
F
o

rm
a
l M

e
th

o
d

s A
p

p
lie

d
to

 C
o

m
p

le
x
 S

y
ste

m
s

E
d

ite
d

 b
y

J
e
a
n

-L
o

u
is B

o
u

la
n

g
e
r

This book presents real-world examples of formal techniques in
an industrial context. It covers formal methods such as SCADE
and/or the B Method, in various fields such as railways,
aeronautics, and the automotive industry. The purpose of this
book is to present a summary of experience on the use of “formal
methods” (based on formal techniques such as proof, abstract
interpretation and model-checking) in industrial examples of
complex systems, based on the experience of people currently
involved in the creation and assessment of safety critical system
software. The involvement of people from within the industry
allows the authors to avoid the usual confidentiality problems
which can arise and thus enables them to supply new useful
information (photos, architecture plans, real examples, etc.).

The authors cover the following topics: an example of use of
SCADE, constraint solving in B, validation of Petri Nets-based
automated rail safety, data validation, etc.

Jean-Louis Boulanger is currently an Independent Safety
Assessor (ISA) in the railway domain focusing on software
elements. He is a specialist in software engineering (requirement
engineering, semi-formal and formal method, proof and model-
checking). He also works as an expert for the French notified body
CERTIFER in the field of certification of safety critical railway
applications based on software (ERTMS, TCMS, SCADA, CBTC,
automatic subway, etc.). His research interests include
requirements, software verification and validation, traceability
and RAMS with a special focus on SAFETY.

Formal Methods
Applied to

Complex Systems

Implementation of the B Method

Edited by

Jean-Louis Boulanger

www.iste.co.uk Z(7ib8e8-CBHAJG(

COMPUTER ENGINEERING SERIES

W709-Boulanger.qxp_Layout 1 11/06/2014 15:09 Page 1

Formal Methods Applied to Complex Systems

Series Editor
Jean-Charles Pomerol

Formal Methods Applied
to Complex Systems

Implementation of the B Method

Edited by

Jean-Louis Boulanger

First published 2014 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2014
The rights of Jean-Louis Boulanger to be identified as the author of this work have been asserted by him
in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2014939764

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-709-6

Printed and bound in Great Britain by CPI Group (UK) Ltd., Croydon, Surrey CR0 4YY

Contents

INTRODUCTION . xv
Jean-Louis BOULANGER

CHAPTER 1. PRESENTATION OF THE BMETHOD 1
Jean-Louis BOULANGER

1.1. Introduction. 1
1.2. The B method . 3
1.2.1. Presentation . 3
1.2.2. The concept of an abstract machine 4
1.2.3. From machines to implementations 11

1.3. Verification and validation (V&V) . 15
1.3.1. Internal verification. 15
1.3.2. Validation or external verification . 20

1.4. Methodology . 20
1.4.1. Development by layer . 21
1.4.2. Role of the breakdown in the makeup of the POs 23
1.4.3. Development cycle of a B project . 23

1.5. Feedback based on experience . 26
1.5.1. A few figures . 26
1.5.2. Some uses . 26

1.6. Conclusion . 30
1.7. Glossary . 31
1.8. Bibliography . 32

CHAPTER 2. ATELIERB . 35
Thierry LECOMTE

2.1. Introduction. 35
2.2. Automatic refinement . 37
2.3. Code generation . 39

vi Formal Methods Applied to Complex Systems

2.4. Proof and model animation . 43
2.5. The move toward open source. 44
2.6. Glossary . 45
2.7. Bibliography . 45

CHAPTER 3. B TOOLS . 47
Jean-Louis BOULANGER

3.1. Introduction. 47
3.2. General principles . 47
3.3. Atelier B . 48
3.3.1. Project management . 48
3.3.2. Typechecking and PO generation . 50
3.3.3. Code generation. 52
3.3.4. Prover. 53
3.3.5. Tool qualification . 56

3.4. Open source tools . 57
3.4.1. Presentation . 57
3.4.2. ABTools . 58

3.5. Conclusion . 78
3.6. Glossary . 79
3.7. Bibliography . 79

CHAPTER 4. THEBMETHOD AT SIEMENS . 83
Daniel DOLLE

4.1. Introduction. 83
4.1.1. Siemens Industry Mobility . 83
4.1.2. The CBTC system . 85
4.1.3. Characteristics of B programs . 87
4.1.4. The target calculator . 88

4.2. The development process using B . 89
4.2.1. Development . 89
4.2.2. Informal specification . 90
4.2.3. Formalization of the specification . 92
4.2.4. Refinement and coding . 95
4.2.5. Proof . 101

4.3. Monitoring . 103
4.3.1. Development review . 103
4.3.2. Testing . 105
4.3.3. Safety validation . 106

4.4. Digging deeper . 109
4.4.1. Translation from B to Ada . 109
4.4.2. Abstract models and concrete models 110

Contents vii

4.4.3. Functional calculation with safety monitoring 112
4.4.4. Configuration . 115
4.4.5. Limitations. 117

4.5. Automatic refinement . 119
4.5.1. History . 119
4.5.2. Operational principles . 120
4.5.3. Interactive refinement . 123

4.6. Conclusion . 123
4.7. Glossary . 125
4.8. Bibliography . 126

CHAPTER 5. INDUSTRIALAPPLICATIONS FORMODELING
WITH THE B METHOD . 129
Thierry LECOMTE

5.1. Introduction. 129
5.2. Control-command systems for controlling platform doors 131
5.3. Safety of microelectronic components . 142
5.4. Conclusion . 147
5.5. Glossary . 148
5.6. Bibliography . 149

CHAPTER 6. FORMALIZATION OFDIGITALCIRCUITS
USING THE BMETHOD . 151
Jean-Louis BOULANGER

6.1. Introduction. 151
6.2. B method and VHDL . 152
6.3. Modeling digital circuits . 153
6.3.1. Modeling methodology . 154
6.3.2. Modeling a basic logic gate, NOT . 155
6.3.3. Modeling an additioner . 157
6.3.4. Modeling of complex circuit: a multiplexer 166

6.4. VHDL libraries. 170
6.4.1. The STD_LOGIC_1164 library . 171
6.4.2. The B components for STD_LOGIC_1164 172
6.4.3. The multiplexer . 178

6.5. VHDL to B . 180
6.6. Conclusions. 181
6.6.1. Some limitations . 181
6.6.2. Advantages . 181
6.6.3. Future work . 182
6.6.4. To finish . 183

6.7. Bibliography . 184

viii Formal Methods Applied to Complex Systems

CHAPTER 7. PRAGMATICUSE OF B: THE POWER OF FORMAL
METHODS WITHOUT THEBULK . 187
Christophe METAYER, François BUSTANY and Mathieu CLABAUT

7.1. Introduction. 187
7.2. Prototyping for formal models . 187
7.3. Inspiration from agile methods . 189
7.4. Simultaneous development and validation 189
7.5. Performances of software developed in B 190
7.6. Use of infinity: separating algorithmic thinking and
programming issues . 193
7.7. Industrial implementation of event-B . 196
7.8. B method for software and event-B. 198
7.9. Conclusion . 199
7.10. Glossary . 199
7.11. Bibliography . 200

CHAPTER 8. BRILLANT/BCAML—AFREETOOLS PLATFORM
FOR THE BMETHOD . 201
Samuel COLIN and Dorian PETIT

8.1. What is BRILLANT/BCaml? . 201
8.2. Organization . 202
8.3. Functions . 204
8.3.1. The historic kernel . 204
8.3.2. Code manipulation . 206
8.3.3. Proving B specifications . 207

8.4. Perspectives . 207
8.5. Bibliography . 209

CHAPTER 9. TRANSLATING B AND EVENT-BMACHINES TO
JAVA AND JML . 211
Néstor CATAÑO, Víctor RIVERA, Camilo RUEDA and Tim WAHLS

9.1. Introduction . 211
9.2. Background . 214
9.2.1. The B method . 215
9.2.2. The Event-B method . 217
9.2.3. JML . 219

9.3. Translating B to JML . 220
9.3.1. The translation . 220
9.3.2. The B2Jml tool . 228
9.3.3. Case study: translating the B social networking model to JML . . . 228

Contents ix

9.4. Translating Event-B to JML and Java . 232
9.4.1. The translation . 233
9.4.2. The EventB2Java tool . 238
9.4.3. Case Study: translating the Event-B social networking
model to Java and JML . 242

9.5. Future work and conclusion . 247
9.6. Bibliography . 249

CHAPTER 10. EVENTB. 253
Dominique MÉRY and Neeraj Kumar SINGH

10.1. Introduction . 254
10.2. Modeling and verification of a system 254
10.2.1. Modeling . 254
10.2.2. Safety properties. 257

10.3. Event B: a modeling language . 260
10.3.1. Basic elements of an Event B model 262
10.3.2. Invariance properties in Event B . 263
10.3.3. Refinement of events . 265
10.3.4. Structures for Event B models . 266

10.4. Formal development of a sequential algorithm 269
10.4.1. Derivation of an algorithm for computing the sum of a
sequence of values by refinement and transformation of the model
into an algorithm . 270
10.4.2. Development of a sequential algorithm using the
proof-based pattern call-as-event . 278

10.5. Development of a distributed algorithm 284
10.5.1. Modeling distributed algorithms . 284
10.5.2. Elements of a proof-based pattern 287

10.6. Tools . 291
10.6.1. Atelier B . 291
10.6.2. The Rodin platform . 291

10.7. Conclusion and perspectives . 292
10.7.1. Applications in case studies . 292
10.7.2. Conclusion and perspectives . 293

10.8. Bibliography . 294

CHAPTER 11. B-RAIL: UML TO BTRANSFORMATION IN
MODELING A LEVELCROSSING . 299
Jean-Louis BOULANGER

11.1. Introduction . 299
11.2. Level crossings: general overview . 300

x Formal Methods Applied to Complex Systems

11.3. Managing requirements . 301
11.3.1. Requirements . 301
11.3.2. Recommendations, requirements and properties 303
11.3.3. Requirements engineering . 306

11.4. UML notation and the B method . 314
11.4.1. UML notation . 314
11.4.2. The B method . 316
11.4.3. Overview . 317

11.5. Step 1: requirement acquisition . 318
11.5.1. Requirement extraction. 318
11.5.2. Risk identification. 320
11.5.3. Identification of services . 321

11.6. Step 2: environment and risk analysis 323
11.6.1. Identification of the environment . 323
11.6.2. Description of the environment . 326
11.6.3. Environmental faults . 328
11.6.4. Maintenance . 332
11.6.5. Impact of the environment on the system 333
11.6.6. Results . 334

11.7. Step 3: component breakdown . 336
11.7.1. Requirement selection . 336
11.7.2. Architecture . 337
11.7.3. Behavior . 338

11.8. Step 4: verification. 340
11.8.1. Introduction . 340
11.8.2. Description of formal models . 341

11.9. UML2B . 342
11.10. Conclusions . 343
11.11. Glossary . 344
11.12. Bibliography. 345

CHAPTER 12. FEASIBILITY OF THEUSE OF FORMALMETHODS FOR
MANUFACTURING SYSTEMS . 349
Pascal LAMY, Philippe CHARPENTIER, Jean-François PETIN
and Dominique EVROT

12.1. Introduction . 349
12.2. Presentation of the requirement . 350
12.3. The methods chosen and a brief description of them. 352
12.3.1. The B method . 352
12.3.2. Specification with SysML and formal verification
by model checking . 354

Contents xi

12.4. Description of the machine: mechanical press with clutch-brake . . . 356
12.4.1. Description of the press . 356
12.4.2. Brief description of the operating modes 358
12.4.3. Brief description of the means of protection 359
12.4.4. Characteristics of the programmable logic controller 359

12.5. Process followed for the design, validation and generation
of the software using the B method . 359
12.5.1. Creation of a B compatible specification 360
12.5.2. B Model: specification and design 362
12.5.3. Generation of a C code and simulation 366
12.5.4. Generation of the code for the PLC and validation 367
12.5.5. Conclusion on the use of the B method for the creation of
application software in an industrial and manufacturing context 370

12.6. Formalization of the requirements and properties helping
SysML and verification of the unitary modules by model checker 371
12.6.1. Overall view of the design process for manufacturing systems . . 371
12.6.2. Modeling the requirements . 373
12.6.3. Modeling functional and organic architectures. 378
12.6.4. Traceability of the requirements . 380
12.6.5. Development and verification of the software
command components . 382
12.6.6. Discussion . 385

12.7. Conclusion on the use of formal techniques in the
field of manufacturing . 387
12.8. Glossary . 388
12.9. Bibliography . 388

CHAPTER 13. B EXTENDED TO FLOATING-POINTNUMBERS:
IS IT SUFFICIENT FOR PROVINGAVIONICS SOFTWARE? 391
Jean-Louis DUFOUR

13.1. Introduction . 391
13.2. Motivation. 392
13.3. Integers and the railway origins of the B method 393
13.3.1. The SACEM project . 393
13.3.2. The need for an innovative software method 394
13.3.3. The coded processor and integers 395
13.3.4. The limitations of Hoare logic and the beginnings of B 396
13.3.5. Successes of B, and integers once more! 397
13.3.6. The positive influence of “fail-safe” on complexity 397

13.4. The avionics context: floating-point numbers and complexity 398
13.5. Barking up the wrong tree: separation between integer and
floating-point calculations . 401

xii Formal Methods Applied to Complex Systems

13.6. IEEE 754 Floating-point numbers. 403
13.6.1. Scope of the standard . 403
13.6.2. The behavior of floating-point numbers is complex 405
13.6.3. Infinities and NaNs . 407

13.7. Reasons underlying extension to floating-point numbers 408
13.7.1. Overview . 408
13.7.2. Real numbers . 409
13.7.3. Concrete floating-point numbers . 410
13.7.4. Abstract floating-point numbers . 411

13.8. Returning to the useful properties that need to be proved 413
13.8.1. In avionics, specifications are complex 413
13.8.2. Can vector data be abstracted? . 414
13.8.3. The gap between algorithmic specifications and
pre-conditions of leaf procedures . 415
13.8.4. Integrators and the formalization of the system boundaries 416

13.9. Conclusion . 417
13.10. Appendix: the confusion between overflow, infinity and
illegal parameters . 418
13.10.1. Presentation of the issue . 418
13.10.2. Confusion between overflow and infinity 419
13.10.3. Confusion between infinity and illegal parameters. 421

13.11. Glossary . 422
13.12. Bibliography. 423

CHAPTER 14. FROMANIMATION TODATAVALIDATION:
THE PROBCONSTRAINT SOLVER 10 YEARSON 427
Michael LEUSCHEL, Jens BENDISPOSTO, Ivo DOBRIKOV, Sebastian KRINGS
and Daniel PLAGGE

14.1. The problem. 427
14.1.1. Animation for B . 428
14.1.2. Model checking B. 430
14.1.3. Data validation . 431
14.1.4. Constraint-based checking and disproving for B. 432
14.1.5. Summary . 433

14.2. Choice of implementation technology 433
14.2.1. What was used before? . 433
14.2.2. Why was constraint logic programming used? 434

14.3. Implementation of the PROB constraint solver 435
14.3.1. Architecture . 435
14.3.2. Validation . 438

14.4. Added value of constraint programming 440
14.4.1. Cost of development . 440
14.4.2. User feedback . 440

Contents xiii

14.4.3. Was it difficult/necessary for the end user to understand
constraint technology? . 441
14.4.4. Comparison with non-constraint solving tools 441
14.4.5. Comparison with other technologies 442
14.4.6. Future plans . 443
14.4.7. Lessons . 443

14.5. Acknowledgments . 444
14.6. Bibliography . 444

CHAPTER 15. UNIFIEDTRAINDRIVING POLICY 447
Alexei ILIASOV, Ilya LOPATKIN and Alexander ROMANOVSKY

15.1. Introduction . 447
15.2. Overview . 449
15.3. Semantics . 452
15.4. Modeling notation . 454
15.5. Verification . 461
15.5.1. Constraint satisfiability. 462
15.5.2. Hazard avoidance . 466
15.5.3. Example. 467

15.6. Discussion . 469
15.7. Conclusions . 471
15.8. Bibliography . 472

CONCLUSION . 475

GLOSSARY . 481

LIST OFAUTHORS . 487

INDEX . 489

Introduction

I.1. Context

Although formal program analysis techniques have a long history
(including the work by Hoare [HOA 69] and Dijkstra [DIJ 75]), formal
methods were only established in the 1980s. These techniques are used to
analyze the behavior of software applications written using a programming
language. The correctness of a program (correct behavior, program
completion, etc.) is then demonstrated using a program proof based on the
calculation of the weakest precondition [DIJ 76].

The application of formal methods (Z [SPI 89], VDM [JON 90] and the B
method [ABR 96, ARA 97]) for industrial applications and their suitability
for use in industrial contexts dates back to the late 1990s. Formal
specifications use mathematical notations to give a precise description of
system requirements.

NOTE 1.– Z – A Z specification is made up of schematic diagrams and sets
used to specify a computer system. A specification is a set of schematic
diagrams.

NOTE 2.– The Vienna Development Method (VDM) – this is a formal
method based on a denotational and operational vision (programs are seen as
mathematical functions), unlike Z or the B method which are based on
axiomatic set theory.

Introduction written by Jean-Louis BOULANGER.

xvi Formal Methods Applied to Complex Systems

One stumbling block is the possibility of implementation within the
context of industrial applications (on a large scale, with cost and time
constraints, etc.); this implementation requires tools to have attained a
sufficient level of maturity and performance.

Note that for critical applications, at least two formal methods make use
of recognized and widely available design environments covering part of the
code specification process while implementing one or more verification
processes: the B method [ABR 96], the LUSTRE language [HAL 91,
ARA 97] and its graphic version SCADE1 [DOR 08]. The B method and the
SCADE environment have been used successfully in industrial tools.

To give an example, Atelier B, marketed and sold by CLEARSY2, is a
tool which covers the whole development cycle involved in the B method
(specification, refining, code generation and proof). Note that Atelier B3 can
be freely downloaded since version 4.0.

Formal methods are based on a variety of formal verification techniques,
such as proof, model checking [BAI 08] and/or simulation.

Although formal methods are now becoming increasingly widely used,
they are still relatively marginal when viewed in terms of the number of lines
of code involved. To date, far more lines of ADA [ANS 83], C [ISO 99] and
C++ code have been produced manually than through the use of a formal
process.

For this reason, other formal techniques have been implemented in order
to verify the behavior of software applications written in languages such as
C and ADA. The main technique, abstract program interpretation, is used to
evaluate all the behaviors of a software application by static analysis. In

1 The SCADE development environment is marketed by ESTEREL-Technologies – see
http://www.esterel-technologies.com/.
2 For more information on CLEARSY and Atelier B, see http://www.clearsy.com/.
3 Atelier B and the associated information may be obtained at http://www.atelierb.eu/.

Introduction xvii

recent years, this type of technique has been applied to a number of tools,
including POLYSPACE4, Caveat5, Absint6, FramaC7 and ASTREE8.

The effectiveness of these static program analysis techniques has greatly
improved with increases in the processing power of personal computers.
Note that these techniques generally require the insertion of additional
information, such as preconditions, invariants and/or postconditions, into the
manual code.

SPARK Ada9 is an approach in which the ADA language [ANS 83] has
been extended [BAR 03] to include these additional tools and a suite of
tailored tools has been created.

I.2. Aims of this book

[BOW 95] and [ARA 97] provided the first feedback from industrial
actors concerning the use of formal techniques, notably the B method
[ABR 96], the LUSTRE language [HAL 91, ARA 97] and SAO+, the
precursor of SCADE10 [DOR 08]. Other works, including [MON 00,
MON 02 and HAD 06], give an overview of formal methods from a more
academic perspective.

Our aim in this book is to present real-world examples of the use of
formal techniques.

For our purposes, the term “formal techniques” is taken to mean the
different mathematically based approaches used to demonstrate that a
software application respects a certain number of properties.

4 See http://www.mathworks.com/products/polyspace/ for further information concerning
Polyspace.
5 See http://www-list.cea.fr/labos/fr/LSL/caveat/index.html for further information
concerning Caveat.
6 See http://www.absint.com/ for further information concerning Absint.
7 Further details may be found at http://frama-c.com/.
8 See http://www.astree.ens.fr/ for further information concerning ASTREE.
9 The Website http://www.altran-praxis.com/spark.aspx offers additional information
concerning SPARK Ada technology.
10 Note that SCADE started out as a development environment using the LUSTRE language
before becoming a language in its own right from version 6 onward (the code generator for
version 6 uses a SCADE model instead of a LUSTRE code as input).

xviii Formal Methods Applied to Complex Systems

Note that the standard use of formal techniques consists of producing
specification and/or design models, but that formal techniques are
increasingly seen as tools for verification (static code analysis, to
demonstrate that properties are respected, to demonstrate good management
of floating points, etc.).

This book is the fifth and final volume in a series covering different
aspects:

– Volume 1 [BOU 11] concerns examples of industrial implementation of
formal techniques based on static analysis, such as abstract interpretation,
and includes examples of the use of ASTREE, CAVEAT, CODEPEER,
FramaC and POLSYPACE.

– Volume 2 [BOU 12b] presents different formal modeling techniques
used in the field of rail transport, such as the B method, SCADE, Simulink
DV, GaTel and Control Build and other techniques.

– Volume 3 [BOU 12a] presents different tools used in formal
verification: SPARK ADA, MaTeLo, AltaRica, Polyspace, Escher and
B-event.

– Volume 4 [BOU 14] gives examples of the industrial implementation of
the B method [ABR 96], SCADE, and verification using Prover Verifier.
Note that this volume (which presents examples of application using the B
method) constitutes a useful addition to university textbooks such as
[LAN 96], [WOR 96] and [SCH 01].

I wish to thank all the industrial actors who have freely given of their
time to contribute such interesting and informative chapters to this book.

I.3. Bibliography

[ABR 96] ABRIAL J.R., The B Book: Assigning Programs to Meanings, Cambridge
University Press, Cambridge, August 1996.

[ANS 83] ANSI, Norme ANSI/MIL-STD-1815A-1983, Langage de programmation
Ada, 1983.

Introduction xix

[ARA 97] ARAGO, “Applications des Méthodes Formelles au Logiciel”, Observatoire
Français des Techniques Avancées (OFTA), Masson, vol. 20, June 1997.

[BAI 08] BAIER C., KATOEN J.-P., Principles of Model Checking, MIT Press, 2008.

[BAR 03] BARNES J., High Integrity Software: The SPARK Approach to Safety and
Security, Addison-Wesley, 2003.

[BOU 11] BOULANGER J.-L. (ed.), Static Analysis of Software, ISTE, London, and
John Wiley & Sons, New York, 2011.

[BOU 12a] BOULANGER J.-L. (ed.), Industrial Use of Formal Method: Formal
Verification, ISTE, London, and John Wiley & Sons, New York, 2012.

[BOU 12b] BOULANGER J.-L. (ed.), Formal Methods: Industrial Use from Model to
the Code, ISTE, London, and John Wiley & Sons, New York, 2012.

[BOU 14] BOULANGER J.-L. (ed.), Formal Method, Applied to Industrial Complex
Systems, ISTE, London, and John Wiley & Sons, New York, 2014.

[BOW 95] BOWEN J.P., HINCHEY M.G., Applications of Formal Methods, Prentice
Hall, 1995.

[COU 00] COUSOT P., “Interprétation abstraite”, Technique et Science Informatique,
vol. 19, no. 1–3, pp. 155–164, January 2000.

[DIJ 75] DIJKSTRA E.W., “Guarded commands, nondeterminacy and formal
derivation of programs”, Communications of the ACM, vol. 18, no. 8, pp. 453–
457, August 1975.

[DIJ 76] DIJKSTRA E.W., A Discipline of Programming, Prentice Hall, 1976.

[DOR 08] DORMOY F.-X., “Scade 6 a model based solution for safety critical
software development”, Embedded Real-Time Systems Conference, 2008.

[HAD 06] HADDAD S., KORDON F., PETRUCCI L. (ed.), Méthodes formelles pour les
systèmes répartis et coopératifs, Collection IC2, Hermes, 2006.

[HAL 91] HALBWACHS N., PAUL C., PASCAL R., et al., “The synchronous dataflow
programming language Lustre”, Proceedings of the IEEE, vol. 79, no. 9,
pp. 1305–1320, September 1991.

[HOA 69] HOARE C.A.R., “An axiomatic basis for computer programming”,
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 583, 1969.

[JON 90] JONES C.B., Systematic Software Development Using VDM, 2nd ed.,
Prentice Hall International, 1990.

[LAN 96] LANO K., The B Language and Method: A Guide to Practical Formal
Development, Springer Verlag London Ltd., 1996.

xx Formal Methods Applied to Complex Systems

[MON 00] MONIN J.-F., Introduction aux Méthodes Formelles, Hermès, 2000.
[Foreword by G. Huet]

[MON 02] MONIN J.-F., Understanding Formal Methods, Springer Verlag, 2002.
[Foreword by G. Huet, Translation edited by M. Hinchey]

[SCH 01] SCHNEIDER S., The B-Method: An Introduction, Palgrave, 2001.

[SPI 89] SPIVEY J.M., The Z Notation: A Reference Manual, Prentice Hall
International, 1989.

[WOR 96] WORDSWORTH J., Software Engineering with B, Addison-Wesley, 1996.

1

Presentation of the B Method

1.1. Introduction

The use of formal methods [BEH 93, ARA 97, HIN 95, MON 00,
BOU 11, BOU 12a, BOU 12b] is increasing, especially in critical
applications such as nuclear power plants, avionics and rail transport.
Ensuring maximum safety while operating an application is a significant
challenge.

The contribution of formal methods is that they present a mathematical
framework for the development process, which provides a method for
producing software that is correct by construction. This is because the
development process can be verified by validation techniques such as proof
or exploration of the model.

Figure 1.1. Example of a Z diagram1

Chapter written by Jean-Louis BOULANGER.
1 This Z diagram shows a file management system where the state is represented by a
mapping function between the file names and their contents, and a set of files open in reading
mode.

2 Formal Methods Applied to Complex Systems

Of course, to achieve this we need a precise description of the properties
that the computerized system must possess. There are different classes of
formal methods: algebraic specifications (PLUSS or PVS), equational
specifications (LUSTRE [HAL 91, ARA 97]) and model-oriented
specifications (B [ABR 96], the Vienna Development Method (VDM)
[JON 90] or Z [SPI 89]).

In contrast to model exploration-oriented validation (model-checking
[BAI 08]) such as LUSTRE, the B method [ABR 96] is based on the proof
of a proof obligation (or PO in the following) which guarantees the
feasibility and the coherence of the model (validity of the refinement).

In the French railway industry, the use of formal methods [BEH 93,
ARA 97, DEB 94, BOU 11, BOU 12a, BOU 12b], and in particular the B
method, is increasingly common within the development of critical systems.

The software for these safety systems (rail signaling, automatic driving,
etc.) must meet very strict quality, reliability, safety and robustness criteria.

One of the first applications of formal methods was made a posteriori on
the SACEM2 [GUI 90]. During the installation of the SACEM [GEO 90], the
RATP3 had carried out a Hoare proof [HOA 69] to demonstrate that the
requirements had been taken into account; for more information, see
[GUI 90]. The Hoare proof makes it possible to clearly show all of the
postconditions, using a program P and a set of preconditions C.

The Hoare proof, which was carried out within the SACEM, showed a
certain number of code properties, but it was not possible to link these with
requirements related to safety (e.g. requirement for non-collision).

As a result, the decision was made to create a formal model in Z [SPI 89,
DIL 95]. This formal model made it possible to break the properties down
and to link the requirements with the code. Around 20 significant anomalies
were discovered in this way by the team of experts responsible for the
respecification in Z.

2 The SACEM (Système d’Aide à la Conduite, à l’Exploitation et à la Maintenance –
Assisted Driving, Control and Maintenance System), which was installed in 1988, makes it
possible to tell drivers the speed at which the train should be travelling (report of the lateral
signalling in the cabin) via a screen installed on board, in order to aid driving.
3 See www.ratp.fr.

Presentation of the B Method 3

Projects such as the CTDC, KVS or the SAET-METEOR4 [BEH 93,
BEH 96, BEH 97, BOU 06], LST [DEH 94], CdG VAL (VAL for Véhicule
Automatique Léger – Light Automatic Vehicle)5 and the automation of
Line 1 of the Parisian metro use the B method throughout the development
process (from the specifications to the code).

1.2. The B method

1.2.1. Presentation

The B method was developed by Jean-Raymond Abrial6 [ABR 96], and
is a formal, model-oriented method like Z [SPI 89] and VDM [JON 90].
However, unlike these methods, it also allows incremental development of
the specification up to the code through the concept of refinement
[MOR 90], and this is through a unique formalism: the language of abstract
machines.

Figure 1.2. The “Hello” program in B

At each stage of B development, proof obligations (POs) are generated in
order to guarantee the validity of the refinement and the consistency of the

4 SAET-METEOR [MAT 98] has been in use since October 1998 on Line 14 of the Parisian
Metro. The computer architecture of SAET-METEOR (Système d’Automatisation de
l’Exploitation des Trains – Train Automation and Operation System – Métro Est Ouest
Rapide) is presented in Chapter 2 of [BOU 09] and the development, V&V and safety
demonstration process of the software are presented in Chapter 2 of [BOU 11c].
5 The first VAL was opened in Lille, France, in 1983. There are now also VALs in operation
in Taipei, Toulouse, Rennes and Turin (since January 2006). There are over 119 km of lines
and over 830 trains in use or in construction for VAL systems worldwide. VAL CdG
combines VAL technology with complementary digital equipment based on the B method.
6 It should be noted that Jean-Raymond Abrial had participated in the development of both
the Z and the B methods.

4 Formal Methods Applied to Complex Systems

abstract machine. In this way, the B method makes it possible to develop
safe software.

Like Z, the B method is based on set theory and first-order predicate
logic. However, unlike Z, the B method has a development flavor in its way
of specifying operations. In fact, operations are not specified in terms of pre-
and postconditions, but by means of generalized substitutions.

In Figure 1.2, we introduce the specification of the HelloWorld program
and its implementation HelloWorld_n.

1.2.2. The concept of an abstract machine

1.2.2.1. Abstract machine

A B-model is designed through composition, decomposition and
refinement of abstract machines. The basic component of the B method is
the abstract machine, which can be a high-level machine or a refinement of
another machine. The final refinement may also be called the
implementation.

The concept of an abstract machine is similar to the concept of a module
and/or object, which is found in more traditional programming languages.
The keyword here is “encapsulation”: the state evolution of an abstract
machine should only take place through the behavior of the encapsulation.

Abstract machines are divided into three levels: the MACHINEs, which
describe the highest level of specification; the REFINEMENTs, which
include all the intermediary steps between the specification and the code;
and the IMPLEMENTATIONs, which define the coding.

Figure 1.3 shows the structure of a MACHINE. The refinements and
implementations follow the same model.

The B method defines a unique notation, known as abstract machine
notation (AMN) (see [ABR 92]), which allows us to describe the above-
mentioned three levels of abstraction. It should be noted that in order to
transition from a high-level machine to implementation, we can go through
one or several refinements. In this case, we talk about a development chain
for the machine concerned.

Presentation of the B Method 5

Figure 1.3. Example of an abstract machine

From the final refinement (implementation) onward, we have obtained a
level of detail which is sufficient for us to use an automatic code generator
(C [ISO 99], ADA [ANS 83], etc.) to obtain an executable code. The
restrictions on the AMN at the implementation level make it possible to
build a translator.

Abstract machines are made up of three parts: declarative, composition
and executive. In Figure 1.4, the declarative part is shown in italics, the
executive part is shown in bold and the composition part is shown in normal
typeface.

1.2.2.2. Declarative part

The declarative part makes it possible to describe the state of the abstract
machine through variables, constants, sets and, above all, through properties,
which should always be verified by the state of the machine. This part is
based on set theory and first-order predicates. We can call this a state model.

6 Formal Methods Applied to Complex Systems

Figure 1.4. Example of an abstract machine

For the STACK machine in Figure 1.4, the state is made up of a
sequence-type stack variable, with Object-type elements and a max_object
constant, introduced by configuration, which makes it possible to configure
the maximum number of elements from this stack. The sequence is the
second type of basis after sets.

Expression Name Written Meaning
Β Boolean Boolean Set of two values {true,false}
N Natural number NATURAL {0.1,….}
NAT Finite set of natural

numbers
NAT {0,1,…MAXINT}

Z Integer INTEGER {..,-2,-1,0,1,2,…}
INT Finite set of integers INT {-MAXIN, ..,-2,-

1,0,1,2,…+MAXINT}

Table 1.1. The basic sets

The B language is not built on the manipulation of types, but rather on
the manipulation of sets. For each variable, we calculate all the associated
values. Table 1.1 introduces the basic sets.

Presentation of the B Method 7

The basic sets are associated with an operator set which makes it possible
to construct more complex sets. Table 1.2 introduces a subset of set
operators available for the creation of B models.

Expression Name Written Means
∅ The empty set {} The empty set
{e1, e2, e3} A list {e1, e2, e3} A set which contains only the

elements e1, e2 and e3
Ρ(A) Set of the parts of A Pow(A) A set which contains all the parts

of A
P * Q Cartesian product P * Q The Cartesian product of P by Q.
S↔T Set of all the

relationships of S*T
S<-> T Set of all the relationships from S

to T, equal to P(S*T)
Id(S) Identity of S Id(S) Set of the pairs E E or E ∈ S

….

Table 1.2. The basic sets

As we can see in Figure 1.4, the B language has a mathematical notation
(∈, ∧, eτχ). However, it also needs to have a computer notation (:, & , etc.),
which makes it possible to enter elements using a normal keyboard.
Table 1.3 shows an extract of the correspondence between B American
Standard Code for Information Interchange (ASCII) notation and
mathematical notation.

B ASCII notation Mathematical notation Meaning
< : ⊆ Included or equal
\ / ∪ Union
/ \ ∩ Intersection
: ∈ Belongs to
:: : ∈ Becomes an element of
f~ f-1 Function or reciprocal relationship
f[E] f(E) Image of the set E by f
A<| f f | A Restriction on the domain

!x.(.....) ∀x … Universal quantifier
#x.(....) ∃x … Existential quantifier
& /\ logical “AND”
or ∨ logical “OR”
not ¬ logical “NOT”
{} ∅ Empty set

%x.(...) λx … Lambda function
….

Table 1.3. Correspondence between ASCII and mathematical notation

8 Formal Methods Applied to Complex Systems

Figure 1.5 shows an example of a specification which uses sets. There is
a global set PEOPLE (PERSONNES) which characterizes all the people
which can exist in the specification. This set must be finite, and this is why
there is a constraint on the cardinal. The set “people” characterizes people
who exist and the set “men” characterizes a specific subset of “people”.

Figure 1.5. Example of set usage

The clause DEFINITIONS introduces the set WOMEN which is the
complement of the set men. This clause makes it possible to have “inline”
definitions of programming languages (an “inline” code is expanded at
compilation).

1.2.2.3. Composition part

The composition clauses (SEES, INCLUDES, IMPORTS and
EXTENDS) make it possible to describe the various links between abstract
machines. Each clause introduces visibility rules on the state and the
operations of the abstract machine in question.

In our example in Figure 1.3, we introduce the visibility link (SEES) on
the machine OBJECT in order to have access to the set Object.

Presentation of the B Method 9

1.2.2.4. Executive part

The executive part contains the initialization and the operations of the
abstract machine. It is based on the generalized substitution language (GSL).
This execution mechanism may be interpreted as an extension of the
assignment as it exists in imperative languages (of the type ADA, PASCAL,
C, etc.).

Table 1.4 shows a subset of the GSL [ABR 91]. Generalized substitutions
are an extension of the work of Dijkstra [DIJ 76] on substitutions.

Simple substitution x := E [x:=E] R <=> substitution of all the free
occurrences of x in R by E

Empty substitution skip [skip] R <=> R

Simultaneous
substitution

S || T
[S || T] R <=> [S] Rs ∧ [T] Rt where R=Rs Rt;

T and S modify the distinct variable sets Vs and Vt;
Vs (resp. Vt) is not free in Rt (resp. Rs)

Preconditioning P | S [P | S] R <=> P ∧ [S] R

Limited choice S [] T [S [] T] R <=> [S] R ∧ [T] R

Kept choice P => S [P => S] R <=> P =>[S] R

Choice not limited @ x . S [@ x.S] R <=> x.[S] R or x is not free in R

NOTE.– x describes a variable, E is an expression of set theory, P and R are predicates, and
S and T are generalized substitutions.

Table 1.4. A subset of generalized substitutions

Generalized substitutions are predicate transformers. The predicate
obtained by applying the substitution S on the predicate P is written as [S] P.
In fact, as shown in Table 1.5, we define substitutions by their effect on a
predicate, and this is known as weakest precondition (wp).

The substitution P is associated with the wp [P]R for all of R,
which is [P]R {P} R
following Hoare logic.

For example: let P and R be defined, respectively, by x:=x+1 and x:NATURAL
we obtain x+1: NATURAL {x:=x+1} x: NATURAL

Table 1.5. Use of predicate transformation

10 Formal Methods Applied to Complex Systems

There are complementary calculation rules available for manipulating
generalized substitutions, such as distributivity [S] (p &q) = [S]p & [S]q or
[S](¬p) = ¬([S] p).

The behavior of our example (see Figure 1.4) basically consists of two
operations (push and pop) that are constructed around the behavior of the
sequences. The operations last, front and ← represent, respectively, access to
the final element, the sequence without the final element and the
concatenation to the right.

In order to find out whether the substitution of the body of the push
operation can verify the invariant of the STACK machine, we can simply
calculate the initial precondition so that the substitution stack := stack ← XX
satisfies the invariant of the abstract machine. (see Figure 1.6)

Figure 1.6. Application of the push operation on the invariant

In order to minimize the burden of the construction of abstract machines,
some sugared constructions have been introduced at the AMN level. The
basic substitutions (see Table 1.4) have a textual form available to them; for
example, the preconditioning P | S is written as PRE P THEN S END.

Some more evolved structures, which are found in the so-called evolved
languages, have been introduced, but they may be rewritten by combining
the basic substitutions. The multiple substitution x,y := E,F and the classical
conditional structure IF P THEN S ELSE T END are both examples of
actions that can be found in the body of operations. They may be rewritten,
respectively, with the simultaneous substitution x:=E || y:=F and the limited
substitution P=>S [] not(P)=>T.

Presentation of the B Method 11

As previously stated, the AMN defines a single notation based on GSL,
set theory and first-order logic. However, the set of substitutions cannot be
used on all levels. For example, the substitution ANY xx WHERE P(xx)
THEN S END (which means that ∀ xx.P(xx) => [S]) can be used at the
abstract levels (machine and refinement), whereas the substitution WHILE B
DO S END cannot be accepted at the most abstract level.

The B method is based on encapsulation. Therefore, the operations should
provide the set of behaviors enabling the state of the machine to evolve.
However, this is not always possible, as we will see in in the following.

1.2.3. From machines to implementations

1.2.3.1. Principle

Abstract machines that are used to describe the specification use
non-deterministic constructs and all the power of set language and first-order
logic. In this context, algorithmic constructions (sequence and loops) are
forbidden for abstract machines.

In order to proceed toward an executable application, the process known
as refinement needs to be introduced. This allows us to progressively replace
the set data structures with structures close to those of programming
languages. In this way, the non-determinism is removed and generalized
substitutions analogous to sequence and loops (WHILE) are introduced.

All of these refinement stages are subjected to proofs of maintenance of
the invariants and the conformity of the refined machines in relation to the
more abstract machines.

1.2.3.2. Refinement

As can be seen in Figure 1.7, the refinement process (see [MOR 90]) has
usually been represented as a sequence of independent steps, with which
verifications are associated. A component i+1 (refinement or
implementation) refines a component i (machine or refinement).

The refinement process begins with the definition of a machine that
contains the abstract description of the need. The refinements allow us to
make the need concrete and show the non-deterministic and non-sequential
elements. The implementation is a B component that uses a subset of the B
language named B0.

12 Formal Methods Applied to Complex Systems

Figure 1.7. From the description of the need to the implementation

The sublanguage B0 is a language that is close to more traditional
languages (C, ADA, etc.). B0 is thus easy to translate into programming
languages.

Figure 1.8 shows an example of refinement (for more information about
the process of refinement, see [MOR 90]). The specification indicates that
the need is to find two numbers q and r such that a= q*b+r and r<b. It can
be seen that the mathematical specification of the Euclidean division can be
replaced (in the sense of refinement) by an algorithm that carries out the
calculation through successive subtractions.

The suggested algorithm uses an instruction WHILE … DO END. The B
language is here the B instruction, integrating the concept INVARIANT and
the concept VARIANT. The VARIANT allows us to show the end of the
loop and the INVARIANT allows us to verify the correct behavior of the
loop.

1.2.3.3. Process

Figure 1.9 introduces the generally used process, which is focused on
searching for a fault in the software application. The search for a fault is

Presentation of the B Method 13

based on the concept of program execution. This approach seeks to show
that the software is correct.

Figure 1.8. Example of a refinement

Figure 1.9. Development cycle with the B method

Using formal methods, the process is based on a different observation:
“the software is correct by construction”. As a result, the process is different
because it is focused on analyzing the need and demonstrating that some
properties are true during all executions (see Figure 1.10).

14 Formal Methods Applied to Complex Systems

Figure 1.10. Formal process

As can be seen in Figure 1.11, the process consists of writing a modeling
of the problem, simple and abstract. Then, to this modeling, as the stages
known as refinement progress [MOR 90], we add more concrete and more
complex elements, all the while proving the coherence of the new models
created.

Figure 1.11. Development cycle with the B method

Implementation, the final stage, is free from abstract types of original
data, which have become programmable structures such as tables and files.
The following have been eliminated: the preconditions of subprograms, and
the simultaneity and the non-determinism that were present in the abstract
model. Structures for checking programming such as sequencing and loop
have been introduced.

Presentation of the B Method 15

At this stage, automatic transformation into code may take place. This
could be into ADA or C, or even into Assembleur code for certain tools: trying
to match a formal specification directly with a traditional programming
language is impossible because they have different thought patterns.

The concept of proof (in Figure 1.11, the thin arrows) is strongly linked
to the B development and the specification is written as a function of these
future obligations. The proof is involved at all levels of abstraction. After a
machine is written, the proof of its internal coherence is carried out. If the
result of this is positive, then the development may continue.

The proof is carried out in this way after each level of abstraction, verifying
internal coherence and conformity with the level of abstraction above.

Figure 1.12. B Process

Figure 1.12 summarizes the creation process for a B model. In input are
the specifications of the needs, and in output are the sources of the B model,
the added rules, the POs, the proofs and the source codes.

1.3. Verification and validation (V&V)

1.3.1. Internal verification

1.3.1.1. Principles

As shown in Figure 1.13, external verification (consistency of the
specification) and internal verification (validity of the refinements) are

16 Formal Methods Applied to Complex Systems

carried out through proof of the POs. POs are an essential part of the B
method.

Figure 1.13. Internal verification and external verification

The B method introduces three verification phases for all abstract
machines: syntactic analysis, verification of type and generation of POs. For
implementations, there is an additional verification linked to the fact that the
B component must comply with the B0 language in order to guarantee the
translation into the target language.

1.3.1.2. Syntactic and semantic analysis

Syntactic analysis allows us to verify that the abstract machine has been
correctly built, through ensuring that it complies with the syntactic rules of
AMN. One of the syntactic rules verified in this way is linked to the
restriction on the use of certain substitutions. For example, simultaneous
substitution, denotated S || P, may not be used in an implementation.

Verification of type makes it possible to detect faults linked to undeclared
or poorly declared objects, expressions that cannot be typed, incoherencies
between various definitions of the same operation, or to violations of
visibility rules introduced by the composition clauses. All expressions can be
typed, since the set theory used in AMN is a simplification of classical set
theory.

Presentation of the B Method 17

1.3.1.3. Generation of proof obligations

As we have already shown, at each development stage there is a stage of
PO generation. POs are automatically generated by the tool.

Figure 1.14. Aims of proof obligations

For a high-level abstract machine, the POs generated guarantee
mathematical consistency. For refinements and implementations, the POs
guarantee the validity of the refinement in relation to the machine at the next
level in the development chain. In general, the complexity of the POs
depends on the level of abstraction used (the more concrete, the more
complex) and the structure of the application in terms of links between
machines.

All the POs contain information that describes the context of the machine
in their hypotheses. The context contains a set of constraints that define the
formal parameters, and the properties concerning the sets and the constants
of the abstract machine. It also takes into account that all the sets used are
finite, not empty, and that all of their elements are distinct.

The context of an abstract machine is denotated by <Context>. The
composition clauses may add information to the context, to the invariant and
to the initialization which is in agreement with the visibility rules.

The verification of mathematical consistency introduces two types of
POs. First, we need to show that the model is not empty. This is done by
showing that the initialization creates the invariant.

<Context>⇒ [Initialization] Invariant [1.1]

18 Formal Methods Applied to Complex Systems

Second, we need to prove that each operation of the abstract machine
maintains the invariant. In the case of an OPE operation defined by a
substitution S under the precondition that if Q is OPE = PRE Q then S END,
we obtain a PO of the following form:

<Context> ∧ Invariant ∧ Q⇒ [S] Invariant. [1.2]

We may take the result of Figure 1.5 to be an example of this. It thus
remains to be shown that:

(stack ∈ seq(Object) ∧size(stack) <= max_object) ∧

(XX ∈ Object and size(stack) < max_object)

⇒ stack<-XX ∈ seq(Object) ∧ XX ∈ Object ∧ size(stack<-XX) <=
max_object

To show that an abstract machine is actually a refinement of a highest
level machine in relation to a development chain, we need to show that its
initialization and its operations maintain the semantics of their most abstract
versions. The POs generated for the nth refinement are described by
equation [1.3] for the initialization and by equation [1.4] for each operation.

<Context>⇒ [Initn] ¬ [Initn-1] ¬ In [1.3]

<Context>∧I1∧I2∧...∧In∧Q1⇒ Qn∧ [[un:=un-1]Sn]¬
[Sn-1]¬(In∧un=un-1) [1.4]

where Initi, Ii, Qi, Si and ui are, respectively, the initialization, the invariant,
the precondition of the operation, the action of the operation and the formal
parameter of the operation of the ith refinement.

We notice that there is no PO regarding the feasibility of the predicates
introduced in the invariant, the preconditions of the operations, the
constraints relative to the formal parameters, and the properties of the sets
and the constants. In fact, feasibility is introduced by the construction of the
other proofs or by the introduction of a specific PO in the case of need.

The verification of the existence of a variable that satisfies the invariant is
indirectly introduced by the POs [1.1] and [1.3].

Presentation of the B Method 19

The existence of formal parameters that validate the precondition of an
operation is carried out by the POs [1.2] and [1.4]. The existence of formal
parameters that validate the constraints of the target machine is required
when a machine uses the inclusion or importation of another machine.

All machines that include or import a configured machine must
instantiate the formal parameters, and the PO [1.5] is generated in order to
guarantee that the effective parameters validate the constraints.

<Context>⇒ [Formal_parameter-:= Actual_parameter] (Α∧Constraints) [1.5]

where A is a predicate indicating that the sets that have become parameters
are finite and not empty, and where the predicate Constraints is associated
with the clause of the same name.

The valuation of the sets and constants may be carried out at the highest
level or at implementation (sets and constants submitted). The PO [1.6]
guarantees that, at the implementation level, the properties are true for the
values given to these objects:

<Subset_of_Context> ⇒[Deferred SET, Deferred VAR:= Values]
Properties [1.6]

where Properties is the predicate associated with the clause PROPERTIES.
<Subset_of_Context> relates to the part of the context used to create the
Values.

Using constructive proof implies that certain verifications are carried out
at the implementation level. In the case of parameterized machines, these
verifications are reported until inclusion (machine or refinement) or
importation (implementation) in a machine which is part of another
development chain.

In the above, we have seen that we can use the structure WHILE at the
final realizations level. As we are in a proof environment, a certain number
of complementary POs are generated to guarantee that WHILE (see
Figure 1.8) and its termination are executed correctly.

Finally, the following should be noted: while we are analyzing the POs,
the number of predicates from the analysis grows when the number of the

20 Formal Methods Applied to Complex Systems

levels of refinement and the number of links introduced by the composition
clauses increase.

The POs are represented by a goal to be achieve under the condition of
the presence of assumptions. These are established starting from the
preconditions and the definitions contained in the refined component, but
also using the information read in the viewed or imported machines.

1.3.2. Validation or external verification

When the B-model is written and proved, we may believe that it is
correct, but in fact it is not so simple. The proof guarantees that the B-model
is coherent and respects the properties introduced in precondition, invariant
and postcondition. However, the validation deals with the correctness with
regard to the need.

The B method does not cover the validation; we need to introduce some
specific activities:

– to review the B-model to verify that the textual specification is assumed
by the model;

– to demonstrate that the properties (contained in the model) cover all
parts of the model. It is possible to introduce some obvious properties or
partial properties (which cover just a part of the model);

– to test (overall software tests) the complete software (generated
automatically) to demonstrate that the complete application fulfills the
requirements of the textual specification.

1.4. Methodology

The development of an application in B is not code-oriented, but rather it
is proof-oriented. This is why all application development methodology in B
must be proof-oriented. Indeed the POs generated should be as small as
possible and their numbers whether large or small should be provable.

Presentation of the B Method 21

Figure 1.15. Refinement chain

1.4.1. Development by layer

Figure 1.15 shows the classical process for development using a formal
method. We begin by writing the specification of the system to be created,
and then we carry out successive refinements until the code is obtained.

In order to validate the specification, there is a unique external
verification at the level of the specification and there are internal
verifications at each refinement. Putting a process such as this in place for
development in B introduces a significant network of links (SEES,
INCLUDES, PROMOTES and EXTEND) between the machines
(composition part of the machines) at the highest level of abstraction.

In addition, such a process rapidly reveals variables and invariants which
characterize the composition part in high-level machines. This weighs down
the predicates brought into play in the POs and thus makes the POs more
complicated.

The B development must start from the highest possible level of
abstraction and progressively introduce the details of implementation in the
form of operation and data refinements. In this way, a layered development
is obtained (see Figure 1.16).

22 Formal Methods Applied to Complex Systems

Figure 1.16. Layered development

In fact, in layered development [WAE 95], we progress from an abstract
stage to a concrete stage that leads to the appearance of new abstract stages.
This is the way in which the concept of a development chain and a
breakdown based on services appears.

A development chain brings together all the stages, from specification to
implementation, for a given module (shown by the dotted rectangle in
Figure 1.16). The structuring of the layered model is performed through
SEES and IMPORTS links. The SEES link (shown by a line) allows
MACHINE and REFINEMENT to access the data structures. The
IMPORTS link (shown by the arrow) makes it possible to access the
operations during the final realization.

The sheets of the graph obtained in this way are basic machines that are
already proved and that have been created in different target languages.

This type of development offers a model rather than a specification of the
problem. As an immediate consequence, we have an external validation,
which will need to be fragmented on the set of high-level abstract machines.

Presentation of the B Method 23

The three advantages of the layer development are:
– The first is linked to the fact that the availability of high-level abstract

machines that are used in the composition clause is enough to prove a
development chain. This is close to the concept of a module or package
which is found in languages such as ADA.

– The number of links between abstract machines is limited, which
decreases the complexity of the POs. We focus solely on the SEES and
IMPORTS links.

– The graph obtained is a non-transitive acyclic graph. This limits the
impact of a modification of a high-level abstract machine. The modification
of a refinement or an implementation does not have an impact outside its
development chain.

1.4.2. Role of the breakdown in the makeup of the POs

In section 1.3.1.3, we presented the POs generated by the B method, and
we observed that the number of links between machines introduced a
complexity in terms of the predicate brought into play in the PO. In fact, the
composition links are of two categories: the links at the abstract level
(machine and refinement) and the links at the concrete level
(implementation).

Another aspect of the role of the breakdown is the algorithmic
refinement. If we begin with a specification that is insufficiently abstract, the
complexity of the POs very quickly increases. As F. Meija (DEH 94,
DEH 94a) pointed out in his articles, the choice of an operation’s refinement
structures is important. In the case of a conditional structure (IF THEN
ELSE END or CASE OF END), we should not attempt to make a situation
disappear.

1.4.3. Development cycle of a B project

Introducing a PO with the development provides an important alternative
to the program test usually carried out during the development.

Figure 1.17 shows the development cycle of an application in B. We can
see that there is no compilation, and therefore no execution, before the final
phase. In fact, as we do not have an effective animator which could evaluate

24 Formal Methods Applied to Complex Systems

the behavior of the B-model during the development, we cannot carry out
external verification of the model.

Figure 1.17. B Development cycle

The presence of the formal proof of conformity of the developed code
with the specifications has allowed us to significantly reduce the test phases
of the V cycle. This is shown in Figure 1.17.

The use of the B method for SAET-METEOR (see [BOU 06, Chapter 3])
showed that it is possible to replace test activities (unit test (UT) and
integration test (IT)) by proof activities.

NOTE.– if it is required to create a manual code (low-level function, link
with components developed outside of B, etc.), it will be necessary to model
these elements within B and to show that the component developed manually
(or re-used) respects this specification. This verification is modeled by the
dotted arrow (see Figure 1.18) that leads the manual code toward higher
levels and by the need to conduct at least unitary tests on these portions of
the code. It will then be necessary to carry out a phase of integration tests to
show that the manual code and the generated code interact correctly.

Figure 1.18 shows an informal specification. This specification will be
partially taken into account by the B-model and will be the input for the
creation of functional tests showing that the correct software has been
created. The traceability phases are identified by the dotted arrows. We must
show that we have correctly taken all the needs into account at each stage.

Presentation of the B Method 25

Figure 1.18. B Development cycle

The proof activities are shown by the double arrows in the figure. They
may require the addition of lemmas during the interactive proofs. This is
why it has been necessary to add a verification phase for the proof activity
and for the lemmas.

However, without restarting the debate about the use of formal methods
in safety software applications, in [BEH 96] it is stated that the unit and
integration tests are redundant with the complete proof and safe code
generation. Waeselynck [WAE 95] recommends preserving all the test
phases in the expectation of returning to the methodology and the validation
of B tools. This discussion is always valid if the development is carried out
in a context outside a processor based on safe code (for PSC architecture, see
Chapter 2 of [BOU 09] and Chapter 1 of [BOU 11a]).

It should be noted that creating and validating a B-model does not
guarantee that the code generator, the production tools of executable
programs (compiler, linker, etc.), the installation tools, the management tools
for configuration, the target material architecture, etc., do not transform the
execution and therefore nullify the proofs that have been carried out.

26 Formal Methods Applied to Complex Systems

This point is mentioned in several chapters of this book. A qualification
report for the tools used needs to be produced. However, the production of a
qualification report for a code generator and/or a proof tool is not an easy
task.

1.5. Feedback based on experience

1.5.1. A few figures

Table 1.6 provides information on the complexity of the B developments
carried out in the railway sector. The table does not describe all of the
railway applications that have been created using the B method, but it allows
us to take stock of the complexity of the developments created with the B
method.

Table 1.6. Example of complexity of a B-model [BOU 06]

1.5.2. Some uses

1.5.2.1. The current situation

The B method was initially used for railways. As opposed to Safety-
Critical Application Development Environment (SCADE) (see [BOU 12b,
Chapter 2]), which is based on an equational language, the B method was
defined for the description of sequential, non-interruptible programs. Its
ability to describe complex algorithms is one of its key strengths; another
strength of the B method is that it delivers one single notation that goes from
specification to implementation.

System name Lines of code
B

Lines of
generated

code

Language Number of
proof
obligations

CDTC 5,000 3,000 ADA 700
KVB 60,000 22,000 ADA 10,000
KVB-SN 9,000 6,000 ADA 2,750
KVS 22,000 16,000 ADA 6,000
SACEM-simplified 3,500 2,500 Module 2 550
SAET-METEOR 115,000 90,000 ADA 27,800
Eurocoder 10,000 4,500 ADA 4,200
CdG-VAL PADS: 186,440 30,632 ADA 62,056

UCA: 50,085 11,662 ADA 12,811

Presentation of the B Method 27

The railway equipment which manages line occupation (called ground
equipment) is difficult to model with equations. Therefore, we need to
describe algorithms which will manipulate complex structures describing
line topology (see [BOU 12a, Appendix 2.7]) and the characteristics of trains
and equipment.

The main users of the B method are ALSTOM and SIEMENS; however,
AREVA, in the Communication-Based Train Control (CBTC) project7, is in
the process of using the B method.

There have been several attempts to apply the B method in the
automobile and space industries.

1.5.2.2. SAET-METEOR

Line 14 of the Paris Metro is managed by SAET-METEOR, and more
particularly by the automatic train protection sub-system (see Figure 1.19)
which is distributed along the line and within the equipped trains.

The control system has complete control over the automatic operation
trains (acceleration, emergency stop, etc.). However, the manual operation
trains are autonomous and can override a stop order transmitted by signaling.
The line is managed by an automatic line pilot (PA-Ligne) and is divided
into automation sections [LEC 96].

The control system is thus made up of three software applications
developed with the B method and with a safety level of SSIL3-SSIL4 as
specified by the standard CENELEC EN 50128 [CEN 01, CEN 11]8

It is noteworthy that since SAET-METEOR began operation in 1998, the
safety software has had no problems, so that no change to the safety software
has been necessary.

7 “Communication Based Train Control”: an operation, driving and safety system for trains
and metros. CBTC is a system made up of embedded equipment onboard trains and fixed
equipment communicating between them (usually by radio). CBTC is subject to a standard
[IEE 04].
8 For more information, see http://www.cenelec.eu/.

28 Formal Methods Applied to Complex Systems

Figure 1.19. Breakdown of the SAET-METEOR Automatic Pilot

The robustness of the process implemented for the SAET-METEOR
project made it possible to reproduce all of the work for the extension of the
line from Madeleine to Saint-Lazare. This extension has been open to the
public since 16 December 2003. On 26 June 2007, RATP opened an
extension to Olympiades (13th arrondissement, Paris).

1.5.2.3. VAL CdG

The VAL CdG (Figure 1.20) is based on Siemens9 VAL technology10
and it combines the classical VAL (purely electronic) with a VAL controlled
by a two-direction automatic pilot (PADS) and an alarm control unit (UCA).

CdG VAL comprises two lines (Line 1 and LISA), which have been in
operation since April 2007. The line is open 24 hours a day.

The PADS and UCA were developed with the B method and with a
safety level of SSIL3-SSIL4 as described in the standard CENELEC EN
50128 [CEN 01, CEN 11].

9 For more information, see www.siemens.com.
10 The VAL, the first fully automatic driverless metro in the world, was opened in Lille,
France, in 1983, and now also operates in Taïpei, Toulouse (Line 1) Rennes, Toulouse
(Line 2) and Turin, Italy. There is also a VAL at the airports Chicago O’Hare and Paris-Orly.

Presentation of the B Method 29

Figure 1.20. The CdG VAL at the platform

Figure 1.21. Architecture of the VAL CdG

1.5.2.4. Eurobalise coder

For our third example, we will take some field equipment that links a
central station and the balises (a balise is an electronic beacon or
transponder, placed between the rails, that gives orders to the trains).

For this application, there is only one formally developed software
application, which was developed with the B method [ABR 96] and one
treatment unit. The software application has been created with a safety level
of SSIL3-SSIL4 as described in the standard CENELEC EN 50128
[CEN 01, CEN 11].

The B method is a formal method which guarantees (through
mathematical proofs) that the software is correct with respect to a property.

30 Formal Methods Applied to Complex Systems

This guarantee is very useful, but it does not cover the code generator, the
generation chain for the executable program (compiler, linker, etc.) and the
means of loading.

As shown in Figure 1.22, with this application, there are two code
generators and two code generation chains for executable programs (two
compilers). This makes it possible to have two different versions of the
executable program. It is thus possible to show that the address tables
(variables, constants, functions, parameters, etc.) of the two executable
programs are indeed different. Each version of the application is loaded in
different memory spaces.

Figure 1.22. Diversification

1.6. Conclusion

A complete course on the B method is beyond the scope of the current
chapter; however, we have been able to present the basic principles of this
formal method. A formal method is based on a syntax, a semantics and a
verification method.

The B method is a formal programming method that aims to specify and
produce software safely.

One of the significances of the B method is that it offers a homogeneous
notation for the specification and the design of a software application.

Presentation of the B Method 31

For the B method, the verification principle is the proof. The
specifications obtained in this way are free of the most usual bugs and,
through the principle of refinement of the specifications, it is possible to
construct algorithms and show that these algorithms verify the specification.
The crucial difference between the B method and the classical development
lies in the fact that with formal methods the program is correct by
construction.

The test thus becomes an “obsolete” activity, which is a good news given
the cost of testing. However, this is only true if a certain number of
assumptions are verified, such as the demonstration that the generation chain
for the executable program (code generator, compiler, etc.) does not
introduce any fault, and that it is possible to trust the verification tools (proof
obligation generator, prover, etc.).

1.7. Glossary

AMN abstract machine notation

CENELEC Comité Européen de Normalisation ELECtrotechnique
(European Committee for Electrotechnical Standardization)

GSL generalized substitution language

IT integration tests

METEOR Metro Est Ouest Rapide (High-speed East-West metro)

PA Pilote Automatique (autopilot)

PO proof obligation

PADS Pilote Automatique Double Sens (two-way autopilot)

SACEM Système d’Aide à la Conduite, à l’Exploitation et à la
Maintenance (Assisted Driving, Operation and Maintenance System)

SAET Système d’Automatisation de l’Exploitation des Trains
(Train Automation and Operation System)

SCADE Safety-Critical Application Development Environment

SIL safety integrity level

SSIL software SIL

32 Formal Methods Applied to Complex Systems

UCA Unité de Contrôle des Alarmes (alarm checking unit)

UT unit test

V&V verification and validation.

VAL Véhicule Automatique Léger (light automatic vehicle)

VDM Vienna Development Method

WP weakest precondition

1.8. Bibliography

[ABR 91] ABRIAL J.R., LEE M.K.O., NEILSON D.S., et al., “The B-Method”, The
proceeding is VDM'91, vol. 2, pp. 398–405, 1991.

[ABR 92] ABRIAL J.R., “On constructing large software systems”, IFIP 12th World
Computer Congress, vol. A-12, pp. 103–112, September 1992.

[ABR 96] ABRIAL J.R., The B-Book, Cambridge University Press, 1996.

[ANS 83] ANSI, Standard ANSI/MIL-STD-1815A-1983, Ada programming
language Ada, 1983.

[ARA 97] ARAGO, “Applications des méthodes formelles au logiciel”, Observatoire
Français des Techniques Avancées (OFTA), ARAGO 20, Masson, June 1997.

[BAI 08] BAIER C., KATOEN J.-P., Principles of Model Checking, MIT Press, 2008.

[BEH 93] BEHM P., “Application d’une méthode formelle aux logiciels sécuritaires
ferroviaires”, Atelier Logiciel Temps Réel, 6ème Journées Internationales du
Génie Logiciel, 1993.

[BEH 96] BEHM P., “Développement formel des logiciels sécuritaires de
METEOR”, in HABRIAS H. (ed.), Proceedings of the 1st Conference on the B
Method, Putting into Practice Methods and Tools for Information System
Design, Nantes Computer Science Research Institute (IRIN), pp. 3–10,
November 1996.

[BEH 97] BEHM P., DESFORGES P., MEIJA F., “Application de la méthode B dans
l'industrie ferroviaire”, ARAGO 20, pp. 59–88, 1997.

[BOU 06] BOULANGER J.-L., Expression et validation des propriétés de sécurité
logique et physique pour les systèmes informatiques critiques, PhD Thesis,
University of Technology of Compiègne, 2006.

[BOU 09] BOULANGER J.-L. (ed.), Sécurisation des architectures informatiques –
exemples concrets, Hermes-Lavoisier, 2009.

Presentation of the B Method 33

[BOU 11a] BOULANGER J.-L. (ed.), Sécurisation des architectures informatiques
industrielles, Hermes-Lavoisier, 2011.

[BOU 11b] BOULANGER J.-L. (ed.), Static analysis of software, ISTE, London, John
Wiley & Sons, New York, 2011.

[BOU 12a] BOULANGER J.-L. (ed.), Industrial use of formal method: formal
verification, ISTE, London, and John Wiley & Sons, New York, 2012.

[BOU 12b] BOULANGER J.-L. (ed.), Formal methods: Industrial use from model
to the code, ISTE, London, John Wiley & Sons, New York, 2012.

[CEN 01] CENELEC EN 50128, “Railway applications – communications,
signalling and processing systems – software for railway control and protection
systems”, CENELEC, May 2001.

[CEN 11] CENELEC EN 50128, “Railway applications – communications,
signalling and processing systems – software for railway control and protection
systems”, CENELEC, May 2011.

[DEH 94] DEHBONEI B., MEJIA F., “Formal development of software in railways
safety critical systems”, in MURTHY T.K.S., MELLITT B., BREBBIA C.A., et al.
(eds.), Railway Operations, Computational Mechanics Publications, vol. 2,
pp. 213–220, 1994.

[DEH 94] DEHBONEI B., MEJIA F., “Formal methods in the railways signalling
industry”, In Springer-Verlag, (ed.), FME’94, Industrial Benefits of Formal
Methods of Lecture Notes in Computer Science, Springer, Verlag), vol. 873,
pp. 26–34, 1994

[DIL 95] DILLER A., Z: An Introduction to Formal Methods, John Wiley & Sons,
March 1995.

[DIJ 76] DIJKSTRA E.W., A Discipline of Programming, Prentice Hall, 1976.

[GEO 90] GEORGES J.-P., “Principes et fonctionnement du Système d’Aide à la
Conduite, à l’Exploitation et à la Maintenance (SACEM). Application à la ligne
A du RER”, Revue Générale des Chemins de fer, vol. 6, June 1990.

[GUI 90] GUIHOT G., HENNEBERT C., “SACEM software validation”, iProceedings
of 12th IEEE-ACM International Conference on Software Engineering, March
1990.

[HAL 91] HALBWACHS N., CASPI P., RAYMOND P., et al., “The synchronous
dataflow programming language Lustre”, Proceedings of the IEEE, vol. 79,
no. 9, pp. 1305–1320, September 1991.

[HIN 95] HINCHEY M.G., BOWEN J.P. (eds.), Applications of Formal Methods,
International Series in Computer Science, Prentice Hall, 1995.

34 Formal Methods Applied to Complex Systems

[HOA 69] HOARE C.A.R., “An axiomatic basis for computer programming”,
Communications of the ACM, vol. 12, pp. 576–583, October 1969.

[IEE 04] IEEE, 1474.1, IEEE Standard for Communications-Based Train Control
(CBTC) Performance and Functional Requirements, 2004.

[ISO 99] ISO, ISO/IEC 9899:1999, Programming languages – C, 1999.

[JON 90] JONES C.B., Systematic Software Development Using VDM, 2nd ed.,
Prentice Hall International, 1990.

[LAN 96] LANO K., The B Language and Method: A Guide to Practical Formal
Development, Springer Verlag London Ltd., 1996.

[LEC 96] LECOMPTE P., BEAURENT P.-J., “Le système d’automatisation de
l’exploitation des trains (SAET) de METEOR”, Revue Générale des Chemins de
fer, vol. 6, pp. 31–34, June 1996.

[MAT 98] MATRA and RATP, “Naissance d’un Métro. Sur la nouvelle ligne 14, les
rames METEOR entrent en scène. PARIS découvre son premier métro
automatique”, La vie du Rail & des Transports, Hors-Série no. 1076, October
1998.

[MON 00] MONIN J.-F., Introduction aux méthodes formelles, Hermès, 2000.

[MOR 90] MORGAN C., Deriving Programs from Specifications, Prentice Hall
International, 1990.

[SCH 01] SCHNEIDER S., The B-Method: An Introducton, Palgrave, 2001.

[SPI 89] SPIVEY J.M., The Z Notation: A Reference Manual, Prentice Hall
International, 1989.

[WAE 95] WAESELYNCK H., BOULANGER J.-L., “The role of testing in the b formal
development process”, The proceeding is VDM'91, ISSRE’95, Toulouse, 25–27
October 1995.

[WOR 96] WORDSWORTH J., Software Engineering with B, Addison-Wesley, 1996.

2

Atelier B

2.1. Introduction

Atelier B has been used on many occasions in developing safety
programs that are used for functions at the SSIL3 and SSIL4 levels1. The
autopilot (known as SAET-METEOR, see [BOU 11a], Chapter 3) of Line 14
of Paris’s Metro was the first high-visibility project to use Atelier B, and this
project was instrumental in the qualification of the tool by the AQL2
department of the RATP3. This qualification process involved extensive
testing, reviews of the development documentation and close examination of
the source code.

For certain sensitive tools, such as mathematical proof tools, specific
measures had to be taken, as mathematical proof replaces a large number of
unit and integration tests. For example, a new theorem prover, based on
different solution principles and including its own validation process, was
needed to validate the mathematical rules; a group of experts was also
established for manual validation of those rules that could not be validated
automatically.

This version of the Atelier, version 3.6.4, has since been used for other
automatic metro systems, both in France and abroad. Development of Atelier
B has continued in parallel to make use of new techniques. Version 4.0

Chapter written by Thierry LECOMTE.
1 There are five SSILs (software safety integrity levels), from 0 to 4: see standard CENELEC
EN 50128 [CEN 11].
2 Atelier de qualification logiciel, program qualification tool.
3 See http://www.ratf.fr.

36 Formal Methods Applied to Complex Systems

constituted a technological departure from earlier versions in using the Qt
environment, enabling distribution of the application using the Windows,
Linux, Solaris and MacOS operating systems. Two versions of Atelier B are
currently available: a free community version, which is partly open-source,
and a commercial version, which includes extensive technical support.

Figure 2.1. Central interface of Atelier B

This environment may be used to manage B projects for the development
of sequential projects and for B-event projects for modeling non-sequential
systems and software4. In addition to the functions expected of a software
engineering suite, Atelier B allows us to verify the conformity of
implementable models in relation to their specifications using mathematical
proof. The mathematical predicates (or proof obligations) which must be
demonstrated in order to guarantee this conformity are generated
automatically.

These proof obligations are then processed by an automatic theorem
demonstrator. The validity of a B project is dependent on the demonstration
of all of the proof obligations. The obligations, which are not demonstrated
automatically, must be inspected to determine if the model is at fault (errors
in the specification and/or implementation), or if the theorem demonstrator
lacks the heuristics needed for automatic demonstration of the proof
obligation.

4 Managed via interruptions, parallel and distributed aspects.

Atelier B 37

In these cases, the human operator must assist the tool by providing
commands, within the context of an interactive demonstration, for correct
orientation of the mathematical demonstration. The user also has the option
to define generic mathematical rules, which are then used in the construction
and reuse of demonstration schemas.

This demonstration activity is carried out throughout the development
process, enabling early detection of errors or incoherencies in the
specification or implementation without needing to wait for the final code to
be available.

Figure 2.2. Interactive prover in Atelier B

2.2. Automatic refinement

In the 1990s, Matra Transport International5 studied the possibility of
producing an implementation of a B model6 as automatically as possible

5 Now part of Siemens Transportation Systems.
6 The portion of the model suitable for direct translation into a code language such as
Ada and C.

38 Formal Methods Applied to Complex Systems

[BUR 99]. This technique, known as automatic refinement, has been used on
a number of occasions, notably for the New York metro (Carnarsie Line) and
the automatic shuttle at Paris Charles de Gaulle airport (the VAL-CDG,
which was brought into service in April 2007).

The RIMEL project7 involved the development of an automatic
refinement tool known as B automatic refinement tool (BART), specifically
designed for integration into Atelier B. This refinement tool reused
principles from the tool developed by Matra Transport International, using
iterative application of model transformation rules to replace set, relationship
and partial function-type data with other data based on scalars, tables and
tables of tables, modifying the associated algorithms as needed.

Figure 2.3. Implementation of BART

These transformations are carried out gradually, generally by introducing
more intermediate steps than a human programmer would use; this leads to
the production of simpler, but more numerous, mathematical proof
obligations.

BART operates using pattern matching principle. Thus, the rules describe
certain motifs that should be found in the input file, and the way in which
these motifs should be replaced as part of the refinement process.

7 ANR-SETIN project (http://rimel.loria.fr).

Atelier B 39

Refinement rules are applied repeatedly, and may generate new machines
or implementations. This continues until one of the two following conditions
is verified:

– The generated components correspond to a translatable B0
implementation. This constitutes a successful automatic refinement.

– No further rules can be applied. Human intervention is then needed to
add new refinement rules and/or modify the existing rules. This interactive
refinement phase uses a specific interface, displaying the part of the B model
which is being transformed, the information in the B model available for use
by the rules, potentially applicable refinement rules and the transformed
model at the current point of execution.

The whole generation process may be reiterated for certification purposes
to show that the B models used for code generation were effectively
produced by automatic refinement. The refinement engine and refinement
rules do not require intensive validation as the validity of the generated
models is guaranteed by mathematical proof.

Figure 2.4. Example of rules used in BART

258 refinement rules are supplied with BART (an example is given in
Figure 2.3). These constitute a reference database, which is then extended on
the basis of user requirements.

2.3. Code generation

Code production tools are an important aspect of the B method, as they
are used to generate programs corresponding to the specification expressed
in the form of a B model [ABR 96].

The code generation phase is critical, as a faulty code generator will
produce a non-compliant program and thus destroy the formal development

40 Formal Methods Applied to Complex Systems

cycle. For this reason, code generators are never used alone, and additional
measures are taken to avoid anomalies of this kind.

For example, duplicate generators (see Figure 2.4) may be used to
construct a double chain, producing two separate source codes from the
same B model. For doubling purposes, we may use libraries (pathways,
compilations) based on different techniques/approaches, and produce visibly
different codes (instructions for independent transformations may be
swapped, additional instructions with no functional impact on the results
may be added, etc.). These techniques also allow us to deal, in part, with
production errors in the final binary code during the compilation stage.

Figure 2.5. An example of double generation

These programs are executed using a wide variety of platforms, and a
wide variety of different code generators are also available. Each execution
platform generally corresponds to a specific code generator. The BOM
project8, for instance, studied the generation of C code and Java bytecode for
chip card type applications, where memory usage must be kept to a
minimum. The results of this project were partly reused in developing a new,
public C code generator, intended for release with version 4.0 of Atelier B.

This generator, ComenC, was based on a limited definition9 of the
implementable B language (B0) and the Cocktail tool suite10, aiming to
produce readable C source code with limited use of pointers, for use in the
development of safety applications respecting the CENELEC EN 50128

8 See http://lifc.univ-fcomte.fr/~tatibouet/PERSO/WEBBOM/RESSOURCES/index.html.
9 This definition notably disallowed multiple uses of the same abstract B machine within a
single development project.
10 See http://www.cocolab.de/en/cocktail.html.

Atelier B 41

[CEN 11] and CEI/IEC 61508 standards11,12. A new code generator, C4B,
based on Coco/R13 framework has been set up and integrated into Atelier B
4.1, as a replacement for ComenC. C4B offers more flexible code generation
(basic data types implementation) and imposes less B0 constraints.
Moreover, C4B is fully developed in C++ and as such it is more easily
maintainable.

A policy of widespread distribution was established, with presentations
and courses given in a number of French universities and engineering
schools, with the aim of improving the accessibility of safety application
development using formal B models. Eventually, the restrictions applied to
the B0 language were found to be too restrictive, posing considerable
problems for program developers.

Work then began on a new code generator, ComenC2. Based on the B
Compiler, this generator offered support for multi-instance machines, and
allowed users to parameter certain translation choices through the use of
translation profiles.

Figure 2.6. Example of an event-B model

11 See http://www.cenelec.eu/Cenelec/Homepage.htm.
12 See http://www.iec.ch/.
13 http://www.ssw.uni-linz.ac.at/Coco/.

42 Formal Methods Applied to Complex Systems

Support for the event-B language was introduced with Atelier B 4.0, and
it is now possible to model systems (in the broad sense of the term) using
representations based on events and the expression of permanent or
transitory properties through mathematical predicates. This approach has
been applied to a range of domains and technical objects, essentially for
analytical purposes and not for code purposes, as in the case of the B “for
software” language.

Nevertheless, a number of code-oriented applications have been
developed recently. Notable examples include code production for:

– Programmable automata: for triggering the platform doors for line 13 of
the Paris metro [SAB 08]. A system model was used to identify a safe
algorithm for controlling the opening mechanisms of the platform doors with
a chosen set of disturbances. The corresponding code for the automaton was
then produced using a Ladder14 code generator, developed for the project. To
do this, a subset of the Event-B language was defined, alongside translation
plans using analysis of data flows. These plans were programmed using the
B Compiler. The code generator was not qualified or certified: the generated
Ladder code was manually re-read and compared to the specification
documentation.

– Microelectronics systems: in the course of the Forcoment project15
[BEN 09a, BEN 09b], it was seen that an event-based model of a function
may be transformed into a hardware description. The code generator
developed as part of this project produces a synthesizable VHDL model
(corresponding to a subset of the VHDL language, with clear semantics)
based on an event-B model and the parameterization of the translation
process, used, for example, to identify input, output, clocks, registers, etc.,
and to orient the translation of integer-type data (which may also be handled
using bit-to-bit operations and which need to be represented in the form of
bit vectors). Unlike C and Ada code generators (which use the “one for one”
translation principle), there is a certain semantic distance between the event-
B model and the generated VHDL model. Further work is needed to validate
this approach, in addition to the two cases in which it has been applied, for
which the generated VHDL has been shown to satisfy functional validation
tests.

14 One of the five programming languages for programmable automata according to the
IEC61131-3 standard.
15 See http://www.methode-b.com/php/projet-forcoment-fr.php.

Atelier B 43

2.4. Proof and model animation

Proof tools are crucial, as they guarantee the validity of an
implementation in relation to its specification, thus replacing most of the
testing phase for the obtained software. Paradoxically, these tools undergo
minimal evolution in order to guarantee “proof replay” when later versions
of Atelier B are used for evolutions of a proved pre-existing model.

In the case of system modeling, where code production is not the main
objective, it is difficult to verify whether or not the developed model is
correct (i.e. no important properties have been forgotten) and whether or not
it corresponds to the real system (i.e. whether it behaves in the same way as
the real system). It is therefore possible to prove an incorrect model if no
references are available for validation.

Figure 2.7. ProB

This is the reason for the recent development of model animation
techniques, used to validate models of this type (which can contain hundreds

44 Formal Methods Applied to Complex Systems

of events). ProB16 is a notable example, which acts both as a model-checker
and a model animation tool. ProB goes through the state space of model
variables to check that all possible value combinations verify the properties
of the model.

Heuristics and optimization techniques may be used to limit the number
of evaluated states, enabling the use of this tool for large-scale models, for
example in the validation of topological data for the description of metro
lines [LEU 10].

2.5. The move toward open source

In the early 2009, the decision was made to make the most recent Atelier
B tools open source in order to promote the spread of B and its use by third
parties in both academic and industrial contexts. At that time, only the B
predicate animation kernel17 was available under the GPLv3 license. The
following elements were then made accessible:

– the B compiler;

– the BART automatic refinement tool;

– the C4B C code generator;

– the graphical interface of Atelier B.

Along with these license changes, the distribution method for Atelier B
was changed to a Qt-style dual usage license, offering:

– a free community version, without support, updated approximately once
every two years;

– a professional version, including support services and regular updates.

These measures promoted the evaluation of the B method, with 18,000
recorded downloads from the first version of Atelier B 4.0 onward.
Moreover, a large number of contributions to these tools and the associated

16 See http://www.stups.uni-duesseldorf.de/ProB/index.php5/The_ProB_Animator_and_
Model_Checker.
17 PredicateB: library used for the evaluation of predicates and expressions and for executing
substitutions in the B language. This library is both used by the RATP Ovado and ClearSy
SDV tools, in addition to the ProB model checker, for validating constants representing the
track topology of a metro line.

Atelier B 45

documentation have been made available under the “creative commons –
paternity” license.

Notable examples include a localized Japanese version of Atelier B,
developed by Sapporo University, and a Brazilian (Portuguese) version
produced by AeS, a small company in Sao Paulo. Atelier B is available for
free download at http://www.atelierb.eu.

2.6. Glossary

AQL atelier de qualification logiciel (software qualification
workshop)

BART B automatic refinement tool

CENELEC Comité Européen de Normalisation Electrotechnique
(European Committee for Electrotechnical Standardization)

IEC International Electrotechnical Commission

RATP régie autonome des transports parisiens (autonomous
operator of parisian transports)

SSIL software safety integrity level

2.7. Bibliography

[ABR 96] ABRIAL J.R., The B-Book, Cambridge University Press, 1996.

[BEN 09a] BENVENISTE M., “A proved ‘correct by construction’ realistic digital
circuit”, Recent Innovation and Applications in B, FM Week, Eindhoven,
3 November 2009.

[BEN 09b] BENVENISTEM., “A proved correct by construction memory protection
unit”, SmartEvent 2009, Sophia Antipolis, 22–25 September 2009.

[BOU 11] BOULANGER J.-L. (ed.), Techniques industrielles de modélisation formelle
pour le transport, Collection IC2, Hermes-Lavoisier, 2011.

[BUR 99] BURDY L., MEYNADIER J.-M., “Automatic refinement”, FM’99 – B Users
Group Meeting – Applying B in an Iindustrial Context: Tools, Lessons and
Techniques, pp. 3–15, 1999.

‘ ’

46 Formal Methods Applied to Complex Systems

[CEN 11] CENELEC EN 50128, Railway applications – Communication, signalling
and processing systems – Software for railway control and protection systems,
July 2011.

[IEC 98] IEC, “IEC 61508: Sécurité fonctionnelle des systèmes électriques
électroniques programmables relatifs à la sécurité”, Norme internationale, 1998.

[LEU 10] LEUSCHEL M., “Validation of railway properties with ProB”, Workshop
on B Dissemination, Natal, Brazil, 8 November 2010.

[SAB 08] SABATIER D., PATIN F., POUZANCRE G., et al., “Utilisation de la méthode
formelle B pour un système SIL3: la commande des portes palières sur la ligne
13 du métro parisien”, LambdaMu’15, 28 November 2008.

3

B Tools

3.1. Introduction

In this chapter, we will give a brief overview of the operations of a B
environment, specifically Atelier B, supplied by CLEARSY1.

Unlike other formal methods, the B development cycle is fully covered
by two commercial tools (covering specification, refinement, code
generation, generation of proof obligations (POs) and proof assistants).

The first of these tools is Atelier B, sold and marketed by CLEARSY,
and B-Toolkit, sold and marketed by B-Core (UK) Ltd. Note that the
B-Toolkit is no longer commercially available.

This chapter will be broken down into three sections:

– general principles;

– presentation of Atelier B;

– presentation of open source tools.

3.2. General principles

All formal methods must be based on precise syntax and semantics, and
the B method is no exception [ABR 96b]. The method includes a full

Chapter written by Jean-Louis BOULANGER.
1 For more information on CLEARSY and Atelier B, see http://www.clearsy.com/.

48 Formal Methods Applied to Complex Systems

description of the different internal validation phases for abstract machines
(syntax analysis, typing and PO generation). This gives us a precise idea of
what should be included in a development suite. Figure 3.1 shows an outline
of a development suite for the B method.

Figure 3.1. Outline of a tool for use with the B method

The arrows show the order of activation of different phases, while the
dotted lines represent access to input files: an abstract machine, POs or user
lemmas, or output files: generated code or POs. The tool must take account
of dependencies introduced by composition clauses (sees, includes, etc.).

3.3. Atelier B

3.3.1. Project management

Note that Atelier B2 is available free of charge from version 4.0 onward.
It includes an integrated development environment (IDE), as shown in

2 Atelier B and the associated information may be downloaded from http://www.atelierb.eu/.

B Tools 49

Figure 3.2. This IDE allows us to create B projects and components
(machines, refinements and implementations) via the + and – buttons (see
Figure 3.2).

Figure 3.2. Atelier B

The “workspace” section shows the list of current projects. For a selected
project (e.g. LIVRE), we see the list of components and the verification
summary:

– type verification;

– generation of POs;

– number of POs to prove;

– number of unproved POs;

– number of proved POs;

– compatibility verification for B03.

Atelier B also includes a component editor, shown in Figure 3.3. This
editor offers assistance in creating B models, showing the connections
between mathematical and textual symbols on the right-hand panel (B
symbols).

3 B0 is a subset of the B language used for direct translation into classic programming
languages.

50 Formal Methods Applied to Complex Systems

Figure 3.3. The component editor

This editor carries out verifications (syntax, typechecking, etc.) on
components during the input process. The results are shown in the “Outline”
panel.

Atelier B carries out verification and highlights anomalies each time a
component is saved.

3.3.2. Typechecking and PO generation

3.3.2.1. Typechecking

Atelier B carries out verification either when a B component is saved or
in response to a user request using the type check (TC) button (see
Figure 3.2).

B Tools 51

Figure 3.4. Example of a syntax error

Figure 3.5. Example of a typing error

In the case shown in Figure 3.5, an error has been introduced by
indicating that the constant max_personne is a string. This is incompatible
with the use of the constant.

3.3.2.2. PO generation

Each B component (machine, refinement or implementation) is subject to
a proof obligation generation phase (see Figure 3.6). The POs are
automatically generated by the tool using the PO button (see Figure 3.2).

52 Formal Methods Applied to Complex Systems

Figure 3.6. Objectives of proof obligations

For a high-level abstract machine, the generated POs guarantee
mathematical consistency. For refinements and implementations, the POs
guarantee the validity of the refinement in relation to the machine situated on
the next level up in the development chain.

As a general rule, the complexity of POs depends on the chosen level of
abstraction (the more concrete the case, the higher the complexity level) and
the structure of the application in terms of connections between machines.

3.3.3. Code generation

3.3.3.1. Verification of B0

Code can only be generated for implementations. These implementations
use a sub-set of the B language, noted B0. This subset of B is similar to
imperative programming languages (ADA, C, Java, etc.).

Figure 3.7. Example of an implementation error

B Tools 53

When an implementation is saved or added to a project, the tool verifies
that only B0 has been used.

3.3.3.2. Code generation

The commercial version of Atelier B comes with ADA and C code
generators, which have been used for projects with high safety levels
(SSIL3-SSIL44 in the CENELEC EN 50128 standards5 [EN 01, EN 11]).

In the case of SAET-METEOR (see [BOU 12], Chapter 2), the B model
[ABR 96] was translated into a safe ADA version [ANS 83] automatically
by the tool.

The safety aspect is obtained through the use of a subset of ADA and a
coded safety processor (named PSC, see [BOU 10] Chapters 3 and 11)
guaranteeing the safety of the execution.

Formal methods present a number of advantages in terms of code
generation:

– The conformity of the produced code to formal specifications has been
proved. Therefore, it is possible to eliminate unit tests and integration tests.

– The obtained code is coherent (no useless variables, no typing
problems, no dead code, no unvisited tests, no infinite loops, no side-effects,
etc.). This allows early detection of a large number of classic faults.

– Formal methods offer a rigorous, high-quality approach.

3.3.4. Prover

Atelier B offers an automatic prover and an interactive assistant for
manual proof.

3.3.4.1. Automatic prover

The automatic prover applies rule databases to each obligation, rewriting
the goal and hypotheses until they coincide. The major drawback of these

4 SSIL: Software Safety Integrity Level. Standard [EN 01, EN 11] identifies five safety
levels, from 0 (the lowest) to 4 (the highest).
5 The 2001 version of standard EN 50128 ([EN 01]) was updated in 2011 ([EN 11]), but both
versions remained applicable until 2014 (this deadline has since been extended until 2017).

54 Formal Methods Applied to Complex Systems

rewritings is that the suite does not retain the trace of the original goal,
which sometimes leads to unwarranted failures.

Figure 3.8. Application of the proof process

As we see from Figure 3.8, obvious POs are detected by the tool and
considered proved. The figure also demonstrates the use of the prover in
automatic mode for POs. At the end of this phase, a subset of POs may
remain unproved (often around 20% for a well-founded project). The
interactive proof assistant may be used to treat these cases. The first phase
consists of using existing lemmas and tactics; in the second phase, we may
need to introduce new lemmas, in the form of hypotheses or new proof
tactics.

The prover may fail to demonstrate POs for one of two reasons:

– the proof obligation is false (e.g. if attempting to prove a goal of
100 < 50), indicating a design error;

– the obligation is correct, but the rule basis is insufficient to establish the
fact.

The tactics used by the automatic prover generally become more costly in
terms of calculation time as the required demonstrations increase
in complexity. The most exhaustive tactics can generate infinite loops in
demonstrations.

B Tools 55

Therefore, we need to manage the implemented tactics, and the tactics
used by the prover have been grouped into “strength” categories for this
reason: rapid, 0, 1, 2 and 3.

In most cases, the addition of tactics defined in the tool is sufficient to
prove the majority of obligations generally from 80% to 100% for automatic
proof.

3.3.4.2. Principles of proof in interactive mode

A certain number of additional rules are available, but will only be
applied in response to a user request using the interactive proof option.

As the rule database of the automatic prover does not allow us to solve all
possible cases; it is sometimes necessary to add rules using the interactive
prover. A number of possibilities are then available to the user.

First, the user may apply rules defined in the Atelier, which are not
applied systematically as they lead to considerable increases in solution time.
If these added rules are not sufficient, the user may create new rules. Care is
required when producing these rules, as they cannot be validated in full and
it is possible to write rules allowing the solution of false obligations.

Added rules are subject to a specific verification process in order to
demonstrate their correctness.

Note that interactive mode also allows the implementation of a specialist
predicate prover (PP).

3.3.4.3. Implementation of proof in interactive mode

The interactive prover interface is shown in Figure 3.9. This interface
may be used to handle POs for a given component. In the lower section of
the interface, we see that the verification of the component M_PERSONNES
involves proving two POs linked to the initialization.

In this example, we see that PO1 has been proved: this obligation
consisted of demonstrating that the empty set is included in the Personnes
set, which constitutes an obvious proof.

56 Formal Methods Applied to Complex Systems

Figure 3.9. Interactive prover

3.3.5. Tool qualification

A qualification procedure for Atelier B was implemented in the context
of the CASCADE European research project [MAR 95] and the industrial
SAET-METEOR6 (Système d’Automatisation de l’Exploitation des Trains –
METro Est Ouest Rapide, for further details see [MAT 98, LEC 96]) project.

