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Preface

When I joined the staff of the College of Aeronautics some years ago I was presented
with a well-worn collection of lecture notes and invited to teach Aircraft Stability and
Control to postgraduate students. Inspection of the notes ·revealed the unmistakable
signs that their roots reached back to the work of W. J. Duncan, which is perhaps not
surprising since Duncan was the first Professor of Aerodynamics at Cranfield some 50
years ago. It is undoubtedly a privilege and, at first, was very daunting to be given the
opportunity to follow in the footsteps of such a distinguished academic. From that
humble beginning my interpretation of the subject has continuously evolved to its
present form, which provided the basis for this book.

The classical linearized theory of the stability and control of aircraft is timeless, it is
brilliant in its relative simplicity and it is very securely anchored in the domain of the
aerodynamicist. So what is new? The short answer is: not a great deal. However, today
the mat~erial is used and applied in ways that have changed considerably, due largely to
the advent of the digital computer. The computer is used as the principal tool for
analysis and design, and it is also the essential component of the modern flight control
system on which all advanced-technology aeroplanes depend. It is the latter development
in particular which has had, and continues to have, a major influence on the way in
which the material of the subject is now used. It is no longer possible to guarantee good
flying and handling qualities simply by tailoring the stability and control characteristics
of an advanced-technology aeroplane by aerodynamic design alone. Flight control
systems now play an equally important part in determining the flying and handling
qualities of an aeroplane by augmenting the stability and control characteristics of the
airframe in a beneficial way. Therefore, the subject has had to evolve in order to
facilitate integration with flight control and, today, the integrated subject is much
broader in scope and is more frequently referred to as Flight Dynamics.

The treatment of the material in this book reflects my personal experience of using,
applying and teaching it over a period of many years. My formative experience was
gained as a Systems Engineer in the avionics industry where the emphasis was on the
design of flight control systems. In more recent years, in addition to teaching a formal
course in the subject, I have been privileged to have spent very many hours teaching the
classical material in the College of Aeronautics' airborne laboratory aircraft. This
experience has enabled me to develop the material from the classical treatment
introduced by Duncan in the earliest days of the College of Aeronautics to the present
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treatment, which is biased towards modern systems applications. However, the vitally
important aerodynamic origins of the material remain clear and for this I can take no
credit.

Modern flight dynamics tends to be concerned with the wider issues of flying and
handling qualities rather than with the traditional, and more limited, issues of stability
and control. The former is, of course, largely shaped by the latter and for this reason the
emphasis is on dynamics and its importance to flying and handling qualities.

The material is developed using dimensional or normalized dimensional forms of the
aircraft equations of motion only. These formulations are in common use, with minor
differences, on both sides of the North Atlantic. The understanding of the dimensionless
equations of motion has too often been a major stumbling block for many students
and, in my experience, I have never found it necessary, or even preferable, to work with
the classical dimensionless equations of motion. The dimensionless equations of motion
are a creation of the aerodynamicist and are referred to only in so far as is necessary to
explain the origins and interpretation of the dimensionless aerodynamic stability and
control derivatives. However, it remains most appropriate to use dimensionless
derivatives to describe the aerodynamic properties of an airframe.

It is essential that the modern flight dynamicist has not only a thorough understanding
of the classical theory of the stability and control of aircraft, but also some knowledge
of the role and structure of flight control systems. Consequently, a basic understanding
of the theory of control systems is necessary and then it becomes obvious that the
aircraft may be treated as a system that may be manipulated and analysed using the
tools of the control engineer. As a result, it i~ common to find control engineers looking
to modern aircraft as an interesting challenge for the application of their skills.
Unfortunately, it is also too common to find control engineers who have little or no
understanding of the dynamics of their plant which, in my opinion, is unacceptable. It
has been my intention to address this problem by developing the classical theory of the
stability and control of aircraft in a systems context in order that it should become
equally accessible to both the aeronautical engineer and to the control engineer. This
book, then, is an aeronautical text which borrows from the control engineer rather than
a control text which borrows from the aeronautical engineer.

This book is primarily intended for undergraduate and postgraduate students studying
aeronautical subjects and those students studying avionics, systems engineering, control
engineering, mathematics, etc, who wish to include some flight dynamics in their studies.
Of necessity, the scope of the book is limited to linearized small perturbation aircraft
models since the material is intended for those coming to the subject for the first time.
However, a good understanding of the material should give the reader the basic skills
and confidence to analyse and evaluate aircraft flying qualities and to initiate
preliminary augmentation system design. It should also provide a secure foundation
from which to move on into non-linear flight dynamics, simulation and advanced flight
control.

M. V. Cook
College of Aeronautics

Cranfield University
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Nomenclature

Of the very large number of symbols required by the subject, many have more than
one meaning. Usually the meaning is clear from the context in which the symbol is
used.

a Wing or wing-body lift curve slope. Acceleration. Local speed of sound
a' Inertial or absolute acceleration
ao Speed of sound at sea level. Tailplane zero incidence lift coefficient
at Tailplane lift curve slope
a1F Fin lift curve slope
a2 Elevator lift curve slope
a3 Elevator tab lift curve slope
a.; Lift curve slope of an infinite span wing
a, Local lift curve slope at coordinate h
ay Local lift curve slope at spanwise coordinate y
ac A.erodynamic centre
A Aspect ratio
A State matrix
b Wing-span
b, Elevator hinge moment derivative with respect to lXT

b, Elevator hinge moment derivative with respect to rJ
b, Elevator hinge moment derivative with respect to P"
B Input matrix
c Chord. Viscous damping coefficient. Command input
c Standard mean chord (smc)
c Mean aerodynamic chord (mac)
c" Mean elevator chord aft of hinge line
Ch Local chord at coordinate h
cy Local chord at spanwise coordinate y
cg Centre of gravity
cp Centre of pressure
C Command path transfer function
C Output matrix
CD Drag coefficient
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CDo Zero lift drag coefficient
C/ Rolling moment coefficient
CL Lift coefficient
CLw Wing or wing-body lift coefficient
CLT Tailplane lift coefficient
CH Elevator hinge moment coefficient
C; Pitching moment coefficient
C"'O Pitching moment coefficient about aerodynamic centre of wing
Cma Slope of Cm-rL plot
C; Yawing moment coefficient
D Drag
D' Drag in a lateral-directional perturbation
D Direction cosine matrix. Direct matrix
D; Drag due to camber
D, Drag due to incidence
F Aerodynamic force. Feed-forward path transfer function
Fe Aerodynamic force due to camber
F; Aerodynamic force due to incidence
F" Elevator control force
g Acceleration due to gravity
g" Elevator stick to surface mechanical gearing constant
G Controlled system transfer function
h Height. Centre of gravity position on reference chord. Spanwise coordinate along

wing sweep line
ho Aerodynamic centre position on reference chord
hF Fin height coordinate above roll axis
hm Controls fixed manoeuvre point position on reference chord
h~ Controls free manoeuvre point position on reference chord
h; Controls fixed neutral point position on reference chord
h~ Controls free neutral point position on reference chord
H Elevator hinge moment. Feedback path transfer function
HF Fin span measured perpendicular to the roll axis
H; Controls fixed manoeuvre margin
H~ Controls free manoeuvre margin
ix Dimensionless moment of inertia in roll
iy Dimensionless moment of inertia in pitch
iz Dimensionless moment of inertia in yaw
ixz Dimensionless product of inertia about ox and oz axes
I' Normalized inertia
I; Moment of inertia in roll
Iy Moment of inertia in pitch
I, Moment of inertia in yaw
I Identity matrix
lxy Product of inertia about ox and oy axes
lxz Product of inertia about ox and oz axes
lyz Product of inertia about oy and oz axes
j The complex variable (R )
k General constant. Spring stiffness coefficient
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kq Pitch rate transfer function gain constant
k; Axial velocity transfer function gain constant
k; Normal velocity transfer function gain constant
ko Pitch attitude transfer function gain constant
k; Turbo-jet engine gain constant
K Feedback gain
K Feedback gain matrix
K, Controls fixed static stability margin
K~ Controls free static stability margin
If Fin arm measured between wing and fin quarter chord points
it Tail arm measured between wing and tailplane quarter chord points
IF Fin arm measured betweencg and fin quarter chord point
IT Tail arm measured between cg and tailplane quarter chord point
L Lift. Rolling moment
L' Lift in a lateral-directional perturbation
L; Lift due to camber
L; "ring or wing-body lift
L F Fin lift
LT Tailplane lift
La. Lift due to incidence
m Mass
m' Normalized mass
M Local Mach number
Mo Free stream Mach number
Merit Critical Mach number
M Pitching moment
M 'Mass'matrix
Mo Wing-body pitching moment about wing aerodynamic centre
MT Tailplane pitching moment about tailplane aerodynamic centre
n Total normal load factor
na. Normal load factor per unit angle of attack
n' Inertial normal load factor
N Yawing moment
o Origin of axes
p Roll rate perturbation. Trim reference point. System pole
Q Dynamic pressure
q Pitch rate perturbation
r Yaw rate perturbation. General response variable
R Radius of turn
s Wing semi-span. Laplace operator
S Wing reference area
So Projected body side reference area
SF Fin reference area '
ST Tailplane reference area
S" Elevator area aft of hinge line
t Time. Maximum aerofoil section thickness
T ~rime constant
1; Roll mode time constant
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T; Spiral mode time constant
Tu Numerator zero in axial velocity transfer function
T; Numerator zero in normal velocity transfer function
To Numerator zero in pitch rate and attitude transfer functions
1; Turbo-jet engine time constant
1; Time to double amplitude
u Axial velocity perturbation
u Input vector
U Total axial velocity
U, Axial component of steady equilibrium velocity
UE Axial velocity component referred to datum-path earth axes
v Lateral velocity perturbation
v Eigenvector
V Perturbed total velocity. Total lateral velocity
~ Lateral component of steady equilibrium velocity
VE Lateral velocity component referred to datum-path earth axes
~ Steady equilibrium velocity
VF Fin volume ratio
~ Tailplane volume ratio
V Eigenvector matrix
w Normal velocity perturbation
W Total normal velocity
~ Normal component of steady equilibrium velocity
WE Normal velocity component referred to datum-path earth axes
x Longitudinal coordinate in axis system
x State vector
X Axial force component
Y Lateral coordinate in axis system
YB Lateral body 'drag' coefficient
y Output vector
Y Lateral force component
z Normal coordinate in axis system. System zero
z Transformed state vector
Z Normal force component

Greek letters

(X Angle of attack or incidence perturbation
(x' Incidence perturbation
(Xe Equilibrium incidence
(XT Local tailplane incidence
f3 Sideslip angle perturbation
f3e Equilibrium sideslip angle
f3

17
Elevator trim tab angle

y Flight path angle perturbation. Imaginary part of a complex number
)'e Equilibrium flight path angle
r Wing dihedral angle
b Control angle. Increment. Unit impulse function
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b~ Roll control stick angle
brJ Pitch control stick angle
b, Rudder pedal control angle
bm Mass increment
d Characteristic polynomial. Transfer function denominator
e Throttle lever angle. Downwash angle at tailplane. Closed loop system error
( Rudder angle perturbation. Damping ratio
(d Dutch roll damping ratio
(p Phugoid damping ratio
(s Short period pitching oscillation damping ratio
11 Elevator angle perturbation
11T Tailplane setting angle
(J Pitch angle perturbation. A general angle
(Je Equilibrium pitch angle
A Eigenvalue
A Wing sweep angle
A Eigenvalue matrix
JlI Longitudinal relative density factor
Jlz Lateral relative density factor
~ Aileron angle perturbation
p Air density
(J Aerodynamic time parameter. Real part of a complex number
't Engine thrust perturbation. Time parameter
4> Roll angle perturbation. Phase angle. A general angle
cJ) State transition matrix
t/J Yaw angle perturbation
(V Undamped natural frequency
(Vb Bandwidth frequency
(Vd Dutch roll undamped natural frequency
(Vn Damped natural frequency
(Vp Phugoid undamped natural frequency
(vs Short period pitching oscillation undamped natural frequency

Subscripts

o Datum axes. Normal earth fixed axes. Wing or wing-body aerodynamic centre.
Free stream flow conditions

1/4 Quarter chord
2 Double or twice
00 Infinite span
a Aerodynamic
b Aeroplane body axes. Bandwidth
B E~ody or fuselage
c Control. Chord. Compressible flow. Camber line
d Atmospheric disturbance. Dutch roll
D [)rag
e Equilibrium, steady or initial condition
E Datum-path earth axes
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F Fin
g Gravitational
H Elevator hinge moment
1 Incompressible flow
1 Rolling moment
Ie Leading edge
L Lift
m Pitching moment. Manoeuvre
n Damped natural frequency
n Neutral point. Yawing moment
p Power. Phugoid
p Roll rate
q Pitch rate
r Roll mode
r Yaw rate
s Short period pitching oscillation. Spiral mode
T Tailplane
u Axial velocity
v Lateral velocity
w Aeroplane wind or stability axes. Wing or wing-body
w Normal velocity
x ox axis
y oyaxis
Z oz axis

rJw Angle of attack or incidence
e Throttle lever
, Rudder
'1 Elevator
() Pitch
e Ailerons
't" Thrust

Examples of other symbols and notation

Xu A shorthand notation to denote a concise derivative, a dimensional derivative
divided by the appropriate mass or inertia parameters ~

X. A shorthand notation to denote the dimensionless derivative ~

X. A shorthand notation to denote the dimensional derivative ~~
N~(t) A shorthand notation to denote a transfer function numerator polynomial

relating the output response y to the input u
(*) A superscript to denote a complex conjugate
u A shorthand notation to denote that the variable u is dimensionless

Please note that although the pronoun 'he' has been used throughout for clarity, it is
not intended to imply that piloting and flight dynamics analysis are gender specific.



1
Introduction

1.1 Overview

This book is primarily concerned with the prOVISIon of good flying and handling
qualities in the conventional aeroplane. Consequently it is also very much concerned
with the stability, control and dynamic characteristics which are fundamental to the
determination of those qualities. Since flying and handling qualities are of critical
importance to safety and to the piloting task it is essential that their origins are properly
understood. Here then, the intention is to set out the basic principles of the subject at
an introductory level and to illustrate the application of those principles by means of
worked examples.

Following the first flights made by the Wright brothers in December 1903, the pace
of aeronautical development quickened and the progress made in the following decade
or so was dramatic. However, the stability and control problems that faced the early
aviators were sometimes considerable since the flying qualities of their aeroplanes were
often less than satisfactory. Many investigators were studying the problems of stability
and control at the time, although it is the published works of Bryan (1911) and
Lanchester (1908) which are usually accredited with laying the first really secure
foundations. for the subject. By conducting many experiments with flying models
Lanchester was able to observe and successfully describe mathematically some dynamic
characteristics of aeroplanes. The beauty of Lanchester's work was its practicality and
theoretical simplicity, thereby lending itself to easy application and interpretation.
Bryan, on the other hand, was a. mathematician who chose to apply his energies, with
the assistance of a Mr Harper, to the problems of the stability and control of the
aeroplane. Bryan developed the general equations of motion of a rigid body with six
degrees of freedom to describe successfully the motion of the aeroplane. His treatment,
with very few changes, is still in everyday use, What has changed is the way in which the
material is now used, due largely to the advent of the digital computer as an analysis
tool. The stability and control of aeroplanes is a subject which has its origins in
aerodynamics and the classical theory of the subject is traditionally expressed in the
language of the aerodynamicist. The objective of the present work is to revisit the
development of the classical theory and to express it in the language of the systems
engineer where it is more appropriate to do so.

Flight Dynamics is about the relatively short term motion of an aeroplane in response
to a control input or to an external disturbance such as atmospheric turbulence. The
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motion of interest can vary from small excursions about trim to very large amplitude
manoeuvring when normal aerodynamic behaviour may well become very non-linear.
Since the treatment of the subject in this book is introductory, a discussion of large
amplitude dynamics is beyond the scope of the present work. The dynamic behaviour of
an aeroplane is significantly shaped by its stability and control properties, which in turn
have their roots in the aerodynamics of the airframe. Previously the achievement of good
stability characteristics in an aeroplane usually ensured good flying qualities, all of
which depended only on good aerodynamic design. Expanding flight envelopes and the
increasing dependence on automatic flight control systems (APeS) for stability
augmentation means that good flying qualities are no longer a guaranteed product of
good aerodynamic design and good stability characteristics. The reasons for this
apparent inconsistency are now reasonably well understood and, put very simply, result
from the addition of flight control system dynamics to those of the airframe. Flight
control system dynamics are, of course, a necessary, but not always desirable, by­
product of stability augmentation.

Modern flight dynamics is concerned not only with the dynamics, stability and control
of the basic airframe but also with the sometimes complex interaction between aeroplane
and flight control system. Since the flight control system comprises motion sensors, a
control computer, control actuators and other items of control hardware, a study of the
subject becomes a multi-disciplinary activity. Therefore, it is essential that the modern
flight dynamicist has, not only a thorough understanding of the classical stability and
control theory of aeroplanes but also a working knowledge of control theory and of the
use of computers in a flight critical environment. Thus, the aeroplane together with the
flight control equipment may be treated as a whole system using the traditional tools of
the aerodynamicist together with the analytical tools of the control engineer.

Thus, in a modern approach to the analysis of stability and control it is convenient
to treat the aeroplane as a system component. This leads to the derivation of
mathematical models which describe the aeroplane in terms of aerodynamic transfer
functions. Described in this way, the stability, control and dynamic characteristics of the
aeroplane are readily interpreted with the aid of very powerful computational systems
engineering tools. It follows that the mathematical model of the aeroplane is
immediately compatible with, and provides the foundation for, integration with flight
control system studies. This is an ideal state of affairs since, today, it is most likely that
stability and control investigations are a precursor to flight control system
development.

Today, the modern flight. dynamicist tends to be concerned with the wider issues of
flying and handling qualities rather than with the traditional, and more limited issues of
stability and control. The former is, of course, largely determined by the latter. The
present treatment of the material is shaped by answering the following questions which
a newcomer to the subject might be tempted to ask.

(i) How are the stability and control characteristics of an aeroplane determined and
how do they influenceflying qualities?

The answer to this question involves the establishment of a suitable mathematical
framework for the problem, the development of the equations of motion, the solution of
the equations of motion, investigation of response to controls and the general interpreta­
tion of dynamic behaviour.
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(ii) What are acceptablefiying qualities, how are the requirements defined, interpreted
and applied, and how do they limit flight characteristics?

The answer to this question involves a review of standard flying qualities requirements
documents and the evaluation and interpretation of the detail requirements.

(iii) When an aeroplane has unacceptable flying qualities how may its dynamic
characteristics be augmented?

The answer to this question involves an introduction to the rudiments of feedback
control as the means for augmenting the stability of the basic airframe.

1.2 Flying and handling qualities

The flying and handling qualities of an aeroplane are those properties which describe
the ease and effectiveness with which it responds to pilot commands in the execution of
some flight task. In the first instance, therefore, flying and handling qualities are
described qualitatively and are formulated in terms of pilot opinion, consequently they
tend to be rather subjective. The process involved in the pilot perception of flying and
handling qualities may be interpreted in the form of a signal flow diagram as shown in
Fig. 1.1. The solid lines represent physical, mechanical or electrical signal flow paths,
whereas the dashed lines represent sensory feedback information to the pilot. The
author's interpretation distinguishes between flying qualities and handling qualities as
indicated.. The pilot's perception of flying qualities is considered to comprise a
qualitative description of how well the aeroplane carries out the commanded task. On
the other hand, the pilot's perception of handling qualities is considered a qualitative
description of the adequacy of the short term dynamic response to controls in the
execution of the flight task. The two qualities are therefore very much interdependent
and, in practice, are probably inseparable. Thus, to summarize, the flying qualities may
be regarded as being task related, whereas the handling qualities may be regarded as
being response related. When the airframe characteristics are augmented by a flight
control system, the way in which the flight control system may influence the flying and
handling qualities is clearly shown in Fig. 1.1.

HANDLING QUALITIES
.",..",.------ ....

,,,
"' "'"''" '" '"'" " .........

........ _-----
FLYING QUALITIES

Fig. 1.1 Flying and handling qualities of the conventional aeroplane
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HANDLING QUALITIES---------------

FLYING QUALITIES

Fig. 1.2 Flying and handling qualities of the FBW aeroplane

An increasing number of advanced modem aeroplanes employ fly-by-wire (FBW)
primary flight controls and these are usually integrated with the stability augmentation
system. In this case, the interpretation of the flying and handling qualities process is
modified to that shown on Fig. 1.2. Here then, the flight control system becomes an
integral part of the primary signal flow path and the influence of its dynamic characteris­
tics on flying and handling qualities is of critical importance. The need for very careful
consideration of the influence of the flight control system in this context cannot be over­
emphasized.

Now the pilot's perception of the flying and handling qualities of an aeroplane
will be influenced by many factors: for example, the stability, control and dynamic
characteristics of the airframe, flight control system dynamics, response to
atmospheric disturbances and the less tangible effects of cockpit design. This last
factor includes considerations such as control inceptor design, instrument displays
and field of view from the cockpit. Not surprisingly the quantification of flying
qualities remains difficult. However, there is an overwhelming necessity for some
sort of numerical description of flying and handling qualities for use in engineering
design and evaluation. It is very well established that the flying and handling
qualities of an aeroplane are intimately dependent on the stability and control
characteristics of the airframe including the flight control system when one is
installed. Since stability and control parameters are readily quaritified these are
usually used as indicators and measures of the likely flying qualities of the
aeroplane. Therefore, the prerequisite for almost any study of flying and handling
qualities is a descriptive mathematical model of the aeroplane which is capable of
providing an adequate quantitative indication of its stability, control and dynamic
properties.

1.3 General considerations

In a systematic study of the principles governing the flight dynamics of an aeroplane it
is convenient to break the problem down into manageable descriptive elements. Thus
before attempting to answer the questions posed in Section 1.1, it is useful to consider
and define a suitable framework in which the essential mathematical development may
take place.
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1.3.1 B.A4SIC CONTROL-RESPONSE RELATIONSHIPS

It is essential to define and establish a description of the basic input-output relationships
on which the flying and handling qualities of an unaugmented aeroplane depend. These
relationships are described by the aerodynamic transfer functions which provide the
simplest and most fundamental description of airframe dynamics. They describe the'
control-response relationship as a function of flight condition and may include the
influence of atmospheric disturbances when appropriate. These basic relationships are
illustrated in Fig. 1.3.

Centra.l to this framework is a mathematical model of the aeroplane which is usually
referred to as the equations of motion. The equations of motion provide a complete
description of the response to controls, subject only to modelling limitations defined at
the outset, and are measured in terms of displacement, velocity and acceleration
variables. The flight condition describes the conditions under which the observations are
made and includes such parameters as Mach number, altitude, aeroplane geometry,
mass and trim state. When the airframe is augmented with a flight control system the
equations of motion are modified to model this configuration. The response transfer
functions, derived from the mathematical solution of the equations of motion, are then
no longer the basic aerodynamic transfer functions but are obviously the transfer
functions of the augmented aeroplane.

1.3.2 MATHEMATICAL MODELS

From the foregoing it is apparent that it is necessary to derive mathematical models to
describe the aeroplane, its control systems, atmospheric disturbances and so on. The
success of any flight dynamics analysis hinges on the suitability of the models for the
problem in hand. Often the temptation is to attempt to derive the most accurate model

FLIGHT

CONDITION

~INPUT OUTPUT

AILERON AEROPLANE DISPLACEMENT

ELEVATOR
~

EQUATIONS
~

OF
VELOCITY

RUDDER
MOTION ACCELERATION

THROTTLE

f
ATMOSPHERIC

DISTURBANCES

Fig. 1.3 Basic control-response relationship
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possible. High fidelity models are capable of reproducing aeroplane dynamics accurately
but are seldom simple. Their main drawback is the lack of functional visibility. It may
be difficult, or even impossible, to relate response to the simple physical aerodynamic
properties of the airframe, or to the properties of the control system components. For
the purposes of the investigation of flying and handling qualities it is frequently adequate
to use simple approximate models which have the advantage of maximizing functional
visibility. Such models have the potential to enhance the visibility of the physical
principles involved thereby facilitating the interpretation of flying and handling qualities
enormously. Often, the deterioration in the fidelity of the response resulting from the
use of approximate models may be relatively insignificant. For a given problem, it is
necessary to develop a model which balances the desire for response fidelity against the
requirement to maintain functional visibility. As is so often the case in many fields of
engineering, simplicity is a most desirable virtue.

1.3.3 STABILITY AND CONTROL

Flying and handling qualities are substantially dependent on, and are usually described
in terms of, the stability and control characteristics of an aeroplane. It is therefore
essential to be able to describe and to quantify stability and control parameters
completely. Analysis may then be performed using the stability parameters. Static
stability analysis enables the control displacement and the control force characteristics to
be determined for both steady and manoeuvring flight conditions. Dynamic stability
analysis enables the response to controls and to atmospheric disturbances to be
determined for various flight conditions.

1.3.4 STABILITY AND CONTROL AUGMENTATION

When an aeroplane has flying and handling qualities deficiencies it becomes necessary
to correct, or augment, the aerodynamic characteristics which give rise to those
deficiencies. To a limited extent, this could be achieved by modification of the
aerodynamic design of the aeroplane. In this event it is absolutely essential to
understand the relationship between the aerodynamics of the airframe and controls and
the stability and control characteristics of that airframe. However, today, many
aeroplanes are designed with their aerodynamics optimized for performance over a very
large flight envelope, and a consequence of this is that their flying qualities are often
deficient, the intent at the outset being to rectify those deficiencies with a stability
augmentation system. Therefore, the alternative to aerodynamic design modification is
the introduction of a flight control system. In this case it becomes essential to understand
how feedback control techniques may be used to modify artificially the apparent
aerodynamic characteristics of the airframe. So once again, but for different reasons, it
is absolutely essential to understand the relationship between the aerodynamics of the
airframe and its stability and control characteristics. Further, it becomes very important
to appreciate the effectiveness of servo-systems for autostabilization whilst acknowl­
edging the attendant advantages, disadvantages and limitations introduced by the
system hardware. At this stage of consideration it is beginning to become obvious why
flight dynamics is now a complex multi-disciplinary subject. However, since this work is
introductory, the subject of stability augmentation is treated at the most elementary
level only.
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1.4 Aircraft equations of motion

The equations of motion of an aeroplane are the foundation on which the entire
framework of flight dynamics is built and provide the essential key to a proper
understanding of flying and handling qualities. At their simplest, the equations of
motion can describe a small perturbation motion about trim only. At their most complex
they can be completely descriptive, embodying static stability, dynamic stability, aero­
elastic effects, atmospheric disturbances and control system dynamics simultaneously for
a given aeroplane configuration. The equations of motion enable the rather intangible
description of flying and handling qualities to be related to quantifiable stability and
control parameters, which in turn may be related to identifiable aerodynamic
characteristics of the airframe. For initial studies the theory of small perturbations is
applied to the equations to ease their analytical solution and to enhance their functional
visibility. However, for more advanced applications, which are beyond the scope of the
present work, the fully descriptive non-linear form of the equations might be retained.
In this case the equations are difficult to solve analytically and recourse would be made
to computer simulation techniques to effect a solution.

1 .5 Aerodynamics

1.5.1 S(~OPE

The aerodynamics of an airframe and its controls make a fundamental contribution to
the determination of the stability and control characteristics of the aeroplane. It is usual
to incorporate aerodynamic descriptions in the equations of motion in the .form of
aerodynamic stability and control derivatives. Since it is necessary to constrain the motion
to well-defined limits in order to obtain the derivatives so the scope of the resulting
aeroplane model is similarly constrained in its application. It is, however, quite common
to find aeroplane models constrained in this way being used to predict flying and
handling qualities at conditions well beyond the imposed limits. This is not a
recommended practice! An important aspect of flight dynamics is concerned with the
proper definition of aerodynamic derivatives as functions of common aerodynamic
parameters. It is also most important that the values of the derivatives are compatible
with the scope of the problem to which the aeroplane model is to be applied. The
processes involved in the estimation or measurement of aerodynamic derivatives provide
an essential contribution to a complete understanding of aeroplane behaviour.

1.5.2 SAt/ALL PERTURBATIONS

The aerodynamic properties of an aeroplane vary considerably over the flight envelope
and mathematical descriptions of those properties are approximations at best. The limit
of the approximation is determined by the ability of mathematics to describe the
physical phenomena involved, or by the acceptable complexity of the description, the
aim being to obtain the simplest approximation consistent with adequate physical
representation. In the first instance, this aim is best met when the motion of interest is
constrained to small perturbations about a steady flight condition, which is usually, but
not necessarily, trimmed equilibrium. This means that the aerodynamic characteristics
can be approximated by linearizing about the chosen flight condition. Simple approxi-
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mate mathematical descriptions of aerodynamic stability and control derivatives then
follow relatively easily. This is the approach pioneered by Bryan (1911) and it usually
works extremely well provided the limitations of the model are recognized from the
outset.

1.6 Computers

No discussion of flight dynamics would be complete without mention of the very
important role played by the computer in all aspects of the subject. It is probably true to
say that the development of today's very advanced aeroplanes would not have been
possible without parallel developments in computer technology. In fact there is ample
evidence to suggest that the demands of aeronautics have forced the pace of computer
development. Computers are used for two main purposes, as a general purpose tool for
design and analysis and to provide the 'intelligence' in flight control systems.

1.6.1 ANALYTICAL COMPUTERS

In the past, all electronic computation whether for analysis, simulation or airborne flight
control would have been an.alogue. Analogue computer technology developed rapidly
during and immediately after World War II and by the late 1960shad reached its highest
level of development following the introduction of the electronic integrated operational
amplifier. Its principal role was that of simulation and its main advantages were its
ability to run in real time and its high level of functional visibility. Its main disadvantage
was the fact that the electronic hardware required was directly proportional to the
functional complexity of the problem to be simulated. This meant that complex
aeroplane models with complex flight control systems required physically large, and very
costly, electronic computer hardware. During the 1960s and 1970s electronic digital
computing technology advanced very rapidly and soon displaced the analogue computer
as the primary tool for design and analysis. However, it took somewhat longer before
the digital computer had acquired the capacity and speed necessary to meet the demands
of simulation. Today, most of the computational requirements for design, analysis and
simulation can be provided by a modest Personal Computer (PC).

1.6.2 FLIGHT CONTROL COMPUTERS

In the present context flight control is taken to meanflight critical stability augmentation,
where a computer malfunction or failure might hazard the continued safe operation. of
the aeroplane. In the case of an FBW computer, a total failure would mean loss of the
aeroplane. Therefore, hardware integrity is a very serious issue in flight control
computer design. The modern aeroplane may also have an auto-pilot computer, air data
computer, navigation computer, energy management computer, weapon systems
computer and more. Many of these additional computers may be capable of exercising
some degree of control over the aeroplane, but none will be quite as critical as the
stability augmentation computer in the event of a malfunction.

For the last 50 years or more, computers have been used in aeroplanes for flight
control. For much of that time the dedicated analogue electronic computer was
unchallenged because of its relative simplicity and its excellent safety record. Towards
the end of the 1970sthe digital computer had reached the stage of development where its
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use in flight critical applications became a viable proposition. The pursuit of increasingly
sophisticated performance goals led to an increase in the complexity of the aerodynamic
design of aeroplanes. This, in turn, placed greater demands on the flight control system
for the maintenance of good flying and handling qualities. The attraction of the digital
computer for flight control is its capability for handling very complex control functions
easily. The disadvantage is its lack of functional visibility and the consequent difficulty
of ensuring safe trouble-free operation. However, the digital flight critical computer is
here to stay and is now in use in most advanced-technology aeroplanes. Research
continues to improve the hardware, software and application. Confidence in digital flight
control systems is now such that applications include full FBW civil transport
aeroplanes.

These functionally very complex flight control systems have given the modem
aeroplane hitherto unobtainable performance benefits. But nothing is free! The
consequence of using such systems is the unavoidable introduction of unwanted control
system dynamics. These usually manifest themselves as control phase lag and can
intrude on the piloting task in an unacceptable way, resulting in an aircraft with poor
flying and handling qualities. This problem is still a subject of research and is very much
beyond the scope of this book. However, the essential foundation material on which
such studies are built is set out in the following chapters.

1.6.3 COMPUTER SOFTWARE TOOLS

Many computer software tools, which are suitable for flight dynamics analysis, are
now available. Most packages are intended for control systems applications, are ideal
for handling aeronautical system problems and may be installed on a modest Personal
Computer. Software tools used regularly by the author are listed below, but it must be
appreciated that the list is by no means exhaustive, nor is it implied that the programs
listed are the best or necessarily the most appropriate.

CODAS-II is a low cost control system design and simulation package which is
limited to classical linear and non-linear applications only. It is very easy to use and its
screen graphics are good.

M A TIJAB or PC M ATLAB is a very powerful control system design and analysis tool
which is intended for application to systems configured in state space format. As a result
all computation is handled in matrix format. Its screen graphics are good.

Program CC is also a very powerful control system design and analysis tool. It is
capable of handling classical control problems in transfer function format as well as
modern state space control problems in matrix format. An advantage is that it was
written by flight dynamicists for flight dynamicists and as a result its use becomes
intuitive once the commands have been learned. Its screen graphics are good and have
some flexibility of presentation.

MAT/lCAD is a general purpose mathematical problem solving tool. It is not
particularly easy to use for repetitive calculations but it comes into its own for solving
difficult non-linear equations. It is also capable of undertaking complex algebraic
computations. Its screen graphics are generally very good and are very flexible.

A CSL (axle) is a very powerful simulation language which is capable of simulating
the most complex of non-linear flight dynamics problems.

Low cost student editions of MATLAB and MATHCAD are available which are
sufficient for handling all of the material in this book. A text book on control by Golten
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and Verwer (1991) is also available which is based on the use of CODAS and includes
a version of the software. References for the above software tools are given below.

1.7 Summary

An attempt has been made in Chapter 1 to give a broad appreciation of what flight
dynamics is all about. Clearly, to produce a comprehensive text on the subject would
require many volumes, assuming that it were even possible. To reiterate, the present
intention is to set out the fundamental principles of the subject only. However, where
appropriate, pointers are included in the text to indicate the direction in which the
material in question might be developed for more advanced studies.
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2
Systems of Axes and Notation

Before commencing the main task of developing mathematical models of the aeroplane,
it is first necessary to put in place an appropriate and secure foundation on which to
build the models. The foundation comprises a mathematical framework in which the
equations of motion can be developed in an orderly and consistent way. Since aeroplanes
have six degrees of freedom, the description of their motion can be relatively complex.
Therefore, motion is usually described by a number of variables that are related to a
suitably chosen system of axes. In the UK the scheme of notation and nomenclature in
common use is based on that developed by Hopkin (1970). and a simplified summary
may be found in the. appropriate ESDU (1987) data item. As far as is reasonably
possible, the notation and nomenclature used throughout this book corresponds with
that of Hopkin (1970). By making the appropriate choice of axis systems, order and
consistency may be introduced to the process of model building. The importance of
order and consistency in the definition of the mathematical framework cannot be over­
emphasized since, without either, misunderstanding and chaos will surely follow. Only
the most basic commonly used axes systems appropriate to aeroplanes are discussed in
the following sections. In addition to the above-named references, a more expansive
treatment may be found in Etkin (1972) or in McRuer et al. (1973) for example.

2.1 Earth axes

Since normal atmospheric flight only is considered, it is usual to measure aeroplane
motion with reference to an earth fixed framework. The accepted convention for defining
earth axes determines that a reference point 00 on the surface of the earthis the origin
of a right-handed orthogonal system of axes (ooxoYozo), where 0oXo points to .the north,
0oYo points to the east and 0oZo points vertically 'down' along the gravity vector.
Conventional earth axes are illustrated on Fig. 2.1.

Clearly, the plane (ooxoYo) defines the local horizontal plane which is tangential to
the surface of the earth. Thus, the flight path of an aeroplane flying in the atmosphere in
the vicinity of the reference point 00 may be completely described by its coordinates in
the axis system. This therefore assumes a flat earth, where the vertical is 'tied' to the
gravity vector. This model is quite adequate for localized flight although it is best suited
to navigation and performance applications where flight path trajectories are of primary
interest.
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Fig. 2.1 Conventional earth axes

For investigations involving trans-global navigation, the axis system described is
inappropriate, a spherical coordinate system being preferred. Similarly, for trans­
atmospheric flight involving the launch and re-entry of space vehicles a spherical
coordinate system would be more appropriate. However, since in such an application
the angular velocity of the earth becomes important it is necessary to define a fixed
spatial axis system to which the spherical earth axis system may be referenced.

For flight dynamics applications, a simpler definition of earth axes is preferred. Since
short term motion only is of interest, it is perfectly adequate to assume flight above a flat
earth.. The most common consideration is that of motion about straight and level flight.
Straight and level flight assumes flight in a horizontal plane at a constant altitude and,
whatever the subsequent motion of the aeroplane might be, the attitude is determined
with respect to the horizontal. Referring again to Fig. 2.1 the horizontal plane is defined
by (OEXEYE) and is parallel to the plane (ooxoYo) at the surface of the earth. The only
difference is that the 0EXE axis points in the arbitrary direction of flight of the aeroplane
rather than to the north. The 0EZE axis points vertically down as before. Therefore, it is
only necessary to place the origin 0E in the atmosphere at the most convenient point,
which is frequently coincident with the origin of the aeroplane body fixed axes. Earth
axes (OEXEYEZE) defined in this way are called datum-path earth axes, are 'tied' to the
earth by means of the gravity vector and provide the inertial reference frame for short
term aeroplane motion.

2.2 Aeroplane body fixed axes

2.2.1 GENERALIZED BODY AXES

It is usual practice to define a right-handed orthogonal axis system fixed in the aeroplane
and constrained to move with it. Thus, when the aeroplane is disturbed from its initial
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flight condition the axes move with the airframe and the motion is quantified in terms
of perturbation variables referred to the moving axes. The way in which the axes may be
fixed in the airframe is arbitrary, although it is preferable to use an accepted standard
orientation. The most general axis system is known as a body axis system (OXbYbZb) which
is fixed in the aeroplane as shown in Fig. 2.2. The (OXbZb) plane defines the plane of
symmetry of the aeroplane and it is convenient to arrange the OXb axis such that it is
parallel to the geometrical horizontal fuselage datum. Thus, in normal flight attitudes,
the 0Yb axis is directed to starboard and the OZb axis is directed 'downwards'. The origin
o of the axes is fixed at a convenient reference point in the airframe which is usually,
but not necessarily, coincident with the centre of gravity (cg).

2.2.2 AE:RODYNAMIC, WIND OR STABILITY AXES

It is often convenient to define a set of aeroplane fixed axes such that the ox axis is
parallel to the total velocity vector ~ as shown on Fig. 2.2. Such axes are called
aerodynamic, wind or stability axes. In steady symmetric flight, wind axes (oxwYwzw) are
just a particular version of body axes which are rotated about the 0Yb axis through the
steady body incidence angle CXe until the OXw axis aligns with the velocity vector. Thus,
the plane (oxwzw) remains the plane of symmetry of the aeroplane and the 0Yw and the
0Yb axes are coincident. Now there is a unique value of body incidence CXe for every flight
condition, therefore the wind axes orientation in the airframe is different for every flight
condition. However, for any given flight condition the wind axes orientation is defined
and fixed in the aeroplane at the outset and is constrained to move with it in subsequent
disturbed flight. Typically the body incidence might vary in the range -10° ~ CXc ~ 20°
over a normal flight envelope.

2.2.3 PE:RTURBATION VARIABLES

The motion of the aeroplane is described in terms of force, moment, linear and angular
velocities and attitude resolved into components with respect to the chosen aeroplane

Fig. 2.2 Moving axes systems



14 Systems ofaxes and notation

Pitch

Y,v.,V,v£.
Y M,q,fJ

N,r,1p

<!: ;:.:> Yaw

~ Z,lv.,W,w
z

Fig. 2.3 Motion variables notation

x

fixed axis system. For convenience it is preferable to assume a generalized body axis
system in the first instance. Thus, initially, the aeroplane is assumed to be in steady
rectilinear, but not necessarily level, flight when the body incidence is C(e and the steady
velocity va resolves into components Ue, ~ and ~ as indicated in Fig. 2.3. In steady
non-accelerating flight the aeroplane is in equilibrium and the forces and moments
acting on the airframe are in balance and sum to zero. This initial condition is usually
referred to as trimmed equilibrium.

Whenever the aeroplane is disturbed from equilibrium the force and moment balance
is upset and the resulting transient motion is quantified in terms of the perturbation
variables. The perturbation variables are shown in Fig. 2.3 and summarized in
Table 2.1.

The positive sense of the variables is determined by the choice of a right-handed axis
system. Components of linear quantities, force, velocity, etc, are positive when their
direction of action is the same as the direction of the axis to which they relate. The
positive sense of the components of rotary quantities, moment, velocity, attitude, etc, is
a right-handed rotation and may be determined as follows. Positive roll about the ox
axis is such that the oy axis moves toward the oz axis, positive pitch about the oy axis is
such that the oz axis moves toward the ox axis and positive yaw about the oz axis is such
that the ox axis moves toward the oy axis. Therefore, positive roll is right wing down,
positive pitch is nose up and positive yaw is nose to the right as seen by the pilot.

Table 2.1 Summary of motion variables

Trimmed equilibrium Perturbed

Aeroplane axis ox oy oz ox oy oz
Force 0 0 0 X Y Z
Moment 0 0 0 L M N
Linear velocity Ue ~ ~ U JI W
Angular velocity 0 0 0 p q r
Attitude 0 (}e 0 ¢ () t/J
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Table 2.2 The perturbation variables

X Axial 'drag' force Sum of the components of
y Side force aerodynamic, thrust and
Z Normal 'lift' force weight forces

L Rolling moment Sum of the components of
M Pitching moment aerodynamic, thrust and
N Yawing moment weight moments

p Roll rate Components of angular
q Pitch rate velocity
r Yaw rate

U Axial velocity Total linear velocity
V Lateral velocity components of the cg
W Normal velocity

A simple description of the perturbation variables is given in Table 2.2. The intention
is to provide some insight into the physical meaning of the many variables used in the
model. Note that the components of the total linear velocity perturbations (U, V, W) are
given by the sum of the steady equilibrium components and the transient perturbation
components (u, v, w) thus,

U = U. +u }
V = ~+v

W'= ~+w

2.2.4 ANGULAR RELATIONSHIPS IN SYMMETRIC FLIGHT

Since it is assumed that the aeroplane is in steady rectilinear, but not necessarily level,
flight, and that the axes fixed in the aeroplane are body axes then it is useful to relate the
steady an.d perturbed angles as shown in Fig. 2.4.

Perturbed--- _
body axe~/'

/'
/'

/'
/'

~

Horizon
x

\
Equilibrium \
body axes --- \

\
~W

Fig. 2.4 Generalized body axes in symmetric flight
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With reference to Fig. 2.4, the steady velocity vector JIO defines the flight path and 'Ye
is the steady flight path angle. As before, ae is the steady body incidence and Be is the
steady pitch attitude of the aeroplane. The relative angular change in a perturbation is
also shown in Fig. 2.4 where it is implied that the axes have moved with the airframe
and the motion is viewed at some instant during the disturbance. Thus, the steady flight
path angle is given by

Ye = Be - ae

In the case when the aeroplane fixed axes are wind axes rather than body axes then

CXe =0

(2.2)

(2.3)

and in the special case when the axes are wind axes and when the initial condition is level
flight

(Xe = Be = 0 (2.4)

It is also useful to note that the perturbation in pitch attitude Band the perturbation in
body incidence cx are the same; thus, it is convenient to write

W ~+w
tanf«, +B) == tant«, + cx) = -U ==-Ue (2.5)

e+u

2.2.5 CHOICE OF AXES

Having reviewed the definition of aeroplane fixed axis systems, the obvious question
must be: when is it appropriate to use wind axes and when is it appropriate to use body
axes? The answer to this question depends on the use to which the equations of motion
are to be put. The best choice of axes simply facilitates the analysis of the equations of
motion. When starting from first principles it is preferable to use generalized body axes
since the resulting equations can cater for most applications. It is then reasonably
straightforward to simplify the equations to a wind axis form if the application warrants
it. On the other hand, to extend wind axis based equations to cater for the more general
case is not as easy.

When dealing with numerical data for an existing aeroplane, it is not always obvious
which axis system has been used in the derivation of the model. However, by reference
to equations (2.3) or (2.4) and the quoted values of CXe and Be it should become obvious
which axis system has been used.

When it is necessary to make experimental measurements in an actual aeroplane, or
in a model, which are to be used subsequently in the equations of motion, it is preferable
to use a generalized body axis system. Since the measuring equipment is installed in
the aeroplane its location is precisely known in terms of body axis coordinates which,
therefore, determines the best choice of axis system. In a similar way, most aerodynamic
measurements and computations are referenced to the free stream velocity vector. For
example, in wind tunnel work the obvious reference is the tunnel axis, which is
coincident with the velocity vector. Thus, for aerodynamic investigations involving the
equations of motion, a wind axis reference is to be preferred. Traditionally, all
aerodynamic data for use in the equations of motion are referenced to wind axes.

Thus, to summarize, it is not particularly important which axis system is chosen provided
it models the flight condition to be investigated; the end result does not depend on the choice
of axis system. However, when compiling data for use, in the equations of motion of an
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aeroplane it is quite common for some data to be referred to wind axes and for some data
to be referred to body axes. It therefore becomes necessary to have available the
mathematical tools for transforming data between different reference axes.

2.3 Euler angles and aeroplane attitude

The angles defined by the right-handed rotation about the three axes of a right-handed
system of axes are called Euler angles. The sense of the rotations and the order in which
the rotations are considered about the three axes in turn are very important since angles
do not obey the commutative law. The attitude of an aeroplane is defined as the angular
orientation of the airframe fixed axes with respect to earth axes. Attitude angles,
therefore, are a particular application of Euler angles. With reference to Fig. 2.5
(oxoYozo) are datum or reference axes and (OX3Y3Z3) are aeroplane fixed axes, either
generalized body axes or wind axes. The attitude of the aeroplane, with respect to the
datum axes, may be established by considering the rotation about each axis in turn
required to bring (OX3Y3Z3) into coincidence with (oxoYozo). Thus, first rotate about OX3
through the roll angle ¢ to (OX2Y2Z2). Second, rotate about 0Y2 through the pitch angle lJ
to (OXtY1Zt) and third, rotate about OZt through the yaw angle 1/1 to (oxoYozo). Clearly,
when the attitude of the aeroplane is considered with respect to earth axes then (oxoYozo)
and (OEXEYEZE) are coincident.

2.4 Axes transformations

It is frequently necessary to transform motion variables and other parameters from
one system of axes to another. Clearly, the angular relationships used to describe
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attitude may be generalized to describe the angular orientation of one set of axes with
respect to another. A typical example might be to transform components of linear
velocity from aeroplane wind axes to body axes. Thus, with reference to Fig. 2.5,
(oxoYozo) may be used to describe the velocity components in wind axes, (OX3Y3Z3) may be
used to describe the components of velocity in body axes and the angles (4),0, ifJ) then
describe the generalized angular orientation of one set of axes with respect to the other.
It is usual to retain the angular description of roll, pitch and yaw although the angles
do not necessarily describe attitude strictly in accordance with the definition given in
Section 2.3.

2.4.1 LINEAR QUANTITIES TRANSFORMATION

Let, for example, (ox 3, OY3' OZ3) represent components of a linear quantity in the axis
system (OX3Y3Z3) and let (oxo, OYo, oZo) represent components of the same linear quantity
transformed into the axis system (oxoYozo). The linear quantities of interest would be, for
example, acceleration, velocity, displacement, etc. Resolving through each rotation in
turn and in the correct order then, with reference to Fig. 2.5, it may be shown that:

(i) after rolling about OX3 through the angle 4>

::: : ::: cos <p + OZ2 sin <P }
OZ3 = -OY2sin 4> + OZ2 cos 4>

Alternatively, writing equations (2.6) in the more convenient matrix form

[
OX3 ] [ 1 0 0] [OX2]0Y3 = 0 co~ 4> sin 4> 0Y2
OZ3 0 - SIn4> cos 4> OZ2

(ii) similarly, after pitching about 0Y2 through the angle 0

[
OX2] [COS0 0 - sin 0] [OXl]
0Y2 = 0 1 0 0Yl

OZ2 sin (} 0 cos (} OZl

(iii) and after yawing about OZI through the angle t/J

[
OXl ] [COSt/J sint/J 0] [Oxo]
oy} = - sin t/J cos t/J 0 0Yo
OZI 0 0 1 OZo

(2.6)

(2.7)

(2.8)

(2.9)

By repeated substitution equations (2.7), (2.8) and (2.9) may be combined to give the
required transformation relationship

[ ~~ : ] = [~ co~<p Si~<P] [co~e ~ -s~ne] [::~~:tfr ~~:t ~] [~~: ]
OZ3 0 - SIn4> COS 4> sin (} 0 cos (} 0 0 1 OZo

(2.10)
or



[
OX3] [oxo]0Y3 =D 0Yo
OZ3 OZO

where the direction cosine matrix D is given by

cos 0cos 1/1 cos 0sin 1/1 - sin ()
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(2.11)

sin <p sin ecos t/J sin <p sin esin t/J sin l/J cos ()
D·- - cos <p sin 1/1 +cos l/J cos 1/1,-

cos <p sin () cos 1/1 cos <p sin () sin 1/1 cos l/J cos ()
+ sin 4> sin t/J - sin 4> cos 1/1

(2.12)

As shown, equation (2.11) transforms linear quantities from (oxoYozo) to (OX3Y3Z3). By
inverting the direction cosine matrix D the transformation from (OX3Y3Z3) to (oxoYozo) is
obtained as given by equation (2.13).

[
Oxo] [OX3]0Yo = D-1 0Y3
OZo OZ3

(2.13)

EXAMPlJE 2.1 _

To illustrate the use of equation (2.11) consider the very simple example in which it is
required to resolve the velocity of the aeroplane through both the incidence angle and
the sideslip angle into aeroplane axes. The situation prevailing is assumed to be steady
and is shown in Fig. 2.6.

The axes (oxyz) are generalized aeroplane body axes with velocity components Ue,

~ and »~ respectively. The free stream velocity vector is ~ and the angles of incidence
and sideslip are cteand Pe respectively. With reference to equation (2.11), axes (oxyz)
correspond to axes (OX3Y3Z3) and ~ corresponds to OXo of axes (oxoYozo), therefore the
Iollowinq vector substitutions may be made

(oxo, OYo, OZo) = (~, 0, 0) and (OX3' OY3' OZ3) = (Ua, ~, ~)

and the angular correspondence means that the following substitution may be made
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Note that a positive sideslip angle is equivalent to a negative yaw angle. Thus, making
the substitutions in equation (2.9)

COS lIe cos Pe - cos lIe sin Pe - sin lIe

sin lIe cos Pe - sin lIe sin Pecos lIe

[~]=
Or, equivalently,

sinPe cosPe o [~] (2.14)

U, = ~ cos C(e cos Pe

~ = ~ sinPe

~ = ~ sin C(e cos Pe

(2.15)

(2.17)

EXAMPLE 2.2 _

Another very useful application of the direction cosine matrix is to calculate height
perturbations in terms of aircraft motion. Equation (2.13) may be used to relate the
velocity components in aircraft axes to the corresponding components in earth axes as
follows

cos1/! cos (}
cos t/J sin (} sin 4> cos'" sin (} cos 4>

- sin t/J cos l/J + sin t/J sin l/J

[~] =n-
I [!]= sin t/J cos (}

sin t/J sin (J sin 4> sin t/J sin (} cos 4> [!]+cos t/J cos l/J - cos t/J sin 4>

- sin f) cos (J sin 4> cos (} cos 4>

(2.16)

where VE, VE and WE are the perturbed total velocity components referred to earth
axes. Now, since height is measured positive in the 'upwards' direction, the rate of
change of height due to the perturbation in aircraft motion is given by

h=-WE

whence, from equation (2.16),

h= V sin (} - V cos (} sin 4> - W cos (} cos 4>

2.4.2 ANGULAR VELOCITIES TRANSFORMATION

Probably the most useful angular quantities transformation relates the angular velocities
p, q, r of the aeroplane fixed axes to the resolved components of angular velocity, the
attitude rates ~, 0, ~ with respect to datum axes. The easiest way to deal with the algebra
of this transformation whilst retaining a good grasp of the physical implications is to



Axes transformations 21

......-----------------------.........

~~~ '" v
~~~ ",.... ;0 I

........ I
<, f

, ~'y2
I "
I "
I "
I
J
I
I
I

/
I

I
I

I

ZO,Zl

Fig. 2.7 Angular rates transformation

superimpose the angular rate vectors on to the axes shown in Fig. 2.5, and the result of
this is shown in Fig. 2.7.

The angular body rates p, q, r are shown in the aeroplane axes (OX3Y3Z3); then consider
each rotation in turn necessary to bring the aeroplane axes into coincidence with the
datum axes (oxoYozo). First, roll about OX3 through the angle 4> with angular velocity ~.
Second, pitch about 0Y2 through the angle () with angular velocity 0. And third, yaw
about oz) through the angle t/J with angular velocity ~. Again, it is most useful to refer
the attitude rates to earth axes, in which case the datum axes (oxoYozo) are coincident
with earth axes (OEXEYEZE). The attitude rate vectors are clearly shown in Fig. 2.7. The
relationship between the aeroplane body rates and the attitude rates, referred to datum
axes, is readily established as follows.

(i) Roll rate p is equal to the sum of the components of ~, 8, ~ resolved along OX3

(2.18)

(ii) Pitch rate q is equal to the sum of the components of ~, 8, ~ resolved along 0Y3

q := ecos 4> + ~ sin 4> cos () (2.19)

(iii) Yaw rate r is equal to the sum of the components of ¢,0, ~ resolved along OZ3

r == ~ cos 4> cos e- 0sin 4> (2.20)

Equations (2.18), (2.19) and (2.20) may be combined into the convenient matrix
notation

co~ 4J si~ z:e] [;]
- sin 4> cos 4> cos () t/J

(2.21)
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and the inverse of equation (2.21) is

[

~ ] [ 1 sin 4> tan f} cos 4>. tan ()] [P]
f} = 0 cos 4> - SIn 4> q
~ 0 sin 4> sec (} cos 4> sec (} r

When the aeroplane perturbations are small, such that (4), (J, t/J) may be treated as small
angles, equations (2.21) and (2.22) may be approximated by

p=~

q=(}

r=fjJ

(2.23)

(2.25)

(2.24)

EXAMPLE 2.3 _

To illustrate the use of the angular velocities transformation, consider the situation
when an aeroplane is flying in a steady level coordinated turn at a speed of 250 mls at
a bank angle of 60°. It is required to calculate the turn rate ~, the yaw rate r and the
pitch rate q. The forces acting on the aeroplane are shown in Fig. 2.8.

By resolving the forces acting on the aeroplane vertically and horizontally and
eliminating the lift L between the two resulting equations it is easily shown that the
radius of turn is given by

R=~
g tan 4>

The time to complete one turn is given by

2nR 2nJ'O
t=-=--

VO g tan 4>

---t>
2

m~

R

mg

Fig. 2.8 Aeroplane in a steady banked turn
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therefore the rate of turn is given by

~ = 211: = g tan cP (2.26)
t v;,

Thus, ~ == 0.068 rad/s. For the conditions applying to the turn, ~ = iJ = () = 0 and thus
equation (2.21) may now be used to find the values of rand q

[ : ] = [~ cos060° sin
060°

] [~]
r 0 - sin 60° cos 60° I/J

Therefore, p =0, q =0.059 rad/s and r = 0.034 rad/s, Note that p, q and r are the
angular velocities that would be measured by rate gyros fixed in the aeroplane with
their sensitive axes aligned with the ox, oy and oz aeroplane axes respectively.

s=b/2

==C

Fig. 2.9 Longitudinal reference geometry

2.5 Aeroplane reference geometry

The description of the geometric layout of an aeroplane is an essential part of the math­
ematical modelling process. For the purposes of flight dynamics analysis it is convenient
that the geometry of the aeroplane can be adequately described by a small number of
dimensional reference parameters which are defined below and illustrated in Fig. 2.9

2.5.1 WING AREA

The reference area is usually the gross plan area of the wing, including that part within
the fuselage, and is denoted S where

S = be (2.27)



24 Systems ofaxes and notation

where b is the wing span and cis the standard mean chord of the wing.

2.5.2 MEAN AERODYNAMIC CHORD

The mean aerodynamic chord of the wing (mac) is denoted cand is defined
s

Jc;dy
= -sc=-s--

Jcydy
-s

(2.28)

The reference mac is located on the centre line of the aircraft by projecting cfrom its
spanwise location as shown in Fig. 2.9. Thus, for a swept wing the leading edge of the mac
lies aft of the leading edge of the root chord of the wing. The mac represents the location of
the root chord of a rectangular wing which has the same aerodynamic influence on the
aeroplane as the actual wing. Traditionally, mac is used in stability and control studies
since a number of important aerodynamic reference centres are located on it.

2.5.3 STANDARD MEAN CHORD

The standard mean chord of the wing (smc) is effectively the same as the geometric mean
chord and is denoted c. For a wing of symmetric planform it is defined

- -sc=--­s

Jdy
-5

(2.29)

(2.31)

where s = b/2 is the semi-span and cy is the local chord at spanwise coordinate y. For
a straight tapered wing, equation (2.29) simplifies to

C= ~ (2.30)

The reference smc is located on the centre line of the aircraft by projecting c from its
spanwise location in the same way that the mac is located. Thus, for a swept wing the
leading edge of the smc also lies aft of the leading edge of the root chord of the wing.
The smc is the mean chord preferred by aircraft designers since it relates very simply to
the geometry of the aeroplane. For most aeroplanes the smc and mac are sufficiently
SImilar in length and location that they are practically interchan~eable. It is quite
common to find references that quote a mean chord without specifying which. This is
not good practice, although the error incurred by assuming the wrong chord is rarely
serious. However, the reference chord used in any application should be clearly defined
at the outset.

2.5.4 ASPECT RATIO

The aspect ratio of the aeroplane wing is a measure of its spanwise slenderness, is
denoted A and is defined as follows

b2 b
A=S=~
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2.5.5 CENTRE OF GRAVITY LOCATION

The centre of gravity, cg, of an aeroplane is usually located on the reference chord as
indicated in Fig. 2.9. Its position is quoted as a fraction of c(or C), denoted h, and is
measured from the leading edge of the reference chord as shown. The cg position varies
as a function of aeroplane loading, the typical variation being in the range 10% to 40%

of c. Or, equivalently, 0.1 ~ h ~ 0.4.

2.5.6 TAIL MOMENT ARM AND TAIL VOLUME RATIO

The mac of the horizontal tailplane, or foreplane, is defined and located in the airframe in
the same way as the mac of the wing as indicated in Fig. 2.9. The wing and tailplane
aerodynamic forces and moments are assumed to act at their respective aerodynamic
centres which, to a good approximation, lie at the quarter chord points of the mac of the
wing and tailplane respectively. The tail moment arm IT is defined as the longitudinal
distance between the centre of gravity and the aerodynamic centre of the tailplane as shown
in Fig. 2.9. The tail volume ratio V;. is an important geometric parameter and is defined

V;. = S;~T (2.32)

where ST is the gross area of the tailplane. Typically, the tail volume ratio has a value
in the range 0.5 ~ VT ~ 1.3 and is a measure of the aerodynamic effectiveness of the
tailplane as a stabilizing device.

Sometimes, especially in stability and control studies, it is convenient to measure the
longitudinal tail moment about the aerodynamic centre of the mac of the wing. In this
case the tail moment arm is denoted It, as shown in Fig. 2.9, and a slightly modified tail
volume ratio is defined.

2.5.7 FIN MOMENT ARM AND FIN VOLUME RATIO

The mac of the fin is defined and located in the airframe in the same way as the mac of
the wing as indicated in Fig. 2.10. As for the tailplane, the fin moment arm iF is defined

...........--wi__-er , cg~ .•.•.•.•.•.•.•.••.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.

Fig. 2.10 Fin moment arm
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as the longitudinal distance between the centre of gravity and the aerodynamic centre
of the fin as shown in Fig. 2.10. Thefin volume ratio tiF is also an important geometric
parameter and is defined

Vp = S;~p (2.33)

where SF is the gross area of the fin. Again, the fin volume ratio is a measure of the
aerodynamic effectiveness of the fin as a directional stabilizing device.

As stated above it is sometimes convenient to measure the longitudinal moment of
the aerodynamic forces acting at the fin about the aerodynamic centre of the mac of the
wing. In this case the fin moment arm is denoted If as shown in Fig. 2.10.

2.6 Controls notation

2.6.1 AERODYNAMIC CONTROLS

Sometimes it appears that some confusion exists with respect to the correct notation
applying to aerodynamic controls, especially when unconventional control surfaces are
used. Hopkin (1970) defines a notation which is intended to be generally applicable but,
since a very large number of combinations of control motivators is possible, the notation
relating to control inceptors may become ill-defined and hence application dependent.
However, for the conventional aeroplane there is a universally accepted notation, which
accords with Hopkin (1970), and it is simple to apply. Generally, a positive control
action by the pilot gives rise to a positive aeroplane response, whereas a positive control
surface displacement gives rise to a negative aeroplane response. Thus:

(i) in roll: positive right push force on the stick ee- positive stick displacement => right
aileron up and left aileron down (negative mean) :::} right wing down roll response
(positive).

Port
Aileron

.:::::::.=~:::]~~~

Starboard
Aileron

Positive control
angles shown

Elevator

-::::::::~2'~

Rudder

.=:~~~

Fig. 2.11 Aerodynamic controls notation
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(ii) in pitch: posrtive pull force on the stick => positive aft stick displacement =>
elevator trailing edge up (negative) => nose up pitch response (positive).

(iii) in Y~lW: positive push force on the right rudder pedal => positive rudder bar
displacement => rudder trailing edge displaced to the right (negative) => nose to the
right yaw response (positive).

Roll and pitch control stick displacements are denoted b~ and btl respectively and
rudder pedal displacement is denoted be' Aileron, elevator and rudder surface
displacements are denoted e, 11 and' respectively as indicated on Fig. 2.11. It should be
noted that, since ailerons act differentially, the displacement ~ is usually taken as the
mean value of the separate displacements of each aileron.

2.6.2 E.NGINE CONTROL

Engine thrust ! is controlled by throttle lever displacement 8. Positive throttle lever
displacement is usually in the forward push sense and results in a positive increase in
thrust. For a turbo-jet engine the relationship between thrust and throttle lever angle is
approximated by a simple first order lag transfer function

-res) k"
8(S) = (1 + s1;)

where k, is a suitable gain constant and 1; is the lag time constant, which is typically
of the order of two to three seconds.

2.7 Aerodynamic reference centres

With reference to Fig. 2.12, the centre ofpressure, cp, of an aerofoil, wing or complete
aeroplane is the point at which the resultant aerodynamic force F acts. It is usual to
resolve the force into the lift component perpendicular to the velocity vector and the
drag component parallel to the velocity vector, denoted Land D respectively in the usual
way. The cp is located on the mac and thereby determines an important aerodynamic
reference centre.

Now simple theory establishes that the resultant aerodynamic force F generated by
an aerofoil comprises two components, that due to camber Fe and that due to angle of
attack F~, both of which resolve into lift and drag forces as indicated. The aerodynamic
force due to camber is constant and acts at the mid point of the aerofoil chord and for
a symmetric aerofoil section this force is zero. The aerodynamic force due to angle of
attack acts at the quarter chord point and varies directly with angle of attack at angles
below the stall. This also explains why the zero lift angle of attack of a cambered aerofoil
is usually a small negative value since, at this condition, the lift due to camber is equal
and opposite to the lift due to angle of attack. Thus, at low speeds, when the angle of
attack is generally large, most of the aerodynamic force is due to the angle of attack
dependent contribution and the cp is nearer to the quarter chord point. On the other
hand, at high speeds, when the angle of attack is generally small, a larger contribution to
the aerodynamic force is due to the camber dependent component and the cp is nearer
to the rnid point of the chord. Thus, in the limit, the cp of an aerofoil generally lies
between the quarter chord and mid chord points. More generally, the interpretation for
an aeroplane recognizes that the cp moves as a function of angle of attack, Mach
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camber line

Cl4 hnc en
equivalent model

Fig. 2.12 Aerodynamic reference centre

number and configuration. For example, at low angles of attack and high Mach numbers
the cp tends to move aft and vice versa. Consequently, the cp is of limited use as an
aerodynamic reference point in stability and control studies. It should be noted that the
cp of the complete aeroplane in trimmed equilibrium flight corresponds to the controls
fixed neutral point hnc which is discussed in Chapter 3.

If, instead of the cp, another fixed point on the mac is chosen as an aerodynamic
reference point then, at this point, the total aerodynamic force remains the same but is
accompanied by a pitching moment about the point. Clearly, the most convenient
reference point on the mac is the quarter chord point since the pitching moment is the
moment of the aerodynamic force due to camber and remains constant with variation in
angle of attack. This point is called the aerodynamic centre, denoted ac, and at low Mach
numbers lies at, or very close to, the quarter chord point, cf4. It is for this reason that
the ac, or equivalently, the quarter chord point of the reference chord, is preferred as a
reference point. The corresponding equivalent aerofoil model is shown in Fig. 2.12. Since
the ac remains essentially fixed in position during small perturbations about a given
flight condition, and since the pitching moment is nominally constant about the ac, it is
used as a reference point in stability and control studies. It is important to appreciate
that as the flight condition Mach number is increased so the ac moves aft and, in
supersonic flow conditions, it is located at, or very near to, ir:

The definition of aerodynamic centre given above applies most strictly to the location
of the ac on the chord of an aerofoil. However, it also applies reasonably well to its
location on the mac of a wing and is also used extensively for locating the ac on the mac
of a wing-body combination without too much loss of validity. It should be appreciated
that the complex aerodynamics of a wing and body combination might result in an ac
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location which is not at the quarter chord point although, typically, it would not be
too far removed from that point.
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3
Static Equilibrium and Trim

3.1 Trim equilibrium

3.1.1 PRELIMINARY CONSIDERATIONS

In normal flight it is usual for the pilot to adjust the controls of an aeroplane such that
on releasing the controls it continues to fly at the chosen flight condition. By this means
the pilot is relieved of the tedium of constantly maintaining control inputs, and the
associated control forces, which may be tiring. The aeroplane is then said to be trimmed,
and the trim state defines the initial condition about which the dynamics of interest
may be studied. Thus, all aeroplanes are equipped with a means for pre-setting, or
adjusting, the datum or trim setting of the primary control surfaces.

The ailerons, elevator and rudder are all fitted with trim tabs which, in all except the
smallest aeroplanes, may be adjusted from the cockpit in flight. However, all aeroplanes
are fitted with a continuously adjustable elevator trim tab. It is an essential requirement
that an aeroplane must be stable if it is to remain in equilibrium following trimming.
In particular, the static stability characteristics about all three axes largely determine the
trimmability of an aeroplane. Thus, static stability is concerned with the control actions
required to establish equilibrium and with the characteristics required to ensure that
the aeroplane remains in equilibrium. Dynamic stability is also important of course, and
largely determines the characteristics of the transient motion, following a disturbance,
about a trimmed flight condition.

The object of trimming is to bring the forces and moments acting orr-theaeroplane into
a state of equilibrium. That is, the condition when the axial, normal and side forces and
the roll, pitch and yaw moments are all zero. The force balance is often expressed
approximately as the requirement for the lift to equal the weight and the thrust to equal
the drag. Provided that the aeroplane is stable it will then stay in equilibrium until it is
disturbed by pilot control inputs or by external influencessuch as turbulence. The transient
motion following such a disturbance is characterized by the dynamic stability character­
istics and the stable aeroplane will eventually settle to its equilibrium state once more.

The maintenance of trimmed equilibrium requires the correct simultaneous
adjustment of the main flight variables in all six degrees of freedom and is dependent on
airspeed, or Mach number, flight path angle, airframe configuration, weight and cg
position. As these parameters change during the course of a typical flight so trim
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adjustments are made as necessary. Fortunately, the task of trimming an aeroplane is
not as challenging as it might at first seem. The symmetry of a typical airframe confers
symmetric aerodynamic properties on the airframe, which' usually reduces the task to
that of longitudinal trim only. Lateral-directional trim adjustments are only likely to be
required when the aerodynamic symmetry is lost, due to loss of an engine in a multi-'
engined aeroplane, for example.

Lateral-directional stability is designed-in to most aeroplanes and ensures that in roll
the aeroplane remains wings level and that in yaw it tends to weathercock into wind when
the ailerons and rudder are at their zero or datum positions. Thus, under normal
circumstances the aeroplane will naturally seek lateral-directional equilibrium without
interference by the pilot. This applies even when significant changes are made to
airspeed" configuration, weight and cg position, for example, since the symmetry of the
airframe is retained throughout. However, such variations in flight condition can lead to
dramatic changes in longitudinal trim.

Longitudinal trim involves the simultaneous adjustment of elevator angle and thrust
to give the required airspeed and flight path angle for a given airframe configuration.
Equilibrium is only achievable if the aeroplane is longitudinally stable and the control
actions to trim depend on the degree of longitudinal static stability. Since the
longitudinal flight condition is continuously variable it is very important that trimmed
equilibrium is possible at all conditions. For this reason considerable emphasis is given
to the problems of ensuring adequate longitudinal static stability and adequate
longitudinal trim control. Because of its importance static stability and trim is often
interpreted to mean longitudinal static stability and trim.

The commonly used theory of longitudinal static stability was developed by Gates
and Lyon (1944), and derives from a full, static and dynamic, stability analysis of the
equations of motion of an aeroplane. An excellent and accessible summary of the
findings of Gates and Lyon is given in Duncan (1959) and also in Babister (1961). In the
interests of understanding and physical interpretation the theory is often reduced to a
linearized form retaining only the principal aerodynamic and configuration parameters.
It is in this simplest form that the theory is reviewed here since it is only required as the
basis on which to build the small perturbation dynamics model. It is important to
appreciate that although the longitudinal static stability model is described only in terms
of the a~~rodynamic properties of the airframe, the control and trim properties as seen
by the pilot must conform to the same physical interpretation even when they are
augmented by a flight control system. It is also important to note that static and
dynamic: stability are, in reality, inseparable. However, the separate treatment of static
stability is a useful means for introducing the concept of stability insofar!as it determines
the control and trim characteristics of the aeroplane.

3.1.2 CONDITIONS FOR STABILITY

The static stability of an aeroplane is commonly interpreted to describe its tendency to
converge on the initial equilibrium condition following a small disturbance from trim.
Dynamic stability, on the other hand, describes the transient motion involved in the
process of recovering equilibrium following the disturbance. Figure 3.1 includes two
illustrations showing the effects of static stability and static instability in an otherwise
dynamically stable aeroplane. Following an initial disturbance displacement, for
example: in pitch, at time t = 0 the subsequent response time history is shown and is
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clearly dependent on the stability of the aeroplane. It should be noted that the damping
of the dynamic oscillatory component of the responses shown was deliberately chosen
to be low in order to illustrate best the static and dynamic stability characteristics.

In establishing trim equilibrium the pilot adjusts the elevator angle and thrust to
obtain a lift force sufficient to support the weight and thrust sufficient to balance the
drag at the desired speed and flight path angle. Since the airframe is symmetric the
equilibrium side force is of course zero. Provided that the speed is above the minimum
drag speed then the force balance will remain stable with speed. Therefore, the static
stability of the aeroplane reduces to a consideration of the effects of angular
disturbances about the three axes. Following such a disturbance the aerodynamic forces
and moments will no longer be in equilibrium and in a statically stable aeroplane the
resultant moments will cause the aeroplane to converge on its initial condition. The
condition for an aeroplane to be statically stable is therefore easily deduced.

nose up

pitching
moment
coefficient

em
o 1---.....L----'-----I---"IIl~;~..a--.---+----a.------

incidencea

nosedown

Fig. 3.2 Pitching moment variation with incidence for a stable aeroplane
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Consider a positive pitch, or incidence, disturbance from equilibrium. This is in the
nose up sense and results in an increase in incidence C( and hence in lift coefficient CL. In
a stable aeroplane the resulting pitching moment must be restoring, that is in the
negative or nose down sense. And of course the converse must be true following a nose
down disturbance. Thus, the condition for longitudinal static stability may be
determined by plotting pitching moment M, or pitching moment coefficient Cm, for
variation in incidence (X about the trim value (Xe as shown in Fig. 3.2. The nose up
disturbance increases (X and takes the aeroplane to the out-of-trim point p where the
pitching rnoment coefficient becomes negative and is therefore restoring. Clearly, a nose
down disturbance leads to the same conclusion. As indicated, the aeroplane is stable
when the slope of this plot is negative. Thus, the condition for stable trim at incidence (Xe

may be expressed

c; = 0 (3.1)

and

d(~ < 0
de

The above observation is only strictly valid when it is assumed that the aerodynamic
force and moment coefficients are functions of incidence only. This is usually an
acceptable approximation for subsonic aeroplanes and, indeed, the plot of pitching
moment coefficient against incidence may well be very nearly linear as shown in Fig. 3.2.
However, this argument becomes increasingly inappropriate with increasing Mach
number. As compressibility effects become significant so the aerodynamic force and
moment coefficients become functions of both incidence and Mach number. When this
occurs, equation (3.2) may not always guarantee that stable trim can be obtained. The
rather more complex analysis by Gates and Lyon (1944) takes speed effects into account
and defines a general requirement for longitudinal static stability as

ac, 0
--<
deL

For subsonic aeroplanes, equations (3.2) and (3.3) are completely interchangeable since
(X and CLare linearly, or very nearly linearly, related by the lift curve slope a.

In a similar way the conditions for lateral-directional static stability may be deduced
as

(3.4)

and

(3.5)

where C/ and C, are rolling moment and yawing moment coefficients respectively and
<p and pare roll angle and sideslip angle respectively.

3.1.3 .r.EGREE OF STABILITY

It was shown above that the condition for an aeroplane to possess static stability about
all three axes at a given trim condition is that the slopes of the Cm-(X, C,-lj> and Cn-P
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Fig. 3.3 The degree of longitudinal static stability

plots must be negative. Now, obviously, a very large range of negative slopes is possible
and the magnitude of the slope determines the degree of stability possessed by the
aeroplane. Variation in the degree of longitudinal static stability is illustrated in Fig. 3.3.
The degree of stability is described in terms of stability margin which quantifies how
much stability the aeroplane has over and above zero or neutral stability. Thus, for
example, the longitudinal static stability margin is directly related to the slope of the
em-a plot.

With reference to Fig. 3.3 and for a given disturbance in C( it is clear that the
corresponding restoring pitching moment em is greatest for a very stable aeroplane. The
magnitude of the restoring moment decreases as the degree of stability, or stability
margin, is reduced and becomes zero at neutral stability. Clearly, when the aeroplane is
unstable the moment is of the opposite sign and is therefore divergent. Thus, the higher
the degree of stability the greater is the restoring moment following a disturbance. This
means that a very stable aeroplane will be very resistant to upset. This in turn means
that greater control actions will be needed to encourage the aeroplane to change its trim
state or to manoeuvre. It follows then that the stability margins determine the
magnitude of the control actions required to trim the aeroplane. It is easy to appreciate
that a consequence of this is that too much stability can be as hazardous as too little
stability since the available control power is limited.

As mentioned before, the lateral-directional static stability of the aeroplane is
usually fixed by design and usually remains more-or-Iess constant throughout the
flight envelope. The lateral-directional stability margins therefore remain substantially
constant for all flight conditions. This situation may well break down when large
amplitude manoeuvring is considered. Under such circumstances, normally linear
aerodynamic behaviour may well become very non-linear and cause dramatic changes
to observed lateral-directional stability and control characteristics. Although of
considerable interest to the flight dynamicist, non-linear behaviour is beyond the
scope of this book and constant lateral-directional static stability is assumed
throughout.
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3.1.4 V.l4RIATION IN STABILITY

Changes in the aerodynamic operating conditions of an aeroplane, which result in
pitching moment changes, inevitably lead to variation in longitudinal static stability.
Such variation in stability is normally manifest as a non-linear version of the Cm-CL

characteristic shown in Fig. 3.2. For the subsonic classical aeroplane, such changes are
usually srnall and may result in some non-linearity of the pitching moment characteristic
with change in trim. In general, the variation in the degree of stability is acceptably
small.

For thc~ modern supersonic high performance aeroplane, the situation is not so well
defined. Large flight envelopes and significant variation in flight condition can lead to
dramatic changes in static stability. For example, it is possible for such an aeroplane to
be stable at some conditions and unstable at others. It easy to see how such variations
might arise in a physical sense but it is much more difficult to describe the variations in
mathematical terms. A brief review of some of the more obvious sources of variation in
stability follows.

3.1.4.1 .Power effects

Probably the most significant variation in longitudinal static stability arises from the
effects of power. Direct effects result from the point of application and line of action of
the thrust forces with respect to the cg. Clearly, as illustrated in Fig. 3.4, a high thrust
line results in a nose down pitching moment and vice versa. In normal trimmed flight the
thrust moment is additive to the aerodynamic moment and the I total pitching moment
would be trimmed to zero by adjustment of the elevator. However, any aerodynamic
perturbation about trim that results in a thrust perturbation is potentially capable of
giving rise to a non-linear stability characteristic. The precise nature of the variation in
stability is dependent on the operating characteristics of the installed power unit, which
may not be easy to identify.

Nosedown
pitching moment

Noseup
pitching moment

Lowthrust line

Fig. 3.4 Typical thrust line effects on pitching moment
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Fig. 3.5 Typical induced flow effects on pitching moment

Indirect power effects are caused by the induced flow associated with a propeller and
its wake or the intake and exhaust of a gas turbine engine. Some of the more obvious
induced flow effects are illustrated in Fig. 3.5. The process of turning the incident flow
through the body incidence angle into the propeller disc or into the engine intake creates
a normal force at the propeller or engine intake as shown. In general, this effect gives rise
to a nose up pitching moment. The magnitude of the normal force is dependent on the
body incidence angle and on the increase in flow energy at the propeller disc or engine
intake. The force will therefore vary considerably with trim condition. The force is also
sensitive to aerodynamic perturbations about trim, it is therefore easy to appreciate its
contribution to pitching moment non-linearity.

The wake behind a propeller is a region of high energy flow which modifies the
aerodynamic operating conditions over parts of the wing and tailplane. The greatest
effect on pitching moment arises from the tailplane. The effectiveness of the tailplane is
enhanced simply because of the increased flow velocity and the reduction in downwash
angle. These two effects together increase the nose down pitching moment available and
hence increase the degree of stability of the aeroplane.

The induced flow effects associated with the propeller driven aeroplane can have a
significant influence on its longitudinal static stability. These effects also change with
aerodynamic conditions especially at high angles of attack. It is therefore quite common
to see some non-linearity in the pitching moment trim plot for such an aeroplane at high
values of lift coefficient. It should also be noted that the propeller wake rotates about
the longitudinal axis. Although less significant, the rotating flow has some influence on
the lateral-directional static stability of the aeroplane.

The exhaust from a jet engine, being a region of very high velocity and reduced
pressure, creates an inflow field as indicated in Fig. 3.5. Clearly the influence on
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pitching moment will depend on the relative location of the aerodynamic surfaces of
the aeroplane and the engine exhausts. When the tailplane is immersed in this induced
flow field then there is a change in the downwash angle. Thus, the effect is to increase
the static stability when the downwash angle is reduced and vice versa. In general this
effect is not very significant, except perhaps for the aeroplane with engines mounted'
in pods on the rear fuselage and in which the tailplane is very close to the exhaust
wake.

3.1.4.2 Other effects

Although power effects generally make the most significant contribution to variation
in longitudinal static stability, other potentially important contributory sources also
exist. For example, wing sweep back and aeroplane geometry, which result in
significant variation in downwash at the tailplane, generally tend to reduce the
available stability, an effect which is clearly dependent on the aerodynamic trim
condition. The fuselage alone is usually unstable and the condition worsens with
increasing Mach number. On the other hand, at high subsonic and supersonic Mach
numbers the aerodynamic centres of the wing and tailplane move aft. This has the
effect of increasing the available nose down pitching moment which is a stabilizing
characteristic. Finally, since all airframes have some degree of flexibility, the structure
distorts under the influence of aerodynamic loads. Today aeroelastic distortion of the
structure is carefully controlled by design and is not usually significant in influencing
static stability. However, in very large civil transport aeroplanes, the relative geometric
disposition of the wing and tailplane changes with loading conditions. Some contrib­
ution to the variation in pitching moment is therefore inevitable but its contribution to
variation in stability is usually small.

Taking all of these effects together, the prospect of ever being able quantitatively to
define the longitudinal static stability of an aeroplane may seem daunting.. Fortunately,
these effects are well understood and can be minimized by design.. The result for most
aeroplanes is a pitching moment trim characteristic with some non-linear tendency at
higher values of trim lift coefficient. In extreme cases the stability of the aeroplane can
actually reverse at high values of lift coefficient, which results in an unstable pitch up
characteristic. A typical pitching moment trim plot for an aeroplane with a pitch up
characteristic is shown in Fig. 3.6.
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Fig. 3.6 Stability reversal at high lift coefficient
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Fig. 3.7 Cm-CL plots for a 1/6th scale model of the Handley Page Jetstream

EXAMPLE 3.1 _

To illustrate the variation in the pitching moment characteristic for a typical subsonic
aeroplane, the relevant data obtained from wind tunnel experiments on a 116th scale
model of the Handley Page HP-137 are shown plotted in Fig. 3.7. The data were
extracted from the report by Storey (1966), were obtained at a tunnel speed of 200ft/s
andthe Reynolds number was Re = 1.2 x 106 ,based on mean aerodynamic chord t.
The HP-137 is, in fact, the well-known Jetstream; however, it is not known if the data
shown. are representative of the actual aeroplane flying today.

The plots show the characteristics for the aeroplane without tail and for the
aeroplane with tail at various combinations of setting angle l1T and elevator angle 1].

Clearly, all of the plots are reasonably linear at all values of lift coefficient up to
the stall. Without a tailplane the aeroplane is unstable since the slope of the plot is
positive. With a tailplane the slope, and hence the degree of stability, is more or less
constant. Assuming that the trim (em = 0) range of lift coefficient is approximately
-0.2 ~ CL ~ 1.0 then, by interpolation, it can be seen that this can be obtained
with an elevator angle range of approximately _6° ~ n ~ 0°. Clearly this is well
within the control capability of the tailplane and elevator configuration shown in this
example.

This kind of experimental analysis would be used to confirm the geometric design
of the tailplane and elevator. In particular, it is essential to establish that the aeroplane
has an adequate stability margin across the trim envelope, that the elevator angle
required to trim the aeroplane is within its aerodynamic capability and that a sufficient
margin of elevator control range remains for manoeuvring.
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3.2 The pitching moment equation

Having established the importance of the pitching moment in the determination of
longitudinal static stability, further analysis of stability requires the development of the
pitching moment equation. A fully representative general pitching moment equation is
difficult to develop since it is very dependent on the geometry of the aeroplane. However,
it is possible to develop a simple approximation to the pitching moment equation, which
is sufficiently representative for most preliminary studies and which provides
considerable insight into the basic requirements for static stability and trim.

3.2.1 SIMPLE DEVELOPMENT OF THE PITCHING MOMENT EQUATION

For the development of the simplest possible pitching moment equation it is usual to
define a model showing only the normal forces and pitching moments acting on the
aeroplane. It is assumed that, in steady level flight, the thrust and drag are in equilibrium
and act at the cg and, further, for small disturbances in incidence, changes in this
equilibrium are insignificant. This assumption therefore implies that small disturbances
in incidence cause significant changes in lift forces and pitching moments only. The
model defined in these terms is shown in Fig. 3.8.

For the purposes of modelling pitching behaviour the model comprises two parts,
the wing and fuselage combination and the tailplane. It is then assumed that the wing
and fuselage behave aerodynamically like a wing alone. Clearly, this is not true since the
fuselage may make significant aerodynamic contributions and, in any event, its presence
will interfere with the aerodynamic properties of the wing to a greater or lesser extent.
However, for conventional subsonic aeroplanes with a reasonably high aspect ratio wing
this is a very satisfactory approximation. The tailplane is treated as a separate
component since it provides the principal aerodynamic mechanism for controlling
longitudinal static stability and trim. The following analysis establishes the fundamental
importance of the tailplane parameters in the provision of longitudinal static stability.

Referring to Fig. 3.8, it is seen that the wing-fuselage lift Lw and residual pitching
moment Mo act at the aerodynamic centre ac of the combination, which is assumed to
be coincident with the aerodynamic centre of the wing alone. In a similar way the lift LT

h - ,I l<:::t~ --=--------:}::>.

~.~
I

Fig. 3.8 Simple pitching moment model
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and pitching moment MT of the tail plane are assumed to act at its aerodynamic centre.
The longitudinal geometry of the model is entirely related to the mean aerodynamic
chord mac as shown in Fig. 3.8. An expression for the total pitching moment M about
the cg may therefore be written

M = Mo+ Lw(h - ho)c - LT1T + MT (3.6)

If, as is usual, it is assumed that the tailplane aerofoil section is symmetric then MT

becomes zero. Thus, in the more convenient coefficient form, equation (3.6) may be
written

c; = c; + CLw(h - ho) - CLTVT (3.7)

To facilitate further analysis of pitching moment it is necessary to express the tailplane
lift coefficient CLT in terms of more accessible tailplane parameters. Tailplane lift
coefficient may be expressed

CLT = tlo+ atCXT + a2rJ + a3P" (3.8)

where llo,at, a2 and a3 are constant aerodynamic coefficients, CXT is the local incidence, 11

is the elevator angle and P" is the elevator trim tab angle. Note that since a symmetric
tailplane aerofoil section is assumed, ao is also zero. The local tailplane incidence is
influenced by the tailplane setting angle '1T and the local flow distortion due to the effect
of the downwash field behind the wing. The flow geometry is shown in Fig. 3.9.

