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Preface  

This book is intended to give an introduction to the theory of forward- 
backward stochastic differential equations (FBSDEs, for short) which has 
received strong attention in recent years because of its interesting structure 
and its usefulness in various applied fields. 

The motivation for studying FBSDEs comes originally from stochastic 
optimal control theory, that is, the adjoint equation in the Pontryagin-type 
maximum principle. The earliest version of such an FBSDE was introduced 
by Bismut [1] in 1973, with a decoupled form, namely, a system of a usual 
(forward) stochastic differential equation and a (linear) backward stochastic 
differential equation (BSDE, for short). In 1983, Bensoussan [1] proved the 
well-posedness of general linear BSDEs by using martingale representation 
theorem. The first well-posedness result for nonlinear BSDEs was proved 
in 1990 by Pardoux-Peng [1], while studying the general Pontryagin-type 
maximum principle for stochastic optimal controls. A little later, Peng [4] 
discovered that the adapted solution of a BSDE could be used as a prob- 
abilistic interpretation of the solutions to some semilinear or quasilinear 
parabolic partial differential equations (PDE, for short), in the spirit of the 
well-known Feynman-Kac formula. After this, extensive study of BSDEs 
was initiated, and potential for its application was found in applied and the- 
oretical areas such as stochastic control, mathematical finance, differential 
geometry, to mention a few. 

The study of (strongly) coupled FBSDEs started in early 90s. In his 
Ph.D thesis, Antonelli [1] obtained the first result on the solvability of an 
FBSDE over a "small" time duration. He also constructed a counterexam- 
ple showing that for coupled FBSDEs, large time duration might lead to 
non-solvability. In 1993, the present authors started a systematic investiga- 
tion on the well-posedness of FBSDEs over arbitrary time durations, which 
has developed into the main body of this book. Today, several methods have 
been established for solving a (coupled) FBSDE. Among them two are con- 
sidered effective: the Four Step Scheme by Ma-Protter-Yong [1] and the 
Method of Continuation by Hu-Peng [2], and Yong [1]. The former provides 
the explicit relations among the forward and backward components of the 
adapted solution via a quasilinear partial differential equation, but requires 
the non-degeneracy of the forward diffusion and the non-randomness of the 
coefficients; while the latter relaxed these conditions, but requires essen- 
tially the "monotonicity" condition on the coefficients, which is restrictive 
in a different way. 

The theory of FBSDEs have given rise to some other problems that are 
interesting in their own rights. For example, in order to extend the Four 
Step Scheme to general random coefficient case, it is not hard to see that 
one has to replace the quasilinear parabolic PDE there by a quasilinear 
backward stochastic partial differential equation (BSPDE for short), with a 
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strong degeneracy in the sense of stochastic partial differential equations. 
Such BSPDEs can be used to generalize the Feynman-Kac formula and even 
the Black-Scholes option pricing formula to the case when the coefficients of 
the diffusion are allowed to be random. Other interesting subjects generated 
by FBSDEs but with independent flavors include FBSDEs with reflecting 
boundary conditions as well as the numerical methods for FBSDEs. It is 
worth pointing out that  the FBSDEs have also been successfully applied to 
model and to resolve some interesting problems in mathematical finance, 
such as problems involving term structure of interest rates (consol rate 
problem) and hedging contingent claims for large investors, etc. 

The book is organized as follows. As an introduction, we present several 
interesting examples in Chapter 1. After giving the definition of solvabil- 
ity, we study some special FBSDEs that  are either non-solvable or easily 
solvable (e.g., those on small durations). Some comparison results for both 
BSDE and FBSDE are established at the end of this chapter. In Chapter 
2 we content ourselves with the linear FBSDEs. The special structure of 
the linear equations enables us to treat  the problem in a special way, and 
the solvability is studied thoroughly. The study of general FBSDEs over 
arbi t rary duration starts from Chapter 3. We present virtually the first 
result regarding the solvability of FBSDE in this generality, by relating the 
solvability of an FBSDE to the solvability of an optimal stochastic control 
problem. The notion of approximate solvability is also introduced and de- 
veloped. The idea of this chapter is carried on to the next one, in which 
the Four Step Scheme is established. Two other different methods leading 
to the existence and uniqueness of the adapted solution of general FBSDEs 
are presented in Chapters 6 and 7, while in the latter even reflections are 
allowed for both forward and backward equations. Chapter 5 deals with a 
class of linear backward SPDEs, which are closely related to the FBSDEs 
with random coefficients; Chapter 8 collects some applications of FBSDEs, 
mainly in mathematical  finance, which in a sense is the inspiration for much 
of our theoretical research. Those readers needing stronger motivation to 
dig deeply into the subject might actually want to go to this chapter first 
and then decide which chapter would be the immediate goal to attack. 
Finally, Chapter 9 provides a numerical method for FBSDEs. 

In this book all "headings" (theorem, lemma, definition, corollary, ex- 
ample, etc.) will follow a single sequence of numbers within one chapter 
(e.g., Theorem 2.1 means the first "heading" in Section 2, possibly followed 
immediately by Definition 2.2, etc.). When a heading is cited in a different 
chapter, the  chapter number will be indicated. Likewise, the numbering 
for the equations in the book is of the form, say, (5.4), where 5 is the sec- 
tion number and 4 is the equation number. When an equation in different 
chapter is cited, the chapter number will precede the section number. 

We would like to express our deepest gratitude to many people who 
have inspired us throughout the past few years during which the main 
body of this book was developed. Special thanks are due to R. Buck- 
dahn, J. Cvitanic, J. Douglas Jr., D. Duffle, P. Protter ,  with whom we 



Preface ix 

enjoyed wonderful collaboration on this subject; to N. E1 Karoui, J. Jacod, 
I. Karatzas, N. V. Krylov, S. M. Lenhart, E. Pardoux, S. Shreve, M. Soner, 
from whom we have received valuable advice and constant support. We 
particularly appreciate a special group of researchers with whom we were 
students, classmates and colleagues in Fudan University, Shanghai, China, 
among them: S. Chen, Y. Hu, X. Li, S. Peng, S. Tang, X. Y. Zhou. We also 
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(University of Minnesota) and Leonard D. Berkovitz (Purdue University) 
for their constant encouragement. 
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Ch a p te r  1 

Introduction 

w Some Examples 

To introduce the ]orward-backward stochastic differential equations (FBS- 
DEs, for short), let us begin with some examples. Unless otherwise speci- 
fled, throughout  the book, we let (~, •, {Ft)t_>0, P)  be a complete filtered 
probability space on which is defined a d-dimensional standard Brownian 
motion W(t) ,  such that  {5~t }t_>0 is the natural filtration of W(t) ,  augmented 
by all the P-null sets. In other words, we consider only the Brownian ill- 
t rat ion throughout this book. 

w A first glance 

One of the main differences between a stochastic differential equation (SDE, 
for short) and a (deterministic) ordinary differential equation (ODE, for 
short) is that  one cannot reverse the "time". The following is a simple 
but  typical example. Suppose that  d -- 1 (i.e., the Brownian motion is 
one-dimensional), and consider the following (trivial) differential equation: 

(1.1) dY(t)  = O, t C [0, T], 

where T > 0 is a given terminal time. For any ~ E R we can require 
either Y(0) = ~ or Y ( T )  = ~ so that  (1.1) has a unique solution Y(t )  - ~. 
However, if we consider (1.1) as a stochastic differential equation (with 
null drift and diffusion coefficients) in ItS's sense, things will become a 
little more complicated. First note that  a solution of an It5 SDE has to 
be {gct}t_>0-adapted. Thus specifying Y(0) and Y ( T )  will have essential 
difference. Consider again (1.1), but as a terminal value problem: 

dY(t)  = 0, t e [0, T], 
(1.2) Y ( T )  = ~, 

where ~ E L~%(gt; IR), the set of all S-T-measurable square integrable ran- 
dora variables. Since the only solution to (1.2) is Y(t )  - ~, Vt E [0, T], 
which is not necessarily {~-t)t>_0-adapted unless ~ is a constant, the equa- 
tion (1.2), viewed as an It5 SDE, does not have a solution in general! 

Intuitively, there are two ways to get around with this difficulty: (1) 
modify (or even remove) the adaptedness of the solution in its definition; 
(2) reformulate the terminal value problem of an SDE so that  it may al- 
low a solution which is {~-t}t_>0-adapted. We note here that  method (1) 
requires techniques such as new definitions of a backward It5 integral, or 
more generally, the so-called anticipating stochastic calculus. For more on 
the discussion in that  direction, one is referred to the books of, say, Kunita  
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[1] and Nualart [1]. In this book, however, we will content ourselves with 
method (2), because of its usefulness in various applications as we shall see 
in the following sections. 

To reformulate (1.2), we first note that  a reasonable way of modifying 
the solution Y( t )  = ~ so that  it is {Srt)t_>o-adapted and satisfies Y ( T )  = 
is to define 

(1.3) Y( t )  ~= E{~[Svt), t G [0, T]. 

Let us now try to derive, if possible, an (ITS) SDE that  the process Y(.) 
might enjoy. An important ingredient in this derivation is the Martingale 
Representation Theorem (cf. e.g., Karatzas-Shreve [1]), which tells us that  
i f  the filtration {-~t}t_>0 is Brownian, then every square integrable martin- 
gale M with zero expectation can be written as a stochastic integral with 
a unique integrand that is {Jzt}t>_o-progressively measurable and square 
integrable. Since the process Y(.) defined by (1.3) is clearly a square inte- 
grable {Srt)t>o-martingale, an application of the Martingale Representation 
Theorem leads to the following representation: 

f0 t (1.4) Y( t )  = Y(O) + Z(s )dW(s ) ,  Vte  [0, T], a.s., 

where Z(-) E L~(0, T; ~) ,  the set of all {SL-t}t_>0-adapted square integrable 
processes. Writing (1.4) in a differential form and combining it with (1.3) 
(note that  ~ is UT-measurable), we have 

(1.5) 
dY(t) =/(t)dW(t), 
Y ( T )  = . 

t e [0, T], 

In other words, if we reformulate (1.2) as (1.5); and more importantly, 
instead of looking for a single {~-t}t_>0-adapted process Y(.) as a solution 
to the SDE, we look for a pair (Y(.), Z(-)) (although it looks a little strange 
at this moment), then finding a solution which is {Svt)t>0-adapted becomes 
possible! It turns out, as we shall develop in the rest of the book, that  
(1.5) is the appropriate reformulation of a terminal value problem (1.2) 
that  possesses an adapted solution (Y ,Z) .  Adding the extra component 
Z(-) to the solution is the key factor that  makes finding an adapted solution 
possible. 

As was traditionally done in the SDE literature, (1.5) can be written 
in an integral form, which can be deduced as follows. Note from (1.4) that  

(1.6) fo r fo r Y(O) = Y ( T )  - Z ( s )dW(s )  = ~ - Z ( s )dW(s ) .  

Plugging (1.6) into (1.4) we obtain 

fo' (1.7) Y( t )  = Y(O) + Z( s )dW(s )  = ~ -  Z(s )dW(s ) ,  Vt E [0, T]. 
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In the sequel, we shall not distinguish (1.5) and (1.7); each of them is called 
a backward stochastic differential equation (BSDE, for short). We would like 
to emphasize that  the stochastic integral in (1.7) is the usual (forward) It6 
integral. 

Finally, if we apply It6's formula to IY(t)l 2 (here I" I denotes the usual 
Euclidean norm, see w then 

(1.8) EISI 2 --- EIY( t ) I  2 + EIZ(s)12ds, V t e  [0,T]. 

Thus ~ = 0 implies that  Y _ 0 and Z ---- 0. Note that  equation (1.7) is 
linear, relation (1.8) leads to the uniqueness of the {~t}t>0-adapted solution 
(Y(-), Z(.)) to (1.7). Consequently, if ~ is a non-random constant, then by 
uniqueness we see that  Y(t)  =_ ~ and Z(t) =_ 0 is the only solution of 
(1.7), as we expect. In the following subsections we give some examples 
in stochastic control theory and mathematical finance that  have motivated 
the study of the backward and forward-backward SDEs. 

w A stochastic optimal con t ro l  p r o b l e m  

Consider the following controlled stochastic differential equation: 

dX(t)  = [aX(t) + bu(t)]dt + dW(t) ,  t e [0, T], 
(1.9) ( x ( 0 )  = x, 

where X(.) is called the state process, u(.) is called the control process. 
Both of them are required to be {:Tt}t_>0-adapted and square integrable. 
For simplicity, we assume X, u and W are all one-dimensional, and a and 
b are constants. We introduce the so-called cost functional as follows: 

// 
An optimal control problem is then to minimize the cost functional (1.10) 
subject to the state equation (1.9). In the present case, it can be shown 
that  there exists a unique solution to this optimal control problem (in fact, 
the mapping u ~ J(u) is convex and coercive). Our goal is to determine 
this optimal control. 

Suppose u(-) is an optimal control and X(.) is the corresponding (opti- 
mal) state process. Then, for any admissible control v(.) (i.e., an {~t}t>o- 
adapted square integrable process), we have 

J(u 4- ~v) - J(u) 
0<_ 

c (1.11) 
+ 0, 

where ~(.) satisfies the following variational system: 

f d~(t) = [a~(t) 4- bv(t)]dt, t �9 [O,T], 
(1.12) 

L ,~(o) = o. 
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In order to get more information from (1.11), we introduce the following 
adjoint equation: 

dY(t)  = - [aY( t )  + X(t)]dt  + Z(t)dW(t) ,  t e [O,T], 
(1.13) Y(T)  = X(T) .  

and we require that  the processes Y(-) and Z(.) both be {Srt}t>o-adapted. 
It is clear that  (1.13) is a BSDE with a more general form than the one we 
saw in w since Y(.) is specified at t = T, and X ( T )  is ~rT-measurable in 
general. 

Now let us assume that (1.13) admits an adapted solution (Y(.), Z(.)). 
Then, applying ItS's formula to Y(t)~(t), one has 

E IX (T)~(T)] = E [Y(T)~(T)] 

/o = E { [ - aY(t) - X(t)] ~(t) + Y(t)[a~(t) + bv(t)] }dt 
(1.14) 

= E [ -  X(t)~(t) + bY(t)v(t)]dt. 

Hence, (1.11) becomes 

(1.15) 0 <_ E [bY(t) + u(t)]v(t)dt. 

Since v(.) is arbitrary, we obtain that 

(1.16) u(t) = -bY( t ) ,  a.e.t C [0,T], a.s. 

We note that  since Y(.) is required to be {~ct}t_>o-adapted, the process 
u(.) is an admissible control (this is why we need the adapted solution for 
(1.13)!). Substituting (1.16) into the state equation (1.9), we finally obtain 
the following optimality system: 

dX(t)  = laX(t) - b2Y(t)]dt + dW(t),  
t e [0, T], 

(1.17) dY(t)  = - [aY ( t )  + X(t)]dt  + Z(t)dW(t) ,  

X(O) = x, Y (T)  = X(T) .  

We see that  the equation for X(.) is forward (since it is given the initial 
datum) and the equation for Y(-) is backward (since it is given the final 
datum). Thus, (1.17) is a coupled forward-backward stochastic differential 
equation (FBSDE, for short). It is clear that  if we can prove that (1.17) 
admits an adapted solution (X(-), Y(.), Z(.)), then (1.16) gives an optimal 
control, solving the original stochastic optimal control problem. Further, if 
the adapted solution (X(.), Y(.), Z(.)) of (1.17) is unique, so is the optimal 
control u(-). 

w Stochastic differential utility 

Two of the most remarkable applications of the theory of BSDEs (a spe- 
cial case of FBSDEs) in finance theory have been the stochastic differential 
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utility and the contingent claim valuation. In this and the following sub- 
sections, we describe these problems from the perspective of FBSDEs. 

Stochastic differential utility is an extension of the notion of recursive 
utility to a continuous-time, stochastic setting. In the simplest discrete, de- 
terministic model (see, e.g., Koopmans [1]), the problem of recursive utility 
is to find certain utility functions that  satisfy a recursive relation. For ex- 
ample, assume that  the consumption plans are denoted by c = {Co, c l , "  "}, 
where ct represents the consumption in period t, and the current utility is 
denoted by Vt, then we say that  V = {Vt : t = 0, 1,--.} defines a recursive 
utility if the sequence V0, V1,.-. satisfies the recursive relation: 

(1.18) Vt = W(ct,  Vt+l), t = 0, 1 , ' " ,  

where the function W is called the aggregator. We should note that  in 
(1.18), the recursive relation is backwards. The problem can also be stated 
as finding a utility function U defined on the space of consumption plans 
such that ,  for any t = 0, 1,- . . ,  it holds that  Vt = U({ct, Ct+l , ' '  "}), where V 
satisfies (1.18). In particular, the utility function U can be simply defined 
by U({c0, c l , . . . } )  = V0, once (1.18) is solved. 

In the continuous-time model one often describes the consumption plan 
by its rate c = {c(t) : t _> 0}, where c(t) >_ O, Vt >_ 0 (hence the accumulate 
consumption up to time t is f t  c(s)ds). The current utility is denoted by 

Y(t )  ~= U({c(s) : s >__ t}), and the recursive relation (1.18) is replaced by a 
differential equation: 

(1.19) dY(t)  dt - - f ( c ( t ) , Y ( t ) ) ,  

where the function f is the aggregator. We note that  the negative sign in 
front of f reflects the time-reverse feature seen in (1.18). Again, once a 
solution of (1.19) can be determined, then U(c) = Y(0) defines a unitiliy 
function. 

An interesting variation of (1.18) and (1.19) is their finite horizon ver- 
sion, tha t  is, there is a terminal time T > 0, such that  the problem is re- 
stricted to 0 < t < T. Suppose that  the utility of the terminal consumption 
is given by u(c(T)) for some prescribed utility function u, then the (back- 
ward) difference equation (1.18) with terminal condition VT = u(c(T)) can 
be solved uniquely. Likewise, we may pose (1.19), the continuous counter- 
part  of (1.18), as a terminal value problem with given Y ( T )  = u(c(T)), or 
equivalently, 

/ ,  T 

(1.20) Z(t )  = u(c(T)) + / t  f(c(s) ,  Y(s))ds,  t C [0,T]. 

In a stochastic model (model with uncertainty) one assumes that  both 
consumption c and utility Y are stochastic processes, defined on some (fil- 
tered) probability space (~, ~', {gvt}t_>o, P).  A standard setting is that  at 
any time t _> 0 the consumption rate c(t) and the current utility Y(t )  can 
only be determined by the information up to time t. Mathematically, this 
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axiomatic assumption amounts to saying that  the processes c and Y are 
both adapted to the filtration {~'t}t>0- Let us now consider (1.20) again, 
but  bearing in mind that  c and Y are {~-t}t>0-adapted processes. Taking 
conditional expectation on both sides of (1.20), we obtain 

for all t E [0, T]. In the special case when the filtration is generated by a 
given Brownian motion W, just as we have assumed in this book, we can 
apply the Martingale Representation Theorem as before to derive that 

(1.22) Y ( t )  = u (c (T) )  + f ( c ( s ) ,  Y ( s ) ) d s  - Z ( s ) d W s ,  t e [0, T]. 

Tha t  is, (Y,Z) satisfies the BSDE (1.22). A more general BSDE that  
models the recursive utility is one in which the aggregator f depends also 
on Z. The following situation more or less justifies this point. Let U be 
another utility function such that  U = W o U for some C 2 function ~ with 
~'(x) > 0, Vx (in this case we say that U and U are ordinally equivalent). 
Let us define ft = ~ o u, Y ( t )  = ~ ( Y ( t )  ), Z ( t )  = ~ ' ( Y ( t ) ) Z ( t ) ,  and 

~gH (Cp--1 ( y ) )  
/ ( c , y , z )  = ~'(~9--1(y)) f(c ,~-l(y))  ~ p t ( ~ - - l ( y ) )  Z. 

Then an application of It6's formula shows that  (Y, Z) satisfies the BSDE 
(1.22) with a new terminal condition g(c (T) )  and a new aggregator / ,  which 
now depends on z. 

The BSDE (1.22) can be turned into an FBSDE, if the consumption 
plan depends on other random sources which can be described by some 
other (stochastic) differential equations. The following scenario, studied by 
Duffie-Ceoffard-Skiadas [1], should be illustrative. Consider m agents shar- 
ing a total endowment in an economy. Assume that  the total endowment, 
denoted by e, is a continuous, non-negative, {~t}t>.0-adapted process; and 
that  each agent has his own consumption process c * and utility process Y~ 
satisfying 

(1.23) Y i ( t )  = u i (c i (T) )  + f f ( c i ( s ) , Y i ( s ) ) d s  + Z i ( s ) d W ( s ) ,  

for t E [0, T]. For a given weight vector a E R ~ ,  we say that  an allocation 
ca = (c~ , . - . ,  c m) is a-eJ]icient if 

m m m 
a i (1.24) E ,Ui(c~) : s u p  { E a ' U ' ( c ' ) ] E c ' ( t )  <_ e(t),  t E [0, T],a.s.}, 

i=1 i=1 i=1 

where Ui(c ~) = Yi(O). 
It is conceivable that  the a-efficient allocation ca is no longer an in- 

dependent process. In fact, using techniques of non-linear programming 
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it can be shown that ,  under certain technical conditions on the aggrega- 
tors f f ' s  and the terminal utility functions ui's, the process ca takes the 
form: ca(t) = K(A(t ) ,e ( t ) ,Y( t ) ) ,  for some ~m-valued function K,  and 
A = (A1, . . .  , Am), derived from a first-order necessary condition of the op- 
timization problem (1.24), satisfies the differential equation: 

(1.25) d)~i(t) = Ai(t)bi(t, A(t) ,Y(t))dt; t e [0, T], 

with bi( t ,A,y,w) = ~ Thus (1.23) and (1.25)form y" c=(K~(X,e(t,w),y))" 
an FBSDE. 

w Option pricing and contingent claim valuation 

In this subsection we discuss option pricing problems in finance and their 
relationship with FBSDEs. Consider a security market that  contains, say, 
one bond and one stock. Suppose that  their prices are subject to the 
following system of stochastic differential equations: 

dPo (t) = r(t)Po (t)dt, (bond); 

(1.26) dP(t) = P(t)b(t)dt + P( t )a( t )dW(t) ,  (stock), 

where r(.) is the interest rate of the bond, b(-) and a(.) are the appreciation 
rate and volatility of the stock, respectively. 

An option is by definition a contract which gives its holder the right to 
sell or buy the stock. The contract should contain the following elements: 

1) a specified price q (called the exercise price, or striking price); 
2) a terminal time T (called the maturity date or expiration date); 
3) an exercise time. 
In this book we are particularly interested European options, which 

specify the exercise time to be exactly equal to T, the maturity date. Let 
us take the European call option (which gives its holder the right to buy) 
as an example. The decision of the holder will depend, conceivably, on 
P (T) ,  the stock price at time T. For instance, if P(T)  < q, then the 
holder would simply discard the option, and buy the stock directly from 
the market; whereas if P(T)  > q, then the holder should opt to exercise the 
option to make profit. Therefore the total payoff of the writer (or seller) of 
the option at time t = T will be (P(T)  - q)+, an 9rT-measurable random 
variable. The (option pricing) problem to the seller (and buyer alike) is 
then how to determine a premium for this contract at present time t = 0. 
In general, we call such a contract an option if the payoff at time t = T can 
be written explicitly as a function of P(T)  (e.g., (P(T)  - q)+). In all the 
other cases where the payoff at time t = T is just an ~T-mea,surable random 
variable, such a contract is called a contingent claim, and the corresponding 
pricing problem is then called contingent claim valuation problem. 

Now suppose that  the agent sells the option at price y and then invests 
it in the market, and we denote his total wealth at each time t by Y(t) .  
Obviously, Y(0) = y. Assume that  at each time t the agent invests a 
portion of his wealth, say ~r(t), called portfolio, into the stock, and puts 
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the rest (Y(t)  - ~r(t)) into the bond. Also we assume that  the agent can 
choose to consume so that  the cumulative consumption up to time t is 
C(t), an {J:t}t>_o-adapted, nondecreasing process. It can be shown that  the 
dynamics of Y(.) and the port/olio/consumption process pair (~(.), C(-)) 
should follow an SDE as well: 

dY(t )  = {r( t )Y( t )  + Z(t)O(t)}dt + Z( t )dW(t )  - dC(t), 
(1.27) Y(0)  = y, 

where Z(t) = 7c(t)a(t), and 0 ( t ) ~  r - r(t)] (called risk premium 
process). For any contingent claim H E L~%(~,IR), the purpose of the 
agent is to choose such a pair (7c, C) as to come up with enough money 
to "hedge" the payoff H at time t = T, that  is, Y ( T )  >_ H. Such a 
consumption/investment pair, if exist, is called a hedging strategy against 
H. The fair price of the contingent claim is the smallest initial endowment 
for which the hedging strategy exists. In other words, it is defined by 

(1.28) y* = inf{y = Y(0); 3(7r, C), such that  Y~'C(T) >_ g } .  

Now suppose H = g(P(T)) ,  and consider an agent who is so prudent that  
he does not consume at all (i.e., C - 0), and is able to choose 7r so that  
Y ( T )  = H = g(P(T)) .  Namely, he chooses Z (whence ~r) by solving the 
following combination of (1.26) and (1.27): 

dP(t) = P(t)b(t)dt + P(t)cr(t)dW(t), 

(1.29) dY(t )  = {r( t )Y( t )  + Z(t)O(t)}dt + Z( t )dW(t) ,  

P(O) = p, Y ( T )  = g(P(T)) ,  

which is again an FBSDE (an decouped FBSDE, to be more precise). An 
interesting result is that  if (1.29) has an adapted solution (]I, Z), then the 
pair (2r, 0), where 7c = Za -1, is the optimal hedging strategy and y = Y(0) 
is the fair price! A more complicated case in which we allow the interaction 
between the agent's wealth/strategy and the stock price will be studied 
in details in Chapter 8. In that  case (1.29) will become a truly coupled 
FBSDE. 

w Def ini t ions  and N o t a t i o n s  

In this sections we list all the notations that will be frequently used through- 
out the book, and give some definitions related to FBSDEs. 

Let Rn be the n-dimensional Euclidean space with the usual Euclidean 
norm I" [ and the usual Euclidean inner product ( . , . ) .  Let ~mxd be the 
Hilbert space consisting of all ( m x  d)-matrices with the inner product 

(2.1) ( A , B ) ~ = t r { A B T } ,  VA, B E lR "~xd. 

Thus, the norm I A] of A induced by inner product (2.1) is given by IAI = 
x/ t r  { A A T } .  Another natural norm for A C ]R "~xd could be taken as 
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I]All ~ ~/maxa(AA T) if we regard A as a linear operator from IR m to ~t d, 
where a(AA T) is the set of all eigenvalues of AA T. It is clear that  the 
norms I' I and II" I] are equivalent since Rm• is a finite dimensional space. 
In fact, the following relations hold: 

(2.2) ]]A][ _< v/tr  {AA T} = [A[ < x/ram A d[]A[I, VA E R ~xa,  

where m A d = rain{m, d). We will see that  in our later discussions, the 
norm ]. ] in R mxa induced by (2.1) is more convenient. 

Next, we let T > 0 be fixed and (~, ;T, {Yt}t_>o, P) be as assumed at 
the beginning of w We denote 

�9 for any sub-a-field G of f ,  L~(f~; IR m) to be the set of all G-measurable 
Rm-valued square integrable random variables; 

�9 L~:(f~; L2(0, T; Rn)) to be the set of all {Y't}t>o-progressively measur- 

able processes X(.) valued in IR n such that  fo T EIX(t)12dt < c~. The 
notation L~:(0,T;]R '~) is often used for simplicity, when there is no 
danger of confusion. 

�9 L2(f~;C([0, T] ;~n))  to be the set of all {~-t)t_>o-progressively mea- 
surable continuous processes X(-) taking values in Rn, such that  
Esupte[O,T] ] X ( t ) l  2 < (x). 

Also, for any Euclidean spaces M and N, we let 

�9 L~(O,T;WI'~176 be the set of all functions f : [0, T] x M x 
fl --+ N, such that  for any fixed 0 E M, (t,w) ~+ f(t,O;w) is {~t}t_>0- 
progressively measurable with f( t ,  O; w) E L~(O, T; N), and there exists 
a constant L > O, such that  

If(t ,0;w) - f ( t ,0 ;~)]  <_ LIO- 0[, VO,-O E M, a.e.t  E [0,T], a.s.; 

�9 L~r(~;Wl'~176 be the set of all functions g : ] R  n • ~ ~ ]R m, 
such that  w w~, g(x; w) is 5~T-measurable for all x E R'~ and x ~+ g(x; w) 
is uniformly Lipschitz in x E Rn and g(0; w) E L~(~;  IR'~). 

Further, we define 

(2.3) fl4[O,T]~ L~(~;C([O,T];]Rn)) x L~(gl;C([O,T];IRm)) 
x L~(O, T; IRe). 

The norm of this space is defined by 

II(X(.),Y(.),Z(.))H = ~E sup IX(t)[ 2 + E  sup IY(t)l 2 
" t~[0,T] te[0,T] 

(2.4) 
T 2 1/2 

for all (X(.) ,Y( .) ,Z( .))  E M[0, T]. It is clear that  M[0,T] is a Banach 
space under norm (2.4). 
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We are now ready to give the formal description of an FBSDE. Let us 
consider an FBSDE in its most general form: 

dX  (t) = b(t, X (t), Y (t), Z(t) )dt + a(t, Z(t ) ,  Y(t),  Z(t) )dW (t), 

(2.5) dY(t)  = h(t, X(t), Y(t), Z(t))dt + ~(t, X(t),  Y(t),  Z(t))dW(t) ,  

X(O) = x, Y (T )  = g(X(T)) .  

Here, the initial value x of X(.) is in lRn; and b, a, h, 3 and g are some suit- 
able functions which satisfy the following Standing Assumptions: denoting 
M = ~ n x l R  m x ~ , o n e h a s  

b �9 L2~(O,T;WI '~176  cr �9 L~(O,T;WI'~215 

L 2 IO T" wl'~~ ]R m• (2.6) h �9 L~(O,T;WI '~176  ~ �9 y~ , , ~ , sJ, 

g �9 n~-r (~; wl'~176 

Def in i t i on  2.1. A process (X(.), Y(.), Z(-)) E ~4[0, T] is called an adapted 
solution of (2.5) if the following holds for any t C [0, T], almost surely: 

X(t )  = x + b(s, X(s), Y(s), Z(s))ds 

+ a(s, X(s) ,  Y(s),  Z ( s ) )dn ( s ) ,  

(2.7) r T  

Z(t)  = g(X(T))  - / §  h(s, X(s), Y(s), Z(s))ds 

- X(s ) ,  V(s) ,  Z(s ) )dW(s) .  

Furthermore, we say that  FBSDE (2.5) is solvable if it has an adapted 
solution. An FBSDE is said to be nonsolvable if it is not solvable. 

In what follows we shall try to answer the the following natural ques- 
tion: for given b, ~, h ,~  and g satisfying (2.6) and for given x C ~ n  is 
(2.5) always solvable? In fact, what makes this type of SDE interesting is 
that  the answer to this question is not affirmative, although the standing 
assumption (2.6) is already quite strong from the standard SDE point of 
view. 

w Some  Nonso lvable  F B S D E s  

In this section we shall first present some nonsolvability results, and then 
give some necessary conditions for the solvability. 

It is well-known that  two-point boundary value problems for ordinary 
differential equations do not necessarily admit solutions. On the other 
hand, an FBSDE can be viewed as a two-point boundary value problem for 
stochastic differential equations, with extra requirement that  its solution is 
adapted solely to the forward filtration. Therefore, we do not expect the 
general existence and uniqueness result, even under the conditions that  are 
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usually considered strong in the SDE literature; for instance, the uniform 
Lipschitz conditions. 

The following result is closely related to the solvability of two-point 
boundary value problem for ordinary differential equations. 

P r o p o s i t i o n  3.1. Suppose that the following two-point boundary value 
problem for a system of linear ordinary differential equations does not admit 
any solution: 

(3.1) \ v ( t )  ] v ( t )  ' t �9 [0, T], 
X(O) = x, Y(T) = GX(T), 

where A(.) : [0, T] --+ R (n+'~)• is a deterministic integrable function 
and G �9 R m• Then, for any properly defined a(t,x,y,z) and 3(t,x,y,z), 
the following FBSDE: 

{ d[X(t) '~ = A(t) (X(t)'~ la(t ,X(t),Y(t),Z(t)) '~dW(t),  
(3.2) ~ Y(t) ] Y(t) ] dt + \ ~(t,X(t),Y(t),Z(t)) ] 

X(O) = x, Y(T) = GX(T), 

does not admit any adapted solution. 

Here, by properly defined a, we mean that  for any (X, Y, Z) �9 .h4[0, T] 
the process a(t, X(t),  Y(t), Z(t)) is in L~(0, T; ~n• The similar holds 
for 3. 

Proof. Suppose (3.2) admits an adapted solution (X, Y, Z) �9 f14[0, T]. 
Then, (EX(.), EY(.)) is a solution of (3.1), a contradiction. This proves 
the assertion. [] 

There are many examples of systems like (3.1) which do not admit 
solutions. Here is a very simple one: (n = m = 1) 

x = Y ,  

(3.3) Y = - X ,  

X(O) = x, Y(T) = -X(T) .  

We can easily show that  for T = kTr + ~ (k, nonnegative integer), the 
above two-point boundary value problem does not admit a solution for any 
x �9 ]R \ {0} and it admits infinitely many solutions for x = 0. 

Using (3.3) and time scaling, we can construct a nonsolvable two-point 
boundary value problem for a system of linear ordinary differential equa- 
tions of (3.1) type over any given finite time duration [0, T] with the un- 
knowns X,  Y taking values in IRn and ]R m, respectively. Then, by Proposi- 
tion 3.1, we see that  for any duration T > 0 and any dimensions n, m, ~ and 
d for the processes X, Y, Z and the Brownian motion W(t), nonsolvable 
FBSDEs exist. 
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The case that  we have discussed in the above is a little special since 
the drift of the FBSDE is linear. Let us now look at some more general 
case. The following result gives a necessary condition for the solvability of 
FBSDE (2.1). 

P r o p o s i t i o n  3.2. Assume that b, a, h and ~ satisfy (2.6). Assume further 
that a and ~ are continuous in (t, x, y) uniformly in x, for each w E ~; 
and that g C C 2 M C~(R~; R m) and is deterministic. Suppose for some 
x E IR n, there exists a T > O, such that (2.5) admits an adapted solution 
(X, ]I, Z) e M [0, T] with 

t r { g ~ ( X ) ( a a T ) (  . , X , Y , Z ) }  �9 L~:(0, T;]R), 1 < i < m. (3.4) 

Then, 

inf 13(T, X ( T ) ,  g (X(T) ) ,  z) 
(3.5) ~R~ 

- g ~ ( X ( T ) ) a ( T , X ( T ) , g ( X ( T ) ) , z ) ]  = 0, a.s. 

Fhrthermore, suppose there exists a To > 0, such that for all T C (0, To], 
(2.5) admits an adapted solution (X, Y, Z) (depending on T > O) satisfying 
the following: 

T f 

(3.6) Jo E{Ib(s'X(s)'Y(s)'Z(s))12 + ]~(s,X(s),Y(s),Z(s))f}ds < C, 

for some constants C > 0 and ~ > 2, independent o f T  E (0, To]. Then, 

(3.7) E inf I3 (O ,x ,g (x ) , z ) -g~(x )a (O ,x ,g (x ) , z ) [  =0, a.s. 
z C R  t 

Proof. Let ( X , Y , Z )  E A4[0,T] be an adapted solution of (2.5). We 
denote 

{ ~ ( s )  = ( ~ l ( 8 ) , . . - , ~ m ( s ) ) T ,  

~ h i ( g ~ , b ) _ ~ t r  i T = - ( g ~ a a  ), l < i < m .  

Here, we have suppressed X, Y, Z and we will do so below for the notational 
simplicity. Clearly, h E L~:(0, T;IRm). Next, for any i -- 1, 2 , . . . , m ,  by 
It6's formula 

0 = E I Y i ( T )  - gi(X(T))12 

( -~ EIY i ( t )  - gi(X(t)) l  2 + E I 3i - g~al2ds 

( (3.8) + E  2[Yi(~) g~(X(s))][h ~ ( g ~ , b ) - l t r  ~ ~ - - ( g ~ ) ] d 8  

= ElY i ( t )  - gi(X(t))I  2 + E Vd ~ - g~al2ds 

( + E 2 [ V i ( 8 )  - g ~ ( X ( ~ ) ) ] ~ ( s ) d s .  
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On the other hand, by (2.5) and It6's formula, we have 

Vi(s)  - g i (X(s) )  = Vi(s)  - Y i ( T )  + g i (X(T) )  - f ( X ( s ) )  

(3.9) [_T f~ = - .  hi(r) d r -  T(-di_ g ia)dW(r) .  
J 8  

Combining (3.8) and (3.9), we obtain that 

E I Y ( t  ) - g(X(t)) l  2 + E f  T I~d- gxa[2ds 

= - 2 E  <Y(~) - ~ ( x ( ~ ) ) , ~ ( ~ )  > ds 

(3 .10)  = 2 E  ( h(r )dr  + ['d - g~a]dW(r),  h(s) ) ds 

= 2E ( h(r)dr, h(s))  ds 

<_ (T - t) Elh(r)12dr = o(T - t). 

In the above, we have used the fact that 

E {  ( fsT[a - gxa]dW(r) ,h(s)  ) } = 0. 

Consequently, we have that 

13 

E r i T inf [3(s, X(s),  V(s) ,  z) - gx(X(s) )a(s ,  X(s),  V(s), z)]2ds 
Jt zeR ~ (3.11) 

< E I~ - g ~ l  2es = o ( T -  t). 

Since a and 3 are continuous in ( t , x ,y ) ,  uniformly in z, the process 

F(  s) A= infz~R ~ ]3(s, X ( s), Y (s), z) - g ~ ( Z ( s ) ) a ( s ,  X (s), Y ( s), z)] 2 is contin- 
uous, and an easy application of Lebesgue's Dominated Convergence The- 
orem and Differentiation Theorem leads to that 

E F ( T )  = l i m o E  { ~  F(s)ds  = O, 
T , I t  -- 

proving (3.5) since F ( T )  is nonnegative. Finally, if (3.6) holds, then by the 
forward equation in (2.5) one has 

(3.12) lim E I X ( T  ) - xl 2 = O, 
T - + 0  

uniformly (note that  (X(.), Y(-), Z(-)) depends on the time duration [0, T] 
on which (2.5) is solved). Hence, (3.7) follows. [] 

We note that (3.4) holds if both g ~  and a are bounded, and (3.6) holds 
if both b and a are bounded. 
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An interesting corollary of Proposition 3.2 is the following nonsolvable 
result for FBSDEs. 

C o r o l l a r y  3.3. Suppose 3 is continuous in (t, x, y, z) and uniformly Lips- 
chitz continuous in (x, y, z). Suppose there exists an ~ > O, such that 

(3.13) {3(O,x ,y ,z )  [ z e A ~ } c A m •  a.s. 

for some (x ,y)  E A n x A TM and some ~o C A re• where B~(30) is the 
closed ball in A m• centered at ~o with radius ~. Then there exist smooth 
functions b, a, h and g, such that the corresponding FBSDE (2.1) does not 
have adapted solutions over a11 small enough time durations [0, T]. 

Proof. In the present case, we may choose b, a, h and g such that  (3.6) 
holds but (3.7) does not hold. Then our claim follows. [] 

Since we are mainly interested in the case that FBSDEs do have 
adapted solutions, we should avoid the situation (3.13) happening. A nat- 
ural way of doing that  is to assume that  

(3.14) {3(O,x ,y ,z )  I z e A = A v ( x , u )  e A o • A m, a s  

This implies that  g _> rod. Further, (3.14) suggests us to simply take 

(3.15) 3 ( t , x , y , z )  - z, V( t ,x ,y )  C [0,T] x A '~ x A m, 

with z E ~:~m• From now on, we will restrict ourselves to such a situation. 
Hence, (2.5) becomes 

' dX( t )  = b(t, X( t ) ,  Y( t ) ,  Z(t))dt  + a(t, X( t ) ,  Y( t ) ,  Z( t ) )dW(t ) ,  

(3.16) dY(t) = h(t, X(t), Y(t), Z(t))dt + Z(t)dW(t), 
X(O) : x, Y ( T )  = g(X(T)) .  

Also, (2.3) now should be changed to the following: 

(3.17) M[O,T] A= L~(n;C([O,T];An))  x L~(fi;C([O,T];Am)) 

x i2~(O,T;Amxd). 

We keep (2.4) as the norm of A4[0, T], but now ]Z(t)[ 2 = tr {Z( t )Z( t )T} .  

w Well-posedness of BSDEs 

We now briefly look at the well-posedness of BSDEs. The purpose of this 
section is to recall a natural technique used in proving the well-posedness 
of BSDEs, namely, the method of contraction mapping. 

We consider the following BSDE (compare with (3.16)): 

dY(t )  = h( t ,Y( t ) ,  Z(t))dt  + Z( t )dW(t) ,  t e [0, T], 
(4.1) Y ( T )  = ~, 

where ~ E L~T(~t;A m) and h C L~(O,T;WI 'C~ • Am• i.e., 

(recall from w h : [0, T] x A TM x A m• x ~t "~ A m, such that  (t,w) 
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h(t, y, z; w) is {9~t }t>0-progressively measurable for all (y, z) 6 IR m x Rm• 
with h(t, O, 0; w) 6 L~(0, T; ]R TM) and for some constant  L > 0, 

Ih(t,y,z)-h(t,~,-2)[ ~ n{[y -Yl  + [ z -  ~[}, 
(4.2) 

Vy, yEIR m, z , ~ E ~  TM, a.e.t  6 [0, T], a.s. 

Denote 

(4.3) 

and 

Af[0, T] ~ L2(~ ;  C([0, T]; ~m))  x L~:(0, T; ]R'~• 

~0 T ~ 1/2 (4.4) [I(Y(-),Z(.))Ng[0,T ] ~ ( E  sup [Y(t)[ 2 + E IZ(t)[2dt~ . 
0<t<T 

Then, Af[0, T] is a Banach space under norm (4.4). We can similarly define 
Af[t, T], for t 6 [0, T). 

Let us introduce the following definition (compare with Definition 2.1). 

D e f i n i t i o n  4.1. A processes (Y(.), Z(.)) E Af[0, T] is called an adapted 
solution of (4.1) if the following holds: 

(4.5) Y(t) = ~ - h(s, Y(s), Z(s))ds- Z(s)dW(s), 

Yt 6 [0, T], a.s. 

The following result gives the existence and uniqueness of adapted so- 
lutions to BSDE (4.1). 

T h e o r e m  4.2. Let h 6 L~(0 ,T;  WI,~(~  m x ~mxd;  lRm)). Then, t'or any 
6 L~- r (i-l; F~m), BSDE (4.1) admits a unique adapted solution (Y(.), Z(.)). 

Proof. For any (y(.), z(:)) EAf[O, T], we know that  

(4.6) h(.) - h(. ,  y(.), z(.)) 6 L~:(0, T; R'~). 

Now, we define 

/ rSO T M(t) = E { ~ -  f h(s)dsI.Tt}, 
(4.7) T t C [0, T]. 

Y(t) = E { ~ -  ]t h(s)dsl~t}' 

Then M(t) is an {ft}t>_o-martingale (square integrable), and 

/o (4.8) M(0) = E{~ - h(s)ds} = Y(O). 

Therefore, by the Martingale Representation Theorem, we can find a Z(.) 6 
L~:(0, T; IRm• such that  

[ (4.9) M(t) = M(O) + Z(s)dW(s), Vt C [0, T]. 
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Since ~ is :FT-measurable, we see that (note (4.7)-(4.8)) 

/o ~ /o ~ (4.10) ~ - h(s)ds = M(T)  = Y(O) + Z(s)dW(s) .  

Consequently, by (4.7)-(4.10), we obtain 

(4.11) 

~0 t Y(t)  = M(t)  + h(s)ds 

/o ~ /o ~ = Y(O) + Z(s)dW(s)  + h(s)ds 

/o ~ /o ~ = ~ - h ( s ) a s  - Z ( s ) d W ( s )  

+ ffoth(s)ds+ fo tZ(s )dW(s)  

= ~ - h(s)ds - Z(s )aW(s) .  

(4.12) 
dY(t)  = h(t, y(t), z(t))dt + Z(t)dW(t) ,  

Y(T)  = ~. 

Now, let (~(-), ~(-)) E All0, T] and (Y(.), Z(.)) C All0, T] be the correspond- 
ing solution of (4.12). Then, by It6's formula and (4.2), we have 

(4.13) 

Next, we set 

(4.14) 

Then, (4.13) implies 

f~ f~ 
(4.15) ~o(t) 2 + E IZ(s) --Z(s)12ds <_ 2L ~o(s)r 

We have the following lemma. 

L e m m a  4.3. Let (4.15) hold. Then, 

f~ ~ f (4.16) ~(t) 2 + E IZ(s) --Z(s)12ds <_ L2~ r  
T 

T 
ElY( t )  - Y(t)l 2 + Ef t  IZ(8) --z(s)12ds 

F _< 2 L E  IY(~)  - ~ ( ~ ) I { l Y ( ~ )  - ~ ( s ) l  + Iz(~) - ~ ( 8 ) l } d s .  
.It 

{ ~ ( t )  = {EIY(t ) - V(t)12} 1/2, 
r  = {Ely(t) - y ( t ) t 2 }  1/2 + {EIz(t) - ~(t)]2} 1/2 

t c [0, T].  

Vt C [0, T]. 

It is not very hard to show that actually (Y(.), Z(.)) E .M[0, T] (See below 
for a similar proof). Thus, we obtain an adapted solution (Y(.), Z(.)) to 
the following equation: 
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Proof. We call the right hand side of (4.15) 2LO(t). Then, by (4.15), 

0'(t) = - ~ ( t ) r  _> - r  ~/2LO(t), (4.17) 

which yields 

(4.18) { 4 ~ } '  _> - v~U~r  

Noting O(T) = O, we have 

.T  

- v / ~  _> - 4 ~  ], r 

Lf,  r }2 O(t) <_ ~{  r , 

(4.19) 

Consequently, 

(4.20) 

Hence, (4.16) follows from (4.15) and (4.20). 

vt e [0, T]. 

(4.21) 

Now, applying the above result to (4.13), we obtain 

EIY( t  ) - Y(t)l 2 + E IZ(s) - ~(s)12ds 

<_ L2{  (s)12) + (Eiz(s)- 
<_ C(T  t ) l i (y( ' ) ,z( . ) )  (~ ( . ) , -  2 - - z('))II,vt,,T]. 

Then, by Doob's inequality, we further have 

II(Y(), z( . ) )  - (F(.), 7('))II~[,,T] 
, - -  ~ 2 <_ C(T - t)ll(y(-) z(.)) - (y(.), ('))II,v[~,T], 

(4.22) 

[] 

vt e [0, T]. 

Here C > 0 is a constant depending only on L. By taking (~ = 1 ~-~, w e  

see that  the map (y(.), z(.)) ~+ (Y(.), Z(-)) is a contraction on the Banach 
space PC'IT - 5, T]. Thus, it admits a unique fixed point, which is the 
adapted solution of (4.1) with [0, T] replaced by [T - 5, T]. By continuing 
this procedure, we obtain existence and uniqueness of the adapted solutions 
to (4.1). []  

We now prove the continuous dependence of the solutions on the final 
data ~ and the function h. 

T h e o r e m  4.4. Let h,-h e L2~(O,T;WI'~~ • ~m•  and ~,~ e 
L2~T(~;IRm). Let (Y(.), Z(.)), (Y(.) ,Z(.))  E Af[0, T] be the adapted solu- 
tions of (4.1) corresponding to (h, ~) and (h, ~), respectively. Then 

II (z(.) - ~(.),  z(.) - 2(.))[1~[o,~] 
(4.23) T 

<<_ C { E l ~ - ~ 1 2  + E fo 'h (s ,Y(s ) ,Z(s ) )  - h ( s ,Y(s ) ,Z(s ) ) '2ds} ,  
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with C > 0 being a constant only depending on T > 0 and the Lipschitz 
constants of  h and h. 

(4.24) 

Proof. We denote 

= 7 ( ) ,  

= ~ - (, h(-) = h(-, Y(.), Z(.)) - h( . ,  Y(-), Z(-)). 

Applying It6's formula to ]~(.)]2, we obtain 

(4.25) 

IY(t)l 2 + .fw IZ(s)l 2ds 

= I'~ 2 - 2 (~'(s),  h(s, Y(s ) ,  Z(s))  - h(s, Y(s), Z(s)) ) ds 

[ - 2 ( f ' ( s ) ,  Z ( s ) d W ( s )  ) 

< I~'l 2 + 2 {IY(s)[lh(s)[ + L]Y(s)I ([Y(s)l + IZ(s) l )}ds  

- 2 ( ~ ( s ) ,  2 ( s ) e w ( s )  ) 

_< I~I 2 + {(1 + 2L + 2L2)117(s)l 2 + IZ(s)] 2 + I~(s)12}ds 

- 2 ( f ' ( s ) ,  Z ( s ) d W ( s )  ).  

Taking expectation in the above, we have 

(4.26) 

1 T T 

ElY(t)12 + 2 f t  ]Z(s)12ds < - E  _ EI'~ 2 + E fo ~ ]'h(s)12ds 

[ + (1 + 2L + 2L2)E I~'(s)]2ds, t �9 [0, T]. 

Thus, it follows from Gronwall's inequality that  

T 

El~( t ) l  2 § [Z(s)12ds 
J t  

/o 
(4.27) 

vt �9 [0, T]. 

On the other hand, by Burkholder-Davis-Gundy's inequality (see Karatzas- 
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Shreve [1]), we have from (4.25) that  (note (4.27)) 

T 

< + f0 te[0,T] 

+ 2E sup I ( Y ( s ) , Z ( s ) d W ( s ) )  
tC[0,T] 

(4.28) 

.lj (/o -F- C1 ( E  sup IY(t)l 2) E 
tE[0,T] J 

Now (4.23) follows easily from (4.28) and (4.27). [ ]  

We see that  Theorems 4.2 and 4.4 give the well-posedness of BSDE 
(4.1). These results are satisfactory since the conditions that  we have im- 
posed are nothing more than uniform Lipschitz conditions as well as certain 
measurability conditions. These conditions seem to be indispensable, unless 
some other special structure conditions are assumed. 

w Solvability of  FBSDEs  in Small Time Durations 

In this section we t ry  to adopt the method of contraction mapping used in 
the previous section to prove the solvability of FBSDE (3.16) in small t ime 
durations. The main result is the following. 

The or e m 5.1. Let b, a, h and g satisfy (2.6). Moreover, we assume that 

la ( t , x , y , z ;w)  - a(t,x,y,-2;w)l <_ Lo]z --2 I, 

(5.1) V(x,y)  E ~ n x ~  rn, z,-zE~:~ re• a.e.t  > 0, a.s. 

Ig(x;w) - g(5;w)l < Lllx  - 51 ,  Vx,5 e Ft n, a.s. 

with 

(5.2) LoLl < 1. 

Then there exists a To > O, such that for any T C (0, To] and any x E ~ ,  
(3.16) admits a unique adapted solution (X, Y, Z) C ~4[0, T]. 

Note that  condition (5.2) is almost necessary. Here is a simple example 
for which (5.2) does not hold and the corresponding FBSDE does not have 
adapted solutions over any small time durations. 

Example 5.2. Let n -- m = d = 1. Consider the following FBSDEs: 

dX(t)  = Z( t )dW(t) ,  

(5.3) dY(t )  = Z( t )dW(t) ,  

X(O) = O, Y ( T )  = X ( T )  + ~, 

where ~ is ~T-measurable only (say, ~ = W(T) ) .  Clearly, in the present 
case, Lo = L1 = 1. Thus, (5.2) fails. If (5.3) admitted an adapted solution 
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(X, Y, Z), then the process 7/~ Y - X  would be {$-t}t>0-adapted and satisfy 
the following: 

(5.4) ~ d~(t) = O, t e [0, T], 

[ ~(T) = ~. 

We know from w that (5.4) does not admit an adapted solution unless ~ is 
deterministic. 

Proof o/ Theorem 5.1. Let 0 < To _< 1 be undetermined and T E (0, T0]. 
Let x C IR n be fixed. We introduce the following norm: 

(5.5) [I(Y, Z)ll~[0,T ] ~ sup {ElY(t)[ 2 + E IZ(s)12ds} 1/2, 
tC[0,T] 

for all (Y, Z) C Af[0, T]. It is clear that norm (5.5) is weaker than (4.4). We 
let JV'[0, T] be the completion of A/'[0, T] in n~:(0, T; ~m) • n~=(0, T; ]R re• 
under norm (5.5). Take any (Yi, Zi) e ~ [0 ,  T], i = 1, 2. We solve the 
following FSDE for Xi: 

dXi : b(t, Xi, Yi, Zi)dt + a(t, Xi, Yi, Zi)dW(t), t C [0, T], 
(5.6) Xi(0) = x. 

It is standard that under our conditions, (5.6) admits a unique (strong) 
solution Xi C L2(~t;C([O,T];]Rn)). By It6's formula and the Lipschitz 
continuity of b and a (note (5.1)), we obtain 

EIX~ (t) - X2 (t) l 2 

f E ~t2LlXl - -  X2[k]Xl( -- 221 q-I]I1 -- ]72[ q-[Z1 - Z21] _< 

(5.7) 
JW (L([X1 -X2[-[-[rl - Y2D-~Lo[Z1 - Z2[)2}d8 

~ E {Ce([Xl -X2[2..~.-]r1-r212) -[-(L2-~-c)[Z1 -Z212}ds, 

where C~ > 0 only depends on L, L0 and r > 0. Then, by Gronwall's 
" inequality, we obtain 

(5.g) E[Xl.(t)-X2(t)[ 2 ~ eCeTg ~'o T {C~[YI-Y.2[2-[-(L2o+E)[ZI-Z2[2}ds. 

Next, we solve the following BSDEs: (i = 1, 2) 

{ dYi = h(t, Xi, Yi, Zi)dt +-ZidW(t), t E [0, T], 
(5.9) Yi(T) = g(Xi(T)). 

We see from Theorem 4.2 that (for i = 1, 2) (5.9) admits a unique adapted 
solution (Yi, Zi) E N[0, T] c_ ~[0 ,  T]. Thus, we have defined a map 
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T :  ~ [0 ,  T] --+ ~ [0 ,  T] by (Yi, Zi) ~ (Yi, Zi). 
to IYl(t) - Y2(t)l 2, we have (note (5.1) and (5.8)) 
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Applying It6's formula 

j(t T ElY,(t) - Y2(t)l 2 + E I~1 - 2:l~ds 

< L~EIXI(T)  - X2(T)I 2 
T 

+ 2 L E [  [Y1 - ~ [ ( I X ~  - X~l + [Y~ - Y21 + Iz1 - Z2[)ds 
.It 

_< LI~EIXI(T) - X2(T)I ~ + C~E IF1 - Y21~as 

(5.10) ~ f T 
-[- cE IZ1 - Z2[2ds + E ([X1 - X212 + [Y1 - y212)ds 

P T 
< (L~ + T)eC~TE./n [C~lYl - Z212 + (L~ + e)lZl - Z212]ds 

/o /o + ~E IZl - Z212ds + E IY1 - Y2I 2ds 

+ C~E IY1 - ~212ds. 

In the above, C~ could be different from that appeared in (5.7)-(5.8). But 
C~ is still independent of T > 0. Using Gronwall's inequality, we have 

[ E ] Y I ( t )  - F2(t)l  2 + E 171 - -  Z 2 1 2 d s  

<_ eC~Tt__E~ & [Y1 - Y212 ds 

(5.11) 
fo T 12ds} + [~ + (L~ + r/(Lo ~ + ~ /ec~]E  IZl - Z~ 

< eCET[O~T + e + (L~ + T)(L 2 + ~)e GET] 

tl(~,z1) ( Y 2 , Z  2 �9 - 2) [I~[0,T], 

where C~ > 0 is again independent of T > 0. In the above, the last 
inequality follows from the fact that for any (Y, Z) C ~[0 ,  T], 

{ E~Y(t)l = -< II(Y,Z)ll~.[o,r], Vt e [0, T] ,  

(5.12) T EIZ(t)l 2dr <_ II( Y, Z)[I-~[O,T]' 

Since (5.2) holds, by choosing c > 0 small enough then choosing T > 0 
small enough, we obtain 

(5.13) II(Y~, Z~) - (Y=, Z=)I I~[o,T ] _< ,~II(Y~, Z l )  - (Y=,Z=)II~[o,T ], 
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for some 0 < a < 1. This means that  the map 7- : ~ [ 0 ,  T] --+ ~[0 ,  T] is 
contractive. By the Contraction Mapping Theorem, there exists a unique 
fixed point (]I, Z) for 7-. Then, similar to the proof of Theorem 4.2 we can 
show that  actually (Y, Z) �9 Af[0, T]. Finally, we let X be the corresponding 
solution of (5.6). Then (X, Y, Z) �9 f14[0, T] is a unique adapted solution 
of (3.16). The above argument applies for all small enough T > 0. Thus, 
we obtain a To > 0, such that  for all T �9 (0, T0] and all x �9 IR ~, (3.16) is 
uniquely solvable. [] 

In the above proof, it is crucial that  the time duration is small enough, 
besides condition (5.2). This is the main disadvantage of applying the Con- 
traction Mapping Theorem to two-point boundary value problems. Starting 
from the next chapter, we are going to use different methods to approach 
the solvability problem for the FBSDE (3.16). 

w C o m p a r i s o n  T h e o r e m s  for B S D E s  a n d  F B S D E s  

In this section we study an important tool in the theory of the BSDEs--  
Comparison Theorems. The main ingredients in the proof of the desired 
comparison results are "linearization of the equation" plus a change of 
probability measure. We should also note that  in the coupled FBSDE case 
the situation becomes quite different. We shall give an example in the end 
of this section to show that  the simple-minded generalization from BSDEs 
to FBSDEs fails in general. 

To begin with, we consider two BSDEs: for i = 1, 2, 

T T 

(6.1) Y i ( t ) = ~ + f t  hi(s, y i ( s ) , Z i ( s ) ) d s - f t  (Zi(s)dW(s) ,  

where W is a d-dimensional Brownian motion, and naturally the dimension 
of Y's and Z's are assumed to be 1 and d, respectively. Assume that  

(6.2) ~i �9 L~=T(~;~); h i �9 L~(O,T;WI'~(]Rd+I,~)) ,  i = 1,2, 

L 2 (0 T" W 1 oo{~:~dd-1 where j=~ , , ' ~ , ~))  is defined in w Since under these condi- 
tions both BSDEs are well-posed, we denote by ( y i  Zi), i -- 1, 2 the two 

" adapted solutions respectively. We have 

T h e o r e m  6.1. Suppose that assumption (6.2) holds, and suppose that  
~1 > ~2, and h l ( t ,y , z )  >>_ h2(t,y,z),  for all (y,z) �9 ]~d+l, P-almost surely. 
Then it holds that Yl(t)  > Y2(t), for a11 t �9 [0, T], P-a.s. 

Proof. Denote Y(t) = y1 (t) - y2(t) ,  Z(t) = Zl(t)  - Z2(t), Vt �9 [0, T]; 
~ '= ~1 _ ~2; and 

h(t) = hl(t, y2(t) ,Z2(t))  - h2(t, y2(t) ,Z2(t)) ,  t �9 [0, T]. 

Clearly, h is an {5~t}t>0-adapted, non-negative process; and Y satisfies the 
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following (linear!) BSDE: 

(6.3) 

where 
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:V(t) = ~+ fT{[h' (s, y1 ( s ) ,  Z 1 (s) )  - h 1 (s ,  y 2  (8), Z 2 (8))] ~- h (8)}ds  
dt 

_ f T  Z(s)dW(s) 
,It 

T T 

~0 
1 

a ( s ) =  h~(s, Y2(s) + AY(s),Z2(s) + A2(s))dA; 

/o 8(8) = hlz(s, Y2(8) + af~(8),'Z2(s) + a2(8))aa. 

Clearly, a and fl are {Ft}t_>o-adapted processes, and are both uniformly 
bounded, thanks to (6.2). In particular, /3 satisfies the so-called Novikov 
condition, and therefore the process 

M(t) = exp  ~(s)dW(s) - ~ 1~(8)12d8 , t �9 [ 0 , r ]  

is an P-martingale. We now define a new probability measure P by 

d ~  : M(T). 

Then by Girsanov's theorem, W ( t ) ~  W(t) - fo/3(s)ds is a P-Brownian 
A A 

motion, and under P,  Y satisfies 

Now define F(t) t = exp{f  0 a(s)ds}, then It6's formula shows that  

r ( T ) ~ ' -  r ( t )~2 ( t )  = - r(s)Sh(s)ds + ~(s)d~(t). 

Taking conditional expectation E ~ {. I)ct} on both sides above, and noticing 
the adaptedness of F(.)f '( .)  we obtain that  

P-almost surely, whence P-almost surely, proving the theorem. [] 
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An interesting as well as important  observation is that  the comparison 
theorem fails when the BSDE is coupled with a forward SDE. To be more 
precise, let us consider the following FBSDEs: for i = 1, 2, 

= x i + .~t bi(s,X~(s), Yi(s) ,  Zi(s)) ds Xi ( t )  

f t  ai( s, X~(s), Y~(s), Zi(s) )dW (s) + 
(6.5) J0 

Yi( t )  = g i (Xi (T))  + .f~ hi( s, Xi(s) ,  Yi(s),  Zi(s))ds 

- fo Z (s)dW(s). 

We would like to know whether gl (x) > g2(x), Vx would imply Y1 (t) _> 
]12 (t), for all t? The following example shows that  it is not true in general. 

E x a m p l e  6.2. Assume that  d = 1. Consider the FBSDE: 

X(t)  d t+  X( t )dW( t )  dX(t)  = (Z(t) - Y(t))  2 + 1 

Z(t) l dt + Z( t )dW(t ) ,  (6.6) dY(t )  = (Z(t) - Y(t))  2 + 

Z(O) = x; Y ( T )  = g(X(T)) .  

We first assume tha t  g(x) = gl(x) = x. Then, one checks directly that  
Xl ( t )  -- Y l ( t )  - Zl( t )  = xexp{W( t )  + t /2},  t �9 [0, T] is an adapted 
solution to (6.6). (In fact, it can be shown by using Four Step Scheme of 
Chapter  6 that  this is the unique adapted solution to (6.6)!) 

Now let g2(x) = x + 1. Then one checks that  X2(t)  - Z2(t) and 
y2( t )  - X2(t)  + 1 = Z2(t) + 1, Yt �9 [0,T] is the (unique) adapted solution 
to (6.6) with g2(x) = x + 1. Moreover, solving (6.6) explicitly again we 
have Y2(t)  = 1 + pexp{W( t ) } .  

Consequently, we see tha t  y1 (t) - y2  (t) = pe W(t) [e t/2 - 1] - 1, which 
can be both positive or negative with positive probability, for any t > 0, 
tha t  is, the comparison theorem of the Theorem 6.1 type does not hold! 

[ ]  

Finally we should note tha t  despite the discouraging counterexample 
above, the comparison theorem for FBSDEs in a certain form can still be 
proved under appropriate  conditionis on the coefficients. A special case 
will be presented in Chapter  8 (w when we study the applications of 
FBSDE in Finance. 



C h a p t e r  2 

L i n e a r  E q u a t i o n s  

In this chapter, we are going to study linear FBSDEs in any finite time 
duration. We will start with the most general case. By deriving a necessary 
condition of solvability, we obtain a reduction to a simple form of linear 
FBSDEs. Then we will concentrate on that  to obtain some necessary and 
sufficient conditions for solvability. For simplicity, we will restrict ourselves 
to the case of one-dimensional Brownian motion in w167 Some extensions 
to the case with multi-dimensional Brownian motion will be given in w 

w Compatible Conditions for Solvability 

Let (Q, Y, {~-t}t_>0, P)  be a complete filtered probability space on which de- 
fined a one-dimensional standard Brownian motion W(t), such that  {~-t }t>0 
is the natural filtration generated by W(t), augmented by all the P-null sets 
in ~-. We consider the following system of coupled linear FBSDEs: 

dX(t) = {AX(t) + BY(t) + CZ(t) + Db(t)}dt 

+ {A1X(t) + BIY(t) + C1Z(t) -~- Dla(t)}dW(t), 

dY(t) = {AX(t) + BY(t) + CZ(t) + Db(t) }dt 
(1.1) 

+ {A1X(t) +/31Y(t) + C1Z(t) + L)l~(t)}dW(s), 

t c [o, ~], 
x (o )  = x, Y (T)  = C X ( T )  + Fg. 

In the above, A, B, C etc. are (deterministic) matrices of suitable sizes, b, 
a, b and ~ are stochastic processes and g is a random variable. We are 
looking for {gvt}t>0-adapted processes X(.), Y(-) and Z(-), valued in ]R n, 
]R m and IR~, respectively, satisfying the above. More precisely, we recall 
the following definition (see Definition 2.1 of Chapter 1): 

Definition 1.1. A triple (X, ]1, Z) C A4[0, T] is called an adapted solution 
of (1.1) if the following holds for all t C [0, T], almost surely: 

(1.2) 

~0 t X(t) = x + {AX(s) + BY(s) + VZ(s) + Db(s)}ds 

/o + {AlX(S)  + B1Y(s) + Cl z ( s )  + Dl~,(s)}dW(s),  

[ Y(t)  = a X ( T )  + F~ - {~X(s) + ~Y(s) + dZ(s) + ~g(s)}ds 

( - {21x(s)  + ~lY(s) + dlZ(s)  + ~la(s)}dW(s).  
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When (1.1) admits an adapted solution, we say that (1.1) is solvable. 

In what follows, we will let 

A, A1 E ~{nxn; B, Bi E IRnxm; C, C1 E ]l~nxl; 

2~,Al,aElRmxn; g,/~l 6~:~mxm; C, C1 eI~mxe; 
D E Rnxe; Di E ]Rnxnl; b E ]Rmxrn; 

(1.3) Di E Nmxml; F E ]Rmxk; 

l b E L2(0,T;Nn);  a e L~-(0, T;I{nl); 
bE  L~(0, T;Rr~); ~ E n~=(0, T;l~ml); 

g 6 L2r(~;IRk); x 6 ~ .  

Following result gives a compatibility condition among the coefficients 
of (1.1) for its solvability. 

T h e o r e m  1.2. Suppose there exists a T > O, such that for all b, a, b, 3, g 
and x satisfying (1.3), (1.1) admits an adapted solution (X, Y, Z) E 2t4[0, T]. 
Then 

(1.4) 7~(dl - GCi) D_ T~(F) + 7~(/91) + 7~(GD1), 

where T~(S) is the range of operator S. In particular, if 

(1.5) n(F)  + n(Da) + n(GD1) = ~m, 

then C1 - GC1 E R mx~ is onto and thus g >_ m. 

To prove the above result, we need the following lemma, which is in- 
teresting by itself. 

L e m m a  1.3. Suppose that for any ~ E L~:(0,T;IR ~) and any g E 
L~=T(f/;Rk), there exist h e L}(0, T ; R  m) and f e L2~(fl;C([O, TI;IRm)), 
such that the following BSDE admits an adapted solution (Y, Z) 6 
n}(fl ;  C([0, TI; a'~)) x n~,(0, T; IRe): 

dY(t) = h(t)dt + [f(t) + ClZ(t)  + D~(t)]dW(t), t E [0,T], 
(1.6) Y ( T )  = Fg. 

where C1 E ]R mx~ and -D E Nmx~. Then, 

(1.7) 7~(C1) _~ n(F) + n(D). 

Proof. We prove our lemma by contradiction. Suppose (1.7) does not 
hold. Then we can find an q E R ~ such that 

(1.8) ~ Tc  I = 0, but ~TF ~ 0, or ?~T~ ~ 0. 
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Let ~(t) = rlTy(t). Then ~(-) satisfies 

(1.9)  
{ d~(t) = h(t)dt + [](t) + ~T-D#(t)]dW(t), 

~(T) = rlTFg, 

where h(t) = rlPh(t), f( t)  = rlTf(t). We claim that for some choice ofg  and 
~(-), (1.9) does not admit an adapted solution ~(-) for any h �9 L~(0, T; 1R) 
and f �9 L~:(fl; C([0,Tl;a)). To show this, we construct a deterministic 
Lebesgue measurable function 13 satisfying the following: 

fl(s) = 4-1, Vs e [0, T], 

(1.10) I{s E [Ti, Tl l t3(s) = 1 } [ -  T 2 T / - ,  
i>1,_  

[{s �9 [Ti,T]tl3(s ) - 1 } J -  T 2 
Ti 

for a sequence Ti~T,  where [{-.-}1 stands for the Lebesgue measure of 
{.. .}.  Such a function exists by some elementary construction. Now, we 
separate two cases. 

Case 1. ~T F 7 s O. We may assume that IFTrI[ = 1. 
Let us choose 

(1.11) g =  ( foTl3(s)dW(s))FTrh 

Then, by defining 

(1.12) "~(t) = ( ~ot/3(s)dW(s)), 

we have 

(1.13) 

~( t )  - o. 

t E [0, T], 

{ d[~(t) - ~'(t)] = h(t)dt + If(t) - t3(t)]dW(t), 
~(T) - ~(T) = O. 

Applying It6's formula to I~(t) - ~'(t)l 2, we obtain 

(1.14) 

t e [0, T],  

~t T El~(t ) - "~(t)[ 2 + E If(s) -/3(s)12ds 

= - 2 E  ( ~ ( s )  - ~(s), ~(~) / as  
d t  

dt 

-- ( h(r)dr, it(s) ) ds 
dt 

Jt 3t 
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Consequently, (note h �9 L~:(0, T; JR) and f �9 n~=(f~; C([0, T]; ~) ) )  

.IT If(T) - ~(s)12 ds E 

If(s) - fl(s)12ds + 2E I f (T)  - f(s)[2ds 

1 < 2(T - t) El[t(s)12ds + 2E I f (T)  - ](s)12ds 

= o(T - t). 

On the other hand, by the definition of/3(.), we have 

E / T ~  If(T) --/3(s)r2ds 
(1.16) 

T T~ 
( E I f ( T )  -112 + E I f ( T  )+112) ,  V i > l .  

Clearly, (1.16) contradicts (1.15), which means rITF 7s 0 is not possible. 

Case 2. rlTF = 0 and ~T~ ~ 0. We may assume that IDT~I = 1. 

In this case, we choose #(t) = t3(t)DTrl with /3(-) satisfying (1.10). 
Thus, (1.9) becomes 

(1.17) ~ d((t)  = h(t)dt + [](t) + jg(t)]dW(t), t �9 [0, T], 

[ ((T) = O. 

Then the argument used in Case 1 applies. Hence, ~T~ ~ 0 is impossible 
either, proving (1.7). [] 

Proof of Theorem 1.2. Let (X, I7, Z) �9 Ad[0, T] be an adapted solution 
of (1.1). Set Y( t )  = Y( t )  - G X ( t ) .  Then Y(.) satisfies the following BSDE: 

' dY = { ( A -  G A ) X  + (B - G B ) Y  

+ (C - G C ) Z  + ~)'b- GDb}dt  

(1.18) + {(A1 - GA1)X  + (/~1 - GB1)Y  

+ (C1 - GC1)Z + D]~ - G D l a } d W ( t ) ,  

Y ( T )  = Fg. 

Denote 

i 
~ A A  

(1.19) = ( ~  - G A ) X  + (B - G B ) Y  + (C - G C ) Z  + Db - GDb, 

(A1 - GA1)X  § (B1 - GB1)Y. 

We see that h E L~=(0,T;]R "~) and f E n~( f l ;V([O,T];~m)) .  One can 
rewrite (1.18) as follows: 

(1.20) ~ d Y  = hdt + { f  + (C1 - GC1)Z + 51"~ - G D l a } d W ( t ) ,  

t Y ( T )  = Fg. 
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Then, by Lemma 1.3, we obtain (1.4). The final conclusion is obvious. 
[] 

To conclude this section, let us present the following further result, 
which might be less useful than Theorem 1.2, but still interesting. 

P r o p o s i t i o n  1 . 4 .  Suppose that the assumption of  Theorem 1.2 holds. 
For any b, a, b, ~d, g and x satisfying (1.3), let ( X , Y , Z )  E Ad[0, T] be an 
adapted solution of  (1.1). Then it holds 

(1.21) 
[A1 - G A 1  + (/~1 - G B , ) G ] X ( T )  

+ (B1 - GB1)Fg E T~(01  - a c 1 ) ,  

If, in addition, the following holds: 

(1.22) { 7~(A + BG) + 7~(BF) C_ T~(D), 
T~(A1 + B1G) + 7~(B1F) c_ T~(D1), 

~(~  + ~a) + n(~F) C_ ~(b),  

~ ( ~  + ~ a )  + n(~IF) c n(bl) ,  

then 

(1.23) 

a.s. 

g ~(0~ - ac~). 

Proof. Suppose ~ E ~ '~ such that 

( 1 . 24 )  ?~T(c1 -- G C 1 )  = 0. 

Then, by (1.4), one has 

(1.25) ~]TF = O, rlTD1 = O, rlTGD1 = O. 

Hence, from (1.20), we obtain 

{ d[~Ty(t)] = 7]Th(t)dt + ~T f ( t )dW(t ) ,  t E [0,T], 
(1.26) r lTy(T)  = O. 

Applying ItO's formula t o  [r/Ty(t)I 2, we have (similar to (1.14)) 

Elr~Ty(t)[ 2 + E Ir]T f(s)12ds = - 2 E  rlTy(s)r]Th(s)ds 
Jt 

f /s // (1.27) = 2E [ ~]Th(r)dr + rlT f (r)dW(r)]  rlrh(s)ds 

f t  T ~Th(s)ds 2 f t  T = E <_ (T - t) E[rlTh(s)12ds. 
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Dropping the first term on the left side of (1.27), then dividing both sides 
by T - t and sending t --+ T, we obtain 

(1.28) EI~T f(T)I  2 = O. 