This procedure involved a number of industrial actors (Alstom, Siemens7
Transportation Systems (then trading as Matra Transport International), the
RATP and the SNCF) and the Inrets.

In addition to verification and validation work (validation of acquisition
phases, validation of the rule base used by the provers, validation of the
ADA code generator, etc.), a number of more specific activities were carried
out, including expert rule reviews, implementation in a variety of industrial
projects, and specific analytical activities.

This work showed that Atelier B was qualified for SSIL3-4 safety levels
in the context of the SAET-METEOR project, using version 3.x.

Several versions of Atelier B have been produced since 1998, some of
which have been qualified. The new qualifications are based on the existence
of reference projects (such as SAET-METEOR), and all activities can be

6 For more information on the use of formal methods in the SAET-METEOR project, see
[BOU 12] Chapter 2.
7 See http://www.siemens.com for more information.

B Tools 57

replayed for these projects to verify that the same results are obtained. This
qualification approach combines the use of feedback with qualification
testing, based on replays of projects already in use in a commercial context.

Several changes have been made to Atelier B from version 4.0 onward
(introduction of automatic refinement, changes to the interface, availability
for different operating systems, etc.). Some of these changes have made it
harder to carry out replay-based qualification, and more substantial
qualification efforts are required. This is the reason behind the use of a
double code generation chain for certain projects (lowering the safety levels
required from each code generator).

3.4. Open source tools

3.4.1. Presentation

Researchers create tools in order to test possibilities and mix different
methods and practices. In the case of B, The B-Book [ABR 96] was
published during the final stages of the first major project to use the
language in an industrial context (SAET-METEOR was brought into service
in 1998).

A description of the B language therefore became available to academics
at the same time as Atelier B. Atelier B is based on the B kernel, a language
execution mechanism based on pattern-matching. The subjacent language is
based on the theory and rules of pattern-matching. Atelier B produces files in
a format associated with this context, making them difficult to interpret (the
format is not given in the tool documentation) and creating interfacing issues
when attempting to use Atelier B with other tools.

Faced with this problem, researchers began working on tools designed to
manage the B language and facilitate interfacing, such as the ABTOOLS,
BRILLANT8 [COL 10], JBTools, BOB, MATISSE and RODIN projects.

The BRILLANT [MAR 03] project, based on the use of OCaml and
Extensible Markup Language (XML), will be presented in Chapter 8 of this
book. The RODIN project will be the subject of further discussion in
Chapter 9.

8 For more information on the BRILLANT project, see http://gna.org/projects/brillant.

58 Formal Methods Applied to Complex Systems

Other projects, such as BCARE (see [BOU 14], Chapter 7) aim to offer
the means of validating proof activities. An interface between Atelier B and
proof tools has been developed very recently, see [MEN 12].

Space and time considerations mean that we will not be able to present
the full range of available open source tools in this chapter. For this reason,
the BRILLANT project will be discussed separately, and we will focus our
attention here on the ABTools environment. Other projects and initiatives
are cited throughout the book.

3.4.2. ABTools

3.4.2.1. Presentation

In this section, we will show how the ABTools environment [BOU 01], a
tool suite for the B method [ABR 96], may be used for rapid creation of a
prototype associated with an extension of the B language. This environment
was developed using the ANother Tool for Language Recognition (ANTLR)
compiler generator [PAR 93].

Research work on the B language has tended to focus on the creation and
implementation of extensions. These extensions aim to extend use of the B
method [ABR 96] to other domains (mathematical aspects [ABR 02], system
aspects, real time, etc.).

Note that two commercial tools were developed, CLEARSY’s Atelier B
and BCORE’s BToolkit9. These commercial tools were not open and did not
allow users to test extensions to the B language. Our tool does not aim to
compete with the commercial suites, but to provide the open source tools for
the study and development of extensions to B.

Our work focuses on the creation of a full environment taking account of
the whole of the B language and the associated restrictions, designed to
enable the rapid and easy implementation of extensions. The ABTools
environment was generated using ANTLR, a compiler generation
environment.

9 The BCORE tool is no longer available.

B Tools 59

The verification process associated with the B method consists of using
proof to demonstrate the coherence of the proposed model. The coherence of
a B model is defined via the generation of mathematical lemmas known as
POsPO. The PO generation process is based on the semantic definition of the
B language (generalized substitution).

This section will be broken down into three parts, beginning with a
presentation of ANTLR. In the second part, we will provide a description of
the ABTools environment. The final part concerns the PO generation process
and its implementation in the context of our environment.

3.4.2.2. The ANTLR compiler generator

ANTLR10 is distributed by Terence Parr [PAR 93] under an open source
license. ANTLR is not simply a compiler generator, but a full compiler
development environment.

To date, the ANTLR environment has been used for the implementation
of various languages including C, Java, Verilog and SDL-2000 [SCH 98];
most of the associated grammar is available on the official website. The
environment is even suitable for direct integration into commercial tools.

ANTLR offers coverage of all phases of the compilation process: lexing,
parsing, typing and code generation (Java, C, etc.), along with
documentation generation (using TEX, HyperText Markup Language
(HTML), XML, etc.).

The object character of the ANTLR environment permits high levels of
flexibility, and any new grammar may be considered as an extension
(through inheritance and/or overloading) of a grammar which has already
been validated.

Input stream Output stream
Lexer
TokenStreamFilter
Parser
TreeParser

Character
Token
Token
Abstract Syntax Tree

Token
Token
Abstract syntax tree
Abstract syntax tree

Table 3.1. Basic set

10 More information on ANTLR is available at http://www.antlr.org/, including articles,
grammars, database tools and full environment, ANTLRWorks.

60 Formal Methods Applied to Complex Systems

Table 3.1 shows the four stages of language recognition using ANTLR.
During the first stage, the Lexer analyzes the input character flow, and
produces output in the form of tokens, each with a type and a value. This
token flow is generally used directly as input by the parser, which constructs
the abstract syntax tree (AST).

It is also possible to manipulate the token flow in order to add, remove or
modify tokens using a filter (the TokenStreamFilter). The TreeWalker may
also be used to evaluate the AST; this evaluation can lead to the creation of a
new AST.

ANTLR provides a single language to describe each stage in the
recognition process, based on the notion of objects. Therefore, it is possible
to create new grammars by inheritance and overloading of existing
grammars.

Using the textual description of the analyzers (lexical, syntax or
treewalker), the ANTLR environment can then generate the target code of a
tool implementing the analyzer. Till date, it is able to generate source code
for any two languages from Java, C++ and C#. This choice has a direct
influence on the grammar, as the action language, used in the rule base, is
also the target language.

ANTLR offers documentation functions, which are compatible with
javadoc, and allows generation of an html version of the analyzer. XML files
can also be generated using object serialization functions.

Re-entry is a key characteristic of ANTLR-generated parsers. The term
implies that in an analytical context, any rule from a tool (lexer, parser or
treeParser) can be recalled in an action block. This is possible because each
rule from the grammar is associated with a method.

3.4.2.3. The ABTools environment

3.4.2.3.1. Presentation

Figure 3.10 shows a development environment for the B language. The
treatment of B is characterized by the following phases:

– lexical and syntactic analysis;

– semantic analysis (typechecking, respect of B0 constraints, etc.);

B Tools 61

– PO generation;

– proof of POs;

– code generation;

– generation of project documentation.

Figure 3.10. A B environment

The ABTools environment, as shown in Figure 3.11, is currently made up
of five elements: a lexical analyzer, a syntax analyzer, a decompiler
(American Standard Code for Information Interchange (ASCII), LaTeX,
XML), a typechecker (which verifies types and generates a symbol table)
and the PO generator.

62 Formal Methods Applied to Complex Systems

Figure 3.11. The ABTools environment

A more detailed presentation of the ABTools environment is given in
[BOU 01]. Note that the proof aspect is not covered by our environment,
which is designed for use in generating POs in different formats (ASCII,
XML, etc.). Proof is covered by specific tools such as Isabelle/Hol, Phox,
etc.

We chose to develop a Java application to ensure the portability of our
environment, allowing the creation of a graphical interface and a web
application via the creation of an applet. If efficiency problems arise, our
application may also be compiled using gcj11.

3.4.2.3.2. Lexical and syntactic analysis

Presentation

The lexical and syntactic analyzers were defined using an LALR(k)
grammar, and the B-language grammars we implemented were of the

11 gcj (http://gcc.gnu.org/java/) is an application for Java to C code conversion, included in
GCC.

B Tools 63

LALR(k) type. For the first grammars, we obtained a value of k = 10 due to
a large number of syntax conflicts. We are now down to k = 2.

As we demonstrated in [BOU 99], certain syntax issues need to be
resolved when creating a grammar for the B method. To carry out syntactic
analysis of a complex B component, for example, we considered that the
definitions were syntax objects in their own right, imposing limits on what
may be written in a definition. More generally, this work required us to
formalize certain imprecise aspects of the B language.

Characteristics of our grammar

Our grammar defines a parser, which is an extension of the basic parser
in ANTLR, as we see from the following code extract.

class BParser extends Parser;
options {
exportVocab = B; // Call its vocabulary "B"
k = 2; // k tokens lookahead
buildAST = true;
ASTLabelType = "MyNode";
}

The constructed parser exports a vocabulary known as B and produces a
syntax tree where each node is an object in the MyNode class. The MyNode
class enables us to manage more complex data structures and provides
associated services.

As the following code extract shows, our grammar is able to take account
of the three types of abstract machines and process empty files. Empty files
generate a syntax error message. A specific module developed in Java is
used to generate errors discovered during different stages of the analysis of a
B component and produce reports.

component:
machine

| refinement
| implementation

| /* Empty source files are *not* allowed. */
{ errors.WSyntaxic ("B.g", "The file is empty"); };

64 Formal Methods Applied to Complex Systems

All of the possibilities offered by ANTLR were put to use in order to
obtain an LALR(2) grammar. The best means of solving syntax problems
consists of conditioning problematic rules.

In terms of the visibility clauses between abstract machines, machines
may or may not be renamed; the rule shown above accepts both situations.
Note that management of the abstract machine table is included in the action
part of the conditional.

nameRenamedWithSave[String type] :
(B_IDENTIFIER B_POINT) => B_IDENTIFIER (B_POINT^
nameRenamedWithSave[type])
| t1:B_IDENTIFIER { add_AM((MyNode)#t1,type); };

The lexer is defined as an extension of the basic lexer. In accordance with
the B language, the description of the lexer mentions the fact that the
identifiers are case sensitive. The k characteristic has a value of 5, which is
directly linked to the longest subchain shared by keywords in B.

class BLexer extends Lexer;
options {
exportVocab = B ; // Call its vocabulary "B"
caseSensitive = true ; // In B, the case is significant
caseSensitiveLiterals = true ; // In B, the case is significant
testLiterals = true ; // automatically test for literals
k = 5 ; // k characters of lookahead
}

Each keyword in B may be entered explicitly in the lexer description, as
shown by the extract below, or implicitly in the parser.

B_PARTIAL : "+->" ;
B_RELATION : "<->" ;
B_TOTAL : "-->" ;
B_PARTIAL_INJECT : ">+>" ;
B_TOTAL_INJECT : ">->" ;
B_PARTIAL_SURJECT : "+->>";
B_TOTAL_SURJECT : "-->>";
B_BIJECTION : ">->>";

B Tools 65

Non-determinism

As we indicated in [BOU 99], several tokens are used in different
contexts (see Table 3.2).

Symbol Different uses Language

“;”
Substitution sequencing
Relationship composition
Separation in set or definition lists

Substitution
Expression
Clause etc.

“=”

Equality test in a condition
Set definition
Evaluation
Start of the body of an operation

Predicate
Expression

Clause

“:”
Membership
Becomes such that
Evaluation of a record field

Predicate
Substitution
Expression

“||” Parallel substitution composition
Parallel relationship composition

Substitution
Expression

“-“
The difference between two arithmetic expressions
Unary negative operator
The difference between two set expressions

Expression
Expression
Expression

Table 3.2. Basic set

The decision rules allow us to return to a situation where we have full
understanding, but the syntax tree will always contain these ambiguities.
ANTLR allows us to rename tokens when constructing a tree; for example,
the following rule recognizes a B operation and renames the token =
(B_EQUAL).

operation_Mch :
operationHeader c:B_EQUAL^ {#c.setType(OP_DEF);}

substitution_Mch;

As we have seen, a restriction has been applied to the notion of
definitions in order for the syntactic analysis (parsing) phase to be
determinist.

formalText_Mch :
expression |
substitution_Mch |
operation_Mch

66 Formal Methods Applied to Complex Systems

This definition introduces the notion of levels; the language used in a
machine is not the same as that used for refinement or implementation.

Semantic checks by the parser

The parser is able to carry out certain semantic checks, ensuring that the
correctly-parsed component verifies certain “good” properties.

The B language makes extensive use of identifier lists, enabling
reasonably succinct writing of abstract machines.

VARIABLES
AA, BB, CC

INVARIANT
AA, BB, CC : INT*INT*INT

RU1: Uniqueness rule. Take the list of variables LV. The variables must
be distinct from one another.

Clause name ABTOOLS rule name MR reference12

Substitution becomes equal

Non-bounded choice
Local definition
Becomes element of
Becomes element such that
Local variable

simple_affect
simple_affect_ref

See Rq1
See Rq1

simple_affect_ref
See Rq1
See Rq1

Section 6.3 Restrictions

Section 6.10 Restrictions
Section 6.11 Restrictions
Section 6.12 Restrictions
Section 6.13 Restrictions
Section 6.14 Restrictions

Table 3.3. Application of rule RU1

Rq1: The variable list acts in a zone (clause, substitution, see Table 3.3)
known as the zone of declaration. Each variable is added after existence
checks using the symbol table. No further checks are required and, therefore,
RU1 is verified by default.

Checks for rule RU1 are included in the typechecker (file Typing.g).

12 The MR is the reference manual supplied with Atelier B.

B Tools 67

To take another example, let us consider rule RA1, which concerns
variables subject to affectation. Table 3.4 shows the limits of application of
this rule.

RA1: Accessibility rule. Taking the variable list LV, each variable of LV
must be accessible in write mode.

Clause name ABTOOLS rule name MR reference
Substitution becomes equal
Becomes element of
Becomes element such that

simple_affect
simple_affect
simple_affect

§6.3 Restrictions
§6.12 Restrictions
§6.13 Restrictions

Table 3.4. Application of rule RA1

Other rules are also implemented within the ABTools environment.

Treatment of additional files

The B language allows information to be encapsulated and shared using
access clauses. These access clauses show the behavior and environment of
other abstract machines.

DEFINITION.– All abstract machines cited in an access clause will be labeled
as “in use”.

In a parsing context, we can check the syntactic and semantic correctness
of the “in use” abstract machines. To do this, we simply need to memorize
the list of “in use” machines.

In order to treat visibility connections, we have introduced a table that
used to manage the abstract machines visible to a given machine or defined
in the context of a project. This table is created and dependences are read as
and when requested by the user (switch -loadLinked).

key MAIN_0.mch Element AM Name : MAIN_0.mch | AM File : ../
STD_LOGIC_1164/|
key ENTRIE_0.mch Element AM Name : ENTRIE_0.mch| AM File : ../
STD_LOGIC_1164/|

A B component may use a definition file in addition to the in-use
machines. A certain number of definitions can be placed into a file to enable
their reuse.

68 Formal Methods Applied to Complex Systems

This file is an ASCII file with no particular structure, containing a
definition clause. If the file is accessed, the parser will add the set of
definitions to the definition clause.

3.4.2.3.3. Tree manipulation

In ANTLR, syntax trees are examined and managed via grammars known
as TreeWalkers. The examination of the tree is carried out as part of the
second phase, so we no longer need to check the conformity of the input
AST; for this reason, our grammar only concerns the treewalking aspect.

Decompilation of the syntax tree

Decompilation is carried out using a treewalker. We have used object
technology to produce a single TreeWalker, which currently allows us to
generate ASCII, TeX and XML versions of the AST.

class TreeWalker extends TreeParser;
options {

importVocab = B;
buildAST = false;
ASTLabelType = "MyNode";
k = 1;

}

The following rules show that the TreeWalker is, first and foremost, a set
of rules which allow us to “walk through” the AST. Sections of code may be
associated with these rules through the use of action blocks.

machine :
#("MACHINE"

{ index.Add();
printToStringln(out.Clause("MACHINE"));}

paramName
clauses

{ printToString(out.Clause("END"));}
);

Our decompilation TreeWalker is contained in the file Treewalker.g.

B Tools 69

Typechecking

The typechecking phase is applied to an AST, and allows us to check that
types have been used correctly. This phase allows us to add type information
to the AST.

Figure 3.12. Type tree

Figure 3.12 shows a tree diagram of the B types used. Each B type
constructor is associated with a Java class. The diagram takes the form of an
inheritance graph.

The typechecker is coded using a treewalker, named Typing.g, as we see
from the following extract:

class Typing extends TreeParser;
options {

importVocab = B;
buildAST = false;
ASTLabelType = "MyNode";
k = 1;

}
The typechecker carries out a number of actions within the AST:

– declaration of encountered objects (variables, sets, constants and
operations), along with verification of the uniqueness of each identifier;

– typechecking;

70 Formal Methods Applied to Complex Systems

– type inference in certain, highly specific cases (VAR ii IN ss END
clause);

– typechecking of all declared elements.

All of these actions are implemented by the action part of the rules.

set_interval_value:
#(tt:B_EQUAL a:B_IDENTIFIER
{
Type newType = new Type();
pushScope(#a.getText());
}
newType =interval_declaration
{
newtype.setLineNumber(#tt.getLineNum());
#tt.setBType(newtype);
addId(a,newType);
popScope();
});

The type may either be calculated locally or be the subject of calculations
in another rule; we use rules with parameter return in order to transfer types.
If anomalies occur, the number of the affected lines is propagated to the type
token itself to facilitate tracking.

New identifiers are taken into account using the definition context,
managed as a pile: see operators pushScope(id) and popScope(). The
associated symbol table is updated throughout the typechecking process,
using the instruction addId(id,type).

MACHINE ANY
CONSTANTS xx
PROPERTIES xx : INT
INITIALISATION ANY xx WHERE xx : INT & xx = 0 THEN skip
END
END

For illustrative purposes, the passage from the abstract machine shown
above13 in the context of our environment (ABTOOLS -symbolTable
any.mch command) produces the following symbol table:

13 We will not go into detail concerning the relative merits of this abstract machine here.

B Tools 71

list of variables:
key any::ANY::xx Element xx(INT)
key any Element any(FUNC_DEF(CONSTANT(Not Defined),Not
Defined))
key any::xx Element xx(INT)

The name of the machine itself forms part of the symbol table. The type
FUNC_DEF(CONSTANT(Not Defined),Not Defined) signifies that it is a
parameter-free function. Similarly, the xx identifier is defined in two distinct
contexts.

ANTLR allows the use of re-entry grammars, enabling us to verify that
all declared objects are typed. This process involves two phases: first, object
declaration (constants and variables) and, second, the retrieval of type
information and the detection of non-typed and/or unused objects (constants
and variables).

An extract from the Properties rule is given below. The action section
checks the typing of each constant (abstract or concrete).

properties :
#("PROPERTIES"
{

Type type = new Type();
}
type = tt:predicate
{

typeControleTreatement (tt, type);
if (constant != null) list_var_bis(constant);
if (abstract_constant != null) list_var_bis(abstract_constant);
if (visible_constant != null) list_var_bis(visible_constant);
if (hidden_constant != null) list_var_bis(hidden_constant);
if (concrete_constant != null) list_var_bis(concrete_constant);

});

This syntax rule allows semantic checking (described in the reference
manual), which indicates that the introduction of a constant should be
followed by the Properties clause.

72 Formal Methods Applied to Complex Systems

3.4.2.3.4. Generation of POs

As we see from Figure 3.13, the generation of POs is a three-stage
process. Each step is associated with a treewalker, each of which introduces
its own vocabulary. The three phases are as follows:

– construction of a new tree representing the theoretical proof obligation;

– replacement of syntactic sugar by base substitutions;

– tree reduction by applying substitutions.

The second phase involves removing the syntactic sugar introduced by
J.R. Abrial to define the B language in order to revert to the generalized
substitution language. The Goal rule shown below shows the passage from
[INSTRUCTION]P to [GSL]P.

goal! : #(SUBST_TO ii:instruction pp:predicate
{ #goal = #(SUBST_TO, #pp, #ii); }

);

Figure 3.13. The three stages of PO generation

B Tools 73

The equivalence between a subset of substitutions used in B and
generalized substitutions is shown in Table 3.5.

BEGIN S END S
PRE Q THEN S END P|S
ANY z WHERE P THEN S END @ z.(P=>S)
VAR x IN S END @ x.S

Table 3.5. Syntactic sugar

The coding of this equivalence is shown below in an extract from the
grammar substitution.g.

instruction :
#("skip")

| ! #("BEGIN" i4:instruction
{ #instruction = #i4;}
)

| ! #("PRE" p5:predicate i5:instruction
{ #instruction = #(GSL_SUCH, p5, i5); }
)

| ! #("ANY" l10:listTypedIdentifier p10:predicate i10:instruction
{ #instruction = #(GSL_FOR_SUCH,l10, #(GSL_GUARD, p10,i10));}
)

| ! #("VAR" l14:listTypedIdentifier i14:instruction
{ #instruction = #(GSL_FOR_SUCH,l14,i14); }
)

Once the POs have been normalized, they can then be deployed. This
stage is based on the semantics of generalized substitutions. Table 3.6 shows
the main substitutions and the associated semantics.

Substitution Result
[skip]R
[S∥T](P ∧ Q)
[P | S]R
[S[]T]R
P ==> S]R
[@x.S]R
[x,y := E,F]R

R
[S]P ∧ [T]Q
P ∧ [S]R
[S]R ∧ [T]R
(P ==> [S]R)
∀z.[S]R
[x := E||y := F]R

Table 3.6. Semantics of generalized substitutions

74 Formal Methods Applied to Complex Systems

The code extract shown below highlights the equivalence between formal
rules and the translation into grammar form.

gsl [MyNode pr] returns [MyNode result]
{
MyNode res;
result = new MyNode(); }:
!#(GSL_SUCH p1:predicate res=gsl[pr]
{result= #(B_AND, #p1, #res);})

| !#(GSL_FOR_SUCH ll:listTypedIdentifier res=gsl[pr]
{result= #(B_FORALL, #ll, #res);})

| !#(GSL_GUARD p2:predicate res=gsl[pr]
{ result = #(B_IMPLIES, #p2, #res);})

| !#("skip"
{ result = pr;})

The set of substitutions is modeled in the form of a single rule, entitled
gsl, made up of several alternatives.

3.4.2.4. Scalability

A number of interesting extensions to the B method have been developed.
It is important to be able to implement these extensions quickly and easily
for validation purposes.

ANTLR allows us to achieve this goal as the grammars used may be
extended by inheritance. New grammars are constructed by overloading
certain rules and by adding supplementary rules.

3.4.2.4.1. Classic B

“Classic” B is described in The B-Book [ABR 96]. This is the first of the
B languages implanted in our project, respecting [STE 98].

To give a first example of scalability, we implanted certain extensions
proposed in [BOU 99]. In this chapter, we will describe an improved version
of B known as BPrime.

3.4.2.4.2. B Prime

This version of the B language allows us to type variables at the moment
of declaration. Figure 3.14 shows an example where the typing information
invariant has been removed, allowing the INVARIANT clause to be reserved
for more important or more critical properties.

B Tools 75

VARIABLES
N1, N2, N3

INVARIANT
N1 ∈ NAT ∧
N2 ∈ NAT ∧
N1 > N2 ∧
N3 ∈ NAT ∧
(N1 + N2) > N3

VARIABLES
N1 ∈ NAT ∧
N2 ∈ NAT ∧
N3 ∈ NAT

INVARIANT
N1 > N2∧
(N1 + N2) > N3

Figure 3.14. Explicit typing

The implementation of this extension in our environment consisted of
creating a new grammar, BPrime.g. This grammar inherits the grammar
described above, with overloading of certain rules.

It takes the following form:

class BPrimeParser extends BParser;
options {
exportVocab = BPrime;
k =2;
buildAST = true;
ASTLabelType = "MyNode";
}

variables : ("VARIABLES"^ |
"ABSTRACT_VARIABLES"^ |
"VISIBLE_VARIABLES"^

) listTypedIdentifier ;

listTypedIdentifier : typedIdentifier (B_COMMA^ typedIdentifier)* ;

typedIdentifier : nameRenamed (B_INSET^ cbases)? ;

This new grammar inherits all of the rules associated with the BParser. It
overloads the variables rule and introduces two new rules,
listTypedIdentifier and typedIdentifier. This development also needs to be
applied to the other tools (the decompiler and the typechecker).

Systematic separation of grammars is not useful in treewalkers, as these
tools presume that the abstract trees are correct. The BPrime language

76 Formal Methods Applied to Complex Systems

extends this notion of implicit typing to the CONSTANT clauses (abstract or
otherwise), to operation profiles and to the ANY, VAR and WHILE
substitutions, as seen in Figure 3.15.

// AUTHOR : Boulanger Jean-Louis
/* Example of a machine described using BPRIME */
MACHINE Exemple_BPrime
VARIABLES aa : NAT , bb : NAT // Explicit typing of variables
INVARIANT aa < bb // Invariant only contains properties
OPERATIONS

r1 : NAT, r2 : NAT <-- EX (p1 : NAT, p2 : NAT) =
PRE p1 < p2 THEN

ANY a1 : NAT, a2 : NAT
WHERE (a1 < a2) & (a1 < p1) & (a2 < p2)
THEN r1, r2 := a1, a2
END

END
END

Figure 3.15. Example of a B component with explicit typing

The BPrime language introduces two further developments:

– use of comments, as in C++ (see Figure 3.16);

– use of the character “,” as a set separator in the SETS clause.

CPPComment
options { paraphrase = "a C++ comment"; }:

"//"
(~(’\n’))*
{_ttype = Token.SKIP;}

;

As we see from the code extract shown above, the first modification
affects the lexer via the CPPComment rule. This rule indicates that any
character between the // token and the end line character will be ignored.

Figure 3.16 shows an example of an abstract machine described using
BPrime.

B Tools 77

3.4.2.4.3. System B

In [ABR 96b], J.-R. Abrial demonstrated the possibility of using the B
method for distributed systems. In [ABR 98], Abrial offers a full, true
extension of the B method to the notion of events and dynamic constraints.

SYSTEM toy_with_scheduler_dynamics_and_modality
VARIABLES xx, yy, cc, dd
INVARIANT xx, yy, cc, dd : NA*NAT*NAT*NAT

& (cc >0 or dd>0)
DYNAMICS xx <= xx' & yy <= yy'
INITIALISATION xx,yy := 0,0 || cc,dd :: NAT1*NAT1
EVENTS
evt_xx = SELECT cc>0 THEN xx,cc:=xx+1,cc-1 || dd::NAT1 END;
evt_yy = SELECT dd>0 THEN yy,dd:=yy+1,dd-1 || cc::NAT1 END
MODALITIES
SELECT cc > 0 LEADSTO cc = 0 WHILE evt_xx VARIANT cc END;
SELECT dd > 0 LEADSTO dd = 0 WHILE evt_yy VARIANT dd END
END

Figure 3.16. A system

This extension introduces new clauses (SYSTEM, EVENTS,
DYNAMICS, VARIANT and MODALITIES), new substitutions and a new
type of predicate. Figure 3.17 shows an example taken from [ABR 00].

3.4.2.4.4. Event B

A new definition of a form of B using the notion of events was
introduced as part of the MATISSE project ([MAT 01a] and [MAT 01b]).
This language, known as Event B, builds on the basis established in System
B, while developing the MODALITIES clause and the notion of events
(refinement, decomposition and regrouping).

The establishment of this extension within the ABTools environment was
presented in the course of the Journées B meeting organized by the GDR-
ALP group on June 13–14 2002.

The ABTools environment does not currently support the B EVENT
language as defined in the context of the RODIN project.

78 Formal Methods Applied to Complex Systems

3.4.2.5. Results

This presentation of the ABTools environment has demonstrated the
capacities of the ANTLR compiler generation environment, which allowed
us to create a first version of our B environment and test certain extensions.

The parsers included in the ABTools environment (B, BPRIME, System
B and Event B) are described by an LALR(2) grammar. The other tools are
described by an LALR(1) grammar.

The typechecker finalization phase has been completed and work has
begun on the generation of POs.

Work is also underway concerning code generation. After formalization
of the passage from B0 to the target language(s), code is generated by
adapting the decompiler. Note that a translator has been created for the
passage from B to JML; this translator is now operational and is included in
the ABTools environment.

No major difficulties have been encountered, and the use of ANTLR in
constructing our B environment may be considered successful.

All of the developments described in this chapter are available at
http://sourceforge.net/projects/abtools/. The significance of these results is
increased by the ease of implementing extensions.

The current version of the ABTools environment was developed with
ANTLR version 2.7. Work is currently in progress on a move to ANTLR
version 3.0 [PAR 08].

3.5. Conclusion

In this chapter, we have presented different types of tools used for the
implementation of the B language.

Both the commercial and freely-distributed versions of Atelier B
constitute high performance tools for learning the B language and for
complex developments, but interfacing with other tools is difficult, although
it is possible to use open source tools to prove POs generated using Atelier B
(see [MEN 12]).

B Tools 79

We have also presented the ABTools environment, used to test
extensions to the B language by generalizing existing grammars. The
BRILLANT project (Chapter 12) is also significant, as it allows tool
interfacing via XML exchange files.

3.6. Glossary

ABTOOLS Another’s B Tools

AMN Abstract Machine Notation

ANTLR ANother Tool for Language Recognition

AST Abstract Syntactic Tree

CENELEC14 Comité Européen de Normalisation ÉLECtrotechnique,
European Committee for Electrotechnical Standardization

GSL Generalized Substitution Language

IDE Integrated development Environment

METEOR METro Est Ouest Rapide, train operation system used by
the Paris metro

PO Proof Obligation

SAET Système d’Automatisation de l’Exploitation des Trains,
Automation system for train operations

SSIL Software SIL

V&V Verification and Validation

WP Weakest Precondition

3.7. Bibliography

[ABR 96a] ABRIAL J.-R., “Extending B without changing it (for developing
distributed systems)”, in HABRIAS H. (ed.), Proceedings of 1st Conference on the
B Method, Putting into Practice Methods and Tools for Information System
Design, IRIN Institute for Research in Computers, Nantes, pp. 169–191,
November 1996.

14 See http://www.cenelec.eu/.

80 Formal Methods Applied to Complex Systems

[ABR 96b] ABRIAL J.R., The B-Book, Cambridge University Press, 1996.

[ABR 98] ABRIAL J.-R., MUSSAT L., “Introducing dynamic constraints in B’98”,
Recent Advances in the Development and Use of the B Method Lecture Notes in
Computer Science, vol. 1393, pp. 83–128, 1998.

[ABR 00] ABRIAL J.-R., Event driven sequential program construction, School
Scholars programming, March 2000.

[ABR 02] ABRIAL J.-R., CANSELL D., LAFITTE G., “‘Higher- order’ mathematics in
B”, ZB 2002 – Formal Specification and Development in Z and B, pp. 370–393,
2002.

[ANS 83] ANSI, Standard ANSI/MIL-STD-1815A-1983, Ada programming
Langage, 1983.

[BOU 99] BOULANGER J.L., GEORGE M., BRUNO T., Revisiting B language syntax,
Technical Report 99-07, CNAM Laboratory CEDRIC, 1999.

[BOU 01] BOULANGER J.L., “ABtools, une suite d’outils pour la méthode B
développé avec ANTLR”, Journées “Outils pour et autour de la méthode B”,
15–16 October 2001.

[BOU 10] BOULANGER J.L. (ed.), Safety of Computer Architectures, ISTE, London,
and JohnWiley & Sons, New York, 2010.

[BOU 12] BOULANGER J.L. (ed.), Formal Methods Industrial Use from Model to the
Code, ISTE, London, and JohnWiley & Sons, New York, 2012.

[BOU 14] BOULANGER J.L. (ed.), Formal Methods Applied to Industrial Complex
Systems, ISTE, London, and JohnWiley & Sons, New York, 2014.

[COL 10] COLIN S., PETIT D., MARIANO G., et al., “BRILLANT: an open source
platform for B”, Workshop on Tool Building in Formal Methods (held in
conjunction with ABZ 2010), February 2010.

[EN 01] EN 50128, Railway applications – communications, signalling and
processing systems – software for railway control and protection systems,
CENELEC, May 2001.

[EN 11] EN 50128, Railway applications – communications, signalling and
processing systems – software for railway control and protection systems,
CENELEC, July 2011.

[LEC 96] LECOMPTE P., BEAURENT P.-J., “Le système d’automatisation de
l’exploitation des trains (SAET) de METEOR”, Revue Générale des Chemins de
fer, vol. 6, pp. 31–34, June 1996.

B Tools 81

[MAR 95] MARIANO G., BOULANGER J.-L., KOURSI M.E.L., Recueil des rapports
d'anomalies sur le développement de l’AtelierB, Report prepared under the
project ASCOT N2 INRETS-ESTAS No. 95–48, 1995.

[MAR 03] MARIANO G., BOULANGER J.-L., “BRILLANT: modèle de
développement libre et recherche scientifique: une dynamique autour de B?”,
Club SEE “Systèmes Informatiques de Confiance”, Réunion à l’ENST (Paris),
Thème: “Méthodes formelles”, 19 June 2003.

[MAT 98] MATRA, RATP, “Naissance d’un Métro, Sur la nouvelle ligne 14, les
rames METEOR entrent en scène. PARIS découvre son premier métro
automatique”, La vie du Rail & des transports, Numéro 1076 -Hors-Série,
October 1998.

[MAT 01a] MATISSE, Event B reference manual, Technical report, Methodologies
and Technologies for Industrial Strength Systems Engineering, 2001.

[MAT 01b] MATISSE, Event B to B translator user manual, Technical report,
Methodologies and Technologies for Industrial Strength Systems Engineering,
2001.

[MEN 12] MENTRÉ D., MARCHÉ C., FILLIÂTRE J.-C., et al., “Discharging proof
obligations from Atelier B using multiple automated provers”, ABZ Conference,
Pisa, Italy, June 2012.

[PAR 93] PARR T.J., Obtaining practical variants of LL(K) for K>1 by splitting the
atomic K-Tuple, PhD Thesis, Purdue University, 1993.

[PAR 08] PARR T.J., The definitive ANTLR reference – building domain specific
languages, The Pragmatic Programmers, 2008.

[SCH 98] SCHMITT M., The development of a parser for SDL-2000, Technical
report, Institute for Telematics, Medical University of Lubeck, Ratzeburger
Allee 160 23538, Lubeck Germany, 1998.

[STE 98] STÉRIA, Le langage B: manuel de référence, Technical Report V 1.8,
RATP SNCF INRETS, June 1998.

4

The B Method at Siemens

4.1. Introduction

4.1.1. Siemens Industry Mobility

Siemens SAS Industry Mobility is an international center of excellence
for the creation of fully automatic subway systems and is a world leader in
automated urban transport systems. The company is the result of Siemens’
takeover of the transport branch of the Matra group between 1995 and 2001.
The Société Générale de Mécanique-Avion-Traction, founded in 1937 (the
name was contracted to Matra in 1941), initially specialized in the military
sector before rapidly acquiring significant capacities in space-related
activities.

The guidance and remote control systems developed in the context of
space and military projects were then applied to other domains, notably in
the field of urban transportation. Matra anticipated urban transformation and
was ideally placed to participate in land-use planning activities. In the
mid-1970s, this strategy led to the creation of two large-scale projects:
Aramis and VAL.

The first of these projects was a Personal Rapid Transit (PRT) project
using small vehicles (10 seats), circulating in sets. It was never implemented
on a commercial scale, but certain ideas were adopted for future systems.
The VAL (Véhicule Automatique Léger, Light Automatic Vehicle) – the
world’s first fully automatic subway system – was a great commercial

Chapter written by Daniel DOLLE.

84 Formal Methods Applied to Complex Systems

success. The VAL was a small-scale, driverless subway vehicle, completely
safe, highly reliable and economically profitable. The first line was
inaugurated in 1983, and linked Villeneuve d’Ascq (France) to the center of
Lille. Other towns and cities were quick to adopt the VAL, including
Toulouse, Rennes, Orly Airport and Turin, in Europe, and cities as diverse as
Taipei, Uijeongbu in Korea and Chicago O’Hare airport elsewhere in the
world. In the initial design, the safety functions of the VAL were not covered
by software, but by electronic components with intrinsic safety: any and all
faults left the system in a safe state.

Software-based safety functions were used for the first time in 1989
for SACEM (Système d’Aide à la Conduite, à l’Exploitation et à la
Maintenance – an assisted driving, control, and maintenance system),
developed in association with GEC-Alsthom and CSEE. The SACEM
system [GEO 90] was designed to reduce the interval between trains in the
central section of the Réseau Express Régional – regional express network
(RER) in and around Paris from 2 min 30 s to 2 min.

The arithmetic coding technique1 used to guarantee the safety of system
software at the time has proved to be particularly durable, and the same
principles are still used in Siemens systems today. Line D of the Lyon
subway system, brought into service in 1992, marked a turning point as the
first fully automatic wide gauge metro.

The SACEM safety software [GUI 90] was developed using traditional
methods, but the RATP required particularly rigorous validation: program
proof (as used by Hoare [HOA 89]) as a first stage, followed by a formal
respecification. This work was extremely costly, but was successful in
detecting errors; the experience convinced the RATP2 of the need to apply
formal methods from the software specification phase onward. This
requirement was present in the specification for the SAET-METEOR system
ordered by the RATP for Line 14 of the Paris metro [MAT 98].

The SAET-METEOR, brought into service in 1998, is a fully automatic,
driverless line. Its major distinguishing factor is the fact that fully automatic
and manually driven trains are permitted to run on the same line, making the

1 For more information on the Processeur Sécuritaire Codé (PSC)-coded safety processor,
see [BOU 09, Chapter 2], [BAR 08] and [BOU 11, Chapter 1].
2 For more details, see www.ratp.fr/.

The B Method at Siemens 85

system extremely complex. The system (station stops, braking, train spacing,
door opening, point commands, etc.) is managed by safety software,
developed using a formal approach centered on the B method [ABR 96] The
development process used for these programs, based on proof, allowed the
removal of unit tests and produced remarkable results: all errors were found
before validation tests took place.

Note that in the context of its first use, the B method was applied on an
“industrial” scale: 115,000 lines of B, divided into 1,150 components,
27,800 proof obligations (POs) and 1,400 proof rules. This application was
preceded by in-depth work on methodological definition, leading to the
production of almost 300 pages of best practice guidelines for use by
developers and the operational safety team.

4.1.2. The CBTC system3

Urban transport systems are made up of elements in which software may
play a variety of roles. Examples include the computer commanding the slip
control/protection system for rolling stock, passenger information systems,
the central odometer system used in localizing trains, the ticket distribution
system, the timetable calculator, etc. These elements are not all subject to the
same criticality levels in relation to correct system operations and to safety,
and the part played by Siemens in their creation varies.

The IEEE 1474.1 standard [IEE 04] provides a framework for the
presentation of applications developed by Siemens using formal methods.
The standard concerns the latest generation of automatic urban transport
systems, i.e. communication-based train control (CBTC).

These systems are based on three principles:

– trains are localized precisely, independently of track circuits;

– the automatic systems on board trains and on the wayside exchange
information continuously via a high capacity communications system;

3 Communication-based train control: a system applied to train use, piloting and safety. The
CBTC system is made up of on-board equipment and wayside equipment in constant
communication (generally over a radio link). CBTC has been subject to standardization
[IEE 04].

86 Formal Methods Applied to Complex Systems

– vital functions are implemented by on-board and wayside computers.

This standardized definition is used in the Siemens Trainguard MT
CBTC. The product has been designed for use in both the creation of new
automatic lines and the renovation of existing lines.

The architecture of CBTC systems is based on a kernel including the
following equipment:

– on-board autopilots (APs);

– wayside APs, each controlling a section of the line;

– IOM: input/output modules which manage the acquisition or command
of binary electrical signals on the wayside;

– line APs, which ensure the safety of whole lines in the cases of full
automation;

– a wayside/train communications network which uses a free propagation
radio system, based on spread spectrum modulation.

Depending on whether the project concerns a renovation, an extension or
the creation of a new line, this kernel interacts with products, either
preexisting elements or elements created by Siemens, which carry out the
following functions: signaling, command post-supervision, platform door
control, safe distribution of traction current and audio-visual system
functions.

Figure 4.1. Example of CBTC

The B Method at Siemens 87

In the Siemens CBTC system, the on-board AP in each train calculates its
own position on the line and transmits the information to the relevant
wayside APs. These units establish a constantly updated cartography of the
relevant portion of track, and assign a movement authority limit to each
train. This point corresponds to the rear of the previous train. The on-board
AP then establishes an optimum speed profile, ensuring that the train will
stop safely before the protected point. The minimum space between trains
therefore corresponds to the braking distance plus a safety margin. This
distance may be considered as a safety zone which moves with the train, and
is known as a “moving block”.

The role of the line AP is to manage situations affecting the safety of the
whole line or the whole fleet. It ensures the safety of controls transmitted by
central command system operators to the on-board APs. It also participates
in restoring traction power following faults in wayside APs, identifying all
of the trains on the line.

4.1.3. Characteristics of B programs

The software architecture of a wayside or on-board AP includes the
following elements:

– A set of components known as the “base computer” provides safe
treatment services and low-level drivers using an ordinary real-time
operating system (OS). This base computer is shared by all equipment.

– A specific communications layer for each piece of equipment,
containing the protocols used for non-safety-related transmissions.

– A functional application program, which only carries out processes with
no safety constraints. This includes the maintenance, diagnosis and support
functions included in each device. In the case of on-board APs, this also
includes functions such as train piloting and motor commands.

– A safety application program, responsible for all processes involving
the safety of persons and goods. This is the only program to be specified in
B, based on a very simple design: a single task is carried out cyclically, with
the acquisition and treatment of input followed by the creation of output. The
low reactivity dynamics of rail systems allows us to use cycle times which
are relatively long for real-time applications, from 100 to 400 ms.

88 Formal Methods Applied to Complex Systems

These architectural elements are further divided into core product or
project-specific software. Our systems respond to a wide variety of usage
requirements, and our programs are therefore designed as platforms suitable
for reuse with specific elements created to fulfill the needs of different
clients.

4.1.4. The target calculator

The B method, as used by Siemens, allows us to produce a code which
fulfills the relevant functional requirements. We also need to guarantee the
safe execution of this code. Our calculation platform is unable to prevent
errors during execution or compilation, but it is almost always able to detect
them. When this happens, the energy supply to the output is cut off. This
situation has knock-on intrinsic safety effects on the equipment carrying the
device, which is put into a safe state: for wayside equipment, the power
supply is cut off, and for on-board equipment the train is forced to stop. This
technology guarantees that if the system ceases to operate correctly, it will
be placed in a safe state.

Our calculation platform – the coded safety processor (CSP)4 – uses a
probabilistic approach to detect discrepancies between software source code
and its execution. Each item of software data is made up of two parts: 32 bits
of information and N redundant bits. The overall safety level depends on N
and not on the technology used for the calculation. This value is independent
of the reliability of the material and does not require any particular compiler
validation activity.

The redundant part of a piece of data is the sum of three terms:

– an arithmetic coding of the 32 bits of information, which allows us to
detect alterations in memory or when copying data;

– a signature, which detects errors in the order of instructions. This
signature is static and independent of the 32 bits of information; it is
calculated offline;

– a characteristic date for each calculation cycle, ensuring that only the
latest data values will be used.

4 For more information on the CSP, see [BOU 09, Chapter 2], [BAR 08] and [BOU 11a,
Chapter 1].

The B Method at Siemens 89

The source code is subject to static analysis by a signature
predetermination tool (SPT), which assigns a signature to each input data
value and calculates the expected signatures for each output data value. These
precalculated signatures are then included in the executable. The safety of the
coded processor depends on the independence of the source code analyses
carried out by the compiler and the SPT. We presume that no shared common
error modes exist, as the two tools were developed independently.

During the execution, all calculations are carried out by calls to an
elementary function library (arithmetic, connection condition calculations,
loops, etc.) which updates both the 32 bits of useful information and the N
redundant bits. At the end of each calculation cycle, a failsafe hardware
component – the dynamic controller – compares the obtained signatures with
the expected values.

If a contradiction is detected, the dynamic controller forces the equipment
into safe mode. For reasons of efficiency, variables are not verified
independently, but are used in the creation of a synthetic variable which
assembles any errors. As long as the calculation cycle remains below 2–N, the
probability of an error being detected is 1 – 2–N. In our implementation, 2–N
is close to 10–14; therefore, errors are almost certain to be detected.

The dynamic controller also allows us to check the execution time for a
calculation cycle. Input data must be received exactly once in a time period
fixed by an intrinsically safe clock in order for the dynamic controller to
remain in a permissive state.

4.2. The development process using B

4.2.1. Development

The classic software development cycle involves specification, design,
coding, testing and maintenance phases. The formal development cycle
involves a slightly different set of phases: specification, formalization,
coding, proof, validation and maintenance.

– The starting point for a development is a set of informal or semi-formal
documents, specifying the requirements for a program.

– These documents are translated into a formal model using B [ABR 96],
known as the abstract model.

90 Formal Methods Applied to Complex Systems

– The abstract model is completed by refining all machines to the point of
implementation, with the addition of abstract data reading services to
existing machines. This results in the production of a concrete model, which
is then translated into a compilable language.

– Proof is then used to guarantee that the concrete model conforms to the
abstract model, and that the two are coherent.

– The conformity and completeness of the formal specification in relation
to the informal documents are then verified by re-reading and testing.

These activities will be discussed in more detail in the following sections.

Figure 4.2. Process

4.2.2. Informal specification

The program is specified in a text document organized according to the
principles of functional analysis (structured analysis and design technique
(SADT) – [LIS 90]). The aim of this document is to provide a clear and
thorough description of what is expected of the program, expressed using
natural language, state automata or B formulas, depending on the case.

The B Method at Siemens 91

In our experience, a functional specification can be transformed quite
directly into a B model:

– each function is translated into a B machine;

– this machine contains a single writing operation, which calculates
output as a function of input for each cycle;

– a function, divided into subfunctions, is translated as an implementation
which imports the machines translating each subfunction;

– the output flows of a function become the variables of the associated
machine;

– the input functions are transformed into direct accesses to the
corresponding output flows, with a SEES clause.

The data dictionary, which provides a precise definition of each piece of
data and indicates its B type, is a particularly critical element of the informal
specification. Data are generally found in the abstract model, and the
definitions contained in the dictionary are essential in ensuring model
readability.

The program specification is a pragmatic combination of textual, semi-
formal and formal elements, and is generally created by experienced
engineers. Specialists with extensive knowledge of B will naturally be
tempted to use B notations for reasons of precision and succinctness.
However, it is important to find a compromise which will be acceptable to
all readers of the document:

– the system team, responsible for verifying the conformity of the
program specification to preexisting documents (system or equipment
specifications);

– the development team, responsible for formalizing the specification;

– the team responsible for specifying program test scenarios;

– the functional safety team, responsible for verifying the program
specification in relation to existing documents and for verifying the abstract
model in relation to the specification.

The system and test teams are likely to have limited knowledge of B, so it
is better to express requirements using natural language. Pseudo-code should
ideally be used in relation to input/output flows.

92 Formal Methods Applied to Complex Systems

4.2.3. Formalization of the specification

4.2.3.1. General principles

The aim of formalization is to express the contents of the requirement
specification for a program using B. This process is based on the following
guiding principles:

– describe the requirement as completely as possible;

– describe the requirement as clearly as possible;

– leave developers as much freedom as possible;

– facilitate proof activities.

The specification model is considered to be complete when all of
the requirements have been transferred to the abstract model, which can then
be refined without access to the specification documents. To achieve this, we
aim to identify the information below in the specification document and
transfer it to the formal model:

– data representing program states, the inputs/outputs of functions or its
configuration;

– treatments specifying the calculation of function output from input and
modifications to the state variables, used in the B substitutions;

– properties are assertions which are redundant with the treatments. They
are formalized in the invariants, properties and postconditions of the B
model. Ideally, these properties should express the fundamental aspects of
the program under development;

– hypotheses are assumptions concerning the outside environment of the
program. They may be used in modeling choices or may appear as
postconditions for basic machines;

– limitations specify the validation conditions of data, and must be used
in the preconditions for data reading operations.

4.2.3.2. Cutting machines

The model architecture is constructed in a way so as to enable gradual
division of the complexity of a specification. Cutting machines are an
essential element in this process, and will be presented in the following
paragraphs before we consider the decomposition process.

The B Method at Siemens 93

A cutting machine is a machine that contains the minimum information
required to prove machines which import or see it. A machine of this type
does not constitute a complete specification, and is associated with a
refinement, specifying the information which is needed to implement the
machine.

Cutting machines simplify the proof of implementations which import
them; for example, it is often possible to “hide” control structures in a
refinement, reducing the number of lemmas in the importing
implementation.

Figure 4.3. Example of a cutting machine

94 Formal Methods Applied to Complex Systems

Figure 4.3 shows the replacement of a machine example_1 by a cutting
machine example_2 and its refinement example_2_r:

If the postcondition xx: (simple) is sufficient to prove the implementation
which calls up oper, we can replace example_1 with example_2. However,
the SELECT instruction must be retained, as it ensures the completeness of
the specification: this instruction is placed in a refinement of example_2.
The global proof is simplified as the different conditions of the SELECT
instruction are hidden from the implementation using oper.

4.2.3.3. Architecture of the abstract model and the decomposition approach

The division of the B model should be carefully considered in
architectural terms from the top down in order to facilitate traceability in
relation to the informal specification.

Figure 4.4. Decomposition

The formalization approach operates from the top down:

– If the requirement to specify is simple, it is described completely in a
single machine, and the decomposition process is complete.

– If the requirement is too complex to specify in a single machine, it
needs to be divided into two parts: one which is needed to prove the

The B Method at Siemens 95

components using the machine (exterior view) and the information needed to
fully capture the requirement (interior view).

The exterior view is placed into a cutting machine. At this point, two
different situations are possible. If the interior view can be inserted into a
refinement, the decomposition process is complete. Otherwise, the
requirement must be divided into simpler requirements, each of which must
be specified in a new machine. The cutting machine is refined by an
implementation which calls the operations of the new machines, generally in
sequence. The decomposition process is repeated for the new machines.

This approach is illustrated in Figure 4.4:

– The cutting machine loc is refined by the implementation loc_i which
imports the rph, bal and position machines.

– The rph machine constitutes a full specification, as it is very simple.

– The bal machine is a cutting machine with the addition of a refinement,
bal_r.

– The position machine is a cutting machine, as the problem is
sufficiently complex to require further decomposition.

The completion criterion for decomposition was initially based,
essentially, on size: an operation of more than 100 lines was generally
considered to be a suitable candidate for decomposition. Developers
currently enjoy considerable freedom in this respect.

Elements of an abstract model may be produced in two stages. In these
cases, the first stage consists of creating an abstract and compact
formalization to ensure correct understanding of the problem. The developer
may then reduce the level of abstraction of “difficult” components as and
when required if the refinement of this formalization is too difficult to prove.

4.2.4. Refinement and coding

4.2.4.1. General principles

The aim of this activity is to produce B implementations to refine the
abstract model. This task is carried out using the following principles:

96 Formal Methods Applied to Complex Systems

– As many components as possible should be refined and implemented in
B.

– The obtained code should be efficient in terms of execution time and
memory use.

– The difficulty of proof should be kept under control, while avoiding an
excessive increase in the number of components.

Refinement consists of adding to the abstract model in order to transform
data and control structures into transcodable data and instructions. This may
lead to minor modifications of the specification model.

The refinement process is complete when all possible components have
been implemented and the completed model has been proved and
transcoded.

4.2.4.2. Stages in the refinement process

The refinement process should produce implementable data and control
structures: sets and relationships in the specification model should be
transformed into arrays, and the ANY, CHOICE and SELECT structures
need to be reduced to IF or CASE instructions.

It is theoretically possible to create a correct B model in which these two
refinements are carried out simultaneously in a single step: each leaf in the
importation tree (machine or refinement) would be refined by a single
implementation.

In practice, this approach requires us to carry out proofs with an
excessive level of complexity; we generally proceed by stages, separating
data refinement from structure refinement.

The starting point for a refinement step is a B component (machine or
refinement) which fully expresses a requirement using operations acting on
abstract variables. Each step consists of implementing certain operations and
variables of the starting component (mach_1) and moving the others to an
imported component (mch_2). The non-implemented operations are
promoted to implementation (mch_1_i) and their specification is copied
from mch_1 to mch_2.

The B Method at Siemens 97

The size of each step must be carefully assessed:

– if too much is carried out in a single step, implementation will be
difficult;

– if too little is carried out in each step, a considerable number of
duplications will occur and consistency will be difficult to manage.

In practice, the following principles are applied:

– Proof is generally simpler when using abstract data structures rather
than concrete data structures. For this reason, when an operation contains a
control structure (SELECT, CHOICE, ANY, etc.), it is generally better to
implement the operation and to move the variables to the imported machine.

– Operations without a control structure but which contain complex
expressions (set unions or relationship images, for example) are
implemented by an abstract iteration.

– Implementable variables and operations should be implemented early
on in order to avoid duplications in the model.

– It is generally advisable to implement reading operations at the end of
the process.

The general approach takes the following form:

– choose the most complex of the remaining operations and implement it;

– if certain variables have had to remain abstract for this implementation,
move these variables to an imported machine;

– move those operations which need to be moved (reading operations for
displaced variables, for example);

– start the process again for as long as there are operations to implement.

Note that:

– we pass directly from machines to implementations; the introduction of
refinements during coding is not generally useful;

– the invariant of a variable moved into an imported machine may be
reduced to its type. Properties concerning the requirement are covered by
operations and may disappear completely. Purely software-related properties

98 Formal Methods Applied to Complex Systems

which may be necessary for proof can be transformed into preconditions for
the operations which require them.

4.2.4.3. Loops and abstract iteration

In B, loops are only authorized in implementations, and as such they can
only use concrete data and control structures. However, the ability to
manipulate abstract data (functions, relationships, sets, etc.) is essential in
the abstract model and highly desirable in the concrete model. At Siemens,
the notion of abstract iteration is used as a response to this requirement.

An abstract iterator is a machine which allows us to “walk through” a
data structure without showing the implementation. Iterators do not carry out
any treatments other than data examination, and the same iterator can be
used in loops carrying out completely different treatments. The architecture
of this solution is shown in Figure 4.5.

Figure 4.5. Example of iterator use

The treat_all machine contains an operation which requires examination
of all the elements of a declared set in a given machine. This is carried out
by using a loop of treat_all_i to call up the operation of treat_one for each
element of the data. The iterator itself is presented below. It provides two
variables, representing a partition of the set for examination (the subset that
has already been examined and the subset that still requires examination) and
two operations, used to initialize the examination and to select an element.

The use of abstract iterators tends to lead to simple proofs, as it
distinguishes between:

The B Method at Siemens 99

– the examination refinement proof (in the implementation of the
iterating;

– the proof of the treatment requiring the examination (in the
implementation of treat_one);

– the proof of the refinement of the examined data (as treat_one only
handles abstract data).

The writing of the invariant and the loop is also generally simplified, as
the difficult aspect – the description of the progress of the calculation
procedure – is carried out using abstract data.

Figure 4.6. Example of an iterator using B

4.2.4.4. Data refinement

The variables and constants in the abstract model are generally not
transcodable. Their refinement consists of expressing abstract data through

100 Formal Methods Applied to Complex Systems

concrete data, suitable for use in implementations, and implementing the
operations using this data.

ABSTRACT CONCRETE
Data a <: t_x a_r : t_x_i --> BOOL

Gluing a = a_r~[{TRUE}]

Operations a := a \/ {x} a_r(x) := TRUE
a := a – {x} a_r(x) := FALSE

res := bool (x : a) res := a_r(x);
assert (a_r(x) = TRUE => x : a)

a := exp cont <-- initiate_iteration_t_x;
WHILE cont = TRUE DO
cont, x<-- continue_iteration_t_x;
a := (a – {x}) \/ (exp /\ {x})

INVARIANT
cont = bool(x_to_process /= {}) &
x : t_x &
x_to_process \/ x_processed = t_x &
a /\ x_processed = exp /\ x_processed

VARIANT
card (x_to_process)

END
a := (a – {x}) \/

(exp /\ {x})
l := bool(x : exp);
a_r(x) := l

res := bool(a = {}) res := TRUE;
cont <-- initiate_iteration_t_x;
WHILE cont = TRUE DO
cont, x<-- continue_iteration_t_x;
l := bool(x : a);
IF l = TRUE THEN
res := FALSE;
cont := FALSE

END
INVARIANT
cont = bool(x_to_process /= {} &

a /\ x_processed = {}) &
x : t_x &
x_to_process \/ x_processed = t_x &
res = bool (a /\ x_processed = {})

VARIANT
card (x_to_process)

END
Initialization a := {} a_r := t_x_i * {FALSE}

Table 4.1. Refinement processes

The B Method at Siemens 101

The concrete data is limited by the target language of the transcoding
process. In our case, we have:

– t_scalar:

The predefined integers (INTEGER, NATURAL, NAT, INT), Booleans,
enumerated values and integer intervals.

– t_scalar --> t_scalar:

One-dimensional tables.

– t_scalar_1 * t_scalar_2 --> t_scalar_3 or

– t_scalar_1 --> t_scalar_2 --> t_scalar_3

Two-dimensional tables.

Around 10 refinement schemes are in widespread use. Table 4.1 shows
the refinement of an abstract set from a Boolean table representing its
characteristic function.

Note the use of abstract iterators, which allows us to separate data
refinement from treatment refinement: the concrete variable a_r is not
involved in any loops.

4.2.5. Proof

4.2.5.1. General principles

The aim of the proof process is to demonstrate the POs of the B model
being developed and correct any false POs that come to light. Like testing,
proof is a validation activity; at Siemens, the choice was made to leave this
activity to the developers themselves rather than to an independent team.
This generates considerable savings in terms of time, as parts of the proof
process can be carried out in the course of model development.

Proof activities are first used in developing the model, not for exhaustive
proof at this stage, but to eliminate as many errors as possible. Proof
activities then continue into later stages for model validation.

102 Formal Methods Applied to Complex Systems

4.2.5.2. Proof in practice

When proving a B model, we must:

– demonstrate all of the POs;

– record these demonstrations in order to show them to the validation
team or any other group responsible for verifying the model consistency.

Atelier B produces POs automatically, and offers powerful automatic
provers which are able to deal with around 85% of lemmas.

Each of the remaining lemmas, each containing hundreds of hypotheses
and as many as 2,500 hypotheses for certain components, is then subject to
an “interactive” proof approach in which the developer aims to rewrite the
lemma in order to obtain a trivially correct lemma.

The rewriting stage may be carried out in three different ways:

– by applying predefined heuristics from Atelier B;

– by applying a rewriting rule chosen from a database of validated rules;

– by defining and applying a new rewriting rule.

The different stages in the interactive proof process are saved in a file
which may be examined to ensure the exactitude of the demonstration. The
introduction of new rewriting rules is a sensitive point in the process: these
rules must be carefully and thoroughly verified in order to avoid proving a
false lemma by a false rule. Two processes are used in parallel to verify
added rules:

– peer review during development involves an initial verification stage
and ensures that the added rules present complexity levels compatible with
complete validation;

– during model validation, each new added rule is demonstrated by an
independent team, and this demonstration is saved in a monitoring file.

The validation process stops at this point, as it is not necessary to verify
the demonstration of rules to demonstrate the lemmas in a model.

The B Method at Siemens 103

4.2.5.3. Ease of proof
Several elements contribute to reducing the efforts involved in proof. By

order of importance, they are:

– The architecture of the abstract model;

- Proof facilitation is taken into account when constructing the model,
using cutting models wherever necessary. This allows us to avoid
excessively complex B constructions, for example, which would generate
difficult POs.

– A limited number of refinement processes;

- Around 10 data refinement processes are sufficient to produce our
applications. Our methodological guidelines advise limiting the number of
treatment refinements, and our automatic refinement tool is also
parsimonious. This means that most POs can be grouped into a few, very
similar families, which are easier to understand and prove. This tendency
toward uniformity is highlighted further by the use of automatic refinement.

– Capitalization of proof;

- The costs associated with interactive proof are essentially due to
writing and validating new rules. Our base of validated rules naturally
encourages developers to reuse existing rules, rather than to create new rules
requiring validation. At each stage of the interactive proof process, the
developer may consult the rule base to see which rules may be applied and
simulate the results of the application. If none of the existing rules respond
to the requirements and a new rule is needed, the new rule will be added to
the rule base after validation and may then be reused for future projects.

We currently have access to a base of 5,100 rules, around one-third of
which is made up of predefined rules from Atelier B; the other two-thirds are
the result of our work on a variety of projects over the last 18 years.

4.3. Monitoring

4.3.1. Development review

The purpose of reviews is to identify faults in B models and their
documentation as early as possible. Reviews are carried out throughout the

104 Formal Methods Applied to Complex Systems

development process, with the aim of verifying whether or not input
documents (B models or software specifications) are of sufficient quality to
allow work to progress.

In more concrete terms, reviews help to ensure that:

– the software specification document is self-supporting, and can be used
both for development and for safety validation;

– the abstract model formalizes all requirements expected of the program;

– the development follows the recommendations of our best practice
guidelines, the B development guide;

– the model enables the operational safety team to carry out validation
activities in the best possible conditions.

The review process aims to provide a level of coverage such that all
formal developments will be seen by at least two people, the developer and a
reviewer, before being passed to the operational safety team.

4.3.1.1. Review objectives

We can identify three main classes of model reviews based on their main
objectives:

– abstract model reviews which aim to verify that all requirements have
been formalized;

– concrete model reviews which aim to remove performance risks and
verify that the model is easily provable;

– proof reviews which aim to verify that the proof rules are correct.

Document-based reviews form an integral part of the quality approach
used by Siemens, but do not present any specific characteristics linked to the
use of B.

4.3.1.2. Initiation criteria

The effort involved in the review process should be adapted on the basis
of the expected gains. Review initiation is left to the discretion of those
responsible for development, based on the use of a number of indicative
criteria:

The B Method at Siemens 105

– priorities for model reviews include new specification modelings and
functions which have been substantially modified;

– development packages received from external sources should be subject
to systematic review;

– the abstract model should be reviewed before work begins on the
concrete model;

– any developments carried out by inexperienced personnel should be
reviewed;

– a proof review should be carried out before delivering a model to the
operational safety team;

– excessively “large” components should be reviewed. The exact
definition of “excessively large” is left to the development team, but a
review should certainly be envisaged in the following cases:

- components producing more than 1,000 POs,

- components of more than 1,000 lines,

- components for which the proof time, on relaunching saved
interactive proofs, is more than 30 min.

In our experience, the short-term quality/cost balance for model reviews
is very good as it allows faults to be corrected at an early stage. The
medium- and long-term benefits are also considerable, as inexperienced
developers are able to benefit from the remarks of more experienced
colleagues.

4.3.2. Testing

At Siemens, tests are currently carried out on code written in Ada
[ANS 83]. Our process involves simulating the environment of safety
applications and verifying that the applications behave in accordance with
the program specification. This classic approach is applied to all of our
developments. We use the same simulation techniques and the same test
language for safety applications developed in B and for non-safety
applications.

The major drawback of this approach is that testing takes place late in the
process, and can only be implemented once the concrete model has reached a

106 Formal Methods Applied to Complex Systems

relatively advanced stage. Moreover, testing Ada code is the same as testing
the concrete model: this is not cost effective, as the proof and safety actions
carried out on the translation guarantee that the Ada code will conform to the
abstract model. It would be interesting to explore the possibility of testing
the abstract model, for example, by using the animation functions offered by
Atelier B.

4.3.3. Safety validation

An operational safety team, independent of the development teams,
carries out activities to verify that the systems delivered by Siemens respect
the performance levels required by the client and by the applicable
regulations in terms of reliability, availability, maintainability and safety.
These activities cover the phases from creation to use; in this case, however,
we are only interested in activities related to vital software.

Operational safety activities are structured around two key hypotheses:

– either the program is in a maximally safe state or its execution
conforms to the source code;

– the source code conforms to the specification expressed in the abstract
model.

The use of these hypotheses allows us to remove certain activities
involved in the safety aspect of classic developments. These include failure
mode and effects analysis (FMEA), unit tests and integration tests.

The use of coded processor technology guarantees the first hypothesis.
The second hypothesis is covered by specific validation activities which will
be discussed in the following sections.

4.3.3.1. Specification analysis

Software validation is only meaningful if the point of departure has itself
been validated. Specification analysis consists of verifying the completeness
of the document: it must contain all requirements included in earlier
documentation (system or equipment specifications) and those resulting
from safety analyses of these earlier documents. The document is also
checked for internal consistency.

The B Method at Siemens 107

4.3.3.2. Proof validation

This purpose of this activity is to verify that the proof is complete and
free of errors. The completeness aspect is covered by a simple check that the
proof files supplied by the development team are sufficient to prove all of
the lemmas in the application. The second aim is achieved by verifying proof
rules added by the developers.

Each rule not contained in the prevalidated rule base will be the subject of
a demonstration recorded in a validation file. In the best cases, this
demonstration is obtained using an automatic prover; otherwise, the
demonstration is produced by the person responsible for validation.

4.3.3.3. Analysis of the abstract model

The aim of abstract model analysis is to verify the completeness of this
model in relation to its specification document. The analytical process
involves crossed re-reading of the entire abstract model and the specification
document, and results in the production of a set of traceability tables. Note
that there is no need for the operational safety team to re-read the concrete
model, as conformity to the abstract model is guaranteed by the proof
process.

4.3.3.4. Analysis of basic machines

A basic machine is any component of a formal model which is not
implemented in B. Basic machines form the “borders” of the formal model,
and are used each time the model needs to access a non-formalized resource.
This is the case when using services provided by the computer operating
system, particularly when processing application input/output.

Two types of errors which can affect a basic machine cannot be detected
by proof:

– the machine may stipulate contradictory properties, as the coherency of
the INVARIANT clause of a machine is only proved by the implementation
of its initialization, and this proof does not exist for basic machines;

– it may state properties which are not verified by the executable code
which implements the machine.

Basic machines and the Ada code which directly implements them are
reviewed by the operational safety team to detect situations of this type. To

108 Formal Methods Applied to Complex Systems

facilitate this validation, developers are given the following advice for basic
machines:

– only declare concrete variables or constants;

– use substitutions which are as indeterminist as possible;

– reduce the contents of the PROPERTIES and INVARIANT clauses to
the strict minimum.

4.3.3.5. Production chain verification

The objective of this activity is to guarantee that executable components
installed in situ are constructed with all due care, based on B models with
verified proof, and that the safety applications they contain have been tested
in a satisfactory manner. Monitoring and analysis activities are also carried
out with each evolution of Atelier B and the relevant transcoding tools.

4.3.3.6. Operational tests

The purpose of this activity is to define test cases which will reinforce
convictions that a program conforms to the specification. These test cases
need to cover all safety functions contained in the specification. They must
also cover all conditions which place or maintain application variables in a
restrictive state. Note that the aim of the activity is to test the software itself,
not a particular configuration. The data used to configure the program for
testing may therefore be different from the data used for the final on-site
configuration.

Figure 4.7. Double generation chain

The B Method at Siemens 109

4.4. Digging deeper

4.4.1. Translation from B to Ada

The coded processor ensures that the execution of the program conforms
to the source code. The source code also needs to conform to the B
implementation which it translates. For this reason, we compare the results
of two functionally equivalent but independent translators.

The credibility of this approach is dependent on a number of points:

– the specification of the translators must be error-free;

– the two translators must not possess common error modes;

– the comparator must be safe;

– the produced code must not be modified after comparison.

The specification of the translators is particularly critical: an error in the
translator specification document would lead to a shared translation error in
both translators, which the comparator would be unable to detect. We
therefore aimed to create a translation definition using simple syntactic
transformations wherever possible. The resulting document is relatively
succinct – 70 pages – and was subject to particularly rigorous verifications.

Two separate teams created and validated the transcoders in order to
avoid common error modes resulting from human errors. This constraint was
applied to both the initial development and the subsequent modifications to
the transcoders.

Protection is also required against the possibility of shared modes in the
tools used to create the translators; for this reason, different syntactic
analyzers, programming languages and compilers were used in the two
cases.

The two obtained pieces of Ada code [ANS 83] must then be compared to
check that the two translators obtain the same result. The diagram below
shows the use of the SPT to compare the Ada codes.

110 Formal Methods Applied to Complex Systems

Figure 4.8. Double generation chain for use of the CSP5

One set of sources is compiled and the other set is analyzed by the SPT.
Any errors (in translation, compilation or execution) will lead to a difference
between the precalculated signatures and those obtained by the execution;
the probability of detection is very high, and in these cases, all wired output
are placed into a restrictive state by the dynamic controller.

The operational safety team verifies that the production chain clearly
separates the two blocks of Ada code and that they have not been modified
after their translation from B for all software deliveries.

4.4.2. Abstract models and concrete models

The notions of abstract and concrete models are helpful in presenting the
B development cycle, but a more subtle interpretation is possible. The
concrete model is produced from the abstract model using refinement
activities, but these activities often entail modifications to the abstract model

5 The technology used in the coded safety processor is described in [BOU 09, Chapter 2].
This processor [FOR 89] was initially implemented in the context of the SACEM project in
the 1980s [GEO 90, MAR 90, HEN 94].

The B Method at Siemens 111

itself. This occurs because creation of a program sheds new light on the
specification and may reveal errors. More technical reasons may also lead to
modifications in an abstract model: two examples are shown below.

It is difficult to produce the “right” variable reading operations early in
the creation process. When working with B, variable reading operations are
only used in implementations; although they form part of the abstract model,
they are barely used at this stage, if at all. Potential shortcomings in these
operations will, therefore, not be detected before the concrete model is
produced. This is shown by the example given below in which we attempt to
select a reading operation to associate with the partial function
x: t_index +-> t_content.

It is not difficult to imagine a large number of other possibilities, and
selection only becomes possible during the implementation of treatments
using x. Machines declaring x will also be completed at this point.

res <-- read_1(i) =
PRE

i : dom(x)
THEN

res := x(i)
END

res, ok <-- read_2(i) =
PRE

i : t_index
THEN
IF i : dom (x)
THEN
ok := TRUE ||
res := x(i)

ELSE
ok := FALSE ||
res :: t_content
END

END

res <-- read_3(c) =
PRE
c : t_content

THEN
res :(res : t_index

&
(c : ran(x) =>
res |-> c : x))

END

Table 4.2. Example of a reading operation

Optimization of the concrete model may also lead to modifications to the
abstract model. Certain production choices may be guided by the developer’s
knowledge of the software environment.

Rather than coding a very general but inefficient solution, developers use
hypotheses to obtain higher levels of performance from their code. These
hypotheses are generally not present in the first version of the abstract

112 Formal Methods Applied to Complex Systems

model; we must therefore add them at the correct position. This position is
often in the input variables of the application. The hypotheses may then be
discussed with systems and operational safety engineers to check that they
are both relevant and harmless.

4.4.3. Functional calculation with safety monitoring

The safety calculator used by Siemens is costly in terms of
execution time, and it is sometimes necessary to maintain identical
safety levels without using this calculator. One technique consists of
replacing a vital calculation with an equivalent, but less costly, classic
calculation.

In order to maintain safety levels, we need to verify the validity of
the calculation, forcing the program into a restrictive state in case of failure.
The payoff for these performance gains is a risk of reduced availability due
to the replacement of a proved, safe and available treatment by a treatment
for which verification may fail on execution.

Three variations of this technique are presented below. Note that the
cases using partial proof and proof by model polarization do not formalize
software availability.

4.4.3.1. Total proof

Let F be a complex function, but with a predicate P which is easy to
calculate, such that P (x, y) <=> y = F(x) is true. The calculation operation =
y:= F(x) may be refined.

We start by writing a basic machine containing the functional operation:

p_y_f <-- compute_f (x) =
PRE
x : t_x

THEN
p_y_f :: INTEGER

END

This operation is specified in indeterminist form, as the calculation is not
carried out in B and its result thus presents no safety guarantees.

The B Method at Siemens 113

The safety operation is then implemented by a call to the functional
calculation, followed by verification of the predicate:

calcul =
BEGIN
y <-- compute_f(x;
IF not (P) THEN
failure

END
END

4.4.3.2. Partial proof

The previous technique is said to be “total” as the safety controls
guarantee that we will find a value of y where y = F(x).

In most cases, F includes calculations associated with system availability
and performance:

y = F(x) <=> P(x, y) where

P(x,y) is defined by Safety (x,y)& Availability(x,y) & Performance(x,y)

If we decide to only formalize the safety aspect, the specification model
can include:

compute = y: (Safety(x, y))
Refined by:

compute =
BEGIN
y <-- compute_f(x);
IF not Safety(x, y) THEN
failure

END
END

4.4.3.3. Proof by polarization

A final variation of the technique may be applied when a full problem
specification takes the following form:

114 Formal Methods Applied to Complex Systems

IF condition THEN
permissive_action

ELSE
restrictive_action

END

and the following conditions are satisfied:

– the condition predicate is costly to evaluate;

– another predicate, condition’, with a lower evaluation cost, is available,
such that:

condition’ => condition

– the execution of restrictive_action when condition is true does not
create safety issues.

If we only formalize the safety aspect, the specification model can
include:

SELECT condition THEN
permissive_action

WHEN 0 = 0 THEN
restrictive_action

END

Refined by:

compute =
VAR l_y_f
IN
y <-- compute_f(x);
IF condition’ THEN
permissive_action

ELSE
restrictive_action

END
END

This technique is most widely used in the cases where condition takes the
form #z.P(z): it is generally quicker to verify that P is true for a given value
of z than to verify that P is false for all values of z.

The B Method at Siemens 115

The refinement therefore becomes:

compute =
BEGIN
y <-- compute_f(x);
IF P(y) THEN
permissive_action

ELSE
restrictive_action

END
END

We have shown that P(y) => #z.P(z).

4.4.4. Configuration

The automatic pilots produced by Siemens may be configured using
properties which describe the properties of different system objects.

This covers information such as:

– track topology;

– the position of objects along the track;

– slopes and curves for each point on the track;

– the speed profile authorized by civil engineering constraints;

– the nature of each piece of information in messages with generic
formats;

– characteristics of rolling stock (mass, length, guaranteed braking
capacity, etc.).

This configuration data can be specified in B, but the resulting programs
lack flexibility: any modification of the data (following track maintenance or
line extension, for example) would require the program to be (at least
partially) reproved and retranscoded. Furthermore, this would have no effect
on the main difficulty with configuration data: ensuring that it is an accurate
image of the situation in the field. For these reasons, the strategy chosen by
Siemens involves modeling only those properties that are needed for the
proof. This data is then modeled:

116 Formal Methods Applied to Complex Systems

– either as constants in the basic machines: this is the case for fixed
equipment which is initialized by reading configuration files;

– or as variables in the basic machines which manage the input data flow:
this is the case for onboard equipment, which receives messages describing
the current zone as it moves along the track.

Configuration validation, therefore, involves two relatively distinct
aspects:

– data must conform to the reality in the field;

– data must conform to the relevant properties expressed by the formal
model.

The first point is a surveying issue with no bearing on the use of formal
methods. The second point is covered by the operational safety team, using
tools to automatically verify the conformity of configuration data with the
hypotheses used in the B model. These tools operate by describing the values
of configuration data in B and adding hypotheses extracted from the main
model. Specialized provers are used to demonstrate these hypotheses.

This approach is illustrated in the following example. The data
constant is declared in a basic machine with a certain number of properties.

CONCRETE_CONSTANTS
data

PROPERTIES
data: t_zacq_fu_mr_i --> t_segment_i &
!xx.(xx : t_zacq_fu_mr =>

data(xx) : t_ segment_pas \/
{c_segment_indet}) &

t_zacq_fu_mr =
dom(t_zacq_fu_mr <| data |> t_segment)

These properties are based on the following declarations:

SETS
t_zacq_fu_mr_i , t_segment_i

CONCRETE_CONSTANTS
. c_segment_indet
ABSTRACT_CONSTANTS
t_zacq_fu_mr, t_ segment

PROPERTIES

The B Method at Siemens 117

c_ segment_indet : t_segment_i &
t_ segment <: t_segment _i &
c_t segment_indet /: t_segment &
t_zacq_fu_mr <: t_zacq_fu_mr_i

A certain number of these constrants are evaluated in B, while others are
only evaluated in the basic machines. All of the evaluations are grouped
together, transformed into B where necessary and added to the properties of
the initial model. For example:

PROPERTIES
c_segment_indet = 0 &
t_segment_i = 0 .. 255 &
t_zacq_fu_mr_i = 0 .. 50 &
t_segment = 1 .. 45 &
t_zacq_fu_mr = 1 .. 3 &
data = (0 .. 255) * {0} <+

{1 |-> 23, 2 |-> 45, 4 |-> 67}

We must then simply prove the obtained model to validate the data. In
this case, proof allows us to see, for example, that the tuple 4 |-> 67 is not
suitable.

4.4.5. Limitations

4.4.5.1. The main program

The transcoding of the main machine into Ada/CSP does not produce an
Ada compilation unit which can be directly used as a main program. The
main machine is therefore written directly in Ada; this is a simple process
and does not pose any significant validation issues.

4.4.5.2. Time

The purpose of the abstract model is to encapsulate all of the safety
requirements applicable to the program. B does not include a construction
which allows explicit expression of time constraints. However, these
constraints may be modeled implicitly based on a hypothesis of the cyclical
implementation of the program. In our case, the dynamic controller, i.e. a
hardware component, guarantees periodic activation of the program.

118 Formal Methods Applied to Complex Systems

4.4.5.3. Real numbers

The functions assigned to wayside computers can be modeled naturally
using predicate logic and set theory, and B is almost ideal for this type of
application. The numerical calculations required by onboard applications
(odometers, energy calculations, etc.) are difficult to model as B is not able
to handle real numbers, only integers.

Our modeling consists of representing real numbers by an integer
mantissa associated with a scaling factor which remains implicit in the
model. The real number x is therefore modeled as x_mantissa: INT and a
scale factor F such that:

x_mantissa * F <= x < (x_mantissa + 1) * F

The modeling activity therefore consists of defining the “right” scale
factors to use. These factors must allow us to represent the desired physical
values (i.e. the calculation should not overflow) with the desired level of
precision.

4.4.5.4. Availability

The formalization must cover safety requirements in detail, but will not
necessarily cover all the availability requirements. It is not necessary to
formalize availability requirements if they are clearly separated from safety
requirements in the relevant informal documents. In other cases, unless
significant technical difficulties are encountered, availability requirements
should be modeled in the same way as the safety requirements.

4.4.5.5. New properties

The specification formalization process may highlight properties that are
contained implicitly in earlier documents but that seem significant to the
formalization engineers. In the cases where these properties concern
variables and are expressed in the form of invariants, it is generally useful to
add them to the model to assist understanding of its operation.

When these properties concern constants which are not evaluated in B, it
is best to avoid expressing them in B as they will not be validated by proof:
they will be used as hypotheses in the basic machines describing the
configuration data.

The B Method at Siemens 119

4.5. Automatic refinement

4.5.1. History

The bulk of the formal development aspect of the SAET-METEOR
project was completed in 1996. This was the first development by Siemens
(then operating as Matra) to use formal methods, and the risks associated
with the use of this new technology were significant.

In an attempt to limit these risks, methodological work was carried out in
parallel to the development process to identify and spread principles for best
practice. A guide was produced which provided relatively directive
refinement schemes, both for data and treatments. Following these
indications, formal developers used a number of intermediate steps in
refining treatments, ending with data refinement. The architecture of this
process is similar to that shown in Figure 4.9.

Figure 4.9. Architecture example

In this architecture, each operation Op of Ai is implemented in A_impi by
calls to operations of Ai+1. : Op1; … ; Opn. As each of these new operations
uses the same abstract variables as Op, the refinement is relatively easy to

120 Formal Methods Applied to Complex Systems

prove. This technique reduces the proof workload, but presents the major
drawback of being highly repetitive: each new machine contains part of the
contents of the previous machine. This means that the maintenance costs
associated with the model are high.

The possibility of using tools to produce refinements was studied from an
early date. A first attempt, entirely coded in C, was applied to the abstract
model of the line AP for SAET-METEOR.

This first prototype showed that the general approach was valid, and that
the reduction in performance generated by the passage from a concrete
model coded “by hand” to an automatically refined model was acceptable.
This experiment also showed the inadvisability of using fixed refinement
rules in the tool, as any modifications to the refinement strategy would
require modification of the tool itself.

The next stage was the replacement of the prototype by an interpreter,
applying an external rule base. The use of this tool was rapidly extended to
all of our projects and now it forms an essential part of our approach. The
interpreter is a stable program which has changed very little since its
creation in 1999. The rule base is used for all of our applications and is
enriched in the course of each project. To date, it contains around 500 rules.

The expertise used in creating our projects is therefore reused, even in the
cases where the code itself cannot be recycled.

4.5.2. Operational principles

The input into the refinement tool is a component of the abstract model
(machine or refinement). The output generated by the tool is an
implementation of the component. As the implementation can itself import a
new machine, the process is repeated until a terminal implementation has
been obtained.

Refinement stages follow the pattern below:

– The tool analyzes the variables of the starting component and
determines their implementation. This is illustrated by the following
simplified refinement rule:

The B Method at Siemens 121

RULE set_variable IS
ABSTRACT_VARIABLE a
TYPE integer_set(a,n)
WHEN
a ⊂ 1..n

CONCRETE_VARIABLE
a_r

INVARIANT
a_r ∈ 1..n → BOOLEAN &
a = a_r-1[{TRUE}]

END

The rule is applied to the refinement of a variable “a” with an invariant “a
⊂ 1..n” and implemented by a variable “a_r” using a gluing invariant. The
construction “integer_set(a,n)” is treated as a predicate – the hypothesis – for
substitution refinement: it records the applied data refinement.

One limitation of the tool is that variable refinement is chosen
independently of the intended use. The selected refinement is always the
most general in that the gluing invariant does not lose information. In our
example, if the only uses of “a” were “max(a)”, “a” could be implemented
more efficiently with a_max: INT with the gluing a_max = max(a). This
limitation remains theoretical and does not pose any problems in practice.

– The substitution refinement rules are applied in a context defined by
refinements of variables and the hypotheses verified at the point of
refinement. Suppose that we wish to refine the affectation contained in the IF
below.

INVARIANT
my_set ⊂ 1..99

OPERATIONS
my_operations =
IF 3 ∈ my_set THEN
my_set := my_set ∪ {my_var}
END

122 Formal Methods Applied to Complex Systems

The context in which the substitution refinement rules will be applied
contains “integer_set(my_set,99)” (the rule shown above has been applied)
and 3 ∈ my_set. The following rule may therefore be applied:

RULE assign_set_variable IS
WHEN integer_set(a,n)
REFINE
a := a ∪ {b}

INTO
local_variable_1 := b;
IMPLEMENTATION(
a_r(local_variable_1) := TRUE)

END

This rule copies “b” into a local variable and updates the table which
implements “a”. The second instruction does not require further refinement,
and is labeled as an implementation. The first instruction is not labeled and
may be refined as needed, for example in the cases where b is a complex
expression. In our example, this is not necessary, and the implementation
would therefore contain the following substitutions:

l_1 := my_var;
my_set_r(l_1) := TRUE;

Note that the tool does not analyze the operations of the seen machines.
When it implements access to a variable of a seen machine, it imposes its
own reading operation, and the developer must ensure that this is present in
the seen machine. Our rule base is based on a limited number of naming
conventions to facilitate this task.

A possible extension would be to enable modification of seen machines
to add or modify reading operations. This would allow the tool to modify the
abstract model, but it would also require tool validation activities which are
not currently necessary.

One notable property of the refinement tool is that it does not need
to be monitored by the operational safety team: an error in the rules or
in the interpreter itself will always be detected during proof of the concrete
model.

The B Method at Siemens 123

4.5.3. Interactive refinement

The refinement tool can operate in interactive mode, and this approach is
used in the following situations:

– when the tool is unable to find applicable rules;

– when the refinement does not converge;

– when the code produced cannot be proved or is not efficient.

In interactive mode, the developer can adjust the refinement by
examining the context and the rules applied to each stage. The developer can
also modify refinement tools and store them with the refined component, or,
more rarely, add them to the rule basis if he or she considers them to be
reuseable.

4.6. Conclusion

The first aim of subway operators and their clients is to provide
access to safe transportation. Siemens has responded to this expectation
using a rigorous development process (capability maturity model
integration (CMMI) level 3) and by employing cutting-edge techniques. The
B method, used by Siemens for over 18 years, is a key element in this
approach.

From the moment it was first used in the SAET-METEOR project, the
method and its tools presented a sufficient level of maturity to produce safe
software with controlled development costs. Since then, the implementation
of automatic refinement has allowed us to multiply the size and complexity
of our applications by 4, while reducing the size of development teams and
the time needed to create our systems.

The increasing complexity of our systems is the main concern in
relation to the future of the B method. From a software perspective, the
subject has been thoroughly tackled, and current working methods are
sufficient to make the necessary improvements to our Trainguard MT CBTC
platform [IEE 04].

124 Formal Methods Applied to Complex Systems

Figure 4.10. Evolution in the size of B models

Work on version 3 of the product is currently in its final stages. This
new version will be used in our current projects, including renovation
of the PATH network connecting Manhattan to New Jersey and the
automatization of the Helsinki metro. Our systems are becoming
increasingly modular, based on the reuse and association of components.
These systems need to be subject to the same rigorous approach used in
software development.

We are currently able to prove that our software is correct. In the
future, it should be possible to use proof to guarantee the most
important properties relating to the material objects of our systems. This
represents a significant change of mentality for systems engineers
(more so than for software engineers). Despite significant developments,
Event B is still considered as a research project, rather than an industrial
tool, at Siemens, based, for example, on its use in the European Deploy
project6.

6 For more details on the Deploy project, see http://www.deploy-project.eu/.

The B Method at Siemens 125

Figure 4.11. Evolution of the number of POs in B models

4.7. Glossary

CBTC communication-based train control

CMMI capability maturity model integration

IOM input/output module

METEOR Metro Est Ouest Rapide (High-speed East-West metro)

SPT signature predetermination tool

OS operating system

AP autopilot

PAE Pilote Automatique Embarqué (on-board autopilot)

PAS Pilote Automatique Secteur (sector autopilot)

PO proof obligation

PRT personal rapid transit

RATP Régie Autonome des Transports Parisiens (Autonomous
Operator of Parisian Transports)

RER Réseau Express Régional - regional express network

126 Formal Methods Applied to Complex Systems

SACEM Système d’Aide à la Conduite, à l’Exploitation et à la
maintenance (Assisted driving, control, and maintenance system)

SADT structured analysis and design technics

SAET Système d’Automatisation de l’Exploitation des Trains
(Automation System for Train Operations)

VAL Véhicule Automatique Léger (Light Automatic Vehicle)

4.8. Bibliography

[ANS 83] ANSI, Standard ANSI/MIL-STD-1815A-1983, Ada programming
language, 1983.

[BAR 08] BARO S., “A high availability vital computer for railway applications:
architecture & safety principles”, Proceedings of Embedded Real-Time Software
(ERTS ’08), 2008.

[BOU 09] BOULANGER J.-L. (ed.), “Sécurisation des architectures informatiques –
exemples concrets”, Hermes-Lavoisier, 2009.

[BOU 11] BOULANGER J.-L. (ed.), “Sécurisation des architectures informatiques
industrielles”, Hermes-Lavoisier, 2011.

[CHA 96] CHAUMETTE A.-M., LE FEVRE L., “Système d’automatisation de
l’exploitation des trains de la ligne METEOR”, REE, 8 September 1996.

[FOR 89] FORIN P., “Vital coded microprocessor principles and application for
various transit systems”, IFAC – Control, Computers, Communications in
Transportation, pp. 137–142, 1989.

[FOR 96] FORIN P., “Une nouvelle génération du processeur sécuritaire code”,
Revue Générale des Chemins de fer, vol. 6, pp. 38–41, June 1996.

[GEO 90] GEORGES J.-P., “Principes et fonctionnement du Système d’Aide à la
Conduite, à l’Exploitation et à la Maintenance (SACEM). Application à la ligne
A du RER”, Revue Générale des Chemins de fer, vol. 6, June 1990.

[GUI 90] GUIHOT G., HENNEBERT C., “SACEM software validation”, Proceedings
of the 12th IEEE-ACM International Conference on Software Engineering,
March 1990.

[HEN 94] HENNEBERT C., “Transports ferroviaires: Le SACEM et ses derives”,
ARAGO 15, Informatique tolérante aux fautes, Masson, Paris, pp. 141–149,
1994.

The B Method at Siemens 127

[HOA 69] HOARE C.A.R., “An axiomatic basis for computer programming”,
Communications of the ACM, vol. 12, pp. 576–583, October 1969.

[IEE 04] IEEE, 1474.1, IEEE Standard for Communications-Based Train Control
(CBTC), Performance and Functional Requirements, 2004.

[LIS 90] LISSANDREM., Maîtriser SADT, Armand Collin, 1990.

[MAR 90] MARTIN J., WARTSKI S., GALIVEL C., “Le processeur codé: un nouveau
concept appliqué à la sécurité des systèmes de transports”, Revue Générale des
Chemins de fer, vol. 6, pp. 29–35, June 1990.

[MAT 98] MATRA and RATP, “Naissance d’un Métro. Sur la nouvelle ligne 14, les
rames METEOR entrent en scène. PARIS découvre son premier métro
automatique”, La vie du Rail & des transports, no. 1076, October 1998.

5

Industrial Applications for Modeling with
the B Method

5.1. Introduction

The B method [ABR 96] was introduced at the end of the 1980s to
produce software that is correct by construction. At that time, it was
promoted and supported by RATP1, and the B method and the tool which
implements it, Atelier B, were at first applied within the transport industry.

The method’s first real success [BEH 93, BEH 96, BEH 99] was the
development of the automatic control of the SAET-METEOR metro (see
[BOU 12, Chapter 3]), installed on Line 14 of the Paris metro. Over 110,000
lines of B were written for this project, allowing the automatic generation of
86,000 lines of Ada code. This development was followed by many others
such as the Beijing metro built for the Olympic Games, the Canarsie Line in
New York or, nearer home, the automatic shuttle linking the terminals of
Charles de Gaulle Airport (called CdG-VAL, see [BAD 05]).