Clearly the angle of attack of the tail plane is given by

CXT =cx - e+ 11T (3.9)

where e is the downwash angle at the tailplane. Since, to a good approximation, for
small disturbances the downwash angle is a function of wing-body incidence cx only

cx - s =CX(l _ de) = CLw (de)
de a dcx

whence

CL ( de)
CXT = --: 1 - dcx + rJT (3.11)

Now substituting the expression for CXT given by equation (3.11) into equation (3.8),
substituting the resulting expression for CLT into equation (3.7) and noting that ao is
zero, then the pitching moment equation in its simplest and most general form is
obtained

- ( at ( de) )Cm = Cmo + CLw(h - ho) - VT CLw a 1 - dcx + a2rJ + a3P" + atrJT
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3.2.2 ELEVATOR ANGLE TO TRIM

It has already been shown, in equation (3.1), that the condition for trim is that the total
pitching moment can be adjusted to zero, i.e. Cm = o. Applying this condition to
equation (3.12) the elevator angle required to trim the aeroplane is given by

1 CL (aJ) ( de) a3 aJ'1=---(Cmo+CL w(h - ho)) - - W - 1-- --P,,--tlT
VTa2 a a2 d« a2 a2

When the elevator tab is set at its neutral position, P" = 0 and for a given cg position h
the elevator angle to trim varies only with lift coefficient. For any other tab setting a
different elevator angle is required to trim. Therefore, to an extent, elevator and elevator
tab provide interchangeable means for achieving longitudinal trim.

3.2.3 TEST FOR LONGITUDINAL STATIC STABILITY

The basic requirement for an aeroplane to be statically stable at a given trim condition
is stated in equation (3.2). By differentiating equation (3.12) with respect to CL , or
equivalently CL w ' and noting that '1T and, by definition, Cmo are constants then the
condition for the aeroplane to be stable is given by

dem 0
dC <

Lw

where

ac, - (aJ (de) d'1 dP" )--=(h-ho) - VT - 1-- +a2--+a3 - -
dCLw a d« dCLw dCLw

Thus, at a given cg position h, the longitudinal static stability of the aeroplane and the
.aerodynamic control characteristics, that is elevator angle to trim, d'1/dCLw' and elevator
tab angle to trim, dP,,/dCL w ' are interdependent. Further analysis is usually carried out
by separating the effects of elevator angle and tab angle in equation (3.14). Controlsfixed
stability is concerned with the interdependence of elevator angle to trim and stability,
whereas controls free stability is concerned with the interdependence of elevator tab
angle to trim and stability.

3.3 Longitudinal static stability

3.3.1 CONTROLS FIXED STABILITY

The condition described as controls fixed is taken to mean the condition when the
elevator and elevator tab are held at constant settings corresponding to the prevailing
trim condition. In practice, this means that the pilot is flying the aeroplane with his
hands on the controls and is holding the controls at the fixed setting required to trim.
This, of course, assumes that the aeroplane is stable and remains in trim.

Since the controls are fixed

(3.15)
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and equation (3.14) may be written

dCm = (h _ ho) _ tiT al (1 _de)
dC Lw a d«

Or, writing

K = - dCm = h - h
n dC

Lw
n

where K; is the controls fixed stability margin, the slope of the Cm-CL plot. The
location of the controls fixed neutral point h; on the mean aerodynamic chord cis
therefore given by

- at ( de)hn = ho+ VTa 1 - da (3.18)

For a statically stable aeroplane the stability margin K, is positive, and the greater its
value the greater the degree of stability possessed by the aeroplane. With reference to
equation (3.17) it is clear that the aeroplane will be stable when the cg position h is ahead
of the controls fixed neutral point hn• The acceptable margins of stability therefore
determine the permitted range of cg position in a given aeroplane. The aft limit often
corresponds to the controls fixed neutral point, whereas the forward limit is determined
by the maximum permissible stability margin. Remember, Section 3.1.3, that too much
stability can be as hazardous as too little stability.

The meaning of controls fixed stability is easily interpreted by considering the pilot
actions required to trim an aeroplane in a controls fixed sense. It is assumed at the outset
that the aeroplane is, in fact, stable and hence can be trimmed to an equilibrium flight
condition. When the aeroplane is in a trimmed initial equilibrium state the pitching
moment is zero and equation (3.12) may be written

- ( at ( de) )o= Cmo + CLw(h - ho) - ~ CLwa 1 - da + a2'1 + a3P" + a t '1T

It is assumed that the pilot is holding the controls at the required elevator angle, the
power is set to give steady level flight and the elevator tab is set at its datum, Pfl = O.
Now, to retrim the aeroplane at a new flight condition in a controls fixed sense it is
necessary for the pilot to move the controls to the new elevator setting and then to hold
the controls at that setting. For example, to retrim at a higher speed in a more nose
down attitude, the pilot would move the control column forward until his new condition
was established and would then simply hold the column at that position. This would,
of course, leave the aeroplane in a descending condition unless the power were increased
sufficient to maintain level flight at the higher speed. However, power variations are
not allowed for in the simple model reviewed here.

Thus, to trim a stable aeroplane at any condition in its speed envelope simply requires
the selection of the correct elevator angle, all other parameters remaining constant.
Therefore, the variable in controls fixed stability analysis is elevator angle to trim.
Differentiating equation (3.19) with respect to CLwand making the same assumptions as
before but allowing elevator angle 11 to vary with trim, then after some rearrangement
it may be shown that

d'1 -1 -1
- = ---(hn - h) = ---Kn (3.20)
dCLw VTa2 Vra2
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Thus, since VT and a2 are constants, the elevator angle to trim characteristic dl1/dCLw is
proportional to the controls fixed stability margin K n • Measurements of elevator angle
to trim for a range of flight conditions, subject to the assumptions described, provide a
practical means for determining controls fixed stability characteristics from flight
experiments. However, in such experiments it is not generally possible to eliminate'
completely the effects of power on the results.

EXAMPLE 3.2 _

The practical evaluation of controls fixed static stability centres on the application of
equations (3.13), (3.19) and (3.20) to a stable aeroplane. It is relatively straight­
forward to obtain measurements of the elevator angle 11 required to trim an aeroplane at
a chosen value of lift coefficient CL • Provided that the power and elevator trim tab
angle P11 are maintained at constant settings throughout the measurement process then
the above-mentioned equations apply directly. A flight test exercise conducted in a
Handley Page Jetstream by the author under these conditions provided the trim data
plotted in Fig. 3.10 for three different cg positions. At any given value of lift coefficient
CL the corresponding value of elevator angle to trim 11 is given by the solution of
equation (3.13), or alternatively equation (3.19). The plots are clearly non-linear and
the non-linearity in this aeroplane is almost entirely due to the effects of power.

Since the slopes of the plots shown in Fig. 3.10 are all negative the aeroplane is
statically stable in accordance with equation (3.20). However, for any given cg position
the slope varies with lift coefficient, indicating a small variation in stability margin. In
a detailed analysis the stability margin would be evaluated at each value of trimmed lift
coefficient in order to quantify the variation in stability. In the present example the
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Fig. 3.10 Plot of elevator angle to trim
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Fig. 3.11 Determination of controls fixed neutral point

quality of the data was not good enough to allow such a complete analysis. To
establish the location of the controls fixed neutral point h., equation (3.20) must be
solved at each value of trim lift coefficient. This is most easily done graphically as
shown in Fig. 3.11.

Equation (3.20) is solved by plotting d'1/dCL against cg position h as shown. In this
example the mean slope for each cg position is plotted rather than the value at each
trim point. Since equation (3.20) represents a linear plot a straight line may be fitted to
the three data points as shown. Extrapolation to the neutral stability point at which
dll/dCL = 0 corresponds to a cg position Of approximately h = 0.37. Clearly, three data
points through which to draw a line are barely adequate for this kind of evaluation. A
controls fixed neutral point h, at 37% of mac correlates well with the known properties
of the aeroplane. The most aft cg position permitted is in fact at 37% of mac. Having
established the location of the controls fixed neutral point the controls fixed stability
margin K; for each cg position follows from the application of equation (3.20).

In a more searching stability evaluation rather more data points would be required
and data of much better quality would be essential. Although limited, the present
example does illustrate the typical controls fixed longitudinal static stability character­
istics of a well-behaved classical aeroplane.

3.3.2 CONTROLS FREE STABILITY

The condition described as controls free is taken to mean the condition when the elevator
is free to float at an angle corresponding to the prevailing trim condition. In practice,
this means that the pilot can fly the aeroplane with his hands off the controls whilst the
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aeroplane remains in its trimmed flight condition. Again, it is assumed that the
aeroplane is stable, otherwise it will diverge when the controls are released. Now this
situation can only be obtained if the controls can be adjusted such that the elevator will
float at the correct angle for the' desired hands-off trim condition. This is arranged by
adjusting the elevator trim tab until the required trim is obtained. Thus, controls free
stability is concerned with the trim tab and its control characteristics.

When the controls are free, the elevator hinge moment H is zero and the elevator
floats at an indeterminate angle 1]. It is therefore necessary to eliminate elevator angle
from the pitching moment equation (3.12) in order to facilitate the analysis of controls
free stability. The elevator hinge moment coefficient is given by the expression

CH = blaT + b211 + b3P" (3.21)

where b., b2 and b, are constants determined by the design of the elevator and trim tab
control circuitry. Substituting for local tailplane incidence aT as given by equation
(3.11), equation (3.21) may then be rearranged to determine the angle at which the
elevator floats. Thus

'I = ~CH - CLw bl (1 - de) - b3 f3~ - ~'1T (3.22)
b2 a b2 de b2 b2

To eliminate elevator angle from the pitching moment equation, substitute equation
(3.22) into equation (3.12) to obtain

(3.23)

Now in the controls free condition CH = 0 and noting that 1]T' Cmo and, since the tab is set
at the trim value, Pt1 are constants, then differentiating equation (3.23) with respect to CL w

dCm = (h _ ho) _ V
T

al (1 _de)·. (I ~ a2bl ) (3.24)
dC Lw a de al b2

Or, writing

K' = - dCm = h' - h (3.25)
n dC

Lw
n

where K~ is the controls free stability margin, the slope of the Cm-CL plot with the
controls free. The location of the controls free neutral point h~ on the mean aerodynamic
chord cis given by

h~ = ho + VT~ (1 - de) (1 _a2bl
)

a d« a l b2

=h. - v.;. a2
b] (1 _de) (3.26)

ab2 d«

Thus, as before, for a statically stable aeroplane the controls free stability margin K~ is
positive and the greater its value the greater the degree of stability possessed by the
aeroplane. With reference to equation (3.25) it is clear that for controls free stability the
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cg position h must be ahead of the controls free neutral point h~. Equation (3.26) shows
the relationship between the controls fixed and the controls free neutral points. The
numerical values of the elevator and tab constants are such that usually h~ > h., which
means that it is common for the controls free neutral point to lie aft of the controls fixed
neutral point. Thus, an aeroplane that is stable controls fixed will also usually be stable
controls free and it follows that the controls free stability margin K~ will be greater than
the controls fixed stability margin Kn•

The meaning of controls free stability is readily interpreted by considering the pilot
actions required to trim the aeroplane in a controls free sense. It is assumed that the
aeroplane is stable and is initially in a hands-off trim condition. In this condition the
pitching moment is zero and hence equation (3.23) may be written

CLw ~ (1 -:)(1 -::::)
o= c; + CLw(h - ho) - VT (3.27)

( a2b3) (a 2bl )+ a3Pq 1 - a3b2 +at,'h 1 - a
1
b

2

Now to retrim the aeroplane it is necessary for the pilot to grasp the control column
and move it to the position corresponding to the elevator angle required for the new trim
condition. However, if he now releases the control it will simply move back to its
original trim position since an out-of-trim elevator hinge moment, and hence stick force,
will exist at the new position. To rectify the problem he must use the trim tab. Having
moved the control to the position corresponding to the new trim condition he will be
holding a force on the control. By adjusting the trim tab he can null the force and
following which, he can release the control and it will stay in the new hands-off position
as required. Thus, trim tab adjustment is equivalent to control force adjustment, which
in turn is directly related to elevator hinge moment adjustment in a mechanical flying
control system. To reiterate the previous illustration, consider the situation when the
pilot wishes to ret rim the aeroplane at a higher speed in a more nose down attitude. As
before, he will push the control column forward until he obtains the desired condition
which leaves him holding an out-of-trim force and descending. Elevator tab adjustment
will enable him to reduce the control force to zero whereupon he can release the control
to enjoy his new hands-off trim condition. Since he will be descending it would normally
be necessary to increase power in order to regain level flight. However, as already stated,
thrust variations are not allowed for in this model; if they were the analysis would be
considerably more complex.

Thus, to trim a stable aeroplane at any hands-off flight condition in its speed envelope
simply requires the correct selection of elevator tab angle. The variable in controls free
stability analysis is therefore elevator tab angle to trim. Differentiating equation (3.27) with
respect to CLwand making the same assumptions as previously but allowing elevator tab
angle PrJ to vary with trim, then after some rearrangement it may be shown that

dPq = -1 (Ji,,-h) = -1 K~dCLw i? (1 a2b3) Y-r (1 a2b3)a3"T --- a 3"T ---a3b2 a3b2

Since it is usual for

- ( a2b3)-a) VT 1 - -- > 0
a)b2
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then the elevator tab angle to trim characteristic d{3,,/dCLw is positive and is proportional
to the controls free stability margin K~. Measurement of the tab angle to trim a range
of flight conditions, subject to the assumptions described, provides a practical means for
determining controls free stability characteristics from flight experiments. However,
since tab angle, elevator hinge moment and control force are all equivalent it is often
more meaningful to investigate control force to trim directly since this is the parameter
of direct concern to the pilot.

To determine the equivalence between elevator tab angle to trim and control force to
trim, consider the aeroplane in a stable hands-off trim state with the tab set at its correct
trim value. If the pilot moves the controls in this condition the elevator hinge moment,
and hence control force, will vary. Equation (3.23) is applicable and may be written

CLwat (1 _de) (1 _a2b1
) + a3{3" (1 _a2b3)

- a d« atb2 a3b2o= Cmo + CLw(h - ho) - VT

(
a2bl) a2+al'1T 1 - alb! + b! CH

(3.30)

where P" is set at its datum trim position and is assumed constant and the hinge moment
coefficient CH is allowed to vary with trim condition. Differentiate equation (3.30) with
respect to CLwsubject to these constraints and rearrange to obtain

dC H = --=.!-(h' - h) = --=.!-K' (3.31)dC - a2 n, - a2 n
t.; fT- fT-

b2 b2

Comparison of equation (3.31) with equation (3.28) demonstrates the equivalence of
tab angle to trim and hinge moment to trim. Further, if the elevator control force is
denoted F" and g" denotes the mechanical gearing between the control column and
elevator then

F~ =g~H =~PV!S~C~g~CH

where S" is the elevator area aft of the hinge line and Crt is the mean aerodynamic chord
of the elevator aft of the hinge line. This therefore demonstrates the relationship between
control force and hinge moment although equation (3.32) shows the relationship
depends on the square of the speed.

EXAMPLE 3.3 _

The practical evaluation of controls free static stability is undertaken in much the same
way as the evaluation of controls fixed stability discussed in Example 3.2. In this case
the evaluation of controls free static stability centres on the application of equations
(3.30), (3.31) and (3.32) to a stable aeroplane. It is relatively straightforward to obtain
measurements of the elevator stick force F", and hence hinge moment coefficient CHI
required to trim an aeroplane at a chosen value of lift coefficient CL • Provided that the
power and elevator trim tab angle P" are maintained at constant settings throughout
the measurement process the above-mentioned equations apply directly.

As before, a flight test exercise conducted in a Handley Page Jetstream under these
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conditions provided the trim data plotted in Fig. 3.12 for three different cg positions.
At any given value of lift coefficient CL the corresponding value of elevator hinge
moment to trim eH is given by the solution of equation (3.30). Again, the plots are
non-linear due primarily to the effects of power. However, since force measurements
are involved, the influence of friction in the mechanical control runs is significant and
inconsistent. The result of this is data with rather too many spurious points. In order to
provide a meaningful example the obviously spurious data points have been 'adjusted'
to correlate with the known characteristics of the aeroplane.

Since the slopes of the plots shown in Fig. 3.12 are all positive, the aeroplane is
statically stable in accordance with equation (3.31 ). However, for any given cg position
the slope varies with lift coefficient indicating rather inconsistent variations in stability
margin. However, in this case, the variations are more likely to be the result of poor
quality data rather than orderly changes in the aerodynamic properties of the aeroplane.
Again, in a detailed analysis the sta~,;iity margin would be evaluated at each value of
trimmed lift coefficient in order to quantify the variation in stability. In the present
example the quality of the data was clearly not good enough to allow such a complete
analysis. To establish the location of the controls free neutral point h~ equation (3.31)
must be solved at each value of trim lift coefficient. This is most easily done graphically
as shown in Fig. 3.13.

Equation (3.31) is solved by plotting dCn/dCL against cg position h as shown. In
this example the mean slope for each cg position is plotted rather than the value at
each trim point. Since equation (3.31) represents a linear plot a straight line may be
fitted to the three data points as shown. Extrapolation to the neutral stability point at
which def//dCL =0 corresponds to a cg position of approximately h =0.44. A
controls free neutral point h~ at 44% of mac correlates reasonably well to the known
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Fig. 3.13 Determination of controls free neutral point

properties of the aeroplane. Having established the location of the controls free neutral
point the controls free stability margin K~ for each cg position follows from the
application of equation (3.25).

3.3.3 SUMMARY OF LONGITUDINAL STATIC STABILITY

A physical interpretation of the meaning of longitudinal static stability may be brought
together in the summary shown in Fig. 3.14.

The important parameters are neutral point positions and their relationship to the cg
position which, in turn, determines the stability margins of the aeroplane. The stability
margins determine literally how much stability the aeroplane has in hand, in the controls
fixed and free senses, over and above neutral stability. The margins therefore indicate
how safe the aeroplane is. However, equally importantly, the stability margins provide a
measure of the control actions required to trim the aeroplane. In particular, the controls
fixed stability margin is a measure of the control displacement required to trim and the
controls free stability margin is a measure of the control force required to trim. From a
flying and handling qualities point of view it is the interpretation of stability in terms
of control characteristics which is by far the most important consideration. In practice,
the assessment of longitudinal static stability is frequently concerned only with the
measurement of control characteristics, as illustrated by Examples 3.2 and 3.3.

3.4 Lateral static stability

Lateral static stability is concerned with the ability of the aeroplane to maintain wings
level equilibrium in the roll sense. Wing dihedral is the most visible parameter which
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Fig. 3.14 Longitudinal stability margins

confers lateral static stability on an aeroplane although there are many other
contributions, some of which are destabilizing. Since all aeroplanes are required to fly
with their wings level in the steady trim state lateral static stability is designed-in from
the outset. Dihedral is the easiest parameter to adjust in the design process in order to
'tune' the degree of stability to an acceptable level. Remember that too much lateral
static stability will result in an aeroplane that is reluctant to manoeuvre laterally, so it is
important to obtain the correct degree of stability.

The effect of dihedral as a means for providing lateral static stability is easily
appreciated by considering the situation depicted in Fig. 3.15. Following a small lateral
disturbance in roll, <p, the aeroplane will commence to slide 'downhill' sideways with a
sideslip velocity v. Consider the resulting change in the aerodynamic conditions on the
leading wing which has dihedral angle r. Since the wing has dihedral the sideslip velocity
has a small component v' resolved perpendicular to the plane of the wing panel where

V' = usin T (3.33)

The velocity component v' combines with the axial velocity component U; to increase
the angle of attack of the leading wing by ct.'. Since v' « U; the change in angle of attack
(X is small and the total disturbed axial velocity component U ~ Ue• The increase in angle
of attack on the leading wing gives rise to an increase in lift which in turn gives rise to
a restoring rolling moment - L. The corresponding aerodynamic change on the wing
trailing into the sideslip results in a small decrease in lift which also produces a restoring
rolling moment. The net effect therefore is to create a negative rolling moment which
causes the aeroplane to recover its zero sideslip wings level equilibrium. Thus, the
condition for an aeroplane to be laterally stable is that the rolling moment resulting
from a positive disturbance in roll attitude must be negative, or in mathematical terms
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where C, is the rolling moment coefficient. This is shown graphically in Fig. 3.16 and
may be interpreted in a similar way to the pitching moment plot shown in Fig. 3.2.

The sequence of events following a sideslip disturbance are shown for a laterally
stable, neutrally stable and unstable aeroplane on Fig. 3.17. However, it must be
remembered that once disturbed the resulting motion will be determined by the lateral
dynamic stability characteristics as well.

Rolling
moment
coefficient

C1

Rollattitude4>

Fig. 3.16 C}-4> plot for a stable aeroplane
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Fig. 3.17 The effect of dihedral on lateral stability

3.5 Directional static stability

Directional static stability is concerned with the ability of the aeroplane to yaw or
weathercock into wind in order to maintain directional equilibrium. Since all aeroplanes
are required to fly with zero sideslip in the yaw sense, positive directional stability is
designed-in from the outset. The fin is the most visible contributor to directional static
stability although, as in the case of lateral stability, there are many other contributions,
some of which are destabilizing. Again, it is useful to remember that too much
directional static stability will result in an aeroplane that is reluctant to manoeuvre
directionally, so it is important to obtain the correct degree of stability.

Consider an aeroplane that is subject to a positive sideslip disturbance as shown in
Fig. 3.18. The combination of sideslip velocity v and axial velocity component U results
in a positive sideslip angle f3. Note that a positive sideslip angle equates to a negative
yaw angle since the nose of the aeroplane has swung to the left of the resultant total
velocity vector ~ Now, as shown in Fig. 3.18, in the disturbance the fin is at a non-zero
angle of attack equivalent to the sideslip angle p. The fin therefore generates lift L F

which acts in the sense shown thereby creating a positive yawing moment N. The yawing
moment is stabilizing since it causes the aeroplane to yaw to the right until the sideslip
angle is reduced to zero. Thus, the condition for an aeroplane to be directionally stable
is readily established and is

den 0 . 1 1d1jJ > or, equiva ent y, (3.35)
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A typical plot of yawing moment coefficient against yaw attitude for a directionally
stable aeroplane is shown in Fig. 3.19. For small disturbances in yaw the plot is
reasonably linear since it is dominated by the lifting properties of the fin. However, as
the fin approaches the stall its lifting properties deteriorate and other influences begin to
dominate, resulting ultimately in directional instability. The main destabilizing
contribution comes from the fuselage which at small yaw angles is masked by the
powerful fin effect. The addition of a dorsal fin significantly delays the onset of fin stall
thereby enabling directional static stability to be maintained to higher yaw disturbance
angles as indicated in Fig. 3.19.

Fin effectiveness also deteriorates with increasing body incidence angle since the base
of the fin becomes increasingly immersed in the forebody wake thereby reducing the
effective working area of the fin. This problem has become particularly evident in a
number of modern combat aeroplanes. Typically, such aeroplanes have two engines
mounted side by side in the rear fuselage. This results in a broad flat fuselage ahead of
the fin which creates a substantial wake to reduce fin effectiveness dramatically at
moderate to high angles of incidence. For this reason many aeroplanes of this type have
noticeably large fins and in some cases the aeroplanes have two fins attached to the outer
edges of the upper fuselage.
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4
The Equations of Motion

4.1 The equations of motion of a rigid symmetric aeroplane

As stated in Chapter 1, the first formal derivation of the equations of motion for a rigid
symmetric aeroplane is usually attributed to Bryan (1911). His treatment, with very
few changes, remains in use today and provides the basis for the following development.
The object is to realize Newton's second law of motion for each of the six degrees of
freedom which simply states that

mass x acceleration = disturbing force (4.1)

For the rotary degrees of freedom the mass and acceleration become moment of inertia
and angular acceleration respectively, whilst the disturbing force becomes the disturbing
moment, or torque. Thus, the derivation of the equations of motion requires that
equation (4.1) be expressed in terms of the motion variables defined in Chapter 2. The
derivation is classical in the sense that the equations of motion are differential equations
which are derived from first principles. However, a number of equally valid alternative
means for deriving the equations of motion are frequently used, for example vector
methods. The classical approach is retained here since, in the author's opinion,
maximum physical visibility is maintained throughout.

4.1.1 THE COMPONENTS OF INERTIAL ACCELERATION

The first task in realizing equation (4.1) is to define the inertial acceleration components
resulting from the application of disturbing force components to the aeroplane. Consider
the motion referred to an orthogonal axis set (oxyz) with the origin 0 coincident with
the cg of the arbitrary and, in the first instance, not necessarily rigid body shown in
Fig. 4.1. The body, and hence the axes, are assumed to be in motion with respect to an
external reference frame such as earth (or inertial) axes. The components of velocity and
force along the axes ox, oy and oz are denoted (U, v: W) and (X, ~ Z) respectively. The
components of angular velocity and moment about the same axes are denoted (p, q, r)
and (~, M, N) respectively. The point p is an arbitrarily chosen point within the body
with coordinates (x, y, z). The local components of velocity and acceleration at p relative
to the body axes are denoted (u, v, w) and (ax, ay, az) respectively.
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Fig. 4.1 Motion referred to generalized body axes

(4.5)

(4.3)

(4.2)

(4.4)

The velocity components at p(x, y, z) relative to 0 are given by

u = ~ - ry+qz }
v =y- pz+rx

w =z- qx+ py

It will be seen that the velocity components each comprise a linear term and two
additional terms due to rotary motion. The origin of the terms due to rotary motion in
the component u, for example, is illustrated in Fig. 4.2. Both -ry and qz represent
tangential velocity components acting along a line through p(x, y, z) parallel to the ox
axis. The rotary terms in the remaining two components of velocity are determined in a
similar way. Now, since the generalized body shown in Fig. 4.1 represents the aeroplane
which is assumed to be rigid then

x=y=z=O
and equations (4.2) reduce to

U = qz - ry }
v = rx - pz

w =py-qx

The corresponding components of acceleration at p(x, y, z) relative to 0 are given by

ax =~ - rv + qw }
ay = v - pw+ru

az = w- qu+pv

Again, it will be seen that the acceleration components each comprise a linear term
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Fig. 4.2 Velocity terms due to rotary motion

and two additional terms due to rotary motion. The origin of the terms due to rotary
motion in the component ax, for example, is illustrated in Fig. 4.3. Both -rv and qw
represent tangential acceleration components acting along a line through p(x, y, z)
parallel to the ox axis. The accelerations arise from the mutual interaction of the linear
components of velocity with the components of angular velocity. The acceleration terms
due to rotary motion in the remaining two components of acceleration are determined
in a similar way.

By superimposing the velocity components of the cg (U, v: W) on to the local velocity
components (u, v, w) the absolute, or inertial, velocity components (u', v', w') of the point
p(x, y, z) are obtained. Thus

u' = U + u = U - ry + qz }
v' = V + v = V - pz + rx
w' = W + w = W - qx + py

p
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Fig. 4.3 Acceleration terms due to rotary motion
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where the expressions for (u, v, w) are substituted from equations (4.4). Similarly, the
components of inertial acceleration (a~, a~, a~) at the point p(x, y, z) are obtained simply
by substituting the expressions for (u', v', w'), equations (4.6), in place of (u, v, w) in
equations (4.5). Whence

a; = il - rv'+ qw' }
a~ = ii - pw'+ ru
a: = w' - qu'+ pv'

Differentiate equations (4.6) with respect to time and note that since a rigid body is
assumed equation (4.3) applies, then

u' = if - ry + qz

i/ = V- pz+rx
w' = W-qx+py

Thus, by substituting from equations (4.6) and (4.8) into equations (4.7) the inertial
acceleration components of the point p(x, y, z) in the rigid body are obtained which, after
some rearrangement, may be written

a, = ~ - rV+ qW - x(q'- +,-2) + y(pq - f) + z(pr + q) }

a~ = V - pW+ rU + x(pq + r) - y(p2 + ~) + z(qr - ]i)

a: = W- qU + pV+ x(pr - q) + y(qr + jJ) - Z(p2 + q2)

EXAMPLE 4.1 _

To illustrate the usefulness of equations (4.9) consider the following simple example.
A pilot in an aerobatic aeroplane performs a loop in 20 s at a steady velocity of

100 m/s. His seat is located 5 m ahead of, and 1 m above, the eg. What total normal
load factor does he experience at the top and at the bottom of the loop?

Assuming the motion is in the plane of symmetry only, then V = jJ=p = r =0 and
since the pilot's seat is also in the plane of symmetry y = 0, and the expression for
normal acceleration is, from equations (4.9),

I W· U . 2az = - q + xq - zq

Since the manoeuvre is steady, the further simplification W=q=0 can be made and
the expression for the normal acceleration at the pilot's seat reduces to

a: = -qU - zq2

Now
21t

q = 20 = 0.314 rad/s

U = 100m/s

x=5m
z = -1 m (above cg hence negative)

whence, a~ = -31.30m/s2
• Now, by definition, the corresponding normal load factor
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due to the manoeuvre is given by

n' == -a~ = 31.30 = 3.19
g 9.81

The total normal load factor n comprises that factor due to the manoeuvre n' plus that
due to gravity ng • At the top of the loop ng = -1, thus the total normal load factor is
given by

n == n' +ng = 3.19 - 1 = 2.19

and at the bottom of the loop ng = 1 and in this case the total normal load factor is
given by

n == n' +ng = 3.19 + 1 = 4.19

It is interesting to note that the normal acceleration measured by an accelerometer
mounted at the pilot's seat corresponds with the total normal load factor. The
accelerorneter would therefore give the following readings:

at the top of the loop a, = ng = 2.19 x 9.81 = 21.48 m/s2

at the bottom of the loop a, = ng = 4.19 x 9.81 = 41.10 m/s2

Equations (4.9) can therefore be used to determine the accelerations that would be
measured by suitably aligned accelerometers located at any point in the airframe and
defined by the coordinates (x, y, z).

4.1.2 T1lE GENERALIZED /?ORCE EQUATIONS

Consider now an incremental mass <5m at point p(x, y, z) in the rigid body. Applying
Newton's second law, equation (4.1), to the incremental mass, the incremental
components of force acting on the mass are given by (<5ma:, <5ma~, <5ma~). Thus the total
force components (X, ~ Z) acting on the body are given by summing the force
increments over the whole body, whence

I:<5ma~" = X }
l:<5ma~ = y
}:<5ma~ = Z

Substitute the expressions for the components of inertial acceleration (a:, a~, a~) from
equations (4.9) into equations (4.10) and note that since the origin of axes coincides with
the cg

!:<5mx = :E<5my = :Ec5mz = 0 (4.11)

Therefore, the resultant components of total force acting on the rigid body are given
by

m(~ - rV+ qW) = X }
m(V-pW+rU) = Y

m(W- qU + pV) = Z

where m is the total mass of the body.

(4.12)
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Equations (4.12) represent the force equations ofa generalized rigid body and describe
the motion of its eg since the origin of the axis system is co-located with the eg in the
body. In some applications, for example the airship, it is often convenient to locate the
origin of the axis system at some point other than the eg. In such cases the condition
described by equation (4.11) does not apply and equations (4.12) would include rather
more terms.

4.1.3 THE GENERALIZED MOMENT EQUATIONS

Consider now the moments produced by the forces acting on the incremental mass bm
at point p(x, y, z) in the rigid body. The incremental force components create an
incremental moment component about each of the three body axes and by summing
these over the whole body the moment equations are obtained. The moment equations
are, of course, the realization of the rotational form of Newton's second law of
motion.

For example, the total moment L about the ox axis is given by summing the
incremental moments over the whole body

Lbm(ya~ - za~) = L (4.13)

Substituting in equation (4.13) for a~ and for a~ obtained from equations (4.9) and noting
that equation (4.11) applies then, after some rearrangement, equation (4.13) may be
written

(4.14)

Terms under the summation sign L in equation (4.14) have the units of moment of
inertia; thus, it is convenient to define the moments and products of inertia as set out in
Table 4.1.

Equation (4.14) may therefore be rewritten

lxp - (ly - Iz)qr + lxy(pr - q) - t.ss« + r) + Iyz(,-2 - q2) = L (4.15)

In a similar way the total moments M and N about the oy and oz axes respectively are
given by summing the incremental moment components over the whole body

I:bm(za~ - xa~) = MI
(4.16)

Lbm(xa~ - ya~) = N

Substituting a~, a~ and a~, obtained from equations (4.9), in equations (4.16), noting

Table 4.1 Moments and products of inertia

I x = 1:bm(y2 + Z2)
L, = I:bm(x2+ Z2)
I, = 1:bm(x2 + y2)

I xy = 1:bmxy
I xz =1:bmxz
I yz = 1:bmyz

Moment of inertia about ox axis
Moment of inertia about oy axis
Moment of inertia about oz axis
Product of inertia about ox and oyaxes
Product of inertia about ox and oz axes
Product of inertia about oy and oz axes



(4.19)

(4.20)

The equations ofmotion ofa rigid symmetric aeroplane 61

again that equation (4.11) applies and making use of the inertia definitions given in
Table 4.1, then the moment M about the oy axis is given by

Iy(l + (Ix - Iz)pr + Iyz(pq - f) + Ixz(p2 - ~) - Ixy(qr + jJ) = M (4.17)

and the moment N about the oz axis is given by

Izr - (Ix - Iy)pq - Iyz(pr + q) + Ixz(qr - p) + Ixy(q2 + p2) = N (4.18)

Equations (4.15), (4.17) and (4.18) represent the moment equations of a generalized rigid
body and describe the rotational motion about the orthogonal axes through its cg since
the origin of the axis system is co-located with the cg in the body.

When the generalized body represents an aeroplane the moment equations may be
simplified since it is assumed that the aeroplane is symmetric about the oxz plane and
that the mass is uniformly distributed. As a result the products of inertia Ixy = Iyz = O.
Thus, the moment equations simplify to the following

Ixp - u, - Iz)qr - t.si« + i') = L }
I yq + (Ix - Iz)pr + Ixz(p2 - r2)= M

lzi' - (Ix - Iy)pq+ lxz(qr - p) = N

The equations (4.19) describe rolling motion, pitching motion and yawing motion
respectively. A further simplification can be made if it is assumed that the aeroplane
body axes are aligned to be principal inertia axes. In this special case the remaining
product of inertia I xz is also zero. This simplification is not often used owing to the
difficulty of precisely determining the principal inertia axes. However, the symmetry of
the aeroplane determines that I xz is generally very much smaller than Ix, L, and l, and
can often be neglected.

4.]..4 l)/STURBANCE FORCES AND MOMENTS

Together, equations (4.12) and (4.19) comprise the generalized six degrees of freedom
equations of motion of a rigid symmetric airframe having a uniform mass distribution.
Further development of the equations of motion requires that the terms on the right­
hand side of the equations adequately describe the disturbing forces and moments. The
traditional approach, after Bryan (1911), is to assume that the disturbing forces and
moments are due to ~erodynamic effects, gravitational effects, movement of
aerodynamic £ontrols, power effects and the effects of atmospheric gisturbances. Thus,
bringing together equations (4.12) and (4.19) they may be written to include these
contributions as follows

m(U - rV+ qW) = X, +Xg + X, +Xp +Xd

m(V- pW+rU) = ~ + ~ + ~ + ~ + Yd

m(W- qU + pV) = Z; + Zg + Z, + Zp + Zd

Ixp - (Iy -lx)qr - Ixz(Pq +i') = La + Lg + L; + L; + Ld

Iyq + (Ix - Iz)pr + Ixz(p2 - r2)= M; + M g + Me + M p + Md

Izr - (l ; - Iy)pq+ Ixz(qr- p)= N; + N g + N; + N p + Nd

Now equations (4.20) describe the generalized motion of the aeroplane without regard
for the :magnitude of the motion and subject to the assumptions applying. The equations
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are non-linear and their solution by analytical means is not generally practicable.
Further, the terms on the right-hand side of the equations must be replaced with suitable
expressions, which are particularly difficult to determine for the most general motion.
Typically, the continued development of the non-linear equations of motion and their
solution is most easily accomplished using computer modelling or simulation techniques,
which are beyond the scope of this book.

In order to proceed with the development of the equations of motion for analytical
purposes, they must be linearized. Linearization is very simply accomplished by
constraining the motion of the aeroplane to small perturbations about the trim
condition.

4.2 The linearized equations of motion

Initially, the aeroplane is assumed to be flying in steady trimmed rectilinear flight with
zero roll, sideslip and yaw angles. Thus, the plane of symmetry of the aeroplane oxz is
vertical with respect to the earth reference frame. At this flight condition the velocity of
the aeroplane is VO, the components of linear velocity are (Ue , ~, ~) and the angular
velocity components are all zero. Since there is no sideslip ~ = o. A stable undisturbed
atmosphere is also assumed such that

(4.21)

If now the aeroplane experiences a small perturbation about trim, the components of
the linear disturbance velocities are (u, v, w) and the components of the angular
disturbance velocities are (P, q, r) with respect to the undisturbed aeroplane axes (oxyz).
Thus, the total velocity components of the cg in the disturbed motion are given by

U = u,+ u }
V=~+v=v

W=~+w

(4.22)

(4.23)

Now, by definition (u, v. w) and (P, q, r) are small quantities such that terms involving
products and squares of these terms are insignificantly small and may be ignored. Thus,
substituting equations (4.21) and (4.22) into equations (4.20), note that (Ue, ~, ~) are
steady and hence constant, and eliminating the insignificantly small terms, the linearized
equations of motion are obtained

m(u+ q~) = X a + X g + X; + X p

m(v - p ~ + rUe) = l: + ~ + ~ + ~

mew - qUe) = Z, + Zg+ Z; + Zp

IxP - Ixz;' = La + Lg + L; + L;
lyq=Ma+Mg+Mc+Mp

lz;' - Ixzp= N; + Ng + N, + N;

The development of expressions to replace the terms on the right-hand side of equations
(4.23) is now much simpler since it is only necessary to consider small disturbances
about trim.
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mg

Fig. 4.4 Steady state weight components in the plane of symmetry

4.2.1 GRAVITATIONAL TERMS

The weight force mg acting on the aeroplane may be resolved into components acting
in each of the three aeroplane axes. When the aeroplane is disturbed these components
will vary according to the perturbations in attitude, thereby making a contribution to
the disturbed motion. Thus, the gravitational contribution to equations (4.23) is
obtained by resolving the aeroplane weight into the disturbed body axes. Since the origin
of the aeroplane body axes is coincident with the cg there is no weight moment about
any of the axes, therefore

(4.24)

(4.25)

Since the aeroplane is flying wings level in the initial symmetric flight condition, the
components of weight only appear in the plane of symmetry as shown in Fig. 4.4. Thus,
in the steady state the components of weight resolved into aeroplane axes are

[ ~ : ] = [-mg;in()e]
Z& mg costi,

During the disturbance the aeroplane attitude perturbation is (4),0, 1/1) and the
components of weight in the disturbed aeroplane axes may be derived with the aid of the
transformation equation (2.11). As, by definition, the angular perturbations are small,
small angle approximations may be used in the direction cosine matrix to give the
following relationship

(4.26)

Again, the products of small quantities have been neglected on the grounds that they
are insignificantly small. Thus, the gravitational force components in the small
perturbation equations of motion are given by
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Xg = -mg sin (}e - mgi) cos ()e }

Yg =mgw sin (}e + mgd: cos ()e

Zg =mg cos ()e - mgt) sin ()e

4.2.2 AERODYNAMIC TERMS

(4.27)

Whenever the aeroplane is disturbed from its equilibrium the aerodynamic balance is
obviously upset. To describe explicitly the aerodynamic changes occurring during a
disturbance provides a considerable challenge in view of the subtle interactions present
in the motion. However, although limited in scope, the method first described by Bryan
(1911) works extremely well for classical aeroplanes when the motion of interest is
limited to (relatively) small perturbations. Although the approach is unchanged the
rather more modern notation of Hopkin (1970) is adopted.

The usual procedure is to assume that the aerodynamic force and moment terms in
equations (4.20) are dependent on the disturbed motion variables and their derivatives
only. Mathematically this is conveniently expressed as a function comprising the sum of
a number of Taylor series, each series involving one motion variable or derivative of a
motion variable. Since the motion variables are (u, v, w) and (P, q, r), the aerodynamic
term Xa in the axial force equation, for example, may be expressed

(4.28)

where X ae is a constant term. Since the motion variables are small, for all practical
aeroplanes only the first term in each of the series functions is significant. Further, the
only significant higher order derivative terms commonly encountered are those involving
w. Thus, equation (4.28) is dramatically simplified to
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ax ax ax ax ax ax ax.xa=x +-u+-v+-w+-p+-q+-r+-.w
~ ~ & ~ ~ ~ ~ ~

(4.29)

Using an alternative shorthand notation for the derivatives, equation (4.29) may be
written

X, = X ae + Xuu + Xvv + Xww + Xpp + Xqq + irr + Xww (4.30)

The coefficients Xu, Xv, Xw, etc, are called aerodynamic stability derivatives and the
symbol (0) denotes the derivatives to be dimensional. Since equation (4.30) has the units
of force, the units of each of the aerodynamic stability derivatives are self-evident. In a
similar way, the force and moment terms in the remaining equations (4.20) are deter­
mined. For example, the aerodynamic term in the rolling moment equation is given by

(4.31)

4.2.3 AERODYNAMIC CONTROL TERMS

The primary aerodynamic controls are the elevator, ailerons and rudder. Since the forces
and moments created by control deflections arise from the changes in aerodynamic
conditions, it is usual to quantify their effect in terms of aerodynamic control derivatives.
The assumptions applied to the aerodynamic terms are also applied to the control terms,
thus, for example, the pitching moment due to aerodynamic controls may be expressed

aM aM aM
Me =a[~ +ai1'1 +ar' (4.32)

where aileron angle, elevator angle and rudder angle are denoted e, '1and' respectively.
Since equation (4.32) describes the effect of the aerodynamic controls with respect to
the prevailing trim condition it is important to realize that the control angles, e, '1 and'
are measured relative to the trim settings ee, '1eand 'e respectively. Again, the shorthand
notation may be used and equation (4.32) may be written

(4.33)

The aerodynamic control terms in the remaining equations of motion are assembled in
a similar way. If it is required to study the response of an aeroplane to other
aerodynamic controls, for example flaps, spoilers, leading edge devices, etc, then
additional terms may be appended to equation (4.33) and the remaining equations of
motion as required.

4.2.4 POWER TERMS

Power, and hence thrust T, is usually controlled by throttle lever angle s and the
relationship between the two variables is given, for a simple turbo-jet, by equation (2.34)
in Chapter 2. Movement of the throttle lever causes a thrust change which in turn gives
rise to a change in the components of force and moment acting on the aeroplane. It is
mathematically convenient to describe these effects in terms of engine thrust derivatives.
For example, normal force due to thrust may be expressed in the usual shorthand
notation

(4.34)
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The contributions to the remaining equations of motion are expressed in a similar way.
As for the aerodynamic controls, power changes are measured with respect to the
prevailing trim setting. Therefore, r quantifies the thrust perturbation relative to the trim
setting teo

4.2.5 THE EQUATIONS OF MOTION FOR SMALL PERTURBATIONS

To complete the development of the linearized equations of motion it only remains
to substitute the appropriate expressions for the aerodynamic, gravitational,
aerodynamic control and thrust terms into equations (4.23). The aerodynamic terms
are exemplified by expressions like equations (4.30) and (4.31), expressions for the
gravitational terms are given in equations (4.27), the aerodynamic control terms are
exemplified by expressions like equation (4.33) and the thrust terms are exemplified by
expressions like equation (4.34). Bringing all of these together the following equations
are obtained

m(u+ q~) = Xae + k;« + XvV + Xww + XpP + Xqq + Xrr+ XwW
- mgsin (Je - mg(Jcos (Je + X~e + X"tl + X,, + Xt !

m(v - P~ + rUe) = Yae + ~u + tv+ Yww + ~p+ ~q + tr+ Yww
+ mgl/J sin Oe +mg4JcosOe + ~e + ttl +~, + tr

mew - qUe) = Zae + Zuu + Zvv + Zww + ZpP + Zqq + Zrr+ Zww
+ mgcosh; - mgOsin(Je + z~e + Z"tl + Z,( + 2f t

Ixp - Ixz;' = L ae + LuU + L» + Lww + Lpp + Lqq + Lrr

+ Lww + L~~ + L,,11 + L,C + itt
Iyq = Mae + Muu + Mvv + Mww + Mpp + Mqq + M,r

+ Mww + Mee + M"tl +~, + ~1:
Iz;' - Ixzp = Nae + Nuu + Nvv + Nww + Npp + Nqq + N,r

+ Nww + Nee + 11,,11 + Nee + ~t

(4.35)

Now in the steady trimmed flight condition all of the perturbation variables and their
derivatives are, by definition, zero. Thus in the steady state equations (4.35) reduce to

Xae = mgsin Be

Yae = 0

Zae = -mg cos Oe

Lite = 0

Mae =0
Nae =0

(4.36)

Equations (4.36) therefore identify the constant trim terms which may be substituted
into equations (4.35) and, following rearrangement, they may be written
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mit - Xu - Xv - X. w- X wu v w w

- XpP - (Xq- m~)q - X,r + mgi) cos Oe = X,e + X"t1 + X,C +Xt t

- tu+mv- l:v- Yww- Yww-(~+m~)p

- ~q - (Y; - mUe)r - mgd: cos (Je - mgt/! sin (Je = fee; + ~tl + Yc' + t 1:

- ZU - Zv + (m - Z.)w - Z wu v w w

- ZpP - (Zq+mUe)q - Z,r + mgt) sin (Je = Zee; + Z"t1 + Z" + Zt't'
-Iu-Iv-I.w-I wu v w w

+ Ixp - Lpp - Lqq - Ixzr - L,r = lee; + I"t1 + I" + ITt
-Mu-Mv-M.wu v w

- Mww - Mpp + Iyq - Mqq - M,r = Mee; + M"rJ + Me, + ~'t'

- N. u - Nv - N. w- Nwu v w w

(4.37)

- Ixzp - NpP - Nqq + Izr - Nyr = Nee; + N"tl + N" + NT!
Equations (4.37) are the small perturbation equations of motion, referred to body axes,
which describe the transient response of an aeroplane about the trimmed flight condition
following a small input disturbance. The equations comprise a set of six simultaneous
linear differential equations written in the traditional manner with the forcing, or input,
terms on the right-hand side. As written, and subject to the assumptions made in their
derivation, the equations of motion are perfectly general and describe motion in which
longitudinal and lateral dynamics may be fully coupled. However, for the vast majority
of aeroplanes when small perturbation transient motion only is considered, as is the case
here, longitudinal-lateral coupling is usually negligible. Consequently, it is convenient
to simplify the equations by assuming that longitudinal and lateral motion is, in fact,
fully decoupled.

4.3 The decoupled equations of motion

4.3.1 THE LONGITUDINAL EQUATIONS OF MOTION

Decoupled longitudinal motion is motion in response to a disturbance that is
constrained to the longitudinal plane of symmetry, the oxz plane, only. The motion is
therefore described by the axial force X, the normal force Z andthe pitching moment M
equations only. Since no lateral motion is involved the lateral motion variables v, p
and r and their derivatives are all zero. Also, decoupled longitudinal-lateral motion
means that the aerodynamic coupling derivatives are negligibly small and may be taken
as zero, whence

(4.38)

Similarly, since aileron or rudder deflections do not usually cause motion in the
longitudinal plane of symmetry the coupling aerodynamic control derivatives may also
be taken as zero, thus

(4.39)



(4.42)

68 The equations ofmotion

The equations of longitudinal symmetric motion are therefore obtained by extracting
the axial force, normal force and pitching moment equations from equations (4.37) and
substituting equations (4.38) and (4.39) as appropriate. Whence

mu - Xuu - Xww - Xww - (Xq - m~)q + mgfJcosfJe= X"tl + Xt !

-i;« + (m - 2 w)w - 2 ww - (2q + mUe)q + mgfJsinfJe = 2,,11 + 2t ! (4.40)

-Muu - Mww - Mww + Iyq - Mqq = M,,11 + ~7:

Equations (4.40) are the most general form of the dimensional decoupled equations of
longitudinal symmetric motion referred to aeroplane body axes. If it is assumed that the
aeroplane is in level flight and the reference axes are wind or stability axes then

fJe = ~ = 0 (4.41)

and the equations simplify further to

mu - k;« - Xww - Xww - Xqq + mgt) = X,,11 + X t !

-Zuu + (m - Zw)w - z;w - (Zq + mUe)q = 2,,11 + Zt!
-Muu - Mww - Mww + Iyq - Mqq = M,,11 + ~7:

Equations (4.42) represent the simplest possible form of the decoupled longitudinal
equations of motion. Further simplification is only' generally possible when the
numerical values of the coefficients in the equations are known since some coefficients
are often negligibly small.

EXAMPLE 4.2 _

Longitudinal derivative and other data for the McDonnell F-4C Phantom aeroplane
were obtained from Heffley and Jewell (1972) for a flight condition of Mach 0.6 at an
altitude of 35000 ft. The original data are presented in Imperial units and in a format
preferred in the USA. Normally, it is advisable to work with the equations of motion
and the data in the format and units given; otherwise, conversion to another format can
be tedious in the extreme and is easily subject to error. However, for the purposes of
illustration, the derivative data have been converted to a form compatible with the
equations developed above and the units have been changed to those of the more
familiar SI system. The data are quite typical, they would normally be supplied in this,
or similar, form by aerodynamicists and as such they represent the starting point in
any flight dynamics analysis.

Flight path angle Ye = 00

Body incidence (Xe = 9.40

Air density p = 0.3809 kg/m3

Wing area S = 49.239 m2

Velocity JIG = 178 mls Mean aerodynamic chord c= 4.889 m

Mass m = 17 642 kg Acceleration due to gravity g = 9.8 m/s2

Pitch moment of inertia I, = 165669 kg m2

Since the flight path angle Ye = 0 and the body incidence (Xe is non-zero it may be
deduced that the following derivatives are referred to a body axes system and that
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Oe == C(e. The dimensionless longitudinal .derivatives are given and any missing
aerodynamic derivatives must be assumed insignificant; and hence zero. On the other
hand, missing control derivatives may not be assumed insignificant although their
absence will prohibit analysis of response to those controls.

Xu = 0.0076

X w = 0.0483

X.~.=O

Xq=O

X" = 0.0618

Zu = -0.7273

Zw = -3.1245

Z, = -0.3997
Zq = -1.2109

Z" = -0.3741

M; = 0.0340

u; = -0.2169

u; = -0.5910
u, = -1.2732

M" = -0.5581

Equations (4.40) are compatible with the data although the dimensional derivatives
must first be calculated according to the definitions given in Appendix 1, Tables A1.1
and A1.2. Thus, the dimensional longitudinal equations of motion, referred to body
axes, are obtained by substituting the appropriate values into equations (4.40) to give

17 642u - 12.67u - 80.62w + 512 852.94q + 170744.060 = 3755.77YJ

1214.01 u + 17 660.33w + 5215.44w - 3088 229.7q + 28266.5070 = -22735.1511
-277.47u + 132.47w + 1770.07w + 165 669q + 50 798.03q = -165 822.03YJ

where ~ = fO sin Oe = 29.07 mls and U, = VO cosOe = 175.61 m/s. Note that angular
variables in the equations of motion have radian units. Clearly, when written like this,
the equations of motion are unwieldy. The equations can be simplified a little by
dividing through by the mass or inertia as appropriate. Thus, the first equation is
divided by 17642, the second equation by 17660.33 and the third equation by
165 669. After some rearrangement the following rather more convenient version is
obtained

it = 0.0007u + 0.0046w - 29.0700q - 9.67830 + 0.2129'1

w = -0.0687u - 0.2953w + 174.8680q - 1.60000 - 1.287411
q+ 0.0008w = 0.0017u - 0.01 07w - 0.3066q - 1.001 011

It must be remembered that, when written in this latter form, the equations of motion
have the units of acceleration. The most striking feature of these equations, however
written, is the large variation in the values of the coefficients. Terms which may, at first
sight, appear insignificant are frequently important in the solution of the equations. It
is therefore prudent to maintain sensible levels of accuracy when manipulating the
equations by hand. Fortunately, this is an activity which is not often required.

4.3.2 THE LATERAL-DIRECTIONAL EQUATIONS OF MOTION

Decoupled lateral-directional motion involves roll, yaw and sideslip only. The motion
is therefore described by the side force l: the rolling moment L and the yawing moment
N equations only. Since no longitudinal motion is involved the longitudinal motion
variables u, wand q and their derivatives are all zero. Also, decoupled longitudinal­
lateral motion means that the aerodynamic coupling derivatives are negligibly small and
may be taken as zero, whence

t = ~v = tv = ~ = L; = i; = l; = i; = Nu= Nw = Nw = Nq = 0 (4.43)
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Similarly, since the airframe is symmetric, elevator deflection and thrust variation do
not usually cause lateral-directional motion and the coupling aerodynamic control
derivatives may also be taken as zero, thus

f - Y. - L - i-Ii - N - 0 (4.44)'1- y- '1- y- '1- y-

The equations of lateral asymmetric motion are therefore obtained by extracting the side
force, rolling moment and yawing moment equations from equations (4.37) and
substituting equations (4.43) and (4.44) as appropriate. Whence

( m v - l: v - ( ~ + m ~ ) p - ( Y; - m U e ) r ) = ~e+ f,
- mglj> cos Oe - mgt/! sin Oe e,

(4.45)
-L» + IxP - Lpp- Ixz,. -L» = Lee + L"
-~v - IxzP - NpP + IzT - Nrr = Nee + N"

Equations (4.45) are the most general form of the dimensional decoupled equations of
lateral-directional asymmetric motion referred to aeroplane body axes. If it is assumed
that the aeroplane is in level flight and the reference axes are wind or stability axes then,
as before,

Oe = ~ = 0 (4.46)

and the equations simplify further to

mo- l:v - P~ - (}; - mUe)r - mg4J = ~e + ~, }
-L» + IxP - Lpp- Ixz,. -irr = lee + I"~ (4.47)

-k» - IxzP - Npp + Izr - N,r = Nee +~,

Equations (4.47) represent the simplest possible form of the decoupled lateral-directional
equations of motion. As for the longitudinal equations of motion, further simplification
is only generally possible when the numerical values of the coefficients in the equations
are known since some coefficients are often negligibly small.

4.4 Alternative forms of the equations of motion

4.4.1 THE DIMENSIONLESS EQUATIONS OF MOTION

Traditionally, the development of the equations of motion and investigations of stability
and control involving their use have been securely resident in the domain of the
aerodynamicist. Many aerodynamic phenomena are most conveniently explained in
terms of dimensionless aerodynamic coefficients, for example lift coefficient, Mach
number, Reynolds number, etc, and often this mechanism provides the only practical
means for making progress. The advantage of this approach is that the aerodynamic
properties of an aeroplane can be completely described in terms of dimensionless
parameters that are independent of airframe geometry and of flight condition. A lift
coefficient of 0.5, for example, has precisely the same meaning whether it applies to a
Boeing 747 or to a Cessna 150. It is not surprising therefore to discover that, historically,
the small perturbation equations of motion of an aeroplane were treated in the same
way. This in turn leads to the concept of the dimensionless derivative which is just
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another aerodynamic coefficient and may be interpreted in much the same way.
However, the dimensionless equations of motion are of little use to the modern flight
dynamicist other than as a means for explaining the origin of the dimensionless
derivatives. Thus, the development of the dimensionless decoupled small perturbation
equations of motion is outlined below solely for this purpose.

As formally described by Hopkin (1970) the equations of motion are rendered
dimensionless by dividing each equation by a generalized force or moment parameter as
appropriate. Sometimes the dimensionless equations of motion are referred to as the
aero-normalized equations and the corresponding derivative coefficients are also referred
to as aero-normalized derivatives. To illustrate the procedure consider the axial force
equation taken from the decoupled longitudinal equations of motion (equation 4.42).

(4.48)

Since equation (4.48) has the units of force it may be rendered dimensionless by dividing,
or normalizing, each term by the aerodynamic force parameter ~ p ~2 S, where S is the
reference wing area. Defining the following parameters:

(i) dimensionless time

A t
t=­

a
m

where a=l T7S
2P Yo

(4.49)

(ii) the longitudinal relative density factor

m
III = 1 S=

2P c

where the longitudinal reference length is C, the mean aerodynamic chord

(iii) dimensionless velocities

(4.50)

(4.51)

A U
u=-

va
A W
w=-

VO
A qm
q =qa =-1--

2P~S

(iv) since level flight is assumed the lift and weight are equal, thus

mg = !PVo2SC
L (4.52)

Thus, dividing equation (4.48) through by the aerodynamic force parameter and making
use of the parameters defined in equations (4.49) to (4.52) above, the following is
obtained

(4.53)



(4.54)
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which is more conveniently written

""
~-Xu-X. w-x w-X q+CLO=X,.,+Xt

u W III w q III "t

The derivatives denoted Xu, Xw' X w' X q , X" and X, are the dimensionless or aero..
normalized derivatives and their definitions follow from equation (4.53). It is in this form
that the aerodynamic stability and control derivatives would usually be provided for
an aeroplane by the aerodynamicists,

In a similar way the remaining longitudinal equations of motion may be rendered
dimensionless. Note that the aerodynamic moment parameter used to divide the pitching
moment equation is ~pV02SC. Whence

. ""

Z " ~ Z w "" q" z z- u+w- ·--z w-Z --q= '1+ r
u w J.lI w q Il] "T

" "
-MU-M· W-M w+i q.-M q=M ,.,+Mt

U W III W Y J..lI q " t

where iy is the dimensionless pitch inertia and is given by

. I y
ly =--=2

me

(4.55)

(4.56)

Similarly, the lateral equations of motion (equation 4.47) may be rendered dimensionless
by dividing the side force equation by the aerodynamic force parameter !p~2S and the
rolling and yawing moment equations by the aerodynamic moment parameter !pV02Sb
where, for lateral motion, the reference length is the wing..span b. Additional parameter
definitions required to deal with the lateral equations are:

(v) the lateral relative density factor

m
1l2=!pSb

(vi) the dimensionless inertias

(4.57)

(4.58)

Since the equations of motion are referred to wind axes and since level flight is assumed,
then equations (4.47) may be written in dimensionless form as follows

b- ¥.v - l; p - y, r - r- CL<P = ~e + YcC
112 Jl2

(4.59)

" "" . p P. r r
-N v - I - - N - + I - - N - = N~e + NrC

v xz 112 P 112 z 112 r 112 ~ ..

For convenience, the definitions of all the dimensionless aerodynamic stability and
control derivatives are given in Appendix 1.
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4.4.2 THE EQUATIONS OF MOTION IN STATE SPACE FORM

Today the solution of the equations of motion poses few problems since very powerful
computational tools are readily available. Since computers are very good at handling
numerical matrix calculations, the use of matrix methods for solving linear dynamic .
system problems has become an important topic in modern applied mathematics. In
particular, matrix methods together with the digital computer have led to the
development of the relatively new field of modern control system theory. For small
perturbations, the aeroplane is a classical example of a linear dynamic system and,
frequently, the solution of its equations of motion is a prelude to flight control system
design and analysis. It is therefore convenient and straightforward to utilize multi­
variable system theory tools in the solution of the equations of motion. However, it is
first necessary to arrange the equations of motion in a suitable format.

The motion, or state, of any linear dynamic system may be described by a minimum
set of variables called the state variables. The number of state variables required to
describe the motion of the system completely is dependent on the number of degrees of
freedom the system has. Thus, the motion of the system is described in a multi­
dimensional vector space called the state space, the number of state variables being equal
to the number of dimensions. The equation of motion, or state equation, of the linear
time invariant (LTI) multi-variable system is written

where

x(t) = Ax(t) + Bu(t) (4.60)

x(t) is the column vector of n state variables, called the state vector;
u(t) is the column vector of m input variables, called the input vector;
A is the (n x n) state matrix;
B is the (n x m) input matrix.

Since the system is LTI the matrices A and B have constant elements. Equation (4.60)
is the matrix equivalent of a set of n simultaneous linear differential equations and it is a
straightforward matter to configure the small perturbation equations of motion for an
aeroplane in this format.

Now, for many systems some of the state variables may be inaccessible or their values
may not be determined directly. Thus, a second equation is required to determine the
system output variables. The output equation is written in the general form

y(t) = Cx(t) + Du(t)
where

(4.61)

y(t) is the column vector of r output variables, called the output vector;
C is the (r x n) output matrix;
D is the (r x n1) direct matrix;

and, typically, r ~ n. Again, for an LTI system the matrices C and D have constant
elements. Together, equations (4.60) and (4.61) provide a complete description of the
system. A complete description of the formulation of the general state model and the
mathematics required in its analysis may be found in Barnett (1975).

For most aeroplane problems it is convenient to choose the output variables to be
the state variables. Thus

y(t) = x(t) and r = n
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and consequently

C = I the (n x n) identity matrix;

D = 0 the (n x m) zero matrix.

As a result, the output equation simplifies to

yet) = Ix(t) == x(t) (4.62)

(4.63)

and it is only necessary to derive the state equation from the aeroplane equations of
motion.

Consider, for example, the longitudinal equations of motion (equation 4.40) referred
to aeroplane body axes. These may be rewritten with the acceleration terms on the left­
hand side as follows

mil - Xww = Xuu + Xww + (Xq- m~)q - mg(}cos(}e + X"tl +Xt ! }
o 0 0 0 0 0

mw - Z"'W = Zuu + Zww + (Z, +mUe)q - mgesin ee + Z~'1 + ZfT

Iyq - Mww = Muu + Mww + Mqq + M"tl +Mt !

Since the longitudinal motion of the aeroplane is described by four state variables u, w,
q and (J four differential equations are required. Thus, the additional equation is the
auxiliary equation relating pitch rate to attitude rate, which for small perturbations is

O=q
Equations (4.63) and (4.64) may be combined and written in matrix form

Mx(t) = A'x(t) + B'u(t)

where

xT(t)=[u w q (J] uT(t) = [tl !]

0

m -Xw 0 0
0

M=
0 (m - Z~l) 0 0

0

0 -~v I y 0

0 0 0 1

0 0 0 0 0

Xu Xw (X q - m~) -mgcosOe XTJ Xt

0 0

(Zq +mUe)
0 0

A'= Zu Zw -mgsin (Je B'= Z" Zr
0 0 0 0 0

Mu u; u, 0 M" Mr
0 0 1 0 0 0

(4.64)

(4.65)

The longitudinal state equation is derived by premultiplying equation (4.65) by the
inverse of the mass matrix M whence

where

x(t) = Ax(t) + Bu(t) (4.66)
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Xu Xw Xq Xo x" XT

A=M-1A' =
z, Zw Zq Zo B=M-1B'= Z" ZT

mU mW mq mO m" mT

0 0 1 0 0 0

The coefficients of the state matrix A are the aerodynamic stability derivatives, referred
to aeroplane body axes, in concise form and the coefficients of the input matrix B are the
control derivatives also in concise form. The definitions of the concise derivatives follow
directly from the above relationships and are given in full in Appendix 1. Thus, the
longitudinal state equation may be written out in full

U XII Xw xq Xo u x" XT

W Zu Zw Zq Zo w Z" ZT [~]= +q mu mw mq mo q m" mT

iJ 0 0 1 0 0 0 0

and the output equation is, very simply,

1 0 0 0 u

y(t) = Ix(t) = 0 1 0 0 w
0 0 1 0 q
0 0 0 1 0

(4.67)

(4.68)

Clearly, the longitudinal small perturbation motion of the aeroplane is completely
described by the four state variables u, W, q and O. Equation (4.68) determines that, in
this instance, the output variables are chosen to be the same as the four state variables.

EXAMPLE 4.3 _

Consider the requirement to write the longitudinal equations of motion for the
McDonnell F-4C Phantom of Example 4.2 in state space form. As the derivatives are
given in dimensionless form it is convenient to express the matrices M, A' and B' in
terms of the dimensionless derivatives. Substituting appropriately for the dimensional
derivatives and after some rearrangement the matrices may be written

m' Xwc
0 0

~

0 (/ Zwc) 0 0
M=

m--
~

0
Mwc t: 0

~
y

0 0 0

Xu Xw (Xqc - m'~) -m'gcosOe ~X" ~Xt

A'= Zu Zw (Zqc + m'Ue) -m'gsinOe B'= ~Z" l-ijZt
Mu Mw Mqc 0 ~M" ~Mt

0 0 1 0 0 0
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where

I m
m =-1--

2P~S

I
and I~=~

2PVOSc

and in steady symmetric flight, U, = ~ cos (Je and ~ = ~ sin (Je'

Substituting the derivative values given in Example 4.2 the longitudinal state
equation (4.65) may be written

10.569 0 0 0 u
0 10.580 0 0 w
0 0.0162 20.3 0 q
0 0 0 1 iJ

0.0076 0.0483 -307.26 -102.29 u 11.00
-0.7273 -3.1245 1850.10 -16.934 w -66.5898

= + 1]
0.034 -0.2169 -6.2247 0 q -99.341

0 0 1 0 e 0

This equation may be reduced to the preferred form by premultiplying each term by
the inverse of M, as indicated above, to obtain the longitudinal state equation, referred
to body axes, in concise form

U 7.181 X 10-4 4.570 X 10-3 -29.072 -9.678 u 1.041
W -0.0687 -0.2953 174.868 -1.601 w -6.294

= 1.73 x 10-3 1.277 X 10-3 + 1]q -0.0105 -0.4462 q -4.888
iJ 0 0 1 0 (J 0

This computation was carried out with the aid of Program CC and it should be
noted that the resulting equation compares with the final equations given in
Example 4.2. The coefficients of the matrices could equally well have been
calculated using the concise derivative definitions given in Appendix 1, Tables A1.5
and A1.6. For the purpose of illustration some of the coefficients in the matrices
have been rounded to a more manageable number of decimal places. In general this
is not good practice since the rounding errors may lead to accumulated
computational errors in any subsequent computer analysis involving the use of these
equations. However, once the basic matrices have been entered into a computer
program at the level of accuracy given, all subsequent computations can be carried
out using computer-generated data files. In this way computational errors will be
minimized, although it is prudent to be aware that not all computer algorithms for
handling matrices can cope with poorly conditioned matrices. Occasionally,
aeroplane computer models fall into this category.

The lateral small perturbation equations (4.45), referred to body axes, may be treated
in exactly the same way to obtain the lateral state equation



Inertia product Ix: = 2952 kg m2

Air density p = 0.3809 kg m3

Wing area S = 49.239 m2

Wing-~pan b = 11.787 m

Acceleration due to gravity g = 9.81 m/s2

Alternative forms ofthe equations ofmotion 77

v Yv Yp Yr Ylj> Y", V Y~ Y,
jJ Iv Ip Ir Ilj> I", p I~ I,

[nr = nv np nr nlj> n", r + n~ n, (4.69)

4> 0 I 0 0 0 4> 0 0

~ 0 0 1 0 0 t/J 0 0

Note that when the lateral equations of motion are referred to wind axes, equations
(4.47), the lateral state equation (4.69) is reduced from fifth order to fourth order to
become

v Yv Yp Yr Ylj> V y~ y,
jJ Iv Ip Ir Ie/> p

+ I~ I, [n (4.70)=r nv np nr ne/> r n~ n,
~ 0 1 0 0 4> 0 0

However, in this case the derivatives are referred to aeroplane wind axes rather than to
body axes and will generally have slightly different values. The definitions of the concise
lateral stability and control derivatives referred to aeroplane body axes are also given
in Appendix 1.

Examples of the more general procedures used to create the state descriptions of
various dynamic systems may be found in many books on control systems; for example,
Shinners (1980) and Friedland (1987) both contain useful aeronautical examples.

EXAMPLE 4.4 _

Lateral derivative data for the McDonnell F-4C Phantom, referred to body axes, were
also obtained from Heffley and Jewell (1972) and are used to illustrate the formulation
of the lateral state equation. The data relate to the same flight condition, namely Mach
0.6 and an altitude of 35 000 ft. As before, the leading aerodynamic variables have
the following values

Flight path angle Ye = 00

Body incidence etc = 9.40

Velocity Vo = 178 rn/s

Mass m = 17 642 kg

Roll moment of inertia I... = 33898 kg m2

Yaw moment of inertia I: = 189496 kg m2

The dimensionless lateral derivatives, referred to body axes, are given and, as before,
any missing aerodynamic derivatives must be assumed insignificant, and hence zero.

J: = -0.5974

~=O

~=O

Ye = -0.0159

~=0.1193

L, = -0.1048

L, = -0.1164

i; = 0.0455

Le = 0.0454

L, = 0.0086

N v = 0.0987

N, = -0.0045

N, = -0.1132

Ne= 0.00084

N, = -0.0741



78 The equations ofmotion

As for the longitudinal equations of motion, the lateral state equation (4.65) may be
written in terms of the more convenient lateral dimensionless derivatives

Mx(t) = A'x(t) +B'u(t)

where

xT(t) = [v p r 4> 1/1] uT(t) = [e
m' 0 0 0 0
0 I' -I~z 0 0x

M= 0 -I~z I' 0 0z

0 0 0 1 0
0 0 0 0 1

J: (J;,b + m'~) (l';b - m'Ue)

Lv Lpb t.»
A' = Nv Npb Nrb

0 1 0
0 0 1

VOre vol(
VOL~ VOL,

B'= VoN~ VON,
0 0
0 0

where

(]

m'gcosOe

o
o
o
o

m'gsinOe

o
o
o
o

r

v
p

9.6783 1.6022
o 0
o 0
o 0
o 0

I m I I 1x lIz d I 1xz
m =) TfS' x=} TfSb' /%=1 TfSb an I xz = 1 TfSb

'2P"o '2P"o '2P"o '2P"o
and, as before, in steady symmetric flight, U, = ~ cos Oe and ~ = JiO sin 8e.

Substituting the appropriate values into the above matrices and premultiplying the
matrices A' and B' by the inverse of the mass matrix M the concise lateral state
equation (4.69), referred to body axes, is obtained

v -0.0565 29.072 -175.610
P -0.0601 -0.7979 -0.2996
r = 9.218 x 10-3 -0.0179 -0.1339
~ 010
~ 001

-0.2678 2.0092
4.6982 0.7703

+ 0.0887 -1.3575 [ ~ ]
o 0

o 0

Again, the matrix computation was undertaken with the aid of Program CC. However,
the coefficients of the matrices could equally well have been calculated using the
expressions for the concise derivatives given in Appendix 1, Tables A1.7 and A 1.8.



References 79

References

Barnett, S. 1975: Introduction to Mathematical Control Theory. Clarendon Press,
Oxford.

Bryan, G. H. 1911: Stability in Aviation. Macmillan and Co, London.
Friedland, B. 1987: Control System Design. McGraw-Hill Book Company, New York.
Heffley, R. K. and Jewell, W. F. 1972: Aircraft Handling Qualities Data. NASA

Contractor Report, NASA CR-2144.
Hopkin, H. R. 1970: A Scheme of Notation and Nomenclature for Aircraft Dynamics

and Associated Aerodynamics. Aeronautical Research Council, Reports and
Memoranda No. 3562.

Shinners, S. M. 1980: Modern Control System Theory and Application, 2nd edn.
Addison-Wesley Publishing Co, Reading, Massachusetts.



5
The Solution of the Equations of Motion

5.1 Methods of solution

The primary reason for solving the equations of motion is to obtain a mathematical,
and hence graphical, description of the time histories of all the motion variables in
response to a control input, or atmospheric disturbance, and to enable an assessment of
stability to be made. It is also important that the chosen method of solution provides
good insight into the way in which the physical properties of the airframe influence the
nature of the responses.

Since the evolution of the development of the equations of motion and their solution
followed in the wake of observation of aeroplane behaviour, it was no accident that
practical constraints were applied that resulted in the decoupled small perturbation
equations. The longitudinal and lateral decoupled equations of motion are each
represented by a set of three simultaneous linear differential equations which have
traditionally been solved using classical mathematical analysis methods. Although
laborious to apply, the advantage of the traditional approach is that it is capable of
providing excellent insight to the nature of aircraft stability and response. However,
since the traditional methods of solution invariably involve the use of the dimensionless
equations of motion, considerable care in the interpretation of the numerical results is
required if confusion is to be avoided. A full discussion of these methods can be found in
many of the earlier books on the subject, for example in Duncan (1959).

Operational methods have also enjoyed some popularity as a means for solving the
equations of motion. In particular, the Laplace transform method has been, and continues
to be, used extensively. By transforming the differential equations, they become algebraic
equations expressed in terms of the Laplace operator s. Their manipulation to obtain a
solution then becomes a relatively straightforward exercise in algebra. Thus, the problem
is transformed into one of solving a set of simultaneous linear algebraic equations, a
process that is readily accomplished by computational methods. Further, the input­
output response relationship or transfer characteristic is described by a simple algebraic
transfer function in terms of the Laplace operator. The time response then follows by
finding the inverse Laplace transform of the transfer function for the input of interest.

Now the transfer function as a means for describing the characteristics of a linear
dynamic system is the principal tool of the control systems engineer and a vast array of
mathematical tools is available for analysing transfer functions. With relative ease,
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analysis of the transfer function of a system enables a complete picture of its dynamic
behaviour to be drawn. In particular, stability, time response and frequency response
information is readily obtained. Furthermore, obtaining the system transfer function is
usually the prelude to the design of a feedback control system and an additional array of
mathematical tools is also available to support this task.

Since most modern aeroplanes are dependent, to a greater or lesser extent, on
feedback control for their continued proper operation, it would seem particularly
advantageous to be able to describe the aeroplane in terms of transfer functions.
Fortunately, this is easily accomplished. The Laplace transform of the linearized small
perturbation equations of motion is readily obtained and, by the subsequent application
of the appropriate mathematical tools, the response transfer functions may be derived.
An analysis of the dynamic properties of the aeroplane may then be made using control
engineering tools as an alternative to the traditional methods of the aerodynamicist.
Indeed, as already described in Chapter 1, many computer software packages are
available which facilitate the rapid and accurate analysis of linear dynamic systems and
the design of automatic control systems. Today, access to computer software of this type
is essential for the flight dynamicist.

Thus, the process of solution requires that the equations of motion are assembled in
the appropriate format, numerical values for the derivatives and other parameters are
substituted and then the whole model is input to a suitable computer program. The
output, which is usually obtained instantaneously, is most conveniently arranged in
terms of response transfer functions. Thus, the objective can usually be achieved
relatively easily, with great rapidity and with good accuracy. A significant shortcoming
of such computational methods is the lack of visibility; the functional steps in the
solution process are hidden from the investigator. Consequently, considerable care, and
some skill, is required to analyse the solution correctly and this can be greatly facilitated
if the investigator has a good understanding of the computational solution process.
Indeed, it is considered essential to have an understanding of the steps involved in the
solution of the equations of motion using the operational methods common to most
computer software packages.

The remainder of this chapter is therefore concerned with a discussion of the use of
the Laplace transform for solving the small perturbation equations of motion to obtain
the response transfer functions. This is followed by a description of the computational
process involving matrix methods, which is normally undertaken with the aid of a
suitable computer software package.

5.2 Cramer's rule

Cramer's rule describes a mathematical process for solving sets of simultaneous linear
algebraic equations and may usefully be used to solve the equations of motion
algebraically. It may be found in many degree level mathematical texts, and in books
devoted to the application of computational methods to linear algebra, for example in
Goult et ale (1974). Since Cramer's rule involves the use of matrix algebra it is easily
implemented in a digital computer.

To solve the system of n simultaneous linear algebraic equations described in matrix
form as

y=Ax (5.1)
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where x and yare column vectors and A is a matrix of constant coefficients, then
Cramer's rule states that

x = A-I == (AdjOiDtA)
y DetA Y

where the solution for Xi' the ith row of equation (5.2), is given by

(5.2)

(5.3)

The significant observation is that the numerator of equation (5.3) is equivalent to the
determinant of A with the ith column replaced by the vector y. Thus, the solution of
equation (5.1) to find all of the Xi reduces to the relatively simple problem of evaluating
n + 1 determinants.

EXAMPLE 5.1 _

To illustrate the use of Cramer's rule consider the trivial example in which it is required
to solve the simultaneous linear algebraic equations

YI = x, + 2x2 + 3X3
Y2 = 2x] + 4x2+ 5x3

Y3 = 3x] + 5x2+ 6x3

or, in matrix notation,

[
YI] [1 2 3][X1

]Yz = 2 4 5 X2

Y3 3 5 6 X 3

Applying Cramer's rule to solve for Xi

YI 2 3
Yz 4 5

=Ytl~ ~ 1- Y21; ~ 1+ Y31 ~ ~IY3 5 6
Xl =

1 2 3 -1 = YI - 3Y2 +2Y3

2 4 5
3 5 6

1 YI 3
2 Y2 5

-Yt\; ~ 1+ Y21 ~ ~ 1- Y31 ~ ;13 Y3 6
X2 = = = -3YI + 3yz - Y31 2 3 -1

2 4 5
3 5 6

and



Aircraft response transferfunctions 83

1 2 Yl
2 4 Y2 YII~ ~ 1- Y21 ~ ;1+ Y31 ~ ~I3 5 Y3

X3= = =2Yl - Y2
1 2 3 -1
2 4 5
3 5 6

Clearly, in this example, the numerator determinants are found by expanding about
the column containing y. The denominator determinant may be found by expanding
about the first row thus

1 2 3 1
4 51 1

2 51 12 41~ ~ ~ =1 5 6 -2 3 6 +335 =-1+6-6=-1

5.3 Aircraft response transfer functions

Aircraft response transfer functions describe the dynamic relationships between the
input variables and the output variables. The relationships are indicated diagrammati­
cally in Fig. 5.1 and, clearly, a number of possible input-output relationships exist.
When the mathematical model of the aircraft comprises the decoupled small
perturbation equations of motion, transfer functions relating longitudinal input
variables to lateral output variables do not exist and vice versa. This may not necessarily
be the case when the aircraft is described by a fully coupled set of small perturbation
equations of motion. For example, such a description is quite usual when modelling the
helicopter.

All transfer functions are written as a ratio of two polynomials in the Laplace
operator s. All proper transfer functions have a numerator polynomial which is at least
one order less than the denominator polynomial although, occasionally, improper
transfer functions crop up in aircraft applications. For example, the transfer function
describing acceleration response to an input variable is improper; the numerator and
denominator polynomials are of the same order. Care is needed when working with
improper transfer functions as sometimes the computational tools are unable to deal
with them correctly. Clearly, this is a situation where some understanding of the physical

Input variables
......-----------... Output variables

1]

Longitudinal
e

Lateral

MATHEMATICAL MODEL

OF

ArRCRAFT DYNAMICS

u
w

q,8

v
p,lj)

r,'l/J

Fig. 5.1 Aircraft input-output relationships
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meaning of the transfer function can be of considerable advantage. A shorthand
notation is used to represent aircraft response transfer functions in this book. For
example, pitch attitude O(s) response to elevator I1(S) is denoted

O(s) = N~(s)
11(S) - L\(s)

where N~(s) is the unique numerator polynomial in s relating pitch attitude response to
elevator input and ~(s) is the denominator polynomial in s which is common to all
longitudinal response transfer functions. Similarly, for example, roll rate response to
aileron is denoted

pes) N~(s)
-=-1,-
~(s) - L\(s)

(5.5)

where, in this instance, ~(s) is the denominator polynomial which is common to all of
the lateral response transfer functions. Since Li(s) is context dependent its correct
identification does not usually present problems.

The denominator polynomial ~(s) is called the characteristic polynomial and when
equated to zero defines the characteristic equation. Thus, ~(s) completely describes the
longitudinal or lateral stability characteristics of the aeroplane as appropriate and the
roots, or poles, of ~(s) describe the stability modes of the aeroplane. Thus, the stability
characteristics of an aeroplane can be determined simply on inspection of the response
transfer functions.

5.3.1 THE LONGITUDINAL RESPONSE TRANSFER FUNCTIONS

The Laplace transforms of the differential quantities x(t) and x(t), for example, are given
by

L{x(t)} = sx(s) - x(O) I
L{x(t)} = S2X(S) - sx(O) - x(O)

(5.6)

where x(O) and X(O) are the initial values of x(t) and x(t) respectively at t = O. Now,
taking the Laplace transform of the longitudinal equations of motion (equation 4.40),
referred to body axes, assuming zero initial conditions and since small perturbation
motion only is considered, write

then

e(t) = q(t) (5.7)

(ms - Xu)u(s) - (Xws+ Xw)w(s) - «Xq - mWe)s - mgcosOe)O(s) = Xtlr,(s) + Xtr(s) }

-Zuu(s) - «Zw - m)so+ Zw)w(s)o - «Zqo+mUe)s - mgsi~ ee)O(s) = ~~l1(S) + Z:r(s)

- Muu(s) - (~vs + Mw)w(s) + (Iy; - Mqs)O(s) = Mtll1(s) + M, res)

(5.8)

Writing equations (5.8) in matrix format
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0 0 0 0 0 0

(ms - Xu) -(Xws+ Xw) -«Xq - mWe)s - mgcosfJe) [U(S) ] X" X"
[~(S) ]0 0 0 0

w(s) = 0 0-e, -«Zw - m)s + Zw) -«Zq + m Ue)s - mg sin (Je) Z" z, r(s)
0 0 0 2 0 (J(s) 0 0

-Mu -(Mws+Mw) (Iys - Mqs) AI" Mc
(5.9)

Cramer's rule can now be applied to obtain the longitudinal response transfer functions:
for example, to obtain the transfer functions describing response to the elevator.
Assume, therefore, that the thrust remains constant, which means that the throttle is
fixed at its trim setting r, and res) = O. Therefore, after dividing through by ,,(s)equation
(5.9) may be simplified to

(ms - Xu) -(Xws + Xw)

-r; -«Zw - m)s + Zw)

- Mu -(Mws + Mw)

-«Xq - m We)s - mg cos (Je)

-«Zq + mUe)s - mg sin eel
2 0

(Iys - Mqs)

u(s)

11(S)
w(s)
11(S)
8(s)

11(s)

=

(5.10)

Equation (5.10) is of the same form as equation (5.1), Cramer's rule may be applied
directly and the elevator response transfer functions are given by

(5.11)

(5.12)

Since the Laplace transform of equation (5.7) is sees) = q(s) the pitch rate response
transfer function follows directly

q(s) N~(s) sN~(s)
11(S) == ~(s) = ~(s)

The numerator polynomials are given by the following determinants

X" -(Xws + Xw)

N;(s) = Z" -«Zw - m)s + Zw)

M" -(Mws + Mw)

-«Xq - m We)s- mg cos (}e)

-«Zq + mUe)s - mgsin 8e)

(Iy ; - Mqs)

(5.13)

0 0 0

(ms - Xu) X" -«Xq - mWe)s - mgcos(Je)

N;(s) =
0 0 0

-Zu z, -«Zq + m Ue)s - mg sin (Je)
0 0 2 0

-Mu M" (Iys - Mqs)

0 0 0 0

(ms - Xu) -(Xws + X w) X"
N:(s) =

0 0 0 0-e, -«Zw - m)s +Zw) Z"
0 0 0 0

-Mu -(Mws+Mw) AI"
and the common denominator polynomial is given by the determinant

(5.14)

(5.15)
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L\.(S) =
o

-Mu

-(XwS + Xw)

-«2w- m)s + Zw)
-(M.vs +Mw)

-«Xq - mWe)s - mgcos(}e)

-«Zq + m Ue)s - mg sin 0e)
2 0

(Iys - Mqs)

(5.16)

(5.18)

The thrust response transfer functions may be derived by assuming the elevator to be
fixed at its trim value, thus 1](s) = 0, and res) is written in place of 1](s). Then the
derivatives X", Z" and Ai" in equations (5.13), (5.14) and (5.15) are replaced by XL' Zr
and M, respectively. Since the polynomial expressions given by the determinants are
substantial they are set out in full in Appendix 2.

5.3.2 THE LATERAL RESPONSE TRANSFER FUNCTIONS

The lateral response transfer functions may be obtained by exactly the same means as
the longitudinal transfer functions. The Laplace transform, assuming zero initial
conditions, of the lateral equations of motion referred to body axes, equations (4.45),
may be written in matrix form as follows

where s</>(s) = pes) and st/J(s) = res). By holding the rudder at its trim setting, (s) = 0,
the aileron response transfer functions may be obtained by applying Cramer's rule to
equation (5.17). Similarly, by holding the ailerons at the trim setting, ~(s) = 0, the rudder
response transfer functions may be obtained. For example, roll rate response to aileron
is given by

N~(s) _ pes) _ s</>(s) _ sNt(s)
L\.(s) = ~(s) - ~(s) = L\.(s)

where the numerator polynomial is given by

(ms - t)
N~(s) = s

-Lv

-Nv

-Lv
o

-Nv

~ _(Y, - ":Ue)S)
+mgsln (Je

0
20L, -(IxzS + Lrs)

o 2 0

Ne (lzs - Nrs)

_(Y, - ":Ue)S)
+mgsln (Je

2 0

-(lxzS + Lrs)
2 0

(lz5 - N,.S)

(5.19)

(5.20)
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Again, since the polynomial expressions given by the determinants are substantial they
are also set out in full in Appendix 2.

EXAMPLE 5.2 _

We will obtain the transfer function describing pitch attitude response to elevator for
the Lockheed F-104 Starfighter. The data were obtained from Teper (1969) and
describe a sea level flight condition. Inspection of the data revealed that (Je = 0, thus it
was concluded that the equations of motion to which the data relate are referred to
wind axes.

Air density p = 0.00238 slug/ft3

Axial velocity component U, = 305 ft/s

Aircraft mass m = 746 slugs

Moment of inertia in pitch I y = 65000 slug ft 2

Gravitational constant g = 32.2 ft/s2

The dimensional aerodynamic stability and control derivatives follow. Derivatives
which are not quoted are assumed to be insignificant and are given a zero value,
whence

Xu = -26.26 slug/s

Xw =79.82slug/s

Xw=O
X =0q

X -0,,-

Zu = -159.64slug/s

Zw = -328.24 sluq/s

Z~V = 0

Z =0q

ZIT = -16 502 slug ft/s2/rad

Nt. =0u

Mw = -1014.0 slug ft/s

Mw= -36.4 slug ft

Mq = -18135slugft2/s

Ml1 = -303 575 slug ft/s2/rad

The American Imperial units are retained in this example since it is preferable to
work with the equations of motion and in the dimensional units appropriate to the
source material. Conversion from one system of units to another often leads to
confusion and error and is not therefore recommended. However, for information,
factors for conversion from American Imperial units to 51 units are given in
Appendix 3.

These numerical values are substituted into equation (5.10) to obtain

[

7465 + 26.26 -79.82
159.64 746s + 328.24

o 36.4s+ 1014

24021.2 ] [U(S)] [ 0 ]
-227530s w(s) = -16502 11(s)

65000s2 + 18135s 8(s) -303575

(5.21)

Cramer's rule may be applied directly to equation (5.21) to obtain the transfer function
of interest
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746s+ 26.26 -79.82 0
159.64 746s+ 328.24 -16502

N~(s) 0 36.4s+ 1014 -303575
rad/rad (5.22)--=

746s+ 26.26 -79.82 24021.2~(s)

159.64 746s+ 328.24 -227530s
0 36.4s + 1014 65000s2+ 18 135s

whence

N~(s) -16.850 X 101O(S2 +0.402s+ 0.036) d d--= ra Ira (5 23)
~(s) 3.613 x 101O(s4 + 0.925s3 + 4.935s2 + 0.182s+ 0.108) .