By (1.19), and the relation Y ( T )  = G X ( T )  + Fg, we obtain 

(1.29) tiT[A1 -- GA1 + (B1 - GB1)G]X(T) + ~?T(B1 -- GB1)Fg = O, a.s. 

Thus, (1.21) follows. In the case (1.22) holds, for any x E ~'~ and g E ]R m 

(deterministic), by some choice of b, a, b and ~, (1.1) admits an adapted 
solution (X, Y, Z) _= (x, Gx + Fg, 0). Then, (1.21) implies (1.23). []  

w S o m e  R e d u c t i o n s  

In this section, we are going to make some reductions under condition (1.5). 
We note that  (1.5) is very general. It is true if, for example, F = I E ]R m• 
which is the case in many applications. Now, we assume (1.5). By Theorem 
1.2, if we want (1.1) to be solvable for all given data, we must have C1 -GC1 
to be onto (and thus g > m). Thus, it is reasonable to make the following 
assumption: 

A s s u m p t i o n  A.  Let ~ = m and C1 - GC1 C ]R m• be invertible. 

Let us make some reductions under Assumption A. Set Y = Y - GX.  
Then Y ( T )  = Fg and (see (1.18)) 

d Y  = (.4X + B Y  + C Z  + Db)dt 

+ (AIX + /~ IY  + CIZ + DI~)dW 

- G ( A X  + B Y  + CZ  + Db)dt 

- G(A1X + B1Y + C1Z + D l a ) d W  

(2.1) = { [ . 4 - G A + ( B - G B ) G ] X + ( B - G B ) Y  

+ (C - GC)Z  + b b -  GDb}dt  

+ { [A1 - G A 1  + (B1 - a B 1 ) G ] X  -}- (gl - G B 1 ) Y  

+ (C1 - GCI)Z + b~3 - GD~a~dW. 
J 

Define 

(2.2) 
=[A1 - GA1 + (B1 - GB1)G]X + (BI - GB1)7  

+ (C1 - GC1)Z + DI~ - aDla .  

Since (C1 - GC1) is invertible, we have 

Z = (@1 - GC1) -~{ -2 -  [A1 - GA1 + (B1 - aB )a]X 
(2.3) 

- ( B 1  - G B 1 ) Y  - ( 1 ) 1 ~  - a D l a ) } .  
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Then,  it follows tha t  

(2.4) 

where 

d x  = ( i x  + B Y + c z + a)d,  

+ + + + 

d r  = (-XoX + BoY + CoZ + a)d, + ~dw, 

Z(O) = x, Y ( T )  = Fg,  

[ -A = A + B G  - C(C1 - GC1)-~[-4~ - GA1 + (B~ - GB~)G], 

B = B - C ( 0 1  - G C ~ ) - I  (B~  - G B ~ ) ,  

] U ---- C(01 - GC1) -1, 

-b = D b  - C ( d l  - G C ~ ) - 1 ( / 3 ~  - G D ~ a ) ,  

] A1 = A1 + B1G 

) N~ = B~ - C~(01 - G C ~ ) - l ( / ~  - GB I ) ,  

(2.5) / U~ = C~(dl  - GC1) -~, 

/ v = D l a  - C1(C1 - GCI )-1(/318 - G D l a ) ,  

I Ao = A - C A  + (B  - a B ) c  

/ - ( ~  -- G C ) ( C 1  - G C 1 ) - I [ A 1  - GA1  4- (B1 - G B ~ ) G ] ,  

I -Bo = B - G B  - (C - GC)(C~ - GC~)-~ (Bx - GB~),  

/ C0 --~ (0 - GC)(01 - GC1) -1, 
I,-~ = [ g -  GDb - ( 0  - C C ) ( O l  - G C ~ ) - I ( D I ~  - GDla). 

The above tells us tha t  under  Assumption A, (1.1) and (2.4) are equivalent. 
Next,  we want  to make a further reduction. To this end, let us denote 

) Bo ' 
(2.6) [~1__ (~01 -~01) ' ~1 __ (~/1) . 

Let q~(-) be the solution of the following: 

{ d~( t )  = ~a2(t)dt  + 2 ~ ( t ) d W ( t ) ,  t >_ O, 
(2.7) ~(0) = I. 
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Then (2.4) is equivalent to the following: For some y C ]R TM, 

x(t) 

(2.8) \ h(s) ,] 

t �9 [0, T], 

with the property that  

(2.9) ..-b f ~(8) "~ --"~1 ('~8) ) / 

Clearly, (2.9) is equivalent to the following: For some y �9 IR m and Z(-) �9 
L~(0, T; Rm), it holds 

(;) 

(:) // = (0, I )~ (T)  + (0, I)V(T) ~ ( s ) - l ( g  - Algl)Z(s)ds 

// + (0, I)~(T) ~(s)-lg-1 Z(s)dW(s). 

Thus, if we can solve the following: 

(2.11) { d(~) : (--~(~) +~)dt+ (~1 (~) O, ]/'(T) : ~, 

with 7/being given by (2.10)~ then for such a pair y - Y(0) and 2(-) = Z(.), 
by setting (X,Y) as (2.8), we obtain an adapted solution (X ,Y ,Z)  �9 
A/f[0, T] of (2.4). The above procedure is reversible. Thus, by the equiv- 
alence between (2.4) and (1.1), we actually have the equivalence between 
the solvability of (1.1) and (2.11). Let us state this result as follows. 
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T h e o r e m  2.1. Let F = I E ~m• and ~ = m. Then (1.1) is solvable for 
all b, a, b, ~, x and g satisfying (1.3) if and only if (2.11) is solvable for all 

c 

We note that  by Theorem 1.2, F --- I and g = m imply Assumption 
A. Based on the above reduction, in what follows, we concentrate on the 
following FBSDE: 

(2.12) 
Ix(0) = 0, 

= ( A x  + BY + c z ) d t  

+ (AIX + BaY + CIZ)dW(t) ,  

dY = (AX + B Y  + CZ)dt + ZdW(t), 

Y(T)  = g. 

By denoting 

(2.13) 
A B 

.A1 ~-- ( A1 B1) C1 ~-~ (C/1) 
0 ~ 

we can write (2.12) as follows: 

(2.14) 

t E [0, T], 

{ d ( z )  : {A(X) "~-Cz}dt-{- {'A1 ( z )  ~- 0, Y(T) : ?7. 

In what follows, we will not distinguish (2.12) and (2.14), and we will let 

{ d~(t) = A~(t)dt + Al~(t)dW(t) ,  t E [0, T], 
(2.15) ~(0) = I. 

If we call (X,Y) the state and Z the control, (2.12) is called a (lin- 
ear) stochastic control system. Then, the solvability of (2.12) becomes the 
following controllability problem: For give g E L~T (~; Rm), find a control 
Z E L~(0, T; Rm), such that  some initial state (X(0), Y(0)) E {0} • IR m 
can be steered to the final state (X(T), Y(T)) E L~T (~t; R~) • {g} at the 
moment t = T, almost surely. This is referred to as the controllability of 
the system (2.12) from {0} • IR m to L~:T(~;~t n) • {g}. We note that  g is 
an S-T-measurable square integrable random vector, and we need exactly 
control Y(T)  to g. 

w Solvability of  Linear F B S D E s  

In this section, we are going to present some solvability results for linear 
FBSDE (2.12). The basic idea is adopted from the study of controllability 
in control theory. For convenience, we denote hereafter in this chapter that  
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H = L 2 r ( ~ ; ~ m )  and 7/ -- L~(0, T;~r~)  (which are Hilbert spaces to 
which the final datum g and the process Z(.) belong, respectively). 

w N e c e s s a r y  c o n d i t i o n s  

First of all, we recall that  if �9 is the solution of (2.15), then, �9 -1 exists 
and it satisfies the following linear SDE: 

~ d0-1 = -o-l[r O-1~AqdW(t), t > O, 
(3.1) [ 0-1(0)  = I. 

Moreover, (X, Y, Z) E AJ[0, T] is an adapted solution of (2.12) if and only 
if the following variation of constant formula holds: 

( X(t )~  = O ( t ) ( ~ ) - [ - O ( t ) f 0  t 0(8)-1/C - .AlCl)Z(s)ds v(t) ] 
(3.2) 

+ O(t) O(s)-lC1Z(s)dW(s), t e [0, T], 

for some y E ]R m with the property: 

AlCX,Z,s, s 
(3.3) 

+ O(T) foTO(s)- lClZ(s)dW(s)} .  

Let us introduce an operator/(7 : 7 / -+  H as follows: 

T 
K:Z = (0, I ) { O ( T ) f o  O ( s ) - l ( c -  Axel)Z(s)ds 

(3.4) 

+ O(T/~0 T o(s/-lClZ(s/~w(~/}. 

Then, for given g C H,  finding an adapted solution to (2.12) is equivalent 
to the following: Find y C ]R "~ and Z C 7-/, such that 

(3.5) g = (O, I)O(T) ( ~ ) y + lCZ, 

and define (X, Y) by (3.2). Then (X, Y, Z) E AA[0, T] is an adapted solution 
of (2.12). Hence, the study of operators O(T) and /(7 is crucial to the 
solvability of linear FBSDE (2.12). We now make some investigations on 
0(-) and K:. Let us first give the following lemma. 

L 1 rO T" IR n+m~ L~(O, T; ~n+,~), it L e m m a  3.1. For any f E j=~ , , j and h E 
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holds 

{ E~(t) = e ~ t ,  

(3.6) E{q~(t) ~ot~(s)-lf(s)ds} =- ~oteA(t-S)Ef(s)ds, t C [0, T]. 

E{ ~(t) ~otO(s)-l h(s)dW (s) } = O, 

Also, it holds that 

(3.7) E sup IO(t)[ 2k + E sup Io(t)-ll 2k < ~ ,  Vk _> 1. 
O<_t<T O<_t<_T 

Proof. Let us first prove the second equality in (3.6). The other two in 
(3.6) can be proved similarly. Set 

(3.8) ~(t) = ~(t) ~(s)-lf(s)ds, t e [0, T]. 

Then ~(.) satisfies the following SDE: 

(3.9) ~ d~(t) = IMp(t) + f(t)]dt + Al~(t)dW(t), t C [0, T], 
[ ~(o) = o. 

Taking expectation in (3.9), we obtain 

(3.10) ~ d[E~(t)] = [AE~(t) + Ef(t)]dt, t E [0,T], 

[ E~(o) = o. 

Thus, 

(3.11) E~(t) = ~(~-s )Ey(s )ds ,  t �9 [0,T], 

proving our claim. 

Now, we prove (3.7). For any 40 �9 IRn+m, process ~(t) ~ r satisfies 
the following SDE: 

(3.12) ~ d~(t) = A~(t)dt + Al~(t)dW(t), t �9 [0, T], 

[ ~(o) = ~o. 

Then, by It6's formula, Burkholder-Davis-Gundy's inequality and Gron- 
wall's inequality, we can show that 

(3.13) E sup I~(t)l 2k < Kl~012k, k > 1, 
O~t<_T 

for some constant K > 0. Thus, the first term on the left hand side of 
(3.7) is finite. Similarly, one can prove that the second term is finite as 
well. [ ]  
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From (3.7), we see tha t /~  : 74 -+ H is a bounded linear operator. Now, 
applying (3.6) to (3.3), we obtain that  (2.12) admits an adapted solution, 
then 

(3 .14)  E g - - : ( O , I ) { e A T f ~ ) y q - / o T e A ( T - s ) ( c - . A I C 1 ) E Z ( s ) d s } ,  

for some y E IR m and EZ(.) E L2(0, T;IRm). This leads to the following 
necessary condition for the solvability of (2.12). 

T h e o r e m  3.2. Suppose (2.12) is solvable for all g E H. Then 

rank {(O,I)(eAT ( ~ )  , C -  A IC i , A (C-  AiCI), 
(3.15) 

�9 . . , r  ~- m. 

Proof. Set C = C - AlCl and define 

f0 ~ &( s ~ e A(T-~) s)ds, Vu(.) �9 L2(O,T;~m). 

Then s : L2(0, T; ]R m) --+ IR n is a linear bounded operator. We claim that  

(3.16) 7"4(s = n(C)  -]- n(r q- ''"-}- n(c4n+m--lc).  

In fact, if x E 7-4(s • then, for any u(-) E L:(O,T;Rm), it holds 

0 = xrs = xTeA(T-~)&(s)ds, 

which yields 

Consequently, 

xT eAsC : O, VS ~ [0, T].  

dk T .As xT~4kC'=~[x e C~I~=o=O, k_O. 

This implies that  

A "1 • 
X E r" -'~,l,~(C) -}- ~T~(,,4C) q - ' ' "  q- ~ '~( ,Anq-m- lc ) )  , 

which results in 

n(~) + n(AC) + . . .  + n(w+m-l~) ; n(L). 

The above proof is reversible with the add of Calay-Hamilton's theorem. 
Thus, we obtain the other inclusion, proving (3.16). Then (3.15) follows 
easily. []  
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We note that  in the case g = AIC1, (3.15) becomes 

(3.17) det{ (O, I )e~4T(Oi)}~O.  

This amounts to say that  the FBSDEs (2.12) (with g = Algl )  is solvable 
for all g E H implies that  the corresponding two-point boundary value 
problem for ODEs: 

(3.18) \ Y(t) = A \ y ( t ) / '  t e [0, T], 

Z(0)  = 0, Y(T)  = ~, 

admits a solution for all ~ E pro.  
Let us now present another necessary condition for the solvability of 

(2.12). 

T h e o r e m  3.3. Let g = O. Suppose (2.12) is solvable for a11 g �9 H. Then, 

(3.19) det {(O,I)eAtgl} > O, Vt �9 [0,T]. 

Consequently, if 

(3.20) T = inf{T > 0 I det [(0, I)eaTC1] = 0} < co, 

then, for any T > T, there exists a g �9 H, such that (2.12) is not solvable. 

R e m a r k  3.4. The above result reveals a significant difference between 
the solvability of FBSDEs and that  of two-point boundary value problems 
for ODEs. We note that  for (3.18) to be solvable for all ~ �9 ~ m  if and 

only if (3.16) holds. Sinee the function t ~-~ det { (O,I)eAt ( Oi ) } is analytic 

(and it is equal to 1 at t = 0), except at most a discrete set of T's, (3.16) 
holds. Tha t  implies that  for any To �9 (0, c~), if it happens that  (3.18) is not 
solvable for T = To with some ~ �9 ]R TM, then, at some later time T > To, 
(3.18) will be solvable again for all ~ �9 IR TM. But, in the above FBSDEs 
case, if T < c~, then for any T > T, we can always find a g �9 H,  such 
that  (2.12) (with g = 0) is not solvable. Thus, FBSDEs and the two-point 
boundary value problem for ODEs are significantly different as far as the 
solvable duration is concerned. 

Proo/ o/ Theorem 3.3. Suppose there exists an so �9 [0, T),  such that  

(3.21) det } = O. 

Note that  So < T has to be true. Then there exists an U �9 ]~m, [?~l : 1, 
such that  

(3.22) uT(0, I)eA(T-s~ = O. 
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We are going to prove that  for any r > 0 with So + ~ < T, there exists a 
g �9 L~%o+" (gt; IR m) c_ H,  such that (2.12) has no adapted solutions. To this 

end, we let ~ : [0, T] --+ ~ be a Lebesgue measurable function such that  

(3.23) { / ~ ( s ) = + l ,  V s � 9  So+r /~(s )=0,  

8k - -  80 
1{8 �9 [8o,8~] I Z(s) = 1)1 = --~-- ,  

1{8 �9 [8o,8~] l Z(8) -1}1  = 8~ - so, 
2 

Vs �9 (so + e,T]; 

k_> l ,  

for some sequence Sk $ so and Sk < T - ~. Next, we define 

~0 t (3.24) ((t) = fl(s)dW(s), t �9 [0, T], 

and take g = ~(T)~? �9 L 2 (f~;lR "~) C H. Suppose (2.12) admits an .T'~0+E 
adapted solution (X, ]I, Z) �9 A4[0, T] for this g. Then, for some y �9 ~m,  
we have (remember C = 0) 

(3.25) 

-~/oTe'A(T-s)[.A1 (If:l) -[-ClZ(s)]dW(s)}. 

Applying ~T from left to (3.25) gives the following: 

(3.26) 

where 

(3.27) 

T 
( ( T ) = a + f o  { 7 ( s ) + ( J ( s ) , Z ( s ) ) } d W ( s ) ,  

7( . )=~T(o , I )eA(T_ . )A  1 X(.)  L~(U;C([O,T];P~)), y( . )  �9 

r -- [~T(o,I)eA(T--')CI] T is analytic, r  0. 

Let us denote 

~0 t O(t) = a + [7@) + (r  Z(s) )]dW(s), (3.28) 

Then, it follows that  

S d[0(t) - ((t)] = [7(0 + (r  Z(t) ) - f l ( t)]dW(t) ,  
(3.29) / [O(T) - ((T)] = O. 

t �9 [0, T]. 

t e [o, T], 
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By ItS's formula, we have 

0 =EIt?(t ) - ~(t)l 2 

(3.30) f t  T + E 1O'(s) + (r  Z(s)  ) -/3(s)12ds, 

Thus, 

(3.31) 13(s) - 7(s) = (r  Z(s ) ) ,  

which yields 

(3.32) Elf l(s  ) - "/(s)12ds = 
0 o 

t e [o, T]. 

a.e. s E [0, T], a.s. 

E I ( r  V k >  1. 
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w Criteria for solvability 

Let us now present some results on the operator /C (see (3.4) for defini- 
tion) which will lead to some sufficient conditions for solvability of linear 
FBSDEs. 

Now, we observe that  (note 7 6 L2(f~; C([0, T]; ~{)) and (3.23)) 

f s  8~ _ O,(s)12ds E[~(s) 
0 1/? /? 

(3.33) _> ~ Elfl(s) - 7(So)12ds - El~/(s) - 7(so)12ds 
o o 

> _.....~_Sk - SO E [ l l  _7 ( so ) l  2+1  l + 7 ( s o ) l  2 ] _ o ( s k _ s o ) ,  k _> l.  

On the other hand, since r is analytic with r = O, we must have 

(3.34) r  = (s - So)~b(s), s e [0, T], 

for some r which is analytic and hence bounded on [0, T]. Consequently, 

/? /? (3.35) El ( r  Z(s)  )12ds < K(Sk - s0) 2 ElZ(s)12ds.  
o o 

Hence, (3.32)-(3.33) and (3.35) imply 

sk - SOE[ll  - ~ ( s 0 ) l  ~ + I1 + ~ ( s0 ) lJ  - o ( s k  - so) 
(3.36) 

<_ K(Sk  - So) ~ ElZ(s)12ds,  Vk > 1. 
J 8 0  

This is impossible. Finally, noting the fact that det {(0, I)eAtC1 } I t=o = 1, 
we obtain (3.19). The final assertion is clear. []  

It is not clear if the above result holds for the case C # 0 since the 
assumption C = 0 is crucial in the proof. 
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L e m m a  3.5. The range Ti(K:) of ~ is dosed in H. 

Proof. Let us denote Ho = L 2 r ( ~ ; ~  ~) and 3 = Ho • H = 
n ~ r  (f~; ]Rn+m). Define 

/(  /CZ =r '~(s)-l(C - M1C1)Z(s)ds 
(3.37) 

/(  + ~(T) ~(s)-lClZ(s)dW(s), Z �9 7t. 

Then, by (3.7),/C is a bounded linear operator and/C = (0, I)/C. We claim 
that  the range Tr of ]C' is closed in H. To show this, let us take any 
convergence sequence 

(3.38) ~ Xk (T) ~ EZk --+ ~, in H,  
\ Vk(T) ] =- 

where (Xe, Yk) is the solution of the following: 

�9 
(3.39) { Xk (0) 

\ yk(0) ] = o. 

Then, by It6's formula, we have 

\ Y~(s) j 

(3.40) = E{IZk(T)[ 2 + IYk(T)[ 2 

r ~l~l ~ f ~l~l ~} 

We note that  (recall Cl = ( C 1 ) )  

Xk (3.41) =(( I+cTc1) zk ,Zk )+  A1 ( X ~ )  2 +2(cTAl  (yk  ) , Z k )  

1 ]2 > ~lzk - C(IX~l 2 + Ivkl2), 
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for some constant C > 0. Thus, (3.40) implies 

T 

E{lZk(t)[2 + [Yk(t)]2 -b ft [Zk(s)12ds} 

(3.42) < CE{[Xk(T)[ 2 + [Yk(T)[ 2 
T 

+ j~ (Ixk(s)L 2 + IYk(s)12)as}, t e [0,T]. 

Using Gronwall's inequality, we obtain 

(3.43) E{IXk(t)[2 + JYk(t)le + IZk(s)J2ds} 

< CE{[Xk(T)[ 2 + [Yk(T)t2}, t e [0, T]. 

From the convergence (3.38) and (3.41), we see that Zk is bounded in 7/. 
Thus,Awe may assume that Zk --+ Z weakly in 7/. Then it is easy to see 
t ha t /CZ  = (, proving the closeness of T~(~). 

Now, 7~(/C) is a Hilbert space with the induced inner product from that 
of H.  In this space, we define an orthogonal projection PH : /~ -+ /~ by 
the following: 

(3.44) PH (~r/) = (0rl) , V ( ~ )  E H - H 0 x H .  

Then the space 

(3.45) PH(Tr163 = {0} • 7r 

is closed in Tr and so is in H. Hence, 7~(/C) is closed in H. []  
The following result gives some more information for the operator /C 

when C = AlCl = 0, which is equivalent to the conditions: C = 0, C = 0 
and A1C1 + B1 = 0. Note that  A1, B1 and C1 are not necessarily zero. 

L e m m a  3.6. Let C = 0 and let (3.19) hold. Then 

(3.46) ~(K:) = {~/�9 H lET = 0} ~ Af(E), 

(3.47) N(tc) g { z  e n I ~ z  = 0} = {0). 

Proof. First of all, by Lemma 3.5, we see that 7~(~) is closed. Also, 
by (3.4) and Lemma 3.1, 7~(/C) C_ A/(E) (since C = .4161). Thus, to show 
(3.46), it suffices to show that 

(3.48) H ( E )  

We now prove (3.48). Take 7/E 

O=E(~ ,~CZ)  
(3.49) 

= E (rl, (O,I)~(T) 

['-'l n( lc)"  = {o}. 

N'(E). Suppose 

T 
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Denote 

(3.50/ /x - ( t )  k Y(t) ) : ~2(t) fo ~(8)-lClZ(s)dW(8), 

Then, by C = A1C1 = O, we have 

(3.51) 
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t e [0, T]. 

{x (o)  ~ 
\ Y(o) ) = v. 

(3.56) 

Y(s) ) ) ds. 

By (3.49), the above holds for all Z C 7/. Now, let 0 < 5 < T and take 

(3.57) Z(8):oTeAT(T-s)(~)((s)X[T_~,T](S), S C [0, T]. 

This yields 

By It6's formula and Gronwall's inequality, we obtain 

/o' (3.52) E{IX(t)I  2 + IY(t)l 2} << g EIZ(s)12ds, t e [0,T]. 

Also, we have 

Since Er  I = 0 and rl G H,  by Martingale Representation Theorem, there 
exists a ~ E 74, such that  

( 3 . 5 4 )  r~ = ~(s)dW(s). 

Then, from (3.49) and (3.53), we have 

o = E ( v , ~ Z I  = E(~,(O,~) ( X ( r ) ~  ~, Y(T) ) ) 
(3.55) r 
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Then X(s) = O, Y(s) = 0 for all s E [ 0 , T -  6]. 
(3.52) result in 

/]( ) (3.58) 5 K ZlC(s)l 2 
-5 

< K EIf(s)J 2 
-5 

By (3.19), we obtain 

(3.59) 

43 

Consequently, (3.56) and 

(/: ) 1/2 EIZ(r) 12dr ~ 1/2ds  

- 5  

_sElff(r)lUdr) ds. 

T fTT 
T 

_ E[((r)l~dr ds 
- 5  - 5  

1 T T s 

Thus, it follows that  

(3.60) f El((s)12ds < K5 El((s)12ds, 
.IT -5 5 

with K > 0 being an absolute constant (independent of 6). Therefore, for 
6 > 0 small, we must have 

(3.61) ((s) = 0, a.e. s C [T - 6, T], a.s. 

This together with (3.56) implies that  

(3.62) 

foT-S E ( CT eAr (T-s) ( OI ) ((s), Z(s) ) ds 

/o = - E ( .AT e~4r(T-s) ((s), ~, Y(s) ) ) ds. 

(3.63) 
fo T 0 = E ( r  ~:Z ) 

: ~fo ~ i~(./, (0,1).'~-.~{.~ r~(./  

Then, thanks to (3.19), we can continue the above procedure to conclude 
that  (3.61) holds over [0, T] and hence it follows from (3.54) that  7/ = 0. 
This proves (3.48). 

We now prove (3.47). Suppose/CZ = 0. Again, we let (X(.), Y(-)) be 
defined by (3.50). Then, for any ( E 7-/, by (3.53), we have 
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This implies that  

(3.64) (O,I)e~t(T-s){A1 (X( s )~  _~_ClZ(8)} =0, 
k Y(s) ] 

By (3.19), we easily see that 

S ~-~ S(S) ~ {(0, ]-)c'A'(T--S)Cl }--1(0, I)e'A'(T-s).A1 

is analytic and hence bounded over [0, T]. From (3.64), we obtain 

(3.65) Z(s) = - B ( s )  {X---(s) ) 
\ Y ( s )  ' 

Then, (X, Y) is the solution of 

(3.66) { 

a.e. s E [0, T], a.s. 

~ ( 0 )  = 0. 
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a.e.s E [0, T], a.s. 

Hence, we must have (X, Y) = 0, which yields Z = 0 due to (3.65). This 
proves (3.47). []  

A consequence of the above is the following. 

T h e o r e m  3.7. Let C = A1C1 = O. Then, linear FBSDE (2.12) is solvable 
for all g C H if and only if (3.17) and (3.19) hold. In this case, the adapted 
solution to (2.12) is unique (for any given g E H). 

Proof. Theorems 3.2 and 3.3 tell us that (3.17) and (3.19) are necessary. 
We now prove the sufficiency. First of all, for any g E H, by (3.17), we can 
find y E IR m, such that (3.14) holds (note C = 0). Then we have 

(3.67) g -(O,I)~.(T) ( ~ ) y E Af(E). 

Next, by (3.46), there exists a Z C 7/, such that 

(3.68) g - (O, I)~(T) ( Oi ) y = ~Z. 

For this pair (y, Z) E IR TM x 7t, we define (X, Y) by (3.2). Then one can 
easily check that (X, Y, Z) e A~[0, T] is an adapted solution of (2.12). The 
uniqueness follows easily from (3.47) and (3.17). []  

The above result gives a complete solution to the solvability of linear 
FBSDE (2.12) with C = A1C1 = 0. By Theorems 1.2, 2.1 and 3.7, we can 
obtain the solvability result for the original linear FBSDE (1.1). We omit 
the precise statement here. 
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w A Riccati Type Equation 

In this section, we present another method. It will give a sufficient condition 
for the unique solvability of (2.12). We will obtain a Riccati type equation 
and a BSDE associated with (2.12). Let us now carry out a heuristic 
derivation. 

Suppose (X ,Y ,Z )  ~ fl4[0, T] is an adapted solution of (2.12). We 
assume that  X and Y are related by 

(4.1) Y(t)  = P(t)X(t)  + p(t), Vt e [0, T], a.s. 

where P : [0, T] --+ ]R m• is a deterministic matrix-valued function and 
p : [0, T] • ~ --+ ]R m is an {Svt)t>_0-adapted process. We are going to derive 
the equations for P(.) and p(-). First of all, from (4.1) and the terminal 
condition in (2.12), we have 

(4.2) 

Let us impose 

(4.3) 

g = P(T)X(T)  +p(T). 

P(T) = O, p(T) = g. 

Since g E L~r(~; IR m) and p(.) is required to be {Ft}t>0-adapted, we 
should assume that  p(.) satisfies a BSDE: 

f dp(t) = a(t)dt + q(t)dW(t), t �9 [0, T], 
(4.4) 

p(T) = g, 

with a(-), q(.) E L~(0, T; Rm) being undetermined. Next, by It6's formula, 
we have (for simplicity, we suppress t below): 

dY = { P X  + P[AX + B Y  + CZ] + a}dt 

+ {P[A1X + B1Y + C1Z] + q}dW 

(4.5) = {[P + PA + PBP]X  + P C Z  + PBp + a}dt 

+ {[PAl + PB1P]X + PC1Z + PBlp  + q}dW, 

Now, compare (4.5) with the second equation in (2.12) (note (4.1)), we 
obtain that  

[P + PA + PBP]X  + PCZ + PBp + a = [A + BP]X + CZ + Bp, (4.6) 

and 

(4.7) (PAl + P B I P ) X  + PC1Z + P B l p +  q = Z. 

By assuming I - PC1 to be invertible, we have from (4.7) that  

(4.8) Z =  ( I - P C 1 ) - I { ( P A 1  + P B 1 P ) X + P B l p + q } .  
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0 =[P + P A +  P B P -  A -  B P  

+ (PC - C)(I - PC1)-I(PA1 + PB1P)]X 
(4.9) 

+ [PB - B + (PC - C)(I - P C , ) - I p B , ] p  

+ (PC - C)(I - PC1)-lq + a. 

Now, we introduce the following differential equation for ]R m • n-valued func- 
tion P(-): 

{ P + PA  + P B P - . 4 -  B R  

(4.10) + ( P C - C ) ( I - P C 1 ) - I ( p A I + P B 1 P ) = O ,  t �9 [0, T], 

P(T) = O. 

We refer to (4.10) as a Riccati type equation. Suppose (4.10) admits a 
solution P(.)  over [0, T] such that 

(4.11) [I - P(t)C1] -1 is bounded for t �9 [0, T]. 

Then, (4.9) gives 

a = -  [ P B -  B + ( P C -  C ) ( I -  PC1)-IPB1]p 

- ( P C  - C ) ( I  - PC1)-lq. 

Combining this with (4.4), we see that one should introduce the following 
BSDE: 

dp = - { [ P B -  B + ( P C -  C ) ( I -  PCI) - IPB1]p  

(4.12) + (PC - C)(I - P V l ) - l q } d t  + qdW, t �9 [0, T], 

p(T) = g. 

When (4.10) admits a solution P(.)  such that (4.11) holds, by Theorem 3.2 
of Chapter 1, BSDE (4.12) admits a unique adapted solution (p(.), q(-)) �9 
Af[0, T]. Then we can define the following: 

{ A = A + B P  + C ( I -  PC1)-I(PA1 + PBIP) ,  

(4.13) AI = A1 + B1P + C~(I - PC1)-I(PA1 + PB1P), 

= Bp + C(I  - PC1) - I (PBlp  + q), 

= B~p + C~(I - PC1)-~(PBIp + q). 

It is clear that  .4 and -41 are time-dependent matrix-valued functions and 
and ~ are {hvt}t>o-adapted processes. Further, under (4.11), the following 
SDE admits a unique strong solution: 

(4.14) { dX = (AX + b)dt + (A1X + = x. t e [ 0 ,  T], 
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The following gives a representation of the adapted solution of FBSDE 
(2.12). 

T h e o r e m  4.1. Let (4.10) admits a solution P(.) such that (4.11) holds. 
Then FBSDE (2.12) admits a unique adapted solution (X, II, Z) C 3,l[0, T] 
which is determined by (4.14), (4.1) and (4.8). 

Proof. First of all, a direct computation shows that the process 
( X , Y , Z )  determined by (4.14), (4.1) and (4.8) is an adapted solution of 
(2.12). We now prove the uniqueness. Let (X ,Y ,Z )  E WI[0,T] be any 
adapted solution of (2.12). Set 

{- Y = P X  + p, 
(4.15) 

Z (I - PC1) -1 [(PAl + PB1P)X  + PBlp  + q], 

where P and (p, q) are (adapted) solutions of (4.10) and (4.12), respectively. 
Denote Y = Y - Y and Z = Z - Z. Then a direct computation shows that 

[ d}" = [(PB - B ) Y  

(4.16) '1 + (PC - C)Z]dt + [PBIY - (I - PC1)Z]dW(t), 

( Y ( T )  = O. 

By (4.11), we may set 

(4.17) 2 = P B I Y  - (I - PC1)Z, 

to get the following equivalent BSDE (of (4.16)): 

{ dY = { [ P B -  B + ( P C -  C ) ( I -  PC1)-IPB1]Y 

(4.18) - (PC - O)(I - P C l ) - l  Z}dt  + ZdW(t),  
A 

Y(T)  = O. 

N 

It is clear that such a BSDE admits a unique adapted solution (Y, Z) = 0 
(see Chapter 1, w Consequently, Z = 0. Hence, by (4.15), we obtain 

(4.19) [ r = P X  + p, 
[ Z = ( I -  PC1) - t  [(PAl + P B I P ) X  + P B l p +  q], 

This means that  any adapted solution (X, II, Z) of (2.12) must satisfy (4.19). 
Then, similar to the heuristic derivation above, we have that X has to be 
the solution of (4.14). Hence, we obtain the uniqueness. []  

The following result tells us something more. 

P r o p o s i t i o n  4.2. Let (4.10) admits a solution P(.) such that (4.11) holds 
for t E [To, T] (with some To >_ 0). Then, for any T C [0, T - To], linear 
FBSDE (2.12) is uniquely solvable on [0, T]. 
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Proof. Let 

(4.20) /5(t) = P(t  + T - T), t �9 [0, T]. 

Then/5( . )  satisfies (4.10) with [0,T] replaced by [0, T] and 

(4.21) [I - -  ]~(t)C1] -1 is bounded for t �9 [0,:F]. 

Thus, Theorem 4.1 applies. []  

The above proposition tells that if (4.10) admits a solution P(-) satisfy- 
ing (4.11), FBSDE (2.12) is uniquely solvable over any [0,T] (with :F _~ T). 
Then in the case C = Ale1, by Theorem 3.2, the corresponding two-point 
boundary value problem (3.17) of ODE over [0, T] admits a solution for all 
g �9 ]R TM, of which a necessary and sufficient condition is 

(4.22) det {(0, I)e~tt ( 0 )  } > 0, Vt �9 [0, T]. 

Therefore, by Theorem 3.7, compare (4.22) and (3.17), we see that the 
solvability of Riccati type equation (4.10) is only a sufficient condition for 
the solvability of (2.12) (at least for the case C = .AlCl = 0). 

In the rest of this section, we concentrate on the case C = 0. We do 
not assume that .Ale I • 0. In this case, (4.10) becomes 

(4.23) ~ ~ + P A  + P B P  - A - / ~ P  = 0, 
[ P(T)  = O, 

and the BSDE (4.12) is reduced to 

f dp = [B - PB]pdt + qdW(t), 
(4.24) 

p(T) = g. 

t �9 [0, T], 

t �9 [0, T], 

We have seen that (4.22) is a necessary condition for (4.23) having a solution 
P(.)  satisfying (4.11). The following result gives the inverse of this. 

T h e o r e m  4.3. Let C = O, C = O. Let (4.22) hold. Then (4.23) admits a 
unique solution P(.) which has the following representation: 

(4.25) r(t):-[(O,I)e A(T-t) (~) ]-I(o,I)eA(T-t) (Io) , tE  [0,T]. 

Moreover, it holds 

(4.26) '--r(t)C1 : [ ( 0 ' / ) e A ( T - t ) ( ~ ) ] - I [ ( o ' I ) r  ]' 
t E [0, T]. 

Consequently, i f  in addition to (4.22), (3.19) holds, then (4.11) holds and 
the linear FBSDE (2.12) (with C = O) is uniquely solvable with the repre- 
sentation given by (4.14), (4.1) and (4.8). 



w Some extensions 49 

Proof. Let us first check that  (4.25) is a solution of (4.23). To this end, 
we denote 

(4.27) O(t)=(O,I)eA(T- t ) (O) ,  t E [0, T]. 

Then we have (recall (2.13) for the definition of .4) 

O(t) = -(O,I)eA(T-t) ( ~) B - O(t)B. (4.28) 

Hence, 

(4.29) 

: o ~( -  (0,)~(~ ,) ( ' 0 ) . - o ~ } ( - . )  

+o 1(0,,.(~ , ) (~)  

: ( . . - ~ / (  . / + o  1(0, .(~ ,) ('0) ~+~ 

= - P B P  + B P -  PA + A. 

Thus, P(-) given by (4.25) is a solution of (4.23). Uniqueness is obvious 
since (4.23) is a terminal value problem with the right hand side of the 
equation being locally Lipschitz. Finally, an easy calculation shows (4.26) 
holds. Then we complete the proof. [] 

w S o m e  Extens ions  

In this section, we briefly look at the case with multi-dimensional Brown- 
ian motion. Let W(t) - (W 1 (t), . . . ,  wd(t)) be a d-dimensional Brownian 
motion defined on (f~,)v, {~t}t_>0,P) with {hot}t>0 being the natural fil- 
tration of W(-) augmented by all the P-null sets. Similar to the case of 
one-dimensional Brownian motion, we may also start with the most general 
case, by using some necessary conditions for solvability to obtain a reduced 
FBSDE. For simplicity, we skip this step and directly consider the following 
FBSDE: 

dX = (AX + BY)dt 

d 

+ E (A~X + B~Y +C~Z~)dW~(t), 
(5.1) i=1 t e [0, T], 

d 

dY = (AX + BY)dr + E ZidWi(t)' 
i : 1  

X(O) = O, Y(T) = g, 
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where A, B, etc. are certain matrices of proper sizes. Note that  we only 
consider the case that  Z does not appear in the drift here since we have 
only completely solved such a case. We keep the notation .4 as in (2.13) 
and let 

(5.2) Ai  = B~ 0 ' C1 , l < i < d .  

If we assume X(.)  and Y(.) are related by (4.1), then, we can derive a 
Riccati type equation, which is exactly the same as (4.23). The associated 
BSDE is now replaced by the following: 

(5.3) dp = [B - PB]pdt + E qidWi (t), t e [0, r ] ,  

p ( T )  = g. 

Also, (4.13), (4.14) and (4.8) are now replaced by the following: 

(5.4) 

(5.5) 

{ A = A + B P ,  b = B p ,  

A~ = A~ + B~P 

+ C~(I - PC~)-I(PA~ + PB~P), 

_~ _ p c  1) (pB1 p + qi), 

d 

dX = (AX +b)dt + E ( A ~ X  + ai)dWi(t), 
i = 1  

x ( 0 )  = 0, 

l < i < d ,  

(5.6) 

Our main result is the following. 

T h e o r e m  5.1. Let (4.22) hold and 

(5.7) det{(O,I)eAtC~} > 0 ,  

t e [0, T], 

Z i = ( I - P C ~ ) - I { ( P A { + P B I P ) X + P B l p + q i } ,  l < i < d .  

vt  c [o, T], 1 < i < d. 

Then (4.23) admits a unique solution P(.) given by (4.25) such that 

(5.8) [I - P(t)C~] -1 is bounded for t e [0, T], 1 < i < d, 

and the FBSDE (5.1) admits a unique adapted solution (X, Y, Z) e ~4[0, T] 
which can be represented by (5.5), (4.1) and (5.6). 

The proof can be carried out similar to the case of one-dimensional 
Brownian motion. We leave the proof to the interested readers. 
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Method  of Optimal Control 

In this chapter, we study the solvability of the following general nonlinear 
FBSDE: (the same form as (3.16) in Chapter 1) 

dX(t) = b(t, X(t), Y(t), Z(t))dt + a(t, X(t), Y(t), Z(t))dW(t), 

(0.1) dY(t) = h(t, X(t),  Y(t), Z(t))dt + Z(t)dW(t), t E [0, T], 

X(O) = x, Y(T) = g(X(T)). 

Here, we assume that  functions b, a, h and g are all deterministic, i.e., they 
are not explicitly depending on w E ~; and T > 0 is any positive number. 
Thus, we have an FBSDE in a (possibly large) finite time duration. As we 
have seen in Chapter 1, w under certain Lipschitz conditions, (0.1) admits 
a unique adapted solution (X(-), Y(-), Z(-)) E ~/[[0,T], provided T > 0 is 
relatively small. But, for general T > 0, we see from Chapter 2 that  even if 
b, a, h and g are all afflne in the variables X, Y and Z, system (0.1) is not 
necessarily solvable. In what follows, we are going to introduce a method 
using optimal control theory to study the solvability of (0.1) in any finite 
time duration [0, T]. We refer to such an approach as the method of optimal 
control. 

w Solvabi l i ty  a n d  the  Assoc i a t ed  O p t i m a l  C o n t r o l  Problem 

w A n  o p t i m a l  con t ro l  problem 

Let us make an observation on solvability of (0.1) first. Suppose (X(.), 
Y(.), Z(.)) E fld[0,T] is an adapted solution of (0.1). By letting y = Y(0) E 
]R m, we see that  (X(.), Y(.)) satisfies the following FSDE: 

dX(t) = b(t, X(t),  r( t) ,  Z(t))dt + a(t, X(t), Y(t), Z(t))dW(t), 

(1.1) dY(t) = h(t, X(t),  Y(t), Z(t))dt + Z(t)dW(t), t E [0, T], 

x ( 0 )  = x,  Y ( 0 )  = 

with Z(.) E Z[O,T]~=L 2 rO T ' R  m• ~ , , j being a suitable process. We note 
that  y and Z(-) have to be chosen so that the solution (X(-), Y(.)) of (1.1) 
satisfies the following terminal constraint: 

(1.2) Y(T) = g(X(T)). 

On the other hand, if we can find an y E Rm and a Z(.) E Z[0, T], such that  
(1.1) admits a strong solution (X(.), Y(.)) with the terminal condition (1.2) 
being satisfied, then (X(.) ,Y(.) ,  Z(.)) E ~4[0, T] is an adapted solution of 
(0.1). Hence, (0.1) is solvable if and only if one can find an y E ]R m 
and a Z(.) E Z[0, T], Such that  (1.1) admits a strong solution (X(.), Y(.)) 
satisfying (1.2). 
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The above observation can be viewed in a different way using the 
stochastic control theory. Let us call (1.1) a stochastic control system with 
(X(.),  Y(-)) being the state process, Z(.) being the control process, and 
(x,y) �9 ~n  x ~m being the initial state. Then the solvability of (0.1) is 
equivalent to the following controllability problem for (1.1) with the target: 

(1.3) T = {(x,g(x)) I x �9 ]RU}. 

P r o b l e m  (C) .  For any x �9 IR n, find an y �9 IR m and a control Z(.) �9 
Z[0, T], such that  

(1.4) (X(T),  Y(T)) �9 T,  a.s. 

Problem (C) having a solution means that the state (X(t) ,Y(t))  of 
system (1.1) can be steered from {x} x Nm (at time t = 0) to the target T,  
given by (1.3), at time t = T, almost surely, by choosing a suitable control 
Z(-) �9 Z[0, T]. 

In the previous chapter, we have presented some results related to this 
aspect for linear FBSDEs. We point out that  the above controllability 
problem is very difficult for nonlinear case. However, the above formulation 
leads us to considering a related optimal control problem, which essentially 
decomposes the solvability problem of the original FBSDE into several rel- 
atively easier ones; and we can treat them separately. Let us now introduce 
the optimal control problem associated with (0.1). 

Again, we consider the stochastic control system (1.1). Let us make 
the following assumption: 

(H1) Functions b(t, z, y, z), a(t, x, y, z), h(t, x, y, z) and g(x) are contin- 
uous and there exists a constant L > 0, such that  for qo = b, a, h, g, it holds 
that  

Iqo(t, x, y, z) - qo(t, g, ~, 3) 1 _< L(Ix - 51 + lY - Yl + I z - zl), 

(1.5) I~(t,0,0,0)l, I~(t,x,y,O)l <_ L, 
V t � 9  T], x , ~ � 9  n, y , ~ � 9  z , g � 9  

Under the above (H1), we see that  for any (x, y) E]R '~ • I~ TM, and Z(.) �9 
Z [ 0 ,  T], (1.1) admits a unique strong solution, denoted by, (X(.), Y(.)) _= 

(X(-;  x, y, Z(.)), Y(. ; x, y, Z(.))), indicating the dependence on (x, y, Z(.)). 
Next, we introduce a functional (called cost functional). The purpose is 
to impose certain kind of penalty on the difference Y(T)  - g(X(T)) being 
large. To this end, we define 

(1.6) f(x,y)=,/l+ly-g(x)12-1, V ( x , y )  �9 ~ x ~ m . 

Clearly, f is as smooth as g and satisfying the following: 

(1.7) ~ / ( x ,  y) > O, V(x, y) �9 ~ x ~m,  

I f (x ,y )  O, if and only if y = g(x). 
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In the case that  (H1) holds, we have 

If(x,Y) - f(~,Y)I ~-Lix -~1 + [Y - Y l ,  
(1.8) V(x,y), (5,y) E IR n x IR m. 

Now, we define the cost functional as follows: 

(1.9) g (x, y; Z (.) ) ~ E f ( X (T; x, y, Z(.) ), Y (T; x, y, Z(.) ) ). 

The following is the optimal control problem associated with (0.1). 

P r o b l e m  (OC) .  For any given (x, y) C IR u x I~ m, find a Z(-) �9 Z[0, T], 
such that  

(1.10) V(x,y)  ~= inf J(x,y; Z(.)) = J(x,y;-Z(.)). 
Z(.)~z[O,T] 

Any Z(.) �9 Z[O,T] satisfying (1.10) is call an optimal control, the 
corresponding state process 

(X(.), 9( .))  ~(X(.  ; x, y, Z(-)), Y(.; x, y, 5(.))) 

is called an optimal state process. Sometimes, (X(.), Y(-), Z(.)) is referred 
to as an optimal triple of Problem(OC). 

We have seen that  the optimality in Problem(OC) depends on the 
initial state (x, y). The number V(x, y) (which depends on (x, y)) in (1.10) 
is called the optimal cost function of Problem(OC). By definition, we have 

(1.11) V(x, y) >_ O, V(x, y) �9 IR n x IR TM. 

We point out that  in the associated optimal control problem, it is possible 
to choose some other function f having similar properties as (1.7). For 
definiteness and some later convenience, we choose f of form (1.6). 

Next, we introduce the following: 

(1.12) Af(V)-a-{(x,y) �9 R~ x R m [ V(x,y) = 0}. 

This set is called the nodal set of function V. We have the following simple 
result. 

P r o p o s i t i o n  1.1. For z �9 ~ ,  FBSDE (0.1) admits an adapted solution 
if  and only if  

(1.13) N(V) N[{x} x IR "~] / r 

and for some (x, y) �9 H(V~ there exists an optimal control Z(.) �9 Z[0, T], 
such that  

(1.14) V(x,y) = J(x,y; Z(.)) = O. 

Proof. Let (X(-), Y(-), Z(-)) �9 .hal[0, T] be an adapted solution of (0.1). 
Let y = Y(0) �9 IR TM. Then (1.14) holds which gives (x,y) �9 N(V)  and 
(1.13) follows. 
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Conversely, if (1.14) holds with some (x,y) E R n • Rm and Z(-) E 
Z[0, T], then (X(.), Y(.), Z(-)) E Jl4[0, T] is an adapted solution of (0.1). 

[] 

In light of Proposition 1.1, we propose the following procedure to solve 
the FBSDE (0.1): 

(i) Determine the function V(x, y). 

(ii) Find the nodal set Af(V) of V; and restrict x E R~ to satisfy (1.13). 

(iii) For given x E IR ~ satisfying (1.13), let y E ]R "~ such that  (x, y) E 
Af(V). Find an optimal control Z(.) E Z[0, T] of Problem(OC) with the 
initial state (x, y). Then the optimal triple (X(.), Y(.), Z(.)) E A/I[0, T] is 
an adapted solution of (0.1). 

It is clear that  in the above, (i) is a PDE problem; (ii) is a minimizing 
problem over ~m; and (iii) is an existence of optimal control problem. 
Hence, the solvability of original FBSDE (0.1) has been decomposed into 
the above three major steps. We shall investigate these steps separately. 

w A p p r o x i m a t e  so lvabi l i ty  

We now introduce a notion which will be useful in practice and is related 
to condition (1.13). 

De f in i t i on  1.2. For given x E R n, (0.1) is said to be approximately 
solvable if for any ~ > 0, there exists a triple (X~(.), Y~ (-), Z~(-)) E A4[0, T], 
such that  (0.1) is satisfied except the last (terminal) condition, which is 
replaced by the following: 

(1.15) ElY,(T) - g(X~(T))[ < e. 

We call (X~(-),Y~(-),Z~(-)) an approximate adapted solution of (0.1) with 
accuracy ~. 

It is clear that  for given x E R~, if (0.1) is solvable, then it is approxi- 
mately solvable. We should note, however, even if all the coefficients of an 
FBSDE are uniformly Lipschitz, one still cannot guarantee its approximate 
solvability. Here is a simple example. 

E x a m p l e  1.3. Consider the following simple FBSDE: 

dX(t)  = Y(t)dt  + dW(t),  

(1.16) dY(t)  = - X ( t ) d t  + Z(t)dW(t) ,  

X(O) = x, Y (T)  = - X ( T ) ,  

with T = ~ and x ~ 0. It is obvious that  the coefficients of this FBSDE are 
all uniformly Lipschitz. However, we claim that  (1.16) is not approximately 
solvable. To see this, note that  by the variation' of constants formula with 
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y ---- Y(0), we have 

X ( t ) )  ( c o s t  s in t~  ( y )  
Y(t) = - s i n t  cos t ]  

(1.17) 
+ f o r ( c o s ( t - s )  s i n ( t - s )  

- s i n ( t - s )  cos(t s ) )  ( 1 z(s) ) dW(s). 
Plugging t = T = ~ into (1.17), we obtain that 

/o X(T)  + Y(T)  = - v ~ x  + ~(s)dW(s), 

where ~/is some process in L~=(0, T; ~).  Consequently, by Jensen's inequal- 
ity we have 

ElY(T)  - g(X(T))[ = E[X(T) + Y(T)[ _> [E[X(T) + Y(T)][ = vr2lx[ > 0, 

for all (y, Z) E ~m x Z[0, T]. Thus, by Definition 1.2, FBSDE (1.16) is not 
approximately solvable (whence not solvable). [] 

The following result establishes the relationship between the approxi- 
mate solvability of FBSDE (0.1) and the optimal cost function of the asso- 
ciated control problem. 

P r o p o s i t i o n  1.4. Let (H1) hold. For a given x 6 IR n, the FBSDE (0.1) is 
approximately solvable if  and only if  the following holds: 

(1.18) inf V(x,y) = O. 
y E R  m 

Proof. We first claim that the inequality (1.15) in Definition 1.2 can 
be replaced by 

(1.19) Ef(X~(T) ,  Y~(T)) < e. 

Indeed, by the following elementary inequalities: 

(1.20) r A r____~ 2 < x/ri- + r2 _ 1 < r, Vr e [0, oo), 
3 - -  

we see that if (1.15) holds, so does (1.19). Conversely, (1.20) implies 

Ef(X~(T),Y~(T))  >_ ~E([Y~(T) - g(Ze(T))[2I(ly~(r)_g(X~(T))[<_l)) 

+ 

Consequently, we have 

(I.21) EIY~(T)-g(X~(T)) I < 3EI(X~(T), Y~(T))+x/3EI(X~(T), Y~(T)). 

Thus (1.19) implies (1.15) with s being replaced by s' = 3e + x/~.  Namely, 
(1.18) is equivalent to the approximately solvability, by Definition 1.2 and 
the definition of V. [] 
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Using Proposition 1.4, we can now claim the non-approximate solvabil- 
ity of the FBSDE (1.16) in a different way. By a direct computation using 
(1.21), one shows that 

J(x,y; Z(.)) = Ef (X(T) ,  Y(T)) 

> [ v lxl+ -5] >0, VZ(.)�9 

Thus, 

1 i 1 1 2  V(x,y)_>5[ v@xl+ -7] >0, 

violating (1.18), whence not approximately solvable. 

Next, we shall relate the approximate solvability to condition (1.13). 
To this end, let us introduce the following supplementary assumption. 

(H2) There exists a constant L > 0, such that for all ( t ,x ,y ,z )  �9 
[0, T ]  x ]1:~ n x ]R m x ~:~mxd one of the following holds: 

Ib(t,x,y,z)l + la(t,x,y,z)l < L(1 + Ixl), 

(1.22) (h( t ,x ,y , z ) ,y )  > - L ( 1  + Ixl lYl + lY12), 

(1.23) 
(h( t ,x ,y , z ) ,y )  > - L ( I +  [y[2), 

Ig(x)l <_ L. 

P r o p o s i t i o n  1.5. Let (HI) hold. Then (1.13) implies (1.18); conversely, 
if V(x, .) is continuous, and (H2) holds, then (1.18) implies (1.13). 

Proof. That condition (1.13) implies (1.18) is obvious. We need only 
prove the converse. Let us first assume that V is continuous and (1.22) 
holds. 

Since (1.18) implies the approximately solvability of (0.1), for every 
c E (0, I], we may let (X~,Y~, Z~) r J~4[0, T] be the approximate adapted 
solution of (0.I) with accuracy c. Some standard arguments using ItS's 
formula, Gronwall's inequality, and condition (1.22) will yield the following 
estimate 

(1.24) EIX~(t)I 2 <_ C(1 + ]x12), Vt r [0, T], c �9 (0, 1]. 

Here and in what follows, the constant C > 0 will be a generic one, de- 
pending only on L and T, and may change from line to line. By (1.24) and 
(1.15), we obtain 

E[Y~(T)I < EIg(X~(T)) I + ElY,(T) - g(X~(T)) I 
(1.25) 

_< C(1 + Ixl) +E _< C(1 + Ixl). 
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Next, let (x )  ~ ~/1 + [xl 2. It is not hard to check that both D (x )  and 
D 2 (x )  are uniformly bounded, thus applying It6's formula to (Yc(t)),  and 
note (1.22) and (1.24), we have 

E(Y~(T))-E(Y~(t ) )  

~t T 1 { (Y~(s),h(s, Xe(s),Ys(s),Ze(s))) = E  (Y~(s)) 

(1.26) +I[Iz~(s)I2--IZ~(s)T(y~(s)) 

>_ - L E F T ( 1  + IX~(s)l + < Y~(s)))ds 
J t  

F ___ - C ( l + l x l ) - L E  (Y~(s))ds, Vte [0,T]. 
J t  

Now note that  lYl --- (Y) -- 1 + lYl, we have by Gronwall's inequality and 
(1.25) that  

(1.27) E(Y~(t))<_C(I+Ixl), Vt e [0,TI, s e (0,1]. 

In particular, (1.27) leads to the boundedness of the set {IY~ (0)1}~>o. Thus, 
along a sequence we have Y~ (0) ~ y, as k -~ oo. The (1.13) will now follow 
easily from the continuity of V(x, .) and the following equalities: 

(1.28) 0 < V(x, Y~ (0)) _< Ef(X~ k (T), Y~ (T)) < ek. 

Finally, if (1.23) holds, then redoing (1.25) and (1.26), we see that  
(1.27) can be replaced by E(Y~(t)  } <_ C, Vt C [0,T], e E (0, 1]. Thus the 
same conclusion holds. []  

We will see in w that if (H1) holds, then V(., .) is continuous. 

w Dynamic Programming Method and the HJB Equation 

We now study the optimal control problem associated with (0.1) via the 
Bellman's dynamic programming method. To this end, we let s E [0, T) and 
consider the following controlled system (compare with (1.1)): 

dX(t) = b(t, X(t), Y(t), Z(t))dt + a(t, X(t), Y(t), Z(t))dW(t), 
(2.1) dY(t) = h(t, X(t), Y(t), Z(t))dt + Z(t)dW(t), t c [s, T], 

x ( s )  = x, Y ( s )  = y, 

Note that  under assumption (H1) (see the paragraph containing (1.5)), for 

any (s,x,y) e [0, T) x IR n x IR m and Z(.) 6 Z[s,T]A=L~(s,T;IRm• 
equation (2.1) admits a unique strong solution, denoted by, (X(.), Y(.)) =- 
(X(. ;  s, x, y, Z(.)), Y(-; s, x, y, Z(.))). Next, we define the cost functional as 
follows: 

(2.2) J(s,x,y;Z(.)) Z~ Ef(X(T;s,x,y,Z(.)) ,Y(T;s,x,y,Z(.))) ,  
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with f defined by (1.6). Similar to Problem(OC), we may pose the follow- 
ing optimal control problem. 

P r o b l e m  (OC)~. For any given (s,x,y) �9 [0, T) x ]R ~ x Rm, find a 
Z(.) �9 Z[s, T], such that  

(2.3) Y(s,  x, y) ~ inf .J(s, x, y; Z(.)) = J(s, x, y;-Z(.)). 
z(.)cz[~,T] 

We also define 

(2.4) V(T,x ,y )  = f (x ,y) ,  (x,y) e ]R n x lR m. 

Function V( . , . ,  .) defined by (2.3)-(2.4) is called the value function of the 
above family of optimal control problems (parameterized by s E [0, T)).  It 
is clear that  when s -- 0, Problem(OC)s is reduced to Problem(OC) stated 
in the previous section. In another word, we have embedded Problem(OC) 
into a family of optimal control problems. We point out that  this family of 
problems contains some very useful "dynamic" information due to allowing 
the initial moment s E [0, T) to vary. This is very crucial in the dynamic 
programming approach. From our definition, we see that  

(2.5)  = v ( x , y ) ,  �9 • 

Thus, if we can determine V(s,x ,y) ,  we can do so for V(x,y).  Recall 
that  we called V (x, y) the optimal cost function of Problem( OC), reserving 
the name value function for V(s, x, y) for the conventional purpose. The 
following is the well-known Bellman's principle of optimality. 

T h e o r e m  2.1. For any 0 < s < ~ < T, and (x, y) �9 ]R n • ]R m, it holds 

(2.6) Y ( s , x , y ) =  inf EY('g,X('~;s,x,y,Z(.)) ,Y( '~;s,x,y,Z(.))) .  
Z(.)eZ[s,T] 

A rigorous proof of the above result is a little more involved. We present 
a sketch of the proof here. 

Sketch of the proof. We denote the right hand side of (2.6) by V(s, x, y). 
For any z(.) C Z[s ,T] ,  by definition, we have 

Y(s, x, y) ~ J(s, x, y; Z(.)) 

= EJ(~, X(~'; s, x, y, Z(-)), Y(~'; s, x, y, Z(-)); Z(.)). 

Thus, taking infimum over Z(.) E Z[s, T], we obtain 

(2.7) Y(s,  x, y) (_ V(s, x, y). 

Conversely, for any 6 > 0, there exists a Z~(.) C Z[s,T], such that  

Y(s,  x, y) + e >_ J(s ,  z, y; Z~(.)) 

= EJ('~, X(~'; s, x, y, Z~(.)), Y(~'; s, x, y, Z~(.)); Z~ (.)) 
(2 .8)  

~ EV('~,X('~;s,x,y, Zs(.)),Y(~g;s,x,y,Z~(.))) 

V(s, x, y). 
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Combining (2.7) and (2.8), we obtain (2.6). [] 

Next, we introduce the Hamiltonian for the above optimal control prob- 
lem: 

{ 7t(s'x'y'q'Q'z)~= (q ' \h(s ,x ,y ,z)  ) 

(2.9) +~t r l  [Q(a(s,x,y,z z ) )  (cr(s,x,y,z z ) )T]} ,  

v ( s , x , v , q , Q , . )  �9 [0 ,T]  • • 

X ~n+m X ~n+m X ~mxd 

and 

(2.10) 
H(s,x,y,q,Q)= inf 7t(s,x,y,q,Q,z), 

zCR m• 
V(s, x, y, q, Q) �9 [0, T] x R n x R'~ x Rn+m x S '~+m, 

where S n+m is the set of all (n + m) x (n + m) symmetric matrices. We 
see that  since ~m• is not compact, the function H is not necessarily 
everywhere defined. We let 

(2.11) I)(H) ~={(s,x,y,q,Q) [ H(s,x,y,q,Q) > - ~ } .  

From above Theorem 2.1, we can obtain formally a PDE that  the value 
function V( . , - ,  .) should satisfy. 

P r o p o s i t i o n  2.2. Suppose V(s,x,y) is smooth and H is continuous in 
Int :D(H). Then 

(2.12) Vs(s,x,y) + H(s,x,y, DV(s,x,y),D2V(s,x,y)) = 0, 

for a11 (s, x, y) �9 [0, T) x ~ n  • ]R m, such that 

(s, x, y, DV(s, x, y), D2Y(s, x, y)) �9 Int T)(H), (2.13) 

where 

D Y =  Vy ' Vx T Vyv 

Proof. Let (s, x, y) E [0, T) • ~ n  • iRm such that  (2.13) holds. For any 
z �9 IR re• let (Z(.) ,  Y(.)) be the solution of (2.1) corresponding to (s, x, y) 
and Z(.) - z. Then, by (2.6) and It6's formula, we have 

o<_ - V(s ,x ,y)  } 
(2 .14)  - 

--+ Vs(s,x,y) + 7{(s,x,y, DV(s,x,y),D2V(s,x,y),z). 

Taking infimum in z 6 IR "~• we see that 

(2.15) Vs(s,x,y) + H(s,x,y, DY(s,x,y),D2Y(s,x,y)) >0. 
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On the other hand, for any E > 0 and ~ G (s,T), by (2.6), there exists 
a Z(.) - Z~(.) C Z[s,T], with the corresponding state being (X(.),Y(.)), 
such that  
(2.16) 

> E{V(~,x(~),Y(~))-V(s,~,Y)} 

= 1 E V~(t,X(t),Y(t)) 
~ - s  

+ ~t (t, X(t), Y(t), DV(t, X(t), Y(t)), D2V(t, X(t), Y(t)), Z(t))) }dr 

I >_ ^ E V~(t,X(t),Y(t)) 
8 - - 8  

+ H(t, X(t), Y(t), DV(t, X(t), Y(t)), D2V(t, X(t), Y(t))) }dt 

-+ Vs(s,x,y) + H(s,x ,y ,  DV(s,x,y) ,D2V(s,x,y)) .  

Here, we have used (2.13) and the assumption that  H is continuous in 
Int ~ (H) .  Combining (2.15)-(2.16), we obtain (2.12). [] 

Equation (2.12) is called the Hamilton-Jacobi-Bellman (HJB for short) 
equation associated with our optimal control problem. In principle, one 
can determine the value function V(. , - , - )  through solving (2.12)-(2.13) 
together with the terminal condition (2.4). However, since :D(H) might 
be a very complicated set, solving (2.12)-(2.13) together with (2.4) is very 
difficult. Thus, much more needs to be done in order to determine the value 
function V. 

w T h e  Value  Funct ion  

In this section, we are going to study the value function V introduced in 
the previous section in some details. 

w C o n t i n u i t y  a n d  semi -concav i ty  

We first look at the continuity of the value function V(s, x, y). Note that  
since the control domain ~{mxd is not compact, we can only prove the 
right-continuity of V(s, x, y) in s E [0, T). 

P r o p o s i t i o n  3.1. Let (H1) hold. Then V(s,x,y)  is right-continuous in 
s E [0, T) and there exists a constant C > O, such that 

0 < V(s,x,y)  _<C(1 + Ixl + lYl), 
(3.1) 

V(s, ~, y) e [0, T] • ~ n  • ~ ,  

(3.2) 
IV(s, x, y) - V(s ,~ ,y ) l  < C(Ix - ~ l  + ly - y l ) ,  

VsE[0,  T], x , ~ E ] R  n, y , ~ C I R  m. 

Proof. It is clear that  for any (s, x, y) E [0, T] x IR n x ~m,  we have 

0 <_ V(s,x,y)  <_ J(s,x,y;O) _< C(1 + Ixl + lyl). 
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This  proves (3.1). 
Next ,  let s E [0, T] and (x, y), (5, ~) E IR ~ x ~ m  be fixed. Then,  for 

any Z(.)  E Z[s, T], by ItS's formula and Gronwall 's  inequality, using (H1), 
we have 

EIX( t ;  s, y, Z(.)) - X(t;  s, 5, Z(.))12 

(3.3) + ElY( t ;  s, x, y, Z(.)) - Y(t;  s, 5,~, Z(.))12 

< C { J x ' - ~ [ Z + J y - ~ [ 2 } ,  t E [s,T], 

with C > 0 only depending on L and T. Then  (3.2) follows from (1.8), 
which implies the (Lipschitz) continuity of V(s,  x, y) in (x, y). 

We now prove the r ight-continui ty of V(s,  x, y) in s E [0, T]. First  of 
all, it is clear t ha t  for any Z(-) E Z[O,T], the function 

(8,x,y) J(8, x,y;ZJi,,Tl(.)) 
is continuous.  Thus,  by the definition of V, it is necessary tha t  V(s ,  x, y) 
is upper  semi-continuous.  On the other  hand,  by (2.6) and (3.2), taking 
Z(.)  = 0, we have 

(3.4) V(s,  x, y) < V(~g, x, y) + C(~ - s) 1/2, V0 < s < ~" < T. 

Thus ,  by the upper  semi-continuity of V, we must  have 

lim Y(~', x, y) = Y(s ,  x, y), 

which gives the r ight-continui ty of V in s E [0, T).  [ ]  

From (2.5) and (3.2), we see tha t  under  (H1), the funct ion V ( x , y )  is 
continuous,  the assertion tha t  we promised to prove in w 

Next ,  we would like to  establish another  impor tan t  p roper ty  for the 
value function.  To this end, we introduce the following definition. 

D e f i n i t i o n  3.2.  A function ~o : IR '~ -+ ~ is said to be semi-concave if there  
exists a constant  C > O, such tha t  the function (I)(x) - ~o(x) - Cix[ 2 is 
concave on ]R n, i.e., 

(3.5) ~()~x + (1 - ),)5) _> AO(x) + (1 - ;~)~(~), V)~ E [0, 1], x , 5  E IR ~. 

A family of functions ~E : ~ n  __+ IR is said to be semi-concave uniformly in 
e if there  exists a constant  C > 0, independent  of 6, such tha t  ~o~(x) - C I x ]  2 
is concave for all c. 

We have the following result.  

L e m m a  3.3.  Function ~ : IRn -+ lit is semiconcave if  and only if 

) ~ ( x )  + (1 - A)~o(5) - ~()~x + (1 - ),)5) < CA(1 - 'A)Ix  - 512, 

(3.6) VA E [0, 1], x, 5 E ~ .  

2,1 n In the  case that ~ E Wto ~ (IR ), it is semiconcave if and only if 

(3.7) D2~(x)  _< CI,  a.e. x E ]R n, 
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where D2~ is the (generalized) Hessian of  ~ (i.e., it consists of second order 
weak derivatives of  ~). 

Proof. We have the following identity: 

Alxl = + (1 - A)I~I  = - lax  + (1 - A)~I  = = A(1 - A)lx  - ~1 =, 
VA E [0, 1], x, 5 E Ft". 

Thus, we see immediately that  (3.5) and (3.6) are equivalent. 
Now, if ~ is C 2, then, by the concavity of qo(x) - C[x[ 2, we know that  

(3.7) holds. By Taylor expansion, we can prove the converse. For the 
general case, we may approximate ~ using mollifier. [ ]  

It is easy to see from the last conclusion of Lemma 3.3 that  if ~ has a 
bounded Hessian, i.e., ~ is uniformly Lipschitz, then, it is semi-concave. 
This observation will be very useful below. 

Let us make some further assumptions. 

(H3) Functions b, a, h and g are differentiable in (x, y) with the deriva- 
tives being uniformly Lipschitz continuous in (x, y) E ~ n  x ]R m, uniformly 
in ( t ,z)  E [0, T] x ]F~ m• 

We easily see that  under (H3), the function f defined by (1.6) has a 
bounded Hessian, and thus it is semi-concave. 

Now, we prove the following: 

T h e o r e m  3.4. Let (H1) and (H3) hold. Then the value function V(s ,  x, y) 
is semi-concave in (x, y) E ~t n x lit m uniformly in s E [0, T]. 

Proof. Let s E [0,T), xo, xl E ~ and Yo,Yl E ~ '~.  Denote 

(3.8) xx : Axl + (1 - A)x0, yx : Ayl + (1 - A)yo, A E [0, 1]. 

Then, for any ~ > 0, there exists a Ze(-) E Z[s, T] (which is also depending 
on A), such that  

(3.9) J(s,  xx,y~;Z~(.))  < V(s ,  xx,y~) + ~. 

We now fix the above Ze(') and let (X~(.), Y~(-)) be the solution of (2.1) 
corresponding to (s, xx, y~, Z~(.)). We denote 

(3.10) 
{ ~(r) = (X~(r), Y~(r)), 

Cx(r) = Arh( r  ) + (1 - A)r/o(r),  
A E [0,1], r E Is, T]. 

Using ItS's formula and Gronwall's inequality, we have 

(3.11) E I X I ( t  ) - Xo(t)[ 4 + EIYI(t  ) - Yo(t)I 4 _< c ( I x l  - x o l '  + lyl - yoI4) �9 
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Since f (x,  y) is semi-concave in (x, y) (by (H3)),  we have 

AV(s, xl ,yl)  + (1 - A)Y(s, xo,Yo) - Y(s, xx,yx) - 
< ~ J ( s , x l , y l ;  z~( . ) )  + (1 - ~ ) J ( s ,  x 0 , ~ o ;  z ~ ( . ) )  

( 3 . 1 2 )  . - J(s, xx,y:~; Z~(.)) 

EIAf(~h(T)) + (1 - A)f (~o(T))  - f(yx(T))~ 

<_ C E { A ( 1  - A)I,1 (T) - ,0 (T) l  2 + ]~x(T) - , x ( T ) I 2 } .  

Let  us now es t ima te  the  right hand  side of (3.12). For the  first t e rm,  we 
have 

(3.13) E]rh( t )  - -  ?']0(t)[ 2 5 C ( I x l  - Xol 2 -[- [Yl - yo[2) ,  t �9 [8,T]. 

To es t ima te  the  second t e r m  on the  right hand  side of (3.12), let us denote  

{ bx(r) = b(r,~?x(r), Ze(r) ) ,  

(3 .14)  hx(r) = h(r , ,u  (r), Z~ (r)), ;~ �9 [0, 1], r �9 Is, T] .  

~x(r) = ~(r, ~x(r), z~(r)), 

Then ,  app ly ing  I t6 ' s  formula,  one has (we suppress  r in the in tegrand below) 

E l~x(t) - ~x(t) l ~ 

= 2 E  ( AX1 + (1 - A)Xo - Xx,  Abl + (1 - A)bo - bx > dr 

(3.15) f t  
+ 2 E  ( AY1 + (1 - A)Yo - Yx, Ahl + (1 - A)ho - hx ) dr 

, ' 8  

-I- E I)~o'1 + (1 - A)ao - ax]2dr, t �9 [s, T]. 

Note  (we suppress  r and Z~ (r) f rom the second line on) 

IAbl ( r )  + (1 - A)bo( r )  - bx(r)l 

= [Ab(rh) + (1 - ),)b(r/o) - b(r~),)[ 

_< IA[b(rh) - b(~x)] + (1 - A)[b(r/o) - b(t~x)]l + L[~x - r/x[ 

(3.16) = A (bn(~x+a(1-A)(~ l -~?o) )da , (1-A) (~ l -~o) )  

+ Ll~x - vxl  

_ C A ( 1  - A)I~I - ~o12 + LISx - ~xl- 

We have  the  similar  es t imates  for the t e rms  involving h and a. Then  it 
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follows from (3.13) and (3.15) that  

El~(t)  - rl~(t)] 2 < CA2( I - A)2(Ixl - xol 2 + ly~ - yol=) z 

[' + c El~(r) - V~(r)12ar, Vt e [s,T]. 

By applying Gronwall's inequality, we obtain 

(3.17) El~,(t) - ~x(t)l 2 -< CA2( 1 - "~)2(IXl - Xol 4 + lYl - yo14) �9 

Combining (3.12), (3.13) and (3.17), we obtain the semi-concavity of 
V(s, x, y) in (x, y), uniformly in s E [0, T]. [] 

w Approximation of t he  value function 

We have seen that  due to the noncompactness of the control domain ~:~raxd, 
it is not very easy to determine the value function V through a PDE (the 
HJB equation). In this subsection, we introduce some approximations of 
the value function, which will help us to determine the value function (ap- 
proximately). 

First of all, let W(t) = (Wl (t), W2 (t)) be an (n + m)-dimensional Brow- 
nian motion which is independent of W(t) (embedded into an enlarged 
probability space, if necessary) and let {:~t}t_>o be the filtration generated 
by W(t) and W(t), augmented by all the P-null sets in ~-. Define 

(3.18) 

{ z0[s, T] A- Z[s, T], 

Zo[S, T] A-{Z: Is, T] x Q --~ Rm• ] Z is {5~t}t_>0-adapted , 

fTEIz(t)12dt < ~ }. 

Next, for any 5 > 0, we define 

{ Zz[s,T]A-{Z E Z[s,T] I IZ(t) I < 5' 

2z[ s ,T]  A-{Z E 2ofs, T] l lZ(t)l < ~, 
(3.19) 

The following inclusions are obvious. 

a.e.t  E Is, T], a.s. }, 

a.e. t E [s, T], a.s. ). 

(3.21) 
Z(t,w), if IZ(t,o,)l __% ~, 

Z~(t,~) = Z(t,~) 1 
51Z(t,o,)l' if IZ(t,o,)l > ~. 

In what follows, for any Z E Zo[s,T] (resp. Zo[s,T]) and 5 > 0, we 
define the [-truncation of Z as follows: 

Zo[s,T] D Z~,[s,T] D Z~[s ,T]  
(3.20) n n N V52 _> 51 _> 0. 

~'0 [S, T] ~ 281 [S, T] D Z~2 [s, T] 
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Clearly, Z~ �9 Z~[s,T] (resp. Z.~[s,T]). 
We now consider, for any ~ > 0, the following regularized state equation 

(compare to (2.1)): 

dX(t) = b(t, X(t), Y(t), Z(t))dt + a(t, X(t) ,  Y(t), Z(t))dW(t) 

+ v ~ d W 1  (t), 

(3.22) dY(t) = hit, X(t), Y(t), Z(t))dt + Z(t)dW(t) 
+ V~i~d~(t), t �9 [~, T], 

x ( s )  = ~, Y ( s )  = y. 

