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Preface

When I joined the staff of the College of Aeronautics some years ago I was presented
with a well-worn collection of lecture notes and invited to teach Aircraft Stability and
Control to postgraduate students. Inspection of the notes revealed the unmistakable
signs that their roots reached back to the work of W. J. Duncan, which is perhaps not
surprising since Duncan was the first Professor of Aerodynamics at Cranfield some 50
years ago. It is undoubtedly a privilege and, at first, was very daunting to be given the
opportunity to follow in the footsteps of such a distinguished academic. From that
humble beginning my interpretation of the subject has continuously evolved to its
present form, which provided the basis for this book. _

The classical linearized theory of the stability and control of aircraft is timeless, it is
brilliant in its relative simplicity and it is very securely anchored in the domain of the
aerodynamicist. So what is new? The short answer is: not a great deal. However, today
the material is used and applied in ways that have changed considerably, due largely to
the advent of the digital computer. The computer is used as the principal tool for
analysis and design, and it is also the essential component of the modern flight control
system on which all advanced-technology aeroplanes depend. It is the latter development
in particular which has had, and continues to have, a major influence on the way in
which the material of the subject is now used. It is no longer possible to guarantee good
flying and handling qualities simply by tailoring the stability and control characteristics
of an advanced-technology aeroplane by aerodynamic design alone. Flight control
systems now play an equally important part in determining the flying and handling
qualities of an aeroplane by augmenting the stability and control characteristics of the
airframe in a beneficial way. Therefore, the subject has had to evolve in order to
facilitate integration with flight control and, today, the integrated subject is much
broader in scope and is more frequently referred to as Flight Dynamics.

The treatment of the material in this book reflects my personal experience of using,
applying and teaching it over a period of many years. My formative experience was
gained as a Systems Engineer in the avionics industry where the emphasis was on the
design of flight control systems. In more recent years, in addition to teaching a formal
course in the subject, I have been privileged to have spent very many hours teaching the
classical material in the College of Aeronautics’ airborne laboratory aircraft. This
experience has enabled me to develop the material from the classical treatment
introduced by Duncan in the earliest days of the College of Aeronautics to the present
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treatment, which is biased towards modern systems applications. However, the vitally
important aerodynamic origins of the material remain clear and for this I can take no
credit.

Modern flight dynamics tends to be concerned with the wider issues of flying and
handling qualities rather than with the traditional, and more limited, issues of stability
and control. The former is, of course, largely shaped by the latter and for this reason the
emphasis is on dynamics and its importance to flying and handling qualities.

The material is developed using dimensional or normalized dimensional forms of the
aircraft equations of motion only. These formulations are in common use, with minor
differences, on both sides of the North Atlantic. The understanding of the dimensionless
equations of motion has too often been a major stumbling block for many students
and, in my experience, I have never found it necessary, or even preferable, to work with
the classical dimensionless equations of motion. The dimensionless equations of motion
are a creation of the aerodynamicist and are referred to only in so far as is necessary to
explain the origins and interpretation of the dimensionless aerodynamic stability and
control derivatives. However, it remains most appropriate to use dimensionless
derivatives to describe the aerodynamic properties of an airframe.

It is essential that the modern flight dynamicist has not only a thorough understanding
of the classical theory of the stability and control of aircraft, but also some knowledge
of the role and structure of flight control systems. Consequently, a basic understanding
of the theory of control systems is necessary and then it becomes obvious that the
aircraft may be treated as a system that may be manipulated and analysed using the
tools of the control engineer. As a result, it ic common to find control engineers looking
to modern aircraft as an interesting challenge for the application of their skills.
Unfortunately, it is also too common to find control engineers who have little or no
understanding of the dynamics of their plant which, in my opinion, is unacceptable. It
has been my intention to address this problem by developing the classical theory of the
stability and control of aircraft in a systems context in order that it should become
equally accessible to both the aeronautical engineer and to the control engineer. This
book, then, is an aeronautical text which borrows from the control engineer rather than
a control text which borrows from the aeronautical engineer.

This book is primarily intended for undergraduate and postgraduate students studying
aeronautical subjects and those students studying avionics, systems engineering, control
engineering, mathematics, etc, who wish to include some flight dynamics in their studies.
Of necessity, the scope of the book is limited to linearized small perturbation aircraft
models since the material is intended for those coming to the subject for the first time.
However, a good understanding of the material should give the reader the basic skills
and confidence to analyse and evaluate aircraft flying qualities and to initiate
preliminary augmentation system design. It should also provide a secure foundation
from which to move on into non-linear flight dynamics, simulation and advanced flight
control.

M. V. Cook
College of Aeronautics
Cranfield University
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Nomenclature

Of the very large number of symbols required by the subject, many have more than
one meaning. Usually the meaning is clear from the context in which the symbol is
used.

a Wing or wing—body lift curve slope. Acceleration. Local speed of sound
a Inertial or absolute acceleration

a, Speed of sound at sea level. Tailplane zero incidence lift coefficient

a, Tailplane lift curve slope

a, Fin lift curve slope

a, Elevator lift curve slope

a, Elevator tab lift curve slope

a,,  Lift curve slope of an infinite span wing

a, Local lift curve slope at coordinate h

Local lift curve slope at spanwise coordinate y

ac Aerodynamic centre

A Aspect ratio

A State matrix

b Wing-span

b, Elevator hinge moment derivative with respect to o
b, Elevator hinge moment derivative with respect to #
b, Elevator hinge moment derivative with respect to f,
B Input matrix

c Chord. Viscous damping coefficient. Command input
¢ Standard mean chord (smc)

c Mean aerodynamic chord (mac)

Cy Mean elevator chord aft of hinge line
Ch Local chord at coordinate h

c, Local chord at spanwise coordinate y
cg Centre of gravity

cp Centre of pressure

C Command path transfer function

C Output matrix

Cp  Drag coefficient
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Nomenclature

Zero lift drag coefficient

Rolling moment coefficient

Lift coefficient

Wing or wing-body lift coefficient

Tailplane lift coefficient

Elevator hinge moment coefficient

Pitching moment coefficient

Pitching moment coefficient about aerodynamic centre of wing
Slope of C,— plot

Yawing moment coefficient

Drag

Drag in a lateral-directional perturbation

Direction cosine matrix. Direct matrix

Drag due to camber

Drag due to incidence

Aerodynamic force. Feed-forward path transfer function
Aerodynamic force due to camber

Aerodynamic force due to incidence

Elevator control force

Acceleration due to gravity

Elevator stick to surface mechanical gearing constant
Controlled system transfer function

Height. Centre of gravity position on reference chord. Spanwise coordinate along
wing sweep line

Aerodynamic centre position on reference chord

Fin height coordinate above roll axis

Controls fixed manoeuvre point position on reference chord
Controls free manoeuvre point position on reference chord
Controls fixed neutral point position on reference chord
Controls free neutral point position on reference chord
Elevator hinge moment. Feedback path transfer function
Fin span measured perpendicular to the roll axis
Controls fixed manoeuvre margin

Controls free manoeuvre margin

Dimensionless moment of inertia in roll

Dimensionless moment of inertia in pitch

Dimensionless moment of inertia in yaw

Dimensionless product of inertia about ox and oz axes
Normalized inertia

Moment of inertia in roll

Moment of inertia in pitch

Moment of inertia in yaw

Identity matrix

Product of inertia about ox and oy axes

Product of inertia about ox and oz axes

Product of inertia about oy and oz axes

The complex variable (v—1 )

General constant. Spring stiffness coefficient
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Nomenclature

Pitch rate transfer function gain constant

Axial velocity transfer function gain constant

Normal velocity transfer function gain constant

Pitch attitude transfer function gain constant

Turbo-jet engine gain constant

Feedback gain

Feedback gain matrix

Controls fixed static stability margin

Controls free static stability margin

Fin arm measured between wing and fin quarter chord points
Tail arm measured between wing and tailplane quarter chord points
Fin arm measured between cg and fin quarter chord point
Tail arm measured between cg and tailplane quarter chord point
Lift. Rolling moment

Lift in a lateral-directional perturbation

Lift due to camber

Wing or wing-body lift

Fin lift

Tailplane lift

Lift due to incidence

Mass

Normalized mass

Local Mach number

Free stream Mach number

Critical Mach number

Pitching moment

‘Mass’ matrix

Wing-body pitching moment about wing aerodynamic centre
Tailplane pitching moment about tailplane aerodynamic centre
Total normal load factor

Normal load factor per unit angle of attack

Inertial normal load factor

Yawing moment

Origin of axes

Roll rate perturbation. Trim reference point. System pole
Dynamic pressure

Pitch rate perturbation

Yaw rate perturbation. General response variable

Radius of turn

Wing semi-span. Laplace operator

Wing reference area

Projected body side reference area

Fin reference area )

Tailplane reference area

Elevator area aft of hinge line

Time. Maximum aerofoil section thickness

Time constant

Roll mode time constant

XV



xvi Nomenclature

Spiral mode time constant

Numerator zero in axial velocity transfer function

Numerator zero in normal velocity transfer function

Numerator zero in pitch rate and attitude transfer functions

Turbo-jet engine time constant

Time to double amplitude

Axial velocity perturbation

Input vector

Total axial velocity

Axial component of steady equilibrium velocity

Axial velocity component referred to datum-path earth axes

Lateral velocity perturbation

Eigenvector

Perturbed total velocity. Total lateral velocity

Lateral component of steady equilibrium velocity

Lateral velocity component referred to datum-path earth axes

Vs Steady equilibrium velocity

Vi Fin volume ratio

Vi Tailplane volume ratio

\% Eigenvector matrix

w Normal velocity perturbation

W  Total normal velocity

W.  Normal component of steady equilibrium velocity

W  Normal velocity component referred to datum-path earth axes
Longitudinal coordinate in axis system

b State vector

X Axial force component

y Lateral coordinate in axis system

¥ Lateral body ‘drag’ coefficient

y Output vector

Y

z

z

Z

NSNS QS R eSS

Lateral force component
Normal coordinate in axis system. System zero
Transformed state vector
Normal force component

Greek letters

o Angle of attack or incidence perturbation
o Incidence perturbation :

o, Equilibrium incidence

oy Local tailplane incidence

B Sideslip angle perturbation

B. Equilibrium sideslip angle

B, Elevator trim tab angle

y Flight path angle perturbation. Imaginary part of a complex number
e Equilibrium flight path angle

r Wing dihedral angle

o Control angle. Increment. Unit impulse function
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Roll control stick angle
Pitch control stick angle

Oy Rudder pedal control angle
om  Mass increment

A Characteristic polynomial. Transfer function denominator
€ Throttle lever angle. Downwash angle at tailplane. Closed loop system error
4 Rudder angle perturbation. Damping ratio

Ly Dutch roll damping ratio

& Phugoid damping ratio

¢, Short period pitching oscillation damping ratio

n Elevator angle perturbation

Nr Tailplane setting angle

Pitch angle perturbation. A general angle

Equilibrium pitch angle

Eigenvalue

Wing sweep angle

Eigenvalue matrix

Longitudinal relative density factor

Lateral relative density factor

Aileron angle perturbation

Air density

Aerodynamic time parameter. Real part of a complex number
Engine thrust perturbation. Time parameter

Roll angle perturbation. Phase angle. A general angle

State transition matrix

Yaw angle perturbation

Undamped natural frequency

o, Bandwidth frequency

Wy Dutch roll undamped natural frequency

w, Damped natural frequency
()
()
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o Phugoid undamped natural frequency
X Short period pitching oscillation undamped natural frequency

Subscripts

0 Datum axes. Normal earth fixed axes. Wing or wing-body aerodynamic centre.
Free stream flow conditions

Quarter chord =~

Double or twice

Infinite span

Aerodynamic

Aeroplane body axes. Bandwidth

Body or fuselage

Control. Chord. Compressible flow. Camber line
Atmospheric disturbance. Dutch roll

Drag

Equilibrium, steady or initial condition
Datum-path earth axes
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xviii Nomenclature

Fin

Gravitational

Elevator hinge moment
Incompressible flow

Rolling moment

Leading edge

Lift

Pitching moment. Manoeuvre
Damped natural frequency
Neutral point. Yawing moment
Power. Phugoid

Roll rate

Pitch rate

Roll mode

Yaw rate

Short period pitching oscillation. Spiral mode
Tailplane

Axial velocity

Lateral velocity

Aeroplane wind or stability axes. Wing or wing-body
Normal velocity

ox axis

oy axis

o0z axis

N X T ESR YT QWTIBI NG T 0T

Angle of attack or incidence
Throttle lever

Rudder

Elevator

Pitch

Ailerons

Thrust

A DN v M R

Examples of other symbols and notation

X, A shorthand notation to denote a concise derivative, a dimensional derivative

divided by the appropriate mass or inertia parameters n

X, A shorthand notation to denote the dimensionless derivative 5
S . . . . 4
X, A shorthand notation to denote the dimensional derivative %‘-

Nl(t) A shorthand notation to denote a transfer function numerator polynomial
relating the output response y to the input u

(") A superscript to denote a complex conjugate

] A shorthand notation to denote that the variable u is dimensionless

Please note that although the pronoun ‘he’ has been used throughout for clarity, it is
not intended to imply that piloting and flight dynamics analysis are gender specific.
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Introduction

1.1 Overview

This book is primarily concerned with the provision of good flying and handling
qualities in the conventional aeroplane. Consequently it is also very much concerned
with the stability, control and dynamic characteristics which are fundamental to the
determination of those qualities. Since flying and handling qualities are of critical
importance to safety and to the piloting task it is essential that their origins are properly
understood. Here then, the intention is to set out the basic principles of the subject at
an introductory level and to illustrate the application of those principles by means of
worked examples.

Following the first flights made by the Wright brothers in December 1903, the pace
of aeronautical development quickened and the progress made in the following decade
or so was dramatic. However, the stability and control problems that faced the early
aviators were sometimes considerable since the flying qualities of their aeroplanes were
often less than satisfactory. Many investigators were studying the problems of stability
and control at the time, although it is the published works of Bryan (1911) and
Lanchester (1908) which are usually accredited with laying the first really secure
foundations for the subject. By conducting many experiments with flying models
Lanchester was able to observe and successfully describe mathematically some dynamic
characteristics of aeroplanes. The beauty of Lanchester’s work was its practicality and
theoretical simplicity, thereby lending itself to easy application and interpretation.
Bryan, on the other hand, was a mathematician who chose to apply his energies, with
the assistance of a Mr Harper, to the problems of the stability and control of the
aeroplane. Bryan developed the general equations of motion of a rigid body with six
degrees of freedom to describe successfully the motion of the aeroplane. His treatment,
with very few changes, is still in everyday use, What has changed is the way in which the
material is now used, due largely to the advent of the digital computer as an analysis
tool. The stability and control of aeroplanes is a subject which has its origins in
aerodynamics and the classical theory of the subject is traditionally expressed in the
language of the aerodynamicist. The objective of the present work is to revisit the
development of the classical theory and to express it in the language of the systems
engineer where it is more appropriate to do so.

Flight Dynamics is about the relatively short term motion of an aeroplane in response
to a control input or to an external disturbance such as atmospheric turbulence. The
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motion of interest can vary from small excursions about trim to very large amplitude
manoeuvring when normal aerodynamic behaviour may well become very non-linear.
Since the treatment of the subject in this book is introductory, a discussion of large
amplitude dynamics is beyond the scope of the present work. The dynamic behaviour of
an aeroplane is significantly shaped by its stability and control properties, which in turn
have their roots in the aerodynamics of the airframe. Previously the achievement of good
stability characteristics in an aeroplane usually ensured good flying qualities, all of
which depended only on good aerodynamic design. Expanding flight envelopes and the
increasing dependence on automatic flight control systems (AFCS) for stability
augmentation means that good flying qualities are no longer a guaranteed product of
good aerodynamic design and good stability characteristics. The reasons for this
apparent inconsistency are now reasonably well understood and, put very simply, result
from the addition of flight control system dynamics to those of the airframe. Flight
control system dynamics are, of course, a necessary, but not always desirable, by-
product of stability augmentation.

Modern flight dynamics is concerned not only with the dynamics, stability and control
of the basic airframe but also with the sometimes complex interaction between aeroplane
and flight control system. Since the flight control system comprises motion sensors, a
control computer, control actuators and other items of control hardware, a study of the
subject becomes a multi-disciplinary activity. Therefore, it is essential that the modern
flight dynamicist has, not only a thorough understanding of the classical stability and
control theory of aeroplanes but also a working knowledge of control theory and of the
use of computers in a flight critical environment. Thus, the aeroplane together with the
flight control equipment may be treated as a whole system using the traditional tools of
the aerodynamicist together with the analytical tools of the control engineer.

Thus, in a modern approach to the analysis of stability and control it is convenient
to treat the aeroplane as a system component. This leads to the derivation of
mathematical models which describe the aeroplane in terms of aerodynamic transfer
functions. Described in this way, the stability, control and dynamic characteristics of the
aeroplane are readily interpreted with the aid of very powerful computational systems
engineering tools. It follows that the mathematical model of the aeroplane is
immediately compatible with, and provides the foundation for, integration with flight
control system studies. This is an ideal state of affairs since, today, it is most likely that
stability and control investigations are a precursor to flight control system
development.

Today, the modern flight dynamicist tends to be concerned with the wider issues of
flying and handling qualities rather than with the traditional, and more limited issues of
stability and control. The former is, of course, largely determined by the latter. The
present treatment of the material is shaped by answering the following questions which
a newcomer to the subject might be tempted to ask.

(i)  How are the stability and control characteristics of an aeroplane determined and
how do they influence flying qualities?

The answer to this question involves the establishment of a suitable mathematical
framework for the problem, the development of the equations of motion, the solution of
the equations of motion, investigation of response to controls and the general interpreta-
tion of dynamic behaviour.
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(ii) What are acceptable flying qualities, how are the requirements defined, interpreted
and applied, and how do they limit flight characteristics?

The answer to this question involves a review of standard flying qualities requirements
documents and the evaluation and interpretation of the detail requirements.

(ili) When an aeroplane has unacceptable flying qualities how may its dynamic
characteristics be augmented?

The answer to this question involves an introduction to the rudiments of feedback
control as the means for augmenting the stability of the basic airframe.

1.2 Flying and handling qualities

The flying and handling qualities of an aeroplane are those properties which describe
the ease and effectiveness with which it responds to pilot commands in the execution of
some flight task. In the first instance, therefore, flying and handling qualities are
described qualitatively and are formulated in terms of pilot opinion, consequently they
tend to be rather subjective. The process involved in the pilot perception of flying and
handling qualities may be interpreted in the form of a signal flow diagram as shown in
Fig. 1.1. The solid lines represent physical, mechanical or electrical signal flow paths,
whereas the dashed lines represent sensory feedback information to the pilot. The
author’s interpretation distinguishes between flying qualities and handling qualities as
indicated. The pilot’s perception of flying qualities is considered to comprise a
qualitative description of how well the aeroplane carries out the commanded task. On
the other hand, the pilot’s perception of handling qualities is considered a qualitative
description of the adequacy of the short term dynamic response to controls in the
execution of the flight task. The two qualities are therefore very much interdependent
and, in practice, are probably inseparable. Thus, to summarize, the flying qualities may
be regarded as being task related, whereas the handling qualities may be regarded as
being response related. When the airframe characteristics are augmented by a flight
control system, the way in which the flight control system may influence the flying and
handling qualities is clearly shown in Fig. 1.1.

HANDLING QUALITIES

-
- -~

- -~

FLIGHT
‘CONTROL
SYSTEM

~ -
Sso -
- -

FLYING QUALITIES

Fig. 1.1 Flying and handling qualities of the conventional aeroplane
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HANDLING QUALITIES

FLYING QUALITIES

Fig. 1.2 Flying and handling qualities of the FBW aeroplane

An increasing number of advanced modern aeroplanes employ fly-by-wire (FBW)
primary flight controls and these are usually integrated with the stability augmentation
system. In this case, the interpretation of the flying and handling qualities process is
modified to that shown on Fig. 1.2. Here then, the flight control system becomes an
integral part of the primary signal flow path and the influence of its dynamic characteris-
tics on flying and handling qualities is of critical importance. The need for very careful
consideration of the influence of the flight control system in this context cannot be over-
emphasized. ,

Now the pilot’s perception of the flying and handling qualities of an aeroplane
will be influenced by many factors: for example, the stability, control and dynamic
characteristics of the airframe, flight control system dynamics, response to
atmospheric disturbances and the less tangible effects of cockpit design. This last
factor includes considerations such as control inceptor design, instrument displays
and field of view from the cockpit. Not surprisingly the quantification of flying
qualities remains difficult. However, there is an overwhelming necessity for some
sort of numerical description of flying and handling qualities for use in engineering
design and evaluation. It is very well established that the flying and handling
qualities of an aeroplane are intimately dependent on the stability and control
characteristics of the airframe including the flight control system when one is
installed. Since stability and control parameters are readily quantified these are
usually used as indicators and measures of the likely flying qualities of the
aeroplane. Therefore, the prerequisite for almost any study of flying and handling
qualities is a descriptive mathematical model of the aeroplane which is capable of
providing an adequate quantitative indication of its stability, control and dynamic
properties.

1.3 General considerations

In a systematic study of the principles governing the flight dynamics of an aeroplane it
is convenient to break the problem down into manageable descriptive elements. Thus
before attempting to answer the questions posed in Section 1.1, it is useful to consider
and define a suitable framework in which the essential mathematical development may
take place.
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1.3.1 BASIC CONTROL-RESPONSE RELATIONSHIPS

It is essential to define and establish a description of the basic input—output relationships
on which the flying and handling qualities of an unaugmented aeroplane depend. These
relationships are described by the aerodynamic transfer functions which provide the
simplest and most fundamental description of airframe dynamics. They describe the
control-response relationship as a function of flight condition and may include the
influence of atmospheric disturbances when appropriate. These basic relationships are
illustrated in Fig. 1.3.

Central to this framework is a mathematical model of the aeroplane which is usually
referred to as the equations of motion. The equations of motion provide a complete
description of the response to controls, subject only to modelling limitations defined at
the outset, and are measured in terms of displacement, velocity and acceleration
variables. The flight condition describes the conditions under which the observations are
made and includes such parameters as Mach number, altitude, aeroplane geometry,
mass and trim state. When the airframe is augmented with a flight control system the
equations of motion are modified to model this configuration. The response transfer
functions, derived from the mathematical solution of the equations of motion, are then
no longer the basic aerodynamic transfer functions but are obviously the transfer
functions of the augmented aeroplane.

1.3.2 MATHEMATICAL MODELS

From the foregoing it is apparent that it is necessary to derive mathematical models to
describe the aeroplane, its control systems, atmospheric disturbances and so on. The
success of any flight dynamics analysis hinges on the suitability of the models for the
problem in hand. Often the temptation is to attempt to derive the most accurate model

FLIGHT
CONDITION
INPUT % OUTPUT
AILERON AEROPLANE DISPLACEMENT
ELEVATOR EQUATIONS
— —> VELOCITY
RUDDER OF
MOTION ACCELERATION
THROTTLE
ATMOSPHERIC
DISTURBANCES

Fig. 1.3 Basic control-response relationship
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possible. High fidelity models are capable of reproducing aeroplane dynamics accurately
but are seldom simple. Their main drawback is the lack of functional visibility. It may
be difficult, or even impossible, to relate response to the simple physical aerodynamic
properties of the airframe, or to the properties of the control system components. For
the purposes of the investigation of flying and handling qualities it is frequently adequate
to use simple approximate models which have the advantage of maximizing functional
visibility. Such models have the potential to enhance the visibility of the physical
principles involved thereby facilitating the interpretation of flying and handling qualities
enormously. Often, the deterioration in the fidelity of the response resulting from the
use of approximate models may be relatively insignificant. For a given problem, it is
necessary to develop a model which balances the desire for response fidelity against the
requirement to maintain functional visibility. As is so often the case in many fields of
engineering, simplicity is a most desirable virtue.

1.3.3 STABILITY AND CONTROL

Flying and handling qualities are substantially dependent on, and are usually described
in terms of, the stability and control characteristics of an aeroplane. It is therefore
essential to be able to describe and to quantify stability and control parameters
completely. Analysis may then be performed using the stability parameters. Static
stability analysis enables the control displacement and the control force characteristics to
be determined for both steady and manoeuvring flight conditions. Dynamic stability
analysis enables the response to controls and to atmospheric disturbances to be
determined for various flight conditions.

1.3.4 STABILITY AND CONTROL AUGMENTATION

When an aeroplane has flying and handling qualities deficiencies it becomes necessary
to correct, or augment, the aerodynamic characteristics which give rise to those
deficiencies. To a limited extent, this could be achieved by modification of the
aerodynamic design of the aeroplane. In this event it is absolutely essential to
understand the relationship between the aerodynamics of the airframe and controls and
the stability and control characteristics of that airframe. However, today, many
aeroplanes are designed with their aerodynamics optimized for performance over a very
large flight envelope, and a consequence of this is that their flying qualities are often
deficient, the intent at the outset being to rectify those deficiencies with a stability
augmentation system. Therefore, the alternative to aerodynamic design modification is
the introduction of a flight control system. In this case it becomes essential to understand
how feedback control techniques may be used to modify artificially the apparent
aerodynamic characteristics of the airframe. So once again, but for different reasons, it
is absolutely essential to understand the relationship between the aerodynamics of the
airframe and its stability and control characteristics. Further, it becomes very important
to appreciate the effectiveness of servo-systems for autostabilization whilst acknowl-
edging the attendant advantages, disadvantages and limitations introduced by the
system hardware. At this stage of consideration it is beginning to become obvious why
flight dynamics is now a complex multi-disciplinary subject. However, since this work is
introductory, the subject of stability augmentation is treated at the most elementary
level only.
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1.4 Aircraft equations of motion

The equations of motion of an aeroplane are the foundation on which the entire
framework of flight dynamics is built and provide the essential key to a proper
understanding of flying and handling qualities. At their simplest, the equations of
motion can describe a small perturbation motion about trim only. At their most complex
they can be completely descriptive, embodying static stability, dynamic stability, aero-
elastic effects, atmospheric disturbances and control system dynamics simultaneously for
a given aeroplane configuration. The equations of motion enable the rather intangible
description of flying and handling qualities to be related to quantifiable stability and
control parameters, which in turn may be related to identifiable aerodynamic
characteristics of the airframe. For initial studies the theory of small perturbations is
applied to the equations to ease their analytical solution and to enhance their functional
visibility. However, for more advanced applications, which are beyond the scope of the
present work, the fully descriptive non-linear form of the equations might be retained.
In this case the equations are difficult to solve analytically and recourse would be made
to computer simulation techniques to effect a solution.

1.5 Aerodynamics

1.5.1 SCOPE

The aerodynamics of an airframe and its controls make a fundamental contribution to
the determination of the stability and control characteristics of the aeroplane. It is usual
to incorporate aerodynamic descriptions in the equations of motion in the form of
aerodynamic stability and control derivatives. Since it is necessary to constrain the motion
to well-defined limits in order to obtain the derivatives so the scope of the resulting
aeroplane model is similarly constrained in its application. It is, however, quite common
to find aeroplane models constrained in this way being used to predict flying and
handling qualities at conditions well beyond the imposed limits. This is not a
recommended practice! An important aspect of flight dynamics is concerned with the
proper definition of aerodynamic derivatives as functions of common aerodynamic
parameters. It is also most important that the values of the derivatives are compatible
with the scope of the problem to which the aeroplane model is to be applied. The
processes involved in the estimation or measurement of aerodynamic derivatives provide
an essential contribution to a complete understanding of acroplane behaviour.

1.5.2 SMALL PERTURBATIONS

The aerodynamic properties of an aeroplane vary considerably over the flight envelope
and mathematical descriptions of those properties are approximations at best. The limit
of the approximation is determined by the ability of mathematics to describe the
physical phenomena involved, or by the acceptable complexity of the description, the
aim being to obtain the simplest approximation consistent with adequate physical
representation. In the first instance, this aim is best met when the motion of interest is
constrained to small perturbations about a steady flight condition, which is usually, but
not necessarily, trimmed equilibrium. This means that the aerodynamic characteristics
can be approximated by linearizing about the chosen flight condition. Simple approxi-
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mate mathematical descriptions of aerodynamic stability and control derivatives then
follow relatively easily. This is the approach pioneered by Bryan (1911) and it usually
works extremely well provided the limitations of the model are recognized from the
outset.

1.6 Computers

No discussion of flight dynamics would be complete without mention of the very
important role played by the computer in all aspects of the subject. It is probably true to
say that the development of today’s very advanced aeroplanes would not have been
possible without parallel developments in computer technology. In fact there is ample
evidence to suggest that the demands of aeronautics have forced the pace of computer
development. Computers are used for two main purposes, as a general purpose tool for
design and analysis and to provide the ‘intelligence’ in flight control systems.

