:  

fluid is incompressible; 

volume forces are reduced to gravity.  

A simple demonstration allows us to write a relation that can be generally 
applied. Let us write the equilibrium of a fluid cylinder with the height of 2 1z z−  in 
which the bases of area dS  are horizontal on the dimensions: 2z  and 1z  on a 
vertical upward axis. On these dimensions, the pressures are 2p  and 1p , 
respectively. 

O

z

Sz1

z2

z

 S z g

p1S

p2S
S

 

Figure 2.1. Establishing the fundamental  
principle of incompressible fluid statics 

The sum of forces applied to this cylinder, projected on a vertical upward axis, is 
zero:  

( ) ( )1 2 2 1 0p p S gS z zρ− − − =  [2.1] 
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From this, we can easily deduce:  

1 1 2 2p gz p gzρ ρ+ = +  [2.2] 

Or also 

( )1 2 2 1p p g z zρ− = −  [2.3] 

Here [2.3] can be translated by using practical reflection: as soon as one 
“descends” from zΔ  in a fluid at equilibrium, the pressure increases from g zρ Δ .  

Warning: this is only true if the fluid is incompressible and only under the action 
of gravity.  

b) The case for incompressible fluids and/or any forces derived from a potential 

The script for this principle will be more complex, but also more rich in 
information. We will call upon a differential approach. We will write the 
equilibrium of a small pavement with dimensions (dx, dy, dz). A calculation, which 
we will not show here, but which uses neither a particular hypothesis on the volume 
forces, nor on the fluid’s compressibility, leads to the following general form:  

0Vgrad p Fρ+ =
rr

 [2.4] 

This is not the most commonly used form in problems.  

In practice, and as will be the case here, various main assumptions may be used, 
depending on the complexity of the problem.  

Hypothesis H1: the volume forces deriving from a potential φ . 

So the fundamental theorem of statics is written as:  

0grad p gradρ φ+ =
r

 [2.5] 

Main consequences: the network of isobars (surfaces at p Cte= ) is confounded 
with that of equipotentials (surfaces at Cteφ = ), and this is not always well retained 
in conjunction with the network of isochores (surfaces at density Cteρ = ). In 
summary, on a surface p Cte= , Cteφ =  and .Cteρ =  
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An H2 hypothesis may be added to H1: fluid is incompressible, which is 
synonymous with Cteρ =  in the whole fluid area in question.  

So, we can write: 

p Cteρφ+ =  [2.6] 

In the particular case where volume forces are reduced to gravity, being 
hypothesis H3, we are now entering the domain of hydrostatics. Thus, we have an 
incompressible fluid at equilibrium:  

p gz Cteρ+ =  [2.7] 

where z  is one measured spot altitude on an axis, which must be a vertical upward 
axis.  

There are two very important observations to take into account at this stage:  

1) The expression p gzρ+  is only constant as long as ρ is constant while 
remaining in the same fluid. This quantity varies if we move from one fluid at 
equilibrium to an adjacent fluid.  

2) During the process, it will be seen that it is the local pressure ρ at the interface 
of two fluids which is continuous. 

This is a direct result of the law of action and reaction. At the interface of two 
fluids 1 and 2, on an elementary surface d, the action of fluid 1 on fluid 2, being 
p1dS, is equal and opposed to the action of fluid 2 on fluid 1, being p2dS. Therefore, 
the pressures ruling in each field in terms of the interface at dS, p1 and p2, 
respectively, have the same value.  

Using these two rules gives us the key to all fluid statics problems. 

2.2. Determining the interface position and related questions 

2.2.1. Fluid statics. Incompressible fluids subject to gravity 

EXAMPLE 2.1 (Differential pressure gauge).– 

A differential pressure gauge is comprised of a cylindrical tank R, with the 
diameter D = 5 cm and a cylindrical tube with the length L  and diameter 5d mm=   
 
 



Immobile Fluid     31 

inclined against the horizontal level of an angle .α  The pressures p1 and p2, whose 
difference we want to measure, are applied to A and B. The measurement is 
performed using a liquid with the following density: 3 310 . .kg mρ −=  

Z0

A

D

p1

p2

0

B

d

 

Figure 2.2. Differential pressure gauge 

First of all, we mark the levels against a horizontal plane with the base of R. The 
surface level that is against the reference plane and free from liquid, when the 
atmospheric pressure is applied to A and B, is called z0. 

1) Give the expression of the difference 2 1Z Z−  of the liquid-free surface levels 
when the pressures 1p  and 2p  are applied to A and B, respectively 1 2( ).p p>  

2) In practice, d is weak before D. From this, it can be deduced that 0 1Z Z−  is 
very weak before 2 0.Z Z−  Therefore, it gives Z2. 

3) One places a centimeter ruler along the inclined tube. The zero of the ruler is 
confounded with the level 01.Z  

Given the expression of the distance measured on the ruler according to the 
pressures p1, p2, of ρ  and the angle ,α  when α  is small, what is the value of this 
device? 
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In the case where an angle α  is equal to 2° and the length of the ruler is equal to 
25 cm, what is the maximum pressure difference that can be measured?  

Solution: 

1) In an incompressible fluid that is only subjected to the forces of gravity, the 
quantity p gZρ+  is constant, with Z being one dimension counted on a vertical 
upward axis.  

Therefore: 

1 1 2 2p gZ p gZρ ρ+ = +  

2 1
2 1

p pZ Z
gρ

−
− =  [2.8] 

2) The fluid is incompressible. So the decrease in the volume of the fluid 
contained in the vessel with a diameter D (due to the passage on the side Z0 of the 
free surface at Z1) must be equal to the increase of fluid volume in the inclined tube 
(due to the passage of the free surface from Z0 to Z2). 

NOTE.– The inclined tube has a weak diameter, and the calculation here is confined 
to considerations regarding the order of magnitude. Therefore, in this calculation, we 
overlook the effects that inclination has on a free surface against this tube’s axis:  

( ) ( )0 1 2 0
² ²

4 4
D dZ Z Z Zπ π− = −  

0 1

2 0

² 1
²

Z Z d
Z Z D

−
= <<

−
 [2.9] 

In this case:  

0 1

2 0

² 1
²

Z Z d
Z Z D

−
= <<

−
 

( ) ( )2 1 2 0 0 1 2 0Z Z Z Z Z Z Z Z− = − + − ≈ −  [2.10] 

And 2 1Z Z−  can be directly measured based on the liquid-free surface movement 
within the inclined tube.  
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3) The tube’s inclination produces an amplifying effect in that the altitude of the 
liquid-free surface is changed. In fact, a simple trigonometry consideration allows us  
to link the liquid-free surface movement XΔ  along the ruler to the variation of the 
corresponding dimension :ZΔ  

sin
ZX
α

ΔΔ =  [2.11] 

for 2α = ° 2sin 3,49.10α −=  and: 

28,65X ZΔ = Δ  [2.12] 

If 0, 25X L mΔ = = , then the gap of the maximum dimension is 
3

max 8,73.10Z m−Δ =  and the maximum measurable pressure gap maxpΔ  is: 

max max 85,61p g z PaρΔ = Δ =  [2.13] 

The sensitivity of the reading is therefore obtained at the cost of a reduction in 
the measurement range. 

This device is still used. Until strain gauge manometers arrived on the market, 
which are accessed by processing an electronic signal (and computer interfacing), 
the inclined tube was practically the only means available for measuring weak 
pressure differentials.  

NOTE.– For very weak interface movements, we could also resort to interferometric 
methods, which need to be implemented very delicately. 

EXAMPLE 2.2 (The Hare method for measuring density).– 

The upper ends of two vertical tubes, 1T  and 2T , open out into an enclosure E . 
The lower ends of the tubes are immersed into two different receptacles, each of 
which contains a liquid. The lower ends 1T  and 2T  are swimming at the fluid density 
values of 1ρ  and 2ρ , respectively.  

The enclosure E  is borne at a pressure Ep  lower than the atmospheric pressure 
pa, which is applied on the liquid-free surfaces 1 and 2. 
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Figure 2.3. Hare method 

One finds that the free surfaces in tubes 1 and 2 are, respectively, placed at the 
heights 1h  and 2h  in relation to the free surfaces of the receptacles 1 and 2. 

1) Give the expression of 2ρ , knowing 1ρ , 1h  and 2h . 

2) Digital application 

Liquid 1: water; 
33 .

1 10 kg mρ
−

= .  

Liquid 2: benzene. 

One measures 

1 5h cm=  and 2 5,7h cm= . 

What is the density 2ρ  of benzene? 

Solution: 

1) The behavior of the liquids in the tubes is independent.  

The lower part of each tube is subject to atmospheric pressure and the upper part 
is subject to the pressure p . The fact that this pressure is the same for both tubes 
will become valuable when writing the final results. 
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As always, we mark the altitudes z on a vertical upward axis. Given that we are 
dealing with fluid statics, in each fluid, the quantity p gzρ+  is constant in each 
fluid (which, in this case, has its own ).ρ  Furthermore, the pressures are continuous 
at the interface of the two fluids.  

It is more practical here to use the aforementioned observation:  

p gz Cteρ+ =  amounts to saying that as soon as one “descends” from z in a 
liquid at equilibrium, the pressure of gzρ  increases. 

Therefore, for each tube, we have: 

In the tube containing water: 

1 1ap p ghρ= +  [2.14] 

In the tube containing benzene: 

2 2ap p ghρ= +  [2.15] 

From this, we can easily deduce the expression of 2ρ : 

1 1 2 2

1 1
2 2

2

ap p gh gh
ghgh

gh

ρ ρ
ρρ

− = =

=
 

1
2 1

2

h
h

ρ ρ=  [2.16] 

2) The numerical value of the density is: 

1
2 1

2

51000
5,7

h
h

ρ ρ= =  

3
2 877,2 kg mρ −=  [2.17] 

EXAMPLE 2.3 (An improvised barometer).– 

A physics professor wants to quickly build a barometer for a demonstration. He 
has no more credit to buy mercury.  
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He does, however, have some glassware stock left over. Therefore, he undertakes 
the task of manufacturing a barometer with an oil that has a density of 0.9 g.cm−3. 

The principle is the same as for all liquid barometers. He fills a sufficiently long 
glass tube with a diameter 1d cm=  and he places it in a tank that already contains  
2 l of oil. 

 

Figure 2.4. An improvised barometer 

1) How many liters of oil in total must the physicist have in order to measure a 
pressure of 1 bar? 

2) What is the minimum length h that the tube must be in order to measure a 
maximum atmospheric pressure of 78 cm of mercury if you know that the tube is 
immersed in the tank by at least 4 cm? 

We recall that the density of mercury is 313600 .HG kg mρ −= . 

Solution: 

1) In the tube, we notice that the free surface is at a zero pressure rate.  

NOTE.– This constitutes an estimate. Strictly speaking, the pressure would be the oil 
vapor pressure at the laboratory’s temperature. 

In terms of the tank, the free surface is at the atmospheric pressure pa which we 
wish to measure. Z is the oil height in the tube. In this tube, one descends from Z  
by increasing the pressure from 0 to .ap  The fundamental theorem of fluid statics 
allows us to write:  

0ap gZρ− =   
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apZ
gρ

=  [2.18] 

If pa is equal to 1 bar or 105 Pa: 

510
900

Z
g

=  

11,33Z m=  [2.19] 

The quantity of oil necessary HV  includes the volume determined by the height 

Z  added to the oil in the tube, or 3 32.10 m− . 

The section of the tube emerges at 57,854.10 ²s m−= : 

32.10HV sZ −= +  

3 32,89.10 2,89HV m liters−= =  [2.20] 

2) A height of 78 cm of mercury indicates an atmospheric pressure p'a equal to: 

13600*9,81*0,78a Hgp' ghρ= =  

51,041.10 1,041ap' Pa bar= =  [2.21] 

Using an identical logic to that used in question (1), and with an oil height Z' , 
equal to: 

ap'Z'
gρ

=  

11,79Z' m=  [2.22] 

The minimum length L' of the tube will then be Z' increased by 4 cm: 

211,79 4.10 11,83L' m−= + =  [2.23] 
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EXAMPLE 2.4 (Superimposed liquids. Two-fluid systems).– 

The only question to be calculated numerically will only be in question (3). 

A large test tube is filled with oil that has a density ρ  up until the height 1h . 
Over the top, one then pours a mercury height of 2h  with a density of HGρ   
( HGρ ρ> ). The liquids are strictly non-miscible and are adjusted so that the liquid 
with the density HGρ  remains at equilibrium above the liquid with the density of ρ . 
(We will also carry out a metastable liquid.) ap  is the atmospheric pressure in the 
laboratory.  

1) What is the pressure intp , at the interface of the two liquids, expressed in 
pascal? 

h1

h2

 

Figure 2.5. System with two superimposed liquids 

2) One submerges a tube T, which is open at both ends, into the test tube. It is to 
be done in such a way so that the tube contains no oil, as shown in the diagram.  

The lower end of this tube is submerged in the oil. One will find that the oil rises 
in the tube T up to the height h above the interface of the two liquids.  

One would assume that the tube T has a smaller diameter than that of the test 
tube. And consequently, one can assume that the interface of the two liquids 
practically does not move when T is entered.  

Give the expression of h. 
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h

h1

h2

 

Figure 2.6. Introducing tube T 

3) Numerical application 

We have: 

1

2
3

3

1
10
5

900 .
13600 .

a

HG

p bar
h cm
h cm

kg m
kg m

ρ
ρ

−

−

=
=
=

=
=

 

Give the values of intp  and h . 

Solution: 

1) In the mercury, one “descends” from the height h2 by moving from the 
atmospheric pressure pa to the pressure to be determined. One therefore has: 

int 2a Hgp p ghρ− =  

int 2a Hgp p ghρ= +  [2.24] 

2) The pressure intp  calculated in (1) will not be modified by the tube being 
introduced, which conserves a free surface on the upper part of the mercury.  
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Furthermore, in the oil, the level constituted by the oil/mercury interface is an isobar 
level. So, in particular, in the part of this interface located on the inside of the tube, the 
oil pressure will be intp . 

In the oil, between the free surface located on the upper part of the tube and the 
level of the oil/mercury interface, one descends from h, in order to move from the 
atmospheric pressure ap  to the pressure int .p  One then has: 

int ap p ghρ− =  

int ap p ghρ= +  [2.25] 

Taking the value of intp  into account: 

int 2

int

a Hg

a

p p gh
p p gh

ρ
ρ

= +

= +
 

2
HGh h

ρ
ρ

=  [2.26] 

3) The numerical values of intp  and h  emerge at: 

5
int 2 10 13600*9,81.*0,05a Hgp p ghρ= + = +  

5
int 1,0667.10p Pa=  [2.27] 

2
136000,05

900
HGh h

ρ
ρ

= =  

0,7556 75,56h m cm= =  [2.28] 

EXAMPLE 2.5 (Superimposed liquids. Three-fluid systems).– 

Let us now consider a tank into which we have poured water with a density  
of 31000 .W kg mρ −= up to a height 1 100 ,h cm=  and an oil with a density 

3
0 900 .kg mρ −=  up to a height 2 150 .h cm=  

The atmospheric pressure is 1ap bar= . 
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Figure 2.7. The tank with two liquids 

1) What is the pressure 0p  at the bottom of the tank? 

One introduces a vertical tube into the liquid so that the lower end is immersed in 
the water and 50 cm from the bottom. Then, one adds into the tube an unknown 
height h3 of mercury with a density of 3136000 .HG kg mρ −= . As the tank has a large 
surface, one will consider that h1 and h2 remain strictly constant throughout the 
whole problem.  

2) Give the expression according to 3h of the pressure 0HGp in the tube at the 
interface between the mercury and the oil.  

3) Give the expression according to 3h of the pressure 0Wp in the tube at the 
interface between the oil and the water. 

 

Figure 2.8. The three-fluid system 

www.ebook3000.com

http://www.ebook3000.org


42     Fluid Mechanics 

4) Give the expression according to 3h  of the altitude X  of the interface 
between the oil and the water against the bottom of the tank. 

5) If one produces 3 4h cm= , what is the value of ?X  

Solution: 

1) Let us call the pressure at the interface between the oil and the water intp . 

In the oil, as soon as one “descends from h2”, the pressure increases from the 
atmospheric pressure pa to the pressure int :p  

int 2a op p ghρ− =  [2.29] 

In the water, as soon as one “descends from 1h ”, the pressure increases from the 
pressure pint to the pressure 0tp  to be determined: 

0 int 1wp p ghρ− =  [2.30] 

In the end: 

0 1 2a w op p g h ghρ ρ= + +  [2.31] 

2) In the mercury, one descends from 3h  in order to increase the pressure from 
the atmospheric pressure ap  to the pressure 0HGp  to be determined: 

3hgo a hgp p ghρ= +  

5
0 1,231.10p Pa=  [2.32] 

3) In the oil, one descends from 2h  in order to increase the pressure from 0HGp  
to the pressure 0Wp  to be determined: 

2

3

ow hgo o

hgo a hg

p p gh
p p gh

ρ
ρ

= +

= +  

2 3ow a o hgp p gh ghρ ρ= + +  [2.33] 
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4) In the water, one “descends from X ” in order to increase the pressure from 0Wp  
to the pressure at the bottom, which is still that which was calculated in eq [2.31], p0: 

0 ow wp p gXρ= +  [2.34] 

2 3ow a o hgp p gh ghρ ρ= + +  

0 1 2a w op p gh ghρ ρ= + +  [2.35] 

1 2 2 3a w o a o hg wp gh gh p gh gh gXρ ρ ρ ρ ρ+ + = + + +  

1 3w hg

w

h h
X

ρ ρ
ρ
−

=  [2.36] 

5) For 3h which is equal to 4 cm, X emerges at: 

0, 456 45,5X m cm= =  [2.37] 

2.2.2. Case of volume forces deriving from a potential 

EXAMPLE 2.6 (Accelerometer).– 

1) In Figure 2.9, a parallelepiped-shaped aquarium is accelerated from left to 
right in a horizontal direction. Find the shape of the free surface, as well as the 
geometry of the isobars inside the aquarium. 

2) The diagram shows an accelerometer having a U-shaped tube filled with a 
liquid density .ρ  The distance between the vertical arms of the U-shaped tube is 

30l cm= . 

30 cm
 

Figure 2.9. U-shaped tube of the accelerometer 
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Explain how one can use this device to measure the horizontal acceleration of the 
U-tube. Give the relation between the drop observed and the acceleration γ to be 
measured. 

3) One installs the accelerometer into a car.  

What gap will a driver observe between the two arms when driving along a 
district road at 109 km.h−1, given that their GPS foresees that the driver has reached 
a “danger zone” and wants to bring the speed back down to the legal limit of  
90 km.h−1 in 5 s? The deceleration is assumed to be constant.  

Solution: 

1) The problem could be dealt with in statics if one were to place it in a reference 
frame linked to the aquarium. This frame will be in acceleration in relation to the 
ground, so it will not be Newtonian.  

The volume forces will therefore include a gravitational upward component and 
an inertia force that has a horizontal direction.  

One will therefore choose an axis Oxyz  system, integrating a horizontal axis 
(e.g. Ox ), a vertical upward axis, (e.g. Oz ) and a third axis with a minor role  
(e.g. Oy ), which is perpendicular to the figure. (The vertical upward axis is constant 
throughout all of our approaches.)  

Both forces (gravity and inertia) are derived from a potential. The resultant force 
will be derived from the sum of these two potentials:  

G GF grad φ= −
r

 [2.38] 

inert inertF grad φ= −
r

 [2.39] 

Taking into account the fact that the inertia force goes in the opposite direction 
to movement and is carried by Ox, [2.38] and [2.39] allow us to write: 

0

0

G

G

G

x

y

g
z

φ

φ

φ

∂
= −

∂
∂

= −
∂

∂
− = −

∂

 [2.40] 
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0

0

inert

inert

inert

x

y

z

φγ

φ

φ

∂
− = −

∂
∂

= −
∂

∂
= −

∂

 [2.41] 

Afterwards, the elementary integrations emerge:  

1G gz Cφ = +  [2.42] 

2inert x Cφ γ= +  [2.43] 

1C  and 2C  are constants. 

Finally, the potential of the volume forces φ , defined at the constant C, is 
around: 

G inert x gz Cφ φ φ γ= + = + +  [2.44] 

The equipotentials will have the equation: 

x gz Cteγ + =  [2.45] 

These are parallel levels whose track is in the figure’s level and have the right 
equation:  

z x Cte'
g
γ= − +  [2.46] 

Cte  and Cte'  are constants. 

We see that the fluid tends to move back (be sent back) toward the rear of the 
aquarium compared to the movement. This is the classic phenomenon of the 
passenger being pressed back into their seat in an accelerating vehicle.  
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x

z

O  

Figure 2.10. The aquarium in acceleration 

The exact position of the interface may be found by conserving the water volume 
in the vessel.  

2) The following questions are comprised of simple applications of these results. 

The shape of the aquarium in no way modifies the previous reasoning. The free 
surface maintains the same equation and is reduced into two levels within the tube’s 
two vertical sections. zΔ  is the drop observed. It corresponds to two distant z point 
values on the interface of .x lΔ =  

Therefore: 

lz x
g g
γ γΔ = − Δ = −  [2.47] 

3) The vehicle’s deceleration is 19 km.h−1 (or 5.28 ms−1) in 5 s, or: 

219000 1,056 .
3600*5

m sγ −= =  [2.48] 

zΔ  emerges at 21, 41z cmΔ =  [2.49] 

EXAMPLE 2.7 (Rotating vessel).– 

Let us consider a cylindrical receptacle with diameter 2D R=  and height H , 
containing a liquid with a density ρ . This liquid’s free surface is at a distance of h0 

0h H<  from the bottom when the vessel is in recovery. 

One puts this vase so that it is rotating around its vertical axis. The angular speed 
of rotation isω , expressed in Rd.s−1. 

Let us look for the form that the free surface takes on with this rotation.  
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z

O

H
h0

r

  

hc

z

O

H

 

Figure 2.11. Immobile vessel and rotating vessel 

Consider a cylindrical axis system, , ,r zθ , attached to the vessel. In such a frame, 
the problem arises from fluid statics. 

1) Find the free surface’s equation, which will naturally be expressed under the 
form ( )z f r= . We will call Ch  the dimension of the lowest point on this free 
surface.  

2) Express Ch according to 0h and .ω At which value ofω will the liquid overflow? 

3) We have 7 ,D cm=  10 ,H cm=  0 6 .h cm=  At which rotating speed does the 
liquid overflow? Express this speed in mn−1 turns. 

4) Give the general expression of the pressure in all of the liquid ( ), ,p p r z ω= . 

Solution: 

1) The free surface is an isobar, so an equipotential, whose general form will be 
given by the potential φ  of the volume forces. 

The approach will be the same as in Example 2.6. Nevertheless, one will work in 
cylindrical coordinates.  

The inertia forces will be radial and in a point (r, θ, z) of intensity 2rω  per mass 
unit.  
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If Gφ  and inertφ  are the points relating to the forces of gravity and inertia:  

G inertφ φ φ= +  [2.50] 

0

10

G

G

G

r

r

g
z

φ

φ
θ
φ

∂
= −

∂
∂

= −
∂
∂

− = −
∂

 [2.51] 

²

10

0

inert

inert

inert

r
r

r

z

φω

φ
θ

φ

∂
= −

∂
∂

= −
∂

∂
= −

∂

 [2.52] 

Equations [2.51] and [2.52], which are in cylindrical coordinates, correspond to 
equations [2.40] and [2.41], which are written in Cartesian coordinates.  

Then, elementary integrations emerge from this:  

1G gz Cφ = +  [2.53] 

2
² ²
2inert

r Cωφ −= +  [2.54] 

1C  and 2C  are constants. 

Finally, the potential of volume forces φ , defined at the constant C, is near: 

² ²
2G inert

rgz Cωφ φ φ= + = − +  [2.55] 

The equipotentials will have the equation:  

² ²
2

rz Cte
g
ω= +  [2.56] 
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The equipotentials are paraboloids with parallel rotations, whose track in the 
figure’s level is a parabola with the equation: 

² ²
2

rz Cte
g
ω= +  [2.57] 

2) The equation of the free surface will be found by conserving the fluid’s mass.  

When the cylinder does not turn, the free surface is a level located at h0 above 
the bottom. The liquid’s volume is therefore: 

0²olV R hπ= . [2.58] 

When the cylinder turns, the fluid is contained in the cylinder that is limited at 
the bottom, the cylinder’s walls and a revolving paraboloids equation revolution:  

² ²
2 C

rz h
g
ω= +  [2.59] 

where Ch  is the height of the liquid at the center ( 0r = ). 

The height of the liquid at the level of the wall ( r R= ) will therefore be ph  such 
as: 

² ²
2p C

Rh h
g
ω= +  [2.60] 

In order to calculate the volume of the rotating liquid, we use a classic method 
for calculating an integral volume with rotating symmetry. We divide the volume of 
the liquid into small annular spaces held between the cylinder radii r and r d r+ . 
Each elementary volume constructed in this way will have the value:  

( ) ² ²2 2
2OL C

rdV z r rdr h rdr
g
ωπ π⎡ ⎤

= = +⎢ ⎥
⎣ ⎦

 [2.61] 

By integrating 0  to ,R  the volume can therefore be written as: 

0

² ² 2
2

R

OL C
rV h r dr

g
ω π⎡ ⎤

= +⎢ ⎥
⎣ ⎦

∫  [2.62] 

4 4

0

² ² ²2 ²
8 2 4

R

OL C C
r r RV h h R

g g
ω π ωπ π⎛ ⎞

= + = +⎜ ⎟
⎝ ⎠

 [2.63] 
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Finally, by comparing the two volume expressions, we have:  

4

0
² ² ²

4OL C
RV h R h R

g
π ω π π= + =  [2.64] 

For Ch , it then emerges as: 

0

0

² ²
4
² ²
4

C

P

Rh h
g

Rh h
g

ω

ω

= −

= +
 [2.65] 

The liquid will overflow once ph  is larger than ,H  which for ω  is: 

0
² ²
4p

Rh h H
g
ω= + >  [2.66] 

( )04
²

²
g H h

R
ω

−
>  [2.67] 

3) We have 7D cm= , 10H cm= , 0 6h cm= .  

The digital application is given by:  

135,8 .Rd sω −= , [2.68] 

135,8 *60 341,9.
2

mn turnsω
π

−= =  [2.69] 

for the speed given above at which the liquid overflows.  

4) Let us look for the general expression of the pressure in all of the liquid 
( ), ,p p r z ω= . 

The isobars have the general equation: 

0
² ² ² ² ² ²
2 4 2C

r R rz h h
g g g
ω ω ω⎡ ⎤

= + = − +⎢ ⎥
⎣ ⎦

 [2.70] 
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We have an incompressible fluid with a force potential:  

² ²
2G inert

rgz Cωφ φ φ= + = − +  [2.71] 

So, according to [2.6]: 

² ²
2

rp p g z Kωρφ ρ ⎛ ⎞+ = + − =⎜ ⎟
⎝ ⎠

 [2.72] 

where K  is a constant that one will assess when writing that the free surface is an 
isobar with the value ap . This is particularly the case for Cz h= and 0r = . Therefore: 

( )

( ) 0

lim

² ²
4

a C x

a C

p gh K

RK p gh g h
g

ρ

ωρ ρ

→∞
+ =

⎛ ⎞
= + = −⎜ ⎟

⎝ ⎠

 [2.73] 

Therefore, the general expression for the pressure in the liquid is:  

0
² ² ² ² ² ²
2 4 2

r R rp K gz g h gz
g

ω ω ωρ ρ ρ⎛ ⎞⎛ ⎞ ⎛ ⎞= − − = − − −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 [2.74] 

( ) ( )0
² ² ² ², ,
2 4a

r Rp r z p g h z ω ωω ρ ρ ⎛ ⎞= + − + −⎜ ⎟
⎝ ⎠

 [2.75] 

2.2.3. Case for compressible fluids 

Once the fluid can no longer be considered incompressible, which is particularly 
the case for gases, the fluid statics fundamental theorem cannot be applied. We 
therefore need to use the formulations given in 2.1.1.b 

NOTE.– Other liquids may also be compressible if one considers significant 
pressure variations. For example, at a depth of 10,000 m, the pressure varies by 
about 100 bars; the liquid’s compressibility should therefore be considered less.  

EXAMPLE 2.8 (The evolution of atmospheric pressures with altitude).– 

Air pressure in the atmosphere varies considerably depending on the altitude.  
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We will attempt to model how the pressure evolves with altitude by assuming 
that the air is a perfect gas and by using two hypotheses: 

a) The atmosphere is isothermal. Any mountain climber or aviator will be able to 
confirm that this is a fairly rough hypothesis.  

b) One atmospheric layer passes to another layer within the context of reversible 
adiabatic transformation. This hypothesis is more realistic. 

So 0p  and 0ρ  are the pressure and the density from the air to the ground, 
respectively.  

We recall that for a perfect gas:  

The status equation: p rT
ρ

=  is verified with Rr
M

= , the ratio of the constant 

for perfect gases to molar mass.  

NOTE.– r appears as soon as one starts to work in mass flow, which is often the case 
in compressible fluid mechanics. Note that unlike R, r is not a universal constant, 
but instead varies with the nature of the gas. 

T  is the absolute temperature of the gas; therefore, it is expressed in Kelvin. 

In a reversible adiabatic transformation (isentropic), the quantity p
γρ

remains 

constant. P

V

C
C

γ = , the ratio of the heat capacities to the pressure and constant 

volume, is also called a polytrophic coefficient of the gas.  

1) Give the expression of the atmospheric pressure ( )p z  in the case of an 
isothermal atmosphere, where z  is the altitude. 

2) Give the expression ( )p z in the hypothesis of a reversible adiabatic 
transformation. 

3) We have 5
0 1,013.10p Pa= ; 3

0 1,29 .kg mρ −=  ; 1, 4γ = . 

What is the pressure at the altitude of 10,000 m for each hypothesis? 
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Solution: 

We are now dealing with compressible fluids. The fluid statics law is no longer 
suitable.  

We bring the space back to the frame that possesses a vertical upward axis Oz , 
where the origin is fixed at the ground surface.  

We have to refer back to the general expression of the fluid statics theorem, in 
the case of a volume force reduced to gravity, therefore derived from a potential 

g zφ = −  per mass unit: 

0grad p gradρ φ+ =
r r

 [2.76] 

Let us project this principle onto the vertical axis Oz : 

p
z z

φρ∂ ∂= −
∂ ∂

 [2.77] 

We can rewrite this expression here using “total” derivatives as the relation of 
gradients enables us to demonstrate that the isobar network ( p Cte= ) is confounded 
with that of the equipotentials (in this case, they are levels at z Cte= ).  

The pressure p , like φ , only varies with z: 

dp d
dz dz
dp g
dz

φρ

ρ

= −

= −  [2.78] 

We can write a supplementary ratio between p  and ρ . This ratio will depend 
on the thermodynamic transformation of the air moved from one altitude to another.  

1) If we assume that the temperature of the atmosphere is constant, the following 
state equation will be verified at each dimension:  

0

0

pp rT
ρ ρ

= =  [2.79] 
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T  is the absolute temperature of the gas. In this first case, rT  is therefore a 
constant. Small variations in pressure and density will be connected by:  

0

0

pdp d ρ
ρ

=  [2.80] 

In this particular case, the fundamental theorem of statics will be written as: 

0

0

dp g p
dz p

ρ
= −  [2.81] 

0

0

dp g dz
p p

ρ
= −  [2.82] 

This differential equation of the first range is easily integrated. The condition on 
the necessary limits will be given by the value of atmospheric pressure at the ground 
pa: 

0

0

Ln p g z LnC
p
ρ

= − +  [2.83] 

0

0

0

exp

0 ;

p C g z
p

z p p

ρ
= −

= =
 

0
0

0

expp p g z
p
ρ

= −  [2.84] 

This is an exponential decrease in the pressure with the temperature.  

This is obviously a very simplified model. Indeed, we know that temperature at 
altitudes is significantly lower than the temperature at the ground level. 

2) We will therefore obtain a better approximation by assuming a reversible 
adiabatic relation between the two points of the different dimensions:  

P

V

p K

c
c

γρ

γ

=

=
 [2.85] 

where K  is a constant. 
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By introducing this new ratio [2.85] and density in the fundamental theorem of 
statics, we will obtain a new differential equation of the first range for p :  

0

0
11 1 1

0 0
1

0
0

pp K

p p p
K p

p
dp g
dz

γ γ

γ γγ γ γ

γ

ρ ρ

ρ ρρ

ρ

= =

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

= −

 [2.86] 

It appears as:  

0
1 1

0

0
1

0

dp g dz Adz
p p

A g
p

γ γ

γ

ρ

ρ

= − = −

=
 [2.87] 

Equation [2.87] can be solved by using the same condition on the limits as 
before:

 
1

1 1

0

0 ;

1

1 1

az p p

p Az Cte

p Az p Az B

γ
γ

γ γ
γ γ

γ
γ

γ γ
γ γ

−

− −

= =

= − +
−

= − + = − +
− −

 

p  emerges at: 

( )
11p Az B

γ
γγ

γ
−⎡ ⎤−= − +⎢ ⎥

⎣ ⎦
 [2.88] 

where 

0
1

0
1

01

A g
p

B p

γ

γ
γ

ρ

γ
γ

−

=

=
−
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3) The values are 5
0 1,013.10p Pa= ; 3

0 1,29 .kg mρ −=  ; 1, 4γ = .  

3.1) In the hypothesis of an isothermal atmosphere: 

0
0

0

5 4
5

exp

1, 291,013.10 exp 9,81 10
1,013.10

p p g z
p

p

ρ
= −

= −
 

42,9.10 0,29p Pa bar= =  [2.89] 

3.2) In the hypothesis of a reversible adiabatic evolution with altitude: 

( )

( )

3

1

0
1

0
1

0

3,5

1

3,364.10

94, 24
1

0,286 33,64 94, 24

p A z B

A g
p

B p

p

γ
γ

γ

γ
γ

γ
γ

ρ

γ
γ

−

−

−

⎡ ⎤−= − +⎢ ⎥
⎣ ⎦

= =

= =
−

= − +⎡ ⎤⎣ ⎦

 

42,17.10 0,217p Pa bar= =  [2.90] 

The International Organization for Standardization (ISO) published the 
International Standard Atmosphere (ISA) under the standard, ISO 2533; 1975. We 
can compare the result of this data to the standard ISA atmosphere, which, in the 
troposphere at the sea level, gives a pressure of 51,013.10 Pa  at an altitude of 
11000 m  and gives a standardized pressure of 22632 Pa . Assuming that the 
pressure has an approximately linear evolution in the troposphere, we can find: 

100, 226 0,206
11

p bar= =  [2.91] 

This result can be compared with the previous ones.  

The isothermal approximation gives a gap of 40.1%, while the isentropic 
approximation gives a reduced gap of 5.3% with the standard data. 
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2.3. Calculating the thrusts 

2.3.1. Methods 

The thrust that a fluid exerts on a finite surface S , whether open or closed, is in 
principle calculated by a surface integral:  

( )thrust
S

P p z n dS= −∫∫
r r

 [2.92] 

where ( )p z will be a function obtained based on the fluid statics fundamental 
theorem, under a more or less complex form.  

There are diverse symmetries (the simplest of which are the mono-dimensional 
plane and the axis symmetry) that often simplify the calculations.  

In the most general case, it may lead to particularly complex calculations. In 
practice, complex calculations call upon the digital approach.  

For a closed surface (e.g. an immobile immersed solid body), in fluid statics, we 
can benefit from using Archimedes’ theorem.  

Hereafter, the equilibrium or the movement of the solid body is a problem in 
solid mechanics. The thrust calculated on the closed surface enveloping this body 
can therefore only be a component in a system of forces.  

NOTE.– In the case of a moving body, applying the Archimedes theorem 
bypasses the immobility of the solid. This remains acceptable for slow-speed 
movements: sedimentation, ascension of a hot air balloon, etc. 

This encompasses different issues: buoyancy, sedimentation, ascension of an 
airship, etc. 

Two types of methods will be broached below: 

a) Thrust calculations on closed and immersed surfaces. 

b) Thrust calculations on an open surface (wall). 

Calculating the thrust on an open surface leads to the decomposition of the 
surface into elementary components of relevant geometry. In practice, we look for 
the symmetries and often use a band or ring decomposition. 
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2.3.2. Thrusts on bodies that are totally immersed in incompressible 
fluids 

For incompressible fluids subject to the only gravity, Archimedes’ theorem is a 
practical tool for calculating thrusts on a closed surface.  

All bodies immersed in an incompressible fluid that is subject to volume forces 
reduced to gravity receive a vertical upward thrust from this liquid, with an intensity 
equal to the shifted fluid weight. This thrust is applied to the center of the mass of 
the displaced fluids.  

It is very important to understand that Archimedes’ theorem is just one way of 
calculating a thrust applied by a fluid responding to hypotheses. The problems that 
appeal to this theorem are furthered by studying the equilibrium of the body itself. 
From here, we leave fluid mechanics and enter into the realm of solid mechanics; 
this is where we find buoyancy problems, in particular.  

NOTE.– Let us recall that incompressibility is synonymous with invariable density. 
Incompressible fluids therefore include liquids subject to reasonable pressure (at the 
bottom of the Pacific, the liquid is compressed) and gases subject to weak pressure 
variations. 

There are several observations to take into account here:  

Archimedes’ theorem implies immobile bodies immersed into an incompressible 
fluid subject to volume forces reduced to gravity. 

This theorem does not apply to liquids. It can be applied to a gas, on the 
condition that its density does not sensitively vary in the volume in which one is 
dealing with the problem.  

In the case where the immersed body is slowly moving, we assume that, for the 
purposes of estimation, Archimedes’ theorem can still evaluate the thrust forces of 
the fluid. This estimate is used particularly for the movement of an aerostat (see the 
hot air balloon in Example 2.13) or in sedimentation problems.  

NOTE.– Sedimentation time from a few minutes to a few hours can be observed 
when a particle goes down to a few centimeters.  

EXAMPLE 2.9. (A floating ball).– 

A ball with a diameter D  is full and made up of a homogeneous material with a 
density Bρ . 
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We put this ball on the surface of a tank filled with water. The water density is ρ . 
We know that Bρ ρ< . 

C

 

Figure 2.12. A floating ball 

1) In order for the ball to be immersed in such a way that its center C is at the 
level of the tank’s free surface, what should the value of nρ  be Bρ ? In this question, 
we will only give the expression.  

2) We have 31000 .g cmρ −= .  

Give the value of Bρ  in SI units. 

Solution: 

This simple example enables us to find the basis of the logic that will be 
reproduced in practically all the problems which call upon Archimedes’ thrust.  

At this stage, do not forget that we are indeed dealing with a solid’s statics, 
where fluid mechanics only occurs for calculating a force’s components, the thrust. 

1) The fact that the sphere’s center is at the free surface level implies that half of 
the sphere is only immersed. 

OLV  is the sphere’s volume:
3

,
6OL
dV π=  where d  is the diameter (which is 

unknown, but we will see that this is not necessary to know). 

The sphere is immobile. Therefore, it is in equilibrium under the action of two 
forces, an upright support in the opposite direction:  

Gravity force, with intensity GF  is the sphere’s weight. 
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The liquid’s thrust, which by averaging the fulfilled hypotheses, can be 
calculated as an Archimedes’ thrust, with intensity AF  is equal to the shifted liquid 
weight. In this problem, the shifted liquid volume is half of the sphere’s volume 

3

12imm
dV π=  [2.93] 

The equilibrium, projected on a vertical upward axis, is written as:  

3 3

0

12 6

A G

OL B OL

B

F F
V' g V g

d dg g

ρ ρ
π πρ ρ

− =
=

=

 [2.94] 

As a result, we can obtain a simple relation:  

2B
ρρ =  [2.95] 

We see that the diameter of the sphere is eliminated in the calculation.  

2) The digital value of Bρ  immediately becomes:  

1 3500 . 500 .
2B g cm kg mρρ − −= = =  [2.96] 

EXAMPLE 2.10 (A bear on the ice floe).– 

A 16 kg polar bear is sitting on a piece of ice whose dimensions are unknown 
value. The ice is barely immersed and immobile.  

The respective densities of the seawater and the ice are 31025 .kg mρ −=  and 
3922 .S kg mρ −= . 

What is the volume OLV  of the piece of ice floe? 

Solution: 

The piece of ice floe must be at the equilibrium under the action of forces 
applied to it, namely: 
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the weight of the ice added to the weight of the bear are directed downwards; 

Archimedes’ theorem, directed upwards, whose intensity is equal to the weight 
of the shifted water volume. This volume here is equal to the ice volume that is 
totally immersed.  

These forces are in a vertical direction (carried by a vertical axis) and in the 
opposite direction. The equilibrium is written as:  

( )Sm V g Vgρ ρ+ =  [2.97] 

As a result, we obtain the volume OLV  of the piece of ice floe: 

OL
S

mV
ρ ρ

=
−

 [2.98] 

31,55OLV m=  [2.99] 

EXAMPLE 2.11 (A tourist in the Dead Sea).– 

The Dead Sea contains 44 g of salt per liter of water. An English tourist with a 
density Tρ  of 0.9 g.cm−3 floats. In volume percentage, what fraction f  of his body 
is immersed? We consider that completely desalinated water has a density of 

31000 .kg mρ −= . 

Solution: 

OLV  is the volume, which is still unknown to the tourist.  

