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Preface

The aim of this book is to present the basic facts of linear functional anal-
ysis related to applications to some fundamental aspects of mathematical
analysis.

If mathematics is supposed to show common general facts and struc-
tures of particular results, functional analysis does this while dealing with
classical problems, many of them related to ordinary and partial differential
equations, integral equations, harmonic analysis, function theory, and the
calculus of variations.

In functional analysis, individual functions satisfying specific equations
are replaced by classes of functions and transforms which are determined by
each particular problem. The objects of functional analysis are spaces and
operators acting between them which, after systematic studies intertwining
linear and topological or metric structures, appear to be behind classical
problems in a kind of cleaning process.

In order to make the scope of functional analysis clearer, I have chosen
to sacrifice generality for the sake of an easier understanding of its methods,
and to show how they clarify what is essential in analytical problems. I
have tried to avoid the introduction of cold abstractions and unnecessary
terminology in further developments and, when choosing the different topics,
I have included some applications that connect functional analysis with other
areas.

The text is based on a graduate course taught at the Universitat de
Barcelona, with some additions, mainly to make it more self-contained. The
material in the first chapters could be adapted as an introductory course
on functional analysis, aiming to present the role of duality in analysis, and

xi



xii Preface

also the spectral theory of compact linear operators in the context of Hilbert
and Banach spaces.

In this first part of the book, the mutual influence between functional
analysis and other areas of analysis is shown when studying duality, with
von Neumann's proof of the Radon-Nikodym theorem based on the Riesz
representation theorem for the dual of a Hilbert space, followed by the rep-
resentations of the duals of the I? spaces and of C (K), in this case by means
of complex Borel measures.

The reader will also see how to deal with initial and boundary value
problems in ordinary linear differential equations via the use of integral
operators. Moreover examples are included that illustrate how functional
analytic methods are useful in the study of Fourier series.

In the second part, distributions provide a natural framework extend-
ing some fundamental operations in analysis. Convolution and the Fourier
transform are included as useful tools for dealing with partial differential
operators, with basic notions such as fundamental solutions and Green's
functions.

Distributions are also appropriate for the introduction of Sobolev spaces,
which are very useful for the study of the solutions of partial differential
equations. A clear example is provided by the resolution of the Dirichlet
problem and the description of the eigenvalues of the Laplacian, in combi-
nation with Hilbert space techniques.

The last two chapters are essentially devoted to the spectral theory of
bounded and unbounded self-adjoint operators, which is presented by us-
ing the Gelfand transform for Banach algebras. This spectral theory is
illustrated with an introduction to the basic axioms of quantum mechanics,
which motivated many studies in the Hilbert space theory.

Some very short historical comments have been included, mainly by
means of footnotes. For a good overview of the evolution of functional
analysis, J. Dieudonne's and A. F. Monna's books, [10] and [31], are two
good references.

The limitation of space has forced us to leave out many other important
topics that could, and probably should, have been included. Among them
are the geometry of Banach spaces, a general theory of locally convex spaces
and structure theory of Frechet spaces, functional calculus of nonnormal
operators, groups and semigroups of operators, invariant subspaces, index
theory, von Neumann algebras, and scattering theory. Fortunately, many
excellent texts dealing with these subjects are available and a few references
have been selected for further study.



Preface xiii

A small number of references have been gathered at the end of each
chapter to focus the reader's attention on some appropriate items from a
general bibliographical list of 44 items.

Almost 240 exercises are gathered at the end of the chapters and form
an important part of the book. They are intended to help the reader to
develop techniques and working knowledge of functional analysis. These
exercises are highly nonuniform in difficulty. Some are very simple, to aid
in better understanding of the concepts employed, whereas others are fairly
challenging for the beginners. Hints and solutions are provided at the end
of the book.

The prerequisites are very standard. Although it is assumed that the
reader has some a priori knowledge of general topology, integral calculus with
Lebesgue measure, and elementary aspects of normed or Hilbert spaces, a
review of the basic aspects of these topics has been included in the first
chapters.

I turn finally to the pleasant task of thanking those who helped me
during the writing. Particular thanks are due to Javier Soria, who revised
most of the manuscript and proposed important corrections and suggestions.
I have also received valuable advice and criticism from Maria J. Carro and
Joaquim Ortega-Cerda. I have been very fortunate to have received their
assistance.

Joan Cerda
Universitat de Barcelona





Chapter 1

Introduction

The purpose of this introductory chapter is to fix some terminology that
will be used throughout the book and to review the results from general
topology and measure theory that will be needed later. It is intended as a
reference chapter that initially may be skipped.

1.1. Topological spaces

Recall that a metric or distance on a nonempty set X is a function

d : X x X - [O,oo)

with the following properties:

1. d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x) for all x, y E X, and

3. d(x, y) < d(x, z) + d(z, y) for all x, y, z E X (triangle inequality).

The set X equipped with the distance d is called a metric space. If
x E X and r > 0, the open ball of X with center x and radius r is the set
BX(x, r) _ {y E X; d(y, x) <r}, while BX(x, r) _ {y E X; d(y, x) < r}
denotes the corresponding closed ball.

Of course, a first example is the real n-dimensional Euclidean space, Rn,
with the Euclidean distance between two points x, y E Rn defined to be

d(x,y) :_ Ix - y _
n

_ yjl2
1 i

j=1N

1



2 1. Introduction

where, for x = (x1,. . . , xn),

(Exi2)l/2
j=1

the Euclidean norm of x.

1.1.1. Topologies. Most continuity properties will be considered in the
context of a metric, but we also need to consider the more general setting
of topological spaces.

Recall that a nonempty set X is called a topological space if it is
endowed with a collection T of sets having the following properties:

1. O, X E T,

2. A,BET=AfBET, and
3. UAEAAET1fACT.

The elements of T are called the open sets of the space, and T is called
the topology. The closed sets are the complements GC = X \ G of the
open sets G E T.

A subset of X which contains an open set containing a point x E X is
called a neighborhood of x in X. A collection lit (x) of neighborhoods of
a point x is a neighborhood basis of x if every neighborhood V of this
point contains some U(x) E lit (x). Of course, the collection of all open sets
that contain x is a neighborhood basis of this point.

The interior of A C X is defined as the set Int A of all points x such
that A contains some neighborhood U(x) of x. It is the union of all open
sets contained in A, and A is an open set if and only if Int A = A.

The closure A of A is the set of all points x E X such that U(x) n A 70
for every neighborhood U (x) of x. Obviously A is closed since, if x ¢ A,
we can find an open neighborhood U(x) contained in AC, so that this set is
open. Moreover, A is contained in every closed set F that contains A, since
FC is an open set whose points do not belong to the closure of A.

A sequence {xn} C X converges to a point x E X if every neighbor-
hood of x contains all but finitely many of the terms xn. Then we write
limn-}oo xn = x or xn -+ x as n -+ oo.

All the topological spaces we are interested in will be Hausdori,1 which
means that for two arbitrary distinct points x, y E X one can find disjoint
neighborhoods of x and y. This implies that every point {x} is a closed set,

1 Named after the German mathematician Felix Hausdorff, one of the creators, in 1914, of
a modern point set topology, and of measure theory. He worked at the Universities of Leipzig,
Greifswald, and Bonn.
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since any other point has a neighborhood that does not meet {x}, and {x}c
is open.

Moreover, in a Hausdorff space, limits are unique. Indeed, if xn -+ x,
then for any neighborhood U(x) there exists N so that xn e U(x) if r> N;
for any other point y we can find disjoint neighborhoods U(x) and U(y) of
x and y, and it is impossible that also xn e U(y) if n > N.

Let us gather together some elementary facts concerning topological
spaces:

(a) Suppose (Xi, 'Ti) and (X2, T) are two topological spaces. A function
f : Xl -+ XZ is said to be continuous at x e Xl if, for every neighborhood
V (y) of y = f(x) E X2, there exists a neighborhood U(x) of x such that
f(U(x)) C V (y). Obviously, we may always assume that V (y) E V(y) and
U(x) E if(x) if U(x) and V(y) are neighborhood bases of x and y.

(b) If f : Xl -+ XZ is continuous at every point x of Xl, f is said to be
continuous on Xl. This happens if and only if, for every open set G C X2,
the inverse image f(G) is an open set of Xl, since f(U(x)) C V (y) C G
means that U(x) C f(G).

By taking complements, f is continuous if and only if the inverse images
of closed sets are also closed. Moreover, in this case, 1(A) C f(A) for
any subset A of Xl since, if U(x) f1 A 01 when U(x) E Lf(x), for every
U(f (x)) E Lf (f (x)) we may choose U(x) so that f(U(x)) C U(f (x)) and
then f(U(x)) fl f(A) C U(f (x)) n f(A) # 0.

(c) Suppose two topologies T and T are defined on X. Then T is said
to be finer than 7, or T is coarser than 'Ti, if Tz C 71, which means that
every 72-neighborhood is also a Ti-neighborhood, or that the identity map
I : (X, Ti) - (X, T) is continuous.

(d) If Y is a nonempty subset of the topological space X, then the
topology T of X induces a topology on Y by taking the sets Gf1Y (GET) as
the open sets in Y. With this new topology, we say that Y is a topological
subspace of X. The closed sets of Y are the sets F fl Y, with F closed in
X.

(e) Many topologies encountered in this book can be defined by means of
a distance. The topology of a metric space2 X is the family of all subsets
G with the property that every point x e G is the center of some open (or

2The name is due to F. Hausdorff (see footnote 1 in this chapter), but the concept of metric
spaces was introduced in his dissertation by the French mathematician Maurice Frechet (1906).
See also footnote 2 in Chapter 3.
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closed) ball contained in G. It is not hard to verify that the collection of
these sets satisfies all the properties of a topology on X.

It is an easy exercise to check that open balls are open sets, closed balls
are closed, xn -+ x if and only if d(xn, x) -+ 0, and that, for a given point
x e X, the balls BX (x,1 /n) (n e N) form a countable neighborhood basis
of x.

It follows from the triangle inequality that BX (x, r) n Bx (y, r) = 0 if
d(x, y) = 2r > 0 and the topology of the metric space is Hausdorff.

Suppose A is a subset of the metric space X. Since x E A if and only
if BX (x,1 /n) n A 0 for every n E N, by taking an e BX (x,1 /n) n A, we
obtain that x e A if and only if x = limn an, i.e., d(x, an) -+ 0, for some
sequence {a} C A. That is, the closure is the "sequential closure".

Similarly, a function f : X1 -+ X2 between two metric spaces is continu-
ous at x e X1 if and only if f(x) = limn f(x) whenever x = limn xn in Xl.
Thus, f is continuous if it is "sequentially continuous" (see Exercise 1.9(a)).

But one should remember that knowledge of the converging sequences
does not characterize what a topology is or when a function is continuous
(cf. Exercise 1.9). A topological space is said to be metrizable when its
topology can be defined by means of a distance.

1.1.2. Compact spaces. A Hausdorff topological space (K, T) is said to
be compact if, for every family {Gj}2EJ of open sets such that

K = Gj,
jEJ

a finite subfamily {G21,.. . , Gjn } can be chosen so that

K=Gj1

By considering complements, compactness is equivalent to the property
that for a family of closed sets Fj = G (j e J) such that every finite
subfamily has a nonempty intersection (it is said that the family has the
finite intersection property), J F is also nonempty.

A subset K of a Hausdorff topological space X is said to be compact if
it is a compact subspace of X or, equivalently, if every cover of K by open
subsets of X contains a finite subcover.

It is also awell-known fact that a metric space K is compact if and only
if it is sequentially compact; this meaning that every sequence {xn} C K
has a convergent subsequence.

In a metric space X it makes sense to consider a Cauchy sequence
{xk}, defined by the condition d (xp, xQ) -+ 0 as p, q -+ 00; that is, to every
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e > 0 there corresponds an integer NE such that d(xp, xy) < s as soon as
p>NEandq>NE.

If {xj} is convergent in the metric space, so that d(xk, x) -3 0 as k - oo,
then {xk} is a Cauchy sequence, for d(xp, xy) < d(xp, x) + d(xq, x) -+ 0 as
p, q -+ oo. The metric space is called complete if every Cauchy sequence
in X converges to an element of X.

Every compact metric space K is complete, since the conditions xnk -3 x
and d(xp, xy) -+ 0, combined with the triangle property, imply that xn -+ x.

In a metric space, a set which is covered by a finite number of balls with
an arbitrarily small radius is compact when the space is complete:

Theorem 1.1. Suppose A is a subset of a complete metric space M. If
for every e > 0 a finite number of balls with radius e cover A, then A is
compact.

Proof. Let us show that every sequence {an} C A has a Cauchy subse-
quence.

Denote {an,o} = {an}. Since a finite number of balls with radius 1/2m+1
covers A, there is a ball B(c,1 /2) which contains a subsequence {an,i} of
{an}. By induction, for every positive integer m, we obtain {an,m+i} C
B(cm+1,1/2"2+1) which is a subsequence of {an,m}, since a finite number of
balls with radius 1/2m+1 cover A.

The "diagonal subsequence" {am,m} is then a Cauchy subsequence of
{an}, since ap,p E B(Cm, 1/2) if p > m, so that d(ap,p, aq,q) < 2/2"2 if

p,q>_m.

Finally, if {x} is any sequence in X, by choosing an e A so that
d (an, xn) <1/n and a Cauchy subsequence {amn } of {a}, which converges
to a point x e A, it is clear that also xmn -+ x, since

d(xmn, x) < d(xmn, amn) + damn, x) + 0.

This shows that A is sequentially compact.

In Rn, a set is said to be bounded if it is contained in a ball and, by the
Heine-Borel theorem, every closed and bounded set is compact. This is
a typical fact of Euclidean spaces which is far from being true for a general
metric space, even if it is complete.

The following properties are easily proved:

(a) In a HausdorfF topological space X, if a subset K is compact, then
it is a closed subset of X.

(b) In a compact space, all closed subsets are compact.
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(c) If f : Xl -+ X2 is a continuous function between two Hausdorff
topological spaces and K a compact subset of Xl, then f(K) is a
compact subset of X2.

Property (a) is proved by assuming that there is some point x E K \ K.
Then disjoint couples of open neighborhoods Uy(x) of x and V(y) of y for
every y e K may be taken; by compactness, K C U=1 V (yk) and U :_
ni U (x) would be a neighborhood of x disjoint with K, contrary toNk- yk
xEK.

To prove (b), complete any open covering of the closed subset with the
complement of the subset, yielding an open covering of the whole space;
then use the compactness of the space to select a finite covering.

In (c), the preimage by f of an open covering off (K) is an open covering
of K, and a finite subcovering of this covering of K yields a corresponding
finite subcovering for f(K).

Suppose (X3, 7) is a family of topological spaces. The product topol-
ogy T on the product set X = UjEJ X3 is defined as follows:

Let '113 : X -+ X3 be the projection on the jth component and, for every
x = {xj}jEJ in X, let U (x) denote the collection of the sets of the type

U(x) - fJ U(x3) - n rj 1(U.7(x.7))
jEJ jEJ

where U3 (xi) is an open neighborhood of x3 and Uj (x3) = X3 except for
a finite number of indices j e J. Then, by definition, G E T if, for every
x E G, x e U(x) C G for some U(x) E if (x). It is readily checked that T
is a topology, which is Hausdorff if every (X3, T) is a Hausdorff topological
space.

Obviously the projections 71 are all continuous, and T is the "small-
est" topology on X with this property, since for such a topology every set

has to be a neighborhood of x.

Theorem 1.2 (Tychonoff3). If K3 (j e J) is a family of compact spaces,
then the product space K = H3EJ K3 is also compact.

Proof. Let .F be a family of closed sets of K with the finite intersection
property and consider the collection I of all families of this type that contain
.F, ordered by inclusion. By Zorn's lemma,4 at least one of these families,

3Named after the Russian mathematician Andrey N. Tychonoff, who proved this theorem
first in 1930 for powers of [0, 1]. He originally published in German, but the English transliteration
Tichonov for his name is also commonly used. E. Cech proved the general case of the theorem in
1937.

4 Zorn's lemma on partially ordered sets will be invoked several times in this book. It is
equivalent to Zermelo's axiom of choice in set theory. A binary relation on a set X is said to
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F, is maximal, since, if {J} C 1 is totally ordered, then Ua F also has
the finite intersection property and is an upper bound for {J}.

The closed sets irk (F) C where F E .F', also have the finite in-
tersection property and every space K3 is compact. Hence we can find
x E flFEF' irk (F) and, if U3(x3) is a closed neighborhood of x3 E K3,
it follows that lr-1(Uj(xj)) E F since F is maximal. It follows that

flFEF' ir3(F) = lx3I.
Choosing U3 (x3) = K3 except for finitely many of the indices j e J, we

obtain
U(x) - n lrj 1(U.7(xj))

jEJ jEJ

and [TjEJ U3(x3) fl F # 0 for every f e F. Then, if F E .F', every neighbor-
hood of x = {xj}3EJ intersects F, and x e F since F is closed. This proves
that flFEFFO. D

1.1.3. Partitions of unity. A locally compact space is a Hausdorff
topological space with the property that every point has a neighborhood
basis of compact sets.

We suppose that X is a metric locally compact space, for instance any
nonempty closed or open subset of Rn, with the induced topology (see also
Exercise 1.5). In this section, we use the letter G to denote an open subset
of X, and we use K for a compact subset of X.

We will represent by C(X) the set of all real or complex continuous
functions g on X whose support, supp g = {g 0}, is a compact subset of
X. We consider CM(G) C C(X) by defining g(x) = 0 when x G, for every
g E CM(G).

Note that if K is a compact subset of G, we can consider K C Int L C L,
where L is a second compact subset of G, since, if for every x e K we select
a neighborhood V (x) with compact closure V (x) C G, we only need to take

Then

d(x, L°)
Q(x)

d(x, K) + d(x, Lc)

defines a function o e CM(G) such that 0 < o < 1 and o(x) = 1 for all x e K.
We say that o is a continuous Urysohn function for the couple K C G.

be a partial order if the following properties are satisfied: (a) x x, (b) if x y and y z,
then x -< z, and (c) if x -< y and y -< x, then x = y. A subset Y of the partially ordered set
X is said to be totally ordered if every pair x, y E Y satisfies either x y or y x. According
to Zorn's lemma, if every totally ordered subset Y of a nonempty partially ordered set X has an
upper bound zy E X (this meaning that y -< zy for every y E Y), then X contains at least one
maximal element (an element z such that z x implies z = x).
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With the notation g -< G we will mean that g e CM(G) and 0 < g < 1,
and K -< g will mean that g e CM(G) and g = 1 on a neighborhood of K
and 0 <g < 1. Thus, there is a Urysohn function g such that K -< g -< G.

Theorem 1.3. Let {1i. . . , Stm} be a finite family of open subsets of X
that cover the compact set K C X. Then there exists a system of functions
cps e C(c) which satisfies

1. 0 < cps < 1 for every j = 1, ... , m and
2. >1cp(x)=1foreveryxeK.

This system {cpj}7 1 is called a partition of unity subordinate to the cov-
ering {521, ... , 52,,,,} of K.

Proof. Let us choose a system K3 C S2 (1 < j < m) of compact sets that
covers K, that can be constructed as follows if

K C Bx(xi,ri) U... U gx(xN,rN)

with BX(xi,ri) C Std, just define

K3 := U{Bx(xi,ri) fl K; Bx (xz> rz) C 1}.

For every j let o be a Urysohn function for the couple K2 C Std. If we
define

O1 ok (1 <km),
an induction argument shows that

1++k=1-(l-Q1)(1-Q2)(1-Qk)
if 1<k < m. If x E K, o2(x) = 1 for some j. U

Remark 1.4. If G is open in Rn, it is shown in Chapter 6 that the Urysohn
functions o can be chosen to be C°° (cf. Section 6.1). In this case, the
functions cod are also smooth.

1.2. Measure and integration

The Riemann integral on Rn, which may be historically grounded and useful
for numerical computation and sufficient in many areas of mathematics, is
far from being adequate for the requirements of functional analysis. Much
more appropriate is the Lebesgue integral, based on computing the measure
of level sets of functions.

We will summarize the Lebesgue construction for a general measure.

A measurable space is a nonempty set Il where a distinguished col-
lection of subsets has been selected having the properties of a cr-algebra,
meaning that the following axioms are satisfied:
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1.

2. If {Ak}1 is a sequence of sets in , then U°=1 Ak E .

3. If A E , then its complement AC = SZ \ A is also in .

These properties also imply that 0 = SZC E , that n 1 A E if {Ak}i C
, and A \ B = A n BC E if A, B E . The sets in are the measurable
sets of the measurable space.

If 11 is any nonempty set, a trivial example of a-algebra is the collection
P(S1) of all subsets of 11.

In our applications 11 can be assumed to be a locally compact metric
space, or an open or closed subset of Rn, and it can be assumed that the
measurable sets are the Borel sets of 11, the elements of the Borel a-
algebra Bc, which is the intersection of all the a-algebras that contain all
the open sets of 11; that is, Bc is the a-algebra generated by the open sets
of f

A measure (sometimes also called a positive measure) µ on the mea-
surable space (S2, E) is a mapping

µ : E -+ [O,oo]

such that µ(0) = 0 and with the following Q-additivity property:
If {Ak}1 is a sequence of disjoint sets in E, then

00 00

(Ak) _
>µ(Ak)

k=1 k=1

We use the symbol U to indicate a union of mutually disjoint sets.

A measure space is a measurable space (S2, E) with a distinguished
measure, p.: E -+ [0, oo].

The following properties are easy consequences of the definitions:

Finite additivity, µ(A1 (±J U A.,,,,) =µ(A1) + + µ(A.,,,,), since
the finite family can be completed with the addition of a sequence
of empty sets to obtain a countable disjoint family.
µ(A) < µ(B) if A C B, since B = A U (B \ A) and µ(B) _

If A.,,,, T A (i.e., A is the union of an increasing sequence of mea-
surable sets, A.,,,,), then µ(A) = since A = Al l+J (AZ
Ai)U(As\ (A2 U A1)) t. ..,
If Am ,. A (i.e., A is the intersection of a decreasing sequence of
measurable sets) and µ(A1) < oo, then µ(A) = since

- p.(A) = limm(p.(Ai) - p.(Am)).
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All our measures will be v-finite: S2 = Ui Stk with <00.

A simple example in any set 1 2 is the Dirac delta-measure, 8 located
at an arbitrary point p E 12, defined on any set A C St by

Xa(p)

where XA stands for the characteristic function of the set A, such that
X,y(x) = 1 if x E A and XA(x) = 0 when x ¢ A. Here the v-algebra E
is taken to be all subsets of St.

But the main example for us is the Lebesgue measures Al of Borel
sets of R. The change of variables formula is supposed to be known and
it shows that this measure is invariant by rigid displacements, that is, by
translation, by rotation, and by symmetry. If A is an interval, IAI is the
volume of A (the length if n = 1, and the area if n = 2).

The Lebesgue measure is an example of Borel measure6 on Rn, that
is, a measure µ on the Borel v-algebra which is finite on compact sets. It is
the only Borel measure on Rn which is invariant by translation, and such
that the measure of the unite cube [0, 1]n is 1.

We will see in Theorem 1.6 that every Borel measure on Rn is a regular
measure, meaning that the following two properties hold:

(a) Outer regularity: For every Borel set B,

µ(B) = inf{µ(G); G B,G an open subset of Rn}.

(b) Inner regularity: For every Borel set B,

µ(B) =sup{µ(K); K C B, K a compact subset of Rn}.

Given two Q-finite measure spaces, (521, E1, µl) and (522, E2,µ2), the
product Q-algebra E = E1 ® E2 is defined to be the smallest v-algebra
containing all the sets Al x A2 (A1 E El, A2 E E2). It can be shown
that there is a unique measure µ on E, the product measure, such that

x Aa) =
In the special case of the Borel measures on Rn, it easy to show that

13R. ® BR- BRiz+m , and the product of the corresponding Lebesgue mea-
sures is the Lebesgue measure on the Borel sets in

In measure theory only functions f : 1 2 -+ R such that every level set
{f > r} :_ {w E St; f(w) > r} (r E R) is measurable are admissible. They

5 Described by the French mathematician Henry Lebesgue in his dissertation "Integrale,
longueur, aire", in 1902 at the University of Nancy. He then applied his integral to real anal-
ysis, with the study of Fourier series. In fact, this integral had been previously obtained by W.
H. Young.

6 Named after the French mathematician Emile Borel, one of the pioneers of measure theory
and of modern probability theory.
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are called measurable functions and, with the usual operations, they form
a real vector space which is closed under pointwise limits, supremums and
infimums for sequences of measurable functions. Simple functions,

N

S = AmXAm (An E E, Am E R),
m=1

where we may suppose that the measurable sets An are disjoint, are examples
of measurable functions. In fact, every measurable function, f, is a pointwise
limit of a sequence of simple functions sn such that

(1.1) 1sn(x)I ' f(x) for every x E SZ.

To obtain this sequence, consider f = f + - f - (f+(x) = max(f (x), 0)) and,
if f > 0, define

n2n k- 1

(1.2) sn = x{ f>n} + n2
x{ nl <f< n }.

2 2
k=1

If f is bounded, sn - f uniformly on SZ as n -f oo.

The Lebesgue integral f f dµ (or j f(x) dx) is then defined as follows:
> 0,1f f

f N

(1.3) J f dµ := sup ajµ(Ai) E [0,oo},
n=1

where the "sup" is extended over all simple functions
N

S - a.7XA; (N EN, A = s1(a) E E)
j=1

such that 0 < s < f.
This integral of nonnegative measurable functions is additive and pos-

itively homogeneous. Moreover f f dµ = 0 if and only if µ({ f # 0}) = 0,
that is, f = 0 almost everywhere (a.e.), and it satisfies the following funda-
mental property:

Monotone convergence theorem. If 0 < fn(x) T f(x) b'x E St (or a.e.),
then f fnd/itf f dµ.

If the convergence is not monotone, the following inequality still holds:

dµ.Fatou lemma.? If fn(x) > 0 `dx E St, then f lim inf In dµ < lim inf f In

?Obtained by the French mathematician Pierre Fatou (1906) in his dissertation, when working
on the boundary problem of a harmonic function. Fatou also studied iterative processes, and in
1917 he presented a theory of iteration similar to the results of G. Julia which initiated the theory
of complex dynamics.
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If f = f + - f, the integral f f dµ := f f + dµ - f f - dµ is defined if at
least one of the integrals ff dµ is finite, and we write f E G1(µ) if both
integrals are finite, that is, if f Ill dµ = f f+ dµ + f f - dµ < oo. In this
case, f is said to be integrable or absolutely integrable.

Then, with the usual operations, G1(µ) is a real vector space. On this
linear space, the integral is a positive linear form: f f dµ > 0 if f > 0.
Hence, f f dµ < f g dµ if f< g, and I f f dµl < f fdµ

Moreover, the following fundamental convergence result also holds:

Dominated convergence theorem. If f(x) -+ f(x) dx E SZ (or a.e.) and
f< g(x) dx E S2 (or a.e.), where g E G1(µ), then ffdj - ffdj.

These convergence theorems, as well as the change of variable formula
and the Fubini-Tonelli theorem on iterated integration on R" or on a product
measure space, will be freely used in this text.

For any measurable set A, we denote fA f dµ := f XA f dµ.

Lebesgue differentiation theorem. For the usual Lebesgue measure on
R", if f E £'(R), then

r) l
f(x,r) I- f(x)I dy = 0 a.e. on Rn.

When n = 1, limrp 2T ft' I- f(x)f dy = 0 a.e. on R.
A function F on an interval [a, b] C R such that

fx
(1.4) F(x) := J f(t) dt + c

a

for some f E £' (R) and some constant c is called absolutely continuous.
Obviously, it is continuous, and it follows from the Lebesgue differentiation
theorem that F'(x) = f(x) a.e. on [a, b], since, assuming that f = 0 on
[a, b}c,

F(x f r F(x) -f(x) I <2f2r I - f(x)Idy 0 a.e. as r 0.
-r

The integration by parts formula

16 bF(x)G'(x) dx = (F(b)G(b) - F(a)G(a)) - J F'(x)G(x) dx
a

holds if F and G are absolutely continuous.

To deal with acomplex-valued function, just consider the decomposition
into real and imaginary parts, f = u + iv : S2 -+ C (u and v real measurable
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functions) and define

J fd := f udµ+ifvdµ
if u, v E ,C1(µ) (that is, if fill dµ < oo). This integral is a linear form on
the class G1(µ) of all these complex integrable functions, which is a complex
vector space, and also I f f dµl < fill dµ

In measure theory, two functions are equivalent when they coincide a.e.
If N(µ) _ {f; f = 0 a.e.}, we denote L1(µ) £1()/N() and Illili :=
f I f I dµ does not depend on the representative of f E L1(µ).

If 1 <p < oo, we also define
1/p

llIll :_ (f l

illlk := min{C > 0; II(x)l < C a.e.}.

Obviously, 1f'1 P = 0 if and only if f = 0 a.e., and IiAfllp = IA 111f l'. We

The Minkowski inequality$

III + iI $ lIIll + llli
is clear if p = 1 or p = oo. In the remaining cases 1 <p < oo, it can be
obtained from Holder's inequality9

f lIgld,ullIllllgllp' (p = p or
1-+ 1 = 1),p-1 p p

which follows from the convexity of the exponential function, which allows
us to set 1 1 1 1pab = e jog a+ P1 log b' <

1 elog aP + p slog b°' = p ap +
bP..

Then just take a = lb = 19(x)lll9IlP' and integrate.
For 1 <p < oo, the iVIinkowski inequality is now obtained from

11+ gP C 11111 +9+ lllI +9Ip-i,

since then an application of Holder's inequality gives
1/p' 1/p'

111+ 91 Pdµ IIIllp (111+ 91pdµ) + 11911p (111+ 91 Pdµ)

8Named after the Lithuanian-German mathematician Hermann Minkowski, who in 1896 used
geometrical methods in number theory, in his "geometry of numbers". He used these geometrical
methods to deal also with problems in mathematical physics. Minkowski taught at the Universities
of Bonn, Gottingen, Konigsberg, and Zurich.

9 First found by the British mathematician Leonard James Rogers (1888) and independently
rediscovered by Otto Holder (1889).
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that is,

If +9IIP IIfIIIIf +9II/P' + IIIIIIf +9II/P' - (Ill II + I+9IIp/P',

where p - p/p' = 1.
We will write

(f,9) =1 fgdµ

if the integral exists, and Holder's inequality reads

The collection of all real or complex measurable functions f such that
I 'f'1p <00, with the usual operations, is a real or complex vector space, and
the quotient space by f() is denoted LP(). The value 'f'1P is the same
for all the representatives f we may pick in an equivalence class, and II ' IIP

has on Ia'(µ) all the typical properties of a norm.lo
If p = oo, note that a representative of f is bounded and then in (1.2)

we obtain sn(x) -+ f(x) uniformly.
When p = 2, note that 111112 = (f 1)2, "Where

(f, g)2 :_ f f g dµ (J fg dµ in the real case)

is well-defined, and it is a scalar product that allows us to work with L2()
as with a Euclidean space. This will be the basic example of Hilbert spaces.

1.2.1. Borel measures on a locally compact space X and positive
linear forms on Let X be a locally compact metric space.

If µ is a Borel measure on X, then every g E C(X) is µ-integrable, since
I gI < CXK for K = supp g and compact sets have finite measure. Note
that, on the integral f g dµ is linear and positive, that is, f g dµ > 0
if g > 0. These linear forms are called Radon measures, first obtained in
1913 by J. Radon" by considering Borel measures on a compact subset of
Rh .

10The name L for these spaces was coined by F. Riesz in honor of Lebesgue. See footnote 5
in this chapter.

11In France, N. Bourbaki chose as starting point of the integral the Radon measures on a
locally compact space X, a point of view previously considered by W. H. Young in 1911 and by
P. J. Daniel in 1918. It is worth noting that L. Schwartz constructed his distributions in the
same spirit, by changing the test space C( X). . If every open subset of X is a countable union of
compact sets, then the Radon measures are in a bijective correspondence with the Borel measures
through the Riesz-Markov representation Theorem 1.5.
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Theorem 1.5 (Riesz-Markov representation theorem). Let J be a positive
linear form on Then there exists a uniquely determined Borel mea-
sure µ on X so that

(1.5) J(g) = J g dµ (gECc(X))

and which satisfies the inner regularity property for open sets

µ(G) =sup{µ(K); K C G, K compact}.

This Borel measure is also outer regular: µ(B) = inf{µ(G); G i B, G open}.

Proof. We start by defining µ* on open sets by

µ*(G) := sup{J(g); g - G},

where we assume µ* (0) = 0.

This set function has the following properties:

(a) µ*(Gl) < µ*(G2) if Gl C G2, since then C(G1) C
(b) µ*(Gl U G2) < µ*(Gl) + µ*(G2), since, if K is the support of g -

(G1 U G2), for j = 1,2 we can find cps E such that 0 <
cps < 1 and cPj (x) = 1 for every x E K, a partition of unity
constructed as in Theorem 1.3; thus g = gcp1+gcp2, J(g) = J(gcpl)+
J(g2) < µ*(Gl) +µ*(G2), and (b) follows.

(c) µ*(uk1 Gk) < k 1 µ*(Gk), since the support K of every g -

U1 Gk is contained in some finite union UZ=1 Gk so that, by (b),
N N o0

J(9) C µ*(U Gk) *(Gk)
lc=1 k=1 k=1

and (c) follows.

Now we extend µ* and for every set A we define

µ*(A) := inf{µ*(G); G A}.

This set function has the properties of an outer measure:

(a) 0,

(b) µ* (A) < µ* (B) if A C B, so that it is an extension of µ* previously
defined on open sets, and

(c) *(U1 Ak) <° 1 µ*(Ak) (o-subadditivity).

To prove (c), take any s> 0 and pick Ak C Gk with µ*(Gk) < µ*(Ak) +
e/2k. Now, by (b) and from the v-subadditivity on open sets,

00 00 00 00

/2*(UA) </2*(UG) <>,*(G) <>,f(Ak) +s,
k=1 /c=1 k=1 k=1
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which yields (c) since E> 0 was arbitrary.
Let us say that a set E is measurable if it satisfies the Caratheodory

condition
(A) (A fl E) + ,if (A \ E)

and let µ be the restriction of the outer measure µ* to measurable sets.12
It is a general fact in measure theory that the collection E of all mea-

surable sets defined in this way is a o-algebra and the restriction µ of µ* to
E is a measure. We need to show that any open set G is measurable, since
then E will contain the Borel Q-algebra XiX.

Thus, let us prove that G satisfies the Caratheodory condition when A
is also an open set, U. Let g - U fl G so that J(g) > µ*(U n G) - E.
We have GC C (supp g)C and choose h -< U \ supp g such that J(h) >
µ* (U \ supp g) - E. Then

µ*(U) > J(g+h) > µ*(UnG)+µ*(U\ suppg)-2e > µ*(UnG)+µ(U\G)-2E,

which yields µ* (U) > µ* (U fl G) + µ* (U \ G) since e is arbitrary.

For any set A, if U is an open set with A C U, we have that

µ*(v) > ,u*(v n G) + µ*(U \ G) > µ*(A n G) + µ*(A \ G)

and the Caratheodory condition for G follows by taking the infimum over
these U 3 A.

With this construction we have built a Borel measure since, for any
compact set K, we are going to prove that

(1.6) µ(K) = inf{J(g); K - g},

where the set on the right side is not empty.
Indeed, µ(K) = infGJK µ(G) < J(g) whenever K -< g, since K C {g>

1-e}if0<e<1;foranyh- {g>1-e}wehave h<g/(1-e)and
J(h) < J(g)/(1 - ), by the positivity of J, which yields

µ(K) < µ({g > 1 - e}) = sup J(h) < J(g)/(1 - e),
h-<{g>1-e}

and then we let E -+ 0.

To prove (1.6), lets > 0. Choose G 3 K such that µ(K) > µ(G) - e
and K -< g -< G. Then µ(K) < J(g) <(G) <(K) + E and (1.6) follows.

By construction, µ satisfies the announced regularity properties.
We still need to prove the representation identity (1.5), where we can

assume that 0 < g < 1, since every g E C(X) is a linear combination of
such functions.

12In his book "Vorlesungen ber reelle F unktionen" (1918), the Greek mathematician Con-
stantin Caratheodory chose outer measures as the starting point for the construction of measure
theory.
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Let Ko = supp g. We will decompose g as a sum of N functions obtained
by truncating g as follows. If 0 <j < N, let K3 _ {g > j/N} and define

j-1 1gj=min(max{g- N

that
and gj (x) = 0 otherwise. Then g = 9j and the estimates

and

C

NN N µ(Kj-1)

and

so that

N N-1

N >(Kj) c J(9)
j=1 j=0

J(9) - fgdµl (Ko) - µ(KN)) (Ko) 0

and J(g) = fgda.
To prove the uniqueness part, we only need to show that if µ is a Borel

measure that satisfies the required regularity property, then it follows from
the representation property J(g) = f g dµ that µ(G) = sup9.<c J(g).

Indeed, obviously J(g) c f Xc dµ = µ(G) if g -< G, and µ(G) >
J(g). Now, for every compact subset K C G we choose K - g - G.

Then µ(K) < J(g) </2(G) and, by the inner regularity property, µ(G) _
supxcc µ(K)

Theorem 1.6. If X is a locally compact subset of Rn (so that every open
set G C X is the union of an increasing sequence of compact sets), then
every Borel measure A on X is regular:

A(8) GB A(G) =sup A(K)
xcs

for every Borel set B.

Proof. We apply to J(g) f gds the Riesz-Markov theorem, so that

Ja(9) = f 9dµ (geC(X)).
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First we show that ,X(G) = J-L (G) for every open set G by considering K m t G.
Then we can choose Lm -< gm -< G with L 1 = K 1 and

m m-1

L m = ( UKj ) U ( U supp 9j ) ,
j=l j=l

so that gm t Xc and ,X(G) = J-L(G) by monotone convergence.

We now study the outer regularity for any Borel set B.

Let B = l:!:J~1 Bj so that J-L(Bj) < 00 and, by the regularity properties of

J-L, we can choose Gj :J Bj so that J-L(Gj\Bj ) ::; c/2j
. Then G = U~l Gj :J B

and J-L( G \ B) ::; Co

Similarly, there exists an open set U :J B C such that J-L(U \ B C
) ::; c, and

then the closed set F = UC satisfies FeB and J-L(B \ F) = J-L(U \ B C
) ::; Co

Therefore 'x(G\F) = J-L(G\F) ::; 2c, and it follows from 'x(G) ::; 'x(B)+2c
that ,X is outer regular.

To show that ,X is also inner regular, consider K m t F, so that 'x(Km ) ~

'x(F) ~ 'x(B) - c. 0

1.2.2. Complex measures. A complex measure on the measurable
space (X,~) is a complex-valued set function J-L : ~ ~ C which satisfies
the O"-additivity condition

00 00

JL( l±J Bk) = LJL(Bk).
k=l k=l

We will say that J-L is a real measure if J-L(B) E R for all B E ~.

Note that actually the convergence in C of the series E~l J-L(Bk) is
absolute, since the union of the sets Bk does not change with a permutation
of the subscripts k.

The total variation measure of the complex measure J-L is the set
function defined on ~ by

00 00

IJLI(B) := sup {L IJL(Bk)l; B = l±J Bk}.
k=l k=l

In general, a complex measure is not a positive measure and, if it is a
positive measure, it is finite.

Theorem 1.7. The total variation IJ-LI of the complex measure J-L is a finite
measure that satisfies

(1.7) (B E ~).

It is the smallest measure satisfying this property; that is, if ,x is another
measure such that IJ-L(B) I ::; 'x(B) for every B, then IJ-LI(B) ::; 'x(B) VB E ~o
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Proof. The estimate (1.7) is obvious, since B = B U 0 U U 0 U
Moreover, if I< A(B), then A(B) > Isince, if B = +J 1 Bk,

A(8) - A(B) j
k=1 k=1

To show that is Q-additive, let B = U 1 Bk and consider any other
partition B = UA3, so that A3 = t1 (A fl Bk). Then

j=1

00

a(A3 fl Bk)I 1121(Bk),
j,k k=1

which implies II (B) < 1 (Bk).

To prove the opposite inequality, for B = tJ 1 Bk, let Sk < 1/2 Iand
Bk = t±J- 1 Bkso that

00

Then

j=1

1/21(B)? I/2(Bk,j)I >6k
j,k k=1

and we obtain that I ? >k 1 I
by taking the supremum over

all the possible Sk.

Also 1µ1((b) = 0 and is a measure.

To show that I< oo, suppose that I= oo for some B E
E. For every t > 0, we would find apartition B = tJk 1 Bk such that

I> t and then
N

I/2(Bk)I >t
k=1

for some N.
We claim that there is an absolute constant c> 1 such that

N

(1.9) IcI µ(Ba)I
k=1 jEJ

for some J C {1,. . . , N}, so that, for A = IJ3EJ Bk C B we obtain

N
t< I/2(Bk)I cl/2(A)l,

k=1
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and then I/2(A)I > t/c. In (1.8) we choose t > c, so that l> 1 and

IA)I I- I> - I= 1
ift=c(1+ l,2(B)l).

Now we have B = A U (B \ A) with lµ(A)I, i\ A) > 1 and at least
µ1(A) or lA) equal to oo.

Suppose now that 1= oo. Then we can successively split

with l> 1 and i= oo for every j and N.
We should have in C

/2(A) =,2(A),
j=1 j=1

but the series cannot converge, since 1 < ifi 0, which yields a con-
tradiction. Therefore (X) < oo.

To prove the claim (1.9), let zk = µ(Bk) (1 < k < N) and r = k 1 Izkl.
For at least one of the four quadrants of C, Q, limited by il = lxi, we have
>ZkEQ zk > r/4. Denote J = {j; z3 E Q} and choose a rotation with angle
i9 so that z = is in the quadrant ll < x. Then=z -br,

jEJ jEJ jEJ jEJ

which proves (1.9) with c = 4\/. O

If µ is a real measure, then

2 2

are two (positive) finite measures such that

IµI =µ++µ,2=,2+-,2_,

They are called the positive and negative variations of µ, respectively.
Every complex measure µ is a linear combination of four measures, since

µ = Jµ + i, where J?µ and are two real measures.

In Lemma 4.12 we will show that

(1.10) µ(B) = lB (Bfor
a uniquely l,2-a.e. defined function h such that IhI = 1,

so we will be allowed to define IP(µ) = I,'(IµI) and f f dµ = f fh dI,2I for
every f e L1(µ).
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Every complex Borel measure on R is a linear combination of finite
(positive) Borel measures, and such a measure, ,cc, is the Lebesgue-Stieltjes
measure associated to the distribution function

F(t) :=((-oo,t]),

which is increasing and right-continuous, so that µ((a, b]) = F(b) -F(a) and
the Riemann-Stieltjes integrals of all Riemann-Stieltjes integrable functions
on [a, b] coincide with the Lebesgue integrals:

Ia

b

f(t) dF(t) _
a,b)

f dµ.

Linear combinations of these integrals and measures are the correspond-
ing integrals with complex distribution functions and complex measures that
allow us to give the representation

IR
f(t) dF(t) _

fR
f dµ

for complex measures µ and, say, f e CS(R).

1.3. Exercises

Exercise 1.1. Prove that

d(r, s) _ I arctan s - arctan r i

defines a distance on R whose topology is the usual one, but R is not
complete with this distance. This shows that two distances which are topo-
logically equivalent may not have the same Cauchy sequences.

Exercise 1.2. Prove that, in a metric space, every compact set is contained
in a ball.

Exercise 1.3. Prove that, in a metric space M, the closure of a subset
A is compact if and only if every sequence {ak} C A has a convergent
subsequence in M.

Exercise 1.4. Prove that every point of a compact space K has a neighbor-
hood basis of compact sets. That is, every compact space is locally compact.

Exercise 1.5. Prove that a nonempty subset X of Rn is a locally compact
subspace if and only if it is the intersection of a closed and an open set, and
that every open set of X is the union of an increasing sequence of compact
sets.
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Exercise 1.6. Let I = [a, b] and K = Ir = flI endowed with the com-
pact product topology. Note that {f(t)}tEI E K means that f = {f(t)}tEI
represents a function f : I --+ I and prove that

M :_ {f = {f(t)}tEI E K; {x; 1(x) 0} is at most countable}

with the topology induced by K is sequentially compact but not compact.

Exercise 1.7. Suppose (X,, T) is a family of topological spaces and Y
is another topological space. Show that for the product topology T on
X = I13EJ X,, a mapping f : Y --+ X is continuous if and only if every

o f : Y -+ X3 is continuous.

Exercise 1.8. Assume that T and T' are two Hausdorff topologies on the
same set K and T' is finer than T. Prove that if (K, T') is compact, then
T = T'.
Exercise 1.9. Suppose that f : X -+ Y, where X and Y are two topological
spaces, and xo e X.

(a) If X is metrizable (or if xo has a countable neighborhood basis),
prove that f is continuous at xp if and only if f is sequentially continuous
at xp.

(b) Let X be R endowed with the topology of all sets G C R such
that GC is countable, and let Y also be R but with the discrete topology
(all subsets of R are open sets). Show that Id : X --+ Y is a sequentially
continuous noncontinuous function.

Exercise 1.10. If f is a measurable function on a measurable space, show
that

Sgn f(x) := f fix)

(with 0/0 := 0) defines another measurable function.

Exercise 1.11. If v is the counting measure on a set X, so that v(A) = n e
N or v(A) = oo for any set A C X, prove that f : X --+R (or C) is in Ll(v)
if and only if N :_ {f 0} is at most countable and >kEN I <00. In
this case, show that f f dv = >kEN f(k).

In this context one usually writes 21(X) or 21 for Ll(v).

Exercise 1.12. Compute the limits of

J
In (,1 - x)'eX

dx, J (1 - x>ne-X
dx, and J

In (,1
- x >n

eX dx
o n o n o 2n

asn-+00.
Exercise 1.13. Use the Fubini-Tonelli theorem to prove that the integral

I:= J 1 dx dy
,1)2 Ix - yIa
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is finite if and only if a < 1, and then show that I = 2/(1 - a)(2 - a).

Exercise 1.14. If F : [a, b] -+ R is absolutely continuous, prove that F
satisfies the following property:

Ifs > 0 is given, there is a 6> 0 such that

IF(bk)-F(ak)I
k

for every finite sequence {(ak, bk)} of nonoverlapping intervals contained in
[a, b] such that >k(bk - ak) < S.

The converse is also true: If the above property holds, then F has a
representation as in (1.4). See a proof in [37], [39], or [6].

Exercise 1.15. Let µ be a Borel measure on R and define

F(0) = 0, F(t) = µ((0, t]) if t > 0, F(t) _ -µ((t, 0]) if t < 0.

Then F is an increasing right continuous function and µ is the Lebesgue-
Stieltges measure associated to F as a distribution function, that is,

a,b]) = F(b) - F(a).

Moreover, if f E C[a, b], f f dµ = fa f(t) dF(t), a Riemann-Stieltjes inte-
gral.

Exercise 1.16. If µ is a complex measure, prove that limy µ(Bk) = µ(B) if
either Bk B or Bk ,. B.

Exercise 1.17. Show that, for any complex Borel measure µ,Idµl; fl 1}.

Exercise 1.18. Suppose that {Ak} E 21(N) and that {ak} is a sequence in
R. Prove that there is a uniquely determined Borel measure µ on Rsuch
that

f 9dµ = Ak9(ak) (9 E

Show that >= 1 Anl =sup{I f 9 dµI ; 9 E I9I 1} and I= 0
if F= {ai, a2,. . .}.

References for further reading:
J. Cerda, Analisis Real.
P. R. Halmos, Measure Theory.

L. Kantorovitch and G. Akilov, Analyse fonctionnelle.

J. L. Kelley, General Topology.
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A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions
and Functional Analysis.

H. L. Royden, Real Analysis.

W. Rudin, Real and Complex Analysis.



Chapter 2

Normed spaces and
operators

The objects in functional analysis are function spaces endowed with topolo-
gies that make the operations continuous as well as the operators between
them. This chapter is devoted to the most basic facts concerning Banach
spaces and bounded linear operators.

It can be useful for the reader to retain as a first model of function spaces
the linear space C(L) of all real continuous functions on a compact set L in
Rn with the uniform convergence, defined by the condition

If - fnIIL := max If(t) - f(t)I - 0.
tEL

Examples of operators on this space are the integral operators

T f
(x) - fK(x,Y)f(Y)dY

where K(x, y) is continuous on L x L. Then T : C(L) - C(L) is linear and

ITf -7'fnll L < Tria7CJ I K(x,y)ll.f(y) -.fn()I d2 < ll/III.f -.fnilL,

so that T satisfies the continuity condition llTf - T.fn IlL - 0 if I - .fn IlL
0.

Note that if L = [a, b], this space is infinite-dimensional, since it contains
the linearly independent functions 1, x, x2, etc. Two major differences with
respect to the usual finite-dimensional Euclidean spaces are that a linear
map between general Banach spaces is not necessarily continuous and that
the closed balls are not compact.

25
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We start this chapter with some basic definitions and, after the basic
examples of L spaces and C (K) , with the inclusion of the proof of the
Weierstrass and the Stone-Weierstrass theorems, we consider the space of
all bounded linear operators.

The use of Neumann series, which will appear again when studying the
invertible elements in a Banach algebra and the spectrum of unbounded op-
erators, in combination with Volterra integral operators gives an application
for the solution of initial value problems for linear ordinary differential equa-
tions. The introduction of Green's function also allows us to solve boundary
value problems by Fredholm integral operators. These applications are de-
scribed in the last section.

The chapter includes a review of the most basic facts concerning orthog-
onality in a Hilbert space. Duality will be discussed in Chapter 4.

There is also a section on summability kernels that will be useful in later
developments. They are applied here to show the density of the trigonomet-
ric polynomials in U'(0,1) and to prove the Riemann-Lebesgue lemma.

The section devoted to the Riesz-Thorin interpolation theorem of linear
operators on II spaces is optional. It will be used only in Chapter 7 to
include the nice proof of the U'-continuity of the Hilbert transform due to
M. Riesz.

2.1. Banach spaces

2.1.1. Topological vector spaces. In this book, a vector space will al-
ways be a linear space over the real field R or the complex field C. The
letter K will denote either of them, and K will be endowed with the usual
topology defined by the distance d(A, µ) _ I\ - , where represents the
absolute value. The collection of all the discs (intervals if K = R)

D(ao, E) _ {a E K; IA - aol <E} = ao + D(o, E) ( > o)
is a neighborhood basis of the point Ao E K.

A vector topology T on a vector space E will be a Hausdorff topology
such that the vector operations

(x,y)EEXEI-+x+yEE, (A,x)EKxEi-+AxEE
are continuous when we endow E x E and K x E with the corresponding
product topologies. Then we say that E, or the couple (E, T), is a topo-
logical vector space.

On a topological vector space E, every translation Two : x E E H x+xp E
E is continuous, since it is obtained by fixing a variable in the sum: If V (y)
is a neighborhood of y = x + xo, there is a neighborhood U(x) x U(xo) of
(x,xO) E E x E such that U(x)+U(xo) C V(y), and then Two (U(x)) C V (y).
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Similarly, every multiplication x E E H fox E E by a given scalar Ao is
also continuous.

Since the inverse of Two is continuous, U is a neighborhood of 0 E E
if and only if U + xo is a neighborhood of xo. Thus, the topology of E
is translation-invariant: i f is a neighborhood basis of 0 E E if and only if
Lf(xo) _ {U + xo; U E lf} is a neighborhood basis of xo E E. We will say
that Lf is a local basis of E. An obvious example is the collection of all
open sets that contain 0.

A subspace of a topological vector space (E, T) is a vector subspace
F with the topology that consists of all the sets G fl F, G E T. Then F
becomes a topological vector space.

Recall that C C E is convex if and only if 0 < t < 1 implies tC +
(1-t)Cc C.
Theorem 2.1. Let E be a topological vector space. Then:

(a) The closure F of a vector subspace F of E is also a vector subspace.
(b) The closure C of a convey subset C of E is also convex.

Proof. To prove (a), suppose A, µ E K. If A 0, multiplication by A and
by its inverse is continuous and we always have AF = AF. Then

aF+µF=AF+µFCF+FCF,
since, if x, y E F, for every neighborhood x + y + U of x + y (when U is
in a local basis Lf), the continuity of the sum allows us to take V E if so
that V + V C U. Hence, if a E (x + V) fl F and b E (y + V) fl F, then
a+bE x+y+V +V C x+y+U and also x+y E F.

To prove (b) consider x, y E C and let a + fi = 1 (a, Q > 0). Using the
same argument as in (a), ax + fly E C.

Theorem 2.2. Suppose U and V are local bases of the topological vector
spaces E and F. A linear mapping T : E -+ F is continuous if and only if,
for every V E V, T(U) C V for some U E U.

Proof. T(U) C V if and only if T(xo + U) C T(xo) + V.

2.1.2. Normed and Banach spaces. Normed spaces are the simplest
and most useful topological vector spaces.

Recall that II ' IIE : E -+ [0, oo) is a norm on the vector space E if it
satisfies the following properties:

1 IIXIIE>0X0,
2. triangle inequality: lix + y IIE< lix liE + IIY lIE If x, y in E, and

3 I1AxIIE _ AllixIIE if x E E and A E K.
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A nonmed space is a vector space E endowed with a norm II ' IIE defined
on it, with the topology associated to the distance dE(x, y) :_ lly - xIIE

If E and F are two nonmed spaces, we endow E x F with the product
norm

I=max(II=IIE,IIyIIF)
and its distance

d((xi,yi), (x2,y2)) = max(ljxi - x2IlE, lli - y2llF),

which defines the product topology. A sequence (xn, yn) E E x F (n E N)
is convergent in the product space if and only if the component sequences
{x} and {y} are convergent in the corresponding factor space.

Of course, these facts extend in the obvious way to finite products.

Theorem 2.3. The topology of a nonmed space E is a vector topology, and
the norm II ' lL E is a continuous real function on E.

Proof. The continuity of the vector operations follow from the inequalities

I+ x2) - (Yl - y2) IIE llXi - yl IIE + llx2 - Y2IIE

< 2 max(dE(xi,yi),dE(x2,y2))

and

Iln - µxIlE G A - µIIIxnhIE + lµlllxn - xllE.

To show that the norm is also continuous, note that

(2.1) I lkdIlE - llYllEI lix - YIIE

because lixilE < Mx - yIIE + ilYllE and 1IYIIE < IIx - YIIE + MxIlE. a

A topological vector space (E, TE) is said to be normable if TE is the
topology defined by some norm on E.

A normed space E is called a Banach spaces if it is complete; that
is, whenever 11xp - x9 llE - 0, we can find x E E so that lix - xkllE - 0.
Completeness is a fundamental property of many normed spaces. Some basic
theorems will apply only to complete spaces.

The calculus with numerical series is meaningful for vector-valued series
in a Banach space E. If llxnhlE < oo, then xn is called abso-
lutely convergent and, as in the case of numerical series, every absolutely

1 The term was introduced by M. Frechet to honor Stephan Banach's work around 1920,
culminating in his 1932 book "Theorie des Operations Lineaires" [3], the first monograph on the
general theory of linear metric spaces.
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convergent series is convergent in E since, if SN = n 1 xn and p < q,
q 00

11Se - SPllE _ II :i: xnhlE $ :i: IIXnIIE -3 0 when p -3 00,
n=p+1 n=p-F1

and the limit x = SN = °O 1 xn exists in E.

We now present the most basic examples of Banach spaces. Many other
spaces of analysis are obtained from them.

Example 2.4. The real or complex Euclidean spaces Kn are the first
examples of Banach spaces. They are finite-dimensional and their norm

(2.2) I=I (x = (xi,... ,x))

is associated to the usual Euclidean scalar product x y = k=1 xkyk by the
relation lxi = x x.

Example 2.5. On the vector space B(X) of all K-valued bounded functions
on a given nonempy set X, we consider the uniform norm, or "sup" norm,

Ill lix =sup l
xEX

The convergence Ill - fnilx -3 0 means that fn(x) - 1(x) uniformly on X.
A special case is the sequence space 200 = B(N) (or B(Z)). In this

context one usually writes

II{ten}III = sup lxl

for the sup norm.
These spaces are also complete.

Indeed, if {f} n is a Cauchy sequence in B(X), it is uniformly Cauchy
and every {f(x)}n is a Cauchy sequence in K, so that there exists 1(x) _
lim f(x). Then it follows from the uniform estimate

lfp(x) - fv(x)l c E (p, q ? no)

that
lfp(x)f(x)l

when q - oo. Thus, 'fp - f lix e, Ill lix e + llfpllx <00, and fn - f
uniformly on X.

Example 2.6. A subspace F of a normed space E will be a vector subspace
equipped with the restriction of the norm II ' IIE If E is a Banach space, F
is complete if and only if it is closed in E, since every Cauchy sequence of
F is convergent in E and the limit is in F when F is closed.
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Let X be a topological space. We denote by Cb(X) the subspace of
B(X) of all K-valued bounded and continuous functions f on X. As a
closed subspace of the Banach space B(X), C6(X) is also complete.

Note that every Cauchy sequence {g} in Cb(X) is convergent in B(X)
to a function f, which belongs to C6(X) as a uniform limit of continuous
functions.

Example 2.7. The product E = El x x En of a finite number of Banach
spaces with the product norm

I
, xn)IIE := ma<x IIX3IIEj

1<3

is complete, since in E we have coordinatewise convergence.

Let m E N and suppose that SZ is a nonempty open set in Rn. We
call C(St) the normed space of all cm functions f on 1 2 such that every
derivative Da f of order Ic <m admits a continuous and bounded extension
to 12. With the norm

If 11cm = I llDf Iln

Cm(12) is a Banach space.

The space C(SZ) can be seen as a closed subspace of the finite product
E _ 11' Cb(SZ) of Banach spaces by means of the injection

J E C"''(S2 H {D«f E.

Here, according to the simplifying notation introduced by H. Whitney,
for every a = (ai,.. . , an) E Nn, we denote

x« = xi 1 ... xnn if x = (Xi,. .. , xn)

and

D = a/axi represents the partial derivative with respect to the jth
coordinate, and al = al + + an is the order of the differential operator
D. With this notation, the n-dimensional Leibniz formula states that

D« f 9= (;)DfD-g( )

Q_

and it is easily proved by induction (cf. Exercise 2.1). Here Q < a means
3<ajforl<j<nanda-,6=(al-,Ql,,an-Qn)
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Example 2.8. Let (1, E, µ) be a measure space and let 1 <p < oo. Con-
sider LP(1u) with the I,"-norm

1/p

If IIP - (f If I

when 1 < p C oo and MfM0 := min{C > 0; I< Ca.e.}, as in Sec-
tion 1.2. It will follow from the next theorem that this space is complete.

A similar example is £P = (N) or 2T'(Z), the space of all numerical
sequences x = {xk} (k e N or Z) such that

IIxIIp -
k

with the usual operations.2

(suplxkl if p = oo)
k

Theorem 2.9. Let 1 < p < oo and assume that all the functions fk are
measurable.

(a) Let fk(x) -+ f(x) everywhere and IfkI < g a.e. for some g e LP().
Then fk - f in LP().

(b) If ILfkIp < oo, then k 1 Ifk(x)I < oo a. e., there exists a
function f e LP() such that f(x) _ fk(x) a. e., and f = Ii f in
LPCu).

(c) Every convergent sequence fk -f f in LP() has a subsequence which
converges pointwise a. e. to f.

Proof. (a) Since also If(x)I < g(x) Ifk - fIp < (2g)T' E L1(µ) and Ifk(x) -
f(x)IT' -+ 0, and by dominated convergence, ILfk - fIIp - 0

(b) Let M = >I 1 IIfMP and put gnr(x) :_ k 1 Ifk(x)I t (x) , so
that gP and f gN dµ < MT', by the triangle inequality. By monotone
convergence, also f gp dµ < M and g(x) _ Z=i I< oo a.e. The
sum f(x) :_ fk(x) is defined a.e., or everywhere by picking equivalent
representatives for the functions fk. Now we apply (a) to the partial sums
=1 f3 to obtain =1 f3 -4 f in LP().

(c) Since IIfm - fII -+ 0, we can select a subsequence {fk} such that

Mfkm+i - fkmll

This subsequence is the sequence of partial sums of the series

fk1 + (fk2 - fk1) + (fk3 _ fk2) + ... + (fkm+i - fkm) + .. .

20n an arbitrary set J endowed with the counting measure, one usually writes £P(J) instead
of LP (J) . A function f on J is in £P (J) (1 < p < oo) if and only if >jE J If(i)I" < oo If
>jE J I f (j) I < oo, then N := {j E J; f (j) O} is at most countable (cf. Exercise 1.11).

If J = {1, 2, ... , n}, t2 (J) is the Euclidean space Kn .
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which is absolutely convergent on I°(µ), since ;m=11/2m < oo. Now an
application of (b) gives fkm - h in U'(µ) and a.e. Obviously, h = f a.e.

Corollary 2.10. LP() is a Banach space.

Proof. Assume first 1 < p < oo and let {fk} be a Cauchy sequence in
LP(µ). As in the preceding proof of (c), there exists a subsequence {fin}
which is convergent to a function h E LP(). By the triangle inequality, we
also obtain fk - h in LP().

In L°°(µ), if {fk} is a Cauchy sequence, the sets Bk :_ {x; I>
Mfklloo} and Bp,9 :_ {x; Ifp(x) - f9(x)I> 'lfp - have measure 0, and
also µ(B) = 0 if B is the union of all of them. Then we have limk fk(x) _
1(x) uniformly on B° and limy fk =fin L°°(µ).

Remark 2.11. In a Banach space, every absolutely convergent series is
convergent, and the converse is also true: If every absolutely convergent
series of a normed space E is convergent, then the space is complete. To
show this fact, just follow the proof of (c) in Theorem 2.9 for a Cauchy
sequence {fk} C E; the terms fkn are the partial sums of the absolutely
convergent series

fki+(fk2fki)+(fk3fk2)+"+(fkm+i - fkm)+,
which is convergent.

Corollary 2.12. Let (St, E, µ) be a measure space and 1 < p < oo. Then
every f E U'(µ) is the limit in LP(i) of a sequence {sue,} C LP(i) of simple
functions.

Proof. Just consider sn such that lsn(x)l lfor every x E SZ as in (1.1)
and apply Theorem 2.9(a). O

Corollary 2.13. Suppose µ is a Borel measure on a locally compact metric
space X and let 1 <p < oo. Then every f E LP() is the limit in U'(µ)
of a sequence {gk} C CC(X), meaning that every gk has a continuous with
compact support and that limk--goo Ill - 9kIIp = 0

Proof. Since simple functions are dense in LP(), we only need to approx-
imate every Borel set B with finite measure by functions in CC(X). By
regularity, we can find K C B C G such that µ(G \ K) < eand choose
K -g -G. Then

f Xa - dµ < 1dµ < ep.
c\x
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A very important property of space is the continuity of transla-
tions:

Theorem 2.14. Assume that f E (1 < p < oo) and denote
(mf)(x) = f(x - h). Then the Lp-valued function h E Rn H Th f E LP(R)
is continuous; that is,

h mo llmf - Thof lip - 0.

Proof. Since Ilmf - Thof lip = iim-hof - fiip We can assume hp = 0.
Start first with g E C(R) supported by K and let K(1) = K+B(0,1).

If > 0, by the uniform continuity of g, we can find 6> 0 so that

- li E/1K(1)i'IP if ihi 6.

Then it follows that 1mg - 9I I p E if I hi < S.

With Corollary 2.13 in hand, we choose g E C(R) so that if -9IIp c
and then

iiThf - fIan ie.

El

Every normed space E has a completion, defined as a Banach space E
with an isometric linear embedding JE : E -+ E with dense image JE (E)
in E. A completion can be obtained either in the same way as R is defined
as the completion of Q or using duality, as in Theorem 4.25.

The completion is unique in the sense that, if JF : E -+ F is a second
one, there exists a unique isomorphism : F - E such that o JF
E - E is the embedding JE : E -+ E and is an isometry: For every
C auchy sequence {x} C E, the images {JExfl} C E and {JFx} C F are
also Cauchy and convergent in E and F, respectively, and (limn JExn) =
limn JFxn is the only possible definition of . It is clear that is an isometric
isomorphism.

It is customary to identify E with the subspace JE(E) of the completion
E.

2.1.3. The space C(K) and the Stone-Weierstrass theorem. By C(K)
we represent either the real or the complex Banach space of all real-valued or
complex-valued continuous functions on a compact topological space K, en-
dowed with the uniform norm. When confusion is possible, we write C(K; R)
or C(K; C), respectively.

Let A be a subalgebra of C(K); that is, A is a vector subspace of C(K)
and the product of two functions in A belongs to A.
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The closure of A is also a subalgebra of C(K), since it is a vector subspace
(cf. Theorem 2.1) and fn - f and gn --+ g uniformly on K imply fgn -+ f9
To prove this fact, just consider

IIf - fIIK IIf - fnhIK + IIf - fIIK
If IlK II - IIK + IIIIKIIf - milx ->0.

We say that A separates points of K if, given x # y in K, there is a
function g e A such that g(x) # g(y), and we say that A does not vanish
at any point of K if, given x E K, there is a function g e A such that
g(x) # 0.

Lemma 2.15. If a subalgebra A of C(K) separates points and does not
vanish at any point of K, then the following interpolation property holds:

For any two different points x, y e K and two given numbers wand /3,
there is a function f e A such that 1(x) = a and f(y) _ /3.

Proof. Let g, ham, by e A such that g(x) g(y), he(x) 0, and hy(y) 0.
Then

9i :=Shy - 9(x)hy, 92 gh - g(y)h

belong to A and we define

a ,Q

f 92 (x) 92 + 9i (y) 9i

This function also belongs to A and satisfies the required interpolation prop-
erty.

If K is a compact subset of Rn, then the set P(K) of all real polynomial
functions on K is a subalgebra of C(K; R) that separates points since, if
a, b e K are two different points, at least a3 bj for one coordinate j
and then the corresponding monomial x3 has different values on a and b.
Moreover 1 E P(K) and this subalgebra does not vanish at any point of K.

Theorem 2.19 will show that these facts will imply that P(K) is dense in
C(K; R), but let us first consider the special case K = [a, b] of one variable
and prove the classical Weierstrass theorem.3

3 First proved in 1885 using the summability kernel Wt of Exercise 2.27 by one of the fathers
of modern analysis, the German mathematician Karl Weierstrass, who taught at Gewerbeinstitut
in Berlin.
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We are going to present the constructive proof based on the Bernstein
polynomials4 B(f) associated to a continuous function f on [0, 1]:

Bf(x) :=
k-0

()f()xk(1

For every n, the linear operator Bon C[0,1] is positive; that is, Bf > 0 if
f > 0, so that Bn f > Bg if f > g and IBfI < BIf I

Theorem 2.16. Every continuous function f on [a, b] is the uniform limit
on [a, b] of a sequence of polynomials.

Proof. The linear change of variables x = (b - a)t + a allows us to as-
sume [a, b] _ [0, 1], and we will prove that f E C[0,1] can be uniformly
approximated on [0,1] by the Bernstein polynomials Bf .

It is clear that B1 = 1 and we are going to show that, for I(x) = x and
12(x) = x2,

B I2 = n 1 I2+1 IBII, n ,n n
and then BnI2 -- I2 uniformly on [0, 1], since sup0<<1 I- I2(x)I
1/n.

Indeed, differentiating
n

(x + )
ski

xkyn_k

k o=

with respect to x and multiplying by x, we obtain
n

n-1 = k
n xkyn-k

k=1

which for y = 1 - x reads nx = >=i k()x' (1 - x)n-k = 1ZBx.
Also, differentiating (2.3) once again with respect to x and now multi-

pying by x2,

n(n - 1)x2(x + y)fl-2 = k(k - 1) ()xkn_k.
k=2

4The Russian mathematician Sergei N. Bernstein (1880 - 1968), who solved Hilbert's nine-
teenth problem on the analytic solution of elliptic differential equations, found his constructive
proof of the Weierstrass theorem using probabilistic methods in 1912: He considered a random
variable X with a binomial distribution with parameters n and x, so that the expected value
E(X/n) is x, and he combined the use of the weak law of large numbers, which made it possible
to show that limn P(lf (X/n) - f (x) l > e) = 0 for every continuous function f on [0, 1], with the
remark that E(f (X/n)) is precisely the polynomial Bn f (x).
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Hence, for y = 1 - x,

n(n - 1)x2

n
n-kk(k -

1)/

1

\
I xk(1 _x)

TI

l2k-k-2

or (n - 1)x2 = nBx2 - Bnx, which is equivalent to the identity announced
for Bx2.

To prove the theorem, we may assume that If I < 1 on [0, 1] and, since
f is uniformly continuous, for every e > 0 we can choose b > 0 so that
IEif Ix - yI < 8, and thenI e + 22

(x - y)2

also when Ix - y I > S.

We look at y as a parameter and x as the variable. Then, from the
properties of B,I= I

Bn + (x - y)2) < E + (BI2 - 2yI + y2).

Finally, if we evaluate these functions at y,

I- f()I + S2 ((BnI2)y - y2) e

uniformly on y E [0, 1] as n - oo. Hence IIBf - fII[o,iJ < 2e as n > no, for
some rip.

Corollary 2.17. C[a, b] is separable; that is, it contains a countable dense
set.

Proof. Every g e C[a, b] is the uniform limit on [a, b] of a sequence of
polynomials, and every polynomial P(x) _ >I 1

a sequence Pm(x) _ 1 gk,,,7,xk of polynomials with rational coefficients.
Just take Q qk,,,, -4 ak in R (qk,m e Q + iQ in the complex case). Then
the collection of these polynomials with rational coefficients is dense and it
is countable.

Exercise 2.9 extends Corollary 2.17 to C(K) if K is a compact metric
space.

A subset of a normed space is called total if its linear span is dense. With
the argument of Corollary 2.17, if a normed space contains a countable total
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set Z, it is separable, since the set of all linear combinations of elements in
Z with rational coefficients is dense.

Obviously the product of two separable normed spaces is also separable,
and it is readily seen that a subspace F of a separable space E is also
separable.

Indeed, if Z is a countable dense subset of E, the collection of all the
balls BE(z, 1/m) with z E Z and m E N is countable and covers E. By
choosing a point from every nonempty set BE(z, 1/m) fl F, we obtain a
countable subset A of F which is dense in F since, for every y E F and
every m E N, there exists some z.,,,, E Z such that IlZm - yII E < 1/2m and
some a.,,,, E A such that llzm - 1/2m; then y - a,,,.liE < 1/m.

Remark 2.18. The fact of being separable indicates that a normed space E
is somehow "not too large". It cannot contain an uncountable set {Xa}aEA
such that iix« - x6IIE > 8 if a fi, for some S > 0, since if {Yn}nEN is dense
in E, for every a E A, iix« - yn(«) II E < 6/2 for some n(a) E N, and the
mapping a E A H n(a) E N is injective.

Next we prove the extension of the Weierstrass Theorem 2.16, due in
1937 to M. H. Stone, which includes the proof of the density of the set of
all polynomials in C(K) when K is a compact subset of Rte.

Theorem 2.19 (Stone-Weierstrass). Let K be a compact space. If a subal-
gebra A of C(K; R) separates points and does not vanish at any point of K,
then A = C(K; R).

Proof. Let f E C(K; R) and consider any positive number e> 0. We will
prove that h- IIK <e for some g E A in four steps.

(1) 1f f e A, then fleA.
Let a < 0 and b> 0 be such that f(K) C [a, b] and v(x) _ lxi on [a, b].

According to the Weierstrass theorem, we can find Qn E P[a, b] so that

lnm IIQm - vll[a,b] 0.

Since QTh(0) -f v(0) = 0, the polynomials P=Qom, - QTh(0) are such that
P(0) = 0 and h - vlI[a,b] -f 0 as n -f oo. Hence Pn(x) _ k=1 akxk, so
that P(f) = alf +a2f2+ +anfTh E A and

Ilpm(.f) - If IlK Iln - vll[a,6] -3 0

(2) If f, g e A, then sup{f, g}, inf{f, g} E A, since according to (1)

sup{ f, g}(x) := max{ f (x), g(x)} = f + 9 + I f - gl E A
2
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and

inf{ f, g}(x) := min{ f (x), g(x)} = f + 9 - I f - 91 E A.
2

(3) If x e K, we can find g E A so that gx(x) = f(x) and g <f + 6
on K.

According to Lemma 2.15, for every y e K we can choose fy E A so that

fy(x) = f(x) and fy(y) = f(y).
By continuity, fy < f -I- on a neighborhood U(y) of y and, since K is
compact,

An application of (2) gives

.= inf {fy1,... , fyN } E A,

and gx(x) =min{ f (x), ... , f(x)} = 1(x). For every z e K, gx(z) < fy3(z) c
f(z)+EifzEU(y). Thus, g < f + E.

(4) Finally, if we choose g as in (3) for every x e K, then g > f - e
on a neighborhood V (x) of x and

It follows as in (3) that

g := sup {gx1,... ,9Xk} E A

satisfies II9 - f IlK <6, since gel, ... , g<f -I- 6 and every z e K belongs
to some and g(z) > gx3(z) > 1(z) -I- 6.

There is also a complex form of the Stone-Weierstrass theorem:

Corollary 2.20. Let A be subalgebra of the Banach space C(K; C) of all
complex-valued continuous functions on a compact space K that separates
points and does not vanish at any point of K. If A is self-conjugate, that is
JeAiffeA, then A= C(K; C).