Define the cost functional by J~'~(s,x,y;Z(.)) (resp. ]~,~(s,x,y;Z(.))) 
which has the same form as (2.3) with the control being taken in Zz[s,T] 
(resp. Zs[s,T]) and the state satisfying (3.22), indicating the dependence 
on 5 ~ 0 and r >_ 0. The corresponding optimal control problem is called 

Problem (OC)~ '~ (resp. Problem (OC)~ ). The corresponding (approxi- 
mate) value functions are then defined as, respectively, 

(3.23) { VS'*(s,x,y) = in f JS'~(s,x,y;Z(.)), 
Z(.)EZ~[s,T] 

y~,~(s,~,y) inf J~'~(~,x,y; Z(-)). 
Z(.)EZ~[s,T] 

Due to the inclusions in (3.20), we see that for any (s, x, y) �9 [0, T] • ]R" x 
]R m , 

i3.24) { V 5'~(s,x,y) >VS'~(s ,x ,y)  > 0 ,  V 5 , 6 > 0 ,  

k'52'~is, x,y ) > l/5"~(s,x,y), V52 >__ 51 > O, ~ >_ 0, 

V~2'~(s,x,y) >_ VS~'~(s,x,y), V52 >__ 5~ _> 0, e k 0. 

Also, it is an easy observation that V~176 = V(s,x,y), V(s,x,y). 
Note that  for 5 > 0 and c > 0, the corresponding HJB equation for the 
value function V~'~ (s, x, y) takes the following form: 

(3.25) { Vf'~ + r  5'~ + HS(s,x,y,DVS'~,D2~V ~'~) = O, 
( s ,x ,y)  �9 (0,T) • ~ n  x ~m;  

#~'~(T,x,y) = f(~,y), (x,y) �9 ~"  x ~m, 

where A is the Laplacian operator in IR n+m, and H 5 is defined by the 
following: 

H~(s,x,y,q,Q) ~= ( b(s,x,y,z) ~ 
inf { (q' h(s ,x,y,z)]  ) zER mXd 

+ ltr  [Q (a(s'x;Y'Z) ) (a(s'x;Y'z) )T]  } , 
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for (s, x, y, q, Q) E [0, T] x ]R n x R m x R,~+m X S n+m, where S '~+m is the 
set of all (n + m) x (n + m) symmetric matrices. We observe that  for c > 0, 
(3.25) is a nondegenerate nonlinear parabolic PDE; and for z = 0, however, 
(3.25) is a degenerate nonlinear parabolic PDE. The following notion will 
be necessary for us to proceed further. 

De f in i t i on  3.5. A continuous function v : [0, T] x ~1. ~ x ~m _> ]1% is called 
a viscosity subsolution (resp. viscosity supersolution) of (3.25), if 

v(T, x, y) <_ f ( x ,  y), Y(x, y) E R ~ x R m, 
(3.26) 

(resp. v(T, x, y) >_ f ( x ,  y), V(x, y) E ]R ~ x Rm), 

and for any smooth function ~(s, x, y) whenever the map v - ~ attains a 
local maximum (resp. minimum) at (s, x, y) E [0, T) x R n x R m, it holds: 

us(s ,  x, y) + ~ a ~ ( s ,  x, y) 
(3.27) 

+ S S ( s , x , y , D ~ ( s , x , y ) , D 2 ~ ( s , x , y ) )  >_ O ( resp .<0) .  

If v is both viscosity subsolution and viscosity supersolution of (3.25), we 
call it a viscosity solution of (3.25). 

We note that  in tile above definition, v being continuous is enough. 
Thus, by this, we can talk about a solution of differential equations without 
its differentiability. Furthermore, such a notion admits the uniqueness. 

The following proposition collects some basic properties of the approx- 
imate value functions. 

P r o p o s i t i o n  3.6. Let (H1) hold. Then 
(i) ~ , ~ ( s ,  ~, y) and V ~,~(s, x, y) are continuous in (x, y) �9 ~ "  • ~ m ,  

uniformly in s C [0, T] and 6, E >_ O; For fixed 6 > 0 and e > O, ~5,~ (s, x, y) 
and Va'~(s,x,y) are continuous in (s ,x ,y )  �9 [0, T] x Rn • Rm. 

(ii) For 6 > 0 and ~ >_ O, Va'e(s, x, y) is the unique viscosity solution of 
(3.25), and for 6,r > O, Va'e(s,x,y) is the unique strong solution of (3.25). 

(iii) For 6 > 0 and r >_ O, Va'~(s,x,y) is a viscosity super solution of 
(3.25), V~'~ is the unique viscosity solution of (3.25) (with r = 0). 

The proof of (i) is similar to that  of Proposition 3.1 and the proof of 
(ii) and (iii) are by now standard, which we omit here for simplicity of 
presentation (see Yong-Zhou [1] and Fleming-Soner [1], for details). 

The following result gives the continuous dependence of the approxi- 
mate value functions on the parameters 6 and r 

T h e o r e m  3.7. Let (1tl) hold. Then, for any s �9 [0, T], there exists a 
continuous function ~s : [0, oo) x [0, oo) --+ [0, co), with ~s(O,r) = 0 for all 
r >_ O, such that 

IP ,~(s ,  x, y) - #~,~(s, x, y)l _< ~(l~ - 31 + IE - ~l, Ixl + lyl), 

(3.28) IP '~(s ,  ~, y) - v~'~(s, ~, y)l _< ~(l~ - ~l + IE - gl, I~l + lyl), 

V(s, x, y) �9 [0, T] x Rn x Pf~, 5, 6, c, g �9 [0, 1]. 
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Proof. Fix (s, x, y) E [0, T] x IR n x Rm, 5, 5, s, f > 0, and Z C Z[s, T]. 
Let Z~ (resp. Z$) be the 1/5- (resp. 1/5-) truncation of Z; and (X, Y) (resp. 

A 

(X,Y))  the solution of (3.22) corresponding to (s, Z~) (resp. (g, Z$)). By 
It6's formula and Gronwall's inequality, 

E{[X(T)  - _~(T)] 2 + ]Y(T) - Y(T)I 2 } 

(3.29) f s  T 
< C { E  [Ze(t) - Z$(t)ledt + [x/~ - v~12}, 

where C > 0 depends only on L and T. Thus, we obtain 

IV~,~(~, ~, y) - v~,~(s, ~, y)l 
(3.30) 

< CIv '~-  v'-~l, V(s,~,y), 5,s,~ >_ 0. 

Combining with Proposition 3.6, we see that V~,~(s, x, y) is continuous in 
(s, x, y) �9 [0, co) x l{ n x IR m uniformly in 5 _> 0 and s e [0, T]. 

Next, for fixed (s, x, y) �9 [0, T] x IR '~ x l{ m, s _> 0, and 5 > 5 > 0, by 
(3.24), we have 

(3.31) o <_ y~,~(s,x,y) - ve ,~(s ,x ,y ) .  

On the other hand, for any 5 > 0, and So > 0, we can choose Z ~~ �9 Z~[s,T] 
so that  

(3.32) V~'~(s, x, y) + r > J~'~(s, x, y; Z~~ 

Let Z~ ~ be the 1-truncation of Z ~~ and denote the corresponding solution 
A A 

of (3.22) with Z ~~ (resp. Z~ ~ by (X~~ ~~ (resp. (X~~176 Setting 

( X , Y )  = (X~~176 (X,Y)  = (2~o,Y~o), s = g, Z~ = Z ~~ and Z$ = Z~ ~ 
in (3.29), we obtain 

E{tX~O(T) - 2~O(T)l:  + IY~~ - ~2~o (T)[: } 

(3.33) f T  
<_ CE [Z~~ - Z~~ 

a S  

We consider the following two cases: 

Case i. 5 > 0. In this case, note that IZ~~ - Z~~ <_ [1/5 - 1/51, 
a.e.t  E Is,T], a.s. By (1.8) and (H1), one easily checks that 

z 0/> c 
(3.34) 

1 1 
> V  ~ , ~ ( s , x , y ) - C  ~ - ~ .  

Combining (3.31), (3.32) and (3.34), we obtain (note So > 0 is arbitrary) 

0 < V~ '~ ( s , x , y ) -  V~'~(s,x,y)l < C ~ - ~1~ 
(3.35) - 

V(s,z ,y) ,  5,~ > O, s > O, 
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where C is again an absolute constant. 

Case 2. 5 = 0. Now let 5 > 0 be small enough so that the right side of 
(3.33) is no greater than ~ .  Then, similar to (3.36), we have 

(3.36) J~ Z ~~ >_ V~"~(s,x,y) - Eo. 

Combing (3.31), (3.32) and (3.36), one has 0 < V$'~(s, x, y) -V~ x, y) < 
2~0, which shows that  

(3.37) V$'~(s ,x ,y)$V~ 550. 

Since V~ x, y) is continuous in (~, x, y) (see (3.30) and Proposition 3.6- 
(i)), by Dini's theorem, we obtain that  the convergence in (3.37) is uniform 
in (r x, y) on compact sets. Thus, for some continuous function qs : [0, co) • 
[0, co) -+ [0, co) with ~s (0, r) = 0 for all r _> 0, one has 

o < - <_ Ixl + lyl), 
(3.38) 

V(s,x,y),  c e [0, 1], 3 _> 0. 

Combining (3.30), (3.35) and (3.38), we have that  V~,~(s, x, y) is continuous 
in (5, e, x, y) E [0, co) x [0, co) x B. n • ~m.  The proof for ~ , e  is exactly 
the same. [] 

C o r o l l a r y  3.8. Let (H1) hold. Then 

(3.39) V~'~ = V~'~ V(s ,x ,y)  e [0, T] • ]R n • ]R m, 5 _> 0. 

Proof. If 6 > 0, then both ~5,0 and V ~'~ are the viscosity solutions of 
the HJB equation (3.25). Thus, (3.39) follows from the uniqueness. By the 
continuity of ~ , 0  and V a,~ in 5 > 0, we obtain (3.39) for 5 = 0. [] 

C o r o l l a r y  3.9. Let V(O, x, y) = O. Then, for any g > 0, there exist 5, ~ > 0 
and Z~,6(.) E Zs[O, T] satisfying 

(3.40) J~'~(O,x,y; Z~'~(.)) < g, 

such that, is (X~,~(.),Ya,~(.)) is the solution of (2.1) with Z(.) = Z~'~(.), 
then the triplet (X~,~,Y 5,~, Z ~,~) is an approximate solution of (1.1) with 
accuracy 3g + yrS .  

Proof. Let V(O,x,y)  = 0. Since V = V ~176 by Theorem 3.7, there 
exist 5,r > 0, such that  VS,~(O,x,y) < g. Now by (3.9) we can find a 
Z ~'a C Zs[0, T] such that  (3.40) is satisfied. Let (X a,~, Y~,~) be the solutions 
of (2.1) with s = 0, and Z = Z 5'~. Then we have (see (1.21)) 

EIyS,~ (T) - g( XS,~ (T) ) I 

<_ 3Ef(X~'~(T),  Ya'~(T)) + v/3Ef(X~,~(T),  Y~,~(T)) 

= 3JS,~(O,x,y; Z~'~(.)) + v/3g~,~(O,x,y; Z~,~(.)) 

< 
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This proves our assertion. []  

To conclude this section, we present the following result. 

P r o p o s i t i o n  3.10. Let (H1) and (H3) hold. Then V~'~(s,x,y) is semi- 
concave uniformly in s �9 [0, T], 5 �9 (0, 1] and c �9 [0, 1]. In particular, there 
exists a constant C > O, such that 

(3.41) AyVh'~(s ,x ,y)  <_ C, V(s , x , y )  �9 [0, T] • ~n  • ~m,  6,E �9 (0,1], 

m where Ay = ~ j = l  02 yj" 

Proof. The proof of the first claim is similar to that of Theorem 3.4. 
To show the second one, we need only to note that by (3.7), 

A y V  5'~ = t r {  ( 0  0 ~ ) D 2 V  ~'~ ( 0  0 0 i ) }  ~ C, 

which gives (3.41). []  

w A Class of  Approx imate ly  Solvable F B S D E s  

We have seen from Proposition 1.4 that if (1.13) holds, then (0.1) is ap- 
proximate solvable. Further, from w we see that if (x, y) C ]R n X ~:~m is 
such that V(0, x,y)  -- 0, then one can actually construct a sequence of 
approximate solutions to (0.1). Finally, (1.13) is also an important step of 
solving (0.1) (see Proposition 1.1). In this section, we look for conditions 
under which (1.13) holds. Moreover, we would like to construct the nodal 
set Af(V) for some special and interesting cases. 

In what follows, we restrict ourselves to the following FBSDE: 

dX( t )  = b(t, X( t ) ,  Y ( t ) )d t  + a(t, X( t ) ,  r ( t ) ) d W ( t ) ,  

(4.1) dY( t )  = h(t, X( t ) ,  Y ( t ) )d t  + Z( t )dW( t ) ,  t C [0, T], 

X(O) = x, Y ( T )  : g (X(T) ) .  

The difference between (0.1) and (4.1) is that  in (4.1)__, the functions b, a 
and h are all independent of Z. To study the set A/'(V), we introduce the 
nodal set of value function V(s,  x, y): 

A/'(V) { ( s , x , y )  �9 [0, T] x Ill n x ~ m  I V ( s , x , y )  = 0 }. (4.2) 

Clearly, 

(4.3) {0} • N ( v )  = N ( v )  N [{0} • • 

We will study A/(V) below, which will automatically give the information 
on A/'(V) that we are looking for. 

Let us now first make an observation. Suppose there exists a function 
: [0, T] • IR ~ -+ ~ '~,  such that 

(4.4) V(s,  x, 0(s, x)) = 0, V(s, x) E [0, T] • ~ ,  
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then it holds 

(4.5) { (s, x, tg(s, x)) I (s, x) �9 [0, T] • R ~} C Af(V). 

In particular, 

(4.6) (x, 8(0, x)) �9 Af(V), Vx �9 ~ .  

This gives the nonemptiness of the nodal set Af(V). Thus, finding some 
way of determining tg(s, x) is very useful. Now, let us assume that both V 
and 0 are smooth and we find an equation that is satisfied by 8 (so that 
(4.4) holds). To this end, we define 

(4.7) w(s, x) = V(s, x, O(s, x)), V(s, x) �9 [0, T] • ~ ' .  

Differentiating the above, we obtain 

(4.8) 

Clearly, 

{ w , = v , + ( v y , o , ) ,  

w~,=V~,+(Vu,tg~,) , l < i < n ,  

l < i , j < _ n .  

(4.9) tr  [aaTwx~] : tr  {aa T [Vxz + 2VxyOx + 0~ VyyOz + )] }, 

where we note that  V~ is an (n x m) matrix and 0~ is (m x n) matrix. 
Then it follows from (2.12) that (recall (4.1) for the form of functions b, 
and h) 

1 T O=Vs+ ~t r [a a  Vx~]+(b,V~)+(h,  Vy) 

+ 21 zert m• tr [VTaz T + V~yza T + Vyyzz T] 

= ws - ( Vy, 0~ ) + l t r  [ f f f fT (wxx  -- 2Vxy~x  - ~xTVyy~x)] 

T 1 ( tr  aaTo~, Vy ) +(b,w~ - O ~ Y y ) + ( h ,  V y ) - ~  
(4.1o) 1 

inf tr [VT az T + V~yza T + VyuzZ T] 
q- ~ zER mxd 

= {w, + l t r  [aaTw~] + ( b, w~ ) } 

- ( Vy, Os + l t r  [aaTo~] + Ozb - h ) } 

1 inf t r  [2(z ~ x c r ) a T y x y  q_ ( z z  T T T 
+ ze.  T M  - - 

Thus, if we suppose 0 to be a solution of the following system: 

(4.11) O~+~tr[aa O~]+O~b-h=O,  (s,x) e [ O , T ) x ~  ~, 

t -- g. 
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Then we have 

(4.12) 
1 T 

I w s + ~ t r [ a a  wz~]+(b,w~ I >0, 

'[ ~l~=~ =o. 

Hence, by maximum principle, we obtain 

(4.13) 0 > w(s ,x)  = V(s ,x , e ( s , x ) )  > 0, v(s, x) �9 [0, T] x R=. 

This gives (4.4). The above gives a proof of the following proposition. 

P r o p o s i t i o n  4.1. Suppose the value function V is smooth and ~ is a 
classical solution of (4.11). Then (4.4) holds. 

We know that  V(s ,x ,y)  is not necessarily smooth. Also since aa T 
could be degenerate, (4.11) might have no classical solutions. Thus, the 
assumptions of Proposition 4.1 are rather restrictive. The goal of the rest 
of the section is to prove a result similar to the above without assuming 
the smoothness of V and the nondegeneracy of (ra T. To this end, we need 
the following assumption. 

(H4) ~unction g(x) is bounded in C2+~(~ n) for some a �9 (0,1) and 
there exists a constant L > 0, such that  

(4.14) ]b(s,x,O)l + [a(s,x,O)[ + [h(s,x,O)l <_ L, V(s,x) �9 [0,T] x ~'~. 

Our main result of this section is the following. 

T h e o r e m  4.3. Let (H1)-(H3) hold. Then, for any x E lR ~, (1.13) holds, 
and thus, (4.1) is approximately solvable. 

To prove this theorem we need some lemmas. 

L e m m a  4.4. Let (H1)-(H3) hold. Then, for any c > O, there exists a 
unique classical solution 0 r : [0, T] • ~ n  --+ IR m of the following (nondegen- 
erate) parabolic system: 

f 1 
O~s + eAO ~ + ~tr[aaTo~] + O~b- h = O, 

(4.15) [ Oe[s=T = g, 

(s, x) e [0, T) x ~n,  

with 0 E, 0~ and O~zj all being bounded (with the bounds depending on 
e > O, in general). Moreover, there exists a constant C > O, independent 
ore  C (0, 1], such that 

(4.16) le~(s,x)l<_C, V(s,x) e[O,T]x~ n, ce(0 ,1] .  
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Proof. We note that  under (H1)-(H3), following hold: 

0 < (aaT)(s ,x ,y)  < C(1 + lyl2)/, 
I(~x,~TD(s,x,Y)l + I ( % ~ T ) ( s , x , Y ) I  < C(1 + lYl), 

(4.17) l < i < n ,  l < k < m ,  

Ib(s,x,y)l < L(1 + lYl), 

- < h ( s , x , y ) , y )  < L(1 + lyl2). 

Thus, by Ladyzenskaja, et al [1], we know that  for any s > 0, there exists 
a unique classical solution 0 ~ to (4.15) with 0 ~, 0~ and 0 ~ j  all being 
bounded (with the bounds depending on s > 0). Next, we prove (4.16). To 
this end, we fix an s E (0, 1] and denote 

Asw ~ s a w  + l t r  [aaT(s, x, Oe(s, x))wzx] + ( b(s, x, OS(s, x)), wz ) 

(4.18) 
=--- a i j W x ~ x  j -4- beiwxi .  

i , j = l  i = 1  

Set 

(4.19) 
m 

~( s , x )  A llo~(s,x)12 =_ ~-~O~,k(s,~)2. = -~ -~ 
i = 1  

Then it holds that  (note (4.17)) 

m m 

--w~ = Z--.,X-" O~'kOE'k~ = E O~'k[ -A~OE'k + hk(s'x'O~)] 
k = l  k = l  

m 

= -- __ b i Ox~ + a i j  x i x j  
k = l  i , j = l  i = 1  

=-~ ~ a~.~rAO~,k~21 -o~,~o~,~ ~jttt 2 ] j x i x j  - x  i -f~j j 
k = l  i , j = l  

~ n E 1 e k 2  - Z b ~ [ ( ~ o ' ) ] x ~  
m 

+ EO~'khk(s ,x ,O ~) 
k = l  k = l  i = 1  

> - A ~  - 2L~ - L. 

Thus, ~ is a bounded (with the bound depending on s > 0) solution of the 
following: 

{ W s + A ~ I + 2 L w > _ - L , ( s , x )  E[O,T)x lRn,  
(4.20) ~ l , = r  < Ilgll~. 

By Lemma 4.5 below, we obtain 

(4.21) ~(s,  x) < C, V(s, x) C [0,T] x IR n, 
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with the constant only depending on L and IIg]l~ (and independent of 
c > 0). Since w is nonnegative by definition (see (4.19)), (4.16) follows. 

[] 

In the above, we have used the following lemma. In what follows, this 
lemma will be used again. 

L e m m a  4.5. Let Ae be given by (4.18) and w be a bounded solution of 
the following: 

[ we + A~w + how > -ho, (s, x) c [0, T) • R", 
(4.22) 

wls= T <_ go, 

for some constants ho, go >_ 0 and )~o C ]R, with the bound of w might  
depend on r > O, in general. Then, for any )~ > ~o V O, 

ho (4.23) < J [ g o  v A- Go]' v(s,x) [0,T] x 

Proof. Fix any ,k > ,ko V 0. For any/3 > 0, we define 

(4.24) {(s,  x) = e~ 'w(8 ,  x) - fllxl =, V(s, x) e [0, T] x P~.  

Since w(s,  x) is bounded, we see that  

(4.25) lim (I)(s, x) = -oo.  

Thus, there exists a point (~,~) E [0, T] • IR" (depending on fl > 0), such 
that  

(4.26) ~l,(s, x) < r ~), V(s, x) e [0, T] x IR". 

In particular, 

(4.27) e ~ w ( ~ , ~ )  - fll~l 2 = cI,(~,~) >_ ~(T,O) = eXTw(T,O), 

which yields 

(4.28) fll~l 2 < e'X-~w(~,-~) - e~Tw(T, O) < C~. 

We have two cases. First, if there exists a sequence fl$0, such that  ~ = T, 
then, for any (s, x) C [0, T] x Rn, we have 

w ( s , x )  < e-~[f l lx l2  + 9(T,Z)] 

(4.29) <_ e-'Xs[fl[xl 2 q- e;~Tg 0 -- fll~l 2] 

< fllxl 2 + e~Tgo --+ e~Tgo, as /3 --+ 0. 

We now assume that  for any fl > 0, ~ < T. In this case, we have 

0 _> ((Is + A ~ ) ( ~ , ~ )  

(4.30) = AeX~w + eX-~[w~ + A~w] - flA~(]x[2)[~=~ 

> (A - ,ko)e~'-~w - e~ho  - flAE(Ixl2)I~=~. 
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Note that  (see (4.28)) 

.As (Ix[ 2) [x=w = 2nr + [a(g, ~, 0e(~, E))12 + 2 ( b(g, ~, 0e(~, 5)), ~)  

< 2ha + C~ + C~[5[ <_ Ce + Cs[ ~-1 /2 .  

Hence, for any (s, x) e [0, TJ x ~:{n, w e  have 

e ~ w ( s , x )  - N x l  ~ = O ( s , x )  ~ ~(~,~) = e ~ w ( ~ , ~ )  - ~1~12 

e~ho < - -  
- A - A o  

e~ T h o < - -  
- -  A - A o  

Sending fl -+ O, we obtain 

eAT ho 
(4.31) w(s, x) <_ A - A-----~' V(s, x) E [0, T] x ]R n. 

Combining (4.29) and (4.31), one obtains (4.23). 

Proof of Theorem 4.3. We define (note (3.24)) 

A~ 

A - -  A 0  

e ~ T  

+ ~-=~0 (~c~ + v~C~). 

[] 

~,~(s,x)~P~,~(s,x,e~(s,x)) >o, v(s,x) e [0,T] x ~  n 

Then we obtain (using (3.25), (3.29) and (4.15)) 

+ 21 [zl<_u~inf tr [ (V~)  Taz T + V~EzaT + Vy~6zzT] 

= {ws ~'~ + cAw ~'~ + ~tr  [aaTw~] + ( b, w~ 'c ) } + ~ A y ~  r5,r 

(4.32) 
- / V~,~ O~ 1 , .y , ~  + r ~ + ~tr  [(:rorTe~x] -[- 8~b - h} 

1 OeO_50.T~fi,e (ZZ T e T e T ~6,e + -  inf t r [ 2 ( z -  = , ~y + -O=a~r (0=))V~y] 
2 Izl_<l/~ 

1 T 5 , c  5 c _ b , w ;  ) <{w~'~+eAw5'~+~tr[aa w==]+( } + e C .  

The above is true for all c,~ > 0 such that IO~(s,x)a(s,x,O~(s,x))[ < �89 
which is always possible for any fixed c, and (f > 0 sufficiently small. Then 
we obtain 

{ w  ~'~ + A w ~'~ > -~C,  V(s, x) c [0, T] x IR ~, 8 6 __ 

5e 
W ' [s=T = O. 

On the other hand, by (H1) and (H3), we see that corresponding to the 
control Z~(-) = 0 e fi.~[s,T], we have (by Gronwall's inequality) [Y(T)I < 
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C(1 + lYl), almost surely. Thus, by the boundedness of g, we obtain (using 
Lemma  4.5) 

0 < =_ 

<_ Js'~(s,x,8~(s,x);O) < C(1 + 18~(s,x)l) <_ C. 

Next, by Lemma 4.5 (with)~0 - go = 0, )~ = 1 and h0 -- eC), we must have 
wS,e(s,x) ~ Eee T, V(s, x) �9 [0,T] • ~ n .  Thus, we obtain the following 
conclusion: There exists a constant Co > 0, such that  for any s > 0, one 
can find a 5 = 5(~) with the property that  

(4.33) 0 <_ VS'~(s,x,O~(s,x)) <_ cCo, V5 <_ (f(E). 

Then, by (3.28), (3.39) (with 5 = 0) and (4.33), we obtain 

0 < < + c0 

_< + + Io (o,x)l) +  Co. 

Now, we let 5 --+ 0 and then ~ --+ 0 to get the right hand side of the above 
going to 0. This can be achieved due to (4.16). Finally, since 8~(s,x) 
is bounded, we can find a convergent subsequence. Thus, we obtain tha t  
V(O,x,y) = 0, for some y �9 ~ '~ .  This implies (1.13). [ ]  

w Construction of Approximate Adapted Solutions 

We have already noted that  in order that  the method of optimal control 
works completely, one has to actually find the optimal control of the Prob- 
lem (OC), with the initial s tate satisfying the constraint (1.13). But on the 
other hand, due to the non-compactness of the control set (i.e., there is no 
a priori bound for the process Z), the existence of the optimal  control itself 
is a ra ther  complicated issue. The conceivable routes are either to solve the 
problem by considering relaxed control, or to figure out an a priori compact  
set in which the process Z lives (it turns out tha t  such a compact  set can 
be found theoretically in some cases, as we will see in the next chapter). 
However, compared to the other methods that  will be developed in the fol- 
lowing chapters, the main advantage of the method of optimal control lies 
in tha t  it provides a t ractable way to construct the approximate  solution 
for fairly large class of the FBSDEs, which we will focus on in this section. 

To begin with, let us point out that  in Corollary 3.9 we had a scheme 
of constructing the approximate solution, provided that  one is able to s tar t  
from the right initial position (x, y) e Af(V) (or equivalently, V(O, x, y) = 
0). The  draw back of tha t  scheme is that  one usually do not have a way 
to access the value function V directly, again due to the possible degener- 
acy cf the forward diffusion coefficient a and the non-compactness of the 
admissible control set Z[0, T]. The scheme of the special case in w is also 
restrictive, because it involves some other subtleties such as, among others, 
the est imate (4.16). 

To overcome these difficulties, we will first t ry  to s tar t  from some initial 
s ta te  tha t  is "close" to the nodal set Af(V) in a certain sense. Note tha t  
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the unique strong solution to the HJB equation (3.25), Vs'~, is the value 
function of a regularized control problem with the state equation (3.22), 
which is non-degenerate and with compact control set, thus many standard 
methods can be applied to study its analytical and numerical properties, on 
which our scheme will rely. For notational convenience, in this section we 
assume that  all the processes involved are one dimensional (i.e., n = rn = 
d = 1). However, one should be able to extend the scheme to general higher 
dimensional cases without substantial difficulties. Furthermore, throughout 
this section we assume that  

(H4) g E C2; and there exists a constant L > 0, such that  for all 
(t, x, y, z) �9 [0, T] • IR 3, 

(5.1) 
Ib(t,x,y,z)] + la( t ,x ,y , z ) l  + Ih(t ,x,y,z) l  < L(1 + Ix[); 

Ig'(~)l + Ig"(x)l _< L. 

We first give a lemma that  will be useful in our discussion. 

L e m m a  5.1. Let (H1) and (H4) hold. Then there exists a constant C > O, 
depending only on L and T, such that for all 5,r >_ O, and (s, x, y) E 
[0, T] • IR 2, it holds that 

(5.2) ~Js'~(s,x,y) >_ f ( x , y )  - C(1 + Ix[2), 

where f ( x , y )  is defined by (1.6). 

Proof. First, it is not hard to check that  the function f is twice con- 
tinuously differentiable, such that  for all (x, y) E ~2 the following hold: 

(5.3) 

{ [f~(x,y)l ~ Ig'(x)l, If~(x,y)[ ~ 1, 
(g(~) - y)g, , (x)  g ' ( z ) :  

f ~ ( x , y )  = [1 + (y - g(x))2]ll 2 + [1 + (y - g))213/2, 

1 
f ~ ( x , y )  = [1 + (y - g(x))2]~ > 0, A A x ,  y) = - g ' ( x ) f ~ ( x , y ) .  

Now for any 5, r > 0, (s, x, y) e [0, T] • IR 2 and Z e Z5 Is, T], let (X, Y) be 
the corresponding solution to the controlled system (3.22). Applying It6's 
formula we have 

(5.4) 

]5'~ (s, x, y; Z) = E f ( X ( T ) ,  Y (T) )  

= f ( x , y )  + E H ( t , X ( t ) , Y ( t ) , Z ( t ) ) d t ,  
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where, denoting (f~ = f~(x, y), fv -- fy(x, y), and so on), 

I I ( t ,x ,y ,z)  = f~b(t ,x ,y ,z)  + fyh( t ,x ,y , z )  

+ 2[ f~a2( t , x , y , z )  + 2f~ya(t ,x ,y ,z)z  + fuyz 2] 
I 

(5.5) 
>_ f ,b ( t , x , y , z )  + fvh( t ,x ,y , z )  + 7 - y,z) 

> - c ( 1  + Ixl2), 

where C > 0 depends only on the constant L in (H4), thanks to the esti- 
mates in (5.3). Note that  (H4) also implies, by a standard arguments using 
Gronwall's inequality, that  EiX(t)I 2 < C(1 + ixl2), Vt C [0,T], uniformly 

in Z(.) E Z5[s,T], 6 > O. Thus we derive from (5.4) and (5.5) that  

(s, x, v) = inf 
ZCh~[s,T] 

L = ] (x ,  y) + inf E II(t, X(t),  Y(t) ,  Z(t))dt 
ZEZ~[s,T] 

> f ( x ,  y)  - c(1 + 

proving the lemma. []  

Next, for any x E ]R and r > 0, we define 

Q~(r) A{y E ~ :  f (x ,y )  < r + C(1 + 

where C > 0 is the constant in (5.2). Since limlvl~ ~ f (x ,  y) = + ~ ,  Q~(r) 
is a compact set for any x E ~ and r > 0. Moreover, Lemma 5.1 shows 
that ,  for all 6, e >_ 0, one has 

(5.6) {y C IR: V~'~ (0, x, y) < r )  C_ Q~ (r). 

From now on we set r = 1. Recall that  by Proposition 3.6 and Theorem 
3.7, for any p > 0, and fixed x E IR, we can first choose 5, e > 0 depending 
only on x and Q~(1), so that  

(5.7) O<~d~'~(O,x,y) < Y ( O , x , y ) + p ,  for all y e Q~(1). 

Now suppose that  the FBSDE (1.1) is approximately solvable, we have 
from Proposition 1.4 that  infyeRV(0, x ,y)  = 0 (note that  (H4) implies 
(H2)). By (5.6), we have 

0 =  inf Y(0, x , y ) =  min V(0, x ,y) .  
yER yEQ~(1) 

Thus, by (5.7), we conclude the following 
L e m m a  5.2. Assume (H1) and (H4), and assume that the FBSDE (0.1) 
is approximately soluable. Then for any p > 0, there exist 5, ~ > 0 and 
depending only on p, x and Q~ (1), such that 

0 < inf Vh'~(0, x ,y)  = min Vh'~(O,x,y) < p. 
- u~R yeQ~(1) 
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[]  

Our scheme of finding the approximate adapted solution of (0.1) start- 
ing from X(0) = x can now be described as follows: for any integer k, we 
want to find {y(k)} C Q~(1) and {Z (k)} C Z[0, T] such that  

(5.8) E f ( X  (k) (T), y(k)(T)) < C__~ 
- k ' 

here and below C~ > 0 will denote generic constant depending only on L, 
T and x. To be more precise, we propose the following steps for each fixed 
k. 

Step 1. Choose 0 < 5 < �88 and 0 < c < 54 , such that  

inf P'~'~(O,x,y) = min V~'~(O,x,y) < 1 
yeR yeQ~(1) k" 

Step 2. For the given 5 and e, choose y(k) E Q~(1) such that  

V~'~(O,x,y (k)) < min V~'~(O,x,y) + 1 
yeQz(1) k" 

Step 3. For the given 5, c, and y(k) find Z (k) E Z~[0, T], such that  

c~ J(O,x,y(k); Z (k)) = E f (x (k ) (T) , y (k ) (T) )  ~ V~'~(O,x,y (k)) + --~-, 

where (X(k), y(k)) is the solution to (2.1) with y(k) (0) = y(k) and Z = Z(k); 
and C~ is a constant depending only on L, T and x. 

It is obvious that  a combination of the above three steps will serve our 
purpose (5.8). We would like to remark here that  in the whole procedure we 
do not use the exact knowledge about the nodal set Af(V), nor do we have 
to solve any degenerate parabolic PDEs, which are the two most formidable 
parts in this problem. Now that  the Step 1 is a consequence of Lemma 5.2 
and Step 2 is a standard (nonlinear) minimizing problem, we only briefly 
discuss Step 3. Note that  Vs'~ is the value function of a regularized control 
problem, by standard methods of constructing c-optimal strategies using 
information of value functions (e.g., Krylov [1, Ch.5]), we can find a Markov 
type control Z(k) (t) = a(k)(t, )~(k)(t), :~(k) (t)), where OL (k) is some smooth 
function satisfying supt,x,y la(k)(t,x,y)l ~ ~ and (X(k),Y (k)) is the corre- 

sponding solution of (4.8) with :~(k)(0) = y(k), SO that  

1 
(5.9) Y~'~(O,x,y(k); 2 (k)) < V~'~(O,x,y (k)) + -~. 

The last technical point is that  (5.9) is only true if we use the state equa- 
tion (3.22), which is different from (2.1), the original control problem that  
leads to the approximate solution that  we need. However, if we denote 
(X(k), y(k)) to be the solutions to (2.1) with Y(k)(O) = y(k) and the feed- 
back control Z(k)(t) = a (k)(X (k)(t), y(k)(t)), then a simple calculation 
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shows that 

0 <_ J(0, x, y(k); Z(k)) = Ef(X(k)(T),  y(k)(T)) 

(5.!0) < E f ( s (k) (T), ~(k) (T) ) + C~ yr~ 
1 

< (k)) + +ca , 

thanks to (5.9), where Ca is some constant depending only on L, T and 
the Lipschitz constant of a(k). But on the other hand, in light of Lemma 
5.1 of Krylov [1], the Lipschitz constant of a(k) can be shown to depend 
only on the bounds of the coefficients of the system (2.1) (i.e., b, h, a, and 
3(z) - z) and their derivatives. Therefore using assumptions (H1) and 
(H4), and noting that  supt IZ(k)(t)l <_ sup Is (k)} < ~, we see that, for fixed 
5, Ca is no more than C(1 + Ixl + 1/5) where C is some constant depending 
only on L. Consequently, note the requirement we posed on ~ and 5 in Step 
1, we have 

(5.11) Cavf~  < C(1 + Ixl + �89 2v/~ ~ < 2x/2C(1 + Ixl)5 < cx 1 

- -  - -  k ' 

where Cx ~ C(1 + Ixl)2v~ + 1. Finally, we note that the process Z(k)(.) 
obtain above is {:Tt}t>0-adapted and hence it is in Z~[0,T] (instead of 
Z~[0, T]). This, together with (5.10)-(5.11), fulfills Step 3. 



C h a p t e r  4 

F o u r  S t e p  S c h e m e  

In this chapter, we introduce a direct method for solving FBSDEs. Since 
this method contains four major steps, it has been called the Four Step 
Scheme. 

w A Heur i s t i c  D e r i v a t i o n  o f  Four  S tep  Scheme  

Let us consider the following FBSDE: 

dX(t) = b(t, X(t),  Y(t), Z(t))dt + a(t, X(t),  Y(t), Z(t))dW(t), 
(1.1) dY(t) = h(t, X(t), Y(t), Z(t))dt + Z(t)dW(t), 

X(O) = x, Y(T)  : g(X(T)). 

We assume throughout this section that  the flmctions b, a, h and g are 
deterministic. As we have seen in the previous chapter that  for any given 
x E Nn, the solvability of (1.1) is essentially equivalent to the following: 

v(0, x, 0(0, x)) = 0, 

where O(s, x) is the "solution" of some parabolic system and V(s, x, y) is the 
value function of the optimal control problem associated with the FBSDE 
(1.1). Assuming the Markov property (since coefficients are determinis- 
tic!) we suspect that  V(t ,X(t) ,O(t ,X(t)))  = 0, and Y(t) = O(t,X(t)) 
should hold for all t. In other words, we see a strong indication that  there 
might some special relations among the components of an adapted solution 
(X, Y, Z), which we now explore. 

Suppose that  (X, Y, Z) is an adapted solution to (1.1). We assume that  
that  Y and X are related by 

(1.2) Y(t) = O(t,X(t)), Vt e [0, T], a .s .P,  

where 0 is some function to be determined. Let us assume that  0 C 
C1,2([0, T] x K{n). Then by It6's formula, we have for 1 < k < m: 

(1.3) 

d Y  k (t) = dO k (t, X ( t ) )  

= {0~ (t, X ( t ) )  + (0~ (t, X( t ) ) ,  b(t, X ( t ) ,  O(t, X( t ) ) ,  Z(t))  ) 

1 
+ ~tr  [0kx (t, X(t))(aaT)(t, X(t), O(t, X(t)),  Z(t))] }dt 

+ (0~ (t, X(t)),  a(t, X(t), O(t, X(t)),  Z(t))dW(t) ). 

Comparing (1.3) and (1.1), we see that  if 0 is the right choice, it should be 
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that,  for k = 1 , . . . , m ,  

hk(t, X(t),  O(t, X(t)) 

= 0t k (t, X(t)) + (ok (t, X(t)), b(t, X(t) ,  O(t, X(t)), Z(t)) ) 
(1.4) 

+ l t r  [0~ (t, X(t))(aaT)(t, X(t), O(t, X(t)) ,  Z(t))] ; 

O(T, X(T))  = g(X(T)), 

and 

(1.5) 

81 

(1.8) 

where 

T h e  F o u r  S t ep  Scheme:  

Step 1. Find a function z(t, x, y,p) that satisfies the following: 

(1.6) 
z(t ,  ~, v ,p)  = p~(t,  x, v, z(t ,  ~, y ,p)) ,  

V(t,x,y,p) �9 [0, T] x Nn x N'~ x ~m• 

Step 2. Using the function z obtained in above to solve the following 
parabolic system for O(t, x): 

l 
0 k + l t r  [okx(aaT)(t,x,O,z(t,x,O, Ox))] 

(1.7) +(b(t,x,O,z(t,z,O,O,)),Okx)--hk(t,x,O,z(t,x,O,O~)) = 0 ,  

(t,x) E[0, T) x ~ n ,  l < k < m ,  

1, O(T, x) = g(x), x �9 IR '~. 

Step 3. Using 0 and z obtained in Steps 1-2 to solve the following 
forward SDE: 

dX(t) = [,(t, X(t))dt + 6(t, X(t))dW(t),  t e [0, T], 

x ( o )  = ~, 

Step 4. Set 

(1.9) 
{ ~,(t, x) = b(t, ~, o(t, ~), z(t, ~, o(t, ~), o~ (t, ~))), 

~(t, ~) = o(t ,  x, o(t, ~), z(t ,  x, o(t, x), o~ (t, ~))). 

Y(t) = 0(t, x(t)), 
(1.10) Z(t) z(t ,X(t),O(t,X(t)),O~(t,X(t))).  

If the above scheme is realizable, (X, Is, Z) would give an adapted solution 
of (1.1). As a matter  of fact, we have the following result. 

0x(t, X(t))a(t, X(t),  O(t, X(t)), Z(t)) = Z(t). 

The above heuristic arguments suggest the following Four Step Scheme for 
solving the FBSDE (1.1). 
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T h e o r e m  1.1. Let (1.6) admit a unique solution z(t, x, y,p) which is uni- 
formly Lipschitz continuous in (x, y,p) with z(t, O, O, O) being bounded. Let 
(1.7) admit a classical solution O(t, x) with bounded O~ and 0~. Let func- 
tions b and a be uniformly Lipschitz continuous in (x, y, z) with b(t, O, O, O) 
and a(t, O, O, O) being bounded. Then the process (X(.), Y(-), Z(-)) deter- 
mined by (1.8)-(1.10) is an adapted solution to (1.1). Moreover, if h is also 
uniformly Lipschitz continuous in (x, y, z), a is bounded, and there exists 
a constant/3 E (0, 1), such that 

(1.11) 
I [a ( s ,  x ,  y ,  z )  - y,  < Z lz  - 

V(s,x,y) e [0, T] x ~ x ~m, z , ~ E  ~{mxd, 

then the adapted solution is unique, which is determined by (1.8)-(1.10). 

Proof. Under our conditions both b(t,x) and Y(t,x) (see (1.9)) are 
uniformly Lipschitz continuous in x. Thus, for any x C IR ~, (1.8) has a 
unique strong solution. Then, by defining Y(t) and Z(t) via (1.10) and 
applying It6's formula, we can easily check that  (1.1) is satisfied. Hence, 
(Z, Y, Z) is a solution of (1.1). 

It remains to show the uniqueness. We claim that any adapted solution 
(X, Y, Z) of (1.1) must be of the form we constructed using the Four Step 
Scheme. To show this, let (X, Y, Z) be any solution of (1.1). We define 

(1.12) Y(t) = O(t,X(t)), Z(t) = z(t,X(t),O(t,X(t)),O~(t,X(t))). 

By our assumption, (1.6) admits a unique solution. Thus, (1.12) implies 

(1.13) Z(t) = O~(t,X(t))a(t,X(t),9(t),Z(t)),  a.s. t C [0, T]. 

Now, applying It6's formula to 0(t, X(t)),  noting (1.7) and (1.10), we have 
the following (for notational simplicity, we suppress t in X(t) ,  etc.): 

dyk(t) = dOk(t, X(t)) 

= {0tk ( t ,X)+  (O~(t ,X),b(t ,X,Y, Z))+~tr[O~(t ,X)(aaT)(t ,X,Y,  Z)]}dt 

+ ( O~(t, X), a(t, X, Y, Z)dW(t) ) 

= { ( Ok (t, X), b(t, X, Y, Z) - b(t, X, Y, 2) ) 

1 [O~( t ,X){(aaT)( t ,X ,y , z )  (aaT)(t,X, 9,2)}] + ~tr  

+ h k (t, X, Y, Z) }dt + ( Ok (t, X), a(t, X, ]I, Z)dW(t) ). 
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Then, it follows from (1.1) and (1.13) that  

E[~'(t)-  Y(t)[2 = - E  ~ T  ~-~ { 2(Yk - Yk) �9 
k = l  

[ ( O k (s, X), b(s, X, Y, Z) - b(s, X, Y, Z) ) 

(1.14) + 2tr{Ok~(s ,X)[ iaaT)(s ,X ,Y ,Z)-  (aaT)(s ,X,Y,Z)]}  

+ hk(s, X, Y, Z) - hk(s, X, Y, Z)] 

+ {a(s ,X ,Y ,Z)  - a (s ,X ,Y ,z )}TOk(s ,X)  + 2 -  Z 2}ds. 

Since, by (1.11), the boundedness of 0~, and the uniform Lipschitz conti- 
nuity of a, we have 

{ a(s, X, Z, Z) - ~(s, X, ~', 2) } T O~ (s, X) + 2 - Z ~ 

>_12 - Zl ~ - Io(s, x ,  Y, z )  - o(s, x ,  ~ ,  2 ) (o~)r (s ,  x ) l  ~ 

>(1  - / 3 ) 1 2  - z l  2 - C l ~  - Zl ~, 

here and in the sequel C > 0 is again a generic constant which may vary 
from line to line. Thus (1.14) leads to that  

~t T ElY(t )  - Y(t)l 2 + (1 - / 3 )  EIZ(s) - Z(s)12ds 

~t T (1 .15 )  < C E { I : Y ( s )  - V ( s ) l  2 + [ Y ( s )  - y ( s ) l L Z ( s )  - Z ( s ) l } d s  

__ c~  E l ~ ( s )  - Y(s)12as + s 12(s)  - Z(s)12as,  

where e > 0 is arbi trary and C~ depends on e. Since /3 < 1, choosing 
e < 1 - / 3  and applying Gronwall's inequality, we conclude that  

(1.16) Y(t) = Y'(t), Z(t) = Z(t),  a.s., a.e. t e [0, T] 

Thus any solution of (1.1) must have the form that  we have constructed, 
proving our claim. 

Finally, let (X, Y, Z) and (X, Y, Z) be any two solutions of (1.1). By 
the previous argument we have 

Y(t) = O(t,X(t)), Z(t) = z(t,X(t),O(t,X(t)),O~(t,X(t))), 
(1.17) ~'(t) O(t,X(t)),  Z(t) = z( t ,2( t ) ,O( t ,2( t ) ) ,O=(t ,2( t ) ) ) .  

Hence X(t) and 2( t )  satisfy exactly the same forward SDE (1.8) with the 
same initial state x. Thus we must have 

X(t) : X(t) ,  Vt E [0, T], a.s. P ,  
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which in turn shows that  (by (1.17)) 

Y(t )  = Y( t ) ,  Z(t) = Z(t) ,  Vt �9 [0, T], a . s .P .  

The proof is now complete. []  

R e m a r k  1.2. We note that  the uniqueness of FBSDE (1.1) requires the 
condition (1.11), which is very hard to be verified in general and therefore 
looks ad hoc. However, we should note this condition is trivially true if 
is independent of z! Since the dependence of a on variable z also causes 
difficulty in solving (1.6), the first step of the Four Step Scheme, in what 
follows to simplify discussion we often assume that  cr = or(t, x, y) when the 
generality is not the main issue. 

w N o n - D e g e n e r a t e  C a s e  - -  S e v e r a l  S o l v a b l e  C l a s s e s  

From the previous subsection, we see that  to solve FBSDE (1.1), one needs 
only to look when the Four Step Scheme can be realized. In this subsection, 
we are going to find several such classes of FBSDEs. 

w A g e n e r a l  c a s e  

Let us make the following assumptions. 

(A1) d = n; and the functions b, or, h and g are smooth functions taking 
values in IR '~, IR m, Ill n• ]R "~• and Ill m, respectively, and with first order 
derivatives in x, y, z being bounded by some constant L > 0. 

(A2) The function a is independent of z and there exists a positive 
continuous function ~,(-) and a constant # > 0, such that  for all (t, x, y, z) C 
[0, T] X ]~n X ]am X ]R n x m  

(2.1) "(lYl)I _< a( t , x ,Y )a ( t , x ,Y )  T <_ #I,  

(2.2) ]b(t,x,O,O)l + Ih(t,x,O,z)l < #. 

(A3) There exists a constant C > 0 and a E (0,1), such tha t  g is 
- bounded in C2+~(~m).  

Throughout  this section, by "smooth" we mean that  the involved func- 
tions possess partial  derivatives of all necessary orders. We prefer not to 
indicate the exact order of smoothness for the sake of simplicity of presen- 
tation. 

Since a is independent of z, equation (1.6) is (trivially) uniquely solv- 
able for z. In the present case, FBSDEs (1.1) reads as follows: 

( d X ( t )  = b(t, X( t ) ,  Y(t) ,  Z(t))dt  + a(t ,  X(t) ,  Y( t ) )dW(t ) ,  

(2.3) I dY( t )  = h(t, X(t) ,  Y(t) ,  Z(t))dt  + Z( t )dW(t) ,  t E [0, T], 
! 

[, X(O) = x, Y ( T )  = g(X(T)) ,  
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and (1.7) takes the following form: 

(2.4) { 0t k + l t r  [ok (aaT)(t,x,O)] + (b(t,x,O,z(t,x,O,O~)),O k ) 

- hk(t ,x ,O,z( t ,x ,O,  Ox)) = O, 

(t,x) C ( O , T ) •  ~, l < k < m ,  
e(T, ~) = g(x) ,  x �9 ~ n .  

Let us first try to apply the result of Ladyzenskaja et al [1]. Consider 
the following initial boundary value problem: 

O k + ~ ai j ( t ,x ,O)O~j  + ~bi( t ,x ,O,z( t ,x ,O,O~))ok~ 
i , j -~ l  i-~1 

(2.5) - hk(t,x,O,z(t,x,O,O~)) = O, 
(t, x) �9 [o, T] • BR, 1 < k < m, 

0 lOB= g(x) ,  Ixl = n ,  

O(T, x) = g(x), x �9 BR, 

where BR is the ball centered at the origin with radius R > 0 and { 1 
(aij (t, x, y)) = ~a(t, x, y)a(t, x, y) , 

( b l ( t , x , y , z ) , ' " , b n ( t , x , y , z ) )  T = b( t ,x ,y ,z ) ,  

(h l ( t , x , y , z ) ,  . . . , h m ( t , x , y , z ) )  T = h( t , x , y , z ) .  

Clearly, under the present situation, the function z(t, x, y, p) determined by 
(1.6) is smooth. We now give a lemma, which is an analogue of Ladyzen- 
skaja et al [1, Chapter VII, Theorem 7.1]. 

L e m m a  2.1. Suppose that all the functions aij, bi, h k and g are smooth. 
Suppose also that for all (t, x, y) �9 [0, T] x Ftn x ~ m  and p �9 R mxn, it 
holds that 

(2.6) - ( ly l ) I  _< (aij( t ,x,y))  < It(lyl)Z, 

(2.7) [b(t ,x,Y,z(t ,x,y,P))] <- It([Yl)( 1 + IpD, 

(2.8) ~--~aij(t,x,y) + ~--~fiaij(t,x,y) <-#(lY[), 

for some continuous functions It(') and ~(.), with v(r) > O; 

(2.9) [h( t ,x ,y ,z ( t ,x ,y ,p))[  <_ [e([y[) + P(]p[, [yD](X + [/~12), 

where P([p[, [yD --~ o, as Ip[ -+ c~ and e([y D is small enough; 

(2.10) ~ h k (t, x, y, z(t, x, y,p))yk >_ - L ( 1  + lY[2), 
k = l  
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for some constant L > O. Finally, suppose that g is bounded in C 2+~ (R  ~) 
for some ~ E (0, 1). Then (2.5) admits a unique classical solution. [] 

In the case g is bounded in C2+~(IRn), the solution of (2.5) and its 
partial derivatives 8(t,x),  Ot(t,x), O~(t,x) and O~(t ,x )  are all bounded 
uniformly in R > 0 since only the interior type Schauder estimate is used. 
Using Lemma 2.1, we can now prove the solvability of (2.4) under our 
assumptions. 

T h e o r e m  2.2. Let (A1)-(A3) hold. Then (2.4) admits a unique classical 
solution O(t, x) which is bounded and ~t(t, x), Ox(t, x) and O~(t, x) are all 
bounded as well. Consequently, FBSDE (2.3) is uniquely solvable. 

Proof. We first check that  all the required conditions in Lemma 2.1 are 
satisfied. Since a is independent of z, we see that  the function z(t, x, y,p) 
determined by (1.6) satisfies 

(2.11) [z(t,x,y,p)[ < C[p[, V(t ,x ,y ,p)  E [0, T] • R ~ • R "~ x R m• 

Now, we see that  (2.6) and (2.8) follow from (A1) and (A2); (2.7) follows 
from (A1), (2.2) and (2.11); and (2.9)-(2.10) follow from (A1) and (2.2). 
Therefore, by Lemma 2.1 there exists a unique bounded solution O(t, x; R) 
of (2.5) for which Ot (t, x; R), 8~ (t, x; R) and 0 , ,  (t, x; R) together with 8(t, x) 
are bounded uniformly in R > 0. Using a diagonalization argument one 
further shows that  there exists a subsequence 8(t, x, R) which converges 
uniformly to O(t,x) as R --+ oo. Thus 8(t,x) is a classical solution of (2.4), 
and St(t, x), 8~(t, x) and 0~( t ,  x), as well as 8(t, x) itself, are all bounded. 

Noting that  all the functions together with the possible solutions are 
smooth with required bounded partial derivatives, the uniqueness follows 
from a standard argument using Gronwall's inequality. 

Finally, by Theorem 1.1, FBSDE (2.3) is uniquely solvable. []  

w T h e  case  w h e n  h has  l inea r  g r o w t h  in z 

Although Theorem 2.2 gives a general solvability result of the FBSDE (2.3), 
condition (2.2) in (A2) is rather restrictive; for instance, the case that  
the coefficient h(t, x, y, z) is linearly growing in z is excluded. This case, 
however, is very important  for applications in optimal stochastic control 

-theory. For example in the Pontryagin maximum principle for optimal 
stochastic control, the adjoint equation is of the form that  the corresponding 
h is affine in z. Thus we would like to discuss this case separately. 

In order to relax the condition (2.2), we compensate by considering the 
following special FBSDE: 

dX(t)  = b(t, Z ( t ) ,  Y( t) ,  Z(t))dt  + a(t, X( t ) )dW(t ) ,  

(2.12) dY(t)  = h(t, X(t) ,  Y(t) ,  Z(t))dt  + Z( t )dW(t) ,  

X(O) = x, Y ( T )  = g(X(T)) .  

We assume that  a is independent of y and z, but we allow h to have a linear 
growth in z. In this case, the parabolic system looks like the following 
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(compare with (2.4)): 

(2.13) 

1 k O k + ~tr (Ox~a(t , x )a( t ,  x) T) + ( b(t, x, O, z( t ,  x, O, 0~)), O k ) 

- hk ( t , x ,O , z ( t , x ,O ,O~) )  = O, 

(t,x) E [ 0 , T ] •  m, l < k < m ,  

O(T, x) = g(x) ,  x e A '~. 

Since now h has linear growth in z, the result of Ladyzenskaja et al [1] does 
not apply. We use the result of Wiegner [1] instead. To this end, let us 
rewrite the above parabolic system in divergence form: 

(2.14) 

0k + ~ ]  (a,j(t, 
/ ,3----1 

O(T, x) -- g(x), 

x)O~,),j = Ik(t,z,o,o~), 

(t, x) e [0, T] x A m, 
x E ~n,  

l < k < m ,  

where 

(2.15) 

1 T (aij(t, x)) = ~ ( t ,  x)~(t, ~) , 
n n 

f k ( t ,  x, y ,p)  = E a i j~  (t, x)p  k - E bi(t, x, y, z ( t ,  x, y ,p) )pk  
. . .  i , j = l  i= l  

+ h k ( t , x , y , z ( t , x , y , p ) ) .  

By Wiegner [1], we know that for any T > 0, (2.14) has a unique classical 
solution, global in time, provided the following conditions hold: 

(2.16) u I  <_ (a i j ( t , x ) )  < # I ,  V ( t , x )  e [0, T] x A n, 

m 

~ - ~ . y k f k ( t , x , y , p )  < Colpl 2 + C(1 + ly12), 
(2.17) k=X 

V ( t , x , y , p )  E [0, T] x A n x A m x A nxm, 

where p,#, C, so are constants with ~o being small enough. (To fit the 
framework of Wiegner [1], we have taken H = lyl 2, c k =- 0 and r k - O, 
k = 1 , . . - ,  m. See Wiegner [1] for details). Therefore, we need the following 
assumption: 

(A2)' There exist positive constants u, #, such that 

(2.18) uI  __ a(t,  x)a( t ,  x) T <_ pI ,  V(t, x) E [0, T] • A n, 

(2.19) 
Ib(t,x,y,z)l, Ih(t,x,O,O)l <_ #, 

V(t ,x ,y ,z)  E [0, T] x A  ~ x A  m x A  mxn. 
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T h e o r e m  2.3. Suppose that (A1), (A2)' and (A3) hold. Then (2.12) 
admits a unique adapted solution (X, Y, Z). 

Proof. In the present case, for the function z(t ,x ,y,p) determined by 
(1.6), we still have (2.11). Also, conditions (2.16) and (2.17) hold, which 
will lead to the existence and uniqueness of classical solutions of (2.14) or 
(2.13). Next, applying Theorem 1.1, we can show that  there exists a unique 
adapted solution (X, Y, Z) of (2.12). []  

Since h(t, x, y, z) is only assumed to be uniformly Lipschitz continuous 
in (y, z) (see (A1)), we have 

rh(t,x,y,z)l <C(1 + lYl + IPl), 
(2.20) 

V(t,x,y,z)  E [0, T] • R n • IR m • IR m• 

In other words, the function h is allowed to have a linear growth in (y, z). 

w T h e  c a s e  w h e n  m = 1 

Unlike the previous cases, this is the case in which the existence of adapted 
solutions can be derived from a more general system than (2.4) and (2.13). 
The main reason is that  in this case, function O(t, x) is scalar valued, and 
the theory of quasilinear parabolic equations is much more satisfactory than 
that  for parabolic systems. Consequently, the corresponding results for the 
FBSDEs will allow more complicated nonlinearities. Remember that  in the 
present case, the backward component is one dimensional, but the forward 
part  is still n dimensional. 

We can now consider (1.1) with m = 1. Here W is an n-dimensional 
s tandard Brownian motion, b, a, h and g take values in IR n, ~n•  IR 
and IR, respectively. Also, X,  Y and Z take values in R~, ~ and IR n, 
respectively. In what follows we will t ry to use our Four Step Scheme to 
solve (1.1). To this end, we first need to solve (1.6) for z. In the present 
case, using the convention that  all the vector are column vectors, we should 
rewrite (1.6) as follows: 

(2.21) z = a(t, x, y, z)Tp. 

Let us introduce the following assumption. 

(A2)" There exist a positive continuous function ~(-) and constants 
C, ~ > 0, such that  for all (t, x, y, z) E [0, t ] x  ~ n  • ~ • ~ ,  

(2.22) t , ( lyl)I  <_ a(t ,  x, y, z)a(t, x, y, z) T <_ CI ,  

(2.23) 
([a(t ,x,y,z)T]-lz -- [a(t,x,y,~)T]-l~,z -- ~) 

>_ Zlz  - ~l 2, 

(2.24) Ib(t,x,O,O)l + Ih(t,x,O,O)l <_ C. 
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We note that  condition (2.23) amounts to saying that  the map z 
[a(t, x, y, z )T] - l z  is uniformly monotone. This is a sufficient condition for 
(2.21) to be uniquely solvable for z. Some other conditions are also possible, 
for example, the map z ~-+ -[a(t ,  x, y, z )T]- l z  is uniformly monotone. 

We have the following result for the unique solvability of FBSDE (1.1) 
with m = 1. 

Th e or e m 2.4. Let (A1) with m = 1, (A2)" hold. Then there exists a 
unique smooth function z(t, x, y,p) that solves (2.21) and satisfies (2.11). 
In addition, ff  (A3) also holds, then FBSDE (1.1) (with m = 1) admits an 
adapted solution determined by the Four Step Scheme. 

The proof is omitted here. 
We should note that  the well-posedness of (1.7) in the present case 

(m = 1) follows from Ladyzenskaja [1, Chapter V, Theorem 8.1]. We see 
that  the condition (2.24) together with (A1) means that  the functions b 
and h are allowed to have linear growth in y and z. Also, note that  we do 
not claim the uniqueness of adapted solutions since a condition similar to 
(1.11) is not easy to be made explicit. 

w Infinite Horizon Case 

In this section, we are concerned with the following FBSDE: 

dX(t )  = b(X(t),  Y( t ) )d t  + a(X( t ) ,  Y ( t ) )dW( t ) ,  t E [0, eo), 

dY(t)  = [h(X(t ) )Y( t )  - 1]d t -  ( Z ( t ) , d W ( t ) ) ,  t C [0, oc), 
(3.1) X(0) = x, 

Y(t )  is bounded a.s., uniformly in t C [0, oo). 

Note that  the time duration here is [0, oc). Thus, (3.1) is an FBSDE in an 
infinite time duration. In this section, we only consider the case m = 1, 
i.e., Y(.) is a scalar-valued process. Hence, Z(-) is valued in R d. Note that  
X(-) is still taking values in ~'~. 

w The  nodal  solution 

First of all, let us introduce the following notion. 

Definit ion 3.1. A process {(X(t) ,Y(t) ,Z(t))}t>_o is called an adapted 
solution of (3.1) if for any T > 0, (X, ]I, Z)I[O,T] e Ad[0, T], and 

f0 f0 I 
X(t )  = x + b(X(s),  Y(s))ds  + a(X(s) ,  Y (s ) )dW(s) ,  

(3.2) Y( t )  = Y ( T )  - [h(X(s))Y(s)  - 1]ds+ ( Z ( s ) ,dW(s )  }, 

0 < t < T < o o ,  

such that  3M > 0, [Y(t)l <_ M, Vt, P-a.s. Moreover, if an adapted solution 
(X, ]7, Z) is such that  for some 0 E C 2 (IR n) N C~ (IR'~), the following relations 
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hold: 

Y(t) t �9 [o, O(X(t)), 

(3.3) Z(t) a(X(t) ,O(X(t)))XO~(X(t)) ,  

then we call (X, Y, Z) a nodal solution of (3.1), with the representing func- 
tion O. 

Let us now make some assumptions. 

(H1) The functions a, b, h are C 1 with bounded partial derivatives and 
there exist constants A, # > 0, and some continuous increasing function 
u :  [0, oc) --+ [0, cx)), such that  

(3.4) AI <_ a(x ,y )a(x ,y )  T <_ #I,  (x,y) �9 4 n • 4 ,  

(3.5) Ib(x,y)[ ~ u(ly[), (x,y) �9 4 ~ x 4 ,  

(3.6) inf h(x) _= 5 > 0, sup h(x) - 7 < ~z. 
xEl~ ~ xERn 

The following result plays an important  role below. 

L e m m a  3.2. Let (H1) hold. Then the following equation admits a classical 
solution 0 �9 C2+~(4n):  

(3.7) ~tr(O~a(x ,O)aX(x ,O))  

such that 

+ ( b(x, 0), O~ ) -h(x)O + 1 = 0, x �9 4 ~. 

1 1 
(3.8) - < O(x) < ~, x �9 4 ~. 

Sketch of the proof. Let BR(O) be the ball of radius R > 0 centered 
at the origin. We consider the equation (3.7) in BR(0) with the homo- 
geneous Dirichlet boundary condition. By [Gilbarg-Trudinger, Theorem 
14.10], there exists a solution O R E C2+~(BR(0)) for some a > 0. By the 
maximum principle, we have 

(3.9) 0 <_ On(x) < ~, x C Bn(O). 

Next, for any fixed x0 E 4 n, and R > [xo] + 2, by Gilbarg-Trudinger [1, 
Theorem 14.6], we have 

(3.10) [Off(x)l _~ C, x �9 B l (X0)  , 

where the constant C is independent of R > Ix0[ + 2. This, together with 
the boundedness of a and the first partial derivatives of a, b, h, implies 
that  as a linear equation in 0 (regarding a(x, O(x)) and b(x, O(x)) as known 
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functions), the coefficients are bounded in C 1 . Hence, by Schauder's interior 
estimates, we obtain that  

(3.11) 118Rllc2+~(Bl(x0)) < C, VR > Ix01 + 2. 

Then, we can let R --+ co along some sequence to get a limit function 8(x). 
By the standard diagonalization argument, we may assume that  8 is defined 
in the whole of ~'~. Clearly, 8'E Ce+~(~ '~) and is a classical solution of 
(3.7). Finally, by the maximum principle again, we obtain (3.8). [] 

Now, we come up with the following existence of nodal solutions to 
(3.1). This result is essentially the infinite horizon version of the Four Step 
Scheme presented in the previous sections. 

T h e o r e m  3.3. Let (H1) hold. Then there exists at least one nodal solu- 
tion (X, Y, Z) of (3.1), with the representing function 8 being the solution 
of (3.7). Conversely, if  (X, ]I, Z) is a nodal solution of (3.1) with the repre- 
senting function 8. Then 8 is a solution of (3.7). 

Proof. By Lemma 3.2, we can find a classical solution 8 E C2+~(~ n) 
of (3.7). Now, we consider the following (forward) SDE: 

(3.12) ~ dX(t) = b(X(t), 8(X(t)))dt + a(X(t),  8(X(t)))dW(t), t > O, 

( x (o )  = x. 

Since 8~ is bounded and b and a are uniformly Lipschitz, (3.12) admits 
a unique strong solution X(t),  t E [0, co). Next, we define Y(-) and Z(.) 
by (3.3). Then, by Ith's formula, we see immediately that  (X, Y, Z) is an 
adapted solution of (3.1). By Definition 3.1, it is a nodal solution of (3.1). 

Conversely, let (X, ]I, Z) be a nodal solution of (3.1) with the represent- 
ing function 8. Since 8 is C 2, we can apply It6's formula to Y(t) = 8(X(t)). 
This leads to that  

dY(t) = [(b(X(t) ,  8(X(t))), 8,(X(t))  > 

(3.13) + ~tr (8~(X(t))aaq-(X(t) ,8(X(t))))]dt  

+ (8~(X(t)), a(X(t),  8(X(t)))dW(t) ). 

Comparing (3.13) with (3.1) and noting that  Y(t) = 8(X(t)), we obtain 
that  
(3.14) 

< b(x(t),  8(x( t ) ) ) ,  (x(t))  > + T (x( t ) ,  8(x(t)))]  

= h(X(t))8(X(t)) - 1, Vt > 0, P-a.s. 

Define a continuous function F : ~ n  _+ ]R by 

F(x) A= ( b(x, 8(x)), 8x (x) ) + l t r  [Sxx (x)aa T (x, 8(x))] 
(3.15) 

- h(x)8(x) + 1. 
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We shall prove that  F _= 0. In fact, process X actually satisfies the following 
FSDE 

f dX(t) = b(X(t))dt + ~(X(t))dW(t), 
(3.16) 

X0~x, 
t_>0; 

where b(x) ~b(x,O(x))  and ~(x) ~ a ( x , 0 ( x ) ) .  Therefore, X is a time- 
homogeneous Markov process with some transition probability density 
p(t,x,y).  Since both b and ~ are bounded and satisfy a Lipschitz con- 

dition; and since ~__A a a  T is uniformly positive definite, it is well known 
(see, for example, Friedman [1,2]) that  for each y �9 ~n, p(., .  ,y) is the 
fundamental solution of the following parabolic PDE: 

1 0 2 ;  + 0p _ 0, 
(3.17) ~ OxiOxj Ot 

i , j ~ l  i~- i 

and it is positive everywhere. Now by (3.14), we have that  F(X(t))  = 0 for 
all t ~ 0, P-a.s . ,  whence 

(3.18) 0 = Eo,~ [F(X(t)) 2] =/Ft p(t,x,y)F(y)2dy, Vt > O. 

By the positivity of p(t, x, y), we have F(y) = 0 almost everywhere under 
the Lebesgue measure in IRn. The result then follows from the continuity 
of F.  []  

Theorem 3.3 tells us that  if (3.7) has multiple solutions, we have the 
non-uniqueness of the nodal solutions (and hence the non-uniqueness of the 
adapted solutions) to (3.1); and the number of the nodal solutions will be 
exactly the same as that  of the solutions to (3.7). However, if the solution 
of (3.7) is unique, then the nodal solution of (3.1) will be unique as well. 
Note that  we are not claiming the uniqueness of adapted solutions to (3.1). 

w U n i q u e n e s s  o f  n o d a l  s o l u t i o n s  

In this subsection we study the uniqueness of the nodal solutions to (3.1). 
We first consider the one dimensional case, that  is, when X and Y are 
both one-dimensional processes. However, the Brownian motion W(t) is 
still d-dimensional (d > 1). For simplicity, we denote 

1 
(3.19) a(x,y) = -~la(x,y)l 2, (x,y) �9 ~2. 

Let us make the some further assumptions: 

(H2) Let m -- n = 1 and the functions a, b, h satisfy the following: 

(3.20) h(x) is strictly increasing in x E ~ .  
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(3.21) 
/0 1 
a(x ,y )h (x )  - (h(x)y - 1)./n ay(x ,y  + ~ ( ~ - y ) ) d ~  >_ ~1 > O, 

1 
[a(x,y)by(x,y  + t3(~ - y)) 

- % ( x , y  +13(~-y) )b(x ,y )]d t3  >_ O, y , ~ E [ 1 , � 8 9 1 4 9  

Condition (3.21) essentially says that  the coefficients b, a and h should 
be somewhat "compatible." Although a little complicated, (3.21) is still 
quite explicit and not hard to verify. For example, a sufficient conditions 
for (3.21) is 

a(x ,y )h(x )  - (h(x)y - 1)av(x ,w ) > ~ > O, 

(3.22) a(x, y)by(x, w) - ay(x, w)b(x, y) >_ 0, 

It is readily seen that  the following will guarantee (3.22) (if (H1) is as- 
sumed): 

(3.23) ay(x ,y)  = 0, by(x,y) >_ O, (x,y) e ]R x [1, �89 

In particular, if both a and b are independent of y, then (3.21) holds auto- 
matically. 

Our main result of this subsection is the following uniqueness theorem. 

T h e o r e m  3.4. Let (H1)-(H2) hold. Then (3.1) has a unique adapted 
solution. Moreover, this solution is nodal. 

To prove the above result, we need several lemmas. 

L e m m a  3.5. Let h be strictly increasing and 0 solves 

(3.24) a(x, 0 )0~  + b(x, 0)0~ - h(x)O + 1 = O, x e ~ .  

Suppose XM is a local maximum of O and Xm is a locM minimum of O with 
O(Xm) ~ O(XM). Then Xm > XM. 

Proof. Since h is strictly increasing, from (3.24) we see that  0 is not 
identically constant in any interval. Therefore xm r XM. Now, let us look 
at XM. It is clear that  O~(XM) = 0 and O~(XM) < O. Thus, from (3.24) we 
obtain that  

1 
(3.25) 9(XM) <_ h(xM-----~" 

Similarly, we have 

1 
(3.26) O(xm) >_ - -  

h(xm)" 

Since O(xm) <_ O(XM), we have 

1 1 
(3.27) - -  < - -  

h(xm) h(XM) ' 
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whence x M < X m  because h(x)  is strictly increasing. [ ]  

L e m m a  3.{}. Let  (H1)- (H2)  hold. Then  (3.24) admi t s  a unique solution. 

Proof. By Lemma 3.2 we know that  (3.24) admits at lease one classical 
solution 8. We first show that  8 is monotone decreasing. Suppose not, 
assume tha t  it has a local minimum at xm. Since 8 E C 1 and 8 is not 
constant  on any interval as we pointed out before, 8~ > 0 near Xm. Using 
Lemma  3.5, one further concludes that  8~ > 0 over (Xm, cx3). In other 
words, 8 is monotone increasing on (xm, co). The boundedness of 8 then 
leads to tha t  l i m ~ _ ~  8(x) exists. 

Next we show tha t  

(3.28) lira 8~(x) = lira 8zz (x )  = O, 
X -- '~ C:X:~ X - - + C X )  

To see this, we first apply Taylor 's  formula and use the boundedness of 8x~ 
to conclude tha t  there exists M > 0 such tha t  for any x C (xm, o0) and 
h > 0  

8(x  + h) - 8(x) - M h  2 < 8x(x )h  < 8(x + h) - 8(x) + M h  2. 

Since l i m ~ _ ~  8(x + h) - 8(x) = 0, we have 

- M h  2 <  lim 8~(x)h < ~ 8~(x)h < M h  2. 

Dividing h and letting h --+ 0 we derive lim~-~oo 8~(x) = 0. Further, note 
tha t  

1 
8 ~  - a ( x , 8 ~ [ - b ( x , 8 ) S x  + h(x)8  - 1]. 

The  boundedness of 8, 8~, and 8~z and the assumption (H1) then show tha t  
8xz~ exists and is continuous and bounded as well. Thus apply Taylor 's  
expansion to the third order and repeat  the discussion above one shows 
further tha t  limz-~oo 8~z(x) = 0 as well, proving (3.28). Consequently, by 
(3.24) we have 

1 
(3.29) lim 8 ( x ) =  

�9 ~ h(+cr  " 

On the other hand, by (3.20), we see that  

1 1 
(3.30) lim 8(x) > 8(Xm) > - -  > - -  

�9 -+~ - h (xm)  h ( + c r  

which contradicts (3.29). This means that  8 has no local minimum. Sim- 
ilarly one shows tha t  8 can not have any local maximum either, hence it 
must  be monotone on ~ .  Finally, since 

1 1 
(3.31) ~ ( - c r  h(-cx3----~ > h(+cr - 8 ( + c r  

it is necessary that  8 is monotone decreas ing .  
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Next, let 0 and 0"be two solutions of (3.24). Then, w = 0"- 0 satisfies 

(3.32) -- (h(x) - ~01 [ay(x,O -b t~W)Oxx -[-by(x,O § ~?.o)Ox]dl~)w 

where 

~o 1 c(x) = h(x)  - [ay(x,O § ~w)  h(x)9  - 1 - b(x,O)9~ 
a(x, e) 

+ by(x, e + Zw)e~]dZ 

a ( x , 9 ) h ( x )  - (h(x)9 - 1) f3  ay (x ,9  + j3(O-  9))48 
(3.33) = a(x,e) 

10~ I [a(x, O)by(x, 0 + ~ ( ~ -  0)) + 

ay(x,130 + t3( '0-  O) )b(x,O)] dl3 >_ ~_. 
# 

Here, we have used the fact that  O~(x) = -IO~(x)l (since 0 is decreasing 
in x) and (3.21) as well as (3.7). From (H1), we also see that  a(x,  "0) >_ 0 
and b(x,'O) are bounded. Thus, by the lemma that  will be proved below, 
we obtain w = 0, proving the uniqueness. [ ]  

L e m m a  3.7. Let w be a bounded classical solution of  the following equa- 
tion: 

(3.34) 5(x)wx~ + b(x)w~ - c (x )w  = 0, x e R, 

with c(x) > co > O, ~(x) >_ O, x C IR ~, and with 5 and b bounded. Then  
w(x) = o. 