The tourist must be at equilibrium under the action of the forces that are applied 
on him, namely: 

his weight T OLV gρ ; 

Archimedes’ upward thrust, whose intensity is equal to the weight of the 
displaced water volume. This volume here is equal to the immersed part of the 
tourist’s body OLf V . 
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These forces are in a vertical direction (carried by a vertical axis) and in the 
opposite direction. The equilibrium is written as: 

T OL OLV g fV gρ ρ=  [2.100] 

The volume is removed and: 

Tf ρ
ρ

=  [2.101] 

The salt water density is the sum of the water and salt mass in m3 (
1 144 . 44 .g litres kg m− −= ).  

The digital value of f is: 

31000 44 1044 .kg mρ −= + =  

922 0,883 88,3%
1044

f = = =  [2.102] 

EXAMPLE 2.12 (Thrust on an immersed pebble).– 

A physicist wants to know the thrust that the sea applies onto a pebble on the 
Dieppe beach. As the pebble has a very irregular shape, he abandons a direct 
calculation. 

He fills a cylindrical vessel of diameter 10D cm=  with water. He plunges this 
pebble into the vessel, where it then becomes completely immersed. The water level 
rises by 9z cmΔ = . 

When the pebble is totally immersed, what is the thrust applied by the sea onto 
this pebble?  

The density of the seawater is 31025 .kg mρ −= . 

Solution: 

Archimedes’ theorem outlines that the thrust undergone by a body immersed in a 
liquid is vertically upward and has an intensity equal to the weight of the shifted 
fluid. It is also applied to the center of the mass of this shifted fluid.  
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The rise in the water level enables us to calculate the volume of the pebble. This 
volume is given by: 

3 2 4 3

²
4

7,85.10 *9.10 7,07.10

OL

OL

DV S z z

V m

π

− − −

= Δ = Δ

= =
 [2.103] 

The intensity of the thrust F, equal to the weight of the shifted fluid, is therefore:  

²
4OL

DF V g S z zρ π= = Δ = Δ  [2.104] 

41025 * 7,07*10 *9,81 7,108F N−= =  [2.105] 

EXAMPLE 2.13. (A historic event).– 

On June 23rd, 1784, Pilâtre de Rozier flew aboard a hot air balloon, named the 
“Marie-Antoinette”, which was built by the Montgolfier brothers. Throughout this 
problem, we will assume that a hot air balloon is formed by a perfectly spherical 
envelope, with a diameter ,d  containing hot air with a density .Cρ   

Cρ  is less than the density ρ  of the air surrounding the hot air balloon.  

Let m  be the total mass of the envelope, the basket and the pilot. m  does not 
include the mass of the air contained in the envelope.  

The aerodynamic effects on the basket are insignificant.  

The density ρ of the external air decreases with the altitude, in accordance with 
the law:  

( )1S hρ ρ α= −  

where α  is a constant coefficient and Sρ is the density at the ground. Cρ  remains 
constant 

1) Give the literal expression of the altitude H that this flight, one of the first 
human flights, could have reached? 
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2) Numerical application 

Calculate H  knowing that: 
100m kg=   30,95 .C kg mρ −=   29,81 .g m s−=  

11,5d m=   31,3 .S kg mρ −=    58,8.10α −=   

Solution: 

1) At the height H , the hot air balloon is immobile. Therefore, we here have a 
solid statics problem. The hot air balloon is in equilibrium under the action of the 
forces that are all carried along a vertical axis (which one will direct upward. The 
origin will again be at the ground level): 

Forces of gravity, with mass m, applied onto the envelope, the basket and the 
pilot. With an intensity of ,GenvF mg=  these forces will be directed downward.  

Forces of gravity applied onto the gas contained in the envelope. With an 

intensity of GgasF m'g= , where the mass of the gas is 
3

6 C
Dm' π ρ= , these forces 

are  directed downward. 

Thrust of ambient air, external to the envelope. This force has an intensity equal 
to the weight of the shifted air, or an intensity airP m g= . It is directed upward. 

The shifted air has a mass:  

( )
3 3

1
6 6air S

D Dm hπ ρ π ρ α= = −  [2.106] 

This last force only varies with the altitude h . 

At equilibrium, h H= . This equilibrium is written, projected on a vertical 
upward axis: 

( ) 0airm g m m' g− + =  [2.107] 

airm m m'= +  

( )
3 3

1
6 6S C

D DH mπ ρ α π ρ− = +  [2.108] 
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In this equality, H  is the parameter to be determined. Let us isolate: 

( ) 3

1 6
S C

S

mH
D

ρ ρ
αρ π

= − −  [2.109] 

2) Numerically, H  is calculated as: 

1962H m=  [2.110] 

EXAMPLE 2.14 (Continental isostasy).– 

The continents are made up of a crust with a density ρc and a constant thickness 
in the time h. This crust “floats” on the surface of a relatively fluid environment, 
which we will very boldly assimilate here to a liquid with a density ρm. 

We will look at the case of Scandinavia.  

At the beginning of the quaternary era, Scandinavia was covered with a thick 
layer of ice, ice sheets or polar cap, with a thickness e. The density of this ice sheet 
is ρG. The surfaces of the ice and the crust are identical.  

 

Figure 2.13. Simplified diagram of Scandinavia 

1) At what depth X was the crust immersed at the beginning of our era? 

2) One knows that in T years, the ice sheet had melted; this melting causes 
Scandinavia to regularly rise at a constant speed RU . Now, there is practically 
nothing more than a negligible thickness of ice. What is the depth X'  at which 
Scandinavia is currently? 

3) Numerical application: expressed in meters per decade, at which speed RU  
has Scandinavia risen? 

32900 .C kg mρ −= ; 33300 .M kg mρ −= ; 3990 .G kg mρ −=  

2000e m= ; 36h km= ; 60000T ans=  
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Solution: 

1) At the beginning of the quaternary era, Scandinavia was at equilibrium under 
the action of the forces that were all carried along a vertical axis (which we will 
direct upward, originating at the ground level). We will record Scandinavia’s air  
as S : 

– forces of gravity, applied onto the crust, with a mass C Cm S hρ=  and the 
ice, with a mass  G Gm S eρ= . These forces are directed downward.  

– mantle’s thrust: this force, which is directed upward, has an intensity equal to 
the weight of the shifted mantle, which has a mass M Mm SXρ= . 

The equilibrium is written as:  

( ) 0M C Gm g m m g− + =  [2.111] 

( )M C GSXg Sh Se gρ ρ ρ= +  [2.112] 

X  is calculated as: 

C G

M

h eX ρ ρ
ρ
+

=  [2.113] 

2) The ice has disappeared, which amounts to redoing the previous question  
with 0e = . 

X'  therefore is calculated as: 

C

M

X' h ρ
ρ

=  [2.114] 

3) Knowing X  and X' , RU  is given by: 

R
X X'U

T
−=  [2.115] 

Using the previous results, X and X'  can be determined digitally: 

32 236

31 636

C G

M

C

M

h eX m

X' h

ρ ρ
ρ

ρ
ρ

+
= =

= =
 [2.116] 
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RU  is equal to: 

2 132236 31636 10 .
60000RU m an− −−= =  [2.117] 

RU  is 1 m per century.  

Note that we can find X–X’ more directly from their expressions. Knowing h is 
therefore not necessary.  

EXAMPLE 2.15 (Study of a photophore).– 

A photophore is a device found in furniture shops, a diagram of which is shown 
below. 

x

L

 

Figure 2.14. A photophore 

The candle B  is partially immersed into the water with a density ρ. The density 
of the candle is ρB. The candle burns at a speed fU . This speed is defined by the 

changing length of the candle ( )L t : 

f
d LU
d t

= −  
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We designate x (t) as the length of the candle emerging from the water.  

x0 is the length of the emerged candle when the candle is lit.  

1) Find the literal expression of x(t). One assumes that the candle burns slowly, 
and therefore all the candle’s movements are extremely slow.  

2) We have: 3850 .B kg mρ −= ; 31000 .kg mρ −= ; 10L cm= ; 15 .fU cm hr−= . 

By how much does the candle emerge when it is lit? By how much will it have 
emerged after the candle has burned for 1 hour and 30 minutes? What then, is the 
total length of the candle?  

3) In your opinion, what is the use of such a utensil, apart from its aesthetic 
addition to a table? 

Solution: 

1) The candle sinks slowly. We could admit that the problem is quasi-static, 
which enables us to write:  

The candle is “practically” at equilibrium under the action of the forces applied 
to it, namely the force of gravity and the fluid’s thrust, both of which are on a 
vertical axis.  

The liquid’s thrust will be equal to Archimedes’ thrust, which is strictly valid for 
an immobile fluid.  

S is the section (currently unknown, as it shall remain) of the candle. The volume 
of the candle is BV SL=  its weight B BP SLgρ= . The immersed volume is 

( )immV S L x= −  the weight of the shifted fluid, and the intensity AF  of 
Archimedes’ force is: 

( )A immF V g S L x gρ ρ= = −  [2.118] 

Archimedean weight and force are vertical and in opposite directions. 

We can write the equilibrium of the candle as:  

( )
0

0
A B

B

F P

S L x g SL gρ ρ

− =

− − =
 [2.119] 
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As a result, we obtain: 

Bx L ρ ρ
ρ
−

=  [2.120] 

2) The free height of the candle therefore depends on the combustion progress.  

2.1) When the candle is new: 

3

1500,1
1000

15.10 1,5

Bx L

x m cm

ρ ρ
ρ
−

−
= =

= =
 [2.121] 

2.2) After 1 hour and 30 minutes, the length of the candle is reduced by 
2 25.10 .1,5 7,5.10FU t m− −= = . 

Or a remaining length of 2 20,1 7,5.10 2,5.10 2,5L' m cm− −= − = = . 

The ratio established between x and L remains valid, regardless of the value of 
L. So, after 1 hour and 30 minutes, the height of the immersed candle becomes:  

3

1500,025
1000

3,75.10 3,75

Bx' L'

x' m mm

ρ ρ
ρ

−

−
= =

= =
 [2.122] 

3) We observe that, for two very different candle lengths, x  conserves a weak 
value, which, from a practical point of view, ensures that the flame is always close 
to the liquid’s surface, whose position varies very little. In this particular case, a 
glass globe surrounds the flame to ensure that the light is dispersed or focused 
(“lamp shade glass” effect). This is an aesthetic effect that is maintained identically 
throughout the combustion of the candle.  

EXAMPLE 2.16. (Alcohols).– 

Readers are reminded in advance that alcohol abuse is harmful to your health.  

At a party, a physicist sees a guest holding a glass in which an ice cube is 
floating. He notices that the ice cube is totally immersed and just touches the 
liquid’s surface, where it stays at equilibrium. He wonders what this guest is 
drinking. 
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Figure 2.15. The glass and its ice cube 

1) Give the expression of the density ρ of a water–alcohol solution according to its 
alcohol content n. alcρ  and wρ  are, respectively, the densities of ethyl alcohol and 
water.  

2) Determine the liquid’s density bevρ  in the guest’s glass, and from this deduce 
the alcohol content and the type of beverage.  

3) Alcoholmeter: 

A hollow cylinder with a volume OLV  has a density Cρ . ( Cρ  is the ratio of the 
mass of the cylinder envelope and the air contained within divided by its external 
volume.) 

When plunged into Sangria, it is immersed by 40%. 

Which fraction f of its volume will be immersed in Absinthe? 

Data: We will help you out with the following information: 

We recall that the alcohol content n  (noted as n° ) of a water/alcohol mix is the 
proportion in volume, expressed in a percentage, of alcohol contained in this mix: 
for example, a liter of “alcohol” at 45° contains 45% volume alcohol, meaning  
450 cm3 of alcohol and 550 cm3 of water. 

Throughout the problem, we will assume that the commercial beverages 
exclusively contain ethyl alcohol, and we will ignore the effect that all other 
ingredients (coloring, tannins, additives, etc.) may naturally (or artificially) have on 
the density.  
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Alcoholic content (in °) of a few liquids: 

Sangria: 14°; 

Vermouth: 16°; 

Sake (lower quality): 17°; 

Sake (higher quality): 20°; 

Whisky: 41°; 

Mei-Kwei-Lu: 51°; 

Absinthe: 75°. 

NOTE.– We often ignore the fact that Mei-Kwei-Lu is a Chinese alcohol that is 
systematically served at various French restaurants, under the name Saké (a generic 
Japanese word meaning alcohol). 

The densities (ρ, in kg.m−3) of the elements present in the problem (pure bodies) 
are as follows: 

Pure water: 31000 .w kg mρ −= ;  

Ethyl alcohol: 3790 .alc kg mρ −= ; 

Ice: 3914 .ice kg mρ −= . 

Solution: 

1) The alcohol content is the density of alcohol in a water–alcohol solution. 

Expressed in a percentage, n°  therefore means that the alcohol represents 
100

n  of 

the solution’s volume. 

The density is determined by adding the evaluated water and alcohol masses 
contained in a m3 of solution: 

1
100 100alc w

n nρ ρ ρ⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 [2.123] 
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2) The ice cube is just at the surface. It is totally immersed, immobile and therefore 
at equilibrium. Its weight will be equal to Archimedes’ thrust. The shifted volume is 
that of the ice cube, iceV , which we will see that it is not necessary to know: 

ice bev iceV g V gρ ρ=  [2.124] 

bevρ ρ=  [2.125] 

The density of the beverage is equal to that of the ice. Thus, we can deduce n° : 

"

1
100 100

790 1 1000 914 .
100 100

alc w ice

ice

n n

n n kg m

ρ ρ ρ ρ

ρ −

⎛ ⎞= + − =⎜ ⎟
⎝ ⎠

⎛ ⎞+ − = =⎜ ⎟
⎝ ⎠

 [2.126] 

n  can be calculated as: 

41n = °  [2.127] 

The beverage is Whisky. 

3) We calculate the density of Sangria, ,sangρ  with an alcoholic content 14n = °  
and that of Absinthe, ,absρ  with an alcohol content of 75n = ° : 

30,14 0,86 995,8 .sang alc w kg mρ ρ ρ −= + =  [2.128] 

30,75 0,25 842,5 .abs alc w kg mρ ρ ρ −= + =  [2.129] 

Under the influence of gravity and Archimedes’ thrust, the alcoholmeter is at 
equilibrium. The volume immersed in the Sangria will be 0, 4 OLV , and in the 
Absinthe, it will be OLf V : 

0,4 sang OL C OLV g V gρ ρ=  [2.130] 

abs OL C OLf V g V gρ ρ=  [2.131] 

f  can easily be calculated as: 

0, 4

47,3%

sang

abs

f

f

ρ
ρ

=

=
 [2.132] 
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EXAMPLE 2.17 (In the times of the Vikings).– 

Calculations will only be performed digitally in Question 4. 

A Swedish boat or Knörr in the 11th Century had the shape of a prism with the 
length L  whose section is approximated by a triangle with side a  and height H .  

Knarr or Knörr is the correct name for the classic Viking ship. “Drakkar” is the 
name that comes from the Romantic era and has no established linguistic basis.  

In order to simply model the phenomenon of buoyancy, let us assume that the 
sea is ideally calm. Consequently, the axis Oz  remains vertical. The mass of the 
boat when empty is m ; it includes the keel, the decks and the masts. *** 

 

Figure 2.16. Mapping of a “knörr” 

1) Express the volume of the immersed hull, immV , according to the wet height 
,h  a , H  and L .  

2) What is the expression of the immersed hull’s height 0h  when the boat has no 
passengers on board?  

3) One now adds a mass M  into the boat. Give the relation between h  and M . 
What is the maximum load maxM  that the boat can transport before sinking? 

4) Numerical application 

The boat is a knörr with length 20L m= , width 5a m=  on the upper part of the 
hull and the hull’s height 6H m= . 
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When empty, the boat’s mass is 10 tons. 

4.1) Give the numerical value of 0h . 

4.2) Give the numerical value of maxM . 

4.3) In order to ensure a good pillaging campaign, the following data must  
be included: 4m3 of drinkable water, 500kg of provisions and a ton of weapons. 
Vikings are small, but heavy (they drink lots of beer and mead). Their average mass 
is evaluated to be 90 kg.  

Even in these cold countries, water has a density of 1,000 kg.m−3. 

Knowing that we need to provide for rolling and pitching hazards, only 2/3 of the 
boat’s height can be immersed when the boat is vertical and resting perfectly. 

In theory, how many Vikings can leave to destroy the coasts of Normandy on 
this atypical drakkar? Would it be reasonable to put just as many on such a boat?  

Solution: 

1) The immersed section and the boat section have similar triangles. We can 
therefore write: 

x h
a H

=  [2.133] 

The immersed volume can immediately be deduced, like the product of the 
triangle’s air immersed by the boat’s length: 

²
2 2sub
hx a h LV L

H
= =  [2.134] 

2) The boat is immobile. Therefore, it is at equilibrium under the action of the 
vertical support forces and in the opposite direction:  

the force of gravity, whose intensity is the boat’s weight .GF mg=  

the liquid’s thrust, which can be calculated by averaging the fulfilled hypotheses and 
then just as an Archimedean thrust, whose intensity FA is equal to the weight of the 
liquid shifted by the immersed part of the hull. In this problem, the volume of the 
shifted liquid is :immV  
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The equilibrium is therefore written as: 

0A GF F− =  [2.135] 

subV g mgρ =  [2.136] 

0h  can easily be deduced as: 

2
0

2
a h L

m
H

ρ =  [2.137] 

1
2

0
2 H mh

a Lρ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 [2.138] 

3) We can apply the precious reasoning with the new mass (m + M): 

( )
1
22 H m M

h
a Lρ

+⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 [2.139] 

The maximum value allowed for h before the boat sinks is H. We can 
immediately deduce the maximum value that M may take:  

( )
1
22 MaxH m M

H
a Lρ
+⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 [2.140] 

2Max
a L HM mρ= −  [2.141] 

4) Numerical applications: 

4.1) The numerical value of h0 is: 

0 1,095h m=  [2.142] 

4.2) The numerical value of MMax is: 

6

2,9.10 290MaxM kg t= =  [2.143] 
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4.3) Only 2/3 of the boat’s height can be immersed. For this value of h, 2
3
Hh =

, the accepted value of M becomes: 

( )
1
222

3
MaxH m MH

aLρ
+⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 [2.144] 

5

4
2 9

1, 233.10

Max

Max

a L HM m

M kg

ρ= −

=  [2.145] 

If we remove the mass of the cargo (water, provisions and weapons), the 
acceptable mass of Vikings becomes: 

( )5 51,233.10 500 1000 4000 1,178.10 117,8VikingsM t= − + + = =  [2.146] 

The number of Vikings is then: 

1,178.10 1309
90

n = =  [2.147] 

Such a number is sterically and, above all, sociologically difficult to conceive. 
For a bridge surface of 100 m², each warrior would only be granted a square of  
27.6 cm each. 

Moreover, in practice, we should think about allowing space for the horses that 
the Nordic warriors would not neglect to bring with them.  

EXAMPLE 2.18 (Precautionary principle).– 

In anticipation of an environmental catastrophe that we can always fear, in which 
Paris is submerged in water, let us input a safeguard strategy for the Eiffel Tower.  

In order to save the Eiffel Tower, which has been registered as a UNESCO 
World Heritage site since 1991, we want to put it on floaters.  
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NOTE.– Currently, the Eiffel Tower’s base is still at 33.5 m above sea level. Such a 
catastrophe is not expected to occur in the immediate future. Furthermore, we are 
not going to concern ourselves with the engineering or financing here.  

Each of the tower’s feet currently rest on a parallelepiped mass of concrete, with 
a horizontal section measuring 25 m2 on each side and a depth of 15 m. 

We will replace these bearings with parallelepipeds of the same horizontal 
section and a minimum height X , which we will determine. These bearings will be 
made out of expanded polystyrene. The Eiffel Tower’s mass is 10100m t= . 

The polystyrene’s density is 112 .B kg mρ −= . 

The water’s density is 11000 .kg mρ −= . 

 

Figure 2.17. The Eiffel Tower furnished for the downpour 

1) Calculate the minimum value of X so that the system floats and none of the 
Eiffel Tower’s feet are in water. 

2) Are you surprised by this result? 

Solution: 

1) What we have here is a solid statics problem. The Eiffel Tower must be at 
equilibrium under the action of the three forces, which are on a vertical axis:  

Two downward forces; the force of gravity applied to the tower, four forces of 
gravity applied to each of the four floaters.  
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If each floater on the surface S  is immersed at a height X , the Archimedean 
thrust is equal to the weight of the shifted fluid, or a volume S X , per floater, will 
be: 

AP SXgρ=  [2.148] 

The weight of a floater is: 

F BP SXgρ=  [2.149] 

The equilibrium of the Eiffel Tower can therefore easily be written. All forces 
are colinear; the equilibrium therefore will take the form of an algebraic sum with 
the corresponding intensities:  

Weight of the Eiffel Tower + Weight of the four floaters = Archimedean thrust 
on all floaters.  

( )
4 4

4
B

water B

mg SX g SX g
S m

ρ ρ
ρ ρ
+ =

− =
 [2.150] 

( )4 water B

mX
S ρ ρ

=
−

 [2.151] 

The air of each floater is equal to 25*25 625 ²S m= = . The minimum value of 
X  then is: 

( )
71,01.10

4*625* 1000 12
4,089

X

X m

=
−

=
 [2.152] 

2) This may seem like a weak height. Nevertheless, it is worth observing that the 
pressure Sp  exerted by the Eiffel Tower on the ground is much weaker than we 
would imagine at first sight.  

7

4

10 *9,81
4*625

3,9210 0,39

S

S

m gp
S

p Pa bar

= =

= =
 [2.153] 

Furthermore, the floaters still represent a total volume of 10,000 m3 of 
polystyrene. 
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2.3.3. Calculating the thrust on a wall 

EXAMPLE 2.19 (Calculating the thrust on a flat vertical wall).–  

A decanting tank is repaired by welding a rectangular plate with width l  and 
height h  that is perpendicular to the figure. The top of this piece is at the distance 
H  from the free surface.  

air

H

h

x1

x2

 

Figure 2.18. The tank and its “patch” 

In order to estimate whether the repair will hold or not, we want to assess the 
force that the fluid with a density ρ exerts on the “patch”. 

1) Express this thrust F
r

.  

2) Find the thrust’s center. Is it in the center of the “patch”? 

Solution: 

1) In order to perform this calculation, we can observe that the pressure in the 
liquid is determined by the dimension z (altitude). 

For the following calculation, it will be more practical to use a “depth” x, a 
distance on an axis directed downward from one point to the free surface.  

In such a frame, pressure at a distance of x is determined by observing that in an 
incompressible fluid subject only to the forces of gravity, we increase the pressure 

g xρ  by “descending” from “x”: 

( ) ap x p g xρ= +  [2.154] 
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The force that the fluid exerts on the door can therefore be calculated by cutting 
this door into horizontal strips (perpendicular to the figure) from the width l and 
infinitely small height dx. The pressure on each strip will be uniform and is given by 
the previous equation. 

The fluid will apply a force F
r

 on each strip and air .dS l dx=  The fluid will 

apply a thrust force (from right to left in the figure) d F
r

, with an intensity d F : 

( )ad F p dx p g x l dxρ= = +  [2.155] 

On a vertical plate, all elementary forces are normal. The resultant intensities can 
be calculated from the algebraic sums.  

One can observe that the ambient air will apply in a compensatory manner on the 
opposite face (left in the figure) a force due to a uniform pressure pa. 

The lower and higher ends of the door will therefore be at respective depths 1x  
and 2x  given by: 

1

2

x h H
x H

= +
=

 [2.156] 

The resultant force that the liquid applies will therefore be:  

( )2 2

1 1

x x

ax x
F p dS p g x l dxρ= = +∫ ∫  [2.157] 

It is simple to integrate: 

( )

( ) ( )

2

1

2 2
2 1

2 1

2 1 2 1
2 1 2 1

²
2 2

2 2

x

a a
x

a a

x xxF l p x g p l x x gl

x x x xp l x x gl x x p S gS

ρ ρ

ρ ρ

−⎛ ⎞= + = − +⎜ ⎟
⎝ ⎠

+ +
= − + − = +

 [2.158] 

Finally, the force is: 

( )a M MF S p gx Spρ= + =  [2.159] 
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where: 

( )2 1

2 2 2M

H h Hx x hx H
+ ++

= = = +  [2.160] 

We note that Mx  is the depth of the door center and thus Mp  is the ruling 
horizontal pressure that divides the door into two. 

The total strain applied to the door will be the difference between this force F’ 
due to the atmospheric pressure la ap  on the air S of the door: 

a aF' p S p lh= =  [2.161] 

The resultant strain RF  is therefore equal to: 

( )R a M a MF S p g x p S S gxρ ρ= + − =  [2.162] 

2) Nevertheless, the resultant strain of the difference between the pressure forces 
applied by the two sides of the wall will not be equivalent to that of the intensity 
force RF  applied to the center of the “patch”. We need to find the application point 
or “thrust center” which would be the application point of the resultant whose strain 
would therefore be identical to the strains resulting from the pressure (especially 
from the point of view of shearing). The symmetries prove that this point will be in 
the center of a horizontal line with a depth Cx  to be determined.  

The thrust center C will be such that the moment of a force equivalent to the 
resultant forces applied on this point C will be equal to the resultant moment of the 
pressure forces. We will choose to calculate these moments against the upper side of 
the basin (with a depth of 0)x = . 

Therefore, we study the resultant moment of the pressure forces.  

To simplify this, we will work from this point on each strip with a height dx , 
from the resultant antagonistic pressures on each side of the patch. We will also 
directly take into account the real effect born by the patch, from the beginning of the 
calculation.  

Each elementary force dF
r

(difference between the pressures applied on each side 
of the surface element) has an elementary module moment dM

r
: 

( ) ( )adM p p x dS gx xl dxρ= − =  [2.163] 
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Again, the subtraction ap assesses the forces of the liquid and atmospheric 
pressure applied on the two sides of the wall.  

Furthermore, this resultant module must have the same module as the resultant 
moment placed in C : 

T R CdM M F x= =∫  [2.164] 

where RF  is the previously determined resultant thrust and Cx  is the depth of the 
thrust center to be determined.  

Let us calculate MT:  

( ) ( )2 2

1 1

x x

T ax x
M p p x dS gx xl dxρ= − =∫ ∫  [2.165] 

where p  is the pressure that the liquid applies onto the wall. 

2

1

3 33
2 1

3 3

x

T
x

x xxM l g l gρ ρ −
= =  [2.166] 

xC can thus be determined as: 

( )

( )

3 3
2 1

3 3
2 1 2 1

2 1

3 3
2 1 2 1

2 1

3

3 2

3 2

R C

C

C

x xl g F x

x x x xl g gS x

S l x x

x x x xl g gl x x x

ρ

ρ ρ

ρ ρ

−
=

− +
=

= −

− +
= −

 [2.167] 

The general expression of Cx is: 

3 3
2 1
2 2
2 1

2
3C

x xx
x x

−
=

−
 [2.168] 
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In order to render this expression more legible, we will replace 2x  and 1x  by their 
function expressions of h  and .H  We have: 

( )
( )

( )
( )

3 3 2 23

2 22

2 3 32
3 3 2C

h H h H hH h H
x

h H hH h H

+ ++ −
= =

++ −
 [2.169] 

Let us highlight a particular case. We can observe that if the upper part of the 
“patch” is at the surface level, meaning if 0H = , we find: 

3 3 3
2 1
2 2
2 1

2 2 2
3 3 ² 3C

x x hx h
hx x

−
= = =

−
 [2.170] 

The thrust center in this case is centered on the patch at two-thirds lower than its 
height.  

EXAMPLE 2.20 (Thrust on a porthole).– 

A decantation tank is fitted with R-striped portholes, whose center is at a depth H 
below the free surface. The tank is filled with a liquid with a density ρ , which is 
assumed to be homogeneous. 

H

R

r

O
z

z

 

Figure 2.19. The decantation tank and its porthole 

What is the resultant strain F
r

 to which the porthole is subjected? 

We have: 

3

10
60
1024 .

H m
R cm

kg mρ −

=
=
=
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Solution: 

The problem involves fluid statics. The forces will be perpendicular to the 
porthole’s surface. The resultant strain will be a normal force at each porthole. 
Using a vertical upward axis, we identify that the origin of the system will be at the 
center of the porthole.  

The internal pressure on the porthole has a dimension z and is therefore given 
by: 

( ) ( )ap z p g H zρ= + −  [2.171] 

We already assume that on each of the porthole’s elementary surfaces, the 
atmospheric pressure will be applied onto the porthole’s exterior in the opposite 
direction to the resultant internal pressure. 

The resultant strain F is therefore expressed in the form: 

( )( ) ( )( ) ( )a a a
Porthole Porthole Porthole

F p z p dS p g H z p dS g H z dSρ ρ= − = + − − = −∫∫ ∫∫ ∫∫  [2.172] 

Calculating F will result in a surface integral dealing with the contributions in 
( )g H zρ − . 

In order to perform this calculation, we identify a point on the porthole in a polar 
coordinate system centered on the porthole. The angles q will be measured starting 
from the same axis as the one that defines the dimensions.  

In such a system, z is linked to the polar coordinates r and q by a simple relation: 

sinz r θ=  [2.173] 

On a small field dS r dr dθ= , the exceeding strain between the liquid’s internal 
pressure and the external atmospheric pressure will be expressed by:  

( )sindF g H r r dr dρ θ θ= −  [2.174] 

The resultant strain will therefore be: 

( )2

0 0
sin

R
F g H r r dr d

π
ρ θ θ= −∫ ∫  [2.175] 
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This integral can easily be calculated as: 

( )2 2

00

0

sin cos 2 0

²2 2
2

R

H r r dr d H r H

RF g Hrdr g H

π πθ θ θ θ π

ρ π πρ

− = − = +

= =

∫

∫  [2.176] 

²F R gHπ ρ=  [2.177] 

Thus, the resultant strain appears as the resultant strain per surface unit at the 
center of the porthole multiplied by the porthole’s air.  

Digitally, F  is given by: 

4

²
2,84.10 2895

F R gH
F N kf

π ρ=
= =

 [2.178] 

The strain approximately corresponds to 2.9 tons of force. 
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3 

A Description of Flows 

3.1. Introduction 

The previous chapter was dedicated to immobile fluids. However, the most 
important aspect of fluid mechanics resides in the dynamics of these fluids; like in all 
branches of mechanical engineering, the movement is determined by the forces. This 
will be the focus of the following chapter. 

However, before studying the determinants of a flow, we need to acquire a tool 
to precisely describe the movement of this flow. This description is the subject of 
fluid kinetics. Therefore, in this chapter, we will not concern ourselves with finding 
out why a flow is. Instead, we will be concerned with better informing the reader on 
what it is. 

This chapter, which is dedicated to the description of a flow, will also be an 
opportunity to present the “first of the two physics principles” of fluid mechanics. 

When writing “the two physics principles”, we need to be aware of what we are 
arbitrarily limiting to dynamics. Placed where it should be within the realm of 
thermodynamics, “extended” fluid mechanics should integrate various other 
equations. In the first place, the energy equation is the expression adapted from the 
first principle of thermodynamics. While fluid is a mixture, it should also not be 
written as a diffusion equation by species. There are many types of transport present 
in the systems: viscosity, thermal conduction, possibly radiation and diffusion. 

This work is dedicated to the first order of dynamics studies. Nevertheless, we 
will have to introduce the energy equation further on, which is dedicated to 
compressible fluids. 
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This chapter compiles: 

a) At the tooling stage, the method for describing a flow. We will see that the 
method adopted differs from that which is familiar to the reader and used in 
mechanics of point power. 

b) At the physics stage, how to write and apply the first physics principle, the 
principle of continuity. This principle, which is attached to the continuous nature of 
the matter implied, in fact expresses the conservation of matter. It is not necessary to 
express this principle with material elements, which are conserved because 
identified. In a continuous domain of fluid, the parts are not identified a priori. 

3.2. The description of a fluid flow 

3.2.1. The Eulerian and Lagrangian description 

Describing a continuous matter’s movements leads us to adopt a particular 
approach, which often misleads beginners and leads them to make errors of 
interpretation. 

The first difficulty, and one that is quickly resolved, is when the fluid is 
continuous. We divide it into fluid particles, which can be as small as we wish. This 
then enables us to define an infinity of particles similar to material points. In simpler 
terms, our fluid becomes a group of infinite points constituting a continuous sphere. 
We note here that we overlook the discontinuous character of the fluid on the 
molecular scale. This discontinuity is indispensable for understanding and modeling 
a fluid’s main properties, which include: compressibility, viscosity, thermal 
conduction and coefficient of diffusion. We should refer to any good physics 
textbook to understand this essential aspect. The molecular dimensions are much 
higher than the scale of fluid mechanics, by 10 orders of magnitude. Each scale has 
its own corresponding approach. For the fluid mechanics approach, matter is 
continuous. We recall that Newton himself did “not believe” in the possibility of an 
action from a distance. However, everything did in fact work “as if” it did. Physics 
is the child of modeling. 

Nevertheless, we note that elementary particles are distinguished from the 
material point in that we cannot attribute a finite mass to it. We are therefore led to 
attribute it an equally elementary mass, expressed by using a “density”. Let us take 
an example from everyday life. 
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If we want to provide information on the circulation of trains in a particular 
region, which we will liken to a flow of wagons, we can a priori adopt two 
strategies: 

a) Acquire a publication which provides us with information on the situation of 
each train at every instant.  

b) Ask the cows on the edges of the tracks to tell us which trains they have seen 
passing before them, at what time and at what velocity. 

The first strategy refers to a timetable or, in a more modern context, the site of a 
railway company. This procedure appears to be the obvious choice when first 
analyzing it. 

As outlined above, the second procedure seems rather torturous. However, it is 
fundamentally this one which will be adopted. 

When transposed onto the scientific level of mechanical engineering, the first 
method refers to that which is familiar to everyone who has graduated from high 
school and having studied the mechanics of point power. 

By following the “first” method proclaimed above, we can therefore describe a 
flow by giving the successive positions of each fluid particle at different instants. 
This particle is therefore identified by its position at the instant t = 0 (parameters a, 
b, c) 

( , , , )
( , , , )
( , , , )

x x t a b c
y y t a b c
z z t a b c

=
=
=

 [3.1] 

This is the point of view proposed by Lagrange, and for this reason, the first 
description will be called the Lagrangian description. 

Distancing ourselves from the pleasant image of bovines aligned along the 
railway tracks, we can adopt a second point of view and, by placing ourselves in a 
vector position ( ), ,r x y zr

 of a fixed frame, the vector is given for each instant. This 
is the velocity of the moving fluid particle at this point. 

( , , , ),V V t x y z=
r r
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or: 

( , , , )
( , , , )
( , , , )

u u t x y z
v v t x y z
w w t x y z

=
=
=

 [3.2] 

This second description mode will be called Eulerian. 

Are these two descriptions complete and equivalent? The Lagrangian description 
gives us the velocity and (real) accelerations of the fluid particle being followed at 
each instant. Therefore, we also know what the velocity vector is for each fluid 
particle passing through at each given instant and point. In the same way, the data on 
the Eulerian velocity field theoretically allow us to calculate the successive positions 
of a fluid particle identified at a point and an instant; the trajectory is therefore re-
established, as is the timed route. 

There are two important remarks that need to be addressed at this point: 

a) Unlike the habits in mechanics of point power, the triplet ( ), ,x y z  is 
designated the position of the fixed point where the observer is located, rather than 
the moving matter. 

b) The Eulerian description therefore gives the velocity of different particles, 

moving to a fixed point. In the Eulerian description, 
V
t

∂
∂

r

 is in no way an 

acceleration, because V
r

 relates to two different particles moving to the same point 
at two different times t  and .t dt+  

The physics here is Lagrangian, especially the dynamics principle, for which the 
acceleration is the second derivative with respect to the time of the Lagrangian 
vector position. 

In order to deduce the real (Lagrangian) acceleration from the Eulerian velocity, 
we need to write the expression in a particular way. This will be the particular 
derivative or the Lagrangian derivative 

. ( )dV V V grad V
dt t

∂= +
∂

r r
r r

 [3.3] 
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We recall its expression in Cartesian coordinates, in a projection on the axis i: 

.i i i
j

j

du u uu
dt t x

∂ ∂
= +

∂ ∂
 [3.4] 

The partial derivatives 
V
t

∂
∂

r

 must be distinguished from the total velocity 

derivative ,dV
dt

r

 which constitutes the fluid particle’s “real” acceleration (or the 

Lagrangian acceleration). We notice that, in a stagnant (or permanent) flow, 
V
t

∂
∂

r

 is 

zero, while 
dV
dt

r

 is generally not. 

The description chosen will be the Eulerian description. A very good reason for 
this lies in the fact that fluid mechanics is in large part an experimental science and 
the observer is fixed against the laboratory, as well as the wind tunnel in which the 
flow is generated. The measurements are still Eulerian and the comparison with the 
model will be made on this basis. 

3.2.2. Kinematic elements 

The raw data on a Eulerian velocity vector are not sufficient to give an image of 
a flow. Furthermore, different demonstrations call upon accessory kinematic 
elements such as particle lines or tubes. 

It will be necessary to distinguish the steady or permanent flows from the 
unsteady flows, which are more difficult to access when modeling. 

Finally, there are some flows with a particularly simple structure which the 
reader needs to know. Furthermore, they constitute some very valuable information 
for resolving many questions. 

a) We define different lines with the flow’s velocity field: 

The pathlines, constituted by points that are successively occupied by a given 
particle. 

The streamlines, tangents at each of their points to the particle’s velocity that is 
passing through at a given instant. 
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S

V

 

Figure 3.3. Construction of a streamtube. This tube is a continuous lateral  
surface. The flow that crosses each of its sections is not generally uniform 

If the surface becomes an infinitely small surface ,dS  which we will later call  
an “elementary” surface, the current tube takes the name of the elementary 
streamtube. 

dS1

V

dS2

 

Figure 3.4. Construction of an elementary streamtube.  
The flows that cross dS1 and dS2 are locally uniform 

c) Notion of steadiness of flow: 

We distinguish the steady flows from the unsteady (or permanent) flows. 

Using a Eulerian description, in unsteady flows, the velocity varies with time. 
The fluid particles which succeed each other in a fixed point before the observer 
have different velocity vectors. Each fluid particle passing a fixed point has had, and 
therefore will have from this point onwards, a different path and timed route. 

In permanent or steady flows, each fluid particle passing from a point has the 
same velocity vector as the previous one.  
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The term “permanent flow” is rather commonly used among fluid mechanical 
engineers. We often prefer to use the term “stagnant” here, which is opposed to the 
notion of non-stagnation. The majority of the examples in this book are also 
dedicated to stagnant flows. 

Time no longer appears in the Eulerian description of a stagnant flow (which 

does not stop it from having a Lagrangian acceleration ).dV
dt

r

 Particles that pass by 

all fixed points ( ), ,x y z  have had, and will have from this point onwards, the same 
timed route. 

Permanent flows will constitute the majority of the flows studied in the problems 
of this book. 

In permanent flows, the current lines, trajectory and radiation lines are fixed in 
time and geometrically confounded. However, we must not lose sight of the fact that 
these lines remain totally different in nature. 

t t + t

 

Figure 3.5. In steady (or permanent) regimes, the network of streamlines  
is invariable. It is confounded with that of pathlines. On the left-hand side,  

there is a velocity field and flow line at time t ; on the right-hand side,  
there is a velocity field and flow line at time t + dt 

In an unsteady flow, the streamlines, pathlines and streaklines are variable in 
time and are geometrically distinct from this fact. 
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t t + t

 

Figure 3.6. In an unsteady flow, streamlines vary from one instant to another.  
On the left-hand side, there is a velocity field and streamline at time t ; on the  

right-hand side, there is a velocity field and streamline at the time t + dt 

Furthermore, we note that, in unsteady flows, a streamtube only has a direction 
at a given instant. The streamlines of a steady flow are actually mobile in time and 
the streamtube changes geometrically according to the instant in question. 

This is not the case for steady flows. The construction of a streamtube 
(elementary or not), when based on the fixed surfaces S or dS, becomes particularly 
useful, as tubes become permanent in time. 

d) In this context, various geometrical flows are remarkable. In a Eulerian 
description, it is as follows: 

Parallel flows or velocity vectors are all parallel, but be careful – they are not 
equipollent, their standards can vary from one point to another. 

Let us look at a particular case of a uniform flow, where all velocity vectors are 
equipollent. From a physics point of view, this is a flow “in a block” (all fluid 
particles move at the same speed, just like non-deformable solids). 

Parallel and uniform flows will play a major role in processing the examples 
dealt with in the dynamics of perfect fluids, where flows are considered to be related 
to a mobile one. In this configuration, the flow “far” ahead of the mobile one is a 
purely uniform flow. 

 



96     Fluid Mechanics 

 

Figure 3.7. The uniform flow (right) is a particular case of a  
parallel flow (left). On the right-hand side, all the velocity  

vectors are equipollent, which is not verified on the left-hand side 

In practice, a flow is rarely parallel or uniform everywhere, although they may 
be in certain geographically limited areas. In such a case, we would have a locally 
parallel or locally uniform flow. We will see that this valuable property is leveraged 
when resolving many problems. 

Henceforth, we note the case of elementary streamtubes. As a matter of fact, all 
fluid particles crossing an elementary surface dS at a given instant will have the 
same velocity vector. The flow that crosses dS is what is called locally uniform. 

NOTE.– If the elementary streamtube has, as is often the case, a variable section 
along a current line, then we will see that the principle of continuity will imply a 
speed variation from one dS to another. 

3.2. A first principle of physics: the principle of continuity 

3.2.1. The principle of continuity 

This constitutes the first of the two principles to be written in fluid mechanics. 