1.6.1 ANALYTICAL COMPUTERS

In the past, all electronic computation whether for analysis, simulation or airborne flight
control would have been analogue. Analogue computer technology developed rapidly
during and immediately after World War II and by the late 1960s had reached its highest
level of development following the introduction of the electronic integrated operational
amplifier. Its principal role was that of simulation and its main advantages were its
ability to run in real time and its high level of functional visibility. Its main disadvantage
was the fact that the electronic hardware required was directly proportional to the
functional complexity of the problem to be simulated. This meant that complex
aeroplane models with complex flight control systems required physically large, and very
costly, electronic computer hardware. During the 1960s and 1970s electronic digital
computing technology advanced very rapidly and soon displaced the analogue computer
as the primary tool for design and analysis. However, it took somewhat longer before
the digital computer had acquired the capacity and speed necessary to meet the demands
of simulation. Today, most of the computational requirements for design, analysis and
simulation can be provided by a modest Personal Computer (PC).

16.2 FLIGHT CONTROL COMPUTERS

In the present context flight control is taken to mean flight critical stability augmentation,
where a computer malfunction or failure might hazard the continued safe operation. of
the aeroplane. In the case of an FBW computer, a total failure would mean loss of the
aeroplane. Therefore, hardware integrity is a very serious issue in flight control
computer design. The modern aeroplane may also have an auto-pilot computer, air data
computer, navigation computer, energy management computer, weapon systems
computer and more. Many of these additional computers may be capable of exercising
some degree of control over the aeroplane, but none will be quite as critical as the
stability augmentation computer in the event of a malfunction.

For the last 50 years or more, computers have been used in aeroplanes for flight
control. For much of that time the dedicated analogue electronic computer was
unchallenged because of its relative simplicity and its excellent safety record. Towards
the end of the 1970s the digital computer had reached the stage of development where its
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use in flight critical applications became a viable proposition. The pursuit of increasingly
sophisticated performance goals led to an increase in the complexity of the aerodynamic
design of aeroplanes. This, in turn, placed greater demands on the flight control system
for the maintenance of good flying and handling qualities. The attraction of the digital
computer for flight control is its capability for handling very complex control functions -
easily. The disadvantage is its lack of functional visibility and the consequent difficulty
of ensuring safe trouble-free operation. However, the digital flight critical computer is
here to stay and is now in use in most advanced-technology aeroplanes. Research
continues to improve the hardware, software and application. Confidence in digital flight
control systems is now such that applications include full FBW civil transport
aeroplanes.

These functionally very complex flight control systems have given the modern
aeroplane hitherto unobtainable performance benefits. But nothing is free! The
consequence of using such systems is the unavoidable introduction of unwanted control
system dynamics. These usually manifest themselves as control phase lag and can
intrude on the piloting task in an unacceptable way, resulting in an aircraft with poor
flying and handling qualities. This problem is still a subject of research and is very much
beyond the scope of this book. However, the essential foundation material on which
such studies are built is set out in the following chapters.

16.3 COMPUTER SOFTWARE TOOLS

Many computer software tools, which are suitable for flight dynamics analysis, are
now available. Most packages are intended for control systems applications, are ideal
for handling aeronautical system problems and may be installed on a modest Personal
Computer. Software tools used regularly by the author are listed below, but it must be
appreciated that the list is by no means exhaustive, nor is it implied that the programs
listed are the best or necessarily the most appropriate.

CODAS-II is a low cost control system design and simulation package which is
limited to classical linear and non-linear applications only. It is very easy to use and its
screen graphics are good.

MATLAB or PC MATLAB is a very powerful control system design and analysis tool
which is intended for application to systems configured in state space format. As a result
all computation is handled in matrix format. Its screen graphics are good.

Program CC is also a very powerful control system design and analysis tool. It is
capable of handling classical control problems in transfer function format as well as
modern state space control problems in matrix format. An advantage is that it was
written by flight dynamicists for flight dynamicists and as a result its use becomes
intuitive once the commands have been learned. Its screen graphics are good and have
some flexibility of presentation. v

MATHCAD is a general purpose mathematical problem solving tool. It is not
particularly easy to use for repetitive calculations but it comes into its own for solving
difficult non-linear equations. It is also capable of undertaking complex algebraic
computations. Its screen graphics are generally very good and are very flexible.

ACSL (axle) is a very powerful simulation language which is capable of simulating
the most complex of non-linear flight dynamics problems.

Low cost student editions of MATLAB and MATHCAD are available which are
sufficient for handling all of the material in this book. A text book on control by Golten
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and Verwer (1991) is also available which is based on the use of CODAS and includes
a version of the software. References for the above software tools are given below.

1.7 Summary

An attempt has been made in Chapter 1 to give a broad appreciation of what flight
dynamics is all about. Clearly, to produce a comprehensive text on the subject would
require many volumes, assuming that it were even possible. To reiterate, the present
intention is to set out the fundamental principles of the subject only. However, where
appropriate, pointers are included in the text to indicate the direction in which the
material in question might be developed for more advanced studies.
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Systems of Axes and Notation

Before commencing the main task of developing mathematical models of the aeroplane,
it is first necessary to put in place an appropriate and secure foundation on which to
build the models. The foundation comprises a mathematical framework in which the
equations of motion can be developed in an orderly and consistent way. Since aeroplanes
have six degrees of freedom, the description of their motion can be relatively complex.
Therefore, motion is usually described by a number of variables that are related to a
suitably chosen system of axes. In the UK the scheme of notation and nomenclature in
common use is based on that developed by Hopkin (1970) and a simplified summary
may be found in the appropriate ESDU (1987) data item. As far as is reasonably
possible, the notation and nomenclature used throughout this book corresponds with
that of Hopkin (1970). By making the appropriate choice of axis systems, order and
consistency may be introduced to the process of model building. The importance of
order and consistency in the definition of the mathematical framework cannot be over-
emphasized since, without either, misunderstanding and chaos will surely follow. Only
the most basic commonly used axes systems appropriate to aeroplanes are discussed in
the following sections. In addition to the above-named references, a more expansive
treatment may be found in Etkin (1972) or in McRuer et al. (1973) for example.

2.1 Earth axes

Since normal atmospheric flight only is considered, it is usual to measure aeroplane
motion with reference to an earth fixed framework. The accepted convention for defining
earth axes determines that a reference point o, on the surface of the earth is the origin
of a right-handed orthogonal system of axes (0,x,y,2,), where 0,x, points to the north,
0,y points to the east and o0yz, points vertically ‘down’ along the gravity. vector.
Conventional earth axes are illustrated on Fig. 2.1. ‘

Clearly, the plane (o0,x,y,) defines the local horizontal plane which is tangential to
the surface of the earth. Thus, the flight path of an aeroplane flying in the atmosphere in
the vicinity of the reference point o, may be completely described by its coordinates in
the axis system. This therefore assumes a flat earth, where the vertical is ‘tied’ to the
gravity vector. This model is quite adequate for localized flight although it is best suited
to navigation and performance applications where flight path trajectories are of primary
interest. co R : ’
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Fig. 2.1 Conventional earth axes

For investigations involving trans-global navigation, the axis system described is
inappropriate, a spherical coordinate system being preferred. Similarly, for trans-
atmospheric flight involving the launch and re-entry of space vehicles a spherical
coordinate system would be more appropriate. However, since in such an application
the angular velocity of the earth becomes important it is necessary to define a fixed
spatial axis system to which the spherical earth axis system may be referenced.

For flight dynamics applications, a simpler definition of earth axes is preferred. Since
short term motion only is of interest, it is perfectly adequate to assume flight above a flat
earth. The most common consideration is that of motion about straight and level flight.
Straight and level flight assumes flight in a horizontal plane at a constant altitude and,
whatever the subsequent motion of the aeroplane might be, the attitude is determined
with respect to the horizontal. Referring again to Fig. 2.1 the horizontal plane is defined
by (ogxgys) and is parallel to the plane (0yx,y,) at the surface of the earth. The only
difference is that the ogx; axis points in the arbitrary direction of flight of the aeroplane
rather than to the north. The ozz; axis points vertically down as before. Therefore, it is
only necessary to place the origin og in the atmosphere at the most convenient point,
which is frequently coincident with the origin of the aeroplane body fixed axes. Earth
axes (ogxgypzg) defined in this way are called datum-path earth axes, are ‘tied’ to the
earth by means of the gravity vector and provide the inertial reference frame for short
term aeroplane motion.

2.2 Aeroplane body fixed axes
2.2.1 GENERALIZED BODY AXES

It is usual practice to define a right-handed orthogonal axis system fixed in the aeroplane
and constrained to move with it. Thus, when the aeroplane is disturbed from its initial
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flight condition the axes move with the airframe and the motion is quantified in terms
of perturbation variables referred to the moving axes. The way in which the axes may be
fixed in the airframe is arbitrary, although it is preferable to use an accepted standard
orientation. The most general axis system is known as a body axis system (0x,y,2,) which
is fixed in the aeroplane as shown in Fig. 2.2. The (ox,z,) plane defines the plane of
symmetry of the aeroplane and it is convenient to arrange the ox, axis such that it is
parallel to the geometrical horizontal fuselage datum. Thus, in normal flight attitudes,
the oy, axis is directed to starboard and the oz, axis is directed ‘downwards’. The origin

. o of the axes is fixed at a convenient reference point in the airframe which is usually,
but not necessarily, coincident with the centre of gravity (cg).

2.2.2 AERODYNAMIC, WIND OR STABILITY AXES

It is often convenient to define a set of aeroplane fixed axes such that the ox axis is
parallel to the total velocity vector ¥, as shown on Fig. 2.2. Such axes are called
aerodynamic, wind or stability axes. In steady symmetric flight, wind axes (ox,y,z,) are
just a particular version of body axes which are rotated about the oy, axis through the
steady body incidence angle o, until the ox, axis aligns with the velocity vector. Thus,
the plane (0x,z,) remains the plane of symmetry of the aeroplane and the oy, and the
oy, axes are coincident. Now there is a unique value of body incidence a, for every flight
condition, therefore the wind axes orientation in the airframe is different for every flight
condition. However, for any given flight condition the wind axes orientation is defined
and fixed in the aeroplane at the outset and is constrained to move with it in subsequent
disturbed flight. Typically the body incidence might vary in the range —10° < «, < 20°
over a normal flight envelope.

2.2.3 PERTURBATION VARIABLES

The motion of the aeroplane is described in terms of force, moment, linear and angular
velocities and attitude resolved into components with respect to the chosen aeroplane

Fig. 2.2 Moving axes systems
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Fig. 2.3 Motion variables notation

fixed axis system. For convenience it is preferable to assume a generalized body axis
system in the first instance. Thus, initially, the aeroplane is assumed to be in steady
rectilinear, but not necessarily level, flight when the body incidence is , and the steady
velocity ¥, resolves into components U,, ¥, and W, as indicated in Fig. 2.3. In steady
non-accelerating flight the aeroplane is in equilibrium and the forces and moments
acting on the airframe are in balance and sum to zero. This initial condition is usually
referred to as trimmed equilibrium.

Whenever the aeroplane is disturbed from equilibrium the force and moment balance
is upset and the resulting transient motion is quantified in terms of the perturbation
variables. The perturbation variables are shown in Fig. 2.3 and summarized in
Table 2.1.

The positive sense of the variables is determined by the choice of a right-handed axis
system. Components of linear quantities, force, velocity, etc, are positive when their
direction of action is the same as the direction of the axis to which they relate. The
positive sense of the components of rotary quantities, moment, velocity, attitude, etc, is
a right-handed rotation and may be determined as follows. Positive roll about the ox
axis is such that the oy axis moves toward the oz axis, positive pitch about the oy axis is
such that the oz axis moves toward the ox axis and positive yaw about the oz axis is such
that the ox axis moves toward the oy axis. Therefore, positive roll is right wing down,
positive pitch is nose up and positive yaw is nose to the right as seen by the pilot.

Table 2.1 Summary of motion variables

Trimmed equilibrium Perturbed
Aeroplane axis ox oy oz ox oy oz
Force 0 0 0 X Y z
Moment 0 0 0 L M N
Linear velocity U, | A W, U | 4 w
Angular velocity 0 0 0 P q r
Attitude 0 0. 0 ¢ 0 v
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Table 2.2 The perturbation variables

X Axial ‘drag’ force Sum of the components of
Y Side force aerodynamic, thrust and
zZ Normal ‘lift’ force weight forces

L Rolling moment Sum of the components of
M Pitching moment aerodynamic, thrust and
N Yawing moment weight moments

P Roll rate Components of angular

q Pitch rate velocity

r Yaw rate

U Axial velocity Total linear velocity

vV Lateral velocity components of the cg

w Normal velocity

A simple description of the perturbation variables is given in Table 2.2. The intention
is to provide some insight into the physical meaning of the many variables used in the
model. Note that the components of the total linear velocity perturbations (U, V, W) are
given by the sum of the steady equilibrium components and the transient perturbation
components (u, v, w) thus,

U=U.+u
V=V +v 2.1
W=W4+w

2.2.4 ANGULAR RELATIONSHIPS IN SYMMETRIC FLIGHT

Since it is assumed that the aeroplane is in steady rectilinear, but not necessarily level,
flight, and that the axes fixed in the aeroplane are body axes then it is useful to relate the
steady and perturbed angles as shown in Fig. 2.4.

Horizon

Fig. 2.4 Generalized body axes in symmetric flight



16 Systems of axes and notation

With reference to Fig. 2.4, the steady velocity vector ¥, defines the flight path and v,
is the steady flight path angle. As before, a, is the steady body incidence and 6, is the
steady pitch attitude of the aeroplane. The relative angular change in a perturbation is
also shown in Fig. 2.4 where it is implied that the axes have moved with the airframe
and the motion is viewed at some instant during the disturbance. Thus, the steady flight
path angle is given by

Ye = ae = O (2.2)
In the case when the aeroplane fixed axes are wind axes rather than body axes then
o, =0 (2.3)

and in the special case when the axes are wind axes and when the initial condition is level
flight
% =0,=0 2.4
It is also useful to note that the perturbation in pitch attitude 6 and the perturbation in
body incidence o are the same; thus, it is convenient to write
W _W+w

tan(a,+9)stan(a,+a)=ﬁ= U Tu

(2.5)

2.2.5 CHOICE OF AXES

Having reviewed the definition of aeroplane fixed axis systems, the obvious question
must be: when is it appropriate to use wind axes and when is it appropriate to use body
axes? The answer to this question depends on the use to which: the equations of motion
are to be put. The best choice of axes simply facilitates the analysis of the equations of
motion. When starting from first principles it is preferable to use generalized body axes
since the resulting equations can cater for most applications. It is then reasonably
straightforward to simplify the equations to a wind axis form if the application warrants
it. On the other hand, to extend wind axis based equations to cater for the more general
case is not as easy.

When dealing with numerical data for an existing aeroplane, it is not always obvious
which axis system has been used in the derivation of the model. However, by reference
to equations (2.3) or (2.4) and the quoted values of «, and 6, it should become obvious
which axis system has been used.

When it is necessary to make experimental measurements in an actual aeroplane, or
in a model, which are to be used subsequently in the equations of motion, it is preferable
to use a generalized body axis system. Since the measuring equipment is installed in
the aeroplane its location is precisely known in terms of body axis coordinates which,
therefore, determines the best choice of axis system. In a similar way, most aerodynamic
measurements and computations are referenced to the free stream velocity vector. For
example, in wind tunnel work the obvious reference is the tunnel axis, which is
coincident with the velocity vector. Thus, for aerodynamic investigations involving the
equations of motion, a wind axis reference is to be preferred. Traditionally, all
aerodynamic data for use in the equations of motion are referenced to wind axes.

Thus, to summarize, it is not particularly important which axis system is chosen provided
it models the flight condition to be investigated; the end result does not depend on the choice
of axis system. However, when compiling data for use in the equations of motion of an
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aeroplane it is quite common for some data to be referred to wind axes and for some data
to be referred to body axes. It therefore becomes necessary to have available the
mathematical tools for transforming data between different reference axes.

2.3 Euler angles and aeroplane attitude

The angles defined by the right-handed rotation about the three axes of a right-handed
system of axes are called Euler angles. The sense of the rotations and the order in which
the rotations are considered about the three axes in turn are very important since angles
do not obey the commutative law. The attitude of an aeroplane is defined as the angular
orientation of the airframe fixed axes with respect to earth axes. Attitude angles,
therefore, are a particular application of Euler angles. With reference to Fig. 2.5
(0x,02,) are datum or reference axes and (ox;y;z;) are aeroplane fixed axes, either
generalized body axes or wind axes. The attitude of the aeroplane, with respect to the
datum axes, may be established by considering the rotation about each axis in turn
required to bring (ox,y,;z,) into coincidence with (0x,y,2,). Thus, first rotate about ox;
through the roll angle ¢ to (0x,y,2,). Second, rotate about oy, through the pitch angle @
to (0x,y,z;) and third, rotate about oz, through the yaw angle ¥ to (ox,y,2,). Clearly,
when the attitude of the aeroplane is considered with respect to earth axes then (0x,y,2,)
and (ogxgygze) are coincident.

2.4 Axes transformations

It is frequently necessary to transform motion variables and other parameters from
one system of axes to another. Clearly, the angular relationships used to describe
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attitude may be generalized to describe the angular orientation of one set of axes with
respect to another. A typical example might be to transform components of linear
velocity from aeroplane wind axes to body axes. Thus, with reference to Fig. 2.5,
(0xyy,2,) may be used to describe the velocity components in wind axes, (0x;);2;) may be
used to describe the components of velocity in body axes and the angles (¢, 8, ) then
describe the generalized angular orientation of one set of axes with respect to the other.
It is usual to retain the angular description of roll, pitch and yaw although the angles
do not necessarily describe attitude strictly in accordance with the definition given in
Section 2.3.

2.4.1 LINEAR QUANTITIES TRANSFORMATION

Let, for example, (oxs, oy;, 0z;) represent components of a linear quantity in the axis
system (ox;y32;) and let (0x,, 0y, 0z,) represent components of the same linear quantity
transformed into the axis system (0x,y,z,). The linear quantities of interest would be, for
example, acceleration, velocity, displacement, etc. Resolving through each rotation in
turn and in the correct order then, with reference to Fig. 2.5, it may be shown that:

(i) after rolling about ox; through the angle ¢
0X; = 0X,
0y; = 0y, COS ¢ + 02, sin ¢ (2.6)
023 = —0Y, 8in ¢ + 0z, cos ¢

Alternatively, writing equations (2.6) in the more convenient matrix form

[ox, | [1 0 0 0x,
oy; |=10 cos¢ sing || oy, 2.7)
| 0z | [0 —sing cos¢ || o0z,
(ii) similarly, after pitching about oy, through the angle 6
[0x,] [cosf 0 —sinf7][ ox,
oy, |=| 0 1 0 oy, (2.8)
| 0z, | | sin@ 0 cosf 0z,

(iii) and after yawing about oz, through the angle ¥

ox, cosy siny O[] ox,
oy, | =1 —siny cosy 0 || oy (2.9)
0z, 0 0 1 0z,

By repeated substitution equations (2.7), (2.8) and (2.9) may be combined to give the
required transformation relationship

0X4 1 0 0 cosf 0 —sinf cosyy siny O ][ ox,
oy; | =10 cos¢ sing 0 1 0 —siny cosy O || oy,
0z; 0 —sing cos¢ || sinf 0 cosf 0 0 11| oz

(2.10)
or
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0X3 0Xy
oy; | =D| oy, (2.11)
0z; 0z,

where the direction cosine matrix D is given by

cos O cosy cos fsiny —sinf

sin¢sinfcosy singsinfsiny singcosd
D= | —cos¢siny +cos ¢ cosy (2.12)

cos¢sinfcosy cos¢sinfsiny cosgcosd
L+sin¢sinl// —sin¢gcosy

-

As shown, equation (2.11) transforms linear quantities from (0xyy,2,) to (0x3y;z3). By
inverting the direction cosine matrix D the transformation from (0x;y;2z3) to (0x02,) is
obtained as given by equation (2.13).

0%, 0x;
oy, | =D7'| oy, (2.13)
0z, 0z,

EXAMPLE 2.1

To illustrate the use of equation (2.11) consider the very simple example in which it is
required to resolve the velocity of the aeroplane through both the incidence angle and
the sideslip angle into aeroplane axes. The situation prevailing is assumed to be steady
and is shown in Fig. 2.6. '

The axes (oxyz) are generalized aeroplane body axes with velocity components U,,
V. and W, respectively. The free stream velocity vector is ¥, and the angles of incidence
and sideslip are o, and S, respectively. With reference to equation (2.11), axes (oxyz)
correspond to axes (0x,;ys;z;) and ¥, corresponds to ox, of axes (0x,y,2,). therefore the
following vector substitutions may be made

(0x0= 0)o, 020) = (Vm 0, 0) and (Ox:h 0)s, 023) = (Uu Ve, I/Ve)

and the angular correspondence means that the following substitution may be made

Fig. 2.6 Resolution of velocity through incidence and sideslip angles
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(¢» 6,y)= (o, ®gs —ﬁe)

Note that a positive sideslip angle is equivalent to a negative yaw angle. Thus, making
the substitutions in equation (2.9)

cosa, cosf, —cosa, sinff, —sinea,

U Vo
v,|=| sing. cos B, 0 0 (2.14)
W, 0

sina, cosff, —sina, sinff, cosa,
Or, equivalently,

U, = ¥, cosa, cos f,

V. =V, sinf, (2.15)
W, =V, sina, cos f,

EXAMPLE 2.2

Another very useful application of the direction cosine matrix is to calculate height
perturbations in terms of aircraft motion. Equation (2.13) may be used to relate the
velocity components in aircraft axes to the corresponding components in earth axes as
follows

cosy cos 8 cosy sinf sing cosy sinf cos

—siny cos ¢ +siny sin ¢

Us U U
Ve | =DV | = Siny cos 0 siny sinf sing siny sinBcos¢g || V
We w +cosy cos¢p ~ —cosy sing w

—sinf cos § sin ¢ cos 0 cos ¢

(2.16)

where Ug, V; and Wy are the perturbed total velocity components referred to earth
axes. Now, since height is measured positive in the ‘upwards’ direction, the rate of
change of height due to the perturbation in aircraft motion is given by

h= -Ws
whence, from equation (2.16),
h=U sin® — V cosf sin¢ — W cos B cos ¢ 2.17)

2.4.2 ANGULAR VELOCITIES TRANSFORMATION

Probably the most useful angular quantities transformation relates the angular velocities
p. g, of the aeroplane fixed axes to the resolved components of angular velocity, the
attitude rates ¢, 0, y with respect to datum axes. The easiest way to deal with the algebra
of this transformation whilst retaining a good grasp of the physical implications is to
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Fig. 2.7 Angular rates transformation

superimpose the angular rate vectors on to the axes shown in Fig. 2.5, and the result of
this is shown in Fig. 2.7.

The angular body rates p, g, r are shown in the aeroplane axes (0x3y,z;); then consider
each rotation in turn necessary to bring the aeroplane axes into coincidence with the
datum axes (0x,),2,). First, roll about ox, through the angle ¢ with angular velocity ¢.
Second, pitch about oy, through the angle § with angular velocity 6. And third, yaw
about oz, through the angle y with angular velocity . Again, it is most useful to refer
the attitude rates to earth axes, in which case the datum axes (0xyy,z,) are coincident
with earth axes (ogXgyrzg). The attitude rate vectors are clearly shown in Fig. 2.7. The
relationship between the aeroplane body rates and the attitude rates, referred to datum
axes, is readily established as follows.

(i) Roll rate p is equal to the sum of the components of ¢, 6, J resolved along 0X;3

p=¢—ysinb (2.18)
(i) Pitch rate q s equal to the sum of the components of ¢, 6,  resolved along oy,

g =6cos¢ +ysinpcosf (2.19)
(iii) Yaw rate r is equal to the sum of the components of é, 0,y resolved along oz,

r =1y cosdcosd —fsing (2.20)

Equations (2.18), (2.19) and (2.20) may be combined into the convenient matrix
notation

p 1 0 —sinf é
g|=]0 cos¢ singcosf || 6 2.21)
r 0 —sing cos¢cosf || y
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and the inverse of equation (2.21) is

é 1 singtanf cosdtanf ][ p
6|=|0 cos¢ —~sing q 2.22)
v 0 singsecf cos¢psechd || r

When the aeroplane perturbations are small, such that (¢, 8, ) may be treated as small
angles, equations (2.21) and (2.22) may be approximated by

p=¢
g=0 (2.23)
r=y

EXAMPLE 2.3

To illustrate the use of the angular velocities transformation, consider the situation
when an aeroplane is flying in a steady level coordinated turn at a speed of 2560 m/s at
a bank angle of 60°. It is required to calculate the turn rate i, the yaw rate r and the
pitch rate q. The forces acting on the aeroplane are shown in Fig. 2.8.

By resolving the forces acting on the aeroplane vertically and horizontally and
eliminating the lift L between the two resulting equations it is easily shown that the
radius of turn is given by

V(')z
=ztang (2.24)
The time to complete one turn is given by
2nR  2nW,
=% = m (2.25)

Radius of turn R

mg

Fig. 2.8 Aeroplane in a steady banked turn
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therefore the rate of turn is given by
; 2n_gtang

t Vo

Thus, ¥ = 0.068 rad/s. For the conditions applying to the turn, 4) =6 =0 =0 and thus
equation (2.21) may now be used to find the values of r and g

)4 1 0 0 0
g|=|0 cos60° sin60° || O
r 0 —sin60° cos60° || y

Therefore, p =0, 4 =0.059rad/s and r =0.034rad/s. Note that p, g and r are the
angular velocities that would be measured by rate gyros fixed in the aeroplane with
their sensitive axes aligned with the ox, oy and oz aeroplane axes respectively.

(2.26)

]

s=b/2
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cg —

]

c
Fig. 2.9 Longitudinal reference geometry

2.5 Aeroplane reference geometry

The description of the geometric layout of an aeroplane is an essential part of the math-
ematical modelling process. For the purposes of flight dynamics analysis it is convenient
that the geometry of the aeroplane can be adequately described by a small number of
dimensional reference parameters which are defined below and illustrated in Fig. 2.9

2.5.1 WING AREA

The reference area is usually the gross plan area of the wing, including that part within
the fuselage, and is denoted S where

S = be (2.27)
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where b is the wing span and ¢ is the standard mean chord of the wing.

2.5.2 MEAN AERODYNAMIC CHORD
The mean aerodynamic chord of the wing (mac) is denoted ¢ and is defined
gy
c== (2.28)
[ ¢,dy

The reference mac is located on the centre line of the aircraft by projecting ¢ from its
spanwise location as shown in Fig. 2.9. Thus, for a swept wing the leading edge of the mac
lies aft of the leading edge of the root chord of the wing. The mac represents the location of
the root chord of a rectangular wing which has the same aerodynamic influence on the
aeroplane as the actual wing. Traditionally, mac is used in stability and control studies
since a number of important aerodynamic reference centres are located on it.

2.5.3 STANDARD MEAN CHORD

The standard mean chord of the wing (smc) is effectively the same as the geometric mean
chord and is denoted ¢. For a wing of symmetric planform it is defined

Jedy
c== (2.29)
[ dy

where s = b/2 is the semi-span and c, is the local chord at spanwise coordinate y. For
a straight tapered wing, equation (2.29) simplifies to

B ; (2.30)
The reference smc is located on the centre line of the aircraft by projecting ¢ from its
spanwise location in the same way that the mac is located. Thus, for a swept wing the
leading edge of the smc also lies aft of the leading edge of the root chord of the wing.
The smc is the mean chord preferred by aircraft designers since it relates very simply to
the geometry of the aeroplane. For most aeroplanes the smc and mac are sufficiently
similar in length and location that they are practically interchangeable. It is quite
common to find references that quote a mean chord without specifying which. This is
not good practice, although the error incurred by assuming the wrong chord is rarely
serious. However, the reference chord used in any application should be clearly defined
at the outset.

2.5.4 ASPECT RATIO

The aspect ratio of the aeroplane wing is a measure of its spanwise slenderness, is
denoted A and is defined as follows

b2
A—E—

o1 o

(2.31)
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2.5.5 CENTRE OF GRAVITY LOCATION

The centre of gravity, cg, of an aeroplane is usually located on the reference chord as
indicated in Fig. 2.9. Its position is quoted as a fraction of ¢ (or ¢ ), denoted h, and is
measured from the leading edge of the reference chord as shown. The cg position varies
as a function of aeroplane loading, the typical variation being in the range 10% to 40%
of ¢. Or, equivalently, 0.1< h < 0.4.

