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Charles University
Department of Applied Mathematics
Malostranské nám. 25
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Preface

A number of important results in combinatorics, discrete geometry, and the-
oretical computer science have been proved by surprising applications of al-
gebraic topology. Lovász’s striking proof of Kneser’s conjecture from 1978 is
among the first and most prominent examples, dealing with a problem about
finite sets with no apparent relation to topology.

During the last two decades, topological methods in combinatorics have
become more elaborate. On the one hand, advanced parts of algebraic topol-
ogy have been successfully applied. On the other hand, many of the earlier
results can now be proved using only fairly elementary topological notions
and tools, and while the first topological proofs, like that of Lovász, are mas-
terpieces of imagination and involve clever problem-specific constructions,
reasonably general recipes exist at present. For some types of problems, they
suggest how the desired result can be derived from the nonexistence of a
certain map (“test map”) between two topological spaces (the “configuration
space” and the “target space”). Several standard approaches then become
available for proving the nonexistence of such a map. Still, the number of dif-
ferent combinatorial results established topologically remains relatively small.

This book aims at making elementary topological methods more easily
accessible to nonspecialists in topology. It covers a number of substantial
combinatorial and geometric results, and at the same time, it introduces
the required material from algebraic topology. Background in undergraduate
mathematics is assumed, as well as a certain mathematical maturity, but no
prior knowledge of algebraic topology. (But learning more algebraic topology
from other sources is certainly encouraged; this text is no substitute for proper
foundations in that subject.)

We concentrate on topological tools of one type, namely, the Borsuk–
Ulam theorem and similar results. We develop a systematic theory as far
as our restricted topological means suffice. Other directions of research in
topological methods, often very beautiful and exciting ones, are surveyed in
Björner [Bjö95].

History and notes on teaching. This text started with a course I taught in
fall 1993 in Prague (a motivation for that course is mentioned in Section 6.8).
Transcripts of the lectures made by the participants served as a basis of the
first version. Some years later, a course partially based on that text was
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taught by Günter M. Ziegler in Berlin. He made a number of corrections and
additions (in the present version, the treatment of Bier spheres in Section 5.6
is based on his writing, and Chapters 1, 2, and 4 bear extensive marks of his
improvements). The present book is essentially a thoroughly rewritten version
prepared during a predoctoral course I taught in Zürich in fall 2001, with a few
things added later. Most of the material was covered in the course: Chapter 1
was assigned as introductory reading, and the other chapters were presented
in approximately 25 hours of teaching, with some omissions throughout and
only a sketchy presentation of the last chapter.

The material of this book should ultimately become a part of a more
extensive project, a textbook of “topological combinatorics” with Anders
Björner (the spiritual father of the project) and Günter M. Ziegler as coau-
thors. A substantial amount of additional text already exists, but it appears
that finishing the whole project might still take some time. We thus chose to
publish the present limited version, based on my lecture notes and revolving
around the Borsuk–Ulam theorem, separately. Although Anders and Günter
decided not to be “official” coauthors of this version, the text has certainly
benefited immensely from discussions with them and from their insightful
comments.

Sources. The 1994 version of this text was based on research papers, on a
thorough survey of topological methods in combinatorics by Björner [Bjö95],
and on a survey of combinatorial applications of the Borsuk–Ulam theorem
by Bárány [Bár93]. The presentation in the current version owes much to
the recent handbook chapter by Živaljević [Živ04] (an extended version of
[Živ04] is [Živ96]). The continuation [Živ98] of that chapter deals with more
advanced methods beyond the scope of this book.

For learning algebraic topology, many textbooks are available (although
in this subject it is probably much better to attend good courses). The first
steps can be made with Munkres [Mun00] (which includes preparation in
general topology) or Stillwell [Sti93]. A very good and reliable basic textbook
is Munkres [Mun84], and Hatcher [Hat01] is a vividly written modern book
reaching quite advanced material in some directions.

Exercises. This book is accompanied by 114 exercises; many of them serve
as highly compressed outlines of interesting results. Only some have actually
been tried in class.

The exercises without a star have short solutions, and they should usually
be doable by good students who understand the text, although they are not
necessarily easy. All other exercises are marked with a star: the more laborious
ones and/or those requiring a nonobvious idea. Even this rough classification
is quite subjective and should not be taken very seriously.

Acknowledgments. Besides the already mentioned contributions of Günter
M. Ziegler and Anders Björner, this book benefited greatly from the help
of other people. For patient answers to my numerous questions I am much
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indebted to Rade Živaljević and Imre Bárány. Special thanks go to Yuri Ra-
binovich for a particularly careful reading and a large number of inspiring re-
marks and well-deserved criticisms. I would like to thank Imre Bárány, Péter
Csorba, Allen Hatcher, Tomáš Kaiser, Roy Meshulam, Karanbir Sarkaria,
and Torsten Schönborn for reading preliminary versions and for very useful
comments. The participants of the courses (in Prague and in Zürich) pro-
vided a stimulating teaching environment, as well as many valuable remarks.
I also wish to thank everyone who participated in creating the friendly and
supportive environments in which I have been working on the book. The end-
of-proof symbol is based on a photo of the European badger (“borsuk”
in Polish) by Steve Jackson, and it used with his kind permission.

Errors. If you find errors in the book, especially serious ones, I would
appreciate it if you would let me know (email: matousek@kam.mff.cuni.cz).
I plan to post a list of errors at http://kam.mff.cuni.cz/~matousek.

Prague, November 2002 Jǐŕı Matoušek

On the second printing. This is a revised second printing of the book.
Errors discovered in the first printing have been removed, few arguments
have been clarified and streamlined, and some new pieces of information on
developments in the period 2003–2007 have been inserted. Most notably, a
brief treatment of the cohomological index and of the Hom complexes of
graphs is now included.

For valuable comments and suggestions I’d like to thank José Raúl
Gonzáles Alonso, Ben Braun, Péter Csorba, Ehud Friedgut, Dmitry Feichtner-
Kozlov, Nati Linial, Mark de Longueville, Haran Pilpel, Mike Saks, Lars
Schewe, Carsten Schultz, Gábor Simonyi, Gábor Tardos, Robert Vollmert,
Uli Wagner, and Günter M. Ziegler.

Prague, August 2007 J. M.
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Preliminaries

This section summarizes rather standard mathematical notions and notation,
and it serves mainly for reference. More special notions are introduced grad-
ually later on.

Sets. If S is a set, |S| denotes the number of elements (cardinality) of S.
By 2S we denote the set of all subsets of S (the powerset);

(
S
k

)
stands for the

set of all subsets of S of cardinality exactly k; and
(

S
≤k

)
=
⋃k

i=0

(
S
i

)
. We use

[n] to denote the finite set {1, 2, . . . , n}.
The letters R, C, Q, and Z stand for the real numbers, the complex

numbers, the rational numbers, and the integers, respectively.
By idX we denote the identity mapping on a set X, with idX(x) = x for

all x ∈ X.

Geometry. The symbol Rd denotes the Euclidean space of dimension d.
Points in Rd are typeset in boldface, and they are understood as row vectors;
thus, we write x = (x1, . . . , xd) ∈ Rd. We write e1,e2, . . . ,ed for the vectors
of the standard orthonormal basis of Rd (ei has a 1 at position i and 0’s
elsewhere). The scalar product of two vectors x,y ∈ Rd is 〈x,y〉 = xyT =
x1y1 + x2y2 + · · · + xdyd. The Euclidean norm of x is ‖x‖ =

√〈x,x〉 =√
x2

1 + · · ·+ x2
d. Occasionally we also encounter the �p-norm ‖x‖p =

(|x1|p +

|x2|p + · · · + |xd|p
)1/p, 1 ≤ p < ∞, and the �∞-norm (or maximum norm)

‖x‖∞ = max{|x1|, |x2|, . . . , |xd|}.
A hyperplane in Rd is a (d−1)-dimensional affine subspace, i.e., a set of

the form {x ∈ Rd : 〈a,x〉 = b} for some nonzero a ∈ Rd and some b ∈ R.
A (closed) half-space has the form {x ∈ Rd : 〈a,x〉 ≤ b}, with a and b as
before.

The unit ball {x ∈ Rd : ‖x‖ ≤ 1} is denoted by Bd, while Sd−1 = {x ∈
Rd : ‖x‖ = 1} is the (d−1)-dimensional unit sphere (note that S2 lives in
R3!).

A set C ⊆ Rd is convex if for every x,y ∈ C, the segment xy is contained
in C. The convex hull of a set X ⊆ Rd is the intersection of all convex
sets containing X, and it is denoted by conv(X). Each point x ∈ conv(X)
can be written as a convex combination of points of X: There are points
x1,x2, . . . ,xn ∈ X and real numbers α1, . . . , αn ≥ 0 such that

∑n
i=1 αi = 1

and x =
∑n

i=1 αixi (if X ⊆ Rd, we can always choose n ≤ d+1).
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A convex polytope is the convex hull of a finite point set in Rd. Each convex
polytope can also be expressed as the intersection of finitely many half-spaces.
Conversely, if an intersection of finitely many half-spaces is bounded, then it
is a convex polytope. A face of a convex polytope P is either P itself or an
intersection P ∩ h, where h is a hyperplane that does not dissect P (i.e., not
both of the open half-spaces defined by h may intersect P ).

Graphs and hypergraphs. Graphs are considered simple and undirected
unless stated otherwise. A graph G is a pair (V,E), where V is a set (the
vertex set) and E ⊆ (

V
2

)
is the edge set. For a given graph G, we write

V (G) for the vertex set and E(G) for the edge set. A complete graph has all
possible edges; i.e., it is of the form

(
V,
(
V
2

))
. A complete graph on n vertices

is denoted by Kn. A graph G is bipartite if the vertex set can be partitioned
into two disjoint subsets V1 and V2, the (color) classes, so that each edge
connects a vertex of V1 to a vertex of V2. A complete bipartite graph Km,n

has |V1| = m, |V2| = n, and E = {{v1, v2} : v1 ∈ V1, v2 ∈ V2} (so |E| = mn).
A hypergraph is a pair (V,E), where V is a (usually finite) set and E ⊆

2V is a system of subsets of V . The elements of E are called the edges or
hyperedges. A hypergraph is the same thing as a set system, but calling it
a hypergraph emphasizes a “graph-theoretic” point of view. Many notions
concerning graphs have natural analogues for hypergraphs.

A hypergraph is k-uniform if all of its edges have cardinality k. A hy-
pergraph (V,E) is k-partite if there is a partition of V into disjoint sets
V1, V2, . . . , Vk such that |e ∩ Vi| ≤ 1 for every e ∈ E and every i ∈ [k].

Miscellaneous. The notation a := B means that the expression B defines
the symbol a.

For a real number x, 
x� denotes the largest integer not exceeding x, and
�x means the smallest integer at least as large as x.



1. Simplicial Complexes

Here we introduce elementary concepts of algebraic topology indispensable
for the subsequent chapters, most notably geometric and abstract simplicial
complexes, homotopy, and homotopic equivalence of spaces.

Most of this material is usually covered in introductory courses on alge-
braic topology. But our presentation may deviate from others in details of
notation and terminology, and it also includes some less commonly treated
results. So even those fluent in algebraic topology may want to go through
the chapter quickly.

The central notion for us is simplicial complex, which provides a link
from combinatorics to topology. It can be viewed as a purely combinatorial
object, namely, a hereditary set system. But it also describes a continuous
object: a topological space. Many kinds of combinatorial objects—graphs,
hypergraphs, partitions, and so on—can be associated with hereditary set
systems, sometimes even in several natural ways. By viewing these hereditary
set systems as simplicial complexes, we also assign topological spaces to the
considered combinatorial objects. These spaces can be studied by methods
of algebraic topology, and their topological properties are often related to
combinatorial properties of the original object in interesting ways. Of course,
creating simplicial complexes at every possible occasion is no panacea, but
sometimes it does lead to meaningful results.

1.1 Topological Spaces

Although this may be unnecessary for most readers, we first review a few
concepts from general topology. We begin with recalling the definition of a
topological space, which is a mathematical structure capturing the notions
of “nearness” and “continuity” on a very general level.

1.1.1 Definition. A topological space is a pair (X,O), where X is a (typ-
ically infinite) ground set and O ⊆ 2X is a set system, whose members are
called the open sets, such that ∅ ∈ O, X ∈ O, the intersection of finitely
many open sets is an open set, and so is the union of an arbitrary collection
of open sets.
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For example, the standard topology of the real line R or, more generally, of
Rd, is usually taught to freshmen: The open sets in Rd are defined, although
one does not necessarily speak of topology. Namely, a set U ⊆ Rd is open
exactly if for every point x ∈ U there exists an ε > 0 such that the ε-ball
around x is contained in U . The same definition applies for any metric space,
which for many readers may also be a notion more familiar and more intuitive
than a topological space.

The theory dealing with topological spaces in general, point-set topology
or general topology, often investigates fairly exotic examples. However, in our
text, as well as in most of algebraic topology, one deals only with topological
spaces that are subspaces of some Rd, or at least can be identified with such
subspaces.

What is a subspace? Let (X,O) be a topological space. Every subset Y ⊆
X defines a subspace, namely, the topological space (Y, {U ∩ Y : U ∈ O}).

For example, let Y ⊆ Rd be an arbitrary set. What are the open sets in
the topology of the subspace defined by Y ? They are exactly the intersections
of open sets in Rd with Y ; note that they need not be open as subsets of Rd

(take Y as a closed segment in R2, for example).

Conventions. In the formulation of some topological definitions and theo-
rems, it would be artificial to restrict our attention to subspaces of Euclidean
spaces. But everywhere we assume that the considered spaces are (at least)
Hausdorff, meaning that for every two distinct points x, y ∈ X there are dis-
joint open sets U, V with x ∈ U and y ∈ V .

Let us remark that if X is a set and the topology on X is understood,
say if X ⊆ Rd and X is considered with the subspace topology, one usually
does not mention the topology in the notation and writes “topological space
X” even when formally X is only a set. We will also often say just “space”
instead of “topological space.”

Continuous maps. If (X1,O1) and (X2,O2) are topological spaces, a map-
ping f :X1 → X2 is called continuous if preimages of open sets are open; i.e.,
f−1(V ) ∈ O1 for every V ∈ O2.

For mappings R → R, for example, many readers may be accustomed
to the “epsilon–delta” definition of continuity: For every x ∈ R and every
ε > 0 there exists a δ > 0 such that all points of the δ-neighborhood of x are
mapped to the ε-neighborhood of f(x). Or equivalently, for every sequence
x1, x2, x3, . . . converging to a limit a, we have limn→∞ f(xn) = f(a). Such
readers may rest assured that these definitions of continuity are equivalent
to the general one given above (for mappings R → R, or more generally, for
mappings between metric spaces). Or instead of resting, they may also want
to prove it.

Convention: all maps are continuous. We implicitly assume that all
considered mappings between topological spaces are continuous, although we
do not always explicitly say so. More precisely, this applies to unspecified
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mappings in statements like, “Let f :Sn → Rn be a mapping. . . .” Some-
times, of course, after having constructed some mapping, we have to verify
its continuity.

“The same” topological spaces: homeomorphism. As was remarked
above, the topology of Rd is induced by the usual Euclidean metric, so why
speak about topology? In the considerations of algebraic topology, the metric
plays only an auxiliary role; often it is a convenient tool, but ultimately it
is only the topology of a space that really matters. Two spaces that look
metrically quite different can be topologically the same. An example is the
real line R and the open interval (0, 1).

The notion of “being the same” for topological spaces is similar to many
other mathematical structures, such as groups, rings, and graphs. For most
mathematical structures, one speaks about isomorphism, which is a bijective
mapping preserving the considered structure (group or ring operations, graph
edges, etc.). For topological spaces, the corresponding notion is traditionally
called a homeomorphism.

1.1.2 Definition. A homeomorphism of topological spaces (X1,O1) and
(X2,O2) is a bijection ϕ:X1 → X2 such that for every U ⊆ X1, ϕ(U) ∈
O2 if and only if U ∈ O1. In other words, a bijection ϕ:X1 → X2 is a
homeomorphism if and only if both ϕ and ϕ−1 are continuous.

(Warning: There are examples of continuous bijections for which the in-
verse mapping is not continuous, so both the continuity of ϕ and the conti-
nuity of ϕ−1 need checking in general.)

If X and Y are topological spaces and there is a homeomorphism X → Y ,
we write X ∼= Y (read “X is homeomorphic to Y ”).

Closure, boundary, interior. A set F in a topological space X is closed
iff X \ F is open. The closure of a set Y ⊆ X in X, denoted by cl XY ,
is the intersection of all closed sets in X containing Y (the subscript X
is omitted if X is understood). For Y ⊆ X = Rd, we have cl Y = {x ∈
Rd: dist(x, Y ) = 0}, where dist(x, Y ) := inf{‖x−y‖ : y ∈ Y }. The boundary
of Y is ∂Y := {cl (Y ) ∩ cl (X \ Y )} and the interior intY :=Y \ ∂Y .

Compactness. We conclude this nano-course on general topology by re-
calling compactness. A space X ⊆ Rd is compact if and only if X is a closed
and bounded set. (In general, a topological space X is compact if for every
collection U of open sets with

⋃U = X, there exists a finite subcollection
U0 ⊆ U with

⋃U0 = X.) In a compact metric space, every infinite sequence
has a convergent subsequence.

If X is a compact space and f :X → R is a continuous real function,
then f attains its minimum; that is, there is an x ∈ X with f(x) ≤ f(y)
for all y ∈ X. Moreover, a continuous function on a compact metric space is
uniformly continuous; that is, for every ε > 0 there is a δ > 0 such that any
two points at distance at most δ are mapped to points at distance at most ε.
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Notes. Among many textbooks of topology, we mention Munkres
[Mun00], which deals both with general topology and with elements of
algebraic topology. A large menagerie of topological spaces is collected
in [SS78].

Exercises

1. Verify the following homeomorphisms:
(a) R ∼= (0, 1) ∼= (S1 \ {(0, 1)});
(b) S1 ∼= ∂([0, 1]2).

2. (a) Let X and Y be topological spaces. Check that a mapping f :X → Y
is continuous if and only if f−1(F ) is closed for every closed set F ⊆ Y .
(b) Let X be covered by finitely many closed sets A1, A2, . . . , An (i.e.,
X = A1∪A2∪· · ·∪An), and let f :X → Y be a mapping whose restriction
to each Ai is continuous. Verify that f is continuous.

1.2 Homotopy Equivalence and Homotopy

In algebraic topology, two spaces are considered “the same” under an equiv-
alence relation even coarser than homeomorphism. This notion is called ho-
motopy equivalence. Similarly, continuous maps are classified into classes
according to so-called homotopy.

Deformation retract. Before plunging into subtleties of homotopy equiva-
lence, we introduce the perhaps more intuitive notion of deformation retract.
The figure 8 below drawn by the thick line is a deformation retract of the
gray area with two holes:

This means that the gray area can be continuously shrunk to the figure 8
while keeping the points of the 8 fixed. The motion is shown by arrows: Each
point moves in the indicated direction at uniform speed until it hits the 8,
where it stops. In general, if X is a space and Y ⊆ X a subspace of it, a
deformation retraction of X onto Y is a family {ft}t∈[0,1] of continuous maps
ft:X → X (we can think of t as time), such that
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• f0 is the identity map on X,
• ft(y) = y for all y ∈ Y and all t ∈ [0, 1] (Y remains stationary), and
• f1(X) = Y .

Moreover, the mappings should depend continuously on t. That is, if we
define the mapping F :X × [0, 1] → X by F (x, t) = ft(x), this mapping
should be continuous. Explicitly, this means that if we choose x ∈ X, t ∈
[0, 1], and an arbitrarily small neighborhood V of F (x, t), there are δ > 0
and a neighborhood U of x such that F (x′, t′) ∈ V for all x′ ∈ U and all
t′ ∈ (t+δ, t−δ). In most of the literature, a deformation retraction is formally
viewed as the mapping F , rather than a family of maps; we will use both of
these presentations interchangeably.

If a deformation retraction as above exists, Y is called a deformation
retract of X.

The intuition for deformation retraction, that X can be continuously
shrunk to Y , has to be used with some care. Namely, the shrinking mo-
tion has to take place within X. One can think of an “old” copy of X, which
is solid and remains motionless, and a “new” elastic copy of X, which shrinks
within the old copy. (It seems quite tempting, for X sitting in Rd, to imagine
a motion in the ambient space, rather than within X, but this is wrong.)

Homotopy equivalence. If Y is a deformation retract of X, then X and Y
are homotopy equivalent. But obviously, being a deformation retract is not
an equivalence relation. As the following picture illustrates, one space can
have several rather different-looking deformation retracts:

Homotopy equivalence can be introduced as follows: Spaces X and Y are
homotopy equivalent, in symbols X � Y , iff there exists a space Z such that
both X and Y are deformation retracts of Z. For example, the three spaces
drawn by the thick line are all homotopy equivalent.

The usual definition of homotopy equivalence is different; it is technically
more convenient but perhaps less intuitive. To state it, we first need to in-
troduce homotopy of maps.

1.2.1 Definition. Two continuous maps f, g:X → Y are homotopic (writ-
ten f ∼ g) if there is a “continuous interpolation” between them; that
is, a family {ft}t∈[0,1] of maps ft:X → Y depending continuously on t
(i.e., the associated bivariate mapping F (x, t) := ft(x) is a continuous map
X × [0, 1] → Y , similar to deformation retraction above) such that f0 = f
and f1 = g.

In particular, a map X → Y is called nullhomotopic if it is homotopic to a
constant map that maps all of X to a single point y0 ∈ Y (so “nullhomotopic”
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is a misnomer; it would be more logical to say “constant-homotopic,” but we
stick to the traditional terminology). It is not hard to verify that “being
homotopic” is an equivalence on the set of all continuous maps X → Y .

1.2.2 Definition (Homotopy equivalence). Two spaces X and Y are
homotopy equivalent (or have the same homotopy type) if there are con-
tinuous maps f :X → Y and g:Y → X such that the composition f◦g:Y → Y
is homotopic to the identity map idY and g ◦ f ∼ idX .

The equivalence of this definition to the characterization above (homotopy
equivalent spaces are deformation retracts of the same space) is nontrivial;
see, e.g., [Hat01, Chapter 0].

A space that is homotopy equivalent to a single point is called contractible.
Some spaces are “obviously” contractible, such as the ball Bd, but for others,
contractibility is not easy to visualize. A beautiful example of this is “Bing’s
house”; see [Hat01, Chapter 0] for a nice presentation. It is tempting to think
that a contractible space can always be deformation-retracted to a point, but
this is false in general (it can happen that all points are forced to move during
any contraction; see Exercise 7).

The task of determining whether two given spaces are homotopy equiva-
lent is in general very difficult. Without a sophisticated technical apparatus,
it is quite hard to prove even “obvious” facts such as that the circle S1 is not
contractible. But the spaces arising in many topological proofs of combina-
torial or geometric theorems happen to be relatively simple, and often they
turn out to be homotopy equivalent to a sphere.

Exercises

1. Show that the dumbbell ©−© and the letter θ are homotopy equivalent,
using Definition 1.2.2 (exhibit suitable mappings f and g).

2. Verify that if spaces X and Y are both deformation retracts of the same
space Z, then X and Y are homotopy equivalent.

3. Take a 2-dimensional sphere (in R3) and connect the north and south
poles by a segment, obtaining a space X. Let Y be a 2-dimensional sphere
with a circle attached by one point to the north pole of the sphere. Show
that X � Y (using both of the definitions of homotopy equivalence given
in the text).

4. Consider two embeddings f and g of the circle S1 into R3, where f just
inserts the circle into R3 without changing its shape while g maps it to
the trefoil knot:
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Are f and g homotopic? Substantiate your answer at least informally.
5. (a) Prove that homotopy is an equivalence relation on the set of all con-

tinuous maps X → Y .
(b) Prove that homotopy equivalence is indeed an equivalence relation
on the class of all topological spaces (check transitivity).

6. (a) Prove that a space X is contractible if and only if for every space Y
and every continuous map f :X → Y , f is nullhomotopic.
(b) Prove that a space X is contractible if and only if for every space Y
and every continuous map f :Y → X, f is nullhomotopic.

7.∗ The topologist’s comb is the subspace X := (R×[0, 1])∪([0, 1]×{0}) of R2,
where R denotes the set of all rational numbers in the interval [0, 1]. (Here
R2 is taken with the usual topology and X has the subspace topology.)
Let Y be made of countably many copies of X arranged in a zigzag
fashion into a doubly infinite chain:

. . . . . .

Show that Y is contractible.
It can be proved that no point is a deformation retract of Y (you may
want to try this as well). In R3, one can even construct a contractible
compact Y with this property; see the exercises to Chapter 0 in Hatcher
[Hat01].

1.3 Geometric Simplicial Complexes

Many topologically interesting subspaces of Rd can be described as simplicial
complexes. This means that they are pasted together from simple building
blocks, called simplices and including segments, triangles, and tetrahedra, in
a way respecting simple rules. As we will see later, simplicial complexes have
a purely combinatorial description, and they are particularly significant in
the interplay of topology and combinatorics.

First we need to introduce affine independence and simplices.

1.3.1 Definition. Let v0,v1, . . . ,vk be points in Rd. We call them affinely
dependent if there are real numbers α0, α1, . . . , αk, not all of them 0, such
that

∑k
i=0 αivi = 0 and

∑k
i=0 αi = 0. Otherwise, v0,v1, . . . ,vk are called

affinely independent.

For 2 points affine independence simply means v0 �= v1; for 3 points it
means that v0,v1,v2 do not lie on a common line; for 4 points it means that
v0, . . . ,v3 do not lie on a common plane; and so on.

Here are two further simple but useful characterizations of affine indepen-
dence.
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1.3.2 Lemma. Both of the following conditions are equivalent to affine in-
dependence of points v0,v1, . . . ,vk ∈ Rd:

• The k vectors v1 − v0,v2 − v0, . . . ,vk − v0 are linearly independent.
• The (d+1)-dimensional vectors (1,v0), (1,v1), . . . , (1,vk) ∈ Rd+1 are lin-

early independent.

We leave the easy proof as a warmup exercise. We also note that d+1 is
the largest size of an affinely independent set of points in Rd.

Simplices. Here are examples of simplices: a point, a line segment, a trian-
gle, and a tetrahedron:

These examples have dimensions 0, 1, 2, and 3, respectively.

1.3.3 Definition. A simplex σ is the convex hull of a finite affinely in-
dependent set A in Rd. The points of A are called the vertices of σ. The
dimension of σ is dimσ := |A|−1. Thus every k-simplex (k-dimensional
simplex) has k+1 vertices.

1.3.4 Definition. The convex hull of an arbitrary subset of vertices of a
simplex σ is a face of σ (this is a special case of the definition of a face of a
convex polytope). Thus every face is itself a simplex.

The relative interior of a simplex σ arises from σ by removing all faces
of dimension smaller than dim σ.

For illustration, we count the faces of a triangle: the whole triangle, 3
edges, 3 vertices, and the empty set; altogether we have 8 faces.

Every simplex is a disjoint union of the relative interiors of its faces.
Thus we get a (closed) triangle as a union of its relative interior (i.e., an open
triangle), 3 open line segments (the edges without their endpoints), and 3
vertices.

Here are the simple rules for putting simplices together to form a simplicial
complex.
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1.3.5 Definition. A nonempty family ∆ of simplices is a simplicial com-
plex if the following two conditions hold:

(1) Each face of any simplex σ ∈ ∆ is also a simplex of ∆.
(2) The intersection σ1 ∩σ2 of any two simplices σ1, σ2 ∈ ∆ is a face of both

σ1 and σ2.

The union of all simplices in a simplicial complex ∆ is the polyhedron of
∆ and is denoted by ‖∆‖.

The dimension of a simplicial complex is the largest dimension of a
simplex: dim∆ := max{dim σ : σ ∈ ∆}.

The vertex set of ∆, denoted by V (∆), is the union of the vertex sets
of all simplices of ∆.

In particular, note that every simplicial complex contains the empty set
as a face (this is different from what appears in some other sources, such as
[Mun84] and [Bjö95], where the empty face is excluded!).

The simplicial complex that consists only of the empty simplex is defined
to have dimension −1. Zero-dimensional simplicial complexes are just con-
figurations of points, while 1-dimensional simplicial complexes correspond to
graphs (represented geometrically with straight edges that do not cross). The
following picture shows one 2-dimensional simplicial complex in the plane and
two cases of putting simplices together in ways forbidden by the definition of
a simplicial complex:

good bad!!!

We are going to consider only finite simplicial complexes (with finitely
many simplices). From the topological point of view, this is quite a restric-
tive assumption, since then the polyhedra are only compact spaces, and we
cannot express, for example, the space Rd as the polyhedron of a finite sim-
plicial complex. But finite simplicial complexes are sufficient for our combi-
natorial applications, and this assumption spares us some trouble (namely,
of discussing too much point set topology).

Support. Just as in the case of a single simplex, the relative interiors of all
simplices of a simplicial complex ∆ form a partition of the polyhedron ‖∆‖:
For each point x ∈ ‖∆‖ there exists exactly one simplex σ ∈ ∆ containing
x in its relative interior. This simplex is denoted by supp(x) and called the
support of the point x.

It may seem obvious at this point that the set of all faces of a simplex
forms a simplicial complex. Still, to be on the safe side, and for further use,
we include a proof.
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1.3.6 Lemma. The set of all faces of a simplex is a simplicial complex.

Proof. Let V ⊂ Rd be affinely independent and let F,G ⊆ V . It suffices to
show that

conv(F ) ∩ conv(G) = conv(F ∩G),

where conv(F ) ∩ conv(G) ⊇ conv(F ∩G) is trivial. We write x ∈ conv(F ) ∩
conv(G) as

x =
∑
u∈F

αuu =
∑
v∈G

βvv,

with αu, βv ≥ 0 and
∑

u∈F αu = 1 =
∑

v∈G βv. By subtracting we get∑
u∈F\G

αuu−
∑

v∈G\F

βvv +
∑

w∈F∩G

(αw − βw)w = 0.

The points in F ∪ G are affinely independent, and thus all coefficients on
the left-hand side of this equation must be 0. In particular, αw, βw can be
nonzero only for w ∈ F ∩G, and thus x ∈ conv(F ∩G).

A simplicial complex consisting of all faces of an arbitrary n-dimensional
simplex (including the simplex itself) will be denoted by σn. Hence ‖σn‖ is
a (geometric) n-simplex.

The notion of subcomplex is defined as everyone would expect:

1.3.7 Definition. A subcomplex of a simplicial complex ∆ is a subset of ∆
that is itself a simplicial complex (that is, it is closed under taking faces).

An important example of a subcomplex is the k-skeleton of a simplicial
complex ∆. It consists of all simplices of ∆ of dimension at most k, and we
denote it by ∆≤k.

1.4 Triangulations

Let X be a topological space. A simplicial complex ∆ such that X ∼= ‖∆‖, if
one exists, is called a triangulation of X. We give a few examples.

The simplest triangulation of the sphere Sn−1 is the boundary of an n-
simplex, that is, the subcomplex of σn obtained by deleting the single n-di-
mensional simplex (but retaining all of its proper faces). Indeed, the boundary
of an n-simplex is homeomorphic to Sn−1, as can be seen using the central
projection:
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Other triangulations of spheres are obtained from convex polytopes. A convex
polytope P ⊂ Rd is called simplicial if all of its proper faces, i.e., all faces
except possibly for P itself, are simplices. For the familiar 3-dimensional
convex polytopes, it means that all the 2-dimensional faces are triangles, as
is the case for the regular octahedron or icosahedron. It can be shown without
much difficulty that the set of all proper faces of any simplicial polytope P is a
simplicial complex. Since the boundary ∂P is homeomorphic to Sd−1 for every
d-dimensional convex polytope P , we obtain various triangulations of the
sphere in this way (although for d > 3, by far not all possible triangulations;
see Section 5.6!).

Particularly nice and important symmetric triangulations of Sd−1 are
provided by crosspolytopes.

1.4.1 Definition. The d-dimensional crosspolytope is the convex hull

conv{e1,−e1, . . . ,ed,−ed}
of the vectors of the standard orthonormal basis and their negatives:

d = 1 d = 2 d = 3

Alternatively, it is the unit ball of the �1-norm: {x ∈ Rd : ‖x‖1 ≤ 1}.
It is not hard to show that a subset F ⊆ {e1,−e1, . . . ,ed,−ed} forms

the vertex set of a proper face of the crosspolytope if and only if there is no
i ∈ [d] with both ei ∈ F and −ei ∈ F (Exercise 2).

The next example is more sophisticated and surprising. Although we will
not need it in the sequel, it is worth considering at least briefly.

1.4.2 Example (Cube triangulation). The cube [0, 1]d can be trian-
gulated as follows: Let Sd denote the set of all permutations of [d], and for
every π ∈ Sd, let σπ = conv{0,eπ(1),eπ(1) + eπ(2), . . . ,eπ(1) + · · · + eπ(d)}.
Each σπ is a d-simplex, and all the σπ together plus all of their faces form
a triangulation of [0, 1]d. We leave the (somewhat laborious) verification as
Exercise 4.

Another approach to triangulating the cube, involving a generally useful
auxiliary construction, is outlined in Exercise 3.

Notes. To construct “suitable” triangulations of given geometric
shapes is a major topic in many fields of applied mathematics, such
as numerical analysis and computer aided design (CAD).
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In contemporary algebraic topology, simplicial complexes are often
considered old-fashioned. Spaces can usually be described much more
economically if we allow for more general ways of gluing the basic
building blocks together than is permitted in simplicial complexes.
For example, the torus (also known, at least in the United States, as
the surface of a doughnut) can be produced by a suitable gluing of the
edges of a single square in R3,

while a triangulation of the torus requires quite a number of sim-
plices (Exercise 1). Moreover, there are quite “reasonable” spaces (4-
dimensional manifolds) that cannot be triangulated at all, while they
can be obtained using more general ways of gluing.

However, these more general ways of building spaces, most notably
CW-complexes (discussed in Section 4.5), do not admit as direct a
combinatorial interpretation as simplicial complexes do.

Exercises

1. Draw a triangulation of a torus. Use as few simplices as you can.
2. (a) Prove the claim about the faces of the crosspolytope below Defini-

tion 1.4.1 (use the definition of a polytope face mentioned in the Prelim-
inaries).
(b) Count the number of faces of each dimension.

3.∗ (Triangulation of a simplicial prism) Let σ be a simplex with vertices
v0,v1, . . . ,vd, and let P = σ×[0, 1] be the (d+1)-dimensional “prism
above σ.”

σ
v′

0 v′
1

v′
2

v′′
0 v′′

1

v′′
2

P

Let the vertices of P be v′
0,v

′
1, . . . ,v

′
d,v

′′
0 ,v′′

1 , . . . ,v′′
d , where each v′

i is a
bottom vertex and v′′

i is the top vertex above it. For i = 0, 1, 2, . . . , d,
let σi be the simplex conv{v′

0,v
′
1, , . . . ,v

′
i,v

′′
i , ,v′′

i+1, . . . ,v
′′
d} (we take the

first i+1 of the bottom vertices and the last d+1−i of the top vertices).
(a) Let d = 2; draw the simplices σ0, σ1, σ2 and check that they triangu-
late P .
(b) Prove that σ0, σ1, . . . , σd are indeed (d+1)-dimensional simplices,
they cover P , and they have disjoint interiors.
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(c) Show that the σi and all of their faces form a simplicial complex.
(d) Let ∆ be a simplicial complex with ‖∆‖ ⊆ Rd. Describe how the
above construction can be used to triangulate ‖∆‖ × [0, 1]. Explain how
this construction, applied inductively, triangulates the cube [0, 1]d.
(e) Count the number of d-dimensional simplices in the inductive trian-
gulation of the d-dimensional cube as in (d).

4.∗ This refers to the cube triangulation in Example 1.4.2.
(a) Check that each simplex σπ is d-dimensional and can be written as
σπ = {x ∈ [0, 1]d : xπ(d) ≤ xπ(d−1) ≤ · · · ≤ xπ(1)}. Conclude that⋃

π∈Sn
σπ = [0, 1]d.

(b) Let � be a linear quasiordering of [d], i.e., a transitive relation in
which every two numbers are comparable, i � j or j � i (but it may
happen that both i � j and j � i even if i �= j). Define σ� := {x ∈
[0, 1]d : xi ≤ xj whenever i � j}. Check that σ� is a simplex, determine
its dimension (in terms of �), and describe its vertices.
(c) Show that the intersection σ�1 ∩ σ�2 is again of the form σ� for a
suitable linear quasiordering �. How do we obtain � from �1 and �2?
(d) What are the faces of σπ? Verify that the σπ and their faces form a
simplicial complex.
(e) Can this triangulation of the cube be obtained by the inductive pro-
cedure using Exercise 3(e)? Do we always obtain a triangulation as in
Example 1.4.2 by that inductive procedure?
(f) Show that the copies of the triangulation in Example 1.4.2 translated
by each integer vector in {0, 1, . . . , n−1}d form a triangulation of [0, n]d.

1.5 Abstract Simplicial Complexes

We introduce a combinatorial object called an abstract simplicial complex.
In order to distinguish it from the simplicial complex defined in Section 1.3,
which is a geometric object, we will call the latter a geometric simplicial
complex. However, this distinction will not be maintained for very long: Soon
we will see that an abstract simplicial complex and a geometric simplicial
complex are essentially two different descriptions of the same mathematical
object. One can thus simply speak of a simplicial complex, and use both the
combinatorial and geometric aspects as convenient.

1.5.1 Definition. An abstract simplicial complex is a pair (V,K), where
V is a set and K ⊆ 2V is a hereditary system of subsets of V ; that is, we
require that F ∈ K and G ⊆ F imply G ∈ K (in particular, ∅ ∈ K whenever
K �= ∅). The sets in K are called (abstract) simplices. Further, we define the
dimension dim(K) := max{|F |−1 : F ∈ K}.

Abstract simplicial complexes are denoted by sans-serif capital letters like
K, L,N, . . . in this book.
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Usually we may assume that V =
⋃

K; thus it suffices to write K instead
of (V,K), where V is understood to equal

⋃
K.

Each geometric simplicial complex ∆ determines an abstract simplicial
complex. The points of the abstract simplicial complex are all vertices of the
simplices of ∆, so we set V :=V (∆), and the sets in the abstract simplicial
complex are just the vertex sets of the simplices of ∆. The set system (V,K)
obtained in this way is clearly an abstract simplicial complex. For example,
for the geometric simplicial complex

1

2

3

4

we have the abstract simplicial complex {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3},
{2, 3}, {2, 4}, {3, 4}, {1, 2, 3}}.

In this situation we call ∆ a geometric realization of K, and the polyhedron
of ∆ is also referred to as a polyhedron of K (soon we will see that a polyhedron
of K is unique up to homeomorphism).

It is easy to see that any abstract simplicial complex (V,K) with V finite
(which we always assume) has a geometric realization. Let n := |V |−1 and
let us identify V with the vertex set of an n-dimensional simplex σn. We
define a subcomplex ∆ of σn by ∆ := {conv(F ) : F ∈ K}. This is a geometric
simplicial complex, and its associated abstract simplicial complex is K. So
every simplicial complex on n+1 vertices can be realized in Rn (later on, we
will prove a much sharper result).

Simplicial mappings. Now we show that a geometric realization is unique
up to homeomorphism. At this occasion we also introduce the very important
notion of a simplicial mapping, which is a combinatorial counterpart of a
continuous mapping.1

1.5.2 Definition. Let K and L be two abstract simplicial complexes. A sim-
plicial mapping of K into L is a mapping f :V (K) → V (L) that maps sim-
plices to simplices, i.e., such that f(F ) ∈ L whenever F ∈ K.

A bijective simplicial mapping whose inverse mapping is also simplicial
is called an isomorphism of abstract simplicial complexes. The existence of
an isomorphism of simplicial complexes K and L will be denoted by K ∼= L.

Isomorphic abstract simplicial complexes are thus “the same” set systems;
they differ only in the names of the vertices. In the sequel, we will not usually
distinguish among isomorphic simplicial complexes.

1 In earlier days of algebraic topology, approximation of arbitrary continuous maps
of spaces by simplicial maps of sufficiently fine triangulations was one of the main
tools for converting topological statements into algebraic or combinatorial ones.
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We also note that for an arbitrary simplicial mapping, a k-simplex in K
can be mapped to a simplex of L of any dimension � ≤ k.

With each simplicial mapping f of simplicial complexes we are going
to associate a continuous mapping ‖f‖ of their polyhedra. Namely, we ex-
tend f affinely on each simplex. To state this precisely, we first note that if
σ ⊂ Rd is a k-simplex with vertices v0,v1, . . . ,vk, then each point x ∈ σ
can be uniquely written as a convex combination x =

∑k
i=0 αivi, where

α0, . . . , αk ≥ 0 and
∑k

i=0 αi = 1. Indeed, at least one such convex combi-
nation exists because x ∈ conv{v0, . . . ,vk}, and if there were two distinct
convex combinations equal to x, we would get a contradiction to the affine
independence of v0, . . . ,vk by subtracting them.

1.5.3 Definition. Let ∆1 and ∆2 be geometric simplicial complexes, let K1

and K2 be their associated abstract simplicial complexes, and let f :V (K1) →
V (K2) be a simplicial mapping of K1 into K2. We define the mapping

‖f‖: ‖∆1‖ −→ ‖∆2‖,
the affine extension of f , by extending f affinely to the relative interiors
of the simplices of ∆1, as follows: If σ = supp(x) ∈ ∆1 is the support of x,

the vertices of σ are v0, . . . ,vk, and x =
∑k

i=0 αivi with α0, . . . , αk ≥ 0 and∑k
i=0 αi = 1, we put ‖f‖(x) =

∑k
i=0 αif(vi).

First we note that the mapping ‖f‖ is well-defined, because the set
{f(v0), . . . , f(vk)} is always the vertex set of a simplex in ∆2. With some
more effort, one can check the following proposition, whose proof we omit.

1.5.4 Proposition. For every simplicial mapping f as in Definition 1.5.3,
‖f‖ is a continuous map ‖∆1‖ → ‖∆2‖. If f is injective, then ‖f‖ is injective
too, and if f is an isomorphism, then ‖f‖ is a homeomorphism.

In particular, this proposition shows that each (finite) abstract simplicial
complex (V,K) defines a topological space uniquely up to homeomorphism.

Simplicial complexes: a connection between combinatorics and
topology. We summarize the contents of the last three sections and add
some remarks.

Every finite hereditary set system can be regarded as an abstract sim-
plicial complex, and it specifies a topological space (the polyhedron of a
geometric realization) up to homeomorphism. Simplicial maps of simplicial
complexes yield continuous maps of the corresponding spaces.

Conversely, if a topological space admits a triangulation, it can be de-
scribed purely combinatorially by an abstract simplicial complex. (This de-
scription is not unique.)

A continuous map, even between triangulated spaces, generally cannot be
described by a simplicial map. On the other hand, there are theorems stating
that under suitable conditions, a continuous map is homotopic to a simplicial



16 1. Simplicial Complexes

map between sufficiently fine triangulations of the considered spaces, and it
can be approximated by such simplicial maps with any prescribed precision;
see [Mun84] or [Hat01]. We will not prove a general theorem of this kind (a
simplicial approximation theorem), but we will encounter some special cases.

Convention. In the sequel, a simplicial complex will formally be under-
stood as an abstract simplicial complex (i.e., it will be a set system as a
mathematical object). But we will speak of a polyhedron ‖K‖ for an abstract
simplicial complex K (which is well-defined up to homeomorphism in view of
Proposition 1.5.4). We will even freely use topological notions such as “K is
contractible” instead of “‖K‖ is contractible.”

Exercises

1. The chessboard complex �m,n has the squares of the m×n chessboard as
vertices, and simplices are all subsets of squares such that no two squares
lie in the same row or column (so if we place rooks on these squares they
do not threaten one another). Describe the “geometric shape” of ‖�3,4‖.

1.6 Dimension of Geometric Realizations

Here is the promised sharper result about realizability of d-dimensional sim-
plicial complexes.

1.6.1 Theorem (Geometric realization theorem). Every finite d-di-
mensional simplicial complex K has a geometric realization in R2d+1.

For d = 1, the theorem says that every graph can be represented in R3,
with edges being straight segments. The dimension 3 is the smallest possible
in general, since there are nonplanar graphs. A theorem of Van Kampen and
Flores, which we will prove later (Theorem 5.1.1), shows that for every d
there are d-dimensional simplicial complexes that cannot be realized in R2d,
and so the dimension 2d+1 in the geometric realization theorem is optimal
for all d. Of course, this applies only in the worst case, since there are many
d-dimensional simplicial complexes that can be realized in dimensions lower
than 2d+1 (say the d-simplex).

In the proof of Theorem 1.6.1, we use the following sufficient condition
for a geometric realization.

1.6.2 Lemma. If K is a simplicial complex and f :V (K) → Rd is an injective
map such that f(F ∪ G) is affinely independent for all F,G ∈ K, then the
assignment

F �−→ σF := conv(f(F ))

provides a geometric realization of K in Rd.
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Proof. If f(F ∪G) is affinely independent, then σF and σG are two faces of
the simplex with the vertex set f(F ∪G). So σF ∩σG = σF∩G, since the faces
of a geometric simplex form a simplicial complex (Lemma 1.3.6).

A suitable placement of vertices can be defined using the moment curve.
Later on, we will meet this useful curve several more times.

1.6.3 Definition. The curve {γ(t) : t ∈ R} given by γ(t) := (t, t2, . . . , td) is
the moment curve in Rd.

The following lemma expresses a key property of the moment curve (any
curve with this property would do in the sequel). It is a little stronger than
needed here.

1.6.4 Lemma. No hyperplane intersects the moment curve γ in Rd in more
than d points. Consequently, every set of d+1 distinct points on γ is affinely
independent. Moreover, if γ intersects a hyperplane h at d distinct points,
then it crosses h from one side to the other at each intersection.

Proof. A hyperplane h has an equation a1x1 + a2x2 + · · · + adxd = b with
(a1, . . . , ad) �= 0. If a point γ(t) lies in h, then we have a1t+a2t

2+· · ·+adt
d =

b. This means that the values of t corresponding to intersections with h are
the real roots of the nonzero polynomial p(t) = (

∑d
i=1 ait

i) − b of degree at
most d. Such a p(t) has at most d roots, and so there are no more than d
intersections.

If there are d distinct intersections, then p(t) has d distinct roots, which
must all be simple. Therefore, p(t) changes sign at each root, and this means
that γ passes from one open half-space defined by h to the other at each
intersection.

Proof of Theorem 1.6.1. We choose a map f :V (K) → R2d+1 such that
the vertices of K are assigned distinct points on the moment curve in R2d+1.
Then for F,G ∈ K we have |F ∪ G| ≤ (d+1) + (d+1) = 2d+2, and thus by
Lemma 1.6.4 the corresponding points in f(F ∪G) are affinely independent.
Hence we are done by Lemma 1.6.2.

1.7 Simplicial Complexes and Posets

We recall that a partially ordered set, or poset for short, is a pair (P,�),
where P is a set and � is a binary relation on P that is reflexive (x � x),
transitive (x � y and y � z imply x � z), and weakly antisymmetric (x � y
and y � x imply x = y). When the ordering relation � is understood, it is
sometimes omitted from the notation, and we say only “a poset P .”
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As we will see, there is a correspondence between (finite) simplicial com-
plexes and (finite) posets. It is not quite one-to-one, but each poset is assigned
a unique topological space, up to homeomorphism.

1.7.1 Definition. The order complex of a poset P is the simplicial com-
plex ∆(P ), whose vertices are the elements of P and whose simplices are all
chains (i.e., linearly ordered subsets, of the form {x1, x2, . . . , xk}, x1 ≺ x2 ≺
· · · ≺ xk) in P .

The face poset of a simplicial complex K is the poset P (K), which is the
set of all nonempty simplices of K ordered by inclusion.

For example, the simplicial complex

1 2

3
4

has the face poset

{1}

{1, 2, 3}

{3, 4}

{2} {3} {4}

{2, 3}{1, 2} {1, 3}

(this is the Hasse diagram of the poset, where each element is connected to
its immediate predecessors and immediate successors, with the predecessors
lying below it and the successors above it). Here is the order complex of this
poset, together with a meadow saffron (also called autumn crocus; Colchicum
autumnale L.) as an extra bonus:

{1}

{1, 2, 3}

{3, 4}

{2}

{3} {4}

{2, 3}

{1, 2}

{1, 3}
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The operation we just did on the original simplicial complex, namely passing
to the face poset and then to its order complex, is very important and has a
name:

1.7.2 Definition. For a simplicial complex K, the simplicial complex

sd(K) := ∆(P (K))

is called the (first) barycentric subdivision of K.

More explicitly, the vertices of sd(K) are the nonempty simplices of K,
and the simplices of sd(K) are chains of simplices of K ordered by inclusion.

Given a geometric realization of K, we can place the vertex of sd(K)
corresponding to a simplex σ at the center of gravity (barycenter) of σ, as we
did in the above picture. It turns out that, as the picture suggests, ‖sd(K)‖
is always (canonically) homeomorphic to ‖K‖. It suffices to prove this for
K being (the simplicial complex of) a simplex; we leave this to the reader’s
diligence.

In algebraic topology, mainly in the earlier days, iterated barycentric
subdivision was used for constructing arbitrarily fine triangulations of a
given polyhedron. In the applications in this book, we will mainly encounter
barycentric subdivision in its combinatorial meaning, in connection with
posets.

Monotone maps and simplicial maps. Let (P1,�1) and (P2,�2) be
posets. A mapping f :P1 → P2 is called monotone if x �1 y implies f(x) �2

f(y). We have the following simple but useful result.

1.7.3 Proposition. Every monotone mapping f :P1 → P2 between posets
is also a simplicial mapping V (∆(P1)) → V (∆(P2)) between their order
complexes.

We again leave the very easy verification to the reader.

1.7.4 Corollary. Let K1 and K2 be simplicial complexes. Consider an arbi-
trary mapping f that assigns to each simplex F ∈ K1 a simplex f(F ) ∈ K2

(f is not necessarily induced by a mapping of vertices!), and suppose that
if F ′ ⊆ F , then also f(F ′) ⊆ f(F ). Then f can be regarded as a sim-
plicial mapping of sd(K1) into sd(K2), and so it induces a continuous map
‖f‖: ‖K1‖ → ‖K2‖.

Notes. A good source on matters discussed in this section and many
related things is Wachs [Wac07].

In many books and papers, sd(K) is denoted by K′, and sometimes
it is called the derived of K.

If we iterate the barycentric subdivision of a geometric simplicial
complex sufficiently many times, the diameter of all simplices decreases
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below any prescribed threshold (Exercise 3). This is a standard way
of producing arbitrarily fine triangulations. However, it is not very
suitable for algorithmic applications where the number and shape of
simplices are important.

The order complex ∆(P ) is an instance of a more general construc-
tion of a classifying space; see, e.g., [Hat01, Chapter 2].

Let us mention a result somewhat similar to the geometric realiza-
tion theorem (Theorem 1.6.1), which provides an upper bound on the
dimension necessary for embedding a given simplicial complex. First
we recall the notion of Dushnik–Miller dimension (or order dimen-
sion) of a poset. As is easy to check, if (P,�) is a finite poset, there
exist linear orderings ≤1,≤2, . . . ,≤k such that x � y iff x ≤i y for
all i ∈ [k]. In other words, �=

⋂k
i=1≤i (here ≤i stands for the ith

linear ordering considered as a binary relation on P , that is, a subset
of P×P ). The smallest possible k for such a representation of � by
linear orderings is the Dushnik–Miller dimension dim(P,�). Ossona
de Mendez [Oss99] proved, using Scarf’s construction, that every fi-
nite simplicial complex K can be geometrically realized in Rd−1 with
d := dim(P (K)). For a proof, let ≤1, . . . ,≤d be linear orderings of K
witnessing dim(P (K)) = d. We restrict the orderings ≤i to the set
V := V (K) (the vertices are also simplices of K), and we let ϕi be the
injective map V → [n], n = |V |, that is monotone with respect to
≤i (that is, u <i v iff ϕi(u) < ϕi(v) for every u, v ∈ V ). We define
f0:V → Rd by f0(v) = ((d+1)ϕ1(v), (d+1)ϕ2(v), . . . , (d+1)ϕd(v)), and
finally, we let f(v) be the projection of f0(v) from 0 on the hyperplane∑d

i=1 xi = 1. Then it can be shown that f satisfies the condition of
Lemma 1.6.2 and thus provides a realization of K in Rd−1.

A converse of this theorem is known for d = 3: If we regard a
graph G as a 1-dimensional simplicial complex, then the dimension of
the face poset is at most 3 if and only if G is planar [Sch89]; also see
[BT93], [BT97], [Fel01] for related results.

Exercises

1.∗ Prove that a simplex is homeomorphic to its barycentric subdivision (a
rigorous proof takes some work!).

2. Prove Proposition 1.7.3 and Corollary 1.7.4.
3.∗ (a) Prove that the diameter of an arbitrary simplex σ is equal to the

distance between some two vertices of σ.
(b) Prove that for every n and δ > 0 there exists k such that if σn is
any n-dimensional simplex of diameter 1, then all simplices of sdk(σn)
(barycentric subdivision iterated k times) have diameter at most δ. Does
k have to depend on n?



2. The Borsuk–Ulam Theorem

The Borsuk–Ulam theorem is one of the most useful tools offered by elemen-
tary algebraic topology to the outside world. Here are four reasons why this
is such a great theorem: There are

(1) several different equivalent versions,
(2) many different proofs,
(3) a host of extensions and generalizations, and
(4) numerous interesting applications.

As for (1), Borsuk’s original paper [Bor33] already gives three variants. Below
we state six different but equivalent versions, all of them very useful, and
several more are given in the exercises.

As for (2), there are several proofs of the Borsuk–Ulam theorem that can
be labeled as completely elementary, requiring only undergraduate mathe-
matics and no algebraic topology. On the other hand, most of the textbooks
on algebraic topology, even the friendliest ones, usually place a proof of the
Borsuk–Ulam theorem well beyond page 100. Some of them use just basic
homology theory, others rely on properties of the cohomology ring, but in
any case, significant apparatus has to be mastered for really understanding
such proofs. From a “higher” point of view, it can be argued that these proofs
are more conceptual and go to the heart of the matter, and thus they are
preferable to the “ad hoc” elementary proofs. But this point of view can be
appreciated only by someone for whom the necessary machinery is as natural
as breathing.1 Since not everyone, especially in combinatorics and computer
science, belongs to this lucky group, we present some “old-fashioned” ele-
mentary proofs. The one in Section 2.2, called a homotopy extension argu-
ment, is geometric and very intuitive. In Section 2.3 we introduce Tucker’s
lemma, a combinatorial statement equivalent to the Borsuk–Ulam theorem,
and we give a purely combinatorial proof. (This resembles the well-known
proof of Brouwer’s theorem via the Sperner lemma, but Tucker’s lemma is

1 Borsuk’s footnote from [Bor33]: “Mr. H. Hopf, whom I informed about Theo-
rem I, noted for me in a letter three other shorter proofs of this theorem. But
since these proofs are founded on deep results in the theory of the mapping degree
and my proof is in essence completely elementary, I think that its publication is
not superfluous. [. . . ]”
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more demanding.) Next, in Section 2.4, we prove Tucker’s lemma differently,
introducing some of the most elementary notions of simplicial homology.

As for (3), we will examine various generalizations and strengthenings
later; much more can be found in Steinlein’s surveys [Ste85], [Ste93] and in
the sources he quotes.

Finally, as for applications (4), just wait and see.