3.2.1.1. Notions of flow rate and calculations 

In order to outline and understand this principle, we will need the notion of flow 
rate. 
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When an open surface S is placed in a flow, a certain fluid “quantity” crosses this 
surface by time unit. We have already noted that, on a finite surface, this crossing 
will follow in the places of S and will be performed in one “direction” or another. 
The flow rate therefore constitutes the balance sheet of these crossings in opposite 
directions. This distinction is no longer imposed for elementary surfaces, crossed by 
a locally uniform flow with a unique velocity .V

r
 

The certain fluid “quantity” that crosses a surface by time unit can be expressed 
either in volume terms or mass terms. 

A volumetric flow rate through a surface S will be defined thus as the volume 
passed by time unit from one side of S to the other. 

A mass flow rate through a surface S will be defined thus as the fluid mass 
passed by time unit from one side of S to the other. 

Generally, for unsteady compressible flows, the flow rate must be understood as 
instantaneous and be defined and calculated on an elementary time dt. Thus, we 
have the volumetric flow rate and the mass flow rate, respectively: 

OL
V

dV
Q

dt
=  [3.5] 

m
dMQ
dt

=  [3.6] 

These definitions also hold true for flow rates crossing an elementary surface. 
These flow rates will also be elementary: 

² OL
V

d V
dq

dt
=  [3.7a] 

²
m

d mdq
dt

=  [3.7b] 

When passing through a finite surface, the density can vary from one point to 
another. When passing through an elementary surface, the density ρ will remain 
uniform, even for compressible fluids. 
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dS

V

n
 

Figure 3.8. Mass and volumetric flow rate calculation  
components when passing through an elementary surface 

It is demonstrated that the elementary volumetric flow rate ,Vdq  when passing 
through an elementary surface whose normal nr  makes an angle θ  with the velocity 
vector V

r
of the locally uniform flow which crosses it, is written as: 

( )cos , cos .Vdq V n V dS V dS V n dSθ= = =
r rr r

 [3.8] 

The last expression is explained by noticing that the norm of the unitary vector 
nr  is 1n = . 

Therefore: 

cos . cos .V dS V n V nθ θ= =
r rr r

 [3.9] 

This flow rate for a normal flow on dS becomes: 

Vdq V dS=  [3.10] 

The previous observation immediately leads to the expression of the mass flow 
rate: 

cos .mdq V dS V n dSρ θ ρ= =
r r

 [3.11] 

which, for a normal flow on ,dS  becomes: 

mdq V dSρ=  [3.12] 
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These expressions are fundamental and will be used systematically in the 
examples of this book. 

Regardless of whether via an open or closed surface, the volumetric and mass 
flow rates are written in a general way as: 

. cosV VS S S
Q dq V n dS V dSθ= = =∫∫ ∫∫ ∫∫

r r  [3.13] 

. cosm mS S S
Q dq V n dS V dSρ ρ θ= = =∫∫ ∫∫ ∫∫

r r  [3.14] 

Calculating these flow rates will be more or less complex depending on the flow. 

We note that the sign of the flow rate found will depend on the direction of the 
normal one. The flow rate found will generally be positive if more fluid passes in the 
same direction as the normal one than in the opposing direction of this normal flow 
rate. 

This observation becomes all the more significant in the case of closed surfaces. 
Indeed, the integral formulas of vectorial geometry are only valid if the normal 
standards are turning outwards from this closed surface. What results is a flow rate 
that is calculated to be positive for the fluid emerging from a closed surface. We 
must be aware of this particularity when writing the principle of continuity through a 
closed surface. 

There is significant and particular case to be retained here. When a locally 
uniform flow crosses through a finite surface S : 

cos cosV S
Q V dS VSθ θ= =∫∫  [3.15] 

If, moreover, the fluid is incompressible: 

cos cosm S
Q V dS V Sρ θ ρ θ= =∫∫  [3.16] 

This is particularly the case when calculating a volumetric and mass flow rate in 
the right section of a tube travelled by a perfect fluid. In this case, the fluid is normal 
in the section and: 

VQ VS=  [3.17] 

mQ VSρ=  [3.18] 
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We finally notice that the lateral wall of a streamtube is constituted by flowlines. 
All elementary surfaces of this lateral wall therefore have a normal vector that is 
perpendicular to the current lines, and therefore to the velocities. They are not 
crossed by any flow rate: no fluid can enter or emerge from the lateral walls of a 
streamtube. This obviously applies to the particular tubes that are elementary 
streamtubes. The mass flow rate of a fluid traveling inside a streamtube is thus 
conserved. 

VdS
n

 

Figure 3.9. The fluid cannot cross the walls of a streamtube 

3.2.1.2. Principle of continuity 

Depending on the “level” of the problem to be solved, this principle is written 
either more or less simply and either in an analytic or integrated way. 

In any case, the principle is based on what Lavoisier expressed in 1789, which 
the following phrase made apocryphal: “nothing is lost, nothing is created”. 

Anaxagoras already had an intuition of this principle when he said “nothing is 
born or perishes, but things which already exist combine together and then separate 
again”. 

We will apply these principles here in the case of a reputedly continuous fluid. 
We have already noticed that this “continuity”, on the other hand, results from a 
mobilizing approach. 

The principle of continuity is expressed in terms of a mass balance on a closed 
surface: the variation of mass, contained in a domain D limited by a surface S that is 
fixed against the Eulerian reference frame, is equal to the difference between the 
mass flow rates that enter and emerge from this domain, crossing S. 
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When writing this balance sheet in Cartesian coordinates for a small area of 
edges , ,dx dy dz , we obtain the principle of continuity, in the form of a local 
differential equation, a “point equation”. 

A compressible (ρ variable) and non-stagnant flow in this point equation or 
continuity equation is generally written as: 

0u v w
t x y z
ρ ρ ρ ρ∂ ∂ ∂ ∂+ + + =

∂ ∂ ∂ ∂
 [3.19] 

Using the vectorial analysis concepts, we introduce the divergence of the speed 
vector, which is defined in Cartesian terms by:  

0u v wdivV
x y z

∂ ∂ ∂= + + =
∂ ∂ ∂

r
 [3.20] 

We can therefore rewrite the continuity equation in the following form: 

( ) 0div V
t
ρ ρ∂ + =

∂

r
 [3.21] 

The use of this form is that it can be applied to all the reference frames of 
coordinates, and thus enables us to rewrite the equation in cylindrical or spherical 
terms, for example. 

We often find a flat, stagnant or incompressible flow, for which the point 
equation for continuity is reduced to: 

0u v
x y

∂ ∂+ =
∂ ∂

 [3.22] 

or:      0divV =
r

 [3.23] 

We can show that 0divV =
r

 is a necessary and sufficient condition for a fluid to 
be incompressible. Some authors further pose that a zero divergence is the definition 
of incompressibility. This usage strikes us as too abstract for the context of this 
publication. 
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3.3. Notions and recalls on potential flows 

3.3.1. Definition 

The study of potential flows is only of interest for the chapter on perfect fluids. It 
is often a prerequisite to studying a viscous fluid’s interactions with a wall. Further 
on (in Chapter 6, when dealing with boundary layers), we will see that the following 
solution strategy is then adopted: 

a) Flows generated by introducing a solid body into the uniform flow by a 
theory, assumed to be a perfect fluid. This flow is called “potential”. Thus, a 
“potential” flow is therefore calculated by assuming a perfect slide from the fluid to 
the wall. 

b) We take account of the viscous fluids’ “non-sliding to the wall” by an always 
“geometrically thin” junction between the potential flow and the wall. The potential 
flow, called “the far flow”, is therefore “perturbed” by a boundary layer, which 
constitutes an “asymptotic junction” between the perfect flow and the wall. 

3.3.2. Determination 

For a flat, stagnant and incompressible flow, the potential flow’s calculation 
goes through the solution for a Laplace equation. 

Point equations for incompressible and stagnant flows lead to two representative 
function fields being introduced from the flow’s kinematics: potential functions 

( ),x yΦ  and function of the current ( ), .x yΨ  

These definitions are particularly useful when the fluids are also perfect. They 
slide perfectly onto the solid walls and we can write that the velocity is tangential to 
the wall: 

0u vdivV
x y

∂ ∂= + =
∂ ∂

r
 [3.24] 

The potential function Φ  is introduced by writing that V
r

is the gradient of a 
potential function: 

V grad= Φ
rr

 [3.25a] 

;u v
x y

∂Φ ∂Φ= =
∂ ∂

 [3.25b] 
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We notice that unlike the derivation of a potential force, here .V grad= + Φ
rr

 

In the case of the forces, the gradient is preceded by a lesser one, whose script is 
motivated by the formulation of energy conservation .CE Cteφ+ =  

The function of current Ψ  is defined by: 

;u v
y x

∂Ψ ∂Ψ= = −
∂ ∂

 [3.26] 

Through the definition of ,Ψ  the continuity equation is automatically verified. 

On the other hand, by introducing the potential function into an incompressible 
fluid’s continuity equation, it is shown that Φ  satisfies Laplace’s equation: 

0u vdivV
x y x x y y

∂ ∂ ∂ ∂Φ ∂ ∂Φ= + = + =
∂ ∂ ∂ ∂ ∂ ∂

r
 [3.27] 

² ² 0
x y

∂ Φ ∂ ΦΔ Φ = + =
∂ ∂

 [3.28] 

Two networks of curves can be defined thus: the network of equipotentials and 
the network of curves .CteΨ =  

We also notice that a direct calculation of the components of a rotational velocity 
shows that they are at zero. Here, we find a classic property of the Curl of the 
gradient. 

The gradient vector is normal to the equipotential, and hence, the equipotentials 
CteΦ =  are normal to the velocity vectors .V

r
 The equipotentials are therefore at 

each of their normal points in the network of current lines. 

By following an analogous reasoning, we can show that the curves CteΨ =  are 
current lines. 

To demonstrate this, we only need to calculate the scalar product of V
r

and the 
gradient of ,Ψ  which is normal to the lines :CteΨ =  

. 0V grad
y x x y

∂Ψ ∂Ψ ∂Ψ ∂ΨΨ = − =
∂ ∂ ∂ ∂

rr
 [3.29] 
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V
r

is normal to ,grad Ψ
r

 therefore tangential to the lines aux ,CteΨ =  which are 
definitely current lines. 

The network of the curves CteΦ =  and CteΨ =  is therefore orthogonal. 

Historically, we would attempt to define equipotentials using a given solid body 
(which itself constitutes an equipotential by an electrical analogy); therefore, we 
would use a real-time tank. Today, using digital techniques to calculate Laplace’s 
equation is the method that prevails. This question will be broached in the part of 
this book dedicated to digital approaches. 

3.3.3. Determining streamlines 

We often attempt to determine current lines using a given bi-dimensional flow in 
a Eulerian form. To do this, we can find the current lines by writing that, on the 
current line: 

CteΨ =  [3.30] 

There is another elegant (and equivalent) way of doing this, which consists of 
noticing that an elementary vector, which is tangential to the current lines 

( ),d l dx dy
r

 is co-linear to the velocity ( ), .V u v
r

 Their following respective 
components x  and y  are therefore proportional: 

dx dy
u v

=  [3.31a] 

Thus, we obtain an equation with a differential form, which can also be put in the 
more practical form: 

vdx udy=  [3.31b] 

which can be processed by finding the function ( ).y y x=  

3.3.4. Curl of the velocity 

Although this veers away from the main theme of the book, we will mention the 
use brought to the rotational velocity .rot V

rr
 As for certain flows in perfect fluids, 

the velocity is derived from a potential and this Curl of the velocity is a zero vector. 
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We will see a few examples of them in the case of a number with limited problems. 
In other cases, particularly for real fluids, the appearance of “velocity gradients”, 
which generate viscosity fluids, leads to the fluid particles having rotational effects. 
The Curl of the velocity rot V

rr
 therefore becomes the double of the whirlwind vector 

Ω
r

 that appears as the rotation vector of the fluid particle. We refer the reader to a 
more specialized publication to read more on this subject. 

In support of the following example, remember that, in Cartesian coordinates, 
the Curl of the velocity is written as: 

( )
x

w vrot V
y z

∂ ∂= −
∂ ∂

rr
 [3.32a] 

( )
y

u wrot V
z x

∂ ∂= −
∂ ∂

rr
 [3.32b] 

( )
z

v urot V
x y

∂ ∂= −
∂ ∂

rr
 [3.32c] 

Stokes’ theorem establishes a useful relation between velocity circulation V
r

on a 
closed contour C and the rotational flux of this velocity rot V

rr
through any 

supported surface S on this contour C: 

. .
C S
V d l rot V n dS=∫ ∫∫

rr rr r  [3.33] 

This relation will be useful when studying the free vortex (Example 3.5). 

Finally, here we notice a relation that will be developed in the Appendix and 
which links the Lagrangian acceleration to this curl of the velocity: 

²
2

dV V Vgrad V rot V
dt t

∂= + − ∧
∂

r r
r r rr

 [3.34] 

3.4. Example of kinematic calculations 

General remarks: in simple problems, we use the principle of continuity by 
writing it in a more global form. This is often the case for stagnant flows. In such a 
flow, the mass contained in a domain does not vary. Therefore, we determine that in 
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the system constituting the problem, an area seems to be pertinent and we write that 
the sum of “entering” flow rates is equal to the sum of “emerging” flow rates. 

A particular case resides in a section of a current tube (or net). We then equalize 
the two flow rates crossing the surfaces that are leaning against the current tube, 
because no flow rate is crossing the tube in question. In the same perspective, we 
will also find sections of solid tube.  

We are often then met with the problem of a flowing fluid’s incompressibility. In 
this case, we verify whether the divergence is canceled out or not. 

Another standard problem lies in determining the current lines for a given flow 
in a Eulerian description. We would then mainly resort to the relations [3.31a] and 
[3.31b] 

EXAMPLE 3.1.– 

A flat flow is described in Eulerian form by a speed vector whose components u 
and v, respectively, following the axes Ox and Oy on the flat level, are given by: 

u a=  [3.35] 

0v a u x=  [3.36] 

where a  and 0u are two constants. 

1) Is it possible to observe such a flow with an incompressible fluid? 

2) Give the expression of its streamlines. What are the curves that make up this 
network of streamlines? 

3) Resume questions (1) and (2) in the case of a velocity vector given by: 

u axy=  [3.37] 

0v a u xy=  [3.38] 

Solution: 

1) We calculate the divergence from the velocity: 

u vdiv V
x y

→ ∂ ∂= +
∂ ∂

 [3.39] 

0 0div V
→

= +  [3.40] 
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The divergence from the velocity is zero. The flow can be incompressible. 

2) We use the relations [3.31]: 

;dx dy vdx udy
u v

= =  [3.31] 

0a u x dx a dy=  [3.41a] 

0u x dx dy=  [3.41b] 

0
²

2
xu d x dy=  [3.42] 

²
2
xy Cte= +  [3.43] 

which is the equation of a network of parabolas whose peaks are on the .Oy  

3) By picking up the same reasoning stages and calculations as in (1) and (2): 

u axy=  [3.44] 

0v au xy=  [3.45] 

We ask ourselves about the incompressibility: 

u vdiv V
x y

→ ∂ ∂= +
∂ ∂  [3.46] 

( )0 0div V ay a u x a y u x
→

= + = +  [3.47] 

The divergence from the velocity is only zero in some singular points. The fluid 
therefore cannot be incompressible. 

We search for the equation of the current lines (equation [3.31]): 

dx dy
u v

=  [3.48] 
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The alternative form seems more practical: 

vdx udy=  [3.49] 

0a u xy dx axy dy=  [3.50a] 

0u dx dy=  [3.50b] 

or by integrating: 

0y u x Cte= +  [3.51] 

The current lines constitute a network of straight parallel lines with a slope 0.u  

EXAMPLE 3.2.– 

We give a flat flow in a Eulerian description by its velocity’s two components, 
u  and :v  

nxu
a

=  [3.52] 

myv
b

=  [3.53] 

where ,a  ,b  n  and m  are constants. 

1) Is this flow steady or unsteady? 

2) Is the fluid compressible or incompressible? 

3) Find the equation for such a flow’s current lines. From this, deduct the 
equation for the trajectories of its fluid particles.  

Solution: 

1) The expression of the velocity components does not contain time. The flow is 
stagnant (or permanent). 

2) If the fluid is incompressible, the velocity components for this steady, flat and 
bi-dimensional fluid must verify: 

0divV =
r

 [3.54] 
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or: 

0u v
x y

∂ ∂+ =
∂ ∂

 [3.55] 

1 1n m n mx y nx my
x a y b a b

+ +∂ ∂+ = +
∂ ∂

 [3.56] 

This expression is not zero a priori in the whole flow. The fluid is therefore 
compressible. 

3) The streamlines will be determined based on: 

v dx u dy=  [3.57] 

Here: 
m ny xdx dy

b a
=  [3.58] 

which integrates into: 

1 1

1 1

n m

m n

a dx b dy
x y

by ax C
m n

− −

=

= +
− −

 [3.59] 

From this, the below results: 

( )
( )

1
1

11
1

m
na m

y x C
b n

−
−⎡ ⎤−

= +⎢ ⎥−⎢ ⎥⎣ ⎦
 [3.60] 

The flow is permanent, and therefore, the current lines are also the trajectories of 
the fluid particles.  

EXAMPLE 3.3.– 

We imagine a flat and incompressible flow whose two components in a 
Cartesian reference frame ,Oxy  respectively ( ),u x y  and ( ),v x y  are in the 
following form: 

²u ax y=  [3.61] 

²v axy=  [3.62] 
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where a  and b  are two constants: 

1) Which condition must a  and b  fulfill in order for the incompressible flow to 
be possible? 

2) Under this condition, give the equation of this flow’s current lines. What type 
of curves are these? 

3) Give the fluid’s Lagrangian acceleration components. 

Solution: 

1) Neither the expression of ,u nor that of v explicitly contain the time. Therefore, 
the flow is stagnant. 

An incompressible flow has zero divergence. We should therefore have:  

0; 0u vdivV
x y

∂ ∂= + =
∂ ∂

r
 [3.63] 

For this flow: 

2 2divV axy bxy= +
r

 [3.64] 

which will be zero on the condition that: 

a b= −  [3.65] 

The velocity components are therefore in the form: 

²u ax y=  [3.66] 

²v axy= −  [3.67] 

2) The equation for current lines is deducted from: 

v dx u dy=  [3.68] 

² ²axy dx ax y dy− =  [3.69] 

or even: 

dx dy
x y

− =  [3.70] 
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which integrates into: 

Ln y Ln x LnC= − +  [3.71a] 

Cy
x

=  [3.71b] 

The current lines make up a network of hyperboles, axes ( ),Ox Oy  and 
equations: 

xy C=  [3.72] 

3) The Lagrangian acceleration Γ
r

is deduced from the definition: 

x
du u uu v
dt x y

∂ ∂Γ = = +
∂ ∂

 [3.73] 

y
dv v vu v
dt x y

∂ ∂Γ = = +
∂ ∂

 [3.74] 

3 3 3² ²² ² 2 ² ² ² ² ² ²x
ax y ax yax y axy a x y a x y a x y

x y
∂ ∂Γ = − = − =

∂ ∂
 [3.75] 

2 3 2 3 2 3² ²² ² ² 2 ² ²y
axy axyax y axy a x y a x y a x y

x y
∂ ∂Γ = − + = − + =

∂ ∂
 

[3.76] 

We notice that on the bisectors of the axis system (x y=  or ),x y= −  the 
acceleration is carried by the corresponding bisector: 

5 5² ²x ya x a yΓ = = = Γ  [3.77] 

or even 5 5² ²x ya x a yΓ = − = − = Γ  [3.78] 

EXAMPLE 3.4 (Solid vortex).– 

In a Cartesian reference frame, a flat flow is defined by the following velocity 
field: 

u Ay= −  [3.79] 

v Ax=  [3.80] 
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where A is a constant. 

1) Determine the current lines and trajectories of this flow’s fluid particles.  

2) Show that this flow is incompressible. 

3) Calculate the velocity module for each point ( ),M x y  of this flow’s flat line. 

4) Calculate the acceleration vector field .dV
dt

Γ =
r

r
 Find its module (or standard) .Γ  

5) Calculate the rotational field .CurlV
r

 

6) Were these results for questions (4) and (5) not foreseeable without 
calculating them? 

Solution: 

1) The flow is stagnant. The current lines and trajectories are networks of 
superimposed curves. We will use the relation expressing that an infinitesimal line 
that is tangential to the current line ( ),dl dx dy

r
 is collinear to the velocity vector 

( ),V u v
r

 (by definition the current line): 

dx dy
u v

=  [3.81] 

In practice, it is more useful to rewrite the expression in the form: 

v dx u dy=  [3.82] 

For the components u  and v  given here: 

Ax dx Ay dy= −  [3.83] 

which easily integrates into: 

² ²
2 2
y x Cte= − +  [3.84] 
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At this stage of reasoning, we could express the equation of the current line in 
the explicit form ² 2 ,y x Cte= +  which is not very striking a priori. 

A bit of intuition allows us to notice that ² ² ²,x y r+ =  where r  is the distance 
from one point of a current line to the source of the coordinates (in other terms, the 
norm of the position vector rr  from one point in our frame) 

We can therefore rewrite [3.84] in the form: 

² ² ² ²x y r C+ = =  [3.85a] 

r C=  [3.85b] 

Thus, the geometry of the current lines becomes evident. The current lines are 
circles centered on the source of the coordinates. 

2) If a fluid is incompressible, the flow will verify: 

0

0

divV
u v
x y

=
∂ ∂+ =
∂ ∂

r

 [3.86] 

For this flow: 

0Ay AxdivV
x y

∂ ∂= − + =
∂ ∂

r
 [3.87] 

The fluid is therefore incompressible. 

3) The V module of velocity is calculated based on u  and :v  

² ² ² ² ² ² ² ² ²V u u A x A y A r= + = + =  [3.88] 

V Ar=  [3.89] 

On this level, we can make an image of this flow. Each point of the fluid has a 
circular trajectory, with a velocity that is proportional to the distance from the 
source. The fluid therefore behaves like a block that turns on its axis .Oz  This flow 
is often named the “solid” vortex, as opposed to the “free” vortex, where the 

velocity module is in 1V
r

=  (see Example 3.5) 
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4) We recall the Cartesian expression of the rotational components: 

w v
y z
u wCurlV
z x
v u
x y

∂ ∂−
∂ ∂
∂ ∂= −
∂ ∂
∂ ∂−
∂ ∂

r
 [3.90] 

When applied to the components ( ), , 0u v w =  of this flow, we find that the three 
components of the rotational velocity are at zero. 

The flow is not rotational. 

5) We directly calculate the two components of the Lagrangian acceleration 
dV
dt

Γ =
r

r
 in Cartesian coordinates, for a flat ( ),Ox Oy  and stagnant flow ( 0):

t
∂ ≡
∂

 

x
du u uu v
dt x y

∂ ∂Γ = = +
∂ ∂

 [3.91] 

y
dv v vu v
dt x y

∂ ∂Γ = = +
∂ ∂

 [3.92] 

We finally find: 

²x A xΓ = −  [3.93] 

²y A yΓ = −  [3.94] 

6) The result for question (4) could have immediately been predicted. An 
incompressible flow is derived from a potential and the velocity is a gradient, so its 
Curl of the velocity is necessarily zero. 

The result for question (5) can be directly found by recalling that we have a 
rotation movement in a block. Each fluid particle therefore has a circular uniform 

velocity movement 1 .V
r

=  Its acceleration is therefore normal to the trajectory, 

meaning the radial, which has the standard: 

² ² ² ²V A r A r
r r

Γ = = =  [3.95] 
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We call θ  the angle of the radius vector rr  and of the axis .Ox  We therefore 
have: 

cos x
r

θ =  [3.96a] 

sin y
r

θ =  [3.96b] 

In addition, the two components of Γ
r

 at x and y are written as: 

cos ² ²x
xA r A x
r

θΓ = − Γ = = −  [3.97] 

sin ² ²y
yA r A y
r

θΓ = − Γ = = −  [3.98] 

which is exactly the result found previously. 

We note the lesser in the expression of the acceleration components, which 
express that the acceleration is central, and thus directed toward .O  

EXAMPLE 3.5 (Free vortex).– 

We imagine that a flat flow, placed in a Cartesian frame, can be described in 
Eulerian terms by its velocity vector V

r
with the components ( ),u x y  and ( ), :v x y  

( ) ( )2 2
,

4
yu x y

x yπ
Γ −=

+
 [3.99] 

( ) ( )2 2
,

4
xv x y

x yπ
Γ=

+
 [3.100] 

where Γ is a constant whose significance will be revealed later. 

1) Show that this flow is possible for an incompressible fluid. 

2) Calculate the (Lagrangian) acceleration 
dV
dt

r

 of this flow’s particle fluids. 

3) Determine the trajectories of the fluid particles. How do you name this flow? 
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Solution: 

We can immediately notice that the denominator of the expressions of u  and v  
is equal to the squared distance from the fluid particle to the axis .r  As a matter of 
fact, ² ² ²r x y= + ( r  is the standard of the radius vector rr , with components 

, ,x y z ).  

We can therefore intuit from this point onwards a flow which has a revolutionary 
symmetry or a relation with a rotation. 

1) An incompressible flow has a zero divergence. 

Let us see if this is verified. 

The flow is clearly stagnant: 

( )2 2 2 2 22 2

2 2 0
4 4

u v y x yx xy
x y x yx y x y x yπ π

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ Γ ∂ − ∂ Γ −+ = + = =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂+ +⎝ ⎠ ⎝ ⎠ +⎣ ⎦
 [3.101] 

The fluid is definitely incompressible. 

2) We directly calculate the acceleration components: 

x
du u uu v
dt x y

∂ ∂Γ = = +
∂ ∂

 [3.102] 

y
dv v vu v
dt x y

∂ ∂Γ = = +
∂ ∂

 [3.103] 

2

2 2 2 2 2 2 2 24x
y y x y

x yx y x y x y x yπ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ − ∂ − ∂ −⎛ ⎞Γ = +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 [3.104] 

2

2 2 2 2 2 2 2 24y
y x x x

x yx y x y x y x yπ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ − ∂ ∂⎛ ⎞Γ = +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 [3.105] 

Once all the calculations have been carried out, it becomes: 

( )
2 2

3 62 24 4x
x x

rx yπ π
Γ − Γ −⎛ ⎞ ⎛ ⎞Γ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠+
 [3.106] 

( )
2 2

3 62 24 4y
y y

rx yπ π
Γ − Γ −⎛ ⎞ ⎛ ⎞Γ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠+
 [3.107] 
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At this stage, we notice that the acceleration is carried by the radius vector r
r

 
(position vector of the fluid particle, with components x and y). The direction of this 
acceleration therefore passes the source of the coordinates ;O  the sign (–) 

furthermore shows that the acceleration vector Γ
r

 is directed toward this origin. 

3) In order to determine the current lines, we will use the usual relations: 

dx dy
u v

=  [3.108] 

or, more practically: 

v dx u dy=  [3.109] 

As the flow is stagnant, these lines will also be the trajectories. 

( ) ( )2 2 2 24 4
x ydx dy

x y x yπ π
Γ Γ −=

+ +
 [3.110a] 

which is simplified into: 

x dx y dy= −  [3.110b] 

In addition, by way of integration, it gives: 

² ²
2 2
y x C= − +  [3.111] 

² ² ²y x r C+ = =  [3.112] 

where C  is a constant. 

The current lines are therefore the circles centered on the source of the 
coordinates, with a radius .C  

We notice then that the velocity has a module V such as: 

( ) ( )
( )

2 2

22 2

² ² 1² ² , ² ,
4 4 ²

x yV u x y v x y
rx yπ π

Γ + Γ⎛ ⎞ ⎛ ⎞= + = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+

 [3.113] 

4
V

rπ
Γ=  [3.114] 
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The movement of fluid particles is a circular uniform movement, and its 
acceleration will therefore be normal to the trajectory, meaning radial. We find the 
results to the question again. 

This flow is known by the name “free vortex”. 

As an exercise, we could calculate its curl of the velocity. 

The only component that is not at zero is pointing in the direction of Oz, and 
therefore, it is perpendicular to the flow’s flat line (see [3.32] or [3.90]): 

( ) ( ) ( )22 2 2 2 2 2

2 ² 2 ²
4 4z

v u x y x yrotV
x y x yx y x y x yπ π

⎡ ⎤∂ ∂ Γ ∂ ∂ − Γ − −⎢ ⎥= − = − =
∂ ∂ ∂ ∂+ +⎢ ⎥ +⎣ ⎦

v

 
[3.115] 

2 ²zrotV
rπ

Γ= −
v

 [3.116] 

We note that it is infinite to the source. Nevertheless, the flux of the Curl of the 
velocity toward a surface containing this source remains finite. We will verify it 
using Stokes’ theorem (see [3.33]): 

.
C S

V dl rotV n dS=∫ ∫∫
rr r r

 [3.117] 

2
4 2C

V dl r
r

π
π
Γ Γ= =∫

rr
 [3.118] 

We find that the circulation remains not only finite, but also constant with 

.
C

V dr∫
r

 What can be explained by noticing that the Curl of the velocity decreases in 1 ,
²r

 

while the surface of the circle increases in ² ?r  

NOTE.– This type of flow is the basis of the vortex thread theory. We will not 
develop this theory further here. We will simply illustrate this remark by specifying 
that the surface of separation between the two connected flows of perfect uniform 
fluids with two different velocities can be modeled by an infinity of these cortex  
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threads The instability of the interface can therefore be calculated as the movement 
of these vortex threads. This opens up to the interfacial instability being processed 
digitally. The interfacial instability’s application is found particularly in atomization 
problems. 

EXAMPLE 3.6 (Non-stagnant compressible flow).– 

A flow is described in Eulerian terms by ( ,0,0)V u=
r

 in Cartesian coordinates. 

It verifies: 

1
xu

t
=

+
 [3.119] 

0

1 t
ρρ =
+

 [3.120] 

where 0ρ  is a constant. 

1) Is this flow possible? Is this flow compressible or incompressible, permanent 
or steady? 

2) Calculate the mass m  contained at the instant t on the inside of a cylinder in 
the section S limited by the flat lines 1x =  and 3x = . Calculate the rate of 

temporary variation dm
dt

 of this mass. 

3) Using two different averages, calculate the mass flux mq  crossing the 
cylinder. 

4) Calculate the acceleration components of the fluid 
dV
dt

Γ =
r

r
 at each point. 

Solution: 

NOTE.– We are faced with an unsteady fluid: u is a function of t. Furthermore, 
the density ρ  is also explicitly a time function. The fluid is therefore compressible. 
On the other hand, the flow is mono-dimensionally flat. It is therefore a parallel and 
non-uniform flow. 
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1) In order to be “possible”, the flow must at least verify the continuity equation 
written in non-stagnant terms for a compressible fluid. 

( ) ( ) ( )22 2 2 2 2 2

2 ² 2 ²
4 4z

v u x y x yrotV
x y x yx y x y x yπ π

⎡ ⎤∂ ∂ Γ ∂ ∂ − Γ − −⎢ ⎥= − = − =
∂ ∂ ∂ ∂+ +⎢ ⎥ +⎣ ⎦

v
 [3.121] 

( ) ( )
0 0 0 0

2 2 0
1 1 1 1 1

u x
t x t t x t t t t

ρ ρ ρ ρρ ⎛ ⎞ ⎛ ⎞ −∂ ∂ ∂ ∂+ = + = + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ + ∂ + + + +⎝ ⎠ ⎝ ⎠
 [3.122] 

The continuity equation is therefore verified. 

2) The reference volume is: 

( )3 1 2OLV S S= − =  [3.123] 

The mass that it contains at an instant is therefore: 

02
1

S
m S

t
ρρ= =
+

 [3.124] 

This mass’ variation rate is therefore found by deriving it against the time:  

( )
0 0

2

2 2
1 1

S Sdm d
dt dt t t

ρ ρ⎛ ⎞ −
= =⎜ ⎟+ +⎝ ⎠

 [3.125] 

3) The principle of continuity allows us to write that the temporary mass 
variation results from the difference between the flow rates entering ad emerging 
from the cylinder in question: 

.
S

dm V n dS
dt

= ∫∫
r r  [3.126] 

from where two ways of calculating the flow rate’s balance sheet emerge: 

.
S

V n dS∫∫
r r

 

a) By the value of dm
dt

 that we already know, we apply the continuity principle: 

.
S

V n dS =∫∫
r r

( )
0

2

2
1

S
t

ρ−
+  

[3.127] 
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b) By the direct calculations of the flow rates. 

As the velocity is co-linear to the axis ,Ox  meaning that it is equal to the 
cylinder’s axis. Only the flow rates crossing the faces which are normal to Ox are 
not zero, so: 

[ ] 0 0 01 3 2
. ( 1) ( 3)

1 1 1S

S
V n dS S V x V x S

t t t
ρ ρ ρ

= = − = = − = −
+ + +∫∫

r r  [3.128] 

which is the value calculated in (a) (equation [3.127]). 

4) The Lagrangian acceleration components by the expressions recalled in [3.3] 
and [3.4], being aware of the fact that the flow is mono-dimensional (v = w = 0), but 
non-stagnant: 

x
du u uu
dt t x

∂ ∂Γ = = +
∂ ∂

 [3.129] 

0y
dv
dt

Γ = =  [3.130] 

Only the component in x  will not be zero: 

( )2

1
1 1 1 1 11

x
u u x x x x xu
t x t t t x t t tt

∂ ∂ ∂ ∂ −Γ = + = + = +
∂ ∂ ∂ + + ∂ + + ++

 [3.131] 

0xΓ =  [3.132] 

NOTE.– We find that: 

0du
dt

=  [3.133] 

is very different to 
( )21

u x
t t

∂ −=
∂ +

 [3.134] 
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EXAMPLE 3.7.– 

In the Eulerian form, a flat flow is given by the components u and v, 
respectively, following Ox  and Oy  of its velocity :V

r
 

au
x

=  [3.135] 

bv
y

= −  [3.136] 

1) Is this flow permanent or unsteady? 

2) Is it possible to obtain this flow with an incompressible fluid? 

3) Give the equation of the current lines of this flow. Would you know to which 
curve family these current lines belong? 

4) Give the components xΓ  and yΓ  of the Lagrangian acceleration Γ
r

 of this 
flow. 

Solution: 

1) The expression of velocity components does not contain time. The flow is 
stagnant (or permanent). 

2) If the fluid is incompressible, the flow has a divergence of zero, or: 

0u v
x y

∂ ∂+ =
∂ ∂

 [3.137] 

² ²
a b a bdivV

x x y y x y
∂ ∂ − −= + = +
∂ ∂

r
 [3.138] 

This expression is not a priori zero in the whole flow. The fluid is therefore 
compressible. 

3) The current lines will be determined based on: 

v dx u dy=  [3.139] 
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Here: 

b adx dy
y x

− =  [3.140] 

which integrates into: 

x dx y dy
b a

− =  [3.141] 

² ²
2 2
y x C
a b

−= +  [3.142] 

² ²
2 2
y x C
a b

+ =  [3.143a] 

which can be re-written as: 

² ² 1
2 2
y x
a C bC

+ =  [3.143b] 

C is a constant. The curves have a conically shaped equation. This is a network 
of ellipses, of axes Ox  and Oy . The lengths of the half-axes according to these two 
coordinate axes are, respectively, 2 aC  and 2 .bC  

4) For a permanent flow, the bi-dimensional flat line, the Lagrangian 
acceleration r Γ

r
, is written (following [3.3] and [3.4]) as: 

x
du u uu v
dt x y

∂ ∂Γ = = +
∂ ∂

 [3.144] 

y
dv v vu v
dt x y

∂ ∂Γ = = +
∂ ∂

 [3.145] 

or 

3

²
x

du a a b a a
dt x x x y y x x

∂ ∂ −⎛ ⎞ ⎛ ⎞Γ = = − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 [3.146] 

3

²
y

dv a b b b b
dt x x y y y y y

⎛ ⎞ ⎛ ⎞∂ − ∂ −Γ = = − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 [3.147] 
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We notice that the velocity and the acceleration become infinite on the axes. 

This somewhat “academic” exercise refers to a “hypothetical” flow, which 
cannot be materially defined everywhere at each state of cause. This situation is also 
produced in flows issued from a punctual source where the flow rate’s conservation 
implies an infinite velocity on the point’s “zero” section. 

EXAMPLE 3.8.– 

The bi-dimensional velocity field is given by: 

² ²u x y y= +  [3.148] 

² ²v x xy= −  [3.149] 

1) Show that this flow is stagnant and incompressible. 

2) Determine its current function and its Curl of the velocity. What do you 
notice? 

Solution: 

1) The expressions of u and v do not contain time. Therefore, the flow is 
permanent, or steady. 

Furthermore, we notice that the flow is flat and bi-dimensional. 

In order to be incompressible, the velocity components must verify: 

0divV =
r

 [3.150] 

For a flat and bi-dimensional flow: 

0u v
x y

∂ ∂+ =
∂ ∂

 [3.151] 

For this flow: 

( ) ( )² ² ² ² 2 2 0x y y x xy xy yx
x y

∂ ∂+ + − = − =
∂ ∂

 [3.152] 

Thus, we verify that the continuity is fulfilled by this incompressible flow. 
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2) The stream function ( ),x yΨ  is defined by: 

;u v
y x

∂Ψ ∂Ψ= = −
∂ ∂

 [3.153] 

or: 

² ²; ² ²x y y x xy
y x

∂Ψ ∂Ψ= + − = −
∂ ∂

 [3.154] 

which is resolved by successively integrating each equality: 

( ) ( )
3² ²,

2 3
x y yx y f xΨ = + +  [3.155] 

( ) ( )
3 ² ²,

3 2
x x yx y g y−Ψ = + +  [3.156] 

( )f x  and ( )g y  are two unknown functions. The comparison of the two 
previous lines leads to: 

( )
3

3
xf x −=  [3.157] 

( )
3

3
yg y =  [3.158] 

From this, the expression of ( ),x yΨ  results, which is defined as a constant 
near: 

( )
3 3² ²,

2 3
x y y xx y C−Ψ = + +  [3.159] 

This expression in principle enables us to find the equation of the current lines 
for them. We will not perform a complex calculation here, as it is not required. 

( )
3 3² ²,

2 3
x y y xx y Cte−Ψ = + =  [3.160] 
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The velocity field depends only on x and y, and has no component w following 
.Oz  

The curl of the velocity rotV
v

 of the velocity field may possibly have a 
component in z: 

( ) ( )² ² ² ² 2 2 0zrotV x y y x xy xy yx
x y

∂ ∂= + − − = − =
∂ ∂

v
 [3.161] 

which was foreseeable. This flow is incompressible and it had a velocity potential. A 
flow with a velocity potential is not rotational. 
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4 

Dynamics of Inviscid Fluids 

4.1. Introduction 

The Bernoulli theorem can be used quickly and easily, and is essential in fluid 
mechanics. Some would even say that, along with hydrostatics, it summarizes the 
field. As it were, a general approach to non-viscous fluids involves the resolution of 
equations of fluid mechanics, where the terms of viscosity have been removed. 

In this case, the fluid is said to be “perfect”. There is no such thing as an 
intrinsically perfect fluid, and it is instead the equations that become “perfect”, for 
the convenience of the physicist. These equations contain information that 
theoretically allows for the complete determination of the flow, notably the flow 
kinematics. Here we focus on a more limited domain, with an in-depth study of the 
use of the Bernoulli theorem, while remaining fully aware that this does not cover 
the full topic! 

4.2. The Bernoulli theorem: proof 

While the Bernoulli theorem is highly applicable, it also has considerable 
limitations, if only by the hypotheses that underlie it. 

To properly understand the reach of this theorem, we have thought it pertinent to 
provide a proof, less classical perhaps than most, but which clearly shows its 
relation to the fundamental principle of dynamics. Moreover, another relation can be 
made apparent, and is too often neglected by students (and sometimes textbooks). 

One of the most common proofs seen in textbooks is the application of the 
theorem of kinetic energy, and of course the direct logical entailment of general 
equations without the terms representing viscosity. The latter proof is the most 

Fluid Mechanics: Analytical Methods, First Edition. Michel Ledoux and Abdelkhalak El Hami..
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.



128     Fluid Mechanics 

elegant one, which is based on a treatment of the general equations. For a better 
physical understanding of the application of dynamics by all those reading, we 
prefer to use the following version. 

Let us first comment on the spelling of the name, although this is secondary to 
the physics. The “standard” spelling used in this work is “Bernoulli”. In 
Francophone countries, the “lli” at the end is pronounced like a yii, despite the 
absence of an “i” as in “illi”. This is in fact the Spanish pronunciation of the name, 
which is paradoxical as the Bernoulli family were Dutch refugees living in 
Switzerland. In some textbooks, “Bernoully” or “Bernouilly” are still seen, 
presumably as a result of the authors’ quest for historical authenticity. A rather 
random quest, as in the 18th Century, the same name could be spelled in three 
different ways on the same page, even in a royal decree. 

The hypotheses required for the application of the Bernoulli theorem in its 
classical form are: 

a) the fluid must be incompressible, (synonym: density ρ is constant);  

b) the fluid is perfect (no tangential forces);  

c) the flow is permanent (resulting in a line of the current being also a 
trajectory);  

d) the volume forces are limited to gravity.  

We shall later go beyond this overly restrictive hypothesis, by extending the 
theorem to all of the derivative forces of a potential. O is a point along a line of a 
current/trajectory. We shall write the fundamental principle of the dynamics of a 
fluid particle passing through this point at a time t. We shall also project this 
fundamental principle of dynamics onto two axes of a very particular reference 
frame. This reference frame Oxyz  has origin O, around which three axes are built as 
follows: 

– axis Ox is tangential to the trajectory at O; 

– axis Oy is normal to the line of current;  

– the third axis Oz creates the direct orthonormal system with Ox  and Oy. 