Proof. Since A is self-conjugate, if f e A and u = J2 f, then also u =
s(if)=(f -}- J)/2 e A and

A0 :={f; feA}={f; feA}.
is a subalgebra of C(K; R), since u = f and v = g E Ao imply uv =

fg+f)/2eAo.
Moreover Ao separates points and does not vanish at any point, since

x, y e K and 1(x) f(y) for some f e A implies f(x) f(y) or
f(x) f(y), and f(x) 0 or f(x) 0 if 1(x) # 0. Hence Ao is dense

in C(K; R) and, if f e C(K; C), we can find two sequences {un} and {vn}



2.2. Linear operators 39

in A0 that approximate R f and £f, so f n = un + ivn E A0 + iA1 C A and
f n -k f uniformly on K. LI

2.2. Linear operators

2.2.1. Bounded linear operators.

Theorem 2.21. A linear mapping T : E -k F between two nonmed spaces
is continuos if and only if

for some finite constant C> 0.

Proof. We know from Theorem 2.2 that T is continuous if and only if, for
every E> 0, we can choose 8 > 0 so that

T(BE(0, 8)) C

Hence, IITxIIF if lixilE < 8, or IITxIIF < CIIxIIE for any x E E, with
OC=E/6.

If a set A C E is contained in a ball BE(0, R), we say that A is bounded.
A continuous linear mapping T between two nonmed spaces E and F is

also called a bounded linear operator, since condition (2.4) means that
IITxIIF < C when x E BE(0,1) and T(BE(0,1)) is bounded in F. That is,
T is bounded on the unit ball of E.

By denoting 11ThI - SupIIXIIE<_1 IITxIIF, the smallest constant C in (2.4),
T is continuous if and only if IT II is finite.

Example 2.22 (Fredholm operators). If K : [a, b] x [c, d] -k C is a contin-
uous function and TK f (x) = fd K(x, y) f (y) dy, then

TK : C [c, d] - C [a, b]

is a bounded linear operator, since ITKf(x)I <
so that IITKfII[a,b] C CII.f II[c,d] With C = (d - c)IIKII[c,d]x[a,b]

5 The Swedish mathematician Erik Ivar Fredholm, in 1900, created the first theory on linear
equations in infinite-dimensional spaces, establishing the modern theory of integral equations

1

f(x)+f K(x, y)f (y) dy = 9(y) (0<x<1)

as the limiting case of linear systems
n

f (x) + K(xi, yj)f (y) = 9(yj) (1 < i < n),
j=1

and found his "alternative", which we will meet in Theorem 4.33. He based his fundamental
paper published in 1903 on the determinant named after him which is associated to the Fredholm
operators. His method was immediately followed by the work of Hilbert, Schmidt, Poincare, F.
Riesz, and many others.
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Example 2.23 (Volterra operator6). Similarly, if K is a continuous function
on the triangle O :_ {(x, y) E [a, b] x [a, b]; a < y < x < b} and

K(x, y)f(y) dy,TKI(x) :=
a

then

TK C[a, b] -+ C[a, b]

is a bounded linear operator, and 117'x11 C (b - a)IIKIIo

Let T E -+ F be a bijective linear mapping between two normed
spaces. We say that T is an isomorphism of normed spaces if and only
if T and T-1 are continuous. By (2.4), the continuity of T and T-1 means
that we can find two constants a, ,Q > 0 that satisfy

aII xII E IITXIIF QIIxIIE.

Two norms ' and II 112 on a vector space E are said to be equivalent if
they define the same topology, that is, if the identity I : (E, ' 1) -+ (E, Iis

an isomorphism, so that

Example 2.24. On C[a, b], the usual norm f 1[a,b] and I= fa Idt
satisfy

Ill Iii (b - a) Ill II[a,b],

and we say that I I ' I I [a,b] is finer than ' 1i since I : (E, II[a,b]) (E, ' 1)
is continuous and the topology of II ' II[a,b] is finer than the one of II ' Iii.

It is readily checked that, if
I I

is the Euclidean norm (2.2), IIxIk
maxi 1 IxI, and IIxIIi :_ >=i IxiI, then

IIxII < IxI <_ ,/Ilxlloo, IIxIIoo 11x111 nllxlloo.

Next we will prove that, in fact, the norms on Kn are all equivalent.

Theorem 2.25. If E is a normed space of finite dimension n, then every
linear bijection T : K-3 E is an isomorphism.?

Thus, E is complete and, on E, two norms are always equivalent.

6 In 1896 the Italian mathematician and physicist Vito Volterra published papers on what is
now called "an integral equation of Volterra type". His main contributions in the area of integral
and integro-differential equations is contained in his 1930 book "Theory of F unctionals and of
Integral and Integro-Differential Equations".

7This result holds for every topological vector space. The case n = 1 is included in Exer-
cise 4.5. The proof is by induction on n (cf. Berberian [4, (23.1)]).
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Proof. On Kn we consider the Euclidean norm I and the norm llxM
I lTxll. If x = > 1 where {Ui,.. . , un} is the canonical basis in K,
then n n

j=1 j=1

since Ixul < lxi, so that 11Tx11E <

To prove the reverse estimate, we will use the fact that the unit Euclidean
sphere S = {x; lxi = 1} is compact and that the function 1(x) lxii is
continuous on S, since 1- f()l < lix - y < Clx - yl. This function
has a minimum value c = min f = lixo> 0 for some xo E S, and then
llx/xHl ? c, so that lx < c lilxll

Every compact subset K of a normed space E is closed, and it is bounded,
since K C Um=1 BE(O, m), so that K C U=1 BE(O, m) = BE(0, N) for
some N> 0.

The converse is also true when E is afinite-dimensional space, since K
is then homeomorphic to a closed and bounded set of a Euclidean space Kim,
which is compact by the Heine-Borel theorem.

An important fact is that this property characterizes finite-dimensional
normed spaces; that is, if the unit ball BE is compact, then dim E < oo.
The proof will be based on the existence of "nearly orthogonal elements"
to any closed subspace of a normed space.

Lemma 2.26 (F. Riesz). Suppose E is a nonmed space and M a closed
subspace, M E, and let 0 < < 1. Then there exists u E E such that
IluilE = 1 and d(u, M) > 1 -.

Proof. Let v E E \ M, d = d(v, M) > 0 (M is closed), and choose mo E M
so that liv - moIIE < d/(1 - s). The element u = (v - mo)/llv - moilE
satisfies the required conditions, since, if m E M,

l

Remark 2.27. If we have an increasing sequence of closed subspaces M
of a nonmed space, then there exists a sequence {un} such that un E Mn,
h= 1, and d(un+i, M) > 1/2, so that {u} has no Cauchy subse-
quence, since iitLp - u911E ? 1/2 if p q.

A similar remark holds for a decreasing sequence of closed subspaces.

Theorem 2.28. If the snit sphere SE _ {x E E; IIxME = 1} of a nonmed
space E is compact, then E is of finite dimension.
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Proof. Assume that E has a sequence {xn} of linearly independent ele-
ments. We can apply Remark 2.27 to the subspaces Mn = [Xi,. .. , xn},
which are closed since they are complete by Theorem 2.25. Then {un} C SE
has no convergent subsequence.

2.2.2. The space of bounded linear operators. With the usual vector
operations, the set £ (E; F) of all bounded linear operators between two
normed spaces E and F is a vector space, and it becomes a normed space
with the operator norm

11Th := sup IITxIIF,

since all the properties of a norm are satisfied:

1. If 11ThI = 0, then IITXIIF < lIThhlIxhlE = 0 for all x e Eand T = 0,

2 IL\TII = supllXIlE<_i IAIIITxIIF = IITxIIF = Iand
3 II(Ti +TZ)xII F C (IIT1II + Iand then lIT1 +T2II IIT1II +

lIT2 II.

Moreover, the norm of the product ST of two bounded linear operators
T: E - F and S: F- G is submultiplicative,
(2.6)

since

Note that

II I,

IIISIIIITxIIF IISI1 PITh hixhiE

11ThI = sup IITXIIF = sup IITXIIF,
iisuE« a=uE=1

since, if IIXIIE < 1,I= =EglimoI< sup IITxIIF
uXuE«

and then 11Th = 5uPIIXIIE<1 IITXIIF. Also, if 0 < hIxhlE < 1,I= I<_ SUP IITxIIF,

and 11ThI = SuPIIXIlE=1 IITxIIF.

Theorem 2.29. If F is a Banach space, then G(E; F) is also complete.

Proof. Let {T} be a Cauchy sequence in £(E; F). For every x e E,
{Tnx} is a Cauchy sequence in the complete space F, since ihTpx -TyxiiF
I P - T9II IIxIhE We define Tx := limTnx and, by the continuity of the
vector operations, T : E -3 F is linear. Moreover, for every > 0 we can
find N > 0 so that

Ihb'p,q?N,dIIxIIE<_1
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and, by letting q - oo, IITx - TxF < Therefore T E £(E; F) and
O

In the special case F = K, the Banach space of all bounded linear forms
E' := G(E; K) with the norm

lull = sup Iu(x)l
IIXIIE_<1

is called the dual space of E.
We will use the notation G(E) for G(E; E). Every element of G(E) is

called a bounded linear operator on E.

2.2.3. Neumann series. Let us consider the problem of solving the equa-
tion

Tu - Au = v (T E £(E), v E E),
where E is any Banach space and v E E and 0 A E K are given.

We may obtain the inverse of T-AI = -A(1-T/A) using the Neumann
series8

similar to a numerical geometric series. If IITII/IAI < 1
00 00 00i II I " _ (llTll/lAl" <00,

a=o a=o n=o

and the Neumann series is convergent. It is shown that

(T - Al)-' = - (11Th <IAI),L
n=0

by checking that, if S is the sum of the series, S(T - Al) _ (T - AI)S = I.
For instance, if SN :_ - A-"-1T72, a partial sum of the series, then
S(T - Al) = limN SN(T - Al) by (2.6), and

N Tom,+i N Tom, TN+i
SN (T - Al) = -

An+1 + = I -
AN+1

I
n=0 n=0

when N oo, since we have llT72/A72ll < (llTIl/IAI)72 - 0

An interesting application refers to the example of the Volterra operators
defined in Example 2.23. If TK and TH are defined by the integral kernels

8The German mathematician Carl G. Neumann, who worked on the Dirichlet principle, used
this series in 1877 in the context of potential theory.
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K, H E C (z), then TKTH is also a Volterra operator TL, defined by the
composition L of K with H,

L(x, z) =
fX

since, assuming that K(x, y) = H(x, y) = 0 if y > x,

7'x7'xf (x) = f K(x y)Z'xf (y)dy = f 6 K(x,y) f 6 H(y,z)f (z) dz dyb
a a a

6 (fb
K (x, y)H(y, z) dy) f (z) dz

a

and, if a <x < z < b, in the last integral we have Kl(x, y) = 0 or KZ(y, z) _
0 and then K(x, z) = 0. It is worth observing how this composition of
kernels of integral operators corresponds to the product of matrices of linear
mappings in linear algebra.

The continuity of

K (x, y)H(y, z) dyL(x, z) = faX

defined on O follows from the continuity of the restriction of K and H to
this triangle.

We can compose TK n times with itself to obtain
x

K (x) = f dyeZ.f
a

where K1 = K and

f 6 K(x, f K(x, z)Kn-1(z,2J)dz
a y

when y < x and n > 2. If K(x, y)J < M, by induction,

(2.8) (n_l)! x - i

since K1(x, y) = fK(x,z)K(z,y)dz and, if y < x,

IC f M (M1)i (x - y)n-' dz = M' (X - y)fl.
y

Theorem 2.30. Let TK : C[a, b] -+ C[a, b] be the Volterra operator defined
by the kernel K E C(O). Then, for any A 0,

(2.9) (TK -Al)' _
n=0

and the series is absolutely convergent in G(C[a, b]).
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Proof. From (2.8),
n In

IITII C (b - a)IIKnII
M(nb lj

and
uriiaV^T.^,u c

M(b - a)n 1

(n - 1)! IAI'
which is the general term of a convergent numerical series.

The identity (2.9) is obtained as (2.7). D

In Theorem 2.48 and Exercise 2.20, the reader will find interesting appli-
cations of Theorem 2.30 to find the unique solution for the Cauchy problem
of a linear differential equation.

2.3. Hilbert spaces

Let us review some basic facts concerning Hilbert spaces.

2.3.1. Scalar products. A scalar product or inner product in a real
or complex vector space H is a K-valued function on H x H,

(x,y) E H x H H (x,y)H E K,

having the following properties:

(1) It is a sesquilinear form, meaning that, for every x E H, x)H
is a linear form on H and (x, )H is skewlinear, that is,

(x,yi + y2)x = (x,y1)H+(x,y2)H, (X,Ay)H = (x,y)H.

In the real case, K = R, is a bilinear form, since \ _ A.
(2) (y, x)H = (x, y)H, so that, if K = R, is symmetric.

(3) (X,X)H >0 if x 0.

By (1), (X,0)H = (O,Y)H = 0.

Given this scalar product, the associated norm on H is

.(2.10)
I

Obviously lAx IIH = IAIIIxIIH and lix IIH > 0 if x 0. The subadditivity
follows from the fundamental Schwarz inequality9

9 Also called the Cauchy-Bunyakovsky-Schwarz inequality; first published by the French math-
ematician Augustin Louis Cauchy for sums (1821), and for integrals stated by the Ukrainian
mathematician Viktor Bunyakovsky (1859) and rediscovered by Hermann A. Schwarz (1888), who
worked on function theory, differential geometry, and the calculus of variations in Halle, Gottingen,
and Berlin.
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by considering lix + y= (x + y, x + y)x and the properties of the inner
product to obtain

iix+yliH - ilxIii+ I< iixiii+ I<
xII2i-z + II

yII2H+' X H Y H,IIIIthat
is, lix + ii1 < (ilxiiu + I

To prove the Schwarz inequality, which is obvious if y = 0, in

0 < lix + iixiiH + lAi2IlyIii + A(x,y)H + A(y, x)H

we only need to choose A _ -(x, y)H/II YII ii and then multiply by liyIi
It follows from the Schwarz inequality that the inner product is contin-

uous at any point (a, b) of H x H since

I- (a,b)Hi _ i(xn - a,yn)x + (a,yn - b)xI
E iix- aII HII yniiH + iiaiiHliyfl - bIIH - O

if (xn,yn) - (a,b) in H x H.

A Hilbert space10 is a Banach space, H, whose norm is induced by an
inner product as in (2.10).

Remark 2.31. The completion H of the normed space H with a norm
defined by a scalar product as in (2.10) is a Hilbert space.

If x, y E H with x- x and y- y (xn, yn E H), we obtain a scalar
product on H by defining

\x FI '- (xn,yn)H,
since iixniix, iiYmilH C and, by the Schwarz inequality,

(- (xm,ym)Hl iixn - xm II H Il yrra II H + ilxmilHilyn - Ym II H 0

as m, n - 00.
This definition does not depend on the sequences xn - x and yn - y

since, if also x'n - x and y'n - y, then {(x, yn) H } and {(4, yn) H } are
subsequences of a similar one obtained by mixing both of them.

Note that

xlllq - lnm ii xnilH - (x,x)H

10The name was coined in 1926 by Hilbert's student J. von Neumann, who included the
condition of separability in the definition, when working on the mathematical foundation of quan-
tum mechanics. Hilbert used the name of infinite-dimensional Euclidean space when dealing with
integral equations, around 1909. It was another student of Hilbert, Erhard Schmidt, beginning his
1905 dissertation in Gottingen, who completed the theory of Hilbert spaces for £2 by introducing
the language of Euclidean geometry.
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Example 2.32. The Euclidean space Kn, with the norm

I

induced by the Euclidean inner product x y = x, is the simplest
Hilbert space.

Example 2.33. Another fundamental example is L2(µ), with

11f112=
(fIfI2d)1/2

induced by the scalar product (f, g) 2 = f f g dµ.

Example 2.34. The space 22 of all sequences x = {xn}nEN (or {xn}nEZ)
that satisfy

IIxII = <
n

is the Hilbert space whose norm is induced by (x, y)2 = >n xnyn. It is the
L2 space on N (or Z) with the counting measure.

2.3.2. Orthogonal projections. The elementary properties and termi-
nology of Euclidean spaces extend to any Hilbert space H:

It is said that a, b E H are orthogonal if (a, b)H = 0, and the orthogonal
space of a subset A of H is defined as

Al={zEH; (z,a)H = OVa E A}.

It is a closed subspace of H, since, by the Schwarz inequality, every a) H is
a continuous linear form on H and Al = flaEA Ker (, a) H, an intersection
of closed subspaces.

For a finite number of points x1, ... , xn that are pairwise orthogonal,
the relation

2 2 2xl + H = x1H ++ H

is the Pythagorean theorem, and a useful formula is the parallelogram
identity

aIIH '+ 2IIbIIH - II a + bII2i-1 + IIa - bII%r

They follow immediately from the definition (2.10) of the norm. The par-
allelogram identity will be useful to prove the existence and uniqueness of
an optimal projection on a closed convex set for every point in a Hilbert
space:

Theorem 2.35 (Projection theorem). (a) Suppose C is a nonempty closed
and convex subset of the Hilbert space H and x any point in H. Then there
is a unique point P(x) in C that satisfies lix - Pc(x)IIx = d(x, C), where
d(x, C) = infyEC lI J - xIIx.
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A point y E C is this optimal projection PC(x) of x if and only if

(2.12) (c-y,x-y)O do E C.
(b) If F is a closed subspace of the Hilbert space H, then H = F F1

(direct sum), and x = y+z with y E F and z E F1 if and only if y = PF(x)
and z =PFD (x).

Moreover PF is a bounded linear operator PF : H - H with norm 1 (if
F {0}), Ker PF = F1, Im PF = F, (PF(xl),x2)H = (xi, PF(x2))x, and
PF = PF.

Proof. (a) Let d = d(x,C) and choose yn E C so that do = lix - ynli -+ d
Since C is convex, (yp+yq)/2 E C and, by an application of the parallelogram
identity to a = (x - y)/2 and b = (x - yy)/2,

(dp+dq) =llx-2(yp+y9)IIH+4iiyp-yqiiH ?d + iIyp-yqiiH

By letting p, q - oo, d2 > d2 + limy, y 4 iiY- yyll H and iyp - y9iiH - 0
Since C is complete, yn - y E C and lix - Y11 H = limlix - ynIIH = d

The uniqueness of the minimizer y follows from the fact that if z is also a
minimizes, the foregoing argument shows that {y, z, y, z, y, z, ...} converges
and y = z.

To prove (2.12), suppose that c E C and 0 < t < 1. Then (1-t)y+tc E C
by the convexity of C, and

lix - iiH lix - [(1 -t)2J-tC]IIH - I

where

(2.13) lix - y - t(c - )ii i _ lix - yiiH - y, x - y)H + t2II c - yiit

Hence y, x - y)H < tilc - yII H and it follows that (c-y,x-y)H < 0
by letting t - 0.

Conversely, if J2(c - y, x - y)H < 0 and in (2.13) we put t = 1,

lix - iiH - III - yIIH = ii - ciiH O.

(b) Since F fl F1 = {0}, it is sufficient to decompose every x E H into
x = y + z with y E F and z E F1. We choose y = PF (x) and z = x - y, so
that we need to prove that z E F1. Indeed, by (a) we have JR(c - y, z)H < 0
for any u = c - y E F and also (Au, z)H < 0, so that (u, z)H = 0 for every
u=c-yEFandzEF1.

Let y3 = PF(x3) and z3 = x3 - y3 (j = 1, 2). Since z E F1,

(PF(xi), x2)H = (yi, y2 + z2)H = (yi + zl, Y2)H = (xi, P(x2))H.

The linearity of PF follows very easily from this identity, and it is also clear
that P(x) = PF(y) = y = PF(x), KerPF = F1, and ImPF = F.
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From IIy + zIIH - IIyIIH + IIzIIi we obtain I
H < IIxII1, so that

IIPFII 1, since MPF(y)IIH = IIYMH if y E F.

If F is a closed vector subspace of H, we call F1 the orthogonal com-
plement of F, and the optimal projection PF is called the orthogonal
projection on F.

The projection theorem contains the fact that F1 {0} if F H. This
will be used to prove Theorem 4.1, the Riesz representation theorem for the
dual space of H.

Theorem 2.36. Let A be a subset of H. Then the closed linear span [A] of
A coincides with A11, so that A is total in H if and only if Al = {0}.

Thus, a vector subspace F of H is closed if and only if F11 = F.

Proof. It is clear that Al = [A]1 and, by continuity [A]1 = [A]1; thus, if
F = [A], we need to prove that F11 = F.

We have F C F11 and, if x F, it follows from Theorem 2.35 that we
can choose z E F1 so that (x, z)H 0; just take z = PFl (x). This shows
that also x F11

Note that A is total when F = E and, by Theorem 2.35, this happens
if and only if Al = F1 = {0}. O

2.3.3. Orthonormal bases. A subset S of the Hilbert space H is called
an orthonormal system if the elements of S are mutually orthogonal and
they are all of norm 1.

Suppose F = [el, ... , en], where {ei,. . . , en} is a finite orthonormal set
in H. Then

PF(x) _ ek)gek
k=1

since z = x->1(x, ek)Hek E F1. It follows from PF(x)IIH < IIxIIH that

(x,ek)HI2 < MxII.
k=1

This estimate, which is known as Bessel's inequality, is valid for any
orthonormal system S = {e3 }3EJ; just take the supremum over all the finite
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sums11:

(2.14)
jEJ

The numbers x(j) (x, ej)H are called the Fourier coefficients of x
with respect to S.

An orthonormal basis of H is a maximal orthonormal system, which
is also said to be complete. That is, the orthonormal system S = {e}EJ 1S
an orthonormal basis if and only if

x(j):=(x,ej)H=O VjJ=x=0,
which means that 51 = 0 and S is total.

By an application of Zorn's lemma, it can be proved that every orthonor-
mal system can be extended to a maximal one.

In our examples, Hilbert spaces will be separable, so that an orthonormal
system S = {e3 }jEJ is finite or countable, since IIei - e3 IIH = if i j (cf.
Remark 2.18).

We will only consider the separable case and write £2 = 22(J) if J =
{1, 2, ... , N}, N, or Z, but the results extend easily to any Hilbert space.

By Bessel's inequality x e H H x = {(j)} E 22 is a linear transform
such that x = {(j)} E £2 and IIlI2 < IIXIIH. When S is complete, this
mapping is clearly injective, since in this case x(j) = 0 for all j e J implies
x = 0 by definition. Moreover, every x e H is recovered from its Fourier
coefficients by adding the Fourier series >jEJ x(j)e3:

Theorem 2.37 (Fischer-Riesz12). Suppose S = {ej}3EJ is an orthonormal
system of H. Then the following statements are equivalent:

(a) S is an orthonormal basis of H.
(b) x = >Jx(j)e in H for every x e H.
(c) IIxIIH = 11x112 for every x e H or, equivalently, (x,y)H = (x, y)2

for all x, y e H (Parseval's relation).

Proof. Suppose J = N and let c = {c3} E 22.

"According to footnote 2 in this chapter, if 1(i) = (x, a j) H , then

IIfIIZ > 1,(i)12 = Sup { > If(k)12; F C J, F finite}
jEJ kEF

is the integral of 1112 relative to the counting measure on J, and f E £2(J) if 111112 <00.
12 Found independently in 1907 by the Hungarian mathematician Frigyes Riesz and the

Austrian mathematician Ernst Fischer.
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We claim that z := >1'i c e exists and z = c. Indeed, if Sj j N
Nj=1 cjej and p < q,

ii5q_8pIIi=I

and we obtain the convergence of the series >Icje to some z in H.
Moreover

z(k) _ (1N SNP ek)H =Ilk (SN,ek)H = Ck,

since (SN, ek)H = ck if N > k.

Now (b) follows from (a): By Bessel's inequality x = {(j)} E 22 and, if
z = x(j)e3, then z = x and i(j) for all j, so that x = y by (a).

From (b), IixiiH - I1mN iiSNllH - IlrilN >I'i ix(j)i2 = iThen also
(x, y)H = (x, y)2 by the polarization identity

(2.15) (x,y)H = 4 (llx + y- lx - I

if K = R, and

(2.16) (x, y)x = 4 (iix + yIIH - lix - yII2H -I- 2iIx + iyII2i-1 - ZIIx - zyIIH)

in the complex case. They are both checked by expanding the squared norms
as scalar products.

Finally, if x = 0, from (c) we obtain x = 0 and (a) follows.

Remark 2.38. We have proved that, when {e}3EJ is an orthonormal basis,
the linear map x e H H x E £2 is a bijective isometry, and that (b) defines
its inverse.

The identity (b) is the expansion of x in a Fourier series. The classical
best-known example is the following:

Example 2.39. In the Hilbert space L2 (T) = L2(0, 2ir), where for conve-
nience we define the scalar product as

1 2
(f, 9)2 :- f(t)g(t) dt - T f9,

the trigonometric system ek(t) et (k e Z) is orthonormal. It is well
known that it is complete and a proof of this fact, known as the uniqueness
theorem for Fourier coefficients, follows from (2.27), where a construc-
tive proof of the density of the trigonometric polynomials is given. Another
proof based on the Stone-Weierstrass theorem is contained in Exercise 2.10.
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The corresponding Parseval relation13 is
zir O 22 f(t)etdt.

2.4. Convolutions and summability kernels

We are going to consider examples of linear operators T between complex
II' spaces on a--finite measure spaces X and Y. The reader may assume
that X and Y are two Borel subsets of Rn and Rm, respectively, with the
corresponding Lebesgue measures.

Assume that the domain D (T) of T contains all complex integrable
simple functions on X and that T takes values that are measurable functions
on Y. If there exists a constant M> 0 such that

ITfllq Mll.f IIP (.f E D(T) n zP(X)),

we say that T is of type (p, q) with constant M. As usual, we assume
1 < p, q < oo.

If T is of type (p, q) and D(T) fl LP(X) is a dense vector subspace of
LP(X), we keep the same notation T to represent the uniquely determined
continuous extension T : L(X) -+ L9(Y) of this operator.

2.4.1. Integral operators. Let K(x, y) be an integral kernel, a complex-
valued measurable function on X x Y. The associated integral operator TK
is defined by

7'xf (x) := f K(x, y)f (y) dy
Y

Theorem 2.40. (a) Under the condition

(2.17)

fy
K(x, y)I dy < C < oo a. e. onX,

TK is well-defined on L°O and it is of type (oo,oo) with constant C.

(b) If

(2.18)
J K(x, y) dx < C a. e. on Y,
x

then TK is well-defined on L' (X) and it is of type (1, 1) with constant C.
(c) If both requirements (2.17) and (2.18) are satisfied, then TK is a

bounded linear operator on TK : LP(X) -+ LP(Y) for every p E [1,00], and
IITKII <C.

13 In 1806 Marc-Antoine Parseval published an identity for series as a self-evident fact, which
he later applied to the Fourier series.
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Proof. The first result follows from

ITf(x)I C f I iiiiioof K(x,y)I dy
Y

and from assumption (2.17).

Similarly, IIii < fX fy I )IIf()I dydx < CIIf Iii in the second
case.

A direct proof of the remaining case (c) is left as an exercise (Exer-
cise 2.29). It will also be a trivial corollary of the Riesz-Thorin Theorem 2.45;
see Exercise 2.30.

Convolution operators are special instances of integral operators.
Recall that the convolution f * g of two functions f and g on Ris

defined by

(f * g)(x) := fRn f(x - y)g(y) dy.

One has to be careful to make sure that this integral is meaningful a.e. and
that it defines a measurable function. In this case we say that f and g are
convolvable.

The convolution operator f* is the integral operator associated to the
integral kernel K(x, y) = f(x - y), which is measurable on RZif f is
measurable on R. Indeed, if F(x, y) = f(y), then K = F o T is measurable
on R2n and T(x, y) _ (x + y, x - y) is a homeomorphism of RZn.

The following properties for convolvable functions are readily obtained
from the definition:

(a) f*g=g*fa.e.

(b) {f * g 0} C {f # 0} + {g # 0}, so that, if supp f is compact,
then

(2.19) supp f * g C supp f + supp g.

(c) 8k(f * g) = f * if f e Ll(R) and g e is bounded with
a bounded partial derivative 8jg.

To prove (b), note that if x ¢ {f L 0} + {g 0}, then

(f*g)(x):= f f(x-y)g(y)dy

and for every y e {g 0} we obtain f(x - y) = 0, so that (f * g)(x) = 0. If
supp f is compact, then supp f+ supp g is closed, since from x = lima+b
with aE supp f and bn e supp g, we obtain ank - a e supp f and
x - a =limy (any + bflk - aflk) = b e supp g.
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As a corollary of Theorem 2.40 with K(x, y) = g(x - y) and C = Iwe
obtain Young's inequality

(2.20) If * hh c hf I(1 < p < oo, f E LP(Rtm), g E Ll(Rn)).
By Holder's inequality, we also have

(2.21) I* 9IIoo hlipliglIp' (1 < p < oo, .f E 11(Rn), g E

2.4.2. Summability kernels on Rn. A summability kernel on Rn is
a family {KA}AEA of integrable functions which satisfy

(1) Ac (0,oo) and 0 E A,
(2) fRflKA(x)dx=1,
(3) Supa Iiii <00,
(4) JjXI>R Idx = 0 for all R> 0.

Of course, for positive summability kernels assumption (3) is redundant.

The following result justifies our also saying that a summability kernel
is an approximation of the identity:

Theorem 2.41. Let {KA}AEA be a summability kernel on Rn.
(a) If f is a continuous function on Rn and f(x) = 0, then

KA * f = f uniformly on R.
(b) 1f f E LP(Rn) for some 1 <p < oo, then IIKA * f - fIi_ 0

Proof. (a) For M > 0, let

I(M)f I -y)-.f(y)hiKa(y)i dy

and

J(M) := f i- y) - f(y)IIKA(y)i dy
yI>M

Then, using property (2) of a summability kernel,

1(.f * Ka)(x) - f(x)i _ y) - f(y)]K(y) dyl < I(M) + J(M).

For any > 0, since f is uniformly continuous, we can find M such that,
by (3),

I(M) sup
I - y/ - f(y)IhlKAIIl .

I yI M, xERn

Then, by property (4), we can select 6> 0 so that, if IAI < b,

J(M) < 2IIf II Ka y) I dy
2yl?M

and it follows that if * Ka(x) - f(x)I < for all x E Rn.
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(b) Using (2) as before, we obtain

IIKa *.f - .fIIP C 1(1 Ifry.f -.f)(x)IlKa(y)I dy)Pdx

and, by writing IKAI _ Iif 1 < p < oo, an application of
Holder's inequality and property (3) gives

IIKA * f - f IIP < C fRn Iftyf - f dy

with C =sups IIKAII'. We continue as in (a) and we write

fRn IIY.f - .f Idy < j(M) + J(M),

with M small so that

I(M) = f Iftf - f I I dy

y -+ 0, by Theorem 2.14. The proof ends by observing
that

J(M) < 2II1 IIP f I Ka(y)I dy < eP/2
yI?M

for \ large enough.

It is readily checked that a summability kernel on Rn is obtained from a
single positive integrable function K such that fRfl K(x) dx = 1 by defining

(2.22) Kt(x) := t K(t) (t> 0).

Example 2.42. The Poisson kernel on R is the summability kernel
1 xPt(x)=-
7r t2 + x2

(t>0),

obtained from the function
P(x)_ 1 x

r 1+x22.4.3.

Periodic summability kernels. Summability kernels can also be
considered on a finite interval I C R, say I = [a, a + T). To define a
convolution, we extend every function f : I -+ C to the whole line R by
periodicity, and we associate to every T-periodic function f R - C a
function F : T -+ C on T = {z e C; Izi = 1} by the relation

1(t) = F(e2t/T).

This is a bijective correspondence, and F E C(T) if and only if f E CT(R),
this notation meaning that f is continuous on R and T-periodic.
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We will also write U'(T) to represent L'(a, a + T) or (R), the linear
space of all T-periodic functions which are in L' when restricted to an
interval (a, a + T). In the case 1 <p < oo, since a + T) is dense in
IP(a, a + T), C(T) is also dense in LP(T).

As an example, note that F(z) = z' means that f(t) = e2t/T (k E Z)
and P(z) _ k= -N ckzk represents a trigonometric polynomial. We will
denote ek(t) = so that ek = z' when we identify f and F, and
e_k = zk.

It will be convenient to use the notation

L
1 fa+T

f(t) dt := f(t) dt
a

and to define the norm of LP(T) as IIfIIp = (fT f(t)P dt)l/p if 1 <p < oo.
Then Ilek lip = 1 and IIii If lip.

The convolution on T is defined by

(f * 9)(t) = f f(s)g(t - s) ds
T

when f,g e Ll(T).
A summability kernel or approximation of the identity on T is a

family of functions {KA}AEA in Ll(T) satisfying the following:

(1) A is an unbounded subset of (0, oo) (for convenience we will let
A - oo).

(2) fTKA(x)dx=1.
.(3) SuPa IIKA Iii <°°

(4) limaf?' -a Ka (x) J dx = 0 for all 0 < S < ir.

The proof of the following result is exactly the same as that of Theo-
rem 2.41:

Theorem 2.43. Let {KA}AEA be a summability kernel on T.
(a) If f e C(T), then limKa * f = f uniformly on T.
(b) If f E LP(T) for some 1 <p < oo, then limaIIKA * f - flip = 0

1f f E Ll(T),

,f ^' Ck l

k=-oo

means that ck(f) = fT f (t)e_k(t) dt are the Fourier coefficients of f and
that _ ck(f is the classical Fourier series of f.
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Our next aim is to show how summability kernels appear when studying
the convergence of these Fourier series.

To study the possible convergence of the Fourier sums
N /'

'S1N(,f,, x) - > J f(t)e_2kt/Tdt
k=-N T

N

fT(kN) dt,
by the change of variable y = 2irx/T we can and will assume that T = 2ir.

We will denote by
N N

(2.23) DN(t) ekZt = 1 +2 cos(nt)
k=-N n=1

a sequence of trigonometric polynomials which is called the Dirichlet ker-
nel, to write

SN (.f) _ .f * DN.
By adding the geometric sequence in (2.23), we also obtain, if 0 < t < it,

ei(N+1)t _ e-iNt sin[(N+ 2)t]
DN(t) ezt - 1 sin 2

sin[(N + 1/2)t]
sin(t/2)

Note that IT Dnr(t) dt = 1, since IT ea(t) dt = 0 if k 0, and DN(-t) _
Dnr(t). For every S > 0, {Dnr} is uniformly bounded on S < ti < it:

(2.24) DN(t)i sin(5/2)
(S < t < it).

Property (3) of summability kernels fails for the Dirichlet kernel, which
is not an approximation of the identity, but we obtain a summability kernel,
the Fejer kernel, by making the averages

(2.25)

Indeed,

1 -1
FN .- n.

N n=0

FN(t) _ 1 sin2(Nt2)
N sin (t/2)

will follow from the identity

(2.26) 2sinasinQ = cos(a - Q) - cos(a +,3)
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and the properties

(a) FN 0,

(b) FN(-t) = FN(t),
(c) T FN (t) dt = 1, and

(d) limnrmaxb<ItI<T,2 FN(t) = 0 for every 0 < S <T/2

are easily checked.

For instance, we multiply both sides of

NFN(x) _ sin[(n+ 1/2)x]

n=o sin(x/2)

by 2sin2(x/2) to obtain
N-1

2Nsin2(x/2)FN(x) _ 2sin[(n + 1/2)x] sin(x/2),
n=0

and an application of (2.26) with a = (n + 1/2)x and Q = x/2 gives
N-1

2N sin2(x/2)FN(x) _ [cos(nx) - cos((n + 1)x)] = 1 - cos(Nx).
n=0

Then, again by (2.26), but now with a = Q = Nx/2,

2sin2(Nx/2) = 1 - cos(Nx),

and from both identities we obtain

Nsin2(x/2)FN(x) = sin2(Nx/2).

Now (a) and (b) follow immediately, and (c) also:
1 L 1 N-i 1 L 1 N-1

fFN(t)dt= N 7, f Dn(t) dt = N 1 = 1.
I' n=0 L n=0

To check (d), note that, if 0 < S < t < ir,
1 1 1 1

0 < FN(t) _< N sin2(t/2) - N sin2(6/2)'

since sin2(t/2) is increasing on (0, 71].

The Cesaro sums of f e Li (T) are the trigonometric polynomials

UN(f,x) := S(f,x) = f * FN(X)
n=0

N-i

and according to Theorem 2.43, if f e LP(T) (1 < p < oo), then

(2.27)
nil Ill - N(.f)IIp = 0.
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This shows that the trigonometric system {ek}kEz is total in LP(T) (1 <
p < oo) and, as an application, we give a proof of the Riemann-Lebesgue
lemma:

For every f E L1 (T), limIkI9 ck(f) = 0, since this is obviously true for
the trigonometric polynomials QN (f) and we have I- QN (f)) II if
if - UN(f)<e, so that Ick(f)I _ kk(f - UN(f))I <E for every iki > N.

If f, g E Ll (T) have the same Fourier coefficients, then f = g. This fact,
known as the uniqueness theorem for Fourier coefficients, also follows
from (2.27), since f = limN UN(f) = limN UN(9) = 9

The closed subspace of 2°O which contains all the sequences {ck} with
limit zero will be denoted co. Then f E Ll (T) H co is injective and contin-
uous.

2.5. The Riesz-Thorin interpolation theorem

Sometimes it is easy to show the continuity of a certain operator T when
acting between two couples of Banach spaces, say T : Lp0 -f LQ0 and T
L' -f L91. The interpolation theorems show that then T is also bounded
between certain intermediate couples Lp and L9.

We are going to prove Thorin's extension of the classical M. Riesz inter-
polation result, known as the convexity theorem, by combining techniques of
real analysis with the maximum modulus property of analytic functions.14

The following result will be used in the proof of the interpolation theo-
rem:

Theorem 2.44 (Three lines theorem). Let f be a bounded analytic function
in the unit strip S = {z E C; 0 < z < 1} that extends continuously to
S = {z E C; 0 < J2z < 1}, and denote

sup

Then

M(t9) M(O)1M(1) (0 <0 < 1).

Proof. To prove that I-I- iy)i <
M(0) we can consider M(0)-I-e and M(1)-Fe

and then e ,, 0.

14The first interpolation theorem was proved in 1911 by the Belarusian mathematician Issai
Schur, who worked in Germany for most of his life, for operators between £ spaces of type (1, 1)
and (oo, oo) in terms of bilinear forms. The convexity theorem was proved in 1927 by Marcel Riesz,
the younger brother of Frigyes Riesz who worked in Sweden for most of his life. It was extended
in 1938 by Riesz's student Olov V. Thorin with a very ingenious proof, considered by Littlewood
"the most impudent idea in Analysis". This theorem refers to couples of L spaces but, with
the ideas contained in Thorin's proof, in the 1960s the Argentinian-American Alberto Calderon
developed an abstract complex interpolation method for general couples of Banach spaces.
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Let F(z) = f(z)/(Md'Mr), which is similar to f but with M(0) _
M(1) = 1 and <K on 0 < z < 1. We only need to show that 1.

For every e > 0, let us consider F£(z) = F(z)/(1 -I- sz) on the rectangle
RE which is the fragment of S lying between the lines y = fiK/e. On the
boundary of S,

IFe(z)I
1 ex

1 (x=z)
and, when II = K/e, also

IF(z)I K
IF(z)I < < = 1.

By the maximum modulus theorem, IFE < 1 on RE, and the estimate

IF(z)I 1

is also valid everywhere on S. Then we conclude that IF(z)I < 1 +on
S, and IF(z)I < 1 by letting e - 0. O

Let us apply this result to prove the interpolation theorem for operators
between L' spaces on X and Y, two measurable spaces endowed with the
v-finite measures µ and v.

We denote by S(X) the class of all simple integrable complex functions
on X and by M(Y) the class of all complex measurable functions on Y, and
we recall that a linear operator T : D(X) -+ M(Y) (D(X) C M(X)) is said
to be of type (p, q) with constant M if IITfIIq Mill IIP for every f E D(X).

We will use the fact that

(2.28) Ill IIa = sup I(f,g)I = sup
II9IIy'<1 II9IIyI=1

where (f, g) = fY fg dv. The proof is obtained from Holder's inequality as
follows:

Obviously supllsll9,<_1 (f, 9) if IIq To prove the converse estimate,
normalization allows us to suppose that f IIv = 1, and we write f = f s
with IsI = 1. When 1 < q < oo, define go = If Ithen II90II9' = 1 and
(f,go) = 1.

If q = oo, suppose that M := supllsl11=1 I (f, g)I > IIfI' so that, for some
m> 0, we can choose A C {IfI > M+1/m} such that 0 < v(A) <00. Then
go := v(A)-1sXA E L' (v) would satisfy (f, o) I > IfIk' which contradicts
Holder's inequality.

15This is the description of the L norm by duality. See also (4.6).
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Theorem 2.45 (Riesz-Thorin). Let T : S(X) - M(Y) be a linear operator
of types (pa, qo) and (p1, ql) with constants Mp and Ml, respectively. Then,
if 0 <0 < 1, T is also of type (pay, with constant M(?9), where

1 1-t9 i9 1 1-t9 t9

p po pi Qo qi

and M(t9) < Mo-'Mi .

Proof. (a) Let p = p,g and q = qg, and consider first the case po = pl = p.
Note that we only need to show that, if qo < q < ql, then

(2.29) IIIIs ligliqo

since then, for g = T f , we obtain

IITfIIq C IIgIIIIgII1

To prove (2.29) when 1 < qi < oo, we use Holder's inequality with the
exponents r = qo/(1 - ?9)q and r' = ql/?9q to obtain

IIIIQ = f (f IIthat

is,
II

IIq ligli(q1-9)q11giil9q

If po =Pi = p and 40 < 4 C Qi = oo, then t9 = (q-qo)/qandl-t9=qo/q.
Hence,

IIIIq - f < f gO = gIII iiq(1-)

(b) Now assume that po pi, and then 1 <P < oo. We denote

1-z z 1-z z
a(z) = + -, (z) = + -,

po pi 4o qi

so that a(t9) = 1/p and /3(t9) = 1/q.

Since IT8 IIq = sups1=1 I (Ts)g dvl, we need to prove that

(2.30) I f(Ts)gdvfor

all simple functions s and g satisfying 1s11 P = 1 and II9IIQ' = 1

Suppose first that q' is finite. Then

N K

s anXAn , g bkxBk
n=1 k=1
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where the A(and the Bk) are disjoint sets of finite measure and an 0
bk. Moreover 1 and II9IIq' = 1 give us that

N K

= 1, IbkI(Bk) = 1.
,=1 k=1

Write s(x) _ Iso that s(x) _ ant exp(iarga) if x E A, and also
9(y) = IThen for every z E C we define the simple functions

Sz - 9z -
and

F(z) = f (Ts)g dv -Y

with C,k = fy(TXAfl)xBk exp(i arg a-I-i arg bk), which is an entire function
as a linear combination of exponentials.

The real parts of a(z) and 13(z) are bounded on S and then F is also
bounded. The announced estimate will be obtained from Theorem 2.44 if
we show that

(2.31) I Mop I Mi,
since F(?9) = f,, (Ts)g dv and then (2.30) will follow.

From the definition of F(z), T being of type (po, qo) with constant Mo,
Holder's inequality givesII o MoIISzyIIpotI9ZyIIyo,

where
N N

IIsiyIIg - i I_ i I= 1,
n=1 n=1

since J2a(iy) = 1/po and a(t9) = 1/p. Similarly, IIII9°0 = 1 and we arrive at
the first estimate IF(iy) I < Mo in (2.31).

The same argument using the fact that T is of type (p1, ql) with constant
Ml yields the second estimate F(1 + iy)I < Mi. This completes the proof
for q' finite.

In the case q' = oo, take gz = g for all z. D

Corollary 2.46. Let T be a linear operator on D(T) = I''° (X) + L'' (X) of
types (p0, qo) and (P1, ql) with constants Mo and Ml. Then, with the same
notation as in Theorem 2.45, T : I''' (X) -+ Lq' (Y) is of type (pt, qy) with
constant M(?9) < ,for every 0 <'0 < 1.
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Proof. We can assume that po <p =pay <P1, since, when pp = pi, part
(a) in the proof of Theorem 2.45 applies.

Let f E JY and consider a sequence {sk} of simple functions such that
Ski < ill and sk - f. If E _ {Ifi > 1}, we define g = IXE, Sk = SkXE,
h = f - g, and 4 = sk - sk. By dominated convergence, sk -4 f, s) - g,
and 4 - h in L.

By taking subsequences if necessary, Ts) - Tg and T4 - Th in JY
and a.e., and also Tsk -- T f a.e.

If q < oo, by the Fatou lemma and Theorem 2.45,

iTfiiq liminf IITSkIIq fZ M(t9)Ii5kiip = M(t9) If IIp

If q = oo, then qo = ql = oo, and also iITfIk < lim info IiTsk 100. L

As an application we will prove an extension of the Young inequali-
ties (2.20) and (2.21):

Theorem 2.47. Let 1 < p, q, r < oo and let

111-+-=-+1.
p q r

1f f E L(Rn) and g E L9(Rn), then f and g are convolvable, f*g E
and

ill * Iir Ill IipIIgiIq

Proof. Assume that p < q, so that also p < r. By (2.20), f* is of type (l,p)
with constant I P and by (2.21) it is of type (p', oo) with the same constant.
It follows from the Riesz-Thorin Theorem 2.45 that it is also of type (p, q)
with constant "f"p by choosing i9 = p/r, since then 1/q = (1 - 'i9)/p' +X9/1
and 1/r = 1/t9.

2.6. Applications to linear differential equations

The aim of this section is to present some applications of the preceding
methods to solve initial value problems and boundary value problems for a
second order linear equation with continuous coefficients,

u" + ai(x)u' + ao(x)u = c(x),

on a bounded interval [a, b]. Functions are assumed to be real-valued.
This equation can be written in what is called self-adjoint form,

(2.32) (pu')' - qu = f (0 <p E C1[a, b]; q, f E C[a, bJ),
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since, for p(x) = exp(f al) such that p' =pal, our equation is equivalent to
pu" + palu' + paou = pc, that is, (pu')' - p'u' + palu' + paou = pc, so that
we only need to consider q = -pap and f = pc.

We write Lu = (pug)' - qu for short, and by a solution of Lu = f we
mean a function u e C2[a, b] such that Lu(x) = 1(x) for every x e [a, b].

Note that the operator L C2 [a, b] - C[a, b] satisfies the Lagrange
identity
(2.33) uLv - vLu = [p(uv' - u'v)]' _ (pW)',

where W = uv' - u'v is the Wronskian determinant.16

2.6.1. An initial value problem. Next we consider the Cauchy prob-
lem

(2.34) Lu = f, u(a) = a, u'(a) =,Q

where c, /3 E R are given and L is as above.

Integration and the assumption u'(a) _ ,Q show that to solve (2.34)
involves finding the solutions of

p(y)u'(y) - p(a),Q -
J y q(t)u(t) dt = J y 1(t) dt (u e C1 [a, b], u(a) = a).

a a

After dividing by p, it turns out that integration and the condition
u(a) = a show that this is equivalent to

u(x)-Jam
p(s)

Jas q(y)u(y) dyds - g(x) (uC[a,b]),

where

-- /(2.35) 9(x) _ -a - p(a)/3 fJ -Jam s f(y) dyds.
Ja

Note that, if a < x < b, we are dealing with the integral of a continuous
function on the triangle

:= {(s,y); a y s x}

and, according to Fxbini's theorem,
x

tJ v(s)w(y) dsdy =

J
v(s)

J
w(y) dyds =

J
w(y)

J
v(s) dsdy,

O a a a y

so that we are reduced to solving the integral equation

u(x) = f q(y)u(y) f dy - 9(x) (u e C[a, b]).

16If supp u C (a, b), then fa (pW )' = 0 and j u(x) (Lv) (x) dx = fa (Lu) (x)v(x) dx, a self-
adjointness property of L.
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Let us consider

K(x,y) := 9(y) f dt (ayxb),
y p(t)

which is a continuous function on the triangle defined by a < y < x < b,
and suppose that g E C[a, b] is as in (2.35). With Theorem 2.30 we have
proved the following result:

Theorem 2.48. The function u e C2[a, b] is a solution of the Cauchy prob-
lem (2.34) if and only if u e C[a, b] and it satisfies the Volterra integral
equation

TKu - u=g,
whose unique solution is

u = (TK _ I)-ig = -T9.
n=0

As shown in Exercise 2.20, a similar result holds for linear differential
equations of higher order with continuous coefficients.

Let us recall how, from the existence and uniqueness of solutions for the
Cauchy problem (2.34), it can be proved that Ker L, the set of all solutions
for the homogeneous equation, is atwo-dimensional vector space:

Lemma 2.49. Two solutions yl and y2 of the equation Lu = 0 are linearly
dependent if and only if their Wronskian, W = yly- yly2, vanishes at one
point. In this case, W (x) = 0 for all x e [a, b].

Proof. Indeed, if W() = 0 at a point E [a, b], then the system

0, 0

has a solution (Cl, c2) ,- (0,0) and the function v := clyl + c2y2 is a solution
of the boundary problems Lv = 0, v'() = 0 on [a, ] and on b].

By the uniqueness of solutions for these Cauchy problems, it follows that
v = 0 on [a, b] and yi, y2 are linearly dependent.

Conversely, if clyl+c2y2 = 0 with (cl, c2) L (0, 0), then also c1yi+c2y'2 =
0, and W (x) = 0 for every x e [a, b] as the determinant of the homogeneous
linear system

yi(x)Ci+ y2(x)C2 = 0, yi(x)Ci + y2(x)c2 = 0

with a nonzero solution.

Theorem 2.50. Let yl and y2 be the solutions of

Lyi = 0, yi(a) = 1, yi(a) = 0
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and
Lye = 0, y2(a) = 0, y(a) = 1.

Then {yl,y2} is a basis of Ker L.

Proof. Since W (a) = 1, according to Lemma 2.49, the functions yl and y2
are linearly independent.

To show that any other solution u of Lu = 0 is a linear combination of
yl and y2i note that v := u(a)yl + u'(a)y2 is the solution of

Lv = 0, v(a) = u(a), vi(a) = u '(a),

and then u = v = u(a)yl +u'(a)y2.

2.6.2. A boundary value problem. We shall now restrict our attention
to the homogeneous boundary problem

(2.36) Lu = g, Bl (u) = 0, B2 (u) = 0,

where
Lu - (pu')' - qu (0 <p E C' [a, b]; q E C[a, b])

as in (2.32) and

Bi(u) := f41u(a) + A2u'(a) _ 0 (IA,I + IA21 0)

and

B2(u) Blu(b) + B2u'(b) = o (IB,I + IB21 o)

are two separated boundary conditions involving the two endpoints.
Note that

D :_ {u E C2[a, bJ; Bl(u) = 0, B2(u) = 0}

is a closed subspace of C2[a, bJ, endowed with the norm

lull = max(llull[a,v], llu'll[a,b], land

the restriction of L to D, LD : D -+ C[a, b], is a bounded linear operator.

Our boundary problem will be solved for every g E C[a, b] if we can
construct an inverse for L. To this end we need to suppose that L is
one-to-one on D; that is, we assume that u = 0 is the unique solution of
Lu = 0 in C2 [a, b] such that Bl (u) = B2 (u) = 0.

Lemma 2.51. There exist two linearly independent functions yl, y2 E C2[a, b]
which are solutions of Lu = 0 and satisfy Bl(yl) = 0 and B2(y2) = 0.

Proof. Let yl and y2 be nonzero solutions of

Lyi = 0, Bl (yi) = 0

and

Lye = 0, B2(y2) = 0.
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By our assumptions, there are no nonzero solutions of LDU = 0, so that
B1 (Y2) L 0 and B2(yl) L 0, and yl, y2 are linearly independent.

By the existence theorem for the Cauchy problem (Theorem 2.48) we
can always find these functions yl and y2. O

It is worth observing that, if yl, y2 E C2[a, b] are two linearly indepen-
dent solutions of the homogeneous equation Lu = 0, then pW is a nonzero
constant, since (pW)' = 0 by (2.33) and W L 0 by the linear independence
of yl and y2.

Hence, if yl and y2 are as in Lemma 2.51, then pW = C is a constant.
Our aim is to show that the boundary value problem (2.36) is solved by the
Fredholm operator defined by the kernel

X,).-1(2.37) G(x, ) := S if a < x < b,

which is called the Green's function17 of the differential operator L for
the boundary conditions Bl (u) = 0, B2 (u) = 0. Note that G is areal-valued
continuous function on [a, b] x [a, b] and G(x, ) = x).

Theorem 2.52. Under the assumption of L being one-to-one on D, for
every E (a, b) the function is uniquely determined by the following
conditions:

(a) C(.,) E C2([a, ) U bJ), LC(.,) =0 on [a,)U(,bJ, and
satisfies the boundary conditions B, (C(., )) = 0, 0.

(b) C(., ) C[a, b].

(c) The right side and left side derivatives of exist at x = and

- DC(-,)=.
Proof. That G satisfies (a)-(c) follows easily from the definition. Note that

CDC(-,) = y,()y), CDC(-, ) =
and then W, which is equivalent to (c).

To show that G is uniquely determined by (a)-(c), we choose {y,, y} as
in Lemma 2.51. By conditions (a) and since also Bl (yl) = B2 (y2) = 0, it
follows that a2B1(y2) = 0 and b1B2(yl) = 0 with Bl(y2) 0 and B2(yl) L 0.
Hence

1 a1 ()y1 on
1 On [,b]

1? Named after the self-taught mathematician and physicist George Green who, in 1828,
in "An Essay on the Application of Mathematical Analysis to the Theories of Electricity and
Magnetism" introduced several important concepts, such as a theorem similar to Green's theorem,
the idea of potential functions as used in physics, and the concept of what we call Green's functions.
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Now, from our assumptions (b) and (c),

ai(e)yi(e) = b2()y2(),

b2(e)y) - ai(e)y)
=

a linear system with 0 that determines al(b) and b2(e).

Theorem 2.53. Under the assumption of LD being injective, the Green's
function G is defined by (,2.37) and the Fredholm operator

Z'.f (x) := f G(x,e)f (e) deb
a

= (yi(x) f f y1 ()f()dS)

is the inverse operator T : C [a, b] -+ D C C2 [a, b] of LD. That is, u E C2 [a, b]
is the unique solution of the boundary value problem

Lu = g, B1 (u) = 0, B2(u) = 0

if and only if
b

u(x)
=

f G(x, e)(e) d.

Proof. Suppose u is a solution of the boundary value problem and apply
Green's formula

fy
(uLv - vLu) _ [p(uv' - vu')] y,

obtained from the Lagrange identity (2.33) by integration, to the solution u
and to v = on the intervals [a, - E] and [ -I- e, b]. Allowing e .4. 0,
we obtain

/ (uLG(.,) - G(.,e)Lu) = [p(uc(.,e)' -
a

andand
fb

(uLc(.,e) - G(',e)Lu) _ [p(uc(.,e)' - G( )u )J

Since Lu = g and 0, the sum of the left sides is - f¢ )g.

According to the properties of G, for the sum of the right sides we obtain

-pup + [p(uc(.e)' - a = -u

and u(x) = f¢ G(x, e)(e) d holds.
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Conversely, according to the definition of G, it follows by differentiation
from

w(=)=CVi (=) f yyz (S`)9(E)dS`+CV2 (=) f xyi

that
cx- 6

u(x) = J 3xG(x,)g()d
a x+

f b
a

a similar computation, (pu')' can be evaluated and, by using the prop-
erties of G, one gets Lu(x) = fL(G(.,))(x) d -I- g(x) = g(x). O

2.7. Exercises

Exercise 2.1 (Leibniz formula). For one variable,

(fg)(m)

= ()
In the case of n variables,

D«(f9) _ (;)(Df)Dag.

Exercise 2.2. Prove that if a vector subspace F of a topological vector
space E has an interior point, then F = E.

Exercise 2.3. Equip a real or complex vector space E with the discrete
topology, that is, the topology whose open sets are all the subsets of E. Is
E a topological vector space?

Exercise 2.4. Prove that the interior of a convex subset K in a topological
vector space E is also convex.

Exercise 2.5. Let coo be the normed space of all finitely nonzero real-valued
sequences with the "sup" norm (Xi,. . . , XN,...) = supra IxnI Find an
unbounded linear form u : coo -+ R and an unbounded linear operator
T : coo -+ coo

Exercise 2.6. Show that the Banach space of all bounded continuous func-
tions on Rn with the "sup" norm can be considered a closed subspace of
L°° (Rn), and prove that this space is not separable.

Exercise 2.7. Let 1 <p < 00. Prove that LP(RT) is separable.



70 2. Normed spaces and operators

Exercise 2.8. Prove that the normed space Co (Rn) of all continuous func-
tions f on Rn such that f(x) = 0, with the usual operations and
the "sup" norm, is a completion of the vector subspace C( R) of all con-
tinuous functions f on Rn with a compact support endowed with the "sup"
norm and that it is separable.

Exercise 2.9. Let K be a compact metric space.
(a) Prove that K is separable.
(b) Prove that C(K) is also separable by showing that, if {xn} is a dense

sequence in K and cp,,,,,n(x) = max(1/m -- d(x, x), 0), the countable set
{com,n; m, n > 1} is total in C(K).

Exercise 2.10. Prove that the trigonometric system {ek}kEz is total in
L2 (T) by showing first that C (T) is dense in L2 (T) and that the polynomials
>.k=-N ckzk (N E N, ck E C) are dense in C(T).

Exercise 2.11, Prove that the vector space of all Cl functions on [a, b]
with the usual operations and the norm II f II := max(f If' II [a,b]) is a
separable Banach space.

Exercise 2.12. For the norms I:_ (n=1 xk11')1h (1 <p < oo) and
I 1x1100 := maxi=1 IxI on Rte, find the best constants a and ,6 such that
allxlI Ilxllp QllxlI

Exercise 2.13. If C = C([0,1]; R), compute the norm of u e C' defined as
f1

u(f) J f(t)g(t) dt
0

with g :_ °O and show that u(B) _ (-1, 1), so the
norm of u is not attained by Ion the closed unit ball B of C[0,1].

Exercise 2.14. If TK : C[c, d] - C[a, b] is a Fredholm operator (see 2.22)
and K > 0, then IITK II = supa<x<b f d K(x, y) dy. Similarly, if TK is a
Volterra operator and K> 0, then IITKII = supa<x<b jQ K(x, y) dy.

Exercise 2.15. Consider K E C([0, 1]2) and T : L'(0,1) - L'(0,1) such
that

i
Z'f (x) := f K(x, y)f (y) dyJ0

Prove that 11ThI = maxo<y<i f0' K(x, y)I dx.

Exercise 2.16. In Theorem 2.40, assume that K is nonnegative. Then
prove that the norm of TK : L°° - L°° is precisely C if fY K(x, y) dx = C
a.e. Similarly, if C = jX K(x, y) dx a.e., show that the norm of TK : Ll - Ll
is C.
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Exercise 2.17. On [-ir, ir] x [-ir, ir] we define the integral kernel
N

K(x, y) :_ an cos(nx) sin(ny)
n=i

and, for a given vo E C[-'ir, ir], consider the integral equation on C[-ir, ir]

(2.38) u(x) - J K(x, y)u(x) dx = vo(x).

Prove that the Neumann series gives (I - T)-1 = I + T for the Fredholm
operator T = TK. Then show that

u(x) vo(x) + J K(x, y)vo(y) dy

is the unique solution of (2.38). If vo is an even function, then u = vo.

Exercise 2.18. Find the Volterra integral equations that solve the following
Cauchy problems on [0, 1]:

(a)u"+u=O, u(0)=0, u'(O)=l.
(b)u"+u=cosx, u(0)=0, u'(0) = 1.
(c) u"+alu'+aou = 0, u(0) = a, u'(0) = Q (a,,8 e R).
(d) u" + xu' + u = 0, u(0) = 1, u' (0) = 0.

Exercise 2.19. Prove that

Tf(x)=
x

a

dxn_1 fxn-1 X1

dxn_2 f(t)dt
Ia

defines a Volterra operator on C[a, b] whose integral kernel is

K(x, t) _ n 11), (x - t)n-1 (a < t < x < b).

Exercise 2.20. On [a, b], consider the Cauchy problem

+ alui) + ... + au - f, u(( a) = ca (0 G j G n - 1),

with al ... an, f e C[a, b] and CO. . . cn_1 E R.
(a) By denoting v =urn>, show that the problem is equivalent to solving

the Volterra integral equation

f
x

K(x, y)v(y) dy - v(x) = g(x),

where
(x_y)m

) _ - am(x)
-1

K(x, y (rn-i)!m_1
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and

9(x) _
+ ... + (cam,-i

(n - 1)I
+ ... + cl (x - a) + co)an(x)

-1(x).
Here Exercise 2.19 may be useful.

(b) Show that it follows from (a) that the Cauchy problem has a uniquely
determined solution u E Cn[a, b].

Exercise 2.21. Suppose f and g are nonnegative integrable functions on
R2 such that

supp f = {(x, y); x >0, 1/x < y < 1 + 1/x}

and

suppg = {(x,y); y 0}.

Prove that supp f * g supp f + supp g. Why is this not in contradiction
with (2.19)?

Exercise 2.22. If f E LP(Rn) and g E Iv', prove that f*g is then uniformly
continuous.

Exercise 2.23. On L' (R), prove that the convolution is associative but
check that (fl * f2) * f3, fi * (f2 * f3) are well-defined and they are different
if fi = 1, f2(x) = sin(lrx)X(-1,1)(x), and f3 = X[o,oo)

Exercise 2.24. Let {KA}AEA be a summability kernel on R and let f E
LO°(R). Prove that, if f is continuous on [a, b], then Ka * f = f
uniformly on [a, b].

Exercise 2.25. Prove that the sequence of de la Vallee-Poussin sums,
defined as the averages

1 2N-1
V2N : = Dn = 2F2N - FNN n=N

is a summability kernel.

Exercise 2.26. Let co be the closed subspace of 2O°(Z) of all sequences
x = {xk}_ such that lim1k ck = 0. Calculate the norm of the Fourier
transform c: f E L' (T) H c(f) E co.

Exercise 2.27. On R, let W (x) := e-"C2 and, for n variables, let W (x)
eIXI2 = W(xi) W(x).

Prove that
:= 1Wt(x) (t > 0)

tn
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is a C°° summability kernel on R. It is called the Gauss-Weierstrass
kernel.

Exercise 2.28. If {e}>i is an orthonormal basis of F, a closed subspace
of a Hilbert space H, prove that

PF(X) = (x, e)He.

Exercise 2.29. Prove Theorem 2.40 in the case 1 <p < oo by showing first
that TK f (x) is defined a.e. by an application of Holder's inequality in

f I

dy - f dy

Exercise 2.30. Prove Theorem 2.40(c) in the case 1 <p < oo as an appli-
cation of the Riesz-Thorin theorem.

Exercise 2.31. The Riesz-Thorin Theorem 2.45 with the convexity estimate
M(t9) < MMi was proved for complex LP-spaces. Prove a corresponding
result for real spaces but with the estimate M(t9) < 2Mo-Mi , by extending
the real linear operator T to the complex linear operator T defined by

(f + ig) := Tf + iTg.

Exercise 2.32. Let £'(2) = R2 with the norm

I - (IxI + I lP (max(IxI, lif p - oo)

Show that the operator T(x, y) (x + y, x - y) is of type (oo, l) with
constant Mo = 2 and of type (2,2) with constant Ml = 212 and that T
does not satisfy the convexity estimate M(t9) < Mo

Exercise 2.33. If f e LP(T) and 1 <p < 2 and c(f) _ {ck(f)}_ is
the sequence of Fourier coefficients of f, defined as ck(f) = IT f(t)e_k(t) dt,
show that c(f) E and

IIc(f)IIp' If lip
first if p = 1 or p = 2 and then for every 1 <p < 2.

References for further reading:
N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert
space.

S. Banach, Theorie des operations lineaires.
S. K. Berberian, Lectures in Functional Analysis and Operator Theory.
R. Courant and D. Hilbert, Methods of Mathematical Physics.
J. Dieudonne, Foundations of Modern Analysis.

L. Kantorovitch and G. Akilov, Analyse fonctionnelle.
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A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions
and Functional Analysis.

F. Riesz and B. Sz. Nagy, Lecons d'analyse fonctionelle.

W. Rudin, Real and Complex Analysis.



Chapter 3

Frechet spaces and
Banach theorems

It will also be useful to consider topological vector spaces which are not
normable, but the class of general topological vector spaces proves to be too
wide for our needs. Usually it is sufficient to consider spaces with a vector
topology which is still metrizable and complete and which can be defined
by a sequence of norms or semi-norms instead of a single norm. They are
called Frechet spaces and some fundamental aspects of the theory of Banach
spaces still hold on them.

An example of nonnormable Frechet space is the vector space C(R) of
all continuous functions on R with the uniform convergence on compact
subsets of R, defined by

If - fnhl[-N,N] '- -N<t<N I - f(t)I -4 O

forallN>0.
The sequence of semi-norms If II[-N,N] defines a vector topology, which

can also be described by the distance associated to the Frechet norm,

00

IIfII = N If II[-N,N]

N-1 Z 1+ IIfII[-N,N]'

which retains many of the properties of a norm.
This Frechet norm is used to prove the basic Banach theorems concerning

the continuity of linear operators.

75
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3.1. Frechet spaces

A semi-norm on the real or complex vector space E is a nonnegative func-
tion p : E - [0, oo) with the following properties:

1. p(ox) _ I\lp(x) and

2. p(x + y) <p(x) + p(y)

Then p(0) = 0, but it may happen that p(x) = 0 for some x 0.

It is shown as in the case (2.1) of a norm that

(3.1) p(x) - p(x - y)

and the p-balls

{x, p(x) <s} = EUp(l) = p 1 ((-e, e)) (p E P, e > 0)

are convex sets such that \Up(e) C Up(e) if 1\I < 1 (it is said that they
are balanced) and Ut>o tUP(e) = E (they are absorbing). Note that, if
p(x) = 0 and x 0, the ball UP(e) contains the whole line [x].

3.1.1. Locally convex spaces. A family P of semi-norms on E is called
sufficient if p(x) = 0 for every p E P implies x = 0.

Theorem 3.1. If P is a sufficient family of semi-norms on E, then the
collection of all the finite intersections of the balls Us(e) (p E P, e > 0) is a
local basis Lf of a vector topology TP on E.

On the topological vector space (E, T), a semi-norm p is continuous if
and only if the ball UP(1) is an open set.

Proof. We say that z E E is said to be an interior point of A C E if
z + U C A for some U E Lf and that A is open if every a E A is an interior
point of A.

It is trivial to check that the collection Tp of these sets satisfies all the
properties of a topology, which is Hausdorff since, if x y, there exists
p E P such that p(x - y) = e > 0, and x + Up(s/2) and y -I- Up(e/2) are
disjoint, because x -{- 'U = y + v with p(u) <s/2 and p(v) <s/2 would imply
p(x-y)=p(v-u)<s.

It is also very easy to show that the vector operations are continuous.
In the case of the sum, UP(e/2) C Up(e) and also, if U is a finite
intersection of these balls, (1/2)U + (1/2)U C U and the sum is continuous
at (0,0) E E x E. Continuity at any (x, y) E E x E follows by translation; if
x + y + U is a neighborhood of x + y and V + V C U, then (x+V)+(y+V) C
x+y+U.

For every continuous semi-norm p, the set Up(e) = p-1 ((-s, e)) is open.
Conversely, if q is a semi-norm and UP(1) is an open set, then Us(e) _



3.1. Frechet spaces 77

UP(1) E Tp and it follows from (3.1) that, for every x e y + Up(s),

p(x)-p(y)I p(x-y) <,
so p(x) E (p(y) - E, p(y) + ) and p is continuous at y.

A topological vector space (E, T) is said to be a locally convex spacer
if there exists a sufficient family P of semi-norms defining the topology as
in Theorem 3.1. In this case, the family of all sets

Ups () n ... n UPS {x; max{pi (x), ... ,pn(x)} <}
( > 0, pi e P, i = 1, ... , n, n e N) is a local basis for this topology. We will
also say that p e 7), > 0} is a local subbasis for this topology.

A normable topological vector space is a locally convex space with a suf-
ficient family of semi-norms consisting in a single norm.

Example 3.2. Let X be a nonempty set. Over the vector space

CX = flC
xEX

of all complex functions f : X - C (f = {f(x)}xx E CX), the collection of
all semi-norms p( f) :_ I(x E X) is sufficient and defines the product
topology, which is the topology of pointwise convergence, since p(f7) -3 0
for every x e X if and only if f(x) -+ 0 for every x e X.

Recall that the collection of all finite intersections of sets

_ {.f = {f(x)}XEx; 1(z) - fo(z)I <} _ fo + U)
is a neighborhood basis of fo ={fo(x)}SEX for the product topology and,
according to Theorem 3.1, it is also a neighborhood basis for the topology
defined by the semi-norms px (x e X).

Example 3.3. Over the vector space C(R) of all continuous functions on
R, the sequence

p( f) :- II f II[-n,n] - _n<P n I(n e N)
of semi-norms is sufficient. They define the topology of the local uniform
convergence, or uniform convergence on compact sets.

Every compact set K C R is contained in an interval [-n, n], and then
Ill IlK < p(f) Hence, p(f - Ik) - 0 implies Ill - In IlK - 0, and this
means that fn -+ f uniformly on K.

1 Considered by J. Dieudonne and L. Schwartz in the 1940s to extend the duality theory
of normed spaces, locally convex spaces were the basis for the study of the distributions by L.
Schwartz.
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The continuity condition IITxI1F < ClixIIE for a linear operator between
normed spaces has a natural extension for locally convex spaces:

Theorem 3.4. Let P and Q be two sufficient families of semi-norms for the
locally convex space E and F. A linear application T : E -k F is continuous
if and only if for every q e 2 there exist pj E P (j e J finite) and a constant
C > 0 so that

q(Tx) < C m p3(x).

A sequence {xn} C E is convergent to 0 if and only if p(xn) -+ 0 for every
pEP.

Proof. By Theorem 2.2, the continuity of T means that, if Uy(e) is a q-ball,
T(U) C UQ(e) for some U = n n u(S) (p3 E P). That is,

q(Tx) < C m p3(x)

with C = e/S, since x/a e Up1(1) fl fl (1) if a > maxaEJ pj (x), and
q(Tx/a) <e/6. Hence (6/a)Tx E U9(e) and q(Tx) < ae/S, and we obtain
q(Tx) < by allowing a 4. maxjEjpo(x).

Finally, x- 0 if and only if xn E U(e) when n > v(p, e), i.e., eventu-
ally p(xn) <e, for every U(e).

Suppose that E is a locally convex space and that F is a closed subspace
of E. The linear quotient map

7r:E-)E/F
is defined as ir(x) = x = x + F and, if P is a sufficient family of semi-norms
on E, we consider on E/F the collection P of semi-norms p defined by

p(x) = inf p(y) = inf p(x - z),
yE zEF

for every p E P.

It is clear that every functional p is asemi-norm on E/F. The family P
is sufficient, since p(x) = 0 for all p means that infzEF p(x - z) = 0 for all
p, every ball x + U(e) meets F, and then x e F = F and x = 0 in E/F.

This new topological vector space E/F is the quotient locally con-
vex space of E modulus F, and the quotient map is continuous, since
p(ir(x)) = p(x) < p(x) for every p e P. If E is a normed space, E/F is also
a normed space.

In a locally convex space E with the sufficient family of semi-norms P,
a subset A is said to be bounded if p(A) is a bounded set in R for every
p e P or, equivalently, if for every neighborhood U of 0 we have A C rU for
some r > 0.
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Indeed, if every p is bounded on A and if U is a neighborhood of 0, we
can choose Upl (E) fl' n up, (e) C U and, if p3 < M3 on A (1 < j < n), then
A C rU by choosing r > M3/e.

Conversely, suppose that A satisfies the condition A C rUp(1) = Up(r).
Then r is an upper bound for p(A).

A compact subset K of the locally convex space E is bounded, since
every continuous semi-norm p is bounded on K. If every bounded closed
subset of E is compact, it is said that E has the Heine-Borel property.
As we have seen in Theorem 2.28, a normed space has this property only if
its dimension is finite.

3.1.2. Frechet spaces. In many important examples, the sufficient fam-
ily of semi-norms will be finite (this is the case of normable spaces, with
a single norm) or countable (as in Example 3.3). In this case the lo-
cally convex space is said to be countably semi-normable and then, if
P = {Pi,P2,... , pa,. . .} is a sufficient sequence of semi-norms, the sequence
of all Un = n_1 Ups (1/n) forms a decreasing countable local basis of open,
convex, and balanced sets, and n 1 Un = {0}, since the topology is Haus-
dorff.

We can assume p1 < p2 < since for the increasing sequence of
semi-norms q1 = p1, q2 = sup(p1, p2), q3 = sup(p1, p2, p3), . we obtain
Uqn (E) = U,1 (E) f f Upn and both families of semi-norms define the
same topology.

The Frechet norm associated to the sequence of semi-norms will be
the function

00

llxll:=2-n

Pn(x)
1+p(x)n=1

It is not a true norm, but it has the following properties:

1. x = 0 if lxii = 0, since pn(x) = 0 `dn implies x = 0.
2. - xli _ lixil, since pn(-x) = pn(x)
3. lix + lI lixil + llyIl.

To show this last property, note that
a <b

l+a - l+b
if0<a<b,and

pn(x +y) Pn(x)+pn(2J) < pn(x) +
1 +pn(x + y) - 1 + p(x)+pn(y) - 1+p(x) 1 +pn(y)

since 1+pn(x) -F- pn(y) > 1 +max(pn(x),pn(y)).
Then d(x, y) :_ - xli is a distance and d(x + z, y + z) = d(x, y).
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Theorem 3.5. Let II ' II
be the Frechet norm of a countably semi-normable

locally convey space E. Then the distance d(x, y) _ lix - ydefines the
topology of E.