Or, in the preferable factorized form,

N~(s) -4.664(s + 0.135)(s + 0.267) d d (5 24)
--= ra Ira
L\(s) (S2 + 0.033s+ 0.022)(S2 + 0.893s+4.884) .

The denominator of equation (5.24) factorizes into two pairs of complex roots
(poles) each pair of which describes a longitudinal stability mode. The factors
describing the modes may be written alternatively (S2 + 2'ws + ( 2

) which is clearly the
characteristic polynomial describing damped harmonic motion. The stability of each
mode is determined by the damping ratio' and the undamped natural frequency by to.
The lower frequency mode is called the phugoid and the higher frequency mode is
called the short period pitching oscillation. For the aeroplane to be completely
longitudinally stable the damping ratio of both modes must be positive.

The units of the transfer function given in equation (5.24) are rad/rad. or
equivalently deg/deg. Angular measure is usually, and correctly, quantified in radians
and care must be applied when interpreting transfer functions since the radian is a very
large angular quantity in the context of small perturbation motion of aircraft. This
becomes especially important when dealing with transfer functions in which the input
and output variables have different units. For example, the transfer function describing
speed response to elevator for the F-104 has units ft/s/rad and one radian of elevator
input is impossibly large! It is therefore very important to remember that one radian is
equivalent to 57.3°. It is also important to remember that all transfer functions have
units and they should always be indicated if confusion is to be avoided.

The transfer function given by equation (5.24) provides a complete description of
the longitudinal stability characteristics and the dynamic pitch response to elevator of
the F-104 at the flight condition in question. It is interesting to note that the transfer
function has a negative sign. This means that a positive elevator deflection results in a
negative pitch response which is completely in accordance with the notation defined
in Chapter 2. Clearly, the remaining longitudinal response transfer functions can be
obtained by applying Cramer's rule to equation (5.21 ) for each of the remaining motion
variables. A comprehensive review of aeroplane dynamics based on transfer function
analysis is contained in Chapters 6 and 7.

The complexity of this example is such that, although tedious, the entire computation
is easily undertaken manually to produce a result of acceptable accuracy. Alternatively,
transfer function (5.23) can be calculated merely by substituting the values of the
derivative and other data into the appropriate polynomial expressions given in
Appendix 2.
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5.4 Response to controls

Time histories for the aircraft response to controls are readily obtained by finding the
inverse Laplace transform of the appropriate transfer function expression. For example,
the roll rate response to aileron is given by equation (5.5) as

N~(s)
p(s) = il(s) e(s)

assuming that the aeroplane is initially in trimmed flight. The numerator polynomial
N~(s) and denominator polynomial A(s) are given in Appendix 2. The aileron input ~(s)

is simply the Laplace transform of the required input function. For example, two
commonly used inputs are the impulse and step functions where

Impulse of magnitude k is given by e(s) = k

Step of magnitude k is given by ~(s) = k/s

Other useful input functions include the ramp, pulse (or step) of finite length, doublet
and sinusoid. However, the Laplace transform of these functions is not quite so straight­
forward to obtain. Fortunately, most computer programs for handling transfer function
problems have the most commonly used functions 'built-in'.

To continue with the example, the roll rate response to an aileron step input of
magnitude k is therefore given by

(t ) = L-l{~N~(S)}
p s ~(s)

Solution of equation (5.26) to obtain the time response involves finding the inverse
Laplace transform of the expression on the right-hand side, which may be accomplished
manually with the aid of a table of standard transforms. However, this calculation is
painlessly achieved with the aid of an appropriate computer software package such as
MATLAB or Program CC, for example. However, it is instructive to review the
mathematical procedure since this provides valuable insight to aid the correct interpreta­
tion of a computer solution and this is most easily achieved by example, as follows.

EXAMPLE 5.3 _

We will obtain the pitch response of the F-104 aircraft to a unit step elevator input at
the flight condition evaluated in Example 5.2. Assuming the unit step input to be in
degree units, then from equation (5.24)

() t) - L-I { -4.664(s + 0.135)(s + 0.267) } de
(- S(S2 + 0.033s + 0.022)(S2 + 0.893s + 4.884) 9

Before the inverse Laplace transform of the expression in braces can be found it is first
necessary to reduce it to partial fractions. Thus, writing

-4.664(S2 + 0.402s + 0.036)
8(82+ 0.033s + 0.022)(S2 + 0.8938+ 4.884)

_ -4 664(~ Bs + C Ds + E )
- . 5 + (S2 + 0.0335 + 0.022)+ (82+ 0.8938+4.884)

(5.28)
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To determine the values for A, B, C, D and E multiply out the fractions on the right­
hand side and equate the numerator coefficients from both sides of the equation for
like powers of s to obtain

o= (A + B + D)S4

o= (0.925A + 0.893B + C + 0.033D+ E)S3

S2 = (4.935A + 4.884B + 0.893C + O.022D + 0.033E)S2

0.402s = (0. 182A + 4.884C + 0.022E)s

0.036 =0.108A

These simultaneous linear algebraic equations are easily solved using Cramer's rule if
they are first written in matrix form

(5.29)

deg

o
o
1

0.402
0.036

A

B

C =
D

E

1 101 0
0.925 0.893 1 0.033 1
4.935 4.884 0.893 0.022 0.033
0.182 0 4.884 0 0.022
0.108 0 0 0 0

Thus, A = 0.333, B = -0.143, C = 0.071, D = -0.191 and E = -0.246. Thus,
equation (5.27) may be written

O(t)=L-1{_4.664(0.333_ (0.143s-0.071) _ (0.191s+0.246) )}de
S (S2 + 0.033s + 0.022) (S2 + 0.893s + 4.884) g

(5.30)

A very short table of Laplace transforms relevant to this problem is given in Appendix
4. Inspection of the table of transforms determines that equation (5.30) needs some
rearrangement before its inverse transform can be found. When solving problems of this
type it is useful to appreciate that the solution will contain terms describing damped
harmonic motion; the required form of the terms in equation (5.30) is then more easily
established. With reference to Appendix 4, transform pairs 1, 5 and 6 would appear
to be most applicable. Therefore, rearranging equation (5.30) to suit

0.333 _ ( 0.143(s+0.017) _ 0.496(0.148) )
s (s + 0.017)2 + 0.1482 (s + 0.017)2 + 0.1482

OCt) = L-I -4.664

(
0.191(s + 0.447) 0.074(2.164»)

- (s+ 0.447)2 + 2.1642+ (s+ 0.447)2 + 2.1642

(5.32)

(5.31)
Using transform pairs 1, 5 and 6, equation (5.31) may be evaluated to give the time
response

OCt) =-1.553 + 0.667e-o.017t(cos 0.148t - 3.469sin 0.148t)

+ 0.891e-o.447t(cos 2.164t + 0.389 sin 2.164t)deg

The solution given by equation (5.32) comprises three terms which may be interpreted
as follows.

(i) The first term, -1.553°, is the constant steady state pitch attitude (gain) of the
aeroplane.
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Fig. 5.2 Pitch attitude response of the F-I04 to a 10 step of elevator

(ii) The second term describes the contribution made by the phugoid dynamics, the
undamped natural frequency wp = 0.148 rad/s and since (pwp= 0.017 rad/s the
damping ratio is (p = 0.115.

(iii) The third term describes the contribution made by the short period pitching
oscillation dynamics, the undamped natural frequency co, = 2.164 rad/s and since
(sw s = 0.447 rad/s the damping ratio is (s = 0.207.

The time response described by equation (5.32) is shown in Fig. 5.2 and the two
dynamic modes are clearly visible. It is also clear that the pitch attitude eventually
settles to the steady state value predicted above.

Example 5.3 illustrates that it is not necessary to obtain a complete time response
solution merely to obtain the characteristics of the dynamic modes. The principal mode
characteristics, damping ratio and natural frequency, are directly obtainable on
inspection of the characteristic polynomial L\(s) in any aircraft transfer function. The
steady state gain is also readily established by application of the Final Value Theorem
which states that

f(t)t-HX) = lim (sf(s))
s.....o

(5.33)

The corresponding Initial Value Theorem is also a valuable tool and states that

f(t)t-+o = lim (sf(s))
s-+oo

(5.34)

A complete discussion of these theorems may be found in most books on control theory,
for example in Shinners (1980).
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(5.35)
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EXAMPLE 5.4 _

Apply the initial value and final value theorems to find the initial and steady values of
the pitch attitude response of the F-104 of the previous examples. From equation
(5.27) the Laplace transform of the unit step response is given by

O( ) -4.664(s + 0.135)(s +0.267) d
s = S(S2 + 0.033s+ 0.022)(S2 + 0.893s + 4.884) eg

Applying the final value theorem to obtain

. ( -4.664(s + 0.135)(s + 0.267») 0

(}(t)t-+oo = ~~ (S2 + 0.033s +0.022)(S2 + 0.893s +4.884) deg = -1.565

and applying the initial value theorem to obtain

( . ( -4.664(s + 0.135)(s + 0.267) ) 00 ()

() t)/-+o = !~~ (S2 + 0.033s+ 0.022)(S2 + 0.893s +4.884) deg = 5.37

Clearly, the values given by equations (5.36) and (5.37) correlate reasonably well with
the known pitch attitude response calculated in Example 5.3. Bear in mind that, in all
the calculations, numbers have been rounded to three decimal places for convenience.

5.5 Acceleration response transfer functions

Acceleration response transfer functions are frequently required but are not given
directly by the solution of the equations of motion described above. Expressions for the
components of inertial acceleration are given in equations (4.9) and, clearly, they
comprise a number of motion variable contributions. Assuming small perturbation
motion such that the usual simplifications can be made, equations (4.9) may be
restated

ax = ~ - r V. + ql¥. - yr.+". }
ay = v - p~ + rUe + xr - zp
a, =w- qll; + p~ - xq + yp

Now if, for example, the normal acceleration response to an elevator referred to the cg
is required (x = y = z = 0) and if fully decoupled motion is assumed (p~ = 0) then the
equation for normal acceleration simplifies to

(5.39)

The Laplace transform of equation (5.39), assuming zero initial conditions, may be
written

az(s) = sw(s) - sO(s)Ue

Or, expressing equation (5.40) in terms of elevator response transfer functions

( )
_ N;(s) () _ U N:(s) () _ s(N;(s) - UeN:(S» l1(S)

az s - s Ll(s) '1 SSe L\(s) '7 S - Ll(s)

whence the required normal acceleration response transfer function may be written

(5.40)

(5.41)

(5.42)



(5.44)
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Transfer functions for the remaining acceleration response components may be derived
in a similar manner.

Another useful transfer function which is often required in handling qualities studies
gives the normal acceleration response to an elevator measured at the pilot's seat. In this
special case, x in equations (5.38) represents the distance measured from the cg to the
pilot's seat and the normal acceleration is therefore given by

a, = w- qUe - xq (5.43)

As before, the transfer function is easily derived

N~z(s) s(N;(s) - (Ue + xs)N~(s))

L\(S)pilot = ~(s)

EXAMPLE 5.5 _

We will calculate the normal acceleration response to elevator at the cg for the F-104
Starfighter aeroplane at the flight condition defined in Example 5.2. At the flight
condition in question the steady axial velocity component U, = 305 ft/s and the pitch
attitude and normal velocity transfer functions describing response to elevator are given
by

and

N~(s) -4.664(s + 0.135)(s + 0.267) d d
--- ra Ira
L\(s) - (S2 + 0.033s + 0.022)(S2 + 0.893s + 4.884)

N;(s) -22. 147(s2 + 0.035s + 0.022)(s + 64.675) f / / d
--= t s ra
L\(s) (S2 + 0.033s + 0.022)(S2 + 0.893s + 4.884)
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Fig. 5.3 Normal acceleration response at the cg to an elevator unit step input

(5.45)

(5.46)



(5.47)
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Substitute equations (5.45) and (5.46) together with U, into equation (5.42), pay
particular attention to the units, multiply out the numerator and factorize the result to
obtain the required transfer function

N~z(s) -22. 147s(s + 0.037)(s - 4.673)(s+ 5.081) f / 2/ d
--= t s ra

~(s) (S2 + 0.033s+ 0.022)(S2 + 0.893s + 4.884)

Note that since the numerator and denominator are of the same order the acceleration
transfer function (5.47) is an improper transfer function. The positive numerator root,
or zero, implies that the transfer function is non-minimum phase, which is typical of
aircraft acceleration transfer functions. The non-minimum phase effect is illustrated in
the unit (1 rad) step response time history shown in Fig. 5.3 and causes the initial
response to be in the wrong sense. The first few seconds of the response only are
shown and, as may be determined by application of the final value theorem, the steady
state acceleration is zero.

5.6 The state space method

The use of the state space method greatly facilitates the solution of the small
perturbation equations of motion of aircraft. Since the computational mechanism is
based on the use of matrix algebra it is most conveniently handled by a digital computer
and, as already indicated, many suitable software packages are available. Most
commercial software is intended for application to problems in modern control and
some care is needed to ensure that the aircraft equations of motion are correctly
assembled before a solution is computed using these tools. However, the available tools
are generally very powerful and their use for the solution of the equations of motion of
aircraft is a particularly simple application.

5.6.1 THE TRANSFER FUNCTION MATRIX

The general state equations (4.60) and (4.61), describing a linear dynamic system, may
be written

x(t) = Ax(t) + Bu(t) I
y(t) = Cx(t) + Du(t)

(5.48)

and the assembly of the equations of motion in this form, for the particular application
to aircraft, is explained in Section 4.4.2. Since A, B, C and D are matrices of constant
coefficients, the Laplace transform of equations (5.48), assuming zero initial conditions,
is

sx(s) = Ax(s) + Bu(s)I
y(s) = Cx(s) + Du(s)

The state equation may be rearranged and written

x(s) = [sl - A]-lBu(s)

(5.49)

(5.50)

where I is the identity matrix and is the same order as A. Thus, eliminating x(s), the state
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vector, by combining the output equation and equation (5.50), the output vectory(s) is
given by

yes) = [C[sI - A]-tO +D]u(s) = G(s)u(s) (5.51)

where G(s) is called the transfer function matrix. In general the transfer function matrix
has the form

1
G(s) = [\(s)N(s) (5.52)

and N(s) is a polynomial matrix whose elements are all of the response transfer function
numerators. The denominator L\(s) is the characteristic polynomial and is common to
all transfer functions. Thus, the application of the state space method to the solution of
the equations of motion of an aeroplane enables all of the response transfer functions
to be obtained in a single computation.

Now, as explained in Section 4.4.2, when dealing with the solution of the equations
of motion it is usually required that yes) = xes), i.e. the output vector and state vector
are the same. In this case, equation (5.51) may be simplified since C = I and D = 0,
therefore

G(s) = [sl _ ArlB = Adj[sl - AlB
lsI-AI

(5.53)

and equation (5.53) is equivalent to the multi-variable application of Cramer's rule as
discussed in Section 5.3 above.

5.6.2 THE LONGITUDINAL TRANSFER FUNCTION MATRIX

The concise longitudinal state equations are given by equations (4.67) and (4.68). Thus,
substituting for A, B and I into equation (5.53) the longitudinal transfer function matrix
is given by

-I
S - Xu -Xw -xq -Xe x Il X t

G(s) = -Zu s - zw -Zq -Ze ZIl z,
-mu -mw s-mq -me mil m t

0 0 -1 s 0 0

(5.54)

(5.55)

Algebraic manipulation of equation (5.54) leads to

N~(s) N~(s)

1 N~(s) N;(s)
G(s) = [\(s) N~(s) Nns)

N~(s) N~(s)

In this case the numerator and denominator polynomials are expressed in terms of the
concise derivatives. A complete listing of the longitudinal algebraic transfer functions in
this form is given in Appendix 2.

5.6.3 THE LATERAL TRANSFER FUNCTION MATRIX

The lateral state equation is given in terms of normalized derivatives by equation
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(4.69). Thus, substituting for A, B and I into equation (5.53) the lateral transfer function
matrix is given by

-1
S - Yv -Yp -Yr -yeP -Y", Y~ y,

-Iv s -Ip -Ir -Ie/> -1", 1~ 1,
G(s) = -nv -np s - n, -n¢ -n", n~ n, (5.56)

0 -I 0 s 0 0 0

0 0 -I 0 s 0 0

and, as for the longitudinal solution, the lateral transfer function matrix may be
written

N~(s) N,(s)

I
N~(s) Nf(s)

G(s) = L\(s) Ne(s) N,(s) (5.57)

NtCs) Nt(s)

N~(s) Nt(s)

Again the numerator and denominator polynomials are expressed in terms of the
normalized derivatives. A complete listing of the lateral algebraic transfer functions in
this form is given in Appendix 2.

EXAMPLE 5.6 _

To illustrate the use of the state space method for obtaining the lateral transfer function
matrix, data for the Lockheed C-5A were obtained from Heffley and Jewell (1972).
The data relate to a flight condition at an altitude of 20 000 ft and Mach number 0.6
and are referred to aircraft body axes. Although the data are given in American Imperial
units, here they are converted to 51 units simply for illustration. The normalized
derivatives were derived from the data, great care being exercised to ensure the correct
units. The derivatives are listed below and, as in previous examples, missing derivatives
were assumed to be insignificant and made equal to zero.

Yv = -0.1 060 1/s

Yp =0
Y, = -189.586 m/s

Y¢ = 9.8073 m/s2

Y", = 0.3768 m/s2

Ye = -0.0178 m/s2

Y, = 3.3936 m/s2

Iv = -0.0070 1/m/s

l, = -0.9880 1/5
l, = 0.2820 1/s

i, = 0

I", = 0

I~ = 0.4340 1/52

I, = 0.1870 1/S2

n; = 0.00231 /m/s

np = -0.0921 1/s

nr = -0.2030 1/s

ncJ> =0
n", =0
n~ = 0.03431 /S2

n, = -0.5220 1/s2

The lateral state equation is obtained by substituting the derivative values into equation
(4.69)
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iJ -0.106 0 -189.586 9.8073 0.3768 v -0.0178 3.3936

jJ -0.007 -0.988 0.282 0 0 p 0.434 0.187

UJr = 0.0023 -0.0921 -0.203 0 0 r + 0.0343 -0.522

~ 0 1 0 0 0 <P 0 0

~ 0 0 1 0 0 t/J 0 0

(5.58)
and the output equation, written out in full, is

v 1 0 0 0 0 v 0 0
p 0 1 0 0 0 p 0 0

[i]r = 0 0 1 0 0 r + 0 0 (5.59)
¢ 0 0 0 1 0 ¢ 0 0

t/J 0 0 0 0 1 t/J 0 0

The transfer function matrix was calculated using Program CC. The matrices A, B, C
and D are input to the program and the command for finding the transfer function
matrix is invoked. A print-out of the result produced the following

1
G(s) = .1.(s) N(s) (5.60)

where equation (5.60) is the shorthand version of equation (5.57) and

-0.018s(s + 0.15)(s - 0.98)(s + 367.35) 3.394s(s - 0.012)(s + 1.05)(s + 2.31)
0.434s(s - 0.002)(S2 + 0.33s + 0.57) 0.187s(s - 0.002)(s + 1.55)(s- 2.16)

N(s) = 0.343s(s+ 0.69)(S2 - 0.77s + 0.51) -0.522s(s + 1.08)(s2 + 0.031s + 0.056)
0.434(s - 0.002)(S2 + 0.33s + 0.57) 0.187(s - 0.002)(s + 1.55)(s - 2.16)
0.343(s + 0.69)(S2 - 0.77s + 0.51) -0.522(s + 1.08)(s2 + 0.031s + 0.056)

(5.61)

and the common denominator, the lateral characteristic polynomial, is given by

~(s) = s(s +O.OI)(s+ 1.11)(s2 + 0.18s + 0.58) (5.62)

The lateral characteristic polynomial factorizes into three real roots and a complex pair
of roots. The roots, or poles, of the lateral characteristic polynomial provide a complete
description of the lateral-directional stability characteristics of the aeroplane. The zero
root indicates neutral stability in yaw, the first non-zero real root describes the spiral
mode, the second real root describes the roll subsidence mode and' the complex pair of
roots describes the oscillatory dutch roll mode.

It is very important to remember the units of the transfer functions comprising the
transfer function matrix, which are

N~(s) N,(s) mjsjrad mjsjrad

N~(s) N~(s) radjsjrad radjsjrad

units of G(s) = .1.~s) N~(s) N,(s) = rad/s/rad rad/s/rad (5.63)
Nt(s) Nt(s) rad/rad rad/rad

N!(s) Nt(s) rad/rad radjrad

Thus, the transfer functions of interest can be obtained from inspection of equation
(5.61) together with equation (5.62). For example, the transfer function describing
sideslip velocity response to rudder is given by
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v(s)= N,(s) = 3.394(s - 0.012)(s + 1.05)(s + 29.31) m sjrad
((s) A(s) (s +O.Ol)(s + 1.11)(s2 + O.l8s +0.58) j

(5.64)

Comparison of these results with those of the original source material in Heffley and
Jewell (1972) reveals a number of small numerical discrepancies. This is due, in part,
to the numerical rounding employed to keep this illustration to a reasonable size and in
part to the differences in the computational algorithms used to obtain the solutions.
However, in both cases the accuracy is adequate.for most practical purposes.

It is worth noting that many matrix inversion algorithms introduce numerical errors
which accumulate rapidly with increasing matrix order and it is possible to obtain
seriously inaccurate results with some poorly conditioned matrices. The typical aircraft
state matrix has a tendency to fall into this category so it is advisable to check the result
of a transfer function matrix computation for reasonableness when the accuracy is in
doubt. This may be done, for example, by making a test calculation using the
expressions given in Appendix 2. For this reason Program CC includes two different
algorithms for calculating the transfer function matrix. In Example 5.6 it was found that
the Generalized Eigenvalue Problem algorithm gave obviously incorrect values for some
transfer function numerators, whereas the Fadeeva algorithm gave entirely the correct
solution. Thus, when using computer tools for handling aircraft stability and control
problems it is advisable to input the aircraft derivative and other data at the accuracy
given.

5.6.4 RESPONSE IN TERMS OF STATE DESCRIPTION

The main reasons for the adoption of state space modelling tools are the extreme power
and convenience of machine 'solution of the equations of motion and that the solution
is obtained in a form that readily lends itself to further analysis in the context of flight
control. Thus, the solution process is usually completely hidden from the investigator.
However, it is important to be aware of the mathematical procedures implemented in
the software algorithms for the reasons mentioned above. A description of the methods
of solution of the state equations describing a general system may be found in many
books on modern control or system theory. For example, descriptions may be found in
Barnett (1975), Shinners (1980) and Owens (1981). The following description is d

summary of the solution of the aircraft state equations and only includes those aspects
of the process that are most relevant to the aircraft application. For a more
comprehensive review the reader should consult the references.

The Laplace transform of the state equations (5.49) may be restated for the general
case in which non-zero initial conditions are assumed

sx(s) - x(O) = Ax(s) + Bu(s)

y(s) = Cx(s) + Du(s)

whence, the state equation may be written

x(s) = [sl - A]-lX(O) + [sl - A]-JBu(s)

or
x(s) = cJ)(s)x(O) + C!'(s)Bu(s)

(5.65)

(5.66)

(5.67)
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where CI>(s) is called the resolvent of A. The .most general expression for the state vector
x(t) is determined by finding the inverse Laplace transform of equation (5.67), and is
written

x(t) = <Il(t - to)x(to)+ 11 <Il(t - t)Bu(r)dt
to

The state transition matrix <D(t - to) is defined

(5.68)

(5.69)

it is equivalent to the matrix exponential and describes the transition in the state
response x(t) from time to to time t. The state transition matrix has the following special
properties

<D(O) = e~~o = I

CI>(00) = e~~oo = 0

CI>(t + r) = <D(t)<D(r) = eAteAt

<Il(t2 - to) = <D(t2 - tt)<D(tt - to) = e A
(t2- tl)eA(tl-tO)

<D-t(r) = <D(-t) = e- At

(5.70)

(5.71)

(5.72)

The integral term in equation (5.68) is a convolution integral whose properties are well
known and are discussed in most texts on linear systems theory. A very accessible
explanation of the role of the convolution integral in determining system response may
be found in Auslander et ale (1974).

For aircraft applications it is usual to measure time from to = 0 and equation (5.68)
may be written

x(t) =<D(t)x(O) + 1: <D(t - t)Bu(t)dt

= eAlx(O) + 1: eA(I-t)Bu(t) dr

The output response vector y(t) is determined by substituting the state vector x(t),
obtained from equation (5.71), into the output equation

y(t) = Cx(t) + Du(t)

= CeAlx(O) +C 1: eA(I-t)Bu(t)dt +Du(t)

Analytical solution of the state equation (5.71) is only possible when the form of the
input vector u(t) is known, therefore further limited progress can only be made for
specified applications. Three solutions are of particular interest in aircraft applications:
the unforced or homogeneous response, the impulse response and the step response.

5.6.4.1 Eigenvalues and eigenvectors

The characteristic equation is given by equating the characteristic polynomial to zero

.d(s) = lsI - AI = 0 (5.73)
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The roots or zeros of equation (5.73), denoted A;, are the eigenvalues of the state matrix
A. An eigenvalue A; and its corresponding non-zero eigenvector 'i are such that

Av; = A;V;

whence

[A;I - A]v; =0

(5.74)

(5.75)

Since V; :f:. 0 then [A;I - A] is singular. The eigenvectors V; are always linearly independent
provided the eigenvalues Ai are distinct, i.e. the characteristic equation (5.73) has no
repeated roots. When an eigenvalue is complex its corresponding eigenvector is also
complex and the complex conjugate A; corresponds to the complex conjugate v7.

The eigenvector or modal matrix comprises all of the eigenvectors and is defined

It follows directly from equation (5.74) that

A2

(5.76)

AV=V

o
=VA (5.77)

Am
where A is the diagonal eigenvalue matrix. Thus

V-lAY = A (5.78)

(5.79)

and A is said to be similar to the diagonal eigenvalue matrix A. The mathematical
operation on the state matrix A described by equation (5.78) is referred to as a similarity
transform. Similar matrices possess the special property that their eigenvalues are the
same. When the state equations are transformed to a similar form such that the state
matrix A is replaced by the diagonal eigenvalue matrix A their solution is greatly
facilitated. Presented in this form the state equations are said to be in modalform.

Eigenvectors may be determined as follows. Now by definition

[XI _ Atl = Adj[A;I - A]
, IAil - AI

and since, for any eigenvalue Ai' IAil - AI =0, equation (5.79) may be rearranged and
written

[Ail - A]Adj[A;1 - A] = IAil - All = 0 (5.80)

Comparing equation (5.80) with equation (5.75) the eigenvector Vi corresponding to the
eigenvalue A.; is defined

Vi = Adj[A.;1 - A] (5.81)

Any non-zero column of the adjoint matrix is an eigenvector and if there is more than
one column they differ only by a constant factor. Eigenvectors are therefore unique in
direction only and not in magnitude. However, the dynamic characteristics of a system
determine the unique relationship between each of its eigenvectors.
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5.6.4.2 The modal equations

Define the transform

;=m

x(t) =Vz(t) == V1Zl(t) + V2 Z2(t) + ... + vmzm(t) =L v;z;(t)
;=1

then the state equations (5.48) may be rewritten in modal form

i(t) = Az(t) +V-IBu(t)I
y(t) = CYz(t) + Du(t)

(5.82)

(5.83)

5.6.4.3 Unforced response

With reference to equation (5.71) the solution to the state equation in modal form,
equation (5.83), is given by

z(t) = eAtz(O) +I eA(t-t)V-1Bu(-r)d-r (5.84)

The matrix exponential e" in diagonal form is defined

o
(5.85)

o

and since it is diagonal the solutions for the transformed state variables z;(t) given by
equation (5.84) are uncoupled, the principal advantage of the transform, whence

z;(t) = e1/tzj(O) +1: e1/(t-t)V-1Bu;(-r)d-r (5.86)

The unforced response is given by equation (5.84) when u(t) = 0, whence

z(t) = eAtz(O) (5.87)

Or, substituting equation (5.87) into equation (5.82), the unforced state trajectory x(t)
may be derived

;=m ;=m
x(t) = YeAtz(O) = Lv;e1;tz;(O) = Lv;e1;ty-Ix;(0)

;=1 ;=1

or

x(t) = YeAty-1x(O) == eAtx(O)

and from equation (5.72) the output response follows

y(t) = Cx(t) = CYeAty-Ix(O) == CeAtx(O)

(5.88)

(5.89)

(5.90)

Clearly the system behaviour is governed by the system modes e).;t, the eigenfunctions
v;e).;t and by the initial state z(O) = y-Ix(O).



(5.91)
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5.6.4.4 Impulse response

The unit impulse function or Dirac delta function, denoted l5(t), is usually taken to mean
a rectangular pulse of unit area, and in the limit the width of the pulse tends to zero
whilst its magnitude tends to infinity. Thus, the special property of the unit impulse
function is

[: e5(t - to)dt = 1

where to is the time at which the impulse commences.
The solution of the modal state equation in response to a unit impulse follows from

equation (5.84)

z(t) =eAtz(O) +I eA(t-t)V-'Bu~(r)dr (5.92)

where Uc5(-r) is a unit impulse vector. The property of the unit impulse function enables
the convolution integral to be solved and

z(t) =eAtz(O) + eAty-1B = eAt[z(O) + y-1B] (5.93)

Thus the transform, equation (5.82), enables the state vector to be determined

x(t) = YeAty-1[x(O) + B] == eAt[x(O) + B]

and the corresponding output response vector is given by

y(t) = CYeAty-1[x(O) + B]+ DUc5(t)

== CeAt[x(O) +B] + DUc5(t)

(5.94)

(5.95)

(5.98)

Now for application to aeroplanes it has already been established in Section 4.4.2 that
the direct matrix D is zero. Comparing equations (5.95) and (5.90) it is seen that the
impulse response is the same as the unforced response with initial condition [x(O) + B].

5.6.4.5 Step response

When the vector input to the system is a step of constant magnitude, denoted Uk' applied
at time to = 0 then the state equation (5.84) may be written

z(t) =eAtz(O) +IeA(t-t)V-IBuk dr (5.96)

Since the input is constant the convolution integral is easily evaluated and

z(t) = eAtz(O) + A-l[eAt - I]V-lBuk (5.97)

Thus the transform, equation (5.82), enables the state vector to be determined

x(t) = YeAt[V-lx(O) + A-1.y-1Buk] - A-1Buk
== eAt[x(O) + A-I Buk] - A-1Buk

The derivation of equation (5.98) makes use of the following property of the matrix
exponential

(5.99)
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(5.100)

Again, the output response is obtained by substituting the state vector x(t), equation
(5.98), into the output equation to give

y(t) = CYeAt[V-Ix(O) + A-1V-IBuk] - [CA-IB - Dju,

== CeAt[x(O) +A-I BUk] - [CA-IB - Dju, (5.101)

Since the direct matrix D is zero for aeroplanes, comparing equations (5.101) and
(5.95) it is seen that the step response is the same as the impulse response with initial
condition [x(O) +A-IBUk] superimposed on the constant output -CA-1Buk.

5.6.4.6 Response shapes

With reference to equations (5.90), (5.95) and (5.101) it is clear that, irrespective of the
input, the .transient output response shapes are governed by the system eigenfunctions
YeAt, or alternatively, by the eigenvectors and eigenvalues. Most computer solutions of
the state equations produce an output response in the form of time history data together
with the eigenvalues and eigenvectors. Thus, in aircraft response analysis the system
modes and eigenfunctions may be calculated if required. The value of this facility is that
it provides a very effective means for gaining insight into the key physical properties
governing the response. In particular, it enables the mode content in any response
variable to be assessed merely by inspection of the corresponding eigenvectors.

The output response to other input functions may also be calculated algebraically
provided the input function can be expressed in a suitable analytic form. Typical
examples include the ramp function and various sinusoidal functions. Computer
software packages intended for analysing system response always include a number of
common input functions and usually have provision for creating other functions.
However, in aircraft response analysis, input functions other than those discussed in
detail above are generally of less interest.

EXAMPL,E 5.7 _

The longitudinal equations of motion for the Lockheed F-104 Starfighter aircraft given
in Example 5.2 may be written in state form as described in Section 4.4.2. Whence

746 0 0 0 u
0 746 0 0 w
0 36,,4 65000 0 q
0 0 0 1 iJ

-26.26 79.82 0 -24021.2 u 0
-159.64 -328.64 227530 0 w -16502

(5.102)= + 110 -1014 -18135 0 q -303575

0 0 1 0 () 0

Premultiplying this equation by the inverse of the mass matrix results in the usual form
of the state equation in terms of the concise derivatives
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u -0.0352 0.1070 0 -32.2 u 0
W -0.2140 -0.4400 305 0 w -22.1206

= 1.198 x 10-4 + t1q -0.0154 -0.4498 0 q -4.6580
fJ 0 0 1 0 (J 0

(5.103)

Of, in algebraic form,

x(t) = Ax(t) + Bu(t) (5.104)

which defines the matrices A and B and the vectors x(t) and u(t). Using the computer
software package PC MATLAS interactively the diagonal eigenvalue matrix is
calculated

A=

-0.4459 + 2.1644j
o
o
o

=[~ i ~ iJ

o
-0.4459 - 2.1644j

o
o

o
o

-0.0166 + 0.1474j
o

o
o
o

-0.0166 - 0.1474j

(5.105)

(5.108)

and the corresponding eigenvector matrix is calculated

[

0.0071 - 0.0067j 0.0071 + 0.0067j -0.9242 - 0.3816j -0.9242 + 0.3816jJ
V _ 0.9556 - 0.2944j 0.9556+ 0.2944j 0.0085 + 0.0102j 0.0085 - 0.0102j

- 0.0021 + 0.0068j 0.0021 - 0.0068j -0.0006 - 0.0002j -0.0006 + 0.OOO2j
0.0028- 0.0015j 0.0028 + 0.0015j -0.0012 + 0.0045j -0.0012 - 0.0045j

(5.106)

As' Ap and their complex conjugates A;, ;,; are the eigenvalues corresponding to the
short period pitching oscillation and the phugoid respectively. The corresponding
matrix exponential is given by

e(-0.4459+2.1644j)t 0 0 0

e" = 0 e(-·0.4459-2.1644j)t 0 0 (5.107)
0 0 e(-0.0166+0.1474j)t 0
0 0 0 e(-0.0166-0.1474j)t

The eigenfunction matrix VeAl therefore has complex non-zero elements and each
row describes the dynamic content of the state variable to which it relates. For
example, the first row describes the dynamic content of the velocity perturbation u and
comprises the following four elements

(0.0071 - 0.0067j)e(-0.4459+2.1644j)t

(0.0071 + 0.0067j)e(-0.4459-2.1644j )1

(-0.9242 - 0.3816j)e(-O.0166+0.1474j)t

(-0.9242 + 0.3816j)e(-0.0166-0.1474j )1

The first two elements in (5.108) describe the short period pitching oscillation



(5.110)
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content in a velocity perturbation and the second two elements describe the phugoid
content. The relative magnitude of the eigenvectors, the terms in parentheses,
associated with the phugoid dynamics is the largest and clearly indicate that the
phugoid dynamics is dominant in a velocity perturbation. The short period pitching
oscillation, on the other hand, is barely visible. Obviously, this kind of observation can
be made for all the state variables simply by inspection of the eigenvector and
eigenvalue matrices only. This is a very useful facility for investigating the response
properties of an aeroplane, especially when the behaviour is not conventional, when
stability modes are obscured or when a significant degree of mode coupling is
present.

When it is recalled that

ej1tt = cos nt + j sin nt (5.109)

where n represents an arbitrary scalar variable, the velocity eigenfunctions (5.108)
may be written alternatively

(0.0071 - 0.0067j)e-004459t(cos2.1644t + j sin 2.1644t)
(0.0071 + 0.0067j)e-004459t(COS 2.1644t - j sin 2.1644t)
(-0.9242 - 0.3816j)e-000l66t(cosO.1474t + j sinO.1474t)
(-0.9242 + 0.3816j)e-000166t(cos 0.1474t - j sin 0.1474t)

Since the elements in (5.110) include sine and cosine functions of time, the origins
of the oscillatory response characteristics in the overall solution of the equations of
motion are identified.

As described in Examples 5.2 and 5.3 the damping ratio and undamped natural
frequency characterize the stability modes. This information comprises the eigenvalues,
included in the matrix equation (5.105), and is interpreted as follows

(i) For the short period pitching oscillation, the higher frequency mode

undamped natural frequency co, = 2.1644 rad/s

'sros = 0.4459 rad/s

damping ratio's = 0.206

(ii) For the phugoid oscillation, the lower frequency mode

undamped natural frequency rop = 0.1474 rad/s

'prop = 0.0166 rad/s

damping ratio 'p = 0.1126

It is instructive to calculate the pitch attitude response to a unit elevator step input
using the state space method for comparison with the method described in Example
5.3. The step response is given by equation (5.101) which, for zero initial conditions, a
zero direct matrix D and output matrix C replaced with the identity matrix I, reduces
to

yet) = IVeAtA-ly-lBUk - IA-1Buk

= VeAtA-1y-1b - A-1b (5.111)
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since the single elevator input is a unit step u, = 1 and the input matrix B becomes
the column matrix b. The expression on the right- hand side of equation (5.111) is a
(4 x 1) column matrix the elements of which describe u, w, q and 0 responses to the
input. With the aid of PC MATLAS the following were calculated

147.36+ 19.07j
147.36 - 19.07j

223.33 - 133.29j
223.33 + 133.29j

-512.2005
299.3836

o
1.5548

(5.112)

The remainder of the calculation of the first term on the right-hand side of equation
(5.111) was completed by hand, an exercise which is definitely not recommended!
Pitch attitude response is given by the fourth row of the resulting column matrix y(t)
and is

O(t) =O.664e-o.017t(cos O.147t - 3.510sin 0.147t)

+ 0.882e-O
.
446t

(cos 2.164t + 0.380 sin 2.164t) - 1.5548deg (5.113)

This equation compares very favourably with equation (5.32) and may be interpreted
in exactly the same way.

This example is intended to illustrate the role of the various elements contributing
to the solution and as such would not normally be undertaken on a routine basis.
Machine computation simply produces the result in the most accessible form, which is
usually graphical although the investigator can obtain additional information in much
the same way as shown in this example.

5.7 State space model augmentation

It is frequently necessary to obtain response characteristics for variables that are not
included in the equations of motion of the aeroplane. Provided that the variables of
interest can be expressed as functions of the basic aeroplane motion variables then
response transfer functions can be derived in the same way as the acceleration response
transfer functions described in Section 5.5 above. However, when the additional transfer
functions of interest are strictly proper they can also be obtained by extending, or
augmenting, the state description of the aeroplane and solving in the usual way as
described above. This latter course of action is extremely convenient as it extends the
usefulness of the aeroplane state space model and requires little additional effort on
behalf of the investigator.

For some additional variables, such as height, it is necessary to create a new state
variable and to augment the state equation accordingly, whereas for others, such as
flight path angle, which may be expressed as the simple sum of basic aeroplane state
variables, it is only necessary to create an additional output variable and to augment the
output equation accordingly. It is also a straightforward matter to augment the state
description to include the additional dynamics of components such as engines and
control surface actuators. In this case, all of the response transfer functions obtained in
the solution of the equations of motion implicitly include the effects of the additional
dynamics.
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5.7.1 HEIGHT RESPONSE TRANSFER FUNCTION

An expression for height rate is given by equation (2.17) which, for small perturbations,
may be written

v •

h=UfJ-V(j>-W (5.114)

(5.117)

Substitute for (U, v: W) from equation (2.1) and note that for symmetric flight ~ = o.
Since the products of small quantities are insignificantly small they may be ignored and
equation (5.114) may be written -.

j,=Ue()-~-w (5.115)

With reference to Fig. 2.4, assuming ae. to be small then U, ~ VO, ~ ~ 0 and to a good
approximation equation (5.114) may be written

j, = l!OfJ - w (5.116)

The decoupled longitudinal state equation in concise form, equation (4.67), may be
augmented to include the height variable by the inclusion of equation (5.116)

it Xu X w xq Xo -'-0 U x" x,
W z, z; Zq Zo 0 w z,., z,

[. ~ ]q = m; m; mq mo 0 q + m" m, l-

e 0 0 1 0 0 0 0 0

j, 0 -w 0 VO 0 h 0 0

Alternatively, this may be written in a more compact form

[·i:;:·] = [~·····~·:···~·t·~·····:] [.::;:. ]+ [ ~~~ ] u(t)
(5.118)

where x(t) and u(t) are the state and input vectors respectively, and A and B are the state
and input matrices respectively of the basic aircraft state equation (4.67). Solution 'of
equation (5.118) to obtain the longitudinal response transfer functions will now result in
two additional transfer functions describing the height response to an elevator
perturbation and the height response to a thrust perturbation.

5.7.2 INCIDENCE AND SIDESLIP RESPONSE TRANSFER FUNCTIONS

We deal with the inclusion of incidence angle in the longitudinal decoupled equations
of motion first. It follows from equation (2.5) that for small perturbation motion
incidence a is given by

w
a ~ tan « =-

VO
(5.119)

since U, -4 ~ as the perturbation tends to zero. Thus, incidence a is equivalent to
normal velocity w divided by the steady free stream velocity. Incidence can be included
in the longitudinal state equations in two ways. Either incidence can be added to the
output vector yet) without changing the state vector, or it can replace normal velocity w
in the state vector. When the output equation is augmented the longitudinal state
equations (4.67) and (4.68) are written
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x(t) = Ax(t) + Bu(t)

u 1 0 0 0

0
u

= [~ .... ~.~.~ ...~ ....~ ]X(t)
w 1 0 0

(5.120)
yet) = 0

w
q = 0 1 0

e 0 0 0 1
q

e
rJ. 0 l/vo 0 0

When normal velocity replaces incidence, it is first necessary to note that equation
(5.119) may be differentiated to give a= wlvo. Thus, the longitudinal state equation
(4.67) may be rewritten

u Xu x, vo xq X(} u x" X!

& zl~1 vo Zw Zq/~ Z8/~ (X z"/~ ztlvo [~] (5.121)= +q mu mwVO mq m(} q m" mr

iJ 0 0 1 0 () 0 0

The output equation (4.68) remains unchanged except that the output vector yet) now
includes (X instead of w thus

(5.122)

In a similar way it is easily shown that in a lateral perturbation the sideslip angle Pis
given by

v
13 ~ tan 13 = - (5.123)

va
and the lateral small perturbation equations can be modified in the same way as the
longitudinal equations in order to incorporate sideslip angle 13 in the output equation or,
alternatively, it may replace lateral velocity v in the state equation. When the output
equation is augmented, the lateral state equations may be written

x(t) = Ax(t) + Bu(t)

v 1 0 0 0
v

= [.~;~ ....: ... ~ ....~ ]X(t)
p 0 1 0 0

(5.124)
yet) = 0 0 1 0 P

r =
r

<P 0 0 0 1

f3 1/~ 0 0 0 <P

where the lateral state equation is given by equation (4.70). When sideslip angle B
replaces lateral velocity v in the lateral state equation (4.70), it is then written

i3 Yv YplVO YrlVO Yt/>Ivo
p i: va Ip ir It/>

=
i n, va np n, nt/>
~ 0 1 0 0

f3
p

r +

Ye/VO y,IVO
I~ I,

n~ n,
o 0

[f] (5.125)

Again, for this alternative, the lateral output vector yet) remains unchanged except that
sideslip angle f3 replaces lateral velocity v thus

yT(t) = [13 p r <p] (5.126)
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Solution of the longitudinal or lateral state equations will produce the transfer function
matrix in the usual way. In every case, transfer functions will be calculated to
correspond to the particular set of variables comprising the output vector.

5.7.3 FLIGHT PATH ANGLE RESPONSE TRANSFER FUNCTION

Sometimes flight path angle y response to controls is required, especially when handling
qualities in the approach flight condition are under consideration. Perturbations in flight
path angle 'Y may be expressed in terms of perturbations in pitch attitude 0 and incidence
a, as indicated for the steady state case by equation (2.2), whence

w
y=()-r:J.~()-- (5.127)

~

Thus, the longitudinal output equation (4.68) may be augmented to include flight path
angle as an additional output variable. The form of the longitudinal state equations is
then similar to equations (5.120) and

x(t) = Ax(t) + Bu(t)

u

y(t) =
(5.128)

where the state vector x(t) remains unchanged

xT(t)=[u w q 0]

5.7.4 ADDITION OF ENGINE DYNAMICS

(5.129)

Provided that the thrust producing devices can be modelled by a linear transfer function
then, in general, it can be integrated into the aircraft state description. This then enables
the combined engine and airframe dynamics to be modelled by the overall system
response transfer functions. A very simple engine thrust model is described by equation
(2~34), with transfer function

res) k,
e(s) = (1 + sT,) (5.130)

where ret) is the thrust perturbation in response to a perturbation in throttle lever angle
G(t). The transfer function equation (5.130) may be rearranged thus

k 1
sr(s) = ~ e(s) - T. r(s) (5.131)

r r

and this is the Laplace transform, assuming zero initial conditions, of the following time
domain equation

i(t) = i. e(t) - ~ r(t)
r r

(5.132)
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The longitudinal state equation (4.67) may be augmented to include the engine dynamics
described by equation (5.132) which, after some rearrangement, may be written

U Xu Xw ' , xq Xo x, U x" 0

w Zu z, Zq Zo z, W z" 0

[ ~ ]q = m; m; m~ mo m; q + m" 0 (I (5.133)
iJ 0 0 1 0 0 0 0 0

i 0 o 0 0 -1/1;! 0 k;/1;

Thus, the longitudinal state equation has been augmented to include thrust as an
additional state and the second input variable is now throttle lever angle 8. The output
equation (4.68) remains unchanged except that the C matrix is increased in order, to the
(5 x 5) identity matrix I, in order to provide the additional output variable correspond­
ing to the extra state variable r.

The procedure described above in which a transfer function model of engine dynamics
is converted to a form suitable for augmenting the state equation is known as system
realization. More generally, relatively complex higher order transfer functions can be
realized as state 'equations, although the procedure for so doing is rather more involved
than that illustrated here for a particularly simple example. The mathematical methods
required are described in most books on modern control theory. The advantage and
power of this relatively straightforward procedure is very considerable since it literally
enables the state equation describing a very complex system, such as an aircraft with
advanced flight controls, to be built by repeated augmentation. The state descriptions of
the various system components are simply added to the matrix state equation until the
overall system dynamics is fully represented. Typically, this might mean, for example,
that the basic longitudinal or lateral (4 x 4) airframe state matrix might be augmented
to a much higher order of perhaps (12 x 12) or more, depending on the complexity of
the engine model, control system, surface actuators and so on. However, whatever the
result the equations are easily solved using the tools described above.

EXAMPLE 5.8 _

To illustrate the procedure for augmenting an aeroplane state model, let the
longitudinal model for the Lockheed F-104 Starfighter of Example 5.2 be augmented
to include height h and flight path angle y and to replace normal velocity w with
incidence Cl. The longitudinal state equation expressed in terms of concise derivatives is
given by equation (5.103) and this is modified in accordance with equation (5.121)
to replace normal velocity w with incidence rx

U -0.0352 32.6342 0 -32.2 u 0

eX -7.016 X 10-4 -0.4400 1 0 Cl -0.0725
= 1.198 x 10-4 + -4.6580 11q -4.6829 -0.4498 0 q

iJ 0 0 1 0 (J 0

(5.134)

Equation (5.134) is now augmented by the addition of equation (5.104), the height
equation expressed in terms of incidence rx and pitch attitude (J

h= ~(O - rx) = 3050 - 305rx (5.135)
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whence, the augmented state equation is written

u -0.0352 32.6342 0 -32.2 0 u 0

a. -7.016 x 10-4 -0.4400 1 0 0 a. -0.0725

q = 1.198 X 10-4 -4.6829 -0.4498 0 0 q + -4.6580 11
e 0 0 1 0 0 e 0

h 0 -305 0 305 0 h 0

(5.136)

The corresponding output equation is augmented to included flight path angle y as
given by equation (5.116) and is then written

u 1 0 0 0 0
0 1 0 0 0

u
a.

0 0 1 0 0
a.q

(5.137)
0 = 0 0 0 1 0

q

h 0 0 0 0 1
()

h
y 0 -1 0 1 0

This, of course, assumes the direct matrix D to be zero as discussed above. Equations
(5.136) and (5.137) together provide the complete state description of the Lockheed
F-104 as required. Solving these equations with the aid of Program CC results in the
six transfer functions describing the response to elevator.

(i) The common denominator polynomial (the characteristic polynomial) is given by

~(s) = S(S2 + 0.033s + 0.022)(S2 + 0.892s+ 4.883) (5.138)

(ii) The numerator polynomials are given by

N~(s) = -2.367s(s - 4.215)(s+ 5.519)ft/s/rad

N~(s) = -0.073s(s + 64.675)(S2 + 0.035s+ 0.023) rad/rad

N~(s) = -4.658s2(s + 0.134)(s+ 0.269)rad/s/rad

N~(s) = -4.658s(s + 0.134)(s+ 0.269) rad/rad

N~(s) = 22.121(s+ 0.036)(s - 4.636)(s+ 5.085)ft/rad

N~(s) = 0.073s(s + 0.036)(s - 4.636)(s + 5.085) rad/rad

(5.139)

Note that the additional zero pole in the denominator is due to the increase in order
of the state equation from four to five and represents the height integration. This is
easily interpreted since an elevator step input will cause the aeroplane to climb or
descend steadily after the transient has died away when the response becomes similar
to that of a simple integrator. Note also that the denominator zero cancels with a zero
in all numerator polynomials except that describing the height response. Thus, the
response transfer functions describing the basic aircraft motion variables u, «, q and ()
are identically the same as those obtained from the basic fourth order state equations.
The reason for the similarity between the height and flight path angle response
numerators becomes obvious if the expression for the height equation (5.135) is
compared with the expression for flight path angle, equation (5.116).
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6
Longitudinal Dynamics

6.1 Response to controls

The solution of the longitudinal equations of motion by, for example, the
methods described in Chapter 5 enables the response transfer functions to be
obtained. These completely describe the linear dynamic response to a control
input in the plane of symmetry. Implicit in the response are the dynamic
properties determined by the stability characteristics of the aeroplane. The transfer
functions and the response variables described by them are linear since the entire
modelling process is based on the assumption that the motion is constrained to
small disturbances about an equilibrium trim state. However, it is common
practice to assume that the response to controls is valid when the magnitude of
the response can hardly be described as 'a small perturbation'. For many
conventional aeroplanes the error incurred by so doing is generally acceptably
small, as such aeroplanes tend to have substantially linear aerodynamic character­
istics over their flight envelopes. For aeroplanes with very large flight envelopes,
significant aerodynamic non-linearity and/ or dependence on sophisticated flight control
systems, it is advisable not to use the linearized equations of motion for analysis of
response other than that which can justifiably be described as being of small
magnitude.

It is convenient to review the longitudinal response to elevator about a trim state in
which the thrust is held constant. The longitudinal state equation (4.67) may then be
written

u Xu Xw xq Xo u x"
W Zu Zw Zq Zo w z" (6.1)= + 1'/q mu mw mq mo q m"
0 0 0 1 0 0 0

The four response transfer functions obtained in the solution of equation (6.1) may
conveniently be written

u(s) _ N;(s) _ ku(s+ I/Tu)(S2 + 2'uwus+ w~)

l1(s) = a(s) - (S2 +2'pwps + W~)(S2 + 2'swss + w~)
(6.2)
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w(s) N;(s) kw(s + 1/~)(s2 +2,ctwcts + w;)
l1(S) == A(s) =(S2 + 2(pwps + W~)(S2 + 2(sws + W;)

q(s) N~(s) kqs(s + 1/18\)(s + 1/102 )

l1(S) == ~(S) = (S2 + 2'pwps + ro~)(S2 + 2'swss + W~)

O(s) _ N~(s) ko(s + 1/1O\)(s + 1/102 )

",(s) = ~(S) = (S2 + 2(pwps + W~)(S2 + 2(swss +w;)

(6.3)

(6.4)

(6.5)

The solution of the equations of motion results in polynomial descriptions of the transfer
function numerators and common denominator as set out in Appendix 2. The
polynomials factorize into real and complex pairs of roots which are most explicitly
quoted in the style of equations (6.2) to (6.5) above. Since the roots are interpreted as
time constants, damping ratios and natural frequencies, the above style of writing makes
the essential information instantly available. It should also be noted that the numerator
and denominator factors are typical for a conventional aeroplane. Sometimes complex
pairs of roots may become two real roots and vice versa. However, this does not usually
mean that the dynamic reponse characteristics of the aeroplane become dramatically
different. Differences in the interpretation of response may be evident but will not
necessarily be large.

As has already been indicated, the common denominator of the transfer functions
describes the characteristic polynomial which, in turn, describes the stability character­
istics of the aeroplane. Thus, the response of all variables to an elevator input is
dominated by the denominator parameters, namely, damping ratios and natural
frequencies. The differences between the individual responses are entirely determined by
their respective numerators. It is therefore important to appreciate fully the role of the
numerator in determining response dynamics. The response shapes of the individual
variables are determined by the common denominator and 'coloured' by their respective
numerators. The numerator plays no part in determining stability in a linear system
which is how the aeroplane is modelled here.

EXAMPLE 6.1 _

The equations of motion and aerodynamic data for the Ling-Temco- Vought A- 7A
Corsair II aircraft were obtained from Teper (1969). The flight condition corresponds
to level cruising flight at an altitude of 15000ft at Mach 0.3. The equations of motion,
referred to a body axis system, arranged in state space format are

u
w

=q

e

0.00501 0.00464
-0.08570 -0.54500
0.00185 -0.00767

o 0

-72.90000 -31.34000
309.00000 - 7.40000
-0.39500 0.00132

1 0

u

w
q

e
+

5.63000
-23.80000
-4.51576 11 (6.6)

o

Since incidence (X and flight path angle yare useful variables in the evaluation of
handling qualities, it is convenient to augment the corresponding output equation, as
described in Section 5.7, in order to obtain their response transfer functions in the
solution of the equations of motion. The output equation is therefore
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u 1 0 0 0 0
w 0 1 0 0 u 0
q 0 0 1 0 w

+
0 (6.7)

(J = 0 0 0 1 0 11q
a 0 0.00316 0 0 e 0
y 0 -0.00316 0 1 0

Note that all elements in the matrices in equations (6.6) and (6.7) have been rounded
to five decimal places simply to keep the equations to a reasonable physical size. This
should not be done with the equations used in the actual computation.

Solution of the equations of motion using Program CC determines the following
response transfer functions

u(s)= 5.63(s +0.369)(s +0.587)(s + 58.437) ftjsjrad
11(s) (S2 + 0.033s + 0.020)(S2 + 0.902s+ 2.666)

w(s) = -23.8(i - 0.0088s + 0.0098)(s + 59.048) ftjsjrad
11(s) (S2 + 0.033s+0.020)(82+0.902s+ 2.666)

q(s) -4.516s(s - 0.008)(s+ 0.506)
'1(s) =(; + 0.033s +0.020)(; + 0.902s+ 2.666) radjsjrad(degjsjdeg)

O(s) -4.516(s - 0.008)(s+ 0.506)
'1(s) = (; + 0.033s+0.020)(; +0.902s+ 2.666) radjrad(degjdeg)

a(s.) -0.075(i - 0.0088s+0.0098)(s + 59.048) d/ d(d /d .)
11(S) = (S2 + 0.033s+ 0.020)(S2 + 0.9028 + 2.666) ra ra eg eg

Y(8) 0.075(s - 0.027)(s+ 5.004)(s - 6.084) d/ d(d /d )
11(S) = (S2 +0.033s+0.020)(S2 + 0.902s+ 2.666) ra ra e9 eg

All coefficients have again been rounded to a convenient number of decimal places
and the above caution should be noted.

The characteristic equation is given by equating the common denominator
polynomial to zero

~(s) = (82 + 0.033s+ 0.020)(S2 + 0.9028 + 2.666)= 0

The first pair of complex roots describes the phugoid stability mode with character­
istics

damping ratio 'p = 0.11

undamped natural frequency (Up = 0.14 rad/s

The second pair of complex roots describes the short period pitching oscillation, or
short period stability mode, with characteristics

damping ratio's =0.28

undamped natural frequency (Us = 1.63 rad/s

These mode characteristics indicate that the airframe is aerodynamically stable
although it will be shown later that the short period mode damping ratio is
unacceptably low.

The response of the aircraft to a unit step (1°) elevator input is shown in Fig. 6.1.
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Fig. 6.1 Aircraft response to 10 elevator step input
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All of the variables in the solution of the equations of motion are shown, the responses
being characterized by the transfer functions, equations (6.8).

The responses clearly show both dynamic: stability modes, the short period pitching
oscillation and the phugoid. However, the rnagnitude of each stability mode differs in
each response variable. For example, the short period pitching oscillation is most visible
as the initial transient in the variables w, q and a, whereas the phugoid mode is visible
in all variables although the relative magnitudes vary considerably. Clearly, the stability
of the responses is the same, as determined by the common denominator of the transfer
functions, equations (6.8), but the differences between each of the response variables
are determined by the unique numerator of each response transfer function.

The mode content in each of the motion variables is given most precisely by the
eigenvectors. The analytical procedure described in Example 5.7 is applied to the
equations of motion for the A- 7A. With the aid of PC MATLAB the eigenvector matrix
V is determined as follows

short period mode phugoid mode

-0.1682 - O.l302j -0.1682 + 0.1302j 0.1467 + 0.9677j 0.1467 - 0.9677j :u

v= 0.2993 + 0.9301j 0.2993 - 0.9301j 0.0410 + 0.2008j 0.0410 - 0.2008j :w
(6.9)

-0.0046 + 0.0018j -0.0046 - 0.0018j 0.0001 + O.0006j 0.0001 - 0.OOO6j :q
0.00019 + 0.OO24j 0.0019 - 0.0024j 0.0041 - 0.0013j 0.0041 + 0.0013j :lJ

To facilitate interpretation of the eigenvector matrix, the magnitude of each component
eigenvector is calculated as follows

0.213 0.213 0.979 0.979 : u
0.977 0.977 0.204 0.204 : \V

0.0049 0.0049 0.0006 0.0006 : q

0.0036 0.0036 0.0043 0.0043 : lJ

Clearly, the phugoid mode is dominant in u since 0.979» 0.213, the short period
mode is dominant in w since 0.977 »0.204, the short period mode is dominant in q
since 0.0049 »0.0006 and the short period and phugoid modes content in () are of
similar order. These observations accord very well with the responses shown in
Fig. 6.1.

The steady state values of the variables following a unit step (1°) elevator input
may be determined by application of the final value theorem, equation (5.33). The
transfer functions, equations (6.8), assume a unit elevator displacement to mean 1 rad
and this has transfer function

1
11(8) = - rad

8

For a unit step input of 1°the transfer function becomes

11(S) = _1_ = 0.0175 rad
57.3s 8

Thus, for example, the Laplace transform of the speed response to a 1° elevator step
input is given by

( )
5.63(s+ 0.369)(8 + 0.587)(s 1- 58.437) 0.0175f

u 8 = " tis(S2 + 0.033s + 0.020)(S2 + 0.902s +2.666) 8
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Applying the final value theorem, equation (5.33)

u(t)1 = lim(s 5.63(s+ 0.369)(s + 0.587)(s + 58.437) 0.0175) ft/s = 23.39 ft/s
55 s-+o (s'l + 0.033s + 0.020)(S2 + 0.902s + 2.666) s

Since the step input is positive in the nose down sense the response eventually settles
to the small steady increase in speed indicated.

In a similar way, the steady state response of all the motion variables may be
calculated to give

U 23.39ft/5
w -4.53ft/s
q 0

(6.10)
fJ = O.34deg
CI., -0.81 deg
y

steady state 1.15 deg

It is important to remember that the steady state values given in equation (6.10)
represent the changes with respect to the initial equilibrium trim state following the 10

elevator step input. Although the initial response is applied in the nose down sense,
inspection of equation (6.10) indicates that after the mode transients have damped out
the aircraft is left with a small reduction in incidence, a small increase in pitch attitude
and is climbing steadily at a flight path angle of 1.150

• This apparent anomaly is due
to the fact that at the chosen flight condition the aircraft is operating close to the stall
boundary on the back side of the drag-speed curve, l.e, below the minimum drag
speed. Thus, the disturbance results in a significant decrease in drag leaving the aircraft
with sufficient excess power enabling it to climb gently. It is for the same reason that
a number of the transfer functions, equations (6.8), have non-minimum phase
numerator terms where these would not normally be expected.

6.1.1 THE CHARACTERISTIC EQUATION

The longitudinal characteristic polynomial for a classical aeroplane is fourth order, it
determines the common denominator in the longitudinal response transfer functions
and, when equated to zero, defines the characteristic equation which may be written

As4+Bs3+Cs2+Ds+E=0 (6.11)

The characteristic equation (6.11) most commonly factorizes into two pairs of complex
roots which are most conveniently written

(S2 + 2'pwps + W~)(S2 + 2'swss + w;) = 0 (6.12)

As already explained, the second order characteristics in equation (6.12) describe the
phugoid and short period stability modes respectively. The stability modes comprising
equation (6.12) provide a complete description of the longitudinal stability properties of
the aeroplane subject to the constraint of small perturbation motion. Interpretation of
the characteristic equation written in this way is most readily accomplished if reference
is first made to the properties of the classical mechanical mass-spring-damper system,
which are summarized in Appendix 5.

Thus, the longitudinal dynamics of the aeroplane may be likened to a pair of loosely
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coupled mass-spring-damper systems, and the interpretation of the motion of the
aeroplane following a disturbance from equilibrium may be made by direct comparison
with the behaviour of the mechanical mass-spring-damper. However, the damping and
frequency characteristics of the aeroplane are obviously not mechanical in origin; they
derive entirely from the aerodynamic properties of the airframe. The connection between
the observed dynamics of the aeroplane and its aerodynamic characteristics is made by
comparing equation (6.12) with equation (6.11) and then referring to Appendix 2 for the
definitions of the coefficients in equation (6.11) in terms of aerodynamic stability
derivatives. Clearly, the relationships between the damping ratios and undamped
frequencies of equation (6.12) and their aerodynamic drivers is neither obvious nor
simple. Means for dealing with this difficulty are described below in which simplifying
approximations are made based on the observation and understanding of the physical
behaviour of aeroplane dynamics.

6.2 The dynamic stability modes

Both longitudinal dynamic stability modes are excited whenever the aeroplane is
disturbed from its equilibrium trim state. A disturbance may be initiated by pilot control
inputs, a change in power setting, airframe configuration changes such as flap
deployment and by external atmospheric influences such as gusts and turbulence.

6.2.1 THE SHORT PERIOD PITCHING OSCILLATION

The short period mode is typically a damped oscillation in pitch about the oy axis.
Whenever an aircraft is disturbed from its pitch equilibrium state the mode is excited
and manifests itself as a classical second order oscillation in which the principal
variables are incidence «(w), pitch rate q and pitch attitude B. This observation is easily
confirmed by reference to the eigenvectors in the solution of the equations of motion;
this may be seen in Example 6.1 and also in Fig. 6.1. Typically, the undamped natural
frequency of the mode is in the range 1radl s to 10radl s and the damping is usually
stabilizing although the damping ratio is often lower than desired. A significant feature
of the mode is that the speed remains approximately. constant (u = 0) during a
disturbance. As the period of the mode is short, inertia and momentum effects ensure
that speed response in the time scale of the mode is negligible.

The physical situation applying can be interpreted by comparison with a torsional
mass-spring-damper system. The aircraft behaves as if it were restrained by a torsional
spring about the oy axis as indicated in Fig. 6.2. A pitch disturbance from trim
equilibrium causes the 'spring' to produce a restoring moment thereby giving rise to an
oscillation in pitch. The oscillation is damped and this can be interpreted as a viscous
damper as suggested in Fig. 6.2. Of course the spring and viscous damping effects are
not mechanical. In reality they are produced entirely by aerodynamic mechanisms with
contributions from all parts of the airframe, not all of which are necessarily stabilizing
in effect. However, in the interests of promoting understanding, the stiffness and
damping effects are assumed to be dominated by the aerodynamics of the tailplane.

The spring stiffness arises from the natural weathercock tendency of the tailplane to
align with the incident flow. The damping arises from the motion of the tailplane during
the oscillation when, clearly, it behaves as a kind of viscous paddle damper. The total
observed mode dynamics depends not only on the tailplane contribution, but also on the



120 Longitudinal dynamics

aerodynamic damping
and stiffness in pitch

v.!>
o

z
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nose up pitch disturbance damped oscillation in pitch

steady velocity ~--------]>u=o
Fig. 6.2 A stable short period pitching oscillation

magnitudes of the additional contributions from other parts of the airframe. When the
overall stability is marginal it is implied that the additional contributions are also
significant and it becomes much more difficult to identify and quantify the principal
aerodynamic mode drivers.

6.2.2 THE PHUGOID

The phugoid mode is most commonly a lightly damped low frequency oscillation in
speed u which couples into pitch attitude () and height h. A significant feature of this
mode is that the incidence «(w) remains substantially constant during a disturbance.
Again, these observations are easily confirmed by reference to the eigenvectors in the
solution of the equations of motion; this may be seen in Example 6.1 and also in Fig.
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Fig. 6.3 The development of a stable phugoid
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6.1. However, it is clear that the phugoid appears, to a greater or lesser extent, in all
of the longitudinal motion variables, but the relative magnitudes of the phugoid
components in incidence z(w) and in pitch rate q are very small. Typically, the undamped
natural frequency of the phugoid is in the range 0.1 radl s to 1radl s and the damping
ratio is very low. However, the apparent damping characteristics of the mode may be
substantially influenced by power effects in some aeroplanes.

Consider the development of classical phugoid motion following a small disturbance
in speed as illustrated on Fig. 6.3. Initially, the aeroplane is in trimmed level equilibrium
flight with steady velocity ~ such that the lift L and weight mg are equal. Let the
aeroplane be disturbed at (a) such that the velocity is reduced by a small amount u. Since
the incidence remains substantially constant this results in a small reduction in lift such
that the aeroplane is no longer in vertical equilibrium. It therefore starts to lose height
and since it is flying 'down hill' it starts to accelerate as at (b). The speed continues to
build up to a value in excess of ~, which is accompanied by a build up in lift which
eventually exceeds the weight by a significant margin. The build up in speed and lift
cause the aircraft to pitch up steadily until at (c) it starts to climb. Since it now has an
excess of kinetic energy, inertia and momentum effects cause it to fly up through the
nominal trimmed height datum at (d) losing speed and lift as it goes, as it is now flying
'up hill'. As it decelerates, it pitches down steadily until at (e) its lift is significantly less
than the weight and the accelerating descent starts again. Inertia and momentum effects
cause the aeroplane to continue flying down through the nominal trimmed height datum
(f) and as the speed and lift continue to build up so it pitches up steadily until at (g) it
starts climbing again to commence the next cycle of oscillation. As the motion
progresses the effects of drag cause the motion variable maxima and minima at each
peak to reduce gradually in magnitude until the motion eventually damps out.

Thus, the phugoid is classical damped harmonic motion resulting in the aircraft flying
a gentle sinusoidal flight path about the nominal trimmed height datum. As large inertia
and momentum effects are involved, the motion is necessarily relatively slow such that
the angular accelerations, qand ci(w), are insignificantly small. Consequently, the natural
frequency of the mode is low and since drag is designed to be low so the damping. is also
low. Typically, once excited, many cycles of the phugoid may be visible before it
eventually damps out. Since the rate of loss of energy is low, a consequence of low drag
damping effects, the motion is often approximated by undamped harmonic motion in
which potential and kinetic energy are exchanged as the aircraft flies the sinusoidal flight
path. This, in fact, was the basis on which Lanchester (1908) first successfully analysed
the motion.

6.3 Reduced order models

Thus far, the emphasis has been on the exact solution of the longitudinal equations of
motion, which results in an exact description of the stability and response characteristics
of the aircraft. Although this is usually the object of a flight dynamics investigation it
has two disadvantages. Firstly, a computational facility is required if a v~ry tedious
manual solution is to be avoided and, secondly, it is difficult, if not impossible, to
establish the relationships between the stability characteristics and their aerodynamic
drivers. Both of these disadvantages can be avoided by seeking approximate solutions,
which can also provide considerable insight into the physical phenomena governing the
dynamic behaviour of the aircraft.
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For example, an approximate solution of the longitudinal characteristic equation
(6.11) is based on the fact that the coefficients A, B, C, D and E have relative values
which do not change very much for conventional aeroplanes. Generally, A, Band Care
significantly larger than D and E such that the quartic has the following approximate
factors

A(2 (CD-BE) E)(2 B C) 0s + C2 S + C S +AS +A =

Equation (6.13) is in fact the first step in the classical manual iterative solution of the
quartic, the first pair of complex roots describes the phugoid and the second pair
describes the short period mode. Algebraic expressions, in terms of aerodynamic
derivatives, mass and inertia parameters, etc, for the coefficients A, B, C, D and E are
given in Appendix 1. Since these expressions are relatively complex, further physical
insight is not particularly revealing unless simplifying assumptions are made. However,
the approximate solution given by equation (6.13) is often useful for preliminary mode
evaluations, or as a check of computer solutions, when the numerical values of the
coefficients A, B, C, D and E are known. For conventional aeroplanes, the approximate
solution is often surprisingly close to the exact solution of the characteristic equation.

6.3.1 THE SHORT PERIOD MODE APPROXIMATION

The short term response characteristics of an aircraft are of particular importance in
flying and handling qualities considerations, for the reasons stated in Section 6.5. Since
short term behaviour is dominated by the short period mode it is convenient to obtain
the reducedorder equations of motion in which the phugoid is suppressed or omitted. By
observing the nature of the short period pitching oscillation, sometimes called the rapid
incidence adjustment, it is possible to simplify the longitudinal equations of motion to
describe short term dynamics only. The terms remaining in the reduced order equations
of motion are therefore the terms that dominate short term dynamics, thereby providing
insight into the important aerodynamic drivers governing physical behaviour.

It has already been established that the short period pitching oscillation is almost
exclusively an oscillation in which the principal variables are pitch rate q and incidence
IX, the speed remaining essentially constant, thus u = O. Therefore, the speed equation
and the speed-dependent terms may be removed from the longitudinal equations of
motion (6.1) since they are all approximately zero in short term motion, and the revised
equations may be written

(6.14)

Further, assuming the equations of motion are referred to aircraft wind axes and that
the aircraft is initially in steady level flight then

(Je == CXe = 0 and Ue = VO

and, with reference to Appendix 1, it follows that

Zo =mo = 0
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Equation (6.14) then reduces to its simplest possible form

(6.15)

where, now, the derivatives are referred to a wind axes system. Equation (6.15) is
sufficiently simple that the transfer function matrix may be calculated manually by the
application of equation (5.53)

(6.16)

(6.17)

(6.18)

The transfer functions may be further simplified by noting that

IZq 7~~ I»Imql and IZwl» Imw ~: I
and with reference to Appendix 1

Zq = Zq + "'a Ue ~ o,
m-Zw

since

Zq« mu, and m s Zw
Thus, the two short term transfer functions describing the response to elevator may be
written

w(s) Z~(S+Ue~) kw(s + l / J:)
-= 2 == 2 211(S) (s - (mq+ Zw)s + (mqzw - m; Ue» (s + 2(s(Oss + (Os)
q(s) _ m,,(s - Zw) _ kq(s+ 1/16

2 )

1](S) - (S2 - (mq + Zw)S + (mqzw - mwUe» = (S2 + 2(s(Oss + co~)

where now it is understood that k.; kq , Ta, 18
2

, (s and co, represent approximate values.
Clearly it is now very much easier to relate the most important parameters describing
longitudinal short term transient dynamics of the aircraft to the aerodynamic properties
of the airframe, represented in equations (6.17) and (6.18) by the concise derivatives.

The reduced order characteristic equation may be written down on inspection of
equation (6.17) or (6.18)

Ll(s) = S2 + 2'scoss + co; = S2 - (mq+ zw)s + (mqzw - m; Ue) = 0 (6.19)

and, by analogy with the classical mass-spring-damper system described in Appendix
5, the damping and natural frequency of the short period mode are given, to a good
approximation, by

2(sws : -(mq +~\.) I
ills - JmqzW m.U,

(6.20)
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(6.22)
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It is instructive to write the damping and natural frequency expressions (6.20) in terms
of the dimensional derivatives. The appropriate conversions are obtained from Appendix
1 and the assumptions made above are applied to give

Mq Zw MwUe
ws = -----t, m t,

Note that the terms on the right-hand side of expressions (6.21) comprise aerodynamic
derivatives divided either by mass or moment of inertia in pitch. These terms may be
interpreted in exactly the same way as those of the classical mass-spring-damper. Thus,
it becomes apparent that the aerodynamic derivatives are providing stiffness and viscous
damping in pitch although there is more than one term contributing to damping and to
natural frequency. Therefore, the aerodynamic origins of the short period dynamics are
a little more complex than those of the classical mass-spring-damper and the various
contributions do not always act in the most advantageous way. However, for
conventional aeroplanes the overall dynamic characteristics usually describe a stable
short period mode.

For a typical conventional aeroplane, the relative magnitudes of the aerodynamic
derivatives are such that, to a crude approximation

J-~Uews = t,
which serves only to indicate what are usually regarded as the dominant terms
governing the short period mode. Normally the derivative .zw, which is dependent on
the lift curve slope of the wing, and the derivative Mq , which is determined largely by
the viscous 'paddle' damping properties of the tailplane, are both negative numbers.
The derivative ~v is a measure of the aerodynamic stiffness in pitch and is also
dominated by the aerodynamics of the tailplane. The sign of Mw depends on the
position of the cg, becoming increasingly negative as the cg moves forward in the
airframe. Thus, the short period mode will be stable if the cg is far enough forward in
the airframe. The cg position in the airframe where Mw changes sign is called the
controls fixed neutral point and Mw is therefore also a measure of the controls fixed
stability margin of the aircraft. With reference to equation (6.19) and expressions
(6.20), the corresponding cg position where (mqzW - mwUe) changes sign is called the
controls fixed manoeuvre point and (mqzw - mwUe) is a measure of the controls fixed
manoeuvre margin of the aircraft. The subject of manoeuvrability is discussed in
Chapter 8.

6.3.2 THE PHUGOID MODE APPROXIMATION

A reduced order model of the aircraft retaining only the phugoid dynamics is very rarely
required in flight dynamics studies. However, the greatest usefulness of such a model is
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Fig. 6.4 The phugoid oscillation

to identify those aerodynamic properties of the airframe governing the characteristics
of the mode.

6.3.2.1 The Lanchester model

Probably the first successful analysis of aeroplane dynamics was made by Lanchester
(1908) who devised a mathematical model to describe phugoid motion based on his
observations of the behaviour of gliding model aeroplanes. His analysis gives an
excellent insight to the physical nature of the mode and may be applied to the modern
aeroplane by interpreting and restating his original assumptions as follows.

(i) The aircraft is initially in steady level flight.
(ii) The total energy of the aircraft remains constant.
(iii) The incidence a remains constant at its initial trim value.
(iv) The thrust 't balances the drag D.
(v) The motion is sufficiently slow that pitch rate q effects may be ignored.

Referring to Fig. 6.4 the aircraft is initially in trimmed straight level flight with velocity
~. Following a disturbance in speed which excites the phugoid mode, the disturbed
speed, pitch attitude and height are denoted v: (J and h respectively. Then based on
assumption (ii)

1 1
"2 mVo2 = "2 mV2 + mgh = constant

whence

v2 = ~2 - 2gh (6.23)

which describes the exchange of kinetic and potential energy as the aeroplane flies the
sinusoidal flight path.
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In the initial steady trim state the lift and weight are in balance thus

1 2
L, = "2 p Yo SCL = mg

and in disturbed flight the lift is given by

1
L ="2PV2SCL

(6.24)

(6.25)

As a consequence of assumption (iii) the lift coefficient CL also remains constant and
equations (6.23), (6.24) and (6.25) may be combined to give

L = mg - pghSCL (6.26)

Since simple undamped oscillatory motion is assumed, a consequence of assumption
(ii), the single degree of freedom equation of motion in height may be written

mh =L cos (J - mg ~ L - mg (6.27)

(6.29)

since, by definition, () is a small angle. Substituting for lift L from equation (6.26) into
equation (6.27)

h+ eg~CL )h = h+ w~h = 0 (6.28)

Thus, approximately, the frequency of the phugoid mode is given by

w
p
= JpgSCL =g../2

m ~

when equation (6.24) is used to eliminate the mass.
Thus, to a reasonable approximation, Lanchester's model shows that the phugoid

frequency is inversely proportional to the steady trimmed speed about which the mode
oscillates and that its damping is zero.

6.3.2.2 A reduced order model

A more detailed approximate model of the phugoid mode may be derived from the
equations of motion by making simplifications based on assumptions about the nature
of the motion. Following a disturbance, the variables w(e<) and q respond in the time
scale associated with the short period mode; thus, it is reasonable to assume that W(li)

and q are quasi-steady in the longer time scale associated with the phugoid. Hence, it
follows that

w=q=O
Once again, it is assumed that the equations of motion are referred to aircraft wind axes
and, since the disturbance takes place about steady level flight, then

()e == lie = 0 and Ue = ~

and, with reference to Appendix 1, it follows that

Xe = -g and Ze = me = 0
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Also, as for the reduced order short period model and with reference to Appendix 1

since

Zq -e.mt), and m» z,
Additionally, it is usually assumed that the aerodynamic derivative xq is insignificantly
small. Thus the equations of motion (equations 6.1) may be simplified accordingly

u Xu Xw 0 -g U x'1
0 Zu Zw v: 0 W z'1 (6.30)= + t10 mu mw mq 0 q m'1

t~ 0 0 1 0 e 0

The second and third rows of equation (6.30) may be written

Z.U +z;w+ Ueq + Z~'1 = 0 } (6.31)
m.u + mww + rnqq + m"fl =0

Equations (6.31) may be solved algebraically to obtain expressions for wand q in terms
ofu and 11

(6.32)

The expressions for wand q are substituted into the first and third rows of equation
(6.30) and following some rearrangement the reduced order state equation is obtained

or

(~] = (6.33)

(6.34)

Equation (6.33) may be solved algebraically to obtain the reponse transfer functions
for the phugoid variables u and e. However, it is not very meaningful to analyse a
long term dynamic response to elevator in this way. The characteristic equation
describing the reduced order phugoid dynamics is considerably more useful and is
given by

A(s) = det[sI - Ap] = 0



128 Longitudinal dynamics

whence

(6.35)

Thus, the approximate damping and natural frequency of the phugoid mode are given
in terms of a limited number of aerodynamic derivatives. More explicit, but rather more
approximate, insight into the aerodynamic properties of the aeroplane dominating the
mode characteristics may be obtained by making some further assumptions. Typically,
for conventional aeroplanes in subsonic flight

mu ~ 0, Imuzwl« Imwzul and ImwUel» Imqzwl

then the corresponding expressions for the damping and natural frequency become

2'pw
p
= ;:gZU } (6.36)

wp = -­o,
Now, with reference to Appendix I

'" Xu p VO SXu d Co! Zu _ p VoSZu (6.37)x = - = 2 an Zu - - 2
u m m m m

since Xwis negligibly small and m » Zw. Expressions for the dimensionless aerodynamic
derivatives are given in Appendix 6 and may be approximated as shown in expressions
(6.38) when the basic aerodynamic properties are assumed to be independent of speed.
This follows from the assumption that the prevailing flight condition is subsonic such
that the aerodynamic properties of the airframe are not influenced by compressibility
effects

(6.38)

(~.39)

(6.40)

Expressions (6.36) may therefore be restated in terms of aerodynamic parameters,
assuming again that the trimmed lift is equal to the aircraft weight, to obtain

gCD
'pwp= CLVo

wp = J2g
2

=g,J'2
UeVO VO

and a simplified approximate expression for the damping ratio follows

'p ~ ~(~:)
These expressions for damping ratio and natural frequency of the phugoid mode are
obviously very approximate since they are the result of many simplifying assumptions.
Note that the expression for wp is the same as that derived by Lanchester, equation
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(6.29), which indicates that the natural frequency of the phugoid mode is approximately
inversely proportional to the trimmed speed. It is also interesting and important to note
that the damping ratio of the phugoid mode is approximately inversely proportional to
the lift to drag ratio of the aeroplane, equation (6.40). Since one of the main objectives
of aeroplane design is to achieve a high lift to drag ratio it is easy to see why the
damping of the phugoid mode is usually very low.

EXAMPLE 6.2 _

To illustrate the use of reduced order models, consider the A-7A Corsair II aircraft of
Example 6.1 and at the same flight condition. Now the equations of motion in Example
6.1 are referred to a body axis system and the use of the reduced order models
described above requires the equations of motion referred to a wind or stability axis
system. Thus, using the axis transformation relationships given in Appendices 7 and 8,
the stability and control derivatives and 'inertia parameters referred to wind axes were
calculated from the original values, which are of course referred to body axes. The
longitudinal state equation was then recalculated to give

. '

-0.04225 -0.11421 0 -32.2 0.00381u u
w -0.20455 -0.49774 317.48 0 w -24.4568

= + '1q 0.00003 -0.00790 -0.39499 0 q -4.51576
iJ 0 0 1 0 (J 0

(6.41)

The reduced order model corresponding to the short period approximation, as given
by equation (6.15), is simply taken out of equation (6.41 ) and is written

[w] [-0.49774 317.48 ][w] [-24.4568]
q = -0.00790 -0.39499 q + -4.51576 '1

Solution of the equations of motion (6.42) using Program CC determines the following
reduced order response transfer functions

w(s) -24.457(s + 59.015) f / / d
-= t s ra
'1(s) (~ + 0.893s+ 2.704)
q(s) -4.516(s + 0.455)
rt(s) = (,sl + 0.893s + 2.704) rad/s/rad (deg/s/deg)

z(s) -0.077(s + 59.015)
rt(s) = (,sl + 0.893s +2.704) rad/rad (deq/deq)

It is important to remember that these transfer functions describe, approximately, the
short term response of those variables which are dominant in short period motion. The
corresponding short term pitch attitude response transfer function follows since, for
small perturbation motion,

(J(s~ = ! q(s) = -4.516(s + 0.455) radjrad (deq/deq)
'1(s) s'1(s) S(S2 + 0.893s+ 2.704)

(6.44)

From the pitch rate response transfer function in equations (6.43) it is readily
determined that the steady state pitch rate following a positive unit step elevator input
is -0.76 rad/s. which implies that the aircraft pitches continuously until the input is
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removed. The pitch attitude response transfer function confirms this since, after the
short period transient has damped out, the aircraft behaves like a perfect integrator in
pitch. This is indicated by the presence of the s term in the denominator of equation
{6.44}. In reality the phugoid dynamics usually prevents this situation developing
unless the input is very large and accompanied by a thrust increase, which results in a
vertical loop manoeuvre. The model described here would be most inappropriate for
the analysis of such large amplitude motion.

The common denominator of transfer functions {6.43} represents the approximate
reduced order short period characteristic polynomial, equation (6.19). Thus,
approximate values of the damping ratio and undamped natural frequency of the short
period mode are easily calculated and are

damping ratio's = 0.27

undamped natural frequency to, = 1.64 rad/s

It will be seen that these values compare very favourably with the exact values given
in Example6.1.

Interpretation of the reduced order model is probably best illustrated by observing
short term response to an elevator input. The responses to a 10 elevator step input of
the variables given in equations {6.43} are shown on Fig. 6.5. Also shown on the same
plots are the corresponding responses of the full aircraft model derived from equation
{6.41}. It is clear that the responses diverge with time, as expected, as no phugoid
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dynamics is present in the reduced order model. However, for the first ten seconds or
so, the comparison is favourable indicating that the reduced order model is acceptable
for most short term response studies.

Turning now to the approximate reduced order phugoid mode characteristics, from
the state equation referred to wind axes, equation (6.41), the required numerical
parametersare

Xu = -0.04225 I/s

z; = -0.20455 I/s

m; = -0.00003 rad/ft

U, == Vo = 317.48 ft/s

The simple Lanchester model determines that the damping of the phugoid is zero and
that the undamped natural frequency is given by equation (6.29). Thus the
approximate characteristics of the phugoid mode calculated according to this model
are

damping ratio (p = 0

undamped natural frequency wp = 0.143 rad/s

The approximate phugoid mode characteristics determined according to the rather
more detailed reduced order model are given by equation (6.36). Since the chosen
flight condition is genuinely subsonic, the derivative m; is very small indeed which
matches the constraints of the model well. The approximate characteristics of the
phugoid rnode calculated according to this model are

damping ratio 'p = 0.147

undamped natural frequency wp = 0.144 rad/s

Again, comparing these approximate values of the phugoid mode characteristics with
the exact values in Example 6.1 indicates good agreement, especially for the undamped
natural frequency. Since the phugoid damping ratio is always small (near to zero) it is
very sensitive to computational rounding errors and to the approximating assumptions,
which makes a really good approximate match difficult to achieve. The goodness of
the match here is enhanced by the very subsonic flight condition which correlates well
with assumptions made in the derivation of the approximate models.

6.4 Frequency response

For the vast majority of flight dynamics investigations time domain analysis is usually
adequate, especially when the subject is the classical unaugmented aeroplane. The
principal graphical tool used in time domain analysis is, of course, the time history plot
showing the response of the aeroplane to controls or to some external disturbance.
However, when the subject aeroplane is an advanced modern aeroplane fitted with a
flight control system, flight dynamics analysis in the frequency domain can provide
additional valuable insight into its behaviour. In recent years, frequency domain analysis
has made an important contribution to the understanding of the sometimes
unconventional handling qualities of aeroplanes whose flying qualities are largely shaped
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by a flight control system. It is for this reason that a brief review of simple frequency
response ideas is considered here. Since frequency response analysis tools are
fundamental to classical control engineering, their description can be found in almost
every book on the subject: very accessible material can be found in Shinners (1980) and
Friedland (1987) for example.

Consider the hypothetical situation when the elevator of an otherwise trimmed
aeroplane is operated sinusoidally with constant amplitude k and variable frequency w;
the longitudinal input to the aeroplane may therefore be expressed

11(t) = k sin cot (6.45)

It is reasonable to expect that each of the output variables describing aircraft motion
will respond sinusoidally to the input. However, the amplitudes of the output variables
will not necessarily be the same and they will not necessarily be in phase with one
another or with the input. Thus, the general expression describing any output response
variable may be written

y(t) = K sin(wt + 4» (6.46)

(6.47)

where both the output amplitude K and phase shift 4> are functions of the exciting
frequency co. As the exciting frequency t» is increased from zero so, initially, at low
frequencies, the sinusoidal response will be clearly visible in all output variables. As the
exciting frequency is increased further so the sinusoidal response will start to diminish
in magnitude and will eventually become imperceptible in the outputs. Simultaneously,
the phase shift 4> will indicate an increasingly large lag between the input and output.
The reason for these observations is that at sufficiently high frequencies the mass and
inertia properties of the aeroplane simply prevent it responding quickly enough to follow
the input.