2.5.6 TAIL MOMENT ARM AND TAIL VOLUME RATIO

The mac of the horizontal tailplane, or foreplane, is defined and located in the airframe in
the same way as the mac of the wing as indicated in Fig. 2.9. The wing and tailplane
aerodynamic forces and moments are assumed to act at their respective aerodynamic
centres which, to a good approximation, lie at the quarter chord points of the mac of the
wing and tailplane respectively. The tail moment arm [; is defined as the longitudinal
distance between the centre of gravity and the aerodynamic centre of the tailplane as shown
in Fig. 2.9. The tail volume ratio V; is an important geometric parameter and is defined

7 =Stk 2.32)
Sc ‘
where Sy is the gross area of the tailplane. Typically, the tail volume ratio has a value
in the range 0.5 < V; < 1.3 and is a measure of the aerodynamic effectiveness of the
tailplane as a stabilizing device. '

Sometimes, especially in stability and control studies, it is convenient to measure the
longitudinal tail moment about the aerodynamic centre of the mac of the wing. In this
case the tail moment arm is denoted /,, as shown in Fig. 2.9, and a slightly modified tail
volume ratio is defined.

2.5.7 FIN MOMENT ARM AND FIN VOLUME RATIO

The mac of the fin is defined and located in the airframe in the same way as the mac of
the wing as indicated in Fig. 2.10. As for the tailplane, the fin moment arm [ is defined

a;4 . C_—M 5

I

Fig. 2.10 Fin moment arm
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as the longitudinal distance between the centre of gravity and the aerodynamic centre
of the fin as shown in Fig. 2.10. The fin volume ratio V; is also an important geometric
parameter and is defined

7, = Seke 2.33)
Sc
where Sy is the gross area of the fin. Again, the fin volume ratio is a measure of the
aerodynamic effectiveness of the fin as a directional stabilizing device.
As stated above it is sometimes convenient to measure the longitudinal moment of
the aerodynamic forces acting at the fin about the aerodynamic centre of the mac of the
wing. In this case the fin moment arm is denoted /; as shown in Fig. 2.10.

2.6 Controls notation

2.6.1 AERODYNAMIC CONTROLS

Sometimes it appears that some confusion exists with respect to the correct notation
applying to aerodynamic controls, especially when unconventional control surfaces are
used. Hopkin (1970) defines a notation which is intended to be generally applicable but,
since a very large number of combinations of control motivators is possible, the notation
relating to control inceptors may become ill-defined and hence application dependent.
However, for the conventional aeroplane there is a universally accepted notation, which
accords with Hopkin (1970), and it is simple to apply. Generally, a positive control
action by the pilot gives rise to a positive aeroplane response, whereas a positive control
surface displacement gives rise to a negative aeroplane response. Thus:

(i) inroll: positive right push force on the stick = positive stick displacement = right
aileron up and left aileron down (negative mean) => right wing down roll response
(positive).

e

Port Positive control
Aileron angles shown

Fig. 2.11 Aerodynamic controls notation
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(ii) in pitch: positive pull force on the stick = positive aft stick displacement =
elevator trailing edge up (negative) = nose up pitch response (positive).

(iii) in yaw: positive push force on the right rudder pedal = positive rudder bar
displacement => rudder trailing edge displaced to the right (negative) = nose to the
right yaw response (positive).

Roll and pitch control stick displacements are denoted 6, and 6, respectively and
rudder pedal displacement is denoted J,. Aileron, elevator and rudder surface
displacements are denoted &, n and { respectively as indicated on Fig. 2.11. It should be
noted that, since ailerons act differentially, the displacement £ is usually taken as the
mean value of the separate displacements of each aileron.

2.6.2 ENGINE CONTROL

Engine thrust t is controlled by throttle lever displacement &. Positive throttle lever
displacement is usually in the forward push sense and results in a positive increase in
thrust. For a turbo-jet engine the relationship between thrust and throttle lever angle is
approximated by a simple first order lag transfer function

©__k
es)  (1+sT)

where k, is a suitable gain constant and T, is the lag time constant, which is typically
of the order of two to three seconds.

(2.34)

2.7 Aerodynamic reference centres

With reference to Fig. 2.12, the centre of pressure, cp, of an aerofoil, wing or complete
aeroplane is the point at which the resultant aerodynamic force F acts. It is usual to
resolve the force into the /ift component perpendicular to the velocity vector and the
drag component parallel to the velocity vector, denoted L and D respectively in the usual
way. The cp is located on the mac and thereby determines an important aerodynamic
reference centre.

Now simple theory establishes that the resultant aerodynamic force F generated by
an aerofoil comprises two components, that due to camber F, and that due to angle of
attack F,, both of which resolve into lift and drag forces as indicated. The aerodynamic
force due to camber is constant and acts at the mid point of the aerofoil chord and for
a symmetric aerofoil section this force is zero. The aerodynamic force due to angle of
attack acts at the quarter chord point and varies directly with angle of attack at angles
below the stall. This also explains why the zero lift angle of attack of a cambered aerofoil
is usually a small negative value since, at this condition, the lift due to camber is equal
and opposite to the lift due to angle of attack. Thus, at low speeds, when the angle of
attack is generally large, most of the aerodynamic force is due to the angle of attack
dependent contribution and the cp is nearer to the quarter chord point. On the other
hand, at high speeds, when the angle of attack is generally small, a larger contribution to
the aerodynamic force is due to the camber dependent component and the cp is nearer
to the mid point of the chord. Thus, in the limit, the cp of an aerofoil generally lies
between the quarter chord and mid chord points. More generally, the interpretation for
an aeroplane recognizes that the cp moves as a function of angle of attack, Mach
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Fig. 2.12 Aerodynamic reference centre

number and configuration. For example, at low angles of attack and high Mach numbers
the cp tends to move aft and vice versa. Consequently, the cp is of limited use as an
aerodynamic reference point in stability and control studies. It should be noted that the
cp of the complete aeroplane in trimmed equilibrium flight corresponds to the controls
fixed neutral point h,c which is discussed in Chapter 3.

If, instead of the cp, another fixed point on the mac is chosen as an aerodynamic
reference point then, at this point, the total aerodynamic force remains the same but is
accompanied by a pitching moment about the point. Clearly, the most convenient
reference point on the mac is the quarter chord point since the pitching moment is the
moment of the aerodynamic force due to camber and remains constant with variation in
angle of attack. This point is called the aerodynamic centre, denoted ac, and at low Mach
numbers lies at, or very close to, the quarter chord point, ¢/4. It is for this reason that
the ac, or equivalently, the quarter chord point of the reference chord, is preferred as a
reference point. The corresponding equivalent aerofoil model is shown in Fig. 2.12. Since
the ac remains essentially fixed in position during small perturbations about a given
flight condition, and since the pitching moment is nominally constant about the ac, it is
used as a reference point in stability and control studies. It is important to appreciate
that as the flight condition Mach number is increased so the ac moves aft and, in
supersonic flow conditions, it is located at, or very near to, c¢/2.

The definition of aerodynamic centre given above applies most strictly to the location
of the ac on the chord of an aerofoil. However, it also applies reasonably well to its
location on the mac of a wing and is also used extensively for locating the ac on the mac
of a wing-body combination without too much loss of validity. It should be appreciated
that the complex aerodynamics of a wing and body combination might result in an ac
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location which is not at the quarter chord point although, typically, it would not be
too far removed from that point.
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Static Equilibrium and Trim

3.1 Trim equilibrium

3.1.1 PRELIMINARY CONSIDERATIONS

In normal flight it is usual for the pilot to adjust the controls of an aeroplane such that
on releasing the controls it continues to fly at the chosen flight condition. By this means
the pilot is relieved of the tedium of constantly maintaining control inputs, and the
associated control forces, which may be tiring. The aeroplane is then said to be trimmed,
and the trim state defines the initial condition about which the dynamics of interest
may be studied. Thus, all aeroplanes are equipped with a means for pre-setting, or
adjusting, the datum or trim setting of the primary control surfaces.

The ailerons, elevator and rudder are all fitted with trim rabs which, in all except the
smallest aeroplanes, may be adjusted from the cockpit in flight. However, all aeroplanes
are fitted with a continuously adjustable elevator trim tab. It is an essential requirement
that an aeroplane must be stable if it is to remain in equilibrium following trimming.
In particular, the static stability characteristics about all three axes largely determine the
trimmability of an aeroplane. Thus, static stability is concerned with the control actions
required to establish equilibrium and with the characteristics required to ensure that
the aeroplane remains in equilibrium. Dynamic stability is also important of course, and
largely determines the characteristics of the transient motion, following a disturbance,
about a trimmed flight condition.

The object of trimming is to bring the forces and moments acting on‘the aeroplane into
a state of equilibrium. That is, the condition when the axial, normal and side forces and
the roll, pitch and yaw moments are all zero. The force balance is often expressed
approximately as the requirement for the lift to equal the weight and the thrust to equal
the drag. Provided that the aeroplane is stable it will then stay in equilibrium until it is
disturbed by pilot control inputs or by external influences such as turbulence. The transient
motion following such a disturbance is characterized by the dynamic stability character-
istics and the stable aeroplane will eventually settle to its equilibrium state once more.

The maintenance of trimmed equilibrium requires the correct simultaneous
adjustment of the main flight variables in all six degrees of freedom and is dependent on
airspeed, or Mach number, flight path angle, airframe configuration, weight and cg
position. As these parameters change during the course of a typical flight so trim
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adjustments are made as necessary. Fortunately, the task of trimming an aeroplane is
not as challenging as it might at first seem. The symmetry of a typical airframe confers
symmetric aerodynamic properties on the airframe, which usually reduces the task to
that of longitudinal trim only. Lateral-directional trim adjustments are only likely to be
required when the aerodynamic symmetry is lost, due to loss of an engine in a multi--
engined aeroplane, for example.

Lateral-directional stability is designed-in to most aeroplanes and ensures that in roll
the aeroplane remains wings level and that in yaw it tends to weathercock into wind when
the ailerons and rudder are at their zero or datum positions. Thus, under normal
circumstances the aeroplane will naturally seek lateral-directional equilibrium without
interference by the pilot. This applies even when significant changes are made to
airspeed, configuration, weight and cg position, for example, since the symmetry of the
airframe is retained throughout. However, such variations in flight condition can lead to
dramatic changes in longitudinal trim.

Longitudinal trim involves the simultaneous adjustment of elevator angle and thrust
to give the required airspeed and flight path angle for a given airframe configuration.
Equilibrium is only achievable if the aeroplane is longitudinally stable and the control
actions to trim depend on the degree of longitudinal static stability. Since the
longitudinal flight condition is continuously variable it is very important that trimmed
equilibrium is possible at all conditions. For this reason considerable emphasis is given
to the problems of ensuring adequate longitudinal static stability and adequate
longitudinal trim control. Because of its importance static stability and trim is often
interpreted to mean longitudinal static stability and trim.

The commonly used theory of longitudinal static stability was developed by Gates
and Lyon (1944), and derives from a full, static and dynamic, stability analysis of the
equations of motion of an aeroplane. An excellent and accessible summary of the
findings of Gates and Lyon is given in Duncan (1959) and also in Babister (1961). In the
interests of understanding and physical interpretation the theory is often reduced to a
linearized form retaining only the principal aerodynamic and configuration parameters.
It is in this simplest form that the theory is reviewed here since it is only required as the
basis on which to build the small perturbation dynamics model. It is important to
appreciate that although the longitudinal static stability model is described only in terms
of the aerodynamic properties of the airframe, the control and trim properties as seen
by the pilot must conform to the same physical interpretation even when they are
augmented by a flight control system. It is also important to note that static and
dynamic stability are, in reality, inseparable. However, the separate treatment of static
stability is a useful means for introducing the concept of stability insofar as it determines
the control and trim characteristics of the aeroplane.

3.1.2 CONDITIONS FOR STABILITY

The static stability of an aeroplane is commonly interpreted to describe its tendency to
converge on the initial equilibrium condition following a small disturbance from trim.
Dynamic stability, on the other hand, describes the transient motion involved in the
process of recovering equilibrium following the disturbance. Figure 3.1 includes two
illustrations showing the effects of static stability and static instability in an otherwise
dynamically stable aeroplane. Following an initial disturbance displacement, for
example in pitch, at time ¢ = 0 the subsequent response time history is shown and is
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Fig. 3.1 Stability

clearly dependent on the stability of the aeroplane. It should be noted that the damping
of the dynamic oscillatory component of the responses shown was deliberately chosen
to be low in order to illustrate best the static and dynamic stability characteristics.

In establishing trim equilibrium the pilot adjusts the elevator angle and thrust to
obtain a lift force sufficient to support the weight and thrust sufficient to balance the
drag at the desired speed and flight path angle. Since the airframe is symmetric the
equilibrium side force is of course zero. Provided that the speed is above the minimum
drag speed then the force balance will remain stable with speed. Therefore, the static
stability of the aeroplane reduces to a consideration of the effects of angular
disturbances about the three axes. Following such a disturbance the aerodynamic forces
and moments will no longer be in equilibrium and in a statically stable aeroplane the
resultant moments will cause the aeroplane to converge on its initial condition. The
condition for an aeroplane to be statically stable is therefore easily deduced.

nose up
pitching trim point
moment , . . :
coefficient incidencea
CN
LN B\ off trim point
nose down

Fig. 3.2 Pitching moment variation with incidence for a stable aeroplane
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Consider a positive pitch, or incidence, disturbance from equilibrium. This is in the
nose up sense and results in an increase in incidence o and hence in lift coefficient C,. In
a stable aeroplane the resulting pitching moment must be restoring, that is in the
negative or nose down sense. And of course the converse must be true following a nose
down disturbance. Thus, the condition for longitudinal static stability may be
determined by plotting pitching moment M, or pitching moment coefficient C,,, for
variation in incidence a about the trim value o, as shown in Fig. 3.2. The nose up
disturbance increases a and takes the aeroplane to the out-of-trim point p where the
pitching moment coefficient becomes negative and is therefore restoring. Clearly, a nose
down disturbance leads to the same conclusion. As indicated, the aeroplane is stable
when the slope of this plot is negative. Thus, the condition for stable trim at incidence o,
may be expressed

C, =0 3.1)
and

dc,

?&- <0 (3.2)

The above observation is only strictly valid when it is assumed that the aerodynamic
force and moment coefficients are functions of incidence only. This is usually an
acceptable approximation for subsonic aeroplanes and, indeed, the plot of pitching
moment coefficient against incidence may well be very nearly linear as shown in Fig. 3.2.
However, this argument becomes increasingly inappropriate with increasing Mach
number. As compressibility effects become significant so the aerodynamic force and
moment coefficients become functions of both incidence and Mach number. When this
occurs, equation (3.2) may not always guarantee that stable trim can be obtained. The
rather more complex analysis by Gates and Lyon (1944) takes speed effects into account
and defines a general requirement for longitudinal static stability as

9 g (3.3)

dc,
For subsonic aeroplanes, equations (3.2) and (3.3) are completely interchangeable since
o and C, are linearly, or very nearly linearly, related by the lift curve slope a.
In a similar way the conditions for lateral-directional static stability may be deduced
as

dc,
and
dcC,
T <0 (3.5

where C, and C, are rolling moment and yawing moment coefficients respectively and
¢ and B are roll angle and sideslip angle respectively.

3.1.3 DEGREE OF STABILITY

It was shown above that the condition for an aeroplane to possess static stability about
all three axes at a given trim condition is that the slopes of the C,—«, C,—¢ and C,-f
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Fig. 3.3 The degree of longitudinal static stability

plots must be negative. Now, obviously, a very large range of negative slopes is possible
and the magnitude of the slope determines the degree of stability possessed by the
aeroplane. Variation in the degree of longitudinal static stability is illustrated in Fig. 3.3.
The degree of stability is described in terms of stability margin which quantifies how
much stability the aeroplane has over and above zero or neutral stability. Thus, for
example, the longitudinal static stability margin is directly related to the slope of the
C,—a plot.

With reference to Fig. 3.3 and for a given disturbance in « it is clear that the
corresponding restoring pitching moment C,, is greatest for a very stable aeroplane. The
magnitude of the restoring moment decreases as the degree of stability, or stability
margin, is reduced and becomes zero at neutral stability. Clearly, when the aeroplane is
unstable the moment is of the opposite sign and is therefore divergent. Thus, the higher
the degree of stability the greater is the restoring moment following a disturbance. This
means that a very stable aeroplane will be very resistant to upset. This in turn means
that greater control actions will be needed to encourage the aeroplane to change its trim
state or to manoeuvre. It follows then that the stability margins determine the
magnitude of the control actions required to trim the aeroplane. It is easy to appreciate
that a consequence of this is that too much stability can be as hazardous as too little
stability since the available control power is limited.

As mentioned before, the lateral-directional static stability of the aeroplane is
usually fixed by design and usually remains more-or-less constant throughout the
flight envelope. The lateral-directional stability margins therefore remain substantially
constant for all flight conditions. This situation may well break down when large
amplitude manoeuvring is considered. Under such circumstances, normally linear
aerodynamic behaviour may well become very non-linear and cause dramatic changes
to observed lateral-directional stability and control characteristics. Although of
considerable interest to the flight dynamicist, non-linear behaviour is beyond the
scope of this book and constant lateral-directional static stability is assumed
throughout.
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3.1.4 VARIATION IN STABILITY

Changes in the aerodynamic operating conditions of an aeroplane, which result in
pitching moment changes, inevitably lead to variation in longitudinal static stability.
Such variation in stability is normally manifest as a non-linear version of the C,~C,
characteristic shown in Fig. 3.2. For the subsonic classical aeroplane, such changes are
usually small and may result in some non-linearity of the pitching moment characteristic
with change in trim. In general, the variation in the degree of stability is acceptably
small.

For the modern supersonic high performance aeroplane, the situation is not so well
defined. Large flight envelopes and significant variation in flight condition can lead to
dramatic changes in static stability. For example, it is possible for such an aeroplane to
be stable at some conditions and unstable at others. It easy to see how such variations
might arise in a physical sense but it is much more difficult to describe the variations in
mathematical terms. A brief review of some of the more obvious sources of variation in
stability follows.

3.1.4.1 Power effects

Probably the most significant variation in longitudinal static stability arises from the
effects of power. Direct effects result from the point of application and line of action of
the thrust forces with respect to the cg. Clearly, as illustrated in Fig. 3.4, a high thrust
line results in a nose down pitching moment and vice versa. In normal trimmed flight the
thrust moment is additive to the aerodynamic moment and the total pitching moment
would be trimmed to zero by adjustment of the elevator. However, any aerodynamic
perturbation about trim that results in a thrust perturbation is potentially capable of
giving rise to a non-linear stability characteristic. The precise nature of the variation in
stability is dependent on the operating characteristics of the installed power unit, which
may not be easy to identify.

High thrust
line

pitching moment

Nose up
pitching moment

cg

\ Low thrust line

Fig. 3.4 Typical thrust line effects on pitching moment
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Fig. 3.5 Typical induced flow effects on pitching moment

Indirect power effects are caused by the induced flow associated with a propeller and
its wake or the intake and exhaust of a gas turbine engine. Some of the more obvious
induced flow effects are illustrated in Fig. 3.5. The process of turning the incident flow
through the body incidence angle into the propeller disc or into the engine intake creates
a normal force at the propeller or engine intake as shown. In general, this effect gives rise
to a nose up pitching moment. The magnitude of the normal force is dependent on the
body incidence angle and on the increase in flow energy at the propeller disc or engine
intake. The force will therefore vary considerably with trim condition. The force is also
sensitive to aerodynamic perturbations about trim, it is therefore easy to appreciate its
contribution to pitching moment non-linearity.

The wake behind a propeller is a region of high energy flow which modifies the
aerodynamic operating conditions over parts of the wing and tailplane. The greatest
effect on pitching moment arises from the tailplane. The effectiveness of the tailplane is
enhanced simply because of the increased flow velocity and the reduction in downwash
angle. These two effects together increase the nose down pitching moment available and
hence increase the degree of stability of the aeroplane.

The induced flow effects associated with the propeller driven aeroplane can have a
significant influence on its longitudinal static stability. These effects also change with
aerodynamic conditions especially at high angles of attack. It is therefore quite common
to see some non-linearity in the pitching moment trim plot for such an aeroplane at high
values of lift coefficient. It should also be noted that the propeller wake rotates about
the longitudinal axis. Although less significant, the rotating flow has some influence on
the lateral-directional static stability of the aeroplane.

The exhaust from a jet engine, being a region of very high velocity and reduced
pressure, creates an inflow field as indicated in Fig. 3.5. Clearly the influence on
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pitching moment will depend on the relative location of the aerodynamic surfaces of
the aeroplane and the engine exhausts. When the tailplane is immersed in this induced
flow field then there is a change in the downwash angle. Thus, the effect is to increase
the static stability when the downwash angle is reduced and vice versa. In general this
effect is not very significant, except perhaps for the aeroplane with engines mounted -
in pods on the rear fuselage and in which the tailplane is very close to the exhaust
wake.

3.1.4.2 Other effects

Although power effects generally make the most significant contribution to variation
in longitudinal static stability, other potentially important contributory sources also
exist. For example, wing sweep back and aeroplane geometry, which result in
significant variation in downwash at the tailplane, generally tend to reduce the
available stability, an effect which is clearly dependent on the aerodynamic trim
condition. The fuselage alone is usually unstable and the condition worsens with
increasing Mach number. On the other hand, at high subsonic and supersonic Mach
numbers the aerodynamic centres of the wing and tailplane move aft. This has the
effect of increasing the available nose down pitching moment which is a stabilizing
characteristic. Finally, since all airframes have some degree of flexibility, the structure
distorts under the influence of aerodynamic loads. Today aeroelastic distortion of the
structure is carefully controlled by design and is not usually significant in influencing
static stability. However, in very large civil transport aeroplanes, the relative geometric
disposition of the wing and tailplane changes with loading conditions. Some contrib-
ution to the variation in pitching moment is therefore inevitable but its contribution to
variation in stability is usually small.

Taking all of these effects together, the prospect of ever being able quantitatively to
define the longitudinal static stability of an aeroplane may seem daunting. Fortunately,
these effects are well understood and can be minimized by design. The result for most
aeroplanes is a pitching moment trim characteristic with some non-linear tendency at
higher values of trim lift coefficient. In extreme cases the stability of the aeroplane can
actually reverse at high values of lift coefficient, which results in an unstable pitch up
characteristic. A typical pitching moment trim plot for an aeroplane with a pitch up
characteristic is shown in Fig. 3.6.

0.2
0.1}
Pitching
moment 0. A . 3 g
coefficient oo 0.5 1.5 2.0
c, Lift coefficient C,
-0}
-0.2L

Fig. 3.6 Stability reversal at high lift coefficient
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Fig. 3.7 C,—C, plots for a 1/6th scale model of the Handley Page Jetstream

EXAMPLE 3.1

To illustrate the variation in the pitching moment characteristic for a typical subsonic
aeroplane, the relevant data obtained from wind tunnel experiments on a 1/6th scale
model of the Handley Page HP-137 are shown plotted in Fig. 3.7. The data were
extracted from the report by Storey (1966), were obtained at a tunnel speed of 200 ft/s
and the Reynolds number was Re = 1.2 x 10°, based on mean aerodynamic chord ¢.
The HP-137 is, in fact, the well-known Jetstream; however, it is not known if the data
shown are representative of the actual aeroplane flying today.

The plots show the characteristics for the aeroplane without tail and for the
aeroplane with tail at various combinations of setting angle 5, and elevator angle 7.
Clearly, all of the plots are reasonably linear at all values of lift coefficient up to
the stall. Without a tailplane the aeroplane is unstable since the slope of the plot is
positive. With a tailplane the slope, and hence the degree of stability, is more or less
constant. Assuming that the trim (C,, = 0) range of lift coefficient is approximately
—0.2 < C, £ 1.0 then, by interpolation, it can be seen that this can be obtained
with an elevator angle range of approximately —6° <5 < 0°. Clearly this is well
within the control capability of the tailplane and elevator configuration shown in this
example. _

This kind of experimental analysis would be used to confirm the geometric design
of the tailplane and elevator. In particular, it is essential to establish that the aeroplane
has an adequate stability margin across the trim envelope, that the elevator angle
required to trim the aeroplane is within its aerodynamic capability and that a sufficient
margin of elevator control range remains for manoeuvring.
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3.2 The pitching moment equation

Having established the importance of the pitching moment in the determination of
longitudinal static stability, further analysis of stability requires the development of the
pitching moment equation. A fully representative general pitching moment equation is
difficult to develop since it is very dependent on the geometry of the aeroplane. However,
it is possible to develop a simple approximation to the pitching moment equation, which
is sufficiently representative for most preliminary studies and which provides
considerable insight into the basic requirements for static stability and trim.

3.2.1 SIMPLE DEVELOPMENT OF THE PITCHING MOMENT EQUATION

For the development of the simplest possible pitching moment equation it is usual to
define a model showing only the normal forces and pitching moments acting on the
aeroplane. It is assumed that, in steady level flight, the thrust and drag are in equilibrium
and act at the cg and, further, for small disturbances in incidence, changes in this
equilibrium are insignificant. This assumption therefore implies that small disturbances
in incidence cause significant changes in lift forces and pitching moments only. The
model defined in these terms is shown in Fig. 3.8.

For the purposes of modelling pitching behaviour the model comprises two parts,
the wing and fuselage combination and the tailplane. It is then assumed that the wing
and fuselage behave aerodynamically like a wing alone. Clearly, this is not true since the
fuselage may make significant aerodynamic contributions and, in any event, its presence
will interfere with the aerodynamic properties of the wing to a greater or lesser extent.
However, for conventional subsonic aeroplanes with a reasonably high aspect ratio wing
this is a very satisfactory approximation. The tailplane is treated as a separate
component since it provides the principal aerodynamic mechanism for controlling
longitudinal static stability and trim. The following analysis establishes the fundamental
importance of the tailplane parameters in the provision of longitudinal static stability.

Referring to Fig. 3.8, it is seen that the wing—fuselage lift L, and residual pitching
moment M, act at the aerodynamic centre ac of the combination, which is assumed to
be coincident with the aerodynamic centre of the wing alone. In a similar way the lift L

AL, L,

Fig. 3.8 Simple pitching moment model
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%

Fig. 3.9 Wing-tailplane flow geometry

and pitching moment My of the tailplane are assumed to act at its aerodynamic centre.
The longitudinal geometry of the model is entirely related to the mean aerodynamic
chord mac as shown in Fig. 3.8. An expression for the total pitching moment M about
the cg may therefore be written

M =M, + L(h — hy)¢ — Lyl + My (3.6)
If, as is usual, it is assumed that the tailplane aerofoil section is symmetric then My

becomes zero. Thus, in the more convenient coefficient form, equation (3.6) may be
written

C.l = Cmo + CL‘,,(h - ho) - CLT ?T (3'7)

To facilitate further analysis of pitching moment it is necessary to express the tailplane
lift coefficient C,, in terms of more accessible tailplane parameters. Tailplane lift
coefficient may be expressed

CLr =+ ayor + an + a3, (3.8)

where a,, a,, a, and a, are constant aerodynamic coefficients, oy is the local incidence, %
is the elevator angle and B, is the elevator trim tab angle. Note that since a symmetric
tailplane aerofoil section is assumed, g, is also zero. The local tailplane incidence is
influenced by the tailplane setting angle n, and the local flow distortion due to the effect
of the downwash field behind the wing. The flow geometry is shown in Fig. 3.9.

Clearly the angle of attack of the tailplane is given by

or=a—¢&+1n (3.9

where ¢ is the downwash angle at the tailplane. Since, to a good approximation, for
small disturbances the downwash angle is a function of wing-body incidence « only

de _C,, (de
d—&—a(l—a)——;—(da) (310)
whence
C., de
aor——a—(l—ax-)-f—m (3.11)

Now substituting the expression for a; given by equation (3.11) into equation (3.8),
substituting the resulting expression for C, into equation (3.7) and noting that g, is
zero, then the pitching moment equation in its simplest and most general form is
obtained

— a de
C,,, = C,,,o + CLw(h — ho) — VT(CL,, "a‘l‘ (1 - E“‘) + an + agﬂ,, + a]”-r) (3.12)
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3.2.2 ELEVATOR ANGLE TO TRIM

It has already been shown, in equation (3.1), that the condition for trim is that the total
pitching moment can be adjusted to zero, i.e. C, =0. Applying this condition to
equation (3.12) the elevator angle required to trim the aeroplane is given by

a de\ a a
=—-c +C (h— Cu (‘)(1——)-—’ -1 3.13
7o G+ Culh— ) === () (1- 3 ) 2 = 5l (3.13)
When the elevator tab is set at its neutral position, §, =0 and for a given cg position h
the elevator angle to trim varies only with lift coefficient. For any other tab setting a
different elevator angle is required to trim. Therefore, to an extent, elevator and elevator
tab provide interchangeable means for achieving longitudinal trim.