Proof. Let us show that every ball Bd(0, b) for the distance d contains some
U E Lf and that, conversely, every Upm (s) contains a ball Bd(0, b).

(a) Bd(0,1/2') contains Upk+1(1/2+1):

If pi+l (x) < 1/2k+1, then p1 (x) G ... < pk+l (x) < 1/2k+1 and

k+i 1 1/2k+1 °° 1 1llxIl<2 2f 1 + 1/2k+1 + i 2n < Z'

n=1 n=k+2

(b) The p,,,, ball UPm(1/2'i contains Bd(0,1/2k+"z+l) since

2-m pm(x) <1/Zk+m+1
1 +pm(x)

if Ix II G 1/2k+m+1; therefore p7z(x)/(1 + p(x)) < 1/2k+1 and it follows
that p7z(x) <l/2k . O

Let E be a countably semi-normable locally convex space with the suffi-
cient family of semi-norms P. We say that {x} C E is a Cauchy sequence
if eventually xk - x7z E U for every 0-neighborhood U or, equivalently,
p(xk - xm) --+0 for every p E P.

By Theorem 3.5, every Cauchy sequence of E is convergent if and only
if the metric space E with the distance d defined by the Frechet norm II '

II

is complete. Then we say that E is a Frechet space.2
Every Banach space is a normable F4echet space, but there are many

other important Frechet spaces that are not normable.

Theorem 3.6. The countably semi-normable space C(R) of Example 3.3
with the sufficient sequence of semi-norms p( f) = If II[-,] is a Frechet
space. It is not normable, since there is no norm ff with the property

p(f) < CIIf II (f e C(R), C> 0 constant),

for all n E N.

Proof. If C(R) were normable, by the norm II ' II, then for f such that
f(n) = nCn we would have nC< I< CI If II and n < If II for all
nEN.

2Named after the French mathematician Maurice Frechet, who with his 1906 dissertation
titled "Sur quelques points du calcul fonctionnel" is considered one of the founders of modern
functional analysis. See footnote 2 in Chapter 1.
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If {fk} is a Cauchy sequence, it is uniformly convergent on every interval
[-n, n] to a certain continuous function gn and there is a common extension
of all of them to a function g on R, since gis the restriction of gn+l
Obviously, fk -+ g uniformly on every [-n, n]. O

The construction of Example 3.3 can be extended to the setting of the
class C(SZ) of all complex continuous functions f : SZ -+ C on an open subset
Sl of R, which is the union of an increasing sequence of the compact sets
of R

(3.2) Km = B(xp, m) fl {x e SZ; d(x, 1 }.-m
Every Km is a subset of the interior G,,,,+1 of the next one, K,,,,+1 If SZ = R,
Km = B(xo, m). Every compact set K C SZ is covered by KN for some N,
since St = U=1 Gm, and K C Um=1 Cm C KN.

It is also easily shown, as for C(R), that C(SZ), as a complex vector
space with the usual operations and with the topology associated to the
sufficient increasing sequence of semi-norms q,11z(f) _ 11111Km, is a Frechet
space. Since Ill IlK < qN(f) if K C KN, the family of all semi-norms lli<

(K any compact subset of Sl) defines the same topology on C(Sl), which is
again the topology of the local uniform convergence.

To define the important example of C°° functions, we introduce some
terminology that will be useful in the future.

Let us denote a = (ai,. . . , an) E Nn and Da =all an n as in Exam-
ple 2.7. For every compact subset K of Rn, we define

Px,a(f) = IlDaf IlK = sup IDtf(x)l
xEK

if D« f exists.

Then (1) will represent the locally convex space of all C°° functions
on 1 2 with the topology defined by the sufficient increasing sequence of semi-
norms

q(f)= IIDafIIK= PKj,a(f) (j1,2,...).

If K is any compact subset of SZ, then K C K3 for all j > N, for some
N E N, so that pK,a(f) < q3(f) for some j, and the topology of (1) is also
the topology of the semi-norms pK,a. A sequence {fk} C (1) is convergent
to 0 if D« fk -+ 0 uniformly on every compact of Sl, for every a e Nom.

For every compact subset K of 12, the collection of functions

(3.3) DK(Sl) _ {f E E(SZ); supp f C K}
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is clearly a closed subspace of E(St). By extending functions by zeros, we
can suppose that DK(S2) C E(Rn).

Theorem 3.7. £(S2) is a Frechet space.

Proof. A sequence {f3}C E(1l) is a Cauchy sequence if and only if
every {Df}1 is uniformly Cauchy over every compact set K and then
it is uniformly convergent on K. Hence, Da f -+ f a uniformly on compact
sets and then Da f = f a if f = fo. This means that f -+ f in £(S2).

Similarly, for any m e N the vector space em(1l) of all C""' functions
f : SZ - C with the topology defined by the semi-norms

PK(f) :- i IIDf IlK

is also a Frechet space. A sequence {fk} C (Il) is convergent to 0 if
Da fk -+ 0 uniformly on every compact of S2, for every aI < m.

Also, D( 1l) _ {f e Er'`(SZ); supp f C K} is a closed subspace of
£r'`(SZ), for every compact subset K of SZ.

3.2. Banach theorems

We are going to present some profound results that prove to be very useful to
show the continuity of linear operators. The ideas are mainly due to Stefan
Banach and depend on the following Baire category principle concerning
general complete metric spaces.

Theorem 3.8 (Baire). If {G} is a sequence of dense and open subsets
in a complete metric space M, then A :_ flGn is also dense in M. It is
said that A is a dense Ga-set.

Proof. We need to show that A fl G 0 for every nonempty open set G in
M.

Since G1 is dense, we can find a ball B(1, r1) C G n G1 with Ti < 1.
Similarly, we can choose B (x2, r2) C B (xl , r1) n G2 and r2 < 1/2, since G2
is dense. In this way, by induction, we can produce

E(x,r) C B(xn-1, rn_1) n Gn, rn < 1/n.

Then d(xp, xq) <2/n if p, q > n, since xp, xq E B(xn, rn), and {xn} is a
Cauchy sequence in M. But M is complete, so we have limn xn = x.

Since xk lies in the closed set B(xn, rn) if k > n, it follows that x lies in
each B(xn, rn) C Gn and x e A. Also x E B(xl, r1) C G and An G 0. 0
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Corollary 3.9. Let Fn (n e N) be a countable family of closed subsets of
a complete metric space M containing no interior points for every n E N.
Then the union B = Un° 1 Fn has no interior point either.

Proof. Every open set Gn := Fn is dense since, for any nonempty open set
G, G Fn, so that G f1 Gn L 0. According to Theorem 3.8, A := n 1 Gn
is dense, so that AC = B does not contain any nonempty open set.

Theorem 3.10 (Banach-Schauder3). Let E and F be two Frechet spaces.
If T : E -+ F is a continuous linear operator and T (E) = F, then T is an
open mapping, that is, T (G) is open in F if G is an open subset of E.

In particular, if T is a bijective and continuous linear mapping, then
T-1 is also continuous.

Proof. Let II ' II be a Frechet norm on E and let Lf be the local basis of
E that contains all the open balls U,. _ {x e E; lix Ii <r}, and let V be a
similar local basis in F.

We want to prove that every T(U,.) is a zero neighborhood in F, since
then, if G is an open subset of E and Ta E T(G) (a e G), there exists
B(a, r) = a + U,. C G that satisfies T(a + U,.) C T(G) and Ta is an interior
point in T(G), since T(a + U,.) = Ta + T(U,.) is a neighborhood of Ta.

Let us start by showing that every T(U,.) is a zero neighborhood in F.
For every x e E, (1/n)x -f 0 and x E nUr/2 for some n e N, so that
E _ UnU,,12 and F = T(E) = U__1 nT(Ur12) = Un°__1 nT(Ur12). By

the corollary of Baire's theorem, T(U,,12) has at least one interior point y and
we can find y + V C T(UT12) (V E V). We have _y E T(Ur12) _
so that V C -y + T(UT12) C T(Ur12) + T(Ur12) C T(Ur) and T(U,.) is a
neighborhood of 0 E F.

Ifs > 0 and r = s/2, let us prove now that VQ C T(UT) implies VQ C
T(US), and then T(Us) will be a neighborhood of 0.

Let y E VQ, so that llll < a To prove that y e T(Us), we will find
x e US so that y = Tx.

Write Si = s = rn with rn > 0 and rl = r. We know that T(Urn)
is a neighborhood of 0 and, for every n > 2 there is a ball VQ, C T(Urn) and
we can suppose that vn ., 0.

We have y e VQ C T(U,.1), so that lly - Tz1II < a2 With zl E Url, i.e.,
llzilI < rl.

3Also known as the open mapping theorem in functional analysis, it was published in 1929
by S. Banach by means of duality in the Banach spaces setting in the first issue of the journal
Studia Mathematica and also in 1930 in the same journal by J. Schauder, essentially with the
usual direct proof that we have included here.
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By induction,

y - Tzl E VQZ C 7'(Ur2), II y - Tzl - Tz2II < v3 with 11z211 <r2,

y-Tzl-...-Tzn-i E Von C 7'(Urn), IIy- -TZnII <c' with IlzII < rn,

There exists x = zn, since rn -4 0 as p -4 00
and partial sums of the series form a Cauchy sequence in the Frechet space
E.

The map T is linear and continuous; thus
n

T x = T lim zk = lim (Tzl + + T zn) = y .
n-+oo n-+oo

k=1

Moreover lix II = limn II I=i zkII < r= s, and x E Us. O

If T : E -4 F is a continuous function between two metric spaces, it is
obvious that its graph

CS(T) {(x, y) E E x F; y = Tx}

is a closed subset of the product space E x F, since if (xn, Txn) -4 (x, y) in
E x F, then Txn -4 Tx and y = Tx.

That the converse is true if T is a linear operator between two Frechet
spaces is a corollary of the Banach-Schauder theorem:

Theorem 3.11 (Closed graph theorem). Let E and F be two Frechet spaces.
A linear map T : E -k F is continuous if and only if its graph CS(T) is closed
inExF.

Proof. First let us show that E x F, with the product topology, is a Frechet
space.

Let II ' lIE and II ' Ibe the Frechet norms defined by the increasing
sufficient sequences of semi-norms {Pn} and {q} for E and F, respectively.
The corresponding product topology on E x F is the topology associated
to the sufficient sequence of semi-norms rn(x, y) max(pn(x), qn(y)), since
the rn balls Urn (e) =UPS (E) X U9(E) form a local basis for both topologies.
Then {(xn, yn)} is convergent in E x F if and only if both {xn} C E and
{y1} C F are convergent, and E x F is complete if and only if E and F are
complete.

If the vector subspace G (T) is closed in E x F, it is a Frechet space with
the restriction of the product topology in E x F, and we denote 71l (x, Tx) = x
and 7r2(x,Tx) = Tx the restrictions of the projections of E x F on E and
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F, respectively. They are two continuous linear maps in1 : (T) - E and
712 (T) - F.

Now 1 is bijective and, by the Banach-Schauder theorem, the inverse
map : x H (x, Tx) is continuous from E to G(T). But Tx = 712(711x)
and T is continuous as a composition of two continuous maps. O

Remark 3.12. For a map T : E - F between two metric spaces E and F,
the graph G(T) is closed in E x F if and only if

x->x and
This condition is clearly weaker than a continuity assumption, which means
that

y =limTxn and y=Tx.
Note that in the case of a linear map T between normed or Frechet spaces,
if

xn-+0 and
then the graph is closed.

In a Hilbert space H, an orthogonal projection is a bounded linear opera-
tor Psuch that P2 = P and (Px, Y)H = (x, Py)H. These last two properties
characterize the orthogonal projections:

Theorem 3.13. Let H be a Hilbert space, and let P : H - H be a mapping
such that (Px, Y)H = (x, Py)H. Then P is linear and bonded, and it is an
orthogonal projection if P2 = P.

Proof. The linearity of P is clear; see (b) in Theorem 2.35. To prove that
P is bounded, suppose that x - 0 and Px- y; then, for any x e H,

(x, Y)H =1 nm(x, PxTh)H = 1 nm(Px, x)H = 0.

Choose x = y and then y = 0, so that the graph of P is closed.
If P2 = P, let F = P(H) and Q = I - P. Then also (Qx, Y)H =

(x, Qy)H, Q2 = Q, and F = Ker Q is a closed subspace of H. Furthermore
Q(H) = F1, since (Px, QY)H = (x, P(y - Py))H = 0 and x = Px + Qx =
y + z e F F1 as in Theorem 2.35(b). O

It is a well-known elementary fact that a pointwise limit of continuous
functions need not be continuous, but with the Banach-Steinhaus theorem4
we will prove that, for Banach spaces, a pointwise limit of continuous lin-
ear operators is always continuous. This theorem is an application of the
following uniform boundedness principle:

4 First published in 1927 by S. Banach and H. Steinhaus but also found independently by the
Austrian mathematician Hans Hahn, who worked at the Universities of Vienna and Innsbruck.



86 3. Frechet spaces and Banach theorems

Theorem 3.14. Let T3 E -+ F (j E J) be a family of bounded linear
operators between two Banach spaces, E and F. Then

(a) either M := supiEJ IITiII < oo, and the operators are uniformly
bounded on the unit ball of E, or

(b) i5(x) := 5Up3EJ I= oo for every x belonging to a Go-dense
set A C E.

Proof. The level sets Gn :_ {'b > n} of the function b E -+ [0, oo]
are open subsets of E, since Gn = U3EJ{X; IIXIIF > n} and every Tj is
continuous. Now we consider two possibilities:

(a) If one of the sets Gn, say G,,,,, is not dense in E, there is a ball B(a, r)
contained in Gm, so that

(a + x) < m whenever lix lIE

which means that 1+x)llF <m for all j E J if lix liE <r. Then

I IITj(a+x)IIF'+IITj(a)IIF2m (lixIE r)

or, equivalently, liTj (x) hF < 2m/r if lixhlE < 1, for every j E J, and it
follows that M < 2m/r < oo.

(b) If every Gn is dense, then b(x) = oo for every x E A nn°1 Gn,
since then b(x) > n for every n E N. By Theorem 3.8, A is a dense subset
of E. O

Theorem 3.15 (Banach-Steinhaus). Let Tn : E -f F fri E N) be a sequence
of bonded linear operators between two Banach spaces such that the sequence
{Tnx} is bounded for every x E E. Suppose further that the limit limn Tn(x)
exists in F for every point x belonging to a dense subset D of E.

Then T : D -+ F such that Tx =limnTn(x) extends to a bounded linear
operator T : E -+ F such that

11ThI <liminfnllTnii

Thus, every sequence {T} C G(E; F) such that Tx =limn Tn(x) exists
for every x E E defines a bonded operator T E G(E; F).

Proof. By Theorem 3.14, M supnEN IlTII <00.
For every x E E, {Tn(x)} is a Cauchy sequence in the Banach space F.

Indeed, if e > 0, there exist z E D so that lix - zIIE < e and n E N so that
llTp(z) - Ty(z) IIF < whenever p, q > n. Then

I-T9(x)II F C I-Tp(z)Il F + I-T4(z)IIF
+ lTq(Z) _Tq(x)IIF 2ME+E.
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We define T(x) :=1imTn(x) and T : E -+ F is obviously linear. Moreover,

I= lim IITn(x)IIF _< liminfIlTnffIIxIIE

and it follows that 11ThI <liminfnllT O

3.2.1. An application to the convergence problem of Fourier series.
If f E L1 (T) and ck(f) = fT f(t)e_k(t) dt, recall that

c(f) = {ck(f)}° E CO

and obviously c(f) < f iii.
The Fourier mapping f E Ll (T) F-+ c(f) E co is continuous and injective,

but it cannot be exhaustive, since in this case the inverse map would also
be continuous and

IIc(f)IIoo 6f Iii
for some 8> 0, which leads to a contradiction. Indeed, if Dnr is the Dirichlet
kernel (see (2.23)), then I f = 1 and IIDNII 1 -+ oo, since

IIDNII1 > 2

f
I sin[(N -I- 1/2)t] I dt _ 2 1N+1/2 I sing

dt
t if t

N
2

/ N12> 1 /'
I sin t dt =

k=l

The Fourier sums are the operators Snr = DN * : C (T) -+ C(T). Their
norms LN IISNII are called the Lebesgue numbers; obviously LN <
MDNM 1 and it is shown that

LN = IIDN Iii

holds by considering a real function g which is a continuous modification of
sgnDnr such that g < 1 and ISNgI ? IlDr Iii - E

Theorem 3.16. (a) There are functions f E Ll (T) such that Snr f fi f in
Ll(T) asN-+oo.

(b) There are functions f E C(T) such that SN f fi f in C(T) as N -+
oo. In fact, for every x E R there is a dense subset A of C(T) such that,
for every f E Ate, SUpN I_ °°

Proof. (a) Note that Lnr - oo. According to Theorem 3.14,

supIISN(f)111=00
N

for every f belonging to a dense set A C C(T).
(b) Again, the linear forms unr(f) := Snr(f, x) are continuous on C(T),

with IkNII=LN. LI
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Remark 3.17. By the Fischer-Riesz Theorem 2.37, SN f -+ f in LP(T) for
every f e LP(T) if p = 2, and it can be shown, though it is much harder,
that this is still true when 1 <p < oo and p 2.

The convergence of the Fourier series fails in L' (T), but according
to (2.27) the trigonometric polynomials are dense in every LP(T) if 1 <
p<oo.

3.3. Exercises

Exercise 3.1. Suppose A is a convex absorbing subset of a vector space E,
and let

qA(x) := inf{t > 0; x E to},

which is called the Minkowski functional of A. Denote B = {qA < 1 }
and B = {qA i}.

(a) Prove that q,q(x + y) < qA(x) + qA(y), gq(tx) = tgA(x) if t > 0, and
that B c A C B and q= q= qB.

(b) Suppose A is also balanced and Ut>o to = E. Prove that q y is a
semi-norm.

Exercise 3.2. Suppose A is a subset of a vector space E. Prove that the
convex hull of A, defined as

n

COCA) _ {t1a1 + ... + tnan; n E N, tj > O, tj = 1, aj E A (1 j n)},
j=1

is the intersection of all the convex subsets of E that contain A.
If E is a locally convex space and A is bounded, prove that co(A) is also

bounded and that, if A is open, then co(A) is also open.

Exercise 3.3. Prove that in every topological vector space E the family of
all balanced open neighborhoods of zero is a local basis of E.

Exercise 3.4. Prove that the class '7-1(S2) of all holomorphic functions on an
open subset S2 of C is a closed vector subspace of C(12) and of E(Sl). Hence,
'7-1(Sl) is a Frechet space with the topology of the semi-norms ' J(K C S2
compact).

Exercise 3.5. Show that, for every p e [1, 00], the sequence of semi-norms

4'n(.f) '- I(1Z = 0,1, ...)
defines the topology of D[a,b](R).
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Exercise 3.6. Every Frechet norm, , satisfies the following properties:

(a) lxii =0 = x=0.
(b) IAl < 1 = liAxil lIxil.

(c) lix + y lxii + Ilyii
(d) limy-,o IiAxIi = 0

(e) ilAxii = 0.

(f) is not a norm.

Exercise 3.7. If is the Frechet norm on C(R) associated to the semi-
norms pn(f ) = iifii[-n,n] show that ilfil = 1/2, II9II = 50/101, and Iihli >
1/2 if f(x) _ (1 - ig(x) = 100 f (x - 2), and h = (f + g)/2, and prove
that the closed ball Bd(0,1/2) for d(f, g) = ii9 - f II is not convex.

Exercise 3.8. If E = El x x E"/z is a finite product of Eechet spaces
endowed with the product topology, then prove that E is also a FYechet
space and extend this result to countable products.

Show that E(R) can be described as a closed subspace of flO<k< C(R).

Exercise 3.9. (a) Prove that C (R) does not have the Heine-Borel property
by showing that the countable set of all "triangle functions"

d(t,[_1/n,1/nJc)
iti + d(t, [-1/n, 1/n]c)

is bounded and its closure is not compact.

(b) Extend this result to C(S2), where S2 is an open subset of Rn.

Exercise 3.10. Suppose that El and EZ are two Frechet spaces and that
M is a dense subspace of El. Prove that every continuous linear mapping
T : M -+ E2 has a unique continuous linear extension T : El -+ E2.

Exercise 3.11. Prove the following statements:
(a) If E/F is a quotient locally convex space and it : E -+ E/F is the

quotient map, then the image by it of an open subset of E is open in E/F.
(b) If E is a Frechet or Banach space, then E/F is also a Frechet space

or Banach space, respectively.

(c) If F and M are two closed subspaces of a Banach (or Frechet) space
E and M is of finite dimension, then F + M is also closed in E.

Exercise 3.12. Let {ek}kez be an orthonormal basis of a Hilbert space H.
Let un = e_n + nen and

F and M are two closed subspaces of H such that F + M is
dense and not closed in H. Note that E 22(Z) \ (F + M).
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Exercise 3.13. As an application of Corollary 3.9, prove that [a, b], and
every compact metric space without isolated points, is uncountable.

Exercise 3.14. Prove that in an infinite-dimensional Banach space there is
no countable algebraic basis.

Exercise 3.15. Find a noncontinuous function f : R -+ R with a closed
graph in R2.

Exercise 3.16. If T : C[0,1] -+ C[0,1] is a linear map such that T fn(t) -+
T f (t) at every t e [0, 1] whenever fn - f in C[0,1] (that is, uniformly),
show that T is continuous.

Exercise 3.17. Assume that C[0,1] and C1[0,1] are endowed with the sup
norm II[o,1]. Show that the graph of the derivative operator D : C1 [0, 1] -
C[0,1] (Df = f') is closed but the operator is unbounded. Why does this
not contradict Theorem 3.11?

Exercise 3.18. Let T : E -+ F be a linear map between two Frechet spaces.
Prove that, if y = 0 whenever xn - 0 in E and Txn - y in F, then T is
continuous.

Exercise 3.19 (Uniform Boundedness Principle for metric spaces). Let M
be a complete metric space and f : M -+ R (j e J) a family of continuous
functions which is bounded at each point x e M, 'f (x)I < C(x) <00 for all
j e J. Prove that the functions f are uniformly bounded on a nonempty
open subset G of M.

Exercise 3.20 (Approximate quadrature). Let {J} be a sequence of linear
forms on C[0,1] of the type

N(n)

Jn(.f) _
k=0

where, for each n, {t}N(n) is a given finite sequence of points in [0, 1] thatk k 1

are called the nodes of J.
The sequence is called a quadrature method if

L
holds for every f E C[0,1].

1

f(t)dt= Jn (f )

Prove that IItJnIIc[O,i]' _ IAI and that {J} is a quadrature
method if and only if the following conditions are satisfied:

(i) 1/k for every k e N and

(ii) SUpn IAI < oo
If An > 0 for all n and k, then (i) implies (ii).
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Exercise 3.21. (a) Suppose El, E2, and F are three Banach spaces. Prove
that a bilinear map B El x E2 - F is continuous if and only if it is
separately continuous; that is, the linear maps y) and B(x, ) are all
continuous.

(b) If E is the normed space of all real polynomial functions on [0, 1] with
the norm If Iii = f0' Idt, prove that B(f, g) := fo f(t)g(t) dt defines a
separately continuous bilinear map B : E x E -+ R which is not continuous.

Exercise 3.22. Let El, E2, and F be three Banach spaces. Prove that a
bilinear map B : El x E2 - F is continuous if and only if its graph

JA(B) :_ {(xl,x2,y) E El x E2 x F; B(xl, x2) = y}

is a closed subset of the product space El x E2 x F.

Exercise 3.23. Suppose T : Ll (0,1) - Ll (0, 1) is a bounded linear oper-
ator and p, q > 1. If T(IP(0,1)) C L(0, 1), is it necessarily true that the
restriction T : L(0, 1) -+ L4(0,1) will also be continuous?

References for further reading:
S. Banach, Theorie des operations lineaires.
S. K. Berberian, Lectures in Functional Analysis and Operator Theory.
B. A. Conway, A Course in Functional Analysis.
R. E. Edwards, Functional Analysis, Theory and Applications.
G. Kothe, Topological Vector Spaces I.

R. Meise and D. Vogdt, Introduction to Functional Analysis.

W. Rudin, Functional Analysis.





Chapter 4

Duality

An essential aspect of functional analysis is the study and applications of
duality, which deals with continuous linear forms on functional spaces.

In the case of a Hilbert space, the projection theorem will allow us to
prove the description of the dual given by the Riesz representation theorem
and by its extension known as the Lax-Milgram theorem, which is useful
in the resolution of some boundary value problems, as we will see in some
examples in Chapter 7.

But if we are dealing with a more general normed space, or with any
locally convex space, to ensure the existence of continuous linear exten-
sions of continuous linear functionals defined on subspaces, we need the
Hahn-Banach theorem. This theorem adopts several essentially equivalent
versions, and we will start from its analytical or dominated extension form
and then the geometric or separation form will follow.

We include in this chapter a number of applications of both the Riesz
and the Hahn-Banach theorems, such as the description of the duality of Lp
spaces, interpolation of linear operators, von Neumann's proof of the Radon-
Nikodym theorem, and an introduction to the spectral theory of compact
operators.

4.1. The dual of a Hilbert space

In this section, H will denote a Hilbert space. Its norm II ' IIH is associated
to a scalar product,

93
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Note that, for every x E H, x)H is a linear form on H. We will see that
its norm is equal to IIxIIH and that every continuous linear form is of this
type, as for Euclidean spaces.

4.1.1. Riesz representation and Lax-Milgram theorem. The decom-
position H = F ® given by the Projection Theorem 2.35 allows an easy
proof of the following fundamental representation result concerning the dual
of a Hilbert space.

Theorem 4.1 (Riesz representation). The map J H -+ H' such that
J(x) _ x)H is a bijective skew linear isometry, that is,

(1)
P

IXIIH,

(2) J(xi + X2) = J(xi) + J(x2),
(3) J(Ax) _ J(x), and
(4) if u E H', then u = x)H for some x E H.

Proof. The Schwarz inequality (2.11) means that I , x)HIIH' lix IPH, and
the linear form x)H reaches this value lix PH at xo = x/iixII x, which proves
(1)

The identities (2) and (3) are obvious.
Finally, if 0 u E H' and F= Ker u, then F H = F EJF1 and there

exists z E F1, IIzilH = 1. Since u(z)x -u(x)z E F for every x E H, we have
0 = (u(z)x- u(x)z, z)H, which is equivalent to u(x) _ (x,u(z)z)H. Thus,
u = (., u(z)z)H. LI

Example 4.2. By an application of the Riesz representation theorem to
the Hilbert space L2 =L2(µ),

= {(,g); g E L2},

and g H g)2 is a skew linear isometric bijection from L2 onto (L2)'. Since
g E L2 H g E L2 is also a skew linear isometric bijection, g H g)2 is a
bijective linear isometry from L2 onto (L2)' that allows us to consider L2 as
its own dual. The notation

(f,9) := f fg dµ (f, 9 E L2)

is a usual one, u = g) (g E L2) are all the continuous linear forms on L2,
and h _ iigii2.

It is customary to identify g) with g and to say that the dual L2(µ)
of L2() is L2().
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The following extension of the Riesz theorem was given by P. D. Laxl
and A. Milgram when studying parabolic partial differential equations:

Theorem 4.3 (Lax-Milgram). Let H be a Hilbert space and suppose that
B H x H -+ K is a bounded sesquilinear form; that is, B satisfies the
conditions

(1) a) is linear and B(a, ) skew linear for every a e H and
(2) IB(x, y)I < CIIxII HII yII H for some constant C, for all x, y E H.

If B is coercive, meaning that

I? IIxII2 (x e H)

for some constant c > 0, then for every u e H' there exists a uniquely
determined element y e H such that u= y). Hence y e H H y) E
H' is a bijective skew linear map.

Proof. By virtue of the Riesz Theorem 4.1, for every y e H, there is a
unique T(y) E H such that B(x,y) _ (x, T(y))H for all x e H, and it is
readily seen that the mapping T : H -+ H is linear. For instance,

(x, 7'(Ay))x = B(x, y) = B(Ax, y) _ (Ax, 7'(y))x = (x, A7'(y))x,

and then T(ay) _ AT(y).
It follows from the assumption I (x, T(y))HI _ IB(x, y)I < CIIxII HIIYIIH

that
IIT(y)IIH

and T is bounded. Similarly, by the coercivity assumption,

cIly-z <_ IEZ I

Obviously T is one-to-one, and these estimates imply that T (H) is closed
since, if T(y) -+ zo, then

CII Jn - YmII H I- T (ym)IIH,
and we can find yo =limy, so that zo = T(yo) E z(H).

To prove that T is onto, suppose that x E T(H)1, so that B(x, y) = 0
for all y e H and then 0 = B(x, x) > bIIxIIx; thus x = 0 and T(H)1 = {0},
which proves that T(H) = H, since T(H) is closed.

This shows that for every u e H' there is an element T(y) E H such
that u(x) _ (x,T(y))H, and then u(x) = B(x, y) for all x e H.

1 Peter David Lax, while holding a position at the Courant Institute, was awarded the Abel
Prize (2005) "for his groundbreaking contributions to the theory and application of partial differ-
ential equations and to the computation of their solutions".
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Note that y is unique, since it follows from B(x, yl) = B(x, y2), or
B(x, y) = 0 for y = yl - y2, that 0 = I= I III yII H and
then y = 0, and hence yl = y2. O

4.1.2. The adjoint. Suppose T E G(Hl; H2), where Hl and H2 are Hilbert
spaces. The transpose T' acts between the duals H2 and Hi by the rule
T'v = v o T; that is,

(4.1) (T'v)(x) = v(Tx) (x e Hl, v e H2).

By the Riesz representation Theorem 4.1, v = y)HZ and T'v = (., T*y)Hl
for some T*y E Hl, and (4.1) becomes

(4.2) (x,7'*y)xl
_ (TX,Y)H2 (x e Hip y e Ha)

The adjoint of T is the linear operator T* : H2 - Hl characterized by
the identity (4.2), and its linearity follows from this relation. For instance,

(x,T*(yi +y2))x1 _ (Tx,yl)H2 + (Tx,y2)H2 = (x,T*yi +T*y2)xl

for every x e Hl, and then T*(yl + y2) = T*yl +T*y2.
Clearly T** = T and (ST)* = T*S* if the composition is defined.

Theorem 4.4. The map T E G(Hl; HZ) H T* E G(H2i Hl) is a skew linear
isometry such that IIT*TII = IITII2 = IITT*II, and for every T E G(Hl; H2)
the following properties hold:

(a) (Tm T)1 = Ker T*,
(b) (KerT*)J = TmT,
(c) (TmT*)J = Ker T, and
(d) (Ker T)1 = Im T*.

Proof. Since (x, (A7')*y)xl _ (ATx, y)x2 = A(x, 7'*y)xl _ (x, A7'*y)xl, we
obtain (AT)* _ T*. It is also clear that (S+T)* = S* +T*.

By the Riesz representation Theorem 4.1,

(4.3) 11Th = sup IITXIIH2 = sup IIIXIIH1<1

I I = I I

IIXIIH1,IIYIIH1 <1 IIXIIH1 IIYIIH2<1

and also

IITII2 = sup IITxhI2 = sup (x,T*Tx)Hl IIT*ThI IITII2
IIXIIHI <1 IIXIIHI 1

To prove (a), note that (y, T x) H2 = 0 if and only if (T*y, x) H1 = 0, which
holds for every x e H when T * y = 0. The remaining properties follow very
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easily from the identity T** = T and from the relation F11 = F, if F is a
vector subspace of Hl (or H2), contained in Theorem 2.36. 0

Remark 4.5. It is worth observing that, in the complex case, (AT)* = AT*,
but (AT)' = AT', since (AT)'(v) = v o (AT) = Av o T.

An operator T E G(H) is said to be self-adjoint if T* = T. By Theo-
rem 2.35(b), every orthogonal projection is self-adjoint.

The Hilbert-Schmidt operators TK, defined by integral kernels K E
L2(X x Y) as

7'xf (x) := f K(x,y)f (y) dye
Y

form another important family of bounded linear operators between Hilbert
spaces. Here X and Y are assumed to be two v-finite measure spaces.

Theorem 4.6. If K E L2(X x Y), then TK : L2(Y) - L2(X) and IITKII
11K112. The adjoint TK L2 (X) -+ L2 (Y) is the Hilbert-Schmidt operator
TK defined by the kernel K*(y, x) = K(x, y). Hence, if X = Y, TK is
self-adjoint when K(y, x) = K(x, y) a. e. on X x X.

Proof. By Schwarz inequality,

/2
Y

K(x,y) I I f (y) I dy C ( fY K(x,y)IZdy)1/2 (fY I

with oo a.e., since ffK(x,y)I2dydx < oo. Then
TK f (x) is defined a.e. and

Z'xf(x)12 f K(x,y)I2dy f If(y)I2dy.

Y Y

By integrating both sides, IITKf 12 2
F4ibini's theorem shows that (TKf, g)2 = (f, T*g). O

The description (4.3) of the norm of an operator by duality has a useful
variant for self-adjoint operators:

Theorem 4.7. If T E G(H) is self-adjoint, then (Tx, x)H E R for every
xEHand

ITII = sup (TX,X)HI.
IIXIIH=1

Proof. We call S supllXllx=1 I (Tx,x)HI, so that (Tx,x)H < IIxI8.
Since S < 11Th, We only need to show that IITXIIH < S if IIXIIH = 1, and we
can assume that Tx 0.
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We will use the polarization identities, which extend (2.15) and (2.16),

(TX,Y)H = ((T(x +y),x+y)H - (T(x -y),x -y)H)

if K = R and

(Tx, Y)x = 4 ((T(x + y), x + y)x - (T(x - y) x - Y)H

+i(T(x + iy), x + iy)H - i(T(x - iy), x - iy)H)

in the complex case. They are checked by expanding the inner products.
Since (TX,X)H = (x,Tx)H E R,

= ((T(X+y),x+y)H - (T(x -y),x - y)H).

Let IIXIIH = 1 and y = (1/ITxiiH)Tx so that also MYMH = 1 and

1ITxIIH = (Tx,y)H <_ 4 (IIx + iiH + lix - I= 4 (IIxIIH + I

4.2. Applications of the Riesz representation theorem

Throughout this section, (11,8, µ) will be a cr-finite measure space. Our
aim is to obtain some consequences of the duality result of Example 4.2 for
L2µ)

4.2.1. Radon-Nikodym theorem. Suppose 0 < h e L1(µ). The finite
measure

v(A) := fhdµ

on (11,8) is such that v(A) = 0 if µ(A) = 0. When this happens, we say
that v is absolutely continuous (relatively to µ) and write v « µ.

Theorem 4.8 (Radon-Nikodym). Let µ and v be two Q-finite measures
on (11,8). If v « µ, there exists a unique a. e. determined nonnegative
measurable function h such that

(4.4) v(A) = JA h dµ (AeB).

If v is finite, h E L1().

Proof. First assume that µ and v are finite and define ) = µ + v. Then
)(A) = 0 if and only if (A)=O.
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The linear form u(f) f f dµ is bounded on the real Hilbert space
L2(µ) and also on LZ(A), since µ < A. Then there exists a unique function
g E L2(A) such that

f f dµ = f fgdA (f E L2(A))

We rewrite this identity as

(4.5)
J f(1_g)di=f fgdv.

Formally (1 - g) dµ = g dv and we will try

We need to prove that 0 <g < 1 µ-a.e.
First F {g < 0} is µ-null, since for f = XF we obtain from (4.5) that

µ(F) f XF(1 - g) dµ = f XF9 dv < 0.
To prove that G :_ {g> 1} is also a µ-null set, assume that µ(G) > 0.

Then, by taking f = Xc, again from (4.5) we obtain that 0> fG(1 - g) dµ =
fG g dv > 0, which is impossible.

By changing g on a µ-null set if necessary, 0 <g < 1 everywhere. The
function k = fg is A-integrable, and equation (4.5) reads

J kh dµ = J k dv.

If k = X,q and f = X,q/g E LZ(A), we obtain fA h dµ = v(A).
For any A E ,t3, by denoting An = A fl {g> 1/n}, we obtain E

L2(A) and fA h dµ = v(An). Then, by monotone convergence, fA h dµ =
v(A).

Observe that 0 < h E L1(µ) and it is unique since, if fA f dµ = 0 for
every A E 13, then f= 0 µ-a.e.

Now let µ and v be v-finite. We can find Sty, E B (n E N) with SZn t St
and µ(Stn), v(S2n) < oo. If A C Stn, then v(A) = fA hn dµ, with hn(x) _
hn+l(x) a.e. on Stn, and we can take hn = (hn+l)1. We define hn = 0 on
SZn and the nonnegative function h(x) := limn hn(x) is measurable; then, by
monotone convergence,

v(A) =1 nm v(A (1 S2n) =1 nm J h d= = J h d.
AnS2, A

The uniqueness of h follows from the uniqueness on every 117. Eli

Formula (4.4) is often represented by the notation dv = h dµ, and h is
called the Radon-Nikodym derivative of v.
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4.2.2. The dual of L. Recall that, if 1 c p < oo, Lp = LP() is the
Banach space of all µ-measurable (real or complex) functions f defined by
the condition

1/p

If lip := (f I<00,
modulo the subspace of functions vanishing a.e., with the usual modification
for p = oo.

By denoting

(f,9) =1 fgdµ
with p' = p/(p - 1) (p' = oo if p = 1, and p' = 1 if p = oo) if the integral
exists, then, by Holder's inequality,

IC IIflIIIgII' (f E Lp(µ), g E

Note that, for every g E IiP', g) E (LP)' and II (g) II (LP)' IlgII' for
any p E [1, oo], and we say that g E JJ)' H g) E (LV)' is the natural map
from I,p' into the dual of L.

We know from Example 4.2 that L2(µ) can be identified with L2(µ).
As an application of the Radon-Nikodym theorem, we will show that LP()'
can also be identified with I,p' (µ), if 1 < p < oo.

To prepare the proof, we will consider positive linear forms on the real
L' spaces. We say that v E (lIP)' is positive if v (f) > 0 when 0 < f E LV,
and then we write v E (LP)+. Also, f E if f E LP and f > 0 a.e.

Lemma 4.9. (LV)' _ (LP)+ - (LP)+

Proof. Let v E (LP)' and f E (LV)+ and define

v(f) := sup v(g).
o<y<f

Obviously, v+(a f) = av+(f) if a E R+ and f E (LP)+. To show that v+ is
also additive, we observe that, if fl, 12 E (LP)+, then

v+(fi) + v(f2) = sup v(9i + g2)
0<91 <fl, 4<925,f2

sup v(g) = v+(fl +f2).
0<g<fl-I-fz

For the reversed inequality, we claim that

{gE (L; g < fl+f2}c{gE (L; g < fi}+{gE (L; g < f2}.

To prove this, if 0 < g < fl + f2 and gl := inf(g, fl), then the function
92 := 9 - 91 _> 0 satisfies g2 < f2 since, when gl (x) = Ii (x),

92x) = 9(x) - fix) f2(x)
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and g2(x) = 0 < f2(x) when gl(x) = g(x). Hence, also

v+(fl + f2) v+(fl) + v+(f2)

Every real function f E IY admits adecomposition f = Ii - 12 with
fi, 12 E (L, for instance by taking fl = f + = sup(f, 0) and 12 = f - _
sup(-f,0), and

v(f) := v+(fi) - v+(f2)

does not depend on the decomposition, since fi - 12 = f + - f_ implies
v+(fi) + v(f) = v(f) + v+(f2).

It is clear that v+ (Al) _ Av+ (f) in both cases A > 0 and A < 0
(v+(- f) = v+(f -) - v+(f +) _ (f)). Additivity also holds for v+,
since

v+(fl + f2) v+ ((.fi + .f2) - (f_i + f))
(v+(fj) + v(f)) - (v+(ffl + v+(ffl)

v+(fi) + v+(12),
and it is continuous, since

Iv+(.f+) +v-I-l.fJ llvll(LP)F(llfllp + I<211v11(LP)' ill lip.

Finally, v_ := v+ - v is also linear and continuous, and

v_(f) = sup v(g) - v(f) > 0
o<y<f

if f > 0.

Theorem 4.10 (Riesz representation theorem for (LP)'). Suppose 1 < p
oo. For every v E L'(µ)' there is a uniquely determined function g E L' (/t)
such that

v(f) _ ff9dµ (f E Lv),

and IIgII' _ llvlI(LP)'.

Proof. (a) First let µ(St) < oo and v E (LP).
By v(A) := v(XA) (IIXA lip - <o0) we obtain a finite measure v

on (1,B), since v(Q1) = 0 and

1/(UAn) =
N

11( 1m

N

- 1N v(An)
n n=1 n=1 n

It is clear that v « µ, since u(XA) = u(0) = 0 if µ(A) = 0.
By the Radon-Nikodym theorem for finite measures, v(XA) = v(A) _

fA h dµ for a unique integrable function h > 0, and also v(s) = f sh dµ if s
is a simple function.
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If 0 < f E Lp, we choose simple functions sn so that 0 < sn t f. Then
Sn - f in Lp by dominated convergence; hence

snhdµ=J fhdµ

by monotone convergence, and f fh dµ < IIf lIp.

(b) In the general v-finite case and for v E IP(µ)+, let SZ = L±J,°O 1 Stn

with µ(SZn) <00.

We obtain hn associated to the restriction vn of v to LP(n) as in (a),
and we extend hn with zeros. Then, if h :_ >n hn > 0 and f E LP(), we
can write

= f fhnd = fnn fhd = v(f) = v(f).

Note that fh is integrable, since >n fxcir, = fin LP() by dominated
convergence, the last equality follows, and

f IfhI dµ = f IThnI dF = v(I.f I) <00.
n

(c) If v = v+ - v_ E (LP)', by (b) there exists h so that fh E Ll for
every real function f E LP and v(f) = f fh dµ.

(d) In the complex case, if v E (Lv)', we obtain h = hl + ih2 so that
fh1, fh2 E Ll for every f E LP, J2v(f) = f fhi dµ, £`v(f) = f fhi dµ. Then
v (f) = f fh dµ if f E LP is a real function. By linearity, also v (f) = f fh dµ
for any complex function f E L.

(e) The function h obtained in (c) and (d) belongs to and IIhII' _

Suppose first that p > 1 and let Bn = SZn n {IhI < n}, with Stn T S2.
Then the functions fn _ Isgn (h)xB(sgn z = lzl/z, with 0/0 0)
belong to I, v(fn) = f lhI'xs dµ, and

fB h ' dC IIvII(LP)IIIfnIIP - IIvII(La)I (fB
t,

n,

By monotone convergence, 1 hlI < liv II (LP)'hllp/P, and IIhIIP' vii (LP)'
Since v = h), by Holder's inequality liv ii (LP)' h'.

When p = 1, we also have llvil(L1)1 < lihii. Suppose l+ E <
I ihiioo; then, since the measure is assumed to be v-finite, there exists some



4.2. Applications of the Riesz representation theorem 103

A E Xi such that 0 < µ(A) < oo and Ih(x)I > IIVII(L1)/ + e for every x e A.
If f, sgn (h)xBnA, then

v(f) = f I hi dµ ? (IIVII(L1)/ -F ')µ(Bn n A)
nA

and, since also v(fn) < IIVII(L1)IIIfflhIl = IIvII(L1yu(Bn rl A), we arrive at a
contradiction by allowing n oo.

(f) Finally, h is uniquely determined since, if fA h dµ = 0 for every A E X3
with finite measure, then h = 0 a.e.

Note that if 1 < p < oo, by Theorem 4.10, the natural linear mapping
g -+ g) is a bijective isometry from onto (LP)' which allows us to
represent by L' (µ) the dual of LP() and to describe the Lu-norm by duality:

(4.6) IIgII' = sup I= sup I

IIfIIP1 IIsIIp=1. sES

where S denotes the vector space of all integrable simple functions.
Indeed, S is a dense subspace of Imo, so that the norm of u = does

not change when we restrict u to this subspace.

Remark 4.11. Similarly, if 1 < p < oo, 2P can be regarded as the dual
of 2throughout the mapping y e 2P H y) E (gyp)', now with (x, y) _

x,jy,j, x = (xn) E £, and y = (yam,) E 2p'. Recall that 2P is the space
Iassociated to the counting measure on N (see Exercise 1.11).

4.2.3. The dual of C(K). Another fundamental theorem of F. Riesz shows
that every continuous linear form on C(K) is represented by a complex
measure.2

Lemma 4.12. For every complex measure µ there is a IiI-a.e. uniquely
defined function h such that (hi = 1 which satisfies

(4.7) (B) = fhdII (Be B).

Proof. The existence of h e L' (II) follows from an application of the
Radon-Nikodym theorem to -, sµ+, and By (1.7), the four
of them are finite and absolutely continuous with respect to , so that they
have an integrable Radon-Nikodym derivative.

The uniqueness of h follows by noting that fB h dIµI = 0 `dB E Xi implies
h=0a.e.

2In 1909, F. Riesz obtained the representation of every u E C[0,1]' as a Riemann-Stieltjes
integral u(g) = fo g(x) dF(x) when solving a problem posed by Jacques Hadamard in 1903. J.
Radon found the extension to compact subsets of Rn in 1913, S. Banach to metric compact spaces
in 1937, and S. Kakutani to general compact spaces in 1941.
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If µI (B) > 0, then I fB h dI µI = Iµ(B) I I,al (B) and

(4.8)
IitI(B) f hdli 1,

which implies I < 1 a.e.
Indeed, D(0,1)° C C is a countable union of discs D = D(a, r) and it is

enough to prove that l= 0.
If we assume that L> 0 for B = h-1(D), then

1

l,aI(B) JB
h a < 1 fIh_aIdIIrlB

and

IlB hdIµl 0 D(o,1),

which is in contradiction to (4.8).
To show that also lh(x)I > 1 a.e., let us check that B(r) :_ {Ihl <r} is

a Iset for every r < 1. If B(r) = U 1 Bk,

l- I f h dI µI rI µI (Bk) = rIµI(B(r))
k=1 k=1

and l< rIµl(B(r)), so that I= o, since r < 1. O

The identity (4.7) is represented by dµ = h dIµl, which is called the
polar representation of µ.

It is natural to define IP(µ) L'(IµI) and f f dµ := f fh dI/il for every
f E L1(µ). Obviously I f fdµl < fill diµl

Now we are ready to prove the Riesz representation theorem.

Theorem 4.13. Let K be a compact subset of Rn and let C(K) be the real
or complex Banach space of all continuous functions on K, with the usual
sup norm.

If µ is, respectively, a real or complex Borel measure on K, then

uµ9) =1 9dµ

defines a continuous linear form on C(K), and µ H uis a bijective linear
map between the vector space M(K) of all Borel real or complex measures
on K and the dual space C(K)'.

Proof. Since I<f lI dlµl C Iit follows that
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and u1 is a continuous linear form.3

Conversely, if v E C(K)', we are going to prove that v = uµ for some
µ E M(K).

In the case C(K) = C(K; R) of real functions, and with the same proof of
Lemma 4.9, every v E C(K; R)' is the difference v = v+ - v_ of two positive
linear forms v+, v_ E C(K)+. They are defined on any positive function
f E C(K)+ by

v+(f) := sup v(9),
o<y<f

and v_ = v - v+.
Every f E C(K) admits adecomposition f = fi -12 with fl, 12 E C(K),

for instance by taking fl = f+ = sup(f, 0) and 12 = f - =sup(-f, 0)
and, as in Lemma 4.9, v+(f) v+(fl) - v+(f2) does not depend on the
descomposition, since 11-12 = f+- f -implies v+(fl)+v+(f) = v+(f+)+

v+(f2).

With this procedure we obtain

C(K)' = C(K) - C(K).

We write

(4.9) v(9) = f 9dµ+ - f 9dµ- = f 9dµ (gEC(K)),

if the Borel measures µf represent the positive linear forms of and µ =
µ+ - µ_, as in the Riesz-Markov representation theorem.

In the complex case, every v E C(K)' determines two continuous linear
forms J22v, sv E C(K; R)'. Since

v(f) = v(g + ih) = v(g) + iv(h) (g,h E C(K; R)),

if (v)(g) = f g dµ and (v)(g) = f g dA on C(K; R), we can write

v(f)=J gdµ+iJ hdµ+iJ gds -J hdA =J fd+if fdA.

If µ and A are two Borel real measures on K, then v = µ + iA : X3 -+ C
is a complex measure and v(f) = f f dv.

To prove the uniqueness, let f gh dIµI = 0 for all g E C(K). Since
C(K) is dense in Ll(IµI), by Corollary 2.13, we can consider h -gj Iii -+ 0,
g E C(K). Then

I= f(i - gkh) dI µI = I f(h_gk)hdIµI I Ih-gIIi 0

and µ = 0. Thus, the linear map µ H uµ is injective. O

3It can be proved that II u, II C(x)I = 1/21(K).
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4.3. The Hahn-Banach theorem

For a Hilbert space, the projection theorem has been useful to give a com-
plete description of the dual. The duality theory of more general spaces is
based on the Hahn-Banach theorem.4

4.3.1. Analytic form of Hahn-Banach theorem. The basic form of
the Hahn-Banach theorem refers to a convex functional on a real vector
space E, which is a function q : E - R such that q(x -{- y) < q(x) -{- q(y)
and q(ax) = aq(x) (x,y e E and a > 0).

We note that the sets {x; q(x) < 1} and {x; q(x) < 1} are convex.
Obviously, asemi-norm is a convex functional.

Theorem 4.14 (Hahn-Banach). Let E be a real vector space, F a vector
subspace of E, q a convex functional on E, and u a linear form on F which
is dominated by q:

u(y) C 4'(y) (y e F).
Then u can be extended to all E as a linear form v dominated by q:

v(x) < q(x) (x E E).

Proof. If F E, we start with a simple extension of u to the subspace

Fl[y]={z-I-ty;zEF,tER},
the linear span of F and y 0 F.

Of course, if s e R, then v(z + ty) = u(z) -I- is is a linear extension of u.
Our aim is to obtain the estimate

v(z -{- ty) = u(z) -{- is < q(z + ty)

by choosing a convenient value for s = v(y). Since q is positive homogeneous,
if this estimate holds for t = fl, then v(z -I- ty) _ (1/ItI)v(ItIz f y)
(1/It I )q( t z ± y) = q(z + ty). Hence all we need are the inequalites

u(z)+s < q(z + y), u(z') - s < q(z' -y) (z,z' E F);

that is, u(z') - q(z' - y) < s < q(z -I- y) - u(z). Hence

u(z'-I- z) < q(z' - y + z -I- y) < q(z - y) + q(z + y).

It is possible to choose s so that

zE(u(z/) - 4(z - y)) s zEF(q(z + y) - u(z))F
and then v is dominated by q.

4The first version of the Hahn-Banach theorem dates back to the work of the Austrian
mathematician Eduard Helly in 1912, essentially with the same proof given later independently
by H. Hahn (1926) and S. Banach (1929). We give the original proof published by S. Banach in
1929; only his transfinite induction has been changed by an application of Zorn's lemma.
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Once we know that a one-dimensional extension is always possible, we
can continue with a standard application of Zorn's lemma as follows.

Consider the family 1 of all extensions £ of u to vector subspaces L of
E that are dominated by q, and we order by (L1, L1) <(L2, £2) meaning
that L1 C L2 and £2 agrees with L1 on L1.

Every totally ordered subset {(La, £a) } of 1 has the upper bound (L, £)
obtained by defining L Ua L« and £ (y) := £« (y) if y E L« . If also
y E La', then £« (y) _ La' (y) by the total ordering of the set {(La, £a) }, and
the previous definition is unambiguous. For the same reason, L is a vector
subspace of E and £ is a linear extension of all the linear forms L«.

By Zorn's lemma, there is a maximal element (F, £) in . But according
to the first part of this proof, this extension must be the whole space E,
since if F E, we would obtain an extension v to a strictly larger subspace
F ® [y] of E, in contradiction to the maximality of (F, £). U

The following version of the Hahn-Banach theorem for semi-norms holds
for real and complex vector spaces:

Theorem 4.15 (Hahn-Banach). Let F be a vector subspace of the vector
space E, q a semi-norm on E, and u a linear form on F that satisfies the
estimate

R(y) (y E F).

Then there exists an extension of u to a linear form v on E which satisfies

Iv(x)I q(x) (x E E).

Proof. The real case is simple. We know from Theorem 4.14 that there
exists an extension v which satisfies v(x) < q(x) and -v(x) = v(-x) <
q(-x) = q(x), i.e. Iv(x)I ci(x).

Now suppose E is a complex vector spaces and F is a complex vector
subspace of E. In this case we split the complex linear form u into the real
and imaginary parts, u(y) = ul(y) + iu2(y). Then ul and u2 are real linear
forms on F, which is also a real vector subspace of E regarded as a real
vector space. Since ul (iy) + iu2(iy) = u(iy) = iu(y), ul and u2 are related
by ui (22J) _ -u2 (y)

Conversely, if ul is a real linear form on F, the additive functional

(4.10) u(y) = ul(y) - iul(iy)

is a complex linear form, since u(iy) = iu(y) and u(ry) = ru(y) when r E R.

5The complex version of the Hahn-Banach theorem was published simultaneously in 1938
by H. F. Bohnenblust and A. Sobczyk and by G. Buskes; curiously, in his work Banach only
considered the real case.
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To extend our u(y) = ul (y) - iul (iy), it follows from the real case and
I< u(y)I < q(y) that there exists a real linear extension vi of ul so
that I< q(x). Then the complex linear form v(x) = vi (X) - ivl (ix) is
an extension of u, since vl(y) = ul(y).

Finally, we have I< q(x) and, if for a given x e E we write
Iv(x)I _ Av(x) with I) = 1, then it follows that also

v= v(ax) = v1 (Ax) < q(Ax) = IAI q(x) = q(x),
since q is asemi-norm. O

4.3.2. The geometric Hahn-Banach theorem. Suppose that K is a
convex subset of a real vector space E and that K is absorbing in the
sense that lJt>o(tK) = E. Then the gauge or Minkowski functional of
K is defined as the functional

px : E -+ [0,oo)

such that
pK(x) = inf {t > 0; t E K}.

It is easily checked that this functional is convex and that

Kc{xEE;pK(x)<1}.
To show the subadditivity of pK, note that, if x/t, y/s e K, also

x s y
(4.11)

_
+ E Kt+s t+s t t+s s

and pK(x+y) < t+s. By taking the infimum with respect to t and then with
respect to s, we obtain pK(x+y) < pi(x)+s and pK(x+y) < px(x)+px(y)

It is also worth noticing that pK (x) < 1 if x is an internal point of K,
in the sense that for any z e E there is an e = e(z) > 0 such that

{x+tz; ItIE}cK,
that is, for every line L through x, L fl K is a neighborhood of x in L.
Indeed, if x is internal, then we have (1 + e)x E K for some e > 0, so that
PK(X) 1/(1 + E) <1.

Sometimes we will use self-explanatory notation such as f(A) < 1(B)
when f(a)<f(b) for all a E A, b E B.

Theorem 4.16. Let K be a convex subset of a real vector space E with at
least an internal point xp. For any y e E \ K there is a nonzero linear form
f : E -+ R that satisfies

f(K) 1(y).
If all the points of K are internal, then f can be chosen so that

f(K) <f(y).
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Proof. A translation allows us to assume that xo = 0 is an internal point
of K, and then K is absorbing.

Note that pK(y) > 1, since y 0, and we can define f on [yJ so that
f(y) = 1; that is, f(ty) = t. Then t < tpK(y) = pK(ty) if t > 0, and
t < pK(ty) is obvious if t <0.

Having shown that f < pK on [y], we conclude from Theorem 4.14 that
f can be extended to all of E so that 1(x) < pK(x) <1 = 1(y).

Recall that if x is an internal point of K, then pK(x) < 1.

Next we consider E equipped with a vector topology over the reals and
two disjoint subsets A and B in E. We say that these sets are separated
if there exists a nonzero f e E' such that

1(A) <1(B).
If instead of this we have

sup 1(A) < inf 1(B),

we say that A and B are strictly separated.

Theorem 4.17. Suppose A and B are two nonempty disjoint convex subsets
of a real locally convex space E.

(a) If one of them is open, then A and B are separated.
(b) If they are closed and one of them is compact, then A and B are

strictly separated.

Proof. We choose ao e A, bo E B. Then the convex set

K=A-B+bo-ao= (A_y+bo_ao)
yEB

is an open neighborhood of zero and y = bo - ao K.
An application of Theorem 4.16 provides a linear form f such that

f(y) = 1 and f(K) < 1. Also f(-K) > 1. Then U = K fl -K is an
open neighborhood of zero such that I< 1, and f E E'.

If a E A and b e B, then 1(a) <1(b), since a- b+ y e K implies

1(a) - 1(b) = f(a - b + y) -1 <0.

Then 1(A) and 1(B) are two disjoint convex subsets in R, and 1(A)
is open. This is readily shown, since f is a nonzero linear form and, if
U is a balanced and convex neighborhood of 0, then 1(U) = I C R is a
neighborhood of 0 in R and it follows as in the proof of Theorem 3.10 that
1(G) is open if G is open.

Thus, if r = inf 1(B), 1(a) <r for every 1(a) in the open interval 1(A).
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To prove (b), since A is compact and B is closed, for every a E A we
can consider (a + Ua + Ua) n B = 0, with Ua a convex neighborhood of zero;
then, by choosing A C U=1 (an + Uan ), U = nn 1 Uan is an open convex
set. The set A + U is also open and convex, and it is disjoint with B, since

N N

A+U C (an+Uan +U) C (an+Uan +Uan).
n=1 n=1

Now we apply (a) to the couple A + U, B to obtain f E E' so that
f(A + U) and f(B) are two disjoint intervals in R, f(A) a compact interval
contained in the open interval f(A + U), and (b) follows. O

Remark 4.18. For a complex locally convex space E, separation refers to
E as a real locally convex space. Note that, if f is a continuous real linear
form such that f(A) <1(B), we know from (4.10) that u(x) = 1(y) - i f (iy)
is the uniquely determined complex linear form by the condition Ju = 1. It
is obviously continuous.

Corollary 4.19. Assume that E is a real or complex locally convex space.
(a) If K is a convex and balanced closed subset of E and xo E E \ K,

then Iu(K)J <1 and u(xo) > 1, real, for some u E E'.
(b) If M is a closed vector subspace of E and xo E E \ M, then u(M) _

{0} and u(xo) = 1 for some u E E'.

Proof. (a) By Theorem 4.17, K and {xO} are two strictly separated sets
and 0 E K, so that we can choose f = u satisfying 1(x) <1 < f (xp) for
all x E K. Since K is symmetric, I< 1 < f (xo) _ Ju(xp).

(b) From (a) we obtain u E E' such that u(xo) ¢ u(M) and M is a
proper vector subspace of K, which forces u(M) _ {0}. We can normalize
u so that u(xo) = 1. O

4.3.3. Extension properties.

Theorem 4.20. Suppose F is a subspace of a nonmed space E.
(a) If u E F', there exists an extension of u to a continuous linear form

v E E' such that liv lIE' _ lluliF'. If xl # x2 are two points of E, then there
exists v E E' so that v(xl) v(x2).

(b) For every xo E E \ F, there exists v E E' such that ivilE' = 1,
v(F) _ {0} and v(xo) = d(xo, F) = infyEF II y - xo II

If 0 # xo E E, then ilviIE' = 1 and v(xo) = lIxo liE for some v E E'.

Proof. (a) If q(x) :_ IIuiiF' lix lIE, by the Hahn-Banach Theorem 4.15, u
admits a linear extension v that also satisfies iv(x)I < q(x) _ J'af F' lIxilE,
and obviously liv lIE' > ll'aliF'
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If y = xi - x2 0, it is easy to obtain v e E' such that v(xi - x2) _
lxi - x2IIE 0. Just extend u(ty) tIIyIIE as above.

(b) On the subspace Z = [xo] F of E we can define the linear form
u(Axo + y) _ Ad(xo, F), so that IIuIIz' < 1, since

Iu(Axo + y)I lAllixo + lI = liAxo + yII

Then, by choosing IIxo-Ye lIE < d(xp, F)+e (Ye E F), we obtain u(xp-yE) _
d(xo, F) and

1 d(xo,F)
Iu(xo - )I >

for every e > 0. Thus, IluliF' = 1 and u has an extension to v e E' with

In the special case F = {0}, v(xo) = d(xo,0) _ lixollE and IlvIlE' _
1. 0

Theorem 4.21. If F is a subspace of a locally convex space E and u E F',
then there exists an extension of u to a continuous linear form v E E'.

If xl and x2 are two distinct points of E, there exists v e E' so that
v(xi) v(x2).

Proof. The topology of F is defined by the restriction of any sufficient
family of semi-norms for the topology of E. By Theorem 3.4, there exists
a continuous semi-norm q on E so that lu(y)l < q(y) for all y e F. By the
Hahn-Banach Theorem 4.15, u admits a linear extension v that also satisfies
lv(x)l < q(x) and v E E'.

If y = xi - x2 0, u(Ay) :_ A defines a linear form on F = [y] and
we can choose a continuous semi-norm p on E such that p(y) # 0. Then
we have lu(y)l = cp(y), lu(Ay)l = cp(Ay), and u has an extension to some
linear form v on E such that Iv(x)I < cp(x) and v e E'. Since u(y) # 0,
v(xi) v(x2).

O

Assume that E is a locally convex space and that M a closed subspace of
E. If there exists a second closed subspace of E such that E = M N, that
is, E = M+N and Mf1N = {0}, then M and N are said to be topologically
complementary subspaces of E and M (and N) is a complemented
subspace.

As an application of Theorem 4.20 and Theorem 4.21, let us show that
finite-dimensional subspaces are complemented:

Theorem 4.22. Suppose that E is a nonmed space (or any locally convex
space) and that N is afinite-dimensional vector subspace of E. Then E _
N M for some closed subspace M of E.
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Proof. Let {ei,. . . , e} be a base of N and let ir (1 < j < n) be the
corresponding projections, so that y = > Since N has finite
dimension, every projection is continuous and, by Theorem 4.21, it has a
continuous linear extension : E - K. We are going to show that we can
take M = n 1 Ker rj, which is a closed vector subspace of E.

Indeed, if x E E, let y :_ 17fj (x)e3 E N and z := x - y. Then
_ - lrj(y) = 0 for every j and z E N, so that E = N + M. This

sum is direct, since if y = 17fj(y)ej E N is also in M, then lrj(y) _
= 0 for every j and y = 0.

Remark 4.23. For any locally convex space E, separation for a point and
a closed subspace F can be obtained from Theorem 4.21 by means of the
quotient map ir from E onto the quotient space E/F.

If?' is a sufficient family of semi-norms on E, recall that E/F is endowed
with the topology defined by the family of semi-norms 1' defined by

p"(x) = inf p(y) = inf p(x - z)
yEs xEF

and the quotient map is continuous. If x E E \ F, then 0 # x E E/F and we
can find v E (E/F)' which satisfies v(x) 0 so that we only need to define
v =var.

4.3.4. Proofs by duality: annihilators, total sets, completion, and
the transpose. Here we present some duality results that depend on the
Hahn-Banach theorem.

Most of these results turn out to be very useful in applications, in spite
of the nonconstructive nature of that theorem, in whose proof we have used
Zorn's lemma.

Let E' be the dual of a locally convex space E and write

(4.12) (x,u) := u(x).

Then E x E' - K is a bilinear form such that, if u(x) _ (x, u) = 0
for all x E E, then u= 0, and also x = 0 if (x, u) = 0 for all u E E', by
Theorem 4.21.

The annihilator of A C E is the closed subspace of E'

A° :_ {v E E'; (a, v) = Oda E A} = n Ker (a, )
aEA

and the annihilator of U C E' is the closed subspace of E

U° :_ {x E E; (x,u) = O Vu E U} = n Ker u.
uEU

Obviously, A C B= B° C A°, and A C A°°.



4.3. The Hahn-Banach theorem 113

Annihilators play the role that orthogonality plays in Hilbert spaces.
They can be used to characterize by duality the closure of a vector subspace:

Theorem 4.24. Suppose E is a locally convex space. The closed linear span
[A] of a subset A of E coincides with A°O, the annihilator in E of A° C E',
so that A is total in E if and only if A° _ {0}.

Thus, a vector subspace F of E is closed if and only if F°° = F.

Proof. It is clear that the annihilator of A coincides with the annihilator
of the linear span [A] of A and, by continuity, with the annihilator of the
closure of [A]; thus, if F = [A], we need to prove that F°° = F.

Indeed, we have F C F°° and, if x ¢ F, by Theorem 4.20(b), we can
choose v E E' so that v E F° and v (x) 0. This shows that also x ¢ F°°.

Note that, if F E, there exists v E F°, v 0, so that F° {0}. 0

Theorems 4.24 and 2.36 are in the basis of certain approximation results.
To prove that a point x of a locally convex space E lies in the closure of
a subspace F, all we need is to show that u(x) = 0 for every u E E' that
vanishes on F.

Theorem 4.25. For any normed space E the mapping J : E -+ E" such
that J(x) = x, where

x3(u) = (x,u) =
is a linear isometry from E into the Banach space E", endowed with the
norm 1=supllullE,<i IHence,

the closure of J(E) in E" is a completion of E.

Proof. The function x = (x, u) is clearly linear on E', and I< lix lIE,
since I_ Iu(x)I < lluIlE' lixIlE. According to Theorem 4.20(b), we can
find some v E E' such that I< 1 and x(v) _ lIxIlE; thus l_ fFinally,

J is linear:

J(xl + x2)(u) = u(xl + x2) = J(xl)(u) + J(x2)(u) _ (J(xi) + J(x2))(u)

and also J(Ax)(u) _ AJ(x)(u) for every u E E'. D

Assume now that T : E - F is a continuous linear operator between
two normed spaces. The transpose T' of T is defined on every v E F' by
T'v = v o T, which is obviously a linear and continuous functional on E, and
clearly it depends linearly on v. Then

T':F'-+E'
is continuous, since

(4.13) IIT'vlIE' = IIvTIIE' < lIT!! f
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It is useful to rewrite the definition of T' as

(Tx,v) = (x,T'v).

Theorem 4.26. The transposition map T E G(E; F) F-k T' E G(F'; E') is a
linear isometry and for every T E G(E; F) the following properties hold:

(a) (TmT)° = KerT',
(b) (Ker T')° = ImT, and
(c) (TmT')°= KerT.

Proof. It is clear that (T + S)' = T' +8' and (AT)' = AT'. Moreover, as in
the Hilbert space case for the adjoint,

11Th = sup I = sup I = IIT'II.
IIxIIE<1, IIVIIF/ <1 IIxIIE<_1, IIVIIF/ <1

(a) Note that (Tx, v) = (x, T'v) and v E (TmT)° if and only if (x, T'v) =
0 for all x E E, that is, if and only if v E Ker T'.

(b) By (a) and Theorem 4.24, (Ker T') ° _ (Tm T)°° = Im T.
(c) As in (a), since (x, T'v) _ (Tx, v), x E Ker T if and only if (x, T'v) _

0 for all T'v E Im T'. O

Remark 4.27. It is easily checked that also Im T' C (Ker T) °, but the
reverse inclusion is not always true, as shown in Exercise 4.20.

4.4. Spectral theory of compact operators

The principal axes theorem of analytical geometry asserts that any symmet-
ric quadratic form on Rn

n

(Ax,x) = cxixj
i,j=1

can be rewritten in the normal form 1 aix? by means of an orthogonal
transform. The general form of this theorem, in the language of matrices or
operators, says that each real symmetric matrix A is orthogonally equivalent
to a diagonal matrix whose diagonal entries are the roots of the equations
det (A - Al) = 0, that is, the eigenvalues of A.6

The earliest extensions to an infinite-dimensional theory were achieved
after a construction of determinants of infinite systems. They were applied
to integral equations around 1900, defined by operators with properties that
are close to those of the finite-dimensional case.

6This was obtained in 1852 by the English mathematician J. Sylvester in terms of the qua-
dratic form (Ax, x), and A. Cayley inaugurated the calculus of matrices in which the reduction to
normal form corresponds to a diagonalization process.
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Here, for a first version of this spectral theory in the infinite-dimensional
case, we are going to consider the class of compact operators in Banach
spaces.

Let T E -+ F be a linear map between Banach spaces and let BE
be the closed unit ball of E. Then T is said to be compact if T(BE) is
compact in F, that is, if every sequence in T(BE) has a Cauchy subsequence
(see Exercise 1.3).

Such an operator is bounded, since T(BE) C U=0 BF(0, n) and, by
compactness, T(BE) C BF(O,N) for some N.

Every bounded linear operator T with finite-dimensional range T (E) is
compact, since in T(E) the closure of the bounded set T(BE) is compact,
by Theorem 2.25.

We will use the notation 4(E; F) to represent the collection of all com-
pact linear operators between E and F, and GE(E) = G0(E; E).

4.4.1. Elementary properties. The following theorem is useful to prove
the compactness of certain operators:

Theorem 4.28 (Ascoli-Arzela7). Let K be a compact metric space and
assume that I C C(K) satifies the following two conditions:

1. sup fE I< oo for every x E K (I(x) is bounded for every
xEK).

2. For every e > 0 there is some (5> 0 such that sup fE I f(x)-f(y)
E if d(x, y) < b (we say that I is "equicontinuous").

Then is compact in C(K).

Proof. If S = 1/m, the compact set K has a finite covering by balls
BK(c,,,,,j, (5), and the collection of all the centers for m = 1, 2,... is a count-
able dense set C = {ck} in K.

Let {f} C 1. By the first condition, we can select a convergent sub-
sequence {f,i (ci)}, then we obtain a subsequence {fn,2} C {f,i } so that
{ fn,2 (C2)} is also convergent, and so on. Let {fns } be the diagonal sequence
{ fm,m}, which is convergent at every c E C.

?In 1884 Giulio Ascoli (at the Politecnico di Milano) needed the assumption of equicontinuity
to prove that a sequence of uniformly bounded functions possesses a convergent subsequence. In
1889 Cesare Arzela (in Bologna) considered the case of continuous functions and proved what is
nowadays usually called the theorem of Ascoli-Arzela and in 1896 he published a paper in which
he applied his results to prove, under certain extra assumptions, the Dirichlet principle.
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Fore > 0, let 8 = 1/m be as in condition 2. For every x e K, we choose
c = cj(x) E C so that x e BK(cJ, S) with j < n(e) and then

If'(x) - fqi(x)
S If'(x) - fp'(c)I + Ifp'(c) - fqi(cj)1 + I - f9i(x)1
C 2E + Ifp'(c3) - fqi(cj)I

where
Ifp'(c3) - f9'(c9)I C rila.X Ifp'(ck) - fq'(Ck)l -+ 0,

k<n(e)

SO that 11f' - fqhIIK 0. D

The following result gathers together some of the basic properties of
compact linear operators:

Theorem 4.29. The collection Gc(E; F) of all compact linear operators
between two Banach spaces is a closed subspace of G(E; F) and the right or
left composition of a compact linear operator with a bounded linear operator
is compact.

If T E Gc(E; F), then also T' E Gc(F'; E'); if E and F are Hilbert
spaces, T* E E) (Schauder theorem) 8

Proof. It is clear that Gc(E; F) is a linear subspace of G(E; F).
If T = limTwith Tn E F), to prove that T is compact, let

e > 0 and let N be such that MT - 7'NII <E/2. Since TN(BE) is compact,
it is covered by a finite collection of balls BF(yZ,e/2) (i e I), and then
T(BE) C Ui BF(yi> E), since for every x e BE we have IITx-TNXIIF < E/2
and TNx E BF(y2i e/2) for some i e I.

Now, by considering 1/m, it is easy to check that every sequence
{Tx} with xn e BE has a partial Cauchy sequence, since we obtain succes-
sive subsequences {Txn,,,t} C {Txn,,,t_1} contained in some BF(y, e.,,t) and
the diagonal sequence {TXm,m} is a Cauchy subsequence of {Txn}.

Let S = TR and assume first that T : F -+ G is compact and R : E -+ F
is bounded. Then R(BE) C IIRIIBF and S(BE) C Iwhose closure
is compact; hence, S is compact. If T is bounded and R compact, then
R(BE) is compact and its image by the continuous map T is also compact,
so that S(BE) is contained in a compact set.

Suppose T is compact and consider {vn}flEN C BFI. To obtain a Cauchy
subsequence of {T'v}, let K := T(BE) and :_ { fn = 'UnlK; n E N} C

8In 1930, the Polish mathematician Julius Pawel Schauder proved this result that allowed the
use of duality in the Riesz-1r edholm theory for general Banach spaces. Schauder is well known
for his fixed point theorem, for the Schauder bases in Banach spaces, and for the Leray-Schauder
principle on partial differential equations. See also footnote 3 in Chapter 3.
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C(K). Then is equicontinuous because

I- f(Ty)I = I - vn(Ty)I IITX - TyII

and it is also uniformly bounded, since
u IlK < lIvn h <1. According the

Ascoli-Arzela Theorem 4.28, is compact in C(K) and {f} has a Cauchy
subsequence {fnk }, so that

llT'vnP - T1vn9 I I Z''i = SUP I- 11,9 (1 x) I SUP I - fnq(a)I -
xEBE aEK

asp, 4-+ oo.

Example 4.30. Every Volterra operator

T f (x) = J K(x, y) f (y) dy,
a

D

where K(x, y) is continuous on D = {(x, y) E [a, b] x [a, b]; a < y < x < b},
is a compact operator T : C[a, b] - C[a, b], since = T(Bc[a,b]) satisfies the
conditions of the Ascoli-Arzela Theorem 4.28.

Indeed, if a < t < s < b and if for a given e > 0 we choose 6> 0 so that
IK(s, y) - K(t, y)I if Is - t < S and (s, y), (t, y) E D (K is uniformly
continuous on z), then

+f Idy
(b - a)e + t

for every f E BC[Q b] if Is - t S, and is equicontinuous. Obviously it is
uniformly bounded, since IITfII[a,b] $

I - a) Ill II[a,b].