The limiting frequency at which the response commences to diminish rapidly is
referred to as the bandwidth of the aeroplane with respect to the output variable of
interest. A more precise definition of bandwidth is given below. Since aeroplanes only
respond to frequencies below the bandwidth frequency they have the frequency
response properties of a low pass system. At exciting frequencies corresponding to the
damped natural frequencies of the phugoid and the short period mode, peaks in
output magnitude K will be seen together with significant changes in phase shift 4>.
The mode frequencies are described as resonant frequencies and the magnitudes of the
output parameters K and 4> at resonance are determined by the damping ratios of
the modes. The system (or aeroplane) gain in any particular response variable is
defined

system gain = IK~W)I

where, in normal control system applications, it is usually assumed that the input and
output variables have the same units. This is often not the case in aircraft applications
and care must be exercised in the interpretation of gain.

A number of graphical tools have been developed for the frequency response analysis
of linear systems and include the Nyquist diagram, the Nichols chart and the Bode
diagram. All are intended to simplify analytical procedures, the mathematical
calculation of which is tedious without a computer, and all plot input-output gain and
phase as functions of frequency. Perhaps the simplest of the graphical tools to use and
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interpret is the Bode diagram, although the amount of information it is capable of
providing is limited. However, today it is used extensively for flight dynamics analysis,
especially in advanced handling qualities studies.

6.4.1 TIlE BODE DIAGRAM

The intention here is not to describe the method for constructing a Bode diagram but
to describe its application to the aeroplane and to explain its correct interpretation. For
an explanation of the method for constructing a Bode diagram the reader should consult
a suitable control engineering text, such as either of those referenced above.

To illustrate the application of the Bode diagram to a typical classical aeroplane
consider the pitch attitude response to the elevator transfer function as given by
equation (6.5)

O(s) k(J(s + 1/~l)(s + 1/~2)

11(S) = (S2 + 2(props + ro~)(~ + 2(sross + roi)

This response transfer function is of particular relevance to longitudinal handling studies
and it has the simplifying advantage that both the input and output variables. have the
same units. Typically, in frequency response calculations it is usual to assume a
sinusoidal input signal of unit magnitude. It is also important to note that whenever the
response transfer function is negative, which is often the case in aircraft applications, a
negative input is assumed, which ensures the correct computation of phase. Therefore,
in this particular application, since k(J is usually a negative number, a sinusoidal elevator
input of unit magnitude, 11(t) = -1 sin rot, is assumed. The pitch attitude frequency
response is calculated by writing s = jco in equation (6.48); the right-hand side then
becomes a complex number whose magnitude and phase can be evaluated for a suitable
range of frequency roo Since the input magnitude is unity the system gain, equation
(6.47), is given simply by the absolute value of the magnitude of the complex number
representing the right-hand side of equation (6.48) and is, of course, a function of
frequency to.

Since the calculation of gain and phase involves the products of several complex
numbers it is preferred to work in terms of the logarithm of the complex number
representing the transfer function. The total gain and phase then become the simple
sums of the gain and phase of each factor in the transfer function. For example, each
factor in parentheses on the right-hand side of equation (6.48) may have its gain and
phase characteristics calculated separately as a function of frequency; the total gain and
phase is then given by summing the contributions from each factor. However, the system
gain is now expressed as a logarithmic function of the gain ratio, equation (6.47), and
is defined

logarithmic gain = 20logJO IKiW)1 dB

and has units of decibels, denoted dB. Fortunately it is no longer necessary to calculate
frequency response by hand since many computer software packages, such as PC
MATLAB, have this facility and can also provide the desired graphical output. How­
ever, as always, some knowledge of the analytical procedure for obtaining frequency
response is essential in order that the computer output may be correctly interpreted.
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Fig. 6.6 Bode diagram showing classical pitch attitude frequency response

The Bode diagram comprises two corresponding plots, the gain plot and the phase plot.
The gain plot shows the logarithmic gain, in dB, plotted against 10glO(w) and the phase
plot shows the phase, in degrees, also plotted against 10glO(W). To facilitate inter­
pretation the two plots are often superimposed on a common frequency axis. The Bode
diagram showing the typical pitch attitude frequency response, as given by transfer
function (6.48), is shown on Fig. 6.6.

Also shown in Fig. 6.6 are the asymptotic approximations to the actual gain and
phase plots as functions of frequency. The asymptotes can be drawn in simply from
inspection of the transfer function, equation (6.48), and serve as an aid to interpreta­
tion. Quite often the asymptotic approximation is sufficient for the evaluation in
hand, thereby dispensing with the need to compute the actual frequency response
entirely.

The shape of the gain plot is characterized by the break frequencies wI to w4
which determine the locations of the discontinuities in the asymptotic gain plot.
Each break frequency is defined by a key frequency parameter in the transfer
function, namely
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I
with first order phase lead (+ 45°)wl=-

Tel
w2 = (llp with second order phase lag (-90°)

I
with first order phase lead (+ 45°)w3=-

Te2

w4=ws with second order phase lag (-90°)

Since the transfer function is classical minimum phase, the corresponding phase shift at
each break frequency is a lead if it arises from a numerator term or a lag if it arises from
a denominator term. If, as is often the case in aircraft studies, non-minimum phase terms
appear in the transfer function, then their frequency response properties are unchanged
except that the sign of the phase is reversed. Further, a first order term gives rise to a
total phase shift of 90° and a second order term gives rise to a total phase shift of 180°.
The characteristic phase response is such that half the total phase shift associated with
any particular transfer function factor occurs at the corresponding break frequency.
Armed with this limited information, a modest interpretation of the pitch attitude
frequency response of the aeroplane is possible. The frequency response of the other
motion variables may be dealt with in a similar way.

6.4.2 IN:rERPRETATION OF THE BODE DIAGRAM

With reference to Fig. 6.6 it is seen that at very low frequencies, w < 0.01 rad/s, there
is no phase shift between the input and output and the gain remains constant, at a little
below 5 dB in this illustration. In other words, the pitch attitude 'will follow the stick
movement. more-or-Iess precisely. As the input frequency is increased through wi so the
pitch response leads the input in phase, the output magnitude increases rapidly and the
aeroplane appears to behave like an amplifier. At the phugoid frequency the output
reaches a substantial peak, consistent with the low damping, and thereafter the gain
drops rapidly, accompanied by a rapid increase in phase lag. As the input frequency is
increased further so the gain continues to reduce gently and the phase settles at -90°
until the influence of break frequency w3 comes into play. The reduction in gain is
arrested and the effect of the phase lead may be seen clearly. However, when the input
frequency reaches the short period break frequency a small peak in gain is seen,
consistent with the higher damping ratio, and at higher frequencies the gain continues to
reduce steadily. Meanwhile, the phase lag associated with the short period mode results
in a constant total phase lag of -180° at higher frequencies.

Once the output-input gain ratio drops below unity, or 0 dB, the aeroplane appears
to behave like an attenuator. The frequency at which the gain becomes sufficiently small
that the magnitude of the output response becomes insignificant is called the bandwidth
frequency, denoted Wb. There are various definitions of bandwidth, but the definition
used here is probably the most common and defines the bandwidth frequency as the
frequency at which the gain first drops to - 3dB below the zero frequency, or steady
state, gain. The bandwidth frequency is indicated in Fig. 6.6 and it is commonly a little
higher than the short period frequency. A gain of -3 dB corresponds to a gain ratio of
1/-J"2 = 0.707. Thus, by definition, the gain at the bandwidth frequency is 0.707 times
the steady state gain. Since the pitch attitude bandwidth frequency is close to the short
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period frequency, the latter may sometimes be substituted for the bandwidth frequency,
which is often good enough for most practical purposes.

The peaks in the gain plot are determined by the characteristics of the stability modes.
A very pronounced peak indicates low mode damping and vice versa, an infinite peak
corresponding to zero damping. The magnitude of the changes in gain and phase
occurring in the vicinity of a peak indicates the significance of the mode in the response
variable in question. The illustration in Fig. 6.6 indicates the magnitude of the phugoid
to be much greater than the magnitude of the short period mode in the pitch response of
the aeroplane. This would, in fact, be confirmed by response time histories and
inspection of the corresponding eigenvectors.

In the classical application of the Bode diagram, as used by the control engineer,
inspection of the gain and phase properties in the vicinity of the bandwidth frequency
enables conclusions about the stability of the system to be made. Typically, frequency is
quantified in terms of gain margin and phase margin. However, such evaluations are only
appropriate when the system transfer function is minimum phase. Since aircraft transfer
functions that are non-minimum phase are frequently encountered, and many also have
the added complication that they are negative, it is not usual for aircraft stability to be
assessed on the Bode diagram. It is worth noting that, for' aircraft augmented with flight
control systems, the behaviour of the phase plot in the vicinity of the bandwidth
frequency is now known to be linked to the susceptibility of the aircraft to pilot-induced
oscillations, a particularly nasty handling deficiency.

Now, the foregoing summary interpretation of frequency response assumes a
sinusoidal elevator input to the aircraft. Clearly, this is never likely to occur as a result
of normal pilot action. However, normal pilot actions may be interpreted to comprise a
mix of many different frequency components. For example, in gentle manoeuvring the
frequency content of the input would generally be low, whilst in aggressive or high
workload situations the frequency content would be higher and might even exceed the
bandwidth of the aeroplane. In such a limiting condition the pilot would certainly be
aware that the aeroplane could not follow his demands quickly enough and, depending
in detail on the gain and phase response properties of the aeroplane, he could well
encounter hazardous handling problems. Thus, bandwidth is a measure of the quickness
of response achievable in a given aeroplane. As a general rule, it is desirable that flight
control system designers should seek the highest response bandwidth consistent with the
dynamic capabilities of the airframe.

EXAMPLE 6.3 _

The longitudinal frequency response of the A-7A Corsair II aircraft is evaluated for
the same flight condition as Examples 6.1 and 6.2. However, the longitudinal response
transfer functions used for the evaluations are referred to wind axes and were obtained
in the solution of the full order state equation (6.41). The transfer functions of primary
interest are
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u(s) 0.00381(s + 0.214)(s + 135.93)(s + 598.3) f I / d
-= " t s ra
'1(s) (S2 + 0.0338 + 0.02)(82 + 0.9028 + 2.666) .

O(s) " -4.516(8 - 0.008)(8 +0.506) d d
-= ra Ira
'1(s) (S2 + 0.0338 + 0.02)(S2 + 0.902s+2.666)

exes) -0.077(S2 + 0.042s+ 0.02)(s+ 59.016) dl d
-= ra ra
'1(8) (S2 + 0.033s+ 0.02)(82+ 0.902s+2.666)

(6.50)

It will be noticed that the values of the various numerator terms in the velocity and
incidence transfer functions differ significantly from the values in the corresponding
transfer functions in Example 6.1, equations (6.8). This is due to the different reference
axes used and to the fact that the angular difference between body and wind axes is
a significant body incidence angle of 13.3°. Such a large angle is consistent with the
very low speed flight condition. "The frequency response of each transfer function was
calculated with the aid of Program CC and the Bode diagrams are shown in Figs 6.7
to 6.9 respectively. Interpretation of the Bode diagrams for the three variables is
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straightforward and follows the general interpretation discussed above. However,
important or significant differences are commented on as follows.

The frequency response of axial velocity u to elevator input 11 is shown in Fig.
6.7 and it is clear, as might be expected, that it is dominated by the phugoid. The
very large low frequency gain values are due entirely to the transfer function units
which areft/s/rad, and a unit radian elevator input is of course unrealistically largel
The peak gain of 75 dB at the phugoid frequency corresponds to a gain ratio of
approximately 5600 ft/s/rad, However, since the aircraft model is linear, this very
large gain ratio may be interpreted equivalently as approximately 98 ft/s/deg, which
is much easier to appreciate physically. Since the gain drops away rapidly as the
frequency increases beyond the phugoid frequency, the velocity bandwidth
frequency is only a little higher than the phugoid frequency. This accords well with
practical observation; velocity perturbations at frequencies in the vicinity of the short
period mode are usually insignificantly small. The phase plot indicates that there is
no appreciable phase shift between input and output until the frequency exceeds
the phugoid frequency when there is a rapid increase in phase lag. This means that
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for all practical purposes speed changes demanded by the pilot will follow the stick
in the usable frequency band.

The pitch attitude () frequency response to elevator input '1 is shown in Fig. 6.8. Its
general interpretation follows the discussion of Fig. 6.6 above and is not repeated here.
However, there are some significant differences which must not be overlooked. The
differences are due to the fact that the transfer function is non-minimum phase, a
consequence of selecting a very low speed flight condition for the example. Referring
to equations (6.50), this means that the numerator zero liTo. is negative, and the
reasons for this are discussed in Example 6.1. The non-minimum phase effects do not
influence the gain plot in any significant way, so its interpretation is quite straight­
forward. However, the effect of the non-minimum phase numerator zero is to introduce
phase lag at very low frequencies rather than the usual phase lead. It is likely that in
manoeuvring at this flight condition the pilot would be aware of the pitch attitude lag
in response to his stick input.

The body incidence a frequency response to elevator input '1 is shown in Fig. 6.9
and it is clear that, as might be expected, this is dominated by the short period mode.
For all practical purposes the influence of the phugoid on both the gain and phase
frequency responses is insignificant. This may be confirmed by reference to the



140 Longitudinal dynamics

appropriate transfer function in equations (6.50), where it will be seen that the second
order numerator term very nearly cancels the phugoid term in the denominator. This is
an important observation since it is quite usual to cancel approximately equal
numerator and denominator terms in any response transfer function to simplify it.
Simplified transfer functions often provide adequate response models in both the time
and frequency domains, and can be extremely useful for explaining and interpreting
aircraft dynamic behaviour. In modern control parlance the phugoid dynamics would
be said to be not observable in this illustration. The frequency response in both gain
and phase is more-or-Iess flat at frequencies up to the short period frequency, or for
most of the usable frequency range. In practical terms this means that incidence will
follow the stick at constant gain and without appreciable phase lag, which is obviously
a desirable state of affairs.

6.5 Flying and handling qualities

The longitudinal stability modes play an absolutely fundamental part in determining
the longitudinal flying and handling qualities of an aircraft and it is essential that their
characteristics must be 'correct' if the aircraft is to be flown by a human pilot. A
simplistic view of the human pilot suggests that he behaves like an adaptive dynamic
system and will adapt his dynamics to harmonize with that of the controlled vehicle.
Since his dynamics interacts and couples with that of the aircraft he will adapt, within
human limits, to produce the best closed loop system dynamics compatible with the
piloting task. His adaptability enables him to cope well with aircraft with less than
desirable flying qualities. However, the problems of coupling between incompatible
dynamic systems can be disastrous and it is this latter aspect of the piloting task which
has attracted much attention in recent years. Every time the aircraft is disturbed in
response to control commands so the stability modes are excited, and it is not difficult to
appreciate why their characteristics are so important. Similarly, the stability modes are
equally important in determining ride quality when the main concern is response to
atmospheric disturbances. In military combat aircraft ride quality determines the
effectiveness of the airframe as a weapons platform and in civil transport aircraft it
determines the comfort of passengers.

In general, it is essential that the short period mode, which has a natural frequency
close to human pilot natural frequency, is adequately damped. Otherwise, dynamic
coupling with the pilot may occur under' certain conditions leading to severe, or even
catastrophic, handling problems. On the other hand, as the phugoid mode is much lower
in frequency its impact on the piloting task is much less demanding. The average human
pilot can easily control the aircraft even when the phugoid is mildly unstable. The
phugoid mode can, typically, manifest itself as a minor trimming problem when poorly
damped. Although not in itself hazardous, it can lead to increased pilot workload and,
for this reason, it is desirable to ensure adequate phugoid damping. It is also important
that the natural frequencies of the stability modes should be well separated in order to
avoid interaction, or coupling, between the modes. Mode coupling may give rise to
unusual handling characteristics and is generally regarded as an undesirable feature in
longitudinal dynamics. The subject of aircraft handling qualities is discussed in rather
more detail in Chapter 10.
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6.6 Mode excitation

Since the longitudinal stability modes are usually well separated in frequency, it is
possible to excite the modes more-or-Iess independently for the purposes of
demonstration or measurement. Indeed, it is a general flying qualities requirement that
the modes be well separated in frequency in order to avoid handling problems arising
from dynamic mode coupling. The modes may be excited selectively by the application
of a sympathetic elevator input to the trimmed aircraft. The methods developed for
in-flight mode excitation reflect an intimate understanding of the dynamics involved and
are generally easily adapted to the analytical environment. Because the longitudinal
modes are usually well separated in frequency the form of the input disturbance is not,
in practice, very critical. However, some consistency in the flight test or analytical
procedures adopted is desirable if meaningful comparative studies are to be made.

The short period pitching oscillation may be excited by applying a short duration
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disturbance in pitch to the trimmed aircraft. This is best achieved with an elevator pulse
having a duration of a second or less. Analytically this is adequately approximated by
a unit impulse applied to the elevator. The essential feature of the disturbance is that it
must be sufficiently short so as not to excite the phugoid significantly. However, as the
phugoid damping is usually very low it is almost impossible not to excite the phugoid at
the same time, but it does not usually develop fast enough to obscure observation of
the short period mode. An example of a short period response recorded during a flight
test exercise in a Handley Page Jetstream aircraft is shown in Fig. 6.10. In fact, two
excitations are shown, the first in the nose up sense and the second in the nose down
sense. The pilot input 'impulse' is clearly visible and represents his best attempt at
achieving a clean impulse like input; some practice is required before consistently good
results are obtained. Immediately following the input the pilot released the controls to
obtain the controls free dynamic response, which explains why the elevator angle does
not recover its equilibrium trim value until the short period transient has settled. During
this short elevator free period its motion is driven by oscillatory aerodynamic 'cading
and is also coloured by the control circuit dynamics, which can be noticeably intrusive.
Otherwise the response is typical of a well-damped aeroplane.

The phugoid mode may be excited by applying a small speed disturbance to the
aircraft in trimmed flight. This is best achieved by applying a small step input to the
elevator, which will cause the aircraft to fly up, or down, according to the sign of the
input. If the power is left at its trimmed setting then the speed will decrease, or increase,
accordingly. When the speed has diverged from its steady trimmed value by about 50/0
or so, the elevator is returned to its trim setting. This provides the disturbance and a
stable aircraft will then execute a phugoid oscillation as it recovers its trim equilibrium.
Analytically, the input is equivalent to an elevator pulse of several seconds' duration.
The magnitude and length of the pulse would normally be established by trial and error
since its effect will be very aircraft dependent. However, it should be remembered that
for proper interpretation of the resulting response the disturbance should be small in
magnitude since a small perturbation model is implied.

An example of a phugoid response recorded during a flight test exercise in a Handley
Page Jetstream aircraft is shown in Fig. 6.11. The pilot input 'pulse' is clearly visible
and, as for the short period mode, some practice is required before consistently good
results are obtained. Again, the controls are released following the input to obtain the
controls free dynamic response and the subsequent elevator motion is caused by the
sinusoidal aerodynamic loading on the surface itself. The leading and trailing edge steps
of the input elevator pulse may excite the short period mode. However, the short period
mode transient would normally decay to zero well before the phugoid has properly
developed and would not therefore obscure the observation of interest.

It is clear from an inspection of Fig. 6.11 that the phugoid damping is significantly
higher than might be expected from the previous discussion of the mode characteristics.
What is in fact shown is the aerodynamic, or basic airframe, phugoid modified by the
inseparable effects of power. The Astazou engines of the Jetstream are governed to run
at constant rpm .and thrust changes are achieved by varying the propeller blade pitch.
Thus, as the aircraft flies the sinusoidal flight path during a phugoid disturbance, the
sinusoidal propeller loading causes the engine automatically to adjust its power to
maintain constant propeller rpm. This very effectively increases the apparent damping of
the phugoid. It is possible to operate the aircraft at a constant power condition when
the 'power damping' effect is suppressed. Under these circumstances it is found that the
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Fig. 6.11 Flight recording of the phugoid

aerodynamic phugoid is much less stable, as predicted by the simple theoretical model,
and at some flight conditions it is unstable.

The above flight recording of the longitudinal stability modes illustrates the controls
free dynamic stability characteristics. The same exercise could of course be repeated with
the controls held fixed following the disturbing input. In this event the controls fixed
dynamic stability characteristics would be observed. In general the differences between
the responses would be small and not too significant. Now a controls free dynamic
response is only possible in aeroplanes with reversible controls, which includes most small
classical aeroplanes. Virtually all larger modern aircraft have powered controls, driven
by electronic flight control systems, which are effectively irreversible and which means
that they are only capable of exhibiting controls fixed dynamic response. Thus, today,
most theoretical modelling and analysis is concerned with controls fixed dynamics only,
as is the case throughout this book. However, a discussion of the differences between
controls fixed and controls free aeroplane dynamics may be found in Hancock (1995).
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When it is required to analyse the dynamics of a single mode in isolation, the best
approach is to emulate flight test practice as far as that is possible. It is necessary to
choose the most appropriate transfer functions to show the dominant response variables
in the mode of interest. For example, as illustrated in Figs 6.10 and 6.11 the short period
mode is best observed in the dominant response variables q and w(e<), whereas the
phugoid is best observed in its dominant response variables u, hand O. It is necessary to
apply a control input disturbance sympathetic to the mode dynamics and it is necessary
to observe the response for an appropriate period of time. For example, Fig. 6.1 shows
both longitudinal modes but the time scale of the illustration reveals the phugoid in
much greater detail than the short period mode, whereas the time scale of Fig. 6.5 was
chosen to reveal the short period mode in detail since that is the mode of interest. The
form of the control input is not usually difficult to arrange in analytical work since most
software packages have built-in impulse, step and pulse functions, whilst more esoteric
functions can usually be programmed by the user. This kind of informed approach to
the analysis is required if the best possible visualization of the longitudinal modes and
their associated dynamics is to be obtained.
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7
Lateral-directional Dynamics

7.1 Response to controls

The procedures for investigating and interpreting the lateral-directional dynamics of an
aeroplane are much the same as those used to deal with the longitudinal dynamics and
are not repeated at the same level of detail in this chapter. However, some aspects of
lateral-directional dynamics, and their interpretation, differ significantly from the
longitudinal dynamics and the procedures for interpreting the differences are dealt with
appropriately. The lateral-directional response transfer functions are obtained in the
solution of the lateral equations of motion using, for example, the methods described in
Chapter 5.

The transfer functions completely describe the linear dynamic asymmetric response
in sideslip, roll and yaw to aileron and rudder inputs. As in the longitudinal solution,
implicit in the response are the dynamic properties determined by the lateral-directional
stability characteristics of the aeroplane. As before, the transfer functions and the
response variables described by them are linear since the entire modelling process is
based on the assumption that the motion is constrained to small disturbances about an
equilibrium trim state. The equilibrium trim state is assumed to mean steady level flight
in the first instance and the previously stated caution concerning the magnitude of a
small lateral-directional perturbation applies.

The most obvious difference between the solution of the longitudinal equations of
motion and the lateral equations of motion is that there is more algebra to deal with.
Since two aerodynamic inputs are involved, the ailerons and the rudder, two sets of
input-output response transfer functions are produced in the solution of the equations
of motion. However, these are no more difficult to deal with than a single input-output
set of transfer functions, there are just more of them! The most significant difference
between the longitudinal and lateral-directional dynamics of the aeroplane concerns the
interpretation. In general, the lateral-directional stability modes are not so distinct and
tend to exhibit dynamic coupling to a greater extent. Thus, some care is needed in the
choice of assumptions made to facilitate their interpretation. A mitigating observation is
that, unlike the longitudinal dynamics, the lateral-directional dynamics does not change
very much with flight condition since most aeroplanes possess aerodynamic symmetry
by design.

The lateral-directional equations of motion describing small perturbations about an
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equilibrium trim condition and referred to wind axes are given by the state equation
(4.70) as follows

v Yv Yp Yr YtP
p Lv Ip I, ItP=i nv np nr ntP
~ 0 1 0 0

v
p
r + UJ (7.1)

The solution of equation (7.1) produces two sets of four response transfer functions,
one set describing motion in response to aileron input and a second set describing
response to rudder input. As for the longitudinal response transfer functions, it is
convenient to adopt a shorthand style of writing the transfer functions. The transfer
functions describing response to aileron are conveniently written

v(s) _ Ne(s) kv(s + l/TpJ )(s+ 1/1/h )

e(s) = Ll(s) = (s + l/~)(s + 1/1;)(s2+ 2'dWdS + wa)

p(s) _ N~(s) kps(S2 + 2(tPwtPs + w~)
e(s) = Ll(s) = (s + 1/~)(s + 1/1;)(s2+ 2(dWdS + wa)

r(s) _ Ne(s) k,(s + 1/'4)(; + 2'",ro",s+ w;)
~(s) = Ll(s) = (s + 1/~)(s + 1/7;)(s2+ 2'dWdS + cva)

4>(s) _ Nt(s) _ ktP(S2 + 2(tPcv tP s + w~)

~(s) = Ll(s) - (s + 1/~)(s + 1/1;)(s2 + 2'dWdS + cva)

and the transfer functions describing response to rudder are conveniently written

v(s) _ N,(s) _ kv(s+ I/TpJ)(s + 1/1/h)(s + 1/Tp3)
(s) = Ll(s) - (s + 1/~)(s + 1/1;)(s2 + 2(dWdS + w~)

p(s) _ Nf(s) kps(s + 1/74,1)(s + 1/74,2)
(s) = ~(s) = (s + 1/1;)(s + 1/7;)(s2+ 2(dWdS + cv~)

r(s) _ N,(s) _ kr(s+ I/T",)(s2 + 2(",(O",s + w;)
(s) = Ll(s) - (8+ 1/~)(s + 1/1;)(s2 + 2(dWdS + W~)

4>(s) _ Nt(s) ktP(s + I/TtP J)(s + 1/74,2)
(s) = Ll(s) = (s + 1/~)(s + 1/1;)(s2 + 2(dWdS +wa)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

The solution of the equations of motion results in polynomial descriptions of the transfer
function numerators and common denominator as set out in Appendix 2. The
polynomials factorize into real and pairs of complex roots which are most explicitly
quoted in the style of equations (7.2) to (7.9) above. Since the roots are interpreted as
time constants, damping ratios and natural frequencies, the above style of writing makes
the essential information instantly available. It should also be noted that the numerator
and denominator factors are typical for a conventional aeroplane. Sometimes pairs of
complex roots may be replaced with two real roots and vice versa. However, this does
not usually mean that the dynamic response characteristics of the aeroplane become
dramatically different. Differences in the interpretation of response may be evident but
will not necessarily be large.

Transfer functions (7.2) to (7.9) each describe uniquely different, but related, variables
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in the motion of the aeroplane in response to a control input. However, it will be
observed that the notation adopted indicates similar values for some numerator terms in
both aileron and rudder response transfer functions, for example k., 1;p, C." and OJ."

appear in both N~(s) and N,(s). It must be understood that the numerator parameters
are context dependent and usually have a numerical value which is unique to the transfer
function in question. To repeat the comment made above, the notation is a convenience
for allocating particular numerator terms and serves only to identify the role of each
term as a gain, time constant, damping ratio or frequency.

As before, the denominator of the transfer functions describes the characteristic
polynomial which, in turn, describes the lateral-directional stability characteristics of the
aeroplane. The transfer function denominator is therefore common to all response
transfer functions. Thus, the response of all variables to an aileron or to a rudder input
is dominated by the denominator parameters, namely time constants, damping ratio and
natural frequency. The differences between the individual responses are entirely
determined by their respective numerators and the response shapes of the individual
variables are determined by the common denominator and 'coloured' by their respective
numerators.

EXAMPLE 7.1 _

The equations of motion and aerodynamic data for the Douglas DC-8 aircraft were
obtained from Teper (1969). At the flight condition of interest the aircraft has a total
weight of 190000 Ib and is flying at Mach 0.44 at an altitude of 15000ft. The source
data are referenced to aircraft body axes and for the purposes of this illustration they
have been converted to a wind axes reference using the transformations given in
Appendices 7 and 8. The equations of motion, referred to wind axes and quoted in
terms of concise derivatives are, in state space format,

V -0.1008 0 -468.2 32.2 v 0 13.48416

P -0.00579 -1.232 0.397 0 p -1.62 0.392 [iJ= +r 0.00278 -0.0346 -0.257 0 r -0.01875 -0.864

~ 0 1 0 0 <P 0 0

(7.10)

Since it is useful to have the transfer function describing sideslip angle f3 as well as
sideslip velocity v. the output equation is augmented as described in Section 5.7. Thus,
the output equation is

v
p
r
</>
p

= ~ ! ~ ~ [;]
000 1 r

0.00214 0 0 0 <P

(7.11)

Again, the numerical values of the matrix elements in equations (7.10) and (7.11) have
been rounded to five decimal places in order to keep the equations to a reasonable
written size. This should not be done with the equations used in the actual
computation.
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Solution of the equations of motion using Program CC produced the following two
sets of transfer functions. First, the transfer functions describing response to aileron

v(s) 8.779(s+ 0.197)(s - 7.896) f d
~(s) = (s + 0.0065)(s + 1.329)(S2 + 0.254s + 1.433) tjsjra

p(s) -1.62s(s2 + 0.362s+ 1.359)
~(s) = (s + 0.0065)(s + 1.329)(S2 + 0.254s + 1.433) radjsjrad (degjsjdeg)

res) -0.0188(s + 1.59)(i - 3.246s+4.982) rad/s/rad (de Is/de )
e(s) = (s + 0.0065)(s+ 1.329)(s2 + 0.254s+ 1.433) 9 g

4>(s) -1.62(s2 + 0.362s+ 1.359)
~(s) = (s + 0.0065)(s + 1.329)(; + 0.254s + 1.433) radjrad (degjdeg)

P(s) 0.0188(s+ 0.197)(s - 7.896)
~(s) = (s +0.0065)(s+ 1.329)(; + 0.254s + 1.433) radjrad (degjdeg)

(7.12)

(7.14)

and second, the transfer functions describing response to rudder

v(s) = 13.484(s - 0.0148)(s+ 1.297)(s+ 30.207) ftjsjrad
(s) (s + 0.0065)(s+ 1.329)(s2 + 0.254s + 1.433)

p(s) 0.392s(s+ 1.85)(s - 2.566)
((s) = (s + 0.0065)(s + 1.329)(; + 0.254s + 1.433) radjsjrad (degjsjdeg)

r(s) -0.864(s + 1.335)(s2 - 0.03s+ 0.109)
((s) = (s + 0.0065)(s + 1.329)(S2 + 0.254s + 1.433) radjsjrad(degjsjdeg) (7.13)

4>(s) 0.392s(s+ 1.85)(s - 2.566) I

((s) = (s + 0.0065)(s+ 1.329)(; + 0.254s+ 1.433) radjrad (deq, deg)

P(s) 0.029(s - 0.0148)(s + 1.297)(s + 30.207) d/ d (d /d )
(s) = (s+ 0.0065)(s + 1.329)(s2 + 0.254s + 1.433) ra ra eg eg

The characteristic equation is given by equating the denominator to zero

L\(s) = (s+ 0.0065)(s + 1.329)(s2 + 0.254s + 1.433) = 0

The first real root describes the spiral mode with time constant

1
~ = 0.0065 ~ 154s

the second real root describes the roll subsidence mode with time constant

1
T; = 1.329 = 0.75s

and the pair of complex roots describe the oscillatory dutch roll mode with charac­
teristics

damping ratio (d = 0.11

undamped natural frequency COd = 1.2 rad/s

Since both real roots are negative and the pair of complex roots have negative real
parts then the mode characteristics indicate the airframe to be aerodynamically stable.

The response of the aeroplane to a unit (10) aileron pulse, held on for two seconds
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Fig. 7.1 Aircraft response to }°_2 s aileron pulse input

and then returned to zero, is shown in Fig. 7.1. All of the variables obtained in the
solution of the equations of motion are shown, the individual responses being
characterized by the transfer functions, equations (7.12).

The dynamics associated with the three stability modes is visible in the responses
although, at first glance, the dynamics would appear to be dominated by the
oscillatory dutch roll mode since its damping is relatively low. Since the non­
oscillatory spiral and roll modes are not so distinct, and since the dynamic
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coupling between modes is significant, it is rather more difficult to expose the
modes analytically unless some care is taken in their graphical presentation. This
subject is discussed in greater detail in Section 7.6 below. Both the roll and spiral
modes appear as exponentially convergent characteristics since they are both stable
in this example. The roll mode converges relatively quickly with a time constant
of 0.75 s, whereas the spiral mode converges very slowly indeed with a time
constant of 154s. The roll mode is most clearly seen in the roll rate response p
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where it determines the exponential rise at zero seconds and the exponential recovery
when the pulse is removed at 2s.

The spiral mode characteristic is rather more subtle and is most easily seen in the roll
attitude response 4> where it determines the longer term convergence to zero and is
fully established at 30s. Once again, all of the response shapes are determined by the
common stability mode dynamics and the obvious differences between them are due
to the unique numerators in each transfer function. All of the response variables shown
in Fig. 7.1 eventually decay to zero in the time scale of the spiral mode (about 200s)
since the aircraft is stable.

The response of the aeroplane to a unit (1°) rudder step input is shown in Fig. 7.2.
All of the variables obtained in the solution of the equations of motion are shown, the
individual responses being characterized by the transfer functions, equations (7.13).

Again, it is very clear that the response is dominated by the oscillatory dutch roll
mode. However, unlike the previous illustration, the roll and spiral modes are not
discernible in the response. This is due to the fact that a step was chosen as the input
which simply causes the aircraft to diverge from its initial equilibrium. This motion,
together with the dutch roll oscillation, effectively masks the two non-oscillatory
modes. Now it is possible to observe another interesting phenomenon in the response.
Inspection of the transfer functions, equations (7.12) and (7.13), reveals that a number
possess non-minimum phase numerator terms. The effect of these non-minimum phase
terms would seem to be insignificantly small since they are not detectable in the
responses shown in Fig. 7.1 and Fig. 7.2, with one exception. The roll rate response p
to rudder, shown in Fig. 7.2, exhibits a sign reversal for the first second or so of its
response and this is the manifestation of the non-minimum phase effect. In
aeronautical parlance it is referred to as adverse roll in response to rudder.

A positive rudder step input is assumed and this will cause the aircraft to turn to
the left, which is a negative response in accordance with the notation. Once the turn is
established this results in negative yaw and yaw rate together with negative roll and roll
rate induced by yaw-roll coupling. These general effects are correctly portrayed in the
responses shown in Fig. 7.2. However, when the rudder is deflected initially, a
substantial sideforce is generated at the centre of pressure of the fin which in turn
generates the yawing moment causing the aircraft to turn. However, the sideforce acts
at some distance above the roll axis and also generates a rolling moment which causes
the aircraft to roll in the opposite sense to that induced by the yawing motion. Since
inertia in roll is somewhat lower than inertia in yaw the aircraft responds quicker in roll
and starts to roll in the 'wrong' direction, but as the yawing motion becomes
established the aerodynamically induced rolling moment eventually overcomes the
adverse rolling moment and the aircraft then rolls in the 'correct' sense. This behaviour
is clearly visible in Fig. 7.2 and is a characteristic found in most aircraft. The magnitude
of the effect is aircraft dependent and, if not carefully controlled by design, can lead
to unpleasant handling characteristics.

A similar characteristic, adverse yaw in response to aileron, is caused by the
differential drag effects associated with aileron deflection giving rise to an adverse
yawing moment. This characteristic is also commonly observed in many aircraft:
reference to equations (7.12) indicates that it is present in the DC-8 but is
insignificantly small at the chosen flight condition.

The mode content in each of the motion variables is given most precisely by the
eigenvectors. The relevance of eigenvectors is discussed in Section 5.6 and the
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analytical procedure for obtaining them is illustrated in Example 5.7. With the aid of
PC MA TLAB the eigenvector matrix V was obtained from the state matrix in equation
(7.10)

roll spiral
dutch roll mode mode mode

-0.845 +0.5291j -0.845 - O.5291j -0.9970 0.9864 :v

V= 0.0012- 0.0033j 0.0012+ 0.0033j -0.0619 -0.0011 :p
(7.15)

0.0011 +0.0021j 0.0011 - 0.0021j 0.0006 0.0111 : r
-0.0029 - 0.0007j -0.0029 + 0.0007j 0.0466 0.1641 :c/>

To facilitate interpretation of the eigenvector matrix, the magnitude of each component
eigenvector is calculated as follows

0.9970 0.9970 0.9970 0.9864 : v
IVI = 0.0035 0.0035 0.0619 0.0011 : p

0.0024 0.0024 0.0006 0.0111 : r
0.0030 0.0030 0.0466 0.1641 : 4>

Clearly, the content of all three modes in sideslip velocity v, and hence in /3, is of similar
order, the roll mode is dominant in roll rate p and the spiral mode is dominant in roll
attitude response c/>. These observations correlate well with the responses shown in
Figs 7.1 and 7.2 although the low dutch roll damping obscures the observation in
some response variables. Although not the case in this example, eigenvector analysis
can be particularly useful for interpreting lateral-directional response in aircraft where
mode coupling is rather more pronounced and the modes are not so distinct.

The steady state values of the motion variables following a unit step (10) aileron or
rudder input may be determined by the application of the final value theorem, equation
(5.33), to the transfer functions, equations (7.12) and (7.13). The calculation
procedure is illustrated in Example 6.1 and is not repeated here. Thus, the steady state
response of all the motion variables to an aileron step input is

v -19.24 ftjs
p 0
r = -11.99 degjs

4> -177.84 deg

/3 steady state
-2.35 deg

aileron

and the steady state response to a rudder step input is

(7.16)

;1
~ Jsteady state

=

-11.00 ft/s
o

-10.18 degjs
-150.36 deg
-1.35 deg

rudder

(7.17)

It must be realized that the steady state values given in equations (7.16) and (7.17)
serve only to give an indication of the control sensitivity of the aeroplane. At such large
roll attitudes the small perturbation model ceases to apply and in practice significant
changes in the aerodynamic operating conditions would accompany the response. The
actual steady state values would undoubtedly be somewhat different and could only
be ascertained with a full non-linear simulation model. This illustration indicates the
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limiting nature of a small perturbation model for the analysis of lateral-directional
dynamics and the need to exercisecare in its interpretation.

7.1.1 THE CHARACTERISTIC EQUATION

The lateral-directional characteristic polynomial for a classical aeroplane is fourth order,
it determines the common denominator of the lateral and directional response transfer
functions and, when equated to zero, defines the characteristic equation which may be
written

(7.18)

The characteristic equation (7.18) most commonly factorizes into two real roots and a
pair of complex roots which are most conveniently written

(7.19)

As indicated previously, the first real root in equation (7.19) describes the non­
oscillatory spiral mode, the second real root describes the non-oscillatory roll subsidence
mode and the pair of complex roots describe the oscillatory dutch roll mode. Now, since
the equations of motion from which the characteristic equation is derived are referred
toa wind axes reference, the stability modes, comprising equation (7.19), provide a
complete description of the lateral-directional stability properties of the aeroplane with
respect to the total steady velocity vector and subject to the constraints of small
perturbation motion.

When the equations of motion are referred to a body axes system, the state equation
(4.69) is fifth order and the characteristic equation is also of fifth order. The solution of
the characteristic equation then has the following factors

(7.20)

The modes are unchanged except for the addition of a zero root which indicates neutral
stability. The zero root results from the addition of yaw angle to the state equation
and indicates neutral stability in yaw, or heading. Interpretation of lateral-directional
dynamics is unchanged and the additional information indicates the aeroplane to have
an indeterminate yaw or heading angle. In other words, lateral-directional dynamics is
evaluated about the steady total velocity vector which assumes an arbitrary direction in
azimuth, yaw or heading. Interpretation of the non-zero roots of the characteristic
equation is most easily accomplished if reference is first made to the properties of the
classical mass-spring-damper system, which are summarized in Appendix 5.

Unlike the longitudinal dynamics, interpretation of the lateral-directional dynamics
is not quite so straightforward; as the stability modes are not so distinct, there usually
exists a significantly greater degree of mode coupling or interaction. This tends to make
the necessary simplifying assumptions less appropriate with a consequent reduction of
confidence in the observations. However, an assortment of well-tried procedures for
interpreting the dynamic characteristics of the well-behaved aeroplane exist and these
will be discussed below. The principal objective, of course, is to identify the aerodynamic
drivers for each of the stability modes.

Tile connection between the observed dynamics of the aeroplane and its aerodynamic
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characteristics is made by comparing equation (7.18) with either of equations (7.19) or
(7.20), and then referring to Appendix 2 for the definitions of the coefficients in equation
(7.18) in terms of aerodynamic stability derivatives. It will be appreciated immediately
that further analytical progress is impossibly difficult unless some gross simplifying
assumptions are made. Means for dealing with this difficulty require the derivation of
reduced order models as described in Section 7.3 below.

7.2 The dynamic stability modes

As for the longitudinal stability modes, whenever the aeroplane is disturbed from its
equilibrium trim state the lateral-directional stability modes will also be excited. Again,
the disturbance may be initiated by pilot control action, a change in power setting,
airframe configuration changes, such as flap deployment, and by external influences such
as gusts and turbulence.

7.2.1 THE ROLL SUBSIDENCE MODE

The roll subsidence mode, or simply the roll mode, is a non-oscillatory lateral character­
istic which is usually substantially decoupled from the spiral and dutch roll modes. Since
it is non-oscillatory, it is described by a single real root of the characteristic polynomial,
and it manifests itself as an exponential lag characteristic in rolling motion. The
aeromechanical principles governing the behaviour of the mode are illustrated in
Fig. 7.3.

With reference to Fig. 7.3,the aircraft is viewed from the rear so the indicated motion
is shown in the same sense as it would be experienced by the pilot. Assume that the
aircraft is constrained to one degree of freedom motion in roll about the ox axis only,
and that it is initially in trimmed wings level flight. If, then, the aeroplane experiences a
positive disturbing rolling moment it will commence to roll with an angular acceleration
in accordance with Newton's second law of motion.
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In rolling motion the wing experiences a component of velocity normal to the wing
py, where y is the spanwise coordinate measured from the roll axis ox. As indicated in
Fig. 7.3 this results in a small increase in incidence on the down-going starboard wing
and a small decrease in incidence on the up-going port wing. The resulting differential
lift gives rise to a restoring rolling moment as indicated. The corresponding resulting
differential induced drag would also give rise to a yawing moment, but this is usually
sufficiently small that it is ignored. Thus, following a disturbance, the roll rate builds up
exponentially until the restoring moment balances the disturbing moment and a steady
roll rate is established.

In practice, of course, this kind of behaviour would be transient rather than
continuous as implied in this illustration. The physical behaviour explained is simple
'paddle' damping and is stabilizing in effect in all aeroplanes operating in normal,
aerodynamically linear, flight regimes. For this reason, the stability mode is sometimes
referred to as the damping in roll.

In some modern combat aeroplanes, which are designed to operate in seriously non­
linear aerodynamic conditions, for example at angles of attack approaching 90°, it is
possible for the physical conditions governing the roll mode to break down completely.
The consequent loss of roll stability can result in rapid roll departure followed by
complex lateral-directional motion of a hazardous nature. However, in a conventional
aeroplane the roll mode appears to the pilot as a lag in roll response to controls. The lag
time constant is largely dependent on the moment of inertia in roll and the aerodynamic
properties of the wing, and is typically around one second or less.

7.2.2 THE SPIRAL MODE

The spiral mode is also non-oscillatory and is determined by the other real root in the
characteristic polynomial. When excited, the mode dynamics is usually slow to develop

Sideslip
disturbance

~

~---~ ........_- t tP

I Steadily increasing roll angle

Yawing moment ~
due to fin lift ! ~

(a) (b)

Fig. 7.4 The spiral mode development
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and involves complex coupled motion in roll, yaw and sideslip. The dominant aero­
mechanical principles governing the mode dynamics are illustrated in Fig. 7.4. The mode
characteristics are very dependent on the lateral static stability and on the directional
static stability of the aeroplane and these topics are discussed in Sections 3.4 and 3.5.

The mode is usually excited by a disturbance in sideslip which typically follows a
disturbance in roll causing a wing to drop. Assume that the aircraft is initially in
trimmed wings level flight and that a disturbance causes a small positive roll angle 4> to
develop; left unchecked this results in a small positive sideslip velocity v as indicated at
(a) in Fig. 7.4. The sideslip puts the fin at incidence f3 which produces lift, and which in
turn generates a yawing moment to turn the aircraft into the direction of the sideslip.
The yawing motion produces differential lift across the wing-span which, in turn, results
in a rolling moment causing the starboard wing to drop further, thereby exacerbating
the situation. This developing divergence is indicated at (b) and (c) in Fig. 7.4.
Simultaneously, the dihedral effect of the wing generates a negative restoring rolling
moment due to sideslip, which acts to return the wing to a level attitude. Some
additional restoring rolling moment is also generated by the fin lift force when it acts at
a point above the roll axis ox, which is usual.

Therefore, the situation is one in which the fin effect, or directional static stability,
and the dihedral effect, or lateral static stability, act in opposition to create this
interesting dynamic condition. Typically, the requirements for lateral and directional
static stability are such that the opposing effects are very nearly equal. When the
dihedral effect is greater the spiral mode is stable, and hence convergent, and when the
fin effect is greater the spiral mode is unstable, and hence divergent. Since these effects
are nearly equal the spiral mode will be nearly neutrally stable, and sometimes it may
even be neutrally stable, i.e. it will be neither convergent nor divergent. Since the mode
is non-oscillatory it manifests itself as a classical exponential convergence or divergence
and, since it is nearly neutral, the time constant is very large, typically 100s or more.
This means that when the mode is stable the wing is slow to recover a level attitude
following a disturbance and when it is unstable the rate at which it diverges is also very
slow. When it is neutral the aircraft simply flies a turn at constant roll attitude.

Now, it is the unstable condition which attracts most attention for obvious reasons.
Once the mode is excited the aircraft flies a slowly diverging path in both roll and yaw
and since the vertical forces are no longer in equilibrium the aircraft will also lose height.
Thus, the unstable flight path is a spiral descent which left unchecked will end when
the aircraft hits the ground! However, since the rate at which the mode diverges is
usually very slow most pilots can cope with it. Consequently, an unstable spiral mode is
permitted provided its time constant is sufficiently large. Because the mode is very slow
to develop, the accelerations in the resulting motion are insignificantly small and the
motion cues available to the pilot are almost imperceptible. In a spiral departure the
visual cues become the most important cues to the pilot. It is also important to
appreciate that a spiral departure is not the same as a spin. Spinning motion is a fully
stalled flight condition whereas, in a spiral descent, the wing continues to fly in the usual
sense.

7.2.3 THE DUTCH ROLL MODE

The dutch roll mode is a classical damped oscillation in yaw, about the oz axis of the
aircraft, which couples into roll and, to a lesser extent, into sideslip. The motion
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described by the dutch roll mode is therefore a complex interaction between all three
lateral-directional degrees of freedom. Its characteristics are described by the pair of
complex roots in the characteristic polynomial. Fundamentally, the dutch roll mode is
the lateral-directional equivalent of the longitudinal short period mode. Since the
moments of inertia in pitch and yaw are of similar magnitude, the frequency of the dutch
roll mode and the longitudinal short period mode are of similar order. However, the
fin is generally less effective than the tailplane as a damper and the damping of the dutch
roll mode is often inadequate. The dutch roll mode is so called since the motion of the
aeroplane following its excitation is said to resemble the rhythmical flowing motion of a
dutch skater on a frozen canal. One cycle of typical dutch rolling motion is shown in
Fig. 7.5.

The physical situation applying can be appreciated by imagining that the aircraft is
restrained in yaw by a torsional spring acting about the yaw axis OZ, the spring stiffness
being aerodynamic and determined largely by the fin. Thus, when in straight, level
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trimmed equilibrium flight a disturbance in yaw causes the 'aerodynamic spring' to
produce a restoring yawing moment which results in classical oscillatory motion.
However, once the yaw oscillation is established the relative velocity of the air over the
port and starboard wing also varies in an oscillatory manner giving rise to oscillatory
differential lift and drag perturbations. This aerodynamic coupling gives rise in turn to
an oscillation in roll which lags the oscillation in yaw by approximately 90°. This phase
difference between yawing and rolling motion means that the forward going wing panel
is low and the aft going wing panel is high, as indicated in Fig. 7.5. Consequently, the
classical manifestation of the dutch roll mode is given by the path described by the wing
tips relative to the horizon and which is usually elliptical, also shown in Fig. 7.5.

The peak roll to peak yaw ratio is usually less than one, as indicated, and is usually
associated with a stable dutch roll mode. However, when the peak roll to peak yaw ratio
is greater than one an unstable dutch roll mode is more likely.

Whenever the wing is disturbed from level trim, left to its own devices the aeroplane
starts to slip sideways in the direction of the low wing. Thus, the oscillatory rolling
motion leads to some oscillatory sideslipping motion in dutch rolling motion although
the sideslip velocity is generally small. Thus, it is fairly easy to build up a visual picture
of the complex interactions involved in the dutch roll mode. In fact, the motion
experienced in a dutch rolling aircraft would seem to be analogous to that of a ball
bearing dropped into an inclined channel having a semi-circular cross section. The ball
bearing rolls down the inclined channel whilst oscillating from side to side on the
circular surface.

Both the damping and stiffness in yaw, which determine the characteristics of the
mode, are largely determined by the aerodynamic properties of the fin, a large fin being
desirable for a well-behaved stable dutch roll mode. Unfortunately this contradicts the
requirement for a stable spiral mode. The resulting aerodynamic design compromise
usually results in aeroplanes with a mildly unstable spiral mode and a poorly damped
dutch roll mode. Of course, the complexity of the dynamics associated with the dutch
roll mode suggests that there must be other aerodynamic contributions to the mode
chara.cteristics in addition to the fin. This is generally the case and it is quite possible for
the additional aerodynamic effects to be as significant as the aerodynamic properties of
the fin if not more so. However, one thing is quite certain: it is very difficult to quantify
all the aerodynamic contributions to the dutch roll mode characteristics with any degree
of confidence.

7.3 Reduced order models

Unlike the longitudinal equations of motion it is more difficult to solve the lateral­
directional equations of motion approximately. Because of the motion coupling present,
to a greater or lesser extent, in all three mode dynamics, the modes are not so distinct
and simplifying approximations are less relevant with the consequent loss of accuracy.
Response transfer functions derived from reduced order models based on simplified
approximate equations of motion are generally insufficiently accurate to be of any real
use other than as a means for providing enhanced understanding of the aeromechanics
of lateral-directional motion.

The simplest, and most approximate, solution of the characteristic equation provides
an initial estimate for the two real roots only. This approximate solution of the lateral­
directional characteristic equation (7.18) is based on the observation that conventional
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aeroplanes give rise to coefficients A, B, C, D and E that have relative values which do
not change very much with flight condition. Typically, A and B are relatively large whilst
D and E are relatively small; in fact E is very often close to zero. Further, it is observed
that B » A and E ~< D, suggesting the following real roots as approximate solutions of
the characteristic equation

(s + 1/1;) ~ (s + B/A)

(s + 1/1;) ~ (s + E/D)
(7.21)

No such simple approximation for the pair of complex roots describing the dutch roll
mode may be determined. Further insight into the aerodynamic drivers governing the
characteristics of the roll and spiral modes may be made, with some difficulty, by
applying assumptions based on the observed behaviour of the modes to the polynomial
expressions for A, B, D and E given in Appendix 2. Fortunately, the same information
may be deduced by a rather more orderly process involving a reduction in order of the
equations of motion. The approximate solutions for the non-oscillatory modes as given
by equations (7.21) are only useful for preliminary mode evaluations, or as a check of
computer solutions, when the numerical values of the coefficients in the characteristic
equation are known.

7.3.1 THE ROLL MODE APPROXIMATION

Provided the perturbation is small, the roll subsidence mode is observed to involve
almost pure rolling motion with little coupling into sideslip or yaw. Thus, a reduced
order model of the lateral-directional dynamics retaining only the roll mode follows by
removing the sideforce and yawing moment equations from the lateral-directional state
equation (7.1) to give

(7.22)

Further, if aircraft wind axes are assumed then l~ = 0 and equation (7.22) reduces to
the single degree of freedom rolling moment equation

(7.23)

(7.25)

(7.24)

The roll response to aileron transfer function is easily derived from equations (7.23).
Taking the Laplace transform of equation (7.23), assuming zero initial conditions and
assuming that the rudder is held fixed, , = 0, then

spes)= lpp(s) + l~e(s)

which on rearranging may be written

pes) l~ _ kp

~(s) = (s - lp) = (s + 1/1;)

The transfer function given by equation (7.25) is the approximate reduced order
equivalent to the transfer function given by equation (7.3) and is the transfer function of
a simple first order lag with time constant 1;. For small perturbation motion, equation
(7.25) describes the first second or two of roll response to aileron with a reasonable
degree of accuracy and is especially valuable as a means for identifying the dominant
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physical properties of the airframe which determine the roll mode time constant. With
reference to the definitions of the concise aerodynamic stability derivatives in Appendix
1, the roll mode time constant is determined approximately by

T. ~.!. - _ (Ix I, - I;,)
r -/ - 0 0

p (l.L, + IxzNp)

Since I, » Ixz and I, »Ixz then equation (7.26) may be further simplified to give the
classical approximate expression for the roll mode time constant

t,
1;~-o-

Lp

where I, is the moment of inertia in roll and L, is the dimensional derivative describing
the aerodynamic damping in roll.

7.3.2 THE SPIRAL MODE APPROXIMATION

Since the spiral mode is very slow to develop following a disturbance, it is usual to
assume that the motion variables v, p and r are quasi-steady relative to the time scale of
the mode. Hence v= jJ = i = 0 and the lateral-directional state equation (7.1) may be
written

(7.28)

Further, if aircraft wind axes are assumed leJ> = neJ> = 0 and if the controls are assumed
fixed such that unforced motion only is considered ~ = , = 0, then equation (7.28)
simplifies to

(7.29)

(7.30)

The first three rows in equation (7.29) may be rearranged to eliminate the variables v
and r to give a reduced order equation in which the variables are roll rate p and roll
angle ¢ only

[
0 ] [(lpnr - lrnp) (lvnp - lpnv) ] [ ]
~ = YV(l,nv -Ivn,) +Y; +Y'(l,nv -Ivn,) ~ :

The first element of the first row of the reduced order state matrix in equation (7.30)
may be simplified since the terms involving Yv and yp are assumed to be insignificantly
small compared with the term involving Yr' Thus, equation (7.30) may be rewritten

(7.31)
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Since ~ = p, equation (7.31) may be reduced to the single degree of freedom equation
describing, approximately, the unforced rolling motion involved in the spiral mode

~ + (YiP(lrnv - lvnr») 4> = 0 (7.32)
Yr(lvnp - Ipnv)

The Laplace transform of equation (7.32), assuming zero initial conditions, is

( (
Yet> (lrnv - Ivnr»)~

4>(s) s + Yr(lvnp _ lpnv) ') == 4>(s)(s + 1/ T,) = 0

It should be noted that equation (7.33) is the reduced order lateral-directional character­
istic equation retaining a very approximate description of the spiral mode characteristics
only. Hence, an approximate expression for the time constant of the spiral mode is
defined

T, ~ Yr(lvnp - lpnv)
Yet>(lrnv - Ivnr)

The spiral mode time constant (equation 7.34) may be expressed conveniently in terms
of the dimensional or dimensionless aerodynamic stability derivatives to provide a more
direct link with the aerodynamic mode drivers. With reference to Appendix 1 and noting
that ~ « mll.; so Yr ~ U, == ~, and that YiP = g since aircraft wind axes are assumed,
then equation (7.34) may be restated

(7.35)

Now a stable spiral mode requires that the time constant ~ is positive. Typically for
most aeroplanes, especially in subsonic flight,

(LvNp- LpNv) > 0

and the condition for the mode to be stable simplifies to the approximate classical
requirement that

(7.36)

Further analysis of this requirement is only possible if the derivatives in equation
(7.36) are expressed in terms of the aerodynamic properties of the airframe. This means
that Lv, dihedral effect, and Nn damping in yaw, should be large whilst Nv' the yaw
stiffness, should be small. Rolling moment due to yaw rate, L" is usually significant in
magnitude and positive. In very simple terms aeroplanes with small fins and reasonable
dihedral are more likely to have a stable spiral mode.

7.3.3 THE DUTCH ROLL MODE APPROXIMATION

For the purpose of creating a reduced order model to describe the dutch roll mode it is
usual to make the rather gross assumption that dutch rolling motion involves no rolling
motion at all. Clearly this is contradictory, but it is based on the fact that the mode is
firstly a yawing oscillation and aerodynamic coupling causes rolling motion as a
secondary effect. It is probably true that for most aeroplanes the roll to yaw ratio in
dutch rolling motion is less than one, and in some cases may be much less than one,
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which gives the assumption some small credibility. Hence, the lateral-directional state
equation (7.1) may be simplified by writing

p=p=4>=4>=O
As before, if aircraft wind axes are assumed it/> = nt/> = 0 and if the controls are assumed
fixed such that unforced motion only is considered, e= , = 0, then equation (7.1)
simplifies to

(7.37)

If equation (7.37) is written

then the reduced order characteristic equation describing the approximate dynamic
characteristics of the dutch roll mode is given by

~d(S) = det[sI - Ad] = Is - Yv -Yr I= 0
-nv s - nr

or

(7.38)

Therefore, the damping and frequency properties of the mode are given approximately
by

2'dWd ~ -(n, + Yv) }
w~ ~ (nryv - nvYr)

(7.39)

With reference to Appendix 1, the expressions given by equations (7.39) can be restated in
terms of dimensional aerodynamic stability derivatives. Further approximating simpli­
fications are made by assuming 1';. « mUe, so that Yr ~ U, == ~, and by assuming, quite
correctly, that both I, and I, are usually much greater than Ixz• It then follows that

(7.40)

Comparing the damping and frequency terms in the expressions in equations (7.40) with
those of the mass-spring-damper in Appendix 5 it is easy to identify the roles of those
aerodynamic stability derivatives which are dominant in determining the characteristics
of the dutch roll mode. For example, N, is referred to as the yaw damping derivative and
~ is referred to as the yaw stiffness derivative, and both are very dependent on the
aerodynamic design of the fin and the fin volume ratio.

Although the dutch roll mode approximation gives a rather poor impression of the
real thing, it is useful as means for gaining insight into the physical behaviour of the
mode and its governing aerodynamics.
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EXAMPLE 7.2 _

It has been stated that the principal use of the lateral-directional reduced order models
is for providing insight into the aerodynamic mode drivers. With the exception of the
transfer function describing roll rate response to aileron, transfer functions derived from
the reduced order models are not commonly used in analytical work as their accuracy
is generally poor. However, it is instructive to compare the values of the mode
characteristics obtained from reduced order models with those obtained in the solution
of the full order equations of motion.

Consider the Douglas DC-8 aircraft of Example 7.1. The equations of motion referred
to wind axes are given by equation (7.10) and the- solution gives the characteristic
equation (7.14). The unfactorized characteristic equation is

~(8) = 84 + 1.589883 + 1.782082 + 1.9200s + 0.0125 = 0 (7.41)

In accordance with the expression given in equations (7.21), approximate values for
the roll mode and spiral mode time constants are given by

AI}1; ~ B= 1.5898 = 0.629 s

D 1.9200
1; ~ E = 0.0125 = 153.6 s

(7.42)

The approximate roll mode time constant does not compare particularly well with the
exact value of 0.75 s, whereas the spiral mode time constant compares extremely well
with the exact value of 154 s.

The approximate roll rate response to aileron transfer function, given by equation
(7.25), may be evaluated by obtaining the values for the concise derivatives lp and l~

from equation (7.10) whence

p(s) -1.62
e(s) = (s + 1.232)degjsjdeg (7.43)

With reference to equation (7.25), an approximate value for the roll mode time
constant is given by
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1
1; ~ 1.232 = 0.812s (7.44)

(7.46)

(7.45)

and this value compares rather more favourably with the exact value. The short term roll
rate response of the DC-8 to a 10 aileron step input as given by equation (7.43) is
shown in Fig. 7.6 where it is compared with the exact response of the full order model
as given by equations (7.12).

Clearly, for the first two seconds or so, the match is extremely good, which confirms
the assumptions made about the mode to be valid provided the period of observation
of roll behaviour is limited to the time scale of the roll mode. The approximate roll mode
time constant calculated by substituting the appropriate derivative and roll inertia
values, given in the aircraft data, into the expression given by equation (7.27) results in
a value almost the sarne as that given by equation (7.44). This simply servesto confirm
the validity of the assumptions made about the roll mode.

With reference to equations (7.34) and (7.35) the approximate spiral mode time
constant may be written in terms of concise derivatives as

rv Ue(lvnp - Ipnv)1; = - ----.:~--:.--
g(lrnv - lvnr)

Substituting values for the concise derivatives obtained from equation (7.10), the
velocity U, and g then

I ~ - 468.2(0.0002 + 0.00343) = 135 34
s 32.2(0.0011 - 0.00149) . s

Clearly this approximate value of the spiral mode time constant does not compare so
well with the exact value of 154s. However, this is not so important since the mode is
very slow in the context of normal piloted manoeuvring activity. The classical
requirement for spiral mode stability given by the inequality condition of equation
(7.36) is satisfied since

0.00149 > 0.0011

Notice how close the values of the two numbers are, suggesting the mode to be close
to neutrally stable in the time scale of normal transient response. This observation is
quite typical of a conventional aeroplane like the DC-8.

Approximate values for the dutch roll mode damping ratio and undamped natural
frequency are obtained by substituting the relevant values for the concise derivatives,
obtained from equation (7.10), into the expressions given by equations (7.39). Thus,
approximately

Wd ~ 1.152 rad/s

(d ~ 0.135

These approximate values compare reasonably well with the exact values which are: a
natural frequency of 1.2 rad/s and a damping ratio of 0.11. Such a good comparison
is not always achieved and merely emphasizes, once more, the validity of the
assumptions about the dutch roll mode in this particular application. The implication is
that at the flight condition of interest the roll to yaw ratio of the dutch roll mode in
the DC-8 is significantly less than one and, indeed, this may be inferred from either
Fig. 7.1 or Fig. 7.2.
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7.4 Frequency response

It is useful, and sometimes necessary, to investigate the lateral-directional response
properties of an aeroplane in the frequency domain. The reasons why such an
investigation might be made are much the same as those given for the longitudinal case
in Section 6.4. Again, the Bode diagram is the most commonly used graphical tool for
lateral-directional frequency response analysis. The method of construction of the Bode
diagram and its interpretation follow the general principles described in Section 6.4
and are not repeated here. Since it is difficult to generalize, a typical illustration of
lateral-directional frequency response analysis is given in the following example.

EXAMPLE 7.3 _

The lateral-directional frequency reponse of the Douglas DC-8 aircraft is evaluated for
the same flight condition as Examples 7.1 and 7.2. The total number of transfer
functions that could be evaluated on a Bode diagram is ten, given by equations (7.12)
and (7.13), and to create ten Bode diagrams would be prohibitively lengthy in the
present context. Since the essential frequency response information can be obtained
from a much smaller number of transfer functions, the present example is limited to four
transfer functions only. The chosen transfer functions were selected from equations
(7.12) and (7.13), all are referred to aircraft wind axes and are repeated here for
convenience

4J(s) -1.62(s2 + 0.362s + 1.359)
~(s) = (s + 0.0065)(s + 1.329)(; +0.254s+ 1.433) radjrad (degjdeg)

P(s) 0.0188(s + 0.197)(s - 7.896)
~(s) = (s +0.0065)(s+ 1.329)(; + 0.254s+ 1.433) radjrad (degjdeg)

r(s) -0.864(s + 1.335)(s2 - 0.03s +0.109)
'(s) = (s + 0.0065)(s + 1.329)(; + 0.254s+ 1.433) radjsjrad (degjsjdeg)

p(s) 0.392s(s+ 1.85)(s- 2.566)
'(s) = (s + 0.0065)(s + 1.329)(S2 +0.254s+ 1.433) radjsjrad (degjsjdeg)

(7.47)

The first two transfer functions in equations (7.47) describe lateral response to the
lateral command (aileron) variable, the third transfer function describes directional
response to the directional command (rudder) variable, the last transfer function was
chosen to illustrate cross-coupling and describes lateral response to the directional
command variable. Now consider the frequency response of each transfer function in
turn.

The frequency response of roll attitude <p to aileron input e is shown in Fig. 7.7.
The most obvious features of the Bode diagram are the very high steady state gain,
45 dB, and the very small peak at the dutch roll frequency. The roll-off in phase
behaves quite conventionally in accordance with the transfer function properties. The
high zero frequency gain corresponds to a gain ratio of approximately 180. This means
that following a 1° aileron step input the aeroplane will settle at a roll attitude of
-180°, in other words inverted I Clearly, this is most inappropriate for a large civil
transport aeroplane and serves as yet another illustration of the limitations of linear
system modelling. Such a large amplitude excursion is definitely not a small
perturbation and should not be regarded as such. However, the high zero frequency, or
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Fig. 7.7 DC-8 roll attitude frequency response to aileron

steady state, gain provides a good indication of the roll control sensitivity. As the
control input frequency is increased the attitude response attenuates steadily with
increasing phase lag, the useful bandwidth being a little above the spiral mode break
frequency 1/1;. However, at all frequencies up to that corresponding to the roll
subsidence mode break frequency, 1/1;, the aeroplane will respond to aileron since the
gain is always greater than 0 dB, and it is the steady reduction in control sensitivity that
will be noticed by the pilot.

Since the dutch roll damping ratio is relatively low at 0.11, an obvious peak might
be expected in the gain plot at the dutch roll frequency. Clearly this is not the case.
Inspection of the relevant transfer function in equations (7.47) shows that the second
order numerator factor very nearly cancels the dutch roll roots in the denominator. This
meansthat the dutch roll dynamics will not be very obvious in the roll attitude response
to aileron in accordance with the observation. This conclusion is also confirmed by
the time history response shown in Fig. 7.1. In fact the dutch roll cancellation is
sufficiently close that it is permissible to write the transfer function in approximate
form



¢(s) _ -1.62
e(s) - (s + 0.0065)(s + 1.329) radjrad(degjdeg)
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(7.48)

with little loss of meaning. The time response plot and the Bode diagram derived from
this approximate transfer function correspond closely with those derived from the full
transfer function and may be interpreted to achieve the same conclusions for all
practical purposes.

The frequency response of sideslip angle fJ to aileron input e is shown in Fig. 7.8
and corresponds to the second transfer function given in equations (7.47). Again, there
are no real surprises here. The transfer function is non-minimum phase since the
numerator term 1/Tp2 is negative, which introduces 90° of phase lag at the correspond­
ing break frequency. In this response variable the dutch roll gain peak is clearly visible
although at the dutch roll frequency the gain is attenuated by about -20dS which
means that the pilot would see no significant oscillatory sideslip behaviour. Again, it is
established that the usable bandwidth is a little higher than the spiral mode break
frequency 1/1;.
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The frequency response of yaw rate r to rudder input' is shown in Fig. 7.9. This
transfer function describes the typical classical directional response to control and the
frequency response, shown in Fig. 7.9, has some interesting features. The gain plot
shows a steady but significant attenuation with increasing frequency to reach a
minimum of about -30 dB at OJ"" the resonant frequency of the second order
numerator factor. The gain rises rapidly with a further increase in frequency to reach a
maximum of 10 dB at the dutch roll frequency only to decrease rapidly thereafter. At
very low input frequencies the phase lag increases gently in accordance with the spiral
mode dynamics until the effect of the second order numerator term becomes apparent.
The rate of change of phase is then very dramatic since the effective damping ratio of
the second order numerator term is very small and negative. At the dutch roll
frequency, approximately, the phase reaches -360° and the response appears to be in
phase again only to roll off smartly at higher frequency. Again, the effective bandwidth
is a little higher than the spiral mode break frequency 1/1;. These unusual frequency
responsecharacteristics are easily appreciated in a flight demonstration.

If the pilot approximates a sinusoidal rudder input by pedalling gently on the rudder
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pedals then, at very low frequencies approaching the steady state, the yaw rate
response will follow the input easily and obviously, since the gain is approximately
20 dB, and with very little phase lag. As the pilot increases the frequency of his
pedalling the response will lag the input and the magnitude of the response will reduce
very quickly until there is no significant observable response. If he increases the
frequency of his forcing yet further, then the aircraft will spring into life again as the
dutch roll frequency (resonance) is reached when the yaw rate response will be
approximately in phase with the input. At higher frequencies still the response will
rapidly attenuate for good.

The substantial dip in both gain and phase response with frequency, caused by the
second order numerator factor, effectively isolates the dutch roll mode to a small window
in the frequency band. This then makesit very easy for the pilot to identify and excite the
dutch roll mode by rudder pedalling. This is very good for flight demonstration but may
not be so good for handling if the dutch roll damping is low and the second order
numerator factor is not too close in frequency to that of the dutch roll mode.

The frequency response of roll rate p to rudder input' is shown in Fig. 7.10. This
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frequency response example is interesting since it represents a cross-coupling case. In
the steady state, or equivalently at zero frequency, roll rate in responseto a rudder input
would not be expected. This is clearly evident on the gain plot where the gain is
-00 dB at zero frequency. This observation is driven by the zero in the numerator which
also introduces 90° of phase lead at the very lowest frequencies. This zero also very
nearly cancels with the spiral mode denominator root such that at input frequencies
above the spiral mode break frequency 1/I; the response in both gain and phase is
essentially flat until the effects of the remaining numerator and denominator roots
come into play, all at frequencies around the dutch roll frequency. The dutch roll
resonant peak in gain and the subsequent roll-off in both gain and phase is absolutely
classical and is easily interpreted. These frequency response observations correspond
well with the response time history shown in Fig. 7.2, where the effects of the roll
subsidence mode and the dutch roll mode are clearly visible, whilst the longer term
convergence associated with the spiral mode is not visible at all. In this example,
bandwidth tends to lose its meaning. However, it would not be unrealistic to suggest
that the usable bandwidth is a little higher than the dutch roll mode frequency,
provided the effects at very low frequency are ignored. This then assumes that the zero
numerator factor cancels with the spiral mode denominator factor to give the
approximate transfer function

p(s) 0.392(s + 1.85)(s - 2.566)
(s) = (s + 1.329)(~ +0.254s+ 1.433) rad/s/rad(deg/s/deg)

As before, this approximate transfer function may be interpreted both in the time
domain and in the frequency domain with little loss of meaning over the usable
frequency band.

7.5 Flying and handling qualities

As with longitudinal stability the lateral-directional stability characteristics of the
aeroplane are critically important in the determination of its flying and handling
qualities and there is no doubt that they must be correct. Traditionally the emphasis on
lateral-directional flying and handling qualities has been much less than the emphasis
on the longitudinal flying and handling qualities. Unlike the longitudinal flying and
handling qualities the lateral-directional flying and handling qualities do not usually
change significantly with flight condition, especially in the context of small perturbation
modelling. So once they have been fixed by the aerodynamic design of the airframe they
tend to remain more-or-Iess constant irrespective of flight condition. Any major
lateral-directional departures from nominally small perturbations about trim are likely
to be transient, under full pilot control and, consequently, unlikely to give rise to serious
handling problems. However, this is not necessarily a safe assumption to make when
considering highly augmented aircraft, a topic which is beyond the scope of the present
discussion.

It is a recurrent theme in handling qualities work that short term dynamics is
properly controlled by design. The typical frequencies involved in short term dynamics
are similar to human pilot frequencies and their inadvertent mismatch is a sure recipe
for potential handling problems. So for reasons similar to those discussed in greater
detail in Section 6.5 referring to longitudinal dynamics, it is equally important that the



Mode excitation 171

lateral-directional short period stability modes be properly controlled. This may be
interpreted to mean that the damping of both the roll subsidence mode and the dutch
roll mode should be adequate.

The roll subsidence mode appears to the pilot as a lag in the response to control
and, clearly, if the time constant should become too large, roll response to control would
become too sluggish. A large roll mode time constant is the direct result of low roll
stability although the mode is usually stable as discussed in Section 7.2.1. Generally,
acceptable levels of roll mode stability result in a time constant or roll response lag
which is almost imperceptible to the pilot. However, it is quite common to find aircraft
in which the roll mode damping is inadequate, butit is unusual to find over-damped
aircraft.

The spiral mode, being a long period mode, does not usually influence. short term
handling significantly. When it is stable and its time constant is sufficiently long it has
little or no impact on flying and handling qualities. However, when it is unstable it
manifests itself as a trimming problem since the aeroplane will continually attempt to
diverge laterally. When the time constant of the mode is short it is more unstable and
the rate of divergence becomes faster with a corresponding increase in pilot workload.
Since the mode is generally so slow to develop, the motion cues associated with it may
well be imperceptible to the pilot. Thus, a hazardous situation may easily arise if the
external visual cues available to the pilot are poor or absent altogether, such as in IMe
flight conditions. It is not unknown for inexperienced pilots to become disorientated in
such circumstances with the inevitable outcome! Therefore, the general requirement is
that the spiral mode should preferably be stable but, since this is difficult to achieve in
many aeroplanes, when it is unstable the time constant should be greater than a defined
rmmmum.

Since the dutch roll mode is a short period mode and is the directional equivalent of
the longitudinal short period mode, its importance to handling is similarly critical.
Generally, it is essential that the dutch roll mode is stable and that its damping is greater
than a defined minimum. Similarly tight constraints are placed on the permitted range
of combinations of frequency and damping. However, a level of damping lower than
that of the longitudinal short period mode is permitted. This is perhaps convenient but is
more likely to result from the design conflict with the spiral mode, which must not have
more than a limited degree of instability.

7.6 Mode excitation

Unlike the longitudinal stability modes the lateral-directional stability modes usually
exhibit a significant level of dynamic coupling and, as a result, it is more difficult to
excite the modes independently for the purposes of demonstration or measurement.
However, the lateral-directional stability modes may be excited selectively by the careful
application of a sympathetic aileron or rudder input to the trimmed aircraft. Again,
the methods developed for in-flight mode excitation reflect an intimate understanding of
the dynamics involved and are generally easily adapted to the analytical environment.
Because the lateral-directional stability modes usually exhibit a degree of dynamic
coupling, the choice and shape of the disturbing input is critical to the mode under
investigation. As always, standard experimental procedures have been developed in
order to achieve consistency in the flight test or analytical process so that meaningful
comparative studies may be made.
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Fig. 7.11 Flight recording of the roll subsidence mode

The roll subsidence mode may be excited by applying a short duration square pulse
to the aileron, the other controls remaining fixed at their trim settings. The magnitude
and duration of the pulse must be carefully chosen if the aeroplane is not to roll too
rapidly through a large attitude change and thereby exceed the limit of small
perturbation motion. Since the mode involves almost pure rolling motion only no
significant motion coupling will be seen in the relatively short time scale of the mode.
Therefore, to see the classical characteristics of the roll subsidence mode it is only
necessary to observe roll response for a few seconds.

An example of a roll response showing the roll subsidence mode recorded during a
flight test exercise in a Handley Page Jetstream aircraft is shown in Fig. 7.11. The input
aileron pulse is clearly seen and has a magnitude of about 4° and a duration of about
4 s. The shape of this input will have been established by the pilot by trial and error since
the ideal input is very much aircraft dependent. The effect of the roll mode time constant
is clearly visible since it governs the exponential rise in roll rate p as the response
attempts to follow the leading edge of the input e. The same effect is seen again in
reverse when the input is returned to its datum at the end of the pulse. The barely
perceptible oscillation in roll rate during the 'steady part' of the response is, in fact, due
to a small degree of coupling with the dutch roll mode.

In order to conduct the flight experiment without large excursions in roll attitude 4>
it is usual first to establish the aircraft in a steady turn with, in this illustration, - 30° of
roll attitude. On application of the input pulse the aircraft rolls steadily through to
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+30 0 of roll attitude when the motion is terminated by returning the aileron to datum.
This is also clearly visible in Fig. 7.11. The effect of the roll mode time constant on the
roll attitude response is to smooth the entry to, and exit from, the steady part of the
response. Since the roll mode time constant is small, around 0.4 s for the Jetstream, its
effect is only just visible in the roll attitude response. It is interesting to observe that the
steady part of the roll response is achieved when the moment due to the damping in roll
becomes established at a value equal and opposite to the disturbing moment in roll
caused by the aileron deflection. Clearly, therefore, the roll subsidence mode governs the
transient entry to, and exit from, all rolling motion.

The spiral mode may be excited by applying a small step input to rudder " the
remaining controls being held at their trim settings. The aeroplane responds by starting
to turn, the wing on the inside of the turn starts to drop and sideslip develops in the
direction of the turn. When the roll attitude has reached about 200 the rudder is gently
returned to datum and the aeroplane left to its own devices. When the spiral mode is
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stable the aeroplane will slowly recover wings level flight, the recovery being exponential
with spiral mode time constant. When the mode is unstable the coupled roll-yaw­
sideslip departure will continue to develop exponentially with spiral mode time constant.
An example of an unstable spiral mode, captured from the time the disturbing rudder
input is returned gently to datum, and recorded during a flight test exercise in a Handley
Page Jetstream aircraft, is shown in Fig. 7.12. The slow exponential divergence is clearly
visible in all recorded variables, with the possible exception of sideslip angle f3 which is
rather noisy. In any event the magnitude of sideslip would normally be limited to a small
value by the weathercock effect of the fin.

Although speed and altitude play no part in determining the characteristic of the
mode, the exponential departure in these variables is a classical, and very visible,
consequence of an unstable spiral mode. Once excited, since the aircraft is no longer in
wings level flight, lift is insufficient to maintain altitude and so an accelerating descent
follows and the spiral flight path is determined by the aeromechanics of the mode. The
first 30s of the descent is shown in Fig. 7.12. Obviously, the departure must be
terminated after a short time if the safety of the aeroplane and its occupants is not to be
jeopardized.

Ideally, the dutch roll mode may be excited by applying a doublet to the rudder pedals
with a period matched to that of the mode, all other controls remaining at their trim
settings. In practice, the pilot pedals continuously and cyclically on the rudder pedal and
by adjusting the frequency it is easy to find the resonant condition. See the related
comments in Example 7.3 and note that the dutch roll frequency is comfortably within
the human bandwidth. In this manner a forced oscillation may easily be sustained. On
ceasing the forcing input the free transient characteristics of the dutch roll mode may be
seen. This free response is shown in the flight recording in Fig. 7.13 which was made in
a Handley Page Jetstream aircraft. The rudder input' shows the final doublet before
ceasing the forcing at about 5 s; the obvious oscillatory rudder motion after 5s is due to
the cyclic aerodynamic load on the free rudder. The classical damped oscillatory motion
is clearly visible in the variables shown: yaw rate r, roll rate p and sideslip angle p. The
motion would also be clearly evident in both roll and yaw attitude variables which are
not shown. Note the relative magnitudes of, and the phase shift between, yaw rate rand
roll rate p, observations which are consistent with the classical physical explanation of
the mode dynamics.

As for the longitudinal modes discussed in Section 6.6 the above flight recordings of
the lateral-directional stability modes illustrate the controls free dynamic stability
characteristics. The same exercise could be repeated with the controls held fixed
following the disturbing input. Obviously, in this event the controls fixed dynamic
stability characteristics would be observed and, in general, the differences between the
responses would be small. To reiterate the important comments made in Section 6.6,
controls free dynamic response is only possible in aeroplanes with reversible controls,
which includes most small classical aeroplanes. Virtually all larger modern aircraft have
powered controls, driven by electronic flight control systems, which are effectively
irreversible and which means that they are only capable of exhibiting controls fixed
dynamic response. Thus, today, most theoretical modelling and analysis is concerned
with controls fixed dynamics only, as is the case throughout this book. However, a
discussion of the differences between controls fixed and controls free aeroplane dynamics
may be found in Hancock (1995).

When it is required to investigate the dynamics of a single mode in isolation
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Fig. 7.13 Flight recording of the dutch roll mode

analytically, the best approach is to emulate flight test practice as far as that is possible.
It is necessary to choose the most appropriate transfer functions to show the dominant
response variables in the mode of interest. For example, the roll subsidence mode may
only be observed sensibly in the dominant response variable p and, to a lesser extent, in
¢. Similarly, for the spiral and dutch roll modes, it is important to observe the motion
in those variables which are dominant, and hence most visible in the mode dynamics. It
is also essential to apply a control input disturbance sympathetic to the mode dynamics
and it is essential to observe the response for an appropriate period of time. Otherwise
the dynamics of interest will inevitably be obscured by motion coupling effects. For
example, Fig. 7.11 shows both the roll subsidence mode and the dutch roll mode, but the
excitation, choice of output variables and time scale were chosen to optimize the
recording of the roll subsidence mode. The form of the control input is not usually
difficult to arrange in analytical work since most software packages have built-in
impulse, step and pulse functions, whilst more esoteric functions can usually be
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programmed by the user. For the analysis of the lateral-directional mode dynamics in
particular, this kind of informed approach is critically important if the best possible
visualization of the modes and their associated dynamics are to be obtained.
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8
Manoeuvrability

8.1 Introduction

8.1.1 MANOEUVRING FLIGHT

What is a manoeuvre? An aeroplane executing aerobatics in a vast blue sky or
aeroplanes engaged in aerial combat are the kind of images associated with manoeuvring
flight. By their very nature such manoeuvres are difficult to quantify, especially when it
is required to describe manoeuvrability in an analytical framework. In reality most
manoeuvres are comparatively mundane and simply involve changing from one trimmed
flight condition to another.

When a pilot wishes to manoeuvre away from the current flight condition he applies
control inputs which upset the equilibrium trim state by producing forces and moments
to manoeuvre the aeroplane toward the desired flight condition. The temporary out-of­
trim forces and moments cause the aeroplane to accelerate in a sense determined by the
combined action of the control inputs. Thus, manoeuvring flight is sometimes called
accelerated flight and is defined as the condition when the airframe is subject to
temporary, or transient, out-of-trim linear and angular accelerations resulting from the
displacement of the controls relative to their trim settings. In analytical terms, the
manoeuvre is regarded as an increment in steady motion, over and above the initial trim
state, in response to an increment in control angle.

The main aerodynamic force producing device in an aeroplane is the wing, and wing
lift acts normal to the direction of flight in the plane of symmetry. Normal manoeuvring
involves rotating the airframe in roll, pitch and yaw to point the lift vector in the desired
direction and the simultaneous adjustment of both angle of attack and speed enables
the lift force to generate the acceleration to manoeuvre. For example, in turning flight
the aeroplane is rolled to the desired bank angle when the horizontal component of lift
causes the aeroplane to turn in the desired direction. Simultaneous aft displacement of
the pitch stick is required to generate pitch rate, which in turn generates an increase in
angle of attack to produce more lift such that the vertical component is sufficient to
balance the weight of the aeroplane, and hence to maintain level flight. The requirements
for simple turning flight are illustrated in Example 2.3. Thus, manoeuvrability is mainly
concerned with the ability to rotate about aircraft axes, the modulation of the normal
or lift force and the modulation of the axial or thrust force.

The use of lateral sideforce to manoeuvre is not common in conventional aeroplanes



178 Afanoeuvrability

since it is aerodynamically inefficient and it is both unnatural and uncomfortable for
the pilot. The principal aerodynamic manoeuvring force is therefore lift, which acts in
the plane of symmetry of the aeroplane, and this is controlled by operating the control
column in the pitch sense. When the pilot pulls back on the pitch stick the aeroplane
pitches up to generate an increased lift force and since this results in out-of-trim normal
acceleration he senses, and is very sensitive to, the change in acceleration. The pilot
senses what appears to be an increase in the earth's gravitational acceleration g and is
said to be pulling g.

8.1.2 STABILITY

Aircraft stability is generally concerned with the requirement that trimmed equilibrium
flight may be achieved and that small transient upsets from equilibrium shall decay to
zero. However, in manoeuvring flight the transient upset is the deliberate result following
a control input, it may not be small and may well be prolonged. In the manoeuvre the
aerodynamic forces and moments may be significantly different from the steady trim
values and it is essential that the changes do not impair the stability of the aeroplane. In
other words, there must be no tendency for the aeroplane to diverge in manoeuvring
flight.

The classical theory of manoeuvrability is generally attributed to Gates and Lyon
(1944) and various interpretations of that original work may be found in most books on
aircraft stability and control. Perhaps one of the most comprehensive and accessible
summaries of the theory is included in Babister (1961). In this chapter the subject is
introduced at the most basic level in order to provide an understanding of the concepts
involved since they are critically important in the broader considerations of flying and
handling qualities. The original work makes provision for the effects of compressibility.
In the following analysis subsonic flight only is considered in the interests of simplicity
and hence in the promotion of understanding.

The traditional analysis of manoeuvre stability is based on the concept of the steady
manoeuvre in which the aeroplane is subject to a steady normal acceleration in'response
to a pitch control input. Although rather contrived, this approach does enable the
manoeuvre stability of an aeroplane to be explained analytically. The only realistic
manoeuvres which can be flown at constant normal acceleration are the inside or outside
loop and the steady banked turn. For the purpose of analysis the loop is simplified to a
pull-up, or push-over, which is just a small segment of the circular flight path. Whichever
manoeuvre is analysed, the resulting conditions for stability are the same.

Since the steady acceleration is constrained to the plane of symmetry the problem
simplifies to the analysis of longitudinal manoeuvre stability and, since the motion is
steady, the analysis is a simple extension of that applied to longitudinal static stability as
described in Chapter 3. Consequently, the analysis leads to the concept of the
longitudinal manoeuvre margin, the stability margin in manoeuvring flight, which in turn
gives rise to the corresponding control parameters: stick displacement per g and stick
force per g.

8.1.3 AIRCRAFT HANDLING

It is not difficult to appreciate that the manoeuvrability of an airframe is a critical factor
in its overall flying and handling qualities. Too much manoeuvre stability means that
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large control displacements and forces are needed to encourage the development of the
normal acceleration vital to effective manoeuvring. On the other hand, too little
manoeuvre stability implies that an enthusiastic pilot could over-stress the airframe by
the application of excessive levels of normal acceleration. Clearly, the difficult balance
between control power, manoeuvre stability, static stability and dynamic stability must
be correctly controlled over the entire flight envelope of the aeroplane.