Such a system of axes is only used between the moment 0,t =  where the 
particle passes through O and a later moment .dt  Such a “single-use” system of axes 
is called an intrinsic axis system. The fluid particle is represented by an infinitely 
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small parallelepiped with sides ,dy dx and dz that are carried by the three axes. Its 
volume and mass are therefore dx dy dz  and ρdxdydz , respectively. 

Velocity V
r

 of the particle has a single non-nil component, along Ox , which is a 

modulus of this velocity, denoted by .V  The (Lagrangian) acceleration 
dV
dt

r

 of this 

particle at time t has two components: 

Along :Ox  

.
x

dV dV dx dVV
dt dx dt dx

= =  [4.1] 

Through this small calculation, a derivative with respect to time is transformed 
into a spatial derivative. We note that this in fact represents a shift from a Eulerian 
form of writing to a Lagrangian form.  

Along Oy: 

²

y

dV V
dt R

=  [4.2] 

where R is the curvature radius of the trajectory. 

Here we use a result from the kinematics of a material point (“central” 
acceleration of a planetary movement, for example) without proof. In the case where 
the trajectory is a circle, R is a constant. 

Along ,Oz  the acceleration component is equal to zero. 

Let us call θ  the angle made at O by the tangent to the line of the 
current/trajectory with the horizontal. The forces applied to the elementary 
parallelepiped particle with sides ,dx  dx  and dz  are: 

– the surface forces, which, assuming the fluid is perfect, are limited to the forces 
of pressure, normal to the six faces of the particle; 

– the volume forces, limited to gravity. 

Let us add an additional axis ,OZ  which is vertical with a bottom-up direction 
and does not belong to the axis system .Oxyz  This unusual procedure is only used to 
show the altitude of the fluid particle. The position of the origin of this axis is 
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unchanged, since, as seen later, only the changes of Z are relevant. The fundamental 
principle of dynamics is written as: 

ρ = +Volume Surface
dVdxdydz dF dF
dt

 [4.3] 

 

Figure 4.1. Fundamental principle of dynamics  
projected onto the Ox axis with intrinsic coordinates 

We now project it onto the Ox  axis at time 0t =  when the fluid particle passes 
through it: 

sindV pdxdydz V dxdz p p dy dxdydz g
dt y

ρ ρ θ
⎡ ⎤⎛ ⎞∂= − + −⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

 [4.4] 

In this projection, we have taken into account the angle θ  of the tangent to the 
line of current with the horizontal.  

Moreover, only the forces of pressure on dy dz  have a non-nil projection on .Ox  

 

yZ

O

x
z

dx

dydz

gdxdydz

Horizontale 
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Figure 4.2. Fundamental principle of dynamics  
projected onto the Oy axis with intrinsic coordinates 

We now project the fundamental principle of dynamics onto the Oy axis. Using 
an analogous method, we obtain: 

² cosV pdxdydz dxdz p p dy dxdydz g
R y

ρ ρ θ
⎡ ⎤⎛ ⎞∂= − + −⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

 [4.5] 

Moreover, we note that an infinitely small movement of a point along the line of 
the current results in two variations of x  and y , dx  and ,dy  which are linked to the 
corresponding variation in altitude, dZ  through: 

θ
∂

=
∂

sinZ

x
 [4.6] 

θ∂ =
∂

cosZ
y

 [4.7] 

yZ

O

x

z

dx

dydz

gdxdydz

Horizontale
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Let us focus here on the important distinction between dz, tied to the intrinsic 
axis system, which is not considered here, and dZ, which represents the variation in 
altitude. 

Projection onto ,Ox  after some manipulating, results in: 

sindV p p Zdxdydz V dxdydz dx g dxdydz dx g
dx x x x

ρ ρ θ ρ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  [4.8] 

0dV p ZV dx g
dx x x

ρ ρ∂ ∂+ + =
∂ ∂

 [4.9] 

which, by gathering the derivatives in x, results in: 

² 0
2

V p gZ
x

ρ ρ∂ ⎛ ⎞+ + =⎜ ⎟∂ ⎝ ⎠
 [4.10] 

The Bernoulli theorem can be stated as:  

2

Along a streamline (or in other words from one point of this 

line to another), the quantity  is constant
2

V p gZρ ρ+ +
 [4.11] 

Projection onto ,Oy  after multiple analogous manipulations, also results in the 
following: 

² cosV pdxdydz dxdz p p dy dxdydz g
R y

ρ ρ θ
⎡ ⎤⎛ ⎞∂= − + −⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

 [4.12] 

²V p Zdxdydz dxdydz g
R y y

ρ ρ⎛ ⎞∂ ∂= +⎜ ⎟∂ ∂⎝ ⎠
 [4.13] 

( )²V p gZ
R y

ρ ρ∂= +
∂

 [4.14] 

We can see that the curvature radius R  of the current line appears at the point 
chosen as the origin. When the geometry of this line is circular, R  is the radius of 
the circle and a classical formula can be used. In the case of more complex curvature  
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geometry, or even a three-dimensional one, the acceleration component, located in 
the osculator plane, is written as: 

²
y

V
R

γ =  [4.15] 

One case in particular leads to an important result. In the areas where the 
streamlines are parallel lines, R is infinite, resulting in: 

( ) 0p gZ
y

ρ∂ + =
∂

 [4.16] 

In other words, on any plane perpendicular to the streamlines of a parallel flow, 
the quantity: 

Gp p gZρ= +  is constant. [4.17] 

The quantity pG, often called the generating pressure, is the quantity that remains 
constant throughout the whole of the immobile fluid. Here again it can be noted that 
Newton’s first law, or the inertia principle, can be viewed as a consequence of the 
second law, which is the fundamental principle of dynamics. We note that the flow 
needs only to be parallel and that it does not need to be uniform. It is sometimes said 
that on a plane that is perpendicular to the lines of current of a parallel flow, the 
distribution of the pressures is hydrostatic. This is best used with caution, as the 
plane in question is not usually vertical. Here we are dealing with fluid dynamics, 
and we will often use this important property, which moreover is regularly 
applicable to real fluids. By going back to the proof, we can now see that the forces 
of the tangential surface need to have no component along the Oy axis, and this is 
often verified to be the case. 

4.2.1. What to retain 

To resolve the following problems, it is important to remember that it is the 
projection of the fundamental law of dynamics over two axes that provide two 
important results, stemming from the four preliminary hypotheses used in the proof: 

a) Along the same line of the current, the quantity ²
2T

Vp p gZρ ρ= + +  or the 

total pressure is constant. 

b) On any plane normal to a parallel flow zone, the quantity Gp p gZρ= + , or 
generating pressure, is constant. This property remains true for a real fluid when the 
viscosity forces are tangential to the lines of current (which is often verified). 
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Beyond this traditional statement, by going back to the previous proof, the reader 
can attempt to demonstrate (and also test their understanding) that in the case where 
the volume forces are no longer limited to gravity but still are derived from the 
potential ( ), ,x y zφ , the constant quantity along the line of the current becomes 

²
2

V pρ ρ φ+ + . This very general formula also includes the case of gravity for 

which gZφ = . The potential ( )φ , ,x y z , as always for the volume forces, is defined 
by unit of mass. 

This calls for an “extended” Bernoulli theorem: 

a) Along the same line of current, the total pressure ²
2T

Vp pρ ρ φ= + +  is 

constant. 

b) On any plane normal to a parallel flow zone, the generating pressure 
Gp p ρφ= +  is constant. This property remains true for a real fluid when the 

viscosity forces are tangential to the lines of the current (which is often verified). 

4.2.2. Energetic interpretation of the Bernoulli theorem 

This interpretation provides a useful aid in understanding the physical meaning 
of this theorem.  

The quantity preserved along the line of the current, referred to as the “total 

pressure”, ²
2T

Vp pρ ρ φ+ +  has the dimension of energy per unit of volume. It is 

the sum of three volumic energies: 

a) A kinetic energy per unit of volume: 
ρ ²2V . 

b) A potential energy per unit of volume: ρ gz  (or ρ φg  if the volume forces 
have more than one component). 

c) Energy stored as pressure per unit of volume: ² .
2
Vρ  

This concept can be better understood by imagining a gas in a cylindrical piston 
system. By compressing this gas, the compression work W provided is stored as 
internal energy.  
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The total pressure PT can therefore be written as the sum of a “volumic” kinetic 
energy and a “generating pressure” Gp  that is the sum of the two “volumic” 
potential energies p  and :gρ φ  

² ² ;
2 2T G G

V Vp p p p pρ ρφ ρ ρφ= + + = + = +  [4.18] 

4.2.3. Physical interpretation of the Bernoulli theorem 

This interpretation is simple: when the perfect fluid is “thrown”, no forces that 
are parallel to the movement of its fluid particles can be applied to it. As a result, no 
surface forces can work. The sum of the kinetic and potential energies of each fluid 
particle is then invariable. It is important to note, however, that the volume forces 
are working. However, this work is included in the variation of a potential φ  from 
one point of the flow to another. A good analogy for this is a high-speed train racing 
along at 300 km.h−1. If the friction on the rails is considered to be negligible, no 
energy is expended during a turn along the line. The reactive forces of the rail are 
normal to the movement and therefore do not work.  

4.2.4. “Constant energy” flows  

In many given problems, the flow comes from a reservoir, which is a space 
within which its velocity is nil. In this sense, it is necessary to conceive streamlines 
that link a point of the flow where the velocity is not nil to a point of the reservoir 
where the velocity vector is meant to exist, but which has a norm that is equal to 
zero.  

The most important is that the fluid in the reservoir verifies the fundamental 
theorem of statics (here hydrostatics) and therefore that p gzρ+  or ρφ+p  is 

constant. V  being equal to zero, ρ
ρ ρ+ + ≡ +

²2V p gz p gz  is constant inside the 

reservoir, and remains such throughout the entire flow. This type of flow is called a 
constant energy flow. It is also seen in the case where at least one zone of the flow is 
uniform. Indeed, in a parallel flow, any plane that is perpendicular to the lines of  
the current has p gzρ+  or ρφ+p  that is constant. Moreover, assuming  
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the flow has a constant velocity, the zone of uniform flow is such that 
²

2
V p gzρ ρ+ +  or ²

2
V pρ ρφ+ +  is constant throughout. When the lines of the 

current eventually separate, this quantity retains the same value on every line, and 
therefore throughout the entire flow.  

4.3. Applications of the Bernoulli theorem 

4.3.1. Methodology for the resolution of a problem using the Bernoulli 
theorem 

While very practical and easy to use, the Bernoulli theorem also has some 
limitations. The Bernoulli theorem can be applied to a streamline, but can in no case 
be used to determine it. As a result, the kinematic elements of the flow must be 
known, or at least “imagined”. 

In some scenarios, these kinematic elements are provided. In the majority of 
cases, the physicist must use his or her common sense. A frequent case is that of a 
reference point attached to a mobile object (aircraft, land vehicle, etc.). In this case, 
the “far-off” liquid ahead of the mobile element undergoes a uniform flow in 
relation to the reference point. Let us remember this notion of “far-off”. As a general 
rule, flows that are close to a mobile object are the result of the interaction between 
this “far-off” uniform flow and the mobile object acting as an obstacle. This results 
in a flow with curved current lines, leading to a complex spatial distribution of 
velocities and especially of pressures. With very little information available on these 
“pathological” zones, it is best to avoid choosing points within them when writing 
the Bernoulli theorem. 

As a general rule, the application of the Bernoulli theorem relies implicitly on 
the following statement: 

– At every point of a flow, three parameters are key: the applicate Z  (which is 
the altitude, on a vertical axis going bottom-up, thus reducing the problem to one 
spatial dimension), the static pressure P and the velocity modulus V. The first two 
parameters can often be condensed into PG. 

The OZ axis is vertical when the volume forces are limited to gravity. When 
additional forces deriving from a potential are involved, another favored axis can be 
defined. Then, Z is no longer an altitude. 
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There is always at least one flow point, A, where all three parameters are known, 
and B, which is often the subject of the problem, where only two parameters are 
known. The solution then involves writing the Bernoulli theorem between A and B. 
The main advantage of the Bernoulli theorem is that its only constraint requires A 
and B to be on the same current line. No information is required regarding the 
geometry of these current lines (not more than on the distribution of pressures and 
velocity in these zones) between points A and B. In practice, all that is needed is to 
have enough information on the zones containing A and B, and to be sure that there 
is indeed a current line linking A and B, which is usually not too problematic. 
Depending on the problem studied, the parameter determined by application of the 
theorem is either a velocity, a pressure or even an applicate. 

The Bernoulli theorem cannot be applied between two points of two different 
fluids. In any case, incompressibility would not be verified, even with liquids of 
generally different densities. This is also obviously not possible if A and B are 
located in two parts of a same fluid separated by an impermeable wall! 

The problems provided here can be separated into two categories: 

a) Elementary problems. 

b) Draining and filling. 

A common problem involves the filling or draining of a reservoir. We will come 
across various types. In some problems, the filling is carried out at a constant fluid 
velocity. A distinction can be made depending on whether the system in which the 
operation is being carried out is fixed in relation to the ground, or whether it is 
mobile. In other problems, the fluid velocity during filling is variable over time. 
Finally, we shall provide several “synthetic” problems, which call on several of 
these categories. 

We shall first cover simple examples, where the main objective is to determine 
either a velocity, a cote or a pressure, or several parameters at a time. 

Determining velocity: In several problems, the goal is to determine the velocity.  

EXAMPLE 4.1 (Angel Falls).– 

Throughout the entire problem, water is considered a perfect fluid. Angel Falls 
is located in Venezuela and is one of the highest waterfalls in the world. Its waters 
fall freely from a height h = 807 m. 
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Figure 4.3. Diagram of a waterfall 

1) By assuming that the flow in the waterfall is uniform and continuous 
(meaning that the falling water body does not fragment into different filaments, 
which is perhaps not very realistic), determine the velocity of the water as it reaches 
the bottom of the fall. Assume the flow velocity at the top of the fall to be 
negligible. 

2) Use the same process to determine the velocity of the flow in Niagara Falls, 
which is 59 m high, and compare with the previous value. 

Contrary to popular belief, Niagara Falls is not the highest in the world. They 
are, however, among those with the highest flow rate (6,962 m3.s−1). 

Solution: 

1) Here the Bernoulli theorem must be used, and the points chosen must be: 
point A at the free surface of the flow upstream of the falls, and point B at the foot 
of the falls. 

The sides are taken on a vertical axis with an upward direction. The origin is at 
the base of the fall (ground level): 

2 2

2 2
A B

A A B A
V Vp gz p gzρ ρ ρ ρ+ + = + +  [4.19] 

There is:  

; ; ; 0; 0A a B a A B Ap p p p z H z V= = = = =  [4.20] 

 

 

h
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As a result, the velocity at the base of the fall is: 

2BV gh=  [4.21] 

This formula is the same as the one used in the case of a free fall of a material 
point from a height h. This form is known as the Torricelli formula, which is not 
surprising. On a historical note, as early as 1698, Newton studied in “Principia” the 
case of a falling jet of liquid using the laws of falling bodies.  

For Angel Falls, the velocity is determined as:  

1125,8 .BV m s−=  [4.22] 

2) For Niagara Falls, the velocity at the base of the falls is: 
134 .BV m s−=  [4.23] 

EXAMPLE 4.2 (Die Hard with a Vengeance).– 

In “Die Hard with a Vengeance” (Die Hard 3), Bruce Willis finds himself in a 
CA truck (see Figure 4.4). This truck drives into an underground pipeline T  that is 
normally separated from a dam reservoir L  by a bulkhead (not represented in the 
diagram). The terrorists have blown up the bulkhead to get in the way of the 
protagonist. Consequently, the reservoir starts to drain into the pipeline, and at the 
precise moment we are looking at, Bruce Willis narrowly escapes the resulting flow 
in his truck. The movie lets us see the speedometer, which is showing 60, 
presumably miles per hour. 

 

Figure 4.4. Die Hard 3: a tricky situation 
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The question here is to determine whether this speed of 60 miles an hour for the 
water pursuing 1 h is a credible figure. To answer this, the depth of the water in the 
reservoir threatening Bruce Willis and his truck can be determined. The water is 
assumed a perfect fluid. The flow of the water within the tube is also assumed 
uniform. It is worth noting that a mile is equal to 1609 m. 

Solution: 

The problem is similar to that of the Angel Falls. In this case, we know the water 
velocity at the base and instead we are looking for the length to the high point of the 
reservoir: 

-160*1609= = 26,82
3600BV m.s  [4.24] 

2BV gh=  [4.25] 

2

36,65
2

BVh m
g

= =  [4.26] 

This height is entirely plausible. By considering uniform flow, this implies that 
the altitude varies little in T considering h . Given the average size of a truck, this 
hypothesis is rather tenuous. 

EXAMPLE 4.3 (Parameters of a hydraulic dam).– 

A dam is used to create a reservoir with a depth (H) of 50 m. A pipeline C, with 
a diameter (D) of 50 cm, whose axis is located at h = 40 m below the level of the 
free surface of the reservoir crosses the dam to power a hydroelectric turbine. 
Atmospheric pressure is pa = 1 bar.  

 

Figure 4.5. Hydraulic dam 

h
H

C
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1) What is the pressure pf at the bottom of the reservoir? 

2) Assuming the water in the reservoir is a perfect fluid, what is the flow rate qv 
of the water that powers the turbine? 

3) What energy output, expressed in kW, is available to power this turbine? 

Solution: 

1) This is a question related to hydrostatics 

f ap p gHρ= +  [4.27] 

5 510 1000*9,81*50 5,905.10 5,9fp Pa bar= + = =  [4.28] 

2) By applying the Bernoulli theorem between a point S of the surface of the 
reservoir and a point T on the same current line at the pipe exit: 

2 2

2 2
S T

a S a T
V Vp g z p g zρ ρ ρ ρ+ + = + +  [4.29] 

with: 

0; ; 2S S T TV z z h V gh= − = =  [4.30] 

TV  is the outflow velocity at the exit of the pipe. The flow volume can be 
determined easily: 

128TV ms−=  [4.31] 

3 1² 5,5
4V T

Dq V m sπ −= =  [4.32] 

3) The energy output is the amount of energy exiting the pipe per unit of time. 
This is also the hydraulic power provided to any possible electrical generator 
(turbine + dynamo or alternator) located downstream. For 1 kg of fluid, the kinetic 

energy is 
2

.
2
T

C
Ve =  The mass flow is .m Tq Vρ=  The energy output or hydraulic 

power is:  

H m CP q e=  [4.33] 

( )28 ²
1,000*5,5* 2,156

2HP MW= =  [4.34] 
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EXAMPLE 4.4 (Water jet cutting supply).– 

A simple water jet cutting system is composed of a reservoir filled with water at 
a pressure Rp  that must be determined. A nozzle with a diameter 5d mm=  is linked 
to this reservoir. 

1) The desired jet velocity is 1900 .jU m s−= , when the nozzle is more or less at 

the level of the reservoir. What must be the value of ,Rp  expressed in bars? The 

density of water is 31,000 .kg mρ −= . Atmospheric pressure is 1ap bar= . 

2) A diver is working at sea at a depth of = 20h m , while the reservoir remains 
on land. Show that the cutting time is not significantly altered. 

Solution: 

1) In this example, the velocity is mainly determined by the pressure of the 
reservoir. 

By writing out the Bernoulli theorem between a point A of the reservoir and a 
point B of the jet, both located on the same line of current, we obtain: 

2 2

2 2
A B

A A B B
V Vp gz p gzρ ρ ρ ρ+ + = + +  [4.35] 

Clearly: 

; ; 0;A R A B A B jp p z z V V V= = = =  [4.36] 

Resulting in: 

2

2
j

R a

V
p pρ= +  [4.37] 

5 8900²1,000* 10 4,051.10 4,051
2Rp Pa bar= + = =  [4.38] 

2) As an order of magnitude, it can be noted that a depth of 20 m corresponds to 
an increase in pressure of 51,000*9,81*20 1,96.10p gh PaρΔ = = = , which is 
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very small compared with Rp . Therefore, the velocity of the jet will not be 
significantly impacted. It can be calculated explicitly: 

2

0
2

j
R a

V
p p ghρ ρ+ + = + +  [4.39] 

( ) 8 5
14,501.10 2,96.102. 2 899,8 .

1,000
R a

j

p p gh
V m s

ρ
ρ

−− + −= = =  [4.40] 

Resulting in 1899,8 .jV m s−=  which is equal to 1899,8 .jV m s−=  to the nearest 
42.10− . 

EXAMPLE 4.5 (Measurement by Pitot tube).– 

Since the early days of aviation, the airspeed of airplanes has been measured 
using a Pitot tube. This device is essentially a tube with a rounded end. At the tip of 
this tube, there is a channel that measures the pressure Sp  that exists inside this 
rounded end.  

Over time, various methods for measuring this pressure have been used, from U-
tubes to modern probes. Here we look at the value of the pressure measured on its 
own. The tube is placed on the wing of the plane, which moves in relation to the 
surrounding air at a velocity of .relV  ap  is the atmospheric pressure ahead of the 
plane. An airplane moves through the air at an atmospheric pressure of 

0,8 .ap bar=  The airplane is working against wind with a speed of 1150 .wV km hr−=  
in relation to Earth. The Pitot tube measures a pressure of 0,859 .Sp bar=  The 

density of air is 30,96 .kg mρ −=  at the altitude in question. What is the speed of the 
airplane planV  in relation to Earth? 

Solution: 

The Pitot tube is taken as a fixed referential. The tube is therefore placed in a 
uniform airflow with a velocity of relV . Given the orders of magnitude considered 
and difference of probably velocities, we can assume the air to be incompressible.  

To know the atmospheric pressure ap , Prandtl decided to equip the tube with a 
double cover with a lateral orifice located quite far back from the extremity S of the 
tube. At that location, the flow has returned to being parallel, and the velocity has 
practically returned to relV . The static pressure is therefore ap  at the orifice in 
question. 



144     Fluid Mechanics 

 
Pitot Tube     Prandtl Tube 

Figure 4.6. Pitot tube and Prandtl tube 

As the air is assumed to be a perfect fluid, a kinematic hypothesis is taken that 
can sometimes be troubling for the reader. Along the current line that reaches the 
point S, which is the orifice of the tube, the assumption is made that the fluid stops 
on the tube, and then regains its speed later. 

We could therefore write out the Bernoulli theorem between a point A located 
far upstream of the flow, where the velocity is relV , and the point S , where the 
velocity is equal to zero: 

2 2 2

2 2 2
rel S S

a A a S S S
V V Vp gz p gz p gzρ ρ ρ ρ ρ ρ+ + = + + = + +   [4.41] 

The change in the terms of gravity for this light gas is negligible from one point 
to another. Therefore: 

2

2
rel

a S
V p pρ + =  [4.42] 

( )2 S a
rel

p p
V

ρ
−

=  [4.43] 

The relative velocity in relation to the air is: 

( )4 4
1 1

2 8.59.10 8.10
110,9 . 399 .

0,96relV m s km hr− −
−

= = =  [4.44] 

Assuming the airplane is moving in the same direction as the wind at 150 km.h−1, 
this velocity must be added in order to reach the groundspeed: 

1399 150 449 .avV km hr−= + =  [4.45] 

NOTE.– The influence of the wind speed on the groundspeed is far from negligible, 
even for jetliners. During intercontinental trips, differences of more than an hour are 

SA

Vrel

SA

Vrel

pa
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commonly seen depending on the direction of travel. The groundspeed is more 
easily obtained using geolocalization. However, the relative velocity of the airplane 
in relation to the surrounding air is important for the flight data, if only in terms of 
keeping the aircraft aloft. Recent disasters have shown the terrible effects caused by 
a malfunction of a Pitot tube (when ice gets into the tube, for example) if it is not 
detected in time.  

4.3.2. Determining an applicate 

In other, also quite basic problems, the objective is to determine the length of an 
applicate (or more concretely, an altitude). This is the case of the jet problems.  

EXAMPLE 4.6 (Height of a jet).– 

A liquid jet is a flow that is not limited by solid surfaces. A jet can be created 
from the device represented below. The piston P, with a diameter of D, is quite 
heavy and has a mass of m . It is suitably watertight, as required. This piston 
descends very slowly into the cylinder C, which is always filled with liquid, 
excluding any gas. This liquid is a perfect fluid with density ρ.  T is an orifice with  
a small diameter d, which is very small compared with D. It exits just above the 
piston P. 

 

Figure 4.7. Creating a jet 
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1) A jet is created at the exit T. 

1.1) Show that the velocity of this jet decreases with altitude. Show that 
theoretically, at the upper extremity of the jet, its cross-sectional area must be 
infinite. We shall not worry about this here. 

1.2) By applying the Bernoulli theorem between the lower face of the piston and 
a point of jet with an applicate ,z  find the relationship between the velocity ZV  of 
the liquid and the applicate z  of a point of the jet. Give the expression of the cross-
sectional area of this jet versus z. The origin of the different “ z ” s is taken at the 
level of the top of the piston. The thickness of the piston is a . Do not forget that 
atmospheric pressure also applies above the piston and that its effects are therefore 
be added to those caused by the weights of the piston. 

2) We can predict that the jet will escape upward. At a certain altitude, it can be 
assumed that the liquid will fall back down without affecting the upstream flow of 
the jet. 

What is the value of the height 0z , expressed in relation to the piston, that the jet 
will reach? 

NOTE.– This is a simple model. In reality, the jet does not maintain its integrity; it 
breaks into filaments and droplets. Moreover, air resistance plays a considerable 
role. 

Solution: 

1.1) The principle of continuity ensures that the flow in the jet will maintain a 
constant value. If ( )S z is the cross-sectional area of the jet at a given applicate 
(altitude), we get: 

( ) ( )mq S z V zρ=  [4.46] 

Along the current line in the ascending jet, the following expression applies, and 
is constant for every point of this line: 

( )²
2T a

V z
p p gzρ ρ= + +  [4.47] 

The key to jet problems lies in the fact the flow is “free”. Its borders are always 
in contact with the atmosphere (unlike what happens in a pipeline). For reasons of 
continuity, the pressure inside the jet is therefore independent of the applicate and is 
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equal to the atmospheric pressure ap . As a result, the Bernoulli theorem implies that 
the velocity decreases with the applicate.  

NOTE.– In energetic terms, since the potential pressure energy does not vary, this 
means that an exchange can along take place between the kinetic energy of a fluid 
particle and its potential gravitational energy.  

The principle of continuity therefore implies that since the flow is conserved, and 
the fluid is incompressible, S is inversely proportional to the velocity. As a result, 

( )S z will be an increasing function. As stated in the text, S should be “theoretically 
infinite” when the velocity is equal to zero. 

1.2) Let us write out the Bernoulli theorem between a point A located below the 
piston and a point B located on the same current line in the jet, with an applicate 
value of :Bz  

( ) ( )² ²
2 2

A B
T A A a B

V z V z
p p gz p gzρ ρ ρ ρ= + + = + +  [4.48] 

The origin of the cotes is chosen on the superior side of the piston, and the 
velocity is considered negligible compared with the velocity of a point of the jet: 

( ) ( ); ² ²A A Bz a V z V z= − <<  [4.49] 

The pressure PA is the sum of the atmospheric pressure and the overpressure 

caused by the weight mg of the piston acting on a surface ²
4

DS π= : 

A a
mgp p
S

= +  [4.50] 

This results in: 

( ) ( ) ( ) ( )2 22 2A a
A A B B

p p mgV z g z z g z a
Sρ ρ

−
= + − = − +  [4.51] 
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2) The extremity of the jet is “theoretically” reached when the velocity is equal 
to zero, which happens for: 

( )0
2 2 0mg g z a

Sρ
− + =  [4.52] 

0
mz a
Sρ

= −  [4.53] 

EXAMPLE 4.7 (Hydraulic circuit with a perfect fluid).– 

A circuit is made up of three elements: 

– a horizontal branch with a diameter 2d cm=  and cross-sectional area ;AS  

– a vertical branch of cross-sectional area AS  and length ;= 10h m  

– a horizontal branch with a progressive change of cross-sectional area ( BS ) 
toward a diameter 2,6D cm= . 

We assume two points A and B: the first located in the horizontal branch of 
cross-sectional area s and the second one in the horizontal branch of cross-sectional 
area S. Throughout the entire problem, the pressure in A  remains = 1 .ap bar  The 
circuit is filled with an incompressible and perfect fluid with a density 

31000 .kg mρ −= .  

1) First, the fluid is immobile in the circuit. Give the value of pressure 1Bp  at the 
point B . 

2) Throughout the circuit, the flow rate is equal to 2 l s−1. Give the value of PB2 
that then becomes the pressure at the point B . 

3) Express the relationship between the pressures at points A  and B  ( Ap  and 

Bp ), velocity at A  ( AV ), d  and D . Show that there is a flow VCq  for which the 
pressures at A  and B are the same. Give the value of this flow VCq  and of the 
velocities then observed at A and B, denoted by VAC and VBC. Express VCq  in liters 
per second. 
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Figure 4.8. Diagram of the circuit 

Solution: 

1) We go “up” by h  in the fluid, therefore: 

1B Ap p ghρ= −   [4.54] 

5
1 10 1000*9,81*10 1900Bp Pa= − =  [4.55] 

2) The flow rate is known; moreover, it is expressed as a function of the cross-
sectional areas and velocities: 

3 3 22.10
BV A A BVq m s S V S− −= = =  [4.56] 

4 43,14.10 ² ; 5,309.10 ²A BS m S m− −= =  [4.57] 

16,369 .V
A

A

q
V m s

S
−= =  [4.58] 

13,767 .V
B

B

q
V m s

S
−= =  [4.59] 

The application of the Bernoulli theorem between two points of the same current 
line belonging to the cross-sectional areas A  and ,B  respectively, results in: 

2 2

2 2
A B

A A B B
V Vp gz p gzρ ρ ρ ρ+ + = + +  [4.60] 

Diam d

Diam D

H

A

B

Diam d
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From which we can obtain the pressure difference as: 

( )
2 2 2 2

2 2 2 2
A B A B

B A B A
V V V Vp p g z z ghρ ρ ρ ρ
⎛ ⎞ ⎛ ⎞

− = − − − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 [4.61] 

48, 491.10B Ap p Pa− = −  [4.62] 

5 4 410 8,491.10 1,509.10 0,15Bp Pa Pa bar= − = =  [4.63] 

3) When the pressure at A and B are the same, then: 

2 2

0
2 2
A B

B A
V Vp p ghρ ρ
⎛ ⎞

− = = − −⎜ ⎟
⎝ ⎠

 [4.64] 

2 2

2 2
A BV V gh

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
 [4.65] 

²
²

B A

A B

V S d
V S D

= =  [4.66] 

2 4

41
2
ACV d gh

D
⎛ ⎞

− =⎜ ⎟
⎝ ⎠

 [4.67] 

2 1301,9 ; 17,38 .AC ACV V m s−= =  [4.68] 

3 3 1 15,456.10 5,456 .VC A ACq S V m s l s− − −= = =  [4.69] 

4.3.3. Draining and filling 

A common category of problems looks at the filling or draining of a reservoir. 
They are of two types, depending on whether the operation is taking place in a fixed 
position in relation to the ground, or whether it is mobile.  

4.3.3.1. Fixed reference frame 

In the following problems, the system and the reference frame to which it is tied 
are fixed in relation to the ground. 
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EXAMPLE 4.8 (Filling during a competition).– 

To quickly fill the reservoir (tank) of a racecar, with a capacity L , a pressurized 
vessel is used. The air located above the liquid (see Figure) undergoes a pressure of 

ap p> , where ap  is the atmospheric pressure. 

Supply to the car is achieved using a tube T , which is sunk into the bottom of 
the vessel, while the other end is at atmospheric pressure. 

 

Figure 4.9. Filling the tank during a race 

1) Before draining of the vessel, calculate the pressure 0P  at the bottom of the 
vessel. We denote P as the density of the fuel and H as the height of the fuel reserve 
in the vessel, which is assumed constant. 

2) What is the duration t for the filling of the tank? D  is the diameter of the tube 
T. The exit contraction coefficient is equal to 1 (the liquid jet therefore exits as a 
perfect cylinder). 

3) Numerical application: We have the following: 

3900 . ; 1, 2 ; 1,2 ; 60 ;
600 ; 1 ; 10 ; 3a

kg m H m H m h cm
L litres p bar p bar D cm
ρ −= = = =

= = = =
 

Calculate 1, 2 ,H m=  the filling speed and ,Rt  the filling time. 

For those who watch on television: does the value of Rt  seem compatible with 
modern day racing? 

H

p
paD

Air

Essence

T

Fuel 
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Solution: 

1) This is a simple question of fluid statics. We “go down” by H in the reservoir 
to reach the bottom. The variation in pressure between two horizontal planes 
separated by the distance H is gHρ . The pressure at the bottom is therefore 

bottomp p gHρ= +  [4.70] 

2) To know the filling time, the entering flow of fluid into the reservoir must be 
known. The cross-sectional area is known, so the velocity of the fluid at the entrance 
to the reservoir must be determined. Considering the hypotheses (perfect, 
incompressible fluid, flow that is verified to be stationary, and volume forces that 
are limited to gravity), the Bernoulli theorem can be applied. However, two relevant 
points on the same current line must still be chosen. In such a problem, it would be a 
mistake to choose a point at the bottom, even if the applicate and pressure are 
known. Instead, we choose a point A located at the free surface of the reservoir and 
a point B located on the same current line in the exit cross-sectional area of the 
supply tube. The sides A and B are known, as are the pressures. As the reservoir is 
large in terms of dimensions, its free surface practically does not change and we 
have 0AV = . BV  is the velocity that we are looking for. The Bernoulli theorem can 
be written as: 

2 2

2 2
A B

A A B A
V Vp gz p gzρ ρ ρ ρ+ + = + +  [4.71] 

The information provided allows for the following calculations: 

We take the sides on an upward vertical axis. The origin is at the level of the 
bottom of the reservoir (level of the ground): 

; ; ; ; 0A B a A B Ap p p p z H z h V= = = = =  [4.72] 

As a result: 

2

2
B

a
Vp gH p ghρ ρ ρ+ = + +  [4.73] 

( )2 2 a
B

p p
V g H h

ρ
−

= − +  [4.74] 
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The filling flow is written as: 

²
4V B

Dq Vπ=  [4.75] 

And the filling time is the ratio of the volume to fill over the filling flow rate 
(number of liters of the tank over the number of liters that arrive each second) 

R
V

Lt
q

=  [4.76] 

3) Numerical application: 

( ) 12 2 44,85 .a
B

p p
V g H h m s

ρ
−−

= − + =  [4.77] 

2 3 1 1² 3,1710 . 31,71 .
4V B

Dq V m s l sπ − − −= = =  [4.78] 

600 18,9
31,71R

V

Lt s
q

= = =  [4.79] 

which would not make this filling time particularly advantageous in terms of a 
competition. Beyond the time value, the problem itself is debatable is terms of the 
amount of fuel loaded, which would represent a mass of 540 kg. 

EXAMPLE 4.9 (Water supply to an island).– 

An island is supplied with water by a reservoir with a capacity of 31000OLV m=  
located on a hill. The population lives on a plain, which is assumed flat.  

The bottom of this reservoir is located at an altitude 30H m=  above the plain. 
The reservoir is very flat and has a large surface area on the ground – as such we can 
neglect the height of the water in the reservoir in relation to the height of the hill: 
any point in the liquid filling the reservoir is also considered to being at 30H m=  
above the plane. Throughout the whole problem, we assume that water is a perfect 
fluid. Moreover, the free surface of the water in the reservoir is always equal to the 
atmospheric pressure ap . A pipeline with diameter 6D cm=  goes from the bottom 
of the reservoir down to the plain. This line supplies the houses of a holidaymaker 
village. The holidaymakers live in bungalows that are all on the same level. The 
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faucets are all located at a height 1h m=  above the ground of the plane, and their 
diameter is 1d cm= . 

1) All the faucets are turned off. What is the pressure Cp  that is present on the 
inside of the faucets? 

2) The village is made up of 56 bungalows. It is located in a warm country. 
Following a communal event, the inhabitants all return home and turn on their 
faucet, meaning that each house has one faucet open at the same time. 

 

Figure 4.10. Water supply to a holiday village 

2.1) Calculate the flow rate vq  provided by the faucet.  

2.2) During the event, certain dishes of dubious quality were served. Inhabitants 
from one quarter of the houses were rendered incapacitated and had to be sent to 
hospital. The faucets in those bungalows stayed on.  

a) How much time before the reservoir is fully emptied?  

b) The refilling of the reservoir takes a day to organize – will the island have 
gone any time without water? 

3) Everyone recovers well and the reservoir is refilled to 1,000 m3 of water. 
Following a bout of terrible weather, the pipeline becomes damaged. It becomes cut 
at a height 15H' m=  above the plane. Emptying therefore takes place at this height, 
through an orifice with the same diameter as the pipe. 

The repair will take 4 h. Will the island go without water? 

H

Diam D

h Diam d
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Figure 4.11. Consequence of a natural disaster 

Solution: 

1) Considering the fact we are going down by z H hΔ = −  from a point of the 
reservoir to the tip of the faucet, a simple application of the fundamental theorem of 
hydrostatics gives us: 

( )C a ap p g z p g H hρ ρ= + Δ = + −  [4.80] 

2) Health disaster: 

2.1) The flow rate of each faucet can be calculated independently.  

Let us take the origin of the axis of the Oz altitudes at the level of the ground in 
the village. 

Let us write the Bernoulli theorem between a point A  of the reservoir and a 
point Oz inside the jet coming out of the faucet, both being located on the same 
current line: 

2 2

2 2
A B

A A B B
V Vp gz p gzρ ρ ρ ρ+ + = + +  [4.81] 

5 510 1000*9,81*29 3,84.10 3,84C ap p Pa bar= + = =  [4.82] 

The exit velocity of each faucet can be deduced as: 

20
2 2

B
a a

Vp gH p ghρ ρ ρ ρ+ + = + +  [4.83] 

H

Diam D

H'
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( )2BV g H h= −  [4.84] 

123,85 .BV m s−=  [4.85] 

The flow rate of a faucet is written as:  

v Bq SV=  [4.86.a] 

with 
( )22

5
10² 7,85.10 ²

4 4
dS mπ π

−
−= = =  [4.86.b] 

5 3 3 1 17,85.10 *23,85 1,87.10 . 112 .v Bq S V m s litres mn− − − −= = = =   [4.87] 

The total flow for the village is: 

3 3 11,87.10 *56 0,105 .VQ m s− −= =  [4.88] 

2.2) The lost flow is: 

3 2 3 156 14*1,87.10 2,62.10 .
4V VQ q m s− − −= = =  [4.89] 

a) The reservoir will empty after the following amount of time: 

4
2

1000 3,82.10
2,62.10

OL

V

Vt s
Q −= = =  [4.90] 

b) t  represents 43,82.10 10, 6t s hours= =  [4.91] 

Unfortunately, the village will go without water. 

3) Natural disaster: 

The draining speed V' with the cote H' can be calculated as in (2.2), using a 
different value for the difference between the levels z' H H'Δ = − : 

( ) 12 17,15 .V' g H H' m s−= − =  [4.92] 
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The lost flow is: 

VQ' S' V'=   [4.93] 

with 
( )22

3
6.10² 2,83.10 ²

4 4
DS' mπ π

−
−= = =  [4.94] 

3 2 3 12,83.10 *17,15 4,85.10 .VQ' S' V' m s− − −= = =  [4.95] 

which results in a draining time of the reservoir of: 

4
2

1000 2,062.10 5,73
4,85.10

OL

V

Vt' s hours
Q' −= = = =  [4.96] 

The repair shall be complete after 4 h. The leak will be repaired in time. 

4.3.4. Mobile reference frame 

In the following problems, the filling takes place in a vessel undergoing inertial 
movement in relation to the ground. 

EXAMPLE 4.10 (In the days of steam engines).– 

A device invented in 1862 by the ingenious British engineer Ramsbottom (1814–
1897) enabled steam-powered locomotives to be supplied with water without 
stopping. This device was used in France, on the Paris-Le Havre line, and was 
located at Léry-Poses.  

The system imagined by Ramsbottom was very simple. A channel located 
between the rails is constantly supplied by a reservoir in such a way that the water 
level remains constant. The locomotive’s tender is equipped with a tube T , or a 
scoop, which passes through the channel. Water is introduced into the tube T  at 
point O . The water is poured into the tender at the level of point O . The point is 
located at a very shallow depth under the level of the free surface of the channel. 
Point O  is located at a height h  above O . V  is the velocity of the locomotive and 
d is the diameter of the tube T , constant throughout its entire length.  
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NOTE.– For those who did not live through the happy times of steam engines, let us 
note that the tender is a carriage of the train, which contains the water reservoir 
needed to create the steam and carries the fuel. 

1) Determine the speed of the water, and then the water flow at O′ as a function 
of V. ρ is the density of the water. 

2) Show that the train must have a minimal velocity minV  for the system to 
function. 

3) Numerical application: 

3.1) Give the value of the minimal velocity minV . 

The velocity of the train being reduced to 70 km.h−1 during the filling operation. 

3.2) What is the minimum length L of the channel to be able to pour 10 m3 of 
water in the tender? 

3.3) The real length of the channel was 440 m. Was this enough to place 10 m3 
of water in the tender? 