Example 4.31. It is shown in a similar way that every FYedholm operator
TK, defined as in (2.22) by a continuous integral kernel K, is compact.

Note that I< f c (d-c)e
if 11111 [c,d] < 1 and Is - tI < S small, by the uniform continuity of K.

Example 4.32. The Hilbert-Schmidt operator TK : L2 (Y) - LZ (X ), de-
fined as in Theorem 4.6 by a kernel K E L2(X x Y), is also compact.

This is proved by choosing a couple of orthogonal bases {u} C L2(X)
and {v,,,,} C LZ(Y), so that an application of F4ubini's theorem shows that the
products w,,,,,n(x, y) = un(x)v,,,,(y) form an orthogonal basis in L2(X x Y).
By the Fischer-Riesz Theorem 2.37,

K = Cn,mwn,m ,
n,m
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with convergence in L2(X x Y).
The Hilbert-Schmidt operator defined by the kernel

KN = Cn,mwn,m
n,m<N

is compact, since it is continuous by Theorem 4.6 and its range is finite-
dimensional, contained in ['un; n < N]. Now, again by Theorem 4.6,

IITK-TKNIIIIK-KNII2-O
and, according to Theorem 4.29, TK is compact.

4.4.2. The Riesz-Fredholm theory. For compact operators there is a
complete spectral theory.9

Recall that A E K is an eigenvalue of T E G(E) if NT(A) = Ker (T-AI)
is nonzero, that is, if T - Al is not one-to-one. Every nonzero x E NT(A)
is called an eigenvector, and NT(A) is an eigenspace. Obviously T = Al
on NT(A), which is a closed subspace of E and it is invariant for T. The
multiplicity of an eigenvalue A is the dimension of NT(A).

The spectruml0 of T is the set v(T) of all scalars A such that T - Al
is not invertible. That is, A E o'(T) if either A is an eigenvalue of T or the
range RT(E) := Im (T - Al) is not all of E. This subspace of E need not
be closed, but it is also invariant for T, since T(Tx -fix) = T(Tx) - ATx
belongs to RT(E).

Note that if T is compact and 0 ¢ Q(T), then dim (E) < oo, since in
this case T-1 is continuous by the open mapping theorem and I = T-1T is
compact, so that the unit ball BE and the unit sphere SE _ {x; lixilE = 1}
are compact, and Theorem 2.28 applies.

Theorem 4.33 (The Fredholm alternative). Suppose T E GE(E) and A 0.
Then:

(a) dimNT(a) <00.
(b) RT(A) = NT' (A)°, and it is closed in E. If E is a Hilbert space, then

RT(A)

(c) NT(A) _ {0} if and only if RT(E) = E; thus, if 0 A E a'(T), then
A is an eigenvalue of T.

9David Hilbert constructed his spectral theory for £2 essentially with Fredholm's method (see
footnote 5 in Chapter 2), and F. Riesz followed him to develop the theory on L2. In 1918, Riesz
extended Hilbert's notion of a compact operator to complex functional spaces, a few years before
the introduction of general Banach spaces.

10In this context, the term spectrum was coined by D. Hilbert when dealing with integral
equations with quadratic forms, or, equivalently, with linear operators on £2.
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Proof. Since T-AI = )-1(AT-I) and AT E GE(E), we can assume without
loss of generality that A = 1. Denote N = NT (1) and R = RT (1) .

(a) Since TN = I : N -+ N is compact, dim N < oo.

(b) According to Theorem 4.22, E = N M, M a closed subspace of
E. Then S :_ (T - ')IM : M -+ R is a continuous isomorphism and we only
need to show that 8-1 is also continuous, which means that C IIx IIE< IISxIIE
for some constant C> 0 and for all x e M.

If this were not the case, then we would find xn e M so that IIxn lIE = 1
and llSxnhlE < 1/n, and, since T is compact, passing to a subsequence if
necessary, Tx -+ z and Sxn -+ 0, with z E M, since x= Txn - Sx -+ z
and M is closed. Moreover, Sz =limn Sx = 0 and z = 0 since S is
one-to-one, which is in contradiction to liz lIE =limes IIxn lIE = 1

By the properties of the transpose, R = R = (Ker (T' - I))°.

(c) Suppose N = {0} and R(1) := R L E. Then T : R(1) -+ R(1) is
compact and, according to (b), R(2) _ (T -I)(R(1)) is a closed subspace of
R(1) and R(2) L R(1), since T - I is one-to-one. In this way, by denoting
R(n) _ (T - I)Th(E), we obtain a strictly decreasing sequence of closed
subspaces.

As in Remark 2.27, we choose un e R(n) so that d(u, R(n + 1)) > 1/2
and h= 1. Then, if p> q,

TuP - Tuq = (T-I)u- (TI)uq+up - 2Gy = z - 26q
with z e E(p+1)+E(q+1)+E(p) C E(q+l), so that lITtp_TtqIIE > 1/2,
which is impossible, since T is compact.

This shows that R = E if N = {0}. For the converse suppose that
R = E, so that Ker (T" - I) = Im (T - I)° = R° _ {0} and we can apply
the previous result to T', which is compact by Schauder's theorem. Hence
N= Im(T'-I)°=(E')°={O}. LI

Theorem 4.34. Let T E GE(E). Then v(T) C {A; IAI < IITII} and, for
every 6> 0 there are only a finite number of eigenvalues A of T such that

Proof. If Tx = Ax and MXIIE = 1, then Al _ IITxIIE < 11Th.

Suppose that, for some S > 0, there are infinitely many different eigenval-
ues An such that I 1/An I <1/6, and let Txn _ Anxn with h= 1. These
eigenvectors are linearly independent, since xn _ ,Qlxl + + ,3n-lxn-1
with xl,... , xn_1 linearly independent would imply, after an application of
T, that /3j = QjAj/An (1 < j <n) and then necessarily An = A3.

We can apply Remark 2.27 to the spaces Mn _ [xi,. . . , to obtain
un =/31x1 + + f3xn e Mn such that h= 1 and d(un, Mn_1) > 1/2.
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Then the sequence {u/A} is bounded and we arrive at a contradiction by
showing that it has no Cauchy subsequence:

It is easily checked that un - Tun /An E [xi,. . . , xn_ 1 ] = M_1 and, if
p > q,

II PTuP - TuQ E- II26p-CUp- PTuP+)9TuQ}IIE> 1/2.
l J

Remark 4.35. If E is any complex Banach space and T E G(E), it will be
proved in Theorem 8.10 that v(T) is always a nonempty subset of C which
is contained in the disc {A; Al < r(T)}, where

r(T) = lim I
n

11Th.n

If T E GE(E), Theorems 4.33 and 4.34 show that v(T) \ {0} is a finite
or countable set of eigenvalues with finite multiplicity.

These nonzero eigenvalues will be repeated according to their multiplic-
ity in a sequence {fin} so that {lAl} is decreasing. If this sequence is infinite,
then An -3 0, since for every > 0, according to Theorem 4.34, only a finite
number of them satisfy lAnl > e

It may happen that v(T) \ {0} = 0, as shown by Theorem 2.30 for
Volterra operators T E b]). For these operators v(T) _ {0}, since
C [a, b] is infinite dimensional.

In the special case of a self-adjoint compact operator of a Hilbert space,
H, the spectral theorem will show the existence of eigenvalues and will give
a diagonal representation for the operator.

Assume that 0 L A = A* E
Note that eigenvectors of different eigenvalues are orthogonal, since it

follows from Ax = ax and Ay = fly that (a - ,Q) (x, y)H = (Ax, y)H -
(x,Ay)H = 0.

If M(A) supIIXIIH=1(Ax,x)H and m(A) := infIIXIIH=1(Ax,x)H, then

h= sup I(Ax,x)I = max(M(A), -m(A)),
IIxIIH=1

by Theorem 4.7, and every eigenvalue A is in the interval [rn(A), M(A)],
since Ax = Ax for some x e H with IlxhlH = 1, and then A _ (Ax, x)H.
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Theorem 4.36 (Hubert-Schmidt spectral theorem"). The self-adjoint com-
pact operator A 0 has the eigenvalue a such that IcI = Iand either
a = M(A) if I= M(A) or a = m(A) if I= -m(A).

Moreover, if {un} is an orthonormal sequence of eigenvectors associated
to the sequence {fin} of nonzero eigenvalues, then

Ax = An(x> un)HUn (x E H)
n>1

in H and, if there are infinitely many eigenvalues, then An, -+ A in G(H)
as N -+ oo, where

N

ANx := A (x, un)Hun.
n=1

Proof. If I= M(A), then M(A) = limn(Axn,xn)H with lxnhlx = 1 and
I< M(A). Then it follows fromIH = IH - 2M(A)(Axn> xn)x + M(A)2

< 2M(A)2 - 2M(A)(Axn,xn)H

that limn(Axn-M(A)xn) = 0 and M(A) E v(A), since if limn(Axn-Axn) _
0 and a ¢ v(A), then xn = (A- AI)-1(Axn - Axn) = 0 by continuity. But
M(A) = I 0 and M(A) is an eigenvalue.

Similarly, if I= -m(A), then m(A) = limn(Axn, xn) with llxnhlH = 1
and I -m(A), so that, with the same proof as before,

IlAxn +m(A)xnllH - 0

and m(A) E a(A) \ {0}.
To prove the second part of the theorem, note first that, if N = Ker A

and F = [u,, U2,.
. .], then F = Na-, so that H = F ® N.

Indeed, if Ax = 0, then (x, un)H = 0 for all n > 0, and N C F1. It
follows from A(F) C F that also A(F1) C F1: if z E F1, then (Az, x)H =
(z, Ax)H = 0 for all x E F, since Ax E F. But necessarily A(F1) = {0},
and also F1 C N, since the restriction A : F1 -+ F1 is a self-adjoint
compact operator, and if we suppose that it is nonzero, then, according to
the first part of this theorem, A would have a nonzero eigenvalue a which
should be one of the eigenvalues an of A : H -+ H, so that un E F n F1, a
contradiction.

11D. Hilbert first developed his spectral theory for a large class of operators with a spectrum
containing only eigenvalues, and E. Schmidt identified them as the compact operators through a
"complete continuity condition". See Exercise 5.13.
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Now let x= y -I- z e F® N with y E F and z e N. By the Fischer-Riesz
theorem,

y = (Y,Un) HUn = (x,ufl)Hufl
n>1 n>1

and
Ax = Ay = (x,u)HAun = >.Afl(x,Ufl) HUn.

n> 1 n> 1

To show that AN -+ A, let IIxIIH 1. Then, using Bessel estimates,

I- Arr)xII H - I C IAjI I(x,un)HI2 < IANI
n>N n>N

andAN-+o.

An approximate eigenvalue of a linear operator A E G(H) is a num-
ber A such that limIIAxn - AxIIH = 0 for some sequence of vectors
xE H such that IIxflhIx = 1. In this case (Ax- Ax,x)H -+ 0 and
A =1im(Ax, x), so that A E [m(A), M(A)] if A is self-adjoint.

Approximate eigenvalues belong to a(A) since, if limIIAxn - AxIIH = 0
and A E v(A)°, then x_ (A - AI)(Ax- Ax) -+ 0 as n -+ oo would be in
contradiction to the condition IIxflhIx = 1 for all n.

Remark 4.37. If A is a bounded self-adjoint operator, it follows from the
proof of Theorem 4.36 that both m(A) and M(A) are approximate eigen-
values.12

Indeed, we may assume without loss of generality that 0 < m(A) <
M(A) = Isince M(A) is an approximate eigenvalue of A if and only if
M(A) -I- t is an approximate eigenvalue of A + tI. The case A = m(A) is
similar.

4.5. Exercises

Exercise 4.1 (Banach limits). Consider the delay operator

Tx(n) = x(n -I- 1)

acting on real sequences x = {x(n)}1 E 2°O and the averages

Ax=
n

Prove that
p(x := llmsupAnx

n-+oo

12It will be proved in Theorem 9.9 that every spectral value of A is an approximate eigenvalue,
so that [m(A), M(A)] is the least interval which contains Q(A).
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defines a convex functional p on E = Q°° and show that there exists a linear
functional A : Q°° -+ R such that, for every x e

A('rx) = A(x) and l nm of x (n) < A(x) < lim sup x (n) .

n-*oo

Exercise 4.2. Let xo be a point in a real normed space E. If lixo lIE = 1,
show that there exists u e E' such that u(x0) = 1 and so that the ball
BE(0,1) lies in the half-space {u < 1}.

Exercise 4.3. Let M be a closed subspace of a locally convex space E.
Prove that if M is of finite codimension (that is, dim (E/M) < oo), then M
is complemented in E.

Exercise 4.4. Suppose T F -+ Q°° is a bounded linear operator on a
subspace F of a normed space E. Prove that T can be extended to a
bounded linear map T : E - 2°° with the same norm, liT Ii = liTII

Exercise 4.5. If E is a topological vector space, prove that a linear form u
on E is continuous if and only if Ker u is closed.

Exercise 4.6. Suppose that E is a locally convex space and that A =
{en; n e N} satisfies the following properties:

en -+0, E _ [A], and en j 74n] b'n E N.

If x = >1n (1) 7fn(x)en, E E, then prove that the projections urn are continuous
linear forms on E and that the convex hull co(K) of K = AU {0} is a closed
subset of E which is not compact, but K is compact.

Find a concrete example for E and A.

Exercise 4.7. Prove that the completion H of a normed space H with a
norm defined by a scalar product, lix IIH - (x, x)H, is a Hilbert space.

Exercise 4.8. Let H be a Hilbert space. When identifying every x E H
with x) E H', show that Al = A° for any subset A of H.

Exercise 4.9. We must be careful when identifying (L2)' = L2 or (Q2)' _ £2,
if we are dealing simultaneously with several spaces. Consider the example
H = £2 and the weighted 22 space

°O

V - lx = 1Z2Ixn,l2 <o0}
n=1

with the scalar product (x, Y)v 1

Prove that V is a Hilbert space with a continuous inclusion V £2 and
that every u e (2)/ is uniquely determined by its restriction uV to V, which
is a bounded linear form on V, so that a continuous inclusion (2)I V' is
defined and, by considering (e2)' = Q2, we obtain V C Q2 c V'.
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It would be nonsense to also consider V' = V, and one must choose
(22)' = 22 or V' = V when dealing with both V and 22.

Exercise 4.10. Let E, F, and G be three normed spaces. Show that a
bilinear or sesquilinear map B : E x F - G is continuous if and only if
there exists a constant C > 0 such that

I CIIxIIEIIyIIF (x E E, y E F).

Exercise 4.11. Prove that the inclusions C'"''+1 [a, b] y Cm [a, b] are com-
pact.

Exercise 4.12. If {fk} is a bounded sequence of E(R), then show that
for every m E N there is a subsequence of {fm)}o1 which is uniformly
convergent on compact subsets of R and E(R) has the Heine-Borel property.
Extend this to every E(St), SZ an open subset of Rn, and prove that these
spaces (and also DK(S2) if K has nonempty interior) are not normable.

Exercise 4.13. Suppose 0 < c < 1, m is the Lebesgue measure on [0, 1], and
µ is another Borel measure on this interval. If (B) = c whenever m(B) = c,
show first that necessarily µ is absolutely continuous with respect to m and
then prove that µ = m.

Exercise 4.14. Let m be the Lebesgue measure on R, consider two Borel
subsets E and F of R, and define the Borel measures µE(B) := m(B (1 E),
/cF(B) := m(B(1 F). Find when µE is absolutely continuous with respect to
µF and, in this case, describe the corresponding Radon-Nikodym derivative.

Exercise 4.15. Let 1 <p < oo and x = {xk} E 2. Show that IIxII_
xkyk for some y = {Yk} E 2''' such that IIyII' = 1; that is, if (y, x) _

k xkyk and u _ x), the norm of u E (2P')' = 2'' is attained on the
closed unit ball of 2x. Find a similar result for functions f E IP(R).

Exercise 4.16. Find some x = {xk} E 2°° such that we cannot find any
y = {Yk} E 21 so that Ilylli = 1 and IIxIk _ kxkyk. That is, if (y,x) _
k xkyk and u _ x), the norm of u E (1)/ = 2°° is not attained on the
closed unit ball of 21.

Exercise 4.17. Let c be the subspace of 2°° which contains all the con-
vergent sequences x = {xn} E 2°°. Prove that c is complete and that
v(x) := limxn defines a continuous linear form on c with norm 1 such that
there is no y E 21 so that v(x) _ (x, y) for all x E c ((x, y) _ xnyn). Show
that the natural mapping 21 - (2°°)' is not exhaustive.

Exercise 4.18. Prove that the natural isometry J : L' (a, b) - L°O(a, b)',
such that J f = f) with (g, f) := Ja g(t)f(t) dt, is not exhaustive.

Remark: It can be proved that Ll(0,1) is not isomorphic to any dual.
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Exercise 4.19. Prove that is isometrically isomorphic to the dual of co,
the Banach subspace of £°° of all the sequences with limit 0.

Exercise 4.20. Prove that if T : Q1 - Q1 is defined by
xnT (xn) = T(),
n

then Im T' (Ker T)°.

Exercise 4.21. Prove that the set of all the characteristic functions XI of
intervals I C (a, b) is total in LP(a, b), for every 1 <p < oo.

Exercise 4.22 (Minkowski integral inequality). Let K(x, y) be a measur-
able function on R2 and let 1 < p < oo. Using the duality properties of
prove that

II
K(.,y)dyll f

0o p o0

first if K > 0 and then when y) E LP(R) for every y e R.

Exercise 4.23. Let µ be the Borel measure on (0, 1) defined through the
Riesz-Markov theorem by the linear form

u(9) := f 1 dx

on C(0, 1). Is µ the restriction of a real Borel measure µ on R?

Exercise 4.24. Let u be a linear form on the real vector space C(K) of all
real-valued functions on a compact set K of R. Prove that u is positive if
and only if u(1) =sup{Isl<_1} u(g)I and that in this case IIuIIc(K)' = u(1).

Exercise 4.25 (The dual of 1-1(D)). In the disk D = {IzI <1} C C consider
the circles ry,.(t) =refit (0 < t < 0 < r < 1, and denote by 11o(DC) the
vector space of all continuous functions g on DC that have a holomorphic
extension to a neighborhood Uy = {z; Izi > o} of D° in C and such that
g(oo) g(z) = 0. Prove the following statements:

(a) If g e 1-1o(DC) and ryr C Uy, then uy(f) := f.yr f(z)g(z) dz defines
uy E 1-1(D)' which does not depend on r.

(b) If µ is a complex Borel measure on oD with 0 < o < 1, then u,(f)
feD f dµ also defines u, e 1-1(D)'.

(c) If µ is as in (b) and g,(z) := fPD xlW dµ(w), then g, e 11o(DC) and

u9µ - uFL (use the Cauchy integral formula 1(w) - 1 f f x dz).ryT x-w

(d) The map g e 1-1o(DC) H uy e 1-1(D)' is bijective.

Exercise 4.26. Prove the easy converse of the Schauder theorem: If E and
F are two Banach spaces and T' E G(F'; E') is compact, then T E G(E; F)
is also compact.
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Exercise 4.27. Find a concrete Volterra operator T E b]) with no
eigenvalues.

Exercise 4.28. Prove that every nonempty compact subset K of C is the
spectrum of a bounded operator of 22.

Exercise 4.29. Show that if K = {A;n E N} U {0} with An - 0, then
K = v(T) for some T E

Exercise 4.30. By Theorem 4.29, if T is the limit in G(E; F) of a sequence
{Tn} of continuous linear operators of finite rank, T is compact.

Prove that the converse is true if F is a Hilbert space by associating to
every T E F) and to every e > 0 an orthogonal projection P6 of F on
a finite-dimensional subspace such that

IIT-P6TII < E.

P. Enflo (1973) proved that this converse is not true for general Banach
spaces by giving a counterexample in the setting of separable reflexive spaces.

References for further reading:
N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert
Space.

S. Banach, Theorie des operations lineaires.
S. K. Berberian, Lectures in Functional Analysis and Operator Theory.
B. A. Conway, A Course in Functional Analysis.
R. Courant and D. Hilbert, Methods of Mathematical Physics.
L. Kantorovitch and G. Akilov, Analyse fonctionnelle.

G. Kothe, Topological Vector Spaces I.

P. D. Lax, Functional Analysis.

F. Riesz and B. Sz. Nagy, Lecons d'analyse fonctionelle.

W. Rudin, Real and Complex Analysis.

W. Rudin, Functional Analysis.
K. Yosida, Functional Analysis.



Chapter 5

Weak topologies

This short chapter is devoted to the introduction of the weak topologies, the only
locally convex space topologies that we are considering in this book which can be
nonmetrizable.

We are mainly interested in the weak* topology on a dual E', such that the
weak* convergence un -+ u of a sequence in E' means that un (x) -+ u(x) for all
xeE.

For any normed space E, the Alaoglu theorem shows that the closed unit ball
in the dual space E' is weak* compact. Moreover, if E is separable, then this
closed unit ball equipped with the weak* topology is metrizable. These facts make
it easier to use the weak topology on bounded sets of E'.

As an application to the Dirichlet problem for the disc, we include a proof
of the Fatou and Herglotz theorems concerning harmonic functions which are the
Poisson integrals of functions or measures on the unit circle T C C.

The weak convergence and the weak* topology will appear again when studying
distributions and with the Gelfand transform of commutative Banach algebras.

5.1. Weak convergence

A sequence {xn} in a normed space E is said to converge weakly to x E E
if u(xn) -+ u(x) for every u E E'.

The usual convergence xn -+ x, meaning that xn - xIIE -+ 0, is also
called the strong convergence. It is stronger than weak convergence, since
I u(xn) - u(x)I < IIuIIE' IIxn - xIIE The converse will not be true in general
(cf. Exercises 5.3 and 5.7).

Similarly, a sequence {un} in the dual E' of the normed space is said to
converge weakly* to u E E' if un(x) -+ u(x) for every x E E. Again, un -+ u
in E' implies weak* convergence, since u(x) - u(x) < un - uIIEI lix lIE.

127
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This weak* convergence is weaker than the weak convergence of {u} since,
if w(u) - w(u) for every w E E", then also (u) = un(x) - x(u) for every
xEE.

We have a similar situation with the pointwise convergence of a sequence
of functions f_ {ffl(x)}Xex E CX, since

f(x) - f(x) (x E X)

means that 8 (f) - (f) for every evaluation functional Sam, which is a
linear form on the vector space CX of all functions f : X - C.

We know from Example 3.2 that this pointwise convergence is the con-
vergence associated to the product topology on CX.

These weak limits will be limits with respect to certain locally convex
space topologies.

5.2. Weak and weak* topologies

Let E be any real or complex vector space and let S be a vector subspace
of the algebraic dual of E, which is the vector space of all linear forms on
E. We say that (E, 5) is a dual couple if S separates points of E, that is,
if u(x) = u(y) for all u E S implies x = y.

A typical dual couple is a locally convex space E with the dual E', and
we will see that every dual couple is of this form, for a convenient topology
on E.

Theorem 5.1. Suppose (E, E) is a dual couple, ul,... , un E 5, and u E E.
Then u = =1 .Akuk if and only if

ul(x) _ ... - u(x) = 0 = u(x) = 0.

Proof. Suppose u(x) = 0 whenever u1 (x) _ = u(x) = 0. Define the
one-to-one linear map E - Ksuch that (x) _ (Ui (x), , un(x)).
There exists u E (Ku)' such that u = u o that can be defined on (E) as

, un(x)) u(x) since, if (ui(x),. . . , un(x)) - (ui(y),. . . , 26n(y)),
it follows from our assumption that u(x) _ ma(y).

We can write

iu(c 1, ... , an) = 1Cx1 + ... + Anan,

so that

u(x) = Alul(x) + + Anun(x) (x E E)

The converse is obvious: if u _ =1 Akuk, then ul(x) _ _ un(x) _
O=u(x)=0. O
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Note that, if E is a locally convex space, u e E', and x, xi,... , xn E E,
then, according to Theorem 5.1, x ==1 akxk if and only if u(x) = 0
(u e E') whenever u(xi) = = u(xn) = 0.

We assume that (E, E) is a dual couple.
The weak topology cr(E, E) is the locally convex topology on E defined

by the sufficient family of semi-norms pu(x) _ u(x)J (u e E). Similarly,
v(E,E) is defined by the sufficient family of semi-norms px(u) _ u(x)I
(x e E). It is the restriction to E C KE of the product topology or the
topology of the pointwise convergence on KE of Example 3.2.

We use the prefix Q(E, E)- to indicate that we are considering the topol-
ogy Q(E, E) on E.

Theorem 5.2. With the notation x(u) = u(x), cr(E, E) is the weakest topol-
ogy on E that makes every function x continuous.

The dual of (E, cr(E, E)) is E, as a vector subspace of the algebraic dual
of E.

Proof. Every functional x is v(E, E)-continuous, since (u)J = px(u) and
(u)J <E if u E U(E).

If every function x is T-continuous for a topology T on E, then every
set

V(up) :_ {u e E; Ix(u) - (uo)I <E} _ {u; px(u - up) <E}

is an T-neighborhood of uo, and it is also a v(E, E)-neighborhood of uo.
Thus, every point uo of a weakly open set G is a T-interior point of G and
T is finer than v(E, E).

Let E' be the v(E, E)-dual of E. By construction, E C E'.
Reciprocally, if w e E', then there exist x1,. . . , xn E E and a constant

C > 0 such that

Iw(u)I Cmax(p1(u),...

Hence, w(u) = 0 if u(x) _ = u(xn) = 0, and then w = Akxk by
Theorem 5.1.

In a locally convex space, the closed convex sets and the closed subspaces
are closed for the original topology of the space:

Theorem 5.3. Suppose C is a convex subset of the locally convex space E.
Then the weak closure of C is equal to the closure C of C for the topology
of E.
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Proof. The original topology is finer than w cr(E, E') and the weak
closure Cam' of C is closed in E, so that C C Cam'. Conversely, suppose that
xo ¢ C; according to Theorem 4.17(b), we can choose u C E' so that

sup u(xo) <r < infu(B)
and u is weakly continuous. Hence, {Ru < r} is a weak neighborhood of
xo which is disjoint with C, and xo ¢ Cw. This shows that Cw C C. D

Corollary 5.4. For any subset A of a locally convex space E, the weak
closure of [A] and its closure for the original topology are the same. Hence,
A is total if and only if it is weakly total.

In the special case of a normed space E, we call w* = cr(E', E) the
weak* topology of the dual space E', and w = a (E, E') is the weak
topology of E. These topologies are weaker than the corresponding norm
topologies on E' and E.

Note that a sequence {u} C E' is convergent to u if un -- u for the
topology w* if and only if it is weakly* convergent to u, since we have
I - u(x) I = px (un - u) -- 0 for every x C E.

Similarly xn - x for the weak topology w if and only if u(xn) -- u(x)
for every u C E', and {xn} is weakly convergent to x in E.

The most important facts concerning the topology w* are contained in
the following compactness and metrizability result.

Theorem 5.5 (Alaoglu'). The closed unit ball BE' = {u C E'; IIUIIE' < 1}
of the dual E' of a normed space E is w* -compact. If E is separable, the
w* -topology restricted to BE' is metrizable.

Proof. Recall that w* is the restriction to E' of the product topology on
KE and observe that BED is contained in K := IIXEED(0, lsince, if
liullE' < 1, then u = {u(x)}XEE satisfies Iu(x)l < lixil for every x E E. By
the Tychonoff theorem, K is a compact subset of KE, and

BED = fl{f E K; f(x + y) = f(x) + f(y)} f1 fl{f E K; f(Ax) _ Af (x)}
x,y Ax

is the intersection of a family of subsets, all of them being closed as defined
by the equalities with continuous functions

7'x+y(f) _ +7ry(f) and

Thus, BED is a closed subset of K and it is compact.

1 This is the best known result of the Canadian-American mathematician Leonidas Alaoglu
(1938), contained in his thesis (Chicago, 1937). For separable spaces, it was first published by S.
Banach (1932).
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Suppose now that the sequence {x}1 is dense in E. Then the fam-
ily of semi-norms pin (u) _ Iis sufficient on E' since, by continuity,
u(xn) = 0 for all xn implies u(x) = 0 for all x E E. This sequence of
semi-norms defines on E' a locally convex metrizable topology T which is
clearly weaker than the w*-topology. On BE' these topologies coincide,
since Id : (BE', w *) -- (BE', T) is continuous and the image of a compact
(or closed) set is T-closed, since it is T-compact.

Note that Theorem 5.5 states that, if E is separable, the w*-topology
is metrizable when restricted to a bounded set, but this is far from being
true in general for w* on the whole E'. This only happens if E is finite
dimensional (Exercise 5.12).

Example 5.6. Suppose {KA},\EA is a summability kernel on Rn such that
limo supIyI>M I= 0 for all M > 0. 1f f E L°O(Rn), then KA*

f =fin the w*-topology on L°O(Rn) = Ll(Rn)'.
A similar result holds for the periodic summability kernels.

This is shown as in the proof of Theorem 2.41 by considering, for every
9 E Ll,

f (Ka * f - f)gl f I f (f(x - y) - f(x))g(x) dxl I dy

C sup I f(ryf(x)_f(x))g(x)dxl

+2II9IIlIIf Iloo sup IKA(y)I,
IyI?M

where

f(rf(x) - f(x))g(x) dxl - I f(ryg(x) - g(x))f (x) dxl C ftg - 9IIlIIf Iloo,

and we know that II Ty9 - 9II1 = 0 by Theorem 2.14.

It is worth noticing that the analogue of this last example holds for
measures as well:

If µ is a complex Borel measure on Rn (or on T), which has a polar
representation dµ = h dlµI, and g is a bounded Borel measurable function,
then the convolution

(µ * 9)(x) := f 9(x - y) dµ(y) = f 9(x - y)h(y) dµ(y)

is well-defined.
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If every function KA of the summability kernel is bounded and continu-
ous, then

(5.1)

for the weak topology with respect to (or C(T) in the periodic case).
Similarly, f * Ka - f - 0 in the w*-topology on L°O if f e L°°.

Note also that we can define the Fourier series for any complex measure
on T (or on (-71,71])

00

IL,' :i: ck(µ)ezkt

by

k=-oo

1
Ck(lt) _ -

J(_ir,ir]
e-Zktdµ(t) _ L z-k dµ(z)

Then the corresponding Cesaro sums are vnr (µ) = µ * FN, where FN is the
Cesaro summability kernel (2.25), and it is a special case of these remarks
that vnr(µ) - µ in the above w*-topology.

5.3. An application to the Dirichlet problem in the disc

Our next aim is to show how the previous results are related to the classical
Dirichlet problem.

Let U denote the open unit disc IzI < 1 in the plane domain, and let

5=(5-i5), ya = 2 (a + iay)

so that

45D=5+5 =L.
With this notation, the Cauchy-Riemann equations 5u = 5,v, 5v = -ayu
for f = u + iv read D f = 0, and every holomorphic function f = u + iv on
U is C° as a two-variables function which is harmonic; this is,

Lf=0.
Obviously, u = f and v = are also harmonic.

For a real-valued harmonic function u, any real-valued v such that f =
u + iv is holomorphic on U is called a harmonic conjugate of u and,
according to the Cauchy-Riemann equations, the harmonic conjugate of u
is unique up to an additive constant, since acv = 5v = 0 leads to v = C.
When v is chosen with the condition v(0) = 0, v is called "the" harmonic
conjugate of u.
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Our aim is to study the extension of a function f defined on T = aU
to a harmonic function on U, that is, to study the Dirichlet problem for the
disc

(5.2) OF =0, F = f on T.

The condition F = f on the boundary has to be understood in an appro-
priate sense.

If f e C(T), we look for a classical solution, which is a continuous
function F on U which is harmonic in U. This problem is completely solved
by the Poisson integral that can be obtained by an application of the Hahn-
Banach theorem, as follows.

Let E be the subspace of the complex Banach space C(T) which contains
all the complex polynomial functions g(z) _ cnz restricted to T. By
the maximum modulus property, IIIIT = IIgIIu, and the evaluation map
g H g(zo) at a fixed point zo E U is a continuous linear form with norm
1 which is extended by the Hahn-Banach theorem to uzp E C(T)' so that
IIuII = 1.

Note that if E is any linear subspace of C(T) with the maximum modulus
property, it can, and will, also be assumed to be contained in C(U), and the
evaluation map is defined on this subspace of C(T).

By the Riesz representation Theorem 4.13,

uzo (f) - fT .f (.f e C(T))

for a complex Borel measure µzp on T, and then we say that µzp represents
uzp or zo. We will see that this measure is uniquely determined by zo.

Lemma 5.7. If u e C(T)', IIM = 1, and u(1) = 1, then the representing
measure of u is positive.

Proof. We need to prove that u(f) > 0 if f > 0 and we can also asume that
f < 1. Let g = 2f - 1, so that -1 < g < 1 and, if u(g) = a -}- ib (a, b e R),
it follows from the hypothesis that for every x e R

1 + x2 > u(g + ib -{- a2 -{- (b + x)2 > (b -}- x)2,

so that b2-{-2xb < 0 and then b = 0, u(g) = a. Finally we have lal IIIIT < 1
and then a = u(g) = 2u(f) - 1 forces u(f) > 0. O

Note that for the functions ek(z) = zk (k E Z), if zp =rein,

rne27L'!9 =
T
e dp (n> 0)n µz
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and, since the measure is positive and e_n = en on T,

n -iwOr e -J e_n d/1zo.
T

k=-00

Hence, fT ek rl kl e.

By addition, for every r E [0, 1) we obtain the 27r-periodic function

(5.3) PT(s) _ rl l eiks

such that

T zp 2(5.4)
J

fd= f(e)Pr(- t)dt
for every trigonometric polynomial, since it holds when f = en. But the
Fejer kernel FN is a summability kernel and, for every f E C(T), the Cesaro
sums o-nr(f) = FN * f are trigonometric polynomials such that UN(f) -k f
uniformly. By continuity, (5.4) holds for every f E C(T) and the Borel
measure µxo is the uniquely determined absolutely continuous measure

dµxo = ZPr (z9 - t) dt

Note that Pr(t9 - t) is the real part of

1 - r2

00
-it 'n - ezt -I- zo - 1 - r2 -I- 2ir sin(t9 - t) .

1 -I- 2 (zoe ) - it _ - -i,e zo I1_zoetI
n=1

that is,

P (i9 - tl ='
y ' 1 - 2r cos(t9 - t) -I- r2

The family {Pr}o<r<i is called the Poisson kernel of the disc.
Pr is a positive continuous and periodic function such that

L

Every

and P,.(-t) = Pr(t). Moreover,

sup PT (t) < PT (8) 0 if 8 , 0,

so that {Pr}o<r<i is a summability kernel on T.
We summarize all these results in the following theorem:

Theorem 5.8. The Poisson kernel {Pr}o<T<1 is the summability kernel on
T such that

- t) _Pr (t)

ICI 1 iksPr - - r e ds=12ir, ,

(zO = re).

eZt + zo
- 2 it -1 2r cos ( - t) + r e it o
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and

dµzo = Pr( - t) dt (zo = rem)

represents every point zo E U in the sense that it is the unique measure on
T such that

f(zo) - L. f(et)Pr(9 - t) dt = (Pr * .f)(9)

for every f in a vector subspace E of C(U) which contains the polynomials
and satisfies the maximum modulus property I If I lU = I If lIT.

Now we are ready to solve the Dirichlet problem (5.2) using the Poisson
integral of a function

(Pr * f)() - f f(e)P( i9 - t) dt

or of a measure µ,

(Pr * )() = f Pr( - t) d(t).

Theorem 5.9. Let f E Ll(T) and let µ be a complex Borel measure on T.
Denote

F(re) :_ (PT * f)(t9) or F(re) :_ (PT *
with 0 < r < 1 and t4 E R.

Then F is harmonic on the open snit disc U and, as r -+ 1, the functions
FT(t9) := satisfy the following convergence results:

(a) 1f f E C(T), then FT - f uniformly, so that, by defining F(ez) :_
f(ei), F is a classical solution of the Dirichlet problem (5.2).

(b) 1f f E LP(T) with 1 <p < oo, then FT -+ f in IP(T).
(c) If f E L°O(T), then FT -+ µ in the w*-convergence on L°°(T)

L' (T)'.
(d) If F,. = PT *p, then F,. -+ µ in the w*-convergence for µ E M(T)

C(T)'.

Proof. If f is real, then F is the real part of the holomorphic function

f (eZt dt,(5.5) V (z) 2 , ezt -z

and it is harmonic. A similar reasoning shows that (P,. * µ)(i9)
defines a harmonic function on U.

Since we are dealing with a summability kernel, the statements (a) and
(b) hold, and (c)-(d) follow from (5.1).
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Remark 5.10. A simple change of variables gives

1 R2-r2
1(z) 2 ,f R2 - 2r t) + r2

f(a+Ret)dt

for every z = a + reE D(a, R) if f is continuous on the closed disc
D(a, R) _ {z e C; lz - al < R} and harmonic in D(a, R).

For r = 0 this is the mean value property of the harmonic function
f:

f(a) - ff(a+Reit)dt.

Let us now consider the inverse problem and, given a harmonic function
F on U, try to find out whether it is the Poisson integral of some function
or measure on T. We still denote Fr(t9) = if z = rein E U.

Theorem 5.11. Suppose F is acomplex-valued harmonic function in the
open unit disc U.

(a) F is the Poisson integral of some f E C(T) if and only if Fr is
uniformly convergent when r 1. In this case, F is the unique
classical solution of the Dirichlet problem (5.2).

(b) F is the Poisson integral of some f E Ll (T) if and only if FT is
convergent in L1(T) when r 1.

(c) Fatou's theorem: If 1 < p < oo, F is the Poisson integral of
some f e LP(T) if and only if

.sup llFr lIp <00
0<r<1

(d) F is the Poisson integral of some complex Borel measure if and
only if

sup llFr Iii < oo.
0<r<1

(e) Herglotz's theorem: F is the Poisson integral of some Borel
measure if and only if F > 0.

Proof. We need to prove only the direct parts, the converses being con-
tained in Theorem 5.9.

Let us start with (a) by showing that, if F,. -+ f uniformly, then F is
the unique solution of the Dirichlet problem for the disc. We can suppose
that F is real-valued and we will prove that F has to be the real part of the
holomorphic function V defined in (5.5).

The function Vl = J2V is a classical solution of the Dirichlet problem
with the boundary value f. Then H = F - Vi E C(U) is harmonic in U and
zero on T, and we only need to show that H = 0 at every point of U.
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Assume that H(zo) > 0 for some zo E U, denote E = H(zo)/2, and let

h(z) := H(z) + Efzf2,

a continuous function on U such that h = e on T and h(zo) > e. Then

max h = h(zl)

for some zl E U, so that 0 and 8yh(zl) < 0. This is in contradic-
tion to Lh(zl) = 4e, which follows from the definition of h. The assumption
H(zo) <0 would also lead to a similar contradiction and H = F - Vl = 0.

Proceeding now to the proofs of (d) and (e), let R := 5upp<r<1 II1'r Iii and
u,.(g) (g, Fr). Then u,. E C(T)' and h< R. According to Alaoglu's
theorem, since C(T) is a separable Banach space, the ball with radius R is
a metrizable w*-compact set and from a sequence r -+ 1 we can choose a
subsequence u,.which is w*-convergent to some u E C(T)'.

By the Riesz representation theorem there is a complex Borel measure
µ on T such that

u(9) - I
g dµ moo IT g(t)Fr(t)(t) dt (9 E L'(T))

Note that every function hn(z) := F(rnz) is harmonic in a neighborhood
of U and on U it is the unique solution of the Dirichlet problem (5.2) for
f(eit) = F(rnezt). Thus, if z =rein,

hn(z) 2ir J Pr(19 - t)hn(eit) dt.

If for a fixed z = rez E U we consider the continuous function g = P,,
where

it

Pz(t) :_ e ± z - Pr(- t) (z =
ezt z

we obtain

F(z) = lim hn(z) = IT Pd= J PT(- t) d(t).
a

If F > 0, then h= F(0) for every r E [0, 1) by the mean value
property of harmonic functions, and the complex measure µ obtained in (d)
is positive.

The proof of (c) is similar. In this case, u,.(g) is defined for every g E
IP'(T) and u,. E I.P'(T)' with h< R = supp<r<1 ISince 1 < p' <
oo, LP' (T) is separable and, according to Alaoglu's theorem, we have some
u,.-+ u in the w*-topology on Ia''(T)'. Now by the Riesz representation
theorem for the dual of an Lq-space, u(g) = fT gh for some h E L(T) such
that IIhIIp R. Now the proof continues as in (d).
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The proof of (b) is simple. If F,. - f in Ll (T) and dµ = f(t) dt on T,
then as in (d) it follows that

F(z) =1im hn(z) = fT Pz d= J Pr(- t)f (t) dt,

since now u,. _ (,Fr) (.,f).

5.4. Exercises

U

Exercise 5.1. Prove that the unit ball of 21 is not weakly compact.

Exercise 5.2. Prove that every sequence in the closed unit ball of L2(R)
has a weakly convergent subsequence, and find a weakly convergent sequence
with no convergent subsequence.

Exercise 5.3. In the Banach space C[0,1], prove that the sequence

nx if 0<x<1/n,
fn(x) := 2 - nx if 1/n < x < 2/n,

0 if 2/n < x < 1

is weakly convergent to 0 but it is not strongly convergent.

Exercise 5.4. If S E C[-1,1]' is the linear form

6(g) := g(0)

and {h}1 C C[-1, 1], prove that hn - S weakly (in the sense that
(g, hn) = f 11 ghn - g(0) for every g e C[-1, 1]) if and only if the following
three conditions are satisfied:

(1) limf 11 h(t) dt = 1,

(2) limn f 11 hn(t)cp(t) dt = 0 if cp e C°°[-1, 1] vanishes in a neighbor-
hood of 0, and

(3) supra f 11 h(t) dt < oo.

Prove also that if supra f1 l h( t) dt = oo, then there exists a function g e
C[-1, 1] for which f 11 ghn - oo.

Exercise 5.5. If xn -+ x weakly in a Banach space E, prove that IIxIIE
liminf IIxflhIE.

Exercise 5.6. For every Banach space E there is a linear isometry from E
onto a closed subspace of C(K), where K is the closed unit ball BED endowed
with the restriction of the weak* topology of E'.
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Exercise 5.7. Let E be a locally convex space. If xn - 0 in E, then also
xn - 0 weakly. By considering an orthonormal system in a Hilbert space,
show that the converse is not true in general.

Exercise 5.8. In a Frechet space E, suppose that xn - x weakly. Prove
that x is the limit in E of a sequence of convex combinations >=i a j xn of.7-
elements from the sequence {x}.

Exercise 5.9. As an application of the uniform boundedness principle,
prove that a subset of a normed space E is bounded if and only if it is
weakly bounded. If E is complete, also show that a subset of E' is bounded
if and only if it is w*-bounded.

Exercise 5.10. Let T : E - F be a linear mapping between two Frechet
spaces and let T'(v) := v o T (v E F'), the transpose of T. Prove the
equivalence of the following properties:

(a) T is continuous.
(b) T is weakly continuous (T: E(a(E, E')) - F(a(F, F') continuous).
(c) T'(F') C E' (and then T' : F'(a(F', F)) - E'(a(E', E) continuous).

Exercise 5.11. Let E be an infinite-dimensional locally convex space. Prove
that the weak topology cr(E', E) on E' is metrizable if and only if E has a
countable algebraic basis.

Exercise 5.12. Let E be a normed space. Prove that if the weak topology
cr(E, E') on E, or the weak* topology on E', is metrizable, then E is finite
dimensional.

Exercise 5.13. Let H be a separable Hilbert space and let T E
Prove that T is compact if and only if, for any sequence {xn} C H such that
(x, xn)H -+ 0 as n -+ oo for all x E H (that is, xn -+ 0 weakly), it follows
that IITxnhIH -+ 0. Operators with this property were called completely
continuous by Hilbert and Schmidt.

Exercise 5.14. Suppose E is a real normed space and K1, K2 are two
disjoint weakly compact convex subsets of E. Then prove that f(K1) <r <
f (K2) for some f E E' and r E R.

Exercise 5.15 (Goldstine's theorem). Recall that E C E" or, more pre-
cisely, J(E) is a subspace of E" if J is as in Theorem 4.25. Show that the
weak* topology on E" induces on E the weak topology and that the closed
unit ball BE of E is w*-dense in the closed unit ball BE" of E". Thus E is
w*-dense in E".

Exercise 5.16. A normed space E is said to be reflexive if E" = E; that
is, if J(E) = E" with J as in Theorem 4.25.
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(a) Prove that E is reflexive if and only if the closed unit ball BE of E
is weakly compact.

(b) Prove that every closed subspace F of a reflexive normed space E is
also reflexive.

(c) Prove that a Banach space E is reflexive if and only if E' is reflexive.

Exercise 5.17. Prove that every Hilbert space H is reflexive and that
L'(0,1) (1 <p < oo) is reflexive if and only if 1 <p < oo.

Hint: Use the representation theorems and Exercise 4.18.

Exercise 5.18. Check the details of the Riesz representation theorem for
(2P)' (1 < p < oo) which show that the dual space of £' is isometrically
isomorphic to £' throughout the bilinear form (x, y) :_ >n x(n)y(n). If
1 <p < oo, find a weakly convergent sequence in £ which is not strongly
convergent.

Show that on £1 the weak topology is strictly weaker than the topology of
the norm. It is true, but harder to prove, that in £1 every weakly convergent
sequence is strongly convergent.

Exercise 5.19. Find a sequence of functions fn such that, for any 1 <p <
00, f n -3 0 weakly in LP(-r, ir) but not strongly.

Exercise 5.20. Prove that C[0, 1] is w*-dense in L°°(0, 1) but it is not dense
for the topology of the norm.

Exercise 5.21. If

is a given trigonometric series, we denote SN :_ k=-N ceit and

1
N

nUN N+1 n=o

the Cesaro means.

Prove that (5.6) is the Fourier series of a complex Borel measure on T
if and only if sups, IaN lii <00.

Exercise 5.22. Prove that (5.6) is the Fourier series of a function f E L(T)
(1 <p < oo) if and only if sups, ll°wlip < oo

Exercise 5.23. Prove that (5.6) is the Fourier series of a function f E Ll (T)
if and only if the sequence {UN} of Fourier sums is a convergent sequence
in Ll(T).
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Exercise 5.24. Prove that (5.6) is the Fourier series of a 2ir-periodic con-
tinuous function if and only if {o} is a uniformly convergent sequence.

References for further reading:
S. Banach, Theorie des operations lineaires.

N. Dunford and J. T. Schwartz, Linear Operators: Part 1.
G. Kothe, Topological Vector Spaces I.

P. D. Lax, Functional Analysis.

F. Riesz and B. Sz. Nagy, Lecons d'analyse fonctionelle.

W. Rudin, Real and Complex Analysis.

W. Rudin, Functional Analysis.
K. Yosida, Functional Analysis.





Chapter 6

Distributions

For a long time, physicists have been operating with certain "singular func-
tions" that are not true functions in the usual sense.

A typical simple example was Dirac's function S, assumed to be "sup-
ported by {O} but so large on this point that fR S(t) dt = 1", which is the
unit impulse of signal theory.1

Previously, in 1883, to solve some physical problems, Heaviside2 intro-
duced a symbolic calculus that included the derivatives of singular functions.
With this calculus it was accepted that S is the derivative Y' of Heaviside's
function Y = and then a formal partial integration with cc regular
enough and with compact support gives

JR
cc(t)6(t) dt = - J cp'(t) dt = cp(0).

In his 1932 text [43] on quantum mechanics, von Neumann warned
against the use of these unclear objects. In the preface of the book he
says that "The method of Dirac ... in no way satisfies the requirements of

1 The 5 function was introduced by the British physicist, and one of the founders of quantum
mechanics, Paul Adrien Maurice Dirac as the continuous form of the discrete Kronecker delta in
the formulation of quantum mechanics, which is contained in his 1930 book "The Principles of
Quantum Mechanics", a landmark in the history of science.

2The English telegraph operator and self-taught engineer, physicist, and mathematician
Oliver Heaviside patented the co-axial cable in 1880, reformulated Maxwell's initially cumbersome
equations by reducing the original system of 20 differential equations to 4 differential equations in
1884, and between 1880 and 1887 developed a controversial operational calculus that motivated
his saying "Mathematics is an experimental science, and definitions do not come first, but later
on".

143
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mathematical rigor [with] the introduction of `improper' functions with self-
contradictory properties" and he calls the delta functions and their deriva-
tives "mathematical fictions". Very soon afterwards Bochner introduced in
a rigorous way singular functions in Fourier analysis, and Sobolev (1938)
used weak derivatives in the study of partial differential equations.

But it was L. Schwartz3 who defined them as linear forms acting on a
family of test functions cp, with the appropriate continuity properties.

The idea was that, as a mater of fact, a singular function such as 8 always
appears inside an integral formula. In the case of the Dirac function, the
useful property is that JR (p(t)8(t) dt = (p(0), and S can be directly defined
as the linear form cp H (O) acting on a convenient family of test functions
(P

If we consider any function 0 < o E CS(R) supported by [-r, r] and such
that JR o(t) dt = 1, the summability kernel on(t) := Wo(nt) is such that

fl°° fR (p(t)Q(t) dt = lim((p, ) = (0) ( C(R)),

since I fR cp(t) on(t) dt - cp(0) k(t) - cp(0) o(t) dt - 0. This means
that S is also a weak limit of the sequence {on} by associating to o,t the
linear form on).

As a positive linear form on the space of test functions CS(R), by the
Riesz-Markov theorem 8 can also be considered a Borel measure. The class
of test functions for distributions will be much smaller than CS(R), and op-
erations with distributions will include well-defined generalized derivatives.
The derivatives 8', 8", ... of S will be distributions but will not longer be
measures.

With the description of the general theory of distributions, we will in-
clude some basic facts and examples concerning differential equations, a
field where the influence of functional analysis has grown continuously pre-
cisely due to the use of distributions. In the next chapter we will find more
examples.

The results are stated for complex-valued distributions, but the reader
can check that they are also valid for real distributions.

6.1. Test functions

Let SZ be a nonempty open subset of R.

3Laurent Schwartz formalized the mathematical theory of the generalized functions or distri-
butions in 1945, and his 1950-51 book "Theorie des Distributions" [40] remains a basic reference
for this topic. See footnote 1 in Chapter 3.
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In Section 3.1 we introduced the Frechet space (1) of all C°° com-
plex functions on 1, endowed with the locally convex topology of the local
uniform convergence of functions and their derivatives.

If K(1) represents the family of all compact subsets of 1, the space of
test functions is the vector space of all C°° complex functions on 1 with
compact support,

V(1)= U DK(S2).
KEK(St)

Recall that, if K E K(12), in (3.3) we defined DK(S2) as the closed subspace
of £(S2) that contains all f e E(S2) whose support lies in K, so that its
topology is defined by the increasing sequence of norms

(6.1) 4NCf) _ ii
IIDaf IlK (N E N).

aL<N

Thus, cpk -3 cp in DK(S2) means that D«cpk Dacp uniformly, for every
C E Nn.

Example 6.1. Let g(t) = e-1/tX(o,+oo](t) and denote o(x) = Cg(1 - 1x12)
with C> 0 such that f o(x) dx = 1. Then o is a test function whose graph
has the familiar bell shape that satisfies 0 < o E

The derivatives are g()(t) = Pn(1/t)e-lit if t > 0, where every Pis a
polynomial and g(n)(t) = 0 if t < 0; thus g()(0) = g(n)(t) = 0 for
every n e N, so that g is C°O supported by [0, oo), and o e DE(o1) (R")

From o we can define a C°° summability kernel {Qe}O<e<eo on R" by
Q6(x) _ E-no(x/e) (see (2.22)). Note that 0 < of E DB(o,E)(Rn) and that
f of (x) dx =fo(x) dx = 1. Such a function is often called a mollifies.

Let us define the local analogue of L' (1) by denoting L( c) the vector
space of complex measurable functions locally integrable on the open set 12,
i.e. functions integrable on every compact subset K of S2. As usual, two
locally integrable functions are supposed to be equivalent if they coincide
a.e.

If f E L (R), of * f given by

* f)(x) - f' E(x - y)f dy - f(o,E f(x -

is awell-defined C°° function, since we can differentiate under the integral
sign.

New test functions can be constructed from Example 6.1. For every
couple K C 12, there is a test function o e D(12) which is a smooth Urysohn
function for this couple, so that K - o - St. It can be defined as follows:
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Let 0<6< d(K, Sty)/2 and let 0 < cp E D(B(0, S)) with f cp(x) dx = 1,
as in Example 6.1. We denote

K(S) = K -{- B(0, S) _ {x E Rn; d(x,K) <6}

and define o = Xx(a) * o
The properties of convolution (cf. (b) and (c) in Subsection 2.4.1) yield

o E DK(Za)(St), since f * E (RTh) and supp (f * o) C K + B(0, S) = K(S).
To obtain o = 1 in a neighborhood of K, we only need to change K by a
compact neighborhood of K.

The C°O summability kernel {&} is useful to regularize nonsmooth func-
tions:

Theorem 6.2. (a) 1f f E CK(R") and 0 < <i, then f * of E DK()(Rn)
and limo f * of = f uniformly on R.

(b) 1f f E IP(RTh) (1 <p < oo), then limo f * PE = f in IP(RTh).

Proof. Let supp f C K and supp of C B(0, e). Then f * of E E(RTh) and
supP (f * Qe) C K(e) C K(r).

Now (a) and (b) follow from Theorem 2.41. O

The small class D(St) is large enough to be dense in many spaces, such
as LP() if 1 <p < oo (see Exercise 6.2) and E(S):

Theorem 6.3. The set D(SZ) of all test functions is dense in E(St).

Proof. For every f E E(St) we consider {Qmf} C D(St), where are the
Urysohn functions associated to an increasing sequence of compact subsets
K,,,, of St such that every other compact subset K of St is contained in one
of them, KN, and o,,,, f = f, so that D« (o,,,, f) = D« f on K if m> N. Then
D« (o,,.,, f) -+ D« f uniformly on every compact set K C St.

6.2. The distributions

The distributions in a nonempty open subset Sl of Rn are defined as the
linear forms on D(St) which satisfy a convenient continuity property.

On D(SZ) = UKe() DK(St), instead of defining a topology, it will be
sufficient to consider a notion of convergence.4

We say that cpk - cp in D(St) if cpk -3 cp in DK(St) for some K E K(St);
that is, cp and cps are test functions on Sl that satisfy

supp cps C K for some fixed compact set K C Sl and

4This notion of convergence follows from the topology defined in Exercise 6.5. With this
topology, D(l) is known as the inductive limit of the spaces DK (SZ) .
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D«cp uniformly as k -+ 00, for every a e Nn.

A distribution on the open set SZ is defined as a linear form

u : D(1) - C
which is continuous with respect to the above convergence or, equivalently,
such that uIDK E DK (1)' for every compact set K C SZ.

We denote by D'() the complex vector space of all distributions on ft

Hence u e D' (SZ) means that u : D(SZ) -+ C is a linear form such that
u(cpk) -+ 0 whenever cok -+ 0 in some DK (SZ) .

Thus, if u E D'(SZ), for every compact set K C SZ there are an integer
N = NK > 0 and a constant CK > 0, both depending on K, such that

I c CKgN (SP) = CK IIDacIIK (SP E DK
I«L<N

If there is an N independent of K, then the smallest such N is called the
order of the distribution u (the constant CK still can depend on K). If this
N does not exist, u is said to be of infinite order.

Example 6.4. Suppose f is a locally integrable function on SZ. Then we
can define

ur(n) :_ f) - f f(x)(x) dx ( E
It is clear that of is a linear form on D(St) such that I If IIL'(K) IIcoIIK,
that is, of E D'(St).

Next we prove that the linear mapping f e L() H f) e V'() is
one-to-one, so that we can consider L() C D'(St) and it is said that the
distribution U f is a function. If no confusion is possible, we write f for U f.

Theorem 6.5. If f e L1oc(St) and f f(x)cp(x) dx = 0 for every test func-
tion co e D(S2), then f = 0 (a.e.).

Proof. We can assume that f is a real function and we only need to prove
that f = 0 a.e. on every ball B(a, r) C St.

If A = {x e B(a, r); f(x) > 0}, choose K,,,, C A C G,,,, C B(a, r) so
that 1G,,,, \ Km,I . 0 (K,,,, compact and Grt, open sets). If cp,,,, is a Urysohn
function for K,,,, C G,,,,, then cprt, - XA a.e. and

JA
f+(x) dx = lim J f(x)m(x)dx = 0.

Hence, f+(x) = 0 a.e. on B(a, r). Analogously, f(x) = 0 a.e. on B(a, r).
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Example 6.6. For every a E 1, the Dirac distribution, Sa, is defined as
Sa(cp) = (p(a). On Rn, we denote 8 = So.

Example 6.7. If ,u is a Borel measure, or a complex Borel measure on SZ,
then

(g,):= [gd= J gh dII (gEC())
defines a linear form on and the restriction to D(St) is clearly
a distribution which is identified with µ. Here dµ = hdIµI is the polar
representation of µ.

The pair (D(1), D'(St)) is a dual couple since, if u((p) = 0 for every
u E D'(St), then cp = 0 (f kpI2 = (cp, cp) = 0). Thus, if u is a distribution
and cp a test function, we also write (p, u) instead of u(p).

Eventually we will use the notation (p(x), u(x)) if we need to refer to
the variable that is used at each moment.

The space D'(St) is endowed with the weak topology Q(D'(St), D(St)),
and the distributional convergence uk -+ u means that uk(cp) -+ u(p)
for every test function cp.

Multiplication by a C°O function, g E E(St), is naturally extended
to distributions: If f E L110 (1), also gf E L110 (1) and, as a distribution,

(,gf) =f (x)g(x)f(x)dx= (g,f),

which suggests that we can define gu for every u E D'(S2) by the rule
(gu)(p) = u(gcp); that is,

(p,gu) :_ (gp,u).

Since gcp E D(12) for every cp E D(St), to prove that gu E D'(S2), we only
need to check the continuity property for this new linear functional gu on
D(12). But multiplication by g is a linear operator g : D(St) -+ D(St) such
that

(6.2) cps -4 cp in D(St) => gcpk -4 gcp in D(St)

since, if cps -+ cp in DK(St), it is easily checked that also gcp -+ gcp in DK(St)
from

It9 IlK C II5gIIKIOIIK +
and from the corresponding estimates for the successive derivatives D«(gcp).

Hence, also (gu)(pk) = u(gcpk) -+ u(gcp) _ (gu)(p), and gu E D'(12).

There is a general procedure for extending some operations on D(St)
to operations on D'(St) which includes the above multiplication by a C°O
function as a special case.
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If T : D(Stl) - D(1t2) is a linear map such that T'u = u o T E D'(S21)
for every u e D'(12), then T' : D'(1t2) -4 D'(S21) is the transpose of T:

(Tcp, u) _ ((cp E D(Stl), u e D'(St2)).
Both T and T' are weakly continuous, since

p(,Q(Tu) = (Tp,u) =PT(u)
and pu(Tcp) = pT'u(cp), where the p, and the pu are, respectively, the semi-
norms that define the weak topology on D and on D'.

Sometimes there are two linear operators

T : D(S21) - D(S12), R : D(S12) - D(SZl)

which are transposes of each other in the sense that

e V(111), b e

Then, for every u e V'(12) we can define Ru = u o T, which is a linear form
on D(SZ1) characterized by the condition

(p,Ru) =

If T satisfies the continuity condition Tcpk - 0 in D(SZl) whenever cps -4 0
in D(S21), then every Ru is a distribution on Stl, and R : D'(122) - D(Stl)

T transpose is considered the
extension of R : D(1Z2) - D(S21).

Very often, the restriction of R = T' : V'(12) -+ V'(11) to L0(12) is
also a natural extension of R : D(1t2) - D(Stl).

This is the case of multiplication by a C°° function g E S(12), R = g on
D(12). With our definitions, also T = g on D(SZ), since

(,g) = I (x)g(x)(x) dx =
Jci

and R = g when restricted to L(1).

Let us now consider the case of a C°° change of variables /' : 1Z2 -4 Stl,
and let Rf represent the function f('/r' (x)) if f e L(12), so that

R.f) _ f(y)(y))J(y)I dy= (IJI), f)

The following theorem shows that /' : D(Stl) - D(122) continuously.

Theorem 6.8. Let /,' : S22 -4 Stl be a C°°-change of variables, K a compact
set in 1Z1i and let L = ',L-1(K). Then the linear map cp H cp(s) is continuous
from Dx(121) to DL(122)
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Proof. If cp(x) = 0 when x K and y L, then x = 'i,b(y) ¢ K and
cp(b)(y) = 0. So W cp E Dx(SZl) H cp(s) E DL(I2) is awell-defined
linear mapping. From it follows as for (6.2) that
I IIaj'lbIILIIajcoIIK. Similarly

IIDkDjp))IIL I+ IIaIILIIaka(PIIK
and, by induction, I< C Q<« IID'co IlK. Thus, cps -4 0 in
DK(SZi) implies W(cpk) -+ 0 in DL(St2).

Let Tcp :_ Iif cp E D(SZl), and let u E D'(1t2). Then the linear
form T'u on D(SZl) defined as the transpose of T by

(,T'u) = (IJI),u)
is a distribution, since it is the composition

sv H o(iG) H IJpIco('b) H

of three linear mappings which have the appropriate continuity properties.
If u = f E Li (SZ2), T'u = Rf. Hence, we write Ru = T'u and

(IJpIco(',b),u)

defines the change of variables for distributions. Translations, scaling, and
symmetry of distributions on SZ = Rn are special cases:

Example 6.9. On Rn the translated Td(u), the symmetric u, and the dila-
tion u(ax) of a distribution u are the distributions defined as follows:

(a) (So,Ta(u)) _ (T_ap,u), or ( - a)) _ (co(x + a), u(x)).
(b) ( _ (,u), or ( _ (so(-x),u(x)).
(c) ( _ I if a # 0.

An example is TdS = 8a, since

((,o, Tab) _ (p(x + a), S(x)) _ o(a) _ (Sa)

6.3. Differentiation of distributions

If f E S1 (It), or if f is an everywhere differentiable function on R and f' E
Lo(R) (see e.g. Rudin's "Real and Complex Analysis" [39]), integration
by parts yields

(w, f') £ (t)f'(t) dt = - f '(t)f(t) dt = -(v',

if Sp E D[-r,r] (R).
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This result suggests that we associate to each distribution u on the open
set SZ C Rn the partial "derivatives" Du (or Du = u' when n = 1) by the
formula

Dju) := u) (1 j n).

That is, if n = 1).
If pk - 0 in DK(St), then

-(DjPk,U) -+0,

since 0 in DK(St). Thus, E D'(St), the operator

is the adjoint of
-D : V(1l) - D(1l),

and 8 on D'(St) extends the partial derivatives of Cl functions on SZ.
Note that 8 Li (St) - D'(St) can be defined as the restriction of

- D'(SZ). It is a custom, which we shall usually follow, to
write 8 f instead of Du f, which is a distribution called the distributional
derivative or weak derivative of f e Li (St). It is characterized by the
identity

(, Djf) = - f f(x)Dj(x) dx ( e

The ath distributional derivatives are defined by induction. If Da =

a continuous linear operator such that

(co,Dau) = (_1)kI(Daco,u).

We also write D«f for D«uf if f E Li (St)

Theorem 6.10. If f e E""'(12) and Ic1 < m, then the usual pointwise deriv-
ative Da f coincides with the distributional derivative: D«u f = uD« f.

The Leibniz formula for the derivatives of a product of functions5 is
extended to

a3(fu) _ (Df)u + fDu (f E e1(sl),

Proof. By induction, assume m = 1 and consider D« = 81:

(,D1uf) _ - fK

5 See in Exercise 2.1 the extension of the Leibniz formula to higher-order derivatives.
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We can suppose that f(x) = 0 if x e Rn \ G, where G C St is an open set
containing K = supp cp, so that

Di(x)f(x) dx.(, Df) = - fR
If x = (t, x) E R x Rn-1 and f(t) = 1(x), integration by parts gives

_ - fR- f (t).f(t) dt d=
1 r

For the product,

(p, Dj(fu)) _ -(.fajso, u) _ (v, (D3f)u + fD3u).

If f is absolutely continuous, so that f' exists a.e., and if f' E
it is shown in Exercise 6.20 that this a.e. derivative is also the distributional
derivative of f. But one has to be careful since the following examples show
that there are many functions f e L( R) with an a.e. defined derivative
f' E Li (R) which is not the distributional derivative of f.

Example 6.11. Let f be a Cl function on (a, b) \ {ti, t2, ... , tn} (a < ti
t2 < < to < b), such that the right and left limits f(t2+) and f(t3-)
exist and are finite (1 < j < n). If f' on (a, b) \ {ti, t2i ... , tn} is locally
integrable on (a, b), then the distributional derivative of u1 = f) is

of = .f'+ (f(t+) -.f(ti-))bt, + (f(t2+) - .f(t2-))st2
+.....+. (f(t+) - f(t-))S.

Define p = 0 outside of (a, b). If to = a and to+1 = b,

u) _ - f P'(t)f (t) dt
j=1 J

and integration by parts gives

n ti+l
, uf> _ (f (t)f'(t) Cat + f(t-)(t) - f(t+1+)(t+1))

.9=1

f
6

(t)f'(t) Clt
+

(f(t+) - f(t-))(t).
j=1

Example 6.12. If f e (R) and Y = X[o ) (Heaviside function), then
n-1

(.f Y)' = fly + 1(0)6 and (fy)(n) = f(n)Y + f(k)(O)S(n_k_1).

=o
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The first identity is contained in Example 6.11. Then, by induction,
n-1

(fy)(fl+i) - ((fy)(n))' = f(n+i)y + f(Th)5 + :i: f(k)(0)5(n-k)

k=o

and f(Th)5 = f()(o)S.

The following results show a couple of instances where the derivatives of
distributions behave as the derivatives of functions.

First, on an interval of R, the constant functions are the unique distri-
butions with zero derivative:

Theorem 6.13. Let u e D'(a, b) (-oo < a < b < +oo). Then u' = 0 if and
only if u is a constant function.

Proof. If cp E D(a, b), let b = cp - (fa cp) o, where we choose o e D(a, b) so
that fQ o = 1. Then b e D(a, b) and W(x) = fa b is also a test function
since, if supp cp, supp o C [c,dJ C (a, b), then Y(x) = 0 if x 0 [c, d].

Moreover u'(W) _ -u(W') _ -u(',b) _ -u(cp)+(fa cp)u(o) and, if u' = 0,
also fa u(o)cp(t) dt - u(cp) = 0. Thus, u(cp) _ (cc, u(o)) and u is the constant
function u().

The derivative of a distribution on Rn can be defined as a quotient limit
of distributions:

Theorem 6.14. Suppose cc e D(RT) and u e D'(RT ), and let e3 be the jth
standard basis vector of R. Then

lim
They cc = a SP in D(Rn)

h-*O h
and

T_he.u u nlim = aju in D (R ).
h-*O h

Proof. We can suppose j = 1 and we choose a compact set K C Rn which
contains supp cp and so that d = d(supp cc, KC) > 0. By the Lagrange mean
value theorem,

P(x + hel) - cc(x) _
I = Ia1cc(x + heel) -

h

with Ih< IhL Note that supp cc + hel C K if hi <d and, by taking the
sup in x E K,

cp(x + hel) - cc(x) - a wrxII < Sun iia, o(x + te,1- 8, w(x) II u,

where the right side tends to 0 as hi -+ 0, since 81cp is uniformly continuous.
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The same holds for every Dace and, if h - 0,

cP(x + hel) - P(x)
h

-a1co(x)

in DK(R") and in D(Rn).
From the continuity of the distribution u on DK(Rn),

(- hel),u(x)) -h

if h - 0, so that limh.io (cp, 26)) _ 3u)..

6.4. Convolution of distributions

The convolution f * g of two integrable functions f and g is awell-defined
integrable function and, if one of them has compact support, then

(,f*g) - fRflfRfl y) dx dy

= z), f(z)g(y)) = z), f(z)), g(y)).

If u and v are two distributions, this suggests that we should try

(_ ((co(y+z),u(z)),v(y))
as a possible definition, but then we need to apply v to the function f(y) _
(cp(y + z), u(z)). Note that if supp cp C B(0, r), we can only state that
cp(y + z) = 0 whenever (y, z) lies in Iy + zI > r, and f can no longer have a
compact support.

This shows that it is convenient to consider cases where u can be applied
to functions with an unbounded support. This will be possible if u belongs
to the class of distributions with compact support.

6.4.1. Support of a distribution and distributions with compact
support. We recall that the support of a continuous function f on SZ is
the closure in St of the set of points where 1(x) 0 or, equivalently, the
complement of the largest open subset of 1 2 on which f is zero.

To define an analogous concept for distributions, it is convenient to show
that they are locally determined, and partitions of unity are useful to this
end.

Recall that, according to Theorem 1.3 and Remark 1.4, if {1i,. . . ,1m}
is a finite family of open subsets of Rn which covers a compact set K C Rn,
then there exists a partition of unity cod E D(1) (1 < j < m) subordinate
to this covering.
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Note also that if G is an open subset of St, we can consider D(G) C
D(12) C D(Rn) and the restriction of a distribution u E D'(12) to D(G) is
also a distribution, uc E DI (G). If the restrictions of u, v E D'(St) are the
same, we say that these distributions are equal on G, and we write u = v
on G.

Theorem 6.15. For a given distribution u E D'(SZ), there is a largest open
subset G of St where u is zero.

Proof. Let G be the union of all open subsets of St where u is zero, and let
cp E DK(G). Then K C SZl U U SZm with u = 0 on every Std, and we can
choose a partition of unity {cpj}71 subordinate to this covering of K. Then
u(cp) = u(1 cPjIP) _ 0, since supp cpjcp C Sly. O

The support of a distribution u E D'(St), suppu , is defined as the
complement 1 2 \ G of the largest open subset G of St where u vanishes.

Theorem 6.16. The support of u E D'(SZ) is compact if and only if u is
the restriction to D(St) of some v E E'(12), which is uniquely determined by
u. We call E'(SZ) the dual of (1).

Proof. Since the inclusions DK(St) y E(St) are all continuous, the restric-
tion u of every v E E'(12) to D(St) is a distribution. The continuity of v
means that

(6.3) Iv(f)I c CqK,m(f) (1 E (1))

for some semi-norm gK,,,t(f) =maxi«l<,,,, IIDaf IlK and some constant C> 0.
Thus v (f) = 0 if supp f C St \ K, since in this case qK,,,t (f) = 0, and then
supp v C K.

Reciprocally, given u E D'(St) with suppu = K, compact, we choose
K(S) = K + B(0, b) C SZ and K(b) -< o -< St. We claim that

v(f) := u(f P)

defines a linear form on E(St) which is an extension of u which does not
depend on o or b.

Indeed, if also K(b') - of - St, then u(f o) - u(f1) = u(f (o - ol)) = 0
since supp (O - Ol) fl K = 0.

Moreover, if cp E DK(S2), it is shown that v(cp) = u(cpo) = u(cp) by
choosing a compact set L such that K U supp cp C Int (L) and L - o - St.

If fk - 0 in (1), it is easily checked that fkQ - 0 in D(St) and then
v(fk) - 0. That is, v E E'(St).

According to Theorem 6.3, the set D(12) of all test functions is dense in
(1), and v is uniquely determined by u. O
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Since v E E'(SZ) H 2G = vID(c) E 7Y(f) is linear and one-to-one onto the
class of all distributions on 1 2 with compact support, E'(St) is said to be the
space of distributions with compact support on S2.

6.4.2. Convolution of distributions with functions. Next we define
the convolution of a distribution with a function on the whole R" when at
least one of them has compact support. Suppose first that cp E D(Rn) and
U E D'(Rn).

Since (f * cp)(x) _ (p(x - y), f(y)) if f E L( R), we define

(u * ((x - y),u(y)> _ u(y)) _ r xu) _ (r,u).

Note that (u * cp)(x) is continuous with respect to u in D'(Rn) (when
cp E D(R") and x E Rn are fixed), with respect to cp, and with respect to
x. That is,
(6.4)
(Uk * o)(x) -- (u*cok)(x) - (Uk * co)(xk) -

when uk - u in D'(Rn), cps -4 co in DK(Rn), and xk -4 x in R", respec-
tively.

Indeed, (Uk * cp)(x) _ (co,Txuk) --f (Txcp, u) if uk --f u, since on D'(Rn)
we are considering the weak convergence.

Also, if cpk -- cp, then (u * cpk)(x) _ (k, -4 ((p, T_ru).

Finally, if xk -f x, then (u * cp) (xk) _ ('r_Xkco, u) -4 ('r-xco, u) from the
uniform continuity of cp and of all Dace, since IIDco - T- E if k
is large, and there is a single compact set L C R" so that supp T_xk co C L.

Let us gather together the basic properties of this convolution:

Theorem 6.17. If co E D(Rn) and u E D'(Rn), then u * cp E E(Rn) and
the following properties are satisfied:

(a) T¢(26 * lo) _ fraU) * lP = 26 * (Ta(P)

(b) Da(u * co) _ (Dau) * co = u * (D«cp)

(c) supp (u * cp) C supp u + supp cp.

(d) ifbEC(RTh).
(e) u * cps -4 u * cp in E(Rn) if cps -4cp in D(Rn); hence, u* : D(Rn) -4

E(RA) is continuous (when restricted to every DK(Rn)).