During the CdG-VAL project, an innovative technique was used:
automatic refinement (Figure 5.1). The definition of modeling guides with B
on the one hand and of refinement patterns on the other hand were used to
automate the transformation process of a B model into its implementation,
through a sequence of small steps.

Chapter written by Thierry LECOMTE.
1 See http://www.ratf.fr.

130 Formal Methods Applied to Complex Systems

Figure 5.1. Implementation of BART

Data and algorithms are progressively modified so that they can
eventually be implemented. The user only influences the transformation by
occasionally providing new refinement rules, in the cases where the tool
becomes blocked. Atelier B is a qualified tool. However, the same is not the
case for BART because the validity of the models produced needs to be
tested by a mathematical demonstration. If the tool and/or the refinement
rules are faulty, then the demonstration cannot be carried out.

Automatic refinement made the semi-automatic generation of 225,000 of
the 265,000 lines of B code for the alarm control unit possible, which means
final Ada software of 186,000 lines. This is the biggest software package
developed in B to date.

Alongside these developments, new applications were created, such as
the tool vital embedded settings generator (VESG), which relieves the
automatic train protection (ATP) of certain calculations, and produces
optimized data describing the paths taken, destination Alstom CC-ATP
(carbon controller) Urbalis. The role of the VESG is to produce the file of
data that will be brought onboard and that contains information on the tracks.

VESG handles XML files in input, which describe the tracks. These files
are generated by the Alstom teams using other dedicated tools. They contain
information on various significant elements present on the tracks: switches,
signals, slopes, speed limits, etc.

VESG reads these files and then carries out a certain number of
precalculations on the information that they contain. Finally, it generates a
binary file, which contains the result of these treatments, in a format that can
be read by the onboard program. This data file is then loaded onto the trains,
which circulate on the same tracks. The energy control program uses this file

Industrial Applications for Modeling with the B Method 131

to find out about the environment of the train in relation to its current
position, and thus decide how to proceed as a function of this information,
particularly in relation to whether it should activate emergency braking.

To reduce the costs of unitary tests for such SSIL4 software2, this
non-onboard software has been redeveloped in B. The B model [ABR 96]
generates approximately 30,000 proof obligations, which are handled using,
in particular, many proof rules that are integrated into the tooling of the
proof. The VESG regularly undergoes slight modifications, linked to the
new types of elements that need to be taken into account on the tracks.

However, in 2010, a larger-scale change took place. Before this, Alstom
used a particular tool to manage slopes on the tracks. After information had
been generated by this tool, it was then integrated into the XML files for the
VESG. In 2010, the decision was taken to merge this tool with the VESG.
Thus, the VESG now also manages the more complex calculations on the
information regarding slopes.

Model/code lines
Abstract B model 17,845
Concrete B model 58,046
ADA written manually 5,634
ADA generated automatically 47,685

Table 5.1. Development metrics

Load
Abstract B model 16%
Concrete B model 26%
Proof 38%
ADA and debugging 13%
Validation of added rules 7%

Table 5.2. Distribution of the development load

5.2. Control-command systems for controlling platform doors

Toward the end of the 1990s, an extension of the B method became
available [ABR 96]. This was known as the B system or event-B, and this

2 There are five software safety integrity level (SSIL) levels from 0 to 4. For more detailed
information, see the standard CENELEC EN 50128 [CEN 01, CEN 11].

132 Formal Methods Applied to Complex Systems

made it possible to analyze, study and specify not only software, but also
systems, in the wider sense of the term. Event-B makes it possible to use
“B-like” formalization and proof for systems, which contain a software
component alongside an electronic component and equipment.

In this way, a proved definition of system architecture is obtained, or
more generally, the proven development of system studies that are carried
out before the specification and design of the software. This extension makes
it possible to carry out failure studies from the outset in the development of a
large-scale system.

The specification of safety-critical software or of systems requires the
same approach: use the abstraction, refinement and proof in order to
mathematically show that a collection of models is coherent. First, the
internal coherence of each model is verified (the behavior described is in line
with properties expressed).

Figure 5.2. Formal development cycle in B

Then, we need to establish that each refinement does not contradict its
abstraction (the model containing fewer details). Finally, the entire collection
of models has been proved, the most concrete part of the model is considered
by transitivity to conform to the highest-level specification and the model
can then be translated into the chosen target language, as described in
Figure 5.2.

Both approaches (modeling the system and modeling the software) are
based on set theory, first-order predicate logic and calculation of generalized

Industrial Applications for Modeling with the B Method 133

substitutions. The main difference between them is the modeling paradigm
and the way in which the models are structured.

For modeling software, behavior is described in terms of operations,
which represent the program functions, executed in sequence. The modeling
language varies depending on whether we are in the specification or
implementation phase (no sequence in specification, no parallel action in
implementation, no loop in specification, only implementable types in
implementation, etc.).

Figure 5.3. Example of an event-B model

The implementation language is called B0. An implementation may
import other models (abstract machines) and delegate the implementation of
variables to them. In this way, the specification of the program is divided
into smaller components, which is a more manageable way to handle the
complexity. The design (refinement, decomposition through importation) is
verified by proof, as the process happens, and not when the development is
complete.

For system modeling, behavior is described in terms of atomic events
which modify the state variables of the system. A model is a complete view
of a closed system (including, for example, the process that needs to be
controlled, the control device and the environment). The modeling language

134 Formal Methods Applied to Complex Systems

is homogeneous throughout the modeling process (there is no longer any
specification language for the implementation).

The event-B language is substantially different to B, in particular because
it has been simplified and disambiguated. The B system approach is
particularly well-suited for the representation of asynchronous behaviors,
such as those of interruption-based software.

For several years now, the RATP in France has used platform doors on
metro platforms to avoid passengers falling onto the track. A system of this
kind is in use for the driverless SAET-METEOR metro. It also makes it
possible to significantly improve train availability. In order to improve the
service quality and passenger safety, RATP undertook introducing this type
of protection on several Parisian lines, some of which were not automated.
The transition from manually operated to automatic metros should take place
gradually, with staggered replacement of the rolling stock.

Figure 5.4. Platform door L13

Before launching the rollout of a new system of platform doors over a
whole line, RATP initiated a project, which aimed to produce a demonstrator
for three stations of Line 13 [LEC 07, LEC 08, SAB 00], with an evaluation
period of 8 months. The control-command system in charge of the opening
and closing of the doors needed to have an SIL safety level3 3 as described
in the standard CENELEC EN 50128 (CEN 50129 [CEN 03]).

3 SIL (safety integrity level), which can have four possible values, from 1 to 4.

Industrial Applications for Modeling with the B Method 135

This control apparatus must detect the arrival, complete standstill at the
platform and the departure of trains, without having a direct connection with
them (in fact SAET-METEOR is able to communicate directly with the
platform door through dedicated communication means). Once the train is at
a standstill at the platform, the control device must be able to detect the
opening and closing of the train door, and to emit orders to open and shut the
platform doors. These orders must be safely emitted (opening at the wrong
time could lead to the injury or death of a passenger) and the control device
must be designed, tested and validated in line with the railway standards
(CENELEC EN 50126 [CEN 00], 50128 [CEN 01, CEN 11] and 50129
[CEN 03]).

As the available time before installation and beginning operation was
short, a secure architecture, weakly coupled with the sensors used for the
detection of trains, was used in order to facilitate acceptation by the
authorities4.

Figure 5.5. Architecture

This architecture is based both on a Siemens Simatic S7 safety automaton
(level SIL3 according to the standard CEI/IEC 61508 [IEC 98]) and on
infrared sensors and standard radars. In this case, safety is ensured by the
safety automaton (the automaton has a certificate, which indicates that it is
SIL3) and by the redundancy and diversification of the means of
measurement, and not by the intrinsic safety of the sensors. This approach
provides a solution that is less expensive and easier to maintain.

4 Authorization and opening for operation of a rail system is conducted through a state
organization, which is in charge of examining the safety file (DS) for the urban sector, the
STRMG (technical service for ski lifts and guided transport). For more information about the
STRMG, see http://www.strmtg.equipement.gouv.fr/.

136 Formal Methods Applied to Complex Systems

The development process, which should ensure the safety and reliability
of the planned system, is constructed around the B method (and event-B) see
[SAB 08]. This makes it possible to ensure traceability between the various
phases of the project, and in this way to reduce validation effort. Before any
development activity, a first phase of system analysis was carried out in
order to evaluate the “completeness” and the non-ambiguity of the written
specification.

The B method was used to:

– verify that for the platform door/control device system the functional
and safety constraints were verified (there was no possibility of establishing
forbidden connections between the train and the platform or between the
train and the track);

– identify dangerous system behaviors.

A solution based on laser range finders, which was for a time considered,
was abandoned in favor of a solution based on the recognition of the arrival
and departure sequence of a train in station through sensors of different
types. Hyper-frequencies, infrared and laser sensors were used in order to
improve the resistance of the system to physical disturbances. The
redundancy of the sensors using various technologies improved
the confidence level of the measures. These sensors were put in position on
the platforms and turned to face the tracks so that they could measure the
position and speed of the trains, and also the movements of the train doors.

The system specifications and software were formalized in B [ABR 96]
by the development team. Only the nominal behavior of the sensors
(excluding any disturbance) was taken into account. The B models
developed during the initial functional analysis (independent of any
architecture of the control device for the platform doors) were reused
directly. The suggested architecture was then modeled and inserted within
these models.

The conformity of the new architecture with the functional specifications
for the system was successfully proved, including some signaling rules
which were introduced at this point into the model. The control device
functions were then precisely modeled (arrival of the train, detection of the
train, departure of the train, opening of train doors, closing of train doors,
etc.).

Industrial Applications for Modeling with the B Method 137

A safety study was developed at the same time by the safety team in
order to determine, in a detailed manner, how exterior disruptions might
influence the behavior of the control device. These disruptions were
accorded a priori or a posteriori frequencies, as a function of the availability
of relevant data to the RATP, and a mathematical model, independent of the
B model, was developed in order to establish the safety level of the system.

The a priori frequencies were verified during the 8 months of trials in
true scale (if certain frequencies had not been verified and could have led to
a diminished safety level of the control device, the overall architecture
would have needed to be reexamined).

Figure 5.6. Implementation of Brama

The formal B model was then animated using the tool Brama in order to
verify whether the formal B model had the same behavior as the real system
on meaningful scenarios. This model animator was not part of the validation
process, because for that to be the case, the tool would need to be qualified
to the SSIL3 level, but rather it helped to compare formal models with the
real world.

The specification documentation was partially developed starting from B
system models, using another tool, Composys. Composys does not have

138 Formal Methods Applied to Complex Systems

proving capabilities, but rather it is an engineering tool, and it helps the
human modeler to add contextual information (comments, description, name
of component, etc.) into the B models used to generate the documentation in
natural language, which describes the complete system.

Figure 5.7. Implementation of Composys

Due to the fact that events are associated with components and the fact
that variables are used by events (in reading/writing), Composys calculates
the relationships between the different system components, as a function of
how the variables are read or modified. These relationships are then
represented by diagrams, which link the various system components with
each other, and include the contextual data provided by the modeler. This
document allows experts in the domain to validate the formal models, which
otherwise are illegible.

The development of the software is finally based on event models
developed in this context. The Siemens programmable automaton can be
programmed in Ladder (one of the five languages recognized by the standard
CEI/IEC 61131-3 [IEC 03]), but, unfortunately, it requires the use of its
graphic interface in order to enter the code (if it is not entered in this way,
the SIL3 certificate which comes with the automaton is no longer
guaranteed).

Industrial Applications for Modeling with the B Method 139

Figure 5.8. Example of Ladder

A translation diagram for B into Ladder has been developed. The
translation is based on data streams and does not require a large semantic
jump. A few optimizations have been contributed to the system in order to
guarantee certain temporal constraints (such as keeping to cycle time).

Figure 5.9. Example of a B model translated into Ladder

During the validation phase, it was easy to associate an execution path of
the Ladder program (a Ladder program is defined by logical equations and is
analyzed in terms of execution paths) with an event of the B model. If the

140 Formal Methods Applied to Complex Systems

source code is generated by a qualified tool (as is the case for metro
autopilot-type applications), then unitary tests are not necessary, as this
phase has been covered by the proof of the model. In this case, because the
code has not been generated by a translator of this kind, extensive unitary
testing was carried out.

Figure 5.10. Development and verification process

Several months after the beginning of the development, a tested and
validated functional control device was obtained. The process described in
Figure 5.10 made it possible to obtain software tested to 100%, without error
with respect to its specification when the test bench was run for the first
time. A dedicated test bench was designed in order to simulate major
perturbations (the sensors were emulated) and executed for several days, but
no faulty behavior was observed.

The integration tests were carried out on a platform on Line 14, which
was only used for tests (and which is equipped with the SAET-METEOR).
This made it possible to complete configuration of the developed system
rapidly in order to verify safety, availability, response time, etc. The choice
of technologies for sensors was validated at this point.

Industrial Applications for Modeling with the B Method 141

Finally, 4 months after the development began, the platform doors were
installed on three platforms of Line 13 for an eight-month long trial.

The following metrics were obtained:

– team: a project manager, a developer, a validation engineer, a safety
engineer;

– initial system functional specification document: 130 pages;

– safety study: 15 documents of a total of 300 pages;

– development documentation: 30 documents of a total of 600 pages;

– formal B models: 3,300 lines, around 1,000 proof obligations. 90% of
these were automatically demonstrated by Atelier B proof tools; it took 2
days to demonstrate the remaining 10%.

At the end of 8 months of trials, around 96,000 trains were checked. No
fault or failure was recorded. The assumptions made during the safety study
were confirmed and in certain cases refined. The availability of the system
complied with the requirements, and after an initial fine-tuning phase, no
passenger was prevented from leaving a train (the control device was
required to open the doors a minimum of 9,999 times in 10,000 when a
passenger train was at a standstill at the platform and the train doors were
opening).

Figure 5.11. System architecture

142 Formal Methods Applied to Complex Systems

Following these trials, a similar system was developed in the context of
the automation of Line 1 of the Paris metro. This system was required to
operate in the transition period during which trains driven manually and
completely automatic trains were both running. It needed to equip 26
stations and 52 trains. Eventually, there will only be automatic trains on this
line, and the system will then be taken down.

The system is partially onboard in trains driven by humans, because the
commands for opening and closing doors given by the driver need to be
transmitted to a technical station on the platform in order to be registered.
These commands are treated and then sent to the platform doors. The
installation architecture is shown in Figure 5.11.

This system is at level SIL4 (according to the standard CENELEC EN
50129 [CEN 03] and was based on Siemens S7 SIL3 automata (according to
the standard CEI/IEC 61508 [IEC 98]. In this development, the system
model was developed in the commercial proposition phase and a system
animation was suggested as a technical response element. The system was
developed in just under six months. As was the case with the controlling
device described earlier, the development cycle used was heavily based on
the formal B method [ABR 96]. The developed B models were directly used
to demonstrate safety.

Since these two developments took place, a generator of IL code
(programming language for automata, on the assembler level) has been
developed and is nowadays used alongside a test case generator in order to
validate the automatisms for similar applications. This is the first step toward
the goal of qualifying the code production tool.

5.3. Safety of microelectronic components

In parallel with its use for safety systems and software in railways, the B
method has also been used in microelectronics and in chip cards for safety
applications. One example of this is the development of a Java bytecode
verifier by Gemplus, and another example is the validation of a secured
operating system based on microkernels [SOL 05].

Since event-B became available, new classes of potential applications
have appeared. In particular, since the mid-2000s, several microcircuits have

Industrial Applications for Modeling with the B Method 143

been certified to an EAL5 level of 5+ (common criteria 2.3) and then EAL
6+ (common criteria 3.1)6.

This certification requires formal modeling of the product’s safety policy
and proof of conformity between it and the functional specification that must
implement it. Another work has also taken place, which has tackled not the a
posteriori certification of a product, but the specification and construction of
a microcircuit that is correct by construction.

This was the system adopted for the Forcoment project7 (FORmal
COdevelopMENT). The aim of this project was to show that an event-B
model of a functionality may be transformed into a hardware description that
can be directly integrated into a classical electronic circuit development
cycle such as that of the STMicroelectronics microcontrollers8.

The work carried out was consisted of:

– study and determination of abstractions, which could be used to model
microelectronic circuits;

– specification of translation diagrams of event-B into the subset of
VHDL used by STMicroelectronics, and development of the associated code
generator;

– application in true scale on a functionality of buried memory access
control and memory protection unit (MPU).

The current process of microcontroller-type circuit development (see
Figure 5.12) at STMicroelectronics uses intensive testing for the verification
stages, which precede the physical creations of the circuit (welding). These
stages take the largest share of the time necessary for this part of
the development. The development of test plans relies on the know-how of
the engineers in charge of verification and validation.

5 Evaluation assurance levels (EALs) are concerned with common criteria, as defined in the
standard [ISO 05].
6 See the site of the Agence Nationale de la Sécurité des Systèmes d’Information (National
Agency for Information System Safety): http://www.ssi.gouv.fr.
7 See http://www.methode-b.com/php/projet-forcoment-fr.php.
8 For more information, see http://www.st.com/.

144 Formal Methods Applied to Complex Systems

Figure 5.12. The first stages of the development cycle of a
microcircuit functionality

For this project, we wished to adapt the use of formal development in
successive stages favored by the B language ABR 96], which has been
proved to be highly successful in the railway sector, to the field of
microelectronics.

In fact, in microelectronics, formal methods are really only used after the
event, to carry out several verification activities, both on the source code and
on its transformations into networks of logical ports, which is the final
representation before entry into the manufacturing chain. However, the most
costly functional errors are often introduced during the earlier phases in the
cycle, well before the source code is written, and in particular in functional
specifications, in general and detailed design specifications, known as
implantation specifications.

In practical terms, there are no verification tools for all these “paper”
representations, and only the vigilance of proofreaders makes it possible to
find the “seeds of error” which become “forests of malfunction” once they
have been sown in silicon.

Industrial Applications for Modeling with the B Method 145

Figure 5.13. Alternative development cycle, developed and
trialed during the project

During the Forcoment project, an alternative development cycle was
constructed (see Figure 5.13), which integrated formal, and therefore
exhaustive, verification of the VHDL code with respect to the functional and
interface specifications, all the while remaining compatible with the rest of
the development stream. This development cycle is based on formal
modeling of the functionality in event-B, which aimed to produce correct
construction of digital and analogical functions, which were outside the
reach of the techniques used because they are simply integrated into the
development through their digital interfaces.

This new cycle begins with the writing of a very simple event-B model,
which contains a few events representative of an abstraction of the
functionality. The operation details linked to its burial in a microcircuit are
introduced gradually.

The model to which these details have been added is known as “refined”.
The process that makes it possible to transition from one model to another,
to which details have been added, by explaining the conditions through
which it conforms to the first model, is known as refinement. Refinement
and verification of conformity conditions are carried out, at each
development step, by using basic mathematics such as sets and their

146 Formal Methods Applied to Complex Systems

operations, predicate logic, or even relations and functions. These concepts
are closer to the binary logic of a circuit than it might appear at first glance.

The most detailed event-B model is finally transformed into a VHDL
module, using a code generator developed especially for this purpose, called
B4SYN (B for synthesis). The VHDL module produced by B4SYN is then
injected into the part of the traditional stream that follows. The test campaign
carried out on a VHDL module from the traditional stream was a success on
the module produced by B4SYN. This made it possible to validate the new
stream [BEN 09a, BEN 09b].

Although this new stream is experimental, it can cover a large number of
errors with total assurance. However, it would require the integration of the
solutions sketched out and explored during the project before it could be
extended to the composition of functionalities and before being employed
for industrial use.

Figure 5.14. Position of the MPU in the secured microcontroller

The development cycle described above was used on a study case, a
buried memory access controller and memory protection unit (MPU) (see
Figure 5.14).

Industrial Applications for Modeling with the B Method 147

With the metrics collected during the developments associated with this
module, both within the traditional stream and in the new experimental
stream, we can create a first comparison (see Table 5.3).

Table 5.3. Comparative effort between traditional development and formal development

Although this comparison is in no way calibrated, it can nonetheless be
seen that the VHDL modules from both of the streams represent an
equivalent development effort. Even more interesting is the fact that these
modules give rise, after synthesis, to an almost identical number of ports.
This allows us to think that the formal proof developed in this way has
absolutely no impact on the freedom of design required for the optimization
of microcircuits, which are among the most demanding in terms of surface,
and which traditionally require “hand-made” development techniques. In
addition, the “hand-made” item obtained by the new stream is guaranteed to
completely comply with its specification and design through a computerized
mathematical proof, which may be subjected to an audit.

5.4. Conclusion

Although formal modeling in B was initially used in railways for the
development of autopilot metro systems, today this method is used in a

148 Formal Methods Applied to Complex Systems

wider system context, which means that it can also now be employed within
other sectors.

This switching to other sectors has led to the improvement of the support
tool for the method following contributions taken from work in this wider
context such as:

– an automatic refinement tool;

– support of the “event-B” language for modeling systems;

– generation of Ladder code and instruction list for programmable
automata;

– generation of test cases for automata programs;

– generation of VHDL code for microcircuits;

– generation of memory optimized C code for light onboard applications.

5.5. Glossary

AQL atelier de qualification logiciel (a software qualification
workshop)

ATP automatic train protection

BART B automatic refinement tool

CC carbon controller

CENELEC9 Comité Européen de Normalisation ELECtrotechnique
(European Committee for Electrotechnical Standardization)

IEC10 International Electrotechnical Commission

EAL evaluation assurance level

MPU memory protection unit

RATP11 Régie Autonome des Transports Parisiens (Autonomous
Operator of Parisian Transport)

9 For more information, see http://www.cenelec.eu/Cenelec/Homepage.htm.
10 See http://www.iec.ch/.
11 See http://www.ratf.fr.

Industrial Applications for Modeling with the B Method 149

SSIL software safety integrity level

VESG vital embedded settings generator

5.6. Bibliography

[ABR 96] ABRIAL J.R., The B-Book, Cambridge University Press, 1996.

[BAD 05] BADEAU F., AMELOT A., “Using B as a high level programming language
in an industrial project”, Formal Specification and Development in Z and B,
LNCS, vol. 3455, Springer-Verlag, pp. 334–354, 2005.

[BEH 93] BEHM P., “Application d’une méthode formelle aux logiciels sécuritaires
ferroviaires”, Atelier Logiciel Temps Réel, 6ème Journées Internationales du
Génie Logiciel, 1993.

[BEH 96] BEHM P., “Développement formel des logiciels sécuritaires de
METEOR”, in HABRIAS H. (ed.), Proceedings of 1st Conference on the B
Method, Putting into Practice Methods and Tools for Information System
Design, Nantes Computer Science Research Institute (IRIN), pp. 3–10,
November 1996.

[BEH 99] BEHM P., BENOIT P., MEYNADIER J.M., “METEOR: a successful
application of B in a large project”, Integrated Formal Methods, LNCS,
Springer Verlag, vol. 1708, pp. 369–387, 1999.

[BEN 09a] BENVENISTE M., “A proved ‘correct by construction’ realistic digital
circuit”, Recent Innovation and Applications in B, FM Week, Eindhoven,
3 November 2009.

[BEN 09b] BENVENISTEM., “A proved ‘correct by construction’ Memory Protection
Unit”, SmartEvent’09, Sophia Antipolis, 22–25 September 2009.

[BOU 12] BOULANGER J.-L. (ed.), Industrial Use of Formal Method Formal
Verification, ISTE, London, and John Wiley & Sons, New York, 2012.

[CEN 00] CENELEC, EN 50126, Applications Ferroviaires. Spécification et
démonstration de la fiabilité, de la disponibilité, de la maintenabilité et de la
sécurité (FMDS), January 2000.

[CEN 01] CENELEC, EN 50128, Railway applications – communications,
signalling and processing systems – software for railway control and protection
systems, May 2001.

[CEN 11] CENELEC, EN 50128, Railway applications – communications,
signalling and processing systems – software for railway control and protection
systems, July 2011.

150 Formal Methods Applied to Complex Systems

[CEN 03] CENELEC, EN 50129, Applications ferroviaires: systèmes de
signalisation, de télécommunications et de traitement systèmes électroniques de
sécurité pour la signalisation, European Standard, 2003.

[IEC 03] IEC, IEC 61131: Programmable Controllers, International Standard, May
2003.

[IEC 98] IEC, IEC 61508: Sécurité fonctionnelle des systèmes électriques
électroniques programmables relatifs à la sécurité, International Standard, 1998.

[ISO 05] ISO/IEC 15408, Information technology – security techniques – evaluation
criteria for IT security (three parts), 2005.

[LEC 07] LECOMTE T., THIERRY SERVAT, POUZANCRE G., et al., “Formal methods
in safety-critical railway systems”, SBMF ’07, Ouro Preto, Brazil, 2007.

[LEC 08] LECOMTE T., “Safe and reliable metro platform screen doors
control/command systems” FM ’08, Turku, Finland, 2008.

[LEU 10] LEUSCHEL M., “Validation of railway properties with ProB”, Workshop
on B Dissemination, Natal, Brazil, 8 November 2010.

[SAB 00] SABATIER D., LARTIGUE P., “The use of the B formal method for the
design and the validation of the transaction mechanism for smart card
applications”, Formal Methods in System Design, vol. 17, no. 3, pp. 245–272,
2000.

[SAB 08] SABATIER D., PATIN F., POUZANCRE G., et al., “Utilisation de la méthode
formelle B pour un système SIL3: la commande des portes palières sur la ligne
13 du métro Parisien”, LambdaMu’15, 28 November 2008.

[SOL 05] SOLA R., COUDERT S., GABRIELE S., et al., “Microkernel API formal
modelisation”, SAME 2005 Forum, Nice, France, October 2005.

6

Formalization of Digital Circuits
Using the B Method

6.1. Introduction

The goal of this chapter is to show how it is possible to combine the
advantages of the B method in order to design a secure1 digital circuit that
may be easily developed and does not need a design test. The circuit design
may be based on the libraries of well-known circuit design language like
VHDL.

Our goal is to make use of the B method to produce the electronic or
numeric circuits. At the beginning, the circuit specifications are written in
the abstract machine. The refinement direction is determined by the basic
elements which are used to construct the desired circuit. So the designer can
orient the development to the required level. This level can be found as a
basic library in B. We demonstrate how VHDL packages can be translated as
B circuit components in order to give the designer a high-level view. Using
this approach, we can develop a circuit in which each part of the
specification has proved to be correct. From the B model it is possible to
generate the VHDL code.

Chapter written by Jean-Louis BOULANGER.
1 Secure in this chapter means more than correct; the design performs what the client wants,
and furthermore it guarantees not to achieve the unwanted cases.

152 Formal Methods Applied to Complex Systems

6.2. B method and VHDL

The B method due to J.R Abrial [ABR 96] is a formal method for the
incremental development of specifications and their refinements down to an
implementation. It is a model-based approach similar to Z [SPI 92] and
VDM [CLI 90]. The software design in B starts from mathematical
specifications. Gradually, through many refinement steps ([MOR 90]), the
designer tries to obtain a complete and executable specification. This process
must be monotonic, that is any refinement has to be proved coherent
according to the previous steps of refinement. The abstract machine
[ABR 92] is the basic element of a B development. It encapsulates some
state data and offers some operations. The description of an abstract machine
is composed of three parts:

– the declarative part which describes the states and their properties;

– the execution part which introduces operations;

– composition clauses.

In the B development, the proofs accompany the construction of
software. Each time an abstract machine is defined or modified, there are
proof obligations related to its mathematical consistency; if the machine is a
refinement or an implementation, there are also proof obligations of its
correctness with respect to the previous steps of the development chain. The
B tool allows us to automatically generate the proof obligations (POs) for
each abstract machine. Generally speaking, the POs will be increasingly
complex as concrete details are introduced. Then, these POs are discarded
either automatically for the simple ones, or in cooperation with the designer
for the complex ones. So, at the last refinement, called the implementation,
we obtain secure software which does not need to be tested. At this low-level
stage, it may be easily translated to a programming language. AtelierB or
BToolKit is provided with C, C++ or ADA automatic translators. However,
it is possible to extend this code generation to the VHDL language. In this
case, we obtain the possibility of co-design between the B method and
the VHDL.

VHDL (VHSIC – very high speed integrated circuits – hardware
description language) ([IEE 93, AIR 98]) has been an IEEE Standard since
1987. It is “a formal notation intended for use in all phases of the creation of
electronic systems [...] it supports the development, verification, synthesis,
and testing of hardware designs, the communication of hardware

Formalization of Digital Circuits Using the B Method 153

design data…”2. VHDL is a programming language used to express the
hardware components with a high level of abstraction. It is a good utility to
describe the integrated circuits, or complete system of hardware and
software. It can also be used to declare the circuit behavior.

Section 6.3 is devoted to showing the cross-fertilization between the
circuit design methodology and the B method concepts. At first, a simple
circuit design, the NOT port, is chosen to show how the B concepts may be
used to produce a simple circuit. Then, an example of a multiplexer design is
used to show how a complex circuit may be designed. After that, the
methodology of the circuit design is presented. In sections 6.4 and 6.5, the
standard VHDL package, the STD_LOGIC_1164, is transposed in the form
of a B library3 as an example to be used as a set of B elementary
components. In the same way, other VHDL packages can be translated as B
circuit components in order to give to the designer a high-level view. Using
this approach, we can develop a circuit in which each part of the
specification is proved to be correct. A B circuit may be easily improved and
it may be integrated with the other elements in the environment to satisfy
safety conditions. Section 6.6 summarizes this work and shows its
advantages and disadvantages. This paper continues the previous work
described in [BOU 99] and in [BOU 01].

6.3. Modeling digital circuits

This section describes and models some synchronized basic components
which will be then reused. A synchronized circuit is viewed as a box, within
which one (or more) input line is entering, and out of which one (or more)
output line is emerging. A synchronized circuit is supposed to be
synchronized by a clock. Then, an example of a more complicated circuit is
used to show how many components may be connected. In both examples,
the same methodology is used. This methodology is presented as a table at
the end of this section. Using VHDL terminology, a module is called an
entity and one entity is coded in one B abstract machine. All the inputs and
outputs are called ports.

2 Preface to the IEEE Standard VHDL Language Reference Manual.
3 A B library is a B project; a B project is a collection of abstract machines.

154 Formal Methods Applied to Complex Systems

6.3.1.Modeling methodology

In this section, our aim is to give a general method for modeling a circuit
without knowing the details of the desired circuit. At first the analogy of
development between the B method and the numeric circuits design is
presented. In B the initial specifications of the desired circuit are written in
the abstract machine using mathematical expressions. The abstract machine
is refined to obtain the first refinement machine. Abstract machine
refinement is performed by determining the data types or by adding
algorithms that satisfy a part of the specifications.

Circuits synthesis B Method
Functional specifications Abstract machine
Architecture specification and behavior
details

Refinements

Validation “`functional to material”' Proof
Physical description Implementation machine

Port Global variable
Connection Invariant of relation between variables
Signal propagation Operation call (transmission of values)
Reusing Importation + renaming

Table 6.1. Analogy between VHDL and the B method

The B tools generate the necessary proofs to demonstrate that the
refinement is correct. Many of these proofs are automatically proved. The
others may be proved in cooperation with the designer. The refinement step
may be repeated many times. More and more the components of the circuit
become precise as well as its behavior. The result of the last step of the
refinement is called the implementation machine, in which the behavior of
the circuit is deterministic.

The implementation may be TRUTH TABLES; these tables are concise
but are not suitable for describing large-scale circuits; at the same time they
need a lot of proof. In our methodology, we represented each port of the
circuit by a local variable, so that the connection between the ports is
represented as a fixed relation between the global variables. These relations
are represented in the INVARIANT clause which contains all the relations
that must be satisfied in a machine and in its refinements. In the B method,
the OPERATIONS clause represents the dynamic part of a machine in which

Formalization of Digital Circuits Using the B Method 155

the values of the global variables may be changed. So signal propagation is
done by an operation call. The B method gives us the possibility to reuse
other machines. So many already-defined machines may be reused as
components of more complex ones (IMPORTS clause). An already defined,
machine may also be renamed and reused by adding other operations to
produce a more developed circuit. Using this method, 80% of the required
proofs are proved automatically, and the others need cooperation with the
designer. Sometimes, little changes of the source machines are necessary to
create the desired proofs. This enables the designer to correct the possible
errors in the design.

The general method described in this section provides the capability to
define some B abstract machines that model the behavior of some circuits.
However, we want to model some realistic VHDL components and we need
some B abstract machines that correspond to VHDL standard library such as
STD_LOGIC_1164. [DUC 99] introduces the STD_LOGIC_1164 library
and its equivalent in B.

6.3.2.Modeling a basic logic gate, NOT

The NOT component is the simplest logic gate. It has one input and one
output. The output is the negation of the input.

Figure 6.1. NOT gate

The NOT gate is described by a graphical specification (see Figure 6.1),
but we can complete these specifications with a Boolean expression that
describes the behavior:

(in = 0⇒ out = 1) ∧ (in = 1⇒ out = 0)

The input/output values are Boolean, and they may have the values
TRUE or FALSE. We can use the last expression to write a B abstract
machine. This abstract machine contains the abstract specifications of the
desired circuit (or software):

156 Formal Methods Applied to Complex Systems

MACHINE B_Not_0
DEFINITIONS Compute_(xx,yy) == (((xx = TRUE) => (yy = FALSE))
& ((xx = FALSE) => (yy = TRUE)))
VARIABLES in, out
INVARIANT in: BOOL & out: BOOL & Compute_(in, out)
INITIALIZATION in, out:(in: BOOL & out: BOOL & Compute_(in, out))
OPERATIONS

In (val) = PRE val: BOOL THEN in, out:(in: BOOL & in = val & out:
BOOL & Compute_(in, out)) END;

val Out = val:= out
END

In this abstract machine, the input and the output are represented by the
global variables “in” and “out”. These variables can be assigned by all of the
defined operations. Each output is attached to a read operation and each
input is attached to a store operation. The environment of the circuit will use
these operations to know the circuit output or to change the input;

Thus, we choose “in” and “out” as names for these operations. The
behavior of the port is described using the Compute_ definition4, which
gives us the possibility to express systematically the definition of the
function. In the declarative part, the state is described with the set theoretic
model and the first-order logic. The INVARIANT clause states the static
laws, in our case the properties, that the data must obey regardless of the
operation that is applied to it. This abstract machine is automatically proved
by the B tool; two proof obligations are generated for the INITIALIZATION
clause and two others for the in operation. This abstract machine is not
deterministic since we use the operator list_var: (predicate) in the
INITIALIZATION and OPERATION clauses. This operator indicates that
the list of variables becomes such that the predicate is true. We can
generalize this method for any combinatory logical circuit, for the complex
ones as well as for the simple ones. We build a library that contains the
standard ports, structure which is based on the last machine form.

Given a circuit (and its abstract and logical specification), we used the
following modifications:

– the additions of the operations associated to the supplementary ports;
the circuits have more than one port in general, so we use in_1;..;in_n to

4 A definition may be seen as a function, but the associated code will be expanded.

Formalization of Digital Circuits Using the B Method 157

mention the n in ports of the circuit and out_1;..; out_m to mention the m out
ports;

– the modification of the Compute_ definition corresponding to the
logical specification.

The following table lists the definitions used in the B components that we
defined before. The calculations are just Boolean evaluations of predicates.
During the use of these definitions, the formal parameters xx, yy, … , zz are
instantiated by the names of global variables being associated with the ports
of the circuit.

Name Port Compute_
AND 2 in Bool ((xx = TRUE) & (yy = TRUE))
AND 3 in Bool ((xx = TRUE) & (yy = TRUE) & (zz = TRUE))
NAND 2 in Bool (not((xx = TRUE) & (yy = TRUE)))
NOR 2 in Bool (not((xx = TRUE) or (yy = TRUE)))
OR 2 in Bool ((xx = TRUE) or (yy = TRUE))
OR 3 in Bool ((xx = TRUE) or (yy = TRUE) or (zz = TRUE))

Table 6.2. Some basics circuits defined by a Boolean equation

This method may be used for any logical circuit, for the complex ones as
well as for the simple ones. We build a library that contains all standard
gates, a structure which is based on the method described further. Using the
B tool, the coherence of these B abstract machines is proved.

Figure 6.2. n-bit adder representation

6.3.3.Modeling an additioner

A 4-bit full-adder circuit is used in this section as an example to show
how to reuse components previously modeled in order to obtain complex
integrated circuits. Based on the logical specification of a component, we

158 Formal Methods Applied to Complex Systems

can supply an assembly of many simple components to achieve the desired
function. This is called the synthesis of a numeric circuit. The n-bit full
adder is a circuit with three inputs (2 n-vector and 1 bit) and two outputs (1
n-vector and 1 bit). The n-bit full adder is described by a graphical
specification (see Figure 6.2), but we can complete these specifications with
a Boolean expression that described the behavior:

Adder(a, b, carryin, sum, carryout) == 2(n+1)BV(carryout)+V(sum)=V(a)+V(b)
+BV(carryin)
With V : vector --> Integer
and BV : bit --> Integer

The input/output values are Booleans. They may have the values TRUE
or FALSE. We can use the last expression to write a B abstract machine.
This abstract machine contains the abstract specifications of the desired
circuit (or software):

MACHINE B_ADD_4bits_2_0
SEES B_type_0
DEFINITIONS COMPUTE_(AA,BB,CIN,SUM,COUT) == SUM + 16*COUT
= AA + BB + CIN
VARIABLES AA,BB,CIN,COUT,SS
INVARIANT

IS_A_DECIMAL_16_(AA)
& IS_A_DECIMAL_16_(BB)
& IS_A_DECIMAL_16_(SUM)
& IS_A_DECIMAL_1_(CIN)
& IS_A_DECIMAL_1_(COUT)
& COMPUTE_(AA,BB,CIN,SUM,COUT)
INITIALISATION AA, BB, CIN,SUM, COUT := 0,0,0,0,0
OPERATIONS
AA(yy) =
PRE IS_A_DECIMAL_16_(yy)
THEN
AA, SUM, COUT :(IS_A_DECIMAL_16_(AA)

& AA = yy
& IS_A_DECIMAL_16_(SUM)
& IS_A_DECIMAL_1_(COUT)
& COMPUTE_(AA,BB,CIN,SUM,COUT))

END;
...
xx <-- out_COUT = xx := COUT;
xx <-- out_SS = xx := SS;
END

Formalization of Digital Circuits Using the B Method 159

In our methodology, we represented, in the abstract machine, each port of
the circuit by a local variable (AA, BB, SUM, CIN, COUT) so that the
connection between the ports is represented as a fixed relation between the
global variables. These relations are represented in the INVARIANT clause
which contains all the relations that must be satisfied in a machine and in its
refinements. The behavior of the port is described using the Compute_
definition5, which gives us the possibility to express systematically the
definition of the function. The INVARIANT clause states the static laws, in
our case the properties, that the data must obey whatever the operation
applied to it. These variables can be assigned by all of the defined
operations. Each output is attached to a read operation and each input is
attached to a store operation.

The environment of the circuit will use these operations either in order to
know the circuit output or to change the input. So, we choose In and Out as
names for these operations. This abstract machine is not deterministic since
we use the operator list_var:(predicate) in the OPERATION clauses. This
operator indicates that the list of variables becomes such that the predicate is
true. We can generalize this method for any combinatory logical circuit, for
the complex ones as well as for the simple ones. Given a circuit (and its
abstract and logical specification), we used the following modifications:

– the additions of the operations associated to the supplementary ports;
the circuits have more than one port in general, so we use in_1;..; in_n to
mention the n in ports of the circuit and out_1;..;out_m to mention the m out
ports;

– the modification of the Compute_ definition corresponding to the
logical specification.

The calculations are just Boolean evaluations of predicates. During the
use of these definitions, the formal parameters xx, yy, …, zz are instantiated
by the names of global variables being associated with the ports of the
circuit. This method may be used for any logical circuit, for the complex
ones as well as for the simple ones. We build a library that contains all
standard gates (OR, AND, NOT, etc.), a structure which is based on the
method described below. Using the B tool (Atelier B 3.5), the coherence of
these B abstract machines is proved.

5 A definition may be seen as a function, but the associated code will be expanded.

160 Formal Methods Applied to Complex Systems

The 4-bit addition can be split up in bit slices. We obtain the well-known
carry-ripple adder, also called ripple through carry adder, consisting of n
cascaded full adders for an n-bit adder. Each slice performs the addition of
the bits Ai, Bi and the carry-in bit Ci (= carry-out bit of the previous slice).
Each slice consists of a 1-bit full adder, illustrated below. A 1-bit full adder
is a combinational circuit that computes the arithmetic sum of three input
bits of the same magnitude (i.e. 1-bit numbers).

Figure 6.3. n-bit carry-ripple adder

The next piece of code shows how we split the 4-bit adder in its
implementation. Each slice consists of a 1-bit full adder, illustrated below.
As expected in an object-oriented environment, you are able to reuse the
single Full_Adder component by instantiating four copies of it (FA0 through
FA3). Each copy is instantiated differently in the four port-mapping
statements, with actual signal names being substituted for the desired
input/output connections.

IMPLEMENTATION B_ADD_4bits_2_n
REFINES B_ADD_4bits_2_1
SEES B_type_0
IMPORTS Fa0.B_FULL_ADD_1bit_0 , Fa1.B_FULL_ADD_1bit_0,

Fa2.B_FULL_ADD_1bit_0 ,
Fa3.B_FULL_ADD_1bit_0

INVARIANT
Fa0.AA = A0

& Fa0.BB = B0
& Fa0.CIN = CIN
& Fa0.COUT= CI1
& Fa0.SS = SS0
…
INITIALISATION
….
OPERATIONS
in_AA(yy) = BEGIN
A0,A1,A2,A3 Decimal16_To_Bit(yy)

Formalization of Digital Circuits Using the B Method 161

; Fa0.in_AA(A0) ; Fa1.in_AA(A1)
; Fa2.in_AA(A2) ; Fa3.in_AA(A3)
; Fa0.in_CIN(CIN); CI1 Fa0.out_COUT; Fa1.in_CIN(CI1)
; CI2 Fa1.out_COUT ; Fa2.in_CIN(CI2)
; CI3 Fa2.out_COUT ; Fa3.in_CIN(CI3)
; COUT Fa3.out_COUT
; SS0 Fa0.out_SS; SS1 Fa1.out_SS
; SS2 Fa2.out_SS; SS3 Fa3.out_SS
END
...
END

A 1-bit full adder (Figure 6.4) is a combinational circuit that computes
the arithmetic sum of three input bits of the same magnitude (i.e. 1-bit
numbers).

Figure 6.4. Full-adder representation

This describes the functionality of the 1-bit adder.

sum <= a xor b xor ci;

co <= ((a or b) and ci) or (a and b);

Calculate the sum of the 1-BIT adder:

sum <= (not a and not b and cin) or (not a and b and not cin) or (a and not b and
not cin) or (a and b and cin);

Calculate the carry out of the 1-BIT adder:

cout <= (not a and b and cin) or (a and not b and cin) or (a and b and not cin) or
(a and b and cin);

162 Formal Methods Applied to Complex Systems

MACHINE B_FULL_ADD_1bit_0
SEES IEEE.B_STD_LOGIC_1164_0 , B_STD_ENTRIE
DEFINITIONS
...
Sum_(inA, inB, Cin, Sum) ==

(Sum = bool_to_bit(bool((
(not(Val_(inA))) &
((not(Val_(inB)) & ((Val_(Cin))))
or ((Val_(inB)) & (not(Val_(Cin))))))

or ((Val_(inA))
& ((not(Val_(inB)) & not(Val_(Cin)))
or ((Val_(inB)) & (Val_(Cin))))))))

; Carry_Expr_(inA, inB, Cin, Cout) ==
(((Val_(inA)) & not(Val_(inB)) & Val_(Cin)) or

(not(Val_(inA)) & (Val_(inB)) & Val_(Cin)) or
((Val_(inA)) & (Val_(inB)))

)
; Carry_(inA, inB, Cin, Cout) == (Cout = bool_to_bit(bool(Carry_Expr_(inA,
inB, Cin, Cout))))
; Compute_(inA, inB, Cin, Sum, Cout) == (Sum_ (inA, inB, Cin, Sum) &
Carry_(inA, inB, Cin, Cout))
...
OPERATIONS
in_AA(yy) =
PRE yy : BIT THEN
AA, COUT, SS :(AA : BIT

& AA = yy
& COUT : BIT
& SS : BIT
& Compute_(yy,BB,CIN,SS, COUT))

END
...
END

A circuit that implements a full adder is given in Figure 6.5.

Figure 6.5. Logic diagram of a full adder

Formalization of Digital Circuits Using the B Method 163

It is assumed that the behavioral models of each component are provided
elsewhere, that is, there are entity-architecture pairs describing a half adder
and a two-input OR gate. In Figure 6.5, you can see the internal structure of
the full adder. Two half adders (HA) and an OR gate are required to
implement a full adder.

Figure 6.6. The full adder implementation

The full adder in Figure 6.6 is described using three instantiation
statements. The instance names must be unique.

IMPLEMENTATION B_Full_ADD_1bit_n
REFINES B_Full_ADD_1bit_0
IMPORTS add1.B_Half_ADD_1bit_0, add2.B_Half_ADD_1bit_0,
Or.B_Or_0
...
INVARIANT

AA = add1.AA
& BB = add1.BB
& add1.SS = add2.AA
& CIN = add2.BB
& add1.COUT = Or.in1
& add2.COUT = Or.in2
& COUT = Or.out
& SS = add2.SS
...
OPERATIONS
in_AA(yy) =
VAR xx IN

AA := yy

164 Formal Methods Applied to Complex Systems

; add1.in_AA(AA)
; xx <-- add1.out_SS
; add2.in_AA(xx)
; xx <-- add1.out_COUT
; OU1.In_1(xx)
; xx <-- add2.out_COUT
; OU1.In_2(xx)
; COUT <-- Or.Out
; SS <-- add2.out_SS
END;
...
END

The last piece of the design is the Half_Adder entity, which is instantiated
twice in each Full_Adder entity. A half adder is the simplest form of an
adder circuit.

MACHINE B_Half_ADD_1bit_0
SEES IEEE.B_STD_LOGIC_1164_0, B_STD_ENTRIE
DEFINITIONS

Val_(xx) == (bit_to_bool(xx) = TRUE)
; Compute_(inA, inB, Som, Cout) ==

(Som = bool_to_bit(
bool ((not(Val_(inA)) & (Val_(inB)))or

((Val_(inA)) & not(Val_(inB)))))
& Cout = bool_to_bit(bool (Val_(inA) & Val_(inB)))
)
CONCRETE_VARIABLES AA, BB, COUT, SS
INVARIANT AA : BIT & BB : BIT & COUT : BIT & SS : BIT &
Compute_(AA, BB, SS, COUT)
...
OPERATIONS
...
in_BB(yy) =
PRE yy : BIT THEN

BB, COUT, SS :(BB : BIT & COUT : BIT & SS : BIT & BB = yy &
Compute_(AA,BB,SS,COUT))
END;
...
END

The implementation of the multiplexer is made of two AND gates called
A1 and A2, one OR gate called O3 and one NOT gate called NN which are
instantiate in IMPORTS clause. The link between all ports (multiplexer

Formalization of Digital Circuits Using the B Method 165

ports, AND ports, etc.) is done in the INVARIANT clause. All operations
introduce the multiplexer behavior, in fact (as we will see later) for each
operation; we define the data propagation between ports.

Figure 6.7. Logic diagram of a half adder

The last piece of the design is the Half_Adder entity (see Figure 6.7),
which is instantiated twice in each Full_Adder entity. A half adder is the
simplest form of an adder circuit. The more significant sum bit is called
carry-out (cout) because it carries an overflow to the next higher bit position.
It has two operand bits x0 and y0 (for bit position 0) that are added to form a
sum bit (s0) and a carry bit (cout), we can write s0 = not(x0)y0 + x0 not(y0)
and cout = x0y0. The full-adder module can be constructed of two half
adders.

IMPLEMENTATION B_Half_ADD_1bit_n
REFINES B_Half_ADD_1bit_0
IMPORTS xor.B_XOR, and.B_And_0
SEES BASIC_IO, IEEE.B_STD_LOGIC_1164_0,
B_STD_ENTRIE
INVARIANT

AA = xor.in1 & BB = xor.in2 & SS = xor.out
& AA = and.in1& BB = and.in2 & COUT = and.out
...
OPERATIONS
in_BB(yy) =
BEGIN

BB := yy;xor.In_2(BB)
; SS xor.Out
; and.In_2(BB)
; COUT and.Out
END;
xx out_COUT = xx := COUT;
...
END

166 Formal Methods Applied to Complex Systems

The design method of starting with the topmost level and adding new
levels of increasing detail is called top-down design (see Figure 6.8).

Figure 6.8. Graphical symbol of a two input multiplexer

6.3.4.Modeling of complex circuit: a multiplexer

A multiplexer circuit is used in this section as an example to show how to
reuse previously modeled components in order to obtain complex integrated
circuits. On the basis of the logical specification of a component, we can
supply an assembly of many simple components to achieve the desired
function. This is called the synthesis of a numeric circuit. The multiplexer
with n inputs is a circuit with n principal inputs and one output. The output
value is equal to the value of the input of the number i; i is determined by
other inputs. In our example (n = 2), the input called Select gives the
possibility to choose one of the two inputs a and b.

The output out equals in_1 if the selector Select is FALSE and in_2 if it
has the value TRUE. We write this:

((Select = FALSE) => (out = in_1)) ∧

((Select = TRUE) => (out = in_2))

To describe the abstract machine for the multiplexer, we can use one that
is similar to the NOT gate presented above. Four local variables may be used
to represent the inputs/output: Select, in_1, in_2 and out. So we have three
input operations and one output one. The principal difference between the
two machines is the definition of the compute_ function:

MACHINE

Formalization of Digital Circuits Using the B Method 167

B_Mux_0
DEFINITIONS
Compute_(xx,yy,zz,res) ==

bool(((xx=FALSE)=>(res=yy))
&((xx=TRUE)=>(res=zz)))

VARIABLES
Select, in_1 , in_2 , out

INVARIANT
Select : BOOL &
in_1 : BOOL & in_2 :BOOL & out : BOOL &
Compute_(Select,in_1,in_2,out)

INITIALISATION
Select , in_1 , in_2 , out
:(
Select : BOOL & in_1 : BOOL & in_2 :BOOL &
out : BOOL &
Compute_(Select,in_1,in_2,out)
)

OPERATIONS
In_1 (val) =

in_1 , out :(
in_1 : BOOL & in_1 = val &
out: BOOL & Compute_(Select,in_1,in_2,out))

In_2 (val) =
in_2 , out :(

in_2 : BOOL & in_2 = val
& out : BOOL &
Compute_(Select,in_1,in_2,out))

Gate (val) =
Select , out :(

Select : BOOL & Select = val &
out : BOOL & Compute_(Select,in_1,in_2,out))

val <-- Out = val := out
END

As in the B_Not_0 abstract machine, the Boolean expression under the
INITIALISATION clause and INVARIANT clause is the same. We have
four operations. This abstract machine is fully proved by the B tool. The
previous B specification can be refined by just modifying the previous
Boolean expression defined in the definition Compute_. We rewrite the
previous Boolean expression that describes the two multiplexers:

168 Formal Methods Applied to Complex Systems

out = (in_1 ∧ (Select)) ∨ (in_2 ∧ Select)

REFINEMENT
B_Mux_1

REFINES
B_Mux_0

DEFINITIONS
Compute_(xx,yy,zz,res) ==

bool((not(xx=TRUE) & (yy=TRUE)) or ((xx=TRUE) & (zz=TRUE)))
VARIABLES
select, in_1 ,in_2, out
INVARIANT
Select : BOOL & in_1 : BOOL & in_2 :BOOL & out : BOOL & Compute_(Select,in_1,in_2,out)
INITIALISATION
. . .
OPERATIONS
In_1 (val) = . . .
In_2 (val) = . . .
Gate (val) = . . .
val <-- Out =. . .
END

Figure 6.9 introduces a synthesis for the previous two input multiplexer.
The simple circuit machines are used to refine the complex ones. In this
example, four machines are used in the refinement of the multiplexer. The
relations between the components are described under the INVARIANT
clause6.

Figure 6.9. Implementation of two input multiplexer

6 This refinement of the multiplexer is the last step of all the refinement steps, so it is called
IMPLEMENTATION.

Formalization of Digital Circuits Using the B Method 169

The next abstract machine is an implementation of the synthesis defined
in Figure 6.10. This abstract machine is just a systematic translation which
may be done automatically.

IMPLEMENTATION
B_Mux_n

REFINES
B_Mux_1

IMPORTS
A1.B_And_0,
A2.B_And_0,
O3.B_Or_0,
NN.B_Not_0

INVARIANT
select = A2.in2 & select = NN.in &
NN.out= A1.in2 & in_1 = A1.in1 &
in_2 = A2.in1 & A1.out = O3.in1 & A2.out= O3.in2 & out = O3.out

INITIALISATION
VAR xx, yy, zz IN

NN.In(FALSE)
; xx <-- NN.Out
; A1.In_1(TRUE)
; A1.In_2(xx)
; yy <-- A1.Out
; A2.In_1(TRUE)
; A2.In_2(FALSE)
; zz <-- A2.Out
; O3.In_1(yy)
; O3.In_2(zz)
; out <-- O3.Out

END

OPERATIONS

In_1 (val) = . . .
In_2 (val) = . . .
Gate (val) = . . .
val <-- Out =

val := out
END

The implementation of the multiplexer is made of two And gates called
A1 and A2, one OR gate called O3 and one NOT gate called NN which are

170 Formal Methods Applied to Complex Systems

instantiate in IMPORTS clause. The link between all ports (multiplexer
ports, AND ports, etc.) is made in the INVARIANT clause. All operations
introduce the multiplexer behavior, in fact (as we will see later), for each
operation; we define the data propagation between ports:

Gate (val) =
VAR xx, yy, zz IN

NN.In(val)
; xx <-- NN.Out
; A1.In_2(xx)
; yy <-- A1.Out
; A2.In_2(val)
; zz <-- A2.Out
; O3.In_1(yy)
; O3.In_2(zz)
; out <-- O3.Out

END

The POs generated by the B tool are fully proved and guarantee that this
implementation verifies the logic property. We have defined a complete
library for the simple logic elements which may be used for more complex
ones. Other complex examples, such a 4-bit ADD, are described by B
method from the same point of view; all examples are fully proved.

6.4. VHDL libraries

VHDL is one of the most important tools for describing the electronic
circuits. It depends on the conception of modules. The hierarchy enables the
programmer to write the program as units. Some of these units are
elementary expressions which can be directly compiled. The others may be
decomposed into many units. This mechanism makes teamwork easier,
especially when the complexity of the module increases. A special library is
built for each programmer using the correct units which have been compiled.
The programmer may use his own libraries, the libraries of his colleagues
and the general libraries. A part of our project is to find correspondence of
VHDL general libraries in B. The following section introduces one of the
most widely used VHDL libraries, the STD_LOGIC_1164 library and its
equivalent in B.

Formalization of Digital Circuits Using the B Method 171

6.4.1. The STD_LOGIC_1164 library

The STD_LOGIC_1164 is standardized by the IEEE. This package
defines a standard for designers to describe the interconnection data types
used in VHDL modeling. It was created to facilitate the portability of VHDL
code synthesis. There are nine values in this logic; each of these values may
be assigned to a variable or to a signal. These values form the extended bit
type7.

U Uninitialized
X Forcing unknown
0 Forcing 0
1 Forcing 1
Z High impedance
W Weak unknown
L Weak 0
H Weak 1
– Don't care port

Table 6.3. Values of extended bit type

An extension of the classic logic is built to treat these nine values in the
VHDL package called STD_LOGIC_1164 instead of two values in the
classic one. So the elements of STD_LOGIC_1164 package are:

– a principal type that contains nine values, many subtypes which contain
some of these values. And complex types which contain vectors of these
types;

– the basic logic operations over the previous types;

– and many functions to cast8 a type to another;

– many other functions to solve the problem of the signals which have
many different resources;

– two functions to determine the direction of the change of a signal if it is
with rising_edge or falling_edge;

7 Usually, one of only two different values is used to represent values of bit type.
8 Change the type to another.

172 Formal Methods Applied to Complex Systems

– three functions to decide whether or not a signal is determined (if its
value is U, X, Z, W or _);

– the STD_LOGIC_1164 package contains also many attributes, which
are adjectives that may give the language components.

6.4.2. The B components for STD_LOGIC_1164

The B counterpart of the VHDL STD_LOGIC_1164 library mostly
consists of two machines (see Figure 6.10). The first machine, called
B_STD_LOGIC_1164_09, contains all the definitions of types and the
operations which concern the extended bit. The second machine,
B_STD_LOGIC_1164_VECTOR_0, depends on the first to define the
vectors and the corresponding operations. We also created a machine,
B_Signal_0, to process the signals.

– B_STD_LOGIC_1164_0: in this machine, we define the principal type
STD_ULOGIC as a set of values, and its subtypes as subsets of this set. We
define the subset as CONSTANTS10. Under the clause PROPERTIES11, we
declare the elements of these types. This method of declaration decreases the
number of the necessary proofs which are needed to verify the consistency
of the machine because the expressions under PROPERTIES clause are
added as axioms. The VHDL functions are represented under the
OPERATIONS12 clause in B. Each operation is a call of a mathematic
function. For each element of the domains, we define the correspondent
element in the co-domain using tables. We define these tables as constants
which have their values under the PROPERTIES clause. In order to be close
to the definitions of VHDL, we define some functions as compositions of
other functions (NAND using NOT, AND). In order to determine the type of
the parameters, we use the substitution PRE pred THEN body END, which
enables us to verify the type of the input variables.

The type of the output is decided indirectly in the operation in the first
affectation (:=). Each operation consists of a mathematic function call, so the

9 In B tools, the abstract machine is written in a file with the mch extension, the refinement
with the ref one and the implementation with the imp one.
10 The constant conception in B includes names which have a fixed value without determining
its type.
11 Some characteristics of the constants may be noted under the PROPERTIES clause.
12 The operation in B may be considered as a procedure in the imperative languages.

Formalization of Digital Circuits Using the B Method 173

result is included in the co-domain of that function. As opposed to VHDL,
the B method does not accept overloading: VHDL accepts several functions
with the same name but with different signatures, and the desired function is
decided only during the execution depending on the number and the type of
its parameters. So in the B machines of the STD_LOGIC_1164, we have
chosen many B operations with different names and introduced the type of
parameters in these operations as a part of their names. For example, six
functions in VHDL have the name TO_X01. One has an input variable of
type BIT, another has an extended bit variable as input and the others have
extended bit vector variables as input.

Figure 6.10. STD_Logic in B

So we have in these machine two operations: From_std_ulogic_to_X01
and From_BIT_to_X01. The print operation was inserted to test the value of
a variable of std_ulogic type. The implementation of this operation depends
on the designers needs, so we used the substitution skip13.

in VHDL
Type std_ulogic IS ('U','X','0','1','Z','W','L','H',' ')

in B
SETS
STD_ULOGIC={ UU,XX,OO,II,ZZ,WW,LL,HH,DD}

in VHDL
SUBTYPE std_logic IS resolved std_ulogic

in B
CONSTANTS STD_LOGIC
PROPERTIES
STD_LOGIC <: STD_ULOGIC

& STD_LOGIC=STD_ULOGIC {DD}
in VHDL

SUBTYPE X01 is resolved std_ulogic RANGE 'X' TO '1'
in B

CONSTANTS

13 The substitution skip means that it will be replaced by other substitutions during the
refinement steps.

174 Formal Methods Applied to Complex Systems

XOI
PROPERTIES
XOI <: STD_ULOGIC & XOI = {XX,OO,II}

in VHDL
SUBTYPE UX01 is resolved std_ulogic RANGE 'U' TO '1'

in B
CONSTANTS
UXOI
PROPERTIES
UXOI <: STD_ULOGIC & UXOI = {UU,XX,OO,II}

in VHDL
CONSTANT
not_table:std_table:stdlogic_1d:= ('U','X','1','0','X','X','1','0','X')
FUNCTION ``NOT'' (l:std_ulogic) RETURN UX01 IS
BEGIN
RETURN (not_table(l))
END ``NOT'';

in B
CONSTANTS NOT_STD
PROPERTIES
NOT_STD :STD_ULOGIC > UXOI
&NOT_STD = { UU |-> UU, XX |-> XX, OO|->II , II|->OO, ZZ|->XX,
WW|->XX, LL|->II, HH|->OO, DD|-> XX }
OPERATION
out Not(in)
PRE

in :STD_ULOGIC
THEN
out := NOT_STD(in)
END

– B_STD_LOGIC_1164_VECTOR_0: in order to deal with the vectors,
we wrote a machine which can use the previous one. Using the SEES clause,
this machine can read all the constants of the seen machine
B_STD_LOGIC_1164_0 (i.e. the tables of the functions). It contains a
general function called Apply which takes four parameters op, in1, in2, out.

It applies the operation op, which is a table function in the previous
machine, over all the elements of the input vectors in1, in2 and gives as
output the vector out. We define the vector as a structure of two elements,
the first being a function. Its domain is the maximum size of the vector and
its co-domain is the value of the vector (elements from STD_LOGIC or
STD_ULOGIC). The second element is the size of the vector. We collect all

Formalization of Digital Circuits Using the B Method 175

the vectors used in a set with a maximum size (MAX_VECTOR). Under the
OPERATIONS clause, we find the correspondent operations of vector
functions in the STD_LOGIC_1164 package. As in the last machine, we can
find here a print operation to lay out the desired vector.

in VHDL
TYPE std_ulogic_vector IS ARRAY (NATURAL RANGE <>) OF std_ulogic;

in B
CONSTANTS

STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR ,Max_Element

PROPERTIES
Max_Element:NAT1 &
STD_LOGIC_VECTOR =
struct (

vector: 1..Max_Element >STD_LOGIC,
vector_size:NAT1

)
& card(STD_LOGIC_VECTOR)<MAX_VECTOR
& !xx.((xx:STD_LOGIC_VECTOR) =>

xx'vector_size<Max_Element)
. . .

in VHDL
FUNCTION "and" (l,r : std_logic_vector) RETURN s td_logic_vector IS
ALIAS lv : std_logic_vector (1 TO l'LENGTH) IS l;
ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std_logic_vector (1 TO l'LENGTH);
BEGIN
IF (l'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT "arguments of overloaded 'and' operator are not of the same length"
SEVERITY FAILURE;
ELSEFOR i IN result'RANGE LOOP
result(i) := and_table (lv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END "and";

in B
DEFINITIONS
APPLY(op,in1,in2,out) ==
ANY vv
WHERE
vv : STD_LOGIC_VECTOR &

176 Formal Methods Applied to Complex Systems

!xx.((xx:1 .. max(in1'vector_size,in2'vector_size))
=>((vv'vector)(xx)= op((in1'vector)(xx),(in2'vector)(xx))))
THEN out := vv
END
OPERATIONS
out < And(in1,in2)=
PRE
in1 : STD_LOGIC_VECTOR & in2 : STD_LOGIC_VECTOR & in1'vector_size
=in2'vector_size
THEN

APPLY(AND_STD,in1,in2,out)
END;

– B_Signal_0: most of the operations in the previous two abstract
machines are included in order to find correspondents to the logic function
or to the type converting functions. But there are other functions in the
STD_LOGIC_1164 package which are related with the electrical signals. So
we need to simulate a signal in order to give a concrete implementation to
these functions. The B_Signal_0 abstract machine may be used to solve this
problem and could be used as a base to translate other VHDL packages.
Here, the signal is expressed in this machine as a structure of two elements;
the first is a value of std_logic type (or std_ulogic) and the second is a
pointer to another structure of the same type. In order to determine the
beginning of the list, we define the null list called nil.
ABSTRACT_CONSTANTS

SIGNAL_ULOGIC , SIGNAL_nil , F_SIGNAL
PROPERTIES

SIGNAL_ULOGIC = struct (value : STD_ULOGIC,
next : SIGNAL_ULOGIC)

& card(SIGNAL) < MAX_SIGNAL
& SIGNAL_nil : SIGNAL_ULOGIC
& F_SIGNAL : SIGNAL_ULOGIC --> SIGNAL_ULOGIC
& F_SIGNAL(SIGNAL_nil)= rec(value :DD,

next:SIGNAL_nil)

With these definitions, it is easy to define an operation which corresponds
to the RISING_EDGE functions which return a TRUE value if the signal
value changes from a low level to a high one. Using the same conceptions,
the FALLING_EDGE function is defined to treat the signal in the other
direction. As in the other abstract machines, we defined here the print
operation to lay out the value of the signal in a precise time.

Formalization of Digital Circuits Using the B Method 177

in VHDL
FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN IS
BEGIN
RETURN (s'EVENT AND (To_X01(s) = '1')
AND (To_X01(s'LAST_VALUE) = '0'));
END;

in B
out <-- rising_edge (in) =
PRE

in : SIGNAL_ULOGIC
THEN

out :(out : BOOL & out = bool((in'value = II)
& ((F_SIGNAL(in'next))'value = OO)))

END;

The last three B abstract machines give the principal characteristics of the
VHDL STD_LOGIC_1164 package. These abstract machines are fully
proved. To be closed to the standard package, we tried to write the B
correspondents with the same element names and definitions. But because
of the differences between the two languages, many points must be taken
care of.

The correspondence between the STD_LOGIC_1164 package parts and
the B machine parts is not direct, so we cannot transmit some comments
which give some details about the international programs of all parts of the
STD_LOGIC_1164 package.

The last versions of the STD_LOGIC_1164 contain many attribute
instructions. Each attribute instruction associates a characteristic with a type
or with an object. For example, attribute REFLEXIVE of resolved:function
is TRUE14. These attributes may be used in the package or in the libraries
that depend on this package. In our machines, each time we need these
attributes, we use expressions that give the necessary characteristics. For the
future when we translate the machines that depend on the
STD_LOGIC_1164 package, we ought to find the necessary expressions
each time we use these attributes.

In VHDL, we can use general expressions as: TYPE
STD_LOGIC_VECTOR is ARRAY (NATURAL RANGE <>) of
std_ulogic, the B method does not give the same capacity. So, for our

14 It means the attribute REFLEXIVE is satisfied in resolved which is a function.

178 Formal Methods Applied to Complex Systems

example, we ought to determine the limits of the vector range. We do so in
the B_STD_LOGIC_1164_VECTOR_0 machine. In the To_bit function,
which converts a given value from extended bit type to a normal bit type, we
give the value xmap to the undetermined values (U; Z; W; X;). In the
function To_bit, the xmap is initialized to O. It may be redefined in the
future only by changing the function To_bit. To have the same modification
in B, we must change the PROPERTIES clause which is, in the
B_std_logic_1164_0.mch, independent of the To_bit functions.

In many functions in STD_LOGIC_1164, we find the instruction: ALIAS
lv : std_logic_vector (1 TO l 0 LENGTH) IS l. We use this instruction to
arrange its input vector so that their elements occupy the first positions in the
local function array. This arrangement facilitates vector treatments in the
function. In B components presented above, we proposed that the vectors are
normally15 represented.

The VHDL language gives the programmer the possibility to prepare an
error messages that may be displayed if there is an error during the
execution. In STD_LOGIC_1164, we have many of these messages. For
example, IF (l'LENGTH /= r'LENGTH) THEN ASSERT FALSE REPORT
“arguments of overloaded ‘nand’ operator are not of the same length”
SEVERITY FAILURE.

6.4.3. The multiplexer

We present in this section, how the designer may use the methodology
proposed in the previous section to design a circuit based on the VHDL
library. This example is an extension of an example of the multiplexer
proposed earlier in the first section. Instead of two Boolean values in the first
example, TRUE and FALSE, we use an extended bit with the nine values. In
the new proposed example, we describe a multiplexer with three inputs. The
output depends on the value of the input Select_a; it takes the value of In_a
if Select_a equals OO or LL (the low level), it takes the value of In_b if
Select_a equals II or HH (the high level); otherwise it takes the value XX
(undetermined).

The following mathematic expression may be summarizing by the
definition:

15 The element of the order i in the vector occupies the position of the order i in the array.

Formalization of Digital Circuits Using the B Method 179

((Select_a = OO ∨ Select_a = LL) => (out = in_a))^

((Select_a = II ∨ Select_a = HH) => (out = in_b))^

((Select_a = UU ∨ Select_a = XX ∨ Select_a = ZZ∨

Select_a = WW ∨ Select_a = DD) => (out = XX))

MACHINE
B_Mux_STD_0

SEES
B_STD_LOGIC_1164_0

DEFINITIONS
Compute_(xx,yy,zz,res) ==
(((xx = UU) => (res = XX))
& ((xx = XX) => (res = XX))
& ((xx = OO) => (res = yy))
& ((xx = II) => (res = zz))
& ((xx = ZZ) => (res = XX))
& ((xx = WW) => (res = XX))
& ((xx = LL) => (res = yy))
& ((xx = HH) => (res = zz))
& ((xx = DD) => (res = XX)))
. . .
END

Comparing the specifications of the multiplexer in the two examples, we
find the following differences:

– in the new machine, the SEES clause is used to enable us to use the
variables of the B_STD_LOGIC_1164_0 machine;

– the type of the four local variables is changed from the Boolean type to
the STD_ULOGIC type defined in the B_STD_LOGIC_1164_0 abstract
machine;

– the definition of the function Compute_ is redefines and extended to
cover the nine values of the extended bit. The following B abstract machine
contains the specification of this multiplexer16.

16 In this machine xx is a variable, but XX is one of the values of the type STD_ULOGIC.

180 Formal Methods Applied to Complex Systems

6.5. VHDL to B

Semi-automatic translation of similar circuit specification to the B
abstract machine is another way of working. In the first step, we define the
properties of the new components. The second step is graphical; it introduces
the components synthesis by composition of basic components. So, at the
last refinement, the implementation, we obtain a safe piece of software; it
may be easily converted to another programming. We want to define a tool
that creates the possibility of an automatic transformation of the
implementation to VHDL language. In this case, we obtain the possibility of
co-design between the B method and the VHDL (see Figure 6.11).

From VHDL component, the “entity” part provides a list of procedure
and the “architecture” part provides a description of principal properties and
introduces the implementation. But we want to add some useful properties
(safety, liveness, etc.) and we add some annotation (commentary) in the
VHDL description.

Figure 6.11. A multilevel design hierarchy detailing components of
a full adder is used in VHDL designs

Formalization of Digital Circuits Using the B Method 181

6.6. Conclusions

6.6.1. Some limitations

To develop an electronic circuit in B requires understanding the
refinement calculus, that is, a certain adaptation time for a circuit designer.
The most recent imperative languages like VHDL include facilities as
manipulations of a vector without explicit length or functions with
various signatures. Because the B method does not include such features,
these differences induce difficulties in transforming VHDL to B. One
solution to the problem of vector length is used in the
B_STD_LOGIC_1164_VECTOR_0 by passing the length as a parameter
and by using the universal quantifier (∀). To design circuits, a large quantity
of proofs may be generated and must be proved automatically or in
cooperation with the designer. The size of these proofs depends on the
quality of the program, the capacity of the prover, the designer, and the tool
we use. For very large circuits, the number of the necessary proofs could be
extremely large.

When the circuit is designed in B, we can prove that it satisfies the
required specifications but we do not yet have any tools to create the real
circuits directly from the B specification. But with the B method, it is
possible to represent the circuits as close as is needed to the physical level.
In [BOU 99], authors refined the B_NOT_0 abstract machine based on
abstract machines of CMOS transistors. To simulate a signal propagation,
the conception of the time must be represented some delay. Its possible to
modelise it by a pair (signal, date). For more complicated cases when it is
necessary to treat many signals in the same time, a list of structures may be
used to represent each signal. Each structure consists of a value and a date. A
global clock may be used to control the harmony between all the signals of
the circuit.

6.6.2. Advantages

The most important characteristic of the B method is that it produces a
secure circuit. The circuit which is obtained in the implementation satisfies
the specifications in the abstract machine 100%. It is possible to add the
required safety conditions under the INVARIANT clause in the abstract
machine. So the circuit design is completely correct. The error may occur
only when we describe the specifications or if the physical circuit does not

182 Formal Methods Applied to Complex Systems

correspond to the proposed model. The cost and the time of the test are
gained. To develop a circuit that was proved before, it is enough to prove
only the new characteristics. It is not necessary to reprove all the old ones.
So the designer may use all the circuits that are designed before; he or she
can make some changes and then prove a small part related to the new
characteristics. The B tools can automatically decide which parts of the
model are changed or added in order to be reproved. This characteristic is
quite important for the necessary modifications of the integrated circuit
development. The B method is used in many domains. Often the systems to
design are composite, both mechanical and electronic, software and
hardware. For example, to design a circuit to control a robot which satisfies
some needs and conditions of mechanics and electronics. It may be easier to
design using the adequate B libraries that we have specified for digital
circuits at the same time as mechanical libraries.

6.6.3. Future work

We intend to create a simple and complex example to show the
refinement development of a circuit design from the abstract specification to
the physical level. In such an example, we intend to show the refinement by
introducing an algorithm17. Also, we intend to create several libraries in B
equivalent to the VHDL libraries, in order to facilitate the circuit design in
B. Furthermore, this facilitates the transformation operation from B to
VHDL. We try to find a common rule which may be used to automatize the
translation. Also, we may solve this problem by creating a physical library in
B that contains the characteristics of the basic electronic elements or by
retranslating the results of a circuit development from B to VHDL.
Semi-automatic translation of similar circuit specification to B abstract
machine is another way of work. In the first step, we define the properties of
the new components. The second step is graphical; it introduces the
components synthesis by composition of basic components. So, at the last
refinement, the implementation, we obtain a secure software; it may be
easily converted to another programming. We want to define a tool that
provides the possibility of an automatic transformation of the
implementation to VHDL language. In this case, we obtain the possibility of
co-design between the B method and the VHDL.

17 In this chapter, we concentrated on the modeling methodology; so one refinement step is
used to find the multiplexer components.

Formalization of Digital Circuits Using the B Method 183

In summary, in this chapter, we presented a part of our work for creating
B libraries which correspond to some VHDL packages, such as the
STD_LOGIC_1164 package. This project enables us to take advantage of
the power of the B method to develop a secure circuit. We write the
specification of a desired circuit, and then gradually refine our specifications
for the implementation of this circuit which depends on the desired libraries.
The AtelierB or the Btoolkit enables us to generate the necessary proofs to
verify that each description of our circuit is consistent and each step of the
refinement satisfies the conditions of the previous one. This implies that it
satisfies the specifications in the first description. These proofs may be
generated automatically or in cooperation with the designer. In the end, we
obtain a circuit that satisfies our needs. The development from the abstract
specifications to a complete circuit description does not need an expert in
circuits but a B expert. B lacks some programming language characteristics
such as the type casting and the generality quality. But on the other hand,
one of the B designing advantages is that a change of an old circuit needs
proofs corresponding only to the new modifications. Also, we can reach the
desired specifications using a mix between electric and electronic libraries.

6.6.4. To finish

When the circuit is designed in B, we can prove that it satisfies the
required specifications but we do not yet have any tools to create the real
circuits directly from the B specification. But with the B method, it is
possible to represent the circuits as close as is needed to the physical level.

In [BOU 99], the authors refined the abstract machine that model the
NOT gate based on abstract machines of CMOS transistors. To simulate a
signal propagation, the conception of the time must be represented by some
delay. Its possible to model it by a pair (signal, date). For more complicated
cases when it is necessary to treat many signals at the same time, a list of
structures may be used to represent each signal. Each structure consists of a
value and a date. A global clock may be used to control the harmony
between all the signals of the circuit.

The most important characteristic of the B method is that it produces a
secure circuit. The circuit which is obtained in the implementation
completely satisfies the specifications in the abstract machine. It is possible
to add the required safety conditions under the INVARIANT clause in the

184 Formal Methods Applied to Complex Systems

abstract machine. So the circuit design is completely correct. The error may
occur only when we describe the specifications or if the physical circuit does
not correspond to the proposed model. The cost and the time of the test are
gained. To develop a circuit that was proved before, it is enough to prove
only the new characteristics. It is not necessary to reprove all the old ones.
So the designer may use all the circuits that are designed before; he or she
can make some changes and then prove a small part related to the new
characteristics.

6.7. Bibliography

[ABR 92] ABRIAL J.-R., “On constructing large software systems: in algorithms,
software, architecture”, Information Processing 92, IFIP 12th World Computer
Congress, vol. A-12, pp. 103–112, 7–11, September 1992.

[ABR 96] ABRIAL J.-R., The B Book: Assigning Programs to Meanings, Cambridge
University Press, August 1996.

[AIR 98] AIRIAU R., BERGÉ J.-M., OLIVE V., et al., VHDL Langage, modélisation,
synthèse. Collection Technique et scientifique des télécommunications,
Romandes Polytechnic and University Press, 1998.

[BOU 99] BOULANGER J.-L., MARIANO G., Modélisation formelle de circuits
numériques par la méthode B, Technical Report 1999-25-RT, 1999.

[BOU 01] BOULANGER J.-L., ALJER A., MARIANO G., “Conception sûr de circuit
basée sur la notion de propriété”, 14 ème journée internationales Génie Logiciel
& ingénierie de systèmes et leurs applications, du 4 au 6 décembre 2001,
ICSSEA 2001, 2001.

[BOU 02] BOULANGER J.-L., MARIANO G., “Formalization of digital circuits using
the B method”, 3rd European Systems Engineering Conference, Toulouse,
21–24 May 2002.

[CLI 90] CLIFF B.J. Systematic Software Development Using VDM, 2nd ed.,
Prentice-Hall International, Englewood Cliffs, NJ, 1990.

[DUC 99] DUCASSÉ M., ROZÉ L., “Proof obligations of the B formal method: local
proofs ensure global consistency”, Proceedings of the LOPSTR’99, LNCS,
Springer-Verlag, pp. 10–29, September 1999.

[IEE 93] IEEE, Standard VHDL Reference Manual, IEEE, 1993.

[KER 98] KERN C., MARK R., Greenstreet: Formal Verification in Hardware
Design, Romandes Polytechnic and University Press, 1998.

Formalization of Digital Circuits Using the B Method 185

[MOR 90] MORGAN C., Deriving Programs from Specifications, Prentice-Hall
International, 1990.

[NIC 99] NICOLI F., Vérification formelle de descriptions VHDL comportamentales,
PhD Thesis, Provence University, July 1999.

[NIC 00] NICOLAIDIS M., ZAIDAN N., CALIN T., et al., “ISIS: a fail-safe interface
realised in mart power technology”, IEEE, pp. 191–197, 2000.

[SPI 92] SPIVEY J.M., The Z Notation: A Reference Manual, 2nd ed., Prentice Hall
International Series in Computer Science, 1992.

[STE 98] STERIA B.,Manuel de Référence, September 1998.

7

Pragmatic Use of B: The Power of Formal
Methods without the Bulk

7.1. Introduction

Many observers and industrial actors still see the B method [ABR 96] and
formal models [BOU 11, BOU 12a, BOU 12b] as forming an overly
restrictive approach which is difficult to implement. A considerable number
of them still presume that these methods are only suitable for use by
personnel with rare and highly specific capabilities.

The various industrial projects carried out at Systerel over the last few
years have led us to refine this crude, but widespread, vision.

The aim of this chapter is to show that practices widely used in classic
developments can also be applied in the context of formal processes,
facilitating their implementation and acceptability.

7.2. Prototyping for formal models

In the context of modern industry, it is rare to find development projects
for systems, equipment or software which do not include the creation of one
or more prototypes in the earliest stages.

These prototypes provide users with a clearer understanding of the
product being created, specificities related to its use, relevance of certain

Chapter written by Christophe METAYER, François BUSTANY and Mathieu CLABAUT.

188 Formal Methods Applied to Complex Systems

technical choices, performances expected of the product and a number of
other aspects which need to be taken into consideration early in the process.
In addition to functional aspects, prototypes offer considerable benefits for
the formal modeling phase. For this reason, we use an initial prototype of
formal models in our projects before starting work on a full software model.

In the case under consideration in this chapter, the prototyping process
concerns a software development using B, from the formal specification
stage to the generation of a binary file, including proof activities. At this
stage in the project, only certain representative functions of the final
program are established. The purpose of the prototype is not, therefore, to
evaluate the functions of the program. Indeed, when studying the functional
aspects of a system, it is generally best to use a language or tools which
reduce development time, for example Java or script languages like Python.

Our prototype of a B software model is intended for use in studying the
qualities of the future model based on the different aspects discussed further.

By looking as far ahead as the binary file stage, we obtain an initial idea
of the execution time of the produced code. At this stage, it is difficult to
gain a precise evaluation of the execution time, as not all functions will have
been implanted; however, we can compare this time to that taken by a
“manually” produced executable file. This allows us to check for execution
delays linked to architectural or data-structuring choices.

By developing a prototype, we are also able to verify that modeling
choices, particularly those related to data structures, do not generate
excessive levels of complexity in the model, making it difficult to re-read,
control and maintain.

Modeling choices also have a significant impact on proof activities. Poor
choices can increase the number of proof obligations (POs), or produce
highly complex POs. In order to validate modeling choices in relation to
these proof issues, the prototyping phase includes a proof aspect. This allows
us to check that the program will be provable within reasonable time delays.
Certain ideas may be abandoned if they are seen to generate excessively
complex proof requirements.

The gains in productivity due to prototyping are hard to measure;
however, the reduction in risks which might generate extra development
costs is, in our opinion, more than enough to justify the added workload.

Pragmatic Use of B: The Power of Formal Methods without the Bulk 189

7.3. Inspiration from agile methods

Developments with the help of the B method are essentially related to
safety-critical software. The standards which cover the development of these
programs impose a task sequence following the classic V cycle and require
development and validation to be carried out by independent teams.
Development teams often carry out no test activities. The first versions
supplied to the validation team are therefore often of poor quality and
require significant communications between the teams. In addition, the
validation team only has access to the program from the moment of the first
validations, limiting their efficiency in the early stages. In cases of
dysfunction, the validation team will require considerable time to determine
whether this is due to a software anomaly or if the test itself is incorrect.

The following paragraphs aim to provide some elements of response to
these issues concerning the relationships and responsibilities of the
development and validation teams.

7.4. Simultaneous development and validation

While working on a project presenting a certain number of technical
challenges, we decided to create a validation team from the outset. Firstly,
this team produced a functional prototype of the program, before creating a
set of validation tools. The team then developed testing activities based on
this prototype, which facilitated validation of the operational principles of
the system at a very early stage in the software development process.

This phase also enabled the validation team to gain experience related to
this particular system, meaning that the required knowledge and abilities had
already been acquired before the start of the validation phase, facilitating
communications with the development team. The validation team was able
to provide rapid analysis of anomalies and assist the developers in this
respect.

Furthermore, the validation toolset was operational before the end of the
development phase, giving the development team access to testing methods
throughout the development process.

It was therefore possible to carry out testing throughout the coding stage:
once the development was sufficiently advanced to produce an executable

190 Formal Methods Applied to Complex Systems

file, the code was able to be tested. In this respect, the development followed
certain principles used in agile development methods.

Furthermore, the development and validation teams had access to the
same tools, leading to easier communications when treating anomalies; the
developers were able to work with testing methods themselves and to make
use of debugging tools.

Note that this approach does not provide any additional coverage in terms
of standards regulating safety developments. However, it is easy to establish
and appears to be relevant. Although the associated gains are hard to
quantify, the benefits of early establishment of the validation team are
evident. Note, in passing, that this approach does not depend on the use of
formal methods, and can be used with both classic and formal techniques.

7.5. Performances of software developed in B

B is known and used in relation to safety requirements. It is not known
for its response to performance issues. Our experiences have shown that,
contrary to popular belief, the performance of programs written in B can be
at least as good as that of software produced “by hand”.

The poor image of B in terms of performance is most likely due to
confusion with other formal methods which do present performance issues.

These other methods are based on a high-level formalism which is often
quite distant from the final program, generally obtained using code
generators. The greater the gap between the formalism and the generated
code, the more complex the code generator, and this situation often produces
code which is very difficult to re-read and hard to compare to the initial
program. Debugging the projects of this type is an extremely complicated
process. The approach also has repercussions on code performance, as it is
hard for complex generators to take account of optimization issues. There is
thus a risk of obtaining inefficient programs, and the associated models must
be modified to conform to the constraints imposed by the code generator.
The B approach is very different from these methods.

The B method relies upon an abstract language in order to model
software in an abstract manner. However, the method is based on the use of
refinements, applied successively until we reach a level known as B0.

Pragmatic Use of B: The Power of Formal Methods without the Bulk 191

Level B0 only permits data structures and instructions which may be
implemented using any classic programming language (C, Ada, Java and so
on). We then use a translation tool to carry out the required syntactic
transformation.

Software B facilitates precise mastery of generated code in exactly the
same way as manual development. There is therefore no reason for the
resulting performances to be inferior to those obtained using other methods,
and experience has shown that very good results may be obtained using this
approach.

The main benefits of B for software stem from the fact that we are able to
implement techniques which are not usually possible in a manual
development context, due to the fact that all of the transformation steps
involved are guaranteed by proof.

In safety software, for example, it is standard practice to avoid replicating
information: information may only be kept in one single form, otherwise it
becomes difficult to ensure the coherency of multiple representations of the
same information. In B, this coherency is ensured by proof.

To illustrate this point, let us consider object lists and the associated
actions:

– creation and deletion of lists;

– adding or removing an element from a given list.

No particular constraints are imposed, and an object may be present in
several lists at the same time.

We begin by choosing a first data structure which facilitates the addition
or removal of list elements: a two-dimensional table in which each line
contains the elements of the corresponding list.

Table 7.1 shows a current state in which three of five possible lists are
made up of different elements. List 1 contains objects 5, 26 and 13; list 2
contains objects 1 and 9, and list 3 contains objects 26, 4, 2 and 7.

192 Formal Methods Applied to Complex Systems

List
number

1 5 26 13
2 1 9
3 26 4 2 7
4
5

Table 7.1. Example of a list

This data structure is suitable for displaying all elements in a list, and it is
relatively easy to add elements. The removal of an element may require us to
shift the remaining elements.

Now imagine that an algorithm requires us to know all of the lists in
which a given segment appears. Using the previous data structure, we would
need to go through all of our lists and all of our elements to obtain this
information.

If this information is frequently required in a program, we may use a
second data structure, representing the same information but in a different
way.

We can thus create lists in which the first element is an object number
and the following elements are the numbers of the lists in which the object
appears.

Object
number

1 2
2 3
4 3
5 1
7 3
9 2
13 1
26 1 3

Table 7.2. Example of a redundant list

Pragmatic Use of B: The Power of Formal Methods without the Bulk 193

Table 7.2 shows this structure, which duplicates information from the list
shown in Table 7.1.

However, this approach introduces an additional difficulty related to the
maintenance of coherency between the two data structures.

Information duplication is generally avoided as it results in a loss of
control. Coherency cannot be guaranteed by classic testing activities: while
we are able to create test plans for functional specifications, we cannot
currently create test plans in the presence of constraints linked to data
structures.

In other words, if we introduce a coherency requirement for two data
structures, validators will be unable to identify which tests to carry out.

When using B, coherency is followed as guaranteed by proof.
Information replication therefore poses no particular difficulties and is
widely used.

B therefore allows us to create more sophisticated programs and complex
optimizations (cache management, information replication, circular buffers,
etc.). This produces software with much better performance levels, the
correctness of which is guaranteed by proof.

Once again, contrary to popular belief, we see that the use of formal
methods does not necessarily entail extra costs in terms of execution time;
on the contrary, these methods offer optimization possibilities which would
be difficult to exploit without the use of proof.

7.6. Use of infinity: separating algorithmic thinking and programming
issues

The notion of infinity is more usually relegated to the domain of
philosophy and, more generally, research, rather than engineering, as infinite
concepts are not usually handled by engineers; however, the subject has
come to be of increasing importance.

The use of infinity is not without consequences, and raises questions
concerning testing using infinite structures, or model checking for these

194 Formal Methods Applied to Complex Systems

structures, which is problematic given the combinatorial explosion
phenomena which come into play when using significant quantities of data.

Experiments have shown that the use of data structures involving infinite
structures facilitates both model writing and proof. These structures also
offer the possibility of more high-performance implementations.

As an illustration, let us consider the use of a list of ordered elements.
This is a classic problem in computing, but also in algorithmics (e.g. in
connection with a list of contiguous track sections).

Using standard approaches, these lists are coded by finite index functions,
starting from zero and with a size limited by an upper bound. This approach
is well suited to tables produced by programming languages.

Figure 7.1 shows a graphical description of the ordered list 23, 12, 4, 9.

Figure 7.1. Description of an ordered list

The structure used in Figure 7.1 is well suited for the addition of elements
at the end of the list. In our example, if we wish to add the element 2, we
simply need to modify the index function, associating index value 4 with
element 2.

However, the situation becomes more difficult if we wish to add (or
remove) an element at the beginning of the list, in which case all of the
elements in the list must be re-indexed.

The problem with this data structure lies in the fact that the index
function begins at zero, and the structure is asymmetric: we can easily add or

Pragmatic Use of B: The Power of Formal Methods without the Bulk 195

remove elements from one side of the structure, while an addition or removal
on the other side of the structure will require us to shift the index.

This type of data structure means that operations need to be specified on a
case-by-case basis depending on the side of the structure involved. It makes
the model more complicated and creates additional work in terms of proof.

We used a slightly different data structure in one of our projects in an
attempt to avoid this problem, based on the use of an index function starting
with any given integer a (positive or negative) instead of zero.

As before, the number of indexed elements is bounded, and the function
indexes elements using integers contained between an index value a and a
higher index value b.

Figure 7.2 shows the index function for the same series of numbers used
in the previous example.

Figure 7.2. Second representation

This new structure homogenizes index management, and the addition or
removal of an element essentially consists of modifying index a or b,
removing the shifting issue.

This structure is relevant when we consider that there are no constraints
on bounds a and b, except for the fact that the distance between a and b must
be less than a given constant. This is only possible using natural integers,
which constitute an infinite set. Evidently, through the refinement process,
the final produced code operates using finite integers, implementing a

196 Formal Methods Applied to Complex Systems

circular buffer algorithm; however, abstract modeling using infinity is
simpler to handle and facilitates reasoning.