Considering the channel is limited in length, the tube must be lowered and then 
brought up again, so that it does not hit the extremity of the channel. Knowing that 
the driver is a highly skilled expert and lowered the tube practically at the start of the 
channel, how much time does he have to bring the tube back up after the filling of 
the tender? 

We have the following: 31000 . ; 20 ; 3kg m d cm h mρ −= = = . 

 

Figure 4.12. Supplying a moving locomotive 

Rigole
O
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Solution: 

We shall use a reference frame linked to the locomotive. Like for any problem of 
this type we define a vertical upward axis. As we shall see, the origin can be taken at 
the level of the ground, or, as we shall prefer here, at the level of the axis of tube T . 
We note that distance from the ground of this axis, denoted by ε , is not given in the 
numerical applications. We shall see later that this quantity is eliminated during the 
calculations. In a problem on the mechanics of fluid in a mobile system, we often 
use a reference system linked to the mobile system. In this case, any fluid that is 
immobile in relation to the ground behaves as if it were a “bulk” flow, meaning that 
the flow is “uniform” with a velocity V equal to the velocity of the mobile system. 

Let us note that when the mobile system is moving at a constant velocity, which 
is the case here, the uniform flow is stationary. This therefore fulfills one of the four 
conditions for the application of the Bernoulli theorem. In the case where the mobile 
is accelerating, the uniform flow becomes unsteady in the reference frame of the 
mobile system. Moreover, inertia forces must be considered in the reference frame 
linked to the mobile system.  

As a general rule, the Bernoulli theorem can only be applied between two points 
of a same current line in two zones where the kinematics are known, or at least 
simple enough to be deduced.  

In a problem like this one, the kinematics of the uniform flow are simple. 
Another zone where the kinematics are obvious is at the top exit of the tube T. In the 
location where the fluid exits, for a perfect fluid the flow is uniform. 

A common error (which is often made by students) involves placing one of the 
reference points at the lower extremity (in the channel) of the extraction tube. In this 
zone, called the “pathological” zone, the flow cannot be deduced simply: it is not 
uniform and rectilinear. The following question is often asked: the velocity depends 
on the altitude (since it is constant). Under these conditions, considering the cross-
sectional area of the tube is constant, how can the flow be maintained? The answer 
can be found in the form of the current lines: the flow is supposed to fill the tube T 
in its superior part. The velocity at the lower part of the tube is clearly higher than 
that at the top of the tube. Therefore, the flow cannot fill the tube T at its base. The 
kinetics is therefore complex, the flow is curved and the generating pressure PG can 
only be constant over one cross-sectional area. For this reason, a point in such a 
zone must never be chosen to apply the Bernoulli theorem. 
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1) Let us apply the Bernoulli theorem on a current line between a point A located 
at the level of the axis of T in a uniform flow with a velocity V upstream of the 
locomotive, and a point O′ located right at the exit point of the tube T at its summit: 

22
'

'2 2
OA

A A O O'
VV p gz p gzρ ρ ρ ρ+ + = + +  [4.97] 

We replace each element of the equations by the real value, with the unknown 
one here being VO′. 

It is important to note that in the uniform flow upstream of the locomotive, on a 
plane perpendicular to the current lines, or in other words on any vertical plane, 

Gp p gzρ= +  is constant. Therefore, on a vertical axis between the level of the 
ground ( z ε= ) and the level of the axis of T  ( 0z = ):  

0G a Ap p g pρ ε= + = +  [4.98] 

' '; ; ; 0;A O a A a A OV V p p p p g z z hρ ε ε= = = + = = +  [4.99] 

( )
22
'0

2 2
O

a a
VV p g p g hρ ρ ε ρ ρ ε+ + + = + + +  [4.100] 

The terms ap  and of gzρ  are canceled out. There is therefore no need to know 

ap  and .z  As a result: 

( )
22
'0

2 2
O

a a
VV p g p g hρ ρ ε ρ ρ ε+ + + = + + +  [4.101] 

' 2OV V gh= −  [4.102] 

This result states that the kinetic energy at the summit of T  is equal to the 
kinetic energy at the level of the horizontal axis of T , increased by the potential 
energy over the height ε  and decreased by the potential energy caused by the height 
( h ε+ ). 

2) When the fluid arrives at the top of the tube T , its velocity is equal to zero, 
. The answer to question 1 provides us with the minimal velocity minV : 

min 2V gh=  [4.103] 

0' =OV
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This formula is reminiscent of the law governing falling bodies, which is not a 
coincidence. The kinetic energy of the fluid is fully transformed into potential 
energy. In a way, this extreme case of use in a zero flow system can be compared to 
a Pitot tube. 

3) Numerical values: 

3.1) Value of minV : 

1 1
min 2 7,67 27,62V gh ms kmhr− −= = =  [4.104] 

3.2)  

1 1 2²70 19, 44 ; 3,14.10 ²
4
dV km hr ms S mπ− − −= = = =  [4.105a] 

1
' ² 2 17,86OV V gh ms−= − =  [4.105b] 

3 1
' 0,561Vq SV m s−= =  [4.106] 

This flow must be able to fill 10 m3. For a train moving at 19,44 ms−1, this results 
in a distance L  of: 

10 17,82
0,561

t s= =  [4.107] 

346,5L V t m= =  [4.108] 

3.3) The channel is therefore theoretically quite long, although this does not 
exempt the controller from having excellent reflexes. 

At a speed of 19,44 m/s, the train passes along the channel in 22,63 s.  
A time of 4,81 s is then left for moving the tube up and down. 

EXAMPLE 4.11 (A hardy “Canadair”).– 

A prototype of an airplane designed to extinguish forest fires uses a water 
reservoir that is filled with seawater. ρ  is the density of this water. To fill the 
reservoir, the plane has a rod sticking out below it, whose other end is located at the 
superior part of the reservoir. The lower part of the rod is equipped with a horizontal 
cross-sectional area. During the filling sequence, this horizontal part is submerged in 
the water; the airplane flies above the sea at a speed of V ; if V  is sufficiently high, 
the water rises into the rod and fills the reservoir. The rod expels water into the 
reservoir at a height of H above sea level. The parameter h  is the depth at which the 
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bottom of the rod travels through the water; it is also the diameter of the rod at that 
level. 

 

Figure 4.13. Principle for the filling of a “Canadair” 

1) Give the literal expression for the velocity of the seawater as it exits the upper 
end of the rod, DV , as a function of the velocity V  of the airplane: 

2) We have: 1150 .V km hr−= ; = 3H m ; = 5d cm ; ρ −= 31000 .kgm . 

The reservoir can contain 10 tons of water. 

2.1) Give the numerical values of the velocity and of the volume flow Vq  of the 
water as it exits the rod. 

2.2) What is the distance traveled by the airplane over the course of the complete 
filling of the reservoir? 

3) Show that the airplane must be moving at a minimal velocity minV  for the 
filling to take place. Is this velocity compatible with the plane’s own flight? 

Solution: 

1) This problem is essentially similar to the one involving the filling of the 
tender on the train. We first draw a vertical upward axis and choose an origin at the  
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level of the axis of the lower part (submerged) of the tube. By writing the Bernoulli 
theorem between a point A ahead of the orifice in the water and a point B at the exit 
of the tube inside the reservoir, we have: 

2 2

2 2
A B

A A B B'
V Vp gz p gzρ ρ ρ ρ+ + = + +  [4.109] 

We replace each element of the equations by its value, with the unknown 
variable here being VO′. 

It is important to note that in the uniform flow upstream of the airplane, on any 
plane perpendicular to the streamlines, or in other words on any vertical plane, 

Gp p gzρ= +  is constant. Therefore, on a vertical axis, between the level of the 
ground (here the sea) ( z ε= ) and the level of the collecting tube ( 0z = ), there is:  

0G a Ap p gh pρ= + = +  [4.110] 

; ; ; 0 ;A B a A a A BV V p p p p gh z z h Hρ= = = + = = +  [4.111] 

( )
22

0
2 2

B
a a

VV p gh p g h Hρ ρ ρ ρ+ + + = + + +  [4.112] 

The terms pa and ghρ  are canceled out. There is therefore no need to know pa 
and h. 

As a result, there is: 

² 2BV V gH= −  [4.113] 

2.1) The numerical values of the velocity and flow rate of the water as it exits the 
rod are: 

1 1 ²41,67 ; 2 40,95 ; 19,63 ²
4B
dV m s V V gh m s s cmπ− −= = − = = =  [4.114] 

2 3 18,042.10V Bq sV m s− −= =  [4.115] 

2.2) The filling time tR is the ratio of the volume of the reservoir, which is 10 m3, 
to the filling flow rate, qV: 

2

10 124,3
8,042.10

OL
R

V

V
t s

q −= = =  [4.116] 



164     Fluid Mechanics 

which, with a velocity of 41,67 ms−1, results in a distance L of: 

. 5179 5,18RL V t m km= = =  [4.117] 

3) The minimal velocity VLim of the airplane corresponds to a velocity VB that is 
equal to zero, so that the fluid appears at superior extremity of the tube (the length of 
the cote of the fluid at this level is therefore still H + h and the previous formula 
remains valid) as: 

2 2 0B LimV V gH= − =  [4.118] 

1 12 7,67 27,62 .LimV gH ms km hr− −= = =  [4.119] 

It seems unlikely that an airplane would be able to fly at 27 km.h−1 

EXAMPLE 4.12 (A young shepherd fills his water bottle).– 

A young shepherd has a brother studying fluid mechanics. Perhaps one day he 
will be an engineer, but this is not the question here. After reading the paper for one 
of his brother’s tutorials, he gets the idea to fill his water bottle in an interesting 
way. He gets his hand on a piece of old tubing, of internal diameter 5d mm= . The 
vinyl tube is transparent. He takes all the equipment and his bottle into the 
mountains. He goes to the edge of a torrent, which flows from left to right in the 
figure. In this simplified problem, we can assimilate the torrent to a flow that is 
uniform and permanent. The velocity of the water is 12,5 .torrU m s−= . 

In this problem, the water is considered an incompressible perfect fluid with a 
density 31000 . .ρ −= kg m  ap  is the atmospheric pressure. 

1) The young shepherd places the tube in the torrent as follows: 

The lower part of the tube is horizontal and placed in the torrent at a depth that 
stays equal to zΔ  throughout the whole problem (we shall see in the answer that the 
value of zΔ  is not important). The tube opens out against the flow, and then bends 
in a way that links it to the rest of the tube, which is vertical. 

The vertical cross-sectional area has a length of 1 70h cm= . 
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What is the height 1z  above the free surface of the torrent reached by the water? 
Show that the water does not reach the upper extremity of the tube. 

2) The shepherd understands that if he walks or runs, the water will climb higher 
inside the tube. What is the speed 1U  and in what direction in relation to the torrent 
does the boy have to run for the water to reach a height 1 ?h  To avoid any 
ambiguity, this direction is defined as left to right or the opposite on the figure. Give 

1U  in km.h−1. Must the boy run or can he walk? 

 

Figure 4.14. The shepherd runs alongside the torrent 

3) The shepherd then bends the upper part of the tube, which becomes horizontal 
and goes into the bottle. The vertical part of the tube then has a length 1 50h cm= . 
There is no seal between the tube and the bottle; as a result, the upper extremity of 
the tube stays at atmospheric pressure. 

The little shepherd wants to put 1 l of water in his bottle in less than 2 min. What 
is the velocity 2U  at which he must run? 

4) Was there not a more simple way of filling the bottle? Using this method, how 
long would it have taken for the liter of water to enter the bottle? The neck of the 
bottle has a diameter D of 1,5 cm. 

 

h1

UtorrzO

z

z1
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Figure 4.15. The shepherd fills the bottle 

Solution: 

1) This problem belongs to the same “class” as the one involving the tender on 
the train (Example 4.10) or the one with the “Canadair” (Example 4.11).  

We draw a vertical upward axis, and choose its origin at the level of the axis of 
the lower part (submerged) of the tube. We write out the Bernoulli theorem between 
a point A  very upstream of the orifice in the water, and a point B  at the free 
surface of the liquid in the upper part of the tube. In this question, this level does not 
reach the top of the tube, and the fluid immobile at .B  The flow at A, in the fixed 
reference frame of the tube, is then uniform, with a velocity of ,torrU  and its current 
lines are parallel to the horizontal axis of the tube: 

2 2

2 2
A B

A A B B'
V Vp gz p gzρ ρ ρ ρ+ + = + +  [4.120] 

We replace each element of the equations by its value, with the unknown here 
being 1 Bz z= . We note that in the uniform flow upstream of the tube, on any plane 
perpendicular to the lines of the current, which here is any vertical plane, 

Gp p gzρ= +  is constant. Therefore, on a vertical axis, between the level of the axis 
of the tube ( 0z = ) and the level of the free surface of the torrent, we have z = Δz:  

0G a Ap p g z pρ= + Δ = +  [4.121] 

h2

UtorrzO

z

GourdeBottle
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; ; ; 0;A B a A a A BV V p p p p g z z z z Hρ= = = + Δ = = Δ +   [4.122] 

( )
2 2

10
2 2
Torr B

a a
U Vp g z p g z zρ ρ ρ ρ+ + Δ + = + + Δ +  [4.123] 

The terms ap  and gzρ  are canceled out. There is therefore no need to know ap  
and z . 

This means that: 

v 2
12B TorrV U gz= −  [4.124] 

For 0BV = , 

2
12TorrU g z= Δ  [4.125] 

2

1 0,318 31,8
2
TorrUz m cm
g

= = =  [4.126] 

2) Let us now write the Bernoulli theorem between a point A in front of the 
orifice in the water, and a point 1B  at the upper part of the tube, where the fluid has 
become immobile. The formula established in 1 remains valid:  

2
12B TorrV U gh= −  [4.127] 

It is in the interest of the shepherd to maximize the velocity of the fluid in 
relation to the tube. To do this, he must go against the current. TorrU  and 1U  would 
therefore be added to each other: 

( )2
1 12 0B TorrV U U gh= + − =  [4.128] 

1
1 12 3,7TorrU U gh ms−+ = =  [4.129] 

1 1
1 12 1,206 4,34TorrU gh U ms kmhr− −= − = =  [4.130] 

The young shepherd is walking at a steady pace against the flow of the torrent.  
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3) The previous analysis remains valid, BV  is now longer equal to zero. The 
value of 1h  changes, and becomes 2 0,5 :h m=  

( )2
1 22B TorrV U U gh= + −  [4.131] 

2
1 22Torr BU U V gh+ = +  [4.132] 

( )2
1 2

² 2
4V B Torr
dq sV U U ghπ= = + −  [4.133] 

3
5 6 3 1² 101,96.10 ² ; 8,33.10

4 120V
ds mm q m sπ

−
− − −= = = =  [4.134] 

10, 425 .BV m s−=  [4.135] 

1
2 3,161 .TorrU U m s−+ =  [4.136] 

1 1
2 0,66 . 2,37U m s km hr− −= =  [4.137] 

4) Yes, the young shepherd can put the bottle directly and horizontally into the 
water: 

6 4 3 1 1176.10 ; 4,4.10 0,44 .V TorrS m q SU m s litres s− − − −= = = =   [4.138] 

3

4

10 2, 27
0, 44.10Rt s

−

−= =  [4.139] 

The filling would then take a little more than 2 s (2.27 s). In any case, this 
calculation is only one for determining an order of magnitude. Implicitly, the 
previous calculation assumed that a tube with a current of diameter D  penetrated 
the bottle at a velocity equal to that of the torrent. In reality, the kinematics are likely 
to be more complicated. 

4.3.5. Time-dependent filling 

Other problems regarding filling or draining are more complicated, as the 
velocity of the fluid is no longer constant over time. 
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This velocity depends on the levels of the fluid in the reservoir in question. 
Resolution of the problem and calculations surrounding the filling or draining times 
involve a differential equation. There are, however, many similarities in how these 
problems are resolved.  

EXAMPLE 4.13 (In Cleopatra’s time).– 

Egyptologists have theorized that the architects of Ancient Egypt used ingenious 
ways to slowly lower large stones. 

This process is represented in a movie to spectacular effect, where it is used to 
seal off the tomb where Cleopatra’s historical story ends. Such a system is also 
present during the tragic end of Radamès and Aîda, main characters of the Verdi 
opera titled Aïda. Here we shall create a model of such a device. A stone with a 
height h and a square base a  can slide without friction through a square stone 
chimney, the sides of which are roughly equal to a . As the diagram shows, the 
stone lies on a bed of sand. In the initial moment, the sand is allowed to pour out 
through a hole with a diameter of . There is: d a<< . 0H  is the initial height of 

the bottom of the stone. The densities of the stone and sand are Pρ  and ρS , 
respectively. The sand is considered a perfect and incompressible fluid. Some 
hypotheses used here are perhaps less than realistic, notably the absence of fluid–
solid or solid–solid friction. The model used here is a simplification of reality. 

 

Figure 4.16. In the time of pyramids: clever engineering 

d

a

h

H0

d
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1) Calculate the static pressure within the sand upon contact with the stone, Sp . 

2) Calculate the exit velocity V  of the sand as a function of the height of the 
bottom of the stone, z , counted here from above the applicate 0. 

3) What is the equation for the height z ?  

Deduce the movement of the stone ( )z t .  

4) What is the lowering time of the stone tD ? 

5) Numerical application. Calculate tD: 

32700 .P kg mρ −= ; 32500 .S kg mρ −= ; =0 15H m ; = 3a m ; = 2h m ; = 20d cm ; 
the jet of sand has a contraction coefficient of = 1

C
C . 

Solution: 

This classic problem is part of the category of the draining of receptacles or 
reservoirs. It is characterized by the application of a pressure higher than the 
atmospheric pressure to the higher part. 

1) A pressure is the ratio of a force to a surface. 

The force F
r

 that is applied to the high part of the sand, meaning the lower part 
of the stone, is applied over a square of cote a , with an area of ²a . 

This force F
r

 is the result of the weight of the stone (produced by its volume, its 
density and by g), to which is added the force F'

r
 caused by atmospheric pressure 

ap  applied to the upper cross-sectional area of the stone (which the stone 
“transmits” to its base, and therefore to the sand). 

This gives us the calculation of the pressure Sp , which is the ratio of the sum of 
these two forces to the area of the lower surface of the stone: 

² ; ²P aF a hg F' p aρ= =  [4.140] 

2 ²
² ²

P a
S

a hg p aF F'p
a a

ρ ++= =  [4.141] 

S P ap hg pρ= +  [4.142] 
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2) We mark out the space with a vertical upward axis and choose the origin at 
level of the hole with a diameter d through which the sand pours out.  

The two principles are used: principle of continuity, (conservation of the flow) 
and the fundamental principle of dynamics (in the form of the Bernoulli theorem). 

Principle of continuity: the flow of sand in the upper part is equal to the draining 
flow. VS is the velocity of the sand in its upper part and V is the exit velocity at the 
hole. The principle of continuity means that the flow is conserved between the 
superior cross-section, the area of which is ²S a=  and the jet exiting the hole, the 

area of which is ²
4C
ds C π= . Meaning: 

V Sq S V sV= =  [4.143] 

This relation will be used later on.  

In this question, it will only be used to compare VS and V: 

2² 1; 1
4 ²

S SV Vs d
V S a V

π ⎛ ⎞= = < <<⎜ ⎟
⎝ ⎠

 [4.144] 

For later, the following is defined:  

²
4 ²

s d
S a

πα = =  [4.145] 

Fundamental principle of dynamics. We write out the Bernoulli theorem on the 
same current line between two zones of interest: 

– a point on the upper surface of the sand, S; 

– a point in the jet. As this jet has a small diameter, we can assume that pressure 
within it is constant and, for reasons of continuity, equal to the atmospheric pressure 
pa: 

( )
2 2

0
2 2
S

S S a S
V Vp gz p gρ ρ ρ ρ+ + = + +  [4.146] 
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Knowing that 
2

1SV
V

⎛ ⎞ <<⎜ ⎟
⎝ ⎠

, V can be deduced as: 

( )2 2
2 2s a P

S S

p p hgV gz gz ρ
ρ ρ

−
= + = +  [4.147] 

2 P

S

hV g z ρ
ρ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 [4.148] 

3) We write out the differential equation that governs the cote z (t) of the height 
of the sand. It is important to note that, even if the ratio α  is very low, SV  is not 
equal to zero: 

2 P
S

S

hV V g z ρα α
ρ

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
 [4.149] 

Moreover, this velocity VS is equal at least to the derivative of the cote z(t) in 
relation to time. It should be noted that z decreases with time and that VS is a 
positive parameter, and thus we can write: 

S
dzV
dt

= −  [4.150] 

By combining the previous expressions: 

2 P
S

S

hdz V V g z
dt

ρα α
ρ

⎛ ⎞
= − = − = − +⎜ ⎟

⎝ ⎠
 [4.151] 

      Therefore: 2 P

S

hdz g z
dt

ρα
ρ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 [4.152] 

which is the differential equation we are looking for. This first-order equation 
requires knowledge of a condition at the limits. We know the cote from the top of 
the sand at the initial moment: 

00 ;t z H= =  [4.153] 
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Practical tip. The equation contains rather complex terms. It is recommended to 
simplify its expression by introducing the coefficients A and B: 

dz Az B
dt

α= − +  [4.154] 

With: 

2 ; 2 P

S

hA g B g ρ
ρ

= =  [4.155] 

Faced with this type of expression, it is easier to express t as a function of z. We 
therefore group the terms that contain z on one side and the terms with t on the other 
side: 

d z d t
A z B

= −
+

 [4.156] 

The term on the left-hand side of the equation then appears as the differential of 
an equation: 

2dz d Az B
AAz B

⎡ ⎤= +⎢ ⎥+ ⎣ ⎦
 [4.157] 

We replace dz in the differential equation with the expression found in [4.156]: 

2d Az B dt
A

α⎡ ⎤+ = −⎢ ⎥⎣ ⎦
 [4.158] 

If we integrate the two terms, meaning we pass from the differentials to the 
functions and exchange the places of the terms in the left- and right-hand sides, we 
obtain: 

2t Az B Cte
A

α = − + +  [4.159] 
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We apply the condition at the limits to obtain the value of the constant Cte Cnst, 
which solves the problem:  

( )
1
2

0 0
20; ;t z H Cte AH B
A

= = = +  [4.160] 

0
2 2t Az B AH B
A A

α = − + + +  [4.161] 

Finally, by dividing both sides by α : 

0
2 2t Az B AH B

A Aα α
= − + + +  [4.162] 

4) The lowering time of the stone, tD, corresponds to the moment where z is 
canceled out. 

It is expressed as: 

0
2 2

Dt B AH B
A Aα α

= − + +  [4.163] 

5) We have:  

3 219,62 ; 42,38 ; 3, 49.10 ; 29, 21A SI B SI
A

α
α

−= = = =  [4.164] 

α α
= − + +02 2

Dt B AH B
A A

 [4.165] 

346 5,8Dt s mn= =  [4.166] 

EXAMPLE 4.14 (Submersion of a submarine).– 

A submarine has an external volume 316000SubV m= . We can roughly model the 
submarine in the shape of a right-angle parallelepiped with a length 120L m= , 
width 14l m=  and height 9,5H m= . The value of H is not used in the problem. 
However, it can be used to verify some of the results. 
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Figure 4.17. The submarine 

This submarine is made up of two identical ballasts located on the side of the 
hull. Each has a flat bottom with a length 110BL m=  and width 3Bl m= . 
Depending on how the ballasts are filled, the submarine can float or it sinks.  

The mass of the submarine is 1200M t=  when the ballasts are empty. The 
density of water is 31000 .kg mρ −= . The atmospheric pressure is 1ap bar= . The 
water is considered a perfect fluid throughout the entire problem. 

 

Figure 4.18. The submerging submarine 

1) The ballasts are empty. The submarine floats. The height immh  of the 
submerged part of the hull is called the draft when the ship is floating. What is this 
draft here? 

 

3 m 3 m

120 m

Ballast 
fond = 110 x 3 m²Bottom = 110 x 3 m2 

himm
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2) What minimal mass of water
Ball

M must be introduced into each ballast for the 

submarine to become completely submerged? The two ballasts are filled with the 
same volume. What is then the height of the volume of water h in each ballast? 

MBall is the amount of water that in introduced in practice. It creates a different 
balance. The submarine can then go up or down in the water using its propellers and 
fins. 

3) The submarine is at port. Accidentally, the ballasts are filled to a height h, 
calculated in question 2 for complete submersion. Fortunately, the ship is properly 
secured and its depth of submersion remains immh  calculated in question 1. 

The ballasts are then emptied. For this, a pressure if immh  is applied through 
compressed air, and is maintained over time. Each of the ballasts is then drained 
through an orifice with a diameter of 10 cm located at its bottom. The parameter  
x (t) is the height of the water in a ballast at a time t during draining. The function 
x(t) is clearly the same for each of the two ballasts.  

3.1) What is the static pressure ORp  in the horizontal plane passing through the 
orifices of the ballasts?  

3.2) Noting that the speed of descent from the free surface SV  in each ballast is 
very much lower than DV , the draining speed at the exit orifice, express DV  as a 
function of ( )x t . 

3.3) Write the relation between the draining speed at the exit orifice, DV , and the 

derivative .dx
dt

 

3.4) Write out the differential equation solved by ( )x t . 

3.5) Resolve this equation and calculate the draining time for each ballast. 

Solution: 

1) The submarine is in equilibrium under the influence of gravity and of the 
Archimedes principle: 

;imm imm
MMg lLh g h
lL

ρ
ρ

= =  [4.167] 

7,14h m=  [4.168] 
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2) Considering a submerged volume to that of the submarine ,subV  the new 
equilibrium can be written as: 

( )2 Ball subM M g V gρ+ =  [4.169] 

6; 2.10 2000
2

sub
Ball Ball

V MM M kg tρ −
= = =  [4.170] 

6,06Ball

B B

M
h m

l Lρ
= =  [4.171] 

4.4. Draining of the ballasts 

3.1) What is the static pressure por in the horizontal plane passing through the 
orifices of the ballasts?  

In the water of the port, the system is “lowered” from the free surface to a depth 
of immh . The increase in pressure is therefore subg hρ , and  

or a subp p ghρ= +  [4.172] 

51,7.10 1,7orp Pa bar= =  [4.173] 

3.2) First note that the equation of continuity allows us to write out the flows of 
water in each ballast between the free surface, with an area of B Bl L t, and the orifice 

with an area of π
²4d  as equal: 

² ²;
4 4B B surf D surf D

B B

d dl L V V V V
l L

π π= =  [4.174] 

5 2 10 22,38.10 ; 5,7.10surf D surf DV V V V− −= =  [4.175] 

We mark the applicates on an upward vertical axis and place the origin at the 
bottom of the ballast. We apply the Bernoulli theorem along the same streamline 
(which has to exist) between a point of the free surface of the ballast (whose 
applicate is x, velocity is Vsurf and is very low and pressure is psup) and a point  
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located in the orifice, at the bottom and at the exit point of the ballast (whose cote is 
0, velocity is VD and pressure is por): 

2 2

sup (0)
2 2
surf D

orp

V Vp g x p gρ ρ ρ ρ+ + = + +  [4.176] 

It is important to note that 2 2
surf DV V<< : 

sup2 orp
D

p p
V gx

ρ
−⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 [4.177] 

3.3) The continuity equation allows us to write the flow in each ballast between 

the free surface, with an area of B Bl L  and the orifice, with an area of ²
4
dπ  as equal: 

²
4surf D

B B

dV V
l L

π=  [4.178] 

While very low, surfV  is not equal to zero. Moreover, the velocity surfV  is the 
speed of “descent” from the free surface. As the cote of the surface, x, is counted on 
an upward axis, the derivative of x is negative. VD is a norm of the velocity, and 
therefore positive, so there is: 

surf
dxV
dt

= −  [4.179] 

²
4 D

B B

dx d V
dt l L

π= −  [4.180] 

3.4) Considering the expression of DV  found previously, which is a function of x, 
we obtain the desired equation: 

sup² ² 2
4 4

orp
D

B B B B

p pdx d dV gx
dt l L l L

π π
ρ
−⎛ ⎞

= − = − +⎜ ⎟
⎝ ⎠

 [4.181] 

 

www.ebook3000.com

http://www.ebook3000.org


Dynamics of Inviscid Fluids     179 

As always with such an expression, the writing should be simplified by 
introducing two constants A and B, which can be calculated from the information 
given in the problem: 

dx A x B
dt

= − +  [4.182] 

sup8 7² ²2 1,11.10 ; 2 9,4.10
4 4

orp

B B B B

p pd dA g SI B SI
l L l L

π π
ρ

− −−⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
 [4.183] 

3.5) The differential equation has a relatively common form in problems relating 
to filling and draining. It is more useful to resolve it by expressing t as a function of 
x: 

dx dt
A x B

= −
+

 [4.184] 

2 Ax B t C
A

+ = − +  [4.185] 

Considering the condition at the limits 0 immt x h= = : 

2 2Ax B t Ah B
A A

+ = − + +  [4.186] 

The draining is finished when x is equal to zero. The time Dt  is therefore: 

( )2 6142 1 42 22Dt Ah B B s h mn s
A

= + − = =  [4.187] 

4.5. Synthetic problems 

Finally, we will finish with some synthetic problems that call on all of the 
techniques seen above. 

EXAMPLE 4.15 (Artesian wells).– 

A cave contains water. The rock is porous between the cave and a point A 
located in the valley. This way, the water can pass through the ground. 
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All of the required parameters are defined in the figure. We can consider the 
cave as a reservoir where the fluid is in a resting state and that the porous zone is 
made up of a large number of channels that link the cave and the ground. The free 
surface of the reservoir is at an altitude H above the ground. 

 

Figure 4.19. An artesian well 

1) To what height h  in relation to the ground will the water spurt up?  

2) The flow in A  is captured using a tube with a diameter d and drinkable (or at 
least we assume) is obtained. What is the maximum volume flow Vq  of water that be 
obtained in a faucet on the third floor located at an altitude of FauH  in relation to ?A  

3) Numerical application. We have 30H m= ; 9FauH m= ; 31000 .water kg mρ = ; 
14d mm= . Give the values of h  (question 1) and Vq  (question 2)? Does the value 

obtained for Vq  seem realistic? Justify the answer qualitatively. 

Solution: 

This problem is synthetic in that mixes questions relating to the determination of 
velocities and of cotes (draining and jets). 

1) We create a frame for the space using an upward vertical axis Oz . The origin 
O  is fixed at the ground level. 

A jet is a “free” flow, meaning that it touches no solid surfaces. For perfect fluid 
jet, the Bernoulli theorem can be applied. 

 

Zone poreuse A
HLav

CaverneCave 

Porous zone 
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For such a flow, the total pressure ² ²
2 2T G

V Vp p gz pρ ρ ρ= + + = +  is constant.  

In a free jet flowing into the atmosphere, for reasons of continuity, the pressure 
is constant and equal to atmospheric pressure. 

This can be shown rigorously for a vertical jet, which can be considered as a 
vertical flow (which is an approximation, as the jet is necessarily expanding). In any 
plane that is perpendicular to the lines of current, in this case horizontal, Gp  is 
constant, so .Gp p gz Cnstρ= + =  On a horizontal plane, z is constant; therefore, in 
the jet, the pressure p  is constant. At the interface between the jet and the air, the 
pressure is continuous. p is therefore equal to atmospheric pressure ap  in both the 
air and liquid. This is the case no matter the altitude z : 

² ²
2 2 a

V Vp gz p gzρ ρ ρ ρ+ + = + +  [4.188] 

As a result, V and z vary in opposite directions. There is therefore an altitude at 
which the jet has a velocity of zero. We must look at the limits of the reasoning: by 
all rigor, the conservation of the flow means that the cross-sectional area increases 
as the velocity decreases. The lines of the current are therefore not rigorously 
parallel. Moreover, a velocity of zero tends toward an infinite cross-sectional area at 
the limit. For a calculation of orders of magnitude, which includes any use of the 
Bernoulli theorem, this reasoning is sufficient. In reality (a water jet in a park, for 
example), the jet does not keep its integrity, becomes unstable and breaks into drops. 
By applying the Bernoulli theorem on a current line between the point A of the free 
surface of the cave and the point B at the top of the jet, we obtain: 

2 2

2 2
A B

A A B B
V Vp gz p gzρ ρ ρ ρ+ + = + +  [4.189] 

By applying the values given with the problem: 

(0) (0)a ap gH p ghρ ρ ρ ρ+ + = + +  [4.190] 

The following is immediately apparent:  

h H=  [4.191] 
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This can be interpreted easily: the fluid in the reservoir has a potential volume 
energy of .gHρ  This energy is transformed into kinetic energy in the jet. At the top 
of the jet, any kinetic energy is returned to its potential form. The “kinetic” and 
“gravitational” energies are exchanged, as the pressure energy is constant along the 
whole jet submerged in the air, which is at atmospheric pressure. 

2) We apply the Bernoulli on a current line between the point A of the free 
surface in the cave and the point B at the top of the jet. 

At the altitude Lavh , the velocityV is such that: 

2

(0)
2a a LAV

Vp gH p ghρ ρ ρ ρ+ + = + +  [4.192] 

Therefore: 

( )2 LAVV g H h= −  [4.193] 

The flow is therefore: 

( )2V LAVq SV S g H h= = −  [4.194] 

where ²
4
dS π=  is the cross-sectional area of the tube. 

3) Numerical application. 30h H m= = : 

( )2V LAVq SV S g H h= = −  [4.195] 

4 1² 1,5410 ² ; 14,69
4
dS m V msπ − −= = =  [4.196] 

3 3 1 12,2610 2,26 .Vq m s litres s− − −= =  [4.197] 

NOTE.– This flow comes out as 1136 .Vq liters mn−= , which can quite 
understandably be considered a bit excessive (a household faucet has a flow of  
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110 .liters mn− ). This is an inherent problem involving the blind application of the 
Bernoulli theorem. Under real conditions, head losses must also be considered.  

EXAMPLE 4.16 (Injection problems).– 

Here we look at the different phases involved as a nurse performs the injection of 
a medication into a patient.  

Part A. – During the injection: 

A nurse must inject a patient with a quantity of medication equal to 38cm . 
Despite its high price, this medication is made up mainly of distilled water, and as 
such has a density 31000 .kg mρ −= . To do this, she inserts the needle of the syringe 
into the patient at the relevant location. We assume that inside the patient the 
pressure is equal to atmospheric pressure Pa present outside the patient. The internal 
component of the syringe is a cylinder of diameter 2D cm= . The internal diameter 
of the needle where the liquid exits is equal to 0,5d mm= .  

 

Figure 4.20. Diagram of the syringe 

1) The nurse wants to inject the 38cm  of medication in 10 s  at a constant 
velocity . 

1.1) What is the instantaneous flow rate qv inside the patient? What is the 
velocity V ? 

1.2) What pressure must be applied by the piston on the liquid in the syringe?  

 

d = 0,5 mm
D = 2 cm

V
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1.3) What force F  must be applied by the nurse’s finger onto the syringe? Note 
that the effect of this force is added to the effect of the external atmospheric 
pressure. 

2) Because of a high workload, the nurse decides to accelerate the rhythm and 
empty her syringe in 1 s. What force 'F  must she then apply to the syringe? Express 
this force in kilograms-force ( )kgf . Will she have the strength to accelerate her 
task? 

Unfortunately, it is often necessary to re-state that a kilogram-force is the unit of 
force, the intensity of which is equal to the weight of a mass of 1 kg. 

Part B. – Before injection: 

The nurse has had to inject a patient with an amount of medication equal to  
8 cm3, which, while expensive, is made up mainly of distilled water, giving it a 
density ρ  equal to 1,000 kg m−3. Moreover, this liquid is considered a perfect fluid. 
The internal aspect of the syringe is a cylinder with a diameter = 2D cm . The 
internal diameter of the needle where the liquid exits is 0,5d mm= .  

Part B. – Problem 1. Filling the syringe: 

Before injection, the syringe must be filled. The products to be in injected are 
often stored in a glass vial with a rubber cap at the top. To fill the syringe, the nurse 
pierces the cover, which then forms a seal and sucks the product into the syringe by 
pulling the piston, which acquires a velocity PV . All nurses know that if they pull 
too quickly on the piston, the product is not aspirated. We shall explain this 
phenomenon here. 

 

Figure 4.21. Filling the syringe 

 

pa

d = 0,5 mm
D = 2 cm
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For this, we use the following hypotheses: 

– the vial is considered a reservoir mainly containing an immobile liquid; 

– atmospheric pressure governs the liquid. 

We assume that the velocity of the liquid at the level of the piston is equal to the 
velocity of the piston. 

1) Deduce the velocity inside the needle of the syringe. 

2) Give the expression for the pressure neep  in the needle. 

3) Show that from a certain value of PV , a pocket of water vapor appears in the 
needle and blocks aspiration. The parameter Sp  represents the tension of the 
saturating vapor of the water at ambient temperature. 

4) Numerical application.  

At room temperature, the tension of the saturating water vapor is equal to 
20 mm  of mercury.  

4.1) At what value of PV  does the aspiration process start to be blocked? 

4.2) What is then the minimal time τ  required for 8 cm3 of product to enter the 
syringe? 

Part B. – Problem 2. Eliminating air: 

Just before injection, the nurse does the well-known “squirt” gesture to evacuate 
any air that could be present in the needle. 

As we know, any air present in a blood vessel causes coagulation, the 
consequences of which could from passing pains to a lethal embolism. For this 
reason, she points the needle upward and pushes the piston with a force of F. L is the 
distance at that moment between the top of the piston and the extremity of the 
needle. A jet escapes from the needle. This jet climbs to an altitude of h , where its 
velocity becomes zero. 

1) Show that the velocity LV  of the liquid decreases from the moment it leaves 
the needle. 

2) What is the height above the needle reached by the jet? 

3) A.N. If 2,6F N=  and = 10L cm , find the value of h . 
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Figure 4.22. Evacuating the air 

Solution: 

A) During injection 

1) Thoughts and preliminary calculations. 

The forces applied to the piston of the syringe cause a pressure to be applied to 
the fluid in contact with the piston that is higher than the atmospheric pressure. As 
the system is horizontal, gravity plays no role and the changes in energy take place 
between the potential pressure energy and kinetic energy. 

We can therefore apply the Bernoulli theorem between a point A  in contact with 
the piston inside the syringe and a point B  located on the same line of current just at 
the exit of the needle. 

1.1) S  is the internal cross-sectional area in the body of the syringe and s is the 
exit cross-sectional area of the needle. Furthermore, PV  is the velocity of the piston 

d = 0,5 mm

D = 2 cm

L

h

Jet
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and V  is the velocity of the fluid as it exits the needle. Over the 10s  of injection – 
which is assumed at a constant speed – the flow rate is: 

6
7 3 18.10 8.10 .

10Vq m s
−

− −= =  [4.198] 

7² ; 1,96.10 ²
4V
dq sV V s mπ −= = =  [4.199] 

14,08 .V m s−=  [4.200] 

The principle of continuity allows us to write:  

V Pq sV S V= =  where PV  is the velocity of the piston. 

Therefore:  

2

1 ; P
s d V V
S D

⎛ ⎞= << <<⎜ ⎟
⎝ ⎠

 [4.201] 

We choose a point A  in the fluid in contact with the piston and a point B in the 
jet at the exit point of the needle, on the same current line. The Bernoulli theorem is 
written as: 

2 2

2 2
A B

A A B B
V Vp g z p g zρ ρ ρ ρ+ + = + +  [4.202] 

; ; ; ;A P B a A B A P Bp p p p z z V V V V= = = = =  [4.203] 

2 2
2; ²

2 2 P

P
P a

V Vp p V Vρ ρ+ = + <<  [4.204] 

22 2

2 2 2
P

P a a
VV Vp p pρ ρ ρ= − + ≈ +  [4.205] 

1.2) The pressure on the piston is the sum of the atmospheric pressure and the 
additional pressure caused by the force F

r
. As a pressure is the ratio of a force to an 

area S , and considering [4.205]: 

24
² 2P a a a

F F Vp p p p
S D

ρ
π

= + = + = +  [4.206] 
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1.3) We can deduceV and F  as: 

8
²

FV
Dπρ

=  [4.207] 

2 ² 2,62
8
DF V Nπρ= =  [4.208] 

2) Accelerate injection 

Draining is to take place over a period of time that is 10 times smaller. The mass 
flow rate will therefore be 10 times higher, as will the velocity .V  The force V is 
proportional to 2V . Therefore, it will be multiplied by 100. 262F N= . To translate 
this force into kilogram-force, it must be divided by g . This results in 
262 26,7
9,81

kgf= . A force of 26,7 kg is undoubtedly excessive for the thumb of a 

normal nurse. 

B) Before injection 

Problem 1. Filling the syringe: 

1) In this type of question, it is important to work out what we know and what 
we are looking for to establish a real resolution “strategy”. We know the pressure in 
the reservoir where the velocity is equal to zero and we are looking for the pressure 
inside the needle. For this, we need to know the velocity within the needle. We 
know the velocity at the level of the piston, but not the pressure at the level of this 
piston (which is clearly a depression compared to ap ). The flow must therefore be 
calculated from the velocity at the piston, the velocity deduced from the flow 
(continuity principle) and the Bernoulli theorem must be used (fundamental 
principle of dynamics) to link the pressure of the immobile fluid in the reservoir 
with the fluid in the needle. 