3.2.3 TEST FOR LONGITUDINAL STATIC STABILITY

The basic requirement for an aeroplane to be statically stable at a given trim condition
is stated in equation (3.2). By differentiating equation (3.12) with respect to C,, or
equivalently C, , and noting that n, and, by definition, C,, are constants then the
condition for the aeroplane to be stable is given by

dc,

dcz..,<0
where
dC de dn dg,
ac,. = =(h—hy) — VT( (l d)+ deL + 3dCL) (3.14)

Thus, at a given cg position h, the longitudinal static stability of the aeroplane and the
.aerodynamic control characteristics, that is elevator angle to trim, dy/dC, , and elevator
tab angle to trim, df,/dC, , are interdependent. Further analysis is usually carried out
by separating the effects of elevator angle and tab angle in equation (3.14). Controls fixed
stability is concerned with the interdependence of elevator angle to trim and stability,
whereas controls free stability is concerned with the interdependence of elevator tab
angle to trim and stability.

3.3 Longitudinal static stability

3.3.1 CONTROLS FIXED STABILITY

The condition described as controls fixed is taken to mean the condition when the
elevator and elevator tab are held at constant settings corresponding to the prevailing
trim condition. In practice, this means that the pilot is flying the aeroplane with his
hands on the controls and is holding the controls at the fixed setting required to trim.
This, of course, assumes that the aeroplane is stable and remains in trim.

Since the controls are fixed

dyn__ dB,

rq,;—aa=° | (3.15)
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and equation (3.14) may be written

daC, _ - a de
=tk -%2(1-5) (3.16)
Or, writing
dC, _
K, = —dCL,, =h,—h (3.17)

where K, is the controls fixed stability margin, the slope of the C,-C, plot. The
location of the controls fixed neutral point h, on the mean aerodynamic chord ¢ is
therefore given by

—papf_de
h,,—ho+VTa(1 da) (3.18)

For a statically stable aeroplane the stability margin K, is positive, and the greater its
value the greater the degree of stability possessed by the aeroplane. With reference to
equation (3.17) it is clear that the aeroplane will be stable when the cg position & is ahead
of the controls fixed neutral point h,. The acceptable margins of stability therefore
determine the permitted range of cg position in a given aeroplane. The aft limit often
corresponds to the controls fixed neutral point, whereas the forward limit is determined
by the maximum permissible stability margin. Remember, Section 3.1.3, that too much
stability can be as hazardous as too little stability.

The meaning of controls fixed stability is easily interpreted by considering the pilot
actions required to trim an aeroplane in a controls fixed sense. It is assumed at the outset
that the aeroplane is, in fact, stable and hence can be trimmed to an equilibrium flight
condition. When the aeroplane is in a trimmed initial equilibrium state the pitching
moment is zero and equation (3.12) may be written

- a de
0=C, +C.,(h—h)— VT(C,_W-;’ (1 - -—) +an + a3, + a,nT) (3.19)

do
It is assumed that the pilot is holding the controls at the required elevator angle, the
power is set to give steady level flight and the elevator tab is set at its datum, g, =0.
Now, to retrim the aeroplane at a new flight condition in a controls fixed sense it is
necessary for the pilot to move the controls to the new elevator setting and then to hold
the controls at that setting. For example, to retrim at a higher speed in a more nose
down attitude, the pilot would move the control column forward until his new condition
was established and would then simply hold the column at that position. This would,
of course, leave the aeroplane in a descending condition unless the power were increased
sufficient to maintain level flight at the higher speed. However, power variations are
not allowed for in the simple model reviewed here.

Thus, to trim a stable aeroplane at any condition in its speed envelope simply requires
the selection of the correct elevator angle, all other parameters remaining constant.
Therefore, the variable in controls fixed stability analysis is elevator angle to trim.
Differentiating equation (3.19) with respect to C,, and making the same assumptions as
before but allowing elevator angle n to vary with trim, then after some rearrangement
it may be shown that

-1

dn -1
=—(h,— h)=—2K, 3.20
dCLw Vl‘az ( ) Vl'az ( )
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Thus, since ¥ and a, are constants, the elevator angle to trim characteristic dn/dC,, is
proportional to the controls fixed stability margin K,. Measurements of elevator angle
to trim for a range of flight conditions, subject to the assumptions described, provide a
practical means for determining controls fixed stability characteristics from flight
experiments. However, in such experiments it is not generally possible to eliminate -
completely the effects of power on the results.

EXAMPLE 3.2

The practical evaluation of controls fixed static stability centres on the application of
equations (3.13), (3.19) and (3.20) to a stable aeroplane. It is relatively straight-
forward to obtain measurements of the elevator angle # required to trim an aeroplane at
a chosen value of lift coefficient C,. Provided that the power and elevator trim tab
angle B, are maintained at constant settings throughout the measurement process then
the above-mentioned equations apply directly. A flight test exercise conducted in a
Handley Page Jetstream by the author under these conditions provided the trim data
plotted in Fig. 3.10 for three different cg positions. At any given value of lift coefficient
C, the corresponding value of elevator angle to trim n is given by the solution of
equation (3.13), or alternatively equation (3.19). The plots are clearly non-linear and
the non-linearity in this aeroplane is almost entirely due to the effects of power.

Since the slopes of the plots shown in Fig. 3.10 are all negative the aeroplane is
statically stable in accordance with equation (3.20). However, for any given cg position
the slope varies with lift coefficient, indicating a small variation in stability margin. In
a detailed analysis the stability margin would be evaluated at each value of trimmed lift
coefficient in order to quantify the variation in stability. In the present example the
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Fig. 3.10 Plot of elevator angle to trim
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Fig. 3.11 Determination of controls fixed neutral point

quality of the data was not good enough to allow such a complete analysis. To
establish the location of the controls fixed neutral point 4, equation (3.20) must be
solved at each value of trim lift coefficient. This is most easily done graphically as
shown in Fig. 3.11.

Equation (3.20) is solved by plotting dy/dC, against cg position 4 as shown. In this
example the mean slope for each cg position is plotted rather than the value at each
trim point. Since equation (3.20) represents a linear plot a straight line may be fitted to
the three data points as shown. Extrapolation to the neutral stability point at which
dn/dC, = 0 corresponds to a cg position of approximately 2 = 0.37. Clearly, three data
points through which to draw a line are barely adequate for this kind of evaluation. A
controls fixed neutral point A, at 37% of mac correlates well with the known properties
of the aeroplane. The most aft cg position permitted is in fact at 37% of mac. Having
established the location of the controls fixed neutral point the controls fixed stability
margin K, for each cg position follows from the application of equation (3.20).

In a more searching stability evaluation rather more data points would be required
and data of much better quality would be essential. Although limited, the present
example does illustrate the typical controls fixed longitudinal static stability character-
istics of a well-behaved classical aeroplane.

3.3.2 CONTROLS FREE STABILITY

The condition described as controls free is taken to mean the condition when the elevator
is free to float at an angle corresponding to the prevailing trim condition. In practice,
this means that the pilot can fly the aeroplane with his hands off the controls whilst the
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aeroplane remains in its trimmed flight condition. Again, it is assumed that the
aeroplane is stable, otherwise it will diverge when the controls are released. Now this
situation can only be obtained if the controls can be adjusted such that the elevator will
float at the correct angle for the desired hands-off trim condition. This is arranged by
adjusting the elevator trim tab until the required trim is obtained. Thus, controls free
stability is concerned with the trim tab and its control characteristics.

When the controls are free, the elevator hinge moment H is zero and the elevator
floats at an indeterminate angle #. It is therefore necessary to eliminate elevator angle
from the pitching moment equation (3.12) in order to facilitate the analysis of controls
free stability. The elevator hinge moment coefficient is given by the expression

Ch = by + by + by, (3:21)

where b, b, and b, are constants determined by the design of the elevator and trim tab
control circuitry. Substituting for local tailplane incidence a; as given by equation
(3.11), equation (3.21) may then be rearranged to determine the angle at which the
elevator floats. Thus

1 CLw b] _dE bJ bl
n=5 =, (1 da) 5P "5, (3-22)

To eliminate elevator angle from the pitching moment equation, substitute equation
(3.22) into equation (3.12) to obtain

e.2(1-2) (- “’?) whi(1-55)
Cm=Cm°+CLw(h_h0)—ﬁI' 4 b

a,b,
+anr (1 ) bz) b, —Cy

(3.23)

Now in the controls free condition Cy = 0 and noting that #, C,, and, since the tab is set
at the trim value, B, are constants, then differentiating equation (3.23) with respectto C,,

dcm — (h — = a de a2b1
dc,, (h=ho) — Vx a (l dd) (1  ab, (3:24)
Or, writing
,__ 4G, _
K, = ~3 C. =H,—h (3.25)

where K, is the controls free stability margin, the slope of the C,—C, plot with the
controls free. The location of the controls free neutral point h, on the mean aerodynamic
chord ¢ is given by

h+ A (1-%)(1 -2
=ht¥h (1 d“) (1 ale)
a,b, de
=h, - V=2 ab, (1 doc) (3.26)
Thus, as before, for a statically stable aeroplane the controls free stability margin K, is

positive and the greater its value the greater the degree of stability possessed by the
aeroplane. With reference to equation (3.25) it is clear that for controls free stability the
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cg position h must be ahead of the controls free neutral point k. Equation (3.26) shows
the relationship between the controls fixed and the controls free neutral points. The
numerical values of the elevator and tab constants are such that usually 4, > h,, which
means that it is common for the controls free neutral point to lie aft of the controls fixed
neutral point. Thus, an aeroplane that is stable controls fixed will also usually be stable
controls free and it follows that the controls free stability margin K, will be greater than
the controls fixed stability margin K,.

The meaning of controls free stability is readily interpreted by considering the pilot
actions required to trim the aeroplane in a controls free sense. It is assumed that the
aeroplane is stable and is initially in a hands-off trim condition. In this condition the
pitching moment is zero and hence equation (3.23) may be written

a (i _de\(;_abh
Cr a (1 d“) (l albz)
b _&b
* a3ﬁ,, (1 asbz) T it (l albz)

Now to retrim the aeroplane it is necessary for the pilot to grasp the control column
and move it to the position corresponding to the elevator angle required for the new trim
condition. However, if he now releases the control it will simply move back to its
original trim position since an out-of-trim elevator hinge moment, and hence stick force,
will exist at the new position. To rectify the problem he must use the trim tab. Having
moved the control to the position corresponding to the new trim condition he will be
holding a force on the control. By adjusting the trim tab he can null the force and
following which, he can release the control and it will stay in the new hands-off position
as required. Thus, trim tab adjustment is equivalent to control force adjustment, which
in turn is directly related to elevator hinge moment adjustment in a mechanical flying
control system. To reiterate the previous illustration, consider the situation when the
pilot wishes to retrim the aeroplane at a higher speed in a more nose down attitude. As
before, he will push the control column forward until he obtains the desired condition
which leaves him holding an out-of-trim force and descending. Elevator tab adjustment
will enable him to reduce the control force to zero whereupon he can release the control
to enjoy his new hands-off trim condition. Since he will be descending it would normally
be necessary to increase power in order to regain level flight. However, as already stated,
thrust variations are not allowed for in this model; if they were the analysis would be
considerably more complex.

Thus, to trim a stable aeroplane at any hands-off flight condition in its speed envelope
simply requires the correct selection of elevator tab angle. The variable in controls free
stability analysis is therefore elevator tab angle to trim. Differentiating equation (3.27) with
respect to C, and making the same assumptions as previously but allowing elevator tab
angle f, to vary with trim, then after some rearrangement it may be shown that

dB, 1 -1

= (= h) =
dC,, asi{r(l _fzéz) aaf}-r(l _9_21’_3.)
a;b,
Since it is usual for

a,b,
-a 17(1-5’11-’2)>o (3.29)
37T anz -

0=C,, +C. (h—h)—V; (3.27)

K, (3.28)
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then the elevator tab angle to trim characteristic d,/dC,  is positive and is proportional
to the controls free stability margin K. Measurement of the tab angle to trim a range
of flight conditions, subject to the assumptions described, provides a practical means for
determining controls free stability characteristics from flight experiments. However,
since tab angle, elevator hinge moment and control force are all equivalent it is often
more meaningful to investigate control force to trim directly since this is the parameter
of direct concern to the pilot.

To determine the equivalence between elevator tab angle to trim and control force to
trim, consider the aeroplane in a stable hands-off trim state with the tab set at its correct
trim value. If the pilot moves the controls in this condition the elevator hinge moment,
and hence control force, will vary. Equation (3.23) is applicable and may be written

6.2 (1-2)(1-28) o (1-22)
0=C, +C.(h—h)—V; 172 372

ab, a
+a,11T(1 albz) + b, Cy

(3.30)

where B, is set at its datum trim position and is assumed constant and the hinge moment
coefficient Cy is allowed to vary with trim condition. Differentiate equation (3.30) with
respect to C,, subject to these constraints and rearrange to obtain

= b =
5

- K, (3.31)
G, Vi 22

b, b,
Comparison of equation (3.31) with equation (3.28) demonstrates the equivalence of
tab angle to trim and hinge moment to trim. Further, if the elevator control force is

denoted F, and g, denotes the mechanical gearing between the control column and
elevator then

1 =
F,=gH= EszS,,c,,g,,CH (3.32)

where S, is the elevator area aft of the hinge line and (=:,, is the mean aerodynamic chord
of the elevator aft of the hinge line. This therefore demonstrates the relationship between
control force and hinge moment although equation (3.32) shows the relationship
depends on the square of the speed.

EXAMPLE 3.3

The practical evaluation of controls free static stability is undertaken in much the same
way as the evaluation of controls fixed stability discussed in Example 3.2. In this case
the evaluation of controls free static stability centres on the application of equations
(3.30), (3.31) and (3.32) to a stable aeroplane. It is relatively straightforward to obtain
measurements of the elevator stick force F,, and hence hinge moment coefficient Cy,
required to trim an aeroplane at a chosen value of lift coefficient C,. Provided that the
power and elevator trim tab angle §, are maintained at constant settings throughout
the measurement process the above-mentioned equations apply directly.

As before, a flight test exercise conducted in a Handley Page Jetstream under these
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conditions provided the trim data plotted in Fig. 3.12 for three different cg positions.
At any given value of lift coefficient C, the corresponding value of elevator hinge
moment to trim Cy is given by the solution of equation (3.30). Again, the plots are
non-linear due primarily to the effects of power. However, since force measurements
are involved, the influence of friction in the mechanical control runs is significant and
inconsistent. The result of this is data with rather too many spurious points. In order to
provide a meaningful example the obviously spurious data points have been ‘adjusted’
to correlate with the known characteristics of the aeroplane.

Since the slopes of the plots shown in Fig. 3.12 are all positive, the aeroplane is
statically stable in accordance with equation (3.31). However, for any given cg position
the slope varies with lift coefficient indicating rather inconsistent variations in stability
margin. However, in this case, the variations are more likely to be the result of poor
quality data rather than orderly changes in the aerodynamic properties of the aeroplane.
Again, in a detailed analysis the stat..iity margin would be evaluated at each value of
trimmed lift coefficient in order to quantify the variation in stability. In the present
example the quality of the data was clearly not good enough to allow such a complete
analysis. To establish the location of the controls free neutral point %, equation (3.31)
must be solved at each value of trim lift coefficient. This is most easily done graphically
as shown in Fig. 3.13.

Equation (3.31) is solved by plotting dC,/dC, against cg position & as shown. In
this example the mean slope for each cg position is plotted rather than the value at
each trim point. Since equation (3.31) represents a linear plot a straight line may be
fitted to the three data points as shown. Extrapolation to the neutral stability point at
which dC,/dC, =0 corresponds to a cg position of approximately 4 =0.44. A
controls free neutral point A, at 44% of mac correlates reasonably well to the known
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Fig. 3.13 Determination of controls free neutral point
properties of the aeroplane. Having established the location of the controls free neutral

point the controls free stability margin K, for each cg position follows from the
application of equation (3.25).

3.3.3 SUMMARY OF LONGITUDINAL STATIC STABILITY

A physical interpretation of the meaning of longitudinal static stability may be brought
together in the summary shown in Fig. 3.14.

The important parameters are neutral point positions and their relationship to the cg
position which, in turn, determines the stability margins of the aeroplane. The stability
margins determine literally how much stability the aeroplane has in hand, in the controls
fixed and free senses, over and above neutral stability. The margins therefore indicate
how safe the aeroplane is. However, equally importantly, the stability margins provide a
measure of the control actions required to trim the aeroplane. In particular, the controls
fixed stability margin is a measure of the control displacement required to trim and the
controls free stability margin is a measure of the control force required to trim. From a
flying and handling qualities point of view it is the interpretation of stability in terms
of control characteristics which is by far the most important consideration. In practice,
the assessment of longitudinal static stability is frequently concerned only with the
measurement of control characteristics, as illustrated by Examples 3.2 and 3.3.

3.4 Lateral static stability

Lateral static stability is concerned with the ability of the aeroplane to maintain wings
level equilibrium in the roll sense. Wing dihedral is the most visible parameter which



50 Static equilibrium and trim

. / / K. N\
¥ K, N\
[ mac |
il 1 2] 8] |
1 Centre of gravity position h
2 Controls fixed neutral point A
3 Controls free neutral point |
K, Controls fixed static margin hy >~
K. Controls free static margin & >‘

Fig. 3.14 Longitudinal stability margins

confers lateral static stability on an aeroplane although there are many other
contributions, some of which are destabilizing. Since all aeroplanes are required to fly
with their wings level in the steady trim state lateral static stability is designed-in from
the outset. Dihedral is the easiest parameter to adjust in the design process in order to
‘tune’ the degree of stability to an acceptable level. Remember that too much lateral
static stability will result in an aeroplane that is reluctant to manoeuvre laterally, so it is
important to obtain the correct degree of stability.

The effect of dihedral as a means for providing lateral static stability is easily
appreciated by considering the situation depicted in Fig. 3.15. Following a small lateral
disturbance in roll, ¢, the aeroplane will commence to slide ‘downhill’ sideways with a
sideslip velocity v. Consider the resulting change in the aerodynamic conditions on the
leading wing which has dihedral angle I". Since the wing has dihedral the sideslip velocity
has a small component v’ resolved perpendicular to the plane of the wing panel where

v =vpsinl (3.33)

The velocity component v combines with the axial velocity component U, to increase
the angle of attack of the leading wing by «'. Since v/ « U, the change in angle of attack
o is small and the total disturbed axial velocity component U =¢ U,. The increase in angle
of attack on the leading wing gives rise to an increase in lift which in turn gives rise to
a restoring rolling moment —L. The corresponding aerodynamic change on the wing
trailing into the sideslip results in a small decrease in lift which also produces a restoring
rolling moment. The net effect therefore is to create a negative rolling moment which
causes the aeroplane to recover its zero sideslip wings level equilibrium. Thus, the
condition for an aeroplane to be laterally stable is that the rolling moment resulting
from a positive disturbance in roll attitude must be negative, or in mathematical terms
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where C, is the rolling moment coefficient. This is shown graphically in Fig. 3.16 and
may be interpreted in a similar way to the pitching moment plot shown in Fig. 3.2.

The sequence of events following a sideslip disturbance are shown for a laterally
stable, neutrally stable and unstable aeroplane on Fig. 3.17. However, it must be
remembered that once disturbed the resulting motion will be determined by the lateral
dynamic stability characteristics as well.

Rolling
moment
coefficient |

L i L 1 (] L A J

Roll attitude¢

!

Fig. 3.16 C~¢ plot for a stable aeroplane
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Fig. 3.17 The effect of dihedral on lateral stability

3.5 Directional static stability

Directional static stability is concerned with the ability of the aeroplane to yaw or
weathercock into wind in order to maintain directional equilibrium. Since all aeroplanes
are required to fly with zero sideslip in the yaw sense, positive directional stability is
designed-in from the outset. The fin is the most visible contributor to directional static
stability although, as in the case of lateral stability, there are many other contributions,
some of which are destabilizing. Again, it is useful to remember that too much
directional static stability will result in an aeroplane that is reluctant to manoeuvre
directionally, so it is important to obtain the correct degree of stability.

Consider an aeroplane that is subject to a positive sideslip disturbance as shown in
Fig. 3.18. The combination of sideslip velocity v and axial velocity component U results
in a positive sideslip angle f. Note that a positive sideslip angle equates to a negative
yaw angle since the nose of the aeroplane has swung to the left of the resultant total
velocity vector V. Now, as shown in Fig. 3.18, in the disturbance the fin is at a non-zero
angle of attack equivalent to the sideslip angle f. The fin therefore generates lift Ly
which acts in the sense shown thereby creating a positive yawing moment N. The yawing
moment is stabilizing since it causes the aeroplane to yaw to the right until the sideslip
angle is reduced to zero. Thus, the condition for an aeroplane to be directionally stable
is readily established and is

dcC,

v > 0 or, equivalently, dc, <0 (3.35)

dg
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Fig. 3.19 Plot of C,—y for a stable aeroplane
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A typical plot of yawing moment coefficient against yaw attitude for a directionally
stable aeroplane is shown in Fig. 3.19. For small disturbances in yaw the plot is
reasonably linear since it is dominated by the lifting properties of the fin. However, as
the fin approaches the stall its lifting properties deteriorate and other influences begin to
dominate, resulting ultimately in directional instability. The main destabilizing
contribution comes from the fuselage which at small yaw angles is masked by the
powerful fin effect. The addition of a dorsal fin significantly delays the onset of fin stall
thereby enabling directional static stability to be maintained to higher yaw disturbance
angles as indicated in Fig. 3.19.

Fin effectiveness also deteriorates with increasing body incidence angle since the base
of the fin becomes increasingly immersed in the forebody wake thereby reducing the
effective working area of the fin. This problem has become particularly evident in a
number of modern combat aeroplanes. Typically, such aeroplanes have two engines
mounted side by side in the rear fuselage. This results in a broad flat fuselage ahead of
the fin which creates a substantial wake to reduce fin effectiveness dramatically at
moderate to high angles of incidence. For this reason many aeroplanes of this type have
noticeably large fins and in some cases the aeroplanes have two fins attached to the outer
edges of the upper fuselage.
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4

The Equations of Motion

41 The equations of motion of a rigid symmetric aeroplane

As stated in Chapter 1, the first formal derivation of the equations of motion for a rigid
symmetric aeroplane is usually attributed to Bryan (1911). His treatment, with very
few changes, remains in use today and provides the basis for the following development.
The object is to realize Newton’s second law of motion for each of the six degrees of
freedom which simply states that

mass x acceleration = disturbing force 4.1)

For the rotary degrees of freedom the mass and acceleration become moment of inertia
and angular acceleration respectively, whilst the disturbing force becomes the disturbing
moment, or torque. Thus, the derivation of the equations of motion requires that
equation (4.1) be expressed in terms of the motion variables defined in Chapter 2. The
derivation is classical in the sense that the equations of motion are differential equations
which are derived from first principles. However, a number of equally valid alternative
means for deriving the equations of motion are frequently used, for example vector
methods. The classical approach is retained here since, in the author’s opinion,
maximum physical visibility is maintained throughout.

4.1.1 THE COMPONENTS OF INERTIAL ACCELERATION

The first task in realizing equation (4.1) is to define the inertial acceleration components
resulting from the application of disturbing force components to the aeroplane. Consider
the motion referred to an orthogonal axis set (oxyz) with the origin o coincident with
the cg of the arbitrary and, in the first instance, not necessarily rigid body shown in
Fig. 4.1. The body, and hence the axes, are assumed to be in motion with respect to an
external reference frame such as earth (or inertial) axes. The components of velocity and
force along the axes ox, oy and oz are denoted (U, V, W) and (X, Y, Z) respectively. The
components of angular velocity and moment about the same axes are denoted (p, ¢,1)
and (L, M, N) respectively. The point p is an arbitrarily chosen point within the body
with coordinates (x, y, z). The local components of velocity and acceleration at p relative
to the body axes are denoted (v, v, w) and (a,, a,, a.) respectively.
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Fig. 4.1 Motion referred to generalized body axes

The velocity components at p(x, y, z) relative to o are given by

u=x-—ry+aqz
v=y—pz+rx ¢“2)
w=2z—gx+py

It will be seen that the velocity components each comprise a linear term and two
additional terms due to rotary motion. The origin of the terms due to rotary motion in
the component u, for example, is illustrated in Fig. 4.2. Both —ry and ¢z represent
tangential velocity components acting along a line through p(x, y, z) parallel to the ox
axis. The rotary terms in the remaining two components of velocity are determined in a
similar way. Now, since the generalized body shown in Fig. 4.1 represents the aeroplane
which is assumed to be rigid then

xX=y=2=0 4.3)
and equations (4.2) reduce to

u=gqz—ry

vV=rx-—pz 4.4

W =py—gx

The corresponding components of acceleration at p(x, y, z) relative to o are given by
a,=u—rv+qw
a,=0—pw+ru 4.5)
a,=w-—qu+pv

Again, it will be seen that the acceleration components each comprise a linear term
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Fig. 4.2 Velocity terms due to rotary motion

and two additional terms due to rotary motion. The origin of the terms due to rotary
motion in the component a,, for example, is illustrated in Fig. 4.3. Both —rv and gw
represent tangential acceleration components acting along a line through p(x,y,z)
parallel to the ox axis. The accelerations arise from the mutual interaction of the linear
components of velocity with the components of angular velocity. The acceleration terms
due to rotary motion in the remaining two components of acceleration are determined
in a similar way.

By superimposing the velocity components of the cg (U, ¥, W) on to the local velocity
components (u, v, w) the absolute, or inertial, velocity components (', ¢/, w) of the point
p(x, y, z) are obtained. Thus

W=U+u=U-ry+gqz
V=V4+v=V-pz+rx (4.6)
wW=W+w=W-—gx+py

Looking in to axes Looking in to axes
system along y axis system along z axis

Fig. 4.3 Acceleration terms due to rotary motion
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where the expressions for (u, v, w) are substituted from equations (4.4). Similarly, the
components of inertial acceleration (a;, aj, a;) at the point p(x, y, z) are obtained simply
by substituting the expressions for (¥, v/, w'), equations (4.6), in place of (u,v,w) in
equations (4.5). Whence

do=u —r/+qw

a,=v—pw+ru 4.7

a=w—qu+p/
Differentiate equations (4.6) with respect to time and note that since a rigid body is
assumed equation (4.3) applies, then

W=U-fy+gz

o =V—pz+ix 4.8)

W =W-—gx+py
Thus, by substituting from equations (4.6) and (4.8) into equations (4.7) the inertial
acceleration components of the point p(x, y, z) in the rigid body are obtained which, after
some rearrangement, may be written

d,=U—rV+qW—x(g +7r) + y(pqg — ) + 2(pr + §)

@, =V—pW+rU + x(pq +7) — y(0* +7*) + z(gr — p) 4.9)

d,=W—qU +pV+x(pr — §) + Ygr + p) — 20" + &)

EXAMPLE 4.1

To illustrate the usefulness of equations (4.9) consider the following simple example.
A pilot in an aerobatic aeroplane performs a loop in 20s at a steady velocity of
100m/s. His seat is located 5m ahead of, and 1 m above, the cg. What total normal
load factor does he experience at the top and at the bottom of the loop?
Assuming the motion is in the plane of symmetry only, then V=p=p =r =0 and
since the pilot’s seat is also in the plane of symmetry y =0, and the expression for
normal acceleration is, from equations (4.9),

d,=W-qU +xj—z2q"

Since the manoeuvre is steady, the further simplification = ¢ =0 can be made and
the expression for the normal acceleration at the pilot’s seat reduces to

d,=—qU —zq
Now
q= 2n 0.314rad/s
20
U=100m/s
x=5m

z = —1m (above cg hence negative)

whence, 2, = -31.30 m/s?. Now, by definition, the corresponding normal load factor
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due to the manoeuvre is given by

The total normal load factor n comprises that factor due to the manoeuvre r’ plus that
due to gravity n,. At the top of the loop n, = —1, thus the total normal load factor is
given by

n=n+n=319-1=219
and at the bottom of the loop n, =1 and in this case the total normal load factor is
given by

n=n+n=319+1=4.19
It is interesting to note that the normal acceleration measured by an accelerometer

mounted at the pilot's seat corresponds with the total normal load factor. The
accelerometer would therefore give the following readings:

at the top of the loop a,=ng =219 x 9.81 = 21.48m/s?
at the bottom of the loop a2, =ng =4.19 x 9.81 = 41.10m/s?

Equations (4.9) can therefore be used to determine the accelerations that would be
measured by suitably aligned accelerometers located at any point in the airframe and
defined by the coordinates (x, y, z).