Today, considerations of manoeuvrability in the context of aircraft handling have
moved on from the simple analysis of normal acceleration response to controls alone.
Important additional considerations concern the accompanying roll, pitch and yaw rates
and accelerations that may be achieved from control inputs since these determine how
quickly a manoeuvre can become established. Manoeuvre entry is also coloured by
transients associated with the short term dynamic stability modes. The aggressiveness
with which a pilot may fly a manoeuvre and the motion cues available to him also
contribute to his perception of the overall handling characteristics of the aeroplane. The
'picture' therefore becomes very complex, and it is further complicated by the
introduction of flight control systems to the aeroplane. The subject of aircraft agility is a
relatively new and exciting topic of research which embraces the ideas mentioned above
and which is, unfortunately, beyond the scope of the present book.

8.1.4 THE STEADY SYMMETRIC MANOEUVRE

The analysis of longitudinal manoeuvre stability is based on steady motion which results
in constant additional normal acceleration and, as mentioned above, the simplest such
manoeuvre to analyse is the pull-up. In symmetric flight inertial normal acceleration,
referred to the cg, is given by equation (5.39)

(8.1)

Since the manoeuvre is steady, W= 0 and the aeroplane must fly a steady pitch rate in
order to generate the normal acceleration required to manoeuvre. A steady turn enables
this condition to be maintained ad infinitum in flight but is less straightforward to
analyse. In symmetric flight, a short duration pull-up can be used to represent the lower
segment of a continuous circular flight path in the vertical plane since a continuous loop
is not practical for many aeroplanes.

It is worth noting that many modern combat aeroplanes and some advanced civil
transport aeroplanes have flight control systems which feature direct lift control (DLC).
In such aeroplanes, pitch rate is not an essential prerequisite to the generation of normal
acceleration since the wing is fitted with a system of flaps for producing lift directly.
However, in some applications it is common to mix the DLC flap control with
conventional elevator control in order to improve manoeuvrability, manoeuvre entry in
particular. The manoeuvrability of aeroplanes fitted with OLC systems may be
significantly enhanced although its analysis may become rather more complex.

8.2 The steady pull-up manoeuvre

An aeroplane flying initially in steady level flight at speed ~ is subject to a small elevator
input b11 which causes it to pull up with steady pitch rate q. Consider the situation when
the aircraft is at the lowest point of the vertical circle flight path as shown in Fig. 8.1.

In order to sustain flight in the vertical circle it is necessary that the lift L balances
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Fig. 8.1 A symmetric pull-up manoeuvre

not only the weight mg but the centrifugal force also, thus the lift is greater than the
weight and

L=nmg (8.2)

where n is the normal load factor. Thus, the normal load factor quantifies the total lift
necessary to maintain the manoeuvre, and in steady level flight n = 1. The centrifugal
force balance is therefore given by

L-mg=mVoq

and the incremental normal load factor may be derived directly

Voqbn = (n - 1) =-
g

(8.3)

(8.4)
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Fig. 8.2 Incremental tailplane incidence in pull-up manoeuvre
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Now, as the aircraft is pitching up steadily the tailplane experiences an increase in
incidence l5ctT due to the pitch manoeuvre as indicated in Fig. 8.2.

Since small perturbation motion is assumed, the increase in tailplane incidence is given
by

qlT
OIXT ~ tan OIXT = Va (8.5)

where IT is the moment arm of the aerodynamic centre of the tailplane with respect to the
centre of rotation in pitch, the eg. Eliminating pitch rate q from equations (8.4) and (8.5)

OIXT = (n - ~)gIT (8.6)
Vo

Now, in the steady level flight condition about which the manoeuvre is executed the lift
and weight are equal, whence

vl = 2mg (8.7)
pSCLw

where Ci; is the steady level flight value of the wing-body lift coefficient.
Thus, from equations (8.6) and (8.7)

OIXT = (n - l)pSCLwIT = (n - l)~LwIT == oCLv:lT (8.8)
2m Jl1C /lIe

where JlI is the longitudinal relative density parameter and is defined
m

u, = 1 S= (8.9)
iP c

and the increment in lift coefficient, alternatively referred to as incremental 'g', necessary
to sustain the steady manoeuvre is given by

l5CLw = (n - l)CLw (8.10)

Care should be exercised when using the longitudinal relative density parameter since
various definitions are in common use.

8.3 The pitching moment equation

Subject to the same assumptions about thrust, drag, speed effects and so OD, in the
steady symmetric manoeuvre the pitching moment equation in coefficient form given by
equation (3.7) applies and may be written

C~ = c; + C~w(h - ho) - C~T ~ (8.11)

where a dash indicates the manoeuvring value of the coefficient and

C~ = C; + bCrn

C~w = CLw + l5CLw == nCLw

C~T = CLT + bCLT

where em, CLw and CLT denote the steady trim values of the coefficients and bern, bCLw

and bCLT denote the increments in the coefficients required to manoeuvre. The
corresponding expression for the tailplane lift coefficient is given by equation (3.8)
which, for manoeuvring flight, may be written

C~T = al (X~ + a211' + ct3PtI (8.12)
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It is assumed that the tailplane has a symmetric aerofoil section, ao =0, and that the
tab angle is held at the constant steady trim value, P", throughout the manoeuvre. In
other words, the manoeuvre is the result of elevator input only. Thus, using the above
notation

a~ = aT+ baT

11' = 11 + bYJ

Tailplane incidence is given by equation (3.11) and in the manoeuvre this may be
written

C~ ( de)aT = -: 1 - da + YJT (8.13)

Total tailplane incidence in the manoeuvre is therefore given by the sum of equations
(8.8) and (8.13)

, C~w (1 de) bCLwlTaT=- -- +11T+--=-
a d« 1l1 C

Substituting for a~ in equation (8.12) the expression for tailplane lift coefficient in the
manoeuvre may be written

, C~wal (de) bCLwa11T ,
CLT =-- I--d +al11T + = +a2t'1 +a3P"

a a 1l1 C

Substitute the expression for tailplane lift coefficient, equation (8.15), into equation
(8.11), and after some rearrangement the pitching moment equation may be written

, , -(c~at( de) bCLa11T, )
Cm = Cmg + CLw(h - ho) - VT ~ 1 - dtX + at'lT+ fl.:c +a2'l + a3P~

(8.16)

Equation (8.16) describes the total pitching moment in the manoeuvre. To obtain the
incremental pitching moment equation which describes the manoeuvre effects only, it is
first necessary to replace the 'dashed' variables and coefficients in equation (8.16) with
their equivalent expressions. Then, after some rearrangement, equation (8.16) may be
written

c; +sc; = {Cmg +CLJh - Ito) - v,.(cL;at (1 -::) + at'lT+ ~'l + a3P~)}

+ {~CLJh - Ito) - v,.eC~wal (1 -::) + ~C~:~tl.r + a2~'l)} (8.17)

Now in the steady equilibrium flight condition about which the manoeuvre is executed
the pitching moment is zero, therefore

-(CL at ( de) )C; = Cmo + CLw(h - ho) - VT ~ 1 - da + a1tlT + a2tl + a3P" = 0

and equation (8.17) simplifies to that describing the incremental pitching moment
coefficient

(8.19)
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8.4 Longitudinal manoeuvre stability

As for longitudinal static stability, discussed in Chapter 3, in order to achieve a stable
manoeuvre the following condition must be satisfied

dC~ 0
dC' <

L w

and for the manoeuvre to remain steady then

C~ =0 (8.21)

(8.26)

(8.24)

(8.25)

Analysis and interpretation of these conditions leads to the definition of controls fixed
manoeuvre stability and controls free manoeuvre stability, which correspond to the
parallel concepts derived in the analysis of longitudinal static stability.

8.4.1 CONTROLS FIXED STABILITY

The total pitching moment equation (8.16) may be written

, , - (C~ at (de) (C~ - CL ) , )Cm = Cmo + CLw(h - ho} - VT ~ 1 - diX + al'lT + w/lIe w + a2'l + a3P~

(8.22)

and since, by definition, the controls are held fixed in the manoeuvre

drl
-=0
dC~w

Applying the condition for stability, equation (8.20), to equation (8.22) and noting that
Ct.; and P11 are constant at their steady level flight values and that 11T is also a constant of
the aircraft configuration then

d~~ = (h _ ho)_ Y.r (at (1 _de) + al ~) (8.23)
dC L w a d« J..l1C

Or, writing

dC'
H =--_m=h-h

m dC' m
L w

where R m is the controls fixed manoeuvre margin and the location of the controls fixed
manoeuvre point hm on the mean aerodynamic chord cis given by

h - h T7 (at (1 de) aliT) _h VTa1/T
m - 0 + J'T - - - +---= - n +--=-

a d« J..lIC J..l1C

Clearly, for controls fixed manoeuvre stability the manoeuvre margin Hm must be
positive and, with reference to equation (8.24), this implies that the cg must be ahead of
the manoeuvre point. Equation (8.25) indicates that the controls fixed manoeuvre point
is aft of the corresponding neutral point by an amount depending on the aerodynamic
properties of the tailplane. It therefore follows that

H = K Y-ralIT
m n + =

J..lIC

which indicates that the controls fixed manoeuvre stability is greater than the controls
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fixed static stability. With reference to Appendix 6, equation (8.26) may be restated in
terms of aerodynamic stability derivatives

H
m

= - Mw _ Mq (8.27)
a III

A most important conclusion is then that additional stability in manoeuvring flight is
provided by the aerodynamic pitch damping properties of the tailplane. However, caution
is advised since this conclusion may not apply to all aeroplanes in large amplitude
manoeuvring, or to manoeuvring in conditions where the assumptions do not apply.

As for controls fixed static stability, the meaning of controls fixed manoeuvre stability
is easily interpreted by considering the pilot action required to establish a steady
symmetric manoeuvre from an initial trimmed level flight condition. Since the steady
(fixed) incremental elevator angle needed to induce the manoeuvre is of interest the
incremental pitching moment, equation (8.19), is applicable. In a stable steady, and
hence by definition, non-divergent manoeuvre, the incremental pitching moment bCrn is
zero. Whence, equation (8.19) may be rearranged to give

~ = -2- {(h - ho) - ~(al (1 _de) +allJ) } = -=Hm (8.28)sct.; "Ji;.a2 a d« III C VTa2

Or, in terms of aerodynamic stability derivatives,

bfJ -Hrn 1 (Mw Mq)

bC
L w

= M q = M q -a+-;:
Referring to equation (8.10)

bCLw = (n - I)CLw

which describes the incremental aerodynamic load acting on the aeroplane causing it to
execute the manoeuvre, expressed in coefficient form, and measured in units of 'g'. Thus,
both equation (8.28) and equation (8.29) express the elevator displacement per g
capability of the aeroplane, which is proportional to the controls fixed manoeuvre
margin and inversely proportional to the elevator control power, quantified by the
aerodynamic control derivative M". Since elevator angle and pitch control stick angle
are directly related by the control gearing then the very important stick displacement per
g control characteristic follows directly and is also proportional to the controls fixed
manoeuvre margin. This latter control characteristic is critically important in the
determination of longitudinal handling qualities.

Measurements of elevator angle and normal acceleration in steady manoeuvres for a
range of values of normal load factor provide an effective means for determining
controls fixed manoeuvre stability from flight experiments. However, in such
experiments it is not always possible to ensure that one can adhere to all of the
assumptions.

8.4.2 CONTROLS FREE STABILITY

The controls free manoeuvre is not a practical way of controlling an aeroplane. It does,
of course, imply that the elevator angle required to achieve the manoeuvre is obtained
by adjustment of the tab angle. As in the case of controls free static stability, this equates
to the control force required to achieve the manoeuvre which isa most significant
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(8.32)

(8.36)

(8.35)
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control characteristic. Control force derives from elevator hinge moment in a
conventional aeroplane and the elevator hinge moment coefficient in manoeuvring flight
is given by equation (3.21) and may be restated as

C~ = CH + bCH = ble<~ + b2YJ' +b3P" (8.30)

Since the elevator angle in a controls free manoeuvre is indeterminate it is convenient
to express YJ'in terms of hinge moment coefficient by rearranging equation (8.30)

'1' = .!.C~ - ~OCT _ b3 p~
b2 b2 b2

Substitute the expression for e<~, equation (8.14), into equation (8.31) to obtain

'=.!.C' -.!?J...(l- de)c' _~ _ blIT_bC _ b3p
YJ b H ab de t.; b .YJT b - i; b n

2 2 2 2J.lI C 2

Equation (8.32) may be substituted into the manoeuvring pitching moment equation
(8.16) in order to replace the indeterminate elevator angle by hinge moment coefficient.
After some algebraic rearrangement the manoeuvring pitching moment may be
expressed in the same format as equation (8.22)

(
C' a1 (1 de) (1 a

2bl) C' a2 )L w - -- -- +alYJT+ H-e - c e (h _ h ) _ V; a do: al b2 b2

m - "'0 + t.; 0 T +(C~w _ cLJall~ (1- a2b1) +P,,(I- a2b3)

J.l1c a1b2 a3 b2
(8.33)

and since, by definition, the controls are free in the manoeuvre then

C~ =0

Applying the condition for stability, equation (8.20), to equation (8.33) and noting that,
as before, CL w and P" are constant at their steady level flight values and that YJT is also
a constant of the aircraft configuration, then

d~~ = (h _ 110) _ VT(~ (1 _de) +all;.) (1 _a2b1
) (8.34)

dC Lw a d« J.lt C a.b,

Or, writing

H' = - dC~ = h' - h
m dC' m

L w

where H~ is the controls free manoeuvre margin and the location of the controls free
manoeuvre point h~ on the mean aerodynamic chord cis given by

h~ =ho+ VT(a 1 (1- de) +al l;')(I_a2bt
)

a d«, J.lt C a.b,

h' T7 aliT (1 a2b])= n+ .....T-- --
Jl1C al b2

Clearly, for controls free manoeuvre stability the manoeuvre margin H~ must be positive
and, with reference to equation (8.35), this implies that the cg must be ahead of the
manoeuvre point. Equation (8.36) indicates that the controls fixed manoeuvre point. is
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aft of the corresponding neutral point by an amount again depending on the
aerodynamic damping properties of the tailplane. It therefore follows that

H~ = K: + ~ a.lJ(1 _a2b t ) == K: + Mq (1 _a2b l
) (8.37)

III c at b2 III al b2

which indicates that the controls fixed manoeuvre stability is greater than the controls
fixed static stability when

( 1 - a2bl
) > 0 (8.38)

alb2

Since a l and a2 are both positive the degree of controls free manoeuvre stability, over
and above the controls free static stability, is controlled by the signs of the hinge
moment parameters b, and b2• This, in turn, depends on the aerodynamic design of the
elevator control surface.

As for controls free static stability the meaning of controls free manoeuvre stability
is easily interpreted by considering the pilot action required to establish a steady
symmetric manoeuvre from an initial trimmed level flight condition. Since the controls
are 'free' this equates to a steady tab angle increment or, more appropriately, a steady
control force increment in order to cause the aeroplane to manoeuvre. Equation (8.33)
may be rewritten in terms of the steady and incremental contributions to the total
controls free manoeuvring pitching moment in the same way as equation (8.17)

CLw~ (1 - de) (1 _a2b l )

- a d« alb2
C; + bCm = Cmo + CLw(h - ho) - VT

a2 ( a 2b3)
+al'1T + Cn b

2
+ p~ 1 - a3b2

sc ~ (1 _de) (1 _a2bl )
i.; a det at b2+ b·CLw(h - ho) - VT (8.39)

~C a2 ~C aliT (1 a 2bl)
+U H-+U L -- --b2 w ~Jc al b2

Now in the steady equilibrium flight condition about which the manoeuvre is executed
the pitching moment is zero, thus

C = C + C (h _ h ) _ ~ (CLW ~ (1
- ::) (

1
- :~::) = 0 (8.40)

m mo i.; 0 T a (a b )
+al'1T +c;b: + {J~ 1 - a:b:

and equation (8.39) simplifies to that describing the incremental controls free pitching
moment coefficient

(

bCLw:i (1 _de) (1 _a2bl
) )

bC
m

= bCLw(h - ho) _ ~ a de a.b2

~C a2 ~C aliT (1 a 2bl)
+U H-+u L -- --

b2 w JllC atb2

Now, in the steady manoeuvre the incremental pitching moment bCm
equation (8.41) may be rearranged to give

(8.41)

is zero and
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(8.42)

In a conventional aeroplane the hinge moment coefficient relates directly to the control
stick force, see equation (3.32). Equation (8.42) therefore indicates the very important
result that the stick force per g control characteristic is proportional to the controls free
manoeuvre margin. This control characteristic is critically important in the
determination of longitudinal handling qualities and it must have the correct value. In
other words, the controls free manoeuvre margin must lie between precisely defined
upper and lower bounds. As stated above, in an aerodynamically controlled aeroplane
this control characteristic can be adjusted independently of the other stability character­
istics by selective design of the values of the hinge moment parameters b, and b2•

The controls free manoeuvre stability is critically dependent on the ratio b]/b 2, which
controls the magnitude and sign of expression (8.38). For conventional aeroplanes fitted
with a plain flap type elevator control both b l and b2 are usually negative and, see
equation (8.37), the controls free manoeuvre stability would be less than the controls free
static stability. Adjustment of b, and b2 is normally achieved by aeromechanical means
which are designed to modify the elevator hinge moment characteristics. Typically, this
involves carefully tailoring the aerodynamic balance of the elevator by means such as:
set back hinge line, horn balances, spring tabs, servo tabs and so on. Excellent
descriptions of these devices may be found in Dickinson (1968) and in Babister (1961).

The measurement of stick force per g is easily undertaken in flight. The aeroplane is
flown in steady manoeuvring flight, the turn probably being the simplest way of
achieving a steady normal acceleration for a period long enough to enable good quality
measurements to be made. Measurements of stick force and normal acceleration enable
estimates to be made of the controls free manoeuvre margin and the location of the
controls free manoeuvre point. With greater experimental difficulty, stick force per g can
also be measured in steady pull-ups and in steady push-overs. However the experiment
is done it must be remembered that it is not always possible to ensure that all of the
assumptions can be adhered to.

8.5 Aircraft dynamics and manoeuvrability

The preceding analysis shows how the stability of an aeroplane in manoeuvring flight
is dependent on the manoeuvre margins and, further, that the magnitude of the
manoeuvre margins determines the critical handling characteristics, stick displacement
per g and stick force per g. However, the manoeuvre margins of the aeroplane are also
instrumental in determining some of the dynamic response characteristics of the
aeroplane. This fact further reinforces the statement made elsewhere that the static,
manoeuvre and dynamic stability and control characteristics of an aeroplane are really
very much interrelated and should not be treated entirely as isolated topics.

In Chapter 6, reduced order models of an aircraft are discussed and, from the
longitudinal model representing short term dynamic stability and response, an
approximate expression for the short period mode undamped natural frequency is
derived, equation (6.21), in terms of dimensional aerodynamic stability derivatives. With
reference to Appendix 1, this expression may be restated in terms of dimensionless
derivatives
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where u, is the longitudinal relative density factor defined in equation (8.9).
Now with reference to Appendix 6 an approximate expression for Z; is given as

aCLZw ~ -CD - - = -CD - aaa
for small perturbation motion in subsonic flight. Since a » CD equation (8.44) may be
approximated further, and substituting for Z; in equation (8.43) gives
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where k is a constant at the given flight condition. Equation (8.45) therefore shows that
the undamped natural frequency of the longitudinal short period mode is directly
dependent on the controls fixed manoeuvre margin. Alternatively, this may be
interpreted as a dependency on the controls fixed static margin and pitch damping.
Clearly, since the controls fixed manoeuvre margin must lie between carefully defined
boundaries if satisfactory handling is to be ensured, this implies that the longitudinal
short period mode must also be constrained to a corresponding frequency band. Flying
qualities requirements have been developed from this kind of understanding and are
discussed in Chapter 10.

In many modern aeroplanes the link between the aerodynamic properties of the
control surface and the stick force is broken by a servo-actuator and other flight control
system components. In this case the control forces are provided artificially and may
not interrelate with other stability and control characteristics in the classical way.
However, it is obviously important that the pilot's perception of the handling qualities
of his aeroplane look like those of an aeroplane with acceptable aerodynamic manoeuvre
margins. Since many of the subtle aerodynamic interrelationships do not exist in
aeroplanes employing sophisticated flight control systems, it is critically important to be
fully aware of the handling qualities implications at all stages of a control system
design.

References

Babister, A. W. 1961: Aircraft Stability and Control. Pergamon Press, London.
Dickinson, B. 1968: Aircraft Stability and Control for Pilots and Engineers. Pitman,

London.
Gates, S. B. and Lyon, H. M. 1944: A Continuation ofLongitudinal Stability and Control

Analysis; Part 1, General Theory. Aeronautical Research Council, Reports and
Memoranda No: 2027.



9
Stability

9.1 Introduction

Stability is referred to frequently in the foregoing chapters without a formal definition
so it is perhaps useful to revisit the subject in a little more detail in this chapter. Having
established the implications of both static and dynamic stability in the context of aircraft
response to controls it is convenient to develop some simple analytical and graphical
tools to help in the interpretation of aircraft stability.

9.1.1 A DEFINITION OF STABILITY

There are many different definitions of stability, which are dependent on the kind of
system to which they are applied. Fortunately, in the present context the aircraft model
is linearized by limiting its motion to small perturbations. The definition of the stability
of a linear system is the simplest and most commonly encountered, and is adopted here
for application to the aeroplane. The definition of the stability of a linear system may be
found in many texts in applied mathematics, in system analysis and in control theory.
A typical definition of the stability of a linear system with particular reference to the
aeroplane may be stated as follows.

A system (aeroplane) which is initially in a state of static equilibrium is said to be
stable if, after a disturbance of finite amplitude and duration, the response ultimately
becomes vanishingly small.

Stability is therefore concerned with the nature of the free motion of the system
following a disturbance. When the system is linear the nature of the response, and hence
its stability, is independent of the nature of the disturbing input. The small perturbation
equations of motion of an aircraft are linear since, by definition, the perturbations are
small. Consequently, it is implied that the disturbing input must also be small in order to
preserve that linearity. When, as is often the case, input disturbances which are not
really small are applied to the linear small perturbation equations of motion of an
aircraft, some degradation in the interpretation of stability from the observed response
must be anticipated. However, for most applications this does not give rise to major
difficulties since the linearity of the aircraft model usually degrades relatively slowly with
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increasing perturbation amplitude. Thus, it is considered reasonable to use linear system
stability theory for general aircraft applications.

9.1.2 NON-LINEAR SYSTEMS

Many modern aircraft, especially combat aircraft which depend on flight control systems
for their normal flying qualities, can, under certain conditions, demonstrate substantial
non-linearity in their behaviour. This may be due, for example, to large amplitude
manoeuvring at the extremes of the flight envelope where the aerodynamic properties of
the airframe are decidedly non-linear. A rather more common source of non-linearity,
often found in an otherwise nominally linear aeroplane and often overlooked, arises
from the characteristics of common flight control system components. For example,
control surface actuators all demonstrate static friction, hysteresis, amplitude and rate
limiting to a greater or lesser extent. The non-linear response associated with these
characteristics is not normally intrusive unless the demands on the actuator are limiting,
such as might be found in the fly-by-wire control system of a high performance aircraft.
The mathematical models describing such non-linear behaviour are much more difficult
to create and the applicable stability criteria are rather more sophisticated and, in any
event, beyond the scope of the present discussion. Non-linear system theory, more
popularly known as chaotic system theory today, is developing rapidly to provide the
mathematical tools, understanding and stability criteria for dealing with the kind of
problems posed by modern highly augmented aircraft.

9.1.3 STATIC AND DYNAMIC STABILITY

Any discussion of stability must consider the total stability of the aeroplane at the flight
condition of interest. However, it is usual and convenient to discuss static stability and
dynamic stability separately since the related dependent characteristics can be identified
explicitly in aircraft behaviour. In reality, static and dynamic stability are inseparable
and must be considered as an entity. An introductory discussion of static and dynamic
stability is contained in Section 3.1 and their simple definitions are reiterated here. The
static stability of an aeroplane is commonly interpreted to describe its tendency to
converge on the initial equilibrium condition following a small disturbance from trim.
Dynamic stability describes the transient motion involved in the process of recovering
equilibrium following the disturbance. It is very important that an aeroplane possesses
both static and dynamic stability in order that it shall be safe. However, the degree of
stability is also very important since this determines the effectiveness of the controls of
the aeroplane.

9.1.4 CONTROL

By definition, a stable aeroplane is resistant to disturbance, in other words it will attempt
to remain at its trimmed equilibrium flight condition. The 'strength' of the resistance
to disturbance is determined by the degree of stability possessed by the aeroplane. It
follows then that a stable aeroplane is reluctant to respond when a disturbance is
deliberately introduced as the result of pilot control action. Thus, the degree of stability
is critically important to aircraft handling. An aircraft which is very stable requires a
greater pilot control action in order to manoeuvre about the trim state and, clearly, too
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much stability may limit the controllability, and hence the manoeuvrability, of the
aeroplane. On the other hand, too little stability in an otherwise stable aeroplane may give
rise to an over-responsive aeroplane with the resultant pilot tendency to over-control.
Therefore, too much stability can be as hazardous as too little stability and it is essential
to place upper and lower bounds on the acceptable degree of stability in an aeroplane in
order that it shall remain completely controllable in all flight conditions. By reducing the
total stability to static and dynamic components, which are further reduced to the
individual dynamic modes, it becomes relatively easy to assign the appropriate degree of
stability to each mode in order to achieve a safe controllable aeroplane in total.

9.2 The characteristic equation

It has been shown in previous chapters that the denominator of every aircraft response
transfer function defines the characteristic polynomial, the roots of which determine the
stability modes of the aeroplane. Equating the characteristic polynomial to zero defines
the classical characteristic equation and thus far two such equations have been identified.
Since decoupled motion only is considered, the solution of the equations of motion of
the aeroplane results in two fourth order characteristic equations, one relating to
longitudinal symmetric motion and one relating to lateral-directional asymmetric
motion. In the event that the decoupled equations of motion provide an inadequate
aircraft model, such as is often the case for the helicopter, then a single characteristic
equation, typically of eighth order, describes the stability characteristics of the aircraft
for fully coupled longitudinal-lateral motion. For aircraft with significant stability
augmentation, the flight control system introduces additional dynamics resulting in a
higher order characteristic equation. For advanced combat aircraft the longitudinal
characteristic equation, for example, can be of order 30 or more! Interpretation of high
order characteristic equations can be something of a challenge for the flight dynamicist.

The characteristic equation of a general system of order n may be expressed in the
familiar format as a function of the Laplace operator 5

(9.1)

and the stability of the system is determined by the n roots of equation (9.1). Provided
that the constant coefficients in equation (9.1) are real then the roots may be real,
complex pairs or a combination of the two. Thus, the roots may be written in the general
form

(i) s = -(11 with time solution k1e- t1t t

(ii) 5 = -(12±jY2 with time solution k2e- t12t sin(Y2 t + 4>2)
or, more familiarly, 52 + 2(125 + «(1~ + Y~) = 0

where (1 is the real part, y is the imaginary part, 4> is the phase angle and k is a gain
constant. When all the roots have negative real parts the transient component of the
response to a disturbance decays to zero as t ~ 00 and the system is said to be stable.
The system is unstable when any root has a positive real part and neutrally stable when
any root has a zero real part. Thus, the stability and dynamic behaviour of any linear
system is governed by the sum of the dynamics associated with each root of its
characteristic equation. The interpretation of the stability and dynamics of a linear
system is summarized in Appendix 5.
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9.3 The Routh-Hurwitz stability criterion

The development of a criterion for testing the stability of linear systems is generally
attributed to Routh. Application of the criterion involves an analysis of the character­
istic equation and methods for interpreting and applying the criterion are very widely
known and used, especially in control systems analysis. A similar analytical procedure
for testing the stability of a system by analysis of the characteristic equation was
developed simultaneously, and quite independently, by Hurwitz. As a result both
authors share the credit and the procedure is commonly known to control engineers as
the Routh-Hurwitz criterion. The criterion provides an analytical means for testing the
stability of a linear system of any order without having to obtain the roots of the
characteristic equationa

With reference to the typical characteristic equation (9.1), if any coefficient is zero or
if any coefficient is negative, then at least one root has a zero or positive real part
indicating the system to be unstable, or at best neutrally stable. However, it is a
necessary but not sufficient condition for stability that all coefficients in equation (9.1)
are non-zero and of the same sign. When this condition exists the stability of the system
described by the characteristic equation may be tested as follows.

An array, commonly known as the Routh Array, is constructed from the coefficients
of the characteristic equation arranged in descending powers of s as follows

y
z

The first row of the array is written to include alternate coefficients starting with the
highest power term and the second row includes the remaining alternate coefficients
starting with the second highest power term as indicated. The third row is constructed as
follows

an-l a n-2 - a nan-3
Ul=------

an- 1

an-l a n-4 - an a n-5
U2=------

an- )

a n- l an-6 - a nan-7
U3=------

an- 1

and so on until all remaining u are zero. The fourth row is constructed similarly from
coefficients in the two rows immediately above as follows

ulan-3 - U2an_ )
Vl=-----

U1

Ut an- 5 - U3an- l
V2=-----

Ul

ulan-7 - U2a n- l
V3=-----

U)

and so on until all remaining v are zero. This process is repeated until all remaining rows
of the array are completed. The array is triangular as indicated and the last two rows
comprise only one term each, y and z respectively.
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The Routh-Hurwitz criterion states:

The number of roots of the characteristic equation with positive real parts (unstable)
is equal to the number of changes of sign of the coefficients in the first column of the
array.

Thus, for the system to be stable all the coefficients in the first column of the array must
have the same sign.

EXAMPLE 9.1 _

The lateral-directional characteristic equation for the Douglas DC-8 aircraft in a low
altitude cruise flight condition, obtained from Teper (1969), is

Ll(s) = S4 + 1.326s3 + 1.219s2 + 1.096s - 0.015 = 0 (9.3)

(9.5)

Inspection of the characteristic equation (9.3) indicates an unstable aeroplane since
the last coefficient has a negative sign. The number of unstable roots may be
determined by constructing the array as described above

S4 1 1.219 -0.015
S3 1.326 1.096 0
S2 0.393 -0.015 0 (9.4)

s' 1.045 0 0
SO -0.015 0 0

Working down the first column of the array there is one sign change, from 1.045 to
-0.015, which indicates the characteristic equation to have one unstable root. This is
verified by obtaining the exact roots of the characteristic equation (9.3)

s = -0.109 ± 0.99j }
s = -1.21

s = +0.013

The pair of complex roots with negative real parts describe the stable dutch roll, the real
root with negative real part describes the stable roll subsidence mode and the real root
with positive real part describes the unstable spiral mode----a typical solution for a
classical aeroplane.

9.3.1 SPECIAL CASES

Two special cases, which may arise in the application of the Routh-Hurwitz criterion,
need to be considered although they are unlikely to occur in aircraft applications. The
first case occurs when, in the routine calculation of the array, a coefficient in the first
column is zero. The second case occurs when, in the routine calculation of the array, all
coefficients in a row are zero. In either case no further progress is possible and an
alternative procedure is required. The methods for dealing with these cases are best
illustrated by example.
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EXAMPLE 9.2 _

Consider the arbitrary characteristic equation

Ll(s) =S4 + S3 +6; + 6s+ 7 =0

The array for this equation is constructed in the usual way

(9.6)

(9.11)

S4 6 7
S3 6 0
S2 8 7 0 (9.7)
S1 ee;7) 0 0

SO 7 0 0

Normal progress cannot be made beyond the third row since the first coefficient is zero.
In order to proceed the zero is replaced with a small positive number, denoted 8. The
array can be completed as at equation (9.7) and as 8 ~ 0 so the first coefficient in the
fourth row tends to a large negative value. The signs of the coefficients in the first
column of the array (9.7) are then easily determined

S4 +
S3 +
S2 + (9.8)

SI

SO +
There are two changes of sign, from the third row to the fourth row and from the fourth
row to the fifth row. Therefore, the characteristic equation (9.6) has two roots with
positive real parts and this is verified by the exact solution

s = -0.6454 ± 0.9965j } (9.9)
s =+0.1454 ± 2.224j

EXAMPLE 9.3 _

To illustrate the required procedure when all the coefficients in a row of the array are
zero consider the arbitrary characteristic equation

Ll(s) = S5 +2s4 +4s3 +8; + 3s+ 6 = 0 (9.10)

Constructing the array in the usual way

S5 r04
3

S4 2 8 6
S3 0 0

no further progress is possible since the third row comprises all zeros. In order to
proceed, the zero row, the third row in this example, is replaced by an auxiliary function
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derived from the preceding non-zero row. Thus, the function is created from the row
commencing with the coefficient of s to the power of four as follows

2s4+8s2+6=0 or, equivalently, s4+4s2+3=0 (9.12)

Only terms in alternate powers of s are included in the auxiliary function (9.12)
commencing with the highest power term determined from the row of the array from
which it is derived. The auxiliary function is differentiated with respect to s and the
resulting polynomial is used to replace the zero row in the array. Equation (9.12) is
differentiated to obtain

4s3 + 8s = 0 or, equivalently, S3 + 2s = 0 (9.13)

Substituting equation (9.13) into the third row of the array (9.11), it may then be
completed in the usual way

S5 1 4 3
S4 2 8 6
S3 1 2 0 (9.14)
S2 4 6 0
S1 0.5 0 0
SO 6 0 0

Inspection of the first column of the array (9.14) indicates that all roots of the
characteristic equation (9.10) have negative real parts. However, the fact that in the
derivation of the array one row comprises zero coefficients suggests that something is
different. The exact solution of equation (9.10) confirms this suspicion

s = 0 ± 1.7~2j }
s=O±1.0J

S = -2.0

Clearly the system is neutrally stable since the two pairs of complex roots both have
zero real parts.

9.4 The stability quartic

Since both the longitudinal and lateral-directional characteristic equations derived from
the small perturbation equations of motion of an aircraft are fourth order, considerable
emphasis has always been placed on the solution of a fourth order polynomial,
sometimes referred to as the stability quartic. A general quartic equation applicable to
either longitudinal or lateral-directional motion may be written

(9.16)

When all of the coefficients in equation (9.16) are positive, as is often the case, then no
conclusions may be drawn concerning stability unless the roots are found or the Routh­
Hurwitz array is constructed. Constructing the Routh-Hurwitz array as described in
Section 9.3 above
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(9.17)E

C E
D

A

B

(BC~AD)

s' (D(BC - AD) - B
2
E)

BC-AD
SO E

Assuming that all of the coefficients in the characteristic equation (9.16) are positive
and that Band C are large compared with D and E, as is usually the case, then the
coefficients in the first column of array (9.17) are also positive with the possible
exception of the coefficient in the fourth row. Writing

R =D(BC - AD) - B2E (9.18)

R is called Routh's Discriminant and since (BC - AD) is positive, the outstanding
condition for stability is

R>O

For most classical aircraft operating within the constraints of small perturbation
motion, the only coefficient in the characteristic equation (9.16) likely to be negative is
E. Thus, typically the necessary and sufficient conditions for an aeroplane to be stable
are

R>O and E>O

When an aeroplane is unstable some conclusions about the nature of the instability can
be made simply by observing the values of Rand E.

9.4.1 INTERPRETATION OF CONDITIONAL INSTABILITY

(i) When R < 0 and E > 0

Observation of the signs of the coefficients in the first column of the array (9.17)
indicates that two roots of the characteristic equation (9.16) have positive real parts. For
longitudinal motion this implies a pair of complex roots and in most cases this means
an unstable phugoid mode since its stability margin is usually smallest. For lateral­
directional motion the implication is that either the two real roots, or the pair of
complex roots, have positive real parts. This means either that the spiral and roll
subsidence modes are unstable or that the dutch roll mode is unstable. Within the
limitations of small perturbation modelling an unstable roll subsidence mode is not
possible. Therefore, the instability must be determined by the pair of complex roots
describing the dutch roll mode.

(ii) When R < 0 and E < 0

For this case, observation of the signs of the coefficients in the first column of the array
(9.17) indicates that one root only of the characteristic equation (9.16) has a positive real
part. Clearly, the 'unstable' root can only be a real root. For longitudinal motion this
may be interpreted to mean that the phugoid mode has changed such that it is no longer
oscillatory and is therefore described by a pair of real roots, one of which has a positive
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real part. The 'stable' real root typically describes an exponential heave mode, whereas
the 'unstable' root describes an exponentially divergent speed mode. For lateral­
directional motion the interpretation is similar and in this case the only 'unstable' real
root must be that describing the spiral mode. This, of course, is a commonly encountered
condition in lateral-directional dynamics.

(iii) When R > 0 and E < 0

As for the previous case, observation of the signs of the coefficients in the first column
of the array (9.17) indicates that one root only of the characteristic equation (9.16) has a
positive real part. Again, the 'unstable' root can only be a real root. Interpretation of
the stability characteristics corresponding to this particular condition is exactly the same
as described in (ii) above. .

When all the coefficients in the characteristic equation (9.16) are positive and R is
negative the instability can only be described by a pair of complex roots, the interpreta­
tion of which is described in (i) above. Since the unstable motion is oscillatory the
condition R > 0 is sometimes referred to as the criterion for dynamic stability.
Alternatively, the most common unstable condition arises when the coefficients in the
characteristic equation (9.16) are positive with the exception of E. In this case the
instability can only be described by a single real root, the interpretation of which is
described in (iii) above. Now the instability is clearly identified as a longitudinal speed
divergence or as the divergent lateral-directional spiral mode, both of which are dynamic
characteristics. However, the aerodynamic contribution to E is substantially dependent
on static stability effects and when E < 0 the cause is usually static instability.
Consequently, the condition E > 0 is sometimes referred to as the criterion for static
stability. This simple analysis emphasizes the role of the characteristic equation in
describing the total stability of the aeroplane and reinforces the reason why, in reality,
static and dynamic stability are inseparable, and why one should not be considered
without reference to the other.

9.4.2 INTERPRETATION OF THE COEFFICIENT E

Assuming the longitudinal equations of motion to be referred to aircraft wind axes, then
the coefficient E in the longitudinal characteristic equation may be obtained directly
from Appendix 2

E = mg(M.vZu - MuZw) (9.19)

and the longitudinal static stability criterion may be expressed in terms of dimensionless
derivatives

(9.20)

For most aeroplanes the derivatives in equation (9.20) have negative values so that the
terms on either side of the inequality are usually both positive. Mw is a measure of the
controls fixedlongitudinal static stability margin, ZIl is largely dependent on lift coefficient,
Z; is dominated by lift curve slope and Mil only assumes significant values at high Mach
number. Thus, provided the aeroplane possesses a sufficient margin of controls fixed
longitudinal static stability Mw will be sufficiently large to ensure that the inequality (9.20)
is satisfied. At higher Mach numbers when Mil becomes larger the inequality is generally
maintained since the associated aerodynamic changes also cause Mw to increase.
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Similarly, the coefficient E in the lateral-directional characteristic equation may be
obtained directly from Appendix 2

(9.21)

and the lateral-directional static stability criterion may be expressed in terms of
dimensionless derivatives

(9.22)

For most aeroplanes the derivatives L, and N, are both negative, the derivative L, is
usually positive and the derivative N; is always positive. Thus, the terms on either side of
the inequality (9.22) are usually both positive. Satisfaction of the inequality is usually
determined by the relative magnitudes of the derivatives L, and Nv• Now L, and N, are
the derivatives describing the lateral and directional controls fixed static stability of the
aeroplane respectively, as discussed in Sections 3.4 and 3.5. The magnitude of the
derivative L, is determined by the lateral dihedral effect and the magnitude of the
derivative N, is determined by the directional weathercock effect. The inequality (9.22)
also determines the condition for a stable spiral mode as described in Section 7.3.2 and,
once again, the inseparability of static and dynamic stability is illustrated.
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Fig. 9.1 Roots on the s-plane
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9.5 Graphical interpretation of stability

Today, the foregoing analysis of stability is of limited practical value since all of the
critical information is normally obtained in the process of solving the equations of
motion exactly and directly using suitable computer software tools as described
elsewhere. However, its greatest value is in the understanding and interpretation of
stability that it provides. Of much greater practical value are the graphical tools much
favoured by the control engineer for the interpretation of stability on the s-plane.

9.5.1 ROOT MAPPING ON THE S-PLANE

The roots of the characteristic equation are either real or complex pairs as stated in
Section 9.2. The possible forms of the roots may be mapped on to the s-plane as shown
in Fig. 9.1. Since the roots describe various dynamic and stability characteristics
possessed by the system to which they relate the location of the roots on the s-plane also
conveys the same information in a highly accessible form. 'Stable' roots have negative
real parts and lie on the left half of the s-plane, 'unstable' roots have positive real parts
and lie on the right half of the s-plane and roots describing neutral stability have zero
real parts and lie on the imaginary axis. Complex roots lie in the upper half of the
s-plane, their conjugates lie in the lower half of the s-plane and since their locations are
mirrored in the real axis it is usual to show the upper half of the plane only.

Complex roots describe oscillatory motion, so all roots lying in the plane and not on
the real axis describe such characteristics. Roots lying on the real axis describe non­
oscillatory motions, the time constants of which are given by T = 1/(1. A root lying at
the origin, therefore, is neutrally stable and has an infinite time constant. As real roots
move away from the origin so their time constants decrease, in the stable sense, on the
left half plane and in the unstable sense on the right half plane.

Consider the interpretation of a pair of complex roots on the s-plane in rather greater
detail. As stated in Section 9.2, the typical pair of complex roots may be written

(s + a + jy)(s + (J - jy) =S2 + 2(JS + «(12 + y2) == 0 (9.23)

which is equivalent to the familiar expression

S2 + 2'ws + w2 = 0

whence

'W = (J

w2 = (J2 + y2
(J,= cos</> =---

Ja2 + y2

where 4> is referred to as the damping angle. This information is readily interpreted on
the s-plane as shown in Fig. 9.2. The complex roots of equation (9.23) are plotted at p,
the upper half of the s-plane only being shown since the lower half containing the
complex conjugate root is a mirror image in the real axis. With reference to equations
(9.24) and (9.25), it is evident that undamped natural frequency is given by the
magnitude of the line joining the origin and the point p. Thus, lines of constant
frequency are circles concentric with the origin provided that both axes have the same
scales. Care should be exercised when the scales are dissimilar, which is often the case,
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as the lines of constant frequency then become ellipses. Thus, clearly, roots indicating
low frequency dynamics are near to the origin and vice versa.

Whenever possible, it is good practice to draw s-plane plots and root locus plots
on axes having the same scales to facilitate the easy interpretation of frequency. With
reference to equations (9.25), it is evident that radial lines drawn through the origin
are lines of constant damping. The imaginary axis then becomes a line of zero
damping and the real axis becomes a line of critical damping where the damping ratio
is unity and the roots become real. The upper left quadrant of the s-plane shown in
Fig. 9.2 contains the stable region of positive damping ratio in the range 0 ~ , ~ 1
and is therefore the region of critical interest in most practical applications. Thus,
roots indicating stable well-damped dynamics are seen toward the left of the region
and vice versa. Thus, information about the dynamic behaviour of a system is
instantly available on inspection of the roots of its characteristic equation on the
s-plane. The interpretation of the stability of an aeroplane on the s-plane becomes
especially useful for the assessment of stability augmentation systems on the root
locus plot as described in Chapter 11.

EXAMPLE 9.4 _

The Boeing 8-747 is typical of a large classical transport aircraft and the following
characteristics were obtained from Heffley and Jewell (1972). The flight case chosen
is representative of typical cruising flight at Mach 0.65 at an altitude of 20 000 f1. The
longitudinal characteristic equation is
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a(S»)ong = S4 + 1.1955s3 + 1.5960~ + 0.0106s + 0.00676

with roots

s = -0.001725 ± 0.0653j \

S = -0.596 ± 1.1101j

describing stability mode characteristics

(9.26)

(9.27)

COp = 0.065 radjs

COs = 1.260 radjs
'p = 0.0264\

'5 = 0.4730
(9.28)
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The corresponding lateral characteristic equation is
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s =-0.0108 }
s = -0.9130

s = -0.0881 ± 1.0664j

describing stability mode characteristics

(9.30)

1; = 92.6s

1; = 1.105

COd = 1.070 rad/s 'd =0.082}
(9.31)

The longitudinal roots given by equation (9.27) and the lateral roots given by equation
(9.30) are mapped on to the s-plane as shown in Fig. 9.3. The plot is absolutely typical
for a large number of aeroplanes and shows the stability modes, represented by their
corresponding roots, on regions of the s-plane normally associated with the modes.
For example, the slow modes, the phugoid and spiral mode, are clustered around the
origin whereas the faster modes are further out in the plane. Since the vast majority of
aeroplanes have longitudinal and lateral-directional control bandwidths of less than
10 rad/s, then the scales of the s-plane plot would normally lie in the range -10 rad/s <
real < 0 rad/s and -10 rad/s < imaginary < 10 rad/s, Clearly, the control bandwidth of
the 8-747 at the chosen flight condition is a little over 1 rad/s as might be expected for
such a large aeroplane. The important observation to be made from this illustration is
the relative locations of the stability mode roots on the s-plane since they are quite
typical of many aeroplanes.
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10
Flying and Handling Qualities

10.1 Introduction

Some general concepts describing the meaning of flying and handling qualities of
aeroplanes were introduced in Chapter 1 and are not repeated in full here. However, it is
useful to recall that the flying and handling qualities of an aeroplane are those properties
which govern the ease and precision with which it responds to pilot commands in the
execution of the flight task. Although these rather intangible properties are described
qualitatively and are formulated in terms of pilot opinion, it becomes necessary to find
alternative quantitative descriptions for more formal analytical purposes. Now, as
described previously, the flying and handling qualities of an aeroplane are, in part,
intimately dependent on its stability and control characteristics, including the effects of a
flight control system when one is installed. It has been shown in previous chapters how
the stability and control parameters of an aeroplane may be quantified, and these are
commonly used as indicators and measures of the flying and handling qualities. So, the
object here is to introduce, at an introductory level, the way in which stability and
control parameters are used to quantify the flying and handling qualities of an
aeroplane.

10.1.1 STABILITY

A stable aeroplane is an aeroplane that can be established in an equilibrium flight
condition where it will remain, showing no tendency to diverge. Therefore, a stable
aeroplane is, in general, a safe aeroplane. However, it has already been established that
too much stability can be as hazardous as too little stability. The degree of stability
determines the magnitude of the control action, measured in terms of control
displacement and force, required to manoeuvre about a given flight path. Thus,
controllability is concerned with the correct harmonization of control power with the
degrees of static, manoeuvre and dynamic stability of the airframe. Because of the inter­
dependence of the various aspects of stability and control, the provision of well­
harmonized control characteristics by entirely aerodynamic means over the entire flight
envelope of an aeroplane may well be difficult, if not impossible, to achieve. This is
especially so in many modern aeroplanes that are required to operate over extended
flight envelopes and in aerodynamically difficult flight regimes. The solution to this
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problem is found in the installation of a control and stability augmentation system
(CSAS) where the object is to restore good flying qualities by artificial non-aerodynamic
means.

Aircraft handling is generally concerned with two relatively distinct aspects of
response to controls, the short term, or transient, response and the rather longer term
response. Short term handling is very much concerned with the short period dynamic
modes and their critical influence on manoeuvrability. The ability of a pilot to handle
the short term dynamics of an aeroplane satisfactorily is critically dependent on the
speed and stability of response. In other words, the bandwidth of the human pilot and
the control bandwidth of the aeroplane must be compatible and the stability margins of
the dynamic modes must be adequate. An aeroplane with poor, or inadequate, short
term dynamic stability and control characteristics is simply not acceptable. Thus, the
provision of good short term handling tends to be the main consideration in studies of
flying and handling qualities.

Longer term handling is concerned with the establishment and maintenance of a
steady flight condition, or trimmed equilibrium, which is determined by static stability in
particular and is influenced by the long period dynamic modes. The dynamic modes
associated with long term handling tend to be slow and the frequencies involved are
relatively low. Thus, their control is well within the bandwidth and capabilities of the
average human pilot even when the modes are marginally unstable. As a result, the
requirements for the stability of the low frequency dynamics are more relaxed. However,
those aspects of control which are dependent on static and manoeuvre stability
parameters are very important and result in well-defined boundaries for the static and
manoeuvre margins.

10.2 Short term dynamic models

As explained above, the critical aspects of aircraft handling qualities are mainly
concerned with the dynamics of the initial, or transient, response to controls. Thus, since
the short term dynamics is of greatest interest it is common practice to conduct handling
qualities studies using reduced order dynamic models derived from the full order
equations of motion. The advantage of this approach is that it gives maximumfunctional
visibility to the motion drivers of greatest significance. It is therefore easier to interpret
and understand the role of the fundamental aerodynamic and dynamic properties of the
aeroplane in the determination of its handling qualities. It also goes without saying that
the reduced order models are much easier to work with as they are algebraically
simpler.

10.2.1 CONTROLLED MOTION AND MOTION CUES

Reduced to the simplest interpretation, when a pilot applies a control input to his
aeroplane he is simply commanding a change in flight path. The change might be
temporary, such as manoeuvring about the flight path to return to the original flight
path on completion of the manoeuvre. Alternatively, the change might be permanent,
such as manoeuvring to effect a change in trim state involving a change of flight path
direction. Whatever the ultimate objective the method of control is much the same.

Normal manoeuvring involves rotating the airframe in roll, pitch and yaw to point
the lift vector in the desired direction and, by operating the pitch control, the angle of
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attack is adjusted to produce the lift force required to generate the acceleration to
manoeuvre. Thus, the pilot's perception of the handling qualities of his aeroplane is
concerned with the precise way in which it responds to his commands, sensed
predominantly as the change in normal acceleration. Indeed, the human pilot is
extremely sensitive to even the smallest changes in acceleration in all three axes. Clearly
then, short term normal acceleration dynamics provides a vitally irnportant cue in
aircraft handling qualities considerations and is most easily modelled with the reduced
order equations of motion. Obviously, other motion cues are equally important to the
pilot such as attitude, angular rate and angular acceleration, although these variables
have not, in the past, been regarded with the same level of importance as normal
acceleration. Thus, in the analysis of aircraft handling qualities, by far the greatest
emphasis is placed on the longitudinal short term dynamic response to controls.

10.2.2 THE LONGITUDINAL REDUCED ORDER MODEL

The reduced order longitudinal state equation describing short term dynamics only is
given by equation (6.1) in terms of concise derivatives and may be written

(10.1)

(10.2)

(10.3)

(10.5)

(10.4)

since Zq ~ U, and w is replaced by ct. Solution of equation (10.1) gives the two short term
response transfer functions

(X(s) it(s + Ue ~) k«(s + 1/~)
11(S) = (S2 - (mq+ zw)s + (mqzw- mwUe» = (S2 + 2(swss + w~)

q(s) m,,(s - zw) kq(s+ 1/162 )

11(S) = (S2 - (mq+ Zw)S + (rnqzW - mwUe» = (S2 + 2(swss + w~)

Equations (10.2) and (10.3) compare directly with equations (6.17) and (6.18)
respectively. The short term response transfer function describing pitch attitude response
to elevator follows directly from equation (10.3)

O(s) kq(s+ 1/182)

11(S) = S(S2 + 2'swss + w~)

With reference to Section 5.5 the short term response transfer function describing,
approximately, the normal acceleration response to elevator may be derived from
equations (10.2) and (10.3)

~OO ~;~ ~
11(S) = (S2 - (mq+ zw)s + (mqzw- mwUe» = (S2 +2(swss +OJ;)

(10.6)

In the derivation it is assumed that z"jUe is insignificantly small. With reference to
Section 5.7.3 the short term response transfer function describing flight path angle
response to elevator is also readily derived from equations (10.2) and (10.4)

y(s) _ -m"zw _ ky

11(S) - S(S2 - (mq+ zw)s + (mqzw- m; Ue» = S(S2 + 2(swss + w;)
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(10.8)

(10.7)

(10.12)
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and again, it is assumed that z,,/Ue is .insignificantly small. By dividing equation (10.6)
by equation (10.4) it may be shown that

yes) 1
8(s) = (1 + s18

2
)

which gives the important result that, in the short term, flight path angle response lags
pitch attitude response by 18

2
, sometimes referred to as incidence lag.

For the purpose of longitudinal short term handling analysis the responsiveness or
manoeuvrability of the aeroplane is quantified by the derivative parameter normal load
factor per unit angle of attack, denoted n., Since this parameter relates to the
aerodynamic lift generated per unit angle of attack at a given flight condition it is
proportional to the lift curve slope and the square of the velocity. An expression for ncx is
easily derived from the above short term transfer functions. Assuming a unit step input
to the elevator such that tICs) = 1/s then the Laplace transform of the incidence response
follows from equation (10.2)

z ( m)zs: s+U--!
o:(s) = Ue e z~ I

(S2 - (mq+ zw)s + (mqzw- mwUe» S

Applying the final value theorem, equation (5.33), to equation (10.8) the resultant steady
value of incidence may be obtained

m"o:(t)l.. =( U)mqzw - mw e

In a similar way the corresponding resultant steady value of normal acceleration may
be derived from equation (10.5)

m"zwUe
Qz(t)I•• = ( U) (10.10)mqzw- mw e

Now the normal load factor per unit angle of attack is given by

nz(t) I 1Qz(t) I (10.11)
"cx = (X(t) 55 := - g(X(t) 55

Thus, substituting equations (10.9) and (10.10) into equation (10.11) the important result
is obtained

zwUe o."a,=---:=--g gT02

since, approximately, 18
2

= -1/zw •

The transfer functions given by equations (10.2) to (10.7) above describe the classical
longitudinal short term response to elevator and represent the foundation on which most
modern handling qualities ideas are based, see, for example, Gibson (1995). For the
classical aeroplane the response characteristics are determined by the aerodynamic
properties of the airframe, which are usually linear, bounded and predictable. It is also
clear that the short term dynamics is that of a linear second order system and aeroplanes
which possess similar dynamic behaviour are said to have second-order-like response
characteristics. The response properties of all real aeroplanes diverge from these very
simple and rather idealized models to some extent. Actual response is coloured by longer
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term dynamics, non-linear aerodynamic airframe characteristics and, of course, the
influence of a stability augmentation system when fitted. However, whatever the degree
of complexity of the aeroplane and its operating conditions a sound design objective
would be to achieve second-order-like dynamic response properties.

EXAMPLE 10.1 _

The classical second-order-like response characteristics are most easily seen in simple
light aircraft having a limited subsonic flight envelope and whose flying qualities are
determined entirely by aerodynamic design. Such an aeroplane is the Navion Aircraft
Corporation, Navion/H and the equations of motion for the aeroplane were obtained
from Teper (1969). The flight condition corresponds to a cruising speed of 176 ft/s at
sea level. The longitudinal reduced order state equation is

[
eX ] [-0.0115 1 ][rx] [-0.1601]
q = -0.0395 -2.9857 q + -11.0437 "

and the reduced order longitudinal response transfer functions are

«(s) -0.1601(s + 71.9844)-=--------l1(s) (S2 + 5.0101s + 12.9988)

q(s) = -11.0437(s + 1.9236) 1/s
l1(S) (S2 + 5.0101s + 12.9988)

O(s) -11.0437(s + 1.9236)
l1(S) = S(S2 + 5.0101s + 12.9988)

az(s) -28.1700(s - 10.1241)(s+ 13.1099) f / 2/ d
--= t s ra
l1(S) (S2 + 5.0101s + 12.9988)

y(s) 0.1601(s - 10.1241)(s+ 13.1099)
l1(S) = S(S2 + 5.0101s + 12.9988)

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)

The first five seconds of the longitudinal response of the Navion to a 10 elevator step
input, as defined by equations (10.14) to (10.18), is shown in Fig. 10.1. The response
plots shown are absolutely typical of the second-order-like characteristics of a classical
aeroplane.

The key parameters defining the general response shapes are

the short period undamped natural frequency oi, = 3.61 rad/s

the short period damping ratio '8 = 0.7

and the incidence lag '02 = 1.9~36 =0.52 s

These parameters may be obtained directly from inspection of the appropriate transfer
functions above.

It will be observed that the normal acceleration response transfer functions given
by equations (10.5) and (10.17) have different numerators, and similarly for the flight
path angle response transfer functions given by equations (10.6) and (10.18). This is
due to the fact that the algebraic forms are based on a number of simplifying
approximations. whereas the numerical forms were obtained from an exact solution of
the state equation (10.8) without approximation. However, with reference to Fig.
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Fig. 10.1 Longitudinal short term response to elevator step input

(10.20)

(10.19)

10.1 both equation (10.17) and equation (10.18) may be approximated by transfer
functions having constant numerators in the style of equations (10.5) and (10.6)
respectively, and in both cases the response shapes are essentially identical. Equations
(10.17) and (10.18) may be approximated by

az(s) 3738.89 2

'7(S) = (S2 + 5.0101s + 12.9988) ftjs /rad

y(s) -1.6347
l1(S) = S(S2 + 5.0101s + 12.9988)

With reference to Fig. 10.1 it is clear that following a steady step elevator input the
short term response, after the short period transient has damped out, results in steady
normal acceleration a., steady incidence (X and steady pitch rate q. The corresponding
pitch attitude f) and flight path angle y responses increase linearly with time, the
aeroplane behaving like a simple integrator in this respect. It is evident from the latter
response plots that flight path angle y lags pitch attitude eby about 0.5 s, see equation
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(10.7), which corresponds to the exact value of Te
2

very well. These response
characteristics are quite typical and do not change significantly with flight condition
since the Navion has a very limited flight envelope.

Now, operation of the elevator causes tailplane camber change which results in
instantaneous change in tailplane lift. This in turn generates a pitching moment causing
the aeroplane to respond in pitch. Thus, as a result of his control action, the pilot sees
a change in pitch attitude as the primary response. Or, for a steady step input the
response is a steady pitch rate, at least for the first few seconds. For this reason the
nature of control is referred to as a rate command characteristic, which is typical of all
three control axes since the aerodynamic mechanism of control is similar.

With reference to Fig. 10.1, the pitch rate response couples with forward speed to
produce the incidence response, which in turn results in the normal acceleration
response. This explains why a steady pitch rate is accompanied by steady incidence
and normal acceleration responses. In an actual aeroplane these simple relationships
are modified by the influence of the longer term phugoid dynamics. In particular, the
pitch rate and normal acceleration response tend to decav with the damped phugoid
motion. However, incidence tends to remain more nearly constant at its trim value
throughout. Thus, viewed more broadly the nature of longitudinal control is sometimes
referred to alternatively as an incidence command characteristic. These ideas may be
more easily appreciated by referring to Examples 6.1 and 6.2.

Since the traditional longitudinal motion cue has always focused on normal
acceleration, and since in the short term approximation this is represented by a transfer
function with a constant numerator, equation (10.19), the only parameters defining
the response shape are short period mode damping ratio and undamped natural
frequency. Similarly, it is evident that incidence dynamics is governed by the same
parameters. Pitch rate response is similar in shape to both normal acceleration and
incidence responses with the exception of the peak overshoot, which is governed by
the value of the numerator term 1/Te

2
• However, Te

2
is determined largely by the value

of the wing lift curve slope which, for a simple aeroplane like the Navion, is essentially
constant throughout the flight envelope. So, for a classical aeroplane with second­
order-like response characteristics it is concluded that the short term dynamics is
predictable and that the transient is governed predominantly by short period mode
dynamics. It is not surprising, therefore, that the main emphasis in the specification of
the flying qualities of aeroplanes has been on the correct design of the damping and
frequency of the short term stability modes, in particular the longitudinal short period
mode.

10.2.3 THE ITHUMB PRINT' CRITERION

For the reasons outlined above, the traditional indicators of the short term longitudinal
handling qualities of an aeroplane were securely linked to the damping ratio and
undamped natural frequency of the short period mode. As experience grew over the
years of evolutionary development of aeroplanes so the short period dynamics, which
resulted in good handling characteristics, became established fact. A tradition of
experimental flight tests using variable stability aeroplanes was established in the early
years after the Second World War for the specific purpose of investigating flying and
handling qualities. In particular, much of this early experimental work was concerned
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with longitudinal short term handling qualities. This research has enabled the definition
of many handling qualities criteria and the production of flying qualities specification
documents. The tradition of experimental flight tests for handling qualities research is
still continued today, mainly in the USA.

One of the earliest flying qualities criteria, the so-called longitudinal short period
thumb print criterion, became an established tool in the 1950s, see, for example, Chalk
(1958). The thumb print criterion provides guidance for the use of aeroplane designers
and evaluators concerning the best combinations of longitudinal short period mode
damping and frequency to give good handling qualities. However, it must be
remembered that the information provided is empirical and is based entirely on pilot
opinion. The common form of presentation of the criterion is shown in Fig. 10.2, and
the example shown relates to typical classical aeroplanes in which the undamped short
period mode frequency is around 3 radl s.

Although the criterion is still most applicable to the modern aeroplane, as has been
suggested above, the achievement of excellent short period mode dynamics does not
necessarily guarantee excellent longitudinal handling qualities. Indeed, many other
factors play an important part and some of these are discussed in the following
sections.

10.2.4 INCIDENCE LAG

The incidence lag, 18
2

, plays a critically important part in the determination of the
longitudinal handling characteristics of an aeroplane. For classical subsonic aeroplanes
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Fig. 10.2 Longitudinal short period pilot opinion contours-the thumb print criterion



Short term dynamic models 211

54

.............. ; .

3
Seconds

2

.... ' : " .. .. ' ~ ". ..

..................: .

1

..........................................................................

4.0s

· 2.0s........................................

· . . .· . . ............... " : : '. " " ~ , ..
., .
: :4.0s :..........................................

8

CJI 6Q.)
l':I.:l

~ 4aJl
"'0

~~ 2

0
10

8
Ol}

6Q.)
"'0

~ 4
2
0

0

Fig. 10.3 The effect of variation in incidence lag on pitch response

(10.21)

10
2

remains near constant over the flight envelope and, consequently, the short term
pitch dynamics also remains near constant for a given short period mode damping and
frequency. Therefore, the overall longitudinal handling qualities tend to remain nicely
consistent over the flight envelope. For this reason incidence lag has not been accorded a
great deal of attention in the past. However, as aeroplanes have become larger and their
operating altitude and Mach number envelopes have been greatly extended, so the
variation in lift curve slope has become significant. The result of this is that the variation
in 10

2
over the flight envelope of typical modern high performance aeroplanes can no

longer be ignored. Incidence lag has therefore become as important as short period mode
damping and frequency in the determination of longitudinal short term handling.

Gibson (1995) suggests that, typically, 18
2

may vary from less than 0.5 s at high speed
at sea level to greater than 4.0 s at low speed at high altitude. Other significant changes
might be introduced by camber control or by direct lift control as frequently found in
advanced modern aircraft of all types. To illustrate the effect of incidence lag on short
term pitch response consider the following transfer functions which are based nominally
on those of Example 10.1.

q(~ = -13(1 +0.5s) 1/8 }
YJ(s) (S2 + 5s+ 13)

O(s) -13(1 + 0.5s)
YJ(.~ = S(S2 + 5s + 13)

and clearly, co, = 3.6rad/ s, 'S = 0.69 and 182 = 0.5 s. The response to a stick pull
equivalent to a 10 elevator step input is shown in Fig. 10.3. Also shown are the responses
for an incidence lag of 1, 2 and 4 s, the short period mode parameters being held
constant throughout. In accordance with the models given by equations (10.2), (10.5)
and (10.6) the corresponding incidence, normal acceleration and flight path angle
responses would remain unchanged. However, the pitch motion cue to the pilot may well
suggest a reduction in damping in view of the significant increase in pitch rate overshoot
at larger values of 1;12' This is, of course, not the case since the short period mode
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damping is 0.69 throughout. The pilot would also become aware of the increase in lag
between the pitch attitude response and acquisition of the desired flight path.

10.3 Flying qualities requirements

Most countries involved in aviation have national agencies to oversee aeronautical
activity in their territories. In the UK the Civil Aviation Authority (CAA) regulates all
non-military aviation and the Ministry of Defence (MoD) oversees all military
aeronautical activity. Additionally, a group of European countries has agreed to
cooperate in the development of Joint Aviation Requirements (JAR) and, where
relevant, these requirements supersede the British Civil Airworthiness Requirements
(BCAR). The Joint Aviation Authority which administers this activity comprises the
Aviation Authorities from the participating countries. Thus, for example, in the UK the
JAR documents are issued by the CAA. In the USA the corresponding agencies are
the Federal Aviation Administration (FAA) and the Department of Defense (DoD)
respectively. All of these agencies issue extensive documentation specifying the minimum
acceptable standards for construction, performance, operation and safety of all air
vehicles operated under their jurisdiction. In more recent years, the emphasis has been
on the adoption of common standards, for obvious reasons. In the absence of their own
standards many countries adopt those of the American, British or joint European
agencies, which is obviously constructively helpful in achieving very high standards of
aviation safety worldwide.

All of the above-mentioned agencies issue documents which specify the minimum
acceptable standard of flying qualities in some detail, more commonly known as flying
qualities requirements. Some examples of the relevant documents are listed in the
references at the end of this chapter. In very general terms the flying qualities
requirements for civil aircraft issued by the CAA and FAA are primarily concerned with
safety, and specific requirements relating to stability, control and handling are relatively
relaxed. On the other hand, the flying qualities requirements issued by the MoD and
DoD are specified in much greater detail in every respect. It is the responsibility of the
aircraft manufacturer, or supplier, to demonstrate that their aircraft complies with the
appropriate specification prior to acceptance by the operator. Thus, demonstration of
compliance with the specification is the principal interest of the regulating agencies.

Since the military flying qualities requirements in particular are relatively complex,
their correct interpretation may not always be obvious. To alleviate this difficulty the
documents also include advisory information on acceptable means of compliance to help
the user to apply the requirements to his particular aeroplane. The extensive programme
of flight tests which most new aeroplanes undergo prior to entry into service is, in part,
used to demonstrate compliance with the flying qualities requirements. However, it is
unlikely that an aeroplane will satisfy the flying qualities requirements completely unless
it has been designed to do so from the outset. Therefore, the flying qualities requirements
documents are also vitally important to the aircraft designer and to the flight control
system designer. In this context, the specifications define the rules to which stability,
control and handling must be designed and evaluated.

The formal specification of flying and handling qualities is intended to 'assure flying
qualities that provide adequate mission performance and flight safety'. Since the most
comprehensive, and hence demanding, requirements are included in the military
documents it is these on which the material in the following sections is based. As the
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military use all kinds of aeroplanes including small light trainers, large transports and
high performance combat aircraft, then flying qualities requirements applicable to all
types are quantified in the specification documents. Further, an aeroplane designed to
meet the military flying and handling qualities requirements would undoubtedly also
meet the civil requirements. Since most of the requirements are quantified in terms of
stability and control parameters they are most readily applied in the current analytical
context.

The object here, then, is to provide a summary, or overview, of the flying qualities
requirements as set out in the military specification documents. Liberal reference has
been made to the British Defence Standard DEF-STAN 00-970 and to the American
Military Specification MIL-F-8785C, which are very similar in style and which both
convey much the same information. This is not surprising since the former was
deliberately modelled on the latter in the interests of uniformity. Using an amalgam of
material from both sources no attempt is made to reproduce the requirements with great
accuracy or in great detail; for a complete appreciation the reader should consult the
references. Rather, the emphasis is on a limited review of the material relevant to the
fundamental stability and control properties of the aeroplane, as described in earlier
chapters.

Now, it is important to appreciate that the requirements in both DEF-STAN 00-970
and MIL·,F-8785C are based on the dynamics of classical aeroplanes whose short term
response is essentially second-order-like. This is simply due to the fact that the
requirements are empirical and have evolved to capitalize on many years of accumulated
experience and pilot opinion. Although attempts have been made to revise the
requirements to allow for aeroplanes with stability augmentation this has only had
limited success. Aeroplanes with simple stability augmentation which behave essentially
like classical unaugmented aeroplanes are generally adequately catered for. However,
in recent years it has become increasingly obvious that the requirements in both DEF­
STAN 00-970 and MIL-F-8785C are unable to cope with aeroplanes whose flying
qualities are substantiaily dependent on a flight control system. For example, evidence
exists to suggest that some advanced-technology aeroplanes have been designed to meet
the flying qualities requirements very well only to attract adverse pilot opinion
concerning their handling qualities. With the advent of the fly-by-wire (FBW) aeroplane
it became necessary to seek additional or alternative methods for quantifying and
specifying flying qualities requirements.

The obvious deficiencies of the earlier flying qualities requirements documents for
dealing with highly augmented aeroplanes spawned a considerable amount of research
activity from the late 1960s onward. As a result all kinds of handling qualities criteria
have emerged, a few of which have enjoyed enduring, but limited, success. Nevertheless,
understanding has improved considerably and the first serious attempt at producing a
flying qualities requirements document suitable for application to highly augmented
aeroplanes resulted in the proposal reported by Hoh et ale (1982). This report eventually
evolved into the formal American Military Standard MIL-STD-1797A, which is not
available in the public domain. However, the report by Hoh et ale (1982) is a useful
alternative and it contains some supporting explanatory material. These newer flying
qualities requirements still include much of the classical flying qualities material derived
from the earlier specifications but with the addition of material relating to the influence
of command and stability augmentation systems on handling. Although Hoh et ale
(1982) and MIL-STD-1797A provide a very useful progression from DEF-STAN 00-970
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and MIL-F-8785C, the material relating to highly augmented aeroplanes takes the
subject well beyond the scope of the present book. The interested reader will find an
excellent overview of the ideas relating to the handling qualities of advanced-technology
aeropla.nes in Gibson (1995).

10.4 Aircraft role

It is essential that the characteristics of any dynamic system, which is subject to direct
human control, are bounded, and outside these bounds the system would not be capable
of human control. However, the human is particularly adaptable such that the variation
in acceptable dynamic characteristics within the performance boundary of the system is
considerable. In terms of aeroplane dynamics this means that wide variation in stability
and control characteristics can be tolerated within the bounds of acceptable flying
qualities. However, it is important that the flying qualities are appropriate to the type of
aeroplane in question and to the task it is carrying out. For example, the dynamic
handling qualities appropriate to a fighter aircraft in an air combat situation are quite
inappropriate to a large civil transport aircraft on final approach. Thus, it is easy to
appreciate that the stability and control characteristics which comprise the flying
qualities requirements of an aeroplane are bounded by the limitations of the human
pilot, but within those bounds the characteristics are defined in a way that is most
appropriate to the prevailing flight condition.

Thus, flying qualities requirements are formulated to allow for the type, or class, of
aeroplane and for the flight task, or flight phase, in question. Further, the degree of
excellence of flying qualities is described as the level offlying qualities. Thus, prior to
referring to the appropriate flying qualities requirements the aeroplane must be classified
and its flight phase defined. A designer would then design to achieve the highest level
of flying qualities, whereas an evaluator would seek to establish that the aeroplane
achieved the highest level of flying qualities in all normal operating states.

10.4.1 AIRCRAFT CLASSIFICATION

Aeroplane types are classified broadly according to size and weight as follows

Class I Small light aeroplanes.

Class II Medium weight, low to medium manoeuvrability aeroplanes.

Class III Large, heavy, low to medium manoeuvrability aeroplanes.

Class IV High manoeuvrability aeroplanes.

10.4.2 FLIGHT PHASE

A sortie or mission may be completely defined as a sequence of piloting tasks.
Alternatively, a mission may be described as a succession of flight phases. Flight phases
are grouped into three categories and each category comprises a variety of tasks
requiring similar flying qualities for their successful execution. The "tasks are separately
defined in terms oifiight envelopes. The flight phase categories are defined as follows.
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Category A Non-terminal flight phases that require rapid manoeuvring, precision
tracking, or precise flight path control.

Category B Non-terminal flight phases that require gradual manoeuvring, less
precise tracking and accurate flight path control.

Category C Terminal flight phases that require gradual manoeuvring and precision
flight path control.

10.4.3 .LEVELS OF FLYING QUALITIES

The levels of flying qualities quantify the degree of acceptability of an aeroplane in terms
of its ability to complete the mission for which it is designed. The three levels of flying
qualities seek to indicate the severity of the pilot workload in the execution of a mission
flight phase and are defined as follows.

Level I Flying qualities clearly adequate for the mission flight phase.

Level 2 Flying qualities adequate to accomplish the mission flight phase, but with
an increase in pilot workload and/ or degradation in mission effectiveness.

Level 3 Degraded flying qualities, but such that the aeroplane can be controlled,
inadequate mission effectiveness and high, or limiting, pilot workload.

Level .1 flying qualities implies a fully functional aeroplane which is 100% capable of
achieving its mission with acceptable pilot workload at all times. Therefore, it follows
that any fault or failure occurring in the airframe, engines or systems may well degrade
the level of flying qualities. Consequently, the probability of such a situation arising
during a mission becomes an important issue. Thus, the levels of flying qualities are very
much dependent on the aircraft failure state which, in turn, is dependent on the
reliability of the critical functional components of the aeroplane. The development of
this aspect of flying qualities assessment is a subject in its own right and is beyond the
scope of the present book.

10.4.4 FLIGHT ENVELOPES

The operating boundaries of altitude, Mach number and normal load factor define the
flight envelope for an aeroplane. Flight envelopes are used to describe the absolute 'never
exceed' limits of the airframe and also to define the operating limits required for the
execution of a particular mission or flight phase.

10.4.4.1 Permissible flight envelope

The permissible flight envelopes are the limiting boundaries of flight conditions to which
an aeroplane may be flown and safely recovered without exceptional pilot skill.

10.4.4.2 Service flight envelope

The service flight envelopes define the boundaries of altitude, Mach number and normal
load factor which encompass all operational mission requirements. The service flight
envelopes denote the limits to which an aeroplane may normally be flown without risk
of exceeding the permissible flight envelopes.



Table 10.1 Operational flight envelopes

Flight phase
category Flight phase

A

B

C

Air-to-air combat
Ground attack
Weapon delivery I launch
Reconnaissance
In-flight refuel (receiver)
Terrain following
Maritime search
Aerobatics
Close formation flying

Climb
Cruise
Loiter
In-flight refuel (tanker)
Descent
Aerial delivery

Take-off
Approach
Overshoot
Landing

a:- Sevice flight envelope
b:- Operational flight envelope

Flight phase category A, Ground Attack
nb. VstaU=120 kts
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Fig. 10.4 Flight envelopes for the McDonnell-Douglas A4-D Skyhawk
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10.4.4.3 Operational flight envelope

The operational flight envelopes lie within the service flight envelopes and define the
boundaries of altitude, Mach number and normal load factor for each flight phase. It is
a requirement that the aeroplane must be capable of operation to the limits of the
appropriate operational flight envelopes in the execution of its mission. The operational
flight envelopes defined in DEF-STAN 00-970 are listed in Table 10.1.

When assessing the flying qualities of an aeroplane Table 10.1 may be used to
determine which flight phase category is appropriate for the flight condition In
question.

a:- Service flight envelope
b:- BCAR Operational flight envelope - aerobatic
c:- BCAR Operational flight envelope - semi-aerobatic

--_ .

b a
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where VMAT is the maximum speed at maximum augmented thrust in level flight. The
operational flight envelope for the ground attack role is superimposed on the service
flight envelope for the aircraft as shown in Fig. 10.4 and the implications of these limits
are self-evident for the role in question.

EXAMPLE 10.3 _

To illustrate the normal load factor-speed flight envelopes consider the Morane
Saulnier MS-760 Paris aircraft as registered by the CAA for operation in the UK. The
Paris is a small four-seat twin-jet fast liaison aircraft which first flew in the late 1950s.
The aircraft is a classical 'aerodynamic' machine, it has an unswept wing, aT-tail and
is typical of the small jet trainers of the period. The manoeuvring flight envelopes for
this aircraft were obtained from Notes for Technical Observers (1965) and are
reproduced in Fig. 10.5. Clearly the service flight envelope fully embraces the BCAR
operational flight envelope for semi-aerobatic aircraft, whereas some parts of the BCAR
operational flight envelope for fully aerobatic aircraft are excluded. Consequently the
aircraft is registered in the semi-aerobatic category and certain aerobatic manoeuvres

Table 10.2 The Cooper-Harper handling qualities rating scale

Adequacy for Aircraft Demands on pilot Pilot
selected task characteristic (workload) rating

Satisfactory Excellent Very low 1
Satisfactory Good Low 2
Satisfactory Fair Minimal pilot 3

compensation required
Unsatisfactory-warrants Minor deficiencies Moderate pilot 4

improvements compensation required
Unsatisfactory-warrants Moderate deficiencies Considerable pilot 5

improvements compensation required
Unsatisfactory-warrants Tolerable deficiencies Extensive pilot 6

improvements compensation required
Unacceptable-requires Major deficiencies Adequate performance not 7

improvements attainable
Unacceptable-requires Major deficiencies Considerable pilot 8

improvements compensation required
for control

Unacceptable-requires Major deficiencies Intense pilot compensation 9
improvements required for control

Catastrophic-improvement Major deficiencies Loss of control likely 10
mandatory

Table 10.3 Equivalence of Cooper-Harper rating scale with levels of flying qualities

Level of flying
qualities Levell Level 2 Level 3 Below Level 3

Cooper-Harper
rating scale

2 3 4 5 6 7 8 9 10



Longitudinalflying qualities requirements 219

are prohibited. It is clear from this illustration that the Paris was designed with
structural normal load factor limits of +5.2g, -2g which are inadequate for fully
aerobatic manoeuvring.

10.5 Pilot opinion rating

Pilot opinion rating scales have been in use for a considerable time and provide a formal
procedure for the qualitative assessment of aircraft flying qualities by experimental
means. Since qualitative flying qualities assessment is very subjective, the development
of a formal method for the interpretation of pilot opinion has turned a rather 'imprecise
art' into a useful tool which is routinely used in flight test programmes. The current pilot
opinion rating scale was developed by Cooper and Harper (1969) and is universally
known as the Cooper-Harper rating scale.

The Cooper-Harper rating scale is used to assess the flying qualities, or more
specifically the handling qualities, of an aeroplane in a given flight phase. The procedure
for conducting the flight test evaluation and the method for post flight reduction and
interpretation of pilot comments are defined. The result of the assessment is a pilot rating
between 1 and 10. A rating of 1 suggests excellent handling qualities and low pilot
workload whereas a rating of 10 suggests an aircraft with many handling qualities
deficiencies. The adoption of a common procedure for rating handling qualities enables
pilots to state clearly their assessment without ambiguity or the use of misleading
terminology. A summary of the Cooper-Harper handling qualities rating scale is shown
in Table 10.2.

It is usual and convenient to define an equivalence between the qualitative Cooper­
Harper handling qualities rating scale and the quantitative levels of flying qualities. This
permits easy and meaningful interpretation of flying qualities between both the piloting
and analytical domains. The equivalence is summarized in Table 10.3.

10.6 Longitudinal flying qualities requirements

10.6.1 l~ONGITUDINAL STATIC STABILITY

It has been shown in Chapter 3 that longitudinal static stability determines the pitch
control displacement and force to trim. Clearly this must be of the correct magnitude if
effective control of the aeroplane is to be maintained at all flight conditions. For this
to be so the controls fixed and controls free static margins must not be too large or too
small.

In piloting terms a change of trim is seen as a change in airspeed, or Mach
number, and involves a forward stick push to increase speed and an aft stick pull to
decrease speed when the aeroplane possesses a normal level of static stability. The
requirement states that the variation in pitch control position and force with speed is
to be smooth and the gradients at the nominal trim speed are to be stable Of, at
worst, neutrally stable. In other words the static margins are to be greater than or
equal to zero. The maximum acceptable degree of static stability is not specified.
However" this will be limited by the available control power and the need to be able
to lift the nose wheel at rotation for take-off at a reasonable airspeed. Abrupt
changes in gradient with airspeed are not acceptable. Typical stable gradients are
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a, b, c: stable gradients
d: neutrallystablegradient
e: maximum unstable gradient

(transonic flight)
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Fig. 10.6 Typical pitch control force gradients

shown in Fig. 10.6 where it is indicated that the control characteristics do not necessarily
have to be linear but the changes in gradient must be smooth. Clearly, the minimum
acceptable control characteristics correspond to neutral static stability.

In the transonic flight regime in particular, the static stability margins can change
significantly such that the aeroplane may become unstable for some part of its speed
envelope. The requirements recognize such conditions and permit mildly unstable pitch
control force gradients in transonic flight provided that the flight condition is transitory.
Maximum allowable unstable gradients are quantified and a typical boundary is
indicated by plot e in Fig. 10.6. Aeroplanes which may be required to operate for
prolonged periods in transonic flight conditions are not permitted to have unstable
control force gradients.

10.6.2 LONGITUDINAL DYNAMIC STABILITY

10.6.2.1 Short period pitching oscillation

For the reasons explained in Section 10.2 the very important normal acceleration motion
cue and the short period dynamics are totally interdependent. The controls fixed
manoeuvre margin Hm and the short period frequency COs are also interdependent as
explained in Section 8.5. Thus, the requirements for short period mode frequency reflect
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these relationships and are relatively complex; a typical illustration is shown in
Fig. 10.7.

Three similar charts are given, one for each flight phase category, and that for
category A is shown in Fig. 10.7. The boundaries shown in Fig. 10.7 are equivalent to
lines of constant Control Anticipation Parameter (CAP) which is proportional to the
controls fixed manoeuvre margin. The boundaries therefore implicitly specify the
constraint on manoeuvrability, quantified in terms of short period mode undamped
natural frequency. The meaning of CAP is explained in Section 10.7. Now the derivative
parameter nIX quantifies the normal load factor per unit angle of attack, or incidence, as
defined by equa.ion (10.11). As its value increases with speed, the lower values of nIX
correlate with the lower speed characteristics of the aeroplane and vice versa. Now as
speed increases so the aerodynamic pitch stiffness of the aeroplane also increases, which
in turn results in an increase in short period mode frequency. This natural phenomenon
is reflected in the requirements as the boundaries allow for increasing frequency with
increasing nIX.

Acceptable limits on the stability of the short period mode are quantified in terms of
maximum and minimum values of the damping ratio as a function of flight phase
category and level of flying qualities as set out in Table 10.4.

(Ws)2/na
(CAP)

10.00

3.60

0.28

0.16

......
• • • • It It

•••••••••• r6 ~-------"'~--' __--'-_---'l ""'"'' t , .. J • .,.

Flight phase Category A . . . .
..... , ., .... ,.

10010
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Fig. 10.7 Typical short period mode frequency requirements
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Table 10.4 Short period mode damping

Flight phase

CAT A
CATB
CATC

'smin

0.35
0.30
0.50

Levell

'S max

1.30
2.00
1.30

Level 2 Level 3

'S min 'S max 'S min

0.25 2.00 0.10
0.20 2.00 0.10
0.35 2.00 0.25

The maximum values of short period mode damping ratio obviously imply that a
stable non-oscillatory mode is acceptable.

10.6.2.2 Phugoid

Upper and lower values for phugoid frequency are not quantified. However, it is
recommended that the phugoid and short period mode frequencies are well separated. It
is suggested that handling difficulties may become obtrusive if the frequency ratio of
the modes wp/ws > 0.1. Generally, the phugoid dynamics is acceptable provided the
mode is stable and damping ratio limits are quantified as shown in Table 10.5.

10.6.3 LONGITUDINAL MANOEUVRABILITY

The requirements for longitudinal manoeuvrability are largely concerned with
manoeuvring control force, or stick force per g. It is important that the value of this
control characteristic is not too large or too small. In other words, the controls free
manoeuvre margin must be constrained to an acceptable and appropriate range. If the
control force is too light there is a danger that the pilot may inadvertently apply too
much normal acceleration to the aircraft with the consequent possibility of structural
failure. On the other hand, if the control force is too heavy then the pilot may not be
strong enough to utilize fully the manoeuvring flight envelope of the aircraft.

Thus, the requirements define the permitted upper and lower limits for controls free
manoeuvre margin expressed in terms of the pitch control manoeuvring force gradient
since this is the quantifiable parameter seen by the pilot. Further, the limits are
functions of the type of control inceptor, a single stick or wheel type, and the limiting
normal load factor appropriate to the airfra.me in question. The rather complex
requirements are tabulated and their interpretation for an aircraft with a single stick
controller, and having a limiting normal load factor of nL = 7.0, is shown in Fig. 10.8.
Again, the limits on stick force per g are expressed as a function of the flight condition
parameter n.,

Table 10.5 Phugoid damping ratio

Level of flying qualities Minimum (p

1 0.04
2 0
3 Unstable, period r;, > 55s
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Fig. 10.8 Typical pitch control manoeuvring force gradients
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10.7 Control anticipation parameter

It has been reported by Birhle (1966) that, 'in order to make precise adjustments to the
flight path, the pilot must be able to anticipate the ultimate response of the airplane and
that angular pitching acceleration is used for this purpose'. Now aeroplanes that have
good second-order-like short term longitudinal response properties generally provide the
pilot with good anticipatory handling cues. Clearly, this depends on the damping and
frequency of the short period pitching mode in particular. However, Birhle (1966)
reports pilot observation that, 'for airplanes having high inertia or low static stability
the angular pitching acceleration accompanying small adjustments to flight path may fall
below the threshold of perception'. In other words, the anticipatory ~ nature of the
response cues may become insignificant, thereby giving rise to poor handling qualities.
To deal with such cases he defines a quantifiable measure of the anticipatory nature of
the response which he called Control Anticipation Parameter (CAP). The formal
definition of CAP is

the amount of instantaneous angular pitching acceleration per unit of steady state
normal acceleration.
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Now the steady normal acceleration response to a pitch control input is determined
by the aerodynamic properties of the aeroplane, the wing and tailplane in particular.
However, the transient peak magnitude of angular pitching acceleration immediately
following the control input is largely determined by the short period dynamics which, in
turn, is dependent on the longitudinal static stability and moment of inertia in pitch.
Thus, CAP effectively quantifies acceptable short period mode characteristics
appropriate to the aerodynamic properties and operating condition of the aeroplane.

A simple expression for CAP is easily derived from the longitudinal short term
transfer functions described in Section 10.2.2.