Proof. (a) From the definition,

(u * cc)(x - a) _ (y + a)), u(y)) _ y), 7du(y)> _ ((7du) * v)(x)

and also (cc(x - a - y), u(y)) _ (u * ('raco))(x).
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(b) We can assume D« = 81. Then, according to Theorem 6.14, an
application of (a) gives

ai (u * cp)(x)

Similarly,

lim
T_tel (u * (p) (x) - (u*p)(x)

t
T x-tel u - T u

lim ",
two t

= ((Diu) * pXx).

ai(u * p)(x) = lim
(T_te1(P - lp,Tu) _ (u *

t

(c) If supp cp(x - ) fl supp u = 0, then ((x - ), u) = 0. Hence, if
(u * p) (x) # 0, necessarily supp cp(x - ) fl supp u # 0, so that x - y e supp cp
at least for one point y e supp u and then x e supp u + supp cp. Thus,
{u * cp 4 0} C supp u -I- supp cp, which is closed as a sum of a compact set
and a closed set, so that

supp u * cp = {u * cp 0} C supp u + supp cp.

(d) We claim that, by writing the integral that defines (cp * ') (x) for a
given point x e Rn as the limit of Riemann sums with uniform increments
0<h<l,then
(6.5)

h o P(x - hz)b(hz)hn = b)(x)
xEZ

in D(Rn). Note that the sums are in fact finite, since cp has a bounded
support, and the argument in (c) shows that their supports are contained
in supp cp + supp b.

To prove this claim, note that (x, y) H D«cp(x - is uniformly
continuous on since it is continuous and it is readily checked that
its support is compact, so that >ZEZfl D«cp(x - (cp * b)(x)
uniformly in x.

Now, since ((x - y - hz), u(y)) _ (u * cp( - hz))(x),

(u * b))(x) - lo(( cP(x - y - hz)b(hz)hn),u(y))
zEZ

= lim (u*cp)(x-hz)b(hz)h
zEZ

fRn

(e) The restrictions u* : DK(Rn) -+ (R) are continuous by the closed
graph theorem, since, if cps -+ cp in D(Rn) and u * cps -+ f, then it follows
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from (6.4) that (u * cps) (x) - (u * cp) (x) for every x e R". Hence, 1(x) _
(u*cp)(x). O

The convolution that we have defined can be considerably extended.

If u e D'(Rn) is a distribution with compact support and f e
then we also may define

(u*f)(x) :=
since u is extended to a unique u e E'(Rn), by Theorem 6.16. We have an
analogous result to Theorem 6.17:

Theorem 6.18. If f e E(Rn) and u e S'(Rn), then u * f e S(Rn) and the
following properties are satisfied:

(a) 'Ta(2l * 1) _ fran) * f = 2l * ('Taf).

(b) Da(u * f) = (Dau) * f = * (Df).
(c) u * (.f * b) Z.f 'G E D(Rn)

Proof. The statement (a) is proved exactly as in Theorem 6.17 and (Dau)
f = u * (Df), which is one half of (b), follows directly from the definition.
To also show that Da(u * f)(x) = u * (Daf)(x), we choose o = o E D(Rn)
such that o = 1 on a neighborhood of supp u U T f and then

(u * Daf)(x) = u * (Da(Qf))(x) = Da(U * (Qf))(x)

with (u * (Qf))(x) = u(oT f) _ (u * f) (x). Note also that

((DaU) * f)(x) = ((Dau) * (Qf))(x)

is continuous.

To prove (c), let G be a bounded open set that contains supp u and
N

choose any o e D(Rn) such that O = f on supp ,b + G. Then f * = O *
on G and it follows from the definition that

(u* (u* (Q*/))(O) = (u* (* ))(O).

Since mf = Th o on W, u * f = u * o at every point in - supp b and it follows
that

(u * ',b) C supp u + supp ,b, so that

((u * ?,b) * )(O) _ (u * (?,b * )(O), which combined with the first identity
gives

((u*)*f)(O)
and we obtain (c) from (a) by applying a convenient translation. D



6.4. Convolution of distributions 159

Example 6.19. 6* f = f for every f E E(Rn), since

(6 * f)(x) = (f(x - y), 5(y)) = f(x).

6.4.3. Convolution of distributions. A typical fact of convolution op-
erators is that they commute with translations. By Theorem 6.17(a), for
every distribution u E D'(Rn), the operator u* : D(Rn) - (R) is linear,
continuous on every DK(Rn), and u * (a) = Ta( * cp). The converse is
also true:

Theorem 6.20. If T D(Rn) -3 C(Rn) is linear, continuous on every
DK(Rn) (or, simply, (Tcok)(0) -+ 0 if cps -+ 0 in D(Rn)) and if it commutes
with translations, then T = u* for a uniquely determined distribution u E
D'(Rn).

Proof. Since necessarily (Tp)(0) _ (u * p)(0) _ (rOu)() = u(cp), we must
define u(cp) :_ (T)(0). Note that u is linear and, if cpk - 0 in D(Rn), then
u(cpk) _ (Tk)(0) - 0; hence u E D'(Rn).

But T (T acp) (0) _ (u*r_aco)(0) and, since T commutes with translations,

(T)(a) _ (r_aTco)(0) = 7'(T-a(P)(0) - (u * T aco)(O) _ (u * cP)(a)

D

The preceding theorem will allow us to extend the previous definitions
to a convolution of two distributions u and v on Rn if at least the support
of one of them is compact. In this case we can define

7u,v (SP) := u * (v * cp).

Note that, if v E E'(RT), then v * P E D(Rn) and u * (v * gyp) is well-defined;
similarly, if u has compact support, then v * P E E (R) and we also are
allowed to consider

'Id * (4I * p)(x) -

In both cases, the linear map : D(R) -+ (R) is continuous on
every DK(Rn) and commutes with translations. By Theorem 6.20, there
exists a unique w E D'(Rn) such that = w*. Then we define u * v := w,
so that u * v E D'(Rn) is characterized by the identity

E D(RTh)).

Theorem 6.21. Let ul, u2, U3, u, v E D'(Rn).

(a) If u * cp = 0 for every cp E D(Rn), then u = 0.

(b) If at least two of ul, u2i U3 E D'(Rn) have compact support, then

ul * (u2 * U3) _ (Ui * u2) *U3.
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(c) If at least the support of one of u and v is compact, then u*v = v*u,

* v) = (Dau) * v = (u *

and supp (u * v) C supp u + supp v.

Proof. (a) u(cp) = u(roc) _ (u * cp)(0) = 0 if u * cp = 0.
(b) From the definitions, (Ui * (u2 * u3)) * cp = ((Ui * u2) * u3) * cp since,

in any case,

(Ui * (u2 * u3)) * - ul * ((u2 * u3) * - ul * (u2 * (u3 *

and

((Ui * u2) * u3) * cP = (ui * u2) * \u3 * (p) - ul * (u2 * (u3 * (P)I

(c) Let ul = u * v and u2 = v * u. To show that ul = u2, we only need
to prove that ul * (coi * (p2) = u2 * ((pi * cP2) for any cpl, cp2 E D(R), since
then, by an application of (b), (ui * cpl) * cp2 = (u2 * cpl) * cp2. Now we apply
(a), so that ul * cpi = u2 * cpi and then ul = u2.

But, by using the fact that the convolution of functions is commutative
and (b),

(U*V)*((pi*(p2)=U*((V*(pi)*(p2)=U*((p2*(V*(pi))=(U*(p2)*(V*(pi)

and also

(v * u) * (* 2) _ (v * (u * (p2) _ (u * (p2) * (v *

Hence, v * u = u * v.

To study the supports, let o be a test function supported by B(0,1) and
with f o = 1, and let ok(x) = kno(kx). Assume that v has compact support.
Then supp (u * v) C supp (u * v * ok) and

supp (u * v * ok) C supp u + supp (v * ok) C (supp u + supp v) + supp ok

where supp ok = E(0, 1/k); hence

n ((suppU + supp v) + B(0,1/k)) = supp u + supp v,
k

a closed set, since supp v is compact.
Finally,

(Da(U*V))*(p=(u*v)*Dacp=u*(v*Da(p)=u*(D"v)*cp

for every cp, and Da(u * v) = u * (Dav). O

Example 6.22. If U E D'(R"), u*S = u, since (U*6) *cp = u*(8*cp) = u*cp.

This example shows that the derivatives are convolution operators:
Dau = D(6 * u) = (D6) * U.
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6.5. Distributional differential equations

6.5.1. Linear differential equations. Avery simple differential equation
on (a,,8) C R is

u' = 0

and in Theorem 6.13 we proved that its distributional solutions are the
classical constant solutions.

This property is easily extended to all ordinary linear equations with
smooth coefficients:

Theorem 6.23. Let a E and f E The solutions u E
D'(a, Q) of the first order linear differential equation

u' + au = f

are the classical solutions u E

This fact still holds for linear systems:

u'+Au = f

(A = {a}1 an n x n matrix, f= (fi,. . . ,f) E C(a, ,6)n, u E D'(a, /3)n).

Proof. If a = 0 and F E is a primitive of f, then (u - F)' _
u - F' = 0 and u - F = C. Hence, u = F + C is a Cl function.

In the general numerical case, if f a is a primitive of a, then the function
e = exp f a is a C°° solution of e' = ea and, for any solution u of u' +au = f ,

(eu)' = eu' + e'u = e(u' + au) = e f,

which is continuous. Then eu is a Cl function and so is u = e-leu.
In the vector case we follow the same model with f A = {f ai }i=1

Then e = exp f A = 0(1/k!)(f A)k is a square matrix with an inverse
e-1 that allows us to write again 11= e-leu". O

Corollary 6.24. If f E C(a, /3) and ao, a1i... , an_1 E e(a, 3), then the
distributional solutions of the linear equation

u(n} + an_,u(n-1} + ... + alu' + aou = f

are the classical solutions u E en (a, /3).

Proof. With the usual procedure, we denote uk = u(c-1) (k = 1, ... , n) to
obtain the first order linear system

un + an_1un + ... + a1u2 + aoul = f, u'n_1 - un = 0, ... , u1 - u2 = 0

and then we apply Theorem 6.23. LI



162 6. Distributions

Such a regularity property does not hold in the several variables case, and
we have an example in Exercise 6.35. A differential operator with constant
coefficients on Rn,

P(D) _ aaDa
IaI<N

is said to be hypoelliptics whenever, for every open set SZ C Rn, if f E E(S2)
and u is a distributional solution u e D'(S2) of P(D)T = f, u must also
belong to E(S).

There is a characterization of all the polynomials P such that P(D)
is hypoelliptic due to Hormander (see, for instance, Yoshida's "Functional
Analysis" [44]). Here we are going to prove a sufficient condition in terms
of what is known as a fundamental solution.

6.5.2. Fundamental solutions. On Rn, a fundamental solution of a
differential operator with constant coefficients

P(D) = aaDa
I aI<N

is a distributional solution of the equation P(D)u = 6.
The interest in having a fundamental solution, E, is due to the fact that,

if v is any distribution and E or v has a compact support, so that v * E is
well-defined, then

(6.6) P(D)(E * v) _ (P(D)E) * v = S * v = v

and E * v is a solution of P(D)u = v.
By the Malgrange-Ehrenpreis theorem, every differential operator with

constant coefficients has a fundamental solution.?

In the following pages we are going to show a few important concrete
examples.

Theorem 6.25. On R, the ordinary linear operator with constant coeffi-
cients

P(D)u = (n) -F an-1u -F au

has the fundamental solution E = fY, if f E E(R) is the solution of

p(D)f = 0, f(-')(0) = 1, f(-2)(0) _ ... - f'(0) _ f(0) =0.

6If the characteristic polynomial PN (X) = >
I I =N aaxa does not vanish at any point, P(D)

is said to be elliptic; an example is the Laplacian. Every elliptic operator is hypoelliptic (see [14]).
7A proof due to Hormander can be found in Yosida's "Functional Analysis" [44] or in Rudin's

"Functional Analysis" [38].
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Proof. The derivative of E = fY is E' = fS + fly = f(O)8 + fly = fly.
Then E" = f'(O)8 -}- f11y = f11Y and, by induction

E(n) = f(')(o)8 + f(n)y = 5 + e(n)y

Hence,

P(D)E = 8+ f(n)y + al f(n-1)Y + + an-ifY + an f Y
= S + YP(D) f = S

as announced.

As a first example in several variables, let us look for a fundamental
solution of the Laplacian

o-a1+...+a2

on Rn, which is the most important of all differential operators.
To this end, Green's identities8

(6.7) f v(x)u(x) dx + f vu(x) vv(x) dx = f vu d

and

(6.8) f v(x)u(x) dx - f u(x)v(x) dx = dv

are useful. Here 1 2 C Rn is a regular domain for the divergence theorem
and u, v are two C2 functions on St and v denotes the outer normal vector
field on the positively oriented boundary S of St.

Note that (6.8) follows from (6.7), and (6.7) is obtained by taking w =
vVu in the divergence theorem

(Div w)(x) dx = fw v d.

By the spherical symmetry of D, we are led to try a radial function

En(x) = b(r), r = lxi,
such that DEn = 0 on r > 0 as a possible fundamental function. In this
case,

En(x) _ '(r) + n r 1 l(r)
obtained from the chain rule of differentiation. Then, the radial solutions of
LEn = 0 on r > 0 are the C°° functions given by

C log r (n = 2),
(6.9) (r)

= {
C 2-n (n>2)

8 In 1828, G. Green's included these identities in "An Essay on the Application of Mathe-
matical Analysis to the Theories of Electricity and Magnetism". See footnote 17 in Chapter 2.
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plus an additive constant.

Denote by wn_ i the area of the unit sphere Sn_ i C Rn:

w0=2, wi = 271, w = 4-TII ,L
27rn/2

h F(n/2)

Theorem 6.26. The function En defined on Rn \ {0} by

(6.10) En(x) = 1 log

V(n-2)w

-2 f i 2_n2
if n 2

is a locally integrable fundamental solution for the Laplacian, and it is of
class C°O on Rn \ {0}.

Proof. Polar integration shows that En is integrable on B(0,1), and it is
clearly a C°O function on Rn \ {0}.

For p E D(Rn), we require that

(6.11) fRdx = P(0

Since En is singular at x = 0, we cut out from Rn a small ball B(0, r)
and, since cp is supported by some ball xl <R, we are led to integrate on
52,. _ {x; r < lxl< R} and to show that

(6.12) 1 m f T -''n(x)OcP(x) dx = P(0

We apply Green's identity (6.8) with v(x) = En(x) _ ',b(r) given by (6.9)
and u = cp. Since L\v = 0 on S2T and cp = 0 on a neighborhood of the outer
boundary lxi = R of S2T, we have

J EnOcp dx = J (Enav - dv.

On lxi = r the exterior normal points towards 0 and E(x) _ fi(r). Conse-
quently, again using Green's identities with v = 1 and u = cp,

dx = (r) J dQ + '(r) J p dv

= -(r) f + Cri_n f
Here IB(0, r)I = A7'and 0, so that, from the continuity of

limf dx = CWncp(0)
rO 1r

and we obtain (6.12) by taking C = 1/can.
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Remark 6.27. It will follow from Theorem 6.31 that 0 is hypoelliptic, a
result known as Weyl's lemma.

The behavior of this fundamental solution will allow us to show that (6.6)
gives a solution of the Poisson equation,9 Du = f, for any f E Ll, if n > 3.
In Exercise 6.37 we consider the case n = 2.

Theorem 6.28. 1f f E L1 (R) and n> 2, then u := D * f is swell-defined
locally integrable function which is a distributional solution of

Au=f.

Proof. Define Eo = xB(o,l)En E L1(Rn) and E = En - Eo E L°°(Rn).
Then Eo * f E V(R) and E * f E L°° (RT), so that u = 0 * f is well-
defined and locally integrable.

Now consider

f = XB(o,N) f and uN = O * f,
so that, by a standard application of the dominated convergence theorem,
uN - u in D' (Rn) and also Au" -+ Du in D' (Rn) .

But Au" = f N, since

DuN) - (A,En * fN)
- (.f N * Acp, E)

_ (A(fN * P), E) _ (fN * P, LEA)

= (fN * )() = (, fN),

and we are led to Du = limN AuN = limN fN = f D

There are similar results for the heat operatorlo:

Theorem 6.29. The function I' defined on Rlby

(6.13) I'(t x) - f(4ct)eif t> 0,
0 ift<0

is a locally integrable fundamental solution, of class C°° on Rn \ {0}, for
the operator

n

L-at-c0=at-c ax.
j=1

Here c> 0.

9Named after Simeon-Denis Poisson, who in 1812 discovered that Laplace's equation Ou = 0
of potential theory is valid only outside a solid.

101n Chpter 7, the Fourier transform will show that I'(t, x) is a natural fundamental function
for this operator.
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Proof. Note that, if t > 0, after a change of variable, we obtain

1 -1u12/2F(t, x) dx = e du = 1
Rn (2ir)n/2 Rn

and I' is locally integrable on R1+n.

For every test function (p,

atr) _ - urn f f n x)F(t, x) dt dx
e R

and, by partial integration,

(6.14) (cp, 8tI') = urn J f (e, x)8tI'(t, x) dt dx + f f(e, x)F(t, x) dx.
E "

Here I'(t, x) = t-n/2I'(1, t'/2x) and the substitution x = u/ gives

f, x)F(t, x) dx =
fRu)r(i, u) du (0)fF(i, u) du = (o)

when e j. 0, by dominated convergence.

A direct computation shows that, on t> 0,

atr(t, x) _ cor(t, x)

and integration by parts proves that

f f (t, x)8tI'(t, x) dt dx = f f cOcp(t, x)F(t, x) dt dx
t>e} n t>e}

and (6.14) becomes

(p, atr) _ nor) + (0),

which means that LI' = S.
It is also clear that I' is C°O away from the origin, since the partial

derivatives vanish as t 4.0 when x 0.

This fundamental solution is zero for t < 0 and, as for the Laplacian, we
have

Theorem 6.30. If f e Ll(Rl+n), then u I' * f is awell-defined locally
integrable function which is a distributional solution of the heat equation,

Lu -Btu- cLu= f.

Proof. Denote Ft(x) = I'(t, x) and ft(x) = f(t, x). To prove that
t

u(t,x) = f f rc-s(x - y).fs(y) dy ds
0o n
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is well-defined as a distribution, we apply Young's inequality to the convo-
lution Ft_8 * f8 to obtain

sup J Idx < 100 Ids dx = IIiitER Roo fn
and we conclude that u is defined a.e. and locally integrable.

Now, as in Theorem 6.28, we define

fN = XB(o,N) f and uN = F * f ,

so that uN u in D' (R) and also LuN -+ Lu in D' (R1+n) .
But again LuN = f N, since

(L,F*fN) = (fN*L',F)
(L'(fN*),F) = (fN*,LF)

(fN * = ( fN)

Thus Lu =1imN LuN =limn, fN = f

The regularity of the solutions of both Poisson and heat equations ap-
pears as special cases of the following theorem about operators that have a
fundamental function which is C°° away from zero.

We will use the fact that, if f e E(12) and u e D'(S2), then

D`Y(f u) = fDau + CD f Da-Qu = fDau + vas
o<I,3I<_lal

which follows from the Leibniz formula. Note that, if f is constant on an
open set G C Il, then v = 0 on G, since D13f = 0 on this open set for every

a#o.

Of course, by linearity, it follows that

(6.15) P(D)(f u) = fP(D)u + v and v = 0 on G if f is constant on G,

for every differential operator with constant coefficients P(D).

Theorem 6.31. If a differential operator with constant coefficients P(D)
has a fundamental solution which is of class C°° on R" \ {0}, then P(D) is
hypoelliptic.

Proof. Suppose that P(D)E = 8 with E of class C°° on {0}° and that
P(D)u = f on an open set S2 C Rn, with f E E(S2) and u E D'(S2). We
start by showing that every compact set K C S2 has an open neighborhood
G C St where u is C°O.
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We select a second compact set K(28) = K+B(0, 28) C SZ and we choose
G = K+B(0, 8). Then let K(26) - o - St and B(0, 8/2) - y - B(0; S), and
consider the compactly supported distributions ou and -yE. As in (6.15),

P(D) (ou) = oP(D)u + v = o f + v,

where v E D'(St) and supp v fl K(28) _ 0, since v is zero on a neighborhood
of K(28). Also

P(D)(yE) = ryP(D)E + h = 8 + h
and h E V(R9) since E is C°O on {0}° and h = 0 on B(0, 8/2).

Then
P(D)('YE * ou) = yE * of + yE * v

and
P(D) (ryE * ou) = ou + h * ou,

so that

ou = -h* ou+7E* o.f +yE*v = co+yE*v, So E D(Rn),

with supp (7E * v) C E(0, 6) + supp v C 1; thus u = cP on G.
By considering an exhaustive increasing sequence Km of compact sets

in 1 as in (3.2) and Km C Gm C Int so that u is a C°° function g
on Gm, we have that gm+1 = u = g,n on Cm, so that u = g on 1 if g is the
common extension to 1 of the functions g n . 0

Now the regularity of the solutions of the Poisson equation Du = f is
an obvious corollary of the preceding results:

Theorem 6.32. Let S2 be an open subset of R. 1f f EE(c) and if u E D'(S2)
is a distributional solution of

Du = f,

then u E E(S2).

Of course, there is the analogous result for the heat operator, but the
situation is not the same for the wave operator, i.e.,

n

o -at- o=at- ax.
9

j=1

on R1+n.

This operator is no longer hypoelliptic and it is more involved. Here we
describe only the elementary case n = 1, i.e.,

o-at-ax.
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After the change of variables

s=t-x, y=t+x
we are led to the operator

asay

since then f(s, y) = f(t - x, t + x) = g(t, x) shows that

4080yf (s, y) _ (at -
a locally integrable solution F(s, y) of

4a38yF(s, y) = 6(s, y),

and the simplest one, obtained by separating variables, is

F(s,y) = Y(s)Y(y) = X{s,yO}(S,Y).

Our candidate is then E(t, x) = cY(t - x)Y(t + x) with c such that

cp(0, 0) = J 2 E(t, x) dt dx
R

= 2 f 2 '(y)Y(s)483aycp(s 2 , S 2 Y)dsdy
R

=
Thus

ZE(t,x) = Y(t - x)Y(t + x);
that is, E = 1/2, constant in the sector t + x > 0, t-x > 0, and 0 elsewhere.
This shows that the operator is not hypoelliptic.

6.5.3. Green's functions. For the boundary value problem

Lu - (pu')' - qu = g (0 < p E C1[a, b]; q E C[a, b])

with

and
Bi(u) := Alu(a) + AZU'(a) _ 0

B2(u) := Blu(b) + Btu (b) = o

(IA1I + IA2I 0)

(IBiI + 1B21 0)

the Green's function G(x, ) has been defined in (2.37) so that it is contin-
uous and, for every E (a, b), it satisfies the following properties:

(a) G(.,) E C2([a, ) U (,b]), 0 on [a,) U (,b], and G()
satisfies the boundary conditions 0, B2(G(.,)) = 0.

(b) G(.,) e C[a,b].
(c) The right side and left side derivatives of exist at x = ' and

- 0G(-,)=.
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Note that, as a distribution on (a, b), which will also be
represented by

LG(x,) = 6(x).
Indeed, for every cp E D(a, b), and if we denote G = we can write

(,qG),
where, since supp cp c (a, b) and G is continuous, integration by parts
produces

- b

((pp')', G) = -{ d

f+
}'pG.

Finally we integrate by parts once again to obtain

(,LG) _ (,qG) + {f_f+ }(pG)' - (pG)(-) + (pG)(-)
- b

= { L - + }(Lc) - (p)()(G-) - G+))

= (p)() = =

On the space

{u E C2 [a, b]; Bl (u) = 0, B2 (u) = 0},

the operator T f (x) = fQ G(x, )f() d _ (f(), G(x, )) solves Lu = f.

In a more general setting, we say that G(x, ) is a Green's function
for a differential operator L on an open set SZ C Rn if E D'(S2)
and

for every E S2.

Formally, if u(x) _ (f(),G(x,)) = fG(x,)f()

d = (f(), 5()) = 1(x)

and T f (x) :_ (f(), G(x, )) solves Lu = f.

Note that if E is a fundamental solution for a linear operator with con-
stant coefficients P(D), then G(x, ) = E(x - ) is a Green's function for
P(D) on St = R", since

=TES = S

and the formal solution is u(x) = f G(x, )f() d = E * f.

By requiring to satisfy some linear conditions that determine a
subspace H of D'(S2), we can try to solve Lu = f with u E H.
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This was the case in Theorem 2.53 for a boundary value problem.

As a very important example, let us describe a method to find a Green's
function for the Dirichlet problem
(6.16) Du = f, 0

on a bounded open set SZ C R. For such a Green's function, G, the
requirements are

(s.17) oc = G E Ga(y) = o ey E asp

for every E 12, where we denote G(x) = G(x, ).

The uniqueness of such a function will follow from Theorem 7.37, and
the existence will be proved for instance if for every E Sl we can solve the
Dirichlet problem

= 0 on SZ, g E C(S2), En(y - ) b'y E aSZ,

with En the fundamental solution defined in (6.10), since by defining

G(x,e) = E(x - -
G satisfies (6.17).

From the condition G = 0 on BSI, the possible solution

u(x) = fG(xe)f(e)de

of Du = f will also satisfy u(y) = f G(y, )f() d = 0 when y e BSZ.

Similar heuristic arguments can be used to guess a method to solve
the homogeneous Dirichlet problem on SZ with inhomogeneous boundary
conditions

(6.18) Du = 0, ups = f

It can be shown that, if the bounded open set 12 has a C°O boundary,
the Green's function G exists, G(x, y) = G(y, x), G(x, ) extends to G(x, ) E
C°°(SZ \ {x}) for every x E SZ, and

u(x) = J[G(x,y)f(y)dy

is the solution of (6.16).

If u is this solution, since Du = 0, a formal application of Green's
identiy (6.8) leads to

u(x) = fu(y)o(x - y)dy - ft (u(y)G(y) - dy

= f u(y)av(y)GX(y)di(y) = f f(y)0()GX(y)di(y).
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The function

P(x,y) = a,.(y)G(x,y) ((x,y) Eli x S)

is called the Poisson kernel for 12, and

u(x) = I P(x, y)f(y) dyis
is the Poisson integral, a candidate for the solution of the Dirichlet prob-
lem (6.18).

Usually it is hard to find Green's functions and Poisson kernels. We
restrict ourselves here to the very special but important case of the ball
B = {x E Rn; lxi < 1} and we refer to Folland's "Introduction to Partial
Differential Equations" [14] for further information on this subject.

6.5.4. Green's function of the Dirichlet problem in the ball. We
write

Ey
(x, y) = E'(y, x) = E'n(x - ) _

log Ix -
l

if n = 2,
if n 2

and note that, if x 0 is given, the function

gx x2_ThE(---

is harmonic on Rn \ {0, x/1x12}. We claim that g(y) = E(x, y) if y E S =
aB.

Indeed, if r i> 2 and lI = 1,

E(x,y) -g(y) =-
(ri - 2)Wn-1

(lx_yl2_ IIxlyl2-nl

J

and

(6.19) lx - y

since

lx
yl2 _

I lxly l2 - 2lxl-Zx . (I xl y) - I Ixl-lxl2=
- I lxly-lxl-lxl2.

We define
1

(IxG(x,zJ) := l2_ Ixl1x _ xlyl(n
- 2)wn-1 l

G(0,y) - 1
(ll2-n - 1).

(ri - 2)Wn-1
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Then G satisfies all the required properties.

If n = 2,

(6.20) G(x, y) :-
271

(logx-y - log

when x 0, and

G(0, y) := -logy.IyI

We can compute the Poisson kernel for the ball,

P(x, y) = y) ((x, y) E B x S)

since v(y) = y is the normal vector to the sphere S and the normal derivative
on S is _ >1=i y3aye . Thus, when n > 2,

P(x, y) _ 1 (Yi(XiYi) IWn-1

j-1 \ - yl + IxIy - IxI-lxl

1 (1Y12-XY 1x121y12-x.y l
Wn-i \ lx - I IxIy - IxI-lxr)

and from (6.19) we obtain
l2

(6.21) P(x,y) = wn 1 Ix -y1"
((x, y) E B x S)

when n> 2.

If n = 2, we recover the Poisson kernel of Theorem 5.8, since a direct
computation of with G defined as in (6.20), leads to

Ia

((z,) E U x T).P(z, e) -
271 ±zz

Note that here we have included the normalizing factor 1/27r.

Now the expected result for n> 2 can be proved:

Theorem 6.33. If f E C(S) and P(x, y) is the Poisson kernel for the ball
given by (6.21), then the function

u(x) := J P(x, y) f (y) dy (x E B)
s

is harmonic on B and extends continuously to B and u = f on S.

Proof. We will follow the argument used to prove Theorem 2.41, now based
in the following facts:

(1) fP(x,y)da(y) = 1.
(2) If Yo E Sand V = B(yo, S)nS, then lim,.Tl fs\v P(ryo, y) dv(y) = 0.
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To prove (1), we will apply the mean value theorem for harmonic functionsll
to P, = P(.,y),

Py(x) = 1j fsrx P (z) dv(z) = Wn-1s() y
at the point x = 0, if 0 < r < 1, which gives

Is
Py(x + rz) dv(z),

1 = P(O, y) = 1 fP(rz,y)da(z).
Wn-1 Wn-1 S

By (6.19), P(rz, y) = P(ry, z) and

Is
P(ry, z) dv(z) = 1

is (1) if x = ry, with r < 1.
Fact (2) is almost obvious, since in

1 1 -
(ryo,y) =1

Wn-1 I ryo - yI n

lim,.Tl(1- I= 0 and 1/Iryp - yIn is uniformly bounded for 1/2 <r < 1
and ly-yol ? 8

Proceeding to the proof of the theorem, if > 0 is given, choose S > 0
so that

f(y)-f(z) if y - zI< S

and V (y) = B(y, S) n S. Then by (1)

f(y) - u(ry) _ { f + f }(f(y) - f (z))P(ry, z) da(z)
(y) \V (y)

and we obtain

f - u(ry)I + 2II1IIS J P(ry, z) dv(z) < 2
s\v(y)

if r is close to 1, by (2).

This shows that lim,. fii u(ry) = f(y) uniformly for y e S, and u has a
continuous extension to B given by u(y) = f(y) if y E S. O

In Exercise 6.38 we leave it to the reader to prove a similar result for
the L' convergence u(ry) -+ f(y) for every f E Lu(S).

11 See Folland, "Introduction to Partial Differential Equations" [14, page 90].
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6.6. Exercises

Exercise 6.1. Let 0 <r < 1. From g as in Example 6.1, define a Urysohn
function or for [-r, r] C R supported by [-1, 1] by choosing first

(x) :=
J

g(t)g(1 -r - t) dt

and then

Qr(X) = (1 + x)(1 - x).

On Rte', if 0 < R < 1, find r so that H(x) = o,.(1x12) defines a test function
H such that B(0, R) -< H -< B(0,1).

Exercise 6.2. If S2 is open in RTh and 1 < p < oo, prove that D(12) is dense
in I.P(S2).

Exercise 6.3. Consider on D(R) the locally convex topology T defined by
the sufficient sequence of norms

IkoIIN := m I(m)II.

Prove that this topology is metrizable but not complete and that its restric-
tion to every DK(R) is the topology that we have defined on this vector
space. Show also that the convergence of sequences in D(R) for T is not
the convergence that we are considering for sequences of test functions.

Exercise 6.4. Suppose 0 # cp e D(R) and cp(t) = n-lcp(n-it). Study the
possible convergence of the sequence {cp} 1 in D(R) and in E(R).

Exercise 6.5. In D(St), let Lf be the family of all convex balanced subsets
U such that U fl DK(S2) is an open set in DK(S2), for every K E K(S2).

(a) Show that Lf is a local basis for a vector topology in D(12).

(b) Show that the convergence for this topology is precisely the conver-
gence we are considering in D(St).

(c) Show that for this topology every Cauchy sequence is convergent.

(d) Show that for this topology the dual of D(12) is D'(12).

Exercise 6.6 (Borel). Let {cn,}1 C C. Prove that there is a C°° function
f on R such that f(m)(0) = cfiz for every m e N as follows:

(a) Consider [-1,1] cp (-R, R), define

f(t) := n
with {rn}1 C [1,00), and prove that, if m <n,

m

IIfm)IIa \ij=o

RTh 3

(n-i)!
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with qas in (6.1) on the compact set [-R, R].
(b) Show that it is possible to choose {r}1 C [l, oo) so that the

functions fn satisfy 1/2.
(c) Prove that f(t) = f(t) for some f E E(R) and f(m)(O) =

Exercise 6.7. Prove that, for every function f E L() and every complex
Borel measure µ on SZ, the distributions defined by

(,f)=f(x)f(x)dx and (cp, µ) = J cp dµ

are of order 0.

Exercise 6.8. Prove that the Dirac distribution 6a is not a function.

Exercise 6.9 (6' is not a measure). Show that the distribution 6' is not a
complex measure.

Exercise 6.10. Find KA in DA(RT) if {KA}AEA is a summability
kernel on R.

Exercise 6.11 (Dirac comb). Prove that jjj _ Sk on R is well-
defined as the sum of a convergent series in DA(R).

Exercise 6.12. Find the order of S('"') E D'(R).

Exercise 6.13. Prove that
00

u() = 1/n)
n=1

defines on (0, oo) a distribution of infinite order that is not the restriction
of any distribution v on R, meaning that u

Exercise 6.14. Every positive linear form u D(f) -k C (u(cp) > 0 if
cp > 0) is a distribution. The restrictions u : DK(S2) -+ C satisfy u(cp)I <
u(P) II PII x if o is a Urysohn function on K C S2, and they are continuous.

Exercise 6.15. Let f E Li C(R\ {xO}) and assume that xo is a noninte-
grable singularity of f. We only know that f fcp exists for a test function
cp if xo ¢ supp co. A regularization of f is a distribution u1 on R" which
satisfies u f (cp) = f fco if xo supp co.

For the function f(t) = 1/t, on R we obtain a regularization of f by
taking a, b> 0 and defining

of() fdt+ft) - (°) dt +
J

+ P(t) dt.
0o t a t b t

vThere is a continuous function so that u2(cp) := f-a t

dt defines a distribution on R, and u1 appears as the sum of three
distributions. If 0 ¢ supp cp, then u1(p) = fR cp(t)/t dt.
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Exercise 6.16. Prove the following statements concerning limits in DA(R).

(a) If ur(cp) f-r (t t`°(O) dt (r > 0), then ur E DA(R) and ur - 0 as
r ,. 0.

(b) pv t :=1imEyo X[-E,E]c (t) t is awell-defined distribution. Moreover, if
supp cp C [-r, r], then

(,pv) =UT()
and we write

(,pv) - pvf+oo
dt.

t
It is a regularization of f(t) = 1/t.

Exercise 6.17. Let f E L( R\{0}) so that f(x)ixitm is locally integrable
for some positive integer m and, for a test function cp, denote by

Tm(X) := d(0)(x,.. . , x)
k=0

the Taylor polynomial of degree m, so that i- T.,,,,cp(x)i < if
lxi <r. Show that

fR
- Tm(X)X(_oo,l)(iXI)) dx

defines a regularization of f.

Exercise 6.18. Find the distributional derivatives y(n) of the Heaviside
function Y = X[o,oo)

Exercise 6.19. Show that f(t) := log iti is locally integrable on R and
prove that f' = pvt. Note that logE(cp(-e) - (p(E)) = 0.

Exercise 6.20. Let f(t) = fo g(x) dx (t E R) for some g E L1 (R); that is,
f is an absolutely continuous function on R, and f' = g a.e.

Prove that g = f'is the distributional derivative of f : (cp, g) _ -(cp', f)
for every test function cp on R.

Exercise 6.21. Prove that D« D'(SZ) -+ D'(St) is a linear continuous
operator that extends Da : E(12) - E-IaI(12), if al < m.

Exercise 6.22. Suppose P(D) _ I«I<m caDa is a differential operator
with C°O coefficients ca on S2 and denote P(D)au IIoI<m Da(cau).

Prove that P(D)aa = P(D) and (P(D)u)cp = u(P(D)acp).

Exercise 6.23. Prove that, if at least one of u, v E D'(Rn) has compact
support, then TQ(u * v) _ (TaU) * v = u * (aV).

m
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Exercise 6.24. Prove that supp Dau C supp u for every distribution u E

Exercise 6.25. Find the supports of Y and S' on R.

Exercise 6.26. Prove that the order of all distributions with compact sup-
port is finite.

Exercise 6.27. Prove that 1 * (S' * Y) (1 * S') * Y and that this is not in
contradiction to Theorem 6.21(b).

Exercise 6.28. If u e E'(R"), prove that u* : E(R") -+ E(R) is a contin-
uous linear operator which commutes with translations.

Exercise 6.29. We say that {dam,,}m=1 C L(R) is an approximation of
S if

1

J
b dm(t) dt = 0 if 0 [a, b] and 1

J
b dm(t) dt = 1 if 0 E (a, b).

a a

(a) If {dm}1 is an approximation of S and fX1 dm(t) dt,
prove that Y and dm - S in D'(R).

(b) Find a concrete approximation of S.

Exercise 6.30. Not all the solutions in D'(R) of the differential equation
tu'(t) = 0 are classical solutions.

Exercise 6.31. Find the fundamental solutions of the differential operator
P(.D)u = u" - u" + u' - u.

Exercise 6.32. Find the fundamental solutions of P(D)u = u" + 3u" -I-
3u' + u.

Exercise 6.33. Here we assume that cp e n E2(R2) and that E2
is the fundamental solution for D on R2. Prove that u := cp * E2 is a
classical solution of the Poisson equation Du = cp; that is, tu(x) exists in
the pointwise sense and coincides with cp(x).

Exercise 6.34. On C = R2, prove that
1E(x,y) := - (z=x+iy)

is a fundamental solution of the Cauchy-Riemann operator

az := 2 (ate + i8y).

Exercise 6.35. (a) If c 0 and u e D'(R), show that we can define
u(x - cy) E D'(R2) by

((x,y),u(x - cy)) = fR((),yu) dy E D(R2))
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and that, if u E L then this distribution is a locally integrable function
on R2.

(b) Show that for any distribution u e v = u(x - ct) is a distri-
butional solution on R2 of the wave equation 0? v - 0.

Exercise 6.36. Prove that the heat operator and the Cauchy-Riemann
operator are hypoelliptic.

Exercise 6.37. Prove a version of Theorem 6.28 to find a solution of Lu = f
on R2 under the assumptions f e Ll(R2) and 1(x) E Ll(R2).

Exercise 6.38. Suppose f e LIP(S) (1 <p < oo) and P(x, y) is the Poisson
kernel for the ball given by (6.21). Prove that

u(x) :_ f P(x, y)f (y) d(y) (x e B)

is awell-defined harmonic function on B which satisfies the boundary value
condition

1(y) - u(ry)Id(y) =0.rtl s

References for further reading:
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J. Horvath, Topological Vector Spaces and Distributions.

E. H. Lieb and M. Loss, Analysis.

W. Rudin, Functional Analysis.

L. Schwartz, Theorie des Distributions.
K. Yosida, Functional Analysis.





Chapter 7

Fourier transform and
Sobolev spaces

The Fourier transform is one of the most powerful operators in analysis. Its
scope and applications have been extended to areas as different as harmonic
analysis, partial differential equations, signal theory, probabilities, and alge-
braic number theory.

Its virtues depend on the use of the functions et = cos(at) + i sin(at),
which are the homomorphisms of the additive group R to the multiplicatioe
group T, and on the translation-invariance of the Lebesgue measure.

These facts are intimately linked to the fundamental properties of con-
verting convolution and linear differential operators into multiplication oper-
ators, changing convolution and partial differential equations into algebraic
equations, and yielding explicit solutions in basic equations such as Laplace,
heat, and wave equations.

With the extension to distributions, the scope of the Fourier transform
increased substantially. By considering the Sobolev spaces of functions with
distributional derivatives in L2 up to a certain order, a control on the
smoothness properties of these functions is obtained. The reason is that
the Fourier transform, which changes differentiation into multiplication, is
an L2 isometry and L2 is a Hilbert space.

With the fundamental properties of the Fourier transform of distribu-
tions, we present an introduction to the theory of Sobolev spaces.1 For

1 Around 1930 the Russian mathematician Sergei L'vovich Sobolev introduced his space
W"2(f), or H1(el), with the use of weak derivatives as the natural Hilbert space for solving the
Laplace or Poisson equation -Du = f with boundary conditions. A little later, in France Jean
Leray considered a similar method to find weak solutions for the Navier-Stokes equation.

181
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completeness, we give the basic definitions in the L setting but, in fact, we
only use the Hilbert space case, p = 2.

The estimates given by the Sobolev norms are a standard tool to prove
the existence and regularity of solutions for partial differential equations.
We illustrate this by means of an application to the Dirichlet problem and
by studying the eigenfunctions of the Laplacian, and we include Rellich's
compactness theorem, a result which is of great importance in the applica-
tions.

7.1. The Fourier integral

For each = (er,... , fin) E Rn, e is the complex sinusoidal defined on Rn
by

e£(x) := exp (2ixkek).
k=1

The Fourier integral f of a function f e Ll(Rn) is defined by

fR
dx - f, e-E)

The Fourier transform F: Ll(Rn) -+ L°°(R) f1 C(R), such that
Fl = f, is a linear mapping and IIfIII If Iii (i.e., IIFII < 1)

An application of Fubini's theorem, derivation under the integral, partial
integration and elementary changes of variables show that the following
useful properties of the Fourier transform hold on L' (R7):

(a) Ta f = e_Q f and ea f = Td f .

(b) [hf(h'x)]) = Ihe) and [f(hx)]) _

(c) 77 q = J. g and fRn f(') dy = f$.n f(y)g(y) dy

(d) 81 f (e) _ (-2iri)[xif(x)}(e), if xl f (x) is also integrable.

(e) 81 f (e) = 2irie1 f (e), if f is of class Cl and 81 f is also integrable.

Note that to check (e) we can suppose n = 1. Then 1(t) = fo f'(x) dx +
f(O) and limt+f f(t) = fo f'(x) dx + 1(0) exists and is finite, since f'is
assumed to be integrable, and this limit has to be 0, since f is also integrable.
Integration by parts gives

J
ff/(t)e dt = f(t)e_2t] :=i: + J

ff(t)e_2t dt

with f(t)e_2t}t = 0.
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N
The inverse Fourier transform is the mapping F such that

(f)() := f f(x)e2 dx = (f, e) =

Example 7.1. The Fourier integral of the square wave, X(-1/2,1/2) is the
function sinc defined as

since
f1/2

dx =

J
1/2 dx - i J 1/2 dx = sinc (c).

This function plays an important role in signal analysis and will appear
again in Theorem 7.18.

Example 7.2. If W is the function defined on Rn by W (x) = e-*12, then
W=W and

(7.1) f e-21rix dx = 1 e-12/a
'1

an/2

for every a > 0.

If n = 1, from W'(t) _ -2ii-tW(t), the Fourier transform gives

2irW() + ()'() = 0
and then

(e2IX())' = 2W()e2 + ()F()e2 =0.

Thus K, a constant. The value of this constant is obtained from
the Euler-Gauss integral f_00 e-x2 dx = with the substitution x = t,
which gives

K = W(0) = e_ t dt = 1,

so that W() = W().
For n variables, W(x) := e-*12 = W(xl) W = W.
Another simple change of variables or an application of property (b) of

the Fourier transform yields (7.1).
N

The operators F and .F will be extended to certain distributions, known
as temperate distributions, and their extensions will essentially keep prop-
erties (a)-(e).
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To show why J' is a valuable tool for solving some partial differential
equations, consider the example of an initial value problem for the heat
equation on [0, oo) x Rn,

(7.2) au(t,x) - L\u(t,x) = 0, u(O,x) = f(x),

with D = > 1 3, and formally apply .F with respect to the variable
x E Rn. By property (d),

atu(t, ) + 4ir2IeI2u(t, ) _ 0, (o, ) =

and, taking as a parameter, we note that this is a very simple initial value
problem for an ordinary linear differential equation whose solution is

= 1(e)e_422t.

According to Example 7.2, if a = 1/(4irt),

(4irt)/2
fRn

dx

so that, by property (c),

= Je)X(e) =

if Wt(x) _ (4irt)-n12e-1x12/4t. Hence, the function

(7.3) u(t, x) _ (f * wt)(x) = 1(4t)/2 fRe-Iy12/4tf (x - y) dynn
is a candidate for a solution of (7.2).

Note that

Wt(x)
()W()

is a summability kernel, known as the Gauss-Weierstrass kernel, associ-
ated to the positive integrable function W, so that the initial value condition
limt,1,o f * Wt = f will hold.2

Moreover, equation (7.3) suggests I'(t, x) = Wt(x)Y(t) as a possible
fundamental solution of the heat operator, which is the case as we have seen
in Theorem 6.29.

The following Poisson theorem relates Fourier integrals with Fourier
series:

2 See the details in Exercise 7.2.
3This was how Poisson constructed solutions for the heat equation in the work contained in

his "Theorie mathematique de la chaleur" (1835).
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Theorem 7.3. Suppose that f E L' (R) satisfies the condition

Then there exists a continuous T-periodic function fT on R such that
00

fT(t)= f(t-kT) a.e.
k=-oo

and

fT(t) _
k=-m

1 1f ,
T T

a series which is uniformly convergent on R, that is, in CT(R).

Proof. Denote L = T/2. On [-L, L) (and on every [kT - L, kT + L)), we
can define a.e. the periodic function

00

fT(t)
k=-oo

- kT),

with convergence in Ll (-L, L), since

I If(t-kT)Idt= If Iii <00

and then k_oo I- kT) I <00 a.e.
The Fourier coefficients of fT E LT(R) are

1- kl
ck(.fT) - T'f CTI'

since
1 °O L

f(t - kT)e-2t/T dtCk(.fT) - ilLT
k=-oo

_ - f (t)e
Tk -L-kT=-oo

00

2k it T- ir / dt

1
T fR .f (t)e_2tu/T dt.

From condition (7.4) and by the M-test of Weierstrass, it follows that
the Fourier series is absolutely and uniformly convergent to a continuous
function which coincides with fT a.e.
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If the support of f is compact, or if there are two constants A, b > 0
such that

A(l + II)',
then the integrable function f satisfies condition (7.4).

The function fT is called the periodized extension of f. If supp f C
[-T/2, T/2], fT is the T-periodic extension of the restriction of f to the
interval [-T/2,T/2].

7.2. The Schwartz class s

To define the Fourier transform of distributions, instead of V(R) we need
to consider a class of C°O functions that is invariant under the Fourier trans-
form. Properties (c) and (d) of the Fourier transform suggest that we con-
sider the complex vector space

S(R) :_ {coES(R); gnr(cp) < oo for N=0,1,2,...},
where

sup (1 + I
xER; IaI<N

Note that xal < if a < N, so that cp E S(R) is in S(R) if and
only if, for every couple P, Q of polynomials, the function P(x)Q(D)cp(x)
is bounded.

The topology of S(Rn) is defined by the sequence qo < ql < q2 < of
norms, so that the convergence cps -+ cp in S(R) is the uniform convergence
on Rn

xDacOk(x) - xQD«co(x)
for all a, Q E N, which is equivalent to the uniform convergence

P P
Q of polynomials.

The following theorem collects some basic properties of this new space.

Theorem 7.4. S(R), with the topology defined by the increasing sequence
of norms {qN}L0, is a Frechet space.

The inclusions V(R) C S(Rn) C Ll (Rn) are continuous (that is, for
every compact set K C R, the mappings DK(R) y S(R) y Ll(R")
are continuos), and V(R) is dense in S(R).

The differential operators P(D), the multiplication by polynomials, trans-
lations, dilations, the symmetry, and every modulation or multiplication by
a complex sinusoidal eQ are also continuous linear mappings of S(R) into
S(R).
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Proof. If {cps} C S(Rn) is such that every {(1 + 1 is a
uniformly Cauchy sequence, then (1+ IxI2)ND«cpk(x) - cpn,,«(x) uniformly
as k -+ oo, so that cp = cpo,o e £(R), since D«cpk(x) -+ p0,«(x) uniformly
and then cp e £(Rn) and p0,«(x) = D«cp(x).

Hence (1 +IxI2)ND«cpk(x) - (1-I-IxI2)T"D«cp(x) uniformly, which means
that cps -+ cp in S(Rn).

Note that
0o rn-100 rn-111

fR (1+ xI2)N dx - Wn Jo (1-I- r2)n'
dr < o0

ifn-1-2N<-1.
Then, if N > n/2 and cp e S(Rn),

IIMi
fR

dx -

and S(Rn) y L1(R) is continuous.
Recall that the topology of DK(Rn) is defined by the increasing sequence

of norms

pN((p) := sup IIDIIK = sup IID«oIIRn,
IaI<N IaI<N

so that, if cp E DK(Rn),

glv((P) suP(1 + I
xEK

and DK(Rn) y S(Rn) is continuous.
To prove that D(Rn) is dense in S(Rn), let cp e S(Rn). To find functions

cpnr e D(Rn) such that cpN -+ cp in S(Rn), choose B(0,1) -< o -< Rn and
define oN(x) = o(N-ix) (N E N), so that B(0, NJ -< ON -< Rn.

Then, if cPN =

ID - N)(x)I (;) ID (x)IID(1 - QN)(x)I

QJIsup I- PN)(xlN)I
Q_ xER.Th

where we can select N so that sup1Xp>N I< E for all Q < a, since
D«-Qcp e S(Rn). Note that DQ(1 - oN)(x) = 0 if Ix <N, and we obtain

sup ()EN_11 sup I- oN)(x/N)l CN,«E.
xERTh Q IxI>rr
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A similar estimate holds for every supxERn (1 + I cp - (pN) (x) I, since

also

sup (1 +

Thus, qm(cp - cpnr) --+0 if N -4oo.

We leave the remaining part of the proof as an easy exercise. O

Theorem 7.5 (Inversion Theorem). The Fourier transform is a continuous
bijective linear operator F: S(Rn) -+ S(Rn) and .F'-1 = F.

Proof. For every cp E S(Rn), the functions DQx«cp(x) are also in S(Rn)
and it follows from the properties of .F that eare bounded and
<p E S(Rn).

To prove that F: S(Rn) - S(Rn) is continuous, note that

C(j) (N > n/2),
fRTh

so that, if cpk - 0 and cps - in S(Rn), then cpk(e) - 0 and b(e) = 0,
and the continuity now follows from the closed graph theorem.

To show that .F'.F = I, if we try a direct calculation of .F(.Fcp), the
integral

1(x)e2_d dx
is not absolutely convergent on R2n.

We avoid this problem by using properties (b) and (c) of the Fourier
transform to obtain

fRfl
f(y)(hy) dy - fRn .f

(y)Lh-n9(h-lx)]'(y) dy - fRfl 1(y)hg(h1y) dy

which, with the substitution by = x, becomes

jzr''
fRn f(h'x)(x) dx - R

f(y)g(h1y)

that is, fRn f(h1x)(x) dx = fR f(y)g(h_1y) dy. By letting h -+ oo, the
dominated convergence theorem gives

fRn
f (0)(x) dx =

fRn
f (y)g(0) dy.

If we choose g = W, since fRn W (x) dx = fR W (x) dx = 1 and W(0) = 1,

1(0) - fRn I(y) dy.
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An application of this identity to f(x) _ ('rf)(O) combined with property
(a) gives

f(x) - fRn T
f (y) dy - fRfl ex(y)f (y) dye

which is f = .F.F f . The identity f = .F.F f is similar.

As an application, let us present a new proof of the Riemann-Lebesgue
lemma.

Corollary 7.6 (Riemann-Lebesgue). If f E Ll(Rn), then IE Co(Rn); that
is,

lim f(e)=o.
II-oo

Proof. We know that D(Rn) is dense in Ll(Rn) (see Exercise 6.2) and, if
cps -+ f in L' (R), then cpk - f uniformly with cps E S(Rn) so that they
are null at infinity.

Not only multiplication by a polynomial and by ea is continuous on
S(Rn):

Theorem 7.7. If b E S(Rn) and ws(x) :_ (1 + 1x12)3/2 (s E R), the
pointwise multiplications li and ws and the convolution b* are continuous
linear operators of S(Rn).

Proof. Let cp E S(Rn) and note that, if al < N,

(1+ lC (Q) (1-I- 1
since every D"-'b(x)I is bounded. The case of ws is similar, since Wscpl <
(1 + I I and I c

Finally, cp) _ so that b * cp = F(b).F(cp)) and rb* is
the product of continuous operators. O

7.3. Tempered distributions

If s'(Rt) is the topological dual space of s(Rt), it follows from Theorem 7.4
that the mapping u E s'(Rt) -+ v = UID(Rn) E D'(Rt) is linear and one-to-
one.

A distribution v E 2Y(Rn) is the restriction of an element u E S'(Rn) if
and only if there exist N E N and a constant CN > 0 such that

l CNgN(<P) -Cdr sup (1 + ((P E D(Rn))
xER"''; IaI<N
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The elements of s'(Rn), or their restrictions to D(R), are called tem-
pered distributions. On s' (Rn) we consider the topology w*, so that
uk - u in s' (Rn) means that (co,uk) - (p,u) for every cc' E s (Rn) .

It is customary to identify every u e s' (Rn) with its restriction v e
D'(Rn), so that

S'(Rn) C D'(Rn).

Example 7.8. Suppose 1 < p < oo and N E N. If (1 + 1is in
LP(Rn), then, as a distribution, f e S'(R"). In particular,

L(RTh) c-+ S'(R) (1 < <
and this inclusion is continuous.

Ifp=1,
f(x)(1 + IxI2)(x)dx

fRn+
x2)f(x)gN()(Lx

If p> 1, using Holder's inequality, we obtain

( cNP(f I(l + IxI2x)fP/ dx
)lip

and, if M is such that fRn (1 + 1x12)N_M dx = C < oo, a division and
multiplication by (1 + 1x12)M give

I<Cn;PCl/P' sup (1+ IC
xER7b

Example 7.9. Every distribution with compact support, u e E'(R"), is a
tempered distribution.

The inclusion 8(Rtm) -+ (R) is continuous, since the topology of
E(R") is defined by the seminorms

pK,N(P) = SUP IIDacoIIK

and,rox,N(cP) C if cp e S(Rn).

Moreover S(R) is dense in e(Rn), since V(R) is dense, and the re-
striction of u e e'(Rn) to 8(Rtm) is a tempered distribution.

Let P be a polynomial with constant coefficients, zb e S(Rn), and u E
S'(Rn). As in the case of general distributions, we define Pu, P(D)u, and
bu by

(p,P(D)u) _ (P(-D)p,u), (_ (PAP, u), (_ (bp,u),
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where P(-D) = >&N if P(x) = ;IN (the substitu-
tionof every x ' by (_a)&i, and D& = ai 1 . a«n) .

They belong to S' (R), since they are the composition of continuous
linear mappings. For instance, P(D)u : cp F P(-D)cp H u(P(-D)cp),
where P(-D), P , and b are continuous on S(R), their transposes are
P(D), and and they are continuous linear operators of s'(Rn).

Also translations, modulations, dilations, and the symmetry defined,
respectively, by

(T_a(p,U), (co,eau) = (eaco,u), (are
continuous linear mappings of S'(R'S) into S'(R'S).

7.3.1. Fourier transform of tempered distributions. Property (c) of
the Fourier integral on Ll(Rn) suggests that we may also define the Fourier
transform u of any tempered distribution u by

(:_ (,u) E s(Rn))
Since .F is continuous on S(R), u = u o ,F' E S'(R) for any u E S'(Rn).
We still write Fu = I.

Similarly, .F is defined on S'(R'S) by (:_ (Fcp, u).

Theorem 7.10. The Fourier transform F: S'(R) -+ S'(Rn) is a bijective
continuous linear extension of F: Ll(Rn) L°O(Rn). The inverse of ,F
on S'(R) is F.

The behavior of .F on Ll(R) and on S(R) with respect to derivatives,
translations, modulations, dilations, and symmetry extends to the Fourier
transform on S'(Rn), and Fu = .Fu.

Proof. If f E L' (R) and U f = f), then ,Fuf = 1).
As the transpose of F : S(R) -+ S(R), ,F : S'(R'S) -+ S'(R) is

weakly continuous. By property (c) of the Fourier integral, if f E L1(Rn),
then .Fuf = u1 and .F Ll(Rn) L°O(Rn) is the restriction of .F
S'(R'S) - S'(R'S).

Also, .F.F = Id and F.F = Id, since

Let us consider the behavior of .F with respect to dilations:

(F[u(hx)] (y)) _ (x), u(hx)) _ (h(F(p) (1i-'x), u(x))
= (Fu)(y))

_ (h-n(.Fu)(h-ly)),
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and u(hx) is the distribution h-"u(h-ly). We leave it to the reader to check
the remaining statements.

For differential operators, P(D) _ >IaI<mCaD« (ca E C),

(_ (P(-D)Fcp,u) _ (P(27riEjFco(e),u(e))
and FP(D)u is the distribution P(2irie).Fu(e). U

Example 7.11. 1 = S, since (;p,1) = fRfl ;p ( ) d = o(0) = (co, 6). As a
ismodulation of 1, the Fourier transform in s'(Rn) of the function e2'

Tab = Sa .

Similarly, S = 1, and Sa (e) =

e LT (R) is a tempered distribution such that, in

00

:i: ck(f)e2kt/T

Here
1 atT

Ck(f)
a

are the Fourier coefficients of 1.

Since

and
+oo

Ck(.f)sk/T
k=-oo

f(t)e_2t#'T dt

/' If(t)12 +O°

fkT

(kt l)T
I.f (t)I2

R 1 + t2
dt

1 + k2
dt = CII.f II,

k__00

it follows from Example 7.8 that LT(R) y S'(R), continuously. Then

t=
k=-oo

in SC(R), since this is true in (R).
But the Fourier transform is linear and continuous in S'(R), and maps

e2it/T into so that f = >k=-oo ck(f in SC(R) 4

7.3.2. Plancherel Theorem. We also have L1'(Rn) C S'(Rn), and the
action of F on L2(R) is especially important.

Theorem 7.13 (Plancherel5). The restrictions of F and F to L2(R) are
linear bijective isometries such that .F = .F-1.

4These results are also true for f E L, (R) (p > 1), since f = _ oo ck (f )e2it/T in
LT (R) .

5Named after the Swiss mathematician Michel Plancherel, who in 1910 established conditions
under which the theorem holds. It was first used in 1889 by Lord Rayleigh (John William Strutt)
in the investigation of blackbody radiation.
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Proof. Since is dense in L2(R) (((p, f) = 0 for every cp implies
f = 0, so that V(R)1 = {0} in L2(Rn)), the larger subspace S(Rn) is also
dense.

The identity fR cp(y)g(y) dy = fRn (y)g(y) dy holds for all ,o, g E

S(RTh). If g = z%, then g = and fRn <P(y)'b(y)dy = fR,n (y)(y) dye
i.e., ((p, /i)2 = (cp, This shows that .F is an LZ-isometry on S(Rn) that
by continuity extends to a unique isometry ,FZ of LZ(Rn).

The restriction of ,F on S'(Rn) to F: L2(R) -+ is continuous,
since the inclusion L2(Rn) y S'(R'S) is continuous, and it coincides with
.F2 on the dense subspace S(R); hence .F2 = .F on L2(Rn).

The operator ,F, such that Fu = .Fu, has a similar behavior. To show
that .F = .F-1 on LZ(Rn), note that FF = Id = FF on S'(R'S), so that
also FF = Id = FF on LZ(R).

Remark 7.14. If f, g E L2(Rn), fRn f (y)g(y)dy = fRn j(y)(y) dy, but on
LZ(Rn) the Fourier transform can be seen as an improper integral for the
convergence in L2(Rn),

f() = lim f(x)e_2dx.
RT°° (O,R)f

Note that XB(o,R)f E L1(R) fl L(R) and

I = lim XB(o,R)f
Rtoo

in L2(Rn), so that

1= limR
too

F(XB(O,R) f), with .F(XB(O,R) f)(e) - f(x)e2 dx.f (O,R)

Obviously, instead of XB(o,R) we can use more regular functions, such as
o(R-lx) with B(0,1) -< -< Rn.6

Example 7.15. If SZ > 0 and h e It, then sinc (2t + h) is in LZ(R), and

21t[sinc (2t -I-

Indeed, since sinc is the Fourier transform of the square wave of Exam-
ple 7.1, it belongs to LZ(R), and the same happens with sinc (2t -I- h) _
sinc (2(t + h/2SZ)). By the Plancherel theorem s i c = X[-1/2,1/2] and,
using the properties of the Fourier transform,

[sinc (2c(t + e2"2 [sinc (2t)] () - 21
te"Zh s l c (/2)

6If n = 1, f() = limM,0 f' f (x)e-2dx for almost all e R holds if f E L. This
result is equivalent to the Carleson theorem on the almost everywhere convergence of Fourier
series, one of the most celebrated theorems in Fourier analysis.
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with sinc (/211) = X[-1/2,1/2](/2) = X[-st,st]

We also know from Example 7.9 that the distributions with compact
support are tempered, so that we can consider the restriction of F to the
space e'(Rn). Let us denote

ez () := e Cn).

Theorem 7.16. If u e E'(Rn), then u is the restriction to Rn of the entire
function

F(z) (e_,u).
For every a e Nn there is an integer N such that the function

(1+ IxI2)"2D9TI(x)

is bounded.

Proof. The function F is continuous on C, since ez -+ ezo in (R) as
z -+ zo. Indeed, Daez -+ Daezo uniformly on every compact subset of R,
since for one variable

e2tz - e2tz0 = dfzo,z]

Let us show that F is holomorphic in every variable z by an application
of Morera's theorem; that is, jF(z) dz = 0 if -y is the oriented boundary
of a rectangle in C. By writing the integral as a limit of Riemann sums,

fF(z) dzj = J u(e_) dz_ (J e_(t) dzj, u(t)) = 0,
'Y 7

since e-2iti dz3 = 0 for every t E R.
For every cp E D[a,b]n (RTh),

((t), u(e-t)) = f ((t)et, u) dt = (f (t)et(x) dt, u(x)) _ u)

andu=FonRn.
Note that by the continuity of u on E(Rn),

I_ I(xae_f(x), u(x)) I C sup
IRI_<N, IxI_<N

.and it follows that I<C'(1 -I- 1



7.4. Fourier transform and signal theory 195

7.4. Fourier transform and signal theory

A first main topic in the digital processing of signals is the analog-to-digital
conversion by means of sampling, which changes a continuous time signal
f(t) into a discrete time signal x = {x[k]}_ C C, x[k] := f(kT).

The band of an analog signal f is the smallest interval [-11, SZ] which
supports its Fourier transform f and we shall see that for a band-limited
signal, that is, with SZ < oo, sampling can be done in an efficient manner.
It is worth observing that in this case f is analytic:

We know from Theorem 7.16 that, if u e s' (R) has a Fourier transform
with compact support u e e'(R), then u is the restriction to R of the entire
function,

F(z) := (e2,fI(e)).
This shows that a signal cannot be simultaneously band-limited and time-
limited.7 Usually, analog signals are of finite time, so they are not of limited
band, but they are almost band-limited in the sense that u ^J 0 outside of
some finite interval [-11,11] . Sometimes, filtering of the analogical signal is
convenient in order to reduce it to a band-limited signal.

We will suppose that f e L2(R) and supp f c [-11, SZ], so f is analytic.
The minimal value SZnr of SZ is called the Nyquist frequency$ of 1.

Let us consider the T-periodized extension of f with T = 211,

k=-kT) (P=211),

which is in LT(R). Then

(7.5)

and

Ck(fT) - 2St f \ ZSZ / 2SZ f \ 21Z /

00

= :i:
2jf( -k

2SZ
k=-oo

with L2(-11, 11)-convergence of this Fourier series.

According to the inversion theorem, f(t) = f f ()e2 Ztg dfor every
x e R, and the scalar product by on [-11, SZ] gives the pointwise
identity

f(t)= ( l f 2t-F2

2SZ \ 2SZ 1 f
e d

k=-oo

7This is a version of the uncertainty principle
8Named after the Swedish engineer Harry Nyquist, who in 1927 determined that the number

of independent pulses that could be put through a telegraph channel per unit of time is limited
to twice the bandwidth of the channel.
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and, by Example 7.15,
fcl

J e d = sinc (21t + k).(7.6)
21

This shows that we obtain a complete reconstruction of f(t),

(7.7) f(t) _ sinc (2Stt - k),

with pointwise convergence, by sampling with the sampling period T.,,,, _
1/252.

Our aim is to prove that in fact we have uniform and L2 convergence.

Lemma 7.17. The functions

(7.8) 2S2 sinc (21t - k) (k e Z)

form an orthonormal system in L2(R).

Proof. If
cpk :_ [sinc (21t - k)] _ [sinc (21(t -

according to Example 7.15

cok() = sinc(2S2t)]) = e"/ci 2S2X[-st,st](c)

From the Plancherel theorem,

([sinc (21t - m)], [sinc (21t - n)])2 = (cp.,,,,, cpn)2i

and then

d= O(2)2(rn, con) - f
if m n, and (21)2IIcornII2 = 252, so that

II[sinc(2t-m)]II2 = 1/ 252.

0

The family of functions (7.8) is called the Shannon system.

Theorem 7.18 (Shannon9). Suppose f e LZ(R) and supp f C [-S2, 12], so
that we can assume that f is continuous. Then

00

f(t) _ sinc (2Stt - k)

in L2(R) and uniformly.

9Named after the electrical engineer and mathematician Claude Elwood Shannon, the founder
of information theory in 1947.
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Proof. We have seen in (7.7) that the sequence
N

sN(f, t) _ f () sinc (21U - k)
lc=-N

N (kl 1
f \ 2St 12SZ

k=-N J-cz

is pointwise convergent to f(t) and that

f(t)=

Hence,

If(t) - SN(f,x)I =

c

I(e)e2tde.

197

r N

J {le) - 1 f (- 1 e22s l
2St / I2S2 \k=-N

and, by Schwarz inequality,

(R
If(t) - SN(f,X)I ( I f() -

J-c

N
1 f (_ 1 12 de> 1'2 (2SZ)112.

2SZ 2)k=-N

We know from (7.5) that the Fourier coefficients of fT with respect to the
trigonometric system are

1 -k
k(fT) - 2Stf \2Stl'

Hence,
N

1 -klfe22S2 = ,SN(fT> t),
2SZ 02121k=-N

and SN(fT) - IT in LT(R).
Then,

Sup I- SN(.f, x)I (21)hI2IIj_ SN(.fT)II L2(-Iz,l)>
tER

which yields the uniform convergence.

Since c(fT) _ {ck(fr)} E 22 and the Shannon system is orthonormal,

00

(7.9) g(t) _
21

f( k)2St
sinc (21t - k)

k=-oo

in LZ(R). But some subsequence of the partial sums is a.e. convergent to g
and uniformly convergent to f, so that g = f as elements of L2(R).
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The Shannon theorem shows that the sampling rate of SZS = 21N sam-
ples/seg is optimal, and it is called the Nyquist rate. If SZS > 2SZN, we
are considering supp IC [-Sts/2, SZS/2], wider than the symmetric interval
which supports f and an unnecessary oversampling if Sts is much greater
than 2S2nr. If SZS > 2SZnr, the function g obtained in the sum (7.9) differs
from the original signal f and is called an alias of f.

In digital processing, the discrete time signals x = {x[k]}_ obtained
by sampling from analogical signals are usually of finite time, so that x[k] = 0
if Iki > N for some N, but for technical reasons it is convenient to consider
more general signals. We say that x is slowly increasing, and write x E 2,
if there exist two constants N and C, such that

Ix[kII <CIkIN (k 0).

The class Q is a vector space with the usual operations and slowly in-
creasing sequences can be considered tempered distributions:

Theorem 7.19. If x E 2, then
+oo

ux :_
k=-oo

defines a tempered distribution, and the correspondence x E £ F-3 u E SC(R)
is an injective linear mapping which shows that we can consider 2 C SC(R).

The Fourier transform of x as a tempered distribution is
+oo

x = x[k]e_2.

Proof. If u = >±°o x[k]8k = 0, for every n E Z we can choose cp E S
with support in (n - 1, n + 1) such that u(cp) = x[n]. Since

+oo

(7.10) C%
k=-oo

x[k]cp(k) is linear and continuous on S(R). It is the limit
in S' of the partial sums UN = k =-N x[k]8k, uN(cp) - u(cp) if cp E S.

Moreover, u=
OO

x [k] b= x[k]e_2. 0

This Fourier transform (7.10) is called the spectrum of x.

If {x[k]} E 22, we have convergence in L? (R) and x E 22 H x E L( It)
is a bijective isometry, such that x[-k] = ck(x) (k E Z).

If {x[k]} E 21, then x E Cl(R). Of course, 21 C £2 C Q (see Exercise 7.13).
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Example 7.20. The Fourier transform of x[j] = csinc(cj) (0 < c < 1/2) is
the 1-periodic square wave such that X[-c/2,c/2](') on [-1/2,1/2].

In this example, x E £2, since x E L1(R), but x is not continuous, so
that x 1.

The Fourier transform of a signal and that of its samples are related as
follows :

Theorem 7.21. Let f E L2(R) be aband-limited signal and let x[j] :_
f(i/21), with 52 > StN. Then

(ICI 1).

Proof. According to the inversion theorem,

i/2 1 st

x[jJ - d = xr e2d-, 1/2 f \ 2521

so, by the 2S2-periodicity of

00

x[.7] - f() =1
00

[cz

00 czf
.f - d

00

- 252k)) d
k=-oo

and, from the uniqueness property of the Fourier coefficients,

2Stx\2Stl

This relation means that

00

- 21k) =
k=-oo

= - k)),
k=-oo

where the right side is f scaled by the factor 2St. Since S2 > S2N, we havetf2c(') = f() if '' <1/2 and then 21f(2).
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7.5. The Dirichlet problem in the half-space

In Theorem 6.33 we have obtained the solution u(x) = fs P(x, y) f (y) dy of
the homogeneous Dirichlet probleml0 for the ball with the inhomogeneous
boundary condition ups = f by means of its Poisson kernel P.

Here, as in (7.2) for the heat equation, we will use the Fourier trans-
form as a tool to solve the homogeneous Dirichlet problem in the half-space

:= {(t,x) eR x RTh; t> 0},

(7.11) 0u + Du = 0, u(0, x) = 1(x),

where D = >
We will be looking for bounded solutions,ll that is, for bounded har-

monic functions u on the half-space t > 0 such that, in some sense, u(t, x) -+
f(x)ast0.
7.5.1. The Poisson integral in the half-space. The Fourier transform
changes a linear differential equation with constant coefficients

P(D)u = f,

with P(D) _ >1«1<m caD«, into the algebraic equation

f('),
where P(x) _ >IIal<mCax« - >IIal<mCa' ... xnn.

For this reason, to find an integral kernel for the Dirichlet problem (7.11)
similar to the Poisson kernel for the ball, we apply the Fourier transform
in x to convert the partial differential equation in (7.11) into an ordinary
differential equation.

Assuming for the moment that f e S(Rn), for every t> 0 we obtain

0l(t, ) - 42II2(t, ) =0, (l(o, ) =
and we are led to solve an ordinary differential equation in t for every E R.

The general solution of this equation is

u(t, ) = A()e2lt + B()e-2t, A() + B() _ .f )
If we want to apply the inverse Fourier transform, and also because of the
boundedness condition, we must have A() = 0. Then B() = f() and

10The work of Johann Peter Gustav Lejeune Dirichlet included potential theory, integra-
tion of hydrodynamic equations, convergence of trigonometric series and Fourier series, and the
foundation of analytic number theory and algebraic number theory. In 1837 he proposed what is
today the modern definition of a function. After Gauss's death, Dirichlet took over his post in
Gottingen.

11 This boundedness requirement is imposed to obtain uniqueness; see Exercise 7.12.
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with this election

u(t, x) _ (Pt * f) (x),

where P(t, x) Pt(x) will be the Poisson kernel for the half-space.

If n = 1, an easy computation will show that the Fourier transform of
g(x) = e_2IxI on R is

(7.12)

Note that the family of functions
1 x

Pt(x) = t +x 2 (t> 0)

is the Poisson summability kernel of Example 2.42, obtained from Pi by
letting Pt(x) _ (1/t)Pl(x/t).

To check (7.12), a double partial integration in

fR
shoves that

2
f00

dx

o - 271

J
dx

0

_
71
- 2 e-2sin(271x) dx =

71
-

0

Thus 11g() = ____
Obviously Pl = g > 0 and fRP1(x) dx = g(0) = 1.

This result is extended for n> 1, but the calculation is somewhat more
involved and it will be obtained from (7.1) and from

(7.13) I e-a2/4t dt =

fora>0.
To prove (7.13), we will use the obvious identity

and also

00
-(1+s2)t dt = 1/(1 + s2)

R 1

e+

t2
dt = 71e-a,

which follows from (7.12) by a change of variables.
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Indeed,

e-a
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00

e ds dt - e e e dt ds
0 R

00

dxds = e-8e-a2/48
1 ds

0 sirIR

and (7.13) follows.

Now we are ready to prove that

t
(

F(1)
(7.14) P(t, x) _ n

(t2 + Ixl2 )(1)/2 c''=
that is,

f d _ t
.JR(t2 + I

A change of variables allows us to suppose t = 1 and, using (7.1) and (7.13),

P(1, x) _ e-2
1 1

e-21niX d

00 t1 e_
dt e_2 d

Rn V " 0 1 G

IRTh

ICI/te d dt
00

-(n+1)/2(1 + 1x12)-(n+1)/2 e-xx(n+1)l2 dx
0

cn

er

-t

,/p t7f JRe

(1 + x2)(')/2'

According to Theorem 2.41, since Pt = P(t, ) is a summability kernel, if
f e C(R") tends to 0 at infinity, then u(t, x) _ (Pt * f) - 1(x) uniformly as
t . 0. 1f f E (1 < p< oo), then u(t, ) - f in LP when t . 0. Thus,
in both cases, f can be considered as the boundary value of u, defined on
t>0.