This experiment shows that the use of abstract objects, specifically
infinity, is not only viable in industrial projects, but also contributes to the
simplification of engineering tasks. Engineers begin by concentrating on list
management (the modeling phase) then implementation (programming
phases); in other cases, it is possible to reuse existing implementation plans,
the correct realization of which is guaranteed by refinement proof.

The separation of algorithmic considerations and programming issues is a
key pathway to follow in attempting to optimize engineering activities.

7.7. Industrial implementation of event-B

Currently, it is rare for more than a few individuals within any given
company to have a clear idea of the way a system operates. This information
is difficult to transmit, and is generally only obtained through experience and
practice. The accumulation of ideas over time means that the reasons leading
to a particular organization may become hidden from view. This loss of
knowledge leads to immobility and resistance to change: as users no longer
know why things are done in a particular way, we become unaware of the
potential consequences of change, generating reluctance to challenge tried
and tested practices.

The progressive use of different model-based approaches (model-led
engineering) represents a challenge to this mindset, but the approximate
nature of the semantics involved and the difficulty of guaranteeing
coherency between viewpoints mean that any successes have been rather
limited.

This situation has led us to make increasing use of event-B, initially in
the context of studies with a limited industrial impact (initial phases,
modeling for verification or specification consolidation purposes), then more
broadly in the system design phases of critical industrial projects.

Experience has demonstrated the power of this technique in identifying
essential concepts for system safety, the exact point at which these concepts
become useful in the system design process and their precise contribution to
the safe operation of a system.

Pragmatic Use of B: The Power of Formal Methods without the Bulk 197

This advantage of event-B is due to a reasoning approach with
considerable differences to that usually employed in mastering system
complexity.

In traditional methods, engineers use the full specification of a system,
which often already presents a high (sometimes excessive) level of detail,
and apply a progressive decomposition process to obtain sub-system
specifications which are simple enough to be easily mastered. However,
even when this method is successful, the engineers will not have the
necessary information to ensure that these sub-systems will constitute a safe
system when interconnected or reconstructed, as the approach does not give
consideration to this aspect.

Using event-B, the first stage involves abstraction of the system
specification, i.e. identification of the abstract data making up the system
and the abstract events leading to the evolution of this data over time. This is
followed by a refinement and proof process, involving the progressive
information of data, concepts, trigger conditions and other details; each of
these details is only introduced as and when they become necessary to the
proof activity, i.e. for demonstration of a specific system property.

In other words, event-B guides engineers through a detailed reasoning
process. Initially, it leads users to gain a sufficiently general view for
understanding system behaviors, before going into greater detail, focusing on
the elements which contribute to expected system behaviors. The key to this
approach is the mathematical demonstration of the effective role of these
elements in system safety.

System complexity is therefore mastered by a process based on
abstraction followed by proved refinement, rather than by a decomposition
process in which there is no guarantee that elementary properties will be
reconstructed into the desired expected general property.

In the specific context of our project, we were able to benefit from
circumstances which are rare in an industrial setting:

– the ability to reconsider earlier system specification and design phases;

– the ability to continue or modify later production processes.

198 Formal Methods Applied to Complex Systems

This experience also highlighted another interesting point concerning the
final design of a system design. Through building and proving a system
model in event-B, we were able to identify certain design principles which
are essential both in demonstrating system safety and in facilitating
development and validation. One example of this is the ability of a train
movement management function to keep trains within safe boundaries in all
circumstances, rather than having to guarantee safety in specific cases where
trains move outside of these boundaries.

The use of event-B thus enabled us to influence system design, with the
aim of mastering system behavior and demonstrating safety, rather than
dealing with these aspects a posteriori. We were also able to avoid situations
in which a solid safety demonstration cannot be established; situations of this
kind involve backtracking in the design process, which cannot be avoided
due to the safety levels of the systems involved.

7.8. B method for software and event-B

The B method for software can be used to improve practices based on
event-B, and vice-versa.

Lessons may be learned from the implementation of both methods, and
certain practices can be transferred from one method to the other.

For example, event-B has had an influence on practices using B method
for software in the field of animation. Model animation, with graphical
representations, was carried out very early in event-B; the transfer of these
practices to the B method for software has proved fruitful.

This is the reason behind the inclusion of graphical interfaces in the
validation approaches of software developed with the B method. These
interfaces represent the state of piloted systems and the state of software;
together, they constitute a simulator which facilitates rapid analysis of
anomalies.

Inversely, the use of prototyping in B could be transferred to event-B for
system modeling. In this case, an initial prototyping phase would be added
for the event-B model of the system in order to study data structures and
their impact on proof.

Pragmatic Use of B: The Power of Formal Methods without the Bulk 199

This phase is likely to provide inspiration in optimizing refinement and
proof activities, enabling us to concentrate on the progressive construction of
the system and eliminating pure modeling and proof issues as far as possible.

7.9. Conclusion

These perspectives are the result of over 15 years’ experience in the
industrial use of B and show a variety of aspects of this method.

Firstly, we have seen that the application of B is based on a range of
practices widely used in industry, particularly the software industry, and that
these practices contribute to facilitating its implementation, and
consequently its wide acceptation, by removing typical issues related to the
representative aspects of B models, their ability to be proved or the
performance of the resulting code.

More importantly, we have shown how this type of method provides
engineers with another means of specifying and designing complex systems,
offering possibilities which are not present in other approaches:

– reasoning using abstract notions which are sufficiently concise to be
handled with ease;

– decoupling of the algorithmic and coding activities during the design
phase, offering an increased ease of reasoning and greater efficiency;

– optimization of verification and validation efforts, using refinement
proof to guarantee progressive and organized transformation from “what” to
“how” and on toward an “optimized how”.

The use of formal methods such as B allows engineers to focus on their
primary role in specifying and designing systems or programs, using
powerful reasoning tools, without needing to devote time and effort to later,
purely coding-related stages.

7.10. Glossary

IDE Integrated development environment

PO Proof obligation

V&V Verification and validation

200 Formal Methods Applied to Complex Systems

7.11. Bibliography

[ABR 96] ABRIAL J.-R., The B-Book, Cambridge University Press, 1996.

[ABR 06] ABRIAL J.-R., BUTLER M.J., HALLERSTEDE S., et al., “An open extensible
tool environment for event-B”, ICFEM, Macao, pp. 588–605, November 1–3,
2006.

[BOU 11] BOULANGER J.-L. (ed.), Static Analysis of Software, ISTE, London, and
John Wiley & Sons, New York, 2011.

[BOU 12a] BOULANGER J.-L. (ed.), Industrial Use of Formal Method: Formal
Verification, ISTE, London, and John Wiley & Sons, New York, 2012.

[BOU 12b] BOULANGER J.-L. (ed.), Formal Methods: Industrial Use from Model to
the Code, ISTE, London, and John Wiley & Sons, New York, 2012.

8

BRILLANT/BCaml — A Free Tools
Platform for the B Method

8.1. What is BRILLANT/BCaml?

BRILLANT [BRI 14, COL 10] is a collaborative tool collection associated
with the B formal language. The collection is centered around one particular
tool known as BCaml. In this chapter, BRILLANT will often be used to refer
to this tool in the context of the collection, while BCaml will be used when
referring to specific aspects of the tool itself.

The initial and main purpose of BCaml is the implementation of the B
method using recent methodologies, languages and technologies. This goal
involves not only the implantation of the method, but also feedback from use
of the B method in real-world contexts and the possibility of experimentation
upon the method itself, for example in interfacing with other formalisms or
through extensions of the B language. The project was launched in 1997
when work began on formalizing the grammar.

This central objective was broken down into two key aspects:

– the provision of open access tools, in a spirit of scientific and academic
collaboration and sharing;

– the choice of the most appropriate methods for each tool-based aspect of
the B method.

Chapter written by Samuel COLIN and Dorian PETIT.

202 Formal Methods Applied to Complex Systems

The first aspect means that the tools were made available through an
open-source collaborative development platform. In addition to ensuring
availability, this system enables the creation of different versions through
modification, reporting and documentation of known bugs, communications
between developers, etc. This way of working is known as a “forge”, although
the term was not used in this context when work on BCaml began.

The second main goal will be discussed in detail in section 8.3. Certain
general choices were made as needs arose:

– OCaml [LER 11] was selected as the basic language due to its symbolic
handling capacities;

– the Lex and Yacc tools (the OCaml versions) were selected for language
analysis, essentially because they are based on a mature, tried-and-tested
language analysis technology;

– the XML [CON 00] exchange format was chosen based on the
possibilities it offers and the obligations it involves in terms of information
structures;

– Coq [COQ 08] is a proof assistant chosen for experiments on proof in
connection with the B method. It was selected partly due to its rich theorem
library, and partly to its close connections with OCaml.

The current organization of BRILLANT will be presented in section 8.2.

8.2. Organization

Figure 8.1 shows the overall organization of the tools included in the
BRILLANT platform.

This organization is the result of the development history of BCaml and of
the natural organization of tools used with the B method, discussed below in
roughly chronological order, as seen from the publication dates of the
documents cited below.

The first project associated with BRILLANT was the implementation of
a syntax analyzer for the B language. This project highlighted the academic
interest of this type of tool, as it was closely followed by two studies: one
on B typing [BOD 02] (see the box under the syntax analyzer in Figure 8.1)

BRILLANT/BCaml — A Free Tools Platform for the B Method 203

and the other on the refinement of B specifications using relational databases
[LAL 00].

Dedalus team

Coq

BtoBHLL

Code:

UMLtoB

XSLTProc

CSP||B-cli

CSP specifications

B specifications UML

specifications

B

specifications

Syntax

analyzer

Type

checker

Typed B

specifications

POG

XML POs

MEs

MEs POs

Type

checker

Unfolding
Simple

unfolding

Unfolded B

specifications
BHLL

specifications

Typed BHLL

specifications

XSL stylesheets

BiCoax POs

B libraries for

Coq

Proof results

text, Html, Tex,

Ocaml, Eiffel, etc.

Unfolded code

Component

Sends data to

In development

Reused

Toolset developed and

submitted by a

third party

Data

Tool

Component
MEs = Meaningless expression
XLSTProc = XSLT processor
Coq = proof assistant
POG = proof obligation generator

Figure 8.1. Organization of BRILLANT/BCaml+BiCoax

This encouragement from the academic community led us to take an
interest in the code generation process, which naturally led on to
consideration of B component deployment issues [PET 03b] and the
modularity of the language [PET 03a].

As the B method is based on proof, we need to deal with proof obligations
(POs) and their demonstration. As part of the developments described above,
we implemented a proof obligation generator (POG). This section of the B tool
chain also includes a proof tool based on PhoX [ROC 04].

204 Formal Methods Applied to Complex Systems

The only metalanguage used in the platform was Objective
Caml [LER 11]. We did not wish to be dependent, or oblige other
collaborators to depend on a single development language. These
considerations led us to define and use an Extensible Markup Language
(XML)-based format for B [COL 05] to facilitate interactions between tools,
whatever the languages used in development.

A number of academic publications exist on the passage from Unified
Modeled Language (UML) to B, and the creation of a tool to convert UML
specifications with Object Constraint Language (OCL) constraints to B by
PRiSM [MAR 02] was a logical step. This tool is also included in the
BRILLANT platform (see the box on the top right of Figure 8.1).

Later, the low levels of maintenance carried out on the PhoX proof assistant
led us to reconsider the “proof” aspect of the tool, translating the B libraries
described in PhoX syntax to Coq. This resulted in the production of a tool
known as BiCoax [COL 09].

The most recent tool to use BRILLANT is a specification verification
assistant, Communicating Sequential Processes (CSP)�B [NGU 10] (see the
box on the top left of Figure 8.1). This tool reuses the syntax analyzer from
BCaml to process the B aspect of CSP�B specifications.

The functions of some of these tools will be discussed in greater detail in
section 8.3.

8.3. Functions

We will not describe the functions of all of these tools here; instead, we
will limit ourselves to those which correspond to the usual development chain
using B (from B specifications to proof). Details involving other tools may be
found in the references given in section 8.2.

8.3.1. The historic kernel

The BCaml syntax analyzer is based on the use of the OCaml version of
Lex and Yacc. Therefore, we created a grammar which is compatible with
Yacc, and consequently LALR(1). This grammar was initially based on a

BRILLANT/BCaml — A Free Tools Platform for the B Method 205

Backus-Naur Form (BNF) grammar provided by B-Core, described in the
Atelier B reference manual, but with modifications to ensure LALR(1)
compatibility. The only aspects from the reference manual to be retained for
the current version were operator priorities and associations. The resulting B
language grammar is free from shift/reduce and reduce/reduce conflicts.

This grammar is compatible with any B component described in
accordance with the Atelier B reference manual. It constitutes an overset of
the manual in its own right, as it takes into account constructions for which
little documentation is available. An example of this is f(x)(y) := E, which
is a little-used form of the construction f(x) := E whose interpretation can
prove confusing. The proposed grammar also offers alternative notations for
ambiguous operations in the grammar, such as >*< for Cartesian products and
the backslash \ for set difference.

Finally, the full parser is able to take into account so-called definitions due
to a preprocessing and expansion phase, carried out prior to the parsing
process itself. Note that Menhir [POT 05] may be used instead of OCamlYacc
without needing to change source files for the purposes of grammatical
experimentation.

The typechecker is based on the type inference algorithm described
succinctly in [BOD 02]. The tool is able to obtain type information and can
distinguish between simple relationships, partial functions and total functions.

While this tool is an integral part of BCaml, it is shallowly integrated: its
functions depend on modifications to the abstract syntax tree (AST) used by
BCaml, hence the tool embeds a modified copy of the functions needed for
manipulating the AST. Work is currently underway to develop:

– a tool based on the same algorithm, but with full integration into
the current AST. While, in principle, this constitutes the fusion of two
development branches, in practice, the absence of historical background in
the checking branch means that this development may be considered as a
redevelopment based on the published algorithm, with visual comparison in
relation to the code in the verification branch;

– full documentation for the type inference algorithm in [BOD 02], which
only provides a description for those predicates and expressions that are most
relevant to the algorithm itself.

206 Formal Methods Applied to Complex Systems

At the time of writing, the new version of the typechecker is compilable but
remains incomplete. The algorithm documentation has been completed up to
the B component level.

The POG is a direct implementation of the proof obligation generation
method described in the B-Book [ABR 96]. It is based on a weakest
pre-condition calculus, a translation library from B substitutions to
generalized substitutions, and PO generation functions that follow the
formulas described in the B-Book to the letter [ABR 96]. The generated files
are predicates that respect the XML format defined for BCaml, and can
therefore be translated a priori for any proof or model-checking tool able to
operate using predicates and expressions as defined in the B language.

The XML format connects tools together, and all of the tools mentioned
above generate XML files. The XML structure used for these files closely
follows the abstract B syntax used in BCaml; however, work is currently
underway to define XML schemas and/or Document Type definition (DTD)s
for the standardization of the format.

8.3.2. Code manipulation

One of the key objectives of B is the generation of code to create executable
files, and BCaml includes code manipulation functions for this purpose.

The component unfolder (bunfold) is an implementation of the unfolding
algorithm developed by [BEH 00]. Unfolding brings together several levels
of refinement of a component, even several components, to enable treatments
which would not have been possible in their initial form. This operation is
carried out by the B component unfolder as part of the code generation process.

BHLL is the next step in the code generation process. The tool, based on
the work of [PET 03a], allows us to re-express a set of B components in a
modular form, which is better suited for code generation. There is no
“official” documentation covering the translation of a B model into any given
programming language, nor for transforming the semantics of B modules to
fit the modular character of the target language. BHLL is an experimental
project which aims to tackle these issues.

Code generation is the final stage of code manipulation, situated just after
the enrichment of the B component with typing information. This stage,

BRILLANT/BCaml — A Free Tools Platform for the B Method 207

together with the previous stages, produces a component described in the B
implementation sublanguage, which is supposedly close to a programming
language. The result is supplied in XML format. From these two
observations, we see that code can be generated via the application of
eXtensible Stylesheet Language (XSL) style sheets to XML files. Therefore,
code generation in BCaml comes down to the description of rules for
translating XML into the language chosen in XSL style sheets format. This
way, components can be translated into Spark/Ada and into Eiffel, for
instance.

8.3.3. Proving B specifications

It is currently possible to prove B specifications using the BiCoax tool
included in BRILLANT. This implementation takes the form of a shallow
embedding of the semantics of B expressions and predicates in Coq.

The initial objective of the tool was the mechanization of the different
theorems presented in the B-Book with the aim of ensuring their consistency.
This goal has been attained, as implementation highlighted certain errors
which are now described in an ERRATA file supplied with BiCoax.

The other objective, which is also a consequence of this implementation,
was to create a proof tool for B. This aim has been partially fulfilled, as the
implementation covers all B constructions except for parts of the integer
definitions and the sequence and tree aspects. BiCoax can, therefore, be used
as an interactive proof tool for relatively simple B models which do not use
these specific constructions, for example for teaching purposes. However, the
tool is not designed for automatic use.

8.4. Perspectives

A certain number of developments are currently underway in relation to the
tool platform:

– the XML Application Programming Interface (API) currently used by
BCaml is no longer maintained, and produces incorrect results when using
characters which are problematic for XML in B character strings. Therefore,
we have begun to use Xmlm as an alternative, with the aim of completely
replacing the current XML API in the long run;

208 Formal Methods Applied to Complex Systems

– continuing to focus on the XML API, these modifications have led us to
consider stabilization, and possibly even standardization, of the XML format
used for BCaml.

Slightly further down the road, our aims focus on completing BCaml as
a “classic” B development chain. We also wish to implement another POG
approach that would follow the Atelier B reference manual rather than the B-
Book; as the differences between the two are minor, the changes needed should
cause relatively few disruptions. Along the same lines, we intend to add to the
POG for ill-defined expressions [BUR 00].

Integration work is currently underway for a tool allowing generation of a
B component based on an SysML specification with added goal models
[LAL 10], with the aim of providing still better coverage of the production
chain using the B method.

Longer term perspectives exist in relation to BiCoax:

– the tool requires additions in order to cover the end of the third chapter of
the B-Book, i.e. the missing section on integers, sequences and trees. However,
the section on trees may be limited to the congruous aspects, given that this part
of the B language is very rarely used in practice;

– enrichment of BiCoax using proof tactics would offer interesting
possibilities. Certain tactics offered by Coq are highly efficient in cases where
the logic involved respects certain properties. When the operators form a ring
structure, for example, as in the case of set structures, a generic tactic exists
to allow equation-based reasoning. It would then be possible to compare the
efficiency of Coq tactics with that of other proof tools for B.

In the same vein, POs could also be translated into different formats in
order to exploit the capacities of multiple provers and/or model-checkers, as in
[MEN 12].

Finally, future perspectives will depend on requirements and on those
involved in developing tools, and we wish to encourage all interested parties
to contribute to the platform, where they will receive a warm welcome from
the existing community of passionate and enthusiastic developers.

BRILLANT/BCaml — A Free Tools Platform for the B Method 209

In conclusion, we thank Georges Mariano for his remarks on this chapter.
We also wish to thank all past, present and future contributors to the
BRILLANT project for their efforts and enthusiastic contributions.

8.5. Bibliography

[ABR 96] ABRIAL J.-R., The B Book – Assigning Programs to Meanings,
Cambridge University Press, August 1996.

[BEH 00] BEHNIA S., Test de modèles formels en B: cadre théorique et critères
de couvertures, PhD Thesis, National Polytechnic Institute of Toulouse, October
2000.

[BOD 02] BODEVEIX J.-P., FILALI M., “Type synthesis in B and the translation of
B to PVS”, in BERT D., BOWEN J.P., HENSON M.C., et al., (eds.), ZB’2002 –
Formal Specification and Development in Z and B, of Lecture Notes in Computer
Science, Springer-Verlag, vol. 2272, pp. 350–369, January 2002.

[BRI 14] BRILLANT. Available at gna.org/projects/brillant, 2014.

[BUR 00] BURDY L., Traitement des expressions dépourvues de sens de la théorie
des ensembles: Application à la méthode B, PhD Thesis, CEDRIC-CNAM, 2000.

[COL 05] COLIN S., PETIT D., ROCHETEAU J., et al., “BRILLANT : an open
source and XML-based platform for rigourous software development”, Software
Engineering and Formal Methods (SEFM), September 2005.

[COL 09] COLIN S., MARIANO G., “BiCoax, a proof tool traceable to the BBook”,
From Research to Teaching Formal Methods – The B Method (TFM B’2009), June
2009.

[COL 10] COLIN S., PETIT D., MARIANO G., et al., “BRILLANT: an open
source platform for B”, Workshop on Tool Building in Formal Methods (held in
conjunction with ABZ2010), February 2010.

[CON 00] CONSORTIUM WORLD WIDE WEB, Extensible markup language
(XML) 1.0, 2nd ed. – W3C Recommendation, 2000. Available at
www.w3.org/TR/2000/WD-xml-2e-20000814

[COQ 08] THE COQ DEVELOPMENT TEAM, The Coq proof assistant reference
manual – Version V8.2, 2008. Available at coq.inria.fr/doc-eng.html

[LAL 00] LALEAU R., MAMMAR A., “A generic process to refine a B specification
into a relational database implementation”, YORK D.C.S. (ed.), ZB’2000 –
International Conference of B and Z Users, Lecture Notes in Computer Science,
Springer-Verlag, Helsington, York, United Kingdom, vol. 1878, pp. 22–41,
August 2000.

210 Formal Methods Applied to Complex Systems

[LAL 10] LALEAU R., SEMMAK F., MATOUSSI A., et al., “A first attempt to
combine SysML requirements diagrams and B”, ISSE NASA journal (Innovations
in Systems and Software Engineering), Springer, vol. 6, nos. 1–2, pp. 47–54,
March 2010.

[LER 11] LEROY X., DOLIGEZ D., FRISH A., et al., The objective caml system,
Report, Software and documentation, INRIA, 2011. Available at caml.inria.fr/

[MAR 02] MARCANO-KAMENOFF R., Spécification formelle à objets en
UML/OCL et B: Une approche transformationnelle, PhD Thesis, University
of Versailles – PRiSM, December 2002.

[MEN 12] MENTRÉ D., MARCHÉ C., FILLIÂTRE J.-C., et al., “Discharging proof
obligations from Atelier B using multiple automated provers”, ABZ Conference,
Pisa, Italy, June 2012.

[NGU 10] NGUYEN H.N., JACQUOT J.-P., “A tool for checking CSP||B
specifications”, Workshop on Tool Building in Formal Methods - Held in
conjunction with the 2nd International ABZ Conference, Orford, Québec, Canada,
2010.

[PET 03a] PETIT D., Génération automatique de composants logiciels sûrs à partir de
spécifications formelles B, PhD Thesis, University of Valenciennes and Hainaut-
Cambrai, December 2003.

[PET 03b] PETIT D., MARIANO G., POIRRIEZ V., et al., “Automatic annotated code
generation from B formal specifications”, in TARNAI G., SCHNIEDER E., (eds.),
Symposium on Formal Methods for Railway Operation and Control Systems,
IEEE, 2003.

[POT 05] POTTIER F., RÉGIS-GIANAS Y., Menhir, December 2005. Available at
gallium.inria.fr/fpottier/menhir/.

[ROC 04] ROCHETEAU J., COLIN S., MARIANO G., et al., “Évaluation de
l’extensibilité de PhoX: B/PhoX un assistant de preuves pour B”, in MÉNISSIER-
MORAIN V. (ed.), Journées Francophones des Langages Applicatifs (JFLA 2004),
INRIA, pp. 37–54, 2004.

9

Translating B and Event-B
Machines to Java and JML

9.1. Introduction

There are currently two dominant approaches for formally engineering
software systems: those that use a refinement calculus methodology
[MOR 90] and those that are based on the ideas of
design-by-contract [MEY 92]. In the refinement calculus approaches (notably
B [ABR 96] and Event-B [ABR 10a]) systems are first modeled in an abstract
way. Next, the model is proven to satisfy certain safety and security
properties, and then transformed to code via a series of property preserving
refinement steps. The bulk of the development effort goes into discharging
refinement proof obligations, thus ensuring that a model and its refinement
are models of the same system. Often, code is automatically generated from a
final concrete model [EDM 10, EDM 11, MER 11]. In design-by-contract
approaches (notably JML [BUR 05, CHA 06] and Spec# [BAR 04]), contracts
between software modules are specified in first-order logic, and tools that
support the approach are used to verify that implementations satisfy those
contracts. Implementations are hand-coded, and producing and verifying
these implementations constitute most of the development effort.

Although the underlying goal of refinement calculus and
design-by-contract approaches is similar – they both aim to produce formally
verified implementations of mathematical specifications – the approaches are

Chapter written by Néstor CATAÑO, Víctor RIVERA, Camilo RUEDA and Tim WAHLS.

212 Formal Methods Applied to Complex Systems

quite different, and in our view, largely complementary. Refinement calculus
approaches provide excellent tool support for analyzing and verifying
properties of abstract models, while design-by-contract approaches typically
have little to offer in this regard. However, refining an abstract model to an
implementation-level one is a laborious process that typically requires
numerous refinement steps, each associated with many proof obligations.
While refinement calculus approaches often incorporate tools for generating
code from concrete models, the code generated by previous tools is typically
simplistic – making unsophisticated use of the data structures built-in to the
programming language and no use of structures provided by Application
Programming Interfaces (APIs) or other libraries. Design-by-contract
approaches are best used to specify the behavior of classes and methods, and
often use notations based on a particular programming language – JML is
based on Java, and Spec# is based on C#. JML provides specifications for
many of the standard Java APIs, allowing a JML developer to make full use
of the data structures (and other functionalities) provided by these APIs.

For example, consider producing an implementation from an Event-B
model that uses mathematical functions. Previous Event-B code generation
tools [EDM 10, EDM 11, MER 11] typically cannot directly generate
implementations for such models, requiring the developer to refine any
models that use functions into models that use arrays. These concrete models
can then be translated to implementations that use arrays. Now, consider
specifying the same system in JML and implementing it in Java. JML
provides a complete specification of the Java library HashMap class that can
naturally be used to implement finite functions, so a class that is specified in
terms of mathematical functions can be implemented using HashMaps, and
the implementation can be verified against the specification. This produces a
cleaner and more efficient implementation, at the price of making the
verification proof more difficult (as states specified via functions must be
related to implementation states represented using HashMaps). A closely
related option is to provide custom APIs (with full formal specifications) that
directly implement mathematical objects such as sets, functions and relations
that are often used in formal specifications for use in both specifications and
implementations. This idea is implemented in JML via the class specifications
and implementations in the org.jmlspecs.models package, and we have
used it largely in the work described in the rest of this chapter.

Translating B and Event-B Machines to Java and JML 213

More generally, we believe that refinement calculus based approaches are
best used in the earliest stages of software development – when the system is
first being modeled at an abstract level and when properties of the model are
being verified. As development proceeds and models become more
implementation-oriented, the ability to make effective use of features and
APIs provided by the implementation language becomes increasingly
important. The refinement calculus approach of producing models that are
programming language neutral up until the final refinement (into
programming language code) requires these concrete models to use only
features that are common to all target languages (i.e. arrays). A refinement
calculus model could be translated into a design-by-contract notation by
hand, but this process would be tedious and error prone, and any mistake in
the translation would invalidate the entire sequence of (otherwise) correctness
preserving refinement steps. These observations are the motivations for the
two tools described in this chapter: B2Jml [CAT 12], which translates B
machines to JML specifications, and EventB2Java [RIV 14], which translates
Event-B machines and associated contexts to JML annotated Java
implementations. Automating these translations eliminates the tedium just
mentioned, and reduces the likelihood of translation errors. Even better, such
errors can be entirely eliminated by proving the soundness of an automated
translation, as we have done for EventB2Java [CAT 13]. As a final motivation
for our approach, we note that software developers with the mathematical
sophistication needed for developing, verifying and refining refinement
calculus models are likely to be in short supply. Transitioning to a
design-by-contract approach such as JML (which requires less mathematical
expertise to use) allows developers with less mathematical sophistication to
make meaningful contributions much earlier in the development process.

Our software development methodology begins with an abstract model of
the system, expressed in B or Event-B as dictated by the nature of the system
and the preferences of the developers. The model is verified using standard
B/Event-B tools [BUT 06, BOU 03, CLE 08], and transformed via a (likely to
be short) sequence of refinement steps to the point where specific
programming language data structures and APIs are of use. Next, the model is
translated using B2Jml or EventB2Java as indicated by the initial choice of
notations. If B2Jml is used, developers then implement the JML specification
in Java and prove the correctness of the implementation with respect to the
specification, with the likely use of a tool such as OpenJML [COK 11]. If

214 Formal Methods Applied to Complex Systems

EventB2Java is used, developers have the choice of just using the generated
Java implementation or providing a hand-coded implementation of the JML
specification just as they would use with B2Jml. Developers may opt not to
use the generated implementation for reasons such as efficiency, the desire to
use APIs to supply particular aspects of the implementation, or data
persistence (in other words, to store data in a database or file rather than in
memory).

We initially developed our methodology while working on the
B2Jml [CAT 12] tool. One particularly difficult issue with the translation is
the complex ways in which B machines can be related via the INCLUDES,
IMPORTS and SEES keywords, and in fact we do not yet have a satisfactory
way to translate these relationships. This issue motivated us to consider
translating Event-B as Event-B machines are related only via refinement – a
particularly simple form of including one machine within another. More
importantly, using Event-B allowed us to extend our methodology to the
development of reactive systems, and to consider issues such as concurrency
and atomicity. In particular, we have used EventB2Java to generate critical
components of several Android applications [PER 12, RIV 12]. Our initial
work in this area consisted of translating Event-B machines and associated
contexts to JML specifications, thus mirroring our work on translating B
machines. As we were performing this work, we realized that the generated
specifications followed a simple pattern that was amenable to direct
translation to Java implementations, with heavy reliance on customized
JML-specified Java implementations of Event-B mathematical objects (sets,
functions and relations). This observation led directly to the development of
EventB2Java.

In the remainder of this chapter, we provide a brief introduction to B,
Event-B and JML. Then we present the B2Jml and EventB2Java tools,
including descriptions of the translation performed by each tool, some notes
on the implementation of each tool, and a small case study in applying each
tool. We conclude with some remarks on our experiences in applying our
methodology and directions for future work.

9.2. Background

In this section, we give a broad view of the B and Event-B formal
methods, and a brief introduction to JML. The expression “formal method”

Translating B and Event-B Machines to Java and JML 215

refers to a direct technique for constructing dependable systems. The system
is dependable when there is evidence that its benefits outweigh its risks. A
direct technique is one that focuses dependability on the system satisfying
some critical properties, rather than on the functions or tasks it should
perform. A formal method provides ways to integrate these properties into the
system design and to mathematically prove system compliance with them.

9.2.1. The B method

The B method [ABR 96] is a formal methodology to specify, build and
implement software systems. Each stage in this process is associated with
proofs of compliance to designer supplied properties. The B method
addresses all aspects of the software lifecycle: technical specification, system
construction by successive refinements, layered architecture and code
generation. The B method approach is model-oriented. This means that each
stage in the B software development provides a model of the system at a
certain level of abstraction. Each model in B, called a machine, defines a
state-space of the system together with operations representing state
transitions. Machines are essentially abstract data types with state. A B
machine consists of variables, invariant properties constraining their values
(i.e. the state-space) and operations. The model of a large system comprises
several machines composed of various ways. It is constructed in a modular
fashion by stepwise refinements. Refinement machines progressively define
more details for a specification. B model specification is based on first-order
logic, set theory, abstract machine theory and refinement theory.

Figure 9.1 shows an example of a B machine. It is a much simplified version
of a social network (SN) model where a collection of people organize content
items in their pages.

Variables persons and contents model the users and data, respectively, of
the SN. Variable owner tracks the ownership of each data item, and pages
represents content items stored in user pages. The invariant section gives
types to these variables. The underlying logic is untyped and typing
information for variables appears in the invariant as set membership
predicates. The foundations are based on Zermelo set theory with an axiom of
choice, an axiom of infinity and an axiomatic definition of the Cartesian
product (see [ABR 96]).

216 Formal Methods Applied to Complex Systems

MACHINE snAbstr
SETS

PERSON; CONTENTS;
VARIABLES

persons, contents, owner, pages
INVARIANTS

persons ⊆ PERSON ∧
contents ⊆ CONTENTS ∧
owner ∈ contents� persons ∧
pages ∈ contents↔ persons

INITIALIZATION
persons := ∅ ||
contents := ∅ ||
owner := ∅ ||
pages := ∅

OPERATIONS
create_account(c1, p1) =
PRE

c1 ∈ CONTENTS ∧
c1 �∈ contents ∧
p1 ∈ PERSON −persons

THEN
contents := contents ∪ {c1} ||
persons := persons ∪ {p1} ||
owner := owner ∪ {c1 �→ p1} ||
pages := pages ∪ {c1 �→ p1}

END

Figure 9.1. A machine in the B language

Variables persons and contents, are typed as subsets of uninterpreted
carrier sets. Variable owner is a total surjection (denoted by �) from
contents to persons, thus establishing that each content item in the SN
belongs to a single user and that each user must own at least one content item.
Variable pages is a relation (denoted by ↔) giving, for each content item,
those users who have it in their pages. The invariant can also include
non-typing properties, expressed in set theory and predicate logic, such as the
assertion that any owned content must also belong to the page of the owner.

Operations are defined as “generalized substitutions”. A number of
constructs mimic the usual assignment notation, such as x := y + 1 for x
becomes equal to the current value of y plus one, or loose specifications such
as x :∈ S, for x becomes equal to some unspecified element of the set S. The
semantics of the operations is given by the weakest pre-condition. Operation
create_account(c1,p1) opens an account for user p1 with the initial content
c1. This content item is added to the set of items contents in the SN, and p1
is added to persons. Relations in B are sets of pairs, and a pair (a, b) is
written as a $→ b. Thus, substitution owner := owner ∪ {c1 $→ p1} adds pair
(c1, p1) to the owner relation.

Models in B must be proven correct. Correctness is defined by compliance
with proof obligations that are generated from the model. For example,

Translating B and Event-B Machines to Java and JML 217

machines generate proof obligations to show that (1) the state after the
initialization satisfies all invariants and (2) that the state transition computed
by each operation maintains each invariant property. B method tools such as
Atelier B [CLE 08] help the user discharge these proof obligations, either
automatically or with some interaction.

9.2.2. The Event-B method

The B method was conceived for modeling software systems in isolation.
For designing whole systems (software plus hardware devices), Abrial
developed the Event-B method [ABR 10a]. Event-B combines B with action
systems [BAC 91], a formalism describing the behavior of a system by the
(atomic) actions that the system carries out. An action system describes the
state-space of a system and the possible actions that can be executed in it. The
purpose of the Event-B method is thus to extend B to an action system that
can model in a single framework both the system and the way that it reacts to
its environment.

As in B, the state-space of the system is defined by a collection of
variables. Atomic actions, called events, are “triggered” as the system reacts
to its environment. The effect of each action is a transition in the state-space.
An Event-B model is comprised of a static and a dynamic part. The static part
defines the context of the system (constants and uninterpreted sets and their
properties) and the state-space (variables, their types and properties). The
dynamic part defines all possible events, including the event computing the
initial state. An event is comprised of a guard and an action. The guard
represents conditions that must hold in a state for the event to trigger. The
action computes new values for state variables, thus performing an observable
state transition. If the system reaches a state where no event guard holds, it
halts and is said to have deadlocked. There is no requirement that the system
should halt, and indeed, most Event-B models represent systems that run
forever. Additionally, the system may reach a state where the guards of more
than one event hold. In this situation, the system is said to be
non-deterministic: Event-B semantics allow any of the events whose guards
are satisfied to be triggered.

Figure 9.2 presents a simplified Event-B model of the SN system described
in section 9.2.1. The initialization (not shown) is as in Figure 9.1. Two events

218 Formal Methods Applied to Complex Systems

are shown: one that is triggered when any user uploads a new-content item
(the upload event), and the other triggered when a content item is hidden from
some user page (the hide event). The construct:

ANY x WHERE G(x, v) THEN v := A(x, v) END

specifies a non-deterministic event which can be triggered in a state where the
guard G(x, v) holds for some value x. When the event is triggered, a value for
x is non-deterministically chosen and the event action v := A(x, v) is executed
with x bound to that value. The correctness condition of the event requires
that, for any x chosen, the new value(s) of the state variable(s) computed by
the action of the event maintain the invariant properties of the machine. The
semantics of events thus models a system that is controlled by interactions
from the environment (i.e. user actions) that may occur at any time.

CONTEXT snctx
SETS

PERSON
CONTENTS

END

MACHINE snEvB SEES snctx
VARIABLES

persons, contents, owner, pages
INVARIANTS

persons ⊆ PERSON
contents ⊆ CONTENTS
owner ∈ contents� persons
pages ∈ contents↔ persons

EVENTS
event upload

ANY
c1 p1

WHERE
c1 ∈ CONTENTS

c1 �∈ contents
p1 ∈ persons

THEN
contents := contents ∪ {c1}
owner(c1) := p1
pages := pages ∪ {c1 �→ p1}

END

event hide
ANY

c1 p1
WHERE

c1 ∈ contents
p1 ∈ persons
c1 �→ p1 ∈ pages
owner(c1) = p1

THEN
pages := pages \{c1 �→ p1}

END

Figure 9.2. A simplified social networking machine in the Event-B language

There are some minor syntactic differences between the B and Event-B
languages. For example, in Event-B the “\” symbol is used for set difference.

Translating B and Event-B Machines to Java and JML 219

The example in Figure 9.2 uses the Rodin [ABR 10b] tool notation, where
predicates on different lines are implicitly conjoined and actions on different
lines are executed simultaneously.

9.2.3. JML

JML is an interface specification language for Java – it is designed for
specifying the behavior of Java classes, and is included directly in Java source
files using special comment markers //@ and /*@ */. JML’s type system
includes all built-in Java types and additional types representing mathematical
sets, sequences, functions and relations, which are represented as JML
specified Java classes in the org.jmlspecs.models package. Similarly, JML
expressions are a superset of Java expressions, with the addition of notations
such as ==> for logical implication, \exists for existential quantification,
and \forall for universal quantification.

JML class specifications can include invariants (assertions that must be
satisfied in every visible state of the class), initially clauses (specifying
conditions that the post-state of every class constructor must satisfy), and
history constraints (which are similar to invariants, with the additional ability
to relate pre- and post-states of a method). Concrete JML specifications can
be written directly over the fields of the Java class, while more abstract ones
can use specification-only model and ghost fields. Ghost fields are not
related to the concrete state of the class and can be declared final, while
model fields are related to implementation fields via a represents clause,
which acts much like a gluing invariant in B refinement.

JML provides pre-post style specifications for Java methods, using
keywords requires for pre-conditions, ensures for post-conditions, and
assignable for frame conditions (a list of locations whose values can change
from the pre-state to the post-state of a method). In an ensures clause, the
keyword \old is used to indicate expressions that must be evaluated in the
pre-state of the method – all other expressions are evaluated in the post-state.
The \old keyword can also be used in history constraints, providing a
convenient way to specify (for example) that the post-state value of a field is
always equal to the pre-state value, thus making the field a constant.

220 Formal Methods Applied to Complex Systems

Figure 9.3 presents a simple example of a JML specified Java abstract
class. This class defines bounded mathematical relations over the integers,
each represented by a JMLEqualsSet of pairs. Note that this specification is
for purposes of example only – the built-in class
JMLEqualsEqualsRelation contains a much more complete
implementation (and JML specification) of mathematical relations. The
history constraint (keyword constraint) specifies that the post-state value of
the relation for each method always contains the pre-state value, thus
preventing any pair from being removed from the relation. The invariant
specifies that the maximum size of any relation is 10 pairs, and the
initially clause specifies that a newly created BoundedRelation is always
the empty set.

The specification of the add method uses two specification cases: the first
specifying that a pair is added to the relation if it is not at capacity, and the
second specifying that attempting to add to a BoundedRelation that is
already at capacity has no effect. An assignable clause of \nothing prevents
any location from being modified from the pre- to the post-state. The
specification of the apply method demonstrates the syntax of existentially
quantified assertions in JML, and the use of exceptional_behavior
specification cases to specify when exceptions are to be thrown – in this case,
when the user attempts to apply a key that does not occur in the relation. Note
that if the same key maps to multiple values in a relation, the specification of
the apply method allows it to return any of those values.

9.3. Translating B to JML

The descriptions of B2Jml in this section (of both the translation that it
performs and of the tool itself) are adapted from [CAT 12].

9.3.1. The translation

We present the translation from B to JML using the B2Jml operator, which
takes B syntax as input and returns corresponding JML syntax. We define
B2Jml inductively via rewriting rules. Then we describe (in section 9.3.2) the
B2Jml tool that implements these translation rules.

Translating B and Event-B Machines to Java and JML 221

//@ model import org.jmlspecs.models.JMLEqualsSet;
//@ model import org.jmlspecs.models.JMLEqualsEqualsPair;

public abstract class BoundedRelation {
//@ public model JMLEqualsSet<

JMLEqualsEqualsPair<Integer, Integer» elems;
public static int MAXSIZE = 10;

//@ public constraint \old(elems).isSubset(elems);
//@ public invariant elems.int_size() <= MAXSIZE;
//@ public initially elems.isEmpty();

/*@ public normal_behavior
requires elems.int_size() < MAXSIZE;
assignable elems;
ensures elems.equals(\old(elems).insert(

new JMLEqualsEqualsPair(key, value)));
also requires elems.int_size() == MAXSIZE;

assignable \nothing;
ensures true; */

public abstract void add(Integer key, Integer value);

/*@ public normal_behavior
requires (\exists JMLEqualsEqualsPair<Integer,

Integer> p; elems.has(p); p.key.equals(key));
assignable \nothing;
ensures (\exists JMLEqualsEqualsPair<Integer,

Integer> p; elems.has(p); p.key.equals(key) &&
\result.equals(p.value));

also public exceptional_behavior
requires !(\exists JMLEqualsEqualsPair<Integer,

Integer> p; elems.has(p); p.key.equals(key));
assignable \nothing;
signals (IllegalArgumentException) true; */

public abstract Integer apply(Integer key);
}

Figure 9.3. A JML specification of an abstract class
representing bounded relations

9.3.1.1. Translating machines to classes

An entire B machine is translated to a JML-annotated Java abstract class
via rule M for B2Jml below. For simplicity, rule M considers machines with a
single-carrier set, constant, property, variable, assertion and non-initialization
operation – extending the rule to handle 0 or many of each of these components

222 Formal Methods Applied to Complex Systems

is straightforward, but requires minor additional mechanics. Rule M makes
heavy use of other rules for B2Jml, many of which are presented subsequently.

B2Jml(SETS s) = S B2Jml(INVARIANT I) = I
B2Jml(CONSTANTS c) = C B2Jml(ASSERTIONS A) = A
B2Jml(PROPERTIES P) = P B2Jml(INITIALISATION B) = B
B2Jml(VARIABLES v) = V B2Jml(OPERATIONS op = Q) = Q

(M)
B2Jml(MACHINE M

SETS s
CONSTANTS c
PROPERTIES P
VARIABLES v
INVARIANT I
ASSERTIONS A
INITIALISATION B
OPERATIONS op = Q

END) =
publicabstractclass M {

S C V P I A B

Q
}

As we have no information about the elements of carrier sets, they are
translated as final sets of integers. We use a JML ghost variable, because
JML model variables are not allowed to be final.

(Set)
B2Jml(SETS s)

=
/*@ publicfinal ghost

JMLEqualsSet<Integer> s; */

Constants are similarly translated as final ghost variables. We use the
TypeOf operator to translate an inferred B type to the corresponding JML type.

Translating B and Event-B Machines to Java and JML 223

Some of the rules defining TypeOf are presented at the end of this section.

TypeOf(c) = Type
(Cons)

B2Jml(CONSTANTS c)
=

//@ public static final ghost Type c;

Machine variables are translated to JML model variables, again with the
assistance of TypeOf.

TypeOf(v) = Type
(Var)

B2Jml(VARIABLES v)
=

//@ public model Type v;

Rule Inv translates B invariants to JML invariants, as both act as
constraints on states of the system being specified. Similarly, the rule for
translating B PROPERTIES clauses (not shown) produces a static JML
invariant constraining the values of ghost variables translated from constants.
As both B ASSERTIONS and JML redundant invariants are implied by
ordinary invariants, the rule for translating ASSERTIONS (not shown)
produces a JML invariant_redundantly clause. The Pred operator
translates a B expression to an equivalent JML expression. Several of the
rules defining Pred are presented at the end of this section.

Pred(I) = I
(Inv)

B2Jml(INVARIANT I) = //@ public invariant I;

A B INITIALIZATION clause is translated to a JML initially clause.
JML initially clauses are implicitly conjoined with the post-condition of
each class constructor, ensuring that any instance of a class resulting from the
translation performed by B2Jml is initialized in a manner consistent with the
machine initialization.

Pred(E) = E
(Init)

B2Jml(INITIALISATION v := E) =
//@ initially v.equals(E);

224 Formal Methods Applied to Complex Systems

9.3.1.2. Translating operations to methods

As shown in rule OP-PRE, a B operation defined using a PRE substitution
is translated to a Java method with a heavyweight JML specification. The
specification has two cases: (1) a normal_behavior case that specifies the
behavior of the method when the pre-condition of the B operation is satisfied,
and (2) an exceptional_behavior case that forces the method to signal an
exception when the B operation would abort. The effective pre-condition of a
JML method with multiple specification cases is the disjunction of the
pre-conditions of each specification case, so method specifications generated
by this translation rule have an effective pre-condition of true. Rules defining
the Mod operator (which collects the set of variables updated by a
substitution) are defined at the end of this section1.

Pred(P) = P Mod(S) = A B2Jml(S) = S
(OP-Pre)

B2Jml(OPERATIONS op = PRE P THEN S END)
=

/*@ public normal_behavior
requires P; assignable A;
ensures S;

also public exceptional_behavior
requires !P; assignable \nothing;
signals(Exception) true; @*/

publicabstractvoid op();

Translating a B operation defined using a substitution other than PRE is
simpler, as only one JML specification case is required.

B2Jml(Q) = Q Mod(Q) = A
(OP-NP)

B2Jml(OPERATIONS op = Q)
=

/*@ public normal_behavior
requires true; assignable A;
ensures Q;@*/

publicabstractvoid op();

1 The Mod operator is based on a similar operator defined within the Chase tool [CAT 03].

Translating B and Event-B Machines to Java and JML 225

We have also defined rules (not shown) for B operations with input
parameters, and for B operations with single and multiple output parameters.
These rules use the TypeOf operator to translate B types to JML types. In the
case of a B operation with multiple output parameters, the return type of the
resulting Java method is Object [].

Rules OP-Pre and OP-NP use the B2Jml operator to translate B
substitutions nested within operations. We present definitions of several of
these translation rules below.

Rule Sel translates a guarded substitution to a JML implication (==>). Rule
When generalizes Sel to consider two guards.

Pred(P) = P B2Jml(S) = S
(Sel)

B2Jml(SELECT P THEN S END) =
\old(P) ==> S

Pred(P) = P B2Jml(S) = S
Pred(Q) = Q B2Jml(T) = T

(When)
B2Jml(SELECT P THEN S WHEN Q THEN T END) =

(\old(P) ==> S) && (\old(Q) ==> T)

Rule Choice translates bounded choice substitutions, whose meaning is the
meaning of any of the nested substitutions.

B2Jml(S) = S B2Jml(T) = T
(Choice)

B2Jml(CHOICE S OR T END) = S || T

An ANY substitution is used to bind a variable x to any value that satisfies a
predicate P . If no value of x satisfies P , the substitution is equivalent to SKIP.
This semantics is realized in the JML translation by rule Any.

Pred(P) = P B2Jml(S) = S TypeOf(x) = Type
(Any)

B2Jml(ANY x WHERE P THEN S END) =
(\exists Type x; \old(P) && S) || (\forall Type x; !\old(P))

226 Formal Methods Applied to Complex Systems

Simple assignments are translated via rule Asg below. If variable v is of a
primitive (numeric or boolean type), == would be used rather than the equals
method.

Pred(E) = E
(Asg)

B2Jml(v := E) = v.equals(\old(E))

Simultaneous substitutions are translated as the conjunction of the
translation of the contained substitutions (rule Sim). Note that rules Sim and
Asg together correctly translate x := y || y := x to x.equals(\old(y)) &&
y.equals(\old(x)).

B2Jml(S) = S B2Jml(SS) = SS
(Sim)

B2Jml(S || SS) = S && SS

The language used in B expressions is essentially predicate logic and set
theory. In our translation, we represent sets, binary relations and binary
functions by the JML library model classes JMLEqualsSet,
JML-Equals-To-Equals-Relation, and JML-Equals-To-Equals-Map,
respectively. These classes test membership using the equals method of the
class that the elements belong to, rather than the Java == operator. B
expressions are translated to JML by means of the Pred operator. We present
several examples of rules defining the Pred operator below, where si’s are
sets and r is a relation.

Pred(s1) = s1 Pred(s2) = s2
(Subset)

Pred(s1 ⊆ s2) = s1.isSubset(s2)

Pred(x) = x Pred(s) = s
(Has)

Pred(x : s) = s.has(x)

Pred(r) = r Pred(s) = s
(Apply)

Pred(r[s]) = r.image(s)

TypeOf maps a B set type to the JML model class JML-Equals-Set, a
relation type to JML-Equals-To-Equals-Relation, and a function type to
JML-Equals-To-Equals-Map. As the types of B variables are specified

Translating B and Event-B Machines to Java and JML 227

implicitly (by stating membership in some possibly deferred set), the type
must be inferred from its usage within the machine. This type of inference
was already implemented in ABTools (the framework within which our
translation tool is implemented), so in the implementation we simply translate
from the representation of B types used by ABTools to the corresponding
JML types. We use library code to capture additional properties of B types.
For instance, given the B expression:

d ∈ P(NAT) ∧ r ∈ P(NAT) ∧ f ∈ d → r

which states that f is a total function from d to r, the type of f is translated as
JMLEqualsToEqualsMap<Integer, Integer> and the following is
generated as part of the class invariant:

(new Total<Integer, Integer>(d, r)).has(f)

Library class org.jmlspecs.b2jml.util.Total represents the set of all
total functions from the specified domain to the specified range, so the has
method returns true if and only if f is a total function from d to r.

The Mod operator collects the set of variables assigned by a substitution.
Mod was used in rules OP-Pre and OP-NP to construct the assignable clause,
which specifies the frame condition – which locations can change from the
pre-state to the post-state of a method. The most interesting rule for Mod is for
assignment substitutions as shown in rule ModAsg below.

(ModAsg)
Mod(v := E) = {v}

Variables introduced by a B VAR substitution are local to the substitution
and should not appear in an assignable clause.

Mod(S) = A
(ModVar)

Mod(VAR x IN S END) = A - {x}

The rules for Mod for other B substitutions simply collect the variables that
are assigned within those substitutions, and so are not presented here.

228 Formal Methods Applied to Complex Systems

9.3.2. The B2Jml tool

We have implemented the translation described in section 9.3.1 as the
B2Jml tool. More precisely, B2Jml is implemented as a processing option
within the ABTools [BOU 03] suite. Additional options within ABTools can
be used to generate refinement proof obligations from B machines, and to
translate B machines to ASCII, LATEX, HTML and XML formats. ABTools
also includes some preliminary support for generating C and Java
implementations from implementation machines. ABTools uses the
ANTLR [PAR 07] parser generator, and all processing options (including
B2Jml) are implemented as ANTLR tree walkers. Full source code for
ABTools and B2Jml is available at [BOU 13], and more information and
installation instructions for B2Jml can be found at:
http://poporo.uma.pt/favas/B2JML.html.

The B2Jml, Pred and Mod operators are realized as a single ANTLR tree
walker. As this walker traverses the abstract syntax tree that ABTools has
constructed for a B model, it generates the appropriate JML syntax for the
type of node being visited, and collects the variables modified by each B
operation as a side effect. Utility classes implement the B operators on
functions, relations and sequences that do not directly correspond to methods
of the JML model classes, as well as providing support for B typing via
classes such as org.-jmlspecs.-b2jml.-util.-Total as previously
described.

9.3.3. Case study: translating the B social networking model to JML

We have validated the B2Jml tool by using it to translate the social
networking model that was briefly described in section 9.2. This model
consists of an abstract machine that defines the social networking core and
five refinements that add features such as edit and view permissions, a notion
of principal content items for users and a wall for users to post comments on.
This model was not written with translation by B2Jml in mind, and makes use
of a wide range of B substitutions and operations on sets and relations. The
refinement machines do not become closer to an implementation machine as
they might in a typical B development – rather, each adds new features and
functionality.

Translating B and Event-B Machines to Java and JML 229

As an example of the kind of events that are included in this model,
Figure 9.4 presents the create_account and comment_wall events from the
fourth refinement machine. In this machine, variable wallcontents is the set
of content items that appear on walls, wall is a relation from wallcontents to
persons that determines which contents can be seen by which people,
wallaccess is a relation from persons to persons determining who has
rights to see someone else’s wall, and wallowner is a function from
wallcontents to persons that determines the owner of each content item.
The create_account event is a refinement of the corresponding event from
the most abstract machine (presented in Figure 9.1) that sets the new machine
variables added in intervening refinements appropriately. The
comment_wall event allows a person ow to post a comment cmt to
someone’s wall if they have access to that wall.

create_account(c1, p1) =
PRE

c1 '∈ wallcontents
THEN

contents := contents ∪ {c1} ||
persons := persons ∪ {p1} ||
owner := owner ∪ {c1 $→ p1} ||
pages := pages ∪ {c1 $→ p1} ||
viewp := viewp ∪ {c1 $→ p1} ||
editp := editp ∪ {c1 $→ p1} ||
principal := principal ∪ {c1} ||
required := required ∪ {c1} ||
wallaccess :=

wallaccess ∪ {p1 $→ p1}
END

comment_wall(ow, cmt) =
SELECT

ow : dom(wallaccess) ∧
cmt '∈ (contents ∪ wallcontents)

THEN
wallcontents :=

wallcontents ∪ {cmt} ||
wall := wall ∪

({cmt} ∗ wallaccess[{ow}]) ||
wallowner :=

wallowner ∪ {cmt $→ ow}
END

Figure 9.4. The create_account and comment_wall events from the
fourth refinement machine

Figure 9.5 contains the JML translation resulting from running the B2Jml
tool on the comment_wall event from Figure 9.4. As specified by the
translation rules in section 9.3, the SELECT substitution is translated as an
implication, and the simultaneous assignments are translated as a conjunction
of calls to equals methods specifying the post-state values of class fields

230 Formal Methods Applied to Complex Systems

(that were translated from machine variables). ModelUtils is a library class
that contains static helper methods such as toSet (which converts a relation
or map to a set of pairs) and maplet (which creates a pair from two values).

/*@public normal_behavior
requires true;
assignable wallcontents, wall, wallowner;
ensures (\old(wallaccess.domain().has(ow) &&

!contents.union(wallcontents).has(cmt)) ==>
(wallcontents.equals(\old(wallcontents.union(
ModelUtils.toSet(cmt)))) &&

wall.equals(\old(wall.union(
ModelUtils.cartesian(ModelUtils.toSet(cmt),
wallaccess.image(ModelUtils.toSet(ow)))))) &&

wallowner.equals(\old(wallowner.union(
ModelUtils.toRel(ModelUtils.maplet(cmt,ow))))))

); */
public abstract void comment_wall(Integer ow, Integer cmt);

Figure 9.5. The JML translation of the comment_wall event from Figure 9.4
as produced by the B2Jml tool

As a further validation step, we syntax and type-checked the JML
translations of all six B models using OpenJml [COK 11]. This process
uncovered a few errors in B2Jml, largely related to the type inference
performed by ABTools. After correcting these errors, we translated the JML
translation of the fourth refinement machine to a constraint program using the
jmle tool [KRA 06, CAT 09]. jmle translates JML specifications to Java
classes in which the functionality of each method is implemented by a
constraint program generated from that method’s specification. These
constraint programs are executed using the Java constraint kit
(JCK) [ABD 02], so all parts of the system are implemented in Java. Thus,
the class generated by jmle is a pure Java implementation of the JML
specification (which is in turn a model of the B machine in this case),
although significantly larger and slower than a hand-coded implementation.

Our next step was to implement JUnit test cases for the translation of the
fourth refinement machine. We initially tried using the fifth (last) refinement,
but that model contains a constant definition that jmle cannot execute. The
test cases for each method were used to check that the behavior of the Java
translation matches that of the original B event, confirming (albeit in a

Translating B and Event-B Machines to Java and JML 231

somewhat indirect manner) that the translation performed by B2Jml is correct
for the given inputs. An example of a test case for the comment_wall method
(as translated from the corresponding event) is presented in Figure 9.6.
Because the translation of a B machine is an abstract Java class, we also
needed to implement a simple implementation class that inherits from that
class and overrides all of the abstract methods. These overriding methods
provide no additional functionality – they are needed only for correct
compilation, and in fact they have no specifications and their bodies are
empty. The testNet variable in Figure 9.6 is an instance of this class. We did
add simple accessor methods for the fields of the class so that the test cases
could check the correctness of the states resulting from executing the
translated methods. The create_account method called here is translated
from the corresponding B event in Figure 9.4 and is used to create a state that
satisfies the guard of the comment_wall event.

@Test
public void testCommentWall() {

testNet.create_account(0, 3);
testNet.comment_wall(3, 1);
Assert.assertTrue(testNet.getWallContents().has(1));
Assert.assertTrue(testNet.getWall().has(1,3));
Assert.assertTrue(testNet.getWallOwner().has(1,3));

}

Figure 9.6. A sample JUnit test case for the translation
of the comment_wall event

Using jmle to execute the JML specifications generated by B2Jml revealed
some additional errors in the implementation of B2Jml. Most notably, the
parameters to the B; (relational composition) operator were being passed to
the compose method of class JMLEqualsToEqualsRelation (used as the
type of B relations in the translation) in reverse order. More significantly,
using B2Jml and jmle together in this manner revealed several areas in which
the B model was incomplete. For example, one case in the translation of the
delete event could not be tested, because no combination of uses of other
events in the model could create a state that satisfied the guard of the SELECT
substitution in that event. This incompleteness can easily be remedied by
adding an appropriate event to the B model. The test cases written for the
classes generated by B2Jml and jmle can be applied to a hand-coded
implementation of the B model directly, providing an easy check of the
correctness of such a model. More generally, using B2Jml and jmle together

232 Formal Methods Applied to Complex Systems

provides a quick method for generating a prototype from a B model written at
a high level of abstraction, which is useful in the development of the model
itself and of code that will interact with the final implementation of the model.

EB2Prog(sets s) = S
EB2Prog(constants c) = C
EB2Jml(axioms X(s, c)) = X
EB2Jml(theorems T (s, c)) = T
EB2Java(variables v) = V
EB2Jml(invariants I(s, c, v)) = I
EB2Prog(events e) = E
EB2Jml(event initialisation then A(s, c, v) end) = I1
EB2Java(event initialisation then A(s, c, v) end) = I2

(M)
EB2Prog(machine M sees C

variables v
invariants I(s, c, v)
event initialisation then A(s, c, v) end
events e

end) =
E
publicclass M{
X T I

S C V

/*@ requirestrue;
assignable \everything;
ensures I1;*/

public M(){
I2
//Javacodethatcreatesspawnsallevents

}
}

Figure 9.7. The translation of machine M , and the context C that M sees

9.4. Translating Event-B to JML and Java

The translation from Event-B to JML-annotated Java programs presented
in this section and the description of the EventB2Java tool are based on the
work introduced in [RIV 14]. The translation (presented in section 9.4.1) uses
a collection of translation operators (primarily EB2Prog) that are defined via

Translating B and Event-B Machines to Java and JML 233

syntactic rules as in section 9.3. The EventB2Java tool2 (presented in section
9.4.2) implements the EB2Prog rules. When using this tool, we can opt to
discharge all proof oblitations of the Event-B model (e.g. in Rodin) before
translating it, or translate the Event-B model with undischarged proof
obligations for developmental or experimental purposes. We assume that all
proof obligations are discharged before generation of specifications and code
that are intended for “production” use, and so do not consider Event-B
constructs such as witnesses or variants that are useful only for verification
purposes in the translation.3

9.4.1. The translation

The translation is realized through syntactic rules, and implemented with
the aid of an EB2Prog operator that translates an Event-B machine and any
context that it sees to a JML-specified Java class implementation. EB2Prog
relies on the operators EB2Java and EB2Jml to generate Java code and JML
specifications, respectively. For example, EB2Java translates machine
variables as Java class attributes, and EB2Jml translates Event-B machine
invariants as JML class invariants. In turn, these two operators rely on helper
operators TypeOf, Mod and Pred, which are analogous to the operators of the
same names introduced in section 9.3. Several rules make use of classes BSet
and BRelation, which implement sets and relations in Java. More detail on
these classes is presented in section 9.4.2.2.

Figure 9.7 presents Rule M, which translates a machine M that sees
context C (not shown). An Event-B machine is translated as a JML-specified
Java class, and the translation of the machine incorporates the translation of
each context that the machine sees. Therefore, the Java class includes the
translation of carrier sets, constants, axioms and theorems (declared in the
contexts), and variables and invariants (declared in the machine). In Event-B,
all components of a refined machine are included in a refinement machine,
either explicitly (variables, initializations, guards and actions of a refining
event defined using refines) or implicitly (invariants, guards and actions of a
refining event defined using extends). Hence, a refinement machine can be

2 Available at http://poporo.uma.pt/Projects/favas/EventB2Java.html
3 A witness contains the value of a disappearing abstract event variable, and a variant is an
expression that should be decreased by all convergent events.

234 Formal Methods Applied to Complex Systems

translated in exactly the same manner as an abstract machine, as long as all
included components from refined machines are included and translated.

The distinguished machine initialization event is translated as the
constructor of the class obtained via translation of the machine. The
constructor includes a JML post-condition that specifies the initial values of
the class attributes. As shown in Rule Any below, each non-initialization
event is translated as a Java class that extends class Thread. As each of these
classes needs access to the translations of the machine variables, they each
have a reference to the same instance of class M (see object reference m in rule
Any below).

In Event-B, an event can only execute when its guard is satisfied, and
events execute atomically – which is, only one event can be executing at any
point in time. To facilitate modeling this behavior, the subclass of Thread that
is generated for each event evt includes three methods: a guard_-evt
method that tests if the guard of the event evt holds, a run_-evt method that
models the execution of evt, and a run() method that implements Lamport’s
Bakery algorithm for the critical section [LAM 74]. For efficiency (and to
better match the semantics of Event-B), we allow multiple guard_-evt
methods (for different events) to execute concurrently. The actions of an event
are only executed if its guard is satisfied and no other event is executing, and
so those actions may not be executed even when the corresponding
guard_-evt method has been called and returns true.

In rule Any, expression GuardValue<Type>.-next() returns a value of
type Type that satisfies the guard event. Variables bounded by an any
construct are translated as parameters of the run_-evt and guard_-evt
methods. As described in section 9.3, the helper operator Mod calculates the
set of variables assigned by the actions of the event, which are then listed in
the assignable clause of the JML specification. Operator Pred translates an
Event-B predicate or expression to its JML counterpart. The JML
specification of run_evt uses two specification cases. In the first case, the
translation of the guard is satisfied and the post-state of the method must
satisfy the translation of the actions. In the second case, the translation of the
guard is not satisfied, and the method is not allowed to modify any fields,
ensuring that the post-state is the same as the pre-state. This matches the
semantics of Event-B: if the guard of an event is not satisfied, the event
cannot execute and hence cannot modify the system state. Since the effective

Translating B and Event-B Machines to Java and JML 235

pre-condition of a JML method with multiple specification cases (separated
by also in JML) is the disjunction of the pre-conditions of each case, the
pre-condition of a run_evt method is always true. Hence, even though we
translate guards as pre-conditions, no method in the translation result has a
pre-condition. Rather, the translation of the guard determines which behavior
the method must exhibit.

EB2Jml(A(s, c, v, x)) = A EB2Java(A(s, c, v, x)) = B
TypeOf(x) = Type Pred(G(s, c, v, x)) = G
Mod(A(s, c, v, x)) = D

(Any)
EB2Prog(event evt any x where G(s, c, v, x)

then A(s, c, v, x) end) =
publicclass evt extends Thread{
/*@spec_public*/ private Mm; privateint eventId;

/*@ requirestrue; assignable \everything;
ensures this.m==m && this.eventId==i;*/

public evt(Mm, int i){ this.m=m; this.event=i; }

/*@ requirestrue; assignable \nothing;
ensures \result<==>G;*/

privateboolean guard_evt(Typex){ returnG; }

/*@ requires guard_evt(x);
assignable D;
ensures A;
also

requires !guard_evt(x);
assignable \nothing;
ensures true;*/

private void run_evt(Typex){ if (guard_evt(x)){B} }

publicvoid run(){
while(true){

. . .
Typex=GuardValue<Type>.next();
if (guard_evt(x)){
m.util.lock(event);
run_evt(x);
m.util.unlock(event);

}
. . .

}
}

}

236 Formal Methods Applied to Complex Systems

In Event-B, every event must maintain the machine invariant. In JML,
invariants state properties that must hold in every visible system state,
specifically after the execution of the class constructor and after a method is
invoked. This is semantically equivalent to conjoining the invariant to the
post-condition of each method and the constructor. Since the initialisation
event translates to the post-condition of the class constructor, and the actions
of every other type of event translate to the post-condition of an atomic
run_evt method, we translate Event-B invariants as JML invariants.

Pred(I(s, c, v)) = I
(Inv)

EB2Jml(invariants I(s, c, v)) =
//@ publicinvariant I;

As axioms are often used to specify properties of constants, they are
translated as invariants. In Event-B, theorems should be provable from
axioms, matching the semantics of the invariant_redundantly clause in
JML.

Pred(X(s, c)) = X
(Axiom)

EB2Jml(axioms X(s, c)) =
//@ publicinvariant X;

Pred(T (s, c)) = T
(Thm)

EB2Jml(theorems T (s, c)) =
//@ publicinvariant_redundantly T;

Carrier sets are translated as class attributes with the addition of a JML
history constraint that prevents any change in their values. As no
information about the type of the carrier sets is available, they are simply
translated as sets of integers.

EB2Jml(sets s) = SS EB2Java(sets s) = SC
(Set)

EB2Prog(sets s) =
SS
SC

Translating B and Event-B Machines to Java and JML 237

(Set)
EB2Java(sets s) =
publicstaticfinal BSet<Integer>s=
new BSet<Integer>(new Range(
Integer.MIN_VALUE,Integer.MAX_VALUE));

(Set)
EB2Jml(sets s) =
//@ publicconstraint s.equals(\old(s));

Translation of constants follows the same pattern, except that the values of
constants are constrained by axioms. In particular, we omit the rule for
EB2Prog that translates constants, as it simply calls EB2Jml and EB2Java and
combines the results as above. The helper operator TypeOf translates the type
of an Event-B variable or constant to the Java representation of that type.
Value<Type>.-next() returns a value of type Type that satisfies the axioms
defined in the context the machine sees.

(Cons)
EB2Jml(constants c) =
//@ publicconstraint c.equals(\old(c));

TypeOf(c) = Type v=Value<Type>.next()
(Cons)

EB2Java(constants c) =
publicstaticfinal Typec=v;

Machine variables are translated as class attributes. The JML keyword
spec_public makes a protected or private attribute or method public
to any JML specification.

TypeOf(v) = Type
(Var)

EB2Java(variables v) =
/*@ spec_public */private Typev;

Deterministic and non-deterministic assignments are translated as
follows4. The symbol: | represents non-deterministic assignment.

4 Note that EventB2Java does not yet support non-deterministic assignments.

238 Formal Methods Applied to Complex Systems

Non-deterministic assignments generalize deterministic assignments (formed
with the aid of :=), e.g. v := v+w can be expressed as v : | v	 = v+w. Note
that machine variables are referenced from class evt via the field m (of type
M), which requires the use of mutator methods in the generated Java code.

Pred(E(s, c, v)) = E
(Asg)

EB2Jml(v := E) = m.v.equals(\old(E));

Pred(E(s, c, v)) = E
(Asg)

EB2Java(v := E) = m.setV(E);

Pred(P (s, c, v, v)) = P TypeOf(v) = Type
(NAsg)

EB2Jml(v : | P) =
(\exists Type v’; \old(P) && m.v.equals(v’))

Multiple actions in the body of an event are translated individually and the
results are conjoined, e.g. a pair of simultaneous actions x := y and y := x is
translated to the JML post-condition x == \old(y) && y == \old(x) for
variables x and y of type integer. This translation correctly models
simultaneous actions as required by the semantics of Event-B. In the Java
translation, simultaneous assignments are implemented by first calculating the
value of each right hand side of the assignment into a temporary variable.

9.4.2. The EventB2Java tool

The EventB2Java tool is a Rodin [ABR 10b] plug-in that implements the
translation described in section 9.4.1. Rodin is an open-source Eclipse IDE
for Event-B that provides a set of tools for working with Event-B models, e.g.
an editor, a proof generator and several provers. Rodin provides an API for
the data model and persistence layer that allows plug-ins to work with
Event-B components. The data model is composed of a series of Java
interfaces for manipulating these components, and the persistence layer
(called the Rodin database) uses XML files to store them. It is intended to
abstract the concrete persistence implementation from the data model.
EventB2Java uses the Rodin API to collect all components of the machine to
be translated, e.g. carrier sets, constants, axioms, variables, invariants and

Translating B and Event-B Machines to Java and JML 239

events, as well as all the necessary information (such as the gluing invariant)
from the refined machines. All this information is stored in the Rodin
database. EventB2Java parses expressions and statements as abstract syntax
trees using the AST library provided by Rodin. The Rodin API also provides
a library to traverse trees (a tree walker) and to attach information to tree
nodes. The bulk of the implementation of EventB2Java is realized through the
extension of the walker to generate Java code and JML specifications. Since
Event-B includes mathematical types that are not built-in to Java or JML, we
implemented them as Java classes (see section 9.4.2.2). The implementation
allows EventB2Java to support the static part of Event-B’s syntax. We also
implemented a utility class that constructs and stores variable types in Java
from the model in Event-B.

As described in section 9.4.1, EventB2Java translates Event-B events to
subclasses of class Thread. Event actions are executed sequentially for the
event in the critical section. In Event-B, non-mutually exclusive event guards
allow the interleaving of the execution of events whereas mutually exclusive
guards force events to run sequentially. EventB2Java translates the latter case
without overriding the run() method, forcing the implementation to run
sequentially. As such, EventB2Java can generate both multi-threaded and
sequential Java implementations of Event-B models.

The EventB2Java tool is available at http://poporo.uma.pt/Projects/favas/
EventB2Java.html. This web site includes detailed instructions on how to
install and use the tool. The EventB2Java plug-in’s update site is
http://poporo.uma.pt/Projects/EventB2JavaUpdate, and EventB2Java has
been tested on Rodin version 2.8.

9.4.2.1. EventB2Java tool usage

In a typical interaction with EventB2Java, a user right-clicks an Event-B
machine in the Explorer panel of Rodin and selects “translate to
multi-threaded Java” or “translate to sequential Java”. EventB2Java generates
an Eclipse project that includes the JML-annotated Java implementation of
the machine and the libraries needed to execute the Java code. This Eclipse
project is available in the “resource” perspective of Rodin. The Eclipse
project includes a folder that contains the generated code, and an
“eventb_-prelude” sub-folder that contains the libraries implementing sets
and relations in Java (see section 9.4.2.2).

240 Formal Methods Applied to Complex Systems

9.4.2.2. Java implementation of Event-B mathematical notations in
EventB2Java

The Event-B modeling language is composed of five mathematical
languages (see Chapter 9 of [ABR 10a]):

– a Propositional Language,

– a Predicate Language,

– an Equality Language,

– a Set-Theoretic Language, and

– Boolean and Arithmetic Languages.

Each language defines a series of constructs to model systems. To provide
support for the translation from Event-B, we have implemented a series of
JML-specified Java classes; other Event-B constructs are supported natively
in Java. These classes are: BOOL, INT, NAT, NAT1, Enumerated, Pair, BSet,
BRelation and ID (implementing, respectively, booleans, integers, natural
numbers with and without 0, the enumerated type, pairs of elements, sets,
relations, and the identity relation). BSet is implemented as a subclass of the
standard Java class TreeSet, and BRelation as a set of pairs. We had
previously implemented versions of these classes for the translation from B to
JML as described in section 9.3.

Some of the constructs of the Propositional Language are supported
natively in Java. The negation ¬ translates as !, the conjunction ∧ as &&, the
disjunction ∨ as ||. Other constructs such as ⇒ and ⇔ are implemented as
methods of the class BOOL. The Predicate Language introduces constructs for
universal and existential quantification. Universal and existential quantified
predicates ∀ x · (P) and ∃ x · (P) are translated as the JML universal and
existential quantified expressions (\forall T x; P) and (\exists T x; P),
respectively, where P is the JML translation of P . The Predicate Language
also includes a construct e $→ f that maps an expression e of type E into an
expression f of type F . EventB2Java translates this construct as an instance
of Pair<E,F>.

The Event-B Equality Language introduces equality predicates E = F for
expressions E and F , translated as E.equals(F), if E and F are object
references, or E == F, if they are of a primitive type. The Set-Theoretic

Translating B and Event-B Machines to Java and JML 241

Language introduces sets and relations in Event-B. Set operations include
membership (∈), cartesian product (×), power set (P), inclusion (⊆), union
(∪), intersection (∩) and difference (\). These operations are all implemented
as methods of the class BSet. Relations in Event-B include operations for
domain restriction (�), range restriction (�), etc. All these operations are
implemented as methods of the class BRelation. Relations also include
notations for surjective relations ↔→, total surjective relations ↔↔, functions,
etc. EventB2Java translates all these as instances of BRelation with JML
invariants that constrain the domain and the range of the relation, e.g. a total
function is a relation in which each element in the domain is mapped to a
single element in the range.

The Boolean and Arithmetic Languages define the set BOOL, containing
elements TRUE and FALSE, Z, containing the integer numbers, N, containing
the natural numbers (0 inclusive), and N1, containing the natural numbers (0
exclusive). EventB2Java includes implementations of these constructs in Java,
namely, classes BOOL, INT, NAT, and NAT1. The Arithmetic Language defines
constructs over numbers. Operators such as ≤, ≥, etc. are directly mapped
into Java operators <=, >=, etc. The construct a .. b, which defines an interval
between a and b, is implemented as an apropriate instance of the class
Enumerated.

9.4.2.3. Support for Event-B model decomposition

When modeling systems with Event-B, we usually start with the design of
a single closed machine that includes both the modeling of the system and the
surrounding environment. The machine is then refined into a more concrete
model of the system. Abstract machines usually include few events and
variables, while (elaborated) refinements include many more of each. This
complicates both defining additional refinements and discharging proof
obligations in Rodin. Thus, a machine decomposition mechanism that helps
the user understand, which variables and events are actually involved in a
given refinement step is needed. This raises the question of whether code
generation for decomposed machines is feasible. In [ABR 07], Abrial and
Hallerstede propose a technique for machine decomposition based on shared
variables in which each decomposed machine simulates the behavior of other
decomposed machines through the use of external events. In [BUT 09],
Butler proposes a technique for machine decomposition by shared events in
which decomposed machines include copies of all variables used by events.

242 Formal Methods Applied to Complex Systems

This latter technique is implemented in Code Generation [EDM 10]. Both
machine decomposition techniques produce independent machines that
include local copies of shared variables, or local events that simulate the
effect of other decomposed machines acting on the shared variables. As such,
the decomposed machines are independent, and the EventB2Java tool can
generate Java implementations for them in a straightforward manner.

9.4.2.4. Support for code customization

The JML specifications generated by EventB2Java enable users to write
bespoke Java implementations of the machine that was translated by
EventB2Java. Thus, the user may customize part or all of the generated
implementation, and then use an existing JML tool such as OpenJML
[COK 11] to verify the customized implementation against the JML
specification generated by the EventB2Java tool. Of course, this only
guarantees that the implementation is a refinement of the Event-B model if
the translation from Event-B to JML is sound. A soundness proof of this
translation is presented in [CAT 13]. The soundness proof ensures that any
state transition step of the JML semantics of the translation of some Event-B
construct into JML can be simulated by a state transition step of the Event-B
semantics of that construct. All steps in the proof are modeled in Event-B and
implemented in Rodin. The soundness condition just described is stated as a
theorem and proved interactively in Rodin.

9.4.3. Case Study: translating the Event-B social networking model to Java
and JML

We have validated the EventB2Java tool by using it to translate an Event-B
model for a social-event planner. This model is an Event-B adaptation of the
B social network (SN) model that was described in sections 9.2.1 and 9.3.3.
The social-event planner model adds the ability for users in the SN to define
social-events (e.g. parties, meetings), to share contents among the invited
people (e.g. comments, pictures), to invite people in the SN to a social-event,
to grant permission to invite more users, and for an invitee to reply to the
social-event (e.g. yes, no, maybe). The social-event planner Event-B model
consists of an abstract machine and five refinements that model the SN (these
first six machines are the adaption from the B SN). We then added three
refinements that define the features of the social-event planner explained
above. We could have translated the adaptation of the SN in Event-B to Java

Translating B and Event-B Machines to Java and JML 243

using the EventB2Java tool and then added the features of the social-event
planner in Java, but this approach would not ensure that the social-event
planner is a refinement of the original SN model. Hence, we used Event-B to
define the core functionality of the social-event planner, discharged the
refinement proof obligations, used EventB2Java to generate Java code for the
model, and then hand-coded the graphical interface and other non-core
features in Java.

Figure 9.8 presents the create_account and create_social_event events
from the sixth refinement machine (social_events), which is the first
refinement to include features of the social-event planner. The
create_account event is an adaptation of the create_account operation in
the SN B model (see Figure 9.4). This machine “sees” context c (not shown
here) that defines carrier set EVENTS (possible social-events within the SN),
and extends carrier sets PERSON and CONTENTS (as before, the potential
persons and content items in the SN). The Event-B variable persons contains
the actual people in the network, contents defines the actual contents in the
network (e.g. a comment or picture), and owner maps a content item to the
person who owns it. This variable is defined as a function, so a content item is
owned by one person. Variable pages represents the content items stored in
person’s pages. Variables editp and viewp represent view and edit
permissions on content items. Variables principal and required store
principal and required content items. Variable wallaccess maps users to
users, determining who has access to someone else’s wall. Finally, sevent is
the set of the actual Social-Events in the SN, and eventowner maps an
existing social-event to its owner. The create_account event defines the
behavior of the network when a new user creates an account. The new user p1
is added to the network with a new principal and required content item c1.
Additionally, p1 owns c1, c1 is one of the pages of p1, and p1 has view and
edit permissions on c1. Hence, the pair {c1 $→ p1} is added to each of the
corresponding variables. The create_social_event event in Figure 9.8
specifies the behavior of the network when a user (pe) (who is already present
in the network) creates a social-event (se). The event adds a new social-event
and associates it with its owner.

After discharging all proof obligations for the Event-B model, we
translated it to Java using EventB2Java. The EventB2Java tool generates one
Java class (not shown here) containing the translation of the carrier sets,
constants and variables (with their respective initializations), and the Event-B

244 Formal Methods Applied to Complex Systems

invariant. The tool also generates a Java Thread implementation for each
machine event, as specified by the rules in section 9.4. Figure 9.9 presents the
translation of the event create_social_event in Figure 9.8 to Java5, where m
is a reference to the machine class implementation and eventId is the event
identifier. Methods guard_create_social_event and
run_create_social_event implement the behavior of
create_social_event in Java. The first method checks the event guard, and
the second method may execute when that guards hold. Whether
run_create_social_event executes when guard_create_social_event
holds is determined by the run() method of create_social_event in
coordination with the respective run() methods of all existing events. The
implementation of run() methods respects Event-B semantics for the
execution of events: the guards of two or more events can be evaluated
concurrently, whereas only one event can execute (its critical section) at any
point. This ensures that events execute monotonically.

create_account
any c1 p1
where
grd1p1 ∈ PERSON\persons
grd2c1 ∈ CONTENT\contents
then
act1contents := contents ∪ {c1}
act2persons := persons ∪ {p1}
act3owner := owner ∪ {c1 $→ p1}
act4pages := pages ∪ {c1 $→ p1}
act5viewp := viewp ∪ {c1 $→ p1}
act6editp := editp ∪ {c1 $→ p1}
act7principal := principal ∪ {c1}
act8required := required ∪ {c1}
act9wallaccess := wallaccess

∪{p1 $→ p1}
end

end

create_social_event
any pe se
where
grd1pe ∈ persons
grd2se '∈ sevents
then
act1events := sevents ∪ {se}
act2eventowner(se) := pe

end
end

Figure 9.8. The create_account and create_social_event events from the
social_events refinement of the Social-Event Planner Event-B model

5 The actual code generated by EventB2Java uses getters and mutators for variables defined in
machine implementation m.

Translating B and Event-B Machines to Java and JML 245

public class create_social_event extends Thread{
private social_events m; private int eventId;

/*@ requires true; assignable \everything;
ensures this.m == m && this.eventId == i; */

public create_social_event(socialevents m, int i) {
this.m = m; this.eventId = i;

}

/*@ requires true; assignable \nothing;
ensures \result <==> (machine.get_persons (). has(pe)
&& !machine.get_sevents (). has(se)); @*/

private boolean guard_create_social_event(Integer pe, Integer se) {
return (machine.get_persons (). has(pe)

&& !machine.get_sevents (). has(se));
}

/*@ requires guard_create_social_event(pe ,se);
assignable m.sevents , m.eventowner;
ensures m.get_sevents (). equals(\old((m.get_sevents ()

.union(new BSet <Integer >(se)))))
&& m.get_eventowner (). equals (\old((m.get_eventowner ()

.override(new BRelation <Integer ,Integer >(
new Pair <Integer ,Integer >(se ,pe))))));

also
requires !guard_create_social_event(pe,se);
assignable \nothing;
ensures true; @*/

private void run_create_social_event(Integer pe , Integer se){
if(guard_create_social_event(pe ,se)) {
BSet <Integer > sevents_tmp = m.get_sevents ();
BRelation <Integer ,Integer > eventowner_tmp = m.get_eventowner ();

m.set_sevents ((sevents_tmp.union(new BSet <Integer >(se))));
m.set_eventowner ((eventowner_tmp.override(

new BRelation <Integer ,Integer >(new Pair <Integer ,
Integer >(se,pe)))));

}
}

public void run() { ... }
}

Figure 9.9. Translation of event create_social_event

Variables contents_tmp, pages_tmp, etc., hold temporary values of
variables contents, pages, etc., respectively. EventB2Java uses these
temporary values to implement simultaneous assignment in Java.

246 Formal Methods Applied to Complex Systems

Figure 9.10. Part of the user interface for the social-event planner

As a validation step of the translation performed by EventB2Java, we
syntax and type-checked the generated Java code and JML specifications
using Eclipse and the OpenJML tool. This process revealed some errors in
EventB2Java related to the translation of Event-B types to Java. It also
uncovered an error in the translation of Event-B invariants involving relations
and functions to JML invariants. After correcting these issues in the
EventB2Java tool, we generated JML-specified Java code for all nine
machines in the social-event planer. Next, we extended this core functionality
to realize a usable version of the social-event planner as an Android
application. The application uses the model-view-controller (MVC) design
pattern, with the code generated by EventB2Java as the model. The controller
(hand-implemented in Java) uses the generated getter and setter methods to
communicate with the model. The view was developed using the Android
API. Figure 9.10 shows the screen of the Android interface that lists
social-events for one user.

Translating B and Event-B Machines to Java and JML 247

We have further validated the EventB2Java tool by applying it to
the Event-B models available at: http://poporo.uma.pt/Projects/favas/
EventB2Java.html. See [RIV 14] for further details on this work. In addition,
we used EventB2Java to generate Java code for an Event-B model of
Tokeneer (a security-critical access control system), and then implemented a
suite of JUnit Tests for the generated code. Even though we had discharged
all proof obligations for the model before translation, the tests uncovered
some issues with the behavior of the system. To address these problems, we
made improvements to the Event-B model, translated it to Java and re-ran the
JUnit tests, repeating these steps until all tests passed successfully. This
experiment provides a high degree of confidence in the system since the
model is correct (all proof obligations were discharged), and the generated
code behaves as expected (all JUnit tests passed). See http://poporo.uma.pt/
Tokeneer.html for more information on this experiment.

9.5. Future work and conclusion

One potential weakness of our approach is that the JML specifications
produced by both tools make extensive use of custom library classes
representing B and Event-B mathematical types, as do the Java
implementations produced by EventB2Java. It could be argued that
understanding the behavior of these library classes is just as difficult as
learning the mathematical notations of B and Event-B. While we have not
studied this issue systematically, our experience suggests that it is not a
serious problem in practice. Students who have worked with the JML
specifications produced by B2Jml and EventB2Java have not had undue
difficulty in understanding them, even when those students had no previous
experience with B. We attribute this in part to the fact that B mathematical
operators are translated to Java methods with meaningful names, and that the
JML specifications and Java implementations of those methods are available
for reference. Additionally, students who built Android applications around
Java code generated by EventB2Java had no apparent difficulties in
understanding and using that code. A master’s student was able to implement
a car racing game in Android [PER 12] following the MVC design pattern.
The model code was automatically generated from an Event-B machine using
an earlier version of EventB2Java, while the view and controller parts were
manually implemented. A first year PhD student repeated a similar
experiment with a social-event planner application for Android [RIV 12]. In

248 Formal Methods Applied to Complex Systems

our view, EventB2Java allows people from different backgrounds to use
formal (e.g. Event-B and refinement calculus) and less-formal (e.g. design of
interfaces) techniques together.

One important area for future work is proving the soundness of our
translations – this is critical for ensuring that the resulting implementation is
in fact a refinement of the original model. We have produced an initial version
of this proof for the JML translation performed by EventB2Java [CAT 13],
but do not yet have a corresponding proof for B2Jml. The EventB2Java
soundness proof was accomplished by embedding the translation and the
semantics of JML and Event-B in Event-B itself, stating the soundness result
as a theorem, and proving that theorem using the interactive prover in Rodin.
Because of this embedding step, this proof shows the soundness of an
Event-B axiomatization of the translation algorithm, rather than the algorithm
itself. As such, we are considering alternate approaches that could be applied
directly to our formulation of the translation algorithm as rewriting rules.
Ideally, such an approach could also be used to prove the soundness of the
translation performed by B2Jml.

We would also like to perform larger scale case studies in order to validate
and refine our approach. In the case of B2Jml, we have not (yet) used the tool
to develop a larger scale system, and so have limited experience in verifying
hand-coded implementations against JML specifications produced by the tool.
Such a study would give us significantly more insight into how to use
refinement calculus and design-by-contract approaches together in practice,
and would help in uncovering any remaining inconsistencies in the translation
algorithm or errors in its implementation. We have considerably more
experience using EventB2Java in system development – one author regularly
has students in his classes use EventB2Java to generate code for parts of
Android applications – but largely in the context of smaller, “academic”
applications. Applying EventB2Java in the development of an industrial scale
would surely yield additional insights into its usability and effectiveness,
particularly in cases where the implementation is hand-coded and verified
against the generated JML specification.

The B2Jml and EventB2Java tools represent our efforts to bridge the
refinement calculus and design-by-contract approaches to formal software
development – in particular, to take advantage of the strengths and avoid the
weaknesses of each approach. Using B or Event-B in the early stages of the

Translating B and Event-B Machines to Java and JML 249

process gives developers excellent support for modeling software systems in
an abstract manner, and particularly for verifying safety, security and
correctness properties of those models. Transitioning to JML/Java at an
appropriate point (as determined by the developers themselves, rather than
being dictated by the tools being used) allows developers to take full
advantage of data structures and APIs in the implementation language, and
permits engineers with less mathematical expertise to contribute earlier in the
development process. The EventB2Java tool is particularly noteworthy for its
ability to generate executable code directly from abstract Event-B models,
while still providing the option to produce a hand-coded Java implementation
and verify it against a JML specification. We believe that tool support of this
nature is a necessary pre-condition for combining formal method approaches
in practice – hand translation is very time-consuming and introduces so many
opportunities for human error. Our research efforts going forward are
intended to ensure the soundness of the tools that we have developed, and to
refine our tools to enhance their usefulness in practice.

9.6. Bibliography

[ABD 02] ABDENNADHER S., KRÄMER E., SAFT M., et al., “JACK: a Java
constraint kit”, HANUS M. (ed.), Electronic Notes in Theoretical Computer
Science, Elsevier, vol. 64, 2002.

[ABR 96] ABRIAL J.R., The B-Book: Assigning Programs to Meanings, Cambridge
University Press, New York, NY, 1996.

[ABR 07] ABRIAL J.-R., HALLERSTEDE S., “Refinement, decomposition and
instantiation of discrete models: application to Event-B”, Fundamentae
Informatica, vol. 77, nos. 1–2, pp. 1–24, 2007.

[ABR 10a] ABRIAL J.-R., Modeling in Event-B: System and Software Design,
Cambridge University Press, New York, NY, 2010.

[ABR 10b] ABRIAL J.-R., BUTLER M., HALLERSTEDE S., et al., “Rodin: an open
toolset for modeling and reasoning in Event-B”, STTT, vol. 12, no. 6, pp. 447–466,
2010.

[BAC 91] BACK R., SERE K., “Stepwise refinement of action systems”, Structured
Programming, vol. 12, pp. 17–30, 1991.

[BAR 04] BARNETT M., LEINO K. R.M., SCHULTE W., “The Spec# programming
system: an overview”, CASSIS, of LNCS, Springer, Marseille, France, vol. 3362,
pp. 49–69, 2004.

250 Formal Methods Applied to Complex Systems

[BOU 03] BOULANGER J.-L., “ABTools: another B Tool”, Proceedings of
Application of Concurrency to System Design (ACSD), Guimaraes, Portugal, 2003.

[BOU 13] BOULANGER J.-L., The ABTools Suite, 2013. Available at http://-
sourceforge.-net/-projects/-abtools/.

[BUR 05] BURDY L., CHEON Y., COK D., et al., “An overview of JML tools and
applications”, International Journal on STTT, vol. 7, no. 3, pp. 212–232, 2005.

[BUT 06] BUTLER M.J., JONES C.B., ROMANOVSKY A., et al. (eds.), Rigorous
Development of Complex Fault-Tolerant Systems [FP6 IST-511599 RODIN
project], LNCS, Springer, 2006.