2.1 The Borsuk–Ulam Theorem in Various Guises

One of the versions of the Borsuk–Ulam theorem, the one that is perhaps the
easiest to remember, states that for every continuous mapping f :Sn → Rn,
there exists a point x ∈ Sn such that f(x) = f(−x). Here is an illustration
for n = 2. Take a rubber ball, deflate and crumple it, and lay it flat:

Then there are two points on the surface of the ball that were diametrically
opposite (antipodal) and now are lying on top of one another!

Another popular interpretation, found in almost every textbook, says that
at any given time there are two antipodal places on Earth that have the same
temperature and, at the same time, identical air pressure (here n = 2).2

It is instructive to compare this with the Brouwer fixed point theorem,
which says that every continuous mapping f :Bn → Bn has a fixed point:
f(x) = x for some x ∈ Bn. The statement of the Borsuk–Ulam theorem
sounds similar (and actually, it easily implies the Brouwer theorem; see be-
low). But it involves an extra ingredient besides the topology of the considered
2 Although anyone who has ever touched a griddle-hot stove knows that the tem-

perature need not be continuous.
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spaces: a certain symmetry of these spaces, namely, the symmetry given by
the mapping x �→ −x (which is often called the antipodality on Sn and on
Rn).

Here are Borsuk’s original formulations of the Borsuk–Ulam theorem:

Here are the promised many equivalent versions, in English.

2.1.1 Theorem (Borsuk–Ulam theorem). For every n ≥ 0, the follow-
ing statements are equivalent, and true:

(BU1a) (Borsuk [Bor33, Satz II]3) For every continuous mapping f :Sn → Rn

there exists a point x ∈ Sn with f(x) = f(−x).
(BU1b) For every antipodal mapping f :Sn → Rn (that is, f is continuous

and f(−x) = −f(x) for all x ∈ Sn) there exists a point x ∈ Sn

satisfying f(x) = 0.

(BU2a) There is no antipodal mapping f :Sn → Sn−1.

(BU2b) There is no continuous mapping f :Bn → Sn−1 that is antipodal on
the boundary, i.e., satisfies f(−x) = −f(x) for all x ∈ Sn−1 = ∂Bn.

(LS-c) (Lyusternik and Shnirel’man [LS30], Borsuk [Bor33, Satz III]) For
any cover F1, . . . , Fn+1 of the sphere Sn by n+1 closed sets, there
is at least one set containing a pair of antipodal points (that is,
Fi ∩ (−Fi) �= ∅).

(LS-o) For any cover U1, . . . , Un+1 of the sphere Sn by n+1 open sets, there
is at least one set containing a pair of antipodal points.

While proving any of the versions of the Borsuk–Ulam theorem is not
easy, at least without some technical apparatus, checking the equivalence of
all the statements is not so hard. Deriving at least some of the equivalences
before reading further is a very good way of getting a feeling for the theorem.
3 Borsuk’s footnote at this theorem reads: “This theorem was posed as a conjecture

by St. Ulam.”
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Equivalence of (BU1a), (BU1b), and (BU2a).
(BU1a)=⇒ (BU1b) is clear.
(BU1b)=⇒ (BU1a) We apply (BU1b) to the antipodal mapping given by
g(x) := f(x)− f(−x).
(BU1b)=⇒ (BU2a) An antipodal mapping Sn → Sn−1 is also a nowhere
zero antipodal mapping Sn → Rn.
(BU2a)=⇒ (BU1b) Assume that f :Sn → Rn is a continuous nowhere zero
antipodal mapping. Then the antipodal mapping g:Sn → Sn−1 given by
g(x) := f(x)/‖f(x)‖ contradicts (BU2a).

Equivalence of (BU2a) with (BU2b). This is easy once we observe that
the projection π: (x1, . . . , xn+1) �→ (x1, . . . , xn) is a homeomorphism of the
upper hemisphere U of Sn with Bn:

Bn

Uπ

An antipodal mapping f :Sn → Sn−1 as in (BU2a) would yield a mapping
g:Bn → Sn−1 antipodal on ∂Bn by g(x) = f(π−1(x)).

Conversely, for g:Bn → Sn−1 as in (BU2b) we can define f(x) = g(π(x))
and f(−x) = −g(π(x)) for x ∈ U . This specifies f on the whole of Sn; it is
consistent because g is antipodal on the equator of Sn; and the resulting f
is continuous, since it is continuous on both of the closed hemispheres (see
Exercise 1.1.2).

Equivalence with (LS-c), (LS-o).
(BU1a)=⇒ (LS-c) For a closed cover F1, . . . , Fn+1 we define a continuous
mapping f :Sn → Rn by f(x) := (dist(x, F1), . . . ,dist(x, Fn)), and we con-
sider a point x ∈ Sn with f(x) = f(−x) = y, which exists by (BU1a). If
the ith coordinate of the point y is 0, then both x and −x are in Fi. If all
coordinates of y are nonzero, then both x and −x lie in Fn+1.
(LS-c)=⇒ (BU2a) We need an auxiliary result: There exists a covering of
Sn−1 by closed sets F1, . . . , Fn+1 such that no Fi contains a pair of antipodal
points (to see this, we consider an n-simplex in Rn containing 0 in its interior,
and we project the facets centrally from 0 on Sn−1). Then if a continuous
antipodal mapping f :Sn → Sn−1 existed, the sets f−1(F1), . . . , f−1(Fn+1)
would contradict (LS-c).
(LS-c)=⇒ (LS-o) follows from the fact that for every open cover U1, . . . , Un+1

there exists a closed cover F1, . . . , Fn+1 satisfying Fi ⊂ Ui for i = 1, . . . , n+1:
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For each point x of the sphere we choose an open neighborhood Vx whose
closure is contained in some Ui, and apply the compactness of the sphere.
(LS-o) =⇒ (LS-c) Given a closed cover F1, . . . , Fn+1, we wrap each Fi in
the open set Uε

i := {x ∈ Sn : dist(x, Fi) < ε}. We let ε → 0 and we use
the compactness of the sphere. We first obtain an infinite sequence of points
x0,x1,x2, . . . in Sn with limj→∞ dist(xj , Fi) = limj→∞ dist(−xj , Fi) = 0
for some fixed i. Then we select a convergent subsequence of the xj . The
limit of this sequence is in Fi, since Fi is closed, and it provides the required
antipodal pair in Fi.

Here is an alternative argument, which strongly uses the geometry of
the sphere. Since each Fi is closed and every two points of it have distance
strictly smaller than 2, there exists ε0 > 0 such that all the Fi have diameter
at most 2−ε0 (by compactness). Then the open sets U

ε0/2
i , i = 1, 2, . . . , n+1,

contradict (LS-o).

Proof of the Brouwer fixed point theorem from (BU2b). Suppose
that f :Bn → Bn is continuous and has no fixed point. By a well-known
construction, we show the existence of a continuous map g:Bn → Sn−1 whose
restriction to Sn−1 is the identity map (such a g is called a retraction of Bn

to Sn−1). We define g(x) as the point in which the ray originating in f(x)
and going through x intersects Sn−1. This g contradicts (BU2b).

Notes. The earliest reference for what is now commonly called the
Borsuk–Ulam theorem is probably Lyusternik and Shnirel’man [LS30]
from 1930 (the covering version (LS-c)). Borsuk’s paper [Bor33] is from
1933. The only written reference concerning Ulam’s role in the matter
seems to be Borsuk’s footnote quoted above. Since then, hundreds of
papers with various new proofs, variations of old proofs, generaliza-
tions, and applications have appeared; the most comprehensive survey
known to me, Steinlein [Ste85] from 1985, lists nearly 500 items in the
bibliography.

Types of proofs. In the numerous published proofs of the Borsuk–Ulam
theorem, one can distinguish several basic approaches (as is done in
[Ste85]). Some of these types will be treated in this book; for the
others, we outline the main ideas here and give references, mostly to
recent textbooks.

Degree-theoretic proofs are discussed in Section 2.4, and another
such proof is outlined in the notes to Section 6.2. A related method uses
the Lefschetz number; such a proof of a result generalizing the Borsuk–
Ulam theorem is given in Section 6.2. A proof using rudimentary Smith
theory can be found in [Bre93, Section 20].

A proof using the cohomology ring considers the map g: RPn →
RPm induced by an antipodal f :Sn → Sm, and shows that the cor-
responding homomorphism g∗:H∗(RPm, Z2) → H∗(RPn, Z2) of the
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cohomology rings carries a generator α of H1(RPm, Z2) to a genera-
tor β of H1(RPn, Z2). This is impossible if m+1 ≤ n, since then αm+1

is trivial, while βn is nontrivial. See, for example, [Mun84, p. 403] or
[Bre93, p. 362].

A proof by a homotopy extension argument will be discussed in
Section 2.2, and a representative of the family of combinatorial proofs
in Section 2.3. An algebraic proof in [Kne82] establishes the theorem
for polynomial mappings, and the general form follows by an approx-
imation argument (for another algebraic proof see [AP83]).

The fact that the Borsuk–Ulam theorem implies Brouwer’s fixed
point theorem seems to be folklore; also see Su [Su97] for an alternative
proof.

As for applications of the Borsuk–Ulam theorem, we will cover
some in the subsequent sections. For a multitude of others, we refer to
the surveys [Ste85], [Ste93]. The papers [Bár93] and [Alo88] give nice
overviews of combinatorial applications; most of these are included in
this book.

Many applications appear in existence results for solutions of non-
linear partial differential equations and integral equations; we will ne-
glect this broad field entirely (see [KZ75], [Ste85], [Ste93]). Borsuk–
Ulam-type results also play an important role in functional analysis
and in the geometry of Banach spaces. A neat algebraic application
will be outlined in the notes to Section 5.3.

A beautiful combinatorial application of the Borsuk–Ulam theo-
rem, which we will not discuss in detail and whose original account
is very nicely readable, concerns linkless embeddings of graphs in R3.
Any finite graph G, regarded as a 1-dimensional finite simplicial com-
plex, can be realized in R3. Such a realization is called linkless if any
two vertex-disjoint circuits in G form two unlinked closed curves in
the realization. Here two curves α, β ⊂ R3 (each homeomorphic to
S1) are unlinked if they are equivalent to two isometric copies α′, β′ of
S1 in R3 lying far from one another, and the equivalence means that
there is a homeomorphism ϕ: R3 → R3 such that ϕ(α ∪ β) = α′ ∪ β′

(these are notions from knot theory; see, e.g., Rolfsen [Rol90] for more
information).

linked linked unlinked

Lovász and Schrijver [LS98], building on previous work by Robertson,
Seymour, and Thomas, proved that graphs possessing a linkless em-
bedding into R3 are exactly those for which a numerical parameter µ,
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called the Colin de Verdière number , is at most 4. The definition of
this parameter, using spectra of certain matrices, is not very intuitive
at first sight (and we do not reproduce it; see [LS98] or other sources).
The graph-theoretic significance of the Colin de Verdière number looks
almost miraculous: Besides the incredible result about linkless embed-
dings, it is also known that µ(G) ≤ 1 iff G is a disjoint union of paths,
µ(G) ≤ 2 iff G is outerplanar, and µ(G) ≤ 3 iff G is planar. In the
Lovász–Schrijver proof, the Borsuk–Ulam theorem is used for estab-
lishing the following: Given any “generic” embedding of the 1-skeleton
of a 5-dimensional convex polytope P into R3, there are two antipodal
2-dimensional faces F1, F2 of P (here “antipodal” means F1 = P ∩ h1

and F2 = P ∩ h2 for some parallel hyperplanes h1, h2) such that the
images of the boundaries of F1 and F2 are linked (in fact, they have
a nonzero linking number, which is stronger than being linked; the
curves in the left picture above satisfy this, while those in the mid-
dle picture do not). Thus, for example, the complete graph K6 is not
linklessly embeddable. (More generally, a generic embedding of the
(d−1)-skeleton of a (2d+1)-polytope into Rd links the boundaries of
two antipodal d-faces.)

Another nice piece is a theorem of Bárány and Lovász [BL82],
stating that every centrally symmetric convex polytope in Rd has at
least 2d facets; also see [Bár93].

The paper [Bor33] containing the Borsuk–Ulam theorem also states
the so-called Borsuk’s conjecture. The Lyusternik–Shnirel’man theo-
rem (about covering Sn by n+1 closed sets) can be restated as fol-
lows: For every closed cover of Sn−1 by at most n sets, one of the sets
has diameter 2, i.e., the same as the diameter of Sn−1 itself. On the
other hand, there are n+1 sets of diameter < 2 covering Sn−1. Borsuk
asked whether any bounded set X ⊂ Rn can be split into n+1 parts,
each having diameter strictly smaller than X. This was resolved in the
negative by Kahn and Kalai [KK93]. Their spectacular combinator-
ial proof has made Borsuk’s conjecture quite popular in recent years
([Nil94] is a two-page exposition, and the proof has been reproduced
in several books, such as [AZ04]). On the other hand, Borsuk’s conjec-
ture holds for all smooth convex bodies, as was proved by Hadwiger
[Had45], [Had46].

Kakutani-type theorems. Kakutani [Kak43] proved that for any com-
pact convex set in R3 there exists a cube circumscribed about it and
touching it with all 6 facets. This is an easy consequence of the follow-
ing: For any continuous f :S2 → R, there are 3 mutually perpendicular
vectors x1,x2,x3 ∈ S2 with f(x1) = f(x2) = f(x3). This was gen-
eralized to dimension n (with n+1 mutually orthogonal vectors) by
Yamabe and Yujobô [YY50], and rederived by Yang [Yan54] (in a
greater generality, with a suitable abstract notion of “orthogonality”).
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Yang [Yan54] and Bourgin [Bou63] proved that for any continuous
f :Sn → R, there are n mutually orthogonal x1, . . . ,xn ∈ Sn with
f(x1) = f(−x1) = f(x2) = · · · = f(−xn), generalizing such a result
for S2 due to Dyson [Dys51]. Here is another nice result of Yang of
this type: If f :Smn+m+n → Rm is continuous, then there exists an
antipodally symmetric subset of Smn+m+n of dimension at least n on
which f is constant. Numerous results about circumscribed geometric
shapes and similar problems can be found in works of Makeev, such
as [Mak96].

In this connection, we should also mention a conjecture of Knaster
[Kna47], stating that for any continuous f :Sn → Rm and any con-
figuration K ⊂ Sn of n−m+2 points, there exists a rotation ρ of
Sn such that f(ρ(K)) is a single point. Although this was proved for
some special configurations (for example, Hopf proved the case m = n
in 1944, which motivated Knaster’s conjecture from 1947), the gen-
eral conjecture does not hold. It was first refuted by Makeev [Mak84],
stronger counterexamples were given by Babenko and Bogaty̌ı [BB89],
and then Chen [Che98] showed that Knaster’s conjecture fails for every
n > m > 2. Just before this book went to print, Kashin and Szarek an-
nounced a counterexample to an interesting special case of Knaster’s
conjecture, with m = 1, n sufficiently large, and K consisting of n+1
linearly independent unit vectors in Rn+1. (All the previous counterex-
amples used configurations with linear dependencies; also note that if
K is the standard orthonormal basis in Rn+1, then the conjecture
holds by the Yamabe–Yujobô theorem cited above).

A few of the numerous generalizations of the Borsuk–Ulam theorem
will be discussed later. Here we mention a couple of others, which seem
potentially useful for combinatorial and geometric problems.

Fan’s theorem [Fan52] is the following generalization of (LS-c): Let
A1, A2, . . . , Am be closed sets covering Sn with Ai ∩ (−Ai) = ∅ for all
i (note that m is independent of n, although the theorem implies that
necessarily m ≥ n+2). Then there are indices i1 < i2 < · · · < in+2 and
a point x ∈ Sn such that (−1)jx ∈ Aij

for all j = 1, 2, . . . , n+2. Closed
sets can also be replaced by open ones. This theorem was applied by
Simonyi and Tardos [ST06] in a graph coloring problem; see the notes
to Section 5.9.

Bourgin–Yang-type theorems are generalizations of the Borsuk–Ulam
theorem of the following sort. For any continuous map f :Sn → Rm,
the coincidence set {x ∈ Sn : f(x) = f(−x)} has to be not only
nonempty (as Borsuk–Ulam asserts), but even “large” if m < n. For
example, it has dimension at least n−m; see [Yan54], [Bou55].

Zero sections of vector bundles. This kind of generalization is techni-
cally beyond our scope, but we at least state a particular case (appear-
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ing in Dol’nikov [Dol’92] and, implicitly, Živaljević and Vrećica [ŽV90];
also see Fadell and Husseini [FH88]). Let Gk(Rn) denote the space of
all k-dimensional linear subspaces of Rn (the Grassmann manifold).
The natural topology on Gk(Rn) can be defined using a metric, for
example, by saying that two k-dimensional subspaces L and L′ have
distance at most ε if they possess orthonormal bases v1, v2, . . . , vk and
v′
1, v

′
2, . . . , v

′
k, respectively, such that ‖vi−v′

i‖ ≤ ε for all i = 1, 2, . . . , k.
The theorem asserts that if f1, f2, . . . , fn−k:Gk(Rn) → Rn are contin-
uous maps with fi(L) ∈ L for all L ∈ Gk(Rn) and all i = 1, 2, . . . , n−k
(in other words, the fi are sections of the tautological vector bundle
over Gk(Rn)), then there is a k-dimensional subspace L ∈ Gk(Rn)
with f1(L) = f2(L) = · · · = fn−k(L) = 0.

Exercises

1. Show that the antipodality assumption in (BU2a) can be replaced by
“f(−x) �= f(x) for all x ∈ Sn.”

2. Show that the following statement is equivalent to the Borsuk–Ulam the-
orem: Let f :Bn → Rn be a continuous mapping that satisfies f(−x) =
−f(x) for all x ∈ Sn−1; that is, it is antipodal on the boundary. Then
there is a point x ∈ Bn with f(x) = 0.

3.∗ (A “homotopy” version of the Borsuk–Ulam theorem)
(a) Derive the statement in Exercise 2 (and thus the Borsuk–Ulam theo-
rem) from the following statement ([Bor33, Satz I]): An antipodal map-
ping f :Sn → Sn cannot be nullhomotopic.
(b) Show that the statement in (a) is also implied by the Borsuk–Ulam
theorem.

4. (Another “homotopy” version of the Borsuk–Ulam theorem) Prove that
the following statement is equivalent to the statement in Exercise 3(a):
If f :Sn → Sn is antipodal, then every mapping g:Sn → Sn that is
homotopic to f is surjective (i.e., onto).

5.∗ Prove that the validity of (any of) the statements in the Theorem 2.1.1
for n implies the validity of all the statements for n−1.

6. (Generalized Lyusternik–Shnirel’man theorem [Gre02]) Derive the follow-
ing common generalization of (LS-c) and (LS-o): Whenever Sn is covered
by n+1 sets A1, A2, . . . , An+1, each Ai open or closed, there is an i such
that Ai ∩ (−Ai) �= ∅.

7. Does the Lyusternik–Shnirel’man theorem remain valid for coverings of
Sn by n+1 sets, each of which can be obtained from open sets by finitely
many set-theoretic operations (union, intersection, difference)?

8. In the proof of the implication (LS-o)=⇒ (LS-c) we wrapped the given
closed sets in their ε-neighborhoods and then let ε → 0. Argue directly
that for every closed cover F1, F2, . . . , Fn+1 of Sn such that no Fi contains
a pair of antipodal points there exists ε0 > 0 such that none of the ε0-
neighborhoods of the Fi contain a pair of antipodal points.
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9. Describe a surjective nullhomotopic map Sn → S1 (at least for n = 1
and n = 2).

10. (Borsuk graph) For a positive real number α < 2, let B(n+1, α) be the
(infinite) Borsuk graph with Sn as the vertex set and with two points
connected by an edge iff their distance is at least α. Prove that the
Borsuk–Ulam theorem is equivalent to the following statement: For every
α < 2, we have χ(B(n+1, α)) ≥ n+2 (here χ denotes the usual chromatic
number).

11. Let the torus be represented as T = S1 × S1.
(a) Show that an analogue of (BU1a) for maps T → R2 (formulate it!) is
false.
(b) Show that it works for maps T → R1.

12.∗ (a) Let A1, A2, . . . , An be closed subsets of Sn with Ai ∩ (−Ai) = ∅.
Prove, using the Borsuk–Ulam theorem, that

⋃n
i=1(Ai ∪ (−Ai)) �= Sn.

(b) Derive the Borsuk–Ulam theorem from the statement in (a).
13.∗ Consider the Borsuk–Ulam-type theorem for Grassmann manifolds stated

at the end of the notes of this section.
(a) Show that the case k = 1 (with n−1 continuous maps, each assigning
to each line through the origin in Rn a point on that line) is equivalent
to the Borsuk–Ulam theorem.
(b) Prove that the case k = n−1 (a continuous map assigning to each
hyperplane through the origin a point in that hyperplane) is equivalent
to the Borsuk–Ulam theorem as well.

2.2 A Geometric Proof

We prove the version (BU1b) of the Borsuk–Ulam theorem. Let f :Sn → Rn

be a continuous antipodal map. We want to prove that it has a zero. First
we explain the idea of the proof, assuming that f is “sufficiently generic,”
without making the meaning of this quite precise. Then we supply a rigorous
argument, involving a suitable perturbation of f .

The intuition. Let g:Sn → Rn denote the “north–south projection” map;
if Sn = {x ∈ Rn+1 : x2

1 + · · · + x2
n+1 = 1}, then g is given by g(x) =

(x1, x2, . . . , xn). This g has exactly two zeros, namely, the north pole and the
south pole: n = (0, 0, . . . , 0, 1), s = (0, 0, . . . , 0,−1). (The important feature
of g is that, obviously, it has a finite number of zeros; more precisely, the
number of zeros is twice an odd number.)

We consider the (n+1)-dimensional space X := Sn×[0, 1] (a “hollow cylin-
der”) and the mapping F :X → Rn given by F (x, t) := (1−t)g(x) + tf(x).
Geometrically, we take two copies of Sn (we can think of them as placed in
Rn+2), one of them with the mapping g and the other one with f . We connect
the corresponding points of these two spheres by segments, and the mapping
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F is defined on each segment by linear interpolation. For n = 1, we get a
cylinder as in the picture:

bottom sphere (t = 0)

top sphere (t = 1)

X

n

s
g

f Z

Z

γ

γ

The antipodality x �→ −x on Sn is extended to the map ν on X by ν: (x, t) �→
(−x, t) (note that t is unchanged). We will call ν the antipodality on X.

We note that F is antipodal with respect to ν; that is, F (ν(x, t)) =
−F (x, t).

For contradiction, let us suppose that f has no zeros. We investigate the
zero set Z := F−1(0). If f is sufficiently generic, then Z is a 1-dimensional
compact manifold, and therefore, its components are cycles and paths (this
is the part to be made precise later). Moreover, the endpoints of the paths
lie on the bottom or top copy of Sn (t = 0 or t = 1) and are zeros of f or g,
while the cycles do not reach into the top and bottom spheres.4

Assuming that f has no zeros and knowing that g has only the two zeros
at the poles, we see that there must be a single path γ connecting n to s.
But at the same time, the set Z is invariant under ν. If we follow γ from n
on, the other part starting from s must behave symmetrically. But then it is
easy to see that the two ends cannot meet: A symmetric path from n to s
does not exist in X. We have reached a contradiction.

Note that the argument actually shows that the number of zeros of a
“generic” antipodal map is twice an odd number. Indeed, the zeros of f on
the top sphere are paired up by paths in Z, except for two that are connected
to the zeros of g on the bottom sphere.
4 To gain some intuition as to why this is the case, one may think of the case

n = 1, and unroll X to obtain a rectangle R in the plane. Then F is a real
function on R, its graph is a “terrain” over R, and Z is the “zero contour.” As
people familiar with topographic maps will know, a typical contour on a smooth
terrain is a smooth curve consisting of disjoint cycles and curve segments with
both ends on the boundary of R. Other possible cases, such as two cycles meeting
at a point (saddle), are exceptional, and they disappear by an arbitrarily small
perturbation.

Imagining the higher-dimensional cases is more demanding. Readers knowing
the implicit function theorem from analysis may want to contemplate what that
theorem gives in the considered situation.

Anyway, we will soon provide a proof using a piecewise linear approximation.
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The real thing. A rigorous proof follows the same ideas but uses a suitable
small perturbation of f . Recall that the �1-norm of a point x ∈ Rn is ‖x‖1 =∑n

i=1 |xi|. Let Ŝn = {x ∈ Rn+1 : ‖x‖1 = 1} denote the unit sphere of
the �1-norm. This is the boundary of a crosspolytope (Definition 1.4.1); for
example, Ŝ2 is the surface of a regular octahedron. This Ŝn is homeomorphic
to Sn, and we will consider Ŝn instead of Sn in the rest of the proof. The
space X := Ŝn× [0, 1] is a union of finitely many convex polytopes (simplicial
prisms). Let us call Ŝn × {0} the bottom sphere and Ŝn × {1} the top sphere
in X.

Now we will talk about various triangulations of X. Throughout this
section, we will always mean geometric triangulations, where X is the poly-
hedron of the triangulation (and it is not only homeomorphic to it, as the
general definition of a triangulation admits). So the simplices are actual geo-
metric simplices contained in X.

We choose a sufficiently fine finite triangulation T of X (just how fine
will be specified later) that respects the symmetry of X given by ν, in the
following sense: Each simplex σ ∈ T is mapped bijectively onto the “opposite”
simplex ν(σ) ∈ T, and σ ∩ ν(σ) = ∅. Moreover, the triangulation T contains
triangulations Tt and Tb of the top and bottom spheres, respectively, as
subcomplexes, and Tt and Tb each refine the natural triangulation of Ŝn.
Concretely, suitable triangulations Tt and Tb can be constructed by iterated
barycentric subdivision of the natural triangulation of Ŝn, and T can then be
obtained by triangulating the simplicial prisms according to Exercise 1.4.3.

We let the mapping g be an orthogonal projection of Ŝn into Rn, but not
in a coordinate direction, but rather in a “generic” direction, such that the
two zeros n and s of g lie in the interior of n-dimensional simplices of the
triangulation Tb, as is indicated in the drawing (where n = 2):

0

Rn

Tb

We again suppose that f : Ŝn → Rn has no zeros. By compactness, there
is an ε > 0 such that ‖f(x)‖ ≥ ε for all x ∈ Ŝn. As in the informal outline,
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let F (x, t) := (1−t)g(x) + tf(x), let T be a fine triangulation of X as above,
and let F̄ :X → Rn be the map that agrees with F on the vertex set V (T)
of T and is affine on each simplex of T (similar to Definition 1.5.3 of the
affine extension of a simplicial map). Since F is uniformly continuous, we can
assume that ‖F (y)− F̄ (y)‖ ≤ ε

2 for all y ∈ X, provided that T is sufficiently
fine. Thus,

F̄ has no zeros on the top sphere. (2.1)

Since our g is already affine, F̄ coincides with g on the bottom sphere, and
we have

F̄ has exactly two zeros on the bottom sphere, lying
in the interiors of n-dimensional (antipodal) simplices
of Tb.

(2.2)

Further, let F̃ be a mapping arising by a sufficiently small antipodal per-
turbation of F̄ . Namely, we choose a suitable map P0:V (T) → Rn satisfying
P0(ν(v)) = −P0(v) for each v ∈ V (T). Further properties required of P0 will
be specified later. We extend P0 affinely on each simplex of T, obtaining a
map P :X → Rn, and we set F̃ = F̄ + P . We note that if all values of P0 lie
sufficiently close to 0, then the perturbed map F̃ still has the two properties
(2.1) and (2.2). Indeed, if F̄ has no zero on some simplex of Tt ∪ Tb, then
clearly, F̃ has no zero there either if the perturbation is sufficiently small.
Moreover, if σ is a simplex of Tb containing one of the two zeros of F̄ on
the bottom sphere, then F̄ restricted to σ maps σ bijectively to some n-
dimensional simplex τ in Rn containing the origin in its interior, and again, a
sufficiently small perturbation of the map (which can be imagined as a small
movement of the vertices of τ) doesn’t change this situation.

Next, we introduce generic maps on T. We begin by noting that if
h: Rn+1 → Rn is an affine map, then h−1(0) either is empty, or it is an
affine subspace of dimension at least 1. Now let σ be an (n+1)-dimensional
simplex and h an affine map σ → Rn. We say that h is generic if h−1(0) in-
tersects no face of σ of dimension smaller than n. In such case, h−1(0) either
is empty, or it is a segment lying in the interior of σ, with endpoints lying in
the interior of two (distinct) n-faces of σ:

h−1(0)
σ

If we represent an affine map h:σ → Rn by the (n+2)-tuple of values at
the vertices of σ, all such maps constitute a real vector space of dimension
n(n+2). One can check that the set of mappings that are not generic is
contained in a proper algebraic subvariety of this space, and so in particular,
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has measure zero by Sard’s theorem. (Alternatively, one can check that this
set is nowhere dense and use this instead of measure zero; see Exercise 1.)

Let us call a perturbed mapping F̃ :X → Rn generic if it is generic on
each full-dimensional simplex of T. If T has 2N vertices, then the space of
all possible antipodal perturbation maps P0 on V (T) has dimension nN (the
value can be chosen freely on a set of N vertices containing no two antipodal
vertices). The mappings P0 leading to F̃ ’s that are not generic on a particular
full-dimensional simplex σ ∈ T have measure zero in this space (here we need
that v and ν(v) never lie in the same simplex of T). Therefore, arbitrarily
small perturbations P0 exist such that F̃ is generic.

Assuming that F̃ is generic and that its zeros satisfy (2.1) and (2.2), it
follows that F̃−1(0) is a locally polygonal path (consisting of segments, with
no branchings). This is because each n-simplex τ ∈ T is a face of exactly two
(n+1)-simplices σ, σ′ ∈ T, unless τ ∈ Tt ∪ Tb, in which case it is a face of
exactly one (n+1)-simplex σ ∈ T. Hence the components of F̃−1(0) are zero
or more closed polygonal cycles (which do not intersect the top or bottom
spheres) and a polygonal path γ. This γ consists of finitely many segments,
and it connects ñ to s̃ (these are the zeros of F̃ on the bottom sphere).

We choose the unit of length so that γ has length 1, and let γ(z) de-
note the point of γ at distance z from ñ (measured along γ; z ∈ [0, 1]).
Since γ is symmetric under ν, we have ν(γ(z)) = γ(1−z), and in particular,
ν(γ(1

2 )) = γ( 1
2 ). This is impossible, since ν has no fixed points. The Borsuk–

Ulam theorem is proved.

Notes. I learned this proof from Imre Bárány, who published it, in
a slightly different form, in [Bár80]. A very similar proof was given by
Meyerson and Wright [MW79], and Steinlein [Ste85] has several more
references for proofs of this type, all of them published between 1979
and 1981.

Exercises

1.∗ (a) Let p(x1, x2, . . . , xn) = p(x) be a nonzero polynomial in n variables.
Show that the zero set Z(p) := {x ∈ Rn : p(x) = 0} is nowhere dense,
meaning that any open ball B contains an open ball B′ with B′∩Z(p) =
∅.
(b) Check that a finite union of nowhere dense sets is nowhere dense.
(c) Let σ := conv{0,e1, . . . en+1} be an (n+1)-dimensional simplex. Let
h:σ → Rn be an affine map (i.e., a map of the form x �→ AxT + b,
where A is an n× (n+1) matrix and b ∈ Rn). If each h is represented by
(h(0), h(e1), . . . , h(en+1)) ∈ R(n+2)n, show that the maps that are not
generic in the sense defined in the text above form a nowhere dense set.
Hint: For each possible “cause” of nongenericity, write down a determi-
nant that becomes 0 for all maps that are nongeneric for that cause.
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2.3 A Discrete Version: Tucker’s Lemma

Here we derive the Borsuk–Ulam theorem from a combinatorial statement,
called Tucker’s lemma. It speaks about labelings of the vertices of triangula-
tions of the n-dimensional ball. As it happens, it is also easily implied by the
Borsuk–Ulam theorem: One can say that it is a “discrete version” of (BU2b).

Let T be some (finite) triangulation of the n-dimensional ball Bn. We call
T antipodally symmetric on the boundary if the set of simplices of T contained
in Sn−1 = ∂Bn is an antipodally symmetric triangulation of Sn−1; that is, if
σ ⊂ Sn−1 is a simplex of T, then −σ is also a simplex of T.

2.3.1 Theorem (Tucker’s lemma). Let T be a triangulation of Bn that
is antipodally symmetric on the boundary. Let

λ: V (T) −→ {+1,−1,+2,−2, . . . ,+n,−n}
be a labeling of the vertices of T that satisfies λ(−v) = −λ(v) for every
vertex v ∈ ∂Bn (that is, λ is antipodal on the boundary). Then there exists
a 1-simplex (an edge) in T that is complementary; i.e., its two vertices are
labeled by opposite numbers.

Here is a 2-dimensional illustration:

−1

+1

−1

+1

−2

+2

−2

+2

−1

+2

+2

−2

complementary edge

An explanation. Before we start to prove anything, we reformulate
Tucker’s lemma using simplicial maps into the boundary of the crosspoly-
tope. Let �n−1 denote the (abstract) simplicial complex with vertex set
V (�n−1) = {+1,−1,+2,−2, . . . ,+n,−n}, and with a subset F ⊆ V (�n−1)
forming a simplex whenever there is no i ∈ [n] such that both i ∈ F and
−i ∈ F . By the remark below Definition 1.4.1, one can recognize �n−1 as the
boundary complex of the n-dimensional crosspolytope. The notation should
suggest the case n = 2:

−1 +1

+2

−2
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In particular, ‖�n−1‖ ∼= Sn−1. The reader is invited to check that the fol-
lowing statement is just a rephrasing of Theorem 2.3.1:

2.3.2 Theorem (Tucker’s lemma, a reformulation). Let T be a trian-
gulation of Bn that is antipodally symmetric on the boundary. Then there is
no map λ:V (T) → V (�n−1) that is a simplicial map of T into �n−1 and is
antipodal on the boundary.

Equivalence of (BU2b) with Tucker’s lemma. We recall that (BU2b)
claims the nonexistence of a map Bn → Sn−1 that is antipodal on the bound-
ary.

Deriving Tucker’s lemma, in the form of Theorem 2.3.2, from (BU2b) is
immediate: If there were a simplicial map λ of T into �n−1 antipodal on
the boundary, its canonical affine extension ‖λ‖ would be a continuous map
Bn → Sn−1 antipodal on the boundary, and this would contradict (BU2b).

To prove the reverse implication, which is what we are actually interested
in, we assume that f :Bn → Sn−1 is a (continuous) map that is antipodal on
the boundary, and we construct T and λ contradicting Theorem 2.3.2.

Here T can be chosen as any triangulation of Bn antipodal on the bound-
ary and with simplex diameter at most δ. To specify δ, we first set ε := 1√

n
.

This choice guarantees that for every y ∈ Sn−1, we have ‖y‖∞ ≥ ε; that is,
at least one of the components of y has absolute value at least ε. (If not, we
would get

∑n
i=1 y2

i < 1.)
A continuous function on a compact set is uniformly continuous, and

thus there exists a number δ > 0 such that if the distance of some two points
x,x′ ∈ Bn does not exceed δ, then ‖f(x) − f(x′)‖∞ < 2ε. This is the δ
bounding the diameter of the simplices of T.

Now we can define λ:V (T) → {±1,±2, . . . ,±n}. First we let

k(v) := min{i : |f(v)i| ≥ ε},
and then we set

λ(v) :=
{

+k(v) if f(v)k(v) > 0,
−k(v) if f(v)k(v) < 0.

Since f is antipodal on ∂Bn, we have λ(−v) = −λ(v) for each vertex v on
the boundary. So Tucker’s lemma applies and yields a complementary edge
vv′. Let i = λ(v) = −λ(v′) > 0. Then f(v)i ≥ ε and f(v′)i ≤ −ε, and hence
‖f(v)− f(v′)‖∞ ≥ 2ε; a contradiction.

The definition of λ becomes more intuitive if we consider the formulation
of Tucker’s lemma in Theorem 2.3.2 and we think of f as going into ‖�n−1‖.
Then λ(v) is essentially the vertex of �n−1 nearest to f(v). (We have to
break ties and preserve antipodality, and so the formal definition of λ above
looks somewhat different.)

Special triangulations. Several combinatorial proofs of Tucker’s lemma
are known, but as far as I know, none establishes it in the generality stated
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above. One always assumes some additional properties of the triangulation
T that are not necessary for the validity of the statement but that help with
the proof.

Fortunately, this is no real loss of generality: For the above proof of the
implication “Tucker’s lemma ⇒ Borsuk–Ulam,” it is enough to know that
Tucker’s lemma holds for some particular sequence of triangulations with
simplex diameter tending to 0. (Note that then the general form of Tucker’s
lemma follows from such a special case by the detour via the Borsuk–Ulam
theorem.)

Two proofs of Tucker’s lemma to come. In this section we present
a rather direct and purely combinatorial proof. It is also constructive: It
yields an algorithm for finding the complementary edge, by tracing a certain
sequence of simplices.

In the next section we give another proof, completely independent of the
first one (so either of them can be skipped). The second proof is perhaps more
insightful, better revealing why Tucker’s lemma holds. It uses some of the
machinery related to simplicial homology, such as chains and the boundary
operator, but in an extremely rudimentary form.

The first proof. We begin by specifying the additional requirements on the
triangulation T. We first replace the Euclidean ball Bn by the crosspolytope
B̂n, the unit ball of the �1-norm.

Let �+n be the natural triangulation of B̂n induced by the coordinate
hyperplanes. Explicitly, each simplex σ ∈ �+n either lies in �n−1 (these are
the simplices on the boundary), or equals τ ∪ {0} for some τ ∈ �n−1; that
is, it is a cone with base σ and apex 0. The following picture shows �+2, with
some of the simplices marked by their vertex sets:

{0}{−1} {+1}

{+2}

{−2}
{+1,−2}

{0,−1}

{0,−1,+2}

We will prove Tucker’s lemma for triangulations T of B̂n that are antipo-
dally symmetric on the boundary and refine �+n (that is, for each σ ∈ T there
is τ ∈ �+n with σ ⊆ τ). In other words, the second condition requires that
the sign of each coordinate be constant on the relative interior of σ, for every
σ ∈ T. Let us call such a T a special triangulation of B̂n.

For n = 2, a special triangulation T with a labeling λ as in Tucker’s
lemma is shown below:
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It is not hard to construct arbitrarily fine special triangulations. For ex-
ample, we can start with �+n and repeatedly take the barycentric subdivision,
until we reach a sufficiently small diameter of simplices.

We thus assume that T is a special triangulation of B̂n and λ:V (T) →
{±1,±2, . . . ,±n} is a labeling antipodal on the boundary. The proof is essen-
tially a parity argument, but not a straightforward one; we need to consider
simplices of all possible dimensions. We will single out a class of simplices in
T on which λ behaves in a certain way, the “happy” simplices; we will define
a graph on these simplices; and we will reach a contradiction by showing that
this graph has precisely one vertex of odd degree.

For a simplex σ ∈ T, let us write λ(σ) := {λ(v) : v is a vertex of σ}. We
also define another set S(σ) of labels (unrelated to the values of λ on σ).
Namely, we choose a point x in the relative interior of σ, and set

S(σ) := {+i : xi > 0, i = 1, 2, . . . , n} ∪ {−i : xi < 0, i = 1, 2, . . . , n}.

Since T is a special triangulation, all choices of x give the same S(σ). Geo-
metrically speaking, S(σ) is the vertex set of the simplex of �n−1 where σ is
mapped by the central projection from 0 (and the “exceptional” simplices ∅

and {0} receive ∅).
A simplex σ ∈ T is called happy if S(σ) ⊆ λ(σ). That is, we can regard

S(σ) as the set of “prescribed labels” for σ, and σ is happy if all of these
labels actually occur on its vertices. The happy simplices are emphasized in
the following picture:
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First we examine some properties of the happy simplices. Let σ be a
happy simplex and let us set k = |S(σ)|. Then σ lies in the k-dimensional
linear subspace Lσ spanned by the k coordinate axes xi such that i ∈ S(σ) or
−i ∈ S(σ). Hence dim σ ≤ k. On the other hand, dimσ ≥ k−1, since at least k
vertex labels are needed to make σ happy. We call σ tight if dimσ = k−1, that
is, if all vertex labels are needed to make σ happy. Otherwise, if dimσ = k,
we call σ loose. For a loose happy simplex σ, either some vertex label occurs
twice, or there is an extra label not appearing in S(σ).

A boundary happy simplex is necessarily tight, while a nonboundary
happy simplex may be tight or loose. The simplex {0} is always happy (and
loose).

We define an (undirected) graph G whose vertices are all happy simplices,
and in which vertices σ, τ ∈ T are connected by an edge if

(a) σ and τ are antipodal boundary simplices (σ = −τ ⊂ ∂B̂n); or
(b) σ is a facet of τ (i.e., a (dim τ−1)-dimensional face) with λ(σ) = S(τ);

that is, the labels of σ alone already make τ happy.

The simplex {0} has degree 1 in G, since it is connected exactly to the
edge of the triangulation that is made happy by the label λ(0). We prove that
if there is no complementary edge, then any other vertex σ of the graph G
has degree 2. Since a (finite) graph cannot contain only one vertex of odd
degree, this will establish Tucker’s lemma.

We distinguish several cases.

1. σ is a tight happy simplex. Then any neighbor τ of σ either equals −σ,
or has σ as a facet. We have two subcases:
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1.1. σ lies on the boundary ∂B̂n. Then −σ is one of its neighbors. Any
other neighbor τ has σ as a facet it is made happy by its labels.
Thus, it has to lie in the coordinate subspace Lσ mentioned above, of
dimension k := dimσ+1. The intersection Lσ∩B̂n is a k-dimensional
crosspolytope, and the simplices of T contained in Lσ triangulate it.
If σ is a boundary (k−1)-dimensional simplex in a triangulation of
B̂k, then it is a facet of precisely one k-simplex.

1.2. σ does not lie on the boundary. Arguing in a way similar to the
previous case, we see that σ is a facet of exactly two simplices made
happy by its labels, and these are the two neighbors.

2. σ is a loose happy simplex. The subcases are:
2.1. We have S(σ) = λ(σ), and so one of the labels occurs twice on σ.

Then σ is adjacent to exactly two of its facets (and it cannot be a
facet of a happy simplex).

2.2. There is an extra label i ∈ λ(σ) \ S(σ). We note that −i �∈ S(σ) as
well, for otherwise, we would have a complementary edge. One of the
neighbors of σ is the facet of σ not containing the vertex with the
extra label i. Moreover, σ is a facet of exactly one loose simplex σ′

made happy by the labels of σ, namely, one with S(σ′) = λ(σ) =
S(σ) ∪ {i}. We enter that σ′ if we go from an interior point of σ in
the direction of the x|i|-axis, in the positive direction for i > 0 and
in the negative direction for i < 0.

So for each possibility we have exactly two neighbors, which yields a contra-
diction.

Remark. The above proof proceeds by contradiction, but it can easily be
turned into an algorithm for finding a complementary edge. By the above
argument, a simplex σ has degree 2 in G unless σ = {0} or σ contains a
complementary edge. So we can start at {0} and follow a path in G until we
reach a simplex with a complementary edge. Such a path is indicated in the
next picture:
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Notes. Steinlein’s survey [Ste85] lists over 10 references with com-
binatorial proofs of the Borsuk–Ulam theorem via Tucker’s lemma or
some relatives of it.

Tucker’s lemma is from [Tuc46]. That paper contains a 2-di-
mensional version, and a version for arbitrary dimension appears in
the book [Lef49] (see the next section).

The proof shown above follows Freund and Todd [FT81]. They
were aiming at an algorithmic proof. Such algorithms are of great
interest and have actually been used for numeric computation of zeros
of functions.

Exercises

1.∗ (A quantitative metric version of the Borsuk–Ulam theorem; Dubins and
Schwarz [DS81])
(a) Let δ(n) =

√
2(n+1)/n denote the edge length of a regular simplex

inscribed in the unit ball Bn. Prove that any simplex that contains 0 and
has all vertices on Sn−1 has an edge of length at least δ(n).
(b) Let T be a triangulation of the crosspolytope B̂n that is antipodally
symmetric on the boundary, and let g:V (T) → Rn be a mapping that
satisfies f(−v) = −f(v) ∈ Sn−1 for all vertices v ∈ V (T) lying on
the boundary of B̂n. Prove that there exist vertices u,v ∈ V (T) with
‖g(u)− g(v)‖ ≥ δ(n).
(c) Derive the following theorem from (b): Let f :Bn → Sn−1 be a map
that is antipodal on the boundary of Bn (continuity is not assumed).
Then for every ε > 0 there are points x,y ∈ Bn with ‖x − y‖ ≤ ε and
‖f(x)− f(y)‖ ≥ δ(n).
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This exercise is based on a simplification by Arnold Waßmer of the proof
in [DS81].

2.4 Another Proof of Tucker’s Lemma

Preliminaries on chains and boundaries. We introduce several simple
notions, which will allow us to formulate the forthcoming proof clearly and
concisely. Readers familiar with simplicial homology will recognize them im-
mediately. But since we (implicitly) work with Z2 coefficients, many things
become a little simpler than in the usual introductions to homology.

Let K be a simplicial complex. By a k-chain we mean a set Ck consist-
ing of (some of the) k-dimensional simplices of K, k = 0, 1, . . . ,dim K. (The
dimension will usually be shown by the subscript.) Let us emphasize that a
k-chain contains only simplices of dimension k, and so it is not a simplicial
complex.

The empty k-chain will be denoted by 0, rather than by ∅.
If Ck and Dk are k-chains, their sum Ck + Dk is the k-chain that is the

symmetric difference of Ck and Dk (so this addition corresponds to addition
of the characteristic vectors modulo 2). In particular, Ck + Ck = 0.

If F ∈ K is a k-dimensional simplex, the boundary of F is, for the purposes
of this section, the (k−1)-chain ∂F consisting of the facets of F (so ∂F has
k+1 simplices). For a k-chain Ck = {F1, F2, . . . , Fm}, the boundary is defined
as ∂Ck = ∂F1 + ∂F2 + · · · + ∂Fm. So it consists of the (k−1)-dimensional
simplices that occur an odd number of times as facets of the simplices in Ck:

a 2-chain C2 (gray) ∂C2

Important properties of the boundary operator are:

• It commutes with addition of chains: ∂(Ck + Dk) = ∂Ck + ∂Dk. This is
obvious from the definition.

• We have ∂∂Ck = 0 for any k-chain Ck. It is sufficient to verify this for
Ck consisting of a single k-simplex, and this is straightforward.
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A simplicial map f of a simplicial complex K into a simplicial complex
L induces a mapping f#k sending k-chains of K to k-chains of L. Namely, if
Ck = {F} is a k-chain consisting of a single simplex, we define f#k(Ck) as
{f(F )} if f(F ) is a k-dimensional simplex (of L), and as 0 otherwise (so if F is
“flattened” by f , it contributes nothing). Then we extend linearly to arbitrary
chains: f#k({F1, F2, . . . , Fm}) = f#k({F1}) + f#k({F2}) + · · ·+ f#k({Fm}).

The last general fact before we take up the proof of Tucker’s lemma is that
these maps of chains commute with the boundary operator, in the following
sense: f#k−1(∂Ck) = ∂f#k(Ck), for any k-chain Ck. It is again enough to
verify this for Ck containing a single simplex.

Requirements on the triangulation. In the forthcoming proof we also
need an additional condition on the triangulation T of Bn in Tucker’s lemma.
For k = 0, 1, 2, . . . , n−1, we define

H+
k = {x ∈ Sn−1 : xk+1 ≥ 0, xk+2 = xk+3 = · · · = xn = 0},

H−
k = {x ∈ Sn−1 : xk+1 ≤ 0, xk+2 = xk+3 = · · · = xn = 0}.

Here is a picture for n = 3:

H+
0

H−
0

H+
1

H−
1

H−
2

H+
2

So H+
n−1 and H−

n−1 are the “northern” and “southern” hemispheres of Sn−1,
H+

n−2 ∪H−
n−2 is the (n−2)-dimensional “equator,” etc., and finally, H+

0 and
H−

0 are a pair of antipodal points. We assume that T respects this structure:
For each i = 0, 1, . . . , n−1, there are subcomplexes that triangulate H+

i and
H−

i (such triangulations can be constructed, for instance, as refinements of
the triangulation �+n).

We prove Tucker’s lemma in the version with a simplicial map into �n−1

(Theorem 2.3.2). For this proof it doesn’t really matter that the mapping λ
goes into �n−1; it can as well go into any antipodally symmetric triangulation
L of Sn−1. We prove the following three claims.

2.4.1 Proposition. Let T be a triangulation of Bn as described above, let
K be the (antipodally symmetric) part of T triangulating Sn−1, and let L be
another (finite) antipodally symmetric triangulation of Sn−1. Let f :V (K) →
V (L) be a simplicial mapping of K into L. Then we have:
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(i) Let An−1 be the (n−1)-chain consisting of all (n−1)-dimensional sim-
plices of K. Then either the (n−1)-chain Cn−1 := f#n−1(An−1) is empty,
or it consists of all the (n−1)-dimensional simplices of L. In other words,
either each (n−1)-simplex of L has an even number of preimages, or each
has an odd number of preimages.
In the former case (even number of preimages) we say that f has an
even degree and we write deg2(f) = 0, and in the latter case we say
that f has an odd degree, writing deg2(f) = 1.

(ii) If f̄ is any simplicial map of T into L, and f is the restriction of f̄ on
the boundary (i.e., on V (K)), then deg2(f) = 0.

(iii) If f is any antipodal simplicial map of K into L, then deg2(f) = 1.

Hence, a simplicial map λ of T into L that is antipodal on the boundary
cannot exist, since it would have an even degree by (ii) and an odd degree
by (iii), which proves Tucker’s lemma.

Proof of (i). This is geometrically quite intuitive, and the reader can prob-
ably invent a direct geometric proof. Here we start practicing the language
of chains.

If Cn−1 is neither empty nor everything, then there are two (n−1)-
simplices sharing a facet such that one of them is in Cn−1 and the other
isn’t. Then their common facet is in ∂Cn−1. At the same time, we calculate

∂Cn−1 = ∂f#n−1(An−1) = f#n−2(∂An−1) = 0,

since every (n−2)-simplex of K is a facet of exactly two simplices of An−1.
This is a contradiction.

Proof of (ii). This is again intuitive (think of an informal geometric ar-
gument) and easy. Let An be the n-chain consisting of all n-simplices of T.
Then An−1 = ∂An. At the same time, f̄#n(An) = 0, simply because L has
no n-simplices. Thus, Cn−1 = f#n−1(An−1) = ∂f̄#n(An) = ∂0 = 0.

Proof of (iii). This is the challenging part. Let A+
k be the k-chain con-

sisting of all k-simplices of K contained in the k-dimensional “hemisphere”
H+

k introduced in the conditions on T, and similarly for A−
k . We also let

Ak :=A+
k + A−

k .
For k = 1, 2, . . . , n−1, we have

∂A+
k = ∂A−

k = Ak−1

(look at the picture of the decomposition of Sn−1 into the H±
i ). If we set

C+
k := f#k(A+

k ), and similarly for C−
k and Ck, we thus obtain

∂C+
k = ∂C−

k = Ck−1.

Our goal is to prove Cn−1 �= 0. For contradiction, we suppose Cn−1 =
C+

n−1 + C−
n−1 = 0. Then we get C+

n−1 = C−
n−1. Now the antipodality comes
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into play: Since A+
n−1 is antipodal to A−

n−1 and f is an antipodal map,
C+

n−1 is antipodal to C−
n−1 as well, and since they are also equal, the chain

Dn−1 := C+
n−1 = C−

n−1 is antipodally symmetric. Therefore, Cn−2 = ∂C+
n−1 =

∂Dn−1 is the boundary of an antipodally symmetric chain.
This is a good induction hypothesis on which to proceed further. Namely,

we assume for some k > 0 that

Ck = ∂Dk+1

for an antipodally symmetric chain Dk+1, and we infer a similar claim for
Ck−1.

To this end, we note that the antipodally symmetric chain Dk+1 can
be partitioned into two chains, Dk+1 = Ek+1 + Eantip

k+1 , such that Eantip
k+1 is

antipodal to Ek+1 (we divide the simplices of Dk+1 into antipodal pairs and
split each pair between Ek+1 and Eantip

k+1 ). So we have Ck = C+
k + C−

k =
∂(Ek+1 + Eantip

k+1 ). Rearranging gives C+
k + ∂Ek+1 = C−

k + ∂Eantip
k+1 . Since the

left-hand side is antipodal to the right-hand side, Dk :=C+
k + ∂Ek+1 is an

antipodally symmetric chain. Applying the boundary operator yields

∂Dk = ∂C+
k + ∂∂Ek+1 = ∂C+

k = Ck−1,

and the induction step is finished.
Proceeding all the way down to k = 1, we see that C0 should be the

boundary of an antipodally symmetric 1-chain. But C0 consists of two an-
tipodal points (0-simplices), while the boundary of any antipodally symmetric
1-chain consists of an even number of antipodal pairs (Exercise 1). This con-
tradiction concludes the proof.

Notes. Here we have essentially reproduced Tucker’s proof as pre-
sented in Lefschetz [Lef49]. Yet another degree-theoretic proof of the
Borsuk–Ulam theorem is sketched in Section 6.2.

The degree of a map between spheres (or, more generally, between
manifolds) is a quite useful concept. Intuitively, the degree is odd if a
“generic” point in the range of the map has an odd number of preim-
ages. We have defined rigorously the degree modulo 2 of a simplicial
map between two triangulations of Sn−1. To extend the definition to
an arbitrary continuous map f , one first defines a simplicial map f̃
homotopic to f (a simplicial approximation).

A similar method can be used to define the degree as an integer pa-
rameter, but one has to take the orientation of simplices into account.
That is, we consider Sn−1 as the boundary of Bn, which defines an ori-
entation of its (n−1)-simplices (roughly speaking, all (n−1)-simplices
are oriented “inwards”). To obtain the degree of f , we count the num-
ber of preimages of (any) (n−1)-simplex σ, where each preimage τ
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such that f(τ) has the same orientation as σ is counted as +1, while
the preimages τ with f(τ) oriented oppositely are counted as −1.

Defining the degree rigorously and establishing its basic proper-
ties (e.g., homotopy invariance) takes a nontrivial amount of work. If
elementary homology theory has already been covered, a convenient
definition is homological: Since the nth homology group Hn(Sn, Z) is
isomorphic to Z, the homomorphism f∗:Hn(Sn, Z) → Hn(Sn, Z) in-
duced by f can be regarded as a homomorphism Z → Z; thus it acts
as the multiplication by some integer d, and this d is defined to be
the degree of f . Dodson and Parker [DP97, Section 4.3.2] prove the
Borsuk–Ulam theorem using this definition.

Another, more universal, definition of degree uses algebraic count-
ing of the roots x of f(x) = y at a “generic” image point y. The
orientation of the preimages is defined using the sign of the Jacobian
of the map. A proof of the Borsuk–Ulam theorem using the degree of
a smooth map is sketched in [Bre93, p. 253].

Exercises

1. Check the claim made at the end of the proof of Proposition 2.4.1(iii):
The boundary of any antipodally symmetric 1-chain consists of an even
number of antipodal pairs. Try to find a simple proof (but rigorous, of
course).
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3.1 The Ham Sandwich Theorem

The informal statement that gave the ham sandwich theorem its name is this:
For every sandwich made of ham, cheese, and bread, there is a planar cut that
simultaneously halves the ham, the cheese, and the bread. The mathematical
ham sandwich theorem says that any d (finite) mass distributions in Rd can
be simultaneously bisected by a hyperplane:

This geometric result has many interesting consequences.
First we prove a statement about equipartitioning suitable finite Borel

measures µ1, . . . , µd in Rd. A finite Borel measure µ on Rd is a measure on
Rd such that all open subsets of Rd are measurable and 0 < µ(Rd) < ∞. An
example the reader may want to think of is a measure given as the restriction
of the usual Lebesgue measure to a compact subset of Rd. That is, A ⊂ Rd

is compact with λd(A) > 0, where λd denotes the d-dimensional Lebesgue
measure, and µ(X) = λd(X ∩A) for all (Lebesgue measurable) sets X ⊆ Rd.