4.1.2 THE GENERALIZED FORCE EQUATIONS

Consider now an incremental mass dm at point p(x, y, z) in the rigid body. Applying
Newton’s second law, equation (4.1), to the incremental mass, the incremental
components of force acting on the mass are given by (dmd,, dma,, dma’). Thus the total
force components (X, Y, Z) acting on the body are given by summing the force
increments over the whole body, whence

Eomda, = X
Zoma, =Y (4.10)
Xoma, =2

Substitute the expressions for the components of inertial acceleration (d, a,, 4;) from
equations (4.9) into equations (4.10) and note that since the origin of axes coincides with
the cg

Xomx = Xdmy = Xdmz =0 4.11)

Therefore, the resultant components of total force acting on the rigid body are given
by

m(U —rV+qgW)=X
m(V—pW+rU)=Y 4.12)
m(W—qU +pV)=2Z

where m is the total mass of the body.
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Equations (4.12) represent the force equations of a generalized rigid body and describe
the motion of its cg since the origin of the axis system is co-located with the cg in the
body. In some applications, for example the airship, it is often convenient to locate the
origin of the axis system at some point other than the cg. In such cases the condition
described by equation (4.11) does not apply and equations (4.12) would include rather
more terms.

4.1.3 THE GENERALIZED MOMENT EQUATIONS

Consider now the moments produced by the forces acting on the incremental mass ém
at point p(x,y,z) in the rigid body. The incremental force components create an
incremental moment component about each of the three body axes and by summing
these over the whole body the moment equations are obtained. The moment equations
are, of course, the realization of the rotational form of Newton’s second law of
motion.

For example, the total moment L about the ox axis is given by summing the
incremental moments over the whole body

Zom(ya; — za)) = L 4.13)

Substituting in equation (4.13) for 4} and for a; obtained from equations (4.9) and noting
that equation (4.11) applies then, after some rearrangement, equation (4.13) may be
written

PEOm(y* + 2°) + qrEdm(y* — ) B ‘14
+ (P — ¢))=émyz — (pq + )Edmxz + (pr — §)=dmxy | ~ (4.14)

Terms under the summation sign X in equation (4.14) have the units of moment of
inertia; thus, it is convenient to define the moments and products of inertia as set out in
Table 4.1.
Equation (4.14) may therefore be rewritten
pr - (Iy - Iz)qr + Ixy(pr - 4) - Ixz(pq + r) + Iyz(r2 - qZ) =L (4'15)
In a similar way the total moments M and N about the oy and oz axes respectively are
given by summing the incremental moment components over the whole body
om(zd, — xd)) = M ]

4.16
Zom(xd, — ya,) = N (4.16)

Substituting 4, a, and a;, obtained from equations (4.9), in equations (4.16), noting

Table 4.1 Moments and products of inertia

I, = Zém(y* + 2) Moment of inertia about ox axis

I, =Zm(x* + 2%) Moment of inertia about oy axis

I, = Zém(x* + y?) Moment of inertia about oz axis
I, = Zomxy Product of inertia about ox and oy axes
I, = Xomxz Product of inertia about ox and oz axes

I,, =Zémyz Product of inertia about oy and oz axes
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again that equation (4.11) applies and making use of the inertia definitions given in
Table 4.1, then the moment M about the oy axis is given by

Iyq + (Ix - Iz)pr + Iyz(pq - i‘) + Ixz(pz - '2) - Ixy(qr +ﬁ) =M (4'17)
and the moment N about the oz axis is given by
Iz': - (Ix - Iy)pq - Iyz(Pr + ‘i) + Ixz(qr - p) + Ixy(q2 + pZ) =N (4‘18)

Equations (4.15), (4.17) and (4.18) represent the moment equations of a generalized rigid
body and describe the rotational motion about the orthogonal axes through its cg since
the origin of the axis system is co-located with the cg in the body.

When the generalized body represents an aeroplane the moment equations may be
simplified since it is assumed that the aeroplane is symmetric about the oxz plane and
that the mass is uniformly distributed. As a result the products of inertia I,, =1, =0.
Thus, the moment equations simplify to the following

Ixi’ - (Iy - Iz)qr - Ixz(pq + T) =L
L+, —-Lpr+1.,0* - =M (4.19)
Izi' - (Ix - Iy)pq + Ixz(qr - P) =N

The equations (4.19) describe rolling motion, pitching motion and yawing motion
respectively. A further simplification can be made if it is assumed that the aeroplane
body axes are aligned to be principal inertia axes. In this special case the remaining
product of inertia I,, is also zero. This simplification is not often used owing to the
difficulty of precisely determining the principal inertia axes. However, the symmetry of
the aeroplane determines that I,, is generally very much smaller than I,, I, and I, and
can often be neglected.

4.1.4 DISTURBANCE FORCES AND MOMENTS

Together, equations (4.12) and (4.19) comprise the generalized six degrees of freedom
equations of motion of a rigid symmetric airframe having a uniform mass distribution.
Further development of the equations of motion requires that the terms on the right-
hand side of the equations adequately describe the disturbing forces and moments. The
traditional approach, after Bryan (1911), is to assume that the disturbing forces and
moments are due to aerodynamic effects, gravitational effects, movement of
aerodynamic controls, power effects and the effects of atmospheric disturbances. Thus,
bringing together equations (4.12) and (4.19) they may be written to include these

contributions as follows
mU—rV+qW)=X,+ X, + X. + X, + X,
m(V—pW+rU) = Y+L+Y+Y,+ Y
mW—qU+pV)=Z,+Z,+Z, +Z,+Z,
Lp—(,-1)gr—1.(pg+7) =L, +L,+L.+L,+ Ly
L+, —Lypr+1,0*—r) =M, + M, + M.+ M, + M,
Li—(,—1)pg+1.(ar—p)=N.+ Ny + N+ N, + N, |

Now equations (4.20) describe the generalized motion of the aeroplane without regard
for the magnitude of the motion and subject to the assumptions applying. The equations

(4.20)
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are non-linear and their solution by analytical means is not generally practicable.
Further, the terms on the right-hand side of the equations must be replaced with suitable
expressions, which are particularly difficult to determine for the most general motion.
Typically, the continued development of the non-linear equations of motion and their
solution is most easily accomplished using computer modelling or simulation techniques,
which are beyond the scope of this book.

In order to proceed with the development of the equations of motion for analytical
purposes, they must be linearized. Linearization is very simply accomplished by
constraining the motion of the aeroplane to small perturbations about the trim
condition.

4.2 The linearized equations of motion

Initially, the aeroplane is assumed to be flying in steady trimmed rectilinear flight with
zero roll, sideslip and yaw angles. Thus, the plane of symmetry of the aeroplane oxz is
vertical with respect to the earth reference frame. At this flight condition the velocity of
the aeroplane is V,, the components of linear velocity are (U,, V., W,) and the angular
velocity components are all zero. Since there is no sideslip ¥, = 0. A stable undisturbed
atmosphere is also assumed such that

Xy=Y,=Z,=L,=M;=N;=0 @4.21)

If now the aeroplane experiences a small perturbation about trim, the components of
the linear disturbance velocities are (u,v,w) and the components of the angular
disturbance velocities are (p, g, r) with respect to the undisturbed aeroplane axes (oxyz).
Thus, the total velocity components of the cg in the disturbed motion are given by

U=U,+u
V=V, +v=v 4.22)
W=W,+w

Now, by definition (u, v, w) and (p, q,r) are small quantities such that terms involving
products and squares of these terms are insignificantly small and may be ignored. Thus,
substituting equations (4.21) and (4.22) into equations (4.20), note that (U,, V,, W) are
steady and hence constant, and eliminating the insignificantly small terms, the linearized
equations of motion are obtained

mu+gW)=X,+ X, + X + X,
m@i—pW,+rU)=Y,+ L+ Y +Y,
mw—qU)=2,+2,+Z.+Z,
Lp—Iji=L +L,+L,+L,
Lg=M,+M,+M +M,
Li-I,p=N,+N,+N,+N, |

(4.23)

The development of expressions to replace the terms on the right-hand side of equations
(4.23) is now much simpler since it is only necessary to consider small disturbances
about trim.
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Fig. 4.4 Steady state weight components in the plane of symmetry

4.2.1 GRAVITATIONAL TERMS

The weight force mg acting on the aeroplane may be resolved into components acting
in each of the three aeroplane axes. When the aeroplane is disturbed these components
will vary according to the perturbations in attitude, thereby making a contribution to
the disturbed motion. Thus, the gravitational contribution to equations (4.23) is
obtained by resolving the aeroplane weight into the disturbed body axes. Since the origin
of the aeroplane body axes is coincident with the cg there is no weight moment about
any of the axes, therefore

L,=M,=N,=0 (4.24)

Since the aeroplane is flying wings level in the initial symmetric flight condition, the
components of weight only appear in the plane of symmetry as shown in Fig. 4.4. Thus,
in the steady state the components of weight resolved into aeroplane axes are

X, —mgsin@,
Y, | = 0 (4.25)
Z, mgcosB,

During the disturbance the aeroplane attitude perturbation is (¢, 0,y) and the
components of weight in the disturbed aeroplane axes may be derived with the aid of the
transformation equation (2.11). As, by definition, the angular perturbations are small,
small angle approximations may be used in the direction cosine matrix to give the
following relationship

X, 1y -6[X, 1 ¢ —87[-mgsiné, :
Y, |=|-v 1 ¢ ||¥ |= [_w 1 ¢ 0 (4.26)
Z, 0 —-¢ 1 Z, 16 -9 1 mgcos 0,

Again, the products of small quantities have been neglected on the grounds that they
are insignificantly small. Thus, the gravitational force components in the small
perturbation equations of motion are given by
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X, = —mgsinf, — mghcos b,
Y, = mgy sin 0, + mg¢ cos b, @.27)
Z, = mgcos, —mglsin 0,

4.22 AERODYNAMIC TERMS

Whenever the aeroplane is disturbed from its equilibrium the aerodynamic balance is
obviously upset. To describe explicitly the aerodynamic changes occurring during a
disturbance provides a considerable challenge in view of the subtle interactions present
in the motion. However, although limited in scope, the method first described by Bryan
(1911) works extremely well for classical aeroplanes when the motion of interest is
limited to (relatively) small perturbations. Although the approach is unchanged the
rather more modern notation of Hopkin (1970) is adopted.

The usual procedure is to assume that the aerodynamic force and moment terms in
equations (4.20) are dependent on the disturbed motion variables and their derivatives
only. Mathematically this is conveniently expressed as a function comprising the sum of
a number of Taylor series, each series involving one motion variable or derivative of a
motion variable. Since the motion variables are (u, v, w) and (p, g, ), the aerodynamic
term X, in the axial force equation, for example, may be expressed

du | a2 awd 3 aut 4l
ax X Xy X
+( R TR T TR T )

BX 82 2 3 3 4
X, X+( ut IXE  FXW | X +)

+ a’x ﬁ rXw v, X w +
o n T T T
¥xpt ¥xp  o'xp

+( TR TR TR )
’Xq a’Xq ”*xq

+( q+3q2 TS 3|+_¢')-&7-4T!+";)

+ 32X r 33X L a'xrt +

Br i)r2 2' 3T ot 4l
a2X X
+ ( =23 L )
2' o 3!
ax . a’x ) a’x v

+( b+ aﬁ’§+"‘)

+ series terms in W, p, g and

+ series terms in higher order derivatives (4.28)

where X, is a constant term. Since the motion variables are small, for all practical
aeroplanes only the first term in each of the series functions is significant. Further, the
only significant higher order derivative terms commonly encountered are those involving
w. Thus, equation (4.28) is dramatically simplified to
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X 09X aX X X X X
= —Uu+—v+—wH+—p+—q+—r+—mu 4.29
X, X"+8uu+Buv+8ww+8pp+aqq+8rr+aww (4.29)
Using an alternative shorthand notation for the derivatives, equation (4.29) may be
written

X,,=X,e+)°(,,u+)°(,,v+)2'ww+)°(1,p+10(qq+)?,r+)o(ww (4.30)

The coefficients )2’,,, )of,,, )ofw, etc, are called aerodynamic stability derivatives and the
symbol (°) denotes the derivatives to be dimensional. Since equation (4.30) has the units
of force, the units of each of the aerodynamic stability derivatives are self-evident. In a
similar way, the force and moment terms in the remaining equations (4.20) are deter-
mined. For example, the aerodynamic term in the rolling moment equation is given by

L =L, +Lu+Lp+Lw+Lp+Lg+Lr+Lw (4.31)

4.2.3 AERODYNAMIC CONTROL TERMS

The primary aerodynamic controls are the elevator, ailerons and rudder. Since the forces
and moments created by control deflections arise from the changes in aerodynamic
conditions, it is usual to quantify their effect in terms of aerodynamic control derivatives.
The assumptions applied to the aerodynamic terms are also applied to the control terms,
thus, for example, the pitching moment due to aerodynamic controls may be expressed

oM oM oM
M°_8£§+811”+ aCC (4.32)
where aileron angle, elevator angle and rudder angle are denoted &, n and { respectively.
Since equation (4.32) describes the effect of the aerodynamic controls with respect to
the prevailing trim condition it is important to realize that the control angles, &, # and {
are measured relative to the trim settings £, 7, and {, respectively. Again, the shorthand
notation may be used and equation (4.32) may be written

M, = M& + My + M (4.33)

The aerodynamic control terms in the remaining equations of motion are assembled in
a similar way. If it is required to study the response of an aeroplane to other
aerodynamic controls, for example flaps, spoilers, leading edge devices, etc, then
additional terms may be appended to equation (4.33) and the remaining equations of
motion as required.

4.2.4 POWER TERMS

Power, and hence thrust 7, is usually controlled by throttle lever angle ¢ and the
relationship between the two variables is given, for a simple turbo-jet, by equation (2.34)
in Chapter 2. Movement of the throttle lever causes a thrust change which in turn gives
rise to a change in the components of force and moment acting on the aeroplane. It is
mathematically convenient to describe these effects in terms of engine thrust derivatives.
For example, normal force due to thrust may be expressed in the usual shorthand
notation

Z,=2Z1 (4.34)
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The contributions to the remaining equations of motion are expressed in a similar way.
As for the aerodynamic controls, power changes are measured with respect to the
prevailing trim setting. Therefore, © quantifies the thrust perturbation relative to the trim
setting 7.

4.2.5 THE EQUATIONS OF MOTION FOR SMALL PERTURBATIONS

To complete the development of the linearized equations of motion it only remains
to substitute the appropriate expressions for the aerodynamic, gravitational,
aerodynamic control and thrust terms into equations (4.23). The aerodynamic terms
are exemplified by expressions like equations (4.30) and (4.31), expressions for the
gravitational terms are given in equations (4.27), the aerodynamic control terms are
exemplified by expressions like equation (4.33) and the thrust terms are exemplified by
expressions like equation (4.34). Bringing all of these together the following equations
are obtained
m+qW,) = X, +Xu+Xp+Xw+Xp+X,q+Xr+ X
— mgsinf, — mghcosb, + )ofgé + )"(,,n + i’;( + )Z’,t
md—pW, +rU) =Y, + Lu+ Yo+ Yw+ Lo+ Yg+ ¥r+ Yow
+ mgy sin 6, + mg¢ cos 6, + ffcﬁ + ff,n + 1°’;C+ ﬁt
mw —qU,) = Z, +Zu+Zp+Zw+Zp+ 2,9+ Zr+Z,w
+ mgcosf, — mghsinb, + 2,6 + Z,n + Z,C + ir
Lp-I.,r =L, + i.,u + ﬁ,v + f,ww + Io.,p + Io,qq + i,r
+Lw+ L+ L+ L+ L
I,g =M, +1\3Lu+1\31,,v+1\71ww+1\.1,p+1\31,,q+1\31,r
+ M + M + My + M + Mz
Lir—1I,p =N, +&,u+&,v+ﬁww+1€{,p+&,q+&r
+ Nyw + Ne& + Ny + N + No

(4.35)

Now in the steady trimmed flight condition all of the perturbation variables and their
derivatives are, by definition, zero. Thus in the steady state equations (4.35) reduce to

X, =mgsinb, ]

Y, =0

Z, = —mgcosb, } (4.36)
L,=0

M, =0

N, =0

Equations (4.36) therefore identify the constant trim terms which may be substituted
into equations (4.35) and, following rearrangement, they may be written
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mu — }of,,u - )t’(,,u - )"(,.,w - )Z’ww

- "‘,,p—()o(q—mW;)q—)l’(,r+mg6h:os()e =}?5€+)?”n+)%‘c+)2’,r
-—f{,u+mr§—iv—f§,ﬁz—ﬁw—(f’,,+mwe)p

- °,,q—(f’,—mU,)r—mg¢cosHe—mgt//sin0,= ﬁé+f§,q+f’2§+ﬁr
—-Z,u-z,v+(m—2-,)w-2ww

- °,,p—(f{q+mUe)q—Zr+mgﬂsin0¢=255+2,11+2CC+2,1:
- i,,u - f.,,v - I:-,v'v - iww

+Lp—Ep—Lg—Ii—Lr=Lé+Ln+Ll+Lx
—J\Z,u—ﬂ,v—]&;,w

— M,w— Myp+ 1,4 — Mg — My = M + Myn + M + M
-—Igluu—f\)f,,v—ﬁww—ﬁww

~Lip— Npp— Nog + Li — Nr = Ne& + Ny + N + N

4.37)

Equations (4.37) are the small perturbation equations of motion, referred to body axes,
which describe the transient response of an aeroplane about the trimmed flight condition
following a small input disturbance. The equations comprise a set of six simultaneous
linear differential equations written in the traditional manner with the forcing, or input,
terms on the right-hand side. As written, and subject to the assumptions made in their
derivation, the equations of motion are perfectly general and describe motion in which
longitudinal and lateral dynamics may be fully coupled. However, for the vast majority
of aeroplanes when small perturbation transient motion only is considered, as is the case
here, longitudinal-lateral coupling is usually negligible. Consequently, it is convenient
to simplify the equations by assuming that longitudinal and lateral motion is, in fact,
fully decoupled.

4.3 The decoupled equations of motion

4.3.1 THE LONGITUDINAL EQUATIONS OF MOTION

Decoupled longitudinal motion is motion in response to a disturbance that is
constrained to the longitudinal plane of symmetry, the oxz plane, only. The motion is
therefore described by the axial force X, the normal force Z and the pitching moment M
equations only. Since no lateral motion is involved the lateral motion variables v, p
and r and their derivatives are all zero. Also, decoupled longitudinal-lateral motion
means that the aerodynamic coupling derivatives are negligibly small and may be taken
as zero, whence

X,=X,=X,=2,=2,=2,=M,=M,=M,=0 (4.38)

Similarly, since aileron or rudder deflections do not usually cause motion in the
longitudinal plane of symmetry the coupling aerodynamic control derivatives may also
be taken as zero, thus

X;=X=2,=2,=M;=M,=0 (4.39)
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The equations of longitudinal symmetric motion are therefore obtained by extracting
the axial force, normal force and pitching moment equations from equations (4.37) and
substituting equations (4.38) and (4.39) as appropriate. Whence

mu — )Ofuu —Xw—Xw— (}0(,, —mW,)q + mgbcosf, = )of,,n + )?,'c
~Zu+(m—Zyw—Z,w— (Z, +mU,)q + mgfsinf, = Z,n +Z1 (4.40)
W W~ o+ L~ Vg = i+ ¥

Equations (4.40) are the most general form of the dimensional decoupled equations of
longitudinal symmetric motion referred to aeroplane body axes. If it is assumed that the
aeroplane is in level flight and the reference axes are wind or stability axes then

6. =W,=0 (4.41)
and the equations simplify further to
mi — )ofuu - )of‘-,w - )z'ww - )i’,,q + mgh = )Z’,,n + )0(,1:
—Zu+m—Z W —Z,w—(Z,+mU)g =Zn+Zzc (4.42)
—A‘;I,,u—)\':[,-,vb—]\flww+1yq—lchq =1\2,11+ICI,1

Equations (4.42) represent the simplest possible form of the decoupled longitudinal
equations of motion. Further simplification is only generally possible when the
numerical values of the coefficients in the equations are known since some coefficients
are often negligibly small.

EXAMPLE 4.2

Longitudinal derivative and other data for the McDonnell F-4C Phantom aeroplane
were obtained from Heffley and Jewell (1972) for a flight condition of Mach 0.6 at an
altitude of 35000ft. The original data are presented in Imperial units and in a format
preferred in the USA. Normally, it is advisable to work with the equations of motion
and the data in the format and units given; otherwise, conversion to another format can
be tedious in the extreme and is easily subject to error. However, for the purposes of
illustration, the derivative data have been converted to a form compatible with the
equations developed above and the units have been changed to those of the more
familiar Sl system. The data are quite typical, they would normally be supplied in this,
or similar, form by aerodynamicists and as such they represent the starting point in
any flight dynamics analysis.

Flight path angle y, = 0° Air density p = 0.3809 kg/m®
Body incidence a, = 9.4° Wing area S = 49.239 m?

Velocity ¥, =178 m/s Mean aerodynamic chord ¢ = 4.889m
Mass m = 17642kg Acceleration due to gravity g = 9.8 m/s?
Pitch moment of inertia I, = 165 669 kg m?

Since the flight path angle y, =0 and the body incidence o, is non-zero it may be
deduced that the following derivatives are referred to a body axes system and that
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0. =o,. The dimensionless longitudinal derivatives are given and any missing
aerodynamic derivatives must be assumed insignificant, and hence zero. On the other
hand, missing control derivatives may not be assumed insignificant although their
absence will prohibit analysis of response to those controls.

X,=0.0076 Z,=-0.7273 M, =0.0340

X,=00483 Z,=-3.1245 M, =-0.2169
X,=0 Z,=-0.3997 M, =-0.5910
X,=0 Z,=-12109 M,=-12732
X,=00618  Z,=-03741 M, =-0.5581

Equations (4.40) are compatible with the data although the dimensional derivatives
must first be calculated according to the definitions given in Appendix 1, Tables A1.1
and A1.2. Thus, the dimensional longitudinal equations of motion, referred to body
axes, are obtained by substituting the appropriate values into equations (4.40) to give

176424 — 12.67u — 80.62w + 512 852.949 + 170 744.060 = 3755.77y
1214.01u + 17 660.33w + 5215.44w — 3 088 229.7q + 28 266.5070 = —22735.157
—277.47u+ 132.47w 4+ 1770.07w + 165 6694 + 50 798.03¢ = —165822.037

where W, = V;sinf, = 29.07m/s and U, = ¥,cos §, = 175.61 m/s. Note that angular
variables in the equations of motion have radian units. Clearly, when written like this,
the equations of motion are unwieldy. The equations can be simplified a little by
dividing through by the mass or inertia as appropriate. Thus, the first equation is
divided by 17642, the second equation by 17660.33 and the third equation by
165669. After some rearrangement the following rather more convenient version is
obtained
u = 0.0007u + 0.0046w — 29.0700g — 9.67836 + 0.2129y

w = —0.0687u — 0.2953w + 174.8680q — 1.60000 — 1.2874n
4+ 0.0008w = 0.0017u — 0.0107w — 0.30664 — 1.00107

It must be remembered that, when written in this latter form, the equations of motion
have the units of acceleration. The most striking feature of these equations, however
written, is the large variation in the values of the coefficients. Terms which may, at first
sight, appear insignificant are frequently important in the solution of the equations. It
is therefore prudent to maintain sensible levels of accuracy when manipulating the
equations by hand. Fortunately, this is an activity which is not often required.

4.3.2 THE LATERAL-DIRECTIONAL EQUATIONS OF MOTION

Decoupled lateral-directional motion involves roll, yaw and sideslip only. The motion
is therefore described by the side force Y, the rolling moment L and the yawing moment
N equations only. Since no longitudinal motion is involved the longitudinal motion
variables u, w and g and their derivatives are all zero. Also, decoupled longitudinal-
lateral motion means that the aerodynamic coupling derivatives are negligibly small and
may be taken as zero, whence

Yu=Kiv=Yw=Yq=Lu=i:w=Lw=i‘q=fv;=&w=-&w=N=0 (4_43)

q
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Similarly, since the airframe is symmetric, elevator deflection and thrust variation do
not usually cause lateral-directional motion and the coupling aerodynamic control
derivatives may also be taken as zero, thus

Y, =Y,=L,=L=N=N=0 (4.44)

The equations of lateral asymmetric motion are therefore obtained by extracting the side
force, rolling moment and yawing moment equations from equations (4.37) and
substituting equations (4.43) and (4.44) as appropriate. Whence

mi— Yo — (¥, +mW)p—(Y,—mU)\ o, o
v T = Y Y
( —mgde cos 0, — mgy sin 6, e+ 1l
o . o . o o o (4.45)
—Ly+1,p—L,p—1,—Lr=L,+L{
—Nyo — L — Nyp + Li — N = Nt + N{

Equations (4.45) are the most general form of the dimensional decoupled equations of
lateral-directional asymmetric motion referred to aeroplane body axes. If it is assumed
that the aeroplane is in level flight and the reference axes are wind or stability axes then,
as before,

0, =W,=0 (4.46)
and the equations simplify further to
mp — Yo — p¥, — (¥, = mU)r — mgop = V¢ + ¥¢
~Lo+1p—Lp—Li—Lr=Lé+Lt (4.47)
~Np—I.p— Np+ Li — Nr = N& + Nt

Equations (4.47) represent the simplest possible form of the decoupled lateral-directional
equations of motion. As for the longitudinal equations of motion, further simplification
is only generally possible when the numerical values of the coefficients in the equations
are known since some coefficients are often negligibly small.

4.4 Alternative forms of the equations of motion

4.4.1 THE DIMENSIONLESS EQUATIONS OF MOTION

Traditionally, the development of the equations of motion and investigations of stability
and control involving their use have been securely resident in the domain of the
aerodynamicist. Many aerodynamic phenomena are most conveniently explained in
terms of dimensionless aerodynamic coefficients, for example lift coefficient, Mach
number, Reynolds number, etc, and often this mechanism provides the only practical
means for making progress. The advantage of this approach is that the aerodynamic
properties of an aeroplane can be completely described in terms of dimensionless
parameters that are independent of airframe geometry and of flight condition. A lift
coefficient of 0.5, for example, has precisely the same meaning whether it applies to a
Boeing 747 or to a Cessna 150. It is not surprising therefore to discover that, historically,
the small perturbation equations of motion of an aeroplane were treated in the same
way. This in turn leads to the concept of the dimensionless derivative which is just
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another aerodynamic coefficient and may be interpreted in much the same way.
However, the dimensionless equations of motion are of little use to the modern flight
dynamicist other than as a means for explaining the origin of the dimensionless
derivatives. Thus, the development of the dimensionless decoupled small perturbation
equations of motion is outlined below solely for this purpose.

As formally described by Hopkin (1970) the equations of motion are rendered
dimensionless by dividing each equation by a generalized force or moment parameter as
appropriate. Sometimes the dimensionless equations of motion are referred to as the
aero-normalized equations and the corresponding derivative coefficients are also referred
to as aero-normalized derivatives. To illustrate the procedure consider the axial force
equation taken from the decoupled longitudinal equations of motion (equation 4.42).

mu— )ofuu - )°r,.,w - )Ofww - q)?,, +mgh = )%,,11 + )z',r (4.48)

Since equation (4.48) has the units of force it may be rendered dimensionless by dividing,
or normalizing, each term by the aerodynamic force parameter % pV?S, where S is the
reference wing area. Defining the following parameters: ‘

(i) dimensionless time

PO 4 m
t=-— = 4.
5 where o %pVoS (4.49)
(ii) the longitudinal relative density factor
m
_——— 4. 50
where the longitudinal reference length is ¢, the mean aerodynamic chord
(iii) dimensionless velocities
a=2
7
A W
w= A (4.51)
, qm
= q0 =

(iv) since level flight is assumed the lift and weight are equal, thus
mg =1pVgSC, (4.52)
Thus, dividing equation (4.48) through by the aerodynamic force parameter and making

use of the parameters defined in equations (4.49) to (4.52) above, the following is
obtained

o (o) ()
7l by v A\ G170 o
Voo \3pW%S)V \ipSt)Vem _( " ),1 ( ‘ ) (4.53)

= + X | —=
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ISV \lpvoSc) u, * 1pi@s
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which is more conveniently written
S W
u—Xu—-X,——XWw—X,—+Cl=Xn+X1 (4.54)
Hy #
The derivatives denoted X, X, X, X,, X, and X, are the dimensionless or aero-
normalized derivatives and their definitions follow from equation (4.53). It is in this form
that the aerodynamic stability and control derivatives would usually be provided for
an aeroplane by the aerodynamicists.
In a similar way the remaining longitudinal equations of motion may be rendered
dimensionless. Note that the aerodynamic moment parameter used to divide the pitching
moment equation is 1 p¥;’Sc. Whence

—ZitW—Zym—Z W~ Z, L —G=Zn+Za

. l‘l . "‘1 (4. 55)
M- M, 2~ M +i, L~ MG=Mpn+ Mz
H “
where i, is the dimensionless pitch inertia and is given by
I}'
i _— = 4.56
,=—5 4.56)

Similarly, the lateral equations of motion (equation 4.47) may be rendered dimensionless
by dividing the side force equation by the aerodynamic force parameter %pVozS and the
rolling and yawing moment equations by the aerodynamic moment parameter 1 pV;’Sb
where, for lateral motion, the reference length is the wing-span b. Additional parameter
definitions required to deal with the lateral equations are:

(v) the lateral relative density factor
m

m = W @4.57)
(vi) the dimensionless inertias

N Ix L IZ > —_— I!Z

=g h=—p and i, = b7 (4.58)

Since the equations of motion are referred to wind axes and since level flight is assumed,
then equations (4.47) may be written in dimensionless form as follows

Iy ~ ﬁ i: A 1
V—Yi-Y,=—-Y——F—-Co=YLl+ Y
" 1y "2 . ¢ ¢

~ ~

A . D p . r 7
-Lp+i,——L,——i,—— L —=L+ L, (4.59
" w o )

2

~ a

.~ . D p ., .r F
—Njp—i,——N,—+i,——N,—= N+ N{
B Tl T E

For convenience, the definitions of all the dimensionless aerodynamic stability and
control derivatives are given in Appendix 1.
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4.4.2 THE EQUATIONS OF MOTION IN STATE SPACE FORM

Today the solution of the equations of motion poses few problems since very powerful
computational tools are readily available. Since computers are very good at handling
numerical matrix calculations, the use of matrix methods for solving linear dynamic
system problems has become an important topic in modern applied mathematics. In
particular, matrix methods together with the digital computer have led to the
development of the relatively new field of modern control system theory. For small
perturbations, the aeroplane is a classical example of a linear dynamic system and,
frequently, the solution of its equations of motion is a prelude to flight control system
design and analysis. It is therefore convenient and straightforward to utilize multi-
variable system theory tools in the solution of the equations of motion. However, it is
first necessary to arrange the equations of motion in a suitable format.