[BUT 09] BUTLER M., “Decomposition structures for Event-B”, Proceedings of the
7th International Conference on Integrated Formal Methods, (IFM ’09), Berlin,
Heidelberg, pp. 20–38, 2009.

[CAT 03] CATAÑO N., HUISMAN M., “Chase: a static checker for JML’s assignable
clause”, in ZUCK L.D., ATTIE P.C., CORTESI A., et al. (eds.), VMCAI, of LNCS,
New York, NY, Springer-Verlag, vol. 2575, pp. 26–40, 9–11 January 2003.

[CAT 09] CATAÑO N., WAHLS T., “Executing JML specifications of Java card
applications: a case study”, 24th ACM SAC, Software Engineering Track, Waikiki
Beach, Honolulu, Hawaii, 8–12 March 2009.

[CAT 12] CATAÑO N., WAHLS T., RUEDA C., et al., “Translating B machines
to JML specifications”, 27th ACM Symposium on Applied Computing, Software
Verification and Testing track (SAC-SVT), Trento, Italy, 26–30 March 2012.

[CAT 13] CATAÑO N., RUEDA C., WAHLS T., “A machine-checked proof for a
translation of Event-B machines to JML”, ArXiv e-prints, September 2013.

[CHA 06] CHALIN P., KINIRY J., LEAVENS G., et al., “Beyond assertions:
advanced specification and verification with JML and ESC/Java2”, Proceedings
of FMCO, LNCS, Springer Verlag, vol. 4111, 2006.

[CLE 08] CLEARSY, ATELIER B., The industrial tool to efficiently deploy the b
method, Clearsy, 2008.

[COK 11] COK D.R., “OpenJML: JML for Java 7 by extending OpenJDK”, NASA
Formal Methods Symposium, pp. 472–479, 2011.

[EDM 10] EDMUNDS A., BUTLER M., “Tool support for Event-B code generation”,
WS-TBFM2010, Québec, Canada, 2010.

[EDM 11] EDMUNDS A., BUTLER M., “Tasking Event-B: an extension to Event-B
for generating concurrent code”, PLACES 2011, 2011.

[KRA 06] KRAUSE B., WAHLS T., “JMLE: a tool for executing JML specifications
via constraint programming”, in BRIM L. (ed.), Proceedings of FMICS, Lecture
Notes in Computer Science, Springer-Verlag, vol. 4346, pp. 293–296, August
2006.

Translating B and Event-B Machines to Java and JML 251

[LAM 74] LAMPORT L., “A new solution of Dijkstra’s concurrent programming
problem”, Commun. ACM, vol. 17, no. 8, pp. 453–455, August 1974.

[MER 11] MÉRY D., SINGH N.K., “Automatic code generation from Event-B
models”, Proceedings of the Second SoICT, SoICT ’11, 2011.

[MEY 92] MEYER B., “Applying “Design by contract”, Computer, vol. 25, no. 10,
pp. 40–51, October 1992.

[MOR 90] MORGAN C., Programming from Specifications, Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1990.

[PAR 07] PARR T., The Definitive ANTLR Reference: Building Domain-Specific
Languages, Pragmatic Bookshelf, 2007.

[PER 12] PERCHY S., CATAÑO N., The racing car game, 2012. Available at
http://cic.javerianacali.edu.co/ysperchy/formal-game.

[RIV 12] RIVERA V., CATAÑO N., The social-event planner, 2012. Available at
http://poporo.uma.pt/Projects/favas/Social-EventPlanner.html.

[RIV 14] RIVERA V., CATAÑO N., “Translating Event-B to JML-specified Java
programs”, Accepted for the 2014 ACM Symposium on Applied Computing,
Software Verification and Testing track (SAC-SVT), 2014.

10

Event B

Event B [ABR 10a, CAN 07a] is a modeling language which can describe
state-based models and required safety properties. The main objective is to
provide a technique for incremental and proof-based development of the
reactive systems. It integrates set-theoretical notations and a first-order
predicate calculus, models called machines; it includes the concept of
refinement expressing the simulation of one machine by another machine. An
Event B machine models a reactive system, i.e. a system driven by its
environment and its stimuli. An important property of these machines is that
its events preserve the invariant properties defining a set of reachable states.
The Event B method has been developed from the classical B
method [ABR 96] and it offers a general framework for developing the
correct construction systems by using an incremental approach for designing
the models by refinement. Refinement [BAC 79, DIJ 76, BAC 98, BAC 89] is
a relationship relating two models such that one model is simulating the other
model. Refinement is also called simulation and preserves properties of the
abstract model in the refined or concrete model. When an abstract model is
refined by a concrete model, the concrete model simulates the abstract model
and any safety property of the abstract model is also a safety property of the
concrete model. In particular, the concrete model preserves the invariant
properties of the abstract model. Event B aims to express models of systems
characterized by invariants and by a list of safety properties. We can consider
liveness properties as in UNITY [CHA 88] or TLA+ [LAM 02, LAM 94] but
in a restricted way.

Chapter written by Dominique MÉRY and Neeraj Kumar SINGH.

254 Formal Methods Applied to Complex Systems

10.1. Introduction

This chapter is organized into eight sections. Section 10.2 gives results on
the modeling and verification of systems using transition systems. The goal
is to provide the basic fundamental and conceptual theories, which support
Event B approach. In particular, we explain how invariant properties and safety
properties are defined in the framework of a transition system, which may
model a program, an algorithm or a distributed system. Section 10.3 details the
Event B language and related concepts such as events, contexts, machines and
refinement. We give an explanation of proof obligations (POs) generated for
checking the consistency of the Event B structure. Then, in sections 10.4 and
10.5, we develop three case studies, in order to illustrate the incremental and
proof-based modeling using Event B. We emphasize the notion of proof-based
patterns applied for the Event B method. Section 10.6 describes available tools
for supporting the Event B modeling language and we conclude this chapter
with the current and future trends for this method.

10.2. Modeling and verification of a system

10.2.1. Modeling

A relational abstract model AM (AMP of a program P or AMP of a
system P) is defined by a set of states Σ, a set of initial states InitP, a set of
terminal states TermP and a binary relation R over Σ. The set of terminal
states may be empty and, in this case, the program does not terminate; this
feature can be used for modeling programs or procedures of operating
systems which are not terminating and cannot terminate at all. We will use a
system rather than a program, since we can describe elements, which are
more general than computer programs but also the formalism is usable for
describing distributed applications.

A system is characterized by a set of traces generated from the abstract
model as follows:

s0 −→
R

s1 −→
R

s2 −→
R

s3 −→
R

. . . −→
R

si −→
R

. . . is a trace generated by

the abstract model.

The observation of a system can be summarized by the analysis of its
traces; ΘS is a set of all traces of S. The expression of properties requires an
assertion language or a formulas language: L is an assertion language. A

Event B 255

simple choice is to consider the language of assertions defined by P(Σ)
(power set of Σ) and ϕ(s) (or s ∈ ϕ), which means that ϕ is true in the state
s. The assertion language allows us to express properties, however it may be
possible that the language is not expressive enough. We assume that the
language is sufficiently expressive (following Stephen Cook) and this means
that the required properties for completeness can be expressed in the
language.

Properties of a system S are, in particular, safety properties and liveness
properties. Safety properties are, for instance, the partial correctness of a
system S with respect to its specifications, the absence of runtime errors;
liveness properties are, for instance, the termination of a program P with
respect to its specifications or the total correctness of P with respect to its
specifications. We could also consider program properties as performance but
this leads to the models for expressing the non-functional properties.
Properties are expressed in a language L and its components can be combined
using logical connectives or instantiation of variables; the implication relation
upto the equivalent relation defines a partial ordering over a set of formulas.

We assume that a system S is modeled by a set of states ΣS, denoted by Σ,

where Σ
def
= VARIABLES −→ VALEURS. The expression s ∈ A is equivalent

to s[[ϕ(x)]], where x is a list whose elements are variables VARIABLES; this
means that s ∈ A is equivalent to ϕ(x) is true in s. The meaning of a formula
or a predicate can be given using an inductive process on s[[ϕ(x)]].

EXAMPLE 10.1.–

1) s[[x]] is the value of s in x, i.e. s(x) or the value of x in s.

2) s[[ϕ(x) ∧ ψ(x)]]
def
= s[[ϕ(x)]] and s[[ψ(x)]].

3) s[[x = 6 ∧ y = x+ 8]]
def
= s[[x]] = 6 and s[[y]] = s[[x]] + 8.

We use the notations for simplifying the indication of a state: for instance,
s[[x]] is the value of x in s and the name of the variable x and its value will
not be distinguished; s	[[x]] is the value of x in s	 and will be denoted by x	.
Consequently, s[[x = 6]]∧s	[[y = x+8]] is simplified into x = 6∧y	 = x	+8.
The consequence is that we can write the transition between two states as a
relation relating the state of variables in s and the state of variables in s	.

256 Formal Methods Applied to Complex Systems

Let s, s	 be two states of the set VARIABLES −→ VALS .
s −→

R
s	 is rewritten as a relation R(x, x) where x and x	 are values of x.

We have introduced primed variables borrowed from the Temporal Logic
of Actions of Lamport [LAM 94] and x	 is the value after the transition under
consideration and x is the value before the transition under consideration. The
expression ∃y.R(x, y) defines the condition for transition or the guard. We are
interested in particular expressions like cond(x) ∧ x	 = f(x) where cond is a
condition over x and f is a function. We can express induction principles using
relations over unprimed and primed variables. Initial conditions are defined by
a predicate characterizing the initial values of variables. We propose to define
more generally a relational model of a system. A set of states is Σ for a given
system and we identify this set with a set of possible values of flexible variables
x. We use the same notation but VALS will be a set of possible values of x.

DEFINITION 10.1.– Relational model of a system

A relational model MS for a system S, is a structure

(Th(s, c), x, VALS , INIT(x), {r0, . . . , rn}),

where

– Th(s, c) is a theory defining sets, constants and static properties of these
elements.

– x is a list of flexible variables.

– VALS is a set of possible values for x.

– INIT(x) defines a set of initial values of x.

– {r0, . . . , rn} is a finite set of binary relations relating the prevalues x and
the postvalues x	.

A relational model MS = (Th(s, c), x, VALS , INIT(x), {r0, . . . , rn}) for
a system S is a structure for studying a system defined by a model. We assume
that the r0 is the relation Id[VALS], identity over VALS .

DEFINITION 10.2.– Let (Th(s, c), x, VALS , INIT(x), {r0, . . . , rn}) be a
relational model for a system S . The relation NEXT attached to this model, is

defined by the disjunction of relations ri: NEXT
def
= r0 ∨ . . . ∨ rn.

Event B 257

Modeling a system leads to identifying state variables x, a predicate
defining the initial conditions of x and a relation NEXT expressing how the
values of variables before and after are related. Induction principles are
formulated in these relational models and here, we introduce the definition as
follows:

Let (Th(s, c), x, VALS , INIT(x), {r0, . . . , rn}) be a relational model of
a system S . The theory Th(s, c) is defined in an assertion language, which
can express properties. An example is the set theory of the B language. When
we consider a property ϕ, we use this set-theoretical language of B. For any
variable x, we define the following values:

– x is the current value of x.

– x	 is the next value of x.

10.2.2. Safety properties

The safety property states that nothing bad will happen [LAM 80]. For
instance, the value of x is always between 0 and 67; the sum of the current
values of x and y is the current value of z. The assertion language is supposed
to be (P(Σ),⊆) and we suppose that the satisfaction relation is defined using
the membership relation.

DEFINITION 10.3.– A property ϕ is a safety property for a system S, when

∀s, s	 ∈ Σ.s ∈ InitS ∧ s
%−→
R

s	 ⇒ s	 ∈ ϕ.

The expression %−→
R

stands for the reflexive transitive closure of the

relation −→
R

. The safety property uses a universal quantification over states.

For proving a safety property, we can either check a property for each
possible state, if the set of states is finite, or, find an induction principle. In the
case of an exhaustive checking, we can use an algorithm for computing the
set of reachable states from the initial nodes: the model
checking [MCM 93, HOL 97, CLA 00]. It helps to find the counter-examples
and is a complementary approach to use the induction principle following in
the next property.

258 Formal Methods Applied to Complex Systems

THEOREM 10.1.– Induction principle

A property ϕ is a safety property for a program P if, and only if, there exists
a property INV satisfying⎧⎪⎨⎪⎩

(1) InitP ⊆ INV
(2) INV ⊆ ϕ
(3) ∀s, s	 ∈ ΣP.s ∈ INV ∧ s −→

R
s	 ⇒ s	 ∈ INV

The property INV is called a program invariant and it is a special safety
property stronger than the other safety properties of a program. The
justification of this principle is simple.

PROOF.–
�1
1. SUPPOSE THAT: There exists a property INV such that⎧⎪⎨⎪⎩

(1) InitP ⊆ INV
(2) INV ⊆ ϕ
(3) ∀s, s	 ∈ ΣP.s ∈ INV ∧ s −→

R
s	 ⇒ s	 ∈ INV

PROVE THAT: ϕ is a safety property for the program P.

PROOF.– Let two states s, s	 such that s ∈ InitP ∧ s
%−→
R

s	. We can

construct a sequence of states s = s0 −→
R

s1 −→
R

s2 −→
R

s3 −→
R

. . . −→
R

si = s	. from assumption (1), we derive that INV holds at s. By

using (3) for any state of the trace, we derive that INV holds at
s1, s2, . . . si. Then, we apply (2) for the state s	 and we derive that s	

satisfies ϕ. �
�1
2. SUPPOSE THAT: ∀s, s	 ∈ Σ.s ∈ InitP ∧ s

%−→
R

s	 ⇒ s	 ∈ ϕ

PROVE THAT: There exists a property INV such that⎧⎪⎨⎪⎩
(1) InitP ⊆ INV
(2) INV ⊆ ϕ
(3) ∀s, s	 ∈ ΣP.s ∈ INV ∧ s −→

R
s	 ⇒ s	 ∈ INV

PROVE THAT: ϕ is a safety property for the program P

PROOF.– We define the following property INV
def
= ∃s ∈ Σ.s ∈ InitP ∧

s
%−→
R

s	. INV states that the state s	 is a reachable state from some initial

Event B 259

state of P. R% is the reflexive transitive closure of R. The three properties
are simple to check for INV . INV is called the strongest invariant of the
program P. �

�1
3. Q.E.D.

PROOF.– By steps �1
1 and �1
2, we infer the conclusion. ��
The property explains Floyd’s invariance proof method also known as

Floyd–Hoare’s methods [FLO 67, HOA 69], initially sketched by Turing in
1949 [TUR 49]. The property gives a general form for the induction and then
we can rephrase it according to the required invariance properties (partial
correctness and absence of deadlocks, etc.). P. and R.
Cousot [COU 00, COU 79, COU 92, COU 78] give a complete synthesis on
the different possible induction principles. We apply these results to the case
of relational models of a system and we obtain an expression of a safety
property as follows:

DEFINITION 10.4.– Let (Th(s, c), x, VALS , INIT(x), {r0, . . . , rn}) be a
relational model for a system S. A property ϕ is a safety property for a system
S, when ∀y, x ∈ Σ.Init(y) ∧ NEXT%(y, x) ⇒ ϕ(x).

From the induction principle of the previous section, we can derive the
following property.

THEOREM 10.2.– (Induction principle for a relational model)

Let (Th(s, c), x, VALS, INIT(x), {r0, . . . , rn}) be a relational model for a
system S .

A property ϕ(x) is a safety property for S if, and only if, there exists a
property i(x) such that⎧⎨⎩

(1) ∀x ∈ VALS .Init(x) ⇒ i(x)
(2) ∀x ∈ VALS .i(x) ⇒ ϕ(x)
(3) ∀x, x	 ∈ VALS .i(x) ∧ NEXT(x, x) ⇒ i(x)

PROOF.– Derived from the proof of the property 10.2. �
If we transform properties, we obtain a form closer to what we will use

in the next sections and closer to the concept of abstract systems or abstract
machines of Event B.

260 Formal Methods Applied to Complex Systems

THEOREM 10.3.– The two sentences are equivalent:

1) There exists a state property I(x) such that

∀x, x	 ∈ VALS :

⎧⎨⎩
(1) INIT(x) ⇒ I(x)
(2) I(x) ⇒ P(x)
(3) I(x) ∧ NEXT(x, x) ⇒ I(x)

2) There exists a state property I(x) such that:

∀x, x	 ∈ VALS :

⎧⎨⎩
(1) INIT(x) ⇒ I(x)
(2) I(x) ⇒ P(x)
(3) ∀i ∈ {0, . . . , n} : I(x) ∧ x ri x

	 ⇒ I(x)

PROOF.– The proof is obvious by applying the following rule:
∀i ∈ {0, . . . , n} : A ∧ x ri x

	 ⇒ B ≡ (A ∧ (∃i ∈ {0, . . . , n} : x ri x
)) ⇒ B

and the definition of NEXT(x, x). �
We have given an explanation of the induction rule used in Floyd’s

method [FLO 67, TUR 49, HOA 69] which states that the invariance
properties are necessary for deriving the safety properties. The invariance
properties are stronger than safety properties. The invariance properties are
also the special case of safety properties. There is a confusion in the literature
where we claim that always true and invariant are two equivalent concepts:
an invariant is an inductive property.

The Event B method uses these two kinds of properties: the clause
INVARIANTS for invariants and in earlier versions of Rodin, the clause
THEOREMS for safety properties. Current versions distinguish both classes
by a feature stating that the predicate is either an invariant or a safety property
(theorem). An invariant is obviously a safety property. Now, we summarize
the Event B language and the incremental and proof-based development of
event-based models.

10.3. Event B: a modeling language

Event B is both a language and a method. Its concepts are limited and
allow the user to manage a simple palette of tools: axioms, theorems,
theories, events, machine, context and refinement. We shortly describe these

Event B 261

elements, but it is clear that examples constitute the best way to learn and
understand how to use tools.

The construction of an Event B model is based on concepts like sets,
constants, axioms, theorems, variables, invariants and events; these syntactic
constructions are organized into two kinds of structures:

– Contexts express axiomatic static properties of the models. Contexts
may contain carrier sets, constants, axioms and theorems. Axioms describe
properties of carrier sets and constants. Theorems derive properties that can be
proved from the axioms. POs associated with contexts are straightforward: the
stated theorems must be proved, which follow from the predefined axioms and
theorems. Additionally, a context may be indirectly seen by machines. Namely,
a context C can be seen by a machine M indirectly if the machine M explicitly
sees a context, which is an extension of the context C.

– Machines express dynamic behavioral properties of the models, which
may contain variables, invariants, theorems, events and variants. Variables
v represents the state of the machine. Variables, like constants, correspond
to simple mathematical objects: sets, binary relations, functions, numbers,
etc. They are constrained by invariants I(v). Invariants are supposed to hold
whenever variable values change.

When a machine is organizing events, it modifies the state variables and
uses static information defined in context. These basic structure mechanisms
are extended by the refinement mechanism which provides a mechanism for
relating an abstract model and a concrete model by adding new events or by
adding new variables. This mechanism allows us to gradually develop Event-B
models and to validate each decision step using the proof tools. The refinement
relationship should be expressed as follows: a model M is refined by a model
P , when P simulates M . The final concrete model is close to the behavior of a
real system that is executing events using real source code. We give details now
regarding the definition of events, refinement and guidelines for developing
complex system models.

– The consistency of a context or a machine in Event B is achieved by
proving proof obligation generated by tools [CLE 02, ABR 10b] and sound
with respect to the results of section 10.2. If these POs are discharged, then
the structure (context or machine) is correct at least with respect to the typing.
Indeed, the main tricky point is the statement and the proof of the invariant
property of a machine, but the refinement is a technique for facilitating the

262 Formal Methods Applied to Complex Systems

proof process and the discovery of invariants.

M0 C0

M1 C1

.

Mn Cn

✲SEES

✻
REFINES

✲SEES

✻
EXTENDS

✻
REFINES

✲SEES

✻
EXTENDS

✻
REFINES

✲SEES

✻
EXTENDS

In the next section, we summarize each
structure (context, machine) used for
constructing models for a given system
using relations as EXTENDS, SEES,
REFINES among the structures.
We summarize the general form
of an Event B development in the
diagram. The main advice is to use the
refinement of machines and events as
much as possible.

10.3.1. Basic elements of an Event B model

We start by defining the events that are at the heart of this method and that
react to a condition called a guard. An event is characterized by a parameter
(t), a condition (also called a guard G) and an action (a relation P). One of the
three parts may not be in the event and a special event called skip corresponds
to the absence of the three parts. skip means that the variables are stuttering.
Intuitively, the observation of an event is made in the case where the guard
is true but the fact that the guard is true does not allow us to conclude that
the event is or will be observed. Each event can be defined by a relationship
before–after denoted by BA(x, x).

An event is characterized by its guard, which is determined at the modeling
phase and it can only be triggered if the guard is true. We will detail proof
obligations generated for a given event e and explain the meaning of these
proof obligations. In our chapter, we want to emphasize the role of refinement,
which is defined on events. The general form of an event is as follows:

Event B 263

EVENT e
ANY t
WHERE

G(c, s, t, x)
THEN

x : |(P (c, s, t, x, x))
END

– c and s designate constants and
visible sets by an event e are defined
in the context of clause SEES.

– x is the state variable or a list of
state variables.

– G(c, s, t, x) is the guard or the
enableness condition of e.

– P (c, s, t, x, x) is the predicate
stating the relation between the pre
value of x, denoted as x, and the post
value of x, denoted as x	.

– BA(e)(c, s, x, x) is the before-
after relation for the event e defined by
∃t.G(c, s, t, x) ∧ P (c, s, t, x, x).

For each event e, POs are named according to the following format:
e/inv/ < type > where < type > is either INV , or FIS, or GRD, or
SIM , or THM , or WFIS, or WD, etc. and correspond to generated POs
for ensuring invariance, guard strengthening, simulation, safety and
well-definedness, etc. We do not list the complete list of possible names and
refer to the book of J.-R. Abrial [ABR 10a] for a full version, as well as to the
Rodin platform [ABR 10b]. Now we analyze how the POs are generated.

10.3.2. Invariance properties in Event B

The invariant I(x) of a model is an invariant property for all events of a
system, including the initial event. If e is an event of the model, then the
condition of preservation of this invariant by this event is:
I(x) ∧ BA(e)(c, s, x, x) ⇒ I(x) (INV). I(x) is written as a list of
predicates labeled inv1 . . . invn and interpreted as a conjunction. The
condition on the initial conditions is as follows:
Init(x, s, c) ⇒ I(x) (INIT) .

When an event e defines the predicate before–after BA(e)(c, s, x, x), the
feasibility of this event means that under hypothesis defined by the invariant
I(x) and guard grd (e), of the event, there is still x	 such that
BA(e)(c, s, x, x). In other words, it means that this event, when observed,

264 Formal Methods Applied to Complex Systems

will not induce unwanted behaviors and we give a condition for each event:
I(x) ∧ grd (e) ⇒ ∃x	 ·BA(e)(c, s, x, x) (FIS).

Safety properties are derived by the proof that the system invariant implies
safety property A(x) and, moreover, we add the context C(s, c) of this proof.
The context of this proof is given by the properties C(s, c), where sets s and
constant c are defined in the model: C(s, c) ∧ I(x) ⇒ A(s, c, x) (THM).

To conclude this point on POs, they are derived from the theorem 10.2 and
we can therefore conclude the following property.

THEOREM 10.4.– Let Th(s, c) be a theory defined by sets s, constants c and
axioms C(s, c) and let E be a finite list of events modifying x in the context
define by the theory Th(s, c). We assume the following points:

– VALS is a set of possible values for x.

– {r0, . . . , rn} is a set of relations BA(e)(s, c, x, x) defined for event e of
E and one of the events is the event skip.

– INIT(x) is the predicate defining the initial conditions of x.

If the POs (INIT) and (INV) are valid, then the relational model
(Th(s, c), x, VALS , INIT(x), {r0, . . . , rn}) satisifies the invariant I(x) and
the safety properties A(s, c, x).

We now give the various POs generated from the general form given above.
We assume that the context of theory is C(s, c) and we use the notation
C(s, c) , P to express the proof obligation P in C(s, c) context. So, we have
the following reformulation:

– INIT/I/INV: C(s, c), INIT (c, s, x) , I(c, s, x)

– e/I/INV: C(s, c), I(c, s, x), G(c, s, t, x), P (c, s, t, x, x) , I(c, s, x)

– e/act/FIS: C(s, c), I(c, s, x), G(c, s, t, x) , ∃x	.P (c, s, t, x, x)

We have instantiated the induction principle to ensure invariance of I . The
POs generator also performs important simplifications for facilitating the proof
checking process by the provers.

Event B 265

10.3.3. Refinement of events

EVENT e
ANY t
WHERE

G(c, s, t, x)
THEN

x : |(P (c, s, t, x, x))
END

EVENT f
REFINES e
ANY u
WHERE

H(c, s, u, y)
WITNESSES

t : W1(c, s, t, u, y)
x	 : W2(c, s, t, x	, y)

THEN
y : |(Q(c, s, t, y, y))

END

In the above schema, t : W1(c, s, t, u, y) is a proof witness to connect the
current parameter u and the parameter t of the event e, x	 : W2(c, s, t, x	, y)
is a proof witness to connect the variable y and the next value of x. The event
f refines the event e, when the observation of f at the concrete level, implies
that the event e at the abstract level also appears. More formally, the
refinement of e by f is defined by the formula: I I(c, s, x) ∧
J(c, s, x, y) ∧ BA(f)(c, s, y, y) ⇒ ∃x	.(BA(e)(c, s, x, x) ∧
J(c, s, x	, y)) where J(c, s, x, y) is the invariant of the concrete level
ensuring the relationship between concrete and abstract variables. We
schematize refinement as follows:

abstract level I(x) I(x) machine M : x, I(x)

concrete level J(x, y) J(x	, y)machine N : y, J(x, y)

✲e

✲f

✻
REFINES

Note that the role of predicates W1 and W2 is to provide values to
prove existential properties induced by parameters but also by reference to
the abstract level. Without these hints, the user should propose possible values
while using the interactive proof tools. The refinement of f by e also takes
into account the case where f is a new event at the concrete level and in this
case f refines skip that does not change the variable x. We will give the above
formulation as generated POs.

266 Formal Methods Applied to Complex Systems

– e/act/SIM:

⎛⎜⎜⎝
C(s, c),
I(c, s, x), J(c, s, x, y), H(c, s, t, y),
Q(c, s, t, y, y),
W1(c, s, t, u, y),W2(c, s, t, x	, y)

⎞⎟⎟⎠ , P (c, s, t, x, x)

– e/grd/FIS:

⎛⎝C(s, c),
I(c, s, x), J(c, s, x, y),
H(c, s, t, y),W1(c, s, t, u, y)

⎞⎠ , G(c, s, t, x)

We have given the clear definitions of generated POs to verify the
refinement of an event by others. What remains is to define the structures of
machines and contexts.

10.3.4. Structures for Event B models

The Event B modeling language provides a framework for supporting
our methodology as applied to the development of sequential programs.
Abrial [ABR 03b] has demonstrated the possibility of developing sequential
programs using Event B. The modeling process deals with various languages,
as seen by considering the triptych of Bjoerner [BJO 06a, BJO 06b, BJO 06c,
BJØ 07]: D,S −→ R. Here, the domain D deals with properties, axioms, sets,
constants, functions, relations and theories. The system model S expresses
a model or a refinement-based chain of models of the system. Finally, R
expresses requirements for the system to be designed. Considering the Event B
modeling language, we notice that the language can express safety properties,
which are either invariants or theorems in a machine corresponding to the
system. Recall that two main structures are available in Event B.

– Contexts express static information about the model.

– Machines express dynamic information about the model, invariants,
safety properties and events.

10.3.4.1. Contexts

The first structure is called a context (see Figure 10.1), and it provides the
definition of the sets, constants, axioms for sets and constants, and theorems
that can be derived from the axioms of the context D. The context AD is
a previous context that has already been defined, and it extends the current
context. A context is validated when sets S1, . . . , Sn, constants C1, . . . , Cm

Event B 267

and axioms ax1, . . . , axp are well-formed and when all theorems th1, . . . , thq
are proved.

CONTEXT D
EXTENDS AD
SETS

S1, . . . Sn

CONSTANTS
C1, . . . , Cm

AXIOMS
ax1 : P1(S1, . . . Sn, C1, . . . , Cm)
. . .
axp : Pp(S1, . . . Sn, C1, . . . , Cm)

THEOREMS
th1 : Q1(S1, . . . Sn, C1, . . . , Cm)
. . .
thq : Qq(S1, . . . Sn, C1, . . . , Cm)

MACHINE M
REFINES AM
SEES D
VARIABLES x
INVARIANTS

inv1 : I1(x, S1, . . . Sn, C1, . . . , Cm)
. . .
invr : Ir(x, S1, . . . Sn, C1, . . . , Cm)

THEOREMS
th1 : SAFE1(x, S1, . . . Sn, C1, . . . , Cm)
. . .
ths : SAFEs(x, S1, . . . Sn, C1, . . . , Cm)

EVENTS
EVENT initialisation

BEGIN
x : |(P (x�))

END
. . .
EVENT e

ANY t
WHERE

G(x, t)
THEN

x : |(P (x, x�, t))
END

. . .END

Figure 10.1. Context and Machine

A context clearly states the static properties of the (system) model under
construction. The extends construct enables reuse by extending a previously
defined context.

The proof process is based on the management of sequents, with an
associated environment for proof called Γ(D). The proof environment
includes axioms, properties and theorems already proved. An environment is
initially provided, but the intention is to add new theorems. This means that
we intend to prove the following properties in the sequent calculus style:

for any j in {1..q}, Γ(D) , thj : Qj(S1, . . . Sn, C1, . . . , Cm).

268 Formal Methods Applied to Complex Systems

Theorems for the context are proved using the RODIN tool, but it is clear
that the process for constructing the domain D is crucial to modeling the
system, from consideration of the triptych of
Bjoerner [BJO 06a, BJO 06b, BJO 06c, BJØ 07] and variations of this
methodology.

The possibility of reusing former definitions is crucial, but we do not
consider this point in this chapter. Instead, we simulate the reuse of theories
by manipulating the contexts directly. Among the requirements, we can list
the theorems of the context, and we can, in fact, interpret the triptych as
follows: for any

j in {1..q}, D −→ thj : Qj(S1, . . . Sn, C1, . . . , Cm).

Here, it appears that the system is not mentioned, and this is the case for
static properties. Therefore, we have an interpretation of the triptych for the
static information, which can be reused later for any system.

10.3.4.2. Machines

The dynamic part of a model is expressed using the notion of the machine
(see Figure 10.1). A machine is either a basic machine or a refinement of an
abstract machine. A machine models a state via a list of variables x that are
assumed to be modifiable by events listed in the machine. The view is assumed
to be closed with respect to events. Each event maintains an assertion called
an invariant, which is a conjunction of logical statements called invj . Each
reached state satisfies properties of the theorem part called safety properties.
POs are given in section 10.6, and they are generated and checkable by the
RODIN framework. The validation of the machine M leads to the validation of
the safety and invariance properties.

We can obtain a variation of the triptych (Γ(D,M) is an associated
environment for proof) as follows:

– For any j in {1..r}, Γ(D,M) , INITIALISATION(x) ⇒
Ij(x

	, S1, . . . Sn, C1, . . . , Cm)

– For any j in {1..r}, for any event e of M, Γ(D,M) ,
(

�
j∈{1..r}

Ij(x, S1, . . . Sn, C1, . . . , Cm)) ∧ BA(e)(x, x) ⇒ Ij(x
	, S1, . . . ,

Sn, C1, . . . , Cm)

Event B 269

– For any k in {1..s}, Γ(D,M) , (
�

j∈{1..r}
Ij(x, S1, . . . , Sn,

C1, . . . , Cm)) ⇒ SAFEk(x, S1, . . . Sn, C1, . . . , Cm)

We use temporal operators for expressing the safety and invariant
properties.

– For any j in {1..r}, D,M −→ �Ij(x, S1, . . . Sn, C1, . . . , Cm).

– For any k in {1..s}, D,M −→ �SAFEk(x, S1, . . . Sn, C1, . . . , Cm).

We summarize the requirements expressed by the machine M as follows:

D,M −→ �

⎛⎜⎜⎜⎜⎝

 �

j∈{1..r}
Ij(x, S1, . . . Sn, C1, . . . , Cm)

�

 �

k∈{1..s}
SAFEk(x, S1, . . . Sn, C1, . . . , Cm)

�
⎞⎟⎟⎟⎟⎠

We will use the notation I(M) to stand for the invariant of the machine M
and SAFE(M) to stand for the safety properties of the machine M . We have
shown that requirements R are first expressed using the always temporal
operator. To specify total correctness properties, we should extend the scope
of the requirements language by adding eventuality properties. Eventuality
properties will be defined in section 10.4, which will be specific to our
methodology.

10.4. Formal development of a sequential algorithm

In this section, we discuss two simple case studies to illustrate how we can
develop sequential algorithms using the Event B method following two
development techniques. From previous works, we quote case studies
developed by J.-R. Abrial [ABR 03b] and his transformation rules used from
Event B models to obtain sequential algorithms; however, we have also
proposed a method [MÉR 09b, MÉR 09a] providing a framework to guide
refinement steps, relying on an interpretation of an event as a procedure call.
The second approach allows us to produce recursive algorithms from an
Event B model and to express an invariant in a simple way. Transformation
techniques can be applied on the resulting recursive algorithms and are used

270 Formal Methods Applied to Complex Systems

to produce iterative algorithms implemented in a real programming language
like Spec# [MÉR 13]. We illustrate these two techniques by two very simple
examples: the problem computing the sum of a vector of integer values
v1, . . . , vn and the problem searching for an item x in a table t.

10.4.1. Derivation of an algorithm for computing the sum of a sequence of
values by refinement and transformation of the model into an algorithm

10.4.1.1. Description of the problem

At first, we state the sum s of the sequence v in the Event B language;

the mathematical expression is easy: s =
k=n�
k=1

v(k). As the notation for the

summation of a finite sequence is not available in Event B, we have to define
this notion in a context summation0, which will contain inputs and specific
notations of the problem.

Inputs of the problem n and v are defined as a non zero natural number
(axm1 and axm2) and a total function defined on 1..n and ranging over N
(axm3). We have to define the underlying theory of the problem.

Second, we introduce a sequence u of values defining partial summations:
k=i�
k=1

v(k), which is inductively defined:

– u is a total function from N into N (axiom axm4).

- Initially, the summation starts by 0 and u(0) = 0 (axiom axm5).

– When i is smaller than n, the value u(i) is defined from u(i− 1) and v(i)
(axiom axm6).

– When i is greater than n, the value of u(i) is u(n) (axiom axm7).

Axioms are given in the context summation0 and constitutes a theory which
will be used for proving properties of models.

Event B 271

CONTEXT summation0
CONSTANTS

n, v, u
AXIOMS

axm1 : n ∈ N
axm2 : n '= 0
axm3 : v ∈ 1 .. n→ N
axm4 : u ∈ N→ N
axm5 : u(0) = 0
axm6 : ∀i·i ∈ N ∧ i > 0 ∧ i ≤ n⇒ u(i) = u(i− 1) + v(i)
axm7 : ∀i·i ∈ N ∧ i > n⇒ u(i) = u(n)

THEOREMS
thm1 : ∀i·i ∈ N⇒ u(i) ≥ 0

END

In the above context, it is noted that the clause THEOREMS is used and its
use allows us to derive properties for mathematical data defined by their
axioms. In the current tool Rodin, the authors merge axioms and theorems in
the clause AXIOMS. However, among the list of statements, the tool identifies
the two different sets of statements for axioms and theorems. We use a
notation that allows a better expression of these theories. Finally, each axiom
is validated by a set of generated POs to ensure consistency of definitions. It
is the same for theorems that must be proved from an environment defined by
the axioms with the rules of proof assistant. So we have defined the
mathematical framework of the problem and we will now define the problem
of summation of the sequence v.

10.4.1.2. Specification of the problem to solve

The problem is to calculate the value of sum of elements of the sequence
v. We define a machine summation1, which is a model expressing through the
event summation, the expression of the postcondition sum = u(n). In fact,
new value of the variable sum amount is u(n), when the event summation1
has been observed. The initial value of sum is any initialization. Finally, the
variable sum must satisfy the simple invariant inv1 : sum ∈ N. The event
summation1 is simply an assignment of value u(n) to sum.

272 Formal Methods Applied to Complex Systems

MACHINE summation1
SEES summation0
VARIABLES

sum
INVARIANTS

inv1 : sum ∈ N
EVENT INITIALISATION

BEGIN
act1 : sum :∈ N

END
EVENT summation1

BEGIN
act1 : sum := u(n)
END

END

We can state an expression as a
HOARE triple HOARE: {n > 0 ∧ v ∈
1 .. n→N}SUMMATION{sum =
u(n)} where SOMMATION is
the algorithmic solution. The visible
data or inputs are in the context
summation0. The problem is then to
find an algorithm SUMMATION
computing the value u(n) and
storing it in the variable sum. C.
Morgan [MOR 90] uses the same
method and we are only simulating his
refinement calculus, with the objective
to construct an algorithmic solution
from a pre- and post specification.

We have described the domain of the problem and we have formulated what
we want to calculate. The next step is the development of calculation method,
which requires an idea of solution using refinement.

10.4.1.3. Refining for computing

We have defined the specification of the problem calculating the sum of
elements of the sequence v and now we must find an algorithmic method for
computing the value u(n). In the previous machine, we state what to compute
and now we define how to compute. The assignment sum := u(n) is an
expression for combining a variable sum and a constant u(n). A well-known
trivial and inefficient solution is to store the values of sequence u in a table t
and to translate the assignment as sum := t(n) where t verifies the property
∀k.k ∈ dom(t) ⇒ t(k) = u(k) and this property forms an invariant inv8.
The idea is to use the variable t (t ∈ 0 nupto $→ N) to control the calculation
and its progression. The progression is ensured by the event step2 that
decreases the value n− i and thus ensures the convergence of the process.

Event B 273

MACHINE summation2
REFINES summation1

SEES summation0
VARIABLES

sum, t, i
INVARIANTS

inv1 : i ∈ N
inv2 : i ≥ 0
inv3 : i ≤ n
inv4 : t ∈ 0 .. n $→ N
inv5 : dom(t) = 0 .. i
inv6 : n /∈ dom(t)⇒ i < n
inv7 : dom(t) ⊆ dom(u)

inv8 : ∀k ·
⎛⎝k ∈ dom(t)

⇒
t(k) = u(k)

⎞⎠
inv9 : dom(u) = N

EVENT INITIALISATION
BEGIN

act1 : sum :∈ N
act2 : t := {0 $→ 0}
act3 : i := 0

END
EVENT summation2

REFINES summation1
WHEN

grd1 : n ∈ dom(t)
THEN

act1 : sum := t(n)
END

EVENT step2
WHEN

grd11 : n /∈ dom(t)
THEN

act11 : t(i+ 1) := t(i) + v(i+ 1)
act12 : i := i+ 1

END
END

The model summation2 describes a process that gradually fills t and
therefore retains all intermediate results. POs are fairly easy, to some extent,
to prove through proof assistant. We summarize a proof statistics table at the
end of development. It is quite clear that the variable t is in fact a witness or a
track of intermediate values and this variable can be hidden in this model,
when it will be refined. Before hiding this variable, we will put aside the
value to maintain t(i).

10.4.1.4. Focus on a value to keep

The next refinement summation3 leads to the introduction of a new
variable psum that will hold the value t(i). It thus makes a
superposition [CHA 88] on the model. The idea is that this model refines or
simulates the previous model summation2; it also means that the properties
of the refined model are verified by the new model summation3 as long as
all the POs are discharged.

274 Formal Methods Applied to Complex Systems

MACHINE summation3
REFINES summation2

SEES summation0
VARIABLES

sum, i, t, psum
INVARIANTS

inv1 : psum ∈ N
inv2 : psum = u(i)

EVENT INITIALISATION
BEGIN
act1 : sum :∈ N
act2 : i := 0
act3 : t := {0 $→ 0}
act4 : psum := 0
END

EVENT summation3
REFINES summation2
WHEN
grd1 : n ∈ dom(t)
grd2 : i = n

THEN
act1 : sum := psum

END
EVENT step3 REFINES step2

WHEN
grd1 : n /∈ dom(t)
grd2 : i < n

THEN
act1 : t(i+ 1) := t(i) + v(i+ 1)
act2 : i := i+ 1
act3 : psum := psum+ v(i+ 1)

END
END

This model is very expressive and provides extensive information to
ensure that the model is correct with respect to the specification expressed in
the model summation1. It is even clear that this model summation3 is
expensive in terms of use of variables. Refinement allows us to select only
useful variables for calculation. In the following, we will make the more
algorithmic model and keep the model sufficient concrete for calculating
variables.

10.4.1.5. Obtaining an algorithmic model

In this last step, we refine the model summation3 by a model
summation4 and we hide the variable t in the abstract model summation3.
Thus, the model summation4 includes variables sum, psum and i and it
should also be noted that it satisfies safety properties called theorems in the
model summation4. The properties are proved from the properties of the
previous refined models. Here, we have a model with an initialization and two
events:

– The event summation4 is observed, when the value of i is n and, in this
case, the variable psum contains the value u(n). The invariant ensures that the
value of psum is u(n).

Event B 275

– The event step4 is observed, when the value of i is smaller than n. It
means that, while this value is smaller than n, the event can be observed and
the traces generated from these events correspond to an iterative construct.

MACHINE summation4
REFINES summation3

SEES summation0
VARIABLES
sum, i, psum

THEOREMS
inv1 : psum = u(i)
inv2 : i ≤ n

EVENT INITIALISATION
BEGIN

act1 : sum :∈ N
act2 : i := 0
act3 : psum := 0

END

EVENT summation4 REFINES summation3
WHEN

grd1 : i = n
THEN

act1 : sum := psum
END

EVENT step4 REFINES step3
WHEN

grd1 : i < n
THEN

act1 : i := i+ 1
act2 : psum := psum+ v(i+ 1)

END
END

J.-R. Abrial [ABR 10a] proposes rules for progressively transforming
models into algorithm. These rules are simple and we are considering them in
our example.

Fusion of two events for deriving an iteration

Consider the two events which can be merged to obtain an algorithmic
expression:

– If P is an invariant for S, then the two events can be merged into one
event:

WHEN
P
Q

THEN
S

END

WHEN
P
¬Q

THEN
T

END

WHEN
P

THEN
WHILE Q DO
S

OD;
T ;

END

– If P is not in the events, then there is no guard.

276 Formal Methods Applied to Complex Systems

Merging two events for deriving a conditional statement.

Consider the two events which can be merged to obtain an algorithmic
expression:

– If the condition on P is weaker then we can introduce a conditional
statement:

WHEN
P
Q

THEN
S

END

WHEN
P
¬Q

THEN
T

END

WHEN
P

THEN
IF Q THEN

S
ELSE;

T ;
FI;

END

These two transformations are correct, since they preserve the generated
traces. In our case, we can apply the first transformation on the model
summation4. Let the three events of summation4:

EVENT summation4
REFINES summation3
WHEN
grd1 : i = n

THEN
act1 : sum := psum

END

EVENT pas3
REFINES pas3
WHEN

grd1 : i < n
THEN

act1 : i := i+ 1
act2 : psum := psum+ v(i+ 1)

END

Event B 277

EVENT INITIALISATION
BEGIN
act1 : sum :∈ N
act2 : i := 0
act3 : psum := 0

END

BEGIN
act1 : sum :∈ N;
act2 : i := 0;
act3 : psum := 0;
WHILE grd1 : i < n DO

act2 : psum := psum+ v(i+ 1)
act1 : i := i+ 1

OD;
act1 : sum := psum
END

The algorithm is obtained by merging the two events summation4 and
step4 in an iteration and by sequential composition of the initialization.

��
n > 0
∧v ∈ 1 .. n→ N

�	
BEGIN
sum :∈ N;
i := 0;
psum := 0;
WHILE i < n DO

psum := psum+ v(i+ 1)
i := i+ 1

OD;
sum := psum
END

{sum = u(n)}

Examples which have been treated with this method, can be found on the
website dedicated to the Rodin project. In the publications
[ABR 10a, ABR 03b], J.-R. Abrial has addressed both this technique and
examples in more or less complicated way. Before concluding this study, it is
important to give statistics on the number of POs and the difficulties of
proofs, which are proved manually with the help of proof assistant. Table 10.1
indicates that 78.2% of POs are proved automatic but 21.7%, made by
interaction with a proof assistant, are not complicated, as long as we use the
progressive refinement.

278 Formal Methods Applied to Complex Systems

Model Total Auto Manual % Auto %
Manual

summation0 5 0 5 0% 100%
summation1 4 3 1 75% 25%
summation2 23 21 2 87% 13%
summation3 7 5 2 71% 29%
summation4 7 7 0 100% 0%
Total 46 36 10 78.2% 21.7%

Table 10.1. Table for statistics for the development of summation

10.4.2. Development of a sequential algorithm using the proof-based pattern
call-as-event

If we consider the problem to solve, we recall that we try to write a
PROCEDURE correctly with respect to the pre/post specification:

PROCEDURE PROCEDURE(x;VAR y)
PRECONDITION P (x)
POSTCONDITION Q(x, y)

For the second development of a sequential algorithm, we use the proof-
based pattern:

CALL PREPOST PB

PROCEDURE M CM
❄

call

✲call−as−event

❄

REFINEMENT

✲SEES

❄

EXTENDS

✛mapping ✲SEES

The schema is explained as follows:

– CALL is the call of PROCEDURE.

– PREPOST is the machine containing the events stating the pre- and
post-conditions of CALL and PROCEDURE, and M is the refinement machine
of PREPOST, with events including control points defined in CM.

Event B 279

– The call-as-event transformation produces a model PREPOST and a
context PB from CALL.

– The mapping transformation allows us to derive an algorithmic procedure
that can be mechanized.

– PROCEDURE is a node corresponding to a procedure derived from the
refinement model M. CALL is an instantiation of PROCEDURE using parameters
x and y.

– M is a refinement model of PREPOST, which is transformed into
PROCEDURE by applying structuring rules. It may contain events corresponding
to the calls of other procedures.

We consider the problem searching a value v in a table t. The specification
is stated as follows:

PROCEDURE search(x, t, n;VAR i, ok)
PRECONDITION x ∈ A ∧ n > 0 ∧ t ∈ 1 .. n→A

POSTCONDITION

�
(∀k ·k ∈ 1 .. n⇒ t(k) '= x) ⇒ ok = no
(∃k ·k ∈ 1 .. n ∧ t(k) = x) ⇒ ok = yes

�

We try to identify the following elements of the pattern for our problem:

search(x,t,n;i,ok) specsearch search0

search simsearch csearch0
❄

call

✲call−as−event

❄

REFINEMENT

✲SEES

❄

EXTENDS

✛ mapping ✲SEES

280 Formal Methods Applied to Complex Systems

CONTEXT search0

SETS
A

REPLIES

CONSTANTS
x, t, n, yes, no

AXIOMS
axm1 : n ∈ N1

axm2 : x ∈ A

axm3 : t ∈ 1 .. n→A

axm4 : REPLIES = {yes, no}
axm5 : yes �= no

END

Describing the context of the
problem PB is given by a
context search0 that easily
defines the structure of search
t. We also need to define a set
of possible results. This context
is actually used to correctly
describe the pre-condition of
the search search0. We can
now define the specification
itself by writing the machine
specsearch which will include
events simulating the call
search.

The machine specsearch includes an initialization event and two events:
find that models the procedure search, when it finds an element x in the table
t, and unfind which models the procedure search, when it finds no element x
in the table t. In fact, the two events give a definition of what but not of how,
and these events are a simple way to describe the expected behavior. To define
in a more operational way, we will refine. Thus, these two events are only two
instances of calling this procedure.

MACHINE specsearch

SEES search0

VARIABLES
i, ok

INVARIANTS
inv1 : ok ∈ REPLIES

inv2 : i ∈ 1 .. n

EVENT INITIALISATION
BEGIN
act1 : i :∈ 1 .. n

act2 : ok := no

END

EVENT find
ANY

j

WHERE
grd1 : j ∈ 1 .. n

grd2 : t(j) = x

THEN
act1 : ok := yes

act2 : i := j

END
EVENT unfind

WHEN
grd1 : ∀k·k ∈ 1 .. n⇒ t(k) �= x

THEN
skip

END
END

Event B 281

To solve our problem from an operational point of view, we have to
analyze the problem by considering several cases and we introduce a new
variable c, which models the control of the search process. We use a new
context csearch0 that extends search0 defining possible control points:

CONTEXT csearch0
EXTENDS search0
SETS

LOCS
CONSTANTS

start, end, call1
AXIOMS

axm1 : partition(LOCS, {start}, {end}, {call1})
END

MACHINE simsearch
REFINES specsearch

SEES csearch0
VARIABLES

i, ok, c
INVARIANTS

inv1 : c ∈ LOCS
inv2 : c = call1⇒ n '= 1 ∧ ok = no
inv3 : c = call1⇒ t(n) '= x
inv4 : c = end ∧ ok = yes⇒ t(i) = x
inv5 : c = end ∧ ok = no⇒ (∀g ·g ∈ 1 .. n⇒ t(g) '= x)
inv6 : c = start⇒ ok = no

. . .

The invariant describes what is happening during the computation:

– When the control point is at the end and when the variable ok is yes, then
t(i) = x.

– When the control point is at the end and when the variable ok is no, then
i contains any value and x does not occur in t.

282 Formal Methods Applied to Complex Systems

To perform this calculation, two cases are introduced: either n is equal to 1
or n is not equal to 1. Consider the case where n is 1. In this case, we refine find
by findone, to explain how the value of x can be found in an array with only
one value, if it is indeed in this table, and we refine unfind by notfoundone
in case the value of x is not in t (i.e. t(1) '= x). We consider the two sub-
cases and the translation into an algorithmic notation of these two events is
immediate. Each event (findone and notfindone) is translated in the form of a
conditional statement. We can also use EB2ALL [MÉR 11b] tool to translate
the full model and get a C, C++, C# or Java program.

EVENT INITIALISATION
BEGIN

act1 : i :∈ 1 .. n
act2 : ok := no
act3 : c := start

END
EVENT findone

REFINES find
ANY

j
WHERE

grd1 : j ∈ 1 .. n
grd2 : t(j) = x
grd3 : c = start
grd4 : n = 1
grd5 : t(n) = x

THEN
act1 : ok := yes
act2 : i := 1
act4 : c := end

END

EVENT nofindone
REFINES unfind
WHEN

grd1 : ∀k ·k ∈ 1 .. n⇒ t(k) '= x
grd2 : n = 1
grd3 : t(n) '= x
grd4 : c = start

THEN
act1 : c := end

END

For the second case, we assume that n is not equal to 1 and we will refine
both events find and unfind, for simulating a recursive search. We have events
in parts related to the recursive analysis and these events are controlled using c:

Event B 283

– foundlastone finds the x in the last cell of the table t and sets the
variable ok to yes. The control variable c gets the value end and the search
is completed.

– notfoundlastone does find the value of x in the last cell of the table t and
the searching process should continue on the remaining unvisited cells of the
table t between 1 and n− 1. The control is switching to call1 by updating c.

– The two next events are observed when c = call1, depending on whether
there is a value. Each of these events simulates the procedure search between
1 and n− 1. Obviously, it does not say how the searching process is done and
we translate these two events by recursive calls. This point simplifies invariants
and proofs; reference may be referring to the document [MÉR 09b, MÉR 09a]
introducing this technique to refer to the calculation of the shortest path and
thus to find that the invariant is fairly easy to find even if it is complex in its
final form.

EVENT foundlastone
REFINES find
WHEN

grd1 : n �= 1
grd2 : t(n) = x

grd3 : c = start
WITNESSES

j : j = n
THEN

act1 : c := end
act2 : i := n
act3 : ok := yes

END
EVENT notfoundlastone

WHEN
grd1 : c = start

grd2 : n �= 1
grd3 : t(n) �= x

THEN
act1 : c := call1

END

EVENT foundrec
REFINES find
ANY

k
WHERE

grd1 : k ∈ 1 .. n− 1
grd2 : c = call1

grd3 : t(k) = x
WITNESSES
j : j = k

THEN
act1 : c := end
act2 : i := k
act3 : ok := yes

END
EVENT notfounrec

REFINES unfind
WHEN

grd1 : ∀l·l ∈ 1 .. n− 1⇒ t(l) �= x
grd2 : c = call1

THEN
act1 : c := end

END
END

We have to derive an algorithm from the list of events in the last model.

284 Formal Methods Applied to Complex Systems

Procedure search(x, t, n; i, ok)
BEGIN

i :∈ 1 .. n; ok := no;
IF n = 1 ∧ t(n) = x THEN

ok := yes; i := 1
ELSE IF n = 1 ∧ t(n) �= x THEN

skip
ELSE IF n �= 1 ∧ t(n) = x THEN

ok := yes; i := n;
ELSE search(x, t, n− 1, i, ok);
FI

END

The procedure (or algorithm)
is generated by transformations
of events into fragments of
codes and these fragments are
organized according to the
variable c.

As we have already pointed out, this technique simplifies the construction
of the invariant and also simplifies its proof. We [MÉR 09b, MÉR 09a] have
made a list of classic calculation examples of the binomial coefficients,
calculating the shortest path, the primitive recursive functions, the CYK
algorithm analysis syntax. The tool EB2ALL [MÉR 11b] could be used to
translate these models into C, C++, C# or Java. These two techniques of
development simulate the method of C. Morgan [MOR 90] but the difference
lies in the systematization of the refinement as simple as possible. Do not
develop the model too quickly but introduce machines or intermediate models
that will simplify the work of proof. Finally, note that this model has used the
clause WITNESSES in the event foundrec in the form of j : j = k, this
clause allows the prover to help for instantiating an existential quantifier that
expresses in the abstract event refined by foundrec, it must be given a value
j to observe the abstract event. This device allows us to retain information in
the proof of the abstract model. In the balance sheet of POs, Table 10.2
describes automatic and interactive proofs, where three interactive proofs
require some simple interactions.

10.5. Development of a distributed algorithm

10.5.1. Modeling distributed algorithms

We will illustrate a technique for developing distributed algorithms using
the Event B method. This technique relies on a model of distributed
computing called Visidia [MOS 14] and the objective is to produce an
algorithm. We consider the problem of spanning tree of a graph and we

Event B 285

consider a proof-based pattern integrating the refinement and allowing us to
develop Visidia algorithms, which can be simulated on the platform
Visidia [MOS 14]. The pattern of development is characterized by the
following diagram:

Model Total Auto Manual % Auto %
Manual

search0 0 0 0 0% 0%
csearch0 0 0 0 0% 0%
specsearch 5 5 0 100% 0%
simsearch 52 49 3 94.2% 5.8%
Total 57 54 3 94.7% 5.3%

Table 10.2. Table with statistics for proof effort in the development of the
search procedure

PROBLEM M0 C

M1

V VM1
❄

derivation

✲formalization

❄

REFINES

✲SEES

❄

REFINES

✛mapping

– The context C details the required properties of graphs, as distributed
algorithms often use properties of graphs.

– The machine M0 describes the problem to solve by giving an abstract
event-based expression, for instance, the leader election in a network is
expressed by the emergence of a node, which knows that it is the leader and
the other nodes know that they are not leader but a leader can be elected. The
existence of a solution obviously depends on the properties of the supporting
graph of the distributed computing.

– Refinement of M0 by M1 expresses how a Visidia model performs
a computation; a model in Visidia is a list of relabeling rules for graph,

286 Formal Methods Applied to Complex Systems

that simulates the execution of a distributed computing by localizing the
computations at node or even between two neighbors. The model is very
simple and relatively abstract, but is supported by a simulation tool.

– The next refinement simplifies the model M1, a model where no
relabeling rule appears.

– V is a Visidia model derived from VM1; mapping ensures the translation
of VM1 into VISIDIA [MOS 14].

The leader election is simply defined by rules applied on two neighbors
nodes:

–
d•−−−−−−−−1• −→ d−1• −−−−−−−−NE•

–
0• −→ E•

Each node is labeled by the number of neighbors and the application of
rules is non-deterministic. The leader is a unique node, where all neighboring
nodes request for this node to be a leader. We have developed the leader
election protocol for IEEE 1394 [ABR 03a] on this principle, but up to a more
concrete level, without resolving the issue of probabilities inherent in this
type of algorithm. In Figure 10.2, we give a leader example in graph labeled
with execution rules. Note that these rules calculate the leader in a graph
without cycle.

2

1 1

1

1

4

is
transformed
by rules into
this graph

NE

E NE
NE

NE

NE

Figure 10.2. Graph for the leader election

We introduce rules for computing the spanning tree in the computing
model. We present the development of the computation of spanning tree in
this model (see Figure 10.3).

We apply the proof-based pattern for solving the problem of computing a
spanning tree of a connected graph. The problem is called SPAN.

Event B 287

is
transformed
by rules into
this graph

Figure 10.3. Computing the spanning tree of graph with a model Visidia

SPAN ONE-SHOT GRAPH

RULES

VSPAN VISIDIA
❄

derivation

✲formalization

❄

REFINES

✲SEES

❄

REFINES

✛mapping

10.5.2. Elements of a proof-based pattern

The modeling of graphs is the starting point of this development. The
context graph defines a graph g as a subset of the set N × N and adds
axioms characterizing that it is symmetrical (axm2) and connected (axm3).

CONTEXT graph
SETS

N
CONSTANTS

g, r
AXIOMS

axm0 : r ∈ N
axm1 : g ⊆ N ×N
axm2 : g = g−1

axm3 : ∀s·s ⊆ N ∧ r ∈ s ∧ g[s] ⊆ s⇒N ⊆ s
END

288 Formal Methods Applied to Complex Systems

Then, we give a predicated expression in an event for computing in one
shot of a spanning tree. The machine one− shot has a single-event span that
sets the variable span a spanning tree of graph g. The invariant is simply the
expression span is a subset of g, but it is a spanning tree as indicated by the
expression of the value ar. The important point is to demonstrate that the value
at exists. This is proved by showing that this event is feasible and derived from
the existence of a spanning tree in the mathematical world.

MACHINE one− shot
SEES graph
VARIABLES

span
INVARIANTS

inv2 : span ⊆ g
EVENT INITIALISATION

BEGIN
act2 : span := ∅

END
EVENT span

ANY
at

WHERE
grd1 : at ⊆ g
grd2 : at ∈ N \ {r}→N
grd3 : ∀s·s ⊆ N ∧ r ∈ s ∧ at−1[s] ⊆ s⇒N ⊆ s

THEN
act1 : span := at

END
END

Then, we refine this machine by another machine simulating the
computation of this tree using two variables a and r. The variable a is used to
contain nodes already selected during the calculation for the family tree and
tr contains the spanning tree in construction. The invariant expresses that r is
a forest that is to say that tr is a subset of g without cycle (inv7). The
invariant inv6 expresses that tr is a total function with a domain a without r
and tr plays the role of root of this tree.

Event B 289

MACHINE rules REFINES one− shot
SEES graph
VARIABLES

span, tr, a
INVARIANTS

inv4 : a ⊆ N
inv2 : tr ⊆ g
inv5 : r ∈ a
inv6 : tr ∈ a \ {r}→ a

inv7 : ∀s·
⎛⎝s ⊆ a

∧r ∈ s
∧tr−1[s] ⊆ s

⎞⎠⇒ a ⊆ s

Two events span and rule1 model the possible modifications of tr and a.
We note that it is important to choose a special node starting the process and
a is initialized to the singleton containing r an arbitrary node. The event span
detects the end of the process by testing whether a contains all the elements of
N and sets span to the value of tr. The role of rule1 is different and it chooses
a node y not yet in a but that is reachable from a node of a by the graph g. This
condition aims to avoid creating a cycle.

EVENT INITIALISATION
BEGIN
act4 : span := ∅
act2 : tr := ∅
act3 : a := {r}

END
EVENT span

REFINES span
WHEN
grd1 : a = N

WITNESSES
at : at = tr

THEN
act1 : span := tr

END

EVENT rule1
ANY

x, y
WHERE

grd1 : x ∈ N
grd2 : y ∈ N
grd3 : x $→ y ∈ g
grd4 : x ∈ a
grd5 : y /∈ a

THEN
act2 : a := a ∪ {y}
act1 : tr := tr ∪ {y $→ x}

ENDEND

290 Formal Methods Applied to Complex Systems

The machine visidia refines the machine rules by making it closer to
Visidia model. In fact, it is a refinement to make the tree symmetric and to
transform events in the rules of model visidia. For representing the
membership of a, we use the color black. The new variable lb is used to
localize this information for each node a and the invariant inv2 expresses this
relationship property between nodes a and black nodes. Colors of marking
are expressed by the set MARKING. At the initialization, all nodes are in
white except r.

MACHINE visidia REFINES rules
SEES cvisidia
VARIABLES

tr, lb
INVARIANTS

inv1 : lb ∈ N →MARKING
inv2 : ∀i·i ∈ a⇔ lb(i) = BLACK

The two events span and rule1 refine events with the same name in the
model rules and express local conditions in the variable lb.

EVENT INITIALISATION
BEGIN

act2 : tr := ∅
act4 : lb := lb0

END
EVENT span

REFINES span
WHEN

grd1 : ∀i·i ∈ N ⇒ lb(i) = BLACK
THEN

skip
END

EVENT rule1
REFINES rule1
ANY
x, y

WHERE
grd3 : x �→ y ∈ g
grd4 : lb(x) = BLACK
grd5 : lb(y) = WHITE

THEN
act2 : lb(y) := BLACK
act1 : tr := tr ∪ {y �→ x}

END
END

The last step is the generation of rules in the distributed programming
model Visidia and from the event rule1, we derive only one rule when one of
the nodes is black at the initial state.

white• −−−−−−−−black• −→ black• −−−−−−−−black•

Event B 291

We extract the rule defining the Visidia program from the events of the
machine V isidia, which contains in its events only localizable information.
We can therefore deduce the distributed program that builds a spanning tree.
The issue of convergence of this system is inferred from the analysis of
decreasing the set N a by the event rule1.

10.6. Tools

The Event B method is supported by tools like Atelier B [CLE 02] tool and
Rodin [ABR 10b] platform.

10.6.1. Atelier B

The Atelier B tool [CLE 02] is freely distributed by the company ClearSy,
which is proposed for the four platforms Windows, Linux, MacOS and
Solaris; distribution under license and provides access to the documentations
and case studies. This platform proposes features in a single frame for the
Classical B method and Event B, where Event B syntax is slightly different.
The offered features include the generation of POs to support the interactive
proof, automatic refinement with Bart [CLE 10] tool and translation tools to
C or ADA . The same company continues the free distribution of a platform
called B4Free [CLE 04] based on the joint work of J.-R. Abrial and D.
Cansell on the Balbulette [ABR 03c]. The idea of Balbulette is to provide an
interface with the components of Atelier B as the proof obligation generator
(POG), the prover or translators, to facilitate the developer’s task in the
approach of interactive proof and project management. One of the difficulties
in the use of tools such as Atelier B lies in the interactive use of the proof
assistant to discharge the POs that could not be handled by the automatic
procedures. B4Free offers support during the process of proof and applying
rules. This tool was a great success with the academic partners and its
features are integrated into the Rodin platform.

10.6.2. The Rodin platform

The Rodin platform is supporting the Event B method in the Eclipse
environment, and follows the work in the framework tools like
Click’n’Prove [CAN]. It is dedicated to Event B but only provides

292 Formal Methods Applied to Complex Systems

functionality as plugins (translation into programming languages from Event
B models or integration methodologies like UML). The Rodin platform was
used to develop case studies illustrating this text and
we [MÉR 09c, MÉR 10d, MÉR 10b, MÉR 10c] have used complementary
tools like ProB [HEI 11], which provides the functionality, such as animation
and model checking.

10.7. Conclusion and perspectives

10.7.1. Applications in case studies

The applications of this technique are numerous and the development of
tools has facilitated these case studies. In our presentation, we have mainly
used the Rodin platform but the Atelier B platform can be substituted. The
proof assistant is partly provided by the platform and provers have been
developed for Rodin in order to show both the Rodin platform and the Atelier
B platform, which may also be modeled, and the strength of tools.

Distributed algorithms [ABR 03a] constitute a class of interesting complex
algorithmic problems; the development of the leader election in the case of a
acyclic undirected network has opened avenues of research for exploring
issues of time integration [CAN 07b, REH 09] in development and
management inherent and often implicit. Among distributed algorithms, the
cryptographic algorithms constituent also an interesting class to measure the
impact of refinement in their derivation but measure the expressive power of
language Event B face model the Dolev–Yao attacker [BEN 08]. This has led
to the development of algorithms for authentication distribution
key [BEN 09c, BEN 09b, BEN 09a, BEN 10b, BEN 10a] highlighting basic
mechanisms constituting these algorithms. To some extent, the difficulties lie
in the understanding of property being modeled. These case studies have led
also to the proposed development patterns facilitating introducing
time [CAN 07b, REH 09] and patterns of development in the programming
model distributed Visidia [MÉR 11a, MÉR 10a]. More recently, the issue of
dynamic networks like networks graphs that evolve over time was studied in
Event B for the discovery of topology [HOA 09b] or routing
dynamic [MÉR 11c].

Regarding sequential algorithms, J.-R. Abrial [ABR 03b] has proposed
rules for translating the Event B models into an algorithmic notation. The

Event B 293

approach has been outlined in this chapter and actually allows us to
(re)develop sequential algorithms. The approach based on the relation call -
event [MÉR 09b, MÉR 09a] allows a relatively simple development of
sequential algorithms facilitating the expression of invariant and highlighting
a recursive analysis of the problem.

More conventionally, the Event B method is used to develop systems
integrating software components and requiring objective arguments to certify
their operation. J.-R. Abrial has designed a model of a mechanical
press [ABR 10a] for ensuring the maintenance of security properties. Event B
is an effective engineering framework with a formal system and a set of
proof-based development patterns [ABR 10a, HOA 09a] and structures, and
refinement charts [MÉR 11f]. Among the important studies, there are several
case studies like pacemaker modeling [MÉR 10b, MÉR 11e, SIN 11]
electric heart model [MÉR 11g, SIN 13, SIN 11] and medical protocols
[MÉR 11g, SIN 13, SIN 11]. Modeling related to the security issues such as
access control [BEN 07, BEN 10a] have also showed that the Event B
language is sufficiently flexible to integrate access control models such as
RBAC or ORBAC. Finally, the development of Event B
models [MÉR 11h, MÉR 11d] can produce the code using integrated tools in
the Rodin platform, which can be further used for assembling the system.

10.7.2. Conclusion and perspectives

The Event B method is based on a powerful language based on set theory
and first order predicate calculus; it provides simple structures, machines, to
describe reactive systems. To some extent, it can be described in other
languages for reactive systems but refinement is a key concept that allows us
to develop incrementally and safely complex models of relatively large
systems like a mechanical press or a pacemaker. Furthermore, the tools have
matured in both the interface and the proof tools; they require some practice,
but with the proof assistant or the ProB animator, each sheds light on
developed models and contributes to the validation of models. To conclude
our outlook, we believe that the treatment of time, probabilistic aspects of less
formal system integration languages, proof-based patterns of development
and case studies are points to explore, while for now a development
tool [ABR 08] is freely available.

294 Formal Methods Applied to Complex Systems

10.8. Bibliography

[ABR 96] ABRIAL J.-R., The B book – Assigning Programs to Meanings, Cambridge
University Press, 1996.

[ABR 03a] ABRIAL J.-R., CANSELL D., MÉRY D., “A mechanically proved and
incremental development of IEEE 1394 tree identify protocol”, Formal Aspects of
Computing, vol. 14, no. 3, pp. 215–227, 2003.

[ABR 03b] ABRIAL J.-R., “Event based sequential program development:
application to constructing a pointer program”, in ARAKI K., GNESI S.,
MANDRIOLI D. (eds.), FME, Lecture Notes in Computer Science, Springer,
vol. 2805, pp. 51–74, 2003.

[ABR 03c] ABRIAL J.-R., CANSELL D., “Click’n prove: interactive proofs within
set theory”, in BASIN D.A., WOLFF B. (eds.), TPHOLs, Lecture Notes in
Computer Science, Springer, vol. 2758, pp. 1–24, 2003.

[ABR 08] ABRIAL J.-R., BUTLER M.J., HALLERSTEDE S., et al., “A Roadmap for
the Rodin Toolset”, in BÖRGER E., BUTLER M. J., BOWEN J.P., et al., (eds.),
ABZ, Lecture Notes in Computer Science, Springer, vol. 5238, p. 347, 2008.

[ABR 10a] ABRIAL J.-R., Modeling in Event-B: System and Software Engineering,
Cambridge University Press, 2010.

[ABR 10b] ABRIAL J.-R., BUTLER M. J., HALLERSTEDE S., et al., “Rodin: an
open toolset for modeling and reasoning in Event-B”, STTT, vol. 12, no. 6,
pp. 447–466, 2010.

[BAC 79] BACK R.J.R., “On correct refinement of programs”, Journal of Computer
and System Sciences, vol. 23, no. 1, pp. 49–68, 1979.

[BAC 89] BACK R.-J., KURKI-SUONIO R., “Decentralization of process nets with
centralized control”, Distributed Computing, vol. 3, no. 2, pp. 73–87, 1989.

[BAC 98] BACK R.-J., VON WRIGHT J., Refinement Calculus A Systematic
Introduction, Graduate Texts in Computer Science, Springer-Verlag, 1998.

[BEN 07] BENAISSA N., CANSELL D., MERY D., “Integration of security policy
into system modeling”, The 7th International B Conference – B2007, Besançon,
France, January 2007.

[BEN 08] BENAISSA N., “Modeling attacker’s knowledge for cascade cryptographic
protocols”, in BÖRGER E., BUTLER M., BOWEN J.P., et al. (eds.), First
International Conference on Abstract State Machines, B and Z – ABZ 2008,
Lecture Notes in Computer Science, Springer, London, United Kingdom,
vol. 5238, pp. 251–264, 2008.

Event B 295

[BEN 09a] BENAISSA N., MÉRY D., “Cryptographic protocols analysis in Event
B”, Seventh International Andrei Ershov Memorial Conference “PERSPECTIVES
OF SYSTEM INFORMATICS” – PSI 2009, Lectures Notes in Computer Science,
Springer-Verlag, Novosibisrk, Russia, November 2009.

[BEN 09b] BENAISSA N., MÉRY D., “Cryptologic protocols analysis using proof-
based patterns”, Seventh International Andrei Ershov Memorial Conference
PERSPECTIVES OF SYSTEM INFORMATICS – PSI 2009, Lecture Notes in

Computer Science, Springer-Verlag, Novosibirsk, Russia, June 2009.

[BEN 09c] BENAISSA N., MÉRY D., “Développement combiné et prouvé de
systèmes transactionnels cryptologiques”, Approches Formelles dans l’Assistance
au Développement de Logiciels – AFADL 2009, Toulouse, France, January 2009.

[BEN 10a] BENAISSA N., La composition des protocoles de sécurité avec la méthode
B événementielle, PhD Thesis, Henri Poincaré University, Nancy I, May 2010.

[BEN 10b] BENAISSA N., MÉRY D., “Proof-based design of security protocols”,
MAYR E.W. (ed.), 5th International Computer Science Symposium in Russia,
CSR 2010, Lecture Notes in Computer Science, KAZAN, Russia, Farid Ablayev,
Springer, vol. 6072, pp. 25–36, June 2010.

[BJO 06a] BJORNER D., Software Engineering 1 Abstraction and Modeling, Texts in
Theoretical Computer Science, EATCS Series, Springer-Verlag, 2006.

[BJO 06b] BJORNER D., Software Engineering 2 Specification of Systems and
Languages, Texts in Theoretical Computer Science, EATCS Series, Springer-
Verlag, 2006.

[BJO 06c] BJORNER D., Software Engineering 3 Domains, Requirements, and
Software Design, Texts in Theoretical Computer Science, EATCS Series, Springer-
Verlag, 2006.

[BJØ 07] BJØRNER D., HENSON M.C. (eds.), Logics of Specification Languages,
EATCS Textbook in Computer Science, Springer, 2007.

[CAN] CANSELL D., Click’N’Prove. Available at http://plateforme-qsl.loria.fr/click
%20n%20prove.php.

[CAN 07a] CANSELL D., MÉRY D., “The Event-B Modeling Method: Concepts and
Case Studies”, pp. 33–140, Springer, 2007. (see [BJØ 07])

[CAN 07b] CANSELL D., MÉRY D., REHM J., “Time constraint patterns for Event
B development”, in JULLIAND J., KOUCHNARENKO O. (eds.), 7th International
Conference of B Users, January 17–19, 2007, of Lecture Notes in Computer
Science, Besançon, France, Springer-Verlag, vol. 4355, pp. 140–154, 2007.

[CHA 88] CHANDY K.M., MISRA J., Parallel Program Design A Foundation,
Addison-Wesley Publishing Company, 1988.

“ ”

296 Formal Methods Applied to Complex Systems

[CLA 00] CLARKE E.M., GRUNBERG O., PELED D.A., Model Checking, The MIT
Press, 2000.

[CLE 02] CLEARSY, AIX-EN-PROVENCE (F), ATELIER B., 2002. Available at
http://www. atelierb.eu.

[CLE 04] CLEARSY, AIX-EN-PROVENCE (F), B4FREE, 2004. Available at
http://www. b4free.com.

[CLE 10] CLEARSY, AIX-EN-PROVENCE (F), BART, 2010. Available at
http://www. atelierb.eu.

[COU 78] COUSOT P., Méthodes itératives de construction et d’approximation de
points fixes d’opérateurs monotones sur un treillis, analyse sémantique des
programmes, PhD Thesis, Université Joseph Fourier, Grenoble, 21 March 1978.

[COU 79] COUSOT P., COUSOT R., “Systematic design of program analysis
frameworks”, Proceedings Records of Sixth Proceedings of the Symposium on
Principles of Programming Languages, San Antonio, Texas, pp. 269–282, 1979.

[COU 92] COUSOT P., COUSOT R., “Abstract interpretation frameworks”, Journal
of Logic and Computation, vol. 2, no. 4, pp. 511–547, 1992.

[COU 00] COUSOT P., “Interprétation abstraite”, Technique et science informatique,
vol. 19, no. 1–2–3, pp. 155–164, January 2000.

[DIJ 76] DIJKSTRA E.W., A Discipline of Programming, Prentice-Hall, 1976.

[FLO 67] FLOYD R.W., “Assigning meanings to programs”, in SCHWARTZ J.T.
(ed.), Proc. Symp. Appl. Math. 19, Mathematical Aspects of Computer Science,
American Mathematical Society„ vol. 19, pp. 19–32, 1967.

[HEI 11] HEINRICH-HEINE-UNIVERSITÄT DÜSSELDORF, The ProB animator and
model checker. Available at http://www.stups.uni-duesseldorf.de/ProB, 2000–
2011.

[HOA 69] HOARE C.A.R., “An axiomatic basis for computer programming”,
Communications of the Association for Computing Machinery, vol. 12, pp. 576–
580, 1969.

[HOA 09a] HOANG T.S., FURST A., ABRIAL J.-R., “Event-B patterns and their tool
support”, in HUNG D.V., KRISHNAN P. (eds.), SEFM, IEEE Computer Society,
pp. 210–219, 2009.

[HOA 09b] HOANG T.S., KURUMA H., BASIN D.A., et al., “Developing topology
discovery in Event-B”, Sci. Comput. Program., vol. 74, no. 11–12, pp. 879–899,
2009.

[HOL 97] HOLZMANN G., “The spin model checker”, IEEE Trans. on software
engineering, vol. 16, no. 5, pp. 1512–1542, May 1997.

Event B 297

[LAM 80] LAMPORT L., “Sometime is sometimes not never: a tutorial on the
temporal logic of programs”, Proceedings of the Seventh Annual Symposium on
Principles of Programming Languages, pp. 174–185, 1980.

[LAM 94] LAMPORT L., “A temporal logic of actions”, Transactions On
Programming Languages and Systems, vol. 16, no. 3, pp. 872–923, May 1994.

[LAM 02] LAMPORT L., Specifying Systems: The TLA++ Language and Tools for
Hardware and Software Engineers, Addison-Wesley, 2002.

[MCM 93] MCMILLAN K.L., Symbolic Model Checking, Kluwer Academic
Publishers, 1993.

[MÉR 09a] MÉRY D., “A simple refinement-based method for constructing
algorithms”, ACM SIGCSE Bulletin, vol. 41, no. 2, pp. 51–59, June 2009.

[MÉR 09b] MÉRY D., “Refinement-Bbsed guidelines for algorithmic systems”,
International Journal of Software and Informatics, vol. 3, nos. 2–3, pp. 197–239,
September 2009.

[MÉR 09c] MÉRY D., SINGH N.K., Pacemaker’s functional behaviors in Event-B,
Research report, University of Lorraine, 2009.

[MÉR 10a] MÉRY D., MOSBAH M., TOUNSI M., “Proving distributed algorithms by
combining refinement and local computations”, in BENDISPOSTO J., LEUSCHEL
M., ROGGENBACH M. (eds.), AVOCS 2010 10th International Workshop on
Automated Verification of Critical Systems, Dusseldorf, Allemagne, Germany,
September 2010.

[MÉR 10b] MÉRY D., SINGH N.K., “Functional behavior of a cardiac pacing
system”, International Journal of Discrete Event Control Systems (IJDECS), Dr.
MOHAMED KHALGUI, vol. 1, December 2010.

[MÉR 10c] MÉRY D., SINGH N.K., Technical report on formal development of two-
electrode cardiac pacing system, Research report, University of Lorraine, February
2010.

[MÉR 10d] MÉRY D., SINGH N.K., “Trustable formal specification for software
certification”, in MARGARIA T., STE B. (eds.), 4th International Symposium On
Leveraging Applications of Formal Methods – ISOLA 2010, of Lecture Notes in
Computer Science, Heraklion, Crete, Greece, Springer, vol. 6416, pp. 312–326,
October 2010.

[MÉR 11a] MÉRY D., MOSBAH M., TOUNSI M., “Refinement-Based Verification
of Local Synchronization Algorithms”, in BUTLER M., SCHULTE W., (eds.), FM,
Lecture Notes in Computer Science, Springer, vol. 6664, p. 338–352, 2011.

[MÉR 11b] MÉRY D., SINGH N.K., EB2C: a tool for Event-B to C conversion
support, 2011. Available at http://eb2all.loria.fr.

298 Formal Methods Applied to Complex Systems

[MÉR 11c] MÉRY D., SINGH N.K., “Analysis of DSR protocol in Event-B”, 13th
International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS 2011), 2011.

[MÉR 11d] MÉRY D., SINGH N.K., B2C : A Tool for Event-B to C Conversion
Support, http://eb2all.loria.fr., 2011.

[MÉR 11e] MÉRY D., SINGH N.K., “Formal development and automatic code
generation: cardiac pacemaker”, International Conference on Computers and
Advanced Technology in Education (ICCATE 2011), 2011.

[MÉR 11f] MÉRY D., SINGH N.K., “A generic framework: from modeling to code”,
ISSE, vol. 7, no. 4, p. 227–235, 2011.

[MÉR 11g] MÉRY D., SINGH N.K., “Formalisation of the heart based on conduction
of electrical impulses and cellular-automata”, International Symposium on
Foundations of Health Information Engineering and Systems (FHIES 2011), 2011.

[MÉR 11h] MÉRY D., SINGH N.K., “A generic framework: from modeling
to code”, Fourth IEEE International workshop UML and Formal Methods
(UML&FM’2011), (to be appeared in special issue of ISSE NASA Journal,
Innovations in Systems and Software Engineering), 2011.

[MÉR 11g] MÉRY D., SINGH N.K., “Medical protocol diagnosis using formal
methods”, International Symposium on Foundations of Health Information
Engineering and Systems (FHIES 2011), 2011.

[MÉR 13] MÉRY D., MONAHAN R., “Transforming Event B models into verified
C# implementations”, LISITSA A., NEMYTYKH A.P. (eds.), VPT@CAV, of EPiC
Series, EasyChair, vol. 16, pp. 57–73, 2013.

[MOR 90] MORGAN C., Programming from Specifications, Prentice Hall
International Series in Computer Science, Prentice Hall, 1990.

[MOS 14] MOSBAH M., VISIDIA. Available at http://visidia.labri.fr., 2014.

[REH 09] REHM J., Gestion du temps par le raffinement, PhD Thesis, Henri Poincaré
University, Nancy I, December 2009.

[SIN 11] SINGH N.K., Fiabilité et sûreté des systèmes informatiques critiques, Thèse
d’université, Université Henri Poincaré Nancy 1, October 2011.

[SIN 13] SINGH N.K., Using Event-B for Critical Device Software Systems,
Springer, 2013.

[TUR 49] TURING A., “On checking a large routine”, Conference on High-
Speed Automatic Calculating Machines, University Mathematical Laboratory,
Cambridge, 1949.

11

B-RAIL: UML to B Transformation in
Modeling a Level Crossing

11.1. Introduction

The use of computer science has increased over recent years. The
introduction of computers into more or less complex systems must be carried
out with care. This development affects both everyday products (domestic
electrical appliances, cars, etc.) and industrial products (industrial
management systems, medical equipment, financial transactions, rail
systems, etc.).

Informal specifications provide a description of what is required of a
computer system using natural language. They describe the services and
operating conditions expected of an element. In order to produce a system
which corresponds to the specified requirements, these requirements are
described in a prescriptive model.

The modeling of complex rail systems presents significant difficulties,
particularly in cases involving safety functions. In this chapter, we have
chosen to consider level crossings (railroad crossings), which constitute a
critical sub-system.

In this chapter, we propose a modeling methodology based on the pairing
of a semi-formal method, unified modeling language (UML) [OMG 07], and
a formal method, the B method [ABR 96], to provide the rigor needed when

Chapter written by Jean-Louis BOULANGER.

300 Formal Methods Applied to Complex Systems

designing critical systems. UML notation allows us to describe a system in
its environment. The impact of faults is formalized in the form of use cases
and sequence diagrams. The behavior of the system is described as a class
graph, and for each graph, behavior is characterized by a state/transition
diagram. At the end, we propose a process for the translation of UML
models into B language. This process is currently centered on the use of
state/transition diagrams. Work is currently underway to integrate the
translation of OCL constraints into B into our process.

The chapter begins with a brief presentation of the issues associated with
level crossings, and a rapid presentation of UML notation. We then cover the
different stages of our methodology point by point.

11.2. Level crossings: general overview

A level crossing is characterized as the intersection of a road traffic route
and a rail route. The zone of intersection between the two traffic zones is
known as the “danger zone”. Level crossings remain a source of accidents
despite the use of protection systems.

Figure 11.1. Level crossing

We have chosen to use the operational specification supplied by [JAN 00]
as our initial informal specification. This operational specification presents a
description involving “real-time” constraints and distributions for an entirely
software-controlled level crossing. We shall begin by considering a single

B-RAIL: UML to B Transformation in Modeling a Level Crossing 301

railway line in intersection with a two-way road. The zone prior to the
intersection is known as the announcement zone.

A classic level crossing, as shown in Figure 11.1, is equipped with
barriers and traffic lights. The light signals consist of a flashing orange light
and a red light. When the signals are extinguished, road users (drivers,
pedestrians, cyclists, etc.) may cross. The flashing orange signal indicates a
request to stop and the red light indicates that the passage is closed and rail
traffic takes priority.

The level crossing we wish to model may be controlled by local agents.
In this case, these agents will have all of the abilities required to ensure the
safety of the level crossing.

In this initial presentation, we do not aim to redefine the functional
specification, but rather to present those elements which are relevant for our
study. As space does not permit an exhaustive presentation of the
specification, readers may wish to refer to [JAN 00] for full details.

11.3. Managing requirements

Examples of requirement management in automotive and rail contexts are
presented in [BOU 06, RAM 09] Chapter 2 and [RAM 11] Chapter 3. The
purpose of this section is to provide those elements necessary for
understanding our specific example.

11.3.1. Requirements

The standards applicable in different domains necessitate identification of
the requirements of software applications. Note that several terms are used
synonymously in published works on the subject, including prescriptions,
recommendations, requirements, constraints and properties. The general
standard CEI/IEC 61508 [IEC 08] uses the notion of “prescriptions”, but the
notion of “requirements” is the most widespread.

Two main types of requirement exist, as shown in Figure 11.2: functional
and non-functional requirements (safety, reliability, performance, etc.).

302 Formal Methods Applied to Complex Systems

Figure 11.2. Different requirement types

Table 11.1 is taken from [STA 94], and shows that over 30% of the
causes of failure in system creation are the result of incomplete
requirements, omissions in requirements or unrealistic requirements.

Description %

Incomplete requirement 13.1

Lack of user involvement 12.4

Lack of resources 10.6

Unrealistic expectations 9.9

Lack of executive support 9.3

Changing requirement/specification 8.7

Lack of planning 8.1

Didn’t need it any longer 7.5

Table 11.1. Causes of failure

[STA 01] identifies the implementation of a requirement management
environment as the best way of having a significant impact on the success of
a project. The definition of a minimum set of requirements produces a
manageable base and may be used as a tool for communication between
teams.

The main difficulty therefore lies in defining the notion of requirements.
Several projects have attempted to provide a precise definition of
requirements and the way in which they should be taken into account.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 303

[HUL 05] gives one of the fullest summaries. For our purposes, we shall use
the following definition, developed for use in industrial contexts.

11.3.2. Recommendations, requirements and properties

The creation of a contract involves two parties, the client and the
supplier. A contract constitutes an agreement by the supplier to produce a
system which will satisfy the requirements of the client. The client’s
demands are generally expressed using a functional specification document.

The importance of these client requirements is variable. Certain demands
may be linked to functional requirements, regulatory obligations (general
standards, trade standards, etc.) and/or operational safety requirements,
notably in the case of safety critical systems.

DEFINITION 11.1.– REQUIREMENT1.– A requirement is a stipulation which
translates a need and/or constraints (techniques, costs, time delays, etc.).
This stipulation may be expressed in a natural, mathematical or other
language.

Figure 11.3. Recommendation acquisition phase (stakeholder requirements)

For clear identification, each requirement is treated as an element with a
unique identification label which characterizes an element of the system to
be created.

1 The AFIS, Association Française d’Ingénierie Système (French Association of Systems
Engineers), includes a workgroup with a specific focus on managing requirements. For more
information, see www.afis.fr.

304 Formal Methods Applied to Complex Systems

The term “requirement” has several meanings, depending on the level at
which it is used: expression of client needs, expression of the service to
provide or expression of the effective service provided.

The initial documents for a system (functional specification, standards,
trade references, regulations, etc.) contain requirements which must be taken
into account when producing a system. The first stage (Figure 11.3) involves
highlighting stakeholder requirements. To distinguish these stakeholder
requirements, which constitute a form of input into the process, from the
requirements generated during later phases, we shall use the term
“recommendations”.

DEFINITION 11.2.– RECOMMENDATION.– A recommendation is a stakeholder
requirement which constitutes a “desire”. It may be explicit (e.g. contained
in the functional specification or a trade reference document) or implicit.

This first phase results in the production of a list of recommendations.
These are often very badly expressed from a realization perspective, and
may be too precise (involving technological choices), too general, not
applicable, etc.

Figure 11.4 shows a summary of the user requirement acquisition
process.

Figure 11.4. Requirement establishment process

This acquisition phase is followed by an extraction/elicitation phase,
which aims to define requirements to take into account when creating the
system. This phase is carried out in collaboration with the client.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 305

A set of criteria needs to be established before defining requirements
(recommendations or properties). These criteria are used to qualify
requirements. In general terms, requirements must be unambiguous,
complete and consistent. From a process perspective, requirements must be
identifiable, verifiable and modifiable.

Figure 11.5. Elicitation, traceability and verification

As we see from Figure 11.5, a verification process must be established to
show that the recommendations expressed by the stakeholder have been
taken into account during creation of the system.

Requirements are analyzed and taken into account at each stage of the
system creation process. In the context of hardware and/or software design
phases, a requirement may be transformed into a property or properties
related to specific components.

DEFINITION 11.3.– PROPERTY.– A property is a characteristic which a
component (hardware or software) must verify.

Properties are generally grouped into two categories: safety properties
and liveness properties.

306 Formal Methods Applied to Complex Systems

DEFINITION 11.4. – SAFETY PROPERTY.– A safety property expresses the fact
that something bad will not happen during execution.

Examples of safety properties include the absence of blockages, mutual
exclusion, etc., or, in this particular context, the absence of collisions
between trains.

DEFINITION 11.5.– LIVENESS PROPERTY.– A liveness property expresses the
fact that something good will always happen during execution.

The completion of an application, the absence of famine (constant
progression of applications) and guaranteed service are all examples of
liveness properties.

Any property P may be expressed as the conjunction of a liveness
property V and a safety property S.

11.3.3. Requirements engineering

In this context, we are not concerned with purely software- or hardware-
based applications, but with the development of a complex system. The
requirement generation process (identification, traceability, classification,
etc.) for a complete system is generally referred to as requirements
engineering. This process may or may not make use of tools. In this section,
we present the basis of this process and its implementation.

11.3.3.1. From recommendations to requirements

As we see from Definition 11.2, client recommendations can be
expressed using different formalisms of varying formality levels. Generally,
requirements at this level are expressed in natural language and intervention
is required to make them useable. This first phase is used to define system
requirements.

The aim of the analysis and transformation process (Figure 11.6) is to
clarify the recommendation text, highlighting any conflicts (requirements
which are contradictory or have different aims), lacunas, unspoken
assumptions, etc. This stage involves the removal of descriptive aspects and
concentrates the focus on essential aspects.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 307

This first phase leads to the creation of a set of requirements, used as
input for the system analysis phase. As we shall see, requirements are linked
to analysis levels. Each requirement possesses at least four attributes: a label,
a description, a level and a justification.

Figure 11.6. From recommendations to requirements

We may add other attributes qualifying the requirement to this list: family
(functional, RAM, safety, performance, etc.), priority (defined as a function
of the project), verifiability (yes/no), verification type (test, simulation, etc.),
source (who), state (awaiting treatment, analyzed, rejected, etc.), document
type, version, etc. Attributes must be defined at the beginning of the project.

11.3.3.2. Traceability

Figure 11.7 shows the ways in which client recommendations may be
present throughout the system, and the way in which the process may
continue down to the software and hardware elements level.