3.1.1 Theorem (Ham sandwich theorem for measures).
Let µ1, µ2, . . . , µd be finite Borel measures on Rd such that every hyperplane
has measure 0 for each of the µi (in the sequel, we refer to such measures as
“mass distributions”). Then there exists a hyperplane h such that

µi(h+) = 1
2 µi(Rd) for i = 1, 2, . . . , d,

where h+ denotes one of the half-spaces defined by h.
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Proof. Let u = (u0, u1, . . . , ud) be a point of the sphere Sd. If at least one
of the components u1, u2, . . . , ud is nonzero, we assign to the point u the
half-space

h+(u) := {(x1, . . . , xd) ∈ Rd : u1x1 + · · ·+ udxd ≤ u0}.
Obviously, antipodal points of Sd correspond to opposite half-spaces. For a
u of the form (u0, 0, 0, . . . , 0) (where u0 = ±1), we have by the same formula

h+((1, 0, . . . , 0)) = Rd,

h+((−1, 0, . . . , 0)) = ∅.

We define a function f :Sd → Rd by

fi(u) := µi(h+(u)).

It is easily checked that if we have f(u0) = f(−u0) for some u0 ∈ Sd,
then the boundary of the half-space h+(u0) is the desired hyperplane (it
cannot happen that f((1, 0, . . . , 0)) = f((−1, 0, . . . , 0)), so h+(u0) is indeed
a half-space). For an application of the Borsuk–Ulam theorem it remains to
show that f is continuous. This is quite intuitive, but a rigorous argument is
perhaps not so obvious, so we include one for those caring about such things.

Let (un)∞n=1 be a sequence of points of Sd converging to u; we need to
show that µi(h+(un)) → µi(h+(u)). We note that if a point x is not on the
boundary of h+(u), then for all sufficiently large n, we have x ∈ h+(un) if
and only if x ∈ h+(u). So if g denotes the characteristic function of h+(u)
(g(x) = 1 for x ∈ h+(u) and g(x) = 0 for x �∈ h+(u)) and gn is the
characteristic function of h+(un), we have gn(x) → g(x) for all x �∈ ∂h+(u).
Since ∂h+(u) has µi-measure 0 by the assumption, the gn converge to g
µi-almost everywhere. By Lebesgue’s dominated convergence theorem (see,
e.g., Rudin [Rud74, Theorem 1.34]), we thus have µi(h+(un)) =

∫
gn dµi →∫

g dµi = µi(h+(u)), since all the gn are dominated by the constant 1, which
is integrable, since µi is finite. (It is not difficult to prove the particular case
of the dominated convergence theorem needed here directly.)

Sometimes we need to partition masses concentrated at finitely many
points. Then the following version of the ham sandwich theorem can be useful:

3.1.2 Theorem (Ham sandwich theorem for point sets).
Let A1, A2, . . . , Ad ⊂ Rd be finite point sets. Then there exists a hyperplane
h that simultaneously bisects A1, A2, . . . , Ad.

Here “h bisects Ai” means that each of the open half-spaces defined by
h contains at most

⌊
1
2 |Ai|

⌋
points of Ai. Note that if Ai has an odd number

2k+1 of points, then each of the open halfspaces is allowed to contain at most
k points, and so at least one point must lie on the bisecting hyperplane. This
is perhaps not the most natural-looking definition, but a convenient one (also
see Exercise 2).
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Proof from Theorem 3.1.1. The idea is very simple: We replace the
points of Ai by tiny balls and apply the ham sandwich theorem for measures.
But there are some subtleties along the way.

First, we suppose that each Ai has odd cardinality and A1∪̇A2∪̇ · · · ∪̇Ad

is in general position, meaning that no two points of different Ai coincide
and no d+1 points lie on a common hyperplane. Let Aε

i arise from Ai by
replacing each point by a solid ball of radius ε centered at that point, and
choose ε > 0 so small that no d+1 balls of

⋃
Aε

i can be intersected by a
common hyperplane. Let h be a hyperplane simultaneously bisecting the sets
Aε

i . Since Aε
i has an odd number of balls, h must intersect at least one of

them, and since at most d balls are intersected altogether, h intersects exactly
one ball of Aε

i . Moreover, this ball is split in half by h, and so h passes through
its center. Thus h bisects each Ai.

Next, let the Ai still have odd cardinality, but their position can be
arbitrary. We use a perturbation argument. For every η > 0, let Ai,η

arise from Ai by moving each point by at most η in such a way that
A1,η∪̇A2,η∪̇ · · · ∪̇Ad,η is in general position. Let hη bisect the Ai,η. If we
write hη = {x ∈ Rd : 〈aη,x〉 = bη}, where aη is a unit vector, then the
bη lie in a bounded interval, and so by compactness, there exists a cluster
point (a, b) ∈ Rd+1 of the pairs (aη, bη) as η → 0. Let h be the hyper-
plane determined by the equation 〈a,x〉 = b. Let us consider a sequence
η1 > η2 > · · · converging to 0 such that (aηj

, bηj
) → (a, b). If a point x

lies at distance δ > 0 from h, then it also lies at distance at least 1
2δ, say,

from hηj
for all sufficiently large j. Therefore, if there are k points of Ai in

one of the open half-spaces determined by h, then for all j large enough, the
corresponding open half-space determined by hηj

contains at least k points
of Ai,ηj

. It follows that h bisects all the Ai.
Finally, if some of the Ai have an even number of points, we delete one

arbitrarily chosen point from each even-size Ai and bisect the resulting odd-
size sets. Adding the deleted points back cannot spoil the bisection, as is easy
to check from the definition of bisection.

For a future application, we prove a slightly more delicate version of the
discrete ham sandwich theorem.

3.1.3 Corollary (Ham sandwich theorem, general position version).
Let A1, A2, . . . , Ad ⊂ Rd be disjoint finite point sets in general position (such
that no more than d points of A1∪̇ · · · ∪̇Ad are contained in any hyperplane).

Then there exists a hyperplane h that bisects each Ai, such that there are
exactly

⌊
1
2 |Ai|

⌋
points from Ai in each of the open half-spaces defined by h,

and at most one point of Ai on the hyperplane h.

Proof. We start with an arbitrary ham sandwich cut hyperplane h according
to Theorem 3.1.2. What can be wrong with it? It may contain several points,
up to d, of a single Ai (if some of the Ai have even cardinality).
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We fix the coordinate system so that h is the horizontal hyperplane xd = 0.
Let B := h ∩ (A1 ∪ · · · ∪ Ad); B consists of at most d affinely independent
points. We want to move h slightly so that it is as in the corollary (i.e., only
one point of each odd-size Ai stays on it). Since the points of B are affinely
independent, we can make each of them stay on h or go below or above it,
whatever we decide.

To see this, we add d− |B| new points to B so that we obtain a d-point
affinely independent C ⊂ h. For each a ∈ C, we choose a point a′: Either
a′ = a (for the new points a and for those points of B that should stay on
h), or a′ = a + εed, or a′ = a − εed. We let h′ = h′(ε) be the hyperplane
determined by the d points a′, a ∈ C. For all sufficiently small ε > 0, the a′

remain affinely independent (so that h′(ε) is well-defined) and the motion of
h′(ε) is continuous in ε. We can thus guarantee that for all sufficiently small
ε > 0, h′ is as required in the corollary.

Equipartition theorems. Using the 2-dimensional ham sandwich theorem,
it is easy to show that any mass distribution in the plane can be dissected
into 4 equal parts by 2 lines (Exercise 1):

As a natural generalization, one can ask whether any mass distribution in R3

can be partitioned into 23 = 8 equal pieces by 3 planes, or more generally,
whether any mass distribution in Rd can be dissected into 2d pieces of equal
measure by d hyperplanes. For d = 3, this is possible (although not as simple
as the planar case; see Edelsbrunner [Ede87, Section 4.4]). But in dimension
5 and higher, such an equipartition theorem fails: It is in general impossible
to cut a set in R5 into 32 equal parts by 5 hyperplanes. For this, note that any
hyperplane cuts the moment curve in R5 in at most 5 distinct points; hence
any set of 5 hyperplanes cuts the moment curve in at most 25 distinct points,
subdividing it into at most 26 parts. So if we take a piece of the moment
curve, it is disjoint from at least 6 of the 32 open orthants determined by
5 hyperplanes, and hence it cannot be equipartitioned. This example uses
a one-dimensional measure along the moment curve; an example obtained
by restricting the Lebesgue measure to suitable small balls requires a little
more work (Avis [Avi85]; also see Edelsbrunner [Ede87, Section 4.6].) It is not
known whether a dissection into 16 parts of the same size by 4 hyperplanes
is possible in R4, and it is a challenging open problem where many of the
“usual” topological approaches seem to fail.

There are numerous results on equipartitions of measures; some of them
will be mentioned in the remarks below and in the exercises.
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Notes. According to [Ste85], the ham sandwich theorem was con-
jectured by Steinhaus and proved by Banach.

The ham sandwich theorem in Rd is often proved from the (d−1)-
dimensional Borsuk–Ulam theorem. For every direction u ∈ Sd−1,
one chooses the hyperplane h(u) perpendicular to u that bisects the
dth measure, and defines the function to Rd−1 as the parts of the
first through (d−1)st measures contained in h(u)+. But to guarantee
uniqueness of h(u) and continuity of the resulting antipodal function
f :Sd−1 → Rd−1, one needs stronger assumptions on the measures.

Dol’nikov [Dol’92] and, independently, Živaljević and Vrećica [ŽV90]
proved, using the theorem with vector bundles mentioned in the notes
to Section 2.1, a nice generalization of the ham sandwich theorem,
called the center transversal theorem: For any k+1 mass distributions
in Rd there exists a k-flat f (i.e., a k-dimensional affine subspace of
Rd) such that any hyperplane containing f has at least 1

d−k+1 of the
ith mass on each side, for all i = 1, 2, . . . , k+1. The ham sandwich
theorem is obtained for k = d−1. The case k = 0 is another classical
result known as the centerpoint theorem (see, e.g., [Ede87]).

Mass partition theorems. Results on partitioning of one or several
masses in Rd into prescribed parts by given geometric objects are al-
most always proved by topological methods. Interest in such results
was stimulated by applications in computer science, for example in so-
called geometric range searching; see [Mat95], [AE98]. (In this area,
though, approximate partitioning is usually sufficient, and the classi-
cal mass partitioning results were eventually superseded by random
sampling and related methods.)

Concerning the problem of dissecting a measure in R4 into 16 equal
parts by 4 hyperplanes, we remark that partitioning of 16 points placed
on the moment curve is always possible. This is equivalent to the ex-
istence of a uniform Gray code in the 4-dimensional cube: There is
a Hamiltonian circuit in the graph of the 4-cube that uses the same
number of edges (4) from each parallel class. In fact, Robinson and
Cohen [RC81] showed that a uniform Gray code in Cn exists if and
only if n is a power of 2. Ramos [Ram96] gave several new results
on the possibility of partitioning m mass distributions in Rd into 2k

equal pieces by k hyperplanes; he proved that d ≥ m(2k − 1)/k is
necessary in general and d ≥ m2k−1 is always sufficient. Further re-
sults in this direction, relevant mainly for the case of two hyperplanes,
were obtained by Mani-Levitska, Vrećica, and Živaljevići [MLVŽ06]
using obstruction theory (e.g., every 5 measures in R8 can be equipar-
titioned by 2 hyperplanes) and by Blagojević and Ziegler [BZ07] using
the ideal-valued index theory of Fadell and Husseini; see the notes to
Section 6.2.
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An old equipartition result, by Buck and Buck [BB49], asserts that
a mass distribution in the plane can be dissected into 6 equal parts
by 3 lines passing through a common point. Makeev [Mak88], [Mak01]
established a number of mass partition theorems, mainly concerning
partitions by infinite convex cones. For example, for any mass distri-
bution in R3, there is a cube Q such that the 6 infinite cones with
apex in the center of Q and with the facets of Q as bases form an
equipartition [Mak88]. Also, for any mass distribution µ in R3 cen-
trally symmetric about 0, there exists a nonsingular linear mapping
L: R3 → R3 such that the cones L(C1), L(C2), . . . , L(C12) equiparti-
tion µ, where the Ci are the infinite cones with apex 0 over the facets
of a regular dodecahedron centered at 0 [Mak01].

Živaljević and Vrećica [ŽV01] proved several higher-dimensional
results, such as that given a simplex ∆ in Rd and a point x ∈ int ∆,
any mass distribution can be dissected into d+1 parts with arbitrary
prescribed ratios by a suitable translation of the d+1 cones with apex
x given by the facets of ∆.

Several results have been proved concerning partitions by k-fans,
i.e., by k rays emanating from a common point in the plane (the
point may also be at infinity; i.e., we may have k parallel lines, and
in this case, both of the unbounded parts of the plane together form
one sector). Answering a question of Kaneko and Kano [KK99], sev-
eral authors [IUY00] [Sak02] [BKS00] have shown that any two mass
distributions in the plane can be simultaneously equipartitioned by a
3-fan, even in such a way that the resulting 3 sectors are convex. For
example, a planar convex body can be cut by a 3-fan so that both
the area and the perimeter are divided equitably (this special “cake
cutting” case was shown in [AKK+00]):

Partitions of m measures by k-fans were studied in [BM01] (with-
out any convexity requirements). It was noted that the nontrivial cases
are (k,m) = (2, 3), (3, 2), (4, 2), and some positive results were proved,
including some where the partition is not into equal parts; for exam-
ple, any 2 measures can be simultaneously partitioned in the ratio
1 : 1 : 1 : 2 by a 4-fan. Later, the possibility of equipartition of 2 mea-
sures by a 4-fan was established as well [BM02]. Vrećica and Živaljević
[VŽ03] gave an alternative proof of that result, and they showed some
negative results on the applicability of a topological approach in the
spirit of [BM01]. Challenging problems remain open; for instance, can
any 2 measures be partitioned by a 4-fan in any prescribed ratio?
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Another interesting equipartitioning result is Schulman’s [Sch93b]
“cobweb partition theorem”: Every mass distribution in R2 has a par-
tition into 8 equally large parts by a cobweb as in the picture below.

Exercises

1. Prove that any mass distribution in the plane can be dissected into four
equal parts by two lines.

2. In the definition of bisection of a finite point set A ⊂ Rd by a hyperplane
h, it might seem natural to count the points on h as contributing 1

2 to both
half-spaces. That is, one could say that h bisects A if |h⊕∩A|+ 1

2 |h∩A| =
1
2 |A|, where h⊕ is one of the open half-spaces defined by h. Show that
with this definition it is generally impossible to bisect every two finite
point sets in the plane by a line.

3.∗ Consider 3 mass distributions in the plane that moreover, assign measure
0 to each circle. Prove that they can be simultaneously halved by a circle
or by a straight line. (This is a special case of results of Stone and Tukey;
see [Bre93, p. 243].)

4. Show that 1 : 1 is the only ratio such that any two compact sets in the
plane can be simultaneously partitioned by a line in that ratio.

5.∗ (a) Find 4 measures in the plane that cannot be simultaneously bisected
by a 2-fan.
(b) Find 3 measures in the plane that cannot be simultaneously equipar-
titioned by a 3-fan.
(c) (More difficult) Find 2 measures in the plane that cannot be simul-
taneously equipartitioned by a 5-fan.
See [BM01] for a detailed solution.

3.2 On Multicolored Partitions and Necklaces

Multicolored partitions. Here is one nice and simple consequence of the
(discrete) ham sandwich theorem:

3.2.1 Theorem (Akiyama and Alon [AA89]).
Consider sets A1, A2, . . . , Ad, of n points each, in general position in Rd;
imagine that the points of A1 are red, the points of A2 blue, etc. (each Ai

has its own color). Then the points of the union A1∪· · ·∪Ad can be partitioned
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into “rainbow” d-tuples (each d-tuple contains one point of each color) with
disjoint convex hulls.

(In our drawing we didn’t quite manage to find a correct pairing.)

Proof. We proceed by induction on n. If n > 1 is odd, there is a hyperplane
h bisecting each Ai and containing exactly one point of each color. We let the
points in h form one d-tuple and use induction for the subsets in the open
half-spaces. For n even, we invoke the general-position version of the ham
sandwich theorem (Corollary 3.1.3), which guarantees a bisecting hyperplane
that avoids all the Ai.

Remark. For d = 2 the theorem can be proved directly (Exercise 1). No
direct (nontopological) proof is known in higher dimensions.

Division of a necklace. Two thieves have stolen a precious necklace of
nearly immeasurable value, not only because of the precious stones (dia-
monds, sapphires, rubies, etc.), but also because these are set in pure plat-
inum. The thieves do not know the values of the stones of various kinds, and
so they want to divide the stones of each kind evenly. In order to waste as
little platinum as possible, they want to achieve this by as few cuts as possi-
ble (admittedly, this mathematical model of thieves is not very realistic, but
applying mathematics in social sciences has never been easy).

We assume that the necklace is open (with two ends) and that there are
d different kinds of stones, an even number of each kind. It is easy to see that
at least d cuts may be necessary: Place the stones of the first kind first, then
the stones of the second kind, and so on. The necklace theorem shows that
this is the worst, what can happen.

3.2.2 Theorem (Necklace theorem). Every (open) necklace with d kinds
of stones can be divided between two thieves using no more than d cuts.

So for the necklace in our picture, 3 cuts should suffice:

Surprisingly, all known proofs of this theorem are topological.
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First proof: by ham sandwich. We place the necklace into Rd along the
moment curve. Let γ(t) = (t, t2, . . . , td) be the parametric expression of the
moment curve γ. If the necklace has n stones, we define

Ai = {γ(k) : the kth stone is of the ith kind, k = 1, 2, . . . , n}.

Let us also call the points of Ai the stones of the ith kind. By the (general
position discrete) ham sandwich theorem (Corollary 3.1.3), there exists a
hyperplane h simultaneously bisecting each Ai. This h cuts the moment curve,
and the necklace lying along it, in at most d places. All the sets Ai were
assumed to be of even size, so h contains no stones, and these cuts are as
required in the necklace problem.

h

Second proof. We reproduce another proof as well, whose clever encoding
of the divisions of the necklace by points of the sphere is of independent
interest.

First we note that the result follows from a continuous version. By a
continuous probability measure on [0, 1] we mean a probability measure µ on
[0, 1] such that

∫ x

0
dµ is continuous in x.

3.2.3 Theorem (Hobby–Rice theorem [HR65]).
Let µ1, µ2, . . . , µd be continuous probability measures on [0, 1]. Then there
exists a partition of [0, 1] into d+1 intervals I0, I1, . . . , Id (using d cut points)
and signs ε0, ε1, . . . , εd ∈ {−1,+1} with

d∑
j=0

εj · µi(Ij) = 0 for i = 1, 2, . . . , d.
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It should be clear that it suffices to prove this result in the special case
where εj = (−1)j , since a cut point at which the sign doesn’t change may be
removed. However, the proof we give below does not seem to restrict naturally
to that special case.

We also note that the Hobby–Rice theorem can be derived from the con-
tinuous ham sandwich theorem, by an argument similar to the above proof
of the necklace theorem.

Proof of the necklace theorem from the continuous version. Let us
have ti stones of the ith kind, n :=

∑d
i=1 ti. We imagine the necklace on the

interval [0, 1]; the kth stone corresponds to the segment [k−1
n , k

n ). First we
define characteristic functions fi(x): [0, 1] → {0, 1} for x ∈ [k−1

n , k
n ) by

fi(x) =
{ 1 if the kth stone of the necklace is of the ith kind,

0 otherwise.

Each function fi defines a measure µi on [0, 1], by µi(A) := n
ti

∫
A

fi(x) dx.
Thus µi(A) denotes the fraction of stones of the ith kind that is on the part
A of the necklace.

For these µi, we find a division as in the continuous necklace theorem
(the first thief gets the intervals with “+” signs and the second those with
“−”). This division is fair, but it can be nonintegral (i.e., some stones would
have to be cut). We use a rounding procedure. We proceed by induction on
the number of “nonintegral” cuts. If a cut subdivides a stone of the ith type,
then either the cut is unnecessary, or there is another cut through a stone
of type i. In the latter case we can move both cuts away from the stones,
without changing the balance.

Proof of the continuous necklace theorem. With every point x =
(x1, x2, . . . , xd, xd+1) ∈ Sd we associate a division of the interval [0, 1] into
d+1 parts, of lengths x2

1, x
2
2, . . . , x

2
d+1. That is, with x we associate the cuts

at the points zi := x2
1 + · · · + x2

i , where 0 = z0 ≤ z1 ≤ · · · ≤ zd ≤ zd+1 = 1.
The sign εj for the interval Ij = [zj−1, zj ] is chosen as sign(xj). This defines
a continuous function g:Sd → Rd:

gi(x) :=
d+1∑
j=1

sign(xj) · µi([zj−1, zj ]).

In words, gi(x) is the amount of i-stone given to the first thief minus the
amount of i-stone allocated to the second thief. This function is clearly an-
tipodal. Thus, an x ∈ Sd exists with g(x) = 0. This x encodes a just divi-
sion.

For a solution of a similar problem with more than two thieves, the proof
via the ham sandwich theorem doesn’t seem to work anymore. The second
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proof can be generalized, but the Borsuk–Ulam theorem needs to be gener-
alized as well: Instead of the sphere we have to use a different “configuration
space” that admits a symmetry of higher order. The necklace problem with
several thieves will be discussed in Section 6.6.

Notes. The necklace theorem was first proved by Goldberg and West
[GW85]. Alon and West [AW86] found a new elegant proof, essentially
the second proof given above. The proof of the necklace theorem via
the ham sandwich theorem was noted by Alon (private communica-
tion) and also by Ramos [Ram96]. The continuous necklace theorem
was proved by Hobby and Rice [HR65], earlier than the discrete ver-
sion, and in a completely different context, but their proof is also based
on the Borsuk–Ulam theorem.

Exercises

1. Prove the planar case (d = 2) of Theorem 3.2.1 by considering a perfect
red–blue matching with the minimum possible total length of the edges.

3.3 Kneser’s Conjecture

One of the earliest and most spectacular applications of topological methods
in combinatorics is Lovász’s 1978 proof [Lov78] of a conjecture of Kneser.
Kneser posed the following problem in 1955:

Let k and n be two natural numbers, k ≤ n; let N be a set with n
elements, Nk the set of all subsets of N with exactly k elements; let f
be a map from Nk to a set M with the property that f(K1) �= f(K2)
if the intersection K1 ∩ K2 is empty; let m(k, n, f) be the number
of elements of M , and m(k, n) = minf m(k, n, f). Prove that for
fixed k there are numbers m0 = m0(k) and n0 = n0(k) such that
m(k, n) = n−m0 for n ≥ n0; here m0(k) ≥ 2k−2 and n0(k) ≥ 2k−1;
both inequalities probably hold with equality.
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We will use a slightly different notation, and recast this in a graph-
theoretic language. We take N = [n], we write

(
[n]
k

)
instead of Nk for the

collection of all k-subsets of [n], we take
(
[n]
k

)
as the vertex set of a graph,

and we connect two vertices by an edge if the corresponding k-sets are dis-
joint. Then the mapping f becomes a coloring of the graph, where M is the
set of colors, and Kneser asks for the chromatic number of the graph!

We recall that a (proper) k-coloring of a graph G = (V,E) is a mapping
c:V → [k] such that c(u) �= c(v) whenever {u, v} ∈ E is an edge. The
chromatic number of G, denoted by χ(G), is the smallest k such that G has
a k-coloring.

Let X be a finite ground set and let F ⊆ 2X be a set system. The
Kneser graph of F , denoted by KG(F), has F as the vertex set, and two sets
F1, F2 ∈ F are adjacent iff F1 ∩ F2 = ∅. In symbols,

KG(F) =
(
F , {{F1, F2} : F1, F2 ∈ F , F1 ∩ F2 = ∅}

)
.

Let KGn,k denote the Kneser graph of the system F =
(
[n]
k

)
(all k-element

subsets of [n]). Then Kneser’s conjecture is χ(KGn,k) = n−2k+2 for n ≥
2k−1.

3.3.1 Examples.

• KGn,1 is the complete graph Kn with χ(Kn) = n.
• KG2k−1,k is a graph with no edges, and so χ(KG2k−1,k) = 1.
• KG2k,k is a matching (every set is adjacent only to its complement), and

χ(KG2k,k) = 2 for all k ≥ 1.
• The first interesting example is KG5,2, which turns out to be the ubiqui-

tous Petersen graph:

{1, 2}

{3, 5}

{3, 4}{2, 5} {2, 4}

{1, 4}

{1, 3}

{2, 3}

{4, 5}

{1, 5}
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This graph serves as a “(counter)example for almost everything” in graph
theory (see, e.g., [CHW92], [HS93]). Check that 3 colors suffice and are
necessary!

As we have already mentioned, Kneser’s conjecture was first proved by
Lovász.

3.3.2 Theorem (Lovász–Kneser theorem [Lov78]). For all k > 0 and
n ≥ 2k− 1, the chromatic number of the Kneser graph KGn,k is χ(KGn,k) =
n−2k+2.

The Kneser graphs KGn,k are very interesting examples of graphs with
high chromatic number. For example, note that for n = 3k−1, they have no
triangles, and yet the chromatic number is k+1. One of the main reasons
for their importance, and also probably a reason why the proof of Kneser’s
conjecture is difficult, is that there is a large gap between the chromatic
number and the fractional chromatic number. (There are very few examples
of such graphs known.)

The fractional chromatic number χf (G) of a graph G is defined as the
infimum (actually minimum) of the fractions a

b such that V (G) can be covered
by a independent sets in such a way that every vertex is covered at least
b times. We always have χf (G) ≤ χ(G), and many methods for bounding
χ(G) from below actually estimate χf (G). This means that they do not give
good results for graphs that have high chromatic number χ(G), but low
fractional chromatic number χf (G), as in the case of the Kneser graphs.

For example, the well-known lower bound in terms of the maximal size of
independent sets, χ(G) ≥ |V (G)|/α(G), is just a part of the chain

|V |
α(G)

≤ χf (G) ≤ χ(G),

where α(G), the independence number of G, is the maximum size of an inde-
pendent set in G. However, for the Kneser graph, we have χf (KGn,k) = n

k
(Exercise 1). So, for example, χf (KG3k−1,k) < 3.

Upper bound for the chromatic number. It is simple to show that the
chromatic number of KGn,k cannot be larger than n−2k+2. We color the
vertices of the Kneser graph by

χ(F ) := min{min(F ), n−2k+2}.

This assigns a color χ(F ) ∈ {1, 2, . . . , n−2k+2} to each subset F ∈ (
[n]
k

)
.

If two sets F, F ′ get the same color χ(F ) = χ(F ′) = i < n−2k+2, then
they cannot be disjoint, since they both contain the element i. If the two
k-sets both get color n−2k+2, then they are both contained in the set
{n−2k+2, . . . , n}, which has only 2k−1 elements, and hence they cannot
be disjoint either.
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All known proofs of the tight lower bound for χ(KGn,k) are topological
or at least imitate the topological proofs. We begin with the simplest known
proof, recently discovered by Greene.

First proof of the Lovász–Kneser theorem. Let us consider the Kneser
graph KGn,k and set d :=n−2k+1. Let X ⊂ Sd be an n-point set such that
no hyperplane passing through the center of Sd contains more than d points
of X. This condition is easily met by a set in a suitably general position,
since we deal with points in Rd+1 and require that no d+1 of them lie on a
common hyperplane passing through the origin.

Let us suppose that the vertex set of KGn,k is
(
X
k

)
, rather than the usual(

[n]
k

)
(in other words, we identify elements of [n] with points of X).

We proceed by contradiction. Suppose that there is a proper coloring of
KGn,k by at most n−2k+1 = d colors. We fix one such proper coloring and
we define sets A1, . . . , Ad ⊆ Sd: For a point x ∈ Sd, we have x ∈ Ai if there
is at least one k-tuple F ∈ (

X
k

)
of color i contained in the open hemisphere

H(x) centered at x (formally, H(x) = {y ∈ Sd : 〈x,y〉 > 0}). Finally, we
put Ad+1 = Sd \ (A1 ∪ · · · ∪Ad).

Clearly, A1 through Ad are open sets, while Ad+1 is closed. By the version
of the Lyusternik–Shnirel’man theorem mentioned in Exercise 2.1.6, there
exist i ∈ [d+1] and x ∈ Sd such that x,−x ∈ Ai.

If i ≤ d, we get two disjoint k-tuples colored by color i, one in the open
hemisphere H(x) and one in the opposite open hemisphere H(−x). This
means that the considered coloring is not a proper coloring of the Kneser
graph.

If i = d+1, then H(x) contains at most k−1 points of X, and so does
H(−x). Therefore, the complement Sd \ (H(x)∪H(−x)), which is an “equa-
tor” (the intersection of Sd with a hyperplane through the origin), con-
tains at least n−2k+2 = d+1 points of X, and this contradicts the choice
of X.

Notes. Kneser’s conjecture was formulated in [Kne55]. Garey and
Johnson [GJ76] established the case k = 3 by elementary means; also
see Stahl [Sta76]. As was already mentioned, the conjecture was proved
by Lovász [Lov78]; a variation on his proof will be shown in Sec-
tion 5.9. The short proof explained in this section by Greene [Gre02]
was inspired by a proof by Bárány [Bár78], which we will present in
Section 3.5. Still other proofs were found by Dol’nikov [Dol’81] (see Sec-
tion 3.4) and by Sarkaria [Sar90] (see Section 5.8). In [Mat04], Kneser’s
conjecture was derived from Tucker’s lemma by a direct combinator-
ial argument, without using a continuous result of Borsuk–Ulam type.
Since the required instance of Tucker’s lemma also has a combinator-
ial proof, the resulting proof of the Lovász–Kneser theorem is purely
combinatorial, although the topological inspiration remains notable.
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Generalizations of the Kneser conjecture to hypergraphs and re-
lated results will be discussed in Section 6.7.

Exercises

1. (a) Show that the fractional chromatic number of the Kneser graphs
satisfies

χf (KGn,k) ≤ n

k
(n ≥ 2k > 0).

(b) Show that the inequality in (a) is actually an equality. Hint: (Look
up and) use the Erdős–Ko–Rado theorem.

2. Show that KGn,k has no odd cycles of length shorter than 1 + 2
⌈

k
n−2k

⌉
.

What about even cycles?
3. What is the maximum number of vertices in a complete bipartite sub-

graph of KGn,k?

3.4 More General Kneser Graphs: Dol’nikov’s
Theorem

The proof of the Lovász–Kneser theorem shown in the previous section pro-
vides a more general result for free: a lower bound for the chromatic number
of the Kneser graph KG(F) for an arbitrary finite set system F .

First we recall the important notion of the chromatic number of a hyper-
graph (or of a set system). If F is a system of subsets of a set X, a coloring
c:X → [m] is a (proper) m-coloring of (X,F) if no edge is monochromatic
under c (|c(F )| > 1 for all F ∈ F). The chromatic number χ(F) is the small-
est m such that (X,F) is m-colorable. In this section we are interested only
in 2-colorability.

Next, we define a less standard parameter of the set system F . Let the
m-colorability defect, denoted by cdm(F), be the minimum size of a subset
Y ⊆ X such that the system of the sets of F that contain no points of Y is
m-colorable. In symbols,

cdm(F) = min
{
|Y | : (X \ Y, {F ∈ F : F ∩ Y = ∅}) is m-colorable

}
.

For example, for m = 2, we want to color each point of X red, blue, or white
in such a way that no set of F is completely red or completely blue (but it
may be completely white), and cd2(F) is the minimum required number of
white points for such a coloring.

Xblue

red
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3.4.1 Theorem (Dol’nikov’s theorem [Dol’81]). For any finite set sys-
tem (X,F), we have

χ(KG(F)) ≥ cd2(F).

It is fair to remark that this bound for χ(KG(F)) need not be tight, and
that cd2(F) is not easy to determine in general.

If F consists of all the k-point subsets of [n], n ≥ 2k, then after deleting
any n−2k+1 points we are left with the system of all k-element subsets of
a (2k−1)-element set. In any red–blue coloring of that set, one of the colors
has at least k points and contains a monochromatic k-element set. Thus
cd2(F) ≥ n−2k+2, and we see that Theorem 3.4.1 generalizes the Lovász–
Kneser theorem.

Proof of Dol’nikov’s theorem. Let d :=χ(KG(F)). As in the above proof
of the Lovász–Kneser theorem, we identify the ground set of F with a point
set X ⊂ Sd in general position (no d+1 points on an “equator”). For x ∈ Sd,
we define x ∈ Ai if the open hemisphere H(x) contains a set F ∈ F colored
by color i, i ∈ [d]. As before, we set Ad+1 = Sd \ (A1 ∪ · · · ∪ Ad). The
appropriate version of Lyusternik–Shnirel’man yields an x with x,−x ∈ Ai

for some i.
We cannot have i ≤ d, for otherwise, we would have two sets of F of color

i lying in opposite open hemispheres. So i = d+1. We color the points of X
in H(x) red, those in H(−x) blue, and the remaining ones (on the “equator”
separating the two hemispheres) white. There are at most d white points by
the general position of X, and so cd2(F) ≤ d.

Another proof of Dol’nikov’s theorem. Let us explain Dol’nikov’s original
proof, somewhat more complicated but elegant. It is based on a geometric
statement slightly resembling the ham sandwich theorem.

3.4.2 Proposition. Let C1, C2, . . . , Cd be families of nonempty compact con-
vex sets in Rd, and suppose that for each i = 1, 2, . . . , d, the system Ci is
intersecting; that is, C ∩ C ′ �= ∅ for C,C ′ ∈ Ci. Then there is a hyperplane
(transversal) intersecting all sets of

⋃d
i=1 Ci.

Proof. For a direction vector v ∈ Sd−1, let �v denote the line containing v
and passing through the origin, oriented from the origin toward v. Consider
the system of the orthogonal projections of the sets of Ci on the line �v:

0

v

�v
Ii(v)

Ci
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Each of these projections is a closed and bounded interval, and any two of
them intersect. It is easy to see (directly, or by the one-dimensional Helly
theorem) that the intersection of all these intervals is a nonempty interval,
which we denote by Ii(v). Let mi(v) denote the midpoint of Ii(v).

We define an antipodal mapping f :Sd−1 → Rd, by letting f(v)i =
〈mi(v),v〉 be the oriented distance of mi(v) from the origin. This is a con-
tinuous antipodal map, and we claim that for any such map, there is a
point v ∈ Sd−1 with f1(v) = f2(v) = · · · = fd(v). To see this, we de-
fine a new antipodal map g, this time into Rd−1, by letting gi = fi − fd,
i = 1, 2, . . . , d−1. This g has a zero by the Borsuk–Ulam theorem, and if
g(v) = 0, then f1(v) = f2(v) = · · · = fd(v) as required. For a v with this
property, all the d midpoints mi(v) coincide, and so the hyperplane passing
through them and perpendicular to �v is the desired transversal of all sets of
C1 ∪ C2 ∪ · · · ∪ Cd.

Second proof of Theorem 3.4.1. Suppose that there is a d-coloring of
the Kneser graph KG(F). This means that F can be partitioned into set
systems F1,F2, . . . ,Fd such that each two sets in Fi have a common point,
i = 1, 2, . . . , d.

We place the points of the ground set X into Rd (note that in the first
proof the points were placed in Rd+1!). We require general position: X is such
that no d+1 points lie on a common hyperplane. We define the d families of
convex sets in Rd by

Ci = {conv(F ) : F ∈ Fi}.
These Ci satisfy the assumptions of Proposition 3.4.2 above, and so there is
a hyperplane h intersecting the convex hulls of all F ∈ F .

We color the points of X in one of the open half-spaces bounded by h
red, those in the opposite open half-space blue, and those lying on h white.

h

red

blue

There are at most d white points, and this coloring shows that cd2(F) ≤ d.
Theorem 3.4.1 is proved.



64 3. Direct Applications of Borsuk–Ulam

Notes. Theorem 3.4.1 is a special case of results of Dol’nikov [Dol’81]
(also see [Dol’92], [Dol’94]). It was also independently found by Kř́ıž
[Kri92], in a more general form for hypergraphs (see Section 6.7).

The first proof in the text is a straightforward generalization of
Greene’s proof. For yet another proof of Dol’nikov’s theorem see Sec-
tion 5.8.

Exercises

1. For set systems F with χ(KG(F)) ≤ 2, prove Dol’nikov’s theorem by a
direct combinatorial argument.

2. Find 2-colorable set systems F with χ(KG(F)) arbitrarily large.
3. (a) Show that every graph is a Kneser graph. That is, given a (finite)

graph G, construct a set system F such that KG(F) is isomorphic to G.
(b) Generalize the definition of KG(F), in the obvious way, to the case
where F is a multiset of sets (some sets may occur several times in F).
For example, the complete graph Kn is isomorphic to the Kneser graph
of the collection F consisting of n copies of ∅. Given a graph G, we want
to find a multiset F of sets with KG(F) isomorphic to G and with |⋃F|
as small as possible. Rephrase this problem in graph-theoretic notions
speaking about G. (Hint: It is a minimum-cover problem.)

3.5 Gale’s Lemma and Schrijver’s Theorem

Here we present another geometric proof of the Lovász–Kneser theorem. An
extension of this approach leads to a result that the methods considered in
the previous two sections seem unable to provide.

This proof was found by Bárány [Bár78] soon after the announcement of
Lovász’s breakthrough. It is similar to Greene’s proof shown in Section 3.3, or
rather, Greene’s proof is similar to Bárány’s, which came much earlier. But
the points are placed on a sphere of one dimension lower, using the following
lemma.

3.5.1 Lemma (Gale’s lemma [Gal56]). For every d ≥ 0 and every k ≥ 1,
there exists a set X ⊂ Sd of 2k+d points such that every open hemisphere
of Sd contains at least k points of X.

First let us see how this implies the Lovász–Kneser theorem.

Another proof of the Lovász–Kneser theorem. We consider the Kneser
graph KGn,k and we set d := n−2k (this dimension is one lower than in
Greene’s proof). Let X ⊂ Sd be the set as in Gale’s lemma. We identify
[n] with X, so that the vertices of KGn,k are k-point subsets of X.

For contradiction, let us suppose that a proper (d+1)-coloring of KGn,k

has been chosen. We define sets A1, . . . , Ad+1 ⊆ Sd by letting x ∈ Ai if there
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is at least one k-tuple F ∈ (
X
k

)
of color i contained in the open hemisphere

H(x) centered at x.
This time A1, . . . , Ad+1 form an open cover of Sd, since each H(x)

contains at least one k-tuple by Gale’s lemma. By (LS-o) (Lyusternik–
Shnirel’man for open covers), there are i ∈ [d+1] and x ∈ Sd with x,−x ∈ Ai.
This leads to a contradiction as before: We have two disjoint k-tuples of color
i, one in H(x) and one in H(−x).

Proof of Gale’s lemma. We prove the following version (equivalent to
the above formulation using the central projection to Sd): There exist points
v1,v2, . . . ,v2k+d in Rd+1 such that every open half-space whose boundary
hyperplane passes through 0 contains at least k of them.

The construction uses the moment curve (Definition 1.6.3), but we lift it
one dimension higher, into the hyperplane x1 = 1. That is, let

γ̄ := {(1, t, t2, . . . , td) ∈ Rd+1 : t ∈ R}.

We take any 2k+d distinct points on γ̄ and label them w1,w2, . . . ,w2k+d

in the order in which they occur along the curve. For example, we can take
wi := γ̄(i) for 1 ≤ i ≤ 2k+d. We call the points w2,w4, . . . even and the
points w1,w3, . . . odd. Further we define vi := (−1)iwi.

Let h be a hyperplane passing through 0, and let h⊕ and h� be the two
open half-spaces determined by it. We want to argue that both h⊕ and h�

contain at least k points among the vi; we formulate the argument for h⊕.
Since vi = wi for i even and vi = −wi for i odd, we need to prove that the
number of even points wi in h⊕ plus the number of odd points wi in h� is
at least k.

Using Lemma 1.6.4, we see that every hyperplane h through the origin
intersects γ̄ in no more than d points. Moreover, if there are d intersections,
then γ̄ crosses h at each of the intersections.

Given an arbitrary hyperplane h through the origin, we move it con-
tinuously to a position where it contains the origin and exactly d points of
W := {w1, . . . ,wd+2k}, while no point of W crosses from one side to the other
during the motion. This is possible: Having already some j < d points of W
on h, we rotate h around some (d−2)-flat containing these points and 0, until
we hit another point of W .

We thus suppose that h intersects γ̄ in exactly d points, which all lie in W .
Let Won be the subset of the d points of W lying on h, and let Woff := W \Won
be the remaining 2k points. At every point of Won, γ̄ crosses from one side
of h to the other.

We color a wi ∈ Woff black if either it is even and lies in h⊕ or it is odd
and lies in h�. Otherwise, we color wi white. It is easy to see that as we
follow γ̄, black and while points of Woff alternate:
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h

γ̄

Indeed, let w and w′ be two consecutive points of Woff along γ̄ with j points
of Won between them. For j even, both w and w′ are in the same half-space,
and one of them is odd and the other is even, so one is black and one white.
If j is odd, then w and w′ are in different half-spaces, but they are both even
or both odd, and so again one is black and one white. So the number of black
points is at least 
 1

2 |Woff|� ≥ k. This proves Gale’s lemma.

A strengthening. Almost the same proof establishes a stronger theorem,
found by Schrijver [Sch78] soon after Kneser’s conjecture was proved.

3.5.2 Definition (Schrijver graph). Let us call a subset S ∈ (
[n]
k

)
stable

if it does not contain any two adjacent elements modulo n (if i ∈ S, then
i+1 �∈ S, and if n ∈ S, then 1 �∈ S). In other words, S corresponds to an

independent set in the cycle Cn. We denote by
(
[n]
k

)
stab

the family of stable
k-subsets of [n]. The Schrijver graph is

SGn,k := KG
((

[n]
k

)
stab

)
.

It is an induced subgraph of the Kneser graph KGn,k, and as it turns out, it
has the same chromatic number. For example, for KG5,2, the Petersen graph,
SG5,2 is a 5-cycle.

3.5.3 Theorem (Schrijver’s theorem [Sch78]). For all n ≥ 2k ≥ 0, we
have χ(SGn,k) = χ(KGn,k) = n−2k+2.

In fact, Schrijver showed that SGn,k is a vertex-critical subgraph of KGn,k;
that is, the chromatic number decreases if any single vertex (stable k-set) from
SGn,k is deeted (Exercise 1).

Proof of Schrijver’s theorem. We proceed exactly as above for the
Lovász–Kneser theorem, with the following strengthening of Gale’s lemma:

There exists a (2k+d)-point set X ⊂ Sd such that under a suitable
identification of X with [n], every open hemisphere contains a stable
k-tuple.

And this is precisely what the above proof of Gale’s lemma provides: The
black points form a stable set if the points of X are numbered along γ̄.
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Notes. Gale’s proof of Lemma 3.5.1 is different from the one shown;
it goes by induction on d and k. On the other hand, our argument
is also based on Gale’s work, namely, on the investigation of cyclic
polytopes, which are convex hulls of finite point sets on the moment
curve. The possibility of proving both Gale’s lemma and the stronger
version needed for Schrijver’s graphs by the above simple construction
was observed by Ziegler.

As was shown in [MZ04], Bárány’s method of proof (together
with the Gale transform, well-known in the theory of convex poly-
topes) yields the following “generalized Bárány bound” for the chro-
matic number of Kneser graphs: Given a set system F on a finite set
X, we define the abstract simplicial complex K := {S ⊆ X : F �⊆
S for all F ∈ F}. If K is isomorphic to a subcomplex of the bound-
ary complex of a d-dimensional simplicial convex polytope P , then
χ(KG(F)) ≥ |X| − d. In particular, if we choose P as the cyclic poly-
tope, we obtain Schrijver’s theorem.

Exercises

1.∗ (a) Show that the graph SGn,k is vertex-critical (for chromatic number);
that is, for every k-tuple A ∈ V (SGn,k), there is a proper coloring of the
vertex set of SGn,k by n−2k+2 colors that uses the color n−2k+2 only
at A. (This is not easy; a solution can be found in Schrijver’s paper.)
(b) Show that not all SGn,k are edge-critical (an edge may be removed
without decreasing the chromatic number).

2. Show that the Schrijver graph SGn,k is not regular in general; that is, its
vertices need not all have the same degree. What can you say about the
symmetries of the Schrijver graphs?

3.∗ (Due to Anders Björner) Let µ(n, k) be the minimal number of mono-
chromatic edges in a coloring of KGn,k by n−2k+1 colors. Show that:
(a) µ(n, k) ≤ (

2k−1
k

)
.

(b) Equality holds for the cases k = 2 and n = 2k+1. (Hint: Use Schijver’s
theorem.)



4. A Topological Interlude

In this chapter we explain some further basic topological concepts and con-
structions needed for the subsequent development. We do it a little more
thoroughly than necessary for our concrete applications. As in Chapter 1,
most of the material should be well known to readers familiar with elemen-
tary algebraic topology.

4.1 Quotient Spaces

Here we investigate the formation of new spaces from old ones. Given a
topological space X and a subset A ⊂ X, we can form a new space by
“shrinking A to a point.” Two spaces can be “glued together” to form another
space. A space can be factored using a group acting on it. All these important
constructions are special cases of forming quotient spaces.

4.1.1 Definition. Let X be a topological space and let ≈ be an equivalence
relation on its elements. We define a topology on the set X/≈ of equivalence
classes as follows: A set U ⊆ X/≈ is open if and only if q−1(U) is open in X,
where q:X → X/≈ is the quotient map that maps each x ∈ X to the
equivalence class [x]≈ containing it. The set X/≈ with this topology is called
a quotient space of X (determined by ≈).

In constructions of quotient spaces, the equivalence ≈ is often given by a
list of the nontrivial equivalence classes. That is, if (Ai : i ∈ I) is some family
of disjoint subsets of X, we define an equivalence ≈ on X corresponding to
this family as follows: x ≈ y if and only if x = y or there exists i ∈ I with
x, y ∈ Ai. Then we write X/(Ai, i ∈ I) for X/≈. The meaning is “the space
X/(Ai, i ∈ I) is obtained from X by shrinking each Ai to a single point.” If
we have only one Ai = A, we simply write X/A.

If one encounters the above definition of quotient space for the first time,
it probably requires some thinking to see that it is the “right” way of defining
the topology after the shrinking. Exercise 1 is perhaps suitable for realizing
how things work.

4.1.2 Example. By gluing together the endpoints of a segment, we obtain a
circle, and so [0, 1]/{0, 1} ∼= S1. More generally, Bd/Sd−1 ∼= Sd (Exercise 2).
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4.1.3 Example. Let U = [0, 1]× [0, 1] be the unit square. By gluing the two
vertical sides together, i.e., by taking U/

({(0, y), (1, y)}y∈[0,1]

)
, we obtain the

surface of a cylinder. The horizontal edges can be further glued either in a
“direct” way (that is, a point (x, 0) is identified with (x, 1) for each x ∈ [0, 1]),
which produces a torus, or in a “twisted” way (i.e., a point (x, 0) is identified
with (1− x, 1)), which leads to the Klein bottle (which cannot be embedded
in R3, however).

Here are two other simple constructions.

4.1.4 Definition (Sum and wedge). Let X and Y be topological spaces.
The sum of X and Y , denoted by X � Y , corresponds to just “putting X
and Y side by side.” The point set of X � Y is the disjoint union of X
and Y (formally, we can take (X×{1}) ∪ (Y×{2}), say), and each open set
U ⊆ X � Y is a (disjoint) union of an open set in X and an open set in Y .

Now let x0 ∈ X and y0 ∈ Y be two points (called base points). The
wedge of X and Y , with respect to x0 and y0, is X∨Y := (X�Y )/({x0, y0});
that is, we take the sum and then glue x0 to y0.

Many commonly encountered spaces (such as connected manifolds) are
homogeneous, in the sense that for any x, x′ ∈ X, there is a homeomorphism
h:X → X with h(x) = x′. For such X, the choice of the base point in the
wedge construction does not matter.

One often encounters wedges of spheres; for example, it can be shown that
every finite connected graph (regarded as a topological space) is homotopy
equivalent to a wedge of a suitable number of S1’s (Exercise 4).

Our most significant instance of quotient spaces are joins, discussed in the
next section. But first we mention a useful sufficient condition for homotopy
equivalence.

4.1.5 Proposition (Contracting a contractible subcomplex gives a
homotopy equivalent space). Let X = ‖K‖ be the polyhedron of a
simplicial complex K, let A ⊆ X be the polyhedron of a subcomplex of K,
and suppose that A is contractible. Then X/A is homotopy equivalent to X.

We note that X/A need not be a deformation retract of X, however
tempting it may be to think so. For example, let X be the “dumbbell” shape
©−©, and let A be the middle bar. Then X/A is a figure 8, which cannot be
a deformation retract of X, since X does not have a subspace homeomorphic
to 8. So the proposition is much less trivial than it may look at first sight.

Many homotopy equivalences occurring “in practice” can be interpreted
as sequences of operations according to Proposition 4.1.5 and their inverses.
The conclusion holds for more general pairs (X,A) with A contractible; it is
enough that they satisfy the “homotopy extension property” introduced in
the proof below.
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Readers not much interested in topology may take the proposition as a
fact and skip the following proof, since we will not need the (very nice) ideas
in it for our further developments.

Proof. To show homotopy equivalence, we need to exhibit two maps that
are homotopy inverses to one another. One of them is obvious: the quotient
map q:X → X/A. But we still need a homotopy inverse, that is, a continuous
map p:X/A → X such that q ◦ p ∼ idX/A and p ◦ q ∼ idX , and this is not
so obvious. The reader may want to consider the example with X = S1 and
A ⊂ X a semicircle.

Let (ft:A → A)t∈[0,1] be a homotopy of the identity map idA = f0 to
the constant map f1 with f1(a) = a0 ∈ A for all a ∈ A. Suppose that we
manage to extend this homotopy to some continuous family (f̄t)t∈[0,1] of maps
defined on all of X (each f̄t:X → X coincides with ft on A), with f̄0 = idX .
Then f̄1 is a continuous map X → X that is constant on A, and so we
can consider it as a map p:X/A → X (formally, p([x]) := f̄1(x) for x ∈ X).
We have p(q(x)) = p([x]) = f̄1(x), and so (f̄t)t∈[0,1] is a homotopy witnessing
p◦q ∼ idX . As for the other direction, we note that if we set pt([x]) := [f̄t(x)],
we obtain well-defined maps (since each f̄t maps A into A), which provide a
homotopy of p0 = idX/A with p1 = q ◦ p as required.

It remains to show that the homotopy can indeed be extended. It is useful
to introduce the following definition:

4.1.6 Definition. Let X be a topological space and A ⊆ X a subspace of
it. We say that the pair (X,A) has the homotopy extension property if
every continuous mapping F : (A× [0, 1]) ∪ (X × {0}) → Y , where Y is some
topological space, can be extended to a continuous mapping F̄ :X×[0, 1] → Y :

A
X

extend here

t = 0

t = 1

F defined here and here

Note that this definition does not say anything about the possibility of
extending a homotopy of two given maps f0, f1:X → Y from A to X; this
would be a quite different and much stronger property.

The homotopy extension property is quite common; constructions of pairs
(X,A) not possessing it even require some ingenuity. The next lemma estab-
lishes it for a wide class of examples.

4.1.7 Lemma. If X is the polyhedron of a (finite) simplicial complex K and
A is the polyhedron of a subcomplex of K, then the pair (X,A) has the
homotopy extension property.
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Before proving this lemma, we conclude the proof of Proposition 4.1.5
started above. We consider the homotopy (ft:A → A)t∈[0,1] and an extension
f̄0:X → X of f0. Assuming the homotopy extension property of (X,A), we
set

F (x, t) :=
{

ft(x) for x ∈ A, t �= 0,
f̄0(x) for x ∈ X, t = 0.

The extension F̄ as in Definition 4.1.6 provides the desired family (f̄t)t∈[0,1].
This proves Proposition 4.1.5.

Proof of Lemma 4.1.7. To establish the homotopy extension property of a
pair (X,A), it is enough to verify that S := (A×[0, 1])∪(X×{0}) is a deforma-
tion retract of T :=X×[0, 1]. Indeed, if (gt)t∈[0,1] is a deformation retraction
witnessing this, we simply set F̄ (z) :=F (g1(z)), z = (x, t) ∈ X×[0, 1]. This
works, since g1(z) ∈ S for all z ∈ T and g1(z) = z on S.1

The deformation retraction of T on S is constructed gradually. First we
note that the deformation retraction exists if X is a simplex and A is its
boundary, as the picture indicates for a 1-dimensional simplex:

A AX = σ1

t = 0

t = 0.3
t = 0.7

(In Exercise 5 the reader is invited to construct such a “hollowing out” defor-
mation retraction explicitly.) Then we hollow out the simplices of X not lying
in A one by one, starting with those of the largest dimension and proceeding
to the smaller dimensions, until only the simplices of A remain “fat.”

Exercises

1. (a) Let X = R2 with the usual topology, and let B2 be the (closed) unit
disk. Show, formally and in detail, that X/B2 is homeomorphic to R2.
(b) Let now U be the interior of B2 (an open set). Explain why the
quotient space X/U is not homeomorphic to R2, nor to any other metric
space. (It is a quite pathological topological space. One usually considers
only shrinking closed sets to a point.)

2. Check that Bd/(Sd−1) ∼= Sd. Give a detailed formal proof for d = 1. For
d > 1, at least define the homeomorphism, and try to see why it is really
a homeomorphism.

3. (a) Let X be the wedge of three copies of S1. Draw all possible (non-
homeomorphic) ways of what X may look like, depending on different

1 We haven’t used the full power of deformation retraction, only the existence of
a single continuous map g1 with the two properties just stated. The existence of
such a g1 defines the weaker concept of S being a retract of T .
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choices of basepoints (you need not give a formal proof of the nonhomeo-
morphism).
(b) Check that any two X obtained in this way are homotopy equivalent.
(c) More generally, for any given k ≥ 1, show that all wedges of k copies
of S1 are homotopy equivalent.

4. Consider a finite graph G as a 1-dimensional simplicial complex (the
vertices of the graph are the vertices of the simplicial complex and the
edges are the 1-dimensional simplices). Suppose that G is connected and
has n vertices and m edges. Show that G is homotopy equivalent to a
wedge of m−n+1 circles (S1’s).

5. Let σ be a (geometric) simplex. Describe a deformation retraction of
σ×[0, 1] to (∂σ×[0, 1]) ∪ (σ×{0}), either geometrically or by an explicit
formula.

6. Let K be a simplicial complex and K1,K2 ⊆ K subcomplexes that together
cover K (i.e., K = K1 ∪ K2). Assume that both K2 and K1 ∩ K2 are
contractible. Using Proposition 4.1.5, prove that K � K1; in particular,
if K1 is contractible, then K is contractible as well. Warning: This may
fail for arbitrary spaces X1 and X2; even if X1, X2, and X1 ∩X2 are all
contractible, X1 ∪X2 need not be.

4.2 Joins (and Products)

A Cartesian product X×Y is a key operation for many mathematical struc-
tures, including topological spaces. Whenever we need to investigate some
pairwise interaction of elements x ∈ X with elements y ∈ Y , considering
X×Y is quite natural.

For topological spaces, X × Y has the set-theoretic Cartesian product of
X and Y as the set of points, and the topology of X × Y is the coarsest one
making the projection maps πX :X×Y → X and πY :X×Y → Y continuous.
More explicitly, the topology on X×Y is generated by the “open rectangles”
U × V , where U ⊆ X and V ⊆ Y are open sets.