The motion, or szate, of any linear dynamic system may be described by a minimum
set of variables called the state variables. The number of state variables required to
describe the motion of the system completely is dependent on the number of degrees of
freedom the system has. Thus, the motion of the system is described in a multi-
dimensional vector space called the state space, the number of state variables being equal
to the number of dimensions. The equation of motion, or state equation, of the linear
time invariant (LTI) multi-variable system is written

x(t) = Ax(t) + Bu(t) (4.60)
where

x(t) is the column vector of n state variables, called the state vector;
u(t) is the column vector of m input variables, called the input vector;
A is the (n x n) state matrix;

B is the (n x m) input matrix.

Since the system is LTI the matrices A and B have constant elements. Equation (4.60)
is the matrix equivalent of a set of n simultaneous linear differential equations and it is a
straightforward matter to configure the small perturbation equations of motion for an
aeroplane in this format.

Now, for many systems some of the state variables may be inaccessible or their values
may not be determined directly. Thus, a second equation is required to determine the
system output variables. The output equation is written in the general form

y(t) = Cx(t) + Du(t) (4.61)
where

y(t) is the column vector of r output variables, called the output vector;

C is the (r x n) output matrix;

D is the (r x m) direct matrix;

and, typically, r < n. Again, for an LTI system the matrices C and D have constant
elements. Together, equations (4.60) and (4.61) provide a complete description of the
system. A complete description of the formulation of the general state model and the
mathematics required in its analysis may be found in Barnett (1975).

For most aeroplane problems it is convenient to choose the output variables to be
the state variables. Thus

y()=x(t) and r=n
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and consequently

C =1 the (n x n) identity matrix;
D = 0 the (n x m) zero matrix.

As a result, the output equation simplifies to
y(t) = Ix(r) = x(t) (4.62)

and it is only necessary to derive the state equation from the aeroplane equations of
motion.

Consider, for example, the longitudinal equations of motion (equation 4.40) referred
to aeroplane body axes. These may be rewritten with the acceleration terms on the left-
hand side as follows

mu — J?;,w = }of,,u + X’ww + ();’q — mW,)q — mgbcos b, + )of,,n + )Z’,r
mw — Z,W = Zu+ Z,w +(Z, + mU)q — mghsinf, + Z,n + Z,x (4.63)
chj—AZ-,vb=A‘31,,u+1\°4ww+IcI,,q+A7I”n+Alr

Since the longitudinal motion of the aeroplane is described by four state variables u, w,
q and @ four differential equations are required. Thus, the additional equation is the
auxiliary equation relating pitch rate to attitude rate, which for small perturbations is

0=gq (4.64)
Equations (4.63) and (4.64) may be combined and written in matrix form
Mx(t) = A'x(t) + B'u(r) (4.65)
where
XM=k w g 0] vw@®=h 1
(m  -X, 0 0
M = 0 (m -OZ;,) 0 0
0 —MW I y 0
| 0 0 0 1
I J;',, )0(,, ()Z’q —mW,) —mgcos0, )2’,, )2’,
A = %,, %w (Z, +° mU,) —mgsiné, B = %,, Z,
L, M, M, 0 M, M,
L 0 O 1 0 0

The longitudinal state equation is derived by premultiplying equation (4.65) by the
inverse of the mass matrix M whence

x(t) = Ax(t) + Bu(z) (4.66)

where
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X, Xy X; Xg X, X
A=MA=|% B W % B=MB=|%" *
m, m, m, m m, - m,
0 0 1 o0 0 0

The coefficients of the state matrix A are the aerodynamic stability derivatives, referred
to aeroplane body axes, in concise form and the coefficients of the input matrix B are the
control derivatives also in concise form. The definitions of the concise derivatives follow
directly from the above relationships and are given in full in Appendix 1. Thus, the
longitudinal state equation may be written out in full

u X, X, X, X |[u] X, X
Y=l ® & Z BV A& ["] (4.67)
q m, m, m m||gq m, m ||t
0 0 0 1 0|6, 0 0
and the output equation is, very simply,
1 00 0[u]
01 0 O0fjw
t) = = 4,
O=10=|0 o1 ol (4.68)
0 0 0 1186

Clearly, the longitudinal small perturbation motion of the aeroplane is completely
described by the four state variables u, w, g and 6. Equation (4.68) determines that, in
this instance, the output variables are chosen to be the same as the four state variables.

EXAMPLE 4.3

Consider the requirement to write the longitudinal equations of motion for the
McDonnell F-4C Phantom of Example 4.2 in state space form. As the derivatives are
given in dimensionless form it is convenient to express the matrices M, A’ and B’ in
terms of the dimensionless derivatives. Substituting appropriately for the dimensional
derivatives and after some rearrangement the matrices may be written

) X,¢
m - T 0 0
’ ZwE
welo (=3) o 0
o Meoopoy
0
| o 0 0 1]
(X, X, (X,.—-mW,) —mgcos6, X, VX,
A= Zu Zw (ZqE + Yfl’ I]e) '_'n,g sin Oe B = VOZ'I Vazf
M, M, M 0 WM, WM,
| 0 0 1 0 0 0
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where

and I = L

" Io%S ’ T 1ovst

and in steady symmetric flight, U, = ¥, cos 8, and W, = ¥;sin6,.
Substituting the derivative values given in Example 4.2 the longitudinal state
equation (4.65) may be written

10.569 0 0

01l a
0 10580 0 Of|w
0 00162 203 0| g
0 0 0 1|46
0.0076  0.0483 —307.26 —102.297[ u 11.00
| -0.7273 -3.1245 1850.10 —16.934 || w ~66.5898
0.034 —0.2169 —6.2247 0 q —99.341
0 0 1 0 ] 0

This equation may be reduced to the preferred form by premultiplying each term by
the inverse of M, as indicated above, to obtain the longitudinal state equation, referred
to body axes, in concise form

u 7.181 x 10™* 4.570 x 107 —29.072 —-9.678 u 1.041

W —0.0687 —0.2953  174.868 —1.601 w —6.294
q 1.73 x 1073 —0.0105 —0.4462 1277x107% || ¢ —4.888 |"
6 0 0 1 0 0 0

This computation was carried out with the aid of Program CC and it should be
noted that the resulting equation compares with the final equations given in
Example 4.2. The coefficients of the matrices could equally well have been
calculated using the concise derivative definitions given in Appendix 1, Tables A1.5
and A1.6. For the purpose of illustration some of the coefficients in the matrices
have been rounded to a more manageable number of decimal places. In general this
is not good practice since the rounding errors may lead to accumulated
computational errors in any subsequent computer analysis involving the use of these
equations. However, once the basic matrices have been entered into a computer
program at the level of accuracy given, all subsequent computations can be carried
out using computer-generated data files. In this way computational errors will be
minimized, although it is prudent to be aware that not all computer algorithms for
handling matrices can cope with poorly conditioned matrices. Occasionally,
aeroplane computer models fall into this category.

The lateral small perturbation equations (4.45), referred to body axes, may be treated
in exactly the same way to obtain the lateral state equation
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v Yo Yo Ve Yo W[V Ye W

p L oL, Lol L,ilp I, I :

Fl=|m n n ng ny||lr|+]|n n [ ] (4.69)
) 01 0 0 0]|é 0 o |t

W 0 01 0 0Ly 0 0

Note that when the lateral equations of motion are referred to wind axes, equations
(4.47), the lateral state equation (4.69) is reduced from fifth order to fourth order to
become

v Vo Yo W Yo ll UV Ye Vi

A R | R P [5] 4.70)
': n, np n, n¢ r n€ nc C

) 01 0 0}|le 0 0

However, in this case the derivatives are referred to aeroplane wind axes rather than to
body axes and will generally have slightly different values. The definitions of the concise
lateral stability and control derivatives referred to aeroplane body axes are also given
in Appendix 1.

Examples of the more general procedures used to create the state descriptions of
various dynamic systems may be found in many books on control systems; for example,
Shinners (1980) and Friedland (1987) both contain useful aeronautical examples.

EXAMPLE 4.4

Lateral derivative data for the McDonnell F-4C Phantom, referred to body axes, were
also obtained from Heffley and Jewell (1972) and are used to illustrate the formulation
of the lateral state equation. The data relate to the same flight condition, namely Mach
0.6 and an altitude of 35000ft. As before, the leading aerodynamic variables have
the following values

Flight path angle y, = 0° Inertia ‘product I, =2952kgm?
Body incidence a, = 9.4° Air density p = 0.3809 kgm?
Velocity ¥V, =178 m/s Wing area S = 49.239 m?
Mass m =17642kg Wing-span b =11.787m

Roll moment of inertia I, = 33898kgm?  Acceleration due to gravity g = 9.81 m/s?
Yaw moment of inertia /. = 189 496 kg m?

The dimensionless lateral derivatives, referred to body axes, are given and, as before,
any missing aerodynamic derivatives must be assumed insignificant, and hence zero.

Y, =-0.5974 L,=-0.1048 N, = 0.0987

Y,=0 L,=-0.1164 N, =—0.0045
Y,=0 L, =0.0455 N,=-0.1132
Y, =—-00159 L, =0.0454 N, = 0.00084

Y; =0.1193 L, =0.0086 N, = —-0.0741
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As for the longitudinal equations of motion, the lateral state equation (4.65) may be
written in terms of the more convenient lateral dimensionless derivatives

Mx(t) = A'x(t) + B'u(t)

where
X@=b pr ¢ Yyl w@®=[ {
'm0 0 00
0 I, -I. 0 0
M=|0 -I, I 00
0 0 0 10
(o0 0 o0 o1
(Y, (Y,b+mW,) (Y,b—mU) mgcosh, mgsinb,
L, L,b Lb 0 0
A=|[N,  Np N,b 0 0
0 1 0 0 0
0 0 1 0 0
RAIRA"
WL WL,
B =|VN, VN
0 0
L 0o o
where
m N o I,

s FTIws T Lum To%Sb
and, as before, in steady symmetric flight, U, = ¥;, cos 0, and W, = ¥, sin6,.

Substituting the appropriate values into the above matrices and premultiplying the
matrices A’ and B’ by the inverse of the mass matrix M the concise lateral state
equation (4.69), referred to body axes, is obtained

and I, =

) —0.0565  29.072 -—175.610 9.6783 1.602271[ v

P —0.0601 -0.7979 —0.2996 0 0 P

Fl=19218x10"° -0.0179 —-0.1339 0 0 r

é 0 1 0 0 0 ¢

v 0 0 1 0 0 v
—-0.2678  2.0092

46982 0.7703 ¢
+ | 0.0887 —1.3575 [ C]
0 0
0 0
Again, the matrix computation was undertaken with the aid of Program CC. However,

the coefficients of the matrices could equally well have been calculated using the
expressions for the concise derivatives given in Appendix 1, Tables A1.7 and A1.8.
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5

The Solution of the Equations of Motion

5.1 Methods of solution

The primary reason for solving the equations of motion is to obtain a mathematical,
and hence graphical, description of the time histories of all the motion variables in
response to a control input, or atmospheric disturbance, and to enable an assessment of
stability to be made. It is also important that the chosen method of solution provides
good insight into the way in which the physical properties of the airframe influence the
nature of the responses.

Since the evolution of the development of the equations of motion and their solution
followed in the wake of observation of aeroplane behaviour, it was no accident that
practical constraints were applied that resulted in the decoupled small perturbation
equations. The longitudinal and lateral decoupled equations of motion are each
represented by a set of three simultaneous linear differential equations which have
traditionally been solved using classical mathematical analysis methods. Although
laborious to apply, the advantage of the traditional approach is that it is capable of
providing excellent insight to the nature of aircraft stability and response. However,
since the traditional methods of solution invariably involve the use of the dimensionless
equations of motion, considerable care in the interpretation of the numerical results is
required if confusion is to be avoided. A full discussion of these methods can be found in
many of the earlier books on the subject, for example in Duncan (1959).

Operational methods have also enjoyed some popularity as a means for solving the
equations of motion. In particular, the Laplace transform method has been, and continues
to be, used extensively. By transforming the differential equations, they become algebraic
equations expressed in terms of the Laplace operator s. Their manipulation to obtain a
solution then becomes a relatively straightforward exercise in algebra. Thus, the problem
is transformed into one of solving a set of simultaneous linear algebraic equations, a
process that is readily accomplished by computational methods. Further, the input—
output response relationship or transfer characteristic is described by a simple algebraic
transfer function in terms of the Laplace operator. The time response then follows by
finding the inverse Laplace transform of the transfer function for the input of interest.

Now the transfer function as a means for describing the characteristics of a linear
dynamic system is the principal tool of the control systems engineer and a vast array of
mathematical tools is available for analysing transfer functions. With relative ease,
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analysis of the transfer function of a system enables a complete picture of its dynamic
behaviour to be drawn. In particular, stability, time response and frequency response
information is readily obtained. Furthermore, obtaining the system transfer function is
usually the prelude to the design of a feedback control system and an additional array of
mathematical tools is also available to support this task.

Since most modern aeroplanes are dependent, to a greater or lesser extent, on
feedback control for their continued proper operation, it would seem particularly
advantageous to be able to describe the aeroplane in terms of transfer functions.
Fortunately, this is easily accomplished. The Laplace transform of the linearized small
perturbation equations of motion is readily obtained and, by the subsequent application
of the appropriate mathematical tools, the response transfer functions may be derived.
An analysis of the dynamic properties of the aeroplane may then be made using control
engineering tools as an alternative to the traditional methods of the aerodynamicist.
Indeed, as already described in Chapter 1, many computer software packages are
available which facilitate the rapid and accurate analysis of linear dynamic systems and
the design of automatic control systems. Today, access to computer software of this type
is essential for the flight dynamicist.

Thus, the process of solution requires that the equations of motion are assembled in
the appropriate format, numerical values for the derivatives and other parameters are
substituted and then the whole model is input to a suitable computer program. The
output, which is usually obtained instantaneously, is most conveniently arranged in
terms of response transfer functions. Thus, the objective can usually be achieved
relatively easily, with great rapidity and with good accuracy. A significant shortcoming
of such computational methods is the lack of visibility; the functional steps in the
solution process are hidden from the investigator. Consequently, considerable care, and
some skill, is required to analyse the solution correctly and this can be greatly facilitated
if the investigator has a good understanding of the computational solution process.
Indeed, it is considered essential to have an understanding of the steps involved in the
solution of the equations of motion using the operational methods common to most
computer software packages.

The remainder of this chapter is therefore concerned with a discussion of the use of
the Laplace transform for solving the small perturbation equations of motion to obtain
the response transfer functions. This is followed by a description of the computational
process involving matrix methods, which is normally undertaken with the aid of a
suitable computer software package.

5.2 Cramer's rule

Cramer’s rule describes a mathematical process for solving sets of simultaneous linear
algebraic equations and may usefully be used to solve the equations of motion
algebraically. It may be found in many degree level mathematical texts, and in books
devoted to the application of computational methods to linear algebra, for example in
Goult et al. (1974). Since Cramer’s rule involves the use of matrix algebra it is easily
implemented in a digital computer.

To solve the system of n simultaneous linear algebraic equations described in matrix
form as

y = Ax (5.1)
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where x and y are column vectors and A is a matrix of constant coefficients, then
Cramer’s rule states that

AdjointA
— A-ly =
x=A y‘( DetA )y (5.2)

where the solution for x,, the ith row of equation (5.2), is given by
1
X; = Al (A1 + Ayys + Ayys + ... + Auys) (5.3

The significant observation is that the numerator of equation (5.3) is equivalent to the
determinant of A with the ith column replaced by the vector y. Thus, the solution of
equation (5.1) to find all of the x; reduces to the relatively simple problem of evaluating
n+ 1 determinants.

EXAMPLE 5.1

To illustrate the use of Cramer's rule consider the trivial example in which it is required
to solve the simultaneous linear algebraic equations

V1 =X; + 2%, + 3x;3
yz = 2x1 + 4x2 + 5x3
y3 == 3x1 + 5x2 + 6.X3

or, in matrix notation,

» 1 2 311 x,
yz = 2 4 5 xZ
Vs 3 5 6§]xs

Applying Cramer’s rule to solve for x;

»n 2 3
y, 4 5
y3 5 6

1 3
5
6

2 3
5 6‘+y3

-1

4 5|
—.Vl56 V2

23
4 5

=y — 3y, +2y,

X, =

N
w AN

1 y 3
2 y, 5
_13 ¥ 6] _

1 2 3|7
2 4 5
3 56

1 3
3 6 -3
-1

1 3
2 5

2 5
_y1!3 6’+y2

==3y,+3y,—y;

and
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12y
24 | |24 |1 2], |12
L35 y3__y"3 5‘ Y23 5|+Y3I2 4l _,
3= 1 2 3 - i __1 =2) Ya
2 45
356

Clearly, in this example, the numerator determinants are found by expanding about

the column containing y. The denominator determinant may be found by expanding
about the first row thus

123
2 45 =1,4 Sl—z'z 5|+3’2 4\=—l+6—6=—1
22T s 6173 6|3 s

5.3 Aircraft response transfer functions

Aircraft response transfer functions describe the dynamic relationships between the
input variables and the output variables. The relationships are indicated diagrammati-
cally in Fig. 5.1 and, clearly, a number of possible input—output relationships exist.
When the mathematical model of the aircraft comprises the decoupled small
perturbation equations of motion, transfer functions relating longitudinal input
variables to lateral output variables do not exist and vice versa. This may not necessarily
be the case when the aircraft is described by a fully coupled set of small perturbation
equations of motion. For example, such a description is quite usual when modelling the
helicopter.

All transfer functions are written as a ratio of two polynomials in the Laplace
operator s. All proper transfer functions have a numerator polynomial which is at least
one order less than the denominator polynomial although, occasionally, improper
transfer functions crop up in aircraft applications. For example, the transfer function
describing acceleration response to an input variable is improper; the numerator and
denominator polynomials are of the same order. Care is needed when working with
improper transfer functions as sometimes the computational tools are unable to deal
with them correctly. Clearly, this is a situation where some understanding of the physical

Input variables Output variables
n —>> —> > u
Longitudinal —= W
€ >~ MATHEMATICAL MODEL S~ 44
............... OF - e e e = aomo=
E —— 3 - ——= v
Lateral AIRCRAFT DYNAMICS S~ pé
— E— Y

Fig. 5.1 Aircraft input—output relationships
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meaning of the transfer function can be of considerable advantage. A shorthand
notation is used to represent aircraft response transfer functions in this book. For
example, pitch attitude 6(s) response to elevator x(s) is denoted

() _ Ny ()
n(s)~ A@)

where Nf,(s) is the unique numerator polynomial in s relating pitch attitude response to
elevator input and A(s) is the denominator polynomial in s which is common to all
longitudinal response transfer functions. Similarly, for example, roll rate response to
aileron is denoted

ps) _ NIO)
= AG) (5:3)

(5.4)

where, in this instance, A(s) is the denominator polynomial which is common to all of
the lateral response transfer functions. Since A(s) is context dependent its correct
identification does not usually present problems.

The denominator polynomial A(s) is called the characteristic polynomial and when
equated to zero defines the characteristic equation. Thus, A(s) completely describes the
longitudinal or lateral stability characteristics of the aeroplane as appropriate and the
roots, or poles, of A(s) describe the stability modes of the aeroplane. Thus, the stability
characteristics of an aeroplane can be determined simply on inspection of the response
transfer functions.

5.3.1 THE LONGITUDINAL RESPONSE TRANSFER FUNCTIONS

The Laplace transforms of the differential quantities x(t) and X(t), for example, are given
by

(5.6)

L{x(£)} = sx(s) — x(0)
L{x(t)} = s’x(s) — sx(0) — %(0)

where x(0) and x(0) are the initial values of x(¢) and x(t) respectively at ¢t = 0. Now,
taking the Laplace transform of the longitudinal equations of motion (equation 4.40),
referred to body axes, assuming zero initial conditions and since small perturbation
motion only is considered, write

0t) = q(t) (5.7)
then

(ms — X Du(s) — (Ao’ o5+ X Iw(s) — ((An’  — mW,)s — mg cos 0,)0(s) = X () + X 1(s)
—Z,u(s) — (Z, — m)s + Z,)W(s) — (Z, + mU,)s — mgsin0,)8(s) = Z,n(s) + Z,x(s)
—Mu(s) — (Mys + M)W(s) + (1,5 — M,8)8(s) = Myn(s) + M,x(s)
(5.8)

Writing equations (5.8) in matrix format
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(ms—X) —(s+X) (X, -mWs-mgeost) |ru [ %, X
“5, —(B-mi+2) —(&,+mUs—mgsind) [w@] 7 7 "]

—M,  —(Mus+M,) I8 — M,s) 06) 1 | a1, M
(5.9)

Cramer’s rule can now be applied to obtain the longitudinal response transfer functions:
for example, to obtain the transfer functions describing response to the elevator.
Assume, therefore, that the thrust remains constant, which means that the throttle is
fixed at its trim setting 7, and 7(s) = 0. Therefore, after dividing through by #(s) equation
(5.9) may be simplified to

p— 1‘@ -

(ms —X,) ~(X,s+X,) —((X, . —mW_)s —mgcos6,) n(s) X ;
—2u '-'((éw - m)s + 2w) —((2q + mUe)s —mg sin ee) % =z n
~M, —(Ms + M,) (1,5 — M,s) o) | LM,

| n(s)

(5.10)

Equation (5.10) is of the same form as equation (5.1), Cramer’s rule may be applied
directly and the elevator response transfer functions are given by

u(s) _Ny©s)  w(s) _ NyGs)  6(s) _ Nu(s)

)~ A nl) T AG T n) - AE)

Since the Laplace transform of equation (5 7) is sO(s) = q(s) the pitch rate response
transfer function follows directly

4(s) _ N3(s) _ sNy(s)

(5.11)

5.12
Mo~ A~ AG) 12
The numerator polynomials are given by the following determinants
X, —(Xs+X) —((X,—mW)s—mgcost,)
N =|Z, —(Z,-ms+2,) —(Z,+mU)s—mgsin0,) (5.13)
A}n ~(Ms + M,) 1, - Aolqs)
(ms — );’u) )?,, -—((Ao’q —mW,)s —mgcos8,)
N©=| -z, Z, —(Z,+mU)s—mgsin,) (5.14)
-M, M, (1,8 — M)
(ms — Ao’,,) —(i',;,s + Ao’,,) X
N@=| -2z, —(Zi—-ms+2) Z (5.15)
—Aolu —(Ablfvs + Ao{w) Aol;y

and the common denominator polynomial is given by the determinant
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(ms — Ao’,,) —-()o( WS+ X w) —((.f’q —mW,)s — mgcos0,)

A)=| -Z, ~(Zi-m}s+2,) —(Z,+mU)s—mgsin0,) (5.16)
~M,  —(Ms+M,) (1,5 — Mys)

The thrust response transfer functions may be derived by assuming the elevator to be
fixed at its trim value, thus n(s) =0, and (s) is written in place of n(s). Then the
derivatives X;, Z, and M, in equations (5.13), (5.14) and (5.15) are replaced by X, Z,
and M, respectively. Since the polynomial expressions given by the determinants are
substantial they are set out in full in Appendix 2.

5.3.2 THE LATERAL RESPONSE TRANSFER FUNCTIONS

The lateral response transfer functions may be obtained by exactly the same means as
the longitudinal transfer functions. The Laplace transform, assuming zero initial
conditions, of the lateral equations of motion referred to body axes, equations (4.45),
may be written in matrix form as follows

_5y —(GAmms) _((F-mUs .
s = 1) (+mgcos@,) (+mgsin6,) [”(S)] Y, Y [{(s)]

o o o ¢@) |=|L I
—LD (Ixsz - Lps) —(Ixzsz + L,.S) ‘l,(s) 1{ P'; C(S)
N, WS+ N (S -K) £

(5.17)

where s¢(s) = p(s) and sy(s) = r(s). By holding the rudder at its trim setting, {(s) =0,
the aileron response transfer functions may be obtained by applying Cramer’s rule to
equation (5.17). Similarly, by holding the ailerons at the trim setting, £(s) = 0, the rudder
response transfer functions may be obtained. For example, roll rate response to aileron
is given by

NIGS) _ pls) _ s¢(s) _ sN¥(s)

= = = 5.18
AD 0 - A 19
where the numerator polynomial is given by
oo 4, -(G o)
+mgsin 0,
Ni(s)=s . . . (5.19)
“Lv LE "'(Ixzsz + L,-S)
-N, N, (S-Ng)
and the denominator polynomial is given by
ms—1y —(Grmms) _((%—mUs
+mgcosé, +mgsin 6,
As) = . (5.20)

-I, (Ls* - L,s) ~(I.$* + L,5)
-N, S+ Ns) LS - N
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Again, since the polynomial expressions given by the determinants are substantial they
are also set out in full in Appendix 2.

EXAMPLES.2

We will obtain the transfer function describing pitch attitude response to elevator for
the Lockheed F-104 Starfighter. The data were obtained from Teper (1969) and
describe a sea level flight condition. Inspection of the data revealed that 8, = O, thus it
was concluded that the equations of motion to which the data relate are referred to
wind axes.

Air density p = 0.00238 slug/ft®
Axial velocity component U, = 305 ft/s
Aircraft mass m = 746 slugs

Moment of inertia in pitch I, = 65 000 slug ft*
Gravitational constant g = 32.2 ft/s?

The dimensional aerodynamic stability and control derivatives follow. Derivatives
which are not quoted are assumed to be insignificant and are given a zero value,
whence

o o

X, = —26.26slug/s Z,, = —159.64 slug/s M,=0
X, =79.82slug/s Z,=—328.24slug/s Jlalw = -1014.0slug ft/s
X, =0 Z, =0 M, = —36.4slug ft
X,=0 Z, =0 M, = —18135slug ft?/s
X =0 2, =-16502slugft/s?/rad M, = —303575slug ft/s?/rad

The American Imperial units are retained in this example since it is preferable to
work with the equations of motion and in the dimensional units appropriate to the
source material. Conversion from one system of units to another often leads to
confusion and error and is not therefore recommended. However, for information,
factors for conversion from American Imperial units to Sl units are given in
Appendix 3.

These numerical values are substituted into equation (5.10) to obtain

7465 +26.26  —79.82 240212 [ u(s) 0
159.64  746s+328.24  —227530s [w(s)] = [ ~16502 ]n(s)
0 36.45+1014  65000s* + 181355 | | 6(s) ~303 575
(5.21)

Cramer’s rule may be applied directly to equation (5.21) to obtain the transfer function
of interest
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7465 + 26.26 -79.82 0
159.64  746s+328.24 —16502
N¥(s) 0 36.4s + 1014 —303575
A(s) ~ [746s+2626  —79.82 240212 rad/rad (5.22)
159.64 7465+ 328.24 —227530s
0 36.4s + 1014 650005 + 181355
whence
0 _ 10
Nys) _ 16.850 x 10'°(s* + 0.402s + 0.036) rad/rad (5.23)
A(s)  3.613 x 1019(s* + 0.9255% + 4.935s2 + 0.182s + 0.108)
Or, in the preferable factorized form,
']
Ni(s) 4.664(s + 0.135)(s + 0.267) rad/rad (5.24)

A(s) (52 + 0.033s + 0.022)(s? + 0.893s + 4.884)

The denominator of equation (5.24) factorizes into two pairs of complex roots
(poles) each pair of which describes a longitudinal stability mode. The factors
describing the modes may be written alternatively (s* + 2{ws + »?) which is clearly the
characteristic polynomial describing damped harmonic motion. The stability of each
mode is determined by the damping ratio { and the undamped natural frequency by .
The lower frequency mode is called the phugoid and the higher frequency mode is
called the short period pitching oscillation. For the aeroplane to be completely
longitudinally stable the damping ratio of both modes must be positive.