During the verification phase for level ni, we must demonstrate that the
requirements for this level relate to the higher level, ni–1. This relationship is
demonstrated using traceability procedures.

The implementation of traceability requires us to define at least one
connection between two objects. In the case of requirements, traceability
connections should allow us to show that a requirement at level ni is

308 Formal Methods Applied to Complex Systems

connected to a requirement from the previous level ni−1. By following the
connection in the opposite direction, we are able to show that no
requirements have been forgotten during the realization process.

Figure 11.7. Partial traceability from client requirements to specific
equipment requirements

As we see from Figure 11.8, a requirement (from recommendations to
properties) may be subjected to a variety of basic transformations. Two of
these cases, the addition and the removal of requirements, are particularly
interesting as justification is required in both situations.

Figure 11.8. Basic transformations of requirements

B-RAIL: UML to B Transformation in Modeling a Level Crossing 309

The purpose of traceability is to define links between requirements. As
we see from Figure 11.9, the basic connection shows a relationship between
two requirements on different, consecutive levels.

This connection defines an “is derived from” type relationship. The
inversion of this connection gives an “is taken into account by” type
relationship.

Figure 11.9. Connections between requirements

The “is derived from” connection may not be sufficient to describe
more complex relationships between requirements. As we see in part 2 of
Figure 11.9, we can also define “logical” relationships (using OR, AND
and other operators) between requirements. This type of complex
relationship may be used as a means of recording part of the reasoning
process.

Requirements are then associated with system functions. A function is a
behavior which is expected of the system. This process is repeated for all
sub-systems, pieces of equipment, hardware and software aspects.

Figure 11.10 shows a traceability matrix used to connect requirements
and functions, and to associate requirements with other, derived
requirements.

Part 1 of Figure 11.10 shows the functional relationship and
the association of requirements across two levels. Function Fct1 is made up
of three sub-functions. As we see from part 2, requirement Rq2 is broken
down into two requirements which are associated with two sub-functions of
Fct1.

310 Formal Methods Applied to Complex Systems

Figure 11.10. Requirement traceability diagrams

11.3.3.3. Verification

A requirement verification phase is implemented for each stage in the
production process. This phase aims to show:

– that the initial requirement has been taken into account: this requires
traceability between requirements at the current level and at the preceding
(higher) level. Traceability must be verified through the existence and
justification of connections;

– that the set of requirements taken as a whole is correct: we must show
that our requirements are understandable, unambiguous, verifiable, possible,
etc., and that the set of requirements is coherent (free from conflicts).

When considering traceability, we should be able to show that all
requirements have been implemented, but also that all implemented aspects
are required.

11.3.3.4. Activities

Requirements are used to create connections between documents
(specifications, design documents, coding files, etc.), but also as
test objectives. Different test categories (unit tests, software/software
integration, hardware/software integration, functional tests and receipt tests)
can be associated with requirements using the verification type attribute.
This creates a requirement management process which allows us to connect
initial requirements, production choices and validation phases (see
Figure 11.11).

B-RAIL: UML to B Transformation in Modeling a Level Crossing 311

Figure 11.11. Connections between activities

During the verification phase, we check requirement coverage levels and
the coherency of the established connections. From a project persepctive, the
verification of requirement coverage allows us to quantify work which has
been carried out and that which remains to be done.

Mastering the evolution of requirements and analyzing the impact of
these developments on associated requirements and on products constitute
key elements in requirements engineering. This mastery of evolutions
represents the main difficulty of requirements engineering.

11.3.3.5. Implementation

Requirements management involves the establishment of simple
mechanisms, such as:

– identifier management;

– description of requirements;

– definition of a traceability table.

A text edition tool may therefore be sufficient2 (using tables, identifier
management, links between documents, etc.) to process one or more

2 Between 1994 and 1998, the INTERLEAF text processor was used to define and generate
all requirements (from the system to the program, written in B) in the context of the dual
validation process used by the RATP for the SAET-METEOR system (line 14 of the Paris
metro).

312 Formal Methods Applied to Complex Systems

documents. In the case of complex systems, the number of documents and
the number of stages (see Figure 11.12) create a need for a tool-based
requirement management process.

Figure 11.12. Outline of a requirement management environment

[CHO 01] presents the common airbus requirements engineering (CARE)
approach, designed for use in developing the Airbus A380. This approach is
based on the definition of a global methodology, based on the EIA-632
standard [EIA 98], with accompanying tools.

Requirements engineering is supported by tools which are used to acquire
requirements and establish traceability, reporting and document generation.
Examples of this type of tool include DOORS (distributed by IBM), RTM
(Integrated Chipware Inc.), RequisitePro (Rational) and Reqtify (created by
Dassault for traceability matrix generation). One of the main issues
associated with the use of these tools is their integration into the trade
processes used by individual companies.

In the course of the CNRS AS 164 project (June 2003–June 2004), we
studied the level of mastery of the requirements management process in the
context of rail transport. The interviews carried out during the project
showed that clients (the RATP and the SCNF) had begun to provide some or
all of their specifications in the form of requirements, and that industrial
actors in the field (including SIEMENS, ANSALDO, ALSTOM, ALCATEL
and THALES) now include requirements management in their trade
processes. Further investigation has shown that all actors in the rail transport
domain now make use of more or less extensive requirements engineering
processes.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 313

11.3.3.6. Standardization

In this section, we shall present two examples of standardization
processes concerning the notion of requirements. We do not aim to provide
exhaustive coverage of the subject, but to illustrate the approaches currently
used in a real-world context.

11.3.3.6.1. User requirements notation: URN

URN is an initiative launched by the International Telecommunication
Union (ITU3) in 1999 with the aim of standardizing notation for the visual
description of requirements for complex applications and systems. Standard
Z.150 [ITU 03] is used for the graphical description of both functional and
non-functional requirements.

The standard includes two languages:

1) a language used to describe company goals and objectives, alternatives
and non-functional requirements, the goal-oriented requirement language
(GRL);

2) a language used to describe functional requirements in scenario form,
use case maps (UCM).

As this work was carried out at the ITU, these languages display strong
links to other standardized languages, such as LOTOS, SDL and the MSCs.
These connections have made it easier to create tools for the passage from
UCM scenarios to these languages.

It is also possible to envisage combined use of the GRL and UCM
notations (for requirement acquisition) and UML notation (via a
transformation process) for system specification.

11.3.3.6.2. System modeling language: SysML

UML notation [OMG 07] allows us to model complex systems using
multiple formalisms (class graphs, state/transition diagrams, sequence
diagrams, use cases, etc.). UML notation is based on a formalization of the
meta-model, permitting a definition of the particularization of notation,
which is possible via the definition of usage profiles.

3 See www.itu.int.

314 Formal Methods Applied to Complex Systems

System modeling language (SysML4) may be seen as a usage profile5.
SysML [SYS 05] takes account of requirement processing [HAU 05] using a
new diagram type, the requirement diagram. It uses two notions which are
interesting from a requirement management perspective: requirements and
test cases.

Connections can then be made via four different aspects: composition,
derivation, satisfaction and verification. The requirement stereotype is
associated with default attributes: an identifier, source, text description,
requirement type, risk and verification method.

SysML can thus be used within a UML model to describe requirements
and the results of the derivation process. The ARTISAN6 tool, for example,
offers an implementation of SysML which allows us to take account of
requirements within a model.

11.4. UML notation and the B method

11.4.1. UML notation

UML is the result of a fusion of dominant object methods (OMT, Booch
and Jacobson), standardized by the Object Management Group (OMG7) in
1997. It rapidly became the key industrial standard for modeling software
applications. UML is used for object-oriented software application
modeling: systems are modeled using several types of diagrams, each
contributing to the construction of a system [MUL 01]. Further details on the
syntax and semantic aspects of the notation may be found in the UML
reference guide [OMG 07].

Although UML notation allows us to represent models, it does not define
the process used in creating these models. However, in the context of
modeling a computer application [BOO 99], the developers of UML notation
recommended an iterative and incremental approach, guided by the needs of
system users and focused on the software architecture.

4 See www.sysml.org.
5 SysML is based on part of UML 2.0 with additions relating to system and requirement
management aspects.
6 See http://www.artisansw.com/.
7 See http://www.omg.org/.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 315

Figure 11.13 shows an example of a UML model of a rail system
involving different modelings: use cases, a sequence diagram, a
state/transition diagram and a class diagram.

UML is not the source of object concepts, but it provides a more formal
definition and adds a methodological dimension which was previously
lacking in the object-based approach. The definition and introduction of
object constraint language (OCL) within UML represents a significant step
forward, allowing us to define constraints, including safety or liveness
properties, during the design phase.

Figure 11.13. Example of a UML model

As UML notation does not impose one particular way of working, it may
be integrated into any system and/or software development process in a
transparent manner. It may therefore be seen as a toolkit to be used for the
progressive improvement of working practices, while preserving the specific
modes of operation used in different domains. The popularity of UML
notation is reinforced by the availability of a significant number of tools, the
integrated development environment (IDE) software workshops, which
allow graphical implementation of the notation and which support the

316 Formal Methods Applied to Complex Systems

development process through partial code generation, documentation and
retro-engineering.

UML is widely supported by the whole computer science community,
and is used in all domains, having recently been introduced into the field of
critical applications. Note that the standards applicable to critical systems in
different domains, including aeronautics (DO178, JAR/FAR), rail transport
(CENELEC EN 50126, EN 50128, EN 50129) and programmable electronic
systems (CEI/IEC 61508), do not permit the use of object-oriented
techniques (memory allocation, dynamic variables, polymorphism,
inheritance, determinist execution, etc.).

The use of UML notation raises certain questions [BOU 07, OSS 07], for
example concerning the use of notation without semantics, the evaluation of
UML-based applications and so on. Several publications, including
[FAA 04] and [MOT 05], have aimed to offer responses to these questions.

One pathway used in the development of UML notation concerns the
creation of trade profiles, particularly the establishment of profiles enabling
the manipulation of system aspects. The SysML profile [OMG 06] facilitates
the handling of requirements and test cases. Work is currently underway on
incorporating this profile into our methodology; it will not be presented in
greater detail here.

11.4.2. The B method

Jean-Raymond Abrial’s B method [ABR 96] is a model-oriented formal
method, like Z and VDM, but which allows incremental development from a
specification to code through the notion of refinements, using a single
formalism, abstract machine language. During each stage of a B
development, proof obligations are generated to guarantee the validity of
refinements and the consistency of the abstract machine. The B modeling
paradigm is based on the introduction of properties which the model must
verify; these properties are then subject to refinement.

In France, the use of formal methods in the rail transport domain,
particularly the B method, is increasingly common in the development of

B-RAIL: UML to B Transformation in Modeling a Level Crossing 317

critical systems. The programs used for these safety systems (rail signaling
systems, automatic piloting, etc.) must respond to extremely strict quality,
reliability and robustness criteria.

One of the first applications of formal methods was carried out a
posteriori on the SACEM system8 [GUI 90]. More recent projects, such as
SAET-METEOR [BEH 93, BEH 96, BEH 97, BOU 06], the VAL (Véhicule
Automatique Léger, automated light vehicle)9 system at Charles de Gaulle
Airport and the automatic system on line 1 of the Paris metro (brought into
service in 2011) have used the B method throughout the development
process, from specification to coding.

11.4.3. Overview

Rail transport systems are subject to major operational safety constraints,
as demonstrated by the CENELEC reference document [CEN 00, CEN 01,
CEN 11, CEN 03] which regulates the creation of these systems (in terms of
both hardware and software). The notion of requirements and requirement
mastery forms a central element of the CENELEC document.

As [ZOW 05] demonstrates, requirements can be explained using a
number of different processes (such as interviews, questionnaires, domain
analysis, work groups, observations, perspective studies, safety studies, etc.).
Appendix A of [MEI 02] presents methodological elements linked to
requirements engineering, which is one of the tools proposed by systems
engineering, as we see from standard EIA-632 [EIA 98].

We shall now give a step-by-step description of our methodology.

8 The SACEM (Système d’Aide à la Conduite, à l’Exploitation et à la Maintenance) driving,
usage and maintenance support system, installed in 1988, provides drivers with speed
recommendations through a screen installed onboard trains for driving assistance purposes.
9 The first VAL system was inaugurated in Lille, France, in 1983. VAL systems are now used
in a variety of locations including Taipei, Toulouse, Rennes and Turin (since January 2006).
Worldwide, VAL networks include over 119 km of track and over 830 vehicles are currently
in use or under construction. The VAL at Charles de Gaulle Airport combines VAL
technology with additional computer equipment based on the B method.

318 Formal Methods Applied to Complex Systems

11.5. Step 1: requirement acquisition

This first phase is an important stage in our methodology, and consists of
extracting the requirements involved in system design from a specification
written in natural language.

11.5.1. Requirement extraction

In section 11.3 (and in [BOU 06]), we noted the basic principles involved
in requirements engineering. Further details on the subject of requirements
may be found in [HUL 05].

The functional specification (or any other input document) is made up of
a variety of elements. These include functional requirements, comments,
assessments, recommendations, etc. The aim of this first phase is to sort
elements and select requirements which correspond to the needs of the user.

This phase also involves the definition of a functional outline of the
application in the form of a collection of requirements. Figure 11.3 shows a
summary of the user requirement creation process. The input reference
document (functional specification, reference, system specification or others)
is divided into a set of labeled recommendations.

Label Description of recommendation

FS1 The chosen case study is a control system for managing a level crossing. This
control system is distributed and based on radio communications. The objective
of a level crossing is to manage the intersection between a railway line and a road.
The railway line is a single line.

FS2 The point of intersection of the road and the railway line is known as the “danger
zone”. We must avoid situations where a train and a road user enter the danger
zone simultaneously in order to avoid collisions.

FS3 The level crossing is equipped with barriers and traffic lights. Two traffic lights
are associated with a level crossing: one red, one orange. When the orange light is
showing, this indicates that road users (car drivers, cyclists, pedestrians, etc.)
should stop at the edge of the level crossing, if possible. The red light indicates
that the crossing is closed to road traffic and access is prohibited.

…

Table 11.2. Example of recommendations

B-RAIL: UML to B Transformation in Modeling a Level Crossing 319

The second stage is an analytical process in which recommendations are
broken down (or clarified) to produce a set of labeled user requirements. If a
recommendation is abandoned, this decision needs to be justified. A textual
analysis of our case study gives a collection of recommendations, some of
which are shown in Table 11.2.

Label Description of requirement
UR1 Distributed system based on radio communications
UR2 Level crossing
UR3 The objective of a level crossing is to manage the intersection between a railway

line and a road.
UR4 The railway line is a single line.
UR5 The intersection of the road and the railway line is known as the “danger zone”.
UR6 We must avoid situations where a train and a road user enter the danger zone

simultaneously in order to avoid collisions.
UR7 The level crossing is equipped with barriers.
UR8 The level crossing is equipped with traffic lights.
UR9 Two traffic lights are associated with a level crossing: one red, one orange.
UR10 When the orange light is showing, this indicates that road users (car drivers,

cyclists, pedestrians, etc.) should stop at the edge of the level crossing, if possible.
UR11 The red light indicates that the crossing is closed to road traffic and access is

prohibited.
….

UR23 The main components are able to communicate via a radio communications
system.

UR24 The transmission times for the radio communications system are not fixed and may
vary.

UR25 Messages traveling through the radio communications system may be lost.
…

UR37 Faults must be taken into account in order to create a “safe” level crossing.
UR38 The main sources of faults are linked to captors and actuators.

…
UR43 A fault may occur at any time.

…
UR45 List of potential faults:

Traffic light fault
Barrier fault
Train captor fault
Communication fault: delays, lost messages, modified messages, etc.
…

Table 11.3. Example of requirements

320 Formal Methods Applied to Complex Systems

The resulting collection of user requirements is shown in Table 11.3.

A traceability matrix (see Table 11.4) is established between the selected
user requirements and the initial recommendations. This shows that nothing
has been forgotten.

User requirements Recommendation
UR0 + UR1 + UR2 FS1
UR3 + UR4 + UR5 FS2
UR6 + UR7 + UR8 + UR9 + UR10 + UR11 FS3

…
UR23 + UR 24 + UR25 FS7

…

Table 11.4. Traceability between requirements and recommendations

This process identified 20 recommendations, which were then broken
down into 84 user requirements.

11.5.2. Risk identification

The identification of operational risks (step 2 of the process set out in the
CENELEC EN 50129 standard, [CEN 03]) may be carried out by analyzing
user requirements (UR) and/or using a classic risk analysis process. User
requirement UR6 describes a collision between a train and a road user
(pedestrian, cyclist, car, etc.) in the danger zone.

Collision thus constitutes the major risk. This requirement may be
modeled as part of a UML model via a use case (Figure 11.14). Note that
this study only takes account of the level crossing, which represents a single
aspect of a rail transport system. In a real case study, we would need to take
account of all of the risks involved in rail transport.

This gives us a model which may be used both by the production team
and by the team responsible for demonstrating safety. This shared model
facilitates early consideration of requirements associated with operational
safety and provides better requirement traceability, while avoiding any
confusion concerning the specific responsibilities of different groups.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 321

Figure 11.14. Taking account of the collision risk.

11.5.3. Identification of services

By analyzing user requirements and the collision risk, we are able to
identify three services at system level:

– opening of the level crossing for road traffic to circulate (cars, bicycles,
pedestrians, etc.);

– closure of the level crossing for rail traffic to circulate;

– message transmission (to and from trains and the operations center).

This view is introduced into the UML in the form of a class diagram
(Figure 11.15). This class diagram allows us to visualize system actors and
their interactions with the required system.

This diagram may be supplemented by a set of sequence diagrams
characterizing the interactions between actors (road traffic, trains and the
danger zone). Figure 11.16 shows the sequence of access authorizations for
the danger zone.

322 Formal Methods Applied to Complex Systems

Figure 11.15. System view

Figure 11.16. Interaction between elements

We may add system states, as identified in the requirements, to the
sequence diagram in Figure 11.16. The level crossing is either closed (train
circulation authorized) or open (road traffic authorized). These states and

B-RAIL: UML to B Transformation in Modeling a Level Crossing 323

state changes are modeled in the form of a state/transition diagram
(Figure 11.17). At this level, it is interesting to introduce a “hold” state used
if a fault occurs (UR43, UR45).

Figure 11.17. Behavior management at system level

11.6. Step 2: environment and risk analysis

11.6.1. Identification of the environment

The purpose of the second step is to define the perimeter of the
application by specifying the environment and the interactions between the
environment and the system. This may be done by analyzing user
requirements (see Table 11.5).

Our “world” is made up of two families of elements:

– environment: the barriers, lights, captors and the operations center (OP)
are considered as elements in interaction with our system;

– sub-system: the local level-crossing control system (LCCS), the train
control system (TCS) and the communications system (MCR).

324 Formal Methods Applied to Complex Systems

Term Description
LC Level crossing
LCCS Level-crossing control system
TCS Train control system
MCR Communications system
OP Operations center
TL Traffic lights
Barrier Barrier protecting access to the LC
Captor Captor detecting train arrival

Table 11.5. Our “world”

Using this description of our “world”, we are able to create a diagram
which introduces connections between different elements, highlighting the
relationships between actors. In our model, we have used operators, train
drivers, maintenance personnel and installation personnel (grouped together
under the term “special people”).

Figure 11.18. Model of the level-crossing environment

The behavior of each actor and their interactions with the system may be
formalized via use cases, as shown in Figures 11.19 and 11.20.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 325

Figure 11.19. Model of “road user” behavior

Figure 11.20. Model of “rail user” behavior

326 Formal Methods Applied to Complex Systems

Figure 11.21. Model of correct behaviors

Figure 11.21 describes “good” behaviors, i.e. the behaviors expected of
the system. This diagram includes interfaces (barriers, etc.) and final actors.

Note the inclusion of requirement traceability in each diagram through
the use of specific boxes. This allows us to connect each element to the
associated requirements.

11.6.2. Description of the environment

Analysis of user requirements should facilitate full identification of the
environment. Table 11.6 shows a partial list of the functional requirements
used to describe the behavior of the level crossing.

Label Description of functional requirement UR
FR1 LC is a distributed system based on radio communications. 1
FR2 LC is equipped with traffic lights. 8, 9,19
FR3 LC is equipped with barriers. 5,17
FR4 When the train has left the danger zone, the LC may be opened for road

traffic.
21

FR5 The LC may be opened after confirmation of train passage has been
received from the TCS.

62

…

Table 11.6. Functional requirements

B-RAIL: UML to B Transformation in Modeling a Level Crossing 327

Figure 11.22. Distributed architecture

A set of functional requirements, including FR1, highlights the
distributed aspect of the architecture. The idea behind this distribution is that
the management of a level crossing must be the result of an interaction
between the level crossing and the trains which use it. In practice, it is
dangerous to keep a level crossing closed as this may lead to user
impatience, crossing of the half-barrier, etc.

By analyzing these requirements, we are able to produce an interface
diagram (Figure 11.22). Note that the operations center supervises the whole
line, and the purpose of the established communication links is to make the
transmission of information concerning detective faults possible, in order to
trigger curative maintenance operations.

Figure 11.23. Sub-system view

328 Formal Methods Applied to Complex Systems

Functional requirements analysis needs to be carried out for each
element. At the end of this process, we are able to describe sub-system
architecture using a class diagram, characterizing interactions between
elements of equipment (Figure 11.23). This diagram shows the different
components of our “world” (Table 11.6) along with their interactions.

To complete the description of the sub-system, we have modeled the
interactions between the environment and the system as a set of use cases
(Figures 11.19, 11.20 and 11.21) describing functional requirements and a
set of sequence graphs describing the effects of the environment on the
system.

11.6.3. Environmental faults

In the context of our study, the initial specification contains requirements
concerning the existence of faults which need to be taken into account. If
this fault list did not exist, we would need to carry out a study at this point in
order to create a list of probable faults associated with environmental
elements.

The results of the risk identification phase and this first fault list are used
as a starting point for a safety study. They provide preliminary risk analysis
(PRA), which allows us to identify new requirements, associated with
system safety, to add to the list of functional requirements.

Label Description UR
F1 Failure of orange light 37, 38, 43, 45
F2 Failure of red light 37, 38, 43, 45
F3 Barrier failure 37, 38, 43, 45
F4 Faulty train captors 37, 38, 43, 45
F5 Faults linked to communication delays 37, 38, 43, 45
F6 Message loss 37, 38, 43, 45
F7 Faults in the system itself 41, 43
F8 Incorrect human behavior

Table 11.7. List of faults to take into consideration

A fault tree may be used to connect the risk of collision with the
associated requirements.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 329

The primary risk of collision between a train and another vehicle is
derived using fault tree analysis (FTA). FTA allows us to identify the causes
of potential problems in a product, process or service, and is mostly used for
safety predictions or to analyze the performance of a design.

Fault tree creation is a graphical methodology which provides systematic
description of the impacts of faults which may occur during the life of a
system (further details may be found in [IEC 90]). The method combines
hardware faults with human errors, and gives an overview of potential
problems and their relationships, while imposing detailed analysis; this
produces concrete results during the design phase.

Figure 11.24. Fault tree

For safety critical systems, the root node of the tree often represents a
catastrophic event taken from the risk list at system level. Figure 11.24
shows an example of the derivation of a collision risk between trains and
cars.

As our example is provided for illustrative purposes, we have shown a
reduced version of the fault tree (the example only includes OR gates). This
first fault tree is broken down into multiple cases. Sub-tree D concerns

330 Formal Methods Applied to Complex Systems

human errors. Sub-tree C presents the basic property of our software-based
system: the system must not allow trains and road traffic simultaneous
access to the danger zone. Sub-trees A and B are the result of equipment
failures (barriers, traffic lights, communications equipment, train presence
captors, etc.). Sub-tree A is shown in Figure 11.25.

Figure 11.25. Fault tree for physical equipment

This type of analysis highlights new requirements, such as the fact that
we must verify the existence of physical objects (lights, signals,
captors, etc.), and that, when preparing the installation, the incoming
captor must be positioned at the point of announcement (i.e. as the
train arrives in the sector). The point at which the train is announced
is known as the announcement origin. A delay must be respected
between the announcement trigger and the moment when the fastest possible
train will arrive at the crossing. This delay, known as the announcement
period, is a function of the maximum speed of the trains using the level
crossing.

The fault tree may be partially modeled within the UML model
using a use case diagram, which introduces a “consequences on” link
(Figure 11.26).

B-RAIL: UML to B Transformation in Modeling a Level Crossing 331

Figure 11.26. Links between faults

Our environment model must take account of possible faults. As we see
from Table 11.7, captor faults pose considerable difficulties. In our case, the
communications between sub-systems are not safe (i.e. not guaranteed).

A system cannot be considered safe if no objectives linked to system
safety are taken into account. The degradation of hardware (immobile
barriers, faulty lights, etc.) can also lead to degraded situations. In the case of
barriers, faults may only be detected if an opening or closure delay is not
respected.

As we see from functional requirement UR43, faults may occur at any
time, but repairs can only be undertaken if the level crossing is free, i.e. not
occupied by a train. Use cases may be used to describe actions which actors
may carry out on the system.

Figure 11.26 shows a use case which presents different types of barrier
faults, with three trigger events: power loss, full breakdown (barrier out of
order) and excessive lowering or raising delays.

Figure 11.28 shows faults linked to traffic lights (burnt-out bulbs, power
outage, excessive activation delay, etc.). Traffic light faults may have
consequences on road transport and on the rail system as a whole. The level
crossing is the first element to be affected, but effects may be felt on the
whole line.

332 Formal Methods Applied to Complex Systems

Figure 11.27. Description of different possible barrier failures

Figure 11.28. Description of different possible light signal failures

11.6.4.Maintenance

Maintenance aspects (barrier repairs, traffic light repairs, etc.) must be
taken into account via a specific phase in which we identify required actions
and their effects on the system. These actions may be included in our model
in the form of use cases (Figure 11.29), sequence diagrams and as additions
to the class diagram.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 333

Figure 11.29. Managing maintenance

The inclusion of maintenance actions in the model allows us to define
their impact on the system and create connections with exported
requirements. These connections may continue as per the definition of
procedures.

11.6.5. Impact of the environment on the system

Sequence graphs are used to describe the impact of an environment on a
system. The sequence graph in Figure 11.30 shows the basic operation of a
protocol used by trains when passing through a level crossing.

Firstly, the traffic lights are activated in order to stop road traffic. If the
zone is not noise-sensitive (e.g. outside of residential areas), a sound signal
will also be produced as the lights are activated. After a warning period, the
barriers are lowered. If the barriers are lowered without incident (i.e. within
the maximum allowable time delay), the system is said to be in safe mode,
and the train is allowed to pass through the level crossing.

334 Formal Methods Applied to Complex Systems

Figure 11.30. Level-crossing authorization protocol

Once the train has passed, the barriers are raised and the light signals are
extinguished. Any noise signals will also cease. Note that the control system
may pass into manual mode at any point, corresponding to human
intervention in managing the safety of the level crossing (e.g. by the crossing
warden). This may be triggered by a hardware malfunction (barriers not
lowering, faulty traffic lights, etc.).

If the train does not receive confirmation that the level crossing is in a
safe state, two things may happen:

1) the train brakes and comes to a halt;

2) the driver takes control (Figure 11.31) and continues at restricted
speed.

11.6.6. Results

Figure 11.32 shows a first architecture of the system and its environment.
The control center sub-system, the operation center (OC), is not involved in
system safety, and we have chosen not to model it in the context of our case
study.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 335

Figure 11.31. Level-crossing access in manual mode

Figure 11.32. Architecture

336 Formal Methods Applied to Complex Systems

As we stated in section 11.6.1, this synthesis shows different human actors.
The implemented safety analyses must therefore include the effects of human
actions on system safety (usage procedures, maintenance procedures, etc.).

The architecture shown in Figure 11.32 may be modeled using a
component diagram, as shown in Figure 11.33.

11.7. Step 3: component breakdown

11.7.1. Requirement selection

In the previous section, we discussed the establishment of a risk analysis
process. This process allows us to define functional and safety requirements,
which must then be taken into account in sub-systems; while it does not
constitute a formalization of the process, it does allow us to justify the
choice of requirements.

Figure 11.33. Architecture model

A list of requirements (Table 11.8) is established for each sub-system,
with traceability in relation to the functional requirements (FR) defined
earlier. [MAR 04a] and [MAR 04b] have shown how logical properties may
be coded in the form of OCL constraints included in different diagrams.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 337

Label Description of functional requirement FR
ER1 The objective of the LCCS is to manage access to the danger zone 10
ER2 The LCSS manages traffic lights 2, 12
ER3 The LCCS manages barriers 3, 13
ER4 The LCCS communicates with the TCS over the radio network 1,17, 23

…

Table 11.8. Equipment requirements for the LCCS

11.7.2. Architecture

In the previous sections, we proposed an initial system architecture.
Figure 11.34 shows an architecture of the system and its environment.

Figure 11.34. Class graph describing architecture

The class graph shows physical actors (PhysicalTrain, Captor,
TrafficLights, Barrier) and their interactions. To take one example, we see
that there is a relationship between the PhysicalTrain class and the Captor
class. This relationship means that the associated physical elements interact
with each other.

338 Formal Methods Applied to Complex Systems

The provision of full environment information (actor list, all interactions,
fault lists, etc.) is important. Note that the Captor class offers a “fault”
method, indicating that captors may break down.

11.7.3. Behavior

In this section, we shall use state diagrams to describe the control system
and the onboard TCS.

11.7.3.1. The level-crossing control system (LCCS)

The barriers, traffic lights and sound signals are managed by the level-
crossing control system. The control sub-system is activated by
announcement information triggers. Upon activation of the LCCS, the
system carries out an ordered sequence of actions in order to empty the level
crossing in time and to guarantee its closure to road traffic.

Figure 11.35. Behavior of the command control program

B-RAIL: UML to B Transformation in Modeling a Level Crossing 339

Figure 11.35 shows the state/transition diagram characterizing the
behavior of the LCCS sub-system. This state/transition diagram is
supplemented by use case and sequence diagrams, which characterizes
different behavior phases (arrival announcement, passage authorization,
prohibition of passage, etc.). These diagrams will not be presented here due
to space considerations.

11.7.3.2. The onboard system (TCS)

The TCS carries out a series of actions on approaching a level crossing
(Figure 11.36). When the train passes the origin point for the announcement
to the level crossing, it requests confirmation from the LCCS that barrier
lowering has begun.

Figure 11.36. Behavior of onboard software

On receiving confirmation, the TCS goes into holding mode, and starts
braking in order to leave the barriers enough time to close. At the end of this
waiting period, the LCCS transmits state information to the TCS. If the level

340 Formal Methods Applied to Complex Systems

crossing is in safe mode, the TCS cancels the braking order and returns to
initial speed. An “end of passage” captor (captor class) detects the fact that
the train has passed through the crossing, and triggers the barrier lifting and
traffic light deactivation mechanisms.

As we have already seen, use cases and sequence diagrams are used in
addition to the state/transition diagram describing the behavior of the TCS in
order to specify scenarios for the approach to, passage of and departure from
the level crossing.

11.8. Step 4: verification

We now have a model of our case study which can be translated into a B
model.

11.8.1. Introduction

Several studies have been carried out on the generation of B models
[ABR 96] from UML models [OMG 07], including important work by the
Dédale team10 [LED 01, LED 02] and by sial/arlog [MAR 01]11. The work
carried out in the context of the B-RAIL project did not aim to describe a
new code generation process; here, we wish to propose a global
methodology offering the best possible means of acquiring requirements
based on B model generation techniques.

Our current work focuses on finding the best way to combine the results
of different work carried out on the subject. We proposed a first process for
generating B models from UML models in [BON 03], based on the class
diagram and on state/transition diagrams. [JAN 00] added OCL requirements
to this process. However, the process for generating a B code from a UML
code has yet to be completed, and tools have not yet been developed.

[MAR 04a] showed that time constraints cannot be verified without
extending the B language. In our UML model, time constraints take the form

10 More information on the DEDALE team may be found at www.loria.fr/equipes/dedale/
home.html.
11 More information on the ARLOG team may be found at www.prism.uvsq.fr/recherche/
themes/sial/arlog.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 341

of notes and/or comments; they are therefore not taken into account in
generating our B models. Work on this aspect is underway as part of the
RT3-TUCS project12.

11.8.2. Description of formal models

In this section, we present the B model obtained by translating
our UML model. The abstract machine in Figure 11.37,
TCS_LevelCrossingBehavior_0, defines all states in the STATE set, and
introduces an operation, change_state, to describe state changes in the level-
crossing management sub-system. This component is not determinist, as it
uses the substitution list_var:(predicate) to describe the change_state
operation. This substitution indicates that the set of variables becomes such
that the predicate is true.

Figure 11.37. Machine: TCS_LevelCrossingBehavior_0

12 The RT3-TUCS project is a French inter-regional project (Picardie, Nord Pas de Calais
and Alsace) forming part of the RT3 network, begun in February 2006 for a duration of three
years.

342 Formal Methods Applied to Complex Systems

Figure 11.38 is an extract from the implementation of
TCS_LevelCrossingBehavior_n. This implementation conforms to the
state/transition diagram shown in Figure 11.35.

Figure 11.38. Implementation: TCS_LevelCrossingBehavior_n

11.9. UML2B

We have been able to develop a UML to B translator (Figure 11.39) in
the context of our work. This translator demonstrates the feasibility of the
UML to B transformation. A formalized version of our work is given in
[IDA 07, IDA 09] and [RAM 09, Chapter 19].

B-RAIL: UML to B Transformation in Modeling a Level Crossing 343

Figure 11.39. UML2B transformation

The UML2B environment was produced using developments made in the
OpenArchitectureWare environment.

11.10. Conclusions

The aim of the B-RAIL project is to define a methodology for the
development of rail transport systems. These systems are subject to strong
operational safety constraints, as demonstrated in the CENELEC standards
[CEN 01, CEN 11, CEN 00, CEN 03] governing the creation of rail transport
systems (both from hardware and software perspectives).

The proposed methodology is based on the use of UML notation [OMG
07] and the B method [ABR 96]. UML notation is used in the acquisition of
requirements and in describing the system. It takes an essentially graphical
form, simplifying the understanding of models and assisting communications
between project actors (clients, developers, verifiers, validators, etc.). The B
method is a formal language which is used to express properties and allows
us to detect incoherencies through the use of proof activities.

This example has demonstrated the feasibility and interest of
transforming a UML model into B. Work is still needed to refine the process
involved in generating B models from UML models. This refinement will
involve in-depth analysis of the different UML to B generation processes
which have already been proposed [MAR 04a, LED 01, LED 02, MAR 01,
ABR 96].

344 Formal Methods Applied to Complex Systems

This study has highlighted three considerations:

– risk analysis during the system design phase allows us to guarantee
traceability throughout the whole process;

– UML notation is suitable for use in formalizing complex systems and
for safety requirements. This second point is very important, and the
graphical aspect of UML notation assists effective communication between
different teams (development, validation and operational safety) on these
subjects;

– the importance of highlighting requirements and traceability throughout
the production cycle. UML notation offers a good means of representing and
acquiring issues, but the coherency of this model in relation to the initial
need still needs to be demonstrated.

In terms of perspectives for future development, note that we have
integrated SysML [OMG 06] into our approach in order to model
requirements and traceability connections using elements of the UML
model. In the context of the RT3-TUCS project [OSS 07], we also designed
a sub-set of UML2 notation [OMG 07] suitable for use in modeling critical
and operationally safe systems.

In addition to this work, the generation of test scenarios based on
sequence diagrams and use cases would allow us to respond to operational
validation issues.

11.11. Glossary

FR Functional requirement

FTA Fault tree analysis

IDE Integrated development environment

OCL Object constraint language

OMG13 Object Management Group

13 http://www.omg.org/.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 345

PRA Preliminary risk analysis

SIL Safety integrity level

UML Unified modeling language

11.12. Bibliography

[ABR 96] ABRIAL J.-R., The B Book – Assigning Programs to Meanings, Cambridge
University Press, August 1996.

[BEH 93] BEHM P., “Application d’une méthode formelle aux logiciels sécuritaires
ferroviaires”, Atelier Logiciel Temps Réel, 6ème Journées Internationales du
Génie Logiciel, 1993.

[BEH 96] BEHM P., “Développement formel des logiciels sécuritaires de
METEOR”, in HABRIAS H. (ed.), Proceedings of the 1st Conference on the B
method: Putting into Practice Methods and Tools for Information System
Design, IRIN Institut de recherche en informatique de Nantes, pp. 3–10,
November 1996.

[BEH 97] BEHM P., DESFORGES P., MEIJA F., “Application de la méthode B dans
l'industrie ferroviaire”, ARAGO, vol. 20, pp. 59–88, 1997.

[BON 03] BON P., BOULANGER J.-L., MARIANO G., “Semi formal modelling and
formal specification: UML & B in simple railway application”, CNAM-Paris
(ed.), ICSSEA 2003, 2–4 December 2003.

[BOO 99] BOOCH G., RUMBAUGH J., JACOBSON I., The Unified Software
Development Process, Addison-Wesley, 1999.

[BOU 06] BOULANGER J.-L., BON P., “B-RAIL: Analyse et Modélisation des
exigencies”, Revue Génie Logiciel, vol. 79, pp. 18–24, December 2006.

[BOU 07] BOULANGER J.-L., “UML et les applications critiques”, Proceedings of
Qualita ’07, Tangier, Morocco, pp. 739–745, 2007.

[CEN 99] CENELEC, EN 50126, “Railways application – specification and
demonstration of reliability, availability, maintainability and safety (RAMS)”,
1999.

[CEN 01] CENELEC, EN 50128, “Railways application – communication, signaling
and processing systems – software for railway control and protection systems”,
2001.

[CEN 11] CENELEC, EN 50128, “Railways application – communication, signaling
and processing systems – software for railway control and protection systems”,
2011.

346 Formal Methods Applied to Complex Systems

[CEN 03] CENELEC, NF EN 50129, “Applications ferroviaires – systèmes de
signalisation, de télécommunications et de traitement systèmes électroniques de
sécurité pour la signalization”, Norme Européenne, May 2003.

[CHO 01] CHOVEAU E., DE CHAZELLES P., “Application de l'ingénierie système à la
définition d'une démarche d'ingénierie des exigences pour l'AIRBUS A380”,
Génie Logiciel, vol. 59, pp. 13–18, December 2001.

[EIA 98] EIA-632: Processes for Engineering a System, April 1998.

[FAA 04] FAA, Handbook for Object Oriented Technology in Aviation (OOTiA), 26
October 2004. Available at http://www.faa.gov/aircraft/air_cert/design_
approvals/air_software/oot/.

[GEO 90] GEORGES J.-P., “Principes et fonctionnement du Système d’Aide à la
Conduite, à l’Exploitation et à la Maintenance (SACEM). Application à la ligne
A du RER”, Revue Générale des Chemins de fer, vol. 6, June 1990.

[GUI 90] GUIHOT G., HENNEBERT C., “SACEM software validation”, Proceedings
of the 12th IEEE-ACM International Conference on Software Engineering,
March 1990.

[HAU 05] HAUSE M., THOM F., “Modelling high level requirements in
UML/SysML”, INCOSE Symposium, 2005.

[HUL 05] HULL E., JACKSON K., DICK J., Requirement Engineering, Springer, 2005.

[IDA 07] IDANI A., BOULANGER J.-L., PHILIPPE L., “A generic process and its tool
support towards combining UML and B for safety critical systems”, CAINE is a
congress 2007, San Francisco, 7–9 November 2007.

[IDA 09] IDANI A., BOULANGER J.-L., PHILIPPE L., “Linking paradigms in safety
critical systems”, Revue ICSA, September 2009.

[IEC 90] IEC 61025, “Fault tree analysis – FTA”, International Electrotechnical
Commission, 1990.

[IEC 08] IEC 61508: Sécurité fonctionnelle des systèmes électriques électroniques
programmables relatifs à la sécurité Norme internationale, 2008.

[ITU 03] ITU, “User requirements notation (URN) – language requirements and
framework”, February 2003.

[JAN 00] JANSEN L., SCHNEIDER E., “Traffic control systems case study: problem
description and a note on domain-based software specification”, Institute of
Control and Automation Engineering, Technical University of Braunschweig,
2000.

B-RAIL: UML to B Transformation in Modeling a Level Crossing 347

[LEC 96] LECOMPTE P., BEAURENT P.-J., “Le système d’automatisation de
l’exploitation des trains (SAET) de METEOR”, Revue Générale des Chemins de
fer, vol. 6, pp. 31–34, June 1996.

[LED 01] LEDANG H., “Des cas d’utilisation à une spécification B”, AFADL’2001:
Approches Formelles dans l’Assistance au Développement de Logiciels, 2001.

[LED 02] LEDANG H., SOUQUIÈRES J., “Contributions for modelling UML state-
charts in B”, IFM 2002: The 3rd International Conference on Integrated Formal
Methods, LNCS 2335, Springer Verlag, 2002.

[MAM 01] MAMMAR A., LALEAU R., “An automatic generation of B specification
from well-defined UML notations for database applications”, CNAM, 2001.

[MAR 01] MARCANO R., LEVY N., “Transformation d’annotations OCL en
expressions B”, Journées AFADL’2001: Approches formelles dans l’assistance
au développement de logiciels, June 2001.

[MAR 04a] MARCANO R., MARIANO G., BON P., “UML-based design and formal
analysis of railway traffic control systems”, Formal Methods for Automation,
Safety in Railway, and Automotive Systems, FORMS ’04, pp. 173–182,
December 2004.

[MAR 04b] MARCANO R., COLIN S., MARIANO G., “A formal framework for UML
modeling with timed constraints: application to railway control system”,
Specification, Validation of UML Models for Real Time, and Embedded Systems
(SVERTS’04), 2004.

[MEI 02] MEINADIER J.-P., Le métier d'intégration de systèmes, Hermes, 2002.

[MOT 05] MOTET G., “Vérification de cohérence des modèles UML 2.0”, 1ère
journée thématique “Modélisation de Systèmes avec UML – SysML et B-
Système”, French Association of Systems Engineering, Toulouse, France, June
2005.

[MUL 01] MULLER, P.-A., Modélisation objet avec UML, Eyrolles, 2001.

[OMG 06] OMG, OMG Systems Modeling Language (OMG SysML) Specification,
Version 1.0, 2006.

[OMG 07] OMG, Unified Modeling Language (UML), Version 2.1.1, February
2007.

[OSS 07] OSSAMI D.O., MOTA J.M., BOULANGER J., “A model process towards
modeling guidelines to build certifiable UML models in the railway sector”, The
7th International SPICE Conference (Software Process Improvement and
Capability Determination), Seoul, Korea, 2007.

348 Formal Methods Applied to Complex Systems

[RAM 09] RAMACHANDRAN M., DE CARVALHO R.M. (eds.), Handbook of Software
Engineering Research and Productivity Technologies: Implications of
Globalisation, August 2009.

[RAM 11] RAMACHANDRAN M. (ed.), Knowledge Engineering for Software
Development Life Cycles: Support Technologies and Applications, April 2011.

[RET 07] RÉTIVEAU R., La signalisation ferroviaire, Presses de l’école Nationale
des Ponts et Chaussées, 1987.

[STA 94] THE STANDISH GROUP, The CHAOS Report, 1994.

[STA 01] THE STANDISH GROUP, Extreme Report, 2001.

[SYS 05] SysML Partners, System Modeling Language (SysML) Specification,
Version 1.0, 2005.

[ZOW 05] ZOWGHI D., COULIN C., Requirements Elicitation: A Survey of
Technique, Approaches and Tools, Aurum A., Wohlin C. (eds.), Chapter 2,
Springer, 2005.

12

Feasibility of the Use of Formal Methods
for Manufacturing Systems

12.1. Introduction

In the manufacturing domain, if programmable logic controllers (PLC)
are used to manage safety functions, these systems need to be more reliable
when faced with software errors. One strategy often mentioned in software
engineering, and also in the context of standards, is to use formal methods.

With a view to estimating the applicability of formal methods for the
safety of the control systems of machines, the INRS1 (Institut National
de Recherche et de Sécurité – French Research and Safety Institute for the
Prevention of Occupational Accidents and Diseases) has begun a research
program which aims to develop the application software of a machine using
these methods.

First, we describe the machine selected and its functions. After this, we
present the different stages of the development, from specification to
validation, of a software package installed on a safety PLC with two
different methods: the B method [ABR 96] and a method which combines
semi-formal models and model-checking verification techniques [BAI 08].

Chapter written by Pascal LAMY, Philippe CHARPENTIER, Jean-François PETIN and
Dominique EVROT.
1 The INRS is a reference body in the prevention of occupational risks (accidents at work,
work-related illnesses). To find out more about it, visit www.inrs.fr/.

350 Formal Methods Applied to Complex Systems

For this second method, in view of the difficulty of defining a posteriori
the safety properties which need to be formally verified at the level of the
software components, we suggest a design process which makes it possible
to identify and duplicate the safety properties from a high-level “system”
view down to a low-level “component” view. The properties may then be
formally verified a posteriori, using a proof tool. Finally, we conclude with
some remarks concerning the applicability of these methods for the creation
of software implemented on a safety PLC in a “machines” industrial context.

12.2. Presentation of the requirement

For more than a decade, in France, the use of safety PLC has been
permitted by the authorities to handle the safety part of control systems for
work equipment [CT5 98]. The embedded software in these control systems
may contain bugs, caused by an incorrect interpretation of the specifications,
for example.

Obviously, the same is true for the application software. If it is handling
safety functions, an error in this software, more commonly known as a “PLC
program”, may lead to dangerous malfunctions: for example, to execute an
incorrect instruction which has not been detected during the design phase is
sufficient to activate an output which has an impact on the safety of the
application. Therefore, it is essential to minimize the number of errors in this
type of software, taking into account the stipulations of the machine’s
directive, which requires that no fault, due to a software error, for instance,
should lead to a dangerous situation for the operator [DIR 06].

In response to this, the standards relevant to these new technologies, such
as the standard IEC 61508 [CEI 10], recommend the use of development
methods such as formal methods to guarantee a high level of software safety.
The standard NF EN 62061 [NF 05], which is the application of the
aforementioned standard in the domain of machines, mentions the use of
formal methods as a way of reducing the number of tests.

Formal methods have been around for quite a while (since 1960), but
have not been used in industry until relatively recently. These methods are
currently used in critical systems (aeronautics, rail) for software
development. In the manufacturing domain, to the best of our knowledge, no
machine safety application software has yet been developed using formal

Feasibility of the Use of Formal Methods for Manufacturing Systems 351

methods. One possible explanation for this is that those involved in the
sector are generally small companies with limited resources and short
delivery times, e.g. a few weeks.

In order to confirm this state of affairs in the machine’s sector, it is useful
to be aware of the practices that automation technicians use to develop
automated systems using PLC, and also to understand how the standard
recommendations take the integration of prevention into the design into
account. The contact that we have been able to have with industrial practice
(through industrial conferences, relationships with suppliers to design
workshops, discussions with experts) and some bibliographical references
[NEU 02, LAM 03, VAL 10] has shown us that the methods currently being
used in automation development do not facilitate the clear and unambiguous
formalization of the specifications, nor, it follows, of the safety properties
that the developed applications would need to verify, through a specification
document. With current practices, the low-level programming is taken care
of hurriedly, so the notion of safety properties disappears. In addition, even
the safety properties are correctly formalized, their validation remains partial
insofar as the current methods used, such as simulation or off-line tests, are
generally by no means exhaustive. In fact, these test phases only facilitate
the validation of a set of clearly defined situations and do not deliver any
certainty that, whatever sequence of the situation is received by the
controller, the operator will never be in danger.

INRS wished to evaluate the feasibility of using formal methods to
develop application software for a machine control systems, with a view to
determining whether this approach could work with existing practices in the
sector.

In order to do this, the application software of a mechanical press with
clutch-brake was developed using two types of formal methods:

– the formal B method [ABR 96], which makes it possible to
progressively refine the requirements on the system under development up to
the point where the code installed on the safety PLC which is driving the
press is generated;

– an approach which combines the use of semi-formal methods at a
system level for modeling control architectures and the safety properties that

352 Formal Methods Applied to Complex Systems

should be verified, with formal approaches, at a component level, for the
proof of these properties and the generation of the code2 [EVR 09].

The aim of this chapter is to present the results of the use of these
different software development techniques, using formal verification.

12.3. The methods chosen and a brief description of them

12.3.1. The B method3

The B method [ABR 96], developed in 1996 by Jean-Raymond Abrial,
uses the B language based on the mathematical concepts of set theory; this
language includes proof mechanisms and can cover the whole of a
development cycle without a break, up to an inclusion of the code of
software elements.

It is an a priori design and specification method. The specifications are
given using notations taken from set theory. Software tools or workshop
software, supporting the B method, allow us to refine (the transition from
formal specification to a detailed specification) and to prove, mostly
automatically, that this transition is coherent. In this way, it is possible to
generate programs that are certified correct in relation to the specifications.

The B method includes:

– a specification language (abstract machine notation (AMN)) with an
added proof system;

– a refinement technique which makes possible the transition from a
high-level design to a detailed design, while generating corresponding proof
systems.

This method has a “development” flavor in the way that operations are
specified: they are not specified in terms of pre- and post-conditions, but
rather using generalized substitution of the type x:=x+1. This specification

2 This second possibility has been studied in a doctoral research project. The method which
was developed in it has not yet been applied in industry.
3 This is not intended as a full presentation of B, but just to provide some context. Chapter 1
of this book contains more detailed information on B.

Feasibility of the Use of Formal Methods for Manufacturing Systems 353

uses non-deterministic constructs and all of the power of set language.
Algorithmic constructs of sequence or loop type, on the other hand, are not
allowed. This is why those that feature this method are known as abstract
machines.

As each stage of refinement passes, the structures of set data are replaced
by the structures close to those of programming languages. These stages are
subjected to proofs of maintaining the invariants (properties on control data
which always hold and which are defined using logical conditions) and of
conformity of refined machines in relation to more abstract machines. In this
way, the final model is guaranteed to conform to the initial specifications.

There exist tools that facilitate the translation of an implementation
expressed in AMN into C-code, and the generation of the object-oriented
implementations or the creation of specification libraries.

There is a workshop software, sold as4 “Atelier B”, which lessens the
workload for the designer, taking charge of:

– syntactic analysis and control of the type;

– generation of proof obligations;

– (partial) demonstration of proof obligations;

– translation into more widespread programming languages;

– management of the coherence of developments (in case of change).

Development in line with this method starts with the construction of a B
model which takes on all the descriptions of the requirement. Following this,
other models are developed in stages, using the B language each time, until
the executable program is obtained. The coherence of the models at the
different stages and the conformity of the program to the initial model are
guaranteed by mathematical proofs, carried out automatically by the
workshop software, or else by the intervention of the B expert.

At the final stage, the programs produced are corrected by construction,
i.e. they conform to the specification of the requirement and there is no need
to run tests on them to eliminate program errors. The only tests that remain

4 Chapter 3 contains a more detailed description of “Atelier B”.

354 Formal Methods Applied to Complex Systems

necessary are integration tests for the software in its hardware and software
environment.

12.3.2. Specification with SysML5 and formal verification by model
checking

The second group of methods used for formal verification of properties is
based on the techniques of model checking [CLA 00]. This technique
involves constructing and exploring a state space so as to verify the respect
of an expressed predicate in temporal logic for each of the achievable states.

These techniques were investigated by the INRS for the development of
the control of the mechanical press by coupling a model-checking tool based
on the use of the synchronous language signal with a PLC development tool
which supported the languages of the standard NF EN 61131-3 [NF 03]
(Ladder, SFC, Structured Text, Function Block) and by describing the
control of the press in the form of a hierarchical set, structured from function
blocks. This tool, which makes the simulation of all or a part of the
developed models possible, thus withstands the validation:

– of elementary components and thus of unitary tests;

– of the integration of the different software components in the
assemblies;

– of the application of the control itself.

In addition to this simulation stage, formal verification by model
checking has made it possible to obtain a proof of the respect of certain
safety properties by the control system. However, this proof has been limited
by two main difficulties that we have demonstrated in the case of the press:

– the phenomenon of combinatorial explosion, which is well know
because it is linked to the exhaustive exploration of state space;

– the difficulty of precisely identifying the local properties to be verified
for each of the software components with regard to the safety requirements,
often expressed at a system level.

5 SysML stands for systems modeling language. For more detailed information, see
www.sysml.org/.

Feasibility of the Use of Formal Methods for Manufacturing Systems 355

Therefore, the use of semi-formal methods, prior to formal methods,
would seem to be necessary to cover a phase of “system” analysis which
makes it possible to identify the smaller components together with their local
properties [ACH 06, JOH 07].

To this end, INRS, in a thesis conducted in partnership with CRAN,
studied an approach based on SysML [EVR 09, PÉT 10]. This language,
which originated for system engineering, offers a set of formalisms such as
static, dynamic, functional, structural or information diagrams. These
diagrams make it possible to represent the different types of system objects:
requirements, components and functions. Thus, they deliver a more complete
view of the requirements widely used in the industry than might be obtained
by using engineering tools.

The requirements can, in this way, be projected onto the constituents of
the system (functions or components), which are modeled in the form of
objects. SysML offers a definition diagram of blocks which allow us to
model the physical structure of the system, and also to model diagrams of
use cases and activities which define its functional architecture. By way of a
principle similar to the B method, the suggested operation makes it possible
to model the safety requirements and to verify starting from high-level or
system requirements.

The operation makes it possible to draw and adapt these requirements
throughout the modeling process in order to determine, for each unitary
software component, the local safety requirement(s) which should be
checked in the low-level software components: the PLC code. This SysML
operation method results in a consensual vision of the functional and organic
control architectures and the properties they should verify, in a formalism
generic enough to be usable by all profession groups involved in the
development of the press control. These models should then serve as an
entry point to more specific models for each of the professions, and would
be expressed in their specific languages, often called domain-specific
languages (DSLs).

The automation technician would use the languages of the standard NF
EN 61131-3. These models would be used for the modeling of the behavior
of the press control, the verification of the properties by model checking,
and, finally, for the generation of the code.

356 Fo

12.4. De

12.4.1. D

The
ram in
operator
laborato
incorpo

The

The
for the
controll
operatio
the bott

rmal Methods A

F

escription o

Description

function of
the working
r through a
ory press, sw
rating relays

photos in Fig

motor drives
ram to carr
led by a sole
on of cams (
om dead cen

Applied to Comp

Figure 12.1. An

f the machin

of the press

this machin
g zone. The
control/com
witched via
s or on a prog

gures 12.1–1

s an inertia fl
ry out a tran
enoid valve. T
(one cam for
nter).

plex Systems

n example of a m

ne: mechani

e is to press
movement

mmand system
a a selector,
grammable s

12.3 give an

flywheel whi
nslational mo
The position
r the top dea

mechanical pres

ical press wi

s the pieces p
of the ram
m. Two syst
based eith

safety PLC.

idea of this m

ch provides t
ovement thr
n of the ram
ad center and

ss

ith clutch-b

positioned u
is controlle
tems co-exis
er on a tec

mechanical p

the energy n
rough a clutc
is determine
d a back-up

rake

under the
ed by an
st in this
chnology

press.

necessary
ch-brake
ed by the
cam for

Feasibility of the Use of Formal Methods for Manufacturing Systems 357

Figure 12.2. Detailed views of the mechanical press

Depending on the operating mode chosen, the movement of the ram may
be controlled using different systems (e.g. pedal, two-hand control device),
and guards (crankshaft guard, lateral guards and front guard) prevent the
operator from accessing the working zone which presents a high level of
risk.

Figure 12.3. Safety programmable logic controller installed in the switching cabinet

358 Formal Methods Applied to Complex Systems

12.4.2. Brief description of the operating modes

The press has five operating modes:

– Two setup modes:

- set-up with motor; the front and side guards and the crankshaft guard
may be open; the pedal is operated to control the descent or ascent of the
ram,

- set-up forward operation; the front and side guards and the crankshaft
guard may be open; the two-hand control device is used to activate the
movements of the ram.

– Two production modes:

- single-shot operation: the side guard and the crankshaft guard must be
closed; the front guard may be open; the two-hand control device is used to
control the ram, which makes a single movement, first descent and then
ascent,

- continuous operation: all of the guards must be shut; the cycle is
triggered using the two-hand control device.

– An off mode.

The selection of operating modes is done by a selector which may be
locked with a key.

The arming of the machine, by pushing a button, is required:

– each time it is turned on;

– each time the operating mode is changed;

– after re-arming of an overrun braking angle6;

6 Braking angle: angle traveled by the crankshaft during stopping at the upper dead point.

Feasibility of the Use of Formal Methods for Manufacturing Systems 359

– after an emergency stop;

– for the “production” operating modes, each time the crankshaft guard is
opened/shut.

12.4.3. Brief description of the means of protection

The dangerous zone considered is the working zone accessible
by the sides and the front of the press. Access from behind is impossible.

There is an emergency stop button at the front of the press. If it is pushed,
the clutch and the main motor are halted.

The braking performances of the machine are verified each time the ram
stops at the upper dead point, for all “production” operating modes. If the
normal braking angle is overrun by more than 15°, no new clutch request is
possible. The control mechanism can be re-armed by pushing a key-operated
button.

12.4.4. Characteristics of the programmable logic controller

The safety PLC uses the language of the standard NF EN 61131-3. In our
case, a structured-text language is used. The PLC is certified SIL73 in line
with the standard IEC 61508.

12.5. Process followed for the design, validation and generation of the
software using the B method

The different phases of this process applied in our case are shown in
detail in Figure 12.4.

7 SIL stands for safety integrity level. The SIL may take the values 1, 2, 3 and 4.

360 Formal Methods Applied to Complex Systems

Figure 12.4. Process followed with the B method

12.5.1. Creation of a B compatible specification

This part consists of creating a B-compatible specification of the press
which brings together all the information necessary for the development of
the software, in natural language. This document must describe the system
and present the requirements on the software clearly, unambiguously and as
completely as possible.

This specification allows the B experts to make the operation of the
machine their own, and to express the need so as to prepare the modeling
work in B.

This B-compatible specification makes it possible to plot the functional
requirements, the safety requirements and certain specific operating
conditions. These will then be identified in the different refinements, in order
to ensure that each of them has been properly taken into account.

At the outset of this study, we consulted a document written by the
experts of the INRS, which serves as an initial specification. The writing of a
B-compatible specification is based on this document and is supplemented

Feasibility of the Use of Formal Methods for Manufacturing Systems 361

by different interviews with experts who approve the new document as and
when required.

The new specification contains both a descriptive part and a part which
precisely defines the requirements of the software. The descriptive part
serves to make it easier to learn the operating principles of the press for a
person who does not know the machine. The part which defines the
requirements serves as a reference during the development of the control
software for the press, during the software specification and design phases,
and during the integration test and validation phases.

12.5.1.1. Factorization versus enumeration

When several elements of the system have functions with common
points, two approaches are possible: factorization and enumeration.

Factorization is a functional view which divides the elements of the
system into two levels: an abstract level which describes the common
behavior of the different elements, giving the general operating principles,
and a sub-level which describes the characteristics of the elements. This
approach reduces repetition.

In contrast, enumeration involves the description on a single level of each
element of the system independently. This can lead to repetition.

12.5.1.2. An example of factorization and enumeration

In the case of the press, equipment such as the two-hand control device
possesses the characteristics for each operating mode, but also its own
characteristics. As far as possible, the B-compatible specification presents
the information in factorized form, so as to avoid repetition and to make the
system operating principles more visible. A compromise needed to be found
to avoid the factorized description (abstract and particular) being less clear
than an enumerated description.

12.5.1.3. Part of the specification

M1 Mode: Adjustment without motor

362 Formal Methods Applied to Complex Systems

Nominal operating conditions in M1 mode

M1_F1: There is only one normal nominal operating condition in M1
mode: the motor must have been stopped for a certain time D4.

Actions to be carried out during selection of mode M1

M1_F2: When this mode is selected, if the motor is running, the
controller must automatically halt the motor (section 12 of [CON 09]).

M1_F3: When this mode is selected, if the motor is running, a suitable
period of time D4 must pass after its effective halt so that it is certain that the
flywheel has stopped (see section 12 of [EVR 09] – the exact definition for
the controller of the effective halt of the motor).

M1_F4: When this mode is selected, if the motor has already stopped, it
is nonetheless necessary to wait until the same time period D4 has passed, so
as to be sure that the flywheel itself has completely stopped.

The specification is a 34-page textual document, which contains 159 rules
that are identified by a label: for example M1_F1.

12.5.2. B Model: specification and design

This part makes it possible to create a B model made up of several levels
of completely proven refinement. This model gives an overall description of
the press and its environment, formalizing the requirements of the
B-compatible specification.

Specification and design using the formal method D involves describing
the functional aspects of the system using a succession of points of view.
This succession progresses from the most general to the most detailed.

This technique for describing how the system works, moving from the
most abstract to the most concrete, is known as “refinement” in the B
method. The initial B model consists of the creation of a high-level
representation of the elements of the system that can be physically observed.
In this initial model, there is no constraint, the elements are introduced to it
as the refinement progresses during design.

Feasibility of the Use of Formal Methods for Manufacturing Systems 363

The B model of the press is thus made up of a series of refinements:

– the first refinements formalize the system from a very abstract point of
view, describing the parts which can be seen from the outside: the press, the
hands of the operator, the direction of movement of the ram, the guards, the
stop at the top dead center;

– the last few final levels of refinement describe how the system works in
great detail. They formalize the detail of each individual operation of the
software and each physical action which can be observed;

– at the final level of refinement, we find the scission between purely
software events and B events modeling the mechanical parts of the press or
the behavior of the operator.

What is particularly interesting about a B design is that it is necessary to
bring proof of its coherence. This proof consists of showing that the
processing described at a given level of refinement enforces all the
properties of the preceding levels.

The refinement also serves to gradually introduce the different
requirements given in the B-compatible specification document. It would not
be possible to formalize all the requirements globally, one next to another. In
this example, the usefulness of the B method is that it structures the
modeling of the requirement in such a way that the consolidation brought by
the proof corresponds to the demonstration of the salient properties of the
system.

The proof is not only a tool for verification. It also allows us to refine the
properties of the system, while revealing whether the properties formalized
by the expert in charge of modeling are too restrictive or insufficiently so.
Properties that are too restrictive mean that some conditions can never be
met.

Insufficiently restrictive properties mean that some parts of the B model
cannot be proved, due to a lack of information. In this case, the model needs
to be supplemented with stronger properties so that the system as a whole
can be described. This modeling process is iterative because the B model
needs to be modified after a problem is discovered.

The proof mechanism operated during each of the series of refinements
ensures the coherence of each new iteration with preceding models. It also

364 Formal Methods Applied to Complex Systems

ensures coherence within the refinement in progress. The usefulness of the B
method is that we obtain a final model which is proved and coherent in
relation to the initial model and its iterations.

12.5.2.1. Characteristics of the B model generated for the press

14 B models or B machines would be created:

– 1st model or initial model: Introduction of the abstract physical
variables;

– 2nd model – 1st refinement: Operating and safety laws;

– 3rd model: Introduction of the motor and of the clutch;

– 4th model: The clutch commands, simplified;

– 5th model: Modeling of the movement, simplified;

– 6th model: The front guard;

– 7th model: The crankshaft;

– 8th model: Stopping and starting the motor;

– 9th model: Refinement of the movement (the cams);

– 10th model: Refinements of the clutch command;

– 11th model: Changing modes and emergencies;

– 12th model: Refinements of the preceding models (time frames and
redundancy);

– 13th model: Refinement of the clocks for the PLC;

– 14th model or final model: Refinement of mode changes.

925 proofs were carried out, of which 60 could not be handled
automatically by the prover in Atelier B and required with the intervention
of the B expert. The number of lines in the 14th model is approximately
2,600.

The last few levels of refinement describe how the system works in a
very detailed manner. They formalize the detail of each individual operation
of the software and each physical action which can be seen.

Feasibility of the Use of Formal Methods for Manufacturing Systems 365

12.5.2.2. Example of refinement and adaptation to the target

In the example in Figure 12.5, extracted from the initial model, an outside
observer of the situation sees that the press is changing from working to
stopping. The event which is the stopping of the press is thus described in a
very general manner.

Figure 12.5. Example of an event

Figure 12.6 shows processing after refinement in the final B model.

Figure 12.6. Refinement

A final level of refinement makes it possible to adapt the model
depending on the target on which the code needs to be generated (15th
model or B machine). This last refinement may be viewed as the preparation
of the PLC for coding.

In this model, which is suited to the target, the example in Figure 12.6
becomes that of Figure 12.7.

366 Formal Methods Applied to Complex Systems

Figure 12.7. From the point of view of the target

12.5.3. Generation of a C code and simulation

Although it is not linked to the application of the B method, it was
possible to create a mechanical press simulator, written by translation of the
last level of refinement of the B model, and by adding a C code which
carries out the sequencing of the B events and the input/output operations.

Some properties related to sequencing of the B model events were not
integrated into the B model. The simulator makes it possible to carry out
integration tests for the press software, to check if the behavior observed on
the simulator complies with the written specification. The progress of the
test scenarios for each of the five press operating modes allows us to verify
that the software behaves in line with its specifications.

In practice, this simulation detects two types of problems:

– Deadlock problems: following application of the treatment of a B event,
it may happen that the system is in a state such that no further event may
occur, which means that the system is doomed to remain in the same state
indefinitely. This type of problem could be covered by the B model, but the
development of the model to prove this property would necessitate an
intensive effort. As a result, the solution of using host simulation was
preferred. An additional reason for this is that simulation also covers our
second point.

– Problems in the specification and construction of the model: although
much care may have been devoted to the writing of the new written
specification, it may be that certain situations have been described with
insufficient completeness or clarity. Simulation then serves to detect these
problems. By conducting simulation tests, behaviors which seem

Feasibility of the Use of Formal Methods for Manufacturing Systems 367

troublesome can be found. We can then locate and re-examine the model B
events and requirements from the written specification which are associated
with these behaviors.

Unlike the proof of a B model, the test scenarios which can be conducted
using a simulator do not cover all the possible cases. The number of different
test scenarios necessary to run is much too large for it to be possible to run
them all, in particular because of the treatment of breakdowns.

12.5.4. Generation of the code for the PLC and validation

12.5.4.1. Presentation

In order to generate the code for the PLC, it was first necessary to define
the translation mechanisms for the pseudo B code, originating from the last
B model, into the PLC language. These translation mechanisms were applied
manually in order to generate the code in a format suited to the PLC
(INSTRUCTION LIST type) and which clearly shows the possibility of
automating this task.

12.5.4.2. Example of a translation rule: the case of the B instruction
“Select”

The PLC software is based on the creation of an assembly of software
blocks. Each of these blocks carries out a single function such as, for
example, the treatment of the motor stoppage or the opening of the
crankshaft guard.

The translation of a SELECT instruction corresponds to the creation of
the body of a block. It begins with the positioning of the Begin label
associated with segment 00. For the initialization event, the condition is not
translated.

Otherwise, the pile of condition values is re-initialized, the condition is
translated and inverted, making a pile following a de-piling of the inversion.
In this way, if the condition, which represents the guard of the event, is false,
then the RLO is worth 1 and the instruction of conditional jump will lead to
a jump to reach the end of the block. If not, the instruction, which constitutes
the body of the event, will be carried out.

The instruction is translated, and finally the segment with the label End is
positioned by incrementing the number of the current segment.

368 Formal Methods Applied to Complex Systems

Figure 12.8. Example of a translation rule

B0 PLC assembler

SELECT
M_66_0 = TRUE

THEN
M_66_0 := FALSE

END

Begin: NW 00
L M 66.0
= M (114.16)
LN M (114.16)
SPB = End
L M 110.01
= M 66.0

End: NW 01

Table 12.1. Example of translation

The language in PLC format is then imported using the software
programming workshop of the PLC.

A validation of the system in its environment is conducted. A validation
using ControlBuild (see Chapter 8 of [BOU 12b]) to simulate the operative
part (the press actioners) is conducted.

This platform acceptance test allows us, through ControlBuild, to
communicate with the PLC and to go beyond the mechanical constraints of
the machine. The software implanted in the PLC can be tested in this way.
The advantage of this simulation by ControlBuild is that test scenarios can
be rapidly reproduced.

Feasibility of the Use of Formal Methods for Manufacturing Systems 369

This validation remains necessary, even if we use the B method, in order
to validate:

– the interfaces: it should be verified that the software interfaces made up
of 29 Boolean inputs and 4 Boolean outputs are coherent between the B
model and the physical parts of the press. In particular, this should apply for
the cabling of the inputs/outputs and the respect for the logics of each
input/output;

– the initialization conditions: even if the B model is auto-coherent, it
should be established that the initial state of the software is coherent with the
initial state of the press;

– the real-time aspect: certain real-time constraints can be treated by the
software package, others have not been specified or studied in this sense. For
example, for the use of the two-hand control device, it was required that the
command only be validated if pressure is applied to both buttons
simultaneously (with a tolerance of 500 ms). As a result, it is possible that
problems linked to the real-time aspect appear during this phase. The
difficulties in perfecting set-up linked to real time should be studied by an
expert in the press and the safety PLC, who should identify the requirements
specifically linked to real time that need to be taken into account by the
software.

Several problems were detected during the validation phase:

– errors in the generated code due to manual translation. Evidently, in the
context of an industrial process, an automatic translator should be created;

– poor definition of the interface between the software variables and their
material implementation (definition of the inputs/outputs);

– spreading out of the B events, which could have been avoided by
segmenting the model into two B sub-models, one for the software and the
other for the rest of the system;

– an error due to insufficient care taken during the definition of the B
invariable.

That problems were discovered in validation should not make us question
everything the B method contributes to the process.

For errors linked to translation mechanisms, prior tests should have been
conducted on the PLC so as to validate these mechanisms and develop an

370 Formal Methods Applied to Complex Systems

automatic tool which, once validated, would have guaranteed the coherence
of the automatic code generated. As these tasks had not been carried out, the
validation of the software served to validate the translation mechanisms and
the manual translation.

12.5.5. Conclusion on the use of the B method for the creation of
application software in an industrial and manufacturing context

Several observations result from the use of the B method:

– The expert in B method plays a very significant role in the creation of
the model. This is because many modeling choices need to be made. On the
other hand, the use of the B method and the proof made it possible to ensure
that these modeling options are coherent with the safety rules modeled as an
invariant in B.

– Although INRS personnel were involved in the process (who had not
been trained in the B method), it was necessary to also involve a B expert in
order to understand the process that was followed;

– An extrapolation of these results for the development of software in
the context of manufacturing industry could be attempted. This type of
software is not generally created by significant research institutes as has
been the case in applications of the B method created up till now. In
addition, this study did not take into account the existence of functional
blocks which had already been validated and certified (the management of
the two-hand control device is, for example, carried out by a single block),
which were already present in the PLC before the study.

– At present, it is difficult to evaluate the level of safety achieved by the
software. This is the main concern of the INRS in its validation work on
control systems [BLA 03]. The proof covers the unitary tests exhaustively,
and makes it possible to improve the confidence level that we can have in
the developed software.

– The use of the B method required around four weeks for the
development of the complete software by people who were not experts in the
press (without using the certified functional blocks) and one additional week
to carry out the function tests.

– Manufacturers of this type of machine may not be ready to make the
transition to a method such as B given the initial investment required

Feasibility of the Use of Formal Methods for Manufacturing Systems 371

(particularly in terms of training in the method). However, they could
sub-contract certain critical functions such as the certified functional blocks.

– This method is a global design method which makes it possible to
create a proven software.

12.6. Formalization of the requirements and properties helping SysML
and verification of the unitary modules by model checker

In section 12.3.2, we have highlighted the importance of the specification
phase of the system to be designed, in particular the definition of the
requirements that it must satisfy and the properties that it must satisfy. The B
method, discussed in the previous section, addresses this requirement by
offering a modeling process by refinement, which makes it possible to begin
modeling at a very abstract level, and to progressively add the levels of
details necessary to the generation of the code.

However, our experience has shown that this requires a high level of
expertise of the language, which is not always compatible with the practices
of machine design professionals.

We thus have decided to develop a development process [EVR 09,
PÉT 10] based on SysML [WIL 07] and on tools and languages dedicated to
the modeling of the control, its formal verification by model checking and
the generation of code. This process focuses on safety and aims to ensure the
traceability of the safety requirements from the specification phase up to the
stages of formal verification by model checking and generation of the code.

12.6.1. Overall view of the design process for manufacturing systems

The suggested process begins with the expression of the system needs
and ends with a set of functional and safety requirements. Based on these
requirements, a functional and organic architecture is suggested. Care is
taken to associate each safety requirement with a functional and/or organic
subset.

This first phase (see Figure 12.9) is concerned with the definition and the
specification of the system, for the production functions as well as the
protection measures linked to the safety of people who come into contact

372 Formal Methods Applied to Complex Systems

with the machine. What is important about this process is that it formalizes
then plots the safety requirements based on a global risk analysis procedure,
while, in the domain of machine safety, these aspects are not necessarily
taken into account from the beginning of the design process.

Figure 12.9. System engineering loop: identification and allocation of the requirements,
breakdown into components

In the second phase (see Figure 12.10), these requirements are used as an
entry point to a development phase of the command, which includes the
verification and the generation of code on a programmable industrial safety
PLC.

Figure 12.10. Software engineering loop

Feasibility of the Use of Formal Methods for Manufacturing Systems 373

This phase is carried out using the automation technician’s models and
tools, which presupposes that it is possible to export the necessary
knowledge expressed in the “system” specification stage to these workshops.

This includes:

– specification in automation technician language (Grafcet) of the
behavior of the system, based on the outputs from the preceding level
(functional and safety specifications and architecture of the components);

– coding of the associated functional and safety software components, in
language compatible with the standard NF EN 61131-3;

– verification by emulation-simulation of the low-level functional
components and of the software-PLC grouping;

– verification by model checking of the low-level safety components.

12.6.2.Modeling the requirements

The suggested process begins with the identification of the safety
properties mentioned in the written specification of the machine. The aim of
this stage is to separate the properties related to functional aspects and those
which are concerned with the safety of the system. In this way, the proof will
be limited to the subsets which are relevant to the safety requirements. This
will reduce the size of the verified models and make it possible to avoid the
phenomenon of combinatory explosion.

Modeling of the requirements is based on an incremental process founded
on refinement and decomposition mechanisms which make it possible to
perceive different levels of abstraction:

– the refinement consists of transforming a requirement into a new
requirement which contains more precise information and levels of
additional details; for example, a requirement such as “the two-hand control
is activated by pushing the interfaces with both hands simultaneously” may
be refined into the requirement “the two-hand control is activated by pushing
the interface with both hands, the contact from each is separated by a
maximum of 500 ms”;

– the breakdown process consists of separating the requirements into
several sub-requirements. This means that the composite requirement is

374 Formal Methods Applied to Complex Systems

satisfied if and only if all the sub-requirements are satisfied; for example, the
requirement “operator protection” can be broken down into “protection by
two-hand control device”, and “lateral protection”.

In SysML, the formalism used for the modeling and structuring of the
requirements is the requirement diagram. It defines a requirement as an
object which possesses attributes unique to it (ID, text, source of the
requirement, type, level of priority, verification method, etc.). These objects
may have a relationship with other requirements (links of composition and
derivation to represent, respectively, the decomposition and refinement
mechanisms) or other supporting objects (activities, components, etc.).

The functional requirements of the press are concerned with the job it is
to carry out, its performance, its cost and its integration within a production
chain. A first model, which of course requires further breaking down, is
presented in Figure 12.11.

Figure 12.11. Functional requirement

Feasibility of the Use of Formal Methods for Manufacturing Systems 375

The safety requirements are deduced from a risk analysis process as
described in the ISO 12100 [NF 10], and which, in particular, includes:

– an identification of the dangers and a provisional evaluation of the risks
based on methods such as failure tree analysis or failure modes, effects and
criticality analysis (FMECA);

– a reduction in the risks based on the application of preventative
measures, aimed at minimizing the occurrence of feared events, or on the
application of protection which aims to minimize their consequences.

This study focuses on two principal risks (see Figure 12.12):

– crushing the operator’s hands during the stamping movement;

– the ejection of a piece during stamping.

Figure 12.12. Safety requirement (1)

In the following, we will focus on the risk of crushing. Two access paths
to the dangerous zone are identified: from the front and from the side of the
machine. Due to the position of the crankshaft in the press architecture,
access from the side may cause damage, not only during descent of the tool
(stamping) but also during the re-ascent to the upper position of the press.
Access by the side must be avoided whatever way the press is currently

376 Formal Methods Applied to Complex Systems

moving (requirement SR3) and access from the front must be avoided only
in the descending phase (requirement SR1).

Following analysis of the risks, the measures chosen for prevention are,
on the one hand, unmovable guards for access from the sides (SR3) and a
two-hand control device (CB) for front access (SR1). The role of the two-
hand control is to force the operator to apply both his/her hands to the
apparatus during the entire descending movement. All of the protection
measures are interlocked and conditioned by the movement of the press: if a
protection measure is not activated during the stamping movement, the
movement is halted (requirement SR2). These requirements are modeled in
Figure 12.13.

Figure 12.13. Safety requirement (2)

Let us consider the safety requirement related to the two-hand control
device. This requirement SR1 can be broken down, according to the
standards ISO 12100, ISO 13849-1 [NF 08a] and EN574 [NF 08b], into five
sub-requirements related to:

– the physical design of the apparatus, particularly for preventing the
two-hand control device from being activated with one hand, which is due to
a separation hood (requirement SR1.2);

– auto-detection of failure (requirement SR1.4 dictates that the two-hand
control device should be de-activated in the case of the detection of a fault);

Feasibility of the Use of Formal Methods for Manufacturing Systems 377

– activation, de-activation and re-activation of the two-hand control
device (requirement SR1.1 dictates that the two-hand control (BC) should
not be re-activated unless both hands have been withdrawn, SR1.3 dictates
that the BC is activated if both hands apply pressure to the apparatus within
an interval of less than 0.5 s and SR1.5 means that the BC is de-activated if
one of the hands is withdrawn).

These new requirements are modeled by the SysML diagram of
Figure 12.14. The SysML constraints which make it possible to refine the
requirements in the form of expressed properties in a predicate logic are also
present in this diagram.

Figure 12.14. Safety requirement (3)

378 Formal Methods Applied to Complex Systems

12.6.3.Modeling functional and organic architectures

The functional architecture describes and classifies all the functions that
are supported by the system in development into a hierarchy. This functional
analysis, equivalent to that which can be carried out with an SADT-type
formalism8 [LIS 90], is conducted during our process, using a SysML
activity diagram with a restriction on the use of control streams.

Since the usual function of these diagrams is behavioral modeling, no
control stream is used in the context of a functional analysis.

Figure 12.15. Functional architecture of the two-hand control device (extract)

As an example of this, Figure 12.15 shows two safety functions
associated with the management of the two-hand control device: Two-hand
control activation/deactivation and fault detection.

The structural architecture describes and arranges the components of the
system in development into a hierarchy. In SysML, the component is
described using the block concept, which is the class stereotype, and through
two types of diagrams:

– The block definition diagram (BDD) makes it possible to represent the
structure of the system through the composed/components relationships and
those similar to what could be created using a class diagram.

– The internal block diagram (IBD) is a data stream type diagram which
provides the detailed description of a composite element, in the spirit of data
stream diagrams supported by command system design tools such as
Simulink, SCADE or ControlBuild.

8 SADT stands for structured analysis and design technique.

Feasibility of the Use of Formal Methods for Manufacturing Systems 379

Figure 12.16. Internal block diagram for the
two-hand device (extract)

For example, Figure 12.16 shows the architecture of the two-hand control
device and all its components in the form of a BDD. Figure 12.17 provides
details on the internal architecture of a software component related to the
two-hand control device and its safety rules.

Figure 12.17. Internal block diagram for the two-hand
control device (extract)

380 Formal Methods Applied to Complex Systems

12.6.4. Traceability of the requirements

It must be possible to follow the requirements specified during this
procedure throughout the development process. Three SysML relationships
allow us to establish the common elements between functions, requirements
and components (see Figure 12.18):

– the SysML “Allocate” relationship associates a function with one or
several components (modeled in the form of a SysML block) which support
its creation;

– the SysML “Refine” relationship associates a function (activity) with
one or several requirements which it is supposed to fulfill;

– from the composition of these two previous relationships
(function/component and function/requirement), we can deduce a
component/requirement relationship which is represented by the SysML
“Satisfy” relationship.

– at last, the SysML “Formalize” relationship associates a property
described in the form of a SysML constraint with a requirement. This
property corresponds to a formalization of the requirement in the form of a
predicate.

Finally, it is necessary to establish the relationships between the variables
manipulated by the constraint – i.e. the variables involved in the predicate
which characterizes the property – and the variables manipulated by the
components – i.e. the blocks’ ports. The suggested solution is based on the
use of a parametric diagram.

Figure 12.18. Meta-model for traceability

Feasibility of the Use of Formal Methods for Manufacturing Systems 381

The meta-model of Figure 12.18 thus defines the interactions between all
the objects present in the design process and structures the design process.
This aids:

– Impact analyses: if, during validation, we notice that a requirement is
not fulfilled, then we can go back down to the level of the constituent to
identify the design faults. In the same way, if, during a unitary test, we
notice that a constituent does not fulfill the function attributed to it, we can
go back up to the level of the requirements in order to determine the impact
of the constituent on the system.

– Re-use: if, during a new project, we identify a requirement that has
already been fulfilled in a previous project, then we can seek the technical
solutions used during this previous project and potentially re-use them. The
database will serve as a library for future projects.

For example, Figure 12.19 shows an extract relating to the safety
requirements for the two-hand control device.

Figure 12.19. Safety requirements of the two-hand control device (extract)

382 Formal Methods Applied to Complex Systems

12.6.5. Development and verification of the software command
components

The detailed design of the control dynamics and the verification of its
safety requirements necessitate the use of specific models and tools (using
DSLs).

The main SysML objects re-used in input for these models are:

– IBD diagrams which provide the logical architecture of the control, and
which can be interpreted in classical data stream tools such as Simulink,
SCADE or ControlBuild as an interconnected network of components (or
modules or nodes, depending on the tools used) with input ports and typed
outputs;

– SysML constraints which make it possible to characterize the logical or
temporal property(-ies) which should verify each of the components and
composite elements;

– SysML functions which make it possible to characterize the functions
which each of the components and composite elements should fulfill.

On the basis of this specification, engineers specialized in control system
design can suggest dynamic models which satisfy the specifications. Then,
the verification can be performed by using the SysML constraints as
properties that need to be verified in the model checker or in the form of
pre- and post-conditions that should be preserved during a test scenario.

In order to demonstrate the feasibility of the approach, model
transformations have been simply implemented using import/export
procedures based on SML and XSLT technology, and on a meta-model of
shared concepts. Figure 12.20 shows an extract of these concepts.

The connected tools are Magic Draw and Artisan Studio for system
modeling in SysML, ControlBuild for design and simulation of the
command, and UPPAAL9 for verification of properties.

9 UPPAAL: model checker developed during a shared project between the University of
Uppsala in Sweden and the University of Aalborg in Denmark.

Feasibility of the Use of Formal Methods for Manufacturing Systems 383

Figure 12.20. Implantation of the suggested process

For the case study related to the mechanical press, the set of SysML
specifications provide:

– the press components, particularly the software components of the
two-hand control device (BDD and IBD diagrams);

– the safety functions that each of these must ensure (allocate
relationships);

– the properties that each of them must respect (satisfy and constraints
relationships).

On the basis of this information, it is then possible to start creating each
of the components. For the creation of software components which carry out
safety functions for the two-hand control device, we chose ControlBuild data
stream models. The structure of these is very close to that of the IBDs. The

384 Formal Methods Applied to Complex Systems

behavioral description is created on this tool, using the languages of the
standard NF EN 61131-3. On the basis of the behavioral description created
on this tool, an implementation stage allows us to generate a PLC code
automatically.

Verification of the created components is carried out using the model-
checker UPPAAL. Component properties are deduced from the SysML
study through a transformation of the predicates contained in the constraints
in the form:

– of a property expressed in a temporal logic, CTL* for UPPAAL, for
properties that do not require state memorization;

– of an observer that memorizes state evolutions of the system and
represents a forbidden sequence in the form of a blocking state.

For example, the property P1.5, expressed first in SysML in textual form
(the two-hand control device is deactivated if one of the two hands is
removed) and then in the form of a constraint (not BP1 or not BP2 ⇒ not
CB), was expressed in the form “it is always true that ...” and translated into
UPPAAL using the AG operator:

AG (NOT(BP1) OR NOT(BP2)⇒ NOT(CB)) (P1.5)

Figure 12.21. Observer on UPPAAL for the property P1.1

Let us now consider the property P1.1 which stipulates that the two-hand
control device can only be reactivated if both buttons have previously been
released. This property is represented by an observer which comprises four
states: CB activated, CB deactivated with both buttons released, CB
deactivated with one of the buttons released and finally an error state which

Feasibility of the Use of Formal Methods for Manufacturing Systems 385

corresponds to the forbidden sequence (see Figure 12.21). It is then
necessary to verify, using the model checker, that the error state can never be
reached through the AG property (not error).

A validation by simulation phase may be added to this formal verification
stage. The validation by simulation phase would be conducted using the
ControlBuild tool, and would increase the level of confidence that could be
accorded to the development. It would proceed by running through a set of
scenarios and by analyzing how the command responses matched with the
needs that were initially expressed in the written specification.

12.6.6. Discussion

The approach that has been presented here is innovative in that it brings
together two spheres of activity that do not always have the same concerns:
on the one hand, industries that use industrial PLC for safety, and on the
other hand, the software engineering and systems engineering community.
This approach suggests a complete development process, which may be
adapted to suit the skill level available in the industries, and which goes
through from the expression of the need to the development of the PLC
code. This process has been applied for the design and proof of the software
or for certain parts of the command software of a mechanical press with a
clutch-brake.

One of the advantages of this process is that with it we can formalize and
plot the safety requirements that the system must fulfill. As SysML is only a
toolkit, part of the process suggests usage rules for specifying high-level
safety requirements, propagating them up to the lowest level software
component, and plotting them throughout the process. This application
guide, however, has some limitations with respect to operation safety,
because the traceability of safety requirements is based on a data model
informed by the machine’s designer.

In order to increase our confidence level in the safety of the software, the
principle of a posteriori formal verification was added to the development
process. The principle allows us to be sure, at a low-level PLC code
component, that the associated safety property has been respected. However,
unfortunately, it is limited by the size of the components, because we cannot
test/verify the entire software, but rather its use needs to be confined to

386 Formal Methods Applied to Complex Systems

sufficiently small software components (of a few variables). This principle
could be completely automated in a tool.

The system requirements were wholly defined and the command software
for the press was wholly created. In order to develop a complete application,
it is currently necessary for the person carrying out the software
development to know all of the system requirements so that they can
understand the role of the software components that they will develop and
validate by simulation. This is not necessarily a disadvantage because it
means that the developer can play a more important role within the team and
is not confined to a low-level role.

As for the proof, only a few software blocks, those involved in the
properties regarding the safety of the machine, were proved by model
checking. As it is necessary to formalize the safety properties that need to be
verified in the language of the model checker, a certain level of expertise is
required for this operation.

Various software tools might be developed to support this methodology.
A demonstrator that ensures traceability between the different views
(requirement, system, PLC code) has been created. It could have more
functions added to it, and it could be incorporated into a development
software suite. Also, in order for them to be effective, verification tools
should be incorporated, in a manner which is transparent for the user, into a
software development workshop for PLC.

This process, focused on safety, makes it possible to integrate prevention
very early on in the design process for the command logic of machines that
use programmable equipment. It thus provides a means of responding to
some of the requirements of the European Directive 2006/42/CE. In
addition, the use of formal verification guarantees that the safety property
has been completely verified, and thus that the part of the software which
carries out this property does not contain any errors which risk
compromising the safety of the operator.

However, the process presented here is part of a design process: the
descending part of a V software development cycle. A phase for validation
and integration with the equipment, with integration tests on the machine,
will also need to be conducted in addition to this process.

Feasibility of the Use of Formal Methods for Manufacturing Systems 387

12.7. Conclusion on the use of formal techniques in the field of
manufacturing

We have here applied two types of formal methods for the programming
of a safety PLC which manages the safety functions of a machine.

The use of the B method is effective in the case of safety applications. In
particular, it allows us to avoid validation of the various software modules
individually (unitary tests). However, it does not treat the phase of
equipment integration, which remains an essential step in any software
development, even one which uses formal methods, in order to ensure that
the software developed works sufficiently well with the equipment.

One of the potentially disadvantageous points regarding the use of this
method in the manufacturing sector is that it is necessary to have people
working on it who are trained and competent or even expert in the use of B,
at the beginning of the project, but also for any change or modification in the
software. This constraint means that this method will be used only by
companies with design projects for new machines of sufficient scale that the
initial investment might be repaid over several projects. A company
choosing the B method for design would need to have consciously chosen
this as part of a policy decision.

The use of formal verification methods a posteriori would seem to be a
more approachable option for automation technicians. However, as far as we
are aware, no integrated tool exists which could facilitate the use of this
approach in the manufacturing sector. In addition, the formalization of the
safety requirements which need to be verified requires a level of expertise,
and the fact that its application is limited to small software modules is a
strong constraint. The research work carried out at the INRS led to a design
process which could be adapted to practices and could help designers to
formalize the expressions which need to be proved. For example, as with the
B method, an initial investment by the company for training and
customization of the design method is required, for both the formalization of
safety properties that need to be verified and for carrying out proofs with a
model checker. In order for an integrated design tool for this sector to be
available, some additional work is necessary from the providers of
automation software design tools. Finally, the use of formal techniques is
definitely a plus, but does not remove the necessity of conducting on-site

388 Formal Methods Applied to Complex Systems

tests to validate the integration of the developed software with the
equipment. This might appear as “one more task” to be carried out.

Companies in the manufacturing domain have development cost
constraints (the machines are often of limited commercial value) and a level
of maturity in software development which makes it difficult, for example,
for them to appropriate formal techniques of any kind. If there were a strong
constraint from industry standards, as there is in the railway and aeronautic
sectors, manufacturers might be obliged to use formal methods, but for the
time being, and for the foreseeable future, this is not the case.