Proof. For any a > 0, let us consider ~ ( x )  -- w(x)  - a[xl 2. Since w 
is bounded, there exists some x~ at which ~ attains its global maximum. 
Thus, ~ ( x ~ )  = 0 and ~"tx~ ~j~ _< 0, which means that  

(3.35) ~ ( ~ )  = 2~x~, ~ ( ~ . )  < 2~. 

Now, by (3.34), 

(3.36) 
< 2 . (a (x . )  + k ~ . ) ~ . ) .  

For any x C IR, by the definition of x~, we have (note the boundedness of 
5 and b) 

~(x)  - ~lxl ~ < ~(x~) - ~1~1 ~ 
(3.37) 

< ~- (23(~.) + 2~(~.)~.  - I ~ . l  :) _< C~. 
co-  
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Sending a --+ 0, we obtain w(x) <_ O. Similarly, we can show that  w(x) > O. 
Thus w(x) =__ O. [] 

Proof of Theorem 3.4. Let (X, Y, Z) be any adapted solution of (3.1). 
Under (H1)-(H2), by Lemma 3.6, equation (3.24) admits a unique classical 
solution 0 with 0x _< 0. We set 

(3.38) {~(t) �9 [0, oo). O(X(t)), 
t 

Z(t) a(X(t),O(X(t)))VO~(X(t)), 

By ItS's formula, we have (note (3.19)) 

(3.39) 
d~(t) [- ] 

= [0~ (X(t))b(X(t), Y(t)) + 0~ (X(t))a(X(t), Y(t))] dt 

+ (a(X(t), Y(t))VOx(X(t)), dW(t) ). 

Hence, with (3.1), we obtain (note (3.24)) that  for any 0 _< r < t < 0% 

(3.40) 

ElY(r)  - Y(r)] 2 - ElY(t)  - Y(t)] 2 

= - E  f f  { 2 [ Y -  Y][Ox(X)b(X,Y)+ Ozz(X)a(X,Y) 

- h ( X ) Y  + 1] + la(X,Y)Ox(X)- Z[2}ds 

< -2E f t [~  _ Y] [0~(x)(b(X, Y) - b(X, f~)) 

+ Oxx (X) (a(X, Y) - a(X, Y)) - h(X)(Y - Y)] ds 

=-2E ff {[:~- Y]2[IO~(X)I folby(X,P + ~ ( Y -  P))d~ 

-Ox~(X) fool ay(X,Y + ~ ( Y -  Y))d~ + h(X)] }ds 

=-- -2E frr t c(s)l~'(s ) - Y(s)lUds, 
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where (note the equation (3.24)) 

/o 1 c(s) = h(X) + IO.(X)I by(X, ~ + ~(Y - ~))d~ 

b(x,~)o~(x)  - h ( x ) ~  + 1 + 
a(x,  #) 

�9 ay (X,  Y + t3(Y - ~'))&3 

1 
(3.41) - a(X,  Y)  {a(X, Y ) h ( X )  

- [h(X)Y - 1] .~1 ay(X,F" + ~ ( Y  Y))dfl 

+ IOx (X)] [a(X, Y)by (X, Y + fl(Y - Y)) 

- b(X,Y)ay(X,Y" +/3(Y - Y))] d/3 >_ _~. 
J # 

Denote ~o(t) = E l Y ( t ) - Y ( t ) ]  2 and a = ~ > 0. Then (3.40) can be written 
It 

a 8  

~o(r) _< ~o(t) - a ~(s)ds, 0 < r < t < oo. (3.42) 

Thus, 
, 

(3.43) f ~(s)ds) , = e_a t _ t 

> r  t e [r, oo). 

Integrating it over Jr, T], we obtain (note Y and Y" are bounded, and so is 
~) 

e-C~r _ e-aT f T 
(3.44) a (fl(r) ~ e-aT I ~fl(s)ds < CTe -c'T, T > O. 

a 7, 

Therefore, sending T -~ cx~, we see that 9~(r) = 0. This implies that 

(3.45) Y(r)  = Y(r)  =_ O(X(r)), r E [0, co), a.s. co �9 f~. 

Consequently, from the second equality in (3.40), one has 

(3.46) Z(s) = Z(s) = a(X(s ) ,O(X(s ) ) )To , (X(s ) ) ,  Vs �9 [0 ,~ ) .  

Hence, (X, Y, Z) is a nodal solution. Finally, suppose (X, Y, Z) and 
A A 

(X,Y,  Z) are any adapted solutions of (3.1). Then, by the above proof, 
we must have 

(3.47) Y(t)  = O(X(t)), ~'(t) = O(X(t)), t �9 [0, oo). 
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Thus, by (3.1), we see that  X(-) and )((.) satisfy the same forward SDE 
with the same initial condition (see (3.12)). By the uniqueness of the strong 
solution to such an SDE, X = )(. Consequently, Y = Y and Z = Z. This 
proves the theorem. []  

Let us indicate an obvious extension of Theorem 3.4 to higher dimen- 
sions. 

T h e o r e m  3.8. Let (HI) hold and suppose there exists a solution 0 to (3.7) 
satisfying 

(3.48) 

L 
1 

a v (x, (1 - 13)O(x) + 130)0~.~i (x) 
i , j = l  

n 

- E biu(x, (1 -~ )O(x)  + ~O)O~,(x)]d~ > ~ > O, 
i : 1  

Then (3.1) has a unique adapted solution. Moreover, this solution is nodal 
with 0 being the representing function. 

Sketch of the proof. First of all, by an equality similar to (3.32), we 
can prove that  (3.7) has no other solution except O(x). Then, by a proof 
similar to that  of Theorem 3.4, we obtain the conclusion here. [ ]  

C o r o l l a r y  3.9. Let (H1) hold and both a and b be independent of y. Then 
(3.1) has a unique adapted solution and it is nodal. 

Proof. In the present case, condition (3.48) trivially holds. Thus, The- 
orem 3.8 applies. [ ]  

w T h e  l imi t  o f  f in i te  d u r a t i o n  p r o b l e m s  

In this subsection, we will prove the following result, which gives a rela- 
tionship between the FBSDEs in finite and infinite time durations. 

T h e o r e m  3.10.  Let (H1)-(H2) hold and let 0 be a solution of (3.7) with 
the property (3.48). Let (X, Y, Z)  be the nodal solution of (3.1) with the 
representing function O, and (X K, yg ,  z K )  C J~[0, K] be the adapted 
solution of (3.1) with [0, ~ )  replaced by [0, K], and Y K  ( K)  = g( X ( K ) ) for 
some bounded smooth function g. Then 

(3.49) lim E{fxK( t ) - -X( t ) ] z+[Yg( t ) - -Y( t ) I2+EIZK( t ) - -Z( t ) ]  z} = O, 
K..,.-+ oo  

uniformly in t on any compact sets. 

To prove the above result, we need the following lemma. 



w Infinite horizon case 99 

L e m m a  3.11. Suppose that 

(3.50) 

{ AI < (aiJ(t,x)) < ItI, 

Ibi(t,x)l < C, l < i < n ,  

c(t, x) >_ n > o, 

I~o(~)1 _< M, 

(t, z) �9 [0, o0) • R n  

with some positive constants A, It, ~?, C and M. Let w be the classical solu- 
tion of the following equation: 

(3.51) i n 
w t -  ~ a i J ( t , x )w~ j -  Ebi(t ,x)w~, +c(t,x)w=O, 

ij-~l i=l 
(t, x) �9 [o, ~1  • ~ ,  

Then 

(3.52) Iw(t,z)l <_ Me -nt, (t ,x) �9 [0, c~) x An. 

Proof. First, let R > 0 and consider the following initial-boundary 
value problem: 

(3.53) 

wtR- E a iJ ( t ' x )w~J-  bi(t'x)wR~ +c(t 'x)wn=O' 
i,j=l i=1 

( t , x ) [0 ,~ ) •  �9 BR, 

wR[oBR = O, 
WR[t=O = Wo(x)xR(x), 

where BR is the ball of radius R > 0 centered at 0 and X R is some "cut- 
off" function. Then we know that  (3.53) admits a unique classical solution 
W R E C2+a'l+al2(BR • [0, OO)) for some a > 0, where C 2+a'1+~/2 is the 
space of all functions v(x, t) which are C 2 in x and C 1 in t with H51der 
continuous v ,~s  and vt of exponent a and a12, respectively. Moreover, we 
have 

(3.54) IwR(t,x)l < M, (t,x) e [0 ,~ )  • BR, 

and for any Xo C ~ "  and T > O, (0 < a '  < a)  

(3.55) w R -~ w, in C 2A-~ ([0, T] x B 1 (xo)) ,  as  R ~ (20, 

where w is the solution of (3.51). Now, we let r  x) = Me -(n-~)t (~ > 0). 
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n 

Ct - aiY(t,x)r - E b i ( t , x ) r  + c( t ,x)r  
i , j = l  i = 1  

(3.56) = (c(t, x) - ~ + e)M -(n-~)t > e M  -(n-~)t > O, 

r > o = wR]oB~, 

r = M >_ wo(z) = wn]t=o . 

Thus, by Friedman [1, Chapter 2, Theorem 16], we have 

(3.57) wR(t ,~ )  _ r  = M -('-~)~, (t ,~)  ~ [0, o~) • BR. 

Similarly, we can prove that  

(3.58) wn(t ,x )  > - M e  -(n-~)t, (t,x) C [0,0o) • Bn. 

Since the right hand sides of (3.57)-(3.58) are independent of R, we see 
that  

(3.59) Iw(t,x)l <_ Me -('-~)t, (t,x) C [0, oc) • ~ n .  

Hence, (3.52) follows by sending c --+ 0. [] 

Proof of Theorem 3.10. By the result from w we know that  
(X  K, y g  Z K) satisfies 

yK( t )  = OK (t, x g ( t ) ) ,  

(3.60) zK( t )  = a (xK( t ) ,oK( t ,  xK(t ) ) )ToK(t ,  xK( t ) ) ,  

t E [0, K ] ,  a.s.  w C ft, 

where O K is the solution of the parabolic equation: 

I oK ~_ aiJ(x, OK~K b~(x, K K J~x,xj + ~ O )Ox, - h(x)O K + 1 =  0, 

(3.61) i , j = l  i = 1  

(x, t) c ~ • [0, T),  

with a = �89 Next, we define ~ to be the solution of 

(3.62) i,j=l 

~l~=o = g(x)" 

Clearly, we have 

(3.63) og( t ,x )  = ~ ( g  - t ,x),  

- ~_~ bi(x, ~)~x~ + h(x)~ - 1 = O, 
i ~ l  

(t, x) e [0, ~ )  x ~ n ,  

(t, x) e [o, K] • ~ n .  
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Now, we let w(t, x) = ~o(t, x) - O(x). Then 

(3.64) 

i,j=l i = 1  

"aUi~.. lbiy(X'O'Ju'w)Oxi)K']w:O' 
~=o = 9(x) - O(x). 

We note that  both 99(x, t) and O(x) lie in [1, ~]. Thus, by condition (3.48) 
and Lemma 3.11, we see that  

(3.65) 

1 
IOK ( t , x )  -- O(x)l = I~o(K - t , x )  - O(x)l _< ~-,(K-*), 

(t, x) e [0,/(] • ~ n  x [0, K], K > 0. 

Now, we look at the following forward SDEs: 

(3.66) 

dXK(t)  = b(X(t) K, oK(t, X(t)K))dt  

+ a(X(t)  K, O K (t, X( t )K))dW(t) ,  

x K ( o )  = z.  

dX(t)  = b(X(t), O(X(t)))dt + a(X(t) ,  O(X(t)))dW(t),  
(3.67) X(0) = x. 

By It6's formula, we have 

EIXK(t )  - X(t)l 2 

/o = E  [ 2 ( x K - - X , b ( X K , O K ( s ,  X K ) ) - b ( X , O ( X ) ) )  

+ tr ( [ ~ ( X  K, 0K(s, x K ) )  -- , ,(X, O(X))]. 

[~(xK,o K(s ,xK) )  - ~(X,O(N))] T) ]~s 

(3.68) < C E  [IN K - X I (IX K - X l + IOK(s, X K) - o(xK)I)  

+ ( Ix  K - x l  + IOK(*,X K) - o(xK)l)2]a* 

< c fo' [EIXK(s)- X(8)12 + e-~,(K-s)] ds 

/o < C INK(s )  - X(s) lNds  + Ce  -2" (K- t ) .  
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Applying Gronwall's inequality, we obtain that  

(3.69) E ( IXK(t )  - X( t ) l  2) _< Ce -2€ t �9 [0,K], K > 0. 

Furthermore,  

E (]yK(t )  -- Y(t)] 2) = E (IOK(t, x K ( t ) )  -- O(X(t))l 2) 

_< 2E (J•K(t, x K  (t) ) -- o ( x K  (t) )I 2) 

(3.70) + 2E (lO(XK(t)) - O(X(t))l 2) 

< c e  -2~(~-')  + C E  ( IX~(t )  - X(t) l  2) 
< Ce -2~(K-t),  t �9 [0, K], K > 0. 

Similarly, we have 

(3.71) E (]ZK(t)  - Z(t)l 2) _< Ce -2n(K-t) ,  

Finally, letting K --+ 0o, the conclusion follows. 

t c [o, K], K > O. 

[] 



C h a p t e r  5 

Linear  Degenerate Backward Stochastic 
Partial Differential Equations 

w F o r m u l a t i o n  of  t h e  P r o b l e m  

We note that  in the previous chapter, all the coefficients b, a, h and g 
are deterministic, i.e., they are all independent of w E f~. If one tries to 
apply the Four Step Scheme to FBSDEs with random coefficients, i.e., b, 
a, h and g are possibly depending on w E ~ explicitly, then it will lead 
to the study of general degenerate nonlinear backward partial differential 
equations (BSPDEs, for short). In this chapter, we restrict ourselves to the 
study of the following linear BSPDE: 

1 (ADu) (a, D u ) - c u - V . ( B q )  ( b , q ) - f } d t  - 

(1.1) + ( q, dW(t) ), (t, x) e [0, T] x ~t n, 

U]t=T ---- g, 

where Du is the gradient of u, 

{ V - ~  = ~__O,,~,, V,~ = ( , ' ~ , - - . , & )  e C 1 ( ~ " ; ~ " ) ,  
i = l  

V ' r  --~ ( V ' ~ ] ~ I , ' ' ' , V ' ~ m )  T, V(]~ -~- ( ~ ] ~ l , ' ' ' , ( ~ m )  E C l(F~n;~nxm), 

and 

A :  [0, T ]  x ~ n  x ~ --). S '~, 

] B :  [0, T] x ~  ~ x ~ ~ l l ~  ~xd, 

~ a  : [0, T] x ~ n  x ~ ~ ~ ,  
(1.2) 

/ b: [O,T] x ~'~ x ~ --). ~d,  
I 

/ s :[o,T] x x 
! 

n I , g : ~  x ~ ,  

are random fields (S n is the set of all (n x n) symmetric matrices). We 
assume that  W = {W(t) : t E [0, T]} is a d-dimensional Brownian motion 
defined on some complete filtered probability space (f~, ~ ,  {~t}t>_o, P),  with 
{:~t}t>_0 being the natural filtration generated by W, augmented by all the 
P-null sets in 5 r .  

In our discussions, we will always assume that  A and B are differen- 
tiable in x. In such a case, (1.1) is equivalent to an equation of a general 
form. To see this, we note that  

(1.3) ~ tr [AD2u] = ~7.(ADu) - ( V. A, Du ); 

L tr [BTDq] = V-(Bq) - ( V-B, q), 
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where D2u is the Hessian of u and 

0x I ql 
Dq A=(Dql, . . . ,Dqd) A . 

Therefore, if we define 

1 
(1.4) ~ = a + ~ V. A; 

then (1.1) is the same as 

iii / 
�9 "" Ox:qd] 

b = b + V - B ,  

du = { - ~tr  [AD2u] - (5, Du ) - c u  - tr [BT Dq] 
1 

(1.5) - (b ,q)  - f  }dt + ( q, dW( t )  ), ( t ,x)  G [O,T] x ]R n, 

~t l t=T : g ,  

Since (1.1) and (1.5) are equivalent, all the results for (1.1) can be 
automatically carried over to (1.5) and vice versa. For notational conve- 
nience, we will concentrate on (1.1) for well-posedness (w167 and on (1.5) 
for comparison theorems (w 

Next, we introduce the following definition. 

De f in i t i on  1.1. If A and B satisfy the following: 

(1.6) A(t ,  x) - B( t ,  x )B( t ,  x) T >_ 0, a.e. (t, x) C [0, T] x IR '~, a.s., 

we say that  equation (1.1) is parabolic; if there exists a constant 5 > 0, such 
that  

(1.7) A(t ,  x) - B( t ,  x )B( t ,  x) T >_ 5I, a.e. (t, x) C [0, T] x ]R n, a.s. 

we say that  (1.1) is super-parabolic; whereas, if (1.6) holds and there exists 
a set G C_ [0, T] • IRn of positive Lebesgue measure, such that  

(1.8) Get [A(t, x) - B( t ,  x )B( t ,  x) T] = 0, V(t, x) �9 G, a.s. 

we say that  (1.1) is degenerate parabolic. 

We see that  in the above definition, only A and B are involved. Thus, 
the above three notions are adopted to equation (1.5) as well. 

Note that  if (1.1) is super-parabolic, it is necessary that  A(t,  x) is uni- 
formly positive definite, i.e., 

(1.9) A(t,  x) > 6I > 0, a.e. (t, x) �9 [0, T] • Ill n, a.s. 

However, if A(t ,  x) is uniformly positive definite and (1.6) holds, we do 
not necessarily have the super-parabolicity of (1.1). As a matter of fact, if 
A ( t , x )  satisfies (1.9) and 

(1.10) A( t , x )  = B ( t , x ) B ( t , x )  T, a.e. ( t ,x)  �9 [0, T] x IR n, a.s. 
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then (1.1) is degenerate parabolic. This is the case if we have the BSPDE 
from the Four Step Scheme for FBSDEs with random coefficients (see Chap- 
ter 4, w 

Now, we introduce the notion of solutions to (1.1). In what follows, we 
denote Bn = {x E ~n I lxl < R} for any R > 0. 

Def in i t i on  1.2. Let {(u(t,x;w),q(t,x;w)),(t,x,w) C [0,T] x R n • ft} be 
a pair of random fields. 

(i) (u, q) is called an adapted classical solution of (1.1) if 

u E C~:([0, T]; L2(f~; C2(Bn))),  
(1.11) VR > 0, 

q e L~(0, T; CI(BR; ]Rd)), 

such that  almost surely the following holds for all (t, x) E [0, T] x IR~: 

(1.12) 

f t  T 1 u(t,x) = g(x) + {-~ V.[A(s,x)Du(s,x)] + ( a(s,x),Du(s,x) ) 

+ c(s,x)u(s,x) + V.[B(s,x)q(s,x)] 

+ ( b(s, x), q(s, x) ) +f(s, x)}ds 
T 

- ft <q(s' dW(s) >. 

(ii) (u, q) is called an adapted strong solution of (1.1) if 

u e CT([0, T]; L2(~; H2(BR))), 
(1.13) v n  > 0, 

q C n~(o, T; gl(Bn; Rd)), 

such that  almost surely (1.12) holds for all t E [0, T], a.e.x E Rn. 

(iii) (u, q) is called an adapted weak solution of (1.1) if 

(1.14) { ueC~([O'T];L2(f~;HI(Bn)))' V R > 0 ,  
q e L2:r(O, T; L2(BR; Rd)), 

such that  almost surely for all ~ E C~(ll~ n) and all t E [O,T], 

/R u(t,x)q~ - /rtn g(x)q~ 

~tT /tt { l (A(s,x)Du(s,x),D~(x)) 
(1.15) + ( a(s, x), Du(s, x) } ~(x) + c(s, x)u(s, x)~(s, x) 

- ( B(s, x)q(s, x), D~(x) ) + ( b(s, x), q(s, x) > (fl(x) 

+ f(s,x)qo(x)}dxds- f tT(  frt. q(s,x)qo(x)dx, dW(s)). 
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We note that in the definition of adapted classical solution, we need A 
and B to be C 1 in x; in the definition of adapted strong solution, we need 
A and B to be differentiable in x almost everywhere; and in the definition 
of adapted weak solution, we need only the coefficients {A, B, a, b, c} to be 
bounded and f and g to be locally square integrable. 

It is clear that for (1.1), if (u, q) is an adapted classical solution, it is 
an adapted strong solution; if (u, q) is an adapted strong solution, it is an 
adapted weak solution. The following result tells the other way around, 
which will be useful later. In the following proposition, by "the coefficients 
are regular enough" we mean that all the coefficients have the required 
differentiability, continuity and integrability. 

P ropos i t i on  1.3. Let the coefficients of (1.1) be regular enough. Let 
(u,q) be an adapted weak solution of (1.1). If  in addition, (1.13) holds, 
then (u,q) is an adapted strong solution of (1.1). Further, if (1.11) holds, 
then (u, q) is an adapted classicaI solution of (1.1). 

Proof. Let (u, q) be an adapted weak solution of (1.1) such that (1.13) 
holds. Then, from (1.15), by integration by parts, we have 

]R~ {~(t, ~) - g(x) 

(1.16) = SR- ( I T ( 1  V.[A(s, x)Du(s ,x)]+(a(s ,  x), Du(s ,x))  

+ c(s ,x)u(s ,x)  + V.[B(s, x)q(s,~)] + (b(s,x), q(s ,z))  

+ s(s ,  - } (x)ex 

The above is true for all ~ C C~(]R~). Then, (1.12) follows, proving that 
(u, q) is an adapted strong solution. The other assertion is obvious. [] 

Although the parabolicity condition (1.6) is not necessary in Definition 
1.2 and Proposition 1.3, we will see later that such a condition is very 
crucial for our studying the well-posedness of BSPDE (1.1). 

w Well-posedness of Linear BSPDEs  

In this section, we state the results of well-posedness for BSPDE (1.1). The 
proofs of them will be carried out in later sections. 

To begin with, let us introduce the following assumption concerning 
the coefficients of equation (1.1). Let m _~ 1. 

(H)m Functions {A, B, a, b, c} satisfy the following: 

A �9 L~(0, T; C~+I (]R~; Sn)), 

L~~ T" C m+l B � 9  ~ ,  , b ( ~ n ; ~ n •  

(2.1) ~ �9 L~(0, T; C ~ ( ~ ;  ~)), 
b �9 L~(0, T; C~n(R~;~d)), 

c �9 L~(0, T; C~(Rn)).  
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We note that  (H)m implies that  the partial derivatives of A and B in 
x up to order (m + 1), and those of a, b and c up to order m are bounded 
uniformly in (t, x, w) by a constant K m >  0. This constant will be referred 
in the statements of Theorems 2.1, 2.2 and 2.3. 

In what follows, we let 

{ a ~ ( a l , . . . ,  a,~), .c~'s are nonnegative integers, 
n 

I~1 ~ Z ~ ,  ~  = ~ 0~: . . . . . .  0~\~, : ~ x? 1 xn ~~ 
i : 1  

Any a of the above form is called a multi-index. If/3 = (/31, '",/3n) is 
another multi-index, by/3 _< a, we mean that/3i _< ai  for each i = 1 , . . - ,  n, 
and by/3 < a, we mean/3 < a and at least for one i, one has/3i < a~. 

Now, we state the following result concerning the well-posedness of 
BSPDE (1.1). 

T h e o r e m  2.1. Suppose that the parabolicity condition (1.6) holds and 
(H)m holds for some m _> 1. Suppose further that the coel~cient B(t, x) 
satisfies the following "symmetry condition": 

(2.2) [B (O~, BT)] r =B (as, BT), 

a.e. (t,x) E [0, T] x IR n, a.s., 1 < i < n. 

Then for any random fields f and g satisfying 

(2.3) { ~ E L2~(O'T;Hm(~n))' 
�9 L2r  (a; Hm(]Rn)), 

BSPDE (1.1) admits a unique adapted weak solution (u, q), such that the 
following estimate holds: 

T p 

max Ellu(t,.)ll~-,, + E/ llq(t,')ll~-,-,dt 
tE[0,T]  J0 

T 

+ E E - BBT)D(O~u),D(Oau) ) 
(2.4) ,~,<,~ /o f~o { ((A 

+ BT[D(O~u)] + O~q 2}dxdt 

<_ /o § 

where the constant C > 0 only depends on m, T and Kin. 
Furthermore, if m >_ 2, the weak solution (u, q) becomes the unique 

adapted strong solution of (1.1); and if m > 2 + n/2, then (u, q) is the 
unique adapted classical solution of (1.1). 

The symmetry condition (2.2) is technical. It will play a very important 
role in proving the existence of adapted solutions. However, we point out 
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that  such a condition is not needed for the uniqueness of adapted weak (and 
hence strong and classical) solutions. See w for details. Several examples 
satisfying such a condition are listed below: 

(2.5) 

d = n = 1;B is a scalar; 

B is independent of x; 

B(t,  x) = ~(t, X)Bo (t), where ~ is a scalar-valued random field. 

The following result tells us that the symmetry condition (2.2) can be 
removed if the parabolicity condition (1.6) is strengthened. 

T h e o r e m  2.2. Suppose (1.6) holds and (H),~ with m > 1 is in force. 
Suppose further that for some eo > O, either 

(2.6) A - B B  T ~ ~oBB T ~_ 0, a.e. (t, x) E [0, T] x IR ~, a.s., 

o r  

A - B B  T >_ eo E (O~B)(O"BT) >- O, 
(2.7) 

a.e. (t, x) E [0, T] • ]R n, a.s. 

Then the conclusion of Theorem 2.1 remains true and the estimate (2.4) is 
improved to the following: 

max E[lu(t, .)[rS~ + E IIq(t, . ) [ l~d t  
te[0,T] 

(2.8) + E E / a  T / R  (AD(O~u)'D(O~u))  dxdt 
I~[<_m o 

where the constant C > 0 only depends on m, T, Km and ao. 
In addition, i f  A is uniformly positive definite, i.e., (1.9) holds for some 

5 > 0 (this is the case if  (1.1) is super-parabolic, i.e., (1.7) holds), then 
(2.8) can further be improved to the following: 

T 

max E[lu(t,.)ll2Hm + E f~ {l[u(t,')l[~m+, + Ilq(t,')l[2Hm}dt 
(2.9) te[0,T] 

We note here that  conditions (2.6) and (2.7) together with (1.9) are 
still weaker than the super-parabolicity condition (1.7). For example, if 
n > d and B is an (n • d) matrix, then B B  T is always degenerate. We can 
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easily find an A such that  (2.6), (2.7) and (1.9) hold but (1.7) fails. Let us 
also note that  if (2.6) or (2.7) holds, we have 

(2.10) IBT~I 2 <_ ( A{, s c ), V~ c �9 Rn, a.e. (t, x) �9 [0, T] x IR n, a.s. 

Thus, (2.8) follows from (2.4) easily. 
In the above theorems, we have assumed that  f and g are square inte- 

grable in x �9 lR n globally. This excludes the case that  f and g approach 
infinity as Ixl goes to infinity. In some important applications, such a case 
happens very often. Thus, in the rest of this section, we would like to ex- 
tend the above theorems a little further so that  f and g are allowed to have 
certain growth as Ixl -+ ~ .  To this end, let us make an observation. Sup- 
pose (u, q) is an adapted classical solution of (1.1). Let )~ > 0 and denote 

(x)  ~ ~/Ixl 2 + 1. Set 

(2.11) ~ v(t,x) = e-(X)u(t,x), (t,x) �9 [0,T] x IR ~. 
[ p(t,x) e-(~>q(t,x), 

Then, by a direct computation, we see that  (v,p) satisfies the following 
BSPDE: (compare with (1.1)) 

(2.12) 

dv = { - 2 V . ( A D v )  - (-5, D v ) - ~ w -  V . ( B p ) -  ( - b , p ) - - f } d t  
1 

+ (p, d W ( t )  ), (t, x) �9 [0, T] x ~ ,  

~, V l t = T  = -~, 

with 

(2.13) 

( ) 
A2 

~ = c+---~ (A[ ~ ], [(-~-)-] } + ~- V- (A [ ] ) x  + ), (a, [-(-~] }, ~ 

- B T b = b +  :, [ ~ ] ,  

[ - f  = e -  ( ~ ) / ( t , x ) ,  -~ = e -  ( X ) 9 ( t , x ) .  

Conversely, if (v,p) is an adapted classical solution of (2.12), then (u,q), 
which is determined through (2.11), is an adapted classical solution of (1.1). 
Clearly, the same equivalence between (1.1) and (2.12) holds for adapted 
strong and weak solutions, respectively. 

On the other hand, from (2.13) we see easily that  the group 
{A, B, a, b, c} satisfies (H)m if and only if {A, B, ~, b, ~} satisfies (H)m. This 
is due to the fact that  for any multi-index a, it holds that  

l0 ~ ( x ) l  _< c ,  vz  �9 ~ ,  

with the constant C > 0 only depending on Ic~l. Hence, from Theorems 2.1 
and 2.2, we can derive the following result. 
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T h e o r e m  2.3. Let m > 1 and (H)m hold for {A, B, a, b, c}. Let (1.6) and 
(2.2) hold. Let A > 0 such that 

{ e - ~ ( ' ) f  �9 L2~(O,T;Hm(]Rn)), 
(2.14) e -~ (")g �9 L~r  (ft; g m ( R n ) ) .  

Then BSPDE (1.1) admits a unique adapted weak solution (u, q), such that 
the following estimate holds: 

T 
EHe-~()u(t,.)l]2H m + E l  He-~()q(t,.)ll2H.~-,dt max 

tE[0,T] Jo 

+ E E f r / {  ( ( A -  BBr)D[O~(e-~(')u)],D[O~(e-~(')u)]) 
(2.15) [al_<m -Io JR ~" 

+ BT{D[OC~(e-A(')u)]} + OC~(e-X(')q) 2}dxdt- 

_< + 

where the constant C > 0 only depends on m, T and Kin. 
Furthermore, if m > 2, the weak solution (u, q) becomes the unique 

adapted strong solution of (1.1); and if m > 2 + n/2, then (u, q) is the 
unique adapted classical solution of (1.1). 

In the case that (2.2) is replaced by (2.6) or (2.7), the above conclusion 
rema/ns true and the estimate (2.15) can be improved to the following: 

T 

ElJe-~(')u(t,.)[[~m + E[ [le-~(')q(t,.)[[2H.~dt m a x  
t~[O,T] Jo 

/o'/o (2.16) + ~ E . (AD[O~(e-~(')u)l,D[O~(e-~(')u)])dxdt 
[aI<m 

Finally, if in addition, (1.9) holds for some 5 > O, then (2.16) can further 
be improved to the following: 

max Elle-~ <" >u(t,.)ll~m 
te[O,Tl 

(2.17) + E  { lie-:' <" >u(t, ")115m+1 +lle-a(')q(t,')llhm}dt 

Clearly, (2.14) means that f and g can have an exponential growth as 
Ix I -+ ce. This is good enough for many applications. 



w Uniqueness of adapted solutions 111 

We note that  {A,B,a ,b .c}  satisfies (H),~ if and only if {A,B,~d,b,c} 
satisfies (H),~, where ~ and b are given by (1.4). Thus, we have the exact 
statements as Theorems 2.1, 2.2 and 2.3 for BSPDE (1.5) with a and b 
replaced by ~ and b. 

w Uniqueness  of Adapted Solutions 

In this section, we are going to establish the uniqueness of adapted weak, 
strong and classical solutions to our BSPDEs. From the discussion right 
before Proposition 1.3, we see that it suffices for us to prove the uniqueness 
of adapted weak solutions. 

w U n i q u e n e s s  o f  a d a p t e d  w e a k  solutions 

For convenience, we denote 

(3.1) s  ~ V.[ADu] + ( a, Du ) +cu, 

3dq ~ V.[Bq] + ( b, q ) . 

Then, equation (1.1) is the same as the following: 

f d u = - { s  f } d t + ( q ,  dW(t)),  (t,x) �9215 '~, 
(3.2) 

U[t=T = g. 

In this section, we are going to prove the following result. 

T h e o r e m  3.1. Let (2.3) hold and the following hold: 

(3.3) 

A �9 L~(O,T;L~176 

B E  L~/Oj:~, T', LO~/R,~.~ , ~ n  • d)), 

a �9 Lcff(O,T;L~176 

b �9 L~176176 

c �9 L~(0 ,  T; n ~ 1 7 6  

Then, the adapted weak solution (u, q) of (3.2) is unique in the class 

(3.4) 
u e Cf([0,  T]; L2(a; H l(]Rn))), 

q �9 L~=(0, T; L2(Rn; Nd)). 

To prove the above uniqueness theorem, we need some preliminaries. 
First of all, let us recall the Gelfand triple H 1 (~n) ~+ L 2 (~n) ~_+ H-1 (IRa). 
Here, H- I ( IR  ~) is the dual space of H l ( ~ n ) ,  and the embeddings are 
dense and continuous. We denote the duality paring between H 1 (]R n) and 
H - I ( ~  '~) by (- , - )0 ,  and the inner product and the norm in L2(IR ~) by 
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( ' , ' )o  and ]. [0, respectively. Then, by identifying L2(]R ~) with its dual 
L 2 (R~)* (using Riesz representation theorem), we have the following: 

( r  ~ )o = (r ~)o 
(3.5) 

---- JR f "  ~b(x)~o(x)dx, Vr E L2(~Ln), ~ E H'(]Rn), 

and 

(3.6) 

n 

i~lOir E H-I(]Rn),  

"~n  

( Z o~r ~ /o  = - 
i : 1  ]R~ 

Vr E L2(IRn), 1 < i < n, 

r V99 E Hi(IRa). 

Next, let (u, q) be an adapted weak solution of (3.2) satisfying (3.4). 
Note that in (3.4), the integrability of (u, q) in x is required to be global. 
By (3.5)-(3.6), we see that 

(3.7) s + A4q E L~(0,T;  H - l ( ~ n ) ) .  

In the present ease, from (1.15), for any ~ E HI(IR n) (not just C~(Rn)), 
we have 

{d(u,~o)o=-(s f , ~ ) o + ( ( q , ~ ) o , d W ( t ) ) ,  t E [ 0 ,  T], 

(3.8) (u, ~)0 It=T = (g, ~)o. 

Here, (q, ~O)o ~((ql, ~)o, '",  (qd, ~)0) and q = ( q l , ' " ,  qd). Sometimes, we 
say that (3.2) holds in H- I ( IR  '~) if (3.8) holds for all ~ E HI (Rn) .  

In proving the uniqueness of the adapted weak solutions, the following 
special type of It6's formula is very crucial. 

L e m m a  3.2. Let ~ E L2(O, T; H - I ( ~ ) )  and (u, q) satisfy (3.4), such that 

du=~dt+(q,  dW(t)>, t E [ 0 ,  T]. (3.9) 

Then 

(3.10) 
0 t lu(t)l~ = lu(O)l~ + {2 (r + Iq(s)l~}ds 

.// + 2 ((q(s),u(s))o,dW(s)), t E [0, T]. 

Although the above seems to be a very special form of general It6's 
formula, it is enough for our purpose. We note that the processes u, q and 
take values in different sp aces H 1 (IR~), L 2 (iRa) and H - 1 (]R~), respectively. 
This makes the proof of (3.10) a little nontrivial. We postpone the proof of 
Lemma 3.2 to the next subsection. 
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Proof of Theorem 3.1. Let (u, q) be any adapted weak solution of (3.2) 
with f and g being zero, such that  (3.4) holds. We need to show that  
(u, q) -- 0, which gives the uniqueness of adapted weak solution. Applying 
Lemma 3.2, we have (note (3.7)) 

P T 

Elu(t)l 2 = E .L  {2 (s  + .A4q(s), u(s) )0 - Iq(s)12} ds 

= E , { - ( ADu,  Du ) + ( a, D(u 2) ) +2eu 2 

2 (q, B T D u )  +2 (bu, q) -]ql2}dxds 

- Iq + B T D u  - bul 2 

+ [b 2 + 2c - V-(a + Bb)]u2}ds 

/ *  T 

< C /  Elu(s)l~ds , t �9 [0, T]. 
Jt 

By Gronwall's inequality, we obtain 

El(t)l ~ = O, t �9 [0, T]. 

Hence, u = 0. By (3.11) again, we must also have q = 0. This proves the 
uniqueness of adapted weak solutions to (3.2). [] 

w An It5 formula 

In this subsection, we are going to present a special type of It6's formula 
in abstract spaces for which Lemma 3.2 is a special case. 

Let V and H be two separable Hilbert spaces such that  the embedding 
V ~-+ H is dense and continuous. We identify H with its dual H '  (by Riesz 
representation theorem). The dual of V is denoted by V'. Then we have 
the Gelfand triple V r H = H'  ~--+ V'. We denote the inner product and 
the induced norm of H by (-, ")0 and [-10, respectively. The duality paring 
between V and V' is denoted by ( . , . )0 ,  and the norms of V and V' are 
denoted by 1]" I[ and I[" []*, respectively. We know that  the following holds: 

(3.12) ( u , v ) 0 = ( u , v ) o ,  V u e H ,  v � 9  

Due to this reason, H is usually called the pivot space. It is also known (see 
[Lions]) that  in the present setting, there exists a symmetric linear operator 
A e s V'), such that  

(3.13) (Av ,  v)o <-Hvll  2, V v e V .  

Now, let us state the following result which is more general than Lemma 
3.2. 
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L e m m a  3.3. Let 

(3.14) 

satisfying 

(3.15) 

Then 
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[ ~ �9 c~([0,  T]; V), 

�9 L~(0, T; Y'), 

d u = ~ d t + ( q ,  dW(t)) ,  t �9  

~0 t lu(t)[o ~ = lu(O)lo ~ + {2 (~(s) ,u(s))o  + [q(S)lo~}ds 
(3.16) // + 2 ( (q(s) ,u(s))o ,aW(s)) ,  t �9 [0,T]. 

In the above, q �9 L}(O, T; H) d means that  q = ( q l , ' " ,  qa) with qi �9 
L~-(0, T; H).  In what follows, we will see the expression q �9 L}(O, T; V) a 
whose meaning is similar. Before giving a rigorous proof of the above result, 
let us try to prove it in an obvious (naive) way. From (3.16), we see that  
the trouble mainly comes from ( since it takes values in V'. Thus, it is 
pretty natural that  we should find a sequence (k �9 L~(O, T; H), such that  

(3.17) (k -+ (, in L~(0, T; V'), (k ~ oe), 

and let Uk be defined by 

// /o (3.18) u~(t) = u(0) + (k (s)ds + (q(s), dW(s) ), t �9 [0, r ] .  

Since the processes Uk, (k and q are all taking values in H,  we have 

// luk(t)[~ = lu(0)10 ~ + {2 (Sk(S),Uk(S) )0 + [q(s)12}ds 
(3.19) 

+ 2  ((q(s),uk(s))o,dW(s)), t �9  

This can be proved by projecting (3.18) to finite dimensional spaces, using 
usual ItS's formula, then pass to the limit. Having (3.19), one then hopes 
to pass to the limit to obtain (3.16). This can be done provided one has 
the following convergence: 

Uk --+ U, in L~:(0, T; V). 

However, (3.17)-(3.18) only guarantees 

Uk -+ u, in L~:(0, T; Y'). 

Thus, the convergence of Uk to u is not strong enough and such an approach 
does not work! In what follows, we will see that  to prove (3.16), much more 
has to be involved. 
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Let us now state two standard lemmas for deterministic evolution equa- 
tions whose proofs are omitted here (see Lions [1]). 

L e m m a  3.4. Let v : [0, T] -+ V ~ be absolutely continuous, such that 

(3.20) [ v �9 52(0, T; V), 
( b �9 L2(0, T; V'). 

Then v �9 C([O,T];H) and 

(3.21) d [ v ( t ) t o  2 = 2(9(t),v(t))o, a . e . t  �9 [ 0 , T ] .  

Let A �9 s V') be symmetric satisYying (3.13). Then for 

(3.25) 

Let 

(3.26) M(t) = fot 

Then, M �9 Cj:([O,T]; V) and 

v �9 L~(0, T ;V) ,  

~3 �9 L2(0,  T; V'), 

q �9 L2~(O, T; V) d. 

(q(s) ,dW(s)  ), t �9 [0, T]. 

(3.27) fot fo' [M(t) l~ = 2 ((M(s),q(s))o,dW(s) ) + [q(s)l~ds, 

t �9 [0, T],  a.s. 

L e m m a  3.5. 
any vo E H and f E L2(0,T; V'), the following problem 

(3.22) ~ 7 ) = A v + f ,  t E [ 0 , T ] ,  

I v(0) = vo, 

admits a unique solution v satisfying (3.20) and 

/o' /o' (3.23) Iv(t)lo 2 + IIv(s)ll2ds <_ Ivolg + I]f(s)ll2.ds, t e [0,T].  

Moreover, it holds 

/o' (3.24) Iv(t)lo 2 = Ivolo 2 + 2 ( A v ( s )  + f(s),  v(s) )ods, t �9 [0, r ] .  

Now, we consider stochastic evolution equations. We first have the 
following result. 

L e m m a  3.6. Let v be an {Ft}t>_o-adapted V'-valued processes which is 
absolutely continuous almost surely and q be an { ~t }t>_o-adapted H-valued 
process such that the following holds: 
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(3.28) 

Chapter 5. Linear, Degenerate BSPDEs 

d(v(t), M(t))o = (O(t), M(t) )odt + ((v(t), q(t))o, dW(t) ), 
a.e. t E [0, T], a.s. 

Proof. First of all, it is clear that M E C~=([0, T]; V) and (3.27) holds 
since we may regard both M and q as H-valued processes. We now prove 
(3.28). Take a sequence of absolutely continuous processes Vk with the 
following properties: 

(3.29) 

vk E L~(0, T;V),  

Ok E L~-(0, T; H), 

Vk --+ V, in L~:(0, T; V), 

Ok --+ 0, in L2(0, T; V'). 

Now, in H, we have (note (3.12)) 

(3.30) 
d(vk (t), M(t))o = (Ok (t), M(t))odt + ((Vk (t), q(t))o, dW(t) ) 

= (0k (t), M(t) )odt + ((Vk (t), q(t))o, dW(t) ). 

Pass to the limit in the above, using (3.29), we obtain (3.28). [] 

L e m m a  3.7. Let A E s V') be symmetric satisfying (3.13). Then, for 
any f,  q, u0 satisfying 

(3.31) 

f E L~(0, T;V') ,  

q E L2(0, T; H) d, 

u0 E H, 

the following problem 

S du = (Au + f)dt + (q, dW(t) }, 
(3.32) 

[ = 
t e [0, T], 

admits a unique solution u E L2(0, T; V) M C7([0, T]; H), such that  

(3.33) 

~0 t lu(t)J~ = luol~ + {2 (Au(s) + f(s) ,  u(s))o + Jq(s)l~}ds 

// + 2 ((q(s), u(s))o, dW(s) >, Vt E [O,T], a.s. 

Proof. We first let q E L~(0, T; V) d and define M(t) by (3.26). Con- 
sider the following problem: 

(3.34) 
O=Av+f+AM, t ~ [0,T], 

v ( 0 )  = uo .  
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By Lemma 3.5, for almost all w E ~, (3.34) admits a unique solution v. 
Obviously (by the variation of constants formula, if necessary), v is {~t}t>o- 
adapted. Thus, we have 

e L~-(0, T, V'), 

which implies (by Lemma 3.4) v C Cj:([0, T]; H)  and (by (3.24)) 

(3.35) Iv(t)t~ = lu~ + 2 (.Av(s) + f(s) + .AM(s), v(s) )ods, 

Vt ~ [0, T], a.s. 

Set u(t) = v(t) + M(t). Then, we see that  u E g~(0,  T; V) N C~-([0, T]; H)  
is a solution of (3.32). We now combining (3.27)-(3.28) and (3.34) (3.35) 
to obtain the following: 

lu(t)]~ = Iv(t)l~ + IM(t)]~ + 2(v(t), M(t))o 

= luolo2 + 2  ( .Av(s)+f(s )+AM(s) ,v (s ) )ods  

/0 /o + 2  ((M(s),q(s))o,dW(s) ) + Iq(s)lgds 

+ 2 (i~(s), M(s) )ods + 2 ((v(s), q(s))o, dW(s) ) 

(3.36) = 1~o1~+2 (Au(s)+S(s),v(s))odS 

/o /o + 2 ((u(s), q(s))o, dW(s) ) + Iq(s) lgds 

+ 2 (Au(s) + f(s), M(s) )ods 

= luolg + {2 (A~(s )  + S ( s ) , ~ ( s ) ) o  + Iq(s)lg}ds 

+ 2  ( ( ~ ( s ) , q ( s ) ) o , a W ( s ) ) .  

Next, we claim that  solution to (3.32) is unique (for any f ,  q and uo sat- 
isfying (3.31)). As a matter  of fact, if ~ is another solution to (3.32), then 
u - ~ is a solution of (3.32) with f ,  q and uo all being zero. Applying (3.36) 
to u - ~, we obtain (see (3.13)) 

I~(t) - ~(t)lo ~ = 2 (A[~(s )  - ~(s)],  ~(s)  - ~(s)  )oas ___ 0, 

which results in u = ~. Thus, we have proved our lemma for the case 
q E L~(0,  T; V) d. Now, for general case, i.e., q e L~(O, T; H) e, we take a 
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sequence qk E L2(0, T; V) d with 

qk --+ q, in L~(0, T; H) d. 

Let uk be the solution of (3.32) with q being replaced by qk. Then applying 
(3.36) to Uk -- ue, we have (note (3.13)) 

Eluk(t) - u,(t)l~ + 2 E l  t Iluk(s) - ut(s)ll2ds 
(3.37) 

dO 

// _< E Iqk(S) -- q~(s)12 ds ~ O, k ,e  --+ oc. 

This means that  the sequence {Uk} is Cauchy in L2(0, T; V)AC~:([0, T]; H). 
Hence, there exists a limit u of {u}k in this space. Clearly, u is a solution 
of (3.32). Also, we have a similar equality (3.33) for each uk. Pass to the 
limit, we obtain the equality (3.33) for u (with general q E L~(0, T; H)d). 

[] 

Now, we are ready to prove Lemma 3.3. 

Proof of Lemma 3.3. Set 

no = u(O) C H, 

f ~= ~ - Au  �9 L~(0, T; V'). 

Then u is a solution of (3.32) with (3.31) holds. Hence, (3.33) holds, which 
yields (3.16). [] 

Now, by taking V = HI(R~) ,  H = L2(R ~) and V' = H-I(IR~), we see 
that  Lemma 3.2 follows immediately from Lemma 3.3. 

w E x i s t e n c e  o f  A d a p t e d  S o l u t i o n s  

The proofs of existence of adapted solutions is based on the following fun- 
damental lemma. 

L e m m a  4.1. Let the parabolicity condition (1.6) and the symmetry  con- 
dition (2.2) hold. Let (H)m hold for some m >_ 1. Then there exists a 

" constant C > O, such that for any u G C~(]R n) and q E C ~ ( ~ n ;  ]l~d), it 
holds 

(4.1) 

{ ((A - B B T ) D ( O % ) , D ( 0 % ) )  

I~l<m 

+lBTD(Oau)+OC~q]2} + E IOaql2} dx 

I~1_<,~-1 

I,~1<~ 

a.e.  t ~ [O,T], a.s .  
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If  (2.6) or (2.7) holds instead of (2.2), 
following: 

(4.2) 

the above can be replaced by the 

/..{E 
I~l_<m 

<c/.. E 

( AD(Oau)'D(Oau))+ E la<'ql2} dx 
I~l_<m 

{ - 2(a%)a"(s + M q ) +  la'ql 2 + la"ul2}d=, 

a.e. t E [0, T], a.s. 

Furthermore, if (2.6) or (2.7) holds and A( t, x) is uniformly positive definite, 
then (4.2) can be improved to the following: 

S..{ )--]- la<'ul'+ ~ iraqi'}a,, 
Io<l<m+l Io, l<m 

(4.3) < C mR. E { -  2(oc~u)oc~(s + M q ) +  1O"ql2 + tO=ul2}dz, 
I~l<m 

a.e. t e [0, T], a.s. 

We note that the square root of the left hand side of (4.1) is a norm 
in the space C ~ ( R  n) • C~~ ]Rd). Thus, if we denote the completion of 
the space C~~ n) • C~(~n;  ~d) under this norm by 7-lm(tl w) (note that  
it depends on (t, w) E [0, T] • fl), then we have the following inclusions: 

c F ( ~  n) • cF(n~;  n ~) c u~(t,w) c_ H ~ ( n  n) • H ~ - I ( ~ ;  ~ ) .  

It is clear that  estimate (4.1) also holds for any (u,q) E 7/m(t,w). A similar 
argument holds for (4.2) and (4.3). 

Since the proof of the above lemma is rather technical and lengthy, we 
postpone its proof to the next section. 

Before going further, let us recall the following fact concerning the dif- 
ferentiability of stochastic integrals with respect to the parameter. Let 
h E L~(O, T; C~(Rn; ~d)). Then it can be shown that the stochastic inte- 
gral with parameter: f~ ( h(s, x, .), dW(s) ) has a modification that belongs 
to n~:(0, T; c ~ - l ( ~ n ;  lRm)) and it satisfies 

f ' x, f[  On .In ( h(s, .), dW(s) ) = ( O~h(s, x, .), dW(s) ), 
(4.4) 

for [a 1 = l , 2 , . . . , m - 1 .  

Consequently, if h C L2(0,  T; C~) ,  then 

L " ( h(s, .), dW(s) ) e L~(O, T; C~),  0 ~ 

and (4.4) holds for all multi-index a. 
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In the rest of this section, we prove the existence of adapted weak 
solutions to (1.1) (or equivalently (3.2)) under conditions of Theorems 2.1 
or 2.2. 

We first assume that conditions of Theorem 2.1 hold. 
Let us take an orthonormal basis {~k}k_>l C_ C~(IR n) for the Hilbert 

space H m =-- Hm(lRn), whose inner product is denoted by 

(~,r - f _  ~ (a~)(a~r v~,r �9 H m. 
J.< 

I~l<m 

The induced norm is denoted by I" I-~. When q = (q l , ' " ,qd) ,  P = 
(Pl ,""  ,Pd) �9  (gm)  d, we denote 

d 

(q,p)~ = Z(q~,p~)m, 
i=1  

which should not be misunderstood from the context. As a usual conven- 
tion, H ~ -- L2(IRn). Let k > 1 be fixed. Consider the following linear 
BSDE (not BSPDE): 

i k s u ki t ki t d u k J ( t ) = { - - Z [ (  ~ , ~ j ) m  ( ) - - ( ( M ~ i , ~ j ) m , q  ( ) ) ]  
i=1  

(4.5) - (f, ~j).~ }dt + ( qkj (t), dW (t) ), 

( u k J ( T )  = (g,(Pj)m, 1 <_ j <_ k. 

By the result of Chapter 1, we know that  there exists a unique adapted 
solution 

( uk"(.) �9 C~([0, T]; ~) ,  
(4.6) / qkj(.) e L~(O,T;~d) ,  l < j < k. 

We define 

u~ (t, x, co) = ~ ~kJ (t, co)~j (x), 

(4.7) j=l  (t,~,co) �9 [0,T] x a n • a .  
k 

qk(t,x, co) E qkJ(t, co)cpj(X), 
j = l  

Then we see that  for any fixed (t, co) �9 [0, T] • f~, 

uk(t, . ,co) �9 C~(Nn) ,  qk(t,.,co) �9 C~(Nn;IRa).  

Also, the following holds: 

(4.8) ~ duk = { --Pk[s + 3 4 q k ] - - f k } d t +  (qk 'dW( t ) ) '  

( uklt=T ~ gk 
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where 

Pk : H m -+ span { qol , " , ~ k  } A H m 
" " ~ k ' 

is the orthogonal projection (in Hm),  and 

/ k  = Pkf ,  gk = Pkg. 

Note that, as processes, u k and qk, . . . ,  q) are taking values in H~,  where 
qk = ( q k , . . . ,  qk). Thus, in particular, 

(4.9) Pku k = u k, k >_ 1. 

Next, we want to derive a proper estimate for (u k, qk). By Lemma 4.1, we 
have the following: 

(4.10) 

s  { ~ { ( ( A -  BBr)D(O~uk) ,D(OC~uk))  

+ l B T D ( O ~ u k ) + O ~ q k l 2 } +  ~_, IO"qkl2} dz 
I,~l_<m-x 

I~[<m 

+ IO"uk[2}dx. 

On the other hand, applying It6-Ventzel'sformulato [Oauk]2, we have from 
(4.8) that 

(4.11) 

E/la~ i~l_<m 
T = fL 
~_, {lO~gk(x)l 2 - [O~uk( t , x )12}dx  

~_, {2(o=uk)o ~ [Pk ( - s  k - M q  k) - fk] 
Icd<m 

+ [OC~qkl2}dxds 
T 

= E { -- 2(uk,Pk(s  + fl/lqk) + f k )m + lqkl2m}ds 

( = E { - 2(Uk,s k + M q  k + fk )m + [qkl2 m}ds  

(s : E o Z { - 2(O~uk)O"( c~k + Mqk)  
I-I<m 

+ [O~qkl2 - 2(O~uk)(o~fk)}dxds .  

The third equality in above is due to (4.9). Then combining (4.10)-(4.11), 
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we obtain 

LI 

(4.12) 

{ ((A - BBT)D(O~uk), D(O~u k) ) 
I~l<m 

+]BTD(O~uk)+O~qk]2}+ ~_, IO~qkl'}'dx 
I~l<_m-1 

<_ C { E l g k l l  - Eluk(t)l~ 

l~l<m 

By Gronwall's inequality, we obtain 

T 

max Eluk(t)12m + E f Iqk(t)12_ldt 
te[0,T] J0 

+ z s 
(4.13) 1-1_ <m 

+ BT[D(O~uk)] + O~q k 2}dxdt 

fo k 2 Igkl:}. <CE{ rlf  (t)lm+ 

Note that  the constant C > 0 in (4.13) only depends on T, m and Kin. 
From (4.13), we may assume that  

(4.14) 
{ u~ ~ u, weak* in L~(O,T;L~(ft;Ht)), 0 < t < m ,  

qk __+ q, weakly in L~(0, T; Ht) d, 0 < ~ < m - 1, 

and for any lal < m, 

(4.15) 
(A - BBT)I/2D(Oe'u k) --+ (A - BBT)U2D(Oau), 

BT[D(O~uk)] + O~q k --~ BT[D(O~u)] + O~q, 

weakly in L2(0, T; H~ 

By taking limits in (4.13), we see that  (u,q) satisfies the estimate (2.4) 
with the constant C > 0 only depending on T, m and Km. We are going 
to prove that  (u, q) is a weak solution of (3.2). To this end, let us take 
p E H 1 (0, T) such that  

(4.16) 
p ( 0 ) = 0 ,  p(T)= l, 
O<p(t) < 1, tE[O,T]. 
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Let ~ > 0 be fixed and k _ ~. For any ~ E H ~  C C~(]Rn), from (4.8) and 
the fact Pk~o = ~, we have 

(gk, (fl) m = ~0 T {P(t)(uk(t), ~O)m 

(4.17) - p(t)(s + Mqk(t) + fk(t),~o),~}dt 
T 

+ fo p(t) ((qk (t), qo)m, dW(t)) .  

By the definition of/~ and Ad, using integration by parts, we obtain 

(gk,~)m : ~0 T {P(t)(uk(t),~)m 

- p(t)[ - l(A(t)Duk(t) + B(t)qk(t), D~o),~ 
(4.18) 

+ ((a(t), Duk(t) ) +c(t)uk(t) + (b(t), qk(t) ) +fk(t), ~O)m] }dt 

+ p(t) ((qk (t), ~)m, dW(t) I, a.s. 

If we denote 

I 
F(x, w) = g - .s {P(t)uk(t) _ p(t) [ (a(t), Duk(t) ) +c(t)uk(t) 

(4.19) + (b(t), qk(t) ) + fk(t)] } d t -  ~0 T ( p(t)q k (t), dW(t) ), 

T 1 
G(x,w) = ~o P(t)[-2A(t)Duk(t) + B(t)qk(t)]dt' 

then (4.18) reads 

(4.20) (F, ~)m = (a ,  D~)m, 

By the lemma below, we must have 

(4.21) (F, ~)o = (G, D~p)o, 

This tells us that  

V~ e CF(Rn), a.s. 

v~ ~ C~(R"), a.s. 

(gk,~)o = fo T {P(t)(uk(t),~)O 

(4.22) -- p(t) ( s k (t) + Mqk(t) + fk (t), ~ )o }dt 
P T 

+ Jo p(t)((qk(t),~)o,dW(t)), a.s. 

We want to pass to the limit in (4.22) to obtain a similar equality for (u, q). 
By (4.14) with g = 1 for u k and t = 0 for qa, together with the convergence 
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of ( fk ,gk)  to (f ,g) ,  we can pass to the limit in (4.22) weakly in L2(~) for 
all terms except the last term which is involving the It6 integral. To treat 
this last term, we define K : L~(0, T; H~ d -~ L2(~) by 

~0 T EIKpl 2 = E Ip(t)(p(t), ~)ol2dt 
(4.24) 

< I~I~E Ip(t)l~dt, Vp E L2(O,T;H~ d. 

This means that  K is a bounded linear operator. Thus, for any T]C L2(~), 
one has 

(4.25) E(~  fo Tp(t) ((qk(t) - q( t) '~)~ } ) 

= (7, K(q k - q))L2(n) = (K*~, qk _ q)L2(O,T;HO) d ~ O .  

Thus, we obtain 

/0 = {p(t) ~)o 

(4.26) - p(t) ( s + A/~q(t) + f(t) ,  ~ )o }dt 

+ p(t) ((q(t), ~o)o, dW(t) ), a.s. 

Now, fixed any t E (0, T). For any e > 0, we let 

0, s < t - e / 2 ,  
1 s--t (4.27) p~(s) = ~+  T , t - c / 2 < s < t + z / 2 ,  
1, s > t+6 /2 .  

Choosing p = p~ in (4.26) and letting c --+ 0, we obtain 

(g, ~)o = (u(t), ~)o - ( s + 2r + f(t) ,  ~)odt 
(4.28) 

+ ((q(t),~p)o,dW(t)), V~peC~(l~n),  a.s. 

This means that  (u, q) is an adapted weak solution of (3.2). By Theorem 
3.2, it is unique. 

In the case that  m > 2, from (2.4), we see that  (1.13) holds and thus, 
by Proposition 1.3, (u, q) is an adapted strong solution (3.2). In the case 
m > 2 + n/2, by Sobolev's embedding theorem, (1.11) holds and therefore, 
(u, q) is an adapted classical solution of (3.2) by Proposition 1.3 again. 

~0 T (4.23) Kp = p(t) ((p(t), ~)o, dW(t) ), Vp e L~(O, T; H~ d. 

Then 
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Finally, let us look at the case when conditions of Theorem 2.2 hold. 
Suppose (2.6) or (2.7) holds instead of (2.2). By Lemma 4.1, we still have 
(4.1), which is now equivalent to (4.2). Then all the proof that we have 
presented above remains true. Moreover, we have estimate (2.8). In the 
case that  A is uniformly positive definite, a little more careful estimate leads 
to (2.9). In fact, for the present case, in (4.12), we can use integration by 
parts to get 

(4.29) E'~Km / T  /R" 2(Oauk)(o~ fk)dxds 

T 

J t  

We leave the details of the proof to the interested readers. []  

We now prove the following lemma which has been used in the above 
proof. 

L e m m a  4.2. Let F E H'~(]R '~) and G E Hm(]Rn) n, such that 

(F,!P)m = (C,D~)m, Vcp E C~~ (4.30) 

Then 

(4.31) (F,v)0 = (a,D~)0,  V~ e C3~ 

Proof. Let S~S(]R n) be the set of all ~ E C~176 such that 

(4.32) ~,~(~o) ~ sup Ix~O~(x)l < oo, Va,/~. 
x E R  '~ 

Under the family of semi-norms ~ , Z ,  S is a Fr~chet space. Also, C~ ~ (Rn) is 
a dense subset of S. Thus, (4.30) holds for all ~ E S. Next, by HSrmander 
[1, p.161], Fourier transformation ~ ~ ~ is an isomorphism of S onto itself. 
Applying Parseval's formula to (4.30), we obtain 

(4.33) UR, [ F ( ~ ) - ( 0 ( ~ ) , ~ ) ] (  E 1~12) ~ ( ~ ) d ~ = 0 '  V ~ E C r ( ~ n ) "  
I~l<m 

Now, for any r e C ~ ( ~ n ) ,  we have r  ICI~) -1 c S. Thus, 
there exists a ~o E S, such that 

(4 4) Z -1 
I~l<m 

Combining (4.33) and (4.34), using Parseval's formula again, we obtain 

(F,C)m = ( G , D r  Vr E C ~ ( ~ ) .  

This proves our lemma. []  
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w A P r o o f  of  the  Fundamenta l  Lemma 

In this section, we are going to prove Lemma 4.1, which has played an 
essential role in the proof of well-posedness theorems for (1.1). 

Proof of Lemma ~.1. Let g~lc~l _< m. For any u E C ~ ( ~  n) and 
q E C~~ IRa), by definition of s and AA, and differentiation, we have 

Z~A= Sn. { - 2(OC~u)O'~(s + Mq) + [OC'q[2} dx 

+ V'[Bql+(b,q)]+[O'~ql2}dx 

= / n "  { -  2(O~u) [~ V'[AD(Oau)] + (a'D(O~u))+c(OC~u) 
(5.1) + V.[B(O"q)] + ( b, Oaq ) ] + 

0<_/3<~ 

+ ( cOc~-Za, D(O~u) ) +(Oc~-Zc)(O/3u) 

+ v.[(m-~B)(O~q)] + (m-~b,O~q) }] }a~ 

where C~t~ is a positive integer depending on a and/3, and 

I~ = ia" {- 2(0"u)[21-- V'[AD(0<~u)] + ( a, D(0<~u) ) +c(0%s) 
(5)) 

+ V.[B(O'~q)J+(b,O"q)] +lO"@}d:c, 

(5.3) o<~<a 

+ ( O~-Za, D(OZu) ) + (O~-~c)(O~u) + O~-db, OZq) ] dz, 

(5.4) E 
o_<~<~ 

I~1<1~1-1 

CaB (0 au) V.[(Oa-ZB)(O/~q)]dx, 

(5.5) :Z~-----2S~ E Caz(Oau) V'[(Oa-~B)(O~q)]d'T'" 
o_<f~<~ 

It~l=l~l-1 

We note that in the case g = 0, Z~, Z~ and Z~ are all absent. We now treat 
Z~, Z~, Z~ and Z~, separately. 
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Since A and B are C ~  +1 in x, we see immediately that 

2 (5.6) ]Z~'t + IZ~] -< C(tu]~ + )qle-z)- 
Now, let us look at Z~ and Z~'. Using integration by parts, we have 

(5.7) 

Z~ = fa" { (AD(O(~u)'D(O'~u))+2(O'~q'BTD(O~u))+lO'~ql2 

- ( a, n[(O"u)2]) -2c(O"u) 2 - 2 (b(O'~u), O"q ) }dx 

�9 /R" { ( ( A -  BBT)D(Oau),D(a~u))+[BTD(cO'~u)[ 2 + [a~q[ 2 

+ 2 ( O'~q, BTD(OC~u) ) -2 (b(Oau), cgaq ) 

- 2 ( B T D  (O"u), b(O c~u) ) + I V .  (a - Bb)  - 2c] (0%)2 } dx. 

In the meantime, let us look at each term in Z~. For l~ < (t with I/~l = la[-1 ,  
using integration by parts, we have 

(5.8) 

- s (0%) v.[(a~-eB)(Oeq)]& 

=/a,~ (Ozu) V.{O~-f~[(O~-f~B)(cOf~ q)]}dx 

= - / R "  (D(O~u)' (O~-~B)O~q + (cO2(e'-~)B)Ol3q) dx 

=- f,, [((O~-eBr)D(Oe~), a"q ) + (D(Oeu), (O2(~-e) B)cO~q) )]dx. 

Thus, it follows that 

(5.9) 

~ + I~  = /R ~ { ( ( A - B B T ) D ( O ~ u ) , D ( O a u ) I  

+ BTD(O~u) + O~q - b(O'~u) - E C~(O"-~BT)D(O~u)2 

I~l=l,~l-z 

-Ib(a%)l~-I z Cc~f~(O'~-ZBT)V(O/3u)2 
o_<~<~ 

C,~e ((O"-OBT)D(Oeu), BT D(O%) ) + 2 E  
0<~<~ 

I,OI=I~I--Z 

- 2 ~ c . ~  <(O~-~B~)D(O~,~),b(O%) > 
O<_f~<~ 

If~l=l~l--1 

+ [V-(a - Bb) - 2c](O"u) 2 

- 2 Z c ,~  <V(ae~), (02(~ 
0<~<~ 
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Note that 

(5.10) 

/R ~ BTD(O~u) + O~q- b(O~u) 

- E C~(O~-ZBT)D(OZu) 2dx 
o_</~<a 

Ifli=l~l-1 

>__ 1 s BTD(OC, u ) +C3c~q 2dx 

1 
2/R~ b(O~u) +o<_~<~ C~(o~-zBT)D(Ozu) 2dx 

I~l=lc, l -1 

1 > -~/R ~ BTD(O~u) + OC~q 2dx - Clul~. 

Next, by the symmetry condition (2.2), for/3 < c~, 1/31 = I~1 - 1, we have 

(5.11) 

r ~  ((a"-~ Br)D(aZu)' BT D(a~u) ) dx 

= J'R~ ((BOa-~BT)D(OZu)' D(O~u) ) dx 

= s �89 [o~-~ ((Bo~-~Br)D(a~),D(a~) ) 
- (O~-Z(BO~-eBT)D(O~u), D(OZu) ) ] dx 

= _ 12/R~ ( Oa-~(BO(~-~BT)D(O~u)' D(O~u) ) dx _> -C]ul 2. 

Combining (5.6), (5.9)-(5.11) yields 

(5.12) 

z ~ = z$ +z{~ + z ~  + z $  

> fR ~ { ((A - BBT)D(O~u),D(O~u)) 

+ ~IB TD(Oau) + OC~q[2 }dx - C(lul~ + [ql~-l). 

Now, we sum (5.12) up for all lal < g to get the following: 

(5.13) 

s 
->2[1 ~<~_/R" { ( ( A -  BBT)D(O~u),D(O~u)) 

+ IBTD(O ~u) + OC*q[2} dx - C(lul 2 + Iq{~-l). 
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Thus, it follows that 

~,~ E s { ((A- Br 
I,~1<~ 

(5.14) + [BTD(0%) + a~ql2}dx 

C (lll~g. -~ I11,12 "t- Iql2_1). < 

Note that  

(5.15) IO'~ql 2 <__ 21BTD(O~u) + OC'ql 2 + 21BTD(a~u)l 2. 

Using the parabolicity condition (1.6) and the definition of Ot (see (5.14)), 
we have 

(5.16) IqlLl ~ C((]}/-1 -1-lull). 

Consequently, from (5.14), we obtain 

U 2 (5.17) ~s ~ C(~s  ~- (]}~-1 ~- I It), 1 < ~ < m. 

On the other hand, for g = 0 (i.e., a = 0), we have 

JR- { -  2u(s + .Mq) + Iql2}dx 

: i,. {-'~ + ~a, ~u~ +.- 

+ V.[Bq] + (b,q}] + Iql'}dx 
(5.18) = i,~- { ( ( A - B B T ) D u ,  Du)+IBTDul 2 +lql 2 

+ 2 {q, B T D u ) - 2  (bu, q) 

- 2 ( BTDu, by } +[V.(a - Bb) - 2c]u 2 }dx 

k SRo {((A- BBT)D.,Du>+IBTD.+ql2ax--CM~. 

This implies 

~5,9/ Oo_</~. {-,.~§ Mq~ + Iql'}.. + clol~ 

Hence, it follows from (5.17) and (5.19) that 

U 2 (5.20) ~ < c(~m +l  Ira), 

which is the same as (4.1). 
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In the case that  (2.6) holds, we use the following estimate: 

(5.21) 
f i t .  ((O~-Z BT)D(OZu), BT D(O~u) ) dx 

for small enough e > 0 to get 

(5.22) 

/R ~ {((A - BBT)D(O~u), D(a~u) ) 

+ 2 ~ C, z ((O~-ZBT)D(Oeu),BTD(O~u)) 
o<~<a 

> ~o/~ _ -~ . ((A - BBT)D(O~u), D(O~u) ) dx - Clul~. 

Then, we still have (5.14) and finally have (5.20) which is the same as (4.1). 
In the case (2.7) holds, we use the following estimate: 

(5.23) 

it. ( ( O~-Z BT)D(OZu), BT D(O~u) ) dx 

= fitJ(O"- Br)D(O u), c9~-a[BrD(Oau)] 

- (O~-5BT)D(O~u)) dx 

= - f i t .  { ((02(=-~)BT)D(O/3u)' BTD(O~u) ) 

+ ((O(~-~)BT)D(O~u), BTD(OZu) ) 

+ I(O~-aBT)D(OZu)I 2 } dx 

for c > 0 small enough to obtain (5.22) and finally to obtain (5.20). 
Note that  in the case (2.6) or (2.7) holds, we have (2.10). Then, (4.2) 

follows from (4.1) easily. Finally, if in addition, (1.9) also holds, then, (4.3) 
follows from (4.2). This completes the proof of Lemma 4.1. [] 

w Comparison Theorems 

In this section, we are going to present some comparison theorems on the 
solutions of different BSPDEs. For convenience, we consider BSPDEs of 
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form (1.5). Let us denote (compare (3.1)) 

i s  ltr[ADeu] - (a, Du ) -cu  
A/[q A_ tr [BT Dq] - ( b, q ), 

(6. 1) 
s  ~ l t r  [AD2~] - ( ~, DE) -Uu, 

- -  A '---T Mq=tr[B D ~ ] - ( b , ~ ) .  

We assume that (H),~ holds for {A, B, a, b, c] and {A, B, ~, b, U]. Consider 
the following BSPDEs: 

I du = - {  s + Mq + f }dt + < q'dW(t) )' (t,x) e [O,T] x ]1% n, 
(6.2) 

f d-~= -{-s + M~ +-]}dt + (~,dW(t) ), (t,x) E [0,T] x M% n, 
(6.3) [u l t=T = #" 

Note that  (6.2) and (3.2) are a little differenl since the operators s and 
J~4 are defined a little differently. However, by the discussion at the end 
of w we know that Theorems 2.1, 2.2 and 2.3 hold for (6.1). Throughout 
this section, we assume that the parabolicity condition (1.6), the symmetry 
condition (2.2) and (H),~ (for some m _> 1) hold for (6.2) and (6.3). Then 
by Theorem 2.3, for any pairs (f, g) and (f ,  ~) satisfying (2.14), there exist 
unique adapted weak solutions (u, q) and (~, ~) to (6.2) and (6.3), respec- 
tively. We hope to establish some comparisons between u and ~ in various 
cases. 

Our comparison results are all based on the following lemma. 

L e m m a  6.1. Let (1.6), (2.2) and (H)m with m > 1 hold. Let (u,q) 
be the unique adapted weak solution of (6.2) corresponding to some (f, g) 
satisfying (2.14) for some A ~_ O. Then there exists a constant # 6 ~, such 
that 

E e lu(t, x)- 12, x 

(6.4) 

T 

Proof. We first assume that (f ,g)  satisfies (2.14) with A = 0. L e t  
: IR -+ [0, oc) be defined as follows: 

r , r < -1 ,  

(6.5) qo(r) = (6r 3 + 8r  4 + 3r5) 2, --1 < r < 0, 

0, r>_0.  
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We can directly check tha t  ~ is C 2 and 

~(0) = / ( 0 )  = / ' ( 0 )  = O, 
(6.6) 

~o(-1) = 1, ~o'(-1) = -Z ,  qo"(-1) = 2. 

Next,  for any e > 0, we let ~o~(r) = e2~o(r). Then,  it holds 

lim ~'e (r) = - 2 r -  l i m ~ ( r )  = Ir i2, ~-~o 
r 

(6.7) J ' ( r ) l  < C, Ve > o, r c IR; 

lim ~"( r )  = ~ 2, r < O, 
s-+O [ O, r > O. 

Denote 

1 
(6.8) a = a - 7 V-A,  

Then  by (1.3), we have 
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a=b-V-B .  

uniformly, 

EiR  ~e(g(x))dx- E s  ~e(u(t,x))dx 

/o 1 = E {V'e(u) [ - ~ V.(ADu) - V-(Bq) - (a,  Du ) 
t 

- e u - ( g , q ) - f ]  + ~o;'(u)lql=}dxds 
= E s  { ( ADu, Du) +2 ( BrDu, q) +iq,2 ] 

- ~o'e (u)[  (a,  Du ) +cu + ('b, q) + f ]  }dxds 

: E iQ, {~ ~~ ( (A -  BBT)Du'Du)+]BTDu +q-~ul2] 

1 u 
+ 7 ~ ( ~ ) [ - I ~ 1 ~  ~ + 2 ( B ~ D ~ , ~ )  +2 ( ~ , q ) ]  

- ( "d, Dg~e (u)) -~'~ (u)[cu + ( b, q } + f ]  } dxds 

> . s  {_1,, So u _ < 7~o. (~)l'gl2u= + (Bb, D ~oy(r)rdr) 
+ [~"(~)~ -/~(u)} (~, q) +(v. a)~(u) 

- ~o'E(u)[cu + f]}dxds. 

(6.10) 

(6.9) { ltr[AD2u]+(a, Du)= ~V.[ADu]+('d, Du), 

tr[BTDq] + (b,q) = V.(Bq) + (b,q}. 