The value of the flow rate is: 
6

7 3 1810 8.10 .
10Vq m s

−
− −= =  

The continuity principle allows us to link the respective velocities in the needle 
and at the piston: 

² ²
4 4V needle P P needle P
d Dq sV S V V Vπ π= = = =  [4.209] 
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2

needle P
DV V
d

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 [4.210] 

2) We apply the Bernoulli theorem between two points of the same current line, 
A being in the reservoir ( 0V = ) and B  in the needle. The sides are identical, 
therefore: 

2 2

2 2
A B

A A B B
V Vp gz p gzρ ρ ρ ρ+ + = + +  [4.211] 

2

0
2

needle
a needle

Vp pρ+ = +  [4.212] 

2

2
needle

needle a
Vp p ρ= −  [4.213] 

The flow in the needle is undergoing a depression, and this is more the case as 
the velocity in the needle is increased. For too high velocities, the pressure in the 
needle becomes lower than the saturating water vapor pressure at the ambient 
temperature. This causes cavitation: a plug of vapor blocks the flow in the needle 
and therefore stops the aspiration. The filling process is stopped. 

As a result, for normal filling, we must have:  

needle Sp p>  [4.214] 

And therefore also: 

4.1) The equation gives a maximum value of 13,95 m/s for the velocity of fluid 
in the needle, which results in a value of 8,72 mm/s for the piston. 

4.2) The volume flow rate is then equal to 2,74 10-6 m3/s. The time for 
operation is then 2,9 s 

2 a S
needle

p pV
ρ
−

<  [4.215] 

Problem 2. Evacuating air: 

1) We are dealing with a classic jet problem 

We create a frame using an upward vertical axis Oz . We fix the origin O at the 
level of internal surface of the piston. A jet is a “free” flow, meaning that it does not 
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have any solid borders. For a jet of a perfect fluid, the Bernoulli theorem can be 

applied. In such a flow, the sum ² ²
2 2 G

V Vp gz pρ ρ ρ+ + = +  is constant. In a free 

jet flowing into the atmosphere, for reasons of continuity, the pressure is equal to  
atmospheric pressure. This can be demonstrated rigorously for a vertical jet, which 
can be treated as a parallel flow (this is an approximation, as the jet is necessarily 
expanding). In any plane that is perpendicular to the lines of current, so horizontal in 
this case, Gp  is constant, and therefore Gp p gz Cnstρ= + = . On a horizontal 
plane, z  is constant, and therefore, in the jet, p is constant. At the interface between 
the jet and the air, the pressure is continuous. It is therefore equal to atmospheric 
pressure pa in the air and in the liquid. This is true regardless of the value of the 
altitude : 

² ²
2 2 a

V Vp gz p gzρ ρ ρ ρ+ + = + +  [4.216] 

As a result, V and z vary in opposite directions. There is therefore an altitude for 
which the jet has a nil velocity. We must look at the limit of this reasoning: in all 
rigor, the conservation of the flow means that the cross-sectional area increases with 
the decrease in velocity. The lines of the current are therefore not rigorously parallel. 
Furthermore, a velocity of zero results in an infinite cross-sectional area. For a 
calculation of orders of magnitude, which includes any use of the Bernoulli theorem, 
this reasoning is sufficient. In reality (a water jet in a park, for example), the jet does 
not keep its integrity; it becomes unstable and breaks into drops. By applying the 
Bernoulli theorem on a current line between the point A on the surface of the piston 
on the inside of the body of the syringe and the point B at the top of the jet, we get: 

2 2

2 2
A B

A A B B
V Vp gz p gzρ ρ ρ ρ+ + = + +  [4.217] 

By inserting the values given for the problem: 

( )
2

(0) (0)
2
P

P a
V p g p g L hρ ρ ρ ρ+ + = + + +  [4.218] 

( )

2

2
2

2

P
P a

P aP

V p p p pVL h
g g g

ρ

ρ ρ

+ − −
+ = = +  [4.219] 

4
²P a a

F Fp p p
S Dπ

= + = +  [4.220] 

z
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4 8276
²P a

Fp p Pa
Dπ

− = =  [4.221] 

0,844P ap p m
gρ

−
=  [4.222] 

Furthermore, as the force F
r

 is identical to the one found in question 1, the 
velocity V  at the exit of the needle is identical, and is 14,08 .V m s−= . The term 

2

2
PV
g

 can be deduced, and can be considered negligible:  

2 2
3 1 72,5510 ; 3,31 10

2
P

P
VdV V ms

D g
− − −⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

2) As a result, the height of the jet, +L h , measured from the internal surface of 
the piston, is: 

2

0,844
2

P a P aP p p p pVL h m
g g gρ ρ

− −
+ = + ≈ =  [4.223] 

3) This gives us h  as: 

0,844 0,744 74, 4h m L m cm= − = =  

EXAMPLE 4.17 (Heron’s fountain).– 

We are going to analyze and predict the functioning of the device represented on 
the following page. Invention of the device is credited to Heron (in 120 BC). The 
dish D  and the two reservoirs M  and N  are filled with water, and consequently a 
jet appears above D . In this problem, we shall attempt to predict the height of the jet 
of water. To make things more simple, we shall describe the system and calculate 
using a simpler geometry of the recipients. The device is made of two cylindrical 
recipients with diameters of RD , called M  and N . These recipients are plugged 
and filled partially with water. They are connected to various tubes, and the 
connections are watertight. A container D , with a diameter of 

R
D , contains water 

that has a free surface with the surrounding air, at atmospheric pressure ap . The  
 
 
 



192     Fluid Mechanics 

parameters a , b  and C are the respective initial water levels, measured from the 
bottom of each recipient, in D , M  and N . Three tubes A , B  and C  go through 
the system. A  links M  and N . Both its extremities are in the air. A is only used to 
equalize the pressures Np  and Mp  of the air in both recipients M  and N . B  links 
the bottom of D  and the liquid contained in N . It is therefore permanently filled 
with liquid. C  has its lower extremity bathed in the liquid contained in M  and, at 
the beginning of the experiment, just reaches the free surface of D . It is also 
permanently filled with water. d D<<  is the diameter of C . As we shall 
demonstrate, the combination of pressures and heights of water will result in a jet of 
water that comes out of C . We will take as the origin of the altitudes z  the 
horizontal plane associated with the free surface in N  right at the beginning of the 
experiment. The free surface in M  at the start of the experiment is the applicate h . 
The free surface of D  is the applicate 'h . The upper extremity of C is therefore 
practically at the applicate 'h . 

1) We consider that the liquids contained in D  and N  are in equilibrium. Give 
the relationship between Pa and Pn. Deduce the value of np , which we shall use 
later in the problem. 

2) By applying the Bernoulli theorem between the free surface of M and the 
outside, find the applicate Z  that the water jet exiting C  reaches at the start of the 
experiment. What is the height Jeth  of the jet above the free surface in D ? We 
assume that as it exits the tube C  the jet is a perfectly uniform and cylindrical flow. 
Calculate the flow Vq  of this jet. 

3) Numerical application. We have:  

Density of water 31000 .kg mρ −= ; 

Diameter of D , M  and N : 6D cm= ; 

Diameter of : 1d mm=  

5 ; 4 ; 6 ; 50 ; 1a cm b cm c cm h cm h' m= = = = = . 

For simplicity, we shall assume that the value of the flow found at the start of the 
experiment remains valid during all of the draining of D . 

Furthermore, we can consider that inferior extremity of C is practically at the 
bottom of .M  How much time will the jet last? 

C
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Figure 4.23. Heron’s fountain and its diagram 

Solution: 

– Preliminary thoughts: 

This device can be puzzling at first. Before attempting any calculations, it is best 
to try to understand how this “fountain” works. This principle is actually simple. 
The height of water h'  in B  creates an overpressure in relation to atmospheric 
pressure. This pressure is “transmitted” by the tube A  to the container M . The free  
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surface of M, which is only at a height of h h'−  below D  is therefore equipped 
with potential energy due to the height h. The excess potential energy ( )g h' hρ −  
can thus be transformed into kinetic energy. If this is understood, the problem 
becomes a “classic” one. 

1) Let us consider the fluid contained in D , N  and in the tube B . This fluid 
forms a continuous volume. Going from the free surface of D  to the free surface of 
N  is a drop of h'  into a fluid in equilibrium. The pressure passes from ap  to Np  
and, according to the fundamental theorem of hydrostatics, there is: 

N ap p gh'ρ= +  [4.224] 

2) The presence of tube A equalizes the pressures of the air contained in N  and 
in M . By writing the Bernoulli theorem between the surface of M  and a point of 
the jet located above the free surface of D  allows us to calculate ( )V z . We must 
remind ourselves that the origin of the sides (altitudes) located at the free surface of 
N : 

( )2 ²
2 2
M

M a

V zV p gh p gzρ ρ ρ ρ+ + = + +  [4.225] 

Considering the previous remark and the result obtained in 1: 

( )2 ²
2 2
M

N a

V zV p gh p gzρ ρ ρ ρ+ + = + +  [4.226] 

which means: 

( )2 ²
2 2
M

a a

V zV p gh' gh p gzρ ρ ρ ρ ρ+ + + = + +  [4.227] 

We note that, considering the conservation of the flow between M and the  
jet: 

( ) 4

2 4

²
1

M

V z D
V d

≈ <<  [4.228] 
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We have: 

( ) ( )2V z g h' h z= + −  [4.229] 

The “theoretical” height hjet of such a jet corresponds to the cote, where the 
velocity becomes nil: 

Jeth h' h= +  [4.230] 

We can provide a simple interpretation of this result using energetic terms. The 
height of water h'  has “given” the fluid in N  a potential energy gh'ρ  per unit of 
volume. This energy is “transmitted” by the tube A  to the recipient M . In the jet, 
this potential energy is transformed into kinetic energy, which is exchanged with 
potential energy as the jet goes up. At the summit of the jet, the potential is the same 
as at the start. The jet therefore “climbs” a height h  above the free surface of M , or 

Jeth h' h= +  above the origin of the applicates located at the free surface of N . This 
provides the flow of the jet, calculated at the exit point of C , or in other words at 
the applicate :z h'=  

( )² ²
4 2V
d dq V h' ghπ π= =  [4.231] 

3) At the exit point, the flow of the jet is calculated as: 

( )
6

6 3 1² ² 10 *0,5 3, 48.10 .
4 2 2V
d dq V h' gh g m sπ π π

−
− −= = = =  [4.232] 

The amount of liquid OLMV  available in M is: 

4
2 4 3² 36.10 * 4.10 1,13.10

4 4OLM
dV b mπ π

−
− −= = =  [4.233] 

This volume is emptied with a flow 6 3 13, 48.10 .Vq m s− −=  [4.234] 

The duration of the jet is: 

4

6

1,13.10 32,5
3,48.10

OLM
D

V

Vt s
q

−

−= = =  [4.235] 
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When the jet empties the recipient M , the volume of air in this recipient is likely 
to increase. To maintain the pressure in M , the level in N  has to increase again, 
while the level in D  must drop. In all rigor, 'h  will decrease. At the extreme, its 
value goes from the initial value 1h' m=  to the value 

( ) ( )1 0,04 0,06 0,9h' a c m− + = − + = , which is a relative variation of . It is 
the effect of this relative variation that is neglected when we assume in question (1) 
that PN preserves its value calculated at the start of the experiment. 

%10
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5 

Viscous Fluid Flows:  
Calculating Head Losses 

5.1. Introduction 

The hypothesis of an inviscid fluid is useful as it simplifies a great number of 
problems. This hypothesis involves neglecting the forces that relate to viscosity. 
These forces are proportional to viscosity gradients in more or less complex ways. 
This remains true as long as these velocity gradients are low. As such, it is never a 
fluid that is perfect but rather the flow. 

When “the fluid is no longer perfect”, the loss of (mechanical) energy due to 
friction must be accounted for. The energy contained in a flow, as seen before, can 
be expressed as a head. This concept is useful in quantifying the energy contained in 
a flow passing through a conduit. The loss of energy along a pipeline is then called a 
loss of head. This leads to different problems of varying complexities. Two 
approaches can be taken. 

The first, called the “technical” approach and often used in practice, uses 
empiricism to find a solution. This is the case, for example, when supplying an 
installation with a fluid through a pipeline network. First, we evaluate the 
mechanical energy “lost” through friction between the beginning and end of the 
pipeline, which is expressed as a loss of head. 

The second step is to directly calculate this loss of head using a sequence of 
processes that, except in the very limited case of the application of a laminar flow in 
a conduit (Poiseuille theory), is based on the use of experimental data. Here, we 
shall call this a head loss calculation. 

Fluid Mechanics: Analytical Methods, First Edition. Michel Ledoux and Abdelkhalak El Hami..
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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A second approach, which is more analytical, considers the structure of the flow 
and involves the resolution, more or less accurately, of the fluid mechanics equation 
within a given geometry. This approach is used by researchers or engineers who 
need to have a better understanding of the structure of a flow when looking at 
various parameters (velocity profiles, pressure, etc.) that are hidden when using the 
previous approach. This chapter focuses on the first approach. It looks at the 
essential elements involved in calculating a loss of head. The following chapter has 
a more analytical approach and looks at “external” flows, boundary layers, channel 
flows, etc. It will also consider the non-diagonal terms ijτ  of the constant tensor. In 
a number of problems, a two-dimensional approach is possible, which simplifies the 
writing of the tangential constraint. This is the case for boundary layers where the 
orders of magnitude of the gradients are involved. This is also the case in conduits or 
channels where the gradients become one-dimensional. 

5.2. The notion of head: generalized heads 

The proof for the Bernoulli theorem showed a total pressure Tp , which was 
interpreted as the sum of three forms of volume energies. In a flow with no friction, 
this energy is preserved throughout the flow: 

²
2T
Vp p gzρ ρ= + +  [5.1] 

This energy is expressed as a height through the concept of a head. To achieve 
this, the total pressure 

Tp  is divided by ϖ ρ= .g  This results in a head H, which is 
dimensionally a height: 

² ²
2 2

GT pp V p VH z
g g g g gρ ρ ρ

= = + + = +  [5.2] 

gϖ ρ=  is the density of the fluid. A habit in hydraulics is to pronounce this ω  
with a bar over it as “pi” (for its resemblance with π ). Any other benefits of this 
practice are not obvious. Let us note at this stage of the definition that the head is 
applied at a point of the flow. In a perfect fluid, this head is maintained along the 
whole current line: this is Bernoulli’s theorem. 

The friction is no longer negligible, mechanical energy is lost along the flow and 
the head decreases. There is a problem at this point, which is encountered when 
looking at a flow in a conduit (a laminar flow, for example). This is known as a 
Poiseuille flow. Let us consider a Poiseuille flow between two sections 1S  and 2S  of 
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a tube. The radius of the tube is R, its length is L , the dynamic viscosity of the fluid 
is μ, its density ρ  and its kinematic viscosity is v. The head loss between two points 
of a same line of current, one located on 1S  and the other on 2S , is not dependent on 
the current line considered. It is equal to: 

12 4 4

8 8V VQ L Q L
H

R g R g
μ ν

π ρ π
Δ = =  [5.3] 

Determination of this formula requires some knowledge of fluid mechanics, 
which we shall refresh in due course. However, the head calculated on the same 
section using this formula will depend on the current considered. It is dependent on 
r, as the Gp  is constant on the same section (the flow is parallel but not uniform): 

Gp p gzρ= +  [5.4] 

A head must therefore be defined that is valid over the whole section. 

We show that we can therefore define a generalized head. 

NOTE.– This generalized head is defined by writing that it must be conserved 
throughout the flow of a perfect fluid: 

²
2

q G
G

V p
H

g g
α

ρ
= +  [5.5] 

where α  is a coefficient that depends on the velocity profile: 

3

3
S

q

V dS

SV
α =

∫∫
 [5.6] 

In practice, in a laminar flow, ,α = 2  and in a turbulent flow (in the case of a  
“ −one seventh ” profile), 1,06.α =  

It is important to note that this generalized head only makes sense in zones 
where the flow is locally parallel, which is the case in a tube with an established 
state, but this is not the case in an establishment area or in most flow singularities. 
Using this generalized head, we can calculate a loss of head arising between two 
sections of a hydraulic circuit. 



200     Fluid Mechanics 

5.3. Practical calculation of a head loss 

5.3.1. Introduction 

The flows found along a circuit are fairly complex. Usually, a circuit is a 
combination of straight lengths of tube mixed (major head losses) with various 
singular elements (minor head losses in bends, different changes in the sections, 
etc.). In straight tubes, the laminar flow of a simple structure is well known in theory 
and is in a minority compared to turbulent flows, which are also far more complex. 
Concerning the features of the conduit, where the flow is very disturbed, processing 
is very intensive, when possible at all. The calculation of head losses is essentially a 
practical endeavor. The mechanical energy “lost” along the flow must be provided to 
the circuit in an appropriate manner. Most often, this is achieved using 
turbomachinery, a ventilator or a pump. In other cases, the energy can be provided 
by a reservoir (for example, retaining water in the case of a hydroelectric dam). 

Note that the term “loss of energy” in no way insinuates an exception to the 
concept of conservation of energy. The “mechanical” energy is partially transformed 
into thermal energy as a result of friction. Work is turned into heat and the first 
principle of thermodynamics is respected. As a result, head losses go beyond “pure” 
mechanics and enter the realm of thermodynamics. However, in most cases, the 
temperature increase that results is not noticeable. This is not always the case, for 
example, when an object enters the atmosphere from space. The heat caused by 
friction is great enough to create plasma that can lead to the sublimation of the 
material (for example, of a satellite). This is the reason for the presence of refractory 
tiles on space ships and the issues caused by them becoming unstuck. Any physicist 
or engineer, no matter the area, is likely to need to resolve a problem relating to a 
fluid supply. It is therefore useful to be able to evaluate, even roughly, the head 
losses of the circuit being supplied so as to choose an adequate pump or ventilator. 
The precise calculation of a circuit, especially in terms of the so-called “minor” head 
losses, can require the reading of large hydraulics manuals. Moreover, there are 
some programs available that are more or less adapted to these situations. We would 
recommend that professionals stick to these tools; we shall instead give here the 
occasional user a lighter tool for evaluating head losses, which do not go beyond the 
limits of this work. The following examples provide information (formulas and data) 
and a method that we have judged sufficient to size up a circuit, whether in a 
company or in a laboratory. In a circuit, we can differentiate the linear parts of 
constant sections (tubes) from the conduit singularities. Note that the loss of head 
(which is a loss of energy) is often important in singularities. It is therefore vital to  
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pay special attention to these singularities in designing such a circuit. A head loss 
calculation is consequently divided into two parts 

a) The calculation of the “major” loss of head in the straight tube parts, or linear 
head losses. 

b) The calculation of the “minor” loss of head in the conduit singularities, or 
singular head losses. 

5.3.2. Linear head losses 

We can write the expression of a loss of head (a “generalized” loss, the word is 
not used in practice, as we shall see later) between two sections. A dimensional 
analysis provides us with a general form of this loss of head. For a tube, a linear loss 
of head is defined as J: 

Δ =GH JL  [5.7] 

²
2

qV
J

gD
ψ=  [5.8] 

where ψ  is the linear loss of head coefficient. 

To evaluate the loss of head of a linear tube of length ,L  we must first know the 
loss of head coefficient ,ψ  which allows us to calculate the linear loss of head .J  
To calculate ,ψ  a distinction is made between smooth tubes and tubes with some 
degree of roughness (cement tubes, rusty tubes, etc.). For smooth tubes, dimensional 
analysis shows that the coefficient can be expressed from a single Reynolds number 

( ).ψ ψ= DR  For tubes with a roughness of ,ε  a dimensionless number 
D
ε

 is 

defined and ψ  becomes a function of two dimensionless numbers: , .DR
D
εψ ψ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

ε  is an “average value” of roughness, often defined in a standard manner in the 
hydraulics manuals for a given material. For large values of Reynolds, ψ  practically 

only varies with .
D
ε
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NOTE.– ε  is an “average value” of roughness, often defined in a standard manner in 

the hydraulics manuals for a given material. There is then .
D
εψ ψ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 This is the 

case of a “completely rough” tube. In practice, the intermediate solution is called the 

“partially rough state”. Determining ,
ε

ψ ψ= ⎛ ⎞
⎜ ⎟
⎝ ⎠DR D

 in all these cases can be done 

using a diagram. Once called the Nikuradse diagram (or harp), today called the 
Moody diagram, these systems were determined experimentally. In most cases here, 
we would recommend using formulas that show the data well for both smooth and 
perfectly rough tubes. 

The laminar state is the only case where the formula is the result of a Poiseuille 
theory ( 2α = ): 

64

DR
ψ =  [5.9] 

of the turbulent state. 

In a turbulent state, for a smooth tube, Blasius suggests two formulas using the 
Reynolds numbers (α = 1,06 ): 

510DR <  

0,25

0,316

DR
ψ =  [5.10] 

> 510DR  

0,25

0, 250,004
DR

ψ = +  [5.11] 

In a semi-rough state, Colebrook suggests a formula that takes the diagram into 
account 

10
1 9,321,14 2 log

DD R
ε

ψ ψ
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

 [5.12] 
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In a completely rough state, we can therefore deduce: 

ψ ε
⎛ ⎞= +⎜ ⎟
⎝ ⎠

101 2log 1,14D  [5.13] 

In a semi-rough state, we must note that the Colebrook formula is “pessimistic” 
(it overvalues ψ ). Moreover, it has an implicit form, which makes its use 
uncomfortable. In practice, use of the diagram is recommended. 

5.3.3. Singular loss of head 

For a flow singularity, there is a singular loss of head. To stay in the perspective 
of a dimensional analysis, it is written as: 

²
2

q
S

V
H

g
ςΔ =  [5.14] 

Note that in the Darcy formula, there was 
²

,
2

qV
g D

 while here, there is the term 

²
.

2
qV
g

 This can be explained by noting that 
Δ

=
H

J
L

 is dimensionless and that SHΔ  

is a head with the dimensions of a height. In the case of a section changing 
singularity, two flow velocities can be calculated. 

qV  is then the greater of these two 
flow velocities. In literature, there are more or less extensive lists for the value of ς  
for different types of singularities. This can result in rather large manuals. Note that 
the values given in literature mainly involve singularities preceded and followed by 
considerable lengths of straight tubing. The combination of the two conduit 
singularities close to one another remains a problem that has not yet been totally 
resolved. Here, we shall only recall a few classic values for practical evaluation. 
Various conduit features need to be considered: bends, section changes and orifice 
plates. 

a) For bends, the distinction must be made between various construction 
methods that influence the value of .ξ  

Sharp bend (simple miter-cut joint of two tubes) ξ = 1,2  

“Two spot weld” bend (double miter-cut joint at 45°) 0,35ξ =  
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Rounded bend (more complex construction) 0,2ξ =  

These values are technically applicable when the bend is preceded by a straight 
length of tube longer than 40 diameters. 

b) Section change: for two section conduit singularity, two flow velocities can be 
observed. The formulas given use the greater of these two flow velocities (therefore, 
the one corresponding to the smaller section). 

Sudden enlargement 
2

1

2

1 S
S

ζ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 [5.15] 

Sudden narrowing: the situation is more complex. The fluid stream contracts 
from 1S  to 2Sσ < . The loss of head is mostly attributed to the (sudden) section 

change from 2σ  to 2S . We can use a curve that gives 
2

CS
S

 as a function of 1
2
S

S
 and 

then the enlargement formula in the form of: 

2

2 1
c

S
S

ζ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 [5.16] 

Diverging section 

In this type of tube, the section is continuously growing. As soon as the angle α  
between the wall of tube and its axis becomes greater than 7°, a phenomenon of 
unsticking occurs, like in the case of a sudden change. We can note that 7α = °  
corresponds to a rather uncommon case. In our simplified approach for the 
calculation of head losses, we shall limit ourselves to using the sudden enlargement 
formula, which only slightly overestimates the loss of head observed. 

c) Reservoir entrance 

A particular case of a sudden section change is the entrance to a reservoir: a tube 
is linked to a “reservoir” that can be considered to be a tube with a very large 
(infinite) diameter. 

since 2 :S → ∞
2

1

2

1
S
S

ζ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 then becomes,  
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2

1

2

1 1
S
S

ζ
⎛ ⎞

= − →⎜ ⎟
⎝ ⎠

 [5.17] 

The physical interpretation of this result is clear: 

² ²
2 2

q q
S

V V
H

g g
ςΔ = =  [5.18] 

The energy loss is equal to the kinetic part of the head. All the kinetic energy of 
the fluid is lost at the entrance of the reservoir. 

Orifice systems: diaphragms and nozzles 

Here again, the construction of these systems is based on standards. Construction 
based on these standards results in normalized head loss coefficients. In the case of 
gases, we would advise caution in using this method. Calibration remains in any 
case a useful precaution. For a diaphragm with an orifice of s  centered on a tube of 
section S , we assume that the fluid stream contracts to an area of .sσ <  Next, we 
determine the head loss coefficient in the same way as for a sudden enlargement 
between σ  and ,S  which is 

2

1
S
σζ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 [5.19] 

In terms of our simplified approach, we determine σ  using: 

3

0,63 0,37 s
S S
σ ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 [5.20] 

5.4. Circuit calculations 

Here, we provide a limited number of examples that show the main aspects of 
head loss calculations. In Examples 5.1–5.3, we shall practice doing head loss 
calculations between the two ends of a circuit. Examples 5.4 and 5.6 involve head 
losses in a supplied system, where the energy is provided by a reservoir (Examples 
5.4 and 5.5) or, and this is more original, forces of inertia (Example 5.6). 
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EXAMPLE 5.1.– 

The circuit AE is represented below and is made up of smooth circular conduits. 

The main characteristics of this conduit are as follows: 

Horizontal conduit AB: diameter 1AD cm=  and length = 50AB m . 

Vertical conduit BC: diameter 1BD cm=  and length 15BC m= . 

Horizontal conduit CD: diameter = 1CD cm  and length = 50CD m . 

Horizontal conduit DE: diameter 2ED cm=  and big length (the tube goes far 
beyond E and beyond the drawing). We have = 100DE m . 

At B  and ,C  the bends are rounded. 

At D , the section change is sudden. 

A B

C
D E

 

Figure 5.1. Hydraulic circuit from Example 5.1 

The circuit is crossed by a flow of water of −= 10,1571 .Vq litres s . 

The static pressure in A  is 60Ap bar= . 

The origin of the applicate z  is at the level of point A . 

Information for the water: dynamic viscosity is 31,8.10 Plμ −=  and density is 

.ρ −= 31000 .kg m  
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A) First, we assume that the fluid is perfect. 

What is the static pressure in B , C  and ?E  

B) Second, we recognize the fact that the fluid is real. 

1) What are the flow velocities in the sections AD  and DE ? 

2) In the part AD , is the flow laminar or turbulent? 

3) In part DE , is the flow laminar or turbulent? 

4) Calculate the following: 

– the linear head losses in the different stretches; 

– the singular head losses; 

– the total head loss between points A  and E . 

5) What is the head at A  (express it in m)? Deduce the head at E . 

6) What is the static pressure at E ? Compare with the result obtained for a 
perfect fluid. 

Solution: 

A) The hypotheses required for the Bernoulli theorem are verified. 

The energy is therefore conserved per unit of volume between the points A , B , 
,C  D  and :E  

22 2

2 2 2
CA B

A A B B C C
VV Vp gz p gz p gzρ ρ ρ ρ ρ ρ+ + = + + = + +  

2 2

2 2
D E

D D E E
V Vp gz p gzρ ρ ρ ρ= + + = + +  [5.21] 

which can furthermore be written in a perfectly equivalent form in terms of the 
conservation of the head: 

ϖ ϖ ϖ
+ + = + + = + +

22 22 2 2C CA A B B
A B C

V pV p V p
z z z

g g g
 [5.22] 

ϖ ρ
ϖ ρ ϖ

= + + = + + =
2 2 ;2 2D D E E

D E
V p V p

z z g
g g

 [5.23] 
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Moreover, there is 

2 3
5 1

5

0,1571.107,85.10 ²; 2 . ;
4 7,85.10

VA
A A A B C

A

qDS m V m s V V V
S

π
−

− −
−= = = = = = =  

2 4
44.10 3,14.10 ²

4 4
D

D
DS mπ π

−
−= = =  

−
− −

−= = = =
3 1 140,1571.10 0,5 . 50 .3,14.10V

D
A

q
V m s cm s

S
 

= = = = = =; 0; 15D E A B C D EV V z z z z z m  

Resulting in: 

4 4 40 0 *15
2 2 2A B Cp p p gρ ρ ρ ρ+ + = + + = + +  [5.24] 

ρ ρ ρ ρ= + + = + +0,25 0,25*15 *152 2D Ep g p g  

Finally, we find: 

660 6.10B Ap p bar Pa= = =  [5.25] 

ρ ρ= + − = + = =5 54 0,25 3,7558,53.10 1000* 58,55.10 58,552 2 2E Cp p Pa bar  

B) The fluid is real. 

1) The calculation of flow velocities is the same as in a perfect fluid: 
12 .A B CV V V m s−= = =  

−= = 150 .D EV V cms
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2) To determine the state of the flow, we calculate the kinematic viscosity v, 
followed by the Reynolds number :DAR  

3
6 11,8.10 1,8.10 ².

1000
m sμν

ρ

−
− −= = =  

2
4

6

2*10 1,11.10
1,8.10

A A
DA

V DR
ν

−

−= = =  

The Reynolds number is far greater than 2000. The flow is turbulent. 

3) Similarly, in the section ,DE  we calculated the Reynolds number :DER  

2

6

0,5*2.10 5556
1,8.10

E E
DE

V DR
ν

−

−= = =  

The Reynolds number is far greater than 2000. The flow is turbulent. 

4) Evaluation of the loss of head 

a) The linear loss of head of the different stretches 

The tube is smooth. In a turbulent state, we can use the Blasius formulas to 
determine the linear head loss coefficients ψ  and the linear head losses: 

510DR <  

ψ = 0,250,316
DR

 

2

2
qV

J
g D

ψ=  

On the stretch AD : 

( )
2

0,25 0,254

0,316 0,316 3,08.10
1,11.10DR

ψ −= = =  

2
2

2

4²3,08.10 2,51
2 2 *10

qV
J

g D g
ψ −

−= = =
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On the stretch DE : 

( )
2

0,25 0,25

0,316 0,316 3,66.10
5556DR

ψ −= = =  

2
2

2

0,5²3,66.10 2,33
2 2 *2.10

qV
J

g D g
ψ −

−= = =  

The total loss of head is therefore: 

( )2,51* 2,33* 2,51*115 2,33*100LinH AB BC CD DEΔ = + + + = +  

b) Singular head losses 

Singular losses of head link two bends and a sudden enlargement. 

The two bends have the same diameter through which a flow travels that has a 
velocity of 

12 .A B CV V V m s−= = =  

The head loss coefficient is 0,2ζ =  for a rounded bend. The loss of head for 
each bend is therefore: 

2
240, 2 4,08.10

2 2
A

SC
VH mCg

g g
ζ −Δ = = = , which is low. 

The head loss coefficient for the sudden enlargement is calculated as: 

( )
22 2

21 ; 1 1 0,25 0,562A A

E E

S D
S D

ζ ζ
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − = − = − =⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

The loss of head by sudden enlargement is therefore: 

2 40,562 0,115
2 2

A
SEL

VH mCg
g g

ζΔ = = =
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c) The total loss of head between the points A  and E  

The total loss of head between A  and E  is therefore: 

2* 521,6 0,04 0,115 521,76Lin SC SELH H H H mCEΔ = Δ + Δ + Δ = + + =  

5) By definition of the head and considering the origin of the altitudes at the 
level of A : 

2

; 9810
2

A A
A A

V pH z g
g

ϖ ρ
ϖ

= + + = =  

54 60.10 0 611,82
2 9810AH mCE

g
= + + =  

Note that the head maximum is contained in the potential energy of the pressure. 
Moreover, the singular head losses are low in terms of the linear head losses. The 
flow velocities are low for the length of the tubes. The head at E  is such that 

611,82 521,76 90,1EH mCE= − =  

A EH H H= + Δ  [5.26] 

6) By the definition of the head, 

( )
ϖ

= + + = + + =
2 0,5 ² 15 90,12 2 9810E A E

E E
V p p

H z m
g g

 

as 15Ez BC m= = .  

The pressure Ep  at E  is therefore ( )−= − − 29810 * 90,1 15 1,27.10Ep  

57,36.10 7,36Ep Pa bar= = . This result can be compared with the pressure 
found under the hypothesis of a perfect fluid, which is 

65,855.10 58,55Ep Pa bar= = . 

The difference: Δ = − = = 558,55 7,498 51,05 511,9.10Ep bar Pa  

The pressure difference is due to the loss of mechanical energy in a real fluid. 
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Translated as a head, there is 51,05Ep barΔ = , which corresponds to 

ϖ
Δ

Δ = = =
551,19.10 521,89810EpH m , which does indeed – with the adequate 

rounding – correspond to the loss of energy in the pipeline. 

EXAMPLE 5.2 (Thermal supply circuit).– 

A circuit designed to be a heat exchange installation is made up of a smooth tube 
of internal diameter 16mm , with the geometry shown in the figure. The bends are 
rounded. A flow of water goes through it at a rate of 112 .Vq liters mn−= . Note that 
the density of water is 31000 .kg mρ −=  and its viscosity is μ = 1cps . 

1) What is the loss of head 1THΔ  in this circuit? What is the pressure difference 

1pΔ  between the entrance and the exit? 

1 m

50 cm  

Figure 5.2. Thermal supply circuit 

2) This circuit is linked to a straight pipeline of internal diameter 32 mm. What is 
the total loss of head for the whole system for a flow of Vq ? We shall neglect the 
effects of the length of the 32-mm-diameter section. 

Solution: 

1) The first step in any calculation of the loss of head involves the determination 
of the flow velocity qV  and of the Reynolds number calculated in all of the straight 
parts of the circuit: 

3
4 3 1 4 212.10 ²2.10 ; 2,01.10

60 4V q
dq sV m s s mπ

−
− − −= = = = =  
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10,995qV ms−= . The Reynolds number requires knowledge of the kinematic 
viscosity of the fluid, expressed in SI, which is m²s-1. µ in centipoise shows a 
dynamic viscosity expressed in a cgs system. Let us remind ourselves of the 
conversion into SI: 

= =
= =

1 10 10001 10 1000Poiseuille poises centipoises
Pl ps cps

 

ν  is the kinematic viscosity of the fluid and DR  is the Reynolds number, which 
has the same value in all the straight section of the circuit since section s is constant: 

3
6 1

3

10 10 ²
10

m sμν
ρ

−
− −= = =  

3
4

6

0,995.16.10 1,592.10
10

q
D

V d
R

ν

−

−= = =  

The flow is in a turbulent state. 

The circuit is made up of: 

– eight linear stretches of 1 m; 

– five linear stretches of 0.5 m; 

– 16 rounded bends. 

The loss of head is therefore made up of: 

– a linear loss of head for a length of piping equal to 10,5L m= ; 

– a singular loss of head as a result of 16 bends. 

The linear loss of head LHΔ  is calculated using the Darcy formula: 

²;
2L
VH JL J
gD

ψΔ = =  [5.27] 
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ψ , the linear head loss coefficient, is calculated using the Blasius formula, 
valid for 510DR < : 

2
0,25

0,316 2,81.10
DR

ψ −= =  

( )22 0,25
2 1,75

23 1,25

0,995 0,316.2,81.10 10,5
2 2 16.10 2

q
L

V
H L V L

gd g g d
νψ −

−Δ = = =  [5.28] 

Δ = 0,93H mwg . Here, we have used the classic notation for mwg , and we 
must remember that the head is expressed in meters of water gauge column. The 
singular head losses sHΔ  are expressed for each bend using a singular head loss 
coefficient ξ : 

2

2
q

s

V
H

g
ξΔ =  [5.29] 

Note that the d present in the denominator in expression J has disappeared here. 
Indeed, the linear loss of head is defined as a unit of length. It is therefore 
dimensionless. A singular loss of head, like any head, has the dimension of a length. 
The head loss coefficient ξ  is here taken as being equal to 0.2. Each bend is 
preceded by a length equal to more than 60 diameters. For the 16 bends, the total 
singular loss of head is: 

( )22 0,995
16 16.0, 2 0,16

2 2
q

s

V
H mwg

g g
ξΔ = = =  

The total loss of head is therefore: 

1 0,93 0,16 1,09T L SH H H mwgΔ = Δ + Δ = + =  [5.30] 

By the definition of heads, and with e and s being indices attached to the 
entrance and exit of the circuit. 
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The entrance and the exit have the same cote, and the fluid there has the same 
velocity, so therefore the difference in pressure is: 

2 2

1 2 2
e e s s

T e s e s
V p V pH H H z z

g gϖ ϖ
Δ = − = + + − + +  [5.31] 

ϖ ϖ ϖ
Δ

= = = = − = Δ1 1; ; e s
e s e s q T

p pp
z z V V V H  [5.32] 

ρΔ = Δ = =41 1 1,06.10 0,106Tp g H Pa bar  [5.33] 

2) If the linear loss of head in the tube is neglected, the only extra loss of head is 
a singular head loss caused by a sudden section change of s  to S : 

4 2² 2,01.10
4
ds mπ −= =                     π −= = 4 2² 8,04.104DS m  

The linear head loss coefficient is 
2

1 0,562s
S

ζ ⎛ ⎞= − =⎜ ⎟
⎝ ⎠

. 

And the extra loss of head is ζ ⎛ ⎞= − =⎜ ⎟
⎝ ⎠

21 0,562s
S

. 

2
22,836.10

2
q

s

V
H mCE

g
ξ −Δ = = . As a result, the new total loss of head and the 

new pressure difference between the upstream and the downstream are 

2
2 1,09 2,836.10 1,11TH mCE−Δ = + =  

2pΔ  is deduced easily as ρΔ = Δ = =42 2 1,09.10 0,109Tp g H Pa bar  

EXAMPLE 5.3 (Calculation in a wind tunnel).– 

A wind tunnel has the shape of a tube AB  with a diameter =1 20D cm  and a 

length = 10ABL m . This tube is supplied in air by a centrifugal ventilator through a 
circuit that is located on the same horizontal plane as the tunnel. 
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A B C

D

E

F

H

I

J

K

G  

Figure 5.3. Diagram of the circuit 

Upstream, the tunnel is supplied by a settling chamber: The fluid therefore goes 
into a reservoir R that is sufficiently large for the velocity within it to be practically 
equal to zero. 

This chamber is supplied by a pipeline with a diameter of 2 10D cm=  made up 
of two straight elements of respective lengths 3JKL m=  and = 7HIL m , separated by 
a bend linking the chamber and the exit of the ventilator. The tube is linked to the 
chamber by a simple flange. 

The extremity B  of the tunnel is linked by a bend to a straight section of 
diameter =1 20D cm  and of length 1CDL m= . A sudden section change links this 

pipeline of diameter =1 20D cm  to another pipeline of diameter 2 10D cm=  and 

with a length of = 4DEL m  and then to a bend of the same diameter. A length of 
pipeline of 4FGL m=  with a diameter =2 10D cm  links the exit of this bend to the 
entrance of the ventilator. 

To be frugal, the bends only have two welds. 

The tunnel is supplied with an airflow of 3 16000 .VQ m hr−= . 

1) What is the difference in head between the extremities G and H of the circuit? 

2) Between its flanges A and B, the ventilator provides a pressure equal to 
15000HGp Pa=  for the flow considered. The entrance and exit velocities of the 

ventilator are considered to be the same. 

Can the circuit be supplied properly? 
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Otherwise, what modifications could be suggested for the circuit? 

Solution: 

1) Calculation of the head loss ABHΔ . 

In any calculation of a head loss for a given flow, some preliminary calculations 
are essential 

Calculation of the sections: 

Tube of diameter =1 20D cm , 
( )π −= = 21 0,2 ² 3,14.10 ²4S m . 

Tube of diameter 2 10D cm= , 
( )π −= = 32 0,1 ² 7,85.10 ²4S m  

Calculation of the flow velocities: 

3 1 3 16000 . 1,67 .VQ m hr m s− −= =  [5.88] 

Tube of diameter 1 20D cm= , −
−= = 11 21,67 53,1 .3,14.10qV m s  

Tube of diameter 2 10D cm= , −
−= = 11 31,67 212,7 .7,85.10qV m s  

Calculation of the Reynolds numbers: 

Kinematic viscosity 
5

11,8.10 1,38 ².
1,3

m sν
−

−= =  

Tube of diameter =1 20D cm , 
ν −= = =1 1 51 553,1*0,2 7,69.101,38.10q

D

V D
R  

The flow is turbulent. 

Tube of diameter 2 10D cm= , 
ν −= = =2 2 62 5212,7 *0,1 1,54.101,38.10q

D

V D
R  

The flow is turbulent. 
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a) Straight pipelines 

Calculation of the linear head loss coefficients using the Darcy formula: 

=
2 .2 qVJ
gD

 Since the flow is turbulent throughout and the tubes are smooth, we 

can use the Blasius formula: 

510DR < ; ψ = 0,250,316
DR

; > 510DR ; ψ = + 0,250,250,004
DR

 

Tube of diameter 1 20D cm=  

2
1 0,25

1

0,250,004 1, 24.10
DR

ψ −= + =  

2
1

1 1
1

8,91
2

qV
J

g D
ψ= =  

Tube of diameter 2 10D cm=  

2
2 0,25

2

0, 250,004 1,11.10
DR

ψ −= + =  

2
2

2 2
2

255,9
2

qV
J

g D
ψ= =   

In total, the linear head losses are therefore as follows: 

Tube of diameter 1 20D cm= , 1 10 1 11L m= + =  

Δ = = =1 1 1 11 * 8,91 98LinH J L mCg  

Cg  here means gas column (when it is a liquid, it is written as CE ) 
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Tube of diameter 2 10D cm= , 4 4 7 3 18L m= + + + =  

2 2 2 18*255,9 4606LinH J L CgΔ = = =  

b) Singular head losses 

The bends have two welds; therefore, 0,3ζ = . 