The angular pitch acceleration transfer function is obtained from equation (10.3)

q(s) = 2 m~s(s - zw) (10.22)
I1(S) (s - (mq+ zw)s + (mqzw- mwUe»

The initial pitch acceleration may be derived by assuming a unit elevator step input
and applying the initial value theorem, equation (5.34), to equation (10.22). Whence

(10.23)

Similarly, the steady state normal acceleration may be derived by assuming a unit
elevator input and applying the final value theorem, equation (5.33), to equation (10.5).
Whence

( ) 1. ( m"zwUe 1) m"zwUea4 00 = 1m s =---
I. s-.o (S2 - 2(s(OsS + (O~) S (O~

The dimensionless normal acceleration, or load factor, is given by

n:(oo) = _a:(oo) = _ m~zw2Ue
g gto;

and CAP is given by

CAP = q(O) = _ gw; = gw;T02

n:(oo) zwUe o,

(10.24)

(10.25)

(10.26)

since, approximately, 70
2
= -1/zw • With reference to equation (10.12) an alternative

and more commonly used expression for CAP follows
2

CAP = (Os (10.27)
n~

and this is the boundary parameter shown in Fig. 10.7.
Now equation (8.45) states that

I TI'2S=
2 "iP ~o ca

(Os = I H;
y

With reference to Appendix 1 it may be shown that

(10.28)

(10.29)
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assuming, as is usually the case, that i; «m. With reference to Appendix 6 it may be
determined that

aCLZ O:t -- = -a (10.30)
w - a~-

the lift curve slope. Thus, substituting equations (10.28), (10.29) and (10.30) into
equation (10.26) the expression for CAP reduces to the important result

- -- -mgc gc
CAP =THm = k2 u; (10.31)

y

where here k denotes the longitudinal radius ofgyration. Since aircraft axes are assumed
to be wind axes throughout then U, ==~. Thus, it is shown that CAP is directly
proportional to the controls fixed manoeuvre margin Hm and that the constant of
proportionality is dependent on aircraft geometry and mass distribution.

10.8 Lateral-directional flying qualities requirements

.10.8.1 STEADY LATERAL-DIRECTIONAL CONTROL

Unlike the longitudinal flying qualities requirements, the lateral-directional requirements
do not address static stability in quite the same way. In general, the lateral-directional
static stability is independent of cg position and flight condition and, once set by the
aerodynamic design of the aeroplane, does not change significantly. The main concerns
centre on the provision of adequate control power for maintaining control in steady
asymmetric flight conditions, or in otherwise potentially limiting conditions in
symmetric flight. Further, it is essential that the control forces required to cope with
such conditions do not exceed the physical capabilities of the average human pilot.

General normal lateral-directional control requirements specify limits for the roll stick
and rudder pedal forces and require that the force gradients have the correct sense and
do not exceed the prescribed limits. The control requirement for trim is addressed as is
the requirement for roll-yaw control coupling which must be correctly harmonized. In
particular, it is important that the pilot can fly properly coordinated turns with similar
and acceptable degrees of control effort in both roll and yaw control.

The lateral-directional requirements relating to asymmetric, or otherwise potentially
difficult, control conditions are concerned with steady sideslip, flight in crosswind
conditions, steep dives and engine out conditions resulting in asymmetric thrust. For
each condition the requirements specify the maximum permissible roll and yaw control
forces necessary to maintain controlled flight up to relatively severe adverse conditions.
Since the specified conditions interrelate and also have to take into account the aircraft
class, flight phase and level of flying qualities, many tables of quantitative limits are
needed to embrace all eventualities. Thus, the flying qualities requirements relating to
steady lateral-directional flight are comprehensive and of necessity substantial.

10.8.2 LATERAL-DIRECTIONAL DYNAMIC STABILITY

10.8.2.1 Roll subsidence mode

Since the roll subsidence mode describes short term lateral dynamics it is critically
important in the determination of lateral handling qualities. For this reason the
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Table 10.6 Roll subsidence mode time constant

Maximum value of 1; (s)

Aircraft class

I, IV
II, III

I, II, III, IV

Flight phase category

A,C
A,C

B

Levell

1.0
1.4
1.4

Level 2

1.4
3.0
3.0

Level 3

limiting acceptable values of its time constant are specified precisely as listed in
Table 10.6.

It seems that no common agreement exists as to a suitable maximum value of the time
constant for level 3 flying qualities. It is suggested in DEF-STAN 00-970 that a suitable
value would appear to be in the range 6 < 1; < 8 s whereas MIL-F-8785C quotes a value
of 10s.

10.8.2.2 Spiral mode

A stable spiral mode is acceptable irrespective of its time constant. However, since its
time constant is dependent on lateral static stability (dihedral effect) the maximum level
of stability is determined by the maximum acceptable roll control force. Because the
mode gives rise to very slow dynamic behaviour it is not too critical to handling unless it
is very unstable. For this reason minimum acceptable degrees of instability are
quantified in terms of time to double bank angle 12 in an uncontrolled departure from
straight and level flight. The limiting values are shown in Table 10.7.

For analytical work it is sometimes more convenient to express the spiral mode
requirement in terms of time constant 'I; rather than time to double bank angle. If it is
assumed that the unstable mode characteristic gives rise to a purely exponential
divergence in roll then it is easily shown that the time constant and the time to double
bank angle are related by the following expression

T. =~ (10.32)
s loge 2

Thus, alternatively the requirement may be quantified as listed in Table 10.8.

10.8.2.3 Dutch roll mode

Since the dutch roll mode is a short period mode it has an important influence on
lateral-directional handling and, as a consequence, its damping and frequency
requirements are specified in some detail. It is approximately the lateral-directional

Table 10.7 Spiral mode time to double bank angle

Minimum value of 12 (s)

Flight phase category

A,C
8

Levell

12
20

Level 2

8
8

Level 3

5
5
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Table 10.8 Spiral mode time constant

Minimum value of 1; (s)

Flight phase category

A,C
B

Levell

17.3
28.9

Level 2

11.5
11.5

Level 3

7.2
7.2

equivalent of the longitudinal short period mode and has frequency of the same order
since pitch and yaw inertias are usually similar in magnitude. However, yaw damping is
frequently low as a result of the design conflict with the need to constrain spiral mode
instability with dihedral. Although the longitudinal short period mode and the dutch roll
mode are similar in bandwidth, the latter is not as critical to handling. In fact, a poorly
damped dutch roll is seen more as a handling irritation rather than a serious problem.

The acceptable minima for damping ratio, undamped natural frequency and damping
ratio-frequency product are specified for various combinations of aircraft class and
flight phase category, as shown in Table 10.9.

10.8.3 L.ATERAL-DIRECTIONAL MANOEUVRABILITY AND RESPONSE

The lateral-directional manoeuvrability requirements are largely concerned with limiting
roll oscillations, sideslip excursions and roll and yaw control forces to acceptable levels
during rolling and turning manoeuvres.

Oscillation in roll response to controls will occur whenever the dutch roll is intrusive
and poorly damped. Thus, limiting the magnitude and characteristics of oscillation in
roll is effectively imposing additional constraints on the dutch roll mode when it is
intrusive. Oscillation is also possible in cases when the roll and spiral modes couple to
form a second pair of complex roots in the lateral-directional characteristic equation.
However, the influence of this characteristic. on handling is not well understood and it is
recommended that the condition should be avoided.

Sideslip excursions during lateral-directional manoeuvring are normal and expected,
especially in entry and exit to turning manoeuvres. It is required that the rudder control
displacement and force increase approximately linearly with increase in sideslip response

Table 10.9 Dutch roll frequency and damping

Minimum values

Levell Level 2 Level 3

Aircraft Flight
class phase 'd 'dWd Wd 'd (dWd Wd (d Wd

I, IV CAT A 0.19 0.35 1.0 0.02 0.05 0.5 0 0.4
II, III CAT A 0.19 0.35 0.5 0.02 0.05 0.5 0 0.4

All CATB 0.08 0.15 0.5 0.02 0.05 0.5 0 0.4
I, IV CATC 0.08 0.15 1.0 0.02 0.05 0.5 0 0.4
II, III CATC 0.08 0.10 0.5 0.02 0.05 0.5 0 0.4
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for sideslip of modest magnitude. It is also required that the effect of dihedral shall not
be too great otherwise excessive roll control displacement and force may be needed to
manoeuvre. Remember that too much stability can be as hazardous as too little stability!
It would seem that the main emphasis is on the provision of acceptable levels of roll
and yaw control displacement with particular concern for entry and exit to turning
manoeuvres, which, after all, is lateral-directional manoeuvring flight.

10.9 Flying qualities requirements on the s-plane

In Chapter 9, the way in which the roots of the characteristic equation may be mapped
on to the s-plane was illustrated in order to facilitate the interpretation of aircraft
stability graphically. By superimposing boundaries defined by the appropriate flying
qualities requirements on to the same s-plane plots the stability characteristics of an
aeroplane may be assessed directly with respect to those requirements. This graphical
approach to the assessment of aircraft flying qualities is particularly useful for analysis
and design and is used extensively in flight control system design.

10.9.1 LONGITUDINAL MODES

Typical boundaries describing the limits on longitudinal mode frequency and damping on
the s-plane are shown in Fig. 10.9. It is not usually necessary to show more than the upper
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left half of the s-plane since stable characteristics only are ofprimary interest and the lower
half of the s-plane is simply the mirror image of the upper half of the s-plane reflected in
the real axis.

The upper and lower short period mode frequency boundaries are described by arcs cd
and ab respectively, The frequency limits are determined from charts like Fig. 10.7 and,
depend on the operating flight condition, which is determined by n., Alternatively, the
boundaries may be determined from a consideration of the limiting CAP values, also given
on charts like Fig. 10.7, at the flight condition of interest. Note that when the s-plane is
drawn to the same scale on both the x and y axes, the frequency boundaries become circular
arcs about the origin. When the scales are not the same the arcs become ellipses, which
can be more difficult to interpret.

The minimum short period mode damping ratio is obtained from Table 10.4 and maps
on to the line bc radiating from the origin. The maximum permitted damping ratio is
greater than one, which obviously means that the corresponding roots lie on the real
axis. Thus, when the short period mode roots, or poles, are mapped on to the s-plane
they must lie within the region bounded by abed and its mirror image in the real axis. If
the damping ratio is greater than one then the pair of roots must lie on the real axis in
locations bounded by the permitted maximum value of damping ratio.

The minimum phugoid damping ratio is given in Table 10.5 and, for level 1 flying
qualities, maps on to the s-plane as the boundary ef. Thus, when the phugoid roots, or
poles, are: mapped on to the s-plane they must lie to the left of the line ef in order to meet
level 1 flying qualities requirements. The level 3 requirement on phugoid damping
obviously allows for the case when the poles become real, one of which may be unstable,
thereby giving rise to divergent motion. In this case the limit implicitly defines a
minimum acceptable value for the corresponding time constant. This is mapped on to
the s-plane in exactly the same way as the lateral-directional spiral mode boundary as
described below.

10.9.2 L,ATERAL-DIRECTIONAL MODES

Typical boundaries describing the limits on lateral-directional mode frequency and
damping on the s-plane are shown in Fig. 10.10. Again, the upper left half of the s-plane
is shown but with a small extension into the upper right half of the s-plane to include
the region appropriate to the unstable spiral mode. As for the longitudinal case,
interpretation implicitly includes the lower half of the s-plane, which is the mirror image
of the upper half of the s-plane in the real axis.

The maximum permitted value of the roll subsidence mode time constant is given in
Table 10.6 and this maps into the boundary e since the corresponding real root is given
by the inverse of the time constant 1;. Further, since the mode must always be stable it
will always lie on the negative real axis. The precise location of the, boundary e is
determined by the aircraft class, the flight phase category and the required level of flying
qualities. However, at the appropriate operating flight condition the pole describing
theroll subsidence mode must lie on the real axis to the left of the boundary e.

The location of the spiral mode boundary f is established in the same way. Since the
required limits only apply to the mode when it is unstable then the corresponding
boundary lies on the right half of the s-plane. The precise location of the boundary may
be determined from the minimum acceptable value of the time constant Ts, given in
Table 10.8, and, again, this depends on aircraft class and the required level of flying



230 Flying and handling qualities

b
: 00\ :

.. ····i········ : .

dutch roll pole ~ust

.....I.i~. ~~. ~~!~ ..~~~~~r .· . .· . .

· . .·······.·········1·········.········

· .· . .······10·········..········.·········,·····

Upper left half d :
of s-plane : ~.... . .

....... ··1.·.· ..····,······ ..· , .

........................ .. ; .

.......:..... ·····i··· .. ·····:········ : .

: ,
........ ' , .· . .· . .· . .

a
1---.....;-.---;.--.....--.......---;.--......--1......---1--11--.....- ...... 0

Real (negative) (JJ

Fig. 10.10 Lateral-directional flying qualities requirements on the s-plane

qualities. Thus, the spiral mode pole must always lie on the real axis to the left of the
boundary f.

The limiting frequency and damping requirements for the dutch roll mode are given
in Table 10.9 and are interpreted in much the same way as the requirements for the
longitudinal short period mode. The minimum permitted frequency boundary is
described by the arc ab and the minimum permitted damping ratio boundary by the line
cd. The minimum permitted value of CdWd maps into the line be to complete the dutch
roll mode boundary and, as before, the boundary has its mirror image in the lower half
of the s-plane. Thus, the dutch roll mode roots, or poles, must always lie to the left of
the boundary abed at the flight condition of interest. Clearly, the precise location of the
boundary is determined by the appropriate combination of aircraft class, flight phase
category and required level of flying qualities.

EXAMPLE 10.4__-------- _

To illustrate the application of the flying qualities requirements consider the McDonnell
F-4 Phantom, the following data for which were obtained from Heffley and Jewell
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(1972). Since the available data are limited to the equations of motion and some
supporting material the flying qualities assessment is limited to consideration of basic
stability and control characteristics only.

For the~ case selected the general flight condition parameters given are

Altitude h 35000ft
Mach number M 1.2
Weight mg 389251b
Trim airspeed ~ 1167 ft/s
Trim body incidence (Xe 1.6 0

Flight path angle 'Ye 0
Normal load factor derivative n(t 22.4g/rad
Control anticipation parameter CAP 1.311/s2

'Elevator' angle per g rt/g 3.64deg/g

Clearly the Phantom is a high performance combat aircraft; thus, for the purposes of
flying qualities assessment, it is described as a Class IV aircraft. The flight task to which
the data relate is not stated. Therefore, it may be assumed that either the aircraft is in
steady cruising flight, flight phase category B, or it is manoeuvring about the given
condition in which case flight phase category A applies. For this illustration flight phase
category .A is assumed since it determines the most demanding flying qualities
requirements. It is interesting to note that the parameter 'elevator' angle per g is given
which is, of course, a measure of the controls fixed manoeuvre margin.

Considerinq the longitudinal stability and control characteristics first, sufficient
information about the stability characteristics of the basic airframe is given by the pitch
attitude responseto 'elevator' transfer function, Which for the chosen flight condition is

O(s) _ N~(s) _ -20.6(s + 0.0131)(s + 0.618)

I1(S) = a(s) - (S2 +0.0171s + 0.00203)(S2 + 1.759s + 29.49).

The essential longitudinal stability and control parameters may be obtained on
inspection of transfer function (10.33) as follows

Phugoid damping ratio 'p =0.19
Phugoid undamped natural frequency (Op =0.045 rad/s
Short period damping ratio 'S = 0.162
Short period undamped natural frequency os, =5.43 rad/s
Numerator time constant To) =1/0.0131 =76.34 s
Nurnerator time constant (incidence lag) 18

2
= 1/0.618=1 .62 s

Since the Phantom is an American aeroplane it would seem appropriate to assess its
basic stability characteristics against the requirements of MIL-F-8785C. However, in
practice, it would be assessed against the requirements document specified by the
procuring agency.

With reference to Table 10.5, which is directly applicable, the phugoid damping ratio
is greater.than 0.04 and since OJp/(Os < 0.1 the phugoid achieves level 1 flying qualities
and is unlikely to give rise to handling difficulties at this flight condition.

With reference to the short period mode frequency chart for flight phase category
A, which is the same as Fig. 10.7, at n(t = 22.4gjrad and for level 1 flying qualities it is
required that
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2.6 rad/s ~ COs ~ 9.0 rad/s

or, equivalently,

0.281 /S2 ~ ro;/na. (CAP) ~ 3.61 /S2

Clearly, the short period undamped natural frequency achieves level 1 flying qualities.
Unfortunately, the short period mode damping ratio is less than desirable. A table

similar to Table 10.4 indicates that the damping only achieves level 3 flying qualities
and to achieve level 1 it would need to be in the range 0.35 ~ (s ~ 1.3.

Considering now the lateral-directional stability and control characteristics, sufficien1
information about the stability characteristics of the basic airframe is given, for example,
by the roll rate response to aileron transfer function, which for the chosen flight
condition is

p(s) _ N~(s) -10.9s(s2 + 0.572s + 13.177)
,(s) = ~(s) = (s+ 0.00187)(s + 1.4)(~ + 0.519s + 12.745)

(10.34)

The essential lateral-directional stability and control parameters may be obtained on
inspection of transfer function (10.34) as follows

Roll mode time constant
Spiral mode time constant
Dutch roll damping ratio
Dutch roll undamped natural frequency
Dutch roll damping ratio-frequency product

1; =1/1.4=0.714s
1; = 1/0.00187 = 535 s
(d =0.0727

Wd =3.57 rad/s
(dWd = 0~26rad/s

Clearly, at this flight condition the spiral mode is stable with a very long time constant.
In fact it is approaching neutral stability for all practical considerations. Since the mode
is stable it achieves level 1 flying qualities and is most unlikely to give rise to handling
difficulties.

A table similar to Table 10.6 indicates that the roll subsidence mode damping ratio
achieves level 1 flying qualities since 1; < 1.0s.

The dutch roll mode characteristics are lessthan desirablesince their damping is very
low. A table similar to Table 10.9 indicates that the damping ratio only achieves level
2 flying qualities. In order to achieve the desirable level 1 flying qualities the mode
characteristics would need to meet

Dutch roll damping ratio
Dutch roll undamped natural frequency
Dutch roll damping ratio-frequency product

Cd ~ 0.19
rod ~ 1.0 rad/s

(dWd ~ 0.35 rad/s

It is therefore concluded that both the longitudinal short period mode and the lateral­
directional dutch roll mode damping ratios are too low at the flight condition evaluated.
In all other respects the aeroplane achieves level 1 flying qualities. The deficient
aerodynamic damping of the Phantom, in common with many other aeroplanes, is
augmented artificially by the introduction of a feedback control system.

It must be emphasized that this illustration is limited to an assessment of the basic
stability properties of the airframe only. This determines the need, or otherwise, for
stability augmentation. Once the stability has been satisfactorily augmented by an
appropriate control system then further and more far reaching assessments of the
control and handling characteristics of the augmented aeroplane would be made. The
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scope of this kind of evaluation may be appreciated by reference to the specification
documents discussed above. In any event, analytical- assessment would need the
addition of a simulation model developed from the linearized equations of motion in
order to investigate properly some of the dynamic control and responseproperties.
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11
Stability Augmentation

11.1 Introduction

In the previous chapter it is shown how the stability and control characteristics of an
aeroplane may be assessed in the context. of flying and handling qualities requirements.
In the event that the aeroplane fails to meet the requirements in some way, then it is
necessary to consider remedial action. For all except perhaps the most trivial of
problems it is not usually practical to modify the aerodynamic design of the aeroplane
once its design has been finalized. Quite often the deficiencies occur simply as a result of
the requirement for the aeroplane to operate over an extended flight envelope and not
necessarily as a result of an aerodynamic design oversight. Alternatively, this might be
explained as the effects of aerodynamic non-linearity.

The preferred solution is, therefore, to modify artificially, or augment, the apparent
stability characteristics of the airframe. This is most conveniently achieved by the
introduction of negative feedback in .which the output signals from motion sensors are
processed in some way and used to drive the appropriate control surfaces via actuators.
The resultant closed loop control system is similar in many respects to the classical
servo-mechanism familiar to the control engineer.

A significant advantage of this approach is that the analysis of the augmented, or
closed loop, aircraft makes full use of the well-established tools of the control engineer.
The systems approach to flight dynamics analysis has already been introduced in earlier
chapters where, for example, control engineering tools have been utilized for solving
the equations of motion.

A functional block diagram of a typical flight control system (FCS) is shown in Fig.
11.1. It is assumed that the primary flying controls are mechanical such that pilot
commands drive the control surfaces via control actuators, which augment the available
power to levels sufficient to overcome the aerodynamic loads on the surfaces. The
electronic flight control system (EFCS) comprises two feedback loops, both of which
derive their control signals from motion sensors appropriate to the requirements of the
control laws. The outputs from the inner and outer loop controllers are electronically
summed and the resultant signal controls the aircraft via a small servo actuator.
Typically, the servo actuator is an electro-hydraulic device which converts low power
electrical signals to mechanical signals at a power level compatible with those
originating at the pilot to which they are mechanically summed.
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Fig. 11.1 A typical flight control system

Although only a single control axis is indicated in Fig. 11.1, it is important to
appreciate that the FeS will, in general, include closed loop controllers operating on the
roll, pitch and yaw control axes of the aircraft simultaneously and may even extend to
include closed loop engine control as well. Thus, multi-variable feedback involving many
separate control loops is implied, which is typical of many modern FeSs.

The inner loop provides stability augmentation and is usually regarded as essential
for continued proper operation of the aircraft. The inner loop control system alone
comprises the stability augmentation system (SAS), it is usually the first part of the FCS
to be designed and, together with the airframe, comprises the augmented aircraft.

The outer loop provides the autopilot which, as its name suggests, enables the pilot to
fly various manoeuvres under automatic control. Although necessary for operational
reasons, an autopilot is not essential for the provision of a safe well-behaved aircraft.
The autopilot control modes are designed to function with the augmented aircraft and
may be selectively engaged as required to automate the piloting task. Their use is
intended to release ·the pilot from the monotony of flying steady conditions manually
and to fly precision manoeuvres in adverse conditions which may be at, or beyond, the
limits of human capability. Autopilot control modes vary from the very simple, for
example height hold, to the very complex, for example automatic landing.

Since, typically, for most aircraft the control law gains required to effect good stability,
control and handling vary with operating condition, it is necessary to make provision
for their continuous adjustment. The variations often arise as a. result of variations in
the aerodynamic properties of the airframe over the flight envelope. For example, at low
speed the aerodynamic effectiveness of the control surfaces is generally less than at high
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speed. This means that higher control gains are required at low speeds and vice versa.
It is, therefore, common practice to vary, or schedule, gains as a function of flight
condition.

Commonly used flight condition variables are dynamic pressure, Mach number,
altitude and so on, information which is grouped under the description of air data.
Generally, air data information would be available to all control laws in an FCS as
indicated in Fig. 11.1.

A control panel is provided in the cockpit to enable the pilot to control and monitor
the operation of the FCS. SAS controls are usually minimal and enable the pilot to
monitor the system for correct, and hence safe, operation. In some cases he may also be
provided with means for selectively isolating parts of the SASe On the other hand, the
autopilot control panel is rather more substantial. Controls are provided to enable the
pilot to set up, engage and disengage the various autopilot mode functions. The control
panel also enables him to monitor progress during the automated manoeuvre selected.

In piloted phases of flight the autopilot would normally be disengaged and, as
indicated in Fig. 11.1, the pilot would derive his perception of flying and handling
qualities from the motion cues provided by the augmented aircraft. Thus, the inner loop
control system provides the means by which all aspects of stability, control and handling
may be tailored in order to improve the characteristics of the basic aircraft.

11.1.1 THECONTROLLAW

The control law is a mathematical expression which describes the function implemented
by an augmentation or autopilot controller. For example, a very simple and very
commonly used control law describing an inner loop control system for augmenting yaw
damping is

«s) = K,t5,(s) - KrC : sT)r(s) (ILl)

Equation (11.1) simply states that the control signal applied to the rudder '(s) comprises
the sum of the pilot command c5,(s) and yaw rate feedback r(s). The gain K, is the
mechanical gearing between rudder pedals and rudder and the gain K, is the all­
important feedback gain chosen by design to optimize the damping in yaw. The second
term in equation (11.1) is negative since negative feedback is required to increase
stability in yaw. The second term also, typically, includes a washout, or high pass, filter
with a time constant of around one or two seconds. The filter is included to block yaw
rate feedback in steady turning flight in order to prevent the feedback loop opposing the
pilot command once the rudder pedals are returned to centre after manoeuvre initiation.
However, the filter is effectively transparent during transient motion, thereby enabling
the full effect of the feedback loop quickly to damp out the yaw oscillation.

11.1.2 SAFETY

In any aeroplane fitted with a flight control system safety is the most critical issue. Since
the FCS has direct 'access' to the control surfaces, considerable care must be exercised
in the design of the system to ensure that under no circumstances can a maximum
instantaneous uncontrolled command be applied to any control surface. For example, a
sensor failure might cause its output to saturate at its maximum possible value. This
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signal, in turn, is conditioned by the control law to apply what could well be a demand
of magnitude sufficient to cause a maximum control surface displacement. The resulting
failure transient might well besome kind of hazardous divergent response. Clearly, steps
must be taken in the design of the flight control system architecture to incorporate
mechanisms to protect the aircraft from partial or total system malfunction.

The design of safety critical flight control system architectures, as opposed to the
simpler problem of control law design, is a substantial subject in its own right. However,
at an introductory level, it is sufficient to appreciate that the requirements for safety
can sometimes override the requirements for control, especially when relatively large
control system gains are necessary. For simple stability augmentation systems, of the
kind exemplified by the control law, equation (11.1), the problem may be overcome by
limiting the maximum values of the control signals, giving rise to what is referred to as a
limited authority control system. In more complex FCSs, where authority limiting is
not acceptable for control reasons, it may be necessary to employ control system
redundancy. Redundant FCSs comprise two, or more, systems which are functionally
similar and which normally operate in parallel. In the event of a system malfunction, the
faulty equipment is isolated leaving the remaining healthy system components to
continue the augmentation task. In such systems, automatic fault containment can
reduce the failure transient to an imperceptible level. It is then necessary to provide the
pilot with information enabling him to monitor continuously the state of health of the
FCS on an appropriate cockpit display.

11.1.3 STABILITY AUGMENTATION SYSTEM ARCHITECTURE

The architecture of an inner loop stability augmentation system (SAS) is shown in
Fig. 11.2. This classical system description assumes an aeroplane with mechanical flying

feel
system

control
actuator

flight control computer

aircraft
dynamics

response

Fig. 11.2 A typical stability augmentation system
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controls to which the EFCS connects via the servo actuator. The system is typical of those
applied to many aeroplanes of the 1950s and 1960s. For the purpose of discussion one
control axis only is shown in Fig. 11.2 but it applies equally well to the remaining axes.

As above, the essential element of the SAS is the control law; the remaining
components of the system are the necessary by-products of its implementation. Noise
filtering is often required to remove unwanted information from sensor outputs. At best
noise can cause unnecessary actuator activity and, at worst, may even give rise to
unwanted aircraft motion. Sometimes, when the sensor is located in a region of
significant structural flexibility the 'noise' may be due to normal structure distortion; the
control demand may then exacerbate the structure bending. to result in structural
divergence. Thus, an unwanted unstable structural feedback loop can be inadvertently
created. The cure usually involves narrow band filtering to remove information from the
sensor output signal at sensitive structural bending mode frequencies.

The fundamental role of the SAS is to minimize response transients following an upset
from equilibrium. Therefore; when the system is working correctly in non-manoeuvring
flight the response variables will have values at, or near, zero since the action of the
negative feedback loop is to drive the error to zero. Thus, an SAS does not normally
require large authority control and the limit function would typically limit the amplitude
of the control demand to, say, ±IO% of the total surface deflection. The limiter may also
incorporate a rate limit function to contain transient response by imposing a maximum
actuator slew rate demand. It is important to realize that whenever the control demand
exceeds the limit the system saturates, becomes temporarily open loop, and the dynamics
of the aircraft reverts to that of the unaugmented airframe. This is not usually
considered to be a problem as saturation is most likely to occur during manoeuvring
flight when the pilot has very 'tight' manual control of the aeroplane and effectively
replaces the SAS control function.

The servo amplifier, together with the servo actuator, provide the interface between
the flight control system and the mechanical flying controls. These two elements
comprise a classical position servo mechanism as indicated by the electrical feedback
from a position sensor on the servo actuator output. Mechanical amplitude limiting may
well be applied to the servo actuator as well as, or instead of, the electronic limits
programmed into the flight control computer.

Since the main power control actuator, also a classical mechanical servo mechanism,
breaks the direct mechanical link between the pilot's controller and the control surface,
the control feel may bear little resemblance to the aerodynamic surface loads. The
feedback loop around the control actuator would normally be mechanical since it may
well need to function with the SAS inoperative. It is therefore necessary to augment the
controller feel characteristics as well. The feel system may be a simple non-linear spring
but is more commonly an electro-hydraulic device, often referred to as a Q-feel system
since its characteristics are scheduled with dynamic pressure Q. Careful design of the feel
system enables the apparent controls free manoeuvre margin of the aircraft to be
adjusted independently of the other interrelated stability parameters.

When the mechanical flying controls are dispensed with altogether and replaced by
an electrical or electronic link the resultant stability augmentation system is described as
a fly-by-wire (FBW) system. When the FCS shown in Fig. 11.2 is implemented as an
FBW system its functional structure is changed to that shown in Fig. 11.3. The SAS
inner control loop remains unchanged; the only changes relate to the primary control
path and the actuation systems.
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Fig. 11.3 A typical fly-by-wire command and stability augmentation system

Since the only mechanical elements in the FCS are the links between the control
actuator and the surfaces it is usual for the servo actuator and the control actuator to be
combined into one unit. Its input is then the electrical control demand from the flight
control computer and its output is the control surface deflection. An advantage of an
integrated actuation system is the facility for mechanical simplification since the feedback
loops may be closed electrically rather than by a combination of electrical and mechanical
feedbacks. Mechanical feedback is an unnecessary complication since in the event of a
flight control computer failure the aeroplane would be uncontrollable. Clearly, this puts a
rather more demanding emphasis on the safety of the flight control system.

Primary control originates at the pilot's control inceptors which, since they are not
constrained by mechanical control linkages, may now take alternative forms, for
example a side-stick controller. The control command signal is conditioned by a
command control law which determines the control and response characteristics of the
augmented aircraft. Since the command control law is effectively shaping the command
signal in order to achieve acceptable response characteristics, its design is a means for
augmenting handling qualities independently of stability augmentation. For this reason,
an FCS with the addition of command path augmentation is known as a command
and stability augmentation system (CSAS).

Provision is shown in Fig. 11.3 for an electrical trim function since not all aircraft with
advanced-technology FCSs employ mechanical trimmers. The role of the trim function
is to set the datum control signal value, and hence the control surface angle, to that
required to maintain the chosen equilibrium flight condition. The precise trim function
utilized would be application dependent and in some cases an entirely automatic trim
system might be implemented. In this latter case no pilot trimming facility is required.
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Since the pilot must have full authority control over the aircraft at all times it is
implied that the actuation system must also have full authority control. The implications
for safety following a failure in any component in the primary control path are
obviously critical. As for the simple SAS the feedback control signal may be authority
limited prior to summing with the primary control commands and this will protect the
system against failures within the stability augmentation function. However, this
solution cannot be used in the primary control path. Consequently, FBW systems must
have reliability of a very high order and this usually means significant levels of
redundancy in the control system architecture together with sophisticated mechanisms

.for identifying and containing the worst effects of system malfunction.
In the above brief description of an FBW system it is assumed that all control signals

are electrical and transmitted by normal electrical cables. However, since most modern
flight control computers are digital the transmission of control signals also involves
digital technology. Digital signals can also be transmitted optically with some
advantage, especially in the demanding environment within aircraft.

Today it is common for optical signal transmission to be used in flight control systems
if for no other reason than to maintain electrical isolation between redundant
components within the system. There is no reason why optical signalling should not be
used for primary flight control and there are a small number of systems currently flying
which are optically signalled. Such a control system is referred to as a fly-by-light
(FBL) system and the control function is essentially the same as that of the FBW system
or the simple stability augmentation system it replaces. It fact, it is most important to
recognize that, for a given aeroplane, the stability augmentation function required of the
flight control system is the same irrespective of the architecture adopted for its
implementation. In the context of stability augmentation there is nothing special or
different in an FBW or FBL system solution.

11.1.4 SCOPE

In the preceding sections an attempt has been made to introduce and review some of
the important issues concerning flight control system design in general. In particular, the
role of the SAS or CSAS and the possible limitation of the control function imposed
by the broader concerns of system structure have been emphasized. The temptation now
is to embark on a discussion of FCS design but, unfortunately, such a vast subject is
beyond the scope of the present book.

Rather, the remainder of this chapter is concerned with the very fundamental, and
sometimes subtle, way in which feedback may be used to augment the dynamics of the
basic aircraft. It is very important that the flight dynamicist understands the way in
which his chosen control system design augments the stability and control properties of
the airframe. It is not good enough to treat the aircraft like an arbitrary plant and to
design a controller to meet a predefined set of performance requirements, an approach
much favoured by control system designers. It is vital that the flight control system
designer retains a complete understanding of the implications of his design decisions
throughout the design process. In the interests of functional visibility, and hence of
safety, it is important that flight control systems are made as simple as possible. This is
often only achievable when the designer has a complete and intimate understanding of
the design process.
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Fig. 11.4 Inner loop control functions

11.2 Augmentation system design

The most critical aspect of flight control system design is concerned with the design of
the inner loop control law, the design objective being to endow the aircraft with good
stability, control and handling characteristics throughout its flight envelope. Today, an
FBW system gives the designer the greatest freedom of choice as to how he might
allocate the control law functions for 'optimum' performance. The main CSAS control
functions are indicated in the rather over-simplified representation shown in Fig. 11.4.
The problem confronting the FCS designer is to design suitable functions for the
command, feed-forward and feedback paths of the CSAS and, obviously, it is necessary
to appreciate the role of each path in the overall context of aircraft stability
augmentation.

The feedback path comprises the classical inner loop stability augmentation system
whose primary role is to augment static and dynamic stability. It generally improves
flying and handling qualities but may not necessarily lead to ideal handling qualities
since it has insufficientdirect control over response shaping.

The feed-forward path is also within the closed loep and its function augments stability
in exactly the same way as the feedback path. However, it has a direct influence on
command signals as well and, by careful design, its function may also be used to exercise
some degree of response shaping. Its use in this role is limited since the stability
augmentation function must take priority.

demand command
path

o(s) C(s)

feed forward
path
F(S)

feedback
path
H(s)

aircraft response
dynamics

G(s) r(s)

Fig. 11.5 Inner loop transfer function representation
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The command path control function provides the principal means for response
shaping - it has no influence on stability since it is outside the closed loop. This assumes,
of course, that the augmented aircraft may be represented as a linear system. The
command path indicated in Fig. 11.4 assumes entirely electronic signalling as
appropriate to an FBW system. However, there is no reason why the command and
feed-forward paths should not comprise a combination of parallel electrical and
mechanical paths, an architecture commonly employed in aircraft of the 1960s and
1970s. In such systems it is only really practical to incorporate all, other than very
simple, signal shaping into the electrical signal paths.

Further analysis of the simple CSAS structure may be made if it is represented by its
transfer function equivalent as shown in Fig. 11.5.

With reference to Fig. 11.5 the control error signal e(s) is given by

e(s) = C(s)b(s) - H(s)r(s) (11.2)

where b(s) and r(s) are the command and response signals respectively, and C(s) and
R(s) are the command path and feedback path transfer functions respectively. The
output response r(s) is given by

r(s) = F(s)G(s)e(s) (11.3)

where F(s) is the feed-forward path transfer function and G(s) is the all important
transfer function representing the basic airframe. Combining equations (11.2) and (11.3)
to eliminate the error signal, the closed loop transfer function is obtained

r(s) (F(S)G(S»)
t5(s) = C(s) 1+ F(s)G(s)H(s) (11.4)

Thus, the transfer function given by equation (11.4) is that of the augmented aircraft
and replaces that of the unaugmented aircraft G(s). Clearly, by appropriate choice of
C(s), F(s) and H(s) the flight control system designer has considerable scope for tailoring
the stability, control and handling characteristics of the augmented aircraft. The
characteristic equation of the augmented aircraft is given by

~(s)aug = 1+ F(s)G(s)H(s) =0 (11.5)

(11.6)

Note that the command path transfer function C(s) does not appear in the characteristic
equation, therefore, as noted above, it cannot influence stability in any way.

Let the aircraft transfer function be denoted by its numerator and denominator in
the usual way

G( ) = N(s)
s ~(s)

Let the feed-forward transfer function be a simple proportional gain

F(s) = K (11.7)

and let the feedback transfer function be represented by a typical lead-lag function

H(s) = (1 + STi)1+ s12 (11.8)

Then the transfer function of the augmented aircraft, equation (11.4), may be written



H(s) = K

r(s2 = C(s)( KN(s)(1 + s1;) )
£5(8) L\(s)(1 + s1i) + KN(s)(1 + sTi)

Now let the roles of F(s) and H(s) be reversed, whence

F(s) = (I + s~)
1+ s1;
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(11.9)

(11.10)

(11.11 )

In this case the transfer function of the augmented aircraft, equation (11.4), may be
written

r(s2 = C(s)( KN(s)(1 + s~) )
£5(8) L\(s)(1 + s1;) + KN(s)(1 + s1;)

Comparing the closed loop transfer functions, equations (11.9) and (11.11), it is clear
that the stability of the augmented aircraft is unchanged since the denominators are the
same. However, the numerators are different, implying a difference in the response to
control and this difference can be exploited to some advantage in some FCS
applications.

Now, if the gains in the control system transfer functions F(s) and H(s) are
deliberately made large such that at all frequencies over the bandwidth of the
aeroplane

F(s)G(s)H(s) » 1

then the closed loop transfer function, equation (11.4), is given approximately by

r(s) ~ C(s)
£5(s) - H(s)

(11.12)

(11.13)

This demonstrates the important result that in highly augmented aircraft the stability
and control characteristics may become substantially independent of the dynamics of
the basic airframe. In other words, the stability, control and handling characteristics are
largely determined by the design of the CSAS, in particular the design of the transfer
functions C(s) and H(s). In practice, this situation is only likely to be encountered when
the basic airframe is significantly unstable. This illustration implies that augmentation
would be provided by an FBW system and ignores the often intrusive effects of the
dynamics of the FeS components.

11.3 Closed loop system analysis

For the purpose of illustrating how motion feedback augments basic airframe stability
consider the very simple example in which pitch attitude is fed back to elevator. The
most basic essential features of the control system are shown in Fig. 11.6. In this
example the controller comprises a simple gain constant Ko in the feedback path.

The control law is given by

,,(t) = c5,,(t) - K()8(t)

and the appropriate aircraft transfer function is

(}(s~ = G(s) = N:(s)
"(8) L1(8)

(11.14)

(11.15)
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demand + elevator angle aircraft response
L dynamics

t577 (s) 1](s) G(s) B(s)

feedback
gain Ko

Fig. 11.6 A simple pitch attitude feedback system

Therefore, the closed loop transfer function of the augmented aircraft is

O(s) ~~(s)
l5,,(s) = ~(s) + Ko~~(s)

and the augmented characteristic equation is

~(s)aug = L\(s) + KoN~(s) = 0

(11.16)

(11.17)

Thus, for a given aircraft transfer function, its stability may be augmented by selecting
a suitable value of feedback gain K o. Clearly, when K o is zero there is no feedback, the
aircraft is said to be open loop and its stability characteristics are unmodified. As the
value of Ko is increased so the degree of augmentation is increased and the stability
modes increasingly diverge from those of the open loop aircraft. Note that the open and
closed loop transfer function numerators, equations (11.15) and (11.16), are the same
in accordance with the findings of Section 11.2.

Alternatively, the closed loop equations of motion may be obtained by incorporating
the control law into the open loop equations of motion. The open loop equations of
motion in state space form and referred to a body axis system are given by equation
(4.67)

u Xu Xw xq Xo u x" Xt

W Zu Zw Zq Zo W z'1 z,
[~] (11.18)= +q mu rnw rnq me q m'1 mt

0 0 0 1 0 () 0 0

Substitute the control law expression for 1], equation (11.14), into equation (11.18) and
rearrange to obtain the closed loop state equation

U Xu Xw xq Xe - Kox" u x" X t

W Zu Zw Zq zo-Koz,., w z" z; [~~ ] (11.19)= +q mu mw rnq mo - Ksm; q rn,., mt

iJ 0 0 1 0 () 0 0

Clearly, the effect of () feedback is to modify, or augment, the derivatives xo, Ze and mo.
For a given value of the feedback gain K o, equation (11.19) may be solved in the usual
way to obtain all of the closed loop longitudinal response transfer functions



Closed loop system analysis 245

u(s) N;(s)
£5,,(s) = L\,,(s)aug

q(S) N~(s)

£5,,(s) = L\(s)aug
O(S) N~(s)

£5,,(s) = L\(s)aug

and

O(S) _ N~(s)

res) - L\(s)aug
q(s) N;(s)
res) = !\(s)aug

u(S) N~(s) w(s) N;(s)
r(~~ = !\(s)aug r(s) = !\(s)aug

where !\(s)aug is given by equation (11.17).
An obvious problem with this analytical approach is the need to solve equation

(11.19) repetitively for a range of values of K(J in order to determine the value which
gives the desired stability characteristics. Fortunately, the root locus plot provides an
extremely effective graphical tool for the determination of feedback gain without the
need for repetitive computation.

EXAMP1~E 11.1 _

The pitch attitude response to elevator transfer function for the Lockheed F-104
Starfighter in a take-off configuration was obtained from Teper (1969) and may be
written in factorized form

(11.20)
£J(s) -4.66(s + 0.133)(s + 0.269)
11(S) = (S2 +0.015s+0.021)(s2 +0.911s +4.884)

Inspection of the denominator of equation (11.20) enables the stability mode
characteristics to be written down

phugoid damping ratio Cp = 0.0532

phugoid undamped natural frequency (Op =0.145 rad/s

short period damping ratio's =0.206

short period undamped natural frequency co, = 2.21 rad/s

(11.21)

The values of these characteristics suggest that the short period mode damping ratio
is unacceptably low, the remainder being acceptable. Therefore, stability augmentation
is required to increase the short period damping ratio.

In the first instance, assume a stability augmentation system in which pitch attitude
is fed back to elevator through a gain constant K(J in the feedback path. The SAS is
then exactly the same as that shown in Fig. 11.6 and, as before, the control law is
given by equation (11.14). However, since the aircraft transfer function, equation
(11.20), is negative, a negative feedback loop effectively results in overall positive
feedback 'which is, of course, destabilizing. This situation arises frequently in aircraft
control and, whenever a negative open loop transfer function is encountered, it is
necessary to assume a positive feedback loop, or equivalently a negative value of the
feedback gain constant, in order to obtain a stabilizing control system. Care must
always be exercised in this context. Therefore, in this particular example, when the
negative sign of the open loop transfer function is taken into account the closed loop
transfer function, equation (11.16), of the augmented aircraft rnav be written

O(s) N~(s)
£5,,(s) = !\(s) - K(JN~(s)



(11.26)
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Substitute the open loop numerator and denominator polynomials from equation
(11.20) into equation (11.21) and rearrange to obtain the closed loop transfer
function

O(s) -4.66(s + 0.133)(s + 0.269)
<5,,(s) = S4 + 0.926~ + (4.919 + 4.66Ko)~ + (0.095 + 1.873Ko)s + (0.103 + 0.167Ko)

(11.22)

Thus, the augmented characteristic equation is

~(s)aug = S4 + 0.927s3+(4.919+4.66Ko)sl+(O.095+1.873Ko)s+(O.103+0.167Ko)= 0

(11.23)

The effect of the feedback gain K o on the longitudinal stability modes of the F-104
can only be established by repeatedly solving equation (11.23) for a range of suitable
gain values. However, a reasonable appreciation of the effect of K, on the stability
modes can be obtained from the approximate solution of equation (11.23). Writing
equation (11.23)

As4 + Bs3 + Cs'+ Ds + E = 0 (11.24)

then an approximate solution is given by equation (6.13).
Thus, the characteristics of the short period mode are given approximately by

B C
51 +:4s +:4 = S2 + 0.927s + (4.919+ 4.66Ko) =° (11.25)

Whence

OJs = J(4.919 + 4.66K(J)
2(sOJs = 0.927 rad/s

It is therefore easy to see how the mode characteristics change as the feedback gain
is increased from zero to a large value. Or, more generally, as K, ~ 00 so

to, ~ 00I (11.27)
(s ~ 0

Similarly, with reference to equation (6.13), the characteristics of the phugoid mode
are given approximately by

2 (CD-BE) E 2 (8.728K~+9.499Ko+0.369) (0.103+0.167K(J) 0
s+ 2 s+-=s+ 2 s+ =

C C 21.716Ko+45.845Ko+24.197 4.919+4.66Ko
(11.28)

Thus, again, as K o ~ 00 so

/0.167(f)p ~ 4.66 =0.184radjs

8.728
2'p(f)p ~ 21.716= 0.402radjs

and allowing for rounding errors

(p ~ 1.0

(11.29)

(11.30)
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The conclusion is then that negative pitch attitude feedback to elevator tends to
destabilize the short period mode and increase its frequency, whereas its effect on the
phugoid mode is more beneficial. The phugoid stability is increased whilst its
frequency also tends to increase a little but is bounded by an acceptable maximum
value. For all practical purposes the frequency is assumed to be approximately
constant. This result is, perhaps, not too surprising since pitch attitude is a dominant
motion variable in phugoid dynamics and is less significant in short period pitching
motion. It is quite clear that pitch attitude feedback to elevator is not the correct way to
augment the longitudinal stability of the F-104.

What this approximate analysis does not show is the relative sensitivity of each mode
to the feedback gain. This can only be evaluated by solving the characteristic equation
repeatedly for a range of values of K(J from zero to a suitably large value. A typical
practical range of values might be 0 ~ K(J ~ 2 rad/rad, for example. This kind of
analysis is most conveniently achieved with the aid of a root locus plot.

11.4 The root locus plot

The root locus plot is a relatively simple tool for determining, by graphical means,
detailed information about the stability of a closed loop system knowing only the open
loop transfer function. The plot shows the roots, or poles, of the closed loop system
characteristic equation for every value of a single loop variable, typically the feedback
gain. It is therefore not necessary to calculate the roots of the closed loop characteristic
equation for every single value of the chosen loop variable. As its name implies, the root
locus plot shows loci on the s-plane of all the roots of the closed loop transfer function
denominator as a function of the single loop gain variable.

The root locus plot was proposed by Evans (1954) and from its first appearance
rapidly gained in importance as an essential control systems design tool. Consequently,
it is described in most books concerned with linear control systems theory, for example
it is described by Friedland (1987). Because of the relative mathematical complexity of
the underlying theory, Evans' (1954) main contribution was the development of an
approximate asymptotic procedure for manually 'sketching' closed loop root loci on the
s-plane without recourse to extensive calculation. This was achieved with the aid of a
set of 'rules' which resulted in a plot of sufficient accuracy for most design purposes. It
was therefore essential that control system designers were familiar with the rules. Today,
the root locus plot is universally produced by computational means. It is no longer
necessary for the designer to know the rules although he must still know how to interpret
the plot correctly and, of course, he must know its limitations.

In aeronautical applications it is vital to understand the correct interpretation of the
root locus plot. This is especially so when it is being used to evaluate augmentation
schemes for the precise control of the stability characteristics of an aircraft over the
flight envelope. In the opinion of the author, this can only be done from the position of
strength which comes with a secure knowledge of the rules for plotting a root locus by
hand. For this reason the rules are set out in Appendix 9. However, it is not advocated
that root locus plots should be drawn by hand-this is unnecessary when computational
tools such as CODAS, PC MATLAR and Program CC are readily available. The
processes involved in the construction of a root locus plot are best illustrated by example
as follows.
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EXAMPLE 11.2 _

Consider the use of the root locus plot to evaluate the effect of pitch attitude feedback
to elevator on the F-104 aircraft at the same flight condition as discussed in Example
11.1. The closed loop system block diagram applying is that shown in Fig. 11.6. The
open loop system transfer f.unction is, from equation (11.20),

(11.31)

number of poles np = 4

number of zeros nz = 2
whence

fJ(s) -4.66Ko(s + 0.133)(s + 0.269)
,.,(s) = (~ + 0.OI5s + 0.021)(S2 + 0.911s + 4.884)

with poles and zeros

PI = -0.0077 + 0.1448j

P2 = -0.0077 - 0.I448j

P3 = -0.4553 + 2.1626j

P4 = -0.4553 - 2.1626j

ZI =-0.133

Z2 = -0.269

The open loop poles and zeros are mapped on to the s-plane as shown in Fig. 11.7.
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Fig. 11.7 Example of root locus plot construction
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The loci of the closed loop poles are then plotted as the feedback gain K(J is allowed
to increase from zero to a large value. In this example the loci were obtained
computationally and are discussed in the context of the rules set out in Appendix 9.

Rule 1 locates the poles and zeros on the s-plane and determines that, since there
are two more poles than zeros, four loci commence at the poles, two of which
terminate at the zeros and two of which go off to infinity as K() ~ 00.

Rule 2 determines that the real axis between the two zeros is part of a locus.
Rule 3 determines that the two loci which go off to infinity do so asymptotically

to lines at 900 and at 2700 to the real axis.
Rule 4 determines that the asymptotes radiate from the cg of the plot located at

-0.262 on the real axis.
Rule 5 determines the point on the real axis at which two loci break in to the locus

between the two zeros. Method 1, the approximate method, determines the break-in
point at -0.2. Method 2, the exact method, determines the break-in point at -0.186.
Either value is satisfactory for all practical purposes.

Rule 6 simply states that the two loci branching in to the real axis do so at ±90°
to the real axis.

Rule 7 determines the angle of departure of the loci from the poles and the angles
of arrival at the zeros. This is rather more difficult to calculate by hand and, to do so,
the entire s-plane plot is required. The angles given by the computer program used to
plot the loci are as follows

angle of departure from PI' 1940

angle of departure from P2, -1940

angle of departure from P3, 280 0

angle of departure from P4, -2800

angle of arrival at ZI, 1800

angle of arrival at Z2' 0°

Note that these values compare well with those calculated by hand from measurements
made on the s-plane using a protractor.

Rule 8 enables the total loop gain to be evaluated at any point on the loci. To do
this by hand is particularly tedious, it requires a plot showing the entire s-plane and it
is not always very accurate, especially if the plot is drawn to a small scale. However,
since this is the primary reason for plotting root loci in the first instance all computer
programs designed to plot root loci provide a means for obtaining values of the
feedback gain at test points on the loci. Not all root locus plotting programs provide
the information given by rules 4, 5 and 7. In this example the feedback gain at test
point a is K() = -1.6 and at test point b, the break-in point, K() = -12.2. Note that, in
this example, the feedback gain has units deg/deg or, equivalently, rad/rad. When all
test points of interest have been investigated the root locus plot is complete.

One of the more powerful features of the root locus plot is that it gives explicit
information about the relative sensitivity of the stability modes to the feedback in
question. In this example, the open loop aircraft stability characteristics are
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phugoid damping ratio (p =0.0532

phugoid undamped natural frequency wp =0.145 rad/s

short period damping ratio's =0.206

short period undamped natural frequency co, = 2.21 rad/s

and at test point a, where K; =-1.6, the closed loop stability characteristics are

phugoid damping ratio (p =0.72

phugoid undamped natural frequency wp = 0.17 rad/s

short period damping ratio (5 =0.10

short period undamped natural frequency (Os =3.49 rad/s

Thus, the phugoid damping is increased by about 14 times and its frequency remains
nearly constant. In fact, the oscillatory phugoid frequency can never exceed 0.186 rad/s,
The short period mode damping is approximately halved whilst its frequency is
increased by about 50%. Obviously the phugoid damping is the parameter which is
most sensitive to the feedback gain by a substantial margin. A modest feedback gain
of, say, K o = -0.1 rad/rad would result in a very useful increase in phugoid damping
whilst causing only very small changes in the other stability parameters. However,
the fact remains that pitch attitude feedback to elevator destabilizes the short period
mode by reducing the damping ratio from its open loop value. This, then, is not
the cure for the poor short period mode stability exhibited by the open loop F-104
aircraft at this flight condition. All of these conclusions support the findings of
Example 11.1 but, clearly, very much greater analytical detail is directly available
from inspection of the root locus plot.

Additional important points relating to the application of the root locus plot to
aircraft stability augmentation include the following.

• Since the plot is symmetric about the real axis it is not necessary to show the lower
half of the s-plane, unless the plot is constructed by hand. All of the relevant
information provided by the plot is available in the upper half of the s-plane.

• At typical scales it is frequently necessary to obtain a plot of the origin area at
enlarged scale in order to resolve the essential detail. This is usually very easy to
achieve with most computational tools.

• As has been mentioned previously, it is essential to be aware of the sign of the open
loop aircraft transfer function. Most root locus plotting computer programs assume
the standard positive transfer function with negative feedback. A negative transfer
function will result in an incorrect locus. The easy solution to this problem is to enter
the transfer function with a positive sign and to change the sign of the feedback gains
given by the program. However, it is important to remember the changes made when
assessing the result of the investigation.

EXAMPLE 11.3 _

In Examples 11.1 and 11.2 it is shown that pitch attitude feedback to elevator is not
the most appropriate means for augmenting the deficient short period mode damping
of the F-104. The correct solution is to augment pitch damping by implementing pitch
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Fig. 11.8 A simple pitch rate feedback system

(11.32)

rate feedback to elevator-velocity feedback in servomechanism terms. The control
system functional block diagram is shown in Fig. 11.8.

For the same flight condition, a take-off configuration, as in the previous examples,
the pitch rate response to elevator transfer function for the Lockheed F-104 Starfighter
was obtained from Teper (1969) and may be written in factorized form

q(s) -4.66s(s + 0.133)(s + 0.269) d d- = ra /s/ra
11(8) (S2 +0.015s + 0.021)(s2+ 0.911s +4.884)

As before, the stability modes of the open loop aircraft are

phugoid damping ratio (p = 0.0532

phugoid undamped natural frequency wp = 0.145 rad/s

short period damping ratio (s = 0.206

short period undamped natural frequency W s = 2.21 rad/s
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Fig. 11.9 Root locus plot for pitch rate feedback to elevator
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With reference to MIL-F-8785C (1980), defining the F-104 as a class IV aircraft,
operating in flight phase category C and assuming level 1 flying qualities are desired,
the following constraints on the stability modes may be determined

phugoid damping ratio 'p ~ 0.04

short period damping ratio 'S ~ 0.5

short period undamped natural frequency 0.8 ~ co, ~ 3.0 rad/s

The upper limit on the short period mode damping ratio is ignored since it is greater
than one. Additionally, the closed loop phugoid frequency should ideally conform to
cop ~ 1.1 COs where COs here is the closed loop short period mode frequency. Clearly, the
unaugmented aircraft meets these flying qualities requirements with the exception of
the short period mode damping ratio, which is much too low.

The root locus plot constructed from the transfer function, equation (11.3~), is
shown in Fig. 11.9. Also shown on the same s-plane plot are the flying qualities short
period mode boundaries according to the limits determined from MIL-F-8785C and
quoted above.

Clearly, pitch rate feedback to elevator is ideal since it causes the damping of both
the phugoid and short period modes to be increased, although the short period mode
is most sensitive to feedback gain. Further, the frequency of the short period mode
remains more-or-Iess constant through the usable range of values of feedback gain K().
For the same range of feedback gains the frequency of the phugoid mode is reduced,
thereby increasing the separation between the frequencies of the two modes. At test
point a, K, = -1.3 rad/rad/s, which is the smallest feedback gain required to bring the
closed loop short period mode into agreement with the flying qualities boundaries.
Allowing for a reasonable margin of error and uncertainty, a practical choice of
feedback gain might be K, = -0.5 rad/rad/s. The stability augmentation control law
would then be

Y/ = {)rt +O.5q (11.33)

This·augmentation system is the classical pitch damper used on many aeroplanes from
the same period as the Lockheed F-104 and typical feedback gains would be in the
range -0.1 ~ K, ~ -1.0 rad/rad/s, It is not known what value of feedback gain is
used in the F-104 at this flight condition but the published description of the
longitudinal augmentation system structure is the same as that shown in Fig. 11.8.

Substituting the control law, equation (11.33), into the open loop longitudinal
equations of motion, as described in Section 11.3, enables the closed loop equations
of motion to be derived. Solution of the equations in the usual way gives the response
transfer functions for the augmented aircraft. Solution of the closed loop characteristic
equation determines that at K, = -1.5 rad/rad/s the longitudinal modes have the
following characteristics

phugoid damping ratio 'p = 0.079

phugoid undamped natural frequency wp =0.133 rad/s

short period damping ratio's = 0.68

short period undamped natural frequency Ws=2.41 rad/s

Clearly, at this value of feedback gain the flying qualities requirements are met
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Fig. 11.10 Pitch rate response to a unit elevator step input

completely with margins sufficient to allow for uncertainty. The closed loop system
thus defined provides the basis for further analytical studies concerning the
implementation architecture and safety issues. The pitch rate response of the aircraft
before and after the addition of the augmentation loop is illustrated in Fig. 11.10. The
first ten seconds of the response to a unit elevator step input are shown to emphasize
the considerable improvement in short period mode stability. The longer term response
is not shown since this is not changed significantly by the augmentation and, in any
event, the phugoid dynamics are acceptable.

11.5 Longitudinal stability augmentation

In Examples 11.2 and 11.3 it has been shown how negative feedback using a single
variable can be used to augment selectively the stability characteristics of an aeroplane.
It has also been shown how the effect of single variable feedback may readily be
evaluated with the aid of a root locus plot. Now, clearly, the choice of feedback variable
is important in determining the nature of the change in the stability characteristics of
the aeroplane since each variable results in a unique combination of changes. Provided
that the aircraft is equipped with the appropriate motion sensors various feedback
control schemes are possible and it then becomes necessary to choose the feedback
variable(s) best suited to augment the deficiencies of the basic airframe. It is also useful
to appreciate what effect each feedback variable has on the stability modes when

az(s)
a(s)
() response
S variables(s)
(s)

mand + elevator angle longitudinal
L aircraft u

871(s) - 1] (s) dynamics q-
()

feedback
gainK

de

Fig. 11.11 Longitudinal feedback options
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assessing a flight control system design. However complex the functional structure of
the system, the basic augmentation effect of each feedback variable does not change.
Feedback is also used for reasons other than stability augmentation; for example, in
autopilot functions. In such cases augmentation will also occur and it may not be
desirable, in which case a thorough understanding of the effects of the most commonly
used feedback variables is invaluable.

In order to evaluate the effect of feedback utilizing a particular response variable it
is instructive to conduct a survey of all the single loop feedback options. In every case
the feedback loop is reduced to a simple gain component only. By this means the
possible intrusive effects of other loop components, such as noise filters, phase
compensation filters, sensor and actuator dynamics, are prevented from masking the
true augmentation effects. The longitudinal stability augmentation options are
summarized in Fig. 11.11, in which it is implied that a negative feedback loop may be
closed between any of the motion variables and the elevator. Other loops could, of
course, be closed between the motion variables and alternative longitudinal control
motivators, or engine thrust control, for example, but these are not considered here.

The survey is conducted by taking each motion variable in turn and evaluating its
influence on the closed loop stability characteristics as a function of the loop gain K.
The root locus plot is an especially useful tool for this purpose since it enables the
relative influence on, and the relative sensitivity of, each of the stability modes to be
assessed simultaneously. As the detailed effect of feedback depends on the aircraft and
flight condition of interest it is not easy to generalize and is best illustrated by example.
Consequently, the following survey (Example 11.4) is based on a typical aircraft
operating at a typical flight condition and the observations may be applied loosely to the
longitudinal stability augmentation of most aircraft.

EXAMPLE 11.4 _

Transfer function data for the McDonnell- Douglas A-4D Skyhawk aircraft were
obtained from Teper (1969). The flight condition chosen corresponds to an all up
weight of 175781b at an altitude of 35000 ft at Mach 0.6. In factorized form the
lonyitudinal characteristic equation is

L\(s) = (S2 + 0.014s + 0.0068)(S2 + 1.009s + 5.56) = 0

and the longitudinal stability mode characteristics are

phugoid damping ratio (p = 0.086·

phugoid undamped natural frequency wp = 0.082 rad/s

short period damping- ratio's = 0.214

short period undamped natural frequency co, = 2.358 rad/s

These stability mode characteristics would normally be considered acceptable with
the exception of the short period mode damping ratio, which is too low. The Skyhawk
is typical of combat aeroplanes of the 1960s in which modest degrees of augmentation
only are required to rectify the stability deficiencies of the basic airframe. This, in turn,
implies that modest feedback gains only are required in the range say, typically,
o ~ K ~ 2.0. In modern FBW aircraft having unstable airframes rather larger gain
values would be required to achieve the same levels of augmentation. In general, the
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greater the required change in the stability characteristics the greater the feedback
gains needed to effect the change. In the following catalogue of root locus plots each
plot illustrates the effect of a single feedback loop closure as a function of increasing
feedback gain K.

(i) Pitch attitude feedback to elevator
The open loop aircraft transfer function is

O(s)== N:(s) = -8.096(s - 0.OOO6}(s + 0.3591) rad rad
'7(s) A(s) (S2 +0.014s+ 0.OO68)(s2 + 1.009s+ 5.56) /

(11.35)

and the corresponding root locus plot is shown in Fig. 11.12.
As K(J is increased the phugoid damping increases rapidly whilst the frequency

remains nearly constant, whereas as K(J is increased the short period mode frequency
increases whilst the damping decreases, both characteristics changing relatively
slowly. Thus, as might be expected, since pitch attitude is a dominant variable in
the phugoid mode, this mode is considerably more sensitive to the loop gain than
the short period mode. Since this feedback option further destabilizes the short
period mode its usefulness in an SAS is very limited indeed. However, it does
improve phugoid stability, the mode becoming critically damped at a gain of
K(J = -0.37 rad/rad. A practical gain value might be K(J = -0.1 rad/rad which would
result in a good level of closed loop phugoid stability without reducing the short
period mode stability too much. These observations are, of course, in good
agreement with the findings of Example 11.2.



256 Stability augmentation

-0.05
o

0.1

0.00

o - Open loop zeros

...... '~ ••••• *:* •••••:•••••• ~ •••

phugdid mPde ~
..···:···tOctJs·;.·····; .

j : ~ -~5

::::T:::r::T::J-~:~
·····1······:······\"·····t····

. ... ..

x -Open loop poles

. • - Gain test points

Graphscales - rad/sec

.~

o-2 -1
Realm

..........; : 3

IS-~Iane I : :
· . .··········.···········.··········l········· .· . ,· . .
~ ~ j ~; : : . ca

..........~ -j-- : ·~:l· T .. ·.. · 2 j
I • • • •..........: ~ : : -: .

.-0.4. . .
~ ~ short period ~

..........~ ........ i· ......·..l..~~~~l'.~~~~ ... {........ ......... 1
· .· .· ,

· .· . . ..: 1' \ \ -:-- .
· . .· . .· . ,· , .

--iiiiI6I...._ ...._ .....~_ ....- .....~-u-+-----'o

-3

Fig. 11.13 Root locus plot-pitch rate feedback to elevator

(ii) Pitch rate feedback to elevator
The open loop aircraft transfer function is

q(s) == N~(s) = -8.096s(s - 0.0006)(s +0.3591) rad/s/rad
11(S) Ll(s) (~ +0.014s+0.0068)(S2 + 1.009s+ 5.56)

(11.36)

and the corresponding root locus plot is shown in Fig. 11.13.
As K, is increased the short period mode damping increases rapidly whilst the

frequency remains nearly constant, whereas as K, is increased the phugoid frequency
and damping decrease relatively slowly. More typically, a slow increase in phugoid
damping would be seen. Thus, as might be expected, since pitch rate is a dominant
variable in the short period mode, this mode is considerably more sensitive to the loop
gain than the short period mode. As discussed in Example 11.3, this feedback option
describes the classical pitch damper and is found on many aeroplanes. It also exactly
describes the longitudinal stability augmentation solution used on the Skyhawk. Its
dominant effect is to increase artificially the magnitude of the derivative mq; it also
increases the magnitude of the derivatives xq and Zq but to a lesser degree. The short
period mode becomes critically damped at again of K, = -0.53 rad/rad/s, A practical
gain value might be K, = -0.3 rad/rad/s which would result in an adequate level of
closed loop short period mode stability whilst simultaneously increasing the frequency
separation between the two modes. However, at this value of feedback gain the
changes in the phugoid characteristics would be almost insignificant. As before, these
observations are in good agreement with the findings of Example 11.3.

(iii) Velocity feedback to elevator
The open loop aircraft transfer function is
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(11.37)
u(s) == N~(s) = 6.293(S2 +0.615s+ 0.129)(s+ 115.28) ft s rad
'1(s) Ll(s) (S2 +0.014s+ 0.0068)(S2 + 1.009s + 5.56) / /

and the corresponding root locus plot is shown in Fig. 11.14.
As K; is increased the short period mode frequency increases quite rapidly whilst,

initially, the damping decreases. However, at very large gain values the damping
commences to increase again to become eventually critical, whereas as K; is increased
both the frequency and damping of the phugoid mode increase relatively rapidly. Thus,
at this flight condition, both modes appear to have similar sensitivity to feedback gain.
The stabilizing influence on the phugoid mode is much as might be expected since
velocity is the dominant variable in the mode dynamics. The dominant effect of the
feedback is therefore to increase artificially the magnitude of the derivative m., and
since m; is usually small it is not surprising that even modest values of feedback gain
have a significant effect on phugoid stability. It also increases the magnitude of the
derivatives Xu and z; but to a lesser degree. A practical gain value might be
K; = 0.001 rad/ft/s which would result in a significant improvement in closed loop
phugoid mode stability whilst simultaneously decreasing the stability of the short
period mode by a small amount. However, such values of feedback gain are quite
impractically small and, in any event, this feedback option would not find much useful
application in a conventional longitudinal SASe

(iv) Incidence angle feedback to elevator
The open loop aircraft transfer function is

a(s) == N~(s) = -0.04(; - 0.0027s + 0.0031)(s +203.34) rad/rad
11(S) .d(s) (S2 + 0.014s + 0.0068)(~ + 1.009s + 5.56)

(11.38)
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and the corresponding root locus plot is shown in Fig. 11.15.
As K, is increased the short period mode frequency increases very rapidly whilst,

initially, the damping decreases slowly. However, as the gain increases further, the
damping slowly starts to increase eventually to become critical at an impractically large
value of feedback gain. At all practical gain values the damping remains more-or-Iess
constant. As K; is increased both the frequency and damping of the phugoid are
reduced, the mode becoming unstable at a gain of K, = -3.5 rad/rad in this example.
Incidence feedback to elevator is a powerful method for augmenting the longitudinal
static stability of an aeroplane and finds extensive application in unstable FBW aircraft.
The effect of the feedback is equivalent to increasing the pitch stiffness of the aircraft
which artificially increases the magnitude of the derivative mw(8Cm / fJa.) and to a lesser
degree it also increases the magnitude of the derivatives x, and Zw. Thus, the increase
in short period mode frequency together with the less significant influence on damping
is entirely consistent with the augmentation option. Since phugoid dynamics is
typically very nearly incidence constant, the expected effect a! the feedback on the
mode is negligible. This is not the case in this example, probably due to aerodynamic
effects at the relatively high subsonic Mach number. This is confirmed by the fact that
the phugoid roots do not even approximately cancel with the complex pair of
numerator roots, which might normally be expected. It would therefore be expected to
see some incidence variation in the phugoid dynamics.

(v) Normal acceleration feedback to elevator
The open loop aircraft transfer function is

az(s) == N;'(s) = -23.037(s - 0.018)(s - 0.0003)(s + 8.717)(s - 8.203) ftj
s2jrad

,,(s) ~(s) (S2 +0.014s+0.0068)(S2 + 1.009s + 5.56)
(11.39)
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Fig. 11.16 Root locus plot-normal acceleration feedback to elevator

and the corresponding root locus plot is shown in Fig. 11.16. Since the transfer
function is not proper, care must be exercised in the production of the root locus plot
and in its interpretation. However, at typically small values of feedback gain its
interpretation seemsquite straightforward.

Since an accelerometer is rather more robust than an incidence sensor, normal
acceleration feedback to elevator is commonly used instead of, or to complement,
incidence feedback. Both feedback variables have a similar effect on the phugoid
and short period stability mode at practical values of feedback gain. However, both
modes are rather more sensitive to feedback gain since very small values result in
significant changes to the mode characteristics. As K; is increased the short period
mode frequency increases very rapidly whilst, initially, the damping decreases slowly.
However, as the gain increases further the damping slowly starts to increase
eventually to become critical at an impractically large value of feedback gain. At all
practical gain values the damping remains more-or-Iess constant. The full short
period mode branch of the locus is not shown in Fig. 11.16 since the gain range
required exceeded the capability of the computational software used to produce the
plots. As K; is increased both the frequency and damping of the phugoid are
reduced, the ~ mode becoming unstable at a gain of K; = 0.0026 rad/ft/s' in this
example. Since the normal acceleration variable comprises a mix of incidence,
velocity and pitch rate, see Section 5.5, then the augmentation it provides in a
feedback control system may be regarded as equivalent to the sum of the effects of
feedback of the separate variables. Thus, at moderate gains the increase in pitch
stiffness is significant and results in a rapid increase in short period mode frequency.
The corresponding increase in short period mode damping is rather greater than that
achieved with incidence feedback alone due to the effect of implicit pitch rate
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feedback. Since the incidence-dependent term dominates the determination of normal
acceleration, it is not surprising that normal acceleration feedback behaves like
incidence feedback. It is approximately equivalent to artificially increasing the
magnitude of the derivative m; and to a lesser degree it also increases the magnitude of
the derivatives X w and Zw.

11.6 Lateral-directional stability augmentation

As for the longitudinal stability augmentation options described in Section 11.5, it is also
instructive to conduct a survey of all the lateral-directional single loop feedback options.
The lateral-directional stability augmentation options are summarized in Fig. 11.17 in
which it is implied that a negative feedback loop may be closed between any of the
motion variables and either the ailerons or rudder. Other loops could be closed between
the motion variables and alternative lateral-directional control motivators but, again,
these are not considered here.

As before, the survey is conducted by taking each motion variable in turn and
evaluating its influence on the closed loop stability characteristics as a function of the
loop gain K. The detailed effects of the lateral-directional feedback options are much
more dependent on the aircraft and flight condition than the longitudinal feedback
options. Therefore, it is more difficult, and probably less appropriate, to generalize
and the effects are also best illustrated by example. The following survey, Example
11.5, is based on a typical aircraft operating at a typical flight condition and the
observations may be interpreted as being applicable to the lateral-directional stability
augmentation of most aircraft. However, care must be exercised when applying the
observations to other aircraft and every new application should be evaluated in its
own right.
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Fig. 11.17 Lateral-directional feedback options
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EXAMPLE 11.5 _

Transfer function data for the Northrop T-38 Talon aircraft were also obtained from
Teper (1969). The flight condition chosen corresponds to an all up weight of
10000Ib at Mach 0.8 at sea level. In factorized form the lateral-directional character­
istic equation is

a(s) = (s - 0.0014)(s+ 4.145)(s2 + 1.649s + 38.44)= 0 (11.40)

and the lateral-directional stability mode characteristics are

spiral mode time constant 1; = -714 s

roll mode time constant T, = 0.24 s

dutch roll damping ratio 'd = 0.133

dutch roll undamped natural frequency COd = 6.2 rad/s

Clearly, the spiral mode is unstable, which is quite typical, and the time constant is
sufficiently large that it is most unlikely to give rise to handling problems. In fact, all of the
stability characteristics are better than the minimum acceptable for level 1 flying qualities.
However, the aircraft is fitted with a simple yaw damper to improve the lateral-directional
flying and handling qualities at all flight conditions, including some where the minimum
standards are not met. In the following catalogue of root locus plots each plot illustrates
the effect of a single feedback loop closure as a function of increasing feedback gain
K. It should be noted that, in the original data source, the sign convention for aileron
angle is opposite to that adopted in this book. In the following illustrations the aileron
sign convention is changed to be consistent with the British notation.
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(i) Sideslip angle feedback to aileron
The open loop transfer function is

/3(S) == N~(s) = 1.3235(s - 0.0832)(s + 7.43) rad rad
~(s) d(s) (s - 0.0014)(s +4. 145)(S2 + 1.649s + 38.44) /

(11.41)

and the corresponding root locus plot is shown in Fig. 11.18.
As Kp is increased so the spiral mode pole moves further to the right on the

s-plane and its instability is worsened as its time constant is reduced. The roll mode
stability is increased as the gain Kp is increased since its pole moves to the left on the
s-plane. As K p is increased the dutch roll frequency is increased whilst its damping is
decreased and it eventually becomes unstable at a gain of approximately K, =50 rad/
rad. All three modes are relatively insensitive to the feedback since large gains are
required to achieve modest changes in the mode characteristics, although the spiral
mode is the most sensitive. Negative feedback of sideslip angle to aileron is equivalent
to an increase in dihedral effect. In particular, for this example, it augments the
magnitude of the stability derivatives l, and n, and the degree of augmentation of each
derivative depends on the value of Kp and the aileron control derivatives l~ and n~

respectively. Clearly, the effect is to increase artificially the lateral stiffness of the
aeroplane resulting in an increase in dutch roll frequency and a corresponding increase
in roll damping. It is unlikely that sideslip angle feedback to aileron alone would find
much use in stability augmentation systems.

(ii) Roll rate feedback to aileron
The open loop transfer function is

p(s) == N~(s) = -27.75(s - 0.0005)(i + 1.55s+41.91) rad s rad
~(s) d(S) (s - 0.0014)(s +4. 145)(i + 1.649s + 38.44) / /

(11.42)

and the corresponding root locus plot is shown in Fig. 11.19. Note that both the spiral
mode pole and the dutch roll poles are approximately cancelled by the numerator zeros.
This means that both modes are insensitive to this feedback option.

As K, is increased so the spiral mode pole moves to the left on the s-plane and its
instability is reduced as its time constant is increased. However, the spiral mode
remains unstable at all values of K, although roll rate feedback to aileron generally
improves the handling qualities associated with the spiral mode. The roll mode
stability increases rapidly as the gain K, is increased since its pole moves to the left
on the s-plane. The roll mode is most sensitive to this feedback option and, in fact,
roll rate feedback to aileron describes the classical roll damper and is used in many
aeroplanes. Whatever the value of K, the effect on the stability characteristics of
the dutch roll mode is insignificant as stated above. At all levels of feedback gain
the dutch roll mode poles remain in a very small localized area on the s-plane.
Negative roll rate feedback to aileron is equivalent to an increase in the roll damping
properties of the wing. In particular, it augments the magnitude of the stability
derivative I, and, to a lesser extent, np ' As before, the degree of augmentation of
each derivative depends on the value of K, and the aileron control derivatives I~ and
ne respectively.
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Fig. 11.19 Root locus plot-roll rate feedback to aileron

(11.43)

(iii) Yaw rate feedback to aileron
The open loop transfer function is

r(s) == ~(s) = -1.712(s + 5.405)(; + 1.788s +4.465) rad/s/rad
~(s) ~(s) (8 - O.OOI4)(s +4.145)(82 + 1.6498 +38.44)

and the corresponding root locus plot is shown in Fig. 11.20.
As K, is increased so the spiral mode pole moves to the left on the s-plane to

become stable at a small value of gain. At a gain of approximately K, = 6 rad/rad/s,
which is somewhat greater than a practical value, the spiral and roll modes couple to
form a low frequency oscillatory characteristic. The roll mode stability decreases as the
gain K, is increased since its pole moves to the right on the s-plane before coupling
with the spiral mode. The dutch roll mode is the most sensitive mode and as K, is
increased the damping increases rapidly whilst the frequency increases rather more
slowly. At practical levels of feedback gain the most useful improvements would be to
stabilize the spiral mode and to improve dutch roll damping whilst degrading roll mode
stability only slightly. However, yaw rate feedback to aileron cross-couples both the
roll and yaw control axes of the aeroplane and is not so desirable for safety reasons.
The feedback is equivalent to an increase in the yaw damping properties of the wing.
In particular, it augments the magnitude of the stability derivatives I, and n..

(iv) Roll attitude feedback to aileron
The open loop transfer function is

4J(s) == Nt(s) = -27.75(; + 1.55s+41.91) rad rad
~(s) [\(s) (s - 0.0014)(s+4.145)(; + 1.649s + 38.44) /

(11.44)
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Fig. 11.20 Root locus plot-yaw rate feedback to aileron

and the corresponding root locus plot is shown in Fig. 11.21. Note that the dutch roll
poles are approximately cancelled by the numerator zeros, which implies that the mode
is insensitive to this feedback option.

As K,; is increased the spiral mode pole moves to the left on the s-plane and its
stability increases very rapidly, a very small value of gain being sufficient to place the
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(11.45)

pole on the left half of the s-plane. At a slightly larger value of gain, Kt/J = -0.14 rad/rad,
the spiral and roll modes couple to form a low frequency oscillatory characteristic as
in the previous illustration. Therefore, roll mode stability decreases rapidly as the gain
KlIJ is increased until its pole couples with that of the spiral mode. Clearly, both the roll
and spiral modes are most sensitive to this feedback option. As expected, for all values
of Kc/J the effect on the stability characteristics of the dutch roll mode is insignificant.
At all levels of feedback gain the dutch roll mode poles remain in a very small localized
area on the s-plane and the minimum damping corresponds to a feedback gain of
KcJ> = -1.7 rad/rad. Negative roll attitude feedback to aileron is, very approximately,
equivalent to an increase in roll stiffness and at quite small feedback gain values
manifests itself as the coupled roll-spiral oscillatory mode, which may be regarded as a
kind of lateral pendulum mode.

(v) Yaw attitude feedback to aileron
The open loop transfer function is

l/J(s) == N~(s) = -1.712(s +5.405)(i + 1.788s+4.465) radjrad
~(s) ~(s) s(s - 0.0014)(s + 4.145)(; + 1.649s + 38.44)

and the corresponding root locus plot is shown in Fig. 11.22.
As K", is increased the spiral mode pole moves to the left on the s-plane, towards

the pole at the origin, to which it couples at a very small value of gain indeed to
form a low frequency unstable oscillatory characteristic. At a gain of approximately
K", = -0.017 rad/rad the low frequency oscillatory characteristic becomes stable. The
roll mode stability increases very slowly as the gain Kl/J is increased since its pole moves
to the left on the s-plane towards the zero at -5.404. As K", is increased' the dutch roll
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(11.46)

mode frequency increases whilst the damping decreases, both characteristics changing
rather slowly. The dutch roll mode eventually becomes unstable at a gain of
approximately K", = -30 rad/rad. At practical levels of feedback gain the effect on the
roll and dutch roll modes is almost insignificant. On the other hand the effect of the
feedback on the spiral mode is most significant, even at very' low values of gain. As in
(iii), yaw attitude feedback to aileron cross-couples both the roll and yaw control axes
of the aeroplane and is not so desirable for safety reasons. The feedback is equivalent
to an increase in the yaw stiffness properties of the wing.

(vi) Sideslip angle feedback to rudder
The open loop transfer function is

P(s) == N~(s) = 0.10(s - 0.0015)(s +4.07)(s + 113.4) rad rad
(s) A(s) (s - 0.0014)(s +4.145)(sl + 1.649s + 38.44) /

and the corresponding root locus plot is shown in Fig. 11.23. Note that both the spiral
and roll mode poles are very nearly cancelled by numerator zeros. It may therefore be
expected that negative sideslip angle feedback to rudder will only significantly
augment the dutch roll mode.

As expected, as Kp is increased, both the spiral mode pole and the roll mode pole
move to the right on the s-plane but the reduction in stability really is insignificant. As
Kp is increased both the dutch roll frequency and damping are increased, the mode
eventually becoming critically damped at the absurdly high frequency of rod = 226 rad/s
at a gain of approximately K p = 4500 rad/radl Negative feedback of sideslip angle to
rudder is equivalent to an increase in the weathercock effect of the fin, or yaw stiffness.
In particular, for this example, it very effectively augments the magnitude of the stability
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Fig. 11.24 Root locus plot-roll rate feedback to rudder

(11.47)

derivative n, and to a lesser extent l; The degree of augmentation of each derivative
depends on the value of K p and the rudder control derivatives n, and I, respectively.
Clearly, the effect is artificially to increase the directional stiffness of the aeroplane
resulting in an increase in dutch roll frequency and a corresponding, but much slower,
increase in roll damping. At all practical values of feedback gain the dutch roll damping
remains more-or-Iess constant at its open loop value.

(vii) Roll rate feedback to rudder
The open loop transfer function is

p(s) == NHs) = 16.65(s - 0.0006)(s - 0.79)(s + 1.09) rad/s/rad
'(s) ~(s) (s - 0.0014)(s + 4. 145)(s2 + 1.649s+ 38.44)

and the corresponding root locus plot is shown in Fig. 11.24. Note 'that the spiral mode
pole is very approximately cancelled by a numerator zero. It is therefore expected that
the spiral mode will be insensitive to this feedback option.

As expected, the effect on the spiral mode of this feedback option is insignificant.
The roll mode stability increases rapidly as the gain K, is increased since its pole
moves to the left on the s-plane. The roll mode is quite sensitive to this feedback
option, which is not surprising since roll rate is the dominant motion variable in the
aircraft dynamics associated with the mode. The dutch roll mode is also very
sensitive to this feedback option. As K, is increased the dutch roll damping
increases rapidly whilst the frequency is reduced. For values of the feedback gain
K, ~ 8.9 rad/rad/s the dutch roll mode is critically damped and is therefore non­
oscillatory. Negative roll rate feedback to rudder is equivalent to an increase in the
yaw damping properties of the wing. In particular, it augments the magnitude of the
stability derivative np and, to a lesser extent, lpo As before, the degree of augmentation
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Fig. 11.25 Root locus plot-yaw rate feedback to rudder

of each derivative depends on the value of K, and the rudder control derivatives n,
and I, respectively.

(viii) Yaw rate feedback to rudder
The open loop transfer function is

r(s) == N,(s) = -I1.01(s +0.302)(s+0.366)(s+4.11) rad/s/rad
(s) A(s) (s - 0.0014)(s +4.l45)(s2+ 1.649s+ 38.44) (11.48)

and the corresponding root locus plot is shown in Fig. 11.25. Note that the roll mode
pole is almost exactly cancelled by a numerator zero. It is therefore expected that the
roll mode will be insensitive to this feedback option.

The spiral mode stability increases rapidly as the gain K, is increased since its pole
moves to the left on the s-plane. The spiral mode is very sensitive to this feedback
option and becomes stable at a gain of K, = -0.4 rad/rad/s, As expected, the effect of
this feedback option on the roll mode is insignificant. The branching of the loci around
the roll mode simply indicates that the pole-zero cancellation is not exact. The dutch
roll mode is also very sensitive to this feedback option. As K, is increased the dutch roll
damping increases rapidly whilst the frequency remains almost constant. For values of
the feedback gain K, ~ -1.2 rad/rad/s the dutch roll mode becomes critically
damped. Practical values of feedback gain would, typically, be in the range
o ~ K, ~ -0.7 rad/rad/s, The dutch roll mode damping is most sensitive to this
feedback option, and yaw rate feedback to rudder describes the classical yaw damper,
which is probably the most common augmentation system. However, its use brings a
bonus since it also improves the spiral mode stability significantly. Negative yaw rate
feedback to rudder is equivalent to an increase in the yaw damping properties of the
aeroplane, or to an increase in the effectiveness of the fin as a damper. In particular, it
augments the magnitude of the stability derivative n; and, to a lesserextent, l..
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(11.49)

(ix) Roll attitude feedback to rudder
The open loop transfer function is

4>(s) == Nt(s) = . 16.5(s - 0.825)(s + 1.08) rad rad
(s) ;:\(s) (s - 0.0014)(s +4.145)(,s2 + 1.649s +38.44) /

and the corresponding root locus plot is shown in Fig. 11.26.
As Kt/J is increased the spiral mode pole moves to the right on the s-plane and its

stability decreases slowly. The roll mode stability also decreases slowly as the gain Kt/J
is increased, a gain of K4> ~ 4.0 rad/rad being required 'to double the time constant,
for example. As Kt/J is increased the dutch roll mode frequency increases relatively
quickly. The damping ratio also increases a little initially but, as the gain is increased
further, the damping decreases steadily to zero at infinite feedback gain. Negative roll
attitude feedback to rudder is, very approximately, equivalent to an increase in
directional stiffness and is not commonly used in autostabilization systems since it
introduces cross-coupling between the roll and yaw control axes.

(11.50)

(x) Yaw attitude feedback to rudder
The open loop transfer function is

I/I(s) == Nt(s) = -11.01(s+0.0302)(s+0.367)(s+4.11) rad/rad
((s) ~(s) s(s - 0.0014)(s + 4. 145)(i + 1.649s+ 38.44)

and the corresponding root locus plot is shown in Fig. 11.27. Note that the roll mode
pole is almost exactly cancelled by a numerator zero indicating that the mode is not
sensitive to this feedback option.

As K", is increased, the spiral mode pole moves to the left on the s-plane, towards
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Fig. 11.27 Root locus plot-yaw attitude feedback to rudder

the pole at the origin, to which it couples at a very small value of gain to form a stable
low frequency oscillatory characteristic at all practical small values of gain. At a gain
of approximately K", = -1.5 rad/rad the low frequency oscillatory characteristic
becomes critically damped. Since the frequency of this mode is so low, and when
stable it is reasonably well damped, it is unlikely to give rise to handling problems. As
expected, the roll mode stability remains effectively unchanged by this feedback
option. As K", is increased, the dutch roll mode frequency increases whilst the damping
decreases, both characteristics changing, relatively slowly. The dutch roll mode
eventually becomes neutrally stable at infinite feedback gain. At practical levels of
feedback gain the effect on the dutch roll mode is to increase the frequency with only
a very small reduction in damping. Negative yaw attitude feedback to rudder is
equivalent to an increase in directional stiffness and is not commonly used in
autostabilization systems.

11.7 The pole placement method

An alternative and very powerful method for designing feedback gains for autostabiliza­
tion systems is the pole placement method. The method is based on the manipulation of
the equations of motion in state space form and makes full use of the appropriate
computational tools in the analytical process. Practical application of the method to
aeroplanes is limited since it assumes that all state, or motion, variables are available for
use in an augmentation system, which is not usually the case. However, regardless of
the limitations of the method, it can be very useful to the FCS designer in the initial
stages of assessment ofaugmentation system structure.
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The state and output matrix equations describing the unaugmented, or open loop,
aircraft, equations (5.48), are written

x(t) = Ax(t) + Bu(t) I
yet) =Cx(t) + Du(t)

Assuming that augmentation is achieved by negative feedback of the state vector x(t)
to the input vector u(t) then the control law may be written

u(t) = vet) - Kx(t) (11.52)

where vet) is a vector of input demand variables and K is a matrix of feedback gains.
Note that equation (11.52) is the general multi-variable equivalent of equation (11.14).
The closed loop state and output equations describing the augmented aircraft are
obtained by substituting equation (11.52) into equations (11.51)

i(t) = [A - BK]x(t) +Bv(t) I
y(t) = [C - DK]x(t) +Dv(t) (11.53)

or, more simply,

x(t) = Aaugx(t) + Bv(t)I
yet) = Caugx(t) + Dv(t)

(11.54)

Equations (11.54) are solved in exactly the same way as those of the open loop aircraft,
equations (11.51), to obtain the response transfer functions for the augmented aircraft.
Note that, as discussed in Section 5.6, for typical aircraft applications the direct matrix
D=O, the output matrix C=I, the identity matrix, and equations (11.51) to (11.54)
simplify accordingly.