Moreover, a direct calculation shows that (8t + L)P(t, x) = 0, and then
u is harmonic on the half-space t > 0, since

- y)f (y) dy = 0.
fat + )fRflP(tx

1 °O_ eiat

R 0

2 2

Note also that if f <C, then Iu(t, x) < C f ± P(t, x - y) dt = C.
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7.5.2. The Hilbert transform. In the two-variables case we write
1 y

P(x,y) - x2 + y2

We have seen that it is a harmonic function on the half-plane y> 0. This
also follows from the fact that it is the real part of the holomorphic function

i 1 y+ix
2 2 Py(x)+ZQy(x)'z r x -I- y

The imaginary part,

Q(x) = Q(x,y)
= x2 y2'

which is the conjugate function of P(x, y), is the conjugate Poisson ker-
nel, which for every x 0 satisfies

11limQy(x) _ --
yo ir x

This limit is not locally integrable and does not appear directly as a
distribution, but we can consider its principal value as a regularization of
1/x as in Exercise 6.16. Let us describe it as a limit in S'(R) of Qy:

By definition, for every cp E S(R),

((x),pv-X) - PV f+ (x)
dx E =m j

hE(x) = x-iX{IxI>E}(x). This limit exists since j<11<1 x-lcp(0) dx = 0
and then

((x),pv)=I(x) - (O) d+ J
) dx.

x xl<1 x IxI>1 X

Theorem 7.22. In SC(R),

1 pv 1 = lim Qy
ir x yo

and 11F(-pv-) = -zsgn.
ir x

Proof. For the first equality, we only need to show that F := i-Q - h -+ 0
in s' (R) as -+ 0. But we note that, for every p E s (R),

(,F) (xco(x) _ e)) dx2 ` x dx -I-J
+ x2 xLIxIC} ET x 1IxI>} 22L2

_ x(Ex) dx -
{1x1<i} 1+ x {1C1>1} x(1 + x2)

and both integrals tend to 0 as e -+ 0, by dominated convergence.
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For the second formula, a direct computation of the Fourier transform
of the function -i(sgne)e-2"yII shows that

-i(sgn -i(Sgn )
It x y.1o

in S'(R), since

lim J -i(sgn ()d = f -Z(Sgn d
R R

for every cp e S(R). D

The Hilbert transform12 is the fundamental map of harmonic analysis
and signal theory H : LZ(R) - L2(R) defined by

Hf -i sgn (f e L2(R)).

Theorem 7.23. The Hilbert transform is a bijective linear isometry such
that

H2=-I and H* = -H.
For every cp e S(R),

Hcp = 1 pv1 * cp = lim(Qy * cp) in S'(R).
71 x y.1o

Proof. If -i sgn , it is clear that M : f H m f is a bijective linear
isometry of L2 (R) and, by the Plancherel theorem, H = .FM.F is also a
bijective linear isometry. Moreover H2 = -I, since m2 = -1, and

(Hf, 9)2 = (FMFf, 9)2 = (MFf, X9)2 = (Ff, -M.F9)2 = (.f, -Hg)2.

With Theorem 7.22 in hand and from the properties of the convolution,

,F(Hp) =1imQycp = lim.F(Qy * cp),
yy0 yy0

so that Hcp =1imy,1o(Qy * p) in 8'(R).

Also Hcp = ,F(M,Fcp) _ (.Fm) * cp = pv * cp. 0

12The name was coined by the English mathematician G. H. Hardy after David Hilbert, who
was the first to observe the conjugate functions in 1912. He also showed that the function sin(wt)
is the Hilbert transform of cos(wt) and this gives the ±ir/2 phase-shift operator, which is a basic
property of the Hilbert transform in signal theory.
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If cp e S(R), its bounded harmonic extension to the half-plane y> 0,

u(x,y) _ (Py * o)(x)
has

v(x,y) _ (Q, * o)(x)
as the conjugate function, so that

F(z) = u(x,y)+iv(x,y)

fR (x-t)2 + ya (t) dt +
fR (x t)2 - y2 (t) dt

1 t -
dt

Sri R It - zl

is holomorphic on sz = y> 0, and it is continuous on y > 0 with

1 o F(z) = cp(x) + i(Hcp)(x).

Since F2(z) = u2(x, y) - v2(x, y) + i2u(x, y)v(x, y) is also holomorphic,
2uv is the conjugate function of u2 -v2, and H(cp2 - (Hcp)2) = 2cpHcp, where
H-1 = -H. Thus
(7.15) (Hcp)2 = cp2 + 2H(cpHcp).

We can write
1Hcp(x) _

(x - y) dy = 1 (y) dy- f ,

Py f, x
P-

y
in the sense of the principal value, and the integrals are called singular
integrals. The kernel

1

x-y
is far from satisfying the conditions of the Young inequalities (2.20), but H
will still be an operator of type (p, p) if 1 <p < oo:

Theorem 7.24 (M. Riesz). For every 1 <p < oo, H is a bounded operator
of P(R).

Proof. We claim that if IIHcoIIp C CcpP, then IIHcoII2p (2Cr + 1)II(PII2P

Indeed, either II.F1coII2p I IPII2p and there is nothing to prove, or IPII2p <
IIHfII2. In this last case, by (7.15),

IIHcoIIZP = I IIp 11c02 IIp

IIPII2p+ pll(P PIIp

C llc°IIL, + 2CpIIcoIIapIIHcoll2p

I2Cp)lIHcolI2p
as claimed.
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From this claim, starting from llHcoII2 = IkolI2, we obtain by induction

lIHcolI2n < (2n - 1)IIcPII2n (n = 1, 2, ...)

and an application of the Riesz-Thorin interpolation theorem13 gives

IIHcollp cpIIcoIIP ((p E S(R))
for every 2 <p < oo, so that H(IP(R)) C LP(R) and H is of type (p, p) for
these values of p.

Suppose now that 1 <p < 2, so that p' > 2 and H is a bounded linear
operator I' (R) -3 LT'S (R).

Then

IIHfIln = sup { I J g(t)Hcp(t) dt
R

sup { I J cp(t)Hg(t) dt
R

llgiip' < i}

l9Iv' < 1} < J

7.6. Sobolev spaces

7.6.1. The spaces W"`P. Let St be a nonempty open subset of Rn, 1 <
p<ooandmEN.

The Sobolev space of order m E N on St is defined by

{u E Lp(12); D«u E LP(12), al < m},

where the D"u represent the distributional derivatives of u. We endow
W"`'p(Sl) with the topology of the norm

lktlI(rn,p) :=
ii lID°utl.

IaI<Trc

Note that the linear maps Wm'P(St) y IP(SZ), W'n+1,P(St) y yjTm,P(c),

and Da : W"12-I0!I°p(Sl) are continuous, if al < m.

In RN all the norms are equivalent, so that I I ' II (m,p) is equivalent to the
norm

lull '- is <m
lIDaUIl.

It is easy to show that W"12'P(12) is a Banach space by describing it as
the subspace of [Tiai<T,t L'(12) of all elements of the type {Dau}1a1cm It
is closed, since, if {DaUk}IaI<m 4 {h1}iai<m in the product space, then
DaUk -4 u(°) (lal <m) in LP(f).

13Marcel Riesz proved his convexity theorem, the Riesz-Thorin Theorem 2.45 for p(z9) < q(z9),
to use it in the proof of this fact and related results of harmonic analysis. See footnote 14 in
Chapter 2.
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Note that if fk -+ f in I,p(St), then also fk -3 f in D'(12) since

(- 1k) IIPIIp'IIf - fkllp.

Hence Dam = in 1Y(11), so that {Dark}IaI<m {Dau}i«i<m

In the case p = 2, we can renorm the space with the equivalent norm
1/2

IaI<m

so that Wm>2(1k) becomes a Hilbert space with the scalar product

(u, V)m,2 = (Du, Dv)2.

Every u E W"t>p(SZ) C Ia'(12) is a class of functions, and it is said that
it is a Ctm function if it has a Ctm representative.

In the case of one variable, we can consider Wmp(a, b) C C[a, b] for every
m > 1, since, if u = v a.e. and both of them are continuous, then u = v.
Moreover, the following regularity result holds:

Theorem 7.25. If u e W lp(a, b) and v(t) := f t up(s) ds, then u(t) _
v(t) + C a. e., so that u coincides a. e. with a continuous function, which we
still denote by u, such that

(x) - u(y) = i (s) ds (x, y E (a, b)).fu

The distributional derivative u' is the a. e. derivative of u, and the inclusion
W "P(a, b) -+ C[a, b] is continuous.

Proof. Function v, as a primitive of u' E b), is absolutely continuous
on [a, b], and, by the Lebesgue differentiation theorem, u' is its a.e. deriva-
tive. The distributional derivatives v' and u' are the same, since, by partial
integration and from (a) = (b) = 0 when cp e D(a, b), we obtain

b t

f
b- , v) _ -f '(t) f (S) ds dt = u (t)(t) dt = (, ).(

a c

But (u - v)' = 0 implies u - v = C, and u is continuous on [a, b].
It follows from u = v + C that u(x) -ma(y) = v(x) - v(y) = fy up(s) ds.

If uk -+ u in W "p(a, b) and uk -+ v in C[a, b], then v = u, since
there exists a subsequence of {uk} which is a.e. convergent to u. Hence,
W"p(a, b) y C[a, b] has a closed graph.

Remark 7.26. It can be shown that, if m > n/p and 1 < p < oo,
W""''p(SZ) C Ek(SZ) whenever k <m - (n/p).
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We will prove this result in the Hilbert space case p = 2 (see Theo-
rem 7.29).

7.6.2. The spaces H8 (R). There is a Fourier characterization of the
space Wm2 (Rn) which will allow us to define the Sobolev spaces of fractional
order s E R on R.

In Theorem 7.7 we saw that the pointwise multiplication by the function

:= (1+ II2)8/2

is a continuous linear operator of S(R), and it can be extended to S'(R),
with wsu E S"(Rn) for every u E S"(R), defined as usual by(_

We define the operator As on S'(R'S) in terms of the Fourier transform

A8u = J1(w8u).

It is a bijective continuous linear operator of S(R) and of S'(R"), with
(As)-1 = A-S and such that

Asu = wsu.

It is called the Fourier multiplier with symbol ws, since it is the result
of the multiplication by ws "at the other side of the Fourier transform".

Since A2m = (Id - (4)_1)m, we can also write

AS = (Id - (4)_1)S/2
.

We define the Sobolev space of order s e R,

Hs(Rn) _ {u E S'(R); Asu E L2(R")},

i.e., H8(R) = A-8(L2(Rn)), and we provide it with the norm

lUll(S) = IlAsull2 = llAulI2 = Ilwsull2,

associated with the scalar product (u, v)(s) _ (Asu, Asv)2.

It is a Hilbert space, since As is a linear bijective isometry between
H8(R) and L2(R) = H°(R) and also from H''(R) onto HT-s(Rn),
which corresponds to u H wsu:

II18tLII(r_s) - IIWT-SAsuII2 - Ik'rUlI2 - II'aII(r).

If t < s, HS(Rn) -+ Ht(Rn), and S(R) is a dense subspace of every
HS(Rn), since it is dense in L2(Rn) and A-s L2(R) - H8(R) and
A5(S(R)) = S(R).
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Theorem 7.27. If k E N and s E R,

Hs(R"`) _ {u E S'(Rn); Dau E Hs-k(Rn)Vlcx <k},

and II ' II(s) and u H >I1a1<k IIDauIt(s-k) are two equivalent norms.

In particular, ifs = m, then HS(Rn) = Y4'm2(Rn) with equivalent
norms.

Proof. If u E Hs(RTh), note that every

is a locally integrable function, since Asu E L2(R) and (2iri)aw_5() is
continuous.

If al < k, then

ri = t' t lla = (2)iaI/2
j=1

since, for every j, 1aj < (fin llaj. So 5; (1 + II2)1/2 =
Wk().

Moreover (1-{-2)k/2 < since >11«1« > 0 everywhere
and

F() := (1 +

is a continuous function on Rsuch that, if > 1,

(1 + 2)//2
__________(S)

j 1ISjlk
5; 2k/2j

Thus,

(1 + I2)k/2 D (27r)'°IrI = :i: I(27ri)aI.

From these estimates we obtain

IIuII(s) = I< C I

< k,and also, if al

I= IIWs-kI(27f2S)au(S)lll2 < CllW8-kWkull2 = Cllull(s).

Theorem 7.28 (Sobolev). Ifs - k > n/2, HS(RTh) C
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Proof. By polar integration, fRn(1 + 2)1-s d < oo if and only if

f
00 00

(1 + r2)k-Srn-1 dr r2k-2svn-1 dv < 00,
1

i.e., when 2k - 2s +n -1 <-1, which is equivalent to condition s - k > n/2.
Then, if cp e S(Rtm), multiplication and division in

D(x) = fR(e)e2d= fRfl(2ie)(&2 d"

by ws_k(e) _ ( 1 + followed by an application of the Schwarz
inequality yields

ID(x)l f I(2e)aIwsk(e)l(e)IwkS(e) d

1 - IeI2)deIl
l/2

C I(fRfl (
and

(7.16) llDoll00 CllDoII(_k).
When u e HS (Rn), we can consider cpm - u in HS (Rn) with cpk e s(Rn),
the estimate (7.16) ensures that {D mcp} °° 1 C S (R) is uniformly Cauchy,
and we obtain that D«cpm - + DU uniformly, if al < k. This proves that
u E eIc(Rm).

7.6.3. The spaces Hm (Sl) . If m e N and for any open set S l C Rn, we
will use the notation

Hm(cl) = Wm2(cI)

suggested by Theorem 7.27.

In this case, as a consequence of the Sobolev Theorem 7.28 we obtain

Theorem 7.29. If m - k > n/2, H"`(S2) C

Proof. It is sufficient to prove that u e H"t(S2) C L2(SZ) is a C' function
on a neighborhood of every point. By multiplying u by a test function if
necessary, we can suppose that as a distribution its support is a compact
subset K of SZ.

If K - r - S2 and if u is the extension of u e L2 (cl) by zero to u E
LZ(R), then u e H"`(Rn), since for every IaI <m we can apply the Leibniz
rule to

(p, D) = (p, Da(i))
to show that D«u) is L2-continuous on test functions, so D9 e L2(R)
by the Riesz representation theorem, and u e H"t(Rn). By Theorem 7.28
we know that u e £k(Rn) and then u e k(SZ). O
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Remark 7.30. It is useful to approximate functions in Hm(12) by C°O
functions. The space Hm(SZ) can be defined as the completion of E(St) fl
Hm(St) under the norm 11 lIm,2. In fact it can be proved that E(S2)f1W""''(S2)
is dense in W"np(SZ) for any 1 < p < oo and m> 1 an integer.14

We content ourselves with the following easier approximation result
known as the Friedrichs theorem.

Theorem 7.31. If u E Hl(SZ), then there exists a sequence {com} C D(Rn)
such that lim,,,,, f= 0 and lim.,,,, "Dju - 9jPmllLP(w) = 0 for every
1 < j < n and for every open set w such that w is a compact subset of SZ.

Proof. Denote by u° the extension of u by zero on Rn and choose a mollifier
o . Then o * u° - u° in L2 (Rn) and so lu - o * u° f = 0. Allow
0 < E < d(cZ 1Z°), so that (o * u°) (x) = (o * u) (x) and &( o * u°) (x) =
(o * (5 u)°) (x) for every x E w. So lDjU - 9 (o * u°) IlL2() = 0, since
(5u)° E L2(Rn).

If Em 1. 0, let us multiply the functions fm = u° E E(RT) by the
cut-off functions xm such that B(0, m) < xm -< Rn . By the dominated
convergence theorem, if c°m = xm f m, then

llcorn U°112 Ilxrn(frn - u°) 112 + Ilxmu° - u°112 -+ 0 as m-+ oo

and w C B(0, m) for large m. It follows that the test functions cp.,,,, satisfy
all the requirements. O

As an application, we can prove the following chain rule for functions
v E Hl (St) and any o E E(R) with bounded derivative and such that o(0) _
0:

(7.17) 5(Qov)=(Q'ov)5v (1jn).
Indeed, since M and o(0) = 0, by the mean value theorem o(t) I
MItl. Thus l ° v < MlvI and oov E LZ(S2). It is also clear that (o' ov)a3v E
L2(S2).

Pick cp,,,,, E D(RTh) as in Theorem 7.31. Then, for every co E D(S2) with
supp co C w, from the usual chain rule

(P ° com)(x)ajco(x) dx = ° com)(x)a7com(x)co(x) dx.

Here o o cp,,,,, - o o v in L2(St) and (o' o cp,,,,,)&jcP,m, - (o' o v)83v in L2(w) by
dominated convergence, and (7.17) follows.

14This is the Meyer-Serrin theorem and a proof can be found in [1] or [17].
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7.6.4. The spaces H(1). When looking for distributional solutions u E
H"'Z(St) in boundary value problems such as the Dirichlet problem with a
homogeneous boundary condition, it does not make sense to consider the
pointwise values u(x) of u.

Vanishing on the boundary in the distributional sense is defined by con-
sidering u as an element of a convenient subspace of H"1z(11).

The Sobolev space H(11) is defined as the closure of

Vm(T1)= U V7T1)
KEK(S2)

in H"'Z(Sl), and it is endowed with the restriction of the norm of H"'Z(St).

In this definition, D"b(St) can be replaced by D(St):

Theorem 7.32. For every m E N, D(12) is dense in H(1).

Proof. Let b e D"t(St) C D"b(Rn). If o > 0 is a test function supported by
B(0,1) such that 1Q11 1 = 1, then ok(x) := kTho(kx) is another test function
such that I= 1, now supported by B(0, 1/k). Moreover Qk * b e D(Rn)
and

Da(Pk * - Qk * Dab
in L2(R) for every a < m with

supp Qk * b C supp Qk + supp b C S2

if k is large enough. Hence, D(Rn) Qk * b - b in H"'Z(Sl) and b e D(Sl),
closure in Ho (St).

The class S(Rtm) is dense in H"t(RTh), D(Rn) is also dense in S(Rn),
and the inclusion S(Rtm) y H"1z(Rtm) is continuous, so that D(Rn) is dense
in H"t(Rn) and

Ho (Rn) = Ht(Rt).
The fact that the elements in H(1) can be considered as distributions

that vanish on the boundary 311 of S2 is explained by the following results,
where for simplicity we restrict ourselves to the special and important case
m=1.
Theorem 7.33. If u e H1(11) is compactly supported, then u E H01(1), and
its extension u by zero on Rn belongs to Hl(Rn).

Proof. If u e Hl (11) has a compact support K C St, it is shown as in
Theorem 7.29 that u e L2(Rn) belongs to Hl(Rn) by using r such that
K--<S2.

But D(Rtm) is dense in Hl (Rtm) and it follows from cpm - u in Hl (Rtm)
that cpmr - u in Hl(Sl) with e D(Sl), so that u E H(11).
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Theorem 7.34. Let SZ C Rn be a bounded open set. If u E Hl(S2) fl C(S2)
and u

u E that o(t) I < ti on
R, o = 0 on [-1, 1], and o(t) =ton (-2, 2)c. If [-1,1] -< cp -< (-2, 2), just
take o(t) = t(1 - (p(t)).

If v E H' (II), then o o v E L2(11) and by the chain rule (7.17) also
t9j(O o v) _ (Q'ov) 8jv E L2(11), so O o v E H1(SZ).

Hence un,, := m-1 o(mu) E H(11) since supp C {IuI > 1/m}, which
is a compact subset of the bounded open set St. By dominated convergence,
u.,,t - u in H' (II) and it follows that u E H(11). O

It can be shown that this result is also true for unbounded open sets and
that the converse holds when 12 is of class Cl:

(7.18) u E C(S2) n H(11) = u1a = 0.

We only include here the proof in the easy case n = 1:

Theorem 7.35. If n = 1 and 12 = (a, b), then Ho (a, b) is the class of all
functions u E Hl(a, b) C C[a, b] such that u(a) = u(b) = 0.

Proof. By Theorem 7.34, we only need to show that u(a) = u(b) = 0 for
every u E Ho (a, b) C C[a, b]. But, if D(a, b) cps -3 u in Ho (a, b), also
cps -+ u uniformly, since Ho (a, b) y C[a, b] is continuous by Theorem 7.25,
and then cpk(a) = cpk(b) = 0. O

7.7. Applications

To show how Sobolev spaces provide a good framework for the study of
differential equations, let us start with a one-dimensional problem.

7.7.1. The Sturm-Liouville problem. We consider here the problem of
solving

(7.19) -(pu')' + qu = f, u(a) = u(b) = 0

when q E C[a, b], p E C1 [a, b], and p(t) > 6>0.

If f E C[a, b], a classical solution is a function u E C2 [a, b] that satis-
fies (7.19) at every point.

If f E L2 (a, b), a weak solution is a function u E Ho (a, b) whose
distributional derivatives satisfy -(pu')' + qu = f, i.e.,

f(t)(t) dt (cp E D(a, b)).
J b p(t)u'(t)cp'(t) dt + J b q(t)u(t)cp(t) dt = J b

aa a a
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If v E Ho (a, b), by taking cps - v (cps E D(a, b)), the identity

f 6 p(t)u (t)v'(t) dt + f6 q(t)u(t)v(t) dt = f b
a

f(t)v(t) dt

also holds.

To prove the existence and uniqueness of a weak solution for this Sturm-
Liouville problem, with f E L2(a, b), we define

p(t)u (t)v'(t) dt + J q(t)u(t)v(t) dt.6 6B(u, v) Ja a

Then we obtain a sesquilinear continuous form on Ho (a, b) x Ho (a, b) and
(,f)2 E Ho (a, b)', since

BI IIPIIooIIu'11211v'112 + IIcIIIOOIIUII2IIVII2 <

and I(u,f)21 Ill 11211uII(i,2)

If B is coercive; we can apply the Lax-Milgram theorem and, for a
given f E L2(a, b), there exists a unique u E Ho (a, b) such that B(v, u) _
(v, 1)2, which means that u is the uniquely determined weak solution of
problem (7.19).

For instance, if also q(t) > 8 > 0, then
6

B(u,u) = f (p(t)u'(t)I2 + dt > BIIuIIHo(ab)
a

and B is coercive.

Finally, if f E C[a, b], the weak solution u is a C2 function, and then it
is a classical solution. Indeed, pu' E L2 (a, b) satisfies (pu')' = qu - f , which
is continuous; then g := pu' and u' = g/p are Cl functions on [a, b], so that
u E C2[a, b], and u(a) = u(b) = 0 by Theorem 7.35.

7.7.2. The Dirichlet problem. Now let SZ be a nonempty bounded open
domain in Rn with r i> 1, and consider the Dirichlet problem

(7.20) -Du = f, u = 0 on 8St (f E L2(SZ)).

If f is continuous on S2 and u is a classical solution, then u E C2(St) fl C(S2)
and (7.20) holds in the pointwise sense.

Let us write (Vu, Ov)2 :_ When trying to obtain
existence and uniqueness of such a solution, we again start by looking for
solutions in a weak sense. After multiplying by test functions cp E D(SZ),
by integration we are led to consider functions u E C2(St) fl C(S2) such that
u = 0 on 8SZ and

(, -Au)2 = (p, 1)2 E
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or, equivalently, such that

Vu)2 = 1)2 (p
Then it follows from Theorem 7.34 that u E H0' (ft), and

(7.21) (Vv,Vu)2=(v,f)2 (vEH(f))
since for every v E H() we can take cps - v in H( f), so that cpk -+ v
and ajcpk -+ 5u in L2(1).

A weak solution of the Dirichlet problem is a function u E Ho (St)
such that -Du =fin the distributional sense or, equivalently, such that
property (7.21) is satisfied.

Every classical solution is a weak solution, and we can look for weak
solutions even for f E L2(S2).

To prove the existence and uniqueness of such a weak solution, we will
use the Dirichlet norm II ' IID on Ho (S2), defined by

= f IVuI2 = J I 2 dx.
St S2 _1

It is a true norm, associated to the scalar product

(u,v)D (Vu,Vv)2,

and it is equivalent to the original one:

Lemma 7.36 (Poincare). There is a constant C depending on the bounded
domain 1 2 such that

(7.22) 11u112 < CIIuIID (u E Ho (f)),

and on H0'(S2) the Dirichlet norm ID and the Sobolev norm II ' II(,,2) are
equivalent.

Proof. Since D(St) is dense in Ho (St), we only need to prove (7.22) for test
functions cp E D(SZ) C D(R").

If S2 C [a, b]n, let us consider any x = (x,, x') E St and write
Si

5,(p(t, x') dt.(p(x)
= a

By the Schwarz inequality,
b

<(b - a)1/2 (f
a

and then, by Fubini's theorem,
f6

IkoIIZ (b - a) a,n]n dx Ja x2 dt = (b - a)2II81<PJ[ z
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with IV, and (7.22) follows.
From this estimate,

IIUMl,2) - IIuII2 + Ill DulIlz (c2 + 1)IIuIID

and obviously also IluliD < IIUII(,,2). O

Theorem 7.37. The Dirichlet problem (7.20) on the bounded domain 12

has a uniquely determined weak solution u E H(1) for every f E L2(12),
and the operator

L2(1) -+ Ho(1)
is continuous.

Proof. If C is the constant that appears in the Poincare lemma, then, by
the Schwarz inequality,

I< Ill II2IIvII2 CIIfII211vIID

and f)2 E H(1)' with (', 1)2 II < CIlf 112 BY the Riesz representation
theorem, there is a uniquely determined function u E Ho (St) such that
(v, 1)2 = (v, u)D for all v E H(1), which is property (7.21).

The estimate IIUMD = I< Cf 2 shows that
I C

C.

An application of (7.18) shows that a weak solution of class CZ is also a
classical solution if S2 is Cl:

Theorem 7.38. Let u e C2(S2) f1C(St) and f E C(St). If u is a weak solution
of the Dirichlet problem (7.20) and 1 2 is a Cl domain, then u is a classical
solution; that is, -Du(x) = 1(x) for every x E 1 2 and u(x) = 0 for every
x E D.

Proof. By (7.18), u19- = 0. Since u E C2(1), the distribution Du is the
function Du(x) on 1, and the distributional relation -Du = f is an identity
of functions. 0

We have not proved (7.18) if n> 1, and the proof of the regularity of
the weak solutions is more delicate. For instance, if f E C°°(11) and the
boundary aSZ is C°°, it can be shown that every weak solution u is also in

so that it is also a classical solution. More precisely, the following
result holds:

Theorem 7.39. Let St be a bounded open set of Rn of class C'n+2 with
m > n/2 (or Rn or R+ _ {x xn > 0}) and let f E Hm(12). Then
every weak solution u of the Dirichlet problem (7.20) belongs to C2(SZ), and
it is a classical solution.
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7.7.3. Eigenvalues and eigenfunctions of the Laplacian. We are go-
ing to apply the spectral theory for compact operators. The following result
will be helpful:

Theorem 7.40. Suppose that C L2(R) satisfies the following three con-
ditions:

(a) is bounded in L2(Rn),

(b) limR_ JixI>R Idx = 0 uniformly on f e , and
(c) h- Thf 11a = 0 uniformly on f E .

Then the closure of is compact in L2(Rn).

Proof. Lets > 0. By (b), we can choose R> 0 so that

If (x)I2 dx < s2 (f E ).

Choose 0 < cp E D(B(0,1)) with f cp = 1, so that cpk(x) = kncp(kx) is a
summability kernel on R" such that supp cps C B(0, 1/k), and we know
that limk_ h* cps - f 112 = 0 if f e LZ(R"). In fact, since cps = 0 on
II ? 1/k, it follows from the proof of Theorem 2.41 that

I(f * Pk)(x) - f(x)I = I f [f(x - y) - f(Y)]k(Y) dyl
yl<i/k

and then h* cps - fM2 < suplhl<1/k IImf - f 112. Thus, by (c), we can choose
N so that

IIf-f*NhI2E (fe).
Moreover it follows very easily from the Schwarz inequality that

(* coN)(x) - (l *WN)lyl II'rx-f - fIl2IhPNII2
and also

(<_ IThese
estimates, with conditions (a) and (c), allow us to apply the Ascoli-

Arzela theorem on B(0, R) C Rn to the restrictions of the functions f * cpnr
with f e , which can be covered by a finite family of balls in C(B(0, R))
with the centers in 1,

Bc(B(o,R))(fl> S),... , BC(B(O,R))(fm, S),

for every 6> 0.

Note that at every point x e R"

f - fj(x)I X{IxI>R} (x)I f (x)I + X{IXI>R} (x)l fj (x)

+If (x) - if * con)(x)l + I- (fj * cPN)(x)l
+X{1I<R}(x)l (f * coN)(x) - (fi * coN)(x)l
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and the previous estimates yield

Ill - fjIl2 < 4E+ IB(O, R)I"2 sup
I * soN)(x) - (f * <PN)(x)l ,

lxI<R

so that, by choosing S = R)I"2, it follows that if - fjIl2 < 5e and,
by Theorem 1.1, the closure of in LZ (Rn) is compact. O

Remark 7.41. Obvious changes in the proof, such as applying Holder's
inequality instead of the Schwarz inequality, shows that the above theorem
has an evident extension to I,P(RTh) if 1 <p < oo.

Theorem 7.42 (Rellich15). If 1 2 is a bounded open set of RTh, the natural
inclusion Ho (S2) y L2(S2) is compact.

Proof. The extension by zero mapping L2(1t) y L2(Rn) is isometric, so
that it is sufficient to prove the compactness of the extension by zero map
of Theorem 7.33, i.e.,

f e H(1) F-f f e Hi(R) = Hp (R) C LZ(R) (f(x) = 0 if x E SZc).

This follows as an application of Theorem 7.40 when is B = {f; f E B},
if B is the closed unit ball in Ho (St).

Indeed, B is contained in the unit ball of L2(R) and, if St C B(0, R),
then fIXI>R 1112 = 0, so that conditions (a) and (b) of Theorem 7.40 are
satisfied. To prove (c), note that

(7.23) IImu - uII2 C Ih1IIIVuI 112 (u e Hi(R))
since we can consider cpk E D(Rn) so that cps - u in Hl (Rn) as k -+ o0
and for every test function cp we have

l- (x)l2 = I J 1 h Vcp(x - th) dtl2 < Ihl2 f 1 I - th)I Z dt,
0 0

by the Schwarz inequality, and (7.23) follows for co by integration.

Then IImf - f 112 < IhI for every f E B, which is property (c) for B. O

Theorem 7.43. If ft is a bonded open set of Rn, then (-Li)' is a compact
and injective self-adjoint operator on L2 (S2) and on Ho (S2).

Proof. The compactness of (-Li)' : L2(f) -3 L2(f) follows by consider-
ing the decomposition

(-Li)' : L2(fz) -+ H(1) L2(1),

15 The theorem, in this case p = 2, is attributed to the South-Tyrolian mathematician Franz
Rellich (1930 in Gottingen) and to Vladimir Kondrachov (1945) for the more general case stating
that Wo ' (c) is compactly embedded in L( f) for any q < np/ (n - p) if p < n, and in C(f) if
n > n. For a proof we refer the reader to Gilbarg and Trudinger [17] and Brezis [5].
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where (-0)-1 : L2(1l) - Ho(Sl) is continuous by Theorem 7.37 and, by the
Rellich Theorem 7.42, Ho(St) y LZ(St) is compact.

Similarly,

(-':H)-L2() -f H(11)
is also compact.

Note that (-0)-1 : L2(1t) -a H01(12) is bijective, by Theorem 7.37.
If u = (-L'p and v = (-0)-1b, with cp, b E D(S2), then

(u,v)D = (Vu,Vv)2 = (-Lu,v)2 = ((p, v)2,

so that

and
((-')D = (Wr (-Y'

y)D = (26, (-)'v)D
for all u, v E Ho (Sl) by continuity. Also

((-Y' )2 = (Vp, V)2 = (, = ( ()1
This shows that (-Li)' is self-adjoint on Ho(St) and on L2(St). O

Note that

(7.24) ((-/'u,v)D = (u, v)2 (u,v E H)),
from the density of D(St) in H(). Thus (-Li)' is a positive operator on
Ho (SZ) in the sense that

(7.25) ((-0)-iu,u)D > 0

An eigenfunction for the Laplacian on Ho (St) is an element u E Ho (St)
such that Du = Au for some A, which is said to be an eigenvalue of D if
there exists some nonzero eigenfunction u such that Du = Au.

Hence 0 is not an eigenvalue, since O : Ho (S2) -+ LZ(Sl) is injective, and
u E Ho (Sl) is an eigenfunction for the eigenvalue A of D if and only if

= -iu.
The solutions of this equation form the eigenspace for this eigenvalue A. Note
that A < 0, as a consequence of the positivity property (7.25) of (-0)-1.

From the spectral theory of compact self-adjoint operators,

H) - H)
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has a spectral representation

(7.26) (_p)-iv = µk(v,uk)DUk (v e H0'()),
=o

a convergent series in H(), where µk _ -1/Ak j. 0 is the sequence of the
eigenvalues of (-L)-1 and {uk}0 is an orthonormal system in H() with
respect to such that (-L)'Uk = µkuk. Since (-Lx)-1 is injective,
{uk} o is a basis in Ho (S2). Moreover (Uk, u3 )2 = 0 if k # j, by (7.24).

Theorem 7.44. Suppose f e L2(12). The weak solution of the Dirichlet
problem

-Lu=f (uH))
is given by the sum

u = - (f, Uk)2Uk
k=0

in Ho (S2). The sequence of eigenfunctions \/Xuk is an orthonormal basis
of L2(S2).

Proof. It follows from (7.24) applied to the elements uk E Ho (S2) that

IIUkII2 = µk _ -1/Ak, (Uk,Um)2 = 0 if m # k.

Moreover, since H() contains D(12), it is densely and continuously in-
cluded in L2(12), {uk}0 is total in L2(SZ), and the orthonormal system
{/Xuk}0 is complete in LZ(SZ).

For every f e L2(S2),

(7.27) .f = (f, Ak(.f, uk)2uk
k=0 k=0

in L2(St) and {\/X(f, uk)2} o E 22. Also {(f, uk)2}k o E 22, since
-*oo.

We can define

u ° (f, Uk)2uk
k=0

since the series converges in Ho (S2). Then

Lu _ (f, Uk)2LUk = Ak(.f,, uk)2uk
k=0 k=0

in D'(S2). In (7.27) we have a sum in D'(SZ), so that ^Lu = f.
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To complete our discussion, we want to show that the eigenfunctions
uk are in E(St), so that they are classical solutions of -Luk _ Akuk. The
method we are going to use is easily extended to any elliptic linear differential
operator L with constant coefficients.

Theorem 7.45. Suppose L = D+A and u e D'(St), where S2 is a nonempty
open set in Rn. If Lu E (1), then u e E(S2).

Proof. If Lu e E(S2), then

(7.28) cpLu e Hs(Rn) Vcp e D(S2

for every s e R. We claim that it follows from (7.28) that

cpu E H3+2(Rn) `dcp E D(St).

Then an application of Theorem 7.29 shows that cpu e E(St) for every co E
D(S2) and then u E (1).

To prove this claim, let supp cp C U, U an open set with compact closure
U in S2, and choose U - / - St. Note that 'j5u e E'(Rn) and it follows from
Theorem 7.16 that 'jiu e Ht(Rn). By decreasing t if necessary, we can
suppose that s + 2- t= k e N.

Let /'o = /i, k = cp and define '/-'1i ... , /k-1 by recurrence so that

SUpp 4'j-Fl - Ylj - Uj C {b_1 = 1}.

It is sufficient to show that e Ht+i(Rn), since then cps _ ''ku E
Ht+lc(Rn) = H8+2(Rn) will complete the proof.

We only need to prove that if cp, / E D(S2) are such that

supp cp - b and bu e Ht (Rn),

then cps E Ht+l(R")
From the definition of L and from the condition supp co - b,

n
[L, Flu = L(u) - cpLu = ((3)u + 2(ajcp)aju)

j=1

is a differential operator of order 1 with smooth coefficients and satisfies
[L, cp]u _ [L, Hence L(cpu) _ [L, cp](bu) + oLu with [L, cp](bu) E
Ht+l (R") and cpLu e D(Rn), and we conclude that

E Ht+l(Rn).

Therefore also

(O - 1)(cPu) = L(cPu) - (A - 1)cpu e Ht+l (Rn)

and, since O - 1 is a bijective operator from Ht-1(R"') to Ht+1 (Rn), we
conclude that pu e Ht-1(R")
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For a more complete analysis concerning the Dirichlet problem we refer
the reader to Brezis, "Analyse fonctionelle" [5], and Folland, "Introduction to
Partial Differential Equations" [14].

7.8. Exercises

Exercise 7.1. Calculate the Fourier integral of the following functions on
R:

(a) fi(t) = to-t2.

(b) .f2 (t) = X(a,b) .

(c) f3(t) = eHtI.

(d) f4(t) = (1+ t2)1.

Exercise 7.2. Assuming that 1 < p < oo and f E U'(RTh), check that the
Gauss-Weierstrass kernel

W(x) (4)/2e (h> 0)

is a summability kernel in S(Rn), and prove that

u(t, x) := r4n/2 Rn e-IyI2I4tf (x - y) dy (t> 0)
l 1

defines a solution of the heat equation

atu-emu=0
on (0,oo) x R.

If p < oo, show that limt,o u(t, ) = fin U'(RTh). If f is bounded
and continuous, prove that u has an extension to a continuous function on
[0,oo) x Rn such that u(0, x) = 1(x) for all x E Rn.

Exercise 7.3. The heat flow in an infinitely long road, given an initial
temperature f, is described as the solution of the problem

Dtu(x,t) = Du(x,t), u(x,0) = f(x).

Prove that if f E Co (R) is integrable, then the unique bounded classical
solution is

u(x, t) - f 1(e)e422te2d - (f * Kt)(x)

where
2

Kt(x)
(4)l,2e4t.

Exercise 7.4. Find the norm of the Fourier transform .F Ll(Rn) -
L°° (RTh).
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Exercise 7.5. Is it true that f, g E L1 (R) and f * g = 0 imply either f = 0
org=0?
Exercise 7.6. Let 1 <p < oo. Prove that cp E S(RTh) is in S(Rn) if and
only if the functions xQD«cp(x) are all in L(Rn). Show that the inclusion
S(RTh) y IP(Rn) is continuous.

Exercise 7.7. Show that if a rational function f belongs to S(Rn), then
f =0.
Exercise 7.8. If f is a function on Rn such that fcc E S(RTh) for all
co E S(R), prove that the pointwise multiplication f. is a continuous linear
operator on S(Rn).

Exercise 7.9. Suppose f E S(R) and f E D[_R R], and let 1 < p < oo.
Prove that there is a sequence of constants Cn > 0 (ri = 0, 1, 2, ...), which
depend only on p, such that

IIfIIp <cnRn II.f II (r,, E N).

Exercise 7.10 (Hausdorff-Young). Show that, if 1 <p < 2 and f E LP(Rn),
then IE L°O(Rn) -I- L2(Rn) and F: L'(Rn) - I,P'(Rn).

Exercise 7.11. Show that sinc E L2(R)\L1(R), and find sinc 112i .F(sinc),
and .F(sinc).

Exercise 7.12. If u is a solution of the Dirichlet problem (7.11) on a half-
plane, find another solution by adding to u an appropriate harmonic func-
tion.

Exercise 7.13. Show that 2p C 2 (1 < p < oo) and that the injective linear
map 2P y S' such that x[k] H x[k]Sk(t) is continuous.

Exercise 7.14 (Hausdorff-Young). Show that I ' < If lip,
with the usual change if p' = oo, if 1 < p < 2 and f E LP(T).

Exercise 7.15 (Poisson summation formula). Prove the following facts:
(a) If co E S(R), cpl(t) _ >QQ cp(t - k) is uniformly convergent.
(b) The Fourier series of cpl is also uniformly convergent.

(c) >j±° cp(k) _ (k), with absolute convergence.

(d) For the Dirac comb, ill _ LU.

Exercise 7.16. If 1 <q < oo, prove that

IIfII :- IIlIIDafIIplIaI<mll9

defines on WP''"'(SZ) a norm which is equivalent to '

Exercise 7.17. Every u E oo) is uniformly continuous.
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Exercise 7.18. For ahalf-line (a, oo) prove a similar result to Theorem 7.25,
now about the continuity of Wl'°(a, oo) y C[a, oo) fl L°O(a, oo).

Exercise 7.19. Every u E W1p(0, oo) can be extended to Ru E W1P(R)
so that Ru(t) = u(-t) if t <0 and Ru(x) -u(0) = fv(t)dt for all x ER.
Moreover, R : Wl'p(0, oo) -f Wl"(R) is linear and continuous.

Exercise 7.20. The extension by zero, P : H(1) - H1(Rn), is a contin-
uous operator.

Exercise 7.21. If 8S2 has zero measure, the extension by zero operator, P,
satisfies B3Pu = PB3u for every u E H(11).

Exercise 7.22. If u E H1(-1, 1), its extension by zero, u°, is not always in
Hl (R).

Exercise 7.23. Ifs - k > n/2 (s E R) and m - k > n/2 (m E N), prove
that the inclusions HS(Rn) Ek(jji) and Hm(12) y ek(SZ) of the Sobolev
Theorem 7.28 are continuous.

Exercise 7.24. Let u(x) = as in Example 7.12. Prove the following
facts:

(a) u, u' E L2(R) (distributional derivative), and u E Hs(R) ifs < 3/2.
(b) u 0 H3/2(R).

Exercise 7.25. Prove that the Dirichlet problem

-Du + u = f, u = 0 on aS2 (f E L2(1))

has a unique weak solution by applying the Lax-Milgram theorem to the
sesquilinear form

B(u, v) J (Vu(x) V(x) + u(x)v(x)) dx

on H() x Ho (S2).

References for further reading:
R. A. Adams, Sobolev Spaces.

H. Brezis, Analyse fonctionelle: Theorie et applications.
G. B. Folland, Introduction to Partial Differential Equations.
I. M. Gelfand and G. E. Chilov, Generalized Functions.
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of
Second Order.

L. Hormander, Linear Partial Differential Operators.
E. H. Lieb and M. Loss, Analysis.
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V. Mazya, Sobolev Spaces.

W. Rudin, Functional Analysis.

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean
Spaces.





Chapter 8

Banach algebras

Some important Banach spaces are equipped in a natural way with a con-
tinuous product that determines a Banach algebra structure.l Two basic
examples are C(K) with the pointwise multiplication and G(E) with the
product of operators if E is a Banach space. It can be useful for the reader
to retain C(K) as a simple reference model.

The first work devoted to concrete Banach algebras is contained in some
papers by J. von Neumann and beginning in 1930. The advantage of con-
sidering algebras of operators was clear in his contributions, but it was the
abstract setting of Banach algebras which proved to be convenient and which
allowed the application of similar ideas in many directions.

The main operator on these algebras is the Gelfand transform2 G : a H a,
which maps a unitary commutative Banach algebra A on C to the space
C(O) of all complex continuous functions on the spectrum i. of A, which
is the set of all nonzero elements x E A' that are multiplicative. Here O is
endowed with the restriction of the w*-topology and it is compact. As seen
in Example 8.14, z is the set of all the evaluations St (t E K) if A = C(K),
and f(St) = St(f) = f(t), so that in this case one can consider f = f.

But we will be concerned with the spectral theory of operators in a
complex Hilbert space H. If T is a bounded normal operator in H, so that

1 Banach algebras were first introduced in 1936 with the name of "linear metric rings" by the
Japanese mathematician Mitio Nagumo. He extended Cauchy's function theory to the functions
with values in such an algebra to study the resolvent of an operator. They were renamed "Banach
algebras" by Charles E. Rickart in 1946.

2Named after the Ukrainian mathematician Israel Moiseevich Gelfand, who is considered the
creator, in 1941, of the theory of commutative Banach algebras. Gelfand and his colleagues created
this theory which included the spectral theory of operators and proved to be an appropriate setting
for harmonic analysis.

227
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T and the adjoint T* commute, then the closed Banach subalgebra A = (T)
of £(H) generated by I, T, and T* is commutative.

It turns out that the Gelfand theory of commutative Banach algebras
is especially well suited in this setting. Through the change of variables
z = T(X) one can consider v(T) - O, and the Gelfand transform is a
bijective mapping that allows us to define a functional calculus g(T) by
g(T) = g(T) if g is a continuous function on the spectrum of T.

For this continuous functional calculus there is a unique operator-valued
measure E on v(T) such that

g(T)=f 9(A) dE(A),

and the functional calculus is extended by

f(T)=f f(A)dE(A)

to bounded measurable functions f.
The Gelfand transform, as a kind of abstract Fourier operator, is also

a useful tool in harmonic analysis and in function theory. The proof of
Wiener's 1932 lemma contained in Exercise 8.15 is a nice unexpected appli-
cation discovered by Gelfand in 1941, and generalizations of many theorems
of Tauberian type and applications to the theory of locally compact groups
have also been obtained with Gelfand's methods. We refer the reader to
the book by I. M. Gelfand, D. A. Raikov and G. E. Chilov [16] for more
information.

8.1. Definition and examples

We say that A is a complex Banach algebra or, simply, a Banach algebra
if it is a complex Banach space with a bilinear multiplication and the norm
satisfies

MciII < lixil IIiII
so that the multiplication is continuous since, if (x, y) -+ (x, y), then

xy - xn2Jn Mxli Ily - Jnii + Mx - 0
Real Banach algebras are defined similarly.

The Banach algebra A is said to be unitary if it has a unit, which is
an element e such that xe = ex = x for all x E A and MeI = 1. This unit is
unique since, if also e'x = xe' = x, then e = ee' = e'.

We will only consider unitary Banach algebras. As a matter of fact,
every Banach algebra can be embedded in a unitary Banach algebra, as
shown in Exercise 8.1.
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Example 8.1. (a) If X is a nonempty set, B(X) will denote the unitary
Banach algebra of all complex bounded functions on X, with the pointwise
multiplication and the uniform norm Ill lix := if (x)l The unit is
the constant function 1.

(b) If K is a compact topological space, then C(K) is the closed subal-
gebra of B(K) that contains all the continuous complex functions on K. It
is a unitary Banach subalgebra of B(K), since 1 E C(K).

(c) The disc algebra is the unitary Banach subalgebra A(D) of C(D).
Since the uniform limits of analytic functions are also analytic, A(D) is
closed in C(D).

Example 8.2. If SZ is a cr-finite measure space, L°°() denotes the unitary
Banach algebra of all measurable complex functions on 1 2 with the usual
norm ll ll of the essential supremum. As usual, two functions are considered
equivalent when they are equal a.e.

Example 8.3. Let E be any nonzero complex Banach space. The Banach
space G(E) = G(E; E) of all bounded linear operators on E, endowed with
the usual product of operators, is a unitary Banach algebra. The unit is the
identity map I.

8.2. Spectrum

Throughout this section, A denotes a unitary Banach algebra, pos-
sibly not commutative. An example is G(E), if E is a complex Banach
space.

A homomorphism between A and a second unitary Banach algebra B
is a homomorphism of algebras 4': A -+ B such that 4'(e) = e if e denotes
the unit both in A and in B.

The notion of the spectrum of an operator is extended to any element
of A:

The spectrum of a e A is the subset of C

aA(a)=a(a):={AE C; Ae-aG(A)},
where G(A) denotes the multiplicative group of all invertible elements of A.

Note that, if B is a unitary Banach subalgebra of A and b e B, an
inverse of Ae - b in B is also an inverse in A, so that 0A(b) C vB(b).

Example 8.4. If E is a complex Banach space and T E G(E), we denote
cr(T) = vJ(E)(T). Thus, A E Q(T) if and only if T - Al is not bijective, by
the Banach-Schauder theorem. Recall that the eigenvalues of T, and also
the approximate eigenvalues, are in v(T). Cf. Subsection 4.4.2.
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Example 8.5. If E is an infinite-dimensional Banach space and T E G(E) is
compact, the Riesz-Fredholm theory shows that v(T) \ {0} can be arranged
in a sequence of nonzero eigenvalues (possibly finite), all of them with finite
multiplicity, and 0 E v(T), by the Banach-Schauder theorem.

Example 8.6. The spectrum of an element f of the Banach algebra C(K)
is its image 1(K).

Indeed, the continuous function f - A has an inverse if it has no zeros,
that is, if 1(t) A for all t e K. Hence, A E v(f) if and only if A E 1(K).

Let us consider again a general unitary Banach algebra A.

Theorem 8.7. If p(A) _ >,o c,A" is a polynomial and a e A, then
a(p(a)) =p(o(a)).

Proof. We assume that p(a) = cpe + cla -I- + cNaN, and we exclude the
trivial case of a constant polynomial p(A) - co.

For a given µ E C, by division we obtain p(µ) - p(A) _ (µ - A)q(A) and
p(µ)e-p(a) _ (e-a)q(a). If µe-a ¢ G(A), then also p(µ)e-p(a) ¢ G(A).
Hence, p(v(a)) C v(p(a)).

Conversely, if µ E v(p(a)), by factorization we can write

-p(A)=(Ai
with a 0. Then µe -p(a) = a(Ale - a) ... (ANe - a), where µe -p(a) ¢
G(A), so that die - a G(A) for some 1 < i < N. Thus, Ai E v(a) and we
have p(hi) = µ, which means that µ E p(v(a)). O

The resolvent of an element a e A is the function Ra : v(a)c -f A such
that Ra(h) _ (Ae - a)-1. It plays an important role in spectral theory.

Note that, if A 0,

Ra(h) _ -(a - Ae)-i = A-1(e - A-la)-i.

To study the basic properties of Ra, we will use some facts from function
theory.

As in the numerical case and with the same proofs, a vector-valued
function F : 1 -f A on an open subset 1 of C is said to be analytic or
holomorphic if every point zo E 1 has a neighborhood where F is the sum
of a convergent power series:

F(z) = (z - zo)nan (an E A).
n=o
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The series is absolutely convergent at every point of the convergence disc,
which is the open disc in C with center zo and radius

1
> 0.

R limsupn l

The Cauchy theory remains true without any change in this setting, and
F is analytic if and only if, for every z E St, the complex derivative

F(z -F h) - F(z)F'(z) = h o h
exists.

We will show that v(a) is closed and bounded and, to prove that Ra is
analytic on v(a)°, we will see that R(A) exists whenever A 0 v(a).

Let us first show that Rd is analytic on Al > h

Theorem 8.8. (a) If h<1, e - a E G(A) and

(e - a)' = (a° := e).Lr
n=0

(b) If IIthen A ¢ v(a) and

Ra(A` _ A-n-lanf
n=0

(c) Moreover,

II R_l A111 <
1

iiw"iii
IAI - h

nd lim,RQ(a) = 0.a

Proof. (a) As in (2.7), the Neumann series o an is absolutely convergent
(hhamlh < hand Ii all <1), so that z = o an E A exists, and it is easy
to check that z is the right and left inverse of e - a. For instance,

N

lim
n=0

since the multiplication by e - a is linear and continuous, so that
N N N+1

(e - a) a n= an- an=e - a+1-+e ifN -+oo.
n=0 n=0 n=1

(b) Note that
Ra(h) _ A-1(e -

and, if 11A-lahh <1, we obtain the announced expansion from (a).
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(c) Finally,
00

IIRaP)II = l,\l_hII,\_nanhl
PI-Ilalln=o

0

The spectral radius of a e A is the number

r(a) := E v(a)}.

From Theorem 8.8 we have that r(a) < han inequality that can be strict.
The following estimates are useful.

Lemma 8.9. (a) If hall <1,h< a2
1-hall

(b) If x E G(A) and I< 1/(2h1x-1 h1), then x + h E G(A) and

Il(x + h)-i _ x-i + x-ihx-ill <2IIx-ihl3hlhIl2.

Proof. To check (a), we only need to sum the right-hand side series in

hl(e - a)1 - e - all =11 lIahI

n=2 n=2

To prove (b) note that x + h = x(e + x-lh), and we have

IIxhIl < lIxllhlhll < 1/2.
If we apply (a) to a = -x-lh, since h<1/2, we obtain that x+h E G(A),
and

lh(x + h)-i _ x-i + x-ihx-i
II C I- a)-i - e - aIhhlx-1 hI

with hI(e - a)-i - e - all lhx-1hhh2/(1 - h<2hhx-ihhl2. O

Theorem 8.10. (a) G(A) is an open subset of A and x E G(A) H x-1 E
G(A) is continuous.

(b) Ra is analytic on v(a)s and zero at infinity.
(c) v(a) is a nonempty subset of C and3

r(a) = lim hlahl" = inf hlall".

3This spectral radius formula and the analysis of the resolvent have a precedent in the study
by Angus E. Taylor (1938) of operators which depend analytically on a parameter. This formula
was included in the 1941 paper by I. Gelfand on general Banach algebras.
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Proof. (a) According to Lemma 8.9(b), for every x E G(A),

B(x, ZII lII c G(A)

and G(A) is an open subset of A.
Moreover

II(x + h)-i _ x' II I+ h)-i _ x-i +, x-ihx-iII + 1 0
if lihil - 0, and x E G(A) H x-1 E G(A) is continuous.

(b) On v(a)°,

R(A) = lim '[((A + )e - a)' - (Ae - a)'] = Ra(A)2

follows from an application of Lemma 8.9(b) to x = Ae - a and h = µe. In
this case x-lhx-1 = µx-lx-1 and, writing x-2 = x-1x-1, we obtain
µ-i[(x + µe)-' _ x-i] = µ-i[(x + µe)-' - x-1 + x-lhx-1] - x-a x-z

as µ -+ 0, sinceI+ µe)-' _ x-i + x-ihx-i]II
C I- 0.

By Theorem 8.8(b), IIRaP)II 1/(IAI - I-+ 0 if Al - oo

(c) Recall that v(a) C {A; Al < r(a)} and r(a) < hThis set is closed
in C, since v(a)s = F-1(G(A)) with F(A) :_ Ae - x, which is a continuous
function from C to A, and G(A) is an open subset of A. Hence v(a) is a
compact subset of C.

If we suppose that v(a) _ 0, we will arrive at a contradiction. The
function Ra would be entire and bounded, with limIAIRa(h) = 0, and the
Liouville theorem is also true in the vector-valued case: for every u E A',
U o Ra would be an entire complex function and limIAI u(Ra(A)) = 0,
so that u(Ra(A)) = 0 and by the Hahn-Banach theorem Ra(h) = 0, a
contradiction to Ra(h) E G(A).

Let us calculate the spectral radius. Since
00

Ra(A) _ A-1 A-nan

n=o

if hAl > r(a), the power series znlln is absolutely convergent when
IzI _ i< 1/r(a), and the convergence radius of >= o liallizln is

R = (lim sup lia"hi1/")-1 > 1/r(a).
n-+oo

Then, r(a) > limsupni llanll"".



234 8. Banach algebras

Conversely, if A E v(a), then An E Q(an) by Theorem 8.7, so that IAn <
IIaII and

ICI < inf In < liminf
I

As an important application of these results, let us show that C is the
unique Banach algebra which is a field, in the sense that if A is a field, then
A H Ae is an isometric isomorphism from C onto A. The inverse isometry
is the canonical isomorphism:

Theorem 8.11 (Gelfand-Mazur4). If every nonzero element of the unitary
Banach algebra A is invertible (i. e., G(A) = A \ {0}), then A = Ce, and
A H Ae is the unique homomorphism of unitary algebras between C and A.

Proof. Let a E A and A E v(a) (o(a) Ql). Then Ae - a G(A) and it
follows from the hypothesis that a = Ae. A homomorphism C -+ A = Ce
maps 1 - e and necessarily A -+ Ae.

8.3. Commutative Banach algebras

In this section A represents a commutative unitary Banach alge-
bra. Some examples are C, B(X), C(K), and L°O(12). Recall that G(E) (if
dim E> 1) is not commutative, and the convolution algebra Ll (R) is not
unitary.

8.3.1. Maximal ideals, characters, and the Gelfand transform. A
character of A is a homomorphism x : A -+ C of unitary Banach algebras
(hence X(e) = 1). We use D(A), or simply O, to denote the set of all
characters of A. It is called the spectrum of A.

An ideal, J, of A is a linear subspace such that AJ C J and J A.
It cannot contain invertible elements, since x E J invertible would imply
e = xx-1 E J and then A = Ae C J, a contradiction to J A.

Note that, if J is an ideal, then J is also an ideal, since it follows from
J fl G(A) _ 0 that e J and J A. The continuity of the operations
implies that I + J C J and AJ C J.

This shows that every maximal ideal is closed.

4According to a result announced in 1938 by Stanislaw Mazur, a close collaborator of Banach
who made important contributions to geometrical methods in linear and nonlinear functional
analysis, and proved by Gelfand in 1941.
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Theorem 8.12. (a) The kernel of every character is a maximal ideal and
the map x H Ker x between characters and maximal ideals of A is bijective.

(b) Every character x E O(A) is continuous and

lxii = sup l= 1.
IIQIIA<_1

(c) An element a e A is invertible if and only if X(a) 0 for every
XEO.

(d) Q(a) _ {x(a); X E O(A)}, and r(a) = supXEO lProof.

(a) The kernel M of any x E O(A) is an ideal and, as the kernel of
a nonzero linear functional, it is a hyperplane; that is, the complementary
subspaces of M in A are one-dimensional, since x is bijective on them, and
M is maximal.

If M is a maximal ideal, the quotient space A/M has a natural structure
of unitary Banach algebra, and it is a field. Indeed, if ir A - A/M
is the canonical mapping and ir(x) = x is not invertible in A/M, then
J = ir(xA) A/M is an ideal of A/M, and lr-1(J) 74 A is an ideal of A
which is contained in a maximal ideal that contains M. Thus, ir-1(J) = M,
so that ir(xA) C ir(M) _ {0} and x = 0.

Let X A/M = Ce - C be the canonical isometry, so that M is
the kernel of the character XM := X ° 7,yl Any other character Xl with the
same kernel M factorizes as a product of irnl with a bijective homomorphism
between A/M and C which has to be the canonical mapping Ce - C, and
then Xl = XM

(b) If X = X,yl E O(A), then lxii < iIlrMiIiixii _ IIlrMii 1 and lxii
X(e) = 1.

(c) If x e G(A), we have seen that it does not belong to any ideal. If
x ¢ G(A), then xA does not contain e and is an ideal, and by Zorn's lemma
every ideal is contained in a maximal ideal. So x e G(A)S if and only if x
belongs to a maximal ideal or, equivalently, x(x) 0 for every character X.

(d) Finally, Ae - a ¢ G(A) if and only if (Ae - a) = 0, that is, A = X(a)
for some X E O(A).

We associate to every element a of the unitary commutative algebra A
the function a which is the restriction of (a, ) to the characters,5 so that

is such that a(X) = (a). On O(A) C BA' we consider the Gelfand topol-
ogy, which is the restriction of the weak-star topology w* = v(A', A) of A'.

5Reca11 that (a, u) = u(a) was defined for every u in the dual A' of A as a Banach space.
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In this way, a e C(0(A)), and

C:aEAi-4aEC(0(A))
is called the Gelfand transform.

Theorem 8.13. Endowed with the Gelfand topology, O(A) is compact and
the Gelfand transform : A -+ C(0(A)) is a continuous homomorphism of
commutative unitary Banach algebras.

Moreover h= r(a) < hand Ce = 1, so that 1

Proof. For the first part we only need to show that D C BAS is weakly
closed, since BAS is weakly compact, by the Alaoglu theorem. But

O = { E BAS; (e) =1, (xy) _ dx,y E A}

is the intersection of the weakly closed sets of BAS defined by the conditions
(x,ye A) and (e,.)= 1.

It is clear that it is a homomorphism of commutative unitary Banach
algebras. For instance, e(X) = X(e) = 1 and (x) = X(x)X(y) =

Also, aII = SuPXEO Ihaccording to Theorem 8.12(d). O

Example 8.14. If K is a compact topological space, then C(K) is a unitary
commutative Banach algebra whose characters are the evaluation maps St
at the different points t e K, and t e K H St e O is a homeomorphism.

Obviously St e O. Conversely, if x = XM E O, we will show that there
is a common zero for all f e M. If not, for every t e K there would exist
some ft e M such that ft(t) 0, and ifti > et > 0 on a neighborhood U(t)
of this point t. Then, K = U(ti) U U U(tN), and the function

f=hftli2++hftNI2=ftlftl++ftNftN,
which belongs to M, would be invertible, since it has no zeros.

Hence, there exists some t e K such that 1(t) = 0 for every f E M. But
M is maximal and contains all the functions f e C(K) such that 1(t) = 0.

Both K and O are compact spaces and t e K f-+ St e O, being continu-
ous, is a homeomorphism.

8.3.2. Algebras of bounded analytic functions. Suppose that SZ is a
bounded domain of C and denote by H°°(SZ) the algebra of bounded analytic
functions in SZ, which is a commutative Banach algebra under the uniform
norm

I= sup If(z)i.
zEl

It is a unitary Banach subalgebra of B(SZ).
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The Gelfand transform : H°O(St) - C(D) is an isometric isomorphism,
since 111211 = I 112 and r (f) = II f I I for every f E A, and we can see H°O (S2)
is a unitary Banach subalgebra of C(O) (cf. Exercise 8.18).

For every c,' E St, the evaluation map SS is the character of H°O(12)
uniquely determined by SC(z) _ c,', where z denotes the coordinate function.

Indeed, if x E O satisfies the condition x(z) _ (and if f E H°O(St), then

f(z) = f() + I (z -
and

x(.f)=f() + x(.fz

It can be shown that the embedding SZ -+ O such that c,' H S is a
homeomorphism from St onto an open subset of O (see Exercise 8.14 where
we consider the case S2 = U, the unit disc) and, for every f E H°°(1), it is
convenient to write f(6) = f() if E St.

Suppose now that E aSt, a boundary point. Note that z - is not
invertible in H°O(St), so that

Og :_ {X E O; X(z - ) _ o} _ {X E 0; X(z) _ _
is not empty.

For every x E O, X(z - x(z)) = 0 and z - X(z) is not invertible, so that
X(z) E SZ and X E SZ or X E S2 for some E aSZ. That is,

(8.1) O = SZ U (U )
Eas

and we can imagine D as the domain S2 with a compact fiber 0 _ (1)-' ()
lying above every E 81Z.

The corona problem asks whether S2 is dense in O for the Gelfand topol-
ogy, and it admits a more elementary equivalent formulation in terms of
function theory:

Theorem 8.15. For the Banach algebra H°O(SZ), the domain St is dense in
O if and only if the following condition holds:

If f1,...,fEH°° (11) and if

(8.2) Ifi()I + + Ifm()I 6> 0

for every E SZ, then there exist gl,... , gn E H°O(St) such that

(8.3) f1gi+...+fg=1.
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Proof. Suppose that 12 is dense in O. By continuity, if hi + -F- ifd > S
on 12, then also II + + mi ?Son O, so that {f,,.. . , fn} is contained
in no maximal ideal and

1 e = f1H°°() + + fH°°().
Conversely, suppose SZ is not dense in 0 and choose x0 E 0 with a

neighborhood V disjoint from 11. The Gelfand topology is the w*-topology
and this neighborhood has the form

V = {X; max I- Xo(hj)I <6, hl,... ,Itn e H°O(SZ)}

The functions f2 = h3 -Xo(hj) are in V and they satisfy (8.2) because S ¢ V
and then I> 6. But (8.3) is not possible because f,,.. . , fn e Ker xo
and Xo(1) = 1.

Starting from the above equivalence, in 1962 Carleson6 solved the corona
problem for the unit disc, that is, D is dense in 0 (H°° (D)) .

The version of the corona theorem for the disc algebra is much easier.
See Exercise 8.3.

8.4. C*-algebras

We are going to consider a class of algebras whose Gelfand transform is a
bijective and isometric isomorphism. Gelfand introduced his theory to study
these algebras.

8.4.1. Involutions. A C*-algebra is a unitary Banach algebra with an
involution, which is a mapping x e A -+ x* E A that satisfies the following
properties:

(a) (x+y)*=x*+y*,
(b) (Ax)* _
(c ) (xy)* =

(d) x** = x, and
(e) e* = e

for any x, y e A and A E C, and such that IIx*xIl _ IIxII2 for every x E A.

6The Swedish mathematician Lennart Carleson, awarded the Abel Prize in 2006, has solved
some outstanding problems such as the corona problem (1962) and the almost everywhere con-
vergence of Fourier series of any function in L2 (T) (1966) and in complex dynamics. To quote
Carleson, "The corona construction is widely regarded as one of the most difficult arguments in
modern function theory. Those who take the time to learn it are rewarded with one of the most
malleable tools available. Many of the deepest arguments concerning hyperbolic manifolds are
easily accessible to those who understand well the corona construction."
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An involution is always bijective and it is its own inverse. It is isometric,
since 11x112 = IIx*xII C IIx*IlIIxIl, so that lxii C llx*Il and flx*il C Ilx**ll _ lixil.

Throughout this section, A will be a C*-algebra.

If H is a complex Hilbert space, G(H) is a C*-algebra with the invo-
lution T H T*, where T* denotes the adjoint of T. It has been proved in
Theorem 4.4 that llT*Tii = IITT*Il _ 11Th2.

Let A and B be two C*-algebras. A homomorphism of C*-algebras is
a homomorphism W : A -+ B of unitary Banach algebras such that W(x*) _
W(x)* (and, of course, W(e) = e).

We say that a E A is hermitian or self-adjoint if a = a*. The orthog-
onal projections of H are hermitian elements of G(H). We say that a E A
is normal if aa* = a*a.

Example 8.16. If a E A is normal and (a) denotes the closed subalgebra
of A generated by a, a*, and e, then (a) contains all elements of A that can
be obtained as the limits of sequences of polynomials in a, a* and e. With
the restriction of the involution of A, (a) is a commutative C*-algebra.

Lemma 8.17. Assume that A is commutative.
(a) If a = a* E A, then vA(a) c R.
(b) For every a E A and X E D(A), X(a*) = X(a).

Proof. If t E R, since lixil = 1,

l+ ite) 12 < la + itell2 = I+ ite)*(a + ite) ff
_ I_ 11a2+t2ell C Ilall+t.

Let X(a) = a + i,Q (os, 3 E R). Then

IlaII2+t2> I+i/+itI2=2+/32+2/3t+t2,
i.e., h> a2 +X32 + 2Qt, and it follows that Q = 0 and XA(a) = a E R.

For any a E A, if x = (a + a*)/2 and y = (a - a*)/2i, we obtain
a = x + iy with x, y hermitian, X(x), x() E R, and a* = x - iy. Hence,
X(a) = X(x) + ix(y) and X(a*) = X(x) - ix(y) = (a). D

Theorem 8.18. If B is a closed unitary subalgebra of A such that b* E B
for every b E B, then vB(b) = vA(b) for every b E B.

Proof. First let b* = b. From Lemma 8.17 we know that a(b) C R and,
obviously,

0A(b) c vB(b) c o(6)(b) =

To prove the inverse inclusions, it is sufficient to show that 8v(6)(b) C
vA(b). Let A E 8v(b)(b) and suppose that A 0 vA(b). There exists x E A so
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that x(b - Ae) _ (b - Ae)x = e and the existence of An 0 v(b) (b) such that
A- A follows from A E av(b)(b). Thus we have

(b-Ae)' E (b) C A, b-Ae - b-Ae, and (b-Ae)' - (b-Ae)' = X.
Hence x e (b), in contradiction to A E v(b) (b).

In the general case we only need to prove that if x e B has an inverse y
in A, then y e B also. But it follows from xy = e = yx that (x*x)(yy*) _
e = (yy*)(x*x), and x*x is hermitian. In this case we have seen above
that x*x has its unique inverse in B, so that yy* _ (x*x)-1 E B and

= = (yy*)x* e B. U

8.4.2. The Gelfand-Naimark theorem and functional calculus. We
have proved in Theorem 8.13 that the Gelfand transform satisfies =
r(a) < hbut in the general case it may not be injective. This is not the
case for C*-algebras.

Theorem 8.19 (Gelfand-Naimark). If A is a commutative C* -algebra, then
the Gelfand transform g : A -+ C(0(A)) is a bijective isometric isomorphism
of C*-algebras.

Proof. We have ?(x) = X(a) = a(X) and g(a*) = G(a).
If x* = x, then r(x) =limn h= Isince 11x21l _ Iixx*II _ 11x112

and, by induction, h

II = I= (Ilxll2Th)2 =

If we take x = a*a, then hIa*aIk = IIa*ahi, so

IIz

and h_ hSince

g is an isometric isomorphism, G(A) is a closed subalgebra of
C(0(A)). This subalgebra contains the constant functions (e = 1) and it
is self-conjugate and separates points (if Xl X2, there exists a E A such
that Xl(a) x2(a), i.e., a(Xl) a(X2)). By the complex form of the Stone-
Weierstrass theorem, the image is also dense, so (A) = C(0(A)) and g is
bijective. O

Theorem 8.20. Let a be a normal element of the C*-algebra A, let O =
0(a) be the spectrum of the subalgebra (a), and let g : (a) -+ C(O) be the
Gelfand transform. The function a : O -+ ay(a) = v(a)(a) is a homeomor-
Phism.

Proof. We know Q(a) = a(0). If Xl, X2 E O, from a(Xl) = a(x2) we obtain
Xi(a) = X2(a), Xi(a*) = Xi(a) = X2(a) = X2(a*), and Xi(e) = 1 = X2(e),
so that Xl(x) = X2(x) for all x e (a); hence, Xl = X2 and a : O - v(a) is
bijective and continuous between two compact spaces, and then the inverse
is also continuous. O
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The homeomorphism a : O -+ Q(a) (A = a(x)) allows us to define the
isometric isomorphism of C*-algebras r = oa : C(v(a)) -+ C(O) such that
[g(A)] i-+ [G()] =

By Theorem 8.19, the composition

= o r : C(a(a)) -+ C(z) -+ (a) c A,

such that g e C(a(a)) H G-1(g(a)) E (a), is also an isometric isomorphism
of C*-algebras. If g e C(v(a)), then the identity (g) = g o a = g(a)
suggests that we may write g(a) fa(g).

So, we have the isometric isomorphism of C*-algebras

g e C(a(a)) H g(a) E (a) C A

such that, if go(d) _ A is the identity on Q(a), then I= a and go(a) = a,
since r(go) = a = g(a). Also go(a) = a* and

(8.4) p(a) _ cj,kai(a*)'" if p(z) _
0<j,k<N 0<j,k<N

We call a the functional calculus with continuous functions. It
is the unique homomorphism : C(a(a)) - A of C*-algebras such that

I(p) _
0<j,k<N

if p(z) = >IOj,kN cj,kzizk.

Indeed, it follows from the Stone-Weierstrass theorem that the subalge-
bra P of all polynomials p(z) considered in (8.4) is dense in C(a(a)) and, if
g =limpn in C(a(a)) with pE P, then

(g) = limp(a) = a(g).n

These facts are easily checked and justify the notation g(a) for 1a(g).

8.5. Spectral theory of bounded normal operators

In this section we are going to consider normal operators T e £(H). By
Theorem 8.18,

a(T) _ aL(x)(T) _ a(T)(T)
and it is a nonempty compact subset of C.

From now on, by B(Q(T)) we will denote the C*-algebra of all bounded
Borel measurable functions f v(T) -+ C, endowed with the involution
f H f and with the uniform norm. Obviously C(Q(T)) is a closed unitary
subalgebra of B(v(T)).

An application of the Gelfand-Naimark theorem to the commutative
C*-algebra (T) gives an isometric homomorphism from (T) onto C(O(T)).
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The composition of this homomorphism with the change of variables
A = T(X) (A E v(T) and x E O(T)) defines the functional calculus with
continuous functions on v(T), g E C(v(T)) H g(T) E (T) C G(H), which is
an isometric homomorphism of C*-algebras.

If x, y E H are given, then

u(g) :_ (g(T)x,y)H

defines a continuous linear form on C(v(T)) and, by the Riesz-Markov rep-
resentation theorem,

(g(T)x,y)H = u(g) = f (T) 9 dµx,y

for a unique complex Borel measure µon v(T).
We will say that is the family of complex spectral measures

of T. For any bounded Borel measurable function f on v(T), we can define

u(f) :- f f(T)

and in this way we extend uto a linear form on these functions. Note
that Iux,y(9)I = (g(T)x,y)HI IIxIIHIIyIIHIIgIJa(T).

8.5.1. Functional calculus of normal operators. Now our goal is to
show that it is possible to define f(T) E G(H) for every f in the C*-algebra
B(v(T)) of all bounded Borel measurable functions on Q(T) C C, equipped
with the uniform norm and with the involution f H f, so that

(f(T)x,y)H = u(f)
= f (T)

in the hope of obtaining a functional calculus f H f(T) for bounded but
not necessarily continuous functions.

Theorem 8.21. Let T E G(H) be a normal operator (TT* = T*T) and let
be its family of complex spectral measures. Then there exists a unique

homomorphism of C*-algebras

B(v(T)) - G(H)

such that

1 (x,yEH).(T(f)xY)H=fIt

is an extension of the continuous functional calculus g H g(T), and
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Proof. Note that, if µl and µ2 are two complex Borel measures on v(T)
and if fgd1ai = f g dµ2 for all real g E C(Q(T)), then µl = µ2i by the
uniqueness in the Riesz-Markov representation theorem.