Applying the It6's formula to ~o~ (u), we obtain (let Qt = [t, T] x IR n) 
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We note that  

(6.11) 

and 

fo ~ 99~ (r)rdr = ~ (u)u - (p~ (u), 

(6.12) l i m [ ~ ( u ) u  - ~ ( u ) ]  = 2uI(._<o) + 2 u -  = 0. 
e - + 0  

Thus, let e --+ O in (6.10), we obtain 

(6.13) 

E /R Ig (x ) - i~dx-  E /R lu(t,x)-12dxds 

>__ E/Q~ { - I(u<<_o)lbl2n ' - V . ( B b ) [ - 2 u - u -  lu-I 2] 

+ (v.a)lu-I 2 + 2 u - [ ~  + f]}dxds 
_> - v + v . a -  - 

where 

A 
(6.14) I t = s u p  [ - V . ~ + V . ( B b )  + Ib[' + 2 c +  1 ] <co .  

t~X,~O 

Then by Gronwall's inequality, we obtain (6.4) for the case )~ = 0. The 
general case can be proved by using transformation (2.11) and working on 
(v,p) for the transformed equations. [] 

Our main comparison result is the following. 

T h e o r e m  6.2. Let (1.6), (2.2) and (H),~ hold for (6.2) and (6.3). Let 
( f ,g)  and (f ,~)  satisfy (2.14) with some ~ >_ O. Let (u,q) and (~,~) be 

Then for some adapted strong solutions of (6.2) and (6.3), respectively. 
# > 0 ,  

(6.15) 

E / R  ~ e -~ (~)[[u(t, x) - g(t, x)]-12dx 

< e"(~-*)E/~o e-~ ('>l[g(~) - Y(~)]-I :d~ 

+ ( M  - M)~(s ,  x) + f (s ,  x) - ] (s ,  x)]-[2dxds, 

v t e  [0, T], 
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In the case that 

Chapter 5. Linear, Degenerate BSPDEs 

g(x) - F(x) > 0, Vz ~ ~t", a.s. 

(6.16) (s - Z)~(t,  x) + ( M  - M)~( t ,  x) + f ( t ,  x) - f ( t ,  x) >_ O, 

V(t, z) ~ [0, T] x IR n, a.s. 

it holds 

(6.17) u(t, x) >_ ~(t, x), V(t, x) E [0, T] x ~n ,  a.s. 

This is the case, in particular, i f  s = s M = ,44 and 

(6.18) ~ g(x) >_ -~(x),_ a.e. x E ]R n, a.s. 

L f ( t ,  x) ___ f ( t ,  x), a.e. (t, ~) ~ [o, T] • ~ ,  a.s. 

Proof. It is clear that 

{ d ( u - ~ )  --- - { Z : ( u -  ~) + M ( q -  ~) 

(6.19) + (s - -~)~ + (2vf - M ) ~  + f - ] }d t  
+ ( q - ~, dW(t)  ), 

Then, (6.15) follows from (6.4). In the case (6.16) holds, (6.15) becomes 

(6.20) EfR e-~(*>i[u(t,x)--~(t,z)]-12dz<_O, Vt E [0, T]. 

This yields (6.17). The last conclusion is clear. 

C o r o l l a r y  6.3. Let the condition of Lemma 6.1 hold. Let 

I g(x) >_ 0, a.e. x E Rn, a.s. 
(6.21) 

f ( t ,  x) > O, a.e. (t, x) E [0, T] x ~'~, a.s. 

and let (u, q) be an adapted strong solution of (6.2). Then 

(6.22) u(t, x) > 0, a.e. (t, x) E [0, T] x l& '~, a.s. 

[] 

Proof. We t a k e Z =  s M = A4, f _ =  0 a n d y -  0. Then (~,~) = 
(0,0) is the unique adapted classical solution of (6.3) and (6.18) holds. 
Consequently, (6.22) follows from (6.17). []  

Let us make an observation on Theorem 6.2. Suppose (~,~) is an 
adapted strong solution of (6.3). Then (6.16) gives a condition on A, B, 
a, b, c, f and g, such that the solution (u, q) of the equation (6.2) satisfies 
(6.17). This has a very interesting interpretation (see Chapter 8). We now 
look at the cases that  condition (6.16) holds. 

L e m m a  6.4. Let A, B, -d, b and -~ be independent of x. Let -] and -~ be 
convex in x. Let (~,~) be a strong solution of (3.1). Then, ~ is convex in 
x almost surely. 
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Proof. First, we assume that  f and g are smooth enough in x. Then, 
the corresponding solution (~,-9) is smooth enough in x. Now, for any 

�9 ~ n ,  we define 

v(t ,x)  = ( D2~(t, xfihT1); 

p(t ,x)  = (p l ( t , x ) , ""  ,pd(t,x)), V(t,x) �9 [O,T] x IR ~, a.s. 

p k ( t , x ) = ( D 2 ~  k(t,xfi?,~), l < k < d ,  

Then, it holds 

dv = [--s - -Mp - ((D2-f)rI,~)]dt + (p, dW(t) ), 
(6.23) v]t: T = ((D2~)~/' ~/). 

By Corollary 6.3 and the convexity of f and g (in x), we obtain 

( D2~(t, x)r/, r/> = v(t, x) >_ O, 
(6.24) V(t, x) e [0, T] x Rn, y �9 ~tn, a.s. 

This implies the convexity of ~(t, x) in x almost surely. In the case that  
and ~ are not necessarily smooth enough, we may make approximation. 

[] 

P r o p o s i t i o n  6.5. Let A, B, -5, b and -~ be independent of x. Let f and 
be convex in x and nonnegative. Let (~,~) be a strong solution of (6.3). 

Let A4 = A/[ and let 

A(t ,x)  = A(t) + Ao(t,x),  

(6.25) c(t,x) = -5(t) + co(t,x), (t,x) �9 [0, T] x IR ~, a.s. 
f ( t , x )  = f ( t , x )  + fo(t ,x),  
g(x) = + go(x), 

with 

Ao(t,x)>_O, co(t,x)>_0, V(t,x) e [ O , T ] •  n, a.s. 
(6.26) fo(t ,x) > O, go(x) >_ O, 

Then (6.16) is satisfied and thus (6.17) holds. 

Proof. By Corollary 6.3 and Lemma 6.4, ~ is convex and nonnegative. 
Thus, 

(E - s x) = ~tr [AoD2~] + c0~ >__ 0. 

Then (6.16) follows. [] 

Next, we have the following. 

P r o p o s i t i o n  6.6. Let all the functions A, B, -5, b, -~, -] and -9 be determin- 
istic. Let ~ be the solution of the following equation: 

~t = - Z u  - 7, (t, x) �9 [0, T] x IR n, 
(6.27) 

(, ~l~=T = -9 
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Further, we assume that g(t, x) is convex in x. Next, let (6.25) hold. Then 
(6.16) is satisfied and (6.17) holds. 

Proof. In the present case, (g, 0) is an adapted strong solution of (6.3). 
Then similar to the proof of Proposition 6.5 and note ~ = 0, we can obtain 
our assertion. []  

Note that  in Proposition 6.6, B and b are arbitrary. 



C h a p t e r  6 

M e t h o d  o f  C o n t i n u a t i o n  

In this chapter, we consider the solvability of the following FBSDE which 
is the same as (3.16) of Chapter 1 (We rewrite here for convenience): 

dX(t)  = b(t, X( t ) ,  Y(t), Z(t))dt + a(t, X( t ) ,  Y(t), Z(t) )dW(t) ,  

(0.1) dY(t )  = h(t, X(t),  Y(t) ,  Z(t))dt + Z( t )dW(t) ,  

x ( o )  = x, Y ( T )  = g (X(T) ) .  

Here, functions b, a, h and g are allowed to be random, i.e., they can depend 
on w E ~. For the notational simplicity, we have suppressed w and we will 
do so below. 

We have seen that  for the case when all the coefficients are determin- 
istic, one can use the Four Step Scheme to approach the problem (see 
Chapter 4), which involving the study of parabolic systems; in the case of 
random coefficients, in applying the Four Step Scheme, we need to study 
the solvability of BSPDEs (see Chapter 5). In this chapter, we are going 
to introduce a completely different method to approach the solvability of 
(0.1). Such a method is called the method o/ continuation. 

w T h e  Br i dge  

Recall that  S '~ is the set of all (n • n) symmetric matrices. In what follows, 
whenever A is a square matrix, (with A being a scalar), by A + A, we mean 
A + M .  For any A E S n, by A >_ 5, we mean that  A - 5  is positive 
semidefinite. The meaning of A _< - 5  is similar. For simplicity of notation, 
we will denote M = ~'~ x ][:~m X ~:~m• a generic point in M is denoted 
by 0 = (x ,y , z )  with x C ]R '~, y E IR m and z E ]R "~• The norm in M is 
defined by 

(1.1) 101 ~ {Ix12 + lYl 2 + Izl~} 1/=, VO = ( x , y , z )  �9 M,  

where Izl 2 ~ tr (zzT). Similarly, we will use 0 = (X, ]I, Z), and so on. 
Now, let T > 0 be fixed and let 

H[0, T] =L~:(0, T; WI'~ M ; ~ • ]R ~• • ~m)  ) 
(1.2) 

• L~(a; W I , ~ ( ~ ; ~ ) )  

Any generic element in H[0, T] is denoted by F =- (b, a, h, g). Thus, F - 
(b, a, h, g) �9 H[0, T] if and only if 

b E L~(O,T; WI '~(M;IRn)) ,  

a E L2_r(O,T;WI'~176215 

h E L2(0, T; WL~176 

g e n~%(~; Wl'~ 
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where the space L~(0, T; WI,~(M; ~'~)), etc. are defined as in Chapter 1, 
w Further, we let 

2 nxd (1.3) ~/[0, T] = n~(0,  T; ]R ~) x n3:(0 , T; R ) 
2 . m x n~:(0, T; ~m) x n~- r (s ~ ). 

An element in ~[0, T] is denoted by 7 - (bo, ao, ho, go) with 

bo �9 L~(0, T; R~), 

ao �9 L~(0, T; ~nxd),  

ho �9 L~(0, T; ~m),  

go �9 L~ r (~t; ~m).  

We note that  the range of the elements in H[0, T] and ~[0, T] are all in 
~ n  x ~nxd  x ~m x ~ m .  Hence, for any F = (b,a,h,g) E H[0, T] and 
7 = (bo, ao, ho,go) E ~/[0, T], we can naturally define 

(1.4) F + ~ / = ( b + b o , ~ + a o , h + h o , g + g o )  E H[0, T]. 

Now, for any F - (b, a, h, g) C H[0, T], 7 - (b0, Cro, ho, go) E 7/[0, T] 
and x E ~n ,  we associate them with the following FBSDE on [0, T]: 

dX(t) = {b(t, O(t)) + bo(t)}dt + {a(t, O(t)) + ao(t)}dW(t), 
(1.5)r,~,~ dY(t) = {h(t, O(t)) + ho(t)}dt + Z(t)dW(t), 

x(0) = z ,  Y ( T )  = g ( X ( T ) )  + go, 

with O(t) -= (X(t),  Y(t), Z(t)). In what follows, sometimes, we will simply 
identify the FBSDEs (1.5)r,~,~ with (F, 7, x) or even with F (since 7 and x 
are not essential in some sense). Let us recall the following definition. 

De f in i t i on  1.1. A process 0(-) - (X(.),Y(.),Z(.)) E M[0, T] is called 
an adapted solution of (1.5)r,~,~, if the following holds for any t C [0, T], 
almost surely. 

~0 t X(t) = x + {b(t, O(s)) + bo(s)}ds 

+ {a(t, O(s)) + ao(s)}dW(s), 
(1.6)r,~,~ r T  

Y(t) = g(X(T)) + go - I t  {h(t, O(s)) + ho(s)}ds 

T 

- f Z(s)dW(s). 
.It 

When (1.5)r,~,~ admits a unique adapted solution, we say that (1.5)r,~,~ is 
(uniquely) solvable. 

We see that (1.6)r,~,~ is the integral form of (1.5)r,~,~. In what follows, 
we will not distinguish (1.5)r,~,~ and (1.6)r,~,~. 
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Def in i t i on  1.2. Let T > 0. A F E HI0, T] is said to be solvable if for 
any x C ~ n  and 7 E ~[0,  T], equation (1.5)r,%~ admits a unique adapted 
solution O(.) E ~4[0,T]. The set of all F E H[0,T] that is solvable is 
denoted by S[0, T]. Any F E g[0 ,  T] \ S[0, T] is said to be nonsolvable. 

Now, let us introduce the following notions, which will play the central 
role in this chapter. 

De f in i t i on  1.3. Let T > 0 and F - (b,a, h,g) e H[O,T]. A C 1 function 

(: = : [0, T] --+ S n+m, with A :  [0, T] -~ S n, B: [0, T] -+ ~rn• 
c 

and C : [0, T] --+ S "~, is called a bridge extending from F, (defined on [0, T]), 
if there exist some constants K, 5 > 0, such that 

{ c(T) _< A(t) __ o, vt Io, T], 

(1.7) ~(0) _~ K 00) , 

and either (1.8)-(1.9) or (1.8)'-(1.9)' hold: 

(1.8) ((I)(T) g(x) g(Z) ' g(x) g(~) )>51x-~?, v x , ~ e ~ " .  

(1.9) 

X w 

y ' h(t,O) h(t,8)] ) 

<_-5Ix-hi  2, VO, O e M ,  a.e. t e  [O,T], a.s. 

(1.8)' (O(T) g(x)-g(5)  ' g(x)-g(5)  ) > 0 ,  V x , h e l R  n. 

y ' h(t ,e)  - h(t ,~)  ) 

+ ( ~(t) ( a(t'O) -a(t'z--2 -0) ) a(t,O)z-_a(t,-~) ) ) 

< - 5 { l y - ~ l  2 + I z - ~ 1 2 } ,  v e , ~ e  M, a . e . t  e [0, T],  a.s. 

If (1.7)-(1.9) (resp. (1.7) and (1.8)'-(1.9)') hold, we call �9 a type (I) (resp. 
type (II)) bridge emending from F (defined on [0, T]). The set of all type 



140 Chapter 6. Method of Continuation 

(I) and type (II) bridges extending from F (defined on [0, T]) are denoted 
by g~(r; [0, T]) and BII(F; [0, T]), respectively. Finally, we let 

(1.10) 
B(F; [0, T]) -- BI(F; [0, T] )U/3I I (F ;  [0, T]), 

Us(F; [0, T]) = BI(F; [0, T]) N BxI(F; [0, T]). 

Any element (~ E /3S(F; [0, T]) is called a strong bridge extending from F 
(defined on [0, T]). 

D e f i n i t i o n  1.4. Let T > 0 and F, F E HI0, T]. We say that  they are linked 
by a direct bridge if 

(1.11) 
{~(r; [0, T]) N B~(F; [0, T])} 

[J {~.(r;  [0, T]) n n . ( r ;  [0, T])} ~ r 

and we say that  they are linked by a bridge, if there are F1,-" ", Fk E H[0, T], 
such that  with F0 = F and Fk+l = F, it holds 

(1.12) 
{/~i (Fi; [0, T]) N BI (F,+I ;[0, T])} 

[_J {U.(ri; [0, T])A ~.(r,+l; [0, T])} ~ r 0 < i < k .  

We may similarly define the notion that  F and F are linked by a (direct) 
strong bridge. 

w M e t h o d  o f  C o n t i n u a t i o n  

In this section, we are going to present the solvability of FBSDEs by the 
method of continuation. The notion of bridge plays an important role here. 

w T h e  so lvabi l i ty  of  F B S D E s  l inked by b r i d g e s  

Let us state the following theorem. 

T h e o r e m  2.1. Let T > 0 and F1,F2 E H[0, T] be linked by a bridge. 
Then, Vl E $[0, T] if and only if F2 E S[0, T]. 

The above theorem tells us that  if the FBSDE associated with F1 is 
solvable, so is the one associated with F2, provided F1 and F2 are linked 
by a bridge. In applications, if one wants to prove the solvability of the 
FBSDE associated with F2, he/she can start with a known solvable FBSDE 
F1, and try to construct a bridge linking F1 and F2. We will see a detailed 
construction of bridges in w for an interesting case. 

Let us now explain the idea of proving Theorem 2.1. First of all, we 
make a simple reduction. By induction, to prove Theorem 2.1, it suffices 
to prove it for the case that  F1 -= (bl,cr1,hl,71) and F2 --- (b2,cr2,h2,g2) 
are linked by a direct bridge. We now assume this. Next, for any 7 - 
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(bo(.),~0(.),h0(.),g0) �9 7/[0,T], x �9 
following FBSDE: 

(2.1)~,~ { 

R ~ and a �9 [0, 1], we consider the 

dX(t)  = {(1 - a)bl (t, O(t)) + ab2(t, |  + bo(t)}dt 

+ {(1 - a ) a l ( t ,  O ( t ) ) +  aa2(t, O ( t ) ) +  ~o(t)}dW(t),  

dY(t)  = { (1 - a)hl (t, O(t)) + c~h2 (t, O(t)) + ho(t) }dt 

+ Z(t)dW(t) ,  

X(O) = x, Y ( T )  = (1 - oOgl(X(T)) J- ag2(X(T)) + go. 

We may  give the definition of the (adapted) solutions to above system 
(2.1)~,x similar to Definition 1.1. It is clear tha t  (2.1)~ and (2.1)~,~ co- 
incide with (1.5)r1,~,~ and (1.5)r2,~,~, respectively. Let us assume tha t  
F1 C $[0,T],  i.e., (2.1)~ is uniquely solvable for any 3  ̀ C //[0, T] and 
x E ]Rn. We want  to prove F2 E $[0,T],  i.e., (2.1)~,~ is uniquely solvable 
for all 3  ̀E 7-/[0, T] and x C ~ n  The essence of the method of continuation 
is contained in the following claim: 

There exists a fixed step-length r > O, such that if  for some 
a E [0, 1), (2.1)~,~ is uniquely solvable for any 3  ̀�9 7/[0, T] and 
x �9 IR n, then the same conclusion holds for a being replaced 
by a + e <_ l with e �9 [O, eo]. 

Once this has been proved, we can start  with (2.1)~,~ with a = 0 which 
is solvable by our assumption,  increase the parameter  a step by step and 
finally reach a = 1, which gives the unique solvability of (2.1)~,~. 

In order to prove the above claim, the following a priori estimates for 
the adapted  solutions of (2.1)~,x will be crucial. 

L e m m a  2.2. Let  a �9 [0,1]. Let | ~ (X( . ) ,  Y(-), Z(.)) and -0(.) z~ 
( X (. ) , Y (. ) , Z (. ) ) be adapted solutions of (2.1)~,x and (2.1)~,~, respectively, 

with 3' = (bo, ao, ho, go), ~ = (bo, Po, ho, go) �9 7/[0, T] and x, ~ �9 ~ .  Then, 
the following estimate holds: 

I I O ( . )  - 2 - o(')ll~[o,~] 
= E sup IX(t) - X(t)l 2 + E sup 

ts[O,T] te[0,Tl 

(2.2) 

IY(t) - Y(t)J 2 

T 

+ E j[  ~ I Z( t ) - -Z( t ) i2d t  

T 

<_ C{Ix-~12 + Elgo-  ~ol 2 + E fo {Lbo(t)- ~o(t)l ~ 

+ lao(t) - ~o(t)l 2 + Iho(t) - -ho(t)12}dt}. 

Since the proof of the above lemma is technical and lengthy, we would 
like to postpone it to the next subsection. Based on the above a priori esti- 
mate,  we now prove the following result, which we call it the continuation 
lemma. 
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L e m m a  2.3.  Let  F1, F2 E HI0, T] be linked by a direct bridge. Then, 
there exists an absolute constant eo > O, such that if  for some a C [0, 1], 
(2.1)~,z is uniquely solvable for any 7 E 7/[0, T] and x E ~n ,  then the same 
is true for (2.1)~, +e with ~ �9 [0, Co], a + z < 1. 

Proof. Let  e0 > 0 be undetermined.  Let  e �9 [0,r For k > 0, we 

successively solve the following systems for O k (t) A= ( x k  (t), y k  (t), Z k (t)): 
(compare  ~+~ (2.1)~,~) 

O~ ~=(X~ Y~ Z~ - O, 

dXk+l(t)  = {(1 - a)bl(t, Ok+l(t)) + ab2(t, Ok+l(t)) 

-- ebl (t, Ok(t)) + eb2(t, Ok(t)) + bo(t) }dt 

+ {(1 - a)al(t ,  ok+l  (t)) + O~a2 (t, ok+ l  (t)) 

-- ea l  (t, o k  (t))  + ca2 (t, O k (t) ) + ao (t) } d W  (t),  

(2.3)~, +E dyk+l( t )  = {(1 - a)hl(t ,  Ok+l(t)) + ah2(t, ok+ l ( t ) )  

-- ~hl( t ,  ok(t)) + ~h2(t, Ok(t)) + ho(t) }dt 

+ Z k+l (t)dW(t), 

X k+l (0) = X, 

yk+l (T) = (1 - a)gl (X  k+l (T)) + ag2 (X  k+l (T)) 

- r  + cg2(Xk(T)) + go. 

By our  assumption,  the above systems are uniquely solvable. We now apply 
L e m m a  2.2 to  Ok+l( .)  and Ok(.). It follows tha t  

]10 k+l( ' )  - O k ()llMEo,rl 

< C{e2EIXk(T)  - x k - l ( T ) [  2 

(2.4) 
+ Io k(t) - ok-  (t)l 2dt } 

< ~2Co[]Ok(. ) k-1 _ - o ( ' ) l l ~ [ o , ~ l -  

We note  tha t  the  constant  Co > 0 appear ing in (2.4) is independent  of 
a and e. Hence, if we choose 6o > 0 so tha t  ~2Co < 1/2, then  for any 

�9 [0, r we have the following estimate:  

(2.5) [[Ok+l(.) - Ok(.)N~[O,T] < l [ [ok( . )  -- ok- l ( . ) l [~[0 ,T] ,  Vk > 1. 

This  implies tha t  the sequence {ok( ' )}  is Cauchy in the Banach space 
A4[0, T]. Hence, it admits  a limit. Clearly, this limit is an adapted  solution 
to (2.1)~,z . Uniqueness follows from est imate  (2.2) immediately.  [ ]  

Now, we are ready  to  give a proof  of our main result. 

Proof of Theorems 2.1. We know tha t  it suffices to consider the case 
tha t  F1 and F2 are linked by a direct bridge. Let  us assume tha t  (1.5)rl,.r,z 
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is uniquely solvable for any "y E ~/[0, T] and x E lRn. This means that  
(2.1)~ is uniquely solvable. By Lemma 2.3, we can then solve (2.1)~,~ 
uniquely for any a E [0, 1]. In particular, 1 (2.1)~,~, which is (1.5)r2,~,~, is 
uniquely solvable. This proves Theorem 2.1. []  

Note that  Lemma 2.2 has the following implication. 

C o r o l l a r y  2.4. Let F E HI0, T] with B(F; [0, T]) ~ r Then, for any 
7 E 7-/[0, T] and x E ~'~, (1.5)r,.~,z admits at most one adapted solution. 
Moreover, for any 7, ~ E 7-/[0, T] and x, ~ E lR '~, the stability estimate (2.2) 
holds for any adapted solutions 0(-) of (1.5)r,~,~ and 0(-) of (1.5)r,~,~. 

Proof. We take F1 = F2 = F in Lemma 2.2. Then, (2.2) applies. []  

From Corollary 2.4 we see that for the F associated with example (3.3) 
in Chapter 1, B(F; [0, T]) = r for T = krr + ~-~, k _> 0. 

w A priori estimate 

In this subsection, we present a proof of the a priori estimate stated in 
Lemma 2.2. 

Proof. Let O and O be two adapted solutions of (2.1)~,~ and (2.1)g,~, 

respectively. Define ~ '= ~ -  ~ for ~ = X , Y , Z , O ,  bo,ao,ho,go, ~ = x -  5, 
and  

Ibi(t)  = bi(t,O(t)) - bi(t,-O(t)), 

~i(t) = ai(t,O(t)) -ai( t , -O(t)) ,  
(2.6) / h~ ( t )  = hi(t,O(t)) - h~(t,-O(t)), i = 1,2, 

I ,~i(T)  = g i ( X ( T ) )  -g i ( -X(T)) ,  

Note that  F~ E H[0,T] implies that all the functions bi, a~, hi,g~ are uni- 
formly Lipschitz continuous. Suppose the common Lipschitz constant is 
L > 0. Applying It6's formula to I.~(t)l 2, we obtain that  

/o' 12(t)12 = 1~12 + 2 ( X ( s ) , ( 1 - a ) b l ( s ) + ~ 2 ( s ) + b o ( s ) ) d s  

/o' + I(1 - ~)~(~) + ~ ( ~ )  + ~o(s)l~ds 

/o' + 2 (2(~),  [(1 - ~)~(~) + ~ ( ~ )  + ~o(s)]dW(s)) 
(2.7) 

< I~t 2 + c 12(~)l{I)~(~)l  + I?(s) l  + 12(~)1 + I~o(s)l}ds 

/o' + c {12(s ) l  + IY(~)I + Iz(~)l + I~o(s)l}~ds 

+ 2 (2(s ) ,  [(1 - ~)~l(S) + ~ ( s )  + ~o(~)]dW(~)), 
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with some constant C > 0. As before, in what follows, C will be some 
generic constant, which can be different in different places. By taking the 
expectation and using Gronwall's inequality, we obtain 

fT 
(2.8) < cE{r f +]o 

with some constant C : C(L,T). Next, applying Burkholder-Davis- 
Gundy's inequality to (2.7) (note (2.8)), one has that 

T 

E sup r2(t)i 2 < C{J~J 2 + Jo f {IY(t)J2 + i2(t)12 
(2.9) tE[O,T] 

+ fo(t)l 2 + I~o(t)12}dt}. 

On the other hand, by applying ItS's formula to IY(t)l 2, we have 

T 

I~(t)l 2 + f F2(s)J2ds 
J t  

T 
: [Y(T) I  2 - 2 f  < Y ( s ) , ( 1 - a ) h l ( s ) + a h 2 ( s ) + h 0 ( s ) ) d s  

(2.10) - 2 (Y(s), Z(s)dW(s) > 

< CLIX(T)I 2 ~ f  + I~ol 2 + {I-~(s)l 2 + iY(s)l 2 + fo(S)12 dsj ~ ~ 

1 f T T 
12(s)l~ds - 2 f (~(s), Z(s)dW(s) >. J, 2 

Similar to the procedure of getting (2.9), we obtain 

T 
E sup IY(t)] 2 + E l  IZ(t)12dt 

(2.11) tE[0,T] J0 

/o < CE IX(T)I + [~oI 2 + + .  

We emphasize that the constants C appeared in (2.9) and (2.11) only de- 
pend on L and T. Also, in deriving these two estimates, only the condition 
Fi 6 H[O, T] has been used (and we have not used the bridge yet). Now, 
we apply It6's formula to 

<~(t) (~ ( t )  2(t) 
Y ( t ) ) ' ( Y ( t ) )  )" 
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It follows that  

), 
' k V ( t )  

(2.12) +2(~(t){~(t)~ ((X-a~1(t)+~2(t)+bo(t) 
\ Y(t) ] ' \(1 - a)hl(t) + ahz(t)  + h 0 ( t ) ]  ) 

+ ( 9(t) ( (1-  a)~' (t) + a'~2(t) + 9o(t) ) 
z(t) 

( (1-cO'~l(t) +a82(t) ^ }dt. z(t) + ~o(t) ) ) 

Let us separate two cases. 
Case 1. Suppose 9 6 B/(F{; [0, T]) (i : 1, 2). In this case, we have 

(2.13) 
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{ X(T) F(a) < '~(T) 
t (1 - oL)g 1 (T) -~ o/g2 (T) ] '  

)((T)  "~ 
(1 - oL)g 1 (T) + a~2(T) ] 

) 

= (A(T)X(T),.X(T)) +2 <B(T)X(T), (1 - a)~l (T) + a~2(T) ) 
+ (C(T){(I - a)~(T) + a~2(T)}, (I - a)~1(T) + a~2(T) ) 

= a2 (C(T){'~2(T) - ~I(T)}, {~2(T) - ~i (T)]) 

+ a{- . .}  + {..-} > 61X(T)[ 2, Va 6 [0,1], 

where {. . .} are terms that  do not depend on a. The above holds because 
C(T) < 0 implies that  F(a) is concave in a, whereas (1.8) tells us that  
(recall �9 C Br(Fi; [0, T]), i = 1, 2) 

(2.14) F(0), F(1) >_ 5])((T)[ 2. 

Then, (2.13) follows easily. Similarly, we have 

f(a)~=(~(t) \ y ( t )  ' \ Y ( t )  ) 

+ 2 {O(t) ( ~ ( t ) ' ~  { ( 1 - a ~ l ( t ) + ~ 2 ( t ) )  
Y(t) ] '  \ ( 1 -  a)hl(t) + ah2(t) ) 

(2.15) + (~( t )  ( (1 - a)~l~t) + a82(t) ) 
z(t) 

((1 - ~)alJil)+ ~2(t) ) / 

= a 2 (A(t) {~2 (t) - 91 (t) }, ~2 (t) - "dl (t)) 

+ a{.--} + {.-.} __ -51)~(t)J 2, Va r [0,1], 
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since now A(t) >_ 0 which implies f ( a )  is convex in a. Then, we have 

(2.16) 

Left side of (2.12) = E {  (A(T)X(T) ,  X(T) )  

+ 2 (B(T).~(T),  (1 - a)~l (T) + a~2 (T) + ~0 > 

+ ( C(T){(1 - a)~l (T) + a~2(T) + g0}, 

(1 - a)~l(T) + a~2(T) + go > } 

> 5E[X(T)[ 2 - 2]B(T)IE(I2(T)[[~o[) 

- 2LIC(T)iE(]2(T)][~o[) r~ IC(T)tE[~o] 2 - KI~{ 2 

_> ~-E[2(T)[ 2 - C{[~[ 2 + E[~0[2}. 

Here, the constant C > 0 only depends on K, L, 5, IB(T)] and [C(T)[. 
Similarly, we have the following estimate for the right hand side of (2.13). 

(2.17) 

~o T Right side of (2.12) _< E { - 5]X(t)[2dt 

+ 2 ( ~ ( t )  \ Y ( t ) ,  ' \ ho(t) ] ) 

+ 2 (O(t) ( ( 1  - a)~l(t) + a32(t) 

~_ --~E [X(t)12dt + cE [:~(t)[ 2 + [Z(t)[2}dti 

+ C~E {l~o(t)l ~ + f~o(t)l ~ + I~o(t)l~}dt. 

with the constant C~ > 0 only depending on the bounds of [O(t)[, as well 
as 5, L and the undetermined small positive number E > 0. Combining 
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(2.16)-(2.17) and note (2.11), we have 

EIJ~(T)I 2 + E ".IT IX(t)l 2dt 

/o/ < ce  {1~12 + El~ol 2 + E {INo(t)l 2 + I~o(t)l 2 + I'~o(t)12}dt} 

(2.18) +2-~E foT{If'(i)]2+l~(t)]2}dt 

// cUE 12(T)I 2 ~  + I~ol ~ + {12(t)l 2 + I'~o(t)12dt,llr + 

with the constant C independent of e > 0, and C~ might be different from 
that appeared in (2.17). Thus, we may choose suitable e > 0, such that 

(2.19) 
EI2(T)I 2 + E ~o T I2(t)ledt 

/0 __ CE{I~I  2 + I~ol 2 + {Ibo(t)l 2 + I~o(t)[ 2 + Iho(t)12}dt}. 

Then, return to (2.11), we obtain 

(2.2o) 
~ T 

E sup I~(t)l 2 +E 12(t)12dt 
te[0,T] 

/o 
Finally, by (2.9), we have 

(2.21) 

E sup 
te[0,T] 

Ix(r 2 ~CE{l~l 2 + J~ol 2 

]/ + {Ibo(t)J 2 + I~o(t)J 2 + I'ho(t)12}dt}. 

Hence, (2.2) follows from (2.20) and (2.21). 

Case 2. Let ~ 6 Brz(Fi; [0, T]) (i = 1,2) now. In this case, we still 
have (2.9), (2.11) and (2.12). Further, we have inequalities similar to (2.13) 
and (2.15) with I)~(T)I 2 and I.~(t)l 2 replaced by 0 and IY(t)l 2 + 12(t)] 2, 
respectively. Thus, it follows that 

(2.22) Left side of (2.12) > -6EIJ( (T)I  2 - Ce{l~l 2 + E[~ol2}, 

with the constant C~ > 0 depending on K,L,6 ,  IB(T)[, [C(T)[, and the 
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undetermined constant ~ > 0. Whereas, 

Right side of (2.12) 

j~o r fT (2.23) -< --~E2 {[Y(t)[' + IZ(t)[2}dt + ~Ejo [X(t)12dt 

+ C~E {Ibo(t)l 2 + I~o(t)l 2 + Iho(t)f }dt. 

Now, combining (2.22)-(2.23) and using (2.9), we obtain (for suitable choice 
of e > 0) 

T 
E f  {l~(t) l  2 + 12(t)L2}dt 

(2.24) J 0  

Z <_ CE{I~I2 + 1~ol2 + {Igo(t)12+l~o(t)12+lgo(t)[2}et}. 
Finally, by (2.9) and (2.11) again, we obtain the estimate (2.2). [] 

w S o m e  Solvable F B S D E s  

In this section, we are going to prove the unique solvability of some FBSDEs 
by constructing appropriate bridges. 

w A trivial F B S D E  

We denote F0 = (0, 0, 0, 0) �9 H[0, T]. The FBSDE associated with Fo reads 
as (compare with (1.5)r,~,x) 

f dX(t) = bo(t)dt ~- ao(t)dW(t), 
(3.1) ~ dY(t) = ho(t)dt + Z(t)dW(t), 

! 

! 

( x ( o )  = x, Y(T) = 9o. 

Clearly, (3.1) is trivially uniquely solvable for all -y - (bo, ao, ho,go) E 
7/[0, T] and x �9 IR n. Thus, hereafter, we will refer to the FBSDE associated 
with F0 as the trivial FBSDE. Now, let us present the following result. 

. P r ~ 1 7 6 1 7 6  3.1. Let T > 0 and Fo = {0,0,0,0} E H[0,T]. Then, 

_~ �9 BS(Fo; [O,T]) if and only if 
B 

C(0) < 0, A(T) > O, 
(3.2) ~(t) < 0, Yt e [0, T]. 

Proof. By Definition 1.3, we know that �9 �9 BS(F0; [0,T]) if and only 
if (1.7)-(1.9) and (1.8)'-(1.9)' hold. These are equivalent to the following: 

C(O) ~_ -5, A(T) >_ 5, 
(3.3) ~(t) < -~ ,  vt �9 [O,T], 
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for some 5 > 0. We note that under condition C(0) < 0, the second 
inequality in (1.7) is always true for sufficiently large K > 0. Then, we see 
easily that  4) E BS(Fo; [0,T]) is characterized by (3.3) since 5 > 0 can be 
arbitrarily small. []  

From the above, we also have the following characterization: 

E0,T1): {o- ]0 

(3.4) 

{'~1(.) ~2(.) T ) 
0 < v ( . )  = \ v ~ ( . )  ~3(-)  E C ( [ 0 , T ] ; S " + ~ ) ,  

( Q1 Q~ ) Q= Q~ Q3 E S n+m, Q3 < O, 

Q1-- ~oTq21(s)ds > O}. 

A useful consequence of Proposition 3.1 is the following. 

C o r o l l a r y  3.2. Let F E H[0, T] admit a bridge �9 E B(F; [0, T]) satisfying 
(3.2). The,, r e s[o, T]. 

Proof. Under our assumptions, it holds that 

e B(ro; [0, T ] ) r i B ( F ;  [0, T]). 

Since F0 E 810, T], Theorem 2.1 applies. []  

Next, we would like to discuss some concrete cases. 

w D e c o u p l e d  F B S D E s  

Let F = (b, a, h, g) E H[0, T] such that 

b(t, x, y, z) - b(t, x), z) E [0, T] • M. 
(3.5) ~(t,  x, y, z) - ~(t ,  x), V(t, Z, y, 

We see that  the associated FBSDE is decoupled, which is known to be 
solvable under usual Lipschitz conditions, by the result of Chapter 1, w 
The following result recovers this conclusion with some deeper insight. 

P r o p o s i t i o n  3.3. Let T > 0, F0 =- (0,0,0,0) E H[0, T] and F 
(b,~,h,g) E H[0, T] satisfying (3.5). Then, 

(3.6) B~(Fo; [0, T]) ABS(F ;  [0, T]) ~ r 

Consequently, F E 8[0, T]. 

Proof. We take 

0 c(t)I ' 
a(t) = Ao eA~ e(t) : -Co eC~ t E [0, T], 
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where Ao, Co > 0 are undetermined constants. We first check that this 
E B~(Fo; [0,T]). In fact, 

(3.8) 

c(0) = -C o  < 0, a(T)  = Ao > O, 

i~(t) = - A ~ e  A~ < O, t E [0, T], 

e(t) = - C ~ e  C~ < 0, t E [0, T]. 

Thus, by Proposition 3.1, we see that �9 E B~(Fo; [0, T]). Next, we show 
that �9 E B~(F; [0, T]) for suitable choice of Ao and Co. To this end, we let 
L be the common Lipschitz constant for b, a, h and g. We note that (3.8) 
implies (1.7). Thus, it is enough to further have 

(3.9) a(T)  + L2c (T )  >_ 5, 

and 

(3.10) 

a( t ) lx  - ~12 + e(t) ly - ~12 + c(t) lz  - .212 

+ 2a(t) ( x  - ~ , b ( t , x )  - b( t ,5)  ) + a ( t ) l a ( t , x  ) - a ( t ,5 )]  2 

+ 2c(t) ( y - ~, h(t ,  x,  y, z) - h( t ,  3, ~,-2) ) 

< -5{1~ -~1 ~ + l y - ~ l  2 + Iz-~12},  
VtE [0,T], x , ~  E ~ n, y , ~  E IR '~, z,.2 E ~ re• a.s. 

Let us first look at (3.10). We note that 

Left side of (3.10) _< a( t ) lx  - 512 + d(t) ly  - ~]2 + c(t)]z - -212 

+ 2a ( t )L i x  - 512 + a ( t )L2 ix  - 5} 2 

(3.11) + 21c( t ) lLly-~l{ ix-~l+lY-Vl+lz- .21}  
< {&(t) + 2a( t )L  + a ( t ) L  2 + Ic( t )]L}lx  - 512 

+ {d( t )+  3]c(t)]L + 2 L 2 i c ( t ) i } i Y -  ~]2 + ~ _ l z  _ .212. 

Hence, to have (3.10), it suffices to have the following: 

{ h(t) + ( 2 L +  L2)a( t )  + Lic(t)[ < - 6 ,  

(3.12) d(t) + (3L + 2L2)lc(t)[ ~ - 5 ,  Vt E [0,T]. 

c(t) < - 2 5 ,  

Now, we take a(t)  and c(t) as in (3.7) and we require 

(3.13) 
d(t)+(3L + 2L2)lc(t)l = -Co(Co - 3L - 2L2)e C~ 

- C o ( C o  - 3L - 2L 2) ~ -5 ,  Vt E [0,T], 

and 

(3.14) c(t) = - C o e  C~ <__ - C o  <_ -25~ Vt E [0, T]. 
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These two are possible if Co > 0 is large enough. Next, for this fixed Co > 0, 
we choose Ao > 0 as follows. We want 

a ( T )  + c(T)L 2 = Aoe  A~ - CoL2e C~ > Ao - CoL2e  C~ > 5, (3.15) 

and 

a(t) + (2L + L2)a( t )  + LIc(t) l  

(3.16) = - A o ( A o  - 2L  - L2)e  A~ + LCoe  c~ 

<_ - A o ( A o  - 2L  - L 2) + LCoe  C~ ~_ - ~ .  

These are also possible by choosing A0 > 0 large enough. Hence, (3.9) and 
(3.12) hold and �9 E / ~ ( F ;  [0,T]). []  

From the above, we obtain that  any decoupled FBSDE is solvable. In 
particular, any BSDE is solvable. Moreover, from Lemma 2.2, we see that  
the adapted solutions to such equations have the continuous dependence 
on the data. 

The above proposition also tells us that  decoupled FBSDEs are very 
"close" to the trivial FBSDE since they can be linked by some direct strong 
bridges of F0. 

w F B S D E s  w i t h  m o n o t o n i c i t y  c o n d i t i o n s  

In this subsection, we are going to consider coupled FBSDEs which satisfy 
certain kind of monotonicity conditions. Let F = (b, a, h, g) E HI0, T]. We 
introduce the following conditions: 

(M) Let m _> n. There exists a matrix B E IR mx'~ such that  for some 
/~ > 0, it holds that  

(3.17) ( B ( x - 5 ) , g ( x ) - g ( 5 ) )  _>Plx-~l 2, V x , ~ E ~  ~, a.s. 

(3.18) 

( B T [h(t,  0) - h( t ,  9) ] ,x  - 5 )  + ( B [b(t, 9) - b(t, 9)], y - ~) 

+ ( B [ ~ ( t ,  0) - o ( t , ~ ) ] ,  z - ~ )  < - ~ l x  - ~12, 

Vt E [0, T], 9,9 E M, a.s. 

(M)' Let m < n. There exists a matrix B E ~,mxn such that  for some 
/~ > 0, it holds that  

(3.17)' ( B ( x - x ) , g ( x ) - g ( x ) )  ~ O, Vx,xE ]R n, a . s .  

(3.18)' 

( B T [h(t,  9) - h( t ,  9)] ,x  - -2) + ( B [b(t, 0) - b(t, 9)], y - ~) 

+ ( B  [~( t ,  0) - ~ ( t , ~ ) ] ,  z - ~) _< - ~ ( l Y  - ~l 2 + Iz - ~12),  

V t e  [0, T], 9,9 E M, a.s. 

Condition (3.17) means that  the function x F-+ B T g ( x )  is uniformly 
monotone on IR ~, and condition (3.18) implies that  the function 9 ~-~ 
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- (BTh( t ,O) ,Bb( t ,O) ,Ba( t ,O) )  is monotone on the space M. The mean- 
ing of (3.17)' and (3.18)' are similar. Here, we should point out that  (3.17) 
implies m _> n and (3.17)' implies m ~ n. Hence, (M) and (M)' overlaps 
only for the case m = n. 

We now prove the following. 

P r o p o s i t i o n  3.4. Let T > 0 and F - (b, or, h, g) r H[0, T] satisfy (M) 
(resp. (M)'). Then, (3.6) holds. Consequently, F E S[0, T]. 

Proof. First, we assume (M) holds. Take 

{ ~ ( t ) =  ( A ( t )  B(t)  T'~ 
\ B(t) C(t) J 

(3.19) A(t) = a( t ) I  - 5eT-tI ,  t E [0, T], 

B(t)  -- B, 

C(t) = c(t)I  =_ -25CoeC~ I, 

with 5, Co > 0 being undetermined. Since 

(3.20) 

C(0) = - 2 5 C o i  < O, 

A(T)  = 5I > O, 

r = (-Se~-~, o ) 
0 _2~C~eCo t < O, 

h(t)]xI 2 + c(t)iy] 2 + c(t)]z] 2 + 2La(t)lxl(]xI + lY] + Izl) 

(3.22) + 2LIc(t)I ]yi(]xI + ly] + IzI) + L2a(t)(ixI + lYl + Izl) 2 

(2t3 - 5)Ix] 2 - 5(lyl 2 + Izl2), V(t,O) C [0, T] • M. 

It is not hard to see that under (3.17)-(3.18), (3.21) implies (1.8) and (3.22) 
implies (1.7) and (1.9)' (Note (1.8) implies (1.8)'). We see that the left hand 
side of (3.22) can be controlled by the following: 

{/L(t) + Ka( t )  + Kic(t)]}ixI 2 + {~( t )+ Kic(t)I + Ka(t)}ly[ 2 
(3.23) 

+ {c(_~_~ +Ka( t )} i z]2 ,  

for some constant K > 0. Then, for this fixed K > 0, we now choose 5 and 
Co. First of all, we require 

(3.24) c(t) + Ka( t )  = -SCoe C~ + KSe T- t  ~_ -5Co + K(~e T ~ -5 ,  

(3.21) 

and 

a(T) + 23 + c(T)L 2 > 5, 

by Proposition 3.1, we see that �9 E BS(F0;[0, T]). Next, we prove �9 C 
Bs(F; [0, T]) for suitable choice of 5 and Co. Again, we let L be the common 
Lipschitz constant for b, a, h and g. We will choose 5 and Co so that 
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and 

(3.25) 
d(t) + KIc( t) l  + K a ( t )  = - 2 5 C 2 e  C~ + 2KCohe  C~ + K h e  T - t  

< •  - K )  + K h e  T < -6 .  

These two can be achieved by choosing Co > 0 large enough (independent 
of 5 > 0). Next, we require 

it(t) + K a ( t )  + KIc( t) l  = - h e  T - t  A- K h e  T - t  + 25KCoe  C~ 
(3.26) 

< - 6  + K h e  T + 25KCoe  c~ <_ 2~ - 6, 

and 

(3.27) a(T)  + 2~ + c ( T ) L  2 = 5 + 2~ - 25CoeC~ L 2 > 6. 

Since/~ > 0, (3.26) and (3.27) can be achieved by letting 5 > 0 be small 
enough (note again that the choice of Co is independent of 5 > 0). Hence, 
we have (3.21) and (3.22), which proves �9 e BS(F; [0, T]). 

Now, we assume (M)' holds. Take (compare (3.19)) 

A(t )  B ( t )T '~  
( B(t) c(t) ) '  O(t) 

(3.28) A( t )  a ( t ) I  = 5AoeA~ Vt e [0, T], 

B( t )  B ,  

c(t) c(t)I - -he~• 

with 6, Ao > 0 being undetermined. Note that  

c ( 0 )  = - 6 I  < 0, 

A ( T )  = A o I  > O, 

Thus, by Proposition 3.1, we have �9 C /~S(Fo; [0, T]). We now choose the 
constants 5 and Ao. In the present case, we will still require (3.21) and the 
following instead of (3.22): 

it(t)lxl 2 + d(t)lY] 2 + c(t)lzl 2 + 2La(t) lx l ( Ix l  + lYl + N )  

(3.30) + 2LIc(t)l[Y](Ixl + lyl + Izl) + L2a(t)(]xl + lyl + IzlY 
<_ -51xl 2 + (2/~ - 5){ ly l  2 + Iz12}, v ( t , o )  e [0,T] • M.  

These two will imply the conclusion �9 E BS(F; [0, T]). Again the left hand 
side of (3.30) can be controlled by (3.23) for some constant K > 0. Now, 
we require 

it(t) + K a ( t )  + KIc( t) l  = - h A 2 e  A~ + 5 K A o e  A~ + K h e  t 
(3.31) 

< - h A o ( A o  - K )  + 5 K e  T < - 6 ,  
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and 

a(T) + c(T)L 2 = 5Aoe A~ - 5L2 e t 
(3.32) 

> 5(Ao - L2e T) > (~. 

We can choose Ao > 0 large enough (independent of 5 > 0) to achieve the 
above two. Next, we require 

e(t) 
T + Ka( t )  <_ Ka( t )  <__ 5KAoe A~ ~_ 2~ - 6, (3.33) 

and 

(3.34) 
d(t) + Klc(t)l + Ka( t )  = - S e  t + KSe t + KAoSe A~ 

<_ 5(Ke T + KAoe  A~ <_ 2~ - 5. 

These two can be achieved by choosing 5 > 0 small enough. Hence, we 
obtain (3.21) and (3.30), which gives �9 �9 gS(F; [0,T]). 

It should be pointed out that  the above FBSDEs with monotonicity 
conditions do not cover the decoupled case. Here is a simple example. 

Let n = m = 1. Consider the following decoupled FBSDE: 

dX( t )  = X( t )d t  + dW(t ) ,  

(3.35) dY( t )  = X( t )d t  + Z( t )dW( t ) ,  

X(O) = x, Y ( T )  = X ( T ) .  

We can easily check that  neither (M) nor (M)' holds. But, (3.35) is uniquely 
solvable over any finite time duration [0, T]. 

R e m a r k  3.5. From the above, we see that  decoupled FBSDEs and the 
FBSDEs with monotonicity conditions are two different classes of solvable 
FBSDEs. None of them includes the other. On the other hand, however, 
these two classes are proved to be linked by direct bridges to the trivial 
FBSDE (the one associated with Fo = (0,0, 0, 0)). Thus, in some sense, 
these classes of FBSDEs are very "closer" to the trivial FBSDE. 

w P r o p e r t i e s  o f  t he  Br idges  

In order to find some more solvable FBSDEs with the aid of bridges, we 
need to explore some useful properties that  bridges enjoy. 

P r o p o s i t i o n  4.1. Let T > 0. 
(i) For any F E H[0, T], the set  BI(F; [0, T]) is a convex cone whenever 

it is nonempty. Moreover, 

(4.1) BI(F; [0, T]) : BI(F + 3'; [0, T]), V3' �9 7-/[0, T]. 

(ii) For any F1, F2 �9 H[0, T], it holds 

(4.2) t31(F1;[O,T])NBx(F2;[O,T]) C_ N B l ( a r l  +•F2;[0,T]). 
c~,f~>0 
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Proof. (i) The convexity of BI(F; [0, T]) is clear since (1.7)-(1.9) are lin- 
ear inequalities in q~. Conclusion (4.1) also follows easily from the definition 
of the bridge. 

(ii) The proof follows from (2.13), (2.15) and the fact that  Be(F; [0, T]) 
is a convex cone. [] 

It is clear that  the same conclusions as Proposition 4.1 hold for 
BII(F; [0, T]) and BS(P; [0, T]).' 

As a consequence of (3.2), we see that  if r l ,  F2 E HI0, T], then 

(4.3) 
Br(aF1 +/3F2; [0, T]) = r for some ct,/3 > 0, 

Be(F1; [0, T]) f')Bx(P2; [0, T]) = r 

This means that  for such a case, F1 and F2 are not linked by a direct bridge 
(of type (I)). Let us look at a concrete example. Let Fi = (bi, ai, hi, gi) E 
H[0, T], i = 1,2,3, with 

(4.4) 

bl 0 b2 ~ 1 
( h i ) - ~  ( 2 1  ~ ) ( y )  ( ) - - (  ) ( Y )  --1] ' h2 0 p ' 
( b 3 )  ( 0 ~ ) ( y )  Crl =~ : ~ : 0, 

h3 1 ' gl = 92 = g3 = -x,  

with A, v E ~.  Clearly, it holds 

(4.5) F3 = F1 + F2. 

By the remark right after Corollary 2.4, we know that  B(F3; [0, T]) = r 
Thus, it follows from (3.5) and (4.3) that  F1 and F2 are not linked by 
a direct bridge. However, we see that  the FBSDE associated with F~ is 
decoupled and thus it is uniquely solvable (see Chapter 1). In w we will 
show that  for suitable choice of s and v, F2 E S[0, T]. Hence, we find two 
elements in S[0, T] that  are not linked by a direct bridge. This m e a n s  F 1 

and F2 are not very "close". 

Next, for any hi, b2 E L~(O, T; WI,~176 IRn)), we define 

(4.6) 

IIb~ - b211o(t) 

---- esssup sup 
wCf~ 0,OEM 

Ibl(t,O;w) - hi(t,0; w) - b2(t,O;w) + b2(t,O;w)l 

l0 - 0l 

We define [ I h l -  h2llo(t) and Ilal - a 2 l l o ( t )  similarly. For gl,g2 e 
L2r (f~; Wl'~(~n; IRm)), we define 

(4.7) 
Ilal - g2110 

= esssup sup 
wE~ x,~ER ~ 

I g I(x; a)) -- 91 (X; CO) -- g2(X; W) -~ g2(X; W) I 
i x - ~ l  
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Then, for any Fi = (hi, ai ,  hi ,  gi) 6 g [ o ,  T] (i = 1, 2), set 

I l r l  - r211o(t) = lib1 - b211o(t) + I1Ol - a211o(t) 

(4.8) + Ilhl - h21lo(t) + Ilgl - g211o. 

Note that  I1  IIo(t) is just a family of semi-norms (parameterized by t E 
[0, T]). As a matter  of fact, lit1 - r211o(t) = o for all t E [0, T] if and only if 

(4.9) F2 = F1 + if, 

for some "y 6 7-/[0, T]. 

T h e o r e m  4.2. Le t  T > 0 and F e H[0,T]. Le t  �9 C Bs(F;  [0, T]) .  Then ,  
there exis ts  an e > 0, such that for any F' C H[0, T] wi th  

(4.10) I I r -  r'llo(t) <~, v t e  [0,T], 

we h a v e  ~' C B s ( r ' ;  [0 ,T]) .  

Proof. Let F = (b,a ,h,g)  and F' = (b ' ,a ' ,h ' ,g ' ) .  Suppose �9 6 
B~(F; [0, T]). Then, for some K, 5 > 0, (1.7)-(1.9) and (1.8)'-(1.9)' hold. 
Now, we denote (for any 0, 0 E M) 

[ ~ = x - ~ ,  0"= 0 -  0, 

l ~ = b(t ,  O) - b(t , -0) ,  3 = a ( t ,  O) - a ( t , -0 ) ,  

(4.11) I. ~ h = h(t ,O) - h( t ,O) ,  "~ = g(x). - g (g) ,  , 

IN,= b' ( t ,O)  - b ' ( t ,O) ,  "d' = ~ ( t ,O)  - a (t,-O), 
I 

I h '  = h '( t ,O) - h'(t ,0),  ~' = g ' (x )  - g ' (g) .  

Then one has 

( 4 . 1 2 )  IV - ~l  = I g ' ( x )  - g ' ( e )  - g(x) + g ( e ) l  -< IIg' - g l l o l ~ l .  

Similarly, we have 

(4.13) { I t' -'bl -< lib'/bllo(t)10"l, 

Ih' - hi -< Ilh - hllo(t)101. 
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Hence, it follows that  

157 

(4.14) 

> ~1~1 = + 2 < B(T)~ ,  ~' - ~> + < C(T)('f + ~), ~' - ~)  

_ _ + ' g l l o } l ~ l  2 -  >{8 21B(T)IIIg' gllo-IC(T)l l lY gllollg 
~ t  

5 2 

provided IIg' - g ] l o  is small enough. Similarly, we have the following: 

A ^ - 3 )  

(4.15) + ( r  a'O I ' (  0 ) )  

_< - a l ~ l  2 + 2 ( A ( t ) ~  + B ( t ) r ~ , ~  ' - ~) 

+ 2 ( B ( t ) ~ +  C(t)~,h' -h> 
+ 2 (B(t)T~,~ ' -- ~) + (A(t)(~' + "~),~' - ~) 

< { - 5 + 2(IA(t)l + ]B(t)])llb' - bllo(t) 

+ 2(IB(t)l  + Ic(t)l)llh' - hllo(t ) 

+ 21B(t)l l l# - ~llo(t) + IA(t)lIla' + allo(t) lJ# - ~llo(t)}lol 2. 

Then,  our assertion follows. [] 

The above result tells us that if the equation associated with F is solv- 
able and F admits a strong bridge, then all the equations "nearby" are 
solvable. This is a kind of stability result. 

R e m a r k  4.3.  We see from (4.14) and (4.15) tha t  the condition (4.10) can 
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be replaced by 

2(IB(T)I + IC(T)IIIg' + gli0)iig'- glIo < 6, 

sup {2(IA(t)l + IB(t)l)tl b ' -  blio(t) 
(4.16) tE[O,T] 

+ 2(IB(t)] + ]C(t)I)lih'-hilo(t) 

+ [2[B(t)l + [A(t)I[IW + al]o(t)] I]W- allo(t)} < 5, 

where 6 > 0 is the one appeared in the definition of the bridge (see Defi- 
nition 1.3). Actually, (4.16) can further be replaced by the following even 
weaker conditions: 

2 ( B(T)s - ~) + ( C(T)(~ + ~),~' - ~> > 2, 
Vx,5 E ~'~, 

sup {2 (A( t )~+  B(t)T~,b ' 
(4.17) tc[O,T] 

I 

+ 2 ( B(t)~ + C(t)~,h' - h) +2 (B(t)TF, 8' - 8 > 

+ ( A ( t ) ( 8 ' + 8 ) , 8 ' - ~ ) }  V0 ,0EM.  

The above means that if the perturbation is made not necessarily small but 
in the right direction, the solvability will be kept. This observation will be 
useful later. 

To conclude this section, we present the following simple proposition. 

Proposit ion 4.4. Let T > O, F - (b,a,h,g) 6 H[0, T] and �9 6 
Bi(r; [0,T]). Let f E R and 

f ~(t) = e2Zto(t), t E [0, T], 
(4.18) 

= (b - f l x ,  a,h - fly, g) 6 H[0,T]. 

Then, ~2 �9 BI(F; [0, T]). 

The proof is immediate. Clearly, the similar conclusion holds if we 
replace BI(F; [0, T]) by Bn(F; [0, T]), B(F; [0, T]) or BS(F; [0, T]). 

w Construction of Bridges 

In this section, we are going to present some more results on the solvability 
of FBSDEs by constructing certain bridges. 

w A genera l  consideration 

Let us start with the following linear FBSDE: 

{ d { x ( t )  ={~4 X(t) bo(t) {ao(t) dW(t), ) ( )( )} (5.1) \ Y(t)  Y(t) + ho(t) dt + 
t �9 [0, T], 

X(O) = x, Y(T)  = GX(T)  + go, 
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where ,A E IR (n+m)• G E IR mxn, ")' - (bo,~o, ho,go) C 7/[0, T] (see 
(1.3)) and x E IRn. We have the following result. 

L e m m a  5.1. Let T > O, Then, the two-point boundary value problem 
(5.1) is uniquely solvable for all V E 7/[0, T] if and only if 

Proof. Let 

\,(t)/ I) f x(t)  k Y(t) / 
Then we have the linear FBSDE for (~, 7) as follows: 

d r 

+ ( bo(t) 
ho(t)Gbo(t) ) }dt (5.3) 

+ z(t) -a~o(t) 

[(0) = x, ~(T) = go, 

Clearly, the solvability of (5.3) is equivalent to that  of (5.1). By Theorem 
3.7 of Chapter 2, we obtain that  (5.3) is solvable for all V E 7/[0, T] if and 
only if (3.16) and (3.19) of Chapter 2 hold. In the present case, these two 
conditions are the same as (5.2). This proves the result. [] 

Now, let us relate the above result to the notion of bridge. From 
Theorem 2.1, we know that  if F1 and F2 are linked by a bridge, then 
F1 and F2 have the same solvability. On the other hand, for any given F, 
Corollary 2.4 tells us that  if F admits a bridge, then, the FBSDE associated 
with F admits at most one adapted solution. The existence, however, is not 
claimed. The following result tells us something concerning the existence. 
This result will be useful below. 

P r o p o s i t i o n  5.2. Let To > 0 and F = (b, 0, h, g) with 

(:) (5.4) ~ h(t,O) = A , g(x) = Gx, V(t, 0) 6 [0, To] x M. 

Then F E S[0,T] for all T E (0, To] if/3(F; [0, T]) r r for all T E (0, T0]. 

Proof. Since B(F; [0, T]) ~ r by Corollary 2.4, (5.1) admits at most 
one solution. By taking V = (bo,ao,ho,go) = 0 and x = 0, we see that  
the resulting homogeneous equation only admits the zero solution. This is 
equivalent to that  (5.1) with the nonhomogeneous terms being zero only 
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admits the zero solution. On the other hand, in this case, the solution of 
(5.1) is given by 

( ) 
with the condition 

(5.6) 0 = ( - a , 5  (x(r) 

We require tha t  (5.6) leads to Y(0) = 0. Thus, it is necessary that the left 
hand side of (5.2) is non-zero for t = T. Since T C (0, To] is arbitrary, we 
must have (5.2). Then, by Lemma 5.1, we have r C $[0, T]. []  

Let us now look at some class of nonlinear FBSDEs. Recall the semi- 
norms [l" [10(t) defined by (4.8). 

T h e o r e m  5.3. Let To > O, A c ]R (n+m)x(n+'~) and F = (b,O,h,g) be 
defined by (5.4). Suppose (5.2) holds for T = To and that BS(F; [0, T]) ~ r 
for all T E (0, To]. Then for any T E (0, T], there exists an c > O, such that 
for all/3 C ~ and F - (b, ~, h, ~) E g[0,  T] with 

(5.7) Ilrllo(t) < e, t E [0,T], 

the following FBSDE: 

( X ( t )  ( X ( t )  (~( t ,O(t) )~ }dt 
d k y(t)  ) = { (A + /3I) ) +  k Y(t) \ h(t, O(t)) ] 

/ '~( t ,O(t)) '~ dW(t), t E [0, T], (5.8) + \  z(t) ] 
X(O) = x, Y(T) = GX(T) + ~(X(T)) ,  

admits a unique adapted solution 0 - (X, ]I, Z) E A4[0, T]. 

Proof. We note that if 

(5.9) 

then, 

(5.10) 

~(t, 0) = eetg(t, e-z~0), V(t, 0) E [0, T] x M, 

Ilbllo(t) = Ilbllo(t), Vt c [0, T]. 

Similar conclusion holds for ~, h and ~ if we define ~, h and ~" similar to 
(5.9). On the other hand, if O(t) _= (X(t), Y(t), Z(t)) is an adapted solution 

of (5.8) with /3 = 0, then ~)(t)z~ eZtO(t ) is an adapted solution of (5.8). 
Thus, we need only consider the case/3 -- 0 in (5.8). Then, by Theorems 
2.1, 4.2 and Proposition 5.2, we obtain our conclusion immediately. [ ]  

We note that FBSDEs (5.8) is nonlinear and the Lipschitz constants 
of the coefficients could be large. Also, (5.8) is not necessarily decoupled 
nor with monotonicity conditions. Thus, Theorem 5.3 gives the unique 
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solvability of a (new) class of nonlinear FBSDEs, which is not covered 
by the classes discussed before. On the other hand, by Remark 4.3, we 
see that  condition (5.7) can be replaced by something like (4.16), or even 
(4.17). This further enlarges the class of FBSDEs covered by (5.8). 

We note that  the key assumption of Theorem 5.3 is that  F -= (b, 0, h, g) 
given by (5.4) admits a strong bridge. Thus, the major problem left is 
whether we can construct a (strong) bridge for F. In the rest of this section, 
we will concentrate on this issue. 

We now consider the construction of the strong bridges for F = 
(b, 0, h, g) given by (5.4). From the definition of strong bridge, we can 
check that  r E BS(F; [0, T]) if it is the solution to the following differential 
equation for some constants K, K,  5, s > 0, 

( ~ ( t )  + ~ffr  + r  = - 5 I ,  t �9 [0, T], 

(5.11) (i)(0) = ( K f ~ ) ,  

satisfying the following additional conditions: 

(5.12) I 
(I, GT)d2(T) ( G )  ~ sI. 

On the other hand, we find that  the solution to (5.11) is given by 

(5.13) ~(t) = e -Art ( K t 0 - : -  
t �9 [0, T]. 

Thus, in principle, if we can find constants K , K ,  5,~ > 0, such that  (5.12) 
holds with ~(t) given by (5.13), then we obtain a strong bridge 4(-) for F 
and Theorem 5.3 applies. 

w A one  d i m e n s i o n a l  case 

In this subsection, we are going to carry out a detailed construction of strong 
bridges for a case of n -- m = d = 1 based on the general consideration of 
the previous subsection. The corresponding class of solvable FBSDEs will 
also be determined. 

Let F = (b, 0, h, g) be given by 

{ (;) ( : ) ( : )  --  A _= ~ , 
(5.14) 

g ( x )  = - g x ,  

for all (t, x, y, z) E [0, c~) • R 3, with A, #, g E R being constants satisfying 
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1 3g# _ 92 (5.15) A,#,g > 0, ~ + ~ _> 0. 

We point out that conditions (5.15) for the constants ,~, #, g are not neces- 
sarily the best. We prefer not to get into the most generality to avoid some 
complicated computation. Let us now carry out some calculations. First 
of all 

(5.16) e a t =  (e;  ~'t 3 ( 1 1  e - ) ' t ) )  , Vt>O._ 

Thus, for all t _> O, 

(5.17) 
= (  e ~' 0 3(1-e ~') 

o ~ ) 
ICe T M  ~ ( ~ -  e2~) 

and 

(5.18) 

t t e2XS 3(e~S _ e2~S) 
fo e-A%e-ASds = fo ( 3(e~S --e TM) 1 +  ~ ( 1 - e ~ 8 )  2 ) d s  

_ ~ ( e  - 1 )  . _xt 1~2 
- -  t t ~  - -2-~x (e - 1 )  2 2x3,- 

We let K > 0 be undetermined and choose 

3 
(5.19) K =  ~-~, ~ = 1 .  

Then, according to (5.13), we define 

~(t) = (A(t) B(t)) 
B(t) c(t) 
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(5.20) 

1 2~t - = ~ ( e  +2) ,  

B ( t ) - K # ,  ~t_ 2~,t, . 5 # ,  ~t_l, 2 
--  A [e  e ) - t - 2 ) ~ 2 ( e  ) 

- # [ K  5 ~ 2~t . # [T~  5~e~ t , 5# 

= - ~ - ~ e  . e - z), 

C(t)  ~ - K#2 " :~t ,~2 5# 2 ~e~t 2~2 = - n - ~  - -~-~e  - 1 )  - ~ - ) 

5(i~2 +#2)  . @2 

A 2 \ 2A ] A 2 \ A ] ),2 \ 
_ ~(A2+~2). 

-K- --SZ---~ 

= ~ ( e  2;~t+2e x t + 3 ) - K  A 2 +# 2 t .  
A2 

From (5.12), we need the following: (~ > 0 is undetermined) 

(5.21) 
A ( t )  >_0 ,  C( t )  < - e ,  V t � 9  

A(T)  - 2gB(T)  + g2C(T) >_ e. 

Let us now look at these requirements separately. 
First of all, it is clear true that  A(t)  > 0 for all t �9 [0, T]. 

C(t)  <_ - e  for all t �9 [0, T], if and only if 
N ext, 

A2 + #2 z~ 
(5.22) K > e + (e T M  + 2e at + 3) A2 t = f ( t ) ,  t �9 [o, T]. 

Since f " ( t )  >_ 0 for all t E [0, o0), the function f ( t )  is convex. Thus, (5.22) 
holds if and only if 

(5.23) K > / ( o )  v f(T).  
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Finally, we need 

< A ( T )  - 2 g B ( T )  + g2C(T)  

g# ( 2AT eAT _ = ~ ( e  2~'~ + 2) + ~ , ~  + 2) 
2 2 

g # (e2~T 2e AT g2( 52 + #2) T 
(5.24) + - ~ -  + + 3) - g2~ A 2 

1 g# 392# 2 
+ 25 52 + 45 - - - 7  - g2-~. 

Thus, we need (note (5.23)) 

F(T)~= 1 + ~ )  e 2~T + ~--~(1 + 52 

(5.25) 1 g# 3g2# 2 
+ + - - - ~  

25 52 453 

> g2~ > g2(f(0) V ] ( T ) ) .  

We now separate two cases (with f ( T )  and f(0), respectively). First of all, 
for f ( T ) ,  we want 

0 <_ F ( T )  - g 2 f ( T )  

(5.26) ~ ( 2g#~ 2~T g# AT 1 g# C(1 + g2) A i f (T ) .  
= 1 + -~--] e + 2--~ -e + 25 52 = 

We see that T ~-~ F(T) is monotone increasing. Thus, to have the above, 
it suffices to have 

3 _ c ( 1  + g 2 ) .  (5.27) 0 < F(0) = 

Hence, in what follows, we take 

3 
( 5 . 2 8 )  ~ - 

45(1 + g2) 

Then, (5.26) holds. Next, we claim that under (5.15) and (5.28), the fol- 
lowing holds. 

(5.29) F ( T )  - g2 f(O) >_ O. 

In fact, by the choice of 6 and by (5.27), 

(5.30) F(O) - g2 f(O) = ff'(O) = O. 

On the other hand, 

1 ( 1 + ~ ) 2 e 2 ~ T  g # ( l + g # ~ e ~ T  g2(52+# 2) (5.31) F ' ( T )  = -~ + ~-f --~] s 2 
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Thus, by (5.15), it follows that  

Then, by F" (T)  > 0, together with (5.30) and (5.32), we must have (5.29). 
Hence, we obtain (5.25). This shows that  a strong bridge ~(t) has been 
constructed with K,  5 and s being given by (5.19) and (5.28), respectively, 
and we may take 

(5.33) K = f (0)  v f(T). 

It is interesting that  the if(-) constructed in the above is not in 
/3(Fo; [0, T]) for any T > 0 since )~(t) > 0. On the other hand, we note that  
both A(t) and B(t) are independent of T. However, due to the fact that  
K depending on T, C(t) depends on T. But, we claim that  there exists a 
constant co > 0, only depending on )~, #, g (independent of T), such that  

- c o - f ( T ) < _ C ( t ) <  4)~(1+ 92), t e [0,T], 
(5.34) 3 

Co _< C(T) < 4;~(1 + g2), 

where f(t) is defined by (5.22). In fact, by (5.20), (5.22), (5.28) and (5.33), 
we have 

(5.35) C(t) = f(t) - f(O) V f(T) 
4),(1 + g2)" 

Clearly, C(t) is convex. Thus, 

3 
(5.36) C(t) <_ C(O) V C(T) - 4)~(1 + g2), kit e [0,T]. 

On the other hand, by the fact that  f(t) is strictly convex and 
limt--,oo f(t) = oo, we see that  there exists a unique To > 0, only depending 
on )~ and #, such that  

3 
(5.37) C(t) > f(To) - f(O) V f(T) 4A(1 + g2)' t e [0, T]. 

This proves the first relation in (5.34). Next, we see easily that  there exists 
a unique T1 > To, such that  f(T1) = f(0), and 

f f(t) < f(O), Vt E [0, 7"1], 
(5.38) 

f(t) > f(0), Vt C (7"1, oo). 

Hence, we obtain 

(5.39) C(T) > f(To) - f(O) 

This proves the second relation in (5.34). 

4A(1 + g2)" 
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Now, from Remark 4.3 and Theorem 5.3, we know that the following 
FBSDEs is solvable on [0, T]. 

dX(t) = {(/9 - A)X(t) + #Y(t) + b(t, X(t), Y(t), Z(t)) }dt 

+ ~(t, X(t), Y(t), Z(t))dW(t), 
(5.40) dY(t) = {/~Y(t) + -h(t, X(t), Y(t), Z(t))}dt + Z(t)dW(t), 

X(O) : x, Y(T) = -gX(T)  + y(X(T)), 

where A, tt, g > 0 satisfying (5.15), ~ 6 lit, and F -= (b,~,h,y) 6 H[0,T] 
satisfying 

[ 2[B(T)III~II0 + IC(T)i[]YII02 < ~ A 1, 

(5.41) sup 2(]A(t)l + IB(t)i)li-bilo(t) + 2(IB(t)[ + IC(t)I)II~ilo(t ) 
tE[0,T] 

+ 2JB(t)lj]-~Jjo(t) + ]A(t)jljPJJo(t) 2 } < ~ A 1, 

with A(.), B(.) and C(.) given by (5.20) and ~ > 0 given by (5.28). If we 
use (4.17), then, (5.41) can be relaxed to the following: 

{ 2B(T)~'~ + C(T)(~ - 2g~)~ > -(~ A 1)[~[ 2, Vx, Z 6 IR, 

(5.42) sup f2(A(t)~ + B(t)T~)~ + 2 (B(t)'~ + C(t)~)~ 
tC[0,T] ~ 

+ 2 B ( t ) ~ + A ( t ) ~  2} <(~A1)[0"] 2, V0, S E M  

If b, ~, h and ~ are differentiable, then, we see that (5.42) is equivalent to 
the following: 

2B(T)-ffx(x + C(T)(~(x) - 2g)yz(x) > - ( s  A 1), Vx 6 Ft, 
]/ A(t) B(t) 0 
| B ( t )  C(t) 0 (V-6(t,O),V-h(t,O),V~(t,O)) 
\ o  0 B(t) / 

(5.43) 
B(t) 0 ) 

+ A(t)V~(t, 8){V~(t,O)} T < s A1, V(t,0) E[0, T ] x M ,  

where Vb(t, 8) = (b~(t, 8), by(t, 0), b~(t, 8)) T, and so on. Some direct com- 
putation shows that the first relation in (5.43) is equivalent to the following: 

(5.44) 

ix / c A 1 [ B(T) 
- r ( n  = - V  +  c(n g)2 _ _ _  

/ s A 1 (B(T) 
< +  c(n g)2. 

B(T) 
C(T) + g < -~ (z) 

B(T) 
C(T) + g' Vx E R. 
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By (5.34), we know that  C(T) is bounded uniformly in T, while, B(T) 
- c r  as T -~ cr (see (5.20)). Thus, by some calculation, we see that  

/ e A l  
(5.45) - V ~  > - r ( T ) $ - o o ,  as T ~ cr 

and y need only to satisfy the following: 

(5.46) - r (T)  < y~(x) < O, Vt �9 P~. 

Clearly, t he  larger the T, the weaker the restriction of (5.46). The second 
condition in (5.43) is also checkable (although it is a little more complicated 
than the first on@). It is not hard to see that  the choice of functions b and 
are independent of T as ACt ) and B(t) do not depend on T. However, since 
C(t) depends on T, by some direct calculation, we see that  in order FBSDE 
(5.40) is solvable for all T > 0, we have to restrict ourselves to the case that  
h(t, 0) = h(t, y). Clearly, even with such a restriction, (5.40) is still a very 
big class of FBSDEs, which are not necessarily decoupled, nor monotone. 
Also, ~ is allowed to be degenerate. We omit the exact statement of the 
explicit conditions on b, ~ and h under which (5.40) is solvable to avoid some 
lengthy computation. Instead, to conclude our discussion, let us finally look 
at the following FBSDE: 

dX(t) = {(/3 - )QX(t) + #Y(t) + b(t, Z(t) ,  Y(t),  Z(t)) }dt 

+ ~(t, X(t),  Y(t), Z(t))dW(t), 

(5.47) dY(t) = {f lY( t )+  ho(t)}dt + Z(t)dW(t), 

X(O) = x, Y(T)  = - g X ( T )  + go, 

with ),, #, g > 0 satisfying (5.15) and 

{2(IA(t)[ + IB(t)[)I[bll0(t) + 21B(t)l II~[Io(t) s u p  

(5.48) te[o,o~) 
~ t  

+ IA(t)l N~ll0(t) 2 } < e A 1. 