A bend with a diameter of 1 20D cm= , −= 11 53,1 .qV m s  

1
1

²
43,11

2
q

SC

V
H mCg

g
ςΔ = =  

Tube of diameter 2 10D cm= , 1
1 212,7 .qV m s−=  

2
2

²
691,76

2
q

SC

V
H mCg

g
ςΔ = =  

Section changes 

Reservoir entrance: 2
Re

²
1* 2306

2
q

s

V
H mCg

g
Δ = =  

Section change at D: 
2
2 212,7²1,5 3459

2 2
q

SCS

V
H mCg

g g
ζΔ = = =  

Tunnel entrance: we can neglect the head loss caused by the entering tube. 

The total loss of head between G  and H  is therefore: 

1 2 1 2 Re3*GH Lin Lin SC SC s SCSH H H H H H HΔ = Δ + Δ + Δ + Δ + Δ + Δ  

98 4606 43,11 3*691,8 2306 3459 12588GHH mCgΔ = + + + + + =  
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The entrance and exit velocities of the fan are the same. There is no change in 
altitude in the problem, so the difference in head between the entrance and exit of 
the fan is equal to the difference in pressure. Indeed: 

( ) ( )
ρ ρ

−− −
Δ = + + − = + +

2 2 0 02 2qH qGH G H G
HG H G

V Vp p p p
H z z

g g g g
 

HG H G HGp p p g HρΔ = − = Δ  

GHHΔ  gives us an expected pressure difference between H  and G  of: 

51,3*9,81*12588 1,605.10HG HGp g H PaρΔ = Δ = =  

This difference is far greater than the pressure = 15000HGp Pa  available to the 
fan. In terms of head, the ventilator provides a head of 

15000 1176HGH mCg
gρ

Δ = =  

Several solutions can be considered: 

1) Replace the fan with a blower or a compressor. This is the most costly 
solution and not the most rational. 

2) Look for possible excessive energy consumption, and address this. 

Note that a single tunnel only “costs” 98 " "m gazgauge . 

To decrease the loss of head, we could envisage constructing the return to the 
ventilator through a diameter with the same diameter of the tunnel, that is, with 

29L m=  and with a diameter of 1 20D cm= . The flow velocity is then 
−= 11 53,1 .qV ms  in all of the circuit, the three bends have the same loss of head 

1 43,11SCH mΔ  and 3459SCSH mΔ =  disappears. Only the loss at the entrance of 

the reservoir Re sHΔ  remains. However, its value is lower since the flow velocity 

is divided by 4. There is 1
Re

²
1* 143,7

2
q

s

V
H m

g
Δ = = . 
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The total loss of head becomes: 

1 1 Re
29* 3*
10GH Lin SC sH H H HΔ = Δ + Δ + Δ  [5.34] 

Δ = + + = + + =2998* 3*43,11 143,7 284,2 129,33 143,7 557,210GHH  

This value is compatible with the energy available for the fan, 1176HGH mΔ = . 
An additional head must be added to regulate the velocity, which will also allow us 
to better regulate the study tunnel for later studies. Note that, practically speaking, 
the entrance and the exit of the ventilator must be adapted to the new section of tube. 
We can think of a very long diverging length and a very long converging length, 
which is permitted within the dimensions of the system. Note that the respective 
lengths 4FGL m=  and = 7HIL m  correspond to the respective converging angles of 

α = °0,7  and = °0,409FGL . This is far below 7°, and the loss of head will be 
nearly identical to the loss within the tube. Two converging lengths of 4 m are 
sufficient with a joint welded on to the 7 m length. From a monetary point of view, 
the converging length must still be constructed. However, the extra cost of an 18 m 
tube with a diameter of 20 cm and of converging lengths is far more reasonable than 
the cost associated with buying (or simply using) a compressor. 

EXAMPLE 5.4 (Diagram of a hydroelectric dam).– 

A reservoir with a depth of = 20h m  supplies a pipeline 100H m=  over a drop 
BC . The pipeline BC  makes an angle 45α = °  with the horizontal. The pipeline is 
smooth, with an internal diameter of 20D cm= . The density of water is 

ρ −= 31000 .kg m  and its viscosity is ν − −= 6 210 .m s . Atmospheric pressure is 
1ap bar= . 

First of all, we assume that the fluid is perfect. 

1) What would then be the flow velocity 1qV  and the volume flow 1Vq ? 

The fluid is now real. 

2) First of all, a hypothesis must be made regarding the state of the flow. For 
this, we use the flow velocity found in 1. 
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3) Remember the definition of the head in one point. We take the origin of the 
cote at C. Give the value of the head at point D located at the free surface of the 
reservoir. 

4) Write the expression of CH  at C  as a function of the flow velocity 
qV  (still 

unknown), knowing that the tube opens to C  at atmospheric pressure. 

5) Find the expression for the loss of head ( )BC qH VΔ  in the tube BC  as a 

function of the flow velocity qV , which is still unknown. 

We shall neglect the head losses in the zone AB  of the tube as well as the 
singular head losses caused by the section change at A  and by the direction change 
at B . 

H = 100  m

 = 45 °

h = 20 m

A B

C

D

C

 

Figure 5.4. The hydraulic dam 

6) Using the expression for the loss of head ( )Δ qH V  written in (5), find the 

observed value of the flow velocity 2qV  and that of the volume flow 2Vq  going 
through tube AC . 

NOTE.– We need to resolve an algebraic equation containing two different powers of 
qV . To simplify the calculations, we can use an approximate resolution, using 
2 1,75

q qV V≈ . 

7) Verify post-resolution that the hypothesis made regarding the state of the flow 
is indeed correct. 
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Solution: 

1) The fluid is perfect. The calculation is classic. This goes back to the result of 
the Torricelli formula: 

( ) 12 48,51 .V g H h m s−= + =    2²; 3,14.10 ²
4V

Dq SV S mπ −= = =  

3 1
1 1,52 .Vq m s−=  

The fluid is now real. 

2) By using 148,51 .V m s−= , we can calculate the Reynolds number. ν  is 
expressed in 2 1.m s−  and is therefore a kinematic viscosity: 

148,51 .V m s−=                           
ν

= = 69,7.10
D

VD
R  

For this flow generated from a constant energy reservoir, the velocity observed 
in the presence of head losses will be necessarily lower than 148,51 .V m s−=  due to 
these same head losses. Considering the Reynolds number, which here is greatly 
superior to 2000, we can suggest the hypothesis that the flow is turbulent without 
too great a risk. 

NOTE.– Once again, we can see why it is necessary – as stated above – to know the 
units, both SI and CGS, for the two viscosities. 

3) By the definition of the head, at a point of the surface of the reservoir, located 
at a cote 120Dz m= , immobile and under atmospheric pressure, there is: 

5² 100 120
2

D
D D

pVH z
g ϖ ϖ

= + + = + +                           130,19DH mCE=  

4) By the definition of the head, at C, we can write: 

ϖ ϖ
= + + = +

2 22 2q qC a
C C

V Vp p
H z

g g
 [5.35] 

2

10,19
2

q
C

V
H

g
= +  [5.36] 

 



224     Fluid Mechanics 

5) We only consider linear head losses 

ψ=
22 qVJ
gD

 [5.37] 

for this smooth tube 0,25

0,316

DR
ψ = . The length of the tube is 100*cos 141,4 .

4
L mπ= =  

The loss of head ( )Δ qH V , expressed as a function of qV  (still unknown), is: 

( )
2

0,25 0,25

6

0,316 1,494.10
0, 2

10
q qV V

ψ
−

−

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ; 
( )

−

−= =
22 3 1 ,750 ,251,494.10 3,807.102 0,2q

q

q

V
J V

gV
 

3 1,75 1,753,807.10 *141,4* 0,538*q qH J L V V−Δ = = =  

6) The loss of head decreases the head between D  and C: 

D CH H H= + Δ  

By combining the expressions established above: 

= + +
2 1,75130,9 10,19 0,538*2q q

V
V

g
 [5.38] 

So the equation to solve is: 

2 2 1,755,1.10 0,538* 120,71q qV V− + =  

By accepting the approximation of 2 1,75
q qV V≈ , 

seeing that the coefficient of 2
qV  is lower than that of 1,75

qV , we shall use the 

approximation in the form of ≈1,750,589 * 120,71qV  −≈ 120,94 .qV m s  

A numerical resolution of the equation would give us 119,87 .qV m s−= . 
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A simple solver on a calculator is enough for this calculation. However, we have 
deemed it worthwhile to recommend the use of an approximation that is quite 
simple, following proper use of the coefficients of 2

qV  and 1,75
qV . 

The volume flow becomes 2 3 1
2 3,14.10 *20,94 0,657 .Vq SV m s− −= = = . 

7) The Reynolds number is then 

6

20,94*0,2 4188
10DR −= = . The flow is indeed turbulent. 

EXAMPLE 5.5 (Supplying a circuit through gravity).– 

A tube with a diameter of 4d cm=  and a length of = 20L m  is linked to a 
reservoir filled with water and with a very large diameter. The height of the water in 
the reservoir above the orifice of the tube is 5h m= . In this problem, this height is 
assumed to be invariable. The density of water is 31000 .kg mρ −=  and its viscosity 
is 1centipoiseμ = . 

2

h

L

d

 

Figure 5.5. Supplying a circuit with a reservoir 

1) We hypothesize that the fluid is perfect. Calculate the flow 1Vq  of water in 
the tube, assuming this hypothesis. 

2) We now consider the viscosity of the fluid. Using the result from 1, determine 
whether the flow state actually observed is laminar or turbulent. 
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3) Write the expression of the head at the free surface of the reservoir and at the 
exit point of the tube. Write the expression of the head difference between these two 
points as a function of the flow velocity qV  in the tube. Deduce from this the value 
of qV  and the real draining flow rate through the tube. 

Solution: 

1) This is in the context of the Bernoulli theorem hypotheses. The drainage 
problem is a classic one. We can refer here to the chapter dedicated to perfect fluids 
flows. We also see the Torricelli problem again here. Taking into account the 
hypotheses, the exit velocity is 1 2V g h= . 

s  is the horizontal section of the tube. Calculated for a perfect fluid, the flow 

would then be −= = = 31 1 2 ; 1,26.10 ²Vq sV gh s m  ;      −= 11 9,9V ms . 

2) We calculate the Reynolds number in the horizontal tube using the velocity 
determined in 1. The result is indicative as in any case for a real fluid, the velocity 
really observed will be lower than PV . This number is calculated using the 
kinematic viscosity ν . 

,μ  expressed in centipoises (therefore, in the cgs system), shows dynamic 
viscosity. The kinematic viscosity is deduced easily: 

3
3 6

3

101 10 ; 10
10

cps Pl stokesμμ ν
ρ

−
− −= = = = =  

Here, we used the following relation (very important to know): =1 10Pl poises  

The Reynolds number is 
2

51
1 6

9,9.4.10 3,96.10
10D

V dR
ν

−

−= = =  

which shows that the flow can be assumed to be turbulent at this stage. 

3) We determine the altitudes (cotes) z  on a vertical axis with an upward 
direction; therefore, the origin is chosen on the axis of the horizontal tube. The head 

is defined by ²
2

GpVH
g ϖ

= + , where Gp  is the generating pressure Gp p g zρ= +   
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and ϖ  is the unit weight ϖ ρ= g . The head 1H  at the free surface of reservoir  
is: 

1 0 ap g H
H

ρ
ϖ

+
= +  [5.39] 

The head 2H  at the orifice of the horizontal tube is: 

( )ρ
ϖ

+
= +

22 02 aS p gV
H

g
 [5.40] 

Seeing as the fluid is real, a loss of head is located exclusively along the length 
L  of the tube (we neglect the effects of the section change coefficients). Using the 
Darcy formula, the loss of head ΔH  between the two extremities of the tube is 
given by: 

²;
2
VH J L J
g D

ψΔ = =  [5.41] 

where J  is the linear loss of head and ψ  is the linear head loss coefficient. For the 
sake of simplicity, we shall choose for the determination of the linear head loss the 
expression suggested by Blasius: 

510DR < ; ψ = 0,250,316
DR

 

In all rigor, the initially estimated Reynolds number was significantly greater 
than 105, and as a result, the following expression should be used: 

5> 10RD ; 0,25
D

0,25= 0,004 +
R

ψ  

However, the expected velocity, 2V , is smaller than 1V  and the Reynolds number 

should be smaller than ,510  which we will verify later. 
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The loss of head is therefore equal to 

2 0,25
1,752
20,25 1,25

2

² 0,316 0,316.
2 2 2

VVH L L V L
g d g d g dV d

νψ

ν

Δ = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 [5.42] 

1,75
2H VαΔ =  [5.43] 

0,25

1,25

0,316. 0,5694
2

L
g d

να = =  

which is a function of V2, a real observed velocity, and which is the unknown 
variable. 

1 2,H H and HΔ  are therefore linked by: 

1 2H H H= + Δ  [5.44] 

with 

ρ
ϖ ϖ

+
= + = +1 0 a ap gH p

H H  [5.45] 

2
2

2 2
apVH

g ϖ
= +  [5.46] 

2 2 1,75
2 25,09.10 0,5694 5 0V V− + − =  

From this, we can deduce 2V . 

An approximate solution can be obtained by writing 2 1,75
2 2V V≈ . 

The value of 2V  is intermediate between the values of 21V  and 22V , which are 
the solutions of: 

( )2 2
215,09.10 0,5694 5 0V− + − =
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and 

( )− + − =2 1,75225,09.10 0,5694 5 0V  

This leads to: 

1
21 2,84V ms−=  ; −= 122 3,29V ms  

The resulting flow rate is then contained between: 

3 3 1
21 21 3,58.10Vq sV m s− −= =  and − −= = 3 3 122 22 4,14.10Vq sV m s  

We verify that the maximal Reynolds number 

2
522

2 6

3,29.4.10 1,31.10
10D

V dR
ν

−

−= = =  

is indeed showing a turbulent flow, with a Reynolds number close to 510 . We 
can get an exact solution to the equation by using a solver, available on many 
calculators. This would result in 1

2 3,248V ms−= , which is well located within the 
previous values. The flow comes out as − −= = 3 3 122 22 4,09.10Vq sV m s . 

The loss of head, which is a loss of mechanical energy through friction, can be 
found in flows that are not located within an inertial frame. We shall see an example 
of this later. 

EXAMPLE 5.6 (The dental casting machine).– 

The casting of some metallic dental prostheses is done using an “dental casting 
machine”. A horizontal rod ABD spins at an angular velocity ω  around a vertical 
axis Dx. The branch DA  carries a device M  made up of the following: 

– a pot C  containing the molten metal to inject; 

– a mold 0M  containing the cast of the prosthesis; 

– a channel 0CM  linking the pot to the mold. 

The machine is said to be “electronic” as the pot is heated by microwaves. 

 



230     Fluid Mechanics 

A counterweight CP balances the systems over part DB  of the rod. The channel 
CA  has a length L  and a diameter d . The molten metal has a density ρ  and a 

kinematic viscosity ν . We assume that atmospheric pressure ap  governs C  and 

0M . The diameters of C  and 0M  are negligible compared to L . The effects of 
gravity are neglected. 

M

M0 C
A B

Axis Dx
D

Cp

C

L

M0

 

Figure 5.6. The electronic casting machine 

The system is placed within a framework using an axis 0M z  carried by AB  
and directed from A  to .B  

BDx
M0

A Dx  

Figure 5.7. The reference frame 

Once the metal has been melted in C , the system is made to rotate at an angular 
velocity of ω . 

1) Give the expression of the filling time Rt  of the mold M0. The contraction 
coefficient of the jet in M0 is taken as being equal to 1. In the channel and in the 
mold, we assume the molten metal behaves like a perfect fluid. 
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2) Molding a gold crown 

Density of the gold 319300 .kg mρ −=  

Viscosity of the gold ν = 1stokes  

5L cm= , 1d mm= , = 30OM cm  

Three grams of gold are required to make a crown. In practice, yellow gold used 
in dental prostheses is an alloy of 50–90% gold and other metals (silver, palladium, 
platinum, etc.). Calculate the filling time Rt  of the mold for a rotation speed of 

ω −= 1240 .tours mn . 

Solution: 

1) To know the filling speed, we must first know the volume flow Vq S V=  in 
the channel linking the reservoir to the mold. This involves searching for the 
velocity V  in this channel. 

First, it is important to reflect on the physics involved in this problem. The flow-
generating device is located in a non-inertial framework. Indeed, the setup 
comprising the channel and the mold is in rotation at an angular velocity of ω  in 
relation to the terrestrial reference frame. Inertia forces appear in the framework 
whose axis is 0zM . Seeing as the molding device is small compared to the rotation 
radius DM, we consider these inertia forces to be uniform over the molding device. 
These forces are directed from D toward M, which is in the opposite direction, and 
their intensity per unit of mass is ²IF DM ω= . Furthermore, we neglect the 

terrestrial forces of gravity. The force of intensity ω= ²IF DM  derives from a 
potential “per unit of mass” φ  such that (this is in a right-angle corner , ,Ox Oy Oz , 
with Oz  being the only useful one here): 

( )0,0, ²IF DM Gradω φ= = −
rr

 [5.47] 

This results in the following expression of φ : 

² 'DM z g zφ ω= =  [5.48] 
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C

L
M0

z = 0

z = L

z 

 

Figure 5.8. The flow of the gold 

The problem can be seen as a vertical flow between C and M0 on a “planet” 
where gravity would be equal to ' ²g DM ω= . For this, we need 'g g>> , which 
we will justify in the applications. 

In this context, a head can be defined from the volume forces through: 

²
2 ' '
V pH z

g gρ
= + +  [5.49] 

The head has the values respectively in C and M0 of 

ρ
= + +02 ' 'aC

p
H L

g g
 [5.50] 

ρ
= + +0 0 02 ' 'aM

p
H

g g
 [5.51] 

Viscosity only intervenes between C  and 0M . This causes a localized loss of 

head in the channel 0CM . We would presume the flow is slow (it is a molten metal) 
and assume that the flow is laminar. 
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In this case, the loss of head is calculated through 

² ;
2 '

VJ H J L
g d

ψ= Δ =  [5.52] 

with 64 64*

DR V d
νψ = =  [5.53] 

By showing V : 

64* ²*
2 '

VH L V
V d g d

ν αΔ = =  [5.54] 

64* 32*
2 ' ² ² ²

L
g d DM d

ν να
ω

= =  [5.55] 

The relation between CH  and 0MH  is then simply: 

0C MH H H= + Δ  [5.56] 

In terms of energies, this expression shows that between C  and 0M  and along 
the axis 0M z , the fluid has lost, per unit of volume, an amount of energy equal to 

ρ ρ ω= 0' ²g OM , which has been transformed into heat by friction in the channel. 

This provides us with the equation that allows us to calculate V : 

' '
a ap pL V
g g

α
ρ ρ

+ = +  [5.57] 

There is LV
α

=  and 
ν

α
ω

=
32 * ² ²LDM d

. On the axis 0M z , point C  has a cote of 

.L  Furthermore, C  0M  are at atmospheric pressure. 

2) We can calculate the numerical values of α  and V  since 
²

4V
dq Vπ= . 
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ν  expressed in Stokes is therefore a kinematic viscosity, expressed in the cgs 
system. It must be converted into myriastokes , or, as is more common, into 

1².m s− : ν − −= 4 110 ².m s . 

Furthermore, ω π π− − −= = = =1 1 1240 . 4 . 6 * 2 8 .turns mn turns s Rd s : 

( ) ( )
4 2

3

32* 32.10 *5.10 0,844
² ² 0,3* 8 ²* 1.10 ²
L

DM d
να
ω π

− −

−
= = =  

2 1 15,92.10 . 5,92 .LV m s cm s
α

− − −= = =  

The volume flow becomes: 

7 2 8 3 1² 7,85.10 *5,92.10 4,65.10 .
4V
dq V m sπ − − − −= = =  

3 g of gold represents a volume of 
3

7 33.10 1,554.10
19300GV m

−
−= =  

With a flow 5 3 15,3.10 .Vq m s− −= , the filling time is: 

7

8

1,554.10 3,34
4,65.10

G
R

V

Vt s
q

−

−= = =  

By comparing g  and 'g , we get: 

( )' ² 0,3* 8 ² 189,5g DM ω π= = =  

There is ' 19,3g
g

=  

which justifies neglecting the forces of gravity. Thus, the changes in the level of the 
gold in the mold do not influence the instantaneous flow. To get a better idea, if the 
gold was contained in a single closed vase, the pressure difference between the 
entrance and the exit of the channel would be: 

( )
0

2 5² 19300*0,3* 8 ² *5.10 1,83.10 1,8CMp DM L Pa barρ ω π −Δ = = = =  
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6 

Calculation of Thrust and Propulsion 

6.1. Introduction 

The emission of a jet from a moving solid and the interaction of a jet with a fixed 
or mobile wall form the basis of many practical problems, and are involved in the 
important technical area of propulsion. In this field, the Euler theorems are key in 
resolution. While two of these theorems exist, it is mainly the first that is used, and 
as such is often referred to as the Euler theorem, with the second tending to be 
forgotten (which is not a good practice!). We shall not adopt this habit here, and at 
the end of the chapter we shall look at the uses of the second Euler theorem. “The” 
Euler theorem can be applied both to perfect fluids and real fluids. A whole chapter 
is therefore dedicated here to some of the simple applications of this theorem. While 
the theorem can be used in a far larger scope of application, here we shall focus on 
problems involving the notion of propulsion, or jet–wall interaction. 

6.2. Euler’s theorem and proof 

In this chapter, we will look at two characteristic situations: 

– The case of jet propulsion systems. Two questions are asked in this case:  

- What is the value of the thrust P
r

 produced by a device? 

- What is the yield of the propulsion ?η  

– The case of the impact of a jet on a wall  

Both types of problem can interact together in certain technological devices, 
such as an engine (elementary study of propulsion, elementary study of the turbojet 
turbine, etc.). 

Fluid Mechanics: Analytical Methods, First Edition. Michel Ledoux and Abdelkhalak El Hami..
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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6.2.1. Euler’s first theorem and proof 

What is expressed in Euler’s theorem is not always very well understood. For 
this reason, we have included its proof in its elementary form. 

6.2.1.1. Hypothesis of Euler’s theorem 

This theorem requires only one hypothesis: we are in a framework where the 
flow is stationary. It is not possible to find such a reference for all flows, and in such 
a case the theorem cannot be written. 

Let us consider an elementary streamtube. We look at the fluid that, at the 
moment t, is contained between two surfaces 1dS  and 2dS  against which the 
streamtube is supported.  

 

Figure 6.1. Euler’s theorem applied to an elementary streamtube 

The principle of continuity allows us to write the expression of the mass flow 
that is conserved the length of the streamtube: 

1 1 1 2 2 2mdq V dS V dSρ ρ= =  [6.1] 

It is important to note that, with regard to the unique hypothesis adopted, there is 
no reason for 1V  and 2 ,V  as well as 1ρ  and 2 ,ρ  respectively, to be the same in one 
section of the streamtube as in another. 

t t + dt

V2 dt

V1 dt V2

d S1
t t + dt

d S'2
d S'1

d S2
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The fluid contained in the streamtube receives various forces. It is the resultant 
force on the fluid contained at the moment t  between 1dS  and 2dS  that we shall 
look at now.  

It should be noted that at no moment do we look to make a distinction between 
the volume forces and surface forces. In any application of Euler’s theorem, this will 
imply obtaining further information on these forces. 

We write the fundamental principle of dynamics for this fluid between 1dS   
and 2.dS  We write the principle in the form of a theorem on the quantity of 
movement. More exactly, we write that during the time dt the temporal derivative of 
the quantity of movement in the fluid in question (or in other words, the change “per 
unit of time” of this quantity) is equal to the resulting force from the forces applied 
to it during this time. 

This is obviously a vectorial relation, to take into account the changes in the 
direction of the fluid throughout its whole trajectory.  

During the time ,dt  the fluid, which remains in the current tube, goes from a 
volume contained between 1dS  and 2dS  to a volume contained between 1'dS  and 

2'dS . The surfaces 1'd S  and 2'dS  are respectively at a distance of 1V dt  and 2V dt  

2'dS  from 1dS  and 2.dS  

From a Eulerian perspective, the quantity of movement of the fluid particles 
contained between 1'dS  and 2dS  does not change over time, although these are not 
the same fluid particles that “carry” the quantity of movement in each fixed point. 

The only variation during dt  of the quantity of movement of the fluid contained 
between 1dS  and 2dS  lies in: 

a) the quantity of movement “acquired” during dt , which is that of the fluid 
contained between 2dS  and 2' ,dS  or in other words, the product of the volume, 

density and local velocity: 2 2 2 2 .V dS dtVρ
r

  

b) the quantity of movement “lost” during dt , which is that of the fluid 
contained between 1dS  and 1' ,dS  or in other words, the product of the volume, 
density and local velocity: 

1 1 1 1V dS dtVρ
r

 [6.2] 
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The resulting force V SF F F= +
r r r

 from the forces applied to this fluid is therefore 
equal to the ratio of this summary of quantity of movement to dt: 

2 2 2 2 1 1 1 1V dS dtV V dS dtVF
dt

ρ ρ−
=

r r
r

 [6.3] 

In this expression, we can show the mass flow rate:  

1 1 1 2 2 2mdq V dS V dSρ ρ= =  [6.4] 

and get rid of .dt  This gives us:  

( )2 1mF dq V V= −
r r r

 [6.5] 

which is, once again, just a form of writing the fundamental principle of dynamics. 
This expression is translated by saying that the resulting force from those applied to 
the fluid between 1dS  and 2dS  is equal to the difference between an exiting quantity 

of movement flow rate ( )2md q V
r

 and an entering quantity of movement flow rate 

( )1 .md q V
r

 

The notion of quantity of movement flow rate can sometimes be surprising for 
readers and auditors. Knowing that this is a vectorial quantity, there is no reason to 
be surprised: the fluid enters or exits from each elementary surface of S with a 
velocity vector .V

r
 The corresponding mass ² md m dq dt=  “carries” a quantity of 

movement ( )²d m V
r

 (which is a vector). The notion of flow rate, of the quantity of 
movement going through S per unit of time need not be surprising. 

6.2.1.2. Proof of Euler’s theorem in a finite volume 

This proof can be extended to a finite volume limited by a given surface S, fixed 
in relation to our framework where the flow is permanent. The flow that goes 
through this surface can also be divided into elementary streamtubes, and then all 
the streamtube forces and flow rates can be summed from the theorem proven 
previously. 

6.2.1.3. Euler’s two theorems: writing in vectorial form 

In general, Euler’s theorem is written in vectorial form. Here we give this 
expression, while remembering that this form of writing may not be a familiar one 
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for all readers of this work. With regard to Euler’s first theorem, equation [6.6] only 
formalizes what was written in section 6.2.1.2. There are two Euler’s theorems: 

Euler’s first theorem: 

V Sm
S D S

V dq F d F dSω
→ → →

= +∫∫ ∫∫∫ ∫∫  [6.6] 

Euler’s second theorem: 

V Sm
S D S

r V dq r F d F dSω
→ → → → →⎡ ⎤

× = × +⎢ ⎥
⎣ ⎦

∫∫ ∫∫∫ ∫∫  [6.7] 

Euler’s first theorem is the one we have just proven. The first equation 
formalizes the fact that the balance of the quantity of movement flow rates through a 
finite closed surface S (left term) is equal to the resulting force applied to the fluid 
contained within this surface. The term on the right-hand side of equation [6.6] 
makes a distinction in writing between surface forces and volume forces. 

Euler’s second theorem does not always attract readers’ – or sometimes authors’ – 
attention. It states that the balance of moment of quantity of movement flow rate is 
equal to the resulting moment of the applied forces. This goes back to an issue 
encountered in the elementary classes on the physics of solids: a resulting force of 
the forces applied to a solid equal to zero does not mean that there is no movement if 
the resulting moment of these forces is not equal to zero. 

It must be noted that many textbooks, even from very good authors, disregard the 
proof of this theorem. In a way, Euler’s first and second theorems are the 
counterpart of the theorem on the center of mass and the theorem on the kinematic 
moment in solid mechanics. We shall make these theorems “come alive”, the 
expression of which through [6.6] and [6.7] can seem abstract for some readers, by 
applying it to the problems of jet propulsion and of thrust. 

The first application directly involves aeronautics. It is important to note that 
while the example in the following paragraph involves jet planes, the jet propulsion 
phenomenon is also relevant for “propeller” airplanes. Indeed, propeller propulsion 
is also a form of propulsion by reaction. Froude’s theory is an illustration of this. 
The second application mostly focuses on issues seen in turbo machines, with 
calculations that are far more complex than the more simple examples present later 
on. 
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6.2.1.4. Summary 

Before showing these examples of application, let us recall that: 

a) Euler’s theorem implies being within a framework where the flow is 
permanent. Such a framework must therefore be possible.  

b) Euler’s theorem allows us to determine the resulting force of those applied to 
an immobile fluid domain in this framework. The only piece of information required 
is knowledge of the kinematics present on the surface that marks the limit of this 
domain (and for compressible fluids, knowledge of the distribution of the densities 
on this surface). 

c) However, only one resulting force can be obtained from the volume forces and 
surface forces. One additional piece of information is vital for distinguishing these 
forces (which is usually a prerequisite for the problem in question). 

d) There is a second Euler’s theorem that relates to the moments of the forces 
applied to a volume of fluid. 

e) Finally, as this is very important, it can be shown that if a solid is present 
inside the surface S , the resulting force of the forces calculated using Euler’s 
theorem includes the forces applied to this solid part. 

The proof calls on the law of action and reaction; we shall not reproduce this 
here. It is important to understand that only the forces applied to the solid part 
included in S  are considered: thus, if there are forces of gravity, only the solid 
mass present in  appears in the calculation. 

6.3. Thrust of a jet propulsion system, and propulsive efficiency 

The expression of thrust is useful for the resolution of many of the problems 
presented here; as such, we shall make a generalizable presentation of it in the 
following examples.  

6.3.1. Calculation of the thrust of an “airplane engine” 

Here we provide a general form of reasoning, resulting in a simple representation 
of the thrust and propulsive efficiency. In some of the textbooks, the presentation of 
the propulsive efficiency is not quite complete. This can mean that the relation 
between the initial energy provided and the energy consumed by the propulsion is 
provided, but no mention is made of where the “lost” energy goes. Here we shall fill 
this in. 

S
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We shall need to use Euler’s first theorem by projection onto a unique axis, 
usually denoted by .Ox  

In a normal jet system (engine), the axis of the engine is enough for this 
projection. In our reasoning, we orientate Ox  in the direction of the exiting matter. 

A distinction must be made between: 

a) the quantity of matter going through the engine per unit of time; 

b) the velocity vectors of this matter as it enters or exits. 

A summary of the quantity of movement entering and exiting per unit of time is 
made, called the “quantity of movement flow rate”. However, this quantity of 
movement is vectorial. 

A flow of matter perpendicular to the axis at Ox  corresponds not only to a finite 
mass flow rate qm, but also to a “projected” quantity of movement flow that is equal 
to zero, as the support of the velocity, which is also the support of the quantity of 
movement, is perpendicular to the axis .Ox  

Let us take the case of a classic jet engine (the reasoning is just as a valid for a 
propeller, which is also a “reaction” system).  

An airflow of qm goes through this jet engine. 

The jet engine is installed on an airplane moving at a constant velocity V. 

We are in the framework of the jet engine, which is a Galilean framework, as V 
is constant. 

We already noted in Chapter 4 that a mobile object moving at a constant velocity 
could constitute a Galilean framework. In this case, there is no need to look for 
forces of inertia in the summary of the volume. 

The thermal energy brought to the engine increases the velocity of the air exiting 
it in relation to the entrance velocity. 

The exact velocity of the gas on entry into the engine is unknown. We know that 
far ahead of the airplane the flow qm is moving at a velocity V (+V in the direction of 
our axis) related to the airplane. 
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This is the source of a common error; the statement comes from the same 
reasoning seen in Chapter 4 in the problems of filling when using the Bernoulli 
theorem. 

 

Figure 6.2. Application of Euler’s theorem to a jet propulsion engine 

For the application of Euler’s theorem, our closed reference surface will be of 
greater dimension than the engine’s outer casing. 

In this surface, which encases a solid surface, but which is immobile in relation 
to the reference frame used, the flow mq  enters at a uniform velocity V

r
 of the 

modulus V  and exits at a velocity SV
r

 of the modulus SV  in the direction of the axis, 
which we assume to be uniform for the sake of simplicity. 

NOTE: The case of the dual flow jet engine requires the development of a more 
complex analysis. 

The projection of the term m
S

V d q
→

∫∫  on the axis Ox  then takes on a very simple 

form: 

( )Pr Ox m m S
S

oj V dq q V V
→⎡ ⎤

= −⎢ ⎥
⎣ ⎦
∫∫   [6.8] 

V has a minus sign in the brackets as the normal to the surface elements through 
which the fluid “enters” are turned from the inside to the outside of the closed 
surface.  It is therefore the mq  factor V that is negative. 

pa

pa

pa

m g

Reaction R

O x

pa

qm V
qm V2
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Let us consider an engine whose movement is horizontal. 

The projections of the forces applied to all that is in the reference surface 
(including the solids) are easy to write. 

The pressure forces are made up on the front and back and top and bottom faces 
of the reference surface.  

In terms of the volume forces: 

a) the forces of gravity have a support that is perpendicular to O x  and whose 
projection is therefore equal to zero; 

b) the only “remaining” volume force is carried by the axis .O x  This is the 
reaction of the airplane on the wing. It is constant in reaction problems. 

It is important to note that this is a force applied to the solid present within the 
reference surface. Hence, it is important to take on board point (e) of 6.2.1.4 and to 
be conscious of the expression of Euler’s theorem when in the presence of the solid 
surface in this reference surface.  

It is not in fact the thrust of the jet engine that is being calculated, but rather the 
value of the reaction force of the jet that goes against this thrust.  

 

Figure 6.3. Illustration of an important point 

We do not determine the thrust of the engine, but rather the reaction R
r

 applied 
by the airplane onto the engine to “stop it accelerating”. 

R
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Moreover, two cases can be found: 

a) the case where the plane has a constant velocity, and the reference frame is 
inertial: the thrust is then equal and opposed to the reaction of the wing of the 
airplane. 

b) an extension to the case where the movement of the airplane is accelerated. 
The form found in the present model is then still used, although the reference frame 
is no longer Galilean for the engine. This approximation is acceptable for moderate 
accelerations.  

Let us call this force ,R P= −
r r

 equal and opposed and therefore equal in intensity 

to the thrust. The term ,V S

D S

F d F d Sω
→ →

+∫∫∫ ∫∫  projected on O x  then becomes  

Pr V SOx
D S

oj F d F dS Rω
→ →⎡ ⎤

+ =⎢ ⎥
⎣ ⎦
∫∫∫ ∫∫   [6.9] 

Finally, this gives the expression of the projection of Euler’s theorem, which 
provides us with :P  

( )m Sq V V R− =  [6.10] 

The intensity of the thrust can be deduced simply, like R = P 

( )m SP q V V= −  [6.11] 

NOTE.– This expression assumes that the gases enter and exit the engine axially (see 
Example 6.6). 

6.3.2. Calculation of the propulsive efficiency 

The thermodynamic efficiency of the engine links the quantity of work provided 
that is usable for propulsion and the amount of heat created by the combusted 
kerosene. In the case of a jet engine, this yield is the product of a “thermal 
efficiency”, which is the ratio of the kinetic energy transferred to the air in the 
engine to that of the “propulsive efficiency”, whose analysis is more delicate, and is 
studied here. Here we consider that the first efficiency, the thermal efficiency, is 
very close to one, which is not far from reality. 
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This propulsion efficiency η  compares:  

a) the work carried out per unit of time by the propulsion force, product of the 
force of thrust and the distance traveled by the airplane per unit of time. This work is 
a power: 

( )* m SW P V q V V V= = −  [6.12] 

b) the energy consumed by the motor. This energy has carried per unit of time 

the kinetic energy of the incident air ²
2

V  per unit of mass to the kinetic exit energy 

2

2
SV

 per unit of mass. The energy consumed per unit of time, ,E  which affects a 

mass of air ( )mq  is therefore equal to: 

2 ²
2 2
S

m
V VE q
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 [6.13] 

The propulsive efficiency η  is therefore: 

( )
2 ²

2 2

m S

S
m

q V V VW
E V Vq

η
−

= =
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 [6.14] 

After simplification: 

2

1 SV
V

η =
+

 [6.15] 

The optimization of this efficiency must verify two contradictory constraints:  

a) increase the difference between the entering and exiting velocities ( )SV V−  to 
increase thrust; 

b) reduce this difference to decrease the ratio SV
V

 and increase the propulsive 

efficiency.  

These constraints are tied together in the dual flow jet engine, where mq  is 

increased to increase thrust and ( )SV V−  is reduced. 
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The issue remains: an efficiency of less than one means a “loss of energy”. 
Where does the lost energy go? 

To answer this question, we must be in the reference frame of the ground: before 
the airplane passes through, the air is immobile and its kinetic energy, in the frame 
of the ground, is equal to zero; after its passage, the air exiting the engine has a 
velocity ( ).SV V−  

For a mass of air ,mq  an amount of energy is “lost” in the air kinetically, which 
is expressed by [6.13]: 

( ) ²
2

S
air m

V V
E q

−
=  [6.16] 

Let us verify that airE  is indeed the energy lost: 

( )
2 ²

2 2
S

m S
V VE W q V V V

⎡ ⎤⎛ ⎞
− = − − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 [6.17] 

( ) ( )
2 2

2 ² 2² 1 ² 2 2 ²
2 2 2 2
S s s

S s s
V V V V VV V V V V V V V V
⎛ ⎞ + −

− − − = − − + =⎜ ⎟
⎝ ⎠

 [6.18] 

And we find again: 

( ) ²
2

S
m air

V V
E W q E

−
− = =  [6.19] 

The kinetic energy airE  is next thermalized by viscous dissipation in the 
surrounding air. From a thermodynamics point of view, this goes back to the notion 
of heat lost to a cold source. The engine is indeed a thermal motor that functions 
between a hot source (fed by the kerosene supplied) and a cold source, which is the 
atmosphere in which the airplane is traveling. 

6.3.3. Calculation of the thrust of a rocket engine 

In the case of a mobile object such as a rocket, the jet providing propulsion is 
generated by the mobile object itself. The fuel is contained in the engine. There is 
therefore no mass flow of air entering the system. It is important to note that the 
flow of the exiting fluid is not usually a flow of air. 
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The above reasoning remains valid, and the result obtained for the thrust remains 
the same. Because of a lack of air entry, the velocity of the projectile disappears 
from the expression of the thrust. 

A rocket moves at a velocity V  and has a jet whose mass flow is equal to qm of a 
fluid whose velocity relative to the rocket is .SV  

The thrust of a rocket is therefore: 

m SP q V=  [6.20] 

The propulsive efficiency is calculated by evaluating the energy  

2

2
S

C m
V

E q=  [6.21] 

provided per unit of time to the exiting gas and by comparing it to the energy spent 
in the propulsion, which is a unit of time:  

m SW PV q V V= =  [6.22] 

This results in the propulsive efficiency :η  

2 2

2

m S

C SS
m

q V VW V
E VVq

η = = =  [6.23] 

6.3.4. Some applications of Euler’s theorem to jet propulsion 

The following examples involve systems driven by a “jet engine”. They make 
extensive use of the results established previously. 

EXAMPLE 6.1 (Simplified model of a single-flow jet engine).− 

An airplane is equipped with a single jet engine. The air exits the engine at a 
temperature of 2T , through a section O x . A mass flow of air 170 .mq kg s−=  goes 
through the engine. 

We assume that the Boyle Mariotte law applies to the air. The airplane flies at an 
altitude of 10000m . The surrounding temperature is 1 223 .T K=  The density of the 
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air is then 3
1 0,1 . .kg mρ −=  The gases exit at a level 2S  at a temperature of 

2 700ST K= . 

 

Figure 6.4. Single-flow jet engine 

The airplane flies at a velocity 1700 . ,V km hr−=  with a rectilinear and horizontal 
trajectory. 

Throughout the problem, we assume that the aerodynamic friction of the flight 
can be reduced to a single resulting force ( ) ,F V

r
 where V  is the velocity of the 

airplane in relation to the ground. This reaction is collinear to the trajectory of the 
airplane and obviously opposed to its movement. We have ²F kV= , where k  is a 
constant. 

1) Thrust of the engine. 

1.1) Find the value of SV , exit velocity of the gases relative to the engine.  

1.2) Recall the expression of the thrust of the engine .P  Calculate it, and express 
it in Newton and in tons of force. 

1.3) Deduce the value of .k   

2) Thrust reverser. 

The airplane is landing. It rolls along the landing strip at 1' 300 .V km hr−= . Two 
deflectors are opened behind the jet engine (see Figure 6.5), called thrust reversers, 
which can be represented by two panels making an angle of 60° with the horizon. 
For the sake of simplicity, we assume that the panels cause a simple deflection, and 
the modulus 2V  of the exit velocity of the gases is conserved upon exiting the 
deflector. We keep the values found in question (1) for mq  and 2V . What is the 
braking force PR applied on the airplane by the thrust reverser? 