Now the characteristic equation of the augmented aircraft is given by

Llaug(s) = lsI - Aaugl == lsI - A +BKI = 0 (11.55)

and the roots of equation (11.55), or equivalently the eigenvalues of Aaug, describe the
stability characteristics of the augmented aircraft.

Subject to the constraint that the open loop state equation (11.51) describes a
controllable system, which an aircraft is, then a feedback matrix K exists such that the
eigenvalues of the closed loop system may be completely specified. Thus, if the required
stability and control characteristics of the augmented aircraft are specified, the roots of
equation (11.55) may be calculated and, knowing the open loop state and input matrices,
A and B respectively, then equation (11.55) may be solved to find K. Thus, this method
enables the stability characteristics of the augmented aircraft to be designed completely
and exactly as required. Equivalently, this therefore means that the poles of the closed
loop aircraft may be placed on the s-plane exactly as required. However, full state
feedback is essential if all of the closed loop poles are to be placed on the s-plane as
required.

When the controlled system is single input then the feedback matrix K is unique and
only one set of feedback gains will provide the required stability characteristics. When
the controlled system is multi-input then an infinite number of gain matrices K may be
found which will provide the required stability characteristics. Consequently, most
control system design problems involving the use of the pole placement method are
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solved by arranging the open loop system as a single input system. This is most easily
done when dealing with aircraft stability augmentation since the inputs naturally
separate into elevator, ailerons, rudder and thrust at the most basic level. It is a
simple matter to arrange the state equation to include only one input variable and
then to apply the pole placement method to design an augmentation system feedback
structure.

EXAMPLE 11.6 _

The longitudinal equations of motion for the McDonnell Douglas F-4C Phantom
aircraft were obtained from Heffley and Jewell (1972). At the chosen flight condition
the weight is 38 9251b and the aircraft is flying at Mach 1.1 at sea level. The state
equations (11.51) were derived for the unaugmented aircraft from the data provided,
to give

[

- 0.068 -0.011 0 -9~0.81 ]
0.023 -2.10 375

A = 0.011 -0.160 -2.20
o 0 1

[

- 0.41 1.00]
B = -77.0 -0.09

-61.0 -0.11
o 0

with state vector xT = [u W q 0] and input vector uT = [" tl. Note that two input
variables are given in the model: elevator angle" and thrust r, Using Program CC the
equations of motion were solved and the open loop characteristic polynomial was
found

A(s) = (S2 + 4.3s + 64.6)(~ + 0.07s+ 0.003)

and the corresponding longitudinal stability mode characteristics are

phugoid damping ratio (p = 0.646

phugoid undamped natural frequency (Op = 0.054 rad/s

short period damping ratio's = 0.267

short period undamped natural frequency to, = 8.038 rad/s

(11.56)

Referring to the flying qualities requirements in MIL-F-8785C (1980) it was found that
for a class IV aeroplane in the most demanding category A flight phase, the Phantom
comfortably meets level 1 requirements with the exception of short period mode
damping, which is too low. Clearly, some augmentation is required to improve the
pitch damping in particular.

The design decision was made to increase the short period mode damping ratio to
0.7 whilst retaining the remaining stability characteristics at the nominal values of the
basic unaugmented airframe. A short period mode damping ratio of 0.7 was chosen
since this gives a good margin of stability and results in the shortest mode settling time
after a disturbance. However, the exact value chosen is not important provided that
the margin of stability is adequate to allow for uncertainty in the modelling. Therefore,
the pole placement method is to be used to give the augmented aircraft the following
longitudinal stability characteristics
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phugoid damping ratio 'p = 0.065

phugoid undamped natural frequency cop =0.054 rad/s

short period damping ratio '5 =0.7

short period undamped natural frequency COs =8.0 rad/s

Thus, the required closed loop characteristic polynomial is

~aug(s) = (S2 + 11.2s + 64.0)(S2 + 0.07s+ 0.003) (11.57)

Since a single input control system is required, the input being elevator angle, the open
loop state equation is modified accordingly, simply by removing the thrust terms. The
open loop state equation may then be written

U -0.068 -0.011 0 -9.81 u -0.41
W 0.023 -2.10 375 0 w -77.0

(11.58)= + YJq 0.011 -0.160 -2.20 0 q -61.0
iJ 0 0 1 0 (J 0

With the aid of the pole placement tool in Program CC the feedback gain matrix
required to give the augmented aircraft the characteristic polynomial, equation (11.57),
was determined

K=[Ku s; tc, Ko]=[-7.7xl0-
6 5.99xl0-4 -0.114 -1.96xl0-4

] (11.59)

Care is required in order to maintain the correct units of the elements in the feedback
matrix. The stability augmentation system control law is obtained by substituting for K
in equation (11.52) whence

YJ = btl - Kuu - Kww - Kqq - Kof) (11.60)

response
variables

u
w
q
()

T
longitudinal

mand -
+ 1] aircraft

L -
dynamics

81] .
IK -61-I u=-7.656 xl 0

~~+
I -4
I Kw=5.99xl0 I

I K q = -0.114 I
I I
I -4 1I K(J = -1.96x10 I

feedback matrix

de

Fig. 11.28 Stability augmentation system with full state feedback
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The corresponding closed loop control system structure follows and is shown in Fig.
11.28.

Now, clearly, the choice of closed loop stability characteristics has resulted in a gain
matrix in which the gains KU 1 K; and Ko are impractically and insignificantly small. This
is simply due to the fact that the only significant change between the open and closed
loop stability characteristics is the increase in short period mode damping and, as has
already been established in Examples 11.3 and 11.4, the pole placement method
confirms that this can be achieved with pitch rate feedback to elevator alone. If
additional changes in the stability characteristics were required then the gains K u , K;
and K, would, of course, not necessarily be insignificant. Let the feedback gain matrix
be simplified to include only practical gain values, and equation (11.59) may be
written

K =[0 0 -0.12 0] (11.61)

(11.64)

The closed loop state equation (equation 11.53) may then be calculated by writing

K - [0 0 -0.12 0] (11.62)
- 0 0 0 0

where the second row describes the feedback to the second, thrust, input, which is
not used in this example for the reason given above. [A - BK] is easily calculated with
the aid of Program CC for example and the closed loop state equation, written to
include both input variables, is

U -0.068 -0.011 -0.049 -9.81 u -0.41 1.00
W 0.023 -2.10 366 0 w -77.0 -0.09 [:]= +q 0.011 -0.160 -9.52 0 q -61.0 -0.11
iJ 0 0 1 0 () 0 0

(11.63)

Comparison of the open loop equation (11.58) and the closed loop equation (11.63)
indicates, as expected, that the only changes occur in the third column of the state
matrix, the column associated with the variable q. The augmented state equation
(11.63) is readily solved to obtain the closed loop transfer function matrix

u(s)
w(s) = G(S)[l1(S)] = N(s) [f/(S)]
q(s) 1'(s) ~aug(s) t(s)
O(s)

where the numerator matrix is given by

[

-0.41(s + 1.36)(s - 44.45)(s +45.31) 1.0(s+. 0.027)(S2 + 11.60s+ 79.75) ]
N(s) = -77.0(s - 0.003)(s+ 0.071)(s+ 299.3) -0.09(s + 0.008)(s - O.044)(s + 456.4)

-61.0s(s +0.068)(s+ 1.90) -0.11s(s - 0.022)(s+ 1.96)
-61.0(s +0.068)(s+ 1.90) -0.11(s - 0.022)(s+ 1.96)

(11.65)

and the closed loop characteristic polynomial is

Aaug(s) = (S2 + 11.62s+ 78.49)(S2 + 0.07s+ 0.002) (11.66)
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The corresponding longitudinal stability mode characteristics are

phugoid damping ratio 'p = 0.71

phugoid undamped natural frequency cop =0.049 rad/s

short period damping ratio (5 = 0.656

short period undamped natural frequency COs = 8.86 rad/s

Thus, by simplifying the feedback gain matrix to an approximate equivalent it is not
surprising that the specified stability characteristics, defined by equation (11.57), have
also only been achieved approximately. However, the differences are small and are
quite acceptable. The main objective, to increase the short period mode damping to a
reasonable level, has been achieved comfortably. The changes in the stability
characteristics caused by the feedback are in complete agreement with the
observations made in Examples11.3 and 11.4.

Note that the numerators of the closed loop transfer functions describing response
to elevator, given in the first column of the numerator matrix in equation (11.65), are
unchanged by the feedback, which is also in accordance with earlier findings
concerning the effect of feedback. However, the numerators of the closed loop transfer
functions describing response to thrust, given in the second column of the numerator
matrix in equation (11.65), include some changes. The numerators N~(s) and N~(s) are
both changed a little by the effect of feedback, whereas the numerators N~(s) and
N~(s) remain unchanged.

It will be noted that the longitudinal stability augmentation for the F-4A could just
as easily have been 'designed' with the aid of a single-input single-output root locus
plot as described in Example 11.3. However, the subsequent calculation of the closed
loop response transfer functions would have been rather more laborious. The pole
placement method is undoubtedly a very powerful design tool, especially for the
preliminary assessment of the feedback gains needed to achieve a specified level of
closed loop stability. Once the gains required to achieve a given set of augmented
stability characteristics have been determined their values will not be significantly
changed by subsequent increases in flight control system complexity. The main
disadvantage of the method, especially in aircraft applications, is that it assumes all
motion variables are sensed and are available for use in a control system. This is not
often the case. Then it is necessary to simplify the feedback structure, making use of
the understanding provided by Examples 11.4 and 11.5, to achieve a reasonable
performance compromise-much as illustrated by this example.

It is also good practice to minimize the demands on the augmentation system by
limiting the required changes to the stability characteristics. Remember that small
changes result in small feedback gains, again, much as illustrated by this example.
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12
Aerodynamic Modelling

12.1 Introduction

Probably the most difficult task confronting the flight dynamicist is the identification
and quantification of the aerodynamic description of the aeroplane for use in the
equations of motion. Aerodynamic modelling is concerned with the development of
mathematical models to describe the aerodynamic forces and moments acting on the
airframe. As the flow conditions around the airframe are generally complex any attempt
to describe the aerodynamic phenomena mathematically must result in compromise.
Obviously, the most desirable objective is to devise the most accurate mathematical
description of the airframe aerodynamics as can possibly be achieved. Unfortunately,
even if accurate mathematical models can be devised they are often difficult to handle in
an analytical context and do not, in general, lend themselves to application to the
linearized equations of motion. Therefore, the solution to the problem is to seek simpler
approximate aerodynamic models which can be used in the equations of motion and
which represent the aerodynamic properties of the airframe with an acceptable degree of
accuracy. A consequence of this is that the aerodynamic models are only valid for a
small range of operating conditions and, therefore, the solution of the equations of
motion is also only valid for the same limited range of conditions. By repeating this
procedure at many points within the flight envelope of the aeroplane an acceptable
'picture' of its dynamic properties can be built up, subject of course to the limitations of
the modelling techniques used. "

In the present context aerodynamic stability and control derivatives are used to model
the aerodynamic properties of the aeroplane. The concept of the aerodynamic derivative
as a means for describing aerodynamic force and moment characteristics is introduced
and described in Chapter 4, Section 4.2. The use of the aerodynamic derivative as a
means for explaining the dependence of the more important dynamic characteristics of
the aeroplane on its dominant aerodynamic properties follows in subsequent chapters, in
particular Chapters 6 and 7.

In the illustrations, only those derivatives associated with the dominant aerodynamic
effects have been discussed. Clearly, if the most important aerodynamic properties
ascribed to every derivative are known then a more subtle and expansive interpretation
of aircraft "dynamics may be made in the analysis of the response transfer functions.
Thus, a good understanding of the origin, meaning and limitation of the aerodynamic
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derivatives provides the means by which the flight dynamicist may achieve very
considerable insight into the subtleties of aircraft dynamics and into the aircraft's flying
and handling qualities. In the author's opinion, this knowledge is also essential for the
designer of stability augmentation systems for the reasons illustrated in Chapter 11.

Thus, this chapter is concerned with a preliminary review of, and introduction to,
aerodynamic stability and control derivatives at the simplest level consistent with the
foregoing material. However, it must be remembered that alternative methods for
aerodynamic modelling are commonly in use when rather greater detail is required in
the equations of motion. For example, in continuous simulation models, the equations
of motion may well be non-linear and the aerodynamic models are correspondingly
rather more complex. Or, today, it is common practice to investigate analytically the
dynamic behaviour of combat aircraft at very high angles of incidence, conditions which
may be grossly non-linear and for which the aerodynamic derivative would be incapable
of providing an adequate description of the aerodynamics. For such applications,
experimental or semi-empirical sources of aerodynamic information would be more
appropriate. Whatever the source of the aerodynamic models, simple or complex, the
best that can be achieved is an estimate of the aerodynamic properties. This immediately
prompts the question, how good is the estimate? This question is not easy to answer
and depends ultimately on the confidence in the aerodynamic modelling process and the
fidelity of the aircraft dynamics derived from the aerodynamic model..

12.2 Quasi-static derivatives

In order to appreciate the 'meaning' of the aerodynamic derivative consider, for
example, the derivative which quantifies norma/force due to rate ofpitch, denoted

Z =az (12.1)
q 8q

The component of normal force experienced by the aircraft resulting from a pitch
velocity perturbation is therefore given by

Z = Zqq (12.2)

Now, in general, the disturbance giving rise to the pitch rate perturbation will also
include perturbations in the other motion variables which will give rise to additional
components of normal force, as indicated by the appropriate terms in the aerodynamic
normal force model included in equations (4.37). However, when considering the
derivative Zq it is usual to consider its effect in isolation, as if the perturbation comprised
only pitch rate. Similarly, the effects of all the other derivatives are also considered in
isolation by assuming the perturbation to comprise only the motion appropriate to the
derivative in question.

By definition, the equations of motion, equations (4.37), in which the derivatives
appear, describe small perturbation motion about a steady trimmed equilibrium flight
condition. Thus, for example, in the undisturbed state the component of normal force Z
given by equation (12.2) will be zero since the perturbation variable q is zero. Similarly,
all the aerodynamic force and moment components in all of the small perturbation
equations of motion will be zero at the trim condition. The point of this perhaps obvious
statement is to emphasize that, in the present context, the aerodynamic derivatives only
playa part in determining the motion of the aeroplane when it is in a state of 'dynamic
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upset' with respect to its initial trim condition. As described in earlier chapters, the state
of dynamic upset is referred to equivalently as a perturbation about the equilibrium
condition and is usually transient in nature. Thus, to be strictly applicable to the
dynamic conditions they describe, the derivatives should be expressed in terms of the
non-steady aerodynamic conditions they attempt to quantify-clearly a difficult
demand!

Since the motion of interest is limited, by definition, to small perturbations about
equilibrium, then in the limit the perturbations tend to zero and the dynamic condition
becomes coincident with the equilibrium flight condition. It is therefore common
practice to evaluate the aerodynamic derivatives at the steady equilibrium condition and
to assume that they are applicable to the small perturbation motion about that
equilibrium. This procedure gives rise to the so-called quasi-static aerodynamic
derivatives: quantities based on, and derived from, static aerodynamic conditions but
which are used in the description of dynamically varying aerodynamic conditions.

Aerodynamic derivatives obtained by this means seem to be quite adequate for studies
of small perturbation dynamics but, not surprisingly, become increasingly inappropriate
as the magnitude of the perturbation is increased. As suggested above, studies of large
amplitude dynamics require rather more sophisticated methods of aerodynamic
modelling.

To illustrate the concept of the quasi-static derivative, consider the contribution of
aerodynamic drag D to the axial force X acting on the aircraft in a disturbance.
Assuming that the aircraft axes are wind axes then

X=-D (12.3)

A typical aerodynamic drag-velocity plot is shown in Fig. 12.1. Let the steady
equilibrium velocity be ~ at the flight condition of interest, which defines the operating

Vstall Vmin drag Velocity V

Fig. 12.1 A typical aerodynamic drag-velocity characteristic



(12.5)
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point p on the plot. Now let the aeroplane be subjected to a disturbance giving rise to
a small velocity perturbation ±u about the operating point as indicated. The derivative
axialforce due to velocity is defined

o ax ax
Xu = au == av (12.4)

where the total perturbation velocity component along the x axis is given by

U=Ue+u==VO+u==V

whence

o aD
Xu = - av (12.6)

and the slope of the drag-velocity plot at p gives the quasi-static value of the derivative
Xu at the flight condition corresponding to the trimmed velocity VO. Some further simple
analysis is possible since the drag is given by

1
D="2PV2SCD (12.7)

and assuming the air density P remains constant, since the perturbation is small, tnen

aD 1 ( acD)aV=2 PVS 2CD+V av

To define the derivative Xu at the flight condition of interest, let the perturbation become
vanishingly small such that u ~ 0 and hence V --+ VO. Then, from equations (12.6) and
(12.8)

Xu = -!PYoS(2CD + Yoaac;) (12.9)

where CD and aCD/ 8V are evaluated at velocity VO. Thus, in order to evaluate the
derivative, the governing aerodynamic properties are linearized about the operating point
of interest, which is a direct consequence of the assumption that the perturbation is
small. A similar procedure enables all of the aerodynamic stability and control
derivatives to be evaluated, although the governing aerodynamic properties may not
always lend themselves to such simple interpretation.

It is important to note that in the above illustration the derivative Xu varies with
velocity. In general, most derivatives vary with velocity, or Mach number, altitude and
incidence. In fact many derivatives demonstrate significant and sometimes abrupt
changes over the flight envelope, especially in the transonic region.

12.3 Derivative estimation

A number of methods are used to evaluate the aerodynamic derivatives. However,
whichever method is used the resulting evaluations can, at best, only be regarded as
estimates of the exact values. The degree of confidence associated with the derivative
estimates is dependent on the quality of the aerodynamic source material and the
method of evaluation used. It is generally possible to obtain estimates of the longitudinal
aerodynamic derivatives with a greater degree of confidence than can usually be ascribed
to estimates of the lateral-directional aerodynamic derivatives.
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12.3.1 CALCULATION

The calculation of derivatives from first principles using approximate mathematical
models of the aerodynamic properties of the airframe is probably the simplest and least
accurate method of estimation. In particular, it can provide estimates of questionable
validity, especially for the lateral-directional derivatives. However, since the
approximate aerodynamic models used are based on an understanding of the physical
phenomena involved, simple calculation confers significant advantage as a means for
gaining insight into the dominant aerodynamic properties driving the airframe
dynamics. Hence, an appreciation of the theoretical methods of estimating aerodynamic
derivatives provides a sound foundation on which, to build most analytical flight
dynamics studies.

In order to improve on the often poor derivative estimates obtained by calculation,
semi-empirical methods of estimation have evolved in the light of experience gained from
the earliest days of aviation to the present. Semi-empirical methods are based on simple
theoretical calculation, modified with the addition of generalized aerodynamic data
obtained from experimental sources and accumulated over many years. Semi-empirical
methods are generally made available in various series of reference documents and,
today, many are also available as interactive computer programs. In the UK the
Engineering Sciences Data Unit (ESDU) publishes a number of volumes on
aerodynamics of which some are specifically concerned with aerodynamic derivative
estimation. Similar source material is also published in the USA (DATCOM) and
elsewhere.

Use of the semi-empirical data items requires some limited information about the
geometry and aerodynamics of the subject aeroplane at the outset. The investigator then
works through the estimation process, which involves calculation and frequent reference
to graphical data and nomograms, to arrive at an estimate of the value of the derivative
at the flight condition of interest. Such is the state of development of these methods that
it is now possible to obtain derivative estimates of good accuracy, at least for aeroplanes
having conventional configurations.

Because of the recurring need to estimate aircraft stability and control derivatives a
number of authors have written computer programs to calculate derivatives with varying
degrees of success. Indeed, a number of the' ESDU data items are now 'available as
computer software. The program by Mitchell (1973) and its subsequent modification by
Ross and Benger (1975) has enjoyed some popularity, especially for preliminary
estimates of the stability and control characteristics of new aircraft configurations. The
text by Smetana (1984) also includes listings for a number of useful computer programs
concerned with aircraft performance and stability.

12.3.2 WIND TUNNEL MEASUREMENT

The classical wind tunnel test is one in which a reduced scale model of the aircraft is
attached to a balance and the six components of force and moment are measured for
various combinations of wind velocity, incidence angle, sideslip angle and control
surface angle. The essential feature of such tests is that the conditions are static when
the measurements are made. Provided the experiments are carefully designed and
executed wind tunnel tests can give good estimates of the force-velocity and moment­
velocity derivatives in particular. Scale effects can give rise to accuracy problems,
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especially when difficult full scale flight conditions are simulated, and although some
derivatives can be estimated with good accuracy it may be very difficult to devise
experiments to measure other derivatives adequately. However, despite the limitations
of the experimental methods, "measurements are made for real aerodynamic flow
conditions and, in principle, it is possible to obtain derivative estimates of greater fidelity
than is likely by calculation.

Dynamic, or non-stationary, experiments can be conducted from which estimates for
the force-rotary and moment-rotary derivatives can be made. The simplest of these
requires a special rig in which to mount the model and which enables the model to
undergo a single degree of freedom free or forced oscillation in either roll, pitch or yaw.
Analysis of the oscillatory time response obtained in such an experiment enables
estimates to be made of the relevant damping and stiffness derivatives. For example, an
oscillatory pitch experiment enables estimates to be made of Mq and Mw• More complex
multi-degree of freedom test rigs become necessary when it is intended to measure the
motion coupling derivatives, for example derivatives like yawing moment due to roll rate
Np • As the experimental complexity is increased so the complexity of the analysis
required to calculate the derivative estimates from the measurements is also increased
and, consequently, it becomes more difficult to guarantee the accuracy of the derivatives
thus obtained.

12.3.3 FLIGHT TEST MEASUREMENT

The estimation of aerodynamic derivatives from flight test measurements is an
established and well-developed experimental process. However, derivative estimates are
usually obtained indirectly since it is not possible to measure the aerodynamic
components of force and moment acting on the airframe directly. Also, since the aircraft
has six degrees of freedom it is not always possible to perturb the single motion variable
of interest without perturbing some, or all, of the others as well. However, as in wind
tunnel testing, some derivatives are easily estimated from the flight test experiment with
a good degree of confidence, whereas others can be notoriously difficult to estimate.

Although it is relatively easy to set up approximately steady conditions in flight from
which direct estimates of some derivatives can be made, for example a steady sideslip
for the estimation of t, i; and Nv, the technique often produces results of indifferent
accuracy and has limited usefulness. Today parameter identification techniques are
commonly used in which measurements are made following the deliberate excitation of
multi-variable dynamic conditions. Complex multi-variable response analysis then
follows from which it is possible to derive a complete estimate of the mathematical
model of the aircraft corresponding to the flight condition at which the measurements
were made.

Parameter identification is an analytical process in which full use is made of state
space computational tools in order to estimate the aircraft state description that best
matches the input-output response measured in flight. It is essentially a multi-variable
curve fitting procedure and the computational output is the coefficients in the aircraft
state equation from which estimates of the aerodynamic stability and control derivatives
may be obtained. The method is complex and success depends, to a considerable extent,
on the correct choice of computational algorithm appropriate to the experiment.

A simple diagram containing the essential functions of the parameter identification
procedure is shown in Fig. 12.2. A flight test exercise is flown in the fully instrumented
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Fig. 12.2 The parameter identification process

subject aircraft and the pilot applies control inputs designed to excite the dynamic
response of interest. The control inputs and the full complement of dynamic response
variables are recorded in situ or may be telemetered directly to a ground station for on­
line analysis.

The parameter identification process is entirely computational and is based on a
mathematical model of the aeroplane that is deliberately structured to include the terms
appropriate to the flight experiment. The object then is to identify the coefficients in
the aircraft model that give the best match with the dynamics -of the experimental
response.

The recorded control inputs are applied to the model of the aircraft and its multi­
variable response is compared with the recorded response made in the flight experiment.
Response matching errors are then used to adjust the coefficients in the aircraft model
according to the parameter identification algorithm and the process is repeated
iteratively until the response matching errors are minimized.

All of the recorded signals contain noise, measurement errors and uncertainties of
various kinds to a greater or lesser extent. The complexity of the identification process is
therefore magnified considerably since statistical analysis methods play an essential part
in all modern algorithms. For example, Kalman filtering techniques are frequently used
to obtain consistent, and essentially error free, estimates of the state variables for
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subsequent use in the identification process. Typical commonly encountered parameter
identification algorithms include the Equation Error method, the Maximum Likelihood
method and various methods based on Statistical Regression techniques. The
development of parameter identification methods for application to aeronautical
problems has been the subject of considerable research over the last 25 years or so and a
vast wealth of published material is available. A more detailed discussion of the subject
is well beyond the scope of this book.

Few, if any, books have been published which are entirely concerned with aircraft
parameter identification. Most of the available material appears to be contained in
research papers. However, the interested reader will find a useful collection of aircraft
related papers in AGARD (1979). It is rare to find published listings of parameter
identification computer programs, which makes the work by Ross and Foster (1976)
especially. useful, if somewhat dated. Probably two of the more useful sources of
information on current developments in aircraft parameter identification are the
proceedings of the AIAA annual Flight Mechanics and bi-annual Flight Test
conferences.

The main disadvantages of parameter identification methods include the requirement
for substantial computational 'power' and the essential need for recorded flight data of
the very highest quality. Despite these constraints, the process is now used routinely by
many of the leading flight test organizations. Given adequate resources the advantages
of parameter identification methods are significant. All of the aerodynamic stability and
control derivatives can be estimated in one pass and the dynamic conditions to which
they relate do not necessarily have to be linear. For example, it is now routinely possible
to identify aircraft models in extreme manoeuvring conditions such as the stall, the spin
and at very high angles of attack when the aerodynamics are substantially non-linear.
It is interesting to note that the method can also be used for estimating aerodynamic
derivatives from 'dynamic' wind tunnel experiments.

12.4 The effects of compressibility

The onset of compressible flow conditions gives rise to changes in the aerodynamic
properties of the aeroplane which, in general, leads to corresponding changes in the
stability and control characteristics. Clearly this means a change in the flying and
handling qualities of the aeroplane as the Mach number envelope is traversed. Typically,
compressibility effects begin to become apparent at a Mach number of approximately
0.3, although changes in the stability and control characteristics may not become
significant until the Mach number reaches 0.6 or more. As Mach number is increased
the changes due to compressibility are continuous and gradual. However, in the
transonic flow regime changes can be dramatic and abrupt. When appropriate, it is
therefore important that the aerodynamic changes arising from the effects of
compressibility are allowed for in even the simplest and most approximate aerodynamic
derivative estimation procedure.

An interesting chapter on the effects of compressibility on aircraft stability, control
and handling may be found in Hilton (1952). However, it must be remembered that at
the time the book was written the problems were very clearly recognized but the
mathematical models used to describe the phenomena were, in most cases, at an early
stage of development. Today, sophisticated computational tools are commonly used to
deal with the problems of modelling compressible aerodynamics. However, the simpler
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models described by Hilton (1952) are still applicable, as will be shown in the following
pages, provided their limitations are appreciated.

12.4.1 SOME USEFUL DEFINITIONS

Mach number M is defined as the ratio of the local flow velocity V to the local speed of
sound a, whence

V
M=­

a
(12.10)

Subsonic flight commonly refers to local aerodynamic flow conditions where M < 1.0.
Practically, this means that the free stream Mach number is less than approximately
0.8.

Transonic flight usually refers to generally subsonic flight but where the local flow
Mach number M ~ 1.0. Practically, transonic flight conditions are assumed when the
free stream Mach number lies in the range 0.8 < M, < 1.2. The greatest degree of
aerodynamic unpredictability is associated with this Mach number range.

Supersonic flight commonly refers to aerodynamic flow conditions when M > 1.0
everywhere in the local flow field. Practically, supersonic flow conditions are assumed
when the free stream Mach number is greater than approximately 1.2.

The critical Mach number Merit is the free stream Mach number at which the local flow
Mach number just reaches unity at some point on the airframe. In general, Merit < 1.0
and is typically of the order of 0.9.

A shock wave is a compression wavefront which occurs in the supersonic flow field
around an airframe. A shock wave originating at a point on the airframe, such as the
nose of the aeroplane, is initially a plane wavefront normal to the direction of the flow.
As the flow Mach number is increased, so the shock wave becomes a conical wavefront,
or Mach cone, the apex angle of which decreases with increasing Mach number. As the
air flow traverses the shock wave it experiences an abrupt increase in pressure, density
and temperature and the energy associated with these changes is extracted from the total
flow energy to result in reduced velocity behind the wavefront. Collectively, these
changes are seen as an abrupt increase in drag in particular and may be accompanied by
significant changes in trim and in the stability and control characteristics of the
aeroplane.

The shock stall is sometimes used to describe the abrupt aerodynamic changes
experienced when an aeroplane accelerating through the transonic flight regime first
reaches the critical Mach number. At the critical Mach number, shock waves begin to
form at various places on the airframe and are accompanied by abrupt reduction in local
lift, abrupt increase in local drag and some associated change, in pitching moment. Since
the effect of these aerodynamic changes is not unlike that of the classical low speed stall
it is referred to as the shock stall. However, unlike the classical low speed stall, the
aeroplane continues to fly through the condition.

12.4.2 AERODYNAMIC MODELS

Because of the aerodynamic complexity of the conditions applying to an aeroplane in a
compressible flow field it is difficult to derive other than the very simplest mathematical
models to describe those conditions. Thus, for analytical application, as required in
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aerodynamic derivative estimation, mathematical modelling is usually limited to an
approximate description of the effects of compressibility on the lifting surfaces of the
aeroplane only. In particular, the ease with which the aerodynamic properties of a wing
in compressible flow can be estimated is dependent, to a large extent, on the leading edge
flow conditions.

As flow Mach number is increased to unity a shock wave forms a small distance ahead
of the leading edge of a typical wing and the shock wave is said to be detached. As the
Mach number is increased further so the shock wave moves nearer to the leading edge of
the wing and eventually moves on to the wing, when it is said to be attached. Since the
flow velocity behind the shock wave is lower than the free stream value, when the shock
wave is detached the leading edge of the wing would typically be in subsonic flow. In this
condition the pressure distribution on the wing, in particular the leading edge suction
peak, would be subsonic in nature and the aerodynamic characteristics of the wing
would be quite straightforward to estimate. However, when the shock wave is attached,
the leading edge of the wing would typically be in supersonic flow conditions and the
aerodynamic properties, in particular the drag rise, would be much less straightforward
to estimate.

Since the incident flow velocity direction is always considered perpendicular to the
leading edge of the wing, it will always be lower on a swept wing as it is equivalent to
the free stream velocity resolved through the leading edge sweep angle. Further, since
wing sweep will bring more, or more likely all, of the wing within the Mach cone the
high drag associated with a supersonic leading edge will be reduced or avoided
altogether for a larger range of supersonic Mach number.

12.4.3 SUBSONIC LIFT, DRAG AND PITCHING MOMENT

The theoretical maximum value of lift curve slope for a rectangular flat plate wing of
infinite span in incompressible flow is given by

(12.11)

(12.12)

(12.13)

where Ale is the leading edge sweep angle. For a wing of finite thickness this value of lift
curve slope is reduced and Houghton and Carpenter (1993) give an approximate
empirical expression which is a function of geometric thickness to chord ratio tfc such
that equation (12.11) becomes

«: = 1.8n(1 + 0.8~) cos Ale rad- I

For a wing of finite span the lift curve slope is reduced further as a function of aspect
ratio A and is given by the expression

a=(l+:~)

For Mach numbers below Merit' but when the effects of compressibility are evident, the
Prandtl-Glauert rule provides a means for estimating the lifting properties of a wing.
For an infinite span wing with leading edge sweep angle Ale the lift curve slope aooc in the
presence of compressibility effects is given by
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_ aOOiaOO - --;::==:;::::::=:;:=
c -11 - M2 cos2A1e

where aoo. is the corresponding incompressible lift curve slope given, for example, by
equation (12.12). An equivalent expression for a wing of finite span and having an aspect
ratio A is quoted in Babister (1961) and is given by .

(A + 2 cos A1e)aoo.
a = I (12.15)

c I 2 22 cos Ale +Av 1 - M cos Ale

For Mach numbers below Merit the zero lift drag coefficient CDo remains at its nominal
incompressible value and the changes in drag due to the effects of compressibility are
due mainly to the induced drag contribution. Thus, the classical expression for the drag
coefficient applies

CDc = CDo + kcic = CDo + ka~rx2 (12.16)

In general, the effect of compressibility on pitching moment coefficient in subsonic flight
is small and is often disregarded. However, in common with lift and drag coefficients,
such changes in pitching moment coefficient as may be evident increase as the Mach
number approaches unity. Further, the changes in pitching moment coefficient are more
pronounced in aircraft with a large wing sweep angle and result from a progressive aft
shift in aerodynamic centre. Since the effect is dependent on the inverse of
-11 - M 2 cos2A1e, or its equivalent for a wing of finite span, it does not become significant
until, approximately, M ~ 0.6.

It is important to appreciate that the Prandtl-Glauert rule only applies to subsonic
flight in the presence of the effects of compressibility. The m.odels given above become
increasingly inaccurate at Mach numbers approaching and exceeding unity. In other
words, the Prandtl-Glauert rule is not applicable to transonic flight conditions.

12.4.4 SUPERSONIC LIFT, DRAG AND PITCHING MOMENT

The derivation of simple approximate aerodynamic models to describe lift, drag and
pitching moment characteristics in supersonic flow conditions is very much more
difficult. Such models as are available are dependent on the location of the shocks on the
principal lifting surfaces and, in particular, on whether the leading edge of. the wing is
subsonic or supersonic. In every case, the aerodynamic models require a reasonable
knowledge of the geometry of the wing including the aerofoil section.

The three commonly used theoretical tools are, in order of increasing complexity,
the linearized Ackeret theory, the second order Busemann theory and the shock expansion
method. A full discussion of the theories is not appropriate here and only the simplest
linear models are summarized below. The material is included in most aerodynamics
texts, for example in Bertin and Smith (1989) and in Houghton and Carpenter (1993).

The lift curve slope of an infinite span swept wing in supersonic flow, which implies
a supersonic leading edge condition, is given by

4cosAIea = (12.17)
ooc -1M2 COS2Ale - 1

Clearly, the expression given by equation (12.17) is only valid for Mach numbers
M > secAle; at lower Mach numbers the leading edge is subsonic since it is within the
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Mach cone. For a wing of finite span the expression given by equation (12.17) is
'corrected' for aspect ratio

a =a (1- 1 ) (12.18)
C OCc 2A.jM2 COS2Ale - 1

and the parameter A.jM2 cos-A; - 1 is termed the effective aspect ratio by Liepmann
and Roshko (1957).

The drag of an aeroplane in supersonic flight is probably one of the most difficult
aerodynamic parameters to estimate with any degree of accuracy. The drag of a wing
with a supersonic leading edge comprises three components: the drag due to lift, wave
drag and skin friction drag. The drag due to lift, sometimes known as wave drag due to
lift, is equivalent to the induced drag in subsonic flight. Wave drag, also known as form
drag or pressure drag, only occurs in compressible flow conditions and is a function of
aerofoil section geometry. Skin friction drag is the same as the familiar zero lift drag in
subsonic flight, which is a function of wetted surface area.

A simple approximate expression for the drag coefficient of an infinite span swept
wing in supersonic flight is given by

4cx2 cos A k (£\2 COS
3Ale

C = Ie + cJ + c (12.19)
D

oo .jM2COS2Ale - 1 JM2COS2Ale _ 1 Do

where the first term is the drag coefficient due to lift, the second term is the wave drag
coefficient and the third term is the zero lift drag coefficient. Here, in the interests of
simplicity, the wave drag is shown to be dependent on the aerofoil section thickness to
chord ratio tic only, which implies that the section is symmetrical. When the section has
camber, the wave drag includes a second term which is dependent on the square of the
local angle of attack with respect to the mean camber line. The camber term is not
included in equation (12.19) since many practical supersonic aerofoils are symmetric or
near symmetric. The constant k is also a function of the aerofoil section geometry and is
2/3 for bi-convex or typical modified double wedge sections, both of which are
symmetric.

For a finite span wing with aspect ratio A, the drag coefficient is given very
approximately by

C = (4x2
COS A le kGJ cos

3A
le

) (1 _ 1 ) C (1220)
Doc .jM2 COS2Ale - 1 + .jM2COS2Ale - 1 2A.jM2 COs2Ale _ 1 + Do •

It is assumed that the wing to which equation (12.20) relates is of constant thickness with
span and that it has a rectangular planform, which is most unlikely for a real practical
wing. Alternative and rather more complex expressions can be derived which are
specifically dependent on wing geometry to a much greater extent. However, there is no
guarantee that the estimated drag coefficient will be more accurate since it remains
necessary to make significant assumptions about the aerodynamic operating conditions
of the wing.

It is also difficult to obtain a simple and meaningful expression for pitching moment
coefficient in supersonic flight conditions. However, it is relatively straightforward to
show that for an infinite span flat plate wing the aerodynamic centre moves aft to the
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half chord point in supersonic flow. This results in an increase in nose down pitching
moment together with an increase in the longitudinal static stability margins with
corresponding changes in the longitudinal trim, stability and control characteristics of
the aeroplane. An increase in thickness and a reduction in aspect ratio of the wing causes
the aerodynamic centre to move forward from the half chord point with a corresponding
reduction in stability margins. Theoretical prediction of these changes for anything other
than a simple rectangular wing is not generally practical.

12.4.5 SUMMARY

It is most important to realize that the aerodynamic models outlined in Sections 12.4.3
and 12.4.4 describe, approximately, the properties of the main lifting wing of the
aeroplane only. Since the wing provides most of the lift, with perhaps smaller
contributions from the fuselage and tailplane, or fore plane, then it is expected that
equations (12.15) and (12.18) would give a reasonable indication of the lift curve slope
of a complete aeroplane. However, this would not necessarily be expected of the drag
estimates given by equations (12.16) and (12.20). The drag contributions from the
fuselage and tailplane, or fore plane, may well be a large fraction of the total. Therefore,
estimates obtained with equations (12.16) and (12.20) should be treated accordingly.

It is suggested that the main usefulness of the material given in Sections 12.4.3 and
12.4.4 is to provide an appreciation of the main aerodynamic effects of compressibility
as they relate to stability and control and to provide a means for checking the
plausibility of estimates obtained by other means, especially computational means. Little
mention has been made of the transonic flight regime for the simple reason that
analytical models suitable for the estimation of aerodynamic stability and control
properties at the present level of interest are just not available. Considerable research
has been undertaken in recent years into transonic aerodynamics but the analysis
remains complex and has found greatest use in computational methods for flow
prediction. When estimates of the aerodynamic properties of a complete aeroplane
configuration in compressible flow conditions are required it is preferable to refer to
source material such as the ESDU data items.

Today, increasing use is made of computational methods for the estimation of the
aerodynamic properties of complete aeroplane configurations and at all flight conditions.
Provided the geometry of the airframe can be described in sufficient detail then
computational methods, such as the vortex lattice method or the panel method, can be
used to obtain estimates of aerodynamic characteristics at acceptable levels of accuracy.
By such means aerodynamic information can be obtained for conditions which would
otherwise be impossible using analytical methods.

EXAMPLE 12.1 _

A substantial database comprising aerodynamic, stability and control parameters for
the McDonnell-Douglas F-4C Phantom aircraft is given in Heffley and Jewell (1972).
Data are given for altitudes from sea level to 55000ft and for Mach numbers from
0.2 to 2.2 and the aircraft shows most of the classical effects of translation from
subsonic to supersonic flight. Some limited additional information was obtained from
Jane's (1969-1970 see Taylor, 1970). The main geometric parameters of the aircraft
used in the example are
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wing area (reference area) S =530 tt2

wing-span b = 38.67 ft
mean geometric chord (referencechord) c= 16.04 ft
averagethickness-ehord ratio tic = 0.051
aspect ratio A = 2.82
leading edge sweep angle Ale = 50°
centre of gravity position h = 0.289

The lift, drag and pitching moment characteristics are summarized in Fig. 12.3 as a
function of Mach number for two altitudes, 15000ft and 35 000 ft, since the data for
these two altitudes extend over the entire Mach number envelope.

:--._+-.-

·····l········.······· .

······K····~· .. ·····f ······(~··t·

- 15,000 ft (a)

. . - - 35,000 ft (b)

t \.! ~ .1 ~. ~~~. ~ ~:~~.~~!~~. ~ .~:.~. ~
~b

l " " •· . . . . . .
f • • • • • •, . . . . . .
: : • -:--~ I -+--· ...· . . . .. . . .. . . .

: :. ~

...;·;·t: ~·"'·~·t~ ·.,·~·F·~· .....

:a
······ .. f··· .. ···

·······r· .. ····

-0.4

-0.2

-0.6

-0.8

5

4

,..-4

3~
~....
t::S 2

1

0
1

0.01 "'-~~""""""'--"""""""""-----"-"""'~"""''''''''~''''''----''''''''''''''---'''''''''''

0.0 r- ....-....-....-....-....-....-....-,....-,....-,...-,...-,.....,

-1.0 "'-"'-"'-"'- '--01

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Mach numberMo

Fig. 12.3 Lift, drag and pitching moment variation with Mach number
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Lifting properties are represented by the plot of lift curve slope a as a function of
Mach number. The effect of compressibility becomes obvious at Mach 0.8 at the onset
of the transonic flow regime. The lift curve slope reaches a maximum at Mach 1.0
and its gentle reduction thereafter is almost linear with Mach number. The Prandtl­
Glauert rule approximation, as given by equation (12.15) is shown for comparison in
the subsonic Mach number range. The approximation assumes a two dimensional
(20) lift curve slope calculated according to equation (12.12) and shows the correct
trend but gives an overestimate of total lift curve slope. The linear supersonic
approximation for lift curve slope, as given by equation (12.18) is also shown for
completeness. In this case the 20 lift curve slope was calculated using equation
(12.17). Again, the trend matches reasonably well but the model gives a significant
underestimate. It is prudent to recall at this juncture that both models describe the lift
curve slope of a finite wing only, whereas the F-4C data describe the entire airframe
characteristic.

The drag properties are represented by the trim drag coefficient, plotted on a
logarithmic scale, as a function of Mach number. The use of a logarithmic scale helps
to emphasize the abrupt drag rise at Mach 1.0. In the subsonic Mach number range the
drag coefficient reduces with increasing Mach number, the classical characteristic,
which implies that it is dominated by the induced drag contribution as might be
expected. However, in supersonic flight the drag coefficient remains almost constant,
the contribution due to lift will be small as both eLand rx are small and the main
contributions will be due to wave drag and skin friction. Shown on the same plot is the
supersonic drag coefficient calculated according to equation (12.19) and clearly, the
match is poor. The trend is correct but the magnitude is about half the actual airframe
value. Once again, it should be remembered that equation (12.19) relates to a finite
wing and not to a complete airframe. It is reasonably easy to appreciate that the
fuselage and tail surfaces will make a significant contribution to the overall drag of the
aeroplane. Careful scrutiny of the aerodynamic data for 35000 ft enabled the
expression for the subsonic drag coefficient, equation (12.16), to' be estimated as

CD =CDo +kci =0.017+0.216Ci (12.21)

This expression gave a good fit to the actual data and the value of CDo was used in
the evaluation of the supersonic drag coefficient, equation (12.19).

The final plot in Fig. 12.3 represents the effect of Mach number on pitching moment
and shows the variation in the slope, denoted Cma, of the em-rx curve as a function of
Mach number. Since Cma is proportional to the controls fixed static margin it becomes
more negative as the aerodynamic centre moves aft. This is clearly seen in the plot
and the increase in stability margin commences at a Mach number of 0.8. Now, the
relationship between controls fixed stability margin, neutral point and centre of gravity
locations is given by equation (3.17)

(12.22)

With reference to Appendix 6 the expression for the derivative M; is given by

M = aCm = -aK (12.23)
w aa. n

Thus, from equations (12.22) and (12.23) an expression for the location of the
controls fixed neutral point is easily calculated



292 Aerodynamic modelling

0.55 .----.,......-....--~-...,..---r--~-_..-___r--,..____,

0.50

~r: 0.45

0.40

...........................

...........................

................' .

................................

.~ ...

aft

1.8 ' 2.01.60.2 0.4 0.6 0.8 1.0 1.2 1.4

Mach number Mo

0.35 I.-_......_-"'__......_....A.- ...... ~ .....

0.0

Fig. 12.4 Variation of controls fixed neutral point position with Mach number

h = h - ! aCm == h - ! C (12.24)
n aBex a mrt

Using equation (12.24) with the F-4C data for an altitude of 15000ft the variation in
neutral point position as a function of Mach number was calculated and the result is
shown in Fig. 12.4.

Since the neutral point corresponds to the centre of pressure for the whole aeroplane
its aft shift with Mach number agreeswell with the predictions given by 'simple' aerofoil
theory. Over the transonic Mach number range the neutral point moves back to the mid
point of the mean aerodynamic chord and then moves forward a little at higher Mach
numbers. It is interesting to note that at subsonic Mach numbers the neutral point remains
more-or-Iess stationary at around O.37C, which is quite typical for many aeroplanes.

12.5 Limitations of aerodynamic modelling

Simple expressions for the aerodynamic stability and control derivatives may be
developed from first principles based on the analysis of the aerodynamic conditions
following an upset from equilibrium. The cause of the upset may be external, as the
result of a gust for example, or internal as the result of a pilot control action. It is
important to appreciate that in either event the disturbance is of short duration and that
the controls remain fixed at their initial settings for the duration of the response. As
explained in Section 12.2, the derivatives are then evaluated by linearizing the
aerodynamics about the nominal operating, or trim, condition. The aerodynamic models
thus derived are limited in their application to small perturbation motion about the trim
condition only. The simplest possible analytical models for the aerodynamic stability
and control derivatives are developed, subject to the limitations outlined in this chapter,
and described in Chapter 13.
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13
Aerodynamic Stability and Control

Derivatives

13.1 Introduction

As is usual in aerodynamic analysis, for the purposes of obtaining simple expressions
for the stability and control derivatives a wind axis reference system is assumed
throughout. The choice of wind axes is convenient since it reduces the derivatives to their
simplest possible description by retaining only the essential contributions and hence
maximizes the visibility of the physical phenomena involved. It is therefore very
important to remember that if the derivatives thus obtained are required for use in
equations of motion referred to an alternative axis system then the appropriate axis
transformation must be applied to the derivatives.

Some useful transformations are given in Appendices 7 and 8. In all cases analytical
expressions are obtained for the derivatives assuming subsonic flight conditions: it is
then relatively straightforward to develop the expressions further to allow for the effects
of Mach number, as suggested in Section 12.4.

It has already been established that simple analytical expressions for the derivatives
rarely give accurate estimates. Their usefulness is significantly more important as a
means for explaining their physical origins, thereby providing the essential link between
aircraft dynamics and airframe aerodynamics. The analytical procedure for obtaining
simple derivative expressions has been well established for very many years and the
approach commonly encountered in the UK today is comprehensively described by
Babister (1961), and in less detail in Babister (1980). The following sections owe much to
that work since it is unlikely that the treatment can be bettered. For the calculation of
more reliable estimates of derivative values, reference to the ESDU data items is
advised. The reader requiring a more detailed aerodynamic analysis of stability and
control derivatives will find much useful material in Hancock (1995).

13.2 Longitudinal aerodynamic stability derivatives

For convenience, a summary of the derivative expressions derived in this section is
included in Appendix 6.
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Fig. 13.1 Perturbed wind axes

13.2.1 PRELIMINARY CONSIDERATIONS

A number of expressions are required repeatedly in the derivative analysis, so it is
convenient to assemble these expressions prior to embarking on the analysis. A
longitudinal small perturbation is shown in Fig. 13.1 in which the aircraft axes are wind
axes and the initial condition assumes steady symmetric level flight at velocity VO.
Although not strictly an aerodynamic force the thrust r is shown since it may behave like
an aerodynamic variable in a perturbation. As indicated, the thrust force is tied to the
aircraft x axis and moves with it.

In the perturbation the total velocity becomes V with components U and W along
the ox and oz axes respectively. Whence

V2 = U2 + W2 (13.1)

and

U = o, +U = Vc~sO }
W = ~ + w = V sin (J

Since wind axes are assumed the pitch attitude perturbation (J and the incidence
perturbation ex are the same and are given by

W
tan 0 == tan ex =- (13.3)

U
Differentiate equation (13.1) with respect to U and W in tum to obtain the following
partial derivatives

av U av w
-=- and -=- (13.4)au v aw v

and substitute for U and W from equation (13.2) to obtain

av =cosO~ 1 and av =sinO~O (13.5)au aw
since, by definition, fJ is a small angle.

In a similar way, differentiate equation (13.3) with respect to U and W in turn and
substitute for U and W from equation (13.2) to obtain
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~ == aa = - sin 0 ~ 0
au au v-
ao acx cos 0 1

aw==aw=v~v

since again, by definition, 0 is a small angle.
From equation (12.10)

a 8
aV=aaM

(13.6)

(13.7)

which is useful for transforming from a velocity dependency to a Mach number
dependency and where, here, a is the local speed of sound.

13.2.2 AERODYNAMIC FORCE AND MOMENT COMPONENTS

With reference to Fig. 13.1 the lift and drag forces may be resolved into the disturbed
aircraft axes to give the following components of aerodynamic force. The perturbed
axial force is

x = Lsin 0 - DcosO + 't" = ~pV2S(CL sinO - CD cos 0) + 't" (13.8)

and the perturbed normal force is

Z = -LcosO - DsinO = _~PV2S(CLCOSO + CD sin 0) (13.9)

In the initial steady trim condition, by definition the pitching moment M is zero.
However, in the perturbation the transient pitching moment is non-zero and is given
by

(13.10)

Note that considerable care is needed in order not to confuse pitching moment M and
Mach number M.

13.2.3 FORCE DERIVATIVES DUE TO VELOCITY PERTURBATIONS

o ax
x.= au Axial force due to axial velocity

Differentiating equation (13.8) gives

ax 1 2 (aCL • ao aC,D . ao)au = '2 p v s au SIn0 + CL cos°au - au cos (J + CD sin (J au

+ pvs :~ (CL sin 0 - CD cos 0) + ~ (13.11)

Substitute for av/au from equation (13.5) and for 80/8U from equation (13.6). As 0 is
a small angle, in the limit, cos 0 ~ 1 and sin 0 ~ 0 and equation (13.11) simplifies to

ax 1 2 sc; enau = -2PV S au - pVSCD +au (13.12)
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Now

aCD aCD av aCD

au = av au = av
and similarly

Ch Ch
au= av

(13.13)

(13.14)

In the limit the total perturbation velocity tends to the equilibrium value and V ~ ~.

Hence equation (13.12) may bewritten

o ax 1 2 aCD en
Xu = au = -PYoSCD - 2PYo S -BV +av (13.15)

With reference to Appendix 1, the dimensionless form of the derivative is given by

Xu aCD 1 en
X; = 4pYoS = -2CD - Yo av + 4pYoS av (13.16)

Alternatively, using equation (13.7), the dimensionless derivative may be expressed in
terms of Mach number rather than velocity

1 aCD 1 Or
X. = -2CD - M

o
aM + 4pMosaM (13.17)

Ex:pressions for the remaining force-velocity derivatives are obtained in a similar way
as follows I

o az
z.= au Normal force due to axial velocity

(13.21)

Thus, by differentiating equation (13.9) with respect to U it is easily shown that

Z = az = -pVSCL _ !pVlS aCL (13.18)
u au 2 au

Now, in the manner of equation (13.13)

aCL aCL av aCLau = av au = av (13.19)

Thus, in the limit V ~ Yo and equation (13.18) may be written

o 1 2 aeLz, = -PVoSCL - 2PJ-O S BV (13.20)

With reference to Appendix I, the dimensionless form of the derivative is given by

ZU BCL
Z; = ~PYoS = -2CL - Yo av

or, alternatively, expressed in terms of Mach number rather than velocity

Z = -2C
L
__I_BCL

U MoBM
(13.22)
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Axial force due to normal velocity

As before, it may be shown that by differentiating equation (13.8) with respect to W

o ax 1 2 (1 aCD) ar
Xw =aw='2 PV S veL-aw +aw (13.23)

Now, with reference to equation (13.6) and noting that e>: = 0

aCD aCD a8 1 ec,
oW = oe oW 5 V oe>:

Similarly, it may be shown that

(tr lar
-5--=0oW vae>:

(13.24)

(13.25)

(13.26)

since it is assumed that thrust variation resulting from small incidence perturbations is
negligible. Thus, in the limit, equation (13.23) may be written

o 1 ( aeD)
X w =:2 PVOS CL - ae>:

With reference to Appendix 1, the dimensionless form of the derivative is given by

(13.27)

Normal force due to normal velocity

(13.28)

(13.29)

As before, by differentiating equation (13.9) with respect to Wand with reference to
equation (13.24) it may be shown that

o az 1 2 (aCL 1) 1 (aCL )Z =-= --pV S -+-CD = --pVS -+CD
w aw 2 aw V 2 oa

In the limit, equation (13.28) may be rewritten

o 1 (BCL )z, = -'2PVOS arx + CD

With reference to Appendix 1, the dimensionless form of the derivative is given by

(13.30)

13.2.4 MOMENT DERIVATIVES DUE TO VELOCITY PERTURBATIONS

o aM
Mil = au Pitching moment due to axial velocity

In a perturbation the pitching moment becomes non-zero and is given by equation
(13.10). Differentiating equation (13.10) with respect to U



aM _! V2S=aCm VS=Cau - 2 P c au +P c m

and with reference to equation (13.5)

»c; ec;av aCm

au = av 8U = 8V
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(13.31)

(13.32)

(13.33)

(13.34)

(13.35)

Now, in the limit, as the perturbation tends to zero, so the pitching moment coefficient
C; in the 'second term in equation (13.31) tends to the steady equilibrium value which is,
of course, zero. Therefore, in the limit, equation (13.31) simplifies to

M. _ 8M _ 1 ~2s=8Cm
u - au - "2 P 0 c 8V

With reference to Appendix 1, the dimensionless form of the derivative is given by

M = M. _= v.; oCm

u !p~Sc 0 av

Alternatively, using equation (13.7), the dimensionless derivative may be expressed in
terms of Mach number rather than velocity

M =_1 aCm

u Mo8M

In subsonic flight the pitching moment coefficient Cm is very nearly independent of
velocity, or Mach number, whence the derivative M; is often assumed to be negligibly
small for those flight conditions.

Pitching moment due to normal velocity

(13.36)

(13.38)

As previously, differentiating equation (13.10) with respect to Wand with reference to
equation (13.24) it may be shown that

M. = oM =! V2S=8Cm =! VS=8Cm
w aw 2 P c oW 2 P c oex

In the limit V ~ ~ and equation (13.36) may be written

M. -! ~S=aCm (13.37)w-2 P 0 c 8ex

and with reference to Appendix 1, the dimensionless form of the derivative is given by

M = M.v _= oCm

w 4p~Sc 8a

Further, assuming that linear aerodynamic conditions apply, such as are typical of
subsonic flight, then with reference to equation (3.17)

M = dCm = dCL dCm =- K (13.39)
w de de deL a n

where, here, a denotes the lift curve slope and K; is the controls fixed static margin. As
shown in Chapter 6 the derivative Mw is a measure of the pitch stiffness of the aeroplane
and plays an important part in the determination of the longitudinal short term dynamics.
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13.2.5 DERIVATIVES DUE TO A PITCH VELOCITY PERTURBATION

It is usually assumed that the longitudinal aerodynamic properties of an aeroplane are
dominated by those of the wing and tailplane. However, when the disturbance is a small
perturbation in pitch rate q it is assumed that the dominating aerodynamic properties
are those of the tailplane. Thus, in the first instance the resulting aerodynamic changes
contributing to the stability derivatives are assumed to arise entirely from tailplane
effects. By so doing it is acknowledged that the wing contribution may not necessarily be
small and that its omission will reduce the accuracy of the derivative estimates.
However, experience has shown that the error. incurred by adopting this assumption is
usually acceptably small.

An aeroplane pitching through its equilibrium attitude with pitch rate perturbation q
is shown in Fig. 13.2. Since the effect of the pitch rate is to cause the tailplane to
experience a normal velocity component due to rotation about the cg the resultant effect
is a change in the local incidence aT of the tailplane. The total perturbation velocity is
V and the tailplane incidence perturbation is given by

qlT
etT ~ tan e- =V (13.40)

since, by definition, etT is a small angle. It is important to appreciate that etT is the change
or increment in tailplane incidence relative to its equilibrium value and, like the pitch
rate perturbation, is transient in nature. From equation (13.40) it follows that

8ctT ITaq =V (13.41)

Xo -_ ax I fi d hAxia orce ue to pite rate
II oq

In this instance, for the reasons given above, it is assumed that the axial force
perturbation arises from the tailplane drag perturbation only, thus

q

o

I

~z

V
velocityvectors at tailplane

Fig. 13.2 Tailplane incidence due to pitch rate

v
---]::>

-t>
x
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(13.42)

(13.45)

(13.44)

(13.46)

(13.47)

Assuming V to be independent of pitch rate q, differentiate equation (13.42) with respect
to the perturbation variable q

ax = -!pV2S
T

aCD-r (13.43)
aq 2 aq

Now, with reference to equation (13.41) write

acDr acDr aO:T IT acDr

aq = aO:T aq = V OO:T

Substitute equation (13.44) into equation (13.43) then, in the limit, V ~ ~ and equation
(13.43) may be written

o ax 1 acn,.x =- = --p~STlT--
q aq 2 aO:T

and with reference to Appendix 1, the dimensionless form of the derivative is given by

X _l--v- aCDT
- -- T

q !p~Sc aO:T

where the tail volume ratio is given by

Tf _ STIT
YT - Sc

Since the rate of change of tailplane drag with incidence is usually small it is customary
to assume that the derivative X q is insignificantly small and it is frequently ignored in
aircraft stability and control analysis.

o az
~= aq Normal force due to pitch rate

Similarly ~ it is assumed that in a pitch rate perturbation the change in normal force
arises from tailplane lift only, thus

1 2 (Z = -LT = -2"PV STCLT 13.48)

Differentiate equation (13.48) with respect to q and with reference to equation (13.44)
then

(13.49)

where, again, it is assumed that V is independent of pitch rate q and that, additionally,
the tailplane lift coefficient is a function of incidence only with lift curve slope denoted
ale Hence, in the limit, V ~ ~ and equation (13.49) may be written

o oZ 1
Z =- = - - p ~ST1Tal (13.50)

q aq 2

and with reference to Appendix 1, the dimensionless form of the derivative is given by
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(13.51)

o aM
M=-

f aq Pitching moment due to pitch rate

Again, in a pitch rate perturbation q, the pitching moment is assumed to arise entirely
from the moment of the tailplane normal force perturbation, given by equation (13.48)
about the cg. Thus, in the perturbation

1
M = ZIT = -"2PV2STITCLT

Differentiate equation (13.52) with respect to q to obtain the relationship

It therefore follows that

(13.52)

(13.53)

(13.54)

and with reference to Appendix 1, the dimensionless form of the derivative is given by

(13.55)

It is shown in Chapter 6 that M; is the all important pitch damping derivative. Although
this simple model illustrates the importance of the tailplane in determining the pitch
damping characteristics of the aeroplane, wing and body contributions may also be
significant. Equation (13.55) should therefore be regarded as the first estimate rather
than the definitive estimate of the derivative. However, it is often good enough for
preliminary analysis of stability and control.

13.2.6 DERIVATIVES DUE TO ACCELERATION PERTURBATIONS

The derivatives due to the acceleration perturbations U, wand q are not commonly
encountered in the longitudinal equations of motion since their numerical values are
usually insignificantly small. Their meaning is perhaps easier to appreciate when the
longitudinal equations of motion are written in matrix form, equation (4.65), to include
all of the acceleration derivatives. To recap, the state equation is given by

Mi=A'x+B'u (13.56)

with state vector xT = [u W q 0] and input vector uT = [" r], The state matrix A'
and input matrix 0' remain unchanged whereas the mass matrix M is modified to include
all the additional acceleration derivatives
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M=
o

-Zr;

-M.u
o

o

-Mw
o

o-x, 0

-2. 0q

(I, - Mq) 0
o 1

(13.57)

Since -all of the acceleration derivatives appear in the mass matrix alongside the
normal mass and inertia terms, their effect is to change (increase) the apparent mass
and inertia properties of the aircraft. For this reason they are sometimes referred to
as apparent or virtual mass and inertia terms. Whenever the aeroplane moves some of
the surrounding displaced air mass is entrained and moves with the aircraft, and it
is the mass and inertia of this air which modifies the apparent mass and inertia of the
aeroplane. The acceleration derivatives quantify .this effect. For most aircraft, since
the mass of the displaced air is a small fraction of the mass of the aircraft, the
acceleration derivatives are insignificantly small. An exception to this is the airship
for which the apparent mass and inertia can be as much as 50% larger than the
actual physical value. Other vehicles in which these effects may be non-negligible
include balloons, parachutes and underwater vehicles which operate in a much denser
fluid medium.

For many modem high performance aeroplanes the derivatives due to a rate of change
of normal velocity perturbation w(eX) may not be negligible. A rate of change of normal
velocity perturbation causes a transient disturbance in the downwash field behind the
wing which passes over the tailplane a short time later. The disturbance to the moving
air mass in the vicinity of the wing is, in itself, insignificant for the reason given above.
However, since the tailplane sees this as a transient in incidence, a short time later it
responds accordingly and the effect on the airframe is not necessarily insignificant. This
particular characteristic is known as the downwash lag effect.

An-expression for the total incidence of the tailplane is given by equation (3.9) which,
for the present application, may be written

(13.58)

where (Ie is the steady equilibrium incidence of the wing, '1T is the tailplane setting
angle and e(t) is the downwash flow angle at the tailplane. Thus, any change in
downwash angle at the tailplane in otherwise steady conditions gives rise to a change
in tailplane incidence of equal magnitude and opposite sign. It is important to
appreciate that the perturbation at the tailplane is observed at time t and is due to an
event on the wing which took place some time earlier. For this reason the flow
conditions on the wing at time tare .assumed to have recovered their steady
equilibrium state.

With reference to Fig. 13.3, the point a in the flow field around the wing arrives at
point b in the flow field around the tailplane at a time IT/YO later, referred to as the
downwash lag and where, for convenience, the mean distance travelled is assumed to be
equal to the tail moment arm IT. Thus, a perturbation in w(eX) causes a perturbation in
the wing downwash field which arrives at the tailplane after the downwash lag time
interval. Therefore, there is a short delay between cause and effect.

The downwash angle e(t) at the tailplane at time t is therefore a function of the
incidence of the wing at time t' = t -IT/v;, and may be expressed



304 Aerodynamic stability and control derivatives

. Jj tailplane
.~~

-'-~

Fig. 13.3 A typical downwash field

de de d« ( IT)e(t) = -ex(t') =-- t --
d« de dt vo
de de WiT de wiT

=-ex ---=e ---de e de Vi e de ~2

since

da
-t = aCt) == aedt

and
w

a ~ tan a = VO

whence

(13.59)

(13.60)

(13.61)

(13.62)

(13.63)

da w
dt = JtO

Thus, with reference to equations (13.58) and (13.59) the total tailplane incidence during
a downwash perturbation may bewritten

de WiT
aT. +aT(t) = ae + "IT - s, +da Vo2

The perturbation in tailplane incidence due to the downwash lag effect is therefore given
by

(13.64)

o axx,., = BliP Axial force due to rate of change of normal velocity

In this instance, it is assumed that the axial force perturbation arises from the
perturbation in tailplane drag due solely to the perturbation in incidence, whence



Longitudinal aerodynamic stability derivatives 305

Now, by definition

X=Xww

(13.65)

(13.66)

and in the limit V ~ to. Thus, substitute equation (13.64) into (13.65) and apply
equation (13.66) to obtain

o 1 BCD-r de
X· = --pSTIT-- (13.67)

w 2 BCXT de

and with reference to Appendix I, the dimensionless form of the derivative is given by

Xw - BCD,- de de
X· =--= -l).--=X - (13.68)

W !pSc BcxT dz q d«

Since X q is usually very- small and de/de < 1 the derivative X; is insignificantly small
and is usually omitted from the equations of motion.

o BZ
Zw= Bw Normal force due to rate of change of normal velocity

Again, it is assumed that the normal force perturbation arises from the perturbation in
tailplane lift due solely to the perturbation in incidence, whence

1 2 1 2 BCLTZ = -LT = --2PV STCL = --pV ST--CXT (13.69)
T 2 BcxT

Again, by definition

Z=Zww (13.70)

(13.72)

and in the limit V ~ ro. Thus, substitute equation (13.64) into (13.69) and apply
equation (13.70) to obtain

o 1 de
z; = -"2pSTITal dcx (13.71)

As in Section 13.2.4, it is assumed that the tailplane lift coefficient is a function of
incidence only with lift curve slope denoted al. With reference to Appendix 1, the
dimensionless form ofthe derivative is given by

Z. - de de
Zw =~= -VTal-=Z -!pSc d« q d«

Care should be exercised since Z, is not always insignificant.

o aM
M·=-"' Bw Pitching moment due to rate of change of normal velocity

In this instance the pitching moment is assumed to arise entirely from the moment of
the tailplane normal force perturbation about the cg resulting from the perturbation in
incidence, given by equation (13.64). Thus, in the perturbation
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(13.73)

Again, by definition

M = Mww (13.74)

and in the limit V ~ ltO. Thus, substitute equation (13.64) into (13.73) and apply
equation (13.74) to obtain

o 1 2 de
Mw= -'2pST1Taldex (13.75)

and with reference to Appendix 1, the dimensionless form of the derivative is given by

Mw -IT de de
M w= ----=2 = -J!T-:-al- == M q - (13.76)

!pSc c de da

The derivative Mwis nearly always significant and makes an important contribution to
the damping of the short period pitching oscillation, see equation (6.21).

13.3 Lateral-directional aerodynamic stability derivatives

For convenience, a summary of the derivative expressions derived in this section is also
included in Appendix 6.

13.3.1 PRELIMINARY CONSIDERATIONS

Unlike the longitudinal aerodynamic stability derivatives the lateral-directional
derivatives are much more difficult to estimate with any degree of confidence. The
problem arises from the mutual aerodynamic interference between the lifting surfaces,
fuselage, power plant, undercarriage, etc, in asymmetric flow conditions, which makes it
difficult to identify the most significant contributions to a particular derivative with
any degree of certainty. When a derivative cannot be estimated by the simplest analysis
of the often complex aerodynamics, then the use of strip theory is resorted to which is a
method of analysis which also tends to over-simplify the aerodynamic conditions in
order that progress can be made. Either way, analytical estimates of the lateral­
directional derivatives are often of poor accuracy and, for more reliable estimates, use of
the ESDU data items is preferable. However, the simple theories used for the purpose
do give a useful insight into the physical phenomena involved and, consequently, are a
considerable asset to the proper understanding of aeroplane dynamics.

13.3.2 DERIVATIVES DUE TO SIDESLIP

As seen by the pilot (and consistent with the notation), a positive sideslip is to the right
(starboard) and is defined by the small perturbation lateral velocity transient denoted
v. The nature of a.free positive sideslip disturbance is such that the right wing tends to
drop and the nose tends to swing to the left of the incident wind vector as the aeroplane
slips to.the right. The reaction to the disturbance is stabilizing if the aerodynamic forces
and moments produced in response to the sideslip velocity tend to restore the aeroplane
to a wings level equilibrium state. The motions involved are discussed in greater detail
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in the context of lateral static stability in Section 3.4, in the context of directional static
stability in Section 3.5 and in the context of dynamic stability in Section 7.2.

Sideforce due to sideslip

Sideforce due to sideslip arises mainly from the fuselage, the fin, the wing, especially a
wing with dihedral, and engine nacelles in aircraft with external engines. The derivative
is notoriously difficult to estimate with any degree of confidence and simple analysis
assumes the dominant contributions arise from the fuselage and fin only.

With reference to Fig. 13.4, the fuselage creates a sideforce YB in a sideslip, which
may be regarded as lateraldragand which is given by

1 2 ( )YB =2,PYe,SBPYB 13.77

where SB is the projected fuselage side area and YB is a dimensionless coefficient. Note
that the product PYB is equivalent to a lateraldrag coefficient for the fuselage. Further,
since the disturbance is small the sideslip angle Pis given by

v
p~tanp=:.- (13.78)

JiG
In a sideslip the fin is at incidence p and produces lift as indicated in Fig. 13.4. The fin
lift resolves into a sideforce IF given by

Ax

y
-]:>

v

Fig. ·13.4 Sideforce generation in a sideslip
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1 2 1 2
YF= -"2PYo SFal F f3 cos f3 ~ - 2. PYo SFal F f3 (13.7~)

and since the sideslip angle pis small, cos p~ 1.
Let the total sideforce due to sideslip be denoted ~ then, by definition,

o 1
vY,; = Y =YB+ }f =2/Vo2(SBYB- SpaIF)P (13.80)

Substitute the expression for pgiven by equation (13.78) into equation (13.80) to obtain
an expression for the dimensional derivative

(13.81)

and with reference to Appendix 1, the dimensionless form of the derivative is given by

(13.82)

Rolling moment due to sideslip

Rolling moment due to sideslip is one of the most important lateral stability derivatives
since it quantifies the lateral static stability of the aeroplane, discussed in Section 3.4. It
is one of the most difficult derivatives to estimate with any degree of confidence since it
is numerically small and has many identifiable contributions. Preliminary estimates are
based on the most significant contributions which are usually assumed to arise from
wing dihedral, wing sweep, wing-fuselage geometry and the fin.

In many classical aeroplanes the wing dihedral makes the most significant
contribution to the overall value of the derivative. Indeed, dihedral is one of the most
important variables available to the aircraft designer with which to tailor the lateral
static stability of the aeroplane. The derivative is therefore frequently referred- to as the
dihedral effect irrespective of the magnitude of the other contributions. Since the
tendency is for the right wing to drop in a positive sideslip disturbance the associated'
disturbing rolling moment is also positive. A stabilizing aerodynamic reaction is one in
which the rolling moment due to sideslip is negative since this will tend to oppose the
disturbing rolling moment. The dihedral effect is particularly beneficial in this respect.

In a positive sideslip disturbance to the right, the effect of dihedral is to increase the
incidence of the right wing panel indicated in Fig. 13.5. The left wing panel 'sees' a
corresponding reduction in incidence. Thus, the rolling moment is generated by the
differential lift across the wing-span.

Referring to Fig. 13.5, the component of"sideslip velocity perpendicular to the plane
of the wing panel is given by

V' = usin F ~ vr (13.83)

since the dihedral angle r is usually small.
The velocity component v' gives rise to a small increment in incidence (x' as shown

where

I I v' vr
(X ~tan(X =-=-

Yo Yo
(13.84)
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~

V'

-- V

right wing panel

Fig. 13.5 Incidence due to sideslip on a wing with dihedral

Consider the lift due to the increment in incidence on the chordwise strip element on
the right wing panel as shown in Fig. 13.6. The strip is at spanwise coordinate y
measured from the ox axis, has elemental width dy and local chord ey • The lift increment
on the strip resolves into a normal force increment c5Z given by

1 21c5Zright = -2'PJ'O cydyaycx' cosr ~ -2'pl-Ocyayvrdy (13.85)

s=b/2

Fig. 13.6 A chordwise strip element on the right wing panel
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where Qy is the local lift curve slope. The corresponding increment in rolling moment
bL is given by

1
bLright = bZrighty = - 2" PVOCyQyvrydy (13.86)

The total rolling moment due to the right wing panel may be obtained by integrating
equation (13.86) from the root to the tip, whence

1 IL righl = -"2p Yov 0 cyayrydy

Similarly for the left-hand wing panel

bLlefl = -bZ1efly = -yG pYocyayvrdy) (13.88)

Note that the sign of the normal force increment is reversed on the left wing panel since
the incidence is, in fact, a decrement, and that the sign of the moment arm is also
reversed. Thus

1 1s

Llefl =-"2 pYov 0 cyayrydy

By definition the total rolling moment in the sideslip disturbance is given by

»i; =L righl +L left =L total = -PTlQv 1: cyayrydy

Whence, the contribution to the dimensional derivative due to dihedral is

iv(dihedral) = -P Yo 1: cyayrydy

(13.89)

(13.90)

(13.91)

(13.92)

and with reference to Appendix 1, the dimensionless form of the contribution is given
by

L iv(dihedral) 11s
r d

v(dihedraJ) = !P~Sb = - Ss 0 cyay YY

where b = 2s is the wing-span. It is clear that for a wing with dihedral the expression
given by equation (13.92) will always be negative and hence stabilizing. On the other
hand, a wing with anhedral will be destabilizing.

Wing sweep also makes a significant contribution to Lv. The lift on a yawed wing is
determined by the component of velocity normal to the quarter chord line in subsonic
flight and normal to the leading edge in supersonic flight. A swept wing is therefore
treated as a yawed wing. With reference to Fig. 13.7, consider an elemental chordwise
strip on the right wing panel which is perpendicular to the quarter chord line. Subsonic
flow conditions are therefore assumed and the flow direction is parallel to the chord line.
The strip element is at spanwise distance h from the ox axis, measured along the quarter
chord line, the local chord is Ch and the width of the strip is dh. In the steady equilibrium
flight condition the chordwise component of velocity is given by

~ = ~ cos A1/4 (13.93)

and in the presence of a positive sideslip disturbance this becomes



Lateral-directional aerodynamic stability derivatives 311
v

Ax
I

11.1/4

steady state

Fig. 13.7 A swept wing in sideslip

Yc' = Vo a cos(AI/4 - fJ) ~ Vo cos(A1/4 - fJ)
cosp

perturbed
state

y
-I-~

j A
l/4

'-- - quarter
chord line

(13.94)

(13.96)

where f3 is the sideslip angle which is small by definition. The increment in normal force
~Z on the chordwise strip due to the sideslip disturbance arises from the difference in lift
between the steady flight condition and the perturbed condition and is given by

<5Zright = - Gpv.,f2chdhaha - ~ pv.,2ChdhahCX) = - ~ p(Yc'2 - v.,2)Chdhahcx (13.95)

Substitute the velocity expressions, equations (13.93) and (13.94), into equation (13.95),
rearrange and make small angle approximations where appropriate to obtain

<5Zright = - ~ PVo2(fJ2sin'A1/4 +2fJ sinA1/4 cos Al/4)ahcxchdh

Thus, the resulting increment in rolling moment is

dLright = hcos Al/4dZright

= - ~ PVo2 cos A1/4(fJ2 sin' A1/4 +2fJ sin A1/4 cos AI/4)ahcxchhdh (13.97)

On the corresponding strip element on the left-hand wing panel the chordwise velocity
in the sideslip disturbance is given by
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Yc' = YopCOS(Al/4 + P) ~ ~COS(AI/4 + P)cos
(13.98)

(13.99)

It therefore follows that the resulting increment in rolling moment arising from the left
wing panel is

bL1eft = -hcosAl/4bZleft

=~ PYo2 cosA1/ 4(fP sirr'A1/ 4 - 2P sinA1/ 4 cos AI/4)ahIXchhdh

The total increment in rolling moment is given by the sum of the right and left wing
panel contributions, equations (13.97) and (13.99), and substituting for Pfrom equation
(13.78) then

(13.100)

Thus, the total rolling moment due to the sideslip disturbance is given by integrating
equation (13.100) along the quarter chord line from the root to the wing tip. By
definition, the total rolling moment due to sweep is given by

(13.101)

(13.102)

or

I
s secA11"

o • 2
LlJ(sweep) = - 2p Yo SIO A1/4 cos A 1/4 0 ahIXchhdh

Now it is more convenient to express the geometric variables in equation (13.102) in
terms of spanwise and chordwise parameters measured parallel to the oy and ox axes
respectively. The geometry of the wing determines that cy = chcosAJ/4, dy =dhcosA1/4 ,

y = hcosA1/4 and the integral limit ssecAJ/4 becomes s. Equation (13.102) may then be
written

Lv(sweep) = -2p l'O tan A1/4Is

CL cyydyo y
(13.103)

(13.105)

where CL = aha. is the local lift coefficient. However, in the interests of practicality thes
constant mean lift coefficient for the wing is often assumed and equation (13.103) then
simplifies to

LlJ(sweep) = -2pYoCL tanAI/4 1: cyydy (13.104)

and with reference to Appendix 1, the dimensionless form of the contribution is given
by

L - LlJ(sweep) __ 2CL tanA1/41s
d

v(sweep) - !p l'OSb - Ss 0 cyY Y

where b =2s is the wing-span. Again, it is clear that for a wing with aft sweep the
expression given by equation (13.105) will always be negative and hence stabilizing.
Thus, wing sweep js equivalent to dihedral as a mechanism for improving lateral
stability. On the other hand, a wing with forward sweep will be laterally destabilizing.
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The geometry of the wing and fuselage in combination may also make a significant
contribution to dihedral effect since, in a sideslip condition, the lateral cross flow in the
vicinity of the wing root gives rise to differential lift which, in turn, gives rise to rolling
moment.

As shown in Fig. 13.8, in a positive sideslip perturbation the aeroplane 'sees' the
lateral sideslip velocity component approaching from the right, it being implied that the
right wing starts to drop at the onset of the disturbance. The lateral flow around the
fuselage is approximately as indicated, thereby giving rise to small perturbations in
upwash and downwash in the vicinity of the wing root. As a consequence of the flow
condition the high wing configuration experiences a transient increase in incidence at the
right wing root and a corresponding decrease in incidence at the left wing root. The
differential lift thus created causes a negative rolling moment and, since this will tend to
'pick up' the right wing, the effect is stabilizing. Clearly, as indicated, a low wing
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+L

divergent rOllihg moment
I

v

right wing down
tendency
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tendency
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~------

STABLEHIGHWING
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-L

Fig. 13.8 Lateral cross flow in a sideslip
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Fig. 13.9 Rolling moment due to fin lift in sideslip

configuration behaves in the opposite manner and the rolling moment due to sideslip is
very definitely destabilizing. Thus, a high wing configuration enjoys an additional
stabilizing contribution to dihedral effect whereas a low wing configuration makes a
destabilizing contribution.

It is not generally possible to develop simple aerodynamic expressions to quantify
the wing-fuselage geometry contribution to rolling moment due to sideslip. The
aerodynamic phenomena involved are rather too complex to be modelled simply. It is
known, for example, that the magnitude of the contribution is increased with an increase
in fuselage width or depth and with an increase in aspect ratio. Reliable values for the
contribution are best obtained by measurement or by reference to source documents
such as ESDU data items.

The fin contribution to rolling moment due to sideslip arises from the way in which
the lift developed on the fin in a sideslip perturbation acts on the airframe. The lift acts
at the aerodynamic centre of the fin, which may be above or below the roll axis, thereby
giving rise to a rolling moment. A typical situation is shown in Fig. 13.9.

The sideforce YF resulting from the lift developed by the fin in a sideslip perturbation
is given by equation (13.79) and if the moment arm of the aerodynamic centre about the
roll axis (ox axis) is denoted hF then, in the perturbation, by definition

01 2
VLv(fin) = L = YFhF = -2P~ SFalFPhF (13.106)

Substitute for P from equation (13.78) to obtain the following expression for the
dimensional contribution to the derivative

(13.107)

and with reference to Appendix 1, the dimensionless form of the contribution is given
by

iV(fin) SFhF - hF
Lv(fin) = tpJiQSb = -----siJaI F = -VFl;aI F

where the fin volume ratio is given by

V; _ SFIF
F - Sb

(13.108)

(13.109)

When the aerodynamic centre of the fin is above the roll axis, hp is positive and the
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expression given by equation (13.108) will be negative and hence stabilizing. However,
it is evident that, depending on aircraft geometry, hF may be small and may even change
sign at extreme aircraft attitude. Thus, at certain flight conditions, the contribution to
rolling moment due to sideslip arising from the fin may become positive and hence
laterally destabilizing.

An estimate of the total value of the derivative L, is obtained by summing the
estimates of all the contributions for which a value can be obtained. Since the value of
the derivative is usually small and negative, and hence stabilizing, even small
inaccuracies in the estimated values of the contributions can lead to a very misleading
conclusion. Since the derivative is so important in the determination of the lateral
stability and control characteristics of an aeroplane the ESDU data items include a
comprehensive procedure for estimating meaningful values of the significant
contributions. Although, collectively, all the contributions probably embrace the most
complex aerodynamics of all the derivatives it is, fortunately, relatively easy to measure
in both a wind tunnel test and in a flight test.

Yawing moment due to sideslip

The weathercock, or directional static stability of an aircraft, is determined by the
yawing moment due to sideslip derivative. It quantifies the tendency of the aeroplane to
turn into wind in the presence of a sideslip disturbance. Directional static stability is also
discussed in greater detail in Section 3.5. In a sideslip disturbance the resulting lift
increments arising from wing dihedral, wing sweep, wing-fuselage geometry, etc, as
described previously, also give rise to associated increments in induced drag. The
differential drag effects across the wing-span give rise in tum to contributions to yawing
moment due to sideslip. However, these contributions are often regarded as insignificant
compared with that due to the fin, at least for preliminary estimates. Note that, in
practice, the additional contributions may well be significant and that by ignoring them
a degree of inaccuracy is implied in the derivative estimate.

With reference to Figs 13.4 and 13.9 consider only the fin contribution which arises
from the turning moment in yaw caused by the fin sideforce resulting from the sideslip.
By definition this may be quantified as follows

01 2
vNv(fin) = -IF YF = 2. p Yo SFalFPIF (13.110)

where the fin sideforce due to sideslip is given by equation (13.79). Substitute for Pfrom
equation (13.78) to obtain the expression for the dimensional derivative

o 1
lVv(fin) ="2PVOSFalF'F (13.111)

and with reference to Appendix 1, the dimensionless form of the derivative is given by

Nv(fin) Tf (13 112)
Nv(fin) =!pYoSb = "FaI F •

Note that the sign of N, is positive, which indicates that it is stabilizing in effect. In a
positive sideslip the incident wind vector is offset to the right of the nose, see Fig. 13.4,
and the stabilizing yawing moment due to sideslip results in a positive yaw response to
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turn the aircraft to the right until the aircraft aligns directionally with the wind vector.
The yawing effect of the sideslip is thus nullified. The contribution from the wing due to
differential drag effects is also usually stabilizing and may well become the most
significant contribution at high angles of attack since a large part of the fin may become
immersed in the forebody wake, with the consequent reduction in its aerodynamic
effectiveness. The contribution from the lateral drag effects on the gross side area ahead
of and behind the cg may also be significant. However, it is commonly found that the
yawing moment due to sideslip arising from the side area is often negative, and hence
destabilizing. For certain classes of aircraft, such as large transport aeroplanes, this
destabilizing contribution can be very significant and requires a very large fin to ensure a
reasonable degree of aerodynamic directional stability.

13.3.3 DERIVATIVES DUE TO RATE OF ROLL

As seen by the pilot, positive roll is to the right, is consistent with a down going right
wing and the small perturbation roll rate transient is denoted p. The nature of a free
positive roll rate disturbance is such that as the right wing tends to drop it is
accompanied by a tendency for the nose to turn to the right and for the aeroplane to
sideslip to the right. The reaction to the roll rate disturbance is stabilizing if the
aerodynamic forces and moments produced in response tend to restore the aeroplane to
a wings level zero sideslip equilibrium state.

A
a'

v
~A

I

I

down going
wing

x
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Fig. 13.10 Fin sideforce generation in rolling flight
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(13.113)

(13.115)

(13.117)
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f=oY
P Bp

The sideforce due to roll rate is usually considered to be negligible except for aircraft
with a large high aspect ratio fin. Even then, the effect may well be small. Thus, the fin
contribution is assumed to be the only significant contribution to the derivative and may
be estimated as follows.

With reference to Fig. 13.10, consider the chordwise strip element on the fin of width
dh and at coordinate h measured upwards from the ox axis. When the aeroplane
experiences a positive roll rate disturbance p the strip element on the fin experiences a
lateral velocity component ph. The resultant total velocity transient V is at incidence rl
to the fin and, since the incidence transient is small by definition,

a' ~ tan a' = ph
~

The incidence transient causes a fin lift transient, which resolves into a lateral force
increment bYon the chordwise strip element and is given by

l5Y = _~pl'o2Chdhah(X1 = -~pl'opahChhdh (13.114)

where ah is the local lift curve slope and c, is the local chord. The total sideforce
transient acting on the fin in the roll rate disturbance is given by integrating equation
(13.114) from the root to the tip of the fin and by definition

o 1 JHF
pYp(fin) = Yp = -'2Pl'oP 0 ahchhdh

where Hp is the fin span measured from the ox axis. The expression for the fin
contribution to the dimensional derivative is therefore given by

o 1 jHF
Yp(fin) = -'2Pl'o 0 ahchhdh (13.116)

and with reference to Appendix 1, the dimensionless form of the derivative is given by
o H

Yp(fin) 1 JF
Yp(fin) =!pl'oSb =- Sb 0 ahchhdh

o CJL
L =- Rolling moment due to roll rate., CJp
Rolling moment due to roll rate arises largely from the wing with smaller contributions
from the fuselage, tailplane and fin. This derivative is most important since it quantifies
the damping in roll and is therefore significant in determining the dynamic character­
istics of the roll subsidence mode, discussed in some detail in Section 7.2. The following
analysis considers the wing contribution only.

With reference to Fig. 13.11, when the right wing panel experiences a positive
perturbation in roll rate p, assuming the aircraft rolls about the ox axis, then the small
increase in incidence a' at the chordwise strip element is given by

ri ~ tan a' =py (13.118)
~
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Fig. 13.11 Wing incidence in rolling flight

There is, of course, a reduction in incidence on the corresponding chordwise strip
element on the left wing panel. Denoting the total lift and drag increments in the
disturbance on the chordwise strip element on the right wing panel L' and D'
respectively, then

J} =4pVo2Cydyay(ae +a') (13.119)

and

(13.120)

The normal force increment c5Z(right) acting at the chordwise strip element in the roll rate
perturbation is given by

c5Z(right) = -L' cos e' - D'sin ex' ~ -L' - D'ex' (13.121)

since rl is a small angle. Substitute for L', D' and ex' from equations (13.119), (13.120)
and (13.118) respectively to obtain

c5Z(righ,) = - 4PVo2(ayae+ (a). + CDy) ~)cydY (13.122)

The resulting increment in rolling moment is then given by

1 2( PY)c5L(rilh,)=yc5Z(righ')=-2PVo ayae+(ay+CDy)Vo cyydy (13.123)

and the corresponding increment in rolling moment arising from the left wing panel,
where the incidence is reduced by ex' since the panel is rising with respect to the incident
air flow, is given by
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<5L(left) = -y<5Z(left) = ~pYo2(ayexe - (ay+ CDy)~)cyYdY (13.124)

The total rolling moment due to roll rate is obtained by summing the increments from
the right and left chordwise strips, given by equations (13.123) and (13.124) respectively,
and integrating from the root to the tip of the wing .

L 10tal = J(<5L(1eft) + <5L(right}) = -PYoP I<ay+CDy)cyydy (13.125)
span

and by definition

pip =L total = -PYop I(ay+CDy)cyydy

Whence, the dimensional derivative expression is given by

L, = -P Yo IS(ay+ CD )cyydy
o y

(13.126)

(13.127)

(13.128)

Yawing moment due to roll rate

and with reference to Appendix 1, the dimensionless form of the derivative is given by

t., = I ~~b2 =- 2s
1

2 r(ay+ CD )cyydy
"iP 0 s Jo Y

where b = 2s is the wing-span.

Ii =8N
p 8p

Yawing moment due to roll rate is almost entirely determined by the wing contribution,
although in some aircraft a large fin may "give rise to a significant additional
contribution. Only the wing contribution is considered here.

It is shown in Fig. 13.11 that in a roll rate perturbation the chordwise strip element
on the right (down going) wing experiences an incremental increase in lift and induced
drag, given by equations (13.119) and (13.120), whilst there is an equal decrease in lift
and induced drag on the corresponding strip on the left (up going) wing. The differential
drag thereby produced gives rise to the yawing moment perturbation.

With reference to Fig. 13.11, the longitudinal axial force increment acting on the
chordwise strip element on the right wing panel is given by

lJX(right) = L' sin ri - D' cos a' ~ L'(x' - D' (13.129)

(13.131)

Substitute for L' and D' from equations (13.119) and (13.120) respectively and write

CD. = dd
CD

(exe + ex') (13.130)
J (Xy

to obtain

~ 1 2( , dC D) ( . ') d
uX(right) = '2PYo aya - dexy exe +a cy Y

The incremental axial force gives rise to a negative increment in yawing moment given
by



(13.132)

(13.133)
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bN(rigbl) = -ybX(rigbl) = -~ PJ'o2(aya' - ~~: )(ae +a')cyydy

The reduction in incidence due to roll rate on the corresponding chordwise strip element
on the left wing panel gives rise to a positive increment in yawing moment and, in a
similar way, it may be shown that

bN(lefl) = ybX(lefl) = - ~ PJ'o2 (aya' + ~~: )(ae - a')cyydy

The total yawing moment increment due to roll rate is given by summing equations
(13.132) and (13.133) and substituting for (x' from equation (13.118)

bNtolal = bN(1efI) + bN(rigbl) = -P J'op(a,ae - ~~: )CyldY

By definition, the total yawing moment due to roll rate is given by

Whence, the expression for the dimensional derivative

o JS( dCD)N, = -P J'o 0 CI, - day cyrdy

r

Fig. 13.12 Fin incidence due to yaw rate
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where CLv = ayae is the equilibrium local lift coefficient. With reference to Appendix 1,
the dimensionless form of the derivative is given by

(13.137)

13.3.4 DERIVATIVES DUE TO RATE OF YAW

As seen by the pilot, a positive yaw rate is such that the nose of the aeroplane swings
to the right and the smallperturbation yaw rate transient is denoted r. The nature of a
free positive yaw rate disturbance is such that as the nose swings to the right, the right
wing tends to drop and the aeroplane sideslips to the right. The reaction to the yaw rate
disturbance is stabilizing if the aerodynamic forces and moments produced in response
tend to restore the aeroplane to a symmetric wings level equilibrium flight condition.

o 8Y
~ =- Sideforce due to yaw rate

r 8r

For most conventional aeroplanes the sideforce due to yaw rate is insignificant unless
the fin is relatively large. In such cases the fin lift generated by the yawing motion gives
rise to a sideforce of significant magnitude.

Referring to Fig. 13.12, in a yaw rate perturbation the transient incidence of the fin
may be written

rlFa' ~ tan a'=-
JtQ

(13.138)

(13.140)

where IF is the moment arm of the fin aerodynamic centre about the centre of rotation
in yaw, the cg, and by definition, the incidence transient is a small angle. The resultant
transient fin lift L~ gives rise to a sideforce YF

IF =L~coslX' ~~pYo2SFaIFlX' =~pYoSFIFaIFr (13.139)

By definition, the sideforce arising in a yaw rate disturbance is given by

o 1
r~ = YF =2p JtQSp/FalFr

Whence, the expression for the dimensional sideforce due to yaw rate derivative is given
by

(13.141)

and with reference to Appendix 1, the dimensionless form of the derivative is given by

f -
y, = tpioSb = VFalF (13.142)

where the fin volume ratio jip is given by equation (13.109). Clearly, the resolved
component of the induced drag transient on the fin D~ will also make a contribution to
the total sideforce transient. However, this is usually considered to be insignificantly
small compared with the lift contribution.
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Fig. 13.13 Wing forces due to yaw rate

o fJL
L=­

r fJr Rolling moment due to yaw rate

In positive yawing motion the relative velocity of the air flowing over the right wing
panel is decreased whilst the velocity over the left wing panel is increased. This gives rise
to an increase in lift and induced drag on the port wing with a corresponding decrease
in lift and drag on the starboard wing. The force increments thus produced result in a
rolling moment and a yawing moment about the eg. A contribution to rolling inoment
also arises due to the sideforce generated by the fin in yawing motion although it is
generally smaller than the wing contribution.

With reference to Fig. 13.13, the velocity at the chordwise strip element on the right
wing during a yaw rate perturbation is given by

v = ~ - ry (13.143)

and the total lift on the chordwise strip element during the perturbation is given by

/ 1 2 1 2
bL(right) = 2PV cydyCLy =2P(VO - ry) cydyCLy

1 2= "2 p(VO - 2ryVO)cydyCL y (13.144)

when products of small quantities are neglected. The rolling moment due to the lift on
the chordwise strip element on the right wing is therefore given by

15L(righ,) = -15L(righl)Y = -~p(Vi - 2rY'Vo)cyydyCLy (13.145)

Similarly, the rolling moment due to the lift on the chordwise strip element on the left
wing is given by
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<5L(lefl) = <5L(lefl)Y = ~ p(Yo2+2ryYo)cyydyCLy (13.146)

Thus, the total rolling moment due to yaw rate arising from the wing is given by
integrating the sum of the components due to the chordwise strip elements, equations
(13.145) and (13.146), over the semi-span

L wing = r . (<5L(left) + <5L(right) = 2pYor IS CLyCyldy
Jsemlspan 0

(13.147)

By definition, the rolling moment due to wing lift in a yaw rate disturbance is given by

(13.148)

(13.149)

(13.150)

Whence, the expression for the wing contribution to the dimensional rolling moment
due to yaw rate derivative is

J
s

o .. . 2
4(wing) =2pYo 0 CLyCyy dy

and with reference to Appendix 1, the dimensionless form of the derivative is given by

Lr(wing) 1 J5 ..a
Lr(wing) = !pYoSb2 = SS2 0 CLyCyy dy

where b =2s is the wing-span.
Note that for a large aspect ratio rectangular wing it may be assumed that CL = CL ,
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Fig. 13.14 Rolling moment due to yaw rate arising from the fin
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the lift coefficient for the whole wing, and, that cy = c, the constant geometric chord of
the wing. For this special case it is easily shown, from equation (13.150), that

1
L, = 6CL (13.151)

However, it should be appreciated that the assumption relating to constant lift
coefficient across the span is rather crude and, consequently, the result given by equation
(13.151) is very approximate although it can be useful as a guide for checking estimated
values of the derivative.

The fin contribution to the rolling moment due to yaw rate derivative arises from
the moment about the roll axis of the sideforce generated by the fin in yaw. The sideforce
is generated by the mechanism illustrated in Fig. 13.12 and acts at the aerodynamic
centre of the fin, which is usually above the roll axis, and hence gives rise to a negative
rolling moment. The situation prevailing is illustrated in Fig. 13.14.

With reference to Fig. 13.14, a rolling moment is developed by the fin sideforce due
to yaw rate YF, which is given by equation (13.139), acting at the aerodynamic centre
which is located hF above the roll axis. Whence, the rolling moment is given by

1
L fm = YFhF=2: pYoSFIFalFrhF (13.152)

By definition, the rolling moment due to fin sideforce in a yaw rate disturbance is given
by

o 1
rL,(fin) = L fin =2: pJli>SFIFaIFrhF

Hence, the fin contribution to the dimensional derivative is given by

o 1
Lr(fin) = 2: p ~SFIFalFhF

(13.153)

(13.154)

As before, and with reference to Appendix 1, the dimensionless form of the derivative
is given by

Lr(fin) - hF IF
Lr(fiD) = !pYoSb2 = al f VFb == -Lv(fin)b (13.155)

The total value of the rolling moment due to yaw rate derivative is then given by the
sum of all the significant contributions.

'0 aN
N.. = - Yawing moment due to yaw rate, ar
The yawing moment due to yaw rate derivative is an important parameter in the
determination of aircraft directional stability. In particular, it is a measure of the
damping in yaw and is therefore dominant in determining the stability of the oscillatory
dutch roll mode. The significance of this derivative to lateral-directional dynamics is
discussed in detail in Section 7.2. The most easily identified contributions to yaw
damping arise from the fin and from the wing. However, it is generally accepted that the
most significant contribution arises from the fin, although in some aircraft the fin
contribution may become significantly reduced at high angles of attack in which case the
wing contribution becomes more important.
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Considering the wing contribution first, this arises as a result of the differential drag
effect in yawing motion as illustrated in Fig. 13.13. Referring to Fig. 13.13, the total
drag on the chordwise strip element on the right wing subject to a steady yaw rate r is
reduced for the same reason as the lift, given by equation (13.144), and may be written

aD(right) =~p(Yo2 - 2ryYo)cydyCDy (13.156)

The yawing moment about the cg generated by the drag on the chordwise strip element
is

aN(righl) = aD(righl)y =~p(Vl- 2ryYo)cyydyCDy (13.157)

and similarly, for the yawing moment arising at the corresponding chordwise strip on
the left wing

aN(ldl) = -aD(lefOY = _~p(Yo2 + 2ryYo)cyydyCDy (13.158)

Thus, the total yawing moment due to yaw rate arising from the wing is given by
integrating the sum of the components due to the chordwise strip elements, equations
(13.157) and (13.158), over the semi-span

N wing =1. (~N(right) - ~N(lert» = -2p l'<»r IS CDycyydy
semlspan 0

(13.159)

(13.162)

(13.163)

By definition, the yawing moment due to differential wing drag in a yaw rate
perturbation is given by

rNr(wina> = N wing = -2pYor 1: CDycyydy (13.160)

Hence, the expression for the wing contribution to the dimensional yawing moment
due to yaw rate derivative is

Nr(wina> = -2pYo 1: CDycyydy (13.161)

and with reference to Appendix 1, the dimensionless form of the derivative is given by

Nr(wing) 1 JS .. .2
Nr(wing) =!PYoSlr =- sSl 0 CDyCyY dy

where b = 2s is the wing-span.
As for the derivative L" for a large aspect ratio rectangular wing it may be assumed

that CDy = CD' the drag coefficient for the whole wing, and that cy = C, the constant
geometric chord of the wing. For this special case it is easily shown, from equation
(13.162), that

1
Nr(wing) =6CD

Although the result given by equation (13.163) is rather approximate and subject to
the assumptions made, it is useful as a guide for checking the value of an estimated
contribution to the derivative.
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The -fin contribution to yawing moment due to yaw rate is generated by the yawing
moment of the fin sideforce due to yaw rate. The mechanism for the generation of fin
sideforce is illustrated in Fig. 13.12 and, with reference to that figure and to equation
(13.139), the yawing moment thereby generated is given by

1 2
Nfm = -YFIF= -"2pYoSFIFalFr (13.164)

By definition, the yawing moment due to the fin in a yaw rate perturbation is given by

o 1 2
rNr(fin) = Nfm = -'2p J/oSFIFalFr (13.165)

Whence, the expression for the fin contribution to the dimensional yawing moment due
to yaw rate derivative is

o 1 2
N,(fin) = -"2pYoSF/FalF (13.166)

As before, and with reference to Appendix 1, the dimensionless form of the derivative
is given by

o

N,.(fin) - IF IF
Nr(fin) =!pYoSb2 = -aiF VFb = -bNv(fin) (13.167)

The fin volume ratio VF is given by equation (13.109). The total value of the yawing
moment due to yaw rate derivative is therefore given by the sum of all the significant
contributions.

13.4 Aerodynamic control derivatives

Estimates may be made for the aerodynamic control derivatives provided that the
controller in question is a simple flap-like device and provided that its aerodynamic
properties can be modelled with a reasonable degree of confidence. However, estimates
of the aileron and rudder control derivatives obtained from simple models are unlikely
to be accurate since it is very difficult to describe the aerodynamic conditions applying in
sufficient detail. Estimates for the lateral-directional aerodynamic control derivatives
are best obtained from the appropriate ESDU data items or, preferably, by experimental
measurement, although an approximate analysis is given in Babister (1961). For this
reason, simple models for the aileron and rudder control derivatives are not given here,
although crude estimates may be obtained by the same methods as used to estimate the
elevator derivatives as described below.

13.4.1 DERIVATIVES DUE TO ELEVATOR

Typically, the lift coefficient for a tailplane with elevator control is given by

CLT = ao+ al(XT + a2'1 (13.168)

where al is the lift curve slope of the tailplane and a2 is the lift curve slope with respect
to elevator angle fl. The corresponding drag coefficient may be expressed

CDT = CD~ + ~CiT (13.169)
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where all of the parameters in equation (13.169) are tailplane dependent.

o axx,,=­0"
Axial force due to elevator

It is assumed that for a small elevator deflection, consistent with a small perturbation,
the resulting axial force perturbation arises from the drag change associated with the
tailplane only. Whence

1
X == XT = -DT = -5.PyZSTCD-r (13.170)

Thus

o aXT 1 2 aco-r
X" =a;;- = -5. Py ST--a;;-

Substitute for CD-r' from equation (13.169), into equation (13.171) to obtain

X =axT = _ y2S k. C acLr
" 8t7 P T T Lr a"

(13.171)

(13.172)

(13.174)'

For a small perturbation, in the limit Y ~ J.O, from equation (13.168) BCLT/at, ~ a2 and
equation (13.172) may be written

X" = -pVlSTkrCLTa2 (13.173)

With reference to Appendix 1, the dimensionless form of the derivative is givenby

X X" ST
" = !p~S = -2Sk,-CLTaz

o azz=-" a"
Normal force due to elevator

As before, it is assumed that for a small elevator deflection the resulting normal force
perturbation arises from the lift change associated with the tailplane only. Whence

1
Z == ZT= -LT= -5.PyZSTCLT (13.175)

Thus

z = aZT == _!pV2STaCLT
"a" 2 ar,

Substitute for CLr' from equation (13.168), to obtain

o aZT 1 2

Z" = a" = -5.Py STlJz

(13.176)

(13.177)

(13.178)

For a small perturbation, in the limit V ~ ~ and with reference to Appendix 1, the
dimensionless form of the derivative is given by

Z" ST
Z" =!p~S = -Saz
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o aM
1l(,=­;n, Pitching momentdue to elevator

(13.180)

(13.181)

It is assumed that the pitching moment resulting from elevator deflection is due entirely
to the moment of the tailplane lift about the cg. Hence

1
ME M T = -LTl-r = -1.Py2STITCLT (13.179)

Thus, it follows that

o aMT 1 2 aCLT 0

M" =a;;- =- 2PY STl-ra;;- =Z,IT

With reference to Appendix 1 the dimensionless form of the derivative is given by

~ STIT -
M,,=) ==--- a2=-~a2

iPViSc Sc .
where V;. is the tail volume ratio.
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Appendix 1
Definitions of Aerodynamic Stability and

Control Derivatives

Notes

(i) The derivatives given in Tables Al.5 to Al.8 are all referred to generalized body axes,
and U, = J;O cos Oe and ~ = l'O sin 0e. In the particular case when the derivatives are
referred to wind axes, Oe = 0 and the following simplifications can be made: U, = ~,

~ = 0, sinOe = 0 and cosOe = 1.

(ii) The equivalent algebraic expressions in Tables AI.5 to AI.S were derived with the
aid of the computer program Mathcad 4.0 which includes a facility for symbolic
calculation.

(iii) In Tables Al.5, Al.6, Al.7 and Al.8 normalized mass and inertias are used which
are defined as follows

, m
m=-l-

iPJ;OS

, Ix
t; =!pVoSb

I'=~
Y !PJ;OSC

I' t,
z = kp~Sb

t: i;
xz = kp~Sb
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Table AI.I Longitudinal aerodynamic stability derivatives

Dimensionless Multiplier

!p J.OS
ip~S

ipSt
~p~St

!p~S

i PJ.OS
!pSt

~P~St
ip JtOSc
!p~Sc

1 :2iPSe
I T/ S:2iPJ#O e

Dimensional

Table AI.l Longitudinal control derivatives

Dimensionless Multiplier

!p J'o2S
ip Ji02S

!pViSc
1
1

Dimensional



Table AI.3 Lateral aerodynamic stability derivatives

Dimensionless Multiplier Dimensional

!p~S
0

~ ~
0

~ ~pJIOSb Y;,
~pJtOSb

0

Y; l';.
0

Lv !pJ!OSb Lv
!p JIOSb2

0

Lp Lp

!p JIOSb2 0

Lr t;
0

Nv !p~Sb Nv
tp J1>Sb2 0

N, N,
tp~Sb2

0

Nr N,

Table Al.4 Lateral aerodynamic control derivatives

Dimensionless Multiplier Dimensional

!p JI02 S
0

~ ~
~pJlO2Sb

0

L~ L~

!p JI02Sb
0

N~ N~

~P Jt02
S

0

l{ l{
!pJlO2Sb 0

L, L,
tp JI02Sb

0

N, He
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Table AI.S Concise longitudinal aerodynamic stability derivatives

Equivalent expressions

Concise
derivative

in terms of
dimensional derivatives

Zw
m-Zw

Mw+ ZwM..
Iy Iy(m - Zw)

Xq-m~ (Zq+mUe)Xw
~---+ 0

m m(m-Zw)

Zq+mUe

m-Zw

Mq (Zq+ mUe)Mw- + -------~-
ly ly(m - Zw)

(J
Xwgsin (Je

-gcos e - 0

m-Zw

mgsin8e

m-Z.w
Mwmgsin(Je

Iy(m - Zw)

in terms of
dimensionless derivatives

x {;-XwZu
~+ "0
m' -m-/(-:-m;;-.'-----~-Z-w-:-)

Zu
m' -1..Z·Yo w

m' -1..Z·Yo w

M ~MwZw
~+ "0 =
I; I;(m' - ~ Zw)

~X - m'~ (~Zq +«ust»,
q e + "0

M M(ml-~Z ..)

~Zq +m'Ue

m'-1..Z·Yo w

fXwgsin(Je
- g cos (Je - 0, ~

m --Z·Yo w

m'gsin8e
m'-1..Z·Yo w

~ M ' . (JV; wmgs1n e

I' (m' -.I.Z.)y J'O w
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Table AI.6 Concise longitudinal control derivatives

Equivalent expressions

Concise
derivative

»,

Z"

mIl

in terms of
dimensional derivatives

x" XwZ"-+ 0

m m(m - Zw)

Z"--0-
m-Zw

~ MwZ"
-+--~~
I, 1,(m - Zw)

Zt--0-
m-Z",

AI. + M.,Z,.
I, I,(m - Z",)

in terms of
dimensionless derivatives

J1>X txwz"__"+_"'r"0 o:-

m' m'(m'-l...Z.)JO W

~Z"
m'-1..Z·Vo W

m'-1..Z·Yo W
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Table At.7 Concise lateral aerodynamic stability derivatives

Equivalent expressions

Concise in terms of in terms of
derivative dimensional derivatives dimensionless derivatives

Yv t Y;,

m m'
0 (by;' + m'~)v, (~+m~)

m m'
0

(b~ - m'Ue)v. (~- mUe)
m m'

Yq, gcos(Jc gcos (Je

Y~
gsin8c gsin8c
0 0

(I~Lv + I~zNv)Iv iu; + IxzNv)
(I~I: - I~~)(IxIz - I;z)

0 0

(I~Lp + I~zNp)Ip iu; + IxzNp)
(I~I: - I~~)(IxI: - I~z)

0 0

(I~Lr + I:zNr)lr (IzL, + IxzN,)
(I~I~ - ~~)(IxIz - I~z)

1. 0 0

I", 0 0
0 0

(I~Nv + I~zLv)n, (IxNv+ IxzLv)
(I~I: - I~~)(IxI: - I;z)

0 0

(l~Np + I~zLp)np (IxNp+ IxzLp)
(I~I~ - ~;)(IxIz - I;z)

0 0

(I~Nr + I~zLr)n, (IxN,+ IxzLr)
(I~I~ - ~~)(IxIz - I;z)

nq, 0 0

n~ 0 0



Table Al.8 Concise lateral control derivatives

Equivalent expressions
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Concise in terms of in terms of
derivative dimensional derivatives dimensionless derivatives

0
l'(,~

y~ . ~ -,-
m m

0 0

J-O(I~L~ + I'xzN~)t, (IzL~ + IxzN~)
~

(I~I~ -I~~)(IxIz - I~:)
0 0

Yo(I~N~ + I~:L~)1'1: (IxN, + IxzLe)10

(I~I~ -I~;)(IxI: - I~z)
0

~l{Y, lC -,
m m

0 0

Yo(l~L, + I:zN,)1, (IzL, + IxzN,)
(I~I~ -I~~)(IxI;: -I;z)

». (IxN, + Ixzl,) Yo(l~N, + l:zL,)
(I~J~ - I~~)(IxI: - I;z)



Appendix 2
Aircraft Response Transfer Functions

Referred to Aircraft Body Axes

1. Longitudinal response transfer functions in terms of dimensional
derivatives

The following longitudinal numerator polynomials describe the motion of the aircraft
in response to elevator fJ input. To obtain the numerators describing the response to
engine thrust input it is simply necessary to replace the subscript fJ with r.

Common denominator polynomial ~(s) = as4 + bs' + cs2 + ds + e

a mly(m - Zw)

b Iy(XIlZw- XWZIl ) - mly(XIl + Zw) - mMw(Zq + mUe)
-mMq(m- Zw)

c IyCXIlZw- XWZIl ) + (XuM", - XwMu)(Zq + mUe)

+ ZIl(XwMq- XqM",) + (XuMq- XqMu)(m - Zw)

+m(MqZw- MwZq) + m~(MwZu - MuZw)
2 o. 0 0

+m (Mwg Sln 8e + ~Mu - UeMw)

d (XuMw- XwMu)(Zq + mUe)

+ (MuZw- MwZIl)(Xq- m~) + Mq(XwZu- XuZw)
+mgcos8e(MwZu+ Mu(m - Zw» + mgsin8c(XwMu - XuMw+ mMw)

e mgsin 8e(XwMu- XuMw) + mgcos 8e(MwZu - MIlZw)
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Numerator polynomial N:(s) = as3 + bs2 + cs + d

a ly(:XwZ" + X,,(m - Zw))

b X"(-lyZw - Mw(Zq + mUe) - Mq(m - Zw))
+Z,,(lyXw- XwMq+ MwCXq- m~))

+ M,,«Xq- m~)(m - Zw) + Xw{Zq + mUe»

c X,,(ZWMq - Mw(Zq + mUe) + mgsin OeMw)
+Z,,(Mw(Xq- m~) - XwMq- mgcosOeMvJ
+ M,,(Xw(Zq + mUe) - Zw{Xq- m~) - mgcos6e(m - Zw) - mgsin(JeXw)

d X"MwmgsinOe- Z"Mwmgcosge+ ~(Zwmgcosge - Xwmg sin ge)

Numerator polynomial N;(s) = as3 + bs2 + cs + d

a mlyZ"

b lyX"Zu - Z,,(lyXu+ mMq) + m~(Zq + mUe)

c X,,(~(Zq + mUe) - ZUMq) + Z"CXuMq- Mu(Xq- m~»
000 00 2.

+M,,(Zu(Xq- m~) - Xu{Zq + mUe) - m gSln6e)

d -X"Mumgsin0e + Z"Mumgcos0e + M,,(XumgsinB, - Zu mgcosBe)

Numerator polynomials N~(s) = s(as2 + bs+ c) and N:(s) = as2 + bs+ c

a mZ"Mw+ mM"Cm - Zw)

b X,,(ZuMw + MuCm - Zw» + Z,,(mMw- XuMw+ MuX~,)
+M,,(-Xu(m - Zw) - ZuXw - mZw)

c X"CZuMw - MuZw) + Z,,(XwMu- MwXu) + M,,(XuZw- ZuXw)
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2. Lateral-directional response transfer functions in terms of
dimensional derivatives

The following lateral-directional numerator polynomials describe the motion of the
aircraft in response to aileron einput. To obtain the numerators describing the response
to rudder input it is simply necessary to replace the subscript ewith ,.

Denominator polynomial A(s) = s(as4 + bs3 + cs2 + ds + e)

a

b

c

d

e

a

b

c

d

m(Ixlz - I;z)
o 2 0 0 0 0

- Yv(IxIz - Ixz) - m(Ix~ + IxzLr) - m(lzLp+ Ixz N, )

~(IxNr + Ixzir)+ ~(IzLp + IxzNp) - (~+ m~)(Iziv + IxzNv)
- (Y, - mUe)(lx~ + IxzLv) +m(ipN, - IrNp)

~(irNp - LpNr)+ (~+ m~)(IvNr - LrN,J

+ (~ - mUe)(ipNv - LvNp)

- mgcos 8e(IzLv+ IxzNv) - mgsin 8e(lxNv+ IxzLv)

mgcos8e(LvNr - LrNv)+ mgsinBe(LpNv - LvNp)

Numerator polynomial N~(s) = s(as3 + bs2 + cs + d)

o 2
~(Ixlz - Ixz)

~(-IxNr - il; - Ixz(Lr+Np» + L~(lz(Y, + m~) + Ixz(~ - mUe»

+N~(lx(Y, - mUe) + Ixz(~ + m~»

~(LpNr - LrNp)

+ L~(Np(Y, - mUe) - Nr(~ + m~) + mg(lzcos 8e+ Ixzsin Be»

+N~(Lr(y, + m~) - LpCy, - mUe) + mg(Ixsin8e + Ixzcos8e»

L~(Np mgsin Be - Nr mgcos 8e)+ N~(Lr mgcos 8e - L, mg sin 8e)
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Numerator polynomials N~(s) = s(as3 + bs: + cs +d) and Nt(s) = as)+ bs2 + cs + d

a m(IzL~ + Ix:N,)

b ~(IzLt' + 'x:~J + L~( -1: t, - mN,) + N~(mLr -lx%t)
c ~(Lr~, - LI,Nr) + i~(Nr ~ - Nvt + mUeNv)

+ Ne(Iv ~ - l; ~, - mUeLv)

d mgsin 6e(LvN~ - L~~,)

Numerator polynomials N~(s) = s(as3 + bs2 + cs + d) and N!(s) = as3 + bs2 + cs+ d

a m(lxN~ + Ix:i,)

b ~(1"'(Nv + IxzLv) + L~(mNp - Ix:y;,) - Ne(lxt +mip)
c ~(LvNp - Lp~) + L~(Nv y;, - Np~ +m~Nv)

+ N~(Lp ~, -LlI ~ - m~Lv)

d mgcos f)e(L~~, - LvN~)
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3. Longitudinal response transfer functions in terms of concise
derivatives

Again the longitudinal numerator polynomials describe the motion of the aircraft in
response to elevator '1 input. To obtain the numerators describing the response to engine
thrust input it is simply necessary to replace the subscript '1 with r.

Common denominator polynomial A(s) = as4 + bs3 +cs2 + ds+ e

a

c (mqzw- mwzq)+ (mqx" - m"xq)+ (x"zw - xwz,,) - m9

d (m9x" - m"x9) + (m9zw - mwz9)+ mq(xwz" - x"zw)

+xq(m"zw - mwz,,) + zq(mwx" - m"xw)

e mo(xwz" - x"zw) + xo(m"zw - mwz,,) + zo(mwx" - m"xw)

Numerator polynomial N;(s) = as' + bs2 + cs + d

a x"

b m"xq - x'1(mq+ zw) + z"xw

c m,,(xwzq- xqzw+ xo)+ x,,(mqzw- mwzq- mo) + z,,(mwxq- mqxw)

d m,,(xwzo - xozw) + x,,(mozw- mwzo) + z,,(mwxo - moxw)

Numerator polynomial N;(s) = as3 + bs2 + cs + d

a z"

b m"zq + x"z" - z,,(mq+ x,,)

c m"(xqz,, - X"Zq + zo)+ x"(m,,zq - mqz,,) + z"(mqx,, - m"xq- mo)

d m,,(xoz" - x"zo) + x,,(m"zo - m6z,,) + z"(m6x,, - m"x6)

Numerator polynomials N~(s) = s(as2 + bs + c) and N:(s) = as' + bs + c

a m"
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4. Lateral-directional response transfer functions in terms of
concise derivatives

As before, the lateral-directional numerator polynomials describe the motion of the
aircraft in response to aileron einput. To obtain the numerators describing the response
to rudder input it is simply necessary to replace the subscript ewith C.

Denominator polynomial Ats) = ass+ bs4 + cs3 + di' + es +f

a

b -(lp + n, + y,,)

c (lpn, - I,np) + (n,y" - nvYr) + (lPY" - 'vYp) - (l. + n",)

d (lpn", - I",np) + (l.n, - lrn.) + 'v(nryp- npY, - Y.)

+n.,(l,y, - IrY, - y",) + y.,(l,n,- lpn, + I. + n",)

e (l.n", - l",n.)+ l.,«nry. - n.y,) + (n",y, - npY",»

+nv«(l.y,~ l,y.) + (lPy", - l",yp» + y,,«(l,n. - l.n,) + (l",np- 'pn",»

f l"(n,,,y. - n.y",) + n"(l.y,,, - l",y.)+ YI1(l",n. - '.n",)

Numerator polynomial N~(s) = as4 + bs3 + ci' + ds+ e

a y~

b l~yp + n~y, - y~(lp + n,)

c l,(npy, - n,yp+ y.) + n,(l,yp - Ipy, + y",) + y,(lpn, - l.n, - I. - nt/J)

d l,(n.y, - n,y. + n,y", - n",yp) + n,(l,y. - l.y, + I",yp - 'py",) + y~.(l.n, - I,n. + 'pn", - I",n,)

e l,(n.y", - n",y",) + n,(l",y. - l",y",) + y~(l",n", - '",n.)

Numerator polynomials N~(s) = s(as3 + bs2 + cs + d) and Nt(s) = as3 + bs2 + cs+ d

a I,

b -l,(n, +Yv) + n,l, + y,111

Numerator polynomials N':(s) = s(as3 + bs2 + cs + d) and N! (s) = as3 + bs2 + cs+ d

a n,

b l,np- n,(lp+ Yv) + y,n"

c I,(nvyp - npy" + n.) + n,(l,yv -lvYp -I.) + y,(lvnp -lpnI')

d I,(n"y", - n.yv) + n,(l.y" - 'vy.) + y,(lvn. - '.n,,)
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Units, Conversions and Constants

Table A3.1 Factors for conversion from Imperial to SI units

Parameter

mass
length

velocity
acceleration

force
moment
density
inertia

Symbol

m
I
V
a
F
M
p
I

Imperial unit

1 slug
1ft

1ftls
I ft/s2

lib
llbft

1 slug/It"
1 slug tr'

Equivalent SI unit

14.594kg
O.3048m

O.3048m/s
O.3048m/s2

4.448N
1.356Nm

515.383kglm3

1.3558kgm2

Table A3.2 Useful constants

Constant Symbol Imperial units SI units

1 knot kt 1.689ft/s O.515m/s

Sea level air density Po 0.00238 slug/ft3 1.22Skg/m3

Speed of sound "0 1116.44ft/s 340.29m/s
at sea level

Radian rad 57.3 0 57.30

Gravitational g 32.17ft/s2 9.81 m/s2

acceleration



Appendix 4
A Very Short Table of Laplace Transforms

F(t) f(s)

1
-
s

2 eat 1-s-a

3 sinkt k
s2+/(l

4 coskt s
s2+/(l

5 e-at sinkt k
(s + a)2 + /(2

6 e-at coskt (s+a)
(s + a)2 + k2



Appendix 5
The Dynamics of a Linear Second Order

System

The solution of the linearized small perturbation equations of motion of an aircraft
contains recognizable classical second order system terms. A review of the dynamics of a
second order system is therefore useful as an aid to the correct interpretation of the
solution of the aircraft equations of motion.

Consider the classical mass-spring-damper system whose motion is described by the
equation of motion

mx(t) + cx(t) + kx(t) =f(t) (AS.l)

where x(t) is the displacement of the mass and f(t) is the forcing function. The constants
of the system comprise the mass m, the viscous damping c and the spring stiffness k.

Classical unforced motion results when the forcing f(t) is made zero, the mass is
displaced by A, say, and then released. Equation (AS.l) may then be written

mx(t) + cx(t) + kx(t) =0 (AS.2)

and the initial conditions are defined, X(O) = 0 and ~(O) = A. The time response of the
motion of the mass may be found by solving equation (A5.2) subject to the constraints
imposed by the initial conditions. This is readily achieved with the aid of the Laplace
transform.

Thus

L{mx(t) + cx(t) + kx(t)} = mCrx(s) - sx(O) - x(O» + c(sx(s) - x(O» + kx(s)

=m(ix(s) - sA) + c(sx(s) - A) + kx(s) = 0

which, after some rearrangement, may be written

A(ms + c)
x(s) = -(m-;-=--+-cs-+-k-)

Or, alternatively

A(s + 2(ro)
x(s) = (sl +2'cos+ co)

where

(AS.3)

(AS.4)



2 ' ~ c
~,ro =­

m
2 kro =­

m
, =system damping ratio

en = system undamped natural frequency
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(A5.5)

The time response x(t) may be obtained by determining the inverse Laplace transform
of equation (A5.4) and the form of the solution obviously depends on the magnitudes of
the physical constants of the system m, c and k. The characteristic equation of the system
is given by equating the denominator of equation (AS.3) or (A5.4) to zero

ms: +cs+k = 0

or, equivalently

; .+ 2'ros + 00
2 =0

(A5.6)

(A5.7)

To facilitate the determination of the inverse Laplace transform of equation (A5.4),
the denominator is first factorized and the expression on the right-hand side is split into
partial fractions. Whence

xes) = A(s+2ew)
(s + w(C + Jc2

- 1»(s + ro(C - .;r;:::t»

(
(1+--L-) (1 ---L-) )A ..fiCi ..fiCi

="2 (s+ w(e + Je2
- 1»+ (s+ w(e - Je2

- 1» (AS.8)

With reference to the table of transform pairs, Appendix 4, transform pair 2, the inverse
Laplace transform of equation (AS.8) is readily obtained

x(t) = Ae-wC' ((1 + e \e-'IJI..fiCi + (1 _ e \e<IJI..fiCi\
2 .;r;:::tJ .;r;:::tJ J (A5.9)

Equation (A5.9) is the general solution describing the unforced motion of the mass and
the type of response depends on the value of the damping ratio.

(i) When C=0 equation (A5.9) reduces to

A. .
x(t) = "2 (e-JC8t +eJC8t

) = A cos rot (A5.10)

which describes undamped harmonic motion or, alternatively, a neutrally stable system.

(ii) When 0 < , < 1 equation (A5.9) may be modified by writing

wn=wH
where OOn is the damped natural frequency. Thus the solution is given by
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(AS.11)

x(t) = Ae-w{l ((1 + j' )e-jront + (1 _ j' )e-j(t)D t )

2 It::?! It::?!

= Ae-w{l (cos ront - ::sin ront)

which describes damped harmonic motion.

(iii) When , = 1 the coefficients of the exponential terms in equation (A5.9) become
infinite. However, by expressing the exponentials as series and by letting' -+ 1, it may
be shown that the damped natural frequency COn tends to zero and the solution is given
by

x(t) = Ae-rot(l - rot) (A5.12)

(iv) When' > 1 the solution is given by equation (AS.9) directly and is thus a function
of a number of exponential terms. The motion thus described is non-oscillatory and is
exponentially convergent.

Typical response time histories for a range of values of damping ratio are shown in
Fig. AS.I.

It is important to note that the type of response is governed entirely by the damping
ratio and undamped natural frequency which, in turn, determine the roots of the
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Table AS.I Summary of a stable system

Damping
ratio

'=0

,= 1

, > 1

Roots of characteristic equation

(s+ jro)(s- j») = 0
Complex with zero real part

(s + w' + jwn)(s+ w, -jron)= 0
Complex with non-zero real part

(s+roi=o
Repeated real roots

(s + r.)(s + '2) =0
Real roots where

r 1 = w(' +Jr.=l")
r2= we, - Jr.=l")

Type of response

Undamped sinusoidal oscillation with
frequency co

Damped sinusoidal oscillation with
frequency ron = ro~

Exponential convergence of form
e-rot(l - rot).

Exponential convergence of general
form, k.e-r 1

' + k2e- r2
'

characteristic equation, (A5.6) or (A5.?). Thus, dynamic properties of the system may
be directly attributed to the physical properties of the system. Consequently, the type of
unforced response may be ascertained simply by inspection of the characteristic
equation. A summary of these observations for a stable system is given in Table AS.I.

The classical mass-spring-damper system is always stable, but rather more general
systems which demonstrate similar properties may not necessarily be stable. For a more
general interpretation including unstable systems in which , < 0, it is sufficient only to
note that the types of solution are similar except that the motion they describe is
divergent rather than convergent. Aeroplanes typically demonstrate both stable and
unstable characteristics which are conveniently described by this simple linear second
order model.



Appendix 6
Approximate Expressions for the

Dimensionless Aerodynamic Stability and
Control Derivatives

Table A6.1 Longitudinal aerodynamic stability derivatives

Small perturbation derivatives referred to aircraft wind axes

Derivative Description Expression Comments

Xu Axial force due BCD 1 Bt Drag and thrust
eq(13.l6) to velocity -2CD - ¥oav+!p¥osav effects due to

velocity perturbation

Xw Axial force due C
L

_ aCD Lift and drag effects
eq (13.27) to 'incidence' &x due to incidence

perturbation

X q Axial force due - acDyo Tailplane drag effect,-YT--eq (13.46) to pitch rate &xT usually negligible

Xw Axial force due _ V
T

acDyo de == X de Tailplane drag due to
eq (13.68) to downwash lag BcxT de qde downwash lag effect

(added mass effect)

Zu Normal force due BCL Lift effects due to-2CL -l'O-
eq (13.21) to velocity BY velocity perturbation

Zw Normal force due BCL Lift and drag effects-CD--eq (13.30) to 'incidence' acx due to incidence
perturbation

Zq Normal force due - VTa l Tailplane lift effect
eq (13.51) to pitch rate

Zw Normal force due - de de Tailplane lift due to-YTa.-=Z -
eq (13.72) to downwash lag dtX qdcx downwash lag effect

(added mass effect)

Mu Pitching moment ~ BCm Mach dependent,
eq (13.34) due to velocity o BY small at low speed

Mw Pitching moment dCm = -aK Pitch stiffness,
eq (13.39) due to dcx n dependent on static

'incidence' margin
Mq Pitching moment - IT IT Pitch damping, due-VTa.:== Zq:

eq (13.55) due to pitch rate c c mainly to tailplane
Mw Pitching moment - IT de de Pitch damping due to-YTa.-=--==M -

eq (13.76) due to downwash cde qdcx downwash lag effect
lag at tailplane
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Table A6.2 Lateral aerodynamic stability derivatives

Small perturbation derivatives referred to aircraft wind axes

Derivative Description Expression Comments

~ Sideforce due to eB SF)
Always negative and

eq (13.82) sideslip SYB-Sa I F hence stabilizing

Lv Rolling moment (i) wing with dihedral Lateral static
due to sideslip

1r stability, determined
eq (13.92) - Ss 0 cyayrydy by total dihedral

(ii) wing with aft sweep effect. Many

2CLtanAI/4r d contributions most of
eq (13.105) - S cyy Y which are difficult tos 0

estimate reliably.
(iii) fin contribution

- hF
Most accessible

eq (13.108) -aiFVFl; approximate
contributions given.

Nv Yawing moment (i) fin contribution Natural weathercock
eq (13.112) due to sideslip alFVF

stability, dominated
by fin effect

~ Sideforce due to (i) fin contribution Fin effect dominates,
eq (13.117) roll rate 1 fF often negligible

- Sb 0 ahchhdh

Lp Rolling moment (i) wing contribution Roll damping
eq (13.128) due to roll rate

1 r wing effects
- 2S~ 0(ay+ Coy)cyydy dominate but fin and

tail plane contribute

Np Yawing moment (i) wing contribution
eq (13.137) due to roll rate

1 f( dCo)
- 2S~ 0 CLy - day cyydy

~ Sideforce due to (i) fin contribution Many contributions,
eq (13.142) yaw rate VFal F

but often negligible

L, Rolling moment (i) wing contribution
eq (13.150) due to yaw rate S~ rCLycyydy

eq (13.155) (ii) fin contribution
- hF IF

al F VFb == -Lv(fin)b

N, Yawing moment (i) wing contribution Yaw damping, for
eq (13.162) due to yaw rate 1 [ large aspect ratio

- S~ 0 Coycyydy rectangular wing,

eq (13.167) (ii) fin contribution wing contribution is

- IF IF
approximately CD/6

-ai F VFJj = -JjNv(fin)
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Table A6.3 Longitudinal aerodynamic control derivatives

Small perturbation derivatives referred to aircraft wind axes

Derivative Description Expression Comments

X" Axial force due ST Usually
eq (13.174) to elevator -2Sk,-CLTa2 insignificantly small

Z" Normal force due ST
eq (1~.178) to elevator -Sa2

M" Pitching moment - VTa2 Principal measure of
eq (13.181) due to elevator pitch control power



Appendix 7
The Transformation of Aerodynamic Stability
Derivatives from a Body Axes Reference to

aWind Axes Reference

1. Introduction

Aerodynamic stability derivatives are usually quoted with respect to a system of body
axes or with respect to a system of wind axes. When the derivatives are quoted with
respect to one system of axes and it is desired to work with the equations of motion
referred to a different system of axes, then the derivatives must be transformed to the
system of axes of interest. Fortunately, the transformation of aerodynamic derivatives
from one axis system to another is a relatively straightforward procedure using the
transformation relationships discussed in Chapter 2. The procedure for transforming
derivatives from a body axes reference to a wind axes reference is illustrated below.
However, the procedure can be applied for transforming derivatives between any two
systems of reference axes provided their angular relationship is known.

In steady level symmetric flight a system of body axes differs from a system of wind
axes by the body incidence (Xc only as shown in Fig. 2.2. In the following sections small
perturbation force and velocity components, X, Y,Z and u, v, w respectively, are
indicated in the usual way where, here, the subscript denotes the reference axes. Small
perturbation moment and angular velocity components, L, M, Nand p, q, r, respectively,
are also most conveniently represented by vectors as described in Chapter 2. Again the
subscript denotes the reference axes system.

2. Force and moment transformation

The transformation of the aerodynamic force components from a body to wind axes
reference may be obtained directly by the application of the inverse direction cosine
matrix, as, given by equation (2.13). Writing (J = (Xc and 4J = t/J = 0 since level symmetric
flight is assumed then

(A7.1)
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Similarly, the aerodynamic moments transformation may be written

(A7.2)

3. Aerodynamic stability derivative transformations

3.1 FORCE-VELOCITY DERIVATIVES

Consider the situation when the aerodynamic force components comprise only those
terms involving the force-velocity derivatives. Then, referred to wind axes

(A7.3)

and referred to body axes

(A7.4)

Substitute equations (A7.3) and (A7.4) into equation (A7.1)

o

o

[

XOOouw

t w

ZUw

Now the transformation of linear velocity components from a wind to body axes
reference may be obtained directly from the application of the direction cosine matrix,
equation (2.12), with the same constraints as above

(A7.6)

Substitute the velocity vector referred to body axes, given by equation (A7.6), into
equation (A7.5) and cancel the velocity vectors referred to wind axes to obtain

o iww] [COs(Xc 0 Sin(Xc][i"bY
Uw

0 = 0 1 0 0
o i-sin(Xc 0 cos (Xc Z

~ ~
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or, after multiplying the matrices on the right-hand side, the following transformations
are obtained

0", 0 2 0 • 2 0 0 •

..x, Uw = Xub cos CXe + Z~ sin CXe + (X~ -I- ZUb) sm CXe cos CXe

o 0 2 0.2 0 0 •

X ww = XWb COS (Xe - ZUb sin ete - (Xll b - ZWb) SIn (XeCOS ete

j~w = t b
o 0 2 0 2 0 0

ZlIw =Zilb COS CXe - X~ sin (Xe - (Xll b - ZWb) sin (Xecos (Xe

0, 0 2 o. 2 0 0 •

Zww =Z~ COS (Xe+ Xllb sin (Xe - (X~ + ZlIb) SIn (XeCOS (Xe

3.2 MOMENT-VELOCITY DERIVATIVES

(A7.7)

Consider now the situation when the aerodynamic moment components comprise only
those terms involving the moment-velocity derivatives. Then, referred to wind axes

[~]=[~~
0

4w
] [::]

Lvw

0

lYvw

and referred to body axes

[~] =[~
0

+][::]LVb

0

N"b
Substitute equations (A7.8) and (A7.9) into equation (A7.2)

[ ~OU W Lvw ~] [~:] = [CO~IX. ~ Si~IX.] [~u
NOw 0 w Ww - sin IX. 0 COS IX. 0 b

(A7.8)

(A7.9)

(A7.10)

(A7.11)

As before, the transformation of linear velocity components from a wind to body axes
reference is given by equation (A7.6). Substitute the velocity vector referred to body
axes, given by equation (A7.6), into equation (A7.10). Again, the velocity vectors
referred to wind axes cancel and after multiplying the matrices on the right-hand side
the following transformations are obtained

L; =LVb cos (Xe + NVb sin (Xe

M,lw =MUb cos (Xe + MWb sin (Xe

M~vw = MWb cos (Xe - MUb sin (Xe

Nvw= NVb cos (Xe - L~ sin (Xe

3.3 FORCE-ROTARY DERIVATIVES

Consider now the situation when the aerodynamic force components comprise only
those terms involving the force-angular velocity derivatives, more commonly referred to
as the force-rotary derivatives. Then, referredto wind axes
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[~] = [?
0

~W] [;:]
x;
0 (A7.12)

0z;
and referred to body axes

[~] = [?
0

~ ][;:]x;
0 (A7.13)

0

Zqb

Substitute equations (A7.12) and (A7.13) into equation (A7.1)

[?
0 0

~ ][;:]X qw o ] [PW ] [cosa. 0 sin«, ] [ 0
Xqb

0 Y;w qw = 0 1 o .' Y: 0 (A7.14)
0 o r; - sin e, 0 cose, . ; 0z; z;

Now, with reference to Chapter 2, the treatment of angular velocity components as
vectors enables their transformation from a wind to body axes reference to be obtained
as before by the direct application of the direction cosine matrix, equation (2.12). Thus,
with the same constraints as above

[
Ph] _ [cosa. 0 -sina.] [Pw]
qb - .0 1 0 qw
rb sin CXe 0 cos CXe rw

(A7.15)

Substitute the angular velocity vector referred to body axes, given by equation (A7.15),
into equation (A7.14) and cancel the velocity vectors referred to wind axes to obtain

[? 0] [COSCXe

f: = 0
~w -sina.

o sineXc ] [ 0
1 0 Y

Pbo cos e, 0

o ] [COS eXe 0 - sin eXe ]
Y;b. 0 1 0
o sin «, 0 COSCXe

or, after multiplying the matrices on the right-hand side, the following transformations
are obtained

Xqw =Xqb cos CXe + Zqb sin eXe

~w = YPbcos eXe + Y;b sin CXe

f;w = Yro cos CCc - YPbsin eXe

ZqW = Zqb cos eXe - Xqb sin (Xc

3.4 MOMENT-ROTARY DERIVATIVES

(A7.16)

Consider now the situation when the aerodynamic moment components comprise only
those terms involving the moment-angular velocity derivatives, or moment-rotary
derivatives. Then, referred to wind axes
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(A7.17)

and referred to body axes

(A7.18)

Substitute equations (A7.17) and (A7.18) into equation (A7.2)

o sin (Xe ] [L
O

Pb
1 0.· 0
o COS(Xe N.

Pb

As before, the transformation of angular velocity components from a wind to body axes
reference is given by equation (A7.15). Substitute the angular velocity vector referred
to body axes, given by equation (A7.15), into equation (A7.19). Again, the angular
velocity vectors referred to wind axes cancel and after multiplying the matrices on the
right-hand side the following transformations are obtained

o 0 2 0.2 0 0 •
Lpw = LPbcos cte+ N,.b Sin cte + (Lrb + NPb) SIn <XeCOS cte

o 0 2 0.2 .0 0 •
Lrw = Lr b cos cte - NPb SIn <Xe - (L

Pb
- Nrb) SIn(Xe cos (Xe

M~w =Mllb
o. 0 2 o. 2 0 0 •

Npw = NPbcos cte - LTt, Sin cte - (LPb - Nr
b

) SInC(e cos C(e
o. 0. 2 0.2 0 0 •

N,w = N,.b COS C(e + LPb SIn C(e - (Lrb + NPb) SInC(e COS C(e

3.5 F01~CE-ACCELERATION DERIVATIVES

(A7.20)

The force-acceleration derivatives are calculated in exactly the same way as the force­
velocity derivatives. However, in this case, the aerodynamic force components referred
to wind axes are given by

and referred to body axes

[
.. ",X'b... ] •.. _ [0 0. XWt,] [~b]lb -.000 Vb

'~Zb 00 ZWb Wb

(A7.21)

(A7.22)
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Equations (A7.21) and (A7.22) are substituted into equation (A7.1), the velocity vectors
become acceleration vectors and, after some algebraic manipulation, the following
transformations are obtained

(A7.23)

3.6 MOMENT-ACCELERATION DERIVATIVES

The moment-acceleration derivatives are calculated in exactly the same way as the
moment-velocity derivatives. However, in this case, the aerodynamic moment
components referred to wind axes are given by

(A7.24)

(A7.25)

and referred to body axes

[ ~ ] = [ ~ ~ ~~][;:]
s, 0 0 0 Wb

Equations (A7.24) and (A7.25) are substituted into equation (A7.2), the velocity vectors
become acceleration vectors and, after some algebraic manipulation, the following
transformation is obtained

Ai. = Ai. COSetWw Wb e

3.7 AERODYNAMIC CONTROL DERIVATIVES

(A7.26)

The aerodynamic control derivatives are most easily dealt with by denoting a general
control input ~. The transformation of the control force derivatives from a body to wind
axes reference then follows directly from equation (A7.1) by writing

[ ~ Ow ] [ c.OSete 0 SinCXe] [~~b]
~w ~= 0 1 0 ~b s
Z - sin ete 0 cos CXe Z

~ ~

(A7.27)

The corresponding transformation of the control moment derivatives follows directly
from equation (A7.2) by writing

(A7.28)

The specific control derivative transformations are then obtained by substituting
elevator angle n, aileron angle e, rudder angle " thrust l' and so on, in place of lJ in



(A7.29)

(A7.30)
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equations (A7.27) and (A7.28). Bearing in mind that the longitudinal and lateral
equations of motion are decoupled then it follows that

X"w = X"b cos ae +Z"b sin ac

Z"w = Z"b cos«, - X"b sin«,

and

~~V = ~b
L~w = L~b cos ac + N~b sin ae

N~w = N~b cos ac - L~b sin ac

By writing 1: in place of '1 in equation (A7.29) the thrust control derivative transforma­
tions are obtained. Similarly, by writing, in place of , in equation (A7.30) the rudder
control derivative transformations are obtained.

4. Summary

The body to wind axes derivative transformations described above are summarized in
Table A7,.1. The transformations from wind to body axes are easily obtained by the
inverse procedure and these are summarized in Table A7.2 for convenience. The
corresponding control derivative transformations are summarized in Tables A7.3 and
A7.4.
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Table A7.1 Body axes to wind axes derivative transformations

Wind axes Body axes

0 20 2 0 0

XUb cos /Xc + ZMIb sin /Xc + (X~ + ZUb) sin /Xc cos c,
o 2 0 -2 0 0 •

X Wb cos /Xc - ZUb sin /Xc - (XUb - ZMIb) sin /Xc cos CCc

~b
o 2 0. 2 0 0 •

ZUb cos CCc - X Wb SIn CCc - (XUb - ZWb) SIn /Xc COS /Xc
o 2 0. 2 0 0 _

ZWb cos /Xc + XUb SIn <Xc - (XWb + ZUb) SIn /Xc COS /Xc

LV}, cos /Xc + NVb sin CCe

MUb cos CCc +MWb sin CCc

MWb cos /Xc - MUbsin /Xc

NVb cos /Xc - LV}, sin /Xc

Xlib cos <Xc + Zilb sin <Xc

YPbcos <Xc + fib sin <Xc

y;'b cos /Xc - YPb sin /Xc

Zilb COS <Xc - Xqb sin <Xc
o 2 0 2 0 0

LPb cos <Xc + NJD sin /Xc + (Lib + NPb) sin /Xc cos /Xc
o 2 0. 2 0 o.

Lib cos /Xc - NPb SIn /Xc - (LPb - N,.b) SIn /Xc COS /Xc

Mqb
o 2 0 -2 0 0 _

NPb COS /Xc - LJD sin /Xc - (L Pb - Nrb ) SID /Xc COS CCc
o 2 0 -2 0 0 _

NJD COS /Xc + LPb SID /Xc - (Lib + Npt) sm /Xc cos /Xc
o 2 0 •

XWt, COS /Xc + ZWb SIn /Xc COS /Xc
o 2 0_

Z~ COS /Xc - XWb SIn/XcCOS/Xc
M~ COS/Xc

X"b COS /Xc + Z"b sin CCc

Z"b COS<Xe - X"b sin (Xc



Appendix 7 359

TableA7.2 Wind axes to body axes derivative transformations

Body axes Wind axes

o 2 0.2 0 0 •
XUwcos ae + Zww SID ae - (XWw + ZUw) SIn ae COS ae

o 2 0. 2 0 0 •

Xwwcos ae - ZuwSIn ae+ (Xuw- ZWw) SIn ae COS ae

l:w
o 2 0. 2 0 0 •

ZuwCOS ae - XwwSIn CXe+ (Xuw- Zww)SInCXeCOScxe
o 2 0 2. 0 0

Zww COS CXe+ XUw sin CXe+ (XWw + ZUw) sin CXecos ae
LVw cos CXe - Nvw sin CXe

Muwcos exc - Mwwsin CXe
Mwwcos ae +Muwsin CXe
Nvw cos CXe+Lvw sin ae
Xqw cos ae - ZqW sin ac

Ypw cos c, - f;.w sin CXe

Y;.w cos CXe + ~w sin ac

Zqw cos ac + XqW sin ae
o 2 0. 2 0 0 •

LPw cos ac + NrwSIn ac - (Lrw+ NPw) SIn CXc COS CXe
o 2 0. 2 0 0 •

LrwCOS ac - NPw SIn CXe + (LPw - Nrw) SIn ae COS ae

Mqw
o 2 0. 2 0 0 •

Npw cos ae - LrwSIn ae + (L Pw - Nrw) SIn CXeCOS CXc
o 2 0 2 0 0

Nrw COS ae+ LPw sin CXe + (Lrw+ Npw ) sin aecos CXe
o 2 0 •

X WW COS ae - Zww SIn CXe COS CXe
o 2 0 •

Zww COS CXe + X Ww SIn CXc cos ae

Mwwcos«,



360 Appendix 7

In the two following tables it is simply necessary to write n, r, eor , in place of b as
appropriate.

Table A7.3 Body axes to wind axes control derivative transforma­
tions

Wind axes Body axes

XcSb cos (Xc + Z~ sin (Xc

~b
Z~ cos (Xc - X~ sin (Xc

L~ cos (Xc + N~ sin (Xc

McSb

NcSb cos (Xc - L6t, sin (Xc

Table A7.4 Wind axes to body axes control derivative transforma­
tions

Body axes Wind axes

xs; cos (Xc - ZcSw sin (Xc

~w
ZcSw cos (Xc + XcSw sin (Xe

L;cos (Xc - NcSw sin (Xc

McSw

N6w cos (Xc + IcSw sin (Xc
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Appendix 8
The Transformation of the Moments and

Products of Inertia from a Body Axes
Reference to a Wind Axes Reference

1. Introduction

In the same way that it is sometimes necessary to transform the aerodynamic stability
and control derivatives from a body axes reference to a wind axes reference, and vice
versa, it is also necessary to transform the corresponding moments and products of
inertia. Again, the procedure is very straightforward and makes use of the transforma­
tion relationships discussed in Chapter 2. It is assumed that the body axes and wind axes
in question have a common origin at the cg of the aeroplane and that it is in steady level
symmetric flight. Thus, the axes differ by the steady body incidence CXe only as shown in
Fig. 2.2. .

2. Coordinate transformation

2.1 BODY TO WIND AXES

A set of coordinates in a body axes system (Xb' Yb' Zb) may be transformed into the
equivalent set in a wind axes system (xw , Yw' zw) by application of the inverse direction
cosine matrix given by equation (2.13). Writing f) = CXe and 4> = t/J = 0, since level
symmetric flight is assumed, then

[
xw] _[ cos CXe 0 sin CXc

] [Xb]
Yw - 0 I 0 Yb
Zw - sin CXe 0 cos CXe Zb

or

x, = x, cos CXe + Zb sin CXe }

Yw =Yb
Zw = z, cos CXc - Xb sin CXc

2.2 WIND TO BOD Y AXES

(A8.2)

A set of coordinates in a wind axes system (xw ' Yw' zw) may be transformed into the
equivalent set in a body axes system (xb, Yb' Zb) by application of the direction cosine
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or

x, = x, cos CXe + Zb sin CXe }
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A set of coordinates in a wind axes system (xw ' Yw' zw) may be transformed into the
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matrix given by equation (2.12). Again, writing (J = C(e and 4> = I/J =0 since level
symmetric flight is assumed, then

[
Xb] _ [COS CXe 0 - sin oce] [xw ]
Yb - 0 I 0 Yw
Zb sin C(e 0 cos C(e z;

which is simply the inverse of equation (A8.I). Alternatively

x, =x, cos C(e - Zw sin C(e }

Yb =Yw
Zb = Zw cos C(e +x, sin C(e

(A8.4)

3. The transformation of the moment of inertia in roll from a body
axes reference to a wind axes reference

The moment of inertia in roll is defined in Chapter 4, Table 4.1, and may be written
when referenced to a system of wind axes

(A8.S)

Substitute for Yw and z; from equations (A8.2) to obtain

Ixw =E <5m(y~ + ~) +E <5m(x~ - ~) sin2C(e - 2E <5mxbzb sin (Xe cos (Xe (A8.6)

Add the following null expression to the right-hand side of equation (A8.6)

E<5m~ + zi)sin2oc
e - Et5m~ + z~)sin2oce

and rearrange to obtain

Ixw = E <5m~ + zi) cos'«, + E t5m(x~ + y~) sin2(Xe - 2E <5mxbzb sin (Xe cos (Xe (A8.7)

Referring to the definitions of moments and products of inertia in Chapter 4, Table
4.1, equation (A8.7) may be rewritten

(A8.8)

Equation (A8.8) therefore describes the inertia transformation from a body axes
reference to a wind axes reference.

This simple procedure may be repeated to obtain all of the moment and product of
inertia transformations from a body axes reference to a wind axes reference. The inverse
procedure, using the coordinate transformations given by equations (A8.4), is equally
straightforward to apply to obtain the corresponding transformations from a wind axes
reference to a body axes reference.
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4. Summary

The body to wind axes moments and products of inertia transformations are summarized
in Table A8.1. The corresponding transformations from wind to body axes obtained by
the inverse procedure are summarized in Table A8.2.

Table A8.1 Moment and product of inertia transformations from
a body to wind axes reference

Wind axes Body axes

IXb COS
2

Cte + lZb sin2
Cte - 21xZb sin CXe cos CXe

lYb
lZb COS

2
Cte + lXb sin2

Cle + 21xzbsin etc cos etc

lXYb cos Cte + lyzb sin \Xe

1xzb (COS
2Cl

e - sin2cxe) + (lxb - lZb) sin Cle cos Cle

lY:b cos Cle - lxYb sin Cte

Table A8.2 Moment and product of inertia transformations from
a wind to body axes reference

Body axes Wind axes

lxwCOS
2Cl

e + lzw sin2
Cle + 21xZw sin Cle cos Cle

i;
lzw COS

2Cl
e + flw sirr'«, - 2/xzw sin Cle cos ete

lxyw cos Cte - lyzw sin Cle

lx:w (COS
2

Cte - sin2
\Xe) + (l:w - lxw)sin \Xe cos \Xe

/yzwcos Cle + 1.lYw sin (Xe



Appendix 9
The Root Locus Plot

1. Mathematical background

Given the general closed loop system transfer function

r(s) G(s)
c(s) = 1 + G(s)H(s)

(A9.1)

where r is the response to a command input c, G(s) is the transfer function of the open
loop system and R(s) is the transfer function of the feedback controller located in the
feedback path. The closed loop characteristic equation is given by the denominator of
equation (A9.1)

1 + G(s)H(s) = 0 (A9.2)

Now, in general, the transfer function product G(s)H(s) will itself be a transfer function
and may be expressed as the ratio of two polynomials

G(s)H(s) =K.(1 + s1)(1 + s1). · · (A9.3)
s"(1 + s1;)(1 + s14). · ·

or, alternatively,

G(s)H(s) =K(s + 1/1)(s + 1/1) .. ·
s"(s+ 1/12)(s + 1/14) ...

(A9.4)

where the gain constant is given by

K =K(1) 1) .. · (A9.5)
1214·· ·

Each factor in equation (A9.4) may be expressed alternatively in terms of magnitude
and phase, assuming sinusoidal command and response such that s =jro, for example

(s + 1/11) =A 1e
j

<P t (A9.6)

whence, equation (A9.4) may be written

KA A ... ej{(<Pt+<P3+",)-("<PO+<P2+<I>4+"')} .
G(s)H(s) = 1 3" == AeJ<I> (A9.7)

AoA2A4 • • •

where the total magnitude A is given by
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A=KA1A3 •••

AoA2A4 • • •

and the total phase is given by

<P = (<PI + 4>3 +··.) - (n4>o + </>2 + 4>4 +··.)
Thus, the characteristic equation (A9.2) may be written

1+ G(s)H(s) == 1+ Aejq, =0

which has the solution

Aej 4> = -1

(A9.8)

(A9.9)

(A9.10)

(A9.11)

For the solution of equation (A9.IJ) to exist two conditions must be satisfied.

(i) The angle condition

4> = (4)1 + 4>3 +...)- (nc/>o + c/>2 + c/>4 +...)= (2k + 1)180° (A9.12)

where k =0, ±1, ±2, ±3, ....

(ii) The magnitude condition

IG(s)H(s)1 = A = ~AIA3 .•. = 1 (A9.13)
AoA2A4 • ••

Thus, any point in the s-plane where the conditions defined by both equations (A9.12)
and (A9.13) are satisfied defines a root of the characteristic equation. By finding all such
points in the s-plane a locus of the roots of the characteristic equation may be
constructed. In fact, the root loci may be identified merely by satisfying the angle
condition only; the loci may then be calibrated by applying the magnitude condition to
selected points of interest on the loci.

2. The rules for constructing a root locus plot

The simple closed loop system of interest is defined by the structure shown in Fig.
A9.1. The object is to establish how the roots 'of the closed loop transfer function are
governed by the choice of feedback gain K; The open loop transfer function of the
system is known at the outset and comprises the product of the transfer functions of all
the system components in the loop

KrG(s)H(s) (A9.14)

aircraft response
dynamics

G(s) r(s)

error

&(s)c(s)

demand +
---..... 1: 1--------.1

feedback
gain x,

feedback
transfer
function

H(s)

Fig. A9.1 A simple closed loop system
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The corresponding closed loop transfer function is

r(s) (1(s)
=------

c(s) 1 + KrG(s)H(s)
(A9.15)

The root locus plot is constructed from the open loop transfer function (A9.14) which
should be in factorized form for convenience, The zeros are the numerator roots and the
poles are the denominator roots of (A9.14). When plotting the root loci on the s-plane
it is often convenient to choose the same numerical scales for both the real and
imaginary axes.

RULE]

Continuous curves which comprise the branches of the locus start at the poles of
G(s)H(s) where the gain K, = O. The branches of the locus terminate at the zeros of
G(s)H(s), or at infinity, where the gain K, = 00.

RULE 2

The locus includes all points on the real axis to the left of an odd number of poles plus
zeros.

RULE 3

As K, -. 00, the branches of the locus become asymptotic to straight lines with angles

where

(2k + 1)180°
k = 0, ±1, ±2, ±3, ...

np =number of poles

nz =number of zeros

RULE 4

The asymptotes radiate from a point on the real axis called the centre ofgravity (cg) of
the plot, which is determined by

L poles - L zeros
cg=~------.;;;;~--

np - nz

RULE 5

The loci break in to, or break away from, points on the real axis located between pairs
of zeros or pairs of poles respectively. Two methods may be used to estimate the
locations of the break-in or break-away points on the real axis. The first method is
approximate and gives results of acceptable accuracy for the majority of cases. The
second method is exact and may be used when the first method gives unsatisfactory
results.
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(i) Method 1

Step 1. Select a test point on the real axis in the vicinity of a known break-in or
break-away point.

Step 2. Measure the distances from the test point to each real axis pole and zero.
Assign a negative sign to the pole distances, a positive sign to the zero
distances and calculate the reciprocals of the distances.

Step 3. Calculate the sum of the reciprocals for all poles and zeros to the left of
the test point and calculate the sum of the reciprocals for all poles and zeros
to the right of the test point.

Step 4 The test point is a break-in or break-away point when the left and right
reciprocal sums are equal.

Step 5. Choose a new test point and iterate until the break-in or break-away point
is obtained with acceptable accuracy.

Step 6. Note that this method may give inaccurate results when complex poles
and zeros lie close to the real axis.

(ii) Method 2

Step 1. Denote the open loop transfer function

A(s)
G(s)H(s) =B(s)

Step 2. Define a function F(s)

F(s) =B(s) dA(s) _ A(s) dB(s)
ds ds

Step 3. The roots of F(s) include all the break-in or break-away points.

RULE 6

Loci branching in to, or away from, the real axis do so at ±90° to the real axis.

RULE 7

(A9.16)

(A9.17)

The angle of departure of a locus from a complex pole, or the angle of arrival at a
complex zero, is given by

<P = L(angles to all other zeros) - L(angles to all other poles) -180° (A9.18)

An example is illustrated in Fig. A9.2.
Thus, with reference to Fig. A9.2, the angle of departure of the locus from complex

pole PI is given by

(A9.19)
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Imaginary jOJ

/
I i \

/ /

I Real OJZt P2 Z2' Z3

I

Fig. A9.2 Example of the locus departure angle from a complex pole

RULE 8

The total loop gain at any point on a locus is given by

. n(distances from test point to poles)
gam =n(dO f 0) (A9020)istances rom test point to zeros

Note that if the system under investigation has no zeros then the denominator of
expression (A9.20) is taken to be unity.



Index

Page numbers representing figures are in bold; tables are in italics

A-7A Corsair II 129-31, 136-40, 137,
138

velocity frequency response 137, 138
Accelerated flight 177
Acceleration

inertial 58
initial pitch 224
normal 224
perturbations, derivatives 302-6
and rotary motion 57
tangential 57

Ackeret theory 287
ACSL (axle), software 9
Adjustment

elevator tab 46
trim tab 46

Adverse roll 151
Adverse yaw 151
Aerobatic aeroplane 58-9
Aerodynamic

centre, aerofoil28
coefficients, dimensionless 70
control terms 65
drag 279
force, and moment components 296
modelling 285-6

limitations of 292
spring 158
stability derivatives 65
terms 64-5

Aerofoil
aerodynamic centre 28
cambered 27
centre of pressure 27

Aeroplane behaviour
like amplifier 135
like attenuator 135

Aeroplane body, fixed axes 12-17
Aeroplane geometry 5
Agility 179
Aileron, displacements 27

Aircraft
classification 214
dynamics, and manoeuvring 187-8

Airframes
configuration, trimmed equilibrium 30
flexibility 37

Algorithms
Fadeeva 98
Generalized Eigenvalue Problem 98

American Military Specification MIL-F­
8785C 213-14

American Military Standard MIL-STD­
1797A 213-14

Angle of attack 27-8
Angular

perturbation 63
relationships, symmetric flight 15-16, 15
velocities 20-3

Apparent inertia 303
Apparent mass 303
Approximations

dutch roll mode 161-2
roll mode 159-60
short period mode 122-4
spiral mode 160-1

Aspect ratio 24
Atmospheric disturbances 4, 5
Attitude 17

angles 17
constant steady state pitch 90
perturbation 63
rate 21

Augmentation system, design 241-3, 241
Augmented state equation 110-11
Automatic flight control system (AFCS) 2
Autopilot, stability augmentation system

235
Axes

aerodynamic 12
body 16
choice of 16-17



370 Index

Axes (contd)
generalized body S6
moving 13
principal inertia 61
stability 12
transformations 17-23
wind 12, 16

Axial force
due to elevator 327
due to normal velocity 298
due to pitch rate 300-1
due to rate of change of normal velocity

304-5
due to velocity 280

Axial velocity
normal force due to 297
and pitching moment 298-9

Balance 64
Bandwidth 132

frequency 135-6
speed of response 136

Banked turn 22
Bode diagram 132, 133-40, 134, 165

break frequency 134
gain plot 134
interpretation 135-40

Body axis system 12-13
Body rates, angular 21
Boeing B-747 200-1, 201
British Civil Airworthiness Requirements 212
British Defence Standard DEF-STAN

00-970213-14,216,217
Busemann theory 287

Centre of gravity
location 23, 2S
trimmed equilibrium 30

Centre of pressure 27
wings 27

Characteristic equation 118-19, 192
augmented 244
Douglas DC-8 193
lateral-directional 198
order of 153, 191
reduced order 162
solution of 158-9

Chord
geometric 24
mean aerodynamic 24
standard mean 24

Civil Aviation Authority 212
Closed loop 140

control law 243
equations of motion 244
system analysis 243-7, 244

Cockpit design 4

CODAS, root locus plot 247
CODAS-II, software 9
Coefficient E 197-8
Command path control 242
Command and stability augmentation system

(CSAS) 239
Compressibility 284-9
Computers 8-10

analytical 8
flight control 8-9
software 9-10

Concise lateral state equation 78
Control

augmentation 6
derivatives 7

Lockheed F-I04 Starfighter 87
error signal 241, 242
force, to trim 47
gains 235-6
law 236

closed loop 243
stability augmentation system (SAS)

238,252
and response 5
and stability 6
system, closed loop 234
terms, aerodynamic 65

Control Anticipation Parameter (CAP) 221,
223-5

definition 223
Controllability 203
Controlled motion 204-5
Controlled system

multi-input 271
single input 271

Controls 26-7
"aerodynamic 26
engine 27
fixed

dynamic stability 141
manoeuvre margin 124
manoeuvre point 124
neutral point 28, 44, 44, 124
stability 41-3
stability margin 124

free
dynamic stability 141
neutral point 45, 48, 49
stability 41

notation 26-7
in pitch 27
in rol126
in yaw 27

Conversions 342
Convolution integral 99
Cooper-Harper rating 218, 219
Coordinate transformation 361-2



body to wind axes 361
wind to body axes 361-2

Coupling
aerodynamic 158
dynamic 140
mode 140

Cramer's rule 81-3, 85, 87-8
Critical damping 200

Damped harmonic motion 346
Damped natural frequency 345
Damping 128

angle 199
ratio 88, 105
requirements, dutch roll mode 230

Datum-path, earth axes 12
Decoupled equations of motion 67-70
Definitions

Control Anticipation Parameter (CAP)
223

Mach cone 285
Mach number 285
pitch 14
roll 14
shock stall 285
shock wave 285
stability 189-91
subsonic flight 285
supersonic flight 285
yaw 14

Degrees of freedom 55, 157
Demonstration of compliance 212

test flights 212
Department of Defense 212
Derivatives

acceleration perturbations 302-6
aero-normalized 71,72
aerodynamic 127

control 356-7
axial force due to velocity 280
calculation 281
concise 75, 340-1
control 281

lateral 331, 335
longitudinal 330, 333, 350

dimensional 336-7
dimensionless 70-1,72, 77,187-8
due to elevator 326-8
due to sideslip 306-16
estimation 280-4
force 296-8
force-acceleration 355-6
force-rotary 353-4
force-velocity 352-3
high performance aeroplanes 303
lateral, McDonnell F-4C Phantom 77
lateral-directional stability 306-26

Index 371

longitudinal 280
stability 294-306

magnitudes 124
measurement

flight test 282
wind tunnel 281

moment-acceleration 356
moment-rotary 354-5
moment-velocity 353
pitch velocity perturbation 300-2
quasi-static 278-80
rate of roll 316-21, 316, 318
semi-empirical 281
stability

lateral 331, 334, 349
longitudinal 330, 332, 348

yaw rate 321-6
Design modification 6
Dihedral effect 49-50, 51, 156,308,309
Dimensionless

equations of motion 70-8
inertias 72

Direct lift control (DLC) 179
Direction cosine matrix 19, 20
Directional

static stability 52-4
weathercock effect 198

Disturbance forces, and moments 61-2
Douglas DC-8 147-53, 163-4

see also McDonnell Douglas
characteristic equation 193
frequency response 165

to rudder 168, 168
sideslip angle frequency 167
source data 147-53

Downwash 303-4
field 40

Drag
coefficient 288
due to lift 288
lateral 307
and pitching moment

subsonic lift 286-7
supersonic lift 287-8
variation with Mach number290

properties, and Mach number 291
skin friction 288
wave 288

Drag-velocity plot 279
Dutch roll mode 148-51,156-8,157,171,

174,175,226-7,227
approximations 161-2
damping ratio 164, 166
damping requirements 230
flight recording 175
frequency 168
limiting frequency 230



372 Index

Dutch roll mode (contd)
McDonnell F-4 Phantom 232
oscillatory 151, 157

Dynamic coupling 140
Dynamic models, short term 204-12
Dynamics

lateral-directional 145
longitudinal 145
short term 170

Early aviation 1
Earth axes 11-12, 12

datum-path 12
Effective aspect ratio 288
Eigenvalues

and eigenvectors 99-100
matrix 100

Eigenvectors
and eigenvalues 99-100
magnitude of 105
matrix 152

Elevator
angle

to trim 41, 43
trimmed equilibrium 32

and axial force 327
deflection 70
displacements 27, 184
hinge moment 45, 185
longitudinal response to 113
and normal force 327
and pitching moment 328
pulse duration 142
tab

adjustment 46
angle to trim 47

transfer function, Lockheed F-104
Starfighter 245-7

Engine
control 27
dynamics 109-10

Equations
aero-normalized 71
characteristic 118-19, 153-4, 191

. error method 284
generalized force 59-60
generalized moment 60-1
height 107
lateral-directional state 160
longitudinal characteristic 122
longitudinal state 113
modal 101
of motion 5, 5, 7

closed loop 244
decoupled 67-70
dimensional decoupled 70
dimensionless 70-8

lateral asymmetric 70
lateral-directional 69-70, 145-6
linearized 62-7
longitudinal 67-9, 78
McDonnell Douglas DC-8 147-53
McDonnell Douglas F-4C Phantom

75-7,77-8,272
open loop 244
small perturbations 66-7
solving 80

Laplace transform 80-1
state space form 73-8

normal acceleration 92
pitching moment 181-2
reduced order 123
steady state 66

Equilibrium, trimmed 14, 30-8
Euler angles 17, 17
Experiments, dynamic 282

Failure transient 237
Federal Aviation Administration 212
Feed-forward path 241
Feedback path 241
Final value theorem 91, 92, 118, 206
Fin

disturbance 52
effect 156
effectiveness 54
moment arm 25-6, 25
volume ratio 25-6, 25, 321

Fixed axes, aeroplane body 12-17
Fixed neutral point

locating 291-2, 292
and Mach number 291-2

Flat earth 11
Flexibility, airframes 37
Flight control system (FCS) 234-7, 235

design 241
electronic (EFCS) 234
mechanical elements 239

Flight critical stability augmentation, see
flight control system

Flight envelopes 6, 7,215-19, 216, 216, 217
extended 203
large 35
McDonneJl-Douglas A-4D Skyhawk 216,

217-18
normal load factor 218-19
operational 216, 217
permissible 215
service 215-16

Flight path angle 109
Flight phase 214-15

categories 214-15, 216
Flight test measurement 282-4, 283
Flow effects 36



Fly-by-wire
aeroplane 213
civil transport aeroplanes 9
controls 4, 4
system 238-40, 239

reliability 240
unstable airframes 254, 258

Flying, and handling 140, 170-1
Flying qualities

lateral-directional 225-8
levels of 215
longitudinal 219-23
McDonnell F-4C Phantom 230-2
requirements 212-14
on s-plane 228-30, 228
specification 210

Force balance 30
Frequency

phugoid 222, 222
response 131-40, 165-70

Full state feedback 273
Functional visibility 204, 240
Functions

Dirac delta 102
unit impulse 102

Gain
logarithmic 133
margin 136
and phase, calculation 133
plot, Bode diagram 134

Generalized
force equations 59-60
moment equations 60-6-1

Gradients, stable 219-20, 220
Gravitational

force components 63-4
terms 63-4

Gyration, longitudinal radius of 225

Handley Page Jetstream 142, 174, 175
elevator angle to trim 43
flight test 47-8
phugoid response 142
roll subsidence mode 172, 172
with tailplane 38
wind tunnel experiments 38
without tailplane 38

Handling 178-9
and flying 140, 170-1
long term 204
pilot's perception 205
qualities 3-4, 3, 4

criteria 210
short term 204

Harmonization, of control power 203
Height response 107

Index 373

High pass filter 236
Hinge moment to trim 48, 48
Horizontal fuselage datum 13

Incidence angle feedback to elevator 257-8,
258

Incidence lag 210-12, 211
on pitch response 211, 211

Inertia
dimensionless 72
moments and products 60
transformation

body to wind 363
wind to body 363

Inertial acceleration 58
components of 55-9

Initial value theorem 91, 92
Inner control loop 235
Instability, conditional 196
Integrated actuation 239

Jet engine, exhaust 36, 36
Joint Aviation Requirements 212

Kalman filtering 283

Lanchester phugoid model 125-6, 131
Laplace transforms 343
Lateral

dihedral effect 198
directional equations of motion 69-70
perturbation, sideslip angle 108
relative density 72
response transfer functions 86-8

Lateral-directional
augmentation 260-70, 260
control, steady 225
equations of motion 145-6
modes229-30,230
stability 306-26

Lift coefficient 37, 70
Lift to drag ratio 129
Lifting properties, andMach number 290,

291
Limiting frequency, dutch roll mode 230
Linear second order system 344-7, 346
Linear system modelling 165
Linear time invariant (LTI) system 73
Ling-Temco-Vought A-7A Corsair II

114-18
Lockheed F-104 Starfighter 87-8, 110-11,

250-3
control derivatives 87
elevator transfer function 245-7
longitudinal equations of motion 103-6
phugoid stability 247
pitch attitude response 91, 92



374 Index
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negative 50
due to roll rate 317-19
due to sideslip 308-15
due to yaw rate 322, 323-4, 323

Root locus plot 247-50, 248, 364-8
angle condition 365
applications 247
background 364-5
constructing 365-8
incidence angle feedback to elevator 257-8,

258
interpretation 247
magnitude condition 365
normal acceleration feedback to elevator

258-9,259
pitch attitude feedback to elevator 255,

255
pitch rate feedback to elevator 256, 256
roll attitude feedback to aileron 263-5,

264
roll attitude feedback to rudder 269,

269
roll rate feedback to aileron 262, 263
roll rate feedback to rudder 267-8, 267
sideslip angle feedback to aileron 261,

262
sideslip angle feedback to rudder 266-7,

266
single variable feedback 253
velocity feedback to elevator 256-7,

257
yaw attitude feedback to aileron 265-6,

265
yaw attitude feedback to rudder 269-70,

270
yaw rate feedback to aileron 263, 264
yaw rate feedback to rudder 268, 268

Rotary motion
and acceleration 57
and velocity 57

Routh array 192
Routh-Hurwitz criterion

application 193-5



stability 192-3
Routh's discriminant 196
Rudder surface, displacements 27

s-plane
complex roots on 200
flying qualities on 228-30, 228
longitudinal modes on 229-30
root mapping on 199-200

Safety 236-7
Setting angle, tailplane 40
Shock expansion 287
Shock stall, definition 285
Shock wave, definition 285
Short period mode approximation 122-4
Short term, dynamic models 204-12
Sideforce

due to roll rate 317
due to sideslip 307-8
due to yaw rate 321

Side-stick controller 239
Sideslip 62

angle 20
angle feedback to aileron 261, 262
angle feedback to rudder 266-7, 266
a swept wing in 311
disturbance 51, 52, 53.53
fin lift 314
lateral cross flow 313
and rolling moment 308-15
and sideforce 307-8
and yawing moment 315-16

Similarity transform 100
Single input, controlled system 271
Single variable feedback, root locus plot 253
Small perturbations 7-8

equations of motion 66-7
Software 9-10

ACSL (axle) 9
CODAS-II 9
MATHCAD9
MATLAB9
PC MATLAB9
Program CC9

Specification, flying qualities 210
Spherical coordinates 12
Spiral mode 148-51,155-6, ISS, 171,173-4,

173,175,226,226-7,226,227
approximations 160-1
boundary 229
stable 158, 161
time constant 161
unstable 156, 174, 261

Stability 178, 203-4
aerodynamic 7
augmentation 213, 273

control law 252

Index 377

longitudinal 253-60, 253
system.204, 235, 237-40, 237, 239

autopilot 235
control law 238
role of 238

conditions for 31-3, 32
and control 6
controls 190-1

fixed 41-3, 183-4
margin 42

fixed dynamic 141,174
free 41, 44-9, 47, 184-7

meaning 46
free dynamic 141, 174
free margin 45

definition 189-91
degree of 33-4, 34
directional static 52-4, 156
dynamic modes 31, 154-8
estimating 281
graphical interpretation 199-201, 201
lateral static 49-52, 156, 308
lateral-directional 170, 306-26

augmentation 260-70, 260
dynamic 225-6
short period 171

longitudinal 231
dynamic 220-2
manoeuvring 183-7
margins 50
static 41-9,49, 219-20, 220

manoeuvre 178
margin 34, 42
modes 148-51,202,210
non-linear systems 190
phugoid 115, 255
power effects 35-7, 35
quartic 195-8

definition 195
relative sensitivity 249
reversal 37
Routh-Hurwitz criterion 192-3
short period mode 221, 221
static

and dynamic 190
longitudinal 31, 33
margins 220

subsonic 35
supersonic 35
variable 209
variation in 35-8

Stable system 347
State space method 94-106

Laplace transform 98
State space model augmentation 106-11
State transition matrix 99
Static stability, longitudinal 31, 33



378 Index

Statistical regression 284
Stick displacement 184
Stick force per g 187

measuring 187
Subsonic flight, definition 285
Subsonic lift, drag and pitching moment

286-7
Supersonic flight, definition 285
Supersonic lift, drag and pitching moment

287-8
Symmetric flight, angular relationships

15-16, 15
Symmetry, of airframe 32
System analysis, closed loop 243-7,

244
System realization 110

Tailplane
lift coefficient40, 182
moment arm 25
setting angle 40
volume ratio 25, 301
weathercock tendency 119

Test flights
demonstration of compliance 212
variable stability 209

Throttle lever angle 110
Thrust 65-6

line 35
trimmed equilibrium 32
variation 70

Thumb print criterion 209-10
longitudinal short period 210, 210

Time response 90, 91
Transfer function 243

angular pitch acceleration 224
matrix 94-5

lateral 95-6
Lockheed C-5A 96-8

longitudinal 95
open loop 255

Transformation
angular rates 21
angular velocities 20-3
coordinate 361-2
derivative

body to wind axes 358, 360
wind to body axes 358, 360

force and moment 351-2
inertia 363
linear 18-20

Transonic flight 220
Trim

change of 219
function, electrical 239
hands-off 45
state 5

tabs 30
adjustment 46
elevator 30

Trimmability 30
Trimmed equilibrium 14, 30-8

airframe configuration 30
centre of gravity 30
elevator angle 32
flight path 30
lateral 31
longitudinal 31
stable 33
thrust 32
weight 30

Units 342

Variable stability 35-8
test flights 209

Velocity
eigenfunctions 104-5
feedback to elevator 256-7, 257
linear disturbance 62
perturbations, moment derivatives 298-9
resolution 19
and rotary motion 57
tangential 56

Virtual inertia 303
Virtual mass 303

Wake 36
Washout filter 236
Weathercock 52, 53
Weight, trimmed equilibrium 30
Wind axes, perturbed 295
Wind tunnel

experiments, Handley Page Jetstream 38
measurement 281-2

accuracy 281-2
Wing 23-4

area 23-4
aspect ratio 24
centre of pressure 27
mean aerodynamic chord (mac) 24
standard mean chord (smc) 24
sweep back 37

Yaw 18
adverse 151
angle 20
attitude 53, 54

feedback to aileron 265-6, 265
attitude feedback to rudder 269-70, 270
definition 14
rate 21

derivatives 321-6
fin incidence 320



Yaw (contd)
rate (contd)

and rolling moment 322, 323-4,
323

and sideforce 321
and yawing moment 324-6

rate feedback to aileron 263, 264

Index 379

rate feedback to rudder 268, 268
Yawing moment

about cg 325
coefficient 52, 53, 54
due to roll rate 319-21
due to sideslip 315-16
due to yaw rate 324-6