If g E C(Q(T)) is a real function, then g(T) is self-adjoint, since g(T)* _
(T). Hence, (g(T)x, y)H = (g(T)y, x)H and then

Q
9 -

Q
9 =

Q
9

(T) (T) (T)

so that

Obviously, (x, y) H f(T) g (g(T)x, y)H is a continuous sesquilinear
form and, from the uniqueness in the Riesz-Markov representation theorem,
the map (x, y) H µ,(B) is also sesquilinear, for any Borel set B C v(T).
For instance, since for continuous functions we have

fT 9 dµx,ay = (9(7')x,y)x = J T)

With the extension f(T) f of uy to functions f in
B(v(T)), it is still true that

IIIxIIHIIyIIHIIfII(T).
For every f E B(v(T)),

(x,y) Bf(X,y) =1
oiT)

is a continuous sesquilinear form on H x H and Bf(y, x) = B f(x, y), since

Q(T) Q(T)

(,i,(B) = extends to simple functions). Let us check that an
application of the Riesz representation theorem produces a unique operator
T(f) E G(H) such that B f(x, y) _ (T(f)x,y)H.

Note that x) E W and there is a unique IT(f )x E H so that
B f(y, x) _ (y, T(f )x)H for all y E H. Then

(T(f)x,y)H = Bf(y, x) = B1 (x, y) = f f (x,y E H).
(T)

It is clear that B f (x, y) is linear in f and that we have defined a bounded
linear mapping T : B(Q(T)) -+ ,C(H) such that

I y)HI <_ If IIoT) IIXIIHIIYIIH
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and I Ill II(T). Moreover, with this definition, 1T extends the
functional calculus with continuous functions, g H g(T).

To prove that T is a continuous homomorphism of C*-algebras, all that
remains is to check its behavior with the involution and with the product.

1f f is real, then from µ3,y = fGy, we obtain (T(f)x, y)H = (T(f)Y, x)x
and 4T (f) * _ 4T (f) . In the case of a complex function, f, T (f) * _ 4r(f)
follows by linearity.

Finally, to prove that T(f1f2) _ we note that, on
continuous functions,

f h9 (h(T)g(T)x, y)x = f h
(T) (T)

and g dµ y = CLµ9(T)x y (x, y e H). Hence, also

f (T) fig J (T) fi

if fi is bounded, and then

f1gd,y = (T(fi)g(T)x,y)H =

o(T)

Again f 1 dµx,y = dixT (fl) *y, and also f7(T) fif2 f(T) f2 d,u,fl (T) * y

if fi and f2 are bounded. Thus,

(T(f1f2)x,y)H = fif2d/x,yf (T)

f (T) f2dx,T(fl)*y -
and 4T (f) is multiplicative. O

As in the case of the functional calculus for continuous functions, if
f e B(Q(T)), we will denote the operator IT(f) by f(T); that is,

(f(T)xY)H=f (x,yH).

8.5.2. Spectral measures. For a given Hilbert space, H, a spectral
measure, or a resolution of the identity, on a locally compact sub-
set K of C (or of Rn), is an operator-valued mapping defined on the Borel
v-algebra 13K of K,

E:13K-+L(H),
that satisfies the following conditions:
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(1) Each E(B) is an orthogonal projection.

(2) E(0) = 0 and E(K) = I, the identity operator.

(3) If BE 13K (rt e N) are disjoint, then
00 00

E(W B)x
=

E(B)x

for every x e H, and it is said that
00 00

E(WBn) =>E(B)

for the strong convergence, or that E is strongly v-additive.

Note that E also has the following properties:

(4) If Bl fl B2 = Ql, then E(B1)E(B2) = 0 (orthogonality).
(5) E(Bl fl B2) = E(B1)E(B2) = E(B2)E(B1) (multiplicativity).
(6) If Bl C B2, then Im E(Bl) C Im E(B2) (usually represented by

E(B1) < E(B2)).
(7) If Bt B or B, j. B, then limes, E(B)x = E(B)x for every x e H

(it is said that E(B) -+ E(B) strongly).

Indeed, to prove (4), if y = E(B2)x, the equality

(E(B1) + E(B2))2 = E(Bl U B2)2 = E(B1) + E(B2)

and the condition Bl fl B2 = Ql yield

E(Bl)E(BZ)x + E(B2)E(Bl)x = 0,

that is, E(Bl)y + y = 0 and, applying E(B1) to both sides, E(Bl)y = 0.
Now (5) follows from multiplying the equations

E(B1) = E(B1nB2)+E(B1\B1nB2), E(B2) = E(B1nB2)+E(B2\B1nB2)

and taking into account (4).
If Bn t B, then limes, E(B)x = E(B)x follows from (3), since

B=B1U(B2\ B1)U(B3\ B2)U... ,

The decreasing case B, j. B reduces to K \ Bt K \ B.

It is also worth noticing that the spectral measure E generates the family
of complex measures (x, y e H) defined as

(E(B)x,y)H.

If x e H, then EB(B) E(B)x defines a vector measure E : ,t3K - H,
i.e., 0 and E(B) in H.
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Note that for every x e H, is a (positive) measure such that

(E(B)x,y)H = IIxII,

a probability measure if lix Lu = 1, and that operations with the complex
measures by polarization, reduce to operations with positive measures:

E =(B) x+y,x+y (B) x yx y (B) + x Zy,x Zy ( )4

The notions E-almost everywhere (E-a.e.) and E-essential supre-
mum have the usual meaning. In particular, if f is a real measurable
function,

E-sup f= inf{M e R; f< M E-a.e.}.

Note that E(B) = 0 if and only if 0 for every x e H. Thus, if
Bl C BZ and E(B2) = 0, then E(B1) = 0, and the class of E-null sets is
closed under countable unions.

The support of a spectral measure E on K is defined as the least
closed set supp E such that E(K \ supp E) = 0. The support consists
precisely of those points in K for which every neighborhood has nonzero
E-measure and E(B) = E(B fl supp E) for every Borel set B C K.

The existence of the support is proved by considering the union V of
the open sets V« of K such that E(Va) = 0. Since there is a sequence Vof
open sets in K such that Va = U{n; vcu«} Vn, then also V = U{n; Vfl

and E(V) = 0. Then supp E = K \ V.

We write

R=J[IdE
K

to mean that

(RX,Y)H = fK,y (x,y E H).

It is natural to ask whether the family of complex measures associ-
ated to a normal operator T is generated by a single spectral measure E asso-
ciated to T. The next theorem shows that the answer is affirmative, allowing
us to rewrite the functional calculus of Theorem 8.21 as 1(T) = J(T) f dE.
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Theorem 8.22 (Spectral resolution7). If T E G(H) is a normal operator,
then there exists a unique spectral measure E : X3Q(T) -+ G(H) which satisfies

T =
J

a dE(a).

f(T)=f(T) f(A)dE(A) (feB(cr(T))),

and

(8.7) E(B) = XB(T) (BEI3a(T)).

Proof. If T B(v(T)) -+ G(H) is the homoinorphism that defines the
functional calculus, then to obtain (8.6) we must define E by condition (8.7),

E(B) :- T(XB) CB E

and then check that E is a spectral measure with the convenient properties.
Obviously, E(B) = E(B)2 and E(B)* = E(B) (XB is real), so that

E(B) is an orthogonal projection (Theorem 3.13).
Moreover, it follows from the properties of the functional calculus for

continuous functions that E(v(T)) _ I(1) = 1(T) = I and E(0) _ I(0) = 0
and, since 1 is linear, E is additive. Also, from

(E(B)X,y)H = (''(XB)x,y)H =

we obtain that

f (T) 9dE = 9(T), f (T) fdE _ (f) (9 E C(v(T)), f E B(v(T))).

Finally, E is strongly v-additive since, if B(n e N) are disjoint Borel
sets, E(Bn)E(Bm) = 0 if n m, so that the images of the projections
E(B) are mutually orthogonal (if y = E(B,,,,)x, we have y e Ker E(B)
and y e E(Bn)(H)1) and then, for every x e H, E(B)x is convergent
to some Px E H since

I H <- II=IIX+

this being true for partial sums, IB)xIIH < IIxII.

?In their work on integral equations, D. Hilbert for a self-adjoint operator on £2 and F. Riesz
on L2 used the Stieltjes integral

t dE(t) = lim > tk(E(tk) - E(tk_1)) (here E(tk) - E(tk_1) = E(tk_1i tk])f (T) k

to obtain this spectral theorem.
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But then

(PX,Y)H = (E'(Bn)x,y)x U Bn _ (E(B)x,y)H
n=1 n=1 n=1

and >E(B)x = Px = E( J,n
The uniqueness of E follows from the uniqueness for the functional cal-

culus for continuous functions 'T and from the uniqueness of the measures
in the Riesz-Markov representation theorem.

Remark 8.23. A more general spectral theorem due to John von Neumann
in 1930 can also be obtained from the Gelfand-Naimark theorem: any com-
mutative family of normal operators admits a single spectral measure which
simultaneously represents all operators of the family as integrals J'K g dE for
various functions g.

8.5.3. Applications. There are two special instances of normal operators
that we are interested in: self-adjoint operators and unitary operators.

Recall that an operator U E G(H) is said to be unitary if it is a bijective
isometry of H. This means that

UU* = U* U = I

since U*U = I if and only if (Ux, Uy)H = (x, y) and U is an isometry. If it is
bijective, then (U'X,U1Y)H = (x,y)H and ((U_l)*U_lX,y)H = (x,y)H,
where (U_l)*U_lx = (U*)-lU-lx = (UU*)_lx and then ((UU*)_lx, y)H =
(x, y)H, so that UU* = I. Conversely, if UU* = I, then U is exhaustive.

The Fourier transform is an important example of a unitary operator of
L2 (R).

Knowing the spectrum allows us to determine when a normal operator
is self-adjoint or unitary:

Theorem 8.24. Let T E G(H) be a normal operator.
(a) T is self-adjoint if and only if a(T) C R.
(b) T is unitary if and only if v(T) c S = {A; JAJ = 1}.

Proof. We will apply the continuous functional calculus 1T for T to the
identity function g(A) _ A on Q(T), so that g(T) = T and g(T) = T*.

From the injectivity of T, T = T* if and only if g = g, meaning that
A=AERforeveryAEQ(T).

Similarly, T is unitary if and only if TT* = T*T = I, i.e., when gg = 1,
which means that Al = 1 for all A E Q (T) .

8 See also Exercise 8.21.
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Positivity can also be described through the spectrum:

Theorem 8.25. Suppose T E C(H). Then

(s.8)

if and only if

(8.9)

(TX,X)H>O (xEH)

T = T* and Q(T) C [0, oo).

Such an operator is said to be positive.

Proof. It follows from (8.8) that (Tx, x)H E R and then

(Tx,x)x = (x, Tx)H = (T*x, x) H.

Let us show that then S := T - T* = 0.
Indeed, (Sx, y)H + (Sy, x) = 0 and, replacing y by iy, -i(Sx, y)H +

i(Sy, x) = 0. Now we multiply by i and add to obtain (Sx, y)H = 0 for all
x, y E H, so that S = 0.

Thus Q(T) C R. To prove that A < 0 cannot belong to Q(T), we note
that the condition (8.8) allows us to set

II T - AI)xII2i-r = IITxIIi - 2A(Tx, x)H + A2IIxII2i-r

This shows that Ta T - Al : H -+ F = s(T - Al) has a continuous
inverse with domain F, which is closed. This operator is easily extended to
a left inverse R of Ta by defining R = 0 on F'-. But 1'), is self-adjoint and
RTa = I also gives TaR* = I, Ta is also right invertible, and A 0 v(T).

Suppose now that T = T* and Q(T) C [0, oo). In the spectral resolution

(TX,X)H = f AdE,(A) 0,
JoIT)

since is a positive measure and A > 0 on Q(T) C [0, oo). O

Let us now give an application of the functional calculus with bounded
functions:

Theorem 8.26. If T = f(T) A dE(A) is the spectral resolution of a normal
operator T E G(H) and if Ao E v(T), then

Ker (T - AoI) = Im E{Ao},

so that Ao is an eigenvalue of T if and only if E({Ao}) 0.

Proof. The functions g(A) _ A - Ao and f = X{ao} satisfy fg = 0 and
g(T)f(T) = 0. Since f(T) = E({ao}),

ImE({Ao}) C Ker (g(T)) = Ker (T - AoI).



250 8. Banach algebras

Conversely, let us take

G=a(T)\{Ao}=WB
n

with d(Ao, Bn) > 0 and define the bounded functions

fn(s) = A-gyp.

Then f(T)(T - aoI) = E(Bn), and (T - AoI)x = 0 implies E(Bn)x = 0
and E(G)x = n E(Bn)x = 0. Hence, x = E(G)x+E({gyp})x = E({gyp})x,
i.e., x E Im E({gyp}).

As shown in Section 4.4, if T is compact, then every nonzero eigenvalue
has finite multiplicity and v(T)\{0} is a finite or countable set of eigenvalues
with finite multiplicity with 0 as the only possible accumulation point. If T
is normal, the converse is also true:

Theorem 8.27. If T E G(T) is a normal operator such that v(T) has no
accumulation point except possibly 0 and dim Ker (T - Al) < oo for every

0, then T is compact.

Proof. Let a(T) \ {0} _ {A1, A2,.
. .} and IA1J > 1A21 > ' We apply the

functional calculus to the functions gn defined as

9n(A) _ A if A _ Ak and k < n

and g(A) = 0 at the other points of a(T) to obtain the compact operator
with finite-dimensional range

n
g(T) = AkE({Ak}).

k=1

Then

I
C sup IAEo(T)

and AnJ -+ 0 as n -+ oo if v(T) \ {0} is an infinite set. This shows that T
is compact as a limit of compact operators.

8.6. Exercises

Exercise 8.1. Show that every Banach algebra A without a unit element
can be considered as a Banach subalgebra of a unitary Banach algebra Al
constructed in the following fashion. On Al = A x C, which is a vector
space, define the multiplication (a, A) (b, µ) :_ (ab + Ab + µa, Aµ) and the
norm J))JJ :_ J+ Al. The unit is 6 = (0, 1).
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The map a H (a, 0) is an isometric homomorphism (i.e., linear and
multiplicative), so that we can consider A as a closed subalgebra of Al. By
denoting a = (a, 0) if a E A, we can write (a, A) = a -I- A8 and the projection
Xo(a + fib) :_ A is a character Xo E 0(Al).

If A is unitary, then the unit e cannot be the unit 8 of Al.

Exercise 8.2. Suppose that A = Cl is the commutative unitary Banach
algebra obtained by adjoining a unit to C as in Exercise 8.1. Describe z(A)
and the corresponding Gelfand transform.

Exercise 8.3. (a) Prove that the polynomials P(z) _ no c7zn are dense
in the disc algebra A(D) by showing that, if f e A(D) and

fn(z) = f ( nz >>n+l
then fn - f uniformly on D and, if Ill - fII < e/2, there is a Taylor
polynomial P of fn such that fn - PII E/2

Hence, polynomials P are not dense in C(D). Why is this not in contra-
diction to the Stone-Weierstrass theorem?

(b) Prove that the characters of A(D) are the evaluations bz (Izi < 1)
and that z e D H Sz E D(A(D)) is a homeomorphism.

(c) If fi,... , f E A(D) have no common zeros, prove that there exist
such that fg = 1.

Exercise 8.4. Show that, with the convolution product,

f*g(x):= f f(x-y)g(y)dy,
R

the Banach space L' (R) becomes a nonunitary Banach algebra.

Exercise 8.5. Show also that Ll (T), the Banach space of all complex 1-
periodic functions that are integrable on (0, 1), with the convolution product

1

f*g(x) :=J f(x-y)g(y)dy,
0

and the usual Ll norm, is a nonunitary Banach algebra.

Exercise 8.6. Show that £1(Z), with the discrete convolution,

(u * v)[k] := u[k - m]v[m],
m= -00

is a unitary Banach algebra.

Exercise 8.7. Every unitary Banach algebra, A, can be considered a closed
subalgebra of £ (A) by means of the isometric homomorphism a La, where
La(X) := ax.
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Exercise 8.8. In this exercise we want to present the Fourier transform
on Ll(R) as a special case of the Gelfand transform. To this end, consider
the unitary commutative Banach algebra Ll(R)1 obtained as in Exercise 8.1
by adjoining the unit to L1(R), which is a nonunitary convolution Banach
algebra L1 (R) (see Exercise 8.4).

(a) Prove that, if x E (L'(R)1) \ {xo} and x(u) = 1 with u E Ll(R),
then 7x(a) ([u(t + a)]) defines a function 7x : R - T C C
which is continuous and such that ryX(a +,Q) = ryX(a)7x3).

(b) Prove that there exists a uniquely determined number x E R such
that 'yx(a) = ezX&.

(c) Check that, if G f denotes the Gelfand transform of f E LL (R), then
da - Ffcf (X) - fRf(a)e2

Exercise 8.9. Let us consider the unitary Banach algebra L°°(12) of Ex-
ample 8.2. The essential range, f[1], of f E L°°(12) is the complement of
the open set U{G; G open, µ(f -1(G)) = 0}. Show that f[1] is the smallest
closed subset F of C such that µ(f -1(F°)) = 0, IIfIk = max{IAI; A E f[1]},
and f[1] _ a(f)

Exercise 8.10. The algebra of quaternions, H, is the real Banach space
R4 endowed with the distributive product such that

1x=x, ij=-ji=k, jk=-kj=i, lei=-ik=j, i2=j2=k2=-1
if x E H, 1 = (1,0, 0, 0), i = (0, 1, 0, 0), j = (0, 0,1, 0), and k _ (0,0,0, 1),
so that one can write (a, b, c, d) = a + bi + cj -I- dk.

Show that H is an algebra such that xy_ IxIyM and that every
nonzero element of A has an inverse.
Remark. It can be shown that every real Banach algebra which is a field
is isomorphic to the reals, the complex numbers or the quaternions (cf.
Ricka,rt, General Theory of Banach Algebras, [35, 1.7]). Hence, C is the only
(complex) Banach algebra which is a field and H is the only real Banach
algebra which is a noncommutative field.

Exercise 8.11. If X : A - C is linear such that (ab) = X(a)X(b) and
x 0, then prove that X(e) = 1, so that X is a character.

Exercise 8.12. Prove that, if T is a compact topology on O(A) and every
function a (a E A) is T-continuous, then T is the Gelfand topology.

Exercise 8.13. Prove that the Gelfand transform is an isometric isomor-
phism from C(K) onto C(O).

Exercise 8.14. Let U be the open unit disc of C and suppose 0 is the
spectrum of HO° (U). Prove that, through the embedding U -+ 0, U is an
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open subset of I. Write

z=Du( U z),
EaD

as in (8.1), and prove that the fibers 0 (Il = 1) are homeomorphic to one
another.

Exercise 8.15 (Wiener algebra). Show that the set of all 2ir-periodic com-
plex functions on R

+oo

f(t) _ ckeZkt

k=-oo

+oo

( lcl<oo),
k=-oo

with the usual operations and the norm I11w :_ lckl, is a commu-
tative unitary Banach algebra, W. Moreover prove that the characters of
W are the evaluations 8t on the different points t e R and that, if f E W
has no zeros, then 1/f e W.

Exercise 8.16. Every f E W is 2ir-periodic and it can be identified as
the function F on T such that f(t) = F(eZt). If 1(t) _ >Jk ckeZkt, F(z) _
>Jk ckzk. In Exercice 8.15 we have seen that the St (t e R) are the characters
of W, but show thatC : W - C(T), one-to-one and with 11111 II.f IIw, is
not an isometry and it is not exhaustive.

Exercise 8.17. Suppose A is a unitary Banach algebra and a e A, and
denote M(U) = supAEVc IIRa(A)lI. Prove that, if U C C is an open set and
vA(a) C U, then 0A(b) C U whenever IIb - all <6 if S < 1/M(U) (upper
semi-continuity of vA).

Exercise 8.18. Let A be a commutative unitary Banach algebra. Prove
that the Gelfand transform G A -3 C(D) is an isometry if and only if
11a211 _ 11a112 for every a E A.

Show that in order for Ilall to coincide with the spectral radius r(a), the
condition 11a211 _ is necessary and sufficient.

Remark. This condition characterizes when a Banach algebra A is a uni-
form algebra, meaning that A is a closed unitary subalgebra of C(K) for
some compact topological space K.

Exercise 8.19. In the definition of an involution, show that property (e),
e* = e, is a consequence of (a)-(d). If x e A is invertible, prove that
(x*)_l = (x_l)*.

Exercise 8.20. With the involution f H f, where f is the complex con-
jugate of f, show that C(K) is a commutative C*-algebra. Similarly, show
that L°O(St), with the involution f H f, is also a commutative C*-algebra.
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Exercise 8.21. If {P}1 is a sequence of orthogonal projections and
their images are mutually orthogonal, then the series °O 1

Pn is strongly
convergent to the orthogonal projection on the closed linear hull ® P( H)
of the images of the projections P.

Exercise 8.22. Let Ax = 1 ) (x, ek)Hek be the spectral representation
of a self-adjoint compact operator of H, and let {P}1 be the sequence of
the orthogonal projections on the different eigensubspaces

H1 = [e1, ... , e(1)], ..., Hn = [ek(fl_1)+1,... , eo(n)], .. .

for the eigenvalues a = = ... = 'k(n) of A.
Show that we can write

A = an Pn
n=1

and prove that
E(B) _ Pn

a. EB
is the resolution of the identity of the spectral resolution of A.

Exercise 8.23. Let µ be a Borel measure on a compact set K C C and let
H =L2(µ). Show that multiplication by characteristic functions of Borel
sets in K, E(B) := is a spectral measure E : ,t3K - L2(µ).

Exercise 8.24. If E : 13K - G(H) is a spectral measure, show that the null
sets for the spectral measure have the following desirable properties:

(a) If E(B) = 0 (ri E N), then E(U1 Bn) = 0.
(b) If E(B1) = 0 and BZ C Bl, then E(B2) = 0.

Exercise 8.25. Show that the equivalences of Theorem 8.25 are untrue on
the real Hilbert space R2.

Exercise 8.26. Show that every positive T E ,C(H) in the sense of Theo-
rem 8.25 has a unique positive square root.

Exercise 8.27. With the functional calculus, prove also that, if T E £(H)
is normal, then it can be written as

T=UP
with U unitary and P positive. This is the polar decomposition of a
bounded normal operator in a complex Hilbert space.

References for further reading:
I. M. Gelfand, D. A. Raikov and G. E. Chilov, Commutative Normed Rings.

E. Hille and R. S. Phillips, Functional Analysis and Semigroups.
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T. Kato, Perturbation Theory for Linear Operators.
P. D. Lax, Functional Analysis.
M. A. Naimark, Normed Rings.

M. Reed and B. Simon, Methods of Modern Mathematical Physics.
C. E. Rickart, General Theory of Banach Algebras.
F. Riesz and B. Sz. Nagy, Lecons d'analyse fonctionelle.
W. Rudin, Functional Analysis.
A. E. Taylor and D. C. Lay, Introduction to Functional Analysis.
K. Yosida, Functional Analysis.





Chapter 9

Unbounded operators
in a Hubert space

Up to this moment all of our linear operators have been bounded, but densely
defined unbounded operators also occur naturally in connection with the
foundations of quantum mechanics.

When in 1927 J. von Neumannl introduced axiomatically Hilbert spaces,
he recognized the need to extend the spectral theory of self-adjoint operators
from the bounded to the unbounded case and immediately started to obtain
this extension, which was necessary for his presentation of the transforma-
tion theory of quantum mechanics created in 1925-1926 by Heisenberg and
Schrodinger.2

The definition of unbounded self-adjoint operators on a Hilbert space re-
quires a precise selection of the domain, the symmetry condition (x, Ax)H =
(Ax, x)H for a densely defined operator not being sufficient for A to be self-
adjoint, since its spectrum has to be a subset of R. The creators of quantum

1 The Hungarian mathematician Janos (John) von Neumann is considered one of the foremost
mathematicians of the 20th century: he was a pioneer of the application of operator theory to
quantum mechanics, a member of the Manhattan Project, and a key figure in the development
of game theory and of the concepts of cellular automata. Between 1926 and 1930 he taught in
the University of Berlin. In 1930 he emigrated to the USA where he was invited to Princeton
University and was one of the first four people selected for the faculty of the Institute for Advanced
Study (1933-1957).

2 The German physicist Werner Karl Heisenberg, in Gottingen, was one of the founders of
quantum mechanics and the head of the German nuclear energy project; with Max Born and
Pascual Jordan, Heisenberg formalized quantum mechanics in 1925 using matrix transformations.
The Austrian physicist Erwin Rudolf Josef Alexander Schrodinger, while in Zurich, in 1926 derived
what is now known as the Schrodinger wave equation, which is the basis of his development of
quantum mechanics. Based on the Born statistical interpretation of quantum theory, P. Dirac and
Jordan unified "matrix mechanics" and "wave mechanics" with their "transformation theory".

257
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mechanics did not care about this and it was von Neumann himself who clar-
ified the difference between a self-adjoint operator and a symmetric one.

In this chapter, with the Laplacian as a reference example, we include the
Rellich theorem, showing that certain perturbations of self-adjoint operators
are still self-adjoint, and the Friedrichs method of constructing a self-adjoint
extension of many symmetric operators.

Then the spectral theory of bounded self-adjoint operators on a Hilbert
space is extended to the unbounded case by means of the Cayley transform,
which changes a self-adjoint operator T into a unitary operator U. The
functional calculus of this operator allows us to define the spectral resolution
of T.

We include a very short introduction on the principles of quantum me-
chanics, where an observable, such as position, momentum, and energy, is an
unbounded self-adjoint operator, their eigenvalues are the observable values,
and the spectral representing measure allows us to evaluate the observable
in a given state in terms of the probability of belonging to a given set.3

Von Neumann's text "Mathematical Foundations of Quantum Mechan-
ics" [43] is strongly recommended here for further reading: special attention
is placed on motivation, detailed calculations and examples are given, and
the thought processes of a great mathematician appear in a very transparent
manner. More modern texts are available, but von Neumann's presentation
contains in a lucid and very readable way the germ of his ideas on the
subject.

In that book, for the first time most of the modern theory of Hilbert
spaces is defined and elaborated, as well as "quantum mechanics in a unified
representation which ... is mathematically correct". The author explains
that, just as Newton mechanics was associated with infinitesimal calculus,
quantum mechanics relies on the Hilbert theory of operators.

With von Neumann's work, quantum mechanics is Hilbert space analysis
and, conversely, much of Hilbert space analysis is quantum mechanics.

9.1. Definitions and basic properties

Let H denote a complex linear space. We say that T is an operator on H if
it is a linear mapping T : D(T) -+ H, defined on a linear subspace D(T) of
H, which is called the domain of the operator.

3Surprisingly, in this way the atomic spectrum appears as Hilbert's spectrum of an operator.
Hilbert himself was extremely surprised to learn that his spectrum could be interpreted as an
atomic spectrum in quantum mechanics.
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Example 9.1. The derivative operator D : f H f' (distributional de-
rivative) on L2(R) has

D(D) _ {f E L2(R); f' E L2(R)}

as its domain, which is the Sobolev space Hl(R). This domain is dense in
L2(R), since it contains D(R).

Example 9.2. As an operator on L2(R), the domain of the position
operator, Q : f(x) H x f (x), is

D(Q) _ {.f E L2 (R) ; [xf(x)] E L2 (R) }

It is unbounded, since IIX(n,n+1) 112 = 1 and IIQX(n,n+,)1I2 ? n

Recall that f E L2 (R) if and only if f E L2 (R) and both f and x f (x)
are in L2 (R) if and only if f, f" E L2 (R) . Thus, the Fourier transform is a
unitary operator which maps D(Q) onto H1(R) = D(D) and changes 2iriQ
into D. Conversely, 27riQ = .F-1D.F on D(Q).

Under these conditions it is said that 2iriD and Q are unitarily equiv-
alent. Unitarily equivalent operators have the same spectral properties.

Of course, it follows that D is also unbounded (see Exercise 9.3).

We are interested in the spectrum of T. If for a complex number A the
operator T - AI : D(T) -+ H is bijective and (T - Al)' -: H -+ D(T) C H
is continuous, then we say that A is a regular point for T.

The spectrum Q(T) is the subset of C which consists of all nonregular
points, that is, all complex numbers A for which T - AI : D(T) - H does not
have a continuous inverse. Thus A E Q(T) when it is in one of the following
disjoint sets:

(a) The point spectrum Q(T), which is the set of the eigenvalues of
T. That is, A E a(T) when T - AI : D(T) -+ H is not injective. In this
case (T - Al)' -does not exist.

(b) The continuous spectrum Q(T), the set of all A E C \ a(T)
such that T - AI : D(T) - H is not exhaustive but Im (T - Al) =Hand
(T - Al)' -is unbounded.

(c) The residual spectrum Q(T), which consists of all A E C \ Q(T)
such that Im (T - Al) H. Then (T - Al)' -exists but is not densely
defined.

The set v(T)c of all regular points is called the resolvent set. Thus,
A E Q(T)° when we have (T - Al)' -E G(H).
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The resolvent of T is again the function

RT : Q(T)R G(H), RT(A) :_ (T - AI)-i

The spectrum of T is not necessarily a bounded subset of C, but it is
still closed and the resolvent function is analytic:

Theorem 9.3. The set v(T)c is an open subset of C, and every point Ao E
v(T)c has a neighborhood where

RT(A) _ - (A - AO)kRT(A0)1,
k=0

the sum of a convergent Neumann series.

Proof. Let us consider A _ Ao + µ such that IµI < IThe sum of
the Neumann series

00

S(µ) :_ kRT(AO)k+l (II <1/IIRT(Ao)II)
k=0

will be the bounded inverse of T - Al.
The condition I< 1 ensures that the series is convergent, and

it is easily checked that (T - AI)S(µ) = I:
N

(T - AoI - µI) µk((T - AoI)-ilk+i = I - (RT(Ao))N+1 j,
=o

and S(µ) commutes with T.

A graph is a linear subspace F C H x H such that, for every x E H,
the section F :_ {y; (x, y) E F} has at most one point, y, so that the first
projection 71l (x, y) = x is one-to-one on F. This means that x F-+ y (y E
is an operator TF on H with D(TF) _ {x E H; F O} and G(TF) = F.

We write S C T if the operator T is an extension of another operator S,
that is, if D(S) C D(T) and TD(S) = S or, equivalently, if a(S) C c(T).

If G(T) is closed in H x H, then we say that T is a closed operator.
Also, T is said to be closable if it has a closed extension T. This means that
(T) is a graph, since, if T is a closed extension of T, G(T) C (T) and b1
is one-to-one on G(T), so that it is also one-to-one on g(T). Conversely, if
(T) is a graph, it is the graph of a closed extension of T, since (T) C c(T).

If T is closable, then T will denote the closure of T; that is, T = TTy.

When defining operations with unbounded operators, the domains of the
new operators are the intersections of the domains of the terms. Hence

D(S f T) = D(S) fl D(T) and D(ST) _ {x E D(T); Tx E D(S)}.
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Example 9.4. The domain of the commutator [D, Q] = DQ - QD of the
derivation operator with the position operator on L2(R) is D(DQ)f1D(QD),
which contains D(R), a dense subspace of L2(R).

Since D(x f (x)) - xD f (x) = 1(x), the commutator [D, Q] coincides with
the identity operator on its domain, so that we simply write [D, Q] = I and
consider it as an operator on LZ(R).

9.1.1. The adjoint. We will only be interested in densely defined oper-
ators, which are the operators T such that D(T) = H.

If T is densely defined, then every bounded linear form on D(T) has a
unique extension to H, and from the Riesz representation Theorem 4.1 we
know that it is of the type z)H. This fact allows us to define the adjoint
T* of T. Its domain is defined as

D(T*) _ {y E H; x H (Tx, y)H is bounded on D(T)}

and, if y E D(T*), T*y E H is the unique element such that
(Tx,y)H = (x,T*y)H (x V(T)).

Hence, y E D(T*) if and only if (Tx, y)H = (x, y*)H for some y* E H, for
all x E D(T), and then y* = T*y.

Theorem 9.5. Let T be densely defined. Then the following properties hold:

(a) (AT)* _ AT*.

(b) (I+T)*=I+T*.
(c) T* is closed.
(d) If T : D(T) -3 H is one-to-one with dense image, then T* is also

one-to-one and densely defined, and (T-1)* _ (T*)-1.

Proof. Both (a) and (b) are easy exercises.
To show that the graph of T* is closed, suppose that (y, T*y) -+ (y, z)

(yn E D(T*)). Then (x,T*yfl)H -3 (x,z)H and (Tx,y)H -3 (Tx,y)H for
every x E D(T), with (x,T*yfl)H = (Tx,y)H. Hence (x,z)H = (Tx,y)H
and z = T*y, so that (y, z) E g(T*).

In (d) the inverse T-1 ImT -+ D(T) is awell-defined operator with
dense domain and image. We need to prove that (T*)-1 exists and coincides
with (T-1)*.

First note that T*y E D((T-1)*) for every y E D(T*), since the linear
form x H (T'x, T*y)H = (x, y)H on V(T1) is bounded and T*y is well-
defined. Moreover (T_l)*T*y = y, so that (T-1)*T* =Ion D(T*), (T*)_:1

ImT* D(T*), and

since, for y = (T*)-lz in (T_l)*T*y = y, we have (T_l)*z = (T*)-lz.
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To also prove that (T-1)* C (T*)-1, let x e D(T) and y e D((T*)-1).
Then Tx E Im (T) = D(T1) and

(Tx, (T-i)*y)x = (x, y)H, (Tx, (T_l)*y)H = (x, T*(T-i)*y)x

Thus, (T_l)*y E D(T*) and T*(T-1)*y = y, so that T*(T-1)* =Ion
D((T*)-1) = ImT*, and (T*)-1 : Im(T*) - D(T*) is bijective.

It is useful to consider the "rotation operator" G : H x H - H x H,
such that G(x, y) _ (-y, x). It is an isometric isomorphism with respect to
the norm (x, y) :_ (IIxII + Iassociated to the scalar product

l\x, 7,1), lx , Y HxH :_ x,

which makes H x H a Hilbert space. Observe that G2 = -I.

Theorem 9.6. If T is closed and densely defined, then

H x H = G(E(T)) G(T*) = G(T) G(G(T*)),

orthogonal direct sums, T* is also closed and densely defined, and T** = T.

Proof. Let us first prove that (T*) = G(g(T))1, showing the first equality,
and that T* is closed. Since (y, z) E (T*) if and only if (Tx, y)H = (x, z)H
for every x e D(T), we have

(C(x, 7'x), (y, z))HxH = ((-Tx, x), (y, z))HxH = 0,

and this means that (y, z) E G(g(T))1, so that G(T*) =
Also, since G2 = -I,

H x H = G(T) G(G(T*)).

If (z, y)H = 0 for all y E D(T*), then ((0, z), (_T*y, y))xxx = 0. Hence,
(0, z) E G(g(T*))1 = (T) and it follows that z = TO = 0. Thus, D(T*) is
dense in H.

Finally, since also HxH = G(g(T*))EBg(T**) and (T) is the orthogonal
complement of G(g(T*)), we obtain the identity T = T**. D

9.2. Unbounded self-adjoint operators

T : D(T) C H -+ H is still a possibly unbounded linear operator on the
complex Hilbert space H.
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9.2.1. Self-adjoint operators. We say that the operator T is symmetric
if it is densely defined and

(TX,Y)H = (x,Ty)H (x,y e D(T)).

Note that this condition means that T C T*.

Theorem 9.7. Every symmetric operator T is closable and its closure is
T**

Proof. Since T is symmetric, T C T * and, C (T*) being closed,

(T) C (T) C g(T*).

Hence G(T) is a graph, T is closable, and (T) is the graph of T. As a
consequence, let us show that the domain of T* is dense.

According to Theorem 9.6, (x, y) E (T*) if and only if (-y, x) E
in H x H. Hence,

(T) = {(T*x, -x); x E D(T*)}1.

This subspace is not a graph if and only if (y, zl), (y, z2) E (T) for two
different points zl, z2 E H; that is, (0, z) E {(T*x, -x); x E D(T*)}1 for
some z # 0. Then (z, x)H = 0 for all x E D(T*) which means that 0 L z E
D(T*)1, and it follows that D(T*) # H.

Since D(T*) = H, T** is well-defined. We need to prove that

(T) = = {(T*x, -x); x e

is g(T**). But (v, u) E (T) if and only if (T*x, v)H - (x, u)H = 0 for all
x e D(T*); that is, v e D(T**) and u = T**v, which means that (v, u) E
g(T**).

The operator T is called self-adjoint if it is densely defined and T = T*,
i.e., if it is symmetric and

D(T*) C D(T),

this inclusion meaning that the existence of y* E H such that (Tx, y)H =
(x, y*)H for all x e D(T) implies y* = Tx.

Theorem 9.8. If T is self-adjoint and S is a symmetric extension of T,
then S = T. Hence T does not have any strict symmetric extension; it is
"maximally symmetric".

Proof. It is clear that T = T* C S and S C S*, since S is symmetric.
It follows from the definition of a self-adjoint operator that T C S implies
S* C T*. From S C S* C T C S we obtain the identity S= T. U
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We are going to show that, in the unbounded case, the spectrum of
a self-adjoint operator is also real. This property characterizes the closed
symmetric operators that are self-adjoint.

First note that, if T = T*, the point spectrum is real, since if Tx = Ax
and 0 x E D(T), then

(x,x)H = (X,TX)H = (TX,X)H = A(x, x)H

and A = A.

Theorem 9.9. Suppose that T is self-adjoint. The following properties hold:

(a) A E v(T)° if and only if iiTx - Ax11x > III xII x for all x E D(T),
for some constant c> 0.

(b) The spectrum v(T) is real and closed.
(c) A E v(T) if and only if Txn - Axn -+ 0 for some sequence {xn} in

D(T) such that IixnhIx = 1 (A is an approximate eigenvalue).
(d) The inequality I< holds.

Proof. (a) If A E v(T)°, then RT(E) E G(H) and

iixiiH 1- AI)xll1Y = C l II(T - AI)xII H

Suppose now that iITx - AxIIx ? clix11x and let M = Im (T - Al), so
that we have T - Al : D(T) -+ M with continuous inverse. To prove that
M = H, let us first show that M is dense in H.

If z E M1, then for every Tx - Ax E M we have

0 = (Tx - fix, z)g = (Tx, z)g - A(x, z)g.

Hence (Tx, z)H = (x, z)H if x E D(T), and then z E D(T*) = D(T) and
Tz = az. Suppose z L 0, so that A _ A and we arrive at Tz - az = 0 and
0 L z E M, a contradiction. Thus, M1 = 0 and M is dense.

To prove that M is closed in H, let M = Tx - Ax -+ y. Then
iIxp - x4II c-liIYP - YQII x, and there exist x = lim x E H and
y + fix. But T is closed, so that Tx = y + Ax and y E M.

(b) To show that every a = a + i,Q E v(T) is real, observe that, if
x E D(T),

(Tx-Ax, x)H = (Tx, x)H-A(x, x)H, (Tx - Ax, x)H - (Tx, x)H-A(x, x)H,

since (Tx, x)H E R. Subtracting,

(Tx - ax, x)H - (Tx - ax, x)H = 2i,6II xII,

where (Tx -fix, x)H - (Tx - fix, x)H = -2i Im (Tx - fix, x)H. Hence,

i/3iiIxIIi = i< I C IITx-Ax11HIIx1IH
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and then I< IITx - AxII x if x E D(T). As seen in the proof of (a),
the assumption Q 0 would imply A E Q(T)R.

(c) If A E Q(T), the estimate in (a) does not hold and then, for every
c = 1/n, we can choose xE D(T) with norm one such that IITxn-AXnIIH
1/n and A is an approximate eigenvalue. Every approximate eigenvalue A is
in Q(T), since, if (T - Al)' -were bounded on H, then it would follow from
Tx- 0 that xn = (T - AI)-1(Txn - Ax) - 0, a contradiction to
IIxnhIx = 1

(d) If y E D(T) and A = JRA + isA R, then it follows that

I- AI)yII %r = (7'y - Ay,7'y - Ay)x ? ((A)y, (A)y)H =

If x = (T-AI)y E H, then y = RT(A)x and IIxIIH Ithus
IA(I(RT(A)II 1. LI

The condition v(T) C R is sufficient for a symmetric operator to be
self-adjoint. In fact we have more:

Theorem 9.10. Suppose that T is symmetric. If there exists z E C \ R
such that z, z E v(T)°, then T is self-adjoint.

Proof. Let us first show that ((T - zI)-1)* _ (T - zI)-1, that is,
IfT - zI)-lxi, xz)x = (CT - zI)-lx2)H

We denote (T - zI)-1x1 = yl and (T - zI)-1x2 = y2. The desired identity
means that (y,, (T - zI)y2)H = ((T - zI)yl, y2)H and it is true if yl, y2 E
D(T), since T is symmetric. But the images of T - zI and T - zI are both
the whole space H, so that ((T - zI)-1x1i x2)H = (x,, (T - zI)-lx2)H holds
for any xl, x2 E H.

Now we can prove that D(T*) C D(T). Let v E D(T*) and w = T*v,
i.e.,

(Ty,, v)jq = (y,, w)jq (Vy, E V(T)).

We subtract z(yl, v)H to obtain

((T - zI)yi, v)x = (y,, w - zv)H.

Still with the notation (T - zI)-1x1 = yl and (T - zI)-1x2 = y2i but now
with x2 = w - zv, since (x,, v)H = ((T - zI)yl, v)H = (y,, w - zv)H,

(x,,v)H = ((T-zI)-Lxl,w-zv)H = (x,, (T-I)'(w-v))H (Vx, E H).

Thus, v = (T - zI)-1(w - zv) and v E Im (T - z)-1 = D(A). O

In the preceding proof, we have only needed the existence of z R such
that (T - zI)-1 and (T - zI)-1 are defined on H, but not their continuity.
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Example 9.11. The position operator Q of Example 9.2 is self-adjoint and
v(Q) = R, but it does not have an eigenvalue.

Obviously Q is symmetric, since, if f, g, [xf(x)], [xg(x)] E L2(R), then

(Qf,g)2 = fR xf dx - fR f dx = (f,Qg)2.

Let us show that D(Q*) C D(Q). If g E D(Q*), then there exists g* E L2(R)
such that (Q f, g)2 = (f,g*)2 for all f E D(Q). So faco(x)xg(x)dx =
fRco(x)g(x)dx if cp E D(R), and then g*(x) = xg(x) a.e. on R. I.e., xg(x)
is in L2(R) and g E D(Q). Hence Q is self-adjoint, since it is symmetric and
D(Q*) C D(Q).

If A 0 Q(Q), then T = (Q - AI)-1 E ,C(H) and, for every g E L2(R), the
equality (Q - AI)Tg = g implies that (Tg)(x) = g(x)/(x - A) E L2(R) and
a ¢ R, since, when \ E R and g := X(A 6), g(x)/(x - A) 0 L2(R).

Example 9.12. The adjoint of the derivative operator D of Example 9.1
is -D, and iD is self-adjoint. The spectrum of iD is also R and it has no
eigenvalues.

By means of the Fourier transform we can transfer the properties of Q.
If f, g E Hl (R), then (Df, g)2 = (7, g)2. From (QI, g)2 = (f, Qg)2 and
D f (x) = 27rit f (x) = 27ri(Q f) (x) we obtain

(Df, 9)2 = (27riQJ, 9)2 = (1, -27riQ9)2 = (f, -D9)2

and -D C D. As in the case of Q, also D(D*) C D(D).
Furthermore, (iD)* _ -iD* = iD and v(iD) C R. If T = (iD - aI)-1

and g E L2, then an application of the Fourier transform to (iD - AI)Tg = g
gives -27rxTg(x) - )Tg(x) = (x), and

g(x)

has to lie in L2(R). So we arrive to ) ¢ R by taking convenient functions
9 = X(a,6)

Example 9.13. The Laplace operator O of L2(R) with domain H2(R)
is self-adjoint. Its spectrum is v(0) _ [0, oo).

Recall that

{u E L2(R); D«u E L2(Rn), cel < 2}HZ(R) _

{u E L2(R,")> e< oo}
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and O, with this domain, is symmetric: (Du, v)2 = (u, Lv)2 follows from
the Fourier transforms, since

I2) d.
fRn fRn

To prove that it is self-adjoint, let u E D(z*) C L2(Rn). If w E LZ(Rn) is
such that

(Lv,u)2 = (v,W)2 (v E H2(R)),
then, up to a nonzero multiplicative constant,

5d
fR7 fR7

for every v E HZ(R), a dense subspace of L2(Rn), and =cw(t),
in LZ(R"). Hence, fRn (1 + d < oo and u E Hl(R) = D(D).
Thus, D(L*) C D(D).

The Fourier transform, .F, is a unitary operator of L2(Rn), so that the
spectrum of D is the same as the spectrum of the multiplication operator

= 4qr2[I2', which is self-adjoint with domain

Ri + II2)fI2 d
<{ I E L2(R);

fRn

and a E (iC1)C if and only if the multiplication by 4qr2II2 - A has a
continuous inverse on L2(R"), the multiplication by 1/(4ir2Ic2 - A). This
means that a 411.2II2 for every E R", i.e., A ¢ [0, oo).

An application of Theorem 9.10 shows that a perturbation of a self-
adjoint operator with a "small" symmetric operator is still self-adjoint.
For a more precise statement of this fact, let us say that an operator S is
relatively bounded, with constant a, with respect to another operator A
if D(A) C D(S) and there are two constants a, c > 0 such that

(9.1) IISxIIi C a2IlAxIIH + c2IIxIIH (x E D).

Let us check that this kind of estimate is equivalent to

(9.2) ISxIH < a'IIAxIIx + c'IIxIIx (x E D)

and that we can take a'<lifa<landa<lifa' <1.
By completing the square, it is clear that (9.2) follows from (9.1) with

a = a' and c = c'. Also, from (9.2) we obtain (9.1) with a2 = (1+ s-1)aj2
and c2 = (1+s)cj2, for any s > 0, since x < E-1ai2ll

Ec'2 I x I I x and an easy substitution shows that

(a'IIAxMH -F' c/IIxIIH)2 _< a2II AxII H + c2IIxIIH.
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Theorem 9.14 (Rellich4). Let A be aself-adjoint operator and let S be
symmetric, with the same domain D C H. If S is relatively bounded with
constant a with respect to A, then T = A+S is also self-adjoint with domain
D.

Proof. Let us first check that the symmetric operator T is closed. If (x, y) E
C (T ), then we choose xE D so that x-+ x and T x-+ y. From the
hypothesis we have

IIAxn - AXmIIH c IITx - TXmIIH + aIIAxn - AXmIIH + CIIXn - Xmff,

which implies

IInmIIH C 1 1 allTxn,-Txm,IIH+ 1 Callxn-x-rrtIIH>

and there exists z =limn Axn. But A is closed and z = Ax with x E D.
Moreover IISxn - SxII x < aIIA(xn - x) IIH +cllxn - xII H and Sxn -+ Sx.

Hence y = limn Txn = Tx and (x, y) E G(T).
The operators T - zI (z E C), with domain D, are also closed. With

Theorem 9.10 in hand, we only need to check that fAi E o'(T)c when A E R
is large enough (IAI > c).

To show that T - MI is one-to-one if A 0, let

(T-AiI)x=y (xED)

and note that the absolute values of the imaginary parts of both sides of

(Tx,x)H - A2(x,x)H = (y,x)H

are equal, so that IAIIIxIIH - IIYIIHIIXIIH and

IIxIIH I(x E D).
Thus, y = 0 implies x = 0.

Let us prove now that T - aiI has a closed image. Let yn -+ y with
yn = (T - Ail)xn. Then IIxn - xmIIx <_ ymIIx and the limit
x = limxn E H exists. Since (T - AiI)xn -+ y and the graph of T - AiI is
closed, x E Dand y = (T - AiI)x E Im (T - aiI).

Let us also show that Im (T - AiI) = H by proving that the orthogonal
is zero. Let v E H be such that

(Ax + Sx - fix, v)H = 0 (x E D).

4F. Rellich worked on the foundations of quantum mechanics and on partial differential
equations, and his most important contributions, around 1940, refer to the perturbation of the
spectrum of self-adjoint operators A(E) which depend on a parameter E. See also footnote 15 in
Chapter 7.
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Then (A - Ai)(D) = H, since ai E v(A)c. If (A - AiI)u = v, let x = u, and
then we obtain that

((A - Ai)u, (A - Ai)u)H + (Sn, (A - ai)u)H =0.

From the Cauchy-Schwarz inequality, Au - IISUIIHIIAU - AiuIIH
and

IIAu-a2uIIH <_ IISUIIH.

Since A is symmetric, (Ay - Aiy, Ay - Aiy)H = IlAyll H +A2IIyIIH and

IIAuII2 + a2IIuIIH = IAn - mull H <_ IlSuIIH <_ a2II AuII H +
c2II

uII H

But, if Al > c, the condition a2 < 1 implies u = 0, and then v = 0.
We have proved that (T - AiI)-1 : H - H is well-defined and closed,

i.e., it is bounded. Hence, fib E o.(T)c and the symmetric operator T is
self-adjoint.

Example 9.15. The operator H = -O - on L2(R3), with domain
H2(R3), is self-adjoint.

Let -1x1-' = vo(x) + vl(x) With uo(x) := xB(x)V(x) (B = {IxI < i}).
Multiplication by the real function is a symmetric operator whose
domain contains H2(R3), the domain of -O, since Vou E L2(R3) if u E
H2(R3), with

and IIVinII2 < IIViII2IInII, where < ulll To apply Theorem 9.14, we
will show that multiplication by is relatively bounded with respect
to -O.

From the Cauchy-Schwarz inequality and from the relationship between
the Fourier transform and the derivatives, we obtain

3

(fR3 I fR3 (12122)2 Il(-O+Q2I)ulI2 = I

From the inversion theorem we obtain that u is bounded and continuous,
since it is the Fourier co-transform of the integrable function u. Then

IIVinII2 < c(,Q-"2II - Dulla +Q312IIuII2) Cu E H2(R3))

so that
IIVnII2 < c/3-h/211 - ll2 + (cfl312 + 1)Ilull2

and c,(3-1/2 < 1 if 3 is large.

It follows from the Rellich theorem that H is self-adjoint with domain
HZ(R3).
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9.2.2. Essentially self-adjoint operators. Very often, operators appear
to be symmetric but they are not self-adjoint, and in order to apply the
spectral theory, it will be useful to know whether they have aself-adjoint
extension. Recall that a symmetric operator is closable and that a self-
adjoint operator is always closed and maximally symmetic.

A symmetric operator is said to be essentially self-adjoint if its closure
is self-adjoint. In this case, the closure is the unique self-adjoint extension
of the operator.

Example 9.16. It follows from Example 9.13 that the Laplacian O, as
an operator on L2(Rn) with domain S(R), is essentially self-adjoint. Its
closure is again D, but with domain H2(R").

Theorem 9.17. If T is symmetric and a sequence {un}nEN CD(T) is
an orthonormal basis of H such that Tun = nun (n e N), then T is
essentially self-adjoint and the spectrum of its self-adjoint extension T is
cr(T) = {A; n E N}.

Proof. The eigenvalues An are all real. Define

D(T) := anun; lanl2 +
n=1 n=1 n=1

a linear subspace of H that contains D(T), since, if x = anun E D(T)
and Tx = I=i /3nun E H, the Fourier coefficients an and /3n satisfy

13n = (Tx,u7-,)1Y = (x,Tu)H = An(x, un)H = Anan

and {an}, {A1a} E 22.
We can define the operator T on D(T) by

T (anun)
n=1 n=1

Let us show that T is aself-adjoint extension of T.
It is clear that T is symmetric, T C T, and every An is an eigenvalue of

T, so that {fin; n e N} C v(T).
If A {fin; n E N}, so that A - Anj > b > 0, then it follows that

A v(T) since we can construct the inverse of
00 00

(T - AI) (>CYnun) _ an(An - A)un
n=1 n=1

by defining
a

R anun := n
Aun.n-n=1 n=1
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Indeed, we obtain an operator R E G(H) (IIRII < 1/6) which obviously is
one-to-one and its image is D(T), since

00

n=1

an

A - an
2 A)2

<00

and, moreover, we can associate to every x = anun E D(T) the ele-
ment

00 00

y = lQnun = A)un E H
n=1 n=1

such that Ry = x.
Also,

(1-AI)R(anun) _
n=1 n=1

an

A - fin
T - AI)un = anon

n=1

and R = (T - AI) -1.
To prove that T is self-adjoint, we need to see that D((T) *) CD(T) .

If x = 1 anun E D((T) *) and y = (T)*x, then, for every n E N,

(Y,Un)H = (x,u)H = an(x, un)H = nan

and > l IAnanI2 <00, i.e., x E D(T).
Finally, to prove that T is the closure of T, consider

(x, y) _ ( anun nanun) E (z')
n=1 n=1

Then xN :_ , 1 cxnun E D(T) and

N N

(XN,TXN) _ ( anun nanun) (x,x)
n=1 n=1

in H x H, since {c}, {Aa} E £2. O

Remark 9.18. A symmetric operator T may have no self-adjoint extensions
at all, or many self-adjoint extensions. According to Theorems 9.7 and 9.8,
if T is essentially self-adjoint, T** is the unique self-adjoint extension of T.

9.2.3. The Friedrichs extensions. A sufficient condition for a symmet-
ric operator T to have self-adjoint extensions, known as the Friedrichs
extensions, concerns the existence of a lower bound for the quadratic form
(Tx, x)H.
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We say that T, symmetric, is semi-bounded5 with constant c, if

c := inf (Tx, x) H > -00,
XED(T), llxllH=1

so that (TX,X)H > c x H for all x E V(T).
In this case, for any c' E R, T - c'I is also symmetric on the same domain

and semi-bounded, with constant c + c'. If T is a self-adjoint extension of
T, then T - c'I is a self-adjoint extension of T - c'I, and we will choose a
convenient constant in our proofs. Let us denote

(x,y)T (TX,Y)H,

a sesquilinear form on D(T) such that (y, x)T = (x, y)T. If c> 0, then we
have an inner product.

Theorem 9.19 (Friedrichs-Stone6). If T is asemi-bounded symmetric op-
erator, with constant c, then it has aself-adjoint extension T such that
(TX,X)H > cIIxII%r if x E D(T).

Proof. We can suppose that c = 1, and then (x, y)T is a scalar product on
D = D(T) which defines a norm IIX1IT = (x, x)T 2 > IIxIIH.

Let DT be the II ' Iof D. Since llxlIH < lixilT, every II ' lIT-

Cauchy sequence {x} C D, which represents a point x E DT, has a limit x
in H, and we have a natural mapping J : DT - H, such that Jx = x.

This mapping J is one-to-one, since, if Jy = 0 and x- y in DT,
{x} C D is also a Cauchy sequence in H and there exists x = lim xin H.
Then x = Jy = 0 and, from the definition of (y, x)T and by the continuity
of the scalar product, it follows that, for every v E D,

(v, y)T = 1 nm(v, xn)T = 1 nm(Tv, xn)H = (Tv, x)g = 0.

But D is dense in DT and y = 0.
We have D = D(T) C DT -+ H and, to define the Friedrichs extension

T of T, we observe that, for every u = y)H E H',

I< llxllHllyllH <_ IIxIITIIyIIH (x E DTI

and there exists a unique element w E DT such that u = w)T on DT. We
define D(T) as the set of all these elements,

D(T)={wEDT; (.,w)T = (,y)H on DT for some yE H},

5In 1929 J. von Neumann and also A. Wintner identified this class of operators that admit
self-adjoint extensions.

6Kurt Otto Friedrichs (1901-1982) made contributions to the theory of partial differential
equations, operators in Hilbert space, perturbation theory, and bifurcation theory. He published
his extension theorem in Gottingen in 1934, and M. Stone did the same in New York in 1932.
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i.e., D(T) = D(T*) n DT and T*w = y for a unique w e D(T), for every
y E H. Next we define

Tw = y if y)H = w)T over DT (wEV(T)),
N N

so that T is the restriction of T * to V (T) = D (T *) n D.

This new operator is a linear extension of T, since, for all v E DT,

(9.3) (V,W)T=(V,TW)H (wEV())
and, if y= Tx E H with x E D,

(v, y)H = (v, Tx)H = (Tv, x)H = (v, x)T (v E D).

Thus, x =wand Tw = Tx, i.e., D C D(T) and T C T.
To show that T is symmetric, apply (9.3) to w E D(T) C DT. If

v, w E D(T), then (w, v)T = (w, Tv)H and the scalar product is symmetric,
so that (TW,V)H = (W,TV)H.

Observe that T : D(T) -3 H is bijective, since, in our construction, since
N

every y E H, w was the unique solution of the equation Tw = _y. Moreover,
the closed graph theorem shows that A := T' : H - V (T) C H is aN
bounded operator, since yn -+ 0 and T -1 yn -+ w imply

0 =nm(T-1x,yn)H=(x, T Yn)H= (y, w)Hn

for every x E H, and then w = 0. This bounded operator, being the inverse
of a symmetric operator, is also symmetric, i.e., it is self-adjoint. But then,
every z E C \ R is in cr(A)c.

The identity z-1I - A-1 = A-1(A - zI )z-1 shows that z-1 E c7(A-1) _
N N

r(T)c, if z ¢ R. By Theorem 9.10, T is self-adjoint. U

9.3. Spectral representation of unbounded self-adjoint
operators

T : D(T) C H - H is still a possibly unbounded linear operator.
The functional calculus for a bounded normal operator T has been based

on the spectral resolution

T =
J

AdE(A),

where E represents a spectral measure on v(T). If f is bounded, then this
representation allows us to define

f(T)=f f(A)dE(A).
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This functional calculus can be extended to unbounded functions, h,
and then it can be used to set a spectral theory for unbounded self-adjoint
operators. The last section of this chapter is devoted to the proof of the
following result:

Theorem 9.20 (Spectral theorem). For every self-adjoint operator T on
H, there exists a unique spectral measure E on R which satisfies

T = fRtdE(t)

in the sense that
f+oo

(TX,Y)H = J tdEx,y(t) (x E D(T), y E H).

1f f is a Borel measurable function on R, then a densely defined operator

f(T) = fR f(t) dE(t)

is obtained such that
+00

(f(T)x,y)H = fm f(t)dE,(t)
where

(x E D(f ), y E H),

{x E H; 100
I

< oo}.

For this functional calculus,

(a)
I 2i-t = J(T) If I2 dEx, if x E D(f (T)),

(b) f(T)h(T) C (fh)(T), D(f (T)h(T)) = D(h(T)) fl D((f h)(T)), and

(c) f(T)* = J(T) and f(T)*f(T) = If I2(7') = f(T)f(T)*.

1f f is bounded, then D(f) = H and f(T) is a bounded normal operator.
If f is real, then f(T) is self-adjoint.

The following example will be useful in the next section.

Example 9.21. The spectral measure of the position operator of Exam-
ples 9.2 and 9.11,

Q =
fR

t dE(t),

is E(B) = XB and cp(t)b(t) dt, i.e.,

fR t (Q)2 = fR t dt E D(Q)).
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This is proved by defining F(B)A := XBb for every Borel set B C R;
that is, F(B) = a multiplication operator. It is easy to check that
F : ziR, - G(L2(R)) is a spectral measure, and to show that F = E, we
only need to see that

J
tcp(t)tb(t) dt =

J
t dF(t),

R R

where F( B) _ (F(B)b)2 = fR(F(B))(t)b(t)dt.
But the integral for the complex measure Fc,p is a Lebesgue-Stieltjes

integral with the distribution function
t

F(t) = F((-oo,t]) - (X(-,t],)2 = fOds
and then dF(t) = (t)b(t) dt.

The spectrum a(T) of a self-adjoint operator can be described in terms
of its spectral measure E:

Theorem 9.22. If T = fRt dE(t) is the spectral representation of a self-
adjoint operator T, then

(a) a (T) = supp E,

(b) a(T) _ {A E R; E{A} 0}, and

(c) Im E{\} is the eigenspace of every A E Q(T).

Proof. We will use the fact that

II(T - AI)xII H = f(t - A)2 (x e D(T), A E R),

which follows from Theorem 9.20(a).

(a) If A ¢ supp E, then EX,X(A - e, A -I- ) = 0 for some s > 0, and

II(T - AI)xIIH = f (t - A)2

which means that A Q(T), by Theorem 9.9.

Conversely, if ) E supp E, then E(A -1/n, A + 1/n) 0 for every n> 0
and we can choose 0 E Im E(A - 1/n, A + 1/n). Then supp C
[A -1/n, A -}-1/n] since it follows from V fl (A -1/n, A + 1/n) = Ql that E(V)
and E(A - 1/n, A + 1/n) are orthogonal and (E(V)x, x)H = 0.
Thus

I-
fR

- A)2 dE,(t) IIxnIIand

\ is an approximate eigenvalue.
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(b) Tx = Ax for 0 x E D(T) if and only if fR(t - A)2 0,
meaning that 0 and EX,X(R \ {A}) = 0.

(c) The identity EX,X(R \ {a}) = 0 means that x = E{A}(x) satisfies
Tx =fix. O

Since E(B) = E(B fl supp E), in the spectral representation of the self-
adjoint operator, T, R can be changed by supp E = Q(T); that is,

T = f t dE(t) = J (T) t dE(t),

and also
h(T) _ h dE _ h dE(t).

R f (T)

As an application, we define the square root of a positive operator:

Theorem 9.23. Aself-adjoint operator T is positive ((Tx, x) > 0 for all
x E D(T)) if and only if Q(T) C [0, oo). In this case there exists a unique
self-adjoint operator R which is also positive and satisfies RZ = T, so that
R = the square root of T.

Proof. If (Tx, x)H > 0 for every x E D(T) and A > 0, we have

AIIxII%r ((T+AI)X,X)H < II(T+AI)xIIHIIxIIH,

so that
I+ aI)xII x ? aIIxIIx (x E D(T)).

By Theorem 9.9 there exists (T + Al)' -E G(H) and -A ¢ Q(T).
Conversely, if Q(T) C [0, oo) and x E D(T), then fo t dE(t) > 0.

Moreover

(Tx, y)H = J t dE(t) (x E D(T), y E H).
0

Define R = f(T) with f(t) = t1/2. Then D(R) _ {x; fo t dEx,x < oo},
which contains D(T) _ {x; f000t2 dEx, < oo}. Thus,

R = = J dE(t).
0

From Theorem 9.29(b), R2 = T, since D(f 2) = D(T) C D(f ).
To prove the uniqueness, suppose that we also have

s = ftdF(t)
such that 52 = T and

T = ft2dF(t).
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With the substitution A = t2 we obtain a spectral measure E'(A) = F(A112)
such that T = fo A dE'(A). From the uniqueness of the spectral measure,
E'=EandthenS=R.

9.4. Unbounded operators in quantum mechanics

To show how unbounded self-adjoint operators are used in the fundamentals
of quantum mechanics, we are going to start by studying the case of a single
particle constrained to move along a line.

9.4.1. Position, momentum, and energy. In quantum mechanics, what
matters about the position is the probability that the particle is in [a, b] C
R, and this probability is given by an integral

bf Ia

The density distribution zb(x)I2 is defined by some zb e L2(R), which is
called the state function, such that fR I'(x)I2 dx = 1 is the total
probability. Here b is a complex-valued function and a complex factor a
in '/ is meaningless (lal = 1 is needed to obtain = 1). There is a
dependence on the time, t, which can be considered as a parameter.

The mean position of the particle will be

- fR
dx = fR dx - fix)

with dE_ '/i(x)'b(x) dx.
If Q denotes the position operator, Qp(x) = xcp(x), note that _

(Qb, b)2.
The dispersion of the position with respect to its mean value is measured

by the variance,

vary, = f (x_)2I(x)I2= fR ((Q-I)2,)2.

Similarly, if fR Idx < oo, the mathematical expectation of
f is

fR
f(x)I(x)I2dx = (f)2 = fR

The momentum of the particle is defined as mass x velocity:

p=mx.
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Note that, from the properties of the Fourier transform,
(9.5)

fR = 27fi ,R, - 27fi
` )2.

By assuming that the probability that p e [a, b] is given by

f h
h = 6.62607095(44) 10-34 J seg is the Planck constant,7 the

average value of p is

h fR(11) I2 dp - hR12
Here the Fourier transform can be avoided by considering the momentum
operator P defined as

P=---D (D=-
27ri \ dx/'

since then, as noted in (9.5), this average is

(9.6) h J I)f2 d _ (Pb,b)2.
R

If fR II I') I2 then the functional calculus gives the value

- fR
for the mathematical expectation of f, which in the case f(p) = pn is

µp(pn) - (Pnb,b)2.
The kinetic energy is

T '2m
so that its mathematical expectation will be

(T) =

The potential energy is given by areal-valued function V (x) and from (9.4)
we obtain the value

(V)
= JR

= (V)2
for the mathematical expectation of V if fR IG oo.

7This is the value reported in October 2007 by the National Physical Laboratory for this
constant, named in honor of Max Planck, considered to be the founder of quantum theory in 1901
when, in his description of the black-body radiation, he assumed that the electromagnetic energy
could be emitted only in quantized form, E = hv, where v is the frequency of the radiation.
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The mathematical expectation is additive, so that the average of the
total energy is

(T+V) = ('p2+V) = (H)2,
where

H= 1 p2
2m + V

is the energy operator, or Hamiltonian, of the particle.

9.4.2. States, observables, and Hamiltonian of a quantic system.
As in the case of classical mechanics, the basic elements in the description
of a general quantic system are those of state and observable.

Classical mechanics associates with a given system a phase space, so
that for an N-particle system we have a 6N-dimensional phase state.

Similarly, quantum mechanics associates with a given system a complex
Hilbert space f as the state space, which is L2(R) in the case of a single
particle on the line. In a quantum system the observables are self-adjoint
operators, such as the position, momentum, and energy operators.

A quantum system, in the Schrodinger picture, is ruled by the fol-
lowing postulates:

Postulate 1: States and observables
A state of a physical system at time t is a line [',Li] C fi, which we

represent by z/ E fi such that IkL= 1
A wave function is an fl-valued function of the time parameter t E

R H 'b(t) E fi. If 'b(t) describes the state, then czb(t), for any nonzero
constant c, represents the same state.

The observable values of the system are magnitudes such as position,
momentum, angular momentum, spin, charge, and energy that can be mea-
sured. They are associated to self-adjoint operators. In a quantic system,
an observable is a time-independent$ self-adjoint operator A on fi, which
has a spectral representation

A = fR

By the "superposition principle", all self-adjoint operators on f are assumed
to be observable,9 and all lines [sb] C C are admissible states.

8In the Heisenberg picture of quantum mechanics, the observables are represented by time-
dependent operator-valued functions A(t) and the state ib is time-independent.

9 Here we are following the early assumptions of quantum mechanics, but the existence of
"superselection rules" in quantum field theories indicated that this superposition principle lacks
experimental support in relativistic quantum mechanics.
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The elements of the spectrum, ) E v(A), are the observable values of
the observable A.

Postulate 2: Distribution of an observable in a given state
The values ) E (7(A) in a state b are observable in terms of a probability

distribution P.
As in the case of the position operator Q for the single particle on R,

the observable A = fR ) dE(a) on 'H is evaluated in a state b at a given
time in terms of the probability P,'(B) of belonging to a set B C R with
respect to the distribution (we are assuming that IkbII = 1), so
that

P( B) - f (E(B),

and the mean value is

:= fR' =

When b E D(A), this mean value A,p exists, since )2 is integrable with
respect to the finite measure E, and also fR ICI <00.

In general, if f is E, -integrable,

is the expected value of f, the mean value with respect to E.
The variance of A in the state zb E D(A) is then

var(A) _ f- ((A - AI)2, = IIA - AII.
It is said that A certainly takes the value o in the state b if A_ o
and var(A) = 0.

This means that zb is an eigenvector of A with eigenvalue since it
follows from Ab = aob that A_ (Ab, b) _ Ao, and also

Conversely, var(A) = 0 if and only if Ab - Ai/ = 0.

Postulate 3: Hamiltonians and the Schrodinger equation
There is an observable, H, the Hamiltonian, defining the evolution of

the system

b(t) =
where zbo is the initial state and Ut is an operator defined as follows:
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If h is the Planck constant and gt (A) = e- h '`, a continuous function
with its values in the unit circle, then using the functional calculus, we can
define the unitary operators

Ut := gt(H) E ,C(?,C) (teR)
that satisfy the conditions

Uo=I, USUt=US+t, and mIIUtx-USxII =OVxe
S

since gtgt = 1, go = 1, g8gt = gst, and, if H = A dE(A) is the spectral
representation of H, then the continuity property

IIUt -USb= e h'-e 'I2dE asf (H)

follows from the dominated convergence theorem.

Such a family of operators Ut is called a strongly continuous one-
parameter group of unitary operators, and we say that A = -(i/h)H
is the infinitesimal generator.

It can be shown (Stone's theorem) that the converse is also true: every
strongly continuous one-parameter group of unitary operators {Ut}tER has
a self-adjoint infinitesimal generator A = -(i/h)H; that is, Ut = e- h H for
some self-adjoint operator H.

It is said that
Ut=e-hH

is the time-evolution operator of the system.

It is worth noticing that, if / E D(H), the function t -+ Ut' is differen-
tiable and

dt Ut = UtAb = AUtb

at every point t e R. Indeed,

S (U8Ut - Ut S (Us -

and

(9.7)

since

11 s(U8-)=A=

- ) + x - f e S

_
1 + hA12 dE(A) 0

( A)

as s -+ 0, again by dominated convergence.
For a given initial state i/o, it is said that /'(t) = Ut/o is the correspond-

ing wave function.
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If b(t) E D(H) for every t e R, then the vector-valued function t H fi(t)
is derivable and satisfies the Schrodinger equationlo

ihi'(t) =Hi(t),
since by (9.7)

W(t) -H(t).
In this way, from a given initial state, subsequent states can be calculated
causally from the Schrodinger equation.ll

9.4.3. The Heisenberg uncertainty principle and compatible ob-
servables. To illustrate the role of probabilities in the postulates, let us
consider again the case of a single particle on R. Recall that the momen-
tum operator,

Pb(4) -
is self-adjoint on L2(R) and with domain Hl(R).

From Example 9.4 we know that the commutator of P and Q is bounded
and

[EQ] = PQ - QP - 2ri I
where D([P, Q]) = D(PQ) f1 D(QP), or extended to all L2(R) by continuity.

Lemma 9.24. The commutator C = [S, T] = ST - TS of two self-adjoint
operators on L2(R) satisfies the estimate

IC&I < 2 var(S) var(T)

for every i/ E D(C).

Proof. Obviously, A = S- S.pI and B = T -T,pI are self-adjoint (note that
5, T,p E R) and C = [A, B]. From the definition of the expected value,

II < (Bb,Ab)21 + I<_ 2IIB1?bII211Al?b112,
where, A being self-adjoint, IIAL'IIZ = (A21?b, 1?b)2 = vax,p(S). Similarly,
IIBbII2 = var.p(T). O

10E. Schrodinger published his equation and the spectral analysis of the hydrogen atom in a
series of four papers in 1926, which where followed the same year by Max Born's interpretation
of (t) as a probability density.

11 We have assumed that the energy is constant and the Hamiltonian does not depend on t
but, if the system interacts with another one, the Hamiltonian is an operator-valued function H(t)
of the time parameter. In the Schrodinger picture, all the observables except the Hamiltonian are
time-invariant.
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Theorem 9.25 (Uncertainty principle).

var(Q) var. (P) > 4 .

Proof. In the case C = [P, Q], IC_ I= h/2ir and we can apply
Lemma 9.24.

The standard deviations /varp(Q) and var.p (P) measure the uncer-
tainties of the position and momentum, and the uncertainty principle shows
that both uncertainties cannot be arbitrarily small simultaneously. Position
and moment are said to be incompatible observables.

It is a basic principle of all quantum theories that if n observables
A1,. .. , An are compatible in the sense of admitting arbitrarily accurate
simultaneous measurements, they must commute. However, since these op-
erators are only densely defined, the commutators [Ai, Ak] are not always
densely defined. Moreover, the condition AB = BA for two commuting
operators is unsatisfactory; for example, taking it literally, AO OA if A is
unbounded, but AO C OA and [A, 0] = 0 on the dense domain of A.

This justifies saying that A3 = fR ) dE (a) and Ak = fR ) dEk(,\) com-
mute, or that their spectral measures commute, if
(9.8) [Ei(B1),E'(B2)] = 0 (B,B2 E BR).
If both A3 and Ak are bounded, then this requirement is equivalent to
[A3, Ak] = 0 (see Exercise 9.18).12 For such commuting observables and
a given (normalized) state z/', there is a probability measure Pp on Rn so
that

P (B1 x ... x Bn) = (E1(B1) ... En(Bn) )

is the predicted probability that a measurement to determine the values
... , ) of the observables A1,. . . , An will lie in B = B1 x x B.

See Exercise 9.19, where it is shown how a spectral measure E on Rn can
be defined so that dEp,p is the distribution of this probability; with this
spectral measure there is an associated functional calculus f(A1,.. . , An) of
n commuting observables.

9.4.4. The harmonic oscillator. A heuristic recipe to determine a quan-
tic system from a classical system of energy

T+V=-+V(qi,...,qi)
j=1

3

12 But E. Nelson proved in 1959 that there exist essentially self-adjoint operators Al and A2
with a common and invariant domain, so that [A1, A2] is defined on this domain and [A1, A2] = 0
but with noncommuting spectral measures.
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is to make a formal substitution of the generalized coordinates q3 by the po-
sition operators Q3 (multiplication by qj) and every pj by the corresponding
momentum P3. Then the Hamiltonian or energy operator should be a self-
adjoint extension of

nP2
H=>-2---+V(Qi,...,Qi).

j=1

For instance, .in the case of the two-body problem under Coulomb force,
which derives from the potential -e/IxI, n = 3 and the energy of the system
is

1 e2E=T+V= IpI2-2m

Hence, in a convenient scale, H = -0 - x is the possible candidate of theII
Hamiltonian of the hydrogen atom. In Example 9.15 we have seen that it is
a self-adjoint operator with domain H2(R3).