This is a special case of (5.40) in which h =- ho and ~ = go. Then, by the 
above analysis, we know that  (5.47) is uniquely solvable over any finite time 
duration [0, T]. Condition (5.48) can be carried out explicitly as follows: 

{2(e TM + 2) + 2it2 (e2Xt + e xt - 2)}llbIIo(t) 
)~ , 

2 
(5.49) + 2#~ (22~t + e At - 2)llffll0(t ) , 

3 
+ (e TM + 2) l l0 (t) 2 < min{4)% 1 - ~ g 2  } , t �9 [0, oo). 

It is clear that  although (5.47) is a special case of (5.40), it is still very 
general and in particular, it is not necessarily decoupled nor monotone. 
Also, if we regard (5.47) as a nonlinear perturbation of (5.1) (with m = 
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n = d = 1 and  (5.14) holds), then  the pe r tu rba t ion  is not  necessari ly small  
(for t not  large). 



Chapter 7 

F o r w a r d - B a c k w a r d  S D E s  w i t h  R e f l e c t i o n s  

In this chapter we study FBSDEs with boundary conditions. In the simplest 
case when the FBSDE is decoupled, it is reduced to a combination of a well- 
understood (forward) reflected diffusion and a newly developed reflected 
backward SDE. However, the extension of such FBSDEs to the general 
coupled case is quite delicate. In fact, none of the methods that  we have 
seen in the previous chapters seems to be applicable, due to the presence of 
the reflecting process. Therefore, the route we take in this chapter to reach 
the existence and uniqueness of the adapted solution is slightly different 
from those we have seen before. 

w Forward SDEs  wi th  Reflect ions 

Let (9 be a closed convex domain in ~n .  Define for any x E 0(9 the set of 
inward normals to O at x by 

(1.1) .h/'x = { ~ :  I '1 = 1, and (% x - y)  < O, Vy e (9). 

It is clear that  if the boundary 0(.9 is smooth (say, C1), then for any x E 0(9, 
the set Af~ contains only one vector, that  is, the unit inner normal vector 
at x. We denote BV([0, T]; lR n) to be the set of all llZn-valued functions of 
bounded variation; and for ~ �9 BV([O,T]; ]Rn), we denote 17/I(T) to be the 
total  variation of ~ on [0, T]. 

A general form of (forward) SDEs with reflection (FSDER, for short) 
is the following: 

/0 /0 (1.2) X(t )  = x + b(s, X(s))ds  + a(s, X(s ) )dW(s)  + ~(t). 

Here the b and a are functions of (t, x, w) �9 [0, T] • ~ x f~ (with w being 
suppressed, as usual); and ~ �9 BVj:([O,T];]R'~), the set of all {:Pt)t>0- 
adapted processes ~? with paths in BV([0, T]; ~zm). 

Defini t ion  1.1. A pair of continuous, {~t}t>0-adapted processes (X, 7) �9 
L~=([0, T]; ~n )  • BV~:([0, T]; nZ ~) is called a solution to the FSDER (1.2) if 

1) x ( t )  �9 (9, v t  �9 [0,T], a.s.; 

2) rl(t) = f~ l{x(8)coo}7(s)dl~l(s), where q'(s) �9 JY'X(s), 0 < s < t < T, 
dlr/I-a.e.; 

3) equation (1.2) is satisfied almost surely. 

A widely used tool for solving an FSDER is the following (determinis- 
tic) function-theoretic technique known as the Skorohod Problem: Let the 
domain (9 be given, 
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P r o b l e m  SP(. ;O): Let Ib E C([0,T]; ~n)  with r E O be given. Find 
a pair (~o, ~)E C([O,T];]R n) x BV([O,T];~ n) such that  

1) = r  + v t  e [0 ,T] ,  and = r  

2) ~o(t) E O, for t E [0, T]; 

3) Irl[(t) = f~ l{~(,)eoo}dirli(s); 
4) there exists a measurable function -y : [0, T] ~ IR '~, such that  ~(t) E 

A/'~( 0 (dlr/[ a.s.) and ~(t) = f~7(s)dDi(s ). 

A pair (~o, r/) satisfying the above 1)-4) is called a solution of the 
SP( r  O). 

It is known that  under various technical conditions on the domain (.9 
and its boundary, for any ~b E C([0, T]; R")  there exists a unique solu- 
tion to SP( r  O). In particular, these conditions are satisfied when (9 
is convex and with smooth boundary, which will be the case considered 
throughout this chapter. Therefore we can consider a well-defined map- 
ping F :  C([0, TJ;]R '~) ~-~ C([0, T ] ; ~  n) such that  P(r = ~o(t), t E [0, T], 
where (~o, ~) is the (unique) solution to SP( r  (9). We will call F the solu- 
tion mapping of the SP(. ; (9). 

An elegant feature of the solution mapping P is that  it may have a 
Lipschitz property: for some constant K > 0 that  is independent of T, such 
that  for r E C([0, T], Rn), i = 1, 2, it holds that  

(1.3)  I r ( r  - _< K l r  - 

where ]~]~ denotes the sup-norm on [0, t] for { E C([0, T];~n) .  Conse- 
quently, if (~oi, ~i), i = 1, 2 are solutions to SP(r (.9), i = 1, 2, respectively, 
then for some constant K independent of T, 

(1.4) Iqol (') + ~o2(')1} + It/l(") - r/~(')I} _< KIr  - r 

In what follows we call a (convex) domain (9 C ]R n regular if the so- 
lution mapping of the corresponding SP(. ;(_9) satisfies (1.3). The sim- 
plest but typical example of a regular domain is the "half space" (9 = 

~n+~{(Xl , . . . , xn )  E IR *~ : xn _> 0}. With a standard localization tech- 
nique, one can show that  a convex domain with smooth boundary is also 
regular. A much deeper result of Dupuis and Ishii [1] shows that  a convex 
polyhedron is regular, which can be extended to a class of convex domains 
with piecewise smooth boundaries. We should note that  proving the regu- 
larity of a given domain is in general a formidable problem with independent 
interest of its own. To simplify presentation, however, in this chapter we 
consider only the case when the domains are regular, although the result we 
state below should hold true for a much larger class of (convex) domains, 
with proofs more complicated than what we present here. 

We shall make use of the following assumptions. 

(A1) (i) for fixed x E ]R n, b(-, x, .) and ~(., x, .) are {.Tt}t>o-progressively 
measurable; 
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(ii) there exists constant K > 0, such that  for all (t, w) E [0, T] x fl and 
x, x t E IR n, it holds that  

(1.5) I b ( t , x , w )  - b ( t , x ' , w ) l  <_ K I x  - x'l; 
l a ( t , x , w )  - a ( t , x ' , w ) l  <_ K l x  - x ' l .  

T h e o r e m  1.2. Suppose that (9 C A n is a regular, convex domain; and 
that (A1) holds. Then the SDER (1.2) has a unique strong solution. 

Proof. Let F be the solution mapping to SP( . ;  0) .  Consider the fol- 
lowing SDE (without reflection): 

/o' /o' (1.6) X( t )  = x + b(s ,X( . ) )ds  + ~( s ,X( . ) )dW(s ) ,  

where for y(.) E C([0, T]; An), 

~(t,y(.),w) = b ( t , r ( y ) ( t ) , ~ o ) ;  Y ( t , y ( . ) , w )  = a ( t , r ( y ) ( t ) , ~ a ) .  

Note that  for any {~-t}t>_0-adapted, continuous process Y, the processes 
b(., Y(-), .) and Y(., Y(.) ,  .), are all {~'t}t>0-progressively measurable. Fur- 
ther, the regularity of the domain (9 implies that  there exists a constant 
/40 > 0 depending only on the Lipschitz constant of F and K in (A1), such 
that  for any {:Tt}t_>0-adapted, continuous processes Y and Y', it holds that  

tb(s,Y(-,w),w) - b(s ,V ' ( . ,w) ,w)l ;  <_ KolY(s ,w)  - Y ' (s ,  oa))l~; 

['~(s,Y(.,w),w) - K(s ,Y ' ( . ,w) ,w)l ;  <_ Ko[Y(s,w) - Y'(s,w))l~', 

for all (t, w) E [0, T] x (9. Therefore, by the standard theory of SDEs (cf. 
e.g., Protter [1]), we know that  the SDE (1.6) has a unique strong solution 
2.  

Next, we define a process Z ( t )  = F(_~)(t), t E [0, T]. Then by definition 
of the Skorohod problem, we see that  there exists a process 77 such that  
(X, 7/) satisfies the conditions 1)-3) of Definition 1.1. Consequently, for all 
t E [0, T], we have 

x ( t )  = ~:(t) + ~(t) 

/o' /o' = x + b(s, X( .))ds + ~(s, X( . ) )dW(s)  + 71(t ) 

/o' /o' = x + b(s, X(s ) )ds  + a(s, X ( s ) )dW(s )  + ~l(t). 

In other words, (X, r/) is a solution to the SDER (1.5). The uniqueness fol- 
lows easily from the construction of the solution and the Lipschitz property 
(1.3) and (1.4). The proof is complete. [] 

w Backward SDEs with  Reflections 

In this section we study the reflected BSDEs (BSDERs, for short). For 
clearer notation we will call the domain in which a BSDE lives by (92, 
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to distinguish it from those in the previous section. A slight difference is 
that  we shall allow 02 to "move" when time varies, and even randomly. 
Namely, we shall consider a family of closed, convex domains {O2(t,w) : 
(t,w) �9 [0, T] • ~t} in ]R m satisfying certain conditions. Let ~ �9 O2(T,w) 
be given, we consider the following SDE: 

(2.1) Y(t) = ~ + h(s, Y(s), Z(s))ds - Z(s)dW(s) + ~(T) - ~(t). 

Analogous to the FSDER, we define the adapted solution to a BSDER 
as follows: 

De f in i t i on  2.1. A triplet of processes (Y, Z, ~) E L~:(~; C([O,T];IRm)) x 
L~:(0, T; Rm• • BVj:([0, T]; Rm) is called a solution to (2.1) if 

(1) Y(t ,w) C 02(t,w), for all t E [0, T], P-a.e.w; 
(2) for any {Ut}t_>0-adapted, RCLL process V(t) such that  V(t) E 

O2(t,-), Vt E [0, T], a.s., it holds that  (Y(t)  - V ( t ) ,  d~(t)) <_ O, as a signed 
measure. 

We note that  Definition 2.1 more or less requires that  the domains 
{02 (., .) } be "measurable" (or even "progressively measurable") in (t, w) in 
a certain sense, which we now describe. Let y E IR "~ and A C IR TM be any 
closed set, we define the projection operator Pr with respect to A, denoted 
Pr(. ;A), by 

(2.2) Pr(y; A) = y - ~ Vyd2(y, A), y C IR'~; 

where d(., .) is the usual distance function: 

(2.3) d(y,A) ~ i n f { l y -  xl : x E A}. 

For each y E ]R m, we define/3(t,y,w) = Pr(y; O2(t,w)). Throughout this 
chapter we shall assume the following technical condition. 

(A2) (i) For every fixed y �9 ]R m, the process (t,w) ~ ~3(t,y,w)is {Svt}t_>o - 
progressively measurable; 

(ii) for fixed y �9 Rr~, it holds that  

T 

(2.4) E fo 1~3(t,y,.)i2dt < cx~. 

Before we go any further, let us look at some examples. 

Example 2.2. Let 7-/m be the collection of all compact subsets of 1% m, 
endowed with the Hausdorff metric d*, that  is, 

(2.5) d*(A,B) = max{supd(x,B) ,  supd(y,A)},  VA, B �9 7-t,~. 
xEA ycB 

It is well-known that  (Tim, d*) is a complete metric space. Now suppose that  

(.-92 =A{(._92(t,w ) : (t,w) �9 [0, T] • f~} C (7/re,d*), then we can view (-92 as an 
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(7-/,~, d*)-valued process, and thus assume that  it is {~'t}t>o-progressively 
measurable. Noting that  for fixed y C IR m, the mapping A ~-~ d(y, A) is a 
continuous mapping from (7~m, d*) to IR, as 

I d ( y , A ) - d ( y , B ) l < d * ( A , B ) ,  V y e ~  "~, VA, BeT-lm, 

the composition function (t,w) ~ d 2(y, O(t,w)) is {~'t}t>o-progressively 
measurable as well, which then renders ~yd2(y,02(.,.)) an {~-t}t>_o- 
progressively measurable process, for any fixed y E ]R TM- Consequently, 
O2 satisfies (A2)-(i). 

Next, nsing elementary inequality Id(zl,A) - d(z2,A)] _< [zl - z2], 
Vzl, z2 E IR "~, VA C_ ]R "~ one shows that  

IVyd2(y, 02(t,w)) I <_ 2d(y, 02(t,w)). 

Assumption (A2)-(ii) is easily satisfied provided d(y, O2(', ")) �9 L2([0, T] • 
f~), which is always the case if, for example, 0 �9 O2 (t, w) for all (t, w), or, 
more generally, 02(t, w) has a selection in L~:(0, T; ~). [] 

Example 2.3. As a special case of Example 2.2, the following moving do- 
mains are often seen in applications. Let {O(t,x) : (t, x) �9 [0,T] • ]R n} be 
a family of convex, compact domains in ]R TM such that  

(i) the mapping (t, x) ~-~ O(t, x) is continuous as a function from [0, T] • 
~ to (n.~, d*). 

(ii) for each (t,x), 0 �9 O(t,x); and there exists a constant C > 0 such 
that  

sup d*(O(t,x),O(t,O)) < Clxl. 
tE[0,T] 

Let X E L2(~;  C([0,T];~n)) ,  and define 02(t,w)~= O(t,X(t ,w)),  (t,w) E 
[0, T] x f~. We leave it to the readers to check that  O2 satisfies (A2). [] 

Example 2.4. Continuing from the previous examples, let us assume that  
m = 1 and O(t, x) = [L(t, x), U(t, x)], where - ~  < L(t, x) < 0 < U(t, x) < 
c~ for all (t, x) C [0, T] • ]R '~. Suppose that  the functions L and U are both 
uniformly Lipschitz in x, uniformly in t E [0, T]. Then a simple calculation 
using the definition of the Hausdorff metric shows that  

d*(O(t, 0), O(t, x)) : max{IL(t, x) - L(t, O)l , IU(t, x) - U(t, O)I } < CIx I. 

Thus 02 satisfies (A2), thanks to the previous example. [] 

Let us now turn our attention to the well-posedness of the BSDER (2.1). 
We shall make use of the following standing assumptions on coefficient 
h : [0, T] x ~t m x ]~rn• X ~-~ ~ ]~m and the domain {02(t, co)}. 

(A3) (i) for each (y, z) E ~ '~  xIR m• h(., y, z, .) is an {Yt}t>_0-progressively 
measurable process; and for fixed (t,z) E [0, T] x ]R mxd and a.e.w E ~, 
h(t,., z,w) is continuous; 
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(ii) E fo T [h(t,O,O)12dt < oo; 
(iii) there exist a �9 N and k2 > 0, such that  for all t �9 [0, T], y,y '  �9 

~m,  and z, z' �9 ]R mxd, it holds P-a.s. that  

( y - y ' , h ( t , y , z )  - h ( t , y ' , z ) )  <_ a l y -y '12 ;  

Ih( t ,y ,z)  - h( t ,y , z ' ) l  <_ k2lz - z'l; 

Ih( t ,y ,z)  - h(t,O,z)l <_ k2(1 + [yl). 

(iv) The domains {O2(t,-)} is "non-increasing". In other words, it 
holds that  

O(t,~) c_ O(s,w), vt  > s, a . s .  

Our main result of this section is the following theorem. 

T h e o r e m  2.5. Suppose that (A2) and (A3) are in force. Then the BSDER 
(2.1) has a unique (strong) solution. Ehrthermore, the process r is abso- 
lutely continuous with respect to Lebesgue measure, and for any process Vt 
such that Vt(co) �9 O2(t,w), Vt �9 [0, T], a.s., it holds that 

(2.6) ( d_~t, Yt - Vt ) < 0, Vt �9 [0, T], a.s. 
a ~  

R e m a r k  2.6. Suppose m = 1 and (-92 = [L, U], for appropriate processes 
L and U. Denote by ~ = ~+ - ~ - ,  ~+ = ~o = 0, the minimal decomposition 
of ~ as a difference of two non-decreasing processes. By replacing V in (2.6) 
by 

Vt  L : Ltl{d@c>_o} + Ytl{_~ <o }, 

vt U = U t l ~ < o ~  + ~ 1 ~ > o  ~, t e [o, T], 

respectively, we obtain 

(2.7) ( Y t - L t , d ~  +)  = 0 ,  ( Y t - U t , d ~ t )  = 0 ,  V te [0 ,  T], a.s. 

Proof of Theorem 2.5. Since the proof is quite lengthy, we shall split it 
into several lemmas. To begin with, let us first recall the notion of Yosida 
approximation, which is another typical route of attacking the existence and 
uniqueness of an SDE with reflection other than using Skorohod problem. 

Let ~o be any proper, lower semicontinuous (1.s.c., for short), convex 
function (by proper we mean that  ~ is not identically equal to +oe). Let 
:D(~o) = {x : qo(x) < c~}. We define the subdifferential of ~, denoted by 0~o, 
a s  

a~(y) ~{x* e ~ m :  (x*,y-x)  >o, vx e ~(~)}. 

In what follows we denote A ~= cgp. Define, for each e > 0, a function 

(2.8) ~ ( y )  ~ inf y -  x[ 2 .+ ~(x  . 
x C R  ~ 
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Since IR m is a Hilbert space, and p is a 1.s.c. proper convex mapping, the 
the following result can be found in standard text (cf. Barbu [1, Chapter 
liD: 

L e m m a  2.7. (i) The function qoe is (Frdchet) differentiable. 

(ii) The Frdchet differential o f  p~, denoted by Dqo~, satisfies Dqo~ = At ,  
where A~ is the Yosida approximation of  A, define by 

(2.9) A~(y) = ~(y  - J~(y)), where J~(y) = (I  + r  

(iii) IJ~(x) - J~(Y)I <- I x - Y[; IA~(x) - A~(y) I <_ }Ix - Yl, 

(iv) A~(y) e O~o(J~(y)). 

(v) IA~(y)I /5-~o ~ JA~ 
( +o0,  

y E ]R TM. 

i fx  E CO; 
where A~ ~= Pro~(y) (0), 

otherwise, 
[]  

Let us now specify a 1.s.c. proper convex function to fit our discussion. 
For any convex, closed subset (_9 C R'~, we define its indicator function, 
denoted by p :--/(9 to be 

~o(y) ~ { 0+ y E O ;  
oo y r  O, 

In this case, l)(9~) = O. Now by definitions (2.8) and (2.9), we have 

p ~ ( y ) =  inf 1 1 ~ o K  ly -  x12 = d2(y,O), 

A (y) =  Vd2(y, O ) =  - Pr(y,O)), 

Consequently, we have 

{ J~(y) = Pr(y;  (.9), V~ > 0; 

(2.10) A~(y) = 0, Vy C O, Vc > 0; 

A ~ = 0, Vy E O. 

Further, we replace CO by the (7/m, d*)-valued process {CO2}, then 

1 
~ ( t , y , ~ )  = KIo2(~,~)(~), v~ > o; 

(2.11) J~( t ,y ,w)  = (I  + eA(t ,  ",~d))--l(y); 

A~( t , y ,w)  = l (y _ Jr  

By (2.10) we know that Je( t ,y ,w)  = Pr(y ,  CO2(t,w)), and by assumption 
(A2) we have that  for every E > 0, J~(.,y, .) C L~(0, T;~Y ~) for all y E IR TM. 
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Let us now consider the following approximation of (2.1): 

YE(t) = ~ +  f t  h(s,Y~(s),Z~(s))ds - Z~(s)dW(s) 
(2.12) T 

- ft A~(Y~(s))ds' 

where A~ is the Yosida approximation of A(t,w) = OIo2(t,~) defined by 
(2.11). Since A~ is uniform Lipschitz for each fixed z, by Lemma 2.7-(iii) 
and by slightly modifying the arguments in Chapter 1, w to cope with the 
current situation where a in (A3) is allowed to be negative, one shows that  
(2.12) has a unique strong solution (Y~, Z ~) satisfying 

/0 T 1 (2.13) E{  sup IY~(t)l 2 + IIZ~(t)ll2dt < 00. 
0 < t < T  

We will first show that  as e --+ 0, (Y~, Z e) converges in a certain sense, then 
show that  the limit will give the solution of (2.12). To begin with, we need 
some elementary estimates. 

L e m m a  2.8. Suppose that condition (A3) holds, and that ~ E L~r (f~). 
Then there exists a constant C > O, independent ore, such that the follow- 
ing estimates hold 

tE[0,T] 

(2.14) E{ ~o TIA~(t'Y~(t))]2dt} <- C" 

Proof. The proof of the first inequality is quite similar to those we 
have seen many times before, with the help of the properties of Yosida 
approximations listed in w we only prove the second one. First note that  
since 02 is convex, so is ~E(t,-,w) (recall (2.11)). We have the following 
inequality (suppressing ~): 

(2.15) ~ ( t , y ) + ( D ~ ( t , y ) , ~ - y )  < ~E(t,y~, V(t,y), a.s. 

Now let t = to < tl < " "  < t,~ = T be any partition of It, T]. Then (2.15) 
leads to that  

~ (ti, y~ (ti)) + < D ~  (t~, Y~ (t~)), Y~ (t~+l) - Y~ (t~)) 
(2.16) 

< qv~(t~,Y~(t~+l)) < ~v~(ti+l,Ye(t~+l)), a.s., 

where the last inequality is due to Assumption (A3)-iv). Summing both 
sides of (2.16) up and letting the mesh size of the partition maxi [ti+l -t~l --+ 
0 we obtain that  

T 

(2.17) ~( t ,Y~( t ) )+ f (D~(s ,  Ye(s)),dY~(s)) <~v~(T,~)=0.  
Jt 
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Thus, recall the equation for Ye we have 

(2.18) 

1/T 
~(t,Y~(t)) + -~ [Dr 

<_ ~(T,~) + (Dg)~(s,Y~(s)),h(s,Y~(s),Z~(s))}ds 

_ f T  (D~(Y~(s)), Z~dW8 ). 
Jt 

177 

By Cauchy-Schwartz inequality and (A3)-(iii), 

(Dg)e(t,y),h(t,y,z)) < l[DqoE(t,y)]2 + e C ( 1  + IIzI] 2 + ly]2), V(t,y,z). 

We now recall that  ~ _> 0; ~ E O2(T,.) (i.e., ~o~(T,~) = 0); and 
A~(t,y,w) = D~(t ,y ,w) .  Using the first inequality of this lemma we ob- 
tain that  

T T 

E ~  ]A~(t,Y~(s))]2ds = E fft IDq)~(Y~(s))12ds 

_ _ _ C ( I + E  sup I Y ~ ( t ) I 2 + E  IIZ~(t)ll2dt <~, 
te[0,T] 

where C > 0 is some constant independent of e. Thus, by a slightly abuse 
of notations on the constant C, we obtain the desired estimate. [ ]  

L e m m a  2.9. Suppose that  the assumptions of Lemma 2.8 hold. Then 
there exists a constant C > O, such that for any e, 5 > 0, it holds that 

// (2.19) E L ~ sup lYe(t) - Ye(t)l 2 + JZ~(t) - Z~(t)12dtj ~ < (~ + 5)C. 
tE[0,T] 

Proof. Applying It6's formula we get 

lye(t) - yh(t) l  2 + [IZ~(s) - Zh(s)ll2ds 

( + 2  (A~(s,Y~(s)) -Ah(s,  Ya(s)),Y~(s) -Y~(s )}ds  
(2.2o) ( =2 (h(s,Y~(s),Z~(s))-h(s,  Yh(s),Z5(s)),Y~(s)-Y~(s))ds 

T P 

- 2 It (Y~(s) - Y~(s), [Z~(s) - Z~(s)]dW(s) ). 

Since A~(t, y,w) E O7)(J~(y)), we have by definition that  

(A~(t,y,w),J~(t,y,w)-x)>_O, YxEO2(t ,w) .  
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In particular for any ~ E Rm, and any 5 > 0, J~(t ,~,w) E 02( t ,w)  and 
therefore 

( A e ( t , y , w ) , J e ( t , y , w )  - Jb(t ,~,w) ) >_ O, 

Similarly, 

( A ~ ( t , ~ , w ) , J s ( t , ~ , w )  - J~( t ,y ,w)  ) >_ O, 

Consequently, we have (suppressing w) 

(2.21) 

V ~ E I R  m, a.e. w E ~ .  

V y E Rm, a.e.w E ~. 

( A~( t ,y)  - A 6 ( t , ~ , y  - ~) 

= (A~( t , y ) ,  [y - J~(t,y)] + [J~(t,y) - J~(t,y~] + J~(t,y-) - ~) 

+ ( A ~ ( t , ~ ,  [ y -  Js(t,y-)] + [J~(t,y~ - J~(t,y)] + J~(t ,y)  - y )  

>_ - ( A ~ ( t , y ) , S A ~ ( t , ~  ) - ( A~(t ,y-) ,eA~(t ,y)  ) 

= - (~ + 5) (A~ (t, y), A~ (t, ~ ). 

Also, some standard arguments using Schwartz inequality lead to that 

(2.22) 2 ( h ( t , y , z ) - h ( t , ~ , z - ) , y - ~ l  ) <_ ~ I i z - ' z i l 2 - i - C i y - y ]  2. 

Combining (2.20)--(2.22) and using the Burkholder and Gronwall inequal- 
ities we obtain, for some constant C > 0, 

T 

E{ sup lye(t)- z (tll 2 + fo IIZ (tl- z (t)ll2et} 
te[0,T] 

J2 <_(s+5)E ( A ~ ( t , Y ~ ( t ) ) , A ~ ( t , Y ~ ( t ) ) )  at 

�89 
_<(e + ~){E IA~(Y~(t))l%lt. E IA~(Y~(t))12dt} _< (e + ~)C, 

thanks to (2.14). This proves the Lemma. []  

As a direct consequence of Lemma 2.8, we see that if we send ~ to 
zero along an arbitrary sequence {sn}, then there exist processes Y E 
n~-(~; C([0, T]; lRm)), Z e n~=(f~ x [0, T]; IR'~)), independent of the choice 
of the sequence {e,~} chosen, such that 

(Y '~,Zn)  ~=(Y~,Z~n)  -4 (Y ,Z) ,  as n -4 oo, 

strongly in L2(gt; C([0, T]; ~m))  • L~=(fl • [0, T]; ~m).  
Furthermore, by Lemma 2.8 and the equation (2.12), it follows that 

for some 77 E n~-(0, T; ~m),  ( E L~=(f~; C([0, T]; ~m)) ,  and possibly along a 
subsequence which we still denote by {ca}, it holds that 

' A ~ n ( Y ~ ( . ) )  -4 -~( . ) ,  weakly in n~(0,  T ;~m) ;  

f0' A. ~} E {  sup (Y~n (~))d~ + r -4 0, as n -4 0 0 .  
0 < t < T  
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Here, we use -7 / and  - (  to match the signs in (2.1) and (2.12). Obviously, 
we see that  the limiting processes Y, Z, and ~ will satisfy the SDE (2.1), 
and the proof of Theorem 2.6 will be complete after we prove the following 
lemma. 

L e m m a  2.10. Suppose that the process (Y, Z), 7, and ~ are defined as 
before. Then (Y, Z, () satisfies (2.11), such that 

(i) E[(I(T ) = E f  T [71(t)[dt '< c~; 

(ii) Y(t) �9 O2(t, "), Vt �9 [0, T], a.s.; 

(iii) for any RCLL, { :T~ } t>_o-adapted process V, (Y( t )  - V ( t ) ,  7](t) ) < 0, 
a.s., as a signed measure. 

Proof. (i) We first show that  ( has absolutely continuous paths al- 
most surely and that  ~ = 7. To see this, note that  r] is the weak limit of 
A6~ (Y~) 's .  By Mazur's theorem, there exists an convex combination of 
A ~  (Y~) 's ,  denoted by .4~ (Y~) ,  such that  .4~ (Y~)  ~ 7, strongly in 
L~(f~ • [0, T]; lRm)). Note that  for this sequence of convex combinations of 
the sequence A~  (Y~) ,  we also have 

/o E{  sup A~. (Y~ (s))ds + ((t) --+ 0, as n --+ co. 
0<t<T 

Thus the uniqueness of the limit implies that r : f~ ~7(s)ds, Vt �9 [0, T]. 
Furthermore, since L~:(~) C_ L I (~), we derive (i) immediately. 

(ii) In what follows we denote d(y, t, w) : d(y, (92 (t, w)). Since 02 (t, w) 
is convex for fixed (t,w), d(., 02(t,w)) is a convex function. Further, since 
02 has smooth boundary, one derives from (2.9) that  

d(y, t ,w) : [y - Pr(y,  O2(t,w))[ = [y - J~(y)[ = r 

for all y �9 R "~, and t �9 [0, T], P-a.s.. Hence by part (i), we see that  

/0 /o E d(Y~(t),t,~o)dt <_ eE [A~(Y~(t))ldt 
(2.23) 

_ <cv~E{ foT[A~(V~( t ) )12d t }  �89 -+0. 

Next, define for each (t, ~) �9 [0, T] x ~ the conjugate function of d(., t, w) 
by 

(2.24) G(z, t, w) ~= inf{d(y, t, w) - ( z, y )], 
y 

and define the effective domain of G by 

(2 .25)  : { z  �9 : > 

Since d(., t ,w) is convex and continuous everywhere, it must be identi- 
cal to its biconjugate function, or equivalently, its closed convex hull (see 
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Hiriart-Urruty-Lemar4chal [1]). Consequently, the following conjugate re- 
lation holds: 

(2.26) d ( y , t , w ) =  sup { G ( z , t , w ) + ( z , y ) } ;  
zeT)G(t,~) 

and both the infimum of (2.24) and the supremum of (2.26) are achieved 
for every fixed (t,w). Now for fixed (t,w), and any zo 6 ~Da(t,w), we let 
Yo = yo(t,w) be the minimizer in (2.24). Then 

d ( y o , t , w ) - ( y o , z o } = G ( z o , t , w ) < _ d ( y , t , w ) - < y ,  zo}, V y E ] R  n, 

and hence 

( Y - Yo, zo ) <_ d(y, t, w) - d(yo, t, w), Vy C IR '~. 

Since it is easily checked that  d(., t, w) is uniformly Lipschitz with Lipschitz 
constant 1, we deduce from above that  Iz01 _< 1. Namely l:)G(t,w) C_ [-1, 1]. 

Now let Y be the limit process of Y ~ ,  we apply a measurable selec- 
tion theorem to obtain a (bounded) {9~t}t_>o-adapted process R, such that  
R(t ,w) 6 T)G(t,w) C_ [--1, 1], Vt, a.s.; and 

d(Y}t ,w) , t ,w)  = G(R( t ,w) , t ,w)  + < R( t ,w) ,Y( t lw) )  , 
(2.27) [. d(Y ~(t ,w), t ,w) > G(R( t ,w) , t ,w)  + ( R ( t , w ) , Y  "(t,w)), 

Therefore, recall that  Y ~  -+ Y, we have 

/0 E d(Y(t),  t, .)dt = E G(Y(t) ,  t, .) + < R(t), Y(t) > dt 

-- limE a(Y( t ) , t , . )  + <R(t),Yn(t)  > dt 

/o <_ E e ( y  (t), t, .)et = o, 

thanks to (2.23). That  is, E ford(Y(t ) , t , . )d t  = 0, which implies that  
Y( t ,w)  6 02(t ,w),  dt x dP-a.e. Thus the conclusion follows from the con- 
tinuity of the paths of Y. 

(iii) Let V(t) be any {.~'t}t_>0-adapted process such that  V(t ,w) 6 
02(t ,w),  Vt �9 [0, T], P-a.s. For every e > 0, and t �9 [0, T], consider 

(2.28) At(t) = E  <J~(Y~(s ) ) -V(s ) ,A~(Y~(s ) ) }ds .  

Since V(t) �9 02(t, .) ,  for all t, and A~(Y~(t)) �9 OIo2(t,.)(J~(Y~(t)) (see 
Lemma 2.7-(iv)), we have 

< J~(Y~(t)) - V(t), At(t ,  Y~(t)) > >_ O. 
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Namely, AE(t) _> 0, Ve > 0 and t E [0, T]. On the other hand, since 

/o' ,rt - A~(t) E 

(2.29) + - u ( s ) ,  A (s, / }as  

/o' 
Now using the uniform boundedness (2.14) and the weak convergence 
of {A~( . ,Y~) ( . ) ) } ,  and the fact that Y ~  converges to Y strongly in 
L~(a ;  C([0, T]; IR~)), one derives easily by sending n ~ ec in (2.29) that  

/o' O < E  ( Y ( s ) - V ( s ) , - ~ ( s ) } d s ,  VtE[0,  T]. 

Or equivalently, 

(Y ( t )  - V(t),~l(t)) = (Y( t )  - V ( t ) , ~ t ( t ) )  < 0, Vt E [0, T], a.s. 

as a (random) signed measure. Thus completes the proof of Lemma 2.10. 
[]  

w Ref lected Forward-Backward SDEs  

We are now ready to formulate forward-backward SDEs with reflection 
(FBSDER, for short). Let O1 be a closed, convex domain in ]R '~, and 
O2 = {O2(t,w) : (t,w) E [0, T] • ]R n • ~} be a family of closed, convex 
domains in Am. Let x E O1, and g : ]R n • f~ ~-~ ]R m be a given ~'T- 
measurable random field satisfying 

(3.1) g(x,w) E 02(T,w) ,  V(x,w). 

Consider the following FBSDER: 

{ jot  j0t +~/t; 
(3.2) T T 

Def in i t i on  3.1. A quintuple of processes (X, Y, Z, ~, () is called an adapted 
solution of the FBSDER (3.2) if 

L 2 (0 T" ~:~mxd'~ 1) (X,Y)  E L~(12, C(0, T;IR n • Rm)), Z E j:~ , , j, (~,() E 
B V y ( O , T ; R  n • IRm); 

2) X t E 01 ,  Yt E 02(t , . ) ,  Vt E [0, T], a.s.; 
3) I~lt = f t l {x~ool}di~?is;  ~lt = ft')'sdl~is, Vt E [0, T], a.s., for some 

progressively measurable process "y such that % E Afx.(01),  dlYi-a.e. ; 
4) for all RCLL and progressively measurable processes U such that Ut E 

O2(t,-), Vt E [0, T], a.s., one has (Yt - Ut,d~t) ~ 0, Vt E [0, T], a.s.; 
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5) (X, Y, Z, ~, ~) satisfies the SDE (3.2) almost  surely. 

In light of assumptions (A1)-(A3), we will assume the following 

(A4)  (i) O1 has smooth  boundary ;  
(ii) 02(t ,w)  C_ 02(s,co), Vt >_ s, a.s.; and for fixed y E ]R "~, the map-  

ping (t, w) ~+/3(t, y, ca) ~= Pr(y; 02(t,  w) belongs to L~=([0, T]; IRm). 
(iii) The  coefficients b, h, ~, and 9 are random fields defined on 

[0, T] x ]R ~ x 1~ "~ x IR m• such tha t  for fixed (x, y, z), the  pro- 
cesses b( . , x ,y , z , . ) ,  h ( . , x , y , z , . ) ,  and cr( . ,x ,y ,z , . )  are {~-t}t_>0- 
progressively measurable,  and g(x, .) is FT-measurable .  

(iv) For fixed (t, x, z) and a.e. co, h(t, x, . ,  z, co) is continuous, and there  
exists a constant  K > 0 such tha t  ]h(t ,x ,y ,z ,w)[ <_ K( l+]x[+lyD,  
for all (t, x, y, z, co). Moreover,  

/o /o E Ib(t ,O,O,O)12dt+E I~(t,O,O,O)12dt+EIg(O)l 2 < oo. 

(v) There  exist constants  ki _> 0, i = 1, 2 and 3' E IR such tha t  for all 
A (t,w) E [0, T] x f~ and x=(x,y ,z) ,x iA---(xi ,y i ,z i )  E IR ~ x ~ m  x 

IR TM, i = 1,2, and x~ ~ ( x , y )  for x = (x ,y , z ) .  

�9 Ib(t, Xl,co) - b(t, x2,co)I _< K]Xl - x 2 l ;  

�9 (h ( t , x ,  y l , z ,  co) - h ( t , x , y2 , z ,  co),yl - Y2 } _< 71Y1 - y212; 

�9 Ih(t, x l , y ,  zl,co) - h(t, x2,y,  z2,w)l <_ K(Ix l  - x2l + Ilzl - z2ll); 

�9 II~(t ,  x l , c o )  - ~ ( t ,  x2 ,co) l l  2 _< K ~ l x  ~ - x ~  2 + k~llz~ - z2112; 

�9 I g ( ~ l , c o )  - g ( ~ 2 , c o ) l  _ k ~ l ~  - ~ 1 .  

We should note  tha t  if kl = k2 = 0, then  a and g are independent  
of z, just  as the many  cases we considered before. Therefore,  the F B S D E  
considered in this chapter  is more  general. We note  also tha t  the me thod  
presented here should also work when there  is no reflection involved (e.g., 
O1 = ~ n ,  0 2  ~ ]Rm). 

w A priori estimates 

We first establish a new type  of a priori est imates tha t  is different from 
what  we have seen in the previous chapters.  To simplify nota t ions  we shall 
denote,  for t E [0, T) ,  H( t ,  T)  = L~(t ,  T; IR), and let He( t ,  T)  be the subset 
of H( t ,  T)  consisting of all continuous processes. For any A C IR, define an 
equivalent norm on H( t ,  T)  by: 

T 1 

Then  H ~ ( t , T )  ~{~ E H ( t , T )  : [l~[[t,x < (x~} = H ( t , T ) .  We shall also use 
the following norm on He( t ,  T):  

[~]t,;~,~3 A e_ATEI~T]2 q_ /3H~i[2,~, ~ E H~(t ,  T) ,  A e R,  • > 0, 
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and denote HA,z(t, T) to be the completion of H~(t, T) under norm l" It,A,~. 
Then for any A and/3, HA,z(t, T) is a Banach space. Further, if t = 0, we 

2 A simply denote [[ [[A A [] I[0,~; ['[A,f~ =[ 2 . . . . .  [o,~,~, H = H ( 0 ,  T);  H r = H r  
HA = HA(t,T),  and HA,~ = HA,z(t,T). 

Moreover, the following functions will be frequently used in this section: 
f o r A E ~ a n d t E [ 0 ,  T], 

(3.3) A(A,t)  = e-(AA~ B(A, t )  - 1 - e - A t  ~01 A -- t e-At~ 

It is easy to see that, for all A E I{ n, B(A, .) is a nonnegative, increasing 
function, A(A, t) > 1; and B(A, 0) = 0, A(A, 0) = 1. 

L e m m a  3.2. Let (A4) hold. Let (X, Y, Z, r/, ~) and (X', Y', Z', r/', ~') 

be two solutions to the FBSDER (3.2), and let ~'~ ~ - ~', where ~ = 
X,  Y, Z, r~, ~, respectively. 

(i) Let A E R ,  C~,C: >0 ,  and let A~ = A - K ( 2 + C ~  -~+C~ - 1 ) - K  S. 
Then, for ali M E ~ ,  

/o' e-~tEI2t l  ~ + (N~ - ,V) e-~" e-A'(t-')ElX, l~d~r 
(3.4) 

/o <__ e - A ' e - ; " - ' ) { g ( c ,  + K ) E l g l  ~ + (KC~ + k~)EI2,1~Id~. 

(ii) Let A E ]R and C3, C4 > O, and let A2 = - A  - 27 - K(C31 + C41). 
Then, for all A ~ E JR, 

T 

e-AtEtYt[ 2 + (-~2 -- A') . f  e-Ar e-A'(r-t)E[~'r[2d~ - 

(3.5) + (1 - KC4) e -X 'e -X ' ( ' - t )EI2r l2d7  

T 

k ~ e - A r e - ; ( r - * ) E I 2 r l  ~ + KC~ f e-A~e-;(~-*)12rl~d~ - <_ 

Consequently, if KC4 = 1 - a for some a E (0, 1), then 

(3.6) e--ATEI2TI ~ + 5'IIIXII~, -< K(C1 + K)IIYII} + (KC2 + k~)llZll~,. 

(3.7) I[~ll 2 ~ B(~I,T)[K(C1 + K)lIYll~ + (KC2 + k~)ll211~]. 

(3.s) IIYll~ ~ B(X2,T)[k~e-~TEIXT[ 2 + KCaIIXII~], 

(3.9) 2 - A T  ^ ~ KC311~II}I ]I2I[~ <_ A(A2'T)[k2e EIXTI + 
ct 

Proof. We first show (3.4). Let t E (0, T], A, A' be arbitrarily given, and 

consider the function Ft(s,x)A=e-ASe-~'(t-S)ix]2, for (s ,x)  E [0, t] • ~n .  
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Applying It6's formula to Ft (s, X~) from 0 to t, and then taking expectation 
we have 

~0 t e-~'tEl.~tl  2 -4- (A - A')E e-~'~e-~"(t-~-)l~-12dT 

/o I = e-X'e - ; l~ - ' )  2 ( 2 ~ , b ( ~ - , X . , Y . , Z ~ ) - b ( ~ , X ' , Y ' , Z ; ) )  

+ [la('r, X,-, YT, Zr) - 0(% X'.,_, g ' ,  Z')[12 }d'r 

+ 2 E  e ~ 'e  ~'(t " ) ( 2 T , d ~ r ) .  

Since Xt ,X~ E 01, Vt C [0, T], a.s., we derive from Definition 3.1-(3) 
that  e-~te -:~'(t-~) ( X t , d ~ )  _< 0 (as a signed measure), Vs C [0, T], a.s.. 
Therefore, repeatedly applying the Schwartz inequality and the inequality 
2ab < ca 2 + c- ib  2, Vc > 0, using the definition of A1, together with some 
elementary computation with the help of (A4), we derive (3.4). 

To prove (3.5), we let ~'t(s,x) = e-~Se-;~'(s-t)[x[ 2, and apply It6's 
formula to Ft(s, Ys) from t to T to get 

jft 
T 

e-~'tgl~tl 2 + (A' -4- A)E e - ~ % - ; ( ~ - t ) l ~ l = d T  

+ E e-X'-e - ; ( ' - t )  112~l12dr 

+ 2  e-)"(~-t)e-)~(Y:r,h(T, Xr ,Y~- ,Z , - ) -h(T ,X~,Y~,Z~))dT 

T 
+2Ef~ e-;( '-% - "  ('2.,e~.>. 

Again, since Y(t,  .), Y'(t ,  .) E C92(t, .), P-a.s., by Definition 3.1-(4) we have 
(Yt(w), d~t(w) ) <_ O, dt • dP-a.s.. Thus, by using the similar argument as 
before, and using the definition of A2, we obtain (3.5). 

Now, letting A' = 0 and t = T in (3.4) yields (3.6); letting A' = A1 in 
(3.4) and then integrating both sides from 0 to T yields (3.7), since B(A1, .) 
is increasing; letting A' = A2 in (3.5) and integrating from 0 to T yields 
(3.8). Finally, note that if A2 _< 0, then letting A' = A2 and t = 0 in (3.5) 
one has (remember KC4 = 1 - a) 

11211~, < fo ~ e-~re-~2(~-~)l l~l l2d~ 

e[X2[T { k2e EIXT[ d- -< a 2 - ~  ^ 2 KC311211~}; 
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while if Re > 0, then let A' = 0 in (3.4) one has 

g 2 --AT ~ 2 11211~, <_ 1 {k~e ElXrl + KCalI)(ll~,}. 

Combining the above we obtain (3.9). [] 

We now present another set of useful a priori estimates for the adapted 
solution to FBSDER (3.2). Denote a~ = a(s,O,O,O,w), f~ = 
f ( s , 0 , 0 ,0 ,  w), h~ = h(t,O,O,O,w), and g~ = g(O,w). 

L e m m a  a.a .  Assume (A4). Let (X, 1I, Z, r h () be an adapted solution to 
the FBSDER (3.2). For any A,A' E ~ , e  > 0, C1,C2,C3,C4 > O, we define 
A~ = ,~1 - (1 + K2)e and A~ = A2 - e, where ,~1 and A2 are those defined in 
Lemma 3.2. Then 

(3.1o) 

and 

(3.11) 

fot e-AtElXt[ 2 + (5,~ - A') e-A'(t-')e-ASElX~12dr <_ e-A'tJxl 2 

+ fote-A'(t-~)e-Ar{1Elf(r,O,O,O)12+ ( l+l) la(r ,O,O,O)[  = 

+ K(C1 + K(1 + ~))UlYrl 2 + (KC2 + k1~(1 + ~))EIZ~I=}a~. 

f 
T 

e-AtE]Ytl 2 + (X~ - A') e-;(r- t )e-A'EWri2dr 
Jt 

T 
+ (1 - ]g4C4) f t  e-A'('-t)e-ArEfZrl2dr 

<_k~(I +a)e-A'(T-Oe-ATE]XTI2 + (I+I)e-A'(T-t)e-ATEIg(O)I 2 

+ ftTe-A'(~-t)e-Ar {KCaE]X,12 + lElh(w,O,O,O)12}dr. 

Consequently, if C4 - ~  ~-'~, [Or some a 6 (0, 1), we have 

(3.12) 
e-XYEtXT[ 2 + X~llXll~ ~ [Ixl 2 + K(C1 -k K(1 -I- c))llYll 2 

+ ( K C 2 + k l 2 ( I + a ) ) ' [ Z [ [ 2 + ~ H f ~  ( l + ~ ) ] [ a ~  

(3.13) 
[[X[12x < B(A~,T) [Ix] ~ + K(C1 + K(1 + ~))]lYl[~, 
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(3.14) 

(3.15) 
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]]YI[~ _< B(A~,T) [k~(1 + c)e-;~T E[XT] 2 + KC3[]X[]~ 

+ (1+ + 

IIZll~ ~ A(A~,a T) [k22(1 + ~)_~TEIXTI2 + KC3llXll~ 

+ (l + !)e-:'TE[g~ + ~llh~ 

w Ex i s t ence  a n d  un iqueness  of  t he  a d a p t e d  so lu t ions  

We are now ready to study the well-posedness of the FBSDER (3.2). To 
begin with we introduce a mapping F : H r ~-~ H r defined as follows: for 

fixed x E ]R n, let X ~= F(X) be the solution to the FSDER: 

/0 - /0 (3.16) X~ = x + b(s,X~,Ys,Zs)ds + a(s, Xs,Y~,Z~)dWs + ~t, 

where the processes Y and Z are the solution to the following BSDER: 

T T 

(3.17) Yt=g(XT)+f t  h(s,X~,Y~,Z~)ds-~ ZsdW~+@-~t. 

Clearly, the assumption (A4) enables us to apply Theorem 2.5 to con- 
clude that  the BSDER (3.17) has a unique solution (]I, Z, ~), which in turn 
guarantees the existence and uniqueness of the adapted solution X to the 
FSDER (3.16), thanks to Theorem 1.2. Furthermore, by definition of A~ 
(Lemma 3.3) we see that  if A is chosen so that  A1 > 0, then it is always 
possible to choose c > 0 small enough so that  A~ > 0 as well; and (3.12) will 
lead to X E H~,X1 (since A1 > 0 and A~ > 0). Let us try to find a suitable 
A1 > 0 so that  F is a contraction on H~,y,~, which will lead to the existence 
and uniqueness of the adapted solution to the FBSDER (3.2) immediately. 

- - i  -- i  To this end, let X 1, X 2 C He; and let (y i ,  Z i, ~i) and (X , ~ ), i = 1, 2, 
be the corresponding solutions to (3.17) and (3.16), respectively. Denote 
A~ = ~1 - ~ 2 ,  for ~ = X,Y,Z,X. Applying (3.6)-(3.9). (with C4 = s 
we easily deduce that  

(3.18) 

where 

(3.19) #(a, T) ~= K(C1 + K)B(A2, T) + - -  

and (recall Lemma 3.2) 

(3.20) A1 = A - K ( 2 + C 1 1 + C 2 1 ) - K 2 ;  

e-~T EJA-RT[ 2 + X~ II/X~lI~ 
~(a,T){k~e-:'TEJAXTI 2 + KC3[I/XX[I~}. 

A(A2,T) (KC2 + k12); 
Ol 

A2 = -A - 2 7 -  K(C31 + C41). 
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Clearly, the function #(-,-) depends on the constants K, kl, k2,7, the du- 
ration T > 0, and the choice of C1-C4 as well as A, a. To compensate the 
generality of the coefficients, we shall impose the following compatibility 
conditions. 

( C - l )  0 _< klk2 < 1; 

(C-2) k2 = 0; 3a  E (0, 1) such that  #(a ,  T)KC3 < At, 

(C-3) k2 > 0; 3ao e (klk2, 1), such that  #(a~,T)k22 < 1 and A1 = 
k2  " 

We remark here that  the compatibility condition (C-l) is not a surprise. 
We already saw it in Chapter 1 (Theorem 1.5.1). In fact, in Example 1.5.2 
we showed that  such a condition is almost necessary for the solvability of 
an FBSDE with general coefficients, even in non-reflected cases with small 
duration. The first existence and uniqueness result for FBSDER (3.2) is 
the following. 

T h e o r e m  3.4. Assume (A4) and fix C4 = 1 - ~  Assume that the compat- 
K " 

ibility conditions (C-l), and either (C-2) or (C-3) hold for some choices of 
constants A, a, and C1-C3. Then the FBSDER (3.2) has a unique adapted 
solution over [0, T]. 

1 - ~  First assume that  (C-l) and (C-2) hold. Since Proof. Fix C4 = K �9 
k2 = 0, (3.18) leads to that  

II~Xll~ < #(a ,  _T)KC3 IIAXII~, ' 
A1 

Since we can find C1--C3 and a E (0,1) so that  # ( a , T ) K C 3  < 1, F is a 
contraction mapping on (H, 11' I]~). The theorem follows. 

Similarly, if (C-l) and (C-3) hold, then we can solve A from (3.20) and 
A1 = KC3/k~,  and then derive from (3.18) that  

I~XI~o,~ _< ~(a~,T)k~IAX 2 I xo31, 

Let Ci, i = 1,2,3 and ao E (kxk2,1) be such that  #(ao2,T)k~ < 1, the 
mapping F is again a contraction, but on the space I-Ix,x1, proving the 
theorem again. [] 

A direct consequence of Theorem 3.4 is the following. 

C o r o l l a r y  3.5. Assume (A4) and the compatibility condition (C-1). Then 
there exists To > 0 such that for all T E (0, To], the FBSDER (3.2) has a 
unique adapted solution. 

In particular, i f  either kl = 0 or k2 = O, then the FBSDER (3.2) is 
always uniquely solvable on [0, T] for T small. 

Proof. First assume k2 = 0. In light of Theorem 3.4 we need only show 
that  there exists To - - - -  To(C1,C2,C3,A,a) such that  (C-2) holds for some 
choices of C1-C3 and A, a, for all T C (0, To]. 



188 Chapter 7. FBSDEs with Reflections 

For fixed C1, C2, C3, A, and c~ E (0, 1) we have from (3.19) that  

#(a ,  0)KC3 : (KC2 + k2)KC3 
Ol 

Therefore, let C1-C3 and c~ be fixed we can choose A large enough so that  
# ( a , 0 ) KC 3  < A1 holds. Then, by the continuity of the functions A(a,.)  
and B(c~, .), for this fixed A we can find To > 0 such that #(a ,T)KC3 < A1 
for all T C (0, To]. Thus (C-2) holds for all T E (0, To] and the conclusion 
follows from Theorem 3.4. 

Now assume that  k2 > 0. In this case we pick an a0 E (klk2, 1), and 
define 

(3.21) 6__a 1 kl 2 > 0. 

1 - ~  and choose A so that  A1 = (k3C3)/k22 > O. Now let C2 = ~K 5,C4 = K , 
Since in this case we have 

#(a0 2, 0) - KC2 + k~ 1 k~ 1 

thanks to (3.21). Using the continuity of #(a~, .) again, for any C1, C3 > 0 
we can find To(C1,C3) > 0 such that #(o~,T)k 2 < 1 for all T E (0, T0]. 
In other words, the compatibility condition (C-3) holds for all T C (0, To], 
proving our assertion again. 

Finally if kl = 0, then (C-1) becomes trivial, thus the corollary always 
holds. []  

From the proofs above we see that there is actually room for one to play 
with constant C1-C3 to improve the "maximum existence interval" [0, To). 
A natural  question is then is there any possibility that To = cx~ so that the 
FBSDER (3.2) is solvable over arbitrary duration [0, T] ? Unfortunately, 
so far we have not seen an affirmative answer for such a question, even 
in the non-reflecting case, under this general setting. Furthermore, in the 
reflecting case, even if we assume all the coefficients are deterministic and 
smooth, it is still far from clear that  we can successfully apply the method 
of optimal control or Four Step Scheme (Chapters 3 and 4) to solve an 
FBSDER, because the corresponding PDE will become a quasilinear varia- 
tional inequality, thus seeking its classical solution becomes a very difficult 
problem in general. 

We nevertheless have the following result that  more or less covers a 
class of FBSDERs that  are solvable over arbitrary durations. 

T h e o r e m  3.6. Assume (A4) and the compatibility condition (C-1). Then 
there exists a constant A > O, depending only on the constants K, kl, k2, 
such that whenever V < - A ,  the FBSDER (3.2) has a unique adapted 
solution for all T > O. 

Proof. We shall prove that  either (C-2) or (C-3) will hold for all T > 0 
provided V is negative enough, and we shall determine the constant A in 
each case, separately. 



w Reflected FBSDEs 189 

First assume k2 = 0. In this case let us consider the following mini- 
mization problem with constraints: 

(3.22) rain 
Ci>O, /=1,2,3;iI >O,O<a< 1, 

X I --2K(KC2~-k2)C3>O 

F(C1, C2,63, X1, OL), 

where 

(3.23) 

F(C1, C2, C3, X1, oz) A (C 1 + K)K2C3 
= ~ -~(Y.~ +~1)I~C3 + Y,1 

--1 2 ( 2 - -  O~. 
+ K ( 2 + C {  -1 -}-621 --~-C 3 ) ~ -K \1  - ( ~ ]  

Let A be the value of the problem (3.22) and (3.23). We show that if 
7 < - A / 2 ,  then (C-2) holds for all T > 0. 

Indeed, if 7 < - A / 2 ,  then we can find C1, C2, C3, A1 > 0 and a E (0, 1), 
such that  Ai - 2(KC2 + k2)KC3 > 0, and 

(3.24) 

(Ci + K)K2C3 
-2,~ > XI - 2(KC2 + k~I)KC3 + X1 

--1 K 2 ( 2 - a )  + K ( 2 + C l 1 + C 2 1 + C 3  ) +  ~ -  a " 

On the other hand, eliminating A in the expressions of A1 and A2 in (3.20), 
(i-~) 

and letting C4 = K we have 

K2 --1 ~2 = - ~1-4- K(2 -4- C l l  -4- C 2 1 +  C3 )-4- 1 - a  + / ( 2 )  _ 23'. 

Thus (3.24) is equivalent to 

(3.25) 1 { K(C1 + K) (KC2 + k2)} 
A2 + a KC3 < 1, 

and A2 > 0. Consequently, A(A2,T) : 1 and B(A2,T) < ~21 (recall (3.3)); 
and (3.25) implies that  #(a,T)KC3 < A1, i.e., (C-2) holds for all T > 0. 

Now assume k2 > 0. Following the arguments in Corollary 3.5 we 

chooseA1 = ~ > 0, C4 = 1 - ~  a n d a 0  6 (klk2,1). Let (~ > 0 b e t h a t  k 2 K ' 
defined by (3.21), and consider the minimization problem: 

(3.26) min F(C1, C2, C3), 
Ci>O, i : 1 , 2 , 3 ;  
~a2--KC2>O 

where 

(3.27) 

ol2K(C1 -4- I() 
F(Cl ,  C2, C3) ~ ~0~2 _ KC2 -4- K(2 -}- C l  1 -1- C21 -4- C31) 

KC3 K ~ ( 2 - ~  
+ k---~-~ + ~ l - 4 J "  
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Let A be the value of the problem (3.26) and (3.27), one can show as in 
the previous case that  if V < - A / 2 ,  then ~2 > 0 (hence A(~2, T) = 1 and 
B(~2,T)  <_ ~ 1 ) ,  and #(a2o,T)k2 < 1. Namely (C-3) holds for all T > 0. 
Combining the above we proved the theorem. []  

w A continuous dependence result 

In many applications one would like to study the dependence of the adapted 
solution of an FBSDE on the initial data. For example, suppose that  there 
exists a constant T > 0 such that  the FBSDER (3.2) is uniquely solv- 
able over any duration It, T] _C [0, T], and denote its adapted solution by 
(Xt,X, y t , x  Zt,x, ~]t,x ~t,x). Then an interesting question would be how the 
random field (t,x) ~ (Xt 'z ,Yt 'x ,Zt 'X,?Tt 'z ,~t 'x)  behaves. Such a behav- 
ior is particularly useful when one wants to relate an FBSDE to a partial 
differential equation, as we shall see in the next chapter. 

In what follows we consider only the case when m = 1, namely, the 
BSDER is one dimensional. We shall also make use of the following as- 
sumption: 

(Ah)  (i) The coefficients b, h, a, g are deterministic; 
(ii) The domains {(92(', ")} are of the form (9(s,w) = (92(s, Xt'X(s,w)), 

(s,w) C [t,T] • IR n, where (92(t,x) = (L( t ,x ) ,U( t ,x) ) ,  where L(. , .)  and 
U(.,-) are smooth deterministic functions of (t, x). 

We note that  the part  (ii) of assumption (Ah) does not cover, and is 
not covered by, th e assumption (A4) with m = 1. This is because when 
m = 1 the domain (92 is simply an interval, and can be handled differently 
from the way we presented in w (see, e.g., Cvitanic & Karatzas [1]). Note 
also that  if we can bypass w to derive the solvability of BSDERs, then 
the method we presented in the current section should always work for the 
solvability for FBSDERs. Therefore in what follows we shall discuss the 
continuous dependence in an a priori manner, without going into the details 
of existence and uniqueness again. Next, observe that  under (Ah) FBSDER 
(3.2) becomes "Markovian' ,  we can apply the standard technique of "time 
shifting" to show that  the process {Yt,X(s)}s>_t is Yr'-adapted, where ~ = 
a{Wr,  t < r < s}. Consequently an application of the Blumenthal 0-1 law 
leads to that  the function u(t, x) = Yt t'~ is always deterministic! 

In what follows we use the convention that  Xt'~(s) -- x, Yt'~(s) =- 
Yt,~(t), and Zt'X(s) =_ 0, for s E [0, t]. Our main result of this subsection is 
the following. 

T h e o r e m  3.7. Assume (Ah) as well as (A4)-(iii)-(v). Assume also 
that the compatibility conditions (C-l) and either (C-2) or (C-3) hold. Let 

u(t, x) z~ ytt,x, (t, x) E [0, T] x (91. Then u is continuous on [0, T] x (.9 and 
there exists C > 0 depending only on T, b, h, g, and a, such that the 
following estimate holds; 

(3.28) I,~(tl, x l )  - ,~(t2, x2)] 2 < C,(IXl - x212 + (1 + Ix112 V Ix21 ~) It~ - t ,  I). 
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Proof. The proof is quite similar to that  of Theorem 3.4, so we only 
sketch it. 

Let (tl, Xl) and (t2, x2) be given, and let )( = X t~'~ - X  t2,~. Assume 
first tl > t2, and recall the norms I1" IIt,x and ]'[t,~,~ at the beginning of 
w Repeating the arguments of Theorem 3.4 over the interval It2, T], we 
see that  (3.8) and (3.9) will look the same, with I1" I1~ being replaced by 
I1" Itt2,~; but (3.6) and (3.7) become 

e-AT EIXTI 2 + A11121h21,;~ 
(3.6)' 

<_K(CI + K) ^ 2 2 ^ 2 IIY]It~,x + (KC2 + kl)[iZ[]t~,x + E[~7(t2)[ 2. 

(3.7)' 11 ll2 ,  <_B(A1,T)[K(C1 + K)ll ll,2 ,  
+ (KC2 + k2)H2]]22,:~ + El)f  (t2)]2], 

where/~(A,T) A e-~*2_e-~T = ~ . Now similar to (3.18), one shows that  

e-  EIx l 2 +  111: 11 2,  
(3.18)' 

<#(a, T){k2e-~TEIXTI 2 + KC311)fl}t22,~} + EIX(t2)I 2. 

Arguing as in the proof of Theorem 3.4 and using compatibility conditions 
(C-1)-(C-3), we can find a constant C > 0 depending only on T > 0 and 
K, kl, k2 such that  

(3.29) ]2122,~,Z < CEIX(t2)I 2 -- CEIz2 - Xtl 'zl(t2)l 2, 

where fl = A1 - It(a, T)KC3 if k2 = 0; and t3 = It(a, T)k~ if k2 > 0. 
From now on by slightly abuse of notations we let C > 0 be a generic 

constant depending only on T, K, kl and k2, and be allowed to vary from 
line to line. Applying standard arguments using Burkholder-Davis-Gundy 
inequality we obtain that  

(3.30) E sup [xl($)[ 2 + E sup [Yl(s)[2 _< CE]X(t2)I 2, 
t2<s<T t2<s<T 

To estimate EIX(t2)I 2 let us recall the parameters A~ and A~ defined 
in Lemma 3.3. For each ~ > 0 define 

A(),~, T) K 
Ite(a, T) A= K(Cl  + K(1 + c))B(A~, T) + -i-=~'C44 t J2. 

Since A~ -+ A1, A~ -+ A2, and It~(c~,T) --+ It(a,T),  as e --+ 0, if the compat- 
ibility condition (C-l) and either (C-2) or (C-3) hold, then we can choose 
c > 0 such that  It~(a,T)k22(1 + 6) < 1 when k2 = 0 and It~(a,T)KC3 < A~ 
when k2 # 0. For this fixed e > 0 we can then repeat the argument of 
Theorem 3.4 by using (3.12)--(3.15) to derive that  

(1 It (a, )KC3"~llylll 2 (1 1 2+ , k =o; \ 
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o r  

tL [ , j 2Jl  I~,~ <C( r  [xll 2 +  + # 0 ,  

where C(6) is some constant depending on T, K,  kl, k2, and E. Since c > 0 
is now fixed, in either case we have, for a generic constant C > 0, 

IIx'll~ < c (1  + Ix, Ie), 

which in turn shows that,  in light of (3.12)-(3.15) IIYlll~ < c(1 + IXlle), 
and I}zi}~, < C(1 + IXlll). Again, applying the Burkholder and I-ISlder 
inequalities we can then derive 

(3.31) E{  sup [ X I ( t ) J 2 } + E {  sup [yl(t)[2} < C ( l + l z l ] 2 ) .  
tl<s<T tl<s<T 

A A A 

Now, note that  on the interval It1, t2] the process (X, Y, Z) satisfies the 
following SDE: 

2"(s) = (~1 - ~ )  + bl(~)ar + ~(r)aW(r), 
(3.32) t~ ' t~ s e [tl,t2], 

~(s) = ~(te)+/~ hl(r)dr + f Z~(r)dW(~), 
where b 1 ( r )  = b(r, X e (r), y1  (r), Z 1 ( r ) ) ,  o "1 ( r )  = a i r  , X 1 ( r ) ,  y 1  ( r ) ,  Z 1 ( r ) ) ,  

and h 1 (r) = h(r ,  X 1 (r) ,  y 1  (r),  Z 1 (r)) .  Now from the first equation of (3.32) 
we derive easily that  

E{ sup IX(s)l 2} < C { I x  1 - x21 e + (1 + IXl le) l t l  - t21}. 
tl<s<_t2 

Combining this with (3.30), (3.31), as well as the assumption (A4-iv), we 
derive from the second equation of (3.32) that  

EI :Y( t~ ) I  2 < E I Y ( t 2 ) I  2 + C(1  + I~,1 e v I xe l2 ) l t l  - tel 

< C{Iz~ - x212 + (1 + Ix~l 2 v Ix212)lt~ - t2 [ } .  

Since Y(tl) = u ( t l ,  x l )  - u ( t 2 ,  x2) is deterministic, (3.28) follows. The case 
when tl < t2 can be proved by symmetry, the proof is complete. [] 
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A p p l i c a t i o n s  o f  F B S D E s  

In this chapter we collect some interesting applications of FBSDEs. These 
applications appear in various fields of both theoretical and applied prob- 
ability problems, but our main interest will be those that related to the 
truly coupled FBSDEs and their applications in mathematical finance. Let 
us first recall the FBSDE in its general form: denote O = (X, IT, Z), 

{ x Jot Jot x(t) = + [ b(s,O(s))ds + [ ~(s,O(~))dW(s), 
(1.1) T T 

Y(t) = g(X(T)) + ft [~(s,O(s))ds- f~ Z(s)dW(s), t e [O,T], 

In different applications we will make assumptions that are variations of 
what we have seen before, in order to suit the situation. 

w An Integral Representation Formula 
In this section we consider a special case: b - 0, and a is independent of z. 
Thus (1.1) takes the form: 

(1.2) 

t t 

x ( t )  = x + fo b(~, O(~))ds + fo ~(~,X(s),r(~))~w(~), 
T 

Y(t) = g(X(T))  - f Z(s)dW(s),  t E [0, T], 

where 

(1.5) { b(t ,  x)  = b(t, x, O(t, x), Ox (t, x)a(t, x, O(t, x ) ) ) ;  

~(t,  ~) = ~(t,  x, o(t, ~)), 

From the Four Step Scheme (see Chapter 4), we know that if we define 
z ( t , x ,y ,p)  = pa(t ,x ,y) ,  and let 0(t,x) be the classical solution of the fol- 
lowing system of PDEs: 

ok + l t r  [eLa(t  , x, e)a(t, x, e) ~] +(  b(t, x, 6, z(t, x, e, e~)), e~ ) = O, 
2 

(1.3) k = 1 , . . . ,m;  

e(T, x) = g(x), 
then the (unique) adapted solution of (1.2) is given by 

{ ~ut ~ut 
x ( t )  = �9 + [ ~,(~,x(~))~ +/_ ~(~,x(~))dw(~), 

(1.4) Y(t) = O(t, X(t)); 

Z(t) = 0~ (t, X(t))a(t ,  X(t) ,  O(t, X(t))). 
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Now from the second (backward) equation in (1.2), and noting that  Y0 is 
non-random by Blumenthal 0-1 law, we have Y0 = EYo = Eg(XT); and 
setting t = 0 in (1.2) we then have 

// (1.6) 9(X(T)) = E9(X(T))+ O~(s,X(s))a(s,X(s),O(s,X(s)))dW(s). 

Let us compare (1.6) with the Clark-Haussmann-Ocone formula in this 
special setting. For simplicity, we assume rn = n = 1. Recall that  the 
general form of the Clark-Haussmann-Ocone formula in this case is: 

/ ,  T 

(1.7) g(X(T)) = Eg(X(T)) +/o E{Dsg(X(T))I~}dW~' 

where D is the so-called "Malliavin derivative" operator. Note that  by 
Malliavian calculus we have, for each s E [0, T], that  D~g(X(T)) = 
g'(X(T))DsX(T), and 

~ss t DsX(t) = #(s,X(s)) + bx(r,X(r))DsX(r)dr 
t 

+ ~ss ~x(r,X(r))DsX(r)dW(r), 

f/ f/ Z(t) = bx(r,X(r))dr + ~rx(r,X(r))dW(r), 

Denote 

t e [s, T ]  

and let g(Z) t  be the Dol@ans-Dade stochastic exponential of Z, that  is, 

$ (Z) t  = exp{Z(t)  - I [Z,  Z](t)} 

(1.8) exp {fstS,(r, X (r))dW (r)+ ~t[bx(r, X (r)) -1-2~a x = (r, X(r))]drj.  

Then the process u(t)~=DsX(t), t E [s,T] can be written as u(t) = 
s X(s)). Therefore, 

E{Dsg(X(T))[.T~} = E{g'(X(T))D~X(T)IU~} 
(1.9) = E{g'(X(T))g(Z)T[.T~}~(s, X(s)). 

Putt ing this back into (1.7) and comparing it to (1.6) we obtain immediately 
that  

and consequently, 

(1.10) { E{Dsg(X(T))IS~} =~(s'X(s))O~(s'X(s)); dP| 
E{g'(X(T))g(X)TIU~} = Ox(s, X(s)) ,  



w An integral representation formula 195 

Since the expressions on the right sides of (1.10) depend neither on the 
Malliavin derivatives, nor on the conditional expectations, they are more 
amenable in general. Also, since forward SDE in (1.4) depends actually on 
Y and Z, we thus obtained an integral representation formula (1.6) that  is 
more general than the "classical" Clark-Haussmann-Ocone's  formula, when 
the Brownian functional is of the form g(X(T)).  

I t  is interesting to notice that  the second equation in (1.10) does not 
contain the Malliavin derivative, and it leads to Haussmann's  version of 
integral representation formula. Let us now prove it directly without using 

Malliavin calculus. To do this, we define a the process Pc ~: 8~(t,X(t)) 
(such a process is often of independent interest in, e.g., stochastic control 
theory).  For simplicity we assume m = n = 1 again and that  the FBSDE 
is decoupled. Tha t  is 

(1.11) 

Y ( t )  = g ( X ( T ) )  - frz(s)dW(s), t �9 [0,T], 

and the P D E  (1.3) becomes 

(1.12) 
{e ,  + lexj (t,x)+ b(t,x)e  : 0, 

2 
0(T, x) : g(x), 

We should note tha t  the following arguments are all valid for the coupled 
FBSDEs with b : 0, in which case we should simply replace (1.11) by (1.4). 

P r o p o s i t i o n  1.1 There exists an adapted process {K(t)  : t > 0} such that 
(19, K) is the unique adapted solution of the following backward SDE: 

(1.13) 
~t T Pt = g'(X(T)) + [b,(s,X(s))Tps + a~(s,X(s))K(s)]ds 

- -  ~t T K(s)dW(s).  

In particular, if  the function O is C 3, then K(t) = O~(t, X(t))a(t,  X(t)) for 
t > 0 .  

Proof. We first assume that  0 is C 3. Taking one more derivative in the 
x variable to the equation (1.12) and denote u = 8~ we have 

(1.14) 
1 2 ut + ~uxxa (t,x) + [b(t,x) + (acrx)(t,x)]u~ + b(t,x)u = O, 

u(T,x) : g~(x). 

On the other hand, if we apply I t6 's  formula to u from t to ~- (0 < t < ~-), 
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' t  T u(T,X(~-)) = u( t ,X( t ) )  + {ut (s ,X(s) )  + u~(s ,X(s) )b(s ,X(s) )  

+ lu~(8, x(s))o2(8, X(s))}d~ (1.15) 

+ u~(~,X(~))~(~,X(~))dW(~). 

Using (1.14) and denoting K(t)  = u~( t ,X( t ) )a( t ,X( t ) ) ,  we obtain from 
(1.15) that  

u( r ,X ( r ) )  = u( t ,X( t ) )  - [ub~ + u~(aa~)](s,X(s))ds 

+ ,~:~(s,X(s))o-(~,X(8))dW(s) 
(1.16) f- = u( t ,X( t ) )  - [ub~(s,X(s)) + K(s)cr~(s,X(s))]ds 

+ ffK(~)dW(~), 

Now setting Pt = u(t, X(t))  and T = T, we obtain (1.13) immediately. 
In the general case where 0 is not necessarily C 3 we argue as follows. 

Let (p, K)  be the adapted solution to the backward SDE (1.13), and we are 
to show that  Pt = O~(t,X(t)), that  is, Vh C IR, 

(1.17) O ( t , X ( t ) + h ) - O ( t , X ( t ) ) = p t h + o ( h ) ,  Vt, a.s. 

To this end, fix t E [0, T] and consider the SDE 

i (1.18) x h ( r )  = X( t )  + h + b(s, Xh(s))ds + a(s, Xh(s))dW(s) ,  

for t _< 7 _< T. Define ~) = x h ( r )  -- X(T),  ~- ~ [t,T]. Then it is easy to 
verify that  ~h satisfies 

(1.19) d~h(T) = b~(T, X(T))(h(7) + a~(~-, X(T))(h(T)dW(7) + eh(~'), 

where 

/o 

Thus by the standard results in SDE we have E{suPt<~<T ]~h(~)l .Wt} = 

o(h). 
On the other hand, using Four Step Scheme one shows that  

t?(t, X( t ) )  = E{g (X(T) )  Jzt}, O(t, X( t )  + h) = E{g (X(T) )  ~t} ,  
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thus 

O(t,X(t) + h) - O(t,X(t)) 

=E{g(Xh(T)) - g(X(T)) ~t} 

(1.20) =E{g'(X(T))• ~t} + E{ ~01[gt(XT -~- ~h)_g,(XT)]d~h .,~t} 
=E{g'(X(T))r h Ft} + o(h). 

Now applying It6's formula to p ~ h  from ~- = t to ~- = T we have 

(g'(X(T)~h(T) = pth + o(h) + re(T) - re(t), 

where m stands for some {$-t}t_>0-martingale. Taking conditional expecta- 
tion we obtain from (1.20) that  

t~(t,X(t)+h)-O(t,X(t)) =pth+o(h), P-a.s., VtE [0, T]. 

Using the continuity of both X and p we have O~(t, X(t)) = Pt, Vt, P-a.s., 
proving the proposition. []  

w A Nonlinear Feynman-Kac Formula 

In this section we establish a stochastic representation theorem for a class 
of quasilinear PDEs, via th route of FBSDEs. We note that  following 
presentation will include the BSDEs as a special case. To begin with, let 
us rewrite (1.1) again, on an arbitrary time interval [t,T], t E [0, T): for 
t < s < T ,  

I Jts b(r,O(r))dr + Jst X(s) = x + [ [ a(r, X (r), Y (r) )dW (r), 
(2.1) T T 

Y(s)=g(X(T))+ ~ h(r,O(r))dr- ~ Z(r)dW(r) 

We would like to show that  if the FBSDE (2.1) has unique adapted solutions 
on all subintervals [t, T] C [0, T], denoted by (Xt'~,Y t'x, Zt'X), then the 

function u(t,x)A--Yt'~(t) would give a viscosity solution to a quasilinear 
PDE. Thus if we can prove the uniqueness of such viscosity solution (see 
Chapter 3, w then clearly we obtain a certain "probabilistic solution" 
to the corresponding PDE, in the spirit of the celebrated FeynmamKac 
formula. For this purpose, in what follows we shall always assume the 
solvability of the the FBSDE (2.1), under the following assumptions: 

(A1)  (i) m = 1; and the coefficients b, h, a, g are deterministic. 
(ii) The functions b and h are differentiable in z. 

Note that  (A1)-(i) amounts to saying that  coefficients of (1.2) are 
"Markovian". Thus the standard technique of "time shifting" can be used 
to show that  the process {Yst'~}s>_t is ~ - a d a p t e d ,  where j=t __ a{Writ < 



198 Chapter 8. Applications of FBSDEs 

r < s}. Consequently.the function u( t ,x )  = Yt t'~ is deterministic, thanks 
again to the Blumenthal 0-1 law. 

In order to describe the quasilinear PDE that  an FBSDE is correspond- 
ing to, let us denote S(n) to be the set of n x n symmetric non-negative 
matrices, and for p C Nn,  Q C S(n) ,  define 

(2.2) 
1 

H(t,  x, u, p, Q) i t r  {aa T(t, x, u)Q + ( b(t, x, u, a(t, x, u)p), P) 

+ h(t, x, u, a(t, x, u)p), 

and denote Du~=Vu (O~lu, ,0z u)T, /)2 u 2 . . . . .  (OxixjU)i,j (the Hessian 
of u), and ut = Otu. The quasilinear PDE that  we are interested in is of 
the following form: 

(2.3) 
ut + H(t ,  x, u, Du, D2u) = O, 

u(T, x) = 

We have the following theorem. 

T h e o r e m  2.1. Assume (A1). Suppose that for a given time duration 
[t,T], the FBSDE (2.1) has an adapted solution (Xt 'x ,Yt ,x ,Zt 'X) .  Then 

A t x ~:~n the function u(t, x) = Yt' , (t, x) E [0, T] x is a viscosity solution of the 
quasilinear PDE (2.3). 

Proof. We shall prove only that u is a viscosity subsolution to (2.3). 
The proof of the "supersolution" is left as an exercise. First note that  
u(t, x) = Yt'X(t) is continuous on [0, T] x ]R n, locally Lipschitz-continuous 
in x, and locally H51der-�89 in t. 

Let ( t ,x)  E [0, T) x ~-~ be given; and let ~ E C1'2([0, T] x ~n )  be such 
that  (t, x) is a global maximum point of u - ~ such that  u(t, x) = ~(t, x). 
We are to check that  the inequality (3.27) of Chapter 3 holds. 

To simplify notations, in what follows we suppress the superscript " t  . . . .  
for the processes X ,  Y ,  and Z. First note that  by modifying ~o slightly at 
"infinite" if necessary we assume without loss of generality that  and D~o 
is uniformly bounded, thanks to the uniform Lipschitz property of u in x. 
Next note that  the pathwise uniqueness of the FBSDE leads to that  for 
any 0 < 7 < T < T one has u(T, X(T)) = Y ( T ) ,  hence we can rewrite the 
backward SDE in (2.1) as 

(2.s) 
~t T u( t ,x )  = u(T ,X(T))  + h ( s , X ( s ) , Y ( s ) , Z ( s ) ) d s  

_ fT Z(s)dW(s). 
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Now applying It6's formula to ~o(., X(.)) from t to r we have 

(2.9) 

~(r, X(T)) = qo(t, x) + ft ~ qot(s, X(s))ds 

+ ft" ( Dr(s, X(s)), b(s, X(s), u(s, X(s)), Z(s)) ) ds 

f r  1 T + ~tr {aa (s,X(s),u(s,X(s)))D2qo(s,X(s))}ds 

+ ft'- ( D~o(s, X(s)), a(s, X(s), u(s, X(s)))dW(s) ). 

Write 

(2.10) 

h(s,X(s),Y(s),Z(s)) = h(s,X(s),Y(s),[aTD~o](s,X(s),Y(s))) 
+ (a(s),Z(s) - [arD~](s,X(s),Y(s))); 

b(s,X(s),Y(s),Z(s)) = b(s,X(s),Y(s),[aTD~o](s,X(s),Y(s))) 
+fl(s){Z(s) - [arDPl(s,X(s),Y(s)))}, 

where 

(2.11) 

a(s)  = fo 1 Oh ~z (S, X(s), Y(s), Z~-(s))dO; 

1fl(8) -~ ~01 Ob -5;z (s, Y(s), Zo(s))dO; 

1, Zo(s) = OZ(s) + (1 - o)aT (s, X (s), Y (s) )D~o(s, X (s) ). 

By assumption (A1), we see that  a and fl are bounded, adapted pro- 
cesses. Therefore, subtracting (2.9) from (2.8), using (2.10) and (2.11), 
and noting the facts that u(t, x) = qo(t, x) and u(r, X(r ) )  _< qo(r, X(T)), we 
obtain 

(2.12) 

o _ x o - ) )  - x o - ) )  

= fo" { - ~ t (s ,X(s))  -F(s ,X(s) ,Y(s) ,[a  TD~I(s,X(s),Y(s)) 

- (Z(s) - [ aTD~] ( s ,  X(s) ,  Y(s)), a(s) - Dqo(s, X(s))fl(s)) }ds 

+ (Z(s) - [aTD~](s, X (s), Y(s)), dW(s)). 

Since O(s) a=a(s) + D~(s,X(s))fl(s), s E [t,T] is uniformly bounded, the 
following process is a P-martingale on It, T]: 

{ fit s i f  ~ 2dr} E[t,T]. OtsA=exp - (O(r),dW(r))--~ IO(r)l , s 

By Girsanov's Theorem, we can define a new probability measure P via 

d_2P = O~,, so that  Wt(s) = g(s )  - W(t) - f[ O(r)dr is a P-Brownian 
d P  
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motion on [t, T]. Furthermore, since the processes (X, Y, Z)) satisfies 

j(t T 
t < s < T  t < s < T  

the boundedness of D~  and the uniform Lipschitz property of a imply that,  
for some constant C > 0, 

F,{ S T  Iz(s) - [aT Dqo](s, X (s), Y (s) )I2 ds} �89 

_< C{E((9~)2} �89  [1 + IZ(s)[ 2 + IX(s)l ~ + IY(s)12]ds 2 < co. 

In other words, the integral 

f U Mt(u) n= (Z(s) -[aTD~](s,X(s),Y(s)),dW(s)), �9 [t, r ]  

is a P-local martingale on [t,T] satisfying E(Mt )T  < co, the by 

Burkholder-Davis-Gundy's inequality, one shows that  it is a P-martingale 
on [t,T]. Hence, by taking expectation /~{-} on both sides of (2.12) we 
obtain that  
(2.13) 

0 > E { -  (s,X(s))-H(s,X(s),Y(s),  [aTD~](s,X(s),Y(s)))}ds. 

Dividing both sides by 7- and then sending ~- ~ 0 we obtain (3.27) of 
Chapter  3 immediately. [ ]  

R e m a r k  2.2. For a more complete theory, one should also prove that  the 
viscosity solution to the quasiIinear PDE (2.3) is unique. This is indeed the 
case when the coefficient a is independent of y as well (i.e., a = a(t, x)); 
and when the solution class is restricted to, for example, bounded, contin- 
uous functions that  are uniform Lipschitz in x and HSlder -�89 in t. We note 
that  due to the special quasilinearity, the function (2.2) is neither mono- 
tone, nor even one-sided uniform Lipschitz in the variable x, therefore H 
is not "proper" in the sense of Crandall-Ishii-Lions [1], or convertible to a 
proper function using the standard technique of "exponentiating" (see, e.g., 
Fleming-Soner [1]). Consequently, the uniqueness of the viscosity solution 
is by no means trivial. However, since this issue is more or less beyond the 
scope of this book, we will not include the proof here. We refer the inter- 
ested readers to the works of Barles-Buckdahn-Pardoux [1], Pardoux-Tang 
[1], or Cvitanic-Ma [2]. 
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w Black's Consol  Rate  Conjecture  

One of the early applications of FBSDE is to confirm and explore a conjec- 
ture by Fischer Black regarding consol rate models for the te rm structure 
of interest rates. A consol is by definition a perpetual annuity, that  is, a 
security tha t  pays dividends continually and in perpetuity. A consol rate  
model is one in which the stochastic behavior of the short rate, taken as a 
non-negative progressively measurable process below, is influenced by the 
consol rate process. The relation between the two rate processes then yields 
a special te rm structure of interest rates. 

In order to set up a mathemat ical  model, let us consider the following 
simplest situation in which the short rate is a constant r > 0, then there 
should be no difference between the short rate and long term (consol) rate. 
In this case the consol price Y can be calculated as the simple actuarial  
present value of a perpetual  annuity. Assuming, for instance, tha t  the 
annuity is in a form of annuity-immediate in terms of actuarial  mathematics ,  
tha t  is , it pays, say $1, at the end of each year, then the price Y can be 
calculated easily as 

f i  1 1 1 1 
(3 .1)  Y = k=l  (1 + r)k = (1 + r----7 1 - r 

In other words, the price for the (unit) consol is the reciprocal of the interest 
(consol) rate. In general, let us define the consol rate to be the reciprocal 
of the consol price, then instead of studying the original te rm structure 
of interest rates, it would be equivalent to study the relation between the 
consol price and the short rate. 

Now let us generalize the above idea. For a given short rate process 
r = (r t  : t _> 0}, we use the s tandard expected discounted value formula (an 
extension of the aforementioned actuarial  present value formula) to evaluate 
the consol price process Y = {Yt : t > 0} t: 

(3.2) Y ( t )  = E e - f / r ( ~ ) a ~ d s  J:, , t >_ O. 

(One can check tha t  if r(t) = r, then Y(t )  - ~, as (3.1) shows!). The 
Consol rate problem can be formulated as follows. Assume tha t  the short 
rate process depends on the consol price (whence consol rate) in a non- 
anticipating manner,  via the following SDE: 

(3.3) dr(t) = #(r(t), Y (t) )dt + ~(r(t), Y (t) )dW ( t). 

where W is a s tandard Brownian motion in ]R 2, and #, c~ are some appro- 
priate functions. Then is there actually a pair ol adapted processes (r, Y )  

t Without getting into the associated definitions and related notions of ar- 
bitrage, it is not unusual in applications to work from the beginning with the 
so-called "equivalent martingale measure," in the sense of Harrison and Kreps 
[1], and we do so. 
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that satisfies both (3.2) and (3.3)? If so, can Y also be described by an 
SDE? In an earlier work Brennan and Schwartz [1] proposed a model of 
term structure of interest rates in which both short rate and long rate are 
characterized by SDEs. However, it was shown later by Hogan [1] by ex- 
amples that  such a model may not be meaningful in practice. Sensing that  
the controversy might be caused by the inappropriate specification of the 
coefficients, together with a simple observations by using Ito's formula and 
(3.1), the late economist/mathematician Fisher Black made the following 
conjecture: 

(B lack ' s  C o n j e c t u r e ) .  Under at most technical conditions, for any (#, a) 
there is always a ]unction A : (0, cx)) • (0, cx~) --4 (0, ~ )  depending on # and 
a, such that 

dY( t )  = (r( t )Y(t)  - 1) dt+ A(r(t),  Y ( t ) )dW( t ) .  

Black's conjecture essentially re-confirms the SDE model of Brennan 
and Schwartz, but  it was not clear at the time for how to determine the 
function A, and how it should related to the coefficients # and a in (3.3). 

We now show how to confirm Black's conjecture by using the theory of 
FBSDEs. To this end, let us assume first that  the short rate r process is 
"hidden Markovian". That  is, there is a (Markovian) "state process" X in 
]R n such that  the short rate is given by rt = h(Xt),  for some well behaved 
function h. To be more specific, we will assume that  X satisfies an SDE: 

dX(t)  = b(X(t),  Y( t ) )dt  + a(X( t ) ,  Y ( t ) )dW( t ) ,  
(3.4) X(O) = x, t E [O,T], 

where b, ~r are some appropriate functions defined on ~'~ • ~ .  Since the 
coefficients b and a can be computed explicitly in terms of #, a, and h using 
It6's formula, we can recast the consol rate problem as follows. 

In f in i t e  H o r i z o n  Conso l  R a t e  P r o b l e m  ( I H C R ) .  Find a pair of 
adapted, locally square-integrable processes (X, Y),  such that 

(3.5) Y(t )  = E e- f /h(X(~))d~ds ~Pt , 

Xo = x,  t E [0, cr 

Any adapted process (X, Y)  satisfying (3.5) is called an adapted solution of 
Problem IHCR. Moreover, an adapted solution (X, Y)  of Problem IHCR is 
called a nodal solution with representing function 0 i f  there exists a bounded 
C 2 function 0 with Ox being bounded, such that 

(3.6) V(t) = O(X(t)), t �9 [0, c~). 

Recall that  the term "nodal solution" was first introduced in Chapter 4, 
w where we studied the FBSDE in a infinite horizon [0, cx~) of the following 
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type: 

dX(t) = b(X(t), Y(t)) dt + a(X(t),  Y(t))dW(t),  

dY(t) = (h(X(t))Y(t) - 1)dt - (Z(t),  dW(t) }, t E [0, co), 
(3.7) x ( 0 )  = ~, 

Y(t) is bounded a.s., uniformly in t E [0, co). 

The following theorem shows that  (3.7) is exactly the system of SDEs that  
can characterize the process X and Y simultaneously, which will be the 
first step towards the resolution of Black's conjecture. First let us recall 
the technical assumptions (3.4)-(3.6) of Chapter 4: 

(A2) The functions a, b, h are C 1 with bounded partial derivatives and 
there exist constants ),, # > 0, and some continuous increasing function 
u :  [0, co) --~ [0, co), such that  

{ AI < a(x, y)a(x, y)T < #I, (x, y) E ] R n  x ]P% 

lb(x,y)] < u([yD, (x,y) �9 ][:{n X JR, 

i ~  h(~)  -- a > 0, sup h(x)  = z < c o  
x E R "  

T h e o r e m  3.1. Assume (A2). If  (Z, Y, Z) is an adapted solution to (3.7), 
then (X, Y) is an adapted solution to Problem (IHCR). 

Conversely, ff  (X, Y) is an adapted solution to Problem IHCR, then 
there exists an adapted, Rd-yalued, 1ocalIy square-integrable process Z, 
such that (X,Y, Z) is an adapted solution of (3.7). 

Proof. To see the first assertion, let (X, Y, Z) be an adapted solution to 

(3.7). Let F(t) = e- f:  h(X(~))du, t E [0, T]. Then using integration by parts 
(or It5's formula) one shows easily that  

+ [1, r(s)dY(s) + Y(s)dr(s) F(T)Y(T)  F(t)Y(t) 

f T  e- f,~ h(Z(~))d~ds, 
Jt 

Or 

Y(t) -- ~- L h(x(s))~s + e-  L h(x(u))d~'~s + m(T) - .~(t). 

where m denotes some {~-t}t>_0-martingale, as usual. Taking conditional 
expectation E{ �9 I~t} on both sides and letting T ~ co, we prove the first 
assertion. 

Conversely, suppose that  (X, Y) is an adapted solution to Problem 
IHCR. Define 

(3.8) U(t) = e- f s n(x(~))a~ ds. 
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Clearly, U(t) is well-defined for each t > 0, thanks to (A2). We claim 
that  U is the unique bounded solution of the following ordinary differential 
equation with random coefficients: 

(3.9) dU(t) dt - h(X(t))U(t) - 1, t e [0, co). 

Indeed, by a direct verification one shows that  the function U defined by 
(3.8) is a bounded solution of (3.9). On the other hand, let U be any 
bounded solution to (3.9) defined on [0, co). Then for any 0 < t < T, we 
can apply the variation of constants formula to get 

T jft T s (3.10) U(t) = e-  f~ h(X(~'))d~u(T) + e-  f~ h(X(u))d"ds. 

Since U(T) is bounded for all T > 0, and by (A2), h(X(u))  > 5 > 0 
Vu C [0, T], P-a.s., sending T --+ co on both sides of (3.10) we obtain (3.8), 
proving claim. 

Next, define Y(t) = E{U(t)]~t}. Note that  since the filtration {Ft}t>_o 
is Brownian, the process Y is continuous and is indistinguishable from the 
optional (as well as predictable) projection of U. Hence, for any bounded, 
{grt}t_>0-adapted process H, it holds tha t t  

(3.11) E {  ~tTH(s)U(s)ds Ft } =  E { / T H ( s ) Y ( s ) d s  Ft }, 

Now for 0 < t < T < co we have from (3.9) and (3.11) that  

Y(t) E(U(t)l~t  ) E { U ( T )  T ' = = - f t t  [h (X(s ) )U(s ) - l ]ds  F t}  
(3.12) 

Thus, by using the martingale representation theorem one shows that  there 
exists an adapted, square-integrable process Z (T) defined on [0, T], such 
that  for all t E [0, T], 

1 I (3.13) Y(t)  = Y(T)  - [h(X(s))Y(s) - 1]ds + ( Z (T) (s), dWs ). 

Since (3.13) holds for any T > 0, let 0 < T1 < T2 < co, we have for 
t e [0, T1] that  

TI[h(X(s))Y(s) 1]ds+ ( z(T~)(s)dW(s) ) Y(t) = Y(T1) - 

= Y(T2) - [h(X(s))Y(s) - 1]ds + ( Z (T2) (s), dW(s) ). 

t See, for example, Dellacherie and Meyer [1, Chapter VII. 
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From this one derives easily that  

~T1 
(3.14) ]t <z(T2)(s) -- z(T1)(s),dW(s)) = 0, for all 

This leads to that  E~fJI[z (T2) ( s ) -  Z(T~)(s)]2ds} = 0. In other words, 
% 

Z (T1) = Z (T2), dt| dP-almost surely on [0, T1] • ~. Consequently, modulo 
a dt | dP-null set, we can define a process Z by Zt = Z (N) (t), if t E [0, N], 
where N = 1, 2 , . . . .  Clearly Z is locally square-integrable, and (3.13) can 
now be rewritten as 

T r T 
(3.15) Y(t) = Y(T) - / t  [h(X(s))Y(s) - lids + / t  ( z (s ) 'dW(s)  }, 

for all T > 0, or equivalently, (X, Y) satisfies the SDE (3.7). Finally, the 
boundedness of Y follows easily from the definition of Y and the fact that  
Ut <_ ~, Vt >_ O, P-a.s . ,  proving the proposition. []  

We remark here that  Theorem 3.1 shows that  the Black's conjecture 
can be partially solved if the FBSDE (3.7) is solvable. However, in order to 
confirm Black's conjecture completely, we have to show that  the process Z 
can actually be written as Z(t) = ~(X(t) ,  Y(t)) for some function qa, which 
in turn will give Z(t) = A(r(t), Y(t)) for some functionA, as the conjecture 
states. But this is exactly where the nodal solution comes into play, and 
the Chapter  4, Theorem 3.3 essentially solves the problem. We recast that  
theorem here in the new context. 

T h e o r e m  3.2. Assume (A2). Then there exists at least one nodal solution 
(X, Y) of Problem IHCR. Moreover, the representing function 0 satisfies 

(i) ~--1 ~ O(X) ~ (~--1, for al l  X E ~3~. 

(ii) 0 satisfies the following differential equation for x E IRa: 

(3.16) ltr@~xa(x,O)aT(x,O)) +(b(t ,O),O~}-h(x)O+ 1 = 0 ,  

Consequently, The Black's conjecture is solved (in terms of Problem IHCR) 
with d(x, y) = aT(x, y)O~(x). 

Proof. This is the direct consequence of Chapter 4, Theorem 3.3; and 
the last statement if due to the fact that  Z(t) = A(X(t) ,Y(t))  whenever 
the nodal solution exists. []  

R e m a r k  3.3. We should point out here that  although the bounded solution 
U of the random ODE (3.9) with infinite-horizon is unique, the uniqueness 
of the adapted solution to the FBSDE (3.7) over an infinite duration is 
still unknown. In fact, as we saw in Chapter 4 (w the uniqueness of the 
adapted solution, as well as that  of the nodal solution, to FBSDE (3.7), 
is a more delicate issue, especially in the higher dimensional case. How- 
ever, since Black's conjecture concerns only the existence of the function 
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A, Theorem 3.2 provides a sufficient answer. Interested readers could of 
course revisit Chapter  4, w for more details on various issues regarding 
uniqueness. 

Finite-Horizon Valuation Problem and its limit. 
In the s tandard theory of term structure of interest rates the time 

duration is often set to be finite. Namely, we content ourselves only in 
a finite t ime interval [0, T]. Let us now view the process Y as a long 
te rm interest rate  (or the price of a long term bond to be comparable to 
the consol price), and view X as the state process for the short rate r, 
with r(t) = h(X( t ) ) ,  and h satisfies (A2). In order to study the explicit 
relation between X and Y, let us assume that  they have an explicit relation 
at terminal t ime T: Y ( T )  = g (X(T) ) .  We consider the following Finite- 
Horizon- Valuation Problem. Note that  Such a problem is a generalization of 
the well-known finite horizon annuity valuation problem, which corresponds 
to the case when g _= 0 below, by allowing the annuity price to influence 
the short rate. 

P r o b l e m  F H V .  Find an adapted process (X, Y )  such that for 

(3.17) 

t ~t 

, Y(t)  = E FTg(X(T))  + rSds ~ t  , t e [0, T], 
J t  

t - -  s 

where F~ = e f* h(X(~))du 

Any  adapted process (X, Y )  satisfying (3.17) is called an adapted so- 
lution of Problem FHV. Further, an adapted solution (X,  Y )  of Problem 
F H V  is called a nodal solution of Problem F H V  if  there exists a function 
8 : [0, T] x IR '~ -~ ~ ,  which is C 1 in t and C 2 in x, such that 

Y ( t )  = o(t ,  x(t ) ) ,  t c [o, T]. (3.18) 

Conceivably the Problem FHV will associate to an FBSDE as well, as 
was seen in the IHCR case. In fact, some similar arguments as those in 
Theorem 3.1 shows tha t  if (X, Y) is an adapted solution to the Problem 
FHV, then there exist a progressively measurable, square integrable process 
Z such that  (X, Y, Z) is an adapted solution to the following FBSDE: 

dZ( t )  = b(X(t) ,  Y( t ) )  dt + a (Z ( t ) ,  Y ( t ) ) d W( t ) ,  

(3.19) dY( t )  = (h (X( t ) )Y ( t )  - 1)dt - (Z( t ) ,  dW( t )  ), t E [0, T], 

X(O) = x, Y ( T )  = g (X(T) ) .  

Conversely, if (X, Y, Z) is an adapted solution to (3.19), then a variation 
of constant formula applied to the backward SDE in (3.19) would lead 
immediately to that  Y satisfies (3.17). Furthermore, using the results in 
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Chapter 4 (Four Step Scheme) we see that  if g is regular enough, then any 
adapted solution of (3.19) must be a nodal solution. These facts, together 
with Chapter  4, Theorem 3.10, give us the following theorem, which slightly 
goes beyond the Black Conjecture. 

T h e o r e m  3.4. In addition to (A2), assume further that the function g 
belongs boundedly to C2"rc~(]R n) for some a E (0, 1). Then, Problem F H V  
admits a unique adapted solution (X, Y) .  Moreover, this solution is in fact 
a nodal solution. 

Furthermore, i f  the Problem IHCR has a unique nodal solution, denoted 
by (X, Y), where Y = fl(X) and 0 satisfies the differential equation (3.16); 
and i f  we denote ( x K , y  K) to be the nodal solution of  Problem F H V  on 
the interval [0, K], then it holds that 

(3.20) lim EIY~ K - ~12 + E[Xt  K - X~[ 2 = 0, 
K--+oo 

uniformly in t E [0, co) on compacts. 

w Hedging Options for a Large Investor 

In this section we apply the theory of FBSDEs to another problem in fi- 
nance: hedging contingent claims for a large investor. We recall that  the 
problem of hedging a contingent claim was discussed briefly in Chapter 1, 
w In this section we shall remove one of the fundamental assumptions 
on which the Black-Scholes theory is built, that  is, the "small investor" as- 
sumption. Roughly speaking~ the "small investor" assumption says that  no 
individual investor is influential enough so that  his/her investment strat- 
egy, or wealth, once exposed, could affect the market prices. Mathemati- 
cally, under such an assumption the coefficients of the stochastic differential 
equation that  characterizes the price of underlying security should be inde- 
pendent of the portfolio of any investor. Although such an assumption has 
long been deemed as common sense, it has been also noted recently that  
the investors that  are "not-so-small" could really make disastrous effect to 
a financial market. A probably indisputable evidence, for example, is the 
"Hedge Fund" crisis of 1998 in the global financial market, in which the 
"large investors" obviously played some important  roles. In this section, we 
t ry  to attack the problem of hedging a contingent claim involving "large in- 
vestors". We should point out here that  the model that  we will be studying 
is still quite "ad hoc", and we shall only concentrate on the mathematical 
side of the problem. 

Recall from Chapter 1, w the mathematical model of a continuous- 
time financial market. There are d + 1 assets traded continuously: a money 
market account and d stocks, whose prices at each time t are denoted by 
P0(t), Pi(t), i = 1, - - - ,d ,  respectively. An investor is allowed to trade 
continuously and frictionlessly. The "wealth" of the investor at time t is 
denoted by X(t) ;  and the amount of money that  the investor puts into the 
i-th stock at time t is denoted by 7ri(t), 1 = 1, . - .  ,d (thus the amount of 
money that  the investor puts into the money market at time t is X ( t )  - 



208 Chapter 8. Applications of FBSDEs 

d 
~i=1  ~ ( t ) ) .  We assume that  the investor is "large" in the sense that  his 
wealth and strategy, once exposed, might influence the prices of the financial 
instruments. More precisely, let us assume that the prices (P0, P1,'",  Pd) 
evolves according to the following (stochastic) differential equations on a 
given finite time horizon [0, T] (comparing to Chapter 1, (1.26)): 

I Po(t) = Po(t)r(t,Z(t),Tr(t))dt, 0 < t < T; 
dPi(t) = Pi(t){bi(t, P(t) ,  X(t), 7r(t))dt 

(4.1) d 
+ E a~j (t, P(t), X(t), 7r(t))dWj (t)}, 

j= l  

P o ( 0 ) = l ,  Pi(O)=pi>O, i = l , - - - , d ,  

where W = (W1, ' - - ,  Wd) is a d-dimensional standard Brownian motion 
defined on a complete probability space (~, 5 r,  P) ,  and we assume as usual 
that  {~t}t>0 is the P-augmentat ion of the natural filtration generated by 
W. To be consistent with the classical model, we call b the appreciation 
rate and a the volatility matrix of the stock market. 

Further, we assume that  the investor is provided an initial endowment 
x > 0, and is allowed to consume, and denote C(t) to be the cumulative 
consumption time t. It is not hard to argue that  the change of the wealth 
"dX(t)" should now follow the dynamics: 

d ~ ( t )  ( z ( t )  d 
i~_l p_ ~ - Ei=I ~ri(t)) dPo(t) - dC(t) dX (t) = dPi (t) + Po (t) 

(4.2) 

x ( 0 )  = �9 > 0. 

To simplify presentation, from now on we assume that  d = 1 and that  
the interest rate r is independent of lr and X,  i.e., r = r(t) ,  t > 0. Denote 

~(t,p, ~, ~) ~ ( x  - ~)r(t) + ~b(t, p, ~, ~); 
(4.3) 

~(t,p,x, Tr) ~=Tra(t,p,x, Tc), 

for (t,p,x,~) E [0, T] • IR 3. We can rewrite (4.1) and (4.2) as 

' Po(t) ~ foo t } = e x p /  r(s)ds , 

/o (4.4) P(t) = p+ P(s){b(s,P(s),X(s),Tr(s))ds t e [0,T]; 

+ ~(~, P(s), x(~),  ~(~))dW(s)}, 

(4.5) fo 
t~ 

x ( t )  = x + (8, P(s) ,X(s) ,~(s) )ds  

/o + 8(s, P(s, X(s), ~r(s))dW(s) - C(t); 
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Before we proceed, we need to make some technical observations: first, 
we say a pair of {~t}t>0-adapted processes (~r, C) is a hedging strategy 
(or simply strategy) if C(-) has nondecreasing and RCLL paths, such that  
C(0) = 0 and C(T) < c~, a.s.-P; and E f J  17r(s)12ds < c~. Clearly, under 
suitable conditions, for a given strategy (Tr, C) and the initial values p > 0 
and x >_ 0 the SDEs (4.4) and (4.5) have unique strong solutions, which will 
be denoted by P = pp,z,~,c and X = X p,~,~,C, whenever the dependence 
of the solution on p, x, 7r, C needs to be specified. 

Next, for a given x _> 0, we say that  a hedging strategy (Tr, C) is 
admissible w.r.t, x, if for any p > 0, it holds that  PP,Z,~,c(t) > 0 and 
XP,X,~'c(t) >_ 0, Vt E [0,T], a .s .P.  We denote the set of strategies that  
are admissible w.r.t, x by A(x). It is not hard to show that  A(x) # 0 
for all x. Indeed, for any x > 0, and p > 0, consider the pair 7r = 0 and 
C - 0. Therefore, under very mild conditions on the coefficients (e.g., the 
standing assumptions below) we see that  both P and X can be written as 
"exponential" functions: 

{  ox //o + ]o o, 
(4.6) t 

X(t) = xexp{/0 r(s)ds} >_ 0, 

where b(s) = b(s, P(s),  0, 0) and a(s) = a(s, P(s),  0, 0). Thus (0, 0) e A(x). 
Recall from Chapter 1, w that  an option is an ~-T-measurable random 

variable B = g(P(T)), where g is a real function; and that  the hedging price 
of the option is 

(4.7) h(B) ~= inf{x E IR: 3(7r, C) C A(x), s.t. Xz'~'C(T) > B a.s. }. 

In light of the discussion in Chapter 1, w we will be interested in the 
forward-backward version of the SDEs (4.4) and (4.5): 

P(t) = p + P(s){b(s, P(s),  X(s),  lr(s))ds 

+ a(s, P(s), X(s),  7r(s))dW(s)}, 

(4.8) [ X(t) = g(P(T)) - f rb(s ,P(s ) ,Z(s ) ,~r(s ) )ds  

- fT '~ (s ,  P(s,X(s),Tr(s))dW(s); 
a t  

We first observe that  under the standard assumptions on the coefficients 
and that  g > 0, if (P, X, ~r) is a solution to FBSDE (4.8), then the pair (Tr, 0) 
must be admissible w.r.t. X(0) (a deterministic quantity by Blumenthal 
0 -  1 law). Indeed, let (P, X, 7r) be an adapted solution to (4.8). Then a 
similar representation as that  in (4.6) shows that  P(t) > 0, Vt, a.s. Further, 
define a (random) function 

f( t ,  x, z) = r(t)x + za- l ( t ,  P(t), X(t),  7r(t))[b(t, P(t), X(t),  7r(t)) - r(t)], 
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then x( t ) = X ( t ) , z( t ) = a( t, P ( t ) , X(t) ,  7r( t ) )w( t ) solves the following back- 
ward SDE 

x(t) = g(P(T)) + f(s ,  x(s), z(s))ds + z(s)dW(s).  

Applying the Comparison theorem (Chapter 1, Theorem 6.1), we conclude 
that  X(t)  = x(t) > O, Vt, P-a.s., since g(P(T)) > O, P-a.s. The assertion 
follows. 

w Hedging without constraint 

We first seek the solution to the hedging problem (4.7) under the following 
assumptions. 

(H3) The functions b, a : [0, T] • IR 3 ~-~ ~ are twice continuously differ- 
entiable, with bounded first order partial derivatives in p, x and ~ being 
uniformly bounded. Further, we assume that  there exists a K > 0, such 
that  for all (t, p, x, r ) ,  

P O~p + p O~pp x 0-0~ x x c9~ + + < K .  

(H4) There exist constants K > 0 and # > 0, such that  for all (t,p,x,~r) 
with p > 0, it holds that  

# < a2(t ,p,x ,u)  ~ K. 

(H5) g E C~+~(IR) for some a E (0, 1); and g > 0. 

R e m a r k  4.1. Assumption (H4) amounts to saying that  the market is 
complete. Assumption (H5) is inherited from Chapter 4, for the purpose 
of applying the Four step scheme. However, since the boundedness of g 
excludes the simplest, say, European call option case, it is desirable to 
remove the boundedness of g. One alternative is to replace (H5) by the 
following condition. 

(H5)' l i m i p l ~ g ( p  ) = co; but g E C3(IR) and g' C C~(]R). Further, there 
exists K > 0 such that  for all p > 0, 

(4.9) IPg'(P)] ~- K(1 + g(p)); Ip2g"(p)I ~ K. 

The point will be revisited after the proof of our main theorem. Finally, all 
the technical conditions in (H3)-(H5) are verified by the classical models. 
An example of a non-trivial function a that  satisfies (H3) and (H4) could 
be a(t,p,x,7~) = a(t) + arctan(x 2 + Ilr]2). 

We shall follow the "Four Step Scheme" developed in Chapter 4 to solve 
the problem. Assuming C = 0 and consider the FBSDE (4.8). Since we 
have seen that  the solution to (4.8), whenever exists, will satisfy P(t) > 0, 
we shall restrict ourselves to the region (t ,p,x, ~) C [0, T] • (0, co) x R2 
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without further specification. The Four Step Scheme in the current case is 
the following: 

Step 1: Find z : [0, T] • (0, oo) x ~2 __+ IR such that  

(4.10) qpa( t ,p , x , z ( t , p , x ,q ) )  - z ( t , p , x , q )~ ( t , p , x , z ( t , p , x , q ) )  = O, 

In other words, z ( t ,p , x ,  q) = pq since a > 0 by (H4). 

Step 2: Using the definition of b and ~ in (4.3), we deduce the following 
extension of Black-Scholes PDE: 

(4.11) { O = O t +  = g(p), p > O. 

Step 3: Let 0 be the (classical) solution of (4.11), set 

(4.12) ~ b(t,p) = b(t,p, O(t,p),pOp(t,p)) 

t 5(t ,p) = a(t ,p,  O(t,p),pOp(t,p) ), 

and solve the following SDE: 

/0' /0' (4.13) P(t) = p + P(s)g(s, P(s))ds + P(s)e(s, P(s))dW(s). 

Step 4: Setting 

(4.14) ~ X( t )  = O(t, P(t)) 

t 7r(t) = P(t)Op(t, P(t)),  

show that  (P, X, 7 0 is an adapted solution to (4.8) with C - 0. 

The resolution of the Four Step Scheme depends heavily on the exis- 
tence of the classical solution to the quasilinear PDE (4.11). Note that  
in this case the PDE is "degenerate" near p = 0, the result of Chapter 4 
does not apply directly. We nevertheless have the following result that  is 
of interest in its own right: 

T h e o r e m  4.2. Assume (H3)-(H5). There exists a unique classical solution 
0(.,.) to the PDE (4.11), defined on (t,p) C [0, T] • (0, oc), which enjoys 
the following properties: 

(i) ~ - g is uniformly bounded for (t,p) E [O,T] • (0, oo); 

(ii) The partial derivatives of 0 satisfy: for some constant K > O, 

(4.15) IpOp(t,p)l < K(1 + IP l ) ;  Ip20pp(t,p)l <_ K. 
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Proof. First consider the function 0"~ O - g .  It is obvious tha t  0t = 0t, 
Op = Op - gp and Opp = Opp - gpp; and 0" satisfies the following PDE: 

(4.16) + r(t)[p(O~ + g ) - (0"+ g)], 

O(T,p) = 0, p > 0. 

To simplify notations,  let us set #(t, p, x, ~r) = a(t, p, x + g(p), ~r + pg'(p)), 
then  we can rewrite (4.16) as 

1_ 2 
0 = "Or + (t,p, ~,p~p)p2~pp + r(t)pOp + ~(t,p, O,p'Op), 

(4.17) ~ a  
O(T,p) = O, p > O, 

where 

(4.18) ~(t,p, x, 7r) = l#2 ( t , p ,  x, ~r)p2g"(p) + r(t)pg'(p) - r ( t ) (x  + g(p)). 

Next, we apply the s tandard  Euler transformation:  p = e ~, and de- 

note O(t,~)~0"(t,e~). Since Ot(t,~) = Ot(t,er 0"~(t,~) = er162 and 
O~(t,~) = e2r e ~) + er e~), we we derive from (4 .17)a  quasilinear 
parabolic PDE for 0": 

(4.19) 

1_ 2 0 = ~, + ~ (t, ~ ,0 ,  0~)(0r - ~ )  + r(t)~r + ~(t, d , ~ , ~ ) ,  

1 2 
= Ot + ~6o(t,(,O,O~)O(~ + bo(t, GO, O~)O~ + b o ( t , ( ,  0", 0"(), 

O(T, ~) = O, ~ e l{, 

where 

" (4.20) 

~o(t ,~ ,x ,~)  = ~(t ,~ ,x ,~) ;  
1 2 bo(t,~,x,  7c) = r(t) - ~[~o(t ,~,x,  Tr)]; 

"~o (t, ~, x, ~) = ~(t, ~ ,  x, ~). 

Now by (H3) and (H4) we see tha t  ~0(t, G x, Tr) > # > 0, for all 
(t, ~, x, ~r) C [0, T] x IR 3 and for all (t, ~, x, lr), it holds (suppressing the 
variables) tha t  

0~o O# ~ O~ , ~ ~ O~ er - ~ e  + ~ g  (e)~ + ~ [g"(e~)e 2e + 

Thus, either (Hh) or (Hh)', together with (H3), will imply the boundedness 



w Hedging options for large investors 213 

of 0ao Similarly, we have o~" 

0a  
sup ~ ( t , e ~ , x + g ( e ~ ) , ~ + e ~ g ' ( e ~ ) ) e ~  < c o ;  

(t,~,z,~) c,p 

Oa 
~ ( t , x  + g(e~), ~ + e ~ g ' ( ~ ) ) g ' ( ~ ) ~  sup 

(t,~ . . . .  ) 

_< K sup O~=(t, e~g'(e~)) [1 + x + g ( ~ ) , ~  + (x + ~(e~))] < co; 
(t,~,z,~) C t ~  

Oa 
sup x + g(e~), ~ + ~ ' ( e ~ ) ) g ' ( ~ % r  

< K sup O-~(t, e~g'(e~)) [1 + + g ( ~ ) ,  ~ + (~ + g(e~))] < co, 
(t,~,~,,~) 

Consequently, we conclude that  the function (Y0 has bounded first order 
partial (thus uniform Lipschitz) in the variables ~, x and 7r, and thus so is 
bo. Moreover, note that  for any 

1-2 l~2(t ,~,x ' ~ (t, ~, ~, ~)g"(~) = ~)e~2g"(~ ~) 

is uniformly bounded and Lipschitz in ~, x and 7r by either (H5) or (H5)', we 
see that  b0 is also uniform bounded and uniform Lipschitz in (x, ~, 7r). Now 
we can apply Chapter 4, Theorem 2.1 to conclude that  the PDE (4.11) has 
a unique classical solution ~in  C1+~ '2+a (for any a E (0, 1)). Furthermore, 
0, together with its first and second partial derivatives in ~, is uniformly 
bounded throughout [0, T] • IR. If we go back to the original variable, 

then we obtain that  the function 0 is uniformly bounded and its partial 
derivatives satisfy: 

sup Ip'gp(t,p)l < co; sup Ip2"dpp(t,p)l < co. 
(t,p) (t,p) 

This, together with the definition of 0" and condition (H5) (or (H5)'), leads 
to the estimates (4.15), proving the proposition. []  

A direct consequence of Theorem 4.2 is the following 

T h e o r e m  4.3. Assume (H3), (H4), and either (H5) or (H5)'. Then for 
any given p > O, the FBSDE (4.8) admits an adapted solution (P, X, zr). 

Proof. We follow the Four Step Scheme. Step 1 is obvious. Step 2 is the 
consequence of Theorem 4.2. For step 3, we note that  since Op and Opp may 
blow up when p $ 0, a little bit more careful consideration is needed here. 
However, observe that  "b and ~ are locally Lipschitz in [0, T] • (0, co) x ~2,  
thus one can show that  for ant p > 0, the SDE (4.13) always has a "local 
solution" for t sufficiently small. It is then standard to show (or simply 
note the exponential form (4.6)) that the solution, whenever exists, will 
neither go across the boundary p = 0 nor explode before T. Hence step 3 
is complete. Since step 4 is trivial, we proved the theorem. []  
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Our next goal is to show that  the adapted solution of FBSDE (4.8) 
does give us the optimal strategy. Also, we would like to study the unique- 
ness of the adapted solution to the FBSDE (4.8), which cannot be easily 
deduced from Chapter 4, since in this case the function a depends on rr (see 
Chapter 4, Remark 1.2). It turns out, however, under the special setting of 
this section, we can in fact establish some comparison theorems which will 
resolve all these issues simultaneously. We should note that  given the coun- 
terexample in Chapter 1, w (Example 6.2 of Chapter 1), these comparison 
theorems should be interesting in their own rights. 

T h e o r e m  4.4. (Comparison Theorem): Suppose that the assumptions 
of the Theorem 4.3 are in force. For given p C ~ ,  let (Tr, C) be any 
admissible pair such that the corresponding price~wealth process (P, X) 
satisfies X(T) ~_ g(P(T)), a.s. Then X(.) ~_ 8(.,P(.)), where 0 is the 
solution to (4.11). 

Consequently, if (P',  X') is an adapted solution to FBSDE (4.8) start- 
ing from p C IR~ , constructed by the Four-Step scheme. Then it holds that 
X(O) >_ O(O,p) = X'(O). 

Proof. We only consider the case when condition (H5)' holds, since 
the other ease is much easier. Let (P, X, zr, C) be given such that (Tr, C) E 
A(Y(O)) and X(T) ~_ g(P(T)), a.s. We first define a change of probability 
measure as follows: let 

{ O~ exp r r;](t,P(t),X(t),rc(t~).t 2 1 t 
"1 

Zo(t) = I - Oo(s)dW(s) - [Oo(s)12ds); (4.21) 

dPo 
dP - Z0(T), 

so that  the process Wo(t) ~ W(t) + f t  Oo(s)ds is a Brownian motion on the 
new probability space (f~, ~ ,  P0)- Then, the price/wealth FBSDE (4.4) and 
(4.5) become 

+f 
t 

P(t) P 

+ J i  or(s, P(s),  X(s),  rr(s))dWo(s)}, 

P(s) {r(s, X(s),  (s))ds 

(4.22) Jo  r T  

X(t) = g(P(T)) - / ,  r(s,X(t),rr(s))X(s)ds 

- f t  T rr(s)a(s, P(s), X(s), rr(s))dWo(s) + C(T) - C(t), 

Since in the present case the PDE (4.11) is degenerate, and the function 
g is not bounded, the solution/9 to (4.11) and its partial derivatives could 
blow up as p approaches to 01R d and infinity. Therefore some modification 
of the method in Chapter 4 are needed here. First, we apply It6's formula 
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to the process g(P(.)) from t to T to get 

g(P(t) ) = g(P(T) ) - . fT{gp(P)r ( s ,X ,  ~r)P - l a 2 ( s , P , X ,  ~r)gpp(P) }ds 

_ fT 9p(P)a(s, P, X ,  ~)dWo(s), 

here and in what follows we write (P, X, 7r) instead of (P(s), X(s) ,  7c(s)) in 
all the integrals for notational convenience. 

Next, we define a process X = X - g ( P ) ,  then X satisfies the following 
(backward) SDE: 

f t  T 1 2 X(t )  = X ( T )  - { r ( s ,X ,  Tr)[X - gp(P)P] - ~a ( s ,P ,X ,  lr)gpp(P)}ds 

- (Tr(s) - Pgp(P))a(s, P, X,  7r)dWo (s) + C(T) - C(t) 

We now use the notation 0" = 0 - g a s  that  in the proof of Theorem 4.2; 
then it suffices to show that  .Y(t) > O(t, P(t)) for all t E [0, T], a.s. Po.  To 
this end, let us denote )(( t)  = O(t, P( t) ), #(t) = P(t)['Op( t, P(t) ) + gp( P(t) )]; 
and Ax( t )  = -~(t) - X(t) ,  A~(t) = ~(t) - #(t). Applying It6's formula to 
the process A x  (t), we obtain 

T 

Ax( t )  = _~(T) - . f  {r(s, X, 7r)[Y - (gp(P) + "Op(s, P))P]  

1 2 
- 0~(s, P)  - [ a  (s, P, X,  7r)['Opp(s, P) + gpp(P)]}ds 

(4.23) f t  T - (Tr - P[gp(P) + "Op(s,P)]a(s,P,X, Tr)dWo(s) 

f = X ( T )  - [ A(s)ds 
T 

- A~a(s ,P ,X ,~ )dWo(s )  
d t  

+ C(T) - C(t), 

where the process A(.) in the last term above is defined in the obvious way. 
Recall that  the function 0 satisfies PDE (4.16), that  "O(t, P(t)) + g(P(t)) = 
X( t )  - Ax( t ) ,  and the definition of #, we can easily rewrite A(.) as follows: 

A(s) = r(s, X,  n)X(s)  - r(s, X - A x ,  ~)[X(s) - Ax(s)]  

- r ( s ,  x ,  ~)~(s) - ~(s, &s, P), ~>(,) 
1 X + [ { A a ( s , P ,  ,~ ,# , 'O(s ,P))O(s ,P)  = [l(s) + I2(s) + I3(s), 

where 

o(t,p) ~ v~(O~p(t,v) + ~pp(v)); 

Aa(t, p,  x ,  7r, # ,  q) ~= a 2 ( t ,  p ,  q + g ( p ) ,  fr) - a 2 ( t ,  p ,  x ,  7r)), 
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and Ii 's are defined in the obvious way. Now noticing that  

I i(s)  = [r(s,X,w)X(s) - r(s,X - Ax,  7c)(X - Ax)] 

+ [r(8, x - a x , ~ )  - r ( 8 , x  - a x ,  ~)][x(~)  - a x ( ~ ) ]  

Z { ~O1 ~----x{r(s,x, Tr)x} x=(X(s)_)~Ax(s))d/~}/kx(s) 

fo Or + ~-~(s, X - Ax,Tr + AA~)[X - Ax]dAA~(s) 

= OLI(8)AX(8 ) -}- fll(S)A~r(8)), 
we have from condition (A3) that  both a l  and f12 are adapted processes 
and are uniformly bounded in (t, w). Similarly, by conditions (H1) (H3) 
and (H5'), we see that  the process O(.,P(.))  is uniformly bounded and 
that  there exist uniformly bounded, adapted processes a2, a3 and f12, f13 
such that  

/2 (s) = r(s,  X ,  ~ )~(s )  - r(s, 0(~, P) ,  ~)~(s) 

+ [r(~, ~'(s, P) ,  ~)~(~) - r(~, ~(~, P) ,  ~)~(~)] 
= ~ 2 ( , ) a x ( , )  + & ( 8 ) ~ ( , ) ;  

x~(~) = ~ 3 ( ~ ) ~ x ( ~ )  + f 1 3 ( 8 ) a ~ ( ~ ) .  

3 3 Therefore, letting a = ~i=1 ai,  fl = ~i=~ fli, we obtain that  

A(t) = a ( t )Ax( t )  + fl(t)A~(t), 

where a and fl are both adapted, uniformly bounded processes. In other 
words, we have from (4.23) that  

T 

A x ( t ) = X ( T ) - ~ t  {a(s)Ax(s) + fl(s)A~(s)}ds 
(4.24) 

/ .T  

- It A,(s)a(s,P,X, Tc)dWo(s)) +C(T) - C(t). 

Now following the same argument as that  in Chapter 1, Theorem 6.1 
for BSDE's, one shows that  (4.24) leads to that  

(4.25) 

+ ftTexp ( -  foSa(u)du)dC(s) .Tt}. 

Therefore Ax(T)  = X(T) - g(P(T)) >_ 0 implies that  Ax( t )  _> 0, Vt C 
[0, T], P-a.s. We leave the details to the reader. 

Finally, note that  if (P',X') is an adapted solution of (4.8) starting 
from p and constructed by Four Step Scheme, then it must satisfy that  
X'(0) = 0(0,p), hence X(0) _> X'(0) by the first part, completing the 
proof. [] 
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Note that  if (P, X, 7r) is any adapted solution of FBSDE (4.8) starting 
from p, then (4.25) leads to that  X(t)  = O(t,P(t)), Vt e [0, T], P-a.s., 
since C - 0 and A(T) -- X(T)  - g(P(T)) = 0. We derived the following 
uniqueness result of the FBSDE (4.8). 

C o r o l l a r y  4.5. Suppose that assumptions of Theorem 4.4 are in force. 
Let (P, X, 70 be an adapted solution to FBSDE (4.8), then it must be the 
same as the one constructed from the Four Step Scheme. In other words, 
the FBSDE (4.8) has a unique adapted solution and it can be constructed 
via (4.13) and (4.14). 

Reinterpreting Theorem 4.4 and Corollary 4.5 in the option pricing 
terms we derive the following optimality result. 

C o r o l l a r y  4.6. Under the assumptions of Theorem 4.4, it holds that 
h(g( P(T) ) ) = X (O), where P, X are the first two components of the adapted 
solution to the FBSDE (4.8). Furthermore, the optimal hedging strategy is 
given by (~r, 0), where 7r is the third component of the adapted solution to 
FBSDE (4.8). Furthermore, the optimal hedging prince for (4.7) is given 
by X(0),  and the optimal hedging strategy is given by (Tr, 0). 

Proof. We need only show that  (Tr, 0) is the optimal Strategy. Let 
(Td, C) E H(B). Denote P '  and X '  be the corresponding price/wealth pair, 
then it holds that  X'(T)  >_ g(P'(T)) by definition. Theorem 4.4 then tells 
us that  X'(0)  _> X(0),  where X is the backward component of the solution 
to the FBSDE (4.8), namely the initial endowment with respect to the 
strategy (Tr, 0). This shows that  h(g(P(T))) = X(0),  and therefore (Tr, 0) is 
the optimal strategy. []  

To conclude this section, we present another comparison result that  
compares the adapted solutions of FBSDE (4.8) with different terminal 
condition. Again, such a comparison result takes advantage of the special 
form of the FBSDE considered in this section, which may not be true for 
general FBSDEs. 

T h e o r e m  4.7. (Monotonicity in terminal condition) Suppose that the 
conditions of Theorem 4.3 are in force. Let (Pi,Xi,Tri) ,  i = 1,2 be the 
unique adapted solutions to (4.8), with the same initial prices p > 0 but 
different terminal conditions Xi  ( T) = gi ( Pi ( T) ), i = 1, 2 respectively. If  
gl, g2 all satisfy the condition (H5) or (H5)', and gl(p) > g2(p) for all 
p > O, then it holds that XI(O) >_ X2(0). 

Proof. By Corollary 4.5 we know that  X 1 and X 2 must have the form 

x l ( t )  = 01(t, Pl(t)); X2(t) = 02(t, P2(t)), 

where 01 and 02 are the classical solutions to the PDE (4.11) with terminal 
conditions g I and g2, respectively. We claim that  the inequality 01 (t,p) >_ 
02(t,p) must hold for all (t,p) C [0, T] x p d. 

To see this, let us use the Euler transformation p = ef again, and define 
ui(t,() = Oi(T - t,er It follows from the proof of Theorem 4.2 that  u 1 
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and u 2 satisfy the following PDE: 

{ (4.26) 0 = ut - ~ ( t , ~ , u , u ~ ) u ~  - bo(t ,~,u,u~)u~ + u~( t ,u ,u~) ,  

u(0, ~) = g~(e~), ~ �9 R ~, 

respectively, where 

~ ( t , ~ , x , ~ )  = e - ~ ( T  - t ,e~,x,~);  

bo( t , [ , x ,~ )  = r ( T  - t , x ,  Tr) - l ~ 2 ( T  - t , [ , x ,  Tr); 

~(t, x, 7r) = r ( T  - t, x, 7r). 

Recall from Chapter 4 that  ui's are in fact the (local) uniform limits of the 
solutions of following initial-boundary value problems: 

{ 0 : %t t -- "2~1 (t, ~, U, %t~)U~ -- bo(t ,  ~, u,  u~)u~ + u r ( t ,  u,  u~) ,  

(4.27) UlOBR (t,~) = g(e~),i [~1 = R; 

~(0,~) = g (~ ) ,  ~ �9 Bn, 

i = 1,2, respectively, where BR ~{~; I~1 -< R}. Therefore, we need only 
show that  uln(t,~) >_ u~(t ,~) for all (t,~) 6 [0, T] x BR and R > 0. 

For any e > 0, consider the PDE: 

{ ut = ~ e  ( t , ~ , u , u ~ ) u ~  + bo(t ,~,u,u~)u~ - u r ( t , u , u ~ )  + e, 

(4.27e) UlOBR(t, ~) = g l ( e ~ ) +  e, I~] = R; 

~(o, ~) = g~ (e~) + e, ~ �9 B~,  

and denote its solution by u ~ It is not hard to check, using a standard 
technique of PDEs (see, e.g., Friedman [1]), that  u t converges to u 1 R,e R, 
uniformly in [0, T] x p d. Next, We define a function 

1 
F ( t , ~ , x , q , ~ )  = ~ ( t , ~ , x , q ) ~ +  b o ( t , ~ , q , ~ ) ~ -  x f ( t , x , q ) .  

Clearly F is continuously differentiable in all variables, and U 1 and u~ R,r 
satisfies 

{ 07~1 e i 1 1 
> F( t ,  ~, un,~, (u~,~)~, (un,~)~); 

Ou2~ 2 ~ 2 
:-: F( t ,  ~, u~, (un)~, (uR)~);  

~ l ~ ( t , ~ )  > ~ ( t , ~ ) ,  (t,~) �9 [0,T] • ~ [ . J { 0 }  • a b e ,  

Therefore by Theorem II.16 of Friedman [1], we have u ~ n,~ > u~ in Bn .  
By sending ~ -+ 0 and then R --+ 0% we obtain that  u~(t,~) _> u2(t,~) 
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for all (t,~) e [0,T] x IR d, whence 01( ., .) >_ 02( ., -). In particular, we have 
X 1 (0) ----- 01 (0, p) _> 02 (0, p) = X 2 (0), proving the theorem. []  

R e m a r k  4.8. We should note that  from 01(t ,p) > 02(t,p) we cannot 
conclude that  X 1 (t) >_ X 2 (t) for all t, since in general there is no comparison 
between 01 (t, p1 (t)) and 02(t, P2(t)) ,  as was shown in Chapter 1, Example 
6.2! 

w H e d g i n g  w i t h  c o n s t r a i n t  

In this section we t ry  to solve the hedging problem (4.7) with an extra 
condition that  the portfolio of an investor is subject to a certain constraint, 
namely, we assume that  

( P o r t f o l i o  C o n s t r a i n t )  There exists a constant Co > 0 such that I~(t)l < 
Co, for all t C [0, T], a.s. 

Recall that  7r(t) denotes the amount of money the investor puts in the 
stock, an equivalent condition is that  the total number of shares of the stock 
available to the investor is limited, which is quite natural in the practice. 

In what follows we shall consider the log-price/wealth pair instead of 
price/wealth pair like we did in the last subsection. We note that  these two 
formulations are not always equivalent, we do this for the simplicity of the 
presentation. Let P be the price process that  evolves according to the SDE 
(4.1). We assume the following 

(H6) b and a are independent of 7r and are time-homogeneous; g _> 0 and 
belongs boundedly to C 2+~ for some a E (0, 1); and r is uniformly bounded. 

Define x(t)  = In P(t ) .  Then by ItS's formula we see that  X satisfies the 
SDE: 

/o x( t )  = Xo + [b(eX(S),X(s)) - a2(eX(S),X(s))]ds 

(4.21) + a(e x(~) , X ( s ) ) d W ( s )  

/o /: = Xo + b(x(s) ,  X ( s ) ) d s  + a(X(s) ,  X ( s ) ) d W ( s ) ,  

where X0 = lnp; b(x , x )  = b ( e X , x ) -  lff2(eX,x); and 5(X,X)  = a(eX,x). 
Next, we rewrite the wealth equation (4.5) as follows. 

/: X ( t )  = x + [r(s )X(s)  + 7r(s)(b(P(s), X ( s ) )  - r(s))]ds 

(4.22) + ~r(s )cr (P(s ) ,X(s ) )dW(s)  - C(t)  

/o /: = x - f ( s ,  X(s),  X ( s ) ,  7r(s))ds + 7r(s)dx(s ) - C(t) .  

where 

(4.23) 
1 -  2 
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In light of the discussion in the previous subsection, we see that  in order 
to solve a hedging problem (4.7) with portfolio constraint, one has to solve 
the following FBSDE 

(4.24) 

x(t) = Xo + b(x(s), X(s))ds + ~(X(S), X(s))dW(s), 

I "  T r T 
X(t) = g(x(T)) + / ,  f(s,x(s),X(s),Tr(s))ds - ./, 7r(s)dx(s) 

+ C ( T )  - C( t ) ,  

]~(.)[ < C0, dtxdP-a.e.(t,w) e[O,T]xD. 

In the sequel we call the set of all adapted solutions X, X, ~, C) to 
the FBSDE (4.24) the set of admissible solutions. We will be interested 
in the nonemptyness of this set and the existence of the minimal solution, 
which will give us the solution to the hedging problem (4.7). To simplify 
discussion let us make the following assumption: 

(HT) b and 5 are uniformly bounded in (X, x) and both have bounded first 
order partial derivatives in X and x. 

We shall apply a Penalization procedure similar to the one used in 
Chapter 7 to prove the existence of the admissible solution. Namely, we let 

be a smooth function defined on ]R such that  

(4.25) 

0 Iz[ _< Co;  

~(x) = x -  (Co + 1) x > Co + 2; 

- x - (Co  + 1)  z < - C o  - 2; 

I~'(x)l < 1, vx �9 ~ ;  

and consider the penalized FBSDEs corresponding to (4.24) with C = 0: 
for each n > 0, and 0 < t < s < T, 
(4.26) 

I Xn(s) = Xo + [ s  b(xn(r)' Xn(r)) dr + [ s  a(xn(r), Xn(r))dW(r), 

n n d t  f T  n ~ t  n 
X (s)=g(x (T))+/o [f(r,x ( r ) ,X  (r),Tr ( r ) )+n~(Trn( r ) ) ]dr  

-- ~ss T 7~n(r)dxn(r) �9 

Applying the Four Step Scheme in Chapter 4 (in the case m = 1), we see 
that  (4.26) has a unique adapted solution that  can be written explicitly as 

(4.27) ~ X~(s) = On(s'x~(s)); 
~'~(s) = O~(s, xn(s)), s �9 It, T], ( 
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where O n is the classical solution to the following parabolic PDE: 

1 2 
(4.28) O~ + -~a (X, On)O~x + f ( t , x ,  On,O~) + nqo(O~) = O, 

o n(T, x) = g(x). 
Further, the solution 0 n, along with its partial derivatives 0~, 0~ and 0~( x 
are all bounded (with the bound depending possibly on n). The following 
lemma shows that  the bound for 0 n and 0~ can actually be made indepen- 
dent of n. 

L e m m a  4.9. Assume (H6) and (H7). Then there exists and constant 
C > 0 such that 

0 ___ on(x ,x)  __ C; 10~(X,x)l < C, V(Z,x) e ~2. 

Proof. By (H6) and (H7), definitions (4.23) and (4.25), we see that  there 
exist adapted process a n and fn  such that  Ictn(s)l _< L, [fn(s)l _< nn, 
Vs E [t,T], Vn > 0, P-a.s., for some L > 0, Ln > 0; and that  

f ( s ,  X(s),Xn(s),Trn(s)) + n~(Trn(s)) = an(s)Xn(s)  + fn(s)Trn(s). 

Define Rn(s) s n = exp{ft a r dr}, s E It, T]. Then by It6's formula one has 

Rn(s)Xn(s)  = Rn(T)g(xn(T))  + Rn(r)fn(r)Trn(r)dr 

(4.29) _ f T  Rn(s)Trn(r)dW(r) 

// = Rn(T)g(xn(T))  - Rn(r)~rn(r)dWn(r). 

where Wn(s)  = W ( s ) -  W ( t ) -  f [  t3n(r)dr. Since fin is bounded for each n, 
there exists probability measure Qn << p such that  W n is a Q'~ Brownian 
motion on [t, T], thanks to Girsanov's Theorem. We derive from (4.29) and 
(n6) that  

0 < Rn(s)X~(s)  = E Q " { R n ( T ) g ( x n ( T ) ) [ ~ }  <_ C, Qn-a.s. 

where the constant C > 0 is independent of n. Consequently X n, is uni- 
formly bounded, uniformly in n, almost surely. In particular, there exists 
C > 0 such that  0 _< X~ = On(t,x) <_ C, proving the first part  of the 
lemma. 

To see the second part,  denote Zn(s) = O~x(S , X(s))Y(s, X(s)). Since we 
can always assume that  O n is actually C a by the smoothness assumptions 
in (H6) and (HT), we can use the similar argument as that  in Proposition 
1.1 to show that  the pair (Tr ~, Z ~) is an adapted solution to the BSDE: 

7rn(s) = gt(x(T)) -t- [An(r)Zn(r) -I- Bn(r)Trn(r) -t- Cn(r)]dr 

_ / r  Zn(r)dW(r), 
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where  

/ An(8) = x) + + 

+ f~(s, X, x, 7r)} (x,,,,)=(x~(s),e~(s,xn(s) ),e~ (s,x~(s) ) ) 

(4.30) Bn(s) A ( s , x , x ,  7r) (x,~,')--(x~(s),o"(s,x~(~)),o;,(~,x~(~))) 

Cn(s) f x ( s , x , x ,  zr) (x#,,~)=(x~(,),o~(,,x~(,)),o~(~,x~(~))) 

Since B n and C n are uniformly bounded,  uniformly in n, by (H6) and (H7), 
and  A n is bounded  for each n, a similar a rgumen t  as t ha t  of pa r t  1 will 
lead to the uni form boundedness  of rr n, with the bounded  independent  of 
n. T h e  p roof  of the  l e m m a  is now complete.  [ ]  

Next ,  we prove a compar ison  theorem tha t  is not  covered by those in 
Chapter I, w 
L e m m a  4 .10 .  Assume (H6) and (H7). For any n >_ 1 it holds that 
tgn+l(t,x) > on(t,x),  V(t ,x)  E [0,T] x ]R. 

Proof. For each n, let (xn ,Xn,  Tr n) be the adap ted  solution to 
(4.26), defined on [t ,T]. Define X n ( s )  = On(s, xn+l(s)) and #n(s)  = 
8~(s, Xn+;(s)). Apply ing  I t6 ' s  formula  and using the  definition of _~n, # n  
and 8 n one shows t h a t  

df(n(8) = { - f ( s ,  X n+l (s), .e~ n+l (8), #n+l  (8)) 

- (n + 1)~o(# n+l (s)) + #n(s)[~(xn+l (s), X n+l (s))}ds 

-Jr- ~n(8)a(xn+l (8), X nq-1 (8) )dW (8). 

On the o ther  hand,  by definition we have 

dX '~+1 (s) = { - f (s ,  X n+l (s), .,~-n+l (8), 71 "n+l (8)) 

-- (n + 1)qo(rrn+l (S)) + 7rn(s)b(xn+l(s),Xn+l(s))}ds 

-[- 7rn(8)ff(X n-hi (8), X n+l(s))dW(8).  

Now denote  _~n = X n + l  _ )~n and ~r n = lr n+l - 7r n , -  and  note  t h a t  ~ is 
uni form Lipschitz with Lipschitz cons tant  1, b and t~ ~ are uniformly bound,  
we see t ha t  for some some bounded  processes a n and /3  n it holds t ha t  

d2n(s)  = { - an(s)2'~(s) -/3n(s)';rn(s) - ~(71-n+1(8)) 

+ #n(s)5(X n+l (s), X n+l (s))dW(s). 

Since X n ( T )  = 0 and  ~o > 0, the  same technique of T h e o r e m  4.4 t han  shows 
t h a t  under  some probabi l i ty  measure  0 which is equivalent  to P one has 

Xn(s)  = E 0 { fs T Rn(r)~(Tr n+l (r.))dr 9t-s } ~  0, 
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where F(s) = exp{ft ~ an(r)dr). Setting s = t w e  derive that  0n+l( t ,x)  >_ 
0~(t,x). [] 

Combining Lemmas 4.9 and 4.10 we see that  there exists function 0(t, x) 
such that  0n( t ,x)  ~ 0( t ,x) ,  as n -+ c~. Clearly 0 is jointly measurable, 
uniformly bounded, and uniform Lipschitz in X, thanks to Lemma 4.9. Thus 
the following SDE is well-posed: 

(4.31) X(s) = b(x(r), O(r, x(r))dr + 5(x(r), O(r, x(r))dW(r); 

Now define X(s) = t0(s, X(s)). It is easy to show, using the uniform Lips- 
chitz property of to (in x) and some standard argument for the stability of 
SDEs, that  

E~ sup IXn(s)-  X(S)[~ = 0 ,  (4.32) lim 
n - -+oc  " t < s < T  J 

and, together with a simple application of Dominated Convergence Theo- 
rem, that  

E{IXn(s)  - X(s) l )  = E{Iton(s, Xn(s)) - to(s,x(s))l) 
(4.33) 

< 2C~E{Ix~(s) - x(~)l} + 2E{lOn(s,X(s)) - -  0(s,x(s))I)  - ~  0, 

as n --+ oc. We should note that  at this point we do not have any infor- 
mation about the regularity of the paths of process X,  and neither do we 
know that  it is even a semimartingale. Let us now take a closer look. 

First notice that  Lemma 4.9 and the boundedness of r(.) and 

E [~n(s)12ds < C; E If(s, xn(s),X~(s),~n(s))12ds < C. 

Therefore for some processes ;r, fo C L~(t, T; ~)  such that,  possibly along 
a subsequence, one has 

(4.34) Qr~,f(s ,x~(s) ,X~(s) ,~r~(s)))~(~, f~ (L~( t ,T;~))  2. 

Next, let us define 

(4.35) 

Since 

(4.36) 

I s 
An(s) = f n~(~r~(r))dr, 0 < t < s < T, 

Jt ['s f s 
A ( s )  : - X ( s )  - I - I 

Jt Jt 

An(s) = 0n(t, X) - Xn(s) - [f(r, xn(r),Xn(r),Trn(r))dr 

- f ~  7rn(r)dx~(r), 
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Combining (4.32)-(4.34), one shows easily that, A n converges weakly in 
L2(0, T ;R)  to A(s). Therefore it is not hard to see that  for any fixed 
t < Sl < s2 _~ T it holds that  

(4.37) P{AsI <_ A~ } = O, 

since An's are all continuous, monotone increasing processes. Thus one 
shows that  both A(s - )  and A(s+) exist for all s E [t, T]. Denote A(s) = 
A(s+),  then .4 is chdlhg, and for fixed s, A(s) ~ A(s), P-a.s.. We claim 
that  the equality actually holds. Indeed, from (4.35) we see that  X( . )+A( . )  
is continuous. Let Q be the rationals in JR, then for each s E It, T], it holds 
almost surely that  

(4.38) lim~,~ X(r) = lim~ . [X(r) + A(r) - A(r)] = X(s) + A(s) - A(s). 
~EQ rEQ 

On the other hand, since for each r E [t,T] one has X(r) = O(r,x(r)) >_ 
On(r, x(r)), using the continuity of the functions 0n's and the process X(') 
we have 

lira X(r) > lim On(r, x(r)) = on(8, )(~(S)). 
r4s r4s 

Letting n -4 co and using (4.38) we derive 

X(s) + A(s) = lira X(r) + A(s) > lira 0n(s, X(S)) + A(s) 
r S s n - - ~  o 0  
r E Q  

= o(s ,  + = X ( s )  + 

Consequently, A(s) >_ A(s), P-a.s., whence A(s) = A(s), P-a.s.. In other 
words, A(s) is a chdlhg version of A. 

From now on we replace A by its ehdlhg version in (4.35) without further 

specification. Namely the process X (~ 8(-, X('))) is a semimartingale with 
the decomposition: 

T T 

(4.39) X(s) = O( t , x ) - (  L f~  f~ 7r(r)dx(r), t < s < T, 

and is c~dl~g as well. We have the following theorem. 

T h e o r e m  4.11. Assume (H6) and (H7). Let X, fo, 7r be defined by 
(4.31) and (4.34), respectively; and let X(s) = O(s,x(s)), where 8 is the 
(monotone) limit of the solutions of PDEs (4.28), {On}. Define 

(4.40) C(s) = {f~ - f(x(r),  X(r),  7r(r))}dr + A(s), t < s < T. 

Then (X, X, 7r, C) is an adapted solution to the FBSDE with constraint 
(4.24). 

Furthermore, if (~, X,  #, C) is any adapted solution to (4.24) on [t, T], 
then it must hold that X(t) ~_ X(t). Consequently, x* ~=X(O) is the 
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m/nimum hedging price to the problem (4.7) with the portfolio constrednt 
I.(t)l < Co. 

Proof. We first show that  f~ - f (x(r) ,  X(r) ,  Z(r))} _> 0, dt x dP-a.e. 
In fact, using the convexity of f in the variable z and that  f ( t ,  x, 0, 0) = 0 
we have, for each n, 

f (s ,  xn(s), Xn(s) ,  7rn(s)) - f (s ,  X(s), Z(s ) ,  7r(s)) 
>_ - L ( I X n ( s )  - X(s)l + [Xn(S)  -- X(S)[) 

+ If(s,  x(s) ,  x ( s ) ,  ~n(8)) -- f(s, X(~), X(s), ~(~))] 
> -n( txn(s )  - X(S)l + IXn(s) - Z(s)l  ) 

+ (wn(s) -- Ir(s))f~(z(s), X(s) ,  ~r(r)). 

Using the boundedness of f~, we see that  for any 7/E L2(O, T; ~ )  such that  
r / >  O, dt • dP-a.e., it holds that,  as n -4 c~, 

( E [fo (r) - f(r,  x(r), X(r) ,  v(r))]~lrdr 

= lim E f T  n-+o~ Jt [ f (r 'xn(r) 'Xn(r) ' Irn(r))  - f(r,x(r),X(r),Tr(r))]~lrdr 

F >_ - L E  [[xn(r) - x(r)[ + [X'~(r) - X(r)l]71(r)dr 
dt 

( 
Therefore f~ - f (s ,  X(S), X(s) ,  ~r(s)) >_ O, dt x dP-a.e., namely C(.) is a 
cSA1/~g, nondecreasing process. Now rewriting (4.39) as 

T f T f 

X(s)  = g(x(T))+Js f (r ,x(r) ,X(r) ,~r(r))dr+Js ~r(r)dx(r)+C(T)-C(s) ,  

for t < s ~ T, we see that  (x ,X,~r,C) solves the FBSDE in (4.24). It 
remains to check that  ~r(t) E F, dt • dP-a.e. But since Tr(0) = 0 and 
IT~I <- 1, we have 

/o /0 E I~r(crn(s))12ds <_ E Icrn(s)12ds <_ C. 

Thus, possibly along a subsequence, we have 7~r(Trn(-)) ~ 0 ~ r  for some ~ E 
L2(0, T; ~ ) .  Since ~ a  is convex and C 1 by construction, we can repeat the 
argument as before to conclude that  ~~ > 7~r(Tr(s)) > 0, dt • dP-a.e.. 
But on the other hand, 

T fit T ~T E f__ ~r(Tc(r))dr <_ E _  ~~ lim E ~oF(Trn(r))dr 
Jt n--~ O0 

= lim l E A n ( T ) =  O, 
~z--+ o o  n 
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we have tha t  ~ r@(s ) )  = 0, dt x dP-a.e.  

To prove the last s tatement  of the theorem let (~, X,  ~, C) be any other 
solutions of the FBSDE (4.24). Denote for each n, J(n(s)  = On(s, X(s)) and 
~ ( s )  = O~(s, X(S)). Applying It6 's  formula and Using (4.28) one can show 

tha t  )(~ is a solution to the BSDE 

/( Xn(s) = g(~(T)) -[- [f(r,~(r),2n(r),~n(r)) + ~('Kn(T)) 
(4.41) 

2 (a2 (:~(r), 3~ (r)) - a2 (;~(r), ~ n  (r))]dr - ~n (r)dx(r)" 

It  then follows, with 3~ ~ )(  - )(~,  ~r ~ ~ - ~n, that  

/( // X ( s )  = [an(r )X(r )  + ~n(r)#(r)]dr - ~r(r)dx(r) + C(T)  - C(s) ,  

where a n and ~n are some bounded, adapted processes, thanks to the 
assumptions on the coefficients. Thus some similar arguments as those in 
Lemma  4.10 shows that  J((s)  > 0, Vs C [t,T], P-a.s.  In particular, one 

has ) ( ( t )  > Xn( t )  = ON(t,x), for all n. Letting n -+ c~ we obtain tha t  

2(t)  >_ o(t, x) = x( t ) .  Thus ()c, X, ~, C) is the minimum solution of (4.24) 
on [t, T]. Finally, if t = 0, then we conclude tha t  x* = X(0)  is the minimum 
hedging price to (4.7) with portfolio constraint, proving the theorem. [ ]  

w A Stochastic Black-Scholes Formula 

In this section we present another application of the theory established in 
the previous chapters to the theory of option pricing. First recall that  in the 
last section we essentially assumed that  the market  is "Markovian", tha t  is, 
we assumed tha t  all the coefficients in the price equation are deterministic 
so tha t  the Four Step Scheme could be applied. We now try to explore 
the possibility of considering more general market  models in which the 
market  parameters  can be random. To compensate this relaxation, we 
return to a s tandard "small investor" world. Namely, we assume that  the 
price equations are (compared to (4.4)): 

(5.1) ~ dP~ = r(t)P~ (bond) 
[ alP(t) P(t)[b(t)dt  + a( t )dW(t)] ,  (stock) 

where r, b, and a are now assumed to be bounded, progressively measur- 
able stochastic processes. We also assume that  a is bounded away from 
zero. To simplify discussion, we shall assume that  both  P and W are one 
dimensional. Thus the wealth equation (4.5) now becomes (replacing X by 
Y in this section) 

(5.2) d Y ( t )  = [Y(t)r( t )  + 7r(t)(b(t) - r(t))]dt + 7r(t)a(t)dW(t)  - tiC(t). 