The units of the transfer function given in equation (5.24) are rad/rad, or
equivalently deg/deg. Angular measure is usually, and correctly, quantified in radians
and care must be applied when interpreting transfer functions since the radian is a very
large angular quantity in the context of small perturbation motion of aircraft. This
becomes especially important when dealing with transfer functions in which the input
and output variables have different units. For example, the transfer function describing
speed response to elevator for the F-104 has units ft/s/rad and one radian of elevator
input'is impossibly large! It is therefore very important to remember that one radian is
equivalent to 57.3°. It is also important to remember that all transfer functions have
units and they should always be indicated if confusion is to be avoided.

The transfer function given by equation (5.24) provides a complete description of
the longitudinal stability characteristics and the dynamic pitch response to elevator of
the F-104 at the flight condition in question. It is interesting to note that the transfer
function has a negative sign. This means that a positive elevator deflection results in a
negative pitch response which is completely in accordance with the notation defined
in Chapter 2. Clearly, the remaining longitudinal response transfer functions can be
obtained by applying Cramer's rule to equation (5.21) for each of the remaining motion
variables. A comprehensive review of aeroplane dynamics based on transfer function
analysis is contained in Chapters 6 and 7.

The complexity of this example is such that, although tedious, the entire computation
is easily undertaken manually to produce a result of acceptable accuracy. Alternatively,
transfer function (5.23) can be calculated merely by substituting the values of the
derivative and other data into the appropriate polynomial expressions given in
Appendix 2.
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5.4 Response to controls

Time histories for the aircraft response to controls are readily obtained by finding the
inverse Laplace transform of the appropriate transfer function expression. For example,
the roll rate response to aileron is given by equation (5.5) as

Ni(s) '

p(s) = o) &(s) (5.25)
assuming that the aeroplane is initially in trimmed flight. The numerator polynomial
Ni(s) and denominator polynomial A(s) are given in Appendix 2. The aileron input &(s)
is simply the Laplace transform of the required input function. For example, two
commonly used inputs are the impulse and step functions where

Impulse of magnitude k is given by &(s) = k
Step of magnitude k is given by &(s) = k/s

Other useful input functions include the ramp, pulse (or step) of finite length, doublet
and sinusoid. However, the Laplace transform of these functions is not quite so straight-
forward to obtain. Fortunately, most computer programs for handling transfer function
problems have the most commonly used functions ‘built-in’.

To continue with the example, the roll rate response to an aileron step input of
magnitude k is therefore given by

Solution of equation (5.26) to obtain the time response involves finding the inverse
Laplace transform of the expression on the right-hand side, which may be accomplished
manually with the aid of a table of standard transforms. However, this calculation is
painlessly achieved with the aid of an appropriate computer software package such as
MATLAB or Program CC, for example. However, it is instructive to review the
mathematical procedure since this provides valuable insight to aid the correct interpreta-
tion of a computer solution and this is most easily achieved by example, as follows.

(5.26)

EXAMPLE 5.3

We will obtain the pitch response of the F-104 aircraft to a unit step elevator input at
the flight condition evaluated in Example 5.2. Assuming the unit step input to be in
degree units, then from equation (5.24)

—4.664(s + 0.135)(s + 0.267)
s(s2 + 0.033s 4+ 0.022)(s? + 0.893s + 4.884)
Before the inverse Laplace transform of the expression in braces can be found it is first
necessary to reduce it to partial fractions. Thus, writing

—4.664(s* + 0.402s + 0.036)
s(s2 + 0.033s + 0.022)(s* + 0.893s + 4.884)

A Bs+C Ds+E
= ‘4'664(? T 00335 +002) T (F 0893+ 4-884))

6(t) =L

deg (5.27)

(5.28)
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To determine the values for 4, B, C, D and E multiply out the fractions on the right-
hand side and equate the numerator coefficients from both sides of the equation for
like powers of s to obtain

0 = (4 + B+ D)s*

0 = (0.9254 + 0.893B + C + 0.033D + E)s’

s> = (4.935A4 + 4.884B + 0.893C + 0.022D + 0.033E)s*

0.402s = (0.1824 + 4.884C + 0.022E)s
0.036 = 0.1084

These simultaneous linear algebraic equations are easily solved using Cramer’s rule if
they are first written in matrix form

1 1 0 1 0 A 0
0925 0893 1 0033 1 B 0
4935 4.884 0.893 0.022 0033 |{C |= 1 (5.29)
0182 0 484 0 0022(]|D 0.402
0.108 0 0 0 0 E 0.036

Thus, 4=0.333, B=-0.143, C=0.071, D=-0.191 and E = -0.246. Thus,
equation (5.27) may be written

i 0333  (0.1435—0.071)  (0.191s+ 0.246)
1) — —_
6 =L [ 4'664( & +00335+0022) (2 +0893s+ 4.884)) } deg

(5.30)

A very short table of Laplace transforms relevant to this problem is given in Appendix
4. Inspection of the table of transforms determines that equation (5.30) needs some
rearrangement before its inverse transform can be found. When solving problems of this
type it is useful to appreciate that the solution will contain terms describing damped
harmonic motion; the required form of the terms in equation (5.30) is then more easily
established. With reference to Appendix 4, transform pairs 1, 5 and 6 would appear
to be most applicable. Therefore, rearranging equation (5.30) to suit

0.333 0.143(s +0.017) 0.496(0.148)
o =1 —ssea| - ((s +0.0177 +0.1482  (s+0.017) + 0.1482) deg
0.191(s + 0.447) 0.074(2.164)
- ((s +0.4477 +2.164% ' (s +0.447) + 2.154’)
(5.31)

Using transform pairs 1, 5 and 6, equation (5.31) may be evaluated to give the time
response

0() = —1.553 + 0.667""""(cos 0.148¢ — 3.469 sin 0.148¢)
+ 0.891e™"“™(cos 2.164t + 0.389 sin 2.164f) deg

The solution given by equation (5.32) comprises three terms which may be interpreted
as follows.

(i) The first term, —1.553°, is the constant steady state pitch attitude (gain) of the
aeroplane.

(5.32)
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Fig. 5.2 Pitch attitude response of the F-104 to a 1° step of elevator

(ii) The second term describes the contribution made by the phugoid dynamics, the
undamped natural frequency w, = 0.148rad/s and since {,w, = 0.017rad/s the
damping ratio is {, = 0.115.

(iii) The third term describes the contribution made by the short period pitching
oscillation dynamics, the undamped natural frequency w, = 2.164 rad/s and since
{,w, = 0.447 rad/s the damping ratio is {; = 0.207.

The time response described by equation (5.32) is shown in Fig. 5.2 and the two
dynamic modes are clearly visible. It is also clear that the pitch attitude eventually
settles to the steady state value predicted above.

Example 5.3 illustrates that it is not necessary to obtain a complete time response
solution merely to obtain the characteristics of the dynamic modes. The principal mode
characteristics, damping ratio and natural frequency, are directly obtainable on
inspection of the characteristic polynomial A(s) in any aircraft transfer function. The
steady state gain is also readily established by application of the Final Value Theorem
which states that

S@)1soo = 1im (s (s)) (5.33)
The corresponding Initial Value Theorem is also a valuable tool and states that

SO0 = lim (f(5) | (5.34)

A complete discussion of these theorems may be found in most books on control theory,
for example in Shinners (1980).
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EXAMPLE 5.4

Apply the initial value and final value theorems to find the initial and steady values of
the pitch attitude response of the F-104 of the previous examples. From equation
(5.27) the Laplace transform of the unit step response is given by

_ —~4.664(s + 0.135)(s +0.267)
86) = = +0.033s + 0.022)( + 0.893 + 4.884) °°9 63

Applying the final value theorem to obtain
i —4.664(s + 0.135)(s + 0.267) _ o
6(t)ro = lim ((s2 10,0335 + 0020)(7 + 0.893s + 4 884 ) 969 = ~1-563 (5.36)
and applying the initial value theorem to obtain

—4.664(s + 0.135)(s + 0.267) =0°
((s2 +0.033s + 0.022)(s2 + 0.893s + 4.884)) deg =0 37

Clearly, the values given by equations (5.36) and (5.37) correlate reasonably well with
the known pitch attitude response calculated in Example 5.3. Bear in mind that, in all
the calculations, numbers have been rounded to three decimal places for convenience.

G(t)t-bﬂ = lim

500

5.5 Acceleration response transfer functions

Acceleration response transfer functions are frequently required but are not given
directly by the solution of the equations of motion described above. Expressions for the
components of inertial acceleration are given in equations (4.9) and, clearly, they
comprise a number of motion variable contributions. Assuming small perturbation
motion such that the usual simplifications can be made, equations (4.9) may be
restated

a,=u—rV.+qW, - yi +24

a, =0 —pW, +rU, + xi — zp (5.38)

a, =w—ch+ch —xQ+yp
Now if, for example, the normal acceleration response to an elevator referred to the cg
is required (x = y = z = 0) and if fully decoupled motion is assumed (pV, = 0) then the
equation for normal acceleration simplifies to

a,=w—qU, (5.39)
The Laplace transform of equation (5.39), assuming zero initial conditions, may be
written

a,(s) = sw(s) — s6(s)U, (5.40)
Or, expressing equation (5.40) in terms of elevator response transfer functions

N, (s) Ni(s) . _ S(Ny(s) = UNy(s)n(s)
A(S) ’1(3) - SUB A(S) "(s) = A(S) (5'41)

a(s)=s

whence the required normal acceleration response transfer function may be written
N() _ a(s) _ s(N3(s) — UNY(s)
A@s)  n(s) A(s)

(5.42)
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Transfer functions for the remaining acceleration response components may be derived
in a similar manner. :

Another useful transfer function which is often required in handling qualities studies
gives the normal acceleration response to an elevator measured at the pilot’s seat. In this
special case, x in equations (5.38) represents the distance measured from the cg to the
pilot’s seat and the normal acceleration is therefore given by

a,=w—qU, —xq (5.43)
As before, the transfer function is easily derived

Ny(s) _ s(N;(s) — (U, + xs)N;(s))
AGS) o A(s) (544)

pilot

EXAMPLES.5

We will calculate the normal acceleration response to elevator at the cg for the F-104
Starfighter aeroplane at the flight condition defined in Example 5.2. At the flight
condition in question the steady axial velocity component U, = 305 ft/s and the pitch

attitude and normal velocity transfer functions describing response to elevator are given
by

NGs) —4.664(s + 0.135)(s + 0.267)
A(s) ~ (s + 0.0335 + 0.022)(s + 0.893s + 4.884)

rad/rad (5.45)

and

N;(s) _ —22.147(s* + 0.035s + 0.022)(s + 64.675)

AG) — (2 +0.033s 1 0.022)(s + 0.893s + 4.882) '/ 5/r2d (5.46)
g 200 1 ' T I 1 I T l 1
g
2 150
g
N
c 100
S
©
|
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Fig. 5.3 Normal acceleration response at the cg to an elevator unit step input
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Substitute equations (5.45) and (5.46) together with U, into equation (5.42), pay
particular attention to the units, multiply out the numerator and factorize the result to
obtain the required transfer function

N2(s)  —22.147s(s + 0.037)(s — 4.673)(s + 5.081)
A() (s +0.033s + 0.022)(s" + 0.893s + 4.884)

Note that since the numerator and denominator are of the same order the acceleration
transfer function (5.47) is an improper transfer function. The positive numerator root,
or zero, implies that the transfer function is non-minimum phase, which is typical of
aircraft acceleration transfer functions. The non-minimum phase effect is illustrated in
the unit (1rad) step response time history shown in Fig. 5.3 and causes the initial
response to be in the wrong sense. The first few seconds of the response only are
shown and, as may be determined by application of the final value theorem, the steady
state acceleration is zero.

ft/s?/rad (5.47)

5.6 The state space method

The use of the state space method greatly facilitates the solution of the small
perturbation equations of motion of aircraft. Since the computational mechanism is
based on the use of matrix algebra it is most conveniently handled by a digital computer
and, as already indicated, many suitable software packages are available. Most
commercial software is intended for application to problems in modern control and
some care is needed to ensure that the aircraft equations of motion are correctly
assembled before a solution is computed using these tools. However, the available tools
are generally very powerful and their use for the solution of the equations of motion of
aircraft is a particularly simple application.

5.6.1 THE TRANSFER FUNCTION MATRIX

The general state equations (4.60) and (4.61), describing a linear dynamic system, may
be written
x(t) = Ax(t) + Bu(t) }

y(t) = Cx(t) + Du(t) (5.48)

and the assembly of the equations of motion in this form, for the particular application
to aircraft, is explained in Section 4.4.2. Since A, B, C and D are matrices of constant
coefficients, the Laplace transform of equations (5.48), assuming zero initial conditions,
is

(5.49)

sx(s) = Ax(s) + Bu(s)
y(s) = Cx(s) + Du(s)

The state equation may be rearranged and written
x(s) = [sI — A]""Bu(s) (5.50)

where I is the identity matrix and is the same order as A. Thus, eliminating x(s), the state
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vector, by combining the output equation and equation (5.50), the output vector y(s) is
given by : '

¥(s) = [ClsI — A]"'B + DJu(s) = G(s)u(s) (5.51)

where G(s) is called the transfer function matrix. In general the transfer function matrix
has the form

1
G(s) = YE) N(s) (5.52)
and N(s) is a polynomial matrix whose elements are all of the response transfer function
numerators. The denominator A(s) is the characteristic polynomial and is common to
all transfer functions. Thus, the application of the state space method to the solution of
the equations of motion of an aeroplane enables all of the response transfer functions
to be obtained in a single computation.

Now, as explained in Section 4.4.2, when dealing with the solution of the equations
of motion it is usually required that y(s) = x(s), i.e. the output vector and state vector
are the same. In this case, equation (5.51) may be simplified since C=1 and D =0,
therefore

Adj[sI- AB
|sI — A}

and equation (5.53) is equivalent to the multi-variable application of Cramer’s rule as
discussed in Section 5.3 above.

G(s)=[I-Al"'B= (5.53)

5.6.2 THE LONGITUDINAL TRANSFER FUNCTION MATRIX

The concise longitudinal state equations are given by equations (4.67) and (4.68). Thus,
substituting for A, B and I into equation (5.53) the longitudinal transfer function matrix
is given by

S—X, =X, =X, —Xp X, X
Ge=| > TR TA TR & & (5.54)
-m, -m, s—m, —m, m, m,
0 0 -1 s 0 O
Algebraic manipulation of equation (5.54) leads to
Ny(s) N:(®
NW W

AGs) | Ni(s) N5
Nis) Ns)

In this case the numerator and denominator polynomials are expressed in terms of the
concise derivatives. A complete listing of the longitudinal algebraic transfer functions in
this form is given in Appendix 2.

5.6.3 THE LATERAL TRANSFER FUNCTION MATRIX

The lateral state equation is given in terms of normalized derivatives by equation
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(4.69). Thus, substituting for A, B and I into equation (5.53) the lateral transfer function
matrix is given by

S=V =¥, =W Ve W1 [y ¥

"lu S— lp -'l,. -'l‘» "lw l: lt

GE)=| -n, -n, s—n -n, —n, ne n (5.56)
0 -1 0 s 0 0 0
0 0 -1 0 s 0 0

and, as for the longitudinal solution, the lateral transfer function matrix may be
written

Nis) Ni(s)
. Ni(s) Ni(s)
6O =35 Ni(s) Ni(s) (5.57)
Ni(s) Ni(s)
Ni(s) NYGs)

Again the numerator and denominator polynomials are expressed in terms of the
normalized derivatives. A complete listing of the lateral algebraic transfer functions in
this form is given in Appendix 2.

EXAMPLE 5.6

To illustrate the use of the state space method for obtaining the lateral transfer function
matrix, data for the Lockheed C-5A were obtained from Heffley and Jewell (1972).
The data relate to a flight condition at an altitude of 20000 ft and Mach number 0.6
and are referred to aircraft body axes. Although the data are given in American Imperial
units, here they are converted to S| units simply for illustration. The normalized
derivatives were derived from the data, great care being exercised to ensure the correct
units. The derivatives are listed below and, as in previous examples, missing derivatives
were assumed to be insignificant and made equal to zero.

¥, =-0.10601/s l,=-0.00701/m/s n, = 0.00231/m/s
=0 I, =—0.98801/s n, = —0.09211/s
¥, =—189.586 m/s I,=0.28201/s n,=—-0.20301/s
¥s = 9.8073m/s? l,=0 n,=0

¥ = 0.3768 m/s? l,=0 n,=0

¥ = —0.0178 m/s? I, =0.43401/s? n; = 0.03431/s?
¥ = 3.3936 m/s? I, =0.18701/s? n, = —0.52201/s?

The lateral state equation is obtained by substituting the derivative values into equation
(4.69)
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-0.106 0 —189.586 9.8073 0.3768

v v —0.0178 3.3936
p -0.007 -0.988  0.282 0 0 P 0.434  0.187 £
| =] 0.0023 -0.0921 -0.203 0 0 r {+] 0.0343 -0.522 [ C]
¢ 0 1 0 0 0 ¢ 0 0
Y 0 0 1 0 0 vl 0 0
' (5.58)
and the output equation, written out in full, is

v 1 0000 v 00

P 01 0O0O}{|lp 00 ¢

r{={0 01 0 O}f|lr|+1]0 0 [ C] (5.59)

¢ 000 01 0f]¢ 00

] 0000 1}|vy 00

The transfer function matrix was calculated using Program CC. The matrices A, B, C
and D are input to the program and the command for finding the transfer function
matrix is invoked. A print-out of the result produced the following

1
A(s)
where equation (5.60) is the shorthand version of equation (5.57) and

—0.0185(s + 0.15)(s — 0.98)(s + 367.35)  3.394s(s — 0.012)(s + 1.05)(s + 2.31)
0.434s(s — 0.002)(s* +0.33s +0.57)  0.187s(s — 0.002)(s + 1.55)(s — 2.16)

N(s)=| 0.3435(s +0.69)(s* — 0.77s + 0.51)  —0.5225(s + 1.08)(s* + 0.031s + 0.056)
0.434(s — 0.002)(s* +0.33s+0.57)  0.187(s — 0.002)(s + 1.55)(s — 2.16)

0.343(s + 0.69)(s* — 0.77s +0.51)  —0.522(s + 1.08)(s* + 0.031s + 0.056)

(5.61)

G(s) = N(s) (5.60)

and the common denominator, the lateral characteristic polynomial, is given by
A(s) = s(s + 0.01)(s + 1.11)(s* + 0.185 + 0.58) (5.62)

The lateral characteristic polynomial factorizes into three real roots and a complex pair
of roots. The roots, or poles, of the lateral characteristic polynomial provide a complete
description of the lateral-directional stability characteristics of the aeroplane. The zero
root indicates neutral stability in yaw, the first non-zero real root describes the spira/
mode, the second real root describes the roll subsidence mode and the complex pair of
roots describes the oscillatory dutch roll mode.

It is very important to remember the units of the transfer functions comprising the
transfer function matrix, which are

N s) Ni(s) m/s/rad  m/s/rad
Ni(s) Ni(s) rad/s/rad rad/s/rad
units of G(s) = 26) Ni(s) Ni(s) | = | rad/s/rad rad/s/rad (5.63)
Ni(s) NEGs) rad/rad  rad/rad
Ni(s) N¥(s) rad/rad  rad/rad

Thus, the transfer functions of interest can be obtained from inspection of equation
(5.61) together with equation (5.62). For example, the transfer function describing
sideslip velocity response to rudder is given by
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o(s) _ Ni(s) _ 3.394(s — 0.012)(s + 1.05)(s + 29.31)
)~ AG) (5 +0.01)(s + L1I)(s +0.185 + 0.58)

Comparison of these results with those of the original source material in Heffley and
Jewell (1972) reveals a number of small numerical discrepancies. This is due, in part,
to the numerical rounding employed to keep this illustration to a reasonable size and in
part to the differences in the computational algorithms used to obtain the solutions.
However, in both cases the accuracy is adequate.for most practical purposes.

m/s/rad (5.64)

It is worth noting that many matrix inversion algorithms introduce numerical errors
which accumulate rapidly with increasing matrix order and it is possible to obtain
seriously inaccurate results with some poorly conditioned matrices. The typical aircraft
state matrix has a tendency to fall into this category so it is advisable to check the result
of a transfer function matrix computation for reasonableness when the accuracy is in
doubt. This may be done, for example, by making a test calculation using the
expressions given in Appendix 2. For this reason Program CC includes two different
algorithms for calculating the transfer function matrix. In Example 5.6 it was found that
the Generalized Eigenvalue Problem algorithm gave obviously incorrect values for some
transfer function numerators, whereas the Fadeeva algorithm gave entirely the correct
solution. Thus, when using computer tools for handling aircraft stability and control
problems it is advisable to input the aircraft derivative and other data at the accuracy
given.

5.6.4 RESPONSE IN TERMS OF STATE DESCRIPTION

The main reasons for the adoption of state space modelling tools are the extreme power
and convenience of machine solution of the equations of motion and that the solution
is obtained in a form that readily lends itself to further analysis in the context of flight
control. Thus, the solution process is usually completely hidden from the investigator.
However, it is important to be aware of the mathematical procedures implemented in
the software algorithms for the reasons mentioned above. A description of the methods
of solution of the state equations describing a general system may be found in many
books on modern control or system theory. For example, descriptions may be found in
Barnett (1975), Shinners (1980) and Owens (1981). The following description is a
summary of the solution of the aircraft state equations and only includes those aspects
of the process that are most relevant to the aircraft application. For a more
comprehensive review the reader should consult the references.

The Laplace transform of the state equations (5.49) may be restated for the general
case in which non-zero initial conditions are assumed

sx(s) — x(0) = Ax(s) + Bu(s)

5.65
y(s) = Cx(s) + Du(s) (565
whence, the state equation may be written
x(s) = [sI — A]"'x(0) + [sI — A]"'Bu(s) (5.66)

or
x(s) = ®(s)x(0) + ®(s)Bu(s) (5.67)
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where ®(s) is called the resolvent of A. The . most general expression for the state vector
x(t) is determined by finding the inverse Laplace transform of equation (5.67), and is
written

x(t) = Ot — t,)x(t,) + ‘r ®(t — 7)Bu(r)dr (5.68)
o

The state transition matrix ®(t — t,) is defined
Ot — t;) = L7 {[sI — A]"'} = ert- , (5.69)

it is equivalent to the matrix exponential and describes the transition in the state
response x(t) from time ¢, to time ¢. The state transition matrix has the following special
properties

¢P(0) = CIA;O =1
®(c0) =eX =0
D(t + 1) = O()D(7) = e (5.70)

O(t, — to) = D(t, — 1,)D(t; — t,) = 271~
O'(t) = D(—t) =™
The integral term in equation (5.68) is a convolution integral whose properties are well
known and are discussed in most texts on linear systems theory. A very accessible
explanation of the role of the convolution integral in determining system response may

be found in Auslander et al. (1974).

For aircraft applications it is usual to measure time from t, = 0 and equation (5.68)
may be written

x(t) = D(t)x(0) + Jt ®(t — 7)Bu(z) dr
= eMx(0) + r er-"Bu(r)d (5.71)

The output response vector y(t) is determined by substituting the state vector x(t),
obtained from equation (5.71), into the output equation

y(t) = Cx(t) + Du(r)
= Ce*x(0) + C .r e*"~Bu(t) dt + Du(t) (5.72)

Analytical solution of the state equation (5.71) is only possible when the form of the
input vector u(t) is known, therefore further limited progress can only be made for
specified applications. Three solutions are of particular interest in aircraft applications:
the unforced or homogeneous response, the impulse response and the step response.

5.6.4.1 Eigenvalues and eigenvectors

The characteristic equation is given by equating the characteristic polynomial to zero

A(s)=|sT—A| =0 (5.73)
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The roots or zeros of equation (5.73), denoted 4,, are the eigenvalues of the state matrix
A. An eigenvalue 4, and its corresponding non-zero eigenvector v, are such that

Ay, = Ay, (5.74)
whence
[AL-Aly=0 (5.75)

Since v, # 0 then [4,1 — A] is singular. The eigenvectors v, are always linearly independent
provided the eigenvalues A; are distinct, i.e. the characteristic equation (5.73) has no
repeated roots. When an eigenvalue is complex its corresponding eigenvector is also
complex and the complex conjugate A; corresponds to the complex conjugate v;.

The eigenvector or modal matrix comprises all of the eigenvectors and is defined

V= % -+ v,] (5.76)
It follows directly from equation (5.74) that
2y
A, 0
AV=YV ) =VA (5.77)
0
A

where A is the diagonal eigenvalue matrix. Thus
VIAV =A (5.78)

and A is said to be similar to the diagonal eigenvalue matrix A. The mathematical
operation on the state matrix A described by equation (5.78) is referred to as a similarity
transform. Similar matrices possess the special property that their eigenvalues are the
same. When the state equations are transformed to a similar form such that the state
matrix A is replaced by the diagonal eigenvalue matrix A their solution is greatly
facilitated. Presented in this form the state equations are said to be in modal form.
Eigenvectors may be determined as follows. Now by definition
1 _ Adjl41 — A]
—Al = 5.

and since, for any eigenvalue 4, |4,I — A| =0, equation (5.79) may be rearranged and
written

AT — AJAdJIAT — A] = |41 — Al =0 (5.80)

Comparing equation (5.80) with equation (5.75) the eigenvector v; corresponding to the
eigenvalue 4, is defined

v = Adj[A1 — A] (5.81)

Any non-zero column of the adjoint matrix is an eigenvector and if there is more than
one column they differ only by a constant factor. Eigenvectors are therefore unique in
direction only and not in magnitude. However, the dynamic characteristics of a system
determine the unique relationship between each of its eigenvectors.
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' 5.6.4.2 The modal equations
Define the transform

x() =Vz()) = vz,(t) + w2 () + . . . + V,2,(t) = im: viz/(t) (5.82)

i=l

then the state equations (5.48) may be rewritten in modal form

#(t) = Az(t) + V™'Bu(r)
y(®) = CVz(t) + Du(t) ] (5.83)

5.6.4.3 Unforced response

With reference to equation (5.71) the solution to the state equation in modal form,
equation (5.83), is given by

z(t) = eMz(0) + f ert-IV-'Bu(r)dr ’ (5.84)
0
The matrix exponential ¢* in diagonal form is defined
el

el 0
M = . (5.85)

0 -

e).,,r

and since it is diagonal the solutions for the transformed state variables z,(t) given by
equation (5.84) are uncoupled, the principal advantage of the transform, whence

L
z(t) = e4'z,(0) + J 4tV By (1) dr (5.86)
0

The unforced response is given by equation (5.84) when u(t) = 0, whence
z(t) = e*'z(0) (5.87)

Or, substituting equation (5.87) into equation (5.82), the unforced state trajectory x(t)
may be derived

i=m i=m
x(t) = Vetz(0) = H_ve'z(0) = ) veV~'x,(0) (5.88)
i=1 i=1
or
x(t) = VeMV~'x(0) = e*'x(0) (5.89)
and from equation (5.72) the output response follows
y(t) = Cx(t) = CVe*'V~'x(0) = Ce*'x(0) (5.90)

Clearly the system behaviour is governed by the system modes e, the eigenfunctions
vel and by the initial state z(0) = V~'x(0).
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5.6.4.4 Impulse response

The unit impulse function or Dirac delta function, denoted 6(t), is usually taken to mean
a rectangular pulse of unit area, and in the limit the width of the pulse tends to zero
whilst its magnitude tends to infinity. Thus, the special property of the unit impulse
function is

Jwé(t —t)dt=1 (5.91)

where t, is the time at which the impulse commences.
The solution of the modal state equation in response to a unit impulse follows from
equation (5.84)

2(t) = e¥2(0) + f eA-IV-1By, (1) dr (5.92)

where u;(7) is a unit impulse vector. The property of the unit impulse function enables
the convolution integral to be solved and

2(t) = eMz(0) + e*V~'B = e*[z(0) + V'B] (5.93)
Thus the transform, equation (5.82), enables the state vector to be determined
x(t) = VeMV~'[x(0) + B] = e*[x(0) + B] (5.94)

and the corresponding output response vector is given by
y(t) = CVeMV'[x(0) + B] + Duy(t)
= Ce*[x(0) + B] + Duy,(z) (5.95)

Now for application to aeroplanes it has already been established in Section 4.4.2 that
the direct matrix D is zero. Comparing equations (5.95) and (5.90) it is seen that the
impulse response is the same as the unforced response with initial condition [x(0) + B].