V Vs
qm
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Figure 6.5. Thrust reversers 

Solution: 

1.1) Considering that atmospheric pressure governs the entrance and exit of the 
engine, the density of the exiting air is:  

2 32
2 1

1

3,186.10 .
T kg m
T

ρ ρ − −= =  [6.24] 

SV  can then be deduced from the mass flow 2 2m Sq S Vρ=  [6.24] 

1
2

70 549,3 .
3,186.10 * 4SV m s−

−= =  [6.25] 

1.2) Going back to the results proven in the Introduction: 

( )m SP q V V= −  [6.26] 

1700000 194, 4 .
3600

V m s−= =  [6.27] 

( ) 470* 549,3 194,4 2,48.10P N= − =  [6.28] 

Remember that a kilogram of force is the intensity of the force equal to the 
weight of a mass of 1 kg; therefore 1 9,81kgf N=  

42,48.10 2532 2,532P N kgf tf= = =  [6.29] 

qm/2

qm/2

Vs

Vs

qm
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The engine is said to have a thrust of 2.5 tons 

1.3) When the velocity is constant (and therefore the value of the acceleration is 
equal to zero), the forces applied to the airplane balance out. At this moment, it is 
important to remember that in such a situation, Euler’s theorem allows us to 
calculate F and not P.  

In terms of intensity, there is: 

²P F kV= =  [6.30] 

Therefore: 
4

2 22,48.10 0,656
² 194, 4

Pk Nm s
V

−= = =  [6.31] 

2) We use the axis Ox  of the engine, pointed in the inverse direction of the 
movement. The force  that we are looking for is equal and opposite to the force 

 applied by the airplane on the engine. By projection onto the axis Ox  of the 
engine (from left to right in Figure 6.5), Euler’s theorem is written as: 

( ) ( )cos cos
'

2 2
m S m S

R m

q V q V
F q V

α α− −
= + −  [6.32] 

1300000' 83,33
3600

V ms−= =  [6.33] 

 here expresses the projection of the velocity SV  on Ox ; 60α = ° , 
therefore cos 0,5α = . In the first two terms, mq  is positive as it is matter that exits, 

cossV α  has a minus sign, as it is the “negative component” that exits. 

RF
r

 is a force that has the same direction as the movement (its component RF  on 
O x  comes out negative). RP

r
 is equal and opposed to it. The two forces are equal in 

intensity. In fact, the thrust reverser tends to decelerate the airplane. The framework 
of the engine is no longer rigorously inertial. Here we are in the situation where the 
deceleration is still not significant, hence the use of V; the calculation is a good 
estimation of the thrust reversal. 

 

 

RP
r

RF
r

αcos
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Hence, the thrust is linked to the airplane’s reverser. In terms of intensity: 

( )cosR R m SP F q V Vα= = +  [6.34] 

( )70* 549,3*0,5 83,33RP = +  [6.35] 

The thrust of the reverser is therefore: 

25057RP N=  [6.36] 

EXAMPLE 6.2 (Simplified model of a dual-flow jet engine).− 

An airplane equipped with a single-flow jet engine flies at a velocity of 
1600 . .V km hr−=  The single-flow reactor it is equipped with has an airflow 

140 . .mq kg s−=  The exit velocity of the gases is then 1
1 600 .SV m s−= . 

1) What is the thrust P of this engine and what is its propulsive efficiency 1 ?η  

2) The airplane is equipped with a new engine made from the old engine but 
surrounded by a coaxial enclosure through which a gas flow of 'mq  travels. A 
“dilution ratio” λ  is defined by: 'm mq qλ= . We choose λ = 4. 

We arrange the primary jet engine and the secondary flow in such a way that the 
thrust P of the new engine is the same as the single-flow engine from question (1). 
Moreover, the new exit velocity of the gas 2SV  is identical for the primary engine 
and the secondary flow.  

NOTE: In practice, this condition is difficult to obtain. The primary flow goes 
through a combustion chamber, while the secondary flow is generated by a 
compressor. We will accept this slight glitch to simplify the question. 

The problem here “idealizes” the data.  

We keep the same value of 140 .mq kg s−=  for the flow in the primary engine.  

2.1) What is the value of the velocity 2 ?SV  

2.2) Calculate the new propulsive efficiency 2η . 
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Figure 6.6. Dual-flow jet engine 

Solution 

1) Single flow 

The thrust is written as 

( )m SP q V V= −  [6.37] 

The value of this thrust is:  

1600000 166,7 .
3600

V m s−= =  [6.38] 

440*600 166,7 1,733.10 1,77P N tf= − = =  [6.39] 

The propulsion yield is calculated as: 

1
1

2

1 SV
V

η =
+

 [6.40] 

1
2 0, 435
6001

166,7

η = =
+

 [6.41] 

2) Dual flow 

2.1) The new expression of the thrust is:  

( )( ) ( ) ( )2 2' 1m m S m SP q q V V q V Vλ= + − = + −  [6.42] 

qm

q'm

qm

q'm
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( )25 m SP q V V= −  [6.43] 

( )1m SP q V V= −  [6.44] 

1
2 5

S
S

V VV V −
− =  [6.45] 

1
2

600 166,7 166,7 253, 4 .
5SV m s−−= + =  [6.46] 

2.2) The new propulsion yield is: 

2
2

2

1 SV
V

η =
+

 [6.47] 

2
2 0,794
253, 41
166,7

η = =
+

 [6.48] 

These orders of magnitude are realistic. The SE210, or “Caravelle”, the first 
French civilian airplane (which left the Dassault factory in 1955), had a propulsion 
yield in the order of 0.3. In modern engines, whose dilution rates are often between 
6 and 9 (they sometimes are as high as 15) yields of more than 0.7 are common.  

EXAMPLE 6.3 (Jet propulsion of a catamaran).− 

A catamaran is a boat with two hulls, which are usually parallel to each other. 
Various modes of propulsion can be used: other than the most traditional, the sail, 
water-jet propulsors (jet engines, in fact) are used in catamarans running along 
certain European naval paths.  

  Jet generator  

Figure 6.7. Picture of a catamaran and diagram of a jet propulsion system 
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A diagram made available for travelers on a catamaran crossing Øresund, linking 
Copenhagen and Malmö states: 

a) the ship is driven by two water jet propulsors (water turbines); 

b) the flow rate of each jet is 13000 .mq l s−=  (this rate is determined in the 
reference frame of the jet generator); 

c) the ship is equipped with two diesel engines whose total power is equal to P = 
2 090 hp; 

d) the maximal velocity of the ship is 32 knots; 

Moreover, we assume that: 

e) the two generators have the same jet flow rate, as well as the same jet ejection 
velocity. VS is this exit velocity, determined within the reference frame of the 
catamaran. 

f) all the energy of the diesel engines is used and distributed evenly between the 
two jet generators of the propulsors. 

g) throughout the entire problem, the catamaran is going at its top velocity, and 
for that it uses the maximal amount of energy available from the diesel engines. 

We recall that one horsepower is worth 750W  and that a knot is the naval unit 
of speed, equal to a nautical mile per hour. A nautical mile is worth 1 1852mile m= . 
The density of the water is 3100 . .kg mρ −=  

The water from the jets is collected from the front of the catamaran, along the 
axis of the movement.  

Calculate: 

1) The ejection velocity of the liquid SV . 

2) The thrust P  of each of the jets, the total thrust of the catamaran.  

3) The propulsive efficiency η  of this propulsion. 

Solution: 

1) The power of each reactor is known  

2090 1045
2

W W= =  [6.49] 
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This power is the work applied by the thrust P  of the reactor during the unit of 
time. In 1 s, the catamaran covers V . 

The thrust of a reactor is given by:  

( )m SP q V V= −  [6.50] 

The power is therefore: 

( )m SW PV q V V V= = −  [6.51] 

All the parameters are known except SV , which is deduced from 

51045*750 7,84.10= =W W  [6.52] 

13000 .mq kg s−=  [6.53] 

132*1852 16,46 .
3600

V m s−= =  [6.54] 

( )57,84.10 3000 16, 46 *16, 46SW V= = −   [6.55] 

132,33 .SV m s−=  [6.56] 

2) The thrust of each of the jets is then: 

( ) ( ) 43000 32,33 16,46 4,76.10 4,84m SP q V V N tf= − = − = =  [6.57] 

The total thrust of the catamaran is twice this thrust:  

42* 9,52.10 9,7TP P N tf= = =  [6.58] 

3) The yield of this propulsion is written as: 

2

1 SV
V

η =
+

 [6.59] 

2 0,6747 67,5%
32,331
16,46

η = = =
+

 [6.60] 
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The propulsive efficiency of a reactor is obviously also the propulsive efficiency 
of all of the elements of the two-engine system. 

EXAMPLE 6.4.− 

A baby’s bath toy is a little boat in which a reservoir is constructed (see  
Figure 6.8) in the shape of a tube T , rectangular in section, whose sides are a   
and b ; this reservoir empties itself into the bath through a horizontal jet that exits 
from a small horizontal tube of diameter d  ( ²d a b<< ). The horizontal tube acts 
like a jet engine, with a thrust of P , thus driving the boat forward. 

 

Figure 6.8. A baby’s bath toy 

The resistance to the forward motion of the boat in the bath is a force F directed 
along the axis of the boat and of intensity F kV= , where k  is a constant and V  is 
the velocity of the boat relative to the bath. T  is filled with bath water up to a 
height of h  above the level of the horizontal tube. 

M  is the mass of the boat including the mass of the water up to the height h . 

The boat is stopped from moving forward. 

1) Find the value of the thrust P  exerted by the jet on the boat. 

2) The boat is released at the initial moment 

We assume that the expression found in (1) for the thrust P  remains valid in this 
question when the boat is in movement. This implies that h varies very slowly. 
Moreover, we neglect the loss of mass in T  due to the emptying of the boat through 

T h
d

a
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the horizontal tube. This also involves assuming that the formula that gives the 
thrust remains valid in the framework of the boat, which has stopped being 
rigorously inertial. 

2.1) Determine the differential equation that governs the velocity of the boat.  

2.2) Express this velocity as a function of time. Show that there is a maximum 
velocity. 

2.3) Find the value of this maximum velocity. 

2.4). Give the expression of the movement x (t) of the boat, which is equal to 
zero at the initial moment. 

3) Orders of magnitude 

We have: 

10 ,a cm=  7 ,b cm=  20 ,h cm=  5 ,d mm=  1,9 ,M kg=  200 ,m g=  density of 
the water 31000 .kg mρ −=  10,8k Nm s−=  

3.1) Calculate the values of the maximum velocity found in (2) and (3). 

3.2) Going back to the situation of question (2), calculate the time t1 needed to 
reach 90% of the maximum velocity. Calculate the time 10,8k Nm s−=  needed to go 
from one end to the other of a 1.5 m bathtub at the maximum velocity found in (2).  

From this, deduce an estimate of the amount of time needed for the boat to go 
from one end of the bathtub along its length. 

Solution: 

1) In this case, the framework of the boat is inertial. We can therefore calculate 
the exit velocity of the jet. This question has already been dealt with in the chapter 
on perfect fluids. 

Considering the hypotheses, here we can reproduce a result obtained previously. 
The exit velocity 1jV  of a horizontal jet resulting from a height of water is given by 
(the so-called Torricelli formula): 

1 2jV g h=  [6.61] 
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The thrust is the result of a single “exiting” jet. It is given by: 

1m jP q V=  [6.62] 

1
²;

4m j
dq sV sρ π= =  [6.63] 

²2
4
dP g hρ π=  [6.64] 

2) Determining the movements 

2.1) The forces applied to the boat are: 

– the resistance force ,F
r

 of intensity ;F kV=  

– the thrust caused by the jet of liquid; 

– Newton’s second law applied to the boat, projected along an axis directed 
from the stern to the bow of the boat (therefore in the direction of the movement) is 
written as: 

²
²

d xM P F
dt

= −  [6.65] 

² ²2
² 4

d x dx dM k gh
dt dt

ρ π+ =  [6.66] 

It is always recommended to introduce several constants when dealing with this 
sort of equation to make the writing lighter.  

We define k
M

α =  and ²
2
gh d

M
ρ πβ =  [6.67] 

The equation for ( )x t  becomes: 

²
²

d x dx
dt dt

α β+ =  [6.68] 

with the initial conditions: 

0; 0; 0d xt x
d t

= = =  [6.69] 
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Here we are looking at the velocity: 

( ) dxV t
dt

=  [6.70].  

The equation can be written again for V (t). It is then a first-order equation and 
only has a single limit condition: 

dV V
dt

α β+ =  [6.71] 

0; 0t V= =  [6.72] 

2.2) The complete solution for [6.72] is the sum of the general equation without 
the second member V1 (t) and of a particular solution to the complete equation 

( )2V t . Resolution shows two constants that the conditions at the limits allow us to 
define. 

Thus, the equation without the second member is: 

1
1 0dV V

dt
α+ =  [6.73] 

1

1

dV
dt
V

α= −  [6.74] 

1 1LogV t Log Cα= − +  [6.75] 

1 1 expV C tα= −  [6.76] 

An expression of V2 is obvious: 2V β
α

=  [6.77] 

The general expression of ( )V t  is therefore: 

( ) 1 2 1 expV t V V C t βα
α

= + = − +  [6.78] 
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By applying the condition at the limits: 

1 10; 0 exp *0 ;t V C Cβ βα
α α

= = = − + = −  [6.79] 

( ) ( )1 expV t tβ α
α

= − −  [6.80] 

When ,t →∞  the exponential exp 0,tα− →  and the maximum velocity can be 
deduced: 

( )lim V t
t

β
α

=
→ ∞

 [6.81] 

2.3) This maximum velocity is actually only reached after an infinite amount of 
time, meaning that it is nearly reached after a very long time. This maximum 
velocity appears when the acceleration of the boat becomes equal to zero. In this 
case, the two antagonist forces applied to the boat balance each other out. In other 
terms: 

² ²2 ;
4 2
d gh dP gh kV V

k
ρ πρ π= = =  [6.82] 

By introducing the two constants  

k
M

α =  and ²
2
gh d

M
ρ πβ =  [6.83] 

we immediately find: 

² *
2
gh d MV

M k
ρ π β

α
= =  [6.84] 

2.4) Going back to the complete equation for x (t) 

²
²

d x dx
dt dt

α β+ =  [6.85] 
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with the initial conditions: 

0; 0; 0dxt x
dt

= = =  [6.86] 

This equation is a classic in point mechanics. The solution is the sum of the 
general equation without the second member ( )1x t  and of a particular solution of 

the complete equation ( )2x t . Resolution shows two constants that the conditions at 
the limits will allow us to determine: 

1 1² 0
²

d x dx
dt dt

α+ =  [6.87] 

1

1

²
²

d x
dt
dx
dt

α= −  [6.88] 

1
1

dxLog t Log C
dt

α= − +  [6.89] 

1
1 expdx C t

dt
α= −  [6.90] 

1
1 2expCx t Cα

α
= − − +  [6.91] 

2 2²
²

d x dx
dt dt

α β+ =  [6.92] 

A particular solution for  is obvious: 2
tx β

α
=  [6.93] 

The general expression of ( )x t  is therefore: 

( ) 1
1 2 2expC tx t x x t C βα

α α
= + = − − + +  [6.94] 

 

2x
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By applying the conditions at the limits: 

1 1
2 2

*00; exp *0 0C Ct C Cβα
α α α

= − − + + = ⇒ =  [6.95] 

1 1 20; exp *0 0 ;
²

t C C Cβ β βα
α α α

= − + = ⇒ = − = −  [6.96] 

The expression of x (t) is: 

( ) ( )exp 1 exp
² ² ²

tx t t t tβ β β βα α α
α α α α

= − − + = − − +⎡ ⎤⎣ ⎦  [6.97] 

3) Orders of magnitude  

3.1) The maximum velocity is: 

2²0, 421; 4,055.10
2

k gh d
M M

ρ πα β −= = = =  [6.98] 

2 1 19,63.10 . 9,63 .V m s cm sβ
α

− − −= = =  [6.99] 

3.2) To reach 90% of the maximum velocity, there must be: 

( ) ( )1 expV t tβ α
α

= − −  [6.100] 

1 10,9 1 exp ; 0,1 2,3t t Logα α= − − = − =  [6.101] 

1 5,47t s=  [6.102] 

To cross the bathtub at the maximum limit, it takes: 

2 2

1,5 15,57
9,63.10

t s−= =  [6.103] 

which is slightly longer than the time 1 5,47t s= . 

This means there is a time  t2 needed to cross the bathtub, which is in the order of 
16–20 s. 
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6.4. Thrust exerted by a jet on a fixed wall 

When a jet is directed on a wall, experiment shows that the wall tends to move 
away from the jet. The simple example of raindrops landing on a leaf is enough to 
illustrate this concept. 

6.4.1. Calculation of the thrust applied to a wall by a jet 

To calculate the value of the force thus applied by the jet, which is the thrust P
r

, 
we use the model of a panel held in place by a support. We note now that by 
applying Euler’s theorem, we are not directly calculating the thrust P

r
 but rather the 

reaction R
r

 of this support, which is antagonist to the thrust so as to counterbalance 
the effect.  

Therefore: 

;P R P R= − =
r r

 [6.104] 

 

Figure 6.9. Thrust of a jet on a wall at an oblique angle of  
incidence: we determine the reaction of the wall on the fluid  

O x
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R

pa

pa

pa

pa

V cos 

mg
qm V



264     Fluid Mechanics 

The wall is not necessarily normal to the jet. Here we choose a jet whose angle 
with the normal to the panel is θ . 

Furthermore, the kinematics of the jet can be modeled simply: here we choose a 
monokinetic jet, or in other words a uniform incident flow. However, the kinematics 
of the fluid flow leaving the panel is particularly complex, with poorly understood 
kinematics. Thus, as the exiting film is thin, we shall assume that the flow is 
“practically parallel” to the wall throughout. 

It is therefore a good idea here to project Euler’s theorem on an axis O x  
perpendicular to the wall. This axis is orientated in the direction of the flow. To 
simplify the problem in terms of writing out the forces of gravity, we assume that 
the O x  axis is horizontal. 

In this way, all of the velocity vectors of the exiting flow have a projection of 
zero and the “exiting quantity of movement flow” also has a projection of zero along 
this axis O x. 

We choose a reference surface that includes the panel, which is a parallelepiped 
whose faces upstream and downstream are perpendicular to the axis O x . 

In this way, the reaction of the support on the panel is integrated with the volume 
forces applied to “everything that is in the reference surface”. 

The incident flow is easily calculable. S is the section of the incident jet: 

mq SVρ=  [6.105] 

NOTE: The velocity vector makes an angle  with the panel, and therefore with the 
axis O x . As a result, the contribution of the incident flow to the projection on O x  
of the integral:  

m
S

V dq
→

∫∫  is ( )Pr cosOx m m
S

oj V d q q V θ
→⎡ ⎤

= −⎢ ⎥
⎣ ⎦
∫∫  [6.106] 

The “−” sign comes from the fact that the unit vectors normal to the elementary 
surfaces dS  of the reference surface crossed by the incident jet are directed in the 
direction opposite to that of the axis O x . 

θ
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Following the previous reasoning, all of the contributions of the exiting flow at 

Pr Ox m
S

oj V d q
→⎡ ⎤

⎢ ⎥
⎣ ⎦
∫∫  are counted as positive. 

In terms of the surface forces, they are limited to the forces of pressure on the 
upstream face and the downstream face. They balance each other out mutually. 

As the other faces are parallel to O x, the pressure forces have a component of 
zero along this axis. 

As the axis O x  is horizontal, the forces of gravity have a projection equal to 
zero on this axis. 

The only force that contributes to the writing of the second member of the 
projected Euler’s theorem on O x is the reaction force of the axis. Here, we therefore 
only have access to the normal component nR  of this reaction, and as a result to the 
normal component of the panel of the thrust provided by the jet against the panel 
opposed to it, and therefore equal to the modulus: n nP R= : 

Pr 0SOx
S

oj F dS
→⎡ ⎤

=⎢ ⎥
⎣ ⎦
∫∫  [6.107] 

Pr VOx n
D

oj F d Rω
→⎡ ⎤

= −⎢ ⎥
⎣ ⎦
∫∫∫  [6.108] 

Finally, we obtain the projection of Euler’s theorem on O x : 

V Sm
S D S

V d q F d F dSω
→ → →

= +∫∫ ∫∫∫ ∫∫  [6.109] 

( )cosm n nq V R P Dθ− = − =−  [6.110] 

² cosnP SVρ θ=  [6.111] 

For a normal jet, cos 1θ =  and: 

²nP SVρ=  [6.112] 
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It is important to note that for an oblique jet cos 1θ ≠  the cosine is not squared, 
unlike what an overzealous extension of the previous formula to the case of an 
oblique jet might suggest. 

The normal jet is the only case where the thrust is fully known. In the case of the 
oblique jet, the flow exiting parallel to the wall is asymmetric. This results in a 
projection of the flow of the quantity of movement along any axis perpendicular to 
O x  that cannot be equal to zero. The complexity of the calculation means we will 
steer clear of this question. 

6.4.2. Jet impacting on a wall  

EXAMPLE 6.5 (A TV game).− 

During one of those popular games shown on television, various European cities 
are playing against each other. In the current game we are looking at, it is a French 
team versus a Belgian team. 

Principle of the game. A cart C  can roll without friction along horizontal rails. 
A vertical panel P  is fixed to the cart. Thus equipped, the whole system has a mass 

. Each of the two teams is placed on different sides of the panel. Each team is 
given a fire hose. The hoses of the two teams are linked to a single reservoir, whose 
internal pressure is maintained at a value of Rp , which is obviously higher than the 
atmospheric pressure ap . The water is considered here to be a perfect fluid. 

Each team directs its jet normally onto different sides of the panel. 

The goal of the game, which may be obvious at this stage, is to push the cart into 
the opponent’s area. 

To make things more interesting, each team has to choose the size of the 
diameter of the nozzle of their hose orifice at the beginning of the game. 

Two diameters are available: D  and 2D . 

The French team chooses the diameter D  and the Belgian team chooses the 
diameter 2D . 

m
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C

P

pR

jet jet

Ground

 

Figure 6.10. A TV game 

1) Each team directs its jet onto its own side of the panel. Which team should 
win in theory?  

2) The winning team then lowers its jet by an angle of θ  with the horizontal. 
What must this angle be for there to be a draw? 

3) The two teams put their jets back against the panel normally. The cart, which 
was initially immobile, starts a movement of variable velocity ( )u t  orientated 
toward the losers. The positions are located in terms of an axis O x  from left to 
right, assuming the losers are on the right. 

Give the differential equation that allows us to calculate ( )u t . For this, we will 
need to use a nearly stationary procedure for the calculation of the thrust. Why is 
this? 

4) Is there a priori a limit value for ( )u t ? 

5) Provide the expression of ( )u t . Find the result from question (4). 

Solution 

1) The velocity V  of the incident jet on each side of the panel can be calculated 
from the Bernoulli theorem. The calculation is simple. Ignoring the differences in 
altitude, there is immediately the same velocity of the jet on each side of the panel. 
A classic result is obtained here:  

²
2R a

Vp p ρ= +  [6.113] 
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2 R ap pV
ρ
−

=  [6.114] 

The corresponding thrusts on either side of the panel FP  and BP , respectively, 
on the French and Belgian side, are of the general form: 

²P S Vρ=  [6.115] 

We can see straight away that the Belgian will win, as they have a greater 
surface of the jet. 

There is: 

For the French: 

²F FP S Vρ=  [6.116] 

²
4F

DS π=  [6.117] 

²2
4

R a
F

p p DP ρ π
ρ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 [6.118] 

For the Belgians: 

²F BP S Vρ=  [6.119] 

²
2B

DS π=  [6.120] 

²2
2

R a
B

p p DP ρ π
ρ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 [6.121] 

2) The Belgians incline their jet by an angle θ . Their thrust becomes: 

²' 2 cos
2

R a
B

p p DP ρ π θ
ρ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 [6.122] 
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'BP  becomes equal to FP  for 

cos 1 ; cos 0,5;
2 4 4

θ πθ θ= = =  [6.123] 

The Belgians must incline their jet by 45° 

3) The form used in the calculation of the thrust assumes that the panel is 
immobile, and therefore that the reference frame attached to it is Galilean. For small 
variations, we can maintain this formula for the current question, but it will only 
serve as an approximation.  

The relative velocities of the jets in relation to the panel become:  

on the Belgian side: V u−  

on the French side: V u+  

As the velocity keeps the same value previously calculated: 

2 R ap pV
ρ
−

=  [6.124] 

The thrusts then become 

on the Belgian side:  

( )2
BS V uρ −  [6.125] 

on the French side:  

( )2
FS V uρ +  [6.126] 

The resulting force F is the difference between the two.  

By noting that ²2 2
4B F

DS S π= =  [6.127] 

( ) ( ) ( ) ( )2 2 2 22B F FF S V u S V u S V u V uρ ρ ρ ⎡ ⎤= − − + = − − +⎣ ⎦  [6.128] 
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The fundamental equation of dynamics gives us the differential equation that 
satisfies ( ):u t  

( ) ( )2 22F
d u d uF m S V u V u
d t d t

ρ ⎡ ⎤= ⇒ = − − +⎣ ⎦  [6.129] 

associated with the clear condition at the limits: 

0; 0t u= =  [6.130] 

The expression of F can be rearranged: 

( ) ( ) [ ]2 22 2 ² 2 ² 4 ² ² 2F FF S V u V u S V u Vu V u Vuρ ρ⎡ ⎤= − − + = + − − − −⎣ ⎦   [6.131] 

[ ]² ² 6FF S V u V uρ= + −  [6.132] 

4) Starting from a value of zero, ( )u t  increases under the effect of the force .F
r

 

This force is proportional to the difference of the two terms, ( ) ( )2 2V u V u− − +  the 

first decreasing and the second increasing. F
r

 is therefore decreasing. When it is 
equal to zero, u  reaches a limit value. 

F
r

 cancels itself out for two values of u, roots of ( ) ( )2 2V u V u− − + =
² ² 6V u Vu+ − . Using the classical resolution of algebraic second-degree equations, 

these two roots come out as: 

( )1 3 2 2u V= −  [6.133.a] 

and      ( )2 3 2 2u V= +  [6.133.b] 

It is clear that the limit velocity is the smallest of these values reached before the 
other as ( )u t  increases. Therefore, the limit velocity is: 

( )lim 1 3 2 2u u V= = −  [6.134] 
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The following shall be useful later:  

( ) ( ) ( )( )2 2
1 2² ² 6V u V u V u V u u u u u− − + = + − = − −  [6.135] 

5) The equation can be written as follows:  

[ ]² ² 6FSdu V u Vu
dt m

ρ
= + −  [6.136.a] 

² 6 ²
du dt

u V u V
α=

− +
 [6.136.b] 

FS
m

ρα =  [6.137] 

Resolution implies the decomposition of: 

( )( )1 2

1 1
² 6 ²u V u V u u u u

=
− + − −

 [6.138.a] 

into simple elements 

( ) ( )1 2

1
² 6 ²

A B
u V u V u u u u

= +
− + − −

 [6.138.b] 

There is:  

( ) ( ) ( ) ( )1 2 1 2 1 2

1 1 1 1
² 6 ²

A B
u V u V u u u u u u u u u u

⎡ ⎤
= + = −⎢ ⎥− + − − − − −⎢ ⎥⎣ ⎦

  [6.139] 

The differential equation is written as: 

( ) ( )1 2 1 2

1 1du dt
u u u u u u

α
⎡ ⎤

− =⎢ ⎥− − −⎢ ⎥⎣ ⎦
 [6.140] 

( ) ( )1 2

du du dt
u u u u

β− =
− −

 [6.141] 

( )1 2u uβ α= −  [6.142] 
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By integrating the two terms and taking into account the initial condition: 

( ) ( )1 2Ln u u Ln u u t Ln Cβ− − − = +  [6.143] 

1

2

exp
u u C t
u u

β−
=

−
 [6.144] 

1

2

0; 0
ut u C
u

= = ⇒ =  [6.145] 

For a large value of time, 1

2

;
u ut
u u

−
→ ∞ → ∞

−
 [6.146] 

Therefore: 2 20;u u u u− → →  [6.147] 

And this provides the value given in [6.134] 

( )lim 2 3 2 2u u V= = −  [6.148] 

It is important to note that this limit velocity is theoretically only reached after an 
infinite amount of time. In practice, it cannot be reached, since the players of the two 
teams are necessarily at a finite distance in front and behind the moving cart. 

6.5. Other applications for Euler’s theorems 

6.5.1. Application of Euler’s theorem to a head loss calculation 

EXAMPLE 6.6 (Head loss in a sudden enlargement).− 

A loss of charge is a loss of energy. In this theory, attributed to Borda and 
Carnot, we can see that the principle loss of energy is not due to viscosity. 

Two horizontal cylindrical tubes 1T  and 2T  are joined suddenly. Their sections 

are 1S  upstream and 2S  downstream, respectively. The ratio 1

2

S
S

σ =  is given with 

1σ < . 

We admit the following hypotheses: 
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The fluid stream has the geometry shown in the figure; it should be noted that it 
sticks back to the wall after a certain distance from the singularity. Outside of this 
stream, there is a “dead fluid”, the kinematics of which shall be described later.  

The flow is uniform, of velocity 1V  upstream of the section change and becomes 
uniform again, with a velocity of 2V  as soon as it sticks again downstream of the 
singularity. The volume forces, including the forces of gravity, have a negligible 
effect. 

The static pressure in the entrance plane of the second tube (meaning the plane 
of the joint of the two tubes) is constant and equal to the pressure present in a 
section of the tube 1T  located immediately upstream of the singularity; 1p  is this 
pressure and 2p  is the pressure present in the section 2S  after it is stuck again.  

We assume the fluid is perfect. 

 

Figure 6.11. Sudden section change in a pipeline: loss of charge 

1) By applying Euler’s theorem in the volume V  represented by the dashed lines 
in the figure, find the value of 1 2p p− , expressed as a function of 1V  and σ . 

2) Provide the expression of the head (generalized) in sections 1S  and 2S . 
Deduce the expression of the singular loss of charge SHΔ  produced by the section 
change, as well as the expression of the singular head loss coefficient ζ . What does 
this formula remind you of? 

3) Question without calculations. We shall now look at the worth of this formula 
for real fluids. 

3.1) Assume again that the fluid is perfect. Draw the form of the current lines of 
the flow in the “dead fluid” zone. Is there not something rather surprising about this 
drawing? 

S1

S2

V1
V2



274     Fluid Mechanics 

3.2) Assume now that the fluid is real. This would suggest that the “dead fluid” 
is actually being recirculated. Despite this, we shall assume that the transversal 
pressure gradients remain negligible: why is it acceptable to do this? 

In this context of a hypothesis, why can we keep the formula established in (2)? 

Where is the loss of energy localized in the two hypotheses of a perfect fluid and 
of a real fluid? 

Solution 

1) O x  is the common axis of the two tubes, oriented from upstream to 
downstream, so from left to right. For a perfect fluid, the only forces that must be 
taken into account are the forces of pressure whose summary projected onto O x  is 

( ) ( )1 2 2 2 2 1 2p S p S S p p− = −  and the forces of gravity whose horizontal projection 

is equal to zero.  

The flow is uniform on each section and the mass flow is equal to 
1 1 2 2 ,mq S V S Vρ ρ= =  entering flow for S1 and exiting for S2. The summary of the 

“exiting” quantity of movement is ( )2 1 .mq V V−  

Let us project Euler’s first theorem on the axis of the tubes system: 

V Sm
S D S

V dq F d F dSω
→ → →

= +∫∫ ∫∫∫ ∫∫  [6.149] 

( ) ( )2 1 2 1 2mq V V S p p− = −  [6.150] 

( )2 1
1 2

2

mq V V
p p

S
−

− =  [6.151] 

2) By definition, the generalized charges 1H  and 2H  in the sections 1S  and 2S  
are written as: 

2
11

1 2
GpVH

g ϖ
= +  [6.152] 

2
22

2 2
GpVH

g ϖ
= +  [6.153] 
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with 1 1 2 2;G Gp p gZ p p gZ gρ ρ ϖ ρ= + = + =  [6.154] 

Z  is the applicate of the points. Here the problem is simplified by assuming that 
the tubes are moderated sections and that the changes in the cotes play a very small 
role in the summary of the forces. 

The difference between 1H  and 2H  is the loss of head SHΔ  between the 
sections 1S  and 2:S  

2 2
1 21 2

1 2 2 2
G G

S
p pV VH H H

g gϖ ϖ
⎛ ⎞ ⎛ ⎞

Δ = − = + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 [6.155] 

The preservation of the mass flow allows us to write: 

1 1 2 2mq S V S Vρ ρ= =  [6.156] 

2 1

1 2

V S
V S

σ= =  [6.157] 

Some simple operations allow us to find SHΔ  and ζ : 

2 2
1 21 2

1 2 2 2
G G

S
p pV VH H H

g gϖ ϖ
⎛ ⎞ ⎛ ⎞

Δ = − = + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( ) ( )2 2
1 21 2

2
p g Z p g ZV V

g g
ρ ρ

ρ
+ − +−

= +  [6.158] 

( ) ( )2 2 2 2 2 2
2 2 2 12 11 2 1 2 1 2 1 2

2 22 2 2
m

S

S V V Vq V VV V p p V V V VH
g g g gS g gS

ρ
ρ ρ ρ

−−− − − −Δ = + = + = +   [6.159] 

( ) ( )2 2
1 2 2 2 1

1 2
2SH V V V V V

g
⎡ ⎤Δ = − + −⎣ ⎦  [6.160] 

( ) ( ) ( )
22 2 2

21 22 2 1 2 1
1 2 1 2

1

1 2 1 1
2 2 2 2S

V V V V VH V V VV
g g g V g

σ
− ⎛ ⎞

Δ = + − = = − = −⎜ ⎟
⎝ ⎠

  [6.161] 

2
1

2S
VH

g
ςΔ =  [6.162] 
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The formula to calculate ς, which appears in a large number of hydraulics 
treaties, is: 

( )21ς σ= −  [6.163] 

3) In this question, the kinematic model of a perfect fluid is opposed to the 
kinematic model observed generally in a real fluid. 

3.1) The kinematic model in a “perfect fluid” assumes that the current lines 
follow the walls (the normal components of the velocity for fluids in contact with 
this wall are equal to zero). This results in a “right angle” flow, which can seem 
strange in terms of the physics. 

In this model of the loss of charge, which we must remind ourselves is a loss of 
energy, is located the loss of kinetic energy at the section change. This is also what 
happens in orifice systems such as nozzles or diaphragms. 

3.2) In the model of the perfect fluid, we consider more realistic kinematics. The 
fluid stream has a “conical” form and moves progressively from one section to 
another. The dead fluid zone is in recirculation. 

We can go back to the calculation carried out in the two previous questions, and 
notably the application of Euler’s theorem, to find and accept the same result except 
this time with a more satisfying approximation. 

In this recirculation, we consider that the streamlines of the flow are practically 
lines parallel to the axis of the tube. In this case, the generating pressure pG is 
preserved over any section of the system that is perpendicular to the axis of the 
tubes, and the calculation can be carried out identically. The fact that the direction of 
the flow is inversed on some of these lines in relation to others, due to the 
phenomenon of recirculation, does not change anything.  

Formula [6.163] can therefore be applied in the case of perfect fluids. It is of 
practical use. 

It could be surprising to see the term loss of charge being used for a calculation 
carried out in a perfect fluid. There is a loss of energy that is not caused by a 
phenomenon of viscosity. This loss happens due to the “friction” of a fluid that 
makes a right angle turn at the section change. For a real fluid, the recirculation 
implies in the same way a loss of energy due to the section change. However, the 
viscosity then consumes the mechanical energy of the fluid that is recirculating. 
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6.5.2. A case for the application of Euler’s second theorem 

To illustrate the advantages of Euler’s second equation, here we propose a 
simple exercise where it can be applied. 

We propose using two strategies for resolution in dealing with this problem: one 
that relies on Euler’s first theorem and the other on the second. 

EXAMPLE 6.7 (Modeling of a garden sprinkler).− 

A garden sprinkler is made of an assembly of two tubes T  of diameter 
7,5d mm=  supplied with water by a pump. This pump delivers a flow of 

12 400 . −=Vq litres hr , which is shared in two equal parts between the two tubes T. 
The density of the water is 31000 . .kg mρ −=  

The two tubes can turn in the horizontal plane. Each tube is made up of two 
perpendicular parts. The longest, 1T , of radius rayon 75R cm=  passes through the 
rotation center of the system, while the shortest, 2T , is therefore a tangent to the 
circular trajectory of the bend of T . The two branches 1T  are located on the same line, 
which therefore constitutes the diameter of the trajectory of the bends. They meet in 
the point O , which is the rotation center of the system. The extremities of the two 
branches 1T  are located on either side of this diameter. Through the two jets flowing in 
the tubes 2T , a reaction system determines a rotational movement of the sprinkler. 

All of the friction of such a system can be seen in the form of resistant couple of 
constant 11,8 . . .C N m Rd s−= . The rotational velocity of the sprinkler (ω )is observed 
to be constant. 

Later, a vertical axis directed upward will be defined, whose origin is O . 

 

Figure 6.12. A simplified garden sprinkler 

R

z

Vjet

Vjet
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1) Resolution using Euler’s first theorem 

1.1) Determining the thrust 

1.1.1) Assuming the fluid is perfect, what water pressure is needed to supply the 
sprinkler? 

1.1.2) What is the thrust provided for each tube 2T ? 

1.2) Noting that the rotational velocity is constant, calculate .ω  Express this 
velocity in rotations per minute. 

2) Resolution using Euler’s second theorem 

2.1) Calculate the flow of the “moment of the quantity of movement” projected 
onto Oz . 

2.2) Deduce the rotational velocity .ω  

Solution 

1) Application of Euler’s first theorem 

1.1.1) This question calls for the calculation of the exit velocity of each jet. 

Each jet has a flow equal to half of Vq . The ejection velocity jetV  is therefore: 

2
² ²2

4

V V
jet

q qV d dπ π
= =  [6.164] 

1 4 3 1 5²2 400 . 6,67.10 . ; 4, 42.10 ²
4V
dq litres hr m s mπ− − − −= = =   [6.165] 

17,55 .jetV m s−=  [6.166] 

By application of the Bernoulli theorem, written in the framework of tube , 
this velocity means the pressure of the network is such that: 

2

2
jet

R a

V
p p

ρ
− =  [6.167] 

 

2T
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With: 

2
51, 281.10 1,3

2
jet

R a

V
p p Pa bar

ρ
= + = =  [6.168] 

1.1.2) The thrust resulting from each jet from each tube  is calculated from 
Euler’s first theory, as shown in sections 6.2.1 and 6.2.3. 

The thrust of each jet is: 

2
V

jet m jet jet
qP q V Vρ= =  [6.169] 

46,67.101000* *7,55 2,52
2jetP N

−

= =  [6.170] 

This thrust is the same for each of the two jets. 

We must note that implicitly through this formula we are applying Euler’s first 
theorem in the reference frame of 2T , where the flow is stationary. Rigorously 
speaking, this framework is not inertial. Volume forces (forces of inertia) must be 
considered. We would recommend going back to the proof of 6.2.1 and 6.2.3. It can 
be noted that the forces of inertia are directed along the radius of the trajectory 
circle, and their component on the axis where the fundamental principle of dynamics 
is projected is equal to zero. The visible effect of these inertia forces is to curve the 
jet toward the outside downstream of its exit point. This does not affect the 
calculation of the thrusts responsible for rotation.  

1.2) The rotational velocity is constant, so therefore the forces of reaction and of 
friction must balance out, which we shall write while remaining in the horizontal 
plane of rotation. The equilibrium to be written is reduced down to these forces, as 
the antagonist forces of pressure in the system whose support is on the plane of 
rotation compensate each other. Furthermore, the forces of gravity are perpendicular 
to the plane of rotation.  

The thrust forces have a resulting force that is equal to zero as the thrusts of the 
two jets balance each other. The equilibrium must be written in terms of moments, 
as there is a moment that is the result of friction. Let us look at the moments in 
relation to O  of the two forces of thrust and friction. They are represented by three 
vectors carried on O z . The two thrusts are directed upward and the frictions are 
directed downward.  

2T
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The whole must cancel itself out, and in terms of norms, we write: 

2 0jetP R Cω− =  [6.171] 

which gives the angular velocity of rotation: 

2 2
2

jet V jetP R R q V
C C

ρ
ω = =  [6.172.a] 

12 2*2,52*0,75 2,1 .
1,8

jetP R
Rd s

C
ω −= = =  [6.172.b] 

which gives the value:  

12,1*60 20 .
2

rotations mnω
π

−= =  [6.173] 

2) Application of Euler’s second theorem 

2.1) The flow of the “moment of the quantity of movement” is none other than 
the moment of the quantity of movement of the mass of the fluid ejected by the 
tubes 2T . 

We consider the quantity of the movement of the fluid ejected per second from a 

2T . The mass ejected per second is mq , it has a velocity vector jetV
r

, located in the 
horizontal plane containing the origin and the normal to the vector position rr  of the 
bend of T . It is important to note that here the norm of rr  is R . 

The flow of the “moment of the quantity of movement” relative to each 2T  is 

therefore m jetq V
r

 and its moment in relation to O  is a vector: 

jet m jetM r q V= ∧
r rr  [6.174] 

To take both jets into account, the flow of the “moment of the quantity of 
movement” is equal to twice this vector. 

This “flow vector” is carried by O z . Its norm is:  

2 2jet m jetM R q V=
r

 [6.175] 
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2.2) The moment of the forces of friction is also carried by O z , and its norm is:  

fM Cω=  [6.176] 

Euler’s theorem is therefore written as, projected onto Oz: 

2 2jet m jetM R q V Cω= =  [6.177] 

Hence, the value of , already found in 1), is: 

2 m jetR q V
C

ω =  [6.178] 

 

ω
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