In the case where r(-) _= r, b(.) = b, and a(.) _-__ a are all constants, 
the s tandard Black-Scholes theory tells us that  the fair price of an option 
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of the form g(P(T)) at any time t �9 [0, T] is given by 

(5.3) Y(t) = #{e-r(T-t)g(P(T))l,~t}, 

Here E is the expectation with respect to some risk-neutral probability 
measure (or "equivalent martingale measure"). Furthermore, if we denote 
u(t, x) to be the (classical) solution to the backward PDE: 

( 1 
t t t  4- ~O'2X2%txx Jr- r X t t x  --  r~t = O, 

(5.4) 
t x) = g(x), 

(t ,x) E [0,T) x (0, oo); 

then it holds that  Y(t) = u(t,P(t)), Yt E [0, T], a.s.. Further, using the 
theory of BSDE, it is not hard to show that  if (Y, Z) is the unique adapted 
solution of the backward SDE: 

T T 

Y(t) = g(P(T)) - St [rY(s) + a - ' ( b -  r)Z(s)]ds - i t  Z(s)dW(s), 

then Y coincides with that  in (5.3); and the optimal hedging strategy is 
given by ~(t) = a-iX(t) = v~(t, P(t)). 

In light of the result of w we see that  the valuation formula (5.3) is not 
hard to prove even in the general cases when r, b, a, and g(-) are allowed to 
be random. But a more subtle problem is to find a proper replacement, if 
possible, of the "Black-Scholes PDE" (5.4). We note that  since the coeffi- 
cleats are now random, a "PDE" would no longer be appropriate. It turns 
out that  the BSPDE established in Chapter 5 will serve for this purpose. 

w S t o c h a s t i c  B lack -Scho le s  f o r m u l a  

Let us consider the price equation (5.1) with random coefficients r, b, a; 
and we consider the general terminal value g as described at the beginning 
of the section. We allow further that  r and b may depend on the stock 
price in a nonanticipating way. In other words, we assume that  r(t, w) = 
r(t,P(t,w),co); b(t,w) = b(t,P(t,w),~), and a(t, co) = a(t,P(t,w),uJ) 
where for each fixed p E JR, r( . ,p,  .), b(.,p, .), and a(.,p, .) are predictable 
processes. Thus we can write (5.1) and (5.5) as an (decoupled) FBSDE: 

(5.6) 

/0 i[ I P(t) = p +  P(s)i(s,P(s))ds + P(s)a(s)dWs, 
T 

Y(t) g(P(T)) - [Y(s)r(s, P(s)) + Z(s)8(s, P(s))lds 

_ f T  Z(8)dW(s), 
d t  

where 0 is the so-called risk premium process defined by 

8(t,P(t)) = a-l(t,P(t))[b(t,P(t)) - r(t,P(t))], Vt E [0, T]; 
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and Z(t)  A= 7r(t)a(t). We shall again make use of the Euler t ransformation 
x = logp introduced in the last section. By It6 's  formula we see that  the 

log-price process X ~ log P and the wealth process Y will satisfy 

/o' /o' ' X ( t )  = ~ + b(s, X ( s ) )d s  + e(s,  X ( s ) ) d W ( s ) ,  

(5.7) Y( t )  = O(X(T))  - [Y(s )~(s ,X(s ) )  + Z(s)O(s ,X(s))]ds  

- f ~  Z(s )dW(s) ,  

where 

(5.8) 

1 2(t, eXw); b( t ,x ,w)  = b(t, eX,w) - -~a 

~( t ,x ,~ )  = r ( t , e~ ,~ ) ;  ~ ( t , ~ , ~ )  = ~ ( t , e~ ,~ ) ;  

~ ( t , z , ~ )  = o( t ,e~ ,~) ,  O(p,~) = 9(eL~') .  

We have the following result. 

T h e o r e m  5.1. (Stochastic Black-Scholes Formula) Suppose that the ran- 
dom fields b, ~, 0 and 0 defined in (5.8) are progressively measurable in 
(t, w), and are m-th continuously differentiable in the variable x, with all 
partial derivatives being uniformly bounded, for some m > 2. Let Let 
the unique adapted solution of (5.7) be (X, Y, Z).  Then the hedging price 
against the contingent claim g(P(T) ,  .) at any t E [0, T] is given by 

r(t) = 
(5.9) 

= f , } ,  

where E{.{Jzt) is the conditional expectation with respect to the equivalent 
martingale measure P defined by 

= t - O( t ,X ( t ) )dW( t )  - I~(t,X(t))12dt o 

Furthermore, the backward SPDE 

u(t, z )  = O(x) + ~2u~x + (g - ~O)~x 
(5.10) 

f u  + ~qz qO}ds f T  
- - - q(s, x)dWs 

has a unique adapted solution (u,q), such that the log-price X and the 
wealth process Y are related by 

(5.11) Y( t )  = u ( t ,X ( t ) , . ) ,  kit e [0, T], a.s. 
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Finally, the optimal hedging strategy 7r is given by, for all t C [0, T], 

(5.12) 
7r(t) = &-i (t, X(t) )Z( t )  

= Vu(t ,  X(t) ,  .) + ~(t, X( t ) ) - lq ( t ,  X(t) ,  .), a.s. 

Proof. First, since the FBSDE (5.7) is decoupled, it must have unique 
adapted solution. Next, under the assumption, the backward SPDE (5.10) 
admits a (classical) adapted solution, thanks to Chapter 5, Theorems 2.1- 
2.3. Applying the generalized ItS's formula, and the following the Four Step 
Scheme one shows that  the adapted solution (X, Y, Z) to (5.7) satisfies 

(5.13) Y(t)  = u( t ,X( t ) ) ,  Z(t) = q(t ,X(t))  + a(t ,X(t))~Tu(t ,X(t)) .  

On the other hand, using the comparison theorem for BSDE (Chapter 
1, Theorem 6.1), and following the same argument of Corollary 4.6, one 
shows that  the hedging price at any time t is Y(t), and the hedging strat- 
egy is given by (5.12). Finally, since the Y satisfies a BSDE in (5.7), an 
argument as that  in Theorem 4.4 gives the expression (5.9). []  

R e m a r k  5.2. In the case when all the coefficients are constants, by unique- 
hess we see that  the adapted solution to the BSPDE (5.10) is simply (u, 0), 
where u is the classical solution to a backward PDE which, after a change of 
variable x = log x' and by setting v(t, x') = u(t, log x'), becomes exactly the 
Black-Scholes PDE (8.4). Thus Theorem 5.1 recovers the classical Black- 
Scholes formula. 

w C o n v e x i t y  o f  t h e  E u r o p e a n  c o n t i n g e n t  c la ims  

In this and the following subsection we apply the comparison theorems for 
backward SPDEs derived in Chapter 5 to obtain some interesting conse- 
quences in the option pricing theory, in a general setting that  allows random 
coefficients in the market models. Our discussion follows the lines of those 
of E1 Karoui-Jeanblanc-Picqu@-Shreve [1]. 

The first result concerns the convexity of the European contingent 
claims. In the Markovian case such a property was discussed by Bergman- 
Grundy-Wiener [1] and E1 Karoui-Jeanblanc-Picqu@-Shreve [1]. Let us now 
assume that  r and a are stochastic processes, independent of the current 
stock price. From Theorem 5.1 we know that  the option price at time t 

with stock price x is given by ~t(t, x ) ~  u(t, log x), where u is the adapted 
solution to the BSPDE (5.10). (Note, here we slightly abuse the notations 
x and p!). The convexity of the European option states that  the function 
~(t, .) is a convex function, provided g is convex. To prove this we first note 
that  by using the inverse Euler transformation one can show that  ~ is the 
(classical) adapted solution to the BSPDE: 

[ d~t = { - l p 2 a 2 ~ x -  xr(t~ + r ( t -  xcrq~- Oq}dt -  qdW(t), 

(5.14) / 

| [0, T) • (0, 
[ x) = g(x),  x > 0. 
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Different ia t ing (5.14) with respect  to x twice and denote  v = u~.~, p = qz~, 
then  we see t h a t  (v ,p)  satisfies the following (linear) BSPDE:  

(5.15) 

dv= 1 2 2 (2xa 2+xr)v~ (a 2+r )v  { - T x ~ v ~ -  

- xap~- (2a -O)p}d t -pdW( t ) ;  (t,y) C [O,T) • 

v(T, x) = g"(x). 

Here again  the well-posedness of (5.15) can be ob ta ined  by considering its 
equivalent  form after  the  Euler  t r ans fo rmat ion  (since r and a are indepen-  
dent  of x!). Now we can apply ing  Chap te r  5, Corol lary 6.3 to conclude t ha t  
v > 0, whenever  g"  ~ 0, and hence ~ is convex provided g is. 

We can discuss more  compl ica ted  s i tuat ion by using the compar i son  
theo rems  in Chap te r  5. For example ,  let us assume tha t  bo th  r and a are 
determinist ic  funct ions of (t, x),  and we assume t h a t  they  are bo th  C 2 for 
simplicity. T h e n  (5.10) coincides with (5.4). Now differentiat ing (5.4) twice 
and  denot ing  v -- uz~, we see t ha t  v satisfies the following PDE:  

(5.16) 

where  

0 = vt + 2 x2 a 2 v ~  + 5xv~ + by + r ~ ( x u ~  - u), 
1 

v ( T , x )  = 9 " ( z ) ,  �9 >_ O, 

= 2a 2 + 2xaaz  + r; 

D = a 2 + 4xaa~ + (xcr~) 2 + x2aa~z + 2xrz + r. 

Now let us denote  V = xu~ - u ,  then  some compu ta t i on  shows t h a t  V 
satisfies the  equat ion:  

0 = Vt + 2x2a2Vxz + axVx + (xrx - r)Y,  on [0, T)  x (0, (x~), 
(5.17) 

L V ( T ,  z )  = xg ' (x)  - g (x) ,  x >_ O, 

for some funct ion ~ depending on a and /~ (whence r and a) .  Therefore  
app ly ing  the  compar i son  theorems of Chap te r  5 (use Euler  t r ans fo rma t ion  
if necessary)  we can derive the  following results: assume tha t  g is convex, 
then  

(i) if r is convex and  xg ' (x )  - g(x)  > O, then  u is convex. 
(ii) if r is concave and xg ' (x )  - g(x)  < O, then  u is convex. 
(iii) if r is independent  of x, then  u is convex. 
Indeed,  if xg ' (x )  - g(x)  >_ O, then  V ~ 0 by Chap te r  5, Corol lary  6.3. 

This,  toge ther  with the  convexity of r and g, in tu rn  shows tha t  the solution 
v of  (5.16) is non-negat ive ,  proving (i). Pa r t  (ii) can be argued similarly. 
To see (iii), no te  t h a t  when r is independent  of x, (5.16) is homogeneous ,  
thus the  convexi ty  of h implies t ha t  of fi, thanks  to Chap te r  5, Corol lary  
6.3 again. 
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w R o b u s t n e s s  o f  B lack -Scho les  f o r m u l a  

The robustness of the Black-Scholes formula concerns the following prob- 
lem: suppose a practitioner's information leads him to a misspecified value 
of, say, volatility a, and he calculates the option price according to this 
misspecified parameter  and equation (5.4), and then tries to hedge the con- 
tingent claim, what will be the consequence? 

Let us first assume that  the only misspecified parameter is the volatil- 
ity, and denote it by a -- a(t ,  x), which is C 2 in x; and assume that  the 
interest rate is deterministic and independent of the stock price. By the 
conclusion (iii) in the previous part  we know that  u is convex in x. Now let 
us assume that  the true volatility is an {5vt}t>o-adapted process, denoted 
by ~, satisfying 

(5.18) 3(t) ~ a(t ,  x), V(t, x), a.s. 

Since in this case we have proved that  u is convex, it is easy to check that  
in this case (6.16) of Chapter 5 reads 

(5.19) (s - s  + (2Q - AJ)q + ] - f = lx2152 - a2]u~ >_ 0, 

where (s M )  is the differential operator corresponding to the misspecified 
coefficients (r, 3). Thus we conclude from Chapter 5, Theorem 6.2 that  
~( t ,x)  _> u(t, x), V(t, x), a.s. Namely the misspecified price dominates the 
true price. 

Now let us assume that  the inequality in (5.18) is reversed. Since 
both (5.4) and (5.14) are linear and homogeneous, ( - ~ , - ~ )  and ( - u , 0 )  
are both solutions to (5.14) and (5.4) as well, with the terminal condition 
being replaced by - g ( x ) .  But in this case (5.19) becomes 

_ =  x2152 _ >_ 0 ,  

because u is convex, and 5 2 <_ a 2. Thus - ~  _7 - u ,  namely ~ _< u. 
Using the similar technique we can again discuss some more compli- 

cated situations. For example, let us allow the interest rate r to be mis- 
specified as well, but in the form that  it is convex in x, say. Assume that  
the payoff function h satisfies xh~(x) - h(x) 7_ O, and that  § and 5 are 
true interest rate and volatility such that  they are {~'t}t_>o-adapted ran- 
dom fields satisfying ~(t ,x)  > r ( t , x ) ,  and ~( t ,x )  > ~(t ,x) ,  V(t,x). Then, 
using the notation as before, one shows that  

(~ - s  = ~x2152 - a ~ ] u ~  + ( ~ -  r ) [ x u .  - u] > 0, 

because u is convex, and xu~ - u = V >_ O, thanks to the arguments in the 
previous part. Consequently one has ~t(t, x) >_ u(t, x), V(t, x), a.s. Namely, 
we also derive a one-sided domination of the true values and misspecified 
values. 
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We remark that  if the misspecified volatility is not the deterministic 
function of the stock price, the comparison may fail. We refer the inter- 
ested readers to E1 Karoui-Jeanblanc-Picqu@-Shreve [1] for an interesting 
counterexample. 

w An American Game Option 

In this section we apply the result of Chapter  7 to derive an ad hoc option 
pricing problem which we call the American Game Option. 

To begin with let us consider the following FBSDE with reflections 
(compare to Chapter  7, (3.2)) 

{ jot  Jo 
(6.1) 

Note tha t  the forward equation does not have reflection; and we assume 
tha t  m = 1 and 02( t ,x ,w)  = (L(t,x,w),U(t,x,w)), where L and U are 
two random fields such that  L(t, x, w) <_ U(t, x, w), for all (t, x, w) E [0, T] x 
IR n • f~. We assume further that  both L and U are continuous functions 
in x for all (t,w), and are {Ft}t_>0-progressively measurable, continuous 
processes for all x. 

In light of the result of the previous section, we can think of X in 
(6.1) as a price process of financial assets, and of Y as a wealth process 
of an (large) investor in the market.  However, we should use the latter 
interpretat ion only up until the first t ime we have d~ < 0. In other words, 
no externM funds are allowed to be added to the investor's wealth, although 
he is allowed to consume. 

The American game option can be described as follows. Unlike the 
usual American option where only the buyer has the right to choose the 
exercise time, in a game option we allow the seller to have the same right 
as well, namely, the seller can force the exercise t ime if he wishes. However, 
in order to get a nontrivial option (i.e., to avoid immediate exercise to be 
optimal),  it is required that  the payoff be higher if the seller opts to force 
the exercise. Of course the seller may choose not to do anything, then the 
game option becomes the usual American option. 

To be more precise, let us denote by J~t,T the set of {gvt}t_>0-stopping 
times taking values in It, T], and t E [0, T) be the t ime when the "game" 
starts.  Let T E J~t,T be the time the buyer chooses to exercise the option; 
and a E .h~t, T be that  of the seller. If  T _< a, then the seller pays L(T, X~); 
if a < % then the seller pays U(a,X~). If neither exercises the option 
by the matur i ty  date T, then the sellcr pays B = g(XT). We define the 
minimal hedging price of this contract to be the infimum of initial wealth 
amounts  ]Io, such that  the seller can deliver the payoff, a.s., without having 
to use additional outside funds. In other words, his wealth process has to 
follow the dynamics of Y (with d~ _> 0), up to the exercise t ime a A ~- A T, 
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and at the exercise time we have to have 

(6.2) Y~A~^T >_ g(XT)l{aAr=T} -t- L(r, Xr)l{r<T,r<_a } + U(cr, X~)l{~<,-}. 

Our purpose is to determine the minimal hedging price, as well as the 
corresponding minimal hedging process. 

To solve this option pricing problem, let us first study the following 
stochastic game (Dynkin game) is useful: there are two players, each can 
choose a (stopping) time to stop the game over an given horizon [t, T]. Let 
cy C Mt,T be the time that  player I chooses, and r E .A~t,T be that  of player 
II'w. If a < r ,  the player I pays U(a)(= U(a,X~)) to player II; whereas if 
T _< a < T, player I pays L( r ) (=  L(r,X~)) (yes, in both cases the player I 
pays!). If no one stops by time T, player I pays B. There is also a running 
cost h(t)(= h(t, Xt, Yt, Zt)). In other words the payoff player I has to pay 
is given by 

(6.3) f 
r  

RtB(a, T) ~= h(u)du + BI{,,A~-=T} 
J t  

+ L(r)l{r<T, r<_a} + U(a)l{,<~}, 

where B E L2(fl) is a given ~T--measurable random variable satisfying 
L(T) ~ B ~_ U(T). Suppose that  player / /  is trying to maximize the 
payoff, while player I attempts to minimize it. Define the upper and lower 
value s of the game by 

(6.4) 

V(t) ~ essinf esssup E{RS(a,r)iJ:t},  
~ T ~'E.A4t,T 

V(t) =t' esssup essmf" E{Rff(a, T)}J:t} 

respectively; and we say that  the game has a value if V(t) = V(t) ~ V(t). 
The solution to the Dynkin game is given by the following theorem, 

which can be obtained by a line by line analogue of Theorem 4.1 in Cvitani5 
and Karatzas [2]. Here we give only the statement. 

T h e o r e m  6.1. Suppose that there exists a solution (X, Y, Z, 4) to FB- 
SDER (6.1) (with (_92(t,x) = (L(t,x),U(t,x)).  Then the game (6.3) 
with B = g(XT), h(t) = h(t, Xt,Yt,  Zt), and L(t,w) = L(t, Xt(w)), 
U(t,w) = U(t, Xt(w)) has value V(t), given by the backward component 
Y of the solution to the FBSDER, i.e. V(t) = V(t) = V_(t) = Yt, a.s., for 
all 0 < t < T. Moreover, there exists a saddle-point (at, ?t) E A/[t,T x 2eft,T, 
given by 

~ t ~ i n f { s E [ t , T ) :  ]Is=U(s, X s ) } A T ,  

~ t ~ i n f { s E [ t , T ) :  Ys= L(s, Xs)} AT, 
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namely, we have 

_< E{R  
=Yt <_ E{R~ (xr) (a, ~t)IV:t}, a.s. 

for every (a, ~-) C ./~t,T X -/~t,T. [] 

In what follows when we mention FBSDER, we mean (6.1) specified as 
that  in Theorem 6.1. 

T h e o r e m  6.2. The minimal hedging price of the American Game Option 
is greater  or equal to V(O), the upper value of the game (at t = O) of 
Theorem 6.1. I f  the corresponding FBSDER has a solution ()(, ]2 2 ,  r 
then the minimal hedging price is equal to 1)o. 

Proof: Fix the exercise times ~, T of the seller and the buyer, respec- 
tively. If Y is the seller's hedging process, it satisfies the following dynamics 
for t < T Acr AT:  

/o' /o Yt + h(s,  Xs ,  Ys, Z~)ds = ZsdWs  - it ,  

with ~ non-decreasing. Hence, the left-hand side is a supermartingale. 
Prom this and the requirement that  Y be a hedging process, we get Yt _> 
E{Rf(X~)(cr, r)lf ' t},  Vt, a.s. in the notation of Theorem 4.1. Since the 
buyer is trying to maximize the payoff, and the seller to minimize it, we 
get Yt >_ ~ .  Vt, a.s.. Consequently, the minimal hedging price is no less 
than 17(0). 

Conversely, if the FBSDER has a solution with I) as the backward 
component, then by Theorem 6.1, process 1) is equal to the value process 
of the game, and by (4.4) (with t = 0) and (2.10), up until the optimal 
exercise time ~ := 50 for the seller, it obeys the dynamics of a wealth 
process, since Ct is nondecreasing for t _< 8o. So, the seller can start  with 
]10, follow the dynamics of Y until t -- ~ and then exercise, if the buyer 
has not exercised first. In general, from the saddle-point property we know 
that ,  for any ~- E J~'0,T, 

1)~AT ~ g(XT)I{~Ar=T} 'V L(T, Xv)l{v<T,r_<~} + U(~, X~)I{~<~}. 

This implies that  that the seller can deliver the required payoff if he uses 
as his exercise time, no matter  what the buyer's exercise time T is. Con- 

sequently, 1)o = V(0) is no less than the minimal hedging price. []  



C h a p t e r  9 

Numer ica l  M e t h o d s  for F B S D E s  

In the previous chapter we have seen various applications of FBSDEs in 
theoretical and applied fields. In many cases a satisfactory numerical simu- 
lation is highly desirable. In this chapter we present a complete numerical 
algorithm for a fairly large class of FBSDEs, and analyze its consistency as 
well as its rate of convergence. We note that  in the standard forward SDEs 
case two types of approximations are often considered: a strong scheme 

(P 1 which typically converges pathwisely at a rate ( ~ ) ,  and a weak scheme 

which approximates only approximates E{f(X(T))}, with a possible faster 
rate of convergence. However, as we shall see later, in our case the weak 
convergence is a simple consequence of the pathwise convergence, and the 
rate of convergence of our scheme is the same as the strong scheme for pure 
forward SDEs, which is a little surprising because a FBSDE is much more 
complicated than a forward SDE in nature. 

w F o r m u l a t i o n  of  t he  P r o b l e m  

In this chapter we consider the following FBSDE: for t C [0, T], 

{ x J0t J0t Z(t)-- + f b ( s , O ( s ) ) d s + [  a(s,X(s),Y(s))dW(s); 
(1.1) T T 

Y(t) = g(X(T)) + ftt b(s'O(s))ds- ft Z(s)dW(s), 

where O = (X, Y, Z). We note that  in some applications (e.g., in Chapter 
8, w Black's Consol Rate Conjecture), the FBSDE (1.1) takes a slightly 
simpler form: 

{ x jot + Jot x(t) = + f f 
(1.2) T r T  

Y(t) = g(X(T))+ [ - / 
J t  J t  

That  is, the coefficients b and/~ do not depend on Z explicitly, and often in 
these cases only the components (X, Y) are of significant interest. In what 
follows we shall call (1.2) the "special case" when only the approximation 
of (X, Y) are considered; and we call (1.1) the "general case" if the approx- 
imation of (X, ]I, Z) is required. We note that  in what follows we restrict 
ourselves to the case where all processes involved are one dimensional. The 
higher dimensional case can be discussed under the same idea, but techni- 
cally much more complicated. Furthermore, we shall impose the following 
standing assumptions: 
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(A1) The functions b, b and a are continuously differentiable in t and twice 
continuously differentiable in x, y, z. Moreover, if we denote any one of 
these functions generically by r  then there exists a constant c~ E (0, 1), 
such that  for fixed y and z, r  y, z) E C1+~'2+% Furthermore, for some 
L > 0 ,  

I1r ", Y, Z)ll~,2,~ < L, V(y,z) E ~2.  

(A2) The function a satisfies 

(1.3) # _< e(t ,  x, y) < C, V(t, x, y) e [0, T] x 1R 2, 

where 0 < it _< C are two constants. 

(A3) The function g belongs boundedly to C 4+~ for some a C (0, 1) (one 
may assume that  a is the same as that  in (A1)). 

It is clear that  the assumptions (A1) (A3) are stronger that  those in 
Chapter  4, therefore applying Theorem 2.2 of Chapter 4, we see that  the 
FBSDE (1.1) has a unique adapted solution which can be constructed via 
the Four Step Scheme. That  is, the adapted solution (X, Y, Z) of (1.1) can 
be obtained in the following way: 

{ /0 /0 (1.4) X( t )  = x + /~(s, X(s ) )d s  + ~(s, X ( s ) ) d W ( s ) ,  

Y ( t )  = O(t ,X(t)) ,  Z(t)  = a ( t ,X ( t ) ,O( t ,X ( t ) )Ox( t ,X ( t ) ) ,  

where 

/,(t, x) = b(t, ~, o(t, x), ~(t, x, o(t, x))o~ (t, x))) ,  
,~(t, x) = o - ( t , x ,e ( t , x ) ) ;  

and 0 E C l+~'2+a for some 0 < a < 1 is the unique classical solution to 
the quasilinear parabolic PDE: {1 

Ot + -~a(t,x,O) 0 ~  + b(t,x,O,~(t,x,O)O~)O~ 

(1.5) +b(t ,z ,O,~(t ,z ,O)O~) = O, ( t ,x)  �9 (O,T) x a ,  

O(T, ~) = 9(~), x e a .  

We should point out that,  by using standard techniques for gradient esti- 
mates, that  is, applying parabolic Schauder interior estimates to the differ- 
ence quotients repeatedly (cf. Gilbarg & Trudinger [1]), it can be shown 
that  under the assumptions (A1)-(A3) the solution 0 to the quasilinear 
PDE (1.5) actually belongs to the space C2+~ '4+a. Consequently, there 
exists a constant K > 0 such that  

(1.6) I ] 0 l l o~+ l l 0 t l l ~+ l l 0 t t l l ~+ l l 0~ l l ~+ l l 0~ l l ~+ l l 0~ l l ~+ l l 0~ l l ~  < .~. 

Our line of attack is now clear: we shall first find a numerical scheme 
for the quasilinear PDE (1.5), and then find a numerical scheme for the 
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(forward) SDE (1.4). We should point out that  although the numerical 
analysis for the quasilinear PDE is not new, but the special form of (1.5) 
has not been covered by existing results. In the next Section 2 we shall study 
the numerical scheme of the quasilinear PDE (1.5) in full details, and then 
in Section 3 we study the (strong) numerical scheme for the forward SDE 
in (1.4). 

w Numerica l  Approximations  of  the Q u a s i l i n e a r  P D E  

In this section we study the numerical approximation scheme and its con- 
vergence analysis for the quasilinear parabolic PDE (1.5). We will first 
carry out the discussion for the special case completely, upon which the 
study of the general case will be built. 

w A spec ia l  case  

In this case the coefficients b and b are independent of Z, we only ap- 
proximate ( X , Y ) .  Note that  in this case the PDE (1.5), although still 
quasilinear, takes a much simpler form: 

o~ + ~ ( t ,  x, o)%~ + b(t, x, o)ox + ~(t, ~, o) = o, t �9 (o, T), 
(2.1) [ O(T,  x )  = g(x), x �9 IR. 

Let us first standardize the PDE (3.1). Define u ( t , x )  = O(T  - t ,x) ,  
and for ~ = a, b, and/~, respectively, we define 

~(t, x, y) = ~(T - t, ~, y), V(t, ~, y). 

Then u satisfies the PDE 

(2.2) { u(o,U~ - x)l~(t' x' u ) ~ 2  = ~(x). - ~(t, ~, ~ ) ~  - ~(t, ~, ~1 = o; 

To simplify notation we replace 9, b and ~ by a, b and b themselves in 
the rest of this section. We first determine the characteristics of the first 
order nonlinear PDE 

(2.3) u t  - b( t ,  x ,  u ) u x  = O. 

Elementary theory of PDEs (see, e.g., John [1]) tells us that  the character- 
istic equation of (2.3) is 

d e t [ a i j t ' ( s )  - 5 i j x ' ( s ) l  = O, s >__ O, 

where s is the parameter  of the characteristic and ( a i j )  is the matrix 

- b ( t ,  x ,  u )  . 
- 1  
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In  o ther  words,  if we let p a r a m e t e r  s = t, then  the character is t ic  curve C is 
given by  the  ODE:  

(2.4) ~'(t)  = b(t, x ( t ) ,  ~(t ,  x( t )  ). 

Fur ther ,  if we let 7 be the  arc length of C, then  aiong C we have 

d T =  [1 + b 2 ( t , x , u ( t , x ) ) ]  �89 

and 

O~- - r  , 

where  r  = [1 + b 2 ( t , x , u ( t , x ) ) ]  �89 Thus,  along C, equat ion (2 .2 ) i s  
simplified to 

(2.5) 
r  l ~ 2 ( t , x , u ) u ~ + g ( t , ~ , ~ ) ;  

-~v = z 
, ~(o, ~) = g(~).  

We shall design our numerical  scheme based on (2.5). 

w N u m e r i c a l  s c h e m e  

Let  h > 0 and At  > 0 be fixed numbers .  Let xi  = ih ,  i = 0 , + 1 , . . - ,  
and  t k : k A t ,  k = 0, 1 , - - . ,  N ,  where t N : T .  For a funct ion f ( t ,  x ) ,  let 
f k ( . )  = f ( t  k, .); and let fk  = f ( t  k, x i )  denote  the grid value of the funct ion 
f .  Define for each k the  app rox ima te  solution w k by the following recursive 
steps: 

0 Step  0: Set w i = g(xi) ,  i . . . .  , - 1 , 0 ,  1 , . . . ;  use linear in terpola t ion to 
ob ta in  a funct ion w ~  defined on x C JR. 

Suppose  t ha t  w k-1 (x) is defined for x C JR, let w k-1 = w k - l ( x i )  and 

, k--1 wk--l~.  Ak ~( t  k, wk--l~.  b ~ = b ( t  k x~,w~ ); ~=o( tk ,x~ ,  ~ ,, b~ = ~ ,  , , ,  

-~ b~At, ~-~ = w~-l( ~); (2.6) x i = x i  - 2 k 
2 k ~(~)~ = h-~[~+~ - 2w~ + ~ L d .  

Step  k: Obta in  the grid values for the k- th  s tep app rox ima te  solution, 
denoted  by {w~}, via  the following difference equation:  

k _ ,t~/k--1 1 
(2.7) wi �9 _ k 2 ~ a 

At 2(~,~) ~(~), + (~)~; - ~ < i < ~ ,  

Since by our  a s sumpt ion  G is bounded  below posit ively and b and g are 
bounded ,  there  exists a unique bounded solution of (2.7) as soon as an 
evaluat ion  is specified for w a-1 (x).  

Finally, we use l inear in terpolat ion to extend the grid values of 
k {w i } i = _ ~  to  all x C R to obta in  the k- th  s tep app rox ima te  solution wk(-). 
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Before we do the convergence analysis for this numerical scheme, let 
us point out a s tandard localization idea which is essential in our future 
discussion, both  theoretically and computationally. We first recall from 
Chapter  4 that  the (unique) classical solution of the Cauchy problem (2.2) 
(therefore (2.5)) is in fact the uniform limit of the solutions {u R} (R --+ oc) 
to the initial-boundary problems: 

(2 .2 )~  

1 2 - / u, - ~ ( t ,  x ,  u) ~x~ - b(t, x, ~)u~ - ~(t,  ~, ~) = 0, 

t ~ ( t , x )  = g (x ) ,  Ixl = R,  0 < t < T. 

It  is conceivable that  we can also restrict the corresponding difference equa- 
tion (2.7) so tha t  - i 0  ~ i ~ io, for some i0 < co. Indeed , if we denote w i~ 
to be the following localized difference equation 

(2.7)io 

k - k - 1  1 w~ - w ~  k 2  2 (~)~; 
- ( ~ )  5 x ( w ) ~ +  

hu  2 
o g(xi) ,  - i 0  < i < i0; W i ~ _ _ 

wk. io = g(x• o), k = 0 , 1 , 2 , - " ,  

- i 0  _<i _<i0, 

c i o ~ k ~  k is the uniform limit of twi L then by (A1) and (A2), one can show that  w i 
as io --+ co, uniformly in i and k. In particular, if we fix the mesh size h > 0, 
and let R = ioh, then the quantities 

(2.8) max lu ( t k , x~ )  -- wk[ and max ]uR(tk,xi)  _ wi~O,k 
i - - i o ~ i < _ i o  

differ only by a error tha t  is uniform in k, and can be taken to be arbitrari ly 
small as i0 (or ioh = R)  is sufficiently large. Consequently, as we shall see 
later, if for fixed h and At  we choose R (or io) so large that  the error 
between the two quantities in (2.8) differ by O(h  + [Atl) , then we can 
replace (2.2) by (2.2)R, and (2.7) by (2.7)~ o without changing the desired 
results on the rate  of convergence. But on the other hand, since for the 

i o , k  localized solutions the e r r o r  l u R ( t  k ,  x=t=io) --  w •  o I - -  0 for all k = 0, 1, 2,- .  -, 

the max imum absolute value of the error ]u R ( t k, xi ) - w ~  ~ ], i = - i 0 , - ' - ,  i0, 
will always occur in an "interior" point of ( - R ,  R). Such an observation 
will be particularly useful when a maximum-principle argument  is applies 
(see, e.g., Theorem 2.3 below). Based on the discussion above, from now on 
we will use the localized version of the solutions to (2.2) and (2.7) whenever 
necessary, without further specifications. 

To conclude this subsection we note tha t  the approximate solutions 
{wk(.) are defined only on the times t = t k, k = 0, 1 , - - - , N .  An approxi- 
mate  solution defined on [0, T] • ]R is defined as follows: for given h > 0 
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and At  > 0, 

(2.9) w h , A t ( t , x )  = E W k ( x ) l ( t ~ - l  tk](t), t �9 (0, T]; 
k = l  

w ~  t = O. 

Clearly, for each k and i, w h ' A t ( t k , x i )  = W/k, where {w~} is the solution to 
(2.7). 

w E r r o r  ana lys i s  

We first analyze the approximate solution {wk(.)}. To begin with, let us 
introduce some notations: .for each k and i, let 

(2.1o) xi-k ~=xi - b ( t k , x . u ~ - l ) A t ,  u~-~-I ~ u(t~-l ,  ~ ) .  

Let {x(t) : t k-1 < t < t k} be the characteristic such that  x ( t  k) = x~. That  
is, by (2.4), 

t k i '  

x ( t )  = x i  - I t  b(s, x ( s ) ,  u ( s ,  x ( s ) ) ) d s ,  t k-1  < t < t k. 

Denote 2 = x(tk-1).  It is then easily seen that  

sup Ix(t)-  zil < IlblloozXt; 
t k_ l  <_t<t~ 

t ~ 

]~k i -- "21 < / Ib(tk,zi,uki -1) - b ( t , x ( t ) , u ( t , x ( t ) ) ) l d t  
J t k - 1  

_< {llbtlloo + Ilbxll~llblloo + ]lb=ll~(llutll~ + Ilu~ll~llblloo)} zxt2 

To simplify notations from now on we let C > 0 to be a generic constant 
depending only on b, b, a, T, and the constant K in (1.6), which may vary 
from line to line. Thus the above becomes 

(2.11) sup Ix(t) - xi l  < C A t ;  Ifcki -- ~2] <_ C A t  2. 
t k - l<t<_t  ~ 

We now derive an equation for the approximation error. To this end, 
-k defined by (2.10); and note that  along the characteristic recall 5: and x i 

curve C, 

r Ou ~ r u ( t k , x )  -- u ( t  k - l , ~ )  u ( t k , x )  -- - - - - _  ~ - -  

__ u ( t  k , x )  --  u ( t  k - l , ~ )  

A t  

The solution of (2.5) thus satisfies a difference equation of the following 
form: f o r - c ~ < i < o o a n d k = l , - . - , N ,  

k - k - - 1  
(2.12) u~ - u  i 1 k 2 2 k 

At - 5 (~(~)~) ~x(u)i +b(~)~ + ~ '  
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~k -k-1  = u k - l ( ~ )  and b(u)~ and a(u) k correspond to b i and ai k where u i 
defined in (2.6), except that the values {w~ -~} are replaced by LIuk-~I'~ J, eik 
is the error term to be estimated. We have the following lemma. 

L e m m a  2.1. There exists a constant C > O, depending only on b, b, 
a, T, and the constant K in (1.6), such that for a11 k = O , . . . , N  and 
- c o  < i < o% 

I~I _ C(h  § At) .  

Pro@ First observe that at each grid point (t k, xi) 

ou = 1o2(t~ u~)u= (~,~,)+~(t~,~,u~). r xd b--;~ (t~,~,) , x .  

Therefore, for - o c  < i < 0% k = 1 , . . - ,  N, 

k uk -- Ui 
ei = h~ r  ,~,) 

-t-{ 1 2 k=6r2  (t ,Xi,Ui)Uxx[k I ( t  k ,~)" ~(a(u)i)l k 252 (U)ik ~j 

We estimate I l 'k,  I~ 'k and I~ 'a separately. Recall that  C will denote 
a generic constant that  might vary from line to line. Using the uniform 
boundedness of by and us we have 

IZg'k I = Ib(t k, x~, u~) - b(t k, x,, u~-~)l --- C A t ,  (2.13) 

Similarly, 

(2.14) 

l { l a 2 ( t k , x i , u ~  ) 2 k k -1  �9 ll~'kl ~ ~ - ~  (t ,x~,~ ) l l~=(tL~dl  

Ui+l h2 - } + la2 ( t k , x i , u~ - l ) l  u x ~ ( t k , x d  -- k -- 2u~ + u~ 1 

<_ C(Nutll~oAt + l l u~ l l~h )  <_ C(h  + At). 

To estimate//1 'k we note from (2.11) that 

(2.15) 
u ( t k - l , 2 )  - u f t  k-1 .2k. ~ Ilu~[Io~[2 - Y~l 

' ~J < < C A t ,  
A t  - A t  - 

On the other hand, integrating along the characteristic from (t k- l ,  2) to 
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(t k, xi), we have 

~(t~,~) -~( tk- ' ,~ )  = _1 [ ~  d 
At At Jtk_~ -~u(t, x(t) )dt 

= A-t Jut - b(.,., u)u~](t, x(t))dt 
--1 

(2.16) 

=lAt  L 't~_~ L[r (t,x(t))dt 

c92u 
Since along the characteristics ~ T  2 depends on utt, ut~ and u~z and b, 
which are all bounded, one can easily deduce that  

(2.17) ~ S f  k_~ {L[r [r  dt _ < C ( h +  At), 

Combining (2.11) (2.17), we have 

is l , i  < ~( tk ,~) -~( t~-~ ,~)  [ ]0~ ( t ~ )  + ~(tk,x,)-~-' 

< C(h + At), 

proving the lemma. [] 

We are now ready to analyze the error between the approximate solu- 
tion wh'At(t, X) and the true solution u(t, x). To do this we define the error 
function ~(t,x) : u(t,x) -wh'At(t,x) for (t,x) e [0, T] • ~ ;  as before, let 

k _ w k. We have the following theorem. Ct : r k, x~) : ~ 

T h e o r e m  2.2. Assume (A1)--(A3). Then 

sup Ir = co(h + At) 
k , i  

Proof. First, by subtracting (2.7) from (2.12), we see that  {(k} satisfies 
the difference equation 

r = o. 

Since 

-k--, __?~k--1 : [~t( tk- l ,~k)  __u{tk--1 :~k'll+ [u(tk--l , :~k)__wk--l(~/k)] 
U i  k , z 23 

: 4-i k-1 -F [u(t k-I , :xki) -- u(t k-1 :~']] 
k , i ]3~ 



w Numerical  approximation of the quasilinear P D E  243 

w h e r e  r  = u(tk-1,  ~ )  _ wk-1 (2ki), and 

k 2 2  k k 2 2  (~(~)+) 5x(~)+ -- (~+) 5~(W)~ 
k 2 2 k [~72(tk,xi,uki - 1 ) - ( ~ 2 ( t k  X" wk-l~]~2{U ~k = ( ~ +  ) ~ ( r  + , , , ,  + ,~ ~ ,  ,+ ,  

w e  can  r e w r i t e  (2 .18)  as 

{r _r 1 k 2 2 k ek 
(2 .19)  A t  - 2 ( a i )  5~(~)+ + I k +  +, 

r = o, 

where 

At  
1 2 k k--1 , k--1 2 k [~(u)k ~/k]. +~[o (t , .+,u+ ) - ~ 2 ( t k  =+,~+ )]ax(-)+ + 

I t  is clear tha t ,  by (1.6) and (2.11), for some cons tant  C > 0 tha t  is inde- 
penden t  of k and i, it holds t ha t  

1 2 k k - ,  2 k s  2 s [~(?/,)k U/k] ~ c l ( k - l l ,  ~[~ (t ,~+,~+ ) - ~  (t ,x+,~+ )]a~(~)+ + - 

u(tk--1 ~k~ u(tk-1 2k]j I ~ , i ] - -  ~ , i] < C A t  
A t  - " 

Consequent ly  we have 

(2.20) lJ?l -< C( I r  + At) .  

Now by (2.19) we have 

1 k 2 2 + e k } A t .  

Consider ing the  "localized" solution of u (described in the previous sub- 
section) if necessary,  we assume wi thout  loss general i ty  t h a t  the  maxi-  

k where  m u m  absolute  value of Ck occurs a t  an "interior" mesh point  zi(+) , 

- R  < i ( k ) h  < R for some large R > 0. Now, if we set IlCkll = max+ [~kl, 
then  a t  i ( k )  we have 2 k 5,(~)+(k) _< 0. Applying  L e m m a  2.1 and (2.20) we 
have 

IICkll ___ m~x ICP-tI + miax {1I~1 + lePl}At 
(e,21) 

_< m a x  ICk-11 + CIIC k-111At + C ( h  + A t ) A t ,  

where  C is again a generic constant .  Note t h a t  the  cons tant  C is indepen-  
dent  of the  localization,  therefore by tak ing  the limit we see t ha t  (2.21) 
should hold for the  "global solution" as well. 
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In order to est imate m a x i  It/k-l[, we let I i(u)(t  k, .) denote the linear 
interpolate of the grid values k oo {ui }i=-~o and w k (-) the linear interpolate of 

k oo {wi }i=-oo, then 

(2 .22)  m~xlr < m~xK~-~l + maxlu(tk-l ,~ki)  -- I i(u)(tk-l ,~ki)  I. 

Apply the Peano Kernel Theorem (cf. e.g., [ ]) to show tha t  

m~x lu(t k-x,  ~ )  - Ix (u)(t k-x,  ~ ) I  <- Ch*h, 

where h* = O(At)  and C > 0 is independent of k and i. This, together 
with (3.27), amounts  to saying tha t  (2.21) can be rewrit ten as 

[lck[[ _< liCk-x[] + ClICk-lllAt + C(h + At)At ,  
(2.23) 

: I[~k--1H(1 -~- CAt)  + C(h + At)At ,  

where C is independent of k. It then follows from the Gronwall lemma and 
the bound on H~~ tha t  [[~k[[ < C(h + At), proving the theorem. []  

w T h e  a p p r o x i m a t i n g  s o l u t i o n s  {u(n)}~~176 1 

We now construct  for each n an approximate solution u (~) as follows, for 
each n �9 N let At  = T/n ,  and h = 2[[b[looAt. Since h > C A t  implies tha t  

-k do not go beyond the interval k k [ ~  x~ I _< [[b[l~At < h, x i - -  ( X i _ _ l ,  X i + I )  for 
each i. Now define 

(2.24) u(~)(t,x) = W2"b~~176 (t,x), (t,x) �9 [0,T] x JR, 

where w h'At is defined by (2.9). Our main theorem of this section is the 
following. 

T h e o r e m  2.3. Suppose tha t  (A1)--(A3) hold. Then, the sequence 
{It (n) ( ' ,  ") } enjoys the following properties: 

(1) for fixed x �9 ~ ,  u (n) (., x) is left continuous; 
(2) for fixed t �9 [O,T], u(n)(t, .) is Lipschitz, uniformly in t and n (i.e., 

the Lipschitz constant is independent o[ t and n); 
(3) supt,~ lu(~)(t,x) - u(t,x)] = 0 ( ~ ) .  

Proof. The property (1) is obvious by definition (2.9). To see (3), we 
note tha t  

N 

u ('0 (t, x ) - u ( t ,  x) = [w ~ (x) -u(O,  x)] 1{o} ( t ) + E [ w  k ( x ) - u ( t ,  x)] l(tk-l,tk] (t). 
k = l  

Since for each fixed t �9 (t k - l ,  tk], k > 0 or t = 0, we have u(~)(t, x) = wk(x) 
f o r k > O o r k = O i f t = O .  Thus, 

sup Iwk(x)  - u(t, x)l 
x 

_< liCk i[ + sup 111 ( u ) ( t  k , X)  --  u(t k , x)[ + sup [u(t k, x) - u(t, x)[ 
x x 

< [](k H + o(h + At) + [[utllooAt = O(h + At) = O ( 1 ) ,  
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by virtue of Theorem 2.2 and the definitions of h and At. This proves (3). 
To show (2), let n and t be fixed, and assume that  t E (t k, tk+l]. Then, 

u (n) (t, x) = w k (x )  is obviously Lipschitz in x. So it remains to determine 
the Lipschitz constant of every w k . Let x I and x 2 be given. We may assume 
tha t  x 1 E [xi,xi+l) and x 2 E [xj ,x j+l)  , with i < j .  For i < g < j - 1, 
Theorem 2.2 implies tha t  

lwk(x~) - wk(x~+l ) l  < Iwk(x~) - u ( t k , ~ ) l  

(2.25) -{-lu(tk,xg) --~t(tk,xg+l)l ~- lu(tk ,xt+l)  --wk(xe+l)l  

<-- 21[~kl] + IlUxllccIXe -- Xg+ll _< K h  ---- K(Xe+l - xg), 

is a constant independent of k, g and n. Further, for x 1 E where K 
[xi, x i + l ) ,  

~ k ( : ? )  = w k ( X i + l )  + w k ( ~ i + l )  - w k ( z i )  (x 1 _ x i + l ) .  
Xi+ 1 -- X i 

Hence, 

I w k ( x  1) - - w k ( x i + l ) l  --~ w k ( x i +  1) - - w k ( x i )  ix 1 
Xi+l  Xi -- X i+l l  ~__ M i x  I - Xi+l l  , 

where K is the same as that  in (2.25). Similarly, 

Iwk(x ~) - w k ( x j ) l  <_ N i x  2 - x j l .  

Combining the above gives 

Iwk(x 1) -- wk(x2)I 

j--1 
~--Iwk(xI) -- wk(xi-I-i)l -~ E Iwk(xg) -- wk(xg+i)l "-[- Iwk(xj) -- wk(x2)I 

g=l 
j--1 

~ K { ( X i + l  - x l ) - ~ E ( X g + l  - x ~ )  ~- (x2 - x j~_ l ) }  : N i x 2 -  xl I. 
g=l 

Since the constant K is independent of t and n, the theorem is proved. 
[ ]  

w G e n e r a l  case  

In order to approximate  the adapted solution | = (X, Y, Z) to the general 
FBSDE (1.1), we need to approximate  also component Z. In fact this com- 
ponent  is particularly important  in some application, for ~nstance, it is the 
hedging s t rategy in an option pricing problem (see Chapter  1). The main 
difficulty is, in light of the Four Step Scheme, we need also to approximate  
the derivative of the solution 0 of the PDE (2.4), which in general is more 
difficult. Our idea is to reduce the PDE (2.4) to a system of PDEs so tha t  
0~ becomes a par t  of the solution but not the derivative of the solutions. 
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To be more precise let us assume that  b and/~ both depend on z, thus 
PDE (2.4) becomes 

0 = 01 + la2(t,x,O)O~ + b(t,x,O,-a(t,x,O)O~)O~ 
2 

(2.25) + b(t, x, 0, - a ( t ,  x, 0)0~); 

O(T, x) : g(x). 

Define bo and bo by 

(2.26) 
bo(t,~,v,~) = b ( t , x , v , -~ ( t ,~ , y )~ ) ;  

~0(t, x, v, z) = ~(t, ~, y, -~ ( t ,  ~, y)z). 

Bo(t ,x ,y ,z)  = a(t,x,y)[a~(t,x,y) + ay(t,x,y)z] + b(t ,x,y,z)  
A 

+ b~(t ,x ,v ,z)  + b~(t, ~,v,  z); 

(2.29) Bo(t ,x ,y ,z)  [b~(t,x,y,z) + by(t,x,y,z)z]z + b(t ,x ,y ,z)z  

+bx(t ,x ,y ,z) .  

We should point out that ,  unlike in the previous case, the functions B0 
and/3o  in (2.29) are neither uniformly bounded nor uniformly Lipschitz, 
thus more careful consideration should be given before we make arguments 
parallel to the previous special case. First let us modify (2.29) as follows. 
Let K be the constant in (1.6) and let ~ g  6 C~(IR) be a "truncation 
function" such that  ~ K ( Z )  = Z for Izl < K, r  = 0 for Izl > K + 1, and 
I~ : (z ) l  ~ C for some (generic) constant C > 0. Define 

BoK(t,x,y,z) ~=Bo(t,x,y,~g(z)); BoK(t,x,y,z) A=Bo(t,x,y,gg(z)). 

where 

One can check that,  if a, b and b satisfy (A1)-(A3), then so do the functions 

a, bo and b0. Further, if we again set u(t,x) = O(T - t,x), V(t, x), then 
(2.25) becomes 

1_ 2 
(2.27) u~ = ~ (t ,x,~)u~x + ~o( t ,x ,u ,u~)~  +~o(t ,x ,u ,~x) ;  

~(0, x) = 9(x). 

We will again drop the sign ..... in the sequel. Now define v(t, x) = Ux(t, x). 
Using standard "difference quotient" argument (see, e.g., Gilbarg-Trudinger 
[1]) one can show that  under (A1)-(A3) v is a solution to the "differenti- 
ated" equation of (2.27). In other words, (u, v) satisfies a parabolic system: 

[ ut = l~2(t ,x,u)uxz + bo(t,x,u,v)u~ + bo(t,x,u,v); 

(2.28) ] vt = l~2( t , x ,u )v~  + Bo(t,x,u,v)v~ + Bo(t,x,u,v); 
! 

( ~(o, ~) = g(~), v(o, x) = 9'(~), 
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Then Bo g and Bog are uniformly bounded and Uniform Lipschitz in all vari- 
ables. Now consider the "truncated" version of (2.28), that  is, we replace B0 

and/~0 by Bog and BOg in (2.28). Applying Lemma 4.2.1 we know that  this 
t runcated version of (2.28) has a unique classical solution, say, (u K, vK),  
that  is uniformly bounded. But since IIv[l~ _< K by (1.6), (u, v) is also a 
(classical) solution to the truncated version of (2.28), thus we must have 
(u, v) - (u K, v K) by uniqueness. Consequently, we need only approximate 
the solution to the truncated version of (2.28), which reduces the technical 
difficulty considerably. For notational simplicity, from now on we will not 
distinguish (2.28) and its truncated version unless specified. In fact, as we 
will see later, such a truncation will be used only once in the error analysis. 

w N u m e r i c a l  s c h e m e  

Following the idea presented in w we first determine the characteristics 
of the first order system 

ut - bo( t ,x ,u ,v )u~ = 0; 

vt - Bo( t ,x ,  u, v)v~ = O. 

It is easy to check that  the two characteristic curves Ci : (t, xi(t)) ,  i = 1, 2, 
are determined by the ODEs 

dXl (t) = bo(t, xl  (t), u(t, x l ( t ) ) ,  v(t, xl  (t)))dt; 

dx2 (t) = Bo (t, x2 (t), u(t, x2 (t)), v(t,  x2 (t)))dt. 

Let ~-1 and 72 be the arc-lengths along Cl and C2, respectively. Then, 

dT1 = r  xl( t))dt;  d~-2 = r  

where 

r  = [1 + b2( t , x ,u ( t , x ) , v ( t , x ) ) ] l /2 ;  

r  = [1 + B~o(t ,x ,u( t ,x ) ,v( t ,x ) )]  1/2. 

Thus, along C1 and C2, respectively, 

r o 

and (2.28) can be simplified to 

{~21 0U 
(2.30) ~ = ~ a 2 ( t ' x ' u ) u ~  + bo(t ,x ,  u, v); 

Ov 1 
= 

N u m e r i c a l  S c h e m e .  

For any n C IN, let At = T / n .  Let h > 0 be given. 
k -- 0, 1 ,2 , . - - ,  and xi = ih, i . . . .  , - 1 , 0 ,  1, . . - ,  as before. 

Let t k = k A t ,  
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Step 0: Set U ~ = g(xi) ,  Vi ~ = g ' (xi) ,  Yi, and extend U ~ and Y ~ to all x C R 
by linear interpolat ion.  

Next ,  suppose tha t  U k - l ,  V k-1 are defined such tha t  U k-1 (xi) = U~ -1, 
V k-1 (x~) = V~ k - l ,  and let 

A k ( b ) ,  = bo( tk , x,, U~ -1 , Y~k-1); 
k uk -1  v.k-l~.  (B0)~ =~0( tk ,x~ ,  i , ~ ,, 

(2.31) a~ = a( tk , x i ,  U~-I ) ;  

-k U.k-1 v_.k-l~At. X i : x i + b o ( t k , x i ,  ~ , , ; , 

-k , Uk-1 Vik-1)At, x i = x ~ + B o ( t  k xi,  ~ , 

and 0~-1  = Uk-lC~k~ ~k-1  = v , - l ( ~  5 \ ~ ] '  

Step k: Determine  the k-th step grid values ( u k , v  k) by the system of 
difference equat ions 

[g?-0~ 
-i  1(~,) 5~(u)~+(bL;  

_ _  k 2 2 A k 

- - A t ~  2 
(2.32) Vik - -  ~/k-1 1 k 2 2 k ~ k 

At - 2 ( ~ )  ~ ( y ) ~  + (BoL. 

We then  extend the  grid values {U/k } and {V~ k } to the functions Uk(x)  and 
V k (x), x E ~ ,  by linear interpolat ion.  

w Error a n a l y s i s  

We follow the arguments  in w First,  we evaluate the first equat ion in 
(2.30) along C1 and the second one along C2 to get an analogue of (2.12): 

k ~ k - - 1  
~t i --  ~t i 1~6r~ ~kx2(~2~ t~k  k 

h7  = ~  ~J,J ~t j~+~o(~,~)~+(elL; 

V/k--~ k-1 1 k 2 2 
z~t 2 (~(~L)  ~ (~)~ + ~o(~,  v)~ + (e~)~, 

k = u(t  k, Xi), V k = v(t  k, Xi) (recall t ha t  (u, v) = (u, u~) is the t rue  where u i 
solution of (2.29)), and u i~k-~ = u(tk-~,  xi) ,  v'i k = v( t  k-~, x i) ,  with 

xi~k = xi + bo( t k , x i , uk - l , vk i -1 )A t ;  xî k = Xi + B o ( t k , x i , u k - l , v k - 1 ) A t .  

Also, a(u) k, bo(u,v)  k and Bo(u,v)~k are analogous to ai,k (b0)~k and (Bo)i , ~  k 
except  tha t  U k-~ and Vi k-~ are replaced by u k-~ and v k-~. 

Es t imat ing  the  error {(e~) k} and {(e~) k) in the same fashion as in 
L e m m a  2.1 we obtain tha t  

(2.33) sup{l(e~)~l + l(e~)~l} < O(h + At) .  
k,i  
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We now define as we did in (2.9) the approximate solutions U (n) and 
V (~) by 

{ s uk(x)l((%.. ~](t), 
U ( n ) ( t , x )  = k=~ 

U~ t = 0; 
(2.34) 

V ( n ) ( t , x )  = = Vk(x) l ( (~-~)~ ,~- l ( t ) '  

( V~ t = o. 

t �9 (0, T]; 

t �9 (0, T]; 

Let ~( t ,x )  = u ( t , x )  - Un( t , x )  and ~(t,x) = v ( t , x )  - V '~( t ,x) .  
derive the analogue of (2.19): 

{~ k _ ~-i 1 k 2 2 k (/1)/k + (el)k; 
-hT-- = 2 (0.~) 5~(~)~ + 

~k __ ~/k--1 1 (0.k~2~2 (/.~k k k 
At  2 '  ' '  ~x,- , ,  + (I2)i + (e2)i, 

where 

We can 

u( tk-1  ~ k ~ _  u( tk-1  2k~ 
( I 1 ) ~ =  ' ' " ' ' ' ' + [ ~ o ( u , v ) ~ - ( b o ) ~ A  k] 

At 
k--1 O_2 k--1 2 k + [0.2(tk,x~,u~ ) -  (tk,x.R )]5~(u)~; 

v(tk-1 ~k~_ v(tk-~ ~) (4)~= ' ' ~ '  ' +[~o(~,v)~-(Bo)~^ k] 
At 

k--1 2 k + [a2( t k , x i , vk i -1 ) - -0 .2 ( t k , x i , v /  )]bx(V)i ; 

Using the uniform Lipschitz property of b0 in y and z, one shows that  

k--1 (2.35) I ( /1)k l  _<C2{l~i I + l ~ k - Z l } + C 3 ( h + A t ) ,  Vk, i. 

To estimate (I2) k, we will assume that  ({U~}, {V/k}) is uniformly bounded, 
otherwise we consider the truncated version version of (2.28). Thus ~ g  is 
uniform Lipschitz. Thus, 

- (Bo)~l < C4(l~i I+  Ir I), vk,i, 

where C4 depends only on the bounds of u, v, {U~}, {Vik}, and that  of 0., 
b, b and their partial derivatives. Consequently, 

! k--1 k--1 ' (h + At),  Vk, i. (2.36) 1(4)}1 < C~{l~ I+  I~:~ I} +63 
Use of the maximum principle and the estimates (2.33), (2.35) and (2.36) 
leads to 

ll~kll < II~k-lll + c~(ll~k-lll + II<k-~N)At + C~(h + A t ) A t ;  

IlCkll _< IlCk-~ll + C~(ll~k-lll + I I<k-' l l)At + C'~(h + At)At; 
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Add the two inequalities above and apply Gronwall's lemma; we see that  

sup(H~kI[ + IIckil) = V(h + At). 
k 

Applying the arguments similar to those in Theorem 2.3 we can derive the 
following theorem. 

T h e o r e m  2.4. Suppose that (A1)-(A3)  hold. Then, 

-u(t, z)] + IV(~)(t,x) -u~(t,z)[} = O(1) .  sup { ]V(n) (t, x) 
(t,~) n 

Moreover, for each fixed x E IR, U (n) (., x) and V (~) (., x) are left-continuous; 
for fixed t C [0, T], U (~) (t, .) and V ('~) (t, -) are uniformly Lipschitz, with the 
same Lipschitz constant that is independent of n. 

w Numer ica l  Approx imat ion  of  the Forward SDE 

Having derive the numerical solution of the PDE (1.5), we are now ready 
to complete the final step: approximating the Forward SDE (1.4). Recall 
that  the FSDE to be approximated has the following form: 

/0 (3.1) Xt = x + s, Xs)ds  + ~(s, Xs)dWs,  

where 

b(t, x) = b(t, x, O(t, x), - a ( t ,  x, O(t, x)O~ (t, x)) = bo (t, x, O(t, x), O~ (t, x)); 

~(t ,  x) = ~(t ,  x, o(t ,  ~)). 

for (t, x) e [0, T] • IR. 
To define the approximate SDEs, we need some notations. For each 

n E IN, set At~ = T / n ,  t ~,k = kAtn,  k = 0 , 1 , 2 , . . . , n ,  and 

n- -1  

(3.2) ~/n(t) = Etn'kl[tn.~,t~.k+x)(t), t �9 [0, T); 
k = 0  

gn(T) = T. 

Next, for each n, let (U (n), V (n)) be the approximate solution to the PDE 
(1.5), defined by (2.35) (in the special case we may consider only u (n) 
defined by (2.24)). Set 

(3.3) o~( t , x )  = U(~) (T  - t , x ) ,  on ( t ,~ )  = V ( n ) ( T  - t , x ) ,  

and 

bn(t,x) = bo(t,x, On(t,x),O'~(t,x)); ~ ( t , x )  = a( t ,x ,  On(t,x)). 

By Theorem 2.4 we know that  0 = is right continuous in t and uniformly 
Lipschitz in x, with the Lipschitz constant being independent of t and n; 
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thus, so also are the functions ~n and yn. We henceforth assume that there 
exists a constant K such that, for all t and n, 

(3.4) Ibn(t,x) - b n ( t , x ' ) l  + I~n(t,x) - ~ n ( t , x ' ) l  _ K I x -  x'l, x,x '  e IR. 

Also, from Theorem 3.4, 

(3.5) sup(b~( t ,x ) -b( t , x ) l '+supl~n( t ,x ) -~( t ,x ) l  = O(1) .  
t,~ t,x 

We now introduce two SDEs: the first one is a discretized SDE given 
by 

(3.6) 2 / ~ = x +  g"(.,2?Lo(s)as + ~(.,2~),~(s)aw~, 

where ~n is defined by (3.2). The other is an intermediate approximate 
SDE given by 

// // (3.7) X~ = x + b~(s, X2)ds + Yn(s, X2)dW~. 

It is clear from the properties of ~n and ~n mentioned above that both 
SDEs (3.6) and (3.7) above possess unique strong solutions. 

We shall estimate the differences )(~ - X~ * and X n - X,  separately. 

L e I n m a  3.1. Assume (A1)--(A3). Then, 

E {  sup I X T : - X : I  2} = 0 ( 1 ) .  
O<t<T 

Proof. To simplify notation, we shall suppress the sign "-" for the 
coefficients in the sequel. We first rewrite (3.6) as follows: 

/o // 2 ~  = No + u~ + bn(s, Xn)ds + an(s, f(n)dWs, 

where 

L /o trbn, f(n\ bn(s,22)]ds+ [an(. ,2.~),  (~)_an(s,22)]dW~. u~ = L k', �9 )n~(s)- 

Applying Doob's inequality, Jensen's inequality, and using the Lipschitz 
property of the coefficients (3.4) we have 

E {  sup IX:  - ~7:12 } 
s < t  

(~) _<~{ s~p i~nl ~ } + ~ ]/~{I~ n - ~s~,~}~s 
s<t 

+ 12K 2 - -  fE{lX$ - 

J0 
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Now, set as(t)  = E{  sups_< t [X~ - Xsnl2}. Then,  from (3.8), 

/o' an(t) < 3E{ sup [un] 2 } + 3K2(T + 4 )  an(s)ds, 
s<_t 

and Gronwall 's inequality leads to 

(3.9) E ~  sup[X n - Xsni 2 } < 3e3K~(T+4)E~ sup ]Uy]2~. 
s < t  ~ s < t  J 

We now est imate E{sups_< t ]uyl2}. Note tha t  if s E [tn'k,tn'k+l), for 
some 1 < k < n, then ??n(s) = kAtn (whence T - ~n(s) = (n - k)Atn,  as 
T = n a t , )  and T - s E ((n - k - 1)Atn, (n - k)At~]. Thus, by definitions 
(2.9) and (3.2), for every x E IR 

0~(nn(~) ,  ~) = ~ (~) (T  - nn(s ) ,  x)  = ~(~)((~ - k ) ~ t ~ ,  x) 

: ur - s,x) : O'~(s,x). 

More generally, for all (s, x) E [0, T] x IR, 

b'~(s,x) = b(s,x, On(s,x)) = b(s,x, On(~n(s),x)). 

Using this fact, it is easily seen tha t  

fo ~ b(v (~),X,o(~),O (v (~), n - n  n n - n  x,~(~))) - b(~,X n~ , O~(~,X:)) ds 

/o' ~ { b(~n(s), f(vn~(~), On(s, 2~n~ (~))) - b(s, X2,  9~(s, 2v~(~)) ) 

b ~ n - n  _ _  + (~,x~,o (~,x,o(~))) b(~,x: ,on(~,x:))  }d~ 

=11 + I2. 

Using the boundedness of the functions bt, b~ and by, we see tha t  

{ ~ ~/o' { lt~ll~l~~ § H~JJ~I~,~-~:1}~, 

/o' I2 < K]lbyH~ . If(vS(s) - X2]ds. 

Thus,  

- + x jlds, 

where h" depends only on K, ]]btllc~, IIb~]l~ and Ilbvll~. Since 

i n n ( s )  - sJds  = (s  - t k ) d s  < -~ k=o 
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E{sup~<~ fo~b ~'~, 2 ~. ) ,~(s)-  b~(8, X:)ds 2 } 
(3.10) 

0 t T4 

Using the same reasoning for a with Doob's inequality, we can see that 

~{sup [ ~n(. X.~)~(~) _ ~~ X:)eW~ 2} 
u < t  

(3.11) _< 8/~2 { EIy;n(~)-XFI2ds+ (s-~n(s))2ds} 

< 8~2{ fo ~ 

Combining (3.10) and (3.11), we get 

fo t 1 6 ) 1  E{sup I,,~12} < ~ ( 4 T  + 16) E[2~(~) - X~[2ds + R~T(T + 3 ~2" 
s < t  

Thus, by (3.9), 

.{ su8 , ~ :  - x : l  ~ } 

(3.12) <_ 3e 3K2(T+4){/~2(4T + 16) EI2,~.(~) - X2[2ds 

+ K 2 T ( T + ~ ) n ~  }- 

Finally, noting that  ] ~-(s) - X~I < I ~(~) - -~21 + 122 - X21 and that  

we see as before that  

fo EI2~(~) - 2212ds <_ 2 IlbllL(s - v~(s)) 2 + [l~llLIs - v~(s)l ds 

< 2]lbll~T 1 1 
- 3 n 2 +II~II~T n 

Therefore, (3.12) becomes 

i t - n  n 2 
(3.13) E { s u p l X n - - x : I  2} < C ,  +C2z~+C3 f E#suPlX~-X~l  }as, 

s < t  - -  I t  J o  t. r < s  

where C1, C2 and Cz are constants depending only on the coefficients b, 
a and K and can be calculated explicitly from (3.12). Now, we conclude 
from (3.13) and Gronwall's inequality that  

~n(t) <_ /3ne CT, Vt 6 [0, T], 
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where /9~ = Cln -1 + C~n -2 and CT = C3T. In particular, by slightly 
changing the constants, we have 

an(T):E~ sup I X : - X n l  2} < C, + 02 =0(i), 
- 0<~<~ - ~ -  

proving the lemma. [] 

The main result of this chapter is the following theorem. 

T h e o r e m  3.2. Suppose that the standing assumptions (A1)--(A3) hold. 
Then, the adapted solution (X, Y, Z) to the FBSDE (1.1) can be approxi- 
mated by a sequence of adapted processes (X "n, Y~, Zn), where f(~ is the 
solution to the discretized SDE (3.6) and, for t 6 [0, T], 

~n  : :  8~(t,2tn); Z? := - a ( t , 2 ~ , s n ( t , f ~ ) ) O ~ ( t , f ( ? ) ,  

with O n and 0 n being defined by (3.3) and U (n) and V (~) by (2.34). Fur- 
thermore, 

(3.14) E{  0<t<TSUp ]f(:--XtI+O<t<TSUp ]~n--Ytl+0<t<Tsup I ' ~ - Z t l } = O ( ~ n ) .  

Moreover, if f is C 2 and uniformly Lipschitz, then for n large enough, 

(3.15) E{f(2~, 2~)} - EU(XT, Z~)}[ _< K 
n 

for a constant K.  

Proo]. Recall that  at the beginning of the proof of Lemma 3.1, we have 
suppressed the sign "-"  for b and ~ to simplify notation. Set 

~n(t )  = { sup Ibm(t, x)  - b(t, x)l  2 + sup lan(t ,  x)  -- a ( t ,  ~)l  ~ }, 
x x 

where b, b n, a and a n are defined by (3.1) and (3.3). Then, from (3.5) we 
know that sup t Izn(t)l = O(~A~). Now, applying Lemma 3.1, we have 

~{ : ~  I~: - ~J~} _< ~{ ~u~ i ~ : -  ~:l ~ } .  ~ {  ~u~ i~: - ~sl ~ } 
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Further, observe that  

<_4T fot Elbn(s, X2) - bn(s, X~)[2ds 

+ 16 Elan(s, X2) - a n (s, Xs)12ds + 4(T + 4) r 

~4(T + 4)K ~ E{ sup IX~ - X~I ~}es + 4(T + 4) ~n(s)e~. 
r<_s 

Applying Gronwall's inequality, we get 

{ } Jo (3.16) E sup [X• - Xs[ 2 < 4(T + 4) Sn(s)ds" e 4(T+4)K2 < n- ~, 
s<t 

where C is a constant depending only on K and T. Now, note that  the 
functions 0 and On are both uniformly Lipschitz in x. So, if we denote their 
Lipschitz constants by the same L, then 

0<t<T 

_ on(t 2n~121 < 2E~ sup lO(t, Xt)- , , t :~ I 
0<t<T 

+ 2E{ sup 10~(t,22)-0(t,~)l 2} 
0<t<T 

0<t<T (t,x) 

by Theorem 3.4 and (3.16). The estimate (3.14) then follows from an 
easy application of Cauchy-Schwartz inequality. To prove (3.15), note that  
Theorem 2.3 implies that,  for n large enough, snp(t,x)10n(t,x) -0 ( t ,  x)l 
Cn -1, for some (generic) constant C > 0. We modify )(~ as defined by 
(3.6) by fixing n and approximating the solution X ~ of (3.7) by a standard 
Euler scheme indexed by k: 

f0 f0 2 ~  'k = x + b( . ,2 .~ ,k )n ,c ( s )ds  + a ( . , 2 ? ' k ) , , , ( s ) d W s .  

It is then standard (see, for example, Kloeden-Platen [1, p.460]) that  

(3.17) C1 
E{:(X~)} - E{f(2~'k)} <_ --K 
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On the other hand, we have 

Ig{f(XT)} - E { f ( X ~ ) } [  <_ K E { I X T  - X~[ } 
(3.18) C2 

O ~ t ~ T  ) ?2 

for Lipschitzian f ,  by (3.16). Therefore, noting that X~ as defined by (3.6) 
is just _~n,n t , the triangle inequality, (3.17) and (3.18) lead to (3.15). [] 



C o m m e n t s  and Remarks  

The main body of this book is built on the works of the authors, with 
various collaboration with other researchers, on this subject since 1993. 
Some significant results of other researchers are also included to enhance 
the book. However, due to the limitation of our information, we inevitably 
might have overlooked some new development in this field while writing 
this book, for which we deeply regret. 

In Chapter 1, the results on the pure BSDEs, especially the fundamen- 
tal well-posedness result, are based on the method introduced in the seminal 
paper of Pardoux-Peng [1]. The results on nonsolvability of FBSDEs are 
inspired by the example of Antonelli [1]. The well-posedness results of FB- 
SDEs over small duration is also based in the spirit of the work of Antonelli 
[1]. The whole Chapter 2 is based on the paper of Yong [4]. 

In Chapter 3 we begin to consider a general form of the FBSDE (1) 
with an arbitrarily given T > 0. The main references for this chapter 
are based on the works of Ma-Yong [1], virtually the first result regarding 
solvability of FBSDE in this generality; and Ma-Yong [4], in which the 
notion of approximate solvability is introduced. A direct consequence of the 
method of optimal control is the Four Step Scheme presented in Chapter 4. 
The finite horizon case is initiated by Ma-Protter-Yong [1]; and the infinite 
horizon case is the theoretical part of the work on "Black's Consol Rate 
Conjecture" presented later in Chapter 8, by Duffie-Ma-Yong [1]. 

Chapter 5 can be viewed either as a tool needed to extend the Four Step 
Scheme to the situation when the coefficients are allowed to be random, or 
as an independent subject in stochastic partial differential equations. The 
main results come from the papers of Ma-Yong [2] and [3]; and the appli- 
cations in finance (e.g, the stochastic Black-Scholes formula) are collected 
in Chapter 8. 

The method of continuation of Chapter 6 is based on the paper of Hu- 
Peng [2], and its generalization by Yong [1]. The method adopted a widely 
used idea in the theory of partial differential equations. Compared to the 
Four Step Scheme, this method allows the randomness of the coefficients 
and the degeneracy of the forward diffusion, but requires some analysis 
which readers might find difficult in a different way. 

Chapter 7 is based on the work of Cvitanic-Ma [2]. The idea for the 
forward SDER using the solution mapping of Skorohod problem is due 
to Anderson-Orey [1], while the Lipschitz property of such solution map- 
ping is adopted from Dupuis-Ishii [1]. The proof of the backward SDER 
is a modification of the arguments of Pardoux-Rascanu [1], [2], as well as 
some arguments from BuckdahmHu [1]. The proof of the existence and 
uniqueness of FBSDER adopted the idea of Pardoux-Tang [1], a general- 
ized method of contraction mapping theorem, which can be viewed as an 
independent method for solving FBSDE as well. 
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Chapter 8 collects some successful applications of the FBSDEs devel- 
oped so far. The integral representation theorem is due to Ma-Protter-Yong 
[1]; the Nonlinear Feynman-Kac formula is in the spirit of Peng [4], but the 
argument of the proof follows more closely those of Cvitanic-Ma [2]. The 
Black's consol rate conjecture is due to Duffie-Ma-Yong [1]; while hedging 
contingent claims for large investors comes from Cvitanic-Ma [1] for uncon- 
straint case, and from Buckdahn-Hu [1] for constraint case. The section on 
stochastic Black-Scholes formula is based on the results of Ma-Yong [2] and 
[3], and the American game option is from Cvitanic-Ma [2]. 

Finally, the numerical method presented in Chapter 9 is essentially 
the paper of Douglas-Ma-Protter [1], with slight modifications. We should 
point out that ,  to our best knowledge, the scheme presented here is the 
only numerical method for (strongly coupled) FBSDEs discovered so far, 
and even when reduced to the pure BSDE case, it is still one of the very 
few existing numerical methods that  can be found in the literature. 

In summary, FBSDE is a new type of Stochastic differential equations 
that  has its own mathematical flavor and many applications. Like a usual 
two-point boundary value problem, there is no generic theory for its solv- 
ability, and many interesting insights of the equations has yet to be dis- 
covered. In the meantime, although the theory exists only for such a short 
period of time (recall that  the first paper on FBSDE was published in 
19930, many topics in theoretical and applied mathematics have already 
been found closely related to it, and its applicability is quite impressive. 
It is our hope that  by presenting a lecture notes in the series of LNM, 
more attention would be drawn from the mathematics community, and the 
beauty of the problem would be further exposed. 
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