5.6.4.5 Step response
When the vector input to the system is a step of constant magnitude, denoted u,, applied
at time ¢z, = 0 then the state equation (5.84) may be written

z(t) = eMz(0) + J' eM-9V~'Bu, dt (5.96)
0

Since the input is constant the convolution integral is easily evaluated and
z(t) = e*'z(0) + A~'[e* — IV ~'Buy, .97
Thus the transform, equation (5.82), enables the state vector to be determined
x() = VeM[V'x(0) + A'V~'By,] — A'Bu,
= e*[x(0) + A"'Bu,] — A”'Bu, (5.98)

The derivation of equation (5.98) makes use of the following property of the matrix
exponential

ATleAt = eMA™! (5.99)
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and the similarity transform
A = VAV (5.100)

Again, the output response is obtained by substituting the state vector x(t), equation
(5.98), into the output equation to give

¥(t) = CVeM[V-'x(0) + A"'V~'Bu,] — [CA'B — D]u, |
= CeM[x(0) + A'Bu,] — [CA™'B — Dju, (5.101)

Since the direct matrix D is zero for aeroplanes, comparing equations (5.101) and
(5.95) it is seen that the step response is the same as the impulse response with initial
condition [x(0) + A~'Bu,] superimposed on the constant output —CA™'Bu,.

5.6.4.6 Response shapes

With reference to equations (5.90), (5.95) and (5.101) it is clear that, irrespective of the
input, the transient output response shapes are governed by the system eigenfunctions
Ve, or alternatively, by the eigenvectors and eigenvalues. Most computer solutions of
the state equations produce an output response in the form of time history data together
with the eigenvalues and eigenvectors. Thus, in aircraft response analysis the system
modes and eigenfunctions may be calculated if required. The value of this facility is that
it provides a very effective means for gaining insight into the key physical properties
governing the response. In particular, it enables the mode content in any response
variable to be assessed merely by inspection of the corresponding eigenvectors.

The output response to other input functions may also be calculated algebraically
provided the input function can be expressed in a suitable analytic form. Typical
examples include the ramp function and various sinusoidal functions. Computer
software packages intended for analysing system response always include a number of
common input functions and usually have provision for creating other functions.
However, in aircraft response analysis, input functions other than those discussed in
detail above are generally of less interest.

EXAMPLE 5.7

The longitudinal equations of motion for the Lockheed F-104 Starfighter aircraft given
in Example 5.2 may be written in state form as described in Section 4.4.2. Whence

46 0 0 O0][%
0 746 0 0f|w
0 364 65000 0| g
0 o 0 1}]|6
—2626  79.82 0 —2402127[u 0
_159.64 —328.64 227530 0 w ~16502
=l o —1014 18135 0 q —303575 |" (5.102)
0 0 1 0 9 0

Premultiplying this equation by the inverse of the mass matrix results in the usual form
of the state equation in terms of the concise derivatives
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i —-0.0352  0.1070 0 -3227T u 0
W —0.2140  —0.4400 305 0 w —22.1206
q 1.198 x 10 —0.0154 —0.4498 0 q —4.6580
6 0 0 1 0 ] 0

(5.103)
or, in algebraic form,
x(f) = Ax(t) + Bu(t) (5.104)

which defines the matrices A and B and the vectors x(f) and u(f). Using the computer
software package PC MATLAB interactively the diagonal eigenvalue matrix is
calculated

™ —0.4459 + 2.1644j 0 0 0
A 0 —0.4459 — 2.1644 0 0

= 0 0 —0.0166 + 0.1474j 0
i 0 0 0 ~0.0166 — 0.1474j
", 0 0 0

o a0 o

=10 5 1 o (5.105)
0o 0 0 X

and the corresponding eigenvector matrix is calculated

0.0071 — 0.0067j 0.0071 4 0.0067j —0.9242 — 0.3816] —0.9242 + 0.3816j
0.9556 —0.2944; 0.9556 +0.2944j  0.0085 4 0.0102j = 0.0085 — 0.0102j
0.0021 + 0.0068j 0.0021 — 0.0068j —0.0006 — 0.0002j —0.0006 + 0.0002;
0.0028 — 0.0015j 0.0028 4+ 0.0015] —0.0012 + 0.0045] —0.0012 — 0.0045j

(5.106)
4, A, and their complex conjugates A;, 1; are the eigenvalues corresponding to the

short period pitching oscillation and the phugoid respectively. The corresponding
matrix exponential is given by

V=

e(—0.4459+2.1644j)x 0 0 0
0 (-04455-2.1644j) 0 0
et = 0 0 o(~0.0I66-+0.1474 0 (5.107)
0 0 0 o(~0.0166-0.1474)):

The eigenfunction matrix Ve* therefore has complex non-zero elements and each
row describes the dynamic content of the state variable to which it relates. For
example, the first row describes the dynamic content of the velocity perturbation u and
comprises the following four elements

(0.0071 — 0.0067j)e'04459+2 1644
(0.0071 + 0.0067j)e( 0421644

(—0.9242 — 0.3816;)e(~0-0166+0.1474ix
(—0.9242 + 0.3816j)e(~00166-0.1474ix

The first two elements in (5.108) describe the short period pitching oscillation

(5.108)
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content in a velocity perturbation and the second two elements describe the phugoid
content. The relative magnitude of the eigenvectors, the terms in parentheses,
associated with the phugoid dynamics is the largest and clearly indicate that the
phugoid dynamics is dominant in a velocity perturbation. The short period pitching
oscillation, on the other hand, is barely visible. Obviously, this kind of observation can
be made for all the state variables simply by inspection of the eigenvector and
eigenvalue matrices only. This is a very useful facility for investigating the response
properties of an aeroplane, especially when the behaviour is not conventional, when
stability modes are obscured or when a significant degree of mode coupling is
present. '
When it is recalled that

e™ = cosnt + jsinnt (5.109)

where © represents an arbitrary scalar variable, the velocity eigenfunctions (5.108)
may be written alternatively
(0.0071 — 0.0067j)e""“*"(cos 2.1644t + j sin 2.1644¢)
(0.0071 + 0.0067;)e~**(cos 2.1644t — j sin 2.1644t)
(—0.9242 — 0.3816j)e """ (cos 0.1474t + j sin 0.1474t)
(—0.9242 4 0.3816j)e %% (cos 0.1474t — j sin 0.1474¢)

(5.110)

Since the elements in (5.110) include sine and cosine functions of time, the origins
of the oscillatory response characteristics in the overall solution of the equations of
motion are identified.

As described in Examples 5.2 and 5.3 the damping ratio and undamped natural
frequency characterize the stability modes. This information comprises the eigenvalues,
included in the matrix equation (5.105), and is interpreted as follows

(i) For the short period pitching oscillation, the higher frequency mode

undamped natural frequency w, = 2.1644rad/s
{,w, = 0.4459rad/s
damping ratio {; = 0.206

(ii) For the phugoid oscillation, the lower frequency mode

undamped natural frequency w, = 0.1474rad/s
{pw, = 0.0166rad/s
damping ratio {, = 0.1126
It is instructive to calculate the pitch attitude response to a unit elevator step input
using the state space method for comparison with the method described in Example
5.3. The step response is given by equation (5.101) which, for zero initial conditions, a
zero direct matrix D and output matrix C replaced with the identity matrix I, reduces
to
y(t) = IVe*A~'V'Bu, — IA~'Bu,
=VedA'VIb-AD (5.111)
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since the single elevator input is a unit step u, =1 and the input matrix B becomes
the column matrix b. The expression on the right-hand side of equation (5.111) is a
(4 x 1) column matrix the elements of which describe u, w, ¢ and 6 responses to the
input. With the aid of PC MATLAB the following were calculated

147.36 + 19.07] —512.2005
oo | 14736 = 19.07] | 299.3836
AVTb=1 333 133291 | AP= 0 (5.112)
22333 + 133.29] 1.5548

The remainder of the calculation of the first term on the right-hand side of equation
(5.111) was completed by hand, an exercise which is definitely not recommended!
Pitch attitude response is given by the fourth row of the resulting column matrix y(t)
and is

8(r) =0.664e~99""(cos 0.147¢ — 3.510sin 0.147t)
+0.882e~246(c05 2.164¢ + 0.380 sin 2.164¢) — 1.5548 deg (5.113)

This equation compares very favourably with equation (5.32) and may be interpreted
in exactly the same way.

This example is intended to illustrate the role of the various elements contributing
to the solution and as such would not normally be undertaken on a routine basis.
Machine computation simply produces the result in the most accessible form, which is
usually graphical although the investigator can obtain additional information in much
the same way as shown in this example.

5.7 State space model augmentation

It is frequently necessary to obtain response characteristics for variables that are not
included in the equations of motion of the aeroplane. Provided that the variables of
interest can be expressed as functions of the basic aeroplane motion variables then
response transfer functions can be derived in the same way as the acceleration response
transfer functions described in Section 5.5 above. However, when the additional transfer
functions of interest are strictly proper they can also be obtained by extending, or
augmenting, the state description of the aeroplane and solving in the usual way as
described above. This latter course of action is extremely convenient as it extends the
usefulness of the aeroplane state space model and requires little additional effort on
behalf of the investigator.

For some additional variables, such as height, it is necessary to create a new state
variable and to augment the state equation accordingly, whereas for others, such as
flight path angle, which may be expressed as the simple sum of basic aeroplane state
variables, it is only necessary to create an additional output variable and to augment the
output equation accordingly. It is also a straightforward matter to augment the state
description to include the additional dynamics of components such as engines and
control surface actuators. In this case, all of the response transfer functions obtained in
the solution of the equations of motion implicitly include the effects of the additional
dynamics.
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5.7.1 HEIGHT RESPONSE TRANSFER FUNCTION

An expression for height rate is given by equation (2.17) which, for small perturbations,
may be written

h=Ub—-V—-W (5.114)
Substitute for (U, ¥, W) from equation (2.1) and note that for symmetric flight ¥, = 0.
Since the products of small quantities are insignificantly small they may be ignored and
equation (5.114) may be written :

h=Uf-W,—w (5.115)
With reference to Fig. 2.4, assuming a, to be small then U, = V;,, W, = 0 and to a good
approximation equation (5.114) may be written

h="V,0—w (5.116)

The decoupled longitudinal state equation in concise form, equation (4.67), may be
augmented to include the height variable by the inclusion of equation (5.116)

u x, X, X, X3 07][u X, X,
w z, z, %z, z O]|w z, z
g|=|m m, m mg Of|q|+|m m [Z ] (5.117)
0 0 0 1 0 o0f}|6#6 0 0
| A 0 —-w 0 V¥ O0]Lh 0 0

Alternatively, this may be written in a more compact form

™ x(2) A i 07 x() B _
wesene = ., ................... + | e u(®) (5.118)
_h(t):| [o -w 0iV, 0][h(t)] [0 0]

where x(t) and u(t) are the state and input vectors respectively, and A and B are the state
and input matrices respectively of the basic aircraft state equation (4.67). Solution of
equation (5.118) to obtain the longitudinal response transfer functions will now result in
two additional transfer functions describing the height response to an elevator
perturbation and the height response to a thrust perturbation.

5.7.2 INCIDENCE AND SIDESLIP RESPONSE TRANSFER FUNCTIONS

We deal with the inclusion of incidence angle in the longitudinal decoupled equations
of motion first. It follows from equation (2.5) that for small perturbation motion
incidence a is given by

2 tana = — (5.119)

Vo

since U, — ¥, as the perturbation tends to zero. Thus, incidence o is equivalent to
normal velocity w divided by the steady free stream velocity. Incidence can be included
in the longitudinal state equations in two ways. Either incidence can be added to the
output vector y(t) without changing the state vector, or it can replace normal velocity w
in the state vector. When the output equation is augmented the longitudinal state
equations (4.67) and (4.68) are written
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x(t) = Ax(t) + Bu(t)

s —

1 0 0 0]

W o 1 ooff” I 65.120)
y(t) = q|=1]0 0 1 0 me | srecernecnnenieninenn, X(t)

9 0 0 01 g 0 1/% 0 0

L«] Lo 1% 0 o]

When normal velocity replaces incidence, it is first necessary to note that equation
(5.119) may be differentiated to give & = w/V;. Thus, the longitudinal state equation
(4.67) may be rewritten

d xu wa,O xq xo u x" x'

il _|a% 2 % wh||a| |2k 2w [n] (5.121)
q m, mWV m m q m,  m LT ‘

6 0 0 1 0 6 0 0

The output equation (4.68) remains unchanged except that the output vector y(t) now
includes a instead of w thus

Y@ =[u a g 0] (5.122)

In a similar way it is easily shown that in a lateral perturbation the sideslip angle § is
given by

Bettanf=— (5.123)

|4
and the lateral small perturbation equations can be modified in the same way as the
longitudinal equations in order to incorporate sideslip angle § in the output equation or,

alternatively, it may replace lateral velocity v in the state equation. When the output
equation is augmented, the lateral state equations may be written

x(t) = Ax(t) + Bu(t)

v 1 00 07
p 0 100 I
5.124
yo=|r|= 0O 01 0 I: N x(t) ( )
) 0001¢ 1/¥, 0 0 0
B 1/V, 0 0 0

where the lateral state equation is given by equation (4.70). When sideslip angle f
replaces lateral velocity v in the lateral state equation (4.70), it is then written

B % WlV% /Y% yo/Vo|[ B velVo vi/Vo

pl_| LV L, I, Iy r l; I ¢

Pl Y% n, n, n, Pt n, n 4 (5.125)
é o 1 o o0 |l¢ 0 0

Again, for this alternative, the lateral output vector y(t) remains unchanged except that
sideslip angle B replaces lateral velocity v thus

Y@®O=[B p r ¢] (5.126)
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Solution of the longitudinal or lateral state equations will produce the transfer function
matrix in the usual way. In every case, transfer functions will be calculated to
correspond to the particular set of variables comprising the output vector.

5.7.3 FLIGHT PATH ANGLE RESPONSE TRANSFER FUNCTION

Sometimes flight path angle y response to controls is required, especially when handling
qualities in the approach flight condition are under consideration. Perturbations in flight
path angle y may be expressed in terms of perturbations in pitch attitude 6 and incidence
a, as indicated for the steady state case by equation (2.2), whence

y=0—axf—o (5.127)
Z

Thus, the longitudinal output equation (4.68) may be augmented to include flight path
angle as an additional output variable. The form of the longitudinal state equations is
then similar to equations (5.120) and

x(t) = Ax(t) + Bu(z)

; I
R x(t) (5.128)
YO =14 0 -1/¥% 0 1

where the state vector x(f) remains unchanged

X' =[u w qg 6] (5.129)

5.7.4 ADDITION OF ENGINE DYNAMICS

Provided that the thrust producing devices can be modelled by a linear transfer function
then, in general, it can be integrated into the aircraft state description. This then enables
the combined engine and airframe dynamics to be modelled by the overall system
response transfer functions. A very simple engine thrust model is described by equation
(2,34), with transfer function

w(s) _ k
e(s) (1+sT)

where 1(t) is the thrust perturbation in response to a perturbation in throttle lever angle
&(t). The transfer function equation (5.130) may be rearranged thus

(5.130)

st(s) = —I;}s(s) - %-‘L'(S) (5.131)

and this is the Laplace transform, assuming zero initial conditions, of the following time
domain equation

i(t) = %e(t) - -,;,—r(t) - (5.132)
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The longitudinal state equation (4.67) may be augmented to include the engine dynamics
described by equation (5. 132) which, after some rearrangement, may be written

u X, Xy .Xg Xp X, u x, 0

w zZ, Z, Z; Z z, w z, 0

gl=|m m m m m ||qg|+|m O [;’] (5.133)
0 0o 0 1 o0 0 0 0 0

i 0 0 0 0 -I/T]L-~ 0 k/T,

‘Thus, the longitudinal state equation has been augmented to include thrust as an
additional state and the second input variable is now throttle lever angle ¢. The output
equation (4.68) remains unchanged except that the C matrix is increased in order, to the
(5 x 5) identity matrix I, in order to provide the additional output variable correspond-
ing to the extra state variable 7.

The procedure described above in which a transfer function model of engine dynamics
is converted to a form suitable for augmenting the state equation is known as system
realization. More generally, relatively complex higher order transfer functions can be
realized as state equations, although the procedure for so doing is rather more involved
than that illustrated here for a particularly simple example. The mathematical methods
required are described in most books on modern control theory. The advantage and
power of this relatively straightforward procedure is very considerable since it literally
enables the state equation describing a very complex system, such as an aircraft with
advanced flight controls, to be built by repeated augmentation. The state descriptions of
the various system components are simply added to the matrix state equation until the
overall system dynamics is fully represented. Typically, this might mean, for example,
that the basic longitudinal or lateral (4 x 4) airframe state matrix might be augmented
to a much higher order of perhaps (12 x 12) or more, depending on the complexity of
the engine model, control system, surface actuators and so on. However, whatever the
result the equations are easily solved using the tools described above.

EXAMPLE 5.8

To illustrate the procedure for augmenting an aeroplane state model, let the
longitudinal model for the Lockheed F-104 Starfighter of Example 5.2 be augmented
to include height 4 and flight path angle y and to replace normal velocity w with
incidence a. The longitudinal state equation expressed in terms of concise derivatives is
given by equation (5.103) and this is modified in accordance with equation (5.121)
to replace normal velocity w with incidence o

i 00352 326342 0 —3227[u 0
&| |-7016x10"" —04400 1 0 x —0.0725
g 1.198 x 10~  —4.6829 —0.4498 0 q ~4.6580 |"
6 0 0 1 0 ) 0

(5.134)

Equation (5.134) is now augmented by the addition of equation (5.104), the height
equation expressed in terms of incidence a and pitch attitude 6

h = V(8 — o) = 3056 — 305 (5.135)
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whence, the augmented state equation is written

i —0.0352 32.6342 0 -322 07 u 0

@ —7.016 x 107*  —0.4400 1 0 0]« —0.0725
gl=| 1.198x10* —46829 —04498 0 0| q|+|—46580 |5
6 0 0 ] 0 of|s6 0

h 0 -305 0 305 0f|Lh 0

(5.136)

The corresponding output equation is augmented to included flight path angle y as
given by equation (5.116) and is then written

(5.137)

SO O =O0O
Ll =i = R = ]
O OO0 OO
SO R &

COOO O
SCOoOO=OO

= OO0 KR &

4 Lo -1 §

This, of course, assumes the direct matrix D to be zero as discussed above. Equations
(5.136) and (5.137) together provide the complete state description of the Lockheed
F-104 as required. Solving these equations with the aid of Program CC results in the
six transfer functions describing the response to elevator.

(i) The common denominator polynomial (the characteristic polynomial) is given by
A(s) = s(s* + 0.033s + 0.022)(s* + 0.892s + 4.883) (5.138)

(ii) The numerator polynomials are given by

Ni(s) = —2.367s(s — 4.215)(s + 5.519) ft/s/rad

Ni(s) = —0.073s(s + 64.675)(s* + 0.035s + 0.023) rad/rad
Ni(s) = —4.6585(s + 0.134)(s + 0.269) rad /s/rad

N (s) = —4.658s(s + 0.134)(s + 0.269) rad/rad

N'(s) = 22.121(s + 0.036)(s — 4.636)(s + 5.085) ft/rad
N?(s) = 0.073s(s + 0.036)(s — 4.636)(s + 5.085) rad/rad

(5.139)

Note that the additional zero pole in the denominator is due to the increase in order
of the state equation from four to five and represents the height integration. This is
easily interpreted since an elevator step input will cause the aeroplane to climb or
descend steadily after the transient has died away when the response becomes similar
to that of a simple integrator. Note also that the denominator zero cancels with a zero
in all numerator polynomials except that describing the height response. Thus, the
response transfer functions describing the basic aircraft motion variables v, o, g and 6
are identically the same as those obtained from the basic fourth order state equations.
The reason for the similarity between the height and flight path angle response
numerators becomes obvious if the expression for the height equation (5.135) is
compared with the expression for flight path angle, equation (5.116).
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6

Longitudinal Dynamics

6.1 Response to controls

The solution of the longitudinal equations of motion by, for example, the
methods described in Chapter 5 enables the response transfer functions to be
obtained. These completely describe the linear dynamic response to a control
input in the plane of symmetry. Implicit in the response are the dynamic
properties determined by the stability characteristics of the aeroplane. The transfer
functions and the response variables described by them are linear since the entire
modelling process is based on the assumption that the motion is constrained to
small disturbances about an equilibrium trim state. However, it is common
practice to assume that the response to controls is valid when the magnitude of
the response can hardly be described as ‘a small perturbation’. For many
conventional aeroplanes the error incurred by so doing is generally acceptably
small, as such aeroplanes tend to have substantially linear aerodynamic character-
istics over their flight envelopes. For aeroplanes with very large flight envelopes,
significant aerodynamic non-linearity and/or dependence on sophisticated flight control
systems, it is advisable not to use the linearized equations of motion for analysis of
response other than that which can justifiably be described as being of small
magnitude.

It is convenient to review the longitudinal response to elevator about a trim state in
which the thrust is held constant. The longitudinal state equation (4.67) may then be
written

u X, Xy X, X9 || U X,

w z, 2z,

"= G W IWAL A 6.1)
q. m, m, mq my q m,,

0 0 0 1 0 0 0

The four response transfer functions obtained in the solution of equation (6.1) may
conveniently be written
) _ Nis) _ k(s + YT + 20,5+ o)
ns)  AG) ~ (FF +20,w,s + W3S + 2Lw,s + w?)

6.2)
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w(s) _N;(s) _  ky(s+]1 /TS + 2L,w,5 + @)

()~ Als) (s2 + 20,0,5 + 03)(s* + 20,0, + w?) 6.3)
(S) _Nis) _ k;s(s+1/Ty Xs+1/T;,) 64)

) - Al (S + 20,0,5 + w2)(s* + 20, w,s + w?) ’

6(s) _ NyGs) _ k(s +1/T s +1/Ty) (6.5)

)~ AG) (& + 20,0, + 03)(s* + 2L, + w?)

The solution of the equations of motion results in polynomial descriptions of the transfer
function numerators and common denominator as set out in Appendix 2. The
polynomials factorize into real and complex pairs of roots which are most explicitly
quoted in the style of equations (6.2) to (6.5) above. Since the roots are interpreted as
time constants, damping ratios and natural frequencies, the above style of writing makes
the essential information instantly available. It should also be noted that the numerator
and denominator factors are typical for a conventional aeroplane. Sometimes complex
pairs of roots may become two real roots and vice versa. However, this does not usually
mean that the dynamic reponse characteristics of the aeroplane become dramatically
different. Differences in the interpretation of response may be evident but will not
necessarily be large.

As has already been indicated, the common denominator of the transfer functions
describes the characteristic polynomial which, in turn, describes the stability character-
istics of the aeroplane. Thus, the response of all variables to an elevator input is
dominated by the denominator parameters, namely, damping ratios and natural
frequencies. The differences between the individual responses are entirely determined by
their respective numerators. It is therefore important to appreciate fully the role of the
numerator in determining response dynamics. The response shapes of the individual
variables are determined by the common denominator and ‘coloured’ by their respective
numerators. The numerator plays no part in determining stability in a linear system
which is how the aeroplane is modelled here.

EXAMPLE 6.1

The equations of motion and aerodynamic data for the Ling-Temco-Vought A-7A
Corsair |l aircraft were obtained from Teper (1969). The flight condition corresponds
to level cruising flight at an altitude of 15000 ft at Mach 0.3. The equations of motion,
referred to a body axis system, arranged in state space format are

0.00501  0.00464 —72.90000 —31.34000 || u 5.63000
—0.08570 —0.54500 309.00000 —7.40000 | w —23.80000
0.00185 —0.00767 —0.39500  0.00132 q + —4.51576
0 0 1 0 0 0

(6.6)

- T 8.

Since incidence o and flight path angle y are useful variables in the evaluation of
handling qualities, it is convenient to augment the corresponding output equation, as
described in Section 5.7, in order to obtain their response transfer functions in the
solution of the equations of motion. The output equation is therefore
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"u] 1 0 0 07 70T
w 0 1 0 0] u 0
gl o o 1ollw], o0
o(={o o o 1||lqg|T|o]" ©.7)
o o 000316 0 o|la] |o
[ y] Lo -0.00316 0 1 0 ]

Note that all elements in the matrices in equations (6.6) and (6.7) have been rounded
to five decimal places simply to keep the equations to a reasonable physical size. This
should not be done with the equations used in the actual computation.

Solution of the equations of motion using Program CC determines the following
response transfer functions

u(s) _ 5.63(s+ 0.369)(s + 0.587)(s + 58.437)
n(s) ~ (52 + 0.033s + 0.020)(s? + 0.902s + 2.666)

w(s) _ —23.8(s* — 0.0088s + 0.0098)(s + 59.048)
K&j ~ (52 +0.0335 + 0.020)(s* 4 0.902s + 2.666)
q(s) _ —4.5165(s — 0.008)(s + 0.506)
n(s) ~ (< + 0.033s + 0.020)(s? + 0.902s + 2.666)
6(s) _ —4.516(s — 0.008)(s + 0.506)
n(s) (& + 0.033s + 0.020)(s? + 0.902s + 2.666)
afs) _ —0.075(s* — 0.0088s + 0.0098)(s + 59.048)
7(s) ~ (s* + 0.033s + 0.020)(s* + 0.902s + 2.666)
7(s) _ 0.075(s — 0.027)(s + 5.004)(s — 6.084)
n(s) ~ (s* + 0.033s + 0.020)(s> + 0.902s + 2.666)
All coefficients have again been rounded to a convenient number of decimal places
and the above caution should be noted.

The characteristic equation is given by equating the common denominator
polynomial to zero :

A(s) = (5% + 0.033s + 0.020)(s? + 0.902s + 2.666) = 0

The first pair of complex roots describes the phugoid stability mode with character-
istics

ft/s/rad

ft/s/rad

rad/s/rad(deg/s/deg)
(6.8)

rad/rad(deg/deg)

rad/rad(deg/deg)

rad/rad(deg/deg)

v damping ratio {, = 0.11
undamped natural frequency w, = 0.14rad/s

The second pair of complex roots describes the short period pitching oscillation, or
short period stability mode, with characteristics

damping ratio {, = 0.28
undamped natural frequency w, = 1.63rad/s

These mode characteristics indicate that the airframe is aerodynamically stable
although it will be shown later that the short period mode damping ratio is
unacceptably low.

The response of the aircraft to a unit step (1°) elevator input is shown in Fig. 6.1.



u ft/sec

w ft/sec

arad B rad

y rad

Seconds

Fig. 6.1 Aircraft response to 1° elevator step input
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All of the variables in the solution of the equations of motion are shown, the responses
being characterized by the transfer functions, equations (6.8).

The responses clearly show both dynamic stability modes, the short period pitching
oscillation and the phugoid. However, the magnitude of each stability mode differs in
each response variable. For example, the short period pitching oscillation is most visible
as the initial transient in the variables w, ¢ and o, whereas the phugoid mode is visible
in all variables although the relative magnitudes vary considerably. Clearly, the stability
of the responses is the same, as determined by the common denominator of the transfer
functions, equations (6.8), but the differences between each of the response variables
are determined by the unique numerator of each response transfer function.

The mode content in each of the motion variables is given most precisely by the
eigenvectors. The analytical procedure described in Example 5.7 is applied to the
equations of motion for the A-7A. With the aid of PC MATLAB the eigenvector matrix
V is determined as follows

short period mode phugoid mode
—0.1682 — 0.1302j —0.1682+0.1302j 0.1467 + 0.9677j 0.1467 — 0.9677j
0.2993 +0.9301j  0.2993 — 0.9301j 0.0410 + 0.2008j 0.0410 — 0.2008]
—0.0046 + 0.0018] —0.0046 — 0.0018j 0.0001 + 0.0006j 0.0001 — 0.0006j
0.00019 + 0.0024j 0.0019 — 0.0024j 0.0041 — 0.0013j 0.0041 + 0.0013j

(6.9)

ox g &

To facilitate interpretation of the eigenvector matrix, the magnitude of each component
eigenvector is calculated as follows

0213 0213 0979 0.979
0977 0977 0.204 0.204
0.0049 0.0049 0.0006 0.0006
0.0036 0.0036 0.0043 0.0043

e T R

Clearly, the phugoid mode is dominant in u since 0.979 > 0.213, the short period
mode is dominant in w since 0.977 3> 0.204, the short period mode is dominant in g
since 0.0049 > 0.0006 and the short period and phugoid modes content in 6 are of
similar order. These observations accord very well with the responses shown in
Fig. 6.