With the help of his friend Hermann Weyl, Schrodinger calculated the
eigenvalues of this operator. The coincidence of his results with the spec-
tral lines of the hydrogen atom was considered important evidence for the
validity of Schrodinger's model for quantum mechanics.

Several problems appear with this quantization process, such as finding
the self-adjoint extension of H, determining the spectrum, and describing
the evolution of the system for large values of t ("scattering").

Let us consider again the simple classical one-dimensional case of a single
particle with mass m, now in a Newtonian field with potential V, so that

-VV = F = dt m4')

q denoting the position. We have the linear momentum p = mq, the kinetic
energy T = (1/2)mg2 = p2/2m, and the total energy E = T + V.

The classical harmonic oscillator corresponds to the special case of
the field F(q) _ -mw2q on a particle bound to the origin by the potential

w2
V (q) = m2 q2

if q E R is the position variable. Hence, in this case,
2 2

E=T+V=2mg2+m2g2=2mp2+m2g2.

From Newton's second law, the initial state q(0) = 0 and q(0) = a > 0
determines the state of the system at every time,

q = a cos(wt).
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The state space for the quantic harmonic oscillator is L2 (R), and the
position Q = q and the momentum P are two observables. By making the
announced substitutions, we obtain as a possible Hamiltonian the operator

2
H = ±p2 + m 2 Q2.

On the domain AS(R), which is dense in L2(R), it is readily checked that

so that H is a symmetric operator. We will prove that it is essentially
self-adjoint and the Hamiltonian will be its unique self-adjoint extension
FI = H**, which is also denoted H.

In coordinates,

H=- h2 d2 mw2 2

2 q

which after the substitution x = aq, with a2 = 2'irmw/h, can be written

hw 2 d2H= --x -
2

.

2 dx

Without loss of generality, we suppose hw = 1, and it will be useful to
consider the action of

2

H 2 \x2 dx2l
on

,F :_ {P(x)e-x2h/2; P polynomial},

the linear subspace of S(R) that has the functions xne-x2/2 as an algebraic
basis.

Since H(xne-x2/2) E .F, we have H(F) C F. Similarly, A(F) C .F and
B (F) C .F if

A := (x+ ),dx
the annihilation operator, and

dx I

the creation operator.

Theorem 9.26. The subspace .F of AS(R) is dense in L2(R), and the Gram-
Schmidt process applied to {xne-x2/2}o generates an orthonormal basis
{din}O°_p of L2(R). The functions are in the domain S(R) of H and
they are eigenfunctions with eigenvalues )n = n + 1/2. According to Theo-
rem 9.17, the operator H is essentially self-adjoint.
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Proof. On .F, a simple computation gives

H=BA+ZI=AB-ZI;
hence HB = BAB -F- ZB and BH = BAB - 2B, so that

[H,BJ = B.

Then, if Ab and Bpi 0 with b e .F, it follows that A -F- 1 is also an
eigenvalue of H, with the eigenfunction Bpi, since

H(B) = B(Hb) + (A +

For

fo(x) e-x2/2,

we have 2H'ibo(x) = x2e-x2/2 - (e_x2/2)II = e-x2/2, so that

Hbo = 2 bo

and bo is an eigenfunction with eigenvalue 1/2.

We have 2xe-x2/2 0 and, if we denote

4'n :_ (/B)bo = V GBYJn-1>

from the above remarks we obtain

(n=0,1,2,...)

and (x) = Hn(x)e-x212. By induction over n, it follows that His a
polynomial with degree n. It is called a Hermite polynomial.

The functions n are mutually orthogonal, since they are eigenfunctions
with different eigenvalues, and they generate F.

To prove that F is a dense subspace of LZ(R), let f e LZ(R) be such
that fR f(x)xThe_x2l'2 dx = (xne-x212, f(x))2 = 0 for all n e N. Then

F(z) f(x)e_X2/2e_2dx
fR

is defined and continuous on C, and the Morera theorem shows that F is
an entire function, with

n.f (x)e-X2/2e-2dx.F( z) _ (-2i)Th IR x

But F()(0) _ (xne-x212, f(x))2 = 0 for all n e N, so that F = 0. From the
Fourier inversion theorem we obtain f(x)e_x212 = 0 and f = 0.

It follows that the eigenfunctions Iof H are the elements
of an orthonormal basis of LZ(R), all of them contained in S(R), which is
the domain of the essentially self-adjoint operator H. O
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Remark 9.27. In the general setting, for any mh,
hw 2 d2H= (x -

2
,

2 dx

and we have Hb,= hw(n + 2 Thus

v(H) _ {hw/2, hw(1 + 1/2), hw(2 -{-1/2),.. .}.

The wave functionsn are known as the bound states, and the numbers
are the energy eigenvalues of these bound states. The minimal energy is
hw/2,13 and b0 is the "ground state".

9.5. Appendix: Proof of the spectral theorem

The proof of Theorem 9.20 will be obtained in several steps. First, in Theo-
rem 9.28, we define a functional calculus with bounded functions for spectral
measures. Then this functional calculus will be extended to unbounded func-
tions in Theorem 9.29. The final step will prove the spectral theorem for
unbounded self-adjoint operators by the von Neuman method based on the
use of the Cayley transform.

9.5.1. Functional calculus of a spectral measure. Our first step in the
proof of the spectral theorem for unbounded self-adjoint operators will be
to define a functional calculus associated to a general spectral measure

E : BK -+G(H)

as the integral with respect to this operator-valued measure.

Denote by L°°(E) the complex normed space of all E-essentially bounded
complex functions (the functions coinciding E-a.e. being identified as usual)
endowed with the natural operations and the norm

IIfIk _ E-sup fl.
With the multiplication and complex conjugation, it becomes a commutative
C*-algebra, and the constant function 1 is the unit. Every f e L°°(E) has
a bounded representative.

We always represent simple functions as
N

S anXBn E S(K)r
n=1

where {Bi,. . . , BN} is a partition of K. Since every bounded measurable
function is the uniform limit of simple functions, S(K) is dense in L°°(E),
and we will start by defining the integral of simple functions:

13 Max Planck first applied his quantum postulate to the harmonic oscillator, but he assumed
that the lowest level energy was 0 instead of hw/2. See footnote 7 in this chapter.
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As in the scalar case,
f N

J s dE :_ E G(H
n=1

is well-defined and uniquely determined, independently of the representation
of s, by the relation

((fsdE)xY)H = s (x, y E H),fK,y
SIriCB fKsdEx,y = >la(E(B)x,y)H = (>I1aE(B)x,y)H.

It is readily checked that this integral is clearly linear, f 1 dE = I, and
(fsdE)* = fdE.

It is also multiplicative,

(9.9) fstdE=fsdEftdE=ftciEfsciE,

since for a second simple function t we can suppose that t = n 1 nxBn ,
with the same sets Bn as in s, and then

fsdEftdE _
N f
Qn(J sdE)E(Bn)
n=1

N N

_
n=1 n=1

J st dE.

Also

since

KI sdElix-JxII

((fsdE)x, (fsdE)x)H _ ((fsdE)(fsdE)xx)H

= ((fIs2dE)x,x)H.

This yields

fsdEM < IIsIIoo

and, in fact, the integral is isometric. Indeed, if we choose n so that Is II _
Ian with E(B) 0 and x E ImE(Bn), then

(fsdE)x = anE(Bn)x = cYnx
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and necessarily

is H = Ilsll

Now the integral can be extended over L°°(E) by continuity, since it is
abounded linear map from the dense vector subspace S(K) of L°°(E) to
the Banach space G(H).

We will denote

E (f) ffdE = lim J sn dE
n

if sk -+ f in L°°(E) (sk E S(K)).
The identities ('T?E(Sk)X, y)H = fK sk extend to

(E(f)x,y)H = fK,y
by taking limits. All the properties of 'TIE contained in the following theorem
are now obvious:

Theorem 9.28. If E : 13K - G(H) is a spectral measure, then there is a
unique homomorphism of C*-algebras E : L°°(K) -+ G(H) such that

(E(f)x,y)H = f,y (x,y E H, .f E LO°(K))
K

This homomorphism also satisfies

(9.10) I%r =1K 1112 (x E H, f E LO°(K))

9.5.2. Unbounded functions of bounded normal operators. To ex-
tend the functional calculus 1(T) _ f(T) of a bounded normal operator
with bounded functions to unbounded measurable functions h, we start by
extending to unbounded functions the functional calculus of Theorem 9.28
for any spectral measure E:

Theorem 9.29. Suppose K a locally compact subset of C, E : ziK - G(H)
a spectral measure, h a Borel measurable function on K C C, and

h(A)12D(h) :_ {x E H; IK l

Then there is a unique linear operator 'TIE (h) on H, represented as

E(h) = fKE,
with domain D(h) and such that

(x D(h), y H).(E(h)X,y)H = fK
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This operator is densely defined and, if f and h are Borel mesurable func-
tions on K, the following properties hold:

(a) I H = fK Ihi2 if x E D(h).

(b) E(f)E(h) c E(fh) and D(h) f1 D(fh).

(c) E(h)* _ E(h) and E(IhI2) _ E(h)E(h)*.

Proof. It is easy to check that D(h) is a linear subspace of H. For instance,
I-I- )II 2II E(B)xII %t + 2II so that

2E(B) + 2E+(B)
and D(h) + D(h) C D(h).

This subspace is dense. Indeed, if y E H, we consider

B7., := {IhI n} t K,
so that, from the strong v-additivity of E,

y = E(K)y = limE(Bn)y,
n

where xn := E(Bn)y E D(h) since

E(B)xn = E(B)E(Bn)xn = E(B fl Bn)xn (B C K)

and Exn,xn (B) = (B f1 Bn), the restriction of to Bn, so that

fK
I h 12 dExn xn - I h 1 2 n2 I I xn I I <00.

Bn

If h is bounded, then let us also prove the estimate

(9.11) I K h
l c f I hI dI f ,<00,

where is the total variation of the Borel complex measure
From the polar representation of a complex measure (see Lemma 4.12),

we obtain a Borel measurable function o such that lol = 1 and

oh d I I

where IE,I denotes the total variation of Thus,

IK
fK Ihi dI

fK
(E(Qh)X, Y)xI= I1/ZIIyIIH

IIyIIH,= (fKhl2dEx,x)2

where in the second line we have used (9.10), and (9.11) holds.
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When h is unbounded, to define E(h)x for every x E D(h), we are
going to show that y H fK h is a bounded conjugate-linear form on
H. Let us consider hn(z) = h(z)xB(z) -+ h(z) if z E K, so that

/' 1/2
JK h'n dEx,y ( fK I iiYiiH,

and by letting n - oo, we also obtain (9.11) for h in this unbounded case if
x E D(h).

Then the conjugate-linear functional y H fK h is bounded with
norm < (fK hi2 and by the Riesz representation theorem there is
a unique E(h)x E H such that, for every y E H,

(E(h)x, y)x = f h(A) i ('K hI2 dE,)/x

The operator 1E(h) is linear, since is linear in x, and densely defined.
We know that (a) holds if h is bounded. If it is unbounded, then let

hk = hXBk and observe that D(h- hk) = D(h). By dominated convergence,

i- E(hk)xII2i-r = I- f ih - hki2 0
x

as k -+ oo; according to Theorem 9.28, every hk satisfies (a), which will
follow for h by letting k -+ oo.

To prove (b) when f is bounded, we note that D(f h) C D(h) and
f dE, since both complex measures coincide on every Borel

set. It follows that, for every z E H,

(E(f)E(h)x, z)H = (E(h)x, E(.f)z)H = fK h dExE(/)z

(E(fh)x,z)H
and, if x E D(h), we obtain from (a) that

fK if i2 fK ifhi2 (x E D(h)).

Hence, E(f)E(h) C E(fh)
If f is unbounded, then we take limits and

fK if i2 fK if hi2 (xED(h))

holds, so that E(h)x E D(f) if and only if x E D(f h), and

{x E D(h); E(h)x E D(f)} = D(h) n D(fh),

as stated in (b).
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Now let x e D(h) fl D(f h) and consider the bounded functions fk _
f X, so that fkh -+ fh in From (a) we know that E(fkh)x -+

E(fh)X,

1 1m =1 1m E(.fkh)x - E(fh)x,

and (b) is true.
To prove (c), let x, y e D(h) = D(h). If h = hXBk, then

(E(h)X, y)H = y)x = 1 im(x, E(hk)y)H = (x, E(h)y)H,

and it follows that y E and E(h) C E(h)*. To finish the proof,
let us show that C D(h) = D(h).

Let z e We apply (b) to hk = hXBk and we have E(hk) _
with E(Xsk) bounded and self-adjoint. Then

C
f

E(hk)*=E(hk)

and XBk But IXkI <1, so that

K
IhkI2dE,z = KIXBk I2

We obtain that z e D(h) by letting k - oo .

The last part follows from (b), since C D(h). O

Remark 9.30. In Theorem 9.29, if E(BO) = 0, we can change K to K\Bo:

(E(h)x, y)x := f h(A) (x e y e H)
\sa

if h is Borel measurable on K \ Bo.

If E is the spectral measure of a bounded normal operator T, then we
write h(T) for 1E(h), and then the results of Theorem 9.29 read

h(T)=f hdE

on D(h) _ {x e H; < oo}, in the sense that

(h(T)X,y)H = J hdE(x e D(h), y E H).

Also

(a)
I H = fa(T) if x e D(h(T)),
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(b) f(T)h(T) C (fh)(T), D(f(T)h(T)) = D(h(T)) fl D((fh)(T)) with

f(T)h(T) _ (fh)(T) if and only if D((fh)(T)) C D(h(T)),

and

(c) h(T)* = h(T) and h(T)*h(T) - 1- h(T)h(T)*.

9.5.3. The Cayley transform. We shall obtain a spectral representation
theorem for self-adjoint operators using von Neumann's method of making
a reduction to the case of unitary operators.

If T is a bounded self-adjoint operator on H, then the continuous func-
tional calculus allows a direct definition of the Cayley transform of T as14

U = 9(T) _ (T - iI)(T + iI)-1,

where g(t) _ (t - i)/(t + i), a continuous bijection from R onto S \ {1}, and
it is a unitary operator (cf. Theorem 8.24).

Let us show that in fact this is also true for unbounded self-adjoint
operators.

Let T be aself-adjoint operator on H. By the symmetry of T and from
the identity II Ty ± ZyII H = IIIIH + IIZ'yIIH ± (iy, 7'y)x f (Ty, zy)x,

lITy f ZyII= IIIIH + lITyIl(y e D(T)).
The operators T fiI : D(T) -+ H are bijective and with continuous inverses,
since fi E o(T)c.

For every x = Ty + iy e Im (T + iI) = H (y e D(T)), we define
Ux = U(Ty -I- iy) := Ty - iy; that is,

Ux = (T - iI)(T + iI)-lx (x e H).

Then U is a bijective isometry of H, since IIZ'y + zyll i = IIZ'y - ZyII i and
Im (T f iI) = H, and U is called the Cayley transform of T.

Lemma 9.31. The Cayley transform

U = (T - iI)(T + iI)-1

of a self-adjoint operator T is unitary, I - U is one-to-one, Im (I - U) _
D(T), and

T=i(I+U)(I-U)1
on D(T).

14Named after Arthur Cayley, this transform was originally described by Cayley (1846) asa
mapping between skew-symmetric matrices and special orthogonal matrices. In complex analysis,
the Cayley transform is the conformal mapping between the upper half-plane and the unit disc
given by g(z) = (z-i)/(z+i). It was J. von Neumann who, in 1929, first used it to map self-adjoint
operators into unitary operators.
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Proof. We have proved that U is unitary and, from the definition, Ux =
(T - iI)y if x = (T -}- iI)y for every y E D(T) and every x E H. It follows
that (I -{- U)x = 2Ty and (I - U)x = 2iy, with (I - U)(H) = D(T). If
(I - U)x = 0, then y = 0 and also (I + U)x = 0, so that a subtraction gives
2Ux = 0, and x = 0. Finally, if y E D(T), 2Ty = (I + U) (I - U)-1(2iy). D

Remark 9.32. Since I - U is one-to-one, 1 is not an eigenvalue of U.

9.5.4. Proof of Theorem 9.20: Let T be aself-adjoint operator on H.
To construct the (unique) spectral measure E on v(T) C R such that

T = t dE(t),
a(T)

the Cayley transform U of T will help us to transfer the spectral represen-
tation of U to the spectral representation of T.

According to Theorem 8.24, the spectrum of U is a closed subset of the
unit circle S, and 1 is not an eigenvalue, so that the spectral measure E' of
U satisfies E'{1} = 0, by Theorem 8.26. We can assume that it is defined
on St = S \ {1} and we have the functional calculus

f(U)
= f f(A) dE'(A)

=
f f(A) dE'(A) (f B()),

which was extended to unbounded functions in Subsection 9.5.2.
If h(A) := i(1 -}- a)/(1 - A) on St, then we also have

(h(U)X,y)H = fh(A)dE,y(A) (x E D(h(U)), y E H),

with

D(h(U)) _ {x E H; f oo}.

The operator h(U) is self-adjoint, since h is real and h(U)* = h(U) _
h(U).

From the identity
h(A)(1-A)=i(1+A),

an application of (b) in Theorem 9.29 gives

h(U)(I- U) =i(I+U),
since D(I - U) = H. In particular, Im (I - U) C D(h(U)).

From the properties of the Cayley transform, T = i(I -}- U)(I - U)-1,
and then

T(I - U) = i(I + U), D(T) = Im (I - U) C D(h(U)),
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so that h(U) is a self-adjoint extension of the self-adjoint operator T. But,
T being maximally symmetric, T = h(U). This is,

(TX,y)H = fh(A)dEy(A) (x E D(T), E H).

The function t = h(A) is a homeomorphism between S2 and R that
allows us to define E(B) := E'(h-1(B)), and it is readily checked that E is
a spectral measure on R such that

(Tx, Y)H = d E,(t) (x E D(T), y E H).fRt
Conversely, if E is a spectral measure on R which satisfies

(TX,Y)H = fy(t) (x E D(T), y E H),
R

by defining E'(B) E(h(B)), we obtain a spectral measure on S2 such that

(h(U)X,y)H = fh(A)dEy(A) (x E D(h(U)), y E H).

But U = h-1(h(U)) and

(UX,y)H = fAdEy(A)

From the uniqueness of E' with this property, the uniqueness of E follows.
Of course, the functional calculus for the spectral measure E defines the

functional calculus f(T) = f f dE for T = f ± A dE(A), and f(T) _
f(h(U)).

9.6. Exercises

Exercise 9.1. Let T : D(T) C H -+ H be a linear and bounded operator.
Prove that T has a unique continuous extension on D(T) and that it has a
bounded linear extension to H. Show that this last extension is unique if
and only if D(T) is dense in H.

Exercise 9.2. Prove that if T is a symmetric operator on a Hilbert space
H and D(T) = H, then T is bounded.

Exercise 9.3. Prove that the derivative operator D is unbounded on L2(R).

Exercise 9.4. If T is an unbounded densely defined linear operator on a
Hilbert space, then prove that (Tm T)1 = Ker T*.

Exercise 9.5. If T is a linear operator on H and A E v(T)c, then prove
that IIRT(A)II ? 1/d(A,Q(T)).
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Exercise 9.6. Show that, if T is a symmetric operator on H and Im T = H,
then T is self-adjoint.

Exercise 9.7. If T is an injective self-adjoint operator on D(T) C H, then
show that ImT = D(T1) is dense in H and that T-1 is also self-adjoint.

Exercise 9.8. Prove that the residual spectrum of a self-adjoint operator
on a Hilbert space H is empty.

Exercise 9.9. Suppose A is a bounded self-adjoint operator on a Hilbert
space H and let

A = J AdE(A)
v(A)

be the spectral representation of A. A vector z E H is said to be cyclic for
A if the set {Az}0 is total in H.

If A has a cyclic vector zand µ = EZ Z then prove that A is unitarily
equivalent to the multiplication operator M : 1(t) -+ tf (t) of L2(µ); that is,
M = U-1AU where U : L2(µ) -+ H is unitary.

Exercise 9.10. Let
A = J AdE(A)

v(A)

be the spectral resolution of a bounded self-adjoint operator of H and denote

F(t) := E(-oo, t] = E(v(A) n (-oo,t]).

Prove that the operator-valued function F : R -+ G(H) satisfies the follow-
ing properties:

(a) Ifs < t, then F(s) < F(t); that is, (F(5)X,X)H < (F(t)X,X)H for
every x E H.

(b) F(t) = 0 if t < m(A) and F(t) = I if t > M(A).
(c) F(t+) = F(t); that is, limst F(s) = F(t) in G(H).

If a < m(A) and b> M(A), then show that with convergence in G(H)

A=
J

b t dF(t) =

J
M A t dF(t) = J f dF(t)

a n(A)+ R

as a Stieltjes integral.

Exercise 9.11. On L2(0, 1), let S = iD with domain H1(0, 1). Prove the
following facts:

(a) ImS = L2(R).
(b) S* = iD with domain H(0, 1).
(c) S is anon-symmetric extension of iD with D(iD) = H2(0, 1).
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Exercise 9.12. On L2(0,1), let R = iD with domain H(0,1) (i.e, S* in
Exercice 9.11). Prove the following facts:

(a) ImR = {u e LZ(R); fo u(t) dt = 0}.
(b) R* = iD with domain H'(0,1) (i.e, R* = S of Exercice 9.11).

Exercise 9.13. As an application of Theorem 9.17, show that the operator
-D2 = -d2/dx2 in L2(0,1) with domain the C°O functions f on [0, 1] such
that 1(0) = f(1) = 0 is essentially self-adjoint.

Exercise 9.14. Show also that the operator -DZ = -d2/dx2 in L2(0,1)
with domain the C°O functions f on [0, 1] such that f'(0) = f'(1) = 0 is
essentially self-adjoint.

Exercise 9.15. Prove that -DZ = -d2/dx2 with domain D(0,1) is not an
essentially self-adjoint operator in L2(0,1).

Exercise 9.16. Let V be a nonnegative continuous function on [0, 1]. Then
the differential operator T = -d2/dx2+V on L2(0,1) with domain V2(0, 1)
has aself-adjoint Friedrichs extension.

Exercise 9.17. Let
h

Qk(x) = (1 < k < n)

represent the position and momentum operators on L2(R").
Prove that they are unbounded self-adjoint operators whose commuta-

tors satisfy the relations

[Q, Qk] _ 0, [], Pk) _ 0, [], Qk] - I.

Note: These are called the canonical commutation relations satisfied
by the system {Qi,.. > Qn; Pi,.. , Pn} of 2n self-adjoint operators, and it
is said that Qk is canonically conjugate to Pk.

Exercise 9.18. Prove that, if Al and AZ are two bounded self-adjoint op-
erators in a Hilbert space, then Al A2 = AZA1 if and only if their spectral
measures El and E2 commute as in (9.8): El(B1)E2(B2) = E2(B2)El(B1)
for all B1, B2 E X3R,.

Exercise 9.19. Let

Al = fR AZ = fR

be two self-adjoint operators in a Hilbert space H. If they commute (in
the sense that their spectral measures commute), prove that there exists a
unique spectral measure E on RZ such that

E(Bl x Ba) = E(Bi)E(Bz) (Bi> Bz E BR).
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In the case of the position operators Al = Qi and AZ = Q2 on L2(R2), show
that E(B) = XB (B C XiR,z).

Exercise 9.20. Find the infinitesimal generator of the one-parameter group
of unitary operators Ut 1(x) := f(x -I- t) on LZ(R).

Exercise 9.21. Suppose that g : R -+ R is a continuous function. Describe
the multiplication g as a self-adjoint operator in LZ(R) and Ut f ezt9f as a
one-parameter group of unitary operators. Find the infinitesimal generator
AofUt (teR).
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Hints to exercises

Chapter 1

Exercise 1.1. The identity is a homeomorphism between the two metric
spaces, and {1, 2,3,. .

.} is a Cauchy sequence in (R, d) but not in (R, I ' I)

Exercise 1.2. A finite number of balls B(a, m) (m e N) cover the compact
set.

Exercise 1.3. If every sequence {ak} C A has a convergent subsequence in
M, for every sequence {xk} C A, choose {ak} C A with d(xk,ak) < 1/k. If
akm -+ x, also xkm - X.

Exercise 1.4. If U is an open neighborhood of x e K, using the fact that
II is compact and that K is Hausdorff, show that U contains a compact
neighborhood W of x in U.

Exercise 1.5. If X = F fl G (F closed and G open) and a E X, then
B(a, R) C G for some R> 0 and B(a, r) fl F (r < R) is a neighborhood
basis of a in X.

If X C Rn is locally compact, for every a e X consider a compact neigh-
borhood W (a); then Int W (a) is an open neighborhood of a and Int W (a) _
U(a) n X for some open set U(a) in R, so that G = UaEX U(a) is also open.
Show that X = G \ (G \ X) = G n (G \ A)c.

Exercise 1.6. If {f7}1 C M and A U=1{f, 0} _ {x1,x2,. . .}, I
being compact, by a diagonal argument select fflk so that fflk (x3) -+ E I.
If f (xj) := 2j and f (x) = 0 if x ¢ A, then f E M and fflk -+f in M.

Exercise 1.7. See J. L. Kelley [24, Chapter 3].
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300 Hints to exercises

Exercise 1.8. Consider I : (K, T') -+ (K, T) and use that I(F) is a compact
subset in (K, T) to show that I-1 is continuous.

Exercise 1.9. (b) Show that xn -+ xo in X if and only if x= xo for every
n > np.

Exercise 1.10. See W. Rudin [39, Chapter 1].

Exercise 1.11. Every function is measurable and, according to the defini-
tion (1.3) of the Lebesgue integral, the integral of a nonnegative function
f = {f(j)}jj is the sum

f(j) := sup { f(k); k E K, K C finite}.
jEJ kEF

N:={jEJ; EJ; I?
1/n} is at most countable, since every {j E J; I> 1/n} is finite. Hence
>-jEJ I - nEN Iand

J f dv = f f dv - J f- dv = f+(k) - f(k) _
kEN kEN kEN

Exercise 1.12. Use monotone convergence (first prove that (1 + x/n)is
increasing), dominated convergence, and Fatou's lemma, respectively.

Exercise 1.13. Show that I = 2J with
11

J = f dx f
dy

(x_y)a'
dy x-e

= lim
dy

(x_y)a 40J0 (x_y)a0

Exercise 1.14. If E = t±J k(ak, bk), then .Ik IF(bk) -F(ak)e < fE If(t)I dt =
µ(E), where µ is a finite measure such that µ(A) = 0 if IAI = 0. It is
shown that µ(E) -+ 0 as El - 0 by supposing that, for some e> 0 there
exists Esuch that µ(E) > E and IEI < 1/2n for every n E N, since then
E :_ flk>1 U>k En would satisfy El = 0 but µ(E) > n.

Exercise 1.15. See Royden [37, III.3].

Exercise 1.16. µ is the linear combination of four finite measures.

Exercise 1.17. Using the representation fB f dµ = fB fh dlµl with h as
in (1.10), we have both I fB hdµl = Iwith hi = 1 and also I fs f dµl <
fB Ill dlµl < I if Ill 1.

Exercise 1.18. The Riesz-Markov theorem with u(g) _ )kg(ak) yields
the first part.
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Obviously If gdµ1 < >Ii I"nI if g E and II < 1. For the
opposite estimate, if >k)no IAnI < , construct a convenient function g such
that g(ay) = sgnAk if k <o Then >k<no I"nI < Iu(g)I -F- and

lAnI = Sup IAnI < sup ISimilarly

>akEG II = 1,21(C) for any open set G C R" and is associated
to {I)kI} in the same way that µ is associated to {Ak}. Clearly 1= 0
if G = F°.

Chapter 2

Exercise 2.1. If n = 1, use induction and ( k 1) _ (k) + /k-1)

If n> 1 and a = (ai,. . . , can+l), write rx := (al,. . . , an, 0) and
«n+1

D«(a«n+l

(f g)) - (an+1)Da(Dkif5afl±lkg)

n+1 n n+1 '

k=0

Then

Da (a+ifa4t'g)

Finally,
(a+1) a

ak -k
( n+1 f) (n+1 g)

a_

= (a) (Df)Dg.

Exercise 2.2. If U(x) = x + U C F, a neighborhood of x, then also U C F
and Um=1 17tBE(0, r) = E.

Exercise 2.3. Suppose x E E \ {0} and let U = {0}. The product Ax should
be continuous in A, so that we should have Ax E U if IAI < for some E> 0.

Exercise 2.4. If 0 < t < 1, then t Int K + (1 - t) Int K C K and every
t Int K + (1 - t) Int K C K is open, so that t Int K + (1 - t) Int K C Int K.

Exercise 2.5. Define u(el) = 1, u(e2) = 2, ... if {en} is the canonical basis
sequence.

Exercise 2.6. If g and h are two different bounded continuous functions, then
G = {f g} is a nonempty open set and ICI > 0, so that g # h in L°O(R").
Choose an uncountable family of intervals I«, so that IIXI« - 1 if
a fi to show that L°O(Rn) is not separable. See Remark 2.18.
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Exercise 2.7. Use the fact that, as a subspace of C(B(0, m)), m))
is separable and it is dense in I,P(B(0, m)). Then approximate every f e
LP(R) by fXB(O,m).

Exercise 2.8. Co(Rn) is complete and (x/k)g(x) -+ g(x) uniformly if
B(0,1) -< o -< B(0,2). Every {f e C B(0, m)} is sepa-
rable.

Exercise 2.9. (a) For every n e N, K = B(cn,3, 1/n), and the set
is dense in K. (b) Apply the Stone-Weierstrass theorem to the

subalgebra of C(K) generated by the functions cp,n,,n

Exercise 2.10. Since C(0, T) is dense in L2(0, T), C(T) is also dense in
L2(T). The Stone-Weierstrass theorem shows that the algebra of trigono-
metric polynomials is dense in C(T), and the uniform convergence implies
the convergence in L2(T).

Exercise 2.11. Describe C' [a, b] as a closed subspace of C[a, b] x C[a, b].

Exercise 2.12. The constants are 1 and nl1 .

Exercise 2.13. Show that u(f) = 1 with ,f G 1 implies f = sgn g on
every interval (1/(n + 1),1/n) and that f cannot be continuous, so that
u(B) C (-1, 1). If -1 < r < 1, we define f such that u(f) = r as
f = °O_1(-1)non(t) with (-1)non -< (1/(rz.+ 1),1/n).

Exercise 2.14. Tx 1 = IITKII.

Exercise 2.15. If M = maxo<y<l fo K(x, y) dx, then T f 1 < M f 1 by
Fubini-Tonelli, and II7'II M.

To prove that l> M - e with IIhII[o,l] < 1, note that M =
f0' K(x, o) I dx for some yo e [0, 1], use the uniform continuity of K to
choose yl < yo < y2 in [0, 1] so that IK(x, y) - K(x, yp)I < E if y E [yi, y21,
and define h = (y2 - yl)-lX[yl,y2].

Exercise 2.16. IITKII = IITK1IIp (p = o0 or 1).

Exercise 2.17. Show that Tn = 0, since its kernel is Kn = 0 if n > 1, and
then (I -T)-1 = I + T. Note that vo(y) sin(ny) is an odd function when vo
is even.

Exercise 2.18. Write the equations in the form (pu')' - qu = f and the
Cauchy problems as fo K(x, y)u(y) dy - u(x) = g(x). Then (a) f = 0,
K(x, y) = y - x, g(x) _ -x; (b) 1(x) = cos(x), K(x, y) = y - x, g(x) _
-x + cosx; (c) f = 0, K(x, y) _ (ao/ai)(exp(aiy - alx) - 1), g(x) _
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-a -I- (b/ai)(exp(-aix) -1); (d) f = 0, K(x, y) = x(1- exp(x2/2 -
g(x) = -xexp(x2/2).

Exercise 2.19. By induction and Fubini's theorem,
f2 2n._1 1 1

J f dx-2 ... f f(t) dt - n - 1)!

fX

x - t)-'f(t) dt.
a

Exercise 2.20. Consider v = integrate on [a, x], use the initial conditions
u(j)(a) = c, and apply the result of Exercise 2.19.

Exercise 2.21. Show that supp f * g contains [0, oo) x {0} but supp f +
supp g = (0, oo) x (0, oo), a sum of noncompact sets.

Exercise 2.22. If s(f) (x) = f(-x), show that 1(f * g) (b) - (f * g) (a)
CllTbs(f) - Tas(f) II and apply Theorem 2.14.

Exercise 2.23. Just compute the convolutions.

Exercise 2.24. See the proof of Theorem 2.41(a).

Exercise 2.25. Write
1 2N-1

2F2N - FN = Dn -
N

n=0

1 N-1 1 2N-1
Dn = Dn .

N n=0 N n=N

Exercise 2.26. IIcII = 1

Exercise 2.27. Wt(x) _ (1/tTh)W(x/t).

Exercise 2.28. If PF(x) = y, then y = >>1(y, If
x = y + z, then (y, en)H = (x, en)H.

Exercise 2.29. Check that

<_ Cl/p' fY K(x, y)Il.f(y)I'°dyf I
and then integrate.

I
\ 1/p

Exercise 2.30. Note that T is (1, 1) and (oo, oo) with Mo = Ml = C and
1/p=1/q=1-z9.

Exercise 2.31. iiiii < 2II7'II

Exercise 2.32. Let z9 = 1/2 and note that T is of type (4, 4/3) with constant
221/2(21/2)1/2 (Exercise 2.31). Show that I> 23/4II(1,2)II4 if
(x,y) = (1,2).
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Exercise 2.33. Obviously I ck(f )I If II1, and also c(f) 112 = 111112 (Parseval).
If 1 <p < 2, apply the Riesz-Thorin theorem to c : LP(T) -+

Chapter 3

Exercise 3.1. (a) See (4.11).

Exercise 3.2. If A C rU and U is convex, also co(A) C rU. If A is open,
then

CO(A) = U{tiA + + tnA; n e N, t > 0, tl + + to = 1}

is also open.

Exercise 3.3 Let U be a neighborhood of zero in E. Then )V C U if
S, for some 6> 0 and some neighborhood of zero, V. It follows that

U{AV; <6} C U is balanced.

Exercise 3.4. If fn -+ f uniformly on compact sets, then 0 = ffn(z) dz -+
Jry 1(z) dz = 0, and f is analytic. Hence, fl(St) is closed in C(S2).

Exercise 3.5. Use the open mapping theorem.

Exercise 3.6. (d) IIxII < n 12-'Z1+ + 2-N < e if N is such that
2-N < /2, and allow ) - 0, so that n 12-'Z1') < E. (f) IInxII < 1
and IInxII = nhIxII fi oo

Exercise 3.7. It should be h< 1/2.

Exercise 3.8. If the semi-norms pin define the topology of then the
semi-norms qn(x) max(pn(xl),... , pn (x = (x',.. . , )) define
the product topology on E.

If E = El x x Em x , a countable product, the topology is defined
by the sequence of semi-norms (x = (x1,. . . ,

Embed £(St) y flC() by f H (f(k)).

Exercise 3.9. (a) If {fns } is a subsequence, then fk (t) -+ 0 if t 0, and
Ink (0) - 1. (b) Choose a e St and define

, ,

fn(t) : d(x, a) + d(t, B(a, l/n)c)
with n large enough.

Exercise 3.10. Consider M xn -+ x e E1 and prove that T xn is a Cauchy
sequence with a limit y e E2 such that, if also M xn -+ x E E1, then
necessarily T x 1, T x 1, T x2 , T x2, ... is a Cauchy sequence with the same limit

N

y. Define Tx y.

1/n)c)d(t B(a
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Exercise 3.11. (a) First show that the topology in E/F is the collection
of all sets G C E/F such that ir1(G) is an open set in E, so that ir is
continuous, and if a set M C E/F is closed, then ir-1(M) is closed in E.

(b) If II' lIE is an F-norm associated to the topology on E, then check that
= infzEF lix-z lIE is a corresponding F-norm for E/F. To prove that
every Cauchy sequence {un} in E/F must converge, choose -26nk+1 II <
1/2k and 'Ir(xk) = unk so that IIxk - xk+lllE < 1/2k still. If xk - x in E,
then unk -+ 7r(x) in E/F and also un -+ 7r(x) in E/F.

(c) F + M = ir1(ir(M)) is closed, since ir(M) is finite dimensional in
E/F and every finite dimensional subspace is closed by Theorem 2.25 (in
the case of a Frechet space, cf. Kothe [26, 15.5] or Rudin [38, 1.21]).

Exercise 3.12. Show that {en} C F + M and F + M is dense. The element
xo = n2_n is well-defined. Suppose xo = xl + x2 with x2 =limb,,,,
(br,,, E [un; n > 1]) and xl e F and show that, if n > 1, then (-ne_a +
en, x2)H = 0 and also (x,,e_)H = 0. It follows that (xO, -ne_n + en)x =
-1 so that (x,, e)H = -1, and then >n (xi, en)xI2 = oo> a contradiction.

Exercise 3.13. Write [a, b] = Ua{Xa}, where Int ({xa}) = 0.
Exercise 3.14. If F = U=, [e,,, en] and Int ([ei,.. . , e,,,,]) 0, then
F=[e,,...,em].

Exercise 3.15. Consider 1(x) = 1/x (1(0) := 0).

Exercise 3.16. Use the closed graph theorem.

Exercise 3.17. If fn(t) = to/n, then fn -+ 0 in (C1[0,1], II ' II [o,l]) but fn(t) _
t"-1 does not converge in (C' [0, 1], II II [0,,]).

Exercise 3.18. See Remark 3.12.

Exercise 3.19. The set Fn :_ {b(x) < n} is closed and M = Un F. By
Corollary 3.9 of Baire's theorem, Int F.,,,, 0 for some m.

Exercise 3.20. Apply the uniform boundedness principle (Theorem 3.14) to
the sequence {J}.

Exercise 3.21. (a) If (xn> yn) -+ (xo, yo) in El x E2, show that the lin-
ear mappings Tn = yn) are uniformly bounded and write B(xn> yn) -
B(xo, Yo) _ Tn(xn - xo) + B(xo, yn - yo). (b) Choose Pn polynomials such
that Pn(x) -+ x-1/2 in Ll(0,1) (polynomials are dense in Ll(0,1), since
C(0, 1) is dense by Corollary 2.13 and polynomials are uniformly dense in
C(0, 1)) and observe that {P} is a bounded sequence such that {B(P, Pn)}
is unbounded.
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Exercise 3.22. See Exercise 3.21.

Exercise 3.23. Use the closed graph theorem.

Chapter 4

Exercise 4.1. See the proof of Theorem 4.14, now for the vector subspace

F = {x E t°O; limAnx E R}.
n

Exercise 4.2. See Theorem 4.17.

Exercise 4.3. See, for instance, Kothe [26, 15.8].

Exercise 4.4. If 7rn is the n-projection of £°O, apply the Hahn-Banach theorem
to extend 7rn o T to Tn E E' and define T (x) = (T(x)) E £°O.

Exercise 4.5. If u 0 and Ker u is closed, then x + U C E \ Ker u for
some neighborhood of zero, U, which can be supposed balanced, and then
u(U) C K is also balanced. Show that either u(U) is bounded, and then u
is continuous, or u(U) = K, in which case u(x) _ -u(y) for some y E U
and then x + y E (x + U) fl Ker u, a contradiction.

Exercise 4.6. Note that {e} is a linearly independent system. Check that
Kerir_ [ei; j n] _ [ei; j 4 n] (show that x E [ei; j n] \ [es; j n]

would imply rn(x)eE [ei; j n]), so that urn is continuous (cf. Exer-
cise 4.5). Observe that x E co(K) if and only if x = >=i (x)en
with r(x) > 1 and r(x) < 1. To prove that co(K) is closed, if
x = r(x)en ¢ H, consider the cases (a) r0 (x) ¢ [0, 1] and (b)

irn(x) 0 [0, 1]. Check that x E V C co(K)° if V =ono ([0,1]x) in case
i

(a), and V = ([0,1]x) in case (b).

Example: The linear hull of an orthonormal sequence uin a Hilbert
space and e _ (1/n)u.

Exercise 4.7. If x =limn x and y =limes yam, in H with y7 E H, show that
{(xn, yn)x} is a Cauchy sequence of numbers and that (x, y) :=1im(x, yn)H
is awell-defined inner product.

Exercise 4.8. If ux = x), then (a, x) H = 0 if and only if ux (a) = 0. Thus,
x E A' if and only if ux E A°.

Exercise 4.9. 11x112 < IIxIIv and V is dense in 22.
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Exercise 4.10. If B is continuous at (0, 0), then 1IB(x, )IIc < 1 if lixIlE <6
and iiYiIF fZ e, for some e > 0. Then 1(e/IIyilF)y)ilG 1 (if
x, y 0), and II B(x, y)c E-2IIxIIEIIYIIF.

Conversely, the condition 1IB(x, y)IIc cIIxIIEIIyIIF yields

i- B(a, b)II fZ cII x - aIIEIIyIIF + CIIaIIEIIy - bII F'

Exercise 4.11. Suppose ilfiI[a,b] < 1 (k E N and 0 < j < m + 1) and use
the mean value theorem to apply Theorem 4.28.

Exercise 4.12. Similar to Exercise 4.11.

Exercise 4.13. If m(E) = 0 and µ(E) > 0, then m([a, c] \ E) = c; if also
µ(A) = c, then m(A U E) = c but µ(B) > c.

To prove that µ = m, show first that also m(A) = c/2 = µ(A) = c/2
when c G 1/2. If, for instance, m(Al) = c/2 and µ(A1) G c/2, choose A2
and A3, all of them disjoint and such that m(A2) = m(A3) = c/2; since
m(A1 U A2) = m(A2 U A3) = m(A1 U A3) = c, it follows that µ(A2) > c/2,
µ(A3) < c/2, and µ(A3) > c/2, a contradiction. If c > 1/2, extend µ to
[0,2] by defining µ(A) = µ(A - 1) if A C (1, 2].

Exercise 4.14. The condition is m(E \ F) = 0, and then dµE = XEdµF

Exercise 4.15. If iixIIP = 1, define yk = sgnxkIxkIp-1.

Exercise 4.16. Consider xk = 1 - 1/k.

Exercise 4.17. iv(x)i < lixik and v extends to v E (1?°°)'. From v(et) _
(ek, y) = yk it would follow that y = 0.

Exercise 4.18. See Exercise 4.17, with C [a, b] as a substitute of c.

Exercise 4.19. If v E co, define x' =v(et). If xnr = x'e -3 x in co,
so that v(y) =limes 1 y'x' _ (x, y), choose z" = sgnyk (zk = 0 if y = 0),
so that v(z) < llvll, and Iv(y)I < IIiIiilixli.

Exercise 4.20. Represent the transpose of T as T' : (yam,) E Q°O H (yn/fl) E
Q°°, with Im T' C co and Ker T = {0}.

Exercise 4.21. Approximate uniformly every g E b) by step functions.

Exercise 4.22. If K > 0, Holder's inequality yields

K(x,

y) dy> I9(x) Idx (Ii K(x, y)p dx)

If y) E L'(R), consider i K(x,

Exercise 4.23. Note that ji has to be finite.



308 Hints to exercises

Exercise 4.24. Let u(1) = I and assume u(1) = 1. If 0 < f < 1,
define g = 2f - 1 and then du(g) 1; thus u(f) _ (1 + u(g))/2 > 0.

Exercise 4.25. (a) II f;,. f(z)g(z)dz C More-

over, Jf(z)g(z) dz = Jf(z)g(z) dz if o <r < s < 1.
(b) feD fdµI feD I fl dµ C µ(D) II f II eD

(c) Derivation under the integral yields that gµ is holomorphic.
(d) Fubini's theorem combined with the Cauchy integral formula shows that

L f(z)g(z) dz = f _ z 1 W dµ(w)
D

Exercise 4.26. Consider T as a restriction of T".

Exercise 4.27. If T f (x) := fo 1(t) dt (0 < x < 1) and T f = 0, then
differentiation shows that f = 0.

Exercise 4.28. If K = {Ai, A2,. . .}, define T E such that Tek = Akek

Exercise 4.29. See Exercise 4.28.

Exercise 4.30. If K = T(BE), consider K C U l/n) and Fn =
{c, ... , c' j. Show that lIT - PFT ll = 0.

Chapter 5

Exercise 5.1. Not every x E (1?1)' attains its norm on the unit sphere of £1
(Exercise 4.16).

Exercise 5.2. Since L2(R) = L2(R)' and L2(R) is separable, BL2(R,) is
w*-compact and metrizable. For the last part, see Exercise 5.7.

Exercise 5.3. Suppose u(fn) fi 0, so that there exist S > 0 and {fflk } so
that nk+l > 2nk and u(fnk) > 8 (or < -S). Define yN iZ=1 fns, which
satisfies ynr(x) <4 everywhere. It follows from u(fnk) > 8 that u(ynr) > NS,
and u would be unbounded. Hence, fn - 0 weakly, but lIfnhl[o,1] = 1

Exercise 5.4. Suppose that g(0) = 0 and choose cp to be zero near 0 and
such that ll9 - ll[_ii} e Show that (3) implies f'1(g - cp)hn < ce and
lim supra f 11 ghn <e, so that (g, hn) - g(0). If g(0) = C, write g = go + C.

For the converse, choose g = 1 to prove (1). To prove (3), apply the
uniform boundedness principle to the sequence hn).

Exercise 5.5. Let IlxIlE = u(x), IIUIIE' = 1. Then IxIlE =limn Iu(xn)l
liminfn IIXnIIE.
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Exercise 5.6. K =BED is w*-compact, and x H x (x1(u) = u(x) if IlullE' < 1)
is a linear isometry of E into C(K).

Exercise 5.7. If x-+ 0 in E, then pu(xn) _ Iu(xn)I -+ 0 with u e E'. Let
{en}be an orthonormal system in a Hilbert space. Then fi 0 in H,
but e-+ 0 weakly, since >1 I(en, x)H12 < lix ii2i-1 < oo and (en, X)H -+ 0.

Exercise 5.8. By Theorem 5.3, the weak closure K of co({xn}) is also its
closure, x e K, and x is the limit of points in

Exercise 5.9. Consider A C E as a subset of E" = G(E', K).

Exercise 5.10. Assume (b): the graph of T is closed and (a) holds, since if
xn - x in E and Txn -+ y in F, then it follows from u(xn) -+ u(x) for all
u e E' that v o T E E') and also v(y).
Thus, v(Tx) = v(y) for all v e F', and Tx = y. To show that (b) and (c)
follow from (a), note that p (T'u) _ lu o T (x) i = pTx(u).

Exercise 5.11. Let {max{pxi,. . . , pxN } < 1/M}. If x e E, every ball
{per <s} contains some Un; that is, iu(x3)i < 1/n`dj = Iu(x)i < 1. Hence
u(xl) _ ... = u(xnr) = 0 = u(x) = 0 and x e [Xi,... , xn].

Exercise 5.12. None of the semi-norms
I

defining the weak
topology can be a norm.

Exercise 5.13. If T is compact and x-+ 0 weakly, every subsequence of
{Tx1,} has a subsequence which is norm-convergent to 0, so IITxnhix -+ 0 in
H.

For the converse note that BH is weakly compact and metrizable. Then,
for every {xk} C BH, there is a weakly convergent subsequence, xkn -3 x in
BH, so that xkn - x -+ 0 weakly and iiTxkn - T x II H -+ 0.

Exercise 5.14. There exists f in E' which strictly separates K1 and K2.

Exercise 5.15. Denote by BE the weak* closure in E" of the closed unit ball
BE and suppose that K = R. To prove that BE = BE", let wo E E" be
any point not in BE, a weak* closed convex set. Then there is a u e E',
Ilu liE' = 1, such that supWEBE (u, w) < (u, wo), and it follows that liwo I
1. Therefore BE" C BE.

Exercise 5.16. (a) If BE is weakly compact, use Goldstine's theorem to show
that BE = BE". The converse follows from Alaoglu's theorem.

(b) The weak topology of F is the restriction of the weak topology of E.

(c) If E is reflexive, then o-(E', E) = o-(E', E") and BED is o-(E', E)-
compact and o-(E', E")-compact, so that E' is reflexive. If E' is reflexive,
then E is a closed subspace of the reflexive space E".
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Exercise 5.17. To show that w = for every w E H", write Tu = z
if u = z)H E H'. Then T : H' -+ H is a bijective skewlinear isometry,
and H' is a Hilbert space with the inner product defined by (Ui, u2)H' _
(ru2, ru1)H. Finally, w(u) _ (u, uO)H' _ (ruO, T2G)H for some uo E H'.
Choose xo = rue.

The mapping f E Ll (0,1) F- f) E Ll (0, 1)" is not exhaustive: if
w = (,fo) for some fo E L'(0,1), since L'(0,1)' _ {u9; g E L°°(0,1)} with
uy(f) = f0' f(t)g(t) dt, necessarily w(2dg) = 2Gy(fp) Vg E L°°(0, 1), and the
mapping J of Exercise 4.18 is not exhaustive.

As the dual of Ll(0,1), L°°(0, 1) is not reflexive (Exercise 5.16(c)).

Exercise 5.18. For the last part, see Kothe [26, 22.4(2)].

Exercise 5.19. Choose fn(t) = eint and apply the Riemann-Lebesgue lemma.

Exercise 5.20. If f0' fg = 0 for all g E C[0,1], with f E Ll(0,1), then also
fa f = 0 for every (a, b) C (0, 1) and it follows that f = 0. In L°°(0,1) a
limit of continuous functions is also continuous.

See the proof of Theorem 5.11 to solve Exercises 5.21-5.24

Chapter 6

Exercise 6.1. '(x) = g(x)g(1- r - x) > 0, (x) = f0i_rg(t)g(1 - r - t) dt =
C, a constant, if x > 1-r, and rb(x) = 0 if and only if x < 0. Hence o(x) = 0
if and only if x < -1 or x > 1, and o(x) = C2, a constant, if -r < x <r.
Choose c = 1/C2.

Exercise 6.2. Since is dense in LP(11) (Corollary 2.13), approximate
every f E CK(12) C by f*&f as in Theorem 6.2, with supp f*& C S2.

Exercise 6.3. The distance d((p, z,b) :_ ,N=O Z_NII P- I+ Iko - Idefines

the topology. Choose o E Duo 11 (R) and show that the test functions
cpN = Tk o form a Cauchy sequence in the new topology T but {pN}
it is not convergent in the convergence we are considering for test functions.

Exercise 6.4. Note that I < n-'"`-1 supg ko' / I and that Un supp cpn is
unbounded.

Exercise 6.5. The family T of all unions of sets of the form cp-{- U (cp E D(SZ),
U E Lf) is a topology on D(SZ). To check (a), first show that if cp E Gl fl G2
with Gl, G2 E T, then cp + U C Gl fl G2 for some U E U.

To prove that every Cauchy sequence is contained in some DK(S2), sup-
pose that this is not the case, so that there are terms cps of the sequence
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and distinct points xk E St (k E N) such that cpk(xk) 0 and with no limit
points in St. Then U :_ {cp; kIcp(xk)I < kQk(xk)Il E Lf, since K E K(St)
contains finitely many points xk and then U fl DK(St) E T.

Exercise 6.6. (a) By the Leibniz formula,

;(m)(t) = n!()(n_j)!j=o

and supp cp(rt) C [(b)

rn -" < 1/rn when m < n, and choose rn large.

From (b), IIf1IIR < qn_1(fn) < 1/2n whenever n > p, so that
is uniformly convergent on compact subsets and f E E(R). Also fn(t) _
ct"/n! if ti < 1/rn, so that fA'(0) = 0 when p # n and f(o) = cn.

Exercise 6.7 Note that i< (fKifI)qo() and I I µI

for every cp E DK(S2).

Exercise 6.8. We would have f cp f = 0 if (a) = 0 and then, as in Theo-
rem 6.5, f = 0 a.e. on Rn \ {a}, that is, f = 0 a.e. but 8a # 0.

Exercise 6.9. Apply b' to the test functions an(t) _ - sin(nt)cp(t), with
[-1/2,1/2] - cp - (-1, 1). Then b'('b) = n and, if 8' =

n < I f (t)sin(nt)d(t)I < IµI([-1,1]).

Exercise 6.10. Write f KA(x)cp(x) dx - (0) = f KA(x)(cp(x) - (0)) dx and
see the proof of Theorem 2.41.

Exercise 6.11. If supp cp C [-n, n] and N > n, then LN (Sk (cP) _
k=-n (k). We can define Ij.j(cp) :- k oo (k), LLI - (Sk on

D[-n,n] (R).

Exercise 6.12. The order is < m, since (cp, b(""')) I < I'o k(0) I To show

that it is > m - 1, apply b(m) to the functions /-'kQ, where [-1,1] - o -
(-2, 2) and k(x) = kl-mcos(kx) if m is even, else /'k(x) = kl-""'sin(kx).

Exercise 6.13. The distribution u satisfies i< CK Io ii ilK =
CKgN(cp) if cp E DK and K C (1/N, oo). To prove that there is no N E N
such that the above estimate holds for every compact set K C (0, oo), apply
Exersice 6.12. There is no extension v of u to R, since the continuity of v
on D[_2 2] would imply that the order should be finite.
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Exercise 6.14. Let K - o - St, kol C IkOIIKQ for every cp E DK (S2) . If cp is
real, then -IkPIIxQ < cp < Ik°IIKQ and Iu(cp)I < u(o)11cp11x If cp is not real,
then I< 2u(o)px
Exercise 6.15. Let ib e C[-a, b] be such that fi(t) _ (p(t) - cp(0))/t if t 74 0.
Then u2(<p) f-a `°(t)t`P(O) dt = f-a b(t) dt defines a distribution on R,
and u1 E D'(R) as the sum of three distributions. If 0 ¢ supp cp, then
'b(t) = cp(t)/t and uf(cp) = fR cp(t)/t dt.

Exercise 6.16. (a) If cps - 0 in D(R), define ibk(t) :_ (pk(t) - cpk(0))/t
(cps (0) if t = 0), continuous and such that kbk(t)I C IIPII[-r,r}, to prove that

ur(cpk) - 0. (b) Observe that f<1t1<r (t) -(O) dt - f1'r SP(t)t`p °) dt if e J. 0.

Exercise 6.17. Write

U f() = J f(x)k(x)dx + J f(x)(k(x) - T,,1zcpk(x))dx

to prove that u f(cpk) - 0 as cps - 0 in D(RTh). Note that if 0 supp cp,
then

uf()= / f(x)o(x)dx=(o,f),
J R7

since cp(x) - so(x).

Exercise 6.18. If supp cp C [-N, N], then - fo cps _ -p(N) + cp(0) _
(p(0) = 8(cp), so that Y' = S. By induction, Y(1)(cp) = (0).

Exercise 6.19. If supp cp C [-n, n], then f[_] f(t) dt = 2 fo log t dt =
n log n-n and f e L (R). Moreover -(cp', f) _ - limEyo f<1t1<r cp'(t) f (t) dt
and

'(t) f (t) dt = -(e) loge +(e) log e -f tdt -(cp', vp t )f<ItI<r ItIGT

since loge(cp(-E) - cp(e))I < l logelllP'II[-n,n] -+ 0 as e -+ 0.

Exercise 6.20. If supp <p C [-a, a], O = {-a < x < y < a}, and I =
fo cp'(x) f'(y) dx dy, then by Flibini's theorem

'(y)(y) dy = - fR P (x)f (x) dx.I = JR f

Exercise 6.21. (p, Dau) :_ (_1)kI(Dp, u).

Exercise 6.22. If P(D) = cD«, note that (p, cD«u) _ (_1)a(Da(cp), u).

Exercise 6.23. See Theorems 6.17 and 6.18.
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Exercise 6.24. If u(cp) = 0 when supp cp C G, then Dau(cp) = fu(D«u) = 0,
since supp Dacp C G.

Exercise 6.25. supp Y = [0, oo) and supp 8' _ {0}.

Exercise 6.26. If v e E(12) and supp v -< Int K, then v = ov. This yields
for every co e DK(SZ) and the Leibniz formula shows that

Hence

Exercise 6.27. 1 * (8' * Y) = 1 and (1 * b') * Y = 0. Two of the supports are
not compact.

Exercise 6.28. See Theorem 6.18.

Exercise 6.29. Y,,,t(x) - Y(x) if x # 0 and I< f_N, I< 00
on [-N, N] (N > 1). Then Y in D'(R) by dominated conver-
gence. Moreover Y,-+ S in DA(R) and dm, (integrate by parts in

f[a,b] dt, when Ym is Cl or absolutely continuous and Y' = dm in
the distributional sense).

Finally, do(t) 2+i is an approximation of 8.

Exercise 6.30. Two different solutions are u = 1 and u = Y.

Exercise 6.31. The general solution of P(D) = 0 is F(t) = Aet + B cost +
Csint. From f"(0) = 1 and f(0) = f'(0) = 0 we obtain A = 1/2e, B =
C = -1/2. Hence, E(t) = F(t) + ((et)/(2e) - (1/2) cost - (1/2) sint)Y(t).

Exercise 6.32. The general solution of P(D) = 0 is F(t) = Ae-t + Bte-t +
Ct2e-t. From f"(0) = 1 and f(0) = f'(0) = 0 we obtain A = B = 0 and
C = 1/2. Hence, E(t) = F(t) + ((1/2)t2e-t)Y(t).

Exercise 6.33. Take derivatives under the integral.

Exercise 6.34. Check that 8z f = 7r8 as follows: Define the continuous
functions fn(z) = 1/z if Izi > 1/n and fn(z) = n2z if z < 1/n. Then
show that 8z fn, = 122XD(O,i/n) ' which tend to ir8 as n -+ oo. Finally prove
that fn -+ 1/z in D'(R2) (use dominated convergence).

Exercise 6.35. It is easy to see that F(y) :_ (co(x, y), u(x - cy)) defines
a continuous function and that (cps, v) -+ 0 as cps -+ 0 in D(RZ) (use
dominated convergence). If u e £(R), a direct computation shows that
at v - 0. When u e L(R) and L is the wave operator, use the
fact that (_ (Lcp,v).

Exercise 6.36. Apply Theorem 6.31.
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Exercise 6.37. Write E2 = E2 + E2°, E2 = To check that u =
f * EZ -}- f * Eis defined and locally integrable, note that f * Eexists
everywhere and is locally bounded, since log Ix - y - log Il - 0 as y - oo.
Every function f, fX{IxI<n} satisfies the same conditions as f and un :_
f* E2 -+ u in the distributional sense, by dominated convergence, so that
also Dun -+ Du in D'(R2). Moreover (un, Lo) _ (E2, O(fn * cp)) _ (fn, cp)
Therefore Du =limn Dun = limf= f.

Exercise 6.38. Write u,.(y) = u(ry), choose g E C(S) so that MI - 9II
and let v(x) = f3P(x,y)g(y)dcr(y). Then

Ill - urIIp Ill - 9 + II9 - vrIIp + MVr - uTMp 2E + IIVr - uTIIP

when r is close to 1. Prove that fs P(rx, y) dv(y) = fs P(rx, y) dQ(x) = 1
(use the mean value theorem) to show that f E LP(S) H u,. E LP(S) has
norm 1, so that v,. - 0 as g f in

Chapter 7

Exercise 7.1. Note that fl is the derivative of -e-t2/2, 12 is the translation
of a dilation of X(-1/2,1/2)> and f3 and f4 are related to that Poisson kernel.

Exercise 7.2. Take derivatives under the integral, and use the properties of
summability kernels.

Exercise 7.3. Compare Kt with the Gauss-Weierstrass kernel Wh.

Exercise 7.4. 1111100 C I 111k and W= W, so that IFM= 1

Exercise 7.5. If f = cp, g = b, and supp cp fl supp b _ 0, then f * g = 0.

Exercise 7.6. If g(x) = xaD"cp(x) is in S(R), then also g E S(R) C
LP(Rn). Moreover, 11cp'Ip _ IIw_2Nw2N(pIIp Cgiv(cp) if Np > n/2.

If w2Ncp E LP(R) for all N, then cp E Ll(R"). If the functions
xaDacp(x) are in Ll(R") fl (R), then cp is bounded, and so is every
xaDacP(x)

Exercise 7.7. From Qf = P E S(R), P a polynomial, it follows that P = 0.

Exercise 7.8. Apply the closed graph theorem.

Exercise 7.9. Write f = oR f with [-R, R] - OR - (-R - 1, R -I- 1) and
apply the Fourier transform to f(n),

Exercise 7.10. Consider f = fX{IfI>1} +fX{IfI<1} E Ll(Rn)+LZ(Rn). Since

f < I I f I I 1 and 111112 = If 2, the result follows from the Riesz-Thorin
theorem by choosing 9 = 2/p'.
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Exercise 7.11. .F(sinc) _ .F(sinc) = X(-1/2,1/2) is not continuous, and

Exercise 7.12. Define v(x, y) = u(x, y) + y.

Exercise 7.13. If x [k] E 2'° C 2°O, then I x [k] I< I x [k] I < C I k I. If cc' E
then (cc', -3 0 as cp -+ 0 in (R)

Exercise 7.14. See Exercise 7.10.

Exercise 7.15. Since
1/2 k_oo

J-1/2 k=-oo

cpl (t) _ i00 cp(t-k) is well-defined on interval (-1/2,1/2] and the series
converges a.e. and in Ll. The Fourier coefficients are

+00

(cOi) _ f 1/2 p(t -

k°° QQ I< oo since cp e S(R). Therefore the Fourier series is
uniformly convergent and JT° QQ cp(k) = cc" (0) _ 1QQ (k), the sum of
the Fourier series at the origin. Note that (d) follows from (c).

Exercise 7.16. In RN the norms iZ=, Ixk l, maxim 1 Ix1k, and ( 1 xj
are equivalent.

Exercise 7.17. Iu(x) - u(y)I < Ix - yll'llu'IIp

Exercise 7.18. As in Theorem 7.25, v(t) = f t u'(s) ds + C is continuous and
lv(t)I C IIu'II, + Cl. Also W"(a, oo) y C[a, oo) fl L°O(a, oo) is continuous,
by the closed graph theorem.

Exercise 7.19. By Theorem 7.25, Ru E C(R), and IlRulI = 2IIullP If v = u',
the distributional derivative of u on (0, oo), define v(-t) :_ -v(t) if t < 0.
Then

0

Ru(x) - u(0) = u(-x) - u(0) = J v(-t) dt = J v(t) dt (x <0)
o

and Ru(x)-u(0) = u(x)-u(0) = fo v(t) dt also holds if x > 0. Then (Ru)' _
v, I p = 2llu'IIp, and Ru E W"(R) with IIRulli,p = 21/PlIuIIi,p

Exercise 7.20. If uk -+ 0 in Ho (S2) and uk - v in Hl (Rn), then v = 0.

Exercise 7.21. and (5Pu)1_ (5u)1 = 0, so that
and 8St is a null set. Hence Pa3u in L2(R)

and as distributions.
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Exercise 7.22. Choose u = 1, a constant on (-1, 1). Then u° E L2(R), but
(u°)' = S-1 - 81 ¢ L2(R), since it is not a function.

Exercise 7.23. Use the closed graph theorem.

Exercise 7.24. The Fourier transform of u is of type (1 + I2)-1 and

f [(1 + e2)'w (e)]2 d = f(i + a)s2 d< o0

ifs < 3/2.

Exercise 7.25. B(u,u) = f (Vu(x)+ u(x)12) dx = fIuIIHo, coercive.

Chapter 8

Exercise 8.1. If e = (e, 0) is the unit in A C Al, then be = e S.

Exercise 8.2. Note that x(l)x(l) = X(1) for every x E 0(Cl), and x(8) = 1.
Here 1 = (1,0) and 8= (0, 1).

Exercise 8.3. (a) z e A(D) but z ¢ A(D). (b) Suppose X E D and let
g(z) = z. Then Q(g) = D, X(P) = P(a), and, by continuity, x(f) = f (a) _
Sa(f ). (c) If a e D, then I> 0 for at least one j and x(f3) 0. Then
J = fiA(D) + + fnA(D) is not contained in a maximal ideal, since there
is no Sa such that Sa(fe) = 0 for every j (1 < j G n).

Exercise 8.4. Suppose e * f = f for every f e L' (R). From the properties
of the Fourier transform, ecp = cp for every cp E S(R), which implies e = 1.

Exercise 8.5. Similar to Exercise 8.4, with Fourier coefficients.

Exercise 8.6. The unit is S = {8[k]} such that 8[0] = 1 and d[k] = 0 if k 0.

Exercise 8.7. Note that Lab = LaLb, Le = I, and IILQII = Ilaxil

hand IILaehi _ hExercise

8.8. (a) _ lh- 0
as /3 - 0 and yX(a + /3) = X(T_a26 * T_a26) = ryX(a)yX(,Q). It follows from

_ 'Yx(0) = 1 and from 'Yx(na) _ 'Yx(a)n that f= 1 ('Yx
is bounded).

(b) A continuous solution ry R -f T of y(a + /3) = ry(a)y(/3) has
the form ryX(a) = for some E R. The following steps lead to a
proof: (1) ry(na) = y(a)Th. (2) wn Arg (ry(2-n)) - 0 as n - oo. (3)

2wn+1 - Wn E 2irZ. (4) 2wn+1 = wn for all n > p for some p e N. (5)
= for all n > p. (6) If = 2Pwp, then y(a) =

e {m2Th; m, n e Z, n > p}, which is a dense subset of R.
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(c) From u* f fRf &i)r_u() day x (f) = X(u*f) = fR.f (a)'Yx(-a) da

and x is continuous on L' (R).

Exercise 8.9. If Fa = Ga, then (lJ Ga)C _ fl f -1(Fa). Also µ(f
0 and ICI})) # 0 if ICI < IIfIIoo Finally, A v(f)

if 1/(f (x) - A) exists a.e. and is bounded a.e.

Exercise 8.10. See Rickaxt [35, I.7].

Exercise 8.11. X(e) = 1 follows from 0 X(a) = X(a)X(e).

Exercise 8.12. See Exercise 1.8.

Exercise 8.13. For every f E C(K), f(6t) = f(t) is continuous with respect
to the initial compact topology, which coincides with the coarser Gelfand
topology. Moreover, f(6t) = f(t) shows that IIf IIo = If IlK and C(O) _

Exercise 8.14. U is open in O because U = {X; 1<1}, where z denotes
the coordinate function. The rotation o : z H z induces an isomorphism
f -+ 10 0 of H°O(U), and the adjoint of this isomorphism maps O1 onto L.

Exercise 8.15. To prove that every x E O(W) has the form x = ST, let
u(t) = ezt, so that lull = 111/ull = 1 and X(u) = i, since Ix(u)I, I1.

There is some r E R such that x(u) = eZT = u(T) and X(uk) = X(u)k =

uk(T). Hence X(P) = P(T) if P(t) _ >1k1<N ckeikt, these trigonometric
polynomials are dense in W, and x(f) = St(f) for every f E W. If f does
not vanish at any point, then f has an inverse in W which must be 1/f.

Exercise 8.16. bt = & if and only if t - s = 2kir, and 6t f = 6SF. Hence
O = T and f = f (or F) as in Exercise 8.13. But not every function in
C(T) is the sum of an absolutely convergent Fourier series, and W is dense
in C(T) (use the Stone-Weierstrass theorem). This implies that cannot
be an isometry.

Exercise 8.17. From the properties of the resolvent, there is a number M > 0
such that I- x)-1 <M for all A U, and

Ae - x - y = (Ae - x)(e - (Ae - x)-ly)

is invertible, since 1 (Ae - x)-IyII < 1. Choose S = 1/M.

Exercise 8.18. Note that allo = r(a) =limn lla2 1/2". If is an isometry,
so that IIaIIo = IIa it is clear that _ iia2ilo = =

Exercise 8.19. e*x = (x*e)* = x** = x and (x-1)*x* _ (xx_l)* = e* = e.
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Exercise 8.21. If Mn = P(H) and M = ® Mn, then y e M if and only if
°Oy = y, where ,2 < oo and yn e M.n=1 n =1 yn

Consider yn e Mn such that lInII2 < oo, with ynLym when
n m. Then SN = N

n y is a CauchY sequence, since "Sr -
II Z-'n=q+1 Y 112 - /'nq+1 II yn 112 --7 o as p -- 00.

Show that M := {> 1 yn, limN SN < oo } is the smallest closed sub-
space which contains every Mn. Then Px 1 Pnx E M, Px = x if
and only if x e M, P2 = P, and (Pxi, x2)H = (x1, Px2).

Exercise 8.22. See Theorem 4.36.

Exercise 8.23. B C K, (E(B)f, g)H = fK Xs,f9 = fK fJB9 = (.f, E(B)9)H
and E(B)E(B) f = XsXs,f = E(B) f, so that E(B) is an orthogonal pro-
jection. Also, E(A f1.B) f = X,gnBf = XAXsf = E(A)E(B)f. Moreover,
E(1 Ba). = Xj1 B = XB
Exercise 8.24. E(B) = 0 if and only if (E(B)x, x)H = 0 for every x E H.

Exercise 8.25. y T = ( 0 1

1
)0

Exercise 8.26. By Theorem 8.25, T = T* and v(T) C [0, oo). Note that
0< T E C(Q(T)), T= f 2 for a unique f e C(v(T)), f > 0, and there is a
unique S E (T) such that S = f and S > 0, which is equivalent to S > 0.

Exercise 8.27. On v(T) = v(T)(T), let a = p(A)s(A) with p(A) _ Al > 0 and
ls(A)I = 1 everywhere. Define P = p(T) and U = s(T).

Chapter 9

Exercise 9.1. If F = D(T) is not the whole space H, write H = F F1 and
consider two different operators on F1 to extend T from F to H.

Exercise 9.2. Since l< IIxIIHIITyII, {Tx; IIXIIH < 1} is weakly
bounded and it is bounded by the uniform boundedness principle.

Exercise 9.3. A reduction to Example 9.2 is obtained by considering the
Fourier transform of X(n,n+l)

Exercise 9.4. Note that y e (Im T)1 if and only if x e D(T) H (Tx, y)H = 0,
so y E D(T*) and T*y = 0.

Exercise 9.5. A E v(T)° if IA - Aol < 1/RT(ao); then d(Ao,cr(T)) >
1/RT(AO).
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Exercise 9.6. To show that D(T*) C D(T), let y* = T*y for any y e D(T*),
and choose x e D(T) so that Tx = y*. Then y = x since, for every z e D(T),
(TZ,Y)H = (z,y*)H = (TZ,X)H, that is, (u,y)H = (u,x)H for all u.

Exercise 9.7. ImT = KerT1 = H. Let y e D((T-1)*); then (A-lx, y)H =
(x,y*)H for any x e D(T1) and (z,y)H = (TZ,y*)H if z e D(T) (z =
T-lx), where y* E D(T) and Ty* = y since T = T*. Then y e ImT =
D(T1) and (T_l)*y = y* = T-ly, so that (T-1)* = T-1.

Exercise 9.8. Let A ¢ Q(T), assume that F = D(T - Al) is not dense, and
choose 0 Ly E F1. But (Tx-Ax,y)H=OforallxeHand,sinceAeR
and T* = T, also (x, (T - AI)y)H = 0, and for x = (T - AI)y we obtain
T y = y, a contradiction to A 0 QP (T) .

Exercise 9.9. Show that U(f) = f(A)z defines a bijective isometry (note
that U[tn] = Anz) and check that AU f = U[t f (t)].

Exercise 9.10. Cf. the constructions in Yosida [44, XI.5].

Exercise 9.11. Note that f0' dt = fo f(t)i/i(t) dt to check that
S C S*. Denote V (x) = fo v(t) dt (v e D(S*), and choose u = 1 in

f
1 f1
iu (t)v(t) dt = u(1)V(1) -

J
u'(t)V(t) dt (u e D(S))

to show that V(1) = 0. It follows that iv - V E (Im 8)1 = {0} and
D(S*) = H(0, 1).

Exercise 9.12. See Exercise 9.11.

Exercise 9.13. Show that -D2 f = A f with the conditions f(0) = f(1) = 0
has the solutions A_ -ir2n2, fn(x) = sin(irnx) and prove that {f; n =
1,2,3,.. .} is an orthogonal total system in L2(0,1).

Exercise 9.14. Consider -D2 f = Af with the conditions f'(0) = f'(l) = 0.

Exercise 9.15. Show that the operator has at least two different self-adjoint
extensions, obtained in Exercises 9.13 and 9.14.

Exercise 9.16 (Tb,b)2 = (b',b')2 + folV(x)Ib(x)I2dx >_ Indeed,

kb(t)I C fo kb'(x)I dx < t"2II'tb'tI2; hence f01 kb(t)12 dt < lkb'Il.

Exercise 9.17. Q3 and Pj are Q and P = D in the case n = 1.

Exercise 9.18. Prove that Al and A2 commute if and only if A2 commutes
with every E' (B1), and then A2 will commutes with E' (B1) if and only if
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E' (B1) commutes with every E2(B2). Indeed,

(AaAix,y)x = f t (AlAax,y)x = J t

and also

(AaE1(B)x,y)x = (E'(B)A2X,y)H =

It follows from Al A2 = A2A1 that AA2 = A2A for all A E (Al) _
{g(Al); g e C(v(Al))}, and then E,A2 = EA2 y. If A2E1(B) = El(B)A2,
then also E q2y = EA2 y.

Exercise 9.19. Show first that every E(Bl x B2) is an orthogonal projection
and that E satisfies the conditions (1)-(3) of spectral measures on R2 (see
Subsection 8.5.2) on Borel sets of type B = Bl x B2. Then extend E to all
Borel sets in RZ as in the construction of scalar product measures.

Exercise 9.20. Solution: Au = -u' with D(A) = H' (R). Note that u E
Hi(R) when u E L2(R) and the distributional limit limhio h-1[u(x - h) -
u(x)] exists in L2(R).

Exercise 9.21. Au = gu, and D(A) _ {u e L2(R); gu e L2(R)}.
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