In working with simplicial complexes, a drawback of the Cartesian product
is that the product of two simplices, each of dimension at least 1, is not a
simplex:

× =

So if we want to regard a product of simplicial complexes as a simplicial
complex, we have to triangulate it. We now introduce another product-like
operation on topological spaces, called join and denoted by ∗. The first ad-
vantage over the Cartesian product is that the join of simplices is again a
simplex:
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∗ =

Other advantages are subtler, and we will encounter some of them later.
We begin with the join of simplicial complexes. First we introduce a no-

tation, which is not standard but will be helpful in the sequel: If A and B are
sets, we write A  B for the set (A×{1}) ∪ (B×{2}). So A  B is a disjoint
union of A and B, where we attach the label 1 to the elements of A and the
label 2 to the elements of B. Note that A  B �= B  A!

More generally, the notation A1  A2  · · ·  An stands for (A1×{1}) ∪
(A2×{2}) ∪ · · · ∪ (An×{n}).
4.2.1 Definition (Join of simplicial complexes). Let K and L be sim-
plicial complexes. The join K ∗ L is the simplicial complex with vertex set
V (K)  V (L) and with the set of simplices

{F  G : F ∈ K, G ∈ L}.

In words, to construct the join, we first take a disjoint union of the vertex
sets, and then we combine every simplex of K with every simplex of L.

The join is obviously associative, in the following sense: If K, L,M are
simplicial complexes, then the simplicial complexes K∗ (L∗M) and (K∗L)∗M
are isomorphic. If we do not care about the names of the vertices, we can
thus write K ∗ L ∗M for both K ∗ (L ∗M) and (K ∗ L) ∗M.

It also makes sense to speak about an n-fold join of K. We thus write

K∗n := K ∗ K ∗ · · · ∗ K︸ ︷︷ ︸
n×

∼= {F1  F2  · · ·  Fn : F1, F2, . . . , Fn ∈ K}.

Note that K∗n has n · |V (K)| vertices, one copy of V (K) for each factor.
For simplices we have σk ∗ σ� ∼= σk+�+1 and (σ0)∗n ∼= σn−1; here σ0 is a

single point.

4.2.2 Example (important!). Let D2 = {∅, {1}, {2}} be the simplicial
complex corresponding to a 2-point discrete space. We note that ‖D2‖ ∼= S0.
Let us we consider the n-fold join D∗n

2 .
The vertex set can be identified with [2]×[n]. A subset of this vertex

set is a simplex if and only if it does not contain both (1, i) and (2, i), i ∈
[n]. This simplicial complex, which was denoted by �n−1 in Section 2.3, is
(isomorphic to) the boundary complex of the n-dimensional crosspolytope
(see Definition 1.4.1). We conclude that

‖D∗n
2 ‖ ∼= Sn−1.

Although the join of simplicial complexes is defined purely combina-
torially, it has a topological meaning. In particular, if ‖K1‖ ∼= ‖K2‖ and
‖L1‖ ∼= ‖L2‖, then ‖K1∗L1‖ ∼= ‖K2∗L2‖. We will show this in a roundabout
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way: First we will define a seemingly quite different operation, the join of
topological spaces, and then we will show that for triangulable spaces it gives
the same result as the join of the underlying simplicial complexes.

4.2.3 Definition (Join of spaces). Let X and Y be topological spaces.
The join X ∗Y is the quotient space X×Y × [0, 1]/ ≈, where the equivalence
relation ≈ is given by (x, y, 0) ≈ (x′, y, 0) for all x, x′ ∈ X and all y ∈ Y
(“for t = 0, x does not matter”) and (x, y, 1) ≈ (x, y′, 1) for all x ∈ X and
all y, y′ ∈ Y (“for t = 1, y does not matter”).

The drawing below illustrates this definition for X and Y line segments
(1-simplices):

X × Y × [0, 1]
X Y t = 0 t = 1 X ∗ Y

Here is a helpful geometric interpretation of the join of spaces:

4.2.4 Proposition (Geometric join). Suppose that X and Y are sub-
spaces of some Euclidean space, and that X ⊆ U and Y ⊆ V , where U and
V are skew affine subspaces of some Rn (that is, U ∩ V = ∅ and the affine
hull of U ∪V has dimension dim U+ dimV +1). Moreover, suppose that both
X and Y are bounded. Then the space

Z := {tx + (1−t)y : t ∈ [0, 1],x ∈ X, y ∈ Y } ⊂ Rn,

i.e., the union of all segments connecting a point of X to a point of Y , is
homeomorphic to the join X ∗ Y .

X ∗ Y

X Y

U V

Sketch of proof. There is an obvious continuous map

X × Y × [0, 1] → Z,

(x,y, t) �→ tx + (1−t)y,
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that induces a homeomorphism

(X × Y × [0, 1])/ ≈ −→ Z.

To see that this is indeed a homeomorphism, we first observe that t′x′ +
(1−t′)y′ = t′′x′′ + (1−t′′)y′′ implies t′ = t′′, and if t′ �= 0, also x′ = x′′. It
follows that our map is a bijection. The continuity at points with t �= 0, 1
is fairly obvious. For t ∈ {0, 1}, some care is needed, and one needs to use
the boundedness of X and Y (for unbounded X and Y , the inverse mapping
need not be continuous).

With this interpretation, it is not hard to see the equivalence of the
definition of join for simplicial complexes with that for spaces; that is,
‖K ∗ L‖ ∼= ‖K‖ ∗ ‖L‖ for any simplicial complexes K and L. The main step
is checking that if X is a k-simplex and Y is an �-simplex, the geometric
definition in Proposition 4.2.4 yields a (k+�+1)-simplex (Exercise 3).

The join (of spaces) is commutative, in the sense X ∗Y ∼= Y ∗X. It is also
associative, (X ∗ Y ) ∗ Z ∼= X ∗ (Y ∗ Z). For triangulable spaces, this follows
from the associativity for the join of simplicial complexes.

Example 4.2.2 shows that (S0)∗n ∼= Sn−1, and Sk∗S� ∼= Sk+�+1.

Cone and suspension. Two other well-known topological constructions
can be seen as special cases of the join. The cone over a space X is the join
with a one-point space: cone(X) :=X ∗ {p}. Geometrically, the cone is the
union of all segments connecting the points of X to a new point. Another
equivalent definition is the quotient space (X×[0, 1])/(X×{1}) ∼= cone(X):

X X × [0, 1] cone(X)

The join with a two-point space, X ∗S0, is called the suspension of X and
denoted by susp(X). It can be interpreted as erecting a double cone over X,
or as the quotient (X×[0, 1])/(X×{0}, X×{1}).
Notation for points of a join. It is convenient to write a point in the join
X ∗Y , which is formally an equivalence class [(x, y, t)] for some x ∈ X, y ∈ Y ,
and t ∈ [0, 1], as the “formal convex combination” tx⊕(1−t)y. (This notation
is not standard; most authors use “+” instead of “⊕” in this context.) This
way of writing nicely suggests that the value of x is immaterial for t = 0, and
y is irrelevant for t = 1.

On the other hand, the analogy with convex combination should not be
pushed too far: This formal convex combination is not commutative, even for
X = Y . For example, 1

2a ⊕ 1
2b, a, b ∈ X, a �= b, is a point of X∗2 different
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from 1
2b ⊕ 1

2a. This is because of the “renaming convention” for joins: We
should think of a as coming from a different copy of X than b.

A similar notational convention is introduced for an n-fold join: A point of
X∗n is written as t1x1⊕ t2x2⊕· · ·⊕ tnxn, where t1, t2, . . . , tn are nonnegative
reals summing to 1 and x1, x2, . . . , xn are points of X.

Join of maps. Joins can be defined not only for spaces, but also for (con-
tinuous) maps. Given maps f :X1 → X2 and g:Y1 → Y2, a map

f ∗ g: X1 ∗ Y1 −→ X2 ∗ Y2

is given by
tx⊕ (1−t)y �−→ tf(x)⊕ (1−t)g(y).

The reader may want to suggest a suitable definition of the join of sim-
plicial maps.

Joins and products. The Cartesian product X×Y can be embedded into
X ∗ Y by (x, y) �→ 1

2x ⊕ 1
2y ∈ X ∗ Y . Similarly, the Cartesian power Xn

embeds into X∗n by (x1, x2, . . . , xn) �→ 1
nx1 ⊕ 1

nx2 ⊕ · · · ⊕ 1
nxn. Here is an

illustration for our usual example X = Y = σ1:

X Y

X×Y

Exercises

1.∗ Verify the following homeomorphisms and homotopy equivalences (X and
Y are triangulable spaces). If you cannot do the general case in (d)–(f),
try at least some special cases like X = Y = S1.
(a) cone(Sn) ∼= Bn+1,
(b) cone(Bn) ∼= Bn+1,
(c) susp(Bn) ∼= Bn+1,
(d) susp(X ∨ Y ) � susp(X) ∨ susp(Y ),
(e) susp(X � Y ) � susp(X) ∨ susp(Y ) ∨ S1,
(f) susp((X ∨ Y ) � {p}) � susp(X) ∨ susp(Y ) ∨ S1.
Parts (d)–(f) may fail if X and Y are arbitrary topological spaces.

2. Show that joins preserve homotopy equivalence; that is, if X � X ′, then
X ∗ Y � X ′ ∗ Y .

3.∗ (a) Let U and V be skew affine subspaces in Rd, and let A ⊂ U and B ⊂ V
be affinely independent sets. Check that A ∪B is affinely independent.
(b) Verify that the union of all segments connecting a point of conv(A)
to a point of conv(B) is the simplex conv(A ∪B).
(c) Using Proposition 4.2.4, prove that ‖K‖∗‖L‖ ∼= ‖K∗L‖ for any two
finite simplicial complexes K and L.
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4. (Another interpretation of the join) Let X and Y be spaces. Verify that
X ∗ Y is homeomorphic to the subspace (cone(X)× Y )∪ (X × cone(Y ))
of the product cone(X) × cone(Y ). (Equivalently, glue the two spaces
cone(X)×Y and X× cone(Y ) in the subspaces homeomorphic to X×Y
that are given by the inclusions of bases X ⊆ cone(X) and Y ⊆ cone(Y ).)

5.∗ Let the topology on a space X be induced by a metric ρ and the topology
on Y by a metric σ. Assume that both ρ and σ are bounded; i.e., no
two points have distance more than K for a suitable fixed number K.
Construct a metric τ on the join X ∗ Y inducing its topology (and check
that it indeed works). Warning: There are some quite tempting wrong
solutions.

6. In Section 1.7 we associated the simplicial complex ∆(P ) with every
(finite) poset P . What is the appropriate operation “∗” on posets, such
that ∆(P ∗Q) = ∆(P ) ∗∆(Q)?

4.3 k-Connectedness

Informally, a topological space X is k-connected if it has no “holes” up to
dimension k. A hole in dimension � is something that prevents some suitably
placed S� from continuously shrinking to a point:

� = 0

S0

S1

� = 1

(To make a hole in dimension 0 in a 3-ball B3, slice it in two pieces; for
dimension 1, puncture a tunnel in it; and for dimension 2, make a void inside.)
Of course, things can be more complicated: A torus certainly has a hole in
dimension 1 in this sense, but what about dimension 2? Fortunately, we need
not contemplate such fine points here, since the formal definition is simple:

4.3.1 Definition. Let k ≥ −1. A topological space X is k-connected if for
every � = −1, 0, 1, . . . , k, each continuous map f :S� → X can be extended
to a continuous map f̄ :B�+1 → X. (Equivalently, each f :S� → X is nullho-
motopic.)

Here S−1 is interpreted as ∅ and B0 as a single point, and so (−1)-con-
nected means nonempty.

For k ≥ 0, k-connectedness includes the condition (for � = 0) that X has
to be arcwise connected.

A space X satisfying the condition for � = 1 (but not necessarily for
� = 0), i.e., with every map S1 → X nullhomotopic, is often called simply
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connected. (Some authors use “simply connected” synonymously with “1-con-
nected,” though.)

It is not hard to check that homotopy equivalence preserves k-connect-
edness (Exercise 1). Here is another, very believable but nontrivial, result:

4.3.2 Theorem. The n-sphere Sn is (n−1)-connected and not n-connected.

Proof. By the Borsuk–Ulam theorem (Theorem 2.1.1(BU2b)), Sn is not n-
connected.

The fact that Sn is (n−1)-connected may seem almost obvious, but one
has to be careful, as already maps S1 → Sn can be quite wild (think of a
space-filling curve!).

Let us consider a continuous map f :Sk → Sn, k < n. We show that it
is homotopic to another map g:Sk → Sn that is not surjective. Such a g is
nullhomotopic (if g maps nothing to x, the image of g can be continuously
shrunk toward −x), and hence f , too, is nullhomotopic.

To construct g, we find an ε > 0 such that ‖f(x) − f(y)‖ < 1 whenever
‖x − y‖ < ε (uniform continuity), and a triangulation ∆ of Sk such that
every simplex in ∆ has diameter smaller than ε. Now we define g on each
simplex σ ∈ ∆ by interpolating the values of f at the vertices of σ suitably.
Moreover, such a definition yields a homotopy of f and g. Namely, we define
F :Sk × [0, 1] → Sn by

F (x, t) :=
t
∑m

i=1 λif(vi) + (1−t)f(x)
‖t∑m

i=1 λif(vi) + (1−t)f(x)‖ ,

where v1, . . . ,vm are the vertices of supp(x) (the simplex of ∆ containing x in
its relative interior) and x =

∑m
i=1 λivi expresses x as a convex combination

of the vi. We need to show that the denominator is never 0. All the f(vi),
as well as f(x), have distance at most 1 from v1, and hence they all lie in
a spherical cap of radius smaller than 1. So their convex hull cannot contain
the origin, and F is well-defined and continuous. We also have f = F (∗, 0).

We set g :=F (∗, 1). We note that since dim σ < n for all σ ∈ ∆, each
image g(σ) is contained in some hyperplane in Rn+1 passing through the
origin. A finite union of hyperplanes cannot cover the sphere, and hence g is
not surjective.

Exercises

1. Prove that if X is k-connected and Y � X, then Y is k-connected as
well.

2. (a) Suppose that X is a space that is not k-connected. Show that X ×Y
cannot be k-connected either, for any Y .
(b) Prove that if both X and Y are k-connected, then so is X × Y .

3.∗ (a) Deduce from Theorem 4.3.2 that Sn �� Sm unless m = n.
(b) Use (a) to derive Rn �∼= Rm unless m = n.
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4.4 Recipes for Showing k-Connectedness

In many topological proofs of geometric or combinatorial results, the problem
is reduced to showing that certain spaces are highly connected. A number of
tools are available for the latter task.

Later we will explain a simple trick (Sarkaria’s inequality), which will
allow us to avoid explicit proofs of k-connectedness in our applications. Thus,
the current section is optional. But for attacking other problems, it can be
useful to have means for establishing k-connectedness at hand, and here we
state selected results of this kind. Some of them use a technical apparatus
that we do not want to assume in this book; others can be established by
quite elementary means, but the proofs are not short. So we (exceptionally)
do not include any proofs. Most proofs can be found in Hatcher [Hat01], and
a longer list of results and detailed references are provided by Björner [Bjö95].

Homology and k-connectedness. The following theorem characterizes
k-connectedness in terms of homology groups. This can be very useful, since
homology groups are generally more tractable than homotopy questions.

The theorem below refers to reduced singular homology groups with in-
teger coefficients. A reader not familiar with homology groups may just want
to know that they are parameters of a topological space invariant under ho-
motopy equivalence and efficiently computable for simplicial complexes (and
for many other spaces). We do not treat homology in this book, but it can
be found in practically all introductory textbooks on algebraic topology.

4.4.1 Theorem. Let X be a nonempty topological space and let k ≥ 1. Then
X is k-connected if and only if it is simply connected (i.e., the fundamental
group π(X) is trivial) and H̃i(X) = 0 for all i = 0, 1, . . . , k.

This is a special case of a famous theorem of Hurewicz: For a simply
connected space, the first nonzero homotopy and homology groups occur in
the same dimension and they are isomorphic.

Since the kth homology group of a simplicial complex depends only on
simplices of dimension at most k+1, and the fundamental group depends
only on the 2-skeleton, we have the following useful result:

4.4.2 Proposition. A simplicial complex K is k-connected if and only if the
(k+1)-skeleton K≤k+1 is k-connected.

This can also be proved directly, without resorting to homology; see Ex-
ercise 1.

It may be useful to know that if a k-dimensional simplicial complex is k-
connected, then it is contractible. This follows, for example, from a theorem
of Whitehead and Theorem 4.4.1. (For general spaces it need not be true!)
Moreover, finite k-dimensional (k−1)-connected simplicial complexes have a
very special structure: They are homotopy equivalent to a point or to a wedge
of k-dimensional spheres.
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The following result is a consequence of Theorem 4.4.1 and of formulas
for the homology of a join. This one does not seem easy to prove directly:

4.4.3 Proposition (Connectivity of join). Suppose that X is k-connect-
ed and Y is �-connected, where X and Y are triangulable (or CW-complexes;
see Section 4.5). Then X ∗ Y is (k+�+2)-connected.

Nerve theorem. This is a somewhat surprising result, which often helps
simplify a given topological space X. It may provide a simplicial complex
homotopy equivalent to X that is more tractable than the original description
of X. This can be useful for showing k-connectedness, but also in many other
contexts.

Let A = {A1, A2, . . . , An} be a family of sets. The nerve of A records the
“intersection pattern” of A. It is the simplicial complex, denoted by N (A),
with vertex set [n] and with simplices given by

N (A) =
{

F ⊆ [n] :
⋂
i∈F

Ai �= ∅

}
.

Here is a basic version of the nerve theorem, stated for finite simplicial com-
plexes.

4.4.4 Theorem (Nerve theorem). Let K1,K2, . . . ,Kn be subcomplexes
of a finite simplicial complex K that together cover K (each simplex of K is
in at least one Ki), and let Ai := ‖Ki‖. Suppose that the intersection

⋂
i∈J Ai

is empty or contractible for each nonempty J ⊆ [n]. Then

‖N ({A1, A2, . . . , An})‖ � ‖K‖;
i.e., the nerve is homotopy equivalent to K.

For example, the conclusion of Exercise 4.1.6 (with K1 contractible) is a
(very) special case of this theorem.

There are many variations of the nerve theorem in the literature. They
usually claim that if A is a family of “nice” subsets covering a space X, and
if all intersections

⋂
i∈J Ai are “topologically simple,” then the topology of

the nerve agrees with the topology of X in some parameters. For example, if
all intersections of the Ai have zero homology, then the homology groups of
the nerve agree with those of X.

Notes. The nerve theorem is usually attributed to Borsuk [Bor48].
Here is another version, especially suitable for proofs of k-connectivity:
Let K1,K2, . . . ,Kn be subcomplexes of a finite simplicial complex K
that cover K, and let Ai := ‖Ki‖. Suppose that the intersection

⋂
i∈J Ai

is empty or (k−|J |+1)-connected for every nonempty J ⊆ [n]. Then
‖K‖ is k-connected iff ‖N ({A1, . . . , An})‖ is k-connected. For an el-
egant recent treatment, with a slightly stronger result, see Björner
[Bjö02]; we also refer to [Bjö95] for some other potentially useful nerve
theorems.
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Exercises

1.∗ (a) Let f :Bk → B� be a mapping, k < �. Using ideas from the proof
of Theorem 4.3.2, show that there is a mapping g:Bk → B� that is
homotopic to f , maps no points into the interior of B�, and satisfies
g(x) = f(x) whenever f(x) ∈ ∂B�. (That is, the image can be “swept
out” from the interior of B�.)
(b) Let K and L be finite simplicial complexes, let k ≥ dim K, and let
f : ‖K‖ → ‖L‖ be a continuous mapping. Prove that there is a mapping
g: ‖K‖ → ‖L≤k‖ (into the k-skeleton) that is homotopic to f and satisfies
g(x) = f(x) whenever f(x) ∈ ‖L≤k‖.
(c) Prove Proposition 4.4.2.

4.5 Cell Complexes

This section is optional. Cell complexes are generally nice and very useful in
topology; they will be mentioned in the formulation of some of the subse-
quent general theorems, but they will not be essential for any of our concrete
applications.

In algebraic topology, one usually speaks about CW-complexes (which is
probably the most important kind of cell complexes). The meaning of the
mysterious letters C and W will be explained later, but right now we note
that they are significant only for complexes with infinitely many cells. We
will occasionally use the name cell complex for a CW-complex with a finite
number of cells.

Informally, a CW-complex is a topological space that can be pasted to-
gether from finite-dimensional balls, where a new k-ball is always glued by its
boundary to the part already made from balls of dimension less than k. Thus,
we start with a discrete set of vertices, called the 0-cells in this context. Then
we put in some 1-balls, called 1-cells. A 1-cell is just a closed interval, whose
two endpoints are glued to some vertices, possibly both to the same vertex.
The spaces obtained at this phase can be viewed as topological realizations
of graphs, possibly with loops and multiple edges:

Next, we can paste in some 2-dimensional disks (2-cells). The boundary of
each disk is glued to some of the edges, possibly in a complicated manner.
Here are a few examples of what can be obtained with a single 2-cell. We can
make the disk (as a topological space) with one 0-cell, one 1-cell, and one
2-cell:
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With just one 0-cell, no 1-cell, and one 2-cell, we can manufacture an S2;
note that the boundary of the 2-cell is shrunk to a point:

Of course, an S2 can be made in many other ways, too; for example, using 2
cells of each dimension 0, 1, 2, as will be shown in a drawing in Section 5.3.
If we picture a 2-cell as a square and we paste the edges in the indicated
manner to two 1-cells a and b, we get a torus:

a

b =
b b

a

a

+

In fact, as is taught in basic courses of algebraic topology (such as [Mun00] or
[Sti93]), we can get any 2-dimensional manifold without boundary, including
nonorientable ones like the projective plane and the Klein bottle, from a
regular convex polygon by suitable boundary identifications.

A (geometric) simplicial complex is a special case of a CW-complex (each
simplex is homeomorphic to a ball). One obvious new thing in CW-complexes
is that while simplices are “straight,” cells can be “curved.” But another, per-
haps less obvious, difference is that a simplex must remain homeomorphic to
a ball in the simplicial complex, including the boundary, while the boundary
of a cell may become glued to itself and entangled in a complicated manner.
For example, it is legal to glue a 2-cell to the middle of a 1-cell:

Here is a formal definition of a CW-complex. A CW-complex is a Hausdorff
space X that is the union of a collection {eα}α∈Λ of disjoint subspaces called
cells with the following properties:

• Each eα has some dimension dim eα ∈ {0, 1, 2, . . .}. The n-skeleton of X
is

X≤n =
⋃
{eα : α ∈ Λ, dim eα ≤ n}.
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• If dim eα = n, then there is a continuous characteristic map χα:Bn → X
such that ∂Bn = Sn−1 is mapped into the (n−1)-skeleton X≤n−1 and
int Bn is mapped homeomorphically onto eα.

These conditions are sufficient to define a finite CW-complex (that is, one
with finitely many cells); the topology on X is determined uniquely by the
characteristic maps. Note that a finite CW-complex is always compact. An
infinite CW-complex has to satisfy the following two additional conditions
(which are automatically satisfied by finite CW-complexes):

• (Weak topology) A set F ⊆ X is closed if and only if F ∩ ēα is closed for
each α ∈ Λ, where ēα denotes χα(Bn), i.e., the cell eα together with its
boundary.

• (Closure finiteness) The boundary of each cell eα, that is, the image of
∂Bn under χα, intersects only finitely many cells.

The letters C and W in “CW-complex” represent these two conditions,
closure finiteness and weak topology.

The “morphisms” of CW-complexes are called cellular maps. A contin-
uous map f :X → Y of CW-complexes is cellular if for each n ≥ 0, the
n-skeleton X≤n is mapped into the n-skeleton Y ≤n. If a cellular map is a
homeomorphism, then any n-cell is mapped homeomorphically onto an n-
cell.

For many applications, a CW-complex structure for a space is as good
as a triangulation, or nearly as good. At the same time, the CW-complex
structure can have just a couple of cells where a triangulation would have
to be quite large. For instance, an Sn can be expressed as a cell complex
with one 0-cell and one n-cell (as we have seen for S2), while the smallest
triangulation is the boundary of an (n+1)-simplex, with 2n+2 − 1 simplices!

Although there exist nontriangulable CW-complexes, it is known that
every CW-complex X is homotopy equivalent to a polyhedron of a simplicial
complex K. Moreover, one may assume dimK = dim X, and if X is finite,
then K can be chosen finite as well.

A subcomplex of a CW-complex X is a closed subspace A ⊆ X that is
the union of some of the cells of X (recall that the cells are relatively open).
A nice feature of CW-complexes, not shared by simplicial complexes, is that
the quotient X/A is again a CW-complex (Exercise 1).

If A is a subcomplex of a CW-complex X, then the pair (X,A) has the
homotopy extension property; this is proved almost exactly as for simplicial
complexes. Proposition 4.1.5 also extends without any difficulty: If A is con-
tractible, then X/A � X.

Notes. There are several restricted classes of CW-complexes that
lie between general CW-complexes and simplicial complexes.

In a regular (finite) cell complex, we require that each of the char-
acteristic maps χα be a homeomorphism (not only on the interior of
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Bn but also on the boundary). The intersection of the boundaries of
two closed cells can still be topologically nontrivial, but regular cell
complexes admit a simple combinatorial description. Namely, if we
define the partial order on the set of closed cells by inclusion, then
the order complex of this poset is homeomorphic to the original cell
complex (and it is natural to call the resulting simplicial complex the
first barycentric subdivision of the regular cell complex).

A more special class of regular cell complexes is that of polyhedral
complexes. At least two different definitions appear in the literature.
A more strict definition is very similar to the definition of a simpli-
cial complex, but the cells can be convex polytopes, instead of just
simplices. Every two cells intersect in a cell, and a face of a cell is
again a cell. In a more permissive definition, the cells still have faces
that must also be cells, etc., but they can be “curved.” That is, each
cell is homeomorphic to a convex polytope, and the facial structure is
transferred by the homeomorphism.

Another interesting special case of CW-complexes is that of ∆-
complexes, used in [Hat01]. The cells are simplices; they are still glued
together face-to-face, but for example, gluing two triangles by just two
sides is permitted:

�

A (geometric) ∆-complex is obtained from a family of disjoint sim-
plices by face identifications. More precisely, let Σ = (σα : α ∈ A) be
a family of (geometric) simplices. We assume that for each σα, some
linear ordering of the vertices has been fixed. Further, let (Fβ : β ∈ B)
be given, where each Fβ is a family of simplices, all simplices in Fβ

having the same dimension kβ and each of them being a face of some
simplex of Σ. The ∆-complex specified by these data is obtained from
the sum

⊔
α∈A σα by identifying all the faces in each Fβ to a single

kβ-face. The identification is made according to the canonical affine
homeomorphisms among the faces in Fβ that extend the (unique)
order-preserving bijections of the vertex sets. Note that Fβ may con-
tain several faces of the same σα; so, for example, the three edges of
a triangle can all be identified as indicated by the arrows:

(The resulting mind-boggling geometric object can be realized in R3,
and it is known as the dunce cap.) Unlike general CW-complexes, the
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specification of a ∆-complex is purely combinatorial, albeit formally
more complicated than that for a simplicial complex.

Let us remark that modern homotopy theory uses yet another gen-
eralization of simplicial complexes, called simplicial sets; these are
always infinite, and at present they do not seem relevant for combina-
torial applications in the spirit discussed here.

Exercises

1. Let X be a CW-complex and A a subcomplex of it. Define a cell structure
on X/A and check that it is a CW-complex (if you like, assume that X
is finite).



5. Z2-Maps and Nonembeddability

If we want to apply the Borsuk–Ulam theorem to some problem, we need
to exhibit a continuous map of a sphere that somehow reflects the problem’s
structure. In earlier applications, such as shown in Chapter 3, this was usually
done by clever ad hoc constructions. Here we are going to explain a somewhat
more systematic approach.

We generalize the Borsuk–Ulam theorem from spheres to a much wider
class of spaces, which gives us more flexibility. We pursue just one among
many possible directions of generalizations, dealing with the Z2-index, which
has proved very fruitful in combinatorial and geometric applications. Then we
introduce deleted joins, which for many problems lead to a suitable space with
a continuous map in an almost canonical way. In this connection, one speaks
about a configuration space (encoding all possible “configurations” in the
considered problem) and a test map (distinguishing configurations with some
desired property from the others, say by mapping the desired configurations
to zero).

This “configuration space/test map” paradigm, and the technical machin-
ery supporting it, are currently among the most powerful tools for solving
combinatorial and geometric problems topologically.

Geometric applications covered in this chapter can be formulated as non-
embeddability results, of the following kind: A certain simplicial complex K
cannot be geometrically realized in Rd, for a certain value of d. That is, for
any continuous mapping f : ‖K‖ → Rd, we have f(x1) = f(x2) for some
x1 �= x2. Moreover, x1 and x2 can even be guaranteed to come from two
disjoint faces of K; this is significant for some of the applications, and our
proof method always yields it.

We begin the chapter with a formulation of the nonembeddability results.
Then we gradually build the machinery, and we prove the results along the
way, as soon as we have the means to do so. The method used for nonembed-
dability leads to the investigation of certain colorings, and amazingly, these
turn out to be exactly colorings of Kneser graphs! Using this connection, we
reap yet another proof of the Lovász–Kneser theorem.

We stay with graph colorings in the last section of this chapter, and we
explain a topological lower bound for the chromatic number of an (arbitrary)
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graph. It is based on Lovász’s original proof of the Kneser conjecture. We
prove another result by these means, concerning generalized Mycielski graphs.

5.1 Nonembeddability Theorems: An Introduction

Graph nonplanarity. Some graphs can be drawn in the plane without edge
crossings. These are called planar, while the others are nonplanar. Prominent
examples of nonplanar graphs are the two Kuratowski graphs K3,3 and K5:

K3,3 K5

In a sense, they are the nonplanar graphs, since by a famous theorem of
Kuratowski, every nonplanar graph contains a subdivision of K3,3 or a sub-
division of K5 as a subgraph.

The nonplanarity of K3,3 and K5 is usually stated in introductory courses
of graph theory, but very few students of such courses have actually gone
through a real proof. The nonplanarity is sometimes derived, with some hand-
waving, from the Jordan curve theorem: A simple closed curve in the plane,
i.e., an image of S1 under an injective continuous map, divides the plane into
two connected regions. But standard proofs of that theorem are relatively
hard and technical. It is a great insight of Thomassen that the nonplanarity
of K3,3 is actually easier than the Jordan curve theorem, and we refer to
[Tho92] or [MT01] for beautiful elementary proofs of both.

In this chapter we obtain, among others, rigorous proofs of the nonpla-
narity of K3,3 and K5, although bringing in all the machinery just for this
purpose would clearly be overkill.

In this context we will treat graphs as 1-dimensional simplicial complexes
(which used to be a prevailing view in the early days of graph theory).
Many of the questions about graph planarity and graph drawing thus have
higher-dimensional analogues. While many results exist about embeddability
of higher-dimensional simplicial complexes, the knowledge is much less com-
plete than for graphs, and the problems tend to be much more difficult.

To prove that a graph, viewed as a 1-dimensional simplicial complex G, is
nonplanar, one needs to show that there is no injective continuous mapping
f : ‖G‖ → R2. The proofs usually establish more: Any such f must identify
two points with disjoint supports; that is, in any drawing in the plane, two
nonadjacent edges intersect, or an edge passes through a vertex not incident
to it. We will establish nonembeddability of some higher-dimensional simpli-
cial complexes in a similar stronger form, showing that the images of some
two disjoint faces must intersect. In some applications this will actually be
important, as we will see.
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The Van Kampen–Flores theorem. The nonplanarity of K5 is a special
case (d = 1) of the following well-known theorem:

5.1.1 Theorem (Van Kampen–Flores theorem [vK32], [Flo34]). For
all d ≥ 1, the simplicial complex K := (σ2d+2)≤d, i.e., the d-skeleton of the
(2d+2)-dimensional simplex, cannot be embedded into R2d. More precisely,
for any continuous map f : ‖K‖ → R2d, the images of some two disjoint faces
of K intersect.

In Theorem 1.6.1 we embedded an arbitrary d-dimensional simplicial com-
plex into R2d+1. The Van Kampen–Flores theorem shows that this dimension
cannot be improved in general.

The topological Radon theorem. We have already proved one nonem-
beddability result: The Borsuk–Ulam theorem (BU1a) asserts, in particular,
that there is no injective continuous map Sd → Rd. The topological Radon
theorem is a “disjoint-faces” version of this result for the smallest triangula-
tion of Sd, namely, the boundary of the (d+1)-simplex. Here are illustrations
for d = 1 and d = 2:

σ2 σ3

For d = 1, any continuous map of the perimeter of the triangle maps some
vertex into the image of the opposite side. For d = 2, we have two possible
cases for a map of the boundary of a tetrahedron into the plane: The images
of two opposite edges intersect (as shown in the picture), or some vertex is
mapped into the image of the opposite facet.

5.1.2 Theorem (Topological Radon theorem [BB79]). Let

f : ‖σd+1‖ −→ Rd

be a continuous map. Then there exist two disjoint faces F1, F2 of σd+1 such
that f(‖F1‖) ∩ f(‖F2‖) �= ∅.

The statement speaks about a map of σd+1, rather than of its boundary,
but this does not make any difference (the (d+1)-simplex itself cannot be one
of F1, F2).

If we recall the notion of support of a point x in a geometric simplicial
complex (the simplex containing x in its relative interior), we can also express
the theorem by saying that there are x1,x2 ∈ ‖σd+1‖ with disjoint supports
and such that f(x1) = f(x2).
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The topological Radon theorem can be deduced from the Borsuk–Ulam
theorem in a relatively direct way (especially for d ≤ 2); an interested reader
may want to try this now. But we for now omit a proof, and later we will
present a “systematic” one, as a simple illustration of a general method.

It remains to explain the name of the theorem. It is related to a well-
known geometric result, called Radon’s theorem (or Radon’s lemma):

5.1.3 Theorem (Radon’s theorem). Every set X = {x1, . . . ,xd+2} of
d+2 points in Rd can be divided into two disjoint subsets whose convex hulls
intersect.

It may be good practice to visualize this for d ≤ 2. For d = 1 we have three
points on the real line, x1 ≤ x2 ≤ x3, say. Then {x2} intersects [x1, x3]. For
d = 2, four points are given in the plane. Then either one point xi is contained
in the convex hull of the others, and then we have the partition into {xi}
and X\{xi}, or the four points form the vertices of a convex quadrilateral,
and then the diagonals are the two intersecting convex hulls.

The following reformulation of Radon’s theorem explains its relation to
Theorem 5.1.2 above:

An equivalent formulation of Radon’s theorem. For every affine map
f : ‖σd+1‖ → Rd there exist two disjoint faces F1, F2 of the (d+1)-simplex
σd+1 such that f(‖F1‖) ∩ f(‖F2‖) �= ∅.

Proof of the equivalence. Each such f is determined by the images of
the d+2 vertices of the simplex. The image of a face is the convex hull of the
images of its vertices (Exercise 2).

The topological Radon theorem arises from the above formulation of
Radon’s theorem by replacing “affine map” by “continuous map.” It shows
that very little of the vector-space structure of Rd is needed for the validity
of Radon’s theorem.

For completeness, we outline the standard proof of Radon’s theorem,
which is simple and neat, although unrelated to topology.

Proof. Any d+2 points in Rd are affinely dependent. Let us fix an affine de-
pendence: α1x1+α2x2+· · ·+αd+2xd+2 = 0,

∑d+2
i=1 αi = 0, (α1, . . . αd+2) �= 0.

Then we define I1 := {i ∈ [d+2] : αi > 0} and I2 := [d+2] \ I1. Fur-
ther let S :=

∑
i∈I1

αi =
∑

j∈I2
(−αj). Then the point x :=

∑
i∈I1

(αi

S )xi =∑
j∈I2

(−αj

S )xj is a convex combination of points in X1 := {xi : i ∈ I1}, as
well as a convex combination of points in X2 = X \X1.
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In the next section we start with seemingly quite different topics. But we
will come back to nonembeddability in Section 5.4.

Notes. Realizability of simplicial complexes in Rd is a very in-
teresting and not very well-explored area. For d = 2, we have the
well-developed theory of planar graphs and of various measures of
nonplanarity of a graph (the crossing number etc.), but even higher-
dimensional analogues of some basic theorems about planar graphs
remain unclear. The behavior in higher dimensions can also be very
different from that in the plane.

Linear vs. topological embeddings. As is well known, any planar graph
has a planar drawing where all edges are straight segments (see, e.g.,
[MT01]). As was shown by Brehm and Sarkaria [BS92], a higher-
dimensional analogue fails, disproving a conjecture of Grünbaum.
Namely, while every d-dimensional simplicial complex embeds into
R2d+1, and even linearly (i.e., so that the embedding is affine on each
simplex), for every d ≥ 2 and every k, d+1 ≤ k ≤ 2d, there exist
finite d-dimensional simplicial complexes K that can be embedded in
Rk but not linearly. What is more, one can prescribe another integer
r and construct K such that K can be embedded in Rk, but the rth
barycentric subdivision sdr(K) cannot be embedded linearly in Rk.

Van Kampen [vK32] proved that every triangulated d-dimensional
manifold (and, more generally, any d-dimensional simplicial complex
such that every (d−1)-simplex is a face of at most two d-simplices)
embeds in R2d. This dimension is one better than that for an arbi-
trary d-dimensional simplicial complex, and it is also known to be
tight (an example is the d-dimensional real projective space RPd).
Brehm and Sarkaria showed that for d = 2k there are 2k-dimensional
triangulations of manifolds with boundary that embed in R2d−1 but
not linearly.

Interesting necessary conditions for linear realizability of simplicial
complexes were found by Novik [Nov00].

Minimal nonembeddable complexes. For graphs, K3,3 and K5 are
the only minimal examples nonembeddable in R2; any nonplanar
graph contains a homeomorphic copy of one of them. Halin and Jung
[HJ64] showed that there are 7 minimal 2-dimensional simplicial com-
plexes characterizing nonembeddability in S2. On the other hand,
Zaks [Zak69b] and Ummel [Umm73] constructed, for every d ≥ 2, in-
finitely many minimal pairwise nonhomeomorphic d-dimensional sim-
plicial complexes not embeddable in R2d, where minimal means that
every proper subcomplex is embeddable (even linearly).

Generalizing the examples of Van Kampen and Flores, classes
of minimal nonembeddable complexes were exhibited by Grünbaum
[Grü70], Sarkaria [Sar91b], Zaks [Zak69a], and Schild [Sch93a]. The
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class from Schild’s paper contains all the examples from [Grü70],
[Sar91b], [Zak69a]. It consists of all joins K = K1 ∗K2 ∗ · · · ∗Kr, where
each Ki is a nice simplicial complex, meaning that for every subset F
of the vertex set, Ki contains either F or its complement. The methods
developed in this chapter yield a very simple proof of nonembeddabil-
ity of such K (see Exercise 5.8.4). Schild also shows that each such K
is minimal nonembeddable unless all the Ki are simplices, or r = 1
and K1 is the disjoint union of a simplex boundary with an isolated
point.

Maximum number of faces. A planar graph on n vertices has at most
3n−6 edges. Is it true that any simplicial complex on n vertices em-
beddable in Rd has at most Cdn

d/2� simplices, for some Cd depending
on d but not on n? If true, this would be the best possible, as is wit-
nessed by the boundary complex of a cyclic (d+1)-polytope with one
d-simplex removed, but the problem remains open. For d = 3, there is
an elementary proof (Dey and Edelsbrunner [DE94]): Assume that the
embedding is piecewise linear, say, and consider a tiny sphere around
a vertex v. Then the intersections of the edges and triangles adjacent
to v with the sphere constitute a drawing of a planar graph, with O(n)
edges, and so v lies in at most O(n) triangles.

A study of some embedding questions for higher-dimensional com-
plexes by elementary methods is Dey and Pach [DP98].

Radon’s theorem. Surveys on Radon’s theorem and its relatives are
Eckhoff’s papers [Eck79] and [Eck93].

The original proof of the topological Radon theorem by Bajmóczy
and Bárány [BB79] is different from the ones shown in this book.
They construct a continuous map g:Sd → ‖σd+1‖ such that for every
x ∈ Sd, supp(g(x)) ∩ supp(g(−x)) = ∅, and then they apply the
Borsuk–Ulam theorem to f ◦ g:Sd → Rd.

The topological Radon theorem was used (and re-proved) by
Lovász and Schrijver [LS99].

Exercises

1. Enumerate all possible configurations for Radon’s theorem in dimension
d = 3.

2. Let A ⊆ Rn be a set and let f : Rn → Rm be an affine map. Show that
conv(f(A)) = f(conv(A)).

5.2 Z2-Spaces and Z2-Maps

One of the versions of the Borsuk–Ulam theorem asserts that there is no
antipodal map Sn → Sn−1, and this is the starting point of our generaliza-
tions. We will view antipodal maps not only as maps between topological
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spaces, but rather as maps between topological spaces with additional struc-
ture given by the antipodality. Thus, here we regard Sn as the pair (Sn,−),
where “−” is shorthand for the mapping x �→ −x.

The antipodality “−” is a homeomorphism of the underlying space (Sn,
or also Rn), and it gives the identity if performed twice: −(−x) = x. These
are the essential properties that are reflected in the definition of a general
“antipodality space.” Anticipating the terminology of the subsequent gener-
alizations, we begin to use brave new names for old things: We start saying
Z2-action instead of antipodality and Z2-map instead of antipodal map.

5.2.1 Definition (Z2-space and Z2-map). A Z2-space is a pair (X, ν),
where X is a topological space and ν:X → X is a homeomorphism, called
the Z2-action on X, such that ν2 = ν ◦ ν = idX .

The Z2-action ν is free if ν(x) �= x for all x ∈ X, that is, if ν has no fixed
points. In that case, the Z2-space (X, ν) is also called free.

If (X, ν) and (Y, ω) are Z2-spaces, a Z2-map f : (X, ν) → (Y, ω) is a
continuous map X → Y that commutes with the Z2-actions: For all x ∈ X,
we have f(ν(x)) = ω(f(x)), or more briefly, f ◦ ν = ω ◦ f .

The definition of a Z2-map can also be expressed by a commutative dia-
gram:

X Y
f

X Y
f

ν ω

A Z2-map is also called an equivariant map, or an antipodal map.1 If the
Z2-action on a Z2-space (X, ν) is understood, we write just “Z2-space X”;
this is similar to the conventions for many other mathematical structures.

Obvious examples of Z2-spaces are (Sn,−) and (Rn,−). The first one is
free; the second is not free.

Here is one example that is not really very different, but at least it looks
different at first sight.

5.2.2 Example. Consider the boundary of the (n−1)-dimensional simplex
as an abstract simplicial complex K; i.e., K := 2[n] \ {[n]}. Let L := sd(K) be
the first barycentric subdivision of K; thus, the vertex set of L consists of all
proper nonempty subsets of [n]. We define a simplicial map ν:V (L) → V (L)
by setting, for every vertex F ∈ V (L), ν(F ) := [n] \ F . A simplex in L is a
chain of sets under inclusion, and so ν maps simplices to simplices (reversing
the inclusion!). Moreover, ν is surjective (all chains are obtained) and ν2 = id.
So (‖L‖, ‖ν‖) is a (free) Z2-space.

1 Many other names appear in the literature; for example, a Z2-action is also called
involution, a map of period 2, etc.; a Z2-map may be called an odd map; and so
on.
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As we know, ‖L‖ ∼= ‖K‖ ∼= Sn−2. For n = 3, the action ν is depicted
below:

1 2

3

12

2313
ν

It is essentially the same as the usual antipodality “−” on S1. (As we will
see, all free Z2-actions on Sn are essentially the same, in a sense to be made
precise later.)

The L above is an example of a simplicial Z2-complex. In general,
a simplicial Z2-complex is a simplicial complex K with a simplicial map
ν:V (K) → V (K) such that ‖ν‖ is a Z2-action on ‖K‖. We also extend other
notions from Z2-spaces to simplicial Z2-complexes in the obvious way, such as
being free (the action is free on the polyhedron), or a simplicial Z2-map (the
canonical affine extension is a Z2-map of the polyhedra). A cell Z2-complex is
defined analogously: It is a finite CW-complex and the Z2-action is a cellular
map.

5.2.3 Example (Join of Z2-spaces). If (X1, ν1) and (X2, ν2) are Z2-
spaces, the join X1∗X2 can be equipped with the Z2-action ν1∗ν2. The join of
free Z2-spaces is clearly free. If K1 and K2 are simplicial Z2-complexes, then
so is K1∗K2. (All of this needs a little proof, which we omit as uninteresting.)

5.2.4 Example. The two-point space S0 has an obvious free Z2-action that
exchanges the two points (in the standard embedding of S0 into R1, it is
precisely the usual action x �→ −x). As we saw in Example 4.2.2, the n-fold
join (S0)∗n is homeomorphic to Sn−1 (it is the boundary of the n-dimension-
al crosspolytope). By considering this join as a Z2-space, we recover the
standard Z2-action x �→ −x on the boundary of the crosspolytope.

The next examples look rather simple, but we will be encountering vari-
ations of them all the time.

5.2.5 Example (Z2-action on X×X). Let X be any space. The Cartesian
product X×X can be made into a Z2-space by letting the Z2-action exchange
the two components; ν: (x, y) �→ (y, x).

5.2.6 Example (Z2-action on X∗X). Similarly, the join X∗X becomes a
Z2-space if we define the Z2-action ν by tx⊕(1−t)y �→ (1−t)y⊕tx (recall the
convention about writing the points in a join as formal convex combinations,
and visualize this action for X a segment).

The Z2-spaces in the last two examples are not free. Later on, we will be
using constructions that make them free by deleting their fixed points from
X ×X or from X ∗X.
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Exercises

1. Verify that the Z2-action ν in Example 5.2.2 is free.
2. Let K be a simplicial complex, and let ν be a free simplicial Z2-action on

K. Prove that F ∩ ν(F ) = ∅ for every F ∈ K.

5.3 The Z2-Index

Let (X, ν) and (Y, ω) be Z2-spaces. Let us write

X
Z2−→Y

if there exists a Z2-map from X to Y , and

X
Z2−→/ Y

if no Z2-map exists. The Borsuk–Ulam theorem tells us that Sn Z2−→/ Sn−1. In
the applications of the concepts developed in this chapter, the crux is always
in showing X

Z2−→/ Y for some given X and Y . Of course, the relation
Z2−→ is

rather complicated, and one should not expect to be able to decide whether
X

Z2−→Y for arbitrary given X and Y (several rather famous open problems
can be phrased as the existence of Z2-maps between suitable Z2-spaces, as
mentioned in the notes below). Nevertheless, with the tools introduced later,
one can succeed in many interesting concrete cases.

The relation
Z2−→ is obviously transitive, and it is useful to think of it as

a partial ordering: If X
Z2−→Y , then Y is at least as big as X. To support this

ideology notationally, we also write

X ≤Z2 Y if X
Z2−→Y.

Strictly speaking, ≤Z2 is not a partial ordering but rather a partial quasi-
ordering, since many spaces are equivalent under it (homeomorphic spaces
with “the same” Z2-actions, for example).

Before proceeding, we can observe that nonfree Z2-spaces are uninterest-
ing from the point of view of ≤Z2 . Namely, if (Y, ω) is such that ω(y0) = y0,
then X

Z2−→Y for all X: Simply send all of X to y0. In the ≤Z2 relation, all
nonfree Z2-spaces are equivalent and strictly larger than all free Z2-spaces
(right?).

The Z2-index. Spheres play a key role in the Borsuk–Ulam theorem, and
here we are going to use them as a yardstick for measuring the “size” of
Z2-spaces with respect to ≤Z2 .

5.3.1 Definition. Let (X, ν) be a Z2-space. The Z2-index of (X, ν) is de-
fined as

indZ2(X) := min
{
n ∈ {0, 1, 2, . . .} : X

Z2−→Sn
}
.

Here Sn is taken with the standard antipodal Z2-action.
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The Z2-index can be a natural number or ∞; the latter happens, for
example, for a nonfree Z2-space.

Although we do not show it in the notation, the Z2-index does generally
depend on the Z2-action, not only on the space. For example, if X is the
sum (disjoint union) of two circles (S1’s), and the Z2-action ν acts as the
antipodality on each of the circles, then the Z2-index is 1. On the other
hand, if we take another Z2-action that exchanges the two circles, then the
Z2-index is 0.

The following proposition summarizes key properties of the Z2-index and
tools for estimating it. We will use them many times for showing the nonex-
istence of Z2-maps.

5.3.2 Proposition (Properties of the Z2-index).

(i) If X ≤Z2 Y , then indZ2(X) ≤ indZ2(Y ). In other words,

indZ2(X) > indZ2(Y ) implies X
Z2−→/ Y.

(ii) indZ2(S
n) = n, for all n ≥ 0 (with the standard Z2-action on Sn).

(iii) indZ2(X ∗ Y ) ≤ indZ2(X) + indZ2(Y ) + 1.
(iv) If X is (n−1)-connected, then indZ2(X) ≥ n.
(v) If K is a free simplicial Z2-complex (or cell Z2-complex) of dimension n,

then indZ2(K) ≤ n.2

Part (i) follows trivially from the definition (right?), and it suggests
how the Z2-index can be used for establishing the nonexistence of a Z2-
map. The condition indZ2(X) > indZ2(Y ) is only sufficient for X

Z2−→/ Y . If
indZ2(X) ≤ indZ2(Y ), both of the possibilities X

Z2−→Y and X
Z2−→/ Y are still

open, although examples of the second possibility are not obvious at all (see
the notes and Exercise 8).

Part (ii) is essentially version (BU2a) of the Borsuk–Ulam theorem. It
tells us that our yardstick works as expected and does not collapse. It is a
special case of (iv), but the proof of (iv) relies on it.
2 With some more technical machinery, this claim can be proved for much more

general spaces. Namely, if a free Z2-space X is paracompact, then indZ2(X) ≤
dim(X). Paracompactness is a mild topological condition satisfied by practically
all the usually encountered topological spaces, for example, by all metric spaces.
A topological space X is paracompact if it is Hausdorff and each open cover U of
X has a locally finite open refinement V. Here a cover U is open if it consists of
open sets, a cover V is a refinement of a cover U if each set of V is contained in
some set of U , and V is locally finite if each point of X has an open neighborhood
intersecting only finitely many members of V.

The dimension is the usual covering dimension. For a metric space X, dim X ≤
n if every finite open cover of X has a finite open refinement such that each
point of X is contained in at most n+1 sets of the refinement. For a detailed
treatment of both paracompactness and topological dimensions see [Eng77]. For
finite simplicial complexes (or CW-complexes), the covering dimension coincides
with the maximum dimension of a simplex (or cell).
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Part (iii) follows immediately from Sn ∗ Sm ∼= Sn+m+1. As we will see, it
can sometimes be used to show that the Z2-index of some space is large, in
the form indZ2(X) ≥ indZ2(X ∗ Y )−indZ2(Y )−1 for a suitable Y .

Finally, parts (iv) and (v) are a little more difficult, and we prove them
below. The statement (iv), indZ2(X) ≥ n for (n−1)-connected X, is the
basic tool for bounding the Z2-index below, while (v), indZ2(X) ≤ dim(X),
is typically used to bound it above.

Mapping the sphere: proof of (iv). To show that indZ2(X) ≥ n for
an (n−1)-connected X, it suffices to exhibit a Z2-map g:Sn → X. We will
construct Z2-maps gk:Sk → X by induction on k. The cases k = −1 and
k = 0 are clear. For the induction step, consider Sk−1 as a subset of Sk,
by identifying it with the “equator” {x ∈ Sk:xk+1 = 0}. Furthermore, via
the projection map π: Rk+1 → Rk that deletes the last coordinate, the upper
hemisphere H+

k := {x ∈ Sk:xk+1 ≥ 0} is homeomorphic to the ball Bk.
If a Z2-map gk−1:Sk−1 → X has been constructed, we can extend it to a
continuous map ḡk−1:Bk → X, since X is (k−1)-connected. Using π, we can
then define gk on H+

k by

gk := ḡk−1 ◦ π: H+
k −→ Bk −→ X.

Setting gk(x) := ν(gk(−x)) for x ∈ H−
k (the lower hemisphere), we get a

map gk:Sk → X. This map is well-defined, since gk is antipodal on the
intersection Sk−1 = H+

k ∩H−
k . It is continuous, since it is continuous on both

of the closed hemispheres, and it is a Z2-map by construction.

It is instructive to unwrap this inductive proof; for concreteness, we do
it for n = 2. First we regard S0 as two antipodal points H+

0 and H−
0 in S2.

We choose the value at H+
0 as an arbitrary x0 ∈ X, and the value at H−

0 is
enforced: ν(x0).

H+
0

H−
0

H+
1

H−
1

H−
2

H+
2

Next, we extend our map to a semicircle H+
1 connecting H+

0 and H−
0 , us-

ing the 0-connectedness of X, and we again put the enforced values on the
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opposite semicircle H−
1 . The two arcs combine to a full circle S1, and from

this circle, we extend to the upper hemisphere H+
2 by the 1-connectedness of

X. We finish the construction by assigning the antipodal values on the lower
hemisphere. The proof implicitly used a cell decomposition (see Section 4.5)
that makes S2 a cell Z2-complex. That is, the interior of each k-dimension-
al cell is mapped bijectively onto the interior of another k-dimensional cell
by the Z2-action. This decomposition was also used in the second proof of
Tucker’s lemma (Section 2.4).

In order to stay in the realm of the perhaps more familiar simplicial com-
plexes, we can also do the proof using an antipodally symmetric triangulation
of Sk. For example, in the usual octahedral triangulation of S2, we can choose
the values of g0 at the three marked vertices,

get the values at the other vertices by antipodality, extend on the 6 marked
edges, and so on.

Mapping into the sphere: proof of (v). Here we need to construct a Z2-
map g: ‖K‖ → Sn for every free simplicial Z2-complex with dimK ≤ n. We
show that more generally, a free n-dimensional simplicial Z2-complex can be
Z2-mapped into any (n−1)-connected Z2-space Y . The argument is almost
exactly as in the previous proof.

We construct Z2-maps gk: ‖K≤k‖ → Y by induction, k = 0, 1, . . . , n. Hav-
ing already constructed gk−1, we divide the k-dimensional simplices in K into
equivalence classes, the orbits under the Z2-action; each class consists of two
disjoint simplices F and ν(F ) (Exercise 5.2.2). We pick one simplex from
each class, and for these simplices, we extend gk−1 on the interior using the
(k−1)-connectedness of Y . We then define gk on the interiors of the remain-
ing simplices in the only possible way that makes gk a Z2-map.

The same proof goes through for cell Z2-complexes.

Other Z2-indices. There are various other sensible ways of defining a “Z2-
index”; the one we have used is technically quite simple, but others may be
more powerful or easier to compute in some cases. In principle, any mapping
from the class of Z2-spaces to some partially ordered set that is monotone
with respect to the ordering ≤Z2 can serve as a “Z2-index.” But in order
to get interesting results, the mapping should satisfy some extra properties
similar to (ii)–(v) in Proposition 5.3.2. The Z2-index introduced above is the
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largest among such “reasonable” index functions; see Exercise 7 for a precise
formulation. Other notions of index will be mentioned below and in the notes
to Section 6.2.

Notes. The (n−1)-connectedness in Proposition 5.3.2(iv) can be
weakened to the following homological condition: If all homology
groups of X with Z2 coefficients up to dimension n−1 vanish, then
indZ2(X) ≥ n. This is explicitly formulated in Walker [Wal83b], with
a short and quite accessible proof; methods for establishing such a
statement were certainly known earlier.

The Z2-index and similar notions have emerged several times in the
literature, sometimes without the knowledge of the earlier work.

Krasnosel’skǐı [Kra52] (also see [KZ75]) introduced the genus of a
set X ⊆ Sn as the minimum number k such that there exist closed,
antipodally symmetric sets F1, F2, . . . , Fk ⊂ Sn that together cover X
and such that no connected component of any Fi contains an antipodal
pair of points (x and −x). The genus of Sn equals n+1, and more
generally, for X antipodally symmetric, it can be shown that the genus
equals 1+indZ2(X); see [KZ75]. A related notion is the Lyusternik–
Shnirel’man category of a space X, which is the smallest k such that
there exist k closed sets covering X, each of them contractible in X
(see [KZ75] or [Jam95]). For a free Z2-space (X, ν), the category of the
quotient space X/ν (where we identify x with ν(x), for each x ∈ X)
is no smaller than 1+indZ2(X).

Yang [Yan55] introduced the Z2-index under the name B-index.
Other early papers on this subject are Conner and Floyd [CF60],
[CF62]. Živaljević’s surveys [Živ96], [Živ04] emphasized the Z2-index
as a convenient tool for combinatorial applications of topology, and
our presentation above essentially follows his.

The Z2-coindex. We have defined the Z2-index using maps into
spheres. Another natural index-like quantity can be defined using maps
from spheres; we call it the Z2-coindex and define it by

coindZ2(X) := max{n ≥ 0 : Sn Z2−→X}.

This quantity was probably first studied by Conner and Floyd [CF60]
(they call index what we call coindex and conversely).

Obviously, coindZ2(X) ≤ indZ2(X) for all X (see Exercise 8).
When bounding indZ2(X) below, we often exhibit a map Sn Z2−→X,
and thus we implicitly bound coindZ2(X). Let us call a Z2-space X
tidy if coindZ2(X) = indZ2(X) (this terminology is not standard). Tidy
spaces are those fitting perfectly the yardstick given by the spheres:
The existence of Z2-maps between such spaces is fully determined by
the Z2-index; see Exercise 8(b).
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Nontidy spaces. Examples of nontidy spaces are not obvious at first
sight. We now mention several of them, this is a good opportunity to
meet interesting spaces and constructions. In Exercise 8(c) below, the
reader is invited to construct yet another example using a “patholog-
ical” topological space.

A particularly simple example, communicated to me by Gábor Tar-
dos, is the torus with two holes T2 (aka sphere with two handles), with
the antipodal Z2-action ν that interchanges the two holes:

x

ν(x)

First we claim that coindZ2(T2) ≤ 1; that is, there is no Z2-map
f :S2 Z2−→T2. We use the following fact: There is a map p: R2 → T2 such
that for every map f :S2 → T 2 there exists a map f̃ :S2 → R2 with
p ◦ f̃ = f (all maps assumed continuous); that is, every map S2 → T2

“factors through” R2. This relies on two results usually covered in
courses on the fundamental group: First, R2 is the universal covering
space of T2 (and of all other orientable 2-dimensional surfaces except
for S2), and second, any map from a simply connected space (such as
S2) into a space X factors through the universal cover of X, under
some mild technical assumptions—see, e.g., Hatcher [Hat01], Proposi-
tion 1.33. Assuming the fact above and given a Z2 map f :S2 Z2−→T2,
we consider the corresponding f̃ :S2 → R2; this need not be a Z2-map,
of course, but by the Borsuk–Ulam theorem (BU1a), f̃ identifies two
antipodal points of S2, and hence the composed map f = p ◦ f̃ can’t
be a Z2-map—a contradiction.

It remains to see that indZ2(T2) ≥ 2; that is, T2
Z2−→/ S1. The eas-

iest way seems to be through homology. The restriction of a Z2-map
f :T2

Z2−→S1 to the “equator” S1 in T2 is a Z2-map S1 Z2−→S1, whose
image is all of S1 (by the Borsuk–Ulam theorem as in Exercise 2.1.4)
and thus homologically nontrivial. However, the equatorial S1 is a
boundary in T2 and thus homologically trivial. Another argument,
avoiding homology, is to construct a Z2-map of S3 in the suspension
of T2, and observe that suspension increases the index by at most 1.

Here is another example, constructed with the help of R. Živaljević
and P. Csorba, where a full proof can again be sketched (for those
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moderately familiar with algebraic topology). We construct a cell Z2-
complex X with S3 Z2−→/ X

Z2−→/ S2. Let h:S3 → S2 be the Hopf map
(see, e.g., [Hat01]). We construct X by attaching two 4-cells (copies of
B4) to the standard S2, where the boundary of the first cell is attached
by h and the boundary of the other cell by −h. The Z2-action ν acts
on the S2 as the antipodality, and it interchanges the two 4-cells. A
Z2-map S3 → X could be deformed so that it remains a Z2-map and
goes into the 3-skeleton of X, but the 3-skeleton is just the S2, and so
such a map does not exist. If f :S2 → S2 is a Z2-map, it can be shown
that f ◦ h:S3 → S2 is not nullhomotopic (using the properties of the
Hopf invariant, say), and so it cannot be extended to a map B4 → S2.
But a Z2-map X → S2 would yield such an extension.

The following example of a nontidy space in [CF60] is natural and
simple to state (but verifying the required properties is not so sim-
ple). Let Vn,k denote the Stiefel manifold of k-tuples (v1,v2, . . . ,vk)
of mutually orthogonal unit vectors in Rn (with the topology of
a subspace of Rnk). If Vn,2 is considered with the free Z2-action
(v1,v2) �→ (−v1,−v2), then for odd n we have coindZ2(Vn,2) = n−2 <
indZ2(Vn,2) = n−1. The proofs in [CF60] and [DL84] use nontrivial
information about the structure of Vn,2. For example, Dai and Lam
[DL84] note that if X is a tidy space with indZ2(X) = coindZ2(X) = k,
then the homotopy group πk(X) has a quotient that is infinite cyclic,
while it is known that πn−2(Vn,2) ∼= Z2 for odd n and πn−1(Vn,2) ∼= Z2

for odd n > 3 (while π2(V3,2) ∼= 0).
Although Dai and Lam [DL84] remark that spaces with an arbi-

trarily large gap between the index and coindex are “not difficult to
exhibit,” referring to a private communication of P. Conner, I am not
aware of any such example appearing in print. Živaljević [Živ02] noted
that an example is provided by the projective space RP2n−1. We rep-
resent S2n−1 as the unit sphere in the complex space Cn, RP2n−1 is
the quotient S2n−1/({x,−x} : x ∈ S2n−1), and the free Z2-action ν
is induced by (v1, v2, . . . , vn) �→ (iv1, iv2, . . . , ivn), v1, . . . , vn ∈ C. The
Z2-index of (RP2n−1, ν) was determined by Stolz [Sto89] (with ear-
lier bounds by Pfister and Stolz), and it is always at least n. On the
other hand, an elementary argument [Živ02] shows that no Z2-map
S1 → RP2n−1 is nullhomotopic, and hence coindZ2(RP2n−1) ≤ 1.

A connection of the index and coindex to algebra. Dai, Lam, and Peng
[DLP80] rediscovered the Z2-index and Z2-coindex in an algebraic
context (considering quantities larger by 1 and calling them level and
colevel, respectively). Let R be a ring. The level s(R) of R is the
smallest n such that −1 can be written as the sum of n squares in R;
that is, −1 = a2

1 + · · ·+ a2
n for some a1, . . . , an ∈ R. By a theorem of

Pfister, the level of every field is either ∞ or a power of 2. In contrast,
as shown in [DLP80], there is a ring of level n for every n. An example
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is the polynomial ring An := R[t1, . . . , tn]/(1 + t21 + t22 + · · ·+ t2n) (real
polynomials in n variables modulo the polynomial in parentheses).
The proof of s(An) ≥ n is an amazing application of the Borsuk–
Ulam theorem, which we now sketch.

For contradiction, we suppose that s(An) = m < n; so there are
polynomials f0, f1, . . . , fm ∈ R[t1, . . . , tn] such that p := f2

1 + f2
2 +

· · · + f2
m + f0 · (1 + t21 + t22 + · · · + t2n) is identically −1. For a point

x ∈ Sn−1, we define qj(x) as the imaginary part of fj(w), where w
is the complex vector (ix1, ix2, . . . , ixn). We have qj(−x) = −qj(x),
since qj is made of the monomials in fj of odd degree. So q:x �→
(q1(x), q2(x), . . . , qm(x)) is an antipodal map Sn−1 → Rm. We claim
that q(x) is never 0 for x ∈ Sn−1, which contradicts the Borsuk–Ulam
theorem. Indeed, we have p(w) = f1(w)2 + · · ·+ fm(w)2 = −1 (note
that the term f0 · (1 + t21 + t22 + · · ·+ t2n) vanishes), and this equality
could not hold if the imaginary parts of the fj(w) were all 0. This
finishes the proof.

Here is an algebraic characterization of the Z2-index of a Z2-space
X [DL84]: indZ2(X) = s(AX)−1, where AX is the ring of all Z2-
maps X → C, with the Z2-action on C being the complex conjugation
(a+ib �→ a−ib).

The cohomological index, also called the Stiefel–Whitney height, has
recently been promoted in the works of Babson, Kozlov, Schultz and
others (e.g., [BK07], [Koz07], [Sch06a]) mainly in the context of Hom
complexes (see the notes to Section 5.9). It always lies between the
coindex and the index, its properties resembling more the former than
the latter, and it has some advantages over both of these notions, one
of them being efficient computability. Here we will briefly introduce
it for finite simplicial Z2-complexes; we begin with an abstract defini-
tion, which involves somewhat fancy topological notions, and then we
proceed with a pedestrian presentation of how it can be determined on
a concrete example. Even there we need to assume basic familiarity
with the definition of cohomology, in the simplest case of Z2 coeffi-
cients.

First we introduce Stiefel–Whitney classes (in a special setting).
This is one of several constructions of characteristic classes of principal
bundles, so we begin with a few informal words about these.

A simple example of a bundle, a fiber bundle in this case, is the
Möbius strip:
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Above every point x of the base space B, here the S1 drawn thick,
we have a copy of the fiber F , here a unit segment. Moreover, each
x ∈ B has a small neighborhood U such that the union of all fibers
sitting above U is homeomorphic to the product F × U , in our case
a rectangle. Even more popular and more basic examples of bundles
are vector bundles, such as the system of all tangent planes of a 2-
dimensional smooth manifold, where the base space B is the manifold
itself and the fibers are planes.

Characteristic classes were introduced as topological invariants of
bundles, originally of vector bundles, and later extended to principal
bundles, which are bundles having a topological group G acting freely
and transitively on each fiber. Here the word class refers to an ele-
ment of a cohomology group of the base space B of the bundle, since
traditionally, elements of cohomology groups have often been called
cohomology classes. Characteristic classes can be useful, for instance,
for proving that a given vector bundle has at most k linearly inde-
pendent zero sections. They are obtained by the following mechanism:
The given principal bundle is mapped into a certain “universal bun-
dle”, and a characteristic class is a preimage of a suitable nonzero
element in the cohomology of the universal bundle. Actually, histori-
cally this was one of the main motivations for developing cohomology,
since unlike homology or homotopy, it has the ability to “pull back”
from the image to the preimage (it is contravariant).

After this vague general introduction, let us go back to a free Z2

space (X, ν). We will regard it as a principal bundle, where each fiber
is a copy of Z2. Namely, the base space of this bundle is the quotient
space X/Z2, by which we mean that each x ∈ X is identified with
ν(x). One example can be seen in the above picture of the Möbius
strip: X is the boundary of the strip, an S1 with the antipodal action,
and X/Z2 is visualized as the thick S1 in the middle. Another example
is (S2,−), where S2/Z2 is the projective plane RP2.

By Proposition 5.3.2(v), if (X, ν) is the polyhedron of a finite sim-
plicial Z2-complex, then there is a Z2-map f :X → (S∞,−), where
S∞ =

⋃∞
n=0 Sn with each Sn sitting as the equator of Sn+1. The

beauty of the thing is that f is unique up to Z2-homotopy. Here the
Z2-space (S∞,−) is also regarded as a bundle, with the base space
S∞/Z2 = RP∞, and it serves as the “universal bundle” mentioned
in the vague talk above. (The infinite-dimensional sphere is techni-
cally convenient here, but in the considered setting we could also take
a sphere of a sufficiently large finite dimension, depending on X, in-
stead.) The Z2-map f induces a map f̄ :X/Z2 → RP∞ of the quotients,
and in cohomology we get the map f̄∗:H∗(RP∞; Z2) → H∗(X/Z2; Z2)
going backwards.
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The 1-dimensional cohomology group H1(RP∞; Z2) is a Z2, with
a single nonzero element z. The first Stiefel–Whitney class of X is the
image �1(X) := f̄∗(z) ∈ H1(X/Z2; Z2). Finally, the cohomological
index cohom-indZ2(X), or the Stiefel–Whitney height, of (X, ν) is the
largest integer k such that �1(X)k �= 0, where the kth power refers to
the cup product in the cohomology ring H∗(X/Z2; Z2).

The definition immediately implies that if there is a Z2-map
g:X

Z2−→Y , then cohom-indZ2(X) ≤ cohom-indZ2(Y ), since the in-
duced map ḡ∗:Hk(Y/Z2; Z2) → Hk(X/Z2; Z2) in cohomology of the
quotients sends �(Y )k to �(X)k. For spheres cohom-indZ2(S

n) = n,
which can easily be deduced from the definition and from the knowl-
edge of the cohomology ring of RPn. Once we know this, the analogs
of Proposition 5.3.2(iv) and (v) are immediate, as well as the already
mentioned inequalities coindZ2(X) ≤ cohom-indZ2(X) ≤ indZ2(X).

Now that the abstract definition is out, let us work through an
example of what it means concretely. Let us assume that X is the
polyhedron of a free simplicial Z2-complex K, such that K/Z2 is still a
simplicial complex (for example,the triangulation of S1 as the bound-
ary of a square is not good, since the quotient has two edges glued
together at two vertices, but the hexagon boundary will already do).3

We will show a direct calculation of cohom-indZ2 of (S2,−); this is a
rather dull example, since we already know the answer, but our pur-
pose is to demonstrate the procedure on a very familiar space (an am-
bitious reader may try computing cohom-indZ2 of the non-tidy space
T2 described above).

We triangulate the S2 as the surface of a regular icosahedron (left
picture):

2

1

3

3
2

1

4

5 6

6 5

4

The right picture is this triangulation K redrawn in the plane, with
the outer face also belonging to the triangulation. The vertices are
numbered 1 through 6, with antipodal vertices receiving the same
number. Moreover, one vertex in every antipodal pair is colored black

3 This assumption could be removed by working with ∆-complexes as in [Hat01],
for instance.
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and one white (both the numbering and the black-white coloring are
chosen arbitrarily). Edges connecting black vertices to white ones are
drawn thick and called multicolored. Then we form the quotient space
K/Z2, in this case a triangulation of the projective plane:

2

1

3

3
2

1

4

5 6

(to actually obtain the quotient, the antipodal edges on the boundary
in the picture must be glued together).

We note that multicolored edges of K come in antipodal pairs, and
so they also transfer to the quotient. The first Stiefel–Whitney class
�1(K) is the element of H1(K/Z2; Z2) supported on the multicolored
edges. To obtain �1(K)2, the cup product of �1(K) with itself, we
marked some of the triangles (2-simplices) gray. The rule is that a
triangle {i, j, k} with i < j < k is gray if both of the edges {i, j} and
{j, k} are multicolored. (Similarly, for computing �1(K)k, we would
mark those k-simplices {i1, i2, . . . , ik+1}, i1 < i2 < · · · < ik+1, for
which the edges {i1, i2}, {i2, i3},. . . , {ik, ik+1} are all multicolored.)
Then �1(K)2 is given by the 2-cochain supported on the gray triangles,
and it remains to determine whether it is nonzero in H2(K/Z2; Z2).
This amounts to determining the solvability of an inhomogeneous sys-
tem of linear equations over Z2, and in our case we can also take a
shortcut using the duality of homology and cohomology: The number
of gray triangles is odd, which means that our 2-cochain evaluates to
1 on the 2-cycle supported on all triangles which, as is well known,
is nonzero in the 2-dimensional homology group of RP2. So indeed
�1(K)2 �= 0 and cohom-indZ2(K) = 2 as it should be.

To connect this recipe to the above definition of the Stiefel–
Whitney classes, we consider S∞ with the canonical antipodal cell
decomposition as in the proof of Proposition 5.3.2(iv); in particular,
there are two vertices H−

0 and H+
0 and two edges H−

1 and H+
1 . When

we construct the Z2-map f : ‖K‖ → S∞, we first map one vertex of K
in each antipodal pair to H−

0 , which corresponds to coloring that ver-
tex black, and the other vertex to H+

0 , which corresponds to coloring
it white. Then the multicolored edges of K are exactly those that map
to H−

1 or H+
1 , while all others are contracted to either H−

0 or H+
0 .

Now the 1-dimensional cohomology of the quotient S2/Z2 is generated
by (the 1-chain supported on) the single edge obtained by identifying
H−

1 and H+
1 , and so the first Stiefel–Whitney class is supported on the
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preimages of this edge, which are the multicolored edges. The compu-
tation of the kth power of �1(K) then simply follows the definition of
the cup product in simplicial cohomology.

The algorithm described above shows that the cohomological index
is efficiently computable (while notions defined through homotopy, like
the index or coindex, appear much harder in general). However, the
efficiency must be taken with a grain of salt, because in many cases of
interest, such as box complexes of graphs (see Section 5.9), the number
of simplices in the complex is already exponentially large, and then
actual computations can be performed only on very small instances.

Other indices. A number of other index functions have been proposed
in the literature. All of them always lie between coindZ2 and indZ2 .

Yang [Yan54] defined an index-like parameter of a Z2-space X
homologically (using an equivariant homology theory with Z2-coeffici-
ents). He proved nice geometric results using this index (Bourgin–
Yang-type theorems); some of them were mentioned in the notes to
Section 2.1. As one of the main lemmas, he showed that if (his) index
of X is n and f :X → Rm is a continuous map, then the coincidence
set {x ∈ X : f(x) = f(ν(x))} has dimension at least n−m. (For an
analogy of this result with other index functions see [CF60].)

Other notions suggested in [CF60] are the stable index and coindex.
The stable index is inf{indZ2(X∗Sk)−k−1 : k = 0, 1, . . .}, and the
stable coindex is sup{coindZ2(X∗Sk)−k−1 : k = 0, 1, . . .}. In analogy
to stable homotopy groups, these parameters might be better behaved
than the Z2-index and Z2-coindex.

Dai and Lam [DL84] proposed a family of indices and coindices
defined using Z2-maps X → Vn,k and Vn,k → X, respectively. Here
Vn,k is the Stiefel manifold of k-tuples (v1, . . . ,vk) of orthogonal unit
vectors mentioned above, equipped with the Z2-action νk−1, where νr

keeps v1, . . . ,vr fixed and changes the sign of vr+1 through vk. They
also obtained partial results about the existence of Z2-maps between
Stiefel manifolds with the Z2-actions νr, 0 ≤ r ≤ k−1, and they noted
that a full computation of the Z2-coindex of Vn,k with the Z2-action
ν0 (flipping all signs) would essentially amount to solving some well-
known problems in topology (such as a skew-linear version of Hopf’s
problem or the generalized vector field problem of Atiyah, Bott, and
Shapiro).

Exercises

1. Give examples of free Z2-spaces of index n that are not (n−1)-connected.
2. Give an example of a free Z2-space X with indZ2(X) = ∞.
3. Let Vn,2 = {(v1,v2) ∈ (Sn−1)2 : 〈v1,v2〉 = 0} ⊂ R2n be the Stiefel

manifold of pairs of unit orthogonal vectors, n ≥ 1. Let ν be the Z2-
action given by (v1,v2) �→ (−v1,−v2).
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(a) Show that indZ2(Vn,2) ≤ n−1.
(b) Let n be even. Exhibit a Z2-map Sn−1 → Vn,2, thereby proving that
indZ2(Vn,2) = n−1.
(c) For n odd, construct a Z2-map Sn−2 → Vn,2.

4. Now consider Vn,2 from Exercise 3 with two other free Z2-actions:
ω1(v1,v2) := (v2,v1) and ω2(v1,v2) := (v1,−v2).
(a) Show that (Vn,2, ω1) and (Vn,2, ω2) are Z2-homeomorphic; that is,
there is a bijective Z2-map (Vn,2, ω1) → (Vn,2, ω2) whose inverse is also a
Z2-map.
(b) Prove that the Z2-index is between n−2 and n−1 in this case. (See
[DL84] for precise results.)

5.∗ (Equivalent characterizations of Z2-index) Let (X, ν) be a free Z2-space.
(a) Show that indZ2(X) ≥ n if and only if for every continuous map
(not necessarily a Z2-map) f :X → Rn there exists x ∈ X with f(x) =
f(ν(x)).
(b) Assume, moreover, that X is a metric space. Show that indZ2(X) ≥ n
if and only if for every cover of X by closed sets F1, F2, . . . , Fn+1, there
exist x ∈ X and i ∈ [n+1] such that x ∈ Fi and ν(x) ∈ Fi.
(c) Again assume X metric. Show that indZ2(X) ≤ n if and only if
there are closed sets A1, A2, . . . , An+1 ⊆ X with Ai ∩ ν(Ai) = ∅ and⋃n+1

i=1 (Ai ∪ ν(Ai)) = X.
(d) The above statements are analogues of versions (BU1a) and (LS-c) of
the Borsuk–Ulam theorem, and of the version in Exercise 2.1.12. Formu-
late and prove several other equivalent characterizations of the Z2-index,
analogous to other equivalent versions of the Borsuk–Ulam theorem (see
Section 2.1 and the exercises to it).
The above assertions remain valid with “X paracompact” instead of “X
metric.” A solution to this exercise can be found in [Yan54].

6. Let (X, ν) be a free Z2-space, and let A,B ⊆ X be closed invariant
sets (that is, ν(A) = A and ν(B) = B) with X = A ∪ B. Show that
indZ2(X) ≤ indZ2(A) + indZ2(B) + 1.

7.∗ (The Z2-index is the largest among “reasonable” index functions [CF60])
Let X be a family of metric free Z2-spaces with (S0,−) ∈ X and such
that if X ∈ X and A is a closed invariant subset of X, then A ∈ X . Let
I:X → {0, 1, 2, . . .} ∪ {∞} be a function satisfying, for all X,Y ∈ X :
(i) If X

Z2−→Y , then I(X) ≤ I(Y ).
(ii) If X = A∪B for closed invariant sets A and B, then I(X) ≤ I(A)+

I(B) + 1.
(iii) I(S0) = 0.
Prove that I(X) ≤ indZ2(X) for all X ∈ X .

8.∗ (Z2-coindex) Let us consider the Z2-coindex of a Z2-space X (mentioned
in the notes above): coindZ2(X) := max{n ≥ 0 : Sn Z2−→X}.
(a) Formulate and prove analogues of Proposition 5.3.2(i)–(v) for the Z2-
coindex, and check that coindZ2(X) ≤ indZ2(X) for all Z2-spaces X.
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(b) We call a free Z2-space X tidy if coindZ2(X) = indZ2(X) < ∞.
Show that if X and Y are tidy, then X

Z2−→Y if and only if indZ2(X) ≤
indZ2(Y ).
(c) Construct an example of a free Z2-space X with coindZ2(X) = 0 <
indZ2(X) (in particular, X is not tidy).

5.4 Deleted Products Good . . .

Here we return to proving the nonembeddability of a simplicial complex K
in Rd. As a running example, we will use a “baby version” of the topological
Radon theorem: If K is the boundary of a triangle, then any map f : ‖K‖ → R1

identifies two points with disjoint supports. This is a very simple result, but
the general technique can be well illustrated on it.

From a bad map to a Z2-map of pairs. We want to exclude the existence
of a mapping f : ‖K‖ → Rd that satisfies f(x1) �= f(x2) for all pairs (x1,x2)
from a certain set. If we need to prove only that f cannot be injective, the
appropriate set of pairs is

{(x1,x2) ∈ ‖K‖ × ‖K‖ : x1 �= x2}.
If we want the stronger statement, as in the topological Radon theorem, that
f cannot avoid identifying two points with disjoint supports, we need to look
at the (smaller) set of pairs

X := {(x1,x2) ∈ ‖K‖ × ‖K‖ : supp(x1) ∩ supp(x2) = ∅}.
Here we focus on the second variant (disjoint supports). Thus, let us call
f : ‖K‖ → Rd a bad map if f(x1) �= f(x2) for all pairs (x1,x2) ∈ X. We want
to prove that there is no bad map.

The first main idea is to pass from the map f to the following (continuous)
map fpair of pairs of points:

fpair: X → Rd × Rd,

(x1,x2) �→ (f(x1), f(x2)).

The badness of f says precisely that fpair maps X into the smaller set

Y := {(y1,y2) ∈ Rd × Rd : y1 �= y2}.
What have we gained by this, seemingly rather cumbersome, reformula-

tion of the problem? Compared to f , the mapping fpair goes between more
complicated spaces. But the condition of badness has disappeared, having
been “absorbed” in the definitions of X and Y .

So now we want to show that there is no continuous map fpair:X → Y
that is given componentwise by some f ; that is, fpair(x,y) = (f(x), f(y)).
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The latter condition, that fpair(x,y) be of the form (f(x), f(y)), is still
hard to deal with. We cannot omit it altogether, since there is always a map
X → Y (a constant map, say). But we can replace it by a weaker condition
that fpair be a Z2-map; this is the second main idea.

The Z2-actions on X and Y are the natural ones, given by the exchange
of coordinates (x,y) �→ (y,x). They are free, since the fixed points of the
Z2-action, which are of the form (x,x), have been deleted from both X and
Y . Finally, fpair is clearly a Z2-map. So the nonembeddability of K into Rd

will be proved as soon as we show that X
Z2−→/ Y . This is the situation we

have been preparing for.
Here X is a configuration space and fpair is a test map for the problem of

nonexistence of a bad f : ‖K‖ → Rd.

The baby version of the topological Radon theorem. What are X and
Y for the case d = 1 and K the boundary of a triangle? For Y , this is easy: It
is the plane R2 minus the diagonal {x1 = x2}. There is a Z2-map g:Y → S0,
where S0 is the 2-point space {−1,+1}, given by g(x) := sign(x1 − x2):

x1

x2 diagonal removed

−1

+1

Hence indZ2(Y ) = 0.
The space X is more complicated, even in this simple case. The product

‖K‖ × ‖K‖ is topologically a torus, and it has the structure indicated in the
picture:

1 2

3

=
1 2

3

×
(1, 1)

(1, 2)

(1, 3)

(3, 3)

(2, 2)

(2, 1)

(2, 3)

(3, 1)

(3, 2)

The part corresponding to X is drawn by a thick line. So X ∼= S1, and the
Z2-action on X is the same as the antipodality on S1, as can be read off from
the picture.
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Therefore, indZ2(X) = 1, and we can conclude that X
Z2−→/ Y . This, in

turn, implies the baby version of the topological Radon theorem.

Deleted products. The construction of the Z2-space X from the given
simplicial complex K and the construction of the Z2-space Y from Rd are
both called deleted products. For us, the interest in them is mainly didactic;
after a while, we will replace them by more suitable constructions, called
deleted joins.

In general, if Z is a space, the deleted product of Z, denoted by Z2
∆, is the

space
Z2

∆ := (Z × Z) \ {(x, x) : x ∈ Z}.
The subscript ∆ should indicate the deletion of the “diagonal” from the
product Z2 = Z×Z. In the situation above we have Y = (Rd)2∆.

The argument used above for d = 1 can be generalized to show that

indZ2

(
(Rd)2∆

) ≤ d−1.

Indeed, a Z2-map g: (Rd)2∆ → Sd−1 is given by

(x1,x2) �−→ x1 − x2

‖x1 − x2‖ .

Our X is also a kind of deleted product, but this time we delete more: the
product of each simplex with itself. If ∆ is a geometric simplicial complex,
we define its deleted product:

∆2
∆ := {σ1 × σ2 : σ1, σ2 ∈ ∆, σ1 ∩ σ2 = ∅}.

It can be checked that this is a polyhedral cell complex. Moreover, its poly-
hedron (i.e., the union of its cells) is determined by the underlying abstract
simplicial complex of ∆ up to homeomorphism. So for an abstract simpli-
cial complex K, the topological space corresponding to its deleted product
is well-defined, and we denote it by ‖K2

∆‖. (We note that ‖K2
∆‖ is typically

not homeomorphic to ‖K‖2∆, although it can be shown that these two spaces
are homotopy equivalent and have the same Z2-index.)4 We can also write
‖K2

∆‖ = {(x1,x2) ∈ ‖K‖2: supp(x1) ∩ supp(x2) = ∅}. In our case, we have
X = ‖K2

∆‖.
Let us summarize our discussion. If there is a map f : ‖K‖ → Rd such that

the images of disjoint faces do not intersect, then X
Z2−→Y , where X := ‖K2

∆‖
and Y := (Rd)2∆. Since indZ2((R

d)2∆) ≤ d−1, we have proved:

5.4.1 Proposition. Let K be a finite simplicial complex. If

indZ2(‖K2
∆‖) ≥ d,

then any continuous mapping f : ‖K‖ → Rd identifies two points coming from
disjoint faces of K. In particular, K cannot be realized in Rd.

4 If X is a triangulable space, then one can think of X2
∆ as a “limit” of deleted

products of finer and finer triangulations of X.
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A problem with using this proposition is figuring out the structure of the
deleted product. For example, let us consider the topological Radon theorem
(Theorem 5.1.2), where K := σd+1 is the (d+1)-simplex. Already for d = 1,
computing the deleted product was not immediate. For d = 2, the deleted
product can still be managed “by hand”; it can be represented as the bound-
ary of a nice 3-dimensional polytope, as is sketched below:

=

1 2

34

{1, 2, 3}×{4}

{1, 2}×{3, 4})2

∆

(

So in this case X ∼= S2. In general, one can prove geometrically that X ∼= Sd

for all d (Exercise 3). This is good, since Sd is (d−1)-connected, and therefore,
indZ2(X) ≥ d by Proposition 5.3.2(iv).

As the above 3-dimensional picture for d = 2 indicates, the structure of
the deleted product (σd+1)2∆ is not very simple. In more complicated cases,
the deleted products would be even harder to handle. Moreover, in some
applications they are not sufficiently connected. Fortunately, the next con-
struction, the deleted join, is usually easier to handle, although it looks less
natural than the deleted product.

Notes. The use of deleted products for establishing nonembeddabil-
ity goes back at least to Van Kampen [vK32]. As we have seen, the
existence of a Z2-map ‖K2

∆‖ → Sd−1 is necessary for the realizability
of K in Rd. According to a remarkable theorem of Weber [Web67], this
condition is also sufficient if n = dimK is sufficiently small, namely, if
d ≥ 3

2 (n+1). Weber’s theorem actually asserts that the correspondence
between isotopy classes of embeddings ‖K‖ → Rd and Z2-homotopy
classes of maps ‖K2

∆‖ → Sd−1 is bijective for d > 3
2 (n+1) and surjec-

tive for d = 3
2 (n+1). An analogous theorem for smooth embeddings

of smooth n-manifolds into Rd was proved by Haeflinger [Hae82]; also
see [Ada93]. The special case of Weber’s theorem with d = 2n, n ≥ 3,
was conjectured and partially proved by Van Kampen [vK32], and es-
tablished independently by Wu [Wu65] and by Shapiro [Sha57]. Van
Kampen, Wu, Shapiro, and Weber use a different formulation, con-
cerning the vanishing of certain cohomology classes, and the formula-
tion above was introduced by Haeflinger.

Exercises

1. (a) Prove that indZ2((R
d)2∆) ≥ d−1.

(b) Check that Sd−1 is a deformation retract of (Rd)2∆.
2.∗ Let P and Q be convex polytopes in Rd, and let P + Q = {x + y : x ∈

P,y ∈ Q} be their Minkowski sum.
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(a) Prove that P + Q is a convex polytope.
(b) Prove that each face of P +Q is of the form F +G, where F is a face
of P and G is a face of Q.

3.∗ Let S := ‖σd‖ ⊂ Rd be a (geometric) d-dimensional simplex, and let
P := S+(−S) = {x− y : x,y ∈ S} ⊂ Rd.
(a) Verify that P is a d-dimensional convex polytope.
(b) Show that each point x ∈ ∂P has a unique representation in the form
x = x1 − x2, where x1,x2 ∈ S satisfy supp(x1) ∩ supp(x2) = ∅.
(c) Prove that the deleted product ‖(σd)2∆‖ is homeomorphic to ∂P and,
consequently, to Sd−1.

5.5 . . . Deleted Joins Better

We begin with the deleted join of a simplicial complex, which is the simplicial
complex consisting of the joins of all ordered pairs of disjoint simplices:

5.5.1 Definition (Deleted join of a simplicial complex). Let K be a
simplicial complex. The deleted join of K has the vertex set V (K)×[2], and
it is given by

K∗2
∆ :=

{
F1 F2 : F1, F2 ∈ K, F1 ∩ F2 = ∅

} ⊆ K∗2.

(Recall that F1 F2 = (F1×{1}) ∪ (F2×{2}).) The polyhedron of K∗2
∆ can be

written

‖K∗2
∆ ‖ =

{
tx1⊕ (1−t)x2 : x1,x2 ∈ ‖K‖, supp(x1)∩supp(x2) = ∅, t ∈ [0, 1]

}
.

The Z2-action ν given by the exchange of coordinates, ν: tx1⊕(1−t)x2 �→
(1−t)x2 ⊕ tx1, makes K∗2

∆ into a free simplicial Z2-complex.

Let us have a few examples.

• The deleted join (σ0)∗2∆ of a single point (the 0-dimensional simplex)
consists of two disjoint points.

• The deleted join (D2)∗2∆ of the two-point discrete simplicial complex D2 =
{∅, {a}, {b}}, an S0, is a disjoint union of two edges. This can be seen
from the next picture, which shows, from left to right, the disjoint union
of two copies of S0 (four points), their join (a circle consisting of four
edges), and the deleted join.

(b, 1)
(b, 2)

(a, 2) (a, 1)

(b, 1)
(b, 2)

(a, 2) (a, 1)

(b, 1)
(b, 2)

(a, 2)(a, 1)
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The maximal simplices are {a} {b} and {b} {a}. The Z2-action ν ex-
changes them.

• Let σ1 be a 1-dimensional simplex (edge) with vertices a and b. The
deleted join (σ1)∗2∆ is the perimeter of a square. To illustrate this, our
drawing below shows, from left to right, the disjoint union of two edges,
their join (a solid tetrahedron), and the deleted join (as a subcomplex of
the tetrahedron).

(b, 1)

(a, 1)
(a, 2)

(b, 2)

(a, 1)
(a, 2)

(b, 2)
(b, 1)

(a, 2)

(b, 2)
(b, 1)

(a, 1)

The maximal (1-dimensional) simplices are ∅ {a, b}, {a, b} ∅, {a} {b},
and {b} {a}. The Z2-action ν is the symmetry around the center of the
square.

For a proof of the topological Radon theorem we will need to compute
the deleted join of a simplex. Unlike the deleted product, this is very easy.

5.5.2 Lemma. Let K and L be simplicial complexes. We have

(K ∗ L)∗2∆
∼= K∗2

∆ ∗ L∗2
∆ .

Proof. A simplex on the left-hand side has the form (F1  G1)  (F2  G2),
where F1, F2 ∈ K, G1, G2 ∈ L, and F1∩F2 = ∅ = G1∩G2. On the right-hand
side, we have the corresponding simplex (F1 F2) (G1 G2), with the same
conditions on F1, F2, G1, G2.

5.5.3 Corollary. ‖(σn)∗2∆ ‖ ∼= Sn.

Proof. We have σn ∼= (σ0)∗(n+1). By Lemma 5.5.2 we obtain

((σ0)∗(n+1))∗2∆
∼= ((σ0)∗2∆ )∗(n+1) ∼= (S0)∗(n+1) ∼= Sn.

The last homeomorphism is the homeomorphism of the boundary of the
crosspolytope in Rn+1 with the n-sphere; see Example 4.2.2.

Toward a nonembeddability theorem. We again consider a bad map-
ping f : ‖K‖ → Rd, that is, one with f(x1) �= f(x2) whenever supp(x1) ∩
supp(x2) = ∅. We redo the considerations from the previous section, replac-
ing the map fpair by the join f∗2 := f∗f of the map f with itself (we recall
that f∗2 is given by f∗2(tx⊕ (1−t)y) = tf(x)⊕ (1−t)f(y); see page 77).

By definition, f∗2 goes from ‖K‖∗2 into (Rd)∗2. We now restrict the do-
main of f∗2 to the deleted join ‖K∗2

∆ ‖; what can we say about the images,
assuming that f is a bad mapping?
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The images have the form

tf(x1)⊕ (1−t)f(x2) ∈ (Rd)∗2,

where t ∈ [0, 1], x1,x2 ∈ ‖K‖, and supp(x1)∩supp(x2) = ∅. Since we assume
f(x1) �= f(x2) for such x1,x2, the images are contained in

{ty1 ⊕ (1−t)y2 : t ∈ [0, 1],y1,y2 ∈ Rd,y1 �= y2}.
This set is certainly contained in the set

Y := (Rd)∗2 \ { 1
2y ⊕ 1

2y : y ∈ Rd}, (5.1)

which is larger than the previous set, but more convenient to work with, and
it also happens to have the same Z2-index.

Summarizing, from a bad map f : ‖K‖ → Rd, we derive the Z2-map (a test
map)

f∗2: X
Z2−→Y,

where the configuration space X is ‖K∗2
∆ ‖, and where Y is given by (5.1).

Deleted join of Rd and its properties. As the next step, we need to
bound indZ2(Y ) from above. This Y will be be called the deleted join of Rd,
and denoted by (Rd)∗2∆ (this notion is not standard in the literature). The
same formula can be used to define the deleted join of any space. But one
should keep in mind that it is different from the deleted join of a simplicial
complex defined above.5 Since we are going to use the deleted join of a space
solely for Rd, no confusion should arise.

5.5.4 Lemma (Deleted join of Rd). There is a Z2-map g: (Rd)∗2∆ → Sd,
and consequently, indZ2((R

d)∗2∆ ) ≤ d.
(It can actually be shown that the index equals d.)

Proof. There are several ways of doing this. We exhibit a Z2-map h of
(Rd)∗2∆ to the deleted product (Rd+1)2∆; a Z2-map (Rd+1)2∆ → Sd was shown
in the previous section.

We recall from Proposition 4.2.4 that the join Z1∗Z2 can be represented
geometrically if Z1 and Z2 are placed into some Rn as bounded subsets of
two skew affine subspaces U1 and U2. In our case, Rd is unbounded, but we
can map it homeomorphically onto a d-dimensional open ball B, say. So it
suffices to bound the Z2-index of B∗2

∆ = B∗2 \ { 1
2y ⊕ 1

2y : y ∈ B}.
For the geometric representation, we need two skew d-dimensional sub-

spaces, and to preserve the Z2 symmetry, we choose them in R2d+2 = (Rd+1)2.
Namely, we define the mappings ψ1, ψ2: Rd → R2d+2 by
5 We have ‖K∗2

∆ ‖ ⊆ ‖K‖∗2∆ , but the inclusion is proper (except for trivial cases)!
On the other hand, these two spaces are homotopy equivalent and have the same
Z2-index; see Exercise 1.
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ψ1(x) := (1, x1, . . . , xd, 0, 0, . . . , 0), ψ2(y) := (0, 0, . . . , 0, 1, y1, . . . , yd).

Then U1 := ψ1(Rd) and U2 :=ψ2(Rd) are d-dimensional skew subspaces, and
we can insert the two copies of the open ball B into them: Zi :=ψi(B),
i = 1, 2. We define h:B∗2

∆ → (Rd+1)2 by

h: tx⊕ (1−t)y �−→ tψ1(x) + (1−t)ψ2(y).

This mapping is continuous by Proposition 4.2.4, is obviously a Z2-map, and
goes into (Rd+1)2∆, since the equality

(t, tx1, . . . , txd) = (1−t, (1−t)y1, . . . , (1−t)yd)

implies t = 1
2 and x = y. But such points were removed from B∗2

∆ .

We have shown that if f : ‖K‖ → Rd is a bad map, then ‖K∗2
∆ ‖

Z2−→ (Rd)∗2∆ ,
and that indZ2((R

d)∗2∆ ) ≤ d. So we have the following theorem, the main
result of this section:

5.5.5 Theorem (Nonembeddability and index of the deleted join).
Let K be a simplicial complex. If

indZ2(K
∗2
∆ ) > d,

then for every continuous mapping f : ‖K‖ → Rd, the images of some two
disjoint faces of K intersect. In particular, Rd contains no subspace homeo-
morphic to ‖K‖.

Proof of the topological Radon theorem (Theorem 5.1.2). Here
we have K = σd+1. The index of the deleted join K∗2

∆ is d+1 according to
Corollary 5.5.3, and the topological Radon theorem follows immediately from
Theorem 5.5.5.

Nonplanarity of K3,3. Let K be the 1-dimensional simplicial complex cor-
responding to the graph K3,3. We note that K ∼= D3∗D3, where D3 is the
3-point discrete space. We have K∗2

∆
∼= ((D3)∗2∆ )∗2 by Lemma 5.5.2. Since

(D3)∗2∆ is a cycle of length 6, i.e., an S1, we have K∗2
∆
∼= S1∗S1 ∼= S3. So

indZ2(K
∗2
∆ ) = 3, and K cannot be embedded in R2 by Theorem 5.5.5.

Exercises

1.∗ (Deleted join of a simplicial complex and of its polyhedron) For a space
Z, we define the deleted join Z∗2

∆ := Z∗2 \ { 1
2z ⊕ 1

2z : z ∈ Z}, as in (5.1).
(a) Show that the deleted join of a simplex, regarded as a simplicial
complex, has the same Z2-index as the deleted join of a geometric simplex
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(regarded as a space). That is, construct a Z2-map of ‖σn‖∗2∆ → ‖(σn)∗2∆ ‖;
proceed by induction on n.
(b) Let K be a finite simplicial complex. Show that ‖K‖∗2∆

Z2−→‖K∗2
∆ ‖.

(c) Show that the spaces in (b) are homotopy equivalent; namely, a suit-
able Z2-map as in (b) is a homotopy inverse to the obvious insertion
‖K∗2

∆ ‖ → ‖K‖∗2∆ .
2.∗ (Deleted join of the sphere)

(a) Let X := (Sd)∗2∆ be the deleted join of Sd considered as a space. Show
that indZ2(X) ≤ d.
(b) In (a), we have implicitly used the Z2-action on the deleted join given
by the exchange of coordinates. We now consider the join of the antipodal
Z2-actions on the two spheres as a Z2-action on X. What is the Z2-index
in this case?

3.∗ (Coincidence of Z2-maps) Let f :Sk → Sn and g:S� → Sn be Z2-maps.
Use deleted joins, and in particular, Exercise 2, to prove that if k+� ≥
n, then the images of f and g intersect. In particular, the image of f
intersects any antipodally symmetric copy of Sn−k in Sn.

4.∗ (Deleted join and deleted product [Sar89]) For a simplicial complex K,
cone K is the join of K with a one-vertex simplicial complex. Show that
for any finite simplicial complex K, ‖K∗2

∆ ‖ is homeomorphic to the deleted
product ‖(cone K)2∆‖.

5.6 Bier Spheres and the Van Kampen–Flores

Theorem

To apply Theorem 5.5.5, one has to bound below the index of the deleted
join. In this section we show a way of doing this for the particular simplicial
complexes K appearing in the Van Kampen–Flores theorem. Later on, we
will develop a considerably more general and systematic approach. But the
method in the present sections is interesting, and we will also make a detour
and show another application of it. In any case, this section is optional.

We recall that K := (σ2d+2)≤d is the d-skeleton of the (2d+2)-simplex. We
are going to show that K∗2

∆ is homeomorphic to S2d+1, which implies that it
has Z2-index 2d+1 and cannot be realized in R2d by Theorem 5.5.5.

The Bier spheres. To analyze the complex K∗2
∆ , we consider a more gen-

eral construction, due to Bier [Bie92], which associates an (n−2)-dimensional
triangulated sphere on at most 2n vertices with every simplicial complex on
n vertices (except for the (n−1)-simplex).

We recall that 2[n] denotes the system of all subsets of [n] = {1, 2, . . . , n}.
A simplicial complex with vertex set [n] is a hereditary set system K ⊆ 2[n].
Strictly speaking, a vertex of such K is not an element i ∈ [n] but rather the 0-
dimensional simplex {i}. Up until now, there was no need to distinguish this,
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since we always tacitly assumed that all elements of the ground set are 0-di-
mensional simplices. But now it does make some difference, since although we
allow {i} �∈ K for some i ∈ [n], we still want to speak of simplicial complexes
with the ground set [n]. In order to make the formulas shorter, let us write
F for [n]\F , where F ⊆ [n].

5.6.1 Definition. Let K ⊂ 2[n] be a simplicial complex on the ground set
[n]. The Alexander dual of K is the simplicial complex B(K) ⊆ 2[n] that
consists of the complements of the nonsimplices of K:

B(K) := {G ⊆ [n] : G /∈ K} = {H : H ∈ 2[n]\K}.
The Bier sphere associated with K is a simplicial complex with vertex set
[n]×[2], defined as the deleted join

Biern(K) := (K ∗ B(K))∆ := {F  G : F ∈ K, G ∈ B(K), F ∩G = ∅}
= {F G : F ∈ K, G /∈ K, F ∩G = ∅}
= {F H : F ∈ K, H /∈ K, F ⊂ H}.

In this construction neither K nor B(K) has to have all elements i ∈ [n] as
vertices; we just assume that their vertex sets are contained in [n]. However,
if i is not a vertex of K (that is, {i} /∈ K), then [n]\{j} is never a face of K
for j �= i, and hence j is a vertex of B(K). It follows easily that Biern(K) is
a simplicial complex with at least n vertices. We also note that here we form
a deleted join of complexes that are different and may, in general, even have
distinct vertex sets, but they have the same ground set [n].

5.6.2 Theorem (The Bier spheres are spheres). For every simplicial
complex K ⊂ 2[n], the simplicial complex Biern(K) is an (n−2)-sphere with
at most 2n vertices.

Before proving this theorem, we present two simple examples and we
derive the Van Kampen–Flores theorem.

5.6.3 Examples (Bier spheres). The simplest complex to study is proba-
bly the empty one: K = {∅}. For this we get Biern(K) ∼= B(K) = 2[n]\[n], the
boundary complex of an (n−1)-dimensional simplex, with n vertices. Thus
‖Biern({∅})‖ ∼= Sn−2.

If we take K = 2[n−1] = σn−2, then B(K) = K, and thus Biern(K) ∼=
(σn−2)∗2∆ is the deleted join of an (n−2)-simplex. This is the simplicial sphere
given by the boundary of an (n−1)-dimensional crosspolytope, with 2(n−1)
vertices, by Corollary 5.5.3.

Proof of the Van Kampen–Flores theorem. We set n = 2d+3 and
K =

(
[n]

≤d+1

)
, the d-skeleton of the (2d+2)-dimensional simplex. In this case

B(K) = K, and hence by Theorem 5.6.2, Biern(K) = K∗2
∆ is a (2d+1)-sphere.

For example, for d = 0 and n = 3, we have K = D3 (three disjoint points),
and the deleted join K∗2

∆ is a hexagon:
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=

1 2 3

1′ 2′ 3′ 3′
2

1′

3

2′
1

5.6.4 Lemma. The facets (maximal simplices) of the simplicial complex
Biern(K) are

F H, where F ⊂ H, F ∈ K, H /∈ K, and |H\F | = 1.

In particular, Biern(K) is a pure complex of dimension n−2 (i.e., each simplex
is contained in a maximal (n−2)-dimensional simplex).

Proof. For any face F0 H0 ∈ Biern(K), we have F0 ⊂ H0, and we can find
F ∈ K and H /∈ K with

F0 ⊆ F ⊂ H ⊆ H0 and |H\F | = 1.

We have F0 H0 ⊆ F H ∈ Biern(K). Further, we get |F ∪ H| = |F | + n −
|H| = n−|H\F | = n−1. This is the maximum possible size of any face of
Biern(K).

Proof of Theorem 5.6.2. We proceed by induction on the number of
simplices of K (with n fixed). We already know that ‖Biern({∅})‖ ∼= Sn−2.
Assuming that Biern(K) is an Sn−2, we show that Biern(K∪{F}) is an Sn−2

as well, where F is an inclusion-minimal set in 2[n] \ K (and thus K ∪ {F}
is a simplicial complex). Since any K can be built from {∅} by successively
adding minimal nonfaces, this will prove the theorem.

As we will see, adding F to K corresponds to a simple operation on the
Bier sphere, namely, cutting off a triangulated (n−2)-ball and replacing it by
another triangulation of the same ball. This operation has a nice geometric
interpretation; it is often used, and it is called a bistellar operation.

First we find how the maximal (i.e., (n−2)-dimensional) simplices of the
Bier sphere change by adding F to K (here Lk denotes the set of all k-
dimensional faces of a simplicial complex L):

Biern(K ∪ {F})n−2 = Biern(K)n−2 \ {(F\{i})  F : i ∈ F}
∪ {F  F ∪ {j} : j /∈ F}.

The vertex sets of the simplices affected by this operation (added or removed)
are all contained in VF := F F . The subcomplex L1 of Biern(K) induced by
the vertex set VF is

L1 =
(
2F \{F}) ∗ 2F ,

while the corresponding subcomplex in Biern(K ∪ {F}) is
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L2 = 2F ∗ (2F \{F}).
Their common part is

L0 = L1 ∩ L2 =
(
2F \{F}) ∗ (2F \{F}).

This is the join of the boundary of the simplex with vertex set F with the
boundary of the simplex with vertex set F . Writing k = |F |, we thus have
‖L0‖ ∼= Sk−2∗Sn−k−2 ∼= Sn−3. Both L1 and L2 are triangulations of an (n−2)-
ball bounded by this Sn−3. For example, for n = 4 and F = {1, 2}, the
geometric picture in R3 is

L1

{1}∗∅

{2}∗∅

∅∗{3}

∅∗{4}

L0
L2

and another possibility, with F = {1}, is

L1

{1}∗∅

∅∗{2}

∅∗{3}

∅∗{4}

L0
L2

Further, we note that a simplex having a vertex outside of VF never contains
a simplex in L1 \ L0 (or in L2 \ L0). So both ‖L1‖ and ‖L2‖ are (n−2)-balls
glued to the rest of the Bier sphere by the (n−3)-sphere ‖L0‖, and ‖Biern(K)‖
and ‖Biern(K ∪ {F})‖ are homeomorphic.

Remark: bistellar operations. The retriangulation of the ball bounded
by the sphere ‖L0‖ is called a bistellar operation. It can be geometrically
interpreted in Rn−2: We consider sipmplices A1 and A2 in Rn−2 such that
dim A1 = |F |−1, dimA2 = n−|F |−1, and A1 and A2 intersect in a single
point belonging to their relative interiors (this is a “Radon configuration” as
in Theorem 5.1.3). The bistellar operation corresponds to switching between
two triangulations of conv(A1∪A2). This convex polytope is a projection of an
(n−1)-simplex in Rn−1 into Rn−2, and the triangulations correspond to the
“top” and “bottom” views of that simplex. For n = 4, the possible operations
are switching the diagonal in a quadrilateral (k = 2), a stellar subdivision of
a triangle (adding a new vertex: k = 1), and its inverse operation, namely,
removing such a stellar subdivision (and thus deleting one vertex: k = 3).
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Note how this corresponds to the two 3-dimensional pictures above.

Many nonpolytopal triangulations of spheres. Every d-dimensional
simplicial convex polytope provides a triangulation of Sd−1. Can every trian-
gulation of Sd−1 be realized as the boundary of a simplicial convex polytope?
The construction of Bier spheres shows that this is not the case, in a very
strong sense: For sufficiently large d, most triangulations of Sd−1 with 2d+2
vertices cannot be so realized.

First we construct explicitly many nonisomorphic Bier spheres. Let n ≥ 4,
and let us consider all simplicial complexes K ⊂ 2[n] that contain all faces of
dimension 
n/2�−2 and some of the (
n/2�−1)-dimensional faces:(

[n]
≤
n/2�−1

)
⊆ K ⊆

(
[n]

≤
n/2�
)

.

The Bier spheres Biern(K) have exactly 2n vertices (right?).
The number of such K is

2( n
�n/2�) > 22n/n.

It is easy to check that different K as above yield different Bier spheres.
Moreover, for any simplicial complex on 2n vertices, there are at most
(2n)! < (2n)2n < 22n2

isomorphic simplicial complexes on the same ver-
tex set. Therefore, there are more than

2(2n/n)−2n2

nonisomorphic simplicial (n−2)-spheres with 2n vertices, a doubly exponen-
tial function!

On the other hand, it is known that the number of different combinatorial
types of (n−1)-dimensional simplicial convex polytopes with 2n vertices is
no larger than

24n3
.
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This can be derived from the results of Oleinik and Petrovskǐı, Milnor, and
Thom on the topological complexity of algebraic varieties; see Goodman and
Pollack [GP86, last line of p. 222].

This shows that most of the simplicial (n−2)-spheres on 2n vertices cannot
be realized as boundary complexes of (n−1)-dimensional convex polytopes;
they cannot be made “straight.”

Notes. Our proof of the Van Kampen–Flores theorem in this sec-
tion resembles the proof of Flores [Flo34]. An exposition of Flores’s
proof can be found in Grünbaum’s book on convex polytopes [Grü67,
Section 11.2]. Grünbaum [Grü70] gives a direct geometric proof of the
homeomorphism of the deleted join from the Van Kampen–Flores the-
orem with S2d.

Bier spheres and the above proof that they are indeed spheres
were described by Thomas Bier in an unpublished note from 1992. A
simpler proof was discovered by de Longueville [dL04]: He constructs
a suitable subdivision L of Biern(K), namely, L := {A  B : A ∈
sd(2F ), B ∈ sd(2G), F  G ∈ Biern(K)}; then, on the one hand, L is
easily seen to have the same polyhedron as Biern(K), and on the other
hand, it is isomorphic to sd(2[n] \ {[n]}, which is clearly an Sn−2.
Bier’s construction was further generalized (to posets) by Björner,
Paffenholz, Sjöstrand, and Ziegler [BPSZ05].

The first construction of “many” simplicial spheres was given by
Kalai [Kal88], using cyclic polytopes. His proof shows that for every
fixed dimension d ≥ 4, almost all n-vertex triangulations of Sn are
nonpolytopal, as n → ∞. A similar result for d = 3 was recently
obtained by Pfeifle and Ziegler [PZ04]. On the other hand, all trian-
gulations of S2 are polytopal, by an old result of Steinitz (see, e.g.,
[Zie07]).

5.7 Sarkaria’s Inequality

In order to prove nonembeddability of a simplicial complex K using The-
orem 5.5.5, we need to bound below the Z2-index of the deleted join K∗2

∆ .
There are several approaches to this task. We can try to bound below the
connectivity, using some of the tools from Section 4.4. We can also hope to
show that K is homeomorphic to some well-known space, such as a sphere.
In this section we explain another, indirect, approach. It ultimately leads to
a certain coloring problem, and if it works, its application is usually very
straightforward.

We want to bound the Z2-index of the simplicial Z2-complex L :=K∗2
∆ .

This is a subcomplex of a larger complex, namely, L0 := (σn−1)∗2∆ , where
n := |V (K)|, for which we already know the Z2-index: indZ2(L0) = n−1
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(Corollary 5.5.3). The idea is to look at the complement of L within L0,
see that it is “small,” and conclude that L must be “large.”

One immediate problem with this is that the complement L0 \ L is not a
simplicial complex. Another problem is, how do we relate the Z2-index of L to
that of its complement? Both of these problems can be solved elegantly: First,
L0 \ L is partially ordered by inclusion, and its order complex is a simplicial
Z2-complex. And second, L0 can be Z2-mapped into the join of this order
complex with L, which yields a relation among the Z2-indices.

We now realize this program. In the following lemma we consider a slightly
more symmetric situation, where L0 is an arbitrary simplicial Z2-complex (not
necessarily a deleted join), and its simplices are partitioned into two arbitrary
subsets.

For an arbitrary family F of finite sets, let ∆0(F) denote the order com-
plex of the poset (F \ {∅},⊆). If it is clear that ∅ �∈ F , we write just ∆(F).

5.7.1 Lemma. Let L0 be a simplicial complex, and let L0 = L1∪̇L2 be a
partition of the simplices of L0 into two subsets. Then there is a (canonical)
simplicial embedding

ϕ: sd(L0) −→ ∆0(L1) ∗∆0(L2).

If L0 is a simplicial Z2-complex and L1 and L2 are both closed under the Z2-
action, then ∆0(L1) and ∆0(L2) are simplicial Z2-complexes, and ϕ provides
a Z2-map

‖L0‖ Z2−→‖∆0(L1)‖ ∗ ‖∆0(L2)‖.
Let us have a geometric example first. Let L0 be the 2-simplex and let

L0 = L1∪̇L2 be the partition of its simplices indicated in the picture:

= ∪

L0 L1 L2

Geometrically, ∆0(L1) is the subcomplex of the first barycentric subdivision
sd(L0) induced by the barycenters of the simplices in L1. For our example,
we have

↪→ ∗

sd(L0) ∆0(L1) ∆(L2)

Note that the vertex sets of ∆0(L1) and of ∆0(L2) form a partition of the
vertex set of sd(L0); this is just a rephrasing of the assumption L0 = L1∪̇L2.
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Proof of Lemma 5.7.1. This lemma may be difficult to visualize geomet-
rically, but it is really trivial combinatorially.

The vertex set V (∆0(L1) ∗ ∆0(L2)) is the union of V (∆0(L1)) and
V (∆0(L2)), and it equals V (sd(L0)). So, on the level of vertices, we can just
set ϕ(F ) :=F , F ∈ L0. This map is simplicial: A chain C = {F1, F2, . . . , Fn}
of simplices of L0, F1 ⊂ F2 ⊂ · · · ⊂ Fn, splits into the chains C0 := C ∩L1 and
C1 := C ∩ L2. The concatenation C0  C1 of these chains is a simplex of the
join ∆0(L1) ∗∆0(L2).

It remains to check the equivariance of ϕ if L0 is a simplicial Z2-complex
and L1, L2 are invariant subsets of simplices. This is straightforward and is
left to the reader.

If we let L1 = L be a subcomplex of L0, then ∆0(L1) = sd(L) is homeo-
morphic to L. Together with Proposition 5.3.2(iii), about the Z2-index of a
join, Lemma 5.7.1 yields the following theorem:

5.7.2 Theorem (Sarkaria’s inequality). Let L0 be a finite simplicial Z2-
complex and let L be an invariant subcomplex of L0. Then we have

indZ2(L) ≥ indZ2(L0)− indZ2(∆(L0 \ L))− 1.

Second proof of the Van Kampen–Flores theorem. We recall that
we need to estimate indZ2(K

∗2
∆ ) for K := (σ2d+2)≤d. The method outlined

above suggests that we apply Sarkaria’s inequality with L0 := (σ2d+2)∗2∆ and
L :=K∗2

∆ . So we need to investigate the order complex of L0 \ L.
We have

L0 \ L = {F1  F2 : F1, F2 ⊆ [2d+3], F1 ∩F2 = ∅, |F1| > d+1 or |F2| > d+1}.

The key observation is that F1 and F2 cannot both have more than d+1
vertices, since there is not enough room; the ground set has only 2d+3 points.
So the vertices of ∆(L0 \ L) naturally fall into two classes: those with |F1| ≥
d+2 and those with |F2| ≥ d+2. The Z2-action on ∆(L0 \ L) swaps these two
classes.

We define a mapping f : L0 \ L → S0 = {−1,+1}:

f(F1 F2) :=
{ −1 if |F1| ≥ d+2,

+1 if |F2| ≥ d+2.

We claim that f is a simplicial Z2-map of ∆(L0 \ L) into S0.
It clearly commutes with the Z2-actions. To see that it is simplicial, we

need to show that if F1  F2 ⊂ F ′
1  F ′

2, then f(F1  F2) = f(F ′
1  F ′

2), and
this is clear, since if F1 ⊆ F ′

1 and |F1| ≥ d+1, then |F ′
1| ≥ d+1, too.
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Therefore, indZ2(∆(L0 \ L)) = 0, and

indZ2(K
∗2
∆ ) ≥ indZ2(L0)− indZ2(∆(L0 \ L))− 1 ≥ 2d+2− 0− 1 > 2d.

The Van Kampen–Flores theorem is proved once again.

Notes. The ideas in the proof shown in this section are from
Sarkaria’s papers [Sar91a], [Sar90]; some of them appear already in
[Sar89], and some go back to Van Kampen [vK32]. Our presentation
owes much to Živaljević’s survey [Živ96], where he isolated “Sarkaria’s
inequality” and expressed it elegantly using the Z2-index.

Exercises

1. Find an example of a simplicial Z2-complex L0 and a Z2-subcomplex L
where Sarkaria’s inequality 5.7.2 is strict.

5.8 Nonembeddability and Kneser Colorings

The procedure for bounding below the Z2-index of K∗2
∆ using Sarkaria’s in-

equality, as outlined in the preceding section, requires an upper bound on the
Z2-index of the order complex of (σn−1)∗2∆ \ K∗2

∆ , where n = |V (K)| and we
assume that the vertex sets of both K and σn−1 equal [n]. Here we demon-
strate a combinatorial method for doing this. (Let us remark that we could
also replace σn−1 by some smaller simplicial complex J that contains K and
for which we know indZ2(J

∗2
∆ ). Since no convincing applications of this gen-

eralization seem to be known, we leave it to Exercise 3.)
With a simplicial complex K, we associate a set system F = F(K) on the

same ground set V :=V (K): We let F ⊆ 2V consist of all inclusion-minimal
sets in 2V \ K (so F are the “minimal nonfaces” of K). For example, if K is
the k-skeleton of σn−1, then F =

(
[n]

k+2

)
.

We also note that K can be reconstructed from F ; namely,

K = K(F) = {S ⊆ V : F �⊆ S for all F ∈ F}.

Finally, we recall that KG(F) denotes the Kneser graph of F , with vertex
set F and with edges connecting disjoint sets, and χ(KG(F)) is the chromatic
number of this graph.

5.8.1 Lemma. Let K be a simplicial complex on the vertex set [n], and let
F = F(K) be the set system as above. Then

indZ2

(
∆((σn−1)∗2∆ \ K∗2

∆ )
)
≤ χ(KG(F))− 1.
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Proof. Let m := χ(KG(F)), and let c:F → [m] be a proper coloring of
KG(F) with m colors; that is, c(F1) �= c(F2) whenever F1 ∩ F2 = ∅.

As before, let us write L0 := (σn−1)∗2∆ , L := K∗2
∆ . We would like to construct

a Z2-map of ∆(L0 \ L) into Sm−1.
The first trick is to represent the sphere Sm−1 as the first barycentric

subdivision of the deleted join (σm−1)∗2∆ (which is correct by Corollary 5.5.3).
The required Z2-map is constructed as a simplicial map g of ∆(L0 \ L) into
sd((σm−1)∗2∆ ).

A vertex of the order complex of L0 \ L has the form F1 F2, where F1

and F2 are disjoint subsets of [n], at least one of them not belonging to K. A
vertex of sd((σm−1)∗2∆ ) is of the form G1 G2, where G1 and G2 are disjoint
subsets of [m], not both empty.

We set g(F1 F2) :=h(F1) h(F2) for a suitable map h: 2[n] → 2[m]; this
guarantees that g is a Z2-map.

We now define h using the Kneser coloring:

h(F ) := {c(F ′) : F ′ ∈ F , F ′ ⊆ F}.

We need to verify that if F1 F2 ∈ L0 \ L, then h(F1) and h(F2) are disjoint
subsets of [m], not both empty. If F1 ∩ F2 = ∅, then h(F1) ∩ h(F2) = ∅ as
well, for otherwise, we would have sets F ′

1 ⊆ F1 and F ′
2 ⊆ F2, F ′

1, F
′
2 ∈ F ,

with c(F ′
1) = c(F ′

2), and c would not be a proper coloring of the Kneser graph.
The nonemptiness of h(F1)  h(F2) also follows, because we have h(F ) �= ∅

exactly if F �∈ K.
Finally, the map h is monotone with respect to inclusion, and so g is

simplicial.

Putting this together with Sarkaria’s inequality (Theorem 5.7.2) and with
the sufficient condition indZ2(K

∗2
∆ ) > d for nonembeddability into Rd (The-

orem 5.5.5), we obtain the following amazing connection between Kneser
colorings and embeddability into Rd.

5.8.2 Theorem (Sarkaria’s coloring/embedding theorem). Let K be
a simplicial complex on n vertices, and let F = F(K) be the system of minimal
nonfaces of K as defined above. Then

indZ2(K
∗2
∆ ) ≥ n− χ(KG(F))− 1.

Consequently, if
d ≤ n− χ(KG(F))− 2,

then for any continuous mapping f : ‖K‖ → Rd, the images of some two
disjoint faces of K intersect.

We now redo some of the old examples using this theorem, and we add
one new nonembeddability example.
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5.8.3 Example. The Van Kampen–Flores theorem is the special case with
n = 2d+3, K = (σ2d+2)≤d. Here F =

(
[2d+3]
d+2

)
, and the Kneser graph KG(F)

has no edges at all, since no two sets in F are disjoint. So χ(KG(F)) = 1,
and Theorem 5.8.2 gives the nonrealizability of K in R2d as it should.

5.8.4 Example. We again prove the nonplanarity of K3,3. Letting the vertex
set be {1, 2, 3, 1′, 2′, 3′}, the maximal simplices of K are {i, j′}, i, j = 1, 2, 3.
Then F consists of the pairs that are not edges of K, i.e., the pairs {i, j} or
{i′, j′}. We can color the pairs on {1, 2, 3} red and the pairs on {1′, 2′, 3′} blue,
and so χ(KG(F)) = 2. Thus K3,3 cannot be realized in Rd for d ≤ 6−2−2 = 2.

5.8.5 Example (Nonrealizability of RP2 in 3-space [BS92]). Let K ⊆
2[6] be the 2-dimensional simplicial complex whose maximal simplices are
given by the list

124, 125, 134, 136, 156, 235, 236, 246, 345, 456.

This is a remarkable complex. We note four things:

(i) K corresponds to the triangulation of a hexagon drawn below, where
opposite vertices and edges on the boundary are identified.

2

1

3

3 2

1

4

5 6

Thus, K triangulates the real projective plane RP2. (Another interpreta-
tion is that K is the complex obtained by identifying all opposite faces on
the boundary of a regular icosahedron. The icosahedron has 12 vertices,
30 edges, and 20 triangles, and so the complex K we are looking at has
6 vertices, 15 edges, and 10 triangles.)

(ii) K has a complete 1-skeleton: We have
(

[6]
≤2

) ⊆ K.

(iii) The system F of minimal nonfaces is
(
[6]
3

)\K, and the Kneser graph is
again trivial, since F has no disjoint simplices. Thus, from Theorem 5.8.2
we obtain a proof of nonrealizability of ‖K‖ in R3.

(iv) The deleted join of K is a Bier sphere (see Section 5.6). Indeed, for triples
F ∈ (

[6]
3

)
we find that F ∈ K if and only if [6]\F /∈ K. From this we derive

that B(K) = K, and thus Bier6(K) = K∗2
∆ . Therefore, ind(K∗2

∆ ) = 4, and
Theorem 5.5.5 gives the nonrealizability in R3.
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In particular, we have proved that the real projective plane RP2 has no
embedding into R3.

One more proof of the Lovász–Kneser theorem (Theorem 3.3.2).
Sarkaria’s theorem can be used not only for proving the impossibility of an
embedding from the existence of a Kneser coloring, but also the other way
round.

Let F :=
(
[n]
k

)
be given. We consider the simplicial complex K = K(F)

consisting of all sets containing no set of F . Here K is the (k−2)-skeleton of
σn−1, and in particular, dim(K) = k−2. By the geometric realization theorem
(Theorem 1.6.1), ‖K‖ can be realized in R2(k−2)+1 = R2k−3. Theorem 5.8.2
gives χ(KG(F)) ≥ n−2k+2, as it should be.

Alternatively, we can avoid speaking about an embedding and use the first
inequality in Theorem 5.8.2 directly. It gives χ(KG(F)) ≥ n−indZ2(K

∗2
∆ )−1 ≥

n−1− dim(K∗2
∆ ) = n−2k+2.

Dol’nikov’s theorem follows as well. We want to derive Theorem 3.4.1,
i.e. χ(KG(F)) ≥ cd2(F) for any set system F ⊆ 2[n], using Theorem 5.8.2.
Let K = K(F) again consist of all subsets K ⊆ [n] that contain no set of F .
By the first inequality in Theorem 5.8.2 and by estimating the Z2-index by
the dimension, we obtain

χ(KG(F)) ≥ n− 1− indZ2(K
∗2
∆ ) ≥ n− 1− dim(K∗2

∆ ).

It is perhaps surprising, but easy to check, that cd2(F) = n−1− dim(K∗2
∆ )

(Exercise 2), and so Dol’nikov’s theorem follows.

Notes. The main results of this section are due to Sarkaria [Sar91a]
and [Sar90] (who formulated them for concrete examples rather than
as general statements).

In analogy to to Example 5.8.5, one can prove that the complex
projective plane CP2 cannot be realized in R6. There is a 9-vertex
triangulation K ⊆ 2[9] of CP2. It is a pure 4-dimensional simplicial
complex with 9 vertices such that B(K) = K; consequently, the deleted
join is a Bier sphere. Again we get that there are no disjoint nonfaces,
which implies that there is no embedding of this complex, and thus of
CP2, into Rd for d ≤ 8− 1− 1 = 6. (See Kühnel and Banchoff [KB83]
and Kühnel [Küh95, Thm. 4.13] for more information.)

Exercises

1.∗ Consider a graph G as a 1-dimensional simplicial complex. Prove that
G is planar if and only if indZ2(G

∗2
∆ ) ≤ 2; that is, Theorem 5.5.5 works

perfectly for 1-dimensional simplicial complexes.
2. Let F be a set system on [n], and let K = K(F) be the system of all subsets

of [n] that contain no set of F . Verify that cd2(F) = n−1− dim(K∗2
∆ ).
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3. (A generalization of Theorem 5.8.2) Redo the considerations leading to
Theorem 5.8.2 with an arbitrary simplicial complex J that contains K as
a subcomplex, instead of σn−1. Define F as the system of all inclusion-
minimal F ∈ J \ K. Prove the following:

indZ2(K
∗2
∆ ) ≥ indZ2(J

∗2
∆ )− χ(KG(F)),

and consequently, if

d ≤ indZ2(J
∗2
∆ )− χ(KG(F))− 1,

then for any continuous mapping f : ‖K‖ → Rd, the images of some two
disjoint faces of K intersect.

4.∗ (a) Let us call a simplicial complex K on the vertex set [n] nice if for
every F ⊆ [n], we have either F ∈ K or [n] \F ∈ K (but not both). Prove
that if K is nice, then it cannot be embedded in Rn−3, and check that
this includes the Van Kampen–Flores theorem.
(b) Show that if K1,K2, . . . ,Kr are nice simplicial complexes, Ki having
ni vertices, then the join K1 ∗K2 ∗· · ·∗Kr is not embeddable in Rn, where
n = n1 + n2 + · · ·+ nr − r − 2.

5.9 A General Lower Bound for the Chromatic

Number

We have already derived several lower bounds for the chromatic number of a
Kneser graph. Since every graph is a Kneser graph of a suitable set system,
these bounds apply to arbitrary graphs. Here we present another topological
lower bound for the chromatic number; this time it is formulated directly for
a graph, without referring to a Kneser representation. Moreover, it can be
shown that for every graph it is at least as strong as any of the lower bounds
formulated earlier.

We assume that the considered graphs are finite and have no loops and
no multiple edges.

Graph homomorphisms. Let G and H be graphs. A mapping f :V (G) →
V (H) is called a homomorphism if it maps edges to edges: {f(u), f(v)} ∈
E(H) whenever {u, v} ∈ E(G). (On the other hand, nonedges may go to
edges or to nonedges.) If f is a homomorphism, we write f :G → H.

The existence of a homomorphism between given graphs is a very impor-
tant and generally difficult question in graph theory. In particular, a (proper)
coloring of a graph G by m colors is exactly a homomorphism G → Km.
Even if one is interested only in graph colorings, introducing homomorphisms
makes the considerations more elegant.
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The box complex. Now we are going to assign a simplicial Z2-complex to
every (finite) graph, in such a way that graph homomorphisms give rise to
Z2-maps of the corresponding complexes.

For a graph G and for any subset A ⊆ V (G), let

CN(A) := {v ∈ V (G) : {a, v} ∈ E(G) for all a ∈ A} ⊆ V (G) \A

be the set of all common neighbors of A.
For A1, A2 ⊆ V (G), A1 ∩ A2 = ∅, we write “G[A1, A2] is complete” if

every vertex of A1 is connected to every vertex of A2 in G. Here G[A1, A2]
denotes the bipartite subgraph induced in G by A1 and A2.

5.9.1 Definition. The box complex of a graph G is a free simplicial Z2-
complex B(G) with vertex set V (G)  V (G) = V (G)×[2], and with the fol-
lowing set of simplices:

B(G) :=
{
A1  A2 : A1, A2 ⊆ V (G), A1 ∩A2 = ∅,

G[A1, A2] is complete, CN(A1) �= ∅ �= CN(A2)
}
.

The simplicial Z2-action ν is given by exchanging the two copies of the vertex
set; that is, (v, 1) �→ (v, 2) and (v, 2) �→ (v, 1), for v ∈ V (G).

So the simplices of B(G) correspond to complete bipartite subgraphs in
G. We admit A1 or A2 empty, but then it is required that all vertices of the
other set have a common neighbor. If both A1 and A2 are nonempty, the
condition of nonemptiness of CN(A1) and CN(A2) is superfluous.

To check that B(G) is indeed free, it suffices to verify that ν(A1  A2) ∩
(A1 A2) = ∅. This is immediate, since ν(A1 A2) = A2 A1 and A1∩A2 = ∅.

If f :G → H is a graph homomorphism, we associate with it a map

B(f): V (B(G)) −→ V (B(H))

in the obvious way: B(f)(v, j) := (f(v), j) for v ∈ V (G), j ∈ [2]. Since a
complete bipartite subgraph of G is mapped by f to a complete bipartite
subgraph of H, B(f) is a simplicial Z2-map of B(G) into B(H). Moreover,
the construction commutes with the composition of maps. So, using the ter-
minology of category theory, one can say that B(·) is a functor from the
category of graphs with homomorphisms into the category of Z2-spaces with
Z2-maps.

In particular, whenever G is m-colorable, there is a Z2-map of B(G) into
B(Km).

5.9.2 Lemma. We have indZ2(B(Km)) ≤ m−2.

Sketch of proof. It is easy to show that B(Km) is isomorphic to the
boundary complex of the m-dimensional crosspolytope with two antipodal
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facets removed (Exercise 1). The polyhedron can thus be Z2-mapped into
Sm−2.

So we have derived the following theorem:

5.9.3 Theorem. For every graph G, we have

χ(G) ≥ indZ2(B(G))+2.

More generally, if indZ2(B(G)) > indZ2(B(H)), then there is no homomor-
phism G → H.

The neighborhood complex. The neighborhood complex N(G) is another
simplicial complex associated with a graph. Its vertex set equals V (G), and
the simplices are subsets of vertices possessing a common neighbor:

N(G) := {A ⊆ V (G) : CN(A) �= ∅}.

Here is an example of a graph with its neighborhood complex:

1

2

3
4

5

6

7
G

4
2

6

3

1

5

7
N(G)

This complex is arguably simpler than B(G), and it also provides a lower
bound for the chromatic number. But it does not have any natural Z2-action,
and the lower bound is expressed in terms of connectivity. This is the original
formulation of Lovász, which still seems the most handy for concrete appli-
cations.

5.9.4 Theorem. If the neighborhood complex of a graph G is k-connected,
then χ(G) ≥ k+3.

We obtain this theorem from the following lemma:

5.9.5 Lemma. With every graph G, one can associate a simplicial Z2-com-
plex L(G) such that:

(i) ‖L(G)‖ is a deformation retract of ‖N(G)‖, and

(ii) ‖L(G)‖ Z2−→‖B(G)‖.

Proof of Theorem 5.9.4. If N(G) is k-connected, then L(G), being a de-
formation retract of N(G), is k-connected as well (Exercise 4.3.1). Therefore,
indZ2(L(G)) ≥ k+1 by Proposition 5.3.2(iv). Finally, we have indZ2(B(G)) ≥
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indZ2(L(G)) by Lemma 5.9.5(ii), and so χ(G) ≥ indZ2(B(G))+2 ≥ k+3 by
Theorem 5.9.3.

Let us remark that one can also prove χ(G) ≥ indZ2(L(G))+2 more di-
rectly, using the Borsuk–Ulam theorem (LS-c); see [Lov78]. Our proof yields
more information (it relates the Z2-index of L(G) to that of B(G)), but it does
take some work. The readers eager to see a concrete application in graph the-
ory can first skip the proof and perhaps return to it later.

Proof of Lemma 5.9.5, part I: The definition of L(G). The simplicial
complex L = L(G) is defined as a subcomplex of N1 := sd(N(G)); the vertices
are thus suitable (nonempty) subsets of V (G).

The plan is to use the “common neighbors” mapping CN: 2V → 2V ,
restricted to the vertices of L, as a simplicial Z2-action on L. The map-
ping CN indeed defines a simplicial map of N1 to N1, since A ⊆ B implies
CN(A) ⊇ CN(B), and CN(A) �= ∅ for all A ∈ V (N1). We still need to make
sure that CN2 = CN ◦ CN is the identity map on the vertex set of L.

For all A, we have CN2(A) ⊇ A (everyone in A is a common neighbor of
the common neighbors of A). But the inclusion can be proper; for example,
consider a path of length 2, and let A consist of one of its end-vertices.

We thus let the vertex set of L consist of the sets A on which CN2 does
behave as the identity:

V (L) := {A ⊆ V (G) : CN2(A) = A}.
These sets are called closed. Equivalently, they can be defined as the sets of
the form CN(B) for B ⊆ V (G), or also as color classes of inclusion-maximal
complete bipartite subgraphs of G. The simplices of L are inherited from N1;
that is, they are chains of closed sets under inclusion. Here is the complex L
for the graph whose N(G) was illustrated above, drawn as a subcomplex of
N1:
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We claim that CN is a free simplicial Z2-action on L. All we still need to
verify is that ‖CN‖ has no fixed point on ‖L‖. It suffices to show that for any
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simplex A of L, i.e., a chain A1 ⊂ A2 ⊂ · · · ⊂ An, we have A ∩ CN(A) = ∅.
This is because if Ai ⊂ Aj , then neither CN(Ai) = Aj nor CN(Aj) = Ai is
possible.

Proof of Lemma 5.9.5, part II: L(G) is a deformation retract of
N(G). The deformation retraction is constructed by letting each vertex
A ∈ V (N1) travel toward CN2(A) at uniform speed. The vertices of L, with
A = CN2(A), remain fixed.

More formally, we note that CN2:V (N1) → V (L) is a simplicial map of N1

into L, since A ⊆ B implies CN2(A) ⊆ CN2(B). We write Y := ‖N1(G)‖ and
X := ‖L‖, and we define f :Y → X as the canonical affine extension of CN2,
f := ‖CN2‖. It remains to show that f is homotopic to idY by a homotopy
fixing X.

Let x ∈ Y be a point. We show that x and f(x) lie in a common simplex
of N(G) (warning: they need not share a common simplex in the subdivision
N1!). Let A1 ⊂ A2 ⊂ · · · ⊂ An be the vertices of the simplex of N1 that con-
tains x in its relative interior. Then f(x) lies in the simplex of N1 spanned
by CN2(A1), . . . ,CN2(An). All of A1, . . . , An,CN2(A1), . . . ,CN2(An) are ver-
tices in the subdivision of the simplex CN2(An) of N(G), and so both x and
f(x) lie in a common simplex as claimed. Thus, for t ∈ [0, 1], the point
(1−t)x+tf(x) ∈ Y is well-defined, and the mapping F :Y × [0, 1] → Y given
by F (x, t) := (1−t)x+tf(x) is the required homotopy of idY and f fixing X.

Proof of Lemma 5.9.5, part III: A Z2-map ‖L‖ → ‖B(G)‖. We
construct the mapping as a simplicial map f of sd(L) into sd(B(G)). Formally,
sd(L) is a somewhat complicated object, since the vertices are chains A =
(A0 ⊂ A1 ⊂ · · · ⊂ Ak) of nonempty closed sets.

For such a vertexA we set f(A) :=A0 CN(Ak). Since CN(Ak) ⊆ CN(A0),
the image is indeed a vertex of sd(B(G)).

Two chains A and A′ lie in the same simplex of sd(L) iff one of them
extends the other. If a chain A′ extends A, its first set can be only smaller
than the first set of A, and the last set can be only larger than the last set
of A. Therefore, f(A′) ⊆ f(A), and it follows that f is simplicial.

Finally, the image of A under the Z2-action on sd(L) is the chain B =
(CN(Ak) ⊂ CN(Ak−1) ⊂ · · · ⊂ CN(A0)). We have f(A) = A0  CN(Ak) and
f(B) = CN(Ak)  CN2(A0) = CN(Ak)  A0 (since A0 is closed), and so f is
a Z2-map. This finishes the proof of Lemma 5.9.5.

Theorem 5.9.4, as well as Theorem 5.9.3, can be used to prove the Lovász–
Kneser theorem (see Exercise 4). But here we show a different application.

The chromatic number of generalized Mycielski graphs. The fol-
lowing construction was invented by Mycielski [Myc55] in order to construct
triangle-free graphs with arbitrarily large chromatic number (which was a
highly nontrivial task at that time). Given a graph G = (V,E), we make a
new graph M2(G) with vertex set {z} ∪ (V×[2]), where z is a new vertex.
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Every vertex (v, 1) ∈ V×{1} is connected to z and to all (u, 2) ∈ V×{2} such
that {u, v} ∈ E. Moreover, there is a copy of G on V×{2}; that is, there is an
edge {(u, 2), (v, 2)} whenever {u, v} ∈ E. This exhausts all edges of M2(G).
The picture shows the graphs K2, M2(K2), and M2(M2(K2)):

K2

z

M2(K2)

∼=
z ∼=

M2(M2(K2))

It can be shown by an elementary argument (Schäuble [Sch69]; also see Lovász
[Lov93], Exercise 9.18) that χ(M2(G)) = χ(G)+1 for every G. Moreover, if G
is edge-critical (that is, deleting any edge decreases the chromatic number),
then so is M2(G).

Gyárfás, Jensen, and Stiebitz [GJS04] considered a generalized Mycielski
construction Mr(G), where one has r copies of V (G) instead of two. The
vertex set is {z} ∪ (V×[r]), z is again connected to all vertices of V×{1},
(v, i) is connected to (u, i+1) for all {u, v} ∈ E and i = 1, 2, . . . , r−1, and a
copy of G sits on V×{r}. Clearly, χ(Mr(G)) ≤ χ(G)+1 for all G and all r.
In contrast to the case r = 2, for larger r it can happen that the chromatic
number does not increase: There are graphs with χ(M3(G)) = χ(G). But if
one starts with an odd cycle, or other suitable graphs, then χ does increase
by each iteration of Mr(·). This follows from Theorem 5.9.4 and the following
result:

5.9.6 Theorem ([GJS04]). For every graph G and every r ≥ 2, the
neighborhood complex of Mr(G) is homotopy equivalent to the suspension
susp(N(G)).

In particular, if we start with an odd cycle, where the neighborhood com-
plex is an S1, then after k iterations of Mr(·) (even with varying r) we obtain
a neighborhood complex homotopy equivalent to Sk+1. Consequently, the
chromatic number is k+3. The topological method provides the only known
proof of this fact.

Proof of Theorem 5.9.6 for r = 2. We restrict ourselves to the simplest
case r = 2. The general case is a little more complicated, mainly notationally,
but it needs no new idea.

Let us write N :=N(G) and K :=N(M2(G)). By inspecting the neighbor-
hoods of all vertices of M2(G), we find that the maximal simplices of K are:

(1) V×{1} (the neighborhood of z),
(2) (F×{2}) ∪ {z}, where F is a maximal simplex of N (contributed by

vertices of V×{1}), and
(3) F  F = F×[2], where F is a maximal simplex of N (contributed by

vertices of V×{2}).
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Here is an illustration of the structure of K:

z

V×{1} V×{2}

full simplex

F  F
(F×{2}) ∪ {z}F×{1}

Let K1 be the subcomplex of K described in (1) (that is, the simplex and
its faces), and similarly for K2 and K3. We note that K1 ∩K3

∼= K2 ∩K3
∼= N,

and also that K2 is a cone over N. In the next paragraph we are going to check
that ‖K3‖ has a deformation retract X that is homeomorphic to ‖N‖×[0, 1].
Moreover, the deformation retraction onto X does not affect the “ends” of
‖K3‖; that is, X contains ‖K1 ∩ K3‖ and ‖K2 ∩ K3‖. So ‖K1‖ ∪X ∪ ‖K3‖ is a
deformation retract of K. We now contract ‖K1‖, which is a full simplex, to a
single point (such a contraction yields a homotopy equivalence according to
Proposition 4.1.5). The result of this contraction is homeomorphic to susp(N),
as is easy to see.

It remains to describe the deformation retraction of ‖K3‖ to X mentioned
above; intuitively, the claim is almost obvious. For a more formal argument,
we think of K3 as a subcomplex of the join N∗N, and we use the geometric
representation of the join as in Proposition 4.2.4. So we choose two copies X1

and X2 of ‖N‖ lying in skew affine subspaces of some Rd. Let ϕ1: ‖N‖ → X1

and ϕ2: ‖N‖ → X2 be the homeomorphisms of ‖N‖ with these copies. We
define

X := {(1−t)ϕ1(x) + tϕ2(x) : x ∈ ‖N‖, t ∈ [0, 1]}.
This is illustrated in the next drawing for N a segment; then X is a hyperbolic
surface interconnecting the two skew segments X1 and X2:

X1

X2

It is easy to see that X ∼= ‖N‖×[0, 1], and it remains to specify the defor-
mation retraction. In our representation of ‖K3‖, a general point of ‖K3‖
can be written as z := (1−t)ϕ1(x) + tϕ2(y), where x,y ∈ ‖N‖ are such
that supp(x) ∪ supp(y) is a simplex of N. The deformation retraction moves
the point z along a segment toward z′ := (1−t)ϕ1(w) + tϕ2(w) ∈ X, where
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w := (1−t)x+ ty. This motion is well-defined, since z and z′ lie in a common
simplex of K3, namely, supp(x)∪ supp(y). We have z′ = z for z ∈ X, and so
X is not moved. Checking the continuity is straightforward, although not en-
tirely short, and we omit it. This finishes the proof of Theorem 5.9.6.

Notes. Theorem 5.9.4, the definitions of N(G) and of L(G), and
the homotopy equivalence of N(G) and L(G), are all due to Lovász
[Lov78].

We have seen that if f :G → H is a graph homomorphism, then
there is a canonical Z2-map ‖B(G)‖ → ‖B(H)‖. Similarly, there also
exists a Z2-map ϕ: ‖L(G)‖ → ‖L(H)‖. This was proved by Walker
[Wal83a], and according to Björner [Bjö95], it was independently noted
by Lovász in unpublished lecture notes. The proof is not entirely sim-
ple; the mapping ϕ is not “canonical,” and generally the construction
does not commute with composition of maps (it is functorial only
with respect to the category of Z2-spaces with equivalence classes of
homotopic Z2-maps). A nice outline of Walker’s proof can be found in
[Bjö95].

Box complexes were introduced for r-uniform hypergraphs by Alon,
Frankl, and Lovász [AFL86]. Their definition is slightly different from
the one used above, but both yield the same Z2-indices. Yet another
version of box complexes was used in Kř́ıž [Kri92]. Our definition of
B(G) is from [MZ04], where also several other variants of box com-
plexes were discussed, and it was shown that they mostly yield the
same Z2-indices. The homotopy equivalence of L(G) with a box com-
plex similar to B(G) was first proved by Lovász (private communica-
tion) using the nerve theorem.

Strength of the various lower bounds. It turns out that the quan-
tity indZ2(B(G))+2 = indZ2(L(G))+2 is always at least as large as
lower bounds for the chromatic number of any Kneser representation
of G obtained by Dol’nikov’s theorem (Theorem 3.4.1), the generalized
Bárány method (see the notes to Section 3.5), or the Sarkaria color-
ing/embedding theorem (Theorem 5.8.2) [MZ04] (also see Exercise 4).
On the other hand, indZ2(B(G))+2 may sometimes be more difficult
to determine than some of the just-named lower bounds.

Simple-homotopy equivalence; universality. The various versions of
the box complex are equivalent in a sense even stronger than was
shown in this section: B(G) and L(G), as well as some other variants
of the box complex of G, are all simple-Z2-homotopy equivalent (this
result, as well as references to earlier work by Csorba, by Živaljević,
and by Kozlov, can be found in Csorba [Cso07]).

Before we explain what simple-Z2-homotopy equivalence means,
there are two other useful notions to mention. First, Z2-homotopy



136 5. Z2-Maps and Nonembeddability

equivalence of two Z2-spaces is a homotopy equivalence as in Defini-
tion 1.2.2 where, moreover, the witnessing maps f and g are Z2-maps,
and so are all the intermediate maps in the homotopies g ◦ f ∼ id and
f ◦ g ∼ id.

Second, two simplicial complexes K and L are said to be the same
simple-homotopy equivalent (or to have the same simple-homotopy
type) if K can be transformed into L by a finite sequence of elementary
collapses and elementary expansions. Here an elementary collapse of
a simplicial complex K is the following operation, quite important in
combinatorial topology: Assuming that F ⊂ G (proper inclusion!) are
simplices of K such that G is the only inclusion-maximal simplex of
K that contains F , the elementary collapse of F means the removal
of all simplices H with F ⊆ H ⊆ G from K. Elementary expansion is
the inverse operation to elementary collapse. An elementary collapse
preserves the homotopy type (it actually corresponds to a deformation
retraction of the polyhedron), and hence simple-homotopy equivalent
simplicial complexes are also homotopy equivalent, but not necessar-
ily the other way round. The notion of simple-homotopy equivalence,
developed by Whitehead in the 1950s, can be regarded as a “com-
binatorial version” of homotopy equivalence. Finally, the reader will
easily guess what simple-Z2-homotopy equivalence means: The ele-
mentary collapses and expansions are performed in pairs so that the
Z2-symmetry is preserved throughout the sequence.

It was also shown that box complexes are universal—they may
“look like” a completely arbitrary simplicial Z2-complex. Namely, for
every simplicial Z2-complex K there exists a graph G such that B(G)
is simple-Z2-homotopy equivalent to K (we again refer to [Cso07] for
this result and references to earlier work by Csorba and by Živaljević).

Hom complexes, introduced by Lovász, constitute a far-reaching gen-
eralization of box complexes of graphs, and they have been connected
to some of the most exciting recent developments in topological combi-
natorics. For every two graphs F and G, the Hom complex Hom(F,G)
is a simplicial complex6 reflecting the structure of the set of all homo-
morphisms from F to G.

To introduce Hom(F,G), we first define a multihomomorphism7

F → G as a mapping ϕ:V (F ) → 2V (G) \ {∅} (i.e., associating a
nonempty subset of vertices of G with every vertex of F ) such that
whenever {u1, u2} is an edge of F , we have {v1, v2} ∈ E(G) for every
v1 ∈ ϕ(u1) and every v2 ∈ ϕ(u2).

6 The original definition of Hom(F, G) actually yields a polyhedral cell complex.
What we define here is the first barycentric subdivision of that complex; it is a
simplicial complex and it seems easier to grasp with the background presented
in this book.

7 An example of a concept easier than its name.
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Let us remark that while a graph homomorphism f is formally not
a multihomomorphism, it can be regarded as one if needed (a ver-
tex u is assigned the one-element set {f(u)}). Multihomomorphisms
can also be composed: If ϕ is a multihomomorphism F → G and ψ
a multihomomorphism G → H, then the composition ψ ◦ ϕ is the
multihomomorphism F → H that maps a vertex u ∈ V (F ) to the set⋃

v∈ϕ(u) ψ(v).
Let mhom(F,G) denote the set of all multihomomorphisms F →

G. We introduce a partial ordering ≤ on mhom(F,G) by letting ϕ ≤ ψ
if ϕ(u) ⊆ ψ(u) for all u ∈ V (F ), and we define Hom(F,G) as the order
complex the resulting poset.

Hom complexes are mostly considered with F a (small) fixed graph
and G varying. In particular, Hom(K2, G) is yet another disguise of the
box complex of G (more precisely, B(G) and Hom(K2, G) are simple-
Z2-homotopy equivalent [Cso07]; also see Exercise 6). And even with
very simple F , the complexes Hom(F,G) are complicated, beautiful,
and fascinating. For example, there are only few graphs simpler than
the complete graph Km or the 5-cycle C5, but it took a long effort of
several authors to analyze the topology of Hom(C5,Kn) (culminating
in a proof by Schultz [Sch06b] that it is homeomorphic to the Stiefel
manifold Vn−1,2, which was conjectured by Csorba).

The Babson–Kozlov–Lovász theorem. The main source of interest in
the Hom complexes has been the following conjecture of Lovász:

If Hom(C2r+1, G) is k-connected, then χ(G) ≥ k+4, for all graphs
G and all r ≥ 1.

It is instructive to compare this to Theorem 5.9.4, the Lovász 1978
bound, which can equivalently be rephrased as “Hom(K2, G) being
k-connected implies χ(G) ≥ k + 3.” The Lovász conjecture thus says
that odd cycles as “test graphs” are better by 1 than K2.

The conjecture was proved in a tour de force of Babson and Kozlov
[BK07] by complicated computations with spectral sequences (and
so it may now be called the Babson–Kozlov–Lovász theorem). Later
Živaljević [Živ05] discovered a simple proof of “half” of the result (for
all k odd, that is), and then Schultz [Sch06a] extended Živaljević’s idea
to a simple proof of the full conjecture. Kozlov [Koz06] found another
very short proof.

We will outline the main ideas of Schultz’s proof and some conclu-
sions following from it. First we note a kind of generalization of the
functorial property of the box complex B(.) used in the main text: A
graph homomorphism g:G → G′ induces, for every F , a simplicial map
Hom(F, g): Hom(F,G) → Hom(F,G′), and almost the same construc-
tion works if g is a multihomomorphism (Exercise 7). There is a dual
construction as well: A (multi)homomorphism f :F → F ′ induces, for
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every G, a simplicial map Hom(f,G): Hom(F ′, G) → Hom(F,G); note
that here the direction of the map is reversed! These constructions also
behave “properly” with respect to map composition—briefly speaking,
Hom(., .) is functorial in both arguments.

For suitable graphs F , including K2 and odd cycles, Hom(F,G) can
be made into a simplicial Z2-complex by the following construction.
The assumption is that F must possess an involutive automorphism iF
that flips some edge; that is, iF is an isomorphism of F with itself such
that iF ◦ iF = id and there is an edge {u, v} ∈ E(F ) with iF (u) = v
and iF (v) = u. For F = K2, iK2 swaps the two vertices of K2, and
for F = C2r+1, the following iC2r+1 is used (depicted for C7, with the
flipped edge marked bold):

Then, as a particular case of the construction noted above, iF induces
a simplicial map ν := Hom(iF , G) of Hom(F,G) into itself, and it is
easy to check that this ν is a free Z2-action on Hom(F,G). Moreover,
if g:G → G′ is a graph homomorphism, then Hom(F, g) becomes a
simplicial Z2-map Hom(F,G) → Hom(F,G′) (Exercise 8).

Following the proof pattern used for the box complex in this sec-
tion, one can easily see that for proving the Lovász conjecture, it suf-
fices to prove “only” that no (m−4)-connected Z2-space can be Z2-
mapped into Hom(C2r+1,Km). For this, in turn, it is enough to show

coindZ2(Hom(C2r+1,Km)) ≤ m− 3, (5.2)

which then yields χ(G) ≥ coindZ2(Hom(C2r+1, G)) + 3, a slightly
stronger form of the Lovász conjecture.

A natural approach to (5.2) would be to exhibit a Z2-
map of ‖Hom(C2r+1,Km)‖ into Sm−3, i.e., to actually bound
indZ2—but here the troubles start: While (5.2) does indeed hold,
indZ2(Hom(C2r+1,Km)) ≤ m−3 actually fails for some values of r
and m, and thus the proof must go differently.

Schultz derived (5.2) from the following more general inequality:

coindZ2(Hom(C2r+1, G)) ≤ indZ2(Hom(K2, G))− 1 (5.3)

for all G (then (5.2) follows by setting G := Km and using
indZ2(Hom(K2,Km)) = m−2).

We should remark that (5.3) is somewhat disappointing: The hope
originally attached to the Lovász conjecture was that it might some-
times establish a stronger bound on χ(G) than the “old” Lovász
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inequality χ(G) ≥ indZ2(Hom(K2, G)) + 2, but (5.3) shows that
it is never the case (of course, it might happen by some miracle
that for some G, coindZ2(Hom(C2r+1, G)) is easier to determine than
indZ2(Hom(K2, G))).

We now discuss the proof of (5.3). We have seen that every
homomorphism f :F → F ′ yields the simplicial map Hom(f,G),
and hence a continuous map ‖Hom(F ′, G)‖ → ‖Hom(F,G)‖. Now
each point x of the polyhedron Hom(F, F ′) can be regarded as a
(very) generalized homomorphism F → F ′; namely, it is a for-
mal convex combination of multihomomorphisms F → F ′ (and the
multihomomorphisms involved in such a convex combination have
to form a chain under ≤). A key observation in Schultz’s proof
is that such an x ∈ ‖Hom(F, F ′)‖ also yields a continuous map
Hom(x, G): ‖Hom(F ′, G)‖ → ‖Hom(F,G)‖. The construction is a
bit demanding to write down explicitly, but conceptually it is very
easy—since x is a formal convex combination of multihomomor-
phisms, we just take the corresponding convex combination of the
images under these multihomomorphisms. Moreover, we also need
that Hom(x, G) varies continuously with x, and in particular, if
a, b ∈ ‖Hom(F, F ′)‖ are points connected by a path, then the cor-
responding maps Hom(a, G) and Hom(b, G) are homotopic.

To establish (5.3), we use this construction with F = K2 and F ′ =
C2r+1. The multihomomorphisms of an edge into an odd cycle are easy
to describe, and it turns out that Hom(K2, C2r+1) is an S1 with the
antipodal Z2 action (geometrically it is the boundary of a (4r+2)-gon).
We now consider two particular vertices a and b of Hom(K2, C2r+1),
corresponding to the multihomomorphisms depicted below:

b:a:

So a is a homomorphism sending K2 onto the edge of C2r+1 that
is flipped by iC2r+1 , while b is a multihomomorphism. We note that
a commutes with iK2 and iC2r+1 , i.e., a ◦ iK2 = iC2r+1 ◦ a, while
b is invariant under iC2r+1 , i.e., iC2r+1 ◦ b = b. This translates to
the induced maps as follows: fa := Hom(a, G): ‖Hom(C2r+1, G)‖ →
‖Hom(K2, G)‖ is a Z2-map, while fb := Hom(b, G) is an even map
between the same spaces, where a map f :X → Y of a Z2-space (X, ν)
into a space Y is called even if f(ν(x)) = f(x) for all x ∈ X. At the
same time, fa and fb are homotopic, since Hom(K2, C2r+1) is path-
connected (and it is fun to visualize the path from a to b by “walking”
the K2 around the cycle).

With this preparation, (5.3) follows from the next claim: If (X, ν)
and (Y, ω) are Z2-spaces and there exist two homotopic maps f, g:X →
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Y , where f is a Z2-map and g is an even map, then

coindZ2(X) ≤ indZ2(Y )− 1. (5.4)

This can easily be proved assuming the notion of even and odd degree
of a map of spheres (see Section 2.4). Indeed, if (5.4) didn’t hold, there
would be Z2-maps Sn Z2−→X and Y

Z2−→Sn for some n, and by com-
posing these with f and g, respectively, we would get two homotopic
maps f∗, g∗:Sn → Sn, where f∗ is a Z2-map and g∗ is even. But this
is impossible, since a Z2-map has odd degree and an even map has
even degree, and such maps cannot be homotopic. (I don’t know of a
way of deriving the claim directly from the Borsuk–Ulam theorem.)
We have seen a more or less complete proof of the Babson–Kozlov–
Lovász theorem.

The proof of Schultz, as well as that of Kozlov [Koz06] actually
establish the stronger inequality cohom-indZ2(Hom(C2r+1,Km)) ≤
m−3, where cohom-indZ2(.) is the cohomological index mentioned in
the notes to Section 5.3 (the Babson–Kozlov original proof gave this
only for m odd). Interestingly, the counterpart of (5.4), under the same
assumptions on X and Y , is cohom-indZ2(X) ≤ cohom-indZ2(Y )− 1,
with the same kind of index on both sides. This is interesting because
both indZ2(X) ≤ indZ2(Y ) − 1 and coindZ2(X) ≤ coindZ2(Y ) − 1 are
generally false, as can be shown by examples, and so cohom-indZ2

comes out as a better-behaved index.
When investigating Hom complexes, one doesn’t have to stop at

odd cycles, of course. Let us call a graph T a test graph if for every
G, the k-connectedness of Hom(T,G) implies χ(G) ≥ k +1+χ(T ) (so
Theorem 5.9.4 says that K2 is a test graph, and the Babson–Kozlov–
Lovász theorem tells us that C2r+1 is one). There are many more
test graphs known besides these (see, e.g., [Sch06a]), but as shown
by Hoory and Linial [HL05], not all graphs are test graphs. Here we
leave the exciting domain of Hom complexes, referring, e.g., to Kozlov
[Koz07] for a much more thorough treatment of this topic and to re-
cent work, partially still in progress, by Babson, Čukić, Dochtermann,
Kozlov, and others for fresh news.

Generalized Mycielski graphs. Gyárfás et al. [GJS04] used the gen-
eralized Mycielski construction as an auxiliary step in a solution to
a problem of Harvey and Murty: For every k, they construct a k-
chromatic graph possessing a k-coloring such that the neighborhood
of each color class is an independent set (in other words, if u has a
neighbor of color i and v has a neighbor of color i, then u and v are
not connected by an edge).

Distance-α graphs on spheres. Lovász [Lov83] used Theorem 5.9.4 in a
solution of a problem of Erdős and Graham. He considered the graphs
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G(n, α) with vertex set Sn−1 and with two points adjacent if their
distance is exactly α (0<α<2). He defined a convex polytope P ⊂ Rn

to be strongly self-dual if the following holds: All vertices of P lie on
Sn−1, all facets are tangent to a common sphere centered at the origin,
and there is a bijection σ between the vertices and the facets of P such
that for each vertex v, the facet σ(v) is orthogonal to the vector v.
The distance of v from a vertex of σ(v), which has to be the same for
all v and all vertices of σ(v), is called the parameter of P . For all n ≥ 3
and all α < 2, Lovász inductively constructed n-dimensional strongly
self-dual polytopes with parameter ≥ α. He showed that if P ⊂ Rn

is a strongly self-dual polytope with parameter α, then, letting GP

be tha subgraph of G(n, α) induced by the vertex set of P , N(GP ) is
homotopy equivalent to the boundary of P and consequently, χ(GP ) ≥
n + 1. For all α >

√
2(n+1)/n that are not parameters of strongly

self-dual polytopes, the weaker bound χ(G(n, α)) ≥ n follows by using
suitably scaled strongly self-dual polytopes of dimension n−1.

Multicolored subgraphs. Simonyi and Tardos [ST06] used Fan’s theo-
rem (see the notes to Section 2.1) to prove that Kneser graphs, and
some other graph classes, not only have a large chromatic number, but
for any proper coloring of the vertex set they contain a large complete
bipartite subgraph whose vertices all have distinct colors. More pre-
cisely, if we let t := coindZ2(susp(B(G))) + 1, then under any proper
coloring of V (G) (by any number of colors) there is a subgraph of G
isomorphic to Kt/2�,�t/2� whose vertices all have distinct colors. What
is more, if the colors used in the considered coloring of G are linearly
ordered, then there is a Kt/2�,�t/2� with a “zig-zag” coloring: If we
list the colors used on this Kt/2�,�t/2� in increasing order, they alter-
nate sides. (To put the assumption in perspective, let us note that t =
coindZ2(susp(B(G))) + 1 ≤ indZ2(susp(B(G))) + 1 ≤ indZ2(B(G)) + 2,
and thus we have χ(G) ≥ t by Theorem 5.9.3; so the assumption means
that there is a “topological reason” for χ(G) ≥ t.) A special case of
this result, for Kneser graphs, was found earlier by Fan [Fan82]. For
the combinatorial context of this application we refer to [ST06].

Exercises

1. Prove Lemma 5.9.2 in detail.
2. (a) Prove that N(G) is never contractible to a point.

(b) Show that if a graph G has no cycles of length 4, then L(G) is 1-di-
mensional.

3.∗ Show that if G is a bipartite graph, then ‖N(G)‖ has two components,
which are homotopy equivalent.

4.∗ (The box complex of Kneser graphs)
(a) Let Bn,k := B(KGn,k) denote the box complex of the Kneser graph of(
[n]
k

)
. Let K0 be the order complex (with respect to inclusion) of the set
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system

{A1  A2 : A1, A2 ⊆ [n], A1 ∩A2 = ∅, |A1| ≥ k and |A2| ≥ k},

with the obvious Z2-action (exchanging the components). Construct a
simplicial Z2-map of K0 into sd(Bn,k).
(b) Let K1 be the order complex of the larger set system

{A1  A2 : A1, A2 ⊆ [n], A1 ∩A2 = ∅, |A1| ≥ k or |A2| ≥ k}.

Construct a Z2-map of K1 into susp(K0), and deduce that indZ2(Bn,k) ≥
indZ2(K1)−1.
(c) Show that indZ2(K1) ≥ n−2k+1. Hint: This was already done, more
or less, in the proof of the Lovász–Kneser theorem in Section 5.8.
(d) Generalize the considerations from (a)–(c) to G a Kneser graph of an
arbitrary set system F , and show that indZ2

(
B(KG(F))

)
is at least as

large as the lower bound for χ(KG(F)) obtained from the first inequality
in Theorem 5.8.2.

5.∗ Extend the proof of Theorem 5.9.6 to r = 3, or (if you have the energy)
to arbitrary r ≥ 3.

6. (Hom complexes; see the notes to this section for definition)
(a) Work out the definition of Hom(K2, C5) and check that topologically
it is an S1.
(b) Formulate the definition of Hom(K2, G) in terms of G alone, without
using the notion of graph (multi)homomorphism.
(c)∗ Show that Hom(K2, G) and B(G) are homotopy equivalent (or
simple-Z2-homotopy equivalent, if you have the energy).

7. (Maps of Hom complexes)
(a) Recall the definition of the composition of multihomomorphisms, and
check that it indeed yields a multihomomorphism.
(b) Let γ be a multihomomorphism G → G′. Check that the mapping
mhom(F,G) → mhom(F,G′) defined by ϕ �→ γ ◦ ϕ, which we denote by
Hom(F, γ), is a simplicial map of Hom(F,G) into Hom(F,G′). If you still
have the patience, check that this construction commutes with composi-
tion; that is, Hom(F, γ′)◦Hom(F, γ′) = Hom(F, γ′ ◦γ), where γ:G → G′

and γ′:G′ → G′′ are multihomomorphisms.
(b) Do the analogy of (a) for the first argument of Hom(., .). That
is, given a multihomomorphism ϕ : F → F ′, define a simplicial map
Hom(ϕ,G): Hom(F ′, G) → Hom(F,G) etc.
(c) Here we consider the “interaction” of the constructions in (a) and
(b): Given multihomomorphisms ϕ:F → F ′ and γ:G → G′, there are
two natural ways of making a simplicial map Hom(F ′, G) → Hom(F,G′),
either through Hom(F,G) or through Hom(F ′, G′). Define this properly
and check that both ways yield the same thing.

8. (Hom complexes as Z2-spaces)
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(a) Verify that the ν = Hom(iF , G) described in the notes above is indeed
a free Z2-action on Hom(F,G).
(b) Let iK2 be the automorphism of K2 that swaps the two vertices.
Continuing Exercise 6(b), describe explicitly how the corresponding Z2-
action works on Hom(K2, G).
(c) Use the previous exercise to verify that a graph homomorphism
g:G → G′ induces a simplicial Z2-map Hom(F, g) of Hom(F,G) into
Hom(F,G′).



6. Multiple Points of Coincidence

Up until now, we have been considering spaces with Z2-actions and theorems
saying that under suitable conditions, there exist points x and y with disjoint
supports that are mapped to the same point. Here we generalize these con-
siderations to spaces with actions of other groups, most notably the groups
Zp. We obtain theorems in which the images of some p points with disjoint
supports are guaranteed to coincide. These are the right tool for dividing a
necklace among p thieves and for some other problems.

6.1 G-Spaces

Some spaces possess symmetries other than antipodality: They have groups
other than Z2 acting on them.

Let G be a finite group. An action of G on a topological space X is a col-
lection Φ = (ϕg)g∈G of homeomorphisms ϕg:X → X, one homeomorphism
for each element g ∈ G. The unit element e ∈ G always receives the identity,
ϕe = idX . Moreover, the composition of these homeomorphisms respects the
group operation: ϕg ◦ ϕh = ϕgh for all g, h ∈ G. (Thus, g �→ ϕg is a homo-
morphism of G into the group of homeomorphisms of X; if X is a topological
vector space and all the ϕg are linear maps, we have a representation of G in
the usual sense.) In the literature, one often writes just gx for ϕg(x).

How does our earlier definition of a Z2-action fit into this general def-
inition? For G = Z2, the cyclic group {0, 1} with addition modulo 2, the
homeomorphism assigned to 0 must be the identity, and the homeomorphism
assigned to 1 is what was earlier called the Z2-action ν.

Similarly, we consider a cyclic group Zn, represented as {0, 1, . . . , n−1}
with addition modulo n. A Zn-action Φ is fully specified by the single homeo-
morphism ϕ1, as ϕi = (ϕ1)i (the i-fold composition of ϕ1). In this sense, we
will mostly write “a Zn-space (X, ν),” with the action denoted by a lowercase
Greek letter, meaning that ν is the homeomorphism corresponding to 1.



146 6. Multiple Points of Coincidence

We will work exclusively with actions of finite groups, but here we state
the definition of a G-space for an arbitrary topological group1 G. For G
infinite, we moreover require that ϕg(x) depend continuously on both g and x.

6.1.1 Definition (G-spaces and G-maps). Let G be a topological group
and X a topological space. A G-action on X is a collection Φ = (ϕg)g∈G

of homeomorphisms X → X such that (g, x) �→ ϕg(x) is a continuous map
G×X → X, ϕe = idX , and ϕg ◦ ϕh = ϕgh for all g, h ∈ G. The pair (X, Φ)
is a G-space.

If (X, Φ) and (Y,Ψ) are G-spaces, a continuous map f :X → Y is a G-
map (or equivariant map) if f ◦ ϕg = ψg ◦ f for all g ∈ G.

For x ∈ X, the set {ϕg(x) : g ∈ G} is called the orbit of x under the
G-action Φ. Similarly, the orbit of a subset A ⊆ X is

⋃
g∈G ϕg(A). A set

A ⊆ X is invariant if ϕg(A) = A for all g ∈ G.

Free actions. For Z2-spaces we have seen the important distinction between
free and nonfree spaces. We recall that a free Z2-space is one in which the
single homeomorphism corresponding to 1 has no fixed points. Two ways
of generalizing this to actions of larger groups suggest themselves: We can
either require that no ϕg with g �= e have a fixed point, or require only that
no point be fixed by all ϕg. Both ways lead to interesting notions. We will
mostly encounter the former:

6.1.2 Definition. A G-space (X, Φ) is called free if no ϕg, g �= e, has a fixed
point. Equivalently, for each x ∈ X, the mapping g �→ ϕg(x) is injective; that
is, the orbit of each point is a copy of G.

The second notion is a fixed-point free G-action, where the orbit of each
x ∈ X has at least two points.

The theory for free G-spaces is quite similar to the special case of Z2-
spaces discussed in the previous chapter. On the other hand, our moderate
topological means won’t allow us to make use of fixed-point free actions
that are not free. But in some more advanced applications, they have been
employed successfully (see the notes to Section 6.2).

6.1.3 Observation. Let p be a prime number. Then a Zp-space (X, ν) is
free if and only if ν has no fixed point.

Indeed, for every k with 1 ≤ k < p, there is some � with k� ≡ 1 (mod p),
and hence νk(x) = x would imply that ν(x) = νk�(x) = x.

Examples of group actions. Some of the examples below, especially those
with infinite groups, serve just as illustrations, but others (marked by boldface
labels) will be important later for combinatorial and geometric applications.
1 A topological group is a group and, at the same time, a Hausdorff topological

space, such that the group operation and the inverse are continuous maps G ×
G → G and G → G, respectively.
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6.1.4 Examples (Group actions).

(a) Let S1 be the unit circle in the plane and ν the rotation by 2π
q . Then

(S1, ν) is a (free) Zq-space, for any integer q > 1.
(b) The group SO(2) of all rotations of the plane around the origin also acts

on S1, and we have an example of a (free) SO(2)-space.
(c) More generally, for n ≥ 2, the special orthogonal group SO(n) of all

rotations of Rn around the origin (corresponding to all orthogonal n×n
matrices with determinant 1) acts on the sphere Sn−1 in the obvious way.
The action is fixed-point free but not free for n > 2. Of course, SO(n)
acts on Rn as well, and here the origin is a fixed point. A somewhat larger
group is O(n), the orthogonal group, which consists of all isometries of
Rn fixing the origin. It includes SO(n) but also mirror reflections.

(d) Since O(n) acts on Sn−1, its subgroups G ⊆ O(n) do so as well. Such
actions are usually called orthogonal representations of G, and they have
been much studied in the literature. For a slightly exotic example, con-
sider the regular icosahedron

centered at the origin. It is known that the group of rotational symme-
tries of the icosahedron is A5 (the noncommutative alternating group,
consisting of all even permutations of five elements, with composition
of permutations as the group operation). Thus, A5 acts on the icosahe-
dron, and also on its boundary. The latter action is fixed-point free but
not free.

(e) In the complex plane, the unit circle S1 consists of the unit complex
numbers: {z ∈ C : |z| = 1}. In this way, S1 is given a group structure,
with complex multiplication as the group operation. Then S1 is a (free)
S1-space, where the homeomorphism ϕz is given by multiplication by z.
Geometrically, multiplication by z = eiα acts as the rotation of S1 by
the angle α (radians). Thus, this is just a different view of example (b)
with the group of all rotations of the plane around the origin acting on
S1.

(f) Any topological group G acts freely on itself by left multiplication; i.e.,
ϕg(h) = gh. The previous example was a special case of this.

(g) New G-spaces can be produced from old ones by joins. If (X, Φ) and
(Y,Ψ) are G-spaces, then a G-action Θ = Φ ∗ Ψ on X ∗ Y is defined by
θg = ϕg ∗ψg. If both Φ and Ψ are free, then the join Φ∗Ψ is free, too. You
may want to check that joins of G-maps produce G-maps (Exercise 1).
A similar construction can be made for Cartesian products of G-spaces.

(h) The previous abstract example is more clever than it might seem. As
we know, the sphere S3 can be represented as the join S1 ∗ S1. Taking
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the rotation by 2π
q as in (a) on both copies of S1 and using the join

construction in (g), we get a free Zq-action on S3. Such an example is
by no means obvious. If we consider S1 as the simplicial complex formed
by the perimeter of a regular q-gon, we obtain a triangulated S3, and
the Zq-action is a simplicial map. Here is an attempt at visualization of
the join in R3. Two hexagons are placed in perpendicular planes, and
only the simplex {3, 4} {1, 2} is shown. Its image under the (generator
of the) Z6-action is {4, 5} {2, 3} (indicated by dashed lines).

3

4

0 1

2

34

5

2 1

0

5

Of course, if we added all the other simplices to the picture, they would
intersect; S3 cannot be embedded in R3.

(i) In the same way, we get a free Zq-action on each odd-dimensional sphere
S2n−1, using S2n−1 ∼= (S1)∗n. Here is another way of representing the
same Zq-action: Regard S2n−1 as the unit sphere in Cn, i.e., the set
{(z1, . . . , zn) ∈ Cn : |z1|2 + · · · + |zn|2 = 1}, and define the action by
(z1, . . . , zn) �→ (ωz1, . . . , ωzn), where ω = e2πi/q is a qth root of unity.

(j) It is useful to remember some negative results, too. The only nontriv-
ial group with a free action on an even-dimensional sphere S2n is Z2.2

Further, it is known that any group G acting freely on some Sn has at
most one element of order 2, and every abelian subgroup of such G is
cyclic (equivalently, there is no subgroup Zp×Zp with prime p); see, e.g.,
[Hat01, Section 1.3] for a part of the proof and references.

(k) For any space X, the symmetric group Sn (all permutations of [n]) acts on
the nth Cartesian power Xn by permuting the coordinates. Explicitly, for
π ∈ Sn, the action is ϕπ(x1, x2, . . . , xn) = (xπ(1), xπ(2), . . . , xπ(n)). The
subgroups of Sn, such as Zn, thus act on Xn as well. The same applies
to the n-fold join X∗n. These actions are not free, but they become free
by deleting all fixed points; we will discuss this further when considering
deleted joins (and products).

2 A simple way of seeing this is to consider the Euler characteristic. The Euler
characteristic of a simplicial complex K is

∑
k≥0

(−1)kfk(K), where fk(K) is the

number of k-dimensional simplices of K; it is an invariant of ‖K‖ independent of
the triangulation. The order of a group G having a free action on X must divide
the Euler characteristic of X, and the Euler characteristic of S2n is 2.
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Notes. Actions of groups other than Z2 on spheres, and the corre-
sponding Borsuk–Ulam-type results, appeared soon after Borsuk’s pa-
per; Steinlein [Ste85] gives Eilenberg [Eil40] and Hirsch [Hir37], [Hir43]
as the earliest such references. They use degree-theoretic considera-
tions or the Lefschetz number. Smith [Smi42], [Smi41], [Smi38] also
considered actions of finite groups, but his results mainly concern the
structure of the set of fixed points.

A basic book on group actions on topological spaces is Bre-
don [Bre72]. A more recent and more advanced book is tom Dieck
[tD87].

Exercises

1. Let (X1,Φ1), (X2,Φ2), (Y1,Ψ1), and (Y2,Ψ2) be G-spaces, and let
f1: (X1,Φ1) → (Y1,Ψ1) and f2: (X2,Ψ2) → (Y2,Ψ2) be G-maps. Check
that

f1 ∗ f2: (X1 ∗X2,Φ1 ∗ Φ2) −→ (Y1 ∗ Y2,Ψ1 ∗Ψ2)

is a G-map.

6.2 EnG Spaces and the G-Index

Much of the theory we have developed for Z2-spaces, concerning the Z2-index
and the nonexistence of equivariant maps, can be imitated for G-spaces. A
large part of this goes through almost without change; we will mainly point
out the modifications needed for G-spaces (with G finite).

As expected, we write X
G−→Y or X ≤G Y if there is a G-map X → Y . For

introducing a G-index, though, we need suitable “yardstick” spaces analogous
to the spheres; these are called EnG spaces.

6.2.1 Definition. Let G be a finite group, |G| > 1, and let n ≥ 0. An EnG
space is a G-space that is

• a finite simplicial G-complex (or a finite cell G-complex),
• n-dimensional,
• (n−1)-connected,
• and free.

(In analogy to the Z2 case, a simplicial G-complex is a simplicial complex
made into a G-space so that all the homeomorphisms ϕg are simplicial maps,
and similarly for cell G-complexes.)

A concrete example of an EnG space that we will use most often is the
(n+1)-fold join G∗(n+1). As a topological space, this is the (n+1)-fold join
of an m-point discrete space, m := |G|. For example, for n = 1, G∗2 is the
complete bipartite graph Km,m. Clearly, G∗(n+1) is an n-dimensional sim-
plicial complex. As in Example 6.1.4(f), G acts on itself freely by the left
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multiplication, and so G∗(n+1) is a free simplicial G-complex. Finally, the
(n−1)-connectedness follows immediately from Proposition 4.4.3 about the
connectivity of joins. With some more work, one can also show by induction
that G∗(n+1) is homotopy equivalent to a wedge of a suitable number of n-
spheres, from which the (n−1)-connectedness can be derived as well.

We describe other, perhaps simpler, EnG spaces for the most often con-
sidered case G = Zp. As we know from Example 6.1.4(i), odd-dimensional
spheres can be equipped with free simplicial Zp-actions, and so S2n−1 with
such a Zp-action can serve as another E2n−1Zp.

For even dimensions 2n, where no free Zp-actions on S2n exist, we can
take the join S2n−1 with one copy of Zp. We can picture this space as p “tipis”
of different heights erected over the sphere S2n−1. As the following picture
indicates, this space is homotopy equivalent to a wedge of (p−1) spheres S2n,
and thus is (2n−1)-connected.

S2n−1 ∗ Zp �
∨p−1

k=1 S2n

The following lemma shows, among other things, that all EnG spaces are
equivalent for our purposes:

6.2.2 Lemma. Let X be an (n−1)-connected G-space and let K be a free
finite simplicial G-complex (or a free finite cell G-complex) of dimension at

most n. Then ‖K‖ G−→X.

In particular, X
G−→Y for every two EnG spaces X and Y .

Sketch of proof. The proof is very similar to the proof of Proposi-
tion 5.3.2(v); the required G-map is built face by face, by induction on the
dimension. Having constructed the mapping on the (k−1)-skeleton of K, we
partition the k-simplices into orbits, we extend the mapping on one simplex
in each orbit using (k−1)-connectedness, and we transfer this extension to the
remaining simplices via the G-action. Here we need that the simplices in each
orbit have disjoint relative interiors, but if the relative interior of ϕg(int σ)
intersected the relative interior of σ, then we would have ϕg(σ) = σ (since ϕg

is simplicial and bijective), and σ would contain a point fixed by ϕg.

6.2.3 Definition (G-index). For a G-space X, we define

indG(X) := min{n : X
G−→EnG}.

(Here EnG can be any EnG space, since any of them G-maps into any other.)
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The properties of the Z2-index listed in Proposition 5.3.2 generalize with-
out change. For convenience, we list them again; we also add Sarkaria’s in-
equality.

6.2.4 Proposition (Properties of the G-index). Let G be a nontrivial
finite group (|G| > 1).

(i) indG(X) > indG(Y ) implies X
G−→/ Y .

(ii) indG(EnG) = n (for any EnG space).
(iii) indG(X ∗ Y ) ≤ indG(X) + indG(Y ) + 1.
(iv) If X is (n−1)-connected, then indG(X) ≥ n.
(v) If K is a free simplicial G-complex (or free cell G-complex) of dimension

n, then indG(K) ≤ n.3

(vi) (Sarkaria’s inequality) If L0 is a finite simplicial G-complex and L is
an invariant subcomplex of it, then indG(L) ≥ indG(L0) − indG(∆(L0 \
L))− 1.

Part (i) is obvious, (iii) follows from the fact that G∗(n+1) is an EnG
space, (iv) and (v) are consequences of Lemma 6.2.2 (of course, (iv) also
needs (ii)), and (vi) is proved exactly like Theorem 5.7.2. The hardest part
is the innocent-looking (ii), which requires a new theorem of a Borsuk–Ulam
type.

6.2.5 Theorem (A “Borsuk–Ulam” theorem for G-spaces). There is
no G-map of an EnG space into an En−1G space.

We postpone the proof a little, and we comment on the role of the groups
Zp. First, we observe that if H is a subgroup of G, then any G-space can also
be regarded as an H-space (and a G-map as an H-map). By inspecting the
above proposition, we see that it never makes any reference to the properties
of G (except for the nontriviality), and so if we use only these tools for
bounding the index, we lose nothing by restricting ourselves to a nontrivial
subgroup. In fact, sometimes we might gain, since it can happen that a G-
action is not free, but the action of some subgroup H is free. It is well known
and not hard to show that every (nontrivial) finite group contains a subgroup
isomorphic to Zp for a prime p. Therefore, when considering free actions, it
is usually sufficient to consider only Zp-actions. This happens, for instance,
in the following proof.

Sketch of proof of Theorem 6.2.5. (Specialized to G = Z2, this is yet
another proof of the Borsuk–Ulam theorem.) Exceptionally, in this proof we
have to assume familiarity with the basics of simplicial homology. We will
not need anything of this proof in the sequel.

As was just noted above, it is sufficient to consider the case G = Zp with
prime p.
3 As in Proposition 5.3.2, this holds for all paracompact spaces of dimension at

most n.
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We will work with the EnZp space (Zp)∗(n+1). Let K := (Zp)∗(n+1) and let
L := (Zp)∗n. This L can be identified with a subcomplex of K (corresponding
to the first n factors in the (n+1)-fold join); let i:V (L) → V (K) be the
inclusion map.

For contradiction, we suppose that there is a Zp-map f : ‖K‖ → ‖L‖.
First we need to make f into a simplicial map; more precisely, we need to
infer that there is a sufficiently fine subdivision K̃ of K and a simplicial Zp-
map f̃ :V (K̃) → V (L). This is done using a standard procedure (simplicial
approximation theorem; see, e.g., [Hat01, Theorem 2C.1]); one has to be a
little careful so that the simplicial approximation remains a Zp-map, but this
is not a problem. (We made a similar step, for the case p = 2, in the derivation
of the Borsuk–Ulam theorem from Tucker’s lemma in Section 2.3.)

It remains to prove that a simplicial Zp-map f̃ :V (K̃) → V (L), where K̃
is a simplicial Zp-complex refining K, cannot exist; this (discrete) statement
can be considered a Zp-analogue of Tucker’s lemma.4

The plan is to consider the composed simplicial Zp-map g := i◦ f̃ :V (K̃) →
V (K) and to analyze its Lefschetz number in two ways, eventually reaching a
contradiction.

First we consider the chain groups. The simplicial map g:V (K̃) → V (K)
induces maps g#k:Ck(K̃) → Ck(K̃), where Ck(K̃) = Ck(K̃, Q) is the k-
dimensional chain group with rational coefficients (g goes into K but every
k-simplex in K is written as the sum of the k-simplices in K̃ subdividing it).
The Lefschetz number on the level of chain maps is

Λ(g) =
∑
k≥0

(−1)k trace(g#k).

Since we are working with rational coefficients, the Ck(K̃) are vector spaces
and the g#k are linear endomorphisms, and so trace is the trace of a linear
map in the usual sense.

We consider the usual basis of Ck(K̃) made of all chains eσ, where σ is
an (oriented) k-simplex of K̃, and eσ is 1 on σ and 0 elsewhere. Expressing
trace(g#k) with respect to this basis, we see that since g is a Zp-map, σ gives
the same contribution as the other p−1 simplices in its orbit (here we use that
the simplices in each orbit are all distinct). Therefore, trace(g#k) is divisible
by p, and so is Λ(g).

4 Here is a slightly different, and perhaps closer, Zp-analogue of Tucker’s lemma:
Let n be even, let the sphere Sn−1 be equipped with a free Zp-action, and let T be
a triangulation of Bn whose restriction to Sn−1 is invariant under the Zp-action.
Let L be another Zp-invariant triangulation of Sn−1. Then there is no simplicial
map V (T) → V (L) whose restriction on the boundary Sn−1 is a Zp-map. For
a way of deriving Theorem 6.2.5 from (a continuous version of) this statement
see the notes to this section. For the proof of Theorem 6.2.5 from the version
of Tucker’s lemma just formulated, L can be taken as any fixed triangulation
making Sn−1 a simplicial Zp-complex, while T has to be taken arbitrarily fine.



6.2 EnG Spaces and the G-Index 153

Now we consider Λ(g) on the level of homology groups. The map g induces
maps g∗k:Hk(K, Q) → Hk(K, Q) in homology, and by the Hopf trace formula,
the Lefschetz number equals

Λ(g) =
∑
k≥0

(−1)k trace(g∗k).

Since K is (n−1)-connected, we have Hk(K, Q) = 0 for 1 ≤ k ≤ n−1, and
so the only contribution to Λ(g) may come from dimensions 0 and n. But
g∗n is trivial, since it is the composition i∗n ◦ f̃∗n, and so it goes through
the homology group Hn(L, Q), which is 0 because L is (n−1)-dimensional. It
follows that Λ(g) = 1, which contradicts the previous calculation and shows
that the Zp-map f : ‖K‖ → ‖L‖ is impossible.

From the first part of the proof we can actually learn something about
actual (existing) Zp-maps of a (triangulable) Zp-space into itself: Any such
map has Lefschetz number divisible by p.

The following consequence of Proposition 6.2.4, which does not mention
the G-index, has often been quoted and used in the literature:

6.2.6 Theorem (Dold’s theorem [Dol83]). Let G be a finite group with
|G| > 1. Let X be an n-connected G-space, and let Y be a free G-space of
dimension at most n (it may be a simplicial G-complex, a cell G-complex, or

even an arbitrary paracompact space). Then X
G−→/ Y .

Notes. Krasnosel’skǐı’s notion of genus (mentioned in the notes to
Section 5.3) was extended to actions of more general groups by Švarc
[Šva57], [Šva62]. Conner and Floyd [CF60] also introduced the G-index
(and the corresponding coindex). The first paper with combinatorial-
geometric applications of Zp-maps is Bárány, Shlosman, and Szűcs
[BSS81], discussed in the notes to Section 6.4 below.

A generalized Borsuk–Ulam theorem via degree. We outline yet an-
other proof of the Borsuk–Ulam theorem, and then we indicate how
it generalizes for Zp-spaces; this argument is from [BSS81]. We sup-
pose that a map f0:Bn → Sn−1 antipodal on the boundary exists,
contradicting (BU2b). First we need to modify f0 to another map
f1:Bn → Sn−1, still antipodal on the boundary but such that its re-
striction on Sn−2 (the “equator”) is the identity map. This is done by
a standard argument (in fact, the map can be prescribed arbitrarily
on Sn−2). Namely, since Sn−1 is (n−2)-connected (Theorem 4.3.2),
any two maps Sn−2 → Sn−1 are homotopic, and a homotopy of the
restriction of f0 on Sn−2 with idSn−2 can be extended to a homotopy
of f0 with some suitable f1:Bn → Sn−1, since the pair (Bn, Sn−2) has
the homotopy extension property; see the proof of Proposition 4.1.5.
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One just needs to check that antipodality on the boundary can be
preserved in both steps of this construction, but this is routine (Exer-
cise 2).

Let f be the restriction of f1 on Sn−1. We show that it has degree
1 modulo 2. This contradicts the fact that any map Sn−1 → Sn−1

that can be extended to Bn has degree 0 (Proposition 2.4.1(ii)). The
method for constructing f1 allows us to assume that f is a simplicial
map between some suitable triangulations of Sn−1, and so we can use
the definition of deg2(f) as in Proposition 2.4.1(i) (roughly speaking,
deg2(f) is the number of preimages of a generic point modulo 2).

Let Sn−1
1 and Sn−1

2 be two disjoint copies of Sn−1, and let
X := Sn−1

1 ∪ Sn−1
2 . A map F :X → Sn−1 can be viewed as an or-

dered pair (F1, F2) of maps F1, F2:Sn−1 → Sn−1, and the definition
of degree extends naturally: deg2(F ) := deg2(F1) + deg2(F2).

Given an antipodal map f :Sn−1 → Sn−1 as above, whose re-
striction to Sn−2 is the identity, we consider two auxiliary maps
F,G:X → Sn−1. The map F is given by F1 := f and F2 := idSn−1 .
The map G equals f on the upper hemisphere of Sn−1

1 and on the
lower hemisphere of Sn−1

2 , and it equals the identity on the remaining
two hemispheres.

F :

f id

f

id f

id

G :

(The continuity of G uses the condition f = id on the equator.)
We have deg2(F ) = deg2(f) + deg2(id) = deg2(f) + 1 (addition

modulo 2), and deg2(F ) = deg2(G) (any point has the same num-
ber of preimages under F and under G). It remains to observe that
deg2(G) = 0; here we use the antipodality of f . Indeed, G1(x) = y
iff G2(−x) = −y, and hence deg2(G2) = deg2(G1). This proves the
Borsuk–Ulam theorem.

This proof can be generalized to establish the nonexistence of a
Zp-map EnZp → En−1Zp (Theorem 6.2.5). We will need a definition
of integer-valued degree of a mapping Sn → Sn; see the notes to
Section 2.4.

We assume that n is even; the case of odd n can be derived by
a little trick: See Exercise 3. We take Sn−1∗Zp as the EnZp space
on the left-hand side and Sn−1 as the En−1Zp space on the right-
hand side, where Sn−1 is equipped with a free simplicial Zp-action as
in Example 6.1.4(i). Let K be a triangulation of Sn−1 for which this
action is a simplicial map.

Since Sn−1 ∗ {0} ∼= Bn (where {0} is a one-point space) is a sub-
space of Sn−1∗Zp, a hypothetical Zp-map Sn−1∗Zp → Sn−1 yields
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a map f0:Bn → Sn−1 whose restriction on the boundary Sn−1 is a
Zp-map. Let S denote the (n−2)-skeleton of K. By the same method
as above we can deform f0 into a map f1:Bn → Sn−1 whose restric-
tion to S is the identity map, while the restriction to Sn−1 remains a
Zp-map.

Let f be the restriction of f1 on Sn−1. We are going to show that f
has degree 1 modulo p, which is a contradiction, since any f extendible
to Bn must have degree 0.

This time we let X :=
⋃p

i=1 Sn−1
i , where Sn−1

1 , Sn−1
2 , . . . , Sn−1

p

are disjoint copies of Sn−1. The map F :X → Sn−1 equals f on
Sn−1

1 , and equals the identity on the remaining Sn−1
i . We have

deg(F ) = deg(f)+p−1. To define G:X → Sn−1, we partition the
(n−1)-dimensional simplices in K into p disjoint classes C1, . . . , Cp, in
such a way that Ci = ωi−1(C1), where ω is the Zp-action on Sn−1.
On Sn−1

i we let G equal f on the simplices (corresponding to the sim-
plices) of Ci, while it equals the identity on the remaining simplices. As
in the Z2-case above, we find that deg(F ) = deg(G), and that deg(G)
is divisible by p. It follows that deg(f) is congruent to 1 modulo p,
and the proof is finished.

Fixed-point free actions. There are more advanced results, whose
proofs or even reasonably general formulation are beyond our scope,
that can establish X

G−→/ Y with the G-action on Y being fixed-point
free but not necessarily free. One useful result, which can be formu-
lated easily, is the following theorem of Volovikov [Vol96]:

Let G := Zp ×Zp × · · · ×Zp be the product of finitely many copies
of Zp, with p prime. Let X and Y be fixed-point free G-spaces such

that H̃i(X, Zp) = 0 for all i ≤ n (reduced cohomology groups with
Zp-coefficients) and Y is finite-dimensional and an n-dimensional co-

homology sphere over Zp. Then X
G−→/ Y .

In particular, there is no G-map of an n-connected X into Sn,
provided that the actions are fixed-point free. Similar results were ob-
tained, in varying degrees of generality, by Özaydin [Öza87] (in an
unpublished manuscript) and later independently by Sarkaria [Sar00].
A detailed completion and exposition of Sarkaria’s argument was given
by de Longueville [dL01]. The proofs rely on more advanced topologi-
cal methods (cohomology and characteristic classes of vector bundles).

In many applications one can get by with the nonexistence of G-
maps Sn → Sm, where the spheres are equipped with G-actions whose
homomorphisms are isometries (in other words, one deals with orthog-
onal representations of G). Interesting information about nonexistence
theorems of this kind can be found in Bartsch [Bar92] and in Sarkaria
[Sar00].
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Cohomological ideal-valued index. Production of results similar to the
just mentioned theorem can be “mechanized” using a cohomological
ideal-valued index of Fadell and Husseini [FH88], which can be seen as
a generalization of the idea of the (numeric) cohomological index in-
troduced in the notes to Section 5.3. However, here the index IndG(X)
of a G-space (X, Φ) is not a single number, but rather an ideal in a
certain ring.

We now sketch the construction of IndG(X) assuming the G-action
to be free. We first consider the infinite-dimensional classifying G-space
EG for G, which for finite G can be represented as EG =

⋃∞
n=0 EnG,

and its quotient BG = EG/G by the G-action. Then there is a
homotopically unique G-map f :X G−→EG and the quotient map
f̄ :X/G → BG, which induces a map f̄∗:H∗(BG) → H∗(X/G) of the
cohomology rings.5 So far all of this is perfectly parallel to the case
G = Z2 discussed in the notes to Section 5.3, where we had EZ2 = S∞

and BZ2 = RP∞, but now the ideal-valued index IndG(X, Φ) is de-
fined as the kernel of f̄∗, and thus it is an ideal in the cohomol-
ogy ring H∗(BG), which for G finite can usually be represented as
a polynomial ring. A G-map (X, Φ) → (Y,Ψ) implies the containment
IndG(X) ⊆ IndG(Y ), and so the existence of a G-map can be excluded
whenever this inclusion doesn’t hold.

One of the main features of the ideal-valued index is that, unlike
the integer-valued index indG(X), it can also provide results for cases
where the considered G-spaces are not free (moreover, it also gives a
finer classification even for free G-spaces). However, the construction
of IndG(X) shown above has to be modified for non-free X: We first
replace X with the G-space EG×X (with G acting on both compo-
nents), which is free, and then we proceed as before, considering the
homotopically unique G-map f :EG×X

G−→EG etc.
A short introduction to this index theory, with several impressive

applications and a few ready-made recipes for computing IndG(X) in
some common cases, was provided by Živaljević [Živ98].

Finally, the equivariant obstruction theory is another powerful tool
(again requiring more advanced knowledge of algebraic topology) for
attacking the question of whether X

G−→Y . Sometimes it yields the
nonexistence of a G-map and sometimes, unlike the index theories,
it allows one to prove the existence of a G-map X → Y (without
explicitly constructing it). For our type of applications, the existence
of a G-map is usually disappointing, but at least it identifies a dead
end. Equivariant obstruction theory deals with the following question:
Given an equivariant map f defined on the n-skeleton of a simplicial

5 We should also say what is the coefficient ring R for the cohomology: It can
actually be chosen at will, and thus R is an extra parameter of the construction
of IndG. Often it suffices to work with R = Z2.
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G-complex (or cell G-complex), is there an equivariant map defined
on the (n+1)-skeleton that agrees with f on the (n−1)-skeleton? In
other words, we want to extend f from the (n−1)-skeleton to the
(n+1)-skeleton, knowing that extension to the n-skeleton is possible.
The answer is yes if and only if a certain cohomology class (the “ob-
struction”) is zero. Since there can be many choices for the extension
in each step, the method doesn’t seem to provide a generally efficient
algorithm for deciding whether X

G−→Y , even if we can evaluate the
required cohomology classes. In many concrete cases it works nicely,
though. For a first impression of the method, one can consult [Živ98],
which also provides references for a deeper study.

Exercises

1.∗ Prove by induction on n that the n-fold join of the discrete m-point space
is homotopy equivalent to a wedge of (n−1)-dimensional spheres. How
many spheres are there?

2.∗ (a) Let f and g be Z2-maps Sn−1 → Sn. By adjusting the proof of
Theorem 4.3.2, prove that there exists a homotopy (ft)t∈[0,1] between f
and g such that each ft is a Z2-map.
(b) Let f and g be as in (a), and suppose that f can be extended to a
Z2-map f̄ :Sn → Sn. By modifying the proof of Proposition 4.1.5, show
that g can be extended to a Z2-map ḡ:Sn → Sn homotopic to f̄ (with
the homotopy consisting of Z2-maps).

3.∗ Let p be a prime. For all odd d, we consider Sd equipped with the free
simplicial Zp-action as in Example 6.1.4(i) (the join of d+1

2 S1’s with
rotation by 2π

p ).
(a) Check that for d odd, there is a nonsurjective Zp-map Sd−2∗Zp → Sd.
(b) Let n be even. Assuming that there is no map f :Bn → Sn−1 whose
restriction to the boundary Sn−1 is a Zp-map (which was proved by the
degree-theoretic argument in the notes above), show that there is no Zp-
map Sn−1 → Sn−3∗Zp (which yields Theorem 6.2.5 for odd n).

6.3 Deleted Joins and Deleted Products

In the subsequent applications, which are mostly generalizations of problems
we have encountered earlier, we construct G-spaces X and Y and then use
the G-index for showing that X

G−→/ Y . Here X and Y are usually suitable
p-fold deleted joins or deleted products, and in this section we discuss these
constructions. In contrast to twofold joins and products, for p-fold ones there
are various possibilities as to which points should be deleted. For example,
from the product X3 we can delete all points (x, x, x) (all three components
coincide), or alternatively, the points where at least two components coincide.
What needs to be deleted is usually dictated by the application. Here is the
general definition, of which we will actually use only a few special cases.
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6.3.1 Definition. Let n ≥ k ≥ 2 be integers. (We will mostly encounter the
cases k = n and k = 2.) Call an n-tuple (x1, x2, . . . , xn) k-wise distinct if
no k among the xi are equal.

The n-fold k-wise deleted product of a space X is

Xn
∆(k) := {(x1, x2, . . . , xn) ∈ Xn : (x1, . . . , xn) k-wise distinct}.

The n-fold n-wise deleted join of X is

X∗n
∆ := X∗n \ { 1

nx⊕ 1
nx⊕ · · · ⊕ 1

nx : x ∈ X
}
.

For a simplicial complex K, the n-fold k-wise deleted join of K is

K∗n
∆(k) := {F1 F2 · · ·  Fn ∈ K∗n : (F1, F2, . . . , Fn) k-wise disjoint},

where an n-tuple (F1, F2, . . . , Fn) of sets is k-wise disjoint if every k among
the Fi have empty intersection.

For k = n, we write Xn
∆ for Xn

∆(n) and K∗n
∆ for K∗n

∆(n).

So the 2-wise deleted joins and products are the “most deleted” (smallest),
while the n-wise deleted ones are the “least deleted” (largest).

Note that the k-wise deleted n-fold join has been defined for a simplicial
complex, but for a space, we have defined only the n-fold n-wise deleted join.
This is because this is the only case we will actually need, and I’m also not
sure what should the “right” definition of a k-wise deleted n-fold join for a
space be.

The symmetric group Sn acts on all these deleted joins and products by
permuting the coordinates. We will consider the action of the cyclic subgroup
Zn generated by the cyclic shift to the left, namely, by the permutation ν:
1 �→ 2, 2 �→ 3, . . . , n−1 �→ n, n �→ 1. Explicitly, on the deleted product, ν
acts by

ν: (x1, x2, . . . , xn) �−→ (x2, x3, . . . , xn, x1),

and on the deleted join, it acts by

ν: t1x1 ⊕ t2x2 ⊕ · · · ⊕ tnxn �−→ t2x2 ⊕ t3x3 ⊕ · · · ⊕ tnxn ⊕ t1x1.

Free actions. For 2-wise deleted products, where no two coordinates of
points coincide, the Sn-action is free.

On the other hand, for n-wise deleted n-fold products and joins, the Sn-
action is not free for n ≥ 3, and the Zn-action ν is free if (and only if) n = p is
a prime. Indeed, if p is a prime, then by Observation 6.1.3, it suffices to verify
that ν has no fixed point, and this is obvious, since if (x2, x3, . . . , xn, x1) =
(x1, x2, . . . , xn), then x1 = x2 = · · · = xn. Moreover, as is not difficult to
check, this is the only case (up to a renumbering of the coordinates) in which
a nontrivial subgroup of Sn acts freely on an n-wise deleted n-fold product
or join of a space or simplicial complex with at least two points (Exercise 1).

We will need deleted joins and products of spaces only for the case X = Rd

and k = n. Now we calculate the Zp-indices in that case.
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6.3.2 Proposition (Deleted products and deleted joins of Rd). Let
p be a prime and let d ≥ 1. Then

indZp

(
(Rd)p

∆

) ≤ d(p−1)−1

and
indZp

(
(Rd)∗p

∆

) ≤ (d+1)(p−1)−1.

Proof. We construct a Zp-map g: (Rd)p
∆ → Sd(p−1)−1, where Sd(p−1)−1

is equipped with a suitable free Zp-action (which, moreover, can be made
cellular or even simplicial, and so the sphere is an Ed(p−1)−1Zp space).

Let us interpret Rd×p =
(
Rd

)p as the space of matrices (xij)
d
i=1

p
j=1 with

d rows and p columns. The Zp-action is the cyclic shift of the columns. The
elements of (Rd)p

∆ are all matrices of this form except for those with all
columns equal. For instance, for d = 1 and p = 3 we get the 3-dimensional
Euclidean space with the diagonal line {x1 = x2 = x3} removed.

First we consider the orthogonal projection g1 of Rd×p on the d(p−1)-di-
mensional subspace L perpendicular to the diagonal. In coordinates, L is the
subspace consisting of all d×p matrices with zero row sums, and g1 maps a
matrix X = (xij) to the matrix

g1(X) =
(

xij − 1
p

p∑
k=1

xik

)
ij

;

that is, the average of all columns is subtracted from each column. We see that
g1(X) is the zero matrix O if and only if each column of X equals the average
of all columns; i.e., if all columns of X are equal. Therefore, g1 provides a
(surjective) Zp-map (Rd)p

∆ → L\{O}. For instance, for d = 1 and p = 3, the
map g1 is the orthogonal projection onto the plane x1 + x2 + x3 = 0.

We set g(X) := g1(X)
‖g1(X)‖ . The range of g is the unit sphere S(L) in L, which

can be identified with Sd(p−1)−1. Here is a geometric illustration for p = 3
and d = 1:

L

S(L)

x2

x3

x1

O

x1 = x2 = x3
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Clearly, g is a Zp-map, and we have proved the first part of the proposition.
As for the deleted join, we construct a Zp-map h: (Rd)∗p

∆ → (Rd+1)p
∆,

generalizing the proof of Lemma 5.5.4 in a straightforward manner. As in
that proof, we consider the deleted join of a bounded set, say Bd, instead
of Rd. Then we place the copies of Bd into (R(d+1))p using the embeddings
ψ1, . . . , ψp, where ψi(x) has (1, x1, x2, . . . , xd) in the ith block of coordinates
and 0’s elsewhere. The mapping h: (Bd)∗p

∆ → (Rd+1)p
∆ is given by

t1x1 ⊕ t2x2 ⊕ · · · ⊕ tpxp �−→ t1ψ1(x1) + t2ψ2(x2) + · · ·+ tpψp(xp).

It is clearly a Zp-map, it goes into the deleted product as it should, and
continuity follows by a slight generalization of the considerations in the proof
of Proposition 4.2.4 about a geometric representation of joins.

With a little more work, it can be shown that (Rd)p
∆ � Sd(p−1)−1, and so

indZp
((Rd)p

∆) actually equals d(p−1)−1 (Exercise 2). Similarly,

indZp

(
(Rd)∗p

∆

)
= (d+1)(p−1)−1.

Warning. For general n and k, the topology of the deleted product (Rd)n
∆(k)

can be quite complicated. Based on some special cases and on an analogy with
the deleted join of a simplex, (σd)∗n

∆(k) (which is homotopy equivalent to a
wedge of ((d+1)(k−1)−1)-spheres; see Exercise 6.7.1), one might be tempted
to believe that (Rd)n

∆(k) is homotopy equivalent to a wedge of (d(k−1)−1)-
spheres (as is asserted in [Sar91a]). The truth is much subtler, though: While
it can be shown that (Rd)n

∆(k) is (d(k−1)−2)-connected, it can also have
nonzero homology in various higher dimensions, and so it need not be homo-
topy equivalent to a wedge of (d(k−1)−1)-spheres.

We conclude this section with a generalization of version (BU1a) of the
Borsuk–Ulam theorem. We recall that (BU1a) asserts the existence of an x
with f(x) = f(−x) for any continuous f :Sn → Rn.

6.3.3 Theorem (On p-fold coincidence points). Let (X, ν) be a Zp-
space with indZp

(X) ≥ d(p−1), where p is a prime. Then for any continuous
map f :X → Rd there exists x ∈ X such that f(x) = f(ν(x)) = f(ν2(x)) =
· · · = f(νp−1(x)).

Proof. Suppose that there is no such x ∈ X. Then the map

x �−→ (
f(x), f(ν(x)), . . . , f(νp−1(x))

)
is a Zp-map of X into the deleted product (Rd)p

∆, which yields indZp
(X) ≤

indZp
((Rd)p

∆) ≤ d(p−1)−1.
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Notes. The space Xn
∆(2) is sometimes called the nth (ordered) con-

figuration space of X, since it models configurations of n distinct (and
distinguishable) particles in X, and it is a classical object of study.
For X = C ∼= R2, Cn

∆(2) is known as the pure braid space.
The topology of the deleted products (Rd)n

∆(k) for d = 1 and d = 2
was investigated by Björner and Welker [BW95] (for d = 1, (R)n

∆(k)

is known as the k-equal manifold). Their method generalizes easily to
arbitrary d, and it allows one to describe the cohomology in concrete
cases, although obtaining general formulas seems very complicated.

A remarkable application of Theorem 6.3.3 in topological group
theory was found by Farah and Solecki [FS07]; they used it to prove
a new Ramsey-type theorem.

Exercises

1. Let X be a topological space with at least two points.
(a) Show that if n is not a prime, then the Zn-action on Xn

∆ generated
by the cyclic shift by one position left is not free.
(b) More generally, show that if G is a nontrivial subgroup of Sn whose
action on Xn

∆ is free, then n = p is a prime and G is a cyclic group
isomorphic to Zp generated by a cyclic shift, after a suitable renumbering
of the coordinates.

2. Show that (Rd)p
∆ and Sd(p−1)−1 are homotopy equivalent. (Use the map

g in the proof of Proposition 6.3.2.)
3. For p = 3 and d = 1, the sphere S(L) in the proof of Proposition 6.3.2 is

isometric to S1. Is it true that the cyclic shift action ν on S(L) inherited
from R3 is equal to the rotation of S(L) by 2π

3 ?
4.∗ (A Lyusternik–Shnirel’man-type theorem for Zp-actions) Let (X, ν) be a

metric Zp-space with indZp
(X) ≥ d(p−1), where p is a prime, and let

A1, A2, . . . , Ad+1 be closed sets covering X. Show that there is an index
i and a point x ∈ X such that {x, ν(x), . . . , νp−1(x)} ⊆ Ai.

6.4 The Topological Tverberg Theorem

Radon’s theorem (Theorem 5.1.3) states that any d+2 points in Rd can be
divided into two parts with intersecting convex hulls. Tverberg’s theorem is a
generalization of this statement, where we want not only two disjoint subsets
with intersecting convex hulls but r of them.

It is not too difficult to show that for every d and r, there exists a T =
T (d, r) such that any set A of T points in Rd can be divided into r disjoint
subsets A1, A2, . . . , Ar with

⋂r
i=1 conv(Ai) �= ∅ (Exercise 1). It is much harder

to establish the tight bound for T (d, r), as stated in the next theorem.
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6.4.1 Theorem (Tverberg’s theorem [Tve66]). For any d ≥ 1 and r ≥
2, any set of (d+1)(r−1)+1 points in Rd can be partitioned into r disjoint
subsets A1, . . . , Ar in such a way that conv(A1)∩· · ·∩ conv(Ar) �= ∅ (we call
such a partition a Tverberg partition).

Let us examine some special cases first. As was remarked above, the case
r = 2 is Radon’s theorem. For d = 1, we have 2r−1 points on the real
line, say x1 ≤ x2 ≤ · · · ≤ x2r−1. Then we can choose Ai := {xi, x2r−i} for
1 ≤ i ≤ r−1, and Ar = {xr}. In fact, if the points xi are all distinct, then
this is the only suitable partition! Here is an example for d = 2 and r = 3,
showing two possible Tverberg partitions of a 7-point set (can you find other
partitions?):

The reader is invited to check that fewer than (d+1)(r−1)+1 points generally
do not suffice; see Exercise 2.

We will not prove Tverberg’s theorem here; instead, we prove a topological
version that implies Tverberg’s theorem in the case where r is a prime.

6.4.2 Theorem (Topological Tverberg theorem [BSS81]). Let p be a
prime, let d ≥ 1 be arbitrary, and put N := (d+1)(p−1). For every continuous
map

f : ‖σN‖ −→ Rd

there exist p disjoint faces F1, . . . , Fp ⊆ σN whose images under f intersect:

f(‖F1‖) ∩ f(‖F2‖) ∩ · · · ∩ f(‖Fp‖) �= ∅.

It seems likely that this theorem remains true for all p, not only primes,
but so far nobody has managed to prove this. It has been verified for all
prime powers, though.

Proof. This is very similar to the (second) proof of the topological Radon
theorem; the only difference is that we work with p-fold joins.

Suppose that there is an f violating the theorem; that is, there are no
disjoint faces F1, F2, . . . , Fp with all f(‖Fi‖) intersecting. We consider the
p-fold join f∗p, and we regard it as a map from the p-fold 2-wise deleted join:

f∗p:
∥∥(σN )∗p

∆(2)

∥∥ −→ (Rd)∗p
∆ .

The fact that this map indeed goes into the deleted join exactly translates
the condition on f above.
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Note how the problem itself determines what kind of deleted joins we
should use: We deal with (2-wise) disjoint faces, and so we use the 2-wise
deleted join on the left-hand side. We assume that no p images coincide, and
so the join on the right-hand side is p-wise deleted (only the points with all
components equal are removed).

Automatically, f∗p is a continuous Zp-map. We know that indZp
((Rd)∗p

∆ ) ≤
(d+1)(p−1) − 1 (Proposition 6.3.2), and so it remains to calculate the Zp-
index of the left-hand side. This is again similar to the case p = 2 handled in
connection with the topological Radon theorem. The following is an analogy
of Lemma 5.5.2:

6.4.3 Lemma. Let K and L be simplicial complexes. Then

(K ∗ L)∗p
∆(2)

∼= K∗p
∆(2) ∗ L∗p

∆(2).

Proof. Clear!

6.4.4 Corollary. We have indZp

(
(σn)∗p

∆(2)

)
= n.

Proof. This time we have

(σn)∗p
∆(2)

∼= ((σ0)∗(n+1))∗p
∆(2)

∼= ((σ0)∗p
∆(2))

∗(n+1) ∼= (Dp)∗(n+1),

where Dp denotes the simplicial complex corresponding to a p-point discrete
space. In Section 6.2 we noted that (Dp)∗(n+1) is (n−1)-connected; in fact, it
is an EnZp space (if we identify Dp with Zp).

This also concludes the proof of the topological Tverberg theorem.

The space (Dp)∗(n+1) is quite important: We used it as an EnZp space,
here it turned up as the deleted join of a simplex, and we will meet it several
more times. From a combinatorial point of view, the maximal simplices can
be regarded as the edges of the complete (n+1)-partite hypergraph on n+1
classes of size p each. In the picture, n = 2, p = 4, and only 3 edges are drawn
as a sample:

The isomorphism of the complex (Dp)∗(n+1) with the deleted join (σn)∗p
∆(2)

is quite intuitive in this drawing. Each row consists of p copies of the same
vertex of σn, one for each factor in the deleted join, and since the join is
2-wise deleted, a simplex can use only one of the copies in each row.
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Alternatively, we can also consider the maximal simplices as functions
[n+1] → [p].

Notes. The original proof of Tverberg’s theorem [Tve66] is compli-
cated. The idea is simple, though: Start with some point configuration
for which the theorem is valid, and convert it to a given configuration
by moving one point at a time. During the movement, the current
partition may stop working at some point, and it must be shown that
it can be replaced by another suitable partition. Later on, Tverberg
found a simpler proof [Tve81]. Sarkaria [Sar92] invented another, very
nice and reasonably simple, proof, based on a geometric lemma due to
Bárány, and his proof was further streamlined by Onn (see [BO97], or
also [Mat02a]). Still another proof, also due to Tverberg and inspired
by Bárány’s proof, was published in Tverberg and Vrećica [TV93]. A
similar proof was given by Roudneff [Rou01].

Tverberg’s theorem is quite important and has numerous appli-
cations, as well as extensions and generalizations; see, e.g., Eckhoff
[Eck93]. Some interesting aspects are briefly discussed in Kalai’s lively
survey [Kal01].

Let us state a conjecture of Tverberg and Vrećica [TV93], which
generalizes both Tverberg’s theorem and the center transversal the-
orem mentioned in the notes to Section 3.1: Let r0, r1, . . . , rk be nat-
ural numbers and let S0, S1, . . . , Sk be finite sets of points in Rd,
0 ≤ k ≤ d−1, with |Si| ≥ (ri−1)(d−k+1)+1. Then each Si can be
partitioned into ri sets in such a way that the convex hulls of the re-
sulting r0 +r1 + · · ·+rk sets can all be intersected by a common k-flat.
Živaljević [Živ99] proved the special case of this conjecture with d and
k odd integers and r0 = r1 = · · · = rk an odd prime, and Vrećica
[Vre03] verified the case r0 = r1 = · · · = rk = 2.

The topological Tverberg theorem. Bárány et al. [BSS81] proved
Theorem 6.4.2 using deleted products. By an ingenious argument,
they showed that the p-fold 2-wise deleted product of σN is (N−p)-
connected. Then they established and used apparently the first theo-
rem of Borsuk–Ulam type dealing with Zp-actions in a combinatorial-
geometric application. In our terminology, that result can be phrased
as follows: For a prime p and integer d ≥ 1, consider the sphere
Sd(p−1)−1 with the Zp-action obtained as in the proof of Proposi-
tion 6.3.2 (about deleted products of Rd), and let Xd,p be the ENZp

space Sd(p−1)−1∗Zp. Then for any continuous f :Xd,p → Rd there is a
point x ∈ Xd,p whose orbit under the Zp-action is mapped to a single
point in Rd (this is a special case of Theorem 6.3.3 about p-fold coin-
cidence points, and in fact, it is equivalent to it).

The technique of deleted joins for such problems was developed by
Sarkaria [Sar90], [Sar91a].
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The validity of the topological Tverberg theorem for arbitrary
(nonprime) p is one of the most challenging problems in this field.
For p a prime power, the theorem was proved by Özaydin [Öza87]
in an unpublished manuscript, and much later by Volovikov [Vol96]
(and also by Sarkaria [Sar00]). Assuming the theorem of Volovikov
mentioned in the notes to Section 6.2, about maps of fixed-point free
(Zp× · · ·×Zp)-spaces, the proof is a straightforward generalization of
the proof in this section.

Exercises

1.∗ Prove (directly, without using Tverberg’s theorem) that for any inte-
gers d, r1, r2 ≥ 2, we have T (d, r1r2) ≤ T (d, r1)T (d, r2). (Together with
Radon’s theorem, this implies that T (d, r) is finite for all d and r.)

2. Let v1, . . . ,vd+1 be vertices of a simplex in Rd and let Bi be a set of
r−1 points lying very close to vi. Prove that there is no partition of
B := B1 ∪ · · · ∪ Bd+1 into r disjoint parts whose convex hulls have a
nonempty intersection.

6.5 Many Tverberg Partitions

A conjecture of Sierksma, still unresolved at the time of writing, states that
the number of Tverberg partitions for a set of (r−1)(d+1)+1 points in general
position in Rd is at least ((r−1)!)d. This number is attained for the config-
uration of d+1 tight clusters, with r−1 points each, placed at the vertices
of a simplex, and one point in the middle (Exercise 1). (We count unordered
partitions, where the order of the sets A1, . . . , Ar does not matter.)

For a prime r, one can prove a quite good lower bound by cleverly ex-
tending the topological proof (while no nontopological method is known to
yield a good lower bound).

6.5.1 Theorem (Many Tverberg partitions [VŽ93]). Let p be a prime.
For any continuous map f : ‖σN‖ → Rd, where N = (d+1)(p−1), the
number of unordered p-tuples {F1, F2, . . . , Fp} of disjoint faces of σN with⋂p

i=1 f(‖Fi‖) �= ∅ is at least

1
(p−1)!

·
(p

2

)(d+1)(p−1)/2

.

We note that for d and p large, this bound is roughly the square root of
the bound conjectured by Sierksma.

Proof. Let K denote the simplicial complex (σN )∗p
∆(2). The maximal simplices

of K are the edges of the complete (N+1)-partite hypergraph; if the vertex
set of K is identified with [N+1] × [p], then such a maximal simplex S is
{(1, i1), (2, i2), . . . , (N+1, iN+1)}, i1, . . . , iN+1 ∈ [p]. Such an S encodes the



166 6. Multiple Points of Coincidence

ordered partition (F1, F2, . . . , Fp), given by Fi = {j ∈ [N+1] : ij = i}. For
example, with d = 2 and p = 3, the indicated S in the picture encodes the
ordered Tverberg partition of the N+1 = 7 points drawn on the right:

1 2 3
1
2
3
4
5
6
7

1

2 3

4

5

6
7

Call S good whenever it encodes a Tverberg partition, that is, whenever⋂p
i=1 f(‖Fi‖) �= ∅. An S is good exactly if it contains a point mapped to the

diagonal in (Rd)∗p by f∗p, where f∗p is the p-fold join of f as in the proof
in the preceding section. If we prove that K has at least M good maximal
simplices, we obtain that there are at least M/p! (unordered) Tverberg par-
titions.

Here is the strategy of further progress. We define a suitable family L of
subcomplexes L ⊂ K. Each L is closed under the Zp-action (cyclic shift on
the rows of the hypergraph), and indZp

(L) ≥ N , so that f∗p restricted to
‖L‖ maps some point to the diagonal. Consequently, each L ∈ L contains a
good maximal simplex (actually, at least p of them). Finally, we count the
number Q of L ∈ L containing a given maximal simplex of K, and estimate
M ≥ p · |L|/Q.

Since in the case p = 2 the theorem is already proved, we may now assume
p > 2, so p is odd, and N = (d+1)(p−1) is even. To describe a member L of
the family L, we first divide the N+1 rows in the hypergraph into N

2 pairs
plus one remaining row; let Π be the number of ways of accomplishing this
(we do not need its value, since it will cancel out later). Next, we look at the
two rows in one of the pairs; the simplices of K living on these rows are the
edges of the complete bipartite graph between the rows. We choose a cycle C
in this complete bipartite graph that is invariant under the cyclic shift action.
Some thought reveals that such a cycle is uniquely determined by choosing
two distinct edges emanating from the first vertex of the top row, as in the
drawing (for p = 5):

All the other edges are given as shifts of the chosen two. (Yes, we always
get just one cycle; right?) Thus, there are

(
p
2

)
choices for C. Such a cycle is

chosen for each pair of rows, so we obtain invariant cycles C1, . . . , CN/2. For

a fixed pairing of the rows, the number of choices of the Ci is
(
p
2

)N/2. The
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maximal simplices of the subcomplex L corresponding to a given choice of
the row pairing and of the Ci are the maximal simplices of K that contain an
edge of each Ci, such as is drawn below:

C1

C2

C3

S

We have |L| = Π · (p
2

)N/2. We leave it as an exercise to show that the
number Q of complexes L ∈ L that contain a given maximal simplex S ∈ K
is Π · (p−1)N/2.

Each L can be interpreted as the join of its N/2 cycles C1, . . . , CN/2 and
of the remaining p points. Thus, topologically,

‖L‖ ∼= (S1)∗(N/2) ∗ Dp
∼= SN−1 ∗ Dp,

and so indZp
(L) ≥ N as required. Theorem 6.5.1 follows by the calculation

indicated above.

Notes. The presented proof of the lower bound for the number
of Tverberg partitions is a simplification of the argument of Vućić
and Živaljević [VŽ93] (instead of the invariant subcomplexes L, they
consider noninvariant cones over invariant spheres in K and use an
argument about mapping degrees). The result was extended to q a
prime power by Hell [Hel07].

Exercises

1.∗ Show that the number of (unordered) Tverberg r-partitions for the con-
figuration described in the text (d+1 clusters by r−1 points near the
vertices of a simplex in Rd and one point in the center of the simplex)
equals ((r−1)!)d.

6.6 Necklace for Many Thieves

We consider the necklace problem from Section 3.2 but with q thieves. We deal
only with the continuous version here (the discrete version can be proved from
the continuous version by a simple combinatorial argument). The following
theorem states formally that d(q−1) cuts, the smallest conceivable number,
suffice for q thieves.
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6.6.1 Theorem (Continuous necklace for many thieves [Alo87]). Let
µ1, µ2, . . . , µd be continuous probability measures on [0, 1], let q ≥ 2, and
set N := d(q−1). Then there exists a partition of [0, 1] into N+1 intervals
I1, I2, . . . , IN+1 by N cuts and a partition of the index set [N+1] into subsets
T1, T2, . . . , Tq such that

∑
j∈Tk

µi(Ij) =
1
q

for i = 1, 2, . . . , d and k = 1, 2, . . . , q.

Proof. In the subsequent topological argument we need to assume that the
number of thieves q is a prime. Luckily, the nonprime cases follow from the
result for all prime q by a simple direct argument; see Exercise 1.

From now on, q is a prime. Consider an arbitrary division of [0, 1] among
q thieves: Let I1, I2, . . . , IN+1 be a partition of the interval [0, 1] into N+1
intervals (numbered from left to right), and let T1, T2, . . . , Tq be a partition
of [N+1]. We encode such division by a point of the deleted join

∥∥(σN )∗q
∆(2)

∥∥;
this is the key step.

Let us regard σN as the “standard simplex” in RN+1:

σN =
{

x ∈ RN+1 : x1, . . . , xN+1 ≥ 0, x1 + x2 + · · ·+ xN+1 = 1
}

.

Each of the N+1 vertices of σN lies on one of the coordinate axes, and so
the vertex set can be identified with [N+1].

A point of the deleted join ‖(σN )∗q
∆(2)‖ has the form t1x1⊕t2x2⊕· · ·⊕tqxq.

First we determine the coefficients tk from the given division: tk is the total
length of intervals assigned to the kth thief; i.e.,

tk :=
∑
j∈Tk

length(Ij).

Next, we define xk. If tk = 0, then xk does not matter in the join, so we
assume tk > 0. We set

(xk)j :=
{

1
tk

length(Ij) for j ∈ Tk,
0 for j �∈ Tk.

In other words, we consider the intervals going to the kth thief and we blow
them up, all in the same ratio, so that they fill the whole interval [0, 1], while
the other intervals shrink to zero length. Here is an example for N = 6, q = 3,
and i = 2:
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thief 2 thief 3thief 1

(x2)2 (x2)4 (x2)7

0 1

I1 I2 I3 I4 I5 I6 I7

Note that V (supp(xk)) ⊆ Tk, and so the xk have disjoint supports.
Conversely, given any point z = t1x1 ⊕ · · · ⊕ tqxq ∈ ‖(σN )∗q

∆(2)‖, we can
determine the lengths of the intervals I1, . . . , IN+1 uniquely, and we can also
find the assignments of the intervals of nonzero lengths to the thieves: Tk

consists of the indices of the vertices of supp(xk). The assignment of the
intervals of zero length is not unique. But what is unique is the function
f :
∥∥(σN )∗q

∆(2)

∥∥→ (Rd)q expressing the gains of the thieves. Namely, we put

f(z)i,k :=
∑
j∈Tk

µi(Ij).

It can be verified that f is continuous, and obviously, it is a Zq-map. If there
were no division as claimed in the theorem, f would miss the diagonal in
(Rd)q, and so we would get an equivariant map

f :
∥∥(σN )∗q

∆(2)

∥∥ −→ (Rd)q
∆.

This is impossible, since the Zq-index of the left-hand side is N , while that
of the right-hand side is d(q−1)−1 = N−1.

Notes. Alon’s proof [Alo87] of the necklace theorem for many thieves
uses a different encoding of the divisions, and it relies on the Borsuk–
Ulam-type result of Bárány, Shlosman, and Szücs [BSS81] mentioned
in the notes to Section 6.4. The presented proof basically follows Vućić
and Živaljević [VŽ93] (they assume, without loss of generality, that one
of the µi is the Lebesgue measure on [0, 1], and they construct a Zq-
map into the deleted join (Rd−1)∗q

∆ instead of the deleted product).
They also give a lower bound for the number of fair divisions for
“generic” necklaces (where no fair splitting is possible with fewer than
d(q−1) cuts), by the method shown in Section 6.5 below for Tverberg
partitions.
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Exercises

1. Suppose that the statement of Theorem 6.6.1 holds with q = q1 and also
with q = q2. Show that it holds for q = q1q2, too.

6.7 Zp-Index, Kneser Colorings, and p-Fold Points

In this part we more or less repeat the considerations about index and Kneser
colorings from Section 5.8 in a p-fold setting. No new ideas are needed; one
just has to get the definitions right and verify that the proofs work. As a
reward, we then prove quite quickly some theorems that are generally con-
sidered reasonably hard.

Considering the proof of the topological Tverberg theorem in Section 6.4
and replacing σN with an arbitrary simplicial complex K, we obtain the
following general sufficient condition for the existence of p-fold points:

6.7.1 Theorem (Index and p-fold points). Let p be a prime, and let K
be a simplicial complex such that

indZp

(
K∗p

∆(2)

)
≥ (d+1)(p−1).

Then for any continuous map f : ‖K‖ → Rd, there are points x1,x2, . . . ,xp ∈
‖K‖ with disjoint supports such that f(x1) = f(x2) = · · · = f(xp).

By Sarkaria’s inequality (Proposition 6.2.4(vi)), if K is a simplicial com-
plex with vertex set [n], we can estimate

indZp

(
K∗p

∆(2)

)
≥ n− 2− indZp

(
∆
(
(σn−1)∗p

∆(2) \ K∗p
∆(2)

))
.

Then we want to bound above the Zp-index of ∆
(
(σn−1)∗p

∆(2)\K∗p
∆(2)

)
, and this

can be done using Kneser-like colorings. (More generally, we can consider K
as a subcomplex of a simplicial complex J smaller than σn−1, as was outlined
in Exercise 5.8.3.)

Kneser hypergraphs. Let F be a set system. Generalizing the notion of
Kneser graph, we define the Kneser r-hypergraph KGr(F): The vertex set is
F , and the edges are all r-tuples of disjoint sets; that is,{

{S1, S2, . . . , Sr} : S1, . . . , Sr ∈ F , Si ∩ Sj = ∅ for 1 ≤ i < j ≤ r
}

.

We recall that a proper m-coloring of a hypergraph H is a mapping
c:V (H) → [m] such that no edge of H is monochromatic. For the Kneser
r-hypergraph KGr(F), we color the sets in F , and we want that no r disjoint
sets get the same color. Phrased differently, we want a coloring of the vertices
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of the usual Kneser graph KG(F) such that no r-clique (complete subgraph
of size r) is monochromatic.

The following lemma gives a whole family of bounds for the Zp-index:

6.7.2 Lemma (Index bound from coloring KGr). Let K be simplicial
complex with vertex set [n], and let F be the system of the inclusion-minimal
sets in 2[n] \ K. Then for any prime p,

indZp

(
∆
(
(σn−1)∗p

∆(2) \ K∗p
∆(2)

)) ≤ (p−1) · χ(KGp(F))− 1.

More generally, if q ≥ 2 is an arbitrary integer, s > 1 is the smallest divisor
of q, and r is another integer satisfying 2 ≤ r ≤ s, then

indZq

(
∆
(
(σn−1)∗q

∆(2) \ K∗q
∆(2)

)) ≤ (r−1) · χ(KGr(F))− 1.

We will use only the first part of the lemma (which tends to give the
strongest bound, although it need not always be the case; also see Exercise 3).

Proof of Lemma 6.7.2. We begin with the first part. As in the proof of
Lemma 5.8.1, we let c:F → [m] be a proper coloring of KGp(F), and we
define the labeling h of the subsets of [n] by subsets of [m]:

h(F ) = {c(G) : G ∈ F , G ⊆ F}.

Note that the simplices in K receive ∅, while those not in K receive a non-
empty set. For a simplex F1 · · ·  Fp ∈ (σn−1)∗p

∆(2)\K∗p
∆(2), we put

g(F1 · · ·  Fp) := h(F1) · · ·  h(Fp).

Since c is a proper coloring of KGp(F), each p sets among h(F1), . . . , h(Fp)
have an empty intersection. So g is a simplicial Zp-map into sd

(
(σm−1)∗p

∆

)
.

It remains to show that the index of the latter space is (at most)
m(p−1)−1. This is left as Exercise 1.

The proof of the second part is almost the same. This time the sets
h(F1), . . . , h(Fq) are r-wise disjoint, and so the map g goes into the r-wise
deleted join sd

(
(σm−1)∗q

∆(r)

)
. The condition r ≤ s, where s is the smallest

nontrivial divisor of q, guarantees that the Zq-action on this r-wise deleted
join is free; see Exercise 1.

Here is a combination of Theorem 6.7.1 with Lemma 6.7.2:

6.7.3 Theorem (Sarkaria’s theorem on coloring and p-fold points).
Let p be a prime. Let K be a simplicial complex with vertex set [n], and let
us suppose that

d ≤ n− p

p− 1
− χ(KGp(F)),
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where F is the system of all inclusion-minimal sets in 2[n] \ K. Then for
any continuous map f : ‖K‖ → Rd there are p points x1, . . . ,xp ∈ ‖K‖ with
disjoint supports such that f(x1) = f(x2) = · · · = f(xp).

More generally, the same conclusion can be drawn if we have, for some
r ∈ {2, 3, . . . , p},

d ≤ n− p

p− 1
− r − 1

p− 1
χ(KGr(F)).

6.7.4 Example (Tverberg’s theorem with restricted dimensions). In
Tverberg’s theorem, (d+1)(r−1)−1 points in Rd suffice to get r disjoint sub-
sets with intersecting convex hulls. What happens if we consider N+1 points
and want r disjoint subsets with intersecting convex hulls, but each of the
sets should have at most k+1 ≤ d points?

For example, for r = 3, d = 3, and k = 2, we would like to find 3 vertex-
disjoint triangles in R3 with a common point.

It is not known whether such triangles can always be found for 9 points in
R3, but it can be proved by the methods explained here that they always
exist for 11 points.

On the other hand, no matter how many points in suitable general position
in R3 we have, we cannot find 4 vertex-disjoint intersecting triangles. More
generally, if the sum of codimensions of the r convex hulls, that is, r(d−k),
is greater than d, no N will do.

For r a prime such that the codimension condition r(d−k) ≤ d holds, one
can prove the existence of a suitable N using Theorem 6.7.3; see Exercise 4.

Notes. This section is again based on [Sar91a] and [Sar90].
Sarkaria also considered k-wise deleted joins K∗p

∆(k), with K the
(k−1)-skeleton of an n-simplex, and used Kneser-like colorings for de-
termining the index of such deleted joins.

Example 6.7.4 is inspired by Živaljević and Vrećica [ŽV94].

Kneser hypergraphs. Alon, Frankl, and Lovász [AFL86] established
Erdős’s generalization of Kneser’s conjecture for hypergraphs: If n ≥
(m−1)(r−1)+rk, then χ

(
KGr(

(
[n]
k

)
)
)

> m. For this purpose, they
defined a box complex of an r-uniform hypergraph.

By the method of Section 3.4, Dol’nikov estimated χ(KGr(F)) from
below by the minimum cardinality of a set Y ⊆ X (where X is the
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ground set of F) such that X \ Y can be colored by two colors so
that no color class contains � r

2 disjoint sets of F . He then gave a
new proof of the result of [AFL86] on χ

(
KGr(

(
[n]
k

)
)
)

for all even r;
for odd r he needed an additional condition on the parameters r, k, n.
Yet another proof of a statement generalizing Erdős’s conjecture was
given by Sarkaria [Sar90]; see Exercise 2.

Kř́ıž [Kri92], [Kri00] proved the following generalization of Dol’ni-
kov’s theorem: For any set system F ,

χ(KGr(F)) ≥ 1
r − 1

· cdr(F),

where cdr(F) is the r-colorability defect introduced in Section 3.4.
This theorem, too, implies the results of Alon et al. on χ

(
KGr(

(
[n]
k

)
)
)
.

The proof in [Kri92] does not work in the generality stated there (as
was pointed out by Živaljević), but the result for the Kneser hyper-
graphs remains valid [Kri00]. A simplified version of Kř́ıž’s proof, em-
ploying a Sarkaria-style inequality for estimating the index of a certain
space, was given in [Mat02b].

An extensive generalization of the “combinatorialized” proof of
the Lovász–Kneser theorem from [Mat04] was obtained by Ziegler
[Zie02]. He formulated a Zp-analogue of the required special instance
of Tucker’s lemma, and derived many generalizations of the Lovász–
Kneser theorem from it (including Schrijver’s theorem, the Dol’nikov–
Kř́ıž theorem, and Sarkaria’s results). For additional results see Lange
and Ziegler [LZ07].

Exercises

1.∗ (a) Prove that the Zp-index of the p-fold p-wise deleted join
(
σn

)∗p

∆
is at

most (n+1)(p−1)−1.
(b) Show that the index in (a) is actually equal to (n+1)(p−1)−1.
(c) Verify that if r ≤ s, where s > 1 is the smallest nontrivial divisor of
q, then the r-wise deleted join

(
σn

)∗q

∆(r)
with the canonical Zq-action is

a free Zq-space.
(d) Show that the Zq-index of the space in (c) equals (n+1)(r−1)−1.
(e) Prove the second part of Lemma 6.7.2.

2.∗ (a) Find a coloring of the Kneser r-hypergraph KGr(
(
[n]
k

)
) by �n−r(k−1)

r−1 
colors.
(b) Use Theorem 6.7.3 to prove that this number of colors is the smallest
possible.

3.∗ (a) Prove that for r ≥ 3 and any finite set system F , we have

χ(KGr(F)) ≤
⌈

χ(KG2(F))
r − 1

⌉
.

(b) More generally, check that for r > q ≥ 2, we have
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χ(KGr(F)) ≤
⌈

χ(KGq(F))
r

q−1 − 1

⌉
.

4.∗ (a) Let p be a prime, and let f be a continuous map of the k-skeleton of
the N -simplex into Rd. Supposing that p(d−k) ≤ d and N = (d+2)(p−1),
use Theorem 6.7.3 to show that there are p points with disjoint supports
that are mapped to the same point by f .
(b) Derive the claim of Example 6.7.4 from (a): For any prime p, any
d ≥ 1, and any k, 0 ≤ k ≤ d−1, such that p(d−k) ≤ d, there exists N
such that among any N points in Rd, one can select p disjoint groups, of
size k+1 each, whose convex hulls all have a nonempty intersection.
(c) Show that the conclusion of (b) can fail for every N if the codimension
condition p(d−k) ≤ d is not satisfied.

6.8 The Colored Tverberg Theorem

A seemingly innocent combinatorial question about point sets in Rd, the
k-set problem, has been greatly puzzling combinatorial and computational
geometers at least since the 1980s: What is the maximum number of distinct
k-element subsets of an n-point set A ⊂ Rd that can be cut off by a half-
space? That is, what is

max
A⊂Rd,|A|=n

∣∣{A ∩ h : |A ∩ h| = k, h a half-space}∣∣?
Here d is considered fixed, while n tends to infinity; the most interesting
values of k are about n

2 . This problem seems to be very hard even in the
plane.

One wave of excitement came around 1990. First, Bárány, Füredi, and
Lovász proved the first nontrivial upper bound for d = 3, and made a con-
jecture, which later became known as the colored Tverberg theorem, that
implies a nontrivial upper bound for every fixed d. The conjecture was then
established by Živaljević and Vrećica by a topological method.

At that time, many notions in their paper were quite alien to me. More
precisely, I couldn’t really understand a thing. As a good way of learning I
chose to teach a course that would start from the basics and culminate by
a full proof of the theorem. This book is a late spinoff of that effort, and so
with some exaggeration, one can consider all the previous sections a leisurely
introduction to a proof of colored Tverberg.

We now leave the k-set problem, referring to [ABFK92] or [Mat02a] for
its connection to the colored Tverberg theorem, and we focus on the theorem
itself.

If we have 7 points in the plane, Tverberg’s theorem tells us that we can
divide them into 3 groups whose convex hulls have a common intersection.
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The colored version of this statement is this: Given 3 red, 3 blue, and 3 white
points in the plane, we can always partition them into 3 “tricolored triples”
with intersecting convex hulls:

A generalization for r rainbow groups in d dimensions is this:

6.8.1 Theorem (The colored Tverberg theorem [BFL90], [ŽV92]).
For any integers r ≥ 2 and d ≥ 1, there exists an integer t = t(d, r) such
that for any d+1 disjoint t-point sets C1, C2, . . . , Cd+1 in Rd, we can find
disjoint sets A1, A2, . . . , Ar with |Ai ∩ Cj | = 1 for all i = 1, 2, . . . , r and
j = 1, 2, . . . , d+1 such that

⋂r
i=1 conv(Ai) �= ∅. If we think of the points

of Cj as having color j, then each Ai is required to use all colors (to be a
“rainbow” set).

The reason why the colored Tverberg theorem is suitable for the k-set
application, while Tverberg’s theorem isn’t, is combinatorial. Namely, if X is
an n-point set and F ⊆ (

X
k

)
is a system of “many” k-tuples, say |F| ≥ 1

100

(
n
k

)
,

with k fixed and n large, then F contains a not too small complete k-partite
system (Erdős–Simonovits theorem). That is, there are not too small disjoint
subsets C1, C2, . . . , Ck ⊂ X such that F contains all rainbow k-tuples (with
one point from each Ci), and in a geometric setting the colored Tverberg
theorem can be applied to such Ci. In contrast, F need not contain any
complete k-uniform hypergraph, even on k+1 vertices: There need not be any
k+1 points of X with all k-tuples on them present in F , and this prevents an
application of Tverberg’s theorem. In a combinatorial terminology, a density
Ramsey theorem holds for complete k-partite k-uniform hypergraphs but
not for complete k-uniform hypergraphs. For more details we again refer to
[ABFK92] or [Mat02a].

While Tverberg’s theorem can be proved in an elementary way, all known
proofs for the colored version are topological.

We prove the following topological version, which implies the colored
Tverberg theorem with t = 4r−1. The implication uses “Bertrand’s pos-
tulate,” which states that for any r > 1 there is a prime p with r ≤ p < 2r.
(This was first proved by Chebyshev; much finer results are known by now.)

6.8.2 Theorem (Topological colored Tverberg theorem [ŽV92]). Let
d be a positive integer and let p be a prime. Let C1, C2, . . . , Cd+1 be disjoint
sets of cardinality 2p−1 each, and let K be the simplicial complex with vertex
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set C1∪C2∪· · ·∪Cd+1, whose simplices are all subsets using at most one point
from each Ci. (In other words, K ∼= (D2p−1)∗(d+1).) Then for any continuous
map f : ‖K‖ → Rd, there are p disjoint faces F1, F2, . . . , Fp of K whose images
intersect:

⋂p
i=1 f(‖Fi‖) �= ∅.

Proof. With the powerful Theorem 6.7.3 on coloring and p-fold points, the
proof is routine.

The system F of minimal nonfaces of K consists of all edges connecting
two points in the same Ci. We work with r = p; i.e., we look for a coloring of
the Kneser p-hypergraph KGp(F). Any p disjoint edges of F together cover
2p points, and so they cannot all live in the same class Ci. Thus, coloring
all edges in Ci by color i shows that χ(KGp(F)) ≤ d+1. The number of
vertices of K is n = (2p−1)(d+1). The right-hand side in the condition in
Theorem 6.7.3 for the existence of a p-fold point is

n− p

p− 1
− χ(KGp(F)) =

(2p− 1)(d + 1)− p

p− 1
− (d+1) = d · p

p− 1
> d,

and we are done.

Remark: chessboard complexes. In the previous proof we have implicitly
bounded below the Zp-index of the p-fold 2-wise deleted join K∗p

∆(2). We have

K∗p
∆(2) =

(
(D2p−1)∗(d+1)

)∗p

∆(2)
∼= (

(D2p−1)
∗p
∆(2)

)∗(d+1)
.

The simplicial complex (D2p−1)
∗p
∆(2) is known as the chessboard complex,

and it is a quite interesting mathematical object. The chessboard complex
�m,n := (Dn)∗m

∆(2) has vertex set [n]×[m], and its simplices can be interpreted
as placements of rooks on an n×m chessboard such that no rook threatens
any other; that is, no two rooks share a row or a column. In this interpreta-
tion it is obvious that the roles of m and n are symmetric.

Notes. The colored Tverberg theorem was proved for d = 2, and
conjectured to hold for arbitrary d, by Bárány, Füredi, and Lovász
[BFL90]. The general d-dimensional case was proved, with t ≤ 4r−1,
by Živaljević and Vrećica [ŽV92]. A simpler proof for the required con-
nectivity of the chessboard complexes was found by Björner, Lovász,
Živaljević, and Vrećica [BLŽV94]. Using a nerve theorem and induc-
tion, they showed that �n,m is (ν−2)-connected, for

ν = min
{

m,n,
⌊

1
3 (m + n + 1)

⌋}
.

A similar argument was given in Živaljević and Vrećica [ŽV94], and
Ziegler [Zie94] used yet another approach (shellability) for establishing
that connectivity.
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The proof of the colored Tverberg theorem by Sarkaria’s method
was noted in [Mat96].

Bárány et al. [BFL90] conjectured that t = r should suffice in
the colored Tverberg theorem. This is known for d = 2 (Bárány and
Larman [BL92]) and for r = 2 (Lovász; also published in [BL92]; the
Borsuk–Ulam theorem is applied in a beautiful way). For r a prime,
the Živaljević–Vrećica approach gives t ≤ 2r−1. This was extended to
all prime powers r by Živaljević [Živ98] (similar to the proofs of the
topological Tverberg theorem for prime powers, as mentioned in the
notes to Section 6.4).

Exercises

1.∗ (Colored Tverberg theorem with restricted dimensions [ŽV94]) This is a
colored version of Example 6.7.4.
(a) Given 5 red, 5 blue, and 5 red points in R3, prove that there are 3
vertex-disjoint tricolored triangles having a common point.
(b) Let C1, . . . , Ck+1 ⊂ Rd be sets of cardinality 2p−1 each, where p is a
prime satisfying p(d−k) ≤ d. Prove that there are p disjoint rainbow sets
A1, . . . , Ap (with |Ai ∩ Cj | = 1 for all i, j) such that

⋂p
i=1 conv(Ai) �= ∅.

Use (i) a coloring argument and (ii) the connectivity of the chessboard
complexes.
For this result, 2p−1 is also a lower bound for the necessary cardinality
of the Ci [ŽV94].
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Chapter 1

• Topological space. Subspace. Continuous map (preimage of an open set
is open). Homeomorphism (bijective, continuous, inverse continuous).
Closed set, closure, boundary, interior.

• Compact space (in Rd: closed and bounded). A continuous function at-
tains its minimum on a compact space. A continuous mapping on a com-
pact metric space is uniformly continuous.

• Homotopy (of maps; f ∼ g). Homotopy equivalence (of spaces; X �
Y ). Deformation retract (Y can be shrunk continuously to X, “within Y ”
and keeping X fixed). X � Y iff X and Y are both deformation retracts
of some Z.

• Simplex. Geometric simplicial complex. Abstract simplicial com-
plex K (a hereditary system of finite sets, includes ∅). Geometric realiza-
tion, polyhedron (unique up to homeomorphism). Associates a topolog-
ical space with any finite hereditary set system. Further notions: V (K),
dimK, supp(x) (the support of a point).

• Triangulation (X ∼= ‖K‖). Every d-dimensional K can be realized in R2d+1

(use the moment curve).
• Simplicial map (vertex �→ vertex, preserves simplices). A combinator-

ial counterpart of a continuous map. Yields a continuous map by affine
extension on each simplex. Isomorphism.

• Order complex ∆(P,�) of a poset (simplices = chains). Barycentric
subdivision sd(K) := ∆(K,⊆). Geometric view (add barycenters as new
vertices); ‖sd(K)‖ ∼= ‖K‖.

Chapter 2

• Borsuk–Ulam theorem:
◦ For every f :Sn → Rn there is x with f(x) = f(−x).
◦ Every antipodal f :Sn → Rn has a zero.
◦ There is no antipodal f :Sn → Sn−1.
◦ There is no f :Bn → Sn−1 antipodal on the boundary.
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◦ For every cover of Sn by n+1 sets, each of them either open or
closed, one of the sets contains a pair of antipodal points (Lyusternik–
Shnirel’man theorem).

Many proofs known.
• Tucker’s lemma (a discrete version of Borsuk–Ulam): If T is a triangu-

lation of Bn antipodally symmetric on the boundary and λ:V (T) →
{±1, . . . ,±n} is a labeling antipodal on the bounary, then there is a
complementary edge (labels +i and −i). Reformulation: There is no sim-
plicial map of T into �n−1 (boundary of the crosspolytope) antipodal on
the boundary.

Chapter 3

• Mass distribution µ in Rd (µ(Rd) < ∞, open sets measurable, hyper-
planes have measure 0). Ham sandwich theorem: Every d mass dis-
tributions in Rd can be simultaneously bisected by a hyperplane.

• Every d finite point sets in Rd can be simultaneously bisected by a hy-
perplane (A bisected by h: at most 1

2 |A| points in each of the open half-
spaces).

• Mass partition theorems. For example, a mass distribution in R2 can be
dissected into 4 equal parts by 2 lines. Generalization to 2d pieces by d
hyperplanes in Rd fails for d ≥ 5 (moment curve).

• Akiyama–Alon: n-point sets A1, . . . , Ad in general position in Rd can be
partitioned into n rainbow d-tuples with disjoint convex hulls.

• Any necklace with d kinds of stones can be divided between two thieves
by d cuts (place the necklace on the moment curve in Rd and use ham
sandwich). Continuous version (Hobby–Rice).

• Kneser graph KG(F): edges =pairs of disjoint sets. Chromatic number
χ(G). Lovász–Kneser theorem: χ

(
KG(

(
[n]
k

)
)
)

= n−2k+2, n ≥ 2k.
Important examples of graphs with a large chromatic number.

• First proof of the Lovász–Kneser theorem: Let d := n−2k+1, suppose a
d-coloring exists. Choose n points in general position on Sd. For i ∈ [d],
let Ai consist of the x ∈ Sd such that the open hemisphere centered
at x contains a k-tuple of color i; Ad+1 is the rest. Apply Lyusternik–
Shnirel’man (“open-or-closed” version).

• Dol’nikov: χ(KG(F)) ≥ cd2(F); here cd2(F) is the minimum number of
white points in a red–blue–white coloring with no F ∈ F completely red
or completely blue. Proof as before, d :=χ(KG(F)).

• Gale’s lemma: d+2k points can be placed on Sd so that every open hemi-
sphere contains at least k of them. Bárány’s proof of the Lovász–Kneser
theorem: Dimension one lower than before, d := n−2k; supposing that
(d+1)-coloring exists, place points as in Gale’s lemma, define Ai as in the
previous proof (but now i ∈ [d+1]), and apply Lyusternik–Shnirel’man
for open sets.
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• Schrijver’s theorem: The subgraph of KG(
(
[n]
k

)
) induced by all stable

sets (independent sets in the cycle of length n) has chromatic number
n−2k+2, same as the whole graph. Proof: Gale’s lemma in a stronger
form, with every open hemisphere containing a stable set.

Chapter 4

• Quotient space. Sum. Wedge. Contracting a contractible subcomplex is
a homotopy equivalence.

• Join. For simplicial complexes: K ∗ L := {F  G : F ∈ K, G ∈ L}, where
F  G = (F×{1}) ∪ (G×{2}). For spaces: X ∗ Y is a quotient space of
X×Y×[0, 1]. Both give the same (‖K ∗ L‖ ∼= ‖K‖ ∗ ‖L‖); use geometric
interpretation (X and Y placed in skew affine subspaces; take all seg-
ments xy, x ∈ X, y ∈ Y ). Points written tx ⊕ (1−t)y (formal convex
combinations).

• k-connected space (every map from Si, i ≤ k, is nullhomotopic). Sn

is (n−1)-connected and not n-connected.
• k-connected ⇔ 1-connected and zero homology up to dimension k. (k-

connected)∗(�-connected) is (k+�+2)-connected. Nerve theorem: If sub-
complexes cover K and all of their intersections are contractible or empty,
then their nerve is homotopy equivalent to ‖K‖.

• CW-complex. Cellular map.

Chapter 5

• Z2-space (X, ν), ν a homeomorphism X → X, ν2 = id. Free Z2-space
(ν has no fixed points). Z2-map (f ◦ ν = ω ◦ f).

• Z2-index indZ2(X) := min{n : X
Z2−→Sn}. Main properties:

◦ indZ2(X) > indZ2(Y ) ⇒ X
Z2−→/ Y .

◦ If X is (n−1)-connected, then indZ2(X) ≥ n.
◦ For free K, we have indZ2(K) ≤ dim(K).
◦ (Sarkaria’s inequality) If L0 is an invariant subcomplex of a Z2-

complex L, then indZ2(L0) ≥ indZ2(L)− indZ2(∆(L \ L0))− 1.
• Deleted join K∗2

∆ := {F  G : F,G ∈ K, F ∩ G = ∅} (a free Z2-space).
indZ2((σ

n)∗2∆ ) = n. Deleted join (Rd)∗2∆ := (Rd)∗2 \ { 1
2x ⊕ 1

2x : x ∈ Rd}.
indZ2((R

d)∗2∆ ) = d.
• Nonembeddability theorem: If indZ2(K

∗2
∆ ) > d, then any map ‖K‖ →

Rd identifies two points with disjoint support, and in particular, K is not
realizable in Rd. Proof: For a map f : ‖K‖ → Rd with f(x1) �= f(x2)
whenever supp(x1) �= supp(x2), the map f∗2 can be regarded as a Z2-
map ‖K∗2

∆ ‖ → (Rd)∗2∆ , and the right-hand side has Z2-index d.
• Topological Radon theorem: Any continuous map of the (d+1)-simplex

into Rd identifies two points with disjoint supports.
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• Van Kampen–Flores theorem: Let K denote the d-skeleton of the
(2d+2)-simplex; then K cannot be realized in R2d (d = 1 is the nonpla-
narity of K5). Needed: indZ2(K

∗2
∆ ) > 2d.

• First proof of Van Kampen–Flores: Bier spheres; shows that ‖K∗2
∆ ‖ ∼=

S2d+1.
• The construction of the Bier spheres also gives that most triangulations

of Sn are nonpolytopal.
• Kneser colorings and index of the deleted join: Let F be the system

of inclusion-minimal nonfaces of a simplicial complex K on [n]. Then
indZ2(K

∗2
∆ ) ≥ n−χ(KG(F))−1. Method: Sarkaria’s inequality; an m-

coloring of KG(F) provides a Z2-embedding of the order complex of
(σn−1)∗2∆ \ K∗2

∆ into Sm−1.
• Implies the Lovász–Kneser theorem, as well as Dol’nikov’s theorem.
• Neighborhood complex N(G) of a graph (vertex set V (G), maximal

simplices = neighborhoods of vertices). Lovász’s theorem: If N(G) is k-
connected, then χ(G) ≥ k+3.

• Box complex B(G) of a graph (vertex set V×[2], simplices A  B, where
A and B are color classes of a complete bipartite subgraph of G). Graph
homomorphism; induces a Z2-map of the box complexes. Implies χ(G) ≥
indZ2(B(G)) + 2. Lovász’s theorem can be proved from this.

• Generalized Mycielski construction Mr(G). N(Mr(G)) � susp(N(G));
yields a lower bound on the chromatic number for iterated Mr(·).

Chapter 6

• G-space, G-action Φ = (ϕg)g∈G; G-map. Free G-action (no ϕg has a
fixed point for g �= e) vs. fixed-point free G-action (no point fixed by all
ϕg).

• The only group acting freely on S2n is Z2. Every Zq acts freely on S1

(rotation) and on S2n−1 (join of S1’s).
• EnG space (G finite): n-dimensional, (n−1)-connected, finite, free sim-

plicial G-complex. Canonical example: G∗(n+1).
• G-index indG(X) := min{n : X

G−→EnG}. Properties analogous to the
Z2-index. Nontrivial part: EnG

G−→/ En−1G (generalized Borsuk–Ulam).
• Xn

∆(k) (n-fold k-wise deleted product of a space; delete from Xn all n-
tuples in which some k components coincide). We need (Rd)p

∆(p) for prime
p, which has Zp-index d(p−1)−1 (deformation retraction to Sd(p−1)−1).

• X∗n
∆(k) (n-fold k-wise deleted join of a space; delete from X∗n all 1

nx1 ⊕
1
nx2 ⊕ · · · ⊕ 1

nxn, where some k of the xi coincide). Again, we need only
(Rd)∗p

∆(p) for prime p; Zp-index is (d+1)(p−1)−1.
• K∗n

∆(k) (n-fold k-wise deleted join of a simplicial complex; delete from K∗n

all n-tuples of simplices in which some k simplices share a vertex). We
use mainly k = 2.
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• Necklace for q thieves with d kinds of stones: N := d(q−1) stones suf-
fice. Proof: For prime q, encode divisions by points of (σN )∗q

∆(2); if no
just division existed, the shares of the thieves would yield a Zq-map
(σN )∗q

∆(2) → (Rd)q
∆(q).

• Tverberg’s theorem: Any (d+1)(r−1)+1 points in Rd can be partitioned
into r groups whose convex hulls all have a common point. Topologi-
cal Tverberg theorem: Any continuous map f : ‖σN‖ → Rd identifies
some p points with disjoint supports into a single point, where N =
(d+1)(p−1). Proof: A bad f would yield a Zp-map (σN )∗p

∆(2) → (Rd)∗p
∆(p).

Works only for p prime; the theorem is also known for prime powers but
not in general!

• A lower bound for the number of Tverberg partitions follows by a similar
method (find many smaller invariant subcomplexes of (σN )∗p

∆(2) that still
have Zp-index N).

• Kneser hypergraph KGr(F). Chromatic number of a hypegraph (no
monochromatic edge). Embeddability of ‖K‖ into Rd without p-fold
points, with p prime, can be related to χ(KGr(F)), where F consists
of the minimal nonfaces of K, as in the Z2-case.

• Colored Tverberg theorem: If we have points of d+1 colors in Rd,
sufficiently many points of each color, then we can select r disjoint rain-
bow subsets whose convex hulls all have a common point. Proof: Let r
be a prime. Consider the simplicial complex K with (d+1)-element rain-
bow sets as maximal simplices, and produce a good coloring of KGr(F).
Result: 2r−1 points of each color suffice.



Hints to Selected Exercises

1.2.4. They are; all maps into R3 are nullhomotopic.
1.4.1. It is known that the smallest triangulation has 14 2-simplices.
1.4.2(a). For a face with vertex set F , a defining hyperplane is 〈aF ,x〉 = 1
with aF =

∑
v∈F v.

1.4.4(f). The triangulation in (a) is the same on the facets x1 = 0 and
x1 = 1.
1.5.1. A torus.
1.7.1. One possibility is to observe that the barycentric subdivision of a
(d−1)-simplex is obtained from the triangulation of the cube in Example 1.4.2
by slicing it with the hyperplane

∑d
1 xi = 1.

2.1.3(a). Suppose g:Bn+1 → Rn+1 is antipodal on the boundary and has
no zero. For t ∈ [0, 1], define ft:Sn → Sn by ft(x) = g(tx)

‖g(tx)‖ . The f1 is
antipodal, but the ft define a homotopy of f1 with the constant map f0.
2.1.3(b). The trick in (a) can be reversed.
2.1.4. For the less trivial implication, observe that a nonsurjective map Sn →
Sn is nullhomotopic.
2.1.5. An antipodal map Sn → Sn−1 can be regarded as an antipodal non-
surjective map Sn → Sn. Use Exercise 3.
2.1.6. As in the proof of (LS-o)⇒(LS-c), but wrap only the closed Ai.
2.3.1(b). Apply (BU2b) to the canonical affine extension of g on B̂n, and
use (a).
3.1.3. Map the sets into R3 by the mapping (x, y) �→ (x, y, x2 + y2). How is
halving of the sets by circles in the plane related to dissection of their images
in R3 by planes?
3.1.5(a). Use 4 tiny disks.
3.1.5(b). 2 + 2 + 2 tiny disks in suitably general position.
3.1.5(c). 4 + 4 tiny disks in suitably general position.
3.5.3. Fix a coloring, choose a random Schrijver subgraph, and use the fact
that it has at least one monochromatic edge.
4.1.4. Contract the edges of a spanning tree.
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4.1.6. Check that K/K2 is homeomorphic to K1/(K1 ∩ K2).
5.3.7. Use Exercise 5(c).
5.3.8(a). The inequality for joins is reversed!
5.5.2(a). One can Z2-map into Rd \ {0} by (1−t)x⊕ ty �→ (1−t)x− ty.
5.5.4. For x,y ∈ ‖K‖ with disjoint supports, map 1x ⊕ 0y �→ (x,v), where
v is the apex of cone K, 1

2x⊕ 1
2y �→ (x,y), 0x⊕ 1y �→ (v,y), and interpolate

linearly.
5.8.1. Use Kuratowski’s theorem.
5.8.4(a). The deleted join is a Bier sphere.
5.8.4(b). Kneser coloring by r colors.
6.2.3(b). By the assumption, no Zp-map Sn−1 → Sn−1 is nullhomotopic.
Composing a Zp-map as in the conclusion with the map in (a) would yield a
nonsurjective, and thus nullhomotopic, Zp-map Sn−1 → Sn−1.
6.7.1(d). For the upper bound, index ≤ dimension. For the lower bound,
since deleted join and join commute, it suffices to show (r−3)-connectivity of
the (r−2)-skeleton of σr−1.
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[BM02] I. Bárány and J. Matoušek. Equipartition of two measures by a
4-fan. Discrete Comput. Geom., 27:293–302, 2002. (ref: p. 52)

[BO97] I. Bárány and S. Onn. Colourful linear programming and its
relatives. Math. Oper. Res., 22:550–567, 1997. (ref: p. 164)

[Bor33] K. Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre.
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[Šva57] A. S. Švarc. Some estimates of the genus of a topological space
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Index

The index starts with notation composed of special symbols, and Greek let-
ters are listed next. Terms consisting of more than one word mostly appear
in several variants, for example, both “convex set” and “set, convex.” An
entry like “armadillo, 19(8.4.1), 22(Ex. 4)” means that the term is located in
theorem (or definition, etc.) 8.4.1 on page 19 and in Exercise 4 on page 22.
For many terms, only the page with the term’s definition is shown. Names or
notation used only within a single proof or remark are usually not indexed
at all.

a := B (definition), xii

x� (floor function), xii
�x (ceiling function), xii
|S| (cardinality), xi
2S (powerset), xi(
S
k

)
(k-element subsets), xi(

S
≤k

)
(at most k-element subsets),

xi
[n] (= {1, 2, . . . , n}), xi
∂X (boundary), 3
X � Y (disjoint sum), 70(4.1.4)
X ∨ Y (wedge), 70(4.1.4)
X × Y (Cartesian product), 73
X ∗ Y (join), 74(4.2.1)
f ∗ g (join of maps), 77
‖K‖ (polyhedron), 9(1.3.5)
‖f‖ (affine extension of a

simplicial map), 15(1.5.3)
∆≤k (k-skeleton), 10
A1  A2  · · ·  An (= (A1×{1})∪

(A2×{2})∪ · · · ∪ (An×{n})), 74
t1x1 ⊕ t2x2 ⊕ · · · ⊕ tnxn (point in

a join), 77
X2

∆ (deleted product of a space),
110

∆2
∆ (deleted product of a
simplicial complex), 110

Xn
∆ (n-fold n-wise deleted
product of a space), 158(6.3.1)

Xn
∆(k) (n-fold k-wise deleted
product of a space), 158(6.3.1)

K∗2
∆ (deleted join of a simplicial
complex), 112(5.5.1)

K∗n
∆ (n-fold n-wise deleted join of
a simplicial complex), 158
(6.3.1)

K∗n
∆(k) (n-fold k-wise deleted join
of a simplicial complex), 158
(6.3.1)

X∗n
∆ (n-fold n-wise deleted join of
a space), 158(6.3.1)

X ∼= Y (homeomorphic spaces), 3
K ∼= L (isomorphic simplicial

complexes), 14(1.5.2)
f ∼ g (homotopic maps), 5(1.2.1)
X � Y (homotopy equivalent

spaces), 6(1.2.2)
X

G−→Y (a G-map exists), 149
X

G−→/ Y (no G-map exists), 149
X ≤G Y (same as X

G−→Y ), 149
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‖x‖ (Euclidean norm), xi
‖x‖p (�p norm), xi
‖x‖∞ (maximum norm), xi
〈x,y〉 (scalar product), xi
∆(P ) (order complex), 18(1.7.1)
∆0(F) (= ∆(F \ {∅},⊆)), 122
∆(F) (= ∆(F ,⊆)), 122
α(G) (independence number), 59
χ(G) (chromatic number), 58
χ(F) (chromatic number of a

hypergraph), 61
χf (G) (fractional chromatic

number), 59
σn (the n-simplex as a simplicial

complex), 10

action
— by left multiplication, 147
— fixed-point free, 146
— — nonexistence of equivariant

maps, 155
— free, 146(6.1.2)
— — on deleted joins and

products, 158
— G-, 146(6.1.1)
— Z2-, 93(5.2.1)
affinely independent, 7(1.3.1)
Akiyama–Alon theorem, 53(3.2.1)
alternating group, 147
antipodal mapping, 23(2.1.1)
antipodality, 23
antipodality space, see Z2-space

B(G) (box complex), 129(5.9.1)
B(K) (Alexander dual), 117(5.6.1)
Bn (unit ball), xi
Babson–Kozlov–Lovász theorem,

137
barycentric subdivision, 19(1.7.2)
Bier spheres, 116–121
Biern(K), 117(5.6.1)
bipartite graph, xii
bistellar operation, 119
Borel measure, 47
Borsuk graph, 30

Borsuk’s conjecture, 27
Borsuk–Ulam theorem, 23(2.1.1)
— algebraic proofs, 26
— combinatorial proof, 35–46
— proof by homotopy extension,

30–34
— quantitative metric, 41(Ex. 1)
— via cohomology ring, 25
— via degree, 42–46, 153
— via Lefschetz number, 151
boundary, 3
Bourgin–Yang-type theorem, 28
box complex, 129(5.9.1), 135
Brouwer fixed point theorem, 25
bundle, 102

C (complex numbers), xi
category, Lyusternik–Shnirel’man,

99
cdm(F) (m-colorability defect),

61
cell complex, see CW-complex
cellular map, 84
center transversal theorem, 51
centerpoint theorem, 51
k-chain, 42
characteristic map, 84
chessboard complex, 176
chromatic number, 58
— fractional, 59
— of a hypergraph, 61
class, Stiefel–Whitney, 102
closed set, 3
closure, 3
CN(A) (common neighbors), 129
cobweb partition, 53
code, Gray, 51
cohomological index, 102
— ideal-valued, 156
cohomology (and Borsuk–Ulam

theorem), 25
coindex, Z2-, 99, 107(Ex. 8)
collapse, elementary, 136
colorability defect, 61, 173
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colored Tverberg theorem, 175
(6.8.1)

— with restricted dimensions,
177(Ex. 1)

comb, topologist’s, 7(Ex. 7)
combination, convex, xi
compact space, 3
complementary edge, 35
complete graph, xii
complex
— box, 129(5.9.1), 135
— chessboard, 176
— CW, 83
— ∆, 85
— G-, simplicial, 149
— Hom, 136
— neighborhood, 130
— order, 18(1.7.1)
— polyhedral, 85
— regular, 84
— simplicial (abstract), 13(1.5.1)
— simplicial (geometric), 9(1.3.5)
— Z2-, simplicial, 94
cone(X), 76
configuration space, 87, 109
configuration space (ordered), 161
conjecture
— Borsuk’s, 27
— Knaster’s, 28
— Kneser’s, 57
— — for hypergraphs, 172, 173

(Ex. 2)
— Sierksma’s, 165
— Tverberg–Vrećica, 164
k-connectedness, 78(4.3.1)
— and homology, 80(4.4.1)
continuous mapping, 2
contractible space, 6, 7(Ex. 7)
contractible subcomplex, 70

(4.1.5)
conv(X) (convex hull), xi
convex combination, xi
convex polytope, xii
— number of, 120

— simplicial, 11
convex set, xi
covering dimension, 96
crosspolytope, 11(1.4.1)
cube, triangulation, 11(1.4.2)
curve, moment, 17(1.6.3), 50, 65
curves, unlinked, 26
CW-complex, 83

Dn (n-point discrete simplicial
complex), 74

defect, m-colorability, 61, 173
deformation retract, 5
degree, 45, 153
— modulo 2, 43(2.4.1)
deleted join, 112(5.5.1), 158(6.3.1)
— of a simplex, 113(5.5.3), 163

(6.4.4), 173(Ex. 1)
— of Rd, 114(5.5.4), 159(6.3.2)
deleted product, 110, 158(6.3.1)
— of a simplex, 111
— of Rd, 110, 159(6.3.2)
— — structure, 160
∆-complex, 85
diagram, Hasse, 18
dimension
— covering, 96
— Dushnik–Miller, 20
— of a simplicial complex, 9

(1.3.5)
Dold’s theorem, 153(6.2.6)
Dol’nikov’s theorem, 62(3.4.1),

127
dunce cap, 85
Dushnik–Miller dimension, 20
Dyson’s theorem, 28

E(G) (edge set), xii
ei (ith vector of the standard

basis), xi
EnG space, 149
edge, complementary, 35
elementary collapse, 136
elementary expansion, 136
embedding, linkless, 26
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k-equal manifold, 161
equipartition theorems, 50, 51
equivalence
— homotopy, 6(1.2.2)
— simple-homotopy, 135
equivariant mapping, 93, 146

(6.1.1)
even mapping, 139
expansion, elementary, 136

face (of a polytope), xii
face poset, 18
Fadell–Husseini index, 156
k-fan, 52
Fan’s theorem, 28
fixed-point free action, 146
— nonexistence of equivariant

maps, 155
fractional chromatic number, 59
free action, 93(5.2.1), 146(6.1.2)
— on a sphere, 148
— on deleted joins and products,

158

G-action, 146(6.1.1)
G-index, 150(6.2.3)
G-map, 146(6.1.1)
G-space, 146(6.1.1)
Gale’s lemma, 64(3.5.1)
genus, 99
geometric realization, 14
— dimension, 16(1.6.1), 91, 111
— linear, 91
— maximum number of

simplices, 92
graph, xii
— bipartite, xii
— Borsuk, 30
— complete, xii
— Mycielski, 132
— Petersen, 58
— Schrijver, 66
Grassmann manifold,

Borsuk–Ulam-type theorem, 29
Gray code, 51

group
— acting on itself, 147
— alternating, 147
— topological, 146
group action, 146(6.1.1)

half-space, xi
ham sandwich theorem, 47(3.1.1)
— discrete, 48(3.1.2)
— for circles, 53(Ex. 3)
— generalized, 51
Hasse diagram, 18
Hausdorff space, 2
height, Stiefel–Whitney, 102
Hobby–Rice theorem, 55(3.2.3)
Hom complex, 136
Hom(F,G) (Hom complex of

graphs), 136
homeomorphism, 3(1.1.2)
homomorphism (of graphs), 128
homotopic maps, 5(1.2.1)
homotopy equivalence, 6(1.2.2)
— Z2, 135
homotopy extension property, 71

(4.1.6)
Hopf trace formula, 153
hypergraph, xii
— Kneser, 170
hyperplane, xi

icosahedron, 147
idX (identity map), xi
indG(X), 150(6.2.3)
indZ2(X), 95(5.3.1)
independence number, 59
index
— and p-fold points, 170(6.7.1)
— cohomological, 102
— — ideal-valued, 156
— G-, 150(6.2.3)
— other index functions, 106, 107

(Ex. 7)
— Z2-, 95(5.3.1)
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— — equivalent
characterizations, 107
(Ex. 5)

inequality, Sarkaria’s, 123(5.7.2),
151(6.2.4)

int X (interior), 3
interior, 3
— relative, 8(1.3.4)
invariant set, 146
isomorphism of simplicial

complexes, 14(1.5.2)

join
— connectivity, 81(4.4.3)
— deleted, 112(5.5.1), 158(6.3.1)
— — of a simplex, 113(5.5.3),

163(6.4.4), 173(Ex. 1)
— — of Rd, 114(5.5.4), 159(6.3.2)
— geometric representation, 75

(4.2.4)
— of G-spaces, 147
— of mappings, 77
— of simplicial complexes, 74

(4.2.1)
— of spaces, 75(4.2.3)
— of Z2-spaces, 94(5.2.3)

Kn (complete graph), xii
Km,n (complete bipartite graph),

xii
K3,3, nonplanarity, 115, 126

(5.8.4)
K5, nonplanarity, see Van

Kampen–Flores theorem
k-chain, 42
Kakutani’s theorem, 27
k-connectedness, 78(4.3.1)
— and homology, 80(4.4.1)
k-equal manifold, 161
k-fan, 52
KG(F) (Kneser graph), 58
KGr(F) (Kneser r-hypergraph),

170
KGn,k = KG(

(
[n]
k

)
), 58

Knaster’s conjecture, 28

Kneser hypergraph, 170
Kneser’s conjecture, 57
— for hypergraphs, 172, 173

(Ex. 2)
k-partite hypergraph, xii
k-set problem, 174
k-uniform hypergraph, xii
Kuratowski’s theorem, 88
Kř́ıž’s theorem, 173

L(G), 130(5.9.5)
Lefschetz number, 152
lemma
— Gale’s, 64(3.5.1)
— Tucker’s, 35(2.3.1), 36(2.3.2)
— — Zp-analog, 152
level (of a ring), 101
linkless embedding, 26
Lovász–Kneser theorem, 59(3.3.2)
— proof, 60, 62–66, 127, 141

(Ex. 4)
Lyusternik–Shnirel’man category,

99
Lyusternik–Shnirel’man theorem,

23(2.1.1)
— for Zp-action, 161(Ex. 4)
— generalized, 29(Ex. 6)

manifold
— k-equal, 161
— Stiefel, 101, 106, 137
mapping
— antipodal, 23(2.1.1)
— cellular, 84
— characteristic, 84
— continuous, 2
— equivariant, 93, 146(6.1.1)
— even, 139
— G-, 146(6.1.1)
— monotone, 19
— nullhomotopic, 5
— quotient, 69(4.1.1)
— simplicial, 14(1.5.2)
— uniformly continuous, 3
— Z2-, 93(5.2.1)
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mappings, homotopy, 5(1.2.1)
measure, Borel, 47
moment curve, 17(1.6.3), 50, 65
monotone mapping, 19
Mycielski graph, 132

N(G) (neighborhood complex),
130

necklace theorem
— q thieves, 168(6.6.1)
— two thieves, 54(3.2.2)
neighborhood complex, 130
nerve, 81
nerve theorem, 81(4.4.4)
nonpolytopal triangulations of

spheres, 120
nowhere dense, 34(Ex. 1)
nullhomotopic mapping, 5
number
— chromatic, 58
— — of a hypergraph, 61
— fractional chromatic, 59
— Lefschetz, 152

obstruction theory, 51, 156
open set, 1(1.1.1)
operation, bistellar, 119
orbit, 146
order complex, 18(1.7.1)
orthogonal representation, 147

P (K) (face poset), 18
paracompact space, 96
k-partite hypergraph, xii
partition
— cobweb, 53
— into rainbow d-tuples, 53

(3.2.1)
— Tverberg, 162(6.4.1)
— — number of, 165–167
Petersen graph, 58
polyhedral complex, 85
polyhedron, 9(1.3.5)
— of an abstract simplicial

complex, 14

polytope
— convex, xii
— — number of, 120
— — simplicial, 11
— strongly self-dual, 141
problem, k-set, 174
product
— deleted, 110, 158(6.3.1)
— — of a simplex, 111
— — of Rd, 110, 159(6.3.2)
— — of Rd, structure, 160
— of spaces, 73
— scalar, xi
projective plane,

nonembeddability, 126(5.8.5),
127

projective space, Z2-index, 101

Q (rational numbers), xi
quotient space, 69(4.1.1)

R (real numbers), xi
Radon’s theorem, 90(5.1.3)
realization, geometric, 14
— dimension, 16(1.6.1), 91, 111
— linear, 91
— maximum number of

simplices, 92
regular cell complex, 84
relative interior, 8(1.3.4)
representation, orthogonal, 147
retract, 72
— deformation, 5

Sn (unit sphere), xi
Sarkaria’s coloring/embedding

theorem, 125(5.8.2), 171(6.7.3)
Sarkaria’s inequality, 123(5.7.2),

151(6.2.4)
scalar product, xi
Schrijver graph, 66
sd(K) (barycentric subdivision),

19(1.7.2)
set
— closed, 3
— convex, xi
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— invariant, 146
— open, 1(1.1.1)
SGn,k (Schrijver graph), 66
Sierksma’s conjecture, 165
simple-homotopy equivalence, 135
simplex, 8(1.3.3)
simplicial complex (abstract), 13

(1.5.1)
simplicial complex (geometric), 9

(1.3.5)
simplicial G-complex, 149
simplicial mapping, 14(1.5.2)
simplicial Z2-complex, 94
simply connected space, 79
skeleton, 10
— of a CW-complex, 83
skew affine subspaces, 75(4.2.4)
space
— antipodality, see Z2-space
— compact, 3
— configuration, 87, 109
— configuration (ordered), 161
— contractible, 6, 7(Ex. 7)
— EnG, 149
— G-, 146(6.1.1)
— Hausdorff, 2
— paracompact, 96
— projective, Z2-index, 101
— quotient, 69(4.1.1)
— simply connected, 79
— topological, 1(1.1.1)
— Z2-, 93(5.2.1)
sphere
— as a CW-complex, 83
— Bier, 116–121
— free actions on, 148
— triangulation, 11(1.4.1), 117

(5.6.2)
— — nonpolytopal, 120
Stiefel manifold, 101, 106, 137
Stiefel–Whitney class, 102
strongly self-dual polytope, 141
subcomplex, 10(1.3.7)
— contractible, 70(4.1.5)

— of a CW-complex, 84
subdivision, barycentric, 19(1.7.2)
subspace, 2
sum (of spaces), 70(4.1.4)
supp(x) (support), 9
support, 9
susp(X) (= X∗S0), 76
suspension, 76

test map, 87, 109
theorem
— Akiyama–Alon, 53(3.2.1)
— Babson–Kozlov–Lovász, 137
— Borsuk–Ulam, 23(2.1.1)
— — algebraic proofs, 26
— — combinatorial proof, 35–46
— — proof by homotopy

extension, 30–34
— — quantitative metric, 41

(Ex. 1)
— — via cohomology ring, 25
— — via degree, 42, 46, 153
— — via Lefschetz number, 151
— Borsuk–Ulam-type, for the

Grassmannian, 29
— Bourgin–Yang type, 28
— Brouwer fixed point, 25
— center transversal, 51
— centerpoint, 51
— colored Tverberg, 175(6.8.1)
— — with restricted dimensions,

177(Ex. 1)
— Dold’s, 153(6.2.6)
— Dol’nikov’s, 62(3.4.1), 127
— Dyson’s, 28
— Fan’s, 28
— ham sandwich, 47(3.1.1)
— — discrete, 48(3.1.2)
— — for circles, 53(Ex. 3)
— — generalized , 51
— Hobby–Rice, 55(3.2.3)
— Kakutani’s, 27
— Kuratowski’s, 88
— Kř́ıž’s, 173
— Lovász–Kneser, 59(3.3.2)
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— — proof, 60, 62–66, 127, 141
(Ex. 4)

— Lyusternik–Shnirel’man, 23
(2.1.1)

— — for Zp-action, 161(Ex. 4)
— — generalized, 29(Ex. 6)
— necklace, q thieves, 168(6.6.1)
— necklace, two thieves, 54(3.2.2)
— nerve, 81(4.4.4)
— Radon’s, 90(5.1.3)
— Sarkaria’s coloring/embedding,

125(5.8.2), 171(6.7.3)
— topological Radon’s, 89(5.1.2)
— topological Tverberg, 162

(6.4.2)
— — for prime powers, 165
— Tverberg’s, 162(6.4.1)
— — proofs, 164
— — with restricted dimensions,

172(6.7.4)
— Van Kampen–Flores, 89(5.1.1)
— — generalized, 128(Ex. 4)
— Weber’s, 111
theorems, equipartition, 50, 51
theory, obstruction, 51
topological group, 146
topological Radon theorem, 89

(5.1.2)
topological space, 1(1.1.1)
topological Tverberg theorem,

162(6.4.2)
— for prime powers, 165
topologist’s comb, 7(Ex. 7)
triangulation, 10
— of the cube, 11(1.4.2)
— of the sphere, 11(1.4.1), 117

(5.6.2)

— — nonpolytopal, 120
Tucker’s lemma, 35(2.3.1), 36

(2.3.2)
— Zp-analogue, 152
Tverberg partition, 162(6.4.1)
— number of, 165–167
Tverberg’s theorem, 162(6.4.1)
— colored, 175(6.8.1)
— — with restricted dimensions,

177(Ex. 1)
— proofs, 164
— with restricted dimensions,

172(6.7.4)
Tverberg–Vrećica conjecture, 164

k-uniform hypergraph, xii
uniformly continuous mapping, 3
unlinked curves, 26

V (∆) (vertex set), 9(1.3.5)
V (G) (vertex set), xii
Van Kampen–Flores theorem, 89

(5.1.1)
— generalized, 128(Ex. 4)

Weber’s theorem, 111
wedge, 70(4.1.4)

Z (integers), xi
Z2-action, 93(5.2.1)
Z2-coindex, 99, 107(Ex. 8)
Z2-index, 95(5.3.1)
— equivalent characterizations,

107(Ex. 5)
Z2-map, 93(5.2.1)
Z2-space, 93(5.2.1)
Zp-space, 145
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Xambó-Descamps, S.: Block Error-Cor-
recting Codes
Zaanen, A.C.: Continuity, Integration and
Fourier Theory
Zhang, F.: Matrix Theory
Zong, C.: Sphere Packings
Zong, C.: Strange Phenomena in Convex
and Discrete Geometry
Zorich, V. A.: Mathematical Analysis I
Zorich, V. A.: Mathematical Analysis II


	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_2.pdf
	fulltext_3.pdf
	fulltext_4.pdf
	fulltext_5.pdf
	fulltext_6.pdf
	back-matter.pdf