12.8. Glossary

AMN Abstract machine notation

BDD Block definition diagram

DSL Domain-specific language

FMECA Failure Modes, Effects and Criticality Analysis

IBD Internal block diagram

IEC10 International Electrotechnical Commission

INRS Institut National de Recherche et de Sécurité

ISO11 International Standards Organization

NF French Standard

SADT Structured analysis and design technique

SIL Safety integrity level

SysML Systems modeling language

12.9. Bibliography

[ABR 96] ABRIAL J.R., The B-Book, Cambridge University Press, 1996.

[ACH 06] ACHATZ R., “Requirements engineering: a key success factor”,
Automation Technology in Practice, no. 3, November 2006.

10 For information, see http://www.iec.ch/.
11 For information, see www.iso.org/.

Feasibility of the Use of Formal Methods for Manufacturing Systems 389

[BAI 08] BAIER C., KATOEN J.-P., Principles of Model Checking, MIT Press, 2008.

[BLA 03] BLAISE J.C., BELLO J.P., BAUDOUIN J., “Validation du schéma de
commande d’une presse utilisant un système électronique programmable”, Safety
of Industrial Automated Systems (SIAS 2003), Nancy, 13–15 October 2003.

[BOU 12a] BOULANGER J.-L., (ed.), Industrial Use of Formal Method: Formal
Verification, ISTE, London, and John Wiley & Sons, New York, 2012.

[BOU 12b] BOULANGER J.-L., (ed.), Formal Methods: Industrial Use from Model to
the Code, ISTE, London, and John Wiley & Sons, New York, 2012.

[CEI 10] CEI 61508: Sécurité fonctionnelle des systèmes électriques/électroniques/
électroniques programmables relatifs à la sécurité. Partie 1 à 7, April 2010.

[CLA 00] CLARKE E.M., GRUMBERG O., PELED D.A., Model Checking, MIT Press,
Cambridge, MA, 2000.

[EVR 09] EVROT D., Contribution à la vérification d’exigences de sécurité:
application au domaine de la machine industrielle, NS 277, INRS – PhD Thesis,
UHP Nancy I, January 2009.

[CT5 98] CT5 – Ministère de l'Emploi et de la Solidarité. Note relative à
l'acceptation de certains automates programmables pour gérer des fonctions de
sécurité sur machines, e23/APIDS/26mai 1998, p. 5, May 1998.

[DIR 06] Directive 2006/42/EC of the European Parliament and of the Council of 17
May 2006 on machinery, p. 63, May 2006.

[JOH 07] JOHNSON T.L., “Improving automation software dependability: a role for
formal methods”?, Control Engineering Practice, vol. 15, no. 11, pp. 1403–
1415, November 2007.

[LAM 03] LAMY P., “Experience feedback concerning develoment methodology for
programmable electronic system application software”, Actes du 3ème congrés
international Safety of Industrial Automated Systems, Nancy, October 2003.

[LIS 90] LISSANDREM., Maîtriser SADT, Armand Colin, 1990.

[NEU 02] NEUGNOT C., KNEPPERT M., Logiciels applicatifs relatifs à la sécurité.
Etude des problèmes liés à leur exploitation. Cahiers de notes documentaires –
Hygiènes et sécurité du travail No. 187, 2002.

[NF 03] NF EN 61131 Partie 3 Automates programmables – Langages de
programmation, August 2003.

[NF 05] NF EN 62061: Sécurité des machines – Sécurité fonctionnelle des systèmes
de commande électriques/électroniques/électroniques programmables relatifs à la
sécurité, July 2005.

390 Formal Methods Applied to Complex Systems

[NF 08a] NF EN ISO 13849-1: Sécurité des machines – Parties des systèmes de
commande relatives à la sécurité – Partie 1: principes généraux de conception,
October 2008.

[NF 08b] NF EN 574: Sécurité des machines – Dispositifs de commande
bimanuelle – Aspects fonctionnels – Principes de conception, August 2008.

[NF 10] NF EN ISO 12100: Sécurité des machines: Principes généraux de
conception - Appréciation du risque et réduction du risque, December 2010.

[PÉT 10] PÉTIN J.F., EVROT D., MOREL G., et al., “Traçabilité et vérification
d'exigences de sécurité”, Génie logiciel, vol. 95, pp. 27–37, 2010.

[VAL 10] VALKONEN J., BJÖRKMAN K., FRITS J., et al., “Model checking
methodology for verification of safety logics”, The 6th International Conference
on Safety of Industrial Automated Systems, Tempere, Finland, June 2010.

[WIL 07] WILLARD B., “UML for system engineering”, Computer Standard and
Interfaces, vol. 29, pp. 69–81, 2007.

13

B Extended to Floating-Point Numbers: Is
it Sufficient for Proving Avionics Software?

13.1. Introduction

For a long time, formal methods did not pay much attention to
calculations based on floating-point numbers. This started to change around
10 years ago, and today floating-point numbers can be used in most of the
specification languages and proof tools used for research and industrial
preparatory studies.

Better late than never: the B method [ABR 96] will soon be able to prove
the correctness of floating-point calculations. Technically speaking, this is
the only gap that needs to be filled before the method can be used in
avionics. We will therefore give the rationale for the proposed extension of
the B language.

However, first and foremost, we will reveal the new difficulties arising
that make us believe that the application of the method to avionics will
involve much more than a simple transposition of the railway success
stories.

Chapter written by Jean-Louis DUFOUR.

392 Formal Methods Applied to Complex Systems

13.2. Motivation

Industrial use of formal methods is highly context-dependent:

– in railways, from the middle of the 1990s onward, medium-sized
applications (of around 20,000 code lines) have been proved to be
functionally correct using the B method [DEH 94];

– in avionics, 10 years later, applications of a much greater size are
proved free of execution error (division by 0, etc.) using the tool Astrée1
[DEL 07, BOU 11a]; however, we are here far from the functional.

This would seem to be a “conceptual regression”, and there are two
reasons for it, which gradually become less important over time:

– culturally, avionics is not an easy client: the recommendation DO-178
in “B” edition [ARI 92] naturally does not facilitate the replacement of
testing by proof. In fact, the only example of this is the use of CAVEAT2 by
Airbus [SOU 09]. Even if the general reasoning underpinning DO-178B
[ARI 92] is the specification of the high-level objectives and not the
techniques associated with these at a given time, the verification activity
which checks for conformity between the product and the requirements is
strongly “test” oriented. In the “formal methods” supplement to the “C”
revision [ARI 12], published at the beginning of 2012, there is a significant
framework for these methods as an alternative means of operation. When
they rely on qualified tools, they can now naturally be used as a substitute
for most tests. Economically speaking, this is necessary before they can gain
widespread industrial use.

– Avionics is not, in technical terms, an easy client for two reasons:

- On complex equipment, at least, calculations on floating-point
numbers are the norm, and not the exception (which is the opposite of the
situation in railways). Floating-point numbers are numbers represented in
the form: mantissa * baseexponent, where mantissa and exponent are signed

1 To find out more about Astrée, see http://www.astree.ens.fr/.
2 Here it was used with a special “unitary” proof which mimics unitary tests and cannot be
transposed into B. The procedures which call for other procedures are “stubbed”, i.e. their
formal specification covers only the “linkage” between the calls for procedures and the
procedures which result from these.

B Extended to Floating-Point Numbers 393

integers, and the base has a value, in practice, of 2 or 10; this is the computer
science version of “scientific notation”. Floating-point correction is one
order of magnitude more complex than integer correction [MON 08].
Fortunately, proof technology for floating-point numbers is constantly
improving3. This is due to, among other factors, the specification language
ACSL4 [BOL 07] and the multi-prover verification tool Frama-C5 [AYA 10,
BOU 11a].

- Second, the functional properties that need to be proved are more
complex than with railways. We will discuss this in more depth later.

Therefore, it is now time to functionally prove avionics applications: a
first “simple” step could be to transfer the existing technology for floating-
point numbers into the B method [ABR 96]. Unfortunately, this transfer is
not easy, because we need to ensure compatibility between the theoretical
framework and the current practice (typing and base of rules), given the
number of projects being maintained and developed.

However, before returning to this in more depth, it would be useful to
gain an understanding of why the B method has always been limited to
integers. To do this, we need to go back to the beginnings of the method
[CHA 89, GUI 90].

13.3. Integers and the railway origins of the B method

13.3.1. The SACEM project6

The Parisian leg of RER (Réseau Express Régional – regional express
network) Line A was opened in 1977, connecting the eastern and western
suburbs of Paris. Line A very quickly became a victim of its own success,
with passenger numbers increasing appreciably and constantly year by year.

In 1979, the operators (RATP in Paris and SNCF in the suburbs)
launched preliminary studies on “intelligent” signaling which would bring

3 In [BOU 11a], abstract interpretation [COU 00] is presented, and several examples of uses
are presented, which implement Frama-C, Astrée, POLYSPACE, etc.
4 ACSL stands for ANSI/ISO C specification language.
5 To find out more about Frama-C, see http://frama-c.com/.
6 SACEM stands for Système d’Aide à la Conduite, à l’Exploitation et à la Maintenance –
assisted driving, operation and maintenance system.

394 Formal Methods Applied to Complex Systems

about a significant increase in capacity through a reduction in headway
between the trains on the central leg: SACEM see [GEO 90].

In 1982, the creation of this system was entrusted to a consortium made
up of three industrial entities: Jeumont-Schneider7/Interelec8/CSEE9. In
order to understand this, it is necessary to understand one key thing:
“intelligent” of course refers to “software” here, but this was to be the first
time that software would make a direct contribution to safety on a French
railway system. Also, a certain level of complexity was involved (of 7,000
lines of code trackside and 14,000 lines onboard, 9,000 lines were critical).

13.3.2. The need for an innovative software method

There was no precedent (in France) even in the rest of the industry, and in
fact other industries were faced with the same problem at the beginning of
the 1980s:

– Merlin Gérin10 needed to create software for part of the emergency
stoppage for the new generation of French nuclear reactors: with the help of
what was to become the laboratory Verimag11, they created the SAGA
environment12 (the first forerunner of SCADE);

– Aérospatiale13 needed to create software for a part of the electric flight
commands of the A320: they created the SAO workshop (the other
forerunner of SCADE14, see Chapter 2 of [BOU 12]). It should thus be noted
that when DO-178 appeared in 198215 and again in 1985 when its “A”

7 Jeumont-Schneider became Alsthom in 1987, and today is Alstom Transport.
8 Interelec became Matra Transport in 1985, and today is Siemens Mobility.
9 CSEE has now been replaced by Ansaldo STS France.
10 Today Schneider Electric.
11 Verimag is a laboratory that it is always at the forefront of the development of onboard
systems. For more information, see http://www-verimag.imag.fr.
12 SAGA stands for “Spécification d’Applications et Génération Automatisée” – specification
of applications and automatic generation.
13 Today Airbus.
14 The SCADE development environment is sold by the company ESTEREL-Technologies.
To find out more about it, see http://www.esterel-technologies.com/.
15 Aeronautics “standard” on the development of critical software [ARI 92]; formally
speaking, it is not actually a standard. This is the avionics equivalent of the railways standard
CENELEC EN 50128 [CEN 01, CEN 11].

B Extended to Floating-Point Numbers 395

revision appeared, neither of these would have provided sufficient assurance
to airline manufacturers.

These two manufacturing firms managed the complexity by introducing a
solution that what was far removed from other solutions being offered at the
time (at least in the software milieu), which today is called “model-based
design”. Following this method, errors occur less frequently because the
language is simple. Additionally, the errors that do occur are easier to detect
because the language is graphic, and thus can be read by systems engineers.

However, these graphic languages are in fact a little too simple for them
to be able to express SACEM algorithms, which require route track
descriptions. Therefore, the SACEM consortium adopted a different
response to this complexity. Under the leadership of Pierre Chapront
(Alsthom), the consortium decided to replace unitary tests with proofs in
Hoare logic [HOA 69].

This was a choice that brought with it a certain level of risk, because at
the time this technique was only 15 years old, and there was no tool
available to support it. However, just like SAGA and SAO (Spécification
Assistée par Ordinateur – computer-assisted specification), this shows that
already at that time the industry was fully aware of the weakness of the state-
of-the-art faced with the power of expression of the software.

13.3.3. The coded processor and integers

For SACEM, this distrust of the current state of knowledge was to lead
those involved in the project to question the classical safety method based on
the calculator by redundancy: the “coded processor” invented in 1980 by
Philippe Forin (Matra Transport) [FOR 89] during a preliminary study was
chosen because it allows those involved in a project to:

– intrinsically make the problems associated with common modes and
latent breakdowns disappear (including the problem of coverage of auto-
tests);

– intrinsically ensure partitioning between the critical and non-critical
software (without a “memory protection unit”);

– in practice, handle the issues associated with the evaluation of levels of
failure and their variability from piece to piece (a level of failure is the

396 Formal Methods Applied to Complex Systems

estimation of the average of a population. However, what is of real interest
to a rail users who are aware of the issue is the probability of failure of the
specific system on which they are travelling during the specific time they are
travelling on it).

However, one of the disadvantages of this technique is that it cannot
handle floating-point numbers. This means that it has to handle calculations
of distances and speeds using integers (with fixed-point numbers).

13.3.4. The limitations of Hoare logic and the beginnings of B

The development of software began in 1983. Then, formal validation
began later with a team completely separate to the development team. This is
the classical “independent activity because different people are involved”.

In 1987, the consortium signaled to its client that it was having
significant problems in the application of Hoare logic. Their response to this
situation came quite quickly: two independent experts, Jean-Raymond Abrial
and Stéphane Natkin, were appointed to audit the development.

They both confirmed the weak point with Hoare logic: it cannot be scaled
up. Formal specification and proof are well suited to leaf procedures;
however, as soon as we go higher within the call graph, the formal
specification becomes non-traceable with the informal specification, and the
proof obligations become extremely large.

At that time, J.-R. Abrial, who was involved in the design of the Z
specification method [SPI 89], had already gone on to the next stage and had
begun defining what a formal development might be [ABR 84]. In addition,
at the same time, but independently, the “missing link” was in the process of
being developed: this was the refinement of control and data [BAC 81,
MOR 90].

In his auditing report, Abrial summarized the situation and suggested
bridging the gap between the informal specification and the preceding
formal verification activities by a “formal re-expression” of the
specification. This was to be the first application of the B method [ABR 96],
which was performed manually in 1988 (the precursor of AtelierB, the “B
tool”, was at that point being developed at British Petroleum Research, and
only became commercially available in 1992).

B Extended to Floating-Point Numbers 397

The launch of SACEM was (only) set back by a year, until autumn 1989
(and the significantly increased capacity was almost immediately exhausted,
but that is another story).

13.3.5. Successes of B, and integers once more!

So thanks to B, something which could have been a fatal blow to program
proving became the first in a long line of successes. However, these
successes were almost always concerned with railway systems, where the
typical applications are either signaling or speed control. The first of these
only requires Boolean numbers, and for the second, fixed-point numbers are
sufficient (in particular when the coded processor is used. In fact, until the
present time, there has been bijection between the expressivity of B and the
expressivity of the coded processor, which disappears when B is working
with floating-point numbers).

13.3.6. The positive influence of “fail-safe”16 on complexity

A train, like a car, a nuclear power station, a refinery, a press, etc., can
stop in order to avoid a catastrophe. This is the safety paradigm known as
“fail-safe”, which allows a breakdown to result in degraded operation, as
long as this is safe.

This principle is clearly unsuited to aircraft for which the “fail-
operational” is required (see Chapter 6 of [BOU 11b]). For this to be
attained, a breakdown must have no impact on operation (in general, this is
limited to the first breakdown).

Fail-safe gives rise to redundant asymmetrical architectures [BOU 11b,
BOU 11c], where the second track has only a supervisory function and
cannot be substituted for the first in case of failure. As a result, in the
language of the industrial safety standard CEI/IEC 6150817 [IEC 98], the
term that is used is command system/protection system, and the safety level

16 The terminology here is not fixed. For example, in aeronautics the circular
FAA AC 25.1309 mentions a “fail-safe design concept” which is close to our “fail-
operational”. However, in railway, “fail-safe” is often translated, as into French, as “intrinsic
safety”, which means “absence of dangerous failure mode”.
17 The European standards CENELEC EN 50126, 50129 and 50128 [CEN 01, CEN 11] for
railways are derived from the generic standard [IEC 98].

398 Formal Methods Applied to Complex Systems

of the overall system boils down to the level of coverage and availability of
the protection sub-system. This level is quantified by 4 “safety integrity
level” or “SIL” (the SIL scale goes from 1 to 4; 4 is the most sure (there is
no need for SIL018 because if there is a protection, this means that there is a
safety issue at play)).

Here, we use aeronautics terminology when referring to asymmetrical
redundancy “COM/MON”, COM for “COMmand” and MON for
“MONitor”, while remaining aware that the qualifier “asymmetrical” is very
significant, because in the usual aeronautics COM/MON (for example, on a
full authority digital engine control [FADEC]), MON actually means
“passive”: the redundancy is symmetrical and MON is involved whenever its
state of health is better than that of COM.

Let us return to railways and take two examples:

– For a door command, COM will drive the opening/closing dependent
on the driver’s wishes, and the door lock dependent on speed. The MON will
activate the emergency brake if the door is not locked beyond a certain speed
or if the door opens at a time when this should not happen.

– For autopilot (AP), COM will calculate the speed set point and then the
motor/brake torque set point. MON will only activate the emergency brake
where the speed is not compatible with the next point at which the train
needs to stop.

MON covers safety requirements. As a result, it is subject to an integrity
requirement (SIL4 in AP). In this way, COM does not need to have an SIL,
but it does need to be reliable (with regard to its hardware) and to be of a
certain quality (with regard to its software); both of these need to be
consistent with the service quality that the operator requested the
manufacturer to provide. Obviously, it is MON that we will develop
formally, and not COM.

13.4. The avionics context: floating-point numbers and complexity

In avionics, floating-point numbers are the norm, and integers the
exception. The opposite is the case for railways. This is particularly true for

18 The CENELEC railway standards use SIL0 because they adopt a more general
architectural viewpoint than the command/protection of the standard IEC 61508 [IEC 98].

B Extended to Floating-Point Numbers 399

navigation systems, where 64-bit floating-point numbers (“double precision”
in the terms used by [IEE]) are what is in use.

Also, the algorithms are more complex. Let us examine two typical
examples:

– A FADEC (motor control) drives the fuel flow through the set thrust
through regulation loops which operate on temperatures, pressures, flows
and rotation speeds. The relative precision of outputs must be around 10-3,
and to achieve this the relative precision of base operations must be around
10-6 (with a decent margin: 10 years ago, automobile motor controls carried
out similar calculations with fixed-point numbers at 16 bits). A FADEC thus
uses 32-bit floating-point numbers (“single precision” to use the terms of
IEEE 754), which have a relative resolution of 2-23 ≈ 1.2.10-7.

– An inertial navigation system (INS) calculates, among other things, its
position on earth (sometimes in space) using 3D geometrical calculations
(rotation matrices), trigonometry and statistical estimation (again matrices).
An error of 1 m corresponds to a relative precision of 1 m/40,000 km =
2.5 10-8, which is already better than simple precision. This could be
compatible with a 32-bit fixed-point number (which was used in the first INSs
based on Cardan). However, considering all the operations that are carried out
by a modern “strap-down” INS (for example, integration of gyroscopic
information at high frequency and Kalman filters), the precision required of
basic operators is around 10-13. (Fortunately, this is compatible with the
resolution of double precision: 2-52 ≈ 2.10-16). To the best of our knowledge,
the only industrial case where double precision is insufficient is the
representation of UTC time in a global positioning system (GPS), where the
resolution is a fraction of a nanosecond and the interval that needs to be
covered is several dozen years.

In addition, this algorithmic complexity cannot be mitigated by the safety
paradigm, as is the case for railways with fail-safe and the associated
architecture in asymmetrical COM/MON: avionics is synonymous with
“fail-operational”, and the architectures used are symmetrical COM/MON
(FADEC) or triplication (INS). The notion of protection system no longer
exists, and the SIL is replaced by the “development assurance level” or

400 Formal Methods Applied to Complex Systems

“DAL” of the recommendation ARP 475419 : SIL4 becomes DAL A, SIL1
becomes DAL D and DAL E means that the system does not bring safety
into play.

Let us return to our two earlier examples to see where this leads us to:

– A FADEC conceptually has two critical outputs: the fuel flow and the
state of health (because if we falsely think we are in good health, we do not
switch). Therefore, it is necessary to prove correctness. The complexity is
similar to that of the COM part of a PA (therefore one order of magnitude
greater than MON). The interesting approach of the automobile industry for
motor controls should be noted (see [DUF 05]). The critical output
(the equivalent of the outflow is the injection duration) is periodically
recalculated according to a simplified formula which takes only the main
parameters into account. Then, a comparison with tolerance is carried out in
order to take the omitted parameters into account. This real-time approach
could be transposed at verification, by proving a limited gap in relation to a
simplified specification. In order to retain conformity with DO-178, which
requires that everything that is implemented should be specified, and
everything that is specified should be verified, the omitted parameters such
as low-level derived requirements need to be taken into consideration:20
under the current state of practice, this would probably not pass certification.

– An INS has, as its critical output position, speed and attitude (the state
of health is less critical, because in everyday situations it is tripled, and
therefore the choice can be made by majority vote). It calculates these by
integration of the acceleration vector (produced by the three accelerometers)
and of the rotation speed vector (produced by the three gyrometers). To
improve performance, inertial data are fused with other information
(air speed, Doppler or loch, GPS, etc.) through Kalman filters: the
algorithmic complexity which results from this is even greater than that of a
FADEC.

To summarize, the maturity that B has acquired in railways (its “TRL”)
cannot be transposed to avionics for the three following reasons:

19 Aeronautics “standard” on systems development; formally speaking, it is not actually a
standard. This is the avionics equivalent of the railway standard CENELEC EN 50126
[CEN 00].
20 False friend: according to ARP 4754, derived requirements are “additional requirements
resulting from design or implementation decisions during the development process which are
not directly traceable to higher-level requirements”.

B Extended to Floating-Point Numbers 401

– proofs on floating-point numbers are more complex than proofs on
integers;

– the codes are more complex;

– the specifications are more complex.

13.5. Barking up the wrong tree: separation between integer and
floating-point calculations

Let us now return to our initial issue: proving an avionics application
with the B language [ABR 96]. In order to do this, we can ask if it is really
indispensable to extend B to floating-point numbers. In fact, particularly
within an INS, the predominance of floating-point numbers compared to
other types of data is such that it may suggest us a path to follow which will
not deliver useful results.

To illustrate this predominance, here are three observations on a typical
INS application (the lower layers are excluded):

– more than half of the atomic variables (the variables of base type and
the terminal elements of structures and of tables) are floating-point numbers
(exclusively “double” in recent systems);

– practically no integer variable contains “navigation” information (e.g.
position or altitude). The only exception is for tabulated functions, within
which integer indexes are conversions of floating-point numbers;

– practically all of the integers represent states. The only two exceptions
are

- counters (which may often be considered to be a state);

- table indices for matrix calculations.

This means that, at least conceptually, such an application may be viewed
as two weakly coupled tasks: an “algorithmic” or “continuous” or “physical”
task which carries out all the floating-point calculations and these alone, and
a “piloting” or “discrete” or “logical” task which calculates the INS mode.

These two tasks exchange only enumerated values, for example the
algorithmic task sends the piloting task the Boolean “Speed ≤

402 Formal Methods Applied to Complex Systems

THRESHOLD_LOW” and the piloting task sends the algorithmic task the
Boolean “Status_altitude_baro = VALID”.

Figure 13.1. Integer/floating-point number segregation

This conceptual segregation may give the impression that it is also
possible to segregate design and correctness (see Figure 13.1):

– a B model will specify/design only the pilot portion, and the
algorithmic part will be viewed through “basic” machines, that is, machines
which are not refined. In this way, as the interfaces are discreet, the floating-
point numbers would not need to be introduced in B;

– the algorithmic part is specified and proved with a tool that is more
suited to it, such as Frama-C, and informal traceability is achieved between
the basic machines and the ACSL specification.

The problem is that:

– this segregation is purely conceptual, and the application is never
designed in this way: the gap between the model and the (existing) software
would be substantial;

– traceability between B and ACSL is informal, because the specification
languages are different;

– this traceability may not be so simple to establish, because the levels of
abstraction are different between the two methods: ACSL currently does not
have much refinement capacity.

B Extended to Floating-Point Numbers 403

For these reasons, the introduction of floating-point numbers, and we will
also see of real numbers, would seem to be indispensable.

13.6. IEEE 754 Floating-point numbers

13.6.1. Scope of the standard

The standard IEEE 754 (“IEEE” in what follows) was published in 1985
and revised in 2008. Its main aim is the portability of floating-point
algorithms, but because it does not go beyond the provision of a
“mathematical library”, it is not the only contributor to this aim: languages
and compilers are also involved.

The portability is not attained essentially due to them: on embedded
software the effect that it produces is target/host non-representivity, which
more generally is the reason why DO-178 requires that tests cover the code
on target. As for its technical scope, the IEEE is only missing a portable
specification of non-arithmetic functions (sin, log, etc.), which is a subject
reaching maturity in academic research, and which is not a problem in
critical avionics, because DO-178 obliges us to re-write the mathematical
library (in DAL A, the arguments “proved in use” and “COTS”21 are
difficult to use).

The IEEE “library” firstly specifies types of floating-point data, then
rounding functions of “real to floating-point numbers”, and finally the
associated operations.

Two types of data are fundamental: “single precision” with base 2 in
32-bit format and “double precision” in 64 bits.

We should note two things:

– the mantissa is in the form “signe * integer_not_sign”, which means
that the floating-point numbers are symmetrical in relation to the negation
(as sets of numbers, “single = –single” and “double = –double”);

– IEEE numbers are not only floating-point numbers: the smallest
numbers (in double,]-2-1022 , 2-1022[) are coded in fixed-point format and
are called “sub-normals” or “denormalized”. Their practical plus-value is not

21 COTS stands for commercial off-the-shelf.

404 Formal Methods Applied to Complex Systems

obvious. In fact, no system implemented them before the IEEE (and still
today the architectures Intel x86 and Motorola/IBM PowerPC allow us to
exclude them with a CPU gain at the key). However, their theoretical plus-
value is clear:

- Fundamentally, without them, the gap between a real number and its
rounded number would demonstrate a strong discontinuity around 0, because
the exponent is limited (to -1022 in double). There is a sort of “no float’s
land” around 0, where in order to create a topology that pleases the punters,
0 is “isolated”:]-2-1022, 2-1022[only contains 0, whereas just below
2-1022 there is a high density of population;

– formally, the inhabitation of this “no float’s land” by 2 × 252
denormalized (positive and negative) brings about:

– a simple bound of the rounding error: 2-52 * max(|x|, 2-1022) in
double;

– the property x <> y => x-y <> 0.

Denormalized numbers are the great technical contribution of the IEEE,
which is due to the pugnacity of William Kahan (Turing Award 1989, for
“his fundamental contributions to numerical analysis”).

As regards the 4 or 5 rounding modes (depending on whether we refer to
the 1985 or 2008 version), these associate each real number with a “close”
floating number. This gives a second semantics to floating-point numbers:
each floating-point number can be viewed as the set of real numbers that it
represents. The standard rounding is “round to nearest, ties to even”, which
means, we choose the closest floating-point number, and if two floating-
point numbers are equally close, we take the one which has the bit of weak
weight of the mantissa equal to 0. This rounded value is said to be
“unbiased” because a sum of rounded values of random real numbers does
not present a bias in relation to the real sum (which is in general a sought-
after property; other rounded values are said to be “directed” and have
specific non-embedded applications).

As regards the associated operations, the only thing that needs to be noted
is the way in which the four arithmetic operations and the square root are
specified:

– the operation is firstly “carried out” in real numbers;

B Extended to Floating-Point Numbers 405

– the real number result is rounded in floating-point numbers (according
to the rounding which has been selected).

What is necessary to understand is that the background presence of real
numbers (through the rounding functions) makes it possible to obtain an
“intensional” definition of operations, which is much simpler than an
algorithmic definition, and upon the basis of which further reflection may be
conducted.

Between the initial 1985 version and the 2008 revision, there were many
clarifications and additions, but no fundamental change was made except on
a point which involves portability: the decimal → binary conversion which,
in particular, allows compilers to read floating-point constants. This is one of
the most complex subjects dealt with by the standard, and it only reached
maturity in 1990 (see [PAX 91, MUL 10], section 2.7). The 1985 version
thus did not require that a floating-point decimal constant be translated into
binary exactly as its rounded value, which means that two compilers could
generate different numerical values. The 2008 revision corrected this.
However, it remains a delicate point in practice, as implementations also
have bugs which are difficult to identify (but are without significant
consequences: in C, the function responsible is called “strtod”, proving it
formally far from simple). In addition, the standard now requires that it
should be possible to write floating-point numbers in hexadecimal notation:
in C, 0x1.8p10 means 1.5*210 = 1,536.

13.6.2. The behavior of floating-point numbers is complex

Compared to real numbers, the behavior of floating-point numbers is
more complex. There are many examples in the literature [MUL 10]; here
are a few selected cases:

– In algebraic terms, sum and product are commutative; they have as their
neutral element, respectively, 0 and 1, and 0 is absorbent for the product, but
this is all. They are not associative, multiplication is not distributive on
addition, subtraction (and respectively division) is not the inverse of
addition22 (and respectively multiplication), etc.

22 a + (-a) = 0, but a+(b-a) = b and (b+a)-a = b are false, and we do not even have a *
(1/a) = 1!

406 Formal Methods Applied to Complex Systems

– A real vector of norm 1, once rounded into a floating-point vector, has a
pretty high probability of having a floating-point norm which is different
from 1. The following figure shows the random walk which the norm of the
product of a million “standardized” random complex floating-point numbers
follows23 (it is the discrepancy with 1 that is shown). Of course, the norm of
the product is not equal to the product of the norms.

– The same is true for the norm of the column vectors or the determinant
of a rotation matrix. What is worse, if we multiply them among themselves
many times, we see elements outside [–1,1] appearing, which is a problem
when we want to extract a Euler angle with an arc-sine.

The examination of this random walk may give us the impression that the
discrepancy between a floating-point calculation and the same calculation
with real numbers could be simply modeled by a random noise, which has a
standard deviation which regularly increases with the number of elementary
operations carried out.

This is false due to

– the changes in execution path due to branching (x > 0, etc.);

– calls for partial functions outside their domain of definition (1/x in 0,
square root on negative numbers, etc.).

Figure 13.2. The random walk of the norm of a product of unitary complex numbers

23 “normed” in an algorithmic sense: here we generate a non-normed complex, and then we
divide it by its norm (using the tools Matlab or Octave: « c = complex(rand(),rand()) ; c =
c/norm(c) »). The distribution of the norm around 1 strongly depends on the method of
generation (other possibilities: (cos θ, sin θ), (x,√1-x2), …).

B Extended to Floating-Point Numbers 407

13.6.3. Infinities and NaNs

A fundamental aspect of the standard IEEE is that the floating-point
operations are “total” functions: they are defined for all the input values, due
to the addition of two “infinite” numbers ±INFINITY and the “NaN” (not a
number).

For example, addition behaves in the following way (in double
precision):

– 1E308 + 1E308 = INFINITY, because the largest finite number which
can be represented is less than 2E308;

– INFINITY + x = INFINITY, for any number x greater than –
INFINITY;

– INFINITY + (– INFINITY) = NaN;
– NaN + x = NaN, for any object x (number or not).

This requirement to continue to calculate whatever happens is impossible
to understand for embedded critical software; however, it is obviously
required in scientific calculation. When we ask the tools Matlab or Octave to
find the minimum of the fun function around x0 “x = fminsearch(fun,x0)”,
we do not wish the search to be interrupted for the reason that fun has an
asymptote or behaves chaotically around x0.

For proof, as early as 1938 and 1941, Konrad Zuse’s programmable
calculators Z1 and Z3 managed overflows without interruption by using the
special values ±INFINITY (however, the calculators did not yet have the
NaN: INFINITY – INFINITY stopped the machine: see [ROJ 97]).

We must, however, remain prudent. That a “normal” result has been
obtained does not necessarily mean that everything has gone well. In fact,
INFINITYs and NaNs are destroyed by comparisons. Here are a few
examples in the C language:

– The evaluation of the predicate “+INFINITY ≥ 0.0” must in absolute
terms either halt execution (this is the safe method) or give a Boolean: by
default, we obtain a Boolean (TRUE, as it happens); therefore, we forget that
we have passed through the stage INFINITY.

– More difficult to handle, but in fact identical, “fmin(+INFINITY, 0.0)”
equals 0.0.

408 Formal Methods Applied to Complex Systems

– Also due to going through Booleans, because “+INFINITY ≥
+INFINITY” is evaluated as TRUE, the expression C “2*1E308 ≥
3*1E308 ? 1.0: 2.0” yields 1.0, whereas the result in real numbers is 2.024.

To work against this covering up of an anomaly, when an operation
generates an infinity or a NaN, a “sticky” bit is placed at 1 in a state register
(“sticky” means that it is not returned to 0 by the operations that follow). The
consultation of sticky bits is the only way to be sure that there has not been a
problem.

Finally, obtaining a +INFINITY does not mean that the “real” result is a
large positive number: “(2*1E308 – 1.5E308) –1.5E308” yields +INFINITY,
even though the result in real numbers is –1E308. Therefore, no certain
information can be drawn from an INFINITY. This “safety of the
calculation” aspect is further developed in the appendix.

13.7. Reasons underlying extension to floating-point numbers

13.7.1. Overview

Considering the discussion above, we clearly cannot speak of floating-
point numbers without the support of real numbers.

More precisely, we maintain that real numbers have a role to play for two
different purposes:

– they allow us to handle floating-point numbers: they thus have a role to
play within the properties of a B model (invariants, pre-conditions, etc.) and
within abstract objects;

– given the complexity of floating-point properties (a determinant of a
rotation matrix is “nearly” equal to 1, etc.), given the complexity of the proof
of these properties (modeling of the rounded value), modeling in real
numbers will be easier to write, check and prove: as far as we see it, they
may well belong to the concrete objects of a B model.

However, this second role naturally begs the question: “what does this
prove?” In fact, a proven “implementation in real numbers” can give rise, in

24 If the careful reader wishes to check this with gcc on a PC, it is important to establish
IEEE mode with the options “-mfpmath=sse –msse2”.

B Extended to Floating-Point Numbers 409

real life, to the evaluation of 1/0 or √- ε. We will return to this topic in the
conclusion, section 13.9.

13.7.2. Real numbers

We thus add a new set called REAL to the B language, with literal
numbers in decimal and hexadecimal notation and with arithmetic and
comparison operations that make it into an ordered field. The only issue
which needs to be addressed is the relationship between REAL and
INTEGER: in ACSL, for example, integers are included in real numbers.

For B, we make the opposite choice, for the following reasons:

– it is necessary to ensure ascending compatibility with existing projects.
However, a certain number of current rules are false when they are applied
in real numbers;

– in practice, as we have seen previously, the two worlds are quite well
segregated: conversions are rare.

REAL is thus a new basic type, and is far removed from INTEGER. This
implies that it is necessary to provide the formal bridge which ensures that
INTEGER is (isomorphous to) an ordered sub-ring of REAL, and which
allows us to make the following explicit conversions:

– INTEGRAL_REAL is the subset of REAL which contains the integer
values;

– INTEGRAL_PART(r) is the “integer part” function of REAL toward
INTEGRAL_REAL;

– REAL(i) and INTEGER(r) are the conversion functions between
INTEGRAL_REAL and INTEGER.

On the other hand, in order to ensure good legibility of models, it is better
to maintain the traditional syntax of comparisons and arithmetic: a < b, a + b,
… We thus overload the comparison predicates (“>”, “≥”, “<”, “≤”; equality
is already polymorphous) and the operators “+”, “–”, “*”, “**”, “mod”,
“max”, “min”, “SIGMA”, “PI”.

The logic to authorize the overload is to have one of the following two
properties:

410 Formal Methods Applied to Complex Systems

– REAL(i1) o REAL(i2) = i1 o i2, where “o” is a predicate;

– REAL(i1) o REAL(i2) = i1 o i2, where “o” is an operator.

As a result, “/” is not overloaded, because the integer and real number
divisions give different results on the integers: it is replaced by the new infix
operator “rdiv”.

In the same way, “..” is not overloaded, because a real interval is denser
than an integer interval. European notation “[a,b]” and American notation
“(a,b)” are already taken, and it is also necessary to express semi-open
intervals such as [a,b[= [a,b). Therefore, we suggest four new infix
operators “++”, “+-”, “-+”, “—”, with the convention “+”=included and
“–”=excluded ([a,b[is written “a +- b”).

In order to facilitate resolution of the overloading, we require that the real
literal numbers are differentiated from integer literal numbers by a point
(“.”) or an exponent: real zero is written “0.0”, “0e36” or “0p-49”.

Of course, a library defines all the useful functions: √, log, sin, etc.

13.7.3. Concrete floating-point numbers

“Concrete” floating-point numbers are those that are found in silicon (and
by extension in the C source) and that are in line with the IEEE; this being
opposed to “abstract” floating-point numbers, which are those that are found
in the B model and the basis for rules. An embedded application only uses a
small portion of the variants and services provided by the IEEE library.

In order to better meet the needs of critical avionics software, we suggest
the following framework:

– With regard to numbers:

- The application contains only simple floating-point numbers (32 bits,
for example, a motor control) or double floating-point numbers (64 bits, for
example an inertial unit); there is no mixing between these two precision
levels. This simplification is possible due to the generalization of external
64-bit buses and 64-bit floating-point units, which bring the CPU cost of
32-bit and 64-bit floating-point numbers closer together.

B Extended to Floating-Point Numbers 411

- The numbers ±INFINITY and the NaNs are forbidden as functional
values: we cannot mention them. However, because if they appear, it
indicates that there is a problem (software or equipment), we should always
be able to detect this. In a critical system, if they appear, it leads to the
deletion of the task, and if this task is indispensable, it therefore also leads to
the loss of the equipment. To do this, we could use the predicate IEEE
“isFinite” or simulate it with “–MAXFLOAT ≤ x && x ≤ MAXFLOAT”.

– With regard to rounded values:

- The only rounding mode is “to nearest, ties to even”25, which is the
mode at compilation and by default at execution in the C language (the C
library allows this to be changed during execution, for very specific non-
embedded applications).

– With regard to operations:

- From the standard IEEE, we retain only the four arithmetic operations,
the comparisons, the “floor” function (which returns the floating-point
number which has the integer value immediately below or equal: the official
name is “roundToIntegralTowardNegative”) and conversions out of and into
the integers (“convert” and “convertToIntegerTowardNegative”).

- The IEEE “remainder” function is not used (a “modulo” function is
used instead, typically to maintain the angles in the interval [0 2*pi[; it is a
library function and does not need to be “built-in”).

- The IEEE “square root” function is not used, because it is much more
precise than the need, and alignment with the need allows us to make a CPU
gain.

13.7.4. Abstract floating-point numbers

These concrete numbers are modeled in B by a subset of REAL which we
will call FLOAT, with the three following further details:

Of course, – +/-INFINITY and NaNs are not included, because they are
not real, and also because they are not useful: instead of proving “x <

25 We should note that in domains other than onboard software (accounting), other modes of
rounding may be obligatory: see [MUL 10] p. 95. In this particular case, we will use the base
10 and not the base 2.

412 Formal Methods Applied to Complex Systems

INFINITY” or “x <> NaN”, we prove “x ≤ MAXFLOAT”, or, more
generally, we prove that the functions are called in their domain of
definition. This means that the floating-point operators, which are total
functions in reality, become partial functions (with pre-conditions) in the
model.

– The +0 and –0 IEEE (this peculiarity is due to the signed representation
of the mantissa) are both modeled by “0.0”.

– We can consider that “floating-point” literal numbers do not exist: there
are real literal values (which are written in decimal or binary finite form);
only some of these correspond exactly to a floating-point number (for
example, in double, all the integer values on 32 bits are exactly represented).
These are authorized in a context where we expect a floating-point number
(notion needs to be formally defined), the others give rise to a typing error.
This does have an impact on the typing algorithm, which currently only
verifies belonging to the basic types (REAL, INTEGER, BOOL and user
types) and which delegates sub-typing to the proof obligations.

The important point is that FLOAT is a subset of real numbers, which is
not the case for IEEE floating numbers (to find out more about this, see the
appendix). Nevertheless, the evaluation identity demonstration between a B
expression and its translation into C should not be very demanding (if we
evaluate strictly following the standard ANSI C).

As for the rounded value, the partial function ROUND models the
rounded value of REAL toward FLOAT, and the following property should
hold: ROUND([–MAXFLOAT, MAXFLOAT]) = FLOAT.

For predicates and operations, predicates on FLOAT are simply the
restriction to FLOAT of predicates on REAL; therefore, we do not need to
redefine them. On the other hand, for operations, only “max” and “min” are
suitable and are unchanged, because they satisfy the property

f1 o f2 : FLOAT [13.1]

The others behave differently depending on whether they operate on real
or floating-point numbers, and as a result, they need to be renamed:

– “+”, “–”, “*”, “**”, “++”, “+-”, “-+”, “—” are prefixed with a “.”: “.+”,
“.–“, etc.

B Extended to Floating-Point Numbers 413

– “rdiv”, “mod”, “SIGMA”, “PI” must begin with “f”: “fdiv”, “fmod”,
“FSIGMA”, “FPI”.

For example, the specification IEEE of the addition is written:

f1 .+ f2 = ROUND(f1 + f2) [13.2]

13.8. Returning to the useful properties that need to be proved

If we were to finish with floating-point numbers, we would run the risk of
imparting a false impression that the situation has been mastered: the real
problem is with the properties that need to be verified. For this reason, we
will discuss them further.

13.8.1. In avionics, specifications are complex

We have seen, above, how an asymmetrical COM/MON architecture
makes it possible to naturally express the security properties on MON in the
form of invariants:

– on the ground, an occupied section of the track must be followed by a
free section, protected by a red light, etc.

– onboard, the distance before the next stopping point must be compatible
with the deceleration guaranteed by emergency braking, the doors must be
locked above a certain speed except during emergency braking, etc.

The invariant is an ideal means of specification in terms of abstraction,
because it allows us to say almost nothing about the evolution of the state of
the system.

On a fail-operational system, the invariants are much less natural,
because safety is synonymous with availability. It is true that we have seen
how, on a motor control, it is technically possible to formalize a simplified
specification. However, for an INS, the simplification is not at all obvious.
Let us take the function “integration of the attitude” (attitude is the
inclination with respect to the horizontal plane, or more generally,
orientation in space), the only simplification which comes to mind is to place
oneself on a flat Earth which does not turn, this gives:

414 Formal Methods Applied to Complex Systems

– “the attitude in relation to the initial position is the integral of the
elementary rotations detected by the gyroscopes since initialization”.

Of course, this cannot be directly expressed in B; therefore, a stage of
informal refinement brings us back to a unique execution of the function:

– “at initialization, the attitude is the identity rotation”;

– “at each cycle, the attitude is multiplied by the elementary rotation
detected by the gyroscopes”.

This is an evolution property, and the only invariant that we can extract
from it is

– “the attitude is a rotation”

which is already a complex property, especially when it is expressed in
floating-point numbers. These invariants are generally sufficient to prove the
pre-conditions of low-level procedures, and therefore to prove that the
execution will take place without incident. However, they are insufficient for
expressing the desired functionality.

If this example taken from an INS seems too complicated or
insufficiently representative of the “average” avionics algorithm, it is enough
to take a low-pass filter: the two obvious specifications are:

– at the one end, an exact transfer function is specified (no abstraction);

– at the other end, it is sufficient to type the output.

Finding an intermediary and useful specification is less straightforward
(these do exist: for example the behavior on a constant input).

13.8.2. Can vector data be abstracted?

Let us return to the INS and the invariant: “the attitude is a rotation”.
This makes another problem appear: it is not easy to abstract this type of
data. We could also refer to this as linear application of R3 in R3, which
preserves the norm and the orientation, but this would not necessarily help
simplify the specification. However, it is the case that, at least for a part of
railway applications, the refinement of data is a fundamental aspect for
having specification at a useful level of abstraction.

B Extended to Floating-Point Numbers 415

13.8.3. The gap between algorithmic specifications and pre-conditions of
leaf procedures

Also in an INS, at the bottom of the call graph, we find the operations
“scalar_product”, “matrix_vector_product”, “matri_matrix_product”, etc.
These operations are sums of products, which are partial functions in
FLOAT; therefore, there are pre-conditions. Depending on the context, this
may raise different issues.

First context: kinematic calculations. In order to simplify the operation,
we imagine that we are working not in 3D but in 2D, and therefore we are
able to represent the rotations using complex numbers.

The operation “c complex_product (a,b)” should have a pre-condition
which ensures that a’r*b’r-a’i*b’i and a’r*b’i+a’i*b’r are correctly
evaluated. The simplest way of achieving this is to require that for a and b:

max(|x’r|, |x’i|) < sqrt(MAXFLOAT / 2) [13.3]

The term on the left is called the norm l∞ or “Chebyshev’s”, written as

||x||∞ (see [HIG 02]). To demonstrate the pre-condition within the calling
procedure, we use the fact that

– the rotations are (Euclidean) norm 1 complexes: ||x||2 = 1 (in R, not in
FLOAT);

– the Euclidean norm is greater than or equal to the infinite norm: ||x||2 ≥

||x||∞ (in R, but also in FLOAT).

This last theorem cannot be demonstrated immediately (and thus will
enrich the basis of rules).

Also, in order to prove the invariant that “the attitude has 1 as its norm”,
we need the theorem “the norm of the product is equal to the product of the
norms”, which is similar in complexity to the preceding theorem (and is only
valid in R).

416 Formal Methods Applied to Complex Systems

13.8.4. Integrators and the formalization of the system boundaries

Second context: Kalman filter. The state covariance matrix, “P”, evolves
at each propagation cycle in accordance with the formula:

P := Φ * P * ΦT + Q [13.4]

where Φ represents the evolution of the system and Q the uncertainty of the
modeling. Here, this raises not only the issue of mathematic formalization
(in particular, which matrix norm should be chosen for the product?) but also
the physical formalization: what is the dynamics of Φ and of P?

The problem is that Φ and P are a priori unbounded integrators (as
opposed to attitude, which is also an integrator, but is limited to the space of
the rotations):

– Φ is the integral in the wider sense of movement, and it is limited
because the system moves in a limited space (around earth, at a limited
altitude) at limited speeds;

– P is the integral in the wider sense of measurement and modeling
errors, and it is limited in function of the mission time, which it is therefore
necessary to limit.

These limits are currently determined by an informal system analysis, and
then used by the software team to test robustness. In the future, this informal
system analysis should be integrated into the formal specification. This is
probably the greatest challenge which awaits us.

To summarize, in addition to the three reasons identified in section 13.4,
avionics has three further reasons to distrust the strong railway TRL of B:

– the abstraction of data may not apply to “signal treatment”-type
algorithms;

– the formalization of these algorithms will lead us to complex
mathematics;

– it will probably be necessary to formalize the part of the system
analysis which determines the dynamics of computerized objects.

B Extended to Floating-Point Numbers 417

13.9. Conclusion

Currently, in the railway sector, the economic balance between test and
proof is neutral: it has not been proven that B reduces costs, but it clearly
reduces technical risk and increases confidence levels. In the future, in
avionics, in order to maintain this balance, the introduction of formal
methods must be sufficiently prepared, beginning with projects of limited
complexity, and gradually increasing this complexity. We have identified six
potential stumbling blocks, and the complexity of floating-point numbers in
relation to real numbers or integers is far from the most serious of these: the
complexity of specifications and algorithms is the difficulty that we really
need to bear in mind.

This is not to say that the complexity introduced by floating-point
numbers can be neglected, even temporarily. We believe that a proof in real
numbers, even if it is not a priori usable in a DO-178 certification, lends
significant technical credit, and that then the transition to floating-point
numbers can be carried out “in delta” with tools specialized in numeric
precision, such as Fluctuat (developed by the CEA).

In order to make an on-the-ground assessment of this additional
complexity brought about by floating-point numbers and the possibility of an
approach in delta, Sagem has asked Clearsy26 to create an AtelierB prototype
which would implement a part of the written specification expressed in
section 13.7 (see [BUR 12]).

A final point which has not been addressed is that AtelierB currently
generates code. It is thus considered by the DO-178 to be a “development
tool” which can introduce bugs, and is thus subject to a very demanding
qualification process. Therefore, before any industrial use, it is essential to
ensure that the code is an input into the Atelier (and not an output from it;
for example, by translating it into B0). If this is the case, then the Atelier
may be categorized as a “verification tool”.

I would like to thank Philippe Baufreton, an expert from Sagem’s
Division Safran Electronics, for his detailed and constructive feedback on
this chapter, and for sharing his DO-178 expertise [ARI 92, ARI 12].

26 To find out more about Clearsy and AtelierB, see http://www.clearsy.com/.

418 Formal Methods Applied to Complex Systems

13.10. Appendix: the confusion between overflow, infinity and illegal
parameters

13.10.1. Presentation of the issue

We have seen above that the value “infinity” appeared right at the
beginnings of information technology. However, it did not immediately
become widespread. In the 1950s, calculators treated overflows and illegal
parameters using exceptions and sticky bits, and the results were
insignificant (for example, an overflow gives rise to a “truncated” exponent,
and a 1/0 leaves the registers as they were at the input of the division).

Completion by the concept of NaN, making it possible to have total
functions, only appeared for the first time (as far as we are aware) in 1963, in
the floating-point arithmetic of CDC 6600, under the name “INDEFINITE”.
Table 13.1 describes the associated addition table, and for the four basic
operations, the behavior of INFINITY and INDEFINITE is identical to the
IEEE (0*INF = 0/0 = NaN, see [THO 70]).

Xk
W +∞ −∞ ±IND

Xj W W +∞ −∞ IND
+∞ +∞ +∞ IND IND
−∞ −∞ IND −∞ IND
±IND IND IND IND IND

Table 13.1. Addition table

The aim of this appendix is to show why these calculation rules are not as
“safe” as they might be, and that if they may seem natural from the
perspective of numerical analysis (which was the major preoccupation of the
years 1950–1980), they are not natural from the perspective of formal
semantics. This is also why the B floating-point numbers suggested do not
contain these objects, and we think that it is necessary to be very careful if it
is intended to extend the model.

B Extended to Floating-Point Numbers 419

13.10.2. Confusion between overflow and infinity

An addition, subtraction or multiplication generates an “infinity” from
two normal arguments if the result overflows: INFINITY thus represents a
(too) large number in the interval]MAXFLOAT, ∞[.

However, according to the IEEE: “INFINITY – x = INFINITY”, for any
finite x. If

– the first INFINITY comes from MAXFLOAT+1;

– and if x is 2;

– then INFINITY – x represents MAXFLOAT–1. This number is normal
and should not be represented by INFINITY.

This first peculiarity is due to the fact that as regards this rule
“INFINITY – x = INFINITY”, the IEEE interprets INFINITY as the “true
infinity” ∞: we could say that IEEE floating-point numbers are not an
abstraction of the real numbers R but of the “extended” real numbers
R ∪ {+∞,–∞}.

This explains the behavior remarked upon in section 13.6.3: “(2*1E308 –
1.5E308) –1.5E308”.

If we could change the definition of floating-point numbers, we could
easily ensure “safe” behavior, by performing what is known as “interval
arithmetic” and “abstraction”:

– We forget NaN, and replace INFINITY with BIG, which represents any
number in]MAXFLOAT, ∞[(and especially not ∞).

– What is BIG+BIG? In terms of interval, it is]2*MAXFLOAT, ∞[, but
we are not going to add to this all of the intervals of this type: they are
contained in BIG, thus we decide that BIG + BIG = BIG.

– What is BIG + x, x finite? In terms of interval, it is]0, ∞[. Let us call
this POS. We could add it, but we decide to proceed simply by rather adding
ALL =]-∞, ∞[: POS is contained in ALL, thus we decide that for finite x,
BIG + x = ALL.

420 Formal Methods Applied to Complex Systems

The new system of numbers is now complete: we naturally have BIG +
(–BIG) = ALL and for any x, ALL + x = ALL. We can even refine a little,
with the following (symmetrical) addition in Table 13.2.

The subtraction table is similar (but more “anti-symmetrical”), and with
this system, which is not more complicated than the IEEE, “(BIG – 1.5E308)
–1.5E308” is evaluated in ALL (which is obviously a safe result, whereas
the IEEE goes a bit too far forward with +INFINITY).

+ N BIG –BIG ALL
M If there is no overflow. n + m

Otherwise BIG or –BIG
If m ≥ 0, BIG
If not, ALL

If m ≤ 0, -BIG
If not, ALL

ALL

BIG . BIG ALL ALL
–
BIG

. . –BIG ALL

ALL . . . ALL

Table 13.2. New addition table

This system extends without problem to total functions, such as absolute
value, exponential, cosinus, etc. Here, for example, is a possible
multiplication table (also symmetrical):

* N BIG –BIG ALL
M If there is no overflow, n

* m
Otherwise BIG or –BIG

If m ≥ 1, BIG
If m ≤ –1, –
BIG
If m == 0, 0
If not, ALL

If m ≥ 1, –BIG
If m ≤ –1, BIG
If m == 0, 0
If not, ALL

If m == 0, 0
If not, ALL

BIG . BIG –BIG ALL
–BIG . . BIG ALL
ALL . . . ALL

Table 13.3. Multiplication table

The fundamental difference between this and the IEEE is: 0*BIG =
0*ALL = 0.

We can simplify the system by bringing together BIG and –BIG in a
BIG_IN_ABSOLUTE_VALUE, and we can further simplify by only
retaining ALL: this is the minimal system of “safe” arithmetic (on total
functions).

B Extended to Floating-Point Numbers 421

Conversely, we can make the system more complex, for various different
reasons: for example, we can define a system which tells us that
“(2*1E308 – 1.5E308) –1.5E308” is in the interval [–MAXFLOAT,
MAXFLOAT], or even in the interval [–MAXFLOAT, –MAXFLOAT/2[,
etc. This search for a set of intervals that are not too complex, but are
informative, is the crux of “abstract interpretation” [BOU 11a], technology
which is at the heart of the tools Astrée and POLYSPACE.

The fundamental point is that these systems are abstractions of R: the
“infinity” does not exist.

13.10.3. Confusion between infinity and illegal parameters

The systems above cannot handle partial functions: the manipulated
objects are either numbers or intervals of numbers. Therefore, when the
program requires the evaluation of √–1, we do not know how to answer this,
because no real number squared gives –1. The solution to this is to introduce
the empty set ∅ as a value, which we will call NONE (in contrast to ALL),
and which means that because we have asked a stupid question (√–1), there
will be no answer.

NONE may be classed as “not-a-number” and it satisfies the same rule as
NaN: as soon as it appears as one of the parameters of an operation, it is also
the result. However, it only signifies the call of a function outside of its
domain of definition, and not a result which may exist but would be
“indefinite”:

– INFINITY – INFINITY = NaN becomes BIG – BIG = ALL, and
NONE is not involved;

– 0 * INFINITY = NaN becomes 0 * BIG = 0, and NONE is not
involved;

– 1/0 = INFINITY becomes 1/0 = NONE, because there is no solution to
the equation “1 = 0 * x”;

– 0/0 = NaN becomes 0/0 = NONE, because there is more than one
solution to the equation “0 = 0 * x” .

422 Formal Methods Applied to Complex Systems

This last point is important: “/” is a partial function of R2 in R. Therefore,
it must associate a unique value with any couple from its domain of
definition, and (0,0) cannot be within its domain of definition.

Another point: infinity still has no place in this system.

Even if, for a mathematician, the equation “1/0 = INFINITY” might seem
reasonable, it is important to bear in mind that the IEEE has “+0” and “–0”,
and that we also have “1/–0 = –INFINITY”. Because “+0 = –0”, therefore
“+INFINITY = –INFINITY”, etc. Or therefore the axiom “x = y => f(x) =
f(y)” must be abandoned, and in this case it is not inconsistency that matters,
but incompleteness.

To summarize, we have removed the infinity of INFINITY to obtain BIG,
and we have distributed NaN between NONE and ALL. The system { +/-
BIG, ALL, NONE } is only a little more complicated than the IEEE,
completely codable in the IEEE binary representation, and if we could
rewrite history and add a logician to the IEEE standardization group begun
in 1977, it is likely that INFINITYs and other NaNs would not have the
same definition (in fact, do they actually really have one?), nor the same
behavior.

13.11. Glossary

ACSL ANSI/ISO C specification language

CENELEC27Comité Européen de Normalisation ELECtrotechnique –
European Committee for Electrotechnical Standardization

COM Command

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

DAL Development Assurance Level

FADEC Full Authority Digital Engine Control

GPS Global Positioning System

27 For information, see http://www.cenelec.eu/.

B Extended to Floating-Point Numbers 423

IEC28 International Electrotechnical Commission

INS Inertial Navigation System

MON Monitor

NaN Not a Number

PA Pilote Automatique – autopilot

RER Réseau Express Régional – regional express network

SACEM Système d’Aide à la Conduite, à l’Exploitation et à la
Maintenance – assisted driving, operation and maintenance
system

SAGA Spécification d’Applications et Génération Automatisée –
specification of applications and automatic generation

SAO Spécification Assistée par Ordinateur – computer-assisted
specification

SIL Safety Integrity Level

13.12. Bibliography

[ABR 84] ABRIAL J.-R., “The mathematical construction of a program”, Science of
Computer Programming, vol. 4, pp. 45–86, 1984.

[ABR 96] ABRIAL J.-R., The B Book – Assigning Programs to Meanings, Cambridge
University Press, Cambridge, August 1996.

[ARI 92] ARINC, Software considerations in airborne systems and equipment
certification, DO 178B and l’EUROCAE, no. ED12, ed. B, 1992.

[ARI 12] ARINC, Software considerations in airborne systems and equipment
certification, DO 178C, RTCA, ed. C, 2012.

[ARP 96] ARP 4754 Certification considerations for highly-integrated or complex
systems, publié par le SAE, et par l’EUROCAE, no. ED79, 1996.

[AYA 10] AYAD A., MARCHÉ C., “Multi-prover verification of floating-point
programs”, 5th International Joint Conference on Automated Reasoning, 2010;
see also the latest specification ACSL at http://frama-c.com/download.html.

28 See http://www.iec.ch/.

424 Formal Methods Applied to Complex Systems

[BAC 81] BACK R.-J., “On correct refinement of programs”, Journal of Computer
and System Sciences, vol. 23, pp. 49–68, 1981.

[BOL 07] BOLDO S., FILLIÂTRE J.-C., “Formal verification of floating-point
programs”, 18th IEEE International Symposium on Computer Arithmetic,
Montpellier, France, pp. 187–194, June 2007.

[BOU 11a] BOULANGER J.-L. (ed.), Utilisations industrielles des techniques
formelles – interprétation abstraite, Hermes-Lavoisier, 2011.

[BOU 11b] BOULANGER J.-L., Sécurisation des architectures informatiques
industrielles, Hermes-Lavoisier, 2011.

[BOU 11c] BOULANGER J.-L., Utilisation industrielles des techniques formelles –
interprétation abstraite, Hermes-Lavoisier, 2011.

[BOU 12] BOULANGER J.-L., Outils de mise en œuvre industrielle des techniques
formelles, Hermes-Lavoisier, 2012.

[BUR 12] BURDY L., DUFOUR J.-L., LECOMTE T., The B Method Takes up Floating-
Point Numbers, ERTS, Toulouse, 2012.

[CEN 00] CENELEC, EN 50126, Applications Ferroviaires. Spécification et
démonstration de la fiabilité, de la disponibilité, de la maintenabilité et de la
sécurité (FMDS), January 2000.

[CEN 01] CENELEC, EN 50128, Railway applications – communications,
signalling and processing systems – software for railway control and protection
systems, May 2001.

[CEN 11] CENELEC, EN 50128, Railway applications – communications,
signalling and processing systems – software for railway control and protection
systems, January 2011.

[CHA 89] CHAPRONT P., “Christian Galivel, results of a safety software validation:
SACEM”, Proceedings of the IFAC CCCT’89 Symposium (Control, Computers,
Communication in Transportation), 1989.

[COU 00] COUSOT P.. “Interprétation abstraite”, Technique et Science Informatique,
Hermès, Paris, vol. 19, no. 1–3, pp. 155–164, January 2000.

[DEH 94] DEHBONEI B., MEJIA F., “Formal methods in the railways signalling
industry”, FME '94: Industrial Benefit of Formal Methods, LNCS, vol. 873,
pp. 26–34, 1994.

[DEL 07] DELMAS D., SOUYRIS J., “Astrée: from research to industry”, 14th
International Static Analysis Symposium, LNCS, vol. 4634, pp. 437–451, 2007.

[DUF 05] DUFOUR J.-L., “Automotive safety concepts: 10-9/h for less than 100€ a
piece”, 6th AAET Conference, 2005.

B Extended to Floating-Point Numbers 425

[FOR 89] FORIN P., “Vital coded microprocessor principles and application for
various transit systems”, Proceedings of the IFAC CCCT’89 Symposium
(Control, Computers, Communication in Transportation), 1989.

[GEO 90] GEORGES J.-P., “Principes et fonctionnement du Système d’Aide à la
Conduite, à l’Exploitation et à la Maintenance (SACEM), application à la ligne a
du RER”, Revue Générale des Chemins de fer, vol. 6, June 1990.

[GUI 90] GUIHO G., HENNEBERT C., “SACEM software validation”, Proceedings of
the International Conference on Software Engineering (ICSE’90), 1990.

[HIG 02] HIGHAM N.J., Accuracy and Stability of Numerical Algorithms, 2nd ed.,
Society for Industrial & Applied Mathematics, 2002.

[HOA 69] HOARE C.A.R., “An axiomatic basis for computer programming”,
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 583, 1969.

[IEC 98] IEC 61508: Sécurité fonctionnelle des systèmes électriques électroniques
programmables relatifs à la sécurité, International Standard, 1998.

[IEE 85] IEEE 754-1985 and IEEE 754-2008, IEEE standard for (binary) floating-
point arithmetic.

[MON 08] MONNIAUX D., “The pitfalls of verifying floating-point computations”,
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 30,
no. 3, May 2008.

[MOR 90] MORGAN C., Programming from Specifications, Prentice Hall, 1990.

[MUL 10] MULLER J.-M., and coll., Handbook of Floating-Point Arithmetic,
Birkhaüser, 2010.

[PAX 91] PAXSON V., A program for testing IEEE decimal-binary conversion, May
1991.

[ROJ 97] ROJAS R., “Konrad Zuse’s legacy: the architecture of the Z1 and Z3”,
IEEE Annals of the History of Computing, vol. 19, no. 2, 1997.

[SOU 09] SOURYIS J., WIELS V., DELMAS D., et al., “Formal verification of avionics
software products”, Formal Methods, LNCS 5850, 2009.

[SPI 89] SPIVEY J.M., The Z Notation- A Reference Manual, Prentice Hall, 1989.

[THO 70] THORNTON J.E., Design of a Computer: The Control Data 6600, Scott
Foresman and Company, 1970.

14

From Animation to Data Validation: The
ProB Constraint Solver 10 Years On

We present our 10 years of experience in developing and applying the PROB validation tool.
Initially, the tool provided animation and model checking capabilities for the B-method. Over the
years, it has been extended to other formal specification languages and provides various
constraint-based validation techniques. The tool itself was developed in SICStus Prolog, and
makes use of the finite domain library together with newly developed constraint solvers for
Booleans, sets, relations and sequences. The various solvers are linked via reification and
Prolog co-routines. The overall challenge of PROB is to solve constraints in full predicate logic
with arithmetic, set theory and higher-order relations and functions for safety critical applications.
In addition to the tool development, we also provide details about various industrial applications
of the tool as well as about our efforts in qualifying the tool for usage in safety critical contexts.
Finally, we also describe our experiences in applying alternate approaches, such as SAT or SMT.

14.1. The problem

The B-method [ABR 96] is a formal method for specifying safety critical
systems, reasoning about those systems and generating code that is correct by
construction. The first industrial usage of B was the development of the
software for the fully automatic driverless Line 14 of the Paris Métro, also
called Météor (Metro est-ouest rapide) [BEH 99]. This was a great success;
quoting [SIE 09]: “Since the commissioning of Line 14 in Paris in 1998, not a
single malfunction has been noted in the software developed using this
principle”. Since then, many other train control systems have been developed
and installed worldwide [DOL 03, BAD 05, ESS 07].

Chapter written by Michael LEUSCHEL, Jens BENDISPOSTO, Ivo DOBRIKOV,
Sebastian KRINGS and Daniel PLAGGE.

428 Formal Methods Applied to Complex Systems

Initially, the B-method was supported by two tools, BToolkit [BCO 99] and
Atelier B [CLE 09], which provided mainly both automatic and interactive
proving environments, as well as code generators. To be able to apply the code
generators, one has to refine the initial high-level specifications into lower-level
B (called B0). This process is illustrated in Figure 14.1. Every refinement step
engenders proof obligations; if all proof obligations are discharged one has
the guarantee that the final B0 specification correctly implements the initial
high-level specification.1

B Machine(s)

INVARIANT
Consistency
Checking

B Refinement

INVARIANT

B0 Refinement

INVARIANT
Executable

Code

Refinement
Checking

Code
Generation

Refinement
Checking

Figure 14.1. B Development process

14.1.1. Animation for B

In this “correct-by-construction” approach, it is of course vital that the
initial high-level specification (at the top of Figure. 14.1) correctly covers the
intended application. To some extent, this can be ensured by providing

1 The correctness of the code generation phase is of course also critical; here the industrial
users typically use two different, independently developed code generators, targeting different
hardware platforms which are both in operation in the final system.

From Animation to Data Validation: The ProB Constraint Solver 10 Years On 429

invariants and assertions, but it quickly became obvious that additional
validation of the high-level specification is important. In 2003, only very
limited additional validation was available. The BToolkit provided an
interactive animator with some strong limitations. Basically, the user had to
provide values for parameters and existentially quantified variables, the
validity of which was checked by the BToolkit prover. This approach was
justified by the undecidability of the B language, but was tedious for the user
and prevented automated validation.

The PROB validation tool was developed to fill this gap in the tooling
landscape. The first problem that PROB set out to solve was to provide
automatic animation, freeing up the user from providing values for
parameters and quantified variables. This was to be achieved by developing
the animator in logic and constraint logic programming.

14.1.1.1. Challenge

Indeed, the major challenge of animating or validating B is the
expressiveness of its underlying language. B is based on predicate logic,
augmented with arithmetic (over integers), (typed) set theory, as well as
operators for relations, functions and sequences. As such, B provides a very
expressive foundation which is familiar to many mathematicians and
computer scientists. For example, Fermat’s Last Theorem can be written in B
as follows:

∀n.(n > 2 ⇒ ¬∃a, b, c . an + bn = cn).

In B’s ASCII syntax (AMN), this is written as follows:

!n.(n>2 => not(\#(a,b,c).(a{*}{*}n
+ b{*}{*}n = c{*}{*}n)))

A more typical example in formal specifications would be the integer square
root function, which can be expressed in B as follows:

isqrt = λn.(n ≥ 0 | max({i | i2 ≤ n})).

As another example, let us express the fact that two graphs g1, g2 are
isomorphic in B:

430 Formal Methods Applied to Complex Systems

∃p . p ∈ 1..n�� 1..n ∧ ∀i.(i ∈ 1..n ⇒ p[g1[{i}]] = g2[{p(i)}])
where, 1..n �� 1..n is the set of all permutations between the set of integers
1..n and itself, and gk[{x}] stands for the relational image of gk for {x}, i.e.
the set of all successor nodes of x in the graph gk. This predicate is also more
typical of the kind of predicates that appear in high-level B specifications. In
B, these predicates can appear as invariants over variables, assertions, guards
of operations, conditions of conditional statements and many more.

Due to arithmetic and the inclusion of higher-order functions, the
satisfiability of B formulas is obviously undecidable. As such, animation is
also undecidable, as operation pre-conditions or guards in high-level models
can be arbitrarily complex. We cannot expect to be able to determine the truth
value of Fermat’s Last Theorem automatically, but PROB is capable of
“solving” the graph isomorphism predicate for reasonably sized graphs,2
without the user providing a value for the permutation p. It is also capable of
computing the integer square root function above, e.g. determining that
isqrt(101) = 10 or isqrt(1234567890) = 35136.3 The tool has now also
been extended to animate Z and TLA+, whose logical foundations share a
large common basis.

14.1.2. Model checking B

Once implemented, the automatic animation capabilities also enabled a
second kind of validation, namely systematically exploring the state space of
a B specification, i.e. model checking. Initially [LEU 03], PROB allowed us to
examine the state space of a B model for invariant violations, deadlocks and
assertion violations. Later [PLA 10], this was extended to check temporal
(LTL and CTL) properties of the high-level models. Model checking provides
additional guarantees of correct behavior of a high-level specification. In
addition, the combination of model checking and constraint solving can
provide a more elegant approach in specifying and solving certain problems
than either technique alone.

2 E.g. 0.2 s for solving a “hard” isomorphism between two graphs with 30 nodes and 90 edges
or 40 s for determining that two random graphs with 1,000 nodes and 1,500 edges are not
isomorphic.
3 This is one of the specifications which is given as an example of a non-executable specification
in [HAY 89].

From Animation to Data Validation: The ProB Constraint Solver 10 Years On 431

14.1.2.1. Challenge

From a constraint solving perspective, the challenges are very similar to
those for animation. One additional complication is, however, that we now
need to find all solutions to the constraints. This is important for ensuring
that all possible executions of a B model are analyzed, and that solutions are
normalized (to avoid duplicate states in the state space). Also, if we want to
deal with large state spaces we need state space reduction techniques (e.g.
detecting symmetries), fast animation steps and optimized memory usage.

14.1.3. Data validation

In order to avoid multiple developments, a safety critical program is often
made from a generic B-model and data parameters that are specific to a
particular deployment. In other words, the initial B machine in Figure 14.1 is
very generic and requires various parameters to be provided at runtime. For
example, in railway systems, these parameters would describe the tracks,
switches, traffic lights, electrical connections and possible routes. Adapting
the data parameters is also used to “tune” the system. The proofs of the
generic B-model rely on assumptions about the data parameters, e.g.
assumptions about the topology of the track. It is vital that these assumptions
are checked when the system is put in place, as well as whenever the system
is adapted (e.g. due to line extension or addition or removal of certain track
sections in a railway system).

Before 2009, this validation of the parameters was basically conducted by
using automated provers. Siemens, for example, was using Atelier B along
with custom proof rules and tactics, dedicated to dealing with larger data values
[BOI 00, BOI 02].4 This approach had two major shortcomings. First, if the
proof of a property fails, the feedback of the prover is not very useful (and it
may be unclear whether there actually is a problem with the data or just with
the power of the prover). Second, the data parameters became so large that the
provers ran out of memory, even with maximum memory allocated. This led
us [LEU 11] to apply PROB’s constraint solving engine to validate those data
properties automatically. This turned out to be very successful: full validation

4 Standard provers have not been developed with large, concrete values in mind. For example,
many proof rules will duplicate parts of the goal to be proven. This frequently leads to out-of-
memory problems when the duplicated parts contain large constants.

432 Formal Methods Applied to Complex Systems

was now achieved in minutes rather than weeks or months. The tool is now
used by various companies for similar data validation tasks, sometimes even
in contexts where B itself is not used for the system development process. In
those cases, the underlying language of B turns out to be very expressive and
efficient to cleanly encode a large class of data properties.

14.1.3.1. Challenge

From a constraint solving perspective, the challenge here is clearly to deal
with big data: one has relations containing tens of thousands or hundreds of
thousands of elements and these should not per se grind the constraint solving
engine to a halt. Also, numbers tend to be very large (e.g. positions of beacons
expressed in millimeters).

Another challenge is validation of the output of the tool itself. In safety
critical environments, we need to provide a case of why a validation tool itself
can be trusted. Many standards, such as the EN 50128 in the railway domain,
provide criteria that have to be met for a tool to be usable for certain
applications. For PROB this meant the development of a rigorous testing and
validation process, along with the generation of a validation report which is
actively maintained alongside the tool itself.

14.1.4. Constraint-based checking and disproving for B

Over the years, PROB’s constraint solving capabilities have increased
and as such new possibilities for validation have opened up. Some of these
applications use the constraint solver as a complement to the prover:

– check if an invariant of a B machine is inductive, i.e. check if it is possible
to prove the B machine correct by induction. If a counter example is found, we
know that any proof attempt will be futile.

– check if an invariant of a B machine ensures that no deadlock can appear
[HAL 11].

– check whether the refinement proof obligations are provable or not.

These applications are complementary to proof; the main difference is that
counter examples can be provided which can be inspected within the
animation interface. In addition, many other applications arise: test-case
generation, understanding certain aspects of a B model, such as control flow.

From Animation to Data Validation: The ProB Constraint Solver 10 Years On 433

14.1.4.1. Challenge

The main challenge for this application is to deal with complicated
constraints and possibly very big constraints (as is the case for deadlock
checking [HAL 11]). In addition, we want to try and provide
counter-examples even if some of the variables are not bounded to a finite
domain. Finally, we want to detect when the result of the constraint solver
(i.e. the fact that no counter example was found) can be used as a formal
proof.

14.1.5. Summary

In essence, the challenge and ultimate goal of PROB is to solve constraints:

– for an undecidable formal method with existential and universal
quantification, higher-order functions and relations, unbounded variables;

– very large data;

– infinite functions to be dealt with symbolically;

– in a reliable way, e.g. so as to satisfy standard EN50128;

– fast solving, with minimal overhead and memory consumption;

– being able to find all solutions for predicates;

– dealing with big constraints and complicated constraints.

14.2. Choice of implementation technology

14.2.1. What was used before?

14.2.1.1. Proof

Before the development of PROB, the validation of B models relied solely
on the B provers. For animation, the user had to provide values for quantified
variables; the correctness of the values were checked by the prover in
automatic mode. When the prover failed, it was not necessarily clear whether
this was due to the weakness of the prover or because the user had chosen
wrong values. Similarly, data validation relied on automatic proof, along with
custom proof rules.

434 Formal Methods Applied to Complex Systems

All this meant that animation was very tedious for the user and no
automated validation, such as model checking, (section 14.1.2) was possible.
Concerning data validation (section 14.1.3) meant that about a month of work
was necessary to validate new configuration data.

14.2.1.2. Naive enumeration

Tools for other languages, such as the TLC model checker for TLA,
[YU 99] use naive enumeration for solving constraints. These tools can be
very fast when no constraint solving is necessary, but are obviously very bad
at solving constraints and thus bad for animating or model checking
high-level specifications or for constraint-based checking.

The power of using logic programming was realized by several works:
Bowen [BOW 98] developed an animator for Verilog in Prolog, [KIN 01]
pursued a Horn logic approach to encode denotational semantics, [WIN 98]
presents an animator for Z implemented in Mercury. None of these works,
though, used the potential of coroutines or constraint logic programming.

14.2.2. Why was constraint logic programming used?

When moving into the formal methods field and coming from a logic
programming background it quickly become obvious that the existing tools
had severe limitations and that those could be overcome by constraint logic
programming. From within the field of formal methods, there was also the
feeling that certain specifications were inherently not executable [HAY 89].
But when moving from a logic programming group to a formal methods
group (as was the case for the first author) it was obvious that one could do
much better than the state-of-the-art at the time using Prolog and constraint
solving.

Unknown to us at the time (around 2000), another team pursued similar
ideas leading to the CLP-S solver [BOU 02] and the BZTT tool [AMB 02]
based on it. This work also gave rise to a company (Lerios), which
concentrated on model-based testcase generation and later ported the
technology to an imperative programming language. Unfortunately, the
development of BZTT and CLP-S has been halted; the tool is no longer
available.

In this context, we could mention many other works (such as, e.g.
[DEL 01]) which used constraint solving for validation of formal models.

From Animation to Data Validation: The ProB Constraint Solver 10 Years On 435

Another interesting related work is the Setlog [DOV 00] constraint solver.
Compared to PROB, Setlog has powerful unification procedure, but only
deals with sets and has problems dealing with larger sets.5

14.3. Implementation of the PROB constraint solver

14.3.1. Architecture

14.3.1.1. Overview

The PROB kernel can be viewed as a constraint solver for the basic
datatypes of B (and Z) and the various operators on it. It supports Booleans,
integers, user-defined base types, pairs, records and inductively: sets,
relations, functions and sequences. These datatypes and operations are
embedded inside B predicates, which are made up of the usual logical
connectives (∧,∨,⇒,⇔,¬) and typed universal (∀x.P ⇒ Q) and existential
(∃x.P ∧Q) quantification. An overview of the various solvers residing within
the PROB kernel can be seen in Figure 14.2. We explain these parts and their
history in the following sections.

14.3.1.2. Coroutines and determinism

All versions of PROB have been developed using SICStus Prolog. The
initial versions of PROB tried to delay enumeration and give priority to
deterministic computations. This was first implemented using coroutines via
the when metapredicate. More precisely, choice points (such as a predicate
x ∈ {1, 2}) were guarded by a when predicate to ensure that:

– either enough information was available to resolve the choice point
deterministically;

– or the solver has switched to enumeration mode.

Later, most of the uses of when were replaced by the more restricted but
much faster block declarations.

14.3.1.3. Controlling choice points via waitflags

It was identified very quickly that a more fine-grained enumeration was
required, in order to prioritize the choice points once the solver had switched

5 E.g. computing the union of two intervals un(int(1,10),int(2,15),R) takes minutes in
setlog (4.6.17), while computing the B equivalent 1..10 ∪ 2..15 in PROB is instantaneous.

436 Formal Methods Applied to Complex Systems

to enumeration mode. This led to the development of a waitflags library which
stores choice points and their expected number of solutions. The idea was that
whenever the PROB kernel was to create a choice point it would have to:

1) estimate the number of solutions for the choice points;

2) obtain a “waitflag” variable from the library;

3) block on this variable and only execute the choice point once this
variable had been grounded.

Formula ProB Boolean
Predicate Solver

ProB
Integer
Solver

SICStus
CLP(FD)

ProB Base
Sets Solver

ProB Pairs,
Sets,

Relations,
Records
Solver

ProB
Waitflags StoreEnumeration

ProB
Kernel

Figure 14.2. A view of the PROB kernel

The grounding of the waitflags was conducted and explicitly controlled by
the kernel in the enumeration phase.

14.3.1.4. Coping with large datavalues

This scheme was later refined further driven by the requirements of the
data validation application (see section 14.1.3), in particular the requirement
to deal with large integers and large relations. Indeed, initially PROB
represented sets using Prolog lists. This scheme clearly breaks down for
larger sets, and a second representation for fully known sets was introduced.
This representation used the AVL library of SICStus and guaranteed for
instance membership checks with logarithmic complexity (in the size of the
set). It is vital that the PROB kernel uses the AVL representation rather than
the list representation whenever possible. For this, a special priority of 0 was
introduced in the waitflags library: it is used for those operations that are
deterministic and are guaranteed to produce data values in an efficient
representation.

From Animation to Data Validation: The ProB Constraint Solver 10 Years On 437

14.3.1.5. Integrating CLP(FD)

Initially, PROB provided its own support for arithmetic. This was
obviously less efficient than the built-in CLP(FD) library of SICStus Prolog.
However, at the time SICStus discouraged the joint use of coroutines and
CLP(FD). This issue was solved in version 4.1 of SICStus Prolog and we then
started to integrate CLP(FD) into the PROB kernel. After the introduction, a
few more issues were uncovered which led to erroneous results or
segmentation faults when CLP(FD) was used in conjunction with coroutines.
These issues have now been sorted out, and CLP(FD) can now be reliably
used for improved solving of arithmetic constraints. PROB still has the option
of being able to run without CLP(FD), falling back on the more limited
Prolog implementation of arithmetic in the PROB kernel. This can have two
uses: in case a B specification manipulates large numbers the CLP(FD)
library will generate overflow exceptions. (The PROB kernel catches those
exceptions when they occur directly upon posting an arithmetic constraint. In
this case PROB falls back to the Prolog implementation, which uses Prolog’s
arbitrary precision integers. However, this scheme cannot be applied if the
exception occurs later, e.g. due to some instantiation of an unbound variable.)
Also, for low-level B machines, which do not require constraint solving, the
posting of CLP(FD) constraints induces a certain overhead, which can be
avoided by turning CLP(FD) off.

We also investigated using the CLP(B) solver from SICStus Prolog 4.
This, however, was less successful. The solver often had problems with larger
formulas. For example, CLP(B) runs out of memory after about 5 min on the
most complicated SATLIB example in [HOW 10] (flat200-90 with 600
Boolean variables and 2237 Clauses), whereas PROB solves it under 2 s.

14.3.1.6. Linking solvers via reification

Much later, inspired by an industrial case study [HAL 11] requiring
solving very big constraints, we realized the importance of reification as a
way of linking various parts of the PROB kernel. Indeed, propagation of
information from one solver of PROB to another was often suboptimal, which
became apparent in this case study.

CLP(FD) provides reification for certain constraints. For example, one
can post the constraint R #<=> (Y #> 0). This can serve as a way to link
CLP(FD) with another solver:

438 Formal Methods Applied to Complex Systems

– We can block a coroutine on the variable R; this coroutine will be
triggered when the truth value of the test Y #> 0 is known. This way
information propagates from CLP(FD) to the other solver.

– In turn, if this coroutine can decide that Y #> 0 must either be true or
false it can simply set the variable R to either 0 or 1. This way information
propagates the other solver to CLP(FD).

We have provided reification for the arithmetic operators via CLP(FD) and
for the basic set operators of B x ∈ S, x '∈ S, S ⊆ S	, S ⊂ S	, S '⊆ S	,
S '⊂ S	 as well as x = y and x '= y in the PROB kernel itself. The kernel
tries to avoid setting up choice points whenever possible, using reified versions
instead. For example, to compute f(x) with f = {1 $→ 0, 2 $→ 2} we could
reify x = 1 and wait until the result of this test is known. Once it is known,
we can compute the result of f(x).6 This mechanism is used in many places
of the kernel, providing support for operators such as ∪, ∩, ...

14.3.1.7. Challenges

One challenge is that PROB tries to catch well-definedness errors, such as
division by zero, the application of a function outside of its domain or
applying the maximum operator to an empty set. To some extent, this hinders
constraint propagation (e.g. from 10/y = 5 we cannot infer that y = 2 unless
we also know that y '= 0) and makes the implementation of the solver more
complicated.

Another issue is that upon encountering something like x/y = 10 ∧ y = 0,
the PROB kernel cannot directly raise an error; it could be that some other
constraint restricts y to be non-zero. The solution here is to post-pone raising
an error until enumeration is complete. Other technical challenges are related
to graceful treatment of timeouts.

14.3.2. Validation

PROB is being used as a tool of class T2 according to the norm [CEN 11]
for data validation within Alstom and Siemens. A tool of class T2 “supports
the test or verification of the design or executable code, where errors in the

6 Obviously, we would also wait on the output value being known and propagate information
backwards. i.e. once we know that f(x) = 0 we can infer that x = 1.

From Animation to Data Validation: The ProB Constraint Solver 10 Years On 439

tool can fail to reveal defects but cannot directly create errors in the executable
software” [CEN 11, section 3.1.43]. However, we strive for PROB to be also
used as a tool of class T3, i.e. a tool that “generates outputs which can directly
or indirectly contribute to the executable code (including data) of the safety
related system” [CEN 11, section 3.1.44]. To achieve this, a validation report
is being maintained along with extensive testing and validation infrastructure.

14.3.2.1. Testing and continuous integration

PROB contains unit tests, integration and regression tests as well as model
check tests for mathematical laws. All of these tests are run automatically on
our continuous integration platform “Jenkins”.7 When a test fails, an email is
sent automatically to the PROB development team.

14.3.2.2. Self- model check with mathematical laws

With this approach, we use PROB’s model checker to check itself, in
particular the PROB kernel and the B interpreter. The idea is to formulate a
wide variety of mathematical laws and then use the model checker to ensure
that no counterexample to these laws can be found. Definitively, PROB now
checks itself for over 500 mathematical laws. These even uncovered several
bugs in the underlying SICStus Prolog compiler using self model check, e.g.:

– The Prolog findall sometimes dropped a list constructor, which means
that instead of [[]] it sometimes returned []. In terms of B, this meant
that instead of {∅} we received the empty set ∅. This violated some of our
mathematical laws about sets. This bug was reported to SICS, and it was fixed
in SICStus Prolog 4.0.2.

– A bug in the AVL library (notably in the predicate avl_max computing
the maximum element of an AVL-tree) was found and reported to SICS. The
bug was fixed in SICStus Prolog 4.0.5.

14.3.2.3. Test coverage

The above validation techniques are complemented by code coverage
analysis techniques. In particular, we try to ensure that the unit tests and the
self-model checks (section 14.3.2.2) above cover all predicates and clauses of
the PROB kernel.

7 See http://en.wikipedia.org/wiki/Jenkins_(software).

440 Formal Methods Applied to Complex Systems

14.3.2.4. Positive and negative evaluation

For data validation, all properties and assertions are checked twice, both
positively and negatively. Indeed, PROB has two Prolog predicates to evaluate
B predicates: one positive version which will succeed and enumerate
solutions if the predicate is true and the another is a negative version, which
will succeed if the predicate is false and then enumerate solutions to the
negation of the predicate. The reason for the existence of these two Prolog
predicates is that Prolog’s built-in negation is generally unsound and cannot
be used to enumerate solutions in case of failure.

For a formula to be classified as true the positive Prolog predicate must
succeed and the negative Prolog predicate must fail, introducing a certain
amount of redundancy (admittedly with common error modes). In fact, if both
the positive and negative Prolog predicates would succeed for a particular B
predicate then a bug in PROB would have been uncovered. If both fail, then
either the B predicate is undefined or we have again a bug in PROB.

This validation aspect can detect errors in the predicate evaluation parts of
PROB i.e. the treatment of the Boolean connectives ∨, ∧, ⇒, ¬, ⇔,
quantification ∀, ∃, and the various predicate operators such as ∈, '∈, =, '=, <,
... This redundancy can not detect bugs inside expressions (e.g. +, −, ...) or
substitutions (but the other validation aspects mentioned above can).

14.4. Added value of constraint programming

14.4.1. Cost of development

The first version of PROB was made available about 10 years ago. Before
that, various experimental prototypes had been under development since
about 1999. A reasonably large team of researchers has since then helped in
developing, maintaining and improving the tool. Initial usage concentrated on
animation and model checking. The first industrial usage for data validation
started at the end of 2008, and PROB has been used in industry to that effect
since 2009.

14.4.2. User feedback

The animation and model checking capabilities have helped many users
understand and debug their specifications. On many occasions, errors were

From Animation to Data Validation: The ProB Constraint Solver 10 Years On 441

found in proven models. Various other tools and techniques have been built
on top of PROB, leading to over 400 citations of the two main articles about
PROB[LEU 03, LEU 08].

For data validation, the tool has achieved a reduction from one man-month
to several minutes for validating a new railway configuration [LEU 11]. The
tool has also discovered errors that were not previously seen. The PROB tool
is now in relatively widespread use in the railway domain (Siemens, Alstom,
ClearSy, Systerel, ...), and the university spin-off company Formal Mind has
been created for commercial exploitation.

14.4.3. Was it difficult/necessary for the end user to understand constraint
technology?

The goal of PROB was always (and still is) to provide automated
validation of high-level specifications without the user having to understand
constraint solving. For many industrial specifications, this goal has now been
achieved, but obviously sometimes debugging is still necessary. Maybe
surprisingly, many B specifications can be animated by PROB out of the box.
The tool now provides external B predicates which can be inserted into a
specification to help debug a B specification when run by PROB and help
identify (performance) problems. Also, sometimes user annotations are
required to mark certain infinite B functions as symbolic, so as to prevent
PROB from trying to expand them.8 But the long-term goal is to further
increase the automation, and even to be able for ordinary users to describe
their own constraint solving problems in B and have them solved using
PROB.

14.4.4. Comparison with non-constraint solving tools

We have already discussed the proof-based BToolkit animator earlier in
the paper. In the meantime, a variety of other tools have been developed for
animating or model checking high-level specifications. These tools, such as
Brama [SER 07] and AnimB [MÉT 10] for Event-B or TLC [YU 99] for
TLA+, rely on naive enumeration. They can be used if the models are

8 In particular in Event-B [ABR 10] users currently have to axiomatize their own transitive
closure, which poses problems if not dealt with symbolically.

442 Formal Methods Applied to Complex Systems

relatively concrete, possibly by providing additional animation values in the
setup of the tools. However, there is little chance in using such tools for
constraint-based checking (section 14.1.4). For example, TLC takes hours to
find an isomorphism for two graphs with 9 nodes (using a specification
similar to the one seen in section 14.1.1.1; see [LEU 11] for more details).
TLC however, can be very efficient for concrete models, where the overhead
of constraint solving provides no practical advantage.

14.4.5. Comparison with other technologies

In the past few years, we have also investigated a variety of alternate
technologies to replace or complement the constraint solver of PROB:
BDD-Datalog- based approaches, SAT- and SMT-solving techniques. We
have given up the BDD-approach very quickly (see, e.g. [PLA 09]): due to
the lack of data types that are more abstract than bit vectors, the complexity
of a direct translation from B was too high, even for small models.

For SAT, we have implemented an alternate backend for first-order B in
[PLA 12] using the Kodkod interface [TOR 07]. For certain complicated
constraints, in particular those involving relational operators, this approach
fared very well. The power of clause learning and intelligent backtracking are
a distinct advantage here over classical constraint solvers. However, for
arithmetic the SAT approach usually has problems scaling to larger integers.

As an example, take the following set comprehension with 49,646
solutions. The PROB solver takes 1.36 s to find the solutions, while the
Kodkod-SAT approach takes 145 s on the same hardware:

{x,y,z|x:1..10000 \& z = x/y \& z:200..500 \& y : 10..20}

Quite often, the SAT approach is better for inconsistent predicates, while
the PROB constraint solver often fared better when the predicates were
satisfiable. Also, the SAT approach often has problems dealing with large data
and cannot deal with unbounded values or with infinite or higher-order
functions. Here, an SMT-based approach could be more promising. We have
also experimented with SMT-solvers, in particular a SMT-plugin for Event-B
[DEH]. So far, the results were rather disappointing, but this may be due to
the translation rather than the SMT solvers used. For a cruise control case

From Animation to Data Validation: The ProB Constraint Solver 10 Years On 443

study of [HAL 11], the SAT and SMT alternatives were not successful in
solving the constraints.

14.4.6. Future plans

We are working on reducing the overhead of using B compared to directly
encoding problems in a lower-level language such as Prolog. To that end, a
partial evaluator has already been developed, which can specialize the PROB
interpreter for a particular B specification. A long-term research challenge is
to be able to use B and PROB as a programming language and as a constraint
solving language.

Other avenues that are being pursued are parallel versions of PROB
improved symmetry breaking during constraint solving, better constraint
solving over unbounded integers (i.e. without a finite domain) using CHR or
CHR-like techniques.

14.4.7. Lessons

Constraint logic programming in particular and constraint solving in
general has a lot to offer for formal methods, and new applications are
popping up all the time. Constraint solving can be made to deal with large
data, something which is very difficult with SAT-based approaches. The
combination of model checking and constraint solving can be very useful,
allowing to express certain problems very concisely. Constraint solving is
often good at finding solutions; but not so good at detecting unsatisfiable
predicates.

The use of Prolog to implement PROB was both a blessing and a curse.
SICStus Prolog is a very efficient Prolog engine, and the efficiency and
memory consumption of PROB was often very satisfactory. Indeed, in the
context of Event-B PROB often had fewer efficiency problems with large
specifications than Java-based tools. However, in some aspects the use of
Prolog prevents certain optimizations: we cannot easily re-order lists on the
fly (e.g. to keep them sorted and remove duplicates); it is difficult to cache
results (e.g. when expanding set comprehensions) because backtracking
undoes bindings and assert/retract is expensive.

444 Formal Methods Applied to Complex Systems

In conclusion, constraint solving has provided the foundation for many
novel tools and techniques to validate formal models. While SAT- and
SMT-based techniques have also played an increasingly important role in this
area, constraint solving approaches have advantages when dealing with large
data.

PROB is available for download at http://www.stups.uni-duesseldorf.
de/ProB. An online logic calculator with examples is available at: http://
www.stups.uni-duesseldorf.de/ProB/index.php5/ProB_Logic_Calculator.

14.5. Acknowledgments

We would thank all those people who have contributed toward the
development of PROB and without whom the tool would not be where it is
now: Michael Butler, Fabian Fritz, Marc Fontaine, Corinna Spermann and
many more.

14.6. Bibliography

[ABR 96] ABRIAL J.-R., The B-Book. Cambridge University Press, 1996.

[ABR 10] ABRIAL J.-R., Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[AMB 02] AMBERT F., BOUQUET F., CHEMIN S., et al., “BZ-testing-tools: a
tool-set for test generation from Z and B using constraint logic programming”,
Proceedings FATES’02, Technical Report, INRIA, pp. 105–120, August 2002.

[BCO 99] B-Core (UK) Ltd, Oxon, UK, B-Toolkit, On-line manual, 1999. Available
at http://www.b-core.com/ONLINEDOC/Contents.html.

[BAD 05] BADEAU F., AMELOT A., “Using B as a high level programming language
in an industrial project: Roissy VAL”, in TREHARNE H., KING S., HENSON M.,
et al., (eds.), Proceedings ZB’2005, LNCS 3455, pp. 334–354. 2005.

[BEH 99] BEHM P., BENOIT P., FaiVRE A., et al., “Météor: a successful application
of B in a large project”, in WING J. M., WOODCOCK J., DAVIES J. (eds.), World
Congress on Formal Methods, LNCS 1708, pp. 369–387. 1999.

[BOI 00] BOITE O., Méthode B et validation des invariants ferroviaires, Master’s
Thesis, Denis Diderot University, 2000.

[BOI 02] BOITE O., “Automatiser les preuves d’un sous-langage de la méthode B”,
Technique et Science Informatiques, vol. 21, no. 8, pp. 1099–1120, 2002.

From Animation to Data Validation: The ProB Constraint Solver 10 Years On 445

[BOU 02] BOUQUET F., LEGEARD B., PEUREUX F., “CLPS-B – a constraint solver
for B”, in KATOEN J.-P., STEVENS P., (eds.), Proceedings TACAS’02, LNCS 2280,
pp. 188–204, 2002.

[BOW 98] BOWEN J., “Animating the semantics of VERILOG using Prolog”,
UNU/IIST Technical Report no. 176, United Nations University, Macau, 1999.

[CEN 11] CENELEC, Railway applications – communication, signalling and
processing systems – software for railway control and protection systems,
Technical Report EN50128, European Standard, 2011.

[CLE 09] CLEARSY, Atelier B, user and reference manuals, Aix-en-Provence,
France, 2009. Available at http://www.atelierb.eu/.

[DEH] DEHARBE D., FONTAINE P., GUYOT Y., et al., “Smt solvers for rodin”,
Proceedings ABZ’2012, LNCS. Springer.

[DEL 01] DELZANNO G., PODELSKI A., “Constraint-based deductive model
checking”, STTT, vol. 3, no. 3, pp. 250–270, 2001.

[DOL 03] DOLLÉ D., Essamé D., Falampin J., “B dans le tranport ferroviaire,
L’expérience de Siemens transportation systems”, Technique et Science
Informatiques, vol. 22, no. 1, pp. 11–32, 2003.

[DOV 00] DOVIER A., PIAZZA C., PONTELLI E., et al., “Sets and constraint logic
programming”, ACM Transactions on Programming Languages and Systems,
vol. 22, no. 5, pp. 861–931, 2000.

[ESS 07] ESSAMÉ D., DOLLÉ D., “B in large-scale projects: the Canarsie line CBTC
experience”, in JULLIAND J., KOUCHNARENKO O., (eds.), Proceedings B’2007,
LNCS 4355, pp. 252–254, Springer-Verlag, 2007.

[HAL 11] HALLERSTEDE S., LEUSCHEL M., “Constraint-based deadlock checking
of high-level specifications”, TPLP, vol. 11, nos. 4–5, pp. 767–782, 2011.

[HAY 89] HAYES I., JONES C.B., “Specifications are not (necessarily) executable”,
Softw. Eng. J., vol. 4, no. 6, pp. 330–338, November 1989.

[HOW 10] HOWE J.M., KING A., “A pearl on SAT solving in Prolog”, in BLUME M.,
KOBAYASHI N., VIDAL G., (eds.), Proceedings FLOPS’10, LNCS 6009, pp. 165–
174, Springer, 2010.

[KIN 01] KING L., GUPTA G., PONTELLI E., “Verification of a controller for
BART”, in WINTER V.L., BHATTACHARYA S., (eds.), High Integrity Software,
Kluwer Academic Publishers, pp. 265–299, 2001.

[LEU 03] LEUSCHEL M., BUTLER M., “ProB: a model checker for B”, in ARAKI
K., GNESI S., MANDRIOLI D., (eds.), FME 2003: Formal Methods, LNCS 2805,
pp. 855–874, Springer-Verlag, 2003.

[LEU 08] LEUSCHEL M., BUTLER M.J., “ProB: an automated analysis toolset for
the B method”, STTT, vol. 10, no. 2, pp. 185–203, 2008.

446 Formal Methods Applied to Complex Systems

[LEU 11] LEUSCHEL M., FALAMPIN J., FRITZ F., et al., “Automated property
verification for large scale b models with ProB”, Formal Asp. Comput., vol. 23,
no. 6, pp. 683–709, 2011.

[MÉT 10] MÉTAYER C., AnimB 0.1.1, 2010. Available at http://wiki.event-
b.org/index.php/AnimB.

[PLA 10] PLAGGE D., LEUSCHEL M., “Seven at a stroke: LTL model checking for
high-level specifications in B, Z, CSP, and more”, STTT, vol. 11, pp. 9–21, 2010.

[PLA 12] PLAGGE D., LEUSCHEL M., “Validating B, Z and TLA+ using ProB
and Kodkod”, in GIANNAKOPOULOU D., MÉRYD. (eds.), Proceedings FM’2012,
LNCS 7436, pp. 372–386. Springer, 2012.

[PLA 09] PLAGGE D., LEUSCHEL M., LOPATKIN I., et al., “SAL, Kodkod, and
BDDs for validation of B models, lessons and outlook”, Proceedings AFM 2009,
pp. 16–22, 2009.

[SER 07] SERVAT T., “Brama: a new graphic animation tool for B models”, in
JULLIAND J., KOUCHNARENKO O., (eds.), Proceedings B’2007, LNCS 4355,
pp. 274–276. Springer-Verlag, 2007.

[SIE 09] SIEMENS, “B method - optimum safety guaranteed”, Imagine, vol. 10,
pp. 12–13, June 2009.

[TOR 07] TORLAK E., JACKSON D., “Kodkod: a relational model finder”, in
GRUMBERG O., HUTH M., (eds.), Proceedings TACAS’07, LNCS 4424, pp. 632–
647, Springer-Verlag, 2007.

[WIN 98] WINIKOFF M., DART P., KAZMIERCZAK E., “Rapid prototyping using
formal specifications”, in Proceedings of the 21st Australasian Computer Science
Conference, pp. 279–294, Perth, Australia, February 1998.

[YU 99] YU Y., MANOLIOS P., LAMPORT L., “Model checking TLA+

specifications”, in PIERRE L., KROPF T., (eds.), Proceedings of CHARME’99,
LNCS 1703, pp. 54–66, Springer-Verlag, 1999.

15

Unified Train Driving Policy

A patchwork of railway modernization poses the challenge of developing a uniform description
and modeling method capable of capturing, on the same semantic ground and in faithful terms,
the logic of outdated, modern and emerging signaling and train operation principles and, at the
same time, offering a foundation to experiment with some yet unexplored directions. This paper
presents a domain-specific formal modeling language uniformly addressing fixed and moving
block principles in both discrete and continuous (inertial) contexts.

15.1. Introduction

Low rolling resistance makes railways highly efficient for hauling heavy
loads over large distances. It also means that a train cannot be stopped at short
notice. To avoid accidents, trains must be separated in temporal or spatial
dimensions. Both approaches are applied albeit at differing levels
[PAC 09, VLA 09]. The spatial model is dominant at the microscopic level,
also known as railway signaling and interlocking. Temporal analysis is
primarily aimed at the network-level optimization and the construction of
train schedules. The two are closely interlinked: over-zealous safety margins
may result in uneconomical capacity while a high-performance yet potentially
unsafe railway is never acceptable. The situation is further complicated by the
fact that there is no single approach to signaling and even within national
boundaries it is not uncommon to see a mixture of diverse signaling
solutions.

Chapter written by Alexei ILIASOV, Ilya LOPATKIN and Alexander ROMANOVSKY.

448 Formal Methods Applied to Complex Systems

An objective of this work is to help signaling engineers to reason about
safety and performance within the scope of a single railway model and thus
help them to design safe railway networks that achieve higher capacity. To
achieve this goal, we propose a modeling notation called Unified Train Driving
Policy (UTDP). It captures in a uniform manner and exposes interrelations
of concepts that are often treated separately: track topology and gradients,
signaling, fixed speed regime, platform assignment, dynamic rerouting, train
schedules and dwelling times, dynamic train headway control, acceleration and
deceleration curves, automated train operation, real-time rescheduling, etc.

The power of the approach arises from a few simple yet expressive
modeling concepts. We apply the hybrid systems modeling approach that
interleaves discrete state changes with continuous evolution
[AKH 07, RIV 08, PLA 10]. This makes it possible to capture the interaction
of a physical phenomenon such as a moving train with a discrete control
system such as the interlocking control and the route reservation systems.

A train considered in isolation is not challenging to understand: one
sensible abstraction is an interval (a train) on a ray (train path). Interval length
remains constant while the position monotonically increases. In other words,
a train is completely characterized by its speed function v(t), length l and
some initial speed and position values. A great deal of complexity arises
when there is a multiplicity of trains traveling over intersecting paths.
Unconstrained train progress may lead to collisions or derailments. In
addition, the equipment needed to realize diverging and converging paths
must also be protected. Thus, there needs to be some form of coordination
between trains.

Train speed may be under the direct control of a driver or controlled
automatically by an onboard train computer communicating with
infrastructure area control computers.

There is a number of such coordination approaches. The contemporary ones
focus on spatial separation between trains and point protection. Depending
on the way train proximity control is realized, one can distinguish two major
approach classes: fixed block signaling and moving block signaling. Each class
is composed of a considerable number of unique approaches owing primarily
to independent development within national boundaries. UTDP attempts to

Unified Train Driving Policy 449

give a common foundation over which all such approaches may be formulated
and fruitfully reasoned about.

Railway computerization and advances in train proximity control make
railway operation less dependent on unreliable human driving. An onboard
train computer is capable of assessing the dangers and speed restrictions on
the horizon of a train and generating acceleration and deceleration curves.
Such systems are already realized in protected environments such as
underground and in airport rapid transit systems. It is envisaged in [TSL 12]
that by 2030 the whole UK rail network will be based on virtual signals – a
form of fully digital interface between infrastructure and trains.

15.2. Overview

The primary subject of UTDP is the definition of laws of train movement
that result in a safe railway operation, achieving optimum capacity. The
reasoning about capacity on the same level as safety means that one is able to
formulate a range of Quality of Service (QoS) criteria such as average train
speed, minimum speed at a given location and maximum separation between
trains.

UTDP is used to model, verify and analyze fixed block and moving block
signaling, or some combination of the two, in the context of partial or
completely automated train operation [PAC 09, VLA 09, WIN 09]. It is an
evolution of a previous approach based on Event-B [ILI 12, ILI 13].

At the core of UTDP is a formal notation used to express both static and
dynamic properties of railway. The static part is based on a formal domain-
specific language [ROM 12] and captures railway topology, route boundaries
and track side equipment. The dynamic part describes train properties and the
way trains move over the track. UTDP has an executional semantics which is
the simulation of railway operation; it also offers a proof semantics to verify
safety and QoS conditions. The aspects of the latter are the focus of this paper.
We will now briefly overview the essential concepts of UTDP.

In UTDP, all stateful parts of railway are known as actors. A train and a
point (a track switching device) are two possible examples of an actor. New
actor types may be defined in a model (i.e. a station controller) and all actors
are permitted to interact with each other through some shared state.

450 Formal Methods Applied to Complex Systems

An actor lifecycle is split into three stages: continuous evolution (e.g. a
train moving in accordance with the laws of physics), mutation (a step change
due to a logical trigger) and hibernation (inability to evolve or mutate).

The evolution of a train is described by a continuous or piece-wise
continuous function of the effective longitudinal force. It defines a smooth
progression from one position to another and accounts for effects such as air
drag, gradient, rolling resistance and variable tractive effort. A mutation is a
change of law governing an actor evolution; it may be dictated, for instance,
by signaling logic or speed regime. An actor goes into hibernation when it is
unable to evolve. One example is a stationary train waiting for a permissive
(i.e. green or yellow) signal aspect.

UTDP tries to balance the terseness and expressiveness of notation by
offering several modeling layers: a high-level, constraint-based definition
indirectly characterizing actor evolution and mutation laws; construction of
custom actor types from scratch or on the basis of existing ones; and a
fine-grained specification level for a direct definition of evolution and
mutation rules.

For all but the tiniest of networks, it is impractical to attempt to
characterize a train actor by directly defining its evolution function as this
amounts to an infinitely accurate prediction of future train behavior. Mutation
allows the composition of an actor from simpler actors where each constituent
actor is constructed dynamically in reaction to the evolution of other actors.
This activity is central to the UTDP modeling notation – a high-level
specification layer operating in terms of mutation constraints: rules from
which concrete actor mutations are computed on the fly.

The following is an example of a UTDP constraint applying to a train actor.

stop on entering(L.R1) when occ(AA,AB) ∨ reverse(P102)

The constraint influences train speed to ensure that the train stops at a
certain position. Term entering(L.R1) is a predicate binding a set of trains,
specifically those trains on line L that have the beginning of route R1 on their
horizon, i.e. can potentially travel over the route. Predicate
occ(AA,AB) ∨ reverse(P102) is a guarding condition defining states where
the constraint applies. In this case, it speaks about the states of train detection

Unified Train Driving Policy 451

circuits (equipment for detecting sectional track occupation) AA,AB and the
state of point P102. On the whole, the rule requires a train traveling over line
L to be stationary when its head reaches the start of route R1 provided circuits
AA,AB report occupation (presence of another train or a fault) or point P102
is set to reverse. This is a trivial example of a control table rule expressed in
UTDP.

It is possible to reason about signaling based on the moving block principle
where train separation is controlled by real-time proximity sensing and speed
control. For instance, constraint

stop on entering(any train)

states that a train must stop when its head is about to enter a region occupied
by another or the same train.

To verify safety, a signaling engineer must define applicable hazards. By a
hazard, we understand a negative form of constraint – one that should never
be satisfiable for any valid configuration. One example of a hazard is train
collision. With the “brick-wall” principle1, it may be stated as follows:

hazard proceed on entering(any train)

i.e. two trains may be adjacent only when the following train is stationary. One
may also want to complement this rule with the prohibition of a train driving
backwards:

hazard . . . any t where t ∈ train in t.speed < 0

Notation a.prop denotes a labeled state component of actor a.

It is important to determine the appropriate level of model fidelity. The
following are the three major classes that we have learned to distinguish:

1 The brick-wall safety principle states that a train in front may stop instantaneously irrespective
of its current speed.

452 Formal Methods Applied to Complex Systems

– a model of movement permissions; such a model describes safe positions
of a train without stating how fast a train may go and how quickly it must get
to the destination; there is no train inertia in this model – train acceleration and
deceleration are unbounded;

– a refinement of the above overlays a movement permission with a discrete
speed profile; train inertia is modeled by constant acceleration and deceleration
values while resistance and gravity forces are disregarded;

– train behavior is modeled to utmost precision including weight
distribution, specific engine performance, gradients and carriage couplers.

The first layer captures the fixed block principle realized over train
detection circuits determining the train’s position in large, discrete steps. It
also addresses the moving block principle based on continuous detection of
the train’s position. Safety properties of the first layer may be translated into
set-theoretic propositions in the first-order logic, amenable to automated
verification.

The second layer crudely captures the effect of train inertia and thus makes
reasoning about upper and lower speed bounds meaningful. Acceleration and
deceleration forces must be defined to overapproximate train acceleration and
braking distances so that the safety proofs hold in respect to a more accurate
model.

The final layer may be used for safety analysis when the margins must be
tight but its primary application is likely to be the assessment, via a computer-
based simulation, of capacity, energy efficiency, operational costs and other
dynamic parameters. Crucially, such an assessment is based on the same model
as the proof of operational safety, thus removing a potential mismatch between
dynamic and static models.

15.3. Semantics

A UTDP specification defines a world of actors where a world is a set of
actors W ∈ P(A) and an actor A is a five-tuple (D,S, h, e,m) made of the
following components:

– actor state (D,S) composed of discrete, D, and continuous, S,
components; D may have an arbitrary type while S must be a tuple of real
values: S ⊆ R× · · · ×R. D and S may be read by any actor but updated only
by their owning actor. An indexed set of all D’s, {Di}i∈A is denoted by D.

Unified Train Driving Policy 453

– a horizon h defined as a function h ∈ W→R+ ∪ {∗}. A current horizon
value h(w) defines for how long, if at all, an actor may evolve:

- value h(w) ∈ R+, h(w) > 0 defines the longest extent of time the
actor may evolve before experiencing a mutation (however, evolutions and
mutations of other actors may force an earlier mutation point);

- h(w) = 0 demands an immediate mutation;

- h(w) = ∗ indicates that the actor is hibernating, that is, not able, in
the current state w, to evolve or mutate.

– a continuous in R evolution function e ∈ D × R+ → S. Value e(w, t)
gives the result of an evolution starting from world state w and lasting for t
units of time;

– a mutation function m ∈ W → A which replaces the current actor with
a different one. In addition to complete actor change, it is also used to express
an update of discrete state component D and change the laws of horizon,
evolution and mutation.

World behavior is fully determined by the behavior of individual actors. An
actor behavior is given by its horizon, evolution and mutation functions and
thus both world and actors are determinate.

A behavior B(w0), B ∈ W→ seqω(W), of a world w0 is an infinite chain
of worlds B(w0) = �w0
 � B(w1) = �w0, w1
 � B(w2) = �w0, w1, . . . ,
wn, . . .

In such a chain, some wi may be obtained from a predecessor wi−1 following
these steps:

1) compute actor horizons, H = {a $→ h(wi) | a ∈ wi ∧ a =
(D,S, h, e,m)};

2) filter out hibernating actors, H 	 = H \ (A× {∗});
3) if set H 	 is empty, then there is no change and wi = wi−1;

4) otherwise, determine the smallest horizon value, l = min{h | a $→ h ∈
H 	}, and a set of actors defining horizon l, H 		 = H 	−1[l];

5) if l is non-zero, compute a new world wi by applying the evolution
functions of all non-hibernating actors H 	 to the current world wi−1. Since

454 Formal Methods Applied to Complex Systems

evolution functions update disjoint parts of a world state, actor evolutions may
be computed in any order or even concurrently;

6) if l is zero then wi is defined by applying the mutation functions of actors
H 		 to world wi−1. As in the case of evolution, mutations may be applied in
any order.

The above steps (1–6) define a world change function F , wi = F (wi−1).
We are interested in such definitions of F that world changes eventually
stabilize and the chain defined by B(w0) is stationary. A stationary chain
may be expressed as a concatenation of some finite prefix and an infinite
sequence {u}ω, u ∈ W:

B(w0) = �w0, w1, . . . , wk, u
 � �u, . . . , u, . . .
 [15.1]

Equivalently, we require that there exists a world u such that it is a fixed
point of F , u = F (u).

DEFINITION 15.1 (Well-formedness).– A UTDP specification is well-formed
if there exists a fixed point of world change function F .

The actor model provides a semantic underpinning for the modeling
language of UTDP.

15.4. Modeling notation

The actor model is not adequate for constructing models of any
complexity. In this section, we introduce the UTDP modeling notation based
on the constraint concept and show how to use it to indirectly define horizon,
evolution and mutation of actors, in particular actors modeling train progress
through a railway network. A UTDP constraint defines a mutation law
specific to a given actor. In other words, a combination of an actor and a
constraint are used to compute how an actor mutates. Since constraints are
shared by a class of actors, it turns out that an actor mutation function is
dependent, in some non-trivial manner, on mutation functions of other actors.

As a simple illustration consider the diagram in Figure 15.1. The diagram
depicts a speed regime (dashed line) overlaid by a train speed profile.
Logically, a speed regime is fully defined by a speed constraint interval.
However, a train must start braking some distance before the restriction

Unified Train Driving Policy 455

applies and the exact point where this happens is dependent on the braking
capability and the current train speed. In the diagram, the distance between
advance warning (dashed triangle) and the actual start of restriction is exactly
the braking distance BD(t, u, x) of some train t approaching restriction x at
speed u. The point where braking initiates may be different for some other
train. UTDP constraints hide such details by offering a mechanism to
dynamically determine appropriate actor mutation and evolution laws.

Figure 15.1. Train progress in presence of speed restrictions. A dashed
triangle is a forward restriction warning, a solid triangle is the start of a speed

restriction and ’E’ in square marks the restriction cancellation point

The overall structure of a UTDP model is given in Figure 15.2.

frame frm import of UTDP frame model
track sch import of track topology
vehicles tt import of a vehicle dynamic library
service sp import of a service pattern
identifiers v model constants and variables
attractors a attractor definitions
actors Q custom actor types
axioms A(a, v,Q) axiomatic statements over identifiers and attractors
invariant I(a, v,Q) an invariant predicate defining valid states
hazard H actor constraints defining hazards
behavior B actor constraints defining behaviour

Figure 15.2. A summary of core UTDP notation

Clauses frame, track, vehicles and service import definitions of
UTDP actor types, railway topology (physical track graph overlaid with
logical structuring pertinent to considered signaling laws), rolling stock
properties (weight, length, acceleration and deceleration curves) and train
schedules. All of these may also be defined programmatically in UTDP.

456 Formal Methods Applied to Complex Systems

identifiers v are the model constants and variables. They have fixed
types and may be used to construct expressions and predicates. In addition,
variables may be dynamically updated to model the on-line update of
signaling laws. Logically, model variables represent the discrete part of the
state of an implicit infrastructure actor. Such an actor does not experience
evolution (it has no continuous state) but can mutate to simulate the
substitution of model variables. Constant and variable identifiers are
initialized deterministically.

attractors define a set of labeled spatial or temporal locations. An
attractor location may be fixed or dependent on an actor state. When it is fixed
or changes in discrete steps aligned with actor mutation it is called a peg
attractor. If an attractor position changes continuously (in time or space) and
is aligned with an actor evolution then it is known as a pin attractor. The
attractor concept plays the central role in binding constraints to actors. An
example of a pin attractor is some fixed position on a track (where, for
instance, a speed restriction sign – a form of constraint – is permanently
placed). One example of a pin attractor is a location linked to a train position.

actorsQ is a list of explicit class-like definitions describing UTDP actors.
For actor types not defined via constraints, hibernation and evolution functions
must be provided explicitly. Parts of an actor state are accessed using notation
actor .property , e.g. t.speed.

axioms A(a, v,Q) are labeled predicates over identifiers v, attractors a
and states of actors Q. They postulate properties of v and a that help to reason
about model well-formedness (Definition 15.1) and safety (section 15.5.3).

invariants I(a, v,Q) state the invariant properties of actor states,
including the infrastructure actor. They may refer to both discrete and
continuous state parts. Both axioms and invariants are formulated in the
first-order logic and are only given interpretation in the proof semantics.

hazard H is a set of constraints defining undesirable actor evolutions and
mutations. It is the main objective of the proof semantics to demonstrate that
that no actor evolution or mutation leads to the manifestation of a defined
hazard.

Finally, the behavior section provides definitions of behavior constraints
governing actor mutation.

Unified Train Driving Policy 457

The standard UTDP model of a train defines one or more actors per logical
train. In the case of moving block, they are an actor modeling the physical train
itself and reservation actor. Fixed block also requires an unlocking actor.

Each actor type is attracted by a certain class of attractions. An attraction
limits the horizon of an actor and, generally, forces an actor mutation.

The role of a reservation actor is to maintain some movement authority (an
extent of safe track onto which the train may move); it is positioned some
distance in front of its train and its position changes in discrete steps during
mutations. A reservation actor is attracted by station control boundaries, points
and, in the case of the route-based signaling, route boundaries. An unlocking
actor stays behind a train tail and unlocks train detection circuits one by one.
Its position jumps from one detection circuit boundary to another. Note that
there is no point actor: the point movement is modeled as an evolution of a
reservation actor.

The rest of the section is organized as follows. In the first part we show
how to reason about fixed block signaling using peg attractors. The second
part shows some examples of pin attractors in the context of the moving block
principle.

Consider the following UTDP specification.

track T
attractors peg a to entering(L.5)
behavior stop on a

It states that any train whose head is about to arrive at location L.5 must
have speed zero. Location L.5 is 5 m from the start of line L – a line which
must be defined in track topology T .

peg a to entering(L.5) is a peg attractor – an attractor whose position
changes only during an actor mutation. There are other predefined train binders
such as leaving(..) and over(..) and new ones may be defined by a user. We
may also use the proposition logic to construct complex binders. For instance,
peg a to entering(L.5) ∧ over(L) states that a train must be entering L.5 and
be on line L. An attractor may be associated with several physical locations
at once, e.g. peg a to entering(L.5) ∨ leaving(L.920) matches a train head
position at L.5 or a tail position at L.920.

458 Formal Methods Applied to Complex Systems

One possible translation of constraint stop on entering(L.x) into the
actor model is shown in Figure 15.3. A train experiences three mutations
while approaching and driving past the location of the constraint. The second
diagram in the figure has another constraint at L.y that forces a different
acceleration curve.

Figure 15.3. A train speed profile determined by an attractor stop at location
L.x. Locations p1, L.x, p3 are the train mutation points where the driving law

changes

Often two constraints positioned at a distance less than the maximum train
braking distance logically overlap and may not be considered in isolation. An
actor model must be generated in such a manner that it satisfies both
constraints. For instance, in model

behavior
stop on entering(L.x)
speed 15..20 on entering(L.y)

location L.x is a short distance after L.y so that the second attractor makes
a train go a bit slower for some time. If the speed constraint of the second
attractor (in this case a speed region of 15 to 20 mph) was wider it might
have had no effect on the choice of evolution law and speed profile would stay
exactly the same as in the first figure. There is a simple iterative algorithm to
determine the most constraining attractor on a horizon.

An attractor position may change dynamically. In the following example, a
passing train “captures” a speed limit and, each time the train tail reaches the
limit attractor position, moves it to the position of the train head.

Unified Train Driving Policy 459

identifiers s : Real
attractors peg a to entering(L.s)
behavior

speed 10 on entering(a)
set s ← self.head on leaving(a)

One possible application of dynamic reconfiguration is the modeling of a
transport corridor where trains gradually level their speeds to reduce time spent
braking and accelerating.

Peg attractors may be used to model various forms of the fixed block train
signaling. A layout example and an excerpt of its signaling in UTDP are given
in Figure 15.4 (the model uses a short-cut notation for in-place attractor
definition). In fixed block signaling, a simple program (called a control table)
helps a driver to maintain safe speed. The program observes the infrastructure
state (points and train detection circuits) and interacts with a driver via
track-side signals that communicate commands to a driver via color-coded
messages. If a driver obeys the commands then, assuming the control table is
correct, it may be shown that a train is never within a dangerous proximity to
another train.

We can also change the position of an attractor by first attaching an attractor
to a location associated with a model variable and then changing the variable
value with the set:

identifiers
p : Real

invariants
p ∈ L.interval

behavior
speed 10 on entering(L.p)
set p ← min(self.head + 200, L.interval.to) on entering(L.p)

The model defines a constraint speed 10 at a variable position p: the
position jumps forward when a train head arrives at p. This has the effect of a
train constantly driving to a speed limit 10, located short (less than 200 m)
distance ahead.

UTDP is not specific to fixed block; using pin attractors one may express
various forms of the moving block principle. For instance,

460 Formal Methods Applied to Complex Systems

behavior
stop on entering(any train)

states that a train must stop when its head is about to enter a region occupied by
another or same train. This avoids train collision and also satisfies the “brick-
wall” safety principle.

track flyout
behavior

stop on entering(B_C.B_SR) when occ(BA) ∨ reverse(P)
stop on entering(B_C.SR_C) when occ(BB,BC)
stop on entering(A_C.A_SQ) when occ(AA)
stop on entering(A_C.SQ_C) when occ(BB,BC) ∨ normal(P)
stop on entering(C_A.C_ST) when occ(BC)
stop on entering(C_A.ST_A) when occ(BB,AA) ∨ normal(P)
stop on entering(C_B.C_ST) when occ(BC)
stop on entering(C_B.ST_B) when occ(BB,BA) ∨ reverse(P)
. . .

Figure 15.4. The layout of a simple junction and its fixed block signaling in UTDP. In the
layout, the valid paths through the junction are A_C, B_C, C_A and C_B; signals SR, SQ and
ST define routes B_SR, SR_C, ...; AA, BB, ... are the train detection circuits that report the
presence of absence of a train; point P is located on train detection circuit BB; finally, R, Q, T
are the labels of train detection circuits boundaries

A variation of the above allows a following train to track the speed of a
train in front while maintaining a gap of g meters:

behavior
any t where t ∈ train in speed t.speed on entering(t.rear− g)
any t where t ∈ train in speed t.speed/2 on over[t.rear− g, t.rear]

The two constraints define a safety gap and force a following train to fall
behind if it appears, from an adjoining route, too close to another train. One of

Unified Train Driving Policy 461

the reasons for UTDP development is its ability to quickly assess the viability
(safety and capacity) of non-conventional laws like the above.

15.5. Verification

Verifying railway operation safety – properties such as the avoidance of
collision and absence of derailment – is an essential part of railway control
and signaling. UTDP, being a formal notation, is well suited to serve as a
foundation for the formulation and verification of formal correctness
conditions. Our approach is based on the derivation, from a given UTDP
specification, of a set of verification conditions, expressed in the first-order
logic, that demonstrate the required safety properties.

To enable a meaningful verification process, UTDP defines notational
constructs that introduce redundancy into a model. By comparing such
redundant elements it becomes possible to detect problems such as omissions
or underspecified constraints. Redundancy comes in the form of invariants
and hazards. An invariant is a predicate over model constants, variables and
attractors. Such a predicate must hold in an initial actor world and in all
subsequent worlds. An additional role of an invariant is the propagation of
assumptions about important actor states.

A hazard is a mirror symmetry of a behavioral constraint – the definition
of a hazard uses the same notation but defines actor behavior that must not
be present in a model. UTDP does not provide any implicit hazards and it is
imperative that a user lists all the hazards deemed applicable in a given context.

In addition to demonstrating invariants and hazards, we must also prove
that a given UTDP specification satisfies the well-formedness condition [15.1]
and behavioral constraints are satisfiable.

In this chapter, due to space constraints, we focus on the latter and the
related subject of hazards while omitting the discussion invariant-based
reasoning and concrete verification conditions for proving well-formedness.

The well-formedness condition aims to establish the property of definition
15.1. The strategy is to insist on the existence of a global “bottom” world ⊥W

initializing a UTDP model and also requires that for each actor a there is an
upper bound of evolution/mutation cycle �a. Thus an actor world eventually

462 Formal Methods Applied to Complex Systems

reduces to the terminal world �W = {�i}i∈A which is the maximum element
in poset (W, F) and hence a fixed point of F :

B(w0) =
�
⊥W, F 1(w0), . . . , F

k(w0),�W

�
� ��W, . . . ,�W, . . .
 [15.2]

We only briefly sketch the proof strategy. The existence of ⊥W is
established by a syntactic constraint requiring that all actor states are
initialized. The reachability of �W is shown by requiring that each actor
a ∈ A eventually turns into �A. For this, we ask to exhibit, for every such
actor a, a well-founded relation R(a). For a train actor, as an example, such a
relation is taken to be R ∈ (R× R)↔ (R× R) where for some (d, t) ∈ R, d
is the distance traveled and t is the time spent waiting while stationary. The
existence of such R is predicated by the existence of upper bounds on time
and distance components2. The latter is trivial as we consider only non-cyclic
train paths. The former requires a proof that a is obstructed by other actors for
a finite duration of time.

15.5.1. Constraint satisfiability

A constraint C is a tuple of (A, R,G) where:

– A is an attractor, A ∈ A ↔ (A × L); here A is the set of actors and
L = R× {t, s} is a temporal or spatial location;

– R is a mutation rule, R ∈ A×W→A;

– G is a guard, G ∈ W→ BOOL.

For some actor p ∈ A expression A�p
 where A�p
 ⊆ A × L = A[{p}]
defines the attraction set of actor p with respect to attractor A. An attractor A
and its declaring constraint are said to be on the horizon of p if the attraction
set A�p
 is not empty. It is sometimes necessary to refer to the components
of an attraction set: we write Aa�p
 to denote prj1[A�p
] and Al�p
 to denote
prj2[A�p
].

The set of attractor locations Al�p
 has type Al�p
 ∈ R×{t, s} where tags
t and s define whether the location is temporal or spatial.

2 In addition, we must also take care to avoid certain cases of Zeno behavior that would
otherwise pass the test of a well-founded R.

Unified Train Driving Policy 463

A set of constraints define a mutation program. For such a program to exist,
constraints must satisfy certain feasibility properties. Intuitively, from some
current non-terminal world w ∈ W it should be possible to compute the next
world w	 by mutating some or all of the world actors. Assume some non-
terminal world w and consider a set of constraints,

behavior C1, . . . ,Cn

Each Ci defines a partial mutation rule Ri that may mutate some or none of
the actors. To compute a next world w	, it must hold that such a constraint set
defines at least one actor mutation and whenever several constraints apply to a
single actor it must be possible to reconcile such constraints by choosing one
constraint out of the set. Assuming some world w, we can write this down as
follows:

∃a,D · a ∈ A ∧∅ ⊂ D ⊆ {C1, . . . ,Cn}∧
(∀c · c ∈ D ∧ c = (Ac, Rc, Gc)⇒Gc(w) ∧ Ac�a
 '= ∅)∧
rec(w,D, a) = {R} ∧
a $→ w ∈ dom(R)

[15.3]

The above guarantees the existence of at least one new actor R(a,w) in w	.
The well-formedness property requires that a '= R(a,w) and thus w differs
from w	, i.e. w evolves to w	. It is impractical to apply condition [15.3] directly.
Instead, we use a stronger criterion requiring that (1) at all times there exists at
least one pair of an actor and an applicable constraint,

∀w · w ∈ W⇒
∃a, c · a ∈ A ∧ c ∈ {C1, . . . ,Cn}∧

c = (A, R,G) ∧G(w) ∧ A�a
 ∧ a $→ w ∈ dom(R)
[15.4]

and (2) it is possible to reconcile an arbitrary non-empty subset of constraints:

∀w, a,D · w ∈ W ∧ a ∈ A ∧∅ ⊂ D ⊆ {C1, . . . ,Cn}∧
(∀c · c ∈ D ∧ c = (Ac, Rc, Gc)⇒Gc(w) ∧ Ac�a
 '= ∅)⇒
card(rec(w,D, a)) = 1

[15.5]

Together [15.4] and [15.5] establish a sufficient criterion for [15.3].

Condition [15.4] may be discharged by supplying a witness actor shown to
experience some further mutation with a given constraint set. This is

464 Formal Methods Applied to Complex Systems

straightforward with train actors when there are no opposing routes (opposing
routes are train paths going over the same track in opposite directions). In
general, opposing routes may lead to a deadlock so we need to build a proof
by case analysis over applicable worlds.

For condition [15.5], the strategy depends on the concrete definition of
rec(..) which is unique to each class of constraints. Currently, UTDP defines
two constraint classes: plain and speed. The plain class is used solely to
model updates of the infrastructure actor state (that is the model variables)
and the speed class are the constraints defining speed limits for train classes.
Reconciliation may only be done over constraints from the same class. In
practice, this is not a limitation as such a test is already encoded as
a $→ w ∈ dom(R) in [15.3] and [15.4].

Recall that attractors define locations, temporal or spatial. Within each class
there is a linear order but a temporal location may not be compared with a
spatial one. Thus, for any x, y ∈ Al�a
, x = (p, i), y = (q, j), we have x ≤
y ⇔ (p ≤ q ∧ i = j). The infinum of a partial order on the set of all attractor
locations gives a set of certain “nearest” locations. Then the reconciliation set
is the set of compatible mutation rules corresponding to these locations:

l(w) = inf{Al
c�a
 | c ∈ D ∧ c = (Ac, Rc, Gc) ∧Gc(w) ∧ Al

c�a
}
rec(w,D, a) = {Rc | c ∈ D ∧ c = (Ac, Rc, Gc) ∧ Al

c�a
 ∈ l(w) ∧ comp(D)}
[15.6]

where comp(D) defines the compatibility of constraints D. With this
definition, there are two possibilities for contradicting
card(rec(w,D, a)) = 1: having to choose between incomparable spatial and
temporal locations, and failing the comp(C) criterion. In the former case,
conflicting locations are necessarily defined by distinct constraints and must
be made mutually disjoint through constraint guards.

Note that we may conclude rec(w,D, a) for an arbitrary non-empty D
by considering all possible pair-wise reconciliations rec(w, {g, h}, a) where
{g, h} ⊆ D, g '= h. This means that condition [15.5] needs to be instantiated,
to consider all cases of rec(..), at most card(C)(card(C)− 1)/2 times.

The compatibility criterion requires that each constraint pair defines a
feasible evolution program for an actor class these that constraints may bind.

Unified Train Driving Policy 465

This may be stated as follows

comp(C)⇔ (∀w, a, g, h · w ∈ W ∧ a ∈ A ∧ g, h ∈ {C1, . . . ,Cn} ∧ g '= h∧
g = (A, r1, G) ∧ h = (B, r2, H)∧

(A ∩ B)l�a
 '= ∅ ∧G(w) ∧H(w)⇒
ϑ(a,A,B, r1, r2)) [15.7]

where ϑ(a,A,B, r1, r2) is a compatibility criterion of mutation rules r1 and
r2 with respect to actor a and attractors A, B. Since rule classes may be user
defined, the concrete definition of ϑ(..) is given in a UTDP specification
together with the definition of an attractor rule class. UTDP has a built-in
speed rule class (e.g. stop) which provides a definition of ϑ(..), denoted as
ϑS(..), for this class.

Intuitively, ϑS(..) requires that a train actor be able to satisfy, in all
situations, a pair of constraints g and h (see equation [15.7]), i.e. a train can
be driven to meet the constraint requirements. One reason this might not be
the case is when a train is required to accelerate or decelerate harder than it is
capable of, thus leading to an overrun (and, potentially, a collision) or
violation of a QoS requirement. Formally expressing the condition, we state
that a pair of locations of some two distinct constraints g, h define an interval
such that assuming a given train actor a satisfies one constraint at one edge of
the interval it is also able to satisfy the other constraint at the opposing edge:

ϑS(a,A,B, r1, r2)⇔
�
∀i, j · (i, j) ∈ Al�a
 × Bl�a
 ⇒ θS(a, i, j, r1, r2)

�
[15.8]

and predicate θS(a, i, j, S1, S2) states whether train a is able to meet the speed
goals set by mutation rules r1, r2 on interval defined locations i, j:

θS(a, i, j, r1, r2) =

⎧⎪⎪⎨⎪⎪⎩
�∃s1, s2 · (s1, s2) ∈ spd(r1)× spd(r2)∧

DD(a, s1, s2) ≤ j − i

�
, i ≤ j�∃s1, s2 · (s1, s2) ∈ spd(S1)× spd(S2)∧

DD(a, s2, s1) ≤ i− j

�
, i > j

spd(speed x) = {x}, spd(stop) = {0}, spd(proceed) = {x | x ≥ Vmin}, . . .
[15.9]

466 Formal Methods Applied to Complex Systems

where spd(..) converts a speed mutation rule into a set of speeds permitted by
the rule:

spd(speed x) = {x}, spd(stop) = {0},
spd(proceed) = {x | x ≥ Vmin}, . . . [15.10]

Value Vmin ∈ R+ is a small arbitrary positive real number denoting the
minimum train speed we can register.

Expression DD(a, u, v) defines either an acceleration or a braking distance
of a train a currently traveling at speed u and trying to achieve target speed v:

DD(t, u, v) =

�
BD(t, u, v) when v < u
AD(t, u, v) when v > u
0 when v = u

[15.11]

To define BD(..) and AD(..) we need some notion of train dynamics. Let
t be a train actor; then its acceleration at(v) = Ft(v)/mt depends on current
speed v (due to, as an example, the air drag force) and train characteristics such
as mass mt. Assume that i and j in [15.9] are spatial locations; the differential
of speed over distance and the consequent braking or acceleration distance may
be given as

v
dv

dx
= a(v) S =

 u2

u1

va−1(v)dv

These provide the following definitions for train acceleration and braking
distances:

BD(t, u, u) =

 u

u�
va−1

−,t(v)dv AD(t, u, u) =

 u�

u
va−1

+,t(v)dv [15.12]

where a−,t(v) and a+,t(v) are the maximum deceleration and acceleration of
train t, respectively. Temporal i and j are treated symmetrically.

15.5.2. Hazard avoidance

A hazard is a negative form of a constraint; it is a mutation program
describing a mutation that should never happen to an actor of a given system.

Unified Train Driving Policy 467

More precisely, a hazard is a constraint that cannot be reconciled with any
existing behavioral constraint. The proof technique is based on the
reconciliation criteria [15.6] and [15.7]. Consider the following model
template.

hazard H
behavior C1, . . . ,Cn

It must be the case that H is irreconcilable with any subset of C ,

∀w,D, a · w ∈ W ∧D ⊆ C ∧ a ∈ A⇒ card(rec(w,D ∪ {H}, a)) '= 1

The above may be replaced by the following sufficient criterion:

∀i · i ∈ 1..n⇒ (∀a · a ∈ A⇒ (AH ∩ Ai)
l�a
 = ∅) ∨ ¬comp({H,Ci})

[15.13]

where AH and Ai are the attractors of constraints H and Ci, respectively. Term
(AH ∩ Ai)

l�a
 = ∅ excludes vacuous compatibility of H and Ci as a hazard
indication.

15.5.3. Example

Consider the moving block principle where train paths do not intersect
(there are no points). We showcase a safety proof demonstrating the absence
of train collisions and, thus, the viability of the moving block principle.

hazard @h proceed on entering(any train)
behavior @a stop on entering(any train)

Hazard @h (@? is UTDP syntax for attaching labels to model elements)
defines a constraint expressing the “brick-wall” safety law and @a is the
familiar moving block constraint. Expanding the syntactic sugar, we obtain
@h = (A, r2,�), @a = (A, r1,�) and

A = {t $→ (t	, t	.head $→ s) | t	 ∈ train ∧ t.head ≤ t	.tail ∧ t.line = t	.line}

468 Formal Methods Applied to Complex Systems

where r1 = proceed and r2 = stop. From [15.13], we derive a safety
proposition stating absence of train collisions

¬comp({@h,@a})⇔
(∀t · t ∈ A⇒Al�t
 = ∅) ∨ ¬(∀t · t ∈ A ∧ Al�t
 '= ∅⇒ ϑS(t,A,B, r1, r2))

We go through the proof in small steps to give a feeling of how it could be
done in an automated procedure. The predicate above is equivalently stated as

t ∈ A,Al�t
 '= ∅ , ¬ϑS(t,A,B, r1, r2) [15.14]

First, expand the definition of ϑS(..) using [15.8]:

t ∈ A,Al�t
 '= ∅ , ∃i, j · (i, j) ∈ Al�t
 × Al�t
 ∧ ¬ θS(t, i, j, r1, r2)[15.15]

Notice that Al�t
 '= ∅ is same as ∃z · z ∈ Al�t
, we obtain z ∈ Al�t
 in
hypothesis and use z to instantiate both i and j:

t ∈ A, z ∈ Al�t
 , ¬ θS(t, z, z, r1, r2) [15.16]

From definition [15.9] of θS(..) we have

t ∈ A , ¬(∃s1, s2 · (s1, s2) ∈ spd(r1)× spd(r2) ∧ DD(t, s1, s2) ≤ 0)[15.17]

Expressions spd(r1) and spd(r2) are replaced with sets of speed values
according to definition [15.9]:

t ∈ A , ¬(∃s1, s2 · (s1, s2) ∈ {0} × {x | x ≥ Vmin} ∧ DD(t, s1, s2) ≤ 0)

[15.18]

The next step instantiates s1 and s2 with 0 and Vmin (see [15.9]) and,
since s2 > s1, DD(t, s1, s2) turns into acceleration distance AD(t, s1, s2) (see
[15.11]):

t ∈ A , ¬AD(t, 0, Vmin) ≤ 0 [15.19]

Unified Train Driving Policy 469

It is a statement about the acceleration distance required to reach Vmin

from 0:

t ∈ A ,

 Vmin

0
va−1

+,tdv > 0 [15.20]

This is trivially correct for any meaningful definition of a+,t. A proof like
this must be delegated to an automated proof environment. The proof is
elementary except, to some degree, steps [15.17] and [15.19], which require
heuristics to instantiate variables.

The fixed block safety proof follows a similar pattern but requires the
consideration of a wider context to capture route reservation. Modeling points
necessitates the consideration of an additional actor type simulating point
locking and setting activities, however the principal technique stays the same.

15.6. Discussion

Ensuring and demonstrating railway safety is crucial for the way our society
operates. Formal methods have been successfully used in developing various
railway control systems. The best-known examples include the use of the B
method [ABR 96] for designing various metro and suburban lines, and airport
shuttles all over the world [BEH 99, ESS 07]. The formal methods in these
works are used to trace the requirements to system models and to ensure and
demonstrate system safety. Our work builds on this experience and introduces
a generalized approach for the verification of various types of signaling.

UTDP is developed as part of a railway modeling environment – the
SafeCap Platform [SAF 13]. In the Platform it has replaced Event-B and
Classical B formalisms previously used for specification and validation of
operational safety [ILI 13].

Figure 15.5 gives a general picture of the role UTDP plays in the Platform.
Railway schema (track topology, optional signaling rules for route-based
signaling, static speed limits and track gradient) is combined with the
definition of rolling stock dynamics and a UTDP specification. The UTDP
engine is responsible for syntax and type checking UTDP models (a part of
the type checking requires matching against schema and rolling stock

470 Formal Methods Applied to Complex Systems

definitions), generation of verification conditions and filling the template code
of C-based railway simulator. Proof obligations use the syntax of Why3
[BOB 11] and Classical B [ABR 96]. Why3 manages a range of provers and
solvers such as Z3, CVC4 and SPASS. ProB [LEU 03] handles the B part and,
although nominally a model checker, is used in the capacity of a Satisfiability
Modulo Theories (SMT) solver. All the conditions are generated in both
styles.

Figure 15.5. UTDP tooling

An experiment with two-aspect route-based signaling of an average-size
station (8 platform, 63 points and several miles of track) with constant
acceleration and deceleration functions resulted in 603 conditions of which
41% were discharged automatically by a combination of Why3 and ProB.
Manual experiments that a direct translation into Z3 may help to discharge the
majority of the remaining conditions (also the number of conditions they are
based on few distinct schemas).

A symbolic solution of [15.12] even for a crude approximation of train
physics yields complex non-linear terms. Some initial experiments with
constraint solvers produced no encouraging results and, as we see at the
moment, the most viable strategy would be to use a provably safe
approximation of a_,_ in conjunction with the Computer Algebra System
(CAS) (e.g. Mathematica) or logic + CAS (e.g. KeYmaera [PLA 10]) system.
However, dropping all the retardation force components and using constant
acceleration/deceleration values produces conditions that are easy to handle
with automated constraint solvers and provers. There is a class of safety
proofs, as demonstrated in the example below, that does not require expansion
of the integral term. We may also expect that a resa can apply theorem
proving and constraint solving to filter out vacuously correct instances of
[15.3].

Unified Train Driving Policy 471

There are several reasons we thought it necessary to develop a new
modeling language. Event-B and Classical B, as well as comparable
model-based languages such as Z and Vienna Development Method (VDM),
are not friendly for industrial users. It is difficult for a railway expert to read
such a model (and thus confirm its adequacy) and almost impossible to
independently modify it. Failed verification conditions are often difficult to
interpret for non-expert users.

UTDP offers a compact specialized vocabulary and friendly but terse
syntax. It hides most of the aspects of formal modeling and lets an engineer
operate with familiar operational concepts. Its executable side (railway
simulation) offers immediate feedback to confirm model viability. This makes
a development pattern possible where a railway engineer develops signaling
model and then lets a formalist add the missing parts necessary to ensure
safety (or demonstrate absence of safety). Verification conditions are
formulated at a higher conceptual level leading to fewer identifiers and
simpler expressions. For trains, these conditions also capture continuous train
dynamics, something that is not expressible directly in the modeling
languages we have previously applied.

Signaling rules expressed in UTDP are central to the analysis of dynamic
performance: assessment of various capacity utilization metrics for given train
schedules and train characteristics. There is an automatic translation routine
from a UTDP model into a high-performance event-based railway simulator.
The simulator executes train runs and collects a wide range of data for later
analysis, mainly from the viewpoint of optimal track utilization and energy
efficiency.

During UTDP development we have studied a number of railway modeling
languages [BIØ 95, BLØ 00]. Many of the UTDP ideas were carried over from
our previous work on a railway Domain Specific Language (DSL) [ILI 12].

15.7. Conclusions

We have presented a domain-specific method for modeling railway
signaling laws. The method may be used to demonstrate the operational
safety of a combination of signaling rules and track topology. It is equally
applicable to the formulation and analysis of non-functional properties such
as railway network capacity, stability (the ability to recover from unforeseen

472 Formal Methods Applied to Complex Systems

disruptions), operational costs and energy efficiency. Some of these properties
may be proven using symbolic theorem proving while others are confirmed
via simulation. Our experience in working with Invensys Rail and the analysis
of the strategic plans for developing the UK railway show the pressing need
for a rigorous approach to modeling of unconventional and highly specialized
signaling solutions with strong guarantees of operational safety.

Automation of train operation (essentially a driver-less train) is the most
promising way to improve capacity with tighter safety margins and it is the
principal guiding aspect in the design of UTDP. Definition 15.2 gives one
concrete strategy for executing UTDP models. An efficient simulation of
UTDP models critically depends on the ability to discover fix-point u in
definition 15.1 without going through each individual actor evolution. Such
an algorithm exists and is already realized in the SafeCap Modeling Platform
[SAF 13].

The railway domain has always been one of the areas in which formal
methods are successfully deployed and used in a substantial way. For
example, in France, RATP (a major rail operator) with a considerable
experience in formal methods, looks favorably on using formal methods to
conform to the development standards that they require. From the mid-90s, in
France, RATP, the main rail operator with considerable experience of formal
methods, has been approving various developments that use the B method as
meeting the development standards RATP requires [ESS 07]. There are now
several tool development companies supporting the use of the B [ABR 96]
and Event-B [ABR 98] methods in the railway domain: ClearSy, Systerel and
Formal Mind. Model checking has been successfully used by railway
companies to assess safety and data integrity (see, for example,
[FER 10, LEU 11]).

15.8. Bibliography

[ABR 96] ABRIAL J.-R., The B-Book, Cambridge University Press, 1996.

[ABR 98] ABRIAL J.-R., MUSSAT L., “Introducing dynamic constraints in B”, 2nd
International B Conference, Lecture Notes in Computer Science, Springer-Verlag,
vol. 1393, April 1998.

[AKH 07] AKHMET M., Nonlinear Hybrid Continuous/Discrete-Time Models,
Atlantis Press, 2007.

Unified Train Driving Policy 473

[BEH 99] BEHM P., BENOIT P., FAIVRE A., et al., “Météor: a successful application
of B in a large project”, Proceedings of the Wold Congress on Formal Methods in
the Development of Computing Systems (FM ’99), Springer-Verlag, London, UK,
vol. 1, pp. 369–387, 1999.

[BLØ 00] BJØRNER D., Formal Software Techniques in Railway Systems, pp. 1–12,
2000.

[BIØ 95] BJØRNER D., GEORGE C., PREHN S., “Scheduling and rescheduling of
trains”, 1995.

[BOB 11] BOBOT F., FILLIÂTRE J.-C., MARCHÉ C., et al., “Why3: shepherd
your herd of provers”, Boogie 2011: 1st International Workshop on Intermediate
Verification Languages, pp. 53–64, August 2011.

[ESS 07] ESSAMÉ D., DOLLÉ D., “B in large-scale projects: the Canarsie Line
CBTC experience”, in JULLIAND J., KOUCHNARENKO O. (eds.), B 2007: Formal
Specification and Development in B, Lecture Notes in Computer Science, Springer,
vol. 4355, pp. 252–254, 2007.

[FER 10] FERRARI A., MAGNANI G., GRASSO D., et al., “Model checking
interlocking control tables”, in SCHNIEDER E., TARNAI G. (eds.),
FORMS/FORMAT, Springer, pp. 107–115, 2010.

[ILI 12] ILIASOV A., ROMANOVSKY A., SafeCap domain language for reasoning
about safety and capacity, Technical Report CS-TR-1352, Newcastle University,
September 2012.

[ILI 13] ILIASOV A., LOPATKIN I., ROMANOVSKY A., “The safecap platform for
modeling railway safety and capacity”, in BITSCH F., GUIOCHET J., KAÂNICHE
M., (eds.), SAFECOMP, Lecture Notes in Computer Science, vol. 8153, Springer,
2013.

[LEU 03] LEUSCHEL M., BUTLER M., “ProB: a model checker for B”, in KEIJIRO
A., GNESI S., DINO M. (eds.), Formal Methods Europe 2003, Lecture Notes in
Computer Science, Springer-Verlag, vol. 2805, pp. 855–874, 2003.

[LEU 11] LEUSCHEL M., FALAMPIN J., FRITZ F., et al., “Automated property
verification for large scale B models with ProB”, Formal Aspects of Computing,
vol. 23, no. 6, pp. 683–709, 2011.

[PAC 09] PACHL J., Railway Operation and Control, VTD Rail Publishing, 2009.

[PLA 10] PLATZER A., Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics, Springer, 2010.

[RIV 08] RIVERA G. ANGEL J., Reasoning about co-evolving discrete, continuous
and hybrid states, PhD Thesis, Electrical Engineering and Computer Science,
Syracuse University, 2008.

474 Formal Methods Applied to Complex Systems

[ROM 12] ROMANOVSKY A., ILIASOV A., “Safecap domain language for reasoning
about safety and capacity”, IEEE CS, pp. 1–10, 2012.

[SAF 13] SafeCap Project, SafeCap Platfrom website, Available at
http://safecap.sf.net, 2013.

[TSL 12] TSLG, “The rail technical strategy (RTS)”, Available at
http://www.futurerailway. org/RTS/Pages/Intro.aspx, 2012.

[VLA 09] VLASENKO S., THEEG G. (eds.), Railway Signalling and Interlocking –
International Compendium, Eurailpress, 2009.

[WIN 09] WINTER P. (ed.), Compendium on ERTMS – European Railway Traffic
Management System, Eurailpress, 2009.

Conclusion1

C.1. Introduction

This series of five books (three books already published [BOU 11,
BOU 12a, BOU 12b] and this book, plus another published in 2014
[BOU 14]) have presented a large number of methods known as “formal”
(SCADE, B Method, etc.) and techniques (e.g. abstract interpretation, proof
and model-checking). The series has also shown their application in large-
scale industrial projects in various different domains (railway, nuclear,
automation, spatial, aeronautics, etc.).

Table C.1 provides an outline of projects using formal methods in
railways.

C.2. B Method

The present book has shown various uses of the B Method [ABR 96],
from both an industrial and an academic approach, in different sectors
(railway, automation, etc.). It should be noted that there have been various
other experiments conducted using this method in the automobile, spatial
and aeronautics domains. Table C.2 gives an idea of the size of different B
models, which makes it possible to check whether the models involved are
real-sized models.

Conclusion written by Jean-Louis BOULANGER.

476 Formal Methods Applied to Complex Systems

It should be noted that this book is more focused on the so-called
“classical” B, which corresponds to the B-Book [ABR 96]. Classical B
makes it possible to build a formal model and to refine it until a translatable
implementation is obtained in a classic language such as JAVA, ADA and C.

Project Onboard equipment Ground equipment Commissioning
CdG VAL Atelier B

(Siemens)
Atelier B
(Siemens)

04/2007

CBTC in China Atelier B
(Alstom)

Atelier B
(Alstom)

2008

OCTYS L3 Atelier B
(Siemens)

SCADE–Proof Toolkit
(Ansaldo STS)

12/2009

SAET L1 Atelier B
(Siemens)

Atelier B
(Siemens)

12/2011

OURAGAN
L13

SCADE
(Thales RSS)

SCADE
(Thales RSS)

2012

OCTYS L5 SCADE
(Areva-TA)

Atelier B
(Siemens)

2012

PMI L1, L2 N.A. SCADE–Proof Toolkit
(Thales)

2009, 2010

CdG VAL
extension

Atelier B
(Siemens)

Atelier B
(Siemens)

06/2012

PMI L4 N.A. SCADE–Proof Toolkit
(Thales)

2012

LYON SCADE 5
(Areva-TA)

– SCADE 6 + Atelier B
– (Areva-TA)

2013

Table C.1. List of railway projects using formal methods

Classical B makes it possible to create software applications (complete or
integrating manual code). Classical B also makes it possible to create models
that enable the modeling of a problem and the verification that properties are
respected under certain assumptions. There are even some examples of
classical B models which are focused on the demonstration of a
mathematical theorem.

In the context of the management of the modeling of system aspects,
several approaches allow the definition of models based on the notion of an
action system. In the context of this type of modeling, we are more
concerned with the link between the people involved and the system, and
there are events on these links.

Conclusion 477

After delivering a solution for the creation of a safely functioning
software application, J.-R. Abrial addressed the system aspects, suggesting a
new version of the B language called EVENT-B, which is focused on the
notion of an event and on refining these events. A new book was published
[ABR 10], and the language is supported by the tool called RODIN2.

Instead of a changeover to EVENT-B, several projects have suggested
coupling Classical-B with a form of graphics such as UML and/or SysML.
This is so that the form of Classical B can be maintained in the modeling of
the algorithms. The graphic aspects are useful for creating a better
description and for taking the systems aspects into account.

Table C.2. Example of the complexity of B models ([BOU 06])

In this book, various tools that make it possible to apply the B method
have been presented, both industrial (Atelier B) and academic (ABTools,
BRILLIANT, etc.).

Chapter 13 is particularly interesting in that it allowed us to identify the
conditions under which the B method can be used in the aeronautical
domain. The first of these conditions involves the introduction of real
numbers and the second condition is linked to the qualification of the
component on the shield COTS. These two points show that there are still

2 More information is available at http://www.event-b.org/.

Name of the system Lines of B
code

Lines of generated
code

Language Number of
proof obligations

CDTC 5,000 3,000 ADA 700
KVB 60,000 22,000 ADA 10,000
KVB-SN 9,000 6,000 ADA 2,750
KVS 22,000 16,000 ADA 6,000
SACEM- simplified 3,500 2,500 Modula 2 550
SAET-METEOR 115,000 90,000 ADA 27,800
Eurocoder 10,000 4,500 ADA 4,200
CdG-VAL PADS:

186,440
30,632 ADA 62,056

UCA: 50,085 11,662 ADA 12,811

478 Formal Methods Applied to Complex Systems

elements requiring development and that making an open and free tool
available is an important direction for future work.

C.3. Conclusion

This book is part of a series of five books that cover different aspects of
formal techniques: static analysis of code, formal methods and tools.

The formal techniques and methods are now successfully being used for
projects of various sizes in industry. The associated tools have reached a
maturity so that we can account for the complexity of such applications.
Note that the complexity of industrial applications very often has an impact
on the processing time: within the context of the SAET-METEOR, it took
longer than a week in 1998 to analyze 100,000 lines of ADA code with the
Polyspace tool (see [BOU 11, Chapter 4] for more information), whereas
maintaining that would take 1 or 2 h.

Taking account of the techniques and formal methods has an impact on
the implemented process, and it is therefore necessary to build a new
referential that conforms to the quality standards being enforced. The
construction of this referential must take into account the fact that the model
can replace documents that were initially to be produced; however, it is
necessary to account for the system’s lifespan and the objectives of
associated maintenance. Indeed, if the tool is no longer maintained and
formalism is proprietary, it is difficult or even impossible to update the
application without the model.

Another difficulty of the model-centered approach is bringing the
software application’s level of safety to that of the implemented tools.

Although it is difficult to show that a compiler C is SSIL4, it is even
more difficult to show than a prover is SSIL4. Within the context of
compilers, it was possible to set up strategies based on redundancy and
diversity. As for specific tools such as provers, model-checking tools, and/or
tools for abstract interpretation, it is difficult to have two tools of similar

Conclusion 479

effectiveness within the same field3. Therefore, it is necessary to set up tool
qualification files.

The different standards (DO 178, ISO 26262, CEI/IEC 61508,
CENELEC EN 50128) show the concept of a qualification report. The
qualification of a tool depends on its impact on the final product.

Concerning formal techniques and methods, the question of tool
qualification is of primary importance because the complexity of the
implemented technologies (prover, model-checking, etc.), the confidentiality
aspect (licensed algorithm, etc.), the innovation aspect (new technology, few
users, etc.) and the maturity aspect (product resulting from research carried
out under a “free” license, etc.) do not allow confidence to be built easily.

C.4. Bibliography

[ABR 96] ABRIAL J.-R., The B Book: Assigning Programs to Meanings, Cambridge
University Press, Cambridge, August 1996.

[ABR 10] ABRIAL J.-R., Modeling in Event-B System and Software Engineering,
Cambridge University Press, Cambridge, 2010.

[BOU 11] BOULANGER J.-L. (ed.), Static Analysis of Software, ISTE, London and
John Wiley & Sons, New York, 2011.

[BOU 12a] BOULANGER J.-L. (ed.), Industrial Use of Formal Method: Formal
Verification, ISTE, London and John Wiley & Sons, New York, 2012.

[BOU 12b] BOULANGER J.-L. (ed.), Formal Methods: Industrial Use from Model to
the Code, ISTE, London and John Wiley & Sons, New York, 2012.

[BOU 14] BOULANGER J.-L. (ed.), Formal Methods Applied to Industrial Complex
Systems, ISTE, London and John Wiley & Sons, New York, 2014.

[CEN 00] CENELEC – EN 50126, Applications Ferroviaires, Spécification et
démonstration de la fiabilité, de la disponibilité, de la maintenabilité et de la
sécurité (FMDS), January 2000.

[CEN 01] CENELEC – EN 50128, Railway applications, Communications,
signalling and processing systems, Software for railway control and protection
systems, May 2001.

3 Recall that for several of the tools currently in use, the algorithms are not public and are
even under copyright.

480 Formal Methods Applied to Complex Systems

[CEN 11] CENELEC – EN 50128, Railway applications, Communications,
signalling and processing systems, Software for railway control and protection
systems, January 2011.

[IEC 08] IEC 61508, Sécurité fonctionnelle des systèmes électriques électroniques
programmables relatifs à la sécurité, Norme internationale, 2008.

[ISO 08] ISO 9001, Systèmes de management de la qualité – Exigences, 2008.

[ISO 09] ISO, ISO/CD-26262, Road vehicles – functional safety, 2009.
[Unpublished]

Glossary

AADL Architecture Analysis and Design Language

ACATS Ada Conformity Assessment Test Suite

ACU Alarm Control Unit

AFIS Association Française d’Ingénierie Système

(French Association of Systems Engineering)

AMN Abstract Machine Notation

ANSI American National Standards Institute

APU Auxiliary Power Unit

ASA Automata and Structured Analysis

ASIL Automotive SIL

ATO Automatic Train Operation

ATP Automatic Train Protection

ATS Automatic Train Supervision

BDD Binary Decision Diagram

CAN Controller Area Network

CAS Computer-Assisted Specification

CBTC Communication Based Train Control

CbyC Correct by Construction

482 Formal Methods Applied to Complex Systems

CCP Centralized Control Point

CdCF Cahier des Charges Fonctionnel

(Functional Requirements Specification)

CENELEC1 European Committee for Electrotechnical Standardization

CMMI Capability Maturity Model Integration

CPU Central Processor Unit

DAL Design Assurance Level

DoD Department of Defense

DV Design Verifier

E/E/PE Electric/Electronic/Programmable Electronic

EAL Evaluation Assurance Level

ECU Electronic Control Units

ERTMS European Rail Traffic Management System

FADEC Full Authority Digital Engine Control

FBD Function Block Diagram

FC Failure Condition

FDA Food and Drug Administration

FMECA Failure Mode and Effects Criticality Analysis

FT Functional Testing

GPS GNAT Programming Studio

GSL Generalized Substitution Language

GUI Graphical User Interface

HIL Hardware In the Loop

HR Highly Recommended

IDE Integrated Development Environment

1 See www.cenelec.eu.

Glossary 483

IEC2 International Electrotechnical Commission

iFACTS interim Future Area Controls Tools Support

IL Instruction List

IMAG Institut de Mathématiques Appliquées de Grenoble
(Institute of Applied Mathematics of Grenoble)

IPSN Institut de Protection et de Sûreté Nucléaire
(Institute of Nuclear Protection and Safety)

IRSN Institut de Radioprotection et de Sûreté Nucléaire
(Radioprotection and Nuclear Safety Institute)

ISO3 International Organization for Standardization

ISSRE International Symposium on Software
Reliability Engineering

IT Integration Testing

KCG Qualifiable Code Generator

KLoC 1000 LoC

LaBRI Laboratoire Bordelais de Recherche en Informatique
(Bordeaux Laboratory for Computer Research)

LD Ladder Diagram

LoC Lines of Code

MaTeLo Markov Test Logic

MBD Model-Based Design

MBT Model-Based Testing

METEOR METro Est Ouest Rapide (Train operation system
used by the Paris metro)

MISRA4 Motor Industry Software Reliability Association

MMI Man-Machine Interface

MPU Main Processor Unit

2 See www.iec.ch.
3 See www.iso.org/iso/home.htm.
4 See www.misra.org.uk.

484 Formal Methods Applied to Complex Systems

MTC Model Test Coverage

MTTF Mean Time To Failure

MU Multiple Unit

NHMO NATO HAWK Management Office

NR Not Recommended

NSA US National Security Agency

NSE No Safety Effect

OCR Optical Character Recognition

OFP Operational Flight Plan

OMG5 Object Management Group

OOTIA6 Object Oriented Technology in Aviation

OPRI Office de Protection contre les Rayonnements Ioisants
(Office of Ionizing Radiation Protection)

OS Operating System

PADS Pilot automatique double sense (two-way autopilot)

PAI-NG Poste d’aiguillage informatisé de nouvelle génération
(Next Generation Computerized Signaling Control)

PO Proof Obligation

PTS Problem of the Traveling Salesman

PWM Pulse With Modulation

QTP Quick Test Professional

R Recommended

R&D Research and Development

RAMS Reliability, Availability, Maintainability and Safety

5 See www.omg.org.
6 See www.faa.gov/aircraft/air_cert/design_approvals/air_software/oot.

Glossary 485

RAT Ram Air Turbine

RATP7 Régie Autonome des Transports Parisiens
(Autonomous Operator of Parisian Transports)

RER Réseau Express Régional (Regional Express Network)

RFT Rational Functional Tester

RM Requirement Management

ROM Read Only Memory

SACEM Système d’Aide à la Conduite, à l’Exploitation et à la
Maintenance (Assisted driving, Control, and
Maintenance System)

SADT Structured Analysis and Design Technique

SAET Système d’Automatisation de l’Exploitation des Trains
(Automation system of train operations)

SAO Spécification Assistée par Ordinateur
(Computer-aided Design)

SAS Software Architecture & Design

SCADE Safety Critical Application Development Environment

SFC Sequential Function Chart

SHOLIS Ship/Helicopter Operational Limits Instrumentation System

SIL Safety Integrity Level

SIS Safety Instrumented System

SMDS Software Module Design Specification

SMTP Software Module Test Plan

SOC System On a Chip

SPIN Système de Protection Intégré Numérique
(Digital Integrated Protection System)

SRS Software Requirement Specification

SSIL Software SIL

7 See www.ratf.fr.

486 Formal Methods Applied to Complex Systems

ST Structured Text

SU Single Unit

SUT Software Unit Test

TCMS Train Control Management System

TCO Tableau de Contrôle Optique (Visual Control Panel)

TFTA Terrain Following Terrain

TIS Tokeneer ID station

TOR Tout ou Rien (hit-or-miss)

UML Unified Modeling Language

UT Unit Testing

V&V Verification and Validation

WCET Worst-Case Execution Time

WP Weakest Precondition

List of Authors

Jens BENDISPOSTO
Formal Mind GmbH
Dusseldorf
Germany

Jean-Louis BOULANGER
Certifer
Anzin
France

François BUSTANY
Systerel
Aix en provence
France

Néstor CATAÑO
School of Engineering and
Informatics
University EAFIT
Medellín
Colombia

Philippe CHARPENTIER
National Institute of Research and
Safety (INRS)
Vandoeuvre-lès-Nancy
France

Mathieu CLABAUT
Systerel
Aix-en-Provence
France

Samuel COLIN
Saferiver
Paris
France

Ivo DOBRIKOV
Formal Mind GmbH
Dusseldorf
Germany

Daniel DOLLE
Siemens SAS I MO
Chatillon
France

Jean-Louis DUFOUR
Sagem, Safran group
Division Avionique
Eragny
France

Dominique EVROT
LPO
Louis Marchal de Molsheim
Molsheim
France

488 Formal Methods Applied to Complex Systems

Alexei ILIASOV
Newcastle University
UK

Sebastian KRINGS
Formal Mind GmbH
Dusseldorf
Germany

Pascal LAMY
National Institute of Research and
Safety (INRS)
Vandoeuvre-lès-Nancy
France

Thierry LECOMTE
Clearsy
Aix-en-Provence
France

Michael LEUSCHEL
Formal Mind GmbH
Dusseldorf
Germany

Ilya LOPATKIN
Newcastle University
UK

Dominique MÉRY
Henri Poincare University
Nancy
France

Christophe METAYER
Systerel
Aix-en-Provence
France

Jean-François PETIN
Research Centre in Automatic Nancy
(CRAN)
Nancy University US
Vandoeuvre-lès-Nancy
France

Dorian PETIT
University of Valenciennes
France

Daniel PLAGGE
Formal Mind GmbH
Dusseldorf
Germany

Alexander ROMANOVSKY
Newcastle University
UK

Víctor RIVERA
Madeira Interactive Technologies
Institute (M-ITI)
University of Madeira
Funchal
Portugal

Camilo RUEDA
Department of Computer Science
Pontificia Universidad Javeriana
Cali
Colombia

Neeraj Kumar SINGH
Henri Poincare University
Nancy
France

Tim WAHLS
Department of Mathematics and
Computer Science
Dickinson College
Carlisle, PA
USA

Index

A, B

Airbus, 312, 392
Ansaldo STS, 394
assertion, 92
automatic train protection (ATP), 27,
130

availability, 106
B Method, 3–15

C, D

CBTC, 27, 85, 86
CENELEC, 27–29, 31, 40, 45, 53,
134, 135, 142, 316, 317, 320

certification, 39, 143, 400, 417
certified, 42, 143, 352, 359, 370, 371
code generation, 25, 30, 39, 41, 47,
52, 53, 57, 59, 61, 78, 152, 203,
206, 207, 212, 215, 241, 242, 316,
340, 428

combination, 44, 91, 160, 161, 231,
430, 443, 449, 454, 470

compiler, 25, 30, 31, 58, 88, 89, 109,
403, 405, 439

compilation, 8, 23, 40, 59, 68, 88,
110, 117, 231, 411

confidence level, 136, 370, 385, 417

conformity, 11, 15, 24, 36, 53, 68, 90,
91, 107, 116, 136, 143, 145, 353,
392, 400

criticality, 85, 375, 388
cycle in B, 132,

E

error, 36
evaluation, 65
event,

unwanted, 264
exploration,

by model, 354–356

F, G

FAA, 316, 397
fault tree, 328–330

analysis (FTA), 329
reliability, 2, 88, 106, 136, 301, 317
formalization, 92–95, 151–184
formal,

formal method, 1
graph,

sequence, 328, 333,

490 Formal Methods Applied to Complex Systems

I

IEC, 41, 45, 135, 138, 142, 301, 316,
329, 350, 359, 397

interpretation,
abstract, 421

ISO, 5, 375, 376

M, N

memory protection unit (MPU), 143,
146

modeling systems, 148, 241
module, 4

O, P

OCTYS, 476
OURAGAN, 476
plane, 413
PMI, 476
prover, 53–56

R

RATP, 2, 28, 37, 44, 45, 56, 84, 130,
134, 137, 311, 312, 393, 472

reliability, 2, 88, 106, 136, 301, 317

S

SACEM, 2, 26, 84, 110, 317, 393–
397, 477

SAET-METEOR, 3
safety, 24–28, 35, 53, 56, 57, 84, 119,
120, 123, 129, 134, 135, 140, 311,
317, 476–477

SAGA, 394, 423
SAO, 395, 423
SCADE, 26, 378, 382, 394, 475, 476
security, 211, 247, 249, 293, 413
SIL, 134, 359, 398–399
SNCF, 56, 393,
SSIL, 53, 131

T

THALES, 312

V, W

validation, 15–20
verification, 15–20

	Cover
	Title Page

	Copyright

	Contents
	Introduction
	Chapter 1: Presentation of the B Method

	1.1. Introduction
	1.2. The B method
	1.2.1. Presentation
	1.2.2. The concept of an abstract machine
	1.2.2.1. Abstract machine
	1.2.2.2. Declarative part
	1.2.2.3. Composition part
	1.2.2.4. Executive part

	1.2.3. From machines to implementations
	1.2.3.1. Principle
	1.2.3.2. Refinement
	1.2.3.3. Process

	1.3. Verification and validation (V&V)
	1.3.1. Internal verification
	1.3.1.1. Principles
	1.3.1.2. Syntactic and semantic analysis
	1.3.1.3. Generation of proof obligations

	1.3.2. Validation or external verification

	1.4. Methodology
	1.4.1. Development by layer
	1.4.2. Role of the breakdown in the makeup of the POs
	1.4.3. Development cycle of a B project

	1.5. Feedback based on experience
	1.5.1. A few figures
	1.5.2. Some uses
	1.5.2.1. The current situation
	1.5.2.2. SAET-METEOR
	1.5.2.3. VAL CdG
	1.5.2.4. Eurobalise coder

	1.6. Conclusion
	1.7. Glossary
	1.8. Bibliography

	Chapter 2: Atelier B

	2.1. Introduction
	2.2. Automatic refinement
	2.3. Code generation
	2.4. Proof and model animation
	2.5. The move toward open source
	2.6. Glossary
	2.7. Bibliography

	Chapter 3: B Tools

	3.1. Introduction
	3.2. General principles
	3.3. Atelier B
	3.3.1. Project management
	3.3.2. Typechecking and PO generation
	3.3.2.1. Typechecking
	3.3.2.2. PO generation

	3.3.3. Code generation
	3.3.3.1. Verification of B0
	3.3.3.2. Code generation

	3.3.4. Prover
	3.3.4.1. Automatic prover
	3.3.4.2. Principles of proof in interactive mode
	3.3.4.3. Implementation of proof in interactive mode

	3.3.5. Tool qualification

	3.4. Open source tools
	3.4.1. Presentation
	3.4.2. ABTools
	3.4.2.1. Presentation
	3.4.2.2. The ANTLR compiler generator
	3.4.2.3. The ABTools environment
	3.4.2.3.1. Presentation
	3.4.2.3.2. Lexical and syntactic analysis
	3.4.2.3.3. Tree manipulation
	3.4.2.3.4. Generation of POs

	3.4.2.4. Scalability
	3.4.2.4.1. Classic B
	3.4.2.4.2. B Prime
	3.4.2.4.3. System B
	3.4.2.4.4. Event B

	3.4.2.5. Results

	3.5. Conclusion
	3.6. Glossary
	3.7. Bibliography

	Chapter 4: The B Method at Siemens

	4.1. Introduction
	4.1.1. Siemens Industry Mobility
	4.1.2. The CBTC system3
	4.1.3. Characteristics of B programs
	4.1.4. The target calculator

	4.2. The development process using B
	4.2.1. Development
	4.2.2. Informal specification
	4.2.3. Formalization of the specification
	4.2.3.1. General principles
	4.2.3.2. Cutting machines
	4.2.3.3. Architecture of the abstract model and the decomposition approach

	4.2.4. Refinement and coding
	4.2.4.1. General principles
	4.2.4.2. Stages in the refinement process
	4.2.4.3. Loops and abstract iteration
	4.2.4.4. Data refinement

	4.2.5. Proof
	4.2.5.1. General principles
	4.2.5.2. Proof in practice
	4.2.5.3. Ease of proof

	4.3. Monitoring
	4.3.1. Development review
	4.3.1.1. Review objectives
	4.3.1.2. Initiation criteria

	4.3.2. Testing
	4.3.3. Safety validation
	4.3.3.1. Specification analysis
	4.3.3.2. Proof validation
	4.3.3.3. Analysis of the abstract model
	4.3.3.4. Analysis of basic machines
	4.3.3.5. Production chain verification
	4.3.3.6. Operational tests

	4.4. Digging deeper
	4.4.1. Translation from B to Ada
	4.4.2. Abstract models and concrete models
	4.4.3. Functional calculation with safety monitoring
	4.4.3.1. Total proof
	4.4.3.2. Partial proof
	4.4.3.3. Proof by polarization

	4.4.4. Configuration
	4.4.5. Limitations
	4.4.5.1. The main program
	4.4.5.2. Time
	4.4.5.3. Real numbers
	4.4.5.4. Availability
	4.4.5.5. New properties

	4.5. Automatic refinement
	4.5.1. History
	4.5.2. Operational principles
	4.5.3. Interactive refinement

	4.6. Conclusion
	4.7. Glossary
	4.8. Bibliography

	Chapter 5: Industrial Applications for Modeling with the B Method

	5.1. Introduction
	5.2. Control-command systems for controlling platform doors
	5.3. Safety of microelectronic components
	5.4. Conclusion
	5.5. Glossary
	5.6. Bibliography

	Chapter 6: Formalization of Digital Circuits Using the B Method

	6.1. Introduction
	6.2. B method and VHDL
	6.3. Modeling digital circuits
	6.3.1. Modeling methodology
	6.3.2. Modeling a basic logic gate, NOT
	6.3.3. Modeling an additioner
	6.3.4. Modeling of complex circuit: a multiplexer

	6.4. VHDL libraries
	6.4.1. The STD_LOGIC_1164 library
	6.4.2. The B components for STD_LOGIC_1164
	6.4.3. The multiplexer

	6.5. VHDL to B
	6.6. Conclusions
	6.6.1. Some limitations
	6.6.2. Advantages
	6.6.3. Future work
	6.6.4. To finish

	6.7. Bibliography

	Chapter 7: Pragmatic Use of B: The Power of Formal Methods without the Bulk

	7.1. Introduction
	7.2. Prototyping for formal models
	7.3. Inspiration from agile methods
	7.4. Simultaneous development and validation
	7.5. Performances of software developed in B
	7.6. Use of infinity: separating algorithmic thinking and programming issues
	7.7. Industrial implementation of event-B
	7.8. B method for software and event-B
	7.9. Conclusion
	7.10. Glossary
	7.11. Bibliography

	Chapter 8: BRILLANT/BCaml — A Free Tools Platform for the B Method

	8.1. What is BRILLANT/BCaml?
	8.2. Organization
	8.3. Functions
	8.3.1. The historic kernel
	8.3.2. Code manipulation
	8.3.3. Proving B specifications

	8.4. Perspectives
	8.5. Bibliography

	Chapter 9: Translating B and Event-B Machines to Java and JML

	9.1. Introduction
	9.2. Background
	9.2.1. The B method
	9.2.2. The Event-B method
	9.2.3. JML

	9.3. Translating B to JML
	9.3.1. The translation
	9.3.1.1. Translating machines to classes
	9.3.1.2. Translating operations to methods

	9.3.2. The B2Jml tool
	9.3.3. Case study: translating the B social networking model to JML

	9.4. Translating Event-B to JML and Java
	9.4.1. The translation
	9.4.2. The EventB2Java tool
	9.4.2.1. EventB2Java tool usage
	9.4.2.2. Java implementation of Event-B mathematical notations in EventB2Java
	9.4.2.3. Support for Event-B model decomposition
	9.4.2.4. Support for code customization

	9.4.3. Case Study: translating the Event-B social networking model to Java and JML

	9.5. Future work and conclusion
	9.6. Bibliography

	Chapter 10: Event B

	10.1. Introduction
	10.2. Modeling and verification of a system
	10.2.1. Modeling
	10.2.2. Safety properties

	10.3. Event B: a modeling language
	10.3.1. Basic elements of an Event B model
	10.3.2. Invariance properties in Event B
	10.3.3. Refinement of events
	10.3.4. Structures for Event B models
	10.3.4.1. Contexts
	10.3.4.2. Machines

	10.4. Formal development of a sequential algorithm
	10.4.1. Derivation of an algorithm for computing the sum of a sequence of values by refinement and transformation of the model into an algorithm
	10.4.1.1. Description of the problem
	10.4.1.2. Specification of the problem to solve
	10.4.1.3. Refining for computing
	10.4.1.4. Focus on a value to keep
	10.4.1.5. Obtaining an algorithmic model

	10.4.2. Development of a sequential algorithm using the proof-based pattern call-as-event

	10.5. Development of a distributed algorithm
	10.5.1. Modeling distributed algorithms
	10.5.2. Elements of a proof-based pattern

	10.6. Tools
	10.6.1. Atelier B
	10.6.2. The Rodin platform

	10.7. Conclusion and perspectives
	10.7.1. Applications in case studies
	10.7.2. Conclusion and perspectives

	10.8. Bibliography

	Chapter 11: B-RAIL: UML to B Transformation in Modeling a Level Crossing

	11.1. Introduction
	11.2. Level crossings: general overview
	11.3. Managing requirements
	11.3.1. Requirements
	11.3.2. Recommendations, requirements and properties
	11.3.3. Requirements engineering
	11.3.3.1. From recommendations to requirements
	11.3.3.2. Traceability
	11.3.3.3. Verification
	11.3.3.4. Activities
	11.3.3.5. Implementation
	11.3.3.6. Standardization
	11.3.3.6.1. User requirements notation: URN
	11.3.3.6.2. System modeling language: SysML

	11.4. UML notation and the B method
	11.4.1. UML notation
	11.4.2. The B method
	11.4.3. Overview

	11.5. Step 1: requirement acquisition
	11.5.1. Requirement extraction
	11.5.2. Risk identification
	11.5.3. Identification of services

	11.6. Step 2: environment and risk analysis
	11.6.1. Identification of the environment
	11.6.2. Description of the environment
	11.6.3. Environmental faults
	11.6.4. Maintenance
	11.6.5. Impact of the environment on the system
	11.6.6. Results

	11.7. Step 3: component breakdown
	11.7.1. Requirement selection
	11.7.2. Architecture
	11.7.3. Behavior
	11.7.3.1. The level-crossing control system (LCCS)
	11.7.3.2. The onboard system (TCS)

	11.8. Step 4: verification
	11.8.1. Introduction
	11.8.2. Description of formal models

	11.9. UML2B
	11.10. Conclusions
	11.11. Glossary
	11.12. Bibliography

	Chapter 12: Feasibility of the Use of Formal Methods for Manufacturing Systems

	12.1. Introduction
	12.2. Presentation of the requirement
	12.3. The methods chosen and a brief description of them
	12.3.1. The B method3
	12.3.2. Specification with SysML5 and formal verification by model checking

	12.4. Description of the machine: mechanical press with clutch-brake
	12.4.1. Description of the press
	12.4.2. Brief description of the operating modes
	12.4.3. Brief description of the means of protection
	12.4.4. Characteristics of the programmable logic controller

	12.5. Process followed for the design, validation and generation of the software using the B method
	12.5.1. Creation of a B compatible specification
	12.5.1.1. Factorization versus enumeration
	12.5.1.2. An example of factorization and enumeration
	12.5.1.3. Part of the specification

	12.5.2. B Model: specification and design
	12.5.2.1. Characteristics of the B model generated for the press
	12.5.2.2. Example of refinement and adaptation to the target

	12.5.3. Generation of a C code and simulation
	12.5.4. Generation of the code for the PLC and validation
	12.5.4.1. Presentation
	12.5.4.2. Example of a translation rule: the case of the B instruction “Select”

	12.5.5. Conclusion on the use of the B method for the creation of application software in an industrial and manufacturing context

	12.6. Formalization of the requirements and properties helping SysML and verification of the unitary modules by model checker
	12.6.1. Overall view of the design process for manufacturing systems
	12.6.2. Modeling the requirements
	12.6.3. Modeling functional and organic architectures
	12.6.4. Traceability of the requirements
	12.6.5. Development and verification of the software command components
	12.6.6. Discussion

	12.7. Conclusion on the use of formal techniques in the field of manufacturing
	12.8. Glossary
	12.9. Bibliography

	Chapter 13: B Extended to Floating-Point Numbers: Is it Sufficient for Proving Avionics Software?

	13.1. Introduction
	13.2. Motivation
	13.3. Integers and the railway origins of the B method
	13.3.1. The SACEM project6
	13.3.2. The need for an innovative software method
	13.3.3. The coded processor and integers
	13.3.4. The limitations of Hoare logic and the beginnings of B
	13.3.5. Successes of B, and integers once more!
	13.3.6. The positive influence of “fail-safe”16 on complexity

	13.4. The avionics context: floating-point numbers and complexity
	13.5. Barking up the wrong tree: separation between integer and floating-point calculations
	13.6. IEEE 754 Floating-point numbers
	13.6.1. Scope of the standard
	13.6.2. The behavior of floating-point numbers is complex
	13.6.3. Infinities and NaNs

	13.7. Reasons underlying extension to floating-point numbers
	13.7.1. Overview
	13.7.2. Real numbers
	13.7.3. Concrete floating-point numbers
	13.7.4. Abstract floating-point numbers

	13.8. Returning to the useful properties that need to be proved
	13.8.1. In avionics, specifications are complex
	13.8.2. Can vector data be abstracted?
	13.8.3. The gap between algorithmic specifications and pre-conditions of leaf procedures
	13.8.4. Integrators and the formalization of the system boundaries

	13.9. Conclusion
	13.10. Appendix: the confusion between overflow, infinity and illegal parameters
	13.10.1. Presentation of the issue
	13.10.2. Confusion between overflow and infinity
	13.10.3. Confusion between infinity and illegal parameters

	13.11. Glossary
	13.12. Bibliography

	Chapter 14: From Animation to Data Validation: The ProB Constraint Solver 10 Years On

	14.1. The problem
	14.1.1. Animation for B
	14.1.1.1. Challenge

	14.1.2. Model checking B
	14.1.2.1. Challenge

	14.1.3. Data validation
	14.1.3.1. Challenge

	14.1.4. Constraint-based checking and disproving for B
	14.1.4.1. Challenge

	14.1.5. Summary

	14.2. Choice of implementation technology
	14.2.1. What was used before?
	14.2.1.1. Proof
	14.2.1.2. Naive enumeration

	14.2.2. Why was constraint logic programming used?

	14.3. Implementation of the PROB constraint solver
	14.3.1. Architecture
	14.3.1.1. Overview
	14.3.1.2. Coroutines and determinism
	14.3.1.3. Controlling choice points via waitflags
	14.3.1.4. Coping with large datavalues
	14.3.1.5. Integrating CLP(FD)
	14.3.1.6. Linking solvers via reification
	14.3.1.7. Challenges

	14.3.2. Validation
	14.3.2.1. Testing and continuous integration
	14.3.2.2. Self- model check with mathematical laws
	14.3.2.3. Test coverage
	14.3.2.4. Positive and negative evaluation

	14.4. Added value of constraint programming
	14.4.1. Cost of development
	14.4.2. User feedback
	14.4.3. Was it difficult/necessary for the end user to understand constraint technology?
	14.4.4. Comparison with non-constraint solving tools
	14.4.5. Comparison with other technologies
	14.4.6. Future plans
	14.4.7. Lessons

	14.5. Acknowledgments
	14.6. Bibliography

	Chapter 15: Unified Train Driving Policy

	15.1. Introduction
	15.2. Overview
	15.3. Semantics
	15.4. Modeling notation
	15.5. Verification
	15.5.1. Constraint satisfiability
	15.5.2. Hazard avoidance
	15.5.3. Example

	15.6. Discussion
	15.7. Conclusions

	15.8. Bibliography

	Conclusion
	Glossary
	List of Authors
